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Abstract

The present study investigates the applicability of multiwalled carbon nanotubes in creating novel

nanostructured matrices exhibiting biomimetic designed features. The thus produced CNT-based

constructs were employed to gain a deeper insight into the cellular response to nanoscale

structures, especially to effects resulting from the local topography. 

The first part of the work comprises the mechanical characterization of the CNTs matrices by

means of nanoindentation and nanoscratch experiments, revealing a good mechanical stability of

the MWNT-based polymer matrices.

The biocompatibility of the MWNTs constructs and cell-matrix surface interaction was assessed

using human osteoblast-like cells. In general, osteoblasts were found to adhere and proliferate on

all nanostructured matrices. The observed increase of osteoblastic metabolic activity after

incubation on CNTs matrices proved their capability to support long-term survival of osteoblast

cells and excluded the toxic impact of carbon nanotubes on cell viability. Furthermore, results

from immunofluorescence staining revealed the improved cell adhesion capacity to

nanostructured matrices and clearly showed the sensitivity of the cell to physical features at the

nanoscale. 

The atomic force microscopy was applied to investigate the cytomechanical properties of

osteoblast cells cultured on diverse CNT matrix topographies. Experimental data showed that cell

adhesion and therefore the elastic modulus of the cells are affected by the regularity of the

topography, i.e., regular topography contributed to increased Young’s modulus, whereas irregular

one led to decreased cell stiffness.

Concluding, it could be shown that carbon nanotubes can be effectively used to fabricate various

nanoscale topographies, which in turn have a powerful influence on osteoblasts behavior. The

results furthermore indicate that carbon nanotubes can mimic nanofeatures of the native

extracellular matrix and may therefore find an application in the design of new biomaterials for

tissue engineering.
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Chapter 1

Introduction

Nowadays, nanotechnology poses a new frontier in science and technology. The essence of this

highly multi- and interdisciplinary field is the ability to work at atomic and molecular levels and

to create structures or devices with a fundamentally new molecular organization. One of the

numerous fields, which have benefited from the fast evolution of nanotechnology and in particular

from the discovery of nanoscaled materials, is tissue engineering (TE); a field that aims at the

development of biological substitutes (artificial extracellular matrices, also called scaffolds) that

restore, maintain or improve tissue function [1]. 

Over the years, the artificial scaffolds, designed to support cell and tissue regeneration, have

traditionally been focused on a macroscopic level. Their aim was to match the properties similar

to natural tissues without reconstructing the nano-scale features that were observed in native

tissues. All tissues of the human body, however, contain differentiated cells living in an

extracellular matrix (ECM), which shows hierarchical organization from nano- to macroscopic

length scale; therefore, it is obvious that cells are naturally accustomed to interact with nanometer

length-scale elements [2]. For that reason, the nanoscale surface features are considered to be a

key determinant of the cellular response. It is believed that the topography, engineered with

nanoscale structural elements analogous to dimensions present in the extracellular matrix, is

critical for the proper function of each specialized tissue. The new discoveries in nanotechnology

and the new ability of engineering enable the material scientists and engineers to design and

fabricate novel scaffolds by incorporating nanoscale features, thus imitating characteristics of the

natural ECM. However, to accomplish the construction of more biomimetic cellular

environments, the fundamental design principles that determine how cells and tissues form and

function as hierarchical assemblies of nano- micrometer-scale components must first be

understood. Accordingly, great attention has been focused on cell-material surface interactions,

with particular interest on those, whose properties try to mimic the dimensions present in the

natural tissue. In the last years, several studies have shown a powerful influence of nanoscale

topography on cellular behavior, starting from changes in cell adhesion, spreading, and/or

cytoskeletal organization to the regulation of gene expression [3−5]. Moreover, it has been



2

demonstrated that nano-scaled topography may induce various responses of the same cell type

independent of the underlying material chemistry [6,7].  

The nanoscale structure of the ECM provides a natural net of complex nanofibers, which support

and guide the cell behavior. Each fiber conceals clues that pave the way for the cell to form tissues

as complex as bone, heart, and liver [8]. Until recently, an ECM-mimicking fiber with a nanoscale

diameter has been the missing constituent in cell scaffold design [9]. One of the most promising

nanometer-sized cylinders that could imitate nanofibers present in native ECM, are carbon

nanotubes (CNTs). Zhao et al. [10], for example, have shown the potential of nanotubes to mimic

the role of collagen, the major component of the ECM protein in the human body, and serve as a

scaffold for growth of hydroxyapatite. Apart from nanoscale dimensions, CNTs possess numerous

physical, chemical, and mechanical properties, which make them distinct from other nanofibrous

materials used for biological applications [11]. In particular, their extremely high strength,

lightness, and electrical conductivity enable the creation of biomimetic constructs with highly

predictable physical properties. Moreover, the latest expansion and availability of carbon

nanotube’s chemical modification and bio-functionalization methods [12] make it possible to

generate CNTs-based scaffolds with bioactive surfaces, i.e. positively interacting with cells,

including enhanced cell adhesion, proliferation, migration, and differentiated function. Although

CNTs do not exhibit a biodegradable nature, on contrary to nanofibrous polymers, i.e. PGA,

PLLA, and PLGA, frequently used for scaffold fabrications [1], the above-mentioned advantages

counterbalance this drawback. 

The main objective of this study was to explore the use of multiwalled carbon nanotube constructs

(matrices) as a simplified model system to study and gain insights into cellular responses to a

nanoenvironment, with particular interests in the effects of local topographies. Since the

exploitation of the carbon nanotubes in biomimetic construct fabrication requires their chemical

functionalization, both covalent and non-covalent surface functionalization strategies were

employed here. Using oxidation and polymer wrapping methods, two differently modified CNTs,

either functionalized with carboxyl or amine groups, were obtained. The presence of these groups

allowed a further processing of CNTs into polymer matrices and helped to explore the influence

of the CNT’s surface chemistry on cellular behavior.

Aiming at the creation of unique architectures comprising biomimetic characteristics, MWNT

matrices were engineered using various techniques. Thus, in the frame of this thesis, we present a

novel concept for the fabrication of highly ordered, lightweight carbon nanotube constructs by

means of nanosphere lithography (NSL) and electrostatic layer-by-layer (LbL) self–assembly.

Additionally, vertically aligned carbon nanotubes arrays (VACNTs) were produced using

chemical vapor deposition (CVD).

The ideal scaffolds should not only posses biomimetic properties of ECM but also provide

mechanical support for the growing tissue during in vitro or in vivo development. From this point

of view, the mechanical properties of the CNT-based scaffolds are one of the most important
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factors, which have to be evaluated. In this work we used nanoindentation tests to determine the

hardness and Young’s modulus of the matrices.

The main concern, regarding the use of carbon nanotubes in tissue engineering, is their

cytotoxicity. There are several studies that emphasize the harmful effect of carbon nanotubes on

cell proliferation and adhesive ability [13,14]. However, there are few reports, which have

demonstrated the biocompatibility of CNT-based substrates with various cell cultures [15,16].

Taking these contradictory opinions regarding the toxicity of carbon nanotubes into account, the

CNT-based matrices were tested on living organisms (i.e. human osteoblast cells) aiming to verify

their biological compatibility by means of metabolic activity assay and cell proliferation studies. 

In order to explore and understand the impact of nanoscale architectures and CNTs surface

chemistry on cellular behavior, various characterizations and experiments have to be performed.

Accordingly, the third part of this work focuses on the biological characterization of CNT-based

matrices including protein adsorption, cell proliferation, focal adhesion formation and

cytoskeleton organization. Considering the fact that the enhanced protein adsorption improves cell

adhesion and function [17], the dependence of the nanoscaled architecture and the surface

chemistry of carbon nanotubes on serum protein adsorption was studied. Furthermore, the

immunoflueorescence staining was used to investigate the effect of surface periodicity on the

distribution of the cytoskeletal elements and focal contacts. Finally, we used atomic force

microscopy (AFM) as a new tool to investigate the biocompatibility of produced CNT-based

constructs by studying the adhesion behavior of osteoblast-like cells.  
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Chapter 2

Background

 2.1 Carbon nanotubes

The first carbon fibers of nanometer dimensions were discovered in 1976 by Endo [1] who

synthesized carbon filaments of 7 nm in diameter using a vapor-growth technique. The filaments

he produced, however, were not recognized as carbon nanotubes (CNTs) until Sumio Iijima’s

report in 1991 [2], which brought CNTs to the awareness of the scientific community. Since that

time, carbon nanotubes have emerged as one of the most intensively investigated nanomaterial. 

The structure of carbon nanotubes can be visualized as a rolled-up graphene sheet (Fig. 2.1).

Based on the orientation of the tube axis with respect to the hexagonal lattice the structure of a

nanotube can be completely specified by its chiral vector , which is denoted by the chiral

indices (n, m). The chiral vector, also know as the roll-up vector is given by:

The integers (n, m) are the number of steps along the zig-zag carbon bonds of the hexagonal

lattice, with  and  the unit vectors. 

The bonding in carbon nanotubes is essentially sp2, similar to the bonding in graphite. However,

the circular curvature in CNTs cause quantum confinement and σ-π rehybridization in which

three σ bonds are slightly out of plane; for compensation, the π orbital is more delocalized outside

the tube [3]. This rehybridization of a structural feature, together with the π electron confinement

make the nanotubes mechanically stronger, electrically and thermally more conductive, and

chemically and biologically more active than graphite. 

Ch

Ch na1 ma2+=  (Eq.  2.1) 

a1 a2
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Basically, there are two forms of CNTs: singlewalled and multiwalled. Singlewalled carbon

nanotubes (SWNTs) consist of a single rolled-up graphene sheet with diameters ranging

from 0.4 to 3 nm. SWNTs may be either metallic or semiconducting, depending on their chirality. 

Multiwalled carbon nanotubes (MWNTs) (Fig. 2.2) are composed of a concentric arrangement of

numerous SWNTs, often capped at their ends by one half of a fullerene-like molecule. The

distance between two layers in MWNTs is 0.34. Multiwalled nanotubes can reach diameters of up

to 200 nm [3].

 Figure 2.1: Schematic of a two-dimensional graphene sheet showing lattice vectors a1 and

a2, and the chiral vector Ch, θ is the chiral angle. By rolling a graphene sheet in different

directions typical nanotubes can be obtained: armchair (n,n), zigzag (n, 0), and

chiral ( ) [3].n m≠

tube axis

zigzag 
(n, 0)

armchair
(n, n)

Ch

θ

 Figure 2.2: High-resolution transmission electron-

microscope image of MWNTs used in this study.

(www.endomoribu.shinshu-u.ac.jp).
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 2.1.1 Production

CNTs can be produced by different kinds of techniques. In general, there are three well-established

methods for the synthesis of CNTs (Table 2.1). A brief description of these techniques is given

below.

Chemical Vapor Deposition (CVD): This process involves the decomposition of hydrocarbons

(methane, acetylene, ethylene, etc.) over catalyst particles (e.g. Co, Ni, Fe), which are deposited

at predefined locations on the substrate. Typically, the hydrocarbons are decomposed in a tube

reactor at temperatures ranging from 550 o to 750 oC. The synthesis of CNTs is often plasma

enhanced (PECVD). Depending on the growth conditions (catalyst material, gas, temperature,

flow-rate, and synthesis time), MWNTs range from 10 − 400 nm in diameter and 0.1 − 50 µm in

length [4]. Additionally, using PECVD, excellent alignment and position control on the

nanoscale [5] as well as control over the diameter and the growth rate [6] can be achieved.

Carbon Arc-Discharge: This technique utilizes two carbon electrodes to generate an arc by direct

current (dc). The electrodes are kept under an inert gas atmosphere (argon, helium), which

increases the speed of carbon deposition. The arc-discharge method produces high-quality

SWNTs and MWNTs. However, contrary to MWNTs, SWNTs can only be grown in the presence

of a catalyst. A subsequent separation of CNTs from the soot and metal particles is necessary and

causes impurities in the final product. The major contaminants are amorphous carbon, fullerenes,

catalysts and graphite particles. The CNTs produced by arc-discharge are higly crystalline with

diameters in the range of 2 − 20 nm and a length of several micrometers for MWNTs [7] and

diameters of 1.2 − 1.5 nm and lengths reaching up to 20 µm for SWNTs [3]. 

Tab. 2.1: Summary and comparison of three most common CNT synthesis methods

METHOD CVD LASER ABLATION ARC-DISCHARGE

PIONEER Iijima (1991) [2] Yacaman et al. (1993) [8] Guo et al. (1995) [9]

YIELD > 75 % < 75 % < 75 %

SWNTs or MWNTs Both Both Both

ADVANTAGES simple, low tem-
perature, high pu-
rity, large-scale 

production, 
aligned growth 

possible

relatively high purity, 
room-temperature syn-

thesis

simple, inexpensive, 
high quality nano-

tubes

DISADVANTAGES synthesized 
CNTs are usually 
MWNTs, defects

method limited to the lab-
scale, crude product - pu-

rification required

high temperature, pu-
rification required, 
tangled nanotubes
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Laser ablation: In this method, a pulsed or continuous laser is used to vaporize a target consisting

of a mixture of graphite and metal catalysts (e.g. Co, Ni), in the presence of helium or argon gas.

The laser-produced MWNTs are relatively short (ca. 300 nm) with the inner diameter in

the range of 1.5 − 3.5 nm, where the SWNTs have length from 5 − 20 µm, and diameter

between 1 − 0.4 nm [3].

The methods described above differ with regard to the quality and the kinds of synthesized CNTs.

All of them have advantages and disadvantages. At present, however, the foremost issue has

become the selection of the best method for commercial applications. In view of the fact that large-

scale production of CNTs is becoming a major factor, most industries are opting for the CVD

technique.

 2.1.2 Mechanical properties

The extraordinary mechanical properties of carbon nanotubes arise from σ bonds between the

carbon atoms. Experimental measurements together with theoretical calculations show that

nanotubes exhibit the highest Young’s modulus (elastic modulus E) and tensile strength among

known materials. As reported by Overney et al. [10], the elastic modulus of singlewalled CNTs

can be up to 1.5 TPa. The ultimate strength of CNTs, ranging from 13 to 150 GPa, surpasses that

of materials well-known for their high tensile strength, such as steel and synthetic fibers [11,12].

Unlike electrical properties, Young’s modulus of CNTs is independent of tube chirality, although

it depends on tube diameter.

 Figure 2.3: Illustration of the elastic modulus and

strength of carbon nanotubes [3] and common tissue en-

gineering materials: PGA, PLLA [14], bone, titanium,

steel [15].
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The elastic response of a nanotube to deformation is also outstanding. Both, theory and

experiment show that CNTs can sustain up to 15 % of tensile strain before fracture. As shown by

Iijima et al. [13], CNTs are very flexible with a reversible bending up to angles of 110 o and 120 o

for MWNTs and SWNTs, respectively. 

The extraordinary mechanical properties of CNTs have met great interest in the application of

nanotubes in tissue engineering. Properties like the high tensile strength and excellent flexibility

give them superiority over popular materials used in TE (PGA, PLLA, titanium, steel) and make

them ideal candidates for the production of lightweight, high-strength bone materials. For

comparison, Fig. 2.3 shows the elastic modulus and strength of CNTs, bone, and several other

common materials used in bone-tissue engineering.

 2.1.3 Electrical properties

The electronic structure of carbon nanotubes is determined by their chirality and diameter, or, in

other words, by their chiral vector . CNTs are conductive if the integers in Eq. 2.1 are: n = m

(armchair) and n - m = 3i (where i is an integer). In all other cases, they are semiconducting. The

energy band gap Eg for semiconducting nanotubes is given by [3]:

where γo = 2.45 eV is the nearest-neighbour overlap integral [16], ac-c the nearest neighbor C-C

distance (~ 1.42 Å), and d is the diameter of the nanotube. Thus, the Eg of a 1 nm wide

semiconducting tube is roughly 0.7 eV to 0.9 eV [3].

It has been experimentally verified that SWNTs and MWNTs behave like quantum wires because

of the confinement effect on the tube circumference [17,18]. The conductance for a carbon

nanotube is given by [1]:

where G0 = (2e2/h) = (12.9 kΩ)-1 is the quantum unit of conductance. M is the apparent number

of conducting channels including electron-electron coupling and intertube coupling effects in

addition to intrinsic channels (M equals 2 for perfect SWNTs), e is the electron charge, and h is

Planck’s constant.

Ch

Eg

2γoac c–

d
--------------------=  (Eq.  2.2) ,

G G0M 2
e

2

h
-----

 
 M==  (Eq.  2.3) 

,
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According to Frank et al. [17] the electrical current, which could be passed through a MWNT

corresponds to a current density  in excess of 107 Acm-2 (for comparison,  for superconductors

is typically of the order of 105 Acm-2).

 2.1.4 Chemical properties

Small radius, large specific surfaces, and σ-π rehybridization make carbon nanotubes very

attractive for chemical and biological applications because of their strong sensitivity to chemical

or environmental interactions [3].

The chemical functionalization of carbon nanotubes is a very promising target since it can

improve solubility, processibility, and moreover allows the exceptional properties of carbon

nanotubes to be combined with those of other types of materials. Up to now, several methods for

the functionalization of CNTs have been developed. These methods include covalent

functionalization of sidewalls, noncovalent exohedral functionalization (for example with

surfactants and polymers), endohedral functionalization, and defect functionalization

(see Fig. 2.4). Chemical groups on CNTs can serve as anchor groups for further functionalization,

e.g. with biological and bio-active species such as proteins or nucleic acids [20,21]. This

bioconjugation is especially attractive for biomedical applications of carbon nanotubes.

j j

 Figure 2.4: Various functionalizations of carbon nanotubes: (A) covalent

sidewall functionalization, (B) defect-group functionalization,

(C) noncovalent exohedral functionalization with polymers, (D) endohe-

dral functionalization with, for example, C60, (E) noncovalent exohedral

functionalization with surfactants [19].
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 2.2 Carbon nanotubes in tissue engineering

Tissue engineering is an interdisciplinary field, which develops biological substitutes (artificial

extracellular matrices, also named scaffolds) capable of repairing or regenerating the functions of

a damaged tissue. In order to engineer the materials that will support the structure and function of

human tissue, a deep understanding of the cell and extracellular matrix (ECM) interactions, which

take place within tissues is required. Up to now, most tissue engineering studies have focused on

the investigation and creation of macrolevel structures with non-biologically inspired

topographies, i.e. structures that are rough at the micron scale, yet smooth at the nanoscale.

However, as presented in Fig. 2.5, biological structures formed during tissue development show

hierarchical organization from the nano to the macro-length scale. Therefore, it is obvious that the

length-scale variation in the extracellular environment plays a crucial role in determining cellular

behavior and that cells are naturally accustomed to interact with nanometer length-scale

features [22]. 

The ECM, which supports and guides cellular behavior, exhibits a rich architecture of nanoscale

features like interconnecting pores, ridges and fibers which naturally bind and support cells

throughout human tissues [23]. For example, the type I collagen fibrils, one of the major

components of the bone, are composed of hydroxyapatite crystals and collagen molecules, where

the crystals have an average dimension of about 50 nm, and the molecules have an average

of 300 nm in length and 1.23 nm in diameter [24]. Additionally, numerous cellular features have

 Figure 2.5: Scheme illustrating the complex hierarchical bone structure [23]. Bone min-

eralizes to form a calcified outer compact layer, which contains many cylindrical Havare-

sian systems or osteons. The osteocytes within the osteons are surrounded by a dense

network of aligned collagen I fibrils. Fibrils, in turn, are composed of individual collagen

molecules oriented parallel to each other. Such packed molecules provide templates for the

self-assembly of hydroxyapatite crystals. 
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nanoscaled dimensions like, for example, cell transmebrane receptors (integrins), which contain a

globular head of diameter 8 − 14 nm with two rod-like tails extending 14 − 17 nm [25].

Taking into account the presence of nano-features in ECM, it is essential to create the structures

with biologically inspired nanoscale dimensions in order to control cellular behavior and

subsequently, tissue development. Therefore, this fact has given rise to the use of nanomaterials

and nanofabrication techniques for tissue engineering. 

One of the most promising nanomaterials, which have a great potential for multiple uses in tissue

engineering, are the carbon nanotubes. The appeal of CNTs arises from the fact that they have a

structure that can be tailored to mimic closely the nano-scale of native ECM (i.e. collagens).

Additionaly, their unique electrical properties, high mechanical strength, excellent flexibility, and

low density, can result in creation of constructs with highly-predictable biological and physical

properties. More details and examples of applications of carbon nanotubes in tissue engineering

are given below. 

 2.2.1 Matrix enhancement

The artificial matrix plays a very important role in tissue engineering. It is responsible for defining

the space the engineered tissue occupies and for aiding the process of tissue development [26].

One of the few requirements that the matrix has to fulfill is mechanical stability, which is crucial

for maintaining the predesigned tissue structure. Mechanical stability mainly depends on the

selection of the biomaterial and the architectural design of the matrix. Although polymers, such

as PLLA (polyl-L-lactide acid) or PLGA (poly(lactic-co-glycolic acid)), are the primary materials

for matrices in various tissue engineering applications, but they lack the necessary mechanical

strength (see Fig 2.3). Additionally, they cannot be functionalized as easily as carbon nanotubes.

The extraordinary mechanical properties of carbon nanotubes make them very attractive and

promising as reinforcing fillers for the production of a new generation of tissue matrices. The

functional groups, which can be readily introduced into the CNTs’ surface, greatly enhance their

connection with a great variety of polymeric matrices, thus improving the mechanical properties

of nanocomposites. Data revealing that carbon nanotubes dispersed in a polymer significantly

improve the mechanical properties of the composite already exist [27-29]. Up to now, carbon

nanotubes have been put into a host of different synthetic polymers as well as into biopolymers.

Carbon nanotubes merged with chitosan, for example, showed a significant enhancement in the

mechanical strength of the composite [30]. By incorporation of only 0.8 wt% of CNTs into the

chitosan matrix, the mechanical properties of the nanocomposite, including Young’s modulus and

tensile strength, were improved by about 93 % and 99 %, respectively. 

Apart from polymer enhancement, carbon nanotubes have also been used to reinforce ceramic

matrices. Gao et al. [31] successfully fabricated CNTs/BaTiO3 composites, where the addition

of 1 wt% of CNTs increased the fracture toughness by about 240 %. Using plasma-sprayed



BACKGROUND 13

techniques, CNTs have been uniformly distributed in a brittle hydroxyapatie (HA) bioceramic

coating, improving the fracture toughness of the nanocomposite by 56 % [32].

The above-mentioned studies demonstrate that the mechanical properties of matrices can be

significantly improved with CNTs. Moreover, the fact that the addition of very small amounts of

CNTs is sufficient for matrix enhancement may counterbalance their nondegradable nature.

 2.2.2 Cellular response to carbon nanotube-based matrices

Whereas mechanical reinforcement was the initial motivation of using carbon nanotubes, there is

evidence that CNTs can accelerate and direct cell growth. Several in vitro studies have been

conducted investigating the interaction between CNTs or nanocomposites and mammalian cells.

It was shown that a collagen matrix with embedded SWNTs sustained a high cell viability of

smooth muscle cells [33]. The work by Zanello et al. [34] examined the proliferation and function

of osteoblast cells seeded onto five differently functionalized carbon nanotubes. This study

showed that bone cells prefer electrically neutral CNTs, which sustained osteoblast growth and

bone-forming functions. The follow-up study investigated the adhesion properties of osteoblast,

fibroblast, neuron, and astrocyte cell on polycarbonate urethane/carbon nanotube (PU/CNT)

nanocomposites [22]. The conducted experiments revealed that cell functions that contribute to

glial scar-tissue formation (astrocytes) and fibrous-tissue encapsulation (fibroblast) decreased.

The possibility of using nanotubes as substrates for nerve cell growth and as probes of neural

functions at the nanometer scale has been reported by Mattson et al. [35].

They showed that neurons, which were grown on CNTs functionalized with a bioactive molecule,

4-hydroxynonenal, developed multiple neurites and extensive branching. The ability to control the

characteristics of neurite outgrowth also became possible by manipulating the charge carried by

the functionalized carbon nanotubes. As shown by Hu et al. [36], neurons plated on positively-

charged CNTs exhibited more numerous growth cones, longer neurite outgrowth, and more

neurite branching in comparison with the neurons grown on negatively-charged nanotubes.

Carbon nanotubes have also been used to create electrically-conductive polymers and tissue

matrices with the capacity to provide controlled electrical stimulation. It has been reported that

current-conducting CNT/polymer composites promote various osteoblast cell functions. By

applying alternating current to these nanocomposites, an increase in osteoblast proliferation by

46 %, and calcium deposition by 307 % has been observed [37]. This result suggests that CNT-

based composites may be used to stimulate bone formation. Other studies have been directed

toward exploiting the electrical properties of CNTs for the purpose of healing neurological and

brain-related injuries. Gheith, et al. [38] have used electrically-conductive LbL-assembled,

modified SWNT films to stimulate the neurophysiological activity of neural cells.

Electrophysiological measurements showed that SWNT films can be used to electrically stimulate

significant ion conductance in neuronal cells. This indicates a good electrical coupling between

the LbL film and the neuronal cells in the lateral electrical configuration.
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Although the above-mentioned studies mostly investigated cell adhesion and proliferation on

randomly oriented nanotubes and CNT/polymers, carbon nanotubes can also be arranged into 3D

matrices with well defined periodic architectures. Correa-Duarte et al. [39], for example, created

unique 3D structures from aligned CNTs grown on a silicon substrate, which subsequently formed

honeycomb-like polygons in an oxidation process. This 3D CNT-based structure showed a good

biocompatibility, proven by the excellent proliferation of mouse fibroblasts. In a related study,

Giannona et al. [40] investigated the influence of periodic arrays of vertically-aligned carbon

nanotubes (VACNTs) on the behavior of osteoblast cells. The authors observed a significant

enhancement in cell attachment and proliferation as well as an influence on the cells’ shape and

orientation due to the periodicity of the CNTs. 

As pointed out previously, carbon nanotubes can be chemically functionalized in many different

ways. This not only allows to combine but even to replace other types of materials with CNTs. For

instance, Zhao et al. [41] demonstrated that adequately-functionalized carbon nanotubes can be

used as a substitute for collagen to promote new bone growth. In this study, chemically-treated

carbon nanotubes served as nucleation sites for the deposition of hydroxyapatite. The negatively

charged groups on the CNTs led to a self-assembly of HA crystals reaching a thickness of 3 µm

after 14 days of mineralization. Similar observations for hydroxyapatite mineralization onto

carbon nanotubes have been reported by other researchers [32,42].

Considering recent publications, it can assumed that the use of carbon nanotubes for tissue

engineering appears to be challenging but on the other hand potentially rewarding perspective to

develop the next generation of engineered biomaterials.
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Chapter 3

Theory

 3.1 Nanoindentation

Nanoindentation is a relatively new technique for the characterization of the mechanical

properties of nanoscale materials. It has been used to study a wide range of materials, including

carbon-based materials, coatings, thin films, and polymers [1-3]. Depth-sensing indentation (DSI)

devices allow for the measurement of the indenter tip penetration as a function of an applied

controlled load. Additionally, they are able to produce contact areas and indentation depths

characterized by sub-micrometer or even nanometer dimensions for hard materials. Obtained load

vs. displacement curves, together with the indenter geometry allow for the calculation of the

elastic modulus and the hardness of the tested material. 

The analysis of indentation load-penetration curves produced by DSI system is based on the work

by Oliver and Pharr [4]. Their analysis was, in turn, based upon the relation developed by

Sneddon [5] for the penetration of a flat elastic half-space by different probes with particular

axisymmetric shapes. 

The relationship between penetration depth h, and load P is represented in the form:

where D contains geometric constants, the sample’s elastic modulus and Poisson’s ratio, as well

as the indenter’s elastic modulus, and Poisson’s ratio. hf is the final unloading depth and m is a

power law exponent that is related to the geometry of the indenter; for a flat-ended cylindrical

punch m = 1, for a paraboloid of revolution m = 1.5, and for a cone m = 2.

 (Eq.  3.4) P D h hf–( )
m

= ,
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The elastic modulus and hardness can be evaluated from the unloading slope of the depth-

displacement curve (Fig. 3.6) and are defined as:

where Er is the reduced modulus, Ac is the contact area between indenter and sample, H is the local

hardness, S is the constant stiffness, defined as a slope of the unloading curve fitted to the power

law of Eq. 3.4. The reduced modulus combines the properties of the indenter and the sample, and

is given by:

where Es and vs are the sample’s elastic modulus and Poisson’s ratio, and Ei and vi are the elastic

modulus and Poisson’s ration of the indenter material. For the indentation of a plane surface of a

semi-infinite elastic solid by a rigid tip, the second term in Eq. 3.7 can be neglected.

Er

1
2
--- π

Ac

-----S=  (Eq.  3.5) ,
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1
Er

-----
1 νs

2
–( )

Es

-------------------
1 νi

2
–( )

Ei

-------------------+=  (Eq.  3.7) ,
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 Figure 3.6: Schematic of indenter and specimen surface at full load and un-

load for a conical indenter (a). Load-displacement curve with several impor-

tant parameters used in the Oliver and Pharr analysis (b). hr is the depth of

the residual impression, hmax is the depth from the original speciment surface

at load Pmax, and he is the elastic displacement during unloading. 
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The nanoindentation procedures include the calibration of the tip with the aim to determine the

geometry of the indenter tip. Typically, a series of indentation measurements are made on a

reference sample, which is homogeneous and isotropic and for which both E and v are known. The

dependence of the contact area as a function of contact depth is plotted and the area function is

found by using a multiterm polynomial form:

where C (n = 0, 1, 2...) are constant coefficients determined by the curve fit and hp is the contact

depth, determined from:

with hmax the maximum displacement at maximum load, ha the elastic displacement of the surface

at the contact perimeter, and ε a function of the tip geometry (i.e. for a flat-ended cylindrical punch

ε = 1, for a paraboloid of revolution ε = 0.75, and for a cone ε = 2 (π-2)/π).

Nanoindentation tests and the resultant calculated physical quantities are very sensitive to many

phenomena occurring during the measurements. The most commonly encountered sources of

errors may arise from instrument compliance, thermal drift, indenter geometry, and a sample’s

surface roughness [6]. Therefore, the calculated values of H and Er can be faulty and may not

reflect the real and actual values. However, if all experiments are carried out under the same

experimental conditions, the results for the diverse samples can be related and compared.

 3.2 Atomic force microscopy for cell biology 

The atomic force microscope (AFM), invented by Binnig in 1986 [7], has found a wide range of

applications with regard to the study of biological specimens. One of the greatest benefits of the

AFM is its capability of imaging biological samples at high resolution in their natural aqueous

environment. This has been demonstrated through the study of a wide range of different samples,

from the imaging of molecules like deoxyribonucleic acid (DNA) [8], ribonucleic acid

(RNA) [9,10], and proteins [11] to the imaging of tissues [12,13]. AFM has also been applied to

direct imaging of intracellular structures such as actin fibers and the nucleus, and of dynamic

processes in living cells [14,15]. 

In addition to imaging, AFM has increasingly been used for the measurement of local mechanical

properties of cells at the nanometer scale, where the elastic modulus could be determined from

force-displacement curves [16,17].

Ac hp( ) Cohp

2
C1hp C2hp

1
2
---

C3hp

1
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 3.2.1 Operation modes

 3.2.1.1 Contact mode

The most common AFM mode applied in cell biology is the contact mode. In this mode, the

scanning tip is in contact with the imaged sample surface. Data acquisition in contact mode is done

in the following ways: In the so-called constant force mode, when the tip raster scans the samples,

a feedback loop keeps the cantilever deflection constant. The tip approximately maps out the

topography of the sample and keeps the force on the sample constant. In the second mode, the so-

called constant-height mode, the cantilever is held at the same height during the scan with the

feedback off. The main advantage of this imaging mode is its high sensitivity in the z axis;

however, the force applied to the sample increases with increasing cantilever deflection and may

cause damage to the tip and/or sample. Figure 3.7 schematically illustrates the working of an

atomic force microscope.

Lateral resolution in the contact mode is strictly related to tip geometry, sample roughness, and to

the force applied during scanning. As observed for living cells, forces over 1 nN may result in

sample deformation and increase the tip-sample contact [18,19]. The latter leads to limitations in

the lateral resolution. Thus, to achieve high resolution and reduce sample perturbation, small

forces are required when scanning the topography of biological samples.
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 Figure 3.7: Scheme of AFM.
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 3.2.1.2 Force mode 

As mentioned before, AFM can also be used for the quantitative assessment of the mechanical

properties of a surface. To achieve this, AFM requires the use of force-displacement curves. These

curves are obtained by monitoring the cantilever deflection while ramping the piezo scanner in z

direction and plotting the resulting deflection versus the piezo displacement. A complete force-

curve contains both the approaching and the retracting portion. A typical force-curve recorded

with a soft cantilever on a glass substrate in air is shown in Fig. 3.8. 

There are four regions of interest: At the initial part of the curve, the tip is far away from the

sample and there is no interaction and no cantilever deflection (zero deflection line) (i). As the tip

gets closer to the surface, the tip-sample interaction increases and shortly before tip and sample

get into contact, attractive van-der-Waals forces lead to a “jump to contact” of the tip (ii). Once

the tip is in contact with the surface, the cantilever deflection increases (iii). If the sample is much

stiffer than the tip, the deflection increases linearly with the piezo movement. If the surface is soft

compared to the cantilever’s spring constant (e.g. a living cell), surface deformation or indentation

will occur. Maximum cantilever deflection is obtained at the maximum extension of the piezo.

After that, the piezo starts a retraction movement. The retraction curve can display a hysteresis (iv)

owing to a variety of tip-sample interactions, the most common of which is adhesive force. In the

case of samples probed in air, the adhesive force is due to the presence of a thin (several

nanometers) layer of water adsorbed to the surface. This water layer wicks up the tip and forms a

“bridge” between the tip and the sample. Pulling the tip out of that bridge requires a strong force

in order to overcome the surface tension [20]. The tip may then undergo long-range interactions

before the tip-sample separation distance is large enough for the cantilever to return to zero

deflection.

Approach
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Area - Hysteresis

 Figure 3.8: Components of the force-curve with the approaching

(solid) and retracting (dashed) portions recorded on a hard sub-

strate.
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 3.2.1.3 Force-volume imaging

A force-volume imaging combines force measurements with topographic imaging. Each force

curve is recorded as described above, except that the sample is also translated in the x-y

plane (Fig. 3.9). The force-volume height image (FVH) is an array of z-piezo positions at the

points of the maximal deflection of the force curves. Typically, the force-curves are collected

using relative deflection trigger, so the FVH is a surface of equal force. For an adequate dense

collection of force curves, the lateral resolution of force-volume imaging is related to the distance

dependence of the interaction. Therefore, the lateral resolution varies within the volume and can

not be easily defined. 

Together, the FV and the FVH provide the three dimensional, laterally resolved description of the

force over and within a sample. Force-volume imaging is a powerful technique, which can be used

to investigate adhesive, electrical, elastic, and chemical properties of samples.

Radmacher et al. [17] were the first who constructed one of the first AFM-based maps of cellular

mechanical properties. Using force-volume imaging, they produced micro-elasticity maps of the

biological cells that show local variations in their stiffness. A similar approach was used to study

the contribution of the actin cytoskeleton to the local mechanical properties of cardiac

myocytes [21].

 Figure 3.9: Force-volume array of force-curves.
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 3.2.2 Data analysis of force-curves

Typically, force-curves are analyzed within a given range of loading forces. Therefore, deflection

values first have to be converted into loading force values. Since the cantilever springs are linear

with regard to small deflections, Hooke’s law can be applied:

where k is the force constant of the cantilever, d is its deflection, and F is the corresponding force

exerted by the cantilever. In experiments, the deflection is not necessarily zero when the cantilever

is free, e.g., due to the stress in the cantilever, which will deform it even without an external load.

Thus, the offset d0 has to be subtracted from all deflection values. Therefore, Eq. 3.10 is changed

to: 

The indentation is given by the difference between the sample height z and the deflection of the

cantilever:

Here again, the offset must be considered, so Eq. 3.12 can be rewritten as:

where d0 is the zero deflection as above and z0 is the z position at the point of contact.

As can be seen in Fig. 3.8, the contact point can easily be identified in the force-curve recorded

on a stiff sample by direct visual inspection, with an accuracy of a few nanometers, depending on

the noise and short tip-sample interaction. Nevertheless, the identification of z in a soft sample is

more difficult, due to the slow increase of the deflection in respect to the piezo translator.

 3.2.2.1 Analytical expression for contact elastic models: Hertz and Sneddon

The conical model for the tip has been widely used for elastic measurements on cells [17,21]. The

elastic deformation of two spherical surfaces touching each other under a load was calculated

theoretically in 1882 by Hertz [22]. Later, Sneddon [5] extended this calculation to other

geometries, like a cone pushing onto a flat sample. These contact elastic models assume that the

intended body is perfectly elastic, isotropic, smooth, and infinitely thick. Under these conditions,

the analytical expression for the F-δ relationship and the radius r for the contact area between the

F kd= ,  (Eq.  3.10) 

 (Eq.  3.11) F k d d0–( )=

δ z d–=  (Eq.  3.12) 

δ z z0–( ) d d0–( )= ,  (Eq.  3.13) 
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punch (tip) and the elastic body corresponding to typical geometries are [5]:

(i) Parabolic:

where R is the radius of curvature at the apex of the tip and E and v are the Young’s modulus and

the Poisson ratio of the sample, respectively. Eq. 3.14 matches the results reported by Hertz for a

spherical geometry for both the indenter and the sample [22]. The parabolic model (or Hertz

model) is the most widely reported in AFM literature for sample indentation being of the same

order as the radius of the tip apex.

(ii) Cone:

 

where α is the half-opening angle of the punch. This model is more useful for sample indentations

much larger than the radius of the tip apex (~ 20 nm).

 3.2.2.2 Fitting the elastic models in cell measurements

The mathematical function, which is finally used to fit the force-curve data, is obtained combining

Eq. 3.13 and Eq. 3.15. For the conical Hertz model this results in:
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Most of the quantities in Eq. 3.16 are either known or can be measured experimentally. The force

constant and the half-opening angle α can be determined before or after the experiment or can be

obtained from the manufacturer’s data sheet. The Poisson’s ratio, which characterizes how much

the elastic body extends orthogonally to the direction in which the force is applied [23], is assumed

to be constant and, in the case of cells, can be chosen to be 0.5 [24]. The Young’s modulus

characterizing the stiffness of an elastic body subjected to low strains and the point of contact are

two unknown variables. These two quantities can be determined independently using a common

method established by Rotsch [25]. 

 3.3 Mechanical properties of a cell

Like engineering materials, cells deform when an external force acts on them. Such a behavior is

described by the mechanical properties of cells, and is determined by the cell composition and

structure as well as the surrounding with which the cells interact. The contribution of these

different factors may vary, yet, there are specific structures in a cell that dominate its

deformability.

 3.3.1 Structural cell components responsible for the mechanical 

properties of a cell

The elastic properties of cells are determined in a complex way by the composite shell envelope

composed of the lipid-protein bilayer with the associated actin cortex and the internal

cytoskeleton, and also by their associated proteins. A brief description of the most relevant cell

structures in terms of their contribution to the overall mechanical behavior of the cell is given

below.

 3.3.1.1 Cell membrane

The cell membrane is a lipid bilayer, which envelopes a cell and creates a selectively permeable

barrier. The thickness of this membrane is about 7.5 to 10 nm [26]. Regarding its mechanical

properties, it has been reported that the lipid bilayers are several orders of magnitude softer than

an AFM cantilever [27]. This result is confirmed by theoretical estimations of the response of

cellular membranes to the indentation by AFM cantilevers [28]. Therefore, in terms of AFM

measurements, the elastic response of the membrane is not detectable. This is only valid in the

case of eucaryotic cells with soft cell membranes.
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 3.3.1.2 Cytoskeleton (CSK)

The cytoskeleton is an intracellular 3D network consisting of F-actin filaments (6 - 10 nm in

diameter), intermediate filaments (7 - 11 nm), microtubules (25 nm), and a huge variety of

associated proteins. These associated proteins control the length of the filaments, their growth,

cross-linking, or bundling between filaments and anchor them to the cell membrane or other

intracellular components. A fluorescence image of different cytoskeleton filaments, labeled with

different dyes, can be seen in Fig. 3.10. This network is a dynamic structure that maintains

different functions. It has been reported that among these functions, it is the various cytoskeletal

components, such as actin filaments and microtubules, which contribute to the mechanical

stiffness of the cells [30-33]. However, a number of studies have suggested that the different

components of the CSK may have distinct mechanical roles within the cell. On the basis of the

cellular tensegrity model, which assumes that the cell stiffness results from the collective

interaction among all three filament systems, the actin fibers and intermediate filaments provide

tension, while the microtubules are load-bearing elements that resist compression [30]. A number

of studies on individual cytoskeletal elements, which implemented rheological measurements

have suggested that F-actin and intermediate filaments are the components which contribute

mostly to cell stiffness, while microtubules play a supportive role for other cytoskeletal

elements [32]. 

 3.3.1.3 Cell nucleus

It has been reported that the mechanical properties of the nucleus are likely to play a significant

role in the mechanical response of the cell, particularly the central region of attached cells [31].

The nucleus, as well as the actin cytoskeleton, shows almost pure elastic behavior to applied

mechanical forces that deform its shape [31]. According to several studies, the nucleus is softer

than the rest of the cell body [17,21].

 Figure 3.10: Cytoskeleton of adherent cell consists of F-actin filaments (left), mi-

crotubules (center) and intermediate filament. The three components interconnect

to create the cytoskeletal lattic which stretches from the cell surface to the nucleus.

The molecular structure of each component is shown above the corresponding

photograph. [29]



THEORY 29

 3.3.2 Cell-matrix interaction - influence on the cell deformability

The ECM (in vivo) or substrate (in vitro) to which a cell adheres plays an important role in

modulating cell deformability since it may provide the mechanical support to balance the tension

in adherent cells [34]. 

Cell adhesion to the extracellular matrix (ECM)/substrate is mainly mediated by the integrins,

which are transmembrane heterodimeric proteins composed of α and β subunits, which combine

to form at least 24 receptors [35]. Depending on the combination, pairing of the integrin subunits

has been shown to be specific for binding to various ECM proteins (ligands) [36]. For instance,

α5β1 binds to fibronectin, whereas αvβ6 binds to collagen [37,38]. The integrins span through the

lipid membrane (Fig. 3.11) and bind to ECM proteins via specific peptide domains, for example

arginyl-glycyl-aspartic acid (RGD) [40], a sequence that is present in fibronectin and

vitronectin [40-42]. The activated integrin receptors cluster to form focal adhesion contacts (FAs)

that organize intracellular stress fibers at the plasma membrane and initiate signal transduction,

both alone and with other cell surface receptors [42]. Such formed integrin-mediated cell

adhesions are particularly important in cell mechanics because they generate passively cell

internal prestress, i.e. pre-existing mechanical tension in the CSK even before any external stress

is applied [43]. Therefore, it is expected that cell adhering to the substrate and forming many focal

adhesions will imply an increase of its initial prestress. Since the stiffness and prestress are closely

associated in adherent cells [44], it follows that the cell’s stiffness increases in nearly direct

proportion to the magnitude of the prestress [45]. 

Extracellular

space

a) Inactive state

    (bent form)

b) Primed state 

    (extended form)

c) Active state 

    (ligand-bound form)

Cell membrane

ECM

Clustering

Assembly of actin 

cytoskeleton

Integrins

Actin

 Figure 3.11: Cell-matrix interaction: Formation of focal adhesions. a) Integrins which are not

bound to the ECM are in inactive conformation (characterized by bent extracellular domains).

b) Intracellular signallig events prime the integrins, which results in a comformational change

that exposes the ligand-bindig site. c) The integrin extracellular domains bind specific ECM pro-

teins. The maturation of focal adhesions involves clustering of active, ligand-bound integrins and

the assembly of actin cytoskeleton. [39]
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As the type and quantity of adsorbed ECM proteins is influenced by the surfaces to which cells

adhere [46], the formation of focal adhesions, their distribution, and consequently cytoskeleton

organization, will vary on distinct substrates [36,47,48]. For that reason, alterations in the

cytoskeletal architecture of cells upon adhesion to different ECMs/substrates are expected to lead

to changes in the mechanical properties of the cells. This hypothesis has been widely supported

by data from adhesion of osteoblasts on various implant materials. For example, Domke et al. [49]

showed differences in osteoblast cell stiffness by adhering to titanium, titanium-vanadium, and

cobalt-chromium materials. The reported elastic modulus values differed up to a factor of four.
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Chapter 4

Experimental

 4.1 Sample preparation

 4.1.1 Functionalization of MWNTs

The MWNTs used were obtained from NanoLab Inc., synthesized by chemical vapor deposition

with flowing acetylene gas as the carbon source. Alumina particles, coated with iron catalyst, were

used as seeds for the CNT growth. Multiwalled carbon nanotubes had a purity of 95 %, a diameter

in the range of 15 - 45 nm, and lengths between 1 - 20 µm.

Generating functional groups on the surface of carbon nanotubes is necessary to overcome their

poor solubility in solvents, to improve their specificity, and to provide an avenue for further

chemical modification. In this study, both covalent and non-covalent methods were used to

introduce desired chemical groups to the nanotubes.

 4.1.1.1 Oxidation with acids

Multiwalled carbon nanotubes were covalently functionalized by the following oxidation

procedure [1]: 16 mg of MWNTs were suspended in a concentrated nitric and sulfuric acid mixture

(1:3 v/v, 80 mL), (HNO3; Sigma-Aldrich, > 70 %; H2SO4: Sigma-Aldrich, > 95 %) and

subsequently sonicated for 2 h (ultrasonic bath 200, W) and left aside for 20 h. The resultant

mixture was centrifuged (18514g, 60 min.), and the resulting black sediment was washed

throughly with pure water (35 mL); this process was repeated four times. Finally, the carbon

nanotubes were re-dispersed in 200 mL of water followed by a short treatment in the ultrasonic

bath (200 W, 30 min.). As shown [1], this oxidation treatment disrupts the π bonding symmetry of

sp2 hybridize carbon atoms and produces a high density of functional groups along the entire

length of CNTs, such as carboxyl, carbonyl, and phenolic groups. 
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Carboxyl groups are dominant, therefore, the CNT-COOH abbreviation is used to refer to oxidized

nanotubes (Fig. 4.12). 

With these groups present, carbon nanotubes show a very good dispersibility in aqueous solvents,

where they remain stable for months.

 4.1.1.2 Polymer wrapping

Another functionalization of carbon nanotubes was done by means of a polymer wrapping

method [2]. In this procedure, the positively charged polyelectrolyte poly(allylamine

hydrochloride) (PAH), could be non-covalently adsorbed around the carbon nanotubes due to

van -der-Waals interactions, mechanical wrapping, and anchoring (Fig. 4.13).

An amount of 50 mg of MWNTs was dispersed in a 0.5 wt% PAH (Sigma-Aldrich, Mw = 70 000)

salt solution (0.5 M NaCl, 500 mL) and sonicated (200 W) for 4h, then stirred overnight at 80 oC

and again left in an ultrasonic bath for 3 h. Excess polymer was removed by

centrifugation (18514 g, 90 min.) and the sediment was washed with pure water; this process was

repeated 3 times. Finally, the residual black solid was re-dispersed in water (500 mL) by short

ultrasonication (200 W, 120 min), giving a stable, homogenous suspension of nanotubes.

HNO3, H2SO4

COOH

COOH

COOH

 Figure 4.12: Scheme of covalent functiona-

lization of MWNTs with acids.

 Figure 4.13: Schematic of non-covalent

functionalization of MWNTs with PAH.

PAH
(NH3)Cl

(NH3)Cl
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The amine functionalities on the surface of the nanotubes ensure good separation and stability due

to electrostatic interactions (repulsions) in aqueous solutions.

 4.1.2 Free-standing CNT-based matrix preparation

Free-standing CNT-based matrices were fabricated using the conventional lithographic technique

combined with the Layer-by-Layer assembly process [3]. A brief description of these methods is

given below.

 4.1.2.1 Nanosphere lithography

The preparation of CNT-based matrices started from the creation of a monolayer mask using

nanosphere lithography (NSL) [4]. This technique is based on the self-assembly of latex

spheres (PS) into hexagonally closed-packed (hcp) monolayers. Aqueous dispersion of latex

spheres (MicroParticles) with a diameter of 1.71 µm (10 wt%) were diluted in an organic solvent

(PS/methanol, 1:1 v/v) and slowly applied to the water surface using a glass pipette with a curved

ending. All suspensions were spread inside a Petri dish (15 cm in diameter). To avoid crack

formation in the lattice and to leave enough place for stress relaxation, the transfer of PS

suspensions was stopped when the monolayer covered about 70 % of the water surface. At this

point, the particles are arranged into a colloidal multicrystalline monolayer. To improve the

monolayer i.e. to create monocrystals, the water with the floating mask was gently waved by slow

tilting of the dish (about 30 min). After this treatment, the silicon substrates were submerged in

the water and aligned under the PS mask. Next, the water from the Petri dish was pumped out

slowly, until the PS monolayer approached the underlying substrates. 

All masks were deposited on silicon substrates (1 x 3 cm2), previously cleaned in a solution of

H2O2/H2SO4 (1:4 v/v) for 10 min, rinsed in pure water, and dried in an argon stream. Additionaly,

they were covered with a so-called sacrificial layer, created by deposition of polystyrene solution

(150 mg of polystyrene dissolved in 2 mL of chloroform) via a spin-coating process. Coating was

performed at 2850 rpm and resulted in a layer thickness of 2.5 µm. This layer was necessary in

order to obtain a free-standing CNT-based film.

 4.1.2.2 Layer-by-Layer assembly

The LbL matrices were created on solid substrates by alternate deposition of oppositely charged

polyelectrolytes and functionalized MWNTs (see Fig. 4.14) [3,5]. All samples were prepared in

an automatic process using an dipping machine (Dipping Robot DR3, Kirstein GmbH, Germany).

The silicon substrates, already covered with a sacrificial layer and PS mask, were vertically

arranged in a custom-made holder, and were immersed into the first polyelectrolyte solution (.5
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wt% of PE salt solution (0.5 M NaCl).). Subsequently, the slides were rinsed successively in three

different beakers containing pure water, for 5, 2, and 1 min., respectively. Next, they were dipped

into the carbon nanotube solution followed by the same rinsing procedure. After every fifth

deposition cycle, a layer of nanotubes was replaced with a layer of contrarily charged

polyelectrolyte. In a typical experiment, a deposition time of 10 min was used for the

polyelectrolyte and of 20 min for the carbon nanotubes.

The thus-produced LbL-films were investigated in terms of their mechanical and biocompatible

properties. Therefore, different combinations of polyelectrolytes and chemically-modified carbon

nanotubes were used (Table. 4.2)

Tab. 4.2: Carbon nanotubes and polyelectrolytes used to prepared different LbL structures. 

MWNTs Polyelectrolytes LbL Structure Outermost 

layer

n Thickness

[µm]

MWNT-COOH PEI (Mw = 70 000), 
PSS (Mw = 70 000) 

[(PEI/MWNT-
COOH)5(PEI/PSS)]n

MWNT-COOH 30 ~ 2

MWNT-COOH  PDDA (Mw = 350 000), 
PSS (Mw = 70 000)

[(PDDA/MWNT-
COOH)5(PDDA/

PSS)]n

MWNT-COOH 30 ~ 2

MWNT-COOH PAH (Mw = 70 000),
PSS (Mw = 70 000)

[(PAH/MWNT-
COOH)5(PAH/PSS)]n

MWNT-COOH 30 ~ 2

MWNT-PAH PSS (Mw = 70 000), 
PAH (Mw = 70 000)

[(PSS/MWNT-
PAH)5(PSS/PAH)]n

MWNT-PAH 30 ~ 2

− PSS (Mw = 70 000), 
PAH(Mw = 70 000)

[PSS/PAH]n PAH 5 −

− PSS (Mw = 70 000), 
PAH (Mw = 70 000)

[PDDA/PSS]n PSS 5 −

 Figure 4.14: Layer-by-Layer assembly method. Step 1 ad-

sorption of positively charged polyelectrolyte, Step 2 washing

stage, Step 3 deposition of negatively charged CNTs, Step 4

washing.

STEP 1 STEP 2 STEP 3 STEP 4
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To obtain free-standing films, the LbL composites were peeled off from the substrates by means

of chemical delamination. The samples were immersed into tetrahydrofuran (THF, Sigma-

Aldrich) for 5 min and then washed in pure water. Free-standing films were picked up from the

suspended state with tweezers and subsequently dried and cut to the desired size and shape. 

CNT-based films were additionally modified by a reactive ion etching process (RIE). The RIE was

performed in an oxygen atmosphere with the addition of argon. The flow ratio was controlled by

changing the flow rate of each gas, while the total flow rate was held constant at 20 sccm. The

total gas pressure was 100 mTorr and the input power was 80 W.

 4.1.3 MWNT-based matrices surface modification

Calcium phosphate nanoparticles (CP NPs) were kindly provided by the Kotov Lab. (University

of Michigan, USA). They were synthesized from aqueous calcium nitrate and phosphoric acid in

the presence of 2-carboxyethylphosphonic acid (CEPA). The produced negatively-charged

nanoparticles had a discoidal shape with a diameter of 30-80 nm and a height of less than 5 nm [6].

CP NPs were covalently attached to the functionalized carbon nanotubes. Shortly, matrices

assembled from PAH-functionalized carbon nanotubes were placed in vials with a solution

containing CP NPs. The samples were kept in solution at room temperature for 1 h. The matrices

were then removed from the vials and rinsed with pure water. 

 4.1.4 Vertically-aligned CNT matrices

Both carpets of vertically-aligned carbon nanotubes (VACNTs) and periodical VACNT-arrays

were produced at NanoLab (nano-lab.com). They were fabricated by using plasma-enhanced hot

filament chemical vapor deposition (PECVD), described in detail elsewhere [7]. The carpet of

VACNTs was produced on nickle nanoparticle-coated substrates, which were subsequently placed

into a CVD chamber. In the case of the periodic arrays of VACNTs, nanosphere litography was

involved. In brief, the self-assembled monolayer of latex spheres with a diameter of 540 nm was

used as a mask to deposit Ni dots on a chromium-coated sapphire substrate. Nickel deposition was

done by electron beam evaporation. All PS-spheres were then removed from the substrate by

ultrasonication in toluene. As a result, quasi-triangular-shaped catalytic Ni dots in a honeycomb

lattice pattern were created. The substrates were then placed in a PECVD system under NH3

plasma yelding high-quality aligned arrays of nanotubes with long-range periodicity and

controlled length [7].
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 4.1.5 Cell cultures

All experiments were carried out using HOB-C, human hipbone osteoblast cells, which were

purchased from PromCell. The cells were cultivated in Dulbbeco’s Modified Eagle Medium with

GlutaMAXTM, 4500 mg/L D-glucose and sodium pyruvate (DMEM, Gibco), supplemented with

heat-inactivated (30 min at 56 oC in a wather bath) 10 % fetal bovine serum (FBS, Gibco), 1 X

Insulin-Transferrin-Sodium Selenite Media Supplement (Sigma), 100 µg/mL Penicillin and

100 µg/mL Streptomycin (Penicillin-Streptomycin, Gibco). In order to offer a biologically-

friendly enviroment to the cells, they were incubated at 37 oC in humidified air with 5 % CO2. The

medium was replaced every two days. After reaching subconfluence, the cells were detached from

the culture flask using a 0.25 % trypsin-EDTA solution. Subsequently, the dissociated cells were

centrifuged, washed, and resuspended in supplemented DMEM medium.

 4.1.5.1 Seeding of osteoblast-like cells on matrices

First, the samples were sterilized with UV light (30 min) and placed into conventional 6-well

culture plates. To investigate cell growth on the substrate, osteoblast-like cells were counted and

seeded onto the substrates at a density of 2000 cells/cm2 on the sample surface. The cells were

allowed to grow under standard cell culture conditions (described above). After the third and

seventh day of the incubation period, osteoblast-like cells were observed under a light microscope

or fixed for the investigation via scanning electron microscopy.

 4.1.5.2 Direct-contact toxicity study (mitochondrial activity)

A toxicity study was performed using MTT assays (Sigma), which is based on the reduction of the

yellow tetrazolium salt 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (Sigma) into an

insoluble formazan product by the mitochondria of living cells. Briefly, HOB-C cells at a density

of 2000 cells/cm2 were incubated in 24-well plates for 7 days on four samples of each group (CNT-

based matrices and glass conntrols) in a volume of 100 µL DMEM, supplemented with 10 % FBS

and 1 % Penicilin/Streptomycine, at 37 oC in a humidified 5 % CO2. After 7 days, 10 µL of MTT

(5 mg/mL) was added to each well, resulting in a final MTT concentration of 0.5 mg/mL.

Afterwards the cells were incubated for another 3 hours. At the end of the assay, the blue formazan

reaction product was dissolved by adding 100 µL of dimethylsulfoxide (DMSO) (Sigma) and

leaving in the incubator overnight. Then, the complete solubilization of the blue formazan crystals

was verified and the solution was transferred to a 96-well plate. The light absorbance of dissolved

formazan was measured at 570 nm using an ELISA microplate reader (Packard Instrument Co.). 
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 4.1.5.3 Preparation of cell samples for AFM measurements

For the measurement of Young’s modulus, the cells were plated on prepared substrates (1 x 1 cm2)

at a density of approx. 2000 cell/cm2 and were placed in an incubator for 48 hours before the

experiments in order to obtain 80 % of confluence stage, where isolated cells could be identified.

Just before the AFM measurements, the growth medium was replaced with CO2-independent

DMEM medium.

 4.1.5.4 Cell fixation for SEM investigation

Prior to fixation, the cells were washed once with Earle’s buffered saline solution (EBSS, Gibco)

and fixed with 2.5 % glutardialdehyde (50 % solution in water, Merck,) buffered in 0.1 M

cacodylate (Carl Roth), pH 7.4, for 2 h at 4 °C. After washing in 0.1M cacodylate buffer

(3 x 10 min), the samples were dehydrated through a series of ethanol concentrations (30 %, 50 %,

70 %, 80 %, 90 %, 95 %, each 15 min), followed by further dehydration (3 x 3 min in

100 % ethanol). The final dehydration was done in hexamethyldisilazane (Carl Roth) for 1 h,

followed by air-drying over night under the hood.

 4.1.5.5 Cell proliferation-MTT assay

For the evaluation of cell proliferation MTT assay was used (see 4.1.5.2). HOB cells were seeded

on prepared MWNT-based substrates (1 x 1 cm2) at a density of 2500 cell/cm2 and placed in

standard culture conditions for a period of 1, 3 and 7 days. After the prescribed time period, the

substrates were rinsed in phosphate-buffered saline to remove any nonadherent cells.

Subsequently, the samples were incubated in MTT reagent for approximately 3 h. After this time,

a detergent solution was added to solubilize the colored crystal. The samples were read using an

ELISA plate reader at a wavelength of 570 nm. The number of viable cells was calculated from

the amount of the created formazan product.

 4.1.5.6 Immunofluorescent staining

For the visualization of the actin filaments and vinculins, osteoblast cells were seeded on the

substates for 24 h, then washed with PBS, and fixed with 1.5 % paraformaldehyde in PBS

for 10 min. Afterwards, the cells were permeabilized with 0.1 % Triton X-100, blocked with 1 %

BSA in PBS for 20 min and incubated with a 1:50 dilution of mouse anti-human vinculin (Sigma)

for 1 h at room temperature. Subsequently, the cells were labeled with Alexa 647 conjugated

secondary antibody (antibody dilution 1:100). The actin filaments were labeled with TRITC-

conjugated phalloidin (Sigma). The cells were visualized on an inverted microscope (Nikon

Elipse 1000).
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 4.1.5.7 Adsorption of serum proteins onto CNT-based matrices

Bovine serum albumin (BSA) was used as a model protein in this study. 100 µL of BSA solution

(1mg/ml protein/PBS solution) were pipetted onto CNT-based matrices (CNT-PAH and CNT-

COOH) and polyelectrolyte films (PSS/PAH and PDDA/PSS) in a six-well plate. The experiment

was conducted in a sterile humidified incubator at 37 oC over 1 h. The solution with non-adherent

proteins was then removed and saved as total volume. The substrates with adsorbed proteins were

washed a few times and incubated for 10 min in Coomassie G-250 dye (Sigma). The samples were

investigated using UV-vis absorption spectroscopy. 

To obtain quantitative information about protein adsorption, 5 µL of the removed initial solution

were mixed with 200 µL of Coomassie G-250 dye in a 96-well plate and incubated at room

temperature for a few minutes. Protein adsorption was analyzed using the micro Bradford protein

assay (Sigma) and measured using an ELISA microplate reader (Packard Instrument Co.) at a

wavelength of 595 nm. Each protein concentration was calibrated using a standard curve.

The degree of adsorption was determined by subtracting the residual protein from the initially

added proteins. Measurements were performed in triplicate for each sample.

 4.2 Experimental techniques

The MWNT-based matrices were characterized in terms of their structural, mechanical, and

biocompatible properties. A brief description of the equipment used during these studies and the

conditions of each experiment is given below.

 4.2.1 Structural characterization (SEM, AFM)

The topography and the morphology of the MWNT-based matrices as well as of the osteoblast

cells were characterized with electron and atomic force microscopes:

Scanning electron microscope (SEM) images were obtained using a LEO Supra 55 (Zeiss),

operating at an acceleration voltage of up to 20 kV.

Transmission electron microscopy (TEM) was conducted on a Leo 922A with an acceleration

voltage of 200 kV. An Oxford X-ray system at the TEM was used for Energy Dispersive X-ray

Analysis (EDX).

The atomic force microscope (AFM) measurements were performed in air and water using a

Multimode Nanoscope IV (Veeco/Digital Instrument), operating in contact and tapping mode.



EXPERIMENTAL 43

 4.2.2 Nanoindentation

Nanoindentation tests were carried out using an AFM (NanoScope IV Digital Instruments) with a

conjugated TriboScope nanomechanical test instrument from Hysitron Inc. In this study, diamond

conical and Berkovich tips were used as indenters. The total included angle of the Berkovich tip

was 142.3 o, with a half angle of 65.35 o, which makes this tip very flat and efficient for a wide

range of materials, including polymers. A conical tip with a nominal radius of curvature equal to

1 µm was used for scratching experiments due to the non-directional geometry.

The hardness and elastic modulus were calculated from the recorded unloading step of the depth-

displacement curves. The typical indentation experiment was carried out using a triangular force

profile with an indentation force ranging from 25 to 250 µN and a loading/unloading rate of

40 µN/s. In general, indents with a contact depth ranging from 50 to 500 nm were performed. To

minimize the effect of material creep, a 20 s hold time was implied at the maximum load. Prior to

indentation, the tip was used for surface scanning, in order to find a resonably smooth area and to

avoid roughness effects on the mechanical properties. The indentation depth was maintained at

less than 15 % of the film thickness, in order to avoid and minimize substrate contributions to the

measured nanomechanical properties. At least eight indents were performed for each maximum

applied load over the whole area of the sample, but at a reasonable distance from the sample edges

to avoid boundary influence on the mechanical properties of the tested composites. The data from

the indents, gained under the same maximum load, were averaged to obtain the mean and standard

deviation for all samples.

The coefficient of friction was obtained in the nanoscratch experiment and measured as a ratio of

the lateral force to the normal force [8]. In all tests, the scratch length was set to 5 µm. In the ramp

force test, the maximum normal force of 200 µN was applied. The load was applied for 20 s giving

a scratching rate of 0.5 µN/s. Each sample was tested repeatedly, and a plot of the coefficient of

friction vs. lateral displacement was used to characterize the sample’s properties. In the constant

load experiment, the lateral force and normal displacement were obtained by applying a constant

normal force ranging from 15 to 100 µN and a scratch displacement of 5 µm. At least four

scratches were conducted for different normal force values. The average values of the coefficient

of friction of four scratches at the same maximum constant normal load were used to estimate the

friction behavior of the samples.

Tip calibration was carried out on poly(methyl methacrylate) (PMMA) with an elastic modulus

equal to 3.6 GPa [8]. The calibration procedure was repeated for three independent PMMA

samples, and a high reproducibility was observed.

 4.2.3 AFM elasticity measurements

The elastic measurements were carried out on a Multimode Nanoscope IV (Veeco/Digital

Instrument). In this study, soft V-shaped, gold-coated silicon nitride cantilevers with a nominal
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spring constant of k = 0.06 N/m (DNP-NP, Veeco) were used. The pyramidal tip of the cantilevers

had a nominal radius curvature of R ~ 20 - 60 nm and an opening angle of α = 35o. Before each

experiment, the cantilevers were cleaned in piranha solution (H2SO4 + H2O2, 70:30) for 30 min

and subsequently rinsed with pure water.

The photodiode sensitivity calibration for each cantilever was assessed from the slope of the

contact straight line of a force curve recorded in a region where the substrate was free of cells.

Young’s modulus was calculated from the loading part of the force-curves. Force-curves were

taken only in the central location of the cell with the aim to avoid variability arising from probing

different cellular structures. Additionally, to minimize the influence of the stiff substrate, force-

curves were recorded on cells with a height of more than 2 µm. The applied loading force was

around 2 nN for living and 5 nN for fixed cells, respectively. This protocol was used for 10 cells

from each sample. Young’s modulus was calculated from at least 10 curves per cell. The obtained

data were averaged to get the mean and standard deviation for all samples.

To produce micro-elasticity maps of the biological cells showing local variation in their stiffness,

the force volume mode (FV) was used. All FV images were recorded in a relative trigger mode,

with a trigger threshold of 20 nm, giving 1.2 nN maximum loading force. 
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Chapter 5

Results and Discussion

 5.1 Structural properties of the samples

Prior to the evaluation of the mechanical properties of the MWNT-based matrices and the cellular

response to their diverse nanotopographies, the morphology and structure of the samples have

been characterized using scanning electron microscopy and atomic force microscopy. 

 5.1.1 Free-standing MWNT-based matrices

The method used to produce free-

standing MWNT-based matrices

is based on the self-organization

of colloidal particles [1]. This

method affords the creation of a

hexagonal close-packed (hcp)

monolayer of polystyrene

microspheres (PS). Figure 5.15

shows 1.71 µm PS-particles,

which are arranged in a close-

packed monolayer. The AFM

image (Fig. 5.15 C) reveals a well

ordered structure, which is nearly

free from dislocations over a

large area. However, a number of point defects are visible. The thus-obtained masks were used as

templates for the assembly of MWNTs.

The growth of MWNT/PE multilayer films was examined using SEM. Figure 5.16 shows a carbon

nanotube layer after the first deposition cycle. MWNTs follow the morphology of the spheres,

 Figure 5.15: Digital camera picture (A), SEM (B) and

AFM (C) images of a typical polystyrene mask deposited on

a silicon substrate and subsequently used for carbon nano-

tube assembly. Scale bar: 10 µm (B) and 1 µm (C).

A B

C
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thereby maintaining the 2D ordered structure. As a consequence, the deposition process leads to

the formation of a layer with well-defined micro-nanotopography. The created layer possesses

sufficient depth to wrap the entire surface around the spheres. In addition, only few carbon

nanotubes provide bridge connections between neighboring spheres. The presence of these

connections indicates that carbon nanotube deposition takes place only on the upper surface of the

particles, without infiltration within the interstices. Moreover, the individual carbon nanotubes are

interpenetrated and homogeneously dispersed within the polylelectrolyte, without any sign of

phase segregation. As shown in Fig. 5.16, MWNTs connections increase with the growth of

MWNT/PE multilayers. After deposition of ten carbon nanotube layers, the gaps between the

spheres are fully covered (Fig. 5.16 C). 

To obtain free-standing MWNT-based matrices, the films were peeled off from the substrate

through chemical delamination (see section 4.1.2.2). The thus-obtained black compact films could

be cut into pieces of a desired size. Fig. 5.17 shows a CNT-based film on a polystyrene mask

covering the silicon substrate (A) and a free-standing LBL film after delamination from the

substrate (B). The thickness of the free-standing film could be determined from SEM images and

was found to be around 2 µm (deposition cycles n = 30).

Figure 5.18 shows a scanning electron micrograph of the morphology of the film before and after

chemical delamination. THF etching completely removes the latex particles. However, it leaves a

thin polyelectrolyte membrane. This polymer residuum was created due to the infiltration of the

polyelectrolytes into the gaps between the microspheres during the LbL composite fabrication.

 Figure 5.16: SEM images of the LBL-grown MWNT-PEI/PSS composites deposited on polysty-

rene particles after various numbers of deposition cycles: one bi-layer (A), four bi-layers (B), ten

bi-layers (C) of MWNT-PEI/PSS.

A B C

 Figure 5.17: Digital camera pictures of a CNT-based film created on a polystyrene mask

(A) and its free-standing form obtained after chemical delamination (B).

A B
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Despite THF treatment, it was not possible to remove this polymer membrane. Therefore, to

dislodge residual material from the surface, reactive ion etching (RIE) was employed. During RIE,

the ions of the plasma react with the surface atoms forming compounds or molecules, which

subsequently leave the surface thermally or as a result of the ion bombardment. The etch rates

were determined by controlling the structural changes of the film after 40 s of etching. SEM

investigations show the morphology of the film during various stages of O2 and O2 + Ar etching.

For 25 % O2 + 75 % Ar, the initially porous membrane disappeared leaving a polystyrene

residuum on the edge of the cavities (Fig. 5.19 A). 

Progressively decreasing the argon flow rate and thereby, increasing the oxygen ion concentration,

leads to efficient polymer etching. As shown in Fig. 5.19 D, optimal etch conditions have been

found for O2 flow rates equaling 20 sccm. Moreover, the same image reveals that the RIE process

induces morphological changes affecting the surface. The originally smooth surfaces became

rough with the carbon nanotubes randomly sticking out. A detailed examination of these exposed

MWNTs indicates that the oxygen plasma not only removes the polymer residuum but also the

superficial polyelectrolyte layer. Figure 5.19 D also indicates that carbon nanotubes can withstand

this etching process, which leaves them practically undamaged [1,3]. As has previously been

reported, plasma etching results in the formation of highly polar surfaces of the carbon

nanotubes [4] and does not affect the mechanical properties of the MWNT-based matrices [5].

Thus, we can assume that oxygen etching under these experimental conditions results in no

detectable change in the mechanical properties of the MWNT-based matrices.

 Figure 5.18: SEM micrograph of a MWNT-based film (A) before and (B) after chemical dela-

mination of the latex. Scale bar: 1 mm.

A B
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Figure 5.20 shows the final complete network architecture consisting of successive layers of

cross-linked carbon nanotubes that self-assemble into ordered structures. The film, as a free-

standing matrix, is characterized by controlled geometry, surface topography, and chemical

composition [5]. 

As mentioned before, the NSL technique combined with a LbL assembly process was employed

to produce a model system with both the exceptional nanotopography and nanochemistry to

explore the cellular response to carbon nanotube-based materials. The methods presented here

offer many advantages. In a simple manner, carbon nanotubes can be assembled into monolayers

 Figure 5.19: SEM images after following RIE processes: (A) 25 %

O2 + 75 % Ar, (B) 50 % O2 + 50 % Ar, (C) 75 % O2 + 25 % Ar, (D)

100 % O2. Scale bar: 1 µm.

A B

C D

 Figure 5.20: SEM image of the final free-standing matrix made up of carbon nanotubes ar-

ranged in a regular network of micro-cavities. Scale bar in A: 10 µm.

A B
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with a cavity-like structure. Since the cavity dimension is related to the polystyrene microspheres,

their diameter can easily be changed by formation of the polystyrene mask from particles of

various sizes. Additionally, the methods used guarantee considerable chemical stability of the self-

assembled monolayers and allow for high reproducibility in manufacturing.

 5.1.2 VACNT matrices

Vertically-aligned carbon nanotubes were obtained using a plasma enhanced chemical vapor

deposition process (PECVD), described in detail in section 4.1.4.

A typical image of catalytically-grown carbon nanotubes is presented in Fig. 5.21. The produced

nanotube arrays exhibit perfect vertical alignment and a very good separation between the

individual CNTs. The diameters and lengths of randomly distributed nanotubes is around 50 nm

and 10 µm, respectively.

Substrates with periodically-aligned nanotubes show that the position of the nanotubes

corresponds to the honeycomb pattern of the nickel catalysts. On most of the periodic islands, only

single nanotubes were grown. However, as illustrated in the enlarged SEM image

(Fig. 5.22, right), double growth also took place. This defect may arise from improper PECVD

 Figure 5.21: SEM image of a “carpet” composed of aligned nanotubes grown

perpendicular to the silicon substrate. Scale bar: 1 µm.

 Figure 5.22: SEM images showing an array of vertically-aligned carbon nan-

otubes with periodic distribution on a sapphire substrate. Scale bar: 5 µm (left)

and 100 nm (right).
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parameters as well as from improper preparation of the nickel structure. Probably, the final step in

the substrate preparation, i.e. the annealing phase, influences the creation of additional smaller

catalytic centers surrounding the main growth core, which subsequently contributes to the growth

of shorter and thinner carbon nanotubes. This imperfection can be eliminated by replacing the

quasi-triangular catalyst islands by round catalyst dots [7]. Periodically-aligned CNTs are 50 nm

in diameter and ~ 5 µm in length. 

 5.2 Nanoindentation experiments

In addition to a controlled geometry and surface chemistry, the predescribed matrices

(section 5.1.1) need to possess specific mechanical properties to be able to maintain the

predesigned structure and correct tissue reconstruction. The mechanical strength and flexibility of

these matrices is particularly important in bone tissue engineering where scaffolds are placed in

load-bearing regions. Carbon nanotubes, which are used in this study as the main building

material, exhibit outstanding mechanical properties (see section 2.1.2). Therefore, the produced

matrices are expected to fulfill the mechanical requirements for the scaffolds. Moreover, the used

LbL deposition technique allows the fabrication of a matrix with a high concentration of carbon

nanotube contents, even up to 50 % [8] and a uniform distribution of the CNTs in the polymer

matrix.

While numerous studies have focused on the characterization of the tensile properties of LbL

composites [8-10], in this study the mechanical properties of CNT-based matrices have been

evaluated using a nanoindentation technique. All tests were conducted for each sample under the

same, fixed experimental conditions (see 4.2.2) with a Berkovich and a conical tip. Young’s

modulus and hardness were calculated from recorded load-displacement curves. 

The elastic modulus and the hardness of MWNT-PEI/PSS composites are presented in Fig. 5.23

as a function of contact depth. The results obtained using a Berkovich and a conical tip are

consistent for each sample. 

Figure 5.23 reveals that the elastic modulus is relatively independent of the indent depth for all

polymeric composites. However, the hardness exhibits a monotonically decrease with regard to

small loads. This behavior of H and Er as a function of the contact depth is consistent with

previously-reported observations [11]. Since nanoindentation tests were carried out in at least

seven independent areas of the samples, the relatively small standard deviation of the data points

indicates the high homogeneity of the composites.

The reduced modulus of the MWNTs-PEI/PSS films (0.49  0.15 GPa) is comparable to that

obtained for PEI/PSS composites (0.44  0.02 GPa). The same refers to the hardness

(0.015 0.006 GPa and 0.007  0.002 GPa).

±

±

± ±
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 Figure 5.23: Reduced modulus and hardness as a function of

contact depth. Data obtained for different LbL heterostructures at

a load/unload rate of 40 µN/s and 20 s hold time, probed with a

Berkovich and a conical diamond tip.
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The obtained results clearly demonstrate that the presence of carbon nanotubes within the

polymeric matrix does not improve the nanomechanical properties of the composite. These

observations are consistent with the previously-mentioned study on nanoindentation of LBL

multilayers from MWNTs and PAH [12]. Pavoor et al. showed that MWNT/PAH composites

possess poorer mechanical properties in comparison to the corresponding polymeric matrices.

These results confirm that a high concentration and a homogeneous distribution of MWNTs within

a polymer matrix as well as a strong adhesion between the structural components are insufficient

to provide a reinforcement of the composites (in terms of hardness and Young’s modulus obtained

from nanoindentation experiments). Carbon nanotubes have extraordinary axial mechanical

properties that play an important role in the reinforcement of the tensile properties of the materials.

It was shown that LBL assembly composites from MWNTs exhibit a remarkably high tensile

strength that is as high as that observed for ceramics [13]. It has been suggested that the flexibility

of carbon nanotubes and their curved morphology reduce the reinforcement action [6]. Even

strong interconnectivity between the CNTs and the host polymer does not lead to a significant

increase of the nanomechanical reinforcement under indentation load. The indenter can easily

displace carbon nanotubes; thus, the mechanical response of the composite is close to that of the

local polymer matrix.

The nanoindentation tests reveal that the mechanical response of the investigated samples is

mainly affected by the polymer matrix. To support this claim, carbon nanotube-based

heterostructures with different polymer compositions were fabricated. The differences in the

mechanical response of these samples are presented in Fig. 5.24.
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 Figure 5.24: Load-displacement curves of different samples. Re-

duced modulus and hardness calculated from those plots are:

MWNT-PDDA/PSS Er = 1.84 GPa and H=0.043 GPa; MWNT-

PAH/PSS Er = 2.39 GPa and H = 0.062 GPa; MWNTS-PSS/PAH

Er = 1.52 GPa and H = 0.021 GPa.
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Load-displacement curves show that MWNT-PSS/PAH composites exhibit a softer nature than the

other structures. At the maximum indentation force (300 µN), the indenter penetrates deeper,

resulting in a displacement of 350 nm. For the MWNT-PAH/PSS, the indenter reaches a depth of

240 nm, which points to a larger hardness of this matrix. The corresponding values of Young’s

modulus and hardness confirm those observations: Er = 2.23(43) GPa and H = 0.062(17) for

MWNT-PAH/PSS, Er = 1.84(39) GPa and H = 0.043(12) for MWNT-PDDA/PSS,

Er = 1.52(28) GPa and H = 0.021(7) for MWNT-PSS/PAH. 

The obtained results demonstrate the great influence of the composition of the polymer on the

mechanical response of the composites. 

In order to estimate the coefficient of friction of MWNT-based composites, nanoscratch

experiments were performed. A conical diamond tip was used for these experiments. The

coefficient of friction was calculated for all samples using data from the constant force tests.

Several scratches were made in different areas of the samples. The collected data were then

averaged and the coefficient of friction calculated as the ratio of lateral to normal force. In

Fig. 5.25 the average values of µ (coefficient of friction) are presented as a function of scratch

length. There are no sudden changes in the coefficient of friction indicating that any cracking or

failure of the film occurred [14]. The MWNT-PEI/PSS film displays a significantly higher

coefficient of friction compared to the PEI/PSS composite. The average value of µ of the MWNT-

PEI/PSS film against a diamond tip is calculated to be 0.69(3) and the average coefficient of

friction of PEI/PSS: 0.35(2). These data display a considerable adhesion and friction for MWNT-

PEI/PSS films. We assume that the increased value of the coefficient of friction of the MWNT-

based composite is a result of high composite homogeneity and strong interconnectivity between
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the polymer matrix and the carbon nanotubes. Moreover, the LBL method ensures a high

concentration of carbon nanotubes; thus, they may form a well-tangled network that may play an

important role as a resistant against the diamond tip during the scratch experiments.

Nanomechanical tests carried out on the different compositions of polymers and carbon nanotubes

show that the presence of MWNTs within polymeric matrices does not considerably improve the

mechanical properties of the respective composite. Due to the flexibility of the nanotubes and their

curvy morphology, the obtained elastic modulus and hardness have been found to reflect the

mechanical response of the surrounding matrix. Additionally, data obtained from the nanoscratch

tests reveal that carbon nanotube-based composites display significant adhesion and friction. This

can be explained by the strong interconnectivity and adhesion between the MWNTs and the

polymer as well as the resistive role of tangled nanotubes against the tip.

 5.3 Cellular response to the CNT-based matrices

The topography and the surface chemistry of the fabricated matrices are very interesting features

for fundamental studies of cell interactions. It has been shown that in vitro cells sense the surface

topography and chemistry of artificial extracellular matrices [15-18]. Therefore, CNT-based

matrices with unique micro- and nanotopographical structures and chemistry may have significant

effects on cellular behaviors. However, the possible cytotoxicity of carbon nanotubes may rule out

an in vivo use of CNT-based matrices [19-21]. For that reason, one of the most important tasks is

the evaluation of the biocompatibility of the fabricated samples. In this section, the morphology,

mitochondrial activity, and adhesion of the osteoblast cells are used as an indication of the relative

cytocompatibility of the CNT-based substrates in vitro. 

 5.3.1 MWNT-based matrix

The role of nano-sized features in complex nanostructured substrates as well as their surface

chemistry were tested for their ability to promote cell growth. For these experiments,

nanostructured matrices were incubated with HOB-C, human hipbone osteoblast cells, in full

culture medium at 37 oC (for details, see section 4.1.5.1) and investigated by SEM, MTT- and

Bradford-assay.

 5.3.1.1 Cell morphology

SEM was the primary tool used to determine the morphology of osteoblast-like cells. Figure 1.12

shows SEM micrographs of osteoblast cells grown for 7 days on a MWNT-based matrix. The cells

are flat with a visible cell nucleus protruding in the center (Fig. 1.12 B). Moreover, the cells are
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well-spread and cover nearly the entire surface. Typical cell diameters for flat osteoblasts were of

the order of 40 µm, which is similar to the one for osteoblasts found on the surface of natural

bone [22]. The shape of the osteoblast cells is an indication of the biomedical compatibility of the

CNT-based matrix. It is known that cells in a rounded configuration divide at a lower rate than

flattened ones. Moreover, cells attached to a surface but barely spread will show lower

proliferation rates than those with a greater spreading. Conducted SEM studies reveal that the

produced MWNT-based matrices allow a flattening and spreading of the osteoblasts, showing an

adequate cell shape for proliferation. 

Cell adhesion to a substrate influences cell morphology as well as cell proliferation and

differentiation [23]. Therefore, one can say that the adhesion of cells to the surface of a matrix is

one of the major factors responsible for its biocompatibility. SEM investigations, carried out at

high magnification, reveal the morphology of physical contacts between the cells and the carbon

nanotube matrix. As shown in Fig. 1.12 C, the cavity-like structure can be seen beneath the part

of the cell body, which strongly suggests the presence of tight junctions and adhesion mechanisms

in the matrix. Since osteoblast cells are anchorage-dependent cells, adhesion is a precondition for

A B

C D

 Figure 5.26: SEM pictures showing the morphology of osteoblast-like cells and their

physical contact with the carbon nanotube structure. (A) The flat cell bodies extend over

almost the entire area of observation. (B) The cell nucleus protrudes in the center. Scale

bar: 10 µm. (C), (D) A cell with a long threadlike cytoplasmic prolongation (arrow).

Scale bar: 1 µm. For better cells visualization, the gray-scale was pseudo-colored with

graphic software.
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subsequent cell functions [23]. SEM investigations also reveal the presence of thin, threadlike

cytoplasmic prolongations (Fig. 1.12 D). These pseudopods have a diameter in the range of

10 to 20 nm, close to the size of the MWNT’s diameters. 

The qualitative assessment of the cell morphology showed no significant difference between

osteoblasts attached to a CNT-based topography and a standard plastic coverslip used as a control.

 5.3.1.2 Cellular viability

The main concern regarding the use of carbon nanotubes in biomedical applications is their

possible cytotoxicity [19-21]. Therefore, testing of CNT-based composites on living organisms is

essential for the successful utilization of such materials. Up to now, only a few reports have

demonstrated the biocompatibility of CNT-based substrates with various cell cultures.

MacDonald et al. [24], for example, showed that collagen-CNT hybrids sustain smooth muscle

cell viability. Chemically-modified carbon nanotubes have been demonstrated to be a suitable

scaffold material to grow neuron and osteoblast cells without affecting cell activity [10,26,27]. 

Taking into account these contradictory opinions regarding CNT’s toxicity, the produced matrices

were tested for their biological compatibility with an osteoblast cell culture. To examine this

compatibility, the mitochondrial activity as well as the proliferation of the cells were observed.

Qualitative information about the biocompatibility of MWNT-based matrices was obtained from

observations with an optical microscope. It has been figured out that cells were viable on all

matrices and continued to grow for at least 10 days in culture. 

Furthermore, the viability of osteoblast-like

cells seeded onto MWNT-based matrices was

studied by an MTT cell viability assay. In this

test, yellow tetrazolium salt (MTT) is reduced

to purple formazan in the mitochondria of

living cells. This reduction only takes place

when mitochondrial reductase enzymes are

active. Thus, the conversion can directly be

related to the number of viable cells.

Figure 5.27 shows the viability data of HOB-

cells cultivated for 7 days on the CNT-based

surface with the cavity-like topography. In

contrast to cells on glass, osteoblasts on the

CNT matrix exhibit higher absorbance. This

optical density measurement of the solubilized

formazan crystals shows that the carbon nanotubes do not interfere with osteoblast viability. In

other words, the produced matrices are able to support a long-term survival of cells, which suggest

that CNT-based matrices are non-toxic to this particular cell-culture line.
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 Figure 5.27: Viability of osteoblast cells

evaluated by an MTT assay after 7 days.

Optical density measurement of the solubi-

lized formazan crystal shows an increase in

osteoblast viability in the contact with the

CNT matrix.
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Figure 5.28 shows the number of proliferated cells after 1, 3 and 7 days, respectively. It can be

seen from the graph that the proliferation rate of the cells grown on the carbon nanotube matrices

is higher than those of the control in each case. The results of this experiment indicate that the

greater cell number on MWNT-based matrices might be attributed to the cavity-like topography

with nanoscale roughness. Based on the characteristics of MWNT-based matrices presented in

chapter 5.1.1 it is known that created matrices possess an exceptional topography with an average

diameter of 50 nm for the CNTs and 1.5 µm for the cavities being periodically arranged on the

surface. These size features, similar to the nanoscale protein fibrils in natural ECM, are expected

to promote osteoblast cell proliferation. 

These observations are consistent with earlier studies, which demonstrated the importance of

nanometer roughness for the controlling of osteoblast functions [25]. Some in vitro studies with

nanophase biomaterials have shown that cells respond differently to materials with nanoscale

roughness compared to microsize roughness materials. Price et al. [26], for example, reported that

nanometer dimensions of fibers promote osteoblast cell proliferation. 

 5.3.1.3 Surface chemistry

It is well-known that apart from the surface topography, cells are also sensitive to differences in

the chemical properties of materials. Many studies reported that variations in the chemistry of the

outermost functional groups of a surface evidently affect the cell response [27-31]. This

phenomenon is related to the extracellular protein adsorption [32]. Shortly, the first molecular

event that takes place by exposure of the scaffold to a biological fluid, whether it is a serum or a

cell culture medium, is the protein adsorption [33]. These proteins form a conditioned interface to

Culture time [days]

C
e

ll
 d

e
n

s
it

y
 [

c
e

ll
/c

m
2
]

Glass

MWNT-based matrix

8 x 103

6 x 103

4 x 103

2 x 103

0

31 7

 Figure 5.28: Osteoblast proliferation on glass

coverslip and CNT-based matrix with cavity-like

structure after 1, 3 and 7 days.
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which the cell responds. Moreover, accessibility of cell adhesive domains (i.e. RGD sequence of

adsorbed fibronectin) may either enhance or inhibit following cellular adhesion and growth. The

type, concentration, conformation, and bioactivity of proteins adsorbed onto materials depend on

surface chemistry but also on charge, hydrophilicity or hydrophobicity, topography, roughness

and energy [34]. This paragraph, however, will focus on the surface charge and chemistry, and its

influence on the concentration of adsorbed proteins.

It is commonly accepted, that possible protein adsorption may be driven by various interactions,

which can arise from (i) van-der-Waals forces, (ii) dipolar or hydrogen bonds, (iii) electrostatic

forces, and (iv) hydrophobic effects. Given the apparent range and strength of electrostatic forces,

it is generally accepted that the surface charge plays a major role in protein adsorption [35].

To address the role of chemical functionalities on carbon nanotubes, protein adhesion and

subsequent cell proliferation were studied on MWNTs with amine (−NH2) and carboxyl

groups ( −COOH). Additionally, polyelectrolyte films with various surface charges were studied.

The carbon nanotubes were chemically modified and deposited on silicon substrates according to

the methods described in section (see 4.1.2.2). Because of its stability and the fact that it is the

most abundant protein found in human blood [36], bovine serum albumin (BSA) was chosen as a

model for protein adsorption. Since the net charge of the BSA as well as the degree of weak

polyelectrolyte ionization, such as PAH, is pH dependent, all experiments were conducted at the

same physiological pH of 7.4. Surface charges of functionalized CNTs, polyelectrolytes, and BSA

are summarized in Table 5.3.

A qualitative estimation of BSA adsorption onto various LbL composites was obtained by

incubation of LbL-matrices in Coomassie Blue G-250. This dye, commonly used for protein

quantification, binds to amino acids, which shifts the absorption of the dye from 465 nm

to 595 nm. The color change or dye-protein complex formation is shown in the digital camera

picture in Fig. 5.29. In the case of a control sample (A) without adsorbed proteins, the dye keeps

its reddish/brown color, in contrast to the samples B-F, where the blue color clearly confirms the

Tab. 5.3: Protein, polyelectrolytes, and CNTs used in this study

protein/polyelectrolyte/
functionalized CNTs

isoelectric point (pI) net charge at pH 7.4

BSA 4.9 [35] −

PAH 8.8 [35] +

PSS negative charge in the 
whole pH range [37]

−

PDDA +

CNT-PAH +

CNT-COOH negative charge in the 
whole pH range [38]

−
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presence of BSA on the LbL multilayers.  UV-vis absorption spectra taken from these substrates

are presented in Fig. 5.30. These spectra show an absorption peak at around 600 nm, which is

characteristic for the dye-protein complex. The height of the absorption peak differs for each

sample. This is due to the difference in the amount of adsorbed BSA protein onto a particular

substrate. Therefore, the height of these peaks gives qualitative information on the BSA

adsorption with respect to the surface charge.

 Figure 5.29: Schematic reaction for the Coomassie dye with the BSA protein ad-

sorbed on substrates with multilayers of (B) MWNT-PAH, (C) MWNT-COOH, (D)

PDDA/PSS, (E) PSS/PAH, (F) glass and (A) glass without protein, immersed in Coo-

massie G-250.
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 Figure 5.30: Absorption spectra taken from MWNT-PAH,

PSS/PAH (PAH - upper layer), MWNT-COOH, PDDA/PSS

(PSS - upper layer) and glass with adsorbed BSA protein.

BSA (1 mg/ml) was deposited for 1 h at 37 oC.
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A significant difference in protein adsorption can be observed between positively and negatively-

charged surfaces. The films made up from MWNT-PAH and PSS/PAH, which have oppositely-

charged surfaces with regard to the protein are more effective at promoting protein adsorption.

The lowest protein adsorption was found for glass. The thus-obtained results suggest the major

role of electrostatic interactions in BSA adsorption, but it is clear that BSA still adsorbs on like-

charged surfaces. As the protein charge is the net sum of positive and negative charges on the

biomolecules, it could be possible that patches of positive charge are responsible for adsorption

on negative surface [39]. However, Salloum et al. have shown that by decreasing the strength of

electrostatic interactions, the adsorption of BSA was independent of the ionic strength for the like-

charged surface; leading to the conclusion that adsorption on like-charged surface is due to

nonelectrostatic interactions [35].

To quantify the total amount of BSA protein adsorbed on the multilayers, a Bradford protein

microassay was used [40]. Each protein concentration was calibrated using a calibration curve.

The achieved results, summarized in Table 5.4, confirm the qualitative information obtained from

UV-vis spectra. The LbL film with a MWNT-PAH as an outer layer is particularly effective in

BSA adsorption (0.054 mg/cm2). For comparison, the adsorption of protein on the film with

MWNT-COOH was 0.033 mg/cm2. The difference in BSA quantity on both positively-charged

MWNTs-PAH and PSS/PAH films can be explained by the differences in the topography of the

multilayers. This factor complicates the interpretation of the protein adsorption between

polymeric and CNT-based LbL films, but simultaneously indicates that not only surface chemistry

but also roughness influence protein adsorption.

These results are compliant with previously reported studies of the surface charge effect on the

adsorption behavior of various proteins. Salloum et at. [41] and Muller et al. [42], for instance,

found that the interaction of proteins with polyelectrolyte multilayers strongly depends on the sign

of the charges for both, the multilayers and the proteins. Schwinte et. al. [43] showed the

differences in BSA adsorption among polyelectrolyte mulitilayers with PSS and PAH-outer

layers, which was highest for positively-charged PAH.

Tab. 5.4: BSA protein adsorption quantity on various LbL multilayers.

MULTILAYERS SURFACE 
CHARGE

PROTEIN ADSORPTION 

AMOUNT mg/cm2

(PSS/MWNT-PAH)5 positive 0.054(11)

(PDDA/MWNT-COOH)5 negative 0.033(8)

(PSS/PAH)5 positive 0.040(12)

(PDDA/PSS)5 negative 0.023(4)

GLASS negative 0.013(2)
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As mentioned before, proteins adsorbed on the substrate mediate the interaction of the material

with the cells. Cells, in turn, attach and adhere to these adsorbed proteins through adhesive

molecules called integrins [44]. These transmembrane molecules interact with the matrix through

their extracellular domains, with components of the cytoskeleton, and they also signal molecules

through their intracellular domains. For that reason, the type and quantity of adsorbed proteins

play a crucial role in integrin activation and subsequently adhesion, cell morphology regulation,

growth, and differentiation. Foregoing results showed that surfaces with positively-charged

carbon nanotubes are more favorable to BSA adsorption. This might indicate a better

biocompatibility of CNT-PAH over CNT-COOH and, consequently, a better cell adhesion and

proliferation. To confirm this assumption, osteoblast cells were seeded on both substrates and their

proliferation was studied.

Figure 5.31 shows the response of the osteoblast cells to positively- and negatively-charged

carbon nanotubes after 3 days of incubation. This qualitative observation suggests that cells grow

well on both substrates, however there is a considerable difference in osteoblast proliferation. 

The LbL film with positively-charged carbon nanotubes exhibits a higher number of attached cells

than the multilayer with the negatively charged surface. The fluorescent microscope investigation

indicates that carbon nanotubes with carboxyl functionalities are less effective in promoting

osteoblast cell adhesion and, consequently, their proliferation. These observations are confirmed

by quantitative results presented in Fig. 5.32. It is clearly visible that MWNTs-PAH carbon

nanotubes best support HOB cell growth. Cell counts obtained from negatively charged MWNT-

COOH are significantly lower, indicating that the presence of negative electric charges doesn’t

favor osteoblast proliferation and growth. 

 Figure 5.31: Fluorescent microscopy pictures of osteoblast cells grown on (A) positively

charged CNTs - amine group, negativelycharged carbon nanotubes - carboxylic

functionality (B). 

BA
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The thus-gained results clearly demonstrate that differences in the surface chemistry of carbon

nanotubes significantly influence adhesion and proliferation of osteoblast cells. These results are

consistent with a previously reported study on the viability of osteoblast-like cells and their

adhesion on differently-functionalized carbon nanotubes [22].

Osteoblast cells were also seeded onto

multilayer films made of PSS/PAH with an

outermost PAH layer. As can be seen in

Fig. 5.33, for a solely polyelectrolyte film,

there are very few cells in comparison to LbL-

multilayers with PAH-functionalized MWNTs

or even with COOH-functionalized carbon

nanotubes, where the amount of adsorbed BSA

was lower than on the PSS/PAH film (see

Tab. 5.4). The observed differences in

osteoblast growth arise from the variation in

surface roughness between the LbL

multilayers. The increased surface area and

nanoscale features present on MWNT-based films, presumably provided more available sites for

protein adsorption and, thus, altered the amount of cellular interactions, which subsequently

enhanced growth of osteoblasts. 

The above-mentioned results from the in vitro studies highlight the essential role of the matrix’s

surface characteristics with regard to osteoblast adhesion and proliferation. Variation in surface

chemistry and roughness of the material may significantly affect the response of the cells. On the

basis of the investigated surface chemical properties of CNT-based LbL films, it can seen that

matrices made up from carbon nanotubes functionalized with PAH are particularly effective in

BSA adsorption and, consequently, in osteoblast growth and proliferation.
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 Figure 5.32: Graphical representation of osteoblast

cell proliferation on MWNTs-PAH and MWNTs-COOH

after 1, 3 and 7 days.

 Figure 5.33: Fluorescent microscopy im-

age of osteoblasts cultured for 3 days on the

polymeric film with an outermost PAH layer.
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 5.3.1.4 Osteoblast cell response to MWNT-based surfaces modified with bioactive 

calcium phosphate nanoparticles

The ease with which carbon nanotubes can be functionalized, together with their excellent

mechanical properties, explores their potential for bone tissue engineering applications. It has

been shown that adequately functionalized carbon nanotubes could successfully be used as

scaffolds for the growth of artificial bone mineral (hydroxyapatite mineralization) [45]. Moreover,

the presence of different chemical groups on the modified nanotubes allows for the further

functionalization with bioactive objects, in this way improving the biocompatibility of the CNTs. 

In this section, a novel approach for the modification of MWNT-based matrices with calcium

phosphate nanoparticles is presented. Calcium phosphate nanoparticles (CP NPs) have been

chosen due to their biocompatible properties. As it is well-known, calcium phosphate belongs to

one of the most investigated materials for bone tissue engineering. The interest in it arises from

the fact that the skeletal system contains about 70 % of inorganic material made up of calcium

phosphate [46]. Due to its close chemical and crystal resemblance to bone mineral, calcium

phosphate has an excellent biocompatibility. Numerous in vivo and in vitro assessments have

reported that calcium phosphate supports the attachment, differentiation, and proliferation of

osteoblast cells [47,48]. Based on these results, CNT matrices with bioactive nanoparticles are

expected to provide a more desirable growth environment for the HOB-cells compared to the CNT

matrices without attached nanoparticles.

The MWNT-based matrices fabricated from non-covalently functionalized carbon nanotubes were

placed in a solution containing bioactive calcium phosphate nanoparticles (see 4.1.3). After 1 h of

incubation the samples were rinsed with water, dried, and imaged by SEM. The morphologies of

the CNT matrices before and after incubation in the nanoparticles solution are presented in

Fig. 5.34. These micrographs show that the matrix did not change its cavity-like topography.

However, carbon nanotubes, previously well visible on the surface, are mostly covered by calcium

phosphate nanoparticles. The SEM study indicates the successful deposition of CP nanoparticles.

 Figure 5.34: SEM images of a CNT-based matrix before (A) and after (B) incubation in the

CP NPs solution. Scale bar: 1 µm.

BA
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Direct evidence for the attachment of CP NPs

to the PAH - functionalized carbon nanotubes is

given in transmission electron microscopy

images. Figure 5.35 shows a TEM image of a

single carbon nanotube being completely

decorated with calcium phosphate

nanoparticles. The nanoparticles could be

attached covalently to the CNT’s surface

through interaction between the amine

functionalities on the CNT surface and

carboxylic acid groups on CP NPs stabilized

with 2-carboxyethylphosphonic acid

(CEAP) [46].

Additionally, in order to verify the presence of CP NPs on carbon nanotubes, the samples were

analyzed by energy dispersive X-ray spectroscopy (EDX). The obtained spectrum (Fig. 5.36)

provides data to support the presence of calcium, oxygen, phosphorus and carbon, as expected for

calcium phosphate nanoparticles and carbon nanotubes. 

Based on the results described in the previous paragraphs and the fact that CP NPs exhibit a very

close chemical resemblance to bone mineral, one can assume that MWNT-based matrices

enriched with CP particles will significantly affect osteoblast behavior, i.e. enhance cell adhesion

and further proliferation. To confirm this supposition, osteoblast cells were seeded onto MWNT-

based matrices, which were decorated with calcium phosphate nanoparticles. As a control, a

matrix without CP NPs was used. 

 Figure 5.35: TEM image of MWNTs homoge-

neously coated with calcium phosphate nano-

particles.
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 Figure 5.36: EDX spectrum of carbon nanotubes

coated with calcium phosphate nanoparticles.
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In Figure 5.37 micrographs showing HOB-cells growing on matrices with and without bioactive

nanoparticles are presented. It can be seen that after the first day there was no difference in cell

density between the cells growing on modified CNT-based matrix (Fig. 5.37 A, 1d) and the cells

on the control (Fig. 5.37 B, 1d). However, on the third day, the average cell area was higher on the

matrix with CP NPs, reflecting the higher surface coverage by the cells. 

 Figure 5.37: Representative SEM pictures of osteoblast cells cultured on

MWNT-based matrices functionalized with (A) and without (B) CP NPs after

1 day and 3 days. Scale bar: 100 mm.
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 Figure 5.38: Graphical representation of the

osteoblast density on MWNT-based matrices

with and without CP nanoparticles.
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The enhanced osteoblast proliferation on MWNT-based matrices modified with bioactive

nanoparticles is confirmed by proliferation studies, which results are shown in Fig. 5.38. As

expected, the number of osteoblasts was higher on the matrices enriched with calcium phosphate

nanoparticles.

Taken together, the results presented here demonstrate that LbL assembled composites from

MWNTs can be successfully modified with CP NPs, which in turn lead to effective increasement

of their biocompatibility with osteoblast cells. 

 5.3.2 VACNTs matrices

On the basis of the cellular response to CNT-based matrices with cavity-like topography, it seemed

promising to study the interaction and the interfacial dynamics of osteoblast-like cells with

vertically-aligned CNTs. It is expected that especially the effect of the CNT’s periodicity might be

useful for the modulation of cell adhesion, growth, and migration. While many studies focusing

on cell interaction and migration on patterned surfaces have shown that the morphology and

orientation of the cells change in response to micro-scale topographies [49-51], relatively few

reports have studied the response of the cells to nano-scale topographies and, particularly, to

carbon nano-pillars. Rovensky et al. [52], for example, studied the behavior of mouse fibroblasts

on random arrays of silicon whiskers. Other works have studied the response of human fibroblasts

and endothelial cells to silicone elastomeric pillars [53,54]. Based on the results from those

studies, we investigated the behavior of human osteoblast cells adhered to arrays of vertically-

aligned carbon nanotubes [55].

Using the chemical vapor deposition process and nanosphere lithography, substrates with nano-

pillars, i.e. carbon nanotubes with well-defined heights and interpillar gaps could be produced

(see 5.1.2) and used to study the response of osteoblast cells. Cell morphology on both, a carpet

of vertically-aligned CNTs and periodical VACNT-arrays as well as cell-nanotube connections

have been investigated by means of SEM. 

Figure 5.39 illustrates the morphology of osteoblasts growing on a CNT-carpet. Cells are

flattened, well spread and attached to the tips of individual CNTs. In comparison to conventional

plastic dishes, the cells clearly preferred to adhere to CNT tips. Additionally, osteoblast cells seem

to exert forces upon CNTs by attaching to the tips of the nanotubes. As revealed in a higher

magnification image (Fig. 5.39 C), the nanotubes appear to be stressed and deflected under

cellular forces. A similar effect has been reported in a system made up of microneedles [56] and

on patterned carbon nanotubes [57].
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The effect of the periodicity of VACNTs on cell attachment and morphology was also assessed.

Figure 5.40 clearly demonstrates differences in cell morphology and behavior on vertically-

aligned CNTs organized in a hexagonal pattern. An adaptation of the cells to these patterned CNTs

appears to influence their shape and orientation. Osteoblasts respond to CNTs by changing their

 Figure 5.39: Color-enhanced SEM images

depicting the morphology of osteoblast cells

growing on a carpet of vertically aligned car-

bon nanotubes. Cells are flattened with their

visible nucleus located in the central part of the

cell. Scale bar: 100 µm, 10 µm, 1 µm, respec-

tively. 
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morphology. As in the case of the CNT-carpet, the attachment of osteoblast cells occurs on the tips

of periodically-aligned CNTs. As shown in Fig. 5.40 B, cells do not reach down to the surface

between the carbon nanotubes, but remain fixed to their tips, suspended above the sapphire

surface. Moreover, osteoblasts growing on this substrate produce many cell

 Figure 5.40: Color-enhanced SEM images de-

picting guidance of osteoblast cells facilitated

by periodically-distributed VACNTs (A). The fi-

ber extending from the cell body interacts with

the CNTs and deforms them to assist in its elon-

gation and morphological changes (B). The cell

extensions are consistent with the dimension

and distribution of aligned nanotubes (C). Scale

bar: 100 µm. 

C

A
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extensions (Fig. 5.40 C). The presence of these extensions on periodic VACNTs is consistent with

the observed alignment, as cell extensions are responsible for cell movement and surface sensing.

The effect of surface topography on cell adhesion was also assessed by an evaluation of the focal

adhesion protein development after 24 h of culture. By immunofluorescence staining, both

vinculin abundance and colocalization with the cytoskeleton has been studied. Vinculin belongs

to a plasma membrane-associated protein found in focal adhesions which is involved in the

coupling of the actin-based microfilaments to the adhesion plaque. Due to the fact that vinculin is

one of the most prominent proteins of the focal adhesions, it has been used as an ideal marker

protein to label focal contacts formed in osteoblasts adhered to VACNTs [58].

.
The results presented in Fig. 5.41 show that vinculin (green) and actin (red) distributions differ

depending on whether they are on a smooth surface (glass) or on a nanopatterned one (VACNTs).

In general, cells on glass reveal a random distribution of vinculin throughout their cell bodies.

 Figure 5.41: Immunofluorescence images of osteoblast cells stained for actin (red), vinculin

(green) and nucleus (blue). Cells adhering to glass (A) and VACNTs (B-D). 

B

C D

A
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Besides, actin filaments are non-organized into stress fibers. There is no colocalization of vinculin

clusters with actin filaments. On the other hand, osteoblast cells, cultured on vertically-aligned

CNTs, display a well developed vinculin plaque-like structure. As illustrated in Fig. 5.41 B, the

cells show highly tensioned actin filaments organized into large numbers of parallel stress fibers.

Additionally, the growing ends of stress fibers are anchored to vinculin clusters (Fig. 5.41 D). 

The results presented in this section reveal that topographical features have a significant influence

on the attachment and growth of osteoblast cells. Surface topography in terms of the distribution

of VACNTs was observed to play an important role in cell shape alteration and influence the

direction of their movement. Despite the fact that both surfaces were favorable to cell attachment

and proliferation, osteoblast-like cells grew differently on substrates with randomly- and

periodically-distributed VACNTs. It was observed that the alignment of osteoblast-like cells is

significantly influenced by the periodicity of individual carbon nanotubes. Furthermore, actin and

vinculin staining were used to evaluate the effect of surface topography on the distribution of

cytoskeletal elements and focal contacts. Cells growing on VACNTs generated well-organized

vinculin clusters at the ends of many actin stress fibers. Taken together, these well-constituted and

long vinculin clusters together with the well-organized actin bundles indicate good cell adhesion.

 5.4 AFM imaging of cultured osteoblast cells in contact mode

So far, the morphology of osteoblast cells has been investigated by means of SEM. This

microscope has proven to be a useful tool for cellular imaging and particularly for the

characterization of cell-carbon nanotube interactions. However, despite the high resolution of

SEM, the submembranous structure of the cells could not be observed. To be able to explore these

cellular structures, atomic force microscopy has been employed. As demonstrated by many

researchers, AFM has the ability to visualize cell’s topography under physiological conditions,

without metal coating or fixation as required by SEM. It has been used to image a large variety of

cell types, including fibroblasts [59], endothelial cells [60], osteoblasts [61] or neuronal cells [62]. 

In this paragraph details will be given on how AFM was used to determine a number of cellular

structures and to relate these structures to the cell’s mechanical properties investigated in the next

chapter (see 5.5).

 5.4.1 Imaging cellular structures

All AFM images were collected in liquid environment in height and deflection mode at applied

vertical imaging forces between 2 and 5 nN. The images, collected in constant height mode,

provide information about the surface topography and produce accurate three-dimensional (3D)

images of the cells [63], whereas deflection images highlight changes in elevation (similar to a
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first derivative of the height mode image), thus providing images with fine structure details but

lacking quantitative height information [64]. 

Osteoblast cells were investigated in both a fixed and a living state. Typical images of fixed

osteoblast cells are shown in Fig. 5.42. In general, fixed cells are extremely robust. Therefore,

there is little, if any, effect when using height imaging forces on the specimen’s integrity.

Additionally, in fixed cells, the resolution is generally higher in comparison to living cells. This

can be explained by the difference in softness [65].

The height image in Fig. 5.42 shows the topography of osteoblast cells. The structure observed in

the center of the cell corresponds to the cell nucleus underlying the plasma membrane. A fiber-

like network can also be observed, in which the filaments are oriented parallel to each other and

to the long axis of the cell. This network is evident in both, height and deflection mode images.

Similar structures have been observed in adherent cells and have been identified as stress fibers,

i.e. bundles of actin filaments. These filaments have been widely recognized in AFM imaging by

comparison with fluorescent images and by imaging the same cell after disturbance of the actin

fibers with drugs such as cytochalasins [64].

Microtubules apparently contribute little to the filamentous structure observed by the AFM.

Studies with rhodamine-phalloidin-labeled cells showed that tubulin is mostly concentrated in the

perinuclear region of the cells [64]. Confocal microscopy indicated that in these cells microtubules

generally lie beneath the actin filaments. Therefore, they are hidden form the AMF tip by the

overlaying actin-filament network. 

 Figure 5.42: Height (A) and deflection (B) image of cultured osteoblast cells with a

visible filament structure corresponding to F-actin. Scan rate 0.7 Hz, with 384 points

per line. The scan area for the images is 70 µm.
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Unlike fixed cells, the softness of living cells resulted in cells surface deformations under the

scanning tip causing a significant deterioration of the AFM image quality. To reduce cell-surface

deformation and cantilever contamination, the applied cantilever loading force was in the order of

2 nN. Another helpful strategy during imaging living cells, which has been used in the presented

AFM studies, is the scanning of a group of cells rather than an isolated cell. This approach allows

the cells to exchange lateral forces between each other through cell-to-cell contacts, and hence

provides an additional resistance to being dragged by the AFM tip during scanning.

Figure 5.43 shows representative contact images of living osteoblasts. Typical AFM-associated

artifacts are visible as streaks present in the direction of the scanning movement (see arrow).

These artifacts are due to a high deformation or high friction, which influence the feedback

response. As in the case of the fixed cells, cytoskeleton fibers, nuclei as well as cell-to-cell contact

regions and overlapping processes could be easily identified. 

The measurements confirmed that the AFM can image stiff actin filaments through the plasma

membrane without apparent damage to the cell. However, the mechanism by which actin

filaments of living cells can be observed by AFM has not been definitively determined.

Figure 5.44 presents the two most reported mechanisms: the membrane deformation model (A)

and the membrane penetration model (B). In (A), the scanning tip will follow the contours of the

plasma membrane surface, creating a topographical map of the cytoskeletal elements close to the

surface, whereas the second model (B) assumes that the scanning tip penetrates the membrane

during imaging and makes contact with the stiffer structures below [64]. 

 Figure 5.43: Height (left) and deflection (right) image of cultured living osteoblast

cells adhered to a carbon nanotube-based film. Scan rate 0.7 Hz, with 384 points per

line. Arrow indicates the scan direction. The scan area for the images is 80 µm.
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Recent results, however, rule out the tip penetration hypothesis. Haydon et al. [66] showed that

glial cells with the intracellularily-trapped fluorescent dye could be imaged nonivasively using a

membrane deformation model. The authors showed that the forces applied by the AFM tip did not

cause dye leakage from the cell. These results provide an unequivocal demonstration that the

standard AFM tips only deform and do not penetrate living cell membranes while vitally imaging

subcellular structures. 

Besides the possibility of imaging internal features of living cells, AFM can also be used to

observe and record a variety of phenomena, which mainly involve internal processes. One

example is cell division as exemplified in Fig. 5.45. This process is particularly evident in constant

height mode, where the bright spots correspond to the divided nucleus. The deflection mode also

reveals two parallel-connected osteoblast cells with globular forms of nucleus and cytoskeleton

filaments.

 Figure 5.44: Two possible models explaining the mechanism by which the cytoskeletal

features in living cells can be observed. (A) The membrane deformation model: the plas-

ma membrane is flexible and adapts to the contours of the underlying cytoskeleton.

(B) The membrane penetration model: the scanning tip penetrates the membrane and

contacts the cytoskeleton below.

A B

 Figure 5.45: An osteoblast cell undergoing division. The divided nucleus, in constant

height mode (left), is clearly visible as the two intense spots. The phenomena are also

very well visible in the corresponding deflection mode (right). The scan area for the im-

ages is 80 µm.
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AFM appears to be an excellent tool for investigating both fixed and living cells and especially

their cytoskeletal architecture beneath the cell membrane. AFM examination allowed to locate the

cell nucleus, the interactions of cells with each other, and even cell phenomena which involve

internal processes such as cell division. The structures presented above could - most likely - be

observed by AFM because of their relatively high stiffness, with the exception of the nucleus,

which was visible on account of its large height.

 5.4.2 Lateral resolution in AFM imaging of cells

As observed in the preceding paragraph, the quality of the living cell topographic AFM images

was lower in comparison to the fixed cell. This difference in lateral resolution arises from the

stiffness of the cell, poor adherence to the substrate, and from the loading force and tip geometry.

Due to the softness of the living cells, the loading force applied by the cantilever results in an

indentation of the tip into the cells. In the case of a soft sample, the AFM tip can cause an

indentation depth of several hundred nanometers. Therefore, the contact area between the tip and

the sample will be large. Consequently, the obtainable resolution will depend on the contact area,

whose value can be used as a measure for the achievable resolution under definite experimental

conditions. A theoretical limit for the attainable resolution can be predicted from the Hertz

model [67,68]. By replacing δ in Eq. 3.15 with the expression for the contact radius for a conical

tip used in this study:

The diameter of the contact area between the AFM tip and the sample can be calculated from the

following equation:

where F is the loading force, α is the opening angle of the cone (taken as 35o), v is Poisson’s ratio

(taken as 0.5, corresponding to an incompressible material) and E is the elastic modulus of the

sample.

This radius can be assumed to be the fundamental limit of resolution [65]. Therefore, the

resolution can only be improved by further development of the AFM - technique and the

accessibility of a softer cantilever. At present, with the softest available cantilevers (10 mN/m),

state-of-the-art AFMs can achieve 10 pN force resolution.

r
2

π αtan
---------------δ

2
=  (Eq.  5.17) 

r 2
1 ν

2–( )F
π α( )tan E
------------------------=  (Eq.  5.18) ,
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Figure 5.46 shows the contact area between the tip and the cell plotted as a function of the elastic

modulus for several loading forces. For typical values of the elastic modulus found in living cells

(from 1 kPa to 100 kPa) and typical values of loading forces (between 100 pN - 10 nN), contact

areas may fluctuate between a few and (even) several hundreds of nanometers.

Expected optimum lateral resolution for a loading force of 1.2 nN, as used in this study, will be

600 nm, 200 nm, and 60 nm, if the softness of the cell is 1 kPa, 10 kPa, and 100 kPa, respectively.

 5.5 Osteoblast cell-matrix adhesion verified by AFM

The adhesion of a cell to the surface of a substrate is the first phase of cell-substrate interaction.

The quality of this adhesion plays an important role in the modulation of cell functions such as

morphology, proliferation, protein production and differentiation [69]. Results presented in

Chapter 5.3 have confirmed that it is the surface chemistry and the topography of the matrix,

which are responsible for the variation in cell morphology, cytoskeleton organization, and

proliferation. Since the cytoskeleton is believed to be responsible for the mechanical properties of

the cell (see chapter 3.3.1.2), the alteration in its architecture upon adhesion to diverse substrates

may lead to changes in the mechanical stiffness of the cell. Moreover, strongly adherent cells are

stiffer than cells loosely attached, therefore, by measuring cell Young’s modulus, a quantitative
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 Figure 5.46: The radius of the contact area between the AFM

tip and a soft sample calculated from the Hertz model for a con-

ical tip with an opening angle of 35 degrees. The obtained cal-

culations may serve as a rough approximation of the resolution

achievable by the AFM on living cells. The blue vertical line in-

dicates the loading force used in AFM experiments.
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information about the quality of cell adhesion, and concequently biocompatibility of the substrate

can be obtained [70-72].

Up to now, a variety of techniques have been used to determine the mechanical properties of

individual cells, e.g. micropipettes [73], magnetic tweezers [74], or microneedles [75].

Unfortunately, most of them are not commercially available. Unlike these, atomic force

microscopy, apart from being commercially available, offers a high spatial resolution (~ 100 nm),

which makes it an important tool for mechanobiological studies. 

In this chapter the use of AFM as a tool with the ability to study the biocompatibility of various

substrates by investigating the cytomechanical properties of osteoblast cells on a sub-micrometer

scale is presented.

 5.5.1 Young’s modulus 

Elastic properties of cells were evaluated from the recorded loading portion of the force-curve by

fitting the Hertz model [67,68], which describes the indentation of an elastic sample using a stiff

conical indenter. All experiments were conducted under fixed experimental conditions (see 4.2.3).

Due to the local variation in cell elasticity, force-curves were recorded only at the central location

of the cell, i.e. in the area of the cell’s nucleus (see Fig. 5.47). Thanks to it, the variability in

Young’s moduli values derived from probing different cellular structures, could be minimized.

Additionally, Young’s modulus was calculated from the force-curves recorded on those cells
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 Figure 5.47: Cell elasticity map obtained in force volume

mode (generated from 64 pixel x 64 line force curves). As in-

dicated by the pseudo-color scale (left), cells exhibit local

variation in their elasticity. The softest part of the cell is

found in its center, where the nucleus is placed. The force-

volume image was recorded in a relative trigger mode, with

a trigger treshold of 20 nm (max. applied force 1.2 nN).

Scan size: 70 µm.



RESULTS AND DISCUSSION 79

whose height was over 2 µm. Because of this, any artificially high value of the elastic modulus

arising from compressing the soft cell and therefore sensing the stiff substrate could be eliminated.

Moreover, to reduce the hydrodynamic drag, force-curves were taken at a low rate of 0.7 Hz. As

reported by Radmacher et al., the soft cantilevers bend drastically at high scan rates due to

hydrodynamic drag exerted by the liquid and therefore, a constant external force is added to the

loading force of the cantilever [76]. To omit this force offset in the force-curve analysis, a low scan

rate was used.

Figure 5.48 shows a representative force-curve recorded on a HOB cell seeded on a glass

substrate. The contact part of the curve shows the typical nonlinear shape of a soft sample. Due to

very gradual changes in the slope of the cantilever deflection, a correct identification of the contact

point is difficult; zc might be anywhere between 500 and 600 nm. Another characteristic feature

for the unloading curve is a small adhesive force. Nevertheless, the presence of this adhesive mark

does not affect the calculations of Young’s modulus, since they are carried out from the loading

curves. 

The elastic properties of adherent osteoblast cells have been studied in a similar experimental

manner as reported by Domke et al. [70]. The conical Hertz model has been fitted to the force-

curves in various ranges of analysis. As an example, the fitted E and zc for different ranges of

cantilever deflection (i.e. in various ranges of loading force) are presented in Fig. 5.49. 
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 Figure 5.48: Characteristic force-curve taken on a living

cell in the area of its nucleus. 
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The theoretical Hertz curves match the data very well even outside the range of analysis. The

contact points marked by arrows do not vary significantly. The calculated values are nearly

independent of the range of the analysis, which is summarized in Table 5.5. This observation is

consistent with the previously reported AFM studies of Radmacher et al. on human platelets [76].

They showed that the calculated E was independent of the range of the loading force used to fit

the data for forces smaller than 0.6 nN.

Tab. 5.5: Summary of Young’s modulus and contact points from 

the Hertz model fitting around various operating forces.

Cantilever deflection [nm]
range of analysis

 mean applied 
loading force 

[nN]

Young’s modulus 
[kPa]

5 - 10 0.45 4.0

10 - 15 0.75 4.21

15 - 20 1.05 4.46

20 - 25 1.35 3.85

5 - 15 0.6 4.19
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 Figure 5.49: Typical force-curve taken on a living cell

and fitted in three different deflection ranges showing a

good fit to the Hertz model in all applied force sections.

For better visualization, the force-curve was plotted and

shifted in y-direction by an offset of 5 nm each. The cal-

culated contact point zc is marked by an arrow.
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However, the situation changes if the applied loading force increases. Figure 5.50 shows a force-

curve recorded on a living cell with a maximum loading force equal to 5 nN. There is a big

influence of the chosen range of analysis on the calculated Young’s modulus and on the contact

point as calculated by the Hertz fit. The elastic modulus rises significantly when the loading force

increases. This nonlinear elastic behavior of the sample at high loading forces can be explained by

a large cell compression (tip feels underlying hard substrate) or by the strain/strain- hardening

effect.

As indicated by some authors, an increase of the effective cell stiffness when high loading force

is applied should be interpreted as a considerable compression of the cell, and therefore an

increasing influence of the hard underlying substrate [77]. One the other hand, it is likely that a

stress/strain-hardening effect is responsible for an increase of the cell stiffness rather that above

explanation. It has been widely observed that cells of various types probed with different

techniques exhibit a stress-hardening effect, such that cell stiffness increases progressively with

increasingly applied mechanical load [78,79].

In these studies, all force-curves were analyzed at small cantilever deflection, corresponding to

loading forces of 0.3 to 1.2 nN. In this range, the calculated Young’s modulus was independent of

the applied loading force and the elastic properties of osteoblasts plated on different substrates

became comparable. 
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 Figure 5.50: Force-curve taken on the cell nucleus at a load-

ing force equal to 5 nN. The experimental curve was shifted

against each other in y-direction by offset of 400 nm. The cal-

culated Young’s modulus strongly depends on the chosen range

of analysis. At high loading forces, the tip senses the underlying

stiff substrates. Moreover, the calculated contact points (see

arrows) depend significantly on the range of analysis.
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In force-curves, the deflection of the cantilever is proportional to the loading force and the

deviation of the deflection from the slope obtained on the stiff substrate is the sample

indentation [76]. Therefore, to calculate cell indentation, the measured deflection of the force-

curve has to be subtracted from a curve recorded on a stiff substrate, where no or only negligible

sample indentation takes place. Figure 5.51 illustrates characteristic force curves recorded on a

living cell and on the hard substrate. The curves were shifted in such a way that the contact points

overlap, showing the difference between these curves, which corresponds to cell indentation, δ.

Based on this plot, δ can be computed easily, and was found to be around 400 nm for the loading

force of 1 nN. 

To compare the experimental data with the Hertz model, the indentation for this curve was

calculated from the following equation [67]:

The result is plotted on a double-logarithmic scale in Fig. 5.52. As can be seen, the prediction of

the Hertz model with a Young’s modulus of 5 kPa fits the experimental data very well.

Given the calculated δ and the measured height of the cells (h = 2.4(6) µm), the relative mean

deformation of the cell can be estimated to be around 20 %.
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 Figure 5.51: Two typical force-curves recorded on a stiff

substrate and a soft cell body. The difference between cantile-

ver deflection gives the value of indentation occurring in the

cell body.
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The elasticity of human osteoblast cells has been determined by fitting the conical Hertz elastic

model to different ranges of analysis that correspond to various deflection values and loading

forces. The local elastic modulus was found to be independent when calculated at a range of small

cantilever deflection, whereas an increased linear behavior was observed for high loading forces.

This nonlinear elasticity at high values in the range of analysis has been explained by the fact of

significant cell compression and, therefore, the influence of the stiff underlying substrate. The

small loading force (~ 1.2 nN) caused cell indentation of up to 400 nm and the resulting Young’s

modulus was 3.71 kPa (for osteoblasts adhered to the glass surface).

 5.5.1.1 Cellular structures contributing to the cell’s mechanical behavior

As mentioned before, the mechanical properties of cells are determined in a complex way by the

cell plasma membrane, the actin cortex, and the internal cytoskeleton. Taking into account the

dimensions of these cellular structures as well as the cell indentation depth induced by the loading

force range used in these AFM experiments, one can estimate the contribution of the cellular

structures to the overall mechanical behavior of the cell. As calculated in the previous section, an

applied loading force of 1.2 nN caused a cell indentation of ~ 400 nm, which far exceeds the

thickness of the cell membrane (~ 10 nm). The next cellular structure probed by an AFM tip and

located just below the plasma membrane is the actin cortex. This structure, consisting of highly

concentrated actin filaments can extend up to about 0.5 -1 µm under the cell membrane [80].
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tion for an elastic modulus of 5 kPa.



84

Therefore, considering the indentation depths obtained in these studies, it is reasonable to believe

that the AFM probed the mechanical properties of the actin filaments. This hypothesis is in

agreement with Stamenovic et al. [81], who showed that, in general, actin filaments provide the

cell’s elastic response at relatively low strain (cell deformation < 20 %), while intermediate

filaments provide the cell’s mechanical strength at higher strains (> 20 %). 

 5.5.1.2 Comparison of Young’s modulus of living and fixed osteoblast cells

As has been shown in section 5.4.2, the obtainable lateral resolution of an AFM depends on the

cell’s elastic modulus and can be estimated with the help of the contact area between tip and

sample. Taking into account that the elastic modulus of living cells lies below 100 kPa, the

obtained contact area at the softest part of the cell is larger than 100 nm. To improve the resolution,

glutaraldehyde cell fixation can be applied [65]. In this fixation process, proteins are covalently

cross-linked, which results in a higher stiffness of the cell. 

In this section, the low-resolution images of living cells are explained by the differences in

stiffness of living and glutaraldehyde-fixed HOB cells, by measuring the local elastic properties.

The figures presented below, compare force-curves (right) taken on a living and on a fixed cell.

The obtained force-curves were recorded during scanning along one line over the cell’s body at

five different places (indicated in the AFM images, left). The force-curves where then placed on

top of each other to show all the curves within one graph. Figure 5.53 shows clearly that the curves

recorded on the living cell are curved with a small slope characteristic of soft materials. The curves

recorded on the fixed cell (Fig. 5.54), in contrast, exhibit a steep slope, similar to the curves taken

on the hard substrate (no. 1 on both plots). This similarity indicates that the stiffness of the cell has

increased significantly.
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 Figure 5.53: Force-curves taken on a living cell in five different places indicates in the

AFM image. Obtained force-curves show a small slope.
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The calculated elastic modulus from the fitting of the conical Hertz model to the force curve

recorded in the central region of the fixed cell is shown in Fig. 5.55. In contrast to the living cell,

the theoretical curve matches the data very well over the whole range of analysis. The computed

elastic modulus demonstrates that glutaraldehyde fixation has drastically changed the cell’s elastic

properties through increasing its stiffness by several orders of magnitude: from around 5 kPa to

more than 100 kPa (mean E = 139.2(16.9) kPa). Moreover, the computed Young’s modulus had

comparable values while indenting different areas on the cell, which indicates that, in contrast to

the living cell, the stiffness of the fixed cell is constant irrespective of its inner structure.
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 Figure 5.54: Force-curves taken on a fixed cell in five different places indicates in the

AFM image. Recorded force-curves show a small slope, and they appear similar to the

one taken on a hard substrate, which is an indication of the cell’s stiffness.
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 Figure 5.55: The Hertz model applied to the experimental

force-curve No. 4 (see Fig. 1.39B), which was taken on a fixed

cell. The theoretical curve, superimposed on top of

the experimental one, fits the experimental curve very well

over the whole range of analysis.
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 5.5.2 Substrate-dependent elasticity of living osteoblast-like cells

Up to now, it has been shown that AFM can successfully be used to investigate nanomechanical

properties of living osteoblasts and that resulting conclusions may be extended to the cytoskeletal

structures inside the cell. Taking into account the important role of the cytoskeleton in cell

elasticity and considering the fact that its architecture may be influenced by the substrate the cell

is adhered to, one can assume that mechanical properties of cells growing on different substrates

may undergo alterations. Aiming to verify this statement, the elasticity of the osteoblast cells

adhered to various substrates has been studied.

Characteristic topographies of samples used in these AFM experiments are shown in Fig. 5.56. To

rule out the possibility that the cytomechanical changes observed were due to the differences in

substrate chemistry, and for better understanding of the role that matrix topography plays in cell

adhesion, both MWNT-based matrices were assembled from non-covalently modified nanotubes

(MWNT-PAH), which assured similar surface chemistry. Another important physical factor,

which may also elicit changes in cell elasticity, and that should also be taken into account while

analyzing AFM data, is a stiffness of the substrates. Several studies have shown that cells can

probe and respond to mechanical properties of the substrate [82,83]. For example, Pelham et al.

reported changes in cell adhesion structures and motile behavior caused by differences in substrate

flexibility [84]. Given that the CNT-based matrices used in this study were composed of the same

nanotubes (MWNT-PAH) and polyelectrolytes (PSS, PAH), and that the LbL technique assured

mainly parallel orientation of the CNTs to the substrate surface, one can assume that both, matrices

with cavity-like and random topography, are characterized by the same substrate stiffness. Taken

together, the physical effect such as surface chemistry and substrate stiffness could be separated

from topographical features and the nanomechanical results for carbon nanotube matrices could

be related and compared. 

On the basis of the results from immunofluorescent staining (section 5.3.2), it also became

interesting to study the mechanical properties of cells adhered to periodic VACNTs. However, due

to difficulties in the imaging of cells attached to the tips of CNTs, osteoblast adhesion was studied

on a similar honeycomb pattern created from gold quasi-triangles (Fig. 5.56 C). 

A CB

 Figure 5.56: Surface topography of the substrates used for studying cytomechanical

properties of adhered cells. SEM images of CNT-based LbL films with randomly-distribut-

ed nanotubes (A) and ordered in a cavity-like structure (B). AFM deflection image of quasi-

triangular gold clusters forming a honeycomb structure (C).
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Mechanical measurements were conducted in the same experimental manner as described in

section 5.5.1. In particular, the force-curves were analyzed in those force ranges that result in

shallow indentations of the cell (~ 400 nm). Figure 5.57 shows cell elasticity measurements

(Young’s modulus, E), collected from 100 force-curves recorded on 10 cells from each sample

(each cell was probed 10 times in the area of the nucleus).
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D Figure 5.57: Histograms of

mean value and distribution

of Young’s modulus obtained

for cells adhered to glass (A),

CNT LbL film (B), CNT based

cavity-like structure (C),

and hexagonally-ordered

gold quasi-triangles (D).
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The mean Young’s modulus values received by fitting a Gaussian distribution to the above histograms are

presented in table 5.6. The obtained results clearly demonstrate that the mean Young’s modulus is

altered by adhesion to different substrates. In general, the osteoblast cells plated on glass were

found to have the lowest cell stiffness (3.71 1.48 kPa), whereas the cells adhered to the CNT-

based substrates expressed an increased average Young’s modulus. This expected difference may

arise from the surface roughness and partially from differences in surface chemistry. It is known

that surface roughness increases protein adsorption and hence cell adhesion. This result is in

agreement with observations made by Domke et al. [70] who showed that cell stiffness rises with

increasing surface roughness of the respective substrates. Interestingly, those cells adhered to the

cavity-like structures exhibited a higher stiffness (E = 5.43  2.05 kPa) than osteoblasts plated on

randomly-distributed CNTs (E = 4.14  1.69 kPa). Since the substrates are characterized by the

same stiffness and surface chemistry, the obtained results point out that a regular topography may

have a greater influence on osteoblast cell adhesion than an irregular one.

Elastic measurements for osteoblast cells plated on a hexagonally-ordered quasi-triangular

structure seem to confirm this assumption. Substrates with highly regular topography were found

to significantly enhance cell adhesion, resulting in the highest cell stiffness (7.02  2.11 kPa)

compared to the rest of the substrates used in these studies. It should be mentioned that besides

surface topography, high cell stiffness, observed for cells attached to the honeycomb structure,

may also originate from the biocompatible nature of the gold quasi-triangles, and the difference

in the stiffness of the substrate.

Considerable differences between E values for cells adhered to glass and quasi-triangle substrates

can be explained by observations from immunofluorescent staining (Fig. 5.58) of focal adhesion

of vinculin protein within the cells. According to Goldman et al. [85], vinculin promotes cell

adhesion and spreading by stabilizing focal adhesions and transferring mechanical stress that

drives cytoskeletal remodeling, thereby affecting the elastic properties of the cell. Since osteoblast

cells adhered to gold triangles exhibit very prominent focal adhesions, which contain well-

Tab. 5.6: Mean Young’s modulus calculated for osteoblast 

cells cultured on different substrates. Errors correspond to 

the full width at half maximum of the Gaussian peak.

SUBSTRATE TYPE F [nN] E [kPa]

Glass

1.2

3.71(1.48)

CNT Matrix - Cavity-like 
topography

5.43(2.05)

CNT Film - Nanotubes 
randomly distributed

4.14(1.69)

Honeycomb structure 7.02(2.11)

±

±

±

±
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developed vinculin plaque-like clusters (Fig. 5.58 A), it is reasonable to assume that the high

stiffness of these cells is directly correlated to a highly expressed vinculin protein. Consequently,

the decrease in focal adhesion formation within osteoblasts plated on a glass substrate is reflected

by a low stiffness of these cells (Fig. 5.58 B). 

The observed variations in the mean Young’s modulus of osteoblast cells adhered to different

substrates are most likely due to cytoskeleton organization. This claim may be additionally

supported by AFM nanomechanical analysis of cancer cells. Various authors have shown that

quantitatively determined differences in the elastic properties between normal and cancerous cells

are attributed to possible changes in cytoskeleton organization due to oncogenic

transformation [80]. Therefore, the obtained cell stiffness of cancer cells was more than 70 %

lower than for healthy cells [86]. Another quantitative as well as qualitative study showed the

reduction of chicken cardiocyte cell elasticity after degradation of the actin filament network

caused by a cytoskeleton-disrupting drug, cytochalasin B [87].

In general, the mean Young’s modulus values obtained in these studies fit the range of the reported

data of cell stiffness measured by AFM. Table 5.7 presents E values calculated with the conical

Hertz model. Any discrepancies in these values may arise from the chosen range of force-curve

analysis as well as from the growth conditions, i.e. the type of substrate and adhesive factors used

for cell growth.

 Figure 5.58: Typical vinculin expression of HOB cells adhered to hexagonally-structured

gold triangles (A) and glass substrates (B). Cells adhered to the ordered structure exhibit

well developed vinculin clusters visible throughout the entire cell body, while the osteo-

blasts attached to glass show focal contacts mostly limited to their periphery.

BA
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Results presented in this paragraph have shown that AFM has a great potential for testing the

biocompatibility of various materials by investigating the adhesion behavior of cells in vitro. The

performed nanomechanical measurements indicate that CNT-based matrices with a unique cavity-

like topography provide a better cell adhesion compared to the glass substrates and randomly-

distributed carbon nanotubes. 

Tab. 5.7: Values for the mean elastic modulus taken from AFM studies on 

different cell types. Young’s modulus was calculated using the conical Hertz 

model. F and δ are maximum loading force and cell indentation, respectively. 

CELL TYPE F [nN] δ[µm] E[kPa] REFERENCE

Osteoblasts (HOB-C) 1.2 0.42 5.43 our data

Osteoblasts (SaOS2) 0.88 0.3 9 [70] 

Fibroblasts (NIH3T3) 0.3 0.2 4 [88]

platelets 0.45 0.15 6 [76]

epithelial (CV-1) 0.05 0.01 400 [89]

Osteoblasts (MC3T3-E1) 3 0.5 2 [71]

Cardiocytes 6 0.55 30 [90]

mesothelial 1 0.4 1.86 [86]
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Chapter 6

Summary

In this thesis, carbon nanotubes were used to create model systems, to explore the cellular

response to carbon nanotube-based materials. The nanostructured constructs were used to

investigate the influence of nanoscaled dimensions on human osteoblast-like cell behavior, with

particular interest in the effects of local topography and surface chemistry. It is shown that cells

sense and react to the MWNTs matrices by responding with excellent adhesion, proliferation and

metabolic activity. The results presented here indicate that carbon nanotubes can mimic the

nanofeatures of the native extracellular matrix and therefore, have an immense potential for

application in tissue engineering.

The realization of the potential of carbon nanotubes in bioapplications requires their chemical

functionalization, which in turn impart the solubility of CNTs in various solvents. In this study,

highly stable aqueous suspensions of MWNTs were obtained by employing both covalent and

non-covalent surface functionalization strategies. Using oxidation and polymer wrapping, two

differently modified CNTs, i.e. with carboxyl and amine groups, were obtained. The presence of

these groups allowed further processing of CNTs into polymer matrices and helped to explore the

influence of CNTs surface chemistry on cellular bahavior.

Aiming at the creation of unique architectures comprising biomimetic characteristics, MWNT-

based constructs were engineered using different techniques. 

For the first time, we report on the fabrication of highly ordered, lightweight matrices with

multiwall carbon nanotubes by means of nanosphere lithography and layer-by-layer assembly.

The constructs were created on a monolayer of hexagonally ordered polystyrene microspheres.

The complete matrices consist of successive layers of polyelectrolytes and carbon nanotubes with

a strong interfacial bonding mediated by electrostatic attraction, van der Waals adhesion and

mechanical interlocking. The implemented method allows for controlled shaping and guarantees

the chemical stability of the self-assembled monolayers. Additionally, the considerable

mechanical performance of the constructs is assured by the high concentration and homogenous

distribution of the nanotubes within a polymer matrix. The composites - as freestanding matrices

- are characterized by a controlled geometry, topography, and chemical composition. 
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The mechanical properties of MWNT-based matrices were investigated by nanoindentation and

nanoscratch tests. The data obtained from nanoindentation experiments show that the presence of

carbon nanotubes within the polymeric matrix does not considerably improve the mechanical

properties of the respective composite. In general, the elastic modulus and hardness have been

found to reflect the mechanical response of the surrounding matrix. Therefore, the mechanical

performance of the produced matrices could be altered significantly by changing the polymer

composition. The highest values for Er and H were found for MWNT-based matrices composed

of PAH/PSS polyelectrolytes and were 2.23(43) GPa and 0.062(17) GPa, respectively. 

Since CNTs exhibit extraordinary axial strength, which plays an important role in the tensile

reinforcement action of the composite, their high flexibility and curvy morphology cause modest

improvement in the hardness of the polymeric matrices. 

The results obtained in nanoscratch tests reveal that carbon nanotube-based matrices display a

significant adhesion and friction. The value of the coefficient of friction of the MWNT-PEI/PSS

and PEI/PSS has been found to be 0.66(6) and 0.33(6), respectively. The considerable

improvement in the scratch resistance arises from the fact that the LbL method, used in the

matrices fabrication, ensures a high concentration of CNTs as well as strong interconnectivity

between carbon nanotubes and the polymer. 

The biocompatibility of MWNT-based structures and cell-surface interaction were assessed using

human osteoblast-like cells (HOB-C). In general, we have found excellent cells respond to the

micro- and nanotopographical cues present on the surface of MWNT-based matrices. SEM

investigation revealed that cells were well-spread and displayed flat morphologies, which strongly

suggest the presence of tight junctions and adhesion mechanisms in the nanostructured matrix.

Additionally, carbon nanotube constructs exhibited a larger cell area in comparison to the control

surface. The adequate cell shape has found its reflection in the cell proliferation rate. The data

obtained from the MTT assay showed a significant increase in cell growth for MWNT-based

matrices when compared to the glass control surface. This high cell metabolic activity confirms

that regular topography with nanosized features has significant effects on cellular behavior. In

other words, the carbon nanotubes constructs seem to be suitable, biocompatible cell matrices. 

Since the surface chemistry, as well as topography, can influence protein adsorption and biological

behavior of cells, we studied the dependence of the carbon nanotube’s surface chemistry on bovine

serum albumin (BSA) protein adsorption, and subsequently on cell proliferation. The qualitative

estimation of BSA adsorption obtained from protein-Coomassie UV-vis absorption spectra

together with quantitative information from Bradford protein assay, revealed that surfaces of

opposite charge to that of the protein are more effective in promoting protein adsorption.

Therefore, a significant difference in BSA adsorption could be observed between multilayered

films composed of differently functionalized carbon nanotubes. In general, films made from

MWNTs modified with amine groups adsorbed a higher amount of BSA (0.054 0.011 mg/cm2)

compared to MWNTs with carboxyl groups on the surface (0.033 0.008 mg/cm2).

±

±
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The interaction and the interfacial dynamics of osteoblast-like cells were also studied on

vertically-aligned CNTs. In particular, we focused on manipulating the growth of HOB cells with

periodic arrays of carbon nanotubes. From morphological investigations we observed that

VACNTs arrays, with a spacing of the nanotubes in the nanometer range, dramatically enhanced

cell surface activity. Cell-culture assays on these substrates reveal that the high number of

attachment sites (nanotube’s tips) promote cell-attachment via cell extensions much better than

non-nanostructured substrates. The formation of these cell extensions was closely associated with

biomechanical forces exerted by cells on individual nanotubes. Moreover, the immunofluorescent

staining for vinculin and actin showed that in contrast to a smooth surface (glass), osteoblast cells

cultured on vertically-aligned CNTs display a well developed vinculin plaque-like structure, and

highly tensioned actin filaments organized into large numbers of parallel stress fibers. These

results indicate an excellent cell adhesion and, together with morphological studies, provide

evidence that cells are able to “sense” the nano-geometry of their surrounding environment. 

Finally, we have used atomic force microscopy (AFM) to investigate the biocompatibility of CNT-

based constructs by studying the adhesion behavior of osteoblast-like cells. Exploiting the ability

of AFM to image cells under physiological conditions we were able to determine the

cytomechanical properties of living osteoblasts cultured on substrates with randomly-distributed

CNTs, cavity-like assembled nanotubes, and smooth glass surface. Experimental data show that

the elastic modulus of the osteoblast cells is modulated by the substrate to which they adhere. We

have found that the osteoblasts plated on non-nanostructured substrate (glass) have the lowest cell

stiffness (3.71 1.48 kPa), whereas cells adhered to the cavity-like topography expressed an

increased average Young’s modulus (E = 5.43  2.05 kPa). Moreover, we observed that an

irregular topography has a weaker influence on osteoblast adhesion, which results in a decreased

elastic modulus in the case of cells cultured on randomly distributed carbon nanotubes. We

believe, that the observed change in the mean Young’s modulus is most likely due to actin

cytoskeleton organization, which undergo an alternation under the influence of various

topographies and surface chemistry. 

The correlation of cytomechanical measurements with proliferation and immunofluorescence

analysis suggests that nanomechanical measurements of adherent cells have the potential for

testing the biocompatibility of materials for tissue engineering application.

The results, presented in this thesis, demonstrate that carbon nanotubes can be successfully

employed to fabricate micro-nano-featured matrices for biomedical use. Moreover, these

engineered MWNTs structures can be used as favorable substrates for the adhesion and

proliferation of osteoblast cells. Although the conducted experiments indicate a non-toxic nature

of carbon nanotube-based matrices, there is still much work to be done in establishing their

biocompatibility. Therefore, in order to provide a more complete picture of their realistic

application in tissue engineering, further in vivo studies are required. Last but not least, we believe

that the knowledge gained from these studies is of great importance not only for fundamental cell

studies, but also for the further design of novel biomaterials. 

±
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	Body - with hmax the maximum displacement at maximum load, ha the elastic displacement of the surface at the contact perimeter, and e a...
	Body - 
	Body - Nanoindentation tests and the resultant calculated physical quantities are very sensitive to many phenomena occurring during the...
	Body - The atomic force microscope (AFM), invented by Binnig in 1986 [7], has found a wide range of applications with regard to the stu...
	Body - 
	Body - In addition to imaging, AFM has increasingly been used for the measurement of local mechanical properties of cells at the nanometer scale, where the elastic modulus could be determined from force-displacement curves [16,17].
	Body - The most common AFM mode applied in cell biology is the contact mode. In this mode, the scanning tip is in contact with the imag...
	Body - 
	Body - Lateral resolution in the contact mode is strictly related to tip geometry, sample roughness, and to the force applied during sc...
	Body - As mentioned before, AFM can also be used for the quantitative assessment of the mechanical properties of a surface. To achieve ...
	Body - There are four regions of interest: At the initial part of the curve, the tip is far away from the sample and there is no intera...
	Body - A force-volume imaging combines force measurements with topographic imaging. Each force curve is recorded as described above, ex...
	Body - Together, the FV and the FVH provide the three dimensional, laterally resolved description of the force over and within a sample...
	Body - 
	Body - 
	Body - 
	Body - 
	Body - Typically, force-curves are analyzed within a given range of loading forces. Therefore, deflection values first have to be conve...
	Body - where k is the force constant of the cantilever, d is its deflection, and F is the corresponding force exerted by the cantilever...
	Body - The indentation is given by the difference between the sample height z and the deflection of the cantilever:
	Body - Here again, the offset must be considered, so Eq. 3.12 can be rewritten as:
	Body - where d0 is the zero deflection as above and z0 is the z position at the point of contact.
	Body - 
	Body - As can be seen in Fig. 3.8, the contact point can easily be identified in the force-curve recorded on a stiff sample by direct v...
	Body - The conical model for the tip has been widely used for elastic measurements on cells [17,21]. The elastic deformation of two sph...
	Body - (i) Parabolic:
	Body - where R is the radius of curvature at the apex of the tip and E and v are the Young’s modulus and the Poisson ratio of the sampl...
	Body - 
	Body - (ii) Cone:
	Body - 
	Body - 
	Body - where a is the half-opening angle of the punch. This model is more useful for sample indentations much larger than the radius of the tip apex (~ 20 nm).
	Body - The mathematical function, which is finally used to fit the force-curve data, is obtained combining Eq. 3.13 and Eq. 3.15. For the conical Hertz model this results in:
	Body - Most of the quantities in Eq. 3.16 are either known or can be measured experimentally. The force constant and the half-opening a...
	Body - Like engineering materials, cells deform when an external force acts on them. Such a behavior is described by the mechanical pro...
	Body - The elastic properties of cells are determined in a complex way by the composite shell envelope composed of the lipid-protein bi...
	Body - The cell membrane is a lipid bilayer, which envelopes a cell and creates a selectively permeable barrier. The thickness of this ...
	Body - The cytoskeleton is an intracellular 3D network consisting of F-actin filaments (6 - 10 nm in diameter), intermediate filaments ...
	Body - It has been reported that the mechanical properties of the nucleus are likely to play a significant role in the mechanical respo...
	Body - The ECM (in vivo) or substrate (in vitro) to which a cell adheres plays an important role in modulating cell deformability since it may provide the mechanical support to balance the tension in adherent cells [34].
	Body - 
	Body - Cell adhesion to the extracellular matrix (ECM)/substrate is mainly mediated by the integrins, which are transmembrane heterodim...
	Body - As the type and quantity of adsorbed ECM proteins is influenced by the surfaces to which cells adhere [46], the formation of foc...
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Chaptertitle - Chapter 4 Experimental
	Body - The MWNTs used were obtained from NanoLab Inc., synthesized by chemical vapor deposition with flowing acetylene gas as the carbo...
	Body - 
	Body - Generating functional groups on the surface of carbon nanotubes is necessary to overcome their poor solubility in solvents, to i...
	Body - Multiwalled carbon nanotubes were covalently functionalized by the following oxidation procedure [1]: 16 mg of MWNTs were suspen...
	Body - 
	Body - Carboxyl groups are dominant, therefore, the CNT-COOH abbreviation is used to refer to oxidized nanotubes (Fig. 4.12).
	Body - With these groups present, carbon nanotubes show a very good dispersibility in aqueous solvents, where they remain stable for months.
	Body - Another functionalization of carbon nanotubes was done by means of a polymer wrapping method [2]. In this procedure, the positiv...
	Body - 
	Body - An amount of 50 mg of MWNTs was dispersed in a 0.5 wt% PAH (Sigma-Aldrich, Mw = 70 000) salt solution (0.5 M NaCl, 500 mL) and s...
	Body - Free-standing CNT-based matrices were fabricated using the conventional lithographic technique combined with the Layer-by-Layer assembly process [3]. A brief description of these methods is given below.
	Body - The preparation of CNT-based matrices started from the creation of a monolayer mask using nanosphere lithography (NSL) [4]. This...
	Body - 
	Body - All masks were deposited on silicon substrates (1 x 3 cm2), previously cleaned in a solution of H2O2/H2SO4 (1:4 v/v) for 10 min,...
	Body - The LbL matrices were created on solid substrates by alternate deposition of oppositely charged polyelectrolytes and functionali...
	Body - 
	Body - The thus-produced LbL-films were investigated in terms of their mechanical and biocompatible properties. Therefore, different combinations of polyelectrolytes and chemically-modified carbon nanotubes were used (Table. 4.2)
	Body - 
	Body - To obtain free-standing films, the LbL composites were peeled off from the substrates by means of chemical delamination. The sam...
	Body - 
	Body - CNT-based films were additionally modified by a reactive ion etching process (RIE). The RIE was performed in an oxygen atmospher...
	Body - Calcium phosphate nanoparticles (CP NPs) were kindly provided by the Kotov Lab. (University of Michigan, USA). They were synthes...
	Body - CP NPs were covalently attached to the functionalized carbon nanotubes. Shortly, matrices assembled from PAH-functionalized carb...
	Body - Both carpets of vertically-aligned carbon nanotubes (VACNTs) and periodical VACNT-arrays were produced at NanoLab (nano-lab.com)...
	Body - All experiments were carried out using HOB-C, human hipbone osteoblast cells, which were purchased from PromCell. The cells were...
	Body - First, the samples were sterilized with UV light (30 min) and placed into conventional 6-well culture plates. To investigate cel...
	Body - A toxicity study was performed using MTT assays (Sigma), which is based on the reduction of the yellow tetrazolium salt 1-(4,5-d...
	Body - For the measurement of Young’s modulus, the cells were plated on prepared substrates (1 x 1 cm2) at a density of approx. 2000 ce...
	Body - Prior to fixation, the cells were washed once with Earle’s buffered saline solution (EBSS, Gibco) and fixed with 2.5 % glutardia...
	Body - For the evaluation of cell proliferation MTT assay was used (see 4.1.5.2). HOB cells were seeded on prepared MWNT-based substrat...
	Body - For the visualization of the actin filaments and vinculins, osteoblast cells were seeded on the substates for 24 h, then washed ...
	Body - Bovine serum albumin (BSA) was used as a model protein in this study. 100 mL of BSA solution (1mg/ml protein/PBS solution) were ...
	Body - 
	Body - To obtain quantitative information about protein adsorption, 5 mL of the removed initial solution were mixed with 200 mL of Coom...
	Body - The MWNT-based matrices were characterized in terms of their structural, mechanical, and biocompatible properties. A brief description of the equipment used during these studies and the conditions of each experiment is given below.
	Body - The topography and the morphology of the MWNT-based matrices as well as of the osteoblast cells were characterized with electron and atomic force microscopes:
	Body - 
	Body - Scanning electron microscope (SEM) images were obtained using a LEO Supra 55 (Zeiss), operating at an acceleration voltage of up to 20 kV.
	Body - 
	Body - Transmission electron microscopy (TEM) was conducted on a Leo 922A with an acceleration voltage of 200 kV. An Oxford X-ray system at the TEM was used for Energy Dispersive X-ray Analysis (EDX).
	Body - 
	Body - The atomic force microscope (AFM) measurements were performed in air and water using a Multimode Nanoscope IV (Veeco/Digital Instrument), operating in contact and tapping mode.
	Body - Nanoindentation tests were carried out using an AFM (NanoScope IV Digital Instruments) with a conjugated TriboScope nanomechanic...
	Body - 
	Body - The hardness and elastic modulus were calculated from the recorded unloading step of the depth- displacement curves. The typical...
	Body - 
	Body - The coefficient of friction was obtained in the nanoscratch experiment and measured as a ratio of the lateral force to the norma...
	Body - 
	Body - Tip calibration was carried out on poly(methyl methacrylate) (PMMA) with an elastic modulus equal to 3.6 GPa [8]. The calibration procedure was repeated for three independent PMMA samples, and a high reproducibility was observed.
	Body - The elastic measurements were carried out on a Multimode Nanoscope IV (Veeco/Digital Instrument). In this study, soft V-shaped, ...
	Body - 
	Body - The photodiode sensitivity calibration for each cantilever was assessed from the slope of the contact straight line of a force curve recorded in a region where the substrate was free of cells.
	Body - 
	Body - Young’s modulus was calculated from the loading part of the force-curves. Force-curves were taken only in the central location o...
	Body - 
	Body - 
	Body - To produce micro-elasticity maps of the biological cells showing local variation in their stiffness, the force volume mode (FV) ...
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Chaptertitle - Chapter 5 Results and Discussion
	Body - Prior to the evaluation of the mechanical properties of the MWNT-based matrices and the cellular response to their diverse nanot...
	Body - The method used to produce free- standing MWNT-based matrices is based on the self-organization of colloidal particles [1]. This...
	Body - 
	Body - The growth of MWNT/PE multilayer films was examined using SEM. Figure 5.16 shows a carbon nanotube layer after the first deposit...
	Body - 
	Body - To obtain free-standing MWNT-based matrices, the films were peeled off from the substrate through chemical delamination (see sec...
	Body - 
	Body - Figure 5.18 shows a scanning electron micrograph of the morphology of the film before and after chemical delamination. THF etchi...
	Body - 
	Body - Despite THF treatment, it was not possible to remove this polymer membrane. Therefore, to dislodge residual material from the su...
	Body - 
	Body - Progressively decreasing the argon flow rate and thereby, increasing the oxygen ion concentration, leads to efficient polymer et...
	Body - 
	Body - Figure 5.20 shows the final complete network architecture consisting of successive layers of cross-linked carbon nanotubes that ...
	Body - As mentioned before, the NSL technique combined with a LbL assembly process was employed to produce a model system with both the...
	Body - Vertically-aligned carbon nanotubes were obtained using a plasma enhanced chemical vapor deposition process (PECVD), described in detail in section 4.1.4.
	Body - 
	Body - A typical image of catalytically-grown carbon nanotubes is presented in Fig. 5.21. The produced nanotube arrays exhibit perfect ...
	Body - Substrates with periodically-aligned nanotubes show that the position of the nanotubes corresponds to the honeycomb pattern of t...
	Body - In addition to a controlled geometry and surface chemistry, the predescribed matrices (section 5.1.1) need to possess specific m...
	Body - 
	Body - While numerous studies have focused on the characterization of the tensile properties of LbL composites [8-10], in this study th...
	Body - 
	Body - The elastic modulus and the hardness of MWNT-PEI/PSS composites are presented in Fig. 5.23 as a function of contact depth. The results obtained using a Berkovich and a conical tip are consistent for each sample.
	Body - 
	Body - Figure 5.23 reveals that the elastic modulus is relatively independent of the indent depth for all polymeric composites. However...
	Body - The reduced modulus of the MWNTs-PEI/PSS films (0.49 0.15 GPa) is comparable to that obtained for PEI/PSS composites (0.44 0.02 GPa). The same refers to the hardness (0.015 0.006 GPa and 0.007 0.002 GPa).
	Body - 
	Body - 
	Body - The obtained results clearly demonstrate that the presence of carbon nanotubes within the polymeric matrix does not improve the ...
	Body - 
	Body - The nanoindentation tests reveal that the mechanical response of the investigated samples is mainly affected by the polymer matr...
	Body - Load-displacement curves show that MWNT-PSS/PAH composites exhibit a softer nature than the other structures. At the maximum ind...
	Body - The obtained results demonstrate the great influence of the composition of the polymer on the mechanical response of the composites.
	Body - 
	Body - In order to estimate the coefficient of friction of MWNT-based composites, nanoscratch experiments were performed. A conical dia...
	Body - 
	Body - Nanomechanical tests carried out on the different compositions of polymers and carbon nanotubes show that the presence of MWNTs ...
	Body - The topography and the surface chemistry of the fabricated matrices are very interesting features for fundamental studies of cel...
	Body - The role of nano-sized features in complex nanostructured substrates as well as their surface chemistry were tested for their ab...
	Body - SEM was the primary tool used to determine the morphology of osteoblast-like cells. Figure 1.12 shows SEM micrographs of osteobl...
	Body - 
	Body - Cell adhesion to a substrate influences cell morphology as well as cell proliferation and differentiation [23]. Therefore, one c...
	Body - 
	Body - The qualitative assessment of the cell morphology showed no significant difference between osteoblasts attached to a CNT-based topography and a standard plastic coverslip used as a control.
	Body - The main concern regarding the use of carbon nanotubes in biomedical applications is their possible cytotoxicity [19-21]. Theref...
	Body - Taking into account these contradictory opinions regarding CNT’s toxicity, the produced matrices were tested for their biologica...
	Body - 
	Body - Qualitative information about the biocompatibility of MWNT-based matrices was obtained from observations with an optical microsc...
	Body - 
	Body - Furthermore, the viability of osteoblast-like cells seeded onto MWNT-based matrices was studied by an MTT cell viability assay. ...
	Body - Figure 5.28 shows the number of proliferated cells after 1, 3 and 7 days, respectively. It can be seen from the graph that the p...
	Body - These observations are consistent with earlier studies, which demonstrated the importance of nanometer roughness for the control...
	Body - It is well-known that apart from the surface topography, cells are also sensitive to differences in the chemical properties of m...
	Body - 
	Body - It is commonly accepted, that possible protein adsorption may be driven by various interactions, which can arise from (i) van-de...
	Body - 
	Body - To address the role of chemical functionalities on carbon nanotubes, protein adhesion and subsequent cell proliferation were stu...
	Body - 
	Body - 
	Body - A qualitative estimation of BSA adsorption onto various LbL composites was obtained by incubation of LbL-matrices in Coomassie B...
	Body - 
	Body - A significant difference in protein adsorption can be observed between positively and negatively- charged surfaces. The films ma...
	Body - 
	Body - To quantify the total amount of BSA protein adsorbed on the multilayers, a Bradford protein microassay was used [40]. Each prote...
	Body - 
	Body - 
	Body - These results are compliant with previously reported studies of the surface charge effect on the adsorption behavior of various ...
	Body - As mentioned before, proteins adsorbed on the substrate mediate the interaction of the material with the cells. Cells, in turn, ...
	Body - 
	Body - Figure 5.31 shows the response of the osteoblast cells to positively- and negatively-charged carbon nanotubes after 3 days of in...
	Body - The LbL film with positively-charged carbon nanotubes exhibits a higher number of attached cells than the multilayer with the ne...
	Body - The thus-gained results clearly demonstrate that differences in the surface chemistry of carbon nanotubes significantly influenc...
	Body - 
	Body - Osteoblast cells were also seeded onto multilayer films made of PSS/PAH with an outermost PAH layer. As can be seen in Fig. 5.33...
	Body - 
	Body - The above-mentioned results from the in vitro studies highlight the essential role of the matrix’s surface characteristics with ...
	Body - The ease with which carbon nanotubes can be functionalized, together with their excellent mechanical properties, explores their ...
	Body - 
	Body - In this section, a novel approach for the modification of MWNT-based matrices with calcium phosphate nanoparticles is presented....
	Body - 
	Body - The MWNT-based matrices fabricated from non-covalently functionalized carbon nanotubes were placed in a solution containing bioa...
	Body - 
	Body - Direct evidence for the attachment of CP NPs to the PAH - functionalized carbon nanotubes is given in transmission electron micr...
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - Additionally, in order to verify the presence of CP NPs on carbon nanotubes, the samples were analyzed by energy dispersive X-ra...
	Body - Based on the results described in the previous paragraphs and the fact that CP NPs exhibit a very close chemical resemblance to ...
	Body - In Figure 5.37 micrographs showing HOB-cells growing on matrices with and without bioactive nanoparticles are presented. It can ...
	Body - 
	Body - The enhanced osteoblast proliferation on MWNT-based matrices modified with bioactive nanoparticles is confirmed by proliferation...
	Body - 
	Body - Taken together, the results presented here demonstrate that LbL assembled composites from MWNTs can be successfully modified with CP NPs, which in turn lead to effective increasement of their biocompatibility with osteoblast cells.
	Body - On the basis of the cellular response to CNT-based matrices with cavity-like topography, it seemed promising to study the intera...
	Body - 
	Body - Using the chemical vapor deposition process and nanosphere lithography, substrates with nano- pillars, i.e. carbon nanotubes wit...
	Body - 
	Body - Figure 5.39 illustrates the morphology of osteoblasts growing on a CNT-carpet. Cells are flattened, well spread and attached to ...
	Body - The effect of the periodicity of VACNTs on cell attachment and morphology was also assessed. Figure 5.40 clearly demonstrates di...
	Body - The effect of surface topography on cell adhesion was also assessed by an evaluation of the focal adhesion protein development a...
	Body - .
	Body - The results presented in Fig. 5.41 show that vinculin (green) and actin (red) distributions differ depending on whether they are...
	Body - 
	Body - The results presented in this section reveal that topographical features have a significant influence on the attachment and grow...
	Body - So far, the morphology of osteoblast cells has been investigated by means of SEM. This microscope has proven to be a useful tool...
	Body - 
	Body - In this paragraph details will be given on how AFM was used to determine a number of cellular structures and to relate these structures to the cell’s mechanical properties investigated in the next chapter (see 5.5).
	Body - All AFM images were collected in liquid environment in height and deflection mode at applied vertical imaging forces between 2 a...
	Body - 
	Body - Osteoblast cells were investigated in both a fixed and a living state. Typical images of fixed osteoblast cells are shown in Fig...
	Body - 
	Body - The height image in Fig. 5.42 shows the topography of osteoblast cells. The structure observed in the center of the cell corresp...
	Body - 
	Body - Microtubules apparently contribute little to the filamentous structure observed by the AFM. Studies with rhodamine-phalloidin-la...
	Body - Unlike fixed cells, the softness of living cells resulted in cells surface deformations under the scanning tip causing a signifi...
	Body - 
	Body - Figure 5.43 shows representative contact images of living osteoblasts. Typical AFM-associated artifacts are visible as streaks p...
	Body - The measurements confirmed that the AFM can image stiff actin filaments through the plasma membrane without apparent damage to t...
	Body - 
	Body - Figure 5.44 presents the two most reported mechanisms: the membrane deformation model (A) and the membrane penetration model (B)...
	Body - 
	Body - Recent results, however, rule out the tip penetration hypothesis. Haydon et al. [66] showed that glial cells with the intracellu...
	Body - 
	Body - Besides the possibility of imaging internal features of living cells, AFM can also be used to observe and record a variety of ph...
	Body - AFM appears to be an excellent tool for investigating both fixed and living cells and especially their cytoskeletal architecture...
	Body - As observed in the preceding paragraph, the quality of the living cell topographic AFM images was lower in comparison to the fix...
	Body - 
	Body - The diameter of the contact area between the AFM tip and the sample can be calculated from the following equation:
	Body - 
	Body - where F is the loading force, a is the opening angle of the cone (taken as 35o), v is Poisson’s ratio (taken as 0.5, corresponding to an incompressible material) and E is the elastic modulus of the sample.
	Body - 
	Body - This radius can be assumed to be the fundamental limit of resolution [65]. Therefore, the resolution can only be improved by fur...
	Body - 
	Body - 
	Body - Figure 5.46 shows the contact area between the tip and the cell plotted as a function of the elastic modulus for several loading...
	Body - 
	Body - Expected optimum lateral resolution for a loading force of 1.2 nN, as used in this study, will be 600 nm, 200 nm, and 60 nm, if the softness of the cell is 1 kPa, 10 kPa, and 100 kPa, respectively.
	Body - The adhesion of a cell to the surface of a substrate is the first phase of cell-substrate interaction. The quality of this adhes...
	Body - 
	Body - Up to now, a variety of techniques have been used to determine the mechanical properties of individual cells, e.g. micropipettes...
	Body - 
	Body - In this chapter the use of AFM as a tool with the ability to study the biocompatibility of various substrates by investigating the cytomechanical properties of osteoblast cells on a sub-micrometer scale is presented.
	Body - Elastic properties of cells were evaluated from the recorded loading portion of the force-curve by fitting the Hertz model [67,6...
	Body - 
	Body - Figure 5.48 shows a representative force-curve recorded on a HOB cell seeded on a glass substrate. The contact part of the curve...
	Body - 
	Body - 
	Body - The elastic properties of adherent osteoblast cells have been studied in a similar experimental manner as reported by Domke et a...
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - The theoretical Hertz curves match the data very well even outside the range of analysis. The contact points marked by arrows do...
	Body - 
	Body - However, the situation changes if the applied loading force increases. Figure 5.50 shows a force- curve recorded on a living cel...
	Body - 
	Body - As indicated by some authors, an increase of the effective cell stiffness when high loading force is applied should be interpret...
	Body - 
	Body - In these studies, all force-curves were analyzed at small cantilever deflection, corresponding to loading forces of 0.3 to 1.2 n...
	Body - In force-curves, the deflection of the cantilever is proportional to the loading force and the deviation of the deflection from ...
	Body - 
	Body - To compare the experimental data with the Hertz model, the indentation for this curve was calculated from the following equation [67]:
	Body - 
	Body - 
	Body - The result is plotted on a double-logarithmic scale in Fig. 5.52. As can be seen, the prediction of the Hertz model with a Young’s modulus of 5 kPa fits the experimental data very well.
	Body - 
	Body - Given the calculated d and the measured height of the cells (h = 2.4(6) mm), the relative mean deformation of the cell can be estimated to be around 20 %.
	Body - The elasticity of human osteoblast cells has been determined by fitting the conical Hertz elastic model to different ranges of a...
	Body - As mentioned before, the mechanical properties of cells are determined in a complex way by the cell plasma membrane, the actin c...
	Body - As has been shown in section 5.4.2, the obtainable lateral resolution of an AFM depends on the cell’s elastic modulus and can be...
	Body - 
	Body - In this section, the low-resolution images of living cells are explained by the differences in stiffness of living and glutaraldehyde-fixed HOB cells, by measuring the local elastic properties.
	Body - 
	Body - The figures presented below, compare force-curves (right) taken on a living and on a fixed cell. The obtained force-curves were ...
	Body - 
	Body - 
	Body - The calculated elastic modulus from the fitting of the conical Hertz model to the force curve recorded in the central region of ...
	Body - Up to now, it has been shown that AFM can successfully be used to investigate nanomechanical properties of living osteoblasts an...
	Body - 
	Body - Characteristic topographies of samples used in these AFM experiments are shown in Fig. 5.56. To rule out the possibility that th...
	Body - On the basis of the results from immunofluorescent staining (section 5.3.2), it also became interesting to study the mechanical ...
	Body - Mechanical measurements were conducted in the same experimental manner as described in section 5.5.1. In particular, the force-c...
	Body - The mean Young’s modulus values received by fitting a Gaussian distribution to the above histograms are presented in table 5.6. ...
	Body - 
	Body - 
	Body - 
	Body - 
	Body - Elastic measurements for osteoblast cells plated on a hexagonally-ordered quasi-triangular structure seem to confirm this assump...
	Body - 
	Body - 
	Body - Considerable differences between E values for cells adhered to glass and quasi-triangle substrates can be explained by observati...
	Body - 
	Body - 
	Body - 
	Body - The observed variations in the mean Young’s modulus of osteoblast cells adhered to different substrates are most likely due to c...
	Body - 
	Body - In general, the mean Young’s modulus values obtained in these studies fit the range of the reported data of cell stiffness measu...
	Body - 
	Body - 
	Body - d[mm]
	Body - 
	Body - Results presented in this paragraph have shown that AFM has a great potential for testing the biocompatibility of various materi...
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Body - 
	Chaptertitle - Chapter 6 Summary
	Body - In this thesis, carbon nanotubes were used to create model systems, to explore the cellular response to carbon nanotube-based ma...
	Body - 
	Body - The realization of the potential of carbon nanotubes in bioapplications requires their chemical functionalization, which in turn...
	Body - 
	Body - Aiming at the creation of unique architectures comprising biomimetic characteristics, MWNT- based constructs were engineered using different techniques.
	Body - 
	Body - For the first time, we report on the fabrication of highly ordered, lightweight matrices with multiwall carbon nanotubes by mean...
	Body - The mechanical properties of MWNT-based matrices were investigated by nanoindentation and nanoscratch tests. The data obtained f...
	Body - Since CNTs exhibit extraordinary axial strength, which plays an important role in the tensile reinforcement action of the composite, their high flexibility and curvy morphology cause modest improvement in the hardness of the polymeric matrices.
	Body - 
	Body - The results obtained in nanoscratch tests reveal that carbon nanotube-based matrices display a significant adhesion and friction...
	Body - 
	Body - The biocompatibility of MWNT-based structures and cell-surface interaction were assessed using human osteoblast-like cells (HOB-...
	Body - 
	Body - Since the surface chemistry, as well as topography, can influence protein adsorption and biological behavior of cells, we studie...
	Body - 
	Body - The interaction and the interfacial dynamics of osteoblast-like cells were also studied on vertically-aligned CNTs. In particula...
	Body - 
	Body - Finally, we have used atomic force microscopy (AFM) to investigate the biocompatibility of CNT- based constructs by studying the...
	Body - 
	Body - The correlation of cytomechanical measurements with proliferation and immunofluorescence analysis suggests that nanomechanical m...
	Body - 
	Body - The results, presented in this thesis, demonstrate that carbon nanotubes can be successfully employed to fabricate micro-nano-fe...
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