
Hydrodynamics of colloids in a narrow
channel: An analytical and simulation

study

D i s s e r t a t i o n

zur

Erlangung des Doktorgrades(Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt

von

Fatemeh Tabatabaei

aus

Teheran

2008



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

1.Gutachter: Prof. Dr. Gunter M. Schütz
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1 Introduction

1.1 Introduction

Many biological and chemical systems consist of particles under varying degrees

of confinement which can affect their dynamical behaviour [1]. There is a wide

range of examples of such systems from porous media and nozzles to microfluidic

devices [2]. One can also include examples of those processes which are partially

confined as the movement of hydrophobic ions in biological channels (see Fig.

1.1), or particle separation and catalysis through microscopic channels of zeolites

[3–5].

Sometimes, confinement restricts the motion of the particles to a lower dimen-

sion than that of the system. Such dynamics are referred to as “reduced dimen-

sional” dynamics. For example, colloids that are trapped between two planar

walls in a three dimensional system, move in effectively two dimensions (quasi-

two-dimensional), or a particle in a two dimensional porous medium whose dif-

fusion is a quasi-one-dimensional process.

The effect of confinement on the dynamics of particles in a parallel-wall chan-

nel — a quasi-two-dimensional system— has been the subject of many recent

theoretical and computational investigations, including studies of the dynam-

ics of rigid particles [6–8], deformable drops [9], and macromolecules [10] in

creeping flow. New confinement-induced phenomena such as macromolecular

aggregations away from the walls [11] and stability of strongly extended drops

in a confined shear flow [10], have been revealed by these studies. Quasi-two-

dimensional (Q2D) suspensions have also been investigated experimentally using

video-microscopy [12] or optical tweezers [13], e.g. in the investigation of particle

dynamics between two walls [14] and in a linear channel [15]. These studies have

highlighted flow-mediated effects of the boundaries on particle dynamics. It has

been demonstrated that these effects are due to the hydrodynamic interactions

in a restricted geometry, which are drastically different from those in a medium

without confinement.

Moreover, the collective dynamics of confined mutiparticle systems is reported

to be very different from the dynamics of unconfined systems. Consider the ex-
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1.1 Introduction

Figure 1.1: A stereo view of membrane proteins which provide molecular-sized

entry and exit portals for the various substances that pass into and

out of cells. Two vestibules reside at the top and bottom of the

channel. Amino acid residues (blue, red, and gray ball-and-stick

models) that line the pore of the outer vestibule stabilize NH4+

(green and yellow). After a proton (orange) departs, the channel

narrows midway through the membrane for a 20− A ◦ distance and

is hydrophobic. Here, two pore-lining histidine residues (light and

dark blue) stabilize three NH3 molecules through hydrogen bonding.

Farther on, with the addition of a proton (orange), the molecules

return to equilibrium as NH4+ in the inner vestibule [16].

ample of the far-field form of the flow which is produced by the particles moving

in the channel [17–19]. Confinement causes this flow to differ qualitatively from

that in a free space. Differences arise because the fluid-volume has a strong con-

servation constraint, caused by the presence of the wall and from the fact that

momentum vanishes at the wall boundary. Absorption of momentum at the wall

makes the velocity field decays too fast to produce a nonzero fluid flux through
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1 Introduction

the boundary at infinity. Therefore, to ensure fluid incompressibility, the fluid

which is displaced by a moving particle forms a dipole flow pattern. In contrast,

the momentum in a free space is transferred from the particle to the fluid and

diffuses away to infinity. The surrounding fluid moves in the same direction as

the particle, without forming a dipole flow pattern. This far-field form of the

flow produced by movement of the particles in a channel give rise to specific

hydrodynamic interactions, which in turn produce specific collective phenom-

ena of particles in confinement, such as pattern formation and re-arrangement

of particle lattice in two-dimensional regular particle arrays [20].

Figure 1.2: (A) Scanning electron microscop image of the 1D trenches fabricated

on the photoresist polymer film by photolithography. (B) Optical

microscope image of three concentric circular channels with colloidal

particles confined in them [21].

The dynamics of particles in a narrow channel where particles effectively move

in one dimension, have also been considered. This problem has been investigated

theoretically, e.g. Markov chains [22], and has recently become a focus of ex-

perimental interest, e.g. in the study of molecular diffusion in zeolites [23],

diffusion of colloidal particles in confined geometries [21] or optical lattices [24]

and granular diffusion [25]. Diffusion of particles in quasi-one-dimensional ge-

ometry is usually referred to as single-file diffusion (SFD). Particles represent

random-walk motion in very narrow channels that mutual passage of particles

has been blocked (see Fig. 1.2). The single-file effect also occurs in biologi-
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1.1 Introduction

cal systems, examples being the motion of ribosomes along the m-RNA during

protein synthesis [26, 27]. Here, similarly to the Q2D, motion in a ‘reduced

dimension’ yields differences compared to the case without confinement. For ex-

ample, single-file motion leads to subdiffusive behaviour [28,29]. This behaviour

is due to blockage of mutual passage, which preserves the initial ordering of the

particles. The motion of individual particles is correspondingly impeded and

modified to such an extent that Fick’s law, which predicts that the mean-square

displacement is proportional to time, is no longer obeyed for long times. For

these systems, mean-squared displacement of particles for times much longer

than the direct interaction time, is reported to be proportional to the square

root of the time, in contrast to the linear increase with time in systems that

allow mutual passage [30–32]. Among other things the single-file effect is re-

sponsible for effectively low reaction rates in microporous catalysts [33] and is

thus of technical importance in chemical engineering.

The problem becomes even more interesting when the confined particles move

in an external force. A typical example of motion in an external force is sedimen-

tation, where the mass of the solute particles cause them to move in a solvent in

the presence of a gravitational field; this problem has been considered in many

recent works [34, 35]. However, few of these tackle the problem in a specific

geometry like narrow channels [36]. It is natural to ask how an external force

influences the behaviour of particles that are placed in a restricting geometry.

Investigation of this question is the objective of this thesis.

The scope of this thesis is the investigation of systems in quasi-one-dimensional

geometries using two different approaches: an analytical approach based on one-

dimensional reaction-diffusion systems, and a simulation model. Since in single-

file systems the longitudinal motion is the most important dynamical mode, that

makes such processes amenable to treatment by one-dimensional models [37,

38]. The best-studied example of these kind of models is asymmetric exclusion

process (ASEP), which serves as a starting point for modeling of molecular

motors along microtubuli or actin filaments [39]. In order to extend ASEP,

we include two possible states of particles. We consider two-component models
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1 Introduction

which satisfy some specified conservation laws. For the second approach, we

perform numerical simulations to model a suspension of colloidal particles in a

narrow channel. We use a hybrid simulation scheme which couples a Molecular

Dynamics simulation method to a multi-particle collision (MPC) fluid which is

a coarse-grained model to describe fluid dynamics.

Systems of diffusing and reacting particles are usually described macroscopi-

cally by hydrodynamic equations for coarse-grained quantities like the particle

density [40]. These equations are generally non-linear and can exhibit shocks.

This means that the solution of the macroscopic equations may develop a dis-

continuity even if the initial particle density is smooth. We investigate this

discontinuity in our reaction-diffusion model, as well as the colloidal simulation

model.

1.2 Outline

The outline of this work is as follows. In chapter 2, stochastic reaction-diffusion

processes is investigated. Here we considered three-state lattice gas models. We

explain symmetries and conservation laws which are required for the models.

This yields three distinct groups of models, two of which are studied in this

chapter. The families of models which belong to the first group are investigated.

The boundary condition is defined for particles entering or leaving the system.

The Master equation for probability vectors is considered for the time evolution

of the particles. In the stationary distribution, the probability vector satisfies

an eigenvalue equation. Hence we find the constraints on bulk rates as well

as boundary rates in order to satisfy an eigenvalue equation with zero modes.

We calculate the current of particles in the stationary state. The possibility of

the existence of a discontinuity in the density (shock solution) is investigated.

Solving a random-walk equation for shock solutions imposes new restrictions on

the bulk rates. In the second group of models, a two species asymmetric simple

exclusion process is studied. Similarly the system in stationary state has been

considered and a fugacity gradient which represents a shock solution has been

12



1.2 Outline

found.

In the third chapter a simulation technique for modeling colloidal particles

suspended in a solvent and located between two planar walls is described. The

first section of this chapter describes a mesoscale simulation technique which

has been used recently for modeling fluid dynamics. Here the basic algorithms

are explained and the units are defined. In order to test the accuracy of the

simulation method, a parabolic velocity profile for fluid flow in the presence

of gravitational force is considered and the fluid parameters calculated from

this profile are compared with the theoretical values. To model the force field

between colloidal particles, a molecular dynamics simulation is performed. Then

a coupling algorithm is introduced to obtain the desired model. Parameters and

units are defined and boundary conditions are discussed. Some methods to test

the accuracy of the simulation are explained.

Chapter 4 considers investigation of the colloidal suspension in an external

force. The special case of a gravitational field as the external force is consid-

ered. In this case, the colloidal particles undergo sedimentation. The relation-

ship between the average colloidal particles velocity and the volume fraction is

discussed. These investigations include the variation in the size of the system

or in the number of colloidal particles. Then the effect of hydrodynamic in-

teraction (HI) in the behaviour of sedimenting colloids is investigated by using

two different proposed methods which model a system without hydrodynamic

interaction. In order to identify the laminar flow regime, the sedimentation ve-

locity is obtained as a function of gravitational field. The existence of a density

discontinuity in a macroscopic scale due to applying an external force is studied

by investigation of the collective behaviour of colloidal particles in the channel.

A comparison to the case without an external force is shown.

Chapter 5 summarizes the results concerning the density discontinuity and

compares the shock solution of the system in the two approaches which are

explained in chapter 2 and chapter 4.
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2 A three states lattice gas model; an analytical approach

2.1 Introduction

In this chapter we consider one-dimensional reaction-diffusion systems as a the-

oretical approach, to investigate the model of particles in a narrow channel.

The best-studied example of stochastic lattice models being the asymmetric

simple exclusion process (ASEP) [41, 42] which has often been called the Ising

model of nonequilibrium statistical physics. In ASEP particles move randomly

with a bias onto neighboring lattice sites, provided the target site is empty.

Even its most-studied one-dimensional version which describes driven single-file

diffusion exhibits rich phenomena, in particular boundary-induced phase tran-

sitions, [43–47] and has a wide range of applications in different branches of

physics.

Low-dimensional diffusive particle systems are of great interest also from a

thermodynamic point of view. In open boundary systems, kept far from equilib-

rium by maintaining a steady state particle current, various unexpected kinds

of critical phenomena have been discovered in recent years, including boundary-

induced phase transitions, phase separation and spontaneous symmetry break-

ing, see [37, 38] and references therein for a review. These finite-temperature

critical phenomena have no counterpart in thermal equilibrium since in one-

dimensional systems with short range interactions there is no mechanism that

could prevent the creation and growth of an island of the minority phase inside

a domain of the majority phase. Therefore it is not possible to have a phase-

separated equilibrium state with a stable and microscopically sharp interface

between two fluctuating domains characterized by different values of the order

parameter.

Most of these nonequilibrium critical phenomena are not yet well-understood.

Given the interesting diffusion properties as well as the potential for applications

to catalytic reactions it would thus be interesting to explore critical phenomena

in low-dimensional reaction-diffusion systems in more detail. Specifically, in this

chapter on one-dimensional reaction-diffusion systems we would like to investi-

gate the existence and microscopic properties of interfaces between coexisting
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2.1 Introduction

nonequilibrium domains which are macroscopically different.

In the hydrodynamic approach to traffic flow [48] using partial differential

equations traffic jams correspond to shock solutions. A shock is a density dis-

continuity on moving with some deterministic speed, determined by mass con-

servation. It is therefore no surprise that on macroscopic Euler scale the time

evolution of the particle density of the ASEP is described by the inviscid Burgers

equation [49, 50] which develops shocks for generic initial data. With a view on

applications of the ASEP to systems for which a hydrodynamic description is

too coarse-grained it would thus be of interest to understand what fluctuating

microscopic structure (on lattice scale) is underlying the phenomenon of shocks.

In fact, a great deal is known about shocks in the ASEP due to the exact

solubility of the model. In the stationary regime the shock structure has been

studied as seen from a so-called second-class particle which serves as microscopic

marker of the shock position. The particle density decays away from the shock

exponentially (on lattice scale) to the respective constant bulk values ρ1,2 of the

two branches of the shock [51–53]. The shock position itself has been proved to

perform Brownian motion on coarse grained diffusive scale [54]. For a particular

strength of the driving field the associated decay constant of the particle density

vanishes, corresponding to a “minimal” intrinsic shock width. For this special

value of the driving field also the motion of the shock simplifies greatly. It

performs a biased random walk on microscopic lattice scale with explicitly known

hopping rates [55, 56].

Moreover, there are a number of exact results about shocks in lattice gas

models for driven diffusive systems [51–53, 55–62], in reaction-diffusion sys-

tems [56,62–66] (where shocks appear as Fisher waves on the macroscopic scale)

and in spin-flip systems [56,62,66] where shocks correspond to domain walls [67].

It has emerged that in all these models the macroscopic shock discontinuity

originates from a microscopically sharp increase of the local particle density,

i.e., a decrease of the mean distance between particles that can be observed

on the scale of a few lattice units (which typically represents the size of parti-

cles). The discontinuity itself performs a biased random motion with a constant

17



2 A three states lattice gas model; an analytical approach

mean speed and diffusive mean square displacement. The existence, structure,

and dynamical properties of microscopically sharp shocks in lattice models for

reaction-diffusion systems are the issues on which the present work focuses. It

is natural to ask whether this special feature of the ASEP survives in more

complicated models of driven diffusive systems. In particular, one would like to

investigate exclusion processes with nonconserved internal degrees of freedom,

where particles may have different velocities, charges, masses or other distin-

guishing properties that they can gain or lose e.g. in a collision or chemical

reaction. Here we address this question in the simplest case of two possible in-

ternal states that each particle can posses. Such models have been investigated

recently for various biological and vehicular transport phenomena [39, 68, 69].

Studying the microstructure of a shock illuminates the role of finite-size effects

in first-order boundary-induced phase transitions that are associated with the

motion of traffic jams [70–72] in finite systems.

In order to set the stage and sharpen the question we begin with some re-

marks of general nature and mention some results relevant to our approach.

Systems of diffusing and reacting particles are usually described macroscopi-

cally by hydrodynamic equations for coarse-grained quantities like the particle

density [40]. The density then represents the local order parameter specifying

the spatial evolution of the macroscopic state of the system. Such equations

are usually proposed on a phenomenological basis, paradigmatic examples being

the Burgers equation for driven diffusive systems with particle conservation [49]

or the Fisher equation for reactive systems without conservation law [73, 74].

These equations are in general non-linear and exhibit shocks in some cases.

This means that the solution of the macroscopic equations may develop a dis-

continuity even if the initial particle density is smooth. This means that in

these systems phase separation may occur. The shock represents the interface

between the two thermodynamically distinct phases. This hydrodynamic de-

scription of phase separation is, however, not fully satisfactory. It provides no

insight into the microscopic origin of the phenomenon, and it gives no informa-

tion about the internal structure of the shock. It could very well happen that
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2.1 Introduction

in a particle system described on hydrodynamic (Eulerian) time scale by an

equation which has shock solutions no corresponding microscopic discontinuity

would be observable on less coarse-grained space or time scales which are exper-

imentally relevant particularly for the quasi one-dimensional systems referred

to above. In order to understand the structure of shocks and the emergence of

such nonlinear behaviour from the microscopic laws that govern the stochastic

motion and interaction of particles it is therefore necessary to derive the macro-

scopic equations from the microscopic dynamics rather than postulating them

on phenomenological grounds.

After this survey we are finally in a position to precisely state the objective

of the work in this chapter. All the reaction-diffusion systems studied so far

allow only for the presence of a single species of particles. No exact results have

been reported so far for non-stationary travelling waves in open two-component

systems, i.e., where two diffusive particles species A, B react with each other to

form an inert reaction product or undergo a cracking or coagulation reaction

(B ! 2A). In order to address this question we adapt the strategy suggested

in [56] to two-component systems: We take as initial distribution of particles

a shock distribution with given microscopic properties and look for families of

models for which the shock distribution evolves into a linear combination of

similar distributions with different shock positions. Thus the information of

the microscopic structure of the shock that one has initially is preserved for

all times. Remarkably it will transpire that such families of reaction-diffusion

systems exist for strong external field that drives the particles and keeps them

in a nonequilibrium state. We remark that in a similar treatment for a different

family of two-component processes we have found such a phenomenon at some

specific finite driving strength [75, 76].

This chapter is organized as follows: In the following section we define the

class of models that we consider and according to the conservation laws which we

require in the system, we distribute this class of models into two groups. In Sec.

(2.2), we investigate the families of models which belong to the the first group

and we also determine the models with travelling shock solutions on the finite
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2 A three states lattice gas model; an analytical approach

lattice. In Sec. (2.4), as the second group, we study the ASEP in a case where

there is an internal degree of freedom. In Sec. (2.5), we summarize our results

and draw some conclusions. Some mathematical details of the calculations are

given in the appendices.

20



2.2 Stochastic reaction-diffusion processes

2.2 Stochastic reaction-diffusion processes

2.2.1 Three-states lattice gas models

In order to keep the physics that lead to phase-separated nonequilibrium states

as transparent as possible we study the simplest possible setting for a stochas-

tic two-component reaction-diffusion process. We consider a lattice gas model

defined on a lattice with L sites. The state of the system at any given time is

described by a set of “occupation numbers” n = n1, . . . , nL where nk = 0, 1, 2 is

the local occupation number at site k. These occupation numbers are abstract

objects and serve as mathematical labels for three possible local states of each

lattice site.

The bulk stochastic dynamics are defined by nearest neighbor transitions be-

tween the occupation variables which occur independently and randomly in

continuous time after an exponentially distributed waiting time. The mean

τ(n′
k, n

′
k+1; nk, nk+1) of this waiting time depends on the transition (nk, nk+1) →

(n′
k, n

′
k+1). For later convenience we introduce an integer label

i = 3nk + nk+1 + 1 (2.1)

in the range 1 ≤ i ≤ 9 for the occupation variables on two neighboring sites

k and k + 1. The inverse mean transition times are the transition rates wij.

Here i = 3n′
k + n′

k+1 + 1 labels the target configuration and j is the respective

label of the initial configuration (nk, nk+1). We assume the bulk dynamics to be

spatially homogeneous. The transition rates then do not explicitly depend on

the site k.

At the boundary sites 1, L we assume the system to be connected to some

external reservoir with which the system can exchange particles. For injection

and extraction of particles at the left boundary we introduce the rates :

0 ! 1 α1, γ1,

0 ! 2 α2, γ2,

1 ! 2 α3, γ3, (2.2)
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2 A three states lattice gas model; an analytical approach

and for the right boundary

0 ! 1 δ1, β1,

0 ! 2 δ2, β2,

1 ! 2 δ3, β3. (2.3)

Here and below the left rate refers to the process going from left to right, while

the right rate is for the reversed process.

2.2.2 Symmetries and conservation laws

Within this setting one could describe 72 different bulk transitions, correspond-

ing to the 72 mathematically possible changes of configurations on a pair of sites.

However, one shall reduce this large number by imposing various physically mo-

tivated constraints. We use the method has been proposed in [75] where a local

conservation law is required. Generally, the physical interpretation of the con-

servation law depends on the physical interpretation of the occupation numbers

nk and will become clear below. Mathematically this means that in a periodic

system some function
∑

k C(nk) of the local occupation numbers should remain

invariant under the stochastic dynamics, i.e.,

C(n′
k) + C(n′

k+1) = C(nk) + C(nk+1) (2.4)

for any local transition between configurations i, j. This constraint forces a large

number of transition rates wij to vanish. Physically C(n) is some observable

property (such as mass or charge) of the state n.

The conservation condition (2.4) does not uniquely define the function C(n).

In order to analyse these constraints we set C(0) = 0 and C(1) = 1. This

involves no loss of generality since adding a constant to C(n) or multiplying

C(n) by an arbitrary factor leaves (2.4) invariant. From inspection of (2.4) one

can then see that there are three distinct families of solutions: (i) degenerate

case, represented by C(2) = C(1) = 1 (or equivalently C(2) = C(0) = 0), which

is treated in section (2.4) (ii) linear nondegenerate case, represented by C(2) = 2
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2.3 The nondegenerate linear conservation law

(or equivalently C(2) = −1, C(2) = 1/2), (iii) two independent conservation

laws, represented by any other value of C(2). This case was studied in detail

in [59,61]. The degenerate conservation law will be discussed later in (2.4) while

the non-degenerate linear conservation law is studied in the next subsection.

2.3 The nondegenerate linear conservation law

As it is discussed before, here we require a single conservation law where C(2) =

2. It is straightforward to check that this allows for 10 nonvanishing rates

wij. The physical interpretation of this conservation law as charge-, mass-, or

particle conservation respectively depends on the physical interpretation of the

occupation numbers nk and will be given below. We present the following three

families of models which are mathematically equivalent, but have rather different

physical interpretations.

Diffusion without exclusion

In its most obvious interpretation the abstract occupation number n represents

the number of particles on a given site. Requiring particle conservation where

C(n) = n allows for 10 hopping processes with rates given as follows:

10 ! 01 w24, w42

20 ! 02 w37, w73

12 ! 21 w86, w68

11 ! 02 w35, w53

20 ! 11 w57, w75. (2.5)

Here there is no distinction between different particles, only the total number

is recorded. Physically this process describes diffusion of a single species of

particles in a pore system large enough to accommodate two particles in each

pore. Thus the three states do not describe a two-component, single-file par-

ticle system, but a one-component system where particles can pass each other.
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2 A three states lattice gas model; an analytical approach

This makes this process different from the previously studied two-state single-

component systems which describe single-file diffusion [55–57]. For definiteness

we shall focus in this paper on two-component reaction-diffusion systems and

hence not make use of this one-component interpretation of the three local states.

Two-species annihilation A + B ! 0

We define

C(n) = 1 − n (2.6)

as charge associated with the state n of a lattice. The “occupation number”

therefore denotes an internal degree of freedom in a single-file particle system.

The value n = 0 corresponds to a positively charged particle (denoted as type

A), n = 1 corresponds to a vacant site (denoted 0), and n = 2 corresponds to

occupation by a negatively charged particle (denoted as type B). As conser-

vation law we require charge conservation, or, equivalently, conservation of the

difference of particle numbers (of positively and negatively charged particles).

Since this process is mathematically equivalent to the particle conserving pro-

cess (2.5) the dynamics of the process can be represented by the following ten

transitions

0A ! A0 w24, w42

BA ! AB w37, w73

0B ! B0 w86, w68

00 ! AB w35, w53

BA ! 00 w57, w75 (2.7)

This is the well-studied two-component creation/annihilation process, see [77]

for a review of some important properties and experimental significance of the

one-dimensional pure annihilation case. The main results of this paper are given

in terms of this process.
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2.3 The nondegenerate linear conservation law

Cracking B → 2A

One may switch the role of A and 0. The “occupation number” n = 0 then

corresponds to a vacant site 0, n = 1 corresponds to a particle of type A, and

n = 2 corresponds to occupation by a particle of type B. We drop the assignment

of charges to particles and instead introduce

C(n) = n =: M (2.8)

as mass of the particles (in suitable units). A-particles thus have mass 1 and

B-particles to have mass 2; the conservation law describes mass conservation.

Under this mapping the process (2.7) read

A0 ! 0A w24, w42

B0 ! 0B w37, w73

AB ! BA w86, w68

AA ! 0B w35, w53

B0 ! AA w57, w75 (2.9)

The last two reactions corresponds to cracking of a molecule B with mass 2

into two identical parts A (mass 1 each), with coagulation as reversed process.

The third process in this list is a recombination reaction between neighboring

reactands.

2.3.1 Boundary conditions

For definiteness we consider here and below charge conservation. Thus by as-

signing A to state 0 and B to state 2 we rewrite the process (2.2) for the rates

at the left boundary:

A ! 0 α1, γ1,

A ! B α2, γ2,

0 ! B α3, γ3, (2.10)
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2 A three states lattice gas model; an analytical approach

and (2.2) for the right boundary

A ! 0 δ1, β1,

A ! B δ2, β2,

0 ! B δ3, β3. (2.11)

The corresponding processes for mass conservation are obtained by changing

A ↔ 0.

The boundary rates are a further set of model parameters. Below we define

them such that they are parametrized by 2 independent boundary chemical

potentials which fix boundary densities for the conserved order parameter.

2.3.2 Continuity equation and PT -invariance

The presence of the bulk conservation law implies a lattice continuity equation

d

dt
Ck = jk−1 − jk (2.12)

for the expectation Ck = 〈C(nk) 〉. This quantity plays the role of a con-

served local order parameter. The quantity jk is the current associated with the

conservation law. It is given by the expectation of some combination of local

occupation numbers, depending on the model under investigation, see below.

Since we do not study here periodic systems we do not require the boundary

sites where the system is connected to the reservoir to respect the conservation

law. The quantities j0, jL entering the continuity equation for k = 1 and k = L

respectively are source terms resulting from the reservoirs. They are functions

of the reservoir densities. The lattice continuity equation is the starting point

for a coarse-grained hydrodynamic description of the time evolution of the local

order parameter.

Second, in addition to the conservation law we require PT -invariance, i.e., the

bulk dynamics should be symmetric under combined time reversal and space

reflection. Time reversal symmetry means to have detailed balance

p∗(n)w(n → n′) = p∗(n′)w(n′ → n). (2.13)
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2.3 The nondegenerate linear conservation law

In order to combine this relation with the parity (space reflection) operation

we change the position of neighboring sites with each other in the initial con-

figuration and final configuration on the left-hand side of the detailed-balance

relation. This physical input generalizes the equilibrium condition of detailed

balance to allow for external driving forces which lead to a bias in the hopping

rates. In such a case the system is forced into a nonequilibrium steady state with

a stationary current flowing in the system. Well-known examples for models of

this kind are exclusion processes satisfying pairwise balance [78]. As a result of

PT -invariance, there are pairwise relations between some of the transition rates,

see below.

2.3.3 Master equation

The time evolution defined above can be written in terms of a continuous-time

master equation for the probability vector

|P (t) 〉 =
∑

n

P (n1, · · · , nL; t)|n 〉, (2.14)

where P (n1, · · · , nL; t) is the distribution for the probability of finding particles

at sites 1 to L and |n 〉 is the basis vector in the space of configurations [42]. The

probability vector is normalized such that 〈s|P 〉 = 1 with the summation vector

〈 s | =
∑

n 〈n |. The time evolution is generated by the stochastic Hamiltonian

H whose offdiagonal matrix elements Hn,n′ are the negative transition rates

between configurations. As required by conservation of probability, the diagonal

elements are the negative sum of transition rates in the respective column.

Therefore the master equation is now described by the Schrödinger equation

in imaginary time:
d

dt
|P (t) 〉 = −H|P (t) 〉. (2.15)

with the formal solution

|P (t) 〉 = e−Ht|P (0) 〉. (2.16)
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2 A three states lattice gas model; an analytical approach

Since only nearest-neighbour interactions are included, the quantum Hamilto-

nian H defined above has the structure

H = b1 +
L−1
∑

k=1

hk,k+1 + bL. (2.17)

Here b1 and bL are the boundary matrices:

b1 = −









−(α1 + α2) γ1 γ2

α1 −(γ1 + α3) γ3

α2 α3 −(γ2 + γ3)









1

, (2.18)

bL = −









−(δ1 + δ2) β1 β2

δ1 −(β1 + δ3) β3

δ2 β3 −(β2 + β3)









L

. (2.19)

The local bulk transition matrix hk,k+1 with offdiagonal matrix elements −wij

acts non-trivially only on sites k and k + 1. Below we give hk,k+1 explicitly.

2.3.4 Nonequilibrium steady states

We stress that our family of models is defined in terms of transition rates, not in

terms of an internal energy E(n) that would determine the stationary distribu-

tion of the process as equilibrium distribution P ∗(n) ∝ exp (−βE(n)). Instead,

the stationary distribution is an a priori unknown and in general complicated

function of the transition rates. It does not in general satisfy detailed balance

and thus represents a nonequilibrium steady state. In order to be able to carry

out explicit computations we restrict ourselves to systems such that the station-

ary distribution of the stochastic dynamics factorizes, i.e., one has a product

measure without correlations between the occupation numbers at different sites.

Requiring the existence of a stationary product measure imposes constraints

both on the boundary rates and on the bulk rates. Physically, the constraints

on the boundary rates essentially means that the chemical potentials in the two

reservoirs are equal, allowing the bulk to relax into a current-carrying stationary
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2.3 The nondegenerate linear conservation law

state with a chemical potential determined by the reservoirs. In this case the

origin of the current is not a gradient in the external chemical potential of

the reservoirs, but a constant bulk driving force. The conditions on the bulk

rates have a less transparent and model-dependent physical interpretation. Once

these conditions are determined the model is fully defined and its stationary

distribution is given for equal chemical potentials in the reservoir.

In the quantum Hamiltonian formalism introduced above a product measure

is given by a tensor product

|P 〉 = |P1) ⊗ |P2) ⊗ ... ⊗ |PL). (2.20)

Here the three-component single-site probability vectors |Pk) has as its com-

ponents the probabilities P (nk) of finding state n at site k. In the stationary

distribution these probabilities are position-independent, |Pk) ≡ |P ), and the

stationary probability vector thus has the form

|P ∗ 〉 = |P )⊗L. (2.21)

By definition of stationarity the stationary probability vector satisfies the

eigenvalue equation

H|P ∗ 〉 = 0. (2.22)

We shall parametrize the one-site marginals P (nk) by a generalized fugacity z

associated with the conserved quantity and an interaction parameter determined

by the transition rates, see below. In formal analogy to equilibrium systems we

shall refer to the logarithm of the fugacity as chemical potential.

2.3.5 Initial conditions

The objective of this paper is the analysis of the family of models which is

defined by having a stationary product measure if the chemical potentials in the

reservoir are equal. However, as physical boundary conditions to be studied we

envisage different chemical potentials in the reservoirs. The product measure

is then no longer stationary and the questions arises what new properties the
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2 A three states lattice gas model; an analytical approach

stationary distribution exhibits and how the system relaxes to its stationary

distribution. Indeed, in order to avoid misunderstanding we stress that the

product requirement on the stationary distribution with equal reservoir chemical

potentials does not imply the absence of correlations during the time evolution

of the more general open system with different reservoir chemical potentials.

Specifically, we prepare the system initially in a state described by a (nonsta-

tionary) shock measure of the form

| k 〉 = |P1)
⊗k ⊗ |P2)

⊗L−k. (2.23)

These shock measures have single-site probabilities given by |P1) in the left chain

segment up to site k (chosen to match the chemical potential of the left reservoir)

and single-site probabilities given by |P2) in the remaining chain segment from

site L − k up to site L (chosen to match the chemical potential at the right

reservoir).

Such a shock measure defines fully the internal structure of the shock. Since

there are no correlations in a shock measure one may regard the lattice unit as

the intrinsic shock width. A typical configuration has a sharp decrease of the

mean interparticle distance across the lattice point k. In the course of time the

measure |P (t) 〉 = exp(−Ht)| k 〉 changes and it is interesting to investigate this

time evolution. For the models studied below |P (t) 〉 is computed explicitly and

allows for a detailed explicit calculation of all correlations that develop with

time.

2.3.6 Stationary distribution

Following the ideas outlined above we first search for stationary product solu-

tions of the model with spatially constant single-site probabilities. By choosing

the basis of three states as follows

|A) =









1

0

0









, |0) =









0

1

0









, |B) =









0

0

1









, (2.24)
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2.3 The nondegenerate linear conservation law

one can conveniently write the product measure for the periodic model in terms

of a generalized fugacity z and arbitrary constant r

|P ∗ 〉 =
1

νL









1

z

rz2









⊗L

(2.25)

Here

ν = 1 + z + rz2 (2.26)

is the local “partition function”. The quantity r parametrizes the density ratio

of the two particle species, ρB/ρA = rz2. The fugacity z is associated with

the conservation law, i.e., in a periodic system where the charge is conserved

|P ∗ 〉 would be stationary for any value of z. This probability measure is grand-

canonical. The charge σ = ρA − ρB in this ensemble has mean

σ = 1 − z
d

dz
ln ν =

1 − rz2

ν
. (2.27)

The corresponding canonical distributions with a definite value of the charge

can be constructed in standard fashion, but we do not consider them here since

we are dealing with an open system where the bulk fugacity is fixed by the

generalized chemical potentials of the reservoirs. The nonconserved particle

density ρ = ρA + ρB in this ensemble is given by

ρ =
1 + rz2

ν
. (2.28)

The stationary distribution of the model is not known in full generality and

we have to determine constraints on the bulk rates such that the product mea-

sure (2.25) is stationary. The transition matrix hk,k+1 for the bulk stochastic

dynamics is given by

−hk,k+1 =
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









































0 0 0 0 0 0 0 0 0

0 −w42 0 w24 0 0 0 0 0

0 0 −(w53 + w73) 0 w35 0 w37 0 0

0 w42 0 −w24 0 0 0 0 0

0 0 w53 0 −(w35 + w75) 0 w57 0 0

0 0 0 0 0 −w86 0 w68 0

0 0 w73 0 w75 0 −(w37 + w57) 0 0

0 0 0 0 0 w86 0 −w68 0

0 0 0 0 0 0 0 0 0











































k,k+1

(2.29)

and stationarity of the product measure implies

hk,k+1|P ∗ 〉 = [F (n̂A
k+1 − n̂A

k ) + F ′(n̂B
k+1 − n̂B

k )]|P ∗ 〉. (2.30)

Here F and F ′ are arbitrary constants and n̂A
k and n̂B

k are number operators

which take value 1 if there is a particle of the respective species at site k and

zero otherwise, i.e., ρA = 〈nA
k 〉 and ρB = 〈nB

k 〉 independently of k due to

homogeneity of the measure.

In order to satisfy the relation (2.30) for systems with open boundaries we

can write for b1 and bL, using another arbitrary constant g

b1|P ∗ 〉 = (Fn̂A
1 + F ′n̂B

1 + g)|P ∗ 〉, (2.31)

bL|P ∗ 〉 = −(Fn̂A
L + F ′n̂B

L + g)|P ∗ 〉. (2.32)

As detailed in Appendix A one may solve the eigenvalue Eq. (2.22) and find F

and F ′:

F = w24 − w42, (2.33)

F ′ = w86 − w68. (2.34)

Therefore the bulk rates and densities satisfy two relations due to the eigenvalue

equation (2.22):

r =
w35 + w75

w53 + w57
, (2.35)
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2.3 The nondegenerate linear conservation law

w24 − w42 + w68 − w86 + w73 − w37 =
w35w57 − w53w75

w35 + w75
. (2.36)

The first equation (2.35) expresses the constant r in terms of the reaction rates.

The second equation (2.36) is a constraint on the transition rates which we

impose on the model.

For the boundaries one needs to satisfy

g =
1

ν
(F + F ′rz2). (2.37)

This leaves two equations for the left boundary:

(w42 −w24)z(1+ rz)− (w68 −w86)rz
2 +(α1 +α2)ν− γ1zν− γ2rz

2ν = 0, (2.38)

(w68−w86)rz
2(1+ z)− (w42 −w24)rz

2−α3zν+(γ3 +γ2)rz
2ν−α2ν = 0, (2.39)

and for the right boundary one has

(w42 − w24)z(1 + rz) − (w68 − w86)rz
2 − (δ1 + δ2)ν + β1ν + β2µ = 0, (2.40)

(w68 −w86)rz
2(1+ z)− (w42 −w24)rz

2 + δ3zν− (β3 +β2)rz
2ν+ δ2ν = 0. (2.41)

These equations relate the boundary rates to the fugacity and moreover impose

some constraints on the the boundary rates which are required for a proper

interpretation as boundary reservoirs with fixed chemical potential.

We remark that the given choice of nonvanishing rates is only determined by

the conservation law and requiring stationarity of the product measure. Many

physical processes satisfy PT -invariance, i.e., the bulk dynamics should be sym-

metric under combined time reversal and space reflection. Following (2.13) we

find that PT -invariance imposes the following further relations

w75 = rw53,

w35 = rw57. (2.42)

In the calculations of the next section we do not make use of these extra relations.

We have merely listed them for possible applications of our general results to

specific PT -symmetric systems.
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2 A three states lattice gas model; an analytical approach

2.3.7 Stationary Current and Hydrodynamics

As remarked above the conservation law implies a lattice continuity equation

(2.12) for the charge current. To calculate the charge current we use the equation

of motion for the expected local charge density

d

dt
σk(t) =

d

dt
[〈nA

k 〉 − 〈nB
k 〉] = jk−1 − jk. (2.43)

One finds for the expected local density of A-particles

d

dt
〈nA

k 〉 = −w24〈n0
k−1n

A
k 〉 + w42〈nA

k−1n
0
k〉 − w37〈nB

k−1n
A
k 〉 + w73〈nA

k−1n
B
k 〉

−w57〈nB
k−1n

A
k 〉 + w75〈n0

k−1n
0
k〉 + w24〈n0

kn
A
k+1〉 − w42〈nA

k n0
k+1〉

+w37〈nB
k nA

k+1〉 − w73〈nA
k nB

k+1〉 + w35〈n0
kn

0
k+1〉 − w53〈nA

k nB
k+1〉,

(2.44)

and for B-particles

d

dt
〈nB

k 〉 = w37〈nB
k−1n

A
k 〉 − w73〈nA

k−1n
B
k 〉 − w86〈n0

k−1n
B
k 〉 + w68〈nB

k−1n
0
k〉

+w35〈n0
k−1n

0
k〉 − w53〈nA

k−1n
B
k 〉 − w37〈nB

k nA
k+1〉 + w73〈nA

k nB
k+1〉

+w86〈n0
kn

B
k+1〉 − w68〈nB

k n0
k+1〉 − w57〈nB

k nA
k+1〉 + w75〈n0

kn
0
k+1〉

(2.45)

This gives the charge current

jk = −w24〈n0
kn

A
k+1〉 + w42〈nA

k n0
k+1〉 − 2w37〈nB

k nA
k+1〉 + 2w73〈nA

k nB
k+1〉

−w68〈nB
k n0

k+1〉 + w86〈n0
kn

B
k+1〉 − w35〈n0

kn
0
k+1〉 + w53〈nA

k nB
k+1〉

−w57〈nB
k nA

k+1〉 + w75〈n0
kn

0
k+1〉.

(2.46)

In the steady state we can compute the current using the stationary distribution.

One finds

j∗ = (−w24+w42)
z

ν2
+[2(−w37+w73)+w53−w57]

rz2

ν2
+(w86−w68)

rz3

ν2
+(w75−w35)

z2

ν2
,

(2.47)
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and by using (2.35) and the stationary condition (2.36)

j∗ =
1

2
(w42 − w24)(ρ+ σ)(1 − σ) +

1

2
(w86 − w68)(ρ− σ)(1 + σ), (2.48)

where σ and ρ ≡ 〈nA
k 〉 + 〈nB

k 〉 are the stationary density of charges (2.27) and

particles (2.84) respectively.

Since the individual particle densities are not conserved the equations of mo-

tion for the local densities take the form

d

dt
〈nA

k 〉 = jA
k−1 − jA

k + Sk, (2.49)

d

dt
〈nB

k 〉 = jB
k−1 − jB

k + Sk, (2.50)

with source term

Sk = −1
2w57(〈nB

k−1n
A
k 〉 + 〈nB

k nA
k+1〉) + 1

2w75(〈n0
k−1n

0
k〉 + 〈n0

kn
0
k+1〉)

+1
2w35(〈n0

k−1n
0
k〉 + 〈n0

kn
0
k+1〉) − 1

2w53(〈nA
k−1n

B
k 〉 + 〈nA

k nB
k+1〉).

(2.51)

The particle currents are given by

jA
k = − w24〈n0

kn
A
k+1〉 + w42〈nA

k n0
k+1〉 − w37〈nB

k nA
k+1〉 + w73〈nA

k nB
k+1〉

−
1

2
w35〈n0

kn
0
k+1〉 +

1

2
w53〈nA

k nB
k+1〉 −

1

2
w57〈nB

k nA
k+1〉 +

1

2
w75〈n0

kn
0
k+1〉,

(2.52)

jB
k = w68〈nB

k n0
k+1〉 − w86〈n0

kn
B
k+1〉 + w37〈nB

k nA
k+1〉 − w73〈nA

k nB
k+1〉

+
1

2
w35〈n0

kn
0
k+1〉 −

1

2
w53〈nA

k nB
k+1〉 +

1

2
w57〈nB

k nA
k+1〉 −

1

2
w57〈n0

kn
0
k+1〉.

(2.53)

The resulting charge current jk = jA
k − jB

k is studied above. One may introduce

also a particle current j̃k = jA
k + jB

k and write

d

dt
ρk(t) = j̃k−1 − j̃k + 2Sk. (2.54)

For a coarse-grained hydrodynamic description of the time-evolution of the

system we follow standard arguments [50,79]. We pass to a continuum descrip-

tion by making the lattice unit a (which until now had been taken to be a = 1)
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infinitesimal and we consider continuum space as x = k
L
. The coarse-grained

local observables σ(x, t), ρ(x, t) in continuous space are averaged over a large

but finite lattice interval around the lattice point x and therefore given by the

expected local densities σx(t), ρx(t). We consider Eulerian scaling t′ = ta with

rescaled macroscopic time t′. In the continuum limit the two equations for σ

and ρ then take the form (to leading order in the lattice constant a)

∂t′σ(x, t′) = −∂xj(σ, ρ), (2.55)

∂t′ρ(x, t′) = −∂xj̃(σ, ρ) + R(σ, ρ)/a + R̃(σ, ρ), (2.56)

where because of local stationarity

R(σ, ρ) = −
1

2
(w57 + w53)(ρ+ σ)(ρ− σ) + 2(w75 + w35)(1 − ρ)2, (2.57)

R̃(σ, ρ) = (w57 − w53)
1

4
[(ρ+ σ)∂x(ρ− σ) − (ρ− σ)∂x(ρ+ σ)]. (2.58)

The space-time dependence of R and R̃ is implicit in arguments σ(x, t′), ρ(x, t′).

In this limit, when time and space are large, the term contained R(σ, ρ) in

the equation for ρ becomes large enough to make the two other terms negligible.

Therefore ρ(x, t) reaches its stationary state very fast, in agreement with the

notion that non-conserved local degrees of freedom have attained their stationary

values under hydrodynamic scaling. This implies that in the stationary state

R(σ, ρ) = 0, from which we obtain the stationary particle density

(ρ∗2 − σ2) = 4r(1 − ρ∗)2. (2.59)

for a given value of charge σ. Therefore ρ takes at any instant of (macroscopic)

time a special value ρ∗ which is a function of σ. The remaining slow dynamical

mode is the charge, the evolution of which is thus governed by the hydrodynamic

equation

∂t′σ(x, t′) = −∂xjx(ρ
∗, σ) = −∂σj(ρ∗, σ)∂xσ(x, t′). (2.60)

In the second equation j(ρ∗, σ) is the stationary current (2.48). This evolution

equation is a nonlinear partial differential equation which can be solved by the

method of characteristics. Because of the nonlinearity the solution may develop

shocks in the charge distribution and we now turn to the investigation of these

shocks on microscopic scale.
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2.3 The nondegenerate linear conservation law

2.3.8 Shock measures

We assume that the initial distribution of charges exhibits a shock which on mi-

croscopic scale is represented by a shock measure (see Figure 2.1). We represent

a shock measure with a shock in the fugacities between sites k and k + 1 as

| k 〉 =
1

νk
1ν

L−k
2









1

z1

rz2
1









⊗k

⊗









1

z2

rz2
2









⊗L−k

. (2.61)

In this model with open boundary condition, the first (second) fugacity matches

the fugacity in left(right) boundary.

Lk1                 

ρ
ρ

ρ 

ρ 
(1)
A

(2)
A

B
(1) B

(2)

Figure 2.1: Coarse grained density profiles of a shock measure with shock be-

tween sites k, k + 1.

Now we investigate the possibility that in analogy to the processes considered

in [56,59,66] the family of shock measures | k 〉 is closed under the time evolution

t. This means that the initial measure evolves into a linear combination of

shock measures after time t. This condition requires H which generates the

time evolution to satisfy the following equation after an infinitesimal step

d

dt
| k 〉 = d1| k − 1 〉 + d2| k + 1 〉 − (d1 + d2)| k 〉. (2.62)

We remark that this equation for the full particle distribution is mathematically

equivalent to the evolution equation of a single-particle random walk with hop-

ping rate d1 to the left and d2 to the right. Thus, if (2.62) can be satisfied, the

shock in the initial distribution remains microscopically preserved at all times,
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2 A three states lattice gas model; an analytical approach

but its position performs a random walk with shock hopping rates d1 to the left

and d2 to the right respectively.

For further analysis we define

h̃i,i+1 ≡ hi,i+1 + F (nA
i − nA

i+1) + F ′(nB
i − nB

i+1), (2.63)

b̃1 ≡ b1 − FnA
1 − F ′nB

1 , (2.64)

b̃L ≡ bL + FnA
L + F ′nB

L . (2.65)

Using

h̃i,i+1| k 〉 = 0 for i *= k, (2.66)

b̃1| k 〉 = g1| k 〉, b̃L| k 〉 = −g2| k 〉. (2.67)

with

g1 = −F
1

ν1
− F ′ rz

2
1

ν1
, (2.68)

g2 = −F
1

ν2
− F ′ rz

2
2

ν2
, (2.69)

yields

−H| k 〉 = −(
∑

i

h̃i,i+1 + b̃1 + b̃L)| k 〉 = (−h̃k,k+1 − g1 + g2)| k 〉. (2.70)

Together with (2.62) we thus find

(−h̃k,k+1 + d1 + d2 − g1 + g2)| k 〉 − d1| k − 1 〉 − d2| k + 1 〉 = 0. (2.71)

The quantities g1,2 are obtained from the boundary conditions (Appendix B).

This is a set of 9 equations for the bulk rates. We have found a solution (see

Appendix B) with w24 = 0. Putting this into the 9 equations (2.155)-(2.163)

one finds after some straightforward algebra

d2 = z2 = 0, (2.72)

d1 =
S

ν1
=

w42

ν1
, (2.73)

w57 = w37 = 0, (2.74)
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2.3 The nondegenerate linear conservation law

w86 = w68. (2.75)

In this model there is a strong driving force for the positive particles that leads

them to move only to the right as in the totally asymmetric simple exclusion

process. z2 = 0 means that in the right branch of the shock the lattice is

completely filled with positive particles (see Fig. 2.2). Hence incoming A-

particles which react with B particles in the left branch of the shock hit the

pure A-domain where they stop because of the single-file (exclusion) condition.

The shock that separates the two domain moves only to the left with rate d1.

Hence its mean velocity vs and diffusion coefficient Ds are determined by the

density and hopping rate only of the A-particles in the left domain

vs = 2Ds = w42ρ
A
1 . (2.76)

Lk1                 

ρ

ρ 
(1)
A

B
(1)

ρB
(2)

ρ 
(2)
A

Figure 2.2: Density profile of a shock measure in the case z2 = 0.

The interpretation of this result for the cracking process is readily available by

interchanging the role of positive particles and vacancies. The right branch of

the shock is the empty lattice where no reactions are going on. The left branch

is active. All particles are driven to the left so that the inactive region grows

diffusively with drift and fluctuations determined by (2.76) and ρA
1 replaced by

the vacancy density in the active domain.

We note that PT -invariance of the special model with w24 = 0 leads to

w35 = 0, (2.77)
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2 A three states lattice gas model; an analytical approach

and to the stationary state condition

w42 = w73 + w53. (2.78)

The properties of the shock are not effected by PT -invariance.

2.4 Exclusion process with binary internal degree

of freedom

Here we investigate the degenerate conservation law. The degenerate function

C(n) in (2.4) has a natural interpretation as counting the number of particles at

a given site irrespective of its internal state. Here we assign state 0 to an empty

lattice site, state 1 to a particle of type A and state 2 to a particle of type B.

The labels A and B represent two possible internal states of a particle. As in

the first model in section (2.3) there are 3 states but the conservation law on

particles leads to different dynamics. Eq.(2.4) forces to 48 transitions rates to

vanish. The following 24 transitions remain:

0A → A0 w42, A0 → 0A w24,

0B → B0 w73, B0 → 0B w37,

AB → BA w86, BA → AB w68,

B0 → A0 w47, 0A → 0B w32,

0B → A0 w43, 0A → B0 w72,

A0 → B0 w74, 0B → 0A w23,

B0 → 0A w27, A0 → 0B w34,

BA → AA w58, AA → AB w65,

AB → AA w56, AA → BA w85,

BB → AA w59, AA → BB w95,

BB → BA w89, AB → BB w96,

BB → AB w69, BA → BB w98.

(2.79)
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2.4 Exclusion process with binary internal degree of freedom

We represent the single-site basis vectors for this model as

|0) =









1

0

0









, |A) =









0

1

0









, |B) =









0

0

1









(2.80)

and parametrize the stationary one-site marginal

|P ) =
1

ν









1

z

cz









(2.81)

by a fugacity z and the ratio c of A and B concentrations. The normalization

factor

ν = 1 + z + cz (2.82)

is the local partition function. Thus one has for this grandcanonical ensemble

ρA =
z

ν
, ρB = c

z

ν
(2.83)

and for the total conserved particle density

ρ := ρA + ρB = z
d

dz
ln ν = (1 + c)

z

ν
. (2.84)

In formal analogy to systems in thermal equilibrium we shall refer to the loga-

rithm of the fugacity as chemical potential.

Parity-time invariance leads to pairwise relations between some of the rates

of (2.79). Using (2.81) this yields the following symbolic relations for the rates

w(A → B) = cw(B → A) (2.85)

for each particle on a pair of neighboring sites.In order to illustrate how this

equation leads to some relations between rates, we calculate one of them explic-

itly. For example the reaction process AB → AA with the rate w56 changes

to AA → AB after applying time reversal symmetry and by operating space

reflection one obtains AA → BA with the rate w86. By using (2.85) for ev-

ery single site we obtain w85 = cw56. With the relation (2.85) we can reduce
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2 A three states lattice gas model; an analytical approach

the number of independent rates in the process (2.79) to only 15 nonstationary

rates, viz. 6 hopping rates and 9 “reaction rates” for changes of the internal

states of the particles. For clarity we represent all of the hopping rates by h’s

and reaction process by r’s and write the rates as

w47 = r1, w32 = cr1,

w43 = r2, w72 = cr2,

w23 = r3, w74 = cr3,

w27 = r4, w34 = cr4,

w58 = r5, w65 = cr5,

w56 = r6, w85 = cr6,

w59 = r7, w95 = c2r7,

w89 = r8, w96 = cr8,

w69 = r9, w98 = cr9,

w42 = h1, w73 = h2,

w24 = h3, w86 = h4,

w68 = h5, w37 = h6.

(2.86)

In the quantum Hamiltonian formalism, the bulk transition matrix is then

given by

hk,k+1 = −











































. 0 0 0 0 0 0 0 0

0 . r3 h3 0 0 r4 0 0

0 cr1 . cr4 0 0 h6 0 0

0 h1 r2 . 0 0 r1 0 0

0 0 0 0 . r6 0 r5 r7

0 0 0 0 cr5 . 0 h5 r9

0 cr2 h2 cr3 0 0 . 0 0

0 0 0 0 cr6 h4 0 . r8

0 0 0 0 c2r7 cr8 0 cr9 .











































k,k+1

. (2.87)
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2.4 Exclusion process with binary internal degree of freedom

We consider an open boundary model with injection and extraction rates in

the left and the right boundary defined exactly as in the previous model. The

boundary matrices h1 and hL in the Hamiltonian (2.17) are then given by (2.18)

and (2.19).

2.4.1 Product measure

With (2.81) the homogeneous product measure has the form

|P ∗ 〉 =
1

νL









1

z

cz









⊗L

. (2.88)

It is convenient to define

ĥi,i+1 = hi − [E(n̂A
i − n̂A

i+1) + E ′(n̂B
i − n̂B

i+1)] (2.89)

where E, E′ are arbitrary constants and n̂A and n̂B are number operators with

eigenvalue 1 if a particle of the respective species is present and 0 otherwise.

Furthermore we define modified boundary matrices

b̂1 = b1 + En̂A
1 + E ′n̂B

1 , b̂L = bL − En̂A
L − E ′n̂B

L . (2.90)

This allows us to rewrite the quantum Hamiltonian as

H = b̂1 +
L−1
∑

i=1

ĥi,i+1 + b̂L. (2.91)

The eigenvalue equation (2.22) may be rewritten

0 = ĥi,i+1|P ∗ 〉 = (b̂1 + g)|P ∗ 〉 = (b̂L − g)|P ∗ 〉. (2.92)

with a further arbitrary constant g.

This trick allows us to determined the conditions on the rates that ensure that

(2.88) actually is stationary. For the bulk rates (2.92) yields

E = h3 − h1 + c(r3 + r4 − r1 − r2),

E ′ = h6 − h2 + r1 + r4 − r2 − r3. (2.93)
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2 A three states lattice gas model; an analytical approach

Furthermore, some algebra shows that the bulk rates must satisfy the following

condition for stationarity

h6−h2+h1−h3+h4−h5+(1+c)(r1−r3)+(1−c)(r4−r2)+c(r8−r9)+r6−r5 = 0.

(2.94)

In order to satisfy the eigenvalue equation at the boundaries the terms involving

E, E′ must cancel. For the left boundary this yields the two relations

[h1 − h3 + c(2(r2 − r4) + h2 − h6)]z = γ1zν + γ2czν − (α1 + α2)ν

= −β1zν − β2czν + (δ1 + δ2)ν,

(2.95)

and similarly at the right boundary

[(−r5 + r6 + c(r8 − r9) + h4 − h5)z − r1 + r2 + r3 − r4 + h2 − h6]cz

= (γ2 + γ3)czν − α2ν − α3z(1 + z)ν

= −(β2 + β3)czν + δ2ν + δ3z(1 + z)ν. (2.96)

These relations define a model for which the product measure with constant fu-

gacity z is stationary. The fugacity is determined by its boundary value encoded

in the boundary rates.

2.4.2 Fugacity gradient

Now we generalize the model to allow for different fugacities z1, z2 at the two

boundaries. The product measure is then no longer stationary and there is no

general principle that would constrain the form of the stationary distribution.

However, in principle its properties can be calculated from the studying the time

evolution of the system starting from some initial distribution.

In general, solving for the dynamics of a many-particle system is a much

harder task than determining its stationary distribution. However, guided by

previous experience [56] we make as ansatz an initial distribution which is a

shock measure connecting the two boundary fugacities. The representation of
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2.4 Exclusion process with binary internal degree of freedom

the shock measure here is

| k 〉 =
1

νk
1ν

(L−k)
2









1

z1

cz1









⊗k

⊗









1

z2

cz2









⊗L−k

. (2.97)

On a coarse-grained scale the density profile corresponding to this measure has

a jump discontinuity, see Fig. 2.1. We search for conditions on the rates such

that 2.62 is satisfied. This implies that the family of shock measures labelled

by the shock position k is closed under the time evolution of the many-particle

system. Physically this behaviour corresponds to a random walk of the shock

with hopping rates d1, (d2) to the left (right).

In order to have the random walk equation (2.62) for the shock, one replaces

the left hand side by the (negative) quantum Hamiltonian in the form (2.91).

Then in each branch of the shock one has ĥi,i+1| k 〉 = 0, except for i = k.

Stationarity at the boundaries implies

b1|P ∗ 〉 = (−En̂A
1 − E ′n̂B

1 + g1)|P ∗ 〉, (2.98)

bL|P ∗ 〉 = (En̂A
L + E ′n̂B

L − g2)|P ∗ 〉, (2.99)

where g1 and g2 are obtained using (2.93) as

g1 = E
z1

ν1
+ E ′ cz1

ν1
= (1 + c)(p − q)

z1

ν1
= α1 + α2 − (γ1 + cγ2)z1, (2.100)

g2 = E
z2

ν2
+ E ′ cz2

ν2
= (1 + c)(p − q)

z2

ν2
= −(δ1 + δ2) + (β1 + cβ2)z2. (2.101)

The random walk condition for the shock thus leads to 9 equations for the

bulk rates represented in the last section in Eq.(2.71) for the bulk rates. Three

of these conditions are fulfilled without any constraint on the rates, leaving the
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2 A three states lattice gas model; an analytical approach

following 6 equations :

S − d1
ν1
ν2

− d2
ν2
ν1

= 0, (2.102)

(cr4 + h3)(z1 − z2) + Sz2 − d1z2
ν1
ν2

− d2z1
ν2
ν1

= 0, (2.103)

(r4 + h6)(z1 − z2) + Sz2 − d1z2
ν1
ν2

− d2z1
ν2
ν1

= 0, (2.104)

(cr2 + h1)(z2 − z1) + Sz1 − d1z2
ν1
ν2

− d2z1
ν2
ν1

= 0, (2.105)

S − d1
z2ν1
z1ν2

− d2
z1ν2
z2ν1

= 0, (2.106)

(r2 + h2)(z2 − z1) + Sz1 − d1z2
ν1
ν2

− d2z1
ν2
ν1

= 0, (2.107)

where

S = d1 + d2 + g2 − g1. (2.108)

Solving the above equations leads to three independent relations between bulk

rates and densities

h3 + cr4 = h6 + r4 ≡ p, (2.109)

h1 + cr2 = h2 + r2 ≡ q, (2.110)

p

q
=

z2

z1
, (2.111)

and two relations

d1 = q
ν2
ν1

, (2.112)

d2 = p
ν1
ν2

, (2.113)

that express the shock hopping rates in terms of the hopping rates of the model

and the fugacities of the shock. On this parameter manifold the stationarity

condition (2.94) reduces to

h4 − h5 + (1 + c)(r1 − r3) + c(r8 − r9) + r6 − r5 = 0. (2.114)

The shock performs a random walk for a specific ratio of the boundary fu-

gacities, or, equivalently, at some specific strength of the driving force encoded

in the particle hopping rates. Thus shock mean velocity vs in terms of vacancy

density and hopping rates is

vs =
qν2

2 − pν2
1

ν1ν2
, (2.115)
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2.4 Exclusion process with binary internal degree of freedom

and its diffusion coefficient as long as the shock is far from the boundaries is

Ds =
pν2

1 + qν2
2

2ν1ν2
. (2.116)

From the shock hopping rates and its biased random walk dynamics we can

read off the stationary distribution of the system for different boundary densities.

This is a linear combination of shock measures

|P ∗ 〉 ∝
∑

k

(

d1

d2

)k

| k 〉. (2.117)

For d1 > d2 (bias to the right) the stationary shock position is in the vicinity of

the right boundary, leaving the system in a phase of low density. Conversely, for

d1 < d2, the system is in a high-density phase. At d1 = d2 the system undergoes

a first-order nonequilibrium transition [46]. Here the shock has no bias and can

be found with equal probability anywhere on the lattice. The stationary density

profile is linear, but a typical particle configuration has two different regions of

constant (but fluctuating) density. The density jumps quickly from one density

to another in some small region of the lattice.

2.4.3 Steady state current

In order to make contact with the ASEP we calculate the stationary current for

this model. In order to identify the current we first calculate the equation of

motion for the expected local particle densities,

d

dt
〈nA

k 〉 = −(h1 + cr1 + cr2)〈n0
k−1n

A
k 〉 + h3〈nA

k−1n
0
k〉 + (h4 − r6)〈nA

k−1n
B
k 〉

−(h5 + cr9)〈nB
k−1n

A
k 〉 + r3〈n0

k−1n
B
k 〉 + r4〈nB

k−1n
0
k〉

−c(r5 + cr7)〈nA
k−1n

A
k 〉 + (r7 + r8)〈nB

k−1n
B
k 〉 + h1〈n0

kn
A
k+1〉

−(h3 + cr3 + cr4)〈nA
k n0

k+1〉 − (h4 + cr8)〈nA
k nB

k+1〉

+(h5 + r5)〈nB
k nA

k+1〉 + r1〈nB
k n0

k+1〉 − r2〈n0
kn

B
k+1〉

−c(r6 + cr7)〈nA
k nA

k+1〉 + (r7 + r9)〈nB
k nB

k+1〉,

(2.118)
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d

dt
〈nB

k 〉 = −(h2 + r2 + r3)〈n0
k−1n

B
k 〉 + h6〈nB

k−1n
0
k〉 − (h4 + r6)〈nA

k−1n
B
k 〉

+(h5 + cr9)〈nB
k−1n

A
k 〉 + cr1〈n0

k−1n
A
k 〉 + cr4〈nA

k−1n
0
k〉

+c(r5 + cr7)〈nA
k−1n

A
k 〉 − (r7 + r8)〈nB

k−1n
B
k 〉 + h2〈n0

kn
B
k+1〉

−(h6 + r1 + r4)〈nB
k n0

k+1〉 + (h4 + cr8)〈nA
k nB

k+1〉

−(h5 + r5)〈nB
k nA

k+1〉 + cr2〈n0
kn

A
k+1〉 + cr3〈nA

k n0
k+1〉

+c(r6 + cr7)〈nA
k nA

k+1〉 − (r7 + r9)〈nB
k nB

k+1〉.

(2.119)

This can be written in terms of A and B particle current

d

dt
〈nA

k 〉 = jA
k−1 − jA

k + Sk, (2.120)

d

dt
〈nB

k 〉 = jB
k−1 − jB

k − Sk, (2.121)

where the source term

Sk = (cr1 −
cr2

2
)〈n0

k−1n
A
k 〉 + (

r2

2
+ r3)〈n0

k−1n
B
k 〉 +

r4

2
〈nB

k−1n
0
k〉

−
cr4

2
〈nA

k−1n
0
k〉 − (cr5 + c2r7)〈nA

k−1n
A
k 〉 + r6〈nA

k−1n
B
k 〉

+(r7 + r8)〈nB
k−1n

B
k 〉 − cr9〈nB

k−1n
A
k 〉 + (r1 +

r4

2
)〈nB

k n0
k+1〉

+
r2

2
〈n0

kn
B
k+1〉 −

cr2

2
〈n0

kn
A
k+1〉 − (cr3 +

cr4

2
)〈nA

k n0
k+1〉

+r5〈nB
k nA

k+1〉 − (cr6 + c2r7)〈nA
k nA

k+1〉 + (r7 + r9)〈nB
k nB

k+1〉

−cr8〈nA
k nB

k+1〉.

(2.122)

expresses the fact that the individual particle densities are not conserved. The

particle currents are given by the expectations

jA
k = −(h1 +

cr2

2
)〈n0

kn
A
k+1〉 + (h3 +

cr4

2
)〈nA

k n0
k+1〉 + h4〈nA

k nB
k+1〉

−h5〈nB
k nA

k+1〉 −
r2

2
〈n0

kn
B
k+1〉 +

r4

2
〈nB

k n0
k+1〉,

(2.123)
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jB
k = −(h2 +

r2

2
)〈n0

kn
B
k+1〉 + (h6 +

r4

2
)〈nB

k n0
k+1〉 − h4〈nA

k nB
k+1〉

+h5〈nB
k nA

k+1〉 −
cr2

2
〈n0

kn
A
k+1〉 +

cr4

2
〈nA

k n0
k+1〉.

(2.124)

By adding the two individual currents we find the total particle current to be

given by

jk = jA
k + jB

k

= −h1〈n0
kn

A
k+1〉 + h3〈nA

k n0
k+1〉 − h2〈n0

kn
B
k+1〉 + h6〈nB

k n0
k+1〉

−r2〈n0
kn

B
k+1〉 − cr2〈n0

kn
A
k+1〉 + cr4〈nA

k n0
k+1〉 + r4〈nB

k n0
k+1〉.

(2.125)

In the steady state we obtain

j∗ =
h3 − h1 + c(h6 − h2) + 2c(r4 − r2)

1 + c
ρ(1 − ρ), (2.126)

where ρ is the average density (2.84). This can be written in terms of E and E ′

j∗ =
E + cE ′

1 + c
ρ(1 − ρ). (2.127)

This is the well-known parabolic current-density relation of the ASEP [41, 42]

where the density-independent pre-factor plays the role of the hopping bias. In

fact, on the special manifold which gives rise to the random walk of the shock

we find, using (2.109)-(2.110), the simpler expression

j∗ = (p − q)ρ(1 − ρ). (2.128)

2.5 Conclusions

In this chapter we have found that three-states lattice gases with a single local

conservation law can be classified into two families, one where the function is

degenerate, i.e., takes the same value for two different states, another where

the conserved quantity is a linear nondegenerate function of the occupation
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2 A three states lattice gas model; an analytical approach

variable. The nonlinear nondegenerate functions lead to two independently con-

served quantities.

In the case of nondegenrate conservation law we have studied the dynamics of

a family of one-dimensional driven two-component reaction-diffusion processes

with open boundaries on microscopic lattice scale and derived a hydrodynamic

description on coarse grained Eulerian scale. This is the first main result, see

Eqs. (2.48), (2.59), (2.60). The hydrodynamic equation is nonlinear and there-

fore admits shock solutions, corresponding to phase-separated states of the sys-

tem. This generalizes one-dimensional field-induced phase separation that has

been studied in some detail for lattice fluids in thermal equilibrium [80].

The degenerate linear conservation describes a class of asymmetric exclusion

processes with a binary internal degree of freedom. We have identified con-

straints on the transition rates such that the stationary distribution is a prod-

uct measure, parametrized by the nonequilibrium analog of the fugacity. Also

for open systems with different boundary fugacities we have found a complete

list of models where the shock performs a biased random walk on the lattice.

For these systems we have detailed knowledge about the microscopic structure

of the shock. these shocks are intrinsically maximally sharp and behave like

collective single-particle excitations already on the lattice scale – not only after

coarse-graining where all the microscopic features of the shock are lost. Appar-

ently this enormous reduction in the number of dynamical degrees of freedom in

a subspace of the stochastic dynamics appears more frequently than previously

suggested [58].

An immediate consequence of the random walk dynamics of the shock is the

existence of a first order boundary-induced phase transition which occurs if the

boundary fugacities reverse the mean shock velocity. Away from this special

manifold our result for the sharpness of the shock suggest that finite systems

with lattice size of the order 10 can be well described by the domain wall the-

ory for first order boundary-induced phase transitions, [46,47], with limitations

analogous to those obtained from the exact results of Ref. [72].

It is intriguing that the maximal sharpness appears at some specific value
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of the driving force or, equivalently, ratio of boundary fugacities. It would be

interesting to investigate whether such a field-induced sharpening of the interface

is a special property of lattice models or can appear also in continuum systems

such as the recently studied mass transfer models [81, 82]. It is also an open

problem whether there can be an analogous reduction of the shock dynamics to

a random walk problem in exclusion processes where the stationary distribution

does not factorize. [83, 84]
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2 A three states lattice gas model; an analytical approach

2.6 Appendix A: Stationarity condition

Assuming product measure as stationary solution, we have

|P ∗ 〉 =
1

νL









1

z

rz2









⊗L

. (2.129)

With (2.63)-(2.65), where nA
i and nB

i are number operators

nA
i =









1 0 0

0 0 0

0 0 0









i

, nB
i =









0 0 0

0 0 0

0 0 1









i

, (2.130)

and eigenvalue equation

H|P ∗ 〉 = 0, (2.131)

we write

h̃i,i+1|P ∗ 〉 = (b̃1 + b̃L)|P ∗ 〉 = 0. (2.132)

h̃i,i+1 in terms of arbitrary constants F and F ′ is given by

h̃i,i+1 =

−











































0 0 0 0 0 0 0 0 0

0 −F − w42 0 w24 0 0 0 0 0

0 0 −Θ1 0 w35 0 w37 0 0

0 w42 0 F − w24 0 0 0 0 0

0 0 w53 0 −(w35 + w75) 0 w57 0 0

0 0 0 0 0 F ′ − w86 0 w68 0

0 0 w73 0 w75 0 −Θ2 0 0

0 0 0 0 0 w86 0 −F ′ − w68 0

0 0 0 0 0 0 0 0 0











































i,i+1

,

(2.133)

where

Θ1 = F − F ′ + w53 + w73, (2.134)
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2.6 Appendix A: Stationarity condition

Θ2 = −F + F ′ + w37 + w57. (2.135)

Substituting h̃i,i+1 in the Eq. (A-7) yields 5 independent equations. One gets F

and F ′ by solving following equations

(F + w42 − w24)z = 0, (2.136)

(−F ′ + w86 − w68)rz
2 = 0. (2.137)

Hence F and F ′ are

F = w24 − w42, (2.138)

F ′ = w86 − w68. (2.139)

Three remained equations which have to be satisfied are

(w37 − Θ1)rz
2 + w35z

2 = 0, (2.140)

(w73 − Θ2)rz
2 + w75z

2 = 0, (2.141)

(w53 + w57)rz
2 − (w35 + w75)z

2 = 0. (2.142)

From Eq. (A-17) we obtain

r =
w35 + w75

w53 + w57
. (2.143)

Subtracting Eq. (A-15) from Eq. (A-16) yields second stationary state condition

w24 − w42 + w68 − w86 + w73 − w37 =
w35w57 − w53w75

w35 + w75
, (2.144)

where the sum of (A-15) and (A-16) is already satisfied.

This model is assumed to have open boundaries, therefore b1 and bL in terms

of injection and extraction rates are given by Eq. (2.18) and Eq. (2.19). For

satisfying Eq. (A-6) for the model with open boundaries one writes

b1|P ∗ 〉 = (Fn̂A
1 + F ′n̂B

1 + g)|P ∗ 〉, (2.145)

bL|P ∗ 〉 = −(Fn̂A
L + F ′n̂B

L + g)|P ∗ 〉. (2.146)

where g is an arbitrary constant. Eq. (A-22) for the left boundary leads to three

equations

(α1 + α2) − γ1z − γ2rz
2 = F + g, (2.147)

−α1 + (γ1 + α3)z − γ3rz
2 = gz, (2.148)

−α2 − α3z + (γ2 + γ3)rz
2 = (F ′ + g)rz2. (2.149)
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2 A three states lattice gas model; an analytical approach

We then obtain g

g = −
F + F ′rz2

ν

= γ1 + α3 −
α1

z
− rzγ3.

(2.150)

One also can obtain two conditions for boundary rates, which for the left one

(w42−w24)z(1+rz)− (w68 −w86)rz
2 +(α1 +α2)ν−γ1zν−γ2rz

2ν = 0, (2.151)

(w68−w86)rz
2(1+z)−(w42−w24)rz

2−α3zν+(γ3+γ2)rz
2ν−α2ν = 0, (2.152)

and for the right boundary

(w42 − w24)z(1 + rz) − (w68 − w86)rz
2 − (δ1 + δ2)ν + β1ν + β2µ = 0, (2.153)

(w68 − w86)µ(1 − µ) − (w42 − w24)νµ − (β3 + β2)µ + γ3λ+ δ2ν = 0. (2.154)

2.7 Appendix B: Random walk conditions for the

shock

Explicitly the equations (2.71) that solve the random-walk condition for the

shock are given by

S − d1
ν1
ν2

− d2
ν2
ν1

= 0, (2.155)

(S − w35 − w75)z1z2 + w53rz
2
2 + w57rz

2
1 − d1

ν1
ν2

z2
2 − d2

ν2
ν1

z2
1 = 0, (2.156)

S − d1
z2
2

z2
1

ν1
ν2

− d2
z2
1

z2
2

ν2
ν1

= 0, (2.157)

(S − w24)z2 + w24z1 − d1z2
ν1
ν2

− d2z1
ν2
ν1

= 0, (2.158)

(S − w42)z1 + w42z2 − d1z2
ν1
ν2

− d2z1
ν2
ν1

= 0, (2.159)

(S − w68)z2 + w68z1 − d1
z2
2

z1

ν1
ν2

− d2
z2
1

z2

ν1
ν2

= 0, (2.160)

(S − w86)z1 + w86z2 − d1
z2
2

z1

ν1
ν2

− d2
z2
1

z2

ν1
ν2

= 0, (2.161)
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(S − w37 − w53 − ∆)rz2
2 + w35z1z2 + w37rz

2
1 − d1rz

2
2

ν1
ν2

− d2rz
2
1

ν2
ν1

= 0, (2.162)

(S − w73 − w57 + ∆)rz2
1 + w75z1z2 + w73rz

2
2 − d1rz

2
2

ν1
ν2

− d2rz
2
1

ν2
ν1

= 0, (2.163)

where for compact notation we have introduced

S = d1 + d2 − g1 + g2; ∆ = w24 − w42 + w68 − w86 + w73 − w37. (2.164)

These relations can be rewritten as 4 independent relations between the hop-

ping rates and the fugacities

w24 = w68 ≡ p, (2.165)

w42 = w86 ≡ q, (2.166)

p

q
=

z2
2

z2
1

≡ X2, (2.167)

S = p + q. (2.168)

and two equations for the shock hopping rates

d1 = q
ν2
ν1

, (2.169)

d2 = p
ν1
ν2

. (2.170)

To be more specific, solving Eq. (2.155) and (2.158)-(2.159) yields Eq. (2.169)

and Eq. (2.170) for d1 and d2, from these two and Eq. (2.157) and (2.160)-

(2.161), we obtain (2.167), a relation between rates and densities, then using

Eq. (2.155) with above results yields Eq. (2.165), (2.166) and (2.168).

Using these 6 relations (2.165)-(2.170), equations (2.162), (2.163) and Eq. (2.156)

respectively lead to the following relations for the so far undetermined rates

(p − q)(1 −
w37

p
)r + w35(

√

q

p
− 1) = 0, (2.171)

(q − p)(1 −
w73

q
)r + w75(

√

p

q
− 1) = 0, (2.172)

(p + q)r−1 + w53(

√

p

q
− 1) + w57(

√

q

p
− 1) = 0. (2.173)
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2 A three states lattice gas model; an analytical approach

Simplifying Eq. (2.168) by using Eqs. (2.68)-(2.69) for g1 and g2 yields following

more explicit relation between r and X

r =
X

(1 + X)2
. (2.174)

This relation on r together with Eqs. (2.171)-(2.173) and the stationary state

equation (2.36), implies that X = 0. This solved by p = z2 = 0.

The boundary equations (2.68)-(2.69) lead to

g1 =
p − q

ν1
(rz2

1 − 1)

= −α1
1

z1
− γ3rz1 + (γ1 + α3), (2.175)

g2 =
p − q

ν2
(rz2

2 − 1)

= δ1
1

z2
+ β3rz2 − (β1 + δ2), (2.176)

for g1 and g2 respectively.
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3.1 Introduction

In this chapter we present simulations of a model of a narrow long channel

which contains colloidal particles suspended in a solvent. Recently, the structure,

transport properties and hydrodynamics of suspensions have received a lot of

research attention [85–88]. However, calculating the nonequilibrium properties

of colloidal particles suspended in a solvent is a highly nontrivial problem, since

their dynamics depend on both the short-time thermal Brownian motion and

the long-time hydrodynamic behaviour of the solvent [89].

It is a fundamental problem to fully including the detailed solvent dynamics

in a computer simulation. This becomes more apparent when one considers

the huge differences between the time- and length-scale of the dynamics of the

mesoscopic colloidal particles and the microscopic solvent particles. For example

a typical colloidal particle has a diameter 10-1000 nm which displaces on the

order of 1010 water molecules each with the diameter of about 0.2 nm. Moreover,

to describe the intermolecular forces between the solvent molecules, an MD

scheme would need to resolve time scales on the order of 10−10s , while a colloidal

particle with the diameter of 1µm takes about 1s to diffuses in water over its

own diameter [90, 91].

Obviously, simulating even an extremely crude molecular model for the fluid

particles on the time scales of interest is a difficult task. Therefore a form of

coarse-graining is required, i.e., it is necessary to integrate out some degrees of

freedom of the solvent particles. The object of this chapter is to describe in

detail one such coarse-graining scheme which is based on the coupling of the

Molecular Dynamic simulation method to a so-called MPC method. The Multi-

Particle Collision dynamics (MPC) or stochastic rotation dynamics derived by

Malevanets and Kapral [92] is a method to enhance the efficiency of simulation

of a solvent by a coarse-grained collision step. In MPC, space is partitioned

into a rectangular grid, and at a discrete time-step the particles inside each cell

exchange momenta by rotating their velocity vectors relative to the center of

mass velocity of the cell. Here to enforce Galilean invariance it is necessary to
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3.1 Introduction

include a grid-shift procedure, which was first pointed out by Ihle and Kroll [93].

After the coarse-graining of the solvent particles, a coupling between the

MPC solvent and the suspended colloidal particles is required. Malevanets and

Kapral [94] derived such a hybrid algorithm that combines a full MD scheme

of the solute-solute and solute-solvent interactions, while treating the solvent-

solvent interactions via MPC. This algorithm was applied to a two-dimensional

many-particle system [95] and to the aggregation of colloidal particles [96]. The

method of Malevanets and Kapral [94] has been extended and applied to the

sedimentation of up to hundreds hard-sphere-(HS)-like colloids as a function of

volume fraction for different Peclet numbers [97]. In this chapter, we describe the

simulation of our model of colloidal suspension, based on the extended method

which is proposed by Padding et al. in [97].

We model colloidal suspensions in confinement, which requires including ge-

ometrical restrictions into simulation [17, 86, 98]. This makes the simulation of

such systems a rather challenging task [98–101]. As seen in [18,102], the collec-

tive dynamics of particles in confinement is very different from the dynamics of

the unconfined system.

We would like to restrict the motion of interacting particles such that they

represent a Single-File Diffusion (SFD) [28, 29]. SFD occurs when the particles

are located in a confined geometry and are unable to pass each other [21]. To

this end, we set the diameter of every colloid to be comparable to the width

of the channel such that the spatial sequence of the colloidal particles remains

unchanged.

The Model

Here we briefly explain the model under consideration. The solvent is modeled

by point-like particles and colloids represented by spherical particles with a

finite diameter value. The diameter of every colloid is chosen comparable to

the width of the system, in order to model SFD. Colloids are considered as

hard-sphere-(HS-)like colloids, i.e, fluid particles are not allowed to penetrate

59



3 A simulation model of colloidal dispersions in a MPC solvent

the surface of the colloidal particles. This represents one of the boundaries in

the system. The channel is another boundary which is introduced in the system

using different methods for the solvent and the colloidal particles: the solvent

particles are treated with the bounce-back rule while colloids “sense” the wall

by a determined potential.

The simulation is in two dimensions. However the movement of colloidal par-

ticles is limited in one dimension because of the confinement due to SFD. In the

case when an external force is applied (see next chapter), the colloidal particles

effectively move in one direction and the system is therefore effectively quasi-

one-dimensional. After this introductory review, in section (3.2) we present a

detailed description of the properties of a pure MPC fluid and the implementa-

tions which are required to complete an MPC simulation for a solvent located

between two walls. In section (3.3) the requirements of a Molecular Dynamics

simulation are explained. In section (3.4) we describe our final simulation model

of colloidal suspensions in a channel, by using these two methods.
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3.2 Multi-particle Collision Dynamics simulation

3.2 Multi-particle Collision Dynamics simulation

The Multi-particle Collision Dynamics (MPC) or Stochastic rotation dynam-

ics (SRD) is a mesoscale simulation technique in which binary collisions are

replaced by multi-particle collisions in a prescribed collision volume [103–107].

It employs a discrete time dynamics with continuous velocities and local multi-

particle collisions. Mass, momentum, and energy are locally conserved quantities

by construction and it has been demonstrated that the hydrodynamic equations

are satisfied. MPC is also a very recent mesoscale simulation technique which

was first introduced by Malevants and Kapral [92,94] in 1999. The fluid particles

represented in MPC should not be viewed as some kind of composite particles

or clusters. Instead the particles are merely a convenient computational device

to facilitate the coarse-graining of the fluid particles [108].

3.2.1 Simulation algorithm for an MPC fluid

a) b)

a0
L

Figure 3.1: Diagram of the MPC dynamics in two dimensions. (a) Streaming

step, (b) particles are sorted into collision boxes.

The fluid is modeled by N point particles, each with mass mf . Each of the

particles is characterized by its position ri and velocities vi and labeled with

i = 1, ....., N . Positions and velocities are continuous variables which evolve in

61



3 A simulation model of colloidal dispersions in a MPC solvent

a time increment τc by integrating Newton’s equations of motion

mf
dvi

dt
= fi, (3.1)

dri

dt
= vi, (3.2)

where fi is the total (external) force on particle i, which may come from an

external field such as gravity or a fixed boundary conditions such as suspended

colloids. However the internal forces between pair of particles are neglected in

the time evolution. Herein lies the main advantage of MPC. Instead of directly

treating the interactions between the fluid particles, a coarse-grained collision

step is performed at each time step.

In the case of a system with no external force the MPC algorithm consists

of two steps, streaming and collision which are sketched in Fig. 3.1. In the

streaming step, (see Fig. 3.1a), the particles evolve during time τc according to

the following rule

ri(t + τc) = ri(t) + τcvi(t). (3.3)

In the collision step, the particles are sorted into collision boxes (see Fig. 3.1b).

−

α(t)

(t)i

V (t+
i

V (t) V (t)
i

−V (t)(t)(α)R
i

[ ]Vcm,j

cm,j

cm,j

)c

V

V

τ

Figure 3.2: Rotation of particle velocity relative to the center of mass.

The collision boxes are typically the unit cells of a d-dimensional cubic lattice
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3.2 Multi-particle Collision Dynamics simulation

with lattice constant a0. The collision is then defined as a rotation of the veloc-

ities of all particles in a box in a frame co-moving with its center of mass (see

Fig. 3.2). Thus the relative velocity of the ith particle after the collision is:

vi(t + τc) = vcm,j(t) + R(α)(vi(t) − vcm,j(t)), (3.4)

while vcm,j(t) is the velocity of center of mass of collision box j

vcm,j(t) =

∑(i,t)
j mfvj
∑

j mf

, (3.5)

and R(α) is a stochastic rotation matrix. This implies that the magnitude and

the direction of the velocity of every particles change during the collision step

in a way that the total momentum and kinetic energy will be conserved within

every collision box. This is easy to understand since velocity of the center of

mass for every collision box vcm,j(t) does not change during collision,

(j,t)
∑

i

mfvi(t + τc) =
∑

i

mf(vcm,j(t) + R(α)(vi(t) − vcm,j(t)))

=
∑

i

mfvcm,j(t) +
∑

i

R(α)(mfvi(t) − mfvcm,i(t))

= mfNvcm,j(t) + R(α)
∑

i

(mf(vi(t) − vcm,j(t)))

=
(j,t)
∑

i

mfvi(t). (3.6)

Also for the kinetic energy we obtain

(j,t)
∑

i

mf

2
v2

i (t + τc) =
(j,t)
∑

i

mf

2
v2

i (t). (3.7)

Therefore with the collision rule as in Eq.(3.4), the conservation of mass, local

momentum and kinetic energy are guaranteed by construction.

3.2.2 Random rotation vector

Together with the collision step, the stochastic rotation matrix R(α) has been

introduced, such that α is a parameter of the model. In two dimension the
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rotation of the relative velocity is simply given by an angle ±α, where the

sign is independent and randomly chosen for each cell. In three dimensions a

random direction is independently generated in each collision cell by selecting

two uncorrelated random numbers s1 and s2, from an interval [0,1] [103]. The

random unity vector R has components,

Rx =
√

1 − θ21cosθ2, Ry =
√

1 − θ21sinθ2, Rz = θ1, (3.8)

where θ1 = 2s1 − 1 and θ2 = 2πs2 .

3.2.3 MPC units

For a MPC simulation the following units are used: lengths will be in units

of cell size a0, energies in units of system temperature kBT and the masses in

units of mf . This is equivalent to setting a0=1, kBT=1 and mf=1. Time is

expressed in units of t0 = a0

√

mf

kBT
. Then τc = λt0, where λ is called the mean

free path and is the average fraction of a cell size that a fluid particle travels

between collisions. In the simulation, N particles are initially located in a square

system of linear extension L and with initial velocities that are drawn from the

Maxwell-Boltzmann velocity distribution. The average number of particles in a

two dimensional system is the number density nf = N( a0

L2 ).

3.2.4 Galilean invariance; Random shift

As already discussed, in order to perform the multi-particle collision, the parti-

cles are sorted into cells where the collisions take place. To choose these collision

boxes, a preferential grid needs to be defined. A first naive choice would be a

fixed grid whose outside borders coincide with the system boundaries (see Fig.

3.3a). Nevertheless, such a fixed grid does not satisfy Galilean invariance. To

prove this, suppose the displacement of particle i is smaller than the size of the

collision box a0. The set of particles in the collision box in a moving frame will

not be the same as in a frame at rest. This will lead to different dynamics in

the two frames and therefore will cause a breakdown of the Galilean invariance.
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a) b)

τc

(t)V

V(t+ )

Figure 3.3: (a) Diagram of random shift of the collision grid, (b) Diagram of

bounce-back rule.

Hence, a random shift of the collision grid has to be performed in the execution of

the collision step [93,109] in order to restore Galilean invariance. This Random

shift is performed by displacing the collision grid by drawing a random number

uniformly distributed in the interval (0,1) which is chosen independently in each

collision. As a consequence of such a shift no special frame exists and Galilean

invariance is restored. Hence two particles placed at a quite small distance but

separated in a fixed grid now would interact. The random shift implementation

also yields the result that the probability of two particles to interact will be

inversely proportional to their relative distance, in a way similar to a soft range

potential.

3.2.5 Implementation of walls in a MPC fluid

Modeling of many systems requires the implementation of walls as boundaries. A

simple case would be the implementation of a fixed solid wall. This is performed

by applying the so-called “stick boundary conditions”.

For simulating fixed walls with MPC, standard bounce-back is applied during
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3 A simulation model of colloidal dispersions in a MPC solvent

the streaming step, such that when a particle hits the walls it returns in the

incoming direction with equal and opposite velocity (see Fig. 3.3b).

Here we intend to derive clearly the position and the velocity of the particle

after colliding with the wall at y = 0 for a two dimensional system. In this

case, a gravitational field g exists parallel to the wall. We consider three pair of

position and time for particle, (see Fig. 3.4) as follows:

The initial position when particle begins to approach the wall is (x0, y0) at time

t = 0,

the position of the particle when it hits the wall at y = 0 is (xc, 0) at time t = tc,

and the final position of the particle after hitting the wall is (X, Y ) at time step

τc.

xy=0

y

c

(X,Y)(x , y ) 0 0

c(x  , 0)

Figure 3.4: Position coordinates of a particle before and after hitting the wall.

First we calculate the colliding time tc from the equation of motion Eq.(3.1)

parallel to y direction,

tc = −
y0

vy

, (3.9)

so x component of the position at hitting point

xc = x0 + vxtc +
1

2
gt2c , (3.10)

For the particle at colliding point xc, the time requited to reach (X, Y ) with

inverted velocities −vxc and −vyc, is (τc − tc). Thus we obtain the equations for
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X and Y as

X = xc − vxc(τc − tc) +
1

2
g(τc − tc)

2,

Y = −vyc(τc − tc). (3.11)

After replacing the relations for tc and xc, we finally obtains the components of

the position of the particle

X = x0 − vxτc − 2y0
vxc

vy0

,

Y = −y0 − τcvyc , (3.12)

where the velocities read as

vxc = vx0
+ gtc,

vyc = vy0
. (3.13)

The relations for a particle hitting the wall located at Ly can be received

similarly, by substituting yc = Ly.

However this will not be enough since the walls will not generally coincide

with the cell boundaries, due to random shift (see Fig. 3.5). In this case the

cells in the boundary will be generally partially filled, which will not lead to

the desired stick boundary conditions. We therefore need a generalization of the

bounce-back rule for partially filled cells. Many different schemes are possible.

An efficient algorithm has been used in our simulation.

The basic idea is as follows: for all the cells of the channel that are cut by

the walls, and therefore have a number of particles n which is smaller than the

average number nf of the bulk cells, “virtual particles” will be added in order

to make the effective density equal to the average density. The velocities of the

particles at the wall are drawn from a Maxwell-Boltzmann distribution with zero

average velocity and the same temperature T as the fluid. The collision step

Eq.(3.4) is then carried out with the average velocity of all particles in the cell.

Since the sum of the random vectors, each drawn from a Gaussian distribution

is again Gaussian, the velocities of the individual particles at the wall need not
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3 A simulation model of colloidal dispersions in a MPC solvent

Figure 3.5: Diagram of random shift in the presence of the wall where some cells

in the boundary are partially filled.

be determined explicitly. Instead, the center of mass velocity in Eq.(3.4) can be

written as

vcm =

∑n
i=1 vi + ζ

nf

, (3.14)

where ζ is a vector whose components are numbers from the Maxwell-Boltzmann

distribution with zero average and variance (nf − n)kBT .

3.2.6 MPC solvent in gravitational field

Considering a fluid resting between two planar walls, a gravitational field g is

applied in one direction parallel to the walls. After a relaxation time, the system

reaches a stationary state with a parabolic velocity profile between the walls and

the direction of the force. It is known [110] that the measured maximum velocity

vmax of the parabola is inversely proportional to the kinematic viscosity ν of the

fluid like

vmax =
gL2

y

8ν
. (3.15)

This behaviour is reproduced by MPC simulation of fluid [105,107,111]. See an

example in Fig. 3.6. This parabolic profile is obtained for a two dimensional

square system where Lx = Ly = 25. The planar fixed walls are implemented at
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Figure 3.6: Parabolic velocity profile in the presence of gravitational field repro-

duced by MPC for a 2D square system. The green parabola curve

has been fitted to data points to obtain ν.

y = 0 and y = 25. The simulation parameters are set for time step τc = 0.1, par-

ticle density nf = 10 and the rotational angle α = 90 ◦. The viscosity obtained

from relation (3.15) for the maximum velocity in Fig. 3.6 in a gravitational

field g = 0.001 is 0.729. This value should be compared with the value for

viscosity obtained from theoretical prediction. The theoretical viscosity rela-

tion ν = νcoll + νkin is a sum over two contributions: the kinetic viscosity νkin

and the collisional viscosity νcoll. The relations for νcoll and νkin in two dimen-

sions [104, 112] read as

νcoll =
a0 (1 − cosα)

12τc

(

ρf − 1 + e−ρf

ρf

)

,

νkin =
kBTτc
mf

[

1

1 − cos2α

(

ρf

ρf − 1 + e−ρf

)

−
1

2

]

, (3.16)

where a0, ρf , α and τc are the parameters of the solvent (see subsection 3.2.3).

Calculating the theoretical viscosity for the system in Fig. 3.6 yields νtheory =
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Figure 3.7: Parabolic velocity profile for the system with the width Ly = 10.

The green curve has been fitted to data points to obtain ν.

0.755, where a good agreement with the result from our simulation can be seen.

Another example depicted in Fig. 3.7, has been obtained for a system with

length Lx = 20. Now walls are located at y = 0 and y = Ly = 10 which is closer

to the representation of our final simulation model of a channel. The parameters

are the same as in Fig. 3.6, except the density which is nf = 5. The maximum

velocity in parabolic profile of Fig. 3.7 yields viscosity ν = 0.6179, where a

reasonable consistency with the theoretical value νtheory = 0.6802 obtained from

Eq.(3.16) can be seen. The maximum numerical error bar for Fig. 3.7 is of the

order of 10−5.

3.3 Molecular Dynamics simulation

Molecular dynamics simulations generate information on the microscopic level,

in particular, atomic positions and velocities as a function of time, i.e., the

complete description of the system in the sense of classical mechanics. This
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3.3 Molecular Dynamics simulation

microscopic information has to be translated into macroscopic observable like

pressure, heat capacity, diffusion coefficient, etc., by means of statistical me-

chanics. Molecular dynamics simulations are exploited in a wide range of appli-

cations in fundamental and applied science. In the late 1950’s [113, 114] which

MD method was introduced by Adler and Wainwright to study the interac-

tions of hard spheres. The literature, since then is full of molecular dynamics

simulation results ranging from atomic and solid state physics to soft matter

applications [115–118].

Today the number of simulation techniques has greatly expanded. Special-

ized techniques for particular problems, including mixed quantum mechanical-

classical simulations,have been developed [119]. To cover the length- and time-

scale gap of complex fluids, hybrid simulation techniques are exploited, where

MD simulations are one of the components (see next section).

3.3.1 Equations of motion

The basic dynamical equations of classical mechanics are Newton’s equations of

motion. For a system of N point particles of mass mi(i = 1, ...., N) at positions

ri and velocities vi, they are given by

mi

d2ri

dt2
= Fi. (3.17)

The forces Fi on particle i are obtained from the potential energy U({r}) via

Fi = −+ri
U({r}). (3.18)

The solutions of these equations provide the complete information of a system

for particular initial conditions, say at t = 0, ri(0) and ṙi(0). Alternatively,

Hamilton’s equations of motion for the generalized momenta pi and positions ri

follow from the Hamiltonian

H =
N

∑

i=1

p2
i

2mi

+ U({r}), (3.19)
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3 A simulation model of colloidal dispersions in a MPC solvent

via the canonical equations

ṙi = +pi
H,

ṗi = −+ri
U({r}) = Fi. (3.20)

For cartesian coordinates Hamilton’s equations become

ṙi =
pi

mi

,

ṗi = −+ri
U({r}) = Fi. (3.21)

We consider systems that are conservative, i.e., there is a potential energy

which is independent of time. As a consequence, the total energy of the system

E = H = Ek + U is conserved, where Ek =
∑

i miṙi
2/2 is the kinetic energy.

Moreover, the systems under consideration are invariant with respect to transla-

tions which implies the conservation of the linear momentum, i.e.,
∑

mir̈i = 0.

To obtain a complete description of the system, one should explicitly determine

the terms of potential energy in Eq.(3.21) (see below).

3.3.2 Potentials and force fields

All macroscopic properties of materials are strongly dependent on the forces

among their elementary building blocks. The spectrum of properties ranges from

the spatial structure of solids to the secondary and ternary structure of biological

supermolecular systems. Thus, it is desirable to achieve a representation of the

actual interactions in terms of the classical potential energy U({r}) (force field)

as accurately as possible. Nevertheless, the potential energy is an empirical

quantity. Hence there is no ‘correct’ functional form. Its functional form is

rather a compromise between accuracy and efficiency.

The potential energy of N interacting atoms can be divided into terms which

are functions of the coordinates of individual atoms, pairs of atoms or atoms-

triplets, etc. A constant term in the potential energy represents the effect of

an external field on the system, e.g. gravitational field, electric fields, boundary

walls, etc. The pair potential term is the most important. The term of triples
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Figure 3.8: Atomic pair potentials u(rij) where rij represents the distance be-

tween the two atoms. The relations for UHS , U c and UL−J are given

in Eq.(3.22), Eq.(3.23) and Eq.(3.24) respectively.

of atoms is significant at liquid densities. Higher order terms are expected to

be small. Usually triplet terms are not included in computer simulation be-

cause their computation is very time consuming. Generally, the pair potential

is chosen such that it includes triplet and higher order interactions. Thus, it

has to be regarded as an effective pair potential, representing all the many-body

effects. A consequence of this approximation is that the effective pair potential

which is needed to reproduce experimental data, may depend on the density,

temperature, etc., while the true two-body potential does not.

Typical atomic pair potentials u(rij) where rij represents the distance between

the two atoms i and j are (see Fig. 3.8):

• Hard sphere-potential
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3 A simulation model of colloidal dispersions in a MPC solvent

UHS =











∞, rij < σ

0, rij > σ
(3.22)

The simplest possible model can be modeled via potential of hard spheres.

• Coulomb potential

UC(rij) =
qiqj

rij

, (3.23)

where the qis are the charges.

• Lennard-Jones potential

ULJ(rij) = 4ε

[

(

σ

rij

)12

−
(

σ

rij

)6
]

, (3.24)

which is one of the most commonly used form for pair potentials, originally pro-

posed for liquid argon. The parameter ε in this potential governs the strength

of the interaction and σ, which is called the collision diameter, is defined as

the separation of the particles when the potential is zero. The Lennard-Jones

potential has a long-range attractive tail coming from r−6 and a short-range re-

pulsive tail coming from the term r−12. The attractive tail essentially represents

the van der Walls interaction, while the strongly repulsive core arising from un-

bounded overlap between the electron clouds of particles has a rather arbitrary

form. However, in cases where a different steepness for the potential is required,

other values of the power law exponent for a general form of repulsion term have

been proposed [97,120]. This consequently renders new functional forms for the

potential. An example of this will be presented in subsection (3.4.2).

Finally the potential energy of the N particle interacting system for particle

i can be represented as:

Utotal =
∑

j &=i

u(rij), (3.25)

where the sum is over all N − 1 atoms excluding i itself. The term u(rij) in

this sum includes all pair potentials that are needed to model the system. Since

u(rij) = u(rji), each atom pair should be considered once.
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3.3.3 Molecular Dynamic simulation units

In MD simulations, often suitable units of energy and length are chosen and

all other quantities are expressed in terms of these units. In a system with

Lennard-Jones interaction the unit of length is usually set equal to σ and the

unit of energy to ε. As a consequence, the unit of time is σ
√

m/ε, where m is

the mass of one of atoms, and the unit of temperature T is ε/kB, where kB is

the Boltzmann constant.

For our model, two different simulation methods, MD and MPC, are combined

and the units of simulation parameters are also modified accordingly.

3.3.4 Potential truncation

Here and below, we consider the Lennard-Jones potential as the only pair inter-

action potential. However, Eq.(3.25) still contains very many terms and hence

cannot be calculated accurately. The attractive tail of the Lennard-Jones po-

tential in Eq.(3.24) decays like r−6. That means the potential energy of two

particles at a distance of 3σ is only half a percent of the minimum value −ε.

To determine the remaining part is very time-consuming and useless. Since it

is sufficient to calculate pair interactions only up to a certain cut-off radius;

at larger distances the potential is negligible. According to method proposed

by Weeks, et al, the potential separation involves splitting the potential at the

minimum [121]. The Lennard-Jones potential therefore is often truncated at its

minimum as

Umin = −ε, rmin = rc = 6
√

2σ. (3.26)

This means that only the reflecting part of the potential is taken into account

which simplify the interaction even further. To avoid jumps of the potential at

the point of truncation, the potential is shifted by its values at r = rc (see Fig.

3.9) and it finally reads

U“truncated”
LJ (rij) =











4ε

[

(

σ
rij

)12
−

(

σ
rij

)6
]

+ ε rij ≤ rc

0 rij > rc

(3.27)
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Figure 3.9: Lennard-Jones potential (red line) and truncated Lennard-Jones po-

tential (blue line).

From the above equation, the force between two particles i and j can be obtained

/Fi,j = −+i,j U“truncated”
LJ =











24ε

[

2
(

σ
rij

)12

−
(

σ
rij

)6
]

1
r2
i,j
/ri,j, rij ≤ rc

0, rij > rc

(3.28)

where ri,j is defined as

r2
ij = (xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2. (3.29)

3.3.5 Boundary conditions and wraparound effect

We consider a two dimensional system. The boundaries in one of the direc-

tions is defined with walls (see next section). In the other direction, a periodic

boundary condition has been applied . A periodic boundary condition implies

an infinite space-filling array of identical copies of the simulation region (see

Fig. 3.10). Consequently, an atom that leaves the simulation region through a

particular boundary immediately re-enters the region through the opposite side.
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It is important to make sure that the properties of the small, infinitely periodic

system and those of the macroscopic system that it represents are the same. For

this, one should consider the range of interacting potentials and the the proper-

ties of interest. For a fluid represented by Leonard-Jones potential it should be

possible to perform a simulation in a square box of side length L " 6σ , without

a particle “feeling” the symmetry of periodic boundary. On the other hand,

for the potentials of this kind, atoms lying within a distance rc of a boundary

interact with atoms in an adjacent copy of the system. In this case the minimum

image convention or a wraparound effect can be applied. This means that only

interactions among the closest neighbouring particles are calculated.

Figure 3.10: Diagram of periodic boundary condition in two directions.

The wraparound effect of the periodic boundaries must be taken into account

in integration of equations of motion and also in the computations of interaction.

After each integration step, the coordinates must be examined, and if an atom

is found to move outside the simulation box through a boundary, then its coor-

dinates must be adjusted to bring it back through the opposite boundary. Then

the interaction potential must be updated according to the new coordinates.

Since the cut-off radius has to be smaller than half of the simulation box, the

x− component of the particles’ positions is defined within the range of [−Lx/2,

Lx/2]. Thus if the x− components of distance between a pair of atoms be xij ,

77



3 A simulation model of colloidal dispersions in a MPC solvent

then for |xij | > Lx/2, we replace it by xij − Lx for xij > 0, and by xij + Lx if

xij < 0.

3.3.6 Lennard-Jones potential at the walls

We implement walls to cause the boundaries in the second direction (see Fig.

3.11). Using the method proposed in [122,123], we assume that the walls of the

channel contain an infinite number of particles. In order to prevent particles

leaving the system, a Lennard-Jones potential between the particles in the wall

and the particles in the system has been applied.

In order to calculate the total force between particles of the wall and a particle

in the channel we determine the sum over all small L-J contributions, and obtain

the total wall potential

Uwall =
N

∑

x=0

UL−J
x . (3.30)

y=Y
(x,y)

(xi,yi)

x

y

Figure 3.11: Diagram of the wall of the channel which contains many number

of particles and each of them has a contribution in the total L-J

potential.

Here the walls are located along the x direction and it is assumed that the

walls are continuous. Thus the sum in Eq.(3.30) is replaced by the following

integration

Uwall =

∫ +∞

−∞

ρUL−J (x)dx + K, (3.31)
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where ρ = q
σ

is the density at the wall and q is a constant depending on the

properties of the wall. Substituting Eq.(3.27) in the above relation, one gets

Uwall(yi) =
4εq

σ

∫ +∞

−∞

[

σ12

[(xi − x)2 + (yi − y)2]6
−

σ6

[(xi − x)2 + (yi − y)2]3

]

dx+K.

(3.32)

Accordingly, we need to perform the following integration
∫ +∞

−∞

dx

[(a − x)2 + b2]n
, (3.33)

for n = 3 and n = 6 where a = xi and b = yi−y. This integration is determined

for the required values of n as

3π

8b5
, for n = 3,

315π

1280b11
, for n = 6. (3.34)

Using the above expressions, we obtain the final expression for the potential

at the wall-position at y = Y

Uwall(yi) =
3εqπ

2

[

21

32

(

σ

yi − Y

)11

−
(

σ

yi − Y

)5
]

+ K. (3.35)

Here the repulsive tail of L-J potential will be taken into account (see subsec-

tion (3.3.4)). The cut-off radius has been found as follows

∂Uwall

∂yi

= 0 =⇒ rmin = rc = 6
√

1.444375σ. (3.36)

The value of the truncation distance rc is required to calculate the minimum

potential Umin. The truncated wall-potential finally reads

U truncated
wall











3εqπ
2

[

21
32

(

σ
yi−Y

)11
−

(

σ
yi−Y

)5
+ 6

11
1

1.44375
5
6

]

, r ≤ rc

0. r > rc

Finally calculating the derivative of the potential yields the force along the y

direction

Fwall(yi) =
15εqπ

2

[

231

160

(

σ

yi − Y

)11

−
(

σ

yi − Y

)5
]

1

yi − Y
. (3.37)
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We typically set the parameter value q = 1 in our simulation.

3.3.7 MD algorithms, velocity Verlet algorithm

A number of algorithms have been suggested to integrate Newton’s equations

of motion. A simple but efficient algorithm, which has been used in the present

thesis, is the velocity Verlet algorithm [124–126]. Starting from the Liouville

equation of motion [127], one obtains the integration scheme for positions and

velocities

ri(τMD) = ri(0) + τMDṙi(0) +
τ 2
MD

2mi

Fi(0), (3.38)

ṙi(τMD) = ṙi(0) +
τMD

2mi

(Fi(0) + Fi(τMD)) , (3.39)

which is called velocity Verlet algorithm.

The steps for integration of Newtons equations of motion in the simulation code

are as follows :

• 1.Providing initial conditions by generating initial position r(t0), velocities

ṙ(t0) and forces F (t0).

• 2. Calculation of new positions at time t + τMD according to Eq.(3.38)

ri(t + τMD).

• 3. Calculation of velocities at time t + τMD/2

ṙi(t + τMD/2) = ṙi(0) +
τMD

2mi

Fi(t).

• 4. Calculation of forces using positions r(t + τMD) and Eq.(3.28)

Fi(t + τMD) = Fi(r(t + τMD)).

• 5. Calculation of velocities at time t + τMD by using velocities at time

t + τMD/2

ṙi(t + τMD) = ṙi(t + τMD/2) +
τMD

2mi

Fi(t + τMD),
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3.3.8 Microcanonical ensemble; thermostats algorithm

The MD simulation described so far applies to a closed system with a given

number of particles N in a fixed volume V at constant energy E. Thus the

averages obtained in such a simulation are equivalent to ensemble averages in the

microcanonical ensemble or NVE ensemble. However, various physical situations

require the simulation of other ensembles by inclusion of the environment into

the simulation. One example of this is canonical ensemble. In the canonical

ensemble, the number of particles N , the temperature T , and the volume V are

constant. The energy is no longer a conserved quantity, only the mean of the

energy is constant over time.

In order to obtain a canonical ensemble in a molecular dynamics simulation,

one has to couple the system under consideration to a heat bath. There are

various methods to implement such a coupling (see below).

The Andersen scheme, stochastic method

The stochastic method proposed by Andersen [126,128] is a thermostat in which

the coupling to the environment is achieved by random “collisions” with imag-

inary heat bath particles. These collisions lead to instantaneous momentum

changes. Here, at each step, a prescribed number of particles is selected, and

their momenta (actually, their velocities) are drawn from a Maxwell-Boltzmann

distribution at the prescribed temperature [129]. The strength of the coupling

to the heat bath is specified by a collision frequency ν. For each particle, a

random variable is selected between 0 and 1. If this variable is less than ν∆t,

then that particle’s velocities are updated. Between the collisions, the particles

move according to Newtons equations of motion. The time correlation functions

can be calculated inside this interval.

Velocity rescaling

An alternative method to simulate constant temperature is velocity rescaling.

Here the velocities of all particles are rescaled such that at any integration
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step the desired kinetic energy and hence the temperature is obtained [130].

According to the equipartition theorem for a canonical ensemble one can write
〈

∑

i

miv
2
i

〉

= 3NkBT. (3.37)

On the other hand, if Ek is the kinetic energy at a certain time and v′ = v/c is

the scaled velocity, using Eq.(3.37), we have

Ek =
1

2

N
∑

i=1

miv
2
i =

1

2

N
∑

i=1

mic
2v′2

i = c2 1

2

N
∑

i=1

miv
′
i
2 = c2 3

2
NkBT. (3.38)

Hence one finds the rescaling factor c and therefore the rescaled velocity:

v′ = v

√

3NkBT

2Ek

. (3.39)

The pre-factor 3 in Eq.(3.39) represents the degree of freedom for a three

dimensional system. For a two dimensional system the rescaling factor c is

given by

c =

√

NkBT

Ek

. (3.40)

Since the same factor is used for all the particles, there is no effect on the

center of mass motion. Usually, the velocities are periodically rescaled after

every few time steps, during equilibration. Rescaling the velocities at certain

intervals may add some periodic perturbation to the system, which is in general

undesirable, but sometimes such a perturbation can serve as a tool to study

system dynamics. The rescaling is also performed when the kinetic energy falls

outside a certain error-bar around the desired value or it is used to equilibrate

the system during the the first few hundred MD steps before the production run

starts and data are collected.
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3.4 A colloidal dispersion; simulation method

After considering the implementation and characteristic behaviour of two simu-

lation methods, MD and MPC, the next question is how the system of a colloidal

suspension in a channel can be modeled using these two methods. To this end,

the strategy is to define a hybrid algorithm where the solvent is simulated with

the MPC technique and the solute is modelled with standard molecular dynam-

ics. Malevants and Kapral first showed how to implement a hybrid MD scheme

that couples a set of colloidal particles to a bath of MPC particles [94]. In their

model, both the solute-solute and solute-solvent interactions were taken into ac-

count through excluded-volume potentials with MD, and only the solvent-solvent

interactions were macroscopically described through MPC. In this section we il-

lustrate their method, describing in detail how their implemented algorithm used

to model our system. We restrict ourselves to hard-sphere(HS)-like colloids with

steep interparticle repulsions by using truncated L-J potential (see section 3.3),

although attractions between colloids can easily be added on. The colloid-colloid

and colloid-fluid interactions φcc(r) and φcf(r), respectively, are integrated via

a normal MD procedure while the fluid-fluid interactions are coarse-grained us-

ing MPC. The advantage of this model comes from the fact that fluid particles

vastly outnumbers HS colloids and approximating their interactions using MPC

greatly speeds up the simulations.

3.4.1 Units and simulation parameters

Before describing the details of the simulation model, it is useful to introduce

the units and parameters which we use in the program. We define lengths in

units of a MPC cell size a0, energies in units of kBT and masses in units of fluid

particle mass mf . In other words, we set a0 = 1, kBT=1, mf=1. Other units

can be derived from these basic units. For example time in terms of basic units

is t0 = a0

√

mf

kBT
. The dimensionless mean free path is then

λ =
τc
a0

√

kBT

mf

=
τc
t0

, (3.41)
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which provides a measure of the average fraction of a cell size that a fluid particle

travels between collisions. Two independent parameter sets, have been used to

simulate the fluid particles and the colloids (see Table 3.1). However, since the

fluid particles play the role of MD particles in the simulation program as well,

few parameters are common between them and colloids and these are presented

in the colloid column below.

MPC particle simulation parameters

mf : fluid particle mass

Lx : MPC box length along x

Ly: MPC box length along y

α : stochastic rotation angle

nf : fluid number density (average number of particles per cell)

Nf : number of fluid particles

τc: MPC collision time step

Colloid simulation parameters

Mc : colloid mass

Nc : number of colloids

τMD : MD time step

rc : colloid radius

σcc : colloid-colloid collision diameter (a colloid diameter)

εcc : colloid-colloid energy scale

σcf : colloid-fluid collision diameter

εcf : colloid-fluid energy scale

σw : colloid-wall collision diameter
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3.4 A colloidal dispersion; simulation method

εw : colloid-wall energy scale

rcc : cutoff radius of colloid-colloid repulsive potential

rcf : cutoff radius of colloid-fluid repulsive potential

rcf : cutoff radius of colloid-fluid repulsive potential

rw : cutoff radius of colloid-wall repulsive potential

gc : gravitation field exerted on colloid

Table 3.1: Simulation parameters for the colloidal suspension model

Some parameters above have been set to following values:

the energy scales, εcc = εcf = εw = kBT ,

the width of the channel or y component of MPC box, Ly = 10,

the number density of fluid particle, nf = 10,

the mass colloid density ρc = 10. We choose the mass density of colloids equal to

nf , in order to have a homogeneous system. Hence the mass of every spherical

colloid may be calculated as Mc = πr2
cnf = 125.664.

We set rc = 2 in most of the cases, which means the surface of every colloid

occupies few MPC cells. The diameter of the colloidal particles and the width of

the channel are chosen such that the colloidal particles exhibit SFD. The value

of rc determines collision diameters as σcc = 2σcf = 2rc and σw = σcc. The last

one has been chosen to guarantee that the spatial sequence of colloids remains

constant in the channel.

The value of gravitational force exerted on colloids is set to gc = 0.1.

It is noted that the number of colloids is one of the parameters which may

vary in different cases. Thus the number of fluid particles Nf will be altered

consequently to keep the total mass density constant. We use Nf = nf(LxLy −

Ncπr2
c ) to obtain the number of fluid particles.
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3 A simulation model of colloidal dispersions in a MPC solvent

3.4.2 Colloid-colloid and colloid-fluid interaction

For the colloid-fluid interaction we take a repulsive Lennard-Jones potential as

explained in subsection (3.3.4)

φcf(r) =











4ε
[

(σcf

r

)12 −
(σcf

r

)6
+ 1

4

]

, r < rcf

0. r > rcf

(3.42)

We approximate pure HS colloids by another repulsive interaction of the trun-

cated Lennard-Jones form

φcc(r) =











4ε
[

(

σcc

r

)48 −
(

σcc

r

)24
+ 1

4

]

, r < rcc

0. r > rcc

(3.43)

For the colloid-colloid interaction φcc(r) = 4ε[(σcc/r)2n − (σcc/r)n + 1/4], we

choose n = 24 because that makes the φcc(r) rather steep, almost like hard

spheres, but still soft enough to allow the time step to be set by the colloid-fluid

interaction (see subsection 3.4.6). Since the mass mf of a fluid particle is much

smaller than the mass Mc of a colloid, the average thermal velocity of the fluid

particles is larger than that of the colloid particles by a factor of
√

Mc/mf .

Therefore the time step τMD is usually restricted by the fluid-colloid interaction

Eq.(3.42), allowing fairly large exponents n for the colloid-colloid interaction

φcc(r).

3.4.3 Particles at boundaries

A periodic boundary condition has been applied for both the solvent and solute

particles as explained in section (3.3.5). In our simulation, the walls of the chan-

nel are located in the x-direction, along which the periodic boundary condition

is applied.

For the y direction, the wall of the channel effectively acts as a boundary for

colloids and fluid particles. However, we use two slightly different algorithms:

for MPC point particles of the fluid we use the bounce-back rule as explained in

86



3.4 A colloidal dispersion; simulation method

cfr
y

x

y=Y

Figure 3.12: Diagram of a case where fluid particle hit at wall enters within the

cut-off distance from a colloid.

subsection (3.2.5), while an integrated potential has been proposed (see subsec-

tion 3.3.6), in order to keep MD colloids within the channel walls.

The bounce-back relations which have been calculated in Sec.(3.2.5) corre-

spond to the case of pure solvent. Including colloids in the model requires to

modify the relations slightly. We imagine a case where a colloid is propelled close

to the wall and is accidentally within the cutoff distance rcf from a fluid particle

(see Fig. 3.12). This yields a nonzero φcf(r) in Eq.(3.42) and consequently a

force along y direction which alters the equations of motion for fluid particles.

In order to calculate the new collision time tc in Eq.(3.9), we write the equation

of motion for the y coordinate of a fluid particle at the point it hits the wall

yc = y0 + vy0
tc +

Fyt2c
mf

, (3.44)

where Fy is the force perpendicular to the wall exerted by a colloid. yc can take

two values, 0 or Ly, which represent the location of channel walls. The only

possible force inserted from a colloid nearby is repulsive, hence the coefficient

of t2c in Eq.(3.44) is negative. Hence the polynomial equation (3.44) has one

possible solution, which is the positive one. Substituting new relation for tc
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3 A simulation model of colloidal dispersions in a MPC solvent

yields new X and Y in Eq.(3.12), for the final position of a fluid particle after

hitting the wall.

Slip boundary condition

The surface of a colloid is never perfectly smooth. Therefore the collisions with

fluid particles transfer angular momentum as well as liner momentum. Never-

theless, here as described in Eq.(3.42), colloids and fluid particles are assumed to

have radial interactions. The fluid particles do not transfer angular momentum

to a spherical colloid and hence give rise to effective slip boundary conditions.

3.4.4 Initial state

In a numerical simulation, one should be able to sample the entire phase space

of the system. Hence we require a simulation where the results after a sufficient

‘equilibration’ time are not sensitive to the initial state, so any convenient initial

state is allowed. A particularly simple choice is to start with the colloids located

at the sites of a regular lattice. Then the positions of the solvent particles can

be fixed by drawing random numbers from a uniform distribution and excluding

the space occupied by the colloids. The initial velocities are assigned random

directions drawn from a Maxwell-Boltzmann distribution with the magnitudes

of
√

kBT0

m
, where kBT0 is initial temperature. In order to ensure that the center

of mass of the system is at the rest, the initial velocities should be adjusted to

eliminate any overall flow.

3.4.5 Integration

After initializing the positions and the velocities, the integration of the equations

of motion is applied at every time step τMD. For fluid particles there is another

time step for collisions, τc. The positions and the velocities of the colloids are

updated through the velocity Verlet algorithm, explained in subsection (3.3.7)
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after an MD time step:

ri
c(t + τMD) = ri

c(t) + vi
c(t)τMD +

F i
c (t)

2Mc

τ 2
MD, (3.45)

vi
c(t + τMD) = vi

c(t) +
F i

c (t) + F i
c(t + τMD)

2Mc

τMD, (3.46)

ri
c and vi

c are the position and velocity of i-th colloid, respectively. F i
c rep-

resents the total force on the colloid, which includes the force exerted by the

fluid particles, the force arising from any external field (such as gravity), or from

any external potential (such as repulsive walls), as well as other colloids within

the range of the interaction potential. The force from j-th fluid particle can be

calculated using Eq.(3.42):

/Fcf(rij) = −/+φcf(rij), (3.47)

and the force from j-th colloid using Eq.(3.43):

/Fcc(rij) = −/+φcc(rij). (3.48)

The force due to the repulsive wall has been calculated in subsection (3.3.6) and

in our case takes the form

/Fwall(yi) =
15qεπ

2

[

231

160

(

σw

yi − Y

)11

−
(

σw

yi − Y

)5
]

ŷ

yi − Y
, (3.49)

yi − Y represents the distance of the colloid from the wall.

Hence the total force on a colloid i is given by

/F i
c =

Nf
∑

j=1

/Fcf(rij) +
Nc
∑

j=1

/Fcc(rij) + /Fwall(yi) + /Fg, (3.50)

where Fg represents an external force.

For fluid particles, as far as they represent MD particles, the positions and

velocities are updated similarly with the time step τMD

ri
f(t + τMD) = ri

f(t) + vi
f (t)τMD +

f i
f (t)

2mf

τ 2
MD, (3.51)

vi
f(t + τMD) = vi

f(t) +
f i

f(t) + f i
f (t + τMD)

2mf

τMD, (3.52)
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3 A simulation model of colloidal dispersions in a MPC solvent

f i
f(t) is the total force on the i-th fluid particle. It is a sum of the force due to

the external field (if any) and due to the interactions with the colloids, which can

be calculated from Eq.(3.47). In every time step τc, stochastic rotation dynamic

propagation rule is used to update the velocities of fluid particles in each MPC

cell according to Eq.(3.4).

3.4.6 Accuracy check

To check that our hybrid simulation algorithm is correct, various physical quan-

tities can be monitored. An immediate check is that the conservation laws are

properly obeyed, particularly the total energy and momentum should be con-

stant.

In order to control the system temperature, various thermostats can be used,

e.g. velocity rescaling method, explained in subsection (3.3.8). One can employ

the velocity rescaling technique as a thermostat in the MPC algorithm, explained

below. The simulation box is divided into Ly/a0 layers, parallel to the walls.

Suppose that fluid particle i with velocity vi is placed in the cell j which belongs

to layer lj . In each layer lj, the new velocity v′
i of each particle of the cell j is

obtained by rescaling the velocity relative to the center-of-mass velocity vcm,j of

that cell

v′
i = vcm,j + (vi − vcm,j)

√

kBT

kBT ′
. (3.53)

Here kBT ′ is calculated from the actual velocity distribution for each layer

∑

j∈lj

Nj
∑

i

1

2
mf (vi − vcm,j)

2 = (
∑

j∈lj

Nj − Nlj)kBT ′, (3.54)

where Nj denotes the number of particles in cell j and Nlj denotes the number

of cells which contains particles within the layer lj.

In subsection (3.2.5), we introduced virtual fluid particles at the cells that co-

incide with the walls. The velocities of the particles are drawn from a Maxwell-

Boltzmann distribution with the same temperature T as the fluid. Hence, as in

the Anderson thermostat scheme (see subsection 3.3.8), a coupling to a imag-

inary heat bath for the cells close to the wall is achieved. The virtual wall
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3.4 A colloidal dispersion; simulation method

particles therefore can also thermalize the colloidal suspension in our model.

However, existing virtual particles make fluctuations in the kinetic energy and

consequently in the total energy.

In the case where still a temperature gradient is observed, a thermostat can

be used with an algorithm based on the stochastic method, previously explained

in subsection (3.3.8). Here one may choose an ε in the interval [0, γ] and apply

for ζ one of the values 1+ε or 1/(1+ε), each with the probability 1/2. With one

of these values the velocity is scaled by the Monte Carlo acceptance rate. The

mean velocity vcm within one MPC cell defines the velocity field of the fluid.

Therefore it should not be modified by the thermostat. One only scales the

velocity component relative to the mean velocity:

vnew
i = ζ(vi − vcm) + vcm. (3.55)

The Monte Carlo acceptance rate is given by

ζ3(nf−1)exp(−(nf − 1)(ζ2 − 1)T/T ∗), (3.56)

with

T =
mf

2(nf − 1)kB

nf
∑

i=1

(vi − vcm)2, (3.57)

which is the local temperature in the MPC cell and T ∗ denotes the temperature

to which the thermostat will drive the system. nf is the number of particles in

the cell. Note that one has to divide the total thermal energy in the MPC cell by

(nf − 1) instead of nf to calculate the local temperature. This reflects the fact

that the mean velocity u in the cell already contains three degrees of freedom for

a 3D system, which the particles in the MPC cell have. The choice of γ and the

frequency with which the thermostat is applied determine the relaxation rate,

at which the system adapts T ∗.

Another parameter that should be chosen carefully is the time step [131].

Choosing a time step too long may cause a slow upward drift of the energy,

but a time step which is too small will be very wasteful of computer time.

Essentially choosing τMD and τc as large as possible enhances the efficiency of a
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3 A simulation model of colloidal dispersions in a MPC solvent

simulation. To first order, these time step are determined by different physics:

τMD is determined by the steepness of the potentials and τc by the desired fluid

properties so there is some freedom in choosing their relative values. We choose

τc/τMD = 15 for our simulation. Particularly, the mass of the colloids has been

considered which is much bigger than those of the fluids, so we set the above

value for the time steps’ ratio in order to provide enough time for colloids to

integrate over this time accurately.

In this chapter, we described the algorithms which are used to simulate our

model. In the next chapter, we explain the characteristics of the colloidal sus-

pension which we have studied using this simulation program.
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field: Sedimentation
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4.1 Introduction

In the last chapter we described a hybrid algorithm of MPC and MD in order

to simulate our colloidal suspension model in a channel. In this chapter, we

investigate the colloidal system when an external force is applied to the solute

particles. An example of this is electrophoresis where an electric field is present in

the system. In our case, a gravitational field is acting on the colloidal particles;

this represents sedimentation of a collection of colloidal particles through the

solvent [1, 34–36, 89, 132]. If the mass of the fluid particles is assumed to be

much smaller than that of the colloids, then the direct gravitational force acting

on fluid particles can be neglected.

After a large enough equilibration time, every colloid attains a constant mean

velocity vs which is called the sedimentation velocity or settling speed. In a

system containing a mixture of components, any external field causes each com-

ponent to reach a different sedimentation velocity. Therefore sedimentation can

be exploited to separate individual components from a mixture. The sedimenta-

tion velocity evidently depends on the size and the mass of Brownian particles.

(The colloidal particles are classified as Brownian particles when the random

collisions between solvent molecules and colloidal particles yield thermal motion

and this motion is referred to as Brownian motion [89]). We assume the collec-

tion of colloids to have similar mass and size which means they attain the same

mean velocity vs. To determine vs in simulation, one calculates a time average

of the velocities over all the time steps after reaching equilibrium.

The important point to consider is the non-zero velocity of the fluid surround-

ing the colloidal particles, which prevents compression of sedimenting material.

We assume in an experiment that colloids sediment in a closed container. One

considers a cross sectional area of the container perpendicular to the direction

of sedimentation. In a laboratory reference frame, the total volume of the col-

loidal material that sediments through the area of this cross section, must be

compensated by fluid flow in the opposite direction, i.e., the total volume flux

must be zero [132]. The sedimenting suspension is characterized by the volume
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Figure 4.1: Diagram of nonuniform backflow of particles in a container

fraction φ, which is the ratio between the volume occupied by the particles and

the total volume of the suspension. For a sedimentation velocity vs, the total

volume of the colloidal material that is displaced is compensated by a fluid flow

with an average velocity us, when

us(1 − φ) + vsφ = 0, (4.1)

where φ is the volume fraction of the Brownian particles. Hence,

us = −
φ

(1 − φ)
vs. (4.2)

The fluid flow that compensates the volume flow of the Brownian particles is

called the backflow. The above expression for the backflow velocity is obtained

for a case where the fluid is considered to be homogeneous on a local scale.

However, at the wall of the container the fluid flow velocity is zero in order to

have the stick boundary condition (see Fig. 4.1). Here, one considers a container

which is very large compared to the size of Brownian particles. Hence the mean

backflow velocity us is not position dependent and backflow is uniform.
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4 Colloidal system in an external field: Sedimentation

Settling speed in infinite dilution

We consider a very dilute suspension, where the concentration of the particles is

so low that the direct force and the hydrodynamic force (see section 4.3) between

the particles are negligible. In the stationary state the Brownian particle reaches

a sedimentation velocity that compensates the Brownian force due to friction

with the solvent. We denote the sedimentation velocity of a single spherical

particle in the infinite dilution as v0
s . Hence

v0
s =

1

ξ
F g, (4.3)

where ξ = 6πη0r is the friction coefficient and r is the radius of the spherical

particle.

Using proportionality between the gravitational force F g and the mass of the

colloids, including a correction for buoyancy, one finds

F g = g
4π

3
r3(ρc − ρf), (4.4)

where ρc and ρf are the mass density of colloidal material and the fluid, respec-

tively. Substituting this relation into Eq.(4.3) yields

v0
s = g

2

9

r2

η0
(ρc − ρf ) (4.5)

Hence the sedimentation velocity in a dilute suspension is proportional to the

the radius of the colloidal particle. Particles with the same mass density and

larger size sediment faster than smaller ones in the solvent.

Studying the case with interacting particles, is rather difficult. Sedimentation

velocity in Eq.(4.3) no longer relates to the gravitation force with a simple

friction coefficient. Instead macroscopic diffusion matrices Dij are introduced

[89, 133]. In this case, the force fields that interacting colloids exert on each

other must be taken into account (see below).

Forces present in interacting colloids

There are three types of forces acting on a colloidal particle i suspended in a

solvent:
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a) The direct force due to direct interactions between particles. For example

the hard core of every colloid, which may cause volume exclusion, gives rise

to the direct interactions or Lennard-Jones potential between colloidal particles

that was discussed in the previous chapter.

b) The hydrodynamic force, which is due to friction with the solvent. When

a colloidal particle moves, its motion perturbs the medium. This perturbation

propagates through, affecting neighboring particles. This process gives rise to

an indirect, long-ranged, complex coupling of the motion of individual particles.

This is known as hydrodynamic interaction (HI) (see Fig. 4.2). Equations

which describe hydrodynamic interaction are linear for system with small values

V

Figure 4.2: The motion of particles perturbs the solvent and causes the hydro-

dynamic interaction.

of Reynolds number [134,135]. Hence, the hydrodynamic force F h
i on particle i

is linearly related to the velocities of all particles vi,

F h
i = −

N
∑

i=1

Ωij .vj , (4.6)

where the tensor Ωij denotes the hydrodynamic friction coefficient tensor [101,

136,137], which has a complicated dependence on the positions of all the parti-

cles.
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c) The Brownian force which is due to coarse graining. Consider a very di-

lute system where any interaction between colloids is absent, i.e, there are no

hydrodynamic or direct forces acting on particle i. However, in a suspension

which has an inhomogeneous density, the system moves towards a state with a

homogeneous density. Thus there should be a driving force in this process which

is called Brownian force.

The sum of the three types of forces gives the total force exerted to the particle

i.

The sedimentation velocity of colloidal particles is investigated in the next

three sections.

4.2 Sedimentation velocity and colloid

concentration

Studying the effect of the concentration of Brownian particles on the sedimenta-

tion velocity of rigid spherical particles began with Smulochowski in 1912 [138].

Since then, there have been a lot of contributions in order to investigate this

effect [35, 97, 139, 140]. In [132], Batchelor considered the problem of classical

dispersion of small rigid spheres in a fluid where the dispersion was assumed to

be statistically homogeneous. The volume fraction of the spheres was considered

small compared to unity, i.e., the dispersion was assumed to be dilute. By means

of theoretical calculations, Batchelor showed that the average sedimentation ve-

locity of hard spheres has a correction to the settling speed of single particle

v0
s (given in Eq. 4.3). Hence the settling speed of spheres or the sedimentation

velocity is finally given by [132, 139]

vs = v0
s(1 − 6.55φ), (4.7)

φ is the volume fraction which is the fraction of volume that is occupied by the

spheres. The correction term O(φ) in Eq.(4.7) is due to fluid backflow in the

system of sedimenting colloids. An increase in the volume fraction provides a

higher volume flux of the material and consequently a larger backflow of the
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4.2 Sedimentation velocity and colloid concentration

fluid. The stronger backflow effect finally yields a drop in the settling speed of

the hard spheres.

It would be interesting to extend the calculation explained above for systems

on systems which do not exactly fulfill the basic and usual assumptions for

having a homogeneous dispersion in a sedimentation problems. An example
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Figure 4.3: The sedimentation velocity of single particles versus volume fraction

which is changing due to system size change.

could be our model of confined colloidal dispersion, where the geometry of the

channel does not satisfy the condition of obtaining a homogeneous mixture. For

our 2D system, the volume fraction is φ = πr2
cnc, where nc = Nc

LxLy
is the colloid

number density. One may consider the system in a reference frame which gives

rise to back flow effect. We consider a co-moving frame as the reference frame

in our simulation model which is explained below.

Co-moving reference frame

We investigate the model in a frame where the total volume flux is zero. We

choose the reference frame that is co-moving with the velocity of the center of

mass, i.e., in this frame, the total momentum is zero. If Pt is the actual total
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momentum of particles, we write

Pt =

Nf
∑

i=1

mf ṽ
f
i +

Nc
∑

i=1

Mcṽ
c
i , (4.8)

where ṽc and ṽf are the velocities of colloids and fluid particles respectively at

the frame at rest. Therefore, the velocity of colloidal particles in the co-moving

frame is given by

vc
i = ṽc

i −
Pt

Nfmf + NcMc

, (4.9)

The relation for the average settling speed vs of colloidal particles

vs = ṽs −
Nfmfvf + NcMcvs

Nfmf + NcMc

. (4.10)

We first consider a simple case of a single colloid where the suspension is so

dilute that the hydrodynamic interactions are negligible. According to Eq.(4.5),

the sedimentation velocity of a single colloid depends on its radius (where other

parameters are assumed to be constant). In Fig. 4.3 the sedimentation velocity

of a single colloid versus the volume fraction is plotted. We determine the

mean settling speed vs of colloid in simulation by calculating a time average for

velocities over all the time steps after reaching equilibrium. The equilibration

time in our system is evaluated to be teq = 105. We change φ by changing the

system length from Lx = 40 to Lx = 1000. The width is set to a constant value

of Ly = 10. Fig. 4.3 shows that the settling velocity vs fluctuates, and on average

is constant for volume fractions φ less than about 0.015, which corresponds to

system length more than Lx = 100. However, vs increases for smaller length.

This can be interpreted as a finite size effect for our system which is periodic

in the direction of sedimentation. A single particle which has left the system

and re-enters by means of periodic boundary condition experiences the effects

of flow induced by the copied particles.

Next, we consider interacting colloidal particles (where HI is not negligible).

To investigate such a case, we consider the number of colloidal particles Nc = 2

and Nc = 3. Fig. 4.4 shows the settling speed in these two cases for the range
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Figure 4.4: Sedimentation velocity as a function of volume fraction for systems

with Nc = 1, Nc = 2 and Nc = 3 particles.
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Figure 4.5: Sedimentation velocity as a function of length Lx for systems with

two or three colloidal particles.
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of φ where the settling speed of a single particle on average is constant (see Fig.

4.3). In Fig. 4.4, one finds that the sedimentation velocity of the systems with

Nc = 2 and Nc = 3 increase in this interval of volume fraction. To compare these

data points with single particle data makes this observation more clear. One

may trace the role of hydrodynamic interaction in the settling speed. However it

is hard to make a concrete statement, because φ was varied by varying Lx. For

small Lx, finite size effects become important and should be taken into account

in the behaviour of sedimentation velocity (see Fig. 4.5).

Therefore we consider larger systems and change the volume fraction by in-

cluding more numbers of colloidal particle into the system while
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Figure 4.6: Sedimentation velocity as a function of volume fraction in different

systems with length Lx =1000, 600 and 260.

the size of the system is kept constant. We consider a system size of length

Lx = 1000 and width Ly = 10. Fig. 4.6 shows the sedimentation velocity

of colloids for such a system as a function of volume fraction. Here for small

volume fractions, the sedimentation velocity of the colloids shows a reduction,

which seems to be consistent with the result obtained by Batchelor shown in

Eq. (4.7). However, as the volume fraction increases, the speed of sedimenting
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Figure 4.7: Sedimentation velocity as a function of number of colloids in system

length ranging from 100 to 1000.

colloids tends to increase linearly as one can see in Fig. 4.6, also for systems

with size of 600× 10 and 260× 10. The increasing of the sedimentation velocity

apparently disagrees with what one may expect from Eq.(4.7) for the volume

fraction values that we considered.

The explanation for this disagreement could be the Batchelor’s basic assump-

tion for a homogeneous suspension, which is not valid in our model. Because of

the special geometry of the model, the colloidal particles are confined in the y

direction and they move efficiently in the x direction. Hence when we increase

the number of colloidal particles aligned in the channel, they form a bead. Sed-

imentation of this bead of particles in the channel, perturbs the surrounding

solvent in such a way that the suspension is not homogeneous anymore. More-

over, applying the no-slip boundary condition, i.e., vanishing of the momentum

at the walls, causes fluid flow to give rise to a non-uniform velocity profile.

The linear increasing function of sedimentation velocity of colloids is fitted to

the function f(φ) defined as f(φ) = aφ + b and the parameters are obtained as

a = 0.15 and b = 0.019.
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4 Colloidal system in an external field: Sedimentation

In Fig. 4.7, the vs of the systems which are considered in Fig. 4.6, including

a system of length size Lx = 100 as a function of the number of colloids Nc are

shown. Comparing the sedimentation velocity of the system with size Lx = 100

with the larger systems shows that it is increasing with a slope much larger than

that for the system with Lx = 1000. One can see that increasing the number of

colloids in our model of confined suspension will influence small systems more

effectively because the confinement has a more important role in the behaviour

of sedimentation velocity.

4.3 System with and without hydrodynamic

interactions

We have considered the sedimentation velocity of colloids as a function of vol-

ume fraction in the previous section. In this section, we discuss the effect of

hydrodynamic forces on the behaviour of the colloidal suspension as follows.

Starting from the same initial conditions and parameter values, we perform sim-

ulation with and without HI, and by comparing the results for two cases, one

can determine the effect of HI. In an MPC method, it is possible to “switch off”

the HI by replacing the MPC solvent with a “random solvent”. Two different

approaches have been proposed to model a random solvent. According to [104],

a random interchange of velocities of all fluid particles after each collision step

provides a random solvent while the total momentum and energy is conserved,

although the conservation of local momentum will naturally be violated.

The second approach, which is presented in [141], suggests a slightly different

method in order to remove the HI. Here a random solvent can be achieved by

assigning a velocity to every fluid particle directly from a random Gaussian

distribution with a zero mean and a variance equal to
√

kBT
mf

. In other words,

stochastic rotation dynamics is replaced by a coupling between the system and

a heat bath at the temperature T . In order to switch-off HI in our simulation,
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Figure 4.8: Sedimentation velocity as a function of volume fraction in the ab-

sence of hydrodynamic interaction.

we used each of the above two methods and obtain similar results in the two

cases. In Fig. 4.8 the sedimentation velocity of colloids in absence of HI has

been shown. This figure has been obtained for a number of colloidal particles

Nc = 2, for a channel width of Ly = 10 and channel length changing from 100 to

1000. Here one finds that in the absence of HI, there is no correlation between

the settling speed of colloids and volume fraction. By comparing this result with

what we obtained in section (4.2), we conclude that an increase of sedimentation

velocity of colloidal suspension with volume fraction in the narrow channel is an

effect of hydrodynamic interactions in the system.

4.4 Variation of sedimentation velocity with field

The form of hydrodynamic interaction in the Eq.(4.6) is valid for systems with

small Reynolds number [105, 142]. The Reynolds number is a dimensionless
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Figure 4.9: Reynolds numbers computed for fluid flow in a system of size 40×10

versus gravitational force with Nc = 3.

number which is given by the ratio of inertial forces to viscous forces, and conse-

quently, quantifies the relative importance of these two types of forces for given

flow conditions. A low Reynolds number means that the inertial forces are vir-

tually absent and the viscous forces are dominant in the system. This gives rise

to a laminar flow regime [143].

In order to choose a suitable range of values for the gravitational forces that

give rise to a laminar flow, we calculate the Reynolds numbers for various fluid

flow velocities in our sedimenting suspension model. For example, for a system

of size 40×10 and number of colloids Nc = 3, where a gravitational force within

the range of [0.02, 0.2] has been applied, Re can be calculated from

Re =
vρ

η/L
=

vL

ν
, (4.11)

where η is the dynamic fluid viscosity defined as η = ρν, ρ is the fluid density,

v is the mean velocity of fluid particles, L is the characteristic length of the

system (here the width of the channel), and ν is the kinematic fluid viscosity
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4.4 Variation of sedimentation velocity with field

as in Eq.(3.16). The value of ν can be calculated using the parameters τc =

0.015, ρ = mfnf = 10 and α = 90,◦ for this system. In Fig. 4.9, the Reynolds

numbers calculated from Eq.(4.11) are plotted as a function of g. We observe

that the Reynolds numbers produced by the fluid flow within the specified g

interval are small enough to ensure a laminar regime.
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Figure 4.10: The sedimentation velocity as a function of the gravitational force

for two values of cut-off diameter of the colloid-wall repulsive po-

tential σw. The blue line shows a linear fit function with the slop

of s = 0.34.

The average velocity of colloids, or sedimentation velocity, has also been de-

termined within this force interval. For a single particle, the expression for the

sedimentation velocity is given in Eq.(4.5) in terms of external force and param-

eters of the suspension. The sedimentation velocity of a single colloid is related

to the gravitational force g by the mobility µ0 as v0
s = µ0g. For a collection of

interacting colloids, µ0 is replaced with the mobility tensor. The dynamics of
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4 Colloidal system in an external field: Sedimentation

the particles are therefore given by the equations of motion [89,136,137,144,145]

vs
i =

N
∑

j

µij(X)Fj, (4.12)

where µ is the translational part of the mobility matrices, which is typically is

a function of the configuration X = (R1, ..., RN) of all the colloidal particles.

It describes the hydrodynamic interactions between particles and connects the

forces acting on particles to the velocities they acquire in a given conguration.

The forces Fj will be assumed to be constant and equal to F for all particles.

For our present example, the sedimentation velocity vs of the colloidal parti-

cles is depicted in Fig. 4.10 as a function of the gravitational force g . It shows a

perfect linear increase for σw = 2.0, the cut-off diameter of the colloid-wall repul-

sive potential. This is the value which we have chosen for all of our simulation

systems. It is useful to compare this dependence of vs on g with a case where

the system is set to a reduced cut-off wall-colloid distance, which is σw = 1.2.

The reduced value of the cut-off distance essentially enhances the movement of

colloids in the direction perpendicular to that of sedimentation, but SFD is still

obeyed by the colloidal particles. The vs obtained for the latter case shows a

small deviation from the linear fit function as expected.

To summarize, we have shown that the system has a mobility µ which is

independent of g for both σw values and also that the value gc = 0.1, which we

have chosen for the gravitational force in our simulation so far, is within the

range of a laminar flow.

4.5 Density discontinuity

We now investigate a density discontinuity on the macroscopic level for the col-

loidal suspension in an external field. For this purpose, we need a larger number

of particles than we considered in earlier sections. We start the simulation with

the initial position of colloids a close distance from each other. However this

initial distance between successive particles is limited by the cutoff diameter of

the repulsive potential of the colloids rcc. We set the initial distance between
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4.5 Density discontinuity

Figure 4.11: Colloidal particles are initially aligned in the channel a small dis-

tance from each other.

the centers of two neighboring colloids as d0 = 5.0 in a system of size 300 × 10

and the number of colloids Nc = 31. The colloidal particles, which are aligned

in the channel and located at small distances from each other form a chain. Fig.

4.11 shows one snapshot at time t = 0 of a movie obtained by recording the

positions of particles in this simulation system. We label particles according to

their positions along the channel, the leftmost particle has the lowest label (see

Fig. 4.11). An external force g = 0.1 is applied to the ‘colloid chain’. Fig. 4.14

shows another snapshot of the colloidal particles at time t = 500. A clustering

of the group of particles initially located at the head of the system is observed

which has a ‘zigzag’ shape (see Fig. 4.14), and subsequent snapshots show that

the ‘zigzag’ shape will move to the middle and then to the tail of the particle

chain. 1

In order to have a more quantitative observation, average distances of colloids

as a function of time are sketched in Fig. 4.12. Here 31 colloidal particles are

distributed in 6 groups, every 5 consecutive colloids belong to one group with

the distances dij (see Fig. 4.11). The distances Di is defined as Di =
∑5

j=1 dij/5,

representing an average distance between 6 individual parts of the chain. This

definition simplifies the calculations and also represents a coarse-grained picture

of the system. The average distances Di are depicted in Fig. 4.12 as a function

of time. It is seen that distances Di are increasing in time clearly for particles

1A similar behaviour in microfluidic crystals has been reported in [100]. Here water droplets

are made at a T-junction between the water and oil channels. Thus a flowing 1D crystal

of droplets that can move in 2D, has been obtained. It has been shown that the pack of

moving droplets form the triangle-like traveling waves along the velocity of oil.
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Figure 4.12: Average distances within groups of colloids versus time in a system

in external force with the length Lx = 300.
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Figure 4.13: Average distances within groups of colloids versus time in a system

without external force.
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4.5 Density discontinuity

Figure 4.14: Colloids are making a zig-zag shape when they are moving due to

an external force in a narrow channel.

placed at the head of the chain. One notices that the rate at which Di increase

varies monotonically with i. For example increasing rate of D1 (located at the

head of the chain) is maximum and that of D5 (located at the tail) is minimum.

However, this pattern is lost after a long time. Fig. 4.13 shows the results for an

equivalent system but without any external force where no density discontinuity

is expected. As it can be seen the average distances Di are always fluctuating

and show no systematic behaviour as in Fig. 4.12.

One may notice that the initial chain of the colloidal particles occupies only

half of the length of the channel and the rest is empty (of colloidal particles). We

consider this initial configuration as a density discontinuity at the macroscopic

level. By considering the time evolution of successive distances between particles

in Fig. 4.12, we realize that the initial discontinuity of the particle density is

dissipating at the head of the chain and remains sharp at the tail. Since the

lifetime of the shock increases when the number of particles Nc and the size Lx

goes to infinity, we expect that the density discontinuity survives for longer time

in these systems where the system is large enough.
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4 Colloidal system in an external field: Sedimentation

4.6 Conclusions

In this chapter, our model of confined colloidal suspension in the presence of

an external force has been investigated. The motion of colloidal particles in

the presence of a gravitational force (sedimentation) is considered in particular.

The dependence of the sedimentation velocity of colloidal particles on volume

fraction is discussed. We varied the volume fraction by changing the size of

the system. For two cases where either two or three colloids were involved,

we observed that the sedimentation velocity increases with volume fraction.

However, changing volume fraction by adjusting the length at the system may

give rise to finite size effect for large volume fractions (and small system sizes).

In order to avoid this effect, we kept the system large and changed the volume

fraction by changing the number of colloids in the system. Here we found a

linear increase of sedimentation velocity with volume fraction. Hence we found

that within the range of volume fraction that we considered, our outcome is in

contrast with the earlier studies that report the reduction of settling speed of

colloidal suspension with the increase of the volume fraction. We interpreted this

inconsistency as a result of the confined movement of the colloidal suspension in

the system. Since sedimenting colloidal particles are placed in a narrow channel,

they form a bead-like alignment of particles. This bead of colloidal particles

affects the flow of the fluid in the direction of sedimentation and enhances the

hydrodynamic forces. Increasing the number of colloids enhances this effect and

hence yields a higher settling speed.

We compared the results obtained above for sedimentation velocity of colloids

as a function of volume fraction with the case where the hydrodynamic interac-

tion is absent. The hydrodynamic interaction is switched-off by modelling the

fluid using a random-solvent algorithm. We found that when the hydrodynamic

interaction is turned off in the system, the average settling speed will lose its

correlation to the concentration of particles, i.e., there is no dependence of sed-

imentation velocity on volume fraction, in contrast with the case with HI as

discussed in the previous paragraph.
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4.6 Conclusions

We found that for the range of gravitational force are used, the Reynolds

number is low enough to obtain a laminar flow regime. We obtained a linear

increase of the sedimentation velocity of colloids as a function of gravitational

force. This yields a constant mobility for the system and indicates that the fluid

is in the laminar regime.

The collective behaviour of colloidal particles is considered in a case where

the initial positions of colloidal particles are set such that they are placed very

close to each other and hence represent a chain. We noticed the formation of the

zig-zag shape in this chain of sedimenting colloidal particles in the channel. Cal-

culating the average distances between two neighboring colloids showed that the

distances between the particles located at the head of the chain increase faster

than to those at the tail. This systematic behaviour disappears in the absence of

an external force. From this observation, we conclude that this systematic trend

of the coarse-grained averaged distances is a signature for an existence of shock

in the system. However, obtaining a better understanding requires considering

simulations in much larger systems with a much higher number of colloids which

was not feasible because of the limitation of computing power.
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Shock solution

Here, our investigations concerning the shock solution, which are obtained using

two approaches, are summarized. A shock is defined as a density discontinuity

that is moving with a deterministic speed, determined by mass conservation.

The Burgers equation specifies the spatial evolution of the macroscopic state

of the reaction-diffusion systems. This equation is in general non-linear and

exhibits shocks in some cases. This means that the solution of the macro-

scopic equations may develop a discontinuity even if the initial particle density

is smooth. In other words, in these systems phase separation may occur. The

shock therefore represents the interface between the two thermodynamically dis-

tinct phases. For the asymmetric exclusion process (ASEP), the time evolution

of the particle density on the macroscopic Euler scale is described by the Burgers

equation which may develop shocks.

In chapter 2, using an analytical approach, we determined the family of

reaction-diffusion models with travelling shock solutions on the finite lattice.

We found that the hydrodynamic equation is nonlinear and therefore admits

shock solutions. These shocks are internally sharp and behave like collective

single-particle excitations on the lattice scale. In other words, the shock repre-

sents a biased random walk. In section (2.4) where an exclusion process with bi-

nary degrees of freedom is considered, calculating the stationary current yielded

Eq.(2.127). As derived in section (2.4)

J(ρ) = (p − q)ρ(1 − ρ), (5.1)

which is basically the expression of current for the ASEP with the hopping rates

p and q.

In our simulation model of colloidal suspension, we found a linear increase of

sedimentation velocity of colloids as a function of density of colloidal particles

in chapter 4. This is obtained in a co-moving reference frame. We have shown

that this is also valid for the mean average velocity of colloids in the frame at

rest (see Fig. 5.1).
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Hence one can write the sedimentation velocity in a co-moving frame as

vs = cρ+ c′ − vcm, (5.2)

where c and c′ are constant. Thus the expression for the current yields as

J(ρ) = ρ(cρ+ c′ − vcm). (5.3)

which resembles Eq.(5.1) for ASEP where p set to c/(vcm − c′) and q set to

zero. In particular, note that q = 0 is valid for our SFD model. Hence the

model can be considered as the ASEP model on a macroscopic level and can be

coarse-grained by solving Burgers equation.
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Figure 5.1: Average colloids velocity as a function of density of colloids for a

system of size 100× 10 in the reference frame at rest, which shows a

linear increase. The data fitted to a function f(ρ) = cρ + c′, where

c = 5.71 and c′ = 0.019.

The investigation for average distances of colloids (see section 4.5) showed

that colloids tends to develop a density discontinuity. This can be a sign of

the existence of a shock. However, it is not possible to obtain a sharp pattern
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5 Shock solution in two approaches

for a shock similar to that found in the lattice gas model in chapter 2. In the

lattice gas model, the system has a product measure and it can support a sharp

variation of density, but for colloidal suspension, this is not possible. To have a

more macroscopic description, a larger numbers of colloidal particles should be

considered. However, this would make our simulation very time consuming.
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[47] V. Popkov and G.M. Schütz. Europhys. Lett., 48:257, 1999.

[48] D. Helbing. Rev. Mod. Phys., 73:1067, 2001.

[49] J.M. Burgers. The Non Linear Diffusion Equation. Reidel, Boston, 1974.

[50] C. Kipnis and C. Landim. Scaling Limits of interacting particle systems.

Springer, Berlin, 1999.

[51] P.A. Ferrari, C. Kipnis, and E. Saada. Ann. Prob., 19:226, 1991.

[52] B. Derrida, J.L. Lebowitz, and E.R. Speer. J. Stat. Phys., 89:135, 1997.

[53] B. Derrida, S. Goldstein, J.L. Lebowitz, and E. R. Speer. J. Stat. Phys.,

93:547, 1998.

[54] P.A. Ferrari and L.R.G. Fontes. Probab. Theory Relat. Fields, 99:305,

1994.

[55] V. Belitsky and G.M. Schütz. El. J. Prob., 7:11, 2002.
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[78] G.M. Schütz, R. Ramaswamy, and M. Barma. J. Phys. A., 29:837, 1996.

[79] H. Spohn. Large-Scale Dynamics of Interacting Particles. Springer, Berlin,

1991.

[80] M. Robert and B. Widom. J. Stat. Phys., 37:419, 1984.

123



Bibliography

[81] M.R. Evans, S.N. Majumdar, and R.K.P. Zia. J. Phys. A., 37:L275, 2004.

[82] M.R. Evans, S.N. Majumdar, and R.K.P. Zia. J. Stat. Phys., 123:357,

2006.

[83] S. Katz, J. L. Lebowitz, and H. Spohn. J. Stat. Phys., 34:497, 1984.
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Summary

In this thesis the systems in quasi-one-dimensional geometries using two dif-

ferent approaches is investigated. As the analytical approach, one-dimensional

reaction-diffusion systems are investigated. The two-component models which

satisfy some specified conservation laws are considered. It is found that three-

states lattice gases with a single local conservation law can be classified into two

families, one where the function is degenerate, i.e., takes the same value for two

different states, another where the conserved quantity is a linear nondegenerate

function of the occupation variable. This two groups of families are investi-

gated in this work. For the first group, the hydrodynamic equation is obtained

nonlinear and therefore admits shock solutions. For the second group, for open

systems with different boundary fugacities, a complete list of models where the

shock performs a biased random walk on the lattice is found.

As the second approach, a simulation method is used to model a suspension of

colloidal particles in a narrow channel. To this end, a hybrid simulation scheme

which couples a Molecular Dynamics simulation method to a MPC fluid, which

is a coarse-grained model to describe fluid dynamics, is used. Then, the motion

of colloidal particles in the presence of the gravitational force (sedimentation) is

considered. The dependence of the sedimentation velocity of colloidal particles

on volume fraction is discussed. The results which obtained for sedimentation

velocity of colloids as a function of volume fraction are compared with the case

without hydrodynamic interactions. The Reynolds numbers for a range of grav-

itational force are determined. A linear increase of the sedimentation velocity

of colloids as a function of gravitational force is obtained. The formation of

the zig-zag shape in the chain of sedimenting colloidal particles in the channel is

noticed. A systematic behaviour of the average distances between successive col-

loids in the presence of the external force is showed. This behaviour is discussed

being as a sign for developing a density discontinuity in the system.

The current density of colloidal particles is determined and existing shock

solutions of the system in the two approaches, are discussed.
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