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Zusammenfassung

In der vorliegenden Arbeit stellen wir eine robuste und e�ziente Methode vor, um Cahn–
Hilliard-artige Gleichungen numerisch zu lösen. Wir betrachten Gleichungen der Gestalt

∂tφ+∇· J = f mit J =−M (φ)∇w und w =−ε∆φ+ ε−1G ′(φ),

also Gleichungen vierter Ordnung mit zwei Nichtlinearitäten: der Mobilität M und dem Po-
tential G . Über die Wahl dieser beiden Funktionen lässt sich das Verhalten der Lösungen
beein�ussen und ein großer Bereich von physikalischen Phänomenen abbilden.

DieGleichung lässt sich formal als Gradienten�uss einer freien Energie schreiben.Wir lassen
uns bei der Zeitdiskretisierung von dieser Struktur leiten. Die resultierenden semi-diskreten
Gleichungen für den Fluss J sind von der Form

(
id+ ε(∇∇·)2− ε−1∇G ′′(φ)∇·

)
J = r . Durch

Einführen einer Hilfsvariablen K :=−∇∇· J können wir die Gleichung in zwei Gleichungen
au�eilen, in deren schwacher Version dann nur noch Divergenzen von J und K au�reten.
Für die Ortsdiskretisierung wählen wir daher die H (∇·)-konformen Raviart–�omas (RT)
Finiten Elemente. Diese sind besonders geeignet für Probleme mit einer Kontinuitätsglei-
chung, da die Divergenz dreiecksweise erhalten bleibt. Für φ und w sind stückweise kon-
stante Elemente die passende Wahl.

Beim Lösen der voll-diskreten Gleichungen tritt die Inverse der RT-Massenmatrix auf. Da es
für allgemeine Gitter keine mass-lumping Technik für RT-Elemente gibt, ist die Inverse voll
besetzt. Um dieses Problem zu umgehen, schlagen wir vier Möglichkeiten vor und verglei-
chen diese. Als besteWahl stellt sich eine Technik heraus, die aus denGemischtenMethoden
bekannt ist. Diese Technik konnten wir an unsere Gleichung anpassen. In typischen Simula-
tionen erhalten wir damit eine um einen Faktor 50 schnellere Laufzeit gegenüber einfachen
matrixfreien Methoden.

Wir testen unsere Diskretisierung an zwei Anwendungen. Zum einen an Vergröberungspro-
zessen und zumanderen an epitaktischemWachstum.Vergröberungsprozesse sind eineHer-
ausforderung für die Numerik, da große Systeme und lange Zeiten simuliert werden müs-
sen. Gleichzeitig entwickelt sich sich die Lösung anfangs auf sehr kurzen Zeitskalen, so dass
Zeitadaptivität unerlässlich ist. In beidenAnwendungenmüssenBereiche räumlich aufgelöst
werden, deren Längenskala etwa ein Hundertstel der Systemlänge beträgt. Somit muss auch
ortsadaptiv gearbeitet werden.Wir vergleichen theoretische Resultate zurVergröberungsrate
mit den Ergebnissen aus unseren Simulationen und �nden gute Übereinstimmung. Im epi-
taktischen Wachstum dient die Gleichung als di�use-interface approximation (DIA) an ein
freies Randwertproblem. Nachdem wir uns überzeugt haben, dass dies eine gute Approxi-
mation ist, vergleichen wir unsere Simulation mit einer Front-Tracking Simulation. Solange
beide Modelle gültig sind, sehen wir eine gute Übereinstimmung. Nur die DIA kann über
topologische Änderungen hinaus weiter laufen.

Um die Diskretisierung zu implementieren, wurde eine Finite Elemente Toolbox von Grund
auf neu entwickelt. Ein Hauptgrund für die Neuentwicklung war, dass für viele Simulatio-
nen im Kristallwachstum, insbesondere in dem hier betrachteten Stufen�uss-Regime, eine
Unterstützung für so genannte schief-periodische Gitter nötig ist.
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1

Overview

In this work, we present a robust and e�cient numerical method to simulate Cahn–Hilliard-
type equations. �e discretization is lead by the gradient-�ow structure of the equation and
the resulting �nite-element method uses both time- and space-adaptivity. Our goal was to
�nd a fully practical method that is capable of simulating large systems and long times and
is supported by a certain amount of numerical analysis.

We consider nonlinear fourth-order equations of the type

∂tφ−∇·
(

M (φ)∇w
)
= f , (1.1a)

w =−ε∆φ+ ε−1G ′(φ). (1.1b)

�ere are two nonlinearities in the equation, namely the mobility M (φ) and the potential
G (φ). We will see in Section 2.3 that Equation (1.1) is a gradient �ow to the free energy

Eε(φ) =
∫
Ω

ε

2

∣∣∇φ∣∣2+ ε−1G (φ). (1.2)

To attain a small energy, φ has to take values in the minima of G with few transitions of
widthO(ε) in-between.

�erefore the long-time behaviour of the solution is in�uenced by the minima of the chosen
potential G .

To understand the role of M , note that the variational derivative of the free energy (1.2) is w ,
o�en called the chemical potential. By Fick’s law, the mass �ux J is given by

J =−M (φ)∇w , where w =
δEε
δφ
(φ)

and M (φ) is a di�usion coe�cient. �us, the choice of M (φ) in�uences the �ux J and with
that the morphology of the solution.

1



2 1 Overview

With the choice of mobility and potential, a broad range of phenomena can be attained. In
this work, we focus on two applications.

�e �rst application are coarsening processes in binary mixtures, see Chapter 5. Here φ
denotes the volume fraction of one of the two components. �e potential in the energy can
be interpreted as the amount of free energy a homogeneous solution would have and the
Dirichlet term can be interpreted as surface tension. By using a double-well potential with
wells at±1, the mixture will decompose into the two phases. Looking at (1.2), the energy will
be lower if there are less transitions between the two phases, so the system will coarsen in
time.

�e rate at which the system coarsens depends on the
choice of the mobility. We consider both the classical
case of constant mobility and the case of a degener-
ate mobility, where the �ux is suppressed in the pure
phases and is thus present only along the interfaces.

We chose this application because on the one hand,
there are analytical results on the coarsening rate and on the other hand it is a challenging
application since it requires large systems and long times to verify the results. At the same
time, the system may change on short time-scales, so that time-adaptivity is essential. Fur-
thermore, the transition regions have to be resolved by themesh and their length-scalemakes
up only a hundredth of the system size, so that spatial adaptivity is also necessary.

As a second application we consider crystal growth, more precisely epi-
taxial growth of thin crystalline �lms. Here, φ denotes the height of the
�lm. Since the �lm can only have heights of a multiple of one atomic
height,G is a multi-well potential with wells at the integers. During step-
�ow growth, the �lm consists of large terraces with atom-high steps in-
between. �e mobility is used to create an asymmetry in the attachment

rates at the steps, see Chapter 6 for a detailed introduction. �e asymmetry induces instabil-
ities, such that an initially straight stepmay develop overhangs during growth and eventually
a vacancy island pinches o�.



3

To simulate this nonlinear instability with reasonable computational costs, our so�ware sup-
ports so-called skew-periodic meshes, see Section 7.2.2.

Using our simulation tool, we �nd good agreement between theory and simulation in both
applications. However, our discretization is not limited to these applications. For example,
the thin-�lm equation has also been successfully treated with our method.

To discretize equation (1.1) in time, we use the gradient-�ow structure and get a symmetric
fourth-order equation for the �ux J of the form(

1

τ
id+ ε(∇∇·)2− ε−1∇G ′′(φ)∇·

)
J = r (1.3)

in each time step. �e value of φ is computed using the continuity equation.

For the spatial discretization, we introduce an auxiliary quantity K := −∇∇ · J . �en (1.3)
becomes

1

τ
J − ε∇∇·K − ε−1∇G ′′(φ)∇· J = r. (1.4)

In the weak formulation of the equations for J and K , it is now enough for the vector �elds to
be inH (∇·,Ω). We therefore use theH (∇·)-conformal Raviart–�omas �nite elements.�ese
are especially suited for systems which include the continuity equation, since the divergence
is retained triangle-wise. Appropriate elements for the functionsφ and w are piecewise con-
stant elements. When inserting the discrete K back into (1.4), the inverse of the mass matrix
appears. Since there are nomass-lumping procedures on generalmeshes for Raviart–�omas
elements, the inverse would be dense. To bypass this complication, we propose several so-
lutions. �ey range from simple matrix-free methods to a method known from the area of
mixedmethods, where inter-elementmultipliers are introduced to get a block-diagonalmass
matrix. We adapted the latter successfully to our situation. �e di�erence in the running
times between the di�erent approaches can be a factor of over ��y in typical simulations.

�e work is organized as follows: In Chapter 2, we present the type of equation in some
more detail and show that it has a natural gradient-�ow structure. We review some existence
results and explain the typical behaviour of the solutions at the hand of some examples.

In Chapter 3, we discretize the equation in time based on the gradient-�ow structure. As a
result, we get an equation similar to (1.3) in each time-step. To handle the nonlinearity, we
use Newton’s method. A simple calculation demonstrates that the time-discrete operator is
positive de�nite if τ® ε3. We show that as soon as the system enters the so-called interfacial
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regime, the operator is positive-de�nite for τ ® 1, independent of ε. �erefore, large time
steps are possible. To discretize Cahn–Hilliard-type equations, it is not enough for the time-
step scheme to be A-stable. A�er reviewing several second-order schemes, we choose the
less common TR-BDF2 method. Besides providing the required stability for long time steps,
it contains an embedded third-order scheme which can be used for time-adaptivity.

�e spatial discretization outlined above is presented in Chapter 4: a�er explaining the idea,
we follow another approach which yields the same result but allows to prove existence of the
fully discrete solution and error estimates. �en, in Section 4.8, we present four methods to
handle thementioneddi�cultywith the dense inverse.�emethods are compared in Section
4.11. To adapt the mesh, we do not use a general a-posteriori error estimator. Instead, since
the solutions have a very special structure, we employ a method tailored to our situation.

In Chapters 5 and 6, the results for the two applications, coarsening processes and epitaxial
growth, are presented.

We developed a �nite-element toolbox to simulate the equations in two dimensions. Since
available toolboxes o�en do not include the Raviart–�omas elements and, more impor-
tantly, provide no support for skew-periodic meshes, we developed a new so�ware from
scratch. It was written in C++ and is not just a reference implementation, but was optimized
to be able to handle large system sizes and long simulation times. A brief overview can be
found in Section 7.
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Cahn–Hilliard-type equations

�is chapter gives an overview of the type of equations considered in this work: Let Ω be a
domain in Rd and f :R×Rd →R a given function. We consider equations of the type

∂tφ(t ,x )−∇·
[

M (φ(t ,x ))∇
δE

δφ
(φ(t ,x ))

]
= f (t ,x ) (2.1)

with a mobility function M : R→ R+0 and an energy functional E . �e notion of the varia-
tional derivative δE/δφ is explained in De�nition 2.2 on the following page.

If f (t ,x ) = 0, we can identify this equation as the gradient �ow of a dissipative system, see
Sections 2.1 and 2.3. �is will help us as a guideline for the discretization later. In Section
2.4, we present four examples for energy and mobility which will appear in the application
chapters 5 and 6. In Section 2.5, we give a short overview of existence results relevant for
these examples and in Section 2.6 we investigate the typical behaviour of solutions.

In the introductory sections, we will not make any regularity assumptions since we leave the
mobility and the energy unspeci�ed at �rst. Furthermore, we will drop the arguments (t ,x )
and introduce the �ux J :R×Rd →Rd , so that (2.1) becomes

∂tφ+∇· J = f , (2.2a)
1

M (φ)
J =−∇

δE

δφ
(φ). (2.2b)

As boundary conditions we use

(BC1) periodic boundary conditions (then Ω= [0, Lx ]× [0, L y ]) or

(BC2) no-�ux and natural boundary conditions, i.e. J ·ν = 0 and ∇φ ·ν = 0.

We can easily see two important properties of the equation.

5



6 2 Cahn–Hilliard-type equations

Lemma 2.1. If f = 0, then Cahn–Hilliard-type equations are mass conserving and the energy
is a Lyapunov-functional.

Proof. Both properties followdirectly from the de�nition of the equation. Mass conservation
is a consequence of the chosen boundary conditions:

∂t

∫
Ω
φ =

∫
Ω
∂tφ =−

∫
Ω
∇· J =−

∫
∂ Ω

J ·ν = 0.

ALyapunov-functional is a non-increasing functional. To see that the energy is non-increas-
ing, write

∂t E (φ) = di� E (φ)∂tφ =−
∫
Ω

δE

δφ
(φ)(∇· J ) =

∫
Ω
∇
δE

δφ
(φ) · J =−

∫
Ω

1

M (φ)
|J |2 ¶ 0.

A weak form of (2.2) for either boundary condition is

d
dt

∫
Ω
φζ+

∫
Ω
(∇· J )ζ =

∫
Ω

f ζ ∀ζ, (2.3a)∫
Ω

1

M (φ)
J · J̃ −

∫
Ω

δE

δφ
(φ)(∇· J̃ ) = 0 ∀ J̃ . (2.3b)

We have used the de�nition

De�nition 2.2 (Variational derivative). �e variational derivative or L2-gradient of E atφ is
de�ned through ∫

Ω

δE

δφ
(φ)v = di� E (φ)v

for all v ∈ L2(Ω) and the di�erential of E at φ in turn is de�ned as

di� E (φ)v :=
d

dδ
∣∣
δ=0

E (φ+δv ).

◊

Later, we also need

De�nition 2.3 (Second variational derivative). �e second variational derivative of E at φ is
de�ned through ∫

Ω

δ2E

δφ2
(φ)u v =Hess E (φ)(u , v )

for all u , v ∈ L2(Ω). �e Hessian of E is given by

Hess E (φ)(u , v ) :=
d

dδ

d

dε
∣∣
ε,δ=0

E (φ+εu +δv ).

◊



2.1 Dissipative systems 7

2.1 Dissipative systems

We now want to embed the above equation in a more general framework, namely gradient
�ows of dissipative systems. �is will help us as a guideline for the discretization later.

Let J :Ω→Rn be a vector �eld ful�lling one of the two boundary conditions and D(J , J ) be
bilinear in J . Let H (J ) be linear in J . �en de�ne the Rayleigh functional by

R[J ] := 1
2

D(J , J )+H (J ). (2.4)

Given a mass conserving system ∂tφ+∇· J = 0 and an energy E (φ), de�ne

H (J ) :=
∫
Ω
∇
δE

δφ
(φ) · J =−di� E (φ)(∇· J ) = di� E (φ)∂tφ =

d
dt

E (φ) (2.5)

and think of D as the dissipation of energy generated by friction. �e Rayleigh principle says

“At any time, the �ux J minimizes the Rayleigh functional”.

�e Euler–Lagrange equations of the Rayleigh functionalR are

D(J∗, J̃ )+H ( J̃ ) = 0 ⇐⇒ D(J∗, J̃ )+
∫
Ω
∇
δE

δφ
(φ) · J̃ = 0 ∀ J̃ . (2.6)

Taking J̃ = J∗, we get with (2.5)

d
dt

E (φ)+D(J∗, J∗) = 0,

i.e. the minimizing �ux balances the change of energy and the dissipation subject to mass
conservation.

Example: thin-�lm equation

As a prototype of a Cahn–Hilliard-type equation, we take a short look at the thin-�lm equa-
tion. For a more detailed presentation, see e.g. Oron et al. [1997].

h(t ,x )
Starting point are the equations for a viscous, incompress-
ible �uid: the Navier–Stokes equations. Let h(t ,x ) denote the
height of the �uid and denote by H and L the typical height
and length of the �uid. Assuming that H � L, the horizontal
component of the �uid’s velocity �eld is averaged in vertical
direction. �is averaged quantity is then denoted by u .
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�e dissipation of a viscous �uid is proportional to the change of the kinetic energy of the
�uid. In the lubrication approximation considered here, the dissipation in non-dimensional
form is given by ∫

Ω
h2−q |u |2 , q ∈ [0, 3].

Mass conservation means
∂t h +∇· (hu ) = 0, (2.7)

so we de�ne JTF := hu . In terms of JTF, the dissipation is given by

DTF(JTF, JTF) =
∫
Ω

1

hq
|JTF|2 =

∫
Ω

1

MTF(h)
|JTF|2

with MTF(h) := hq . �e energy is determined by the surface tension. Since H � L, we can
use a small-slope approximation:

ETF(h) :=
∫
Ω

1
2
|∇h |2 .

Applying Rayleigh’s principle (2.6) yields

1

MTF(h)
JTF =−∇

δE

δh
(h),

which is, together with the continuity equation (2.7), the thin-�lm equation. Note that it has
the form anticipated in (2.2).

Inserting JTF into (2.7) gives the usual form of the thin-�lm equation:

∂t h +∇·
(

hq∇∆h
)
= 0.

Cahn–Hilliard-type equations as dissipative systems

Motivated by the example above, we use the dissipation

D(J , J̃ ) :=
∫
Ω

1

M (φ)
J · J̃ (2.8)

for all Cahn–Hilliard-type equations. In the same way as in the example, we then get from
(2.6) ∫

Ω

(
1

M (φ)
J +∇

δE

δφ
(φ)

)
· J̃ = 0 ∀ J̃ ,

which yields together with mass conservation the system

∂tφ+∇· J = 0

1

M (φ)
J =−∇

δE

δφ
(φ).

�is is (2.2) with f = 0.
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2.2 Some spaces of negative order

Before we can interpret dissipative systems as a gradient �ow, we need to de�ne someHilbert
spaces. In this section, we assume Ω to be open and bounded and denote by 〈·, ·〉 the dual
pairing between the dual of H 1(Ω), denoted H 1(Ω)′, and H 1(Ω) itself. �e following theorem
can be found e.g. in Adams [2003].

�eorem 2.4 (�e Dual of H 1(Ω)). For every f ∈ H 1(Ω)′ there exist elements f 0 ∈ L2(Ω),
f 1 ∈ L2(Ω)2 such that for all u ∈H 1(Ω) we have

〈 f , u 〉=
∫
Ω

u f 0+
∫
Ω
∇u · f 1. (2.9)

Moreover
‖ f ‖2

H 1(Ω)′ = min
( f 0, f 1)∈A

(
‖ f 0‖2

L2(Ω)+ ‖ f 1‖2
L2(Ω)

)
, (2.10)

where
A=

{
( f 0, f 1)∈ L2(Ω)× L2(Ω)2 | (2.9) holds for every u ∈H 1(Ω)

}
.

�e element satisfying (2.9) and (2.10) is unique.

We will de�ne a norm that is easier to handle. First, we de�ne a scalar product on H 1(Ω)′.

De�nition 2.5 (H−1 scalar product). Given g 1, g 2 ∈H 1(Ω)′ withmean zero (in the sense that
〈g i , 1〉= 0), let w1, w2 ∈H 1(Ω) be solutions of

−∆w i = g i inΩ,

∂w i

∂ ν
= 0 on ∂ Ω

(2.11)

for i = 1, 2. �en de�ne
〈g 1, g 2〉H−1(Ω) :=

∫
Ω
∇w1 ·∇w2.

◊

De�nition 2.6 (H−1 norm). Given f ∈H 1(Ω)′ with mean zero, we de�ne

‖ f ‖2
H−1(Ω) := 〈 f , f 〉H−1(Ω).

◊

We now show that this norm is equivalent to the one de�ned in (2.10):

Lemma 2.7. �e norms ‖·‖H 1(Ω)′ and ‖·‖H−1(Ω) are equivalent.

Proof. Let w ∈H 1(Ω) be a solution of

−∆w = f in Ω (2.12)

with Neumann boundary conditions.
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1© ‖·‖H 1(Ω)′ ¶C‖·‖H−1(Ω)

Set f 0 =w , f 1 =∇w . �en by Poincaré’s inequality

‖ f ‖2
H 1(Ω)′ ¶ ‖w ‖

2
L2(Ω)+ ‖∇w ‖2

L2(Ω) ¶C‖∇w ‖2
L2(Ω)

2© ‖·‖H−1(Ω) ¶C‖·‖H 1(Ω)′

�e weak form of equation (2.12) is∫
Ω
∇w ·∇v = 〈 f , v 〉=

∫
Ω

f 0v +
∫
Ω

f 1 ·∇v ∀v ∈H 1(Ω).

�erefore, setting v =w , we get with a generic constant C

‖∇w ‖2
L2Ω =

∫
Ω

f 0w +
∫
Ω

f 1 ·∇w

¶ ‖ f 0‖L2(Ω)‖w ‖L2(Ω)+ ‖ f 1‖L2(Ω)‖∇w ‖L2(Ω)

¶C‖ f 0‖L2(Ω)‖∇w ‖L2(Ω)+ ‖ f 1‖L2(Ω)‖∇w ‖L2(Ω)

¶C‖∇w ‖L2(Ω)

(
‖ f 0‖L2(Ω)+ ‖ f 1‖L2(Ω)

)
using Hölder and Poincaré. Dividing by ‖∇w ‖L2(Ω) yields

‖∇w ‖2
L2(Ω) ¶C

(
‖ f 0‖L2(Ω)+ ‖ f 1‖L2(Ω)

)2 ¶C
(
‖ f 0‖2

L2(Ω)+ ‖ f 1‖2
L2(Ω)

)
=C‖ f ‖2

H 1(Ω)′ .

If we use the equation

−∇· (M (x )∇w ) = g instead of −∆w = g

in (2.11), then there still exists a solution to (2.11) as long as the operator is elliptic, i.e. as long as
M (x )¾ θ > 0. �erefore, we can de�neweighted H−1 scalar products and the corresponding
norms:

De�nition 2.8 (weighted H−1 scalar product). Given g 1, g 2 ∈H 1(Ω)′ with mean zero and a
function M with M (x )¾ θ > 0, let w1, w2 ∈H 1(Ω) be solutions of

−∇· (M∇w i ) = g i in Ω,

for i = 1, 2, with Neumann boundary conditions. �en de�ne

〈g 1, g 2〉H−1
M (Ω)

:=
∫
Ω

M∇w1 ·∇w2.

◊

De�nition 2.9 (weighted H−1-norm). Given f ∈H 1(Ω)′ with mean zero and a function M
with M (x )¾ θ > 0, de�ne

‖ f ‖2
H−1

M (Ω)
:= 〈 f , f 〉H−1

M (Ω)
.

◊



2.3 Gradient flow of a dissipative system 11

2.3 Gradient �ow of a dissipative system

Dissipativemass-conserving systems have a natural gradient-�ow structurewhichwe outline
here. Note that this is only a formal analogy.

�e general form of a gradient �ow on a manifoldM is

∂tφ =−∇g E (φ), (2.13)

where the gradient ∇g is de�ned by the metric g onM through

gφ(∇g E , v ) = di� E (φ)v ∀v ∈ TφM. (2.14)

Here, TφM is the tangent space in the point φ. Inserting (2.13) into (2.14) yields

gφ(∂tφ, v )+di� E (φ)v = 0 ∀v ∈ TφM. (2.15)

To render the gradient �ow meaningful, we have to choose a manifold and a metric on it.
Since the system is mass conserving, it is natural to consider the manifoldM of all functions
with a constant mass c . �e tangent space is then the space of all functions which do not
change the mass, i.e. with mean zero.

M=

{
φ
∣∣∣∫
Ω
φ = c

}
, TφM=

{
v
∣∣∣∫
Ω

v = 0

}
.

As metric, we use the weighted H−1 scalar product introduced in the previous section. A
motivation for this choice can be found at the end of this section. �en, the gradient �ow is

〈∂tφ, v 〉H−1
M
+di� E (φ)v = 0 ∀v ∈ TφM.

By de�nition, this is ∫
Ω
∇w ·M (φ)∇w̃ +

∫
Ω

δE

δφ
(φ)v = 0,

where w and w̃ are the solutions of

−∇· (M (φ)∇w ) = ∂tφ in Ω −∇· (M (φ)∇w̃ ) = v in Ω
∇w ·ν = 0 on ∂ Ω, ∇w̃ ·ν = 0 on ∂ Ω.

Now de�ning
J :=M (φ)∇w and J̃ :=M (φ)∇w̃ ,

we get
∂tφ+∇· J = 0 and v =−∇· J̃ ,

therefore obtaining Equation (2.2a). �e gradient �ow becomes∫
Ω

1

M (φ)
J · J̃ −

∫
Ω

δE

δφ
(φ)(∇· J̃ ) = 0, (2.16)

which is Equation (2.3b).
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Remark. In applications, the variational derivative of the energy is o�en called chemical po-
tential, compare Rowlinson [1979]. Using the relation J = M (φ)∇w to replace J in (2.16)
and integrating by parts shows

w =
δE

δφ
(φ). (2.17)

◊

As amotivation for the choice of themetric, consider the following: Given a change v ∈ TφM
of φ ∈M, we look for the �ow J∗ realizing v while dissipating the least energy. �e length
of v is then de�ned as the amount of energy dissipated by J∗:

‖v ‖2 :=min
J̃∈Zv

D( J̃ , J̃ )
(2.8)
= min

J̃∈Zv

∫
Ω

1

M (φ)

∣∣ J̃ ∣∣2 with Zv =
{

J̃ | v +∇· J̃ = 0
}

.

�e optimality conditions are

1

M (φ)
J =∇w and v +∇· J = 0.

�us, we get for the length of v

‖v ‖2 =
∫
Ω
∇w ·M (φ)∇w with −∇·

(
M (φ)∇w

)
= v

and can identify the length as
‖v ‖2 = ‖v ‖2

H−1
M

.

2.4 Four examples

We will concentrate in the applications on energies of the form

E (φ) =
∫
Ω

1
2

∣∣∇φ∣∣2+G (φ), (2.18)

where G (φ) ¾ 0 is a potential. We call this type of energy a Ginzburg–Landau-type free
energy. Such an energy was already used by Cahn and Hilliard [1958], where it describes the
interfacial energy of an isotropic system of nonuniform composition.

�e time discretization carried out in Chapter 3 can be done without knowing the precise
form of the energy, but the spatial discretization in Chapter 4 will assume a Ginzburg–
Landau-type energy, which leaves us with the choice of a mobility M (φ) and a potential
G (φ). In Chapters 5 and 6 we consider various examples, which we shortly present here. See
the respective chapters for details.
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Chapter 5 considers a temperature-dependent model for the evolution of a binary mixture of
an alloy. Denote the concentration of the �rst component by c1 = (φ+1)/2. Since only c1 ∈
[0, 1] make sense, only values φ ∈ [−1, 1] have a physical meaning. �is model is described
by

• the variable quench (VQ) equation. It uses the potential GVQ : [−1, 1]→R,

GVQ(φ) = 5
2

(
β (1−φ2)+ (1+φ) log(1+φ)+ (1−φ) log(1−φ)

)
,

where β corresponds to the inverse of the temperature. GVQ is continuous and bound-
ed in [−1, 1], but the derivative G ′VQ diverges at ±1. �e mobility MVQ : [−1, 1]→R+0
is

MVQ(φ) = 1−φ2,

i.e. it degenerates at ±1. Due to this degeneracy, u will stay in [−1, 1], see Elliott and
Garcke [1996].

For 0 < β ¶ 1, i.e. at high temperatures, the potential is convex with a minimum at zero.
Below the critical temperature βcrit = 1, i.e. for β > 1, the potential is a double-well potential.
Letting go the temperature to zero (β � 1) or to the critical value (0 < β − 1� 1) yields,
respectively, the

• deep quench (DQ) equation with the same degenerate mobility

MDQ(φ) = 1−φ2,

but with a concave potential

GDQ(φ) = 15
2
(1−φ2).

Again, since the mobility degenerates at ±1, the values of φ stay in [−1, 1].

• shallow quench (SQ) equation with a constant mobility and a double-well potential
GSQ :R→R

GSQ(φ) = 15
4
(1−φ2)2.

Due to the constant mobility, the values ofφ may leave the interval [−1, 1] since there
is no maximum principle, so GSQ is de�ned on all of R.

Finally, we consider a di�erent physical system, namely crystal growth. Here, φ does no
longer represent volume fractions, but atomic height units of a crystal. �us, mobility and
potential are de�ned on [0, 1] and then continued periodically. However, for the analysis,
one should consider a potential with �nitely many wells and then, say, quartic growth, so
that GEG is coercive. �e equations for

• epitaxial growth use the continuously di�erentiable mobility MEG :R→R

MEG(φ) = (1+ cφp+2(1−φ)2)−1,

which is bounded away from zero: 0 < c (p ,ε,ζ−) ¶ MEG(φ) ¶ 1. Here, p � 1 is a
numerical parameter. In [0, 1], the multi-well potential GEG :R→R is given by

GEG(φ) = 18φ2(1−φ)2.
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�e properties of the di�erent mobilities and potentials are summarized in Table 2.1.

Remark 2.10. Due to the periodicity, the potential for epitaxial growth is only in C 2. As can
be seen from the asymptotic expansion in Otto et al. [2004], the potential has to ful�l

• G is a periodic function with period one,

• G vanishes for all integers,

• G is normalized by
∫ 1

0

√
2G (x ) dx = 1.

A simple function with these properties is GEG. If a potential in C∞ is favoured, another
possible choice is

G̃EG(φ) = π2

16

(
1− cos(2πφ)

)
.

�e optimal pro�le (see Section 2.6.3) is then

φ∗(x ) = 2
π

arctan
(

exp(π
2

2ε
x )
)

.

However, in this work and in the numerics, we will use the potential GEG. ◊

2.5 Existence of solutions

We review here some results for the two-dimensional case.

Remark 2.11. In most articles, an energy with a parameter γ in front of the Dirichlet term is
assumed,

Eγ(φ) =
∫
Ω

γ

2

∣∣∇φ∣∣2+G (φ).

For our purposes, set γ= ε2 and rescale time t = ε−1t̂ and energy E = εÊ . �is yields

Ê (φ) =
∫
Ω

ε

2

∣∣∇φ∣∣2+ 1

ε
G (φ), (2.19)

which is the energy used in epitaxial growth. For (SQ), (VQ) and (DQ), simply set ε = 1. ◊

2.5.1 Constant mobility

In the constant mobility case, Equation (2.1) with (BC2) becomes

∂tφ+ ε∆2φ− ε−1∆G ′(φ) = 0.

�ere is a lot of literature on this equation fromwhichwe pick the following two results, valid
for a double-well potential and therefore covering (SQ):
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�eorem 2.12 (Elliott and Songmu [1986, Remark 2]). LetΩ be a bounded domain inR2 with
a smooth boundaryΓ and exterior normal ν . AssumeG ′(φ) = γ2φ3+γ1φ2−φ with γ2 > 0. For
φ0 ∈H 2(Ω) with ∂ φ0/∂ ν = 0 on Γ, there exists a unique global solution φ ∈H 4,1(Ω× (0, T )).

�eorem 2.13 (Novick-Cohen [1998, �eorem 3.1]). Let Ω be a bounded domain in R2 and
assume G ′(φ) = φ3 − φ. If φ0 ∈ (H 1)′(Ω), then there exists a unique solution φ(x , t ) ∈
C ([0, T ], (H 1)′(Ω)) such that

φ ∈ L∞(δ,∞; H 1(Ω)) ∩ L∞(δ,∞; L4(Ω)),

∂tφ ∈ L2(δ,∞; (H 1)′(Ω)).

2.5.2 Variable mobility

�e �rst to consider a variable mobility in more than one space dimension were Elliott and
Garcke [1996], proving existence of weak solutions for both the non-degenerate and the de-
generate case. Using (2.17), we write (2.1) as

∂tφ−∇·M (φ)∇w = 0, (2.20a)
w =−ε∆φ+ ε−1G ′(φ) (2.20b)

with the boundary conditions (BC2)

∇φ ·ν = 0 and ∇w ·ν = 0 on ∂ Ω× (0, T ).

In the case of a non-degenerate variable mobility, we have

�eorem 2.14 (Elliott and Garcke [1996, �eorem 2]). Let Ω be a bounded domain in R2

with Lipschitz boundary. Assume that M is continuous on R and there exist m1, M 1 > 0
such that m1 ¶M (φ) ¶M 1. Furthermore, assume that G ∈ C 1(R) and there exist constants
C1,C2,C3,q > 0 such that

G (φ)¾−C1 and
∣∣G ′(φ)∣∣¶C2

∣∣φ∣∣q +C3.

If φ0 ∈H 1(Ω), then there exists a pair of functions (u , w ) such that

φ ∈ L∞(0, T ; H 1(Ω)) ∩ C ([0, T ]; L2(Ω)),

∂tφ ∈ L2(0, T ; (H 1)′(Ω)),

w ∈ L2(0, T ; H 1(Ω)),

which satisfy (2.20) in the following weak sense∫ T

0

〈ζ,∂tφ〉=−
∫
Ω×(0,T )

M (φ)∇w ·∇ζ

for all ζ∈ L2(0, T ; H 1(Ω)) and∫
Ω

wψ= ε
∫
Ω
∇φ ·∇ψ+ ε−1

∫
Ω

G ′(φ)ψ

for allψ∈H 1(Ω) and almost all t ∈ [0, T ].
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If the initial datum is more regular, one can even get classical solutions for the case of a non-
degenerate mobility:

�eorem 2.15 (Liu et al. [2006]). Let Ω be a bounded domain in R2 with smooth boundary.
Assume that M (φ) ∈ C 1(R) with bounded M ′ and there exist m1, M 1 > 0 such that m1 ¶
M (φ) ¶ M 1. Furthermore, assume that G ∈ C 3(R) and there exist constants C1, . . . ,C4 such
that

G (φ)¾C1

∣∣φ∣∣4−C2 and
∣∣G ′′(φ)∣∣¶C3

∣∣φ∣∣2+C4.

If φ0 is smooth with mean zero and appropriate compatibility conditions, then the problem
(2.20) admits a unique classical solution.

�ese two theorems are also valid for the case M (φ)≡ const, thus covering (SQ) and (EG),
but do not allow for the logarithmic potential. In contrast, the following theorem allows
(and requires) a degenerate mobility and is valid for logarithmic and concave potentials and
therefore covers (DQ) and (VQ). Actually, more general potentials including the double-well
potential are considered in the article, which we neglect here to reduce notation overhead.

�eorem 2.16 (Elliott and Garcke [1996, �eorem 1]). Let either ∂ Ω ∈ C 1,1 or Ω convex.
Assume that G is either the logarithmic potential GVQ or the concave potential GDQ. Suppose
furthermore φ0 ∈H 1(Ω) with

∣∣φ0

∣∣¶ 1 a.e. and∫
Ω

(
G (φ0)+Ψ(φ0)

)
¶C , C ∈R+,

where Ψ is de�ned by

Ψ′′(φ) = (1−φ2)−1, Ψ′(0) = 0 and Ψ(0) = 0.

�en there exists a pair (φ, J ) such that

φ ∈ L2(0, T ; H 2(Ω)) ∩ L∞(0, T ; H 1(Ω)) ∩ C ([0, T ]; L2(Ω)),

∂tφ ∈ L2(0, T ; (H 1)′(Ω)),∣∣φ∣∣¶ 1 almost everywhere in Ω× (0, T ),

J ∈ L2(Ω× (0, T ),R2)

which satis�es the equation

∂tφ+∇· J = 0,

J =−M (φ)∇
(
−ε∆φ+ ε−1G ′(φ)

)
in the following weak sense∫ T

0

〈ζ(t ),∂tφ(t )〉=
∫
Ω×(0,T )

J ·∇ζ ∀ζ∈ L2(0, T ; H 1(Ω))∫
Ω×(0,T )

J ·ν =−
∫
Ω×(0,T )

ε∆φ∇· (M (φ)η)+ ε−1(MG ′′)(φ)∇φ ·η

for all η∈ L2(0, T ; H 1(Ω,R2)) ∩ L∞(Ω× (0, T ),R2) which ful�l η ·ν = 0 on ∂ Ω× (0, T ).
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2.6 Morphology of solutions

To illustrate the typical behaviour of a solution to a Cahn–Hilliard-type equation, we return
to the variable quench equation.

Consider again the experiment mentioned in Section 2.4, where we had a homogeneous
mixture of two components, i.e. φ0 ≡ const. When the temperature is lowered to a value
T = 1/β < 1, the potential becomes a double-well (see Figure 5.1 on page 91) and, depending
on the volume fractions of the mixture, the homogeneous state may become unstable and
then the mixture starts to decompose into its components.

If the temperature, themixture is quenched to, is close to T = 1, we are in the shallow quench
regime. If the mixture is quenched to T = 0, we are in the deep quench regime. Given that
the volume fractions are such that the state is unstable (that is the case ifG ′′(φ0)< 0, see next
section), the development of the initial data can be roughly divided into two parts:

1. Spinodal decomposition: In this initial regime, a most unstable wavelength λ∗ devel-
ops and then grows in amplitude until it reaches theminima g ± of the potential, which
are called the bulk equilibrium values.

2. Interfacial regime: A�er the �rst phase, we are in a regime of developed interfaceswhere
the values of φ are mostly at g ± with thin interfaces in-between.

We now describe these two regimes in a little more detail.

2.6.1 Spinodal decomposition

To check the stability of a homogeneous mixture, we insert initial data of the form

φ =φ0+δh,

whereφ0 is constant, δ� 1 and h is anO(1)-function, into the Cahn–Hilliard equation with
Ginzburg–Landau-type energy, namely

∂tφ+∇·
[

M (φ)∇
(
∆φ−G ′(φ)

)]
= 0, (2.21)

where we assume M (φ0)> 0. �is yields

δ∂t h +∇·
[

M (φ0+δh)∇
(
δ∆h −G ′(φ0+δh)

)]
= 0.

Since

M (φ0+δh) =M (φ0)+δM ′(φ0)h +O(δ2),

G ′(φ0+δh) =G ′(φ0)+δG ′′(φ0)h +O(δ2),
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Figure 2.1: Double-well potential for shal-
low quench. The orange area is the spin-
odal interval, i.e. initial values φ0 ≡ const
in this region are unstable.

Figure 2.2: At later times, the domain de-
composes into areas whereφ ≈ g ± (grey
ares) and transition regions (white areas).

we have

δ∂t h +∇·
[
(M (φ0)+δM ′(φ0)h +O(δ2))∇

(
δ∆h −G ′(φ0)−δG ′′(φ0)h +O(δ2)

)]
= 0

⇐⇒ δ∂t h +δ∇·
[

M (φ0)∇
(
∆h −G ′′(φ0)h

)]
+O(δ3) = 0.

�erefore, theO(δ)-equation is

∂t h +M (φ0)
(
∆2h −G ′′(φ0)∆h

)
= 0.

Fourier transformation in the space variable yields

d
dt
F (h) =−M (φ0)

(
|k |4+G ′′(φ0)|k |2

)
F (h)

and the solution to this ODE is

F (h) = h0 exp(−M (φ0)(|k |4+G ′′(φ0)|k |2)t ) =: h0 exp(ω(|k |)t )

with the dispersion relation

ω(k ) =−M (φ0)(|k |4+G ′′(φ0)|k |2).

So the mixture is stable if G ′′(φ0) ¾ 0 and unstable for some |k | if G ′′(φ0) < 0. �e points
whereG ′′(φ0) = 0 are called the spinodal points, and the interval between them, whereG ′′ <
0, is the spinodal interval. See Figure 2.1 for a plot in the case of GSQ.

If φ0 is unstable, the most unstable wave number is

ω′(k ∗) = 0 ⇐⇒ k ∗ =
√
− 1

2
G ′′(φ0). (2.22)

Since G ′′(φ0)< 0, k ∗ is well de�ned. For the most unstable wavelength λ∗, we get

λ∗ =
2π

k ∗
= 2π

√
−2

G ′′(φ0)
. (2.23)
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Figure 2.3: On a fast timescale, the tran-
sition profile approaches the optimal pro-
file: the thick black line is tanh-like.

Figure 2.4: On a slow timescale, the in-
terface evolves according to the Mullins–
Sekerka free boundary problem: the is-
lands become circular and the larger is-
land grows at the expense of the small
one (Ostwald ripening).

2.6.2 Interfacial regime

A�er the spinodal decomposition, we expect the following structure of the solution: Ω is
separated into regions Ω+(t ) and Ω−(t ) where the solution is close to the bulk equilibrium
values:

φ ≈ g ± in Ω±(t ).

In-between these parts are thin transition regions with “centre” Γ(t ), see Figure 2.2.

Various aspects of the morphology of the solution take place on di�erent time scales, so we
rescale time and space by

t 7→ εαt and x 7→ εx , (2.24)

where we assume ε� 1.

• For the kind of data just described and the shallow quench regime, i.e. for the Cahn–
Hilliard equation, Pego [1989] investigated (for f = 0) the behaviour using formal
asymptotic expansion. He found that on a fast timescale (α = 0), the solution in the
transition layer approaches the optimal transition pro�le, see Figure 2.3. �is optimal
pro�le will be computed in Section 2.6.3.

On a much slower timescale (α= 3), the centre manifold Γ(t ) evolves to highest order
according to the non-localMullins–Sekerka free boundary problem

−∆w± = 0 in Ω \Γ(t ),
w± =

√
10
3
κ at Γ(t ),

∇w± ·ν = 0 on ∂ Ω.

�e interface Γ(t )moves with normal velocity

V = 1
2
∇(w+−w−) ·ν ,
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where κ is the curvature of Γ and ν the outer normal.

�is was made rigorous by Alikakos, Bates, and Chen [1994], who calculated the error
between the true solution of the Cahn–Hilliard equation and the formal expansion,
thereby gaining a rigorous proof of the convergence ε→ 0 under the assumption that
a classical solution of the Mullins–Sekerka free-boundary problem exists.

• For the deep quench (and variable quench for very low temperature), Cahn, Elliott, and
Novick-Cohen [1996] showed by formal asymptotic expansion that in the scaling α=
4, the sharp-interface problem is motion by surface di�usion, i.e. the normal velocity
of the sharp interface is given by

V '∆sκ,

where ∆s is the Laplace–Beltrami operator on Γ. �e sign is opposite to Cahn et al.
[1996] since their normal has opposite sign.

• Otto, Penzler, Rätz, Rump, and Voigt [2004] showed by formal asymptotic expansion
that in the case of epitaxial growth, the interface evolves on the timescale α = 3 ac-
cording to a free boundary problem similar to Mullins–Sekerka:

−∆w = f in Ω \Γ(t ),
w+ = κ at Γ(t ),

w−+ζ− ∂w−

∂ ν
= κ at Γ(t )

with normal velocity
V =∇(w+−w−) ·ν .

See Sections 6.3 and 6.4 for details.

Knowing that these Cahn–Hilliard-type equations have sharp-interface limits, we can de-
duce their long-time behaviour from the properties of the limit models.

�e sharp-interface limits also have a gradient-�ow structure (if f = 0) and for all of them the
length of the interface is the energy functional. �erefore, we infer that the Cahn–Hilliard-
type equations reduce the length of the interface over time. One obvious consequence is that
if Ω+ is simply connected, it will become a ball. �is is then a steady state.

�e gradient-�ow structure for the sharp-interface limits is lined out the Section A.1.

2.6.3 Optimal pro�le

To compute the optimal transition pro�le, we reduce the problem to a one-dimensional sit-
uation. To that end, we introduce a normal–tangential coordinate system (s , r ) along the
interface, where s measures the position on the interface and r the distance from the in-
terface. Finally, we stretch the variable in normal direction such that the “interface ends at
±∞”.
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For a �xed s , we search a functionu ∗(z )whichminimizes the energy subject to the boundary
values

lim
z→±∞

u ∗(z ) = g ±.

Using the scaling (2.19), the energy to be minimized is

Eε(φ) =
∫
Ω

ε

2

∣∣∇φ∣∣2+ ε−1G (φ).

Following Modica and Mortola [1977], we use Young’s inequality to see that

Eε(φ)¾
∫
Ω

∣∣∇φ∣∣√2G (φ)

and “=” if and only if
ε
∣∣∇φ∣∣=√2G (φ),

which is equipartition of energy. In one space dimension, the above relation is the ordinary
di�erential equation

ε∂xφ =±
√

2G (φ).

For the potentials of the shallow-quench (SQ) and deep-quench (DQ) Cahn–Hilliard equa-
tions, the respective one-dimensional solutions are

u ∗SQ(z ) = tanh

(√
15
2

z

)
and u ∗DQ(z ) =


−1 z ¶−π/

p
60

sin(
p

15z ) |z |¶π/
p

60

1 z ¾π/
p

60

, (2.25)

where we set ε = 1 and selected the solution with u ∗(0) = 0. For the variable quench, there
is no closed form. In Figure 2.5, we plotted these pro�les.

Finally, using GEG as potential and requesting u ∗(0) = 1/2, we obtain

u ∗EG(z ) =
1
2
+ 1

2
tanh(3ε−1z ).

�e solution has values very close to the minima of G most of the time and has a very thin
connecting interface, see Figure 2.6 for a plot of the pro�le and for the width of the interface.
Since the bulk equilibrium values are only attained at ±∞, the width depends on where one
de�nes the beginning and end of the interface.
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Figure 2.5: The optimal transition profiles of the deep-, variable- and shallow-quench Cahn–
Hilliard equations. For variable quench, a value of β = 4 for the inverse temperature was used.
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Figure 2.6: Plot of the minimizer u ∗EG of Eε for ε = 1/16. The table shows the width of the
interface. The width is measured between the points having the indicated distance to the bulk
equilibrium values, which are here zero and one.
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3

Time Discretization

In the following two chapters, we discretize Equation (2.3). We use Rothe’s method and dis-
cretize �rst in time (this chapter) and then in space (Chapter 4), so that we can change the
mesh between time steps. �e discretization in time yields a symmetric system, which is
positive de�nite for time steps that are small enough. In the worst case, the time steps are
bounded by the usual ε3. However, in most of the situations the bound is only a constant
independent of ε.

First a word on notation. Since we take into consideration a number of time-step schemes,
we try to unify the notation. Some of the schemes divide one time step into one or more
sub-steps

[nτ, (n +1)τ] 7→ [nτ, (n +θ )τ]∪ . . . , θ ∈ (0, 1).

To distinguish between the time steps of length τ and the sub-steps of length < τ, we enu-
merate the time steps with n and the sub-steps with k . Here, the sub-steps are counted from
the point of view of the current sub-step:

φk+1

φk φk+1

φk
substep 1

substep 2

φn φn+θ φn+1

In each of the sub-steps, the schemes again have the form of a one-step scheme (there will
be one exception though), so it is enough to consider a one-step method valid for one sub-
interval.

Summing up, we use a semi-implicit time discretization

1

aτ
(φk+1−φk ) = F (φk+1)+γF (φk ), (3.1)

where a ∈ (0, 1) and γ¾ 0 are constants which depend on the choice of the time-step scheme,
see Table B.1 on page 163 for an overview.

25
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3.1 Derivation of the time-discrete equations

�e guideline for our discretization is the gradient-�ow structure outlined in Section 2.3.
�at is, we discretize the equation

∂tφ =−∇g E (φ).

Note that the ideas presented in this section are independent of the concrete form of the
energy.

Remember that the metric is not constant onM, but depends onφ ∈M. We use an explicit
discretization for this base point and the semi-implicit discretization (3.1) for the gradient:

∂ h
t φ

k+1 =−∇g k E (φk+1)−γ∇g k E (φk ), (3.2)

where we used the abbreviation

∂ h
t φ

k+1 :=
1

aτ
(φk+1−φk ).

Repeating the calculations of Section 2.3, we get

∂ h
t φ

k+1+∇· J∗ = 0, (3.3a)∫
Ω

1

M (φk )
J∗ · J̃ −

∫
Ω

(
δE

δφ
(φk+1)+γ

δE

δφ
(φk )

)
(∇· J̃ ) = 0. (3.3b)

To incorporate the source term f , compare these equations to (2.3b). De�ning J k+1 and J k

by ∫
Ω

1

M (φk )
J k+1 · J̃ −

∫
Ω

δE

δφ
(φk+1)(∇· J̃ ) = 0,∫

Ω

1

M (φk )
J k · J̃ −

∫
Ω

δE

δφ
(φk )(∇· J̃ ) = 0,

we �nd
J∗ = J k+1+γJ k ,

so that we can conclude that the driving force f has to appear as f k+1 + γ f k on the right
hand side. We assume for simplicity that f is constant in time, since this is the case in all our
examples. �en, the time-discrete equations are
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∂ h
t φ

k+1+∇· J∗ = (1+γ) f , (3.4a)∫
Ω

1

M (φk )
J∗ · J̃ −

∫
Ω

(
δE

δφ
(φk+1)+γ

δE

δφ
(φk )

)
(∇· J̃ ) = 0. (3.4b)

Since the variational derivative of E will be nonlinear in typical applications, we useNewton’s
method. To �nd the right form for Newton’s method, let us take a look back at the strong
version of the equation:

1

aτ
(φk+1−φk )+∇· J∗ = (1+γ) f ,

1

M (φk )
J∗ =−∇

(
δE

δφ
(φk+1)+γ

δE

δφ
(φk )

)
.

In order to avoid multiple indices, we just write φ instead of φk+1. Inserting the second
equation into the �rst yields

F (φ) :=
1

aτ
(φ−φk )+∇·

[
−M (φk )∇

(
δE

δφ
(φ)+γ

δE

δφ
(φk )

)]
− (1+γ) f = 0.

�en the di�erential of F is

di� F (φ)ψ=
1

aτ
ψ+∇·

[
−M (φk )∇

δ2E

δφ2
(φ)ψ

]
.

�erefore, Newton’s method

F (φi )+di� F (φi )(φi+1−φi ) = 0

amounts to
1

aτ
(φi −φk )+

1

aτ
(φi+1−φi )

+∇·
[
−M (φk )∇

(
δE

δφ
(φi )+γ

δE

δφ
(φk )+

δ2E

δφ2
(φi )(φi+1−φi )

)]
︸ ︷︷ ︸

=: J i+1
strong

−(1+γ) f = 0.

Let us again mention the notation: we write φi+1 for φk+1,i+1 and have

φk+1,0 =φk and φk+1,I =:φk+1,

where I ¾ 1 is the number of Newton steps (I = 1 corresponds to the linearization of the
nonlinearity). Transferring the above to the weak formulation leads us to

1

aτ
(φi+1−φk )+∇· J i+1

∗ = (1+γ) f (3.5a)∫
Ω

1

M (φk )
J i+1
∗ · J̃ −

∫
Ω

(
δE

δφ
(φi )+γ

δE

δφ
(φk )+

δ2E

δφ2
(φi )(φi+1−φi )

)
(∇· J̃ ) = 0. (3.5b)
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To be able to insert the �rst equation into the second, we modify the second equation by
writing

φi+1−φi = (φi+1−φk )− (φi −φk ).

Furthermore, we divide (3.4b) by aτ and, to simplify notation, de�ne

w ∗ :=w i +γw k with w i :=
δE

δφ
(φi ), w k :=

δE

δφ
(φk ). (3.6)

�is yields for Equation (3.5b)∫
Ω

1

aτM (φk )
J i+1
∗ · J̃ −

∫
Ω

δ2E

δφ2
(φi )

1

aτ
(φi+1−φk )(∇· J̃ )

=
∫
Ω

1

aτ

(
w ∗−

δ2E

δφ2
(φi )(φi −φk )

)
(∇· J̃ ).

Now inserting Equation (3.5a) into the above equation, we can eliminate φi+1 in the �ux-
equation and get for the i -th Newton-step the transport- and �ux-equations

1

aτ
(φi+1−φk )+∇· J i+1

∗ = (1+γ) f (3.7a)

∫
Ω

1

aτM (φi )
J i+1
∗ · J̃ +

∫
Ω

δ2E

δφ2
(φi )(∇· J i+1

∗ )(∇· J̃ )

=
∫
Ω

(
1

aτ
w ∗+

δ2E

δφ2
(φi )

(
(1+γ) f −

1

aτ
(φi −φk )

))
(∇· J̃ ). (3.7b)

Here we also replaced M (φk ) by M (φi ), since it seems reasonable to use always the latest
available φ for the mobility. Putting things together, we get three loops for a solving proce-
dure:

• an outer loop counting the time steps n ,

• an intermediate loop counting the sub-timesteps (one to three depending on the time-
step scheme) and

• an inner loopperforming theNewton-steps i . AsNewton’smethod converges quadrat-
ically when close enough to the solution, it is usually enough to have two or three
Newton-steps, see Figure A.6 on page 159 for an example. �e inner loop consists of
two parts:

1. Given φi and φk , �nd J i+1
∗ such that Equation (3.7b) is satis�ed.

2. Use Equation (3.7a) to calculate φi+1.
Remark 3.1. One advantage of the discretization via the �ux J is the possibility to use skew-
periodic boundary conditions, see Section 7.2.2 for details on this. �is is crucial for the
simulation of certain phenomena in epitaxial growth, see Chapter 6. ◊
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3.2 Properties of the time-discrete operator

In this section we consider Ginzburg–Landau-type energies E : H 1(Ω)→R,

E (φ) =
ε

2

∫
Ω

∣∣∇φ∣∣2+ ε−1

∫
Ω

G (φ)

and assumeG ′′(x )¾−β . For themobility, we assume 0¶M (φ)¶ 1.�ese assumptions hold
for all our applications, compare to Table 2.1 on page 15. Furthermore, we write τa := aτ.
�e derivatives of the energy are

δE

δφ
(φ) =−ε∆φ+ ε−1G ′(φ) and

δ2E

δφ2
(φ) =−ε∆+ ε−1G ′′(φ).

So given φi ∈H 1(Ω), we have

δE

δφ
(φi ) =: w i ∈H−1(Ω)

and also
δ2E

δφ2
(φi )

(
(1+γ) f −

1

τa
(φi −φk )

)
=: r2 ∈H−1(Ω)

for given f ∈H 1(Ω). �erefore, setting

r :=
1

τa
w ∗+ r2, (3.8)

where w ∗ is as de�ned in (3.6), we have r ∈H−1(Ω). We need the following de�nition

De�nition 3.2 (H-grad-div). �e space H (∇∇·,Ω) is the space of all vector �elds ξ∈ L2(Ω)2

with ∇·ξ∈H 1(Ω). �e norm is given by

‖ξ‖2
H (∇∇·,Ω) := ‖ξ‖2

L2(Ω)+ ‖∇ ·ξ‖
2
L2(Ω)+ ‖∇∇ ·ξ‖

2
L2(Ω).

When the domain Ω is clear from the context, we may just write H (∇∇·). ◊

�e time-discrete problem (3.7) for Ginzburg–Landau-type energies is then

Given φk ,φi ∈H 1(Ω) and f ∈H 1(Ω), �nd J i+1
∗ ∈H (∇∇·) such that∫

Ω

1

τa M (φ)
J i+1
∗ · J̃ +ε

∫
Ω
(∇∇· J i+1

∗ ) ·(∇∇· J̃ )+
1

ε

∫
Ω

G ′′(φ)(∇· J i+1
∗ )(∇· J̃ ) =

∫
Ω

r (∇· J̃ ) (3.9)

for all J̃ ∈H (∇∇·). �en, calculate φi+1 ∈H 1(Ω) via

φi+1 =φk +τa

(
−∇· J i+1

∗ +(1+γ) f
)

.
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Since J i+1
∗ ∈H (∇∇·) and therefore∇· J i+1

∗ ∈H 1(Ω), we have indeed φi+1 ∈H 1(Ω) and so we
can iterate the whole process. �e boundary conditions for J i+1

∗ and J̃ are either periodic or
J ·ν = 0 and (∇∇· J ) ·ν = 0 on ∂ Ω.

In order to write the time-discrete problem in a shorter way, we de�ne the bilinear form
a : H (∇∇·,Ω)×H (∇∇·,Ω)→R,

aφ(J , J̃ ) =
∫
Ω

1

τa M (φ)
J · J̃ + ε

∫
Ω
(∇∇· J ) · (∇∇· J̃ )+

1

ε

∫
Ω

G ′′(φ)(∇· J )(∇· J̃ ),

and the linear form b : H (∇∇·,Ω)→R,

b ( J̃ ) =
∫
Ω

r (∇· J̃ ).

Using these de�nitions, Equation (3.9) is just

aφi (J i+1
∗ , J̃ ) =b ( J̃ ) ∀ J̃ ∈H (∇∇·). (3.10)

It remains to show that (3.9) admits a solution.

3.2.1 Existence of time-discrete solutions

To show that Problem (3.9) has a unique solution, we consider the minimization problem

min
J̃∈H (∇∇·,Ω)

1
2

aφ( J̃ , J̃ )−b ( J̃ ), (3.11)

which has a unique solution in H (∇∇·) if a is coercive on H (∇∇·,Ω). �is solution then
satis�es Equation (3.9).

Proposition 3.3. For any γ∈ (0,ε), assume that the time-step size τa > 0 is restricted by

τa ¶
1

γ+ (β+εγ)2

4(ε−γ)ε2

.

�en the bilinear form aφ is coercive on H (∇∇·,Ω).

Proof. Since M (φ)¶ 1 and G ′′(φ)¾−β , we have

aφ(ξ,ξ)¾
1

τa

∫
Ω
|ξ|2+ ε

∫
Ω
|∇∇ ·ξ|2−

(
β

ε
+γ

)∫
Ω
|∇ ·ξ|2+γ

∫
Ω
|∇ ·ξ|2

=
1

τa

∫
Ω
|ξ|2+ ε

∫
Ω
|∇∇ ·ξ|2+

β + εγ
ε

∫
Ω
(∇∇·ξ) ·ξ+γ

∫
Ω
|∇ ·ξ|2
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and by Young’s inequality

¾
1

τa

∫
Ω
|ξ|2+ ε

∫
Ω
|∇∇ ·ξ|2+γ

∫
Ω
|∇ ·ξ|2

−
β + εγ
ε

(
ε(ε−γ)
β + εγ

∫
Ω
|∇∇ ·ξ|2+

β + εγ
4ε(ε−γ)

∫
Ω
|ξ|2
)

=

(
1

τa
−
(β + εγ)2

4(ε−γ)ε2

)∫
Ω
|ξ|2+γ

∫
Ω
|∇ ·ξ|2+γ

∫
Ω
|∇∇ ·ξ|2

and due to the restriction on τa this is

¾ γ‖ξ‖2
H (∇∇·,Ω).

Remark. Using a value of γ = cε with 0 < c < 1 yields a restriction of the order ε3. �e
parameter γ used here has nothing to do with the parameter γ in the time-step scheme. ◊

Corollary 3.4 (Existence of a solution). For γ∈ (0,ε) and

τa ¶
1

γ+ (β+εγ)2

4(ε−γ)ε2

,

the problem (3.9) admits a unique solution J i+1
∗ ∈H (∇∇·).

We summarize the preceding in

Proposition 3.5. Assumeφ0 ∈H 1(Ω) and f ∈H 1(Ω).�en for all i , k ∈N0 there existφi ,φk ∈
H 1(Ω) and J i+1

∗ ∈H (∇∇·) such that∫
Ω

1

aτM (φ)
J · J̃ + ε

∫
Ω
∇∇· J ·∇∇ · J̃ +

1

ε

∫
Ω

G ′′(φ)(∇· J )(∇· J̃ ) =
∫
Ω

r (∇· J̃ ),

φi+1 =φk +aτ
(
−∇· J i+1

∗ +(1+γ) f
)

,

for all J̃ ∈H (∇∇·), where r ∈H−1(Ω) is given by

r =
1

aτ

(
δE

δφ
(φi )+γ

δE

δφ
(φk )

)
+
δ2E

δφ2
(φi )

(
(1+γ) f −

1

aτ
(φi −φk )

)
.

3.2.2 Positivity

Later, when the equation is also discretized in space, we only have to deal with �nite-dimen-
sional spaces, where every positive bilinear form is elliptic. So from a numerical point of
view, an important question is under which restrictions on the time-step size the operator
aφ is positive de�nite. We �rst look at two extreme situations:
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• On the one hand, setting γ= 0 in Proposition 3.3 yields

aφ(ξ,ξ)¾
(

1

τ
−
β 2

4ε3

)∫
Ω
|ξ|2 .

�us, aφ is positive de�nite if

τ<
4

β 2
ε3. (3.12)

Of course this is only a su�cient condition and is much too restrictive in most cases.
However, the constraint can be sharp in some cases. For instance,G ′′(φ)≡−β is such
a case, see the numerical example in Section A.7. Note that for the potential in the
deep-quench equation, we have G ′′(φ)≡−15 for any φ.

• On the other hand, if φ∗ is a (local) minimizer of the energy E , the Hessian of E is
positive semi-de�nite and so is the conjugate operator

−∇(δ2E (φ∗)/δφ2)∇t .

Having the additional L2-term, aφ∗ is positive de�nite for every τ> 0.

As always, the truth lies in-between the extreme cases. In typical applications we will have, at
least a�er a short time, developed interfaces (see Section 2.6.2).�en, and if the potentialG is
convex at the bulk equilibrium values, we get a less restrictive constraint on τ. To show this,
we quote two theorems from Chen [1994]. We will not state here the full set of assumptions,
but refer to (1.9)–(1.15) inChen’s paper. Essentially, aφε is de�ned that has the formdescribed
in Section 2.6.2. Also, G should be a double-well potential. �en, the Hessian of the energy
is bounded from below.

�eorem 3.6 (Chen [1994],�eorem 2.3). Assume that the above conditions hold. �en there
exists C1 > 0 such that for every ε ∈ (0, 1] and everyψ∈H 1(Ω)∫

Ω
ε
∣∣∇ψ∣∣2+ ε−1G ′′(φε)ψ2 ¾−C1ε

∫
Ω
ψ2. (3.13)

�eorem 3.7 (Chen [1994],�eorem 3.1). �ere exist ε∗ > 0 and C2 > 0 such that if ε ∈ (0,ε∗]
andψ∈H 1(Ω) satisfy ∫

Ω
ε
∣∣∇ψ∣∣2+ ε−1G ′′(φε)ψ2 ¶ 0,

then
−C1ε

∫
Ω
ψ2 ¾−C2

∫
Ω
|∇w |2 , (3.14)

where w is some function with ∆w =ψ.

Note that the right-hand side of (3.14) is the H−1-norm of ψ. With these theorems we can
compute the time-step restriction when we are in a regime of developed interfaces.
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Lemma 3.8. Assume φε is in a state of developed interfaces. �en aφε is positive de�nite if

τ¶C , (3.15)

where C is independent of ε.

Proof.

aφε (ξ,ξ) =
1

τ

∫
Ω

1

M (φε)
|ξ|2+ ε

∫
Ω
|∇∇ ·ξ|2+

1

ε

∫
Ω

G ′′(φε) |∇ ·ξ|2

and by settingψ=∇·ξ

¾
1

τ

∫
Ω
|ξ|2+

∫
Ω

(
ε
∣∣∇ψ∣∣2+ ε−1G ′′(φε)ψ2

)
If the second integral is positive, there is no restriction on τ. If not,

(3.13)
¾

1

τ

∫
Ω
|ξ|2−C1ε

∫
Ω
ψ2.

(3.14)
¾

1

τ

∫
Ω
|ξ|2−C2‖ψ‖2

H−1(Ω)

=
1

τ
‖ξ‖2

L2(Ω)−C2‖∇ ·ξ‖2
H−1(Ω)

¾
(

1

τ
−C2

)
‖ξ‖2

L2(Ω).

�is proves the assertion. For the last inequality, we have used

‖∇ ·ξ‖H−1(Ω) ¶ ‖ξ‖L2(Ω).

To see this, let w be the solution of

−∆w =∇·ξ in Ω and ∇w ·ν = 0 on ∂ Ω.

�en ‖∇ ·ξ‖H−1(Ω) = ‖∇w ‖L2(Ω) by de�nition of the norm and

‖∇w ‖2
L2(Ω) =

∫
Ω
|∇w |2 =

∫
Ω
(−∆w )w =

∫
Ω
(∇·ξ)w =−

∫
Ω
ξ ·∇w ¶ ‖ξ‖L2(Ω)‖∇w ‖L2(Ω)

by Hölder.
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3.3 Time-step schemes

�e discretization we performed in the previous sections was independent of the concrete
choice of a time-step scheme, so any scheme of the form

1

aτ
(φk+1−φk ) = F (φk+1)+γF (φk )

can be used. As we want to allow large time steps, especially in the late stages of our simula-
tion, a second-order scheme is preferable.

As was pointed out byWeikard [2002], it is not enough for Cahn–Hilliard-type equations to
use A-stable schemes. Indeed, we experienced too that perturbations caused by the initial
data were only poorly damped when using Crank–Nicolson. Weikard suggested a scheme
by Bristeau et al. [1987], which did work well for our purposes. However, we found that
another scheme, namely TR-BDF2, is better suited for our equations while requiring less
computational work.

All time-step schemes we considered, together with their stability properties, are presented
in Appendix B.�e parameters a and γ to be used in Equation (3.7) can be found in Table B.1
on page 163. In the following table we summarize some important properties.

Euler CN PR BGP TR-BDF2

Order of accuracy 1 2 2 2 2
Steps per time-step 1 1 2 3 2
Stability (A/A+/L) L A A A+ L

We touch upon stability concepts below, for a proper introduction see e.g. Deu�hard and
Bornemann [1994, Chapter 6].

Stability concepts are used to answer the question for which time steps τ the discrete evolu-
tion inherits stability properties of the continuous evolution. �is can be made explicit for
the model problem

∂t x =Ax , (3.16)

where A is a linear operator, and the corresponding discrete evolution

x n+1 =R(τA)x n . (3.17)

where the rational function R is given by the time-step scheme.

A time-step scheme is called A-stable if |R(z )| ¶ 1 for all z ∈ C with non-positive real part.
�en, given a stable evolution (3.16), the discrete evolution (3.17) is also stable for all τ > 0.
We denote a scheme strongly A-stable (A+) if |R(z )| is bounded away from one. �is is
necessary for Cahn–Hilliard-type equations. Finally, a scheme is called L-stable if R(∞) = 0,
thus providing better control of large time steps.
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3.4 Adaptivity

As we have seen in Section 2.6, the solution of Cahn–Hilliard-type equations develops on
di�erent time scales. To capture both fast and slow changes, we need an adaptive time-step
size.

We �rst derive an error estimator for the TR-BDF2 scheme and then argue that we can use
a quite naïve estimator for the other schemes. To derive the error estimator we use that
TR-BDF2 contains an embedded third-order scheme. By comparison of the solutions using
the second- and third-order schemes, we get an e�ective and robust error estimator. Here,
embedded means that it is not necessary to solve the whole system again to obtain the third-
order solution. Details can be found in Section A.4.1.

For the other time-step schemes, we simply use the di�erence in the L2-norm of the solution
at two successive time steps as an error indicator. Numerical simulations have shown that
this yields comparable results, see Section A.4.3.

To set the time-step sizes we use an explicit strategy in the sense that we �rst compute the
solution for the time-step and if the error was too large, we repeat the time-step. �e value
fromwhich on we repeat the time-step is an empirical value. Additionally, an upper limit for
the step size is set.

An example of time-step sizes generated with the error estimator for a coarsening problem
(see Chapter 5) is shown in Figure 3.1.
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Figure 3.1: Example for the development of the time-step sizes. The simulation was for spinodal
decomposition. At the time marked with the dashed line, only one island is left. Before that, the
step sizes approximately grow as τ∼ t 0.8. Note that they vary across five orders of magnitude.
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4

Spatial Discretization

In this chapter, we spatially discretize the time-discrete equations derived in the previous
chapter using a �nite-element method.

As a �rst test for our time discretization, we used a �nite di�erence scheme for the spatial
discretization, seeOtto, Penzler, andRump [2005].�e guiding principles were conservation
of mass and thermodynamic consistency of the discretization. �e discretization was based
on a �nite-volume-type Ansatz, where functions live on the volumes and the components of
the �ux live on the edges of the mesh. �e mesh was non-adaptive and equidistant, which
made the computations for large domains very expensive.

As we have seen in Section 2.6, solutions of Cahn–Hilliard-type equations have a special
form, namely essentially large and �at terraces with a thin and steep transition in-between.
�erefore we can save a lot of computational work by reducing the number of unknowns
on the terraces while still resolving the steps. To realize such an adaptive mesh, we use a
�nite-element method. �e strategy for the adaptive re�nement is presented in Section 4.9.

�e energy used from now on for the rest of this work is a Ginzburg–Landau-type energy as
introduced in Section 2.6:

E (φ) =
∫
Ω

ε

2
|∇φ|2+ ε−1G (φ), (4.1)

with a potential G depending on the actual application.

�e ideawe had inmindwhen developing the discretization is presented in Section 4.1. How-
ever, since this approach comes neither fromaminimization problemnor froma saddle point
problem, the standard methods for error estimation cannot be used. �us, we use another
approach in form of a non-conforming discretization of theminimization problem (3.11), see
Section 4.4. �e resulting fully discrete equations are equivalent to those derived in Section
4.1. Now we can easily get error estimates, see Section 4.6.

It turned out that the solution of the fully discrete equations is by no means straightforward.
In Section 4.8, we present a number of possibilities to solve the equations. �e di�erent
methods are compared in Section 4.11.

37
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4.1 Idea behind the discretization

We have seen in Section 3.2 that the problem to be solved in every Newton-step is: Given
φi ,φk ∈H 1(Ω), �nd J i+1

∗ ∈H (∇∇·,Ω) such that∫
Ω

1

aτM (φi )
J i+1
∗ · J̃+ε

∫
Ω
(∇∇· J i+1

∗ )·(∇∇· J̃ )+
1

ε

∫
Ω

G ′′(φi )(∇· J i+1
∗ )(∇· J̃ ) =

∫
Ω

r (∇· J̃ ) (4.2a)

for all J̃ ∈H (∇∇·), where r ∈H−1(Ω) as de�ned in (3.8). �en, calculate φi+1 ∈H 1(Ω) via

φi+1 =φk +τa

(
−∇· J i+1

∗ +(1+γ) f
)

. (4.2b)

If we now require more regularity for φ, namely φi ,φk ∈H 2(Ω), we get r ∈ L2(Ω) and so by
weak regularity theory ∇∇ · J i+1

∗ is not only in L2(Ω)2, but in H (∇·,Ω), which is de�ned as
follows.

De�nition 4.1. �e space H (∇·,Ω) is de�ned as

H (∇·,Ω)=
{

J ∈ L2(Ω)2 | ∇ · J ∈ L2(Ω)
}

and is equipped with the norm

‖J ‖2
H (∇·,Ω) = ‖J ‖2

L2(Ω)+ ‖∇ · J ‖
2
L2(Ω).

◊

�erefore, we can apply partial integration in the fourth-order term of the le�-hand side of
(4.2a) and get∫
Ω

1

aτM (φi )
J i+1
∗ · J̃ −ε

∫
Ω
(∆∇· J i+1

∗ )(∇· J̃ )+
1

ε

∫
Ω

G ′′(φi )(∇· J i+1
∗ )(∇· J̃ ) =

∫
Ω

r (∇· J̃ ) (4.3)

If we now set
K :=−∇∇· J i+1

∗ ,

then (K , J i+1
∗ ) is a solution of the problem:

Given φi ,φk ∈H 2(Ω), �nd (K , J i+1
∗ )∈H (∇·,Ω)×H (∇·,Ω) such that∫

Ω

1

aτM (φi )
J i+1
∗ · J̃ + ε

∫
Ω
(∇·K )(∇· J̃ )+ ε−1

∫
Ω

G ′′(φi )(∇· J i+1
∗ )(∇· J̃ ) =

∫
Ω

r (∇· J̃ ) (4.4a)∫
Ω

K · K̃ =
∫
Ω
(∇· J i+1

∗ )(∇· K̃ ), (4.4b)

for all J̃ ∈H (∇·,Ω), K̃ ∈H (∇·,Ω). �en, �nd φk+1 ∈ L2(Ω) such that∫
Ω

1

aτ
(φi+1−φk )ζ+

∫
Ω
(∇· J i+1

∗ )ζ= (1+γ)
∫
Ω

f ζ ∀ζ∈ L2(Ω). (4.4c)

By (4.4b), we have that ∇∇· J i+1
∗ ∈H (∇·,Ω) and thus ∇· J i+1

∗ ∈H 2(Ω). Provided f ∈H 2(Ω),
we have φi+1 ∈H 2(Ω) and so we can iterate.
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Note that it is enough for the vector �elds K and J i+1
∗ to be in H (∇·,Ω).

Proposition 4.2. �e problems (4.2a) and (4.4) are equivalent.

Proof. It remains to show that a solution of (4.4) provides a solution of (4.2a). Indeed, if
(K , J ) ∈ H (∇·)×H (∇·) is a solution of (4.4), then Equation (4.4b) tells us that J ∈ H (∇∇·)
with the gradient given by K = −∇∇ · J . When we now restrict J̃ to H (∇∇·), we can apply
partial integration in the second term of (4.4b) and get∫

Ω
(∇·K )(∇· J̃ ) =−

∫
Ω

K ·∇∇ · J̃ =
∫
Ω
∇∇· J ·∇∇ · J̃ ,

so J is a solution of (4.2a).

Together with Proposition 3.5, we get

Corollary 4.3. For τ small enough, Problem (4.4) has a unique solution.

Remark 4.4. Problem (4.4) may look like a saddle point problem, but, although it is indeed
inde�nite, it is not a saddle point problem in J and K . To see this, write

L( J̃ , K̃ ) := 1
2

a ( J̃ , J̃ )+b ( J̃ , K̃ )− 1
2

c (K̃ , K̃ )− f ( J̃ ),

where

a (J , J̃ ) =
∫
Ω

1

τM (φi )
J · J̃ + ε−1

∫
Ω

G ′′(φi )(∇· J )(∇· J̃ ),

b ( J̃ , K̃ ) = ε
∫
Ω
(∇· J̃ )(∇· K̃ ), c (K , K̃ ) = ε

∫
Ω

K · K̃ , f ( J̃ ) =
∫
Ω

r (∇· J̃ ).

Every critical point of L is a solution of (4.4), which in this notation is

a (J , J̃ )+b (K , J̃ ) = f ( J̃ ) ∀ J̃ ∈H (∇·,Ω),
b (J , K̃ )− c (K , K̃ ) = 0 ∀K̃ ∈H (∇·,Ω).

Now let (J , K ) be such a solution. �e saddle point property we have to check is

L(J , K̃ )¶L(J , K )¶L( J̃ , K ) ∀ J̃ , K̃ ∈H (∇·).

�e �rst inequality is indeed true

1© L(J , K̃ )¶L(J , K ) ∀K̃ ∈H (∇·)
1
2

a (J , J )+b (J , K̃ )︸ ︷︷ ︸
=c (K ,K̃ )

− 1
2

c (K̃ , K̃ )− f (J ) ¶ 1
2

a (J , J )+b (J , K )︸ ︷︷ ︸
=c (K ,K )

− 1
2

c (K , K )− f (J )

⇐⇒ c (K , K̃ )− 1
2

c (K̃ , K̃ ) ¶ c (K , K )− 1
2

c (K , K )

⇐⇒ 0 ¶ c (K , K )−2c (K , K̃ )+ c (K̃ , K̃ )

⇐⇒ 0 ¶ c (K − K̃ , K − K̃ ),

which is true due to the positivity of c . However, the second inequality is wrong
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2© L(J , K ) 6¶L( J̃ , K ) ∀ J̃ ∈H (∇·)

1
2

a (J , J )+b (J , K )− f (J )︸ ︷︷ ︸
=−a (J ,J )

− 1
2

c (K , K ) ¶ 1
2

a ( J̃ , J̃ )+b ( J̃ , K )− f ( J̃ )︸ ︷︷ ︸
=−a (J , J̃ )

− 1
2

c (K , K )

⇐⇒ − 1
2

a (J , J ) ¶ 1
2

a ( J̃ , J̃ )−a (J , J̃ )

⇐⇒ 0 ¶ a (J , J )−2a (J , J̃ )+a ( J̃ , J̃ )

⇐⇒ 0 ¶ a (J − J̃ , J − J̃ ).

Since G ′′(φ)might be negative and we don’t have the fourth-order term to compensate,
a (J − J̃ , J − J̃ )might be either positive or negative.

◊

As a consequence, we cannot use this idea to get existence results or error estimates. We
therefore use another approach for spatial discretization, see Section 4.5, which leads to the
same discrete system. Nevertheless, we will use �nite-dimensional subspaces of H (∇·) for
the discretization and one should have in mind the splitting (4.4).

Finite-dimensional subspaces

To discretize Equation (4.4), we use the following �nite-dimensional subspaces of L2(Ω) and
H (∇·,Ω):

• L0(Th ) = {piecewise constant functions} ⊂ L2(Ω) for the functions and

• RT 0(Eh ) = {lowest-order Raviart–�omas elements} ⊂H (∇·,Ω) for the vector �elds.

Before we de�ne the �nite-dimensional subspaces and their properties, let us �rst �x some
notation. Assume that Ω⊂R2 is a polygonal domain and consider a triangulation of Ω con-
sisting of

• NT triangles {T0, . . . , TNT−1}=: Th with volumes |Tk | and outer normals νTk ,

• NE edges {E0, . . . , ENE−1}=: Eh with lengths |E i | and normals νi ,

• NV vertices.

In the case ofNeumann boundary conditions (BC2), we distinguish between boundary edges
(E ⊂ ∂ Ω) and inner edges (all others). �e number of inner edges is denoted by N 0

E . In
the case of periodic boundary conditions, we consider all edges to be inner edges, and so
NE =N 0

E .

We will use the following notation in this chapter: J (x ) is a continuous vector �eld, Jh (x ) is
a vector �eld in the (mesh-dependent) �nite-dimensional subspace and J is the coe�cient
vector for Jh with respect to a basis.
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Furthermore, we use the indices i , j for edge-related quantities and k , l for triangle-related
quantities where possible.

Finally, we use L2-orthogonal projections PT
h : L2(Ω)→L0(Th ) and P E

h : H (∇·,Ω)→RT 0(Eh ).

4.2 Piecewise constant �nite elements

As �nite-dimensional subspace of L2(Ω), we use the space of lowest possible order: the space
of functions being constant on each triangle

L0(Th ) := {φh ∈ L2(Ω) |φh
∣∣

T
= const ∀T ∈ Th}.

�e simplest basis is given by functions which are one on Triangle Tk and zero everywhere
else:

Zk (x ) :=

{
1 for x ∈ Tk

0 else
k = 0, . . . , NT −1. (4.5)

It remains to de�ne a restriction operator L2(Ω) → L0(Th ). �e essential property of this
operator is to conserve mass.

De�nition 4.5. Let u ∈ L2(Ω). �e restriction operator RT
h : L2(Ω)→L0(Th ) is given by

RT
h (u ) :=

NT−1∑
k=0

(
−
∫

Tk

u
)

Zk ⇐⇒ RT
h (u )

∣∣
T

:=−
∫

T

u . (4.6)

◊

Lemma 4.6 (Properties of RT
h ). For any u ∈ L2(Ω) we have for all T ∈ Th∫

T

RT
h (u ) =

∫
T

u .

Furthermore, RT
h is the L2-orthogonal projection of u onto L0(Th ),

RT
h (u ) = PT

h (u ).

Proof. �e �rst assertion is true by de�nition. For the second one de�ne Z̃k (x ) := |Tk |−1/2 Zk .
�en the Z̃k form an L2-orthonormal basis and

RT
h (u ) =

NT−1∑
k=0

(
−
∫

T

u
)

Zk =
NT−1∑
k=0

(∫
Ω

uZ̃k

)
Z̃k = PT

h (u ).
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4.3 Raviart–�omas �nite elements

As subspace for H (∇·,Ω), we use the lowest-order Raviart–�omas (RT) �nite elements, see
Raviart and�omas [1977], which compose a conformal subspace of H (∇·,Ω). On each tri-
angle T ∈ Th , they are of the form

Jh (x )
∣∣

T
= a x +b , (4.7)

where b ∈R2 and a ∈R. We will need such vector �elds later, so we give the set a name

RT−1(Th ) :=

{
Jh ∈ L2(Ω)2 | Jh (x )

∣∣
T
= a x +b ∀T ∈ Th

}
. (4.8)

Note that a is a scalar, so theRT−1(Th ) �nite elements are only a subset of the a�ne vector
�elds. Next, we state some basic properties of these vector �elds:

Proposition 4.7. Let Jh be inRT−1(Th ), then

1. On each triangle T ∈ Th we have

∇· Jh
∣∣

T
= const=:ω∣∣

T
. (4.9)

2. Given a straight line g :=
{

x ∈R2 | x ·ν = const
}
with normal ν , we have for all x ∈

g ∩T
Jh (x ) ·ν = const.

3. Jh is in H (∇·,Ω) if and only if

NT−1∑
k=0

∫
∂ Tk

η(Jh ·νTk ) = 0 ∀η∈C∞(Ω),

i.e. if Jh ·ν is continuous across edges.

Proof. �e �rst two assertions are obvious. For the third one, take a function η ∈ C∞(Ω).
�en ∫

Ω
ηω=

NT−1∑
k=0

∫
Tk

η(∇· Jh ) =
NT−1∑
k=0

(
−
∫

Tk

∇η · Jh +
∫
∂ Tk

η(Jh ·νTk )

)

=−
∫
Ω
∇η · Jh +

NT−1∑
k=0

∫
∂ Tk

η(Jh ·νTk ).

(4.10)

So if the normal component of Jh is continuous across the edges, thenω∈L0(Th )⊂ L2(Ω) is
the weak divergence of Jh and so Jh ∈H (∇·,Ω).
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Figure 4.1: Basis element of the space
RT 0(Eh ). The normal component is con-
tinuous across the centre edge and zero
on the outer edges.

E i

P
T+i

i
P

T−i
iνi

T −iT +i

Figure 4.2: Notations for triangles and
edges. µT

i ∈ {±1} is defined such that
µT

i νi is the outer normal to T .

Note that we took η ∈C∞(Ω) and not η ∈C∞0 (Ω) in (4.10). �is ensures Jh · ν = 0 on ∂ Ω in
the case of non-periodic boundary conditions.

Now we de�ne the space of the lowest-order Raviart–�omas �nite elements by

RT 0(Eh ) :=

Jh ∈RT−1(Th )

∣∣∣∣∑
T∈Th

∫
∂ T

η(Jh ·νT ) = 0 ∀η∈C∞(Ω)

 (4.11)

In order to de�ne a basis of RT 0(Eh ), we notice that prescribing the values of Jh · ν on the
(inner) edges Eh de�nes a unique vector �eld inRT 0(Eh ). Indeed, this makes Jh continuous
across the (inner) edges and as we have three degrees of freedom on each triangle, the vector
�eld is unique. �is is also the reason why we writeRT 0(Eh ) and notRT 0(Th ).

Now we seek a basis {Ψi }i=0,...,N 0
E−1 with Ψi (x ) ·νj =δi j for x ∈ E j . Such a basis is given by

Ψi (x ) :=

{
µT

i
|E i |

2|T±i |
(x −P

T±i
i ) x ∈ T±i ,

0 else,
i = 0, . . . , NE −1, (4.12)

see Figure 4.1 for the plot of a basis element. PT
i is the vertex of triangle T which does not

belong to E i and µT
i ∈ {±1} is a sign such that µT

i νi is the outer normal to T . By T±i we
denote the two triangles adjacent to E i with the sign corresponding to µT

i , see Figure 4.2.

Proposition 4.8. For the basis vector �elds Ψi (x ), we have

Ψi (x ) ·νj =δi j for x ∈ E j .

Proof. 1© If E j is not adjacent to T±i , then Ψi (x )≡ 0 on E j .

2© If E j is adjacent to T±i and i 6= j , then x ∈ E j and P
T±i
i lie both on the edge E j and

therefore x −P
T±i
i is orthogonal to νj , which in turn gives Ψi (x ) ·νj = 0.
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3© For i = j and T ∈ T±i we have, since Ψi (x ) ·νi = const on E i by Proposition 4.7,

Ψi (x ) ·νi =
1

|E i |

∫
E i

Ψi (x ) ·νi
2©
=

1

|E i |

∑
j∈E(T )

∫
E j

Ψi (x ) ·νj

=
1

|E i |

∫
∂ T

µT
i Ψi (x ) ·νT (x ) =

1

|E i |

∫
T

µT
i ∇·Ψi (x )

=
1

|E i |

∫
T

|E i |
|T |
= 1.

What is le� is the de�nition of a restriction operator. �e essential property here is to retain
the divergence.

De�nition 4.9. �e restriction operator R E
h : H (∇·,Ω)∩ Ls (Ω)2 → RT 0(Eh ), s > 2 �xed, is

given by

R E
h (J ) =

N 0
E−1∑

j=0

J jΨj (x ) with J j :=
1

|E j |

∫
E j

J ·νj .

◊

�e higher regularity for the vector �elds is necessary since the trace of a vector �eld in
H (∇·, T ) need not to be in H 1/2(∂ T ). In abuse of notation, we will nevertheless write some-
times H (∇·,Ω).

Lemma 4.10 (Properties of R E
h ). For any J ∈ H (∇·,Ω) and Tk ∈ Th , the restriction operator

and the divergence commute in the sense

∇·R E
h (J ) =RT

h (∇· J ).

Furthermore, the divergence on each triangle is conserved∫
Tk

∇· J =
∫

Tk

∇·R E
h (J )

Proof. For the �rst assertion, write

RT
h (∇· J )

∣∣
T
=

1

|T |

∫
T

∇· J =
1

|T |

∫
∂ T

J ·νT =
1

|T |

∑
j∈Eh (T )

µT
j

∫
E j J ·νj

=
∑

j∈Eh (T )

µT
j

∣∣E j

∣∣
|T |

1∣∣E j

∣∣ ∫
E j

J ·νj =
∑

j∈Eh (T )

(∇·Ψj )J j =∇·
(NE−1∑

j=0

J jΨj
∣∣

T

)
=∇·R E

h (J )
∣∣

T
.

�e second assertion follows from the �rst with Lemma 4.6.
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Concerning the approximation estimates for the restriction operator, we quote the following
Proposition from Brezzi and Fortin [1991, Prop. III.3.9]

Proposition 4.11. �ere exists a constant c independent of h such that

‖J −R E
h (J )‖L2(Ω) ¶ c h |J |H 1(Ω) .

Moreover,
‖∇ · (J −R E

h (J ))‖L2(Ω) ¶ c h |∇ · J |H 1(Ω) .

To express this in a more concise form, we generalize De�nion 4.1.

De�nition 4.12 (H m -div). �e spaces H m (∇·,Ω), m ¾ 0, are de�ned as

H m (∇·,Ω)=
{

J ∈H m (Ω)2 | ∇ · J ∈H m (Ω)
}

and are equipped with the norm

‖J ‖2
H m (∇·,Ω) = ‖J ‖2

H m (Ω)+ ‖∇ · J ‖
2
H m (Ω).

We furthermore de�ne the semi-norm

|J |2H m (∇·,Ω) = |J |
2
H m (Ω)+ |∇ · J |

2
H m (Ω) .

For m = 0, that are the L2(Ω)2 vector �elds with divergence in L2(Ω), we omit the superscript
and write H (∇·,Ω) for H 0(∇·,Ω). ◊

Now Proposition 4.11 yields

‖J −R E
h (J )‖H (∇·,Ω) ¶ c h |J |H 1(∇·,Ω) . (4.13)

4.4 A discrete gradient

As motivated in Section 4.1, we want to use a �nite-dimensional subspace of H (∇·) for the
discretization. If J i+1

∗ from Equation (4.2a) is in H (∇·), then by de�nition∇· J i+1
∗ is in L2(Ω).

�e discrete �ux then would be in RT 0(Eh ) and its divergence in L0(Th ). To make sense of
the fourth-order term ∫

Ω
∇∇· J i+1

∗ ·∇∇ · J̃ ,

we have to de�ne a discrete gradient∇h for piecewise constant functions. It helps us later and
requires no extra e�ort to de�ne the discrete gradient for all L2-functions.

De�nition 4.13 (Discrete gradient). Let u ∈ L2(Ω). �e discrete gradient ∇h u ∈RT 0(Eh ) is
de�ned by duality ∫

Ω
∇h u · K̃h =−

∫
Ω

u (∇· K̃h ) ∀K̃h ∈RT 0(Eh ). (4.14)

◊
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By Riesz, there exists a unique discrete gradient for all u ∈ L2(Ω).

Proposition 4.14 (Properties of the discrete gradient).

(G.i) For any u h that is piecewise constant on the triangles, u h ∈L0(Th ), we have∫
Ω
∇h u h ·R E

h (K̃ ) =−
∫
Ω

u h (∇· K̃ ) ∀K̃ ∈H (∇·).

(G.ii) Let {e i }i=0,...,NE−1 be an L2-orthonormal basis ofRT 0(Eh ). �en the discrete gradient
can be written as

∇h u =
NE−1∑

i=0

µi e i with µi =−
∫
Ω

u (∇· e i ).

(G.iii) If u ∈H 1(Ω), then ∇h u is the L2-orthogonal projection of ∇u ontoRT 0(Eh )

∇h u = P E
h (∇u ).

(G.iv) For any u ∈ L2(Ω), we have
∇h RT

h (u ) =∇h u .

Proof. To see (G.i), write

−
∫
Ω
(∇· K̃ )u h =−

NT−1∑
k=0

∫
Tk

(∇· K̃ )u h =−
NT−1∑
k=0

u k

∫
Tk

(∇· K̃ ).

By Lemma 4.10 this is

=−
NT−1∑
k=0

u k

∫
Tk

(∇·R E
h (K̃ )) =−

NT−1∑
k=0

∫
Tk

(∇·R E
h (K̃ ))u h

=−
∫
Ω
(∇·R E

h (K̃ ))u h
(4.14)
=
∫
Ω
∇h u h ·R E

h (K̃ ).

For (G.ii), write ∇h u ∈RT 0(Eh ) as ∇h u =
∑

i µi e i . �en

µi =
NE−1∑

j=0

µj

∫
Ω

e i · e j =
∫
Ω

e i ·
(NE−1∑

j=0

µj e j

)
=
∫
Ω

e i ·∇h u
(4.14)
= −

∫
Ω

u (∇· e i ).

Ifu ∈H 1(Ω), we canperformpartial integration and get (G.iii). To see (G.iv), remember from
Proposition 4.7 that the divergence of a Raviart–�omas vector �eld is piecewise constant on
the triangles. �erefore∫

Ω
u (∇· e i ) =

NT−1∑
k=0

∫
Tk

u (∇· e i ) =
NT−1∑
k=0

(∇· e i )
∣∣

Tk

∫
Tk

u
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and by de�nition of RT
h

=
NT−1∑
k=0

(∇· e i )
∣∣

Tk

∫
Tk

RT
h (u ) =

NT−1∑
k=0

∫
Tk

RT
h (u )(∇· e i ) =

∫
Ω

RT
h (u )(∇· e i ).

Using representation (G.ii) then yields the assertion.

Together with Lemma 4.10, the last two properties yield the following commutative diagram

H (∇∇·) ∇·−−−→ H 1(Ω)
∇−−−→ L2(Ω)2yR E

h

yPT
h

yP E
h

RT 0(Eh )
∇·−−−→ L0(Th )

∇h−−−→ RT 0(Eh )

(4.15)

Corollary 4.15. �e discrete gradient is exact for linear functions in the sense that ∇h u =∇u
for a�ne u .

Proof. If u is a�ne, then ∇u ∈RT 0(Eh ), therefore ∇u = P E
h (∇u ) =∇h u .

4.5 �e fully discrete equation

First a remark on notation: to reduce overhead, we drop the “i + 1” at Jh and use in the
following

J ∗h instead of
(

J i+1
∗

)
h
=
(

J k+1,i+1
∗

)
h

.

We now spatially discretize the time-discrete minimization problem

min
J̃∈H (∇∇·)

∫
Ω

1

aτM (φ)

∣∣ J̃ ∣∣2+ ε−1

∫
Ω

G ′′(φ)
∣∣∇· J̃ ∣∣2+ ε∫

Ω

∣∣∇∇· J̃ ∣∣2−∫
Ω

r (∇· J̃ ),

using the discrete gradient. In the notation of Section 3.2, the above problem is

min
J̃∈H (∇∇·)

aφ( J̃ , J̃ )− f ( J̃ ).

We de�ne the discrete bilinear form a h
φ : H (∇·)×H (∇·)→R as

a h
φ(J , J̃ ) :=

∫
Ω

1

aτM (φ)
J · J̃ +

1

ε

∫
Ω

G ′′(φ)(∇· J )(∇· J̃ )+ ε
∫
Ω
∇h∇· J ·∇h∇· J̃ . (4.16)
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For the right-hand side, we de�ne f h : H (∇·)→R by

f h ( J̃ ) :=
∫
Ω

rh (∇· J̃ )

where rh is de�ned below in (4.18). �en the fully discrete minimization problem is:

min
J̃h∈RT0(Eh )

a h
φi

h
( J̃h , J̃h )− f h ( J̃h ). (4.17)

Since RT 0(Eh ) 6⊂ H (∇∇·), this is a non-conforming discretization. However, note that a h is
de�ned on H (∇·) and both H (∇∇·) andRT 0(Eh ) are subsets of H (∇·).
Lemma 4.16 (Positivity). Let the time-step size be small enough, namely

τ<
4

β 2
ε3,

where β > 0 is such that G ′′(φ)¾−β . �en

a h
φ( J̃ , J̃ )> 0

for all J̃ 6= 0, J̃ ∈RT 0(Eh ).

Proof. By the de�nition of the discrete gradient, we can use partial integration. �erefore,
the proof is the same as for Proposition 3.5.

SinceRT 0(Eh ) is �nite-dimensional, we get immediately
Corollary 4.17 (Existence of a solution). �e minimization problem (4.17) admits a unique
solution J ∗h ∈RT 0(Eh ).

�e optimality conditions of (4.17) yield the fully discrete equations:

Given φi
h ,φk

h ∈L0(Th ), �nd J ∗h ∈RT 0(Eh ) such that∫
Ω

1

aτM (φi
h )

J ∗h · J̃h + ε−1

∫
Ω

G ′′(φi
h )(∇· J

∗
h )(∇· J̃h )+ ε

∫
Ω
∇h∇· J ∗h ·∇h∇· J̃h

=
∫
Ω

rh (∇· J̃h ) ∀ J̃h ∈RT 0(Eh ) (4.18a)

where

rh =
1

aτ
w ∗

h +
(
− ε∆h + ε−1G ′′(φi

h )
)(
(1+γ) f h −

1

aτ
(φi

h −φ
k
h )
)
∈L0(Th ),

w ∗
h =w i

h +γw k
h , but bear in mind (B.5) for TR-BDF2,

w i
h =−ε∆hφ

i
h + ε

−1G ′(φi ),

and∆h :=∇·∇h is the divergence of the discrete gradient. �en �ndφi+1
h ∈L0(Th ) satisfying

1

aτ

∫
Ω
(φi+1

h −φk
h )ζh +

∫
Ω
(∇· J ∗h )ζh =

∫
Ω
(1+γ) f hζh ∀ζh ∈L0(Th ). (4.18b)
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By Proposition 4.7, we have

Jh ∈RT 0(Eh ) =⇒ ∇· Jh ∈L0(Th ),

so Equation (4.18b) is, due to the choice of the basis (4.5), just an element-wise evaluation:

φi+1
h
∣∣

T
=φk

h
∣∣

T
+aτ

(
(1+γ) f h

∣∣
T
−∇· J ∗h

∣∣
T

)
∀T ∈ Th . (4.19)

Finally, we establish the connection to the discretization idea presented in Section 4.1.

Proposition 4.18. Problem (4.18) is equivalent to the following problem:

Given φi
h ,φk

h ∈L0(Th ), �nd (J ∗h , Kh )∈RT 0(Eh )×RT 0(Eh ) such that∫
Ω

Kh · K̃h =
∫
Ω
(∇· J ∗h )(∇· K̃h ) ∀K̃h ∈RT 0(Eh ) (4.20a)

∫
Ω

1

aτM (φi
h )

J ∗h · J̃h + ε
∫
Ω
(∇·Kh )(∇· J̃h )+ ε−1

∫
Ω

G ′′(φi
h )(∇· J

∗
h )(∇· J̃h )

=
∫
Ω

rh (∇· J̃h ) ∀ J̃h ∈RT 0(Eh ). (4.20b)

where rh and φi+1
h ∈L0(Th ) are as in (4.18).

Proof. De�ning Kh :=−∇h∇· J ∗h , we have

ε

∫
Ω
∇h∇· J ∗h ·∇h∇· J̃h

(4.14)
= ε

∫
Ω

(
−∇·∇h∇· J ∗h

)
(∇· J̃h ) = ε

∫
Ω
(∇·Kh )(∇· J̃ j ).

and therefore we get the second equation. �e �rst equation is just the de�nition of the weak
gradient.

Looking at these equations, we can see that we realized the idea presentend in Section 4.1.
Note furthermore that (4.4) was solved in H (∇·) and thatRT 0(Eh ) is a subspace of H (∇·).

�is formulation will again become important in Section 4.8.3.

4.6 Error estimates

We establish below some simple error estimates for the discrete problem. �ese are by no
means exhaustive, in particular we assume φh = φ, but should give us a hint that our dis-
cretization is reasonable.
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�e (mesh-dependent) norm we use for the error estimates is

‖J ‖2
h := ‖J ‖2

H (∇·,Ω)+ ‖∇h∇· J ‖2
L2(Ω). (4.21)

Note that both the norm and the discrete bilinear form (4.16) are de�ned on H (∇·,Ω) and
therefore are valid both for vector �eld in H (∇∇·) and inRT 0(Eh ).

Since the spaceRT 0(Eh ) is �nite-dimensional, we readily get

• Ellipticity, a h
φ(Jh , Jh )¾α‖Jh‖2

h for all Jh ∈RT 0(Eh ).

• Continuity, |a h
φ(J , Jh )|¶C‖J ‖h‖Jh‖h for all J ∈H (∇∇·,Ω), Jh ∈RT 0(Eh )

with α,C independent of h . �erefore, we can use Strang’s lemma.

Lemma 4.19 (Second Strang lemma). Let J ∈ H (∇∇·,Ω) and Jh ∈ RT 0(Eh ) be solutions of
the problems (3.9) and (4.18), repectively. �en there exists a constant c independent of the
subspaceRT 0(Eh ) such that

‖J − Jh‖h ¶ c
(

inf
J̃h∈RT0(Eh )

‖J − J̃h‖h + sup
J̃∈RT0(Eh )

|a h
φh
(J , J̃h )−bh ( J̃h )|
‖ J̃h‖h

)
. (4.22)

In the following two lemmata, we estimate the terms in (4.22).

Lemma 4.20 (Best approximation). Let J ∈H (∇∇·) be given. �en

inf
J̃h∈RT0(Eh )

‖J − J̃h‖h ¶ c h |J |H 1(∇·,Ω) .

Proof. From the possible choices, we use J̃ =R E
h (J ). First, we note that

∇h∇·R E
h (J ) =∇h RT

h (∇· J ) =∇h∇· J

by Lemma 4.10 and (G.iv). �erefore

‖∇h∇· J −∇h∇·R E
h (J )‖L2(Ω) = 0

and thus
‖J −R E

h (J )‖h = ‖J −R E
h (J )‖H (∇·,Ω).

Now we can use Proposition 4.11 to see

inf
J̃h∈RT0(Eh )

‖J − J̃h‖h ¶ ‖J −R E
h (J )‖h = ‖J −R E

h (J )‖H (∇·,Ω)

¶ c h |J |H 1(∇·,Ω) .

Lemma 4.21. Let J ∈ H (∇∇·,Ω) and Jh ∈ RT 0(Eh ) be solutions of the problems (3.9) and
(4.18), respectively, and assume ∇∇ · J ∈H (∇·,Ω). �en there exists a constant c independent
of h such that

|a h
φ(J , J̃h )−b ( J̃h )|¶ c h |∇∇ · J |H 1(Ω)‖∇h∇· J̃h‖L2(Ω).
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Proof. Integration by parts in aφ(J , J̃ ) shows that it is enough for J̃ to be in H (∇·,Ω), see
(4.3). �erefore we can choose J̃ = J̃h and get∫

Ω

1

aτM (φ)
J · J̃h +

1

ε

∫
Ω

G ′′(φ)(∇· J )(∇· J̃h ) = ε
∫
Ω
(∆∇· J )(∇· J̃h )+

∫
Ω

r (∇· J̃h ).

We use this identity to replace the �rst part of a h
φ(J , J̃h ).

a h
φ(J , J̃h ) =

∫
Ω

1

aτM (φ)
J · J̃h +

1

ε

∫
Ω

G ′′(φ)(∇· J )(∇· J̃h )+ ε
∫
Ω
∇h∇· J ·∇h∇· J̃h

=b ( J̃h )+ ε
∫
Ω
(∆∇· J )(∇· J̃h )+ ε

∫
Ω
∇h∇· J ·∇h∇· J̃h .

Since ∇· J̃h ∈L0(Th ), we get with (G.i)

a h
φ(J , J̃h )−b ( J̃h ) = ε

∫
Ω

(
R E

h (∇∇· J )−∇h∇· J
)
·∇h∇· J̃h .

To estimate this term, we use the triangle inequality and (G.iii) to obtain

‖R E
h (∇∇· J )−∇h∇· J ‖L2(Ω) ¶ ‖R E

h (∇∇· J )−∇∇· J ‖L2(Ω)+ ‖∇h∇· J −∇∇· J ‖L2(Ω)

= ‖R E
h (∇∇· J )−∇∇· J ‖L2(Ω)+ ‖P E

h (∇∇· J )−∇∇· J ‖L2(Ω)

¶ 2‖R E
h (∇∇· J )−∇∇· J ‖L2(Ω),

by the best-approximation property of the orthogonal projection. So �nally with the help of
Proposition 4.11

|a h
φ(J , J̃h )−b ( J̃h )|¶ ε‖R E

h (∇∇· J )−∇h∇· J ‖L2(Ω)‖∇h∇· J̃h‖L2(Ω)

¶ 2‖R E
h (∇∇· J )−∇∇· J ‖L2(Ω)‖∇h∇· J̃h‖L2(Ω)

¶ c h |∇∇ · J |H 1(Ω)‖∇h∇· J̃h‖L2(Ω).

Analogous to the H (∇·) case, we generalize the de�nition of H (∇∇·).
De�nition 4.22 (H m -grad-div). �e spaces H m (∇∇·,Ω), m ¾ 0, are the spaces of all vector
�elds ξ∈H m (Ω)2 with ∇·ξ∈H m+1(Ω). �e norm is given by

‖ξ‖2
H m (∇∇·,Ω) := ‖ξ‖2

H m (Ω)+ ‖∇ ·ξ‖
2
H m (Ω)+ ‖∇∇ ·ξ‖

2
H m (Ω).

We also de�ne the semi-norm

|ξ|2H m (∇∇·,Ω) := |ξ|2H m (Ω)+ |∇ ·ξ|
2
H m (Ω)+ |∇∇ ·ξ|

2
H m (Ω) .

◊

Using this de�nition, we summarize the results in
Proposition 4.23. Let J ∈H (∇∇·,Ω) and Jh ∈RT 0(Eh ) be solutions of the problems (3.9) and
(4.18), respectively, with r ∈ L2(Ω). Furthermore, assume that φh = φ. �en there exists a
constant c independent of h such that

‖J − Jh‖h ¶ c h |J |H 1(∇∇·,Ω) .
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4.7 Matrix representation

Using the basis (4.5) forL0(Th ) and (4.12) forRT 0(Eh ), we de�ne a number of matrices. First
the three mass matrices V :RNT →RNT and B0, Bi

1 :RN 0
E →RN 0

E

Vk l :=
∫
Ω

Zk (x )Zl (x ) =δk l |Tk |

(B0)i j :=
∫
Ω
Ψi (x ) ·Ψj (x ) and (Bi

1)i j :=
∫
Ω

1

M (φi (x ))
Ψi (x ) ·Ψj (x ).

Next the two sti�ness matrices A0, A1 :RN 0
E →RN 0

E

(A0)i j :=
∫
Ω
(∇·Ψi (x ))(∇·Ψj (x )),

(Ai
1)i j :=

∫
Ω

G ′′(φi
h (x ))(∇·Ψi (x ))(∇·Ψj (x )).

Proposition 4.24. �e matrices B0, Bi
1, A0 and Ai

1 are symmetric and have at most �ve entries
per row. Furthermore, B0 and Bi

1 are positive de�nite and A0 is positive semi-de�nite.

Proof. Symmetry is obvious. For the number of entries remember that Ψi has support only
on T±i . �erefore, (B0)i j is only nonzero for those j for which E j is adjacent to the same
triangle as E i .�is is only true for the �ve edges shown in Figure 4.2. To see that thematrices
are B0 and Bi

1 positive de�nite, consider

B1ξ ·ξ=
∑

i j

(B1)i jξi
ξ

j
=
∫
Ω

1

M (φ)

(∑
i

ξ
i
Ψi (x )

)
·
(∑

j

ξ
j
Ψj (x )

)
=
∫
Ω

1

M (φ)
|ξh |2

¾
∫
Ω
|ξh |2 .

�e right hand side is zero if and only if ξ= 0. In the same way, we get

A0ξ ·ξ=
∫
Ω
(∇·ξh )2 ¾ 0.

Since G ′′(x )may be negative, A1 is not positive de�nite in general, compare Section 3.2.

Finally we need the gradient and divergence matrices G :RNT →RN 0
E and D :RN 0

E →RNT

Gi k :=−
∫
Ω

Zk (∇·Ψi ) and Dk i :=
∫
Ω

Zk (∇·Ψi ). (4.23)

Although we call these matrices gradient and divergence, they clearly do not correspond to
the (strong version of the) gradient and the divergence. Rather, they have to be multiplied
with the inverse of their respective mass matrix:

g =∇hφ ←→ g =B−1
0 Gφ ∇h ←→ B−1

0 G,

φ =∇· J ←→ φ =V−1DJ ∇· ←→ V−1D.
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As is the case for their continuous counterparts,−G and D are dual to each other in the sense
that

B0B−1
0 Gφ · g =: 〈B−1

0 Gφ, g 〉Eh =−〈φ, V−1Dg 〉Th :=−Vφ ·V−1Dg ,

or simply
Gt =−D.

Note that we have the relation

(A1)i j =
∫
Ω

G ′′(φh )(∇·Ψi )(∇·Ψj ) =
NT−1∑
k=0

|Tk |−1 G ′′(φ
k
) |Tk | (∇·Ψi )

∣∣
Tk

|Tk | (∇·Ψj )
∣∣

Tk

=
NT−1∑
k=0

|Tk |−1 G ′′(φ
k
)
(∫

Ω
Zk (∇·Ψi )

)(∫
Ω

Zk (∇·Ψj )
)
=−

NT−1∑
k=0

Gi kG ′′(φ
k
) |Tk |−1 Dk j

=−(GNV−1D)i j

with Nk k =G ′′(φ
k
). In other words

A0 =−GV−1D and Ai
1 =−GNi V−1D.

�erefore, the relation between the operator ∇h∇· and the sti�ness matrix A0 is

∇h∇· ←→ −B−1
0 A0

With these de�nitions and the notation

G ′(φi ) :=
(

G ′(φi
k
)
)

k=0,...,NT−1
,

the matrix representation of (4.18) is

1

aτ
Bi

1 J ∗+ εA0B−1
0 A0 J ∗+ ε−1Ai

1 J ∗ =−Gr (4.24)

with the right hand side

r =
1

aτ
w ∗− εV−1Dg u + ε−1Ni u i , (4.25a)

where g u and u i are de�ned by

B0 g u =Gu i , u i = (1+γ) f −
1

aτ
(φi −φk ) (4.25b)

and w ∗ =w i +γw k (again, w ∗ =w i +γ/2 · (w k +w k−1) for TR-BDF2) with

B0 gφ =Gφi , w i = εV−1Dgφ + ε−1G ′(φi ). (4.25c)

Updating φ is done by

φi+1 =φk +aτ
(
(1+γ) f −V−1DJ ∗

)
. (4.26)



54 4 Spatial Discretization

Table 4.1: Algorithm to solve the Equations (4.24)–(4.26). Time- and space-adaptivity is not
included in the algorithm.

1: Set initial condition φ0

2: Assemble matrices A0 and B0

3: for n = 0, . . . ,#timesteps−1 do
4: for all substeps k do
5: for i = 0, . . . , I −1 do
6: Assemble matrices Ai

1 and Bk
1

7: Setup r using (4.25)
8: Solve (4.24) for J i+1

9: Update φ by (4.26)
10: end for
11: end for
12: end for

4.8 Solving the fully discrete equation

A generic procedure to solve Equations (4.24)–(4.26) is shown in Table 4.1. Of course, the
main work is to solve (4.24) in Line 8. How to do this is covered in the following.

�e challenge in solving this equation is that with Raviart–�omas �nite elements, one has
not the possibility to lump masses, see Remark 4.25 below, so the inverse of B0 is a dense
matrix. We propose several approaches to circumvent this di�culty:

1. Use a matrix-free method and compute the weak gradient by solving an equation in
every step of an iterative solver.

2. Calculate a sparse approximate symmetric inverse of B0.

3. Use a larger space for Kh and con�ne it toRT 0(Eh ) via a side condition, the “Arnold–
Brezzi Method”.

�ese will be presented in the sections 4.8.1–4.8.3. Another possibility would be to revert to
the split equation (4.4) and solve(

−εB0 εA0

εA0
1

aτ
Bi

1+ ε
−1Ai

1

)(
K
J

)
=

(
0
−Gr

)
,

for (K , J ). �e disadvantage of this approach is that the system matrix is inde�nite, see Sec-
tion 4.8.4, and has twice as many rows. As such, it is inferior to method 3.

A completely di�erent approach was �nally taken by not using the discrete gradient de�ned
by duality, but to avoid RT 0(Eh ) altogether when discretizing the fourth-order term. We
therefore de�ne a gradient L0(Th )→ L0(Th )2 and use this gradient to discretize the fourth-
order term. To achieve this, we

4. De�ne the energy on L0(Th ),



4.8 Solving the fully discrete equation 55

see Section 4.8.5.

In Section 4.11, we compare these methods. For that purpose, we �rst check the convergence
for Laplace’s problem and then compare their performance on three application problems.

We will use the following abbreviations for the di�erent methods

1. SINE for Solve IN Every step for the method presented in Section 4.8.1,

2. SPASI for the SParse Approximate Inverse of Section 4.8.2,

3. ABM for the Arnold–Brezzi method of Section 4.8.3 and

4. PCE for method of Section 4.8.5, where we de�ne a Piecewise Constant Energy.

Remark 4.25. Lumpingmasses, i.e. replacingB0 by a diagonalmatrix B̃0, means to change the
discrete gradient. So using any mass-lumping procedure, we would get a di�erent discrete
gradient

∇̃h u h
∣∣

T
=
∑

i∈E(T )

(
B̃−1

0 Gu
)

i
.

As a minimal condition for a gradient to be acceptable, we want that

f (x ) = a ·x +b =⇒ ∇̃h f = a .

A straightforward calculation shows that this is only possible if themesh is hexagonal.�ere-
fore, using any mass-lumping technique is not suitable for our needs. ◊

4.8.1 SINE

If we use an iterative solver to solve the equation[
1

aτ
Bi

1+ εA0B−1
0 A0+ ε−1Ai

1

]
J ∗ =−Gr , (4.27)

we do not need to assemble the (dense) matrix A0B−1
0 A0, but it is enough to know the result

of the multiplication A0B−1
0 A0d in each step of the iterative solver. So we set

A0B−1
0 A0d :=A0z , where z is the solution of B0z =A0d .

By Lemma 4.16, the le�-hand side is positive de�nite, so we can use the conjugate gradient
method as iterative solver.

�e main disadvantage of this method is that the solving process is quite slow, since �rst of
all we have to solve another N 0

E ×N 0
E system in every cg-step. In addition, as we can only use

a matrix-free solver, standard preconditioner such as incomplete Cholesky cannot be used.
We have not investigated a tailored preconditioner in the �nite-element case.
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4.8.2 Sparse approximate inverse

To avoid having to solve a LSE in each time step, we construct an approximate inverse

I≈B−1
0 ,

so that we can actually assemble the operator and use the conjugate gradient method with
an incomplete Cholesky preconditioner or a direct method. �e approximate inverse should
be sparse and, just like the full inverse, symmetric and positive de�nite.

Since the entries outside the sparsity pattern of the mass matrix are exponentially small, we
look for a matrix I having the same nonzero pattern as B0.

Given such an approximate inverse I, we can replace B−1
0 in Equation (4.24) and solve[

1

aτ
Bk

1 + εA0IA0+ ε−1Ai
1

]
J ∗ =−Gr .

Note that the fourth-order term A0IA0 does not depend on φ, so the sparse approximate
inverse needs only to be reconstructed when the mesh changes.

Our �rst approach to construct I was to consider the entries Ii j with i ¶ j as unknowns, set
Ij i := Ii j and then minimize

‖B0I− id‖F ,

where ‖·‖F is the Frobenius norm de�ned below. By construction, the result is symmetric
and sparse but, unfortunately, we found that it is not positive de�nite.

To get a positive de�nite approximate inverse, we use a construction based on Kolotilina and
Yeremin [1993]: B0 is symmetric positive de�nite, so we can factorize the mass matrix into
B0 = Lt L. We now search for a lower triangular matrix S with given sparsity pattern and
S≈ L−1. �en, we set

I := SSt ≈ L−1L−t =B−1
0 .

Let us �rst �x some notation.

De�nition 4.26. �e Frobenius matrix norm ‖·‖F is given by

‖M‖2
F := tr(Mt M) =

∑
i j

M 2
i j .

A sparsity pattern SM of a matrix M is a set of indices with the property

(i , j ) 6∈SM =⇒Mi j = 0.

We denote by L be the space of all lower triangular matrices with a �xed sparsity pattern S∗
to be de�ned later. Note that we have

S∗ ⊂
{
(i , j ) | i ¾ j

}
(4.28)

since we look for a lower triangular matrix. ◊
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With these de�nitions, we can render the statement S≈ L−1 precise: We search

S= arg min
S̃∈L

‖id−LS̃‖2
F,

such that
SSSt =SB0 .

�e necessary condition is

d

d ε
∣∣
ε=0
‖id−L(S+ εT)‖2

F = 0 ∀T∈L.

Inserting the de�nition of the norm yields

0=
d

d ε
∣∣
ε=0

tr
[
(id−St Lt − εTt Lt )(id−LS− εLT)

]
= tr
[
−
(

LT+(LT)t
)
+
(

St Lt LT+(St Lt LT)
)]

and therefore
tr LT= tr St Lt LT ∀T∈L. (4.29)

It is of course enough if the above condition is valid for a basis of L, which we choose now.
To construct one basis element T̃, �x (i ∗, j∗)∈S∗ and set

T̃i j =

{
1 (i , j ) = (i ∗, j∗)

0 else.

i.e. T̃ has only one non-zero entry. �en we have for any matrix A

tr AT̃=
∑

k

(AT̃)k k =
∑
k ,l

Ak l T̃l k =Aj∗,i ∗

and (4.29) becomes

Lj i = (St Lt L)j i ∀(i , j )∈S∗

⇐⇒ Lt
i j = (L

t LS)i j = (B0S)i j ∀(i , j )∈S∗.

Since Lt is upper triangular and S∗ is the sparsity pattern of a lower triangular matrix, see
(4.28), we get

(B0S)i j =

{
L i i i = j

0 else.
(4.30)

�e values L i i can for example be obtained by performing an incomplete Cholesky factor-
ization of the mass matrix, since the diagonal entries are always present. If the L i i are not
known, Kolotilina and Yeremin propose to solve

(B0Ŝ)i j =δi j (4.31)
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and then scale Ŝ with a diagonal matrix D so that

(St B0S)i i = (DŜt B0ŜD)i i = 1.

We tried both approaches and found comparable results.

To solve (4.30) or (4.31), we need a bijection between S∗ andRs , where s = #S∗. �en we can
translate the equations into a linear system of equations.

It remains to construct the sparsity pattern for S.

Construction of S∗.

We relax our initial requirement SI =SB0 to

SB0 ⊂SI =SSSt .

Furthermore, instead of working with the set S∗, we consider a matrix Z with the property

Zi j =

{
1 (i , j )∈S∗

0 (i , j ) 6∈S∗.

So we want to �nd a lower triangular matrix Z with

(i , j )∈SB0 =⇒ (ZZt )i j 6= 0. (4.32)

Since (ZZt )j i = (ZZt )i j , we assume i ¶ j . �en

(ZZt )i j =
n−1∑
k=0

Zi k Zj k =
i∑

k=0

Zi k Zj k︸ ︷︷ ︸
k¶i¶j

+
j∑

k=i+1

Zi k Zj k︸ ︷︷ ︸
i<k¶j

+
n−1∑

k=j+1

Zi k Zj k .︸ ︷︷ ︸
i¶j<k

Because Z is a lower triangular matrix, we have Zi k Zj k = 0 if i < k or j < k . �erefore

(ZZt )i j =
i∑

k=0

Zi k Zj k .

To determine Z, we �rst set Zi i = 1. �en we determine the other entries by induction in i :

i = 0:

(ZZt )0j = Z00Zj 0 = Zj 0

(4.32)
=⇒Zj 0 :=

{
1 (0, j )∈SB0

0 else
j = 1, . . . , n −1.
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i > 0 with Z already determined up to column i −1:

(ZZt )i j =
i−1∑
k=0

Zi k Zj k︸ ︷︷ ︸
=:σi j (known)

+Zi i Zj i = Zj i +σi j

(4.32)
=⇒Zj i :=

{
1 (i , j )∈SB0 and σi j = 0

0 else
j = i +1, . . . , n −1.

In this way, we can iteratively construct Z and therefore get S∗.

4.8.3 Arnold–Brezzi method

A third way to address the problem of inverting the mass matrix uses the equivalent for-
mulation (4.20) and is based on ideas of Arnold and Brezzi [1985]. Remember that in the
de�nition ofRT 0(Eh ), (4.11), we had two conditions for a vector �eld Kh to be inRT 0(Eh ):

(C1) Kh ∈RT−1(Th ),

(C2)
∑
T∈Th

∫
T

η(Kh ·νT ) = 0 ∀η∈C∞(Ω).

Instead of searching Kh and K̃h in RT 0(Eh ) in Equation (4.20), we now only request Kh

and K̃h to be in RT−1(Th ) and put (C2) as a constraint. Since in RT−1(Th ) the degrees of
freedom on each triangle are completely independent of the other triangles, the mass matrix
onRT−1(Th ) will be a block-diagonal matrix with 3×3 blocks and can be easily inverted.

Before we calculate the Lagrange multiplier for the constraint, note that, since Kh · νT is
constant on edges for Kh ∈RT−1(Th ), it is enough to request (C2) for all ηh being constant
on the edges:

(C2) ⇐⇒
∑
T∈Th

∫
∂ T

ηh (Kh ·νT ) = 0 ∀ηh ∈L0(Eh ),

where the space L0(Eh ) is

L0(Eh ) :=

{
ηh ∈ L2(Eh )

∣∣∣ηh
∣∣

E
= const ∀E ∈ Eh

}
.

Proposition 4.27. Let (Kh , J ∗h ) ∈ RT 0(Eh )×RT 0(Eh ) be the solution of (4.20). �en there
exists λh ∈L0(Eh ) such that (Kh ,λh )∈RT 0(Eh )×L0(Eh ) is the unique solution of∫

Ω
Kh · K̃h −

∑
T∈Th

∫
T

(∇· J ∗h )(∇· K̃h ) =
∑
T∈Th

∫
∂ T

λh (K̃h ·νT ) ∀K̃h ∈RT−1(Th ), (4.33a)

∑
T∈Th

∫
∂ T

ηh (Kh ·νT ) = 0 ∀ηh ∈L0(Eh ) (4.33b)
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Proof. De�ne the bilinear form c :L0(Eh )×RT−1(Th )→R by

c (ηh , Kh ) :=
∑
T∈Th

∫
∂ T

ηh (Kh ·νT ).

1© Existence of λh

Since c is a bilinear form, there exist linear operators

C :L0(Eh )→RT−1(Th )′ and C t :RT−1(Eh )→L0(Eh )′

with

〈Cηh , K̃h〉= 〈ηh ,C t K̃h〉= c (ηh , K̃h ) ∀(ηh , K̃h )∈L0
0(Eh )×RT−1(Eh ).

As we have already seen, we have(
c (ηh , K̃h ) = 0 ∀ηh ∈L0(Eh )

)
⇐⇒ K̃h ∈RT 0(Eh ),

which can be translated into

K̃h ∈ kerC t ⇐⇒ K̃h ∈RT 0(Eh ).

Now de�ne the linear form s :RT−1(Th )→R by

〈s , K̃h〉 :=
∫
Ω

Kh · K̃h −
∑
T∈Th

∫
T

(∇· J ∗h )(∇· K̃h ).

Since Kh is a solution of (4.20), we have

〈s , K̃h〉= 0 ∀K̃h ∈RT 0(Eh )

=⇒〈s , K̃h〉= 0 ∀K̃h ∈ kerC t

=⇒s ∈ (kerC t )⊥

=⇒s ∈ ImC ,

by the closed range theorem. �erefore, there exists a λh ∈L0(Eh ) with

Cλh = s ⇐⇒ c (λh , K̃h ) = 〈s , K̃h〉 ∀K̃h ∈RT−1(Th ), (4.34)

which is Equation (4.33a).

2© Uniqueness of λh

Given two Lagrange multiplier λ1,λ2 ∈L0
0(Th ), we have

c (λ1−λ2, K̃h ) = c (λ1, K̃h )− c (λ2, K̃h )
(4.34)
= 〈s , K̃h〉− 〈s , K̃h〉= 0

for all K̃h ∈RT−1(Th ).
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It remains to show that c (ηh , K̃h ) = 0 for all K̃ ∈RT−1(Th ) implies ηh ≡ 0. Choose

K̃ i (x ) :=Ψi (x )
∣∣

T+i

∈RT−1(Th ),

where Ψi is the vector �eld de�ned in (4.12). �en

0= c (ηh , K̃ i ) =
∫
∂ T+i

ηh (Ψi ·νT+i
)
Prop. 4.8
=

∫
E i

ηh = |E i |ηh
∣∣

E i

=⇒ηh
∣∣

E i

= 0.

Since i was arbitrary, we have ηh ≡ 0.

Lemma 4.28. Problem (4.18) is equivalent to the following problem:

Find (Kh , J ∗h ,λh )∈RT−1(Th )×RT 0(Eh )×L0(Eh ) such that∫
Ω

Kh · K̃h −
∑
T∈Th

∫
T

(∇· J ∗h )(∇· K̃h ) =
∑
T∈Th

∫
∂ T

λh (K̃h ·νT ) ∀K̃h ∈RT−1(Th ), (4.35a)

∑
T∈Th

∫
∂ T

ηh (Kh ·νT ) = 0 ∀ηh ∈L0(Eh ), (4.35b)

∫
Ω

1

aτM (φk
h )

J ∗h · J̃h + ε
∫
Ω
(∇·Kh )(∇· J̃h )+ ε−1

∫
Ω

G ′′(φi
h )(∇· J

∗
h )(∇· J̃h )

=
∫
Ω

rh (∇· J̃h ) ∀ J̃h ∈RT 0(Eh ). (4.35c)

Proof. It remains to show that any solution of (4.35) solves (4.20). First we note that due to
(4.35b), Kh is inRT 0(Eh ). Next, for test functions K̃h ∈RT 0(Eh )⊂RT−1(Th ), the right hand
side of (4.35a) is zero and so (4.35a) = (4.20a). �e equation for Jh was not changed. Since
the solution to (4.20) is unique and λh is unique, the solution to (4.35) is also unique.

Matrix representation

�e additional matrices we need are

• a mass matrix B̂0 onRT−1(Th ),

• a modi�ed sti�ness matrix Â0 :RT−1(Th )→RT 0(Eh ) and

• a matrix representation of C .
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As basis forRT−1(Th ), we use

Ψ̂3n+m (x )
∣∣

Tk

:=


x for n = k , m = 0(
1
0

)
for n = k , m = 1(

0
1

)
for n = k , m = 2

0 else

n = 0, . . . , NT −1, m = 0, . . . , 2, (4.36)

to de�ne the mass matrix B̂0 :R3NT →R3NT

(B̂0)3n 1+m1,3n 2+m2 :=
∫
Ω
Ψ̂3n 1+m1 · Ψ̂3n 2+m2 ,

and the new sti�ness matrix Â0 :R3NT →RN 0
E .

(Â0)i ,3n+m :=
∫
Ω
(∇· Ψ̂3n+m )(∇·Ψi ).

Finally, we need the matrix Ĉ :RNE →R3NT

Ĉ3n+m ,j :=
∑
T∈Th

∫
∂ T

ζj (Ψ̂3n+m ·νT ) with ζj (x ) =

{
1 on E j ,

0 else.

With the de�nitions, we can write Equations (4.35) as

1

aτ
Bk

1 J ∗+ εÂ0K + ε−1Ai
1 J ∗ =−Gr (4.37a)

B̂0K − Ât
0 J ∗− Ĉλ= 0 (4.37b)

Ĉt K = 0 (4.37c)

Since the new mass matrix B̂0 can be easily inverted, we rewrite the second equation to get

K = B̂−1
0

(
Ât

0 J ∗− Ĉλ
)

and replace K in the two other equations. �is yields

(
1

aτ
Bi

1+ εÂ0B̂−1
0 Ât

0+ ε
−1Ai

1 −εÂ0B̂−1
0 Ĉ

−εĈt B̂−1
0 Ât

0 εĈt B̂−1
0 Ĉ

)(
J ∗

λ

)
=−

(
Gr
0

)
(4.38)

where r is the same as in (4.25). �e update procedure for φ remains

φi+1 =φk +aτ
(
(1+γ) f −V−1DJ ∗

)
.

Proposition 4.29. For some τ> 0, the matrix in (4.38) is symmetric and positive-de�nite.
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Proof. Denote the matrix by M. �e symmetry of M is evident. For positive de�niteness we
show that

M

(
J
λ

)
·
(

J
λ

)
> 0 for all

(
J
λ

)
=: x 6= 0.

Inserting the matrix yields

Mx ·x =
( 1

aτ
Bi

1+ ε
−1Ai

1

)
J · J + εB̂−1

0 Ât
0 J · Ât

0 J −2εB̂−1
0 Ĉλ · Ât

0 J + εB̂−1
0 Ât

0 J · Ĉλ

=
( 1

aτ
Bi

1+ ε
−1Ai

1

)
J · J + εB̂−1

0 (Â
t
0 J − Ĉλ) · (Ât

0 J − Ĉλ)

=
( 1

aτ
Bi

1+ ε
−1Ai

1

)
J · J + εB̂−1

0 z · z

with z = B̂−1
0 (Ât

0 J − Ĉλ). It it easier to see how the result follows if we leave the matrix
notation. �erefore, setting

Jh =
NE−1∑

i=0

J iΨi , λh =
N 0

E−1∑
i=0

λiζi and z h =
3NT−1∑

s=0

z s Ψ̂s ,

we get

Mx ·x =
1

aτ

∫
Ω

1

M (φi
h )
|Jh |2+ ε−1

∫
Ω

G ′′(φi
h )(∇· Jh )2+ ε

∫
Ω
|z h |2 . (4.39)

In the same way we get by the de�nition of z

Ât
0 J − Ĉλ= B̂0z

⇐⇒
∫
Ω
(∇· Ψ̂s )(∇· Jh )−

∑
T∈Th

∫
∂ T

λhΨ̂s ·νT =
∫
Ω
Ψ̂s · z h s = 0, . . . , 3NT −1

⇐⇒
∫
Ω
(∇· K̂h )(∇· Jh )−

∑
T∈Th

∫
∂ T

λh K̂h ·νT =
∫
Ω

K̂ · z h ∀K̂h ∈RT−1(Th ).

Now choosing K̂ := Jh ∈RT 0(Eh ) ⊂RT−1(Th ), the second term on the le�-hand side van-
ishes and we �nd ∫

Ω
(∇· Jh )2 =

∫
Ω

Jh · z h . (4.40)

Using 0¶M (φ)¶ 1 and G (φ)¾−β in (4.39), we get

Mx ·x ¾
1

aτ

∫
Ω
|Jh |2−

β

ε

∫
Ω
(∇· Jh )2+ ε

∫
Ω
|z h |2

=
1

aτ

∫
Ω
|Jh |2−

β

ε

∫
Ω

Jh · z h + ε
∫
Ω
|z h |2 .

In the case z h ≡ 0, we have Jh 6≡ 0 and therefore M is positive de�nite for any τ> 0. Indeed,
if also Jh ≡ 0, then by the de�nition of z we have

Ĉλ= 0 ⇐⇒ c (λh , K̂h ) = 0 ∀K̂h ∈RT−1(Th ).
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In the proof of Proposition 4.27. 2©, we have seen that this implies λh ≡ 0. But Jh and λh

cannot both be zero.

In the case z h 6≡ 0, we get

Mx ·x ¾
∫
Ω

∣∣∣∣ 1
p

aτ
Jh −

β
p

aτ

2ε
z h

∣∣∣∣2− β 2aτ

4ε2

∫
Ω
|z h |2+ ε

∫
Ω
|z h |2

¾
(
ε−

β 2aτ

4ε2

)∫
Ω
|z h |2

and �nally this is positive if

aτ<
4ε3

β 2
.

Remark 4.30. �is is the same constraint as in (3.12). �e simulations suggest that in the case
of developed interfaces the restriction is much less severe, maybe more as in Lemma 3.8. ◊

4.8.4 Solution of the split equation

Another way to solve the fully discrete equations is to use the split version(
−εB0 εA0

εA0
1

aτ
Bi

1+ ε
−1Ai

1

)(
K
J

)
=

(
0
−Gr

)
, (4.41)

and solve this system for (K , J ). We show below that this system is inde�nite. As we have
seen in the previous section, we can get a system with the same number of rows which is
symmetric positive de�nite. �erefore, we will not consider the method of solving the split
equation any further.

To see that the system is inde�nite, we set M (φ)≡ 1 and assume G ′′(φ)≡−β for simplicity.
�en, Bi

1 =B0 and Ai
1 =−βA0 and we get(

−εB0 εA0

εA0
1

aτ
Bi

1+ ε
−1Ai

1

)(
K
J

)
·
(

K
J

)
=−εB0K ·K +2A0K · J +

1

aτ
B0 J · J −βA0 J · J .

One the one hand, setting K = 0 yields

1

aτ
B0 J · J −A0 J · J ,

which is positive for 0< aτ< (B0 J · J )/(A0 J · J ). On the other hand, setting J = 0 yields

−εB0K ·K ,

which is negative. �erefore, system (4.41) is inde�nite.
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4.8.5 Piecewise constant energy

All previousmethods were based on the discrete gradient de�ned by duality. Remember that
we introduced the discrete gradient to be able to use the lowest-order Raviart–�omas �nite
elements. �e term which made the discrete gradient necessary was the fourth-order term
in

Hess E (φ)(∇· J ,∇· J̃ ) =
∫
Ω

δ2E

δφ2
(φ)(∇· J )(∇· J̃ )

=−ε
∫
Ω
∆(∇· J )(∇· J̃ )+ ε−1

∫
Ω

G ′′(φ)(∇· J )(∇· J̃ ).

If we keep using the spaceRT 0(Eh ) for Jh and J̃h , we know that z h :=∇ · Jh and z̃ h :=∇ · J̃
are piecewise constant and we have to deal with the term

−
∫
Ω
∆h z h z̃ h =

∫
Ω
∇h z h ·∇h z̃ h .

�e discrete Laplacian was up to now de�ned through �rst applying the discrete gradient
and then the (usual continuous) divergence.

L0(Th )
∇h−→RT 0(Eh )

∇·−→L0(Th ).

�e idea for the method in this section is to skip the detour over RT 0(Eh ) and to de�ne a
discrete Laplacian

∆h :L0(Th )→L0(Th )

or, more generally, a discrete operator(
δ2E

δφ2
(φ)

)
h

:L0(Th )→L0(Th ).

Weproceed as follows: �rst, we de�ne a piecewise constant energy Eh (φh ) and then compute
the variational derivatives. Since the energy is

E (φ) =
∫
Ω

ε

2

∣∣∇φ∣∣2+ ε−1G (φ),

we construct a local gradient operator

∇h :L0(Th )→L0(Th )2.

Before we do this, we show how to set up the fourth-order term, the right-hand side and the
chemical potential given such a gradient operator.

Assume therefore that we have two NT ×NT matrices dx and dy such that

∇hφh
∣∣

Tk

=

(
dxkφ

dykφ

)
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with the notation that dxk is the k -th row of dx. We only consider the Dirichlet part of the
energy

Eh (φh ) =
∫
Ω

1
2

∣∣∇hφh

∣∣2
for the derivation of the second variation of the energy since G (φh ) is already piecewise
constant. �e matrix representation of the fourth-order operator is given by

AFOT
i j = E ′′h (φh )(∇·Ψi ,∇·Ψj ) =: E ′′h (φh )(z i

h , z j
h ) =

∫
Ω
∇h z i

h ·∇h z j
h

=
NT−1∑
k=0

∫
Tk

(
dxk z i dxk z j +dyk z i dyk z j

)
.

Note that AFOT is independent ofφ, so it has only to be reassembled when themesh changes.
�e matrix representation (4.24) then becomes(

1

aτ
Bk

1 + εAFOT+ ε−1Ai
1

)
J ∗ =−Gr .

�e right hand side is given by

rh =
1

aτ
w ∗

h +
δEh

δφh
(φi

h )u
i
h

and the chemical potential is

w ∗
h =

δEh

δφh
(φi

h )+γ
δEh

δφh
(φk

h ).

Remember from De�nition 2.2 that the variational derivative of Eh is de�ned through

di� E (φ)ψ=
∫
Ω

δE

δφ
(φ)ψ ∀ψ.

For the discrete case, we get

di� Eh (φh )ψh =
d

dδ
∣∣
δ=0

Eh (φh +δψh ) =
∫
Ω
∇hφh ·∇hψh =

NT−1∑
k=0

∫
Tk

∇hφh ·∇hψh

=
NT−1∑
k=0

∫
Tk

dxkφdxkψ+dykφdykψ
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=
NT−1∑
k=0

|Tk |

(
dxkφ

NT−1∑
l=0

(dxk lψl
)+dykφ

NT−1∑
l=0

(dyk lψl
)

)

=
NT−1∑

l=0

NT−1∑
k=0

(
dxt

l k |Tk |dxkφ+dyt
l k |Tk |dykφ

)
ψ

l

=
NT−1∑

l=0

∫
Tl

(
1

|Tl |
(dxt Vdxφ)l +

1

|Tl |
(dyt Vdyφ)l

)
ψ

l

=:

∫
Ω

δEh

δφh
(φh )ψh .

Since in the continuous case, the variational derivative of theDirichlet energy is the Laplacian
of φ, δE (φ)/δφ =−∆φ, it is natural to de�ne the discrete Laplacian as

−∆hφh
∣∣

Tl

:=
δEh

δφh
(φh )

∣∣
Tl

=
(
kφ
)

l
with k=V−1dxt Vdx+V−1dyt Vdy. (4.42)

Remark 4.31. Although k is not symmetric as a matrix, it is symmetric with respect to the
scalar product introduced in Section 4.7:

〈ku , v 〉Th =
(

dxt Vdx+dyt Vdy
)

u ·v = u ·
(

dxt Vdx+dyt Vdy
)

v = 〈u ,kv 〉Th .

◊

We now come to the construction of an appropriate gradient operator. �e minimal require-
ments for such an operator are that the gradient is

• linear.

• local in the sense that only the neighbours of a triangle contribute to the gradient.

• exact for linear functions. �at is, ifφh ∈L0(Th ) is the restriction of an a�ne function,
then the gradient should be exact. �is is a little less than for the discrete gradient
de�ned via duality, see Corollary 4.15.

If we speak of neighbours of a triangle T in the following, we always mean those triangles
sharing an edge with T . So in particular, T is a neighbour of itself and so every triangle has
four neighbours.

Gradient via least squares approximation

A �rst and seemingly natural choice was to de�ne the discrete gradient via a least squares
construction: on each triangle Tk , we search for a linear function

L(k )(x ) = g (k ) ·x + c (k )

which approximatesφh on the neighbouring triangles in a way such that the mass di�erence
is minimal in the sense of least squares, see Figure 4.3 for an example.
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Figure 4.3: Approximation of the piecewise constant function φh (red) with an affine function
(green). The gradient on the central triangle is set to the gradient of the approximation.

Switching to local triangle numbering, we denote Tk with T0 and the neighbours with T1 to
T3. �en we have to solve

3∑
l=0

(∫
Tl

L−
∫

Tl

φh

)2

=min!

Denoting with (M x l , M y
l
) the centre of triangle Tl and with (g x , g y ) the components of g ,

we get

3∑
l=0

|Tl |
(

M x l M y
l

1
)g x

g y

c

− |Tl |φl

2

=

∥∥∥∥∥∥∥
|T0| 0

. . .
0 |T3|


M x 0 M y

0
1

...
M x 3 M y

3
1


g x

g y

c

−
|T0| 0

. . .
0 |T3|


φ0...
φ

3


∥∥∥∥∥∥∥

2

which we write as
‖V(k )S(k )g (k )−V(k )φ(k )‖2

with obvious de�nitions. Solving the normal equations yields

g (k ) =
((

V(k )S(k )
)t

V(k )S(k )
)−1 (

V(k )S(k )
)t

V(k )φ(k ).

�en, we set

∇hφh
∣∣

Tk

:=

(
g (k )x
g (k )y

)
.

Clearly, if φh is the restriction of an a�ne function, then L(k ) coincides with this function
and the gradient is exact. Additionally, by construction, L(k ) is local and linear, so all our
requirements are met.
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Figure 4.4: Left: Example of a piecewise constant function coming from a linear function. Right:
The Laplacian of this function in the case where the piecewise constant gradients are defined
via least squares. The values of ∆h f h are ±15.27, except for the boundary where f h jumps;
these values are not shown.

Unfortunately, the results are unsatisfactory. If a discrete function is the restriction of an
a�ne function, then the Laplacian is not zero for all meshes, although the gradient is exact
by construction. See Figure 4.4 for an example on a rather simple mesh.

Gradient via conditions on the Laplacian

Since the least-squares method failed, we look for another gradient. Of course, we want to
keep the requirements of locality and exactness for linear functions. Locality means that we
have 4NT degrees of freedom for each of dx and dy. Being exact for a�ne functions means
that if

u (x ) = a ·x +b =⇒ u = a 1M x +a 2M y +b 1, (4.43)

where a 1, a 2,b ∈R and (M x k , M y
k
) is the centre of Tk , then we want

dx u = a 11 and dy u = a 21.

�is yields for each of dx and dy the 3NT conditions

dx M x = 1 dy M x = 0, (4.44a)
dx M y = 0 dy M y = 1, (4.44b)

dx 1= 0 dy 1= 0. (4.44c)

From the experience with the least-squares gradient, we add another condition, namely the
Laplacian should be zero for linear functions. So for the u from (4.43), we require

k u = 0 ⇐⇒ kM x = 0,kM y = 0,k 1= 0.

Since we already know that dx u = a 11 and dyu = a 21, we get from (4.42)

dxt V 1= 0 dyt V 1= 0, (4.44d)
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which adds NT conditions for each of dx and dy, yielding a total of 4NT conditions.

However, there is one degree of freedom le� per matrix. �erefore, we get a family of solu-
tions:

dx+λx zx and dy+λy zy, (4.45)

see Section A.9 on how to compute zx and zy.

To select one of these gradients, take a look at Figure 4.5, where we plotted the x2-derivative
and the Laplacian of f (x ) = x1(1− x1). �e Laplacian is only exact for one speci�c λy . We
cannot expect an exact Laplacian for all meshes and all quadratic functions. Our �rst idea
was therefore tominimize the error of the Laplacian for quadratic functions, see Remark 4.32.
Indeed, the results were good. However, there is another method yielding the same results
while being much faster: In the le� column of Figure 4.5, one can see that the x2-derivative,

(dy+λy ) f ,

of a function only depending on x1 “dri�s away” from zero for the “wrong” λs.

�is serves us as a condition to determine λy . As all members of the family of gradients are
exact for linear functions, we get as an additional requirement

0= (dy+λy zy) f = 1
2

a 2(dy+λy zy) s 11 with s i j
k =

1

|Tk |

∫
Tk

x i x j dx .

Since we have not enough degrees of freedom le� to require the above to be zero on every
triangle, we minimize the L2-norm of the discrete version of ∂y f to determine λx and λy :

2

a 2

∫
Ω

∣∣∣∂ h
y f h (x )

∣∣∣2 = NT−1∑
k=0

∫
TK

(
(dy+λy zy) s 11

)2

k
=

NT−1∑
k=0

|Tk |
(
(dy s 11)k +λy (zy s 11)k

)2

=λ2
y

(
NT−1∑
k=0

|Tk | (dy s 11)2k

)
︸ ︷︷ ︸

=:c2

+λy

(
2

NT−1∑
k=0

|Tk | (dy s 11)k (zy s 11)k

)
︸ ︷︷ ︸

=:c1

+

(
NT−1∑
k=0

|Tk | (zy s 11)2k

)
︸ ︷︷ ︸

=:c0

.

�e optimality conditions for minimizing in λy yield

λy =−
c1

2c2
. (4.46)

�e calculations for λx are analogous.

Remark 4.32. Another method to determine λx/y is to consider a quadratic function

f (x ) =

(
q11

1
2

q12
1
2

q12 q22

)
x ·x +a ·x +b
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Figure 4.5: Discrete gradient in x2-direction and minus the discrete Laplacian of the function
f (x1,x2) = x1(1− x1). The top row uses the optimal λy = −8 and the rows below use the
arbitraryly chosen values λy = 0 and λy = 56.
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and to estimate the L2-norm of the error that is made when taking the Laplacian. To keep
the formulas shorter, we use here the Euclidian norm instead of the L2-norm and save some
V’s. �is yields

‖q11ks 11+q12ks 12q22ks 22−q111−q221‖

¶ |||k|||
(∣∣q11

∣∣‖s 11‖+
∣∣q12

∣∣‖s 12‖+
∣∣q22

∣∣‖s 22‖
)
+
p

N
(∣∣q11

∣∣+ ∣∣q22

∣∣)
with any matrix norm ||| · |||. To minimize the error, we have to calculate

min
λx ,λy

‖k‖F ,

where we chose the Frobenius norm as matrix norm. Tedious calculations lead to a mini-
mization problem of the form

4∑
i=0

4∑
j=0

γi jλ
i
xλ

j
y , (4.47)

where the coe�cients γi j = 0 if i + j > 4. To get an impression of the coe�cients, we show
here one of them:

γ10 =b21(c11+ c12)+b11(c21+ c22),

where

b i 1 =
∑
l ,m

1

|Tl |2
∑
k1,k2

(dxk i l zxk i m + zxk i l dxk i m ),

c i 1 =
∑
l ,m

1

|Tl |2
∑
k1,k2

dxk i l dxk i m ,

c i 2 =
∑
l ,m

1

|Tl |2
∑
k1,k2

dyk i l dyk i m .

Equation (4.47) was then solved using a globalized Newton scheme similar to the one in
Section A.2. However, for all meshes tested, the resulting values for λx/y were the same as
when using (4.46). Since assembling the coe�cients and solving the minimization is slow,
we use (4.46). ◊

4.9 Adaptivity

We already mentioned several times the special form of solutions to Cahn–Hilliard-type
equations in the interfacial regime: �e domain Ω can be divided into bulk and interface
regions, where the latter usually takes up only a small fraction of the domain.

Having this in mind, we want the mesh to have the following structure:
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Figure 4.6: For the interfaces shown on the left, the solution of the eikonal equation yields the
distance of the vertices to the interface, see the right plot.

• At the interfaces, the mesh should be �ne enough to resolve the interface pro�le, see
Figure 2.6 on page 23 for the width of the interface. �erefore, we set the mesh spacing
to a constant (ε dependent) value near the interfaces. �e necessary spatial resolution
at the interface is investigated in Section 4.9.1.

• Away from the interfaces, we make use of the fact that the considered Cahn–Hilliard-
type equations have sharp-interface limits. In these free boundary problems, the equa-
tion to be solved in the bulk is simply −∆w = f , see Section 2.6.2. �erefore, we
coarsen geometrically in the distance from the interfaces.

To obtain the distance from the interfaces, we �rst mark the interface edges, i.e. in the case of
epitaxial growth (EG) those edges with φ ¾ 1/2 on one neighbouring triangle and φ ¶ 1/2
on the other. �en we solve the eikonal equation using an algorithm from Bornemann and
Rasch [2006], which gives us the distance at the vertices, see Figure 4.6. �e distance of a
triangle is set to the minimum of the distances of its vertices. �en we mark triangles for
re�nement and coarsening according to the above principles. See Figure 4.7 for an example.

If the mesh has been changed, all matrices have to be reassembled. �erefore, we try to keep
the number of mesh adaptions small by taking the following measures:

• If themesh has to be re�ned (i.e. triangles have beenmarked), make the region around
the interfaces bigger and mark again. �is increases the number of triangles to be
re�ned (and thus the number of degrees of freedom), but reduces the number of mesh
re�nements. Especially, the situation where a small number of triangles is re�ned in
each time step is avoided.

• Only coarsen the mesh if the number of triangles to be coarsened is large enough, say
two percent of the number of degrees of freedom.
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Figure 4.7: Space adaptivity constraints for a straight step moving from left to right. We shift
and scale the computed distance function in two different ways to prescribe an upper and lower
bound for the mesh size h at the vertices, see the orange curves. Transferred to the triangles,
this yields the green corridor. The value of h is plotted in blue. The position of the step is
marked with the dashed line in the upper picture and with the red line in the mesh.
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• Of course, we prevent that a coarsened triangle is re�ned again in the next step, see
Section 7.2.3.

For re�ning a triangle, we use longest-edge bisection. Coarsening would be more properly
named “unre�nement”, since only triangles once re�ned can be coarsened. �is implies that
we set an upper bound on the size of the triangles with the choice of the initial mesh.

Remark 4.33. More generally speaking, the type of re�nement procedure described above is
valid in all situations where the evolution ofφ emerges from a speci�c region of the domain.
In our examples, this region consists of the interfaces.

In the case of the thin-�lm equation, a similar method is appropriate. Typical con�gurations
consist of well-seperated droplets connected by a thin �at precursor layer.

�e important region for the dynamics is the transition region between precursor layer and
droplet, whose width is small compared to the typical droplet sizes. In order to recover the
dynamics, it is necessary that the mesh in this region is �ne enough. See Rump [2008, Chap-
ter 6] for more information on the numerics of the thin-�lm equation. ◊

4.9.1 Resolution at the interface

As a measure for the size of a triangle, we use half the diameter of the triangle:

hT = 1
2
diam(T ).

As described above, the mesh spacing is set to a constant near the interface. �is is done by
de�ning a quantity hmin and re�ning all triangles in the interfacial region for which

hT > hmin. (4.48)

We investigate in this section how to choose hmin, in particular how large we can set hmin and
still get correct results. All computations aremade using ε = 1. �e results can be transferred
to the case ε 6= 1 by rescaling space and time accordingly.

�e �rst test is as follows: we start with initial data in the shape of an octagon in a square
periodic region of size L = 73.4, such that, using the “cross” grid from Figure 4.12, the faces
of the octagon lie on the grid lines. �is seems to be a good test to disclose problems. Letting
evolve the initial step, it should eventually converge to the steady state of a circle, see Section
2.6.2.�erefore we stopped the simulationwhen a steady state was reached; more speci�cally
we used

max(w )−min(w )< 10−9

as an indicator that a steady state was reached and then computed the maximal �ux to con-
�rm the steady state. To check if the steady-state solution is a circle, we compute the step
position as lined out in Section A.3.3. �is provides us with points s i lying approximately on
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the interface. �en, we measure the distance from the centre c to the points to get the radii
ri := |s i − c | and compute the average deviation

δr :=
1

N

N∑
i=1

|ri − r̄ | with r̄ =
1

N

N∑
i=1

ri .

Due to the di�culties with determining the step position, see Section A.3, we allow for a
deviation of up to half the diameter of a triangle from a perfect circle. �erefore, if the value
of δr /h is smaller than one, we consider the state to be a circle. For a perfect circle, this value
is obviously zero. For the octagonal initial data we get δr /h = 2.52, where h = 0.2353. �e
results are shown in Table 4.2.

We see that for any method, a value of hmin = 0.25 is too large and the �nal state is not a
circle. In the case of ABM, we see a clear transition in the behaviour and �nd good results
for values of hmin ¶ 0.2, see Figure 4.8. Apparently, the PCE method needs a �ner mesh to
produce comparable results, but the results improve as h decreases. �e results for SPASI are
less clear.

In the cases where we were content with the results, we performed another test. It turned
out that the most delicate quantity is the curvature of the interface, so we concentrate on this
quantity. As we have seen in Section 2.6.2, we should have

w =
√

10
3
κ (4.49)

at the interface in case of the shallow-quench equation.

To get κ, we make use of the fact that the mass is constant during the simulation and that the
solution converges to a circle with a known pro�le. �erefore, the steady state is very close
to

φ(x ) = u ∗SQ (|x − c | −Rmass)

for some value of Rmass, where c is the centre of the unit cell, i.e. c = (L/2, L/2), and u ∗SQ is
the optimal pro�le from Section 2.6.3.

To determine Rmass and with it κ= 1/R , we measure the mass M of the initial value (or any
other) and then solve

M =
∫
[0,L]2

u ∗SQ (|x − c | −Rmass) dx

for Rmass. �is yields a value of Rmass ≈ 27.4825. Using this method is much more accurate
than determining the step position and extracting a radius.

Now we can compare the value of w measured in the simulation (there is only one value
since max(w )−min(w )< 10−9) to the target value wgoal,

wgoal :=

√
10/3

Rmass
.
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Table 4.2: Agreement of the simulations with the steady-state solutions of the sharp-interface
models: Deviation of the radii from a circle.

hmin min
T∈Th

hT
δr (δr /min hT )

ABM PCE SPASI

0.25 0.2353 0.3153 (1.34) 0.3685 (1.57) 0.3293 (1.40)
0.2 0.1664 0.0524 (0.31)? 0.1896 (1.14) 0.0562 (0.34)
0.15 0.1176 0.0325 (0.28) 0.0952 (0.81) 0.1773 (1.51)?
0.075 0.0589 0.0075 (0.14) 0.0292 (0.50) 0.0552 (0.94)?

In the simulations marked with a star, the centre of the final circle was not the centre of the
initial values, hence the deviations. Using the centre of the final data (which is of course not
the desired outcome), the values for ABM are 0.0308 (0.19) and for SPASI 0.0530 (0.45) and
0.0388 (0.66).

Table 4.3: Agreement of the simulations with the steady-state solutions of the sharp-interface
models: Deviation of the curvature.

hmin min
T∈Th

hT

∣∣w −wgoal
∣∣/wgoal

ABM PCE SPASI

0.2 0.1664 3.1 ·10−2 — 2.3 ·10−2

0.15 0.1176 4.6 ·10−4 3.0 ·10−2 —
0.075 0.0589 1.1 ·10−3 1.9 ·10−3 2.7 ·10−2

Figure 4.8: On the left, the final state of a simulation with hmin = 0.25 is shown. Although a
steady state has been reached (flux < 10−15), the step is not a circle but sticks to the grid lines.
On the right, we see that for hmin = 0.2 (green line) and hmin = 0.15 (blue line), the final state is
a circle.
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�e results are shown in Table 4.3. �ey are consistent with the results of �rst test: ABM
produces very good results, PCE needs �ner meshes to reach the same accuracy and SPASI
is not satisfactory.

From the results for ABT, we conclude that a value of min hT = 0.1664 is su�cient. Since the
interface has a width of approximately one, this means that about eight triangles across the
interface are necessary to reproduce the curvature correctly.

We performed these tests also for di�erent meshes and found that a value of 0.17 is enough
in all situations.

4.9.2 Transferring piecewise constant functions to a new mesh

A�er eachmesh adaption, we need to transferφh to the newmesh. �e essential property of
the prolongation- and restriction-operator is mass conservation. Since we re�ne by longest-
edge bisection, we need to distribute themass of one triangle onto two triangles or vice versa.
In the case that two triangles T1 and T2 are coarsened (more precisely unre�ned, since only
triangles once re�ned can be coarsened again) to a triangle T of double area, the value to be
given to the new triangle is uniquely determined by∫

T

φ =
∫

T1

φ1+
∫

T2

φ2 ⇐⇒ φ = 1
2
φ1+ 1

2
φ2.

On the other hand, re�ning a triangle T to T1 and T2, each having half the area of T , leaves
us with one degree of freedom, denoted by a :

φ1 = a , φ2 = 2φ−a . (4.50)

To decide how to choose a , we recall that the (continuous) energy is a Lyapunov-functional,
see Lemma 2.1. Sincewewould like to keep this property in the discrete case, weminimize the
discrete energy to determine a , see Section 4.9.3. As the energy can only be calculated when
the newmesh is complete, e.g. has nomore hanging nodes, we have to compute intermediate
values on the re�ned triangleswhichwill serve as starting values for the energyminimization.

�e easiest way to set these intermediate values would be to chooseφ1 =φ2 =φ. But we can
do better, since we have the gradient. Transferring a Raviart–�omas vector �eld ∇hφh to a
�ner mesh is uniquely determined. We just have to take the value

∇hφh (x ) ·νE =: g ,

where x is some point on the new edge E , as the new degree of freedom (remember this
quantity is constant on lines). Given the gradient, we determine an a�ne function

L(x ) =α(νE ·x )+β ,
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where α and β are such that

∇L(x ) ·νE = g and
∫

T

L =
∫

T

φh .

Finally, the new φh on the re�ned triangles T1 and T2 is set to

φ1 :=−
∫

T1

L =φ+ g ((M 1−M ) ·νE ) and φ2 :=−
∫

T2

L =φ+ g ((M 2−M ) ·νE ) .

In the case of the piecewise constant energy, the procedure is slightly di�erent since the gra-
dient is piecewise constant. We use g i = g as prolongation for the gradient. �en, we deter-
mine an a�ne function

L(x ) = a ·x +β with ∇L =∇hφh (x )
∣∣

T
and

∫
T

L =
∫

T

φh .

Finally, the new φh on the re�ned triangles T1 and T2 is set to

φ1 =−
∫

T1

L =φ+∇hφh (x )
∣∣

T
· (M 1−M ) and φ2 =−

∫
T2

L =φ+∇hφh (x )
∣∣

T
· (M 2−M ).

4.9.3 Energy minimization

When re�ning a triangle by bisection, the distribution of themass onto the two new triangles
is not unique. �erefore, we only generate temporary values for φ on the new mesh during
mesh re�nement as described in the previous section. When the new mesh is complete, we
correct these temporary values to minimize the energy. In this section, we explain why the
energy does not always decrease in this process. �e algorithm we use for minimization can
be found in Section A.2.

�e discrete version of the energy (4.1) is given by

Eh (φh ) =
∫
Ω

ε

2

∣∣∇hφh

∣∣2+ ε−1G (φh ). (4.51)

By de�nition of the discrete gradient, this means

Eh (φh ) =
∫
Ω

ε

2

∣∣g h

∣∣2+ ε−1G (φh ),

where g h ∈RT 0(Eh ) is de�ned by∫
Ω

g h · g̃ h =−
∫
Ω
φh (∇· g̃ h ) ∀g̃ h ∈RT 0(Eh ).
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Figure 4.9: One-dimensional example for a refinement. The initial values are moved to the right
until the first refinement occurs (left). One triangle will be bisected by the red dot-dashed line
(right). The cyan dashed lines show the step width.

Let Lref
0 denote the space of piecewise constant functions on the re�ned mesh with the mass

conservation restrictions being ful�lled. Minimizing the discrete energy does not mean

inf
ζh∈Lref

0

∫
Ω

ε

2
|∇ζh |2+ ε−1G (ζh ),

since the gradient of a piecewise constant function is not de�ned. In that case, since the old
con�guration is still allowed, the energy on the new mesh would be lower or equal to the
energy on the old mesh.

Rather, due to the de�nition of the discrete gradient, minimizing the energy means to �nd a
critical point (g h ,φh ) of ∫

Ω

ε

2

∣∣g̃ h

∣∣2+∫
Ω
(∇· g̃ h )ζh −

∫
Ω
ε−1G (ζh ) (4.52)

with the lowest possible energy. �erefore, it is not clear if a mesh re�nement leads to a lower
or higher energy.

To get an idea of what will happen, let us look at a simple example in one space dimension:
consider an interval of length L and take a “hump” composed of two optimal pro�les of the
shallow quench equation, i.e.

φ(x ,ξ) = tanh(
√

15/2 (x −ξ− L/4))− tanh(
√

15/2 (x −ξ−3L/4))−1.

At t = 0, we set ξ = 0, use the restriction operator (4.6) to get the initial values of φh and
re�ne the mesh according to the principles in Section 4.9. �en we increase ξ a bit, use the
restriction operator to set φh and check if the mesh has to be re�ned. �is is repeated until
the �rst re�nement takes place, see Figure 4.9. �en, for every possible value of a in (4.50),
we compute the discrete energy Eh (a ). As can be seen in Figure 4.10, for any value of a , the
energy increases (although only slightly).
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Figure 4.11: Energy change due to mesh
adaption in a large simulation with 174
mesh adaptions. Two very negative val-
ues are not shown.

A second “real-world” example shows that this behaviour is typical. We recorded the energy
change due tomesh adaption (coarsenings and re�nements) during a large (two-dimension-
al) simulation from Section 5.2. �e relative energy change , i.e.

E ref
h −Eh

Eh

is shown in Figure 4.11. �e overall absolute change due to mesh adaption was about −0.01.
In the same time the energy dropped from 2 · 104 to 7 · 102, so that the fraction of energy
change that was due to mesh adaption is of the order 10−4.
Remark. If we don’t use the energy minimization at all, but keep the temporary values from
Section 4.9.2, then the energy o�en increases a lot. But what happens next is that the error
estimator for the time adaptivity switches to very small time steps. �en, within usually �ve
to ten time steps, the solution evolves to a state which has the same energy as the state in
the case of energy minimization. �is is of course due to the gradient-�ow structure of the
equation. ◊

4.10 Linear solver

For the linear solver, we use the external package PETSc, see Section 7.1.

It was quite clear to us that for a symmetric positive de�nite LSE which is sparse and has a
considerable number of unknowns, the best choice should be the preconditioned conjugate
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gradient (PCG) method. As preconditioner, we tested the standard preconditioner shipped
with PETSc and found as expected that incomplete Cholesky decomposition (ICC) yields
the best results.

It was therefore a surprise whenwe discovered that a full Cholesky decomposition A = Lt L is
inmost casesmuch faster than PCGwith ICC, see the results of the next section.�is was not
the case for the Cholesky decomposition included in PETSc, but with another package called
CHOLMOD [Davis andHager, 2005, and references therein]. A crucial point is that the rows
of the matrix are �rst permuted using an approximate minimal degree strategy [Amestoy
et al., 1996], so that the �ll-in is reduced. Still, the number of nonzeros of L is 10–15 times
higher than the number of nonzeros of A .

Also remember that we have a non-constant system matrix, so that the (numerical) decom-
position has to be repeated a�er every sub-timestep. �e symbolical decomposition (i.e.
�nding the entries that are nonzero) only has to be redone if the mesh changes.

To see how far we can go with the Cholesky decomposition, we started a simulation with
slightly more than 600 000 unknowns and got for the memory usage

ABM PCE SPASI
Memory [GB] 2.3 3.0 3.4

Since 4GB of memory are quite standard nowadays, about a million unknowns are possible
using Cholesky decomposition, see also the simulation in Section 6.5.3.

4.11 Comparison of the methods

In this section, we compare the di�erent methods presented in Section 4.8 in two ways:

First, we solve Poisson’s problem in the space of piecewise constant functions. �e reason for
the choice of this model problem is, as discussed at the beginning of Section 4.8.5, that the
only nonconforming term of the discretization is∫

Ω
∇h∇· J i+1

h ·∇h∇· J̃ .

De�ning z h :=∇· Jh and z̃ h :=∇· J̃ , we get∫
Ω
∇h z h ·∇h z̃ h .

Adding a right-hand side f h , we get Laplace’s problem

−∆h z h = f h ,
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where the solution z h is piecewise constant. For the methods based on the dual gradient, the
Laplacian is

∆h :L0(Th )
∇h−→RT 0(Eh )

∇·−→L0(Th ),

and for the method using the piecewise constant energy, the Laplacian is

∆h :L0(Th )
∇h−→L0(Th )2

∇·−→L0(Th ).

In each case, the error in the L2-norm is measured for varying h .

�en, those methods that showed convergence in the �rst test are tested on problems char-
acteristic for the applications in Chapters 5 and 6.

4.11.1 Poisson’s problem

We solve here the problem
−∆h u h = f h (4.53)

with periodic boundary conditions for a number of di�erent meshes, see Figure 4.12 for a
list of the meshes. For each mesh, (4.53) is solved for di�erent mesh sizes and the error is
measured, see below. Here, the mesh size h is de�ned as half the length of the longest edge.
For the cross mesh, the mesh is re�ned by bisection to get a �ner mesh whereas for the
cartesian, hexagonal and delaunay mesh, a new and �ner mesh is loaded to retain the mesh
type. For the latter, we used Matlab to generate the mesh and then converted it to a periodic
mesh.

�e domain on which the problem is solved isΩ= [0, 1]×[0, L y ], where L y = 1 for all meshes
but the hexagonal mesh, where L y = 2/

p
3 (to have the same number of triangles). �e

number of triangles ranges from 28 to 453 532 in the case of the delaunay mesh and from
32= 25 to 524 288= 219 in all other cases.

As right-hand side, we chose

f (x ) =−8π2
(

1+ 1
L2

y

)
sin(2φx1)sin(2πx2/L y )

so that the exact solution of −∆u = f is

u (x ) = sin(2πx1)sin(2πx2/L y ).

�en we calculate the error
‖u −u h‖L2(Ω)

using a numerical integration on the triangles which is exact up to fourth-order polynomials,
see Section A.10.

�e results are plotted in Figure 4.13. Since the solution for SINE is the same as for ABM,
only the latter is shown. �e procedures to solve Poisson’s equation are described in Section
A.5.
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Figure 4.12: Meshes used for comparison: cartesian (top left), cross (top right), hexagonal
(bottom left) and delaunay (bottom right). All meshes are shown after two refinement levels.
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Table 4.4: Key figures of the simulations chosen for the comparison.

Mesh changes Time-step size Unknowns

Coarsening (early stage) — 10−9 to 10−2 50 000
Coarsening (late stage) 2% 10−2 to 30 30 000 to 50 000
Epitaxial growth 10% around 2 ·10−4 55 000

As expected, the error converges linearly in h for all meshes when using ABM. We can see
that using the PCE, the error also converges linearly in h . On the other hand, SPASI shows
slower convergence for very small h on the hexagonal and delaunay meshes, but performs
good on cartesian and cross meshes. Quite expected are the non-converging results for the
least-squares gradient.

4.11.2 Test problems from the applications

We chose two problems that are prototypical for the simulations that arise in the applications
presented in chapters 5 and 6. �e number of unknowns are chosen such that the fastest
method takes two to three hours. As we will see, the slowest methods then take well over a
hundred hours.

• Coarsening. Here, we simulate the variable-quench equation, see Chapter 5. We sep-
arated the simulation into two parts, since the characteristics of the early stage are
quite di�erent from the late stages of the evolution. In the early stage, the mesh does
not change (everything is interface) and the time-steps are very short, compare also
to (3.12). In the later stages, somemesh-changes occur and the step sizes increase. �e
number of unknowns is about 50 000 at the beginning and about 30 000 at the end.

• Epitaxial growth. We chose here a straight moving step, see Chapter 6, which has as
a consequence permanent mesh changes (about every 10th step). �e time-step sizes
are more or less constant. �e number of unknowns is around 55 000.

Each of the three simulations was run with the four gradient methods and with both the
conjugate gradientmethod and Cholesky decomposition. All simulations were run using the
“cross”mesh on standard PCs. For details on the hard- and so�warewe used, see SectionA.11.

�e results are shown in Table 4.5.

4.11.3 Conclusions

We �rst note that concerning the linear solver, Cholesky decomposition (using the Cholmod
package) is superior to the conjugate gradient method in nearly all simulations. �e CG
method is only faster if the time steps are very small, which means that the eigenvalues of
the system matrix are large and only a small number of steps is necessary.
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Table 4.6: Comparison of the running times for a large system and small time-steps using the
CG solver.

Time Steps Setup time Memory
[hours] [minutes] [GB]

ABM 1:32 76 0:24 1.0
PCE 0:58 113 4:30 1.2
SINE 1:40 76 0:06 0.6
SPASI 0:47 74 0:29 1.3

�e best performing discretization method is ABM with Cholesky. �is also matches our
experience from other simulations. �e next best method (performance-wise) is SPASI, al-
though there we introduce another source of approximation error by using an approximate
inverse. Also, the tests in Section 4.9.1 were not satisfactory. �e PCEmethod is not very fast
and needs a �ner mesh than the other methods due to the di�erent de�nition of the discrete
gradient. Moreover, the Cholesky decomposition of SPASI and PCE has much more nonze-
ros than the one of ABM and therefore needs almost twice as much memory. �e biggest
disadvantage of SINE is that only iterative solvers without preconditioner can be used, which
makes it very slow.

To see how the methods perform in the cases where CG is the better choice, we started an-
other simulation of the early stage of coarsening with slightly more than 600 000 unknowns
and found the running times shown in Table 4.6. �e di�erences in the running times are
not immense and do not justify to prefer onemethod over another considering that the early
stage accounts for only a small fraction of the total simulation. Note that SINE is even in this
case the slowest method. �e fastest method using Cholesky was ABM taking about eleven
hours.

�e bottom line is that we will always use ABM, in most situations with Cholesky and in
some special cases with the conjugate gradient method.
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Coarsening

As the �rst application for our numerical method we chose coarsening processes. A large
number of physical systems, including metal alloys [Domb and Lebowitz, 1983], polymer
alloys and polymer–liquid-crystal mixtures [Papon et al., 2002], can be described by Cahn–
Hilliard-type equations.

We consider here the shallow- and deep-quench equation introduced in Section 2.4 with
random values of small amplitude as initial data. In the interfacial regime, numerical sim-
ulations and physical experiments suggest that the solutions show statistically self-similar
behaviour with a characteristic length `(t ). �is length scales as

• `(t )∼ t 1/3 for the shallow-quench equation and as

• `(t )∼ t 1/4 for the deep-quench equation.

�e scale invariance of the corresponding sharp-interface equations shows that these are the
only possible values. Indeed, remember from Section 2.6.2 that there are sharp-interface
models whose behaviour is approximated by the shallow- and deep-quench equations in
the interfacial regime. �is was the Mullins–Sekerka (MS) free boundary problem for shal-
low quench and motion by surface di�usion (SD) for deep quench. �ese are both scale-
invariant, i.e. solutions of MS and SD are still solutions if time and space are scaled by

x 7→λx , t 7→λ3t and x 7→λx , t 7→λ4t ,

respectively. So if there is a scaling law for `(t ), it has to be the one stated above.

�e statement `∼ t α can obviously be decomposed into an upper bound `® t α and a lower
bound ` ¦ t α. For the lower bound, no general predictions can be made without knowing
the geometric con�guration. For example, parallel stripes are stationary and therefore do
not coarsen at all. A time-averaged version of the upper bound was shown in Kohn and Otto
[2002].

�is application is a good trial for the performance of our method since the coarsening is
slow, especially in the deep-quench case. �erefore, simulations up to a large �nal time are
necessary. Moreover, as the coarsening stops when `(t ) becomes comparable to the system
size, large system sizes are also essential.

89
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�e scaling behaviour is connected to another property of the sharp-interface models: MS is
nonlocal, so information is mediated through the bulk, whereas in SD only the curvature of
the boundary, a local property, a�ects themotion of the boundary. Translated to the shallow-
and deep-quench equations, the �ux is usually nonzero in the whole domain (“�ux through
the bulk”) for shallow quench but is restricted to the transition regions for deep quench.

5.1 A model for phase segregation

For the derivation of the equations we follow the lines of Kohn and Otto [2002] and start
from a temperature-dependent “variable quench” equation and identify the shallow- and
deep-quench equations as certain limits of this equation. �is variable quench equation can
be derived from a three-dimensional Ising model with Kawasaki dynamics, see Domb and
Lebowitz [1983]. It describes a mixture of two components, where we denote the relative
concentration of one of the components by c . Settingm := 2c−1, we get the order parameter
m ∈ [−1, 1].

We de�ne the free energy of the mixture by

E (m ) =
∫
Ω

β

2

(
|∇m |2+(1−m 2)

)
+ 1

2
E(m ) (5.1)

where β denotes the inverse temperature and E(m ) is the entropy of the mixture:

E(m ) = (1+m ) log(1+m )+ (1−m ) log(1−m ).

�e relative concentration m then evolves according to

∂t m +∇· J = 0, (5.2a)

J =−(1−m 2)∇
δE

δm
(m ), (5.2b)

where the variational derivative of E is

δE

δm
(m ) =−β (∆m +m )+ 1

2

δE

δm
(m ),

δE

δm
(m ) = log

1+m

1−m

and thus

∇
δE

δm
(m ) =−β∇(∆m +m )+ 1

2
∇
δE

δm
(m ), ∇

δE

δm
(m ) =

2

1−m 2
∇m .

Inserting this in equation (5.2) yields

∂t m −∆m +β∇·
(
(1−m 2)∇(∆m +m )

)
= 0. (5.3)
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Figure 5.1: Left: Position of the minima of GVQ for different values of the inverse temperature
β and α = 5. Right: Potential GVQ for α = 5 and β = 1.3. Note that GVQ is bounded with
GVQ(±1) =α log 2.

We now look at the bulk equilibrium values, which are the minima of

G̃ (m ) :=β (1−m 2)+ (1+m ) log(1+m )+ (1−m ) log(1−m ). (5.4)

For β ¶ 1, the function G̃ is convex and has only one minimum at zero. For β > 1, there are
two minima at g + > 0 and g − =−g +. If β →∞, the entropy is small compared to the �rst
term, so g +→ 1. See Figure 5.1 for a plot of the location of the bulk equilibrium values and
a plot of GVQ, which is a rescaled version of Equation (5.4), see (5.12c).

�erefore, two regimes are considered:

• the shallow quench limit, where β → 1, β > 1 and

• the deep quench limit, where the temperature is very small (β →∞).

5.1.1 Shallow quench

First we determine the behaviour of the bulk equilibrium values in the regime β →∞, β > 1.
�at is, we look for a (constant) value m ful�lling

di� E (m ) = 0 ⇐⇒ βm = 1
2

log
1+m

1−m
. (5.5)

Since g ±→ 0 in this regime, we set ε=β −1 with ε> 0, ε� 1 and make the Ansatz

g + = f (ε), f (ε)� 1.

�en equation (5.5) is

2(ε+1) f (ε) = log(1+ f (ε))− log(1− f (ε))

≈ f (ε)− 1
2

f (ε)2+ 1
3

f (ε)3−
(
− f (ε)− 1

2
f (ε)2− 1

3
f (ε)3

)
= 2 f (ε)+ 2

3
f (ε)3.
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Dividing by 2 f (ε) yields

ε+1≈ 1+ 1
3

f (ε)2 ⇐⇒ f (ε)≈
p

3ε,

which means
g + ≈

√
3(β −1) for 0<β −1� 1. (5.6)

�erefore, we rescale m in Equation (5.3) by

m =
p

3ε m̂ .

To keep the nonlinear term, we have to rescale time and space according to

t =
4α4

1

ε2
t̂ and x =α1

√
2

ε
x̂ ,

where α1 is a constant to scale the potential that will be �xed later. �is yields

ε5/2
(
∂t̂ m̂ +∆̂2m̂ −2α2

1∆̂(m̂
3)+2α2

1∆̂m̂
)
+O(ε7/2) = 0,

so to highest order, we get the Cahn–Hilliard equation

∂t̂ m̂ + ∇̂ ·
(
−MSQ(m̂ )∇̂

δESQ

δm̂
(m̂ )

)
= 0 (5.7a)

with constant mobility
MSQ ≡ 1 (5.7b)

and the energy and potential

ESQ(m̂ ) =
∫
Ω̂

1
2
|∇̂m̂ |2+GSQ(m̂ ) and GSQ(m̂ ) =

α2
1

2
(1− m̂ 2)2. (5.7c)

5.1.2 Deep quench

As before, we �rst determine the location of the bulk equilibrium values in the case β � 1.
We set ε= 1/β and assume

g + = 1− f (ε), f (ε)� 1.

�en equation (5.5) reads as

1− f (ε) =
ε

2

(
log(2− f (ε))− log( f (ε))

)
⇐⇒ log( f (ε)) =−

2

ε
(1− f (ε))+ log(2− f (ε))

⇐⇒ f (ε) = exp
(
−

2

ε
(1− f (ε)︸ ︷︷ ︸

≈1

)
)
(2− f (ε)︸ ︷︷ ︸

≈2

)≈ 2e−2/ε
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and therefore
g + ≈ 1−2e−2β for β � 1. (5.8)

For β →∞, we rescale Equation (5.3) by

t =
α4

2

β
t̂ and x =α2x̂ ,

where, again, α2 is a constant to be �xed later. �is yields

β
(
∂t̂ m −∇̂ ·

(
(1−m 2)∇̂(∆̂m +α2

2m )
))
−α2

2∆m = 0,

which is to highest order a Cahn–Hilliard-type equation

∂t̂ m + ∇̂ ·
(
−MDQ(m )∇̂

δEDQ

δm
(m )

)
= 0 (5.9a)

with degenerate mobility
MDQ(m ) = 1−m 2 (5.9b)

and the energy and potential

EDQ(m ) =
∫
Ω̂

1
2
|∇̂m |2+GDQ(m ) and GDQ(m ) =

α2
2

2
(1−m 2). (5.9c)

5.2 Simulating the equations

In this section, we prepare the equations such that we can apply our discretization and we
choose various parameters, e.g. the αi in the potentials.

5.2.1 Shallow quench

�e energy of the shallow-quench equation is already in the form (4.1) of Chapter 4 and the
mobility is constant, so we can apply our discretization without further work.

5.2.2 Deep quench

In contrast, the deep-quench equation (5.9) imposes a di�culty: the degenerate mobility. In
our discretization scheme the mobility appears in the denominator, see Equation (4.18), and
becomes zero for m =±1. Another di�culty is that the potential is concave. As we have seen
in Section 3.2, the time-step restriction to guarantee the positive-de�niteness of the operator
is more strict in the case of a concave potential.

We investigate two possible ways to overcome these problems:
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• One possibility is based on the decomposition of the domain into bulk regions and
interfacial regions, compare to Section 2.6.2. Due to the fact that there is no �ux in the
bulk, it is enough to solve the equation for the �ux in the interfacial region, where the
mobility is nonzero.

• �e other idea is to use the variable-quench equation with a β � 1, which is the natu-
ral regularization of the deep-quench equation. �en the bulk equilibrium values are
away from one, see (5.8), and therefore the mobility is nonzero.

We describe these two ideas in the following.

Restriction to interfacial layer

�e asymptotic analysis carried out in Cahn et al. [1996] suggests that in the interfacial
regime, Ω can be decomposed into regions Ω = Ω+ε ∪ ΩI

ε ∪ Ω−ε , where φ ≈ g ± in Ω±ε and
ΩI
ε includes the transition regions with centre Γ.

Since there is e�ectively no �ux in Ω±ε , the error made when solving the equation for the �ux
only in ΩI

ε is small. �is idea is realized as follows.

Remember that the degrees of freedom are located on the edges of the mesh. We say that
an edge is in the bulk if on both adjacent triangles, m has reached at least 99.9% of the bulk
equilibrium values. All other edges are considered interfacial edges. �en, the system (4.24)
is reduced to those rows and columns that correspond to an interfacial edge. �is reduced
system is then solved to compute the �ux J . Consequently, |m |¶ 0.999g + < 1 and thus the
mobility is positive.

Of course this new system is no longer symmetric and, additionally, the time-step restriction
due to the concave potential still applies. �us two of the features of our discretization are
no longer valid and consequently we don’t follow this Ansatz any further.

Using variable-quench with a low temperature

Considering that the deep-quench equation was the limit of the variable-quench equation
for β →∞, the morphology of the solution of deep quench and of variable quench for β � 1
should be similar. �is is again supported by the asymptotic analysis of Cahn et al. [1996,
§4], who show that solutions to the variable-quench equation with large but �nite β behave
to highest order as motion by surface di�usion.

We have seen in (5.8) that the bulk equilibrium values approach ±1 exponentially fast for
increasing β (see also Figure 5.1 on page 91), so we cannot expect to be able to use a really
large β . Numerical tests showed that β = 4 is a good compromise between a large β and a
positive mobility. For this value, the bulk equilibrium values are

g ± ≈±0.999326 (5.10)
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Figure 5.2: Mobility of VQ in the case of two islands with different radii. The mobility is near
one at the interfaces (note that all values ¾ 5 ·10−3 are coloured red) and ≈ 3 ·10−3 in the bulk.

which yields a value of M (g ±) ≈ 10−3. To check if this is good enough, consider a setup of
two circular islands with di�erent radii. For the deep-quench equation, this is a stationary
situation since the interfaces are not connected and there is no �ux through the bulk. With
variable quench and β = 4, we can see in Figure 5.2 that the mobility in the bulk is not zero
but of order 10−3 as expected. So there will be some Ostwald ripening, i.e. the larger island
grows slowly at the expense of the smaller island.

In the actual coarsening simulations, the change of the solution due to the �ux through the
bulk is small compared to the change induced by other e�ects like coalescence and interface
movement, see also Figure 5.13 on page 108.

In summary, the variable-quench equation with β = 4 seems to be a good approximation of
the deep-quench equation.

Before we can use the variable-quench equation, we want the energy to have the form (4.1)
used in the discretization. To get rid of the β in front of the Dirichlet term in the energy (5.1),
we rescale time and space according to

t =βα2
3t̂ , x =

√
α3β x̂ and E =β Ê , (5.11)

where α3 > 0 is again an additional parameter to be chosen later. �e transformed operators
are

∂t =
1

βα2
3

∂t̂ , ∇=
1√
α3β
∇̂,

so the rescaled version of equation (5.2) is

∂t̂ m + ∇̂ ·
(
−(1−m 2)α3∇̂

δE

δm
(m )

)
= 0.
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Now writing the energy (5.1) in the new spatial variable,

E (m ) =
∫
Ω̂

β

2
|∇̂m |2+

α3β 2

2
(1−m 2)+

α3β

2
E(m ),

we �nd
Ê (m ) =

∫
Ω̂

1

2
|∇̂m |2+

α3β

2
(1−m 2)+

α3

2
E(m ).

and therefore

δÊ

δm
(m ) =−α3β∆m −α3βm +

α3

2
E(m ) =α3

δE

δm
(m ).

�us, we have again a Cahn–Hilliard-type equation

∂t̂ m + ∇̂ ·
(
−MVQ(m )∇̂

δEVQ

δm
(m )

)
= 0 (5.12a)

with degenerate mobility
MVQ(m ) = 1−m 2 (5.12b)

and the energy and potential

Ê (m̂ ) =
∫
Ω̂

1
2
|∇̂m̂ |2+GVQ(m̂ ) and GVQ =

α3

2

(
β (1− m̂ 2)+E(m̂ )

)
. (5.12c)

5.2.3 Choice of parameters

It is convenient for the simulations if all equations lead to solutions where the transition
regions have a similar width. �en, the re�nement rules presented in Section 4.6 apply to all
cases equally.

We took the following approach: �rst, we chose α3 in the potential of the variable-quench
equation such that the interface was similar to the one in epitaxial growth. �is yielded

α3 = 5.

�en, the α’s in the shallow- and deep-quench equation were chosen such that G ′′(0) is the
same in all cases. Remember that the most unstable wavelength λ∗ during spinodal decom-
position is determined by G ′′(0). Having the same λ∗ for all equations, we can use the same
system size (and mesh) for a given number of coarsening levels. �e resulting values are

α1 =

√
15

2
and α2 =

p
15.
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In all three cases the most unstable wavenumber and -length is then

k̂ ∗ =

√
15

2
≈ 2.74 and λ̂∗ = 2π

√
2

15
≈ 2.29.

As computational domain, we use a square Ω̂ = [0, L̂]2 with periodic boundary conditions.
We want to allow �ve levels of coarsening, which yields

L̂ = 25λ∗ ≈ 73.4.

�e number of degrees of freedom (=edges) in these simulations ranges from approx. 585 000
at the beginning to approx. 115 000 in the end. �e simulations were stopped when a sta-
tionary state was detected. �is was the case at around t̂ = 10 000 for shallow quench and at
t̂ = 350 000 for variable quench.

We always start with random initial values of amplitude 0.01.

To be able to compare the results to other simulations, we have converted some of the pa-
rameters from their scaled values used in the simulations to the “usual” scaling, see the table
below. By usual, we mean e.g. the one used in Kohn and Otto [2002].

shallow quench variable quench

k ∗ 1 0.61
λ∗ 6.28 10.26
L 201.01 328.25
t̂end 10 000 350 000
tend 575 000 35 000 000

For the shallow- and deep-quench equation, we can compute the one-dimensional minimiz-
ers, see Section 2.6.3:

mmin
SQ (x ) = tanh(

√
15/2x ) and mmin

DQ (x ) = sin(
p

15x ).

�ese two pro�les, together with numerical data for the variable-quench pro�le are plotted
in Figure 2.5 on page 23.

5.3 Results

Wepresent in the following the results of our numerical simulations.�ey con�rm a number
of assertions:

(A1) �e morphology of the solutions has two phases: �rst a phase of spinodal decomposi-
tion then a phase of coarsening.
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(A2) During spinodal decomposition, the initial values grow exponentially with dispersion
relationω.

(A3) �e �rst phase ends with a predominant wavelength.

(A4) In the coarsening regime, the solution is self-similar with a characteristic length `(t ).

(A5) �e characteristic length grows as `(t )∼ t 1/3 for shallow quench and as `(t )∼ t 1/4 for
deep quench.

(A6) �e morphology of the shallow-quench equation is dominated by the �ux through the
bulk, whereas in the deep-quench equation, �ux is only present along the interfaces.

For (A1), take a look at Figure 5.6 on page 103, where a measure for ` is plotted. �e two
phases can be easily distinguished.

In the next two sections, we compare the predictions (A2)–(A6) with our numerical simula-
tions. All simulations use the parameters from Section 5.2.3.

5.3.1 Spinodal decomposition

In Section 2.6.1, we saw that as long as |m | � 1, the Fourier transform of m behaves like

F (m ) = c exp(ω(|k |)t ),

where the growth factor, or dispersion relation, is given by

ω(|k |) =−|k |4+15 |k |2

for both shallow- and variable quench. To check this behaviour numerically, we proceeded
as follows. At �xed time intervals, we interpolated the values of m to a equidistant cartesian
mesh and applied Fourier transformation. For each wave vector k , we therefore get the func-
tionF (m )(k , ·). �en we take the logarithm of this function and use a linear �t to determine
the slope:

ωnum(|k |) := slope of log F (m )(k , ·).

�e results are shown in Figure 5.3 on page 101, where each blue dot corresponds to the value
ofωnum(|k |) for one wave vector k . Only values where the amplitude grew enough to identify
a slope are shown. We �nd very good agreement.

In Figure 5.4, the Fourier transform of m is depicted at the end of the phase of spinodal
decomposition. We can see that wave numbers around the predicted value of k̂ ∗ ≈ 2.74
dominate.
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5.3.2 Coarsening

We �rst address the self-similarity of the solutions (A4). Although one can describe the self-
similarity more rigorous in various ways, we think that the most easily accessible one is still
the visual impression. �erefore, we measured ` as explained below and took snapshots at
times t1 and t2 chosen such that 2`(t1)≈ `(t2). We then shrank the second snapshot to half
its size and glued four copies of it together. �e result is shown in Figure 5.5.

Next, we come to the scaling behaviour (A5). �e analysis in Kohn and Otto [2002] uses two
di�erentmeasures of the length-scale.�e �rst one is the so-called interfacial energy density,

e (t ) :=
1

|Ω|

∫
Γ

1,

which scales as 1/length. �ey expect e ∼ `−1 and therefore (A5) translates into

e (t )∼ t −1/3 for SQ and e (t )∼ t −1/3 for DQ.

To get e (t ), we use that in the interfacial regime, the energy E can be approximated by the
energy of the optimal pro�le multiplied by the length of the interface. �us, we �nd

e (t )≈
1

p
40 |Ω|

ESQ(m (t )) and e (t )≈
2

p
15π |Ω|

EDQ(m (t )).

In Figure 5.7, we show the normalized energies E (t )/E (0) for shallow quench and deep
quench. We see that the energies have indeed the anticipated scaling.

However, there are two nuisances. First, the graphs are rather bumpy at the end. �is is due
to the fact that for large times, and therefore large `(t ), individual events like coalescence
of two “islands” have more impact on the total energy. Second, remember that we use the
variable-quench equation with β � 1 to approximate the deep-quench equation. �e energy
measured is nevertheless EDQ, which seems a bit odd. To eliminate the �rst �aw, we have run
�ve simulations for each of shallow quench and deep quench and consider the average of the
measured quantities. To get around the second one, we resort to the other measure of the
length-scale mentioned in Kohn and Otto [2002], a negative norm:

L(t ) := 1p
|Ω|
‖m (x , t )‖H−1(Ω). (5.13)

By de�nition of the H−1-norm, see Section 2.2, L indeed scales as length. Computing L
involves solving Poisson’s problem, so this measure is computationally more expensive than
computing the energy. See Section A.6 for the implementation.

�e results are shown in Figures 5.8 and 5.9. �e coarsening rate is in good agreement with
the theoretical prediction.

To get an idea of the evolution of m , snapshots of the simulations at the times marked in
Figures 5.8 and 5.9 are shown in Figures 5.10 and 5.11, respectively.
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Finally, we investigate the �ux J in the two equations. �e assertion (A6) concerning the
�ux, namely �ux through the bulk in shallow quench and �ux along the interface in deep
quench, can be seen immediately from the equations. Denoting the variational derivative of
E with w we get

JSQ =−∇wSQ and JDQ =−MDQ(m )∇wDQ.

As the mobility for the deep-quench equation is zero in the pure phases, i.e. for m =±1, �ux
only takes place along the interfaces.

To visualize the �ux, we encoded the magnitude of the �ux in the colour saturation (light =
low �ux, dark = high �ux) and the direction is encoded in the hue. Figures 5.12 and 5.13 show
that, as expected, there is a lot of �ux in the bulk in shallow quench. For deep quench, most
of the �ux is along the interfaces. �e detail on the bottom right shows that there is a little
�ux through the bulk, but that the magnitude of this �ux is negligible compared to the �ux
along the interfaces.
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Figure 5.3: The predicted and measured values of the growth factor during spinodal decompo-
sition for shallow (left) and variable (right) quench.
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Figure 5.4: Plot of the Fourier transform F (m ) at the end of the first phase for the shallow-
quench (left) and the variable-quench (right) equations. The predicted value for the most unsta-
ble wave number k̂ ∗ ≈ 2.74 is predominant.
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Figure 5.5: Self-similarity of the solution. On the left is shown a snapshot with L(t ) = 50.
On the right, four copies of a snapshot with L(t ) = 100 were scaled to half their size and put
together. The upper row is for shallow quench and the lower row for deep quench.
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Figure 5.6: The length-scale L versus time in a log–log plot for variable quench. The two
phases are clearly visible.

time

en
er

g
y

 

 

slope: −
1

3

slope: −
1

4

SQ
DQ

Figure 5.7: Energy versus time in a log–log plot. The different scaling of the energy for shallow
quench (SQ) and deep quench (DQ) is clearly visible.
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Figure 5.8: Mean of the energy E over five simulations for shallow quench. Snapshots of the
simulation taken at the times marked with a red circle are shown in Figure 5.10.
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Figure 5.9: Mean of the negative norm L over five simulations for variable quench. Snapshots
of the simulation taken at the times marked with a red circle are shown in Figure 5.11.
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Figure 5.10: Snapshots of the shallow-quench simulation at the times marked in Figure 5.8
t ≈ 8, t ≈ 78, t ≈ 721, t ≈ 6 678, t ≈ 61 591 and t ≈ 552 594.
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Figure 5.11: Snapshots of the variable-quench simulation at the times marked in Figure 5.9:
t ≈ 15, t ≈ 557, t ≈ 7 850, t ≈ 131 268, t ≈ 1 849 668 and t ≈ 35 039 562.
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Figure 5.12: The upper picture shows the flux in a shallow quench simula-
tion: the hue shows the direction and the saturation shows the magnitude of
the flux (see circle on the right). A lot of flux takes place in the bulk (the grey
lines indicate the interfaces). The lower pictures show φ (left) and a detail of
the upper picture (right).
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Figure 5.13: The upper picture shows the flux in a variable quench simula-
tion: the hue shows the direction and the saturation shows the magnitude of
the flux (see circle on the right). Clearly visible is that the flux goes along the
interfaces (grey lines), as expected for an approximation of surface diffusion.
The lower pictures show φ (left) and a detail of the upper picture (right).
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Epitaxial Growth

As the second application for our numerical method, we chose epitaxial growth. Epitaxial
growth is the layer-by-layer growth of a thin crystalline �lm on a substrate. �is growth
process is o�en realized using molecular beam epitaxy, see Section 6.1.

�ere are various models for epitaxial growth of thin �lms that are distinguished by di�erent
scales in time and space, see e.g. Voigt [2005] for an overview. �ese models range from
full atomistic descriptions usingmolecular dynamics and kinetic Monte Carlo methods over
discrete–continuous models in which only the growth direction is resolved on an atomistic
scale and the lateral direction is coarse-grained, to fully continuous models which describe
the �lm height as a smooth hypersurface.

We concentrate here on the discrete–continuous case. �e standard models for this meso-
scopic scale are step-�owmodels, which aremotivated in Section 6.3. Since step-�owmodels
are based on free-boundary problems, numerical simulations of these models cannot han-
dle topological changes. To overcome this limitation, we consider in Section 6.4 a di�use-
interface approximation introduced by Otto, Penzler, Rätz, Rump, and Voigt [2004]. �is
point of view is opposite to the one of Section 2.6.2: there, we started from a Cahn–Hilliard-
type equation (corresponds to the di�use-interface approximation) and found as a limit a
free-boundary problem (corresponds to the step-�ow model).

To emphasize the possibility to handle topological changes, we focus on one of the instabil-
ities explained in Section 6.2. For certain parameters, an initially straight step develops an
instability that leads to a pinch-o�. We compare our simulation to a step-�ow simulation.
Up to the pinch-o�, the results coincide. Only the di�use-interface approximation can go
beyond the topological change, see Secion 6.6 for the results.

Parts of the following have been published in Otto, Penzler, and Rump [2005] and Haußer,
Otto, Penzler, and Voigt [2008].

109
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Figure 6.1: Epitaxial growth of Si(001). The figure shows atomistically flat terraces, which are
separated by steps of atomic height. Courtesy of Polop et al.

6.1 Molecular beam epitaxy

Molecular beam epitaxy (MBE) is a technology to grow ordered crystalline �lms that in-
herit their atomic structure from the substrate. It produces almost defect-free, high-quality
materials and is widely used in research and industry to make semiconductor devices and
structures.

Apart from its technological relevance, MBE also played a central role in the growth and
development of nanoscience and nanotechnology [McCray, 2007].

MBE constists mainly in depositing single atoms or molecules onto a substrate in a vacuum
chamber. We consider here homoepitaxy, i.e. the substrate is of the same material as the de-
posited atoms. Furthermore, we think of a crystalline substrate which has been cut with a
small angle to its crystallographic orientation. �erefore, the substrate constists of atomisti-
cally �at terraces, devided by atom-high steps, see Figure 6.2. Vapor atoms arriving at the
surface become adatoms (ad-sorbed atoms) and di�use on the �at terraces. Upon coming to
a step, the adatoms attach to the step with a certain rate and therefore the crystal grows layer
by layer.

Figure 6.1 shows a scanning tunneling microscopy (STM) image of a silicon surface. �e �at
terraces and atom-high steps are clearly visible.
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Figure 6.2: Terms used in this section. Left: The thin film grows layer by layer on a substrate
through (horizontal) movement of the steps. The typical shape of the film are large terraces
separated by atom-high steps. Right: Infinite descending step train.

6.2 Instabilities in epitaxial growth

An initially straight step typically does not remain straight during growth, but is subject to
various instabilities. �ere are essentially three types of instabilities which in�uence the �lm
morphology during growth: step bunching, step meandering and mound formation, see e.g.
Politi et al. [2000]; Krug [2005]. �ey all have their origin on the atomistic scale and result
from asymmetries in the energy barriers for individual hops of atoms on the surface. How-
ever, a fully atomistic description of the �lm is limited to sample sizes of several nanometers
and thus far o� fromany feature size in semiconductor devices. In order to predict the surface
morphology on larger length scales, continuum models are required which incorporate the
instabilities generated on the atomistic scale. Fully continuous models with these properties
still have to be derived. On a mesoscopic scale, discrete–continuum models, the step-�ow
models, are promising candidates. �ese will be described in Section 6.3.

Step-meander instability

From the three mentioned instabilities, we focus on the step-meander instability. Already in
the mid-sixties of the last century, Ehrlich and Hudda [1966] found that adatoms attach to a
step down with a lower rate than to a step up. �e (not entirely correct) picture one can have
in mind is that the adatom has to “jump over the edge” before being able to attach to the step
an thus looses all its bonds. In reality the situation is o�en more complicated and includes
reordering of several atoms, but in any case is costs the adatommore energy when attaching
to a step from an upper terrace. �e energy barrier the atom has to overcome is called the
Ehrlich–Schwoebel (ES) barrier.

�is asymmetry in attachment rate is suspected to con-
tribute to all three kinds of instabilites. Concerning the
step-meander instability, the intuition is the following.
Given a step with a bulge, adatoms coming from the lower
terrace will, due to the di�usive nature of theirmovement,
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Figure 6.3: Microscopic processes:
Vapour atoms are deposited on a surface,
where they become ad(sorbed)atoms
and diffuse on the flat terraces; eventually
adatoms attach to steps.
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Figure 6.4: Step-flow model: steps are
treated as smooth curves Γ and every ter-
race becomes a separate domain with a
height assigned to it.

be more likely to attach to the bulge. In the same way, adatoms coming from the upper ter-
race will be more likely to attach to the rear part of the step. �erefore, if the adatoms from
the lower terrace attach with a higher rate, the bulge will grow.

�e results of simulations of this instablity are presented in Section 6.5.2 for the onset of
growth and in Section 6.6 for the grown instability.

6.3 Step-�ow model

�e layer-by-layer growth of the crystalline surface is usually described using the classical
Burton–Cabrera–Frank (BCF) model [Burton et al., 1951], which is a semi-continous model:
discrete in the height, but continuous in the lateral directions.

We start from a simpli�ed lattice-gas point of view with lattice spacing a , see Figure 6.3.
Adatoms are deposited with rate f per site and hop from one site to another with rate D
until they reach a step. �ey can then attach to the step and also detach again. Desorption
of adatoms has been neglected, which is valid in typical MBE experiments [Maroutian et al.,
1999].

In the step-�ow model, atomistic hops on terraces are modelled by a continuum di�usion
equation for the adatom density. �e atomistic processes of attachment and detachment at
the steps are incorporated by appropriate boundary conditions. Moreover, the atomistically
rough steps are treated as smooth curves Γ, see Figure 6.4, and the local geometry enters via
the curvature.

If nucleation of new islands or steps on the terraces can be neglected (which we will assume
in the following), the growth dynamics are essentially described by the attachment kinetics
at the steps, i.e. the boundary conditions of the adatom density at the terrace boundaries.
�is leads to a free boundary problem for the adatom densities on the terraces with free
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boundaries given by the step position. On each terrace Ωi , the adatom density ρ obeys the
di�usion equation ∂tρ−Da 2∆ρ = f .

We will focus on a regime where the adatom density has enough time to relax to its quasi-
stationary equilibrium on the terraces. �us, the di�usion equation can be replaced by

−Da 2∆ρ = f . (6.1a)

�e �uxes of adatoms to a step are given by

j ± =±Da∇ρ± ·ν , (6.1b)

where “+” and “−” denote quantities at a step up (i.e. on the lower terrace) and a step down,
respectively, and ν denotes the normal pointing from an upper to a lower terrace. Since
adatoms not only attach to steps, but also detach from steps due to thermodynamical e�ects,
there is an equilibrium density ρ∗ for an in�nite straight step. For curved steps, the equilib-
rium density has to be modi�ed by the curvature of the step, which leads to the linearized
Gibbs–�omson relation

ρeq =ρ∗(1+ξκ),

where ξ is the capillary length and κ is the curvature. We de�ne the curvature of a convex
island to be positive.

Assuming �rst order kinetics for the attachment/detachment of adatoms at the steps, the
�uxes at the steps (terrace boundaries) are proportional to the deviation of the adatom den-
sity from equilibrium, i.e. the adatom density satis�es the following kinetic boundary condi-
tions at a step:

j ± = k±(ρ±−ρeq). (6.1c)

With this notation, asymmetric attachment rates 0< k− < k+ model the Ehrlich–Schwoebel
barrier. Finally, the normal velocity of a step is given by

1

a
V = j ++ j −. (6.1d)

For a more detailed description of the step-�ow model see e.g. Krug [2005].

6.3.1 Nondimensionalization

Before we proceed to the di�use-interface approximation, we rewrite equations (6.1) to ren-
der them more concise. We �rst state the equations in terms of the excess adatom density

w :=ρ−ρ∗.
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Figure 6.5: Solution w of the one-dimensional version of (6.2) in the case of descending steps.
Due to the ES barrier, not all adatoms coming from an upper terrace (here in each case left of
a step) attach to the step. Therefore, the excess density w is positive on the upper terrace and
jumps to zero at the step.

Similar to Otto et al. [2004], we rescale units according to

t = F−1t̂ , x =
(

DF−1ρ∗a 2ξ
)1/3

x̂ ,

f = F f̂ , w =
(

D−1F (ρ∗)2a−2ξ2
)1/3

ŵ

and get in the new variables aMullins–Sekerka-type free-boundary problem:

−∆̂ŵ = f̂ in Ωi ,

ŵ± = κ̂±ζ±∇̂ŵ± ·ν on Γ,

V̂ = ∇̂(w+−w−) ·ν on Γ.

�e dimensionless parameters ζ± are anti-proportional to the attachment rates k±:

ζ± =
1

k±
(

F D2(ρ∗)−1aξ−1
)1/3

.

In the following, we will only consider the case of unlimited attachment to a step up, i.e.
ζ+ = 0, and we drop the hats, so we �nally get

−∆w = f in Ωi , (6.2a)
w+ = κ on Γ, (6.2b)

w−+ζ−
∂w−

∂ ν
= κ on Γ, (6.2c)

V =
∂w+

∂ ν
−
∂w−

∂ ν
on Γ. (6.2d)

6.3.2 One-dimensional solution

To get a �avour of the solutions of the equation, consider the one-dimensional version with
steps at position x = 0 and x = L. �e solution of (6.2) is then the quadratic function

w (x ) =−
f

2
x 2+

f

2

L2+2Lζ−

L+ζ−
,

see Figure 6.5 for an example. Note that, due to the Ehrlich–Schwoebel barrier, the solution
w jumps at the steps.
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Figure 6.6: BCF model: each domain
is associated with a discrete height, thus
forming a three-dimensional landscape
with sharp interfaces.

Figure 6.7: Diffuse-interface approxima-
tion: the sharp interfaces are “smeared
out”, resulting in a smooth function.

6.4 Di�use-interface approximation

Let us �rst show how to imagine a di�use-interface approximation: the BCF model is two-
dimensional, but every domain Ωi is labelled with a discrete height, so one can imagine it
as a three-dimensional landscape with sharp jumps, see Figure 6.6. �e di�use-interface
approximation can now be thought-of as a smeared-out version of this landscape, where the
sharp jumps are replaced by smooth transition regions of width ε, see Figure 6.7.

�e connection between di�use-interface models in form of a Cahn–Hilliard-type equation
and their sharp-interface limits were discussed in Section 2.6.2.

For step-�ow growth, di�use-interface approximations have already been introduced in Liu
and Metiu [1997] and Karma and Plapp [1998], but none of these included the Ehrlich–
Schwoebel-barrier.

We come now to a model which does include the ES-barrier. Consider the Cahn–Hilliard-
type equation

∂tφ+∇· J = f , (6.3a)
1

M (φ)
J =−∇

δEε
δφ
(φ), (6.3b)

where Eε(φ) is the Ginzburg–Landau free energy with a double-well potential G

Eε(φ) =
∫
Ω

ε

2
|∇φ|2+ ε−1G (φ), G (φ) = 18φ2(1−φ)2 (6.3c)

and M (φ) is a mobility function modelling the Ehrlich–Schwoebel barrier:

M (φ) = (1+ ε−1ζ−σ(φ))−1,
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Figure 6.8: The potential G (dashed line) and the mobility function M (solid line): coming from
an upper terrace (“φ = 2”), the atoms experience reduced mobility while attaching to the step
(“φ = 1.5”). On the other hand, coming from a lower terrace to the step, there is no reduction in
mobility. This models the Ehrlich–Schwoebel barrier.

whereσ(φ) is an asymmetric function inφ. See Figure 6.8 for a plot of the potential and the
mobility. �e potential G is restricted to the interval [0, 1] and then periodically continued,
so that we get a multi-well potential with equally deep wells at the integers. As we have
seen in Section 2.6, this yields the anticipated structure, namely �at terraces at the integers,
corresponding to the atom-high monolayers, with thin transition regions in-between.

In Otto, Penzler, Rätz, Rump, andVoigt [2004] it was shown by formal asymptotic expansion
that the above equation yields for ε→ 0 a slightly more general form of the BCF-model (6.2):

−∆w = f in Ωi , (6.4a)(
z+ z m

z m z−

)(
∇w+ ·ν
∇w− ·ν

)
=

(
w+−κ
−w−+κ

)
on Γ, (6.4b)

V =
∂w+

∂ ν
−
∂w−

∂ ν
on Γ, (6.4c)

where the coe�cients are given by

z+ = ζ−
∫ 1

0

(1−φ)2
σ(φ)√
2G (φ)

dφ,

z m = ζ−
∫ 1

0

φ(1−φ)
σ(φ)√
2G (φ)

dφ,

z− = ζ−
∫ 1

0

φ2 σ(φ)√
2G (φ)

dφ.

Note that, as long as the coe�cient matrix is positive semi-de�nite, this still yields a thermo-
dynamically consistent evolution, i.e. the length of Γ (and therefore the energy) decreases.



6.4 Diffuse-interface approximation 117

Figure 6.9: Excess density w for data as in Figure 6.7. Clearly visible are the boundary values
w = κ at a step up, the jump due to the ES-barrier and the smooth solution of −∆w = 1 on the
terraces.

For our numerics, we choose

σ(φ) = 6(p +4)(p +5)φpφ2(1−φ)2, p � 1.

Together with the de�nition of G , this yields the coe�cient matrix(
z+ z m

z m z−

)
=

(
6

p 2+5p+6
2

p+3
2

p+3
1

)
ζ−.

Henceforth, we will call the system (6.4) with these coe�cients the p -BCF model. �e BCF
model (6.2) has the coe�cients z+ = z m = 0, z− = ζ−.

�us, the connection between the BCF model, the p-BCF model and the di�use-interface
approximation (DIA) is given by the following limits:

DIA ε→0−−−−−→ p-BCF
p→∞

−−−−−−→ BCF

In the di�use-interface approximation, the position of the boundary Γ (the steps), is given
by the level sets {

φ =Z+ 1
2

}
.

Note that the L2-di�erential of the energy

δEε
δφ
(φ) =: wε

is the approximation of the excess density w from equations (6.2), see Figure 6.9.
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6.5 Numerical tests

In this section, we use the discretization presented in Chapters 3 and 4 to simulate the Cahn–
Hilliard-type equation (6.3), which is our di�use-interface approximation.

Before we come to the simulation of the step meander instability in Section 6.6, we perform
some tests to be con�dent that the di�use-interface approximation is indeed a good approx-
imation to the BCF model for feasible values of ε and p .

�e simulations aim to re�ect the growth of a small section of a larger working piece, so a
periodic setup is necessary to exclude boundary e�ects. On the other hand, the steps should
all move in one direction or else the valleys would be �lled up a�er a short time. �erefore, a
very useful setup for simulations in epitaxial growth is an in�nite descending step train, see
Figure 6.2 on page 111.

�is leads us to an important feature of our so�ware. Of-
ten severalmonolayers have to be deposited until an inter-
esting feature becomes apparent. Assume as an example
that we have to wait for the deposition of �ve monolayers.
�en, to simulate the step train, one has to use a compu-
tational domain having at least �ve times the length of the
terrace. To exclude boundary e�ects, it should be even larger. As a way out of this, we use
“skew periodic” meshes. �at is, having a rectangular computational domain, we can con-
nect the right side of the domain having height, say, one to the le� side with height two and
the program will take care of the jump in the solution, see Section 7.2.2 for the implemen-
tation. Using this feature, it is enough to have a computational domain of the length of one
terrace.

6.5.1 Straight step train

As a �rst test, we consider a straight step train without ES barrier, i.e. with ζ− = 0, and
compare the results to the solution of the BCF-model. �e amount of deposited material on
a rectangular unit cellΩ= [0, Lx ]×[0, L y ] a�er a time t is f Lx L y t . Due tomass conservation,
the step has to move with speed f Lx .

To obtain the speed of the step in the di�use-interface approximation, we have to determine
the step position, that is the level set {φ = 1/2}. Since the discrete function φh is piecewise
constant, determining the step position is not trivial. �erefore, this test is more a test of the
quality of the step-�nding algorithm than a test of the approximation to the BCFmodel. �e
details on the algorithm are lined out in Section A.3

�e result can be seen in Figure A.2: the step moves indeed with speed f Lx . Deviations
come from determining the exact position of the step. Moreover, it takes some time until the
excess density wε has built up, so the step moves slower at the beginning.
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Figure 6.10: At the beginning of a simulation, it takes some time for wε to build up (dotted
lines). Only then, the step moves with the correct speed.

6.5.2 Linear instability of a step train

Nowwe come to the simulation of the instability explained in Section 6.2. At the onset of the
growth of the instablity, the behaviour can be predicted using linear stability analysis.

�e setup for the simulation is as follows. We consider a planar equidistant descending step
train, i.e. an in�nite sequence of straight steps down with distance Lx between one step and
the next. Each step is modi�ed with the same small lateral perturbation. Since perturbations
get in-phase very quickly, it is enough to consider only perturbations that are already in-
phase, i.e. identical for each step. Hence it is natural to work in a periodic setup with periodic
cell [0, Lx ]× [0, L y ], where Lx is the step spacing and L y is a period of the perturbation,
see Figure 6.11. We will speak of step meandering if the initial perturbation increases under
growth, so that the steps do not stay straight.

Ly

0 L 2 Lx x

step
h(y)

Figure 6.11: Top view of the unit cell [0, Lx ]× [0, L y ]: each step is perturbed by δh(y ), where
h(y ) is a function of order one and δ� 1.
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Linear stability analysis

�e following linear stability analysis is based on the original BCF model (6.2) and follows
that of Bales and Zangwill [1990].

First, we insert an δ-expansion of w , i.e. w =w0+δw1+O(δ2), into the equations to derive
the δ-order evolution of the boundary, which is the evolution of the perturbation h(t , y ).
�e resultingO(δ)-equations are

−∆w1 = 0 on terrace,
∂t h = ∂x w+

1 − ∂x w−
1 at step,

w+
1 = −c h − ∂y y h at step up,

ζ−∂x w−
1 +w−

1 = −(c − f Lx − f ζ−)h − ∂y y h at step down,

where c = f (ζ−Lx + 1
2

L2
x )/(ζ

− + Lx ). Fourier transformation in y yields equations for w1

and h , which are now functions of (x , k ) and k , respectively:

−∂x x w1+ |k |2w1 = 0,

∂t h = ∂x w+
1 − ∂x w−

1 ,

w+
1 = (|k |2− c )h,

ζ−∂x w1+w−
1 = ( f ζ−− c + f Lx + |k |2)h.

�is motivates the Ansatz

w1(x , k ) := c1 exp(|k |x )+ c2 exp(−|k |x ).

Straightforward calculations for c1 and c2 yield for each wave vector k

∂t hk (t ) = c1|k |(1−exp(|k |Lx ))− c2|k |(1−exp(−|k |Lx )) =ω(k )hk (t )

with the dispersion relation

ω(k ) =
−|k |

[
(|k |2− c )|k |ζ− sinh(|k |Lx )+ (2|k |2−2c + f (ζ−+ Lx ))(cosh(|k |Lx )−1)

]
sinh(|k |Lx )+ |k |ζ− cosh(|k |Lx )

.

(6.5)

�e calculations for the p–BCF model (6.4) are analogous. �e resulting dispersion relation
is given by

ωp (k ) =
−|k |2 sinh(|k |Lx )

[
(|k |2− cp )(z++2z m + z−)+ f Lx (z m + z+)

]
sinh(|k |Lx )(z+z−|k |2− (z m |k |)2+1)+ |k |cosh(|k |Lx )(z−+ z+)+2z m |k |

−
|k |(cosh(|k |Lx )−1)

[
2(|k |2− cp )+ f (z−− z++ Lx )

]
sinh(|k |Lx )(z+z−|k |2− (z m |k |)2+1)+ |k |cosh(|k |Lx )(z−+ z+)+2z m |k |

(6.6)

with cp := f Lx
z−+z m+Lx /2

z−+2z m+z++Lx
.
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Figure 6.12: Contour lines of the most unstable wave length λ∗ and the corresponding growth
factor ω.

Note that due to the linearization, the dispersion relation for a given wave number |k | is
independent of all other wave numbers. �is permits us to decompose the perturbation in
perturbations of just a single wave number and analyze only one of those.

As can be seen from Equation 6.5, for ζ− = 0 or f = 0 we haveω(k )< 0 for all k , so that any
initial perturbation will �atten out during growth. Only if ζ− > 0 and f > 0, there is a region
of wave numbers for whichω(k )> 0. In this case an instability will develop.

Choice of parameters

Using the formula for the BCF-model (6.5) and setting f = 1, we have only two parameters
le�: Lx and ζ. For each pair of these, we can �nd the most unstable wavelength λ∗ and the
most unstable wavenumber k ∗, see Figure 6.12. When choosing Lx and ζ, we have a few
things in mind:

• A large unstable wavelength means a long step (L y large) and therefore many degrees
of freedom.

• If the corresponding growth factorω is too small, the instability grows very slowly, so
the simulation has to run for a very long time. On the other hand, if the growth factor
is too big, then we leave the linear regime too quickly.

• If Lx is too large, the excess density w is large on the terraces. In the asymptotic anal-
ysis in Otto et al. [2004], we have seen that φ ≈ Z+ εw on the terraces and ε should
be chosen so that εw � 1.

• If Lx is large, the wave number k = n Lx/2π for the n-th mode is also large. In most
cases,ω(k ) is only positive for n = 1 and so only the �rst mode will grow.
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Figure 6.13: Plot of the growth factors for the BCF-model (blue) and the p -BCF-model (green).
The most unstable wave number for BCF is at the dotted line.

Considering these conditions, we choose ζ− = 13.5308 and Lx = 6.4. For these values, we
get the growth factors depicted in Figure 6.13 and �nd

λ∗ = 4.8, k ∗ ≈ 1.31 and ω(k ∗)≈ 3.65.

Since the di�use-interface approximation approximates the p-BCF model, we will compare
the numerically measured growth factors to the value

ωp (k ∗)≈ 3.04.

Numerical results

For our numerical simulations, we use the setup shown in Figure 6.11. As outlined above, we
choose Lx = 6.4. For the vertical size, we take the most unstable wave number, i.e. L y = 4.8.
As initial values, we use the one-dimensional minimizing pro�le in x direction, where the
step position ξ (that is φ0(ξ, ·) = 1/2) was modi�ed by a function h(y ):

φ0(x , y ) = 1
2

(
1− tanh

(
3
ε
(x −ξ+δh(y ))

))
�e amplitude of the initial perturbation is δ = 0.005. �e function h(y ) was either a sinus
function, so a �xed wave number, or random values in the range [−1, 1].

To �nd the dispersion relation, or growth factor, we determine the step-position a�er each
time step, see Section A.3 for the algorithm. �en the amplitudes of all modes are calculated
by Fourier transformation. Finally, the numerical growth factor ωnum was determined by
linear �t to the logarithm of the amplitudes.

�e �rst series of simulations shows the convergence of ωnum to ωp when ε decreases, see
Figure 6.15. �e initial values use a step position modi�ed by a mode-one perturbation. We
see good agreement for ε ¶ 1/16.
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Figure 6.14: The shape of a randomly perturbed step at different (logarithmically equidistant)
times. Note that the x -axis does not display the position of the step and that the amplitudes of
the steps were scaled to be equal.

With this value for ε, we started four simulations with step position perturbed by mode one
to four, respectively, and a ��h one with randomly perturbed step position. For each, we
measure the growth factor and �nd good agreement with the predicted values, see Figure
6.16. In Figure 6.14, we depicted the development of the randomly perturbed initial values.

To avoid that just the biggest possible wave number grows, we performed additional simu-
luations with L y = 9.6 for comparison, which con�rmed the results.

6.5.3 Linear instability of a circular island

A further test is the growth of a circular island [Li et al., 2004]. �e domain here is a ball of
�nite radius and the initial values are a circular island, where the radius is perturbed with a
periodic function of the angle, i.e.

r (θ ) = r0+δsin(nθ ), θ ∈ [0, 2π), n ∈N. (6.7)

In contrast to the step train, the growth factor here is not constant, but changes over time.

As already lined out in Rätz [2007], this test is unfavorable for a di�use-interface approxi-
mation, as the density wε needs some time to build up. �erefore, the growth factor “lags
behind” and the agreement between theory and and numerical solution is suboptimal. Addi-
tionally, the step gets longer during growth, so the number of unknowns increases constantly.

Another issue in our simulationwas that the perturbation grew so large that nonlinear e�ects
appeared. Nevertheless, we show the results to see that our implementation works �ne with
no-�ux boundary conditions, a delaunaymacro-grid and up to amillion degrees of freedom.

�e simulation was run with a circular domain of radius 13.6 with no-�ux boundary condi-
tions and initial values as in (6.7) with r0 = 2.7, δ= 0.1 and n = 6.�emesh was generated in
Matlab and, as usual, re�ned by bisection. At t ≈ 0.96, the domain will be completely �lled
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Figure 6.15: Plot of the amplitude of mode one for different values of ε. For ε = 1/8 (top
left), the simulation had to run longer to get a usable slope. The lower right plot shows the
growth factors with compared to the predicted factor from the p -BCF model. For ε ¶ 1/16, we
see good agreement. An explanation for the slight oscillation of the amplitude can be found in
Section A.3.



6.5 Numerical tests 125

0.05 0.1 0.15 0.2 0.25 0.3

−4.7

−4.6

−4.5

−4.4

−4.3

−4.2

−4.1

−4

−3.9

t

lo
g(

a
m

p
li
tu

d
e)

Mode 1

0.05 0.1 0.15 0.2 0.25 0.3

−5.2

−5.1

−5

−4.9

−4.8

−4.7

−4.6

−4.5

t

lo
g(

a
m

p
li
tu

d
e)

Mode 2

0.1 0.15 0.2 0.25 0.3

−4.5

−4.4

−4.3

−4.2

−4.1

−4

−3.9

−3.8

t

lo
g(

a
m

p
li
tu

d
e)

Mode 3

0.05 0.1 0.15 0.2 0.25 0.3
−5.6

−5.5

−5.4

−5.3

−5.2

−5.1

−5

−4.9

−4.8

t

lo
g(

a
m

p
li
tu

d
e)

Mode 4

0 0.5 1 1.5 2 2.5 3 3.5 4
−6

−5

−4

−3

−2

−1

0

1

2

3

4

mode

Figure 6.16: Plot of the amplitude of modes one to four for ε ≈ 0.01. In the lowermost plot,
ω (orange), ωp (green) and the numerical values for fixed-mode initial values (blue dots) and
white-noise inital values (red crosses) are shown. Again, we find good agreement.
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Figure 6.17: On the left, the step position for different times is shown. On the right, we show
the deviation from a circle, i.e. the perturbation. A sine of the same amplitude was added for
comparison (dashed line). We see that the initial perturbation (green) grows first and later
shrinks again. The amplitude of the perturbation gets quite large, so that nonlinear effects
appear (orange) and the perturbation no longer has a sinusoidal shape.

up and the simulations stops. �e inital values were resolved with around 85 000 degrees
of freedom. Since the step becomes longer during the simulation, the number of degrees of
freedom increased up to around 950 000 just before the end.

In Figure 6.17, we plotted the position of the step at di�erent times and the development of
the perturbation. We see that the perturbation grows �rst and then shrinks again. However,
due to nonlinear e�ects, the perturbation loses its sinusoidal shape.�erefore, linear stability
analysis does not apply here and thus we do not compare the numerical growth factor to the
theory.

A piece of the di�use-interface approximation including the mesh is shown in Figure 6.18 on
the facing page.

6.6 Nonlinear instability of a step train

If we continue the simulation of Section 6.5.2 and the instability grows larger, we leave the
linear regime. �e following nonlinear regime is of much more importance for practical
purposes, because meandering patterns observed during growth show large amplitudes. De-
pending on the parameters used, one observes one of the following [Pierre-Louis et al., 1998;
Danker et al., 2003; Pierre-Louis et al., 2005]:

• Endless growth of the meander amplitude.

• Stationary step pro�les with a �xed amplitude.

• �e step develops overhangs that eventually lead to a pinch-o� of a vacancy island,
that is a void of the depth of one atomic height.
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Figure 6.18: The diffuse-interface approximation corresponding to the orange step in Figure
6.17 together with the computational mesh.

Haußer and Voigt [2007] carried out a parameter study and found all three predicted be-
haviours. �ey used a front-tracking method for the simulations. �is kind of method is
based on the BCFmodel and calculates in each time step the solution of the Poisson problem
given the boundary of the last step. �en, the step is promoted with the velocity determined
by the density �eld. Two di�erent meshes are necessary for the front-tracking method: a
two-dimensional mesh to compute the density w and a one-dimensional mesh parameter-
izing the step. A major handicap of this type of method is that it breaks down if the step
self-intersects as is the case with the pinch-o�.

Since topological changes impose no problems for the di�use-interface formulation, we can
use our so�ware to study the behavior a�er the pinch–o�. We use the same parameters as
Haußer and Voigt. In the nondimensinoal form, they translate into

ζ− ≈ 94.1, l̂ ≈ 9.41 and λ̂≈ 3.64.

In Figure 6.19, the step position extracted of our simulation is compared to the step position
calculated with the front-trackingmethod just before the pinch-o�, where the front-tracking
has to stop. We see very good agreement.

In Figure 6.20 we can see what happens a�er the pinch-o�: vacancies appear and are �lled
up again by the newly deposited atoms. �ey disappear just before the next step arrives, so
that we get a periodic “production” of vacancies.
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Figure 6.19: Comparsion of the step position just before the pinch-off for the front-tracking
method (left) and our diffuse-interface approximation (right).

Figure 6.20: Nonlinear instability: the instability of a straight step grows larger (upper left) and
develops overhangs (upper right) until a vacancy pinches off (lower left). The vacancy is filled up
before the next step arrives (lower right), so that we see a periodic release of vacancy islands.



7

�e �nite element so�ware

�e simulations in this work were performed using our adaptive �nite element so�ware
CHEST (Cahn Hilliard Equation Simulation Tool). �e so�ware was developed as part of
this work. It was writtenmostly from scratch. �ere were twomain reasons to develop a new
so�ware and not to use an already existant one. First, most �nite element toolboxes do not
include Raviart–�omas �nite elements. Second, and more important, the lack of support
for skew-periodic meshes. Adding support for such meshes to an existing so�ware is an ex-
tremely complex task. However without such meshes, simulating step trains as in Chapter 6
is hardly possible.

�e so�ware was written in C++ and constists of approximately 25 000 lines of code. Its
organization is shown in Figure 7.1. We describe the components in the following sections.

�ere are a few parts that were not written by myself. �e mesh library is based on code by
Ralf Hiptmair developed during a seminar on the boundary element method. �e Eikonal
solver used in the mesh adaption is based on code by Jörg Drwenski. To accelerate the linear
solver, we use the packages PETSc [Balay et al., 2001], CHOLMOD [Davis and Hager, 2005]
and UMFPACK [Davis, 2004].

In
te

l 
M

K
L

Cholmod

Umfpack

Petsc

tools

CHEST

meshlib

DOFman. ppmathlib

mathlib

Figure 7.1: Components of the finite element software CHEST. The shaded components were
written as part of this work.

129



130 7 The finite element software

7.1 �e math library

First, we programmed our own math library consisting of classes for vectors, sparse and full
matrices, and linear systems of equations.

Later, when the performance of the so�ware became important, the wish to use external
packages for the linear solver came up. With packages as PETSc, it is easy to try out di�erent
linear solvers and preconditioners. It turned then out that the performance of the Cholesky
solver in the PETSc package (at least in version 2.3.3) ismuch slower and needsmorememory
than the solver in the Cholmod package. Finally, direct methods for non-symmetric prob-
lems seem to be quite fast with Umfpack. Alle three have in commmon that they rely on the
basic linear algebra subrutines (BLAS). As our group uses computers with Intel processors,
we use the Intel math kernel library (MKL) as implementation of BLAS.

Of course, all these packages use di�erent classes for thematrices.�erefore, ourmath library
is by nowmostly used as an interface to the external packages, which also translates between
the di�erent matrix structures.

However, there are cases where our own implementation of a sparse matrix is faster due to
its less advanced memory management, see Section 7.1.2.

Note that if we speak of arrays in the following, they are of course all dynamically allocated.

7.1.1 Vectors

base_vector

PETSc_vector PP_vector

�e base class for vectors has the non-surprising name base_vector.
It is an abstract base class with virtual functions for the basic oper-
ations as data access and the like.

Our self-written vector class uses a simple double array for data
storage and implements the functions from base_vector.

7.1.2 Matrices

base_matrix

full_matrix petsc_matrixfree_matrix sparse_matrix

PETSc_sparse_matrix PP_sparse_matrix

�e structure of the matrix class can be
seen on the right. �e base_matrix class
is again an abstract base classwithmeth-
ods for data access, multiplicationwith a
vector, scaling, and so on.�e full_matrix
class is again a simple double array.

A little more e�ort was put into the PP_sparse_matrix class. It has a three-step structure:�e
matrix is an array of sparse_matrix_rows which in turn is an array of sparse_matrix_entrys.
�e latter is a struct consisting of the column of the entry, the value and a used �ag. We do
not sort the entries, so accessing an entry requires to check the column numbers of all used
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entries. In addition to the suboptimal access times, the usage �ag wastes memory compared
to other storage methods as the standard AIJ (or Yale) format.

�e big advantage is that there is no need to perform any tasks between reading and writing
entries. In Section 4.8.2 this is very useful since there a matrix is recursively �lled. With the
PETSc matrices, this constant alternation of reading and writing leads to a terrible perfor-
mance. �us, in this case our simple approach is faster.

7.1.3 Solving linear systems of equations

base_LGS

base_LGSm petsc_matrixfree_LinGS

Cholmod_LinGS_matrix LinGS_matrix_PP PETSc_LinGS_matrix

�e classes for solving linear systems of
equations (LSE) distinguish between LSE
that are given by a matrix (base_LGSm)
and those that are implicitely de�ned, i.e.
only the result of a matrix multiplication
is known. Both types can be solved using
the iterative methods provided by PETSc. Our own solver can only use the conjugate gradi-
ent method with a given matrix as proconditioner.

�e direct methods fromCholmod and Umfpack can of course only solve systems which are
represented by a matrix.

7.2 �e mesh library

GridObject

ListObject

Edge RefList Triangle Vertex

RefEdge RefTriangle RefVertex

�e basis for themesh library is a code fromRalf Hipt-
mair developed during a seminar on the boundary ele-
mentmethod. It was intendet for elliptic problems and
therefore contained no DOF manager (DOF is short
for degree of freedom), but could only load and re-
�ne a mesh. �is base code was in parts rewritten and
corrected, but the basic structure remained: there are
linked lists (implemented by the class ListObject) for
the Triangles, Edges and Vertex’es. �e Ref classes take
care of the “vertical” dependencies, i.e. of the father–son relations.

We largely extended this basis. �e main points are the ability to communicate with a DOF
manager, the addition of coarsening (more precisely unre�nement) and the support for pe-
riodic meshes, see below. An important point for the extension to periodic meshes was that
the relation between triangles, edges and vertices is hierarchic and only the vertices store ge-
ometric information, see Figure 7.2. �is made it easier to separate between (logical) neigh-
bourhood relations and geometric location.
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Figure 7.2: Collaboration between triangles, edges and vertices. Every triangle has three
edges (ed) and every edge has two neightbours (nb), except for boundary edge who have only
one neighbour. The edges have two endpoints (ep), the vertices. Geometric information is only
stored in the vertices: a Vertex is also a Vector2D. The three properties NonPeriodicEdgeCor-
rection, periodic_gap and geomVertexCorrection are used for periodic meshes, see Section
7.2.1.

7.2.1 Periodic meshes

Periodicity only makes sense for rectangular meshes, so only those will be considered here.
We distinguish between the topological properties like neighbourhood relations and geo-
metrical properties. In the case of periodic meshes, we have geometrically a rectangle and
topologically a torus.

For non-periodic meshes, geometric information is only stored in the vertices, see Figure 7.2.
For periodic meshes, we have to store geometric information in some other places. Consider
the following periodic [0, 1]× [0, 0.5]mesh:

0 0.25 0.5 0.75 1

0

0.25

0.5

y

x

E

T

�ere are only eight points in the mesh, drawn black here. Now take the edge marked with
E , connecting point (0.5, 0.25)with point (0.5, 0.5) in the picture. �e latter point lies, by pe-
riodicity, at (0.5, 0). �erefore, we add an information to the edge, named “geometric vertex
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correction”, which tells us for the two endpoints howmuch we have to shi� them to get their
geometric position (the grey points).

But we need another adjustment. Consider the triangle marked T in the sketch picture. Its
edges are drawn in blue in the picture below without any correction (le�). A�er the geo-
metric vertex correction, one edge is still at the wrong place (middle). �erefore, we add to
each triangle a “geometric edge correction” for each of its three edges. �is yields the �nal
geometric position (right).

0 0.25 0.5 0.75 0.75 0.751 1

Additionally, we sometimes need to know if we jump from one side of the mesh to the other.
For example, the distance from the point C1 to the point C2 in the sketch below should be
d in a periodic mesh and not d’. �erefore, we add to each triangle another information for
each of its three edges, the “periodic gap”.

C1 C2C2

dd’

Note that this is di�erent from the geometric edge correction, since for example the triangles
in the lower le� corner both contain periodic-gap-information for one edge, but no geomet-
ric edge correction.

7.2.2 Skew-periodic meshes

In the chapter on epitaxial growth, we have seen that it is worthwile to investigate step-trains.
�is is like a ini�nite stair. We simulate a step-train by computing several steps on the grid
and then continuing periodically. Of course, if we have n steps on the unit cell and all are
steps down, then the values at x = L are n units lower than the values at x = 0 to whom they
should correspond.

We solve this problem by storing a third values for each edge of the triangle telling us by
which amount the function jumps when going over the edge.
Remark. A feature of our discretization via the �ux is that only φ jumps, but not J . So the
correction for the jumps is only neededwhen calculatingφ, not when solving a linear system
of equations. ◊
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7.2.3 Mesh adaption

We explain here the re�nement procedure at the hand of an example. To re�ne the triangle
depicted below, we re�ne the longest edge, which is E 2 in this example.

S0 S1

CE

V0

V2

V1

mp

E1 E0

E2

S0 S1

E1 E0

1. �e edge E2 is split into S0 and S1, which generates a new vertex mp. �e DOF-
manager is noti�ed of the re�nement of the edge, so that the degrees of freedom are
transferred to the sons S0 and S1. �en the edge E2 is removed from the vertices V0
and V1.

2. A new edge CE with endpoints V2 and mp is created.

3. �e triangle T0 is removed as neighbour from edges E0 and E1.

4. Two new triangles T1, T2 with edges E1, S0, CE and E0, S1, CE are created.

5. �e DOFmanager is noti�ed of the new edge CE and a new DOF is computed as de-
scribed in Section 4.9.2. �is cannot happen before, because only now the edge CE
has the triangles as neighbours.

6. �e DOFmanager is noti�ed of the re�nement T0 to T1 and T2.

7. All edges of T0 are probed for hanging nodes. If hanging nodes are found, the neigh-
bouring triangles are re�ned as well.

�is procedure is repeated for all marked triangles.

Due to the re�nement of neighbouring nodes to remove hanging nodes, also triangles that
were not marked for re�nement may be re�ned. �is is the intended behaviour because
all marked triangles have to be re�ned to improve the quality of the mesh. On the other
hand, coarsening the mesh is only used to save computational work. So at most the marked
triangles may be unre�ned. �erefore, we have to avoid that triangles not marked for unre-
�nement are coarsened to remove hanging nodes.

�e procedure to do this, named deep checking, is outlined below. �e unre�nement proce-
dure itself is similar to re�nement and therefore not shown. During unre�nement, all edges
and triangles that are no longer needed are destroyed.

1. All triangles marked for unre�nement are written into a list.

2. For each triangle T in the list, we iterate through the edges of the father of T . If an
edge is re�ned, we ask if the neighbours of the sons of this edge are permitted to be
unre�ned, that is either
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• they are marked for unre�nement or

• both sons are permitted to be unre�ned.

If this recursive question is answeredwith yes, we continue. If the answer is no, triangle
T is unmarked and we proceed.

3. If any triangle was unmarked in step 2, steps 1–3 are repeated.

4. All marked triangles are unre�ned.

To improve the performance, we added a caching mechanism to the procedure.

7.3 �e DOFmanager

Using an adaptivemesh, one has to handle a number of objects:�emesh or grid consists (in
the two-dimensional case) of triangles, edges and vertices. �ese will be named grid objects
in the following. In the �nite element setting, any active grid object may have assigned one
or more degrees of freedom. Of course, inactive object like triangles belonging to a coarser
grid do not have a DOF assigned. �e DOF have to be continuously enumerated, so that the
user can access a vector with data using the DOF numbers.

One purpose of the DOFmanager is to provide the correspondence between the grid objects
and the DOF numbers. A second purpose is to provide a mechanism to transfer a vector to
a new grid.

For every kind of grid object, the user has to create a DOFmanager. When the DOFmanager
is initialized, the user can decide if a vector with data has to be transferred to the new mesh
and if so, he has to provide functions to be called upon transferring.

When a grid object is created, the user (in this case the mesh library) has to notify the DOF-
manager. �e object is then assigned a unique identi�er (ID). When the object is destroyed,
the DOFmanager has to be noti�ed again and the ID is released for reusage.

�erefore, the core of the DOFmanager is a list which attaches to each ID a DOF. Addition-
ally, a state like “active” or “inactive” is given to each ID.

�e transfer of vectors to a new mesh takes place in three steps:

• In the �rst step, the user provides the old vector and starts the mesh re�nement. �e
mesh library noti�es the DOFmanager if a grid object is created, deleted, re�ned or
coarsened. If it was re�ned or coarsened, then a new value is computed using the
user-provided transfer functions and saved on a temporary stack.

• �e second step consists only of counting the number of new DOF, so that the user
can create the new vector.

• In the third step, the values belonging to unchanged grid objects are copied to the new
vector and the temporary values from step one are inserted.
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In our case, we have DOFmanagers for the triangles, the edges and the vertices.

In case of the PCE discretization method, we have three vectors to be transferred on the
triangles: φh and the gradients in x - and y -direction. We need the gradients to compute the
re�ned value of φ, see Section 4.9.2. �e DOFmanagers for the edges and vertices do not
transfer any data.

For any of the other discretization methods, we transfer φh with the DOFmanager on the
triangles as before, but now the gradient lives on the edges, so that the DOFmanager for the
edges transfers the gradient. As before, we have nothing to transfer on the vertices.

In the case of Neumann boundary conditions, we need to keep track of the boundary edges,
since sometimes we need a DOF on boundary edges and sometimes not. �erefore, an ad-
ditional �ag was introduced.

7.4 CHEST

CHEST is the main component of our so�ware. It accesses all other components. A proper
overview of the so�ware is beyond the scope of this work, so we will restrict ourselves to
giving some hints on the structure of the so�ware and provide some typical examples.

�e de�nitions for the potential G and the mobility G for the various equations, i.e. shallow
quench, deep quech, variable quench, epitaxial growth and thin-�lmequation, are in separate
�les and for each equation, a separate executable is built.

7.4.1 Structure

phasefield

vCH_RT_FESpace

RT_FESpace
�e core of the so�ware are the three classes depicted on the right.
RT_FESpace contains everything that depends only on the Raviart–
�omas �nite element space, like the themassmatrixB0, its sparse approx-
imate inverse, the basic operators (divergence, weak- and PCE-gradient,
Laplacian), calculating the Dirichlet integral, solving Poisson’s equation,
to name a few. �ere is no extra class for the �nite-element space consist-
ing of piecewise constant functions, since operations involving this space
are simple enough to be performed where they are needed.

�e so�ware was developed for this work and is not indented to use other �nite-element
spaces, so the vCH_RT_FESpace class is derived from RT_FESpace and does not contain it
as an object. vCH_RT_FESpace containsmainly the sti�nessmatrices of Section 4.7. Derived
from this class is phasefield with the central member function perform_timestep. �is func-
tion performs the sub-steps and Newton steps according to the chosen time-step scheme,
computes the distance of the vertices a�er each step, triggers mesh adaption and everything
else that has to be done to perform one time step.
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As a typical example for what happens in many of the member functions, we show the code
for assembling the sti�ness matrix A1 in Listing 7.1. �e ElementIterator of the mesh is used
to iterate over all active triangles. As it is faster to write several values into a matrix at once,
we �rst collect the global edge numbers (lines 14–22) and values (lines 24–35) for the nine
possible pairings of two edges of the triangle and then add them to the matrix (line 35). For
a clearer presentation, we removed the parts exploiting the symmetry.

Listing 7.1: The function to assemble the stiffness matrix A1

1 void vCH_RT_FESpace : : assemble_A1 ( ) {
2 base_matr ix * s t i f f n e s s _ m a t r i x = ganzA1 ;
3 s t i f f n e s s _ m a t r i x −>c lea r ( ) ;
4 / / i t e r a t e over a l l t r i a n g l e s / elements
5 for (mesh : : E lemen t I t e ra to r T i t = g i t t e r −>getF i rs tE lement ( ) ; T i t != g i t t e r −>ElementEnd ( ) ; ++ T i t

) {
6 Tr iang le * T = * T i t ;
7 double Tvol = T−>getVolume ( ) ;
8 double phiT = phi−>ge tva l (T−>getdo fn r ( ) ) ) ;
9 double mult = Gss ( ge tph i (T ) ) ;
10 / / i t e r a t e over a l l p a i r i n g s o f edges
11 i n t g loba l_n r [ 3 ] ;
12 double values [ 9 ] ;
13 / / record g loba l edge numbers
14 for ( i n t l o k a l _ n r =0; loka l_n r <3; ++ l o k a l _ n r ) {
15 Edge* E = T−>getEdge ( l o k a l _ n r ) ;
16 i n t edge_nr = E−>getdo fn r ( ) ;
17 i f (E−>isBd ( ) ) {
18 g loba l_n r [ l o k a l _ n r ] = −1;
19 } else {
20 g loba l_n r [ l o k a l _ n r ] = edge_nr ;
21 }
22 }
23 / / c a l c u l a t e values f o r (A_1 ) _ { i j }
24 for ( i n t l o k a l _ i =0; l o k a l _ i <3; ++ l o k a l _ i ) {
25 Edge* Ei = T−>getEdge ( l o k a l _ i ) ;
26 i f ( Ei−>isBd ( ) ) continue ;
27 double Ei len = Ei−>leng th ( ) ;
28 short muiT = T−>getmu ( l o k a l _ i ) ;
29 for ( i n t l o k a l _ j =0; l o k a l _ j <3; ++ l o k a l _ j ) {
30 Edge* Ej = T−>getEdge ( l o k a l _ j ) ;
31 i f ( Ej−>isBd ( ) ) continue ;
32 double Ej len = Ej−>leng th ( ) ;
33 short mujT = T−>getmu ( l o k a l _ j ) ;
34 double v a l i j = mult * muiT * mujT * Ei len * Ej len / Tvol ;
35 values [ l o k a l _ i *3+ l o k a l _ j ] = v a l i j ;
36 }
37 }
38 s t i f f n e s s _ m a t r i x −>add toen t r i es ( 3 , g loba l_nr , 3 , g loba l_nr , values ) ;
39 }
40 s t i f f n e s s _ m a t r i x −>assemblyCompleted ( ) ;
41 }

7.4.2 Resuming

Some of the simulations run for some weeks, so that the ability to continue a simulation that
has been aborted by some reason is very helpful.�erefore, all relevant classes have a serialize
member function, which writes the data to a �le. �e �les are text �les in XML style and all
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double numbers are written as base64 encoded binary data. �is resume data is written, say,
every four hours and at the end of the simulation.

Upon restart, the user parameters are read again, so that the parameters can also be changed
if necassary. �ere is also a menu which can be activated through sending the SIGINT signal
and which provides direct access to some common parameters and allows tasks as writing
all matrices and the like.

7.4.3 Data output

In intervals speci�ed in the parameter �le (see below), the current value of φh is written to
disk. For each triangle T , the position of its vertices and the value of φh on T is written as
binary data. �is data can then be read in MATLAB and visualized with the patch function.

Since φh is piecewise constant, the resulting graphics are di�cult to read. �erefore, when
writing the data, we calculate for each vertex the mean ofφ over all adjecent triangles. Using
this data for visualization gives a much better impression of how φh looks like.

7.4.4 Parameter �le

To set the various parameters for a simulation, the user writes a text �le which is parsed at
program start. An example for such a �le is shown in Listing 7.2. �e �rst line is an identi�er
which includes the version of the parameter �le.

Listing 7.2: Parameter file for the simulation of the coarsening process.
1 cahnparamE06
2 ########################## Parameter o f the equat ion ##############################
3
4 ## Inverse o f the temperature / width o f t r a n s i t i o n l aye r
5 eps 1
6 beta 4
7 stepzpos 0
8
9 ## Depos i t ion
10 F 0
11
12 ## only EG:
13 ## zetaminus=0 => constant m o b i l i t y => no b a r r i e r
14 ## zetaminus=oo => Neumann BC at a step down
15 zetaminus 0
16
17 ## I n i t i a l values
18 i n i t i a l _ d a t a whi te_noise 0 0.01
19 i n i t i a l _ d a t a _ u s e _ m i d p o i n t 1
20 i n i t i a l _da ta_m in_ene rgy 0
21
22 ########################## Parameter o f the d i s c r e t i z a t i o n #########################
23
24 ## time−step scheme ( eulerbw , cn , theta , t r b d f 2 )
25 t i m e _ d i s c r e t i s a t i o n t r b d f 2
26
27 ## grad ien t method ( spasi , pc l , abt , s ine )
28 gradient_method abt
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29
30 ## f i n a l t ime
31 z e i t 350000
32 ## enter menu at the end?
33 wait_at_end 0
34 ## wa i t u n t i l w very smal l before s t a r t i n g ?
35 l e t_w_re lax 0
36 ## stop i f w very smal l ?
37 s top_ i f_w_smal le r_ than 0
38
39 ## I n i t i a l t ime−step s ize
40 DT 4e−6
41 use_adapt ive_t imestep 1
42 max_timestep 4000
43 min_t imestep 1e−8
44 ats_maxchange 0.26
45 ats_minchange −1
46 e r ro r_es t ima to r t r b d f 2
47
48 ## Output op t ions
49 use_exponent ia l_wr i te t imes 1
50 a l t _ e x p _ w r i t e t i m e s _ t s t a r t 0.15
51 a l t_exp_wr i te t imes_ tend 350000
52 w r i t e i n t e r v a l 350
53 wr i te_s teppos 128
54 c a l c _ w d i f f 0
55 wr i te_da ta 5
56 wr i te_contvec_val jump 0
57 resume_mins 240
58 f o rce_exac t_wr i te t imes 0
59
60 ## Mesh
61 meshdir / home / penz ler /07 data / meshes
62 meshname mesh_cross_N78x78_L73 .4 x73 .4_P0 . pe rg r i d
63
64 ## Ref ine i n i t i a l mesh?
65 g l o b a l l y _ r e f i n e _ i n i t i a l _ m e s h 0
66 re f i ne_ in i t i a l _mesh_max_pre fac to r 0
67 r e f i n e _ i n i t i a l _ m e s h 1
68
69 ## Adapt ive mesh un−/ re f inement?
70 adapt_mesh 1
71 max_refinements 10
72 max_coarsenings 10
73 f l a t zone_w id th 0.8
74 hmin_prefac tor 0.15
75 coarsen ing_ fac to r 9999
76 coarsen ing_min_f rac t ion 0.02
77 ref ine_min_energy 0
78
79 ## c a l c u l a t e H^{−1}−norm?
80 calc_negnorm 1
81
82 ## Use Cholesky up to #DOF?
83 cholesky_max_edges 600000
84
85 ## Ex t rac t submatr ix (−>DQ) ?
86 submatr ix_bev 0
87 submat r i x_border f rac 0.999
88
89 ## Number o f Newton steps
90 newton_steps 3
91
92 ## Parameter p i n EG
93 aniso 20
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Appendix A

Complements

In this appendix, we provide complementary information to several topics which did not �t
into the main text.

A.1 Gradient-�ow structure of the sharp-interface limits

ν

Ω \GG

κ> 0
κ< 0

Γ

We show here the gradient-�ow structure of the limit-models of the
deep- and shallow-quench equations, namelymotion by surface dif-
fusion and the Mullins–Sekerka free boundary problem. For sur-
face di�usion, this was �rst shown by Taylor and Cahn [1994]. �e
derivation for Mullins–Sekerka can be found in Niethammer and
Otto [2001].

A number of properties is common to both models. �e manifold
M consists of all subsets of Ω with given total area and the tangent
space consists of all possible movements of the boundary that keep the mass constant:

M=

{
G ⊂Ω |

∫
G

1= const
}

, TGM=

{
V : Γ→R |

∫
Γ

V = 0

}
,

where we denoted the boundary of G with Γ. Moreover, the energy functional is the length
of the interface

E (G ) =
∫
Γ

1.

�e gradient �ow is given by

g (V, Ṽ )+di� E (G )Ṽ = 0 ∀Ṽ ∈ TGM.

It is well-known that the �rst variation of the interface length is the curvature of the interface,
so the gradient �ow becomes

g (V, Ṽ )+
∫
Γ
κṼ = 0 ∀Ṽ ∈ TGM. (A.1)

141
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�e models di�er by the choice of the metric. For surface di�usion, the metric is the H−1-
norm of the velocities

g SD
G (V, Ṽ ) = 〈V, Ṽ 〉H−1(Γ) =

∫
Γ
∇s w ·∇s w̃ ,

where w and w̃ are solutions of −∆s w =V and −∆s w̃ = Ṽ , respectively. Partial integration
yields

g SD
G (V, Ṽ ) =

∫
Γ

w (−∆s w̃ ) =
∫
Γ

w Ṽ ,

so that we get with (A.1)

w =−κ =⇒ V =−∆s w =∆sκ. (A.2)

For Mullins–Sekerka the metric is similar to the H−1-norm, but on the whole of Ω and not
on the interface.

g MS
G (V, Ṽ ) =

∫
Ω
∇w ·∇w̃ ,

where w is a solution of

−∆w = 0 in Ω \Γ, (A.3a)(
∇w ∣∣

Ω\G
−∇w ∣∣

G

)
·ν =V on Γ, (A.3b)

and analogously for w̃ . Here ν is the outer normal toG . Since w̃ is harmonic, integration by
parts only yields boundary terms

g MS
G (V, Ṽ ) =

∫
Γ

w
(
∇w̃ ∣∣

G
−∇w̃ ∣∣

Ω\G

)
·ν =−

∫
Γ

w Ṽ .

From (A.1), we then get
w = κ, (A.3c)

which completes the Mullins–Sekerka free boundary problem.

A.2 Energy minimization during re�nement

During the re�nement of themesh, when a triangle is bisected, the distribution ofφ onto the
two newly created triangles is not unique, see Section 4.9.2. When the re�nement is �nished,
we optimize the distribution by minimizing the energy.

It is convenient to take a purely discrete approach: Consider the function

E :RNT →R, E (φ) =
ε

2
B−1

0 Gφ ·Gφ+ ε−1VG (φ). (A.4a)

�e funciton E was obtained by writing the discrete energy (4.51) in matrix-form.



A.2 Energy minimization during refinement 143

We minimize this energy with the constraint that the mass on each re�ned triangle is con-
served, which yields the linear constraint

Pφ =m , (A.4b)

see Section A.2.1 below. In Section A.2.2 we solve the constrained problem using the aug-
mented Lagrangean method.
RemarkA.1. In Section 4.9.3 we mentioned that minimizing the energy means to �nd a crit-
ical point of the functional (4.52). �is is the same as minimizing the discrete functional E .
Indeed, the optimality conditions of (4.52) are

ε

∫
Ω

g h · g̃ h +
∫
Ω
(∇· g̃ h )φh = 0 ∀g̃ h ∈RT 0(Eh ),∫

Ω
(∇· g h )ζh − ε−1

∫
Ω

G ′(φh )ζh = 0 ∀ζh ∈L0(Th ),

which is in matrices

εB0 g −Gφ = 0 and Dg − ε−1VG ′(φ) = 0.

Solving the �rst equation for g and inserting it into the second yields the condition

−εDB−1
0 Gφ+ ε−1VG ′(φ) = 0

which is identical to the optimality condition of (A.4a). ◊

A.2.1 Setting up the constraint

It would be very convenient if we could determine the new values of φh on the two new,
re�ned triangles immediately during re�nement. �is is not possible, since the energy is
nonlocal due to the inverse of the mass matrix. Even if the inverse would use only a few
neighbours this wouldn’t be possible, since there are usually hanging nodes created and so
the matrices cannot be assembled. �erefore, during re�nement, we keep track of the re�ne-
ments taking place and build the constraint a�er the re�nement.

�e constraint says that mass is to be kept constant and is not moved between triangles. As
an example for the constraint, consider the following one-dimensional example of a mesh
re�nement

T1

T8 T6

T0 T2

T3 T4 T7 T2
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Figure A.1: During refinement the refined triangles, along
with the old value of φ on that triangle, are written in a
list, each building the root of a tree structure. The newly
created children are added to the tree. Every tree in the
list corresponds to one row in the matrix P. To setup the
matrix, we iterate the leaves of each tree and write 2−d in
the column corresponding to the triangle in that leaf, where
d is the depth of the leaf.

T3 T4

T7 T8

(T0,φ0) (T1,φ1)

T5 T6

�e constraints are then

|T3|φ3
+ |T4|φ4

= |T0|φ0

|T7|φ7
+ |T8|φ8

+ |T6|φ6
= |T1|φ1

.

Since we always (also in the two-dimensional case) re�ne by bisection, we can divide by |T0|
and |T1|, respectively, and get as constraints

1
2
φ

3
+ 1

2
φ

4
=φ

0
1
4
φ

7
+ 1

4
φ

8
+ 1

2
φ

6
=φ

1
.

�e technical part of setting up P is described in Figure A.1.

A.2.2 Solving the constrained minimization problem

To solve the minimization problem (A.4), we use the augmented Lagrangean method. Also
under consideration were

• Lagrange–Newton method. Since we want the constraint to be ful�lled exactly (or at
least to very high accuracy), this method is not suitable.

• Penalty methods are not suitable for the same reason.

• Reduction or Projection methods need a basis of the kernel or image of the matrix P,
which is not available at low cost.

�e augmented Lagrangean method will be described only roughly in the following, see for
example Geiger and Kanzow [2002] for details.

De�ne the augmented Lagrangean function by

Laug(x ,µ,α) := E (x )+
α

2
‖Px −m‖2+µ · (Px −m ).

In each step of the algorithm, the unconstrained minimum x (k+1) of the problem

min
x∈RNT

Laug(x ,µ(k ),α(k )) (A.5)
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is computed, see the next section. At the minimum, we have

0=∇x Laug(x (x+1),µ(k ),α(k )) =∇E (x (k+1))+Pt
(
α(k )(Px (k+1)−m )+µ(k )

)
.

On the other hand, at a minimum (x ∗,µ∗) of (A.4), we have

∇E (x ∗)+Ptµ∗ = 0.

Comparing these two suggests to set
µ(k+1) :=α(k )(Px (k+1)−m ).

�e parameter α is increased if the value of ‖Px −m‖ doesn’t decrease fast enough. One
feature of the augmented Lagrangean method is that the constraint already holds exactly for
�nite α.

A.2.3 Solving the unconstrained minimization problem

For theminimization problem (A.5), we use a globalized Newtonmethod. �e starting value
of φ(0) is created in the re�nement process, see Section 4.9.2.

In every Newton step, we solve the system
D2

x Laug(x ,µ,α)d (k+1) =−∇x Laug(x ,µ,α)

for the Newton direction d (k+1). In matrices, this is(
−εDB−1

0 G+ ε−1N+αPt P
)

d (k+1) =−
(
−εDB−1

0 Gx (k )+ ε−1VG (x (k ))
)

,

where N is the nonlinear diagonal matrix
Nk k = |Tk |G (x (k )).

Since there appearsB−1
0 in thematrix expresion and since thematrixPt P can be rather dense,

we use a matrix-free conjugate gradient method to solve the system. It turned out that it is
important to adapt the tolerance of the solver. We found that setting

t̃ol :=
10−5

k +1
‖∇x Laug‖2, tol=min

(
10−5, max

(
t̃ol,

10−20

k +1

))
works quite well.

If the computed direction is good enough, determined by
∇x Laug(x ,µ,α) ·d (k+1) <−10−8‖d (k+1)‖2.1,

we take this direction to calculate x (k+1). If not, we perform a gradient step by setting
d (k+1) :=∇Laug(x ,µ,α).

�e step size t used in
x (k+1) = x (k )+ t d (k+1)

is computed using the well-knownAmijo rule: �nd the smallest l ∈N0 such that with t = 2−l

Laug(x (k )+ t d (k+1),µ,α)≤ Laug(x (k ),µ,α)+σt∇Laug(x (k ),µ,α) ·d (k+1),

where we use σ= 10−4.
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A.3 Determining the step position

To compare the results of the di�use-interfacemodels, i.e. the Cahn–Hilliard-type equations,
with their sharp-interface limits, we have to extract the position of the interface from the
order parameter φ. In the case of epitaxial growth, the interface- or step position is given by
the level set

{φ = 1
2
}.

Our goal is therefore to �nd points S ∈Ωwithφ(S) = 1/2. Sinceφh is piecewise constant, we
won’t haveφh (S) = 1/2.�e strategy is therefore to locally approximateφh with a continuous
function.

As a �rst step, we search those edges which haveφh ¾ 1/2 on one neighbouring triangle and
φh < 1/2 on the other. �ese “step-edges” will be marked red in subsequent �gures. �en
we approximate φh by a continuous function. As we know that the transition pro�le at the
step is close to the function

1
2

tanh
(

3
ε
(x ·v −ξ)

)
+ 1

2
≈ 3

2ε
(x ·v −ξ)+ 1

2
for x ·v −ξ� ε,

it is natural to use an a�ne function for the approximation. We present in the following three
di�erent methods to choose this a�ne function.

A.3.1 Least squares (LSQ) approximation

To de�ne the a�ne function

L 1(x ) = v ·x +β1

with v ∈ R2 and β1 ∈ R, we require that the restriction of L 1 to
L0(Th ) is equal to φh on T±E , that is∫

T+E

L 1 =
∫

T+E

φh and
∫

T−E

L 1 =
∫

T−E

φh

Since this gives only two conditions, we take all the neighbours
of T±E into account and use least squares in this approach:

P

T +E

T −EE

∑
i=1...6

(∫
Ti

L 1−φh

)2

=min! (A.6)

Inserting the ansatz function L 1 into (A.6) yields

1
2

Az · z −b · z =min!



A.3 Determining the step position 147

with

A=

 ∑
i |Ti |2 M 2

i ,1

∑
i |Ti |2 M i ,1M i ,2

∑
i |Ti |2 M i ,1∑

i |Ti |2 M i ,1M i ,2

∑
i |Ti |2 M 2

i ,2

∑
i |Ti |2 M i ,2∑

i |Ti |M i ,1

∑
i |Ti |M i ,2

∑
i |Ti |2

 ,

b =

∑i |Ti |2φi M i ,1∑
i |Ti |2φi M i ,2∑

i |Ti |2φi

 and z =

v1

v2

β1

 ,

where M i are the centres of the triangles. We therefore have to solve the 3×3 system

Az =b

to get v and β1. �is is done using Gauß’ scheme. �en we search λ1 such that

L 1(P +λ1v ) = 1
2

.

A disadvantage of this approach is that we do not use any other quantities than φh to get
information on the shape of φ.

A.3.2 Gradient approximation

A quantity that can give us more information on the shape of φ is of course the discrete
gradient ∇hφh . As the discrete gradient is a �omas–Raviart vector �eld, the normal com-
ponent of ∇hφh coincides with the continuous gradient on the edges. �erefore, we choose
the a�ne function

L 2(x ) =ανE ·x +β2

with α,β2 ∈R and the conditions

(i) ∇L 2(P) ·νE =∇hφh (P) ·νE ,

(ii)
∫

T+E ∪T−E

L 2 =
∫

T+E ∪T−E

φh .

νE
E

T+E

T−E
P

�is gives α=∇hφh ·νE = g
E
and

β2 =

∣∣T+E ∣∣ (φ+−ανE ·M+)+
∣∣T−E ∣∣ (φ−−ανE ·M−)∣∣T+E ∣∣+ ∣∣T−E ∣∣ ,

where M± are, again, the centres of the triangles.

�en we search λ2 such that
L 2(P +λ2νE ) = 1

2
,

i.e. we are searching along the dotted line in the sketch above. �is seems to be a bit odd
since the step front will in general not be parallel to the edge E . �erefore, we consider a
third method which uses both the direction of the step front v and the weak gradient.
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A.3.3 Mixed approximation.

Here, we use an Ansatz similar to the previous one, but use v from the LSQ approximation
instead of νE :

L 3(x ) =αv ·x +β3

with α,β3 ∈R and the conditions

(i) ∇L 3(P) ·νE =∇hφh (P) ·νE ,

(ii)
∫

T+E ∪T−E

L 3 =
∫

T+E ∪T−E

φh .

E

T+E

T−E
P

νE

v

�is yields

α=
∇hφh ·νE

v ·νE
=

g
E

v ·νE
,

β3 =

∣∣T+E ∣∣ (φ+−αv ·M+)+
∣∣T−E ∣∣ (φ−−αv ·M−)∣∣T+E ∣∣+ ∣∣T−E ∣∣ ,

and we search λ3 such that
L 3(P +λ3v ) = 1

2
.

A.3.4 Comparison of the approximations

For a �rst test, we consider a straight step growing from le� to right on a domain Ω= [0, 1]×
[0, 1/2]. Since we want to test here the step-�nding algorithm and not the simulation, in each
time step we set

φh =Rh ( f (t )) with f (t ) = 1
2

(
1− tanh

(
3
ε
(x1−ξ(t ))

))
with the restriction operator (4.6) and step position ξ(t ). Although this funtion is only cor-
rect for an in�nite domain, the solution for a �nite domain is very close.

We set the deposition rate to one, so the speed of the step is f Lx = 1 and therefore ξ(t ) = ξ0+
t , where we choose ξ0 = 0.25. We then measure the step position for each step-edge using
the above approximations. Since the variations of the position for the di�erent step-edges is
virtually zero (of the order 10−14, which is the accuracy of a double precision variable), we
have a unique position ξh (t ) for each time step. We then compute

dξ(t ) := ξh (t )−ξ(t ) = ξh (t )− t −0.25. (A.7)

�e results can be seen in FigureA.2. For comparison, we have added a fourth approximation
“prescribedstep”, which is the mixed approximation with v = (1, 0).

All the approximations are satisfactory, while “gradstep” and “mixedstep” are a bit better than
“lsqstep”. Further testing showed that “mixedstep” is better suited for curved step fronts.
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Figure A.2: Error in measured step position for least squares (top-left), gradient (top-right),
mixed (lower-left) and prescribed (lower-right) approximations. Note that the scale is 10−5. The
jumps occur when the edges between triangles with φh ¾ 1/2 and φh < 1/2 change from a
straight line to a zick-zack pattern, see the bottom images.
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A.3.5 Approximation with piecewise constant gradient

In the case of piecewise constant gradients (see Section 4.8.5), we know not only the normal
component of the gradient, but the whole gradient on each triangle. �erefore, we choose

L 4(x ) = a ·x +β4

with a ∈R2,β4 ∈R and the conditions

(i) ∇L 4(P) = 1
2

(
∇hφh

∣∣
T+E

+∇hφh
∣∣

T−E

)
,

(ii)
∫

T+E ∪T−E

L 4 =
∫

T+E ∪T−E

φh .

As before, we then search λ4 ∈R such that

L(P +λ4v ) = 1
2

,

where v comes from the least-squares approximation.

A.4 Time adaptivity

In this section, we �rst showhow to derive an error estimator from the TR-BDF2 scheme. For
the de�nition of the scheme, see Section B.5. �en, we apply the error estimator to our equa-
tion in Section A.4.2 and show how we use the error estimator for time adaptivity. Finally,
we propose in Section A.4.3 a quite naïve way to measure the error for the other time-step
schemes.

A.4.1 Derivation of the error estimator

To derive the error estimator we note that TR-BDF2 can be viewed as a diagonally implicit
Runge–Kutta (DIRK) scheme with an embedded third-order scheme [Hosea and Shampine,
1996]. �e Butcher array is

0 0
θ a a
1 β β a

β β a
b̂1 b̂2 b̂3

with

θ = 2−
p

2, a = 1−
1
p

2
, β =

p
2

4
,

b̂1 =
4−
p

2

12
, b̂2 =

3
p

2+4

12
, b̂3 =

2−
p

2

6
.
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�is is to be read as follows: In the le� column are the points in time where the evalua-
tion takes place. �e matrix indicates how the auxiliary results z n , z n+θ , z n+1 are computed,
namely

z n = F
(

tn ,φn
)

,

z n+θ = F
(

tn +θτ,φn +τ(a z n +a z n+θ )
)

,

z n+1 = F
(

tn +τ,φn +τ(βz n +βz n+θ +a z n+1)
)

.

Using the notion

φ∗ =φn +τ (a z n +a z n+θ ) and φn+1 =φn +τ
(
βz n +βz n+θ +a z n+1

)
(A.8)

and dropping the time argument in F , we get z n = F (φn ), z n+θ = F (φ∗) and z n+1 = F (φn+1).
�en, (A.8) reads as

1

aτ
(φ∗−φn ) = F (φn )+ F (φ∗),

1

aτ
(φn+1−φ∗+φ∗−φn ) =

β

a

(
F (φn )+ F (φ∗)

)
+ F (φn+1),

which yields, a�er inserting the �rst equation into the second, Equations (B.3):

1

aτ
(φ∗−φn ) = F (φn )+ F (φ∗),

1

aτ
(φn+1−φ∗) = F (φn+1)+

(
β

a
−1

)(
F (φ∗)+ F (φn )

)
with (β/a )−1= (

p
2−1)/2.

LetD and D̂ denote the discrete evolution given by the second-order TR-BDF2 and the third-
order embedded scheme, respectively. �e two lowermost columns of the Butcher array
de�ne how to evaluate these discrete evolutions:

Dτφn =φn +τ(βz n +βz n+θ +a z n+1),

D̂τφn =φn +τ(b̂1z n + b̂1z n+θ + b̂1z n+1).

Furthermore, let C be the continuous (exact) evolution de�ned through Cτφ(t ,x ) = φ(t +
τ,x ). �en the errors of the discrete evolutions are

η=Cτφ−Dτφ and η̂=Cτφ− D̂τφ.

Since the third-order evolution is “better”, we have

ϑ :=
‖η̂‖
‖η‖

< 1.

We de�ne the error estimator [η] by

[η] := D̂τφ−Dτφ = D̂τφ−Cτφ+Cτφ−Dτφ =η− η̂.
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Inserting the discrete evolutions, we get

[η] =
τ

3

(
(1−
p

2)F (φn )+ F (φ∗)+ (
p

2−2)F (φn+1)
)

.

Note that if φ is stationary, i.e. F (φn ) = F (φ∗) = F (φn+1), then [η] = 0.

To see that this is an e�ective and robust error estimator, we calculate

‖η‖−‖[η]‖¶ ‖η− [η]‖= ‖η̂‖= ϑ‖η‖
=⇒ (1−ϑ)‖η‖¶ ‖[η]‖.

and analogously

‖[η]‖−‖η‖¶ ‖[η]−η‖= ‖η̂‖= ϑ‖η‖
=⇒ (1+ϑ)‖η‖¾ ‖[η]‖.

�is gives together
1

1+ϑ
‖[η]‖¶ ‖η‖¶

1

1−ϑ
‖[η]‖.

To adjust the time-step size, consider the following. Given a tolerance tol, a time-step size τ∗
would be considered optimal if it yields an error exhausting the given tolerance:

‖η∗‖ ≈ tol.

Since we have a second-order scheme, we know

‖η∗‖=O(τ3
∗) and ‖η‖=O(τ3).

Additionally, the error estimator approximates the real error,

‖[η]‖ ≈ ‖η‖,

so we get
tol
‖[η]‖

≈
‖η∗‖
‖η‖

≈
(τ∗
τ

)3

and therefore we can approximate the optimal time-step size by

τ∗ ≈τ
(

tol
‖[η]‖

)1
3

.

�e problem is of course that we �rst need to perform the time step to be able to calculate
the error estimator and in turn the optimal time-step size. �erefore, an explicit strategy is
used:

1: Perform time step with step size τ
2: Calculate η̄ := ‖[η]‖ and τ∗
3: Set τ←τ∗
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4: if η̄ > ηmax then
5: repeat time step
6: end if
7: perform next time step

We added to the calculation of τ∗ a “safety factor” ρ ∈ [0, 1):

τ∗ :=τ

(
ρ
tol
η̄

)1
3

.

Usually, we use ρ = 0.8, which is quite large. For some calculations it is necessary to reduce
ρ in order to avoid too many discarded steps. �e maximum error ηmax is set by the user.

A.4.2 Computation of error estimator

In the previous section we found that using TR-BDF2 to discretize ∂tφ = F (φ) in time, we
get an error estimator

[η] =τ

(
1−
p

2

3
F (φn )+

1

3
F (φ∗)+

p
2−2

3
F (φn+1)

)
.

Remember the numbering of the time steps in Chapter 3. From the point of view of the
second sub-step of TR-BDF2, the indices translate to

n 7→ k −1, ∗ 7→ k and n +1 7→ k +1.

Using furthermore
F (φ) :=∇·

(
M (φk )∇w

)
+ f ,

we get
[η] =τ∇· Ĵ ,

where

Ĵ =−M (φk )∇ŵ and ŵ =
p

2−1

3
w k−1−

1

3
w k +

2−
p

2

3
w k+1.

To compute [η] in the spatially discrete case, we �rst compute Ĵh from∫
Ω

1

M (φk
h )

Ĵh · J̃h =
∫
Ω

ŵh (∇· J̃h ) ∀ J̃h ∈RT 0(Eh ), (A.9)

which yields in matrices the linear system of equations

B1 Ĵ =Gŵ .

Finally, we calculate
[η] =τD Ĵ and η̄ := ‖[η]‖L2(Ω).
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Figure A.3: Snapshots of the simulation at the beginning of the simulation and at three times
around when the hole disappears. Compare to the value of the error estimator in in Figure A.4
on the next page.

A.4.3 Error estimator versus change of the solution

For the other time-step schemes, we use a much simpler approach to adaptively de�ne the
time-step size. We just take

‖Dτφ−φ‖L2(Ω)

as an error indicator. �is re�ects the simple idea, that we can use larger time steps when not
much happens.

To compare the error estimator described in the previous sections with the naïve measure-
ment of the change of φ, we start a simulation with a straight step train having a hole in the
upper terrace. Due to deposition, the step moves forward and the hole is �lled up. When
the hole gets smaller, we have higher curvature and expect a reduction of the time step size.
A�er the hole has disappeared, we expect the time steps to become bigger again. Looking
at the snapshots in Figure A.3 together with the values of the error indicators and time-step
sizes in Figure A.4, we see the desired behaviour, even for the simple error indicator.

A.5 Solving Poisson’s equation

To compute the H−1 norm, see the next section, it is necessary to solve Poisson’s equation

−∆h u h =φh , (A.10)

with periodic or Neumann boundary conditions. �is equation was also used as a bench-
mark for the di�erent gradient methods in Section 4.8.

We presented two ways to de�ne a discrete Laplacian: one was to take the divergence of the
discrete gradient and the other was derived from a piecewise constant energy. �e solving
procedures for these two cases di�er.
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Figure A.4: Comparison of error indicators: the green circles show the values of the error
estimator and the blue crosses show the change of φ in the L2-norm. The dashed line shows
the resulting time-step size (on another scale).

A.5.1 . . .using the discrete gradient

As in Section 4.1, we split Equation (A.10) into

J =∇u and −∇· J =φ.

�e (standard) mixed formulation is: Find (J , u )∈H (∇·,Ω)× L2(Ω) such that∫
Ω

J · J̃ +
∫
Ω

u (∇· J̃ ) = 0 ∀ J̃ ∈H (∇·,Ω),∫
Ω
(∇· J )ζ =−

∫
Ω
φζ ∀ζ∈ L2(Ω).

Using the �nite-dimensional subspaces RT 0(Eh ) and L0(Th ) of H (∇·,Ω) and L2(Ω), respec-
tively, we get the following discrete problem: Find (Jh , u h )∈RT 0(Eh )×L0(Th ) such that∫

Ω
Jh · J̃h +

∫
Ω

u h (∇· J̃h ) = 0 ∀ J̃h ∈RT 0(Eh ), (A.11a)∫
Ω
(∇· Jh )ζh =−

∫
Ω
φhζh ∀ζh ∈L0(Th ), (A.11b)

where φh is the restriction of φ to L0(Th ).

With the matrices of Section 4.7, we get

B0 J −Gu = 0,

DJ =−Vφ.

Since D=−Gt , the above system is symmetric, but inde�nite.
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To get a symmetric problem, we use the Arnold–Brezzi method, compare to Section 4.8.3.
�e problem (A.11) is equivalent to the problem: Find ( Ĵh , u h ,λh ) ∈ RT−1(Th )×L0(Th )×
L0(Eh ) such that∫

Ω
Ĵh · J̃h +

∑
T∈Th

∫
T

u h (∇· J̃h ) =
∑
T∈Th

∫
∂ T

λh J̃ ·ν ∀ J̃h ∈RT−1(Th ),∫
Ω
(∇· Jh )ζh =−

∫
Ω
φhζh ∀ζh ∈L0(Th ),∑

T∈Th

∫
∂ T

µh Ĵ ·ν = 0 ∀µh ∈L0(Eh ).

Using additionally the matrices from Section 4.8.3 and Ĝ :L0(Th )→RT−1(Th ) de�ned by

Ĝs k = Ĝ3n+m ,k =−
∑
T∈Th

∫
T

Zk (∇· Ψ̂3n+m ),

this reads as

B̂0 Ĵ − Ĝu −Cλ̂= 0,

−Ĝt Ĵ =−Vφ,

−Ct Ĵ = 0.

Now remember that B̂0 is block-diagonal, so that it can be easily inverted. �erefore, we can
insert

Ĵ = B̂−1
0

(
Ĝu +Cλ̂

)
into the second equation and get

−Ĝt B̂−1
0 Ĝu − Ĝt B̂−1

0 Cλ̂=−Vφ,

−Ct B̂−1
0 Ĝu −Ct B̂−1

0 Cλ̂ = 0.

To simplify notation, we set

D̂ := Ĝt B̂−1
0 Ĝ, Ê := Ĝt B̂−1

0 C and F̂ :=Ct B̂−1
0 C

which yields

−D̂u − Êλ̂=−Vφ,

−Êt u − F̂λ̂= 0.

Now the matrix D̂ (note that this matrix has nothing to do with the divergence matrix D) is
diagonal, so that we can easily solve the �rst equation for u ,

u = D̂−1
(

Vφ− Êλ̂
)

, (A.12)



A.6 Computing the negative norm 157

and insert this into the second equation, so that we �nally get(
−Êt D̂−1Ê+ F̂

)
λ̂=−Êt D̂−1Vφ. (A.13)

�e matrix on the le�-hand side is positive semi-de�nite and the kernel consists of constant
λ̂h .

Equation A.13 is solved using the conjugate gradient method with incomplete Cholesky as
preconditioner. �e solver is capable of handling matrices where the kernel consists of the
constant funtions. �en, u h is calculated using Equation (A.12).

A.5.2 . . .using the piecewise constant energy

In this second case, we simply use the matrix k, see (4.42) on page 67, for the discrete Lapla-
cian and solve

ku =φ.

A.6 Computing the negative norm

To calculate the H−1-norm of φ, we have to solve

−∆u =φ

with either periodic or Neumann boundary conditions and then calculate

‖∇u ‖L2(Ω),

see Section 2.2.

Solving Poisson’s problem was covered in the previous section, so it remains to compute the
gradient of u h inRT 0(Eh ) via

B0 g =Gu ,

and get the norm through

‖u h‖2
H−1(Ω) = ‖g h‖2

L2(Ω) =B0 g · g .

In the case of the piecewise constant energy, we use dx and dy to compute the gradient.
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Figure A.5: Smallest eigenvalue of the matrix (A.15) versus time-step size for ε = 1/16, 1/32
and 1/64. The vertical lines show the restriction (A.14).

A.7 Eigenvalues of the discrete operator

In Section 3.2.2, we investigated for which values of τ the operator is positive de�nite. A
su�cient condition was

τ<
4

β 2
ε3. (A.14)

Here we present a simple numerical example where this condition is indeed necessary. We
use the equations for epitaxial growth and use φ ≡ 1/2, which yields G ′′(φ) ≡ −18. �e
matrices de�ned in Section 4.7 were set up and themassmatrix was inverted. Since themesh
is very coarse (1536 degrees of freedom), it is possible to compute the full (dense) inverse.
�en, the operator

1

τ
B0+ εA0B−1

0 A0+ εA1, (A.15)

see (4.24), was assembled for di�erent values of τ and the eigenvalues were computed in
Matlab. In Figure A.5, we plotted the smallest eigenvalue versus τ for di�erent values of ε.
We see that the constraint (A.14) is sharp.

A.8 Number of required Newton steps

To get an impression of howmanyNewton steps I are necessary in the algorithm in Table 4.1,
we forced the so�ware to use ten Newton steps in an exemplary simulation. In each Newton
step, the system (4.24)–(4.26) was solved using the conjugate gradient (cg) method and the
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Figure A.6: Number of cg-steps per Newton-step. On the left, the number of cg-steps is shown
for the first 1000 steps of a simulation. Oh the right, the sum of these cg-steps is shown. We
see that Newton’s method almost always converged after three steps.

cg steps were counted. �e result is shown in Figure A.6: three Newton steps are almost
always enough.

A.9 Constructing the piecewise constant gradient
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In Section 4.8.5 we constructed a gradient matrices dx and dy. We illus-
trate here the procedure using the simple mesh depicted on the right.

To be able to write the conditions (4.44a)–(4.44d) as a matrix, we enu-
merate the nonzero entries of dx (remember that there are four nonzero
entries per row) to get a vector

d x 4k+#l = dxk l ,

where l is the #l -th nonzero entry in row k .

�e system for the gradients on T1 and T2, i.e. for the �rst two rows of dx, consists of the eight
conditions

M x 1 M x 6 M x 3 M x 2 0 0 0 0
M y

1
M y

6
M y

3
M y

2
0 0 0 0

1 1 1 1 0 0 0 0
0 0 0 0 M x 2 M x 5 M x 1 M x 4

0 0 0 0 M y
2

M y
5

M y
1

M y
4

0 0 0 0 1 1 1 1
|T1| 0 0 0 0 |T2| |T2| |T2|

0 |T1| |T1| |T1| |T2| 0 0 0


d x =



1
0
0
1
0
0
0
0


.
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�e conditions (4.44a)–(4.44c) are represented in rows 1–3 and 4–6 for triangles T1 and T2,
respectively. Condition (4.44d) is represented in lines 7 and 8 for the two triangles.

It is now also apparent that the matrix has not full rank. Indeed, multiplying the third row
with |T1| and adding the sixth row multiplied with |T2| is the same as the sum of the last two
rows.

Using this information, we can transform the above system into a system of the form(
M b
0 0

)(
x
c

)
=

(
r
0

)
, (A.16)

where M is a 7× 7 Matrix, b is the upper part of the last column and c is a scalar. For any
value of c , we can now solve the system

M x = r − cb ,

where x = x (c ). �us, solving the system for the values, say, c = 0 and c = 1, we can de�ne

d x =

(
x (0)

0

)
and z x =

(
x (1)

1

)
−
(

x (0)
0

)
.

�is yields a family of solutions d x +λx z x . Using the optimal λx as calculated in Section
4.8.5 yields the gradient and Laplacian shown in Figure A.7. For a di�erent mesh, gradient
and Laplacian are shown in Figure A.8.

A.10 Quadrature

In a �nite element so�ware, there are numerous occasions where the integration of a func-
tion over a triangle has to be carried out. First of all, this is necessary when assembling the
matrices, but integration is also needed for the restriction operator, computation of norms
and so on.

To compute ∫
T

x m y n dx dy ,

there are explicit formulas for m , n ¶ 2 which only use the position of the vertices. Since our
discrete functions are either piecewise constant or Raviart–�omas vector �elds, polynomi-
als of order higher than two do not appear.

�e only cases where we need to approximate integration by quadrature rules is when using
the restriction operator. �is is the case when setting the initial values or when comparing a
discrete solution to a given continuous function, e.g. in Section 4.11.1.

In these cases we use the quadrature rules by Dunavant [1985] recommended to us by Jörg
Drwenski.
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1

����

1

2

����

1

2
-2

0

����

3

2
- ����

3

2

0

-1

- ����

1

2

- ����

1

2

2

0

- ����

3

2
����

3

2

0

10

1

-4

1

-4

-1

0

-1

-1

-1

0 0

0

0

00

1

10

1

-4

-1

-4

-1

0

0

0

-1 -1

0

0

00

-4

1

10

1

0

-1

-4

-1

0

0

0 0

-1

-1

00

1

-4

1

10

-1

0

-1

-4

0

0

0 0

0

0

-1-1

Figure A.8: Coefficients of dx (top row) and k (bottom row) for a different mesh. The Laplacian
inherits the symmetry of the mesh.



162 Appendix A Complements

A.11 Hardware, so�ware versions and compiler options

Most of the simulations, including themethod comparison in Section 4.11, were run on Intel®
Core™ 2 Duo 1.86GHz CPUs (only one core was used) with 2GB RAM.

�e operating system was Debian GNU/Linux 4.0 and the program was compiled with gcc
4.1.2 using the (standard) compiler options -O3 -march=nocona -mfpmath=sse -msse3 -fPIC
-fomit-frame-pointer.

As external packages, we used PETSc 2.3.3p6 which in turn uses the BLAS routines of the
Intel® MKL 8.0.1. For the Cholesky decomposition CHOLMOD 1.0.2 was used. Additionally,
for the inde�nite system (A.16) in PCE, we used UMFPACK 4.6.

For the few occasions where two GB of memory were not enough, we had an Intel® Xeon®
2GHz machine with 4GB RAM and the 64bit version of Debian 4.0.

Many Figures in this work where created using MATLAB® by �e MathWorks in versions
R2007a–R2008b, see also Section 7.4.3. Other �gures were drawn using xFig 3.2.5-α5. �e
inheritance and collaboration diagrams in Chapter 7 were created by Doxygen 1.5.1. Also, we
used GIMP 2.2.13, mainly to add transparency and for the title image.

�e so�ware was developed with the help of Eclipse with the CDT plugin. �e TeXlipse
plugin was used to write this work. Typesetting was done using pdfLATEX.
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Time-step schemes

We present here the time-step schemes we took under consideration together with their sta-
bility properties.

Table B.1: Values of a and γ for the different time-step schemes. Note that the second step of
TR–BDF2 is not one-step in each substep, therefore correction (B.5) to Equation (3.7) applies.

a γ

Euler backward 1 0
Crank–Nicolson 1/2 1
BGP (step 1 and 3) 3−2

p
2 1/

p
2

BGP (step 2) 3−2
p

2
p

2
TR–BDF2 (step 1) 1−1/

p
2 1

TR–BDF2 (step 2) 1−1/
p

2
p

2−1

B.1 Euler backward

For the �rst-order Euler backward scheme, we have a = 1 and γ = 0. �erefore J∗ = J k+1

and the right hand side is just f in Equation (3.4).

B.2 Crank–Nicolson

�e simplest choice for a second-order scheme is the Crank–Nicolson (CN) scheme

φn+1−φn

τ
= 1

2
F (φn+1)+ 1

2
F (φn ),

i.e. a = 1/2 and γ= 1. Unfortunately, this scheme is not suited for Cahn–Hilliard-type equa-
tions due to its lack of strong A-stability: set F (φ) = Aφ with a self-adjoint linear operator
A . �en, the scheme can be written as

φn+1 =
(
id− 1

2
τA
)−1(id+ 1

2
τA
)
φn .
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Taking a basis of eigenfunctions of A , we have for the coe�cientφn+1
i of the i -th eigenfunc-

tion

φn+1
i =RCN(τλi )φn

i with RCN(x ) :=
(1+ 1

2
x )

(1− 1
2

x )

and λi are the eigenvalues. As we can see, we have

lim
x→∞
|RCN(x )|= 1.

�erefore, for sti� problems, some components of φ are always only poorly damped. Of
course taking other values than 1/2 for the operator splitting will lead to a �rst-order scheme,
so this is no option.

B.3 Peaceman–Rachford-type

As a next step, we divide the time interval into two subintervals

[nτ, (n +1)τ] = [nτ, (n +θ )τ]∪ [(n +θ )τ, (n +1)τ]

n +θ n +1n

with θ ∈ (0, 1), where in the second subinterval the coe�cients of the explicit and the implicit
part are swapped. �is yields Peaceman–Rachford (PR) type schemes

φ∗−φn

θτ
=αF (φ∗)+ (1−α)F (φn ),

φn+1−φ∗

(1−θ )τ
= (1−α)F (φn+1)+αF (φ∗).

Note that with θ = 1/2 and the extreme value α= 0, this is the Crank–Nicolson scheme.

Again setting F (φ) = Aφ and using a basis of eigenfunctions yields

φk+1
i =RPR(τλi )φk

i with RPR(x ) :=
(1+α(1−θ )x )(1+(1−α)θx )
(1− (1−α)(1−θ )x )(1−αθx )

.

�ese schemes are of second order if

α=
1−2θ

2(1+2θ )
,

but we have again
lim

x→∞
|RPR(x )|= 1,

so this class of schemes is also not suitable.
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B.4 BGP

To overcome the limitations of the Crank–Nicolson and Peaceman–Rachford schemes, we
follow Weikard [2002] and investigate a scheme by Bristeau, Glowinski, and Périaux [1987]
(BGP scheme, called θ -scheme in their paper). �e idea of the BGP scheme is to divide the
time interval into three subintervals

[nτ, (n +1)τ] = [nτ, (n +θ )τ]∪ [(n +θ )τ, (n +1−θ )τ]∪ [(n +1−θ )τ, (n +1)τ]

n n +1n +θ n +1−θ

with θ ∈ (0, 1/2). In the �rst two subintervals, the procedure is the same as in the PR scheme
and in the third interval, the coe�cients are once again swapped.�erefore, the BGP-scheme
is

1

θτ
(φ∗−φn ) =αF (φ∗)+ (1−α)F (φn ), (B.1a)

1

(1−2θ )τ
(φ∗∗−φ∗) = (1−α)F (φ∗∗)+αF (φ∗), (B.1b)

1

θτ
(φn+1−φ∗∗) =αF (φn+1)+ (1−α)F (φ∗∗). (B.1c)

Here, we �nd the stability function

RBGP(x ) =

(
1+(1−α)θx

)2(
1+α(1−2θ )x

)(
1−αθx

)2(
1− (1−α)(1−2θ )x

)
which yields in the limit

lim
x→∞
|RBGP(x )|=

1−α
α

.

�us, we need α > 1/2 to get strong A-stability. Additionally, we want the scheme to be of
second order in time. Expanding the stability function yields

RBGP(x ) = 1+x + 1
2

{
1+(1−2α)(1−4θ +2θ 2)

}
x 2+O(x 3).

Since we wanted α> 1/2, the scheme is only second order accurate if

1−4θ +2θ 2 = 0 ⇐⇒ θ = 1±
1
p

2

and since θ ∈ (0, 1/2) we get θ = 1−1/
p

2≈ 0.29.

We have still one free parameter: α. To choose α, we require the implicit parts in all three
steps to be equal, i.e.

αθ = (1−α)(1−2θ ) ⇐⇒ α= 2−
p

2≈ 0.59.
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�en, with θα= 3−2
p

2=: a , we can rewrite scheme (B.1) as

1

aτ
(φ∗−φn ) = F (φ∗)+γ1F (φn ) (B.2a)

1

aτ
(φ∗∗−φ∗) = F (φ∗∗)+γ2F (φ∗) (B.2b)

1

aτ
(φn+1−φ∗∗) = F (φn+1)+γ1F (φ∗∗) (B.2c)

with γ1 = 1/
p

2 and γ2 =
p

2.

Concluding, we have a second-order scheme which is suited for sti� problems and the im-
plicit part of the scheme is the same in all steps. Of course, the price we pay for these prop-
erties are two extra steps per time step.

B.5 TR-BDF2

Aswe have seen, the above bene�ts cannot be achieved using an operator-splitting time step-
ping scheme which uses the splitting αF (φk+1)+ (1−α)F (φk ) in every substep and has less
than three steps.

One option would be to change the operator splitting. Instead, we drop the requirement of
being a one-step scheme in every substep and take a look at the TR–BDF2 scheme. It was
developed by Bank et al. [1985] in the context of device simulation. It uses �rst a Crank–
Nicolson step (or trapezoidal step, therefore TR) to produce an intermediate value φ∗ at
t = tn +θτ, θ ∈ (0, 1)

1
θ
2
τ
(φ∗−φn ) = F (φ∗)+ F (φn )

and then uses the second-order backward-di�erence formula (BDF2) to compute the �nal
value φn+1:

n +1

φn φ∗ φn+1
CN

BDF2

n n +θ

We brie�y review the BDF2 formula. It uses a quadratic polynomial p (t ) = a t 2+b t +c with
a ,b , c such that

p (nτ) =φn , p (tn +θτ) =φ∗ and p ′(tn +τ) = F (φn+1).

�en φn+1 is given by p (tn +τ). �is yields

φn+1 =φn +
1

θ (2−θ )
(
φ∗−φn )+τ

(
1−

1

2−θ

)
F (φn+1)
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and by inserting the CN step

φn+1 =φn +τ

[
1

2(2−θ )

(
F (φn )+ F (φ∗)

)
+

1−θ
2−θ

F (φn+1)

]
⇐⇒

1
1−θ
2−θ τ

(φn+1−φn ) =
1

2(1−θ )

(
F (φn )+ F (φ∗)

)
+ F (φn+1).

�e stability function is

RT(x ) =
1+ 2x

(2−θ )(2−θx )

1− 1−θ
2−θ x

,

so for the limit we have
lim

x→∞
|RT(x )|= 0,

i.e. L-stability, independent of θ . Expanding the stability function yields

RT(x ) = 1+x + 1
2

x 2+O(x 3),

so the scheme is of second order for any θ . However, an accuracy of third order can not be
attained since this would require θ = (1±

p
26)/3 6∈ (0, 1).

As we want φn+1−φ∗ on the le� hand side, we use

1
1−θ
2−θ τ

(φ∗−φn ) =
θ (2−θ )
2(1−θ )

1
θ
2
τ
(φ∗−φn ) =

θ (2−θ )
2(1−θ )

(
F (φ∗)+ F (φn )

)
and get for the BDF2 step

1
1−θ
2−θ τ

(φn+1−φ∗) =
(

1

2(1−θ )
−
θ (2−θ )
2(1−θ )

)
︸ ︷︷ ︸

=(1−θ )/2

(
F (φn )+ F (φ∗)

)
+ F (φn+1).

To �x a θ , we again request the implicit parts in the TR and BDF2 steps to be the same, i.e.

a :=
1−θ
2−θ

=
θ

2
⇐⇒ θ = 2±

p
2.

Since θ ∈ (0, 1), we get

θ = 2−
p

2≈ 0.59 and a = 1−
1
p

2
.

�is yields the TR–BDF2 scheme

1

aτ
(φ∗−φn ) = F (φ∗)+ F (φn ) (B.3a)

1

aτ
(φn+1−φ∗) = F (φn+1)+

p
2−1

2

(
F (φ∗)+ F (φn )

)
. (B.3b)
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Note that no information from previous time-steps is needed. Now remember our notation:
k in Formula (3.4) counts the substeps relative to the current substep andn are the (top-level)
time-steps, so in the �rst step

φk =φn and φk+1 =φ∗ =φn+θ

and in the second step

φk−1 =φn , φk =φ∗ =φn+θ and φk+1 =φn+1.

�us, we can write the two steps as

1

aτ
(φk+1−φk ) = F (φk+1)+

γ

2

(
F (φk )+ F (φk−1)

)
. (B.4)

with
γ= 1, φk−1 :=φk in the �rst substep,
γ=
p

2−1 in the second substep.

To be able to use this scheme in our setup, we change Equation (3.1) to the new de�nition
(B.4). Repeating the calculations of Section 3.1, we can continue to use Equation (3.7) with
the new de�nition

w ∗
TR–BDF =w i +

γ

2

(
w k +w k−1

)
. (B.5)

In total, we have more advantages than in BGP (namely L-stability) while only having to
perform one extra step instead of two.



Symbols

E (φ) Energy functional, page 12.

Eh (φh ) Discrete energy, page 79.

G (φ) Potential term in the energy, page 15.

H (∇·,Ω) L2 vector �elds with divergence in L2(Ω), page 38.

H (∇∇·,Ω) L2(Ω)2 vector �elds with divergence in H 1(Ω), page 29.

H m (∇·,Ω) H m (Ω)2 vector �elds with divergence in H m (Ω), page 45.

H m (∇∇·,Ω) H m (Ω)2 vector �elds with divergence in H m+1(Ω), page 51.

K −∇∇· J i+1
∗ , page 38.

M (φ) Mobility, page 15.

NE Number of edges in the mesh, page 40.

NT Number of triangles in the mesh, page 40.

NV Number of vertices in the mesh, page 40.

P E
h L2-orthogonal projection onto Raviart–�omas vector �elds, page 41.

PT
h L2-orthogonal projection onto piecewise constant functions, page 41.

RT
h Restriction operator RT

h : L2(Ω)→L0(Th ), page 41.

R E
h Restriction operator R E

h : H (∇·,Ω)∩ Ls (Ω)2→RT 0(Eh ), page 44.

T±i Triangles adjacent to E i , page 43.
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Ψi (x ) Basis function onRT 0(Eh ) to edge i , page 43.

|E i | Length of edge E i , page 40.

|Tk | Volume of triangle Ti , page 40.

δE (φ)/δφ Variational derivative of E , page 6.

δ2E (φ)/δφ2 Second variational derivative of E , page 6.

Eh Set of all edges in the mesh, page 40.

∇h Discrete gradient, page 45.

κ Curvature, page 21.

‖·‖H−1(Ω) Norm in the dual of H 1(Ω), page 9.

‖·‖H−1
M (Ω)

Weighted H−1 norm, page 10.

ν Outer normal, page 21.

L0(Th ) Space of piecewise constant functions, page 41.

RT 0(Eh ) Space of lowest-order Raviart–�omas �nite elements, page 43.

Th Set of all triangles of the mesh, page 40.

g ± Bulk equilibrium values, page 18.

hT Half the diameter of the triangle T , page 75.

w Chemical potential, short for δE (φ)/δφ, page 28.

(G.i)–(G.iv) Properties of the discrete gradient, page 46.
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