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Introduction

The analysis of contractual arrangements between two or more parties has a long

tradition in economics, since the “game-theoretic” revolution. Questions among this

line are: In which way should the wage of an employee depend on his own or the firm’s

performance? 1 What is the optimal selling contract for a given good or service? 2

For instance, a telecommunication service provide may ask how should the invoice of a

customer vary with his consumption patterns within a month? This dissertation aims

at contributing to the strands of theoretical literature in economics investigating the

above mentioned questions.

Next to the orthodox theories on contract design and optimal selling strategies, there

is a recent and growing literature investigating how rational firms respond to consumer

or employee biases. During the last decade the field of economics that modifies the

“standard preferences” by incorporating findings from psychological research has made

a significant progress. Now, there exist reasonable and tractable frameworks for model-

ing agents with reference-dependent preferences, time-inconsistent discounting, fairness

concerns and many other behavioral motives. These “workhorse”models not only allow

to investigate the “old” questions for a richer class of the agent’s preferences, they also

raise new questions. For instance, if an employee’s behavior is time inconsistent, this

raises the question how often should there be meetings between supervisors and sub-

ordinates where the subordinates report on the progress they made on given projects.

An interim deadline, i.e. a meeting with the supervisor, would impose an undesirable

restriction on the choice set of a time-consistent employee. If the employee has time-

inconsistent preferences, however, such an interim deadline may help to increase the

employee’s work input.

In three of the four main chapters of this dissertation, I follow this new “behavioral”

approach and investigate contractual situations by allowing for biased consumers or

employees to provide possible explanations for observed contractual arrangements that

are puzzling from the perspective of standard orthodox economics.

1Classic contributions who investigate this question are Holmström (1979, 1982), Shavell (1979),
Gjesdal (1982), and Grossman and Hart (1983).

2One of the first papers that formally analyzes more sophisticated pricing schemes is Oi (1972), who
derives the optimal two-part tariff for a monopolistic seller. A fully nonlinear tariff schedule is
derived by Mussa and Rosen (1978).
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Chapter I, which is based on a joint project with Daniel Müller and Philipp Wein-

schenk, analyzes the well-known principal-agent problem with hidden actions. In these

models the principal (firm) seeks to contract with an agent (potential employee). If

the agent accepts the contract, he can undertake an action (provide effort) which is

costly to him. The chosen action is unobservable for the principal but stochastically

influences her profit. The principal can make the compensation payment (wage) of

the agent depending on a performance measure which is imperfectly correlated with

the agent’s action choice (for instance the firm’s profit). By making the compensation

payment depending on performance, the principal can motivate the agent to provide

a desired level of effort. By doing so, however, the principal imposes some risk on

the agent since the performance measure is only a noisy signal of the agent’s effort

choice. Since human beings typically dislike to be confronted with risky situations, the

principal faces a tradeoff between providing incentives and optimal risk sharing. With

the tradeoff between incentive provision and risk sharing being at the heart of moral

hazard, allowing for a richer description of the agent’s risk preferences seems a natural

starting point to obtain deeper insights into contracting.

Orthodox economic theory models risk aversion by assuming a strictly concave utility

function. This approach, however, can only inadequately describe the risk preferences of

human beings, see for instance Rabin (2000). In their seminal contribution, Kahneman

and Tversky (1979) expose the prospect theory which is an alternative to describe

risk preferences based on psychological findings. A main module of this theory is

the concept of loss aversion. This concept suggests that a person’s preferences are

determined by changes in outcomes relative to his reference level, and not merely by

absolute levels of outcomes. Moreover, this concept posits that losses loom larger than

gains of equal size. In particular, prospect theory assumes loss aversion even for small

stakes. A “standard” agent is locally risk neutral, i.e., his degree of risk aversion is

only of second order. The drawback of the original prospect theory is that it does not

provide a satisfying approach how to determine a decision maker’s reference point. In

two recent articles, Kőszegi and Rabin (2006, 2007) provide a loss-aversion theory where

the reference point is fully determined by the decision maker’s rational expectations

about outcomes. We consider a principal-agent model with moral hazard, framed as

an employer-employee relationship, which is completely standard but for one twist:

the agent is assumed to be loss averse in the sense of Kőszegi and Rabin. The main

finding is that a simple (lump-sum) bonus contract is optimal when loss aversion is the

predominant determinant of the agent’s risk preferences. If the employee’s performance

is below a certain threshold he receives only his base wage, whereas for performances

above this threshold he receives the base wage plus a fixed performance independent
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bonus payment. This is in stark contrast to the finding for a “purely” risk averse agent

who is not loss averse and thus exhibits local risk neutrality, which implies that paying

slightly different wages for different signals improves incentives at negligible costs (see

Holmström, 1979). Thus, standard theory predicts fairly complex performance-based

wage schemes which are rarely observed in practice. Simple bonus contracts, however,

are commonly utilized in practice.3

Chapter II, which is based on a joint paper with Daniel Müller, investigates the

behavior and in particular the performance of a decision maker who faces self-control

problems. What are self-control problems? Self-control problems in our sense arise from

time-inconsistent preferences. A person’s preferences are time consistent if he feels the

same about a given intertemporal tradeoff no matter when he is asked. A person is time

consistent if and only if he discounts streams of utility over time exponentially, which

is traditionally assumed in economics since this concept was introduced by Samuelson

(1937). The concept of exponential discounting was originally proposed merely for pur-

poses of formal tractability since it compresses all behavioral concerns into one single

parameter. Psychological researches as well as casual observations suggest that the

assumption of exponential discounting and thus time-consistent preferences is prob-

lematically.4 As is familiar probably to everyone, the short term tastes for immediate

gratification (eating a chocolate bar) are inconsistent with our long-run preferences

(subsisting healthier).

To capture these preferences one needs a discount function with declining discount

rates, such preferences are called “hyperbolic discounting”. The first formal model

of such time-variant preferences is Strotz (1955). Now, established in economics is a

tractable two-parameter model that slightly modifies Samuelson’s discounting model.

This model, which was originally introduced by Phelps and Pollak (1968) to study in-

tergenerational altruism, is often referred to as quasi-hyperbolic discounting and cap-

tures the essence of hyperbolic discounting. Seminal contributions who apply this

concept to model decision makers with self-control problems are Laibson (1997, 1998)

and O’Donoghue and Rabin (1999b). We also apply this concept of quasi-hyperbolic

discounting to analyze the performance of agents with self-control problems, and in

particular we investigate how interim deadlines can help to improve performance.

Former research has shown that procrastination can be explained by quasi-hyperbolic

discounting, see for instance O’Donoghue and Rabin (1999b). We develop a model of

continuous effort choice over time that shifts the focus from completion of to per-

3Bonus contracts are widely used for instance in sales force compensation plans, see Joseph and
Kalwani (1998).

4For a review of the psychological literature on time-inconsistent discounting see Frederick et al.
(2002).



4 Dissertation of Fabian Herweg

formance on a single task. Besides showing that procrastination induced by time-

inconsistent preferences in general hampers performance, we mainly ask two questions:

First, does sophistication about the own self-control problems increase performance and

overall well-being? Secondly, do interim deadlines enhance performance? In contrast

to the existing literature on procrastination, we find that being aware of the own self-

control problems can reduce a person’s performance as well as his overall well-being.

With regard to the second question, we show that being exposed to an interim deadline

increases the performance as well as the overall well-being of a hyperbolic discounter,

irrespectively of his awareness of own self-control problems. These findings suggest

that there is also scope for the employer of such an agent to benefit from imposing

interim deadlines. Therefore, Chapter II provides a theoretical underpinning for the

frequent observation of interim deadlines in working environments.

In Chapter III, which presents a non-behavioral model, I analyze the effect of a

larger contract space on firms’ decisions to produce differentiated products. Since

Bertrand’s (1883) article, it is well-known that if firms produce homogeneous products

price competition leads to prices equal to marginal costs. Thus, if firms produce with

the same constant returns to scale technology, in the Bertrand equilibrium all firms

make a zero profit. This finding, which is also known as the Bertrand-Paradox, does

not seem to fit to the vast majority of industries. Since typically firms engage in price

and not in quantity competition à la Cournot (1838) many economists augmented the

Bertrand model to allow for product differentiation.5

If firms produce differentiated products, price competition is softened which in turn

increases industry profits. The theories of product differentiation can roughly be sub-

divided into two categories: horizontal and vertical differentiation. For horizontally

differentiated products, consumers have different ordinal rankings over the products.

Thus, if there are two products, say A and B, which are priced equally, then some

consumers purchase product A while others purchase product B.6 If products are ver-

tically differentiated, all consumers have the same ordinal ranking over these products.

The best example for a vertical product feature is quality. If all products have the

same price, each consumer purchases the good with the highest quality.

In a classic contribution on vertical differentiation, Gabszewicz and Thisse (1979)

show that price competition is relaxed if firms produce different qualities. The qualities

the firms produce are fixed exogenously in their model. Shaked and Sutton (1982)

extend the Gabszewicz-Thisse model by endogenizing quality levels. The main result

5Kreps and Scheinkman (1983) show that if firms first choose capacities and than compete in prices,
under mild assumptions about demand, the unique equilibrium outcome is the Cournot outcome.

6The linear city model of Hotelling (1929) is probably the most frequently applied model for hori-
zontally differentiated products in industrial organization.
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is that in equilibrium of a two-stage game, where firms first choose quality levels and

afterwards compete in prices, firms produce distinct qualities and thereby relax price

competition. The fact that firms can relax competition via quality differentiation is

possible due to heterogeneity of consumers with regard to their tastes for quality. All

consumers prefer a higher quality, however, the willingness to pay for an improved

quality differs across consumers. Thus, by selecting different qualities at the first stage

the firms attract different types of consumers at the second stage which in turn relaxes

competition.

In contrast to these earlier findings, Chapter III shows that firms may have incentives

for quality differentiation even when consumers do not differ in their tastes for quality

but differ in their preferences for quantity. It is shown that quality differentiation can

relax competition when firms can offer two-part tariffs. If firms are restricted to linear

pricing, however, quality differentiation does not relax competition. The intuition is

that selecting different qualities may facilitate market segmentation in which different

classes of consumers are also served different quantities. Without quality differentiation

the firms produce perfect substitutes and thus compete in a Bertrand fashion. Thus,

the novel contribution of this chapter to the theory of product differentiation is to

identify differences in consumers’ preferences for quantity as a reason for strategic

quality differentiation by firms.

Chapter IV investigates the widespread use of flat-rate tariffs. With a flat-rate tariff

a consumer pays a fixed amount which is independent of his usage, the basic fee, to

obtain unlimited access to a good or service. Nowadays, flat-rate contracts are common

in many industries, e.g., telephone services, Internet access, car rental, car leasing, DVD

rental, amusement parks, health clubs, and so on. Besides these examples that come

immediately in one’s mind, all-you-can-eat buffets, flat-rate parties, and a season ticket

for a sports team are examples for flat-rate contracts.

The fact that flat-rate tariffs are such favorable pricing schemes is hard to reconcile

with orthodox economic theory, in particular for industries where marginal costs are

non-negligible. If marginal costs are positive, a marginal payment of zero leads to

an inefficiently high level of consumption which hardly can be optimal. Usage-based

pricing, however, may cause positive transaction costs for measuring the actual usage

of a consumer. In many of the examples provided above marginal costs of production

or service provision are positive but transaction costs for measuring usage are close to

zero. For instance, the price for a rental car typically is fixed per day and does not

depend on the mileage. The costs for the rental car company are clearly higher if the

car is used more heavily, due to for instance a higher wear of the tires. To ascertain

how many miles a customer drove with the car is relatively easy and not very costly
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for the company. Is there any other reason, maybe outside standard economics, that

can explain the prevalence of flat-rate contracts?

There is evidence that people like the idea of paying one fee for unlimited access.7

A common phenomenon among those consumers who prefer unlimited access is the

tendency to pay a fixed fee that costs more than measured service would have cost,

given their demonstrated demand. Put differently, consumers facing the choice between

several tariffs often do not select the optimal one given their consumption patterns.

In particular, consumers often prefer a flat-rate tariff even though they would save

money with a measured tariff. Train (1991) referred to this phenomenon as “flat-rate

bias”. Evidence for tariff-choice biases and in particular for the flat-rate bias was first

documented for U.S. households among telephone service options. Notable works on

this topic are Train et al. (1987), Hobson and Spady (1988), and Train et al. (1989).

Already these papers point out, that consumers are uncertain about their demand when

selecting a tariff and that they choose tariffs on the basis of the“insurance”provided by

these contracts. Thus, the flat-rate bias is a consequence of customers’ risk preferences

in the face of uncertain consumption patterns. Since variations in the monthly billing

rates are small compared to a consumer’s income, standard risk aversion cannot capture

this insurance motive.

Therefore, to capture first-order risk aversion I posit that consumers are loss averse.

A loss averse consumer dislikes even small deviations from his reference point. In my

model, the consumer’s demand is uncertain when he selects a tariff. I assume that a

consumer forms rational expectations about his invoice, which determine his reference

point. The consumer feels a loss if his actual invoice amount is above his reference

point, and he feels a gain if it is below his reference point. I follow Kőszegi and Rabin

(2006, 2007) in assuming that the reference point is a full distribution of the possible

billing rates. I show that a consumer with these preferences is biased in favor of flat-

rate tariffs, since flat rates insure against the risk of losses in periods of greater than

average usage.

Because observed tariffs are the result of strategic interactions of firms and con-

sumers, I set an oligopoly model up where firms compete for loss averse consumers.

Moreover, I allow for consumer heterogeneity with respect to their degree of loss aver-

sion. The timing is as follows: (i) Firms offer a menu of two-part tariffs to consumers;

(ii) Each consumer selects either one tariff or none; (iii) The consumer observes the

realization of the state of the world which determines his preferences for the good and

chooses a demanded quantity. I analyze the symmetric information case in which firms

observe a consumer’s degree of loss aversion, as well as the asymmetric information

7Cf. Lambrecht and Skiera 2006.
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case in which the degree of loss aversion is private information. In the benchmark case

of symmetric information, in equilibrium firms offer a flat-rate tariff to those consumers

whose degree of loss aversion compared to marginal costs exceeds a certain threshold.

Consumers with a lower degree of loss aversion are assigned to a metered tariff, i.e., a

two-part tariff with a strictly positive unit price. These findings turn out to carry over

likewise to the asymmetric information case.

Before moving to the main part of this dissertation, a few words to the use of the

first person plural in the following chapters may be in order. Chapter I and Chapter

II have been developed in collaboration with other PhD students. The use of the

plural in Chapter IV is due to the advice by Thomson (1999) to use this form even

for single-authored articles in economics. Unfortunately, while I was writing my first

paper, which is contained in Chapter III, I was unaware of Thomson’s guidelines.

The next four chapters are each devised as independent self-contained units. More-

over, for notational convenience, the number of the chapter is often suppressed when

referring to a proposition, lemma, or corollary. For instance, if it is referred to Propo-

sition 2 in Chapter III, then it is meant Proposition III.2.
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I. The Optimality of Simple

Contracts: Moral Hazard and

Loss Aversion

This chapter extends the standard principal-agent model with

moral hazard to allow for agents having reference-dependent pref-

erences according to Kőszegi and Rabin (2006, 2007). When loss

aversion is the predominant determinant of the agent’s risk pref-

erences, the principal optimally offers a simple bonus contract,

i.e., when the agent’s performance exceeds a certain threshold,

he receives a fixed bonus payment. Also when risk aversion be-

comes more important, the optimal contract displays less com-

plexity than predicted by orthodox theory. Thus, loss aversion

introduces an endogenous complexity cost into contracting.
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1. Introduction

The recent literature provides very strong evidence that contractual forms have large effects

on behavior. As the notion that “incentive matters” is one of the central tenets of economists

of every persuasion, this should be comforting to the community. On the other hand, it raises

an old puzzle: if contractual form matters so much, why do we observe such a prevalence of

fairly simple contracts?

— Bernard Salanié (2003)

A lump-sum bonus contract, with the bonus being a payment for achieving a certain

level of performance, is probably the most simple incentive scheme for employees one

can think of. According to Steenburgh (2008), salesforce compensation plans provide

incentives mainly via a lump-sum bonus for meeting or exceeding the annual sales

quota.1 Simple contracts are commonly found not only in labor contexts but also in

insurance markets. A prevalent form of insurance contracts is a straight-deductible

contract, widely used, for example, in automobile insurance. The observed plainness of

contractual arrangements, however, is at odds with predictions made by economic the-

ory, as nicely stated in the above quote by Salanié. While Prendergast (1999) already

referred to the discrepancy between theoretically predicted and actually observed con-

tractual form, over time this question was raised again and again, recently by Lazear

and Oyer (2007), and the answer still is not fully understood.2

Beside this gap between theoretical prediction and observed practice, both theoretical

as well as empirical studies demonstrate that these simple contractual arrangements

create incentives for misbehavior of the agent that is outside the scope of most standard

models. As Oyer (1998) points out, facing an annual sales quota provides incentives for

salespeople to manipulate prices and timing of business to maximize their own income

rather than firms’ profits. For insurance markets, Dionne and Gagné (2001) show

that “deductible contracts can introduce perverse effects when falsification behavior is

1Incentives for salespeople in the food manufacturing industry often are solely created by a lump-sum
bonus, see Oyer (2000). Moreover, in his book about designing effective sales compensation plans,
Moynahan (1980) argues that for a wide range of industries lump-sum bonus contracts are optimal.
For a survey on salesforce compensation plans see Joseph and Kalwani (1998).

2For evidence on deductibles in the automobile insurance, see Puelz and Snow (1994) or Chiappori et
al. (2006). As was shown by Rothschild and Stiglitz (1976), the use of deductibles can theoretically
be explained if the insurance market is subject to adverse selection. Besides adverse selection,
however, moral hazard plays an important role in automobile insurance. Deductibles were found
to be optimal under moral hazard by Holmström (1979) if the insured person’s action influences
only the probability of an accident but not its severity. As pointed out by Winter (2000), however,
“[d]riving a car more slowly and carefully reduces both the probability of an accident and the
likely costs of an accident should it occur.” Thus, existing theories cannot explain the prevalence
of deductibles in these markets.
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potentially present”.3 These observations raise “the interesting question of why these

[...] contracts are so prevalent. [...] It appears that there must be some benefit of these

contracts that outweighs these apparent costs” (Lazear and Oyer, 2007).

To give one possible explanation for the widespread use of these contractual ar-

rangements, we consider a principal-agent model with moral hazard, framed as an

employer-employee relationship, which is completely standard but for one twist: the

agent is assumed to be loss averse in the sense of Kőszegi and Rabin (2006, 2007).

With the tradeoff between incentive provision and risk sharing being at the heart of

moral hazard, allowing for a richer description of the agent’s risk preferences that goes

beyond standard risk aversion seems a natural starting point to gain deeper insights

into contract design. Our main finding is that a simple (lump-sum) bonus scheme is

optimal when loss aversion is the driving force of the agent’s risk preferences.4 This is in

stark contrast to the findings for a standard risk-averse agent. An agent who is risk but

not loss averse exhibits local risk neutrality, which implies that paying slightly different

wages for different signals improves incentives at negligible cost. A loss-averse agent,

on the other hand, is first-order risk averse. Since losses loom larger than equally-sized

gains, in expectations the agent suffers from deviations from his reference point. With

the reference point being multidimensional under the concept of Kőszegi and Rabin,

the agent is first-order risk averse at all possible wage levels. In consequence, paying

even slightly different wages reduces the agent’s expected utility, for which in turn he

demands to be compensated. Thus, by offering a simple contract, that specifies only

few different wage levels, the principal can lower the expected payment necessary to

compensate the agent for the induced losses.

We present our model of a principal-agency that is subject to moral hazard in Sec-

tion 2. The principal, who is both risk and loss neutral, does not observe the agent’s

effort directly. Instead, she observes a measure of performance that is correlated with

the agent’s effort decision. Following Kőszegi and Rabin, we posit that a decision

maker – next to intrinsic consumption utility from an outcome – also derives gain-loss

utility from comparing the actual outcome with his rational expectations about out-

comes. More precisely, the sensation of gains and losses is derived by comparing a

given outcome to all possible outcomes. To illustrate this point, consider an employee

who receives a wage of $5000 for good performance, a wage of $4400 for mediocre per-

formance, and a wage of $4000 for bad performance. If the employee’s performance

3For evidence on fraudulent claims being a major problem in the car insurance market see Caron
and Dionne (1997), who estimated the cost of fraud in the Québec automobile insurance market in
1994 at $100 million, just under 10% of total claims. For an estimation of the costs of fraudulent
claims in the United States, see Foppert (1994).

4In the following, we will use the terms bonus contract and bonus scheme interchangeably to refer to
a contract that specifies exactly two distinct wage payments, a base wage and a lump-sum bonus.
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is mediocre, this generates mixed feelings, a loss of $600 and a gain of $400.5 The

key feature of the Kőszegi-Rabin model is that expectations matter in determining the

reference point.6 While mainly based on findings in the psychological literature,7 evi-

dence for this assumption is provided also by two recent contributions to the economic

literature. In a real-effort experiment, Abeler et al. (2009) find strong evidence for

individuals taking their expectations as a reference point, rather than the status quo.8

Similarly, analyzing decision making in a large-stake game show, Post et al. (2008)

come to the conclusion that observed behavior “is consistent with the idea that the

reference point is based on expectations.” Regarding applications, the Kőszegi-Rabin

concept is used by Heidhues and Kőszegi (2005, 2008a) to introduce consumer loss

aversion into otherwise standard models of industrial organization. While the former

paper explains why monopoly prices react less sensitive to cost shocks than predicted

by orthodox theory, the latter provides an answer to the question why non-identical

competitors charge identical prices for differentiated products.

As a benchmark, in Section 3 we reconsider the case of a purely risk-averse agent:

Under the optimal contract, signals that are more indicative of higher effort are re-

warded strictly higher, thereby giving rise to a strictly increasing wage profile. We

then turn to the analysis of a purely loss-averse agent who does not exhibit risk aver-

sion in the usual sense. After providing sufficient conditions for the first-order approach

to be valid, we establish our main result: when the agent is loss averse, it is optimal

to offer a bonus contract. No matter how rich the set of possible realizations of the

performance measure, the optimal contract comprises of only two different wage pay-

ments. We already touched on the intuition underlying this finding: With the agent’s

action being unobservable, the necessity to create incentives makes it impossible for

the principal to bear the complete risk. With losses looming larger than equally sized

gains, this ex ante imposes an expected net loss on the agent, which equals the sum over

the ex ante expected wage differences weighted by the product of the corresponding

probabilities. To illustrate, let us return to the example introduced above. Suppose

the agent expects to perform well, moderately, or poorly with probability pG, pM and

pB, respectively. Then, ex ante, the agent expects a wage difference – or net loss –

of $600 with probability pMpG, a net loss of $400 with probability pBpM , and a net

loss of $1000 with probability pBpG. The agent demands to be compensated for his

5For at least suggestive evidence on mixed feelings, see Larsen et al. (2004).
6The feature that the reference point is determined by the decision maker’s forward-looking expec-

tations is shared with the disappointment aversion models of Bell (1985), Loomes and Sugden
(1986), and Gul (1991).

7For instance, Mellers et al. (1999) and Breiter et al. (2001) document that both the actual outcome
and unattained possible outcomes affect subjects’ satisfaction with their payoff.

8The status quo was most often assumed as reference point in the wake of Kahneman and Tversky’s
(1979) original formulation of prospect theory.
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overall expected net loss, which the principal therefore seeks to minimize. Consider, for

the sake of argument, a principal who wants to strengthen incentives to provide effort,

starting out from a not fully differentiated wage scheme. There are two ways to do so.

First, the principal can introduce a new wage spread, i.e., pay slightly different wages

for two signals that were rewarded equally in the original wage scheme, while keeping

the differences between all other neighboring wages constant. Secondly, the principal

can increase an existing wage spread, holding constant all other spreads between neigh-

boring wages. Both procedures increase the overall expected net loss by increasing the

size of some of the expected losses without reducing others. Introducing a new wage

spread, however, additionally increases the overall expected net loss by increasing the

ex ante expected probability of experiencing a loss. Therefore, in order to improve

incentives, it is advantageous to increase an existing wage spread without adding to

the contractual complexity in the sense of increasing the number of different wages. In

this sense, reference-dependent preferences according to Kőszegi and Rabin introduce

an endogenous complexity cost into contracting based on psychological foundations.

Thereafter, we establish several properties displayed by the optimal contract. Let a

signal that is the more likely to be observed the higher the agent’s effort be referred to

as a good signal. We find that the subset of signals that are rewarded with the high

wage contains either only good signals, or all good signals and possibly a few bad signals

as well.9 When abstracting from integer-programming problems, it is optimal for the

principal to order the signals according to their relative informativeness (likelihood

ratio), i.e., the agent receives the high wage for all signals that are more indicative of

high effort than a cutoff signal. Last, we show that an increase in the agent’s degree of

loss aversion may allow the principal to use a lower-powered incentive scheme in order

to implement a desired level of effort. The reason is that a higher degree of loss aversion

may be associated with a stronger incentive for the agent to choose a high effort in

order to reduce the probability of incuring a loss. The overall cost of implementation,

however, increases in the agent’s degree of loss aversion.

In the last part of Section 3, we analyze the general case in which the agent is both

risk and loss averse. It is shown that our results are robust towards a small degree of

risk aversion. Moreover, we give a heuristic reasoning why a reduction in the complexity

of the contract is also to be expected to be optimal for a non-negligible degree of risk

aversion, and confirm our conjecture by means of a numerical example.10

9The theoretical prediction that inferior performance may also well be rewarded with a bonus is
in line with both Joseph and Kalwani (1998)’s suggestion that organizations tend to view the
payment of a bonus as a reward for good or even acceptable performance rather than an award for
exceptional performance, and Churchill et al. (1993)’s prescription that bonuses should be based
on objectives that can be achieved with reasonable rather than Herculean efforts.

10This finding also relates to the observation that, within a firm, pay for individuals often seems to
be less variable than productivity, as recently surveyed by Lazear and Shaw (2007). Our model
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Returning to the case of a purely loss-averse agent, in Section 4 we relax the assump-

tions that guaranteed validity of the first-order approach. Here, to keep the analysis

tractable, we focus on binary measures of performances. If the agent’s degree of loss

aversion is sufficiently high and if the performance measure is sufficiently informative,

then only extreme actions – work as hard as possible or do not work at all – are incen-

tive compatible. Put differently, the principal may face severe problems in fine-tuning

the agent’s incentives. These implementation problems, however, can be remedied if

the principal can commit herself to stochastically ignoring the low realization of the

performance measure, i.e., by turning a blind eye from time to time. Besides alleviating

implementation problems, turning a blind eye may also lower the cost of implementing

a certain action. Thus, the sufficiency part of Blackwell’s theorem does not hold when

the agent has reference-dependent preferences.

After briefly summarizing our main findings, Section 5 concludes by discussing ro-

bustness of our results with respect to imposed assumptions. All proofs are given in

the appendix.

Related Literature Before presenting our model, we relate our paper to the small

but steadily growing literature that analyzes the implications of loss aversion on incen-

tive design.11 With reference-dependent preferences being at the heart of loss aversion

on the one hand, but with no unifying approach provided how to determine a decision

maker’s reference point on the other hand, it is little surprising that all contributions

differ in this particular aspect. While Dittmann et al. (2007) posit that the reference

income is exogenously given by the previous year’s fixed wage, Iantchev (2005), who

considers a market environment with multiple principals competing for the services

of multiple agents, applies the concept of Rayo and Becker (2007). Here, an agent’s

reference point is endogenously determined by the equilibrium conditions in the mar-

ket. When focusing on a particular principal-agent pair, however, both the principal

and the agent take the reference point as exogenously given. An exogenous reference

point does not always seem plausible. Starting out from the premise that the reference

point is forward looking and depends on the distributions of outcomes, as suggested

suggests an alternative explanation for this pay compression outside the realms of inequity aversion,
tournament theory, and influence activities.

11Beside loss aversion there are other behavioral biases that are incorporated into contracting problems
with moral hazard. Non-standard risk preferences in a moral hazard framework are analyzed by
Schmidt (1999), who applies Yaari’s (1987) concept of dual expected utility theory. Englmaier
and Wambach (2006) characterize the optimal contract for the case of an inequity-averse agent in
the sense of Fehr and Schmidt (1999). A multi-agent contracting problem in which agents care
about their own status is investigated by Besley and Ghatak (2008) in a static context, and by
Auriol and Renault (2008) in a dynamic setting. By introducing worker overconfidence into a
multi-agent moral-hazard problem, Fang and Moscarini (2005) show that it can be optimal not to
screen workers according to their skills. For a review of behavioral economics of organizations see
Camerer and Malmendier (2007).
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by ample evidence, De Meza and Webb (2007) consider both exogenous as well as

endogenous formulations of the reference point. Concluding that the disappointment

concept of Gul (1991), which equates the reference point with the certainty equivalent

of the income distribution, does yield some questionable implications,12 De Meza and

Webb propose that the reference income is the median income, which captures the idea

that the agent incurs a loss at all incomes for which it is odds-on that a higher income

would be drawn. Taking median income as reference income, however, suffers from the

drawback that it is discontinuous in the underlying probability distribution.13

All of the aforementioned contributions explore questions of both empirical impor-

tance as well as theoretical interest: Dittmann et al. (2007) find that a loss aversion

model dominates an equivalent risk aversion model in explaining observed CEO com-

pensation contracts if the reference point is equal to the previous year’s fixed wage.

Iantchev (2005) finds evidence for his theoretically predicted results in panel data from

Safelite Glass Corporation. Last, by explaining why bonuses are paid for good perfor-

mance rather than penalties for poor performance, De Meza and Webb (2007) provide a

theoretical underpinning for the frequent usage of option-like incentive schemes in CEO

compensation. The contractual form predicted by these papers, however, is rather com-

plex: while the optimal contract typically displays a range where pay is independent of

performance, for performance above this range payment varies with performance in a

fairly complex way, depending crucially on the underlying distribution of signals. The-

oretical predictions differ in whether or not the optimal contract includes punishment

for very poor performance or where in the wage schedule the optimal contract features

discontinuities. Thus, none of these papers provides a rationale for the prevalence of

fairly simple contracts, bonus contracts in particular.14

To the best of our knowledge, Daido and Itoh (2007) is the only paper that also

applies the concept of reference dependence à la Kőszegi and Rabin to a principal-agent

setting. The focus of Daido and Itoh, however, greatly differs from ours. Assuming

that the performance measure comprises of only two signals, two types of self-fulfilling

prophecy are explained, the Galatea and the Pygmalion effects.15 While sufficient to

12De Meza and Webb consider two otherwise identical agents who differ only in their degree of loss
aversion. They point out that with the certainty equivalent as reference point, there are situations
where the less loss-averse agent experiences a loss, but the more loss-averse agent does not.

13For example, suppose that with a probability of .51 a manager earns $1m and with a probability
of .49 he earns $2m. With median income as reference point the manager will never suffer a loss
because his reference income is $1m. A small shift in probabilities, however, makes the median
income equal to $2m. Now, the agent suffers a loss in almost 50% of all cases.

14De Meza and Webb (2007) find conditions under which a simple bonus contract is optimal. For this
to be the case, however, they assume that the reference point is exogenously given and that all
wage payments are in the loss region, where the agent is assumed to be risk loving.

15Roughly speaking, the former effect refers to empirical findings that an agent’s self-expectation
about his performance is an important determinant of his actual performance, whereas the latter
effect refers to the phenomenon that a principal’s expectation about the agent’s performance has
an impact on the agent’s actual performance.
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capture these two effects, the assumption of a binary measure of performance does not

allow one to inquire into the form that contracts take under moral hazard.

2. The Model

There are two parties, a principal and an agent.16 The principal offers a one-period

employment contract to the agent, who has an outside employment opportunity (or

reservation utility) yielding expected utility ū. If the agent accepts the contract, then

he chooses an effort level a ∈ A ≡ [0, 1]. The agent’s action a equals the probability

that the principal receives a benefit B > 0. The principal’s expected net benefit is

π = aB − E[W ] ,

where W is the compensation payment the principal pays to the agent.17 The principal

is assumed to be risk and loss neutral, thus she maximizes π. We wish to inquire into

the form that contracts take under moral hazard and loss aversion. Therefore, we focus

on the cost minimization problem to implement a certain action â ∈ (0, 1).18

The action choice a ∈ A is private information of the agent and unobservable for

the principal. Furthermore, the realization of B is not directly observable. A possible

interpretation is that B corresponds to a complex good whose quality cannot be deter-

mined by a court, thus a contract cannot depend on the realization of B. Instead the

principal observes a contractible measure of performance, γ̂, with s ∈ S ≡ {1, . . . , S}

being the realization of the performance measure, also referred to as signal. Let S ≥ 2.

The probability of observing signal s conditional on B being realized is denoted by γH
s .

Accordingly, γL
s is the probability of observing signal s conditional on B not being re-

alized. Hence, the unconditional probability of observing signal s for a given action a is

γs(a) ≡ aγH
s +(1−a)γL

s . For technical convenience, we make the following assumption.

Assumption (A1): For all s, τ ∈ S with s 6= τ ,

(i) γH
s /γ

L
s 6= 1 (informative signals),

(ii) γH
s , γ

L
s ∈ (0, 1) (full support),

(iii) γH
s /γ

L
s 6= γH

τ /γ
L
τ (different signals).

Assumption (i) guarantees that any signal s is either a good or a bad signal, in the

16The framework is based on MacLeod (2003), who analyzes subjective performance measures without
considering loss-averse agents.

17The particular functional form of the principal’s profit function is not crucial for our analysis. We
assume this specific structure since it allows for a straight-forward interpretation of the performance
measure.

18The second-best action maximizes the principal’s expected benefit, aB, minus the minimum cost
of implementing action a. The overall optimal contract exhibits the same characteristics as the
contract that minimizes the cost of implementing an arbitrary action â.
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sense that the overall probability of observing that signal unambiguously increases

or decreases in a. Part (ii) ensures that for all a ∈ A, all signals occur with positive

probability. Last, with assumption (iii) signals can unambiguously be ranked according

to the relative impact of an increase in effort on the probability of observing a particular

signal.19

The contract which the principal offers to the agent consists of a payment for each

realization of the performance measure, {ws}
S

s=1 ∈ R
S.20

The agent is assumed to have reference-dependent preferences in the sense of Kőszegi

and Rabin (2006): Overall utility from consuming x = (x1, . . . , xK) ∈ R
K – when

having reference level r = (r1, . . . , rK) ∈ R
K for each dimension of consumption – is

given by

v(x|r) ≡
K∑

k=1

mk(xk) +
K∑

k=1

µ(mk(xk) −mk(rk)).

Put verbally, overall utility is assumed to have two components: consumption utility

and gain-loss utility. Consumption utility, also called intrinsic utility, from consuming

in dimension k is denoted by mk(xk). How a person feels about gaining or losing in

a dimension is assumed to depend in a universal way on the changes in consumption

utility associated with such gains and losses. The universal gain-loss function µ(·)

satisfies the assumptions imposed by Tversky and Kahneman (1991) on their “value

function”.21 In our model, the agent’s consumption space comprises of two dimensions,

money income (x1 = W ) and effort (x2 = a).22 The agent’s intrinsic utility for money

is assumed to be a strictly increasing, (weakly) concave, and unbounded function.

Formally, m1(W ) = u(W ) with u′(·) > ε > 0, u′′(·) ≤ 0. The intrinsic disutility

from exerting effort a ∈ [0, 1] is a strictly increasing, strictly convex function of effort,

m2(a) = −c(a) with c′(0) = 0, c′(a) > 0 for a > 0, c′′(·) > 0, and lima→1 c(a) = ∞. We

assume that the gain-loss function is piece-wise linear,

µ(m) =

{

m , for m ≥ 0

λm, for m < 0
.

The parameter λ characterizes the weight put on losses relative to gains.23 The weight

19Formally, for all a ∈ [0, 1], (γH
s − γL

s )/γs(a) > (γH
τ − γL

τ )/γτ (a) ⇐⇒ γH
s /γL

s > γH
τ /γL

τ .
20Restricting the principal to offer non-stochastic wage payments is standard in the principal-agent

literature and also in accordance with observed practice. In a later section we comment on this
assumption.

21Roughly speaking, µ(z) is strictly increasing, continuous for all z, twice differentiable for all z 6= 0
with µ(0) = 0, convex over the range of losses, and concave over the range of gains. For a more
formal statement of these properties, see Bowman et al. (1999).

22We implicitly assume that the agent is a “narrow bracketer” in the sense that he ignores that the
risk from the current employment relationship is incorporated with substantial other risk.

23Alternatively, one could assume that µ(m) = ηm for gains and µ(m) = ηλm for losses, where
η ≥ 0 can be interpreted as the weight attached to gain-loss utility relative to intrinsic utility.
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on gains is normalized to one. When λ > 1, the agent is loss averse in the sense that

losses loom larger than equally-sized gains.24

Following Kőszegi and Rabin (2006, 2007), the agent’s reference point is determined

by his rational expectations about outcomes. A given outcome is then evaluated by

comparing it to all possible outcomes, where each comparison is weighted with the ex-

ante probability with which the alternative outcome occurs. With the actual outcome

being itself uncertain, the agent’s ex ante expected utility is obtained by averaging

over all these comparisons.25 We apply the concept of choice-acclimating personal

equilibrium (CPE) as defined in Kőszegi and Rabin (2007), which assumes that a

person correctly predicts his choice set, the environment he faces, in particular the

set of possible outcomes and how the distribution of these outcomes depends on his

decisions, and his own reaction to this environment. The eponymous feature of CPE

is that the agent’s reference point is affected by his choice of action. As pointed out by

Kőszegi and Rabin, CPE refers to the analysis of risk preferences regarding outcomes

that are resolved long after all decisions are made. This environment seems well-

suited for many principal-agent relationships: Often the outcome of a project becomes

observable, and thus performance-based wage compensation feasible, long after the

agent finished working on that project. Under CPE, the expectations relative to which

a decision’s outcome is evaluated are formed at the moment the decision is made and,

therefore, incorporate the implications of the decision. More precisely, suppose the

agent chooses action a and that signal s is observed. The agent receives wage ws and

incurs effort cost c(a). While the agent expected signal s to come up with probability

γs(a), with probability γτ (a) he expected signal τ 6= s to be observed. If wτ > ws, the

agent experiences a loss of λ(u(ws)−u(wτ )), whereas if wτ < ws, the agent experiences

a gain of u(ws)−u(wτ ). If ws = wτ , there is no sensation of gaining or losing involved.

Our implicit normalization η = 1 is without loss of generality due to the applied concept of choice-
acclimating personal equilibrium (CPE). Carrying η through the whole analysis would only replace
(λ − 1) by η(λ − 1) in all formulas.

24The assumption of a piece-wise linear gain-loss function is not uncommon in the literature on
incentive design with loss-averse agents, see De Meza and Webb (2007), Daido and Itoh (2007).
In their work on asset pricing, Barberis et al. (2001) also apply this particular functional form,
reasoning that“curvature is most relevant when choosing between prospects that involve only gains
or between prospects that involve only losses. For gambles that can lead to both gains and losses,
[...] loss aversion at the kink is far more important than the degree of curvature away from the
kink.”

25Suppose the actual outcome x and the vector of reference levels r are distributed according to
distribution functions F and G, respectively. As introduced above, overall utility from two arbitrary
vectors x and r is given by v(x|r). With the reference point being distributed according to
probability measure G, the utility from a certain outcome is the average of how this outcome feels
compared to all other possible outcomes, U(x|G) =

∫
v(x|r) dG(r). Last, with x being drawn

according to probability measure F , utility is given by E[U(F |G)] =
s

v(x|r) dG(r)dF (x). Since
we use choice acclimating personal equilibrium, F = G.
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The agent’s utility from this particular outcome is given by

u(ws) +
∑

{τ |wτ <ws}

γτ (a)(u(ws) − u(wτ )) +
∑

{τ |wτ≥ws}

γτ (a)λ(u(ws) − u(wτ )) − c(a).

Averaging over all possible outcomes yields the agent’s expected utility from choosing

action a:

E[U(a)] =
S∑

s=1

γs(a)

{

u(ws) +
∑

{τ |wτ <ws}

γτ (a)(u(ws) − u(wτ ))

+
∑

{τ |wτ≥ws}

γτ (a)λ(u(ws) − u(wτ ))

}

− c(a).

Note that since the agent’s expected and actual effort choice coincide, there is neither

a gain nor a loss in the effort dimension.

We conclude this section by briefly summarizing the underlying timing.

1) The principal makes a take-it-or-leave-it offer to the agent.

2) The agent either accepts or rejects the contract. If the agent rejects the game

ends and each party receives her/his reservation payoff. If the agent accepts the

game moves to the next stage.

3) The agent chooses his action and forms rational expectations about the mone-

tary outcomes. The agent’s rational expectations about the realization of the

performance measure determine his reference point.

4) Both parties observe the realization of the performance measure and payments

are made according to the contract.

3. The Analysis

Let the inverse function of the agent’s intrinsic utility of money be h(·), i.e., h(·) :=

u−1(·). Thus, the monetary cost for the principal to offer the agent utility us is h(us) =

ws. Due to the assumptions imposed on u(·), h(·) is a strictly increasing and weakly

convex function. Following Grossman and Hart (1983), we regard u = {u1, . . . , uS} as

the principal’s control variables in her cost minimization problem to implement action

â ∈ (0, 1). The principal offers the agent a contract that specifies for each signal a

monetary payment or, equivalently, an intrinsic utility level. With this notation, the

agent’s expected utility from exerting effort a is given by

E[U(a)] =
∑

s∈S

γs(a)us − (λ− 1)
∑

s∈S

∑

{τ |uτ >us}

γτ (a)γs(a)(uτ − us) − c(a). (I.1)
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For λ = 1 the agent’s expected utility equals expected net intrinsic utility. Thus, for

λ = 1 we are in the standard case without loss aversion. Moreover, from the above

formulation of the agent’s utility it becomes clear that λ captures not only the weight

put on losses relative to gains, but (λ−1) also characterizes the weight put on gain-loss

utility relative to intrinsic utility. Thus, for λ ≤ 2, the weight attached to gain-loss

utility is below the weight attached to intrinsic utility. For a given contract u, the

agent’s marginal utility of effort

E[U ′(a)] =
∑

s∈S

(γH
s − γL

s )us

− (λ− 1)
∑

s∈S

∑

{τ |uτ >us}

[γτ (a)(γ
H
s − γL

s ) + γs(a)(γ
H
τ − γL

τ )](uτ − us) − c′(a). (I.2)

Suppose the principal wants to implement action â ∈ (0, 1). The optimal contract

minimizes the expected wage payment to the agent subject to the usual incentive

compatibility and individual rationality constraints:

min
u1,...,uS

∑

s∈S

γs(â)h(us)

subject to E[U(â)] ≥ ū , (IR)

â ∈ arg max
a∈A

E[U(a)] . (IC)

As a first benchmark, consider the case where the agent’s action choice is observable

and contractible, i.e., the incentive constraint (IC) is absent. In order to implement

action â in this first-best situation, the principal pays the agent uFB = ū + c(â) irre-

spective of the realization of the performance measure if the agent chooses the desired

action, thereby compensating him for his outside option and his effort cost. In the

presence of moral hazard, on the other hand, the principal faces the classic tradeoff

between risk sharing and providing incentives: When the agent is anything but risk

and loss neutral, it is neither optimal to have the agent bear the complete risk, nor to

fully insure the agent.

At this point we simplify the analysis by imposing two assumptions. These assump-

tions are sufficient to guarantee that the principal’s cost minimization problem exhibits

the following two properties: First, there are incentive-compatible wage contracts, i.e.,

contracts under which it is optimal for the agent to choose the desired action â. Ex-

istence of such contracts is not generally satisfied with the agent being loss averse.

Second, the first-order approach is valid, i.e., the incentive constraint to implement

action â can equivalently be represented as E[U ′(â)] = 0. The first assumption that

we introduce requires that the weight attached to gain-loss utility does not exceed the

weight put on intrinsic utility.
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Assumption (A2): No dominance of gain-loss utility, λ ≤ 2.

As carefully laid out in Kőszegi and Rabin (2007), CPE implies a strong notion of

risk aversion, in the sense that a decision maker may choose stochastically dominated

options when λ > 2.26 The reason is that, with losses looming larger than gains of equal

size, the person ex ante expects to experience a net loss. In consequence, if reducing

the scope of possibly incuring a loss is the decision maker’s primary concern, the person

would rather give up the slim hope of experiencing a gain at all in order to avoid the

disappointment in case of not experiencing this gain. In our model, if the agent is

sufficiently loss averse, the principal may be unable to implement any action â ∈ (0, 1).

The reason is that the agent minimizes the ex ante expected net loss by choosing one

of the two extreme actions. The values of λ for which this behavior is optimal for the

agent depend on the precise structure of the performance measure. Assumption (A2)

is sufficient, but not necessary, to ensure that there is a contract such that â ∈ (0, 1)

satisfies the necessary condition for incentive compatibility. Moreover, the tendency

to choose stochastically dominated options seems counterintuitive.27 Next to ensuring

existence of an incentive compatible contract, (A2) rules out that our findings are driven

by such counterintuitive behavior of the agent. It is worthwhile to emphasize, that our

main findings (Propositions 2 and 6) still hold for λ > 2 as long as existence and

validity of the first-order approach are guaranteed. In Section 4 we relax Assumption

(A2) and discuss in detail the implications of higher degrees of loss aversion.

To keep the analysis tractable we impose the following assumption.

Assumption (A3): Convex marginal cost function, ∀ a ∈ [0, 1] : c′′′(a) ≥ 0.

Given (A2), Assumption (A3) is a sufficient but not a necessary condition for the

first-order approach to be applicable.28 Alternatively, it would also suffice to have λ

sufficiently small, or the slope of the marginal cost function sufficiently steep. In fact,

our results only require the validity of the first-order approach, not that Assumption

(A3) holds. In Section 4 we consider the case in which the first-order approach is

invalid.

26Suppose a loss-averse person has to choose between two lotteries: lottery 1 pays x for sure; lottery
2 pays x + y with probability p, where y > 0, and x otherwise. Then, for each λ > 2, the decision
maker prefers the dominated lottery 1 if p < (λ− 2)/(λ− 1). For further details on this point, see
Kőszegi and Rabin (2007).

27The “uncertainty effect” identified by Gneezy et al. (2006) refers to people valuing a risky prospect
less than its worst possible outcome. While this may be interpreted as experimental evidence for
people having preferences for stochastically dominated options, this finding crucially relies on the
lottery currency not being stated in purely monetary terms. Therefore, we believe that in the
context of wage contracts most people do not choose dominated options.

28The validity of the first-order approach under assumptions (A1)-(A3) is rigorously proven in the
appendix. The reader should be aware, however, that the proof requires some notation introduced
later on. We therefore recommend to defer reading the proof until having read the preliminary
considerations up to Section 3.1.
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Lemma I.1: Suppose (A1)-(A3) hold, then the constraint set of the principal’s cost

minimization problem is nonempty for all â ∈ (0, 1).

The above lemma states that there are wage contracts such that the agent is willing

to accept the contract and then chooses the desired action. Moreover, we will show

that a second-best optimal contract exists. This, however, is shown separately for the

three cases analyzed in this section: pure risk aversion, pure loss aversion, and the

intermediate case.

Sometimes it will be convenient to state the constraints in terms of increases in

intrinsic utilities instead of absolute utilities. Note that whatever contract {ûs}s∈S the

principal offers, we can relabel the signals such that this contract is equivalent to a

contract {us}
S
s=1 with us−1 ≤ us for all s ∈ {2, . . . , S}. This, in turn, allows us to write

the contract as us = u1 +
∑s

τ=2 bτ , where bτ = uτ −uτ−1 ≥ 0 is the increase in intrinsic

utility for money when signal τ instead of signal τ −1 is observed. Let b = (b2, . . . , bS).

Using this notation allows us to rewrite the individual rationality constraint as follows:

u1 +
S∑

s=2

bs

[
S∑

τ=s

γτ (â) − ρs(γ̂, λ, â)

]

≥ ū+ c(â) , (IR′)

where

ρs(γ̂, λ, â) := (λ− 1)

[ S∑

τ=s

γτ (â)

][ s−1∑

t=1

γt(â)

]

.

Let ρ(γ̂, λ, â) = (ρ2(γ̂, λ, â), . . . , ρS(γ̂, λ, â)). The first part of the agent’s utility,

u1 +
∑S

s=2 bs(
∑S

τ=s γτ (â)), is the expected intrinsic utility for money. Due to loss

aversion, however, the agent’s utility has a second negative component, the term

b′ρ(γ̂, λ, â). Where does this term come from? With bonus bs being paid to the

agent whenever a signal higher or equal to s is observed, the agent expects to receive

bs with probability
∑S

τ=s γτ (â). With probability
∑s−1

t=1 γt(â), however, a signal below

s will be observed, and the agent will not be paid bonus bs. Thus, with “probability”

[
∑S

τ=s γτ (â)][
∑s−1

t=1 γt(â)] the agent experiences a loss of λbs. Analogous reasoning im-

plies that the agent will experience a gain of bs with the same probability. With losses

looming larger than gains of equal size, in expectation the agent suffers from devia-

tions from his reference point. This ex ante expected net loss is captured by the term,

b′ρ(γ̂, λ, â), which we will refer to as the agent’s “loss premium”.29 A crucial point is

that the loss premium increases in the complexity of the contract. When there is no

wage differentiation at all, i.e., b = 0, then the loss premium vanishes. If, in contrast,

the contract specifies many different wage payments, then the agent ex ante considers a

29Our notion of the agent’s loss premium is highly related to the average self-distance of a lottery
defined by Kőszegi and Rabin (2007). Let D(u) be the average self-distance of incentive scheme
u, then [(λ − 1)/2]D(u) = b′ρ(γ̂, λ, â).
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deviation from his reference point very likely. Put differently, for each additional wage

payment an extra negative term enters the agent’s loss premium and therefore reduces

his expected utility.30

Given the first-order approach is valid, the incentive constraint can be rewritten as

S∑

s=2

bsβs(γ̂, λ, â) = c′(â), (IC′)

where

βs(γ̂, λ, â) :=

(
S∑

τ=s

(γH
τ − γL

τ )

)

− (λ− 1)

[(
s−1∑

t=1

γt(â)

)(
S∑

τ=s

(γH
τ − γL

τ )

)

+

(
S∑

τ=s

γτ (â)

)(
s−1∑

t=1

(γH
t − γL

t )

)]

.

Here, βs(·) is the marginal effect on incentives of an increase in the wage payments

for signals above s − 1. Without loss aversion, i.e., λ = 1, this expression equals

the marginal probability of observing at least signal s. If the agent is loss averse,

on the other hand, an increase in the action also affects the agent’s loss premium.

The probability of bearing a loss of size bs is a quadratic function of the probability of

observing at least signal s. The agent’s action balances the tradeoff between maximizing

intrinsic utility and minimizing the expected net loss. Depending on the precise signal

structure and the action to be implemented, loss aversion may facilitate as well as

hamper the creation of incentives. Let β(γ̂, λ, â) = (β2(γ̂, λ, â), . . . , βS(γ̂, λ, â)).

As in the standard case, incentives are created solely by increases in intrinsic utilities,

b. In consequence, (IR′) is binding in the optimum. If this was not the case, i.e.,

if b satisfies (IC′) but (IR′) holds with strict inequality, then the principal can lower

payment u1 up to the point where the (IR′) is satisfied with equality. Thus, reducing u1

while holding b constant lowers the principal’s expected wage payment while preserving

incentives.

It is obvious that (IC′) can only be satisfied if there exists at least one βs > 0. If, for

example, signals are ordered according to their likelihood ratios, then βs(·) > 0 for all

s = 2, . . . , S. More precisely, for a given ordering of signals, under (A2) the following

equivalence follows immediately from the fact that
∑s−1

t=1(γH
t −γL

t ) = −
∑S

τ=s(γ
H
τ −γL

τ ):

βs(γ̂, λ, â) > 0 ⇐⇒
S∑

τ=s

(γH
τ − γL

τ ) > 0 . (I.3)

30While the exact change of the loss premium from adding more and more wage payments is hard
to grasp, this point can heuristically be illustrated by considering the upper bound of the loss
premium. Suppose the principal sets n ≤ S different wages. It is readily verified that the loss
premium is bounded from above by (λ− 1)[(uS − u1)/2]× [(n− 1)/n], and that this upper bound
increases as n increases. Note, however, that even for n → ∞ the upper bound of the loss premium
is finite.
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3.1. Two Polar Cases: Pure Risk Aversion vs. Pure Loss Aversion

In this part of the paper we analyze the two polar cases: The standard case where

the agent is only risk averse but not loss averse, on the one hand, and the case of a

loss-averse agent with a risk-neutral intrinsic utility function, on the other hand.

Pure Risk Aversion

First consider an agent who is risk averse in the usual sense, i.e., h′′(·) > 0, but does

not exhibit loss aversion. As discussed earlier, the latter requirement corresponds to

the case where λ = 1. With the agent not being loss averse, the first-order approach is

valid even without Assumption (A3).

Proposition I.1 (Holmström, 1979): Suppose (A1) holds, h′′(·) > 0, and λ = 1.

Then there exists a second-best optimal contract to implement â ∈ (0, 1). The second-

best contract has the property that us 6= uτ ∀s, τ ∈ S and s 6= τ . Moreover, us > uτ if

and only if γH
s /γ

L
s > γH

τ /γ
L
τ .

Proposition 1, restates the well-known finding by Holmström (1979) for discrete

signals: Signals that are more indicative of higher effort, i.e., signals with a higher

likelihood ratio γH
s /γ

L
s , are rewarded strictly higher. Thus, the optimal wage scheme

is complex in the sense that it is fully differentiated, with each signal being rewarded

differently.

Pure Loss Aversion

Having considered the polar case of pure risk aversion, we now turn to the other

extreme, a purely loss-averse agent. Formally, intrinsic utility of money is a linear

function, h′′(·) = 0, and the agent is loss averse, λ > 1. As we have already reasoned,

whatever contract the principal offers, relabeling the signals always allows us to repre-

sent this contract as an (at least weakly) increasing intrinsic utility profile. Therefore

we can decompose the principal’s problem into two steps: first, for a given ordering

of signals, choose a nondecreasing profile of intrinsic utility levels that implements the

desired action â at minimum cost; second, choose the signal ordering with the lowest

cost of implementation. As we know from the discussion at the end of the previous sec-

tion, a necessary condition for an upward-sloping incentive scheme to achieve incentive

compatibility is that for the underlying signal ordering at least one βs(·) > 0. In what

follows we restrict attention to the set of signal orderings that are incentive feasible in

the afore-mentioned sense. Nonemptiness of this set follows immediately from Lemma

1.
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Consider the first step of the principal’s problem, i.e., taking the ordering of signals

as given, find the nondecreasing payment scheme with the lowest cost of implemen-

tation. In what follows, we write the agent’s intrinsic utility in terms of additional

payments, us = u1 +
∑S

τ=2 bτ . With h(·) being linear, the principal’s objective function

is C(u1, b) = u1 +
∑S

s=2 bs(
∑S

τ=2 γτ (â)). Remember that at the optimum, (IR′) holds

with equality. Inserting (IR′) into the principal’s objective allows us to write the cost

minimization problem for a given order of signals in the following simple way:

Program ML:

min
b∈R

S−1

+

b′ρ(γ̂, λ, â)

subject to b′β(γ̂, λ, â) = c′(â) (IC′)

The minimization problem (ML) has a simple intuition. The principal seeks to minimize

the agent’s expected net loss subject to the incentive compatibility constraint. Similar

to the case of pure risk aversion, where the principal would like to cut back the agent’s

risk premium, here she is interested in minimizing the agent’s loss premium. Due to

the incentive constraint, however, this loss premium has to be strictly positive.

We want to emphasize that solving Program ML also yields insights for the more

general case with a concave intrinsic utility function. Even though the principal’s

objective will not reduce to minimizing the agent’s loss premium alone when intrinsic

utility is non-linear, this nevertheless remains an important aspect of the principal’s

problem. Since the solution to Program ML tells us how to minimize the agent’s loss

premium irrespective of the functional form of intrinsic utility, one should expect its

properties to carry over to some extent to the solution of the more general problem.

The principal’s cost minimization problem for a given order of signals is a simple

linear programming problem: minimize a linear objective function subject to one linear

equality constraint. Since we restricted attention to orderings of signals with βs(·) > 0

for at least one signal s, a solution to (ML) exists. Due to the linear nature of problem

(ML), (generically) this solution sets exactly one bs > 0 and all other bs = 0. Put

differently, the problem is to find that bs which creates incentives at the lowest cost.

So far we have seen that, for a given ordering of signals, the principal considers it

optimal to offer the agent a bonus contract: pay a low wage for signals below some

threshold, and a high wage for signals above this threshold. What remains to do for

the principal, in a second step, is to find the signal ordering that leads to the lowest

cost of implementation. With the number of different orders of signals being finite, this

problem clearly has a solution.
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Before summarizing the above discussion more concisely, we want to relate our finding

to the benchmark case of pure risk neutrality. As is well-known, with both contracting

parties being risk (and loss) neutral a broad range of contracts – including simple

bonus schemes – is optimal. With the agent being loss averse even to a negligible

degree, however, the unique optimal contractual form is a bonus scheme.31

Proposition I.2: Suppose (A1)-(A3) hold, h′′(·) = 0 and λ > 1. Then there exists a

second-best optimal contract to implement action â ∈ (0, 1). Generically, the second-

best optimal incentive scheme {u∗s}
S
s=1 is a bonus contract, i.e., u∗s = u∗H for s ∈ B∗ ⊂ S

and u∗s = u∗L for s ∈ S \ B∗, where u∗H > u∗L.

According to Proposition 2, the principal considers it optimal to offer the agent a

bonus contract which entails only a minimum degree of wage differentiation in the sense

that, no matter how rich the signal space, the contract specifies only two different wage

payments. This endeavor to reduce the complexity of the contract is plausible, since a

high degree of wage differentiation increases the agent’s loss premium: With the em-

ployment contract she offers to the agent, the principal determines the dimensionality

of the agent’s reference point. The higher the dimensionality of the reference point is,

the more likely it is that the agent incurs a loss in a particular dimension. Therefore,

with the concept of reference-dependent preferences developed by Kőszegi and Rabin,

it truly pains a person to be exposed to numerous potential outcomes. This disutility

of the agent from facing several possible (monetary) outcomes, which he demands to

be compensated for, makes it costly for the principal to offer complex contracts. In

consequence, the optimal contract entails only a minimum of wage differentiation. To

provide a more intuitive explanation for this finding, consider a principal who – starting

out from a given wage scheme – has to improve incentives. There are basically two

ways to do so. On the one hand, the principal can introduce a new wage spread, i.e.,

pay slightly different wages for two signals that were rewarded equally in the original

wage scheme, while keeping the differences between all other neighboring wages con-

stant. On the other hand, the principal can increase an existing wage spread, holding

constant all other spreads between neighboring wages. Both procedures increase the

loss premium by increasing the size of some of the the expected losses without reducing

others. Introducing a new wage spread, however, additionally increases the loss pre-

mium by increasing the ex ante expected probability of experiencing a loss. Therefore,

in order to improve incentives for a loss-averse agent, it is advantageous to increase a

31If, in addition to both the principal and the agent being risk neutral, the agent is protected by
limited liability, Park (1995), Kim (1997), Oyer (2000), and Demougin and Fluet (1998) show that
the optimal contract is a bonus scheme. These findings, however, immediately collapse when the
agent is somewhat risk averse as is demonstrated by Jewitt et al. (2008). Our findings, on the
other hand, are robust towards introducing a slightly concave intrinsic utility function, as we will
illustrate in Section 3.2.
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particular existing wage spread without adding to the contractual complexity in the

sense of increasing the number of different wages. Under the standard notion of a

risk-averse agent, however, one should not expect to encounter this tendency to reduce

the complexity of contracts. The reason is that increasing incentives by introducing a

small new wage spread is basically costless for the principal because locally the agent

is risk neutral. Therefore, under risk aversion different signals are rewarded differently.

Up to now, however, we have not specified which signals are generally included in the

set B∗. In light of the above observation, the principal’s problem boils down to choosing

a binary partition of the set of signals, B ⊂ S, which characterizes for which signals the

agent receives the high wage and for which signals he receives the low wage. The wages

uL and uH are then uniquely determined by the corresponding individual rationality

and incentive compatibility constraints. The problem of choosing the optimal partition

of signals, B∗, which minimizes the principal’s expected cost of implementing action

â is an integer programming problem. As is typical for this class of problems, and

as is nicely illustrated by the well-known “0-1 Knapsack Problem”, it is impossible to

provide a general characterization of the solution.32

Next to these standard intricacies of integer programming, there is an additional

difficulty in our model: the principal’s objective behaves non-monotonically when in-

cluding an additional signal into the “bonus set” B. This is due to different – possibly

conflicting – targets that the principal pursues when deciding how to partition the set

S. From Program (ML) it follows that, for a given “bonus set” B, the minimum cost

of implementing action â is given by

CB = ū+ c(â) +
c′(â)(λ− 1)PB(1 − PB)

[
∑

s∈B γ
H
s − γL

s ][1 − (λ− 1)(1 − 2PB)]
, (I.4)

where PB :=
∑

s∈B γs(â). The above costs can be rewritten such that the principal’s

problem amounts to

max
B⊂S

[
∑

s∈B

(γH
s − γL

s )

]{
1

(λ− 1)PB(1 − PB)
−

1

PB

+
1

1 − PB

}

. (I.5)

This objective function illustrates the tradeoff that the principal faces when deciding

how to partition the signal space. The first term,
∑

s∈B(γH
s − γL

s ), is the aggregate

marginal impact of effort on the probability of the bonus b := uH − uL being paid out.

In order to create incentives for the agent, the principal would like to make this term

32The “0-1 Knapsack Problem” refers to a hiker who has to select from a group of items, all of which
may be suitable for her trip, a subset that has greatest value while not exceeding the capacity of
her knapsack. Suppose there are n items, each item j has a value vj > 0 and a weight wj > 0.
Let the capacity of the knapsack be c > 0. The 0-1 Knapsack Problem may be formulated as the
following maximization problem: max

∑n

j=1
vjxj subject to

∑n

j=1
wjxj ≤ c and xj ∈ {0, 1} for

j = 1, . . . , n.
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as large as possible, which in turn allows her to lower the bonus payment. This can be

achieved by including only good signals in B. The second term, on the other hand, is

maximized by making the probability of paying the agent the high wage either as large

as possible or as small as possible, depending on the exact signal structure and the

action to be implemented. With the loss premium being given by (λ− 1)PB(1 − PB)b,

this is intuitive: By making the event of paying the high wage very likely or unlikely,

the principal minimizes the scope for the agent to experience a loss that he demands to

be compensated for. Depending on the signal structure, these two goals may conflict

with each other, which makes a complete characterization of the optimal contract very

intricate. Nevertheless, it can be shown that the optimal contract displays the following

plausible property.

Proposition I.3: Let S+ ≡ {s ∈ S|γH
s − γL

s > 0}. The optimal partition of the

signals for which the high wage is paid, B∗, has the following property: either B∗ ⊆ S+

or S+ ⊆ B∗.

Put verbally, the optimal partition of the signal set takes one of the two possible

forms: the high wage is paid out to the agent (i) either only for good signals though

possibly not for all good signals, or (ii) for all good signals and possibly a few bad

signals as well. Loosely speaking, if the principal considers it optimal to pay the high

wage very rarely, she will reward only good signals with the extra payment b. If, on the

other hand, she wants the agent to receive the high wage with high probability, then

she will reward at least all good signals.

Without further assumptions, due to the discrete nature of the problem it is hard to

characterize the signals that are included in B∗. Back to the “0-1 Knapsack Problem”,

here it is well-established for the continuous version of the problem that the solution

can easily be found by ordering the items according to their value-to-weight ratio.33

Defining κ := max{s,t}⊆S |γs(â) − γt(â)|, we can obtain a similar result. Assuming

that κ is sufficiently small, which is likely to hold if the performance measure is, for

instance, sales revenues measured in cents, makes the principal’s problem of choosing

B∗ similar to a continuous problem.34 With this assumption, we can show that it is

optimal to order the signals according to their likelihood ratios.

Proposition I.4: Suppose κ is sufficiently small, then there exists a constant K such

that B∗ = {s ∈ S | γH
s /γ

L
s ≥ K}.

33In the continuous “0-1 Knapsack Problem” the constraints on the variables xj ∈ {0, 1} are relaxed
to xj ∈ [0, 1], e.g. Dantzig (1957).

34Here, the probability of observing a specific signal, say, sales revenues of exactly $13,825.32 is rather
small.
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Though wage payments are only weakly increasing in the likelihood ratio, this finding

resembles the standard result for a risk-averse agent, where the incentive scheme is

strictly increasing in the likelihood ratio.

Before moving on to the discussion of the more general case in which the agent is

both risk and loss averse, we want to pause to point out the following comparative

static results.

Proposition I.5: An increase in the agent’s degree of loss aversion (i) strictly in-

creases the minimum cost of implementing action â; (ii) decreases the necessary wage

spread to implement action â if and only if PB∗ > 1/2, given that the change in λ does

not lead to a change of B∗.

Part (ii) of Proposition 5 relates to the reasoning by Kőszegi and Rabin (2006) that

if the agent is loss averse and expectations are the driving force in the determination of

the reference point, then “in principal-agent models, performance-contingent pay may

not only directly motivate the agent to work harder in pursuit of higher income, but

also indirectly motivate [him] by changing [his] expected income and effort.” As can

be seen from (1), the agent’s expected utility under the second-best contract comprises

of two components, the first of which is expected net intrinsic utility from choosing

effort level â, uL + b∗
∑

s∈B∗ γs(â) − c(â). Due to loss aversion, however, there is a

second component: With losses looming larger than equally sized gains, in expectation

the agent suffers from deviations from his reference point. While the strength of this

effect is determined by the degree of the agent’s loss aversion, λ, his action choice –

together with the signal parameters – determines the probability that such a deviation

from the reference point actually occurs. We refer to this probability, which is given by

PB∗(1−PB∗), as loss probability. Therefore, when choosing his action, the agent has to

balance off two possibly conflicting targets, maximizing expected net intrinsic utility

and minimizing the loss probability. The loss probability, which is a strictly concave

function of the agent’s effort, is locally decreasing at â if and only if PB∗ > 1/2. In

this case, an increase in λ, which makes reducing the loss probability more important,

may lead to the agent choosing a higher effort level, which in turn allows the principal

to use lower-powered incentives. The principal, however, cannot capitalize on this

since, according to part (i) of Proposition 5, the overall cost of implementation strictly

increases in the agent’s degree of loss aversion.

3.2. The General Case: Loss Aversion and Risk Aversion

We now turn to the intermediate case where the agent is both risk and loss averse.

The agent’s intrinsic utility for money is a strictly increasing and strictly concave
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function, which implies that h(·) is strictly increasing and strictly convex. Moreover,

the agent is loss averse, i.e., λ > 1. From Lemma 1, we know that the constraint set

of the principal’s problem is nonempty. By relabeling signals, each contract can be

interpreted as a contract that offers the agent a (weakly) increasing intrinsic utility

profile. This allows us to assess whether the agent perceives receiving us instead of ut

as a gain or a loss. As in the case of pure loss aversion, we analyze the optimal contract

for a given feasible ordering of signals.

The principal’s problem for a given arrangement of the signals is given by

Program MG:

min
u1,...,uS

S∑

s=1

γs(â)h(us)

subject to

S∑

s=1

γs(â)us − (λ− 1)
S−1∑

s=1

S∑

t=s+1

γs(â)γt(â)[ut − us] − c(â) = ū , (IRG)

S∑

s=1

(γH
s − γL

s )us−

(λ− 1)
S−1∑

s=1

S∑

t=s+1

[
γs(â)(γ

H
t − γL

t ) + γt(â)(γ
H
s − γL

s )
]
[ut − us] = c′(â) , (ICG)

uS ≥ uS−1 ≥ . . . ≥ u1 . (OCG)

Since the objective function is strictly convex and the constraints are all linear in

u = {u1, . . . , uS}, the Kuhn-Tucker theorem yields necessary and sufficient conditions

for optimality. Put differently, if there exists a solution to the problem (MG) the

solution is characterized by the partial derivatives of the Lagrangian associated with

(MG) set equal to zero.

Lemma I.2: Suppose (A1)-(A3) hold and h′′(·) > 0, then there exists a second-best op-

timal incentive scheme for implementing action â ∈ (0, 1), denoted u∗ = {u∗1, . . . , u
∗
S}.

In order to interpret the first-order conditions of the Lagrangian to problem (MG)

it is necessary to know whether the Lagrangian multipliers are positive or negative.

Lemma I.3: The Lagrangian multipliers of program (MG) associated with the incen-

tive compatibility constraint and the individual rationality constraint are both strictly

positive, i.e., µIC > 0 and µIR > 0.

We now give a heuristic reasoning why pooling of information may well be optimal

in this more general case. For the sake of argument, suppose there is no pooling of
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information in the sense that it is optimal to set distinct wages for distinct signals.

In this case all order constraints are slack; formally, if us 6= us′ for all s, s′ ∈ S and

s 6= s′, then µO,s = 0 for all s ∈ {2, . . . , S}. In this case, i.e., when none of the ordering

constraints is binding, then the first-order condition of optimality with respect to us,

∂L(u)/∂us = 0, can be written as follows:

h′(us) =

(

µIR + µIC

γH
s − γL

s

γs(â)

)

︸ ︷︷ ︸

=:Hs

[

1 − (λ− 1)

(

2
s−1∑

t=1

γt(â) + γs(â) − 1

)]

︸ ︷︷ ︸

=:Γs

− µIC(λ− 1)

[

2
s−1∑

t=1

(γH
t − γL

t ) + (γH
s − γL

s )

]

︸ ︷︷ ︸

=:Λs

. (I.6)

For λ = 1 we have h′(us) = Hs, the standard“Holmström-formula”.35 Note that Γs > 0

for λ ≤ 2. More importantly, irrespective of the signal ordering, we have Γs > Γs+1.

The third term, Λs, can be either positive or negative. If the compound signal of all

signals below s and the signal s itself are bad signals, then Λs < 0.

Since the incentive scheme is nondecreasing, when the order constraints are not

binding it has to hold that h′(us) ≥ h′(us−1). Thus, if µOC,s−1 = µOC,s = µOC,s+1 = 0

the following inequality is satisfied:

Hs × Γs − Λs ≥ Hs−1 × Γs−1 − Λs−1. (I.7)

Note that for the given ordering of signals, if there exists any pair of signals s, s − 1

such that (I.7) is violated, then the optimal contract for this ordering involves pooling

of wages. Even when Hs > Hs−1, as it is the case when signals are ordered according

to their likelihood ratio, it is not clear that inequality (I.7) is satisfied. In particular,

when s and s−1 are similarly informative it seems to be optimal to pay the same wage

for these two signals as can easily be illustrated for the case of two good signals: If s

and s−1 are similarly informative good signals then Hs ≈ Hs−1 > 0 but Γs < Γs−1 and

Λs > Λs−1, thus condition (I.7) is violated. In summary, it may well be that for a given

incentive-feasible ordering of signals, and thus overall as well, the order constraints are

binding, i.e., it may be optimal to offer a contract which is less complex than the signal

space allows for. We illustrate this conjecture in the following with an example.

Application with Constant Relative Risk Aversion In the general case of a

risk and loss-averse agent the principal seeks to minimize the loss and the risk premium.

35See Holmström (1979). This formula is also referred to as the modified Borch sharing rule (Borch,
1962).
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Roughly speaking, the risk premium is increasing in the curvature of the agent’s intrin-

sic utility function. Put differently, when the agent’s intrinsic utility function becomes

close to linearity the risk premium goes to zero. Thus, for a slightly concave intrinsic

utility function one should expect that the principal’s main objective is to minimize

the loss premium, which is achieved by a bonus scheme as is shown in Section 3.1. In

the following we show that these reasoning is correct for the case of an intrinsic utility

function that features constant relative risk aversion (CRRA).

Suppose h(u) = ur, with r ≥ 0 being a measure for the agent’s risk aversion. More

precisely, the Arrow-Pratt measure for relative risk aversion of the agent’s intrinsic

utility function is R = 1 − 1
r

and therefore constant. The following result states that

the optimal contract is still a bonus contract when the agent is not only loss averse,

but also slightly risk averse.

Proposition I.6: Suppose (A1)-(A3) hold, h(u) = ur with r > 1, and λ > 1. Generi-

cally, for r sufficiently small the optimal incentive scheme {u∗s}
S
s=1 is a bonus scheme,

i.e., u∗s = u∗H for s ∈ B∗ ⊂ S and u∗s = u∗L for s ∈ S\B∗ where u∗L < u∗H .

Without loss aversion, in contrast, according to Proposition 1 the optimal contract

is fully differentiated even for intrinsic utility being arbitrarily close to linearity.

Next, we demonstrate by means of an example that pooling of signals may well be

optimal even for a non-negligible degree of risk aversion. Suppose the agent’s effort

cost is c(a) = (1/2)a2 and the effort level to be implemented is â = 1
2
. Moreover,

we assume that the reservation utility ū = 10, which guarantees that all utility levels

are positive.36 To keep the example as simple as possible, it is assumed that the

agent’s performance can take only three values, i.e., the agent’s performance is either

excellent (E), satisfactory (S) or inadequate (I). We consider two specifications of the

performance measure. In the first specification the satisfactory signal is a good signal,

whereas in the second specification it is a bad signal. In all parameter constellations

we consider, it turns out that it is always (weakly) optimal to order signals according

to their likelihood ratio, i.e., u1 = uI , u2 = uS and u3 = uE. In the first specification

the conditional probabilities take the following values:

γH
E = 5/10 γL

E = 1/10

γH
S = 4/10 γL

S = 3/10

γH
I = 1/10 γL

I = 6/10 .

The structure of the optimal contract for this specification and various values of r and

λ is presented in Table 1.

36Increasing ū makes the agent less (absolutely) risk averse and thus is similar to a reduction in r.
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@
@

@
@

r

λ
1.0 1.1 1.3 1.5

1.5 u1 < u2 < u3 u1 < u2 = u3 u1 < u2 = u3 u1 < u2 = u3

2 u1 < u2 < u3 u1 < u2 < u3 u1 < u2 = u3 u1 < u2 = u3

3 u1 < u2 < u3 u1 < u2 < u3 u1 < u2 = u3 u1 < u2 = u3

Table I.1.: Structure of the optimal contract with two “good” signals.

Table 1 suggests that the optimal contract typically involves pooling of the two good

signals, in particular when the agent’s intrinsic utility is not too concave, i.e., if the

agent is not too risk averse. Table 1 nicely illustrates the trade-off the principal faces

when the agent is both, risk and loss averse: If the agent becomes more risk averse

pooling is less likely to be optimal. If, on the other hand, he becomes more loss averse,

pooling is more likely to be optimal.37

In the second specification we assume that there are two bad signals. The conditional

probabilities are as follows:

γH
E = 6/10 γL

E = 1/10

γH
S = 2/10 γL

S = 4/10

γH
I = 2/10 γL

I = 5/10 .

The results for this case are presented in Table 2.

@
@

@
@

r

λ
1.0 1.1 1.3 1.5

1.5 u1 < u2 < u3 u1 = u2 < u3 u1 = u2 < u3 u1 = u2 < u3

2 u1 < u2 < u3 u1 = u2 < u3 u1 = u2 < u3 u1 = u2 < u3

3 u1 < u2 < u3 u1 = u2 < u3 u1 = u2 < u3 u1 = u2 < u3

Table I.2.: Structure of the optimal contract with two “bad” signals.

In this specification, a binary statistic that pools the two bad signals seems to be

optimal almost always. The reason behind this observation is that the two bad signals

are very similar. In consequence, paying the same wage for satisfactory as well as

inadequate performance increases the risk premium only slightly. On the other hand,

by pooling satisfactory and inadequate performance it becomes less likely for the agent

37For a given r, the degree of pooling does not monotonically increase in λ. As discussed at the
end of Section 3.1, a higher degree of loss aversion of the agent may help the principal to create
incentives. If this is the case, a contract that contains less pooling is preferred from an incentive
point of view. If this positive effect of less pooling on incentives outweighs the negative effect on
the agent’s loss premium, then the optimal contract consists of more distinct wage payments when
λ increases. This can happen, however, only locally: at some point the degree of pooling increases
in λ.
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ex ante to experience a loss, i.e., the loss premium is reduced. Therefore, it is optimal

for the principal to use a bonus scheme even when the agent’s degree of loss aversion

is small.

4. Implementation Problems, Turning a Blind Eye, and

Stochastic Contracts

In this section, we relax the assumptions that guaranteed the validity of the first-order

approach. In particular, in order to explore the implications of a higher degree of loss

aversion, we relax (A2). We restrict attention to two simplifications of the former

model. First, we return to the assumption of a purely loss-averse agent. Second, only

binary measures of performance are considered.

4.1. The Case of a Binary Measure of Performance

As before, the principal cannot observe the agent’s action a or whether the benefit B

was realized or not. Instead she observes a contractible binary measure of performance,

i.e., S = {1, 2}. For notational convenience , let (1−γH) and γH denote the probabilities

of observing signal s = 1 and s = 2, respectively, conditional on B being realized.

Accordingly, (1 − γL) and γL are the probabilities of observing signal s = 1 and

s = 2, respectively, conditional on B not being realized.38 Thus, the unconditional

probability of observing signal s = 2 for a given action a is γ(a) ≡ aγH + (1 − a)γL.

Let γ̂ = (γH , γL). We reformulate (A1) for the binary case as follows.

Assumption (A4): 1 > γH > γL > 0 .

With only two possible signals to be observed, the contract takes the form of a bonus

contract: the agent is paid a base wage which yields intrinsic utility u if the bad signal

is observed, and he is paid the base wage plus a bonus b resulting in intrinsic utility

u + b if the good signal is observed. For now assume that b ≥ 0.39 We assume that

the agent’s intrinsic disutility of effort is a quadratic function, c(a) = (k/2)a2.40 The

agent’s expected utility from choosing effort level a then is

E [U(a)] = u+ γ(a)b−
k

2
a2 − (λ− 1)γ(a)(1 − γ(a))b. (I.8)

38In the notation introduced above, we have γH
1

= 1 − γH , γH
2

= γH , γL
1

= 1 − γL and γL
2

= γL.
39The assumption b ≥ 0 is made only for expositional purposes, the results hold true for b ∈ R.
40This functional form does not fit exactly the assumptions on c(·) that we imposed above, but is made

for expositional convenience. Allowing for more general effort cost functions does not qualitatively
change the insights that are to be obtained.
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As before, the first component is expected net intrinsic utility from choosing effort level

a, that is, expected wage payment minus effort cost. The second component is the loss

premium, with γ(a)(1 − γ(a)) denoting the loss probability.

4.2. Invalidity of the First-Order Approach

The first derivative of expected utility with respect to effort is given by

E [U ′(a)] = (γH − γL)b [2 − λ+ 2γ(a)(λ− 1)]
︸ ︷︷ ︸

MB(a)

− ka
︸︷︷︸

MC(a)

. (I.9)

While the marginal cost, MC(a), obviously is a straight line through the origin with

slope k, the marginal benefit, MB(a), also is a positively sloped, linear function of

effort a. An increase in b unambiguously makes MB(a) steeper. Letting a0 denote the

intercept of MB(a) with the horizontal axis, we have

a0 =
λ− 2 − 2γL(λ− 1)

2(γH − γL)(λ− 1)
.

The cases for a0 < 0 and a0 > 0 are depicted in Figures 1 and 2, respectively.

Implementation problems in our sense refer to a situation where there are actions

aâa0

MC(a)
MB(a)

Figure I.1.: a0 < 0.

aâa0

MB(a) MC(a)

Figure I.2.: a0 > 0.

a ∈ (0, 1) that are not incentive compatible for any bonus payment.

Proposition I.7: Suppose (A4) holds, then effort level â ∈ (0, 1) is implementable if

and only if a0 ≤ 0.

Implementation problems arise when a0 > 0, or equivalently, when γL < 1/2 and

λ > 2(1 − γL)/(1 − 2γL) > 2. Somewhat surprisingly, this includes performance

measures with γL < 1/2 < γH , which (possibly) are highly informative. Informative

in this context means that it is more likely to observe the bad signal if benefit B was

not realized, whereas it is more likely to observe the good signal if B was realized. So,

why do these implementation problems arise in the first place? Remember that the

agent has two targets: First, as in classic models, he seeks to maximize net intrinsic
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utility, u+ bγ(a) − (k/2)a2. When the agent cares only about this net intrinsic utility

(e.g., he is loss neutral) then each action can be implemented by choosing a sufficiently

high bonus. Due to loss aversion, however, the agent has a second target which is

minimizing the expected loss. How can the agent pursue this goal? He can do so by

choosing an action such that the loss probability, γ(a)(1 − γ(a)), becomes small. The

crucial point is that these two targets may conflict with each other in the sense that an

increase in effort may increase net intrinsic utility but at the same time also increases

the loss probability. First of all, note that implementation problems never arise when

γL ≥ 1/2 or λ ≤ 2. For γL ≥ 1/2, the loss probability is strictly decreasing in the

agent’s action. Consequently, with both targets of the agent being aligned, an increase

in the bonus unambiguously leads to an increase in the agent’s action. For λ ≤ 2, the

weight put on gain-loss utility, λ− 1, is lower than the weight put on intrinsic utility,

so the agent is more interested in maximizing net intrinsic utility than in minimizing

the loss probability. For γL < 1/2, on the other hand, implementation problems do

arise when λ is sufficiently large. Roughly speaking, being sufficiently loss averse, the

agent primarily cares about reducing the loss probability. With the loss probability

being inverted U-shaped, the agent achieves this by choosing one of the two extreme

actions a ∈ {0, 1}. Therefore, the principal cannot motivate the agent to choose an

action â ∈ (0, 1) when γL < 1/2 and the agent’s loss aversion is sufficiently severe.

4.3. Turning a Blind Eye

As we have seen in the preceding analysis, the principal faces implementation problems

whenever a0 > 0. One might wonder if there is a remedy for these implementation

problems. The answer is “yes”, there is a remedy. The principal can manipulate

the signal in her favor by not paying attention to the signal from time to time but

nevertheless paying the bonus in these cases. Formally, suppose the principal commits

herself to stochastically ignoring the signal with probability p ∈ [0, 1).41 Thus, the

overall probability of receiving the bonus is given by γ(a; p) ≡ p + (1 − p)γ(a). This

strategic ignorance of information gives rise to a transformed performance measure

γ̂(p) = (γH(p), γL(p)). As before, γH(p) denotes the probability that the bonus is

paid to the agent conditional on benefit B being realized. Given that B is realized,

this happens either when the performance measure is ignored, or – if the principal

pays attention to the performance measure – when the good signal is realized. Hence,

γH(p) = p + (1 − p)γH . Analogously, the probability of the bonus being paid out

conditional on B not being realized is given by γL(p) = p + (1 − p)γL. As it turns

41Always ignoring the signal, i.e., setting p = 1, would be detrimental for incentives because then the
agent’s monetary payoff is independent of his action. Hence, he would choose the least cost action
a = 0. Therefore, we a priori restrict the principal to choose p from the interval [0, 1).
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out, ignoring the whole performance measure with probability p is formally equivalent

to ignoring only the bad signal with probability p.42 For this reason, we refer to the

principal not paying attention to the performance measure as turning a blind eye on bad

performance of the agent. It is readily verified that under the transformed performance

measure γ̂(p) the intercept of the MB(a) function with the horizontal axis,

a0(p) ≡
λ− 2 − 2

[
p+ (1 − p)γL

]
(λ− 1)

2(1 − p)(γH − γL)(λ− 1)
,

not only is decreasing in p but also can be made arbitrarily small, in particular, ar-

bitrarily negative. Formally, da0(p)/dp < 0 and limp→1 a0(p) = −∞. In the light

of Proposition 7 this immediately implies that the principal can eliminate any imple-

mentation problems by choosing p sufficiently high, that is, by turning a blind eye

sufficiently often.

Besides alleviating possible implementation problems, turning a blind eye can also

benefit the principal from a cost perspective. Using the definition of γ(a; p) it can

be shown that the minimum cost of implementing action â under the transformed

performance measure, C(â; p), takes the following form:

C(â; p) = u +
k

2
â2 +

kâ(λ− 1)(1 − γ(â))

(γH − γL)

γ(â) + p(1 − γ(â))

1 − (λ− 1) [1 − 2γ(â) − 2p(1 − γ(â))]

(I.10)

Differentiating the principal’s cost with respect to p reveals that sign{dC(â; p)/dp} =

sign{2− λ}. Hence, an increase in the probability of ignoring the bad signal decreases

the cost of implementing a certain action if and only if λ > 2. Hence, whenever the

principal turns a blind eye in order to remedy implementation problems, she will do so

to the largest possible extent.43,44 We summarize the preceding analysis in the following

proposition.

Proposition I.8: Suppose the principal can commit herself to stochastic ignorance of

the signal. Then each action â ∈ [0, 1] can be implemented. Moreover, the implemen-

tation costs are strictly decreasing in p if and only if λ > 2.

We restricted the principal to offer non-stochastic payments conditional on which

signal is observed. If the principal was able to do just that, then she could remedy

42In this latter case, the agent receives the bonus either when the good signal is observed, which
happens with probability γ(a), or when the bad signal is observed but is ignored, which happens
with probability (1 − γ(a))p. Hence, the overall probability of the bonus being paid out is given
by γ(a) + (1 − γ(a))p.

43Formally, for λ > 2, the solution to the principal’s problem of choosing the optimal probability to
turn a blind eye, p∗, is not well defined because p∗ → 1. If the agent is subject to limited liability or
there is a cost of ignorance, however, the optimal probability of turning a blind eye is well defined.

44This is in the spirit of Becker and Stigler (1974), who show that despite a small detection probability
of malfeasance, incentives can be maintained if the punishment is sufficiently severe.
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implementation problems by paying the base wage plus a lottery in the case of the bad

signal. For instance, when the lottery yields b with probability p and zero otherwise,

this is just the same as turning a blind eye. This observation suggests that the principal

may benefit from offering a contract that includes randomization, which is in contrast

to the finding under conventional risk aversion, see Holmström (1979).45

4.4. Blackwell Revisited

We conclude this section by briefly pointing out an interesting implication of the above

analysis. Suppose the principal has no access to a randomization device, i.e., turning

a blind eye is not possible. Then the above considerations allow a straight-forward

comparison of performance measures ζ̂ = (ζH , ζL) and γ̂ = (γH , γL) if ζ̂ is a convex

combination of γ̂ and 1 ≡ (1, 1).

Corollary I.1: Let ζ̂ = p1 + (1 − p)γ̂ with p ∈ (0, 1). Then the principal at least

weakly prefers performance measure ζ̂ to γ̂ if and only if λ ≥ 2.

The finding that the principal prefers the “garbled”performance measure ζ̂ over per-

formance measure γ̂ is at odds with Blackwell’s theorem. To see this, let performance

measures γ̂ and ζ̂ be characterized, respectively, by the stochastic matrices

P γ =

(

1 − γH γH

1 − γL γL

)

and P ζ =

(

1 − ζH ζH

1 − ζL ζL

)

.

According to Blackwell’s theorem, any decision maker prefers information system γ̂ to

ζ̂ if and only if there exists a non-negative stochastic matrix M with
∑

j mij = 1 such

that P ζ = P γM .46 It is readily verified that this matrix M exists and takes the form

M =

(

1 − p p

0 1

)

.

Thus, even though comparison of the two performance measures according to Black-

well’s theorem implies that the principal should prefer γ̂ over ζ̂, the principal actually

prefers the “garbled” information system ζ̂ over information system γ̂. While Kim

(1995) has already shown that the necessary part of Blackwell’s theorem does not hold

in the agency model, the sufficiency part was proven to be applicable to the agency

45The finding that stochastic contracts may be optimal is not novel to the principal-agent literature.
Haller (1985) shows that in the case of a satisficing agent, who wants to achieve certain aspiration
levels of income with certain probabilities, randomization may pay for the principal. Moreover,
Strausz (2006) finds that deterministic contracts may be suboptimal in a screening context.

46See Blackwell (1951, 1953).
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framework by Gjesdal (1982).47 Our findings, however, show that this is not the case

anymore when the agent is loss averse.

5. Robustness, Extensions, and Concluding Remarks

In this paper, we explore the implications of reference-dependent preferences on con-

tract design in an otherwise standard model of principal-agency. We find that introduc-

ing a loss-averse agent leads to a reduction in the complexity of the optimal contractual

arrangement. When loss aversion is the predominant feature of the agent’s risk pref-

erences, the optimal contract takes the form of a simple bonus contract even if the

agent is also risk averse: some realizations of the performance measure are rewarded

with a bonus payment, while others are not. Thus, loss aversion provides a theoretical

rationale for bonus contracts, the wide application of which is hard to reconcile with

obvious drawbacks – as seasonality effects or insurance fraud – that come along with

this particular contractual form.

In the remainder of this section, we consider the robustness of our results. After a

brief and semi-formal analysis of an alternative equilibrium concept, we explore the

consequences of non quadratic effort costs for implementation problems. Finally, we

conclude by discussing diminishing sensitivity of the gain-loss function. Throughout

the whole analysis, we adopted the concept of choice-acclimating personal equilibrium

(CPE). Kőszegi and Rabin (2006, 2007) provide another concept, called unacclimating

personal equilibrium (UPE). The major difference between UPE and CPE is the timing

of expectation formation and actual decision making. Under UPE a decision maker first

forms his expectations, which determine his reference point, and thereafter, given these

expectations, chooses the optimal action. To rule out that people can systematically

cheat themselves, for action â to be an UPE, it must be optimal for the decision

maker to choose â given that he expected to do so. In the following, we will argue

that applying UPE instead of CPE does not change our main findings. Intuitively,

the optimality of simple contracts is rooted in the agent’s dislike of being exposed to

numerous outcomes, which is reflected in the functional form of his ex ante expected

utility. With expectations being met on the equilibrium path under UPE, the expected

utility takes the same form under both equilibrium concepts. Thus, one should expect

simple contracts to be optimal also under UPE. For the sake of a more formal argument,

consider the case of a purely loss-averse agent, i.e., suppose intrinsic utility is linear.

47In order to avoid confusion: The necessary part of Blackwell’s theorem states that the principal
being better off implies that she uses a more informative performance measure. The sufficiency
part conversely states that making use of more informative performance measure implies that the
principal is better off.
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The agent’s ex ante expected utility from choosing action a when expecting action â is

E[U(a|â)] =
S∑

s=1

γs(a)

[

us +
s−1∑

j=1

γj(â)(us − uj) − λ

S∑

t=s+1

γt(â)(ut − us)

]

− c(a) + µ(c(â) − c(a)) .

The agent’s ex ante expected utility, and in consequence the individual rationality

constraint, takes the same form under both equilibrium concepts, CPE and UPE.

The incentive compatibility constraint, on the other hand, depends on the applied

equilibrium concept. Given the agent expected to choose â, his marginal utility from

choosing a is

E[U ′(a|â)] =
S∑

s=1

(γH
s − γL

s )us +
S∑

s=1

s−1∑

j=1

γj(â)(γ
H
s − γL

s )(us − uj)

− λ

S∑

s=1

S∑

j=s+1

γj(â)(γ
H
s − γL

s )(uj − us) − c′(a) + µ′(c(â) − c(a)) .

Note that either µ′(·) = 1 or µ′(·) = λ, depending on whether â is greater or lower than

a. Even though E[U(a|â)] is a strictly concave function in the agent’s actual action

choice a for all values of λ ≥ 1, under UPE there arises the problem of multiplicity of

equilibria. More precisely, for a given incentive scheme u, there exists a range of actions

a ∈ [a(u), ā(u)] all of which constitute a UPE. This problem can be circumvented by

assuming that the agent chooses the highest action which constitutes a UPE. In this

case there is no need to impose additional assumptions on the cost function or to assume

that λ is sufficiently small.48 By imposing this alternative assumption, the incentive

compatibility constraint can be rewritten as

S∑

s=2

bs

{(
S∑

t=s

(γH
t − γL

t )

)(

1 +
s−1∑

j=1

γj(â)

)

− λ

(
S∑

t=s

γt(â)

)(
s−1∑

j=1

(γH
j − γL

j )

)}

= 2c′(â) .

Clearly, the incentive compatibility constraint is linear in the additional payments

b = (b2, . . . , bS). Thus, our bonus contract result is robust with respect to this change

of assumptions.

There is another way to resolve the multiplicity problem under UPE. Kőszegi and

Rabin (2006, 2007) define a preferred personal equilibrium (PPE) as a decision maker’s

48For given expectations â, let EUg and EUl denote the agent’s expected utility given that µ(x) = x
and µ(x) = λx, respectively. Both EUg and EUl are strictly concave functions, with EUg achieving
its maximum at a strictly higher action than EUl. EUg and EUl intersect at â. Action â is an
UPE if it lies between the maximizing actions of EUg and EUl. Therefore, expecting to choose the
action which maximizes EUg not only constitutes an UPE, but also is the highest possible UPE.
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ex ante favorite plan among those plans he actually will follow through. Put differ-

ently, given incentive scheme u, the agent chooses the action aPPE ∈ [a(u), ā(u)]

that maximizes expected utility among those actions that constitute a UPE. If for all

incentive-compatible incentive schemes we have aPPE ∈ (a(u), ā(u)) then PPE and

CPE coincide, i.e., aPPE is determined by the first-order condition that characterizes

the agent’s action under CPE. Thus, by imposing the PPE-analogue of (A2) and (A3)

we can derive results identical to those under CPE. If aPPE ∈ {a(u), ā(u)} for all

incentive-compatible incentive schemes, the optimal contract also is a bonus contract

since both boundary actions are determined by functions linear in b = (b2, . . . , bS).49

In the intermediate case, however, where aPPE ∈ (a(u), ā(u)) for some incentive-

compatible incentive schemes but aPPE ∈ {a(u), ā(u)} for others, the optimal contract

is not necessarily a bonus scheme.

If the agent’s action is characterized by PPE, for all actions â ∈ (0, 1) to be imple-

mentable we still need the assumption that λ is not too high. Put differently, similar

implementation problems as discussed in Section 4 also arise under PPE. Compared

to CPE, however, these implementation problems are less severe. For instance, actions

close to zero are always implementable under PPE.

For the discussion of implementation problems in Section 4, we restricted attention to

quadratic effort costs. The finding that implementation problems are a potential issue,

however, holds true for a wide variety of cost functions. Depending on the particular

functional form of the corresponding marginal costs, these implementation problems

may be more or less severe. For instance, the result that there are implementation

problems if a0 > 0 holds true for all strictly increasing and strictly convex cost functions

with c′(0) = 0. As for strictly concave marginal costs with c′(0) = 0, no action â ∈ (0, 1)

is implementable if a0 ≥ 0; and even for a0 < 0 there may be actions, in particular

actions close to 1, that are not implementable.

Moreover, we kept the whole analysis simple by ignoring diminishing sensitivity,

that is, by considering a piece-wise linear gain-loss function. A more general gain-loss

function makes the analysis far more complicated: Both the incentive compatibility

constraint and the individual rationality constraint are no longer linear functions in

the intrinsic utility levels, and thus the Kuhn-Tucker conditions are not necessarily

sufficient. Nevertheless, we expect that a reduction in the complexity of the contract

will benefit the principal in this case as well. Diminishing sensitivity of the agent’s

utility implies that the sum of two net losses of two monetary outcomes exceeds the

net loss of the sum of these two monetary outcomes. Therefore, in addition to the

49The case of aPPE = ā(u) corresponds to the alternative assumption to (A2) discussed above. If
aPPE = a(u), on the other hand, then aPPE maximizes EUl, as defined in the previous footnote.
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effects discussed in the paper, under diminishing sensitivity there is another channel

through which melting two bonus payments into one “big” bonus affects, and in ten-

dency reduces, the agent’s expected net loss. There is, however, an argument running

counter to this intuition. As we have shown, loss aversion may help the principal to

create incentives. Therefore, setting many different wage payments, and thereby – in

a sense – creating many kinks, proximity to which the agent strongly dislikes under

diminishing sensitivity, may have favorable incentive effects. Exploring the effects of

diminishing sensitivity in a principal-agent relationship with moral hazard is therefore

an open question for future research.



II. Performance of Procrastinators:

On the Value of Deadlines

Earlier work has shown that procrastination can be explained by

quasi-hyperbolic discounting. We present a model of effort choice

over time that shifts the focus from completion of to performance

on a single task. We find that being aware of the own self-control

problems may reduce a person’s performance as well as his over-

all well-being, which is in contrast to the existing literature on

procrastination. Extending this framework to a multi-task model,

we show that interim deadlines help a quasi-hyperbolic discounter

to structure his workload more efficiently, which in turn leads to

better performance. Moreover, being restricted by deadlines in-

creases a quasi-hyperbolic discounter’s well-being. Thus, we pro-

vide a theoretical underpinning for recent empirical evidence and

numerous casual observations.
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1. Introduction

Life is pervaded with situations in which people have a certain span of time to work

on a task and the final reward depends on how much devotion they put into their

work: students studying for a final or writing a thesis, employees working on a long-

term project, etc. Next to the final deadline, these tasks often have additional interim

deadlines: mandatory problem sets are often a prerequisite to pass a class; students

meet in regular intervals with their thesis adviser to report on their progress; employees

have to hold several presentations or submit memos at different stages of completion

of a project. A rational decision maker with time-consistent preferences would not

welcome such restrictions on his choice set. But when people impulsively procrastinate,

such interim deadlines can be helpful.1 Earlier research has shown that one possible

explanation for procrastination on the completion of a task is hyperbolic discounting.

This paper analyzes the behavior of hyperbolic discounters in a model of effort choice

over time that shifts the focus from completion of to performance on a task. We show

that interim deadlines are a useful commitment device for a hyperbolic discounter,

which increases his “long-run utility”. Moreover - and more interestingly - interim

deadlines are also performance-enhancing. Thus, while implementing interim deadlines

always is in the interest of the hyperbolic discounter himself, these findings suggest

that there is also scope for the employer of such an agent to benefit from imposing

such deadlines. Therefore, our paper gives a theoretical underpinning for the frequent

observation of interim deadlines.

We start out from a model where an individual has a given number of periods to

work on a single task. In each period, this person can invest costly effort into this

task. Effort is modeled as a continuous decision variable. In the final period the in-

dividual receives a reward that depends on the total amount of effort he has invested.

Since serious procrastination can hardly be explained by exponential discounting with

a reasonable discount factor, we adopt the assumption that the agent discounts quasi-

hyperbolically, which gives rise to time-inconsistent preferences.2 We compare the

performance of three types of agents. Next to the benchmark of a time-consistent

individual without self-control problems, we consider two types of quasi-hyperbolic

discounters: naive persons who are totally unaware of their self-control problems, and

sophisticated persons who are fully aware of them. Besides finding that procrastination

in general hampers performance, we mainly ask two questions: First, does sophistica-

tion increase an individual’s performance and overall well-being? Second, do interim

1We do not claim that procrastination issues are the only explanation for observing interim dead-
lines. Other explanations may be preferences for risk diversification or motives for information
acquisition.

2See O’Donoghue and Rabin (2005) for some illustrative numerical examples.
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deadlines enhance performance, and if so, how? The answer to the first question is a

novelty in the literature: Earlier work on quasi-hyperbolic discounting has shown that

awareness of self-control problems will always benefit a person when costs are imme-

diate and rewards are delayed.3 We find, in contrast, that sophistication may actually

hurt an individual – even in this environment. In order to provide an intuition for why

this may be the case, we identify and discuss the effects that drive the differences in the

behavior of sophisticated and naive agents. A sophisticated agent realizes that he can

create incentives for his future selves to work harder by working only little today. This

may lead to an extremely uneven allocation of effort over time, which is undesirable

with regard to the agent’s long-run preferences. In order to address the second ques-

tion, we augment the basic model by introducing a second task. Two different regimes

are compared: a regime with an interim deadline and a regime without an interim

deadline. If no interim deadline is imposed, the agent can work on both tasks up to the

final period. Under an interim deadline, on the other hand, he has only half the time

to perform on the first task, and the whole span of time to work on the second task.

We show that being exposed to a deadline is beneficial for time-inconsistent agents.

Interim deadlines help hyperbolic discounters to structure their workload and to allo-

cate their effort more efficiently, leading to an overall performance increase, which in

turn improves long-run utility.

Our paper draws on two different strands of literature on time-inconsistent prefer-

ences. First, the literature on time-inconsistent procrastination, initiated by Akerlof

(1991), and second the literature on time-inconsistent consumption-saving decisions,

first studied by Strotz (1956). Earlier work on procrastination assumes that the de-

cision that an individual has to take is when to do a task. In general, these papers

are interested in the effects of awareness on behavior. O’Donoghue and Rabin (1999b),

for example, consider a setting where a single task has to be performed exactly once

over a certain span of time. Each period, a person faces the binary decision whether to

complete the task or not. They find that being sophisticated with regard to self-control

problems leads to an earlier completion of the task. When costs are immediate and

rewards are delayed, this in turn implies that sophistication never hurts a person. In

O’Donoghue and Rabin (2001b) and O’Donoghue and Rabin (2008), these results are

shown to carry over to situations where an individual has to choose which task to per-

form from a menu of mutually exclusive tasks or where a person engages in long-term

projects.4

3See, for example, O’Donoghue and Rabin (1999b, 2001b, 2008).
4O’Donoghue and Rabin (2008) assume that a project requires two periods to be completed, one in

which it is started, and a second period in which it is finished. The decision the agent has to take
each period, however, remains a binary one.
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In the literature on time-inconsistent consumption-saving decisions, which was car-

ried on by Laibson (1996, 1997, 1998), Laibson et al. (1998), Angeletos et al. (2001),

and Diamond and Kőszegi (2003), an individual has to decide each period anew how

much to consume and how much to save, and thus chooses a continuous decision vari-

able. In this literature, most researchers assume sophisticated beliefs.5 The analysis

of sophisticated quasi-hyperbolic discounters and continuous action spaces is fairly

complicated. All the above contributions circumvent the arising analytical problems

by assuming that the agent’s instantaneous utility function for consumption is of the

constant-relative-risk-aversion (CRRA) type. Borrowing the essential framework from

this literature, in particular the assumption of a CRRA-utility function and sophisti-

cated beliefs, Fischer (1999) analyzes procrastination issues, showing that sophisticated

persons choose a decreasing leisure profile over time. To the best of our knowledge,

our paper is the first that provides a detailed comparison of the behavior of naive and

sophisticated individuals in a continuous-action-space framework.6

Moreover, we analyze the value of interim deadlines as commitment technology.

O’Donoghue and Rabin (1999c) analyze optimal incentive schemes when a principal,

who faces a cost of delay, hires a time-inconsistent agent, who faces a stochastic task

cost, to perform a single task once. They find that under certain circumstances it is

optimal to implement a deadline scheme, that is, to fix a date beyond which procras-

tination is severely punished. While this kind of deadline in a sense compares to the

final deadline in our model, our main interest is in the impact of interim deadlines.

That interim deadlines may be a valuable commitment mechanism for hyperbolic dis-

counters is conjectured in O’Donoghue and Rabin (2005). We show that this indeed is

the case, and, moreover, we lay open the beneficial effect of interim deadlines. With

respect to consumption-savings decisions, there is no natural analog to the concept of

interim deadlines.7

The remainder of the paper is structured as follows: In Section 2, we present the

basic single-task model, and briefly review the concept of quasi-hyperbolic discounting

and the notions of naiveté and sophistication. This model is analyzed in Section 3. In

Section 4, we identify the effects driving the differences in behavior of differently aware

agents and discuss the impact of awareness on performance and overall satisfaction.

5Diamond and Kőszegi (2003) briefly discuss the behavior of naive agents without comparing sophis-
ticates and naifs. Skiba and Tobacman (2008) identify partially naive hyperbolic discounting as
the most consistent explanation for payday borrowing without theoretically analyzing the effects
of awareness on behavior.

6An exception is Tobacman (2008), who, in a purely technical note, analyzes how consumption
depends on the degree of sophistication. An intuitive explanation for the different behavior of
differently aware agents or welfare implications, however, are not derived.

7In the consumption-savings context, for example, an interim deadline would compare to a Christmas
club that allows to deposit money only during the first half of the year.
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Section 5 extends the basic model to allow for a meaningful analysis of the effect of

deadlines on performance. The final section concludes. All proofs are deferred to

Appendix A.2.1. In Appendix A.2.2., we consider the case of a partially naive agent.

2. The Model

An agent has to perform a task, e.g. writing a term paper. He has two periods to work

on that task in the sense that in each period t ∈ {1, 2} the agent chooses an effort level

et ≥ 0 which he invests in the task. If the agent invests some positive effort in period t

then in the same period an effort cost c(et) arises. This cost function is assumed to be

time-invariant. The agent is rewarded for the task in period 3.8 This delayed reward,

which is assumed to be a function of total effort invested, is denoted by g(
∑2

t=1 et).

Assumption: It is assumed that the cost function and the reward function satisfy the

following properties: ∀x > 0,

c′(x) > 0, c′′(x) > 0, c(0) = 0, c′(0) = 0

g′(x) > 0, g′′(x) < 0, g(0) = 0, g′(0) > 0

To motivate the above functional assumptions, once again consider the example of

the student who has to write a term paper. The effort is the time he spends on

writing the paper. Thus, the costs of effort are the opportunity costs of not enjoying

leisure time. Making the standard assumption of decreasing marginal utility of leisure

time is equivalent to assuming a convex cost function. The reward function is the

expected grade of the term paper. The expected grade increases when the student

spends more time on writing the paper. Typically, by investing somewhat more effort

the probability to receive a C instead of a D increases significantly, whereas the increase

in effort necessary to receive an A instead of a B is much higher.

Within this framework, we study the behavior of individuals with time-inconsistent

preferences due to hyperbolic discounting.9 In particular, we assume that a person’s

intertemporal preferences from the perspective of period t are given by

Ut(ut, ut+1, ..., uT ) = ut + β
T∑

τ=t+1

δτ−tuτ ,

8We focus on a three-period model, the shortest possible time horizon that actually generates quasi-
hyperbolic discounting effects. For longer time horizons the analysis becomes very quickly very
complicated.

9Hyperbolic discounting refers to a person discounting events in the near future at a higher discount
rate than events in the distant future. For an overview of empirical studies that provide evidence
of hyperbolic discounting, see Frederick et al. (2002).
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where ut denotes that person’s instantaneous utility in period t. This functional form,

which often is referred to as quasi-hyperbolic discounting, captures the essence of hy-

perbolic discounting.10 While δ ∈ (0, 1] represents a time-consistent discount factor,

β ∈ (0, 1] introduces a time-inconsistent preference for immediate gratification and

represents a person’s self-control problem: for β < 1, at any given moment the person

has an extra bias for the present over the future.11 In order to focus on the effects

that arise from the present bias embodied in the agent’s preferences, we abstract from

time-consistent exponential discounting, that is, formally we set δ = 1.

An individual is modeled as a composite of autonomous intertemporal selves. These

selves are labeled according to their respective periods of control over the effort deci-

sion. During its period of control, self t observes all past effort choices. The current self

cannot commit future selves to a particular path of effort decisions. Within this frame-

work, we study three types of agents: time-consistent agents (TC) as a benchmark, and

two types of hyperbolic discounters, naifs (N) and sophisticates (S).12 A naif is com-

pletely unaware of future self-control problems and hence wrongly predicts his future

behavior: He believes that his future self’s preferences will be identical to his current

self’s, not realizing that as the date of action gets closer his tastes will have changed. A

sophisticate, in contrast, is fully aware of his future self-control problems and therefore

correctly predicts how he will behave in the future. The first-period intertemporal util-

ity of an agent of type i ∈ {TC,N, S} is given by U i
1 = −c(e1)− βc(e2) + βg (e1 + e2).

Accordingly, given first-period effort ê1, the second-period intertemporal utility takes

the form U i
2 = −c(e2) + βg (ê1 + e2). The parameter β ∈ (0, 1) measures the degree of

present bias. For a time-consistent agent we have β = 1.

Following the literature on present-biased preferences, we assume that agents follow

perception-perfect strategies, that is, strategies such that in all periods a person chooses

the optimal action given her current preferences and her perception of future behavior.

In each period, time-consistent and naive agents are just choosing an optimal effort

path. While a time-consistent agent will always follow the effort path chosen in the

10Throughout this paper, we use the terms“present-biased preferences”, “hyperbolic discounting”, and
“quasi-hyperbolic discounting” interchangeably.

11While originally introduced by Phelps and Pollak (1968) to study intergenerational altruism, these
present-biased preferences have been reapplied by Laibson (1996, 1997) to study intra-personal,
time-inconsistent decision problems. Besides procrastination and consumption-saving decisions,
present-biased preferences have been applied to a broad range of contexts of economic interest, for
example contract design (DellaVigna and Malmendier (2004, 2006)), industrial organization (Nocke
and Peitz (2003), Sarafidis (2005)), bargaining (Akin (2007)), information acquisition (Carrillo
and Mariotti (2000), Benabou and Tirole (2000)), and labor economics (DellaVigna and Paserman
(2005)).

12The two extreme assumptions about awareness, naiveté and sophistication, already have been dis-
cussed by Strotz (1956) and Pollak (1968). Though we focus on these two extreme cases of
awareness, in the appendix we show that all our results extend to agents who are partially naive
in the sense of O’Donoghue and Rabin (2001b).
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first period, a naif, in contrast, will often revise his chosen effort path as his preferences

change over time. Sophisticates, on the other hand, in a sense play a game against

their future selves. Their behavior therefore incorporates reactions to behavior by

their future selves that they cannot directly control as well as attempts to strategically

manipulate the behavior of their future selves.

3. The Analysis

In this section, we solve the model for the three types of agents: time-consistent individ-

uals, naifs and sophisticates. Hyperbolic discounters have a preference for immediate

gratification. As was shown, for instance in O’Donoghue and Rabin (1999b), due to this

present bias hyperbolic discounters are prone to procrastinate working on unpleasant

tasks. Therefore, in our model with continuous effort choice over several periods, one

should expect both naifs and sophisticates to procrastinate in the sense of an increasing

effort profile over time. Moreover, compared to a time-consistent agent, both types of

hyperbolic discounters perceive immediate effort costs as higher relative to future effort

costs and future rewards. Hence, one should expect both types of hyperbolic discoun-

ters to exert less effort in total than a time-consistent agent. We begin the analysis

with the benchmark case of an agent without self-control problems.

The Time-Consistent Agent Since the preferences of a time-consistent agent do

not change over time, his intertemporal decision problem boils down to maximizing

lifetime utility, UTC
1 , by choosing both first- and second-period effort levels simulta-

neously. From the corresponding first-order conditions we immediately obtain that a

TC chooses the same effort level in both periods. This optimal effort level, eTC , is

characterized by

c′(eTC) = g′(eTC + eTC) . (II.1)

Hence, a TC prefers to smooth effort in the sense that in each period he invests the

same effort level in the task.13 This is intuitively plausible: With the cost of effort

being a convex function, a time-consistent agent can improve on any uneven allocation

of effort over time by keeping total effort - and thus the final reward - constant, but

shifting effort from the high-effort period to the low-effort period, thereby reducing

total effort costs.

13This clearly is an artifact of our choice to abstract from time-consistent discounting. With δ < 1, a
time-consistent agent would choose an increasing effort path, as was shown by Fischer (2001).
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The Naive Agent A naive agent is unaware that his preferences will change over

time. In the first period he believes that his second-period self will have the same

preferences, that is, he believes he will stick to the plan he chooses now. When the

second period finally rolls around, however, a naif’s preferences will have changed.

Definition II.1: A perception-perfect strategy for a naive agent is given by (eN
1 , e

N
2 (ê1))

such that (i) (eN
1 , e

TC
2 ) ∈ arg max(e1,e2) U

N
1 (e1, e2), and (ii) ∀ ê1 ≥ 0, eN

2 (ê1) ∈ arg maxe2

UN
2 (ê1, e2). Let eN

2 = eN
2 (eN

1 ).

In the first period a naive agent maximizes UN
1 with respect to e1 and e2.

14 The actual

first-period effort, eN
1 , and the planned second-period effort, eTC

2 , are characterized by

the following conditions:

g′(eN
1 + eTC

2 ) = c′(eTC
2 ) (II.2)

βg′(eN
1 + eTC

2 ) = c′(eN
1 ) . (II.3)

Since there is no decision to be made after period 2, beliefs about own future behavior

play no further role in determining the second-period effort. Hence, in the second

period a naive person maximizes UN
2 with respect to e2. The corresponding first-order

condition which characterizes the second-period effort, eN
2 , is given by

βg′(eN
1 + eN

2 ) = c′(eN
2 ) . (II.4)

From equations (II.1)-(II.4) the following result is readily obtained.

Proposition II.1: (i) A naive agent invests more effort in period 2 than in period 1,

i.e., eN
1 < eN

2 . (ii) The total effort a naive agent invests is lower than the total effort of

a time-consistent person, i.e., eN
1 + eN

2 < 2eTC. (iii) A naive agent is overly optimistic

when predicting his future-self ’s willingness to work, i.e., eN
2 < eTC

2 .

Parts (i) and (ii) of Proposition 1 state that the two intuitive conjectures made above

hold true for naive hyperbolic discounters. According to part (i), a naive agent pro-

crastinates in the beginning and tries to catch up in the end. Part (ii) compares

the behavior of a naif and a time-consistent agent. The present bias leads to higher

perceived costs for a naif, which makes him exhibit lower overall effort than a time-

consistent agent. Moreover, part (iii) says that a naive agent overestimates his own

capabilities. Believing that he will behave time-consistently in the future, a naive agent

makes ambitious plans today, that he does not follow through tomorrow.

14Equivalently, we could solve for the behavior of a time-consistent agent in period 2 for a given
first-period effort, eTC

2
(e1). Then, wrongly believing himself to behave time-consistently in the

future, in period 1 a naive agent maximizes UN
1

with respect to e1 subject to e2 = eTC
2

(e1). We
will actually make use of this procedure in the appendix.
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The Sophisticated Agent In contrast to a naif, a sophisticate is fully aware that

his preferences will change. Therefore, correctly predicting his own future behavior, a

sophisticate plays a game against his future self, which can be solved per backwards

induction.

Definition II.2: A perception-perfect strategy for a sophisticated agent is given by

(eS
1 , e

S
2 (ê1)) such that (i) ∀ ê1 ≥ 0, eS

2 (ê1) ∈ arg maxe2
US

2 (ê1, e2), and (ii) eS
1 ∈ arg maxe1

US
1 (e1, e

S
2 (e1)). Let eS

2 = eS
2 (eS

1 ).

For a given first period effort level ê1, in period 2 a sophisticate maximizes US
2 with

respect to e2. The second-period effort obviously is a function of the first-period effort,

eS
2 (ê1), and satisfies the corresponding first-order condition,

βg′(ê1 + eS
2 (ê1)) = c′(eS

2 (ê1)) . (II.5)

Differentiating (II.5) with respect to e1 yields

deS
2 (e1)

de1
= −

βg′′(e1 + eS
2 (e1))

βg′′(e1 + eS
2 (e1)) − c′′(eS

2 (e1))
∈ (−1, 0) .

The above derivative describes how a second-period sophisticate reacts to a change

in the first-period effort. A higher first-period effort reduces the second-period effort.

Due to the strict convexity of the cost function, however, the absolute value of this

reduction is lower than the increase in effort in the first period. In the first period the

sophisticate maximizes US
1 with respect to e1 subject to e2 = eS

2 (e1). In the appendix

we show that the effort level that globally maximizes US
1 , eS

1 , is characterized by the

corresponding first-order condition.15 This first-order condition is given by

−c′(eS
1 ) + βg′

(
eS
1 + eS

2 (eS
1 )
)

+
deS

2 (eS
1 )

de1
β
[
g′
(
eS
1 + eS

2 (eS
1 )
)
− c′(eS

2 (eS
1 ))
]

= 0. (II.6)

With the behavior of a sophisticated agent being characterized by (II.5) and (II.6), the

following result is obtained.

Proposition II.2: (i) A sophisticated agent invests more effort in period 2 than in

period 1, i.e., eS
1 < eS

2 . (ii) The total effort a sophisticated agent invests is lower than

the total effort of a time-consistent person, i.e., eS
1 + eS

2 < 2eTC.

Except for the fact that a sophisticated agent correctly predicts his own future be-

havior, his behavior otherwise qualitatively parallels that of a naive agent: First, a

15While there is not necessarily a unique perception-perfect strategy for a sophisticated agent, all
perception-perfect effort pairs are characterized by the corresponding first-order conditions. Mul-
tiple perception-perfect strategies are a well-known phenomenon for sophisticated hyperbolic dis-
counters, see for instance O’Donoghue and Rabin (2008).
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sophisticated agent procrastinates working on the task in the sense of an increasing

effort profile over time.16 Secondly, with the present bias increasing the perceived cost

of effort, in total a sophisticate works less than a time-consistent agent.17

4. Comparison of the Naive and the Sophisticated Agent

Having compared the behavior of both types of hyperbolic discounters with the behavior

of a time-consistent agent, now we are interested in how naifs and sophisticates compare

to each other. Put differently, what effects does awareness of self-control problems have

on performance and overall satisfaction? To answer this question a welfare criterion

needs to be defined. Following O’Donoghue and Rabin (1999b, 2005) we use people’s

long-run preferences.

Definition II.3: A person’s long-run preferences are given by U0(e1, e2) ≡ −c(e1) −

c(e2) + g(e1 + e2).

Long-run preferences reflect a person’s preferences when asked from a prior perspective

when he has no option to indulge immediate gratification. To formalize this long-run

perspective, it is assumed that there is a (fictitious) period 0 where a person has no

decision to make.18 It turns out that comparing first period efforts is sufficient to

answer the question who is better off, naifs or sophisticates.

Lemma II.1: Suppose that ei
1 > ej

1, for i, j ∈ {S,N} and i 6= j. Then (i) ei
2 < ej

2, (ii)

ei
1 + ei

2 > ej
1 + ej

2, and (iii) U i
0 ≥ U j

0 .

The lemma has a clear intuition. Since there is no decision to be made in the future,

awareness plays no role in the second period. Hence, for a given effort level from

the first period, both types of hyperbolic discounters face the same problem in period

2. Consequently, the type who works more in the first period works less in the second

period. Due to the convexity of the cost function, however, the difference in first-period

efforts is larger than the difference in second-period efforts. Thus, the type who invests

more effort in the first period, in the end also has the overall better performance. The

optimal effort levels from a long-run perspective are those chosen by a TC. While for

both types of hyperbolic discounters total effort is below this optimal level of total

effort, the type who works more in the first period is closer to the optimal total effort.

16A similar result can be found in Fischer (1999) for log utility functions.
17Similar results can be found in the consumption-saving literature for sophisticated present-biased

consumers, see for instance Laibson (1996).
18Another possibility would be to apply the Pareto criterion, where one outcome is deemed better

than another if and only if the person views it as better at all points in time. A discussion of these
two welfare criteria for hyperbolic discounters is provided in O’Donoghue and Rabin (2005).
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Moreover, this total effort is more evenly - and thus, more efficiently - allocated over

the two periods. Therefore, the type of hyperbolic discounter who works more in the

first period is better of from a long-run perspective.

An intuitive guess would be that a sophisticate, who is aware of his self-control

problems, will exhibit a higher first-period effort - and hence a higher total effort - than

a naif. This would also be in line with previous research. For instance, O’Donoghue

and Rabin (1999b) show that “when costs are immediate, sophisticates do at least as

well as naifs (i.e. US
0 ≥ UN

0 )” (p.113).19 While previous research analyzing the effects of

awareness solely focuses on models with discrete action spaces, we analyze a continuous

action space model. The following simple example demonstrates that the earlier result

that sophisticates are always better off than naifs when costs are immediate does not

hold true in general.20

Example: Let the cost function be c(e) = (5/3)(1 + z)(1/10)ze2 for e ≤ 1/10,

c(e) = (1/3)e1+z − 1/3(1/10)1+z(1− z)/2 for e ∈ (1/10, 1) and c(e) = (1/6)(1 + z)e2 +

1/3[1 − (1/10)1+z(1 − z)/2 − (1 + z)/2] for e ≥ 1. The reward function is given by

g(e1 + e2) = 2(e1 + e2) − (1/2)(e1 + e2)
2 for e1 + e2 ≤ 2 and g(e1 + e2) = 2 otherwise.

Suppose that z = .005 and β = 1/4.21 The optimal effort choices of a sophisticate in

the perception-perfect equilibrium are eS
1 = .02602 and eS

2 = .63700. In contrary, a naif

chooses eN
1 = .03718 and eN

2 = .62595 in the perception-perfect equilibrium. In this ex-

ample, a naif invests more effort in the task than a sophisticate both in the first period

and in total.22 Hence, a naif is better of than a sophisticate from a welfare point of view,

i.e., US
0 −UN

0 < 0. Thus, in contrast to earlier findings, awareness of future self-control

problems can hurt the agent even in a model of immediate costs and delayed rewards.23

As the above discussion suggests, characterizing the impact of awareness is complicated.

19That sophisticates are better off than naifs when costs are immediate is shown in several other
papers. O’Donoghue and Rabin (2001b), extend their earlier finding to a setting where a person
has to choose which task to perform from a menu of mutually exclusive tasks. Most recently,
considering long-term projects, O’Donoghue and Rabin (2008) have shown that in contrast to
sophisticates, naifs may start costly projects but then procrastinate finishing these projects, thus
never reaping the reward.

20That sophistication may hurt a hyperbolic discounter is well known in the literature for models
where costs are delayed and rewards are immediate like models of addiction, see O’Donoghue and
Rabin (2001a).

21While the cost function is continuously differentiable, it is not twice continuously differentiable.
Thus, the example does not fit perfectly to our Assumption 1.

22A similar finding is obtained by Tobacman (2008) in a consumption-saving framework with CRRA
preferences. He shows that current consumption can be decreasing in the degree of naiveté. Welfare
implications, however, are not drawn.

23While this result may be somewhat counterintuitive, there actually is empirical evidence supporting
this suggestion. Wong (2008) finds that time-inconsistency is associated with lower class perfor-
mance irrespective of awareness. Effects of time-inconsistency on class performance, however, are
smaller in magnitude and less statistically significant under naiveté than under sophistication.
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Identifying the underlying effects that drive the different behavior of naifs and sophis-

ticates, however, allows us to derive sufficient conditions for a sophisticate exhibiting

higher first-period effort than a naif.

Pessimism Effect and Incentive Effect Why does sophistication may not help

to increase first-period effort and thereby long-run utility? What are the driving forces

behind this observation? O’Donoghue and Rabin (1999a, 2001a) carefully identify two

effects how awareness of self-control problems can influence an agent’s behavior. First,

as O’Donoghue and Rabin (1999a) point out, “sophistication about future self-control

problems can make a person pessimistic about future behavior” (p.16). Knowing that

- from today’s perspective - the future self will not behave optimally, may induce a

sophisticate to directly respond to his future shortcomings. Reasoning like “I know

that I won’t work hard tomorrow, so I’ll work more today” probably is familiar to

everyone. This is what O’Donoghue and Rabin (1999a, 2001a) call the pessimism

effect. This, however, is only half the story. Sophistication about one’s own self-control

problems has a second, less direct effect on today’s behavior. Knowing about his own

future misbehavior also makes a sophisticate aware of the need and the potential to

strategically influence his future behavior via his behavior today. This second channel

is labeled incentive effect by O’Donoghue and Rabin (1999a, 2001a).24 So the following

question is immediately at hand: How are these effects operative in the model presented

in this paper?

A sophisticate in period 1 realizes that he will work less in period 2 than is optimal

from today’s perspective. He directly responds to his future shortcomings by working

more today. Thus, due to the pessimism effect a sophisticate tends to work more in

period 1 than a naif.25 The incentive effect, however, in tendency leads to a lower first-

period effort. The first-period self of a sophisticate would like to see his future self invest

more effort in the task than he actually does. Since the second-period self increases

effort when first-period effort is reduced, the first-period self can create incentives for

his future self to work more by working less today. Formally, adding and subtracting

βg′(e1 + eTC
2 (e1)) from dUS

1 /de1 yields the following formulation of the marginal utility

24The pessimism effect and the incentive effect represent a decomposition of the “sophistication effect”
identified by O’Donoghue and Rabin (1999b).

25O’Donoghue and Rabin (1999a, 2001a) use the term pessimism effect in models of addictive goods
and present-biased preferences. In addictive good models, where rewards are immediate and costs
are delayed, the pessimism effect can hurt the agent. In our context, the pessimism effect helps
the sophisticate to achieve a better performance than a naif. Thus, in the model of this paper the
term pessimism effect is a little bit misleading. Here, it would be more suitable to call this effect
“realism effect”.
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of a sophisticate in period 1:

dUS
1

de1
= βg′(e1 + eTC

2 (e1)) − c′(e1)

+ β
[
g′(e1 + eS

2 (e1)) − g′(e1 + eTC
2 (e1))

]

︸ ︷︷ ︸

PE

+ (1 − β)(deS
2 /de1)c

′
(
eS
2 (e1)

)

︸ ︷︷ ︸

IE

,

where eTC
2 (e1) is the effort a TC chooses in period 2 for a given first period effort.

Note that the first term equals zero for e1 = eN
1 . The second term, PE, is positive

and reflects the pessimism effect. The agent knows that his future self chooses eS
2 (e1)

instead of eTC
2 (e1), which would be optimal from today’s perspective. The third term,

IE, is negative and characterizes the impact of the incentive effect.26 Given that US
1

is a quasi-concave function in e1, then a sophisticate chooses higher effort levels than

a naif if the incentive effect does not outweigh the pessimism effect.

At first glance, the two effects seem to be weighted by the present bias parameter

β.27 When having a closer look at the problem, however, it turns out that things are

more complicated. When the present bias is low (β → 1) then eS
2 is close to eTC

2 and

there is not much pessimism involved. When the present bias is extreme (β → 0) then

deS
2 /de1 → 0 and the agent cannot set incentives for his future self effectively.

With pessimism effect and incentive effect moving in opposite directions, it is com-

plicated to obtain general results concerning the comparison of naive and sophisticated

behavior. Nevertheless, using the insights gained from the above discussion we can

characterize sufficient conditions for the cost and reward function such that sophisti-

cated agents are better off than naive ones.

Lemma II.2: Suppose that c′′′(·) ≤ 0 and g′′′(·) ≤ 0. Then a sophisticated agent

chooses a strictly higher effort in the first period than a naive agent, i.e., eS
1 > eN

1 .

In the proof of the above lemma we compile sufficient conditions such that the incentive

effect never outweighs the pessimism effect. So Lemma 2 states a very intuitive result:

given the pessimism effect outweighs the incentive effect, then sophisticates choose

higher first-period efforts than naifs.

26To be precise, it is not possible to completely disentangle the two effects, because the incentive
effect is only operative if the pessimism effect is operative.

27For a low degree of present bias the pessimism effect seems to be more important than the incentive
effect. The agent cares more about a high reward than delegating work to his future self, and
thus works harder today. On the other hand, for a high degree of present bias the incentive effect
seems to be more important. The agent’s perceived cost in the second period is remarkably lower
than his cost today. Thus, the agent prefers to create incentives for his future self to work harder
by working less today. And indeed, this is what happens in our example: For a high degree of
present-bias, β = 1/4, sophistication hurts the agent because it makes him work less in the first
period than under naiveté. For a low degree of present bias, on the other hand, for instance if
β = 3/4, a sophisticate works more than a naif, and hence is better off . A similar finding is
obtained by Gruber and Kőszegi (2001) who analyze the behavior of sophisticates in a model of
addictive goods.
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Proposition II.3: Suppose that c′′′(·) ≤ 0 and g′′′(·) ≤ 0. Then the long-run utility of

a sophisticated agent is at least as great as the long-run utility of a naive agent, i.e.,

US
0 ≥ UN

0 . Moreover, the performance of a sophisticated agent is strictly higher than

the performance of a naive agent, i.e., eS
1 + eS

2 > eN
1 + eN

2 .

5. Deadlines

In daily life deadlines are an often encountered phenomenon. As an example consider

the “good-standing rules” of the Bonn Graduate School of Economics: after a year of

coursework, a first paper has to be completed at the end of the second year, a second

paper at the end of the third year, and a third paper at the end of the fourth year. A

rational decision-maker with time-consistent preferences would not welcome constraints

on his choices. But if people impulsively procrastinate, and if they are also aware of

their procrastination problems, deadlines can be strategic and reasonable. Perhaps the

best empirical demonstration is the study of Ariely and Wertenbroch (2002), which

we will discuss in more detail at the end of this section. In this section we ask if and

how the behavior of a present-biased agent is affected by the existence of deadlines.

Our main finding is that deadlines help an individual to structure his workload more

efficiently, which decreases effort costs and in turn improves performance.28

A Multi-Task Model To tackle this question we have to modify the simple frame-

work introduced above. While we stick to the case of two periods, we now assume that

there are two independent tasks to be undertaken by the agent, task A and task B.

We consider two regimes: deadline and no deadline. When the agent faces no (interim)

deadline he is completely free in his decision how to divide his effort on tasks and over

time. More precisely, the agent can work in both periods on both tasks. When there

is an (interim) deadline, however, the agent can invest effort in task A only in period

1, whereas he can work on task B in both periods.29 The reward for a task depends

on the total effort invested in that task up to its deadline.30 Effort costs for a particu-

28One caveat is in order: While we solely focus on the positive commitment effect of deadlines,
flexibility has a strictly positive value if, for instance, future task costs are uncertain. In this case,
a deadline is welfare enhancing only if the positive commitment effect outweighs the negative effect
due to the reduction in flexibility. See Amador et al. (2006) for a detailed analysis of the tradeoff
between commitment and flexibility.

29In order to obtain a comparison of the two regimes in terms of the effort level chosen, we introduce a
second task which allows us to consider a regime-independent reward scheme. With only one task,
the reward under the regime without deadlines would have to be a function of total effort only,
whereas the reward under the regime of deadlines would have to be a function of both first-period
effort and total effort, making a comparison infeasible.

30Our model also encompasses another kind of deadline where task B is handed out after the deadline
for task A, as it is typically the case for students’ homework assignments. Formally, eB1 = 0 a
priori. Since - and now we are jumping ahead - the agent optimally chooses eB1 = 0 anyway, this
does not impose any additional restrictions and results do not change.
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lar period are determined by the sum of efforts invested in both tasks in that period.

Formally, let eit denote the effort invested in task i ∈ {A,B} in period t ∈ {1, 2}.

Moreover, let et = eAt + eBt be the total effort that the agent exhibits in period t, and

ei = ei1 + ei2 be the total effort invested in task i. The reward for task i ∈ {A,B} then

is given by gi(ei1 + ei2), and the total effort cost in period t ∈ {1, 2} is c(eAt + eBt). We

assume that the grade function is the same for both tasks, that is, gA(·) = gB(·) = g(·).

Moreover, we keep the functional assumptions imposed in Section 3. In all that follows,

the double-superscript refers to the regime that the agent faces: D for a situation with

a deadline, and ND for a situation without a deadline.

The Time-Consistent Agent As a benchmark, consider a time-consistent agent

who faces no deadline. In the above language, the intertemporal utility of this agent

in period 1 is given by

UTCND

1 = −c(eA1 + eB1) − c(eA2 + eB2) + g(eA1 + eA2) + g(eB1 + eB2).

Choosing eA1, eA2, eB1, eB2 in order to maximize this expression yields

c′(eTCND

1 ) = c′(eTCND

2 ) = g′(eTCND

A ) = g′(eTCND

B ). (II.7)

It follows immediately that a time-consistent agent equates effort over tasks and smoothes

effort over time, that is, eA = eB and e1 = e2. Put differently, when 2eTCND

denotes

the overall effort that a time-consistent agent invests over the two periods, then he

invests eTCND

in the first period and eTCND

in the second period. Moreover, eTCND

is

spent on task A and eTCND

is spent on task B. Note, however, that a time-consistent

agent does not care about how he splits up his per period effort between the two tasks

as long as he invests evenly in both tasks. This implies that being subject to a deadline

does not help a time-consistent agent. When investment in task A is possible only in

period 1, for a desired overall effort level 2eTCND

the time-consistent agent still can

choose eTCD

A = eTCD

1 = eTCND

and eTCD

B = eTCD

2 = eTCND

.

The Sophisticated Agent First consider a sophisticate who faces no deadline.

Having two periods of time to work on two tasks is similar to having two periods of

time to work on one task. The only additional question is how to divide the total effort

on the two tasks. The reward function is identical for both tasks, thus it is optimal

to invest half of the total effort in each task. From the single-task exercise we know

that a sophisticate has a tendency to work more in period 2 than in period 1. By

always working harder in the second period the agent can achieve effort smoothing

over tasks in the second period irrespectively of the proportion of first period effort
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spend on a specific task.31 This observation allows us to focus on the agent’s effort

choice over time. With effort being spread out evenly among the two tasks, the optimal

second-period effort as a function of first-period effort, eSND

2 (ê1), is characterized by

c′(eSND

2 (ê1)) = βg′((1/2)(ê1 + eSND

2 (ê1))). (II.8)

The effort level chosen by a sophisticate in the first period, eSND

1 , is determined by the

following first-order condition,32

βg′((1/2)(eSND

1 + eSND

2 (eSND

1 ))) − c′(eSND

1 )

+
deSND

2 (e1)

de1
β
[

g′((1/2)(eSND

1 + eSND

2 (eSND

1 ))) − c′(eSND

2 (eSND

1 ))
]

= 0 . (II.9)

Note that the two first-order conditions are very similar to those obtained in the single

task case. Recapitulatory, when not facing a deadline, a sophisticated agent equates

effort over tasks like a time-consistent agent, but does not achieve effort-smoothing over

time, i.e. eSND

1 < eSND

2 and eA = eB = (1/2)(eSND

1 + eSND

2 ), where eSND

2 = eSND

2 (eSND

1 ).

Next, consider a situation where a sophisticated agent faces a deadline in the sense

described above: task A is due at the end of the first period, while task B is due at the

end of the second period. Put differently, the agent can invest effort in task A only in

period 1, whereas he can work for task B in both periods. Formally, eA2 = 0, eA = eA1

and eB2 = e2. For given effort levels êA and êB1, in the second period the agent’s utility

is given by

USD

2 = −c(eB2) + βg(êA) + βg(êB1 + eB2) .

The optimal second-period effort invested in task B as a function of the first-period-

effort invested in task B, eSD

B2 (êB1), satisfies

c′(eSD

B2 (êB1)) = βg′(êB1 + eSD

B2 (êB1)) . (II.10)

Differentiation of (II.10) yields

deSD

B2 (eB1)

deB1

= −
βg′′(eB1 + eSD

B2 (eB1))

βg′′(eB1 + eSD

B2 (eB1)) − c′′(eSD

B2 (eB1))
∈ (−1, 0) .

Correctly predicting his own future behavior, in period 1 a sophisticated agent chooses

eA and eB1 in order to maximize his intertemporal utility,

USD

1 = −c(eA + eB1) − βc(eSD

B2 (eB1)) + βg(eA) + βg(eB1 + eSD

B2 (eB1)) .

31In the proof of Proposition 4 we formally show, that there is no perception-perfect strategy where
the first-period self commits to a first-period effort that high and that unevenly allocated among
tasks, such that total second-period effort needed to achieve effort smothing over tasks becomes
too costly.

32The first-order approach is valid according to the same reasoning as in the single-task case.
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This utility maximization problem, however, does not have an interior solution.33 When

facing a deadline, a sophisticated agent considers it optimal to work exclusively on

task A in the first period, that is, eSD

B1 = 0. Intuitively, the single-task case and the

no-deadline case suggest that a present-biased agent will work harder in the second

period. Hence, under a deadline, there is a tendency to invest more effort in task B

anyway. But then investing in task B in the first period is not optimal, because, due

to decreasing marginal rewards, the agent can benefit from shifting first-period effort

from task B to task A. While intuitively plausible4, the formal proof of this statement

is somewhat elaborate and therefore deferred to the appendix. The effort levels which

are chosen strictly positive, eSD

A and eSD

B2 , are characterized as follows:

c′(eSD

A ) = βg′(eSD

A ) (II.11)

c′(eSD

B2 ) = βg′(eSD

B2 ) (II.12)

From (II.11) and (II.12) it follows immediately that eSD

A = eSD

B2 . To sum up: When

facing a deadline, a sophisticated agent smoothes effort over time and equates effort

over tasks. Moreover, he does not invest in task B in period 1. Let eSD

denote the

effort level that is chosen under a regime of deadlines in each period and per task.

Formally we have eSD

1 = eSD

A = eSD

and eSD

B = eSD

2 = eSD

.

After all, we are interested in whether deadlines are helpful to overcome self-control

problems and thereby to improve performance and the agent’s satisfaction. The fol-

lowing proposition compares the behavior and well-being of a sophisticate under both

regimes, deadlines and no deadlines.

Proposition II.4: When facing a deadline, a sophisticated agent chooses a higher

effort level in the first period and a higher total effort level than under a regime without

a deadline, i.e., eSND

1 < eSD

and eSND

1 + eSND

2 < 2eSD

. Moreover, the sophisticated

agent is strictly better off from a long-run perspective when facing a deadline, i.e.,

USD

0 > USND

0 .

The above proposition has a clear intuition: a deadline helps a sophisticate to better

structure his work on the two tasks. He has to complete task A in the first period

and therefore he cannot procrastinate finishing task A as he does without a deadline.

Thus, the deadline helps the sophisticate to combat procrastination and thereby effort

is allocated more efficiently over the two periods. This more efficient allocation reduces

effort cost, which in turn leads to a higher overall effort and a better performance.

The optimal total effort level from a long-run perspective is the one chosen by a TC.

Furthermore, for any total effort level the optimal allocation is investing equal amounts

33With interior solution we refer to a pair of first-period effort choices (eA, eB1) with 0 < eA, eB1 < ∞.
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in both tasks and exhibiting the same amount of effort in each period. Irrespectively

of the regime, deadline or no deadline, the total effort a sophisticate invests in the

tasks is below the optimal total effort of a TC. With a deadline, however, the level of

total effort a sophisticate chooses is closer to a TC’s total effort. Moreover, this more

desirable level of total effort is more evenly allocated over the two periods. For this

reason a sophisticate is better off when being constrained by a deadline.34

The Naive Agent Since the analysis for the naive agent is completely analogous to

the one of the sophisticated agent for the regime with a deadline and to the single-task

case for the regime without a deadline, we defer the formal analysis to the appendix.

Here we briefly state the main results and then move on to a discussion of our findings.

When not facing a deadline, a naive agent equates efforts over tasks, but chooses a

higher effort level in the second period, that is, eNND

1 < eNND

2 . When being subject to

a deadline, a naive agent also equates effort over tasks, but - in contrast - smoothes

effort over time. In particular, the first-period effort is spent exclusively on task A and

the second-period effort is spent exclusively on task B. Formally, eND

1 = eND

A = eND

and eND

B = eND

2 = eND

. As a consequence, under a deadline a naive agent achieves

a more desirable allocation of his effort, which in turn leads to a higher level of total

effort under deadlines. Hence, with the same reasoning as above, a deadline also makes

a naive agent better off.

Proposition II.5: When facing a deadline, a naive agent chooses a higher effort level

in the first period and a higher total effort level than under a regime without a deadline,

i.e., eNND

1 < eND

and eNND

1 + eNND

2 < 2eND

. Moreover, from a long-run perspective,

being subject to a deadline makes a naive agent strictly better off, i.e., UND

0 > UNND

0 .

One question is immediately at hand: Which type of hyperbolic discounter benefits

more from being exposed to an interim deadline? As it turns out, under a deadline

sophisticates and naifs choose the same allocation of effort, that is, eSD

= eND

.35

Thus, with long-run utility being the same for both types of hyperbolic discounters

when facing a deadline, we just have to compare long-run utilities when there are

no deadlines in order to answer the question of interest. With effort being evenly

distributed over tasks no matter what, the situation without an interim deadline is

comparable to the single-task case. Hence, from our earlier findings we know that

in general it is undetermined which type of hyperbolic discounter benefits more from

34That restrictions on the choice set may help to reduce procrastination is also shown by O’Donoghue
and Rabin (2001).

35This result, which is an artefact of our model where the agent faces as many deadlines and tasks as
periods, is formally established in the proof of Proposition 5.
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being exposed to deadlines. When c′′′(·) ≤ 0 and g′′′(·) ≤ 0, however, a naive agent will

benefit at least as much from the imposition of a deadline as a sophisticated agent.

Discussion We have shown so far that simple deadlines can help people with self-

control problems to improve their performance. The reason is that being exposed to

deadlines allows people to allocate their effort more efficiently, which in turn leads to

a higher amount of total effort and an overall better performance. Our findings are

highly in line with the empirical observations of Ariely and Wertenbroch (2002). They

demonstrate the value and effectiveness of deadlines for improving task performance

in two different studies both conducted at MIT. In one study participants were “native

English speakers [who were given the task to] proofread papers of other students to

evaluate writing skills”. Participants were randomly assigned to one of three conditions:

evenly-spaced deadlines, end-deadline, or self-imposed deadlines.36 In each condition

a participant had to read three texts and payment was contingent on the quality of

the proofreading with a penalty for each day of delay.37 The number of errors cor-

rectly detected was highest in the evenly-spaced-deadlines condition, followed by the

self-imposed-deadlines condition, with the lowest performance in the end-deadline con-

dition. Moreover, participants were asked to estimate how much time they had spent on

each of the three texts. Participants in the evenly-spaced-deadlines condition spent the

highest amount of time on each text, followed by the participants of the self-imposed-

deadlines condition, while participants of the end-deadline condition have invested the

least amount of time. Ariely and Wertenbroch (2002) summarize these observations

as follows: “[T]he results show that when deadline constraints increased, performance

improved [and] time spend on the task increased” (p.223). These observations are

predicted by our theoretical analysis of agents with self-control problems: a deadline

increases total effort, which in turn improves performance. In the other study profes-

sionals participating in an executive-education course at MIT had the task to write

three short papers. Participants were randomly assigned to one of two treatments:

no-choice or free-choice. In the no-choice treatment deadlines were fixed and evenly

spaced, in the free-choice treatment participants were free to choose the deadlines. In

both treatments deadlines were binding and there was a penalty for late submission.38

36While the evenly-spaced deadlines condition is comparable to our deadline regime, our regime of no
deadlines corresponds to the end-deadline condition.

37By setting their deadlines as late as possible, the participants would have the most time to work on
the texts and the highest flexibility in arranging their workload.

38Besides giving the students the most time to work on the papers and the highest flexibility in
arranging their workload, by setting their deadlines as late as possible they would also have the
opportunity to learn the most about the topic before submitting the papers. Students also had an
incentive to set submission dates late because the penalty would be applied only to late submissions
and not to early ones. Finally, students who wanted to submit assignments early could privately
plan to do so without precommitting to the instructor.
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The main finding is that the grade in the no-choice treatment is significantly higher

than the grade in the free-choice treatment. This observation also is in line with the

theoretical results obtained in this paper.

The focus of the latter study is on self-imposed deadlines and inefficiencies arising

due to suboptimal spacing of these deadlines. Even though we do not endogenize the

timing of deadlines, our model also captures this result - in a highly stylized way. Let

∆US
0 denote the long-run utility gain of a sophisticated agent from being exposed to a

deadline. Formally, ∆US
0 ≡ USD

0 −USND

0 . Analogously define ∆US
1 ≡ USD

1 −USND

1 to be

the utility gain of a sophisticated agent from being exposed to a deadline as perceived

from the beginning of the first period. Correctly predicting his future behavior, a

sophisticate will always welcome being subject to a deadline in (fictitious) period zero.

When asked in period 1, however, a sophisticate is not very enthusiastic about facing

a deadline. Formally, ∆US
1 < 0 < ∆US

0 .39 In period zero, a naive agent considers a

deadline neither helpful nor harmful, that is, ∆UN
0 = 0. In period 1, on the other

hand, a naive agent considers a deadline an undesirable restriction. Formally we have

∆UN
1 < 0. Thus, while both types of time-inconsistent agents may be willing to accept

a deadline long before the task is to be performed, this will not be the case when the

task is immediately at hand. Hence, when interpreting “suboptimal spacing of tasks”

as not setting deadlines at all, asking present-biased agents too late whether they are

willing to accept deadlines or to voluntarily impose deadlines on themselves may lead to

agents rejecting this opportunity. Moreover, this finding illustrates what O’Donoghue

and Rabin (2005) point out to be general principles when considering “incentives and

present bias”. Present-biased individuals are sensitive to exactly how decisions are

made - e.g. choosing in advance vs. in the moment. When all consequences of a

decision are sufficiently far in the future, however, present bias is not a problem and

it may be possible to induce better behavior when people are given the opportunity to

make decisions now about future behavior.

6. Conclusion

Empirical evidence suggests that people have self-control problems, in particular a

tendency to procrastinate unpleasant tasks. Former research has shown that this pro-

crastinative behavior can be explained by hyperbolic discounting. The focus of this

paper is not on procrastination itself, but on the effects of hyperbolic discounting and

awareness of the arising self-control problems on performance. We present a simple

model in which an agent has two periods to work on a specific task. His performance

39This result is readily established by a simple revealed-preference argument.
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depends on the total effort invested. We find that self-control problems reduce perfor-

mance. Moreover, sophistication about one’s own self-control problems not necessarily

leads to better performance than naiveté.

In a next step, in a slightly augmented version of the basic model, we analyze the

value and effectiveness of interim deadlines as commitment device. In line with recent

empirical evidence we find that interim deadlines improve performance when indi-

viduals impulsively procrastinate. This improvement of performance, which makes a

present-biased agent better off from a welfare point of view, is based on a more favorable

allocation of effort. The restrictions imposed by deadlines help an agent to better struc-

ture his workload, which in turn leads to lower effort costs and an overall higher effort

level. These results are of interest not only because they provide a theoretical under-

pinning of recent empirical work, but also because they explain many types of deadlines

encountered in daily life. To get back to one of the examples that we have mentioned

so far: Deadlines implemented by the “good-standing” rules of graduate schools make

grad students work focused on each of their papers, finishing a paper thoroughly before

starting another one, thereby improving chances to write high-quality papers. Without

these deadlines, grad students cannot commit themselves to work in their last year in

school exclusively on the their final paper. Instead, they possibly will end up spending

effort on - perhaps unfinished - older papers, resulting in a bunch of low-quality papers

that are finished in a hurry and written sloppy.

The model of this paper is simple in the sense that we consider the shortest possi-

ble time horizon that actually generates quasi-hyperbolic discounting effects. Without

imposing further assumptions on cost and reward functions, analyzing a longer time

horizon in a continuous action space framework, in particular the analysis of the be-

havior of sophisticated individuals, becomes very complicated very quickly. In the

literature the arising complications are sidestepped by assuming instantaneous utility

functions of the CRRA type. Facing the trade off between the analysis of a longer time

horizon on the one hand, and less restrictive functional assumptions on the other hand,

we opted for the latter. We think, however, that the main insights are to be obtained

in our model.

Last, throughout the paper we focused on two extreme cases of awareness, total

naiveté and full sophistication. As we show in Appendix A.2.2., the behavior of a

partially naive person is somewhere between these two extremes. In consequence, with

both extreme types of hyperbolic discounters benefiting from the presence of interim

deadlines, it is little surprising that this result carries over to the case of partially naive

individuals.
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III. Relaxing Competition Through

Quality and Tariff

Differentiation

In this chapter, I compare two-part tariff competition to linear

pricing in a vertically differentiated duopoly. Consumers have

identical tastes for quality but differ in their preferences for quan-

tity. The main finding is that quality differentiation occurs in

equilibrium if and only if two-part tariffs are feasible. Further-

more, two-part tariff competition encourages entry, which in turn

increases welfare. Nevertheless, two-part tariff competition de-

creases consumers’ surplus compared to linear pricing.
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1. Introduction

In many markets different firms sell products of different qualities. What are firms’

strategic incentives for quality differentiation? In a seminal contribution, Shaked and

Sutton (1982) show that firms can relax price competition via quality differentiation.

This is possible due to heterogeneity of consumers with regard to their tastes for quality.

In Shaked and Sutton, if consumers do not differ in their valuations for quality, firms

have no strategic incentives for quality differentiation. This paper, in contrast, shows

that firms may have incentives for quality differentiation even when consumers do not

differ in their tastes for quality but differ in their preferences for quantity. It is shown

that quality differentiation can relax competition when firms can offer two-part tariffs.

If firms are restricted to linear pricing, however, quality differentiation does not relax

competition.1 The intuition is that selecting different qualities may facilitate market

segmentation in which different classes of consumers are also served different quantities.

Without quality differentiation the firms produce perfect substitutes and thus compete

in a Bertrand fashion. Thus, the novel contribution of this paper to the theory of

product differentiation is to identify differences in consumers’ preferences for quantity

as a reason for strategic quality differentiation by firms.2

The presented model is similar to the well-known Shaked and Sutton unit-demand

model, or rather the Choi and Shin (1992) version with quasi-linear utility functions.

The differences are that in this paper consumers have continuous demand and that

next to linear pricing two-part tariff competition is considered. The analysis presented

in this paper is based on a non-cooperative three-stage game. In the first stage, the

two potential duopolists decide whether to enter the market. After observing the entry

decisions, each firm in the market chooses a quality level for its product. Finally,

observing entry and quality decisions, firms select a two-part tariff (or a linear price

schedule). At each stage, firms act simultaneously and independently.

The main finding is that product differentiation occurs in equilibrium if and only

if two-part tariffs are feasible. One example for quality differentiation and two-part

tariffs is the health club industry: Health clubs often levy a membership fee plus a

per-use charge and they offer a fixed quality (equipment and service). In many cities

there is more than one health club in the city center (no spatial differentiation), and in

most cases these clubs differ in quality.3 Moreover, the implications of the feasibility of

1Linear pricing means that the tariff is a linear function of the quantity q, hence a linear tariff has
the following form: T (q) = p · q. Note, a two-part tariff T (q) = A + p · q is an affine function.

2That a higher pricing flexibility may increase the degree of product differentiation is not novel to
the literature. Peitz and Valletti (2008) show for horizontally differentiated media platforms that
content differentiation is higher if platforms can charge prices from viewers compared to the case
where platforms are restricted to offer their service free to consumers.

3Other examples for two-part tariffs and vertical differentiation are discotheques, movie theaters
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two-part tariffs on welfare, consumers’ surplus, and industry profits are investigated.

I show that welfare and industry profits are higher and consumers’ surplus is lower if

two-part tariffs are feasible. If two-part tariff competition is feasible, competition is

relaxed and thus both firms enter the market, which in turn increases welfare.

The structure of the paper is as follows: After a brief review of the related literature,

Section 2 describes the model and discusses the linear pricing case. In Section 3,

the model with two-part tariff competition is solved by backwards induction. Section

4 compares the results of two-part tariff competition and linear pricing. Section 5

present two simple applications of the model to the theory of vertical restraints. The

final section summarizes the main findings.

Related Literature: Nonlinear pricing often is observed in oligopolistic markets.4

With several notable exceptions, the existing literature on nonlinear pricing focuses on

the

monopoly problem (cf. Wilson (1992) for monopoly pricing). There exist only few

papers on second-degree price discrimination or nonlinear pricing in oligopoly.5 A clas-

sic paper on this topic is Katz (1984). Katz analyzes an economy with informed high

demand consumers and uninformed low demand consumers. Informed consumers pur-

chase from the cheapest store while uninformed consumers choose a store at random.

In equilibrium, the firms choose tariffs to separate these two groups. Spulber (1989)

studies nonlinear pricing in a free-entry circular-city model. He shows that nonlinear

pricing leads to greater product variety than linear pricing. A seminal contribution to

the literature on nonlinear pricing in oligopoly is Armstrong and Vickers (2001), who

study a general framework with spatially differentiated firms that compete in nonlinear

tariffs.6 They show that under certain conditions firms choose welfare optimal two-part

tariffs in equilibrium. Nonlinear pricing in spatial competition models is also analyzed

by Stole (1995) and Rochet and Stole (2002).7 The approaches of Stole and Rochet and

and several types of clubs. The main difference between movie theaters is the size of the silver
screen. The ticket price is a fixed fee and the price for popcorn can be interpreted as the quantity
depending part. As for discotheques, there typically is a fixed entrance fee whereas drinks are
charged per bottles bought. Movie theaters and discotheques, respectively, are often located close
to a rival.

4There is no commonly accepted definition of nonlinear pricing. Following Wilson (1992, p.5), I
denote a tariff as nonlinear if the average charge is a function of the purchased quantity. In
unit-demand models where firms offer various pairs of quality and price, however, these offers are
often denoted as nonlinear pricing function. Based on the second definition, nonlinear pricing in a
vertically differentiated duopoly is also analyzed by Champsaur and Rochet (1989) and Johnson
and Myatt (2003).

5Pigou (1920) considers three kinds of price discrimination: first-degree price discrimination is perfect
price discrimination, second degree price discrimination is discrimination across quantities and for
third degree price discrimination the prices differ for distinguishable consumers.

6Armstrong and Vickers (2001) also analyze third-degree price discrimination.
7A similar framework is studied by Desai (2001) but with a different focus.
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Stole are highly related to Armstrong and Vickers if the quality is interpreted as quan-

tity. In these models consumers have unit-demand and firms discriminate via different

quality-levels. Since quality and quantity have similar properties, these approaches can

be reinterpreted as nonlinear pricing. A logit demand model with two-part tariffs is

analyzed by Yin (2004).

In contrast to the articles mentioned so far, I analyze nonlinear pricing in a model of

vertical rather than horizontal differentiation.8 In a classic contribution on vertical dif-

ferentiation, Gabszewicz and Thisse (1979) analyze a price equilibrium of an oligopoly

game. Consumers differ in income m and obtain utility U = s · (m − p) when they

buy quality s at price p. The qualities of the firms are fixed exogenously in this model.

Shaked and Sutton (1982) extend the Gabszewicz-Thisse model by endogenizing qual-

ity levels. The main result is that in equilibrium firms produce distinct qualities and

thereby relax price competition. Tirole (1988) shows robustness of these earlier results

for the case of the Mussa-Rosen utility function, i.e., for the case in which U = θ ·s−p,

where θ denotes the consumer’s type.9 While Tirole focuses on parameter values such

that the market is fully covered in equilibrium, Choi and Shin (1992) analyze the model

when the market is not covered. A complete characterization of quality choices in a

duopoly model in which consumers have a Mussa-Rosen utility function is given by

Wauthy (1996). All these models assume that consumers have unit-demand. In con-

trast, I analyze the effects of quantity discounts in a vertically differentiated duopoly,

which cannot be captured by one of the utility functions mentioned above. Conse-

quently, I introduce a novel tractable utility function for the framework with vertically

differentiated firms and multi-unit demand.

2. Description of the Model

There are two potential firms (i = 1, 2) producing (distinct) substitute goods. The

two firms play a non-cooperative three-stage game.10 At the first stage, they decide

independently and simultaneously whether or not to enter the market. In case of entry,

a firm incurs fixed cost K > 0. At stage two, each firm observes whether its rival has

entered the market. Thereafter, both firms independently and simultaneously choose

their respective quality level si ∈ {0, 1
3
, 2

3
, 1}.11 This stage will be referred to as the

8Quality can be seen as a “vertical” product feature in the sense that each consumer prefers higher
quality. The subdivision in vertical and horizontal differentiation is due to Lancaster (1979).

9Mussa and Rosen (1978) characterize the optimal price-quality schedule for a monopolist.
10This three stage game is similar to the one considered by Shaked and Sutton (1982) for their

unit-demand approach.
11The presented analysis can be generalized to quality-levels si ∈ [0, 1]. The existence of tariff game

equilibria, however, then is intricate to show.
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quality game. At the third stage, both firms independently and simultaneously choose

a tariff, having observed the rival’s quality level. Each firm i chooses a two-part tariff:

Ti(q) = Ai + pi · q.
12 Here, q denotes quantity, pi ≥ 0 is the price per unit, and Ai ≥ 0

a fixed fee. The third stage will be called tariff game. If price discrimination is banned

or infeasible, then Ai = 0. The focus of this paper is on firms’ strategic incentives

for product differentiation. To separate this effect, I assume that costs are zero for all

quality levels. Put differently, there is only one reason for a firm not to produce the

best possible quality, namely to relax tariff competition on the final stage.

There exists a continuum of consumers with measure one. I assume that consumers

practice “one-stop shopping”. That is, consumers make all their purchases from one

firm. Thus, each consumer takes one of the following three actions: purchase from firm

1, purchase from firm 2, or do not purchase at all. Consumers differ in a taste parameter

θ that is uniformly distributed on the unit-interval. It is assumed that consumers have

quasi-linear utility functions and the reservation utility is normalized to zero. I assume

that the utility of a consumer with type θ who purchases q units from firm i takes the

following specific form13

U = siq − q2/(2θ) − Ti(q) θ ∈ (0, 1] . (III.1)

Consumers have the same tastes for quality, but differ in their preferences for quantity.

Put differently, the marginal rate of substitution between quality and money is inde-

pendent of the consumer’s type, i.e., ∂2U/∂si∂θ = 0. The type parameter θ determines

a consumer’s satiation point. With this utility function, an improved quality is more

beneficial to large buyers. For instance, a frequent health club visitor who works out

before going to work suffers more from a low quality, say a dirty shower room, than

a health club member who sporadically goes to the gym in his spare time. Moreover,

quality is not additive in the sense that being member in two low-quality health clubs,

one with clean showers and the other with modern training equipment, is not equivalent

to being member in a high-quality health club that offers both. From the above utility

function I can derive a consumer’s conditional demand function. When a consumer of

type θ buys from firm i, his demand is given by:

qi(pi, θ) = θ(si − pi) for pi ≤ si, (III.2)

and zero otherwise. Inserting the demand into the utility function and ignoring the

12It is assumed that general nonlinear tariffs are infeasible.
13Granted this utility function is arbitrary, but it leads to a tractable linear demand function with rea-

sonable properties. Assuming particular functional forms for consumers’ utility is not uncommon
in the literature on vertical differentiation. Jensen (2008) analyzes the problem of a monopolist
who offers a menu of two-part tariffs and qualities. She also assumes a simple quadratic utility
function in quantity.
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fixed fee yields the surplus function

vi(pi, θ) = (1/2)θ(si − pi)
2 for pi ≤ si, (III.3)

and zero otherwise. This surplus is the maximum net utility a consumer of type θ

can receive excluding a potential fixed fee payment when purchasing from firm i at

marginal price pi. The type parameter θ is a simple multiplier in the consumer’s

surplus function. A consumer’s surplus is increasing in the quality he consumes and

decreasing in the marginal price he has to pay. The consumer’s surplus is a weighted

quadratic function of the product’s“net value”(si−pi). Since a large buyer does benefit

more as quality improves and since demand is increasing in the consumer’s type, the

increase in indirect utility due to an improved quality is larger for a consumer with

a higher type, i.e., ∂2vi/∂si∂θ > 0. If firms practice marginal cost pricing (pi = 0),

then the indirect utility of a consumer with type θ is given by V = 1
2
θ · s2

i −Ai.
14 It is

assumed that consumers have full information about the tariffs and the quality levels in

the market. Consumers’ tastes are private information, only the distribution is known

by the firms. If a consumer is indifferent between firm 1 and firm 2, he purchases the

higher-quality product.15 If quality levels are equal, the consumer chooses a store at

random. The equilibrium concept employed is subgame perfect Nash equilibrium in

pure strategies. Thus, the game is solved by backwards induction.

2.1. Linear Pricing

Suppose price discrimination is infeasible, that is, firms are restricted to offer linear

prices. It is assumed, without loss of generality, that firm 2 is the high-quality supplier

and that firm 1 is the low-quality supplier, i.e., s1 ≤ s2. Given that both firms are

active in the market, it follows immediately from consumers’ surplus functions that all

consumers purchase from the firm that offers the product with the higher “net value”

(si−pi). In contrast to former models of vertical differentiation, like Shaked and Sutton

(1982), where consumers with different types have different rankings for price-quality

pairs, here all consumers have the same ranking for price-quality pairs. Thus, firms

cannot relax price competition via quality differentiation.

Lemma III.1: Suppose firms are restricted to linear prices and that both firms have

entered the market. Then it is impossible that both firms realize strictly positive profits.

14In this case the consumer’s indirect utility function is similar to the well-known Mussa and Rosen
(1978) utility function for unit demand models with distinct qualities, where U = θ · s − p. The
Mussa and Rosen utility function is used in various models of vertically differentiated markets, for
instance Choi and Shin (1992), or in an augmented version in Rochet and Stole (2002).

15This assumption is not crucial, however, it simplifies some proofs.
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Proof: All proofs are given in the appendix.

The outcome of the two-stage game (quality game and tariff game) when only linear

pricing is feasible, depends on the behavior of firm 1. When firm 1 chooses a quality

s1 < s2 ≤ 1, then in equilibrium firm 1 has no positive market share and consequently

zero profits. On the other hand, if firm 1 chooses s1 = s2, there is perfect competition

and π1 = π2 = 0. In either case firm 1 earns zero profits. Consequently, when price

discrimination is infeasible at most one firm enters.

3. Two-part Tariff Competition

Now suppose firms can use two-part tariffs. This section shows that when two-part

tariff competition is feasible firms can relax price competition via tariff and quality

differentiation.

3.1. Preliminary Remarks on the Quality Game

In this subsection, I establish that when both firms are active in the market, they

produce distinct quality levels.

Lemma III.2: Suppose that both firms produce the same quality and two-part tariffs

are feasible. Then in the unique tariff game equilibrium both firms use the cost-based

linear tariff T ∗ = 0 · q and earn zero profits.

The intuition is similar to the reasoning behind the well-known Bertrand paradox.

Assume, for a sake of contradiction, that both firms produce the same quality and at

least one firm makes positive profits. Then the firm with lower profits can increase

its profits by slightly undercutting the rival’s tariff.16 Firm i undercutting firm j’s

tariff means that in an expenditure-quantity diagram the tariff of firm i is completely

below the tariff of firm j. This logic is still true when the firms have equal positive

profits. When firm i slightly undercuts firm j’s tariff, firm i obtains all customers of

firm j and almost always keeps some of its former customers. Consequently, slightly

undercutting the rival’s tariff increases profits. Hence, for equal qualities I obtain that

the well-known Bertrand result also holds when two-part tariffs are feasible.

Without quality differentiation price discrimination is infeasible and perfect compe-

tition leads to zero profits for both firms. Therefore, due to the presence of entry costs,

I obtain the following result for the subgame perfect equilibrium.

Lemma III.3: In any subgame perfect equilibrium in which both firms enter, the firms

produce distinct quality levels.

16The tariff Ti undercuts tariff Tj if ∀q piq + Ai < pjq + Aj .



72 Dissertation of Fabian Herweg

This result extends Proposition 1 in Shaked and Sutton (1982) to the multi-unit ap-

proach with two-part tariffs.

3.2. The Tariff Game

Suppose that s2 > s1, so that there is a high-quality supplier (firm 2) and a low-quality

supplier (firm 1). The net surplus of a consumer of type θ, given the tariffs of the two

firms, depending on the consumer’s quality decision is:

V (θ) =







1
2
θ(s2 − p2)

2 − A2 if he buys from firm 2 (high-quality),
1
2
θ(s1 − p1)

2 − A1 if he buys from firm 1 (low-quality),

0 otherwise.

(III.4)

Due to the following lemma, one can focus on the case where the high-quality firm

serves the consumers with high valuations for the good.17

Lemma III.4: There does not exist a pure strategy Nash equilibrium of the tariff game

with (i) the low-quality firm selling to consumers with high valuations θ ∈ [θ̃, 1], and

(ii) the high-quality firm selling to consumers with relatively low valuations θ ∈ [θ̂, θ̃],

where 0 ≤ θ̂ ≤ θ̃ < 1.

According to Lemma 4, if both firms share the market in equilibrium, then consumers

with relatively strong tastes for the product buy from the high-quality firm. For

“middle-type” consumers, the high-quality firm is too expensive, hence they purchase

the low-quality product at a (very) cheap tariff. Consumers with relatively low tastes

do not purchase at all. I will call consumers who are indifferent between two options

“marginal consumers”. Therefore, in the economy there exist two kinds of marginal

consumers: one is indifferent between buying from firm 1 and firm 2, whereas the other

marginal consumer is indifferent between buying from firm 1 and not buying at all (see

Figure 1). The first type of marginal consumer will be denoted by θ̃, the latter type

by θ̂.

This market structure implies that A2 > A1 and (s2 − p2) > (s1 − p1) in equilib-

rium, see Figure 1.18 From the definitions of the marginal consumers, one immediately

obtains the following characterization of the fixed fees charged by the two firms in an

17Readers should be aware that the proof of Lemma 4 requires some results presented in Section 3
later on. Therefore, I recommend to postpone reading the proof to the end of Section 3.

18For the relations of the fixed fees and the products’ net values one can distinguish four cases. Two
of these cases are ruled out by Lemma 4 as equilibrium candidates. The first of the two remaining
cases is depicted in Figure 1, whereas the second case, in which firm 2 serves the whole market, is
analyzed later on.
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Figure III.1.: Optimal choices for different consumer types.

equilibrium in which both firms share the market:

A1 =
1

2
θ̂(s1 − p1)

2 , (III.5)

A2 =
1

2
θ̃
[
(s2 − p2)

2 − (s1 − p1)
2
]
+ A1 . (III.6)

Note that given pi and the rival’s tariff, the fixed fee Ai is uniquely determined by θ̃. Put

differently, the choice of the fixed fee is equivalent to choosing the marginal consumer

θ̃.19 Each firm i chooses (pi, θ̃) to maximize profits. The firms’ profit functions, for a

given tariff of the competitor, are20

π2(p2, θ̃) = (1 − θ̃) · A2(p2, θ̃) + p2 ·

1∫

θ̃

q2(p2, θ) dθ , (III.7)

π1(p1, θ̃) =
(

θ̃ − θ̂(θ̃, p1)
)

· A1(p1, θ̃) + p1 ·

θ̃∫

θ̂(θ̃,p1)

q1(p1, θ) dθ . (III.8)

For now, assume that firms’ maximization problems have interior solutions. In the

appendix it is shown that this indeed is the case.

Profit Maximization Problem of Firm 2 (High-Quality Supplier)

More specifically, the profit function of the high quality firm is given by

π2(p2, θ̃) = (1 − θ̃) · A2 +
1

2
p2(s2 − p2)(1 − θ̃2) (III.9)

19Note that in equilibrium the marginal consumers θ̃ chosen by the two firms are the same.
20More precisely, Ai = Ai(pi, pj , Aj , θ̃) for i 6= j, but I suppress in the following the rival’s tariff

parameters.
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where

A2 =
1

2
θ̃
[
(s2 − p2)

2 − (s1 − p1)
2
]
+ A1 .

First, setting the partial derivative of π2 with respect to p2 equal to zero allows to solve

for the optimal marginal price of firm 2,

p∗2 =
1

2
(1 − θ̃)s2 . (III.10)

The optimal marginal price p∗2 is determined by the marginal consumer θ̃. Hence, p∗2

depends only indirectly on rival’s tariff via θ̃. Obviously, p∗2 decreases in θ̃. Intuitively,

a greater market share is accompanied by a lower fixed fee, i.e., less of the surplus of

the served consumers can be extracted by the fixed fee. This in turn leads to a raise

in the optimal marginal price. Note that the optimal marginal price exceeds marginal

cost. This result is in contrast to several models of horizontal differentiation, where in

equilibrium marginal prices equal marginal costs. For instance, Armstrong and Vickers

(2001) show for spatially differentiated markets that the firms offer cost-based two-part

tariffs in equilibrium. On the other hand, Yin (2004) points out that in the context of

a Hotelling model, marginal prices are higher than marginal costs if the transportation

costs are shipping costs.21 The observation that in the model of Armstrong and Vickers

consumers’ types do not interact with quantity, whereas in Yin’s model and the one

presented here there is an interaction between consumers’ types and quantity leads me

to the following conclusion: regardless of the differentiation framework, marginal prices

exceed marginal costs if for a given marginal price consumers with different types prefer

different quantities.

The first-order condition for profit maximization of firm 2 with respect to θ̃ is given

by

∂π2

∂θ̃
= 0 ⇐⇒ −A2 + (1− θ̃)

1

2

[
(s2 − p2)

2 − (s1 − p1)
2
]
− p2(s2 − p2)θ̃ = 0 . (III.11)

Inserting the optimal marginal price, p∗2, into (III.11) and rearranging yields

A∗
2 =

1

2
· (1 − θ̃)

[
1

4
s2
2(1 − θ̃2) − (s1 − p1)

2

]

. (III.12)

Profit Maximization Problem of Firm 1 (Low-Quality Supplier)

The profit function and the optimization constraints of firm 1 are given by

π1(p1, θ̃) = (θ̃ − θ̂) · A1 +
1

2
p1(s1 − p1)(θ̃

2 − θ̂2) , (III.13)

21Anderson and Engers (1994) describe two types of transportation costs. A shipping cost depends
on the quantity which is “shipped” and a shopping cost is independent of the amount purchased.
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where

θ̂ = θ̃

[

1 −

(
s2 − p2

s1 − p1

)2
]

+
2A2

(s1 − p1)2

A1 =
1

2
θ̃
[
(s1 − p1)

2 − (s2 − p2)
2
]
+ A2 .

Setting the partial derivative of π1 with respect to p1 equal to zero yields an implicit

condition for the optimal marginal price p∗1:

∂π1

∂p1

= 0 ⇐⇒ 3θ̂ = θ̃ . (III.14)

In equilibrium the low-quality firm serves 2
3

of the residual demand. Equation (III.14)

can be rewritten as

p∗1 = s1 −

√

3

θ̃

(
1

2
θ̃(s2 − p2)2 − A2

)

.

The optimal marginal price of firm 1 is higher than marginal costs if the net surplus of

the marginal consumer θ̃ is sufficiently small. The net surplus of marginal consumer θ̃

is quite small if competition between the two firms is not very intense. Hence, when

the products of the two firms are sufficiently differentiated the marginal price of firm 1

is positive. The other first-order condition of firm 1 is obtained by setting the partial

derivative of the profit function with respect to θ̃ equal to zero. Rewriting this equation

and inserting p∗1 yields the following formulation for the optimal fixed fee:

A∗
1 =

(
1

2
θ̃(s2 − p2)

2 − A2

)[

−3A2

θ̃(s2 − p2)2
+

7

2
−

2s1

(s2 − p2)2

√

3

2
(s2 − p2)2 −

3A2

θ̃

]

−
1

3
θ̃s1

√

3

2
(s2 − p2)2 −

3A2

θ̃
. (III.15)

3.3. Characterization of the Equilibria

Any pure strategy Nash equilibrium of the tariff game in which both firms have a posi-

tive market share, has to satisfy the equations (III.5), (III.6), (III.10), (III.12), (III.14),

and (III.15). In a Nash equilibrium both firms choose the best response given the rival’s

tariff. Hence, for each firm the two first-order conditions must hold.22 Equation (III.6)

ensures that both firms choose the same marginal consumer θ̃, which is necessary for

an equilibrium. Condition (III.5) determines the optimal θ̂ for a given tariff of firm 1.

More precisely, the Nash equilibrium is characterized by a system of equations with six

equations and six unknown variables (p1, p2, A1, A2, θ̃, θ̂). This system of equations can

22The second-order necessary conditions (SOCs) are checked in the appendix, see A.3.2. I suggest to
postpone reading A.3.2. until the end of Section 3.



76 Dissertation of Fabian Herweg

be condensed into a single equation, a polynomial of sixth order in θ̃. This polynomial

and therefore the Nash equilibrium cannot be solved analytically. Fortunately, if the

degree of product differentiation is sufficiently large (s2/s1 ≥ 2), it can be shown nu-

merically that this polynomial has exactly one root in [0, 1], which is the solution for

θ̃. If, however, the degree of product differentiation is low, then there does not exist

an equilibrium in which both firms share the market.

If only one firm has a positive market share in equilibrium, then this is necessarily the

high-quality firm. Note that, for any feasible tariff of firm 1, the tariff T2(q) = (s2−s1)q

leads to strictly positive profits for firm 2. Furthermore, in an equilibrium in which

firm 1 makes non-positive profits there cannot be an unsatisfied residual demand, thus

it has to be a best response for firm 2 to serves the whole market. The unique tariffs

corresponding to an equilibrium where the high-quality firm serves the whole market

are T ∗
1 (q) = 0 and T ∗

2 (q) = (s2 − s1)q. These tariffs constitute an equilibrium of the

tariff game, if the degree of quality differentiation is not too high (s2/s1 ≤ 2). If,

on the other hand, the degree of quality differentiation is sufficiently high, firm 1 is

not a tough competitor and thus firm 2 behaves more like a monopolist and leaves

an unserved residual demand. The following proposition summarizes the tariff game

equilibria for all relevant quality pairs. Note that s1 = 0 is as if firm 1 is not present

in the market.

Proposition III.1 (Tariff Game Equilibria): (i) For s2 = 1 and s1 = 2/3 (low

differentiation) there exists a unique pure strategy equilibrium. In equilibrium, both

firms offer linear tariffs. The low-quality firm has a zero market share and makes zero

profits, while the high-quality firm serves the whole market and makes strictly positive

profits.

(ii) For s2 = 2/3 and s1 = 1/3 (middle differentiation) there are two pure strategy

equilibria. In one equilibrium, both firms use linear tariffs; firm 2 serves the whole

market and makes strictly positive profits, while firm 1 has a zero market share and

makes no profits. In the other equilibrium, both firms offer two part tariffs and realize

strictly positive profits. In this equilibrium the market is not fully covered.

(iii) For s2 = 1 and s1 = 1/3 (high differentiation) there exists a unique pure strategy

equilibrium. In equilibrium, the market is not fully covered and both firms offer a

two-part tariff. The two firms share the market and both firms realize strictly positive

profits.

By using Proposition 1, it is straightforward to obtain firms’ optimal behavior at the

quality stage. In case (i), it is profitable for firm 1 to deviate to s1 = 1/3. In case

(ii), irrespective of which equilibrium is played at the final stage, at least firm 1 has an

incentive to deviate to s1 = 1. Being the leading firm in the market is clearly better
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than serving a small residual demand. Thus, in the unique pure strategy subgame

perfect equilibrium of the quality game and the tariff game, one firm chooses a quality

level of 1, whereas the other firm produces a quality of 1/3. Since a firm decides to

enter the industry if its expected profits exceed the entry cost, the next result follows

immediately.

Proposition III.2: Suppose the entry cost, K, is sufficiently small. Then there exists

a unique subgame perfect equilibrium in pure strategies. Both firms enter the industry

and make strictly positive profits in equilibrium.

Applying numerical methods to solve for the root of the polynomial of sixth order,

that characterizes the value of θ̃ in equilibrium, allows one to compute the equilibrium

profits, prices, and fixed fees:

π1 = .00138222 −K π2 = .142833 −K

p1 = .0657433 p2 = .351995

A1 = .00353261 A2 = .0550837

θ̂ = .0986701 θ̃ = .29601

4. Two-Part Tariff Competition versus Linear Pricing

With the above analysis the characterization of firms’ optimal entry decisions, depend-

ing on whether price discrimination is feasible or not, follows immediately.

Proposition III.3: For sufficiently small entry cost, K, two firms enter the mar-

ket if price discrimination is permitted, and a ban on price discrimination leads to a

monopoly.

If two-part tariffs are infeasible firms are not able to relax price competition. In con-

trast, if two-part tariffs are feasible the two firms produce distinct qualities and realize

strictly positive profits. Relaxing price competition via quality differentiation is pos-

sible if and only if two-part tariff competition is feasible. What are the driving forces

behind this result? An explanation can be given by analyzing the consumers’ utility

functions. Since all consumers have the same ranking for price-quality pairs firms can-

not relax competition via quality differentiation when being restricted to linear pricing.

Nevertheless, consumers with high types benefit more from an improved quality. Thus,

a consumer’s willingness to pay an upfront fee to obtain the right to purchase the

high-quality product is increasing in his type. This is the reason why firms can relax

competition if two-part tariffs are feasible. Here, firms’ incentives for quality differ-

entiation are based on heterogeneity in consumers’ preferences for quantity, which is
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novel in the literature. Former research studied vertical differentiation only with lin-

ear tariffs, for instance Shaked and Sutton (1982). In these unit-demand frameworks,

consumers are heterogeneous with regard to their tastes for quality.23

Now I address the question how a ban on price discrimination affects welfare, con-

sumers’ surplus and industry profits. Social welfare is defined as the sum of consumers’

surplus and industry profits.

Proposition III.4: Suppose the entry cost, K, is sufficiently small. Then social wel-

fare and industry profits are higher and aggregate consumers’ surplus is lower if two-part

tariff competition is feasible.

Permitting price discrimination encourages entry, which in turn increases welfare.24

This finding is in line with the result obtained by Armstrong and Vickers (2001), who

analyze non-linear pricing in a free entry circular city model. In their model, as in the

one presented here, permitting price discrimination increases industry profits which in

turn encourages entry, thereby increasing welfare. Surprisingly, from consumers’ point

of view it is better to have a monopolist who is restricted to linear pricing than facing

two competing firms that are able to charge two-part tariffs.

It is worthwhile to point out, that imposing a minimum quality-standard can have

the same entry effect as banning price discrimination. If the quality standard is too

high, so that the possible profits of firm 1 are lower than the entry cost, then in the

subgame perfect equilibrium only one firm will enter the market.

5. Motivation of the Utility Function: Applications to

Vertical Relations

The utility function (III.1) can also be interpreted as a profit function of a retailer.

Two-part tariffs are widely used and discussed in the context of vertical relations.25

Assume that firms, called manufacturers in this section, do not sell their products to

consumers directly but to a retail firm. A retail firm can only sell the product of a

single manufacturer. As far as vertical relations are concerned, when the manufacturer

sets a fixed fee, this fixed fee can be interpreted as franchise fee. For instance, the

decision of a potential retailer may be to open either a McDonald’s, a Pizza Hut, or

23See, for example, Choi and Shin (1992). In Shaked and Sutton (1982), consumers have the same
utility function: u(s,m) = s · m, and different incomes (m). Note that the income is like a taste
parameter for quality.

24While market entry in a vertical product differentiation model is also analyzed by Donnenfeld and
Weber (1992, 1995) and in particular by Johnson and Myatt (2003), these models are unit-demand
models.

25Classic contributions to the theory of vertical restraints, in particular on upstream competition and
two-part tariffs, are Rey and Stiglitz (1988) and Bonnano and Vickers (1988).
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neither. A model of vertical differentiation and market power on the upstream market

is also analyzed in Avenel and Caprice (2006). In their model a monopolist produces a

high quality product and the low quality product is produced by a competitive fringe.

Product differentiation on the upstream market is exogenous. The focus of Avenel and

Caprice is on retailers’ product lines. In the reinterpretation of the model introduced

so far, both upstream firms have market power and the degree of quality differentiation

is endogenous. But the retailers are exclusive dealers, who cannot sell the products of

both manufacturers.

In the following, I will give two examples of how the utility function (III.1) can be

interpreted as a profit function of a retailer who sells manufacturer i’s products.

Example 1 (Retailer is price taker): Consider a retail firm that operates as

a price taker. Suppose there exists a competitive fringe selling the same qualities as

produced by the manufacturers. The market price depends on the quality the retailer

sells and is given by

P (si) = si . (III.16)

For selling q units of a product purchased by manufacturer i, a retailer of type θ ∈ (0.1]

has costs

c(q, θ) =
1

2

q2

θ
, (III.17)

where θ measures how efficient the retailer is. If θ is high, the retailer has relatively

low costs for serving consumers. The profit of the retailer when selling the products of

firm i is then given by

πPT
R (q, i, θ) = siq −

1

2

q2

θ
− piq − Ai , (III.18)

where Ai is a franchise fee the retailer has to pay for the permission to sell firm i’s

products and pi is firm i’s wholesale price. Obviously, the above profit function is

equivalent to the utility function assumed throughout the whole paper.

Example 2 (Retailer is local monopolist): Consider a retailer of type θ ∈ (0, 1]

who sells the products of manufacturer i. Assume that the retailer is a local monopolist

and operates without costs. The demand of a retailer of type θ with retail price P is

q = θD(P ), where D(P ) = 2[si − P ]. A higher θ corresponds to a retailer with higher

demand. Put differently, θ measures the“market size”of the retailer in the downstream

market. Thus, the inverse demand function he faces is

P (q, θ) = si −
1

2

q

θ
.
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Given a tariff Ti offered by manufacturer i to each potential retailer, the profit of a

retailer of type θ who sells firm i’s products is

πLM
R (q, i, θ) =

(

si −
1

2

q

θ

)

q − piq − Ai . (III.19)

Hence, the profit function of the retailer is equivalent to the utility function (III.1).

In the main body of the paper, I focused on the case where each producer (i = 1, 2)

offers his products to consumers directly. Nevertheless, the above applications allow

for an interpretation of consumers as retail outlets.

6. Concluding Remarks

In this paper, a vertically differentiated duopoly with endogenous degree of product

differentiation and two-part tariffs is analyzed. The main finding is that product dif-

ferentiation occurs in equilibrium if and only if two-part tariff competition is feasible.

With consumer heterogeneity regarding their preferences for quality being absent in

the model presented, firms’ incentives for quality differentiation are solely based on

consumers’ heterogeneity in their preferences for quantity. This finding is in contrast

to earlier models of vertically differentiated industries, where consumers differ only in

their tastes for quality and quality differentiation can always relax price competition.

The utility function assumed in this paper is arbitrary. The main findings, however,

can also be obtained for surplus functions of the form vi(pi, θ) = ψ(θ) · ρ(si, pi). Al-

lowedly, the assumption that consumers differ only in their tastes for quantity and not

in their tastes for quality is strong. By focusing on this extreme case, I established that

the possibility of price discrimination may increase firms’ strategic incentives for qual-

ity differentiation. Moreover, the model of the paper is simple in the sense that firms

can produce only quality levels si ∈ {0, 1
3
, 2

3
, 1}. For qualities si ∈ [0, 1] the existence

of a pure strategy equilibrium of the tariff game is complicated to show. Trusting that

firms’ first-order conditions with respect to marginal prices and marginal consumers

characterize the tariff game equilibrium, application of numerical methods allows to

compute the subgame perfect quality levels. Firm 2 produces quality s2 = 1 and firm

1’s quality level is s1 ≈ 0.36. All results remain qualitatively the same.

For real-world applications, this model represents just an extreme case, similar as

pure spatial competition models. I believe, however, that focusing on pure vertical

differentiation sheds some light on firms’ incentives for quality differentiation in real

life. From an elementary perspective, this paper demonstrates that when consumers

are heterogeneous, firms can always relax price competition as long as there are enough

dimensions for firms to differentiate their products.



IV. Uncertain Demand, Consumer

Loss Aversion, and Flat-Rate

Tariffs

The so called flat-rate bias is a well-known phenomenon caused

by consumers’ desire to be insured against fluctuations in their

billing amount. This paper shows that consumer loss aversion

provides a formal explanation for this bias. We investigate into

two-part tariffs offered by oligopolistic firms to loss-averse con-

sumers who are uncertain about their demand. The main finding

is that, in equilibrium, firms offer a flat-rate tariff to those con-

sumers whose degree of loss aversion is sufficiently high compared

to marginal cost. Moreover, we show that differently loss-averse

consumers may not impose an informational externality on each

other. Thus, firms may be able to screen differently loss-averse

consumers at no cost.
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1. Introduction

Consumers facing the choice between several tariffs often do not select the optimal

one given their consumption patterns. In particular, consumers often prefer a flat-rate

tariff even though they would save money with a measured tariff. Train (1991) referred

to this phenomenon as “flat-rate bias”. Given the fact that consumers are willing to

pay a “flat-rate premium” it is unsurprising that this tariff form is widely utilized in

many industries, e.g., telephone services, Internet access, car rental, car leasing, DVD

rental, amusement parks, health clubs, and many others.

That flat rates are such a favorable pricing scheme is hard to reconcile with orthodox

economic theory, in particular for industries where marginal costs are non-negligible.1,2

Train et al. (1989) point out that “customers do not choose tariffs with complete

knowledge of their demand, but rather choose tariffs [...] on the basis of the insurance

provided by the tariff in the face of uncertain consumption patterns”. Since variations

in the monthly billing rates are small compared to a consumer’s income, standard risk

aversion cannot capture this insurance motive, however.3 Already Train (1991) states

that “[t]he existence of this [flat-rate] bias is problematical. Standard theory of con-

sumer behavior does not incorporate it.” Therefore, to capture first-order risk aversion

we posit that consumers are loss averse.4 A loss averse consumer dislikes even small

deviations from his reference point. In our model, the consumer’s demand is uncertain

at the point where he selects a tariff. We assume that a consumer forms rational ex-

pectations about his invoice, which determine his reference point. The consumer feels

a loss if his actual invoice amount is above his reference point, and he feels a gain if

it is below his reference point. We follow Kőszegi and Rabin (2006, 2007) and assume

that the reference point is a full distribution of the possible billing rates. To illustrate

this concept, suppose the consumer’s amount invoiced is either $15, $20, or $30. Then,

receiving a bill of $ 20 generates a mixture of feelings, a gain of $5 and a loss of $10.

We show that a consumer with these preferences is biased in favor of flat-rate tariffs,

since flat rates insure against the risk of losses in periods of greater than average usage.

Because observed tariffs are the result of strategic interactions of firms and con-

sumers, we set up an oligopoly model where firms compete for loss averse consumers.

Moreover, we allow for consumer heterogeneity with respect to their degree of loss aver-

1Sundararajan (2004) shows that it is always optimal for a monopolistic firm to offer a flat rate next to
usage-based tariffs if marginal costs are zero and there are positive transaction costs accompanied
with usage-based pricing.

2It is important to notice that, despite conventional wisdom, the marginal cost of a telephone call
is not zero, see for instance Faulhaber and Hogendorn (2000). Moreover, one should keep in mind
that telephone companies pay access charges on a per minute basis for off-net calls.

3Cf. Clay et al. (1992) or Miravete (2002).
4That consumer loss aversion could potentially explain the flat-rate bias is argued in the marketing

literature, see Lambrecht and Skiere (2006).
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sion. The timing is as follows: (i) Firms offer a menu of two-part tariffs to consumers;

(ii) Each consumer selects either one tariff or none; (iii) The consumer observes the

realization of the state of the world which determines his preferences for the good and

chooses a demanded quantity. We analyze the symmetric information case in which

firms observe a consumer’s degree of loss aversion, as well as the asymmetric informa-

tion case in which the degree of loss aversion is private information. In equilibrium of

the symmetric information benchmark, firms offer a flat-rate tariff to those consumers

whose degree of loss aversion compared to marginal cost exceeds a certain threshold.

Consumers with a lower degree of loss aversion are assigned to a metered tariff, i.e.,

a two-part tariff with a strictly positive unit price. These findings turn out to carry

over likewise to the asymmetric information case. Interestingly, offering the appropri-

ate flat-rate tariff next to usage-based tariffs never reduces the firm’s profits obtained

from serving those consumers who are assigned to a usage-based contract. Moreover,

under certain conditions differently loss averse consumers do not impose informational

externalities on each other. Put differently, firms may be able to screen a consumer’s

degree of loss aversion at no cost.

The structure of the paper is as follows: After presenting some evidence on the

prevalence of flat-rate biases and a discussion of the related literature, Section 2 presents

the model and in particular consumer’s preferences. Section 3 analyzes the demand

function of a loss averse consumer who signed an arbitrary two-part tariff. Sections

4 and 5 solve firms’ profit maximization problems and characterize the equilibrium

outcome for the symmetric information and the asymmetric information case. The

final section summarizes our main findings and discusses some shortcomings of the

presented model.

Evidence and Related Literature

Existence and Causes of Tariff-Choice Biases.—The existence of tariff-choice biases

was first documented for U.S. households among telephone service options. Train et al.

(1987) provide evidence for U.S. households favoring flat-rate tariffs over measured ser-

vices for local telephone calls. Conducting a logit model with a tariff specific constant,

the authors find that this constant is highest for the flat-rate option. Similar results

are obtained by Train et al. (1989). The authors argue that consumers choose a tariff

that ends up not being cost-minimizing for the customer’s level of consumption because

consumers also care about the insurance provided by the tariff option. Given uncertain

consumption patterns “the flat-rate tariff provides complete insurance” (Train et al.,

1989). A tendency of households to prefer flat-rate tariffs for telephone services is also
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reported by Hobson and Spady (1988) for single-person households, by Kling and van

der Ploeg (1990) who evaluate a tariff experiment of AT&T, by Mitchell and Vogelsang

(1991), and Kridel et al. (1993). For instance, Kridel et al. (1993) find that 55% of

all customers who choose a flat-rate service would have achieved higher surplus if they

had chosen measured service instead. The authors also hold an insurance motive of the

customers responsible for this finding. They report that customers exhibit substantial

risk aversion when faced with bill uncertainty. Miravete (2003) rejects the thesis that

customers are subject to a flat-rate bias when selecting telephone service tariffs. In his

data set, however, the flat-rate option is optimal for the vast majority of households.

The flat-rate bias is documented also for other telecommunication services. Lam-

brecht and Skiera (2006) analyze transactional data of over 10,000 customers of an

Internet service provider in Germany. They find that over 50% of these customers are

biased in favor of a flat-rate option. Moreover, they provide evidence that the flat-rate

bias is at least partially due to an insurance motive of the consumers. In a follow up

paper, Lambrecht et al. (2007) argue “[c]onsumers may prefer a tariff that leads to

fewer month-to-month fluctuations in their bill”. For mobile telephone services, a pref-

erence for flat-rate tariffs that cannot be explained by customers’ usage is documented

by Gerpot (2009) and Mitomo et al. (2009). These papers, however, rely on survey

data.

Relying on survey data, Nunes (2000) finds strong evidence for a flat-rate bias outside

telecommunications services (grocery shopping online, access payment for a swimming

pool of an apartment building). Presumably the most powerful demonstration of the

flat-rate bias outside the telecommunications service sector is DellaVigna and Mal-

mendier (2006). They analyze a data set from three U.S. health clubs and show that

a large fraction of health club members who are enrolled in a flat-fee contract (either

monthly or annually) paid on average more per visit than they would have paid with

a pay-per-visit option. According to the authors, the leading explanation for these ob-

servations is consumers’ overconfidence about future self-control. A low per usage price

is a commitment device for higher attendance in case of self-control problems, when

consumption leads to immediate costs and delayed rewards. Such motives of selecting

an option that provides commitment to higher usage rates obviously cannot explain

the prevalence of flat rates for telecommunications services, car rental, car leasing and

amusement parks. Moreover, from a theoretical point of view, consumer self-control

problems can only explain why marginal prices may be below marginal cost but not

why marginal prices are exactly zero, see DellaVigna and Malmendier (2004).5

5In DellaVigna and Malmendier (2004), generically the optimal per-unit price is unequal to zero. If
one does not allow for negative unit prices, then there is a broad range of parameter combinations
such that the optimal unit price equals zero.
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(Behavioral) Models of Pricing Strategies.—Since Oi’s (1971) analysis of an optimal

two-part tariff for a monopolist, this pricing scheme is intensely analyzed in the eco-

nomic literature. Leland and Meyer (1976) show that a firm, regardless of its objective,

always does at least as well with a two-part tariff as with linear pricing. Pareto-optimal

menus of tariffs are analyzed by Willig (1978). He shows that a Pareto-optimal menu

includes a cost-based two-part tariff. The pricing literature of the 80’s solves for the

optimal nonlinear tariff. Notable works on this topic are Maskin and Riley (1984),

Goldman et al. (1984) as well as the book by Wilson (1993). This literature estab-

lished the now well-known no distortion at the top result, i.e., marginal prices exceed

marginal cost for all but the last unit. While these classic screening models focus on

deterministic demand, there are some papers analyzing sequential screening problems.

In these papers, a consumer first chooses a contract and then he learns his true pref-

erences before making a quantity choice. See, for instance, Courty and Li (2000) or

Miravete (2002).

This paper is more related to the recent and growing literature investigating how

rational firms respond to consumer biases. A seminal contribution in this field is

DellaVigna and Malmendier (2004). They consider a market, either monopolistic or

perfectly competitive, with homogeneous time-inconsistent consumers. Their main

finding is that the unit price of the optimal two-part tariff is above marginal cost

for leisure goods (usage of rental car) and below marginal cost for investment goods

(health club attendance). Likewise presuming that consumers are quasi-hyperbolic

discounters, Heidhues and Kőszegi (2008b) set up a model of a perfectly competitive

market for credit-cards. They allow for consumer heterogeneity and pay particularly

attention to welfare implications of possible policy interventions. Using a different

notion of time-inconsistency, Eliaz and Spiegler (2006) solve for the optimal menu of

tariffs for a monopolist who faces consumers that differ in their degree of sophistication.

The optimal contract exploits those consumers who are sufficiently naive about their

self-control problems. Moreover, they show that the optimal menu can be implemented

by a menu of three-part tariffs. The optimal menu does not include a flat-rate tariff.

The optimal nonlinear pricing scheme for a monopolist who sells to consumers with

self-control problems is also analyzed by Esteban et al. (2007). Instead of assuming

time inconsistency, they model self-control problems by applying the concept of Gul

and Pesendorfer (2001). The optimal tariff resembles the one in the standard nonlinear

pricing literature except for a price ceiling. Similar results are obtained by Esteban and

Miyagawa (2006) for a perfectly competitive market where consumers have temptation

preferences according to Gul-Pesendorfer.

Next to time inconsistency, there are a few papers dealing with the optimal selling
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strategy for overconfident consumers. Grubb (forthcoming) analyzes the optimal menu

of nonlinear price schedules for a monopolist as well as for a perfectly competitive

market. Consumers in his model are overconfident in the sense that they underestimate

fluctuations in their demand. The optimal menu is close to a menu of three-part

tariffs which is often observed in the cellular phone service industry. The optimal tariff

is completely flat up to the allowance only if marginal costs are zero, however. A

similar model where firms screen consumers at the basis of their priors is considered by

Uthemann (2005). In his model firms are differentiated à la Hotelling. Unlike Grubb, he

does not assume that consumption is satiated at a finite level, and therefore he obtains

that marginal prices are always above marginal cost. Focusing on only two-states of

the world but without imposing any differentiability assumptions on the consumer’s

utility function, Eliaz and Spiegler (2008) analyze the problem of a monopolist who

faces consumers with biased beliefs regarding the probability assignment to the two

states of nature. Optimistic consumers, who assign too much weight on the state of

nature that is characterized by larger gains from trade, sign exploitative contracts. In

a stylized example, the authors show that the optimal menu may include a flat-rate

tariff. The authors, however, do not derive conditions under which there model predicts

flat-rate contracts.

To the best of our knowledge, there is no paper analyzing nonlinear tariffs when

consumers are loss averse. Nevertheless, loss aversion and in particular the concept

developed by Kőszegi and Rabin (2006, 2007) is used in models of industrial organiza-

tion. Heidhues and Kőszegi (2005) apply this concept to provide an explanation why

monopoly prices react less sensitive to cost shocks than predicted by orthodox the-

ory. Moreover, Heidhues and Kőszegi (2008a) introduce consumer loss aversion into a

model of horizontally differentiated firms. They show that in equilibrium asymmetric

competitors charge identical focal prices for differentiated products. Next to industrial

organization, the Kőszegi and Rabin formulation is applied to contract theory by Her-

weg et al. (2008). Considering a moral hazard framework, they provide an explanation

for the frequent usage of lump-sum bonus contracts.

2. The Model

Market Framework

We consider a market for a single good. In the market there are two firms, A and B,

facing a continuum of potential consumers with measure normalized to one.

Consumers.—The consumers can be partitioned into two groups that differ in a pa-

rameter λ ≥ 1 (degree of loss aversion). Let the two groups be denoted by j = 1, 2 with
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λ1 < λ2. A consumer’s demand for the good is continuous and depends on the state of

the world θ ∈ [θ, θ̄] ≡ Θ. The state of the world is continuously distributed according

to the commonly known and twice differentiable cumulative distribution function F (·).

Let the probability density function be f(·). The state of the world is unknown to

consumers and firms at the point of contracting. For instance, a consumer may sign

a contract with a car rental company today for his holidays in a few weeks. How fre-

quently he will use the rented car depends on the weather. If the sun is always shinning

the consumer uses the car only to drive to the nearby beach. But if the weather is bad

he takes longer sight-seeing trips.

Firms & Timing.—Both profit maximizing firms produce the single good at constant

marginal cost c > 0 and without fixed cost. Each firm i = A,B offers a two-part tariff

to each group of consumers j = 1, 2. The tariff is given by T i
j (q) = Li

j+p
i
jq, where q ≥ 0

is the quantity, and Li
j and pi

j denote the fixed fee and the per unit price, respectively,

charged by firm i from consumers of type j. We will analyze the symmetric information

case in which firms observe λ, as well as the asymmetric information case in which λ

is private information of the consumer.

The timing is as follows: (1) Firms simultaneously and independently offer a tupel

of two-part tariffs {(Li
j, p

i
j)}j=1,2 to consumers. (2) Each consumer either signs exactly

one contract or none. (3) Consumers, but not firms, observe the realization of the state

of the world. A consumer chooses his demand to maximize his utility for the given state

of the world if he signed a contract. (4) Finally, payments are made according to the

demanded quantities and the concluded contracts.

Discrete Choice Framework.—The products of the two firms are symmetrically differ-

entiated. We assume that, next to λ, consumers are heterogeneous with respect to their

brand preferences. Each consumer has idiosyncratic preferences for differing brands of

the product (firms), which are parameterized by ζ = (ζ0, ζA, ζB). A consumer with

brand preferences ζ has net utility vi + ζ i if he buys from firm i, and net utility ζ0

if no contract is signed. The brand preferences ζ = (ζ0, ζA, ζB) are independently

and identically distributed according to a known distribution among the two groups of

consumers.

To solve for the tariffs that are offered in the pure-strategy Nash equilibrium by the

two firms, we follow the approach of Armstrong and Vickers (2001) and model firms

as offering utility directly to consumers. Each two-part tariff can be considered as

a deal of a certain expected value that is offered by a firm to its consumers. Thus,

firms compete over customers by trying to offer them better deals, i.e., a two-part tariff

that yields higher utility (including gain-loss utility). Put differently, we decompose a

firm’s problem into two parts. First, we solve for the two-part tariff that maximizes
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profits subject to the constraint that the consumer receives a certain utility level.

Thereafter, we solve for the utility levels (vi
1, v

i
2) a firm i offers to its customers. It

is important to note that, when λ is unobservable, the two-part tariffs have to be

designed such that each group of consumers prefers the offer that is dedicated to them.

Suppose the utility offered to consumers of group j by firm A and firm B is vA
j and

vB
j , respectively. Furthermore, assume that the incentive constraints are satisfied.

Then, the market share of firm A in the submarket j is mj(v
A
j , v

B
j ) and the market

share of firm B is mj(v
B
j , v

A
j ), with mj(v

A
j , v

B
j ) + mj(v

B
j , v

A
j ) ≤ 1. The market share

functionmj(·) is increasing in the first argument and decreasing in the second. Since the

brand preferences are identically distributed among the two groups, the market share

functions are identical for the two submarkets, i.e., m1(·) = m2(·) = m(·). Following

Armstrong and Vickers, we impose some regularity conditions in order to guarantee

existence of equilibrium. First, we assume that

∂m(vA, vB)/∂vA

m(vA, vB)
is non-decreasing in vB.

Second, we assume that for each submarket the collusive utility level ṽj exists which

maximizes (symmetric) joint profits.6

Consumers’ Preferences

We assume that consumers are loss averse, in the sense that a consumer is disappointed

if the payment he has to make exceeds his reference payment. For instance, consumers

typically feel a loss if at the end of the month the invoice from their telecommunication

provider is larger than expected. Since, for the situations we have in mind, it is natural

to assume that the reference point incorporates forward looking expectations, we ap-

ply the approach of reference-dependent preferences developed by Kőszegi and Rabin

(2006, 2007). First, this concept posits that overall utility has two additively separable

components, consumption utility (intrinsic utility) and gain-loss utility. Second, the

consumer’s reference point is determined by his rational expectations about outcomes.

Finally, a given outcome is evaluated by comparing it to each possible outcome, where

each comparison is weighted with the ex-ante probability with which the alternative

outcome occurs.

The consumer’s intrinsic utility is quasi linear in money; formally, intrinsic utility

equals u(q, θ) − T i(q) − ζ i if he purchases from firm i. For the markets we have in

mind, like rental cars or Internet services, even if the price per unit is zero, demand

is bounded. Therefore, we assume that there exists a satiation point, qS(θ), and that

6For a detailed description of the competition-in-utility-space framework and the needed assumptions
see Armstrong and Vickers (2001).
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overconsumption is harmless, i.e., free disposal is possible. Additionally, it is assumed

that a higher state of the world is associated with a stronger need for the good. The

restrictions on the consumer’s intrinsic utility for the good are summarized in the

following assumption.

Assumption (A1): It is assumed that for all θ ∈ Θ: (i) not consuming the good

yields zero intrinsic utility u(0, θ) ≡ 0. (ii) u(q, θ) is C3 for q ≤ qS(θ). Intrinsic utility

for the good has the following properties,

∂u(q, θ)/∂q > 0 for q < qS(θ), ∂2u(q, θ)/∂q2 < 0 for q ≤ qS(θ),

∂u(q, θ)/∂q = 0 for q ≥ qS(θ), ∂2u(q, θ)/∂q∂θ > κ for q ≤ qS(θ),

where κ > 0. (iii) ∂u(0, θ)/∂q = ∞.

Some comments to Assumption (A1) are in order: It is assumed that u(q, θ) is thrice

differentiable in q and θ for q ≤ qS(θ). There exists a satiation point qS(θ) such

that u(qS(θ), θ) ≥ u(q; θ) for all q ≥ 0. Moreover, overconsumption is harmless, i.e.,

u(q; θ) = u(qS(θ), θ) for q ≥ qS(θ). Finally, since the intrinsic utility of zero consump-

tion is normalized to zero and marginal utility is increasing in the state of the world it

holds that ∂u(q, θ)/∂θ > 0 for q ∈ (0, qS(θ)].

By Assumption (A1), the satiation point qS(θ) is defined by

qS(θ) = min{q ∈ R
+|∂u(q, θ)/∂q = 0} . (IV.1)

The satiation point is increasing in the state of the world θ, formally:7

dqS(θ)

dθ
= −

∂2u(qS(θ), θ)/∂q∂θ

∂2u(qS(θ), θ)/∂q2
> 0 . (IV.2)

We depart from the Kőszegi and Rabin concept by assuming that the consumer feels

gains and losses only in the money dimension. This means that a consumer does not

feel a loss if the weather is nice and he uses the rented car less often than expected.

Similarly, he does not feel a gain when using the car more often than expected due to

bad weather. The consumer feels a loss, however, if the rental price depends on the

driven miles and he used the car more often than expected. In accordance with the

majority of applied-loss aversion papers, it is assumed that the consumer’s gain-loss

function is piece-wise linear.8 Suppose the consumer pays T , but expected to pay T̂ ,

then his gain-loss utility is given by

µ(T̂ − T ) =

{

T̂ − T , for T̂ ≥ T

−λ(T − T̂ ), for T > T̂
,

7Strictly speaking, we have to take the left-hand limit when q approaches qS(θ) to obtain the stated
derivative.

8See, for instance, Heidhues and Kőszegi (2005, 2008a).
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where 1 ≤ λ ∈ {λ1, λ2}.
9 Note that a consumer’s expected demand conditional on the

state of the world fully determines the distribution of his expected payments, and thus

in turn his reference point. Suppose the consumer signed a contract with firm i. Then

his overall utility from this deal when purchasing q units, given the state of the world

is φ and his expected consumption is 〈q(θ)〉θ∈Θ, is given by

Uj(q|φ, 〈q(θ)〉) + ζ i ,

where

Uj(q|φ, 〈q(θ)〉) = u(q, φ) − T i(q) +

∫

X(q)

[T i(q(θ)) − T i(q)]f(θ) dθ

− λj

∫

Xc(q)

[T i(q) − T i(q(θ))]f(θ) dθ , (IV.3)

with X(q) ≡ {θ ∈ Θ|T i(q) < T i(q(θ))} and Xc(q) ≡ {θ ∈ Θ|T i(q) > T i(q(θ))}.

Note that Xc is not the complementary set to X, since both sets are defined by strict

inequalities, i.e., X(q)∪Xc(q) ⊆ Θ. Moreover, observe that for z > 0, X(q) ⊇ X(q+z)

and Xc(q) ⊆ X(q + z) as long as T (q) is non-decreasing. To deal with the resulting

interdependence between actual consumption and expected consumption, we use the

personal equilibrium concept, which requires the strategy that generates expectations

to be optimal conditional on these expectations.10

Definition IV.1 (Personal Equilibrium): For a given per unit price p the demand

profile 〈q̂j(θ; p)〉θ∈Θ is a personal equilibrium if for all φ ∈ Θ,

q̂j(φ; p) ∈ argmax
q≥0

Uj(q|φ, 〈q̂j(θ; p)〉) .

3. The Demand Function

In this section, we characterize the consumer’s demand conditional on having accepted

the offer (pi, Li) of firm i. Since, the consumer’s demand is independent of his idiosyn-

cratic brand preferences, we will omit ζ until we discuss the consumer’s brand choice.

Moreover, to cut down on notation we suppress the superscript i ∈ {A,B} indicating

from which firm the consumer purchases and the subscript j ∈ {1, 2} denoting the

9With this formalization the weight on gain-loss utility is implicitly normalized to one. This normal-
ization has no qualitative impact on our results. Even for λ = 1 (no loss aversion), however, the
consumer has reference-dependent preferences. His utility for a given state of the world φ is then
u(q, φ) − 2T (q) + constant. The consumer values money twice at the moment of the purchasing
decision, since paying one dollar more reduces intrinsic utility and reduces gain-loss utility either by
reducing gains or by increasing losses. Ex ante, when making plans the consumer’s expected util-
ity for λ = 1 equals the expected utility of a consumer without gain-loss utility. These important
observations will become clearer after deriving the consumer’s utility.

10See Kőszegi and Rabin (2006, 2007) for a general description and a defense of this concept of
consumer behavior.
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consumer’s degree of loss aversion in the following. We focus on p ≥ 0 since negative

unit prices cannot be optimal due to harmless overconsumption.

In order not to render flat-rate tariffs completely infeasible, it is assumed that in

case of being indifferent between two or more quantities the consumer chooses the

lowest of these quantities. Alternatively, one could assume that overconsumption is

not harmless. Since a higher state of the world is associated with a stronger preference

for the good, it seems reasonable that the demand profile is increasing in the state of

the world. The following lemma shows that this is indeed the case.

Lemma IV.1: For any two states of the world φ1, φ2 ∈ Θ with φ1 < φ2, q̂(φ1; p) ≤

q̂(φ2; p).

Unless specified otherwise, all proofs are presented in the appendix. Since in any

personal equilibrium demand is increasing in the state of the world and p ≥ 0, the

consumer feels losses compared to lower states and gains compared to higher ones.

Thus, the consumer’s utility for a given state φ in a personal equilibrium can be written

as

U(q̂(φ; p)|φ, 〈q̂(θ; p)〉) = u(q̂(φ; p), φ) − T (q̂(φ; p))

+

∫ θ̄

φ

[T (q̂(θ; p)) − T (q̂(φ; p))]f(θ) dθ − λ

∫ φ

θ

[T (q̂(φ; p)) − T (q̂(θ; p))]f(θ) dθ . (IV.4)

Taking the expected value with respect to the state of the world of the above formula

yields the consumer’s ex ante expected utility on the equilibrium path,

Eθ[U(q̂(θ; p)|θ, 〈q(θ; p)〉)] =

∫ θ̄

θ

[u(q̂(θ; p); θ) − T (q̂(θ; p))]f(θ) dθ

− (λ− 1)

∫ θ̄

θ

∫ θ̄

θ

[T (q̂(φ; p)) − T (q̂(θ; p))]f(φ)f(θ) dφdθ . (IV.5)

The first integral of the above formula represents standard expected intrinsic utility.

The second term is the ex ante expected net loss of the consumer, which is weighted

by λ − 1. The reason is that the consumer compares a given outcome with each

possible other outcome. Thus, the comparison of any two possible payments enters the

consumer’s expected utility exactly twice, once as a loss and once as an equally-sized

gain. For λ = 1 the consumer puts equal weights on gains and losses, so ex ante all

these comparisons cancel out. When making the purchasing decision, however, even

for λ = 1 these comparisons do not cancel out since then expectations are fixed.

To further characterize the personal equilibria it is useful to distinguish two cases,

namely, whether or not the marginal price p is strictly positive. We start with the case

of a flat-rate tariff where p = 0.
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Marginal Price Equals Zero

Obviously, with p = 0 the consumer does neither feel any sensation of gains nor of

losses. Thus, the consumer maximizes for each state of the world his intrinsic utility

for the good.

Lemma IV.2: Suppose p = 0, then there is a unique personal equilibrium. In the per-

sonal equilibrium the consumer demands for all states of the world θ ∈ Θ his satiation

quantity, i.e., q̂(θ; 0) = qS(θ).

Proof: Follows directly from the observation that the consumer’s utility for an

arbitrary state of the world is independent of the expected demand for all other states

of the world. Formally, U(q̂(φ; p)|φ, 〈q(θ; p)〉) = u(q;φ) − L which is maximized for

q ≥ qS(φ). By our assumption that the consumer does not overconsume, it follows

immediately that demand equals qS(φ).

Q.E.D.

With the marginal price being zero the consumer’s expected utility is

Eθ[U(qS(θ)|θ, 〈qS(θ)〉)] =

∫ θ̄

θ

u(qS(θ), θ)f(θ) dθ − L .

Let S(p) be the expected joint surplus of a firm and a consumer when contracting at

marginal price p. Formally

S(p) ≡ Eθ[U(q̂(θ; p)|θ, 〈q(θ; p)〉)] + (p− c)Eθ[q̂(θ; p)] + L . (IV.6)

Thus, the generated joint surplus from a flat-rate tariff amounts to

S(0) =

∫ θ̄

θ

[
u(qS(θ), θ) − cqS(θ)

]
f(θ) dθ (IV.7)

=

∫ θ̄

θ

∫ qS(θ)

0

[
∂u(q, θ)

∂q
− c

]

dqf(θ) dθ

The surplus generated by a flat rate, S(0), becomes arbitrarily negative for sufficiently

large marginal costs c and approaches the first-best surplus SFB for c → 0, where

SFB := max〈q(θ)〉θ∈Θ

∫ θ̄

θ
(u(q(θ), θ) − cq(θ)) f(θ)dθ.

Positive Marginal Prices

First, we present a technical result: The consumer’s demand when playing a personal

equilibrium does not ”jump” if the state of the world changes slightly.
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Lemma IV.3: Suppose p > 0. Then any personal equilibrium 〈q̂(θ; p)〉θ∈Θ is continu-

ous in the state of the world θ.

Since the demand profile is non-decreasing and continuous, we can conclude that it

is differentiable almost everywhere. Before exploiting this property of the personal

equilibrium, it is shown that demand is strictly increasing in the state of the world

if the marginal price is small. To establish this result we define the function q̃(θ; p),

which is implicitly characterized by

∂u(q̃(θ; p), θ)

∂q
= p [2 + (λ− 1)F (θ)] . (IV.8)

In fact, as we will show, the function q̃(θ; p) characterizes the unique personal equi-

librium if p is sufficiently small. It turns out that whether or not q̃(θ; p) is strictly

increasing in the state of the world plays an important role for the characterization of

personal equilibria. Implicit differentiation of (IV.8) with respect to θ yields

dq̃(θ; p)

dθ
= −

∂2u(q̃(θ; p), θ)/∂q∂θ − p(λ− 1)f(θ)

∂2u(q̃(θ; p), θ)/∂q2
.

The function q̃(θ; p) is strictly increasing in θ if and only if the following condition is

satisfied:

Condition: For all θ ∈ Θ,

p <
∂2u(q̃(θ; p), θ)/∂q∂θ

(λ− 1)f(θ)
. (C1)

The condition is more likely to be satisfied if the distribution of the state of the world

is not very dense. Put differently, if the environment is sufficiently unpredictable then

Condition 1 holds. Furthermore, the above condition is satisfied if the per unit price

is sufficiently small. To see this, note that ∂2u(q, θ)/∂q∂θ > κ for all θ ∈ Θ and all

q ≥ 0. Now, we are prepared to establish the result that in a personal equilibrium

there cannot be a set of types that consumes the same amount if the per unit price is

low.

Lemma IV.4: Suppose p > 0. Then in a personal equilibrium it holds that for any

two types φ1, φ2 ∈ Θ with φ1 6= φ2, q̂(φ1; p) 6= q̂(φ2; p) if and only if (C1) holds.

Unique Personal Equilibrium

We know that the personal equilibrium q̂(θ; p) is differentiable almost everywhere.

Since, given (C1) holds, the personal equilibrium is strictly increasing we can conclude

that dq̂(θ; p)/dθ > 0. Put differently, the consumer’s overall utility is differentiable with
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respect to q for q ∈ [q̂(θ; p), q̂(θ̄; p)], except at a finite number of kinks. In the following,

we derive a candidate personal equilibrium where higher types consume strictly more

by construction. It is shown that there exists exactly one candidate. This equilibrium

candidate is strictly increasing given (C1) holds.

The utility of a consumer in state φ who consumes q ∈ [q̂(θ; p), q̂(θ̄; p)] units, given

he expected to play a personal equilibrium where consumption is strictly higher for

higher states, is given by

U(q|φ, 〈q̂(θ; p)〉) = u(q;φ) − pq − L

+ p

∫ θ̄

α(q)

[q̂(θ; p) − q]f(θ) dθ − λp

∫ α(q)

θ

[q − q̂(θ; p)]f(θ) dθ , (IV.9)

where α(q) is implicitly defined by q̂(α(q); p) ≡ q. Note that the derivative α′(q) =

(dq̂(α(q); p)/dθ)−1 > 0 almost everywhere if (C1) holds. Taking the partial derivative

of U(q|·) with respect to q yields

∂U(q|·)

∂q
=
∂u(q, φ)

∂q
− p− λp[q − q̂(α(q); p)]f(α(q))α′(q) − λp

∫ α(q)

θ

f(θ) dθ

− p[q̂(α(q); p) − q]f(α(q))α′(q) − p

∫ θ̄

α(q)

f(θ) dθ . (IV.10)

Taking into account that q̂(α(q); p) − q = 0, the above derivative can be simplified to

∂U(q|·)

∂q
=
∂u(q, φ)

∂q
− p− p[1 − F (α(q))] − pλF (α(q)) .

Hence, the consumer’s utility is strictly concave for q ∈ [q̂(θ; p), q̂(θ̄; p)] since

∂2U(q|·)

∂q2
=
∂2u(q, φ)

∂q2
− p(λ− 1)f(α(q))α′(q) < 0 .

A necessary condition for 〈q̂(θ; p)〉θ∈Θ to constitute a personal equilibrium is that for all

θ ∈ Θ the first-order condition ∂U(q̂(θ; p)|θ, ·)/∂q = 0 is satisfied. Thus, the following

condition is necessary for a personal equilibrium with a strictly increasing demand

function: ∀ θ ∈ Θ,

∂u(q̂(θ; p), θ)

∂q
= p [2 + (λ− 1)F (θ)] . (IV.11)

Note that (IV.11) gives us a unique candidate for a personal equilibrium with strictly

increasing demand. Equation (IV.11) characterizes the unique personal equilibrium if

dq̂(θ; p)/dq > 0 for all θ ∈ Θ, which is satisfied if and only if condition (C1) holds.

Furthermore, note that q̂(θ; p) = qS(θ) for p = 0.

Proposition IV.1: Suppose (C1) holds. Then there exists a unique personal equi-

librium 〈q̂(θ; p)〉θ∈Θ. The personal equilibrium is characterized by ∂u(q̂(θ; p), θ)/∂q =

p[2 + (λ− 1)F (θ)].
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The consumer’s expected utility from signing a two-part tariff (p, L) is given by

Eφ[U(q̂(φ; p)|φ, 〈q̂(θ; p)〉)] =

∫ θ̄

θ

{

u(q̂(φ; p), φ) − pq̂(φ; p)

+ p

∫ θ̄

φ

[q̂(θ; p) − q̂(φ; p)]f(θ) dθ − λp

∫ φ

θ

[q̂(φ; p) − q̂(θ; p)]f(θ) dθ

}

f(φ) dφ− L .

(IV.12)

Personal Equilibrium with Bunching

How does the personal equilibrium look like if condition (C1) fails to hold? In this

case there exists an interval of states of the world for which demand is the same.

Before characterizing the personal equilibrium candidates, we show that any personal

equilibrium demand is bounded from above and from below. Let the lower and the

upper bound be denoted by qMIN , respectively qMAX . Clearly, these bounds depend on

the marginal price p. It is straightforward to show that the bounds are characterized

by the following equations,11

∂u(qMIN , θ)

∂q
= (λ+ 1)p and

∂u(qMAX , θ̄)

∂q
= 2p.

For q < qMin even the lowest type, θ, has an incentive to deviate to a higher quantity.

Similarly, for q > qMAX it is optimal for all types, even for the highest type, θ̄, to

deviate to a lower quantity.

By Lemmas 2 and 3, any personal equilibrium is continuous in the state of the

world even if (C1) does not hold. Furthermore, if the personal equilibrium consists of

flat parts as well as strictly increasing parts, then for the strictly increasing parts the

personal equilibrium is given by q̃(θ; p). Thus, if the flat-part is an interior interval of

Θ, then at the boundary points condition (IV.8) has to hold. On the other hand, if

the flat segment starts at θ or ends at θ̄, then the “bunching quantity” q̄ has to satisfy

an inequality constraint: Given q̄ a downward (upward) deviation has to reduce the

utility of the type θ (respectively θ̄). The following lemma characterizes these cases.

Lemma IV.5: Consider a personal equilibrium 〈q̂(θ; p)〉θ∈Θ with bunching in at least

one interval I ⊆ Θ with bounds θ1 and θ2 where θ ≤ θ1 < θ2 ≤ θ̄, i.e., q̂(θ; p) = q̄ ∀

θ ∈ I. Then the constant quantity q̄ and the bounds, θ1 and θ2, are characterized by

∂u(q̄, θ1)/∂q − p[2 + (λ− 1)F (θ1)] = 0 if θ1 > θ

∂u(q̄, θ1)/∂q − p[2 + (λ− 1)F (θ1)] ≥ 0 if θ1 = θ

11Suppose q̂(φ; p) < qMIN ∀φ ∈ Θ. Then, if a consumer of type θ chooses a quantity q ≥ qMIN

his utility is u(q, θ) − pq − λp
∫ θ̄

θ
[q − q̂(φ; p)]f(φ)dφ. Thus, type θ has an incentive to deviate if

∂u(qMIN , θ)/∂q − (λ + 1)p > 0. The lowest incentive for an upward deviation has type θ, which
characterizes the bound qMIN . The upper bound, qMAX , is obtained by a similar reasoning.
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and

∂u(q̄, θ2)/∂q − p[2 + (λ− 1)F (θ2)] = 0 if θ2 < θ̄

∂u(q̄, θ2)/∂q − p[2 + (λ− 1)F (θ2)] ≤ 0 if θ2 = θ̄.

For the parts where the personal equilibrium is strictly increasing q̂(θ; p) = q̃(θ; p).

The situation described in the above lemma is depicted in Figure 1.

θ θ1 θ2 θ̄

q̄

q̂(θ; p)

θ

q̃(θ; p)

Figure IV.1.: Personal Equilibrium with Bunching

Without further assumptions on the utility function and the distribution function of

the state of the world, the “bunching” regions are intricate to characterize. Moreover,

if condition (C1) does not hold and thus the personal equilibrium consists of flat parts,

there are typically multiple personal equilibria. Since we are interested in situations

where it is optimal for firms to offer flat-rate tariffs, there is no need to further discuss

the personal equilibria for high per-unit prices. A flat-rate can only be optimal if

marginal costs are not too high. If marginal costs are sufficiently low, however, then

the gains from trade for high marginal prices such that bunching occurs are lower than

the joint surplus generated from a flat rate. Hence, it is never optimal for a firm to

set such high per unit prices. When we analyze firms’ behavior we provide a sufficient

condition that allows us to focus on the case where (C1) is satisfied.

For illustrative purposes, we characterize all personal equilibria for a special case.

Suppose the state of the world is uniformly distributed and that the cross derivative is

constant. Then, dq̃(θ; p)/dθ is either strictly increasing for all θ ∈ Θ or non-increasing

for all θ. Thus, depending on the per unit price, the personal equilibrium is either

strictly increasing or constant over all states of the world.
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Corollary IV.1: Suppose ∂2u(q, θ)/∂q∂θ = K > 0 and θ ∼ U [θ, θ̄]. Then (i) for

p < K(θ̄− θ)/(λ− 1) there exists a unique personal equilibrium which is characterized

by ∂u(q̂(θ; p), θ)/∂q = p[2+(λ−1)(θ−θ)/(θ̄−θ)], (ii) for p ≥ K(θ̄−θ)/(λ−1) in any

personal equilibrium demand is independent of the state of the world, i.e., q̂(θ; p) = q̄

for all θ ∈ [θ, θ̄]. In this case there are multiple personal equilibria and q̄ satisfies

[∂u(q̄, θ̄)/∂q]/(λ+ 1) ≤ p ≤ [∂u(q̄, θ)/∂q]/2 .

4. Firm’s Subproblem: Joint Surplus Maximization

For this section, suppose firms can observe consumers’ types λ ∈ {λ1, λ2}. With the

consumers’ types being observable, the two market segments of types λ1 and λ2 can

be viewed as distinct markets. Thus, for the analysis we can focus on one market

where consumers are homogeneous with respect to their degree of loss aversion, which

is denoted by λ.

Suppose firm i ∈ {A,B} offers consumers a “deal” using a two-part tariff (Li, pi)

that gives them utility vi. Then, if a consumer with brand preferences ζ = (ζ0, ζA, ζB)

purchases from firm i his net utility is vi+ζ i. Let πj(v
i) be firm i’s maximum profit per

customer of type j when offering them a deal that yields utility vi. The per consumer

profit function is the same for both firms but it depends on the consumer’s degree of

loss aversion λ. In this section, we focus on one market segment and therefore the type

subscript can be omitted without confusion. Since π(·) is the same for both firms, we

will omit firm’s superscript in the following. With this notation, π(v) is given by the

solution to the problem:

π(v) = max
L,p≥0

:

{

L+ (p− c)

∫ θ̄

θ

q̂(θ, p)f(θ)dθ

∣
∣
∣
∣
Eθ[U(q̂(θ, p)|θ, 〈q(φ, p)〉)] = v

}

.

(IV.13)

First, we study the firm’s subproblem, that is, we derive the optimal two-part tariff

that solves the above problem. In the next section, we solve for the utility levels and

the corresponding tariffs which are offered by the two firms in equilibrium. Now, we

maximize a firm’s profit over the choice variables p and L subject to the constraint

that the consumer’s utility from the offered deal is v. The constraint of (IV.13) can be

written as

L =

∫ θ̄

θ

{

u(q̂(φ, p), φ) − pq̂(φ, p) + p

∫ θ̄

φ

[q̂(θ, p) − q̂(φ, p)]f(θ) dθ

− λp

∫ φ

θ

[q̂(φ, p) − q̂(θ, p)]f(θ) dθ

}

f(φ) dφ− v. (IV.14)
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Hence, the firm’s tariff choice problem can be restated as a problem of choosing only a

per unit price p. The firm chooses p to maximize S(p) − v, where

S(p) =

∫ θ̄

θ

{

u(q̂(φ, p), φ) − cq̂(φ, p) + p

∫ θ̄

φ

[q̂(θ, p) − q̂(φ, p)]f(θ) dθ

− λp

∫ φ

θ

[q̂(φ, p) − q̂(θ, p)]f(θ) dθ

}

f(φ) dφ. (IV.15)

The firm chooses the marginal price p such that the joint surplus of the two contracting

parties, the consumer and the firm, is maximized. The optimal marginal price p̂ is

independent of the utility the firm offers to the consumer v. This immediately implies

that π′(v) = −1.

Given condition (C1) does not hold then S(p) is not unambiguously defined, since

the personal equilibrium is not unique. Due to the next lemma one can focus on the

case where there is a unique personal equilibrium given that the marginal cost is low.

Let p̄ := minθ{κ[(λ− 1)f(θ)]−1}. Note that if p < p̄ then condition (C1) is satisfied.

Lemma IV.6: Suppose marginal cost, c > 0, is sufficiently low. Then the joint sur-

plus, S(p), is maximized for a unit price p ∈ [0, p̄).

The condition under which Lemma 6 is applicable is not very restrictive if one is

prepared to assume that the distribution of the states of the world is not very dense.

With f(θ) being small and thus p̄ being high, the possible gains from trade with unit

prices larger than p̄ are small, since demand is decreasing in p. Keep in mind that the

price at which“bunching”occurs, p̄, is independent of marginal cost. If marginal cost is

relatively low compared to the price p̄, then unit prices p ≥ p̄ lead to higher distortions

in demand than a unit price of zero compared to the first-best quantities. Because the

firm tries to maximize the joint surplus, and p = 0 leads to no losses whereas prices

p ≥ p̄ do, the optimal unit price is below p̄ for not too high marginal cost. In all what

follows it is assumed that c is such that Lemma 6 is applicable.

Hence, we can focus on the case where the personal equilibrium 〈q̂(θ, p)〉θ∈Θ is char-

acterized by ∂u(q̂(θ, p), θ)/∂q = p[2 + (λ− 1)F (θ)]. The derivative of the joint surplus

with respect to the marginal price p is

S ′(p) =
∫ θ̄

θ

{

(p− c)
dq̂(θ, p)

dp
+ p

∫ θ̄

θ

dq̂(φ, p)

dp
f(φ) dφ+ λp

∫ θ

θ

dq̂(φ, p)

dp
f(φ) dφ

}

f(θ) dθ

− (λ− 1)

∫ θ̄

θ

∫ θ̄

θ

[q̂(φ, p) − q̂(θ, p)]f(φ)f(θ) dφdθ . (IV.16)
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The change in the demanded quantities due to a change in the marginal price is

dq̂(θ, p)

dp
=

2 + (λ− 1)F (θ)

∂2u(q̂(θ, p), θ)/∂q2
< 0 . (IV.17)

Obviously, for unit prices p ≥ c the joint surplus is strictly decreasing in p. Thus, the

optimal marginal price p̂ ∈ [0, c). In order to guarantee that S(p) is well behaved, we

need an additional assumption. In this regard, we define

Ψ(p) ≡ (p− c)

∫ θ̄

θ

dq̂(θ, p)

dp
f(θ)dθ − (λ− 1)

∫ θ̄

θ

∫ θ̄

θ

[q̂(φ, p) − q̂(θ, p)]f(φ)f(θ) dφdθ .

Assumption (A2): For λ ∈ {λ1, λ2} and p ∈ [0, c), Ψ(p) is non-increasing in p.

Assumption 2 is satisfied, for instance, if d2q̂(p, θ)/dp2 ≥ 0 and d2q̂(p, θ)/dpdθ ≥ 0.

In particular, we have to rule out that a higher marginal price leads to a reduction

in expected losses, due to a highly compressed demand profile. To cut back on our

lengthy formulas we define

Σ(λ) ≡ (λ− 1)

∫ θ̄

θ

∫ θ̄

θ
[q̂(φ, 0) − q̂(θ, 0)]f(φ)f(θ)dφdθ

−
∫ θ̄

θ
[dq̂(θ, 0)/dp]f(θ)dθ

.

Note that q̂(θ, p) does also depend on λ. A few words to Σ(λ) are in order, since this

term is a crucial determinant for the optimality of flat-rate tariffs. Obviously, Σ(1) = 0.

Moreover, it can be shown that Σ(·) is strictly increasing in λ. The numerator is a

measure for the demand variation under a flat-rate contract. If the firm increases

the unit price slightly above zero this reduces the consumer’s utility by imposing an

expected net loss on him, which is proportional to the numerator of Σ(λ). Even a

small increase in p above zero has a negative first-order impact on the consumer’s gain-

loss utility. The denominator measures how strong on average the consumer’s demand

reacts due to an increase of the unit price slightly above zero. Since a flat-rate contract

leads to overconsumption which is costly, the firm has an incentive to choose a positive

unit price if price increases cause sharp reductions in demand. To sum up, we can

expect flat-rate tariffs to be optimal when Σ(λ) is large. This is the case if either

fluctuation in demand is high, or if demand reacts relatively inelastic on price changes.

With this notation, we are prepared to state the main result of this section.

Proposition IV.2: Suppose (A2) holds. Then, the joint surplus of a firm and a con-

sumer is maximized via a flat-rate tariff, i.e., p̂ = 0, if and only if Σ(λ) ≥ c, where

Σ′(λ) > 0.

Economically, the proposition states that a flat-rate tariff is optimal when the marginal

costs are sufficiently low compared to the consumer’s degree of loss aversion. On the
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one hand, a flat-tariff eliminates losses on the side of the consumer, but, on the other

hand, it leads to a too high consumption level. If marginal costs are sufficiently high,

the negative effect due to overconsumption outweighs the positive effect of minimized

losses. Moreover, a flat-rate tariff can only be optimal if there is enough variation in

the consumer’s demand. The numerator of Σ(λ) is a measure for the degree of demand

variation.12

Unfortunately, the proposition requires that condition (A2) holds. It is worthwhile

to point out, however, that a flat-rate tariff is optimal even if (A2) does not hold given

that the following condition is satisfied for all p ∈ [0, c):

(λ− 1)

∫ θ̄

θ

∫ θ̄

θ
[q̂(φ, p) − q̂(θ, p)]f(φ)f(θ)dφdθ

−
∫ θ̄

θ
[dq̂(θ, p)/dp]f(θ)dθ

> c .

Example: To illustrate the optimality of flat-rate tariffs we now discuss an example.

Suppose the consumer’s intrinsic utility for the good is given by u(q, θ) = θq− (1/2)q2

for q ≤ θ = qS(θ) and u(q, θ) = (1/2)θ2 otherwise. Let the state of the world be

uniformly distributed on [2, 3]. Suppose the marginal cost of the firm c = .05. The

demanded quantities in a personal equilibrium for this example are characterized by

Corollary 1. For p < (λ − 1)−1 the demand function is strictly increasing and given

by q̂(θ, p) = θ[1 − p(λ − 1)] − 2p(2 − λ). For p ≥ (λ − 1)−1 the consumer’s demand

is independent of the state of the world. In this case, there are multiple personal

equilibria. Here, it can easily be verified that the joint surplus is always maximized for

prices below (λ− 1)−1.

Nevertheless, we briefly characterize the joint surplus for all p values. For p ≥ (λ−

1)−1 it can be shown that the preferred personal equilibrium is to demand the highest

possible quantity, i.e., q̄ = max{2(1− p), 0}. The preferred personal equilibrium is the

plan among the consistent plans (personal equilibria) that maximizes the consumer’s

expected utility. Here, the preferred personal equilibrium is also optimal from the firm’s

perspective. The joint surplus, S(p), is depicted below for the case λ = 3. Observe

that S(p) is continuous at p = (λ − 1)−1 which is a general feature of the model and

not due to the specific example.

In this example the function Σ(·) takes the following simple form, Σ(λ) = (1/3)(λ−

1)(λ + 3)−1. Thus, by applying Proposition 2 a flat-rate tariff is optimal if λ ≥ 1.706.

Figure 3 depicts the joint surplus, S(p), for λ = 1, 1.5, 2, 3, 5. Lower curves correspond

to higher values of λ.

12Empirical studies about the flat-rate bias who support the so-called “ratio rule” often argue that a
higher variance in the consumer’s demand does not necessarily increase the consumer’s preferences
for a flat-rate option, see for instance Nunes (2000). Similarly, for a loss averse consumer an invoice
profile is more risky if it has a higher average self distance (numerator of Σ(·)), which does not
imply a higher variance.
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Figure IV.2.: Joint Surplus for λ = 3.

Figure IV.3.: Joint Surplus for λ = 1, 1.5, 2, 3, 5.

Without loss aversion (λ = 1) the optimal marginal price p = (1/2)c. Note that even

for λ = 1 the consumer has reference-dependent preferences and therefore his marginal

utility for money is two at the moment where he makes his purchasing decision. With

the consumer being loss averse (λ > 1), in most cases a flat-rate tariff is optimal.

5. Competitive Equilibrium

Since firms are symmetric we focus on the profit maximization problem of firm A.

Symmetric Information Case

With λ being observable we can regard the two market segments as distinct markets.

For a given market segment j ∈ {1, 2} firm A offers utility vA
j to these consumers to

maximize profits. For a given utility vB
j offered by firm B the profit maximization
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problem of firm A is given by

max
vA

j

m(vA
j , v

B
j )πj(v

A
j ) . (IV.18)

The necessary first-order condition for profit maximization amounts to

[∂m(vA
j , v

B
j )/∂vA

j ]πj(v
A
j ) +m(vA

j , v
B
j )π′

j(v
A
j ) = 0 . (IV.19)

Remember that π′
j(v

A) = −1. The optimal marginal price is unaffected by the choice

of vA
j . If firm A offers one unit utility more to consumers, then this is optimally be

achieved by lowering the fixed fee by one unit. The fixed fee is a one-to-one transfer

from the consumer to the firm. Define

Φ(v) ≡
m(v, v)

∂m(v, v)/∂vA
.

Applying Proposition 1 of Armstrong and Vickers (2001), the firm’s per customer profit

in submarket j in the symmetric equilibrium is given by

πj(v̂j) = Φ(v̂j) ,

where v̂j denotes the utility offered by both firms to consumers of type λj in equilibrium.

As is shown by Armstrong and Vickers, there are no asymmetric equilibria. Moreover,

the equilibrium is often unique.13 The following proposition summarizes the tariffs

offered by the two firms to consumers in equilibrium.

Proposition IV.3 (Full Information): Suppose (A2) holds. Then, in equilibrium,

(i) if Σ(λ1) < c ≤ Σ(λ2) both firms offer the tariff (p̂, L̂) with a positive unit price

to consumers of type λ1, and a flat-rate tariff (0, LF ) to consumers of type λ2. (ii) If

c ≤ Σ(λ1) < Σ(λ2), then both firms offer the flat-rate tariff (0, LF ) to both types of loss

averse consumers. The tariffs (p̂, L̂) and (0, LF ) are characterized by: S(p̂) = 0,

L̂ = Φ(v̂1) − (p̂− c)

∫ θ̄

θ

q̂1(θ, p̂)f(θ)dθ

and LF = Φ(v̂2) + c

∫ θ̄

θ

qS(θ)f(θ)dθ ,

respectively, with p̂ ∈ (0, c).

If the degree of loss aversion of the less loss-averse consumers is below the threshold,

then firms offer to these consumers a usage-based pricing scheme. Next to the usage-

based scheme firms offer a flat-rate tariff to the more loss-averse consumers. Thus,

13See Armstrong and Vickers (2001) for sufficient conditions for a unique equilibrium.
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consumer heterogeneity with respect to their first-order risk preferences provides one

possible answer why firms offer flat-rates next to usage-based tariffs. If the degree of

loss aversion of both types is above the threshold, then firms offer only a single tariff,

which is a flat-rate tariff. It is worthwhile to point out that the structure of the tariffs

offered in equilibrium does not depend on the degree of competition. The degree of

competition only influences the size of the fixed fee. In a more competitive market

firms offer tariffs with lower fixed fees, the unit price is unaffected by the degree of

competition. Even in the limit, when we approach a perfectly competitive market, the

equilibrium tariffs do not converge to marginal cost pricing. Note that in this model

the degree of competition (or the degree of product differentiation) is measured by

Φ(·). A lower Φ(·) corresponds to a more competitive market. Φ(·) is the inverse semi-

elasticity of demand evaluated at the equilibrium utility level. Thus, the higher Φ(·)

the less elastic is the demand of a firm. To make this point even clearer, suppose firms

are located at the two extreme points of a Hotelling line of length one. Consumers’

ideal brands are uniformly distributed on this line. If a consumer incurs “transport

cost” of t times the distance between his ideal brand and the firm he purchases from,

then Φ(v̂) = t given the market is fully covered in equilibrium.

A final comment to the offered tariffs is in order: Here, firms offer a flat-rate tariff

to those consumers who are willing to pay an extra amount to be insured against

unexpected high bills. The flat-rate tariff, however, is not offered to exploit consumers’

behavioral bias. Here, firms offer flat-rate tariffs to consumers in the cases where

these tariffs also maximize the joint surplus. This is in contrast to several models

with biased consumers where firms design tariffs to exploit consumers’ biases, see for

instance Grubb (forthcoming) or Eliaz and Spiegler (2008).

For completeness, the following result states the equilibrium outcome for the case

where consumers are not loss averse.

Corollary IV.2: Suppose consumers do not exhibit loss aversion, i.e., λ1 = λ2 = 1.

Then, in equilibrium both firms offer the two-part tariff with marginal price p̂ = (1/2)c

and fixed fee L̂ = Φ(v̂) + (1/2)c
∫ θ̄

θ
qFB(θ)dθ, where qFB(θ) ≡ argmaxq{u(q, θ) − cq}.

In this case the joint surplus equals the first-best surplus, v̂ + π(v̂) = SFB.

Without loss aversion, due to ex ante contracting, firms choose a tariff that implements

the first-best allocation. Depending on the degree of competition, the first-best surplus

is shared between firms and consumers. Since with λ = 1 consumers still have reference-

dependent preferences, the per-unit price does not equal marginal cost. Due to the

reference-dependent preferences the consumer’s marginal utility for money is two, since

the weight on gain-loss utility is assumed to be one. It is important to point out that
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reference-dependent preferences without loss aversion have only quantitative effects on

the equilibrium outcome but not qualitative effects.

Asymmetric Information Case

In this subsection, we investigate the tariffs offered by the two firms when facing a

screening problem, i.e., the degree of loss aversion is private information of the con-

sumer. The following lemma states that a consumer’s expected utility is decreasing in

his degree of loss aversion.

Lemma IV.7: Consider a two-part tariff (p, L) and suppose (C1) holds. Then,

d

dλ

[

Eθ[U(q̂(θ; p)|θ, 〈q(θ; p)〉)]

]

≤ 0.

Suppose firms offer the tariffs as in the full information benchmark. Due to Lemma 7,

consumers who are less loss averse may have an incentive to choose the tariff that is

designed for the more loss-averse consumers. Note that when choosing a flat-rate tariff

the consumer does neither feel a loss nor a gain. Thus, the expected utility from a flat-

rate contract is independent of the consumer’s degree of loss aversion. Hence, if firms

offer a flat-rate tariff to the types with a high degree of loss aversion, then a consumer

of type λ1 does not necessarily benefit from choosing the tariff that is designed for

consumers of type λ2. If firms’ profits from the market segment of λ1 types is lower

than their profits from λ2 types, however, then consumers of type λ2 may have an

incentive to choose the tariff (p̂, L̂). Because, if this is the case, then v̂1 is considerably

larger than v̂2. We rule this out by assuming that Φ(·) is non-decreasing.14 With this

assumption, both firms’ profits and consumers’ surplus increase in equilibrium, if the

joint surplus from contracting increases. Assuming that an increase in joint surplus is

shared between consumers and firms seems to be natural for imperfectly competitive

markets.

With this assumption, the two types of loss averse consumers may not exert any

informational externality on each other. Put differently, if this is the case, firms can

screen the consumer’s type at no cost.

Proposition IV.4 (Asymmetric Information): Suppose (A2) holds and Φ′(v) ≥

0. Then, (i) if Σ(λ1) < c ≤ Σ(λ2) both firms offering tariff (p̂, L̂) with a positive unit

price to consumers of type λ1, and flat-rate tariff (0, LF ) to consumers of type λ2 is an

equilibrium. (ii) If c ≤ Σ(λ1) < Σ(λ2), then in equilibrium both firms offer the flat-rate

tariff (0, LF ) to both types of loss averse consumers. The tariffs, (p̂, L̂) and (0, LF ),

are characterized in Proposition 3.

14For instance, this assumption is satisfied for the standard Hotelling model and the logit demand
model, see Appendix A.4.2.
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As in the symmetric information case, if λ1 is below and λ2 above the threshold, then

firms offer a usage-based pricing scheme to the less loss-averse types and a flat-rate

tariff to the more loss-averse consumers. The fixed fee of the flat-rate tariff is higher

than the fixed fee of the usage-based pricing scheme. In this case, we do not make any

claims about the uniqueness of this equilibrium.15 If the degree of loss aversion of both

types exceeds the threshold, then we obtain a pooling equilibrium: Each firm offers

only a single tariff that is accepted by both types of consumers.

If Σ(λ2) < c then there is an information externality. In this case, if firms can observe

λ they would offer to each type a different usage-based tariff. When offering these tariffs

in the asymmetric information case, then type λ1 obtains a higher expected utility from

signing the contract that is designed for the types λ2. We refrain from characterizing

the equilibrium tariffs for this case, since this case is intricate to analyze in the applied

competition-in-utility-space framework.

It is important to point out that offering a flat-rate tariff next to usage based tariffs

does not impose some additional incentive constraints. If the degree of loss aversion,

λ, is continuously distributed on [λ, λ̄] with Σ(λ) < c < Σ(λ̄), then in equilibrium

firms offer the flat-rate tariff (0, LF ) which is chosen at least by types λ ∈ [λ̃, λ̄], where

Σ(λ̃) = c.

6. Concluding Remarks

The goal of this article is to provide one possible explanation for the frequent usage

of flat-rate tariffs. Since empirical evidence suggests that consumers choose flat rates

because these tariffs provide insurance in case of uncertain consumption patterns, we

posit that consumers are first-order risk averse. First-order risk aversion is captured

by reference-dependent preferences of the consumer in combination with loss aversion.

This paper shows that a flat-rate contract is optimal when consumers are sufficiently

loss averse, marginal cost is small, or demand is rather unpredictable. Moreover, in an

imperfectly competitive market firms offer flat-rate tariffs to those consumers whose de-

gree of loss aversion exceeds a certain threshold. Consumers with a lower degree of loss

aversion sign a metered tariff in equilibrium. Interestingly, offering a flat-rate contract

next to usage-based pricing schemes does not introduce additional sorting constraints

into a firm’s optimization problem. Thus, this paper predicts that in markets with

low marginal cost and uncertain consumption patterns, a firm’s tariff menu includes a

flat-rate option.

15To analyze all equilibria we cannot apply the competition in utility space framework, since we have
to take the sorting constraints explicitly into account. Note that each firm has 4 choice variables
which makes the calculation of firm A’s best response to firm B’s tariff offers intricate.
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We departed from the Kőszegi-Rabin concept by positing that the consumer does not

feel any sensations of gains and losses in the good dimension. If one considers gain-loss

utility in both dimensions and assumes that higher states are always associated with

higher utility, then a flat-rate tariff eliminates only the losses in the money but not in

the good dimension. Depending on the particular form of the intrinsic utility function,

a flat-rate contract may increase or decrease the expected losses in the good dimension.

Alternatively, one could assume that intrinsic utility evaluated at the satiation quantity

is constant for all states, but marginal utility is still increasing in the state. With this

formulation, for a given state φ the consumer feels a loss in the good as well as in the

money dimension compared to states θ < φ. In this case, a flat-rate tariff eliminates any

losses in both dimensions; the good and the money dimension. Hence, the formulation

of this paper can be viewed as an intermediate case between the two possible approaches

with gain-loss utility in both dimensions. Moreover, focusing on the case with gain-

loss utility only in the money dimension helps to make the analysis of the personal

equilibria clearer and shorter.

An obvious drawback of our model is that firms are restricted to two-part tariffs.

With the consumer being loss averse according to Kőszegi-Rabin, his utility in a given

state of the world also depends on his payments in all other states. Thus, the standard

procedure of the nonlinear pricing literature, where the tariff in the firm’s objective

typically is replaced by the consumer’s net surplus, does not work here. This in turn

makes the analysis of nonlinear tariffs more complicated. We believe, however, that

focusing on two-part tariffs provides some insights on the forces at play when consumers

are loss averse. In particular, the identified insurance motive of loss averse consumers

should also play a major role when firms can offer more sophisticated contracts.

It is rather obvious that imposing a quantity limit on the flat-rate option can im-

prove the joint surplus. If the quantity limit equals the first-best quantity for the

highest state then, compared to a flat rate with unlimited usage, standard efficiency

is improved without imposing additional losses on the consumer. Flat-rate tariffs with

limited usage are often observed for the Internet service industry. Hence, investiga-

tion of optimal nonlinear pricing schedules for firms facing loss-averse consumers is an

interesting question for future research.



A. Appendices

1. Appendix to Chapter I

1.1. Proofs of Propositions and Lemmas

Proof of Lemma I.1: Suppose that signals are ordered according to their likelihood

ratio, that is, s > s′ if and only if γH
s /γ

L
s > γH

s′ /γ
L
s′ . Consider a contract of the form

us =

{

u if s < ŝ

u+ b if s ≥ ŝ
,

where b > 0 and 1 < ŝ ≤ S. Under this contractual form and given that the first-order

approach is valid, (IC) can be rewritten as

b

{[
S∑

s=ŝ

(γH
s − γL

s )

](

1 − (λ− 1)
ŝ−1∑

s=1

γs(â)

)

− (λ− 1)

(
ŝ−1∑

s=1

(γH
s − γL)

)(
S∑

s=ŝ

γs(â)

)}

= c′(â).

Since signals are ordered according to their likelihood ratio, we have
∑S

s=ŝ(γ
H
s −γL

s ) > 0

and
∑ŝ−1

s=1(γ
H
s −γL) < 0 for all 1 < ŝ ≤ S. This implies that the term in curly brackets

is strictly positive for λ ≤ 2. Hence, with c′(â) > 0, b can alway be chosen such that

(IC) is met. Rearranging the participation constraint,

u ≥ ū+ c(â) − b

(
S∑

s=ŝ

γs(â)

)[

1 − (λ− 1)

(
ŝ−1∑

s=1

γs(â)

)]

,

reveals that (IR) can be satisfied for any b by choosing u appropriately. This concludes

the proof.

Q.E.D.

Proof of Proposition I.1: It is readily verified that Assumptions 1-3 from Gross-

man and Hart (1983) are satisfied. Thus, the cost-minimization problem is well defined,

in the sense that for each action a ∈ (0, 1) there exists a second-best incentive scheme.
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Suppose the principal wants to implement action â ∈ (0, 1) at minimum cost. Since

the agent’s action is not observable, the principal’s problem is given by

min
{us}S

s=1

S∑

s=1

γs(â)h(us) (MR)

subject to

S∑

s=1

γs(â)us − c(â) ≥ ū , (IRR)

S∑

s=1

(γH
s − γL

s )us − c′(â) = 0 . (ICR)

where the first constraint is the individual rationality constraint and the second is the

incentive compatibility constraint. Note that the first-order approach is valid, since

the agent’s expected utility is a strictly concave function of his effort. The Lagrangian

to the resulting problem is

L =
S∑

s=1

γs(a)h(us)−µ0

{
S∑

s=1

γs(a)us − c(a) − ū

}

−µ1

{
S∑

s=1

(γH
s − γL

s )us − c′(a)

}

,

where µ0 and µ1 denote the Lagrange multipliers of the individual rationality constraint

and the incentive compatibility constraint, respectively. Setting the partial derivative

of L with respect to us equal to zero yields

∂L

∂us

= 0 ⇐⇒ h′(us) = µ0 + µ1
γH

s − γL
s

γs(â)
, ∀s ∈ S. (A.1)

Irrespective of the value of µ0, if µ1 > 0, convexity of h(·) implies that us > us′

if and only if (γH
s − γL

s )/γs(â) > (γH
s′ − γL

s′)/γs′(â), which in turn is equivalent to

γH
s /γ

L
s > γH

s′ /γ
L
s′ . Thus it remains to show that µ1 is strictly positive. Suppose, in

contradiction, that µ1 ≤ 0. Consider the case µ1 = 0 first. From (A.1) it follows

that us = uf for all s ∈ S, where uf satisfies h′(uf ) = µ0. This, however, violates

(ICR), a contradiction. Next, consider µ1 < 0. From (A.1) it follows that us < us′ if

and only if (γH
s − γL

s )/γs(â) > (γH
s′ − γL

s′)/γt(â). Let S+ ≡
{
s|γH

s − γL
s > 0

}
, S− ≡

{
s|γH

s − γL
s < 0

}
, and û ≡ min{us|s ∈ S−}. Since û > us for all s ∈ S+, we have

S∑

s=1

(γH
s − γL

s )us =
∑

S−

(γH
s − γL

s )us +
∑

S+

(γH
s − γL

s )us

<
∑

S−

(γH
s − γL

s )û+
∑

S+

(γH
s − γL

s )û

= û

S∑

s=1

(γH
s − γL

s )

= 0,
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again a contradiction to (ICR). Hence, µ1 > 0 and the desired result follows.

Q.E.D.

Proof of Proposition I.2: The problem of finding the optimal contract u∗ to

implement action â ∈ (0, 1) is decomposed into two subproblems. First, for a given

incentive feasible ordering of signals, we derive the optimal nondecreasing incentive

scheme that implements action â ∈ (0, 1). Then, in a second step, we choose the

ordering of signals for which the ordering specific cost of implementation is lowest.

Step 1: Remember that the ordering of signals is incentive feasible if βs(·) > 0 for at

least one signal s. For a given incentive feasible ordering of signals, in this first step we

solve Program ML. First, note that it is optimal to set bs = 0 if βs(·) < 0. To see this,

suppose, in contradiction, that in the optimum (IC′) holds and bs > 0 for some signal

s with βs(·) ≤ 0. If βs(·) = 0, then setting bs = 0 leaves (IC′) unchanged, but leads to

a lower value of the objective function of Program ML, contradicting that the original

contract is optimal. If βs(·) < 0, then setting bs = 0 not only reduces the value of the

objective function, but also relaxes (IC′), which in turn allows to lower other bonus

payments, thereby lowering the value of the objective function even further. Again,

a contradiction to the original contract being optimal. Let Sβ ≡ {s ∈ S|βs(·) > 0}

denote the set of signals for which βs(·) is strictly positive under the considered ordering

of signals, and let Sβ denote the number of elements in this set. Thus, Program (ML)

can be rewritten as

Program ML+:

min
{bs}s∈Sβ

∑

s∈Sβ

bsρs(γ̂, λ, â)

subject to (i)
∑

s∈Sβ

bsβs(γ̂, λ, â) = c′(â) (IC+)

(ii) bs ≥ 0, ∀s ∈ Sβ .

Program ML+ is a linear programming problem. It is well-known that if a linear

programming problem has a solution, it must have a solution at an extreme point

of the constraint set. Generically, there is a unique solution and this solution is

an extreme point. Since the constraint set of Program ML+, M ≡ {{bs}s∈Sβ
∈

R
Sβ

+ |
∑

s∈Sβ
bsβs(γ̂, λ, â) = c′(â)}, is closed and bounded, Program ML+ has a solu-

tion. Hence, generically
∑

s∈Sβ
bsρs(γ̂, λ, â) achieves its greatest lower bound at one of

the extreme points of M. (We comment on genericity below.) With M describing a
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hyperplane in R
Sβ

+ , all extreme points of M are characterized by the following prop-

erty: bs > 0 for exactly one signal s ∈ Sβ and bt = 0 for all t ∈ Sβ, t 6= s. It remains

to determine for which signal the bonus is set strictly positive. The size of the bonus

payment, which is set strictly positive, is uniquely determined by (IC+):

bsβs(γ̂, λ, â) = c′(â) ⇐⇒ bs =
c′(â)

βs(γ̂, λ, â)
. (A.2)

Therefore, from the objective function of Program ML+ it follows that, for the signal

ordering under consideration, the optimal signal for which the bonus is set strictly

positive, ŝ, is characterized by

ŝ = arg min
s∈Sβ

c′(â)

βs(γ̂, λ, â)
ρs(γ̂, λ, â).

Step 2: From all incentive feasible signal orders, the principal chooses the one which

minimizes her cost of implementation. With the number of incentive feasible signal

orders being finite, this problem clearly has a solution. Let s∗ denote the resulting

cutoff, i.e.,

u∗s =

{

u∗ if s < s∗

u∗ + b∗ if s ≥ s∗
,

where b∗ = c′(â)/βs∗(γ̂, λ, â) and u∗ = ū+c(â)−b∗
[
∑S

τ=s∗ γτ (â) − ρs∗(γ̂, λ, â)
]

. Letting

u∗L = u∗, u∗H = u∗ + b∗, and B∗ = {s ∈ S|s ≥ s∗} establishes the desired result.

On genericity: We claimed that, for any given feasible ordering of signals, generi-

cally Program ML+ has a unique solution at one of the extreme points of the constraint

set. To see this, note that a necessary condition for the existence of multiple solutions

is βs/βs′ = ρs/ρs′ for some s, s′ ∈ Sβ, s 6= s′. This condition is characterized by the

action to be implemented, â, the structure of the performance measure,
{
(γH

s , γ
L
s )
}S

s=1
,

and the agent’s degree of loss aversion, λ. Now, fix â and
{
(γH

s , γ
L
s )
}S

s=1
. With both

βs > 0 and ρs > 0 for all s ∈ Sβ, it is readily verified, that exactly one value of λ

equates βs/βs′ with ρs/ρs′ . Since λ is drawn from the interval (1, 2], and with the num-

ber of signals being finite, this necessary condition for Program ML+ having multiple

solutions for a given feasible ordering of signals generically will not hold. With the

number of feasible orderings being finite, generic optimality of a corner solution carries

over to the overall problem.

Q.E.D.

Proof of Proposition I.3: B∗ maximizes X(B) :=
[∑

s∈B(γH
s − γL

s )
]
× Y (PB),

where

Y (PB) :=
1

(λ− 1)PB(1 − PB)
−

1

PB

+
1

1 − PB

.
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Suppose for the moment that PB is a continuous decision variable. Accordingly,

dY (PB)

dPB

=
1

P 2
B(1 − PB)2

[

2P 2
B +

2 − λ

λ− 1
(2PB − 1)

]

. (A.3)

It is readily verified that dY (PB)/dPB < 0 for 0 < PB < P̄ (λ) and dY (PB)/dPB > 0

for P̄ (λ) < PB < 1, where

P̄ (λ) ≡
λ− 2 +

√

λ(2 − λ)

2(λ− 1)
.

Note that for λ ≤ 2 the critical value P̄ (λ) ∈ [0, 1/2). Hence, excluding a signal of

B increases Y (PB) if PB < P̄ (λ), whereas including a signal to B increases Y (PB) if

PB ≥ P̄ (λ). With these insights the next two implications follow immediately.

(i) PB∗ < P̄ (λ) =⇒ B∗ ⊆ S+

(ii) PB∗ ≥ P̄ (λ) =⇒ S+ ⊆ B∗

We prove both statements in turn by contradiction. (i) Suppose PB∗ < P̄ (λ) and

that there exists a signal ŝ ∈ S− which is also contained in B∗, i.e., ŝ ∈ B∗. Clearly,
∑

s∈B∗(γH
s − γL

s ) <
∑

s∈B∗\{ŝ}(γ
H
s − γL

s ) because ŝ is a bad signal. Moreover, Y (B∗) <

Y (B∗\{ŝ}) because Y (·) increases when signals are excluded of B∗. Thus X(B∗) <

X(B∗\{ŝ}), a contradiction to the assumption that B∗ is the optimal partition. (ii)

Suppose PB∗ ≥ P̄ (λ) and that there exists a signal s̃ ∈ S+ that is not contained in B∗,

i.e., B∗ ∩ {s̃} = ∅. Since ŝ is a good signal
∑

s∈B∗(γH
s − γL

s ) <
∑

s∈B∗∪{ŝ}(γ
H
s − γL

s ).

PB∗ ≥ P̄ (λ) implies that Y (B∗ ∪ {s̃}) > Y (B∗). Thus, X(B∗) < X(B∗ ∪ {s̃}) a

contradiction to the assumption that B∗ maximizes X(B∗). Finally, since for any B∗

we are either in case (i) or in case (ii), the desired result follows.

Q.E.D.

Proof of Proposition I.4: Suppose, in contradiction, that in the optimum there are

signals s, t ∈ S such that s ∈ B∗, t /∈ B∗ and γH
s −γL

s

γs(â)
<

γH
t −γL

t

γt(â)
. We derive a contradiction

by showing that exchanging signal s for signal t reduces the principal’s cost, which

implies that the original contract cannot be optimal. Let B̄ ≡ (B∗\{s})∪{t}.It suffices

to show that X(B̄) > X(B∗), where X(B) is defined as in the proof of Proposition 3.

X(B̄) > X(B∗) is equivalent to

(
∑

j∈B∗

(γH
j − γL

j ) + (γH
t − γL

t ) − (γH
s − γL

s )

)[
1 − (λ− 1)(1 − 2PB̄)

(λ− 1)PB̄(1 − PB̄)

]

>

(
∑

j∈B∗

(γH
j − γL

j )

)[
1 − (λ− 1)(1 − 2PB∗)

(λ− 1)PB∗(1 − PB∗)

]

.
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Rearranging yields

[
(γH

t − γL
t ) − (γH

s − γL
s )
]
[
1 − (λ− 1)(1 − 2PB̄)

(λ− 1)PB̄(1 − PB̄)

]

>

(
∑

j∈B∗

(γH
j − γL

j )

)[
1 − (λ− 1)(1 − 2PB∗)

(λ− 1)PB∗(1 − PB∗)
−

1 − (λ− 1)(1 − 2PB̄)

(λ− 1)PB̄(1 − PB̄)

]

. (A.4)

With Y (PB) being defined as in the proof of Proposition 3, we have to consider two

cases, (i) dY (PB∗)/PB ≥ 0, and (ii) dY (PB∗)/PB < 0.

Case (i): Since γs(â)−γt(â) ≤ κ, we have PB∗ ≤ PB̄+κ. With Y (PB) being (weakly)

increasing at PB∗ , inequality (A.4) is least likely to hold for PB∗ = PB̄ + κ. Inserting

PB∗ = PB̄ + κ into (A.4) yields

[
(γH

t − γL
t ) − (γH

s − γL
s )
]
[
1 − (λ− 1)(1 − 2PB̄)

(λ− 1)PB̄(1 − PB̄)

]

>

(
∑

j∈B∗

(γH
j − γL

j )

)[
1 − (λ− 1)(1 − 2PB̄ − 2κ)

(λ− 1)[PB̄(1 − PB̄) + κ(1 − 2PB̄)] − κ2
−

1 − (λ− 1)(1 − 2PB̄)

(λ− 1)PB̄(1 − PB̄)

]

.

(A.5)

The right-hand side of (A.5) becomes arbitrarily close to zero for κ→ 0, thus it remains

to show that

[
(γH

t − γL
t ) − (γH

s − γL
s )
]
[
1 − (λ− 1)(1 − 2PB̄)

(λ− 1)PB̄(1 − PB̄)

]

> 0 . (A.6)

For (A.6) to hold, we must have (γH
t − γL

t ) − (γH
s − γL

s ) > 0. From the proof of

Proposition 3 we know that S+ ⊆ B∗ if Y (PB) is increasing at B∗. Since the principal

will end up including all good signals in the set B∗ anyway, the question of interest is

whether she can benefit from swapping two bad signals. Therefore, we consider case

s, t ∈ S−, where S− ≡ {s ∈ S|γH
s − γL

s < 0}. With s, t ∈ S−, we have

[
(γH

t − γL
t ) − (γH

s − γL
s )
]
≥ γt(â)γs(â)

[
1

γs(â)

γH
t − γL

t

γt(â)
−

1

γs(â) + κ

γH
s − γL

s

γs(â)

]

, (A.7)

where the inequality holds because γt(â) − γs(â) ≤ κ. Note that for κ → 0 the right-

hand side of (A.7) becomes strictly positive, thus (γH
t −γL

t )− (γH
s −γL

s ) > 0 for κ→ 0.

Hence, for κ sufficiently small, X(B∗) < X(B̄), a contradiction to B∗ being optimal.

Case (ii): Since γt(â) − γs(â) ≤ κ, we have PB∗ ≥ PB̄ − κ. With Y (PB) being

decreasing at PB∗ , inequality (A.4) is least likely to hold for PB∗ = PB̄ − κ. Inserting

PB∗ = PB̄ − κ into (A.4), and running along the lines of case (i) allows us to establish

that, for κ sufficiently small, X(B∗) < X(B̄), a contradiction to B∗ being optimal.

To sum up, for κ sufficiently small we have

max
s∈S\B∗

{(γH
s − γL

s )/γs(â)} < min
s∈B∗

{(γH
s − γL

s )/γs(â)} ,
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or equivalently,

max
s∈S\B∗

{γH
s /γ

L
s } < min

s∈B∗
{γH

s /γ
L
s } .

Letting K ≡ mins∈B∗{γH
s /γ

L
s } establishes the desired result.

Q.E.D.

Proof of Proposition I.5: We first prove part (ii). Suppose that a small change

in λ leaves the optimal partition B∗ of the set of all signals unchanged. Rearranging

(IC′) yields

b∗ =
c′(â)

∑

s∈B∗(γH
s − γL

s ) − (λ− 1)
[∑

s∈B∗(γH
s − γL

s )
]
[1 − 2PB∗ ]

. (A.8)

Straight-forward differentiation reveals that

db∗

dλ
=

c′(â)
[∑

s∈B∗(γH
s − γL

s )
]
[1 − 2PB∗ ]

{∑

s∈B∗(γH
s − γL

s ) − (λ− 1)
[∑

s∈B∗(γH
s − γL

s )
]
[1 − 2PB∗ ]

}2 .

Since under the second-best contract
∑

s∈B∗(γH
s − γL

s ) > 0, the desired result follows.

To prove part (i), let B+ ≡
{
B ⊂ S|

∑

s∈B(γH
s − γL

s ) > 0
}
. For any B̃ ∈ B+, let

bB̃ =
c′(â)

∑

s∈B̃(γH
s − γL

s ) − (λ− 1)
[∑

s∈B̃(γH
s − γL

s )
]
[1 − 2PB̃]

and

uB̃ = ū+ c(â) − bB̃PB̃ + (λ− 1)PB̃(1 − PB̃)bB̃.

The cost of implementing action â when paying uB̃ for signals in S \ B̃ and uB̃ + bB̃ for

signals in B̃ is given by

CB̃ = uB̃ + bB̃PB̃ = ū+ c(â) +
c′(â)(λ− 1)PB̃(1 − PB̃)

[∑

s∈B̃(γH
s − γL

s )
]
[1 − (λ− 1)(1 − 2PB̃)]

. (A.9)

Differentiation of CB̃ with respect to λ yields

dCB̃

dλ
=

c′(â)PB̃(1 − PB̃)
[∑

s∈B̃(γH
s − γL

s )
]
[1 − (λ− 1)(1 − 2PB̃)]2

.

Obviously, dCB̃/dλ > 0 for all B ∈ B+. Since the optimal partition of S may change

as λ changes, the minimum cost of implementing action â is given by

C(â) = min
B∈B+

CB.

Put differently, C(â) is the lower envelope of all CB for B ∈ B+. With CB being

continuous and strictly increasing in λ for all B ∈ B+, it follows that also C(â) is

continuous and strictly increasing in λ. This completes the proof.

Q.E.D.
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Proof of Lemma I.2: We show that program (MG) has a solution, i.e.,
∑S

s=1 γs(â)

h(us) achieves its greatest lower bound. First, from Lemma 1 we know that the con-

straint set of program (MG) is not empty for action â ∈ (0, 1). Next, note that from

(IRG) it follows that
∑S

s=1 γs(â)us is bounded below. Following the reasoning in the

proof of Proposition 1 of Grossman and Hart (1983), we can artificially bound the con-

straint set – roughly spoken because unbounded sequences in the constraint set make
∑S

s=1 γs(â)h(us) tend to infinity by a result from Bertsekas (1974). Since the constraint

set is closed, the existence of a minimum follows from Weierstrass’ theorem.

Q.E.D.

Proof of Lemma I.3: Since (IRG) will always be satisfied with equality due to an

appropriate adjustment of the lowest intrinsic utility level offered, relaxing (IRG) will

always lead to strictly lower costs for the principal. Therefore, the shadow value of

relaxing (IRG) is strictly positive, so µIR > 0.

Next, we show that relaxing (ICG) has a positive shadow value, µIC > 0. We do this

by showing that a decrease in c′(â) leads to a reduction in the principal’s minimum cost

of implementation. Let {u∗s}s∈S be the optimal contract under (the original) Program

MG, and suppose that c′(â) decreases. Now the principal can offer a new contract

{uN
s }s∈S of the form

uN
s = αu∗s + (1 − α)

S∑

t=1

γt(â)u
∗
t , (A.10)

where α ∈ (0, 1), which also satisfies (IRG), the relaxed (ICG), and (OCG), but yields

strictly lower costs of implementation than the original contract {u∗s}s∈S .

Clearly, for α̂ ∈ (0, 1), uN
s < uN

s′ if and only if u∗s < u∗s′ , so (OCG) is also satisfied

under contract {uN
s }s∈S .

Next, we check that the relaxed (ICG) holds under {uN
s }s∈S . To see this, note that for

α = 1 we have {uN
s }s∈S ≡ {u∗s}s∈S . Thus, for α = 1, the relaxed (ICG) is oversatisfied

under {uN
s }s∈S . For α = 0, on the other hand, the left-hand side of (ICG) is equal to

zero, and the relaxed (ICG) in consequence is not satisfied. Since the left-hand side of

(ICG) is continuous in α under contract {uN
s }s∈S , by the intermediate-value theorem

there exists α̂ ∈ (0, 1) such that the relaxed (ICG) is satisfied with equality.

Last, consider (IRG). The left-hand side of (IRG) under contract {uN
s }s∈S with α = α̂
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amounts to

S∑

s=1

γs(â)u
N
s − (λ− 1)

S−1∑

s=1

S∑

t=s+1

γs(â)γt(â)
[
uN

t − uN
s

]

=
S∑

s=1

γs(â)u
∗
s − α̃(λ− 1)

S−1∑

s=1

S∑

t=s+1

γs(â)γt(â) [u∗t − u∗s]

>

S∑

s=1

γs(â)u
∗
s − (λ− 1)

S−1∑

s=1

S∑

t=s+1

γs(â)γt(â) [u∗t − u∗s]

= ū+ c(â) , (A.11)

where the last equality follows from the fact that {u∗s}s∈S fulfills the (IRg) with equality.

Thus, contract {uN
s }s∈S is feasible in the sense that all constraints of program (MG)

are met. It remains to show that the principal’s costs are reduced. Since h(·) is strictly

convex, the principal’s objective function is strictly convex in α, with a minimum at

α = 0. Hence, the principal’s objective function is strictly increasing in α for α ∈ (0, 1].

Since {uN
s }s∈S ≡ {u∗s}s∈S for α = 1, for α = α̂ we have

S∑

s=1

γs(â)h(u
∗
s) >

S∑

s=1

γs(â)h(u
N
s ),

which establishes the desired result.

Q.E.D.

Proof of Proposition I.6: For the agent’s intrinsic utility function being suffi-

ciently linear, the principal’s costs are approximately given by a second-order Taylor

polynomial about r = 1, thus

C(u|r) ≈
∑

s∈S

γs(â)us + Ω(u|r) , (A.12)

where

Ω(u|r) ≡
∑

s∈S

γs(â)

[

(us lnus)(r − 1) + (1/2)us(lnus)
2(r − 1)2

]

. (A.13)

Relabeling signals such that the wage profile is increasing allows us to express the incen-

tive scheme in terms of increases in intrinsic utility. The agent’s binding participation

constraint implies that

u1 = ū+c(â)−
S∑

s=2

bs

{
S∑

τ=s

γτ (â) − (λ− 1)

[ S∑

τ=s

γτ (â)

][ s−1∑

t=1

γt(â)

]}

≡ u1(b) (A.14)
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and us = u1(b) +
∑s

t=2 bt ≡ us(b) for all s = 2, . . . , S. Inserting the binding partic-

ipation constraint into the above cost function and replacing Ω(u|r) equivalently by

Ω̃(b|r) ≡ Ω(u1(b), . . . , uS(b)|r) yields

C(b|r) ≈ ū+ c(â) + (λ− 1)
S∑

s=2

bs

[
S∑

τ=s

γτ (â)

][
s−1∑

t=1

γt(â)

]

+ Ω̃(b|r) . (A.15)

Hence, for a given increasing wage profile the principal’s cost minimization problem is:

Program ME:

min
b∈R

S−1

+

b′ρ(γ̂, λ, â) + Ω̃(b|r)

subject to b′β(γ̂, λ, â) = c′(â) (IC′)

If r is sufficiently close to 1, then the incentive scheme that solves program ML also

solves program ME. Note that generically program ME is solved only by bonus schemes.

Put differently, even if there are multiple optimal contracts for program ML, all these

contracts are generically simple bonus contracts. Thus, from Proposition 2 it follows

that generically for r close to 1 the optimal incentive scheme entails a minimum of

wage differentiation. Note that for λ = 1 the principal’s problem is to minimize Ω̃(b|r)

even for r sufficiently close to 1.

Q.E.D.

Proof of Proposition I.7: First consider b ≥ 0. We divide the analysis for b ≥ 0

into three subcases.

Case 1 (a0 < 0): For the effort level â to be chosen by the agent, this effort level has

to satisfy the following incentive compatibility constraint:

â ∈ arg max
a∈[0,1]

u+ γ(a)b− γ(a)(1 − γ(a))b(λ− 1) −
k

2
a2 (IC)

For â to be a zero of dE [U(a)] /da, the bonus has to be chosen according to

b∗(â) =
kâ

(γH − γL) [2 − λ+ 2γ(â)(λ− 1)]
.

For a > a0, b
∗(a) is a strictly increasing and strictly concave function with b∗(0) = 0.

Hence, each â ∈ [0, 1] can be made a zero of dE [U(a)] /da with a non-negative bonus.

By choosing the bonus according to b∗(â), â satisfies, by construction, the first-order

condition. Inserting b∗(â) into the d2E [U(a)] /da2 shows that expected utility is strictly

concave function if a0 < 0. Hence, with the bonus set equal to b∗(â), effort level â

satisfies the second-order condition for optimality and therefore is incentive compatible.
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Case 2 (a0 = 0): Just like in the case where a0 < 0, each effort level a ∈ [0, 1] turns

out to be implementable with a non-negative bonus. To see this, consider bonus

b0 =
k

2(γH − γL)2(λ− 1)
.

For b ≤ b0, dE [U(a)] /da < 0 for each a > 0, that is, lowering effort increases expected

utility. Hence, the agent wants to choose an effort level as low as possible and therefore

exerts no effort at all. If, on the other hand, b > b0, then dE [U(a)] /da > 0. Now,

increasing effort increases expected utility, and the agent wants to choose effort as high

as possible. For b = b0, expected utility is constant over all a ∈ [0, 1], that is, as long

as his participation constraint is satisfied, the agent is indifferent which effort level

to choose. As a tie-breaking rule we assume that, if indifferent between several effort

levels, the agent chooses the effort level that the principal prefers.

Case 3 (a0 > 0): If a0 > 0, the agent either chooses a = 0 or a = 1. To see this,

again consider bonus b0. For b ≤ b0, dE [U(a)] /da < 0 for each a > 0. Hence, the

agent wants to exert as little effort as possible and chooses a = 0. If, on the other

hand, b > b0, then d2E [U(a)] /da2 > 0, that is, expected utility is a strictly convex

function of effort. In order to maximize expected utility, the agent will choose either

a = 0 or a = 1 depending on whether E [U(0)] exceeds E [U(1)] or not.

Negative Bonus b < 0: Let b− < 0 denote the monetary punishment that the agent

receives if the good signal is observed. With a negative bonus, the agent’s expected

utility is

E [U(a)] = u+ γ(a)b− + γ(a)(1 − γ(a))λb− + (1 − γ(a))γ(a)(−b−) −
k

2
a2. (A.16)

The first derivative with respect to effort,

dE [U(a)]

da
= (γH − γL)b− [λ− 2γ(a)(λ− 1)]
︸ ︷︷ ︸

MB−(a)

− ka
︸︷︷︸

MC(a)

,

reveals that MB−(a) is a positively sloped function, which is steeper the harsher the

punishment is, that is, the more negative b− is. It is worthwhile to point out that if

bonus and punishment are equal in absolute value, |b−| = b, then also the slopes of

MB−(a) and MB(a) are identical. The intercept of MB−(a) with the horizontal axis,

a−0 again is completely determined by the model parameters:

a−0 =
λ− 2γL(λ− 1)

2(γH − γL)(λ− 1)

Note that a−0 > 0 for γL ≤ 1/2. For γL > 1/2 we have a−0 < 0 if and only if

λ > 2γL/(2γL − 1). Proceeding in exactly the same way as in the case of a non-

negative bonus yields a familiar results: effort level â ∈ [0, 1] is implementable with
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a strictly negative bonus if and only if a−0 ≤ 0. Finally, note that a0 < a−0 . Hence a

negative bonus does not improve the scope for implementation.

Q.E.D.

Proof of Proposition I.8: Throughout the analysis we restricted attention to

non-negative bonus payment. It remains to be shown that the principal cannot benefit

from offering a negative bonus payment: implementing action â with a negative bonus

is at least as costly as implementing action â with a positive bonus. In what follows,

we make use of notation introduced in the paper as well as in the proof of Proposition

7. Let a0(p), a
−
0 (p), b∗(â; p), and u∗(â; p) denote the expressions obtained from a0, a

−
0 ,

b∗(â), and u∗(â), respectively, by replacing γ(â), γL, and γH with γ(â; p), γL(p), and

γH(p). From the proof of Proposition 6 we know that (i) action â is implementable

with a non-negative bonus (negative bonus) if and only if a0(p) ≤ 0 (a−0 (p) ≤ 0),

(ii) a−0 (p) ≤ 0 implies a0(p) < 0. We will show that, for a given value of p, if â

is implementable with a negative bonus then it is less costly to implement â with a

non-negative bonus.

Consider first the case where a−0 (p) < 0. The negative bonus payment satisfying

incentive compatibility is given by

b−(â; p) =
kâ

(γH(p) − γL(p)) [λ− 2γ(â; p)(λ− 1)]
.

It is easy to verify that the required punishment to implement â is larger in absolute

value than than the respective non-negative bonus which is needed to implement â, that

is, b∗(â; p) < |b−(â; p)| for all â ∈ (0, 1) and all p ∈ [0, 1). When punishing the agent

with a negative bonus b−(â; p), u−(â; p) will be chosen to satisfy the corresponding

participation constraint with equality, that is,

u−(â; p) = ū+
k

2
â2 − γ(â; p)b−(â; p) [λ− γ(â, p)(λ− 1)] .

Remember that, if â is implemented with a non-negative bonus, we have

u∗(â; p) = ū+
k

2
â2 − γ(â; p)b∗(â; p) [2 − λ+ γ(â; p)(λ− 1)] .

It follows immediately that the minimum cost of implementing â with a non-negative
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bonus is lower than the minimum implementation cost with a strictly negative bonus:

C−(â; p) = u−(â; p) + γ(â; p)b−(â; p)

= ū+
k

2
â2 − γ(â; p)b−(â; p) [λ− γ(â; p)(λ− 1) − 1]

> ū+
k

2
â2 + γ(â; p)b∗(â; p) [λ− γ(â; p)(λ− 1) − 1]

= ū+
k

2
â2 − γ(â; p)b∗(â; p) [1 − λ+ γ(â; p)(λ− 1)]

= ū+
k

2
â2 − γ(â; p)b∗(â; p) [2 − λ+ γ(â; p)(λ− 1)] + γ(â; p)b∗(â; p)

= u∗(â; p) + γ(â; p)b∗(â; p)

= C(â; p).

The same line of argument holds when a−0 = 0: the bonus which satisfies the (IC) is

b−0 (â; p) = −
k

2(γH(p) − γL(p))2(λ− 1)
,

and so b∗(â; p) < |b−0 (â; p)| for all â ∈ (0, 1) and all p ∈ [0, 1).

Q.E.D.

Proof of Corollary I.1: Let p ∈ (0, 1). With ζ̂ being a convex combination

of γ̂ and 1 we have (ζH , ζL) = p(1, 1) + (1 − p)(γH , γL) = (γH + p(1 − γH), γL +

p(1 − γL)). The desired result follows immediately from Proposition 3: Consider λ >

2. Implementation problems are less likely to be encountered under ζ̂ than under

γ̂. Moreover, if implementation problems are not an issue under both performance

measures, then implementation of a certain action is less costly under ζ̂ than under γ̂.

For λ = 2 implementation problems do not arise and implementation costs are identical

under both performance measures. Last, if λ < 2, implementation problems are not

an issue under either performance measure, but the cost of implementation is strictly

lower under γ̂ than under ζ̂.

Q.E.D.

1.2. Validity of the First-Order Approach

Lemma A.1: Suppose (A1)-(A3) hold, then the incentive constraint in the principal’s

cost minimization problem can be represented as E[U ′(â)] = 0.

Proof: Consider a contract (u1, {bs}
S
s=2) with bs ≥ 0 for s = 2, . . . , S. In what follows,

we write βs instead of βs(γ̂, λ, â) to cut back on notation. The proof proceeds in two

steps. First, we show that for a given contract with the property bs > 0 only if βs > 0,
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all actions that satisfy the first-order condition of the agent’s utility maximization

problem characterize a local maximum of his utility function. Since the utility function

is continuous and all extreme points are local maxima, if there exists some action that

fulfills the first-order condition, this action corresponds to the unique maximum. In

the second step we show that under the optimal contract we cannot have bs > 0 if

βs ≤ 0.

Step 1: The second derivative of the agent’s utility with respect to a is

E[U ′′(a)] = −2(λ− 1)
S∑

s=2

bsσs − c′′(a) , (A.17)

where σs := (
∑s−1

i=1 γ
H
i − γL

i )(
∑S

i=s γ
H
i − γL

i ) < 0. Suppose action â satisfies the first-

order condition. Formally

S∑

s=2

bsβs = c′(â) ⇐⇒
S∑

s=2

bs
βs

â
=
c′(â)

â
. (A.18)

Action â locally maximizes the agent’s utility if

−2(λ− 1)
S∑

s=2

bsσs < c′′(â) . (A.19)

Under Assumption (A3), we have c′′(â) > c(â)/â. Therefore, if

S∑

s=2

bs
[
−2(λ− 1)σs − βs/â

]
< 0 , (A.20)

then (A.18) implies (A.19), and each action â satisfying the first-order condition of the

agent’s maximization problem is a local maximum of his expected utility. Inequality

(A.20) obviously is satisfied if each element of the sum is negative. Summand s is

negative if and only if

− 2(λ− 1)

(
s−1∑

i=1

(γH
i − γL

i )

)(
S∑

i=s

(γH
i − γL

i )

)

â

−

(
S∑

τ=s

(γH
τ − γL

τ )

)[

1 − (λ− 1)

(
s−1∑

t=1

γt(â)

)]

− (λ− 1)

[
S∑

τ=s

γτ (â)

](
s−1∑

t=1

(γH
t − γL

t )

)

< 0 .

Rearranging the above inequality yields
(

S∑

i=s

(γH
i − γL

i )

){

λ+ 2(λ− 1)

[

â
s−1∑

i=1

(γH
i − γL

i ) −
s−1∑

i=1

γi(â)

]}

> 0

⇐⇒

(
S∑

i=s

(γH
i − γL

i )

){

λ

(

1 −
s−1∑

i=1

γL
i

)

+ (2 − λ)
s−1∑

i=1

γL
i

}

> 0 (A.21)
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The term in curly brackets is positive, since λ ≤ 2 and
∑s−1

i=1 γ
L
i < 1. Furthermore,

note that
∑S

i=s(γ
H
i − γL

i ) > 0 since βs > 0 for all bs > 0. This completes the first step

of the proof.

Step 2: Consider a contract with bs > 0 and βs ≤ 0 for at least one signal s ∈

{2, . . . , S} that implements â ∈ (0, 1). Then, under this contract, (IC′) is satisfied and

there exists at least one signal t with βt > 0 and bt > 0. Obviously, the principal can

reduce both bs and bt without violating (IC′). This reasoning goes through up to the

point where (IC′) is satisfied and bs = 0 for all signals s with βs ≤ 0. From the first step

of the proof we know that the resulting contract implements â incentive compatibly.

Next, we show that reducing any spread, say bk, always reduces the principal’s cost of

implementation.

C(b) =
S∑

s=1

γs(â)h

(

u1(b) +
s∑

t=2

bs

)

, (A.22)

where u1(b) = ū+ c(â) −
S∑

t=2

bs

[
S∑

τ=s

γτ (â) − (λ− 1)

(
S∑

τ=s

γτ (â)

)(
s−1∑

t=1

γt(â)

)]

.

The partial derivative of the cost function with respect to an arbitrary bk is

∂C(b)

∂bk
=

k−1∑

s=1

γs(â)h
′

(

u1(b) +
s∑

t=2

bs

)[
∂u1

∂bk

]

+
S∑

s=k

γs(â)h
′

(

u1(b) +
s∑

t=2

bs

)[
∂u1

∂bk
+ 1

]

.

Rearranging yields

∂C(b)

∂bk
=

k−1∑

s=1

γs(â)h
′(us)

[

(λ− 1)

(
S∑

τ=k

γτ (â)

)(
k−1∑

t=1

γt(â)

)

−
S∑

τ=k

γτ (â)

]

︸ ︷︷ ︸

<0

+
S∑

s=k

γs(â)h
′(us)

[

(λ− 1)

(
S∑

τ=k

γτ (â)

)(
k−1∑

t=1

γt(â)

)

−
S∑

τ=k

γτ (â) + 1

]

︸ ︷︷ ︸

>0

. (A.23)

Note us ≤ us+1 which implies that h′(us) ≤ h′(us+1). Thus, the following inequality

holds

∂C(b)

∂bk
≥

k−1∑

s=1

γs(â)h
′(uk)

[

(λ− 1)

(
S∑

τ=k

γτ (â)

)(
k−1∑

t=1

γt(â)

)

−
S∑

τ=k

γτ (â)

]

+
S∑

s=k

γs(â)h
′(uk)

[

(λ− 1)

(
S∑

τ=k

γτ (â)

)(
k−1∑

t=1

γt(â)

)

−
S∑

τ=k

γτ (â) + 1

]

. (A.24)
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The above inequality can be rewritten as follows

∂C(b)

∂bk
≥ h′(uk)

[

(λ− 1)

(
S∑

τ=k

γτ (â)

)(
k−1∑

t=1

γt(â)

)]

> 0 .

Since reducing any bonus lowers the principal’s cost of implementation, it cannot be

optimal to set bs > 0 for βs ≤ 0. This completes the second step of the proof. In

combination with step 1, this establishes the desired result.

Q.E.D.

2. Appendix to Chapter II

2.1. Proof of Propositions and Lemmas

Proof of Proposition II.1: As mentioned in Footnote 14, in order to establish the

proposition, we follow a different but nevertheless equivalent way than proposed in the

paper. In period 1, a naive agent believes that he is time-consistent in period 2. Thus,

we first analyze what effort a TC chooses in period 2, given an arbitrary effort level of

the first period, ê1. This effort choice, which maximizes UTC
2 = −c(e2) + g(ê1 + e2),

obviously is a function of the first-period effort. Thus, eTC
2 (ê1) is characterized by the

corresponding first-order condition,

g′(ê1 + eTC
2 (ê1)) = c′(eTC

2 (ê1)) . (A.25)

Differentiating (A.25) with respect to e1 yields deTC
2 (e1)/de1 ∈ (−1, 0). With UN

1 =

−c(e1) − βc(eTC
2 (e1)) + βg(e1 + eTC

2 (e1)) being a strictly concave function of e1, the

effort level that a naive agent invests in the first period, eN
1 , is implicitly characterized

by the following first-order condition:

βg′
(
eN
1 + eTC

2 (eN
1 )
)

= c′(eN
1 ) . (A.26)

The actual problem of a naive agent in period 2 is to maximize UN
2 = −c(e2)+βg(eN

1 +

e2) over his second-period effort choice. The optimal second-period effort, eN
2 , satisfies

βg′
(
eN
1 + eN

2

)
= c′(eN

2 ) . (A.27)

Comparison of (A.25)-(A.27) allows to establish the proposition. We prove each part

of the proposition in turn.

(iii) Comparison of (A.25) and (A.27) immediately yields eN
2 < eTC

2 (eN
1 ) = eTC

2 .

(i) Suppose, in contradiction, that eN
1 ≥ eN

2 . Then c′(eN
1 ) ≥ c′(eN

2 ), which in turn

implies βg′(eN
1 +eTC

2 (eN
1 )) ≥ βg′(eN

1 +eN
2 ). But since eN

2 < eTC
2 (eN

1 ) and g′′(·) < 0

we have βg′(eN
1 + eTC

2 (eN
1 )) < βg′(eN

1 + eN
2 ), a contradiction.
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(ii) From our considerations of the TC we know that g′(ê1 + eTC
2 (ê1)) = c′(eTC

2 (ê1))

for all ê1. Hence, c′(eTC) = c′(eTC
2 (eTC)) = g′(eTC + eTC

2 (eTC)) > βg′(eTC +

eTC
2 (eTC)). For eN

1 we must have c′(eN
1 ) = βg′(eN

1 + eTC
2 (eN

1 )). Since deTC
2 /de1 ∈

(−1, 0), g′′(·) < 0 and c′′(·) > 0, we immediately obtain that eN
1 < eTC . Now it

immediately follows that eN
1 + eN

2 < eN
1 + eTC

2 (eN
1 ) < eTC + eTC

2 (eTC) = 2eTC ,

where the first inequality holds by (i) and the second inequality holds because

eN
1 < eTC and deTC

2 (e1)/de1 ∈ (−1, 0).

This concludes the proof.

Q.E.D.

Proof of Proposition II.2: First we prove that the effort choice in the first period

of a sophisticated agent is characterized by a first-order condition. We can rule out

corner solutions to be optimal: With c(e) −→ ∞ as e −→ ∞, e1 = ∞ is not a candidate

for the agent’s first-period effort. Next we show that e1 = 0 also is not optimal. The

derivative of US
1 with respect to e1 can be rewritten as follows:

dUS
1

de1
=

[
deS

2 (e1)

de1
(1 − β) + 1

]

c′(eS
2 (e1)) − c′(e1),

where we used twice the fact that βg′
(
e1 + eS

2 (e1)
)

= c′(eS
2 (e1)). Since eS

2 (0) > 0 and

deS
2 (e1)/de1 ∈ (−1, 0), we have dUS

1 /de1|e1=0 > 0. Note that US
1 is a differentiable and

hence continuous function, which establishes the desired result.

Next, we prove each part of the proposition in turn.

(i) From (II.5) and (II.6) it follows immediately that βg′
(
eS
1 + eS

2 (eS
1 )
)
− c′(eS

1 ) > 0,

which in turn implies that c′(eS
2 (eS

1 )) = βg′(eS
1 +eS

2 (eS
1 )) > c′(eS

1 ). Thus, eS
2 (eS

1 ) >

eS
1 .

(ii) Suppose, in contradiction, that eS
1 + eS

2 (eS
1 ) ≥ 2eTC . We know that βg′(eS

1 +

eS
2 (eS

1 ))−c′(eS
1 ) > 0 = g′(eTC +eTC)−c′(eTC). With g′′(·) < 0 and c′′(·) > 0, eS

1 +

eS
2 (eS

1 ) ≥ 2eTC immediately implies eS
1 < eTC . Furthermore, βg′(eS

1 + eS
2 (eS

1 )) −

c′(eS
2 (eS

1 )) = 0 = g′(eTC + eTC) − c′(eTC), which under the above functional

assumptions implies that c′(eS
2 (eS

1 )) < c′(eTC). But this means that eS
2 (eS

1 ) < eTC ,

which leads to a contradiction to the assumption that eS
1 + eS

2 (eS
1 ) ≥ 2eTC .

This concludes the proof.

Q.E.D.
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Proof of Lemma II.1: For a given first-period effort e1, both the naive agent and

the sophisticated agent face the same maximization problem in period 2. This allows us

to write eN
2 = eS

2 (eN
1 ). For i, j ∈ {S,N} and i 6= j, together with deS

2 (e1)/de1 ∈ (−1, 0),

this observation immediately yields that ei
1 > ej

1 implies ei
2 = eS

2 (ei
1) < eS

2 (ej
1) = ej

2

and ei
1 + ei

2 > ej
1 + ej

2. It remains to show that ei
1 > ej

1 implies U i
0 = −c(ei

1) −

c(eS
2 (ei

1)) + g(ei
1 + eS

2 (ei
1)) ≥ −c(ej

1) − c(eS
2 (ej

1)) + g(ej
1 + eS

2 (ej
1)) = U j

0 . Define H(e1) ≡

−c(e1) − c(eS
2 (e1)) + g(e1 + eS

2 (e1)). In order to establish the desired result, it suffices

to show that

dH(e1)

de1
= g′(e1 + eS

2 (e1)) − c′(e1) +
deS

2 (e1)

de1

[
g′(e1 + eS

2 (e1)) − c′(eS
2 (e1))

]
> 0

for all e1 ∈ [0, ei
1]. Since, by Propositions 1 and 2, ei

1 < ei
2 = eS

2 (ei
1) for i ∈ {S,N}, and

moreover deS
2 (e1)/de1 < 0, we have e1 < eS

2 (e1) for all e1 < ei
1. This in turn implies

g′(e1 + eS
2 (e1)) − c′(e1) > g′(e1 + eS

2 (e1)) − c′(eS
2 (e1)) > 0, where the last inequality

follows from (II.5). Together with deS
2 (e1)/de1 ∈ (−1, 0), the desired result follows.

Q.E.D.

Proof of Lemma II.2: By the revealed preference argument, for the first-period

effort choices of a naive and a sophisticated agent, eN
1 and eS

1 , the following two in-

equalities have to hold:

− c(eN
1 ) − βc(eTC

2 (eN
1 )) + βg(eN

1 + eTC
2 (eN

1 ))

≥ −c(eS
1 ) − βc(eTC

2 (eS
1 )) + βg(eS

1 + eTC
2 (eS

1 ))

and

− c(eS
1 ) − βc(eS

2 (eS
1 )) + βg(eS

1 + eS
2 (eS

1 ))

≥ −c(eN
1 ) − βc(eS

2 (eN
1 )) + βg(eN

1 + eS
2 (eN

1 ))

Taken together these two inequalities imply

[
g(eN

1 + eTC
2 (eN

1 )) − c(eTC
2 (eN

1 ))
]
−
[
g(eN

1 + eS
2 (eN

1 )) − c(eS
2 (eN

1 ))
]

≥
[
g(eS

1 + eTC
2 (eS

1 )) − c(eTC
2 (eS

1 ))
]
−
[
g(eS

1 + eS
2 (eS

1 )) − c(eS
2 (eS

1 ))
]
. (A.28)

Define F (e1) ≡
[
g(e1 + eTC

2 (e1)) − c(eTC
2 (e1))

]
−
[
g(e1 + eS

2 (e1)) − c(eS
2 (e1))

]
. Since

both sides of (A.28) have the same structure, a sufficient condition for eS
1 ≥ eN

1 to hold

is dF (e1)/de1 < 0. From (A.25) and (II.5) we know that g′(e1 + eTC
2 (e1)) = c′(eTC

2 (e1))

and βg′(e1 + eS
2 (e1)) = c′(eS

2 (e1)). Hence,

dF (e1)

de1
=
[
g′(e1 + eTC

2 (e1)) − g′(e1 + eS
2 (e1))

]
− (1 − β)g′(e1 + eS

2 (e1))
deS

2 (e1)

de1
.

(A.29)
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For β = 0 we have dF (e1)/de1 =
[
g′(e1 + eTC

2 (e1)) − g′(e1 + eS
2 (e1))

]
< 0 since

deS
2 (e1)/de1 = 0 in this case. For β = 1 we have eTC

2 (e1) = eS
2 (e1) for all e1, and hence

dF (e1)/de1 = 0. Thus, d
dβ

(dF (e1)/de1) > 0 is a sufficient condition for dF (e1)/de1 < 0

for all β ∈ (0, 1). Tackling this derivative by brute force yields

d

dβ

[
dF (e1)

de1

]

= −g′′(·)
deS

2

dβ

−

[

−g′(·)
deS

2

de1
+ (1 − β)g′′(·)

deS
2

dβ

deS
2

de1
+ (1 − β)g′(·)

d(deS
2 /de1)

dβ

]

= (1 − β)
−2g′(·)g′′(·)c′′(eS

2 ) +
deS

2

dβ
βg′(·)

[
g′′(·)c′′′(eS

2 ) − g′′′(·)c′′(eS
2 )
]

[βg′′(·) − c′′(eS
2 )]

2 ,

where we made use of the fact that

deS
2

dβ
= −

g′(·)

βg′′(·) − c′′(eS
2 )
.

and

d{deS
2 /de1}

dβ
=
c′′(eS

2 )[g′′(·) + βg′′′(·){deS
2 /dβ}] − βg′′(·)c′′′(eS

2 )

[βg′′(·) − c′′(eS
2 )]2

.

Under the imposed functional assumptions, a sufficient condition for d
dβ

(dF (e1)/de1)

> 0 for all β ∈ (0, 1) is c′′′(·) ≤ 0 and g′′′(·) ≤ 0. Together with the above observation

that dF (e1)/de1 < 0 for β = 0 and dF (e1)/de1 = 0 for β = 1, this implies that

dF (e1)/de1 < 0 for all β ∈ [0, 1). This allows us to conclude that eN
1 ≤ eS

1 when

c′′′(·) ≤ 0 and g′′′(·) ≤ 0.

Next, we will show that eN
1 6= eS

1 for c′′′(·) ≤ 0 and g′′′(·) ≤ 0, which completes the

proof. Suppose in contradiction that eN
1 = eS

1 . The first-order condition of the utility

maximization problem of the first-period sophisticate can be written as follows:

βg′(eS
1 + eTC

2 (eS
1 )) − c′(eS

1 ) + β
[
g′(eS

1 + eS
2 (eS

1 )) − g′(eS
1 + eTC

2 (eS
1 ))
]

+
deS

2 (e1)

de1
β
[
g′(eS

1 + eS
2 (eS

1 )) − c′(eS
2 (eS

1 ))
]

= 0 .

Setting eN
1 = eS

1 in the above equation yields

[
g′(eN

1 + eS
2 (eN

1 )) − g′(eN
1 + eTC

2 (eN
1 ))
]
− (1− β)g′(eN

1 + eS
2 (eN

1 ))
deS

2 (e1)

de1
= 0. (A.30)

Note that the left-hand side of (A.30) is dF (e1)/de1|e1=eN
1
. For c′′′(·) ≤ 0 and g′′′(·) ≤ 0,

however, we have just shown that dF (e1)/de1 < 0 for β ∈ [0, 1), a contradiction.

Q.E.D.
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Proof of Proposition II.3: Follows immediately from Lemmas 1 and 2.

Q.E.D.

Proof of Proposition II.4: The proof consists of three major parts. First, we

formally derive the behavior of a sophisticated agent when facing no deadline. Next we

show that when facing a deadline, the utility maximization problem of a sophisticated

agent in the first period indeed is solved by a first-period effort pair (eA, eB1) with

eA > 0 and eB1 = 0. Last, we prove each of the results explicitly stated in the

proposition.

Part 1: Consider a sophisticated agent who faces no deadline. With the reward

functions for the two tasks being strictly increasing and strictly concave, given any

first-period efforts êA1 and êB1, a sophisticate will allocate second-period effort in a way

such that overall effort is allocated as evenly as possible among the two tasks. Thus,

there is the following fundamental distinction to draw for second-period behavior: for a

given first-period effort and allocation choice, effort smoothing over tasks in the second

period is either optimal or not optimal. Effort smoothing over tasks is not optimal for

the second period self, if the the total second-period effort needed to achieve this is

too costly. Starting out from this observation, we proceed in two steps: First, we show

that it is never optimal for a sophisticate in period 1 to choose effort levels eA1 and

eB1 such that effort smoothing over tasks is not optimal in period 2. Second, given

that effort smoothing over tasks is optimal in period 2, we show that when facing no

deadline, a sophisticated agent increases effort over time.

Step 1: Let α1 ∈ [0, 1] denote the share of the overall first-period effort e1 which is

dedicated to task A, i.e., eA1 = α1e1 and eB1 = (1 − α1)e1. Further, let eS
2 (e1, α1)

denote the optimal overall effort for the second-period self of a sophisticate given e1

and α1. To prove that it is never optimal for a sophisticate to choose an allocation

of first-period effort such that effort smoothing over tasks is not optimal in period 2,

assume the opposite: Suppose in period 1 the sophisticate chooses e1 and α1 such that

(w.l.o.g.) eA < eB. First, note that for given e1 and α1, a necessary condition for effort

smoothing over tasks not being optimal in period 2 is that overall second-period effort

is lower than overall first-period effort, e1 > eS
2 (e1, α1). Moreover, as argued above, the

second-period self will allocate all his effort e2 to task A in order to make the overall

effort allocation over tasks as even as possible, i.e.,

max
e2

−c(e2) + βg(α1e1 + e2) + βg((1 − α1)e1),

with the optimal effort choice eS
2 (e1, α1) being characterized by

βg′(α1e1 + eS
2 (e1, α1)) = c′(eS

2 (e1, α1)) . (A.31)
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Differentiation with respect to e1 yields

deS
2

de1
= −α1

βg′′(α1e1 + eS
2 (e1, α1))

βg′′(α1e1 + eS
2 (e1, α1)) − c′′(eS

2 (e1, α1))
∈ (−α1, 0).

In the first period, the sophisticate chooses an effort allocation (e1, α1) in order to

maximize

U1(e1, α1) = −c(e1) − βc(eS
2 (e1, α1)) + βg(α1e1 + eS

2 (e1, α1)) + βg((1 − α1)e1).

If the optimal first-period effort allocation is an interior solution, i.e., e1 ∈ (0,∞)

and α1 ∈ (0, 1), then it has to satisfy the necessary first-order conditions for op-

timality, ∂U1(e1, α1)/∂e1 = 0 and ∂U1(e1, α1)/∂α1 = 0. Together with (A.31) and

deS
2 (e1, α1)/de1 < 0,

∂U1(e1, α1)

∂e1
= 0 ⇐⇒ −c′(e1) + α1βg

′(α1e1 + eS
2 (e1, α1))

+ (1−α1)βg
′((1−α1)e1)+

deS
2 (e1, α1)

de1

[
βg′(α1e1 + eS

2 (e1, α1)) − βc′(eS
2 (e1, α1))

]
= 0

implies

−c′(e1) + α1βg
′(α1e1 + eS

2 (e1, α1)) + (1 − α1)βg
′((1 − α1)e1) > 0 . (A.32)

Combining (A.31) and (A.32) yields

c′(eS
2 (e1, α1)) − c′(e1) − (1 − α1)β

[
g′(α1e1 + eS

2 (e1, α1)) − g′((1 − α1)e1)
]
> 0 .(A.33)

As noted above, with effort smoothing over tasks not being optimal we have e1 >

eS
2 (e1, α1). Moreover, α1e1 + eS

2 (e1, α1) = eA < eB = (1 − α1)e1 by assumption. But

then c′′(·) > 0 and g′′(·) < 0 imply that (A.33) cannot be satisfied, which in turn

implies that the optimal first-period allocation (e1, α1) cannot be interior. Note that

α1 = 1 is not possible because eA < eB and effort smoothing over tasks is not possible

by assumption. Since e1 = ∞ and e1 = 0 can be ruled out as optimal (note that

∂U1(e1, α1)/∂e1|e1=0 > 0), we are left with e1 ∈ (0,∞) and α1 = 0. For α1 = 0,

second-period behavior is characterized by

βg′(e2) = c′(e2). (A.34)

Thus, for α1 = 0, second-period effort does not depend on first-period effort, eS
2 (e1, 0) =

eS
2 . In period 1, e1 then is chosen to maximize

U1(e1, 0) = −c(e1) − βc(eS
2 ) + βg(eS

2 ) + βg(e1),

and thus is characterized by

βg′(e1) = c′(e1) . (A.35)
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Taken together, (A.34) and (A.35) contradict the assumption that effort smoothing

over tasks is not optimal in period two, which requires that first-period effort strictly

exceeds second-period effort. This concludes Step 1.

Step 2: From Step 1, we know that in period 2 the agent will allocate effort in a way such

that overall effort is spread evenly among the two tasks, i.e., eA = eB = (1/2)(e1 + e2).

Thus, given ê1, e2 is chosen in order to maximize

USND

2 = −c(e2) + 2βg((1/2)(ê1 + e2)).

The optimal second-period effort as a function of the first-period effort, eSND

2 (ê1), sat-

isfies

c′(eSND

2 (ê1)) = βg′((1/2)(ê1 + eSND

2 (ê1))). (II.8)

Differentiation of (II.8) yields

deSND

2 (e1)

de1
= −

1
2
βg′′(1

2
(e1 + eSND

2 (e1)))
1
2
βg′′(1

2
(e1 + eSND

2 (e1))) − c′′(eSND

2 (e1))
∈ (−1, 0).

In period 1 a sophisticated agent then chooses his effort level in order to maximize the

intertemporal utility of his first-period self,

USND

1 = −c(e1) − βc(eSND

2 (e1)) + 2βg((1/2)(e1 + eSND

2 (e1))) .

According to the same reasoning as in the single-task case, the optimal first-period

effort, eSND

1 , is characterized by the following first-order condition:

βg′((1/2)(eSND

1 + eSND

2 (eSND

1 ))) − c′(eSND

1 )

+
deSND

2 (e1)

de1
β
[

g′((1/2)(eSND

1 + eSND

2 (eSND

1 ))) − c′(eSND

2 (eSND

1 ))
]

= 0 . (II.9)

From (II.8) we know that βg′(1
2
(ê1 + eSND

2 (ê1))) − c′(eSND

2 (ê1)) = 0 for all ê1, and in

particular for ê1 = eSND

1 . Since deSND

2 (e1)/de1 < 0, in combination with (II.9) this

implies that βg′(1
2
(eSND

1 + eSND

2 (eSND

1 )) − c′(eSND

1 ) > 0. Taken together these two

observations yield c′(eSND

2 (eSND

1 )) = βg′(1
2
(eSND

1 + eSND

2 (eSND

1 ))) > c′(eSND

1 ). Since

c′′(·) > 0, it follows that when facing no deadline, a sophisticated agent increases effort

over time, that is, eSND

1 < eSND

2 (eSND

1 ).

Part 2: Next, we provide the proof that when facing a deadline, the utility maximiza-

tion problem of a sophisticated agent in the first period is solved by a first-period effort

pair (eA, eB1) with eA > 0 and eB1 = 0. To prove this result, we proceed in three steps.

First, we show that we cannot have an interior solution 0 < eA, eB1 < ∞. Second, we

rule out solutions in which the agent chooses an infinite amount of effort for at least
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one task, and also the solution that the agent does not exhibit any effort at all in the

first period. Third, we show that an effort pair (eA, eB1) with eB1 > 0 = eA is not a

solution.

Step 1: Suppose, in contradiction, that there is an interior solution. This solution then

would be characterized by the following first-order conditions:

∂USD

1

∂eA

= 0 ⇐⇒ βg′(eA) − c′(eA + eB1) = 0 , (A.36)

∂USD

1

∂eB1

= 0 ⇐⇒ βg′(eB1 + eSD

B2 (eB1)) − c′(eA + eB1)

+
deSD

B2 (eB1)

deB1

β
[

g′(eB1 + eSD

B2 (eB1)) − c′(eSD

B2 (eB1))
]

= 0 . (A.37)

Combining (A.36) and (A.37) yields

βg′(eB1 + eSD

B2 (eB1)) − βg′(eA)

= −
deSD

B2 (eB1)

deB1

β
[

g′(eB1 + eSD

B2 (eB1)) − c′(eSD

B2 (eB1))
]

> 0,

where the inequality follows from (II.10). This last inequality implies that eB1 +

eSD

B2 (eB1) < eA. From (A.36) it follows that eA decreases as eB1 increases. Com-

paring (10) and (A.36) yields that for eB1 = 0 we have eA = eSD

B2 (0). Since d(eB1 +

eSD

B2 (eB1))/deB1 > 0 it follows that eB1 +eSD

B2 (eB1) ≥ eA for all eB1 ≥ 0, a contradiction.

Hence, the utility maximization problem of a sophisticated agent in the first period

cannot have an interior solution.

Step 2: Obviously we can rule out effort choices where the agent invests an infinite

high effort in one or both tasks since this would lead to an intertemporal utility of

minus infinity. To see that it is not optimal to exert no positive effort at all in the

first period, let α1 ∈ [0, 1] denote the fraction of e1 which is dedicated to task B, that

is, eA1 = (1 − α1)e1 and eB1 = α1e1. For each α1, by (II.10) the optimal second-

period effort satisfies βg′(α1e1 + eSD

B2 (α1e1)) = c′(eSD

B2 (α1e1)). With this notation, the

intertemporal utility in the first period is given by USD

1 = −c(e1) − βc(eSD

B2 (α1e1)) +

βg((1 − α1)e1) + βg(α1e1 + eSD

B2 (α1e1)). Differentiating with respect to e1, taking into

account that βg′(α1e1 + eSD

B2 (α1e1)) = c′(eSD

B2 (α1e1)), and rearranging yields

dUSD

1

de1
= β(1 − α1)g

′((1 − α1)e1) − c′(e1) + α1c
′(eSD

B2 (α1e1))

[

1 + (1 − β)
deSD

B2 (eB1)

deB1

]

.

Evaluated at e1 = 0 we have dUSD

1 /de1|e1=0 = β(1 − α1)g
′(0) + α1c

′(eSD

B2 (0))[1 + (1 −

β)(deSD

B2 (eB1)/deB1)] > 0, for all α1 ∈ [0, 1].
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Step 3: We are left with two possible candidates for the corner solution: (i) eA = 0

and eB1 > 0, or (ii) eA > 0 and eB1 = 0. To see that (i) can be ruled out, suppose that

eA = 0 and eB1 > 0. For eA = 0 to be optimal it must hold that

βg′(0) − c′(eB1) ≤ 0, (A.38)

otherwise it would be optimal to invest some positive effort in task A. Since eB1 is

assumed to be strictly positive, the following first-order condition has to hold:

βg′(eB1 + eSD

B2 (eB1)) − c′(eB1) +
deSD

B2 (eB1)

eB1

β
[

g′(eB1 + eSD

B2 (eB1)) − c′(eSD

B2 (eB1))
]

= 0.

The last term of the left-hand side of the above equation is negative, which implies that

βg′(eB1 + eSD

B2 (eB1)) − c′(eB1) > 0. Taken together with (A.38) this yields βg′(eB1 +

eSD

B2 (eB1)) > g′(0). This in turn implies eB1 + eSD

B2 (eB1) < 0, which is not possible. This

establishes the desired result.

Part 3: Having shown that an effort pair (eA, eB1) with eA > 0 and eB1 = 0

solves the utility maximization problem of a sophisticated agent in the first period,

we now prove each part of the proposition. First we show that a sophisticate ex-

hibits a higher first-period effort when facing deadlines. Suppose, in contradiction,

that eSND

1 ≥ eSD

. From (II.8) and (II.12) we know, respectively, that c′(eSND

2 (eSND

1 )) =

βg′(1
2
(eSND

1 + eSND

2 (eSND

1 ))) and c′(eSD

) = βg′(1
2
(eSD

+ eSD

)). Since deSND

2 (eSND

1 )/de1 ∈

(−1, 0), eSND

1 ≥ eSD

implies that eSND

2 (eSND

1 ) ≤ eSD

, which in turn in implies eSND

1 +

eSND

2 (eSND

1 ) ≥ 2eSD

. From (II.9), however, we know that βg′(1
2
(eSND

1 + eSND

2 (eSND

1 )))−

c′(eSND

1 ) > 0. Together with (II.12) this implies that βg′(1
2
(eSND

1 + eSND

2 (eSND

1 ))) −

βg′(1
2
(eSD

+ eSD

)) > c′(eSND

1 ) − c′(eSD

) ≥ 0, where the last inequality holds by our

initial assumption that eSND

1 ≥ eSD

. With g′(·) being strictly decreasing, this last

expression implies eSND

1 + eSND

2 < 2eSD

, a contradiction. Therefore we must have

eSND

1 < eSD

. Together with eSND

2 (eSD

) = eSD

, which follows from (II.8) in combination

with (II.11) or (II.12), and deSND

2 (e1)/de1 ∈ (−1, 0), eSND

1 < eSD

immediately implies

eSND

1 + eSND

2 (eSND

1 ) < 2eSD

. It remains to show that a sophisticate indeed is better off

under a deadline from a long-run perspective, i.e., USD

0 > USND

0 . Let α and γ denote

the allocation of some level of total effort eTotal over tasks and time, respectively. Since

time-consistent agents and sophisticated agents, both under a deadline and under no

deadline, divide effort evenly among tasks, fix α = 1
2
. Long-run utility then is given by

U0(e
Total, γ) = −c(γeTotal) − c((1 − γ)eTotal) + 2g(1

2
eTotal). Fixing γ = 1

2
, it is readily

verified that U0(e
Total, 1

2
) is a strictly concave function of eTotal which obtains its max-

imum for eTotal = 2eTC . Hence, with eSND

1 + eSND

2 (eSND

1 ) < 2eSD

< 2eTCND

we have

USD

0 = U0(2e
SD

, 1
2
) > U0(e

SND

1 + eSND

2 (eSND

1 ), 1
2
). Next, fixing an arbitrary level of total
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effort eTotal > 0, U0(e
Total, γ) is a strictly concave function with its maximum obtained

at γ = 1
2
. Hence, USND

0 < U0(e
SND

1 + eSND

2 (eSND

1 ), 1
2
), which establishes the desired

result.

Q.E.D.

Proof of Proposition II.5: First consider a naive agent who faces no deadline.

Since he predicts his own future behavior to be time-consistent, a first-period naif

makes a plan that he believes to follow through in period 2. In the first period, he

chooses e1 and plans to choose e2 tomorrow. Moreover, he plans to allocate α(e1 + e2)

to task A and (1−α)(e1 + e2) to task B. It is important to note, that the allocation of

first-period effort respectively second-period effort to a specific task is not important

from the perspective of period 1. First-period utility of a naif is

UNND

1 (e1, e2, α) = −c(e1) − βc(e2) + βg(α(e1 + e2)) + βg((1 − α)(e1 + e2)).

Obviously, UNND

1 (e1, e2, α) is maximized by an interior solution, (eNND

1 , eTCND

2 , αNND

),

which is characterized by the following first-order conditions:

∂UNND

1 (e1, e2, α)

∂e1
= 0 ⇐⇒ −c′(eNND

1 ) + βg′(αNND

(eNND

1 + eTCND

2 ))αNND

+ βg′((1 − αNND

)(eNND

1 + eTCND

2 ))(1 − αNND

) = 0 , (A.39)

∂UNND

1 (e1, e2, α)

∂e2
= 0 ⇐⇒ −βc′(eTCND

2 ) + βg′(αNND

(eNND

1 + eTCND

2 ))αNND

+ βg′((1 − αNND

)(eNND

1 + eTCND

2 ))(1 − αNND

) = 0 , (A.40)

∂UNND

1 (e1, e2, α)

∂α
= 0 ⇐⇒

βg′(αNND

(eNND

1 + eTCND

2 )) = βg′((1 − αNND

)(eNND

1 + eTCND

2 )). (A.41)

From (A.41) it follows that αNND

= 1/2. With αNND

= 1/2, eNND

1 and eTCND

2 are

characterized by

βg′((1/2)(eNND

1 + eTCND

2 )) = c′(eNND

1 ) , (A.42)

g′((1/2)(eNND

1 + eTCND

2 )) = c′(eTCND

2 ) , (A.43)

which immediately implies that eNND

1 < eTCND

2 .

Next, we show that given eNND

1 the naif will indeed achieve effort smoothing over

tasks in the second period. Suppose the opposite, i.e., assume (w.l.o.g.) that in period
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1 the naif invested that much more effort in task B than in task A such that even

if he invested all second-period effort in task A, effort smoothing is not achieved,

eNND

A1 + e2 < eB1. Since in period 2 the agent prefers an effort allocation as even as

possible, all second-period effort is invested in task A and therefore is characterized by

βg′(eNND

A1 + eNND

2 ) = c′(eNND

2 ) . (A.44)

From (A.42), we know that

βg′((1/2)(eNND

A1 + eNND

B1 + eTCND

2 )) = c′(eNND

A1 + eNND

B1 ) . (A.45)

Equations (A.44) and (A.45) together with the assumption that effort smoothing

is not optimal, which implies eNND

2 < eNND

A1 + eNND

B1 , yields βg′(eNND

A1 + eNND

2 ) <

βg′((1/2)(eNND

A1 +eNND

B1 +eTCND

2 )). This last inequality implies 2eNND

2 > eNND

B1 −eNND

A1 +

eTCND

2 , which cannot hold since eTCND

2 > eNND

1 > eNND

2 and eNND

B1 − eNND

A1 > eNND

2 by

the initial assumption that effort smoothing over tasks is not achieved. Thus, first-

period effort will always be chosen such that effort smoothing over tasks is achieved in

period 2.

Taking into account that effort will be split evenly among tasks, the utility of a

second-period naif is

UNND

2 = −c(e2) + β2g((1/2)(eNND

1 + e2)) .

The optimal second-period effort, eNND

2 , is characterized by the following first-order

condition:

βg′((1/2)(eNND

1 + eNND

2 ) = c′(eNND

2 ), (A.46)

Comparing (A.43) and (A.46) yields eNND

2 < eTCND

2 , which in combination with (A.42)

and (A.46) implies eNND

1 < eNND

2 .

Next, consider the case where a naive agent faces a deadline, formally, eA1 = eA,

eA2 = 0, and eB2 = e2. The utility of a naive agent in the first period is given by

UND

1 = −c(eA + eB1) − βc(eTC
2 (eB1)) + βg(eA) + βg(eB1 + eTC

2 (eB1)) ,

where eTC
2 (eB1) is characterized by

g′(eB1 + eTC
2 (eB1)) = c′(eTC

2 (eB1)). (A.47)

The first-order conditions of utility maximization take the following form:

∂UND

1

∂eA

= 0 ⇐⇒ βg′(eA) − c′(eA + eB1) = 0 (A.48)

∂UND

1

∂eB1

= 0 ⇐⇒ βg′(eB1 + eTC
2 (eB1)) − c′(eA + eB1) = 0 (A.49)
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If the above maximization problem has interior solutions, eA > 0 and eB1 > 0, then

these solutions are characterized by (A.48) and (A.49). When both first-order condi-

tions are satisfied, we have g′(eA) = g′(eB1 + eTC
2 (eB1)), that is, at an interior solution

we must have eA = eB1 + eTC
2 (eB1). By (A.48), however, it is immediate that eA is

decreasing in eB1. Moreover, comparing (A.47) and (A.48) reveals that eTC
2 (eB1) > eA

for eB1 = 0. Together with deTC
2 (eB1)/deB1 ∈ (−1, 0), these last two observations imply

that eA < eB1+eTC
2 (eB1) for all eB1 ≥ 0, a contradiction. Hence, the naive agent’s first-

period utility maximization problem has a corner solution. Similar reasoning as in the

case of the sophisticate allows us to restrict attention to the following two candidates

for this corner solution: (i) eND

A > 0 and eND

B1 = 0 or (ii) eND

A = 0 and eND

B1 > 0. For (ii)

to be the solution to the naive agent’s first-period problem, the following conditions

have to hold:

βg′(0) − c′(eND

B1 ) ≤ 0 (A.50)

βg′(eND

B1 + eTC
B2 (eND

B1 )) − c′(eND

B1 ) = 0 (A.51)

Obviously, for (A.50) and (A.51) to hold simultaneously it is required that eND

B1 +

eTC
2 (eND

B1 ) ≤ 0, which can never be the case. Therefore we are left with eND

A > 0 and

eND

B1 = 0, that is, in the first period the agents invests only in task A. This first-period

effort is characterized by

βg′(eND

A ) = c′(eND

A ). (A.52)

The second-period utility of a naive agent under a regime with a deadline takes the

following form:

UND

2 = −c(eB2) + βg(eND

) + βg(eB2) .

The optimal second-period effort then satisfies

βg′(eND

B2 ) = c′(eND

B2 ). (A.53)

Comparing (A.52) and (A.53) yields eND

A = eND

B2 , that is, when facing a deadline a

naive agent equates effort over tasks and smoothes effort over time. Let the effort level

that is chosen by a naive agent under a regime of deadlines per period and per task be

denoted by eND

.

To show that a naive agent chooses a higher effort level in the first period when

facing a deadline, suppose, in contradiction, that eNND

1 ≥ eND

. Then βg′(eND

) =

c′(eND

) ≤ c′(eNND

1 ) = βg′(1
2
(eNND

1 + eTC
2 (eNND

1 )), where the first equality holds by
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(A.52) and the second equality holds by (A.42). But with g′′(·) < 0, this implies eND

≥
1
2
(eNND

1 + eTC
2 (eNND

1 )) > eNND

1 , a contradiction. Hence we must have eNND

1 < eND

. Let

eNND
2 (e1) be characterized by βg′((1/2)(e1 + eNND

2 (e1))) = c′(eNND

2 (e1)). Note that

eNND

2 (eND

) = eND

, which in combination with (A.52) and deNND

2 (e1)/de1 ∈ (−1, 0),

eNND

1 < eND

implies eNND

1 + eNND

2 < 2eND

. That is, when facing a deadline, a naive

agent exhibits a higher total effort level than under regime without a deadline.

To see that UND

0 > UNND

0 the same reasoning applies as in the case of the sophisti-

cate. For a formal argument we refer to the proof of Proposition 4. Intuitively, under

deadlines a naive chooses a more desirable total effort level than under no deadlines,

which moreover is allocated more efficiently over the two periods.

Q.E.D.

2.2. Partial Naiveté

In this section of the appendix we analyze the behavior of a partially naive agent in

the sense of O’Donoghue and Rabin (2001b). A partially naive person is aware that

he has future self-control problems, but he underestimates their magnitude. Formally,

let β̂ ∈ (β, 1) be the person’s belief about what his taste for immediate gratification

will be in the future. Thus, in the single task model a partially naive agent believes in

period 1 that his future self will maximize −c(e2)+ β̂g(ê1+e2), whereas he will actually

choose e2 to maximize −c(e2) + βg(ê1 + e2). Note that the extreme cases β̂ = 1 and

β̂ = β correspond to the cases analyzed in the main body of the paper, (total) naiveté

and (full) sophistication, respectively.

Single Task Model

Here, we investigate the behavior of a partially naive agent in the single task model

with two periods for working on that task.

Definition A.1: A perception-perfect strategy for a partially naive agent is given by

(eP
1 , e

P
2 (ê1)) such that (i) ∀ ê1 ≥ 0, eP

2 (ê1) ∈ arg maxe2
{−c(e2) + βg(ê1 + e2)}, and (ii)

eP
1 ∈ arg maxe1

{−c(e1)−c(e
B
2 (e1))+βg(e1+e

B
2 (e1))} where eB

2 (ê1) ∈ arg maxe2
{−c(e2)+

β̂g(ê1 + e2)}. Let eP
2 = eP

2 (eP
1 ).

In the first period the partially naive agent believes that his second-period effort, eB
2 (ê1),

is characterized by the following first-order condition

β̂g′(ê1 + eB
2 (ê1)) = c′(eB

2 (ê1)) . (A.54)
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Differentiating (A.54) with respect to e1 and rearranging yields

deB
2 (e1)

de1
= −

β̂g′′(e1 + eB
2 (e1))

β̂g′′(e1 + eS
B(e1)) − c′′(eB

2 (e1))
∈ (−1, 0) .

The utility of a partially naive agent in the the first period, taking his believed second-

period reaction into account, is

−c(e1) − βc(eB
2 (e1)) + βg(e1 + eB

2 (e1)) . (A.55)

The corresponding first-order condition for optimality is given by

−c′(eP
1 ) + βg′

(
eP
1 + eB

2 (eP
1 )
)

+
deB

2 (eP
1 )

de1
β
[
g′
(
eP
1 + eB

2 (eP
1 )
)
− c′(eB

2 (eP
1 ))
]

= 0.(A.56)

The first-order condition is necessary and sufficient for optimality by similar reasonings

as in the case of a sophisticated agent. Finally, actual second-period effort, eP
2 , is

characterized by

βg′(eP
1 + eP

2 ) = c′(eP
2 ) . (A.57)

A comparison of (A.54) and (A.57) directly reveals that eB
2 (eP

1 ) > eP
2 . A partially naive

agent is overly optimistic when predicting his future self’s willingness to work. From

equations (A.54) and (A.56) it follows that −c′(eP
1 )+βg′(eP

1 +eB
2 (eP

1 )) > 0, which implies

that c′(eP
1 ) < βg′(eP

1 + eB
2 (eP

1 )) < βg′(eP
1 + eP

2 ) = c′(eP
2 ). Thus, eP

1 < eP
2 . Put verbally,

a partially naive agent increases his effort over time. As last result for the single task

case we show that a partially naive agent works less in total than a time-consistent

agent, i.e., eP
1 + eP

2 < 2eTC . Suppose, in contradiction, that eP
1 + eP

2 ≥ 2eTC . We know

that βg′(eP
1 +eB

2 (eP
1 ))−c′(eP

1 ) > 0 = g′(eTC +eTC)−c′(eTC). Note that eP
1 +eP

2 ≥ 2eTC

implies that eP
1 + eB

2 (eP
1 ) ≥ 2eTC . Since g′′(·) < 0 and c′′(·) > 0 the above inequality

implies that eP
1 < eTC . Furthermore, βg′(eP

1 +eP
2 )−c′(eP

2 ) = 0 = g′(eTC+eTC)−c′(eTC).

But this means that eP
2 < eTC which leads to a contradiction to our a priori assumption

that eP
1 +eP

2 ≥ 2eTC . Now we have established the following result, which is the analog

to Propositions 1 and 2 for the case of a partially naive agent.

Proposition A.1: (i) A partially naive agent invests more effort in period 2 than in

period 1, i.e., eP
1 < eP

2 . (ii) The total effort a partially naive agent invests is lower

than the total effort of a time-consistent person, i.e., eP
1 + eP

2 < 2eTC. (iii) A partially

naive agent overestimates his future effort, i.e., eP
2 < eB

2 (eP
1 ).

Two Task Model

This subsection analyzes the two task model introduced in Section 5 for the case of a

partially naive agent. Let us first consider the no deadline regime, that is, the agent
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can work in periods 1 and 2 on both tasks, A and B. In principle, the agent chooses

in each period t ∈ {1, 2} an effort level et and an allocation αt, with eAt = αtet and

eBt = (1 − αt)et. Obviously, ex post it is optimal that the agent invests the same

amount in task A as in task B. Ex ante, however, it is not clear that the agent will

choose in the first period (e1, α1) such that his second-period self considers it optimal to

choose (e2, α2) such that eA = eB. Fortunately, by applying the same line of arguments

as in the proof of Proposition 4 one can show that it is never optimal for a first-period

partially naive agent to choose (e1, α1) such that neither his believed second-period

behavior nor his actual second-period behavior will not lead to effort smoothing over

tasks. Roughly, the intuition is that e1 has to be very high and α1 has to be close to

zero or one such that the total effort needed in the second period to set eA = eB is

too costly for the second-period self. We know from the single task case that the first-

period self prefers to work less today and more tomorrow. This can only be achieved

by a tupel (e1, α1) such that effort smoothing over tasks is a best response for both

the actual and the believed second-period self. This observation allows us to focus on

the agent’s effort choice over time. With effort being spread out evenly among the two

tasks, the believed second-period effort as a function of first-period effort, eBND

2 (ê1), is

characterized by

c′(eBND

2 (ê1)) = β̂g′((1/2)(ê1 + eBND

2 (ê1))). (A.58)

The effort level chosen by a partially naive agent in the first period is determined by

the following first-order condition,1

βg′
(

(1/2)(eBND

1 + eBND

2 (eBND

1 ))
)

− c′(eBND

1 )

+
deBND

2 (e1)

de1
β
[

g′
(

(1/2)(eBND

1 + eBND

2 (eBND

1 ))
)

− c′(eBND

2 (eBND

1 ))
]

= 0 . (A.59)

The actual second-period effort, eP ND

2 , is characterized by

c′(eP ND

2 ) = β̂g′((1/2)(eP ND

1 + eP ND

2 )). (A.60)

Comparing the above equations reveals that eP ND

1 < eP ND

2 and eP ND

A = eP ND

B =

(1/2)(eP ND

1 + eP ND

2 ). Put verbally, when not facing a deadline, a partially naive agent

equates effort over tasks but does not achieve effort smoothing over time.

Next, the situation where the partially naive agent faces a deadline after the first

period for task A is analyzed. Thus, the agent chooses (eA, eB1) in the first period and

eB2 in the second period. When facing this interim deadline, a partially naive agent

considers it optimal to work exclusively on task A in the first period, i.e., eP D

B1 = 0.

1The first-order approach is valid according to the same reasoning as in the single-task case.
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This statement can be verified by the same line of arguments as used to show the

corresponding result for the sophisticated agent. Hence, the effort levels which are

chosen strictly positive, eP D

A and eP D

B2 , are characterized as follows:

c′(eP D

A ) = βg′(eP D

A ) (A.61)

c′(eP D

B2 ) = βg′(eP D

B2 ) (A.62)

When facing a deadline, a partially naive agent smoothes effort over time and equates

effort over tasks. Let eP D

= eP D

A = eP D

1 and eP D

= eP D

B2 = eP D

B = eP D

2 . Now, we can

state the analog result to Proposition 4 (respectively 5) for the case of a partially naive

agent.

Proposition A.2: When facing a deadline, a partially naive agent chooses a higher

effort level in the first period and a higher total effort level than under a regime without

a deadline, i.e., eP ND

1 < eP D

and eP ND

1 + eP ND

2 < 2eP D

. Moreover, the partially naive

agent is strictly better off from a long-run perspective when facing a deadline, i.e.,

UP D

0 > UP ND

0 .

The statements of the proposition that do not follow from the above analysis can be

shown by applying the corresponding parts of the proof of Proposition 4.

3. Appendix to Chapter III

3.1. Proofs of Propositions and Lemmas

Proof of Lemma III.1: Suppose s1 ≤ s2 ≤ 1, then consumer θ’s net utility is:
1
2
θ(si − pi)

2 for i = 1, 2, if he buys from firm i. Hence, firm 1’s profit is,

π1 =







p1(s1 − p1)
∫ 1

0
θ dθ , if s1 − p1 > s2 − p2

1
2
· p1(s1 − p1)

∫ 1

0
θ dθ , if s1 − p1 = s2 − p2 and s1 = s2

0 , otherwise

. (A.63)

Consequently, firm 1 has an incentive to choose p1 ≥ 0 as high as possible such that

s1 − p1 > s2 − p2 and it can serve the whole market. Clearly firm 1 will not set p1

higher than the monopoly price, that is p1 ≤ 1
2
s1. Note that the problem for firm 2 is

similar. Thus for the price game equilibrium one obtains:

if s1 = s2 =⇒ p∗1 = 0, p∗2 = 0 and π∗
1 = 0, π∗

2 = 0

if s1 < s2 =⇒ p∗1 = 0, p∗2 = s2 − s1 and π∗
1 = 0, π∗

2 > 0 .

If firm 1 is aware that s2 = 1, then the profit of firm 1 is always zero, independent of
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the quality level s1. Hence, all quality-levels s1 ∈ {0, 1
3
, 2

3
, 1} are possible in equilibrium

of the two-stage game (quality game and tariff game).

Q.E.D.

Proof of Lemma III.2: When both firms choose the same quality level, their

products are perfect substitutes. For the proof, I distinguish two cases.

Case 1: Suppose πi > πj ≥ 0 and that the corresponding tariffs are (Ti, Tj). Firm j

can increase its profit when it offers the tariff

T ∗
j =

{

Ti − ε , if Ai > 0

(pi − ε)q , if Ai = 0
,

where ε > 0 is sufficiently small. The profit of firm j is then arbitrarily close to πi > πj.

Case 2: Suppose that πi(Ti, Tj) = πj(Tj, Ti) > 0, where Ti is the tariff of firm i and

Tj the tariff of firm j. Again, firm j can increase its profit by slightly undercutting its

rival’s tariff. That is, firm j uses the tariff T ∗
j defined in Case 1. The rise in firm j’s

profit is then

lim
ε→0

[

πj(T
∗
j , Ti) − πj(Tj, Ti)

]

= lim
ε→0

[

πj(T
∗
j , Ti) − πi(Ti, Tj)

]

≥

[

1 − θ̂
]

Ai + pi

∫ 1

θ̂

qi(pi, θ) dθ −

[

λ · Ai + pi

∫ 1

1−λ

qi(pi, θ) dθ

]

> 0 , (A.64)

where λ is the fraction of customers that purchase from firm i under tariffs (Ti, Tj)

and θ̂ is the marginal consumer who is indifferent between buying or not when firm j

would not be present.2 Note that when firm j slightly undercuts firm i’s tariff, firm j

obtains all customers of firm i, λ, and additionally keeps some of its former customers.

Consequently, λ < 1 − θ̂.

Hence, when both firms produce the same quality level, there exists no equilibrium

where at least one firm earns strictly positive profits.

Q.E.D.

Proof of Lemma III.3: Follows immediately from Lemma 2.

Q.E.D.

2If the marginal consumer who is indifferent between purchasing or not when only firm i would be

present does not exist, then θ̂ is equal to zero.
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Proof of Lemma III.4: Obviously, the high-quality firm can always match the

offer of the low-quality firm which yields a profit for the high-quality firm greater than

that of the low-quality firm. Thus, if there exists an equilibrium where the low-quality

firm serves the consumers with types θ ∈ [θ̃, 1] 6= ∅, then both firms share the market

in the sense that both firms have a positive market share.

Note that for the complete analysis of the tariff game it was not used that s2 > s1.

Put differently, the label “firm 2” referred to the firm serving the market segment with

high valuations whereas “firm 1” referred to the firm serving the market segment of

moderate or low valuations. Now, suppose that s2 < s1 and that firm 2 still serves the

consumers with high valuations while firm 1 serves the consumers with low valuations.

In any pure strategy equilibrium, in which the two firms share the market, prices and

fixed fees have to satisfy the necessary conditions for profit maximization outlined in

Section 3. Let (p∗2, A
∗
2, p

∗
1, A

∗
1) be the equilibrium prices and fixed fees. With firm 2

selling to the high-type consumers and both firms being active in the market it holds

that

s2 − p∗2 > s1 − p∗1 . (A.65)

Since firm 2’s market share is (1 − θ̃∗), from (III.11) we obtain

−A∗
2 + (1 − θ̃∗)

1

2
[(s2 − p∗2)

2 − (s1 − p∗1)
2] − p∗2(s2 − p∗2)θ̃

∗ = 0 .

Inserting A∗
2 defined by (III.6) into the above equality yields

(1 − 2θ̃∗)
1

2
[(s2 − p∗2)

2 − (s1 − p∗1)
2] − A∗

1 − p∗2(s2 − p∗2)θ̃
∗ = 0 ,

which implies that θ̃∗ < 1/2. Thus, in any pure strategy equilibrium in which both

firms share the market, the firm that serves the high-type consumers has a market share

greater than 1/2. In the assumed equilibrium, the market share of firm 2 is (1 − θ̃∗)

and the market share of firm 1 is (θ̃∗ − 1
3
θ̃∗). Note that in equilibrium θ̂ = 1

3
θ̃. The

profit of firm 1 in equilibrium, using (III.13), amounts to

π∗
1 =

(

θ̃∗ −
1

3
θ̃∗
)

A∗
1 +

1

2
p∗1(s1 − p∗1)

[

(θ̃∗)2 −
1

9
(θ̃∗)2

]

. (A.66)

The fixed fee of firm 1 is given by (4), i.e., A∗
1 = (1/3)θ̃∗(1/2)(s1 − p∗1)

2. Thus,

π∗
1 =

1

9
(θ̃∗)2(s1 − p∗1)

2 +
4

9
(θ̃∗)2p∗1(s1 − p∗1) (A.67)

=
1

9
(θ̃∗)2(s1 − p∗1)[s1 + 3p∗1] . (A.68)

The above profit is maximized for p1 = (1/3)s1. Since θ̃∗ < 1/2, π∗
1 is lower than

πMAX
1 =

1

4
·
1

9

(
2

3
s1

)

(2s1) =
1

27
s2
1 . (A.69)
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In the following, I will show that if firm 1 is the high-quality firm, then there exists a

tariff T̂1 that yields a profit π̂1 for firm 1 that strictly exceeds πMAX
1 . Suppose firm 1

offers the “linear-undercutting” tariff with Â1 = 0 and p̂1 = min{(1/2)s1, s1 − s2 + p∗2}

to consumers. By construction, all consumers θ ∈ [0, 1] now purchase from firm 1, since

s1 − p̂1 ≥ s2 − p∗2 and ÂH = 0 < A∗
L. The profit of firm 1 when offering T̂1 is

π̂1 =
1

2
p̂1(s1 − p̂1) . (A.70)

Suppose p̂1 = (1/2)s1, then π̂1 = (1/8)s2
1. If, on the other hand, p̂1 = s1 − s2 + p∗2, then

π̂1 = (1/2)(s1 − s2 + p∗2)(s2 − p∗2). Note that s1 − s2 ≥ 1/3 and s2 − p∗2 ≥ (1/2)s1, since

min{(1/2)s1, s1 − s2 + p∗2} = s1 − s2 + p∗2. Thus, in this case π̂1 ≥ (1/12)s1. While in

both cases π̂1 ≥ min{(1/8)s2
1, (1/12)s1} > (1/27)s2

1 = πMAX
1 , offering T̂1 is profitable

for firm 1 (high-quality firm), which concludes the proof.

Q.E.D.

Proof of Proposition III.1: In any pure strategy Nash equilibrium of the tariff

game either the two firms share the market, or only one firm is active in the market.

First, I analyze the equilibrium where only one firm is active in the market. I will show

that this is an equilibrium, if the firms’ degree of product differentiation is not high.

Thereafter, it is shown that there exists an equilibrium in which both firms share the

market, if the firms’ degree of quality differentiation is not low.

Step 1 (only one firm has a positive market share): If only one firm has a positive

market share in equilibrium, then this must be the high-quality firm (firm 2). For any

given tariff of firm 1, if firm 2 offers T2(q) = q(s2 − s1) to consumers, firm 2 serves the

whole market and makes strictly positive profits. Thus, if only one firm has a positive

market share then π∗
1 = 0. With π∗

1 = 0 firm 2 serves the whole market which implies

that A∗
2 = 0. If firm 2 does not serve the whole market, then there is an unsatisfied

residual demand which can profitably be served by firm 1. Next, I will show that π∗
1 = 0

implies that p∗1 = A∗
1 = 0. Suppose, in contradiction, that firm 1 makes a zero profit

but does not set p∗1 = A∗
1 = 0.

Case 1: A∗
1 > 0 and p∗1 ≥ 0. In this case, the best response for firm 2 is to set A∗

2 > 0.

To see this, suppose A∗
1 > 0, π∗

1 = 0 and A∗
2 = 0. Since firm 2 serves whole market,

if firm 2 increases A2 slightly above zero, firm 2 looses some consumers with types θ

close to zero. Note that these consumers do not switch to firm 1 for A2 sufficiently

small but to the outside option. Nevertheless, firm 2 might loose some consumers with

high valuations to firm 1 when slightly increasing A2 without adjusting p2. Suppose

that – if necessary – firm 2 adjusts p2 such that all consumers with high valuations still

purchase from firm 2. Formally, if the price adjustment is necessary firm 2 decreases p2



Essays in Industrial Organization and Behavioral Economics 141

such that (1/2)(s2 − p2)
2 −A2 = (1/2)(s1 − p∗1) −A∗

1. Thus, the necessary decrease in

p2 due to an increase in A2 either is zero (if the adjustment is not necessary), or given

by

dp2(A2)

dA2

=
−1

s2 − p2(A2)
. (A.71)

Firm 2’s profit as a function of A2 < A∗
1 is then given by

π2(A2) = [1 − θ̄(A2)]A2 + p2(A2)[s2 − p2(A2)](1/2)[1 − θ̄2(A2)] , (A.72)

where θ̄ is the marginal consumer who is indifferent between purchasing from firm 2

and not purchasing the good. Taking the derivative of π2(A2) with respect to A2 and

evaluating this derivative at A2 = 0 yields

dπ2(A2)

dA2

∣
∣
∣
∣
A2=0

= 1 +
dp2(0)

dA2

1

2
[s2 − 2p∗2] . (A.73)

For A2 = 0 it holds that p2(A2) = p∗2. Since p∗2 is an equilibrium price, p∗2 ≤ (1/2)s2 =

pM(s2), where pM(s2) is the optimal linear price of a monopolist with quality s2. This

implies that 2p2(A2) ≤ s2, and hence

dπ2(A2)

dA2

∣
∣
∣
∣
A2=0

≥ 1 −
s2 − 2p∗2

2(s2 − p∗2)
> 0. (A.74)

Thus, given A∗
1 > 0, we must have A∗

2 > 0, which cannot happen in an equilibrium

with only firm 2 being active.

Case 2: A∗
1 = 0 and p∗1 > 0. For s2 = 1 and s1 = 2/3, if firm 2 serves the whole

market it is profitable to set p∗2 > s2−s1, since in this case, s2−s1 < (1/2)s2 = pM(s2).

With p∗2 > s2 − s1, firm 1 can realize strictly positive profits by setting A1 = 0 and

0 < p1 < p2 − (s2 − s1), a contradiction to π∗
1 = 0. For s1 = 1/3 and s2 ∈ {2/3, 1} it is

optimal for firm 2 to set p∗2 ≤ pM(s2) ≤ s2 − s1 and A∗
2 > 0. Note that for p∗2 ≤ s2 − s1

and p1 > 0 firm 2 offers the product with the strictly higher net value (s − p). Thus,

by (III.11), and since θ̃ = 0 implies that A2 = 0,

∂π2

∂θ̃

∣
∣
∣
∣
θ̃=0

> 0 .

Hence, it is optimal for firm 2 not to serve the whole market, which implies A∗
2 > 0.

Thus, if only one firm has a positive market share in equilibrium, then p∗1 = 0 and

A∗
1 = 0.

Next, given p1 = A1 = 0, firm 2’s best response is calculated. It is shown that the

unique best response for firm 2 is to offer the tariff T2(q) = 0 + (s2 − s1)q, if the degree

of quality differentiation is not high, i.e., (s2 = 1, s1 = 2/3) and (s2 = 2/3, s1 = 1/3). If
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firm 2’s profit maximization problem has an interior solution, then T2 is characterized

by firm 2’s FOCs. According to (III.12), the optimal fixed fee is given by

A∗
2 =

1

2
(1 − θ̃)

[
1

4
s2
2(1 − θ̃2) − s2

1

]

. (A.75)

The fixed fee is strictly positive if the following condition is satisfied:

1

4
s2
2(1 − θ̃2) − s2

1 > 0 . (A.76)

For 2s1 ≥ s2 and θ̃ > 0 condition (A.76) is violated and thus the optimal tariff is a

corner solution. That is, T2 is either a linear tariff (A2 = 0) or a flat tariff (p2 = 0).

Note that θ̃ = 0 implies A2 = 0.

I) Flat tariff (A2 > 0, p2 = 0): By the definition of the marginal consumer θ̃, for

p1 = A1 = 0, I obtain

A2 =
1

2
θ̃(s2

2 − s2
1) . (A.77)

Firm 2’s profit is given by

π2 = (1 − θ̃)θ̃
1

2
(s2

2 − s2
1) .

The profit maximizing marginal consumer is θ̃ = 1/2 and the profit πflat is then

πflat =
1

8
(s2

2 − s2
1) . (A.78)

II) Linear tariff (A2 = 0, p2 > 0): Given that the degree of quality differentiation is

not high, for the case with linear tariffs it is clear that the optimal marginal price is

p∗2 = s2 − s1. Then each consumer purchases from firm 2. If firm 2 sets a higher price

it has no market share, a lower price is not optimal because p∗2 = s2−s1 ≤
1
2

= pM(s2),

where pM is the price of a monopolist with linear tariff. The profit of firm 2 with linear

pricing, πlin, is

πlin =
1

2
s1(s2 − s1) . (A.79)

A comparison of (A.78) and (A.79) reveals that a linear tariff is optimal for firm 2.

To conclude Step 1 it is shown that firm 2 always leaves an unsatisfied residual

demand if s2 = 1 and s1 = 1/3. From equation (III.11) it follows that ∂π2

∂θ̃

∣
∣
θ̃=0

> 0,

given that

(s2 − p2)
2 − (s1 − p1)

2 > 0 (A.80)

Note that p2 ≤ (1/2)s2 = pM(s2). Thus, condition (A.80) holds for s2 > 2s1, since

(s2 − p2) ≥ (1/2)s2 > s1 ≥ (s1 − p1). Hence, for s2 > 2s1 in any pure strategy

equilibrium both firms share the market.
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Step 2 (both firms are active in the market): Suppose both firms share the market

in equilibrium. From Lemma 4 it follows that one can focus on the case where the

high-quality firm (firm 2) serves the consumers with high θ’s. If there exists a pure

strategy Nash equilibrium in which both firms share the market, then this equilibrium

is characterized by the equations (III.5), (III.6), (III.10), (III.12), (III.14), and (III.15).

This system of equations can be simplified to a single equation in θ̃, such that θ̃∗ is

characterized by P (θ̃∗) = 0, where

P (θ̃) = 27s4
2(9 − 30θ̃ − 29θ̃2 + 108θ̃3 + 63θ̃4 − 110θ̃5 − 75θ̃6)

+ 108s2
2(3 − 17θ̃ + 14θ̃2 + 46θ̃3 − 33θ̃4 − 45θ̃5)

+ 108(1 − 8θ̃ + 18θ̃2 − 27θ̃4)

− 576s2
1(3 − 23θ̃ + 57θ̃2 − 45θ̃3)

− 192s2
1s

2
2(9 − 48θ̃ + 58θ̃2 + 40θ̃3 − 75θ̃4)

− 16s2
1s

4
2(27 − 81θ̃ − 18θ̃2 + 190θ̃3 − 25θ̃4 − 125θ̃5) .

Unfortunately, P (θ̃) is a polynomial of sixth order in θ̃ that cannot be solved analyt-

ically. A plot of the polynomial reveals that P (θ̃) has exactly one root in [0, 1] for

(s2 = 1, s1 = 1/3) and (s2 = 2/3, s1 = 1/3) and no root in [0, 1] for (s2 = 1, s1 = 2/3).

A plot of the polynomial for s2 = 1 and s1 = 1/3 is given below. If P (θ̃) = 0 for

0.2 0.4 0.6 0.8 1
theta

-100

-50

50

P

Figure A.1.: Solution of the equilibrium marginal consumer.

θ̃ ∈ [0, 1], then the root of P (θ̃) characterizes a pure strategy Nash equilibrium. By

using numerical methods one can solve for the unique θ̃∗ in the cases (s2 = 1, s1 = 1/3)

and (s2 = 2/3, s1 = 1/3). Having obtained θ̃∗ one can compute the corresponding

equilibrium tariffs, profits, and market shares. For s2 = 1 and s1 = 1/3 the equilibrium
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values are given in the text, for s2 = 2/3 and s1 = 1/3 the equilibrium values are:

π1 = .000885066 π2 = .0608325

p1 = .0753264 p2 = .255018

A1 = .00260662 A2 = .014693

θ̂ = .078315 θ̃ = .234945

Q.E.D.

Proof of Proposition III.2: The tariff-game equilibria are characterized in Propo-

sition 1. Thus, it remains to show that si = 1, sj = 1/3 with i, j = 1, 2 and i 6= j is

the unique pure strategy equilibrium of the quality game. Clearly, si = 1 and sj = 2/3

is not an equilibrium, since with these quality levels π∗
j = 0, but with sj = 1/3 firm j

makes strictly positive profits. Similarly, si = 2/3 and sj = 1/3 is not an equilibrium

irrespective of which equilibrium is played at the tariff stage, because it is profitable

for firm j to deviate to sj = 1. To see this note that for si = 2/3 and sj = 1/3 firm j’s

profit is either zero or .000885066. When deviating to sj = 1, however, firm j serves

the whole market and makes profits of: πj = (sj − si)si(1/2) = 1/9 > .000885066.

Obviously, for si = 1 and sj = 1/3 no firm has an incentive to deviate, hence this is

the unique pure strategy equilibrium of the quality game.

Q.E.D.

Proof of Proposition III.3: Follows directly from Proposition 2 in combination

with Lemma 1.

Q.E.D.

Proof of Proposition III.4: If price discrimination is permitted, the equilibrium

tariffs, profits, and quality-levels are given in the main body of the paper. The social

welfare is then:

WD := π1 + π2 +

∫ 1

θ̃

v2(p2, θ) dθ − (1 − θ̃)A2 +

∫ θ̃

θ̂

v1(p1, θ) dθ − (θ̃ − θ̂)A1 . (A.81)

Substituting the equilibrium values into (A.81), one obtains

W ∗
D = 0.201913 . (A.82)

Furthermore, standard calculations show that industry profits and consumers’ surplus

are

Π∗
D := π∗

1 + π∗
2 = 0.144215 (A.83)

CS∗
D = 0.0576981 . (A.84)
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On the other hand, if price discrimination is banned, only one firm (M) enters the

market. The monopolist chooses sM = 1. The profit maximization problem for the

monopolist is:

πM = pM

∫ 1

0

θ(1 − pM) dθ → max
pM

. (A.85)

The optimal price is p∗M = 1
2

and the corresponding equilibrium values for profit, welfare

and consumers’ surplus are:

π∗
M = 0.125 (A.86)

W ∗
M = 0.1875 (A.87)

CS∗
M = 0.0625 . (A.88)

Q.E.D.

3.2. Examination of the Second-Order Necessary Conditions

First I check the second-order condition (SOC) for firm 2 (high-quality). The partial

derivative of π2 with respect to p2 is:

∂π2

∂p2

=
1

2
s2(1 − θ̃)2 − (1 − θ̃)p2 . (A.89)

From (A.89) it is easy to take the second derivative of π2 with respect to p2 and the

cross-partial:

∂2π2

∂p2
2

= −(1 − θ̃) < 0 (A.90)

∂2π2

∂θ̃∂p2

= p2 − s2(1 − θ̃) . (A.91)

Taking the second-order partial derivative of π2 with respect to θ̃ yields

∂2π2

∂θ̃2
= −

[
(s2 − p2)

2 − (s1 − p1)
2
]
− p2(s2 − p2) < 0 . (A.92)

Since the zero points of the FOCs are unique, the FOCs describe a global maximum

point if the profit function is concave in the neighborhood of the stationary point.

Consequently, it is sufficient to check the sign of the determinant of the Hessian matrix.

The determinant of the Hessian is:

det(H) ≡
∂2π2

∂θ̃2
·
∂2π2

∂p2
2

−

(
∂2π2

∂θ̃∂p2

)2

⇒ det(H) = (1 − θ̃)
[
(s2 − p2)

2 − (s1 − p1)
2 + p2(s2 − p2)

]
−

(

p2
2 − 2p2s2(1 − θ̃) + s2

2(1 − θ̃)2
)

. (A.93)
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Since a corner solution (p2 = 0 or p2 = s2) cannot be optimal, the optimal marginal

price is characterized by the FOC. Inserting the optimal marginal price p∗2 = 1
2
(1− θ̃)s2

into (A.93) yields

det(H) =

(1 − θ̃)

[

(s2 − p2)
2 − (s1 − p1)

2

︸ ︷︷ ︸

≥0, for A2 ≥ 0

+
1

4
s2
2(1 − θ̃)(1 + θ̃) −

1

4
s2
2(1 − θ̃)

︸ ︷︷ ︸

>0

]

> 0 . (A.94)

Q.E.D.

Next, I check the SOC for the low-quality firm. To prove that the SOC holds for

the low quality firm using the determinant of the Hessian matrix is very tedious. It

is easier to show that the profit maximization problem of firm 1 is not solved by a

corner solution. Suppose firm 1 sets the marginal price as high as possible, that is,

p1 = s1. Then consumers obtain a non positive surplus if they purchase from firm 1

and consequently π1 = 0. Similarly, if firm 1 sets θ̃ = 0 then it has no market share

and thus zero profits. On the other hand, if θ̃ = 1 the high-quality firm has no market

share and realizes zero profits. This cannot happen in equilibrium: if only one firm

is active in the market it is clearly the high-quality firm. To summarize, all corner

solutions can be ruled out except that firm 1 sets p1 = 0 and offers a flat tariff.

Suppose p1 = 0 is optimal. The profit maximization problem of firm 1 then is given

by

πflat
1 (θ̃) :=

(

θ̃ − θ̂(θ̃)
)

A1(θ̃) → max
θ̃

with

A1 =
1

2
θ̃[s2

1 − (s2 − p2)
2] + A2 and θ̂ =

2A1

s2
1

.

Taking the derivative of πflat
1 with respect to θ̃ yields

dπflat
1

dθ̃
= 0 ⇐⇒

(s2 − p2)
2

s2
1

(

θ̃
1

2

[
(s2

1 − (s2 − p2)
2
]
+ A2

)

+

(

θ̃(s2 − p2)
2 − 2A2

s2
1

)

1

2

[
s2
1 − (s2 − p2)

2
]

= 0 . (A.95)

Solving the above equation for θ̃ yields

θ̃ =
2(s2 − p2)

2 − s2
1

(s2 − p2)2 [(s2 − p2)2 − s2
1]
A2 . (A.96)

Evaluating the profit function, πflat
1 , at the equilibrium tariff of firm 2 and for s1 = 1

3

and s2 = 1 (equivalent calculations for s2 = 2/3, s1 = 1/3) yields

πflat
1 = 0.00129999 < 0.0138222 = π∗

1 .
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Hence, a flat tariff is not optimal for firm 1. All potential corner solutions have been

ruled out as profit maximizing solutions, thus the profit maximization problem of firm

1 has an interior solution.

Q.E.D.

4. Appendix to Chapter IV

4.1. Proofs of Propositions and Lemmas

Proof of Lemma IV.1: For the proof we omit that demand depends on the

marginal price p. Suppose, in contradiction, that φ1 < φ2 but q̂(φ1) > q̂(φ2). By

revealed preferences the two inequalities below follow immediately,

u(q̂(φ1);φ1) − T (q̂(φ1)) +

∫

X(q̂(φ1))

[T (q̂(θ)) − T (q̂(φ1))]f(θ) dθ

− λ

∫

Xc(q̂(φ1))

[T (q̂(φ1)) − T (q̂(θ))]f(θ) dθ ≥ u(q̂(φ2);φ1) − T (q̂(φ2))

+

∫

X(q̂(φ2))

[T (q̂(θ)) − T (q̂(φ2))]f(θ) dθ − λ

∫

Xc(q̂(φ2))

[T (q̂(φ2)) − T (q̂(θ))]f(θ) dθ,

(A.97)

and

u(q̂(φ2);φ2) − T (q̂(φ2)) +

∫

X(q̂(φ2))

[T (q̂(θ)) − T (q̂(φ2))]f(θ) dθ

− λ

∫

Xc(q̂(φ2))

[T (q̂(φ2)) − T (q̂(θ))]f(θ) dθ ≥ u(q̂(φ1);φ2) − T (q̂(φ1))

+

∫

X(q̂(φ1))

[T (q̂(θ)) − T (q̂(φ1))]f(θ) dθ − λ

∫

Xc(q̂(φ1))

[T (q̂(φ1)) − T (q̂(θ))]f(θ) dθ .

(A.98)

Subtracting (A.97) from (A.98) and rearranging yields

[u(q̂(φ1);φ1) − u(q̂(φ2);φ1)] − [u(q̂(φ1);φ2) − u(q̂(φ2);φ2)] ≥ 0

⇐⇒

∫ q̂(φ1)

q̂(φ2)

∂u(q, φ1)

∂q
dq −

∫ q̂(φ1)

q̂(φ2)

∂u(q, φ2)

∂q
dq ≥ 0

⇐⇒

∫ q̂(φ1)

q̂(φ2)

∫ φ2

φ1

∂2u(q, θ)

∂q∂θ
dθdq ≤ 0 .

The last inequality cannot hold, since ∂2u(q, θ)/∂q∂θ > 0 for q ≤ qS(θ) and by as-

sumption φ1 < φ2 and q̂(φ1) > q̂(φ2) by hypothesis.

Q.E.D.
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Proof of Lemma IV.3: Suppose, in contradiction, there is a personal equilibrium

that is at least at one point φ ∈ Θ discontinuous. If the personal equilibrium is discon-

tinuous at φ then either q̂(φ; p) < limε→0 q̂(φ + |ε|; p) or limε→0 q̂(φ − |ε|; p) < q̂(φ; p).

While we proof explicitly only the former case, the latter one proceeds by analogous

steps. Let q̂(φ; p) =: q1 and limε→0 q̂(φ+ |ε|; p) =: q2 with q1 < q2 by discontinuity and

monotonicity. First, consider a type θ ≤ φ who deviates from q̂(θ; p) ≤ q1 to a higher

quantity q ∈ (q1, q2). The utility of this type is then given by

U(q|θ, ·) = u(q, θ) − pq − L

+ p

∫ θ̄

φ

(q̂(z; p) − q) f(z)dz − λp

∫ φ

θ

(q − q̂(z; p)) f(z)dz . (A.99)

For q ∈ (q1, q2) the derivative of type θ’s utility with respect to his demand is

dU(q|θ, ·)

dq
=
∂u(q, θ)

∂q
− p[2 + (λ− 1)F (φ)] . (A.100)

Note that U(q|φ, 〈q̂(θ; p)〉) is continuous for all q ≥ 0. Thus, it has to hold that

dU/dq|q=q1
≤ 0 since 〈q̂(z; p)〉 is a personal equilibrium which implies that type θ has

no incentive to demand a quantity q ∈ (q1, q2). Hence, the following inequality has to

be satisfied

∂u(q1, θ)/∂q − p[2 + (λ− 1)F (φ)] ≤ 0 . (A.101)

Since ∂u(q1, θ)/∂q is increasing in θ, the above inequality is satisfied for all types

θ ∈ [θ, φ] if it is satisfied for φ. Thus, it has to hold that

∂u(q1, φ)/∂q − p[2 + (λ− 1)F (φ)] ≤ 0 . (A.102)

Note that (A.102) gives us a lower bound for q1.

Now, consider a type θ > φ who deviates from q̂(θ; p) ≥ q2 to a lower quantity

q ∈ (q1, q2). The marginal change in type θ’s utility due to an increase in q amounts to

dU(q|θ, ·)

dq
=
∂u(q, θ)

∂q
− p[2 + (λ− 1)F (φ)] . (A.103)

This downward deviation is not profitable if dU/dq|q=q2
≥ 0. Note that q̂(θ; p) ≥ q2 for

θ > φ. Thus, the following inequality needs to be satisfied

∂u(q2, θ)/∂q − p[2 + (λ− 1)F (φ)] ≥ 0 . (A.104)

The above inequality is satisfied for all types θ ∈ (φ, θ̄] if it is satisfied for type φ. Thus,

it has to hold that

∂u(q2, φ)/∂q − p[2 + (λ− 1)F (φ)] ≥ 0 . (A.105)
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The inequality (A.105) provides an upper bound for q2. Combining inequalities (A.102)

and (A.105) yields

∂u(q2, φ)

∂q
≥
∂u(q1, φ)

∂q
, (A.106)

which implies that q2 ≤ q1 a contradiction to q1 < q2. Thus, the demand profile of any

personal equilibrium is continuous in the state of the world.

Q.E.D.

Proof of Lemma IV.4: To proof the result it suffices to show that there cannot be

an interval I ⊆ Θ such that for all θ ∈ I, q̂(θ; p) = q̄ iff (C1) holds. We show that there

is at least one type θ̂ ∈ I who can profitably deviate to a slightly higher or slightly

lower quantity than q̄. First, the upward deviation is analyzed.

Consider a type θ̂ ∈ I who consumes q̄ + ε, with ε > 0 but close to zero, his utility

is given by

U(q̄ + ε|θ̂, ·) = u(q̄ + ε, θ̂) − p(q̄ + ε) − L

+p

∫

{θ∈Θ|q̂(θ;p)>q̄+ε}

(q̂(θ; p)− q̄−ε)f(θ) dθ−λp

∫

{θ∈Θ|q̂(θ;p)<q̄+ε}

(q̄+ε− q̂(θ; p))f(θ) dθ .

Let ΘH ≡ {θ ∈ Θ|θ < inf{I}} and ΘL ≡ {θ ∈ Θ|θ > sup{I}}. Thus, since demand is

(weakly) increasing, it follows that for ε→ 0 it holds that {θ ∈ Θ|q̂(θ; p) > q̄+ε} = ΘH

and {θ ∈ Θ|q̂(θ; p) < q̄ + ε} = ΘL ∪ I. The increase in utility from consuming slightly

more than q̄ is

dU(q̄ + ε|θ̂, ·)

dε

∣
∣
∣
∣
ε=0

=
du(q̄, θ̂)

dq
− p− p

∫

θ∈ΘH

f(θ)dθ − λp

∫

θ∈ΘL∪I

f(θ)dθ

= ∂u(q̄, θ̂)/∂q − p[2 + (λ− 1)F (θH)] , (A.107)

where θH := inf{ΘH}.

Next, the case of a downward deviation is considered. Utility of a type θ̂ ∈ I, who

consumes q̄ − ε with ε > 0 is

U(q̄ − ε|θ̂, ·) = u(q̄ − ε, θ̂) − p(q̄ − ε) − L

+p

∫

{θ∈Θ|q̂(θ;p)>q̄−ε}

(q̂(θ; p)− q̄+ε)f(θ) dθ−λp

∫

{θ∈Θ|q̂(θ;p)<q̄−ε}

(q̄−ε− q̂(θ; p))f(θ) dθ .

The change in utility from an infinitesimal downward deviation is given by

dU(q̄ − ε|θ̂, ·)

dε

∣
∣
∣
∣
ε=0

= −
du(q̄, θ̂)

dq
+ p+ p

∫

θ∈ΘH∪I

f(θ)dθ + λp

∫

θ∈ΘL

f(θ)dθ

= −∂u(q̄, θ̂)/∂q + p[2 + (λ− 1)F (θL)] , (A.108)
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where θL := sup{ΘL}. A deviation is not profitable if for all θ ∈ I it holds that

dU(q̄ + ε|θ)/dε|ε=0 ≤ 0 and dU(q̄ − ε|θ)/dε|ε=0 ≤ 0.

Thus, a necessary and sufficient condition for the existence of a personal equilibrium

where all θ ∈ I consume q̄ is that (A.107) holds for θH and that (A.108) holds for θL.

Formally, the following to inequalities have to be satisfied:

∂u(q̄, θH)/∂q ≤ p[2 + (λ− 1)F (θH)], (A.109)

∂u(q̄, θL)/∂q ≥ p[2 + (λ− 1)F (θL)] . (A.110)

Define q̃(θ; p) such that ∂u(q̃(θ; p), θ)/∂q ≡ p[2+(λ−1)F (θ)]. Inequalities (A.109) and

(A.110) imply that q̃(θL; p) ≥ q̄ ≥ q̃(θH ; p). By (C1), dq̃(θ; p)/dθ > 0. With I being an

interval we have θL < θH and thus q̃(θL; p) < q̃(θH ; p) a contradiction. This completes

the proof.

Q.E.D.

Proof of Proposition IV.1: First, note that (IV.11) characterizes the personal

equilibrium except for a finite number of kink points. Since the candidate equilibrium

is continuously differentiable, we can conclude that there are no kinks in the personal

equilibrium if it is strictly increasing in θ.

Remember that local deviations q ∈ [q̂(θ; p), q̂(θ̄; p)] are considered in the main body

of the paper. Thus, it remains to show that there is no type who can profitably deviate

to a very high or very low quantity, q < q̂(θ; p) or q > q̂(θ̄; p). To verify this claim we

can focus on the case where p > 0.

Suppose the consumer chooses a quantity q < q̂(θ; p), then his utility is given by

U(q|θ, ·) = u(q, θ) − pq − L+ p

∫ θ̄

θ

[q̂(θ̂; p) − q]f(θ̂) dθ̂ .

The optimal quantity in this case, qL is characterized by

∂u(qL, θ)

∂q
= 2p .

Thus, qL > q̂(θ; p) for θ > θ and qL = q̂(θ; p) for θ = θ.

Now, consider the case where q > q̂(θ̄; p). Given the state of the world is θ, the

consumer’s utility is

U(q|θ, ·) = u(q, θ) − pq − L− pλ

∫ θ̄

θ

[q − q̂(θ̂; p)]f(θ̂) dθ̂ .

The optimal quantity in this case, qH is characterized by

∂u(qH , θ)

∂q
= (λ+ 1)p .
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Note that qH < q̂(θ; p) for θ < θ̄ and qH = q̂(θ; p) for θ = θ̄. Hence, no type has an

incentive to deviate.

Q.E.D.

Proof of Lemma IV.5: First, note that if the personal equilibrium is strictly

increasing in θ in some interval, then in this interval q̂(θ; p) ≡ q̃(θ; p). The proof of

Proposition 1 reveals that there is a unique equilibrium candidate if dq̂/dθ > 0.

Suppose there exists an interval I ⊆ Θ such that q̂(θ; p) = q̄ for all θ ∈ I. Let

θA := inf{I} and θB := sup{I}, with θA < θB. Furthermore, assume that if θA > θ

(θB < θ̄) then there exists an neighborhood (θA − ε, θA) (respectively (θB, θB + ε)) for

ε > 0 sufficiently small, where q̂(·) is strictly increasing. For q̂(·) being constant for all

θ ∈ I it has to hold that in all states of the world θ ∈ I neither a downward deviation

nor an upward deviation does improve the consumer’s utility.

Downward Deviation (q < q̄): Suppose θA > θ. The consumer deviates to a

lower quantity than q̄. Let θ̂(q) denote the state of the world for which the consumer

expected to choose the same quantity. Thus, the consumer feels a gain compared

to types (θ̂(q), θ̄) and a loss compared to types [θ, θ̂(q)]. Formally, q̂(θ̂(q); p) = q and

limε→0 θ̂(q̄−|ε|) = θA. Note, for a minor downward deviation θ̂′(q) > 0. The consumer’s

utility from a (minor) downward deviation is

UD = u(q, θ) − pq − L+ p

∫ θ̄

θ̂(q)

(q̂(θ; p) − q)f(θ)dθ

− λp

∫ θ̂(q)

θ

(q − q̂(θ; p))f(θ)dθ . (A.111)

Differentiating the above utility with respect to q yields

dUD

dq
=
∂u(q, θ)

∂q
− p

[

2 + (λ− 1)F (θ̂(q))
]

. (A.112)

A downward deviation is not utility enhancing if for all θ ∈ I the right-hand side of

(A.112) is non-negative even at q = q̄. Since we imposed the Spence-Mirrlees condition,

this holds for all θ ∈ I if it holds for θA. Thus, it has to hold that

∂u(q̄, θA)

∂q
− p [2 + (λ− 1)F (θA)] ≥ 0 . (A.113)

Note that q̂(θ; p) is continuous and defined by q̃(θ; p) for θ slightly below θA. Hence,

for θA > θ condition (A.113) has to hold with equality.

Now suppose θA = θ. It is straightforward to show that a downward deviation is not

utility improving if the following condition holds

∂u(q̄, θ)

∂q
− 2p ≥ 0 . (A.114)
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With similar reasonings it can be shown that a non-minor downward deviation is not

utility enhancing if the above inequality or (A.113) holds.

Upward Deviation (q > q̄): Suppose θB < θ̄. Let θ̂(q) still denote the cutoff

state, i.e., the consumer feels a gain compared to types (θ̂(q), θ̄] and a loss compared

to types [θ, θ̂(q)]. Now θ̂(q) > θB and limε→0 θ̂(q̄ + |ε|) = θB. The consumer’s utility

from a (minor) upward deviation is given by

UU = u(q, θ) − pq − L+ p

∫ θ̄

θ̂(q)

(q̂(θ; p) − q)f(θ)dθ

− λp

∫ θ̂(q)

θ

(q − q̂(θ; p))f(θ)dθ . (A.115)

The derivative of UU with respect to q is

dUU

dq
=
∂u(q, θ)

∂q
− p

[

2 + (λ− 1)F (θ̂(q))
]

. (A.116)

An upward deviation is not utility enhancing for all θ ∈ I if

∂u(q̄, θB)

∂q
− p [2 + (λ− 1)F (θB)] ≤ 0 . (A.117)

Since the personal equilibrium is continuous and θB < θ̄ the above inequality has to

hold with equality.

Suppose θB = θ̄. In this case the consumer has no incentive to choose a quantity

q > q̄ for all states θ ∈ I if

∂u(q̄, θ̄)

∂q
− p [1 + λ] ≤ 0 . (A.118)

Q.E.D.

Proof of Lemma IV.6: First, note that any personal equilibrium is bounded from

above by qMAX(p), which is implicitly defined by ∂u(qMAX , θ̄)/∂q = 2p. Let qFB(θ) de-

note the first-best quantities, i.e., ∂u(qFB(θ), θ)/∂q = c. In the following, we will show

that for p ≥ p̄ the joint surplus, S(p), is bounded from above and that this bound is

lower than S(0). To establish the above claim we define q̌(θ) := min{qFB(θ), qMAX(p̄)}.

It is important to note that there is a positive mass of types for which q̌(θ) = qMAX(p̄)

if p̄ > (1/2)c. The joint surplus generated with a unit price p ≥ p̄ is strictly lower than

Š =

∫ θ̄

θ

[
u(q̌(θ), θ) − cq̌(θ)

]
f(θ)dθ , (A.119)

since with a positive unit price the consumer expects to incur some net losses. A

sufficient condition for S(p) being maximized by a unit price p ∈ [0, p̄) is that S(0) ≥ Š
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(This condition is by no means necessary). S(0) ≥ Š is equivalent to

∫ θ̄

θ

{

u(qS(θ), θ) − u(q̌(θ), θ) − c[qS(θ) − q̌(θ)]

}

f(θ)dθ ≥ 0 . (A.120)

The above condition is satisfied for c being sufficiently small, which completes the proof.

Q.E.D.

Proof of Proposition IV.2: First, it is shown how to derive equation (IV.16).

Taking the derivative of (IV.15) with respect to p yields

S ′(p) =

∫ θ̄

θ

{(
∂u(q̂(θ, p), θ)

∂q
− c

)
dq̂(θ, p)

dp

+

∫ θ̄

θ

[q̂(φ, p) − q̂(θ, p)]f(φ) dφ+ p

∫ θ̄

θ

[
dq̂(φ, p)

dp
−
dq̂(θ, p)

dp

]

f(φ) dφ

− λ

∫ θ

θ

[q̂(θ, p) − q̂(φ, p)]f(φ) dφ− λp

∫ θ

θ

[
dq̂(θ, p)

dp
−
dq̂(φ, p)

dp

]

f(φ) dφ

}

f(θ) dθ .

(A.121)

The above equation can be rearranged to

S ′(p) =

∫ θ̄

θ

{(
∂u(q̂(θ, p), θ)

∂q
− p[1 + (λ− 1)F (θ)] − c

)
dq̂(θ, p)

dp

+ p

∫ θ̄

θ

dq̂(φ, p)

dp
f(φ) dφ+ λp

∫ θ

θ

dq̂(φ, p)

dp
f(φ) dφ

+

∫ θ̄

θ

[q̂(φ, p) − q̂(θ, p)]f(φ) dφ− λ

∫ θ

θ

[q̂(θ, p) − q̂(φ, p)]f(φ) dφ

}

f(θ) dθ . (A.122)

Note that the following equality holds

∫ θ̄

θ

{
∫ θ̄

θ

[q̂(φ, p) − q̂(θ, p)]f(φ) dφ− λ

∫ θ

θ

[q̂(θ, p) − q̂(φ, p)]f(φ) dφ

}

f(θ) dθ

= −(λ− 1)

∫ θ̄

θ

∫ θ̄

θ

[q̂(φ, p) − q̂(θ, p)]f(φ)f(θ) dφdθ. (A.123)

Inserting (A.123) and (IV.11) into (A.122) yields the equation (IV.16) stated in the

text part. By using the definition of Ψ(·) the above derivative can be further simplified

to

S ′(p) = Ψ(p) + p

∫ θ̄

θ

{
∫ θ̄

θ

dq̂(φ, p)

dp
f(φ)dφ+ λ

∫ θ

θ

dq̂(φ, p)

dp
f(φ)dφ

}

f(θ)dθ . (A.124)
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First observe that S ′(p) < 0 for p ≥ c. Since Ψ(p) is non-increasing for p ∈ [0, c),

it holds that S ′(0) > S ′(p) for p ∈ (0, c). Hence, if S ′(p) ≤ 0 the joint surplus is

maximized at p = 0. If, on the other hand, S ′(0) > 0 then there exists a p̂ ∈ (0, c)

at which S(p) is maximized. The price p̂ is characterized by the first-order condition

S ′(p̂) = 0, since S(·) is continuously differentiable. Note, however, that the first-order

condition may not be sufficient.

Next, we show that S ′(0) ≤ 0 is equivalent to Σ(λ) ≥ c. By evaluating (IV.16) at

p = 0, it is obvious that S ′(0) ≤ 0 iff

− c

∫ θ̄

θ

dq̂(θ, 0)

dp
f(θ)dθ− (λ−1)

∫ θ̄

θ

∫ θ̄

θ

[q̂(φ, 0)− q̂(θ, 0)]f(φ)f(θ) dφdθ ≤ 0 . (A.125)

Rearranging the above inequality and using the definition of Σ(λ) reveals that S ′(0) ≤ 0

if and only if Σ(λ) ≥ c. Finally, we verify the following claim.

Claim: Σ′(λ) > 0.

Proof: To cut down on notation we often write q̂(θ) instead of q̂(θ; p). Define Z(λ)

and N(λ) as the numerator and the denominator, respectively, of the fraction of Σ(·).

Thus,

Z(λ) ≡

∫ θ̄

θ

∫ θ̄

θ

[q̂(φ, 0) − q̂(θ, 0)]f(φ)f(θ)dφdθ, (A.126)

and N(λ) ≡ −

∫ θ̄

θ

[dq̂(θ, 0)/dp]f(θ)dθ . (A.127)

With this notation the derivative of Σ(·) with respect to λ can be written as

Σ′(λ) =
Z(λ)

N(λ)
+ (λ− 1)

Z ′(λ)N(λ) −N ′(λ)Z(λ)

N2(λ)
(A.128)

In order to show that Σ′(λ) > 0, we analyze the itemized parts separately. First, we

take the derivative of q̂(·) with respect to λ which leads to

dq̂(·)

dλ
=

pF (θ)

∂2u(q̂(θ), θ)/∂q2
≤ 0 . (A.129)

Thus,

d

dλ
[q̂(φ) − q̂(θ)] =

pF (φ)

∂2u(q̂(φ), φ)/∂q2
−

pF (θ)

∂2u(q̂(θ), θ)/∂q2
, (A.130)

which equals zero at p = 0. Hence, Z ′(λ) = 0. Taking the derivative of (IV.17) with

respect to λ yields

d

dλ

[
dq̂(·)

dp

]

= F (θ)

(
∂2u(q̂(θ), θ)

∂q2

)−1

− [2 + (λ− 1)F (θ)]

(
∂2u(q̂(θ), θ)

∂q2

)−2
∂3u(q̂(θ), θ)

∂q3

dq̂(θ)

dλ
. (A.131)
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Evaluating the above derivative at p = 0, and thus dq̂/dλ|p=0 = 0, leads to

d

dλ

[
dq̂(·)

dp

] ∣
∣
∣
∣
p=0

= F (θ)

(
∂2u(q̂(θ), θ)

∂q2

)−1

< 0 .

Thus,

N ′(λ) = −

∫ θ̄

θ

F (θ)

(
∂2u(q̂(θ), θ)

∂q2

)−1

f(θ)dθ .

Since Z ′(λ) = 0, equation (A.128) simplifies to

Σ′(λ) =
Z(λ)

N(λ)
− (λ− 1)

Z(λ)N ′(λ)

N2(λ)

=
Z(λ)

N2(λ)

[

N(λ) − (λ− 1)N ′(λ)
]

. (A.132)

Since Z(λ) > 0, it remains to show that N(λ) − (λ− 1)N ′(λ) > 0, which is equivalent

to

−

∫ θ̄

θ

[dq̂(θ, 0)/dp]f(θ)dθ + (λ− 1)

∫ θ̄

θ

F (θ)

(
∂2u(q̂(θ), θ)

∂q2

)−1

f(θ)dθ > 0 . (A.133)

Inserting the explicit formula for dq̂(·)/dp into the above inequality yields

∫ θ̄

θ

{

− [2 + (λ− 1)F (θ)]

(
∂2u(q̂(θ), θ)

∂q2

)−1

+ (λ− 1)F (θ)

(
∂2u(q̂(θ), θ)

∂q2

)−1}

f(θ)dθ > 0 (A.134)

⇐⇒

∫ θ̄

θ

−2

(
∂2u(q̂(θ), θ)

∂q2

)−1

f(θ)dθ > 0 . (A.135)

The above inequality is satisfied since u(·) is a strictly concave function in q for q ≤

qS(θ). Q.E.D.

Q.E.D.

Proof of Proposition IV.3: In order to apply Proposition 1 of Armstrong and

Vickers (2001), the following three properties have to be satisfied: (i) [∂m(vA, vB)/∂vA]

[m(vA, vB)]−1 is non-decreasing in vB, (ii) there exists ṽj > −∞ that maximizes

m(v, v)πj(v) for j = 1, 2, and (iii) for j = 1, 2 there exists v̄j defined by πj(v̄j) = 0,

πj(v) < 0 if v > v̄j. Since we explicitly assumed (i) and (ii) these properties are

satisfied. To see that (iii) is also satisfied note that v̄j = maxp{Sj(p)}. Obviously,

πj(v̄j) = 0 and πj(v) < 0 if v > v̄j. Hence, we can apply Proposition 1 of Arm-

strong and Vickers. According to this proposition there are no asymmetric equilibria
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and the equilibrium utility level v̂j ∈ (ṽj, v̄j). Since m(vA, vB)πj(v
A) is continuously

differentiable, the equilibrium utility level satisfies the first-order condition of profit

maximization. Thus, πj(v̂j) = Φ(v̂j).

From Proposition 2 it follows that the optimal marginal price p̂j is greater than zero

if and only if Σ(λj) < c. If this is the case then p̂j is characterized by S ′(p̂j) = 0, as

was shown in the proof of Proposition 2. The per customer profit of a firm is given by

πj = L+ (p− c)

∫ θ̄

θ

q̂j(θ; p)f(θ)dθ . (A.136)

Since, in equilibrium, πj = Φ(v̂j) the equilibrium fixed fee is given by

Lj = Φ(v̂j) − (pj − c)

∫ θ̄

θ

q̂j(θ; pj)f(θ)dθ . (A.137)

Replacing pj by p̂ and 0, leads to the fixed fees L̂ and LF , respectively.

Q.E.D.

Proof of Lemma IV.7: With slight abuse of notation, we omit for the proof that

the demand function, q̂(·), depends on the marginal price p. Define V (λ; θ) as the

consumer’s surplus for a given state of the world on the equilibrium path. Formally,

V (λ; θ) = u(q̂(θ), θ) − pq̂(θ) − L+ p

∫ θ̄

θ

[q̂(φ) − q̂(θ)]f(φ)dφ

−λp

∫ θ

θ

[q̂(θ) − q̂(φ)]f(φ)dφ

= u(q̂(θ), θ) − L− pq̂(θ)[2 + (λ− 1)F (θ)]

+p

∫ θ̄

θ

q̂(φ)f(φ)dφ− λp

∫ θ

θ

q̂(φ)f(φ)dφ . (A.138)

Taking the derivative of V (·; θ) with respect to λ yields

V ′(λ; θ) =
dq̂(θ)

dλ

[
∂u(q̂(θ), θ)

∂q
− p[2 + (λ− 1)F (θ)]

]

︸ ︷︷ ︸

=0

−pF (θ)q̂(θ)

+ p

∫ θ̄

θ

dq̂(φ)

dλ
f(φ)dφ+ p

∫ θ

θ

q̂(φ)f(φ)dφ− λp

∫ θ

θ

dq̂(φ)

dλ
f(φ)dφ. (A.139)

Note that

dq̂(λ; θ)

dλ
=

pF (θ)

∂2u(q̂(θ), θ)/∂q2
≤ 0 . (A.140)

The consumer’s expected utility is given by Eθ[V (λ; θ)] =
∫ θ̄

θ
V (λ; θ)f(θ)dθ. Hence, the

change in expected utility due to an increase in the consumer’s degree of loss aversion
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is given by

d

dλ
Eθ[V (λ; θ)] =

∫ θ̄

θ

V ′(λ; θ)f(θ)dθ.

Hence,

Eθ[V
′(λ)] = p

{∫ θ̄

θ

∫ θ̄

θ

dq̂(φ)

dλ
f(φ)f(θ)dφdθ + λ

∫ θ̄

θ

∫ θ

θ

dq̂(φ)

dλ
f(φ)f(θ)dφdθ

+

∫ θ̄

θ

∫ θ

θ

q̂(φ)f(φ)f(θ)dφdθ −

∫ θ̄

θ

F (θ)q̂(θ)f(θ)dθ

}

. (A.141)

By using integration by parts for all but the last term, the above expression can be

simplified to

Eθ[V
′(λ)] = p

∫ θ̄

θ

{
dq̂(θ)

dλ
[λ− (λ− 1)F (θ)] − q̂(θ)[2F (θ) − 1]

}

f(θ)dθ . (A.142)

Thus, the consumer’s expected utility is non-increasing in his degree of loss aversion if

∫ θ̄

θ

q̂(θ)[2F (θ) − 1]f(θ)dθ ≥ 0 . (A.143)

Condition (A.143) is satisfied since q̂(θ) is non-decreasing in θ. Nevertheless, we prove

this claim formally. Let θM be the median state, i.e., F (θM) = 1/2. By splitting the

integral of (A.143) into two parts, the states below the median and the states above

the median, we obtain

∫ θ̄

θ

q̂(θ)[2F (θ) − 1]f(θ)dθ =

∫ θM

θ

q̂(θ)[2F (θ) − 1]f(θ)dθ +

∫ θ̄

θM

q̂(θ)[2F (θ) − 1]f(θ)dθ . (A.144)

Since q̂(θ) is non-decreasing, the above expression is at least as great as

∫ θM

θ

q̂(θM)[2F (θ) − 1]f(θ)dθ +

∫ θ̄

θM

q̂(θM)[2F (θ) − 1]f(θ)dθ

= q̂(θM)

[
∫ θ̄

θM

[2F (θ) − 1]f(θ)dθ −

∫ θM

θ

[1 − 2F (θ)]f(θ)dθ

]

. (A.145)

By using integration by parts one can show that

∫ θM

θ

[1 − 2F (θ)]f(θ)dθ =

∫ θM

θ

2F (θ)f(θ)dθ, (A.146)

and
∫ θ̄

θM

[2F (θ) − 1]f(θ)dθ =

∫ θM

θ

2[1 − F (θ)]f(θ)dθ. (A.147)
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Hence, the right-hand side of (A.145) is non-negative if

∫ θ̄

θM

f(θ)dθ −

∫ θ̄

θ

F (θ)f(θ)dθ ≥ 0, (A.148)

which holds true since 1/2 ≥ 1/2.

Q.E.D.

Proof of Proposition IV.4: Irrespectively of the rival’s tariff offer, if the sorting

constraint is satisfied it is optimal for a firm to choose pj such that Sj(pj) is maximized.

Put differently, the firm will choose the method of generating vj that maximizes its (per

customer) profits. Thus, if no type λ ∈ {λ1, λ2} has an incentive to mimic the other

type, it is an equilibrium that the firms offer the same tariffs as in the full information

case. Obviously, in case (ii) where c ≤ Σ(λ1) < Σ(λ2), both firms offer a flat-rate tariff

to consumers. In this case, a flat-rate tariff maximizes S1(p) as well as S2(p). Moreover,

the generated joint surplus is the same for both types of loss averse consumers. Since

the brand preferences are i.i.d. across the λ1 and λ2 types, in any equilibrium each

firm offers a single flat-rate tariff to consumers.

In the remaining part of the proof we show hat in the case where Σ(λ1) < c ≤ Σ(λ2)

neither type λ1 has an incentive to choose the tariff (0, LF ) nor does type λ2 have an

incentive to choose the tariff (0, LF ).

Claim: v̂1 ≥ v̂2.

Proof: Let S∗
j ≡ maxp{Sj(p)}. Note that S1(0) = S2(0) = S∗

2 . The firm’s per customer

profit from type j = 1, 2 when offering utility v is

πj(v) = S∗
j − v . (A.149)

Thus, for any v it holds that π1(v) ≥ π2(v), since S∗
1 − v ≥ S∗

2 − v. The equilibrium

utilities are characterized by πj(v̂j) = Φ(v̂j). Hence, we obtain the following relations:

Φ(v̂1) = π1(v̂1) ≥ π2(v̂1) (A.150)

π1(v̂2) ≥ π2(v̂2) = Φ(v̂2) . (A.151)

Suppose, in contradiction, v̂1 < v̂2. This immediately implies that πj(v̂1) > πj(v̂2).

Hence,

Φ(v̂1) = π1(v̂1) > π1(v̂2) ≥ π2(v̂2) = Φ(v̂2) . (A.152)

Since Φ′(v) ≥ 0 the above formula holds only if v̂1 > v̂2, a contradiction. Q.E.D.
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Since v̂1 ≥ v̂2 and the expected utility from a flat-rate tariff being independent of

λ, one can conclude that a consumer of type λ1 has no incentive to choose the tariff

(0, LF ) that is designed for consumers of type λ2. Finally, we show that type λ2 has

no incentive to mimic type λ1. Let vDEV
2 denote the expected utility of a consumer of

type λ2 who accepts the tariff (p̂, L̂) designed for type λ1.

Claim: vDEV
2 < v̂2.

Proof: The expected utility of type λ2 from the tariff (p̂, L̂) equals the generated joint

surplus minus the profits of the firm he purchases from. Thus,

vDEV
2 = S2(p̂) − L̂− (p̂− c)

∫ θ̄

θ

q̂2(θ; p̂)f(θ)dθ, (A.153)

where q̂2(θ; p) denotes the demand of type λ2 in the personal equilibrium. Inserting

the explicit formula of L̂ into (A.153) yields

vDEV
2 = S2(p̂) − Φ(v̂1) − (ĉ− p)

∫ θ̄

θ

[q̂1(θ; p̂) − q̂2(θ; p̂)]f(θ)dθ. (A.154)

Note that q̂1(θ, p̂) > q̂2(θ, p̂) for all θ ∈ Θ, since dq̂/dλ < 0 if p > 0. By Proposition 3,

c > p̂ hence

vDEV
2 < S2(p̂) − Φ(v̂1). (A.155)

The expected utility of a consumer of type λ2 when choosing the tariff that is designed

for him can be expressed as follows,

v̂2 = S∗
2 − Φ(v̂2). (A.156)

Hence, a deviation is not utility improving if

S∗
2 − Φ(v̂2) ≥ S2(p̂) − Φ(v̂1) (A.157)

⇐⇒ [S∗
2 − S2(p̂)] + [Φ(v̂1) − Φ(v̂2)] ≥ 0 . (A.158)

The above inequality is satisfied since Φ′(·) ≥ 0 and v̂1 ≥ v̂2. Q.E.D.

Thus, if the firms offer the optimal tariffs of the full information case, each type of

loss averse consumer selects the tariff that is designed for him, which completes the

proof.

Q.E.D.
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4.2. Examples of Discrete Choice Models

Hotelling Model with Linear Transport Cost. Suppose consumers’ ideal

brands are uniformly distributed on the unit interval [0, 1]. The brands of the two firms,

A and B, are located at the two extreme points, brand A at zero and brand B at one. A

consumer with ideal brand x ∈ [0, 1] has brand preferences ζ = (0,−tx,−t(1−x)). The

parameter t > 0 is a consumer’s “transport cost” per unit distance between his ideal

brand and the brand he purchases from. For the Hotelling specification the market

share function takes the following form,

m(vA, vB) = min

{
1

2t
(t+ vA − vB),

vA

t

}

. (A.159)

The market share function has to be modified if vA and vB differ by so much that

m(·) /∈ [0, 1] (this never happens in equilibrium). Moreover, the Hotelling model has

the well-known drawback that market shares are kinked. If, however, the transport

cost is sufficiently low then one can focus on the case where the market share function

is given by the first term of the above expression and thus well behaved. Formally, for

t ≤ (2/3)S∗
2 it suffices to analyze firms’ profit maximization problem for3

m(vA, vB) = [1/(2t)](t+ vA − vB). (A.160)

Hence, ∂m(vA, vB)/∂vA = (2t)−1 which immediately implies that

Φ(v) ≡
m(v, v)

∂m(v, v)/∂vA
= t. (A.161)

Obviously, Φ(·) is non-decreasing. Note that

∂m(vA, vB)/∂vA

m(vA, vB)
= (t+ vA − vB)−1. (A.162)

It can easily be seen that the above fraction is increasing in vB. Thus, the Hotelling

model satisfies all imposed assumptions if the transport cost is sufficiently low. One

can check that the collusive utility level exists. To calculate the collusive utility level

one has to use the market share function given in (A.159).

Logit Demand Model. An obvious drawback of the Hotelling specification is that

a firm does not compete with the rival and the outside option at the same time. A

model that accounts for this simultaneous competition on two fronts is the logit demand

model. Here, a consumer’s brand preferences ζ i for i = 0, A,B are i.i.d. according to

3See Lemma 1 of Armstrong and Vickers (2001).
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the double exponential distribution with mean zero and variance µ2π2/6, where π (here)

denotes the circular constant. Thus, the cumulative distribution function is

G(ζ i) = exp
{
− exp[−(γ + ζ i/µ)]

}
, (A.163)

where γ is the Euler–Mascheroni constant and µ is a positive constant. With this

specification, the market share of firm A is given by (see Anderson et al. 1992)

m(vA, vB) =
exp[vA/µ]

exp[vA/µ] + exp[vB/µ] + 1
. (A.164)

The parameter µ captures the degree of heterogeneity among consumers with respect

to their brand preferences. Put differently, µ measures the degree of product differen-

tiation. A lower value of µ corresponds to a more competitive market. For µ→ ∞ the

firms are local monopolists. Taking the partial derivative of (A.164) with respect to

vA yields

∂m(vA, vB)

∂vA
=

exp[vA/µ]{exp[vB/µ] + 1}

µ{exp[vA/µ] + exp[vB/µ] + 1}2
. (A.165)

Thus,

m(vA, vB)

∂m(vA, vB)/∂vA
=
µ{exp[vA/µ] + exp[vB/µ] + 1}

exp[vB/µ] + 1
. (A.166)

Evaluating the above expression at vA = vB = v leads to

Φ(v) = µ
2 exp[v/µ] + 1

exp[v/µ] + 1
. (A.167)

Taking the derivative of Φ(·) with respect to v yields

Φ′(v) =
exp[v/µ]

(exp[v/µ] + 1)2
> 0. (A.168)

Moreover, the derivative of [∂m(vA, vB)/∂vA][m(vA, vB)]−1 with respect to vB

amounts to

d

dvB

[
∂m(vA, vB)/∂vA

m(vA, vB)

]

=
1

µ2

exp[vB/µ]{exp[vB/µ] + 1}

µ{exp[vB/µ] + exp[vB/µ] + 1}2
> 0. (A.169)

The collusive utility level ṽ maximizesm(v, v)π(v). Note that m(v, v) → 0 for v → −∞

and π(v) ≤ 0 if v ≥ maxp{S(p)}. Thus, the collusive utility exists, since m(v, v)π(v)

is continuously differentiable.
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idence from the Québec Automobile Insurance Industry, Assurances, Vol. 64,

567-578.

[27] Carrillo, J.D., and T. Mariotti (2000): Strategic Ignorance as Self-

Disciplining Device, Review of Economic Studies, Vol. 67, 529-544.

[28] Champsaur, P. and J-C. Rochet (1989): Multiproduct Duopolists, Econo-

metrica, Vol. 57(3), 533-557.

[29] Chiappori, P.-A., B. Jullien, B. Salanié, and F. Salanié (2006): Asym-
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