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I. INTRODUCTION

This thesis contains five papers. Two belong to the field of industrial or-

ganization. Both are on innovation and the investment in it. The paper

“Persistence of Monopoly and Research Specialization” takes a new look

at monopoly persistence and explores which effects determine it. In “En-

try and Incumbent Innovation”, we investigate how the threat of entry

influences the innovation activity of an incumbent. Two papers belong

to the field of contract theory. They are on principal-agent relationships

with moral hazard. In “Ambiguity in a Principal-Agent Model”, we as-

sume that the agent’s knowledge about the statistical properties of the

performance measure is ambiguous and that the agent is averse to ambi-

guity. We investigate how ambiguity and ambiguity aversion change the

use of information and the power of the incentives which are optimally set.

In “The Optimality of Simple Contracts: Moral Hazard and Loss Aver-

sion”, Fabian Herweg, Daniel Müller, and I explore how an agent’s loss

aversion changes the complexity of the optimal contract. The last paper

is on the economics of education and human capital formation. In “The

Technology of Skill Formation and Hidden Information”, we consider a

model of child development, where the formation of human capital occurs

in multiple stages via investments. We explore how hidden information

about how to treat a young child best changes the optimal investment

plan. In the remainder of the introduction, we will explain the papers

and their results in more detail.

In Chapter II, we investigate the persistence of monopolies in markets

with innovations. The extensive literature on the subject has discussed

this issue in terms of the efficiency effect and the replacement effect.

Since competition destroys profits, the efficiency effect predicts that the
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incumbent’s incentive to remain a monopolist through innovating is at

least as great as the entrant’s incentive to become a duopolist. The re-

placement effect predicts the opposite: the entrant’s incentive to innovate

is higher than the incumbent’s because only the incumbent takes into ac-

count that innovating replaces its existing technology. According to the

classical work of Gilbert and Newbery (1982), the efficiency effect deter-

mines the outcome, whereas in a seminal paper by Reinganum (1983) it

is the replacement effect.

We build a unifying model in which both effects are present. In our

model, the first-moving incumbent may be able to discourage the poten-

tial entrant from investing in research by investing itself. The outcomes

of research activities are uncertain. Therefore, preemption is less than

perfect. For high success probabilities, we obtain a result in the spirit

of Gilbert and Newbery (1982): preemption is almost perfect and so the

efficiency effect is the driving force. For low success probabilities the

incumbent can hardly preempt and so the replacement effect predomi-

nates. This result is in the spirit of Reinganum (1983). A rough intuition

is that research is a powerful preemption device if and only if it is likely

to succeed.

The former results imply that research with a high success probability

is more likely done by the incumbent than by the potential entrant, and

it is vice versa for research with a low success probability. In this sense,

incumbents specialize in “safe” research, and potential entrants in “risky”

research. We also show that research undertaken by potential entrants

is, on average, “riskier” than that of incumbent firms. Moreover, the

probability of entry has an inverted U-shape in the success probability

of research. Since even at the peak the probability of entry is only a

quarter, the persistence of monopoly is high. We also explore the norma-

tive aspects of our model and show that, apart from one exception, firms

never overinvest and may underinvest. When the incumbent preempts

the potential entrant and the innovation is non-drastic, overinvestment

may occur.

In Chapter III, we explore how the threat of entry influences an in-

cumbent’s investments in R&D. This question is important since innova-
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tions are central to growth. The literature has found two counteracting

effects. First, the Schumpeterian effect. A larger entry threat reduces

the incumbent’s expected profit and therefore also its investment. Sec-

ond, the entry deterrence effect. To deter entry, or to make entry un-

likely, a greater threat requires a larger investment. Combining both

effects yields that the incumbent’s investment is hump-shaped in the en-

try threat. When the entry threat is small and increases, the incumbent

invests more to deter entry or to make entry unlikely. This is due to the

entry deterrence effect. However, when the threat becomes huge, entry

can no longer profitably be deterred or made unlikely and the investment

becomes small. Then the Schumpeterian effect dominates. We show that

these results are robust to different timings. In one time structure, the in-

cumbent does not know the rivals’ production costs when deciding about

investment. In the alternative timing, the costs are known.

Chapter IV is motivated by the following empirical findings: wage

schemes sometimes do not depend on performance or the dependence

is rather weak. Additionally, the Informativeness Principle, according

to which the principal uses all information in a compensation contract

which is correlated with performance, is often violated. These findings

are in contrast to the theoretical literature. We show that considering

ambiguity and ambiguity aversion can bring theory in line with empirics.

There is also a conceptual justification to consider ambiguity. In

standard models of principal-agent relationships, it is implicitly assumed

that the agent knows precisely the statistical properties of the perfor-

mance measure. However, we think that this is a rather strong—and in

real life often unrealistic—assumption. We relax it by assuming that the

agent faces ambiguity with respect to the performance measure. Due to

ambiguity, the agent’s beliefs about the distribution of the shock on the

performance measure are not represented by a single probability function,

but instead by a set of probability functions. Since Ellsberg (1961), at the

very latest, we know that subjects are averse to ambiguity. Therefore we

assume that the agent is not only risk-averse, but also ambiguity-averse.

We show that with ambiguity the agent is pessimistic about the distri-

bution of the shock on the performance measure. As a consequence, the
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compensation demanded by the agent is relatively high, compared to the

standard model (which neither considers ambiguity nor ambiguity aver-

sion). Because the principal has to ensure participation of the agent, this

implies that the principal’s cost of providing incentives is relatively high.

As a result, the principal sets relatively weak incentives which yield a

relatively low expected payoff. It may even be the case that the optimal

contract is a fixed wage.

When there are two performance measures, it can be optimal for

the principal to ignore one of them (and potentially both), even though

both measures are informative. The reason is that with ambiguity, the

inclusion of a measure into a wage scheme causes costs which are not

negligible even when the wage depends on the measure only to a small

extent. Hence, the Informativeness Principle does not hold in our model.

In Chapter V, Fabian Herweg, Daniel Müller, and I consider a prin-

cipal-agent relationship with moral hazard. Empirically, wage schemes

sometimes consist of remarkably few different levels. Sometimes there are

even only two levels: a base wage and a lump-sum bonus. The observed

simplicity of contracts, however, is at odds with predictions made by

economic theory. We show that considering loss aversion can solve this

puzzle.

Our model is standard but for one twist: the agent is assumed to

be loss-averse in the sense of Kőszegi and Rabin (2006, 2007). With

the tradeoff between incentive provision and risk-sharing being at the

heart of moral hazard, allowing for a richer description of the agent’s

risk preferences that goes beyond standard risk aversion seems a natural

starting point to gain deeper insights into contract design. Our main

finding is that a simple lump-sum bonus scheme is optimal when loss

aversion is the driving force of the agent’s risk preferences. This is in stark

contrast to the findings for a standard risk-averse agent. The intuition is

as follows: an agent who is risk- but not loss-averse exhibits local risk-

neutrality. This implies that paying slightly different wages for different

signals improves incentives at negligible cost. Therefore simple contracts

cannot be optimal. With a loss-averse agent, this is no longer true. With

the reference point being multidimensional under the concept of Kőszegi
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and Rabin, the agent is first-order risk-averse at all possible wage levels.

In consequence, paying even slightly different wages reduces the agent’s

expected utility, for which in turn he demands to be compensated. Thus,

by offering a simple contract that specifies only few different wage levels,

the principal can lower the expected payment necessary to compensate

the agent.

In Chapter VI, we contribute to the literature on the formation of

human capital. Cunha and Heckman (2007) consider an economic model

of child development, where the formation of human capital occurs in

multiple stages via investments. They solve for the optimal intertemporal

investment plan, which is important to derive policy implications. We

extend their framework by assuming that children are differentiated in

the sense that a child’s type determines what type of investment is most

productive for him/her, and that this information is not available when

a child is young. When a child is old, the type is revealed.

How does the optimal investment plan change as a result of hidden

information? There are two intuitive guesses. (i) It is optimal to invest

less in the first and a more in the second phase of childhood, because in

the second one can tailor the investments to a child’s type and therefore

yield a high return of investment. (ii) It is optimal to invest more in the

first and less in the second phase to make sure that, despite low returns

in the first phase, the effective investment in the first phase is not “too

bad”. We show that the answer crucially depends on the substitutability

of investment between phases: when investments are easily substitutable

(easier than Cobb-Douglas), intuition (i) is right; when substitution is

difficult (more difficult than Cobb-Douglas), (ii) is right. More specif-

ically, hidden information weakens the importance of early investments

in children when inter-phase investments are easily substitutable, but

strengthen them when substitution is difficult.
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II. PERSISTENCE OF MONOPOLY AND

RESEARCH SPECIALIZATION

We examine the persistence of monopolies in markets with

innovations when the outcome of research is uncertain. We

show that for low success probabilities of research, the incum-

bent can seldom preempt the potential entrant. Then the effi-

ciency effect outweighs the replacement effect. It is vice versa

for high probabilities. Moreover, the incumbent specializes in

“safe” research and the potential entrant in “risky” research.

We also show that the probability of entry has an inverted

U-shape in the success probability. Since even at the peak

entry is rather unlikely, the persistence of the monopoly is

high.

II.1. INTRODUCTION

This paper takes a new look at monopoly persistence in markets with

innovations. The extensive literature on the subject has discussed this

issue in terms of the efficiency effect and the replacement effect. Since

competition destroys profits, the efficiency effect predicts that the incum-

bent’s incentive to remain a monopolist through innovating is at least as

great as the entrant’s incentive to become a duopolist. The replacement

effect (Arrow, 1962) predicts the opposite: The entrant’s incentive to in-

novate is higher than the incumbent’s because only the incumbent takes

into account that innovating replaces its existing technology. According

to the classical work of Gilbert and Newbery (1982; henceforth GN) the

efficiency effect determines the outcome, whereas in a seminal paper by
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Reinganum (1983; henceforth RE) it is the replacement effect.1 We build

a unifying model in which both effects are present. We allow for un-

certainty with respect to the outcomes of innovative activities and show

that the success probability of research determines the relative strength

of both effects.

We consider a monopolized market, where the first-moving incum-

bent may be able to discourage the potential entrant from investing in

research by investing itself.2 The outcomes of research activities are un-

certain. Therefore, preemption is less than perfect. For high success

probabilities we obtain a result in the spirit of GN: preemption is almost

perfect so the efficiency effect is the driving force. Intuitively, since the

success probability is high the potential entrant’s expected profit from

research greatly depends on the incumbent’s research decision. Hence,

it is very likely that the incumbent can and does preempt the potential

entrant. For low success probabilities the same argument applies in re-

verse, i.e., the incumbent can hardly preempt and so the replacement

effect predominates. This result is in the spirit of RE.

These results imply that research with a high success probability is

more likely done by the incumbent than by the potential entrant, and it

is vice versa for research with a low success probability. In this sense,

incumbents specialize in “safe” research, and potential entrants in “risky”

research. We also show that research undertaken by potential entrants

is, on average, “riskier” than that of incumbent firms. Moreover, the

probability of entry has—at least roughly—an inverted U-shape in the

success probability of research. Since even at the peak the probability of

entry is only a quarter, the persistence of monopoly is high.

We also explore the normative aspects of our model. We consider the

second best world in which pricing cannot be regulated and show that,

apart from one exception, firms never overinvest and may underinvest.

1See also the debate in Reinganum (1984) and Gilbert and Newbery (1984).
2The idea that a dominant firm might use its investment decision as a strategic

device to persuade a potential entrant not to enter stems from Spence (1977) and

Dixit (1980). They consider capacity investments.
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When the incumbent preempts the potential entrant and the innovation

is non-drastic, overinvestment may occur.3 Intuitively, this holds when

in case that incumbent’s research is successful (i) the monopoly price is

almost the same as when the incumbent would have the old technology (so

that the consumer surplus is hardly increased) and (ii) the incumbent’s

profit only slightly improves relative to the investment costs.

The research process considered by GN is commonly interpreted as an

auction. As an extension, we integrate such an auction process into our

model. This changes our results: regardless of the success probability,

the incumbent will always outbid the entrant if the innovation is non-

drastic. So entry will never occur. This replicates GN’s result in a more

general framework which allows for uncertainty of the research process.

Our paper is related to the literature on the persistence of monopoly

in markets with innovations, which is surveyed by Gilbert (2006). The

relation of our model to GN and RE is discussed later. Denicolo (2001)

and Etro (2004) consider a research process of the RE type where the

replacement effect disappears, since the aggregate R&D effort is inde-

pendent of the incumbent’s decision. Fudenberg and Tirole (1986) show

that in RE’s model, when the innovation is non-drastic, the efficiency ef-

fect may outweigh the replacement effect. With different outcomes being

possible, there is, however, no clear-cut result.4 Our model delivers clear

and intuitive results without any assumption on whether the innovation

is drastic or not.

We offer a novel explanation to the question why entrants do riskier

research than incumbents. Existing literature on this question empha-

sizes other explanations. While Kihlstrom and Laffont (1979) look at

differences in the risk-attitudes of firms, De Meza and Southey (1996)

3An innovation is called drastic if it is so large that the innovative entrant is

effectively unconstrained by incumbent’s competition. It can charge monopoly prices

and yield monopoly profits.
4See Fudenberg and Tirole (1986, Ch. 3) and Tirole (1988, pp. 397-398). Also

Beath, Katsoulacos, and Ulph (1989a, 1989b) show that both effects can play a role

in a model similar to RE’s. But again, no clear and simple results can be yielded

(1989a, p. 167).
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consider excessive optimism of entrepreneurs. Scherer and Ross (1990,

Ch. 17) blame the bureaucracy in large companies. Baumol (2004) high-

lights educational differences between researchers in incumbent firms and

entrepreneurs that engage in research. In Rosen (1991) the ex ante high-

cost firm must spend more than the ex ante low-cost firm to yield the

same cost level. Through this asymmetry, the former chooses a riskier

research project than the latter.

We present, analyze, and discuss the model in Sections II.2, II.3, and

II.4, respectively. A welfare analysis is in Section II.5. After considering

an auction setting in Section II.6, we conclude in Section II.7. Proofs are

in the Appendix.

II.2. MODEL

There are two firms, an incumbent I, and a potential entrant E. At

stage 1 the incumbent decides whether or not to invest in a firm specific

research project. Investing causes expected costs of k > 0 and yields an

innovation with probability p ∈ (0, 1]. At stage 2 firm E faces the same

decision. In order to focus on the replacement and the efficiency effect we

set both firms on equal footing and assume that both firms’ projects have

the same costs and success probabilities. At stage 3 nature independently

determines whether each firm’s project is successful or not. A successful

firm gets a process innovation that enables production at per-unit costs

of c. If I does not invest or its project fails, it can produce at per-unit

costs of c̄ by using its old technology, where c̄ > c > 0. In contrast, if

E does not invest or its project fails, it cannot produce at all. Finally,

at stage 4, firms compete à la Bertrand. For reasons that will become

clear later, we assume that there is also a stage 0 where first the success

probability p is drawn from density g, and then the cost k is drawn from

conditional density ℎ.5

Firms are risk neutral and cannot collude. There is perfect informa-

tion. The solution concept is subgame perfect Nash equilibrium. Con-

5When k is drawn before or simultaneously to p, we can ignore the k value until p

is drawn, and so preserve the vision that p is drawn first.
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sumer demand is given by the function D(�), where � is the consumer

price. We assume that D(�) is falling in �, positive for � = c̄+� (where �

is small and positive), and D(c) is finite. These assumptions allow us to

borrow Tirole’s (1988) analysis of Bertrand profits; see below. To yield

clear-cut normative results we have to assume that monopolist’s optimal

price is unique.6

II.3. ANALYSIS

We solve the model by backward induction. In this section we first de-

scribe the Bertrand profits of firms. Then we determine their research

decisions. Finally we present the results.

II.3.1. BERTRAND PROFITS

Bertrand profits are uniquely determined by the firms’ production costs

and therefore can be expressed as �J(cI , cE), where J ∈ {I, E}, cI ∈

{c̄, c}, and cE ∈ {c,−}. The symbol “–” indicates that E cannot produce

at all. We normalize the maximal profit �I(c,−) to 1. The following

lemma on the structure of firms’ profits is due to Tirole (1988).7

L e m m a 1:

(i) �E(c̄,−) = �E(c,−) = �E(c, c) = �I(c, c) = �I(c̄, c) = 0,

(ii) 1 > �I(c̄,−) > 0,

(iii) 1 ≥ �E(c̄, c) > 1− �I(c̄,−).

Part (i) describes the well-known result that when a firm cannot pro-

duce or has the same or even higher per-unit costs than its competitor its

Bertrand profit is zero. Part (ii) states that a monopolist is strictly bet-

ter off with low than with high per-unit costs; nonetheless, a monopolist

with high per-unit costs makes a positive profit. The first inequality of

6Hermalin (2009) offers some weak assumptions on D(⋅) that guarantee inter alia

uniqueness; see his Proposition 3. The key assumption is that D(⋅) is log-concave.
7Tirole partially summarizes existing literature. He does not consider the Nash

equilibria found by Blume (2003) where one firm plays a weakly dominated strategy;

see Tirole (1988, p. 234, footnote 37).
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part (iii) contains the efficiency effect : since competition destroys indus-

try profits, I’s incentive to remain a monopolist through innovating [and

yield a Bertrand profit of 1] is at least as great as E’s incentive to become

a duopolist [which yields a Bertrand profit of �E(c̄, c)]. However, when I

takes into account that its old technology is replaced when it innovates

[the net-effect of innovating on its Bertrand profit is just 1−�I(c̄,−)] E’s

incentive to innovate is higher than I’s. This is the replacement effect

which is captured by the last inequality. When the first weak inequal-

ity of (iii) is strict we say that the innovation is non-drastic; in case of

equality the innovation is called drastic.

II.3.2. RESEARCH DECISIONS

Firm J ’s research decision, J ∈ {I, E}, is denoted by aJ ∈ {0, 1}, where

0 denotes no investment and 1 investment. We assume that in case of

indifference a firm does not invest.8

Potential Entrant’s Research Decision.— Since aI is either 0 or 1,

there are two subgames. Letting bE(aI) denote E’s best responses to aI ,

we have

bE [0] = 1 ⇐⇒ k < �E(c̄, c)p =: k̄(p); (II.1)

bE [1] = 1 ⇐⇒ k < �E(c̄, c)(1− p)p =: k(p). (II.2)

Thus, E invests if and only if the costs k are sufficiently low. More

specifically, if k < k(p), then aE = 1 is E’s dominant strategy and when

k ≥ k̄(p) the dominant strategy is aE = 0. For k ∈ [k(p), k̄(p)) we have

bE(0) = 1 and bE(1) = 0.

Incumbent’s Research Decision.— I chooses the optimal action

foreseeing E’s later responses. If k ≥ k̄(p), then

aI = 1 ⇐⇒ k < (1− �I(c̄,−))p =: k̂(p); (II.3)

if k < k(p), then

aI = 1 ⇐⇒ k < (1− �I(c̄,−))(1− p)p =: k̃(p); (II.4)

8To rule out that cases of indifference drive our results we will later introduce an

assumption that guarantees that cases of indifference have a measure of zero.
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and if k ∈ [k(p), k̄(p)), then

aI = 1 ⇐⇒ k < p. (II.5)

Equilibrium.— Using the previous formulas the construction of the

equilibria is straightforward. Figure II.1 shows the equilibrium research

decisions, which we denote by a∗ = (aI∗, aE∗). The following lemma

summarizes formally.

�E(c̄, c)

1− �I(c̄,−)

k = p

k(p)

k̃(p)

1

1 p

k

a∗ = (1, 0)

k̄(p)

k̂(p)

a∗ = (0, 1)

a∗ = (1, 1)

a∗ = (0, 0)

Figure II.1: Research decisions in equilibrium.

L e m m a 2: The firms’ research decision in equilibrium are

∙ a∗ = (1, 1) for k ∈ [0, k̃(p));

∙ a∗ = (0, 1) for k ∈ [k̃(p), k(p));

∙ a∗ = (1, 0) for k ∈ [k(p), k̄(p));

∙ a∗ = (0, 0) for k ≥ k̄(p).

Intuition.— Investments are strategic substitutes. In the parameter

area where k ∈ [k(p), k̄(p)) E invests if and only if I has not invested.

Hence, I can preempt E. But is it profitable for I to preempt? Yes it

is, due to the efficiency effect: in this parameter area k < p, i.e., (II.5)

holds. Roughly speaking, I prefers the risk to replace its old technology

itself to the risk of being replaced by E. Hence in this parameter set the

equilibrium is a∗ = (1, 0). Note, in this parameter set regardless whether

I invests or not, exactly one firm will invest and so eventually make I’s

old technology obsolete. Consequently, I does not take into account that
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its existing technology may be replaced by its own investment and the

replacement effect plays no role.

For low p values preemption is possible only for a relatively small

range of costs, compared to the range of costs where at least one firm

invests. The line of arguments is as follows. Observe that the probability

that only E receives the innovation when it invests—and thus receives a

positive Bertrand profit—hardly changes through I’s decision. Therefore,

E’s expected profit from research hardly depends on I’s decision. Hence,

preemption is seldom possible. In contrast, for high p values, preemption

is mostly possible; the arguments stated before apply in reverse. So

research is a powerful preemption device if and only if it is likely to

succeed.

Due to the replacement effect, there is a set of parameters where E

is willing to invest, irrespective of what I has done, but where I is no

longer motivated to invest, given that E will invest. Hence in this set

a∗ = (0, 1). As explained before, when the success probability p is high,

E’s expected profit from research—and so its willingness to invest—is

very sensitive upon I’s investment decision. Hence the replacement effect

loses its power when p becomes large. In the extreme case of p = 1, it

has no power at all: E never invests when I has invested.

When the costs are very low both firms are always willing to invest

and hence a∗ = (1, 1). In the remaining parameter set, costs are so high

that a∗ = (0, 0).

II.3.3. RESULTS

From Figure II.1 or the arguments made before it is intuitive that when

the success probability p is low the replacement effect is“more important”

than the efficiency effect, whereas for high p values it is vice versa. To

formalize this intuition, we assume that prior to the firms’ investment

decisions the costs k and the success probability p are drawn. This is

kind of a comparative statics analysis which allows us to determine how

“important” the different equilibria and effects are.

In order to obtain concrete results we make the following assumption

which says that k is uniformly distributed in the “relevant” set.
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A s s u m p t i o n A1: The conditional density of k, ℎ(k∣p), is uni-

form in k for (p, k) ∈ S :=
{
(p, k)∣0 < p ≤ 1, 0 < k ≤ k̄(p)

}
.

With this assumption we can establish our main result which is about

the probability of investments, conditional on p. Note, we take the per-

spective that k is not yet drawn.

P r o p o s i t i o n 1 : Suppose A1 holds. If p is sufficiently high, I is

more likely to invest in research than E. It is vice versa if p is sufficiently

low.

Intuitively, given that a high p value was drawn, it is much less likely

that a k will be drawn which lies in the small interval where a∗ = (0, 1)

rather than in the large interval where a∗ = (1, 0); see Figure II.1. For a

low p value it is vice versa. Put differently, when the success probability is

high it is likely that the incumbent preempts the potential entrant and so

that the efficiency effect determines the outcome. This is not true when

the success probability is low. Then the replacement effect predominates.

So both effects are important in our model, and the success probability

determines their relative power.

Taking another view by looking at a large number of I-E-pairs, Propo-

sition 1 predicts that most of the “risky” research is done by potential

entrants but not by incumbents. Incumbents on the other hand specialize

in “safe” research, which is undertaken rarely by potential entrants.9

Perhaps not surprising—albeit nontrivial to prove—is that potential

entrants’ research is“riskier”than that of the incumbent. We measure the

likelihood of failure when neither p nor k is yet drawn. Additionally to

A1 we assume that p is distributed with positive and non-atomic density.

P r o p o s i t i o n 2 : Suppose A1 holds and that g(p) has full support

and is finite ∀p ∈ (0, 1]. Then E’s research is more likely to fail than I’s.

The sketch of the proof is as follows: First we show that the likelihood

that I invests relative to the likelihood that E invests is increasing in p.

9We say that research is“risky” (“safe”) when p is low (high). This denomination is

cheeky because when p is low the outcome of the research process can be less uncertain

than when p is high.
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Then we show that this implies that the distribution of p, conditional

that I invests, first-order stochastically dominates the distribution of p,

conditional that E invests. This enables us to finally prove that E’s

research is more likely to fail than I’s.

What remains to determine is the persistence of monopoly. When E

has invested and is successful, it competes with I on the market. Then

the monopoly does not persist. Otherwise the monopoly persists. We

can deliver the following result about the probability of entry (i.e., non-

persistence of the monopoly), conditional on p.

P r o p o s i t i o n 3 : Suppose A1 holds. Then the probability of en-

try is at most p(1− p).

The intuition is simple: When p is low, research is seldom successful

and entry rarely occurs. When p is high, on the other hand, I pre-

empts E except for a small interval of cost realizations; see Proposition

1. Therefore entry is unlikely, too. For intermediate values of p, how-

ever, it is likely that E invests and is successful. Hence, the probability

of entry has roughly an inverted U-shape in p.10 By Proposition 3, the

probability of entry is at most 1/4, which implies that the probability

for the monopoly to persist is at least 3/4.11 Hence we conclude that the

persistence of the monopoly is high.

II.4. DISCUSSION

II.4.1. EMPIRICAL EVIDENCE

Baumol (2004) finds that “risky” research is most often done by en-

trepreneurs and not by incumbents, and that it is vice versa for “safe”

research.12 This fits Proposition 1. Also Vinod Koshla notes that “[r]isk

10Ignoring the probability mass outside S (this is possible when one redefines the

densities g and ℎ accordingly) yields an exact inverted U-shape.
11The reason why the persistence is not lower in our model when the replacement

effect is powerful is that the replacement effect is only strong when research often

fails—and failure of potential entrant’s research is another reason for persistence.
12See also Scherer and Ross (1990, p. 653).
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and acceptance of failure are central to innovation, [...] but the dinosaurs

typically avoid both” (Statement in The Economist, 2007, p. 3). For in-

dustries in which failures are common, our model predicts that most of

the research is done by potential entrants and not by incumbents. This

seems to be the case, for example, in the IT sector.

Proposition 2, which states that E’s research is more likely to fail

than I’s, is supported by Astebo’s (2003, p. 227) finding that

“the average probability that an independent inventor suc-

ceeds in commercialising his/her invention is estimated to

about 0.07. In comparison, the probability of commercial suc-

cess of conducting R&D in established firms is approximately

0.27,”

where the later value is from Mansfield et al. (1977). Further evidence is

provided by Baumol (2004) and Bianchi and Henrekson (2005, p. 367).

Empirically, the persistence of monopolies seems to be high (Geroski,

1995), as Proposition 3 predicts.

II.4.2. THE ROLE OF ASSUMPTION A1

Scherer and Ross (1990) elucidate how the costs of R&D are distributed.

However, since we use expected costs and normalize them we cannot use

their insights. To us, A1 seems a natural starting point. This assumption

is not as restrictive as it may seem for several reasons. First, A1 assumes

that ℎ(⋅) is uniform in k for parameters of the set S, but ℎ(⋅) may still

depend upon p. Second, when the average density of k conditional on p

in the different equilibrium sets of S is the same, the proofs, and so also

our results, stay unchanged.13 Third, A1 is sufficient, but not necessary,

for our results.

To see the last point, suppose that A1 does not hold. Proposition 1

also holds under the alternative, weak assumption: the average density

13More technically this means that for all p ∈ (0, 1], ℎ̄(k ∈ a∗ = (1, 0)∣p) = ℎ̄(k ∈

a∗ = (0, 1)∣p) = ℎ̄(k ∈ a∗ = (1, 1)∣p), where ℎ̄(k ∈ a∗ = i∣p) is the average conditional

density of k when k is in equilibrium set i.
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of k, conditional on p and that either only I or E invests, is bounded

between two positive constants.14 Additionally observe that then the

probability of entry approaches 0, as p approaches 0 or 1. So at least

roughly the probability of entry has an inverted U-shape in the success

probability of research; cf. Proposition 3.

A1 is important for Proposition 2. When A1 does not hold, the

likelihood that I invests relative to the likelihood that E invests can

be locally decreasing in p. Hence, the result stated in Proposition 2

can reverse. From Figure II.1 it is, however, intuitive that for “many

distributions” of k and p the result holds.15

II.4.3. COMPARISON TO THE LITERATURE

In our model each firm possess one idea, which can be interpreted as

a box. Each box contains either nothing or the innovation.16 To open

its box a firm has to invest.17 This conception implies that the success

probability of research is exogenous, and if a box turns out empty there

14Formally, ℎ̄(k ∈ a∗ = i∣p) has an infimum and a supremum which are in ℝ
++

for all i ∈ {(1, 0), (0, 1)} and for all p ∈ (0, 1]. To understand why this condition

is sufficient consider the following example. The supremum is twice as large as the

infimum. Look at Figure II.1 and determine the p value for which the interval of k

values with equilibrium a∗ = (1, 0) is twice as large as the interval with a∗ = (0, 1).

When a p is drawn which lies above this critical value we can be sure that it is more

likely that the costs k will lie in the interval with a∗ = (1, 0) than in the interval with

a∗ = (0, 1). So it is more likely that I invests in research than that E does. One can

also easily construct a lower critical value of p and show that it is vice versa when p

is low enough.
15Think of a joint probability distribution lying over Figure II.1. Ignore the density

when I does not invest. Then calculate I’s center of mass. Make the same steps for

E. For “many distributions”, I’s center is further to the right than E’s.
16With this interpretation nature determines success or failure already at Stage 1.

Since firms do not know the realization until Stage 3 this modification of the timing

does not change the model in any way.
17This description is in line with Scotchmer’s (2004) statements that “[a]n innova-

tion requires both an idea and an investment in it” (p. 39) and that “some research

efforts do not pay off with certainty ... [and] failures obviously cannot be identified

in advance” (p. 40).
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is no way for that firm to get the innovation. Since each box can be

opened at most once, the game is not repeated.18

The models differ greatly with respect to uncertainty. GN consider

no uncertainty in the research process. In RE the uncertainty effectively

concerns only the arrival date of the innovation, because the game is

repeated unless one firm is successful. In our model, on the other hand,

it is uncertain whether a firm’s idea is realizable; see above. This type

of uncertainty is extremely important in reality, see Freeman and Soete

(1997, Ch. 8), Scotchmer (2004, pp. 40, 55), or DiMasi (2001).

In our model research is a powerful preemption device if and only if

it is likely to succeed. In contrast, in GN preemption is always possible,

in RE never. When preemption is possible, it is worthwhile due to the

efficiency effect. Consequently, the efficiency effect is the driving force in

GN, in our model when the success probability is high, and does not play

a role in RE. When preemption is not possible, the efficiency effect is not

important, and the replacement effect steps in. Hence it predominates in

RE, in our model when the success probability is low, and not at all in

GN. Moreover, the probability that a monopoly persists is below one-half

in RE, equal to one in GN, and between three-quarters and one in our

model. Hence, regarding the importance of the relevant effects and the

persistence of monopoly, we take a position between RE and GN.

II.4.4. TIMING AND ROBUSTNESS

We assumed that firms decide sequentially about investing in research.

When instead they decide simultaneously, preemption is not possible, and

our results are no longer valid. While arbitrary from a theoretical point

of view, the assumption of a sequential investment game is not unusual

in the literature and also has an intuitive appeal: First, in contrast to

18An interesting extension would be that firms have several boxes. However, even

when one assumes that each firm can open at most one box the analysis gets cumber-

some because the number of cases multiplies. Another interesting extension would be

that firms can manipulate the type of their box, or that they can influence upfront

what type they likely will receive.
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the incumbent, the potential entrant might need some time to gather

information about the market or to obtain funding. Second, Freeman and

Soete (1997, p. 202) argue that “a firm which is closely in touch with the

requirements of its customers may recognize potential markets”. So the

incumbent but not the potential entrant, may be quicker in developing

new ideas. Third, with the incumbent being already prominent among

market participants, its activity may be visible for everyone, while the

entrepreneur’s may not. Hence, only the incumbent may be able to

credibly preannounce its investment decision.

In an earlier version of the paper we considered a different timing,

where the potential entrant observes incumbent’s success or failure be-

fore it decides about its investment. This does not change our results

substantially. The same is true for the following extensions: (i) heteroge-

nous research costs or success probabilities, (ii) patents,19 (iii) Cournot

competition, (iv) product innovations, and (v) correlated success proba-

bilities.

II.5. WELFARE ANALYSIS

In Section II.3 we analyzed the positive aspects of our model. Now we

explore the normative implications. In the second best world where prices

cannot be regulated we seek to answer the question whether there is

too much or too little investment from a welfare point of view. The

literature (see Tirole 1988, p. 399) has found two counteracting effects.

First, there is the nonappropriability of social surplus effect: firms may

underinvest because the innovator typically does not receive the whole

19Our non-extended model can be interpreted in two ways: (i) There are no patents

and each firm keeps details of its innovation secret so that an outsider cannot imitate.

This interpretation is empirically justified because“patents are regarded as a necessary

incentive for innovation in only a few industries” (Cohen 1995, p. 227). See also

Scotchmer (2004, Ch. 9). (ii) There are patents but both firms innovations are

different in the sense that each firm can get a patent on its technology. Additionally

note, that there are patents in RE and GN is not crucial for their results: Without

patents and with Bertrand competition a firm no longer wants to engage in research

when its competitor was already successful.
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social surplus created by its innovation. Second, firms may overinvest due

to the business stealing effect: the innovator may not take into account

that it steals the rival’s business.

P r o p o s i t i o n 4 : When the innovation is non-drastic and the in-

cumbent preempts the potential entrant then firms may overinvest. In

all other cases firms do not overinvest and may underinvest.

We first give the intuition for the case where the innovation is non-

drastic and the incumbent preempts the potential entrant. When incum-

bent’s research is successful it may set a price which is almost the same as

when it would have the old technology. So the consumer surplus is hardly

affected through the innovation. That is, the nonappropriability of social

surplus effect is weak. Observe that through the threat of entry, the in-

cumbent is “forced” to steal its own business. Hence the business stealing

effect is powerful and may dominate. Put differently, no investment of

both firms may be socially desirable.

In contrast, when the innovation is drastic, the successful incumbent

sets a much lower price than it would set without the innovation. So the

expected consumer surplus increases greatly and the nonappropriability

effect dominates. Similar arguments apply for the case where only the

potential invests.

One may presume that when both firms invest this may not be socially

desirable: research effort is duplicated and so both firms may yield the

innovation. This suspicion is false. When both firms are successful the

consumer price is only c, which results in a dominant nonappropriability

effect.

Subsidies.— Suppose that the only policy instrument of a gov-

ernment is a research subsidy. Through subsidies the government can

change firms’ investment decisions, since firms determine their invest-

ments on the basis of the net costs. Proposition 4 shows that subsidies

are especially relevant to support drastic innovations because for these

innovations firms sometimes underinvest but never overinvest.

Targeting subsidies to potential entrants and not to incumbents has

two potential advantages. First, the equilibrium a∗ = (0, 1) is socially
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weakly preferred to a∗ = (1, 0).20 Second, promising a subsidy to E in

case that it invests can push I to preempt E. Hence, the subsidy is not

paid. Nonetheless a previously unexplored research project may now be

investigated.

II.6. EXTENSION: AUCTION SETTING

GN’s research process is commonly interpreted as a first-price auction

with complete and perfect information (Reinganum, 1984). Next, we

integrate such an auction setting and show that our results change sub-

stantially.

Suppose I and E bid for the service of a firm which implements a

research project for the winner.21 The auction is held before it is clear

whether the research project will be successful.22 A firm’s valuation is

its willingness to pay for victory, i.e., the difference in its expected profit

between winning and losing.

P r o p o s i t i o n 5 : The incumbent always wins if the innovation is

non-drastic.

So with an auction setting and a non-drastic innovation there never

is entry. This result coincides completely with GN.23 Intuitively, since

I can always outbid E, preemption is always possible. Given that the

20When the innovation is non-drastic the preference is strict: total welfare is higher

when there is a duopoly in which E has the innovation than in a monopoly where I

has it.
21This need not be taken literally. GN’s interpretation is that the firms are in a

race, and the firm which invests most wins. Another is that firms compete for scarce

and essential resources, and so only the firm which invests the most gets them.
22The alternative timing is that the auction is held afterwards. Then either a project

with a success probability of one or zero is auctioned. In the latter case holding an

auction is superfluous. The former case is a just special case in the setting of the

original timing. Hence, the alternative timing needs no separate investigation.
23We allow for an uncertain research process. GN consider uncertainty only verbally,

but it is not clear to us what type of uncertainty they mean. Yi (1995) couples an

auction with RE’s model, and his result is that the entrant will never do research.
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innovation is non-drastic, then, by virtue of the efficiency effect, I’s val-

uation is strictly higher than E’s, and preemption is indeed worthwhile.

In contrast, when the innovation is drastic firms’ valuations are the same

and one has to specify a tie-breaking rule. However, if there is only a

bit of uncertainty whether an innovation is indeed drastic, I’s valuation

is higher than E’s, and so I will win the auction. Hence generically, E

never does research, and entry never occurs. This insight is new.

II.7. CONCLUSIONS

We presented a simple model in which both, the replacement and the

efficiency effect are present. We showed that research is a powerful pre-

emption device if and only if it is likely to succeed. This results in the

predominance of the efficiency effect when the success probability of re-

search is high and the predominance of the replacement effect when it is

low.
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III. ENTRY AND INCUMBENT INNOVATION

We explore how the threat of entry influences the innovation

activity of an incumbent. We find that the incumbent’s in-

vestment is hump-shaped in the entry threat. When the entry

threat is small and increases, the incumbent invests more to

deter entry, or to make it unlikely. This is due to the entry

deterrence effect. However, when the threat becomes huge,

entry can no longer profitably be deterred or made unlikely

and the investment becomes small. Then the Schumpeterian

effect dominates.

III.1. INTRODUCTION

Even though innovations are central to growth, the question whether

more competition leads to greater R&D investments is not settled. While

we do not try to answer this general question, we seek to explore the more

specific question how the threat of entry influences an incumbent’s in-

vestments in R&D. We build a simple model that captures two important

but counteracting effects. First, a Schumpeterian effect. A larger entry

threat reduces the incumbent’s expected profit and therefore also its in-

vestment. Second, an entry deterrence effect.1 To deter entry, or to make

entry unlikely, a greater threat requires a larger investment.

Combining the effects, we find that the incumbent’s investment is

1For the importance of entry in the United States, see Aghion and Howitt (2006,

p. 279). Entry deterrence is empirically relevant: “Most R&D investments made by

private firms are aimed at securing market advantage” (Scotchmer 2004, p. 1). See

also the empirical study of Goolsbee and Syverson (2008).
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hump-shaped in the entry threat. When the entry threat is small and

increases, the incumbent invests more to deter entry or to make entry

unlikely. Then the entry deterrence effect dominates the Schumpeterian

effect. However, when the threat becomes huge, entry can no longer prof-

itably be deterred or made unlikely and the investment becomes small.

Then the Schumpeterian effect dominates.

We show that the hump-shaped relationship between incumbent’s

R&D investment and the entry threat is robust to different timings. In

one time structure, the incumbent does not know the rivals’ production

costs when deciding about investment. In the alternative timing the costs

are known.

Aghion, Blundell, Griffith, Howitt, and Prantl (2009) also explore

how the R&D investment of an incumbent depends on the strength of

the entry threat.2 A difference is that they measure the entry threat by

entry costs, whereas we measure it by the number and quality of poten-

tial entrants. Additionally, in their model, the leading incumbent is not

only threatened by a potential entrant, but also by another incumbent.

They show that a higher entry threat increases the leading incumbent’s

investment when the firm is initially close to the technological frontier;

this is due to the escape-entry effect. It is the other way round if the

leading incumbent is further behind the frontier; this is due to the dis-

couragement effect. So in contrast to our model, for a certain type of

firm, only one effect is present and the influence of a higher threat on

the investment is monotone. The model has some problems. First, in

a dynamic model it is not appealing that firms only consider the profit

of the next period, but not at all profits of later periods. Second, why

should there be a technological frontier which moves exogenously? Is it

not more plausible that firms themselves determine how the technological

frontier moves? Indeed, regarding the former two points, Aghion, Bloom,

Blundell, Griffith, and Howitt (2005) take the completely opposite route.

Third, it is assumed that innovations occur step-by-step and that entry

can only take place at the new technological frontier. This has the un-

2For a similar model, see Aghion, Burgess, Redding, and Zilibotti (2005).
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plausible consequences that an incumbent which is close to the frontier

and innovates must not fear entry at all. In contrast, an incumbent which

is further below the frontier cannot prevent entry, no matter how much

it invests.

In Aghion, Bloom, Blundell, Griffith, and Howitt (2005) the interplay

between an escape-competition effect and the Schumpeterian effect gen-

erates an inverted-U relationship between R&D investment and product

market competition. In their model, the leader (of a duopoly) does not

want to innovate because this does not change its profit. This is in con-

trast to our model where we only consider the incentives of the leader

(which is in our case a monopolist). Moreover, they do not consider entry.

There is a discussion in competition policy about the optimal patent

breadth, how costly imitation should be, and when competition law

should require a firm with market power to share its property.3 In our

model, stronger patent protection, higher costs of imitation, or stricter

property rights can be interpreted as a weakening of the entry threat.

Empirically, there is no clear evidence that patents provide strong posi-

tive incentives to invest in innovation. The picture is rather mixed.4 This

is a puzzling result (Lerner 2009, p. 347). Our model delivers a simple

and intuitive solution. We predict that the incumbent’s investment is

hump-shaped in the entry threat.5

Our model can also be interpreted as one in which the incumbent is

a home firm that is threated by foreign firms. The empirical results are

mixed but point to a positive relationship between foreign competition

3See, for example, Gallini (1992), Scotchmer (2004), Segal and Whinston (2007),

and Vickers (2009).
4See the survey of Bessen and Meurer (2008), the study on the role of the patent

system in the British Industrial Revolution of Mokyr (2009), or Lerner’s (2009) study

on the impacts of shifts in patent policy across 60 countries.
5Also Segal and Whinston (2007) show that in some cases “policies that protect

entrants necessarily raise the rate of innovation” (p. 1703); they concentrate on inno-

vations made by potential entrants. In Boldrin and Levine’s (2009) model investments

in R&D are higher in a competitive equilibrium than in a monopolistic equilibrium.
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and innovation in the home market.6

The relationship between the intensity of competition and R&D in-

vestment is generally regarded as ambiguous in theoretical models. This

is due to the large variety of relevant effects and of the definition of

competitiveness.7

The paper proceeds as follows. In the next section, we present the

model. In Section III.3, we analyze it. The alternative timing is consid-

ered in Section III.4. Section III.5 explores the question how important

the incumbent’s initial production costs are for the relationship between

incumbent’s R&D investments and the entry threat. Section III.6 con-

cludes.

III.2. MODEL

There is an incumbent, firm 0, and N rivals, firms 1, ..., N . Rivals can

enter at cost t > 0. They threat the monopoly position of the incumbent.

By investing in R&D the incumbent can lower its production costs which

makes entry less likely. We will explore how the incumbent’s optimal

investment varies with the quality and the number of rivals.

At Stage 1, the incumbent chooses its R&D investment k ≥ 0. The

incumbent’s per-unit production costs are

c0(k) = C − ℎ(k),

where C > 0. We assume that the function ℎ is twice differentiable and

satisfies the following mild assumptions.

6See Gilbert and Sunshine (1995), Lelarge and Nefussi (2008), MacDonald (1994),

Pavcnik (2002), Javorcik (2004), and Aitken and Harrison (1999). Aghion, Blundell,

Griffith, Howitt, and Prantl (2009) find mixed results, in accordance with their the-

oretical predictions: whether there is a positive or negative effect depends on the

distance of the incumbent to the technological frontier.
7See, for example, Lee and Wild (1980) vs. Delbono and Denicolo (1991), Gilbert

and Sunshine (1995), Belleflamme and Vergari (2006), Sacco and Schmutzler (2007),

Schmutzler (2007), Denicolo and Zanchettin (2008), and Vives (2008). For a survey,

see Aghion and Griffith (2005) or Gilbert (2006).
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A s s u m p t i o n A2: (i) ℎ′(k) > 0, (ii) ℎ′′(k) < 0, (iii) ℎ(0) = 0,

(iv) limk→∞C − ℎ(k) > t, (v) ℎ′(0) > 1.

In words, (i) says that a higher investment lowers production costs; (ii)

that there are decreasing returns to scale; (iii) that no investment yields

no cost reduction; (iv) that it is not possible to yield production costs that

make entry impossible; (v) that when there is no entry threat, investing

at least a tiny amount is optimal, see below. Parts (i) and (iv) imply

C > t.

At Stage 2 the rivals’ per-unit production costs (c1, ..., cN ) are drawn.
8

We will later make concrete assumptions on the distributions.

At Stage 3, the rivals decide upon entry in an arbitrary order, poten-

tially simultaneous. We assume that in case of indifference a rival does

not enter.

At Stage 4 all rivals that entered and the incumbent compete à la

Bertrand. All firms produce a homogenous good. Figure III.1 summa-

rizes the timing.

1 Incumbent 2 (c1, ..., cN ) 3 Entry 4 Bertrand
invests are drawn decisions competition

Figure III.1: Timing

Consumers have unit demand and a willingness to pay of one.9 If

there are two or more cheapest firms, they buy from the firm with the

lower production costs. This assumption is solely made to avoid open set

problems. So that the market is always served, we assume that C < 1.

There is perfect information, and each firm maximizes its expected

profit. Our solution concept is subgame perfect Nash equilibrium. We

consider only pure strategy Nash equilibria.

8Also Hopenhayn (1992) considers productivity shocks. But he does not consider

innovations.
9That is, the incumbent’s revenue is at most 1. So any investment k > 1 is

dominated by k = 0. So one could relax Assumption A2(iv) to C − ℎ(1) > t.
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III.3. ANALYSIS

III.3.1. BERTRAND COMPETITION AND ENTRY

Standard analysis of the Bertrand game yields that rival j’s total profit

when it entered the market is

�entry
j

∣
∣
ℳ

= max{0,min{ci}i∈ℳ∖j − cj} − t,

where j ∈ {1, ..., N} and ℳ ⊆ {0, ..., N} is the set of all firms which

are in the market, that is, the incumbent plus the rivals that entered.

The first term of the formula is the Bertrand profit. If firm j does not

have the lowest production costs among all firms in a market, it makes

a Bertrand profit of zero. Otherwise its Bertrand profit is the minimum

per-unit cost of all other firms in the market minus its own production

costs. The second term is cost of entry.

When a rival does not enter it makes zero profits. Hence, no rival

wants to enter in equilibrium, if and only if

�entry
j

∣
∣
ℳ={0}

≤ 0 ∀j ∈ {1, ..., N}. (III.1)

This can be rewritten as

c0(k) ≤ cj + t ∀j ∈ {1, ..., N}.

When this condition does not hold, the equilibrium is such that some

rival j enters. Then cj < c0(k) and the incumbent will make a Bertrand

profit of zero. Hence,

�0(k) =

{

�no entry
0 (k) = 1− c0(k)− k for c0(k) ≤ c+ t,

�entry
0 (k) = −k otherwise,

(III.2)

where we defined c := minj∈{1,...,N}{cj} as the minimum production costs

of rivals.

III.3.2. INVESTMENT

The incumbent’s expected profit when it invests k is

E[�0(k)] = �no entry
0 (k)Probno entry(k) + �entry

0 (k)Probentry(k).
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Using (III.2) we can rewrite this as

E[�0(k, F )] = (1− C + ℎ(k))(1− F (C − ℎ(k)− t))− k,

where F is the distribution function from which c is drawn. The in-

cumbent’s incentives to invest are determined by the marginal effect of

investment on its expected profit.

Consider first the benchmark case where entry never occurs:

dE[�0(k, F )]

dk
= ℎ′(k)− 1. (III.3)

The first term on the right hand sight captures the marginal effect of

investment on production costs, the second describes the marginal cost

of investment.

Next, consider the more interesting case where entry may occur:

dE[�0(k, F )]

dk
= ℎ′(k)(1− F (C − ℎ(k)− t)) (III.4)

+(1− C + ℎ(k))f(C − ℎ(k)− t))ℎ′(k)− 1,

where f is the density function which belongs to F . What has changed

through the entry threat? On the one hand, the return of investment

is lower: it becomes less likely that the investment is actually used in

production; see the first term. Put differently, it is less likely that the

investment “pays off”. This is called the Schumpeterian effect.10 On the

other hand, the return of investment is higher: investing more makes

entry less likely; see the second term. We call this the entry deterrence

effect of investment.11 Since both effects run in different directions it

may well be the case that the incumbent’s incentive to invest is higher

with an entry threat than without one.

10See also Aghion, Harris, Howitt, and Vickers (2001) and Aghion, Bloom, Blun-

dell, Griffith, and Howitt (2005). The Schumpeterian effect is closely related to the

discouragement effect in Aghion, Blundell, Griffith, Howitt, and Prantl (2009).
11Aghion and Griffith (2005) call this the Darwinian effect of competition. Our

entry deterrence effect is similar to the escape-entry effect considered by Aghion,

Blundell, Griffith, Howitt, and Prantl (2009) and the escape-competition effect de-

veloped in Aghion, Harris, Howitt, and Vickers (2001) and Aghion, Bloom, Blundell,

Griffith, and Howitt (2005).
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For concreteness, we assume that the production costs (c1, ..., cN ) of

the rivals are independently drawn from exponential density functions.

Rival j’s costs are drawn from density

fj(cj) = �je
−�jcj (III.5)

with �j > 0 and corresponding distribution function

Fj(cj) = 1− e−�jcj . (III.6)

The nice feature when all cj’s are independently and exponentially dis-

tributed is that c is exponentially distributed, too:12

F (c) = 1− e−�c, with � :=
N∑

j=1

�j.

Hence we can allow for heterogeneity of the rivals through different

�js without complicating the analysis. The parameter � captures the

strength of the entry threat. It increases with the number N and quality

�j of rivals. When � = 0 there is no entry threat.

Under the exponential distribution of the rivals’ per-unit costs, we

get

E [�0(k, �)] = (1− c0(k)) e
−�(c0(k)−t) − k. (III.7)

Let the optimal investment be given by the function k∗(�).

P r o p o s i t i o n 6 : When there is no entry threat the incumbent

invests a positive amount: k∗(0) = ℎ′−1(1) > 0. When the entry threat is

huge (�→ ∞) the incumbent does not invest. An investment of at least

k̂, where k̂ is an arbitrary positive investment level, cannot be optimal

when � is sufficiently high.

Proof: See Appendix.

12Technically we need the distribution of the first-order statistics. This distribu-

tion can also be derived when each rival’s costs are not drawn from an exponential

distribution. Then the distribution of the first-order statistics is in general more

complicated.
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That is, the incumbent invests some positive amount when there is no

entry threat. In contrast, when the threat is overwhelming, entry occurs

for sure. Then the incumbent does not invest at all. The Schumpeterian

effect dominates the entry deterrence effect. The intuition for the last

point is as follows. When the entry threat is large, entry is very likely,

even when the incumbent invests k̂ or more. So the incumbent invests

an amount less than k̂ to save investment costs.

Next we explore whether it is possible that a higher entry threat

increases the optimal investment. The next proposition offers a sufficient

condition such that this is true.

P r o p o s i t i o n 7 : Suppose that C < 1+t
2
. The optimal investment

k∗(�) is increasing in � for �→ 0.

Proof: See Appendix.

Since we assumed that C ∈ (0, 1) and t > 0, this sufficient condition

can easily be met. When the initial production costs C are low, the

incumbent’s monopoly profit is high. Then the incumbent invests more

when there is a small entry threat than when there is no threat, because

it wants to defend its monopoly. That is, for low entry threats the entry

deterrence effect dominates the Schumpeterian effect. In contrast, when

C is high, the monopoly profit is low and so the incumbent may have

few incentives to defend its monopoly position. Then the Schumpeterian

effect dominates the entry deterrence effect even for small entry threats.

The next Proposition follows directly from Propositions 6 and 7.

P r o p o s i t i o n 8 : Suppose that C < 1+t
2
. The optimal investment

k∗(�) is hump-shaped in �.

To sum up, when the entry threat is small and increases, the in-

cumbent invests more to make entry unlikely. This is due to the entry

deterrence effect. However, when the threat becomes huge, entry can no

longer profitably be made unlikely and the investment becomes small.

Then the Schumpeterian effect dominates.
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In the Appendix, we consider an alternative specification where c is

drawn from the uniform distribution and show that our results are robust.

The robustness of our results is also shown in the next section.

III.4. ALTERNATIVE TIMING

We now consider an alternative timing where Stage 1 and 2 are inter-

changed. That is, the incumbent already knows (c1, ..., cN ) when deciding

about investment. The optimal investment is denoted by k∗∗(c).

When the rivals’ production costs are infinite we know from the pre-

vious analysis that entry never occurs. From (III.2) we get that the

incumbent’s investment is then

k∗∗(∞) = ℎ′−1(1) > 0. (III.8)

Note, also for c ≥ 1− t there is also no entry threat, because even when

the incumbent does not invest, no rival would enter. So without an entry

threat the incumbent’s investment is the same in both timings.

The profit function, given that entry is deterred, is concave in k:

d2�no entry
0 (k)/dk2 = ℎ′′(k) < 0.

So when the incumbent deters entry, it either invests k∗∗(∞) or, if that

is not enough, just enough to deter entry:

kdeter entry(c) =

{

k∗∗(∞) = ℎ′−1(1) for c ≥ c0(k
∗∗(∞))− t,

ℎ−1 (C − t− c) otherwise.
(III.9)

When the incumbent does not want to deter entry, �0(k) = −k, see

(III.2). So the optimal investment is

kdo not deter entry(c) = 0. (III.10)

This yields zero profits.13

13Note, even a zero investment may deter entry. So the previous equation is only

sensible when entry occurs, given a zero investment.
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Does the incumbent want to deter entry or not? Denote the invest-

ment, above which entry deterrence yields a loss, by k̄. It is implicitly

given by

1− C + ℎ(k̄)− k̄ = 0. (III.11)

Through the assumptions made before, existence and uniqueness are

guaranteed.14

So when investing according to (III.9) yields an investment which is

at most k̄, it is optimal to deter entry and to follow this investment

rule. Otherwise, not deterring entry and zero investments are optimal,

see (III.10). The following lemma summarizes our findings. They are

illustrated in Figure III.2.15

L e m m a 3: When c is below c0(k̄)− t the incumbent does not invest

and entry occurs. Otherwise the incumbent invests according to (III.9)

and entry is deterred.

Figure III.2 shows a hump-shaped relationship between the incum-

bent’s investment and c. But to make the results comparable to the one

yielded under the original timing we seek to answer the following ques-

tion: How large is the average investment of the incumbent, given �?

Again, we assume that rivals cost are drawn from an exponential density

function.

14k̄ exists because ℎ is continuous in k, and �no entry
0 (k = 1) < 0, �no entry

0 (k = 0) >

0. This value is unique because �no entry
0 (k = 0) > 0 and �no entry

0 (k) is a concave

function of k through A1(ii).
15The following properties of kdeter entry(c) are useful to construct the Figure.

(i) kdeter entry(c) is continuous at c = c0(k
∗∗(∞))− t,

(ii) it has a kink at c = c0(k
∗∗(∞))− t:

limc↘c0(k∗∗(∞))−t dk
deter entry(c)/dc = 0 and

limc↗c0(k∗∗(∞))−t dk
deter entry(c)/dc = −1,

(iii) kdeter entry(c) is constant in c for c > c0(k
∗∗(∞))− t, and

(iv) kdeter entry(c) is decreasing and convex in c for c < c0(k
∗∗(∞))− t.
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k̄

k∗∗(∞) = ℎ′−1(1)

c0(k
∗∗(∞))− tc0(k̄)− t

k∗∗(c)

k

c

Figure III.2: Incumbent’s investment decision

P r o p o s i t i o n 9 : lim�→0 E[k∣�] = k∗∗(∞), lim�→∞ E[k∣�] = 0. If

(
c0(k

∗∗(∞))− c0(k̄)
)2

2
− (c0(k̄)− t)k∗∗(∞) > 0,

then the maximum of E[k∣�] is greater than k∗∗(∞).

Proof: See Appendix.

Intuitively, when �→ 0 the probability that c will lie in the right re-

gion of Figure III.2 approaches one. Therefore, the incumbent’s expected

investment is k∗∗(∞). When � → ∞ the probability that c will lie in

the left region of the Figure approaches one. Therefore, the incumbent’s

expected investment is zero.

The intuition for the sufficient condition is as follows: If � is low,

it is very likely that c will lie in the right region of Figure III.2. Then

E[k∣�] ≈ k∗∗(∞). When � increases, it gets more likely that c is in the

left or in the middle region of Figure III.2. When k∗∗(∞) is small enough,

E[k∣�] increases with � for small �s. The reason is that the reduction of

the probability to get a medium investment k∗∗(∞) is overcompensated

through an increased probability to get a high investment.16

16Similarly, given some k∗∗(∞), the middle region must be large enough, so that
(
c0(k

∗∗(∞))− c0(k̄)
)
must be high enough. The size of the left region is c0(k̄) − t.



37

The results with this alternative timing are qualitatively the same as

with the original timing: For a low entry threat the incumbent’s average

investment is moderate. For a medium threat the incumbent’s average

investment is, under some conditions, relatively high. For a huge entry

threat the incumbent’s expected investment approaches zero. Therefore,

the relationship between the incumbent’s investment and the entry threat

is again hump-shaped.

Additionally note, that the LHS of the sufficient condition in Propo-

sition 9 is decreasing in C:

dLHS

dC
=
(
−c0(k

∗∗(∞)) + c0(k̄)− k∗∗(∞)
) dc0(k̄)

dk̄

dk̄

dC
− k∗∗(∞) < 0.

Hence, with lower initial production costs C it is more likely that we get

a hump-shaped relationship between the incumbent’s R&D investment

and the entry threat. This finding concerning the alternative timing is

parallel to the one with the original timing; see Proposition 8.

III.5. HOW IMPORTANT ARE THE INCUMBENT’S INITIAL COSTS?

Aghion, Blundell, Griffith, Howitt, and Prantl (2009) show that a higher

entry threat increases incumbent’s investment when the firm is initially

close to the technological frontier, and it is the other way round when

the incumbent is further behind the frontier. Does this result also hold

in our model?

We have no frontier in our model. But closeness to the frontier corre-

sponds, in our model, to low initial production costs C. As can be seen

from (III.4),

d2E[�0(k, F )]

dkdC
=

− 2ℎ′(k)f(C − ℎ(k)− t)) + (1− C + ℎ(k))ℎ′(k)f ′(C − ℎ(k)− t)).

The first term is negative, whereas the sign of the second term is am-

biguous. Under the exponential distribution the second term is negative,

When this region is small enough, only little of the probability mass goes in the left

region when � increases, and hence E[k∣�] increases with � for small �s.
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too. Therefore we have d2E[�0(k, F )]/dkdC < 0.17

P r o p o s i t i o n 10 : When there is an entry threat, the incum-

bent’s optimal investment is decreasing in the initial costs C.

Proof: See Appendix.

Observe that without an entry threat the incumbent’s optimal invest-

ment is independent of C. Therefore, Proposition 10 implies that with

high initial costs it is more likely that an entry threat decreases the in-

cumbent’s optimal investment. This is similar to the finding of Aghion,

Blundell, Griffith, Howitt, and Prantl (2009). The intuition for our re-

sult is as follows. The Schumpeterian effect is more likely to dominate

the entry deterrence effect when the incumbent has initially high costs,

because high costs make entry deterrence (a) less profitable, since the

production costs are relatively high and (b) more difficult, since for a

given investment entry becomes more likely.

With the alternative timing similar arguments hold. Without an entry

threat the incumbent’s optimal investment is independent of the initial

costs. When there is an entry threat, higher initial costs lead to lower

expected investments. This is true because of two effects: (i) with a

higher C, the range where the incumbent does not invest at all increases,

because entry can very often not be profitably deterred; (ii) the maximal

investment k̄ decreases.

III.6. CONCLUSIONS

The model formalizes the idea that an incumbent rests on its laurels when

there is no threat, fights when there is some moderate threat, and gives

up when the threat is huge. We measure the threat by the number and

quality of rival firms which may enter the market. A higher threat may

motivate an incumbent to invest more in R&D to deter entry or to make it

unlikely; then the entry deterrence effect dominates. However, when the

17This is also true with other distributions for which f ′(⋅) is negative, zero, or “not

too” positive.
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threat is overwhelming, the incumbent has little chances to deter entry

and invests little or not at all; then the Schumpeterian effect dominates.

Therefore, the relationship between the incumbent’s investment and the

entry threat is hump-shaped.
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IV. AMBIGUITY IN A PRINCIPAL-AGENT MODEL

We consider a principal-agent model with moral hazard where

the agent’s knowledge about the applied performance mea-

sure is ambiguous. We show that agent’s ambiguity aversion

leads to weaker incentives and a lower payoff for the princi-

pal, compared to the standard model without ambiguity and

without ambiguity aversion. Moreover, when there is enough

ambiguity the principal sets no incentives at all. Additionally,

the Informativeness Principle does not hold.

IV.1. INTRODUCTION

In principal-agent models with moral hazard, the principal motivates the

agent to spend effort via a performance-dependent wage scheme. Stan-

dard theory predicts that the wage scheme highly depends on perfor-

mance. However, in reality, wage schemes sometimes do not depend on

performance or the dependence is rather weak.1 Moreover, the Informa-

tiveness Principle,2 which is a key finding of the literature, “seems to be

violated in many occupations” (Prendergast 1999, p. 21). We show that

considering ambiguity and ambiguity aversion in an otherwise standard

model can bring theory in line with empirics.

In standard models of principal-agent relationships with moral hazard

it is implicitly assumed that the agent knows precisely the statistical

1See Holmström and Milgrom (1991) or Prendergast (1999) and the references

therein.
2Roughly speaking, the Informativeness Principle says that the principal wants to

use all information in a compensation contract which is correlated with performance.
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properties of the performance measure. However, we think that this

is a rather strong—and in real life often unrealistic—assumption.3 We

relax it by assuming that the agent faces ambiguity with respect to the

performance measure.

The famous Ellsberg (1961) paradox shows that individuals are averse

to ambiguity. Ellsberg suggested the following experiment: there are two

urns, each containing 100 balls, each of which is either red or black. Urn

A contains 50 black balls and 50 red ones. There is no information on

urn B. One ball will be drawn from each urn. A subject has to choose

a bet; when she wins the bet she earns 100$. Empirically, subjects are

indifferent between the bets “the ball drawn from urn A is black” and

“... red”. This also holds for urn B. However, subjects prefer bets in

which urn A is involved over bets in which B is involved. This cannot

hold under the rational expectations hypothesis. Gilboa and Schmeidler

(1989) propose the following solution: “In case of urn B, the subject has

too little information to form a prior. Hence, (s)he considers a set of

priors as possible. Being uncertainty averse, (s)he takes into account

the minimal expected utility (over all priors in the set) while evaluating

a bet” (p. 142; italics provided). That is, subjects dislike bets with

ambiguity (unknown probabilities). They are ambiguity-averse.4

Maybe the simplest principal-agent model with moral hazard is the

LEN model: the wage scheme is l inear, the agent’s utility is exponential,

and the shock on the performance measure is normally distributed. We

use the standard LEN model except that we assume that the agent’s

3As Gollier (2008) notes, “[i]n many circumstances, it is difficult to assess the

precise probability distribution to describe the uncertainty faced by a decision maker.”

This view is also supported by Ghirardato (1994, see p. 3). Post, van den Assem,

Baltussen, and Thaler (2008, p. 39) emphasize that “real-life choices rarely come with

precise probabilities.”
4In contrast, according to the rational expectations hypothesis, in such circum-

stances, a subject nonetheless has a single probability measure in conformity with the

Bayesian model; see Savage’s (1954) axiomatization and the nontechnical discussion

of Gilboa, Postlewaite, and Schmeidler (2008). For a neural empirical study on am-

biguity, see Hsu, Bhatt, Adolphs, Tranel, and Camerer (2005). Note, ambiguity is

sometimes also called Knightian uncertainty following Knight (1921).
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knowledge about the performance measure is ambiguous and that he is

ambiguity-averse. Due to ambiguity the agent’s beliefs about the distri-

bution of the shock on the performance measure are not represented by a

single probability function, but instead by a set of probability functions.

We use Gilboa and Schmeidler’s (1989) ambiguity aversion concept in

which an act is evaluated by the probability distribution that yields the

lowest expected utility. In our moral hazard framework this means that

the agent is pessimistic about the distribution of the shock on the per-

formance measure whenever rewards are subject to stochastics, which is

necessary in order to create incentives. As a consequence, the compensa-

tion demanded by the agent is relatively high, compared to the standard

LEN model (which neither considers ambiguity nor ambiguity aversion).

Since the principal has to ensure participation of the agent, this implies

that the principal’s cost of providing incentives is relatively high. As

a result, the principal sets relatively weak incentives which yield a rel-

atively low expected payoff. It may even be the case that the optimal

incentive scheme is a fixed wage. In the standard LEN model this can

never happen.5

When there are two performance measures it can be optimal for the

principal to ignore one of them (and potentially both), even though both

measures are informative. The reason is that with ambiguity, the inclu-

sion of a measure into a wage scheme causes costs which are not negligi-

ble even when the wage depends on the measure only to a small extent.

Hence, the Informativeness Principle does not hold in our model.

In contrast to the finance literature,6 the ambiguity concept is rarely

used in principal-agent theory. There are a few exceptions. Mukerji

(2003) inquires into the impact of ambiguity in procurement contracts

under cost uncertainty. He shows that the optimal linear contract sets

no financial incentives at all to induce exertion of cost-reducing effort

5Also, in Holmström and Milgrom’s (1991) multiple-tasks model, it can be optimal

to set weak or no monetary incentives. We show that this can also arise in a one-task

model when there is ambiguity.
6See, for example, Dow and Werlang (1992) or Epstein and Wang (1994).
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when ambiguity is sufficiently high. In contrast to our model, only a

binary shock realization is considered and the agent is assumed to be risk-

neutral. In Lang (2007) the agent is—as in Mukerji (2003)—risk-neutral.

He considers a framework with two tasks where only the performance of

one task can be rewarded via a linear contract. He shows that ambiguity

may lead to the provision of weak incentives. Ghirardato (1994) and

Karni (2006) also belong to this literature, but have different foci then

we have.

In the next section we first present and analyze the standard LEN

model. Then we extend it to incorporate ambiguity and ambiguity aver-

sion. In Section IV.3 we show that the Informativeness Principle does

not hold in our model. In Section IV.4 we discuss our model and its

results. Section IV.5 concludes.

IV.2. MODELS

IV.2.1. THE STANDARD LEN MODEL

Consider the LEN model specified by Bolton and Dewatripont (2005,

Ch. 4.2). There is a risk-neutral principal and a risk-averse agent with

an exponential (i.e., CARA) utility function. The former makes a take-

it-or-leave-it offer to the latter. It is assumed that the wage contract can

only be linear in the realization of the performance measure q: w = t+sq,

where t is the fix component and s is the variable component.7 When the

agent rejects the contract he gets a monetary payoff of w̄ and the principal

of �̄, with w̄+�̄ < 0.8 When the agent accepts, he has to choose an action

(also called effort) a ∈ ℝ≥0. The effort costs are  (a) =
1
2
ca2, where c > 0

is a cost parameter. Performance depends on the agent’s effort as well as

on a shock: q = a+�, where � ∼ N(0, �2). After the shock is realized, the

7Linear contracts are not optimal in this setting. They are, however, optimal in

the dynamic setting of Holmström and Milgrom (1987). We plan to check whether or

not this remains true when there is ambiguity.
8The inequality guarantees that the principal prefers hiring an agent with the fixed

wage contract w = w̄ over not hiring an agent. We add this assumption to make sure

that the principal always hires an agent.
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wage payment is made in accordance with the contract. The principal’s

payoff is q − w. The agent’s payoff is u(⋅) = −e−�[w− (a)], where � > 0 is

the agent’s coefficient of absolute risk aversion.

Straightforward calculations yield that the agent chooses the effort

a =

{

s/c for s ≥ 0,

0 otherwise.

The principal sets

s∗standard = 1/(1 + �c�2) (IV.1)

which generates her an expected payoff of

E[q − w]∗standard =
1

2c(1 + �c�2)
− w̄. (IV.2)

IV.2.2. THE MODEL WITH AMBIGUITY AND AMBIGUITY AVERSION

How the Agent Evaluates a Wage Scheme.— Let there be a finite num-

ber of probability distributions of the shock on the performance measure

that are plausible, given the agent’s knowledge. We assume that the plau-

sible probability distributions are stochastically independent. For the

sake of consistency we assume that aggregating all these plausible distri-

butions yields the objective distribution � ∼ N(0, �2). Given stochastic

independence, and since the objective distribution is normal, Cramér’s

(1936) Theorem implies that the plausible probability distributions are

normal, too.

Each plausible distribution [i, j] is characterized by its mean �i and

variance �2
j . Suppose that there are N × n plausible distributions and

that the parameters describing the agent’s plausible distributions can be

ordered in a grid. See Figure IV.1 for a 4× 3 example. Formally, the set

of parameters characterizing the plausible distributions is

S := {(�i, �
2
j )∣�i ∈ �, �2

j ∈ �2},

with � := (�1, ..., �i, ..., �N ) and �2 := (�2
1, ..., �

2
j , ..., �

2
n), where �i <

�i+1, �
2
j < �2

j+1.
9 According to the agent’s knowledge, the probability

9We specified the set of the plausible distributions such that the analysis is kept
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that the shock is drawn from the plausible distribution [i, j] is pi,j , where
∑

S pi,j = 1. We assume that pi,j > 0 for all i, j.

�1 �2 �3 �4 �i0

�2
1

�2
2

�2
3

�2
j

Figure IV.1: A 4×3 example of plausible distributions.

When there is only one plausible distribution we say that there is no

ambiguity.

D e f i n i t i o n 1 : When N × n = 1 there is no ambiguity and when

N × n > 1 there is ambiguity.

D e f i n i t i o n 2 : There is more ambiguity when �1 decreases and

�2
n does not decrease, or �1 does not increase and �2

n increases.

The motivation for Definition 2 is as follows: in our model, less precise

knowledge (i.e., more ambiguity) translates into a wider dispersion of �

and �2, i.e., into a decrease of �1 and an increase of �2
n.

The following lemma will be useful.

L e m m a 4: Suppose N ×n > 1. Then �1 ≤ 0 and �2
n > �2. The first

inequality is strict for N ≥ 2.

Proof: See Appendix.

simple. Our model, however, can easily be generalized to other specifications. When-

ever there exists a plausible distribution which has weakly the lowest mean and weakly

the highest variance, nothing changes at all. When there is no such plausible distri-

bution, the analysis gets more cumbersome: the distribution according to which the

agent evaluates the wage scheme depends on the incentives set by the principal.
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In words, the plausible distribution with the lowest mean has a mean

which is lower or equal to the mean of the objective distribution and the

plausible distribution with the highest variance has a variance which is

greater than the variance of the objective distribution.10

Being ambiguity-averse in the sense of Gilboa and Schmeidler (1989),

the agent assigns to each possible effort and contract the plausible dis-

tribution which leads to the lowest expected utility.11 That is, the agent

evaluates a wage scheme according to the most pessimistic plausible dis-

tribution.12

Suppose that the agent evaluates a contract according to the plausible

distribution [i, j] and takes effort a. Calculations similar to the ones in

Bolton and Dewatripont (2005) yield that the certainty equivalent of the

agent is then

ŵ(⋅) = t+ sa+ s�i −
1

2
�s2�2

j −
1

2
ca2. (IV.3)

But according to which plausible distribution does the agent evaluate

the contract? Consider the case where s > 0. One directly sees that

dŵ(⋅)/d�i > 0 and dŵ(⋅)/d�2
j < 0. Hence, the lowest expected utility

is yielded when the variance is maximal and the mean minimal. So the

agent evaluates the wage scheme according to the plausible distribution

[1, n]. For s = 0, all plausible distributions yield the same expected pay-

off. Hence, the plausible distribution used to evaluate the wage scheme is

arbitrary. Without loss of generality we can assume that also in this case

the agent uses the plausible distribution [1, n]. Moreover, it is straight-

10It is easy to show that Lemma 4 is also true for the case in which the realizations

of the plausible distributions are correlated (and the plausible distributions are still

normal). There is one exception: when the correlation is 1 and n = 1 we have �2 = �2
n.

11There are other, more complicated concepts, for example Ghirardato, Maccheroni,

and Marinacci (2004) or Klibanoff, Marinacci, and Mukerji (2005). See Eichberger

and Kelsey (2009) for an overview.
12The feature of Gilboa and Schmeidler’s (1989) model that the agent assigns to

each effort the lowest expected value over his set of priors is not important for our

results. Suppose instead that the agent takes multiple priors into account and over-

weights the “bad” priors. Then a condition similar to Lemma 4 can be derived.

Therefore, all of our results stay qualitatively valid.
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forward that for s < 0 the agent uses the plausible distribution [N, n].

L e m m a 5: The agent evaluates a wage scheme with s ≥ 0 according

to the plausible distribution [1, n] and a scheme with s < 0 according to

the plausible distribution [N, n].

Principal’s Problem.— The principal knows that � ∼ N(0, �2).13

Moreover, in accordance with the standard LEN model, we assume that

the principal knows the agent’s preferences and his plausible distribu-

tions.

The principal solves the following program:

max
s,t

E[q − w] subject to

(i) the incentive constraint that the desired effort level a∗ambiguity is

chosen by the agent: a∗ambiguity ∈ argmaxaŵ(a),

(ii) the participation constraint which guarantees that the agent signs

the wage scheme: ŵ(a∗ambiguity) ≥ w̄, and

(iii) the constraint that the agent evaluates the wage scheme with dis-

tribution [1, n] for s ≥ 0 and with [N, n] for s < 0 (see Lemma

5).

We now seek to simplify the maximization problem. First, let us look

at the incentive constraint. From (IV.3) we directly get that the agent

chooses—as in the standard LEN model—

a =

{

s/c for s ≥ 0,

0 otherwise.

Moreover, in the optimum the participation constraint holds with equal-

ity; otherwise the principal can decrease t so that her payoff increases.

For both, s = 0 and s < 0, the agent chooses a = 0. It is straightforward

to show that setting s < 0 is strictly dominated by s = 0 for the princi-

pal. So we can neglect the case s < 0. Using the previous insights, the

13Thus, we consider a non-common prior setting (see also Eliaz and Spiegler 2006,

2008). Alternatively, we can also assume that the principal has—as the agent—

ambiguous information, but is not ambiguity averse.
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principal’s maximization problem simplifies to

max
s

s

c
+ s�1 − �s2�2

n/2−
s2

2c
− w̄ s.t. s ≥ 0. (IV.4)

The interpretation is simple: the first part is the effort induced by the

contract; the terms−(s�1−�s
2�2

n/2) are the combined risk and ambiguity

premium which can be decomposed into a risk premium �s2�2/2 and an

ambiguity premium −s�1 + �s2(�2
n − �2)/2; the term s2

2c
represents the

equilibrium effort costs; and w̄ is the monetary equivalent of the agent’s

outside option.

Simple optimization of (IV.4) yields that the principals sets the fol-

lowing incentives:

s∗ambiguity =

{
1+c�1
1+�c�2

n
for 1 + c�1 > 0,

0 otherwise.
(IV.5)

From Lemma 4, we know that �1 ≤ 0 and �2
n > �2. Hence, we have the

following results.

P r o p o s i t i o n 11 : With ambiguity the incentives set by the prin-

cipal are weaker than without ambiguity. With ambiguity the principal

may set no incentives at all.

To understand both results, we come back to the interpretation of

(IV.4). Due to ambiguity there is another premium beside the risk pre-

mium which makes providing incentives more costly for the principal.

This explains why the principal sets weaker incentives.

Moreover, due to ambiguity the marginal costs of providing incentives

are not negligible even for weak incentives whenever �1 < 0. Formally,

lims→0 d(ambiguity premium)/ds = −�1. At the same time the marginal

benefit of setting weak incentives (via inducing a higher effort) is 1/c.

Hence, whenever it is sufficiently costly to provide even weak incentives

the principal sets no incentives at all.14

14When no incentives are set, zero effort is implemented. It may be more plausible

to assume that the agent wants to spend some effort even when no incentives are set.

This is indeed the case if, for example,  ′(a) ≤ 0 for a ∈ [0, ā], see Holmström and

Milgrom (1991, pp. 33-34).
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Without ambiguity there is no ambiguity premium. Then the margi-

nal costs of providing weak incentives are negligible.15 Therefore the

principal always sets incentives, see (IV.1).16

Plugging (IV.5) into (IV.4) yields the principal’s expected payoff in

equilibrium:

E[q − w]∗ambiguity =

{
(1+c�1)2

2c(1+�c�2
n)

− w̄ for 1 + c�1 > 0,

−w̄ otherwise.
(IV.6)

Since �1 ≤ 0 and �2
n > �2 (see Lemma 4) we get the following result.

P r o p o s i t i o n 12 : Ambiguity leads to a lower expected payoff for

the principal.

Intuitively, with ambiguity the principal has to compensate the agent

not only for his risk premium but also for his ambiguity premium. This

increases the principal’s cost of implementing any level of effort, and

hence also the principal’s cost when the optimal effort is implemented.

Comparative Statics.— More ambiguity leads to the provision of

weaker incentives: ds∗ambiguity/d�1 > 0 and ds∗ambiguity/d�
2
n < 0. Intu-

itively, more ambiguity increases the marginal costs of providing incen-

tives. Hence, the principal sets weaker incentives.

More ambiguity leads to a lower expected payoff of the principal:

dE[q − w]∗ambiguity/d�1 ≥ 0 and dE[q − w]∗ambiguity/d�
2
n ≤ 0, where for

s∗ambiguity > 0 the inequalities are strict. The logic is simple: The princi-

pal can set the same incentives with little ambiguity than with a lot of

ambiguity. Since more ambiguity leads to higher costs for the principal

in order to provide a certain level of incentives (see arguments before),

the principal must be better off with little ambiguity.

Finally note that in the standard LEN model as well as in the enriched

LEN model with ambiguity and ambiguity aversion a higher degree of

15For these insights it is not important that the effort costs are quadratic: it is

sufficient that the marginal effort costs are negligible for low efforts. In models with

limited liability of the agent, setting weak incentives can be costly for the principal.

See, for example, Besley and Ghatak (2008, Section 1).
16Note, risk aversion plays no role for weak incentives since the agent is first-order

risk neutral. Technically, lims→0 d(risk premium)/ds = 0.
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risk aversion � (at least weakly) decreases the optimal incentives and the

principal’s payoff.

IV.3. ADDITIONAL INFORMATION: VIOLATION OF THE INFORMA-

TIVENESS PRINCIPLE

Suppose there are two performance measures Y and Z with realizations

y and z, respectively. Similar to the case with one performance measure

we assume that

y = a+ �Y , where �Y ∼ N(0, �2
Y ),

z = a+ �Z , where �Z ∼ N(0, �2
Z),

and that the principal’s expected payoff is a− E[w]. We assume that �Y

and �Z are uncorrelated. Moreover, we assume that the agent only feels

ambiguity with respect to the performance measure Z and he is again

ambiguity-averse. The contract takes the form w = t+sY y+sZz. Simple

calculations yield that it is not always optimal for the principal to include

both performance measures into the contract.17

P r o p o s i t i o n 13 : The performance measure Z is included in the

wage scheme if and only if

�Z,1 > −
��2

Y

1 + �c�2
Y

.

The measure Y is always used.

Proof: See Appendix.

In the standard model (without ambiguity and without ambiguity

aversion) it is always optimal to use both measures. The intuition is sim-

ple (see Holmström 1979, p. 87). Suppose the optimal contract depends

17Note that this result does qualitatively neither depend on the assumption that

the agent only feels ambiguity with respect to the performance measure Z, nor on the

assumption that �Y and �Z are uncorrelated. When he feels ambiguity with respect

to both measures the principal may optimally neglect both measures; that is, set a

fixed wage. This finding and the intuition is as in the case with only one performance

measure. When �Y and �Z are correlated it gets less worthwhile to include both

measures into a contract.
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only on the measure Y . By making the contract slightly dependent on

the measure Z the agent’s incentives can be improved. Because the agent

is locally risk-neutral, this does marginally not increase the agent’s risk

premium. Hence, the optimal contract uses Y and Z.

This argument does not hold with ambiguity. The costs of making

a contract even slightly dependent on the measure Z are non-negligible

whenever we have an ambiguity-averse agent who is ambiguous about Z.

Therefore, when there is a lot of ambiguity (i.e., when �Z,1 is low) the

principal does not use the measure Z, even though Z reveals information;

see Proposition 13.18 This finding is valuable since “the Informativeness

Principle, i.e., that all factors correlated with performance should be

included in a compensation contract, seems to be violated in many oc-

cupations” (Prendergast 1999, p. 21).

IV.4. DISCUSSION

IV.4.1. WHEN PARTIES “AGREE TO DISAGREE”

The model stays mathematically equivalent when there is neither ambi-

guity nor ambiguity aversion, but it is instead the case that the agent and

the principal have different opinions about the distribution of the shock

on the performance measure. That is, both parties “agree to disagree”.

Suppose that the principal thinks that the shock is normally distributed

with variance �2 and (normalized) mean 0, whereas the agent thinks that

the shock is normally distributed with variance �2
n and mean �1. When

the agent is more pessimistic about the distribution than the principal we

have �1 < 0 and �2
n > �2, as in the case with ambiguity and ambiguity

18The previous finding that with one performance measure a fixed wage may be

optimal (see Proposition 11) can also be seen as a violation of the Informativeness

Principle: there is a performance measure which reveals information about the agent’s

effort, but the measure may not be used. Similarly, without ambiguity, one perfor-

mance measure, and linear effort costs of c̃a, a fixed wage contract is optimal when-

ever c̃ ≥ 1. Therefore we prefer to interpret the Informativeness Principle as follows:

Whenever some incentives are set, any measure of performance that reveals informa-

tion on the effort is included in the contract.
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aversion.19

IV.4.2. MULTIPLE PRINCIPALS AND COMPETITION

Suppose there are multiple principals who compete for the agent. When

a principal offers a wage scheme, she essentially offers the agent a certain

expected utility level. Hence, we can depict competition simply as a

variation of the reservation monetary payoff w̄. Since our results do not

depend on w̄—as long as the principal wants to hire the agent, which is

also true for competition—our results are robust to the introduction of

competition.

IV.4.3. AGENT’S WELFARE

Given some agent who is either ambiguity-averse (and there is ambiguity)

or not. When is he better off? Since the principal makes a take-it-or-

leave-it offer, the agent’s expected ex-ante utility is in both cases equal

to the utility from the reservation payoff w̄. However, when the agent is

ambiguity-averse, there is a difference between expected ex-ante utility

and expected ex-post utility: the agent is in expectation better off ex-

post than expected ex-ante. Hence, from an ex-post perspective the

agent yields a higher surplus with ambiguity aversion than without it.

The agent’s higher surplus is at the principal’s expense, see Proposition

12.20

Do these results also hold with multiple principals? Suppose multi-

ple principals compete perfectly for the agent. Then, in equilibrium all

principals must make zero expected profits. This is true with or without

ambiguity aversion of the agent. Hence, the principals’ surpluses do not

change due to agent’s ambiguity aversion. Next we show that the agent

19The agent may also be more optimistic than the principal so that we have �1 > 0

and �2
n < �2. Then the principal sets very high-powered incentives and receives a

very high expected payoff, compared to the case with a common prior.
20That a party profits from its distorted prior is non-standard. For example, in

DellaVigna and Malmendier (2004), the party with the undistorted prior exploits the

party with the distorted prior.



54

is ex-ante and ex-post worse off with ambiguity aversion than without.

The expected ex-post total surplus is E[q−w]+w̃, where w̃ is the ex-post

certainty equivalent which equals t+ sa− 1
2
�s2�2 − 1

2
ca2. Maximization

of the expected ex-post total surplus yields that s∗total = 1/(1 + �c�2).

Observe that s∗total = s∗standard. With ambiguity aversion the principal sets

different incentives: s∗total ∕= s∗ambiguity. Hence, with an ambiguity-averse

agent, the expected ex-post total surplus is lower than without ambiguity

aversion. From before we know that with perfect competition the prin-

cipal’s surplus does not change due to ambiguity aversion of the agent.

Hence, from an ex-post perspective the agent is worse off with ambiguity

aversion than without it. This result is the reverse yielded with only one

principal.

IV.4.4. HISTORY DEPENDENCE

Our insights can be applied further. Suppose a principal has to select

one out of two performance measures to design a linear wage contract.

The first is well known by the agent (there is no ambiguity), but is very

inexact (i.e., it has a high variance); the properties of the second are the

other way round. One can use the formulas of Proposition 12 to compare

them. It may well turn out that the principal prefers the first measure,

although it is less exact.

When substituting an old with a new measure in a wage scheme, the

agent’s knowledge about the new is scarcer than about the old.21 Hence,

old measures have a comparative advantage over new measures.

IV.5. CONCLUSIONS

We considered a principal-agent relationship with moral hazard where

the agent’s knowledge of the performance measure is ambiguous and he

is averse to ambiguity. This has the effect that the agent is pessimistic

21This argument is supported by the findings described by Rustichini (2005, p.

1625) “that the ambiguity premium declines as subjects repeat their choices: People

slowly adjust to ambiguity”.
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about the distribution of the shock on the performance measure. Hence,

the compensation demanded by the agent is relatively high, compared to

the standard model. This implies that the principal’s cost of providing

incentives are relatively high. Therefore, the principal sets relatively weak

incentives which yield a relatively low expected payoff. The principal

may even set a fixed wage. This can never be optimal in the standard

model. Moreover, in the enriched model with two performance measures

the famous Informativeness Principle does not hold: It can be optimal

for the principal to ignore one measure (or potentially both), even though

both measures are informative.
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V. THE OPTIMALITY OF SIMPLE CONTRACTS:

MORAL HAZARD AND LOSS AVERSION

Joint work with

Fabian Herweg and Daniel Müller

This paper extends the standard principal-agent model with

moral hazard to allow for agents having reference-dependent

preferences according to Kőszegi and Rabin (2006, 2007).

When loss aversion is the predominant determinant of the

agent’s risk preferences, the principal optimally offers a sim-

ple bonus contract, i.e., when the agent’s performance exceeds

a certain threshold, he receives a fixed bonus payment. Also

when risk aversion becomes more important, the optimal con-

tract displays less complexity than predicted by orthodox the-

ory. Thus, loss aversion introduces an endogenous complexity

cost into contracting.

V.1. INTRODUCTION

The recent literature provides very strong evidence that contractual forms have

large effects on behavior. As the notion that “incentive matters” is one of the

central tenets of economists of every persuasion, this should be comforting to

the community. On the other hand, it raises an old puzzle: if contractual form

matters so much, why do we observe such a prevalence of fairly simple con-

tracts?

— Bernard Salanié (2003)
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A lump-sum bonus contract, with the bonus being a payment for

achieving a certain level of performance, is probably the most simple

incentive scheme for employees one can think of. According to Steen-

burgh (2008), salesforce compensation plans provide incentives mainly

via a lump-sum bonus for meeting or exceeding the annual sales quota.1

Simple contracts are commonly found not only in labor contexts but

also in insurance markets. A prevalent form of insurance contracts is a

straight-deductible contract, widely used, for example, in automobile in-

surance. The observed plainness of contractual arrangements, however,

is at odds with predictions made by economic theory, as nicely stated in

the above quote by Salanié. While Prendergast (1999) already referred

to the discrepancy between theoretically predicted and actually observed

contractual form, over time this question was raised again and again,

recently by Lazear and Oyer (2007), and the answer still is not fully

understood.2

Beside this gap between theoretical prediction and observed prac-

tice, both theoretical as well as empirical studies demonstrate that these

simple contractual arrangements create incentives for misbehavior of the

agent that is outside the scope of most standard models. As Oyer (1998)

points out, facing an annual sales quota provides incentives for sales-

1Incentives for salespeople in the food manufacturing industry often are solely cre-

ated by a lump-sum bonus, see Oyer (2000). Moreover, in his book about designing

effective sales compensation plans, Moynahan (1980) argues that for a wide range of

industries lump-sum bonus contracts are optimal. For a survey on salesforce compen-

sation plans see Joseph and Kalwani (1998).
2For evidence on deductibles in the automobile insurance, see Puelz and Snow

(1994) or Chiappori et al. (2006). As was shown by Rothschild and Stiglitz (1976),

the use of deductibles can theoretically be explained if the insurance market is sub-

ject to adverse selection. Besides adverse selection, however, moral hazard plays an

important role in automobile insurance. Deductibles were found to be optimal under

moral hazard by Holmström (1979) if the insured person’s action influences only the

probability of an accident but not its severity. As pointed out by Winter (2000),

however, “[d]riving a car more slowly and carefully reduces both the probability of an

accident and the likely costs of an accident should it occur.” Thus, existing theories

cannot explain the prevalence of deductibles in these markets.
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people to manipulate prices and timing of business to maximize their

own income rather than firms’ profits. For insurance markets, Dionne

and Gagné (2001) show that “deductible contracts can introduce per-

verse effects when falsification behavior is potentially present”.3 These

observations raise “the interesting question of why these [...] contracts

are so prevalent. [...] It appears that there must be some benefit of these

contracts that outweighs these apparent costs” (Lazear and Oyer, 2007).

To give one possible explanation for the widespread use of these con-

tractual arrangements, we consider a principal-agent model with moral

hazard, framed as an employer-employee relationship, which is com-

pletely standard but for one twist: the agent is assumed to be loss-averse

in the sense of Kőszegi and Rabin (2006, 2007). With the tradeoff be-

tween incentive provision and risk sharing being at the heart of moral

hazard, allowing for a richer description of the agent’s risk preferences

that goes beyond standard risk aversion seems a natural starting point

to gain deeper insights into contract design. Our main finding is that

a simple (lump-sum) bonus scheme is optimal when loss aversion is the

driving force of the agent’s risk preferences.4 This is in stark contrast

to the findings for a standard risk-averse agent. An agent who is risk

but not loss-averse exhibits local risk neutrality, which implies that pay-

ing slightly different wages for different signals improves incentives at

negligible cost. A loss-averse agent, on the other hand, is first-order risk-

averse. Since losses loom larger than equally-sized gains, in expectations

the agent suffers from deviations from his reference point. With the ref-

erence point being multidimensional under the concept of Kőszegi and

Rabin, the agent is first-order risk-averse at all possible wage levels. In

3For evidence on fraudulent claims being a major problem in the car insurance

market see Caron and Dionne (1997), who estimated the cost of fraud in the Québec

automobile insurance market in 1994 at $100 million, just under 10% of total claims.

For an estimation of the costs of fraudulent claims in the United States, see Foppert

(1994).
4In the following, we will use the terms bonus contract and bonus scheme inter-

changeably to refer to a contract that specifies exactly two distinct wage payments,

a base wage and a lump-sum bonus.
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consequence, paying even slightly different wages reduces the agent’s ex-

pected utility, for which in turn he demands to be compensated. Thus,

by offering a simple contract, that specifies only few different wage levels,

the principal can lower the expected payment necessary to compensate

the agent for the induced losses.

We present our model of a principal-agency that is subject to moral

hazard in Section V.2. The principal, who is both risk and loss neutral,

does not observe the agent’s effort directly. Instead, she observes a mea-

sure of performance that is correlated with the agent’s effort decision.

Following Kőszegi and Rabin, we posit that a decision maker – next to

intrinsic consumption utility from an outcome – also derives gain-loss

utility from comparing the actual outcome with his rational expectations

about outcomes. More precisely, the sensation of gains and losses is

derived by comparing a given outcome to all possible outcomes. To illus-

trate this point, consider an employee who receives a wage of $5000 for

good performance, a wage of $4400 for mediocre performance, and a wage

of $4000 for bad performance. If the employee’s performance is mediocre,

this generates mixed feelings, a loss of $600 and a gain of $400.5 The

key feature of the Kőszegi-Rabin model is that expectations matter in

determining the reference point.6 While mainly based on findings in the

psychological literature,7 evidence for this assumption is provided also

by two recent contributions to the economic literature. In a real-effort

experiment, Abeler et al. (2009) find strong evidence for individuals tak-

ing their expectations as a reference point, rather than the status quo.8

Similarly, analyzing decision making in a large-stake game show, Post

5For at least suggestive evidence on mixed feelings, see Larsen et al. (2004).
6The feature that the reference point is determined by the decision maker’s

forward-looking expectations is shared with the disappointment aversion models of

Bell (1985), Loomes and Sugden (1986), and Gul (1991).
7For instance, Mellers et al. (1999) and Breiter et al. (2001) document that both

the actual outcome and unattained possible outcomes affect subjects’ satisfaction with

their payoff.
8The status quo was most often assumed as reference point in the wake of Kahne-

man and Tversky’s (1979) original formulation of prospect theory.
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et al. (2008) come to the conclusion that observed behavior “is consis-

tent with the idea that the reference point is based on expectations.”

Regarding applications, the Kőszegi-Rabin concept is used by Heidhues

and Kőszegi (2005, 2008) to introduce consumer loss aversion into other-

wise standard models of industrial organization. While the former paper

explains why monopoly prices react less sensitive to cost shocks than pre-

dicted by orthodox theory, the latter provides an answer to the question

why non-identical competitors charge identical prices for differentiated

products.

As a benchmark, in Section V.3 we reconsider the case of a purely

risk-averse agent: Under the optimal contract, signals that are more in-

dicative of higher effort are rewarded strictly higher, thereby giving rise

to a strictly increasing wage profile. We then turn to the analysis of a

purely loss-averse agent who does not exhibit risk aversion in the usual

sense. After providing sufficient conditions for the first-order approach

to be valid, we establish our main result: when the agent is loss-averse,

it is optimal to offer a bonus contract. No matter how rich the set of

possible realizations of the performance measure, the optimal contract

comprises of only two different wage payments. We already touched on

the intuition underlying this finding: With the agent’s action being un-

observable, the necessity to create incentives makes it impossible for the

principal to bear the complete risk. With losses looming larger than

equally sized gains, this ex ante imposes an expected net loss on the

agent, which equals the sum over the ex ante expected wage differences

weighted by the product of the corresponding probabilities. To illustrate,

let us return to the example introduced above. Suppose the agent expects

to perform well, moderately, or poorly with probability pG, pM and pB,

respectively. Then, ex ante, the agent expects a wage difference – or net

loss – of $600 with probability pMpG, a net loss of $400 with probability

pBpM , and a net loss of $1000 with probability pBpG. The agent demands

to be compensated for his overall expected net loss, which the principal

therefore seeks to minimize. Consider, for the sake of argument, a prin-

cipal who wants to strengthen incentives to provide effort, starting out

from a not fully differentiated wage scheme. There are two ways to do so.
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First, the principal can introduce a new wage spread, i.e., pay slightly

different wages for two signals that were rewarded equally in the original

wage scheme, while keeping the differences between all other neighboring

wages constant. Secondly, the principal can increase an existing wage

spread, holding constant all other spreads between neighboring wages.

Both procedures increase the overall expected net loss by increasing the

size of some of the expected losses without reducing others. Introducing

a new wage spread, however, additionally increases the overall expected

net loss by increasing the ex ante expected probability of experiencing

a loss. Therefore, in order to improve incentives, it is advantageous to

increase an existing wage spread without adding to the contractual com-

plexity in the sense of increasing the number of different wages. In this

sense, reference-dependent preferences according to Kőszegi and Rabin

introduce an endogenous complexity cost into contracting based on psy-

chological foundations.

Thereafter, we establish several properties displayed by the optimal

contract. Let a signal that is the more likely to be observed the higher

the agent’s effort be referred to as a good signal. We find that the subset

of signals that are rewarded with the high wage contains either only good

signals, or all good signals and possibly a few bad signals as well.9 When

abstracting from integer-programming problems, it is optimal for the

principal to order the signals according to their relative informativeness

(likelihood ratio), i.e., the agent receives the high wage for all signals that

are more indicative of high effort than a cutoff signal. Last, we show that

an increase in the agent’s degree of loss aversion may allow the principal

to use a lower-powered incentive scheme in order to implement a desired

level of effort. The reason is that a higher degree of loss aversion may be

associated with a stronger incentive for the agent to choose a high effort

9The theoretical prediction that inferior performance may also well be rewarded

with a bonus is in line with both Joseph and Kalwani (1998)’s suggestion that organi-

zations tend to view the payment of a bonus as a reward for good or even acceptable

performance rather than an award for exceptional performance, and Churchill et al.

(1993)’s prescription that bonuses should be based on objectives that can be achieved

with reasonable rather than Herculean efforts.
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in order to reduce the probability of incuring a loss. The overall cost of

implementation, however, increases in the agent’s degree of loss aversion.

In the last part of Section V.3, we analyze the general case in which

the agent is both risk and loss-averse. It is shown that our results are

robust towards a small degree of risk aversion. Moreover, we give a

heuristic reasoning why a reduction in the complexity of the contract

is also to be expected to be optimal for a non-negligible degree of risk

aversion, and confirm our conjecture by means of a numerical example.10

Returning to the case of a purely loss-averse agent, in Section V.4

we relax the assumptions that guaranteed validity of the first-order ap-

proach. Here, to keep the analysis tractable, we focus on binary measures

of performances. If the agent’s degree of loss aversion is sufficiently high

and if the performance measure is sufficiently informative, then only ex-

treme actions – work as hard as possible or do not work at all – are incen-

tive compatible. Put differently, the principal may face severe problems

in fine-tuning the agent’s incentives. These implementation problems,

however, can be remedied if the principal can commit herself to stochas-

tically ignoring the low realization of the performance measure, i.e., by

turning a blind eye from time to time. Besides alleviating implementation

problems, turning a blind eye may also lower the cost of implementing

a certain action. Thus, the sufficiency part of Blackwell’s theorem does

not hold when the agent has reference-dependent preferences.

After briefly summarizing our main findings, Section V.5 concludes by

discussing robustness of our results with respect to imposed assumptions.

All proofs are given in the appendix.

RELATED LITERATURE

Before presenting our model, we relate our paper to the small but steadily

growing literature that analyzes the implications of loss aversion on in-

10This finding also relates to the observation that, within a firm, pay for individuals

often seems to be less variable than productivity, as recently surveyed by Lazear and

Shaw (2007). Our model suggests an alternative explanation for this pay compression

outside the realms of inequity aversion, tournament theory, and influence activities.
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centive design.11 With reference-dependent preferences being at the heart

of loss aversion on the one hand, but with no unifying approach provided

how to determine a decision maker’s reference point on the other hand,

it is little surprising that all contributions differ in this particular aspect.

While Dittmann et al. (2007) posit that the reference income is exoge-

nously given by the previous year’s fixed wage, Iantchev (2005), who

considers a market environment with multiple principals competing for

the services of multiple agents, applies the concept of Rayo and Becker

(2007). Here, an agent’s reference point is endogenously determined by

the equilibrium conditions in the market. When focusing on a particu-

lar principal-agent pair, however, both the principal and the agent take

the reference point as exogenously given. An exogenous reference point

does not always seem plausible. Starting out from the premise that the

reference point is forward looking and depends on the distributions of

outcomes, as suggested by ample evidence, De Meza and Webb (2007)

consider both exogenous as well as endogenous formulations of the refer-

ence point. Concluding that the disappointment concept of Gul (1991),

which equates the reference point with the certainty equivalent of the in-

come distribution, does yield some questionable implications,12 De Meza

and Webb propose that the reference income is the median income, which

11Beside loss aversion there are other behavioral biases that are incorporated into

contracting problems with moral hazard. Non-standard risk preferences in a moral

hazard framework are analyzed by Schmidt (1999), who applies Yaari’s (1987) concept

of dual expected utility theory. Englmaier and Wambach (2006) characterize the

optimal contract for the case of an inequity-averse agent in the sense of Fehr and

Schmidt (1999). A multi-agent contracting problem in which agents care about their

own status is investigated by Besley and Ghatak (2008) in a static context, and by

Auriol and Renault (2008) in a dynamic setting. By introducing worker overconfidence

into a multi-agent moral-hazard problem, Fang and Moscarini (2005) show that it can

be optimal not to screen workers according to their skills. For a review of behavioral

economics of organizations see Camerer and Malmendier (2007).
12De Meza and Webb consider two otherwise identical agents who differ only in

their degree of loss aversion. They point out that with the certainty equivalent as

reference point, there are situations where the less loss-averse agent experiences a loss,

but the more loss-averse agent does not.
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captures the idea that the agent incurs a loss at all incomes for which

it is odds-on that a higher income would be drawn. Taking median in-

come as reference income, however, suffers from the drawback that it is

discontinuous in the underlying probability distribution.13

All of the aforementioned contributions explore questions of both em-

pirical importance as well as theoretical interest: Dittmann et al. (2007)

find that a loss aversion model dominates an equivalent risk aversion

model in explaining observed CEO compensation contracts if the refer-

ence point is equal to the previous year’s fixed wage. Iantchev (2005)

finds evidence for his theoretically predicted results in panel data from

Safelite Glass Corporation. Last, by explaining why bonuses are paid

for good performance rather than penalties for poor performance, De

Meza and Webb (2007) provide a theoretical underpinning for the fre-

quent usage of option-like incentive schemes in CEO compensation. The

contractual form predicted by these papers, however, is rather complex:

while the optimal contract typically displays a range where pay is in-

dependent of performance, for performance above this range payment

varies with performance in a fairly complex way, depending crucially on

the underlying distribution of signals. Theoretical predictions differ in

whether or not the optimal contract includes punishment for very poor

performance or where in the wage schedule the optimal contract features

discontinuities. Thus, none of these papers provides a rationale for the

prevalence of fairly simple contracts, bonus contracts in particular.14

To the best of our knowledge, Daido and Itoh (2007) is the only paper

that also applies the concept of reference dependence à la Kőszegi and

13For example, suppose that with a probability of .51 a manager earns $1m and

with a probability of .49 he earns $2m. With median income as reference point the

manager will never suffer a loss because his reference income is $1m. A small shift

in probabilities, however, makes the median income equal to $2m. Now, the agent

suffers a loss in almost 50% of all cases.
14De Meza and Webb (2007) find conditions under which a simple bonus contract

is optimal. For this to be the case, however, they assume that the reference point is

exogenously given and that all wage payments are in the loss region, where the agent

is assumed to be risk loving.
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Rabin to a principal-agent setting. The focus of Daido and Itoh, how-

ever, greatly differs from ours. Assuming that the performance measure

comprises of only two signals, two types of self-fulfilling prophecy are

explained, the Galatea and the Pygmalion effects.15 While sufficient to

capture these two effects, the assumption of a binary measure of perfor-

mance does not allow one to inquire into the form that contracts take

under moral hazard.

V.2. MODEL

There are two parties, a principal and an agent.16 The principal of-

fers a one-period employment contract to the agent, who has an outside

employment opportunity (or reservation utility) yielding expected util-

ity ū. If the agent accepts the contract, then he chooses an effort level

a ∈ A ≡ [0, 1]. The agent’s action a equals the probability that the

principal receives a benefit B > 0. The principal’s expected net benefit

is

� = aB − E[W ],

where W is the compensation payment the principal pays to the agent.17

The principal is assumed to be risk and loss neutral, thus she maximizes

�. We wish to inquire into the form that contracts take under moral

hazard and loss aversion. Therefore, we focus on the cost minimization

problem to implement a certain action â ∈ (0, 1).18

15Roughly speaking, the former effect refers to empirical findings that an agent’s

self-expectation about his performance is an important determinant of his actual

performance, whereas the latter effect refers to the phenomenon that a principal’s

expectation about the agent’s performance has an impact on the agent’s actual per-

formance.
16The framework is based on MacLeod (2003), who analyzes subjective performance

measures without considering loss-averse agents.
17The particular functional form of the principal’s profit function is not crucial for

our analysis. We assume this specific structure since it allows for a straight-forward

interpretation of the performance measure.
18The second-best action maximizes the principal’s expected benefit, aB, minus

the minimum cost of implementing action a. The overall optimal contract exhibits
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The action choice a ∈ A is private information of the agent and un-

observable for the principal. Furthermore, the realization of B is not

directly observable. A possible interpretation is that B corresponds to

a complex good whose quality cannot be determined by a court, thus a

contract cannot depend on the realization of B. Instead the principal ob-

serves a contractible measure of performance, 
̂, with s ∈ S ≡ {1, . . . , S}

being the realization of the performance measure, also referred to as sig-

nal. Let S ≥ 2. The probability of observing signal s conditional on

B being realized is denoted by 
Hs . Accordingly, 
Ls is the probability

of observing signal s conditional on B not being realized. Hence, the

unconditional probability of observing signal s for a given action a is


s(a) ≡ a
Hs +(1− a)
Ls . For technical convenience, we make the follow-

ing assumption.

A s s u m p t i o n A3: For all s, � ∈ S with s ∕= � ,

(i) 
Hs /

L
s ∕= 1 (informative signals),

(ii) 
Hs , 

L
s ∈ (0, 1) (full support),

(iii) 
Hs /

L
s ∕= 
H� /


L
� (different signals).

Assumption (i) guarantees that any signal s is either a good or a bad

signal, in the sense that the overall probability of observing that signal

unambiguously increases or decreases in a. Part (ii) ensures that for all

a ∈ A, all signals occur with positive probability. Last, with assumption

(iii) signals can unambiguously be ranked according to the relative im-

pact of an increase in effort on the probability of observing a particular

signal.19

The contract which the principal offers to the agent consists of a

payment for each realization of the performance measure, {ws}
S
s=1 ∈

the same characteristics as the contract that minimizes the cost of implementing an

arbitrary action â.
19Formally, for all a ∈ [0, 1], (
Hs − 
Ls )/
s(a) > (
H� − 
L� )/
� (a) ⇐⇒ 
Hs /


L
s >


H� /

L
� .
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ℝ
S.20

The agent is assumed to have reference-dependent preferences in the

sense of Kőszegi and Rabin (2006): Overall utility from consuming x =

(x1, . . . , xK) ∈ ℝ
K – when having reference level r = (r1, . . . , rK) ∈ ℝ

K

for each dimension of consumption – is given by

v(x∣r) ≡
K∑

k=1

mk(xk) +
K∑

k=1

�(mk(xk)−mk(rk)).

Put verbally, overall utility is assumed to have two components: con-

sumption utility and gain-loss utility. Consumption utility, also called in-

trinsic utility, from consuming in dimension k is denoted bymk(xk). How

a person feels about gaining or losing in a dimension is assumed to depend

in a universal way on the changes in consumption utility associated with

such gains and losses. The universal gain-loss function �(⋅) satisfies the

assumptions imposed by Tversky and Kahneman (1991) on their “value

function”.21 In our model, the agent’s consumption space comprises of

two dimensions, money income (x1 = W ) and effort (x2 = a).22 The

agent’s intrinsic utility for money is assumed to be a strictly increasing,

(weakly) concave, and unbounded function. Formally, m1(W ) = u(W )

with u′(⋅) > " > 0, u′′(⋅) ≤ 0. The intrinsic disutility from exerting

effort a ∈ [0, 1] is a strictly increasing, strictly convex function of effort,

m2(a) = −c(a) with c′(0) = 0, c′(a) > 0 for a > 0, c′′(⋅) > 0, and

lima→1 c(a) = ∞. We assume that the gain-loss function is piece-wise

20Restricting the principal to offer non-stochastic wage payments is standard in the

principal-agent literature and also in accordance with observed practice. In a later

section we comment on this assumption.
21Roughly speaking, �(z) is strictly increasing, continuous for all z, twice differen-

tiable for all z ∕= 0 with �(0) = 0, convex over the range of losses, and concave over

the range of gains. For a more formal statement of these properties, see Bowman et

al. (1999).
22We implicitly assume that the agent is a “narrow bracketer” in the sense that he

ignores that the risk from the current employment relationship is incorporated with

substantial other risk.
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linear,

�(m) =

{

m , for m ≥ 0

�m, for m < 0
.

The parameter � characterizes the weight put on losses relative to gains.23

The weight on gains is normalized to one. When � > 1, the agent is loss-

averse in the sense that losses loom larger than equally-sized gains.24

Following Kőszegi and Rabin (2006, 2007), the agent’s reference point

is determined by his rational expectations about outcomes. A given out-

come is then evaluated by comparing it to all possible outcomes, where

each comparison is weighted with the ex-ante probability with which the

alternative outcome occurs. With the actual outcome being itself uncer-

tain, the agent’s ex ante expected utility is obtained by averaging over

all these comparisons.25 We apply the concept of choice-acclimating per-

sonal equilibrium (CPE) as defined in Kőszegi and Rabin (2007), which

assumes that a person correctly predicts his choice set, the environment

23Alternatively, one could assume that �(m) = �m for gains and �(m) = ��m

for losses, where � ≥ 0 can be interpreted as the weight attached to gain-loss utility

relative to intrinsic utility. Our implicit normalization � = 1 is without loss of gen-

erality due to the applied concept of choice-acclimating personal equilibrium (CPE).

Carrying � through the whole analysis would only replace (� − 1) by �(� − 1) in all

formulas.
24The assumption of a piece-wise linear gain-loss function is not uncommon in the

literature on incentive design with loss-averse agents, see De Meza and Webb (2007),

Daido and Itoh (2007). In their work on asset pricing, Barberis et al. (2001) also

apply this particular functional form, reasoning that “curvature is most relevant when

choosing between prospects that involve only gains or between prospects that involve

only losses. For gambles that can lead to both gains and losses, [...] loss aversion at

the kink is far more important than the degree of curvature away from the kink.”
25Suppose the actual outcome x and the vector of reference levels r are distributed

according to distribution functions F and G, respectively. As introduced above, over-

all utility from two arbitrary vectors x and r is given by v(x∣r). With the reference

point being distributed according to probability measure G, the utility from a certain

outcome is the average of how this outcome feels compared to all other possible out-

comes, U(x∣G) =
∫
v(x∣r) dG(r). Last, with x being drawn according to probability

measure F , utility is given by E[U(F ∣G)] =
∫∫

v(x∣r) dG(r)dF (x). Since we use

choice acclimating personal equilibrium, F = G.
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he faces, in particular the set of possible outcomes and how the distri-

bution of these outcomes depends on his decisions, and his own reaction

to this environment. The eponymous feature of CPE is that the agent’s

reference point is affected by his choice of action. As pointed out by

Kőszegi and Rabin, CPE refers to the analysis of risk preferences re-

garding outcomes that are resolved long after all decisions are made.

This environment seems well-suited for many principal-agent relation-

ships: Often the outcome of a project becomes observable, and thus

performance-based wage compensation feasible, long after the agent fin-

ished working on that project. Under CPE, the expectations relative

to which a decision’s outcome is evaluated are formed at the moment

the decision is made and, therefore, incorporate the implications of the

decision. More precisely, suppose the agent chooses action a and that

signal s is observed. The agent receives wage ws and incurs effort cost

c(a). While the agent expected signal s to come up with probability


s(a), with probability 
� (a) he expected signal � ∕= s to be observed.

If w� > ws, the agent experiences a loss of �(u(ws) − u(w� )), whereas

if w� < ws, the agent experiences a gain of u(ws) − u(w� ). If ws = w� ,

there is no sensation of gaining or losing involved. The agent’s utility

from this particular outcome is given by

u(ws)+
∑

{� ∣w�<ws}


� (a)(u(ws)−u(w� ))+
∑

{� ∣w�≥ws}


� (a)�(u(ws)−u(w� ))−c(a).

Averaging over all possible outcomes yields the agent’s expected utility

from choosing action a:

E[U(a)] =
S∑

s=1


s(a)

{

u(ws) +
∑

{� ∣w�<ws}


� (a)(u(ws)− u(w� ))

+
∑

{� ∣w�≥ws}


� (a)�(u(ws)− u(w� ))

}

− c(a).

Note that since the agent’s expected and actual effort choice coincide,

there is neither a gain nor a loss in the effort dimension.

We conclude this section by briefly summarizing the underlying tim-

ing.
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1) The principal makes a take-it-or-leave-it offer to the agent.

2) The agent either accepts or rejects the contract. If the agent rejects

the game ends and each party receives her/his reservation payoff.

If the agent accepts the game moves to the next stage.

3) The agent chooses his action and forms rational expectations about

the monetary outcomes. The agent’s rational expectations about

the realization of the performance measure determine his reference

point.

4) Both parties observe the realization of the performance measure

and payments are made according to the contract.

V.3. ANALYSIS

Let the inverse function of the agent’s intrinsic utility of money be ℎ(⋅),

i.e., ℎ(⋅) := u−1(⋅). Thus, the monetary cost for the principal to offer

the agent utility us is ℎ(us) = ws. Due to the assumptions imposed on

u(⋅), ℎ(⋅) is a strictly increasing and weakly convex function. Following

Grossman and Hart (1983), we regard u = {u1, . . . , uS} as the principal’s

control variables in her cost minimization problem to implement action

â ∈ (0, 1). The principal offers the agent a contract that specifies for

each signal a monetary payment or, equivalently, an intrinsic utility level.

With this notation, the agent’s expected utility from exerting effort a is

given by

E[U(a)] =
∑

s∈S


s(a)us

− (�− 1)
∑

s∈S

∑

{� ∣u�>us}


� (a)
s(a)(u� − us)− c(a). (V.1)

For � = 1 the agent’s expected utility equals expected net intrinsic util-

ity. Thus, for � = 1 we are in the standard case without loss aversion.

Moreover, from the above formulation of the agent’s utility it becomes

clear that � captures not only the weight put on losses relative to gains,

but (�− 1) also characterizes the weight put on gain-loss utility relative
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to intrinsic utility. Thus, for � ≤ 2, the weight attached to gain-loss util-

ity is below the weight attached to intrinsic utility. For a given contract

u, the agent’s marginal utility of effort

E[U ′(a)] =
∑

s∈S

(
Hs − 
Ls )us

− (�−1)
∑

s∈S

∑

{� ∣u�>us}

[
� (a)(

H
s −
Ls )+
s(a)(


H
� −
L� )](u� −us)−c

′(a).

(V.2)

Suppose the principal wants to implement action â ∈ (0, 1). The optimal

contract minimizes the expected wage payment to the agent subject to

the usual incentive compatibility and individual rationality constraints:

min
u1,...,uS

∑

s∈S


s(â)ℎ(us)

subject to E[U(â)] ≥ ū , (IR)

â ∈ argmax
a∈A

E[U(a)]. (IC)

As a first benchmark, consider the case where the agent’s action choice

is observable and contractible, i.e., the incentive constraint (IC) is ab-

sent. In order to implement action â in this first-best situation, the

principal pays the agent uFB = ū+ c(â) irrespective of the realization of

the performance measure if the agent chooses the desired action, thereby

compensating him for his outside option and his effort cost. In the pres-

ence of moral hazard, on the other hand, the principal faces the classic

tradeoff between risk sharing and providing incentives: When the agent

is anything but risk and loss neutral, it is neither optimal to have the

agent bear the complete risk, nor to fully insure the agent.

At this point we simplify the analysis by imposing two assumptions.

These assumptions are sufficient to guarantee that the principal’s cost

minimization problem exhibits the following two properties: First, there

are incentive-compatible wage contracts, i.e., contracts under which it

is optimal for the agent to choose the desired action â. Existence of

such contracts is not generally satisfied with the agent being loss-averse.

Second, the first-order approach is valid, i.e., the incentive constraint to
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implement action â can equivalently be represented as E[U ′(â)] = 0. The

first assumption that we introduce requires that the weight attached to

gain-loss utility does not exceed the weight put on intrinsic utility.

A s s u m p t i o n A4: No dominance of gain-loss utility, � ≤ 2.

As carefully laid out in Kőszegi and Rabin (2007), CPE implies a strong

notion of risk aversion, in the sense that a decision maker may choose

stochastically dominated options when � > 2.26 The reason is that,

with losses looming larger than gains of equal size, the person ex ante

expects to experience a net loss. In consequence, if reducing the scope

of possibly incuring a loss is the decision maker’s primary concern, the

person would rather give up the slim hope of experiencing a gain at all

in order to avoid the disappointment in case of not experiencing this

gain. In our model, if the agent is sufficiently loss-averse, the principal

may be unable to implement any action â ∈ (0, 1). The reason is that

the agent minimizes the ex ante expected net loss by choosing one of

the two extreme actions. The values of � for which this behavior is

optimal for the agent depend on the precise structure of the performance

measure. Assumption A4 is sufficient, but not necessary, to ensure that

there is a contract such that â ∈ (0, 1) satisfies the necessary condition for

incentive compatibility. Moreover, the tendency to choose stochastically

dominated options seems counterintuitive.27 Next to ensuring existence

of an incentive compatible contract, A4 rules out that our findings are

driven by such counterintuitive behavior of the agent. It is worthwhile

to emphasize, that our main findings (Propositions 15 and 19) still hold

26Suppose a loss-averse person has to choose between two lotteries: lottery 1 pays x

for sure; lottery 2 pays x+ y with probability p, where y > 0, and x otherwise. Then,

for each � > 2, the decision maker prefers the dominated lottery 1 if p < (�−2)/(�−1).

For further details on this point, see Kőszegi and Rabin (2007).
27The“uncertainty effect” identified by Gneezy et al. (2006) refers to people valuing

a risky prospect less than its worst possible outcome. While this may be interpreted

as experimental evidence for people having preferences for stochastically dominated

options, this finding crucially relies on the lottery currency not being stated in purely

monetary terms. Therefore, we believe that in the context of wage contracts most

people do not choose dominated options.
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for � > 2 as long as existence and validity of the first-order approach are

guaranteed. In Section V.4 we relax Assumption A4 and discuss in detail

the implications of higher degrees of loss aversion.

To keep the analysis tractable we impose the following assumption.

A s s u m p t i o n A5: Convex marginal cost function, ∀ a ∈ [0, 1] :

c′′′(a) ≥ 0.

Given A4, Assumption A5 is a sufficient but not a necessary condition

for the first-order approach to be applicable.28 Alternatively, it would

also suffice to have � sufficiently small, or the slope of the marginal cost

function sufficiently steep. In fact, our results only require the validity of

the first-order approach, not that Assumption A5 holds. In Section V.4

we consider the case in which the first-order approach is invalid.

L e m m a 6: Suppose A3-A5 hold, then the constraint set of the prin-

cipal’s cost minimization problem is nonempty for all â ∈ (0, 1).

The above lemma states that there are wage contracts such that the

agent is willing to accept the contract and then chooses the desired action.

Moreover, we will show that a second-best optimal contract exists. This,

however, is shown separately for the three cases analyzed in this section:

pure risk aversion, pure loss aversion, and the intermediate case.

Sometimes it will be convenient to state the constraints in terms of

increases in intrinsic utilities instead of absolute utilities. Note that what-

ever contract {ûs}s∈S the principal offers, we can relabel the signals such

that this contract is equivalent to a contract {us}
S
s=1 with us−1 ≤ us

for all s ∈ {2, . . . , S}. This, in turn, allows us to write the contract as

us = u1 +
∑s

�=2 b� , where b� = u� − u�−1 ≥ 0 is the increase in intrinsic

utility for money when signal � instead of signal � − 1 is observed. Let

b = (b2, . . . , bS). Using this notation allows us to rewrite the individual

28The validity of the first-order approach under assumptions A3-A5 is rigorously

proven in the appendix. The reader should be aware, however, that the proof requires

some notation introduced later on. We therefore recommend to defer reading the

proof until having read the preliminary considerations up to Section V.3.1.
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rationality constraint as follows:

u1 +
S∑

s=2

bs

[
S∑

�=s


� (â)− �s(
̂, �, â)

]

≥ ū+ c(â) , (IR′)

where

�s(
̂, �, â) := (�− 1)

[ S∑

�=s


� (â)

][ s−1∑

t=1


t(â)

]

.

Let �(
̂, �, â) = (�2(
̂, �, â), . . . , �S(
̂, �, â)). The first part of the agent’s

utility, u1 +
∑S

s=2 bs(
∑S

�=s 
� (â)), is the expected intrinsic utility for

money. Due to loss aversion, however, the agent’s utility has a sec-

ond negative component, the term b′�(
̂, �, â). Where does this term

come from? With bonus bs being paid to the agent whenever a signal

higher or equal to s is observed, the agent expects to receive bs with

probability
∑S

�=s 
� (â). With probability
∑s−1

t=1 
t(â), however, a signal

below s will be observed, and the agent will not be paid bonus bs. Thus,

with “probability” [
∑S

�=s 
� (â)][
∑s−1

t=1 
t(â)] the agent experiences a loss

of �bs. Analogous reasoning implies that the agent will experience a gain

of bs with the same probability. With losses looming larger than gains

of equal size, in expectation the agent suffers from deviations from his

reference point. This ex ante expected net loss is captured by the term,

b′�(
̂, �, â), which we will refer to as the agent’s “loss premium”.29 A

crucial point is that the loss premium increases in the complexity of the

contract. When there is no wage differentiation at all, i.e., b = 0, then

the loss premium vanishes. If, in contrast, the contract specifies many

different wage payments, then the agent ex ante considers a deviation

from his reference point very likely. Put differently, for each additional

wage payment an extra negative term enters the agent’s loss premium

and therefore reduces his expected utility.30

29Our notion of the agent’s loss premium is highly related to the average self-

distance of a lottery defined by Kőszegi and Rabin (2007). Let D(u) be the average

self-distance of incentive scheme u, then [(�− 1)/2]D(u) = b′�(
̂, �, â).
30While the exact change of the loss premium from adding more and more wage

payments is hard to grasp, this point can heuristically be illustrated by considering

the upper bound of the loss premium. Suppose the principal sets n ≤ S different
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Given the first-order approach is valid, the incentive constraint can

be rewritten as
S∑

s=2

bs�s(
̂, �, â) = c′(â), (IC′)

where

�s(
̂, �, â) :=

(
S∑

�=s

(
H� − 
L� )

)

− (�− 1)

⋅

[(
s−1∑

t=1


t(â)

)(
S∑

�=s

(
H� − 
L� )

)

+

(
S∑

�=s


� (â)

)(
s−1∑

t=1

(
Ht − 
Lt )

)]

.

Here, �s(⋅) is the marginal effect on incentives of an increase in the wage

payments for signals above s− 1. Without loss aversion, i.e., � = 1, this

expression equals the marginal probability of observing at least signal s.

If the agent is loss-averse, on the other hand, an increase in the action also

affects the agent’s loss premium. The probability of bearing a loss of size

bs is a quadratic function of the probability of observing at least signal

s. The agent’s action balances the tradeoff between maximizing intrinsic

utility and minimizing the expected net loss. Depending on the precise

signal structure and the action to be implemented, loss aversion may

facilitate as well as hamper the creation of incentives. Let �(
̂, �, â) =

(�2(
̂, �, â), . . . , �S(
̂, �, â)).

As in the standard case, incentives are created solely by increases in

intrinsic utilities, b. In consequence, (IR′) is binding in the optimum.

If this was not the case, i.e., if b satisfies (IC′) but (IR′) holds with

strict inequality, then the principal can lower payment u1 up to the point

where the (IR′) is satisfied with equality. Thus, reducing u1 while holding

b constant lowers the principal’s expected wage payment while preserving

incentives.

It is obvious that (IC′) can only be satisfied if there exists at least one

�s > 0. If, for example, signals are ordered according to their likelihood

wages. It is readily verified that the loss premium is bounded from above by (� −

1)[(uS − u1)/2] × [(n − 1)/n], and that this upper bound increases as n increases.

Note, however, that even for n→ ∞ the upper bound of the loss premium is finite.
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ratios, then �s(⋅) > 0 for all s = 2, . . . , S. More precisely, for a given or-

dering of signals, under A4 the following equivalence follows immediately

from the fact that
∑s−1

t=1(

H
t − 
Lt ) = −

∑S
�=s(


H
� − 
L� ):

�s(
̂, �, â) > 0 ⇐⇒
S∑

�=s

(
H� − 
L� ) > 0. (V.3)

V.3.1. TWO POLAR CASES: PURE RISK AVERSION VS. PURE LOSS

AVERSION

In this part of the paper we analyze the two polar cases: The standard

case where the agent is only risk-averse but not loss-averse, on the one

hand, and the case of a loss-averse agent with a risk-neutral intrinsic

utility function, on the other hand.

Pure Risk Aversion

First consider an agent who is risk-averse in the usual sense, i.e., ℎ′′(⋅) >

0, but does not exhibit loss aversion. As discussed earlier, the latter

requirement corresponds to the case where � = 1. With the agent not

being loss-averse, the first-order approach is valid even without Assump-

tion A5.

P r o p o s i t i o n 14 (Holmström, 1979) : Suppose A3 holds,

ℎ′′(⋅) > 0, and � = 1. Then there exists a second-best optimal contract

to implement â ∈ (0, 1). The second-best contract has the property

that us ∕= u� ∀s, � ∈ S and s ∕= � . Moreover, us > u� if and only if


Hs /

L
s > 
H� /


L
� .

Proposition 14, restates the well-known finding by Holmström (1979)

for discrete signals: Signals that are more indicative of higher effort, i.e.,

signals with a higher likelihood ratio 
Hs /

L
s , are rewarded strictly higher.

Thus, the optimal wage scheme is complex in the sense that it is fully

differentiated, with each signal being rewarded differently.



78

Pure Loss Aversion

Having considered the polar case of pure risk aversion, we now turn to

the other extreme, a purely loss-averse agent. Formally, intrinsic utility

of money is a linear function, ℎ′′(⋅) = 0, and the agent is loss-averse,

� > 1. As we have already reasoned, whatever contract the principal

offers, relabeling the signals always allows us to represent this contract

as an (at least weakly) increasing intrinsic utility profile. Therefore we

can decompose the principal’s problem into two steps: first, for a given

ordering of signals, choose a nondecreasing profile of intrinsic utility levels

that implements the desired action â at minimum cost; second, choose the

signal ordering with the lowest cost of implementation. As we know from

the discussion at the end of the previous section, a necessary condition

for an upward-sloping incentive scheme to achieve incentive compatibility

is that for the underlying signal ordering at least one �s(⋅) > 0. In

what follows we restrict attention to the set of signal orderings that are

incentive feasible in the afore-mentioned sense. Nonemptiness of this set

follows immediately from Lemma 6.

Consider the first step of the principal’s problem, i.e., taking the

ordering of signals as given, find the nondecreasing payment scheme with

the lowest cost of implementation. In what follows, we write the agent’s

intrinsic utility in terms of additional payments, us = u1 +
∑S

�=2 b� .

With ℎ(⋅) being linear, the principal’s objective function is C(u1, b) =

u1 +
∑S

s=2 bs(
∑S

�=2 
� (â)). Remember that at the optimum, (IR′) holds

with equality. Inserting (IR′) into the principal’s objective allows us to

write the cost minimization problem for a given order of signals in the

following simple way:

Program ML:

min
b∈ℝS−1

+

b′�(
̂, �, â)

subject to b′�(
̂, �, â) = c′(â) (IC′)

The minimization problem (ML) has a simple intuition. The principal

seeks to minimize the agent’s expected net loss subject to the incentive
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compatibility constraint. Similar to the case of pure risk aversion, where

the principal would like to cut back the agent’s risk premium, here she is

interested in minimizing the agent’s loss premium. Due to the incentive

constraint, however, this loss premium has to be strictly positive.

We want to emphasize that solving Program ML also yields insights

for the more general case with a concave intrinsic utility function. Even

though the principal’s objective will not reduce to minimizing the agent’s

loss premium alone when intrinsic utility is non-linear, this nevertheless

remains an important aspect of the principal’s problem. Since the solu-

tion to Program ML tells us how to minimize the agent’s loss premium

irrespective of the functional form of intrinsic utility, one should expect

its properties to carry over to some extent to the solution of the more

general problem.

The principal’s cost minimization problem for a given order of signals

is a simple linear programming problem: minimize a linear objective

function subject to one linear equality constraint. Since we restricted

attention to orderings of signals with �s(⋅) > 0 for at least one signal s,

a solution to (ML) exists. Due to the linear nature of problem (ML),

(generically) this solution sets exactly one bs > 0 and all other bs = 0.

Put differently, the problem is to find that bs which creates incentives at

the lowest cost.

So far we have seen that, for a given ordering of signals, the principal

considers it optimal to offer the agent a bonus contract: pay a low wage

for signals below some threshold, and a high wage for signals above this

threshold. What remains to do for the principal, in a second step, is to

find the signal ordering that leads to the lowest cost of implementation.

With the number of different orders of signals being finite, this problem

clearly has a solution.

Before summarizing the above discussion more concisely, we want to

relate our finding to the benchmark case of pure risk neutrality. As is

well-known, with both contracting parties being risk (and loss) neutral a

broad range of contracts – including simple bonus schemes – is optimal.

With the agent being loss-averse even to a negligible degree, however,
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the unique optimal contractual form is a bonus scheme.31

P r o p o s i t i o n 15 : Suppose A3-A5 hold, ℎ′′(⋅) = 0 and � > 1.

Then there exists a second-best optimal contract to implement action

â ∈ (0, 1). Generically, the second-best optimal incentive scheme {u∗s}
S
s=1

is a bonus contract, i.e., u∗s = u∗H for s ∈ ℬ∗ ⊂ S and u∗s = u∗L for

s ∈ S ∖ ℬ∗, where u∗H > u∗L.

According to Proposition 15, the principal considers it optimal to offer

the agent a bonus contract which entails only a minimum degree of wage

differentiation in the sense that, no matter how rich the signal space, the

contract specifies only two different wage payments. This endeavor to

reduce the complexity of the contract is plausible, since a high degree of

wage differentiation increases the agent’s loss premium: With the em-

ployment contract she offers to the agent, the principal determines the

dimensionality of the agent’s reference point. The higher the dimension-

ality of the reference point is, the more likely it is that the agent incurs a

loss in a particular dimension. Therefore, with the concept of reference-

dependent preferences developed by Kőszegi and Rabin, it truly pains a

person to be exposed to numerous potential outcomes. This disutility

of the agent from facing several possible (monetary) outcomes, which he

demands to be compensated for, makes it costly for the principal to offer

complex contracts. In consequence, the optimal contract entails only a

minimum of wage differentiation. To provide a more intuitive explanation

for this finding, consider a principal who – starting out from a given wage

scheme – has to improve incentives. There are basically two ways to do

so. On the one hand, the principal can introduce a new wage spread, i.e.,

pay slightly different wages for two signals that were rewarded equally

31If, in addition to both the principal and the agent being risk-neutral, the agent is

protected by limited liability, Park (1995), Kim (1997), Oyer (2000), and Demougin

and Fluet (1998) show that the optimal contract is a bonus scheme. These findings,

however, immediately collapse when the agent is somewhat risk-averse as is demon-

strated by Jewitt et al. (2008). Our findings, on the other hand, are robust towards

introducing a slightly concave intrinsic utility function, as we will illustrate in Section

V.3.2.
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in the original wage scheme, while keeping the differences between all

other neighboring wages constant. On the other hand, the principal can

increase an existing wage spread, holding constant all other spreads be-

tween neighboring wages. Both procedures increase the loss premium by

increasing the size of some of the the expected losses without reducing

others. Introducing a new wage spread, however, additionally increases

the loss premium by increasing the ex ante expected probability of expe-

riencing a loss. Therefore, in order to improve incentives for a loss-averse

agent, it is advantageous to increase a particular existing wage spread

without adding to the contractual complexity in the sense of increasing

the number of different wages. Under the standard notion of a risk-

averse agent, however, one should not expect to encounter this tendency

to reduce the complexity of contracts. The reason is that increasing in-

centives by introducing a small new wage spread is basically costless for

the principal because locally the agent is risk-neutral. Therefore, under

risk aversion different signals are rewarded differently.

Up to now, however, we have not specified which signals are generally

included in the set ℬ∗. In light of the above observation, the principal’s

problem boils down to choosing a binary partition of the set of signals,

ℬ ⊂ S, which characterizes for which signals the agent receives the high

wage and for which signals he receives the low wage. The wages uL and

uH are then uniquely determined by the corresponding individual ratio-

nality and incentive compatibility constraints. The problem of choosing

the optimal partition of signals, ℬ∗, which minimizes the principal’s ex-

pected cost of implementing action â is an integer programming problem.

As is typical for this class of problems, and as is nicely illustrated by the

well-known“0-1 Knapsack Problem”, it is impossible to provide a general

characterization of the solution.32

32The “0-1 Knapsack Problem” refers to a hiker who has to select from a group

of items, all of which may be suitable for her trip, a subset that has greatest value

while not exceeding the capacity of her knapsack. Suppose there are n items, each

item j has a value vj > 0 and a weight wj > 0. Let the capacity of the knapsack be

c > 0. The 0-1 Knapsack Problem may be formulated as the following maximization

problem: max
∑n

j=1 vjxj subject to
∑n

j=1 wjxj ≤ c and xj ∈ {0, 1} for j = 1, . . . , n.
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Next to these standard intricacies of integer programming, there is an

additional difficulty in our model: the principal’s objective behaves non-

monotonically when including an additional signal into the“bonus set”ℬ.

This is due to different – possibly conflicting – targets that the principal

pursues when deciding how to partition the set S. From Program (ML) it

follows that, for a given“bonus set”ℬ, the minimum cost of implementing

action â is given by

Cℬ = ū+ c(â) +
c′(â)(�− 1)Pℬ(1− Pℬ)

[
∑

s∈ℬ 

H
s − 
Ls ][1− (�− 1)(1− 2Pℬ)]

, (V.4)

where Pℬ :=
∑

s∈ℬ 
s(â). The above costs can be rewritten such that the

principal’s problem amounts to

max
ℬ⊂S

[
∑

s∈ℬ

(
Hs − 
Ls )

]{
1

(�− 1)Pℬ(1− Pℬ)
−

1

Pℬ

+
1

1− Pℬ

}

. (V.5)

This objective function illustrates the tradeoff that the principal faces

when deciding how to partition the signal space. The first term,
∑

s∈ℬ(

H
s

−
Ls ), is the aggregate marginal impact of effort on the probability of

the bonus b := uH − uL being paid out. In order to create incentives

for the agent, the principal would like to make this term as large as

possible, which in turn allows her to lower the bonus payment. This can

be achieved by including only good signals in ℬ. The second term, on the

other hand, is maximized by making the probability of paying the agent

the high wage either as large as possible or as small as possible, depending

on the exact signal structure and the action to be implemented. With

the loss premium being given by (� − 1)Pℬ(1 − Pℬ)b, this is intuitive:

By making the event of paying the high wage very likely or unlikely,

the principal minimizes the scope for the agent to experience a loss that

he demands to be compensated for. Depending on the signal structure,

these two goals may conflict with each other, which makes a complete

characterization of the optimal contract very intricate. Nevertheless, it

can be shown that the optimal contract displays the following plausible

property.

P r o p o s i t i o n 16 : Let S+ ≡ {s ∈ S∣
Hs − 
Ls > 0}. The optimal

partition of the signals for which the high wage is paid, ℬ∗, has the

following property: either ℬ∗ ⊆ S+ or S+ ⊆ ℬ∗.
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Put verbally, the optimal partition of the signal set takes one of the

two possible forms: the high wage is paid out to the agent (i) either only

for good signals though possibly not for all good signals, or (ii) for all

good signals and possibly a few bad signals as well. Loosely speaking, if

the principal considers it optimal to pay the high wage very rarely, she

will reward only good signals with the extra payment b. If, on the other

hand, she wants the agent to receive the high wage with high probability,

then she will reward at least all good signals.

Without further assumptions, due to the discrete nature of the prob-

lem it is hard to characterize the signals that are included in ℬ∗. Back

to the “0-1 Knapsack Problem”, here it is well-established for the con-

tinuous version of the problem that the solution can easily be found by

ordering the items according to their value-to-weight ratio.33 Defining

� := max{s,t}⊆S ∣
s(â) − 
t(â)∣, we can obtain a similar result. Assum-

ing that � is sufficiently small, which is likely to hold if the performance

measure is, for instance, sales revenues measured in cents, makes the

principal’s problem of choosing ℬ∗ similar to a continuous problem.34

With this assumption, we can show that it is optimal to order the signals

according to their likelihood ratios.

P r o p o s i t i o n 17 : Suppose � is sufficiently small, then there ex-

ists a constant K such that ℬ∗ = {s ∈ S ∣ 
Hs /

L
s ≥ K}.

Though wage payments are only weakly increasing in the likelihood

ratio, this finding resembles the standard result for a risk-averse agent,

where the incentive scheme is strictly increasing in the likelihood ratio.

Before moving on to the discussion of the more general case in which

the agent is both risk and loss-averse, we want to pause to point out the

following comparative static results.

P r o p o s i t i o n 18 : An increase in the agent’s degree of loss aver-

sion (i) strictly increases the minimum cost of implementing action â;

33In the continuous “0-1 Knapsack Problem” the constraints on the variables xj ∈

{0, 1} are relaxed to xj ∈ [0, 1], e.g. Dantzig (1957).
34Here, the probability of observing a specific signal, say, sales revenues of exactly

$13,825.32 is rather small.
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(ii) decreases the necessary wage spread to implement action â if and

only if Pℬ∗ > 1/2, given that the change in � does not lead to a change

of ℬ∗.

Part (ii) of Proposition 18 relates to the reasoning by Kőszegi and Ra-

bin (2006) that if the agent is loss-averse and expectations are the driving

force in the determination of the reference point, then “in principal-agent

models, performance-contingent pay may not only directly motivate the

agent to work harder in pursuit of higher income, but also indirectly

motivate [him] by changing [his] expected income and effort.” As can

be seen from (V.1), the agent’s expected utility under the second-best

contract comprises of two components, the first of which is expected net

intrinsic utility from choosing effort level â, uL + b∗
∑

s∈ℬ∗ 
s(â) − c(â).

Due to loss aversion, however, there is a second component: With losses

looming larger than equally sized gains, in expectation the agent suffers

from deviations from his reference point. While the strength of this ef-

fect is determined by the degree of the agent’s loss aversion, �, his action

choice – together with the signal parameters – determines the probabil-

ity that such a deviation from the reference point actually occurs. We

refer to this probability, which is given by Pℬ∗(1−Pℬ∗), as loss probabil-

ity. Therefore, when choosing his action, the agent has to balance off two

possibly conflicting targets, maximizing expected net intrinsic utility and

minimizing the loss probability. The loss probability, which is a strictly

concave function of the agent’s effort, is locally decreasing at â if and only

if Pℬ∗ > 1/2. In this case, an increase in �, which makes reducing the

loss probability more important, may lead to the agent choosing a higher

effort level, which in turn allows the principal to use lower-powered incen-

tives. The principal, however, cannot capitalize on this since, according

to part (i) of Proposition 18, the overall cost of implementation strictly

increases in the agent’s degree of loss aversion.

V.3.2. THE GENERAL CASE: LOSS AVERSION AND RISK AVERSION

We now turn to the intermediate case where the agent is both risk and

loss-averse. The agent’s intrinsic utility for money is a strictly increasing
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and strictly concave function, which implies that ℎ(⋅) is strictly increasing

and strictly convex. Moreover, the agent is loss-averse, i.e., � > 1. From

Lemma 6, we know that the constraint set of the principal’s problem

is nonempty. By relabeling signals, each contract can be interpreted as

a contract that offers the agent a (weakly) increasing intrinsic utility

profile. This allows us to assess whether the agent perceives receiving us

instead of ut as a gain or a loss. As in the case of pure loss aversion, we

analyze the optimal contract for a given feasible ordering of signals.

The principal’s problem for a given arrangement of the signals is given

by

Program MG:

min
u1,...,uS

S∑

s=1


s(â)ℎ(us) subject to

S∑

s=1


s(â)us − (�− 1)
S−1∑

s=1

S∑

t=s+1


s(â)
t(â)[ut − us]− c(â) = ū , (IRG)

S∑

s=1

(
Hs − 
Ls )us − (�− 1)

⋅
S−1∑

s=1

S∑

t=s+1

[

s(â)(


H
t − 
Lt ) + 
t(â)(


H
s − 
Ls )

]
[ut − us] = c′(â) ,

(ICG)

uS ≥ uS−1 ≥ . . . ≥ u1. (OCG)

Since the objective function is strictly convex and the constraints are all

linear in u = {u1, . . . , uS}, the Kuhn-Tucker theorem yields necessary

and sufficient conditions for optimality. Put differently, if there exists a

solution to the problem (MG) the solution is characterized by the partial

derivatives of the Lagrangian associated with (MG) set equal to zero.

L e m m a 7: Suppose A3-A5 hold and ℎ′′(⋅) > 0, then there exists a

second-best optimal incentive scheme for implementing action â ∈ (0, 1),

denoted u∗ = {u∗1, . . . , u
∗
S}.

In order to interpret the first-order conditions of the Lagrangian to
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problem (MG) it is necessary to know whether the Lagrangian multipliers

are positive or negative.

L e m m a 8: The Lagrangian multipliers of program (MG) associated

with the incentive compatibility constraint and the individual rationality

constraint are both strictly positive, i.e., �IC > 0 and �IR > 0.

We now give a heuristic reasoning why pooling of information may

well be optimal in this more general case. For the sake of argument,

suppose there is no pooling of information in the sense that it is optimal

to set distinct wages for distinct signals. In this case all order constraints

are slack; formally, if us ∕= us′ for all s, s
′ ∈ S and s ∕= s′, then �O,s = 0 for

all s ∈ {2, . . . , S}. In this case, i.e., when none of the ordering constraints

is binding, then the first-order condition of optimality with respect to us,

∂ℒ(u)/∂us = 0, can be written as follows:

ℎ′(us) =

(

�IR + �IC

Hs − 
Ls

s(â)

)

︸ ︷︷ ︸

=:Hs

[

1− (�− 1)

(

2
s−1∑

t=1


t(â) + 
s(â)− 1

)]

︸ ︷︷ ︸

=:Γs

− �IC(�− 1)

[

2
s−1∑

t=1

(
Ht − 
Lt ) + (
Hs − 
Ls )

]

︸ ︷︷ ︸

=:Λs

. (V.6)

For � = 1 we have ℎ′(us) = Hs, the standard “Holmström-formula”.35

Note that Γs > 0 for � ≤ 2. More importantly, irrespective of the signal

ordering, we have Γs > Γs+1. The third term, Λs, can be either positive

or negative. If the compound signal of all signals below s and the signal

s itself are bad signals, then Λs < 0.

Since the incentive scheme is nondecreasing, when the order con-

straints are not binding it has to hold that ℎ′(us) ≥ ℎ′(us−1). Thus,

if �OC,s−1 = �OC,s = �OC,s+1 = 0 the following inequality is satisfied:

Hs × Γs − Λs ≥ Hs−1 × Γs−1 − Λs−1. (V.7)

35See Holmström (1979). This formula is also referred to as the modified Borch

sharing rule (Borch, 1962).
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Note that for the given ordering of signals, if there exists any pair of

signals s, s− 1 such that (V.7) is violated, then the optimal contract for

this ordering involves pooling of wages. Even when Hs > Hs−1, as it is

the case when signals are ordered according to their likelihood ratio, it

is not clear that inequality (V.7) is satisfied. In particular, when s and

s − 1 are similarly informative it seems to be optimal to pay the same

wage for these two signals as can easily be illustrated for the case of two

good signals: If s and s − 1 are similarly informative good signals then

Hs ≈ Hs−1 > 0 but Γs < Γs−1 and Λs > Λs−1, thus condition (V.7) is

violated. In summary, it may well be that for a given incentive-feasible

ordering of signals, and thus overall as well, the order constraints are

binding, i.e., it may be optimal to offer a contract which is less complex

than the signal space allows for. We illustrate this conjecture in the

following with an example.

Application with Constant Relative Risk Aversion

In the general case of a risk and loss-averse agent the principal seeks

to minimize the loss and the risk premium. Roughly speaking, the risk

premium is increasing in the curvature of the agent’s intrinsic utility func-

tion. Put differently, when the agent’s intrinsic utility function becomes

close to linearity the risk premium goes to zero. Thus, for a slightly

concave intrinsic utility function one should expect that the principal’s

main objective is to minimize the loss premium, which is achieved by a

bonus scheme as is shown in Section V.3.1. In the following we show that

these reasoning is correct for the case of an intrinsic utility function that

features constant relative risk aversion (CRRA).

Suppose ℎ(u) = ur, with r ≥ 0 being a measure for the agent’s

risk aversion. More precisely, the Arrow-Pratt measure for relative risk

aversion of the agent’s intrinsic utility function is R = 1− 1
r
and therefore

constant. The following result states that the optimal contract is still a

bonus contract when the agent is not only loss-averse, but also slightly

risk-averse.

P r o p o s i t i o n 19 : Suppose A3-A5 hold, ℎ(u) = ur with r > 1,
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and � > 1. Generically, for r sufficiently small the optimal incentive

scheme {u∗s}
S
s=1 is a bonus scheme, i.e., u∗s = u∗H for s ∈ ℬ∗ ⊂ S and

u∗s = u∗L for s ∈ S∖ℬ∗ where u∗L < u∗H .

Without loss aversion, in contrast, according to Proposition 14 the

optimal contract is fully differentiated even for intrinsic utility being ar-

bitrarily close to linearity.

Next, we demonstrate by means of an example that pooling of signals

may well be optimal even for a non-negligible degree of risk aversion.

Suppose the agent’s effort cost is c(a) = (1/2)a2 and the effort level to be

implemented is â = 1
2
. Moreover, we assume that the reservation utility

ū = 10, which guarantees that all utility levels are positive.36 To keep the

example as simple as possible, it is assumed that the agent’s performance

can take only three values, i.e., the agent’s performance is either excellent

(E), satisfactory (S) or inadequate (I). We consider two specifications of

the performance measure. In the first specification the satisfactory signal

is a good signal, whereas in the second specification it is a bad signal.

In all parameter constellations we consider, it turns out that it is always

(weakly) optimal to order signals according to their likelihood ratio, i.e.,

u1 = uI , u2 = uS and u3 = uE. In the first specification the conditional

probabilities take the following values:


HE = 5/10 
LE = 1/10


HS = 4/10 
LS = 3/10


HI = 1/10 
LI = 6/10.

The structure of the optimal contract for this specification and various

values of r and � is presented in Table V.1.

Table V.1 suggests that the optimal contract typically involves pooling

of the two good signals, in particular when the agent’s intrinsic utility

is not too concave, i.e., if the agent is not too risk-averse. Table V.1

nicely illustrates the trade-off the principal faces when the agent is both,

risk and loss-averse: If the agent becomes more risk-averse pooling is less

36Increasing ū makes the agent less (absolutely) risk-averse and thus is similar to a

reduction in r.
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H
H
H

H
H
H
H

r

�
1.0 1.1 1.3 1.5

1.5 u1 < u2 < u3 u1 < u2 = u3 u1 < u2 = u3 u1 < u2 = u3

2 u1 < u2 < u3 u1 < u2 < u3 u1 < u2 = u3 u1 < u2 = u3

3 u1 < u2 < u3 u1 < u2 < u3 u1 < u2 = u3 u1 < u2 = u3

Table V.1: Structure of the optimal contract with two “good” signals.

likely to be optimal. If, on the other hand, he becomes more loss-averse,

pooling is more likely to be optimal.37

In the second specification we assume that there are two bad signals.

The conditional probabilities are as follows:


HE = 6/10 
LE = 1/10


HS = 2/10 
LS = 4/10


HI = 2/10 
LI = 5/10.

The results for this case are presented in Table V.2.

H
H
H

H
H
H
H

r

�
1.0 1.1 1.3 1.5

1.5 u1 < u2 < u3 u1 = u2 < u3 u1 = u2 < u3 u1 = u2 < u3

2 u1 < u2 < u3 u1 = u2 < u3 u1 = u2 < u3 u1 = u2 < u3

3 u1 < u2 < u3 u1 = u2 < u3 u1 = u2 < u3 u1 = u2 < u3

Table V.2: Structure of the optimal contract with two “bad” signals.

In this specification, a binary statistic that pools the two bad signals

seems to be optimal almost always. The reason behind this observation

is that the two bad signals are very similar. In consequence, paying the

same wage for satisfactory as well as inadequate performance increases

37For a given r, the degree of pooling does not monotonically increase in �. As

discussed at the end of Section V.3.1, a higher degree of loss aversion of the agent

may help the principal to create incentives. If this is the case, a contract that contains

less pooling is preferred from an incentive point of view. If this positive effect of less

pooling on incentives outweighs the negative effect on the agent’s loss premium, then

the optimal contract consists of more distinct wage payments when � increases. This

can happen, however, only locally: at some point the degree of pooling increases in �.
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the risk premium only slightly. On the other hand, by pooling satisfactory

and inadequate performance it becomes less likely for the agent ex ante

to experience a loss, i.e., the loss premium is reduced. Therefore, it is

optimal for the principal to use a bonus scheme even when the agent’s

degree of loss aversion is small.

V.4. IMPLEMENTATION PROBLEMS, TURNING A BLIND EYE, AND

STOCHSTIC CONTRACTS

In this section, we relax the assumptions that guaranteed the validity

of the first-order approach. In particular, in order to explore the im-

plications of a higher degree of loss aversion, we relax A4. We restrict

attention to two simplifications of the former model. First, we return

to the assumption of a purely loss-averse agent. Second, only binary

measures of performance are considered.

V.4.1. THE CASE OF A BINARY MEASURE OF PERFORMANCE

As before, the principal cannot observe the agent’s action a or whether

the benefit B was realized or not. Instead she observes a contractible

binary measure of performance, i.e., S = {1, 2}. For notational conve-

nience , let (1− 
H) and 
H denote the probabilities of observing signal

s = 1 and s = 2, respectively, conditional on B being realized. Accord-

ingly, (1 − 
L) and 
L are the probabilities of observing signal s = 1

and s = 2, respectively, conditional on B not being realized.38 Thus, the

unconditional probability of observing signal s = 2 for a given action a

is 
(a) ≡ a
H + (1− a)
L. Let 
̂ = (
H , 
L). We reformulate A3 for the

binary case as follows.

A s s u m p t i o n A6: 1 > 
H > 
L > 0 .

With only two possible signals to be observed, the contract takes the

form of a bonus contract: the agent is paid a base wage which yields

38In the notation introduced above, we have 
H1 = 1− 
H , 
H2 = 
H , 
L1 = 1− 
L

and 
L2 = 
L.
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intrinsic utility u if the bad signal is observed, and he is paid the base

wage plus a bonus b resulting in intrinsic utility u + b if the good signal

is observed. For now assume that b ≥ 0.39 We assume that the agent’s

intrinsic disutility of effort is a quadratic function, c(a) = (k/2)a2.40 The

agent’s expected utility from choosing effort level a then is

E [U(a)] = u+ 
(a)b−
k

2
a2 − (�− 1)
(a)(1− 
(a))b. (V.8)

As before, the first component is expected net intrinsic utility from choos-

ing effort level a, that is, expected wage payment minus effort cost. The

second component is the loss premium, with 
(a)(1− 
(a)) denoting the

loss probability.

V.4.2. INVALIDITY OF THE FIRST-ORDER APPROACH

The first derivative of expected utility with respect to effort is given by

E [U ′(a)] = (
H − 
L)b [2− �+ 2
(a)(�− 1)]
︸ ︷︷ ︸

MB(a)

− ka
︸︷︷︸

MC(a)

. (V.9)

While the marginal cost, MC(a), obviously is a straight line through the

origin with slope k, the marginal benefit, MB(a), also is a positively

sloped, linear function of effort a. An increase in b unambiguously makes

MB(a) steeper. Letting a0 denote the intercept of MB(a) with the

horizontal axis, we have

a0 =
�− 2− 2
L(�− 1)

2(
H − 
L)(�− 1)
.

The cases for a0 < 0 and a0 > 0 are depicted in Figures V.1 and V.2,

respectively. Implementation problems in our sense refer to a situation

where there are actions a ∈ (0, 1) that are not incentive compatible for

any bonus payment.

39The assumption b ≥ 0 is made only for expositional purposes, the results hold

true for b ∈ ℝ.
40This functional form does not fit exactly the assumptions on c(⋅) that we imposed

above, but is made for expositional convenience. Allowing for more general effort cost

functions does not qualitatively change the insights that are to be obtained.
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replacemen

aâa0

MC(a) MB(a)

Figure V.1: MB(a) and MC(a)

for a0 < 0.

aâa0

MB(a) MC(a)

Figure V.2: MB(a) and MC(a)

for a0 > 0.

P r o p o s i t i o n 20 : Suppose A6 holds, then effort level â ∈ (0, 1)

is implementable if and only if a0 ≤ 0.

Implementation problems arise when a0 > 0, or equivalently, when


L < 1/2 and � > 2(1− 
L)/(1− 2
L) > 2. Somewhat surprisingly, this

includes performance measures with 
L < 1/2 < 
H , which (possibly)

are highly informative. Informative in this context means that it is more

likely to observe the bad signal if benefit B was not realized, whereas

it is more likely to observe the good signal if B was realized. So, why

do these implementation problems arise in the first place? Remember

that the agent has two targets: First, as in classic models, he seeks to

maximize net intrinsic utility, u+ b
(a)− (k/2)a2. When the agent cares

only about this net intrinsic utility (e.g., he is loss neutral) then each

action can be implemented by choosing a sufficiently high bonus. Due to

loss aversion, however, the agent has a second target which is minimizing

the expected loss. How can the agent pursue this goal? He can do so by

choosing an action such that the loss probability, 
(a)(1−
(a)), becomes

small. The crucial point is that these two targets may conflict with each

other in the sense that an increase in effort may increase net intrinsic

utility but at the same time also increases the loss probability. First

of all, note that implementation problems never arise when 
L ≥ 1/2

or � ≤ 2. For 
L ≥ 1/2, the loss probability is strictly decreasing in

the agent’s action. Consequently, with both targets of the agent being

aligned, an increase in the bonus unambiguously leads to an increase in

the agent’s action. For � ≤ 2, the weight put on gain-loss utility, �− 1,

is lower than the weight put on intrinsic utility, so the agent is more
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interested in maximizing net intrinsic utility than in minimizing the loss

probability. For 
L < 1/2, on the other hand, implementation problems

do arise when � is sufficiently large. Roughly speaking, being sufficiently

loss-averse, the agent primarily cares about reducing the loss probability.

With the loss probability being inverted U-shaped, the agent achieves

this by choosing one of the two extreme actions a ∈ {0, 1}. Therefore,

the principal cannot motivate the agent to choose an action â ∈ (0, 1)

when 
L < 1/2 and the agent’s loss aversion is sufficiently severe.

V.4.3. TURNING A BLIND EYE

As we have seen in the preceding analysis, the principal faces implementa-

tion problems whenever a0 > 0. One might wonder if there is a remedy for

these implementation problems. The answer is “yes”, there is a remedy.

The principal can manipulate the signal in her favor by not paying atten-

tion to the signal from time to time but nevertheless paying the bonus in

these cases. Formally, suppose the principal commits herself to stochas-

tically ignoring the signal with probability p ∈ [0, 1).41 Thus, the overall

probability of receiving the bonus is given by 
(a; p) ≡ p + (1 − p)
(a).

This strategic ignorance of information gives rise to a transformed per-

formance measure 
̂(p) = (
H(p), 
L(p)). As before, 
H(p) denotes the

probability that the bonus is paid to the agent conditional on benefit

B being realized. Given that B is realized, this happens either when

the performance measure is ignored, or – if the principal pays atten-

tion to the performance measure – when the good signal is realized.

Hence, 
H(p) = p + (1 − p)
H . Analogously, the probability of the

bonus being paid out conditional on B not being realized is given by


L(p) = p + (1− p)
L. As it turns out, ignoring the whole performance

measure with probability p is formally equivalent to ignoring only the

41Always ignoring the signal, i.e., setting p = 1, would be detrimental for incentives

because then the agent’s monetary payoff is independent of his action. Hence, he

would choose the least cost action a = 0. Therefore, we a priori restrict the principal

to choose p from the interval [0, 1).
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bad signal with probability p.42 For this reason, we refer to the princi-

pal not paying attention to the performance measure as turning a blind

eye on bad performance of the agent. It is readily verified that under

the transformed performance measure 
̂(p) the intercept of the MB(a)

function with the horizontal axis,

a0(p) ≡
�− 2− 2

[
p+ (1− p)
L

]
(�− 1)

2(1− p)(
H − 
L)(�− 1)
,

not only is decreasing in p but also can be made arbitrarily small, in par-

ticular, arbitrarily negative. Formally, da0(p)/dp < 0 and limp→1 a0(p) =

−∞. In the light of Proposition 20 this immediately implies that the

principal can eliminate any implementation problems by choosing p suf-

ficiently high, that is, by turning a blind eye sufficiently often.

Besides alleviating possible implementation problems, turning a blind

eye can also benefit the principal from a cost perspective. Using the defi-

nition of 
(a; p) it can be shown that the minimum cost of implementing

action â under the transformed performance measure, C(â; p), takes the

following form:

C(â; p) = u+
k

2
â2 +

kâ(�− 1)(1− 
(â))

(
H − 
L)

⋅

(â) + p(1− 
(â))

1− (�− 1) [1− 2
(â)− 2p(1− 
(â))]
(V.10)

Differentiating the principal’s cost with respect to p reveals that sign

{dC(â; p)/dp} = sign{2 − �}. Hence, an increase in the probability

of ignoring the bad signal decreases the cost of implementing a certain

action if and only if � > 2. Hence, whenever the principal turns a blind

eye in order to remedy implementation problems, she will do so to the

42In this latter case, the agent receives the bonus either when the good signal is

observed, which happens with probability 
(a), or when the bad signal is observed but

is ignored, which happens with probability (1−
(a))p. Hence, the overall probability

of the bonus being paid out is given by 
(a) + (1− 
(a))p.



95

largest possible extent.43,44 We summarize the preceding analysis in the

following proposition.

P r o p o s i t i o n 21 : Suppose the principal can commit herself to

stochastic ignorance of the signal. Then each action â ∈ [0, 1] can be

implemented. Moreover, the implementation costs are strictly decreasing

in p if and only if � > 2.

We restricted the principal to offer non-stochastic payments condi-

tional on which signal is observed. If the principal was able to do just

that, then she could remedy implementation problems by paying the base

wage plus a lottery in the case of the bad signal. For instance, when the

lottery yields b with probability p and zero otherwise, this is just the same

as turning a blind eye. This observation suggests that the principal may

benefit from offering a contract that includes randomization, which is in

contrast to the finding under conventional risk aversion, see Holmström

(1979).45

V.4.4. BLACKWELL REVISITED

We conclude this section by briefly pointing out an interesting impli-

cation of the above analysis. Suppose the principal has no access to a

randomization device, i.e., turning a blind eye is not possible. Then the

above considerations allow a straight-forward comparison of performance

43Formally, for � > 2, the solution to the principal’s problem of choosing the optimal

probability to turn a blind eye, p∗, is not well defined because p∗ → 1. If the agent

is subject to limited liability or there is a cost of ignorance, however, the optimal

probability of turning a blind eye is well defined.
44This is in the spirit of Becker and Stigler (1974), who show that despite a small

detection probability of malfeasance, incentives can be maintained if the punishment

is sufficiently severe.
45The finding that stochastic contracts may be optimal is not novel to the principal-

agent literature. Haller (1985) shows that in the case of a satisficing agent, who wants

to achieve certain aspiration levels of income with certain probabilities, randomization

may pay for the principal. Moreover, Strausz (2006) finds that deterministic contracts

may be suboptimal in a screening context.
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measures �̂ = (�H , �L) and 
̂ = (
H , 
L) if �̂ is a convex combination of


̂ and 1 ≡ (1, 1).

C o r o l l a ry 1: Let �̂ = p1 + (1 − p)
̂ with p ∈ (0, 1). Then the

principal at least weakly prefers performance measure �̂ to 
̂ if and only

if � ≥ 2.

The finding that the principal prefers the “garbled”performance mea-

sure �̂ over performance measure 
̂ is at odds with Blackwell’s theorem.

To see this, let performance measures 
̂ and �̂ be characterized, respec-

tively, by the stochastic matrices

P 
 =

(

1− 
H 
H

1− 
L 
L

)

and P � =

(

1− �H �H

1− �L �L

)

.

According to Blackwell’s theorem, any decision maker prefers information

system 
̂ to �̂ if and only if there exists a non-negative stochastic matrix

M with
∑

jmij = 1 such that P � = P 
M .46 It is readily verified that

this matrix M exists and takes the form

M =

(

1− p p

0 1

)

.

Thus, even though comparison of the two performance measures accord-

ing to Blackwell’s theorem implies that the principal should prefer 
̂ over

�̂, the principal actually prefers the “garbled” information system �̂ over

information system 
̂. While Kim (1995) has already shown that the

necessary part of Blackwell’s theorem does not hold in the agency model,

the sufficiency part was proven to be applicable to the agency framework

by Gjesdal (1982).47 Our findings, however, show that this is not the

case anymore when the agent is loss-averse.

46See Blackwell (1951, 1953).
47In order to avoid confusion: The necessary part of Blackwell’s theorem states that

the principal being better off implies that she uses a more informative performance

measure. The sufficiency part conversely states that making use of more informative

performance measure implies that the principal is better off.
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V.5. ROBUSTNESS, EXTENSIONS, AND CONCLUSION

In this paper, we explore the implications of reference-dependent pref-

erences on contract design in an otherwise standard model of principal-

agency. We find that introducing a loss-averse agent leads to a reduction

in the complexity of the optimal contractual arrangement. When loss

aversion is the predominant feature of the agent’s risk preferences, the

optimal contract takes the form of a simple bonus contract even if the

agent is also risk-averse: some realizations of the performance measure

are rewarded with a bonus payment, while others are not. Thus, loss

aversion provides a theoretical rationale for bonus contracts, the wide

application of which is hard to reconcile with obvious drawbacks – as

seasonality effects or insurance fraud – that come along with this partic-

ular contractual form.

In the remainder of this section, we consider the robustness of our

results. After a brief and semi-formal analysis of an alternative equilib-

rium concept, we explore the consequences of non quadratic effort costs

for implementation problems. Finally, we conclude by discussing dimin-

ishing sensitivity of the gain-loss function. Throughout the whole anal-

ysis, we adopted the concept of choice-acclimating personal equilibrium

(CPE). Kőszegi and Rabin (2006, 2007) provide another concept, called

unacclimating personal equilibrium (UPE). The major difference between

UPE and CPE is the timing of expectation formation and actual decision

making. Under UPE a decision maker first forms his expectations, which

determine his reference point, and thereafter, given these expectations,

chooses the optimal action. To rule out that people can systematically

cheat themselves, for action â to be an UPE, it must be optimal for

the decision maker to choose â given that he expected to do so. In the

following, we will argue that applying UPE instead of CPE does not

change our main findings. Intuitively, the optimality of simple contracts

is rooted in the agent’s dislike of being exposed to numerous outcomes,

which is reflected in the functional form of his ex ante expected utility.

With expectations being met on the equilibrium path under UPE, the

expected utility takes the same form under both equilibrium concepts.
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Thus, one should expect simple contracts to be optimal also under UPE.

For the sake of a more formal argument, consider the case of a purely

loss-averse agent, i.e., suppose intrinsic utility is linear. The agent’s ex

ante expected utility from choosing action a when expecting action â is

E[U(a∣â)] =
S∑

s=1


s(a)

[

us +
s−1∑

j=1


j(â)(us − uj)− �

S∑

t=s+1


t(â)(ut − us)

]

− c(a) + �(c(â)− c(a)).

The agent’s ex ante expected utility, and in consequence the individ-

ual rationality constraint, takes the same form under both equilibrium

concepts, CPE and UPE. The incentive compatibility constraint, on the

other hand, depends on the applied equilibrium concept. Given the agent

expected to choose â, his marginal utility from choosing a is

E[U ′(a∣â)] =
S∑

s=1

(
Hs − 
Ls )us +
S∑

s=1

s−1∑

j=1


j(â)(

H
s − 
Ls )(us − uj)

− �
S∑

s=1

S∑

j=s+1


j(â)(

H
s − 
Ls )(uj − us)− c′(a) + �′(c(â)− c(a)).

Note that either �′(⋅) = 1 or �′(⋅) = �, depending on whether â is greater

or lower than a. Even though E[U(a∣â)] is a strictly concave function

in the agent’s actual action choice a for all values of � ≥ 1, under UPE

there arises the problem of multiplicity of equilibria. More precisely, for a

given incentive scheme u, there exists a range of actions a ∈ [a(u), ā(u)]

all of which constitute a UPE. This problem can be circumvented by

assuming that the agent chooses the highest action which constitutes a

UPE. In this case there is no need to impose additional assumptions on

the cost function or to assume that � is sufficiently small.48 By imposing

48For given expectations â, let EUg and EUl denote the agent’s expected utility

given that �(x) = x and �(x) = �x, respectively. Both EUg and EUl are strictly

concave functions, with EUg achieving its maximum at a strictly higher action than

EUl. EUg and EUl intersect at â. Action â is an UPE if it lies between the maximizing

actions of EUg and EUl. Therefore, expecting to choose the action which maximizes

EUg not only constitutes an UPE, but also is the highest possible UPE.
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this alternative assumption, the incentive compatibility constraint can

be rewritten as

S∑

s=2

bs

{(
S∑

t=s

(
Ht − 
Lt )

)(

1 +
s−1∑

j=1


j(â)

)

−�

(
S∑

t=s


t(â)

)(
s−1∑

j=1

(
Hj − 
Lj )

)}

= 2c′(â).

Clearly, the incentive compatibility constraint is linear in the additional

payments b = (b2, . . . , bS). Thus, our bonus contract result is robust with

respect to this change of assumptions.

There is another way to resolve the multiplicity problem under UPE.

Kőszegi and Rabin (2006, 2007) define a preferred personal equilibrium

(PPE) as a decision maker’s ex ante favorite plan among those plans

he actually will follow through. Put differently, given incentive scheme

u, the agent chooses the action aPPE ∈ [a(u), ā(u)] that maximizes

expected utility among those actions that constitute a UPE. If for all

incentive-compatible incentive schemes we have aPPE ∈ (a(u), ā(u)) then

PPE and CPE coincide, i.e., aPPE is determined by the first-order condi-

tion that characterizes the agent’s action under CPE. Thus, by imposing

the PPE-analogue of A4 and A5 we can derive results identical to those

under CPE. If aPPE ∈ {a(u), ā(u)} for all incentive-compatible incen-

tive schemes, the optimal contract also is a bonus contract since both

boundary actions are determined by functions linear in b = (b2, . . . , bS).
49

In the intermediate case, however, where aPPE ∈ (a(u), ā(u)) for some

incentive-compatible incentive schemes but aPPE ∈ {a(u), ā(u)} for oth-

ers, the optimal contract is not necessarily a bonus scheme.

If the agent’s action is characterized by PPE, for all actions â ∈

(0, 1) to be implementable we still need the assumption that � is not

too high. Put differently, similar implementation problems as discussed

in Section V.4 also arise under PPE. Compared to CPE, however, these

49The case of aPPE = ā(u) corresponds to the alternative assumption to A4 dis-

cussed above. If aPPE = a(u), on the other hand, then aPPE maximizes EUl, as

defined in the previous footnote.
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implementation problems are less severe. For instance, actions close to

zero are always implementable under PPE.

For the discussion of implementation problems in Section V.4, we

restricted attention to quadratic effort costs. The finding that imple-

mentation problems are a potential issue, however, holds true for a wide

variety of cost functions. Depending on the particular functional form of

the corresponding marginal costs, these implementation problems may

be more or less severe. For instance, the result that there are implemen-

tation problems if a0 > 0 holds true for all strictly increasing and strictly

convex cost functions with c′(0) = 0. As for strictly concave marginal

costs with c′(0) = 0, no action â ∈ (0, 1) is implementable if a0 ≥ 0; and

even for a0 < 0 there may be actions, in particular actions close to 1,

that are not implementable.

Moreover, we kept the whole analysis simple by ignoring diminishing

sensitivity, that is, by considering a piece-wise linear gain-loss function. A

more general gain-loss function makes the analysis far more complicated:

Both the incentive compatibility constraint and the individual rational-

ity constraint are no longer linear functions in the intrinsic utility levels,

and thus the Kuhn-Tucker conditions are not necessarily sufficient. Nev-

ertheless, we expect that a reduction in the complexity of the contract

will benefit the principal in this case as well. Diminishing sensitivity of

the agent’s utility implies that the sum of two net losses of two monetary

outcomes exceeds the net loss of the sum of these two monetary out-

comes. Therefore, in addition to the effects discussed in the paper, under

diminishing sensitivity there is another channel through which melting

two bonus payments into one “big” bonus affects, and in tendency re-

duces, the agent’s expected net loss. There is, however, an argument

running counter to this intuition. As we have shown, loss aversion may

help the principal to create incentives. Therefore, setting many different

wage payments, and thereby – in a sense – creating many kinks, prox-

imity to which the agent strongly dislikes under diminishing sensitivity,

may have favorable incentive effects. Exploring the effects of diminishing

sensitivity in a principal-agent relationship with moral hazard is therefore

an open question for future research.



VI. TECHNOLOGY OF SKILL FORMATION AND

HIDDEN INFORMATION

VI.1. INTRODUCTION

The formation of human capital is a central issue in economics. Cunha

and Heckman (2007; henceforth CH) consider an economic model of child

development, where the formation of human capital occurs in multiple

stages via investments. They solve for the optimal intertemporal invest-

ment plan, which is important to derive policy implications.

We extend their framework by assuming that children are differenti-

ated in the sense that a child’s type determines what type of investment

is most productive for him/her, and that this information is not avail-

able when a child is young. That is, there is hidden information for the

parents when the child is young (in the first phase). However, we assume

that when a child is older (in the second phase) its type is revealed. How

does the optimal investment plan change as a result of hidden informa-

tion? Put differently, how should parents react to uncertainty about how

to treat their young child best?

There are two intuitive guesses: (i) it is optimal to invest less in the

first and a more in the second phase, because in the second one can

tailor the investments to a child’s type and therefore yield a high return

of investment; (ii) invest more in the first and less in the second phase

to make sure that, despite low returns in the first phase, the effective

investment in the first phase is not “too bad”.

We show that the answer crucially depends on the substitutability

of investment between phases: when investments are easily substitutable

(easier than Cobb-Douglas), intuition (i) is right; when substitution is
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difficult (more difficult than Cobb-Douglas), (ii) is right. More specif-

ically, hidden information weakens the importance of early investments

in children when inter-phase investments are easily substitutable, but

strengthen them when substitution is difficult.

In the next section we first present and analyze CH’s model. Then

we extend it by introducing differentiated investments and hidden infor-

mation. In Section VI.3 we conclude and discuss.

VI.2. MODELS

VI.2.1. CUNHA AND HECKMAN’S MODEL

There is a child with two periods of childhood, t = 1, 2. Child’s adult

stock of skill ℎ, also called human capital, is given by

ℎ = m (ℎp, �1, I1, I2) ,

where ℎp is the skill of the parents, �1 the child’s initial ability, and I1

and I2 are investments in the first and second period respectively.1 For

concreteness CH consider the following form, where I is given by a CES

function:

ℎ = m (ℎp, �1, I) , I =
[


I�1 + (1− 
)I�2

]1/�

. (VI.1)

The parameter 
, 0 < 
 < 1, is interpreted as a skill multiplier. It

reveals the productivity of early investment not only in directly boosting

ℎ, but also in raising the productivity of I2 by increasing the second

period ability through high first-period investments; see CH (p. 38).

The parameter �, � ≤ 1, describes how easy investments in different

periods can be substituted for each other. For � = 1, we have a linear

relationship: I = [
I1 + (1− 
)I2]. That is, investments are perfect

substitutes. For �→ −∞ investments are not substitutable; the function

is of the Leontief type. For � = 0 one gets the Cobb-Douglas function.

The elasticity of substitution is 1/(1− �).

We assume that parents at the beginning of t = 1 maximize the

1We use a slightly different notation than CH.
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present value of net wealth of their children2

E[�] = wE [ℎ]− I1 −
1

1 + r
I2

over {I1, I2}. The costs of second period investments are discounted by

the factor 1/(1+r), where r is the interest rate. The life-time discounted

wage per unit of skill is denoted by w. So that an optimum exists we

assume that d2m(⋅)/dI2 < 0. To guarantee that it is optimal to invest

some positive amount we assume that limI→0 dm(⋅)/dI is “sufficiently

large”. For � < 1, optimization yields that the ratio of the monetary

investments in period 1 relative to that in period 2 is3

I1
I2

=

(



(1− 
)(1 + r)

) 1
1−�

. (VI.2)

CH interpret their formula as follows: “High productivity of initial in-

vestment (the skill multiplier 
) drives the parent toward making early

investments. The interest rate drives the parent to invest late” (p. 39).

VI.2.2. THE MODEL WITH HIDDEN INFORMATION

We now extend the model by considering hidden information. We assume

that there are two types of investment in every period: Ît and Ǐt.
4 For

example, Ît may be the investment in child’s sporting abilities whereas

Ǐt may denote investments in creative abilities. How Ît and Ǐt combine

to determine the effective investment depends on the child’s type �:

Ieffectivet = (1 + �)Ît + (1− �)Ǐt. (VI.3)

2This is the maximization problem considered by Cunha, Flavio, James Heckman,

Lance Lochner, and Dimitriy Masterov (2005). An alternative approach is to consider

a dynamic overlapping generations model (see the same paper or CH). But, as the

authors note, “the main conclusions of the simple, static model ... are valid in a more

fully specified economic environment.” To focus on the main points we use the simple

static model.
3For � = 1 one gets corner solutions and the ratio need not be defined.
4Also CH consider differentiated investments. But they do not consider hidden

information.
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With equal probability the type is � or −�, with 0 < � < 1. Hence,

when the child is of type � it is most productive to invest in Ît and not

in Ǐt; it is the other way round when the type is −�. The height of

the parameter � captures how strong the productivity of the different

intra-period investments differs.

In t = 1, the child’s type � is not known to the parents. There is

hidden information. Hence they cannot be sure how to best tailor the

investment to the child.5 That is, the parents do not know whether they

should invest in the child’s sporting or creative abilities. In t = 2, when

the child is older, the parents learn the child’s type. Obviously, then it

is optimal not to invest in the less productive type of investment: Î2 = 0

when � = −� and Ǐ2 = 0 when � = �. We denote the highly productive

investments by IH2 . That is, IH2 = Î2 when � = � and IH2 = Ǐ2 when

� = −�.

As in CH’s model we assume that the relationship between effective

per period investments and effective total investment I is given by a CES

function:

I =
[



(
Ieffective1

)�
+ (1− 
)

(
Ieffective2

)�
]1/�

. (VI.4)

The parents’ investment policy
{

Î1, Ǐ1, I
H
2

∣
∣
�=�

, IH2
∣
∣
�=−�

}

maximizes

E�[�] = wE� [ℎ]− Î1 − Ǐ1 −
1

1 + r
IH2 . (VI.5)

Note, since at t = 2 the child’s type � is known the investment in t = 2

can be made contingent on �.

L e m m a 9: It is optimal to choose Î1 = Ǐ1 and IH2
∣
∣
�=−�

= IH2
∣
∣
�=�

.

For � < 1 it is optimal to invest in both periods.

Proof: See Appendix.

The first part of Lemma 9 says that it is optimal to diversify in-

vestments completely by choosing Î1 = Ǐ1. The second part states that

5We do not consider mechanism that reveal the child’s type. This is justified

because young children are simply unable to reveal their types (or maybe they cannot

be convinced to take part in any kind of mechanism).
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although the type of the second period investment depends on �, the

height of the second period investments, i.e. IH2 , is independent of �.

As in CH’s model we would like to determine the ratio of the monetary

investments in period 1 (IT1 := Î1+ Ǐ1) relative to that in period 2 (IT2 :=

Î2+Ǐ2). From the first-order conditions of the problem (see the Appendix)

and Lemma 9 one directly yields that for � < 1 the ratio is

IT1
IT2

=

(



(1− 
)(1 + r)(1 + �)�

) 1
1−�

. (VI.6)

P r o p o s i t i o n 22 : Suppose that � < 1. When � > (<)0 the ratio

of the monetary investments in period 1 relative to that in period 2 with

hidden information is smaller (larger) than without hidden information.

The intuition is as follows. The return of second period investments

is high because they can be tailored to the child’s type. When invest-

ments can be substituted easily (easier than Cobb-Douglas), a low first

period investment can easily be compensated by a high second period

investment. Hence, it is optimal to invest little in the first and a lot in

the second period. However, when investments are difficult to substitute

(more difficult than Cobb-Douglas), this is not the case. A low first pe-

riod investment can only be compensated by a very high second period

investment. This would be very costly. Hence, it is optimal to invest a lot

in the first period to make sure that the effective first period investment

is substantial.6

Finally, looking at (VI.2) and (VI.6) yields the following insights.7

6The results we found are mathematically closely related to Acemoglu (2002). He

considers how the augmentation of one factor changes the relative marginal products

of both factors of production. He shows that when the elasticity of substitution is

above 1, then the relative marginal product of the factor which is augmented improves.

When the elasticity of substitution is below 1, then it is the other way round. In our

model, hidden information augments investments in period 2 relative to investments

in period 1.
7As in CH’s model the investment ratio need not be defined for � = 1. Some simple

calculations yield that the results stated in Proposition 23 is also valid for � = 1.
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P r o p o s i t i o n 23 : The first period investment exceeds the second

period investment in the model without hidden information if 
 > (1 −


)(1+ r). With hidden information this is true for 
 > (1−
)(1+ r)(1+

�)�. It is the other way round when the formulas hold with <.

So when � > 0, i.e., when substitution is easier than with a Cobb-

Douglas function, the skill multiplier 
 must be larger in the model with

hidden information than in the model without so that the first period

investment exceeds the second period investment. For � < 0, i.e., when

substitution is more difficult than with a Cobb-Douglas function, the

multiplier 
 can be lower.

To sum up both propositions, hidden information weakens the impor-

tance of early investments in children when inter-period investments are

easily substitutable. When substitution is difficult, early investments get

more important.

For completeness, consider the case when there is no hidden infor-

mation. Then it is optimal to invest only in the productive type of

investment in both periods. The parameter � appears in both first-order

conditions in the same way. Hence, the term � cancels out in the in-

vestment ratio. So (VI.6) applies when one sets � = 0. That is, the

investment ratio is as in CH’s model, see (VI.2).

VI.3. CONCLUSIONS & DICUSSION

We have extended the model of CH by introducing hidden information

about a child’s type when it is young. We have shown that hidden in-

formation weakens the importance of early investment in children when

inter-period investments are easily substitutable, but strengthens their

importance when substitution is difficult.

We have assumed that the differentiated investments of a period com-

bine linear to the effective investment of a period, see (VI.3). This simpli-

fication can be defended as follows: With a more complicated functional

form it stays in general true that knowing a child’s type allows tailored

investments which yield a higher return than not tailored ones. That

is, investing later yields a return on effective second period investment
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which is greater, say by a factor (1 + �), than the expected return early

investments have on the effective first period investment. Since the factor

(1 + �) comes back we can use the linear specification as a reduced form

of the more general specification.8

Extending the model to three periods, in which there is uncertainty

only in the first period, can lead to richer patterns. Roughly speaking,

the optimal relative investment of the first and the second periods is

governed by the extended model with hidden information. That between

the second and third periods by the model without hidden information.

So the optimal investments may be non-monotone in time. Inverted-U

or U patterns are possible.

Eliciting the hidden information through scientific tests allows a tai-

lored investment policy also for young children. Then the same adult

skill levels are attainable with lower investments. Alternatively, with

the same investments higher skill levels can be achieved. Hence, those

tests are important to improve adult skill and the effectiveness of child

investments.

The model we consider can be interpreted more broadly: There is a

multi-period investment problem with only initial uncertainty about the

most productive way to invest.

8This arguments show that the inter -period investment problem does not change

due to a more general specification. That is, the investment ratio stays the same.

However, the intra-period investment problem changes. With a more general specifi-

cation it may be optimal to always invest in both types of investments. Then it may

be optimal to invest more in an old child’s ability in which he/she is less talented.
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VII. APPENDICES

VII.1. APPENDIX TO CHAPTER II

It is useful to define �J(p) as the probability that firm J ∈ {I, E} will

invest in research. Also define �(p)
(
= p�E(p)

)
as the probability that

entry will occur. Both variables are measured after p and before k is

drawn.

PROOF OF PROPOSITION 1

From Lemma 2 we get that

�I(p) =

∫ (1−�I(c̄,−))(1−p)p

0

ℎ(k∣p)dk +

∫ �E(c̄,c)p

�E(c̄,c)(1−p)p

ℎ(k∣p)dk

and

�E(p) =

∫ (1−�I(c̄,−))(1−p)p

0

ℎ(k∣p)dk +

∫ �E(c̄,c)(1−p)p

(1−�I(c̄,−))(1−p)p

ℎ(k∣p)dk.

Hence, �I(p) > �E(p) if and only if

∫ �E(c̄,c)p

�E(c̄,c)(1−p)p

ℎ(k∣p)dk >

∫ �E(c̄,c)(1−p)p

(1−�I(c̄,−))(1−p)p

ℎ(k∣p)dk. (VII.1)

So �I(p) > �E(p) if and only if it is more likely that the replacement

effect will determine the outcome than that the efficiency effect will.

Using A1, (VII.1) is

p2�E(c̄, c) > (1− p)p
[
�E(c̄, c)− (1− �I(c̄,−))

]
.

So �I(p) > �E(p) if (and only if)

p > ṗ :=
�E(c̄, c)− (1− �I(c̄,−))

2�E(c̄, c)− (1− �I(c̄,−))
.
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From Lemma 1 follows that ṗ ∈ (0, 1). Similarly, �I(p) < �E(p) if (and

only if) p < ṗ. Note, the “only if” part is not included in Proposition 1

because it is an artefact of the uniform assumption upon ℎ. □

PROOF OF PROPOSITION 2

Start with some notation. Let the expected p, conditional that firm J

invests, be

P J :=

∫ 1

0

pgJ(p)dp,

where

gJ(p) :=
g(p)�J(p)

∫ 1

0
g(p)�J(p)dp

is the density of p, conditional that J ∈ {I, E} invests. The associated

distribution function is denoted by GJ(p). We seek to show that P I >

PE.

Step 1. Using Lemma 2 and A1,

d
(
�I(p)
�E(p)

)

dp
=

1

(1− p)2
.

Since gI(p)
gE(p)

= �I(p)
�E(p)

∫ 1
0 g(r)�

E(r)dr
∫ 1
0 g(r)�

I(r)dr
, it follows that d

(
gI(p)
gE(p)

)

/dp is positive

and finite ∀p ∈ (0, 1).

Step 2. Claim: gI(p) < gE(p) for p → 0 and gI(p) > gE(p) for

p→ 1.

Proof: Since g(p) and �J(p) are positive and finite ∀p ∈ (0, 1], it

follows that gJ(p) is positive and finite ∀p ∈ (0, 1] as well. From step

1, d
(
gI(p)
gE(p)

)

/dp > 0 ∀p ∈ (0, 1), and by definition
∫ 1

0
gI(p)dp = 1 and

∫ 1

0
gE(p)dp = 1. Hence it must hold that gI(p) < gE(p) for p → 0, and

gI(p) > gE(p) for p→ 1.

Step 3. Claim: there exists a p̃ ∈ (0, 1) such that gI(p) = (<,>)gE(p)

for p = (<,>)p̃.

Proof: Step 1 says that
d

gI (p)

gE(p)

dp
is positive and finite ∀p ∈ (0, 1).

So gI(p)
gE(p)

is continuous and increasing in p, ∀p ∈ (0, 1). This implies,
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together with the intermediate value theorem and step 2, that there exists

a p̃ ∈ (0, 1) such that gI(p̃) = gE(p̃). Since gI(p)
gE(p)

is increasing in p

∀p ∈ (0, 1), and gI(p) < (>)gE(p) for p → 0(1) by step 2, it holds that

gI(p) < (>)gE(p) for p < (>)p̃.

Step 4. By Proposition 6.D.1 in Mas-Colell, Whinston, and Greene

(1995, p. 195) gI(p) first-order stochastically dominates gE(p) if and only

if ∫ x

0

gI(p)dp ≤

∫ x

0

gE(p)dp ∀x ∈ (0, 1]. (VII.2)

We seek to show a slightly different property.

Claim: The inequality in (VII.2) is strict ∀x ∈ (0, 1).

Proof: Suppose there exists a x̂ ∈ (0, 1) such that
∫ x̂

0
gI(p)dp ≥

∫ x̂

0
gE(p)dp.

Case 1: x̂ ≤ p̃. From step 3, gI(p) < gE(p) ∀p ∈ (0, p̃), and gI(p̃) =

gE(p̃). Hence,
∫ x̂

0
gI(p)dp ≥

∫ x̂

0
gE(p)dp is false.

Case 2: x̂ > p̃. If
∫ x̂

0
gI(p)dp ≥

∫ x̂

0
gE(p)dp, then

∫ 1

x̂

gI(p)dp ≤

∫ 1

x̂

gE(p)dp, (VII.3)

since
∫ 1

0
gI(p)dp = 1 and

∫ 1

0
gE(p)dp = 1. From step 3, ∀p ∈ (p̃, 1) it

is true that gI(p) > gE(p). From Lemma 2 follows that gE(1) = 0. By

definition gI(1) ≥ 0. Hence, (VII.3) is false.

Step 5. Using the definition of PE and P I , we get by integrating by

parts that

P I = 1−

∫ 1

0

GI(p)dp, PE = 1−

∫ 1

0

GE(p)dp.

From step 4 we know that GI(p) < GE(p) ∀p ∈ (0, 1). By definition

GI(1) = GE(1). Hence,
∫ 1

0
GI(p)dp <

∫ 1

0
GE(p)dp and so P I > PE. □

PROOF OF PROPOSITION 3

A1 implies that ℎ(k∣p) = ℎ(p) ∀k ∈ S. By the definition of a density,

∫ p�E(c̄,c)

0

ℎ(p)dk ≤ 1
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or rewritten

ℎ(p) ≤
1

p�E(c̄, c)
.

Together with Lemma 2 this implies that

�E(p) = ℎ(p)�E(c̄, c)(1− p)p ≤
1

p�E(c̄, c)
�E(c̄, c)(1− p)p = 1− p.

Since, by definition �(p) = p�E(p), it follows that �(p) ≤ p(1− p). □

PROOF OF PROPOSITION 4

The total welfare, excluding potential investments in research, when the

incumbent has production costs cI and the potential entrant costs cE

is denoted by t(cI , cE). It consists of the firms’ Bertrand profits and

consumer welfare (for sake of clearness we do not use the normalization

�I(c,−) = 1):

t(c̄,−) =

∫ ∞

�I(c̄,−)

D(�)d�+ �I(c̄,−),

t(c,−) =

∫ ∞

�I(c,−)

D(�)d�+ �I(c,−),

t(c, c) =

∫ ∞

c

D(�)d�+ 0,

t(c̄, c) =

∫ ∞

�E(c̄,c)

D(�)d�+ �E(c̄, c),

where �J(cI , cE) is the price set by firm J ∈ {I, E}. Let T (aI , aE) be the

expected total welfare taking into account firms’ investments. Straight-

forward calculations yield:

T (0, 0) = t(c̄,−),

T (0, 1) = pt(c̄, c) + (1− p)t(c̄,−)− k,

T (1, 0) = pt(c,−) + (1− p)t(c̄,−)− k,

T (1, 1) = p2t(c, c) + p(1− p)t(c,−)

+p(1− p)t(c̄, c) + (1− p)2t(c̄,−)− 2k.

Observe that for a drastic innovation �E(c̄, c) = �I(c,−) and so T (0, 1) =

T (1, 0). However, when the innovation is non-drastic �E(c̄, c) < �I(c,−)
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and so T (0, 1) > T (1, 0). Next we explore the question whether there is

socially too much or too little investment. We look at the second best

world in which pricing cannot be regulated.

Overinvestment when a∗ = (1, 0)?— Consider first the case that in

equilibrium only the incumbent invests. Is it socially desirable that no

firm invests? Using the formulas derived before yields

T (1, 0)− T (0, 0) = p

[
∫ �I(c̄,−)

�I(c,−)

D(�)d�+ �I(c,−)− �I(c̄,−)

]

− k.

From Lemma 2 we know that for a∗ = (1, 0),

k = p�E(c̄, c)− (+term),

where the positive term can be arbitrarily small. Then

T (1, 0)− T (0, 0) =

p

[
∫ �I(c̄,−)

�I(c,−)

D(�)d�+ �I(c,−)− �I(c̄,−)− �E(c̄, c)

]

+ (+term).

(VII.4)

For a drastic innovation, �I(c,−) = �E(c̄, c). The profit term �I(c̄,−)

can be rewritten as
∫ �I(c̄,−)

c̄

D(�I(c̄,−))d�.

Since we assumed that the monopolist’ optimal price is unique we have

that for a drastic innovation �I(c,−) ≤ c̄. Hence, T (1, 0)− T (0, 0) > 0.

However, when the innovation is non-drastic, then it can be the case

that T (1, 0)−T (0, 0) < 0. This is true in the following example: (+term)

is small; �I(c̄,−) ≈ �I(c,−) so that the integral term in (VII.4) is small;

let �I(c,−)− �I(c̄,−) be well below �E(c̄, c) (this is possible due to the

replacement effect).

Overinvestment when a∗ = (0, 1)?— When in equilibrium only E

invests, is it socially desirable that no firm invests?

T (0, 1) − T (0, 0) = p

[
∫ �I(c̄,−)

�E(c̄,c)

D(�)d�+ �E(c̄, c)− �I(c̄,−)

]

− k.
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From Lemma 2, when a∗ = (0, 1) then

k = �E(c̄, c)(1− p)p− (+term),

and so

T (0, 1)−T (0, 0) = p

[
∫ �I(c̄,−)

�E(c̄,c)

D(�)d�+ p�E(c̄, c)− �I(c̄,−)

]

+(+term).

Are the terms in the square brackets also positive if p → 0? Yes, since

�I(c̄,−) > c̄ ≥ �E(c̄, c) and the demand is decreasing in the price:

∫ �I(c̄,−)

�E(c̄,c)

D(�)d� ≥

∫ �I(c̄,−)

c̄

D(�)d� >

∫ �I(c̄,−)

c̄

D(�I(c̄,−))d� = �I(c̄,−).

Obviously, for all p the terms in the square brackets are positive, and so

it holds that T (0, 1)− T (0, 0) > 0.

Overinvestment when a∗ = (1, 1)?— Next consider the case when

both firms invest in research. Is it socially desirable that instead only

the potential entrant invests?

T (1, 1)− T (0, 1)

= p

[

p

(
∫ �E(c̄,c)

c

D(�)d�− �E(c̄, c)

)

+

(1− p)

(
∫ �I(c̄,−)

�I(c,−)

D(�)d�+ �I(c,−)− �I(c̄,−)

)]

− k.

From Lemma 2 we know that when a∗ = (1, 1), then

k = p(1− p)(�I(c,−)− �I(c̄,−))− (+term).

Using this we get that

T (1, 1)− T (0, 1) = p

[

p

(
∫ �E(c̄,c)

c

D(�)d�− �E(c̄, c)

)

+ (1− p)

(
∫ �I(c̄,−)

�I(c,−)

D(�)d�

)]

+ (+term).
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The second integral is nonnegative because �I(c,−) ≤ �I(c̄,−), see Tirole

(1988, p. 66). The term
∫ �E(c̄,c)

c
D(�)d�− �E(c̄, c) can be rewritten as

∫ �E(c̄,c)

c

D(�)d�−

∫ �E(c̄,c)

c

D(�E(c̄, c))d�,

which is positive because demand is decreasing in the price and �E(c̄, c) >

c. Hence, T (1, 1)− T (0, 1) > 0.

We know that T (0, 1) ≥ T (1, 0). Hence also T (1, 1)− T (1, 0) > 0.

Finally, is T (1, 1) socially preferred to T (0, 0)?

T (1, 1)− T (0, 0) = p2 [t(c, c)− t(c,−)− t(c̄, c) + t(c̄,−)]

+ p [t(c,−) + t(c̄, c)− 2t(c̄,−)]− 2k.

Again, for a∗ = (1, 1) it holds that

k = p(1− p)(�I(c,−)− �I(c̄,−)) + (+term).

Hence, after some calculations,

T (1, 1)− T (0, 0)

= p2

[
∫ �E(c̄,c)

c

D(�)d�−

∫ �I(c̄,−)

�I(c,−)

D(�)d�− �E(c̄, c) + �I(c,−)− �I(c̄,−)

]

+p

[
∫ �I(c̄,−)

�I(c,−)

D(�)d�+

∫ �I(c̄,−)

�E(c̄,c)

D(�)d�+ �E(c̄, c)− �I(c,−)

]

+(+term).

(VII.5)

If p = 1, one gets that

T (1, 1)− T (0, 0) =

∫ �I(c̄,−)

c

D(�)d�− �I(c̄,−) + (+term),

which is obviously positive.

If p → 0, only the last line of (VII.5) is important. The replacement

effect holds and so �E(c̄, c)−�I(c,−) = −�I(c̄,−)+(+term), see Lemma

1. So the last line of (VII.5) can be rewritten as

p

[
∫ �I(c̄,−)

�I(c,−)

D(�)d�+

∫ �I(c̄,−)

�E(c̄,c)

D(�)d�− �I(c̄,−)

]

+ (+term).
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From before (see the case a∗ = (0, 1)) we know that
∫ �I(c̄,−)

�E(c̄,c)
D(�)d� >

�I(c̄,−), and so the last line is positive. Hence, also for p→ 0, T (1, 1)−

T (0, 0) > 0. Since for p = 1 and for p→ 0 we have T (1, 1)− T (0, 0) > 0,

and through the functional form of (VII.5), we get that T (1, 1)−T (0, 0) >

0 ∀p ∈ (0, 1].

Underinvestment.— Note, when a∗ = (0, 0) the previous analysis

of the case a∗ = (1, 0) applies expect that there is no positive term,

but instead a negative term. When k is close to the boundary where

a∗ = (1, 0), the negative term is close to zero. Hence, our analysis shows

that it may be socially desirable that one firm invests when in fact no

firm invests. The same arguments hold when in fact one firm invests

and one asks the question whether investments of both firms is socially

preferable. Hence, firm may invest too little. □

PROOF OF PROPOSITION 5

Denote firm J ’s valuation as vJ , J ∈ {I, E}. I’s valuation vI is given

through the k which equates (II.5), and so vI = p. Similarly, from (II.1)

we get vE = �E(c̄, c)p. If the innovation is non-drastic, �E(c̄, c) < 1, and

hence vI > vE ∀p ∈ (0, 1]. Since we consider a first-price auction with

complete and perfect information, I will always win. □
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VII.2. APPENDIX TO CHAPTER III

PROOF OF PROPOSITION 6

The derivative of (III.7) is

dE [�0(k, �)]

dk
= ℎ′(k)e−�(C−ℎ(k)−t)+(1− C + ℎ(k)) e−�(C−ℎ(k)−t)�ℎ′(k)−1.

(VII.6)

First consider the case of no entry threat. This is captured by � = 0.

Then dE [�0(k, 0)] /dk = ℎ′(k)− 1. The optimal investment k∗(0) solves

ℎ′(k∗(0)) = 1. So k∗(0) = ℎ′−1(1), which is positive through Assumption

A2(v).

Next, consider the other extreme of � → ∞. Then Assumption

A2(iv) implies that entry occurs for sure for all investment levels k. So

E [�0(k, �)] = −k for all k. Therefore the incumbent chooses not to

invest. That is, k∗(∞) = 0.

Finally, we prove the last part of Proposition 6. By Assumption 2

(iv) and t > 0 we have c0(k) > 0 ∀k. Moreover, the expected revenue

is at most 1. Hence, k ≥ 1 leads to a loss for the incumbent. This is

dominated by k = 0, which yields a nonnegative profit. Therefore, an

investment of k ≥ 1 can never be optimal.

From (III.7) we get that ∀k ∈ [k̂, 1] we have

E [�0(k, �)] = (1− c0(k)) e
−�(c0(k)−t) − k

≤ (1− c0(1)) e
−�(c0(1)−t) − k

≤ (1− c0(1)) e
−�(c0(1)−t) − k̂.

When � is sufficiently high

(1− c0(1)) e
−�(c0(1)−t) − k̂ < 0

and therefore also

E [�0(k, �)] < 0 ∀k ∈ [k̂, 1].

This is dominated by k = 0. Hence, an investment of k ∈ [k̂,∞) cannot

be optimal. □
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PROOF OF PROPOSITION 7

We look at the effect of � on the marginal return of investment:

d2E [�0(k, �)]

dkd�
= −ℎ′(k)e−�(C−ℎ(k)−t)(C − ℎ(k)− t)

+ (1− C + ℎ(k)) e−�(C−ℎ(k)−t)ℎ′(k)

− (1− C + ℎ(k)) e−�(C−ℎ(k)−t)�ℎ′(k)(C − ℎ(k)− t).

The first term on the RHS is negative: a higher � increases the proba-

bility of entry. That is, the return to investment decreases due to the

Schumpeterian effect. The remaining terms capture the effect on the

entry deterrence effect. The sign of the sum of the remaining terms is

ambiguous. That is, entry deterrence may or may not become more at-

tractive when � increases. Given some k, when � is small (large), the

remaining terms are positive (negative). Since we seek to explore whether

it is possible that a higher entry threat increases the optimal investment,

we consider the case �→ 0:

lim
�→0

d2E [�0(k, �)]

dkd�
= −ℎ′(k)(C − ℎ(k)− t) + (1− C + ℎ(k))ℎ′(k),

which has the same sign as

1− 2C + 2ℎ(k) + t.

So when

C < ℎ(k) +
1 + t

2
,

we have that lim�→0
d2E[�0(k,�)]

dkd�
> 0. When

C <
1 + t

2
,

this is true for all k.

E [�0(k
∗(0), 0)] ≥ E

[

�0(k̇, 0)
]

∀k̇ ∈ ℝ
++ by the optimality of k∗(0). The inequality also holds for the

subset k̇ ∈ [0, k∗(0)), which can equivalently be written as

∫ k∗(0)

k̇

dE [�0(k, 0)]

dk
ds ≥ 0 ∀k̇ ∈ [0, k∗(0)).
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Let � be small. Since C < 1+t
2

we know from before that d2E[�0(k,�)]
dkd�

> 0.

Hence,
∫ k∗(0)

k̇

dE [�0(k, 0)]

dk
ds > 0 ∀k̇ ∈ [0, k∗(0)).

This implies that

E [�0(k
∗(0), �)] > E

[

�0(k̇, �)
]

∀k̇ ∈ [0, k∗(0)).

This proofs that k∗(�) ≥ k∗(0).

Moreover, since d2E[�0(k,�)]
dkd�

> 0 we have that

d E [�0(k, �)]∣k∗(0) /dk > 0.

Hence, k∗(�) ∕= k∗(0). Together with the previous finding and the fact

that through the assumptions made a k∗(�) exists, this implies that

k∗(�) > k∗(0). □

PROOF OF PROPOSITION 9

With help of Lemma 3 we yield that the incumbent’s expected investment

is

E[k∣�] =

∫ c0(k̄)−t

0

0dF (c) +

∫ c0(k∗∗(∞))−t

c0(k̄)−t

k∗∗(⋅)dF (c) (VII.7)

+

∫ ∞

c0(k∗∗(∞))−t

k∗∗(∞)dF (c),

where k∗∗(∞) = ℎ′−1(1) and k∗∗(⋅) = ℎ−1 (C − t− c) for the second

integral, see (III.9). All three integrals always have a positive probability

mass because A1(iv) implies that c0(k̄)− t > 0 for all k.

The analysis when �→ 0 or �→ ∞ is especially easy. When �→ 0,

the probability that c is so high that the incumbent will invest k∗∗(∞)

approaches one. Moreover, for other levels of c the investments are ∈

[0, k̄]. Hence, lim�→0 E[k∣�] = k∗∗(∞). On the contrary, if � → ∞, the

probability that c is in the region where the incumbent does not invest

approaches one. This implies that lim�→∞ E[k∣�] = 0.

But how large is E[k∣�] if we have a medium � value? Since all areas

have a positive weight, k∗∗(∞) as well as k∗∗(⋅) are nonnegative and at
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most k̄, it follows that k̄ > E[k∣�] > 0. But under what conditions can

E[k∣�] exceed k∗∗(∞)?

For medium values of c, i.e., when c0(k̄)− t < c < c0(k
∗∗(∞))− t, the

optimal investment is given by (see Lemma 3)

ℎ−1 (C − t− c) .

Denote this part of the investment function by k∗∗medium(⋅). The first order

Taylor approximation of k∗∗medium(⋅) is

k∗∗medium(⋅) ≈ k∗∗(∞) + c0(k
∗∗(∞))− c− t.

Since d2k∗∗medium(⋅)/dc
2 > 0 (see previous analysis) we do not overestimate

k∗∗medium(⋅) by the approximation. Next, we put the approximation of

k∗∗medium(⋅) into (VII.7), so

E[k∣�] ≥

∫ c0(k̄)−t

0

0dF (c)

+

∫ c0(k∗∗(∞))−t

c0(k̄)−t

(k∗∗(∞) + c0(k
∗∗(∞))− c− t) dF (c)

+

∫ ∞

c0(k∗∗(∞))−t

k∗∗(∞)dF (c).

For the exponential density function this is

E[k∣�] ≥

∫ c0(k∗∗(∞))−t

c0(k̄)−t

(c0(k
∗∗(∞))− c− t)�e−�cdc (VII.8)

+

∫ ∞

c0(k̄)−t

k∗∗(∞)�e−�cdc.

Since the exponential density is decreasing in c and the term in brackets
(c0(k

∗∗(∞))− c− t) is linear in c, an approximation and a lower bound
of the first integral of (VII.8) is

∫ c0(k
∗∗(∞))−t

c0(k̄)−t

(c0(k∗∗(∞))− c0(k∗∗(∞)) + t− t) +
(

c0(k∗∗(∞))− c0(k̄) + t− t
)

2
�e−�cdc

=

∫ c0(k
∗∗(∞))−t

c0(k̄)−t

c0(k∗∗(∞))− c0(k̄)

2
�e−�cdc.

With (VII.8) we get

E[k∣�] ≥
c0(k

∗∗(∞))− c0(k̄)

2

[

e−�(c0(k̄)−t) − e−�(c0(k
∗∗(∞))−t)

]

+k∗∗(∞)e−�(c0(k̄)−t) =: Ω(�)
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Obviously, lim�→0 Ω(�) = k∗∗(∞), and

dΩ(�)

d�
e�(c0(k̄)−t) =

c0(k
∗∗(∞))− c0(k̄)

2
[

−(c0(k̄)− t) + (c0(k
∗∗(∞))− t)e−�(c0(k

∗∗(∞))−c0(k̄))
]

− (c0(k̄)− t)k∗∗(∞).

By A1(v), c0(k̄) > t. From the analysis before, c0(k
∗∗(∞)) > c0(k̄).

Hence, c0(k
∗∗(∞)) > t. Therefore the RHS is decreasing in �. Moreover,

since e�(c0(k̄)−t) > 0 the LHS has the same sign as dΩ(�)/d�.

We seek to explore whether Ω(�) can exceed k∗∗(∞). Observe that

lim
�→0

RHS > 0 ⇐⇒

(
c0(k

∗∗(∞))− c0(k̄)
)2

2
− (c0(k̄)− t)k∗∗(∞) > 0.

When this condition holds, Ω(�) is increasing in � when � is sufficiently

small. Together with lim�→0Ω(�) = k∗∗(∞), this implies that the maxi-

mum of Ω(�) is greater than k∗∗(∞). Since E[k∣�] ≥ Ω(�), then also the

maximum of E[k∣�] is greater than k∗∗(∞). This establishes the result

that under this condition the maximum of E[k∣�] is greater than k∗∗(∞).

□

PROOF OF PROPOSITION 10

Let the function k∗∗∗(C∣�) denote the optimal investment depending on

incumbent’s initial costs C, given some �. We next proof by contradic-

tion. Let CI < CII and suppose that k∗∗∗(CII ∣�) ≥ k∗∗∗(CI ∣�). One can

rewrite the incumbent’s expected profit as

E[�0(k
∗∗∗(CII ∣�)∣CII)] =

E[�0(k
∗∗∗(CI ∣�)∣CII)] +

∫ k∗∗∗(CII ∣�)

k∗∗∗(CI ∣�)

∂E[�0(k∣C
II)]

∂k
dk.

The optimality of k∗∗∗(CII ∣�) requires that the term with the integral is

nonnegative. The optimality of k∗∗∗(CI ∣�) requires that

E[�0(k
∗∗∗(CI ∣�)∣CI)] ≥ E[�0(k

∗∗∗(CII ∣�)∣CI)],
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or rewritten that

∫ k∗∗∗(CII ∣�)

k∗∗∗(CI ∣�)

∂E[�0(k, C
I)]

∂k
dk ≤ 0.

But since

k∗∗∗(CII ∣�) ≥ k∗∗∗(CI ∣�), CI < CII , and d2E[�0(k, F )]/dkdC < 0,

it follows that

∫ k∗∗∗(CII ∣�)

k∗∗∗(CI ∣�)

∂E[�0(k, C
I)]

∂k
dk >

∫ k∗∗∗(CII ∣�)

k∗∗∗(CI ∣�)

∂E[�0(k, C
II)]

∂k
dk,

which is a contradiction.

Observe that this result does not require that c is exponentially dis-

tributed. We only used d2E[�0(k, F )]/dkdC < 0, which also holds with

other distributions. □

UNIFORM DISTRIBUTION

We assumed that consumers have a unit demand and that rivals’ costs

are exponentially distributed. Both assumptions are made to simplify

calculations. Since the intuition for our results seems to be quite general,

we are optimistic that our results also hold with alternative assumptions.

To illustrate, we next consider the case where c is uniformly distributed.

F (c) =

⎧

⎨

⎩

0 for c < 0,

�c for c ∈ [0, 1/�],with � ≥ 0,

1 otherwise.

The strength of the entry threat is again captured by the parameter �.

Since we want to yield explicit solutions we consider a concrete functional

form of ℎ(k). Let

ℎ(k) = �k1/2.

This functional form violates Assumption A2(iv). But this causes no

problems when � is small enough. It is useful to define

ǩ ≡ k1/2.
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We now can write the incumbent’s objective function as

E[�0(ǩ)] = (1− C + �ǩ)(1− F (C − �ǩ − t))− ǩ2.

Suppose that for the optimal investment entry is possible with a proba-

bility strictly between 0 and 1. Then F (C − �ǩ − t) = �(C − �ǩ − t).

The first order condition dE[�0(ǩ)]/dǩ = 0 yields

ǩFOC =
�

2

1− 2�C + �t+ �

1− �2�
. (VII.9)

Observe that
dǩFOC

d�
=
�

2

1− 2C + t+ �2

(1− �2�)2
.

It is easy to see that, as in the original specification with an exponential

distribution of rivals’ production costs, C ≤ 1/2 is a sufficient condition

that the optimal investment—if it is given by the first-order condition—is

increasing in the degree of the entry threat.

It is not obvious whether it is optimal to invest according to the first-

order condition. Corner solutions may be preferable. Additionally, it

must be checked whether with (VII.9) the probability of entry is indeed

strictly between zero and one. To simplify the exercise we consider the

very special case with

C =
1

2
, t =

1

4
, � =

1

4
.

Then

ǩFOC =
4 + �

32− 2�
. (VII.10)

Since k ∈ ℝ
++, investing according to formula (VII.10) is possible only

for � ∈ [0, 16). The check whether with (VII.10) the probability of entry

is indeed strictly between zero and one yields that we have to restrict the

application of formula (VII.10) further to � ∈ [0, 28/3].

Setting E[�0(ǩ
FOC)] = 0 yields three solutions: �1 = 44/9, �2 =

12, �3 = 16. Observe that only �1 ∈ [0, 28/3]. As Figure VII.1 shows,

only for the subinterval � ∈ [0, 44/9] yields investing ǩFOC nonnegative

expected profits.

Is not investing at all preferable to investing according to (VII.10)?

One can show that no investment is strictly dominated by using (VII.10)
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-1.0
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�

E[�0(ǩ
FOC)]

Figure VII.1: Incumbent’s expected profit when following (VII.10).

for all � ∈ (−4, 16). The other corner solution is that entry is deterred for

sure. Then ǩ has to be at least 1 for all � > 0, because then c0(k) ≤ 1/4 =

t. But then the incumbent makes at most a profit of zero. This is worse

than not investing because this yields at least a small positive expected

profit. So for � > 44/9 the incumbent is best off by not investing; for 0 <

� < 44/9 the optimal investment is given by (VII.10); for � = 44/9 the

incumbent is indifferent between not investing and investing according to

(VII.10). We assume that in case of indifference the incumbent chooses

to invest. It can, moreover, easily be shown that for � = 0, investing

according to (VII.10) is optimal. So we conclude that

k∗(�) =

{ (
4+�

32−2�

)2
for � ∈ [0, 44/9],

0 for � > 44/9.

That is, the relationship between incumbent’s R&D investment and the

entry threat is again hump-shaped, and for large entry threats the in-

cumbent does not invest at all.
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VII.3. APPENDIX TO CHAPTER IV

PROOF OF LEMMA 4

Stochastic independence of the plausible distributions implies that

∑

S

pi,j�i,j ∼ N

(
∑

S

pi,j�i,
∑

S

p2i,j�
2
j

)

.

We assumed that aggregating the plausible distributions yields the ob-

jective distribution. So

∑

S

pi,j�i
!
= 0 and

∑

S

p2i,j�
2
j

!
= �2.

The following chain shows that �2 < �2
n:

�2 =
∑

S

p2i,j�
2
j <

∑

S

pi,j�
2
j ≤

∑

S

pi,j�
2
n = �2

n.

For N ≥ 2 we can show that �1 < 0:

0 =
∑

S

pi,j�i >
∑

S

pi,j�1 = �1.

For N = 1, the chain holds with equality. Therefore, �1 = 0. □

PROOF OF PROPOSITION 13

Consider the case with an ambiguity-averse agent. The agent’s belief

about the distribution of �Z is characterized by (�Z,i, �
2
Z,j). Simple cal-

culations yield that the agent’s certainty equivalent is

ŵ(⋅) = t+ (sY + sZ)a+ sZ�Z,i −
1

2
�
(
s2Y �

2
Y + s2Z�

2
Z,j

)
−

1

2
ca2. (VII.11)

Therefore, the agent chooses

a =

{
sY +sZ

c
for sY + sZ ≥ 0,

0 otherwise.

It is straightforward that setting sZ < 0 makes no sense for the principal.

For the same reasons as in case with only one performance measure we
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then have �i,Z = �Z,1 and �2
Z,j = �2

Z,n. The principal’s maximization

problem can be simplified to

max
sY ,sZ

sY + sZ
c

+sZ�Z,1−
1

2
�(s2Y �

2
Y +s

2
Z�

2
Z,n)−

1

2

(sY + sZ)
2

c
−w̄ s.t. sZ ≥ 0.

(VII.12)

The derivatives are

d...

dsY
=

1

c
− �sY �

2
Y −

sY + sZ
c

,

d...

dsZ
=

1

c
− �sZ�

2
Z,n −

sY + sZ
c

+ �Z,1.

It is straightforward that sY = 0 and sZ > 0 cannot be optimal: then

d.../dsY > d.../dsZ , which is a contradiction when sY = 0 and sZ > 0.

Moreover, sY = 0 and sZ = 0 cannot be optimal: then d.../dsY is positive

for sY = 0 and sZ = 0. Hence, sY > 0 and d.../dsY = 0. So

sY =
1− sZ

1 + c��2
Y

.

Using this yields

d...

dsZ
= c

(

1 + c�Z,1 −
1

1 + �c�2
Y

+ sZ

(
1

1 + �c�2
Y

− 1− �c�2
Z,n

))

.

One directly sees that the RHS is decreasing in sZ .

Hence, when d...
dsZ

∣
∣
∣
sZ=0

≤ 0 the principal sets sZ = 0. Otherwise he

sets sZ > 0. So sZ > 0 if and only if

�Z,1 > −
��2

Y

1 + �c�2
Y

.

□
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VII.4. APPENDIX TO CHAPTER V

PROOF OF LEMMA 6

Suppose that signals are ordered according to their likelihood ratio, that

is, s > s′ if and only if 
Hs /

L
s > 
Hs′ /


L
s′ . Consider a contract of the form

us =

{

u if s < ŝ

u+ b if s ≥ ŝ
,

where b > 0 and 1 < ŝ ≤ S. Under this contractual form and given that

the first-order approach is valid, (IC) can be rewritten as

b

{[
S∑

s=ŝ

(
Hs − 
Ls )

](

1− (�− 1)
ŝ−1∑

s=1


s(â)

)

− (�− 1)

(
ŝ−1∑

s=1

(
Hs − 
L)

)(
S∑

s=ŝ


s(â)

)}

= c′(â).

Since signals are ordered according to their likelihood ratio, we have
∑S

s=ŝ(

H
s − 
Ls ) > 0 and

∑ŝ−1
s=1(


H
s − 
L) < 0 for all 1 < ŝ ≤ S. This

implies that the term in curly brackets is strictly positive for � ≤ 2.

Hence, with c′(â) > 0, b can alway be chosen such that (IC) is met.

Rearranging the participation constraint,

u ≥ ū+ c(â)− b

(
S∑

s=ŝ


s(â)

)[

1− (�− 1)

(
ŝ−1∑

s=1


s(â)

)]

,

reveals that (IR) can be satisfied for any b by choosing u appropriately.

This concludes the proof. □

PROOF OF PROPOSITION 14

It is readily verified that Assumptions 1-3 from Grossman and Hart

(1983) are satisfied. Thus, the cost-minimization problem is well de-

fined, in the sense that for each action a ∈ (0, 1) there exists a second-

best incentive scheme. Suppose the principal wants to implement action

â ∈ (0, 1) at minimum cost. Since the agent’s action is not observable,

the principal’s problem is given by

min
{us}Ss=1

S∑

s=1


s(â)ℎ(us) (MR)
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subject to

S∑

s=1


s(â)us − c(â) ≥ ū , (IRR)

S∑

s=1

(
Hs − 
Ls )us − c′(â) = 0 . (ICR)

where the first constraint is the individual rationality constraint and the

second is the incentive compatibility constraint. Note that the first-order

approach is valid, since the agent’s expected utility is a strictly concave

function of his effort. The Lagrangian to the resulting problem is

ℒ =
S∑

s=1


s(a)ℎ(us)− �0

{
S∑

s=1


s(a)us − c(a)− ū

}

− �1

{
S∑

s=1

(
Hs − 
Ls )us − c′(a)

}

,

where �0 and �1 denote the Lagrange multipliers of the individual ratio-

nality constraint and the incentive compatibility constraint, respectively.

Setting the partial derivative of ℒ with respect to us equal to zero yields

∂ℒ

∂us
= 0 ⇐⇒ ℎ′(us) = �0 + �1


Hs − 
Ls

s(â)

, ∀s ∈ S. (VII.13)

Irrespective of the value of �0, if �1 > 0, convexity of ℎ(⋅) implies that

us > us′ if and only if (
Hs − 
Ls )/
s(â) > (
Hs′ − 
Ls′)/
s′(â), which in

turn is equivalent to 
Hs /

L
s > 
Hs′ /


L
s′ . Thus it remains to show that �1

is strictly positive. Suppose, in contradiction, that �1 ≤ 0. Consider the

case �1 = 0 first. From (A.1) it follows that us = uf for all s ∈ S, where

uf satisfies ℎ′(uf ) = �0. This, however, violates (ICR), a contradiction.

Next, consider �1 < 0. From (A.1) it follows that us < us′ if and only

if (
Hs − 
Ls )/
s(â) > (
Hs′ − 
Ls′)/
t(â). Let S+ ≡
{
s∣
Hs − 
Ls > 0

}
,

S− ≡
{
s∣
Hs − 
Ls < 0

}
, and û ≡ min{us∣s ∈ S−}. Since û > us for all
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s ∈ S+, we have

S∑

s=1

(
Hs − 
Ls )us =
∑

S−

(
Hs − 
Ls )us +
∑

S+

(
Hs − 
Ls )us

<
∑

S−

(
Hs − 
Ls )û+
∑

S+

(
Hs − 
Ls )û

= û
S∑

s=1

(
Hs − 
Ls )

= 0,

again a contradiction to (ICR). Hence, �1 > 0 and the desired result

follows. □

PROOF OF PROPOSITION 15

The problem of finding the optimal contract u∗ to implement action

â ∈ (0, 1) is decomposed into two subproblems. First, for a given in-

centive feasible ordering of signals, we derive the optimal nondecreasing

incentive scheme that implements action â ∈ (0, 1). Then, in a second

step, we choose the ordering of signals for which the ordering specific cost

of implementation is lowest.

Step 1: Remember that the ordering of signals is incentive feasible if

�s(⋅) > 0 for at least one signal s. For a given incentive feasible ordering

of signals, in this first step we solve Program ML. First, note that it is

optimal to set bs = 0 if �s(⋅) < 0. To see this, suppose, in contradiction,

that in the optimum (IC′) holds and bs > 0 for some signal s with �s(⋅) ≤

0. If �s(⋅) = 0, then setting bs = 0 leaves (IC′) unchanged, but leads to a

lower value of the objective function of Program ML, contradicting that

the original contract is optimal. If �s(⋅) < 0, then setting bs = 0 not

only reduces the value of the objective function, but also relaxes (IC′),

which in turn allows to lower other bonus payments, thereby lowering the

value of the objective function even further. Again, a contradiction to

the original contract being optimal. Let S� ≡ {s ∈ S∣�s(⋅) > 0} denote

the set of signals for which �s(⋅) is strictly positive under the considered

ordering of signals, and let S� denote the number of elements in this set.

Thus, Program (ML) can be rewritten as
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Program ML+:

min
{bs}s∈S�

∑

s∈S�

bs�s(
̂, �, â)

subject to (i)
∑

s∈S�

bs�s(
̂, �, â) = c′(â) (IC+)

(ii) bs ≥ 0, ∀s ∈ S�.

Program ML+ is a linear programming problem. It is well-known that

if a linear programming problem has a solution, it must have a solution

at an extreme point of the constraint set. Generically, there is a unique

solution and this solution is an extreme point. Since the constraint set

of Program ML+, ℳ ≡ {{bs}s∈S�
∈ ℝ

S�

+ ∣
∑

s∈S�
bs�s(
̂, �, â) = c′(â)},

is closed and bounded, Program ML+ has a solution. Hence, generically
∑

s∈S�
bs�s(
̂, �, â) achieves its greatest lower bound at one of the extreme

points of ℳ. (We comment on genericity below.) With ℳ describing

a hyperplane in ℝ
S�

+ , all extreme points of ℳ are characterized by the

following property: bs > 0 for exactly one signal s ∈ S� and bt = 0 for

all t ∈ S�, t ∕= s. It remains to determine for which signal the bonus is

set strictly positive. The size of the bonus payment, which is set strictly

positive, is uniquely determined by (IC+):

bs�s(
̂, �, â) = c′(â) ⇐⇒ bs =
c′(â)

�s(
̂, �, â)
. (VII.14)

Therefore, from the objective function of Program ML+ it follows that,

for the signal ordering under consideration, the optimal signal for which

the bonus is set strictly positive, ŝ, is characterized by

ŝ = argmin
s∈S�

c′(â)

�s(
̂, �, â)
�s(
̂, �, â).

Step 2: From all incentive feasible signal orders, the principal chooses

the one which minimizes her cost of implementation. With the number

of incentive feasible signal orders being finite, this problem clearly has a

solution. Let s∗ denote the resulting cutoff, i.e.,

u∗s =

{

u∗ if s < s∗

u∗ + b∗ if s ≥ s∗
,
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where

b∗ = c′(â)/�s∗(
̂, �, â) and

u∗ = ū+ c(â)− b∗

[
S∑

�=s∗


� (â)− �s∗(
̂, �, â)

]

.

Letting u∗L = u∗, u∗H = u∗ + b∗, and ℬ∗ = {s ∈ S∣s ≥ s∗} establishes the

desired result.

On genericity: We claimed that, for any given feasible ordering of

signals, generically Program ML+ has a unique solution at one of the

extreme points of the constraint set. To see this, note that a neces-

sary condition for the existence of multiple solutions is �s/�s′ = �s/�s′

for some s, s′ ∈ S�, s ∕= s′. This condition is characterized by the ac-

tion to be implemented, â, the structure of the performance measure,
{
(
Hs , 


L
s )
}S

s=1
, and the agent’s degree of loss aversion, �. Now, fix â

and
{
(
Hs , 


L
s )
}S

s=1
. With both �s > 0 and �s > 0 for all s ∈ S�, it is

readily verified, that exactly one value of � equates �s/�s′ with �s/�s′ .

Since � is drawn from the interval (1, 2], and with the number of signals

being finite, this necessary condition for Program ML+ having multiple

solutions for a given feasible ordering of signals generically will not hold.

With the number of feasible orderings being finite, generic optimality of

a corner solution carries over to the overall problem. □

PROOF OF PROPOSITION 16

ℬ∗ maximizes X(ℬ) :=
[∑

s∈ℬ(

H
s − 
Ls )

]
× Y (Pℬ), where

Y (Pℬ) :=
1

(�− 1)Pℬ(1− Pℬ)
−

1

Pℬ

+
1

1− Pℬ

.

Suppose for the moment that Pℬ is a continuous decision variable. Ac-

cordingly,

dY (Pℬ)

dPℬ

=
1

P 2
ℬ(1− Pℬ)2

[

2P 2
ℬ +

2− �

�− 1
(2Pℬ − 1)

]

. (VII.15)

It is readily verified that dY (Pℬ)/dPℬ < 0 for 0 < Pℬ < P̄ (�) and

dY (Pℬ)/dPℬ > 0 for P̄ (�) < Pℬ < 1, where

P̄ (�) ≡
�− 2 +

√

�(2− �)

2(�− 1)
.
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Note that for � ≤ 2 the critical value P̄ (�) ∈ [0, 1/2). Hence, excluding

a signal of ℬ increases Y (Pℬ) if Pℬ < P̄ (�), whereas including a signal

to ℬ increases Y (Pℬ) if Pℬ ≥ P̄ (�). With these insights the next two

implications follow immediately.

(i) Pℬ∗ < P̄ (�) =⇒ ℬ∗ ⊆ S+

(ii) Pℬ∗ ≥ P̄ (�) =⇒ S+ ⊆ ℬ∗

We prove both statements in turn by contradiction. (i) Suppose Pℬ∗ <

P̄ (�) and that there exists a signal ŝ ∈ S− which is also contained in ℬ∗,

i.e., ŝ ∈ ℬ∗. Clearly,
∑

s∈ℬ∗(
Hs −
Ls ) <
∑

s∈ℬ∗∖{ŝ}(

H
s −
Ls ) because ŝ is a

bad signal. Moreover, Y (ℬ∗) < Y (ℬ∗∖{ŝ}) because Y (⋅) increases when

signals are excluded of ℬ∗. Thus X(ℬ∗) < X(ℬ∗∖{ŝ}), a contradiction

to the assumption that ℬ∗ is the optimal partition. (ii) Suppose Pℬ∗ ≥

P̄ (�) and that there exists a signal s̃ ∈ S+ that is not contained in

ℬ∗, i.e., ℬ∗ ∩ {s̃} = ∅. Since ŝ is a good signal
∑

s∈ℬ∗(
Hs − 
Ls ) <
∑

s∈ℬ∗∪{ŝ}(

H
s − 
Ls ). Pℬ∗ ≥ P̄ (�) implies that Y (ℬ∗ ∪ {s̃}) > Y (ℬ∗).

Thus, X(ℬ∗) < X(ℬ∗ ∪ {s̃}) a contradiction to the assumption that ℬ∗

maximizes X(ℬ∗). Finally, since for any ℬ∗ we are either in case (i) or

in case (ii), the desired result follows. □

PROOF OF PROPOSITION 17

Suppose, in contradiction, that in the optimum there are signals s, t ∈ S

such that s ∈ ℬ∗, t /∈ ℬ∗ and 
Hs −
Ls

s(â)

<

Ht −
Lt

t(â)

. We derive a contradiction

by showing that exchanging signal s for signal t reduces the principal’s

cost, which implies that the original contract cannot be optimal. Let

ℬ̄ ≡ (ℬ∗ ∖ {s})∪{t}.It suffices to show that X(ℬ̄) > X(ℬ∗), where X(ℬ)

is defined as in the proof of Proposition 16. X(ℬ̄) > X(ℬ∗) is equivalent

to

(
∑

j∈ℬ∗

(
Hj − 
Lj ) + (
Ht − 
Lt )− (
Hs − 
Ls )

)[
1− (�− 1)(1− 2Pℬ̄)

(�− 1)Pℬ̄(1− Pℬ̄)

]

>

(
∑

j∈ℬ∗

(
Hj − 
Lj )

)[
1− (�− 1)(1− 2Pℬ∗)

(�− 1)Pℬ∗(1− Pℬ∗)

]

.
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Rearranging yields

[
(
Ht − 
Lt )− (
Hs − 
Ls )

]
[
1− (�− 1)(1− 2Pℬ̄)

(�− 1)Pℬ̄(1− Pℬ̄)

]

>

(
∑

j∈ℬ∗

(
Hj − 
Lj )

)[
1− (�− 1)(1− 2Pℬ∗)

(�− 1)Pℬ∗(1− Pℬ∗)
−

1− (�− 1)(1− 2Pℬ̄)

(�− 1)Pℬ̄(1− Pℬ̄)

]

.

(VII.16)

With Y (Pℬ) being defined as in the proof of Proposition 16, we have to

consider two cases, (i) dY (Pℬ∗)/Pℬ ≥ 0, and (ii) dY (Pℬ∗)/Pℬ < 0.

Case (i): Since 
s(â)−
t(â) ≤ �, we have Pℬ∗ ≤ Pℬ̄+�. With Y (Pℬ)

being (weakly) increasing at Pℬ∗ , inequality (VII.16) is least likely to

hold for Pℬ∗ = Pℬ̄ + �. Inserting Pℬ∗ = Pℬ̄ + � into (VII.16) yields

[
(
Ht − 
Lt )− (
Hs − 
Ls )

]
[
1− (�− 1)(1− 2Pℬ̄)

(�− 1)Pℬ̄(1− Pℬ̄)

]

>

(
∑

j∈ℬ∗

(
Hj − 
Lj )

)[
1− (�− 1)(1− 2Pℬ̄ − 2�)

(�− 1)[Pℬ̄(1− Pℬ̄) + �(1− 2Pℬ̄)]− �2

−
1− (�− 1)(1− 2Pℬ̄)

(�− 1)Pℬ̄(1− Pℬ̄)

]

. (VII.17)

The right-hand side of (VII.17) becomes arbitrarily close to zero for �→

0, thus it remains to show that

[
(
Ht − 
Lt )− (
Hs − 
Ls )

]
[
1− (�− 1)(1− 2Pℬ̄)

(�− 1)Pℬ̄(1− Pℬ̄)

]

> 0. (VII.18)

For (VII.18) to hold, we must have (
Ht − 
Lt ) − (
Hs − 
Ls ) > 0. From

the proof of Proposition 16 we know that S+ ⊆ ℬ∗ if Y (Pℬ) is increasing

at ℬ∗. Since the principal will end up including all good signals in the

set ℬ∗ anyway, the question of interest is whether she can benefit from

swapping two bad signals. Therefore, we consider case s, t ∈ S−, where

S− ≡ {s ∈ S∣
Hs − 
Ls < 0}. With s, t ∈ S−, we have

[
(
Ht − 
Lt )− (
Hs − 
Ls )

]
≥ 
t(â)
s(â)

⋅

[
1


s(â)


Ht − 
Lt

t(â)

−
1


s(â) + �


Hs − 
Ls

s(â)

]

, (VII.19)

where the inequality holds because 
t(â) − 
s(â) ≤ �. Note that for

� → 0 the right-hand side of (VII.19) becomes strictly positive, thus
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(
Ht − 
Lt ) − (
Hs − 
Ls ) > 0 for � → 0. Hence, for � sufficiently small,

X(ℬ∗) < X(ℬ̄), a contradiction to ℬ∗ being optimal.

Case (ii): Since 
t(â) − 
s(â) ≤ �, we have Pℬ∗ ≥ Pℬ̄ − �. With

Y (Pℬ) being decreasing at Pℬ∗ , inequality (VII.16) is least likely to hold

for Pℬ∗ = Pℬ̄ − �. Inserting Pℬ∗ = Pℬ̄ − � into (VII.16), and running

along the lines of case (i) allows us to establish that, for � sufficiently

small, X(ℬ∗) < X(ℬ̄), a contradiction to ℬ∗ being optimal.

To sum up, for � sufficiently small we have

max
s∈S∖ℬ∗

{(
Hs − 
Ls )/
s(â)} < min
s∈ℬ∗

{(
Hs − 
Ls )/
s(â)} ,

or equivalently,

max
s∈S∖ℬ∗

{
Hs /

L
s } < min

s∈ℬ∗
{
Hs /


L
s }.

Letting K ≡ mins∈ℬ∗{
Hs /

L
s } establishes the desired result. □

PROOF OF PROPOSITION 18

We first prove part (ii). Suppose that a small change in � leaves the

optimal partition ℬ∗ of the set of all signals unchanged. Rearranging

(IC′) yields

b∗ =
c′(â)

∑

s∈ℬ∗(
Hs − 
Ls )− (�− 1)
[∑

s∈ℬ∗(
Hs − 
Ls )
]
[1− 2Pℬ∗ ]

.

Straight-forward differentiation reveals that

db∗

d�
=

c′(â)
[∑

s∈ℬ∗(
Hs − 
Ls )
]
[1− 2Pℬ∗ ]

{∑

s∈ℬ∗(
Hs − 
Ls )− (�− 1)
[∑

s∈ℬ∗(
Hs − 
Ls )
]
[1− 2Pℬ∗ ]

}2 .

Since under the second-best contract
∑

s∈ℬ∗(
Hs − 
Ls ) > 0, the desired

result follows.

To prove part (i), let ℬ+ ≡
{
ℬ ⊂ S∣

∑

s∈ℬ(

H
s − 
Ls ) > 0

}
. For any ℬ̃ ∈

ℬ+, let

bℬ̃ =
c′(â)

∑

s∈ℬ̃(

H
s − 
Ls )− (�− 1)

[∑

s∈ℬ̃(

H
s − 
Ls )

]
[1− 2Pℬ̃]

and

uℬ̃ = ū+ c(â)− bℬ̃Pℬ̃ + (�− 1)Pℬ̃(1− Pℬ̃)bℬ̃.
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The cost of implementing action â when paying uℬ̃ for signals in S ∖ ℬ̃

and uℬ̃ + bℬ̃ for signals in ℬ̃ is given by

Cℬ̃ = uℬ̃ + bℬ̃Pℬ̃ = ū+ c(â) +
c′(â)(�− 1)Pℬ̃(1− Pℬ̃)

[∑

s∈ℬ̃(

H
s − 
Ls )

]
[1− (�− 1)(1− 2Pℬ̃)]

.

Differentiation of Cℬ̃ with respect to � yields

dCℬ̃

d�
=

c′(â)Pℬ̃(1− Pℬ̃)
[∑

s∈ℬ̃(

H
s − 
Ls )

]
[1− (�− 1)(1− 2Pℬ̃)]

2 .

Obviously, dCℬ̃/d� > 0 for all ℬ ∈ ℬ+. Since the optimal partition of S

may change as � changes, the minimum cost of implementing action â is

given by

C(â) = min
ℬ∈ℬ+

Cℬ.

Put differently, C(â) is the lower envelope of all Cℬ for ℬ ∈ ℬ+. With

Cℬ being continuous and strictly increasing in � for all ℬ ∈ ℬ+, it follows

that also C(â) is continuous and strictly increasing in �. This completes

the proof. □

PROOF OF LEMMA 7

We show that program (MG) has a solution, that is,
∑S

s=1 
s(â)ℎ(us)

achieves its greatest lower bound. First, from Lemma 6 we know that

the constraint set of program (MG) is not empty for action â ∈ (0, 1).

Next, note that from (IRG) it follows that
∑S

s=1 
s(â)us is bounded below.

Following the reasoning in the proof of Proposition 1 of Grossman and

Hart (1983), we can artificially bound the constraint set – roughly spoken

because unbounded sequences in the constraint set make
∑S

s=1 
s(â)ℎ(us)

tend to infinity by a result from Bertsekas (1974). Since the constraint set

is closed, the existence of a minimum follows from Weierstrass’ theorem.

□

PROOF OF LEMMA 8

Since (IRG) will always be satisfied with equality due to an appropriate

adjustment of the lowest intrinsic utility level offered, relaxing (IRG) will
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always lead to strictly lower costs for the principal. Therefore, the shadow

value of relaxing (IRG) is strictly positive, so �IR > 0.

Next, we show that relaxing (ICG) has a positive shadow value, �IC >

0. We do this by showing that a decrease in c′(â) leads to a reduction

in the principal’s minimum cost of implementation. Let {u∗s}s∈S be the

optimal contract under (the original) Program MG, and suppose that

c′(â) decreases. Now the principal can offer a new contract {uNs }s∈S of

the form

uNs = �u∗s + (1− �)
S∑

t=1


t(â)u
∗
t , (VII.20)

where � ∈ (0, 1), which also satisfies (IRG), the relaxed (ICG), and

(OCG), but yields strictly lower costs of implementation than the original

contract {u∗s}s∈S .

Clearly, for �̂ ∈ (0, 1), uNs < uNs′ if and only if u∗s < u∗s′ , so (OCG) is

also satisfied under contract {uNs }s∈S .

Next, we check that the relaxed (ICG) holds under {u
N
s }s∈S . To see

this, note that for � = 1 we have {uNs }s∈S ≡ {u∗s}s∈S . Thus, for � = 1,

the relaxed (ICG) is oversatisfied under {uNs }s∈S . For � = 0, on the

other hand, the left-hand side of (ICG) is equal to zero, and the relaxed

(ICG) in consequence is not satisfied. Since the left-hand side of (ICG)

is continuous in � under contract {uNs }s∈S , by the intermediate-value

theorem there exists �̂ ∈ (0, 1) such that the relaxed (ICG) is satisfied

with equality.

Last, consider (IRG). The left-hand side of (IRG) under contract

{uNs }s∈S with � = �̂ amounts to

S∑

s=1


s(â)u
N
s − (�− 1)

S−1∑

s=1

S∑

t=s+1


s(â)
t(â)
[
uNt − uNs

]

=
S∑

s=1


s(â)u
∗
s − �̃(�− 1)

S−1∑

s=1

S∑

t=s+1


s(â)
t(â) [u
∗
t − u∗s]

>
S∑

s=1


s(â)u
∗
s − (�− 1)

S−1∑

s=1

S∑

t=s+1


s(â)
t(â) [u
∗
t − u∗s]

= ū+ c(â) , (VII.21)
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where the last equality follows from the fact that {u∗s}s∈S fulfills the

(IRg) with equality. Thus, contract {uNs }s∈S is feasible in the sense that

all constraints of program (MG) are met. It remains to show that the

principal’s costs are reduced. Since ℎ(⋅) is strictly convex, the principal’s

objective function is strictly convex in �, with a minimum at � = 0.

Hence, the principal’s objective function is strictly increasing in � for

� ∈ (0, 1]. Since {uNs }s∈S ≡ {u∗s}s∈S for � = 1, for � = �̂ we have

S∑

s=1


s(â)ℎ(u
∗
s) >

S∑

s=1


s(â)ℎ(u
N
s ),

which establishes the desired result. □

PROOF OF PROPOSITION 19

For the agent’s intrinsic utility function being sufficiently linear, the prin-

cipal’s costs are approximately given by a second-order Taylor polynomial

about r = 1, thus

C(u∣r) ≈
∑

s∈S


s(â)us + Ω(u∣r) ,

where

Ω(u∣r) ≡
∑

s∈S


s(â)

[

(us ln us)(r − 1) + (1/2)us(ln us)
2(r − 1)2

]

.

Relabeling signals such that the wage profile is increasing allows us to

express the incentive scheme in terms of increases in intrinsic utility. The

agent’s binding participation constraint implies that

u1 = ū+ c(â)−
S∑

s=2

bs

{
S∑

�=s


� (â)− (�− 1)

[ S∑

�=s


� (â)

][ s−1∑

t=1


t(â)

]}

≡ u1(b)

and us = u1(b)+
∑s

t=2 bt ≡ us(b) for all s = 2, . . . , S. Inserting the bind-

ing participation constraint into the above cost function and replacing

Ω(u∣r) equivalently by Ω̃(b∣r) ≡ Ω(u1(b), . . . , uS(b)∣r) yields

C(b∣r) ≈ ū+ c(â) + (�− 1)
S∑

s=2

bs

[
S∑

�=s


� (â)

][
s−1∑

t=1


t(â)

]

+ Ω̃(b∣r).
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Hence, for a given increasing wage profile the principal’s cost minimiza-

tion problem is:

Program ME:

min
b∈ℝS−1

+

b′�(
̂, �, â) + Ω̃(b∣r)

subject to b′�(
̂, �, â) = c′(â) (IC′)

If r is sufficiently close to 1, then the incentive scheme that solves pro-

gram ML also solves program ME. Note that generically program ME is

solved only by bonus schemes. Put differently, even if there are multi-

ple optimal contracts for program ML, all these contracts are generically

simple bonus contracts. Thus, from Proposition 15 it follows that gener-

ically for r close to 1 the optimal incentive scheme entails a minimum of

wage differentiation. Note that for � = 1 the principal’s problem is to

minimize Ω̃(b∣r) even for r sufficiently close to 1. □

PROOF OF PROPOSITION 20

First consider b ≥ 0. We divide the analysis for b ≥ 0 into three subcases.

Case 1 (a0 < 0): For the effort level â to be chosen by the agent, this

effort level has to satisfy the following incentive compatibility constraint:

â ∈ arg max
a∈[0,1]

u+ 
(a)b− 
(a)(1− 
(a))b(�− 1)−
k

2
a2 (IC)

For â to be a zero of dE [U(a)] /da, the bonus has to be chosen according

to

b∗(â) =
kâ

(
H − 
L) [2− �+ 2
(â)(�− 1)]
.

For a > a0, b
∗(a) is a strictly increasing and strictly concave function with

b∗(0) = 0. Hence, each â ∈ [0, 1] can be made a zero of dE [U(a)] /da with

a non-negative bonus. By choosing the bonus according to b∗(â), â sat-

isfies, by construction, the first-order condition. Inserting b∗(â) into the

d2E [U(a)] /da2 shows that expected utility is strictly concave function
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if a0 < 0. Hence, with the bonus set equal to b∗(â), effort level â satis-

fies the second-order condition for optimality and therefore is incentive

compatible.

Case 2 (a0 = 0): Just like in the case where a0 < 0, each effort level

a ∈ [0, 1] turns out to be implementable with a non-negative bonus. To

see this, consider bonus

b0 =
k

2(
H − 
L)2(�− 1)
.

For b ≤ b0, dE [U(a)] /da < 0 for each a > 0, that is, lowering effort

increases expected utility. Hence, the agent wants to choose an effort

level as low as possible and therefore exerts no effort at all. If, on the

other hand, b > b0, then dE [U(a)] /da > 0. Now, increasing effort

increases expected utility, and the agent wants to choose effort as high

as possible. For b = b0, expected utility is constant over all a ∈ [0, 1],

that is, as long as his participation constraint is satisfied, the agent is

indifferent which effort level to choose. As a tie-breaking rule we assume

that, if indifferent between several effort levels, the agent chooses the

effort level that the principal prefers.

Case 3 (a0 > 0): If a0 > 0, the agent either chooses a = 0 or a = 1.

To see this, again consider bonus b0. For b ≤ b0, dE [U(a)] /da < 0 for

each a > 0. Hence, the agent wants to exert as little effort as possible and

chooses a = 0. If, on the other hand, b > b0, then d
2E [U(a)] /da2 > 0,

that is, expected utility is a strictly convex function of effort. In order

to maximize expected utility, the agent will choose either a = 0 or a = 1

depending on whether E [U(0)] exceeds E [U(1)] or not.

Negative Bonus: b < 0

Let b− < 0 denote the monetary punishment that the agent receives if

the good signal is observed. With a negative bonus, the agent’s expected

utility is

E [U(a)] = u+ 
(a)b− + 
(a)(1− 
(a))�b−

+ (1− 
(a))
(a)(−b−)−
k

2
a2. (VII.22)
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The first derivative with respect to effort,

dE [U(a)]

da
= (
H − 
L)b− [�− 2
(a)(�− 1)]
︸ ︷︷ ︸

MB−(a)

− ka
︸︷︷︸

MC(a)

,

reveals that MB−(a) is a positively sloped function, which is steeper the

harsher the punishment is, that is, the more negative b− is. It is worth-

while to point out that if bonus and punishment are equal in absolute

value, ∣b−∣ = b, then also the slopes ofMB−(a) andMB(a) are identical.

The intercept ofMB−(a) with the horizontal axis, a−0 again is completely

determined by the model parameters:

a−0 =
�− 2
L(�− 1)

2(
H − 
L)(�− 1)
.

Note that a−0 > 0 for 
L ≤ 1/2. For 
L > 1/2 we have a−0 < 0 if and only

if � > 2
L/(2
L − 1). Proceeding in exactly the same way as in the case

of a non-negative bonus yields a familiar results: effort level â ∈ [0, 1]

is implementable with a strictly negative bonus if and only if a−0 ≤ 0.

Finally, note that a0 < a−0 . Hence a negative bonus does not improve the

scope for implementation. □

PROOF OF PROPOSITION 21

Throughout the analysis we restricted attention to non-negative bonus

payment. It remains to be shown that the principal cannot benefit from

offering a negative bonus payment: implementing action â with a nega-

tive bonus is at least as costly as implementing action â with a positive

bonus. In what follows, we make use of notation introduced in the pa-

per as well as in the proof of Proposition 20. Let a0(p), a
−
0 (p), b

∗(â; p),

and u∗(â; p) denote the expressions obtained from a0, a
−
0 , b

∗(â), and

u∗(â), respectively, by replacing 
(â), 
L, and 
H with 
(â; p), 
L(p),

and 
H(p). From the proof of Proposition 19 we know that (i) action â

is implementable with a non-negative bonus (negative bonus) if and only

if a0(p) ≤ 0 (a−0 (p) ≤ 0), (ii) a−0 (p) ≤ 0 implies a0(p) < 0. We will show

that, for a given value of p, if â is implementable with a negative bonus

then it is less costly to implement â with a non-negative bonus.
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Consider first the case where a−0 (p) < 0. The negative bonus payment

satisfying incentive compatibility is given by

b−(â; p) =
kâ

(
H(p)− 
L(p)) [�− 2
(â; p)(�− 1)]
.

It is easy to verify that the required punishment to implement â is larger

in absolute value than than the respective non-negative bonus which is

needed to implement â, that is, b∗(â; p) < ∣b−(â; p)∣ for all â ∈ (0, 1)

and all p ∈ [0, 1). When punishing the agent with a negative bonus

b−(â; p), u−(â; p) will be chosen to satisfy the corresponding participation

constraint with equality, that is,

u−(â; p) = ū+
k

2
â2 − 
(â; p)b−(â; p) [�− 
(â, p)(�− 1)] .

Remember that, if â is implemented with a non-negative bonus, we have

u∗(â; p) = ū+
k

2
â2 − 
(â; p)b∗(â; p) [2− �+ 
(â; p)(�− 1)] .

It follows immediately that the minimum cost of implementing â with a

non-negative bonus is lower than the minimum implementation cost with

a strictly negative bonus:

C−(â; p) = u−(â; p) + 
(â; p)b−(â; p)

= ū+
k

2
â2 − 
(â; p)b−(â; p) [�− 
(â; p)(�− 1)− 1]

> ū+
k

2
â2 + 
(â; p)b∗(â; p) [�− 
(â; p)(�− 1)− 1]

= ū+
k

2
â2 − 
(â; p)b∗(â; p) [1− �+ 
(â; p)(�− 1)]

= ū+
k

2
â2 − 
(â; p)b∗(â; p) [2− �+ 
(â; p)(�− 1)]

+ 
(â; p)b∗(â; p)

= u∗(â; p) + 
(â; p)b∗(â; p)

= C(â; p).

The same line of argument holds when a−0 = 0: the bonus which satisfies

the (IC) is

b−0 (â; p) = −
k

2(
H(p)− 
L(p))2(�− 1)
,

and so b∗(â; p) < ∣b−0 (â; p)∣ for all â ∈ (0, 1) and all p ∈ [0, 1). □
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PROOF OF COROLLARY 1

Let p ∈ (0, 1). With �̂ being a convex combination of 
̂ and 1 we have

(�H , �L) = p(1, 1)+(1−p)(
H , 
L) = (
H+p(1−
H), 
L+p(1−
L)). The

desired result follows immediately from Proposition 16: Consider � > 2.

Implementation problems are less likely to be encountered under �̂ than

under 
̂. Moreover, if implementation problems are not an issue under

both performance measures, then implementation of a certain action is

less costly under �̂ than under 
̂. For � = 2 implementation problems do

not arise and implementation costs are identical under both performance

measures. Last, if � < 2, implementation problems are not an issue

under either performance measure, but the cost of implementation is

strictly lower under 
̂ than under �̂. □

VALIDITY OF THE FIRST-ORDER APPROACH

L e m m a 10: Suppose A3-A5 hold, then the incentive constraint in

the principal’s cost minimization problem can be represented as E[U ′(â)]

= 0.

Proof: Consider a contract (u1, {bs}
S
s=2) with bs ≥ 0 for s = 2, . . . , S.

In what follows, we write �s instead of �s(
̂, �, â) to cut back on notation.

The proof proceeds in two steps. First, we show that for a given contract

with the property bs > 0 only if �s > 0, all actions that satisfy the first-

order condition of the agent’s utility maximization problem characterize

a local maximum of his utility function. Since the utility function is

continuous and all extreme points are local maxima, if there exists some

action that fulfills the first-order condition, this action corresponds to the

unique maximum. In the second step we show that under the optimal

contract we cannot have bs > 0 if �s ≤ 0.

Step 1: The second derivative of the agent’s utility with respect to a

is

E[U ′′(a)] = −2(�− 1)
S∑

s=2

bs�s − c′′(a) , (VII.23)
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where �s := (
∑s−1

i=1 

H
i − 
Li )(

∑S
i=s 


H
i − 
Li ) < 0. Suppose action â

satisfies the first-order condition. Formally

S∑

s=2

bs�s = c′(â) ⇐⇒
S∑

s=2

bs
�s
â

=
c′(â)

â
. (VII.24)

Action â locally maximizes the agent’s utility if

−2(�− 1)
S∑

s=2

bs�s < c′′(â). (VII.25)

Under Assumption A5, we have c′′(â) > c(â)/â. Therefore, if

S∑

s=2

bs
[
−2(�− 1)�s − �s/â

]
< 0 , (VII.26)

then (VII.24) implies (VII.25), and each action â satisfying the first-order

condition of the agent’s maximization problem is a local maximum of his

expected utility. Inequality (VII.26) obviously is satisfied if each element

of the sum is negative. Summand s is negative if and only if

− 2(�− 1)

(
s−1∑

i=1

(
Hi − 
Li )

)(
S∑

i=s

(
Hi − 
Li )

)

â

−

(
S∑

�=s

(
H� − 
L� )

)[

1− (�− 1)

(
s−1∑

t=1


t(â)

)]

− (�− 1)

[
S∑

�=s


� (â)

](
s−1∑

t=1

(
Ht − 
Lt )

)

< 0.

Rearranging the above inequality yields

(
S∑

i=s

(
Hi − 
Li )

){

�+ 2(�− 1)

[

â

s−1∑

i=1

(
Hi − 
Li )−
s−1∑

i=1


i(â)

]}

> 0

⇐⇒

(
S∑

i=s

(
Hi − 
Li )

){

�

(

1−
s−1∑

i=1


Li

)

+ (2− �)
s−1∑

i=1


Li

}

> 0

(VII.27)

The term in curly brackets is positive, since � ≤ 2 and
∑s−1

i=1 

L
i < 1.

Furthermore, note that
∑S

i=s(

H
i − 
Li ) > 0 since �s > 0 for all bs > 0.

This completes the first step of the proof.
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Step 2: Consider a contract with bs > 0 and �s ≤ 0 for at least

one signal s ∈ {2, . . . , S} that implements â ∈ (0, 1). Then, under this

contract, (IC′) is satisfied and there exists at least one signal t with �t > 0

and bt > 0. Obviously, the principal can reduce both bs and bt without

violating (IC′). This reasoning goes through up to the point where (IC′)

is satisfied and bs = 0 for all signals s with �s ≤ 0. From the first step

of the proof we know that the resulting contract implements â incentive

compatibly. Next, we show that reducing any spread, say bk, always

reduces the principal’s cost of implementation.

C(b) =
S∑

s=1


s(â)ℎ

(

u1(b) +
s∑

t=2

bs

)

,where

u1(b) = ū+c(â)−
S∑

t=2

bs

[
S∑

�=s


� (â)− (�− 1)

(
S∑

�=s


� (â)

)(
s−1∑

t=1


t(â)

)]

.

The partial derivative of the cost function with respect to an arbitrary

bk is

∂C(b)

∂bk
=

k−1∑

s=1


s(â)ℎ
′

(

u1(b) +
s∑

t=2

bs

)[
∂u1
∂bk

]

+
S∑

s=k


s(â)ℎ
′

(

u1(b) +
s∑

t=2

bs

)[
∂u1
∂bk

+ 1

]

.

Rearranging yields

∂C(b)

∂bk
=

k−1∑

s=1


s(â)ℎ
′(us)

⋅

[

(�− 1)

(
S∑

�=k


� (â)

)(
k−1∑

t=1


t(â)

)

−
S∑

�=k


� (â)

]

︸ ︷︷ ︸

<0

+
S∑

s=k


s(â)ℎ
′(us)

[

(�− 1)

(
S∑

�=k


� (â)

)(
k−1∑

t=1


t(â)

)

−
S∑

�=k


� (â) + 1

]

︸ ︷︷ ︸

>0

.
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Note us ≤ us+1 which implies that ℎ′(us) ≤ ℎ′(us+1). Thus, the following

inequality holds

∂C(b)

∂bk
≥

k−1∑

s=1


s(â)ℎ
′(uk)

⋅

[

(�− 1)

(
S∑

�=k


� (â)

)(
k−1∑

t=1


t(â)

)

−
S∑

�=k


� (â)

]

+
S∑

s=k


s(â)ℎ
′(uk)

[

(�− 1)

(
S∑

�=k


� (â)

)(
k−1∑

t=1


t(â)

)

−
S∑

�=k


� (â) + 1

]

.

The above inequality can be rewritten as follows

∂C(b)

∂bk
≥ ℎ′(uk)

[

(�− 1)

(
S∑

�=k


� (â)

)(
k−1∑

t=1


t(â)

)]

> 0.

Since reducing any bonus lowers the principal’s cost of implementation,

it cannot be optimal to set bs > 0 for �s ≤ 0. This completes the second

step of the proof. In combination with step 1, this establishes the desired

result. □
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VII.5. APPENDIX TO CHAPTER VI

It is useful to know the following properties of a CES function, where we

take the specification of (VI.1):

(i) dI
dIt

is positive and homogenous of degree 0.

(ii) d2I
dI1dI2

is positive for � < 1 and zero for � = 1.

(iii) d2I
dI2t

is negative for � < 1 and zero for � = 1.

(iv) For � < 1 and I−t > 0, limIt→0
dI
dIt

= ∞.

PROOF OF LEMMA 9

The first-order conditions of (VI.5) are:

d�

dIH2
= w

dm(⋅)

dI

∣
∣
∣
∣
�

[⋅]1/�−1
� (1− 
)((1 + �) IH2

∣
∣
�
)�−1(1 + �)−

1

1 + r
= 0;

dE�[�]

dÎ1
=

1

2
w
dm(⋅)

dI

∣
∣
∣
∣
�=�

[⋅]
1/�−1
�=� 


(

(1 + �)Î1 + (1− �)Ǐ1

)�−1

(1 + �)

+
1

2
w
dm(⋅)

dI

∣
∣
∣
∣
�=−�

[⋅]
1/�−1
�=−�


(

(1− �)Î1 + (1 + �)Ǐ1

)�−1

(1− �)

− 1 = 0;

dE�[�]

dǏ1
=

1

2
w
dm(⋅)

dI

∣
∣
∣
∣
�=�

[⋅]
1/�−1
�=� 


(

(1 + �)Î1 + (1− �)Ǐ1

)�−1

(1− �)

+
1

2
w
dm(⋅)

dI

∣
∣
∣
∣
�=−�

[⋅]
1/�−1
�=−�


(

(1− �)Î1 + (1 + �)Ǐ1

)�−1

(1 + �)

− 1 = 0.

[⋅]� is the square bracket of (VI.4) evaluated at �. For the first-order

conditions of Î1 and Ǐ1 we have used the Envelope theorem. Note, we

cannot be sure that in the optimum the first-order conditions must be

satisfied.

Due to the assumptions on m(⋅) it cannot be optimal not to invest at

all. Additionally, due to the concavity of m(⋅) an optimum exists.

Part 1: It holds that Î1 = Ǐ1.

The case � < 1. Property (iv) of the CES function implies that it is

optimal to invest a positive amount in both periods. Which proves the

last part of Lemma 9 and implies that the first-order condition of IH2 must

be fulfilled in the optimum. Since d2I
dI2t

< 0 for � < 1 and d2m(⋅)/dI2 < 0
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the optimal IH2 is unique. Moreover, since dI
dIt

is homogenous of degree 0

and d2m(⋅)/dI2 < 0 in the optimum
IH2

Ieffective1
is decreasing in Ieffective1 .

Suppose that Î1 < Ǐ1. Then
dE�[�]

dÎ1
≤ dE�[�]

dǏ1
. Hence,

dm(⋅)

dI

∣
∣
∣
∣
�=�

[⋅]
1/�−1
�=�

(

(1 + �)Î1 + (1− �)Ǐ1

)�−1

≤
dm(⋅)

dI

∣
∣
∣
∣
�=−�

[⋅]
1/�−1
�=−�

(

(1− �)Î1 + (1 + �)Ǐ1

)�−1

.

From before we know that the first-order condition of IH2 must be fulfilled

in the optimum. Inserting it into the previous inequality yields

(
IH2
∣
∣
�=�

Ieffective1

∣
∣
�=�

)1−�

≤

(
IH2
∣
∣
�=−�

Ieffective1

∣
∣
�=−�

)1−�

. (VII.28)

Due to Î1 < Ǐ1 we have Ieffective1

∣
∣
�=�

< Ieffective1

∣
∣
�=−�

. Since in the op-

timum
IH2

Ieffective1
is decreasing in Ieffective1 , see before, (VII.28) cannot be

fulfilled. Also Î1 > Ǐ1 yields a contradiction. Hence, Î1 = Ǐ1.

The case � = 1. With � = 1 there are either corner solutions in which

it is optimal to invest in only one period, or there is an indifference. In

the latter case it is weakly optimal to choose Î1 = Ǐ1. In the former case,

it is either optimal (i) not to invest in period 1, or (ii) it is optimal not

to invest in period 2. In case (i) Î1 = Ǐ1 = 0. In case (ii) we must have

Î1, Ǐ1 > 0 which implies dE�[�]

dÎ1
= dE�[�]

dǏ1
. So

1

2

dm(⋅)

dI

∣
∣
∣
∣
�=�

(1 + �) +
1

2

dm(⋅)

dI

∣
∣
∣
∣
�=−�

(1− �)

=
1

2

dm(⋅)

dI

∣
∣
∣
∣
�=�

(1− �) +
1

2

dm(⋅)

dI

∣
∣
∣
∣
�=−�

(1 + �)

which simplifies to

dm(⋅)

dI

∣
∣
∣
∣
�=�

=
dm(⋅)

dI

∣
∣
∣
∣
�=−�

.

Since IH2 = 0 this requires Î1 = Ǐ1.

Part 2: It holds that IH2
∣
∣
�=−�

= IH2
∣
∣
�=�

.

The case � < 1. From Part 1 we know that Î1 = Ǐ1 > 0. This directly

implies, see the first-order condition of IH2 , that in the optimum, although
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the type of the second period investment depends on �, the height of the

second period investments IH2 is independent of �.

The case � = 1. When it is optimal to invest only in the second

period the same arguments as with � < 1 apply. When it is optimal only

to invest in the first period we have IH2 = 0 for both, � = � and � = −�.

When there is a case of indifference it is weakly optimal to choose Î1 = Ǐ1,

see Part 1. Then the the first-order condition of IH2 implies that IH2 is

independent of �. □
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