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Introduction

Expectations play a central role in dynamic macroeconomic models. The

standard modelling assumption, originating in the work of Muth (1961) and

tracing back to Lucas’ (1972) and (1976) seminal contributions, is the ratio-

nal expectations hypothesis, which is frequently referred to as a revolution in

macroeconomic thinking for the essential impact it has exerted on economic

research, cf. e.g. Taylor (1999). The key idea is that agents’ expectations

are consistent with the forecast model derived from the underlying economic

structure, implying that they make rational use of their knowledge about eco-

nomic relationships and only incur non–systematic, unavoidable forecast er-

rors. Hence, in the same way that microfounded macro models presuppose

maximizing behavior in agents’ allocations, the rational expectations hypoth-

esis insists on optimal behavior in information processing.

The strong informational requirements of the rational expectations ap-

proach, however, have been subject to criticism, since implementing such fore-

casts requires the knowledge not only of the underlying model but also of

the exact values of all of its parameters. A recent approach that moderates

these strong prerequisites is the theory of adaptive learning. In its basic form

it retains the assumption of agents knowing the equations of the economic

model, but requires them to behave like econometricians to infer estimates of

the model’s parameters.

Adaptive learning thus keeps track of the evolution of agents’ beliefs, i.e.

the set of parameter estimates they base their forecasts on. Given such a

set of estimates, agents can use the model’s forecast equations to project the

future evolution of the relevant variables. The literature has coined the term

“perceived law of motion” to distinguish the agents’ forecast model from the

actual outcomes, which are referred to as the “actual law of motion” implied

by both the economic structure and the process of forming expectations.
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In this context, the concept of rational expectations calls for the consis-

tency of perceptions and actual outcomes. Expectations formulae based on

the agents’ forecast model imply actual economic outcomes. These dynamic

equations shall correspond to the systems perceived by agents, from which

they derived their forecast model. Technically, the economic structure induces

a mapping from perceived onto actual laws of motion, and the rational expec-

tations equilibrium can be defined as a fixed point of this relation.

Much research has been devoted to solve this fixed point problem and the

related problem of uniqueness. Important contributions include Blanchard and

Kahn (1980), Klein (2000) and much of the research of McCallum. This line of

research developed solution methods and elaborated conditions that guarantee

the uniqueness of the rational expectations equilibrium. These conditions can

be translated into policy prescriptions, for example the famous Taylor (1993)

principle that states that only a sufficiently strong interest rate reaction to

inflation on part of a central bank yields a unique equilibrium, precluding the

existence of sunspots and self–fulfilling prophecies.

The adaptive learning approach conjectures that agents continuously ob-

serve their economic environment and use standard econometric procedures

to fine–tune their understanding of dynamic relations. At any given point in

time agents make optimal allocation decisions which crucially depend on their

expectations about future circumstances. To determine the potential evolution

of key variables they dispose only of an approximate model that is subject to

statistical errors. The structural equations links their current perceived law

of motion onto an actual law of motion, and the latter will change unless the

economy has reached the rational expectations equilibrium. During the tran-

sition period, agents accumulate information that is contaminated by their

imperfect knowledge, hence creating a feedback.

A natural question that arises in this context is whether the perceptions

which in general are initially wrong will eventually move to the correct un-

derlying full information equilibrium. If information is initially imperfect, will

the economy nevertheless move towards the full information equilibrium or is

the economic structure such that initial deviations from this state will accu-

mulate and drive the system further apart from it? The work of Evans and

Honkapohja (2001) provides the necessary theoretical background to analyze
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this convergence issue, known as E–stability, and opens a fruitful strand of

research. Correspondingly, much work has been devoted to derive conditions

on policy that assure E–stability,

Adaptive learning can isolate a unique equilibrium in a multiple equilib-

rium setup that is characterized by stability properties in the process of self–

referential data accumulation, and is therefore often seen as an equilibrium

selection device. The rational expectations theory cannot explain the transi-

tion from a prevailing equilibrium to a new one once structural factors have

changed; instead it implies an immediate adaption to the new state without

explaining how and whether the economy will get there. Adaptive learning

provides this missing link in explicitly accounting for this transition period.

This new approach is, however, also capable of explaining many empirical

phenomena. If the economic structure remains constant, rational expectations

theory implies that the actual law of motion remains constant as well, while

the information accumulation process, reflected in ever updating perceived

laws of motion, will necessarily introduce time variation into actual economic

dynamics. Hence, even if a theoretical model covers sufficient phenomena to

imply a time invariant structure, we will nevertheless observe time variation

over the course of learning the precise working of the model. Consequently,

changes in econometric estimates (e.g. even changes in policy, see chapter 1)

that are usually interpreted as exogenous changes in the structure that cannot

be explained by the model can potentially be endogenized using the adaptive

learning approach. Another empirical phenomenon that is well documented in

the empirical literature is the decline in shock volatility, in a certain context

referred to as the great moderation. If learning dynamics contribute to the

model while at the same time fading out over time due to E–stability, this

channel will initially inject additional variance into macro variables that will

eventually clear out. Without learning taken into account the related reduction

in variance must be traced back to a reduction in the variances of the shock

term, leading to the interpretation of economic disturbances having become

more favorable without being able to explain this phenomenon.

Surprisingly, though, there has not been much research devoted to the

question of empirical relevance. After all, adaptive learning would matter

little if its quantitative importance would be limited. The goal of this thesis is
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to provide empirical evidence on this approach and to demonstrate its power

in accounting for otherwise hardly explainable phenomena.

There are two channels that inject additional dynamics into an economic

system under adaptive learning. The first is the effect of frequent model re-

visions on optimal policy decisions. As soon as new information arrives the

policymaker will reconsider the way he uses his instruments to influence his

target variables. With a new transition law the optimal trade off between vari-

ables changes due to modified dynamic relations. This effect has recently been

investigated by Primiceri (2006) in a model of US inflation and unemployment

dynamics to study the impact of learning on the federal funds rate. Assuming

that policy was conducted optimally he shows that the inflationary outbreak

as experienced in the US during the great inflation episode during the seventies

and early eighties can be traced back to learning related dynamics.

In chapter 1 we apply a similar method to both US and UK data and pur-

sue the question which interest rates an optimizing policymaker would have

set if he had been subject to imperfect information. We combine Primiceri’s

investigation of the Great Inflation using the adaptive learning approach with

Orphanides’ work on the importance of mismeasurements in unobservable vari-

ables such as output or unemployment gaps. We depart from the standard

single equation approach to model the latent natural rate of unemployment

and implement an appropriate signal extraction method to determine it. The

advantage of this procedure is that it yields real–time estimates of the natural

rate that are in line with narrative evidence and, unlike the standard method,

can be equally applied to different data sets. We challenge Primiceri’s assump-

tion that policy was conducted optimally, which appears questionable at least

in face of the tremendous outbreak of inflation in the United Kingdom in the

seventies. Instead we compute the interest rate paths optimizing policymakers

would have set had they been subject to imperfect information, and contrast

them with historical rates. We find that historical and optimally recommended

rates are highly correlated, but that during the great inflation historical rates

were set moderately relative to what optimality considerations under certainty

equivalence would have implied.

Chapter 2 picks up this idea and brings Brainard’s (1967) uncertainty result

into the analysis. Our primary question is whether outcomes as experienced
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in the US and the UK during the great inflation can be attributed to learn-

ing dynamics. We simulate inflation–unemployment dynamics as estimated

from time series data given an optimizing policymaker subject to imperfect

information. Again, we do not focus on a single type of policymaker, as char-

acterized by a set of preference parameters, but investigate which outcome

would have been experienced by different preferences. We discuss that a com-

bination of wrong perceptions of inflation persistence and the Phillips curve

slope, that measures the extend to which real activity impacts on changes in

the price level, together with a substantial measurement error regarding the

natural level of unemployment inevitably pushed the economy into a high in-

flation era. Our simulations demonstrate that this is the most likely outcome,

with probabilities of it occurring almost reaching a hundred percent, while on

the contrary without learning these high inflation episodes would rarely occur,

and even if they did, they would not last as long and would not reach the high

levels that we observe in the data. In fact, our learning model replicates the

stylized facts encountered in the data, including the outbreak of high inflation,

the fact that the peaks of the unemployment gap lag those of inflation a few

quarters, and the rapid disinflation. We also find that the characteristics of

the aforementioned combination of beliefs evolve quite naturally in our learn-

ing models. Despite our simulations generating episodes comparable to the

great inflation, the extremely high inflation rates–in particular in the UK–are

rarely attained in our simulations. Following the idea that the time varying

uncertainty surrounding consecutive estimates might be the source of this be-

havior, we conduct a counterfactual exercise in the spirit of Brainard. We find

that a learning policymaker who obliges himself to a mute response in face of

high uncertainty would induce inflation episodes matching those historically

observed in size and duration.

The second channel received more attention in the literature and relates

to the impact of learning on expectations and the related feedback. Given the

immense interest in the estimation of dynamic stochastic equilibrium (DSGE)

models, chapter 3 develops a method that allows researchers to replace the

assumption of rational expectations with that of real–time expectations. The

procedure allows to estimate general DSGE models under the alternative as-

sumption of adaptive learning and thus contributes to the literature in that it
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allows to keep track of the dynamic interaction of actual dynamic equations

and the perceived law of motion. We apply this method in Ireland’s (2004)

variant of the New Keynesian model that assesses the role of real–business

type technology shocks. Interestingly, we find that the estimation of his model

under adaptive learning not only gives a better fit to the data, but also yields

substantially different results. This shows that ignoring learning dynamics in

the estimation introduces a substantial bias in the remaining estimates.
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CHAPTER 1

Optimal Monetary Policy under Learning:

An Empirical Approach

1.1. Introduction

Most modern macroeconomic models are characterized by forward looking

behavior. The standard assumption on expectations formation is the ratio-

nal expectations hypothesis, requiring agents to build forecasts consistently

within the economic model. While this is a very satisfying assumption in view

of microfounded optimizing behavior it is often criticized for its strong infor-

mational assumptions. Apart from the behavioral equations, agents must have

perfect knowledge of aggregate dynamics which is in conflict with econometric

practice. Adaptive learning (AL), advanced by Evans and Honkapohja (2001),

is a recent approach to attenuate this assumption in that it assumes imperfect

information and requires agents to infer precise knowledge of macroeconomic

relations by real–time data observation.

In a New Keynesian model agents not only behave optimally in making

their allocation and pricing decisions but also in the way they form their ex-

pectations. Many studies question whether the policymaker behaved optimally

in that framework during the 1970s and find that a change in policy preferences

or a change in the way policy is conducted led to the low inflation environment

that we experience since the successful completion of the Volcker disinflation,

see e.g. Clarida et al. (2000).

The adaptive learning approach attributes the bad performance to addi-

tional dynamics due to imperfect knowledge and the evolution of decision mak-

ers’ beliefs. Since the Great Inflation was present not only in the US, it appears

debatable whether the change in the Fed’s chairmanship in 1979 could be the

cause of the improved performance. Thus AL offers a unified approach to

answer this question not only for the US but also for other countries with a

qualitatively similar inflation history such as the UK.
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Primiceri (2006) applies this methodology and investigates whether the

high inflation episode of the 1970s and early 1980s is consistent with an op-

timizing policymaker who is exposed to imperfect information, and due to

his restricted information set brings inflation to very high levels and for a

prolonged period despite his best efforts. In particular he shows that the infla-

tionary outbreaks would have equally well occurred under an optimizing policy

regime that is exposed to imperfect information about the economic structure.

Primiceri’s method starts from the conjecture that US monetary policy was

at least close to optimal behavior under learning, but this assumption is not

examined explicitly. It is hard to verify whether the policy was conducted non–

optimally when the opposite is assumed from the outset. Although Primiceri

demonstrates that a Great Inflation is possible even in case the central bank

behaves optimally, his approach clearly cannot answer this question. More-

over, given the extremely high inflation in the UK in that episode it appears

questionable whether this is indeed consistent with historical rates. Hence in

this paper we challenge this assumption and fill this gap by investigating how

a learning policy maker would have optimally conducted policy before, during,

and following the Great Inflation under imperfect information.

We follow Primiceri and analyze optimal policy in a small empirical macro

model similar in spirit to Woodford’s (2003) New Keynesian model, adjusted

to fit it to US and UK time series. The policymaker is assumed to face a stan-

dard quadratic loss function allowing for an inflation bias, but he has to infer

information about the model’s dynamics by real time data observation. While

Primiceri investigates a single type of policymaker characterized by preferences

that most closely describe historical rates in terms of optimal outcomes, we

will derive the paths for nominal interest rates for a broad range of policy

preferences and compare the resulting interest rate decisions with historical

rates.

We will investigate whether policy as pursued in the last 20 years that is

commonly classified as appropriate differs from previous policy behavior or

whether the same outcomes would result even without changes in preferences.

We will see that changes in preferences play only a minor role and are not the

source of the superior inflation outcomes of the last two decades. We find a

dominant role of imperfect information, in particular in the mismeasurement
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of the non–accelerating inflation rate of unemployment, as also documented

by Orphanides and van Norden (2002), but also in the perception of inflation

persistence and the Phillips curve slope as well as the uncertainty surrounding

the corresponding estimates, as suggested by Brainard’s (1967) study.

The paper is organized as follows. The next section reviews the historical

performance of inflation and unemployment in the US and the UK, with par-

ticular focus on the Great Inflation episodes. Section 1.3 introduces the model

and the adaptive learning approach while section 1.4 is devoted to optimal

policy behavior in this context and discusses commonly assumed policy pref-

erences underlying optimal decision making. Section 1.5 presents our results

on interest paths of an optimizing learning central banker and contrasts his

decisions with historical interest rates. Section 1.6 investigates the robustness

of our findings to variations in the benchmark setting, and finally section 1.7

concludes.

1.2. Stylized Facts

The term Great Inflation (GI) refers to the prolonged high inflation pe-

riod experienced in the United States, and similarly in other industrialized

countries, for almost twenty years. Beginning in the mid–sixties, US inflation

gradually increased, peaking at double digit levels in the mid–seventies and re-

mained high for a sustained period, until it finally returned to low levels under

Federal Reserve chairman Paul Volcker. This rapid decline in the early eighties

is now referred to as Volcker Disinflation. A large amount of research has been

conducted to explain this episode, but until now it seems difficult to explain

all relevant empirical facts consistently in a model. This introduction gives a

brief description of these facts and reviews some representative explanations

that have been advanced in the literature.

Figure 1.1 (top panel) plots annualized quarterly inflation and the un-

employment rate for US data. Beginning in the 1960s, inflation gradually

increased, reaching a maximum of 12 percent in 1974. Although it decreased

for a while, it remained high on average and peaked again above 10 percent by

the end of 1980. This second peak was followed by a sharp disinflation, which

quickly brought the inflation rate below 4 percent within two years and to an
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UK Inflation (thick line) and Unemployment
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Figure 1.1: US (top panel) and UK (bottom panel) time series of inflation

(thick line) and unemployment.

average level of 2.5 percent thereafter. Unemployment lags inflation, peaking

one year and two years, respectively, after inflation.

Inspection of figure 1.1 (bottom panel) reveals that the situation in the

United Kingdom was qualitatively similar to the US case discussed above,

though it was far more severe. We observe slowly but continuously increasing

inflation in the beginning of the sample, until inflation peaked at 26.6 percent

in the second quarter of 1975. Although the economy briefly recovered, infla-

tion remained high, peaked again five years later at 22 percent, until it finally

dropped rapidly to levels below five percent, where it remained afterwards,

except for 1987 and the following years where it temporarily touched eight

percent. This rapid decline was followed by a prolonged period of unemploy-

ment that ceased only several quarters until inflation reached low levels. We

also observe this phenomenon of a disinflation leading unemployment peaks

in the periods following the inflationary years 1987–1992. To summarize, we

observe UK inflation continually rising until it reached its peak level in the

mid–seventies, and remaining at high levels for several years. The UK econ-

omy experienced a rapid disinflation in the early eighties, which was followed

by an upshot of unemployment. Hence, the stylized facts discussed for the US

were experienced in the UK economy as well.
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1.3. The Model and Adaptive Learning

The adaptive learning literature typically analyzes related questions in a

version of Woodford’s (2003) DSGE model, see e.g. Evans and Honkapohja

(2001) or Bullard and Mitra (2002) for prominent examples. This model con-

sists of the New–Keynesian Phillips curve

(1.1) πt = αfEtπt+1 + θxt−1 + εt

and an IS type aggregate demand equation relating a measure of real activity

x to its future expected values, a policy instrument r, and a shock term ηt,

(1.2) xt = Etxt+1 + λrt + ηt

Equation (1.1) is a pricing equation based on the Calvo (1983) model. In

this model a random fraction ω of price setters is allowed to reoptimize their

individual prices. The variable x is identified with real marginal costs, but

in empirical work it is commonly approximated by either the output gap,

e.g. Smets (2002), that is the deviation of real output from its flexible price

benchmark, or by the unemployment gap, e.g. Primiceri (2006), the deviation

of current unemployment from the rate which puts no pressure on the inflation

rate. Orphanides and Williams (2007) emphasize that the unemployment gap

xt and the output gap xot are related by a proportional relation known as

Okun’s (1962) law.

Equation (1.2) is a log–linearized Euler equation that results from agents’

utility maximizing behavior in a representative agent model with monopolistic

competition in the goods market. r is the ex ante real interest rate, relating

to the central bank’s policy instrument i, the nominal interest rate, via the

Fisher equation rt = it − Etπt+1.

All coefficients are functions of deeper behavioral or preference parameters,

though we shall not be interested in this relation. What is important for our

approach is the dynamic law that the central banker perceives when thinking

about an appropriate path for his policy instrument.

Typically these microfounded equations are modified by including addi-

tional lag terms of the endogenous variables, to capture dynamics present in

the data but not accounted for by the stylized model (1.1) and (1.2); see Fuhrer

and Moore (1995). If the data favors the more restrictive theoretical model,
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these parameters would be estimated to be zero, thus nesting the underly-

ing model. Ireland (2004) proposes a similar procedure. There is currently a

debate in the adaptive learning literature, whether empirically measured in-

flation persistence is structural, as suggested by Fuhrer and Moore’s hybrid

specification with non–zero parameter estimates of the backward components,

or whether learning dynamics account for at least part of it, making the back-

ward looking term redundant. Thus, the burden to explain persistence is

shifted from structural factors to learning related dynamics, see Milani (2005)

and Junker (2008).

For our analysis of optimal monetary policy we prefer a reduced form sys-

tem which is more in line with empirical macro models, given by

πt = α(L)πt−1 + θ(L)xt + επt(1.3)

xt = ρ(L)xt−1 + λrt−1 + εxt(1.4)

where we use a lag order of two for the autoregressive polynomials α(·), θ(·)
and ρ(·) thus obtaining a model identical to that used in Primiceri (2006)

and similar to Rudebusch and Svensson’s (1998) and Smets’s (2002) models.

Following Rudebusch and Svensson and Smets we compute the real rate as

rt = it − π̄t, where our measure of expected inflation is a four quarter moving

average of current and past inflation rates.

The timing assumption in these models, as in our equations (1.3) and

(1.4), implies that monetary policy affects real activity with a one period lag

and the unemployment gap in turn has an impact on inflation one quarter

ahead. Overall, monetary policy affects inflation with a two quarter lag. This

is consistent with the dynamics of the monetary transmission mechanism as

documented by Christiano et al. (1999), and allows us to solve for optimal

monetary policy using standard methods, as explained below.

The advantage of using an empirical reduced form specification is that

we can focus on the behavior of a learning policymaker while suppressing

the expectations channel. Such a reduced form can be obtained by modelling

expectations as sufficiently backward looking, adaptive processes. Models that

emphasize the connection between structural and reduced form are subject to

chapter 3 and Junker (2008). It would be an ambitious goal to analyze the

structural model, using two–sided learning. This is left for future research.
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It should be noted, however, that two–sided learning is substantially more

complex and is rarely applied in the AL literature, mostly in calibrated models

of the economy. We interpret our specification as a tractable reduced form

version of the standard DSGE model.

Perceived Law of Motion. We equip the policymaker with a dynamic

model of inflation and unemployment of the form discussed previously, so that

he faces the equations

πt = ĉπ + α̂1πt−1 + α̂2πt−2 + θ̂1xt|t−1 + θ̂2xt|t−2 + επt(1.5)

xt = ĉx + ρ̂1xt|t−1 + ρ̂2xt|t−2 + λ(it−1 − π̄t−1) + εxt(1.6)

where constants have been added so that the model can be estimated using

historical data series, in contrast to the theoretical model which is formulated

in terms of deviations from steady state values which are usually unknown.

This specification is referred to as perceived law of motion, since it speci-

fies the model underlying the policymaker’s decisions given his perception of

the economic environment, which does not necessarily coincide with the true

data generating process. Our main assumption is that the central banker has

imperfect information about the model’s dynamics and he will use statisti-

cal inference to update his beliefs, which will crucially drive his optimality

decisions.

The key assumption of adaptive learning is imperfect knowledge of decision

makers. The central banker is assumed to know the functional form of equa-

tions (1.5) and (1.6), but he lacks information regarding the parameter values.

He thus uses statistical inference to improve his estimates of the autoregressive

parameters, the Phillips Curve slope parameters, and the constants over time,

which we collect in the belief vector

(1.7) βt = (ĉπ,t, α̂1,t, α̂2,t, θ̂1,t, θ̂2,t, cx,s, ρ̂1,t, ρ̂2,t)
′

where the index t refers to the information set upon which the estimator is

based. The date–t information set includes It = {πs, us, rs−1}s≤t, which im-

plicitly includes the unemployment gap since it is a function of observable

variables included in the information set.

The impact coefficient λ is difficult to estimate over the whole set of sub-

samples. We will see below, when discussing the standard deviations of the

13



estimates over time, that during particular periods the precision of estimates

is rather poor; in particular the estimates of λ are insignificant for many sub-

samples and even display the wrong sign occasionally. We believe that it is

plausible that central bankers at least agree on the sign of this parameter and

prefer to calibrate this coefficient on a standard value.

It is a rather common phenomenon in the adaptive learning literature that

the same parsimonious model is not capable of giving a satisfactory fit for

all subsamples, and for this reason, many applications focus on simple models,

allowing learning of only one or a small subset of parameters of central interest

while calibrating the remaining coefficients. We will nevertheless estimate all

dynamic parameters, as indicated by the belief vector β.

Primiceri also implicitly fixed this parameter on a value λ = 0.024, while

other studies find somewhat larger values, albeit usually relating to the output

gap. If we follow Orphanides and Williams’s suggestion in choosing an Okun

coefficient of (minus) 2, we can translate estimated or calibrated impact coef-

ficients from an output gap equation into corresponding impact coefficient for

our unemployment gap equation (1.6). In this regard, we find values ranging

from λ = 0.05 (cf. Rudebusch and Svensson (1998)), λ = 0.025 and λ = 0.03

(for different subsamples in Smets (2002)). We will also consider somewhat

larger values and extend the range to allow for values above Rudebusch and

Svensson’s estimate. Consequently, we will consider λ ∈ [0.024, 0.08] as the

relevant range, choose the midpoint as benchmark value, which corresponds to

Rudebusch and Svensson’s estimate, and consider variations in the full range in

a separate sensitivity analysis. Our robustness check confirms that the precise

value of the impact coefficient does not affect our results qualitatively.

Nairu as a latent variable. Our model features a time–varying rate of

unemployment which is thought of as the level that exerts no pressure on the

inflation rate. With a slight abuse of (technical) language, this particular rate is

commonly referred to as the non–accelerating inflation rate of unemployment,

or Nairu for short, since it is the rate that induces no movement of inflation,

cf. e.g. Ball and Mankiw (2002) or Gordon (1997). The unemployment gap

is the difference between the current unemployment rate and the prevailing

Nairu, hence the latter is formally given by the level of unemployment for

which the unemployment gap in equation (1.3) vanishes. Importantly, in the
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present context, at date s the policymaker also updates the whole path of

his perceived Nairu given a new data observation, yielding the series {u∗t|s}s≤t
where u∗t|s is the date–t estimate of the Nairu level prevailing at date s. So

before we can proceed with describing the policymakers learning algorithm,

we have to discuss how he infers the latent variable x from the data.

Note that the gap is determined by contrasting the level of the correspond-

ing date’s unemployment rate to the Nairu as perceived by the policymaker

at the current date t. Since this is also an estimate, it generally differs from

its true level, hence the policymaker does not only face uncertainty about the

model’s true parameter values, but is also subject to misperceptions of one of

its main target variables. This last point is the crucial feature in Orphanides’

work. He analyzes the effect of real time and ’quasi–real time’ data, the latter

being the effect present in our approach; in Orphanides and van Norden (2002)

both effects are shown to be substantial.

At this point it is worth discussing how related papers handle the issue of

Nairu estimation in a learning environment. Orphanides and Williams (2007)

note that given the time variation in the Nairu policymakers need to contin-

uously reestimate this variable in quasi–real time. As a simplifying approach

he suggests the use of a simple algorithm which basically extracts the Nairu as

a recursive sample mean of unemployment, though the application of a con-

stant gain approach additionally involves a discounting of past observations

(see the related discussion below). Primiceri (2006) adopts this procedure and

calibrates the learning gain such that the resulting series is broadly consistent

with conventional wisdom regarding the Nairu path. This procedure works ap-

proximately for US data where the Nairu is regarded as a very smooth series

with small fluctuations around the mean unemployment level of six percent.

Applying this method to UK data would produce a Nairu path that continu-

ally underestimates the path relative to conventional empirical estimates which

display higher fluctuations than the US counterpart. To avoid this problem

we will employ a more sophisticated method that is designed to extract a unit

root latent variable from observable data.

Standard methods to extract trends are Kalman’s (1960) Filter (cf. Gordon

(1997) for an application to US data, Franz (2005) for German data and Batini

and Greenslade (2006) for UK data, or for the case where the excess demand
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term is measured by the output gap, see Smets (2002)), and the Hodrick–

Prescott Filter (see Hodrick and Prescott (1997); henceforth HP). The Kalman

Filter simultaneously estimates the path of the Nairu and the parameters of

the model. Application of the HP Filter proceeds in two steps. The filter

is appropriate to identify the unit root trend component of unemployment,

and the resulting difference to the unemployment series is subsequently used

as a regressor in either ordinary least squares regression or a commonly used

version of it as discussed below.

For simulations in connection with adaptive learning it is advisable to

choose Hodrick and Prescott’s method since it is substantially faster and,

more importantly, numerically more reliable than the Kalman Filter approach.1

However, both methods yield very similar results. In fact, the arbitrary choice

of the HP–smoothness parameter is made as to assure that the resulting series

for the Nairu is in line with previous studies, as will be discussed below. The

choice of this parameter and the robustness of the results against changes in

this parameter are the subject of section 1.6. For an application of the Kalman

Filter to extract the gap variable, see chapter 3 and Junker (2008).

Learning Algorithms. After deriving u∗t , the policymaker computes the

perceived unemployment gap xt = ut − u∗t and applies appropriate estimation

techniques to the pricing and demand equation, yielding a revised estimate βt.

A common approach in the learning literature, suggested for example by

Evans and Honkapohja (2001) and applied in important contributions, e.g. in

Bullard and Eusepi (2005) or Cho et al. (2002), are the so–called constant gain

learning algorithms. They are favored over related methods such as ordinary

least squares since its discounting of past data reflects the desire of agents to

keep track of regime breaks. In particular in face of models under learning,

where feedback effects usually affect the dynamic evolution this appears as a

plausible procedure.

Related work, such as those cited above, typically present a recursive for-

mulation of the learning algorithm, which integrates the last observation into

1Maximum likelihood estimation using the Kalman Filter requires numerical optimiza-

tion of the same model for an increasing sequence of data points; usually additional assump-

tions regarding initialization or variances are made depending on the outcome of the filter.

This procedure is not advisable for simulations.
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the previous estimate. This formulation is convenient since it offers a com-

putationally fast updating procedure for a growing sample. However, in face

of latent variables this procedure in inappropriate. Each time the model is

reestimated for an increased sample the whole regressor based on the unob-

servable component will change, so that the recursive procedure would ignore

the improved estimate of the path except for the most recent realization. Thus

it should be noted that recursive and ordinary least squares are not equivalent

once we determine a latent variable in a first step.

It is nevertheless illustrative to consider the standard recursive learning

algorithm for a single equation regression of y on x,

βt = βt−1 + γtΣ
−1
t xt(yt − x′tβt−1)(1.8)

Σt = Σt−1 + γt(xtx
′
t − Σt−1)(1.9)

where Σt is the date–t estimate of the covariance matrix of the OLS estima-

tor. The estimate βt for a sample ending in period t can be computed from

the previous estimate from the sample ending in t − 1 and the most recent

observations (yt, xt). The estimate is adjusted by a weighted forecast error

from the previous regression. The factor γt, referred to as gain parameter,

plays a key role: for γt = 1/t we have a recursive formulation of ordinary least

squares where the same weight is attached to each observation. Constant gain

algorithms differ from least squares in replacing this time varying gain by a

constant gain γt = γ for all t. Further details are provided in appendix A.1.

To be able to use a constant gain algorithm even in face of the latent unem-

ployment gap and thus enabling us to relate our results to similar studies using

particular values for the gain parameter, we will use discounted least squares

(DLS). As also discussed in appendix A.1, this is the non recursive counterpart

to constant gain algorithms, with gain and the corresponding discount factor

being related as

(1.10) γ =
√

1− δ2

In this formulation a zero gain corresponds to the borderline case of a unit

discount factor, in which case DLS coincides with ordinary least squares (OLS),

so using gain values within a standard range while explicitly allowing for the

case γ = 0 nests OLS as a special case. As an example, the widespread
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calibration for the gain value γ = 0.03 is associated with a discount factor of

δ = 0.985.

At date t the policymaker will thus proceed as follows: firstly, he revises his

estimated Nairu path, {u∗t|s}s≤t, and deduces the perceived unemployment gap

for all dates, {xt|s}s≤t. If he wants to use a gain such as our benchmark value

γ0 he uses equation (1.10) to solve for the corresponding discount factor δ,

discounts all regressors and endogenous variables with this factor and applies

OLS to the transformed system. For δ < 1 this method is DLS. The param-

eter estimates derived in this way will then be mapped onto an appropriate

state space form to revise his optimality problem within his updated dynamic

transition law of the economy, as discussed in the next section.

Learning results. The following figures track the evolution of the policy-

maker’s beliefs of the corresponding parameters over time. While all samples

start in 1955 and 1959, resp., depending on data availability, the time axis

depicts the final sample point which is also the estimation date, e.g. in figure

1.2, the value of approximately 0.5 in 1964 indicates that inflation persistence

was estimated at that level at that time while 16 years later, in 1980, inflation

was perceived to be substantially less stationary with a value close to unity.
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Figure 1.2: Beliefs of Inflation Persistence

Beliefs of Inflation Persistence. Both the evolution of beliefs about US and

about UK inflation persistence share close similarities. Initially policymakers

regard inflation as a strongly mean reverting process with an autoregressive

parameter of around 0.3 and 0.5 implying quick return to the target level after

occurrence of shocks. This view drastically changes in the seventies when
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updated parameter estimates indicate that inflation is in fact close to a unit

root process.
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Figure 1.3: Beliefs of the Phillips curve slope

Beliefs of the Phillips curve slope. The evolution of the beliefs about the

Phillips curve slope are similar in both models. Initially, the slope has a

substantial, negative value that is continually eroded until it reaches zero in

the early seventies. This means that the sacrifice ratio, that is the units of

unemployment above the Nairu necessary to induce a desired effect on inflation

is bit by bit increased. After the effectiveness almost completely vanished, the

perceived slope improves in favor of active policy making, taking on higher and

higher values (in absolute terms) until it reaches a level of maximum efficiency

around 1980, somewhat later in the US, and a few quarters earlier in the UK.

Afterwards, the slope coefficient slowly approaches values close to zero. This

observation is consistent with the findings in Primiceri (2006). Using different

price measures, other studies find even more pronounced changes in perceived

persistence though they agree qualitatively with our results, cf. Milani (2005).

The amplitude of the UK slope perceptions is higher since the higher as-

sumed time variability of the Nairu soaks up a great part of the unemployment

fluctuations resulting in a lower gap amplitude. Ceteris paribus, a lower am-

plitude of the estimated unemployment gap yields higher parameter estimates

for the slope. It is the product of these two which can be inferred from the

data, the separation in gap and slope multiplier depends on the assumptions

regarding the Nairu smoothness.

Full sample and quasi–real time Nairu. Figure 1.4 plots the unemployment

rate, the full sample Nairu estimate (dashed line) and the quasi–real time

19



US model UK model
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Figure 1.4: Full sample Nairu (dashed line), quasi–real time Nairu (thick line)

and revision intervals (shaded region)

Nairu. The latter is defined pointwise, its date t value giving the perception

of the Nairu as of time t, i.e. formally u∗t|t, whereas in contrast the full sample

Nairu plots the date T perception of the Nairu level at any date within the

sample, i.e. its date t value is u∗T |t. The concept of a (quasi–)real time Nairu is

frequently employed by Orphanides, e.g. in Orphanides and Williams (2005).

Comparing our US quasi–real time Nairu with the corresponding one in the

latter paper, we find that both paths are very similar, although our Nairu

has a higher amplitude in the years after 1981. The full sample Nairu is

a smooth series and is comparable to results in other empirical studies, cf.

Gordon (1997) for an example. The difference between both series gives the

real time misperception of the latest Nairu values, that is in the early 1970s

the perceived values of the Nairu prevailing at that time was slightly above 4

percent while current estimates for these values are substantially higher, being

around 6 percent as is also implied by our full sample estimates.

1.4. Optimal Policy under Adaptive Learning

We will impose a quadratic loss function for the central banker which apart

from the incorporation of a potential inflation bias is standard in the literature.

Optimal monetary policy will be a feedback rule that is derived from this un-

derlying loss function. We will discuss the policymakers optimization problem,

investigate the effect of adaptive learning on these decision and consider the

relevant range for the preference parameters in the final part of this section.
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The Optimal Linear Regulator Problem. At any date t the policy-

maker chooses a path for its instrument v to minimize the discounted stream∑
s≥t δ

s−tLs of current and expected future period losses, which are given by

(1.11) Ls = (πs − π∗)2 + ωu(us − kû∗t|s)2 + ων(vs − vs−1)
2, s = t, t+ 1, . . .

The loss function is quadratic in deviations of inflation π from a target rate

π∗, in the unemployment gap u − u∗ and in the rate of change of the policy

instrument. The standard quadratic term in the unemployment gap is modified

to allow for an inflationary bias of the central banker towards the real side of

the economy, that is towards unemployment. Instead of subtracting the Nairu

from the level of unemployment, we subtract κû∗t to obtain the standard case

for κ = 1, and an increasing tendency to allow for an inflationary bias in favor

of unemployment rates being below the Nairu as κ approaches zero.

The change in the policy instrument is taken account of to reflect the

degree of interest rate inertia typically found in empirical studies, which is

not implied by the model. However, studies usually find an extremely large

response of interest rates towards deviations of inflation or unemployment from

their respective target values, unless the smoothing objective is explicitly taken

account of. We normalize the weight on inflation deviations to one, so that

the parameters ωu and ων are relative weights.

The policy maker faces a dynamic transition law given by equations (1.5)

and (1.6), which is linear in the state vector yt = (1, πt, πt−1, πt−2, πt−3, ut, u
∗
t ,

ut−1, u
∗
t−1, vt−1)

′. The policymaker’s dynamic program can be reformulated as

a linear–quadratic optimal regulator problem of choosing a path for the policy

instrument v that minimizes the quadratic loss function

(1.12)
∑
t≥s

δt−s[y′tΩyyyt + v′tΩvvvt + 2y′tΩyvvt] ≡
∑
t≥s

δt−s(y′t, vt)Ω(y′t, vt)
′

subject to the perceived linear transition law

(1.13) yt+1 = Ayt +Bvt + εt+1,

with a singular weight matrix Ω, and system matrices A and B. The singularity

of the matrix can be addressed by the invariant subspace method using the

generalized Schur decomposition, as discussed e.g. in Hansen and Sargent

(2005). The procedure requires transformations to eliminate discounting and

the presence of mixed terms. Discussion of this method along with details on
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the matrices are deferred to appendices A.3 and A.2. The resulting optimal

policy depends on the policymakers preference parameter p to be discussed

in detail below, which comprises his discount factor, the inflation target, the

inflationary bias parameter and the weights in the loss function. The solution

can be expressed as a linear feedback rule

(1.14) vt = −Fyt

where the elements of the row vector F are computed numerically using the

procedure proposed by Hansen and Sargent.

Combining Learning and Optimal Policy. Inserting an optimal policy

reaction function as described in equation (1.14) into equation (1.13) yields the

implied optimal dynamic behavior of the system, given by

(1.15) yt = (A−BF )yt−1 + εt

that the policymaker expects in the absence of shocks. As is standard, the

corresponding path for the instrument will only be implemented in expectation.

Upon arrival of new information, i.e. the realization of shocks, this path will

be adjusted. The feedback rule on the other hand usually stays invariant and

is designed to accommodate the impact of shocks. In particular, this means

that the system evolves according to the same dynamics, in the sense of having

the same eigenvalues and thus adjustment speeds, though from different initial

values that depend on the shock realizations.

Under learning, however, also the feedback rule, given by the vector F

changes each period. New data does not only include (at least approximate)

observations of shocks as under RE, but it also supplies valuable informa-

tion about the unknown parameters of the dynamic transition law, and con-

sequently also calls for a readjustment of the rule itself. The policymaker

applies his learning algorithm to equations (1.5) and (1.6) each quarter as new

information arrives. This gives him an updated linear transition law of the

form

(1.16) yt+1 = Atyt +Btvt + εt+1

where the matrices A and B are now indexed by t, the time the estimation is

conducted.
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It has become standard in the literature on adaptive learning to follow

Kreps (1998) in assuming what he calls Anticipated Utility. This stands for

the assumption that the policymaker treats the dynamic system (1.16) as time

invariant and solves the corresponding optimal regulator problem without ac-

counting for potential future adjustments in the system matrices. We interpret

this as follows: the underlying parameters are regarded as constant while fine–

tuning gives improved estimates each period. Thus even if he is continually

reassured that the parameters differ from period to period, the policymaker

does not attribute these changes to a changes in the model but to more precise

understanding of the latter. Cogley and Sargent (2001) revisit this assump-

tion, provide evidence that this is a valid simplification in our environment

and promote its use to keep the analysis tractable. We thus obtain a linear

feedback rule responding to the state vector y,

(1.17) vt = −F (p, βt)yt

where the notation emphasizes the dependence of the feedback rule on both

date–t beliefs βt and the preference vector p that governs the decision problem.

To summarize, at any date t the policymaker with fixed preferences p ob-

served data up to this date, his information set thus being It = {πs, us, is}s≤t,
which implicitly includes unemployment gap since it is a function of observ-

able variables included in the information set. He derives an estimated path

of the unemployment gap and applies a non–recursive learning algorithm as

discussed above yielding updated perceptions βt. He solves the corresponding

optimal regulator problem, obtaining an optimal path {−F (p, βt) Etys}s≥t,
from which he implements the first prescribed policy move in the current pe-

riod. Economic variables realize and the policymaker repeats these steps in the

following period. Eventually, this yields a sequence of implemented optimal

policy decisions, {−F (p, βt)yt}t=1,...,T . It depends on the policymaker’s pref-

erence parameters, that is his inflation target, the inflationary bias parameter

and the weights in the loss function, collected in the preference vector p, which

the next section discusses in detail.

Policy Preferences. We want to investigate how a standard policymaker

will set policy in the economies described by our sequential estimates of US

and UK dynamics. We thus pose the question of what interest rates would
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have been set at a given date t assuming that the policymaker behaved opti-

mally given his most recent model estimates. Since this decision depends on

the central banker’s preferences we investigate a range of preferences that we

consider relevant for policy making. We randomly draw a policy preference

vector p using the uniform distribution over plausible intervals usually sup-

ported by the literature. Recalling that policy preferences are summarized by

a vector p = (κ, ωx, ωv)
′, we have to discuss plausible ranges for each of these

parameters from which we will make uniformly random draws.

For the central banker’s inflation target we choose a benchmark value of

π∗0 = 2 which is a common value, cf. e.g. Bullard and Eusepi (2005) and

Schorfheide (2005). Our main simulation in the next section allows for values

in the range π∗ ∈ [1.5, 4].

We observe that the inflation bias parameter is constrained to the unit

interval and predispose that very low values are not very likely. Given Prim-

iceri’s finding that the inflation bias is quantitatively negligible we consider

the range κ ∈ [0.5, 1] in our main part and choose his estimate κ0 = 0.87 as

benchmark.

Reasonable benchmark values for the relative weights in the loss function

are ωu = ωv = 1 since this choice implies that all target values are equally

important. It appears plausible, however, to allow each of the three variables

to be a dominant target for monetary policy, so that relative weights above

one should be regarded in the same way as their inverses, being below one. We

choose a range of [1/2, 2] for both weights implying that we consider central

bankers with inflation aversion being four times stronger than one or both of

the other targets, as well as the reverse, e.g. a disposition to interest rate

smoothing being up to twice as high as either inflation or unemployment sta-

bilization. Of course, since the parameters are jointly drawn from uniform

distributions over the relevant range, we allow for all intermediate combina-

tions as well, thus covering a broad range of relevant policy preferences.

1.5. Simulating Optimal Policy

1.5.1. Optimal reaction coefficients under adaptive learning. To

simulate optimal policy decisions under learning we infer the successive esti-

mates of the model as described in the section on adaptive learning, for each
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draw of the policy preference vector we compute the optimal feedback rule for

each time t given the prevailing estimates as of that date, and evaluate the

implied date t optimal interest rate using the latest estimate of the Nairu along

with the observations of inflation and unemployment.

The optimal policy is a feedback rule linear in the 10–dimensional state

vector, which as is clear from the above is time dependent. As an example,

the rule for the benchmark US central banker in 1965 is given by

(1.18)

it = 0.3 + 0.1πt−1 + 0.08πt−2 + 0.03πt−3 + 0.01πt−4 − 0.6xt + 0.8xt−1 + 0.7it−1

while the rule in 1990 is given by

(1.19)

it = 2.1 + 0.3πt−1 + 0.15πt−2 + 0.04πt−3 + 0.02πt−4 − 1.7xt + 1.3xt−1 + 0.6it−1

Instead of reporting all ten coefficients and their evolution over time, we focus

on useful summary statistics, the sum of the feedback coefficients on the lags

of inflation, Gπ = Fπ1 + . . .+ Fπ4 , the analogous sum corresponding to unem-

ployment, Gx = Fu1 + Fu2 , and the inertial parameter, the coefficient on the

lagged nominal interest rate, Gv.

Noting that the coefficients on ut and u∗t as well as those on their lags sum

to zero2, which means that although the response to the state vector allows for

unrestricted responses to each unemployment and the Nairu, it in fact implies

a feedback to the unemployment gap instead of its two components. We can

compare the optimal policy rule with a Taylor rule by observing that a simple

rule that approximates our optimal feedback rule is given by

(1.20) it = Gc +Gππt +Gxxt +Gvit−1

and recalling that the traditional Taylor rule for the target interest rate

(1.21) i∗t = r̄ + π∗ + gπ(πt − π∗) + gxxt

relates to the actual interest rate which also incorporates a smoothing objective

via

(1.22) it = ρit−1 + (1− ρ)i∗t

2In the case κ = 1; otherwise the inflationary bias yields an extra term in unemployment,

which we will ignore for this discussion.
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we can map our more complex dynamically optimal rule on a Taylor type rule

to obtain

gπ = Gπ/(1−Gv)(1.23)

gx = Gx/(1−Gv)(1.24)

r̄ = [Gc − (1−Gv −Gπ)π∗]/(1−Gv)(1.25)

This reduction to a simple rule facilitates its comparison to other studies, in
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Figure 1.5: Approximate interest rate response to inflation. The shaded area

represents the response coefficient for all preferences under consideration.

that our summary measures from the optimal feedback rules can be contrasted

to standard Taylor rule coefficients. The evolution of the optimal feedback to

inflation is plotted in figure 1.5, which offers shaded areas containing the opti-

mal feedback coefficients for all parameterizations of policy preferences under

consideration. A striking feature is that the optimal response to inflation

endogenously starts rising from values below one in the early seventies and

reaches its maximum just before the disinflation period begins, the time that

is usually considered to mark the switch from bad policy to sound policy mak-

ing that eventually ended the GI. This finding sheds new light on this debate,

as it shows that a particular type of optimizing policymaker would have acted

in the same way as is typically attributed to Fed chairmen before and after

Paul Volcker. In our model the policymaker’s preferences are fixed over the

whole sample under consideration, in particular, he faces the same objective

function before and after 1980, yet the stance against inflation substantially

changes. In our model this is entirely due to the learning dynamics. The policy

that is repeatedly identified as inappropriate in other studies (e.g. Clarida et
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al.) differs from the policy in the latter years only in the degree of imperfect

information that the policymakers were facing when making decisions. Fur-

thermore, US and UK policies converge to a similar behavior against inflation

as in the latter part of the sample the feedback coefficients are almost identi-

cal. The feedback coefficients on the unemployment gap are plotted in figure
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Figure 1.6: Approximate interest rate response to the unemployment gap.

The shaded area represents the response coefficient for all preferences under

consideration.

1.6. Apart from the large swings in the UK model which are due to the strong

fluctuations in the perceived Phillips curve slope (cf. section 1.3), both models

eventually approach a common value between −1 and −2, depending on the

exact specification of preferences. Optimal interest rate inertia as depicted in
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Figure 1.7: Interest rate smoothing for all preferences under consideration,

summarized by the shaded area.

figure 1.7 has been quite stable in the US, falling slightly from initial values

around 0.8 to somewhat lower levels around 0.6. In the UK model it had an
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upward tendency in the first quarters reaching a level of 0.9 in 1970 and after

a subsequent drop to 0.3 in the first part of the seventies it slightly adjusted

to values around 0.5 for the last 10 years of the sample. It should be noted

that the smoothing component will be lower in the complex dynamic rule due

to the additional channel from the lagged terms.

Optimal US interest rates Optimal UK interest rates

1960 1970 1980 1990 20001960 1970 1980 1990 2000

0

10

20

30

40

0

10

20

30

Figure 1.8: Simulated optimal interest rates for our benchmark calibration

(line in the shaded region), for different preference parameters (shaded region)

and historical interest rates (thick line).

1.5.2. Optimal policy paths under adaptive learning. Figure 1.8

summarizes our main results. It contains a range of optimal interest rate

paths a learning policy maker would have set given his preferences can be

expressed as a quadratic loss with parameters from the distributions discussed

in the previous section. The figure also depicts actual interest rates as set by

the Fed (thick line in the left panel), and the Bank of England (thick line in

the right panel). The dashed line is the result of our benchmark calibration.

There are several interesting observations to be made.

First, although we allow for a wide range of preferences, the resulting poli-

cies are qualitatively similar and highly correlated, thus policymakers with

quite different preferences would have behaved rather similar in terms of char-

acteristics such as maximum and minimum rates and turning points in the

setting of interest rates.

Second, while historical interest rates and optimal ones were very close

to each other–and almost coincide for the post–1980 subsample, they display

substantial differences in the early part of the sample. This is true for the

US case but in particular for the UK economy where both the deviations from
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US model UK model

Correlation Ratio Correlation Ratio

GI episode 0.73 0.77 0.50 0.59

Post GI episode 0.98 1.01 0.75 1.13

Full sample 0.86 0.94 0.58 0.98

Table 1.1: Correlation of optimal interest rate paths with historical rates and

the ratio of both series.

optimality and eventually also the extend of the GI were more pronounced. We

therefore conclude that historical monetary policy was not entirely consistent

with optimal behavior during the Great Inflation period.

However, our third observation is the strong comovement of historical rates

with interest rates set by an optimizing but learning central banker. Indeed,

even during the Great Inflation period the corresponding correlations are very

high, as is documented by table 1.1, although historical interest rates were

persistently lower, with the ratio being 0.8 in the US model and 0.6 in the UK

model. Chapter 2 will investigate this finding in more detail. The post–1980

period is characterized by optimal rates coinciding with historical ones, the

ratio being approximately unity.

Finally, we note that qualitatively the results for the US economy are iden-

tical to those of the UK economy. In both the US and the UK case we find

that the discrepancy between actual and optimal rates widens in the advent

of the high inflation episode where an optimal regulator would recommend

very aggressive interest rates to counter the rise in inflation, and observe this

gap to close as strong interest rate movements–consistent with optimal policy

rates–in both countries finally bring inflation back to moderate levels, where it

is maintained until today with interest rate decisions being perfectly consistent

with optimal behavior of a learning policy maker for the remaining 25 years

of the sample.
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1.6. Sensitivity Analysis

In the previous section we found that neither US nor UK interest rates

were consistent with recommendations of a learning optimal regulator. How-

ever, one might argue that while we already considered a broad range of policy

preferences, there might be specifications which are better capable of repro-

ducing historical rates. Thus in this section we shall review optimal policy

paths but reassess the effect of all relevant parameters. In each step we will fix

all parameters but one on their benchmark values, enlarge the intervals of this

free parameter to cover a sufficiently broad range, and investigate the effect of

varying this parameter. Among them we will consider the HP filter smooth-

ing parameter µ and the gain value γ of the adaptive learning algorithm, so

we cover all relevant specifications of learning. Additionally, we will investi-

gate the sensitivity of our results towards different values of the policy impact

coefficient λ and we will investigate the contribution of varying single policy

preference parameters. This will allow us to explore whether our main finding

of non–optimality was an artifact of a too narrow specification or whether it

holds more generally.
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Figure 1.9: Optimal interest rates for varying weight on unemployment stabi-

lization, 0.25 ≤ ωx ≤ 4.

Policymakers with different weights on unemployment stabiliza-

tion. At first, we shall be interested in varying the importance the policy-

maker attaches to unemployment stabilization, as expressed by the relative

weight in the policy function, ωu. We consider values that make the concern

about inflation four times as large as that about unemployment stabilization,

i.e. ωu = 1/4 and vice versa, as well as all intermediate values.
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As is clear from figure 1.9, our main result still holds under all possible

weight parameters. While changing the focus on unemployment yields paths

for the US rate that differ in particular during the GI episode, all recommended

rates remain substantially higher then historical rates. Again, preceding and

following the GI historical rates are within the range of interest rates set by

an optimizing learner, except for the period around 1990 where inflation rates

reached the highest post–GI levels in our sample and where historical rates

appear too conservative, again. In the UK case the changes in the relative

weight on the unemployment gap has little impact on the resulting optimal

interest rates. In particular in periods with extremely high inflation rates the

unemployment objective appears to be subordinate, so that changing its weight

has little effect.

Optimal US interest rates Optimal UK interest rates

1960 1970 1980 1990 20001960 1970 1980 1990 2000

0

10

20

30

40

0

10

20

30

Figure 1.10: Optimal interest rates for varying weight on the interest rate

smoothing component, 0.25 ≤ ων ≤ 4.

Policymakers with different weights on interest rate smoothing.

For the second relative weight in the loss function we choose the same range,

ων ∈ [1/4, 4]. As in the previous exercise, the change in the relative weight on

interest rate smoothing has a small effect on optimal rates, cf. figure 1.10. Pol-

icymakers judging variation in the interest rate very differently will nonetheless

qualitatively agree on optimal rates, although of course policymakers with a

low smoothing objective will allow for higher interest rates in the wake of the

GI, in particular in the UK model where recommended rates reach very high

levels in the mid–seventies consistent with the very high levels of inflation,

while even a high smoothing objective has little effect on optimal rates given

the high inflation rates.
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Results for various degrees of inflationary bias. Figure 1.11 plots

optimal policy decisions from policymakers that differ only in their tendency

to allow for an inflation bias, that is in the choice of their preference parameter

κ. We allow this parameter to vary over the whole admissible range from

zero to one. The range of optimal interest rates widens substantially as we
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Figure 1.11: Optimal interest rates for different degrees of inflationary bias,

0 ≤ κ ≤ 1.

include the paths pursued by fictitious central bankers with a strong tendency

to reach unnaturally low unemployment rates at the cost of higher inflation.

Interestingly, the period which is interesting for our question changes little:

as inflation continues to rise, recommended rates approximately coincide with

those from our benchmark simulation. Surprisingly, the inflation bias has little

impact on optimal UK rates, as shown by the tight band of optimal interest

rate paths.
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Figure 1.12: Optimal interest rates for different learning algorithms as specified

by the gain parameter, 0 ≤ γ ≤ 0.06.
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Sensitivity towards the learning gain parameter. The gain value

reflects two opposing forces: one is the desire to put higher weights on more

recent observations to improve estimates in presence of structural breaks; in

this regard higher gain values perform better, given that the learning dynamics

are substantial as discussed earlier; the other is the desire to use sufficient

sample information; if the gain value is too high there are effectively too few

observations included in the estimates. The accord in the learning literature is

on a gain value of γ = 0.03, but values around this particular value are equally

reasonable. Specifically, we allow for gain values in the range [0, 0.06]. It should

be noted, that with our non–recursive, discounted least squares formulation,

a zero gain coincides with ordinary least squares, cf. appendix A.1, so our

analysis nests all relevant learning specifications.

One might suspect that results are largely driven by the way learning is

modelled, but as figure 1.12 confirms, quantitative differences in the estimates

resulting from different gain parameters have little effect on optimal interest

rate paths. This is an interesting observations since it documents that the

assumption of adaptive learning per se has an important impact on our view

of historical events, regardless of the particular specification of the learning

algorithm.
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Figure 1.13: Optimal interest rates for different assumptions on the HP

smoothing parameter used to extract the Nairu; among the values under con-

sideration is the standard value 1600 but also the values that yield smooth

Nairu paths as discussed in section 1.3.

Changing the perceived smoothness of the Nairu. We used a HP

smoothing parameter that reproduced the time variation in the Nairu that is
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documented in the empirical literature, in particular Gordon (1997) for US

data and Batini and Greenslade (2006) for UK data. However, we might

also choose the more prominent value of 1600 for quarterly data or other

lower as well as higher values than in our basic calibration. Specifically, we

consider values 10c with c ∈ [3.2, 6.7]. This exponential formulation allows us

to put more weight on values that yield smooth series which we consider more

plausible, as discussed in section 1.3, with the first entry giving the standard

value.

Figure 1.13 plots the policy paths resulting from this exercise. As for the

other parameters the HP smoothing value has little effect on optimal rates,

the most notable differences appearing around the turning points of the Nairu,

where differences in the smoothing parameter temporarily affects the perceived

unemployment gap in different ways.

Apart from these few dates, the effect of decreasing µ is a more volatile

perceived Nairu path in the first place. With this variable tracking the unem-

ployment rate more closely, the resulting unemployment gap estimates become

smaller in magnitude, but they remain qualitatively comparable to gap esti-

mates resulting from lower values of µ. That is, all perceived paths of the

unemployment paths obtained for different smoothing parameters are highly

correlated and differ mainly in their amplitude. On the other hand, with the

amplitude being low, the estimates of the Phillips curve slope will be high so

that the product of both will be qualitatively the same across various smooth-

ing parameters.

It should be noted, however, that a very volatile Nairu path obtained e.g.

for the commonly used smoothing parameter µ = 1, 600 implies that the pol-

icymaker cannot avoid most of the variation in the unemployment rate, only

the residuary and small deviations from it, and that even those departures of

unemployment from the Nairu, misleadingly perceived as small, are thought

to be highly effective. Thus, policymakers will recognize themselves being able

to stabilize inflation with very little costs in real activity. This conjecture shall

be analyzed in our companion paper where we verify these considerations.

Results under different assumptions on the policy impact coeffi-

cient. As argued in section 1.3, it is helpful for the analysis under adaptive
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learning to fix at least one of the parameters, the impact of the policy instru-

ment on real activity, λ. However, this section is intended to demonstrate that

this restriction does not significantly influence our findings. As argued above,

some researchers use low values for this parameter, e.g. λ = 0.024 in Primiceri

(2006), while other estimates indicate values of −0.035 (cf. Smets (2002)),

and standard calibrations (Orphanides (2002)) suggest higher values around

λ = 0.08. We will thus consider the whole range implied by these different

values. Figure 1.14 plots the policy paths resulting from this exercise. As is

obvious from this figure, our conclusions hold regardless of the specific value,

though very low impact coefficients tend to invoke more aggressive policy de-

cisions as their effect is limited by the low coefficient. The quantitative impact

of changes in these parameters appears limited and optimal interest rate paths

change little except for slightly higher rates at the peak dates.

Optimal US interest rates Optimal UK interest rates

1960 1970 1980 1990 20001960 1970 1980 1990 2000

0

10

20

30

40

0

10

20

30

Figure 1.14: Optimal interest rates under different assumptions on the policy

impact coefficient, 0.024 ≤ λ ≤ 0.08.

Summary of the results. While the interest rate paths naturally differ

for variations in the underlying key parameters, the finding that optimal rates

exceed those historically observed holds for all specifications. Our robustness

analysis demonstrates that it is the assumption of imperfect knowledge over-

come by continuous data observation that yields our results, not any particular

set of preference parameters or the specifics of the learning algorithms.

1.7. Conclusions

Our research question was to assess whether historical interest rates in the

US and the UK are consistent with an optimizing but learning policymaker.
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We found that there are no policy preferences that are entirely in line with

those rates. In particular during the Great Inflation episode optimally recom-

mended rates were substantially higher than those observed in the data, while

in subsequent periods the interest rates set by the Fed and the Bank of Eng-

land coincide with those of an optimizing learner. Nevertheless, for the whole

sample we found a high positive correlation of US and UK interest rates with

optimal rates. This high correlation is also present during the Great Inflation

episode where actual rates comoved with optimally prescribed rates but were

more conservative, while at the same time the standard deviation of the rel-

evant estimates was substantially higher than in the following period. This

suggests a connection with Brainard’s (1967) conservatism principle that calls

for such attenuate action in such a framework. Our results thus hint at the

importance of integrating choice under uncertainty into the adaptive learning

methodology.

Our robustness analysis demonstrated that the specification matters little

for our results. Not only are the qualitative insights unchanged but even

the quantitative impact of substantial changes in preferences and other key

parameters such as the learning speed do not exert a substantial influence on

our findings.

Our second result concerns the common view that policy considerably

changed when Paul Volcker became chairman of the Fed. While we consider

the same policymaker being in place for the whole period under consideration,

his beliefs of key parameters and hence the response to target variables changes

endogenously. This sheds new light onto the debate on whether the disinflation

can be attributed to a change in the Fed’s chairmanship, an argument that is

for example advanced by Clarida et al. (2000). In our model every optimizing

policymaker would have revised his stance on inflation and unemployment sta-

bilization at around the time when Paul Volcker became chairman of the Fed,

while conversely in the seventies any policymaker would have conducted pol-

icy in a way that would nowadays be criticized for having been non–optimal.

This is an interesting result because it attributes the improvement in policy to

endogenous forces rather then an exogenous change and thus applies equally
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well for different countries such as the UK which–as documented in the sec-

tion presenting the learning results–faced qualitatively the same evolution of

beliefs.

The fundamental question that still remains is whether the GI could have

been avoided if the policymaker had acted more in line with optimally pre-

scribed rates. This research question is taken up in the second chapter of this

thesis, along with an investigation of the role Brainard–type uncertainty plays

in our framework.
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CHAPTER 2

Did the Great Inflation occur despite optimal policy?

2.1. Introduction

The term Great Inflation (GI) refers to the prolonged high inflation pe-

riod experienced in the United States, and similarly in other industrialized

countries, for almost twenty years. Beginning in the mid–sixties, US inflation

gradually increased, peaking at double digit levels in the mid–seventies and re-

mained high for a sustained period, until it finally returned to low levels under

Federal Reserve chairman Paul Volcker. This rapid decline in the early eighties

is now referred to as Volcker Disinflation. A large amount of research has been

conducted to explain this episode, but until now it seems difficult to explain

all relevant empirical facts consistently in a model. This introduction gives a

brief description of these facts and reviews some representative explanations

that have been advanced in the literature.

Beginning in the 1960s, US inflation gradually increased, reaching a max-

imum of 12 percent in 1974. Although it decreased for a while, it remained

high on average and peaked again above 10 percent by the end of 1980. This

second peak was followed by a sharp disinflation, which quickly brought the

inflation rate below 4 percent within two years and to an average level of 2.5

percent thereafter. Unemployment lagged inflation, peaking one year and two

years, respectively, after inflation.

One prominent view expresses doubt on whether policy was conducted

properly at the time. Clarida et al. (2000) argue in a New Keynesian model

that monetary policy during that episode can be described as following a Taylor

rule of the form

(2.1) it = i∗ + gπ(Etπt+1 − π∗) + gxxt,

It is well known in the literature, that rules of this type imply an indeterminate

system for a large set of parameter constellations (gπ, gx) in these models. By
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using wrong Taylor rule parameters and thus admitting self–fulfilling expecta-

tions, an inappropriate policy contributed to the Great Inflation.

Christiano and Gust (1999) express doubt on whether the stagflationary

episode with jointly high inflation and unemployment can be explained in a

New Keynesian model, as indeterminacy is associated with weak responsive-

ness to expected inflation, 0 < gπ < 1. If expectations rise for some reason, the

real interest rate falls, since the nominal rate rises by less than the increase in

expectations. This lower real rate stimulates aggregate demand and, via the

Calvo (1983) pricing assumption, produces upward pressure on prices, accom-

modating the initial increase in expected inflation and thus establishing them

as self–fulfilling. Hence high inflation occurs in the New Keynesian Model si-

multaneously with low unemployment. The authors show, how in the Limited

Participation model developed by Christiano et al. (1997), the self–fulfilling

prophecy hypothesis can contribute to the debate. In this model, an initial

rise in expectations and the associated fall in the real rate lead to reduced

savings of the private sector. As a consequence less money is deposited in

the financial market, in which firms have an unchanged demand for liquidity,

which they need to finance their expenditures. This creates upward pressure

on the nominal rate, which must be accommodated by the central bank by a

monetary injection. In this model the rising nominal interest rate depresses

investment expenditure and thus real activity, while the monetary expansion

fuels inflation. This setup thus predicts the stagflation that is present in the

data.

Orphanides and van Norden (2002) add an important observation to the

discussion. He points out that policy makers base their decisions on real time

data, while most of the literature, e.g. Clarida et al. (2000), uses revised

data that became available several years after policy decisions were taken.1

In this regard, one has to use real time data if one’s goal is to analyze the

appropriateness of policy decisions. Orphanides and van Norden suggest an

intermediate concept, referred to as “quasi–real time data” that makes use

1The distinction between real time and quasi–real time data is important. Both concepts

make use of samples that were available in the period in question, but while real time data

also uses vintage time series, quasi–real time data considers segments of revised data series,

as we do in this work since the latter are easily available while the former are usually not.
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of revised data series but allows inference only from subsamples ending in

the periods in which the corresponding decisions are made. In this spirit

their analysis reveals that a determinate Taylor rule was in place, given the

quasi–real time data, but that measurement problems, in particular related

to the output gap, contributed to wrong policy decisions, and an a posteriori

indeterminate system.

Goodfriend (1993) emphasizes credibility issues. A lack of commitment on

part of the central bank led inflation expectations to become uncoupled from

the underlying system, a phenomenon he refers to as inflation scares.

A common feature of the above interpretations is the central role of ex-

pectations, in particular those of inflation. Another common feature, however,

is the impact of exogenous factors. Either the policymakers’ preferences shift

exogenously in advance of the Volcker Disinflation, as in Clarida et al. (2000)

or expectations fluctuate exogenously, as in the explanation of Goodfriend

(1993). Although it seems clear that expectations crucially depend on the

economic environment and in particular on monetary policy, the above models

are not capable of explaining why expectations did not stay well anchored.

More recent research endogenizes the formation of expectations and is able to

explain the evolution of beliefs, similar to the inflation scares as depicted by

Goodfriend.

Orphanides and Williams (2005) present a model with private agents, who

continuously update their beliefs concerning unknown parameters of the model

and the unobservable Nairu, which is the rate of unemployment that induces no

movement of inflation, frequently referred to as the non–accelerating inflation

rate of unemployment, a term which led to the acronym Nairu. A key element

in their analysis is the use of real time data. As the policy makers face measure-

ment problems, misperceptions appear unavoidable. Expectation formation is

assumed to be rational, apart from the need to make inference on unknown

parameters. The learning mechanism, however, provides an additional prop-

agation mechanism that causes parameter beliefs and hence expectations to

fluctuate, thus endogenizing Goodfriend’s inflation scares. They simulate in-

flation and unemployment paths under the hypothesis that either the Nairu

was known or that the expectation formation mechanism remains fixed. As a

41



result they find that absent either Nairu misperceptions or learning elements,

the high and prolonged inflation would not have occurred.

In a recent paper Primiceri (2006) offers a coherent explanation of the Great

Inflation in a New Keynesian model with an optimizing but learning policy

maker. His model explains all empirical features, including the gradual initial

rise in inflation, the sudden Volcker disinflation and the fact that inflation

leads unemployment. A detailed description of Primiceri’s model is offered in

the next section. It is complementary to the work of Orphanides and Williams

(2005, 2007) in that these authors demonstrate that the Great Inflation would

not have occurred under perfect information, whereas Primiceri shows that it

is the most likely consequence of imperfect knowledge.

2.2. Explaining the Great Inflation

Primiceri’s model offers an economically plausible explanation for the Great

Inflation. Starting point is the observation that in the 1960s the estimates of

the Nairu were too low. Consequently, unemployment was mistakenly per-

ceived to be significantly above satisfactory levels, prompting for stimulative

monetary policy to promote economic recovery. At the same time, the inflation

process was perceived as strongly mean–reverting, with a low degree of per-

sistence. The rise in inflation was thus initially believed to be transitory and

hence acceptable. The true inflation process, being highly persistent, caused

an overly stimulative policy to push inflation further upward. Inflation peaked

at a level of 12 percent in 1974:4 and remained high for a sustained period.

Slowly, policy makers began to realize the persistent nature of inflation.

At this point estimates of the Nairu were still relatively low, so any at-

tempt to control inflation via a positive unemployment gap appeared to fail:

while the true gap was small and so was the implied reaction of inflation, the

perceived gap was large, so the moderate reaction of inflation was attributed

to a low impact coefficient. With an estimated Phillips curve slope near zero,

it seemed virtually impossible (or unacceptable) to reduce inflation by admit-

ting the required higher unemployment. Thus policy, assessing its situation as

incapable of curing the economy, remained inactive.
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On the other hand, with the high degree of persistence detected by now in

the inflation process, even small changes in the perceived trade–off would en-

force strong actions. This is what Primiceri suggests happened during the

tenure of Paul Volcker. A sequence of favorable shocks revealed that the

inflation–unemployment tradeoff was slightly higher than previously antici-

pated, inducing quickly rising interest rates. Hence, unemployment was pushed

sufficiently above the true Nairu, causing the true Phillips curve mechanism

to settle down inflation. As soon as this had been accomplished, the monetary

authority allowed unemployment to return quickly to the neutral level given

by the Nairu.

This interpretation can explain the slow and persistent rise in inflation (it

was perceived transitory and thus not worth sacrificing unemployment, which

was perceived to be high anyway), the prolonged period in which inflation was

not brought back to lower levels (the policy maker felt incapable of reduc-

ing it at acceptable costs), and the fact that inflation leaded unemployment

(unemployment was held high until inflation was sufficiently low).

2.3. Model, Estimation, and Learning

This section discusses our dynamic model of inflation and unemployment,

and estimates variants of it after a brief digression on variable transformations

used in the empirical analysis. Finally, we investigate the learning algorithm

used by the policymaker.

2.3.1. The Model. We set up a reduced form of the New Keynesian

model as discussed by Woodford (2003) where we identify real activity as the

deviation of unemployment from the Nairu, xt ≡ ut−u∗t , as in Primiceri (2006)

and the previous chapter, where expectations have been replaced by backward

looking terms,

πt = cπ + α(L)πt−1 + θ(L)xt−1 + επt(2.2a)

xt = ρ(L)xt−1 + λ(rt−1 − r̄) + εxt(2.2b)

While the theoretical model is specified with a lag length of one, empirical

studies usually use longer lags structures in the pricing and demand equations,

cf. e.g. Gordon (1997) for US data and Greenslade et al. (2003) as well as

Batini and Greenslade (2006) for UK data, so we follow Primiceri in choosing

43



an order of two for the lag polynomials, balancing both theoretical scarcity

and empirical needs. Such a model is standard in the empirical literature and

in the adaptive learning literature in particular, cf. Orphanides and Williams

(2005) among others.

2.3.2. Estimation and Demeaning. Theoretical models of this sort are

defined in terms of deviations of inflation and the policy instrument from their

steady state values. As is also recognized by Primiceri (2006), the two con-

stants and the level of the Nairu are not jointly identified. Empirical analy-

sis usually resolves this issue by identifying equilibrium values by the sample

means, referring to this as demeaning prior to estimation. Since we are con-

sidering a relatively long sample that covers the unusually high rates from the

GI episodes, the sample means appear inappropriate as approximations for the

equilibrium values. For a comparable sample, Smets (2002) uses an arbitrary

linear detrending method for inflation while Primiceri treats the Nairu as sta-

tionary and fixes its equilibrium value at the sample mean of unemployment.

The standard demeaning procedure would implicitly subtract the sample

means from inflation, which are given by 3.5 percent for US data and 6.4 per-

cent for UK data. At least in a stationary environment this would imply that

without policy interference inflation would stabilize around these high values

eventually. Any attempt to attain a lower equilibrium rate would necessitate

to permanently hold unemployment above the Nairu to assure a balance be-

tween his inflation and unemployment goals. It appears more reasonable to

assume that the equilibrium inflation rate is consistent with the policymaker’s

target rate, hence we impose these values instead of relying on sample means.

The same applies for the real rate. Therefore, we calibrate the equilibrium

value of the real rate of interest at r̄ = 3 percent and identify the equilibrium

inflation level with the policymaker’s target value for inflation, π∗ = 2 percent,

which appears consistent with other empirical studies, cf. e.g. Orphanides and

Williams (2005) and Gerlach and Svensson (2003), and actual central bank be-

havior. This expresses the presumption that the goal set by the policymaker

can be achieved in a dynamically consistent way.

2.3.3. Estimation Results. Before we can simulate paths for inflation

and unemployment, we need to estimate the model which we will use as the
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true data generating process. We will do so by estimating an appropriate state

space form of our basic equations, depending on the specification we wish to

use. We shall use two different scenarios, one being the unrestricted model

and the other featuring a unit root in inflation.

To jointly estimate the path of the Nairu and the parameters of the model,

we need to set up an appropriate state space form.

Collecting the observable variables in the measurement vectormt = (πt, ut)
′,

and the unobservable variables in the state vector st = (u∗t , u
∗
t−1, u

∗
t−2, α1,t, α2,t)

′,

we can estimate our benchmark model by maximizing the likelihood of the state

space model

mt =

(
0 −θ1 −θ2 πt−1 πt−2

1 −ρ1 −ρ2 0 0

)
st +

(
θ1 θ2 0

ρ1 ρ2 λ

)
xt +

(
επt

εxt

)
(2.3)

st =


1 0 0

03×21 0 0

0 1 0

02×3 I2

 st−1 +


ε∗t

0

0

0

(2.4)

with the exogenous vector xt = (ut−1, ut−2, rt−1)
′ and rt ≡ it − π̄t where π̄ is a

four–quarter moving average of current and past inflation as in Rudebusch and

Svensson (1998). The unit root version incorporates the restriction α1+α2 = 1,

cf. Hamilton (1994) for a discussion, so we estimate the modified state space

model, now in the state vector st = (u∗t , u
∗
t−1, u

∗
t−2, α1,t)

′

mt =

(
0 −θ1 −θ2 ∆πt−1

1 −ρ1 −ρ2 0

)
st +

(
θ1 θ2 0 1

ρ1 ρ2 λ 0

)
xt +

(
επt

εxt

)
(2.5)

st =


1 0 0

03×11 0 0

0 1 0

01×3 1

 st−1 +


ε∗t

0

0

0

(2.6)

with the exogenous vector xt = (ut−1, ut−2, rt−1, πt−2)
′.

Table 2.1 supplies the estimation results for the two versions for US and

UK data, and figure 2.1 plots the corresponding estimates of the Nairu paths.
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US model UK model

unrestricted unit root unrestricted unit root

α1 0.646 [ 8.52] 0.672 [ 9.00] 1.384 [ 22.29] 1.414 [ 22.54]

α2 0.298 [ 3.94] 0.328 [ ] -0.427 [ -6.88] -0.414 [ ]

θ1 -0.935 [ -2.65] -1.081 [ -3.04] -1.060 [ -3.12] -1.353 [ -3.88]

θ2 0.811 [ 2.29] 0.983 [ 2.76] 0.950 [ 2.69] 1.318 [ 3.66]

ρ1 1.667 [ 25.08] 1.670 [ 25.17] 1.939 [ 26.09] 1.940 [ 25.72]

ρ2 -0.711 [-10.78] -0.715 [-10.89] -0.999 [-13.59] -0.999 [-13.38]

σ2
π 1.379 [ 8.65] 1.394 [ 8.55] 1.150 [ 9.01] 1.168 [ 8.80]

σ2
x 0.045 [ 6.02] 0.045 [ 6.02] 0.050 [ 5.54] 0.051 [ 5.42]

L -270.26 -271.56 -325.84 -328.47

Table 2.1: Estimation results for US and UK data for the unrestricted and

unit root versions. T–statistics in brackets.
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Figure 2.1: Estimated Nairu paths in the unrestricted model (solid lines) and

the unit root model (dashed lines).

2.3.4. Learning. This section intends to give a brief review of the mech-

anism of learning. For a more detailed exposition, the reader is referred to

the corresponding section of chapter 1. As discussed there, the policymaker is

assumed to revise his perceived law of motion,

πt = ĉπ + α̂1πt−1 + α̂2πt−2 + θ̂1xt|t−1 + θ̂2xt|t−2 + επt(2.7a)

xt = ĉx + ρ̂1xt|t−1 + ρ̂2xt|t−2 + λ(it−1 − π̄t−1) + εxt ,(2.7b)
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Figure 2.2: Perceptions of inflation persistence as measured by the largest

eigenvalue (solid lines) and the sum of AR(2) coefficients (dashed lines).

in each period. Firstly, he extracts the Nairu with the HP Filter. After com-

puting the unemployment gap as difference between unemployment and the

Nairu, he may choose to discount all regressors and endogenous variables with

a geometrically declining scaling factor, or leave them in their original form.

Depending on this choice he computes the least squares estimates in either

the transformed or the original model, the former method being referred to as

discounted least squares, cf. Harvey (1993). The choice of a discount factor δ

which is used to scale an observation s periods in the past by δs, corresponds

to a method frequently applied in the adaptive learning literature to reflect

agents’ concern about structural changes. The related learning algorithms are

referred to as constant gain algorithms, and they are recursive formulations of

discounted least squares. Chapter 1 and appendix A.1 provide a more detailed

account of this topic.

Over time, the central banker accumulates knowledge on the Nairu and

the model’s parameters. As his information set grows, his perceptions about

economic relations evolve over time, and in each period imply an updated

transition law of the economy that he uses to set interest rates optimally.

Before proceeding to a brief description of his decision problem, we examine a

few summary statistics regarding his beliefs.

Of particular interest is the change in policymakers’ perceptions regarding

inflation persistence and the path of the Nairu over time. Figure 2.2 depicts the

estimates of the sum of autoregressive coefficients in the Phillips curve, α1 +α2

(dashed line). This sum is a standard reference value to assess persistence
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Figure 2.3: Upper panels depict the true (thick line) and perceived unemploy-

ment gaps, the bottom panels illustrate the Nairu misperceptions.

in the inflation rate. As can be seen, inflation was seen as a strongly mean–

reverting process until the mid–seventies while thereafter agents became aware

of its highly persistent nature, although it is viewed as stationary in most

subsamples. It can be argued that a more appropriate measure of persistence

is the dominant eigenvalue of the Phillips curve. Figure 2.2 also contains the

evolution of this measure (thick line). Apparently, both measures give a very

similar idea of inflation persistence.

The Nairu estimates change substantially over time, as is equally docu-

mented by Orphanides and van Norden (2002) and our previous analysis in

chapter 1. Early quarters in our sample are characterized by a large and per-

sistent underestimation of the Nairu, which for the prevailing unemployment

rates pushes real activity more in the focus than it should have in retrospect.

For a graphical illustration, see figure 2.3. This figure plots the US and UK

unemployment gaps as perceived in real time (dashed) and based on the like-

lihood estimates of the Nairu, which we refer to as true Nairu.

Interestingly, the Nairu misperceptions in the US and the UK model share

strong qualitative similarities, strongly comoving and being of the same sign

that they switch at around the same dates, though of course their amplitude

differs owing to the different smoothness assumptions imposed on the Nairu

path.

Orphanides and Williams (2005) construct an analogous series of US Nairu

misperceptions based on narrative evidence, and despite the use of a different
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methodology present remarkably similar results. They also report initial neg-

ative misperceptions, which imply an overly optimistic view about low levels

of the Nairu, which were falsified in retrospect. They support our finding that

the level of the Nairu was persistently underestimated until the early eighties.

The policymaker sets nominal interest rates to minimize a standard infinite

sequence of quadratic period losses,

(2.8)
∑
s≥t

βs−t[(πs − π∗)2 + ωu(us − kû∗t|s)2 + ων(vs − vs−1)
2]

which punish deviations of inflation from the target value π∗, changes in the

interest rate, and deviations of unemployment from a target level that equals

a fraction κ of the Nairu. The case in which this fraction is one corresponds

to the standard case, while all other parameter choices for κ imply the desire

to push unemployment below the Nairu, as in the Barro and Gordon (1983)

model, where surprise inflation is used to attain higher than normal levels of

real activity. This parameter gives us the flexibility to account for subopti-

mal policy behavior associated with the inflation bias associated in Barro and

Gordon’s model.

Given that the central bank’s model of the economy changes each period,

it will have to recompute the optimal feedback to the state of the economy

in each period. For fixed policy preferences and data series that we sequen-

tially generate with the model equations and the estimates from table 2.1, as

described in more detail below.

2.4. Simulation Results

This section presents our simulation results of an adaptively learning but

optimizing policymaker. We precede the main part which presents the sim-

ulation in detail by a discussion on the benchmark without learning. The

following section will then conduct robustness checks on our basic learning

exercise and a final part considers the effect of incorporating findings from

chapter 1 into the analysis and find that a combination of adaptive learning

and policy conservatism replicates the prolonged and very high inflationary

episodes in the United States and the United Kingdom.

2.4.1. Benchmark scenario without learning. To contrast our adap-

tive learning results with the no learning case we consider the case of perfect
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information, where the policymaker has knowledge of all relevant variables and

parameter values. The true data generating process can be parameterized by a

vector ξ∗ = (α∗1, α
∗
2, θ
∗
1, θ
∗
2, ρ
∗
1, ρ
∗
2)
′ containing the unrestricted estimates of the

models from table 2.1. We consider the case of no inflationary bias, i.e. κ = 1,

since this yields a stationary model, with optimal policy feedback parameters

on the unemployment and Nairu terms summing to zero, so that we can refor-

mulate the dynamics under optimal policy of a perfectly informed policymaker

in form of a stationary autoregressive process as2

(2.9) ỹt = c+Mỹt−1 + ε̃t

in the stationary variables ỹt = (πt, πt−1, πt−1, πt−1, ut − u∗t , ut−1 − u∗t−1, vt)

and deduce mean and variance of inflation from the vector of unconditional

expectations E(ỹ) = (I −M)−1c and the unconditional covariance matrix Σ̃

which is implicitly defined by the Lyapunov equation Σ̃ = MΣ̃M ′ + cov(ε̃).

Even under perfect information inflation can reach arbitrarily high values

although higher values become less likely. Accordingly, we shall refer to a

path of inflation exhibiting a Great Inflation only in case it peaks at unusually

high levels, in the sense of exceeding the critical value, πcrit, that would be

surpassed only with a small probability, say five percent, in our perfect knowl-

edge benchmark. Formally, this value is defined as Prob(π > πcrit) = 0.05 with

the probability measure being defined by the law of motion (2.9). Table 2.2

summarizes the relevant values for the US and UK benchmark models. Inter-

estingly, historical inflation reached substantially higher values than would be

expected in a no–learning environment.

2.4.2. Simulation of Optimal Dynamics under Adaptive Learning.

We use the the first five years as training samples to determine initial beliefs,

that is 1954:3–1959:4 for the US model and 1960:2–1965:3 for the UK model.

For any subsequent date t the policymakers reestimate their perceived law

of motion (2.7) for the given subsample and set up an optimal path for the

2In the case allowing for an inflationary bias, k < 1, the optimal policy feedback would

also include a reaction to the level of unemployment and hence would inherit the non–

stationarity of the Nairu. Primiceri offers evidence that the inflation bias term is not very

important.
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Model Mean Variance Critical Value Inflation peak

US model 2% 3.1% 7.0% 11.7%

UK model 2% 4.6% 9.5% 21.6%

Table 2.2: Unconditional mean, variance and a critical value of inflation–as

defined in the text–under optimal policy and perfect information, as well as

the historical peak of inflation during the Great Inflation.

current and expected future interest rates. After the current period rate is

implemented, the underlying model equations (2.2) generate realizations of

the endogenous variables for the next period. The policymakers observe these

values and the process is repeated. As data generating process we will use

both the unrestricted and the unit root version of the model.

In this section we will focus on benchmark values for the policymakers’

preferences. In particular, we set π∗0 = 2 as in the estimation of the previous

section, and choose a smoothing parameter for HP Filter that yields full sample

Nairu paths comparable to our estimated paths from the previous section. As

benchmark weights in the loss function we choose ωu = ων = 1 so that all

target variables are equally important. As benchmark value for the inflation

bias parameter we set κ0 = 0.87, the estimate Primiceri reports in his analysis.

This value is already very high and precludes much of the motive to surprise

inflate to generate particularly low levels of unemployment. The learning gain

parameter is set to the standard value of γ0 = 0.03, cf. Milani (2005) and

Primiceri (2006). We will investigate changes to each of these parameters in

the next section.

We simulate n = 10, 000 series of inflation and unemployment and inves-

tigate whether they exhibit the high inflation episodes encountered in the US

and the UK during the 1970s.

For convenience, we will denote the quarter in which the inflation reaches

its maximum by t∗. From our discussion of the stylized facts during the great

inflation, we are particularly interested in the highest levels the inflation rate

attains during the simulation, and in the highest value of the unemployment

gap surrounding t∗. Accordingly we gather the highest gap value that occurred

in the period three years before or three years after t∗, and examine how many
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periods pass until the gap reaches its maximum, a positive value reflecting

the situation encountered in the data where unemployment lags inflation. We

will investigate the length of the disinflation period, which we define as the

time that passes until inflation returns from its peak to its target value. A

final focus is on the beliefs around t∗ and the preceding periods. As discussed

in section 2.2, the estimates of inflation persistence are low in the 1960s and

early 1970s, while reaching unity at around t∗. We thus compare the highest

estimates of persistence in the year ending in t∗ with the mean value over

the four preceding years. Similarly, we will analyze the slope of the Phillips

curve. Since it fluctuates stronger and the occurrence of its maximum is more

dispersed than the case of the persistence parameter, we measure the mean

over the last 5 years before t∗ and contrast it to the highest value the perceived

slope attains in the three foregoing years.

In section 2.4.1 we argued that without learning the optimal dynamics can

be expressed as the reduced form 2.9, at least in the case without inflation bias,

i.e. k = 1. From this equation we deduced a critical value of inflation that

will be exceeded in simulations only with a small probability, which we fixed

on 5 percent. Under learning, the simulated paths of inflation will potentially

exceed this critical values with a higher frequency, depending on the dynamics

of the model under learning and the preferences of the policymaker.

We refer to the percentage of simulations with an inflation peak exceeding

our critical value from the no–learning benchmark as the probability of a Great

Inflation. It should be noted that this implicitly sets the probability of a Great

Inflation in the no–learning scenario at five percent. It might be argued that

this is a biased measure since we explicitly allow for an inflation bias, but

our benchmark learning calibration of the relevant parameter is close to one

(κ0 = 0.87) and as we shall see in the next section, our result is only marginally

sensitive to changes in this parameter. Figure 2.4 shows the distribution of the

inflation peaks. The inflation peaks are high, but with median values between

8.5 and 9 percent in the US model and 11.7 and 12.6 in the UK model fifty

percent of the simulations fall below the inflation rates actually experienced in

the data, which were 11.7 in 1980:1 and 21.6 percent in 1980:3, in the US and

the UK respectively. Only a quarter of the simulations surpass values of 9.9

and 14.2 percent, hence while the simulations of the US model coming close to
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Figure 2.4: Histogram of inflation peaks in the US models (left panels) and

UK models (right panels). The top panels show results from the unrestricted

model, the bottom panels those from the unit root versions.

observed inflation peaks, the UK model is far from explaining the size of the

great inflation in the UK, even if the outcomes are consistently higher than in

the US model. We will discuss this issue in our final section that accounts for

conservative policy behavior in the sense of Blinder (1997).

The probability of a GI is 93.8% percent in the unrestricted US model,

94.5% percent in the unit root US model, and 92.3% and 95.6% in the cor-

responding UK models. It is not surprising that in the unit root model the

simulations result in more pronounced inflation outbreaks since the policy-

maker not only has incomplete information about the stochastic processes, he

also ignores the non–stationarity in his considerations. One might conclude

that the adaptive learning dynamics substantially contribute to explaining the

high levels of inflation, but we are also interested in whether the characteristic

features that jointly occurred in the actual economies are also present in our

simulations.

One important aspect of the GI and the associated disinflation was the

fact that unemployment was brought to high levels relative to the Nairu, the

highest unemployment gaps having been observed at 3.2 and 3.0 percent in

the US and UK time series, 11 and 6 quarters after the inflation peaks (t∗).

This was associated as deliberate policy move to fight the high inflation by

slowing down real activity until inflation was back to acceptable levels. We

are thus also interested in the distribution of the unemployment gap around the
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Quartiles Quartiles

Statistic 1st 2nd 3rd Statistic 1st 2nd 3rd

Inflation Peaks

7.9 8.5 9.4

Persistence0

0.45 0.72 0.85

8.3 9.0 9.9 0.48 0.77 0.90

10.6 11.7 13.1 0.71 0.84 0.90

11.2 12.6 14.2 0.76 0.88 0.94

Gap Peaks

1.9 2.7 3.6

Persistence1

0.92 0.99 1.00

2.5 3.4 4.4 0.97 1.00 1.00

1.9 2.5 3.2 0.93 0.98 1.00

2.0 2.7 3.5 0.97 1.00 1.00

Quarters

4.0 5.0 8.0

Slope0

−0.52 −0.36 −0.20

4.0 5.0 7.0 −0.50 −0.33 −0.19

2.0 3.0 4.0 −0.91 −0.62 −0.45

2.0 3.0 4.0 −0.87 −0.60 −0.46

Disinflation

8.0 13.0 20.0

Slope1

−0.32 −0.16 −0.03

9.0 15.0 22.0 −0.29 −0.14 −0.03

5.0 8.0 13.0 −0.55 −0.38 −0.14

5.0 9.0 16.0 −0.54 −0.38 −0.18

Table 2.3: Summary of simulation results. The table supplies the quartiles

for the variables of interest, where for each the top two lines correspond to

the unrestricted and unit root US model, the bottom two lines contain the

corresponding results from the UK models

inflation peaks. Figure 2.5 offers the corresponding histogram of the size of the

gap, and figure 2.6 depicts the lags between inflation and gap peaks, a positive

value indicating that inflation leads unemployment gaps. The simulations also

yield perceived unemployment gaps peaking after inflation, in line with the

idea that unemployment was raised above the Nairu level in order to bring

inflation back to moderate levels. Table 2.3 provides the relevant statistics in

the rows labelled ‘gap peaks’ and ‘quarters’. The median values attained range

from 2.7 to 3.4 percent in the US simulation covering the historical peak value,

and they occurred 5 quarters after inflation reached its maximum, thus faster

than in the US time series; however, values of 7 and 8 quarters are surpassed
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Figure 2.5: Histogram of unemployment gap peaks in the US models (left

panels) and UK models (right panels). The top panels show results from the

unrestricted model, the bottom panels those from the unit root versions.
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Figure 2.6: Histogram of period between inflation and unemployment peaks

in the US models (left panels) and UK models (right panels). The top panels

show results from the unrestricted model, the bottom panels those from the

unit root versions.

by a quarter of the unrestricted and unit root model simulations. The UK

simulations reached the maximum values of the perceived unemployment gap

substantially earlier then the US counterpart, as we also find in the data. Fifty

percent of the simulations peak before or in the third quarter after the inflation

peak, 75 percent before or in the fourth quarter thereafter, which is slightly

faster than observed in the data.

Another aspect was the rapid disinflation. Inflation continually rose for

almost a decade, but after policy used its instrument to sharply control unem-

ployment rates, it took only a few quarters until the disinflation successfully

ended. We analyze how many quarters where needed until inflation reached
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Figure 2.7: Histogram of duration of the disinflation period in the US models

(left panels) and UK models (right panels). The top panels show results from

the unrestricted model, the bottom panels those from the unit root versions.

its target value, and summarize the results in figure 2.7. US inflation reached

moderate levels (below 3 percent) by the end of 1983, that is 12 quarters af-

ter the t∗, although it took until 1986 until inflation was below 2 percent for

the first time. Our simulations confirm this finding in our US model under

learning, since the disinflation took about 13 to 15 quarters, and even values

of 20 to 22 quarters frequently occurred. UK inflation very quickly came down

to moderate levels about two years after t∗ and remained there thereafter, al-

though it never reached the assumed 2 percent target in the 1980s. The model

simulations yield a similarly rapid disinflation, occurring 8 to 9 periods after

t∗, with a quarter of the simulations exceeding disinflation periods of 13 and

16 quarters length. We thus find that our simulations replicate the size and

timing of historically observed unemployment gaps.

We argued that a crucial determinant of the great inflation outbreak was

the evolution of beliefs about inflation persistence. It was low during the

periods before the rise of inflation and with inflation approaching its maximum

became closer to unity. The left panels of figure 2.8 plot the mean value

of persistence over the four years preceding t∗ and the right panels plot the

highest estimates in the year ending in t∗ for the US and UK simulations. The

respective top panel corresponds to the unrestricted model, the bottom panel

to the unit root version. Note that the ordinate is cropped in the right panels

for expositional purposes: the majority of persistence estimates at the heights

of the GI equals unity, though some values are still slightly below. Since the
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Figure 2.8: Histogram of perceived inflation persistence before and during the

great inflation in the US models (left panels) and UK models (right panels).

The top panels show results from the unrestricted model, the bottom panels

those from the unit root versions.

histogram value at unity is ten times as large as at the remaining values, the

ordinate values between 75 and 425 are cut, the only bar exceeding any of

these two values being the outer right one at unity. We thus see that while

the average estimates of inflation persistence are dispersed around low values

(left panels) this perception sharply changes at the time of the inflation peak

where most estimates indicate the near unit root property of the inflation

series. Thus, as we already discussed for US and UK data, our simulations

show a sharp and sudden increase of perceived persistence on the outbreak of

the great inflation. Table 2.3 summarized this finding: the entries in the rows

‘persistence0’ show that fifty percent of the simulations generated beliefs about

this parameter in the ranges 0.45–0.85 (unrestricted US model) and 0.48–0.90

(unit root US model), as well as 0.71–0.90 (unrestricted UK model) and 0.76–

0.94 (unit root UK model), whereas 75 percent exceeded values around 0.92

(unrestricted models) and 0.97 (unit root model), and 50 percent were almost

unity, as summarized by the rows labelled ‘persistence1’.
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As inflation rose the estimates of the Phillips curve slope were shown to be

adjusted to nearly ineffective values. The same phenomenon also occurs in our

simulations, though less pronounced: while the perceived slope has substan-

tial (negative) values in the years preceding t∗, most estimates drop to almost

zero when inflation reaches its peak. Figure 2.9 shows the distributions of per-

ceived slope parameters, again the respective top panel depicts results from

the unrestricted model, and the bottom panel refers to to unit root version of

our model. The left panel contains histograms of the slope prior to the great

inflation in period t∗, the right panels show how the perception changed in the

periods around t∗. Evidently, the slope perceptions were distributed around

relatively high negative values, but as inflation continuously rose until reach-

ing its peak at t∗, policymakers became more and more sceptical about their

ability to fight inflation via their impact on real activity. A substantial number

of simulated slope estimates approaches zero, thus negating any influence of

changes in the unemployment gap on inflation. Nevertheless, many estimates

remain different from zero, a fact that is also reflected in the summary statis-

tics contained in the rows ‘slope0’ and ‘slope1’ of table 2.3, which support the

finding that the estimates became less favorable, but also document that the

many estimates still remained non–zero.

2.5. Sensitivity Analysis

Our previous analysis focussed on a single type of policymaker character-

ized by our benchmark calibration. We will now investigate to what extend

our results generalize in face of arbitrary policy preferences or changes in the

modelling of the learning mechanism. Instead of repeating the full analysis of

the preceding section we will concentrate on summary statistics in dependence

of key variables, in particular we will pay attention to the quartiles of the

relevant magnitudes, as listed in table 2.3 in the benchmark exercise. Besides

the three policy parameters we shall also explore the role of the gain parame-

ter in the learning algorithm and the parameter of the Hodrick–Prescott filter

applied by the policymaker to extract the Nairu.

We analyze how these changes in preference or learning parameters changes

our key results, the inflation peak, the highest unemployment gap attained

to convey a disinflation, the length of the disinflation period, the number of
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Figure 2.9: Histogram of perceived Phillips curve slope before and during the

great inflation in the US models (left panels) and UK models (right panels).

The top panels show results from the unrestricted model, the bottom panels

those from the unit root versions.

period the gap lags or leads the inflation peak, and the probability that a

Great Inflation period occurs given policymakers face imperfect knowledge.

It might well be the case that policymakers with different preferences or

learning algorithms would not be confronted with GI type episodes, so that

the historical high–inflation periods could have been avoided by resorting to

a more appropriate policy stance. However, as it turns out, all optimizing

policymakers would have found themselves trapped in a GI had they faced

imperfect knowledge, at least with a very high probability. Thus in addition

to the finding of the previous section that demonstrated that a GI is likely

to arise under the requirement to learn about the economic environment, the

results of this section support the notion that imperfect knowledge as such

is the source of these disastrous economic outcomes, and not any particular

specification of preferences.

Considering different weights on unemployment stabilization. Fig-

ure 2.10 as well as the corresponding ones in the following sensitivity exercises
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Figure 2.10: Inflation peaks (top panel) and Peaks of the Unemployment Gap

(bottom panel) for different weights on unemployment stabilization

contain the first, second and third quartiles of inflation and the unemployment

gap depending on the parameter in question–here the weight on unemployment

stabilization, for both the unrestricted model, which are depicted as thick lines,

as well as those for the unit root model, which are depicted as shaded regions.

The resulting maximum unemployment gap under optimal policy is little

affected by a change in the relative weight on unemployment stabilization,

although the curves have negative slope, as expected: the higher the weight

on unemployment stabilization relative to inflation the lower is the resulting

maximum deviation in unemployment from the (perceived) Nairu. Reconsid-

ering the inflation peaks, this may seem puzzling, since the differences in the

resulting inflation peaks are more pronounced. This can be explained in light
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Figure 2.11: Policymakers’ perceptions of inflation persistence and Phillips

curve slope before and at the height of the GI for different weights on unem-

ployment stabilization
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of the evolution of the perceptions of the Phillips curve slope, θ(1): inspection

of figure 2.11 reveals that close to the Great Inflation we observe a drop in the

(absolute value of) the slope, that is, as in the benchmark case, policymakers

substantially revise their slope estimate only a few quarters before the peak of

the GI, and with higher weights on unemployment stabilization this estimate

becomes more and more pessimistic. The reason for this might be the inter-

action with the Nairu misperception: the more reluctant the policymaker is

to inducing movements in the unemployment rate the more likely it becomes

that deviations in real activity are soaked up by movements in the underly-

ing Nairu although – crucially – the policymaker is not aware of this due to

his poor Nairu estimates; hence, a policymaker that operates with relatively

low levels of (perceived) unemployment gaps is more likely to find his actions

phasing out without any substantial effect on inflation, hence forcing him to

revise his slope estimate towards less effective values. The top panel of figure
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Figure 2.12: Periods that unemployment peak lags inflation peaks (top panel),

duration of disinflation and probability of a GI for different weights on unem-

ployment stabilization

2.12 summarizes the number of periods that the peak of the unemployment

gap lags the peak of inflation, with negative numbers representing a lead of

unemployment gap peaks. Again, the thick lines correspond to the results from

the unrestricted model, the shaded regions to those in the unit root model.

The results clearly indicate that the unemployment gap lags inflation with a
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five period delay in the US and with a three period delay in the UK, regardless

of the choice of the weighting parameter. Similarly, the panels in the middle

reflect the number of periods that are needed to bring inflation back to its

target value. In the US, the duration of this disinflation period increases from

a median value of 10 quarters to 20 quarters as unemployment stabilization be-

comes relatively more important. In the UK, this increase is less pronounced.

Starting from 10 quarters for a low weight on unemployment stabilization of

ωu = 0.25, the disinflation takes 12 quarters for a high weight of ωu = 4. The

bottom panels depict our measure of the probability of a Great Inflation. As

might be expected, the higher the relative weight the policymaker attaches to

unemployment, the higher is the risk of high inflation periods. However, the

occurrence of a Great Inflation is very likely, given the high values above 90

percent and in many cases even 100 percent. The quartiles are very close to

each other and would be difficult to distinguish visually and therefore we only

present the median values.
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Figure 2.13: Inflation peaks (top panel) and Peaks of the Unemployment Gap

(bottom panel) for different weights on interest rate smoothing

Results for varying degrees of the interest rate smoothing com-

ponent. Since with higher values of the interest smoothing weight the poli-

cymaker is more reluctant to use its instrument to fight inflation the resulting

inflation peaks are increasing in this parameter, as well as the time until in-

flation is brought back to target, cf. figures 2.13 and 2.15. Besides that the

remaining results are not different to those in the benchmark simulation: the

62



highest deviation of unemployment from the Nairu occurs a few quarters after

the inflation peak, after one to one and a half year later in the US model and

about a year later in the UK model. The perceived values of inflation per-
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Figure 2.14: Policymakers’ perceptions of inflation persistence and Phillips

curve slope before and at the height of the GI for different weights on interest

rate smoothing

sistence increase from below 0.8 in the periods before the GI to unity at the

time of the GI, and the slope estimates are reduced (in absolute terms) to low

values θ(1) ≈ −0.1 (US) and θ(1) ≈ −0.5 (UK) from previously more effective

levels, θ(1) ≈ −0.4 (US) and θ(1) ≈ −0.7 (UK). This pattern is roughly the

same for all smoothing weights under consideration. Not surprisingly, although

the probability of a GI occurring is high for all values, it is even higher for a

relatively greater weight on the smoothing component.

Sensitivity of results for different degrees of inflation bias. Our

benchmark used a value close to one thus almost eliminating the desire to

attain unusually low unemployment rates. In this section we consider a grid

over the interval [0.5, 1] with step size 0.1, conduct n = 1, 000 simulations for

each point, and present the quartiles of the key statistics in the subsequent

figures.

The economic intuition of the inflation bias parameter κ is that the policy-

maker acts in such a way that economic outcomes feature unnecessarily high

inflation with no gain in real performance. Consequently, for low values we

would expect inflation peaking at higher levels with the unemployment gap

peaks remaining unaffected. The first part of this presumption is confirmed by

figure 2.16. Indeed, across all variations considered in this section, the infla-

tion bias parameter κ has the greatest effect on inflation outcomes. However,
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Figure 2.15: Periods that unemployment peak lags inflation peaks (top panel),

duration of disinflation and probability of a GI for different weights on interest

rate smoothing
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Figure 2.16: Inflation peaks (top panel) and Peaks of the Unemployment Gap

(bottom panel) for different degrees of inflation bias

while according to our intuition the UK gap is unaffected by changes in κ, US

unemployment is brought to higher levels relative to the Nairu for low values

of κ. Overall, the effect of κ on the gap is less pronounced than on inflation.

A striking difference is the substantially prolonged disinflation period in the

US model. This, too, does not come unexpected, as a policymaker focussing

64



Perceptions depending on κ Perceptions depending on κ

0.5 0.6 0.7 0.8 0.90.5 0.6 0.7 0.8 0.9
-1

0

1

-1

0

1

Figure 2.17: Policymakers’ perceptions of inflation persistence and Phillips

curve slope before and at the height of the GI for different degrees of inflation

bias

on the real part of the economy will tend to require more quarters to disinflate

more smoothly.

Finally it should be noted that for a high inflation bias (low κ) the proba-

bility of a GI reaches 100 percent, that is the more a central bank is tempted

to push unemployment below the Nairu the more likely it induces unusually

high inflation if it is simultaneously learning about the dynamics of the econ-

omy. For κ approaching one, the probability of unusually high inflation rates

rapidly decreases, but still remains high for a learning policymaker without

the temptation to surprise inflate the economy.

This temptation seems to be absent in our models anyways. The reason we

included the inflation bias parameter κ was to account for a Barro and Gordon

(1983)–type motivation of the policymaker to deliver surprises in the inflation

rate which would result in below average unemployment rates if agents would

not erode this temptation by adjusting their expectations accordingly. Hence,

we would expect the unemployment gap that the policymaker wishes to reduce

to lead inflation which would be the tool used to reach this goal in this model.

Our results, however, indicate that inflation is the problem that is solved by

pushing unemployment above the Nairu, thus resulting in gap peaks lagging

inflation, as confirmed by figure 2.18.

Considering different learning algorithms. The gain value reflects

two opposing forces: one is the desire to put higher weights on more recent

observations to improve estimates in presence of structural breaks; in this re-

gard higher gain values perform better, given that the learning dynamics are
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Figure 2.18: Periods that unemployment peak lags inflation peaks (top panel),

duration of disinflation and probability of a GI for different degrees of inflation

bias
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Figure 2.19: Inflation peaks (top panel) and Peaks of the Unemployment Gap

(bottom panel) for different learning gain parameters γ

substantial as discussed earlier; the other is the desire to use sufficient sample

information; if the gain value is too high there are effectively too few observa-

tions included in the estimates. The accord in the learning literature is on a

gain value of γ = 0.03, but values around this particular value are equally rea-

sonable. Specifically, we allow for gain values in the range [0, 0.06]. It should

be noted, that with our non–recursive, discounted least squares formulation, a
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zero gain coincides with ordinary least squares, cf. appendix A.1, so our anal-

ysis nests all relevant learning specifications. While the economic outcomes
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Figure 2.20: Policymakers’ perceptions of inflation persistence and Phillips

curve slope before and at the height of the GI for different learning gain pa-

rameters γ

(inflation and gap peaks) are largely unaffected by the gain value, the per-

ceptions of inflation persistence and Phillips curve slope are more pronounced

for higher gain parameters. This reflects the fact that the economic conditions

surrounding the height of the GI are causal for the changes in these key param-

eters and higher gain values place a higher weight on these more recent events.

Since this favors the emergence of the GI, its probability slightly increases in

the gain parameter.

More importantly though, changes in the learning algorithm has no notable

impact on our findings. It is thus not the particular way we model learning,

but the accounting for imperfect knowledge as such that drives our results.

Robustness versus different assumptions on Nairu smoothness.

We choose a value for filter parameter the policymaker uses to extract the

Nairu that reproduces the smoothness in the Nairu as documented in empirical

studies. However, our insights should not depend crucially on this choice, so

it is important to assess its relevance for our findings. In figures 2.22 – 2.24

we plot our key results against an exponent c, such that the HP parameter

is given by µ = 10c. The smallest value under consideration, c = 3.2, is such

that it implies the standard calibration µ = 1600, but we include higher values

which imply Nairu paths comparable to those typically reported in the related

literature.
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Figure 2.21: Periods that unemployment peak lags inflation peaks (top panel),

duration of disinflation and probability of a GI for different learning gains γ
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Figure 2.22: Inflation peaks (top panel) and Peaks of the Unemployment Gap

(bottom panel) for different HP Filter smoothing parameters

The results with different HP parameters µ yield useful insights in the

mechanism regarding the Nairu misperceptions. A high smoothing parameter

implies a rather flat path for the Nairu. As the gap is determined as the

difference of unemployment to the Nairu, the fluctuations in unemployment

are soaked up by the perceived gap. Conversely, a low µ allows the Nairu to

take much of the variation in unemployment, leaving little movement left for

the gap. Thus, higher smoothing parameter imply gap estimates with higher
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amplitudes. What eventually matters is the relation of amplitudes in the

perceived and the true gap. If for a given choice of µ the policymaker would

obtain a good approximation to the true gap, then increases in the smoothness

parameter would result in excessively high amplitudes in the perceived gap.

With the true gap unaffected the policymaker would believe that changes in

the gap, though of big size, have not that big of an effect. This effect is stronger
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Figure 2.23: Policymakers’ perceptions of inflation persistence and Phillips

curve slope before and at the height of the GI for different HP Filter smoothing

parameters

for the UK model where the true Nairu fluctuations are higher compared to the

US model, Gordon (1997) and Greenslade et al. (2003). A low HP smoothing

value in the UK model extracts a gap whose fluctuations are small in size

and hence agree with the true gap. The reason that this effect appears hardly

present in the US simulation is that the true Nairu is relatively flat and thus the

gap has a high amplitude. Either the policymaker uses also a high µ yielding

gap estimates corresponding to the true gap, or he chooses low values yielding

an estimated gap path being smaller in amplitude than the true gap, but then

he would observe small changes in the gap exerting already substantial effect

on inflation.

This is reflected in the graph plotting the perceived slope against the HP

parameter. The US slope estimates are increasing, approaching zero from

below, in the HP parameter but not as strongly as in the UK case. Besides

that, both models display the same behavior, with the realized maximum gap

values admitted by the policymaker to disinflate being higher when the time

variation in the gap is considered high, i.e. for high µ. The inflation peaks are

little affected by this choice, as are the perceptions of inflation persistence, the

speed of the disinflation and the probability of an inflation outbreak. Hence
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the insights gained in the benchmark simulations carry over to arbitrary values

of the filter parameter.
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Figure 2.24: Inflation peaks (top panel) and Peaks of the Unemployment Gap

(bottom panel) for different HP Filter smoothing parameters

2.6. Learning with a conservative policymaker

We have seen that policymakers with restricted information sets will almost

inevitably face inflationary outbreaks as experienced during the GI. However,

while optimizing policy leads to unusually high levels of inflation, it does rarely

produce outcomes as bad as those experienced in the UK, and in part this holds

true for the US case as well.

In our companion paper we argued that the uncertainty of the estimates

suggests a Brainard (1967) type moderate policy stance, which implies the

muted policy setting we documented in chapter 1. As argued by Brainard and

Blinder (1997) high standard deviations of key parameters induce the decision

maker to compute the optimal response under certainty and then implement

only a fraction of it, a feature Blinder coined policy conservatism.

We thus examine the standard deviations of the policymakers’ estimates,

depicted in figure 2.25. As can be seen, during the great inflation the uncer-

tainty was substantially higher than in the subsequent periods. Notably the

Phillips slope estimates until the early 1980s are very imprecise, a fact that is

particularly pronounced in the UK model, thus calling for an especially mute
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Figure 2.25: Uncertainty of Beliefs in the US (left panel) and UK model (right).

Measured by the standard deviations of inflation persistence and of the Phillips

curve slope (dashed line).

interest response. This matches the finding in our companion paper, that doc-

uments highly positive comovement of historical and optimal interest rates but

with a magnitude being persistently below recommended values.

Our modelling strategy was to derive optimal policy decisions of a learn-

ing central banker, but we followed the standard approach that focusses on

decision making under certainty equivalence. The crucial feature of adaptive

learning is the time variation that is due to perpetual refinement of model esti-

mates, but these estimates are surrounded by uncertainty. In the same way the

estimates might change, converging to true underlying values, the associated

uncertainty will also change, probably decrease over time. Thus, a learning

policymaker that takes multiplicative uncertainty à la Brainard (1967) into

account will behave conservative, but less and less so as he eventually learns

the true parameter values and becomes more and more confident about them.

To assess whether a conservative optimizing policymaker would reproduce the

bad historical outcomes, we construct a simulation exercise that accounts for

the observed phenomenon.

Sack (2000) analyzes Brainard’s ideas in a dynamic, infinite horizon model.

He proposes a method that allows a reformulation of the decision problem un-

der multiplicative uncertainty in terms of a certainty equivalence problem with

a modified loss function. He expresses his results in general terms allowing for

a constant in the transition law and the loss functions, but since the constant

can always be included in the state vector as in our example, we can simplify

his terms determining the optimal instrument setting. In the setup of our

optimal linear regulator problem, as discussed in appendices A.2 and A.3, he

demonstrates that under certainty as well as under uncertainty, the optimal
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instrument i is set as

(2.10) it = −(B′ΛB)−1B′ΛAyt.

The only difference between both cases is that the matrix Λ solves a differ-

ent Lyapunov equation. In the certainty case the solution to this equation

depends on the weighting matrix in the policymakers loss function, which we

labelled Q∗. Sacks result now reduces to the finding that the solution under

uncertainty given a weighting scheme Q∗ denoted by Λu(Q
∗), relates to the

certainty equivalence solution as

(2.11) Λu(Q
∗) = Λ(Q∗ + Σ∗).

That is, one obtains the solution matrix for the uncertainty case by computing

the certainty equivalence solution for a problem where a matrix Σ∗ adds to

the loss function’s weighting matrix. Σ∗ collects the covariances between the

uncertain parameters. As Blinder argues, Brainard’s analysis focusses on the

special case with zero covariances between different parameters, so Σ∗ would be

diagonal. However, Sack’s result then suggests that in his framework Brainard

type uncertainty can be accounted for by modifying the weights in the loss

function. But changes in these weights will alter the way the decision maker

balances his target variables and thus the whole paths of them. Except in

special cases this will result in policies that are not necessarily correlated and

scaled down as in Brainard’s static setup. Sack’s dynamic analysis thus yields

more general results, and for that matter, we already analyzed the effect of

uncertainty implicitly, by investigating changes to the loss function’s weight in

the previous section.

Instead, we proceed by stipulating that policymaker’s were intrigued by

Brainard’s recommendation, which just came up at the time of the great in-

flation, and decided to account for the high uncertainty of their estimates by

muting their response as suggested by his considerations. We model this by

computing the optimal interest rate response and then scaling it down, just as

a Brainard type policymaker would do. We allow this down scaling for the his-

torical great inflation periods, which we limit to the 1970s, and choose a scale

factor given by the ratio of historical to optimal interest rates as documented

in chapter 1 (cf. table 1.1 there).
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Figure 2.26: Inflation rates induced by a central banker constrained to behave

conservative in face of high estimation uncertainty.

We draw n = 200 random shock sequences and use our benchmark policy

calibration to generate interest rate paths of a conservative policymaker under

imperfect knowledge who is otherwise behaving optimally. Figure 2.26 depicts

the simulated paths of inflation and contrasts them with the historical time

series. Apart from the first peak in the inflation rate, which is commonly at-

tributed to the oil price shock, and therefore to the bad luck factor that we

ruled out in our simulations, the similarity of simulated paths to historical

inflation rates is striking. The simulations do not only capture the expanded

increase in inflation, the extend of its duration, but they yield inflation peaks

almost coinciding with observed data. The simulations consistently point at

an inflationary outbreak of exactly the dimension, duration and extend ex-

perienced in the US and the UK. Furthermore, the disinflation is as rapid as

documented in empirical accounts. We thus conclude that conservative behav-

ior plays a crucial role, and should be accounted for in the empirical analysis

of models under adaptive learning.

2.7. Conclusions

We pursued the question whether the Great Inflation as experienced in the

US and UK can be reconciled with optimal policy under imperfect informa-

tion. We started from initial beliefs determined from data prior to 1960 and

required the central banker to jointly learn about the parameters of a reduced

form New Keynesian model and to infer estimates about the unobservable un-

employment gap. We saw that this inevitably pushes him into a combination
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of substantially underestimated levels of the Nairu, very low values of inflation

persistence and favorable slope coefficients of the Phillips curve.

The initial rise in inflation thus calls for no immediate reaction. Inflation is

not persistent, hence any shock to it will fade out sufficiently fast. Unemploy-

ment, however, is perceived to be best held at low levels, which in retrospect

unfolded inflationary pressures without observers identifying this source, and

low deviations from the Nairu appear effective enough to counteract inflation.

As inflation reaches high levels, agents realize its persistent nature and

correspondingly conclude that tight inflation control is in order. However,

since the misperception in the gap variable–the real time perception of the

gap was substantially positive while the true gap was close to zero–falsely lead

agents to the insight that even substantial gap values do not release tension

in the inflation rate. Thus at the outbreak of the great inflation, interest

movements appear to have a limited effect.

As soon as sufficient movement in unemployment allows for a more precise

detection of the Nairu and a clearer assessment of the Phillips curve slope, the

policymaker pushes unemployment over the true Nairu until inflation quickly

returns to moderate values. At this point the unemployment gap is also allowed

to fade out. The simulations confirm the duration of the disinflation period

and the lags that are necessary for unemployment to exceed the Nairu.

These evolutions in beliefs and the associated stylized facts as summarized

above are consistently reproduced in simulations of the system under learning.

Our finding is true for any type of optimizing policymaker from a wide range

of preferences and it applies equally well to the US and the UK. The difference

in both models is the substantially higher uncertainty surrounding the slope

coefficient in the UK model, inducing the policymaker to act more conserva-

tive. Indeed, modelling a Brainard type central banker that implements only

a fraction, that is decreasing in uncertainty, of optimal interest rates produces

outcomes almost identical to the great inflation episodes in both countries,

being comparable in the duration of the periods of increasing and subsequent

sustained high inflation, the rapid disinflation, as well as the dimension of the

high rates experienced in both countries.

We therefore find support for the notion of adaptive learning in inflation

unemployment dynamics, and provide a better account for one of the most
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important periods in US and UK postwar inflation history. Our considerations

also point to a substantial role to uncertainty in empirical models of adaptive

learning, which we leave as a future research project.
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CHAPTER 3

Estimating DSGE models under Adaptive Learning

3.1. Introduction

Over the last decade, microfounded dynamic stochastic equilibrium (DSGE)

models have become the main tool of macroeconomic analysis. The New Key-

nesian model analyzed in Woodford’s (2003) monograph and in Clarida et al.’s

(2000) prominent contribution, too name only a few, is one of the most im-

portant contributions to monetary economics. Consequently, many authors

estimate versions of these models, usually based on the rational expectations

(RE) hypothesis. While this approach is very fruitful there has recently been

an important branch of research that replaces this informationally demand-

ing approach with adaptive learning (AL), where agents still act optimally

but face imperfect knowledge of the economic structure. Ireland (2003) calls

for irrational expectations econometrics that account for restricted informa-

tion sets. As a response to this call, this paper offers a general approach to

analyze DSGE models under adaptive learning, enabling researchers to con-

trast corresponding results with the rational expectations benchmark. This

method extends the standard estimation procedure by incorporating results

from Evans and Honkapohja (2001) into the analysis. The second part of the

paper applies this procedure to Ireland’s (2004) assessment of the New Key-

nesian model amended with real business type technology shocks. Estimation

of his model under adaptive learning gives a better fit to US data then the RE

benchmark and yields substantially different insights.

3.2. The basic approach

Microfounded models incorporating dynamic and forward looking elements

have become the standard tool of macroeconomic analysis. The associated first

order as well as the market clearing conditions and relations describing prefer-

ences and technologies give rise to a set of equations that must be satisfied in

equilibrium. These equations link current and past realizations of endogenous
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variables to their expected future values and exogenous shocks. Formally, we

can write such a dynamic model of the economy as

(3.1) EtF (ỹt+1, ỹt, ỹt−1, ε̃t, ε̃t−1; Ψ) = 0

where Et is the expectations operator conditional on date–t information, the

mapping F summarizes the model equations involving the endogenous vector ỹ

and the exogenous terms ε̃. The vector Ψ collects all parameters of the model.

To analyze such an economy the mapping is typically log–linearized around

the deterministic steady state, which is implicitly defined by the rest point of

the system ȳ given no more shocks are ever to occur,

(3.2) F (ȳ, ȳ, ȳ, 0, 0; Ψ) = 0

and is reformulated in terms of log deviations from steady state values, yt =

log(ỹt)− log(ȳ) and εt = log(ε̃t)

Log linearizing the mapping F yields

(3.3) F ' Jac(F )diag(ȳ, ȳ, ȳ, ξ̄)(yt+1, yt, yt−1, εt, εt−1)
′

Together with (3.1) this yields the canonical linear structural form

(3.4) yt = Γ1Etyt+1 + Γ2yt−1 + Γ3εt

with the shock vector having possibly the autoregressive representation

(3.5) εt = Λεt−1 + ξt

In this formulation, all matrix entries are functions of the underlying deep

parameters Ψ, as captured by the Jacobian matrix Jac(F ) and the steady

state values given by the diagonal matrix appearing in (3.3). The vector ξ is

serially and intertemporally uncorrelated white noise, i.e. E[ξj,tξk,s] = σ2
j only

for j = k and t = s and zero otherwise.

Standard solution methods, e.g. Sims (2002), Klein (2000) or Uhlig (1995),

yield a reduced form representation

(3.6) yt = Θ1yt−1 + Θ2εt.

This representation along with the noise equation is subsequently mapped into

an appropriate state space form, for which the likelihood can be evaluated using

the standard Kalman Filter. The underlying structural parameters Ψ can then

be estimated by the maximum likelihood method.
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The mapping to a state space form is commonly necessary due to the

presence of unobservable variables. Hence we will consider this mapping onto

a general state space form

mt = Mst +Xmxt +Mζζ(3.7a)

st = Sst−1 +Xsxt + Sζζ(3.7b)

where it is important to note that all matrices are functions of Ψ. The Kalman

Filter computes a set of recursive equations in the one period ahead forecast

of the measurement and state vectors m and s and in the corresponding fore-

cast errors’ covariance matrices, Υ and Σ, which can be used to evaluate the

likelihood associated with the underlying parameter vector.

To summarize, for a given parameter vector Ψ we compute the linearized

structural form (Γ1,Γ2,Γ3,Λ) which by standard RE reasoning implies an equi-

librium representation (Θ1,Θ2,Λ) as given by equation 3.6. To estimate this

latter system, it is mapped onto a time invariant state space form (3.7), mainly

due to the need to distinguish observable from unobservable variables. Each

vector Ψ thus induces a unique time invariant state space form and with it a

unique likelihood value. Standard optimization routines1 can then be used to

infer the maximum likelihood estimate Ψ∗T of the structural parameters from

a sample of length T .

3.3. Agents’ beliefs and implied dynamics

To extend the basic procedure to deal also with the adaptive learning hy-

pothesis, we introduce the concept of the T–map relating the perceived law of

motion (PLM) and the actual law of motion (ALM), as defined by Evans and

Honkapohja (2001).

The PLM captures the model dynamics as perceived by the agents. It

is clear, that many variations are possible here, but the standard approach

as suggested by Evans and Honkapohja (2001) is to endow the agents with

a model of the same functional form as the equilibrium representation (3.6),

1Sims’s (2002) Matlab code csminwel offers an appropriate and commonly applied

algorithm.
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thus the PLM takes the recursive form

yt = Ω1yt−1 + Ω2εt(3.8)

εt = Ω3εt−1 + ξt(3.9)

with Ω1, Ω2 and Ω3 not necessarily coinciding with their rational expectations

equilibrium counterparts Θ1, Θ2 and Λ. Given a PLM of this form, agents

forecasting model is given by

(3.10) Etyt+1 = Ω2
1yt−1 + (Ω1Ω2 + Ω2Ω3)εt

The underlying structural form (3.4) maps the agents’ forecast model into an

actual law of motion

(3.11) yt = (Γ1Ω
2
1 + Γ2)yt−1 + (Γ1(Ω1Ω2 + Ω2Ω3) + Γ3)εt

That is the beliefs of the agents, parameterized by the matrices (Ω1,Ω2,Ω3)

are mapped onto actual transition matrices. The mapping is usually referred

to as the T–map, and is given in our terminology by

(3.12) T :


Ω1

Ω2

Ω3

 7→


Γ1Ω
2
1 + Γ2

Γ1(Ω1Ω2 + Ω2Ω3) + Γ3

Λ


The consistency condition under rational expectations where agents have

perfect information requires their forecast model (PLM) to coincide with the

induced dynamics of the model (ALM), hence the RE equilibrium can be char-

acterized as the fixed point of the T–map. Solution algorithms as suggested by

Blanchard and Kahn (1980) and extended by Klein (2000), Sims (2002) and

others solve this fixed point problem.

For completeness we note that many studies in the AL literature focus on

whether agents who initially use a PLM different from the REE fixed point

will ever learn the equilibrium parameters despite the fact that their misper-

ceived forecast model crucially feeds back into the dynamics of the model.

Given that they use consistent estimators such as OLS, Evans and Honkapo-

hja (2001) show that a necessary and sufficient condition is the stability of

an associated continuous time differential equation depending solely on the T–

mapping. This boils down to inspecting the eigenvalues of Jac(T ) and verifying

whether these have real parts less than unity. This is a standard condition in
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the theory of ordinary differential equations, and yields equations which can

be checked numerically or in simple cases even analytically. Thus, the T–map

serves in determining whether the additional dynamics introduced by learning

will eventually fade out bringing the economy into its full information rational

expectations equilibrium. However, we will use the T–map to track the feed-

back introduced by learning agents, so we will be able to use data series and

estimate a DSGE model under the assumption of adaptively learning agents.

3.4. Estimation of PLM

We shall first discuss how estimation proceeds given a sequence of PLMs

that agents have estimated over time, while discussing later how this sequence

is actually generated. So suppose that since date t0 agents have at each date

reestimated their model of the economy in order to enable forecast of relevant

variables. This yields a sequence of perceived models, {Ω1,t,Ω2,t,Ω3,t}Tt=t0 .
Since agents base their forecasts Êtyt+1 for each date t on the corresponding

estimates, the actual dynamic evolution of the economy at date t is parame-

terized by T (Ω1,t,Ω2,t,Ω3,t).

VAR approach. The vector autoregression (VAR) approach simply as-

sumes that agents use a VAR model as PLM (3.8). This means that standard

VAR estimation yields estimates for the PLM matrices. The VAR approach

has the advantage that dynamics present in the data but not captured by our

stylized model are taken account of. Furthermore, it is a simple approach that

does not require deep understanding of the underlying model. Unfortunately,

the VAR method requires all variables to be observable, which in general is

not true. So agents might want to define appropriate proxies for unobservable

variables prior to estimation, e.g. detrending real output to obtain a measure

of the output gap.

Model consistent approach. As an alternative we might assume that

agents impose more structure on their forecast model than in a simple VAR.

While the VAR approach only requires agents to behave individually optimal

and tackling their forecast problem in a convenient but simplifying way, one

might also stipulate that they know the structure of the nonlinear aggregate

dynamic relations, though not its exact parametric specification. Thus we
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might as well assume that in each period they perform the full DSGE es-

timation under rational expectations, which accounts for all cross equation

restrictions imposed by the model. This yields a sequence of deep parameters

that evolve over time, and with them a sequence of forecast models, derived via

the relations described above, i.e. agents plug the deep parameter estimates

into the model equations, log–linearize and solve the structural model for a

reduced form difference equation that they can use to form forecasts. Since

this approach respects the model equations and embodies learning only insofar

as it reflects the time variation in parameter estimates, we label this procedure

the model consistent approach.

3.5. Application to Ireland’s model

Ireland (2004) develops a New Keynesian model which explicitly accounts

for real business type technology shocks. The goal is to assess its importance

relative to the three types of shocks which are usually investigated in this

framework, a preference shock, a cost push shock and a monetary policy shock.

The model is mapped onto an econometrically usable form and estimated for

US data. For convenience, we briefly review the key building blocks of the

model and discuss its main difference to the standard model.

The model. Ireland’s (2004) model features a representative household

who maximizes a discounted, infinite stream of single–period money–in–the

utility preferences

(3.13) E
∑
t≥0

βt[at logCt + logMt/Pt − hηt /η]

subject to the budget constraint

(3.14) Mt−1 +Bt−1 + Tt +Wtht +Dt ≥ PtCt +Bt/rt +Mt.

Finished good consumption Ct and real money balances Mt/Pt enter as log-

arithms while hours work ht have an elasticity of ω ≡ 1/η. Agents allocate

their nominal wealth consisting of their wage receipts Wtht and their stock of

previously accumulated money and bonds Mt−1 + Bt−1 to consumption PtCt

and a portfolio of money Mt and bonds worth Bt in the next period given an

interest rate rt. One of the first–order conditions of the agent’s problem is
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given by

hη−1
t =

at
Ct

Wt

Pt
.(3.15)

The variable at is a log–AR(1) preference shock, that makes consumption more

attractive. A positive realization of this shock induces agents to work more in

order to increase wage income for consumption purposes. The responsiveness

of labor supply increases with the elasticity parameter ω. A further first–order

condition relates current and future consumption,

(3.16)
at
Ct

= βEt

( at+1

Ct+1

Pt
Pt+1

)
that is if e.g. the expected future preference shock exceeds the current shock,

consumption is shifted from today towards tomorrow. The preference shock

thus impacts on the intertemporal relation of the consumption stream (NO,

cancels out if AR1!) as well as the intratemporal consumption–labor decision,

where the latter is governed by the elasticity of labor ω. It will turn out that

the latter parameter and the size of this shock play a major role in US data.

There is a competitive final goods sector facing a constant returns to scale

technology

(3.17) Yt ≤
(∫ 1

0

Yt(i)
(θt−1)/θt

)θt/(θt−1)

where the parameter θt plays the role of a stochastic markup or cost–push

shock. The underlying stochastic process is also assumed to be a first–order

AR(1). Intermediate goods producers, distributed over the unit interval and

indexed by i, are monopolistically competitive firms, also facing a constant

returns to scale technology

(3.18) Yt(i) ≤ ztht(i), i ∈ [0, 1]

where z is an RBC type unit root technology shock. Intermediate goods firms

face Rotemberg (1982) price adjustment cost

(3.19)
φ

2

(
Pt(i)

πPt−1(i)
− 1

)2

Yt

This term punishes changes in individual prices unless the change corresponds

to the steady state inflation rate. Therefore the reaction to shocks will be

smoothed out over several periods inducing less flexible prices.
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The model is closed by specifying that the central bank sets the nominal

interest rate rt by following a version of Taylor’s (1993) rule, including output

growth gt (a hat indicates deviations from steady state values)

(3.20) r̂t = ρrr̂t−1 + ρππ̂t + ρgĝt + ρxx̂t + εrt

Ireland proposes the use of a difference rule, thus fixing the inertial parameter

in the rule ρr = 1. εr is a shock to this interest rate rule reflecting non–systemic

deviations.

This model differs to the standard New Keynesian model as developed by

Woodford (2003) and discussed e.g. by Clarida et al. (2000) in the introduction

of the technology shock zt. The log–linearized first order conditions are given

by

xt = αxxt−1 + (1− αx)Etxt+1 − (rt − Etπt+1) + (1− ω)(1− ρa)at(3.21)

πt = βαππt−1 + β(1− απ)Etπt+1 + ψxt − et(3.22)

gt = yt − yt−1 + zt(3.23)

xt = yt − ωat(3.24)

rt = ρrrt−1 + ρππt + ρggt + ρxxt + εrt(3.25)

which using Ireland’s notation st = (yt−1, rt−1, πt−1, gt−1, xt−1, πt, xt)
′ can be

rewritten in compact matrix notation as

(3.26) C0st = C1st−1 + C2Etst+1 + C3vt

where the C–matrices collect the parameters of equations (3.21)–(3.25).

(3.27) st = Γ1Etst+1 + Γ2st−1 + Γ3vt
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with

Γ1 =
1

∆



ρg −ρr −ρπβαπ 0 αx

−ρg ρr ρπβαπ 0 αx(ρg + ρπψ + ρx)

ψρg −ψρg βαπ(1 + ρg + ρx) 0 ψαx

−1 + ρπψ + ρx −ρr −ρπβαπ 0 αx

ρg −ρr −ρπβαπ 0 αx



(3.28)

Γ2 =
1

∆



0 0 1− ρπβ(1− απ) 0 1− αx
0 0 ρx + ρπβ(1− απ) + ρπψ + ρg 0 (1− αx)(ρπψ + ρg + ρx)

0 0 ψ + β(1 + ρg + ρx)(1− απ) 0 ψ(1− αx)
0 0 1− ρπβ(1− απ) 0 1− αx
0 0 1− ρπβ(1− απ) 0 1− αx



(3.29)

It is worth noting that economic reasoning attaches positive values to all pa-

rameters appearing in the solvability condition, implying that it is always

satisfied for economically meaningful systems.

Perceived law of motion. Since some of the key variables in our model

are unobservable, we prefer the model consistent forecasts over the simple

VAR approach, which would require either observability of all variables or

an appropriate approximation of them in a first step. The model consistent

approach requires the sequential estimation of the DSGE model over all rel-

evant subsamples. The high dimensionality of the parameter vector requires

a sufficiently long sample to infer precise estimates, so as shortest subsample

we choose the period 1948:2 − −1980:1. In the terminology of the previous

section, we thus choose t0 = 1980:1 and T = 2003:1. Figure 3.1 illustrates the

evolution of agents’ beliefs about the deep parameters over time; it contains

the estimates plotted versus the end point of the subsample, so e.g. the point

(1985, 3.8 × 10−3) in the bottom right panel indicates that the estimate for

the monetary policy shock’s standard deviation was 0.0038 for the 1948–1985

subsample. As expected, the recursive estimates display substantial time vari-

ation so therefore the forecast models that feed back into the model via the

expectations terms introduce a high degree of time variation in the reduced
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form–or actual law of motion’s–parameters. One might suspect that this ac-

counts at least for part of the instability results documented by Ireland over

the two subsamples presented in his paper. The perceived law of motion of any

ω αx
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σa 103σe
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1980 1985 1990 1995 20001980 1985 1990 1995 2000
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Figure 3.1: Perceived deep parameters over time

given date t is then obtained by plugging the corresponding estimates into the

log–linearized system equations (3.27) and solving this structural form equa-

tion for the implied rational expectations equilibrium using Klein’s method.

This yields a dynamic system of the form (3.8), which agents would use as

real–time forecast model for the given date. This sequence of time–varying

PLMs is entirely determined by the data and will not be influenced by the

following estimation procedure.
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Estimating Ireland’s model under Adaptive Learning. For any pa-

rameter vector Ψ, equations (3.27) give a structural form that maps agents

beliefs onto actual dynamic outcomes as indicated by the T–map in (3.10).

We do not want to determine the fixed point, however, since we do not as-

sume agents to use the forecast model consistent with the parameter vector

under consideration, but instead use their real–time perceptions given by the

sequence of PLMs. The T–map translates these perceptions onto actual dy-

namic coefficients. It should be noted that the T–map depends on the structure

parameterized by the chosen vector Ψ, and hence for each such vector maps

the PLM sequence onto a time–varying actual law of motion. The likelihood

of this latter system can be evaluated using the time–dependent version of the

Kalman filter, cf. Harvey (2003). We then estimate the deep parameters under

adaptive learning by computing the maximizer Ψ∗ of this likelihood function.

Estimation Results. The two left columns of table 3.1 contrasts the

estimation results for the model under rational expectations with the model

under adaptive learning. We will allow the interest rate smoothing parameter

ρr in the Taylor rule to be estimated from the data while Ireland proposes the

use of a difference rule, thus fixing ρr = 1.

We find that in the RE version of our model, the estimate of the inertial

parameter is indeed close to unity. Reestimating the model with this restric-

tion imposed yields a maximized log–likelihood value being only 0.2 below the

unrestricted value, thus a likelihood ratio test would not reject the null hypoth-

esis of this parameter being unity. The AL estimate, however, is substantially

below one, and the difference in log–likelihood values is 6.1 which implies re-

jection of the null hypothesis at any standard confidence level. Hence, our first

insight from the AL estimation is that we should not fix the inertial Taylor

rule parameter, but estimate it instead, which gives us a value of ρr = 0.8.

The estimate of the labor elasticity in our RE estimation is slightly higher

than Ireland’s, although it remains statistically insignificant. Our AL estimate

is zero right away. This suggests, as discussed by Ireland, that labor is very

inelastic. The model thus transmits preference shocks exclusively via an in-

crease in demand, without any substantial increase in labor and thus supply.
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Sample 1980:1–2003:1 Sample 1980:1–1991:3

Parameter RE Estimates AL Estimates RE Estimates AL Estimates

ω 0.2567 0.0001 0.1724 0.0013

αx 0.0007 0.9813 0.0044 0.8856∗∗∗

απ 0.0000 0.0000 0.0000 0.0000

ρπ 0.5925∗∗∗ 0.4290∗∗∗ 0.6253∗∗∗ 0.5217∗∗∗

ρg 0.4005∗∗∗ 0.2178∗∗∗ 0.4445∗∗∗ 0.2949∗∗∗

ρx 0.0951∗∗ 0.0086∗∗∗ 0.0704∗∗ 0.0000

ρr 0.9902∗∗∗ 0.7963∗∗∗ 0.9884∗∗∗ 0.8613∗∗∗

ρa 0.9328∗∗∗ 0.9978∗∗∗ 0.9126∗∗∗ 0.9931∗∗∗

ρe 1.0000∗∗∗ 1.0000∗∗∗ 0.9999∗∗∗ 1.0000∗∗∗

σa 0.0224∗∗∗ 0.3257∗∗∗ 0.0386∗∗∗ 0.0000

σe 0.0003∗∗∗ 0.0036∗∗∗ 0.0006∗∗∗ 0.0050∗∗∗

σz 0.0049∗∗∗ 0.0082∗∗∗ 0.0002 0.0109∗∗∗

σr 0.0029∗∗∗ 0.0016∗∗∗ 0.0039∗∗∗ 0.0024∗∗∗

L 1197.8 1214.8 561.7 570.9

Table 3.1: Estimation results. Estimates that are significant at the 1 percent

level are marked (***), significance at the 5 and 10 percent levels are marked

(**) and (*).

The estimates of the backward looking elements, αx and απ, are not sig-

nificant. Interestingly though, the point estimate of the persistence in the

output gap equation is close to unity in the AL case. Thus, despite the high

uncertainty surrounding the estimate, it indicates that backward elements are

quite important for the dynamics of the output gap once we allow for imper-

fect information. This contrasts to the RE result which delivers an estimate

of virtually zero.

The estimates of the autoregressive coefficients in the equations for the

shock processes are very similar across the two models, both suggesting high

persistence of the preference and markup shock. The standard deviations of

the shock processes noise terms, however, differ, being larger for the prefer-

ence, markup and technology shock in the AL case at the expense of a lower

monetary policy shock variance.
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The most important observation is that the model under adaptive learning

attains a higher maximized likelihood value than the same model assuming

rational expectations. The log–likelihood of the AL model, LAL,full = 1214.8

with the subindex indicating the use of the full sample, exceeds its RE coun-

terpart, LRE,full = 1197.8, by 17 points, which is a substantial increase. Un-

fortunately, as neither method nests the other as a special case, or could in any

way be parameterized, no formal test can be applied to judge the statistical

significance of this difference in likelihood.

The first thing to notice is that, again, the likelihood attained for the

AL model, LAL,1 = 570.9 with the subindex 1 indicating the use of the first

half of the sample, exceeds the value of the RE estimation, LRE,1 = 561.7.

Thus adaptive learning consistently yields a superior fit to the data. The

backward looking component in the output gap equation is again very high and

unlike in our previous estimation, where it was found to be insignificant with

a nevertheless high t–statistic of 1.5, this term is now significant, reassuring

our previous finding of the importance of this term.

To formally assess the issue of parameter stability, we also compute the

maximized log–likelihood values of both models for the 1991:4–2003:1 subsam-

ple. These are given by LAL,2 = 663.8 and LRE,2 = 659.5. We use Andrews

and Fair’s (1988) likelihood ratio test which contrasts the log–likelihood over

the two unrestricted subsamples with that of the restricted estimation,

(3.30) LR = 2(L·,1 + L·,2 − L·,full)

With our results this test statistic values 39.8 and 46.8 for the AL and RE

model, respectively. The asymptotic distribution of this statistic is chi–square

with degrees of freedom equal to the number of restrictions, that is the num-

ber of parameters allowed to vary between subsamples, i.e. our 13 variables

contained in Ψ. Although the AL model yields a lower test statistic, favoring

the idea of less time variation in the AL model, both tests decisively reject

the null hypothesis of parameter stability. Thus even with learning dynamics

accounted for by our method, the data still contains evidence for structural

change. At this point we should note that under adaptive learning there is

another important aspect that should be taken account of: our modelling

strategy was to describe monetary policy with an ad hoc rule. In particular,
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this rule will not change as the policymaker learns about the economy, while

agents are allowed to change their forecasting rules accordingly. It appears

plausible to model learning as two–sided in the sense that we also allow for

policymakers adjusting their behavior in face of changing beliefs on the dynam-

ics of the economy. This would imply that the policy rule used by the central

bank would be an optimal response to the real–time estimate of the economic

system, and therefore change over time as well. Hence our result points at the

need to model learning as a two–sided process being both relevant for keeping

track of updated forecasting models by forward looking agents but also for

the optimal behavior of policymakers who revise their optimal plans in face of

changes in the economy.

Ireland proposes a decomposition of the variances of the endogenous vari-

ables into parts attributable to each of our four shocks. The endogenous vari-

ables, output growth g, inflation π, the interest rate r and the output gap

x, relate to the state vector s via the relation yt = Cst with an appropriate

matrix C, while the state equation st+1 = Ast + Bεt+1 implies a solution for

the state vector k periods ahead of

(3.31) st+k =
∑
j≥0

AjBεt+k−j.

Applying the date–t conditional expectations operator and subtracting the

result from the above term yields the k–period forecast error

(3.32) st+k − Etst+k =
k−1∑
j=0

AjBεt+k−j

and hence the k–step ahead forecast error variances

(3.33) Σs
k = E(st+k − Etst+k)(st+k − Etst+k)′ =

k−1∑
j=0

AjBV B′Aj′

From the state equation it follows that the unconditional variances Σs solve

the Lyapunov equation

(3.34) Σs = AΣsA′ +BV B′.

The variances of the endogenous variables y then follow as Σd
· = CΣs

·C
′. V is

the covariance matrix of our four independent shock terms, V = diag(σ2
a, σ

2
e ,

σ2
z , σ

2
r). The variances due to a single shock are computed by replacing this

matrix by a diagonal matrix containing only the variance of the corresponding
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shock. Since all terms are linear, this yields a decomposition into four terms

each containing the part of the overall variance due to a particular shock.

Table 3.2 presents the contributions of the corresponding variance terms in

the rational expectations model at horizons k = 1, 4, 8, 12, 20, 40,∞ in percent-

age terms. Output growth is mainly affected by shocks to preferences. About

50 percent are due to this source while the policy shock contributes to about

a third of the overall variance and the technology to roughly 16 percent. The

effect of all shocks remains approximately constant across all forecast horizons.

Inflation is affected at short horizons mainly by the cost–push shock, which

initially contributes 58 percent but becomes more important in the long run

resulting in being the dominant factor in the unconditional variance. The pres-

ence of a near unit root, however, makes the unconditional results difficult to

compare, so we also focus on our finite long–term horizon forecast k = 40. At

short horizons the policy shock and to a lesser extend the technology shocks

are also important, injecting 29 percent and 13 percent of the overall one–step

ahead variance. These contributions decrease as the long term variances are

more and more affected by the cost–push shock, resulting in minor contribu-

tions of these two shocks, both effects being exceeded by that of the preference

shock which contributes to 7 percent for k = 40. The interest rate is affected

mainly by the preference shock in the short run, accounting for 85 percent of

the overall variance. With an increasing forecast horizon the cost–push shock

becomes more and more important, accounting for 47 percent of our long term

variance measure. The preference shock remains the major factor with a long

term contribution of 51 percent. However, the unconditional variance is again

dominated by the cost push shock. The variance of the output gap is initially

mainly due to the monetary policy shock and the technology shock, their con-

tributions being 62 and 28 percent, respectively. The preference shock plays

almost no role except for an initial five percent contribution that quickly fades

out at longer horizons, as also do the two aforementioned shock, leaving room

for the cost–push shock to become more and more important and resulting in

a 92 percent contribution in the long term.

Table 3.3 presents the corresponding results for the model under adaptive

learning. Interestingly, the preference and policy shocks play only a minor

role for all variables. The variance of output growth is initially due to the
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technology shock with 53 percent and the cost–push with 41 percent shock.

The impact of the latter increases to 85 percent in the long run reserving

approximately the rest of the variance to the technology shock. The variances

of inflation and the interest rate are dominated at all horizons by the cost–push

shock. While both the technology and the policy shock exert almost no effect

on the overall variance, the preference shock accounts for 3 and 8 percent at

long horizons, respectively. The output gap is also dominated by the cost–push

shock, although at short horizons, for k = 1, 4, the technology shock accounts

for about 11–12 percent and the policy shock for about 9–10 percent.

3.6. Conclusions

This paper developed a general method to estimate DSGE models under

the assumption of either rational expectations or alternatively adaptive learn-

ing. The latter explicitly takes account of the accumulation of information

that gives agents a better understanding of the economy over time. Rational

expectations can be interpreted as a special case of this imperfect knowledge

approach where agents at each point knew the full sample estimates and used

them for their forecasting procedures. However, adaptive learning does not

offer additional degrees of freedom, but is a device that models agents per-

ceptions. In the standard case the perceptions are assumed to coincide with

those implied by the full sample model whereas the general AL case keeps

tracks of agents’ growing information set. The difference of both methods lies

in the modelling of agents’ forecasting model, which corresponds to the correct

model given all information even at early stages where this information is not

yet available in the RE case and the use of real–time models that change over

time reflecting the growing knowledge over time in the AL case. Thus the RE

method implicitly inserts the full sample forecast model into the expectations

side of the model at any point in time whereas the AL method inserts the

forecast model that an econometrician would recommend at a certain point

in time given all available information. Since there are no more degrees of

freedom, just a different sequence of forecast models, it is a priori unknown

which of these approaches gives a better fit to the data. However, we find

that the AL approach dominates the RE approach in terms of the maximized
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likelihood and conclude that the AL estimates offer a superior description of

actual economic relations.

While some estimates qualitatively agree, we find that many key parame-

ters are substantially different among the two different methods. A particularly

important finding is that the backward looking term in the demand equation

turns out to be very high implying that forward looking elements in the equa-

tion determining the output gap are not important, but instead that the gap

is characterized by high structural persistence. This result clearly opposes

the findings from the rational expectations model which come to the opposite

conclusion.

As regards the assessment of the role of technology shocks, our results sug-

gest that all shock terms are important, since all estimated standard deviations

are highly significant. Quantitatively though, as demonstrated by the variance

decompositions, the assessment of the importance of our four shocks differs for

both methods.

In the RE model each shock has its role. While the cost–push shock is the

dominant force except for the variance of output growth, to which the main

contribution stems from preference shocks, policy shocks are important for the

output gap, output growth and inflation, at least in the short term. Preference

shocks are also important for variations in the interest rate. The effect of

the technology shock, however, that contributes to output gap variability, to

some extend also to output growth, and little to the inflation rate, is always

dominated by at least one of the other shocks at any forecast horizon. Thus

while technology shocks do have some explanatory power they are identified

as the least important source of variation.

In the AL model the judgment is different. In this model preference shock

exerts almost no effect at all, and to a lesser extend this holds also true for the

monetary policy shock. Under adaptive learning, thus, we find that besides

the important cost–push shock the only other influential source of volatility is

the technology shock.
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Quarters Preference Cost–Push Technology Policy

Ahead Shock Shock Shock Shock

Output Growth

1 53.6 1.9 15.5 29.0

4 48.4 3.6 16.3 31.4

8 48.3 4.0 16.3 31.4

12 48.5 4.0 16.3 31.3

20 48.7 4.0 16.2 31.1

40 48.8 3.9 16.2 31.1

∞ 48.8 3.9 16.2 31.1

Inflation

1 1.5 57.5 12.8 28.2

4 6.0 65.4 9.0 19.7

8 9.7 69.7 6.4 14.2

12 10.7 72.8 5.2 11.3

20 10.0 77.9 3.8 8.4

40 6.8 85.7 2.4 5.2

∞ 0.0 100.0 0.0 0.0

Interest Rate

1 84.7 3.2 3.8 8.3

4 84.3 9.0 2.1 4.6

8 79.9 15.7 1.4 3.0

12 75.3 21.2 1.1 2.4

20 67.0 30.3 0.8 1.9

40 51.2 46.9 0.6 1.4

∞ 0.3 99.7 0.0 0.0

Output Gap

1 5.1 4.1 28.4 62.4

4 2.8 32.5 20.2 44.5

8 1.8 60.4 11.8 26.0

12 1.4 72.3 8.0 17.6

20 0.9 83.6 4.8 10.6

40 0.5 91.7 2.4 5.3

∞ 0.5 91.7 2.4 5.3

Table 3.2: Variance decomposition for the RE results.94



Quarters Preference Cost–Push Technology Policy

Ahead Shock Shock Shock Shock

Output Growth

1 2.2 40.5 52.5 4.9

4 1.1 74.7 21.9 2.4

8 0.7 84.6 13.1 1.6

12 0.7 84.9 12.8 1.6

20 0.7 84.9 12.8 1.6

40 0.7 84.9 12.8 1.6

∞ 0.7 84.9 12.8 1.6

Inflation

1 0.7 98.1 0.7 0.6

4 1.0 97.5 0.8 0.7

8 1.2 97.2 0.9 0.7

12 1.4 97.1 0.9 0.7

20 1.8 96.8 0.8 0.7

40 2.5 96.1 0.8 0.6

∞ 0.1 99.9 0.0 0.0

Interest Rate

1 1.0 98.1 0.5 0.4

4 1.5 97.9 0.3 0.2

8 2.5 96.8 0.4 0.3

12 3.3 95.9 0.4 0.3

20 4.7 94.6 0.4 0.3

40 7.6 91.7 0.4 0.3

∞ 0.3 99.7 0.0 0.0

Output Gap

1 3.8 75.7 11.3 9.1

4 4.3 73.2 12.4 10.1

8 0.4 97.4 1.2 1.0

12 0.2 99.0 0.4 0.4

20 0.1 99.6 0.2 0.2

40 0.0 99.8 0.1 0.1

∞ 0.0 99.8 0.1 0.1

Table 3.3: Variance decomposition for the AL results.95





Concluding Remarks

The goal of this thesis was to investigate the empirical relevance of the

adaptive learning approach. This method has experienced a recent boom cul-

minating in a line of research that analyzes stability of systems under imperfect

knowledge. The focus in on deriving conditions for policy that assure that ad-

ditional dynamics resulting from the learning propagation mechanism fade out

over time and imply convergence of economic systems to a perfect information,

rational expectations equilibrium.

There is, however, little empirical treatment of this topic. Were the afore-

mentioned dynamic propagation mechanism quantitatively negligible, the re-

lated convergence result would not appear to be relevant. We therefore assessed

the role of adaptive learning in important empirical applications and tried to

analyze the contribution of this approach to explaining phenomena in time

series data.

Our first chapter showed how the assumption of adaptive learning endo-

genizes policy behavior, thus being able to explain changes in the stance of

monetary policy that occurred e.g. in the US during the early 1980s under

the tenure of Paul Volcker. These changes are usually traced back to exoge-

nous forces such as the change in chairmanship of the Fed. The standard view

that policy has not been conducted optimally must be modified. Indeed, we

saw that taking account of adaptive learning completely explains the different

stance in policy with inflation becoming a primary concern of central bankers

in an environment under imperfect knowledge, since the beliefs of key param-

eters change substantially and imply a revision of the way policy is conducted.

Our findings thus suggest that any policymaker would by the early 1980s have

learned to behave in the way we observed in the history of US monetary policy,

while conversely in the seventies any policymaker would have conducted policy

in a way that would nowadays be criticized for having been non–optimal. This

is an interesting result since this implies an equivalent change in policy for
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both the US and the UK economy, a feature that the change in chairmanship

alone cannot address.

Our analysis revealed that historic interest rate decisions are highly corre-

lated with optimal rates, but that even a policymaker under imperfect informa-

tion would have reacted stronger towards the rise in inflation in the 1970s. On

the other hand, policymaking in the last 25 years is consistent with an optimiz-

ing but learning policymaker. Policy reactions in the US and particularly in

the UK until the early 1980s appear conservative related to recommendations

of an optimizing decision maker. However, as the uncertainty surrounding the

estimates of the model is initially high and substantially declines at the same

time, we conjecture that accounting for uncertainty in the sense of Brainard

is a key factor in policy setting.

We pursued this idea in the second chapter where the main focus is on

the inflation–unemployment performance in an economy with an adaptively

learning policymaker. Despite him behaving optimally the fact that his infor-

mation set is limited almost inevitably leads the economy into great inflation

like episodes. We find all characteristics that are observed in US and UK time

series to be generated by model simulations under learning. These include the

substantial revisions in perceived inflation persistence and the strong underes-

timation of the natural rate of unemployment in the late 1960s and 1970s. Fur-

thermore, a Brainard–type policymaker will acknowledge the high uncertainty

of econometric estimates until the early 1980s and if he acts in a conservative

manner as advocated by Brainard, we consistently recover paths of inflation

and unemployment as experienced in the US and the UK. We conclude that the

adaptive learning hypothesis is capable of explaining important historic facts

that are otherwise difficult to account for, and that in the empirical analysis

uncertainty plays a central role.

Given the empirical relevance of the concept as documented in the two

previous chapters, the third chapter developed a method that allows to esti-

mate dynamic stochastic general equilibrium models under adaptive learning,

replacing the assumption of rational expectations. We applied this approach

to a version of the New Keynesian model. We found firstly, that the estima-

tion results under the assumption of adaptive learning give a better fit to the

data then under that of rational expectations, and secondly, that key results
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are substantially different under both methods. We concluded that the strong

assumption of perfect knowledge which is implicit in the rational expectations

framework introduces a bias into the estimation results.

To summarize, the adaptive learning approach has proven to be a powerful

and empirically relevant tool, implementing an informationally plausible alter-

native, or extension, to the rational expectations hypothesis. We investigated

the effect of the adaptive learning assumptions in important models of the

economy and discussed how the standard assumption of rational expectations

can be modified to account for the role of learning related dynamics. Models

estimated under imperfect knowledge give a better fit to the data and reveal

important insights otherwise masked by the rigid full information setup. We

found robust evidence for the importance of adaptive learning with a particular

emphasis on parameter uncertainty, the latter having not yet been taken ac-

count of in the related literature. It also turned out that estimation procedures

involving the extraction of unobservable components emphasize a substantial

role of misperceptions in these variables. Importantly, unlike knowledge on

structural parameters, latent variables will always remain a source of uncer-

tainty which can lead to suboptimal outcomes over and over again.

Although we investigated the impact of imperfect knowledge on optimal

policy and on forecasting procedures in isolation, our results suggest that both

channels are important and thus should be jointly analyzed. Thus, empirical

analysis of models under adaptive learning should proceed by modelling learn-

ing as a two–sided process giving an important role to optimal policy decisions

and appropriate forecast models under imperfect knowledge. Furthermore, the

role of uncertainty of beliefs should be taken into consideration, since moder-

ate behavior played an important role in the outbreak of the great inflation in

the US and the UK.

99





Appendix

A.1. Recursive least squares and constant gain algorithms

We will discuss the relation of ordinary least squares, its recursive represen-

tation and constant gain algorithms (CGA) which are popular in the adaptive

learning literature. As discussed in the text, constant gain algorithms are ob-

tained from recursive least squares by replacing the decreasing gain factor by

an appropriate constant; the literature has reached a consensus on the relevant

range for this parameter and agrees on particular values. However, CGAs are

recursive representations of the discounted least squares formula. Since the

latter rarely appears in related work, we recall its definition

Definition 1. The discounted least squares estimator for discount factor

δ ≤ 1 of a vector of t observations y on the t×k regressor matrix x is given by

the ordinary least squares estimator of the regression of ∆y on ∆x, where ∆ =

diag(δt−1, δt−2, . . . , δ1, δ0) is a diagonal matrix with geometrically increasing

entries.

Lemma 1. Versions of the ordinary least squares estimator in the regression

of the t–dimensional endogenous variable y on x are given by

βt = (X ′∆2X)−1X ′∆2y =
( t∑
i=1

δ2(t−i)xix
′
i

)−1( t∑
i=1

δ2(t−i)xiyi
)

(A.1)

The following equations are the corresponding recursive representation,

βt = βt−1 + γtΣ
−1
t x′t(yt − xtβt)(A.2a)

Σt = Σt−1 + γt(xtx
′
t − Σt−1).(A.2b)

For δ = 1 and γ = 1/t, these equations yield the ordinary least squares esti-

mator and its recursive version. If we choose an arbitrary δ, equations (A.1)
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become discounted least squares, and an equivalent representation is given by

formulae (A.2) if we choose γ = 1− δ2.

The least squares formula (A.1) is of course well known and is stated here

only for completeness. Similarly, the discounted least squares version is a direct

consequence of the definition. Only the equivalence of the recursive formula-

tions to their non–recursive counterparts remains to be shown, in particular

the relation of the discount factor and the gain parameter.

We are interested in terms of the form ct = R−1
t St, where both Rt and St are

scaled sums, as in equation (A.1), and thus allow for recursive representations.

To be concrete, we write Rt = γαt
∑t

i=1 gi and St = γαt
∑t

i=1 hi. We focus

on Rt first. After isolating the last summation term and factoring out αt/αt−1

in the remaining sum, we can substitute in Rt−1 to obtain the recursion Rt =

αt/αt−1Rt−1 + γαtgt.
ii

Under either condition

(i) 1− αt/αt−1 = γαt

or (ii) 1− αt/αt−1 = γ,

we can deduce one of the more common terms for Rt − Rt−1 (by subtracting

Rt−1 from both sides of our recursion), namely γαt(gt − Rt−1) and γ(αtgt −
Rt−1), respectively.

Using similar steps and substituting in the corresponding formula for ct−1,

we can rewrite St = αt/αt−1Rt−1ct−1 + γαtht. Collecting results and us-

ing footnote (ii), we finally arrive at the familiar updating term ct − ct−1 =

γαtR
−1
t (ht − gtct−1).

To obtain versions of the least squares formula, we set gi = δ−2ixix
′
i, hi =

δ−2ixiyi. The choice δ = 1, αt = 1/t, and γ = 1 yields ordinary least squares,

that is R−1
t St corresponds to equation (A.1). Since these coefficients satisfy the

first condition, we obtain the recursive least squares formulae, i.e. equations

(A.2) with gain factor 1/t. For arbitrary positive δ < 1, the choice αt = δ2t

and γ = 1 − δ2, yields discounted least squares with discount factor δ, i.e.

equation (A.1) for arbitrary discount factor. Since these parameters satisfy

iiThis equation implies αt/αt−1R
−1
t Rt−1 = I− γαtR

−1
t gt.
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the second condition, we obtain the constant gain algorithm with gain 1− δ2

as recursive representation, as in equations (A.2).

A.2. State space form of the dynamic program

We set

(A.3) yt = (πt, πt−1, πt−2, πt−3, ut, ut−1, 1, u
∗
t , u
∗
t−1, Vt−1)

′

the dynamic program is given by

max−
∑
t≥s

δt−s[y′tΩyyyt + u′tΩuuut + 2y′tΩyuut](A.4)

s.t.(A.5)

yt = Ayt−1 +But(A.6)

where

A =



α1 α2 0 0 θ1 θ2 cπ −θ1 −θ2 0

I3 03×3 03×2 03×2

−λ/4 −λ/4 −λ/4
0 0 0

−λ/4 ρ1 ρ2

0 1 0

cu 1− ρ1

0 0
−ρ2 0

0 0

02×3 02×3 I2 02×2

02×3 02×3
0 1
0 0

02×2


,(A.7)

B = (0, 0, 0, 0, λ, 0, 0, 0, 0, 1)′,(A.8)

and

(A.9) Ω =

(
Ωyy Ωyu

Ωyu′ Ωuu

)

consisting of the block matrices

(A.10) Ωyy =



1 −π∗
−π∗ 1

0 0 0 0

0 0 0 0 0

0 0
ωx −κωx
−κωx κ2ωx

0 0

0 0 0 0 0
0 0 0 0 ωu


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Ωuu = ωu,(A.11)

and

Ωyu = (0, 0, 0, 0, 0, 0, 0, 0, 0,−ωuu)′(A.12)

A.3. Solution strategy

Our problem is to choose a sequence {vt}t≥0 to minimize

(A.13)
∑
t

βt[x′tRxt + 2x′tWut + u′tQut]

subject to the linear transition law

(A.14) xt+1 = Axt +But + εt+1

where we adopt the notation of Hansen and Sargent (2004) to facilitate com-

parison. First, we note the well known result that the solution is given by

ut = −Fxt, which is also established in the aforementioned monograph, with

F given by

(A.15) F = (Q+ βB′PB)−1(βB′PA+W ′)

Solving the policymaker’s problem thus reduced to computing the matrix P ,

which is known to satisfy the algebraic Riccati equation

(A.16) P = R + βA′PA− (βA′PB +W )(Q+ βB′PB)−1(βB′PA+W ′)

We will apply an efficient routine provided by Evan W. Anderson.iii This

method is designed for undiscounted optimal linear regulator problems without

mixed terms, so several transformations as suggested by Hansen and Sargent

are in order. We set

A∗ =
√
β(A−BQ−1W ′)(A.17a)

B∗ =
√
βB(A.17b)

R∗ = R−WQ−1W ′(A.17c)

Q∗ = Q(A.17d)

iiiThe matlab file schurgaux is available on his website

http://www.math.niu.edu/∼anderson.
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and verify by inserting the matrices that our above system is equivalent to the

undiscounted problem without mixed terms under certainty,

(A.18)
∑
t

[x̂′tR
∗x̂t + v̂′tQ

∗v̂t]

subject to

(A.19) x̂t+1 = A∗x̂t +B∗v̂t

This system gives rise to a corresponding Riccati equation in P ∗,

(A.20) P ∗ = R∗ + A∗′P ∗A∗ − A∗′P ∗B∗(Q∗ +B∗′P ∗B∗)−1B∗′P ∗A∗.

Conveniently, the solution to the latter Riccati equation coincides with the one

in our original problem, a fact we capture in

Lemma 2. The Riccati matrix of our original problem (xx) coincides with

the Riccati matrix of the transformed system, P = P ∗.

Hansen and Sargent (2004) and Hansen and Sargent (2005) show how the

problem (A.18) and (A.19), and thus implicitly equation (A.20), can be solved

using a deflating subspace method. This involves computing the ordered gen-

eralized real Schur decomposition of the matrix pencil λL−N, λ ∈ C with

(A.21) L =

(
In B∗Q∗−1B∗′

0n A∗′

)
, N =

(
A∗ 0n

−R∗ In

)
.

Anderson’s routine is designed to compute this decomposition, associated with

our transformed problem. It yields a matrix, which after partitioning into

2 × 2 equally sized submatrices Uij, i, j = 1, 2, let’s us deduce the Riccati

matrix P = U21U
−1
11 , and thus from lemma 2 the Riccati matrix of our original

problem, which is then subsequently used to infer the optimal policy from

equation (A.15).

It just remains us to provide the proof of our lemma, which is done by

substituting the transformed system’s matrices (A.17) into the original Riccati

equation (A.16) and investigating each of the three terms on the right hand

side of the above equation separately.

The first only requires substitution of R,

(A.22) R = R∗ +WQ−1W ′,
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the second term becomes the second term becomes

βA′PA

=β(β−1/2(A∗ +B∗Q−1W ′))′P (β−1/2(A∗ +B∗Q−1W ′))

=[A∗′ +WQ−1B∗′]P [A∗ +B∗Q−1W ′]

=A∗′PA∗ + A∗′PB∗Q−1W ′ +WQ−1B∗′PA∗ +WQ−1B∗′PB∗Q−1W ′.(A.23)

Tedious computations are necessary for the third term. We start with the

last two of its three factors, and use the shorthand notationM ≡ (Q+B∗′PB∗):

M−1[B∗′P (A∗ +B∗Q−1W ′) +W ′]

= M−1[B∗′PA∗ + (B∗′PB∗ +Q)Q−1W ′]

= M−1[B∗′PA∗ +MQ−1W ′] = M−1B∗′PA∗ +Q−1W ′

Hence

[(A∗′ +WQ−1B∗′)PB∗ +W ]×M−1[B∗′P (A∗ +B∗Q−1W ′) +W ′]

= [A∗′PB∗ +WQ−1(Q+B∗′PB∗)]× [M−1B∗′PA∗ +Q−1W ′]

= A∗′PB∗M−1B∗′PA∗ + A∗′PB∗Q−1W ′ +WQ−1B∗′PA∗

+WQ−1B∗′PB∗Q−1W ′ +WQ−1W ′(A.24)

The second term of (A.24) cancels with the second of (A.23) and similarly

the third and fourth terms cancel. The fifth term cancels with the second in

(A.22). Collecting the remaining terms, which are the first expressions of each

separate term, we obtain

(A.25) P = R∗ + A∗′PA∗ − A∗′PB∗(Q+B∗′PB∗)−1B∗′PA∗

Hence, the Riccati matrix of the untransformed system also satisfies the Riccati

equation of the transformed system (A.20), thus from the uniqueness of this

matrix we deduce P = P ∗ as was to be shown.
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