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1. Introduction 

Intermediate filaments (IFs) are important structural components found in most vertebrate cells. 

They are expressed in nucleus as well as in cytoplasm providing physical resilience for cells to 

withstand the mechanical stresses of the tissue in which they are expressed. Intermediate 

filaments are essential for normal tissue structure and function and are encoded in the human 

genome by 70 different genes in six subfamilies. 

 
1.1 Keratins  
 
Keratins are the structural intermediate filament proteins and account for most of the majority 

intermediate filament proteins. They form a dynamic network of 10-12 nm filaments (40–70 

kDa) which are prominent structural constituents of the cytoplasm in epithelial cells. Keratins are 

encoded by a large multigene family of more than 50 individual members and on the basis of 

gene structure and homology (Hesse et al., 2001; Moll et al., 1982; Schweizer et al., 2006), are 

classified into two major sequence types, type I (acidic) and type II (basic to neutral). The genes 

encoding type I and type II keratins are clustered on chromosomal regions 17q12–q21 and 

12q11–q13, respectively. Keratin filaments represent obligatory heterodimers of basic and acidic 

partners. The 28 type I include K9–K23 (epithelial), and the hair keratins K31–K40 and 26 type 

II include K1–K8, and the hair keratins, K81–K86 which are specifically expressed in and 

closely restricted to the various compartments of the hair follicle inner root sheath.  

Pairs of type I and type II keratins are expressed in highly specific patterns related to the 

epithelial type and stage of cellular differentiation (Kirfel et al., 2003) (figure1.1). Each keratin 

pair is characteristic of a particular epithelial differentiation programme, some epithelial cells 

express more than one pair. The coexpressed pairs of type I / type II keratins can be divided into 

three expression groups: simple keratins of one-layered epithelia (K8/K18, K20), barrier 

(keratinocytes) keratins of stratified epithelia (K5/K14, K1/K10, K3/K12, K4/K13, K6a/K16, 

K6b/K17, K19) and structural keratins which make up hard appendages like hair, nails, horns 

and reptilian scales.  

The present study is focused on keratin pair K5, K14 and their expression profile is introduced 

briefly in the following section.

 - 1 -
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1.1.1 Keratin 5 and Keratin 14  

 

K5 (62 kDa) and K14 (51 kDa) occur as heterodimers with varying levels of expression in basal 

keratinocytes of stratified epithelia. They are strongly expressed in the basal cell layer containing 

stem cells (Fuchs and Green, 1980), uniformly expressed in stratified follicular outer root sheath, 

basal and myoepithelial cells of complex glandular epithelial tissue  (Purkis et al., 1990). The 

distinctive expression of specific keratin pairs depends largely on the tissue-type, differentiation 

status, and the physiological state. For example, as the dividing basal keratinocytes of the skin 

epidermis exit the cell cycle and embark on a program of differentiation, expression of K5 and 

K14 is downregulated and a new set of keratins, K1 and K10 are expressed in the suprabasal 

spinous layer (Byrne et al., 1994) or become activated producing K6 and K16. IL-1 is the 

primary signal initiating keratinocyte activation and expression of K6 and K16 (Freedberg et al., 

2001). The restricted expression of K14 in the basal layer of the skin epidermis is primarily 

controlled at the level of transcription and regulation of this process has been extensively studied 

using various complementary approaches. DNAse I hypersensitive site (Hs) mapping of the 

human K14 gene has identified several Hs in the 5' region that are present selectively in 

keratinocytes (Sinha et al., 2000; Sinha and Fuchs, 2001). 

 
Figure 1.1: Keratin expression in the epidermis. Basal epidermal cells express K5, K14 and K15. As basal cells 

commit to terminal differentiation, they switch off the expression of K5, K14 and K15 and induce the expression of 

K1 and K10. As epidermal cells move up through the spinous layers, they express K2e, which can pair with K10. 

Some keratins are expressed in the epidermis under special circumstances, during wound healing, keratinocytes 

express K6, K16 and K17. K9 is unique to the suprabasal layers of the palms and soles. 
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1.1.2 Keratin organization and expression in the cells 
 

Filaments of keratins are organized into a complex supra-molecular network which is extended 

over the cytoplasm and are attached to the cytoplasmic plaques of the typical epithelial cell–cell 

junctions, the desmosomes - the peripheral most portion of the cell (figure1.2). The desmosome–

intermediate filament complex (DIFC) network or scaffolding maintains the integrity of cells  

(Garrod and Chidgey, 2008). 

 
Figure 1.2:  Keratin IFs (green) are organized in a network that spans the whole cytoplasm, and are attached to desmosomes 

(red) at points of cell–cell contacts. N: nucleus. Scale bar, 10 μm (Image: Dr. S. Loeffek. IBMB, Bonn) 

 

In epithelial cells, keratin filaments are attached by adapter proteins to desmosomes (cell-cell 

adhesion) and hemidesmosomes (cell-matrix adhesion) by a filigree of proteins that make up the 

desmosomal plaques, like desmoplakin, desmogleins, desmocollins and the armadillo proteins 

plakoglobin and plakophilin (figure1.3). 

Keratins interact with desmoplakins, which are prototypes of the plakin family of cytoskeletal 

adaptor proteins and are essential for normal desmosomal adhesion. The globular head or plakin 

domain of desmoplakin is an important region for protein–protein interactions. The C-terminal 

tail domain consists of three plakin repeat domains (PRDs) and two of them represent an 

intermediate filament binding site (Choi et al., 2002). The interaction between desmoplakin with 

keratin filaments is regulated by glycine–serine–arginine rich domain located at the extreme C-

terminus (Stappenbeck et al., 1994). Mutations in the K5 tail domain cause migratory circinate 

erythema, possibly by affecting the interaction between desmosomes and keratins (Betz et al., 

2006; Gu et al., 2003; Magin et al., 2004). 

Plakoglobin is found in all cell–cell adhesive junctions and forms a bridge between adhesion 

proteins and cytoskeletal linkers (Kowalczyk et al., 1997; Mathur et al., 1994).  The C-terminal 

end of plakoglobin contains a three-Tyr cluster in its C-terminal domain (Tyr693, Tyr724, and 
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Tyr729) which is binds to the N-terminal domain of desmoplakin. Loss of plakoglobin leads to 

decreased number and altered structure of desmosomes in the epidermis of mouse skin 

 
Figure 1.3: Organization of keratin filaments in cell 

In the cytoplasm, keratin filaments are linked to plasma membrane via two linker proteins desmoplakin (DP) and 

periplakin (PP). In desmosome, desmogleins (Dsg) bind directly to plakoglobin (PG) and plakophilin (PP), which 

provide links to the N terminus (N) of desmoplakin (DP)13. DP also binds directly to the juxtamembrane domain of 

desmocollin-1a  (Dsc) and DP C- terminal domain (C) interacts with intermediate filaments (IF).  

 

(Bierkamp et al., 1996), and plakoglobin null keratinocytes exhibit weakened intercellular 

adhesion (Caldelari et al., 2001; Yin et al., 2005). Likewise, the proper recruitment and 

distribution of the PG-associated protein DP to desmosomal plaques is required for IF 

attachment as well as strong intercellular adhesion and epithelial integrity in vitro and in vivo 

(Huen et al., 2002; Vasioukhin et al., 2001). 

Epidermal keratinization is a tightly regulated process that enables epidermal cells to withstand 

mechanical stress and leads to the formation of cornified cell envelope. Epidermis is the 

protective layer that acts as a barrier against the environment and water loss. During this process, 

the keratins expressed are highly specific for the state of differentiation. For example, in the 

basal layer, as the cells move out of the proliferative compartment, K5 and K14 pair is down-

regulated, while the differentiation-specific keratins, K1 and K10 are expressed (Ishida-

Yamamoto et al., 1998). These suprabasal keratins account for nearly 85% of the total protein 

(Fuchs, 1996) of fully differentiated squamous that are sloughed off from the skin surface. 
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Interestingly, there are also a number of keratins with a restricted tissue distribution. For 

example, K9 is expressed in the suprabasal cells of palmoplantar skin and K2e is found in 

keratinocytes of the upper spinous and granular layers of the epidermis (Corden and McLean, 

1996). Non-cornifying cells of the stratified mucosa express K4 and K13 and suprabasal cells of 

the corneal epithelia express K3 and K12. In the normal epidermis, the expression of K6 and 

K16 is restricted to the outer root sheath of the hair follicle, nail bed, palmoplantar skin and the 

suprabasal layer of the orogenital mucosa. On the other hand, K17 is expressed in the nail bed, 

hair follicle, sebaceous glands, and other epidermal appendages (Langbein and Schweizer, 

2005). 

 
1.1.3 Structure and organization of keratins 
 
Keratins share common protein structural characteristics (fig. 1.2), comprising an α-helical ‘rod’ 

domain of ~ 310 amino acids (with a 50-90% sequence identity among cytokeratins of the same 

family and around 30% between cytokeratins of different families) constituted with four 

consecutive domains of highly conserved length (segment 1A accounting for 35, segment 1B for 

101, segment 2A for 19 and segment 2B for 121 amino acids). The non-α-helical parts between 

these segments, also called ‘linkers’ (L1, L12, L2), are variable in length (8–22 amino acids). 

The α-helical segments exhibit a heptad substructure in which the first and fourth positions are 

commonly occupied by apolar amino acids such as Leu, Ile, Met or Val. These hydrophobic 

amino acids generate a surface that is wound around the axis of a single right-handed α-helix in a 

left-handed manner, ultimately leading to superhelix, i.e. coiled-coil formation of two such 

molecules. 

The phasing of the heptads is interrupted by deletion or insertion of amino acids in the middle of 

segment 2B giving rise to a ‘stutter’ (Steinert et al., 1994) and is conserved in IF proteins. 

The stutter represents a helical segment which is not engaged in coiled-coil formation. Moreover, 

atomic structure analysis showed that the end of segment 2B, representing the evolutionarily 

conserved IF consensus motif (TYRKLLEGEE), is not entirely part of the coiled-coil structure, 

but bends away from the coiled-coil axis (Herrmann et al., 2000; Strelkov et al., 2002). The end-

domain sequences of type I and II cytokeratin chains contain in both sides of the rod domain the 

subdomains V1 and V2, which have variable size and sequence. The subdomains V1 and V2 

contain residues enriched by glycine/serine, the former providing the cytokeratin chain a strong 

insoluble character and facilitating the interaction with other molecules. These terminal domains 

are also important in defining the function of cytokeratin chain characteristic of a particular 

epithelial cell type. 
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Figure 1.4 (A) The tripartite domain structure of all keratin proteins, with an a-helical central rod domain dominated 

by subsegments (1A, 1B, 2A and 2B) and separated by short linker regions (L1, L12 and L2). The stutter represents 

a helical segment not engaged in coiledcoil formation. Non-helical head and tail domains at the N and C termini 

flank the rod domain, respectively. At the beginning and end of the rod domain are the highly conserved helix 

boundary sequence motives, also known as the helix initiation peptide (HIP) in the 1A domain and the helix 

termination peptide (HTP) at the end of helix 2B 

(B) Type I and type II keratin proteins readily form highly stable coiled-coil dimers (10 nm in length), in which the 

two participating monomers exhibit a parallel, in-register alignment. Dimers then associate along their lateral 

surfaces, with an antiparallel orientation, to form apolar oligomers. 

 

Like all intermediate filaments, keratin proteins form filamentous polymers in a series of 

assembly steps beginning with dimerization; dimers assemble into tetramers and octamers and 

eventually, the current hypothesis holds, into unit-length-filaments (ULF) capable of annealing 

end-to-end into long filaments. The process of formation of keratin filament  assembly initiates 

by formation of heterodimers in which compatible type I and type II polypeptide chains align in 

parallel and in exact axial register (Parry et al., 1985). Two heterodimers associate, forming 

tetramer units aligned in an antiparallel manner (Geisler et al., 1985) or which may be identical, 

as in the case of desmin IFs (Sergei et al,). Dimers and/or tetramers polymerize laterally and 

longitudinally to give rise to higher order structures comprising of equimolar amounts of a type I 

protein and a type II protein (Steinert, 1990), but no dominant intermediate has been identified or 

isolated after the tetramer stage.  
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1.1.4 Known keratin interactions and functions 

 

The variation in expression levels of keratin proteins in different cells (in surface epithelial cells 

accounting to 30% and about 1% in hepatocytes of their total proteins), and their highly specific 

patterned expression profile related to the epithelial type and stage of cellular differentiation, 

might hint towards the diverse role of keratins in cellular machinery.  

The characteristic spanning of keratin cytoskeletal network (not so in all cell types, eg. 

hepatocytes) across cytoplasm weaving the nucleus, and their attachment to cell-cell junctions – 

desmosomes, itself suggests a major functional role for keratins in regulation and maintenance of 

integrity and mechanical stability of cells and tissues. Pathogenic mutations have been 

discovered in different keratin genes (figure 1.5) causing wide range of epithelial fragility 

disorders affecting skin, mucous membranes, hair, nails, and sebaceous glands (Corden and 

McLean, 1996; Lane and McLean, 2004; Smith, 2003). The general pathology in these disease 

conditions corresponds to the expression pattern of the defective keratin protein resulting in 

structural (eg. EBS - Dowling-Meara) or pigmentation (eg. Dowling–Degos disease) disorders. A 

brief insight to this is mentioned in the next chapter.  

In multilayered epithelia, keratin filaments act as a mechanical scaffold enabling their constituent 

cells to withstand deformation without breaking (Takahashi et al., 1999; Wilson et al., 1992) 

This function is crucial in surface epithelia, such as epidermis, oral mucosa, and hair (Wong et 

al., 2000), and has been demonstrated as well for internal simple epithelia, including liver, 

trophectoderm and placenta (Hesse et al., 2000; Ku et al., 2001; Magin et al., 1998; Tamai et al., 

2000). The reported binding studies between type II keratins and the desmosomal protein 

desmoplakin (Smith and Fuchs, 1998), perinuclear collapse of keratin IFs around the nucleus in 

live cells as frequently seen in skin blistering diseases, significantly softens the cytoplasm (Beil 

et al., 2003), confirms that keratins are organized into a network architecture, which in turn is 

important for cellular micromechanics (Beil et al., 2003) 

 

Keratins and vesicle transport 

 

The keratinocyte pigmentation disorder Dowling–Degos disease (DDD) (Dowling and 

Freudenthal, 1938) due to K5 haploinsufficiency, rare skin disorders like EBS with mottled 

pigmentation (Uttam et al., 1996), and Naegeli–Franceschetti–Jadassohn syndrome are caused by 

mutations residing in the head domains of K5 and K14 (Betz et al., 2006; Harel et al., 2006; Liao 

et al., 2007; Lugassy et al., 2006; Uttam et al., 1996). In contrast to most other keratinopathies, 
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the described haploinsufficiency in K5 (DDD) which results from premature stop codons in the 

K5 gene, affects melanosome distribution in keratinocytes but not the integrity of the keratin 

cytoskeleton (Betz et al., 2006; Liao et al., 2007) and is the same in latter mentioned conditions 

which show an intact keratin organization with disorganized distribution of melanosomes in 

keratinocytes.  

 

 

Figure 1.5 : Schematic representation of keratin protein depicting the structural domains and common mutation sites 

in epidermolysis bullosa simplex.  

Common sites of dominant mutations and their corresponding EBS phenotypes are depicted above the diagram; the 

locations of recessive mutations are shown below. The relative height of the bars reflects the relative frequency of 

the mutations.  

 

Pigmentation of skin depends on melanin synthesis and transport of melanosomes- a lysosome 

related organelles which form supranuclear caps in keratinocytes. Biogenesis and transport of 

melanosomes in melanocytes depend on the regulation of actin and myosin motors by the 

GTPase Rab27a and Rab effectors (Marks and Seabra, 2001). The mechanism of uptake of 

melanosomes into basal keratinocytes and its distribution, how do the mutations in keratins 

responsible for pigmentation disorders disturb the physiological cellular process still remains an 

open question, the reason being, lack of information about the keratin associated proteins which 

might get affected due to mutations in keratin genes inturn influencing the cellular machinery.    

Further support for a role of keratins in melanosome transport comes from the analysis of mice 

with chemically induced mutations in K1, K2e and K4 (Fitch et al., 2003; McGowan et al., 2006; 

McGowan et al., 2007). The interaction results of the K5 head domain with dynein light and 

intermediate chains (Betz et al., 2006), report of dynein involvement in the centripetal transport 

of melanosomes in keratinocytes where they form supranuclear caps (Byers et al., 2003) hints at 
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the role of keratins in their transport and distribution which holds great promise for the 

understanding of a general role of IF proteins in vesicle trasnsport. 

 

Role of keratins in wound healing 

 

Re-epithelialization is a pivotal event in wound healing process. It involves the migration and 

cornification of perilesional basal keratinocytes across wound bed for restoration of an intact 

epidermal barrier through wound. In the initial process of wound healing the basal keratinocytes 

express K6 and K16 (Wong and Coulombe, 2003), unlike the normal skin which expresses K5 

and K14 pair. More experimental studies have shown that after skin wounding, K6 and K16 are 

rapidly induced within 6h in human keratinocytes at the wound edge, before migration and 

regeneration begins (Paladini et al., 1996). In epidermal wounding situation, transcription of the 

Krt6/16/17 genes is induced and Krt1/10 gene expression is reduced (Zhong et al., 2004), 

presumably providing the cell with a more pliable cytoskeleton that favours keratinocyte 

migration for wound closure. K6a knockout mice showed delayed re-epithelialization upon 

partial thickness skin wounding (Wojcik et al., 2000) and loss of K17 compromised wound 

healing in mouse embryos (Mazzalupo et al., 2003).  

 

Role of keratins in microtubule localization  

 

It has been shown that intermediate filaments mediate cross-talk among other components of the 

cytoskeleton (Chang and Goldman, 2004). Centrosomes are known to be located under the apical 

domain in simple epithelial cells, instead of a perinuclear localization as in other cell types 

(Apodaca et al., 1994; Meads and Schroer, 1995; Salas, 1999). Several research groups have 

shown that γ-tubulin–containing structures are attached to intermediate filaments (IFs) (Figueroa 

et al., 2002) and that this attachment is responsible for the apical distribution of centrosomes in 

simple epithelial cells (Mulari et al., 2003; Salas, 1999). Similarly, overexpressed keratin 

accumulates around the centrosome (Blouin et al., 1990), this colocalization can be disrupted by 

Cdk1/cyclinB mediated phosphorylation in interphasic cells, and is naturally lost in mitotic cells. 

Keratin knock-downs in tissue culture cells where the apical localization of centrosomes and 

non-centrosomal γ–TurCs is abrogated (Salas, 1999) and the phenotype of the K8-null mice 

villus enterocytes (Ameen et al., 2001) coincided to show loss of the apical γ–tubulin layer and 

disorganization (not depolymerization) of MTs with loss of the apico-basal arrangement. Yet, a 

full mechanistic explanation for these phenotypes has to be established. An interesting possibility 
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of interactions between keratin filaments and molecular motors (Betz et al., 2006) (kinesins and 

cytoplasmic dyneins) which may participate in the organization of the microtubular architecture 

similar to that of vimentin (Helfand et al., 2004) still remains and has not been demonstrated so 

far.  

 

Role of keratins in epithelial polarization 

 

K8-null mice show decreased expression of apical proteins in the apical membrane. In some 

cases, mispolarization or intracellular localization was observed, suggesting that membrane 

traffic was the cause, rather than transcriptional/translational defects. In general, the effects were 

observed in epithelia where K7, a type II keratin redundant to K8, was not expressed. 

It might also be due to the changes in MT architecture and even, that IFs may serve as scaffolds 

for extrinsic membrane proteins that, in turn interact with membrane proteins.  

An example of this possibility is the phenotype of transgenic mice overexpressing K8 which 

showed an extensive atrophy of the intestinal brush border. An analysis of the subcellular 

localization of ezrin showed it bound to the abnormal cytoplasmic IFs while lacking under the 

apical membrane (Wald et al., 2005). Ezrin is known to connect actin to the PDZ protein EBP50, 

and to membrane proteins (Bretscher et al., 2002), interactions that aid in the retention of apical 

membrane proteins such as CFTR (Guggino and Stanton, 2006). More data will be necessary to 

determine the relevance of these and other possible mechanisms in the function of IFs. 

 

Keratin response in stress conditions 

 

The studies in mice that overexpress Arg89→Cys K18 as well as in K8-null mice demonstrated 

the importance of an intact IF network in imparting protection to hepatocytes from several 

stresses (Ku et al., 1999; Zatloukal et al., 2000). Pancreatic acinar cells were far more resilient 

than their hepatocyte counterparts upon exposure to two established pancreatic injury models 

(Toivola et al., 2000) suggesting that the same keratins may function differently in the pancreas 

and liver, or that other stress-related compensatory mechanisms are found in the pancreas. Along 

with the strong association of simple epithelial keratins with cytoprotection upon exposure to 

nonmechanical stresses (Ku et al., 1999), the induced expression of keratins upon injury to the 

liver (Cadrin et al., 2000; Denk et al., 2000) and pancreas suggests that keratins may function as 

stress proteins similar like heat shock protein (Hsp) family. Recent studies using transgenic mice 

over expressing K8 G61C mutant (inhibits phosphorylation of K8 at S73 by stress-activated 
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protein kinases such as p38, JNK and p42) has shown an increased susceptibility to stress-

induced liver injury and apoptosis (Ku and Omary, 2006). Consequently, a similar susceptibility 

to stress was also observed in the S73A mutant wherein the site for phosphorylation is destroyed.  

Such a role can be envisaged to occur either directly and be affected by scaffolding, chaperone or 

‘sponge’-type activities absorbing the stress-activated phosphate kinases, thereby reducing their 

untoward effects and hence protect the cells from injury, or indirectly via the known association 

of keratins with Hsp family members. During oxidative stress or exposure to other toxins 

disrupts the keratin-Raf-1 association (Ku et al., 2004) in a phosphorylation-dependent manner, 

suggesting keratins regulate Raf-1 kinase signaling potential by kinase sequestration, activation, 

inactivation or compartmentalization. 

The results of the spatiotemporal and differential regulation of keratin phosphorylation like 

Phosphorylation of K20 S13 in mucus-secreting goblet cells, but not in the other K20-expressing 

enterocytes (Tao et al., 2006), and hyperphosphorylation of K20 during starvation-induced 

mucin secretion indicates the complex functional properties of specific epithelial cell types. 

Loss of maternal TNFα increased the survival of keratin deficient embryos (Caulin et al., 2000; 

Jaquemar et al., 2003) and keratins have been shown to moderate apoptosis in Fas mediated 

apoptosis (Ku et al., 2003) pathway either induced by death receptor or cell-intrinsic pathways. 

 

1.1.5 Keratin disorders in humans 

 

Mutations in 19 different keratin genes have so far been identified as the cause of at least 15 

different genetic diseases (table 1.1). Most disorders are transmitted in an autosomal dominant 

mode, although there are some reports of recessive transmission (Corden and McLean, 1996; 

Irvine and McLean, 1999; Lane and McLean, 2004; Porter and Lane, 2003; Smith, 2003). The 

phenotypes of keratin disorders usually reflect the expression pattern of the mutated keratins 

ranging from very severe to relatively mild blistering because of fragile basal layer of epidermal 

keratinocytes to pigmentation disorders. In general, a mutation in either one of a particular 

keratin pair leads to the same disorder. However, there are instances in which distinctly different 

phenotypes result from mutations in the same keratin (table 1.1).  

Most pathogenic keratin mutations are dominant mutations caused by missense mutations that 

alter amino acids at the start of ‘1A’ rod domain and the end of the ‘2B’ rod domain (fig1.2 A) 

which are called as helix initiation and termination motifs respectively. These helix boundary 

peptides represent genetic “hot spots” for mutations in almost all hereditary keratin disorders. 

The most commonly affected amino acid is an arginine residue near the start of helix 1A that is 
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conserved in all type I keratins (Rugg and Leigh, 2004). Mutations occurring outside the helix 

boundary regions are frequently associated with milder or unusual phenotypes. Mutations that 

affect residues in the head and tail domains often result in conditions that are distinct from those 

caused by mutations in the central region of the keratin molecule suggesting that these regions of 

the keratin molecules may have different functions to the rod domain. 

The precise phenotype of each disease apparently reflects the spatial level of expression of the 

mutated genes, as well as the types and positions of the mutations and their consequences at 

mRNA and protein levels. 

 

Disorders of K5 and K14 

 

The first keratin disorder to be identified was epidermolysis bullosa simplex (EBS). EBS is 

caused by mutations in the genes for keratins 5 (KRT5)/14 (KRT14), describes a heterogeneous 

group of heritable skin-blistering disorders in which is characterized by rupture of the basal 

keratinocytes of the epidermis in response to mild physical trauma. Based on severity, 

distribution, and seasonal variations in blistering, EBS is categorized in three groups.  

I. EBS Dowling-Meara (EBS-DM): is the most severe subtype characterized by widespread, 

herpetiform blistering and intracellular keratin aggregates. Pathogenic defects are due to 

missense mutations clustering at the highly conserved boundaries of the alpha-helical rod of K5 

or K14. In most of the identified mutations, a particular arginine codon within the helix initiation 

peptide in K14 (R125) is found to be replaced either by cysteine/histidine and in K5 substitution 

of a highly conserved amino acid isoleucine to threonine (I466T) within this critical region. 

 II.   EBS Kobner (EBS-K):  is characterized by milder, generalized blistering of the skin without 

apparent clustering, often in response to minor trauma and induced by increased ambient 

temperature. Hands, feet and extremities are most consistently affected. Pathogenic condition 

arises due to T-to-C transition within exon 7 of the KRT5 gene at the nucleotide level which 

results in substitution of a leucine by a proline at the amino acid level. In KRT14 a heterozygous 

mutations at 2B helix domain G1231T creates a premature stop codon and G1237A mutation that 

produces a conservative amino acid change (alanine to threonine) at position 413 (A413T) have 

been identified as the cause of EBS-K.  

III. EBS Weber-Cockayne (EBS-WC): is the most common, relatively mild, localized subtype of 

EBS, characterized by blisters or pigmentation disorders that are confined to the hands, feet and 

areas of friction or trauma. In this relatively form of EBS, pathogenic mutations lie in most cases 

outside of the helix boundaries, elsewhere in the rod domain of K5 (T-->G point mutation in the 
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second base position of codon 161) or K14 (in-frame deletion), including the non-helical L12 

linker motif or in the amino terminal homologous domain of K5 resulting in amino acid 

substitutions.  

Table 1.1 gives an overview of other types of disorders caused due to the discrepancies in 

kerartins. The detrimental effects caused by mutations in keratins have various underlying 

molecular mechanism which still remain elusive. Identification of keratin associated proteins 

involved in various cellular processes will be a major advantage to this end.  

Different available techniques which can be used to identify keratin associated proteins are 

briefly introduced in the next chapter. 
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Type II Type I Expression pattern Human disease 

Bullous congenital ichthyosiform 
erythroderma or epidermolytic 
hyperkeratosis 
Autosomal recessive epidermolytic 
hyperkeratosis 

Diffuse non-epidermolytic palmoplantar 
keratoderma* 

Ichthyosis hystrix Curth-Macklin* 

K1* K10* 
suprabasal cells of cornified  

squamous epithelia 

Palmoplantar keratoderma with 
tonotubules* 

K3 K12 Corneal epithelium Meesmann corneal epithelial dystrophy 

K4 K13 suprabasal cells of non-cornified 
squamous epithelia White sponge nevus 

Epidermolysis bullosa simplex types   
Weber-Cockayne, Koebner,  Dowling-
Meara 
Autosomal-recessive Epidermolysis   
bullosa simplex 

EBS with mottled pigmentation* 

K5* K14* basal cells of stratified epithelia 

Dowling-Degos disease* 

Pachyonychia congenita type I 
K6a K16* 

suprabasal orogenital mucosa; 
palmoplantar epidermis; epidermal 
appendages, epidermal expression 
induced by trauma/wound healing Focal non-epidermolytic PPK* 

Pachyonychia congenita type II 
K6b K17* like K6a/K16 

Steatocystoma multiplex* 

K2 (K2e)  Upper spinous and granular layer of 
cornified squamous epithelia Ichthyosis bullosa of Siemens 

K9  Suprabasal layers of palmoplantar 
epidermis Epidermolytic palmoplantar keratoderma 

K8 K18 Simple epithelia 
Various liver diseases, inflammatory 

 bowel disease 

K31 (Ha1) K81 
(Hb1)* Hair shaft Monilethrix* 

K33 (Ha3) K83 
(Hb3)*   

K36 (Ha6) K86 
(Hb6)*   

Table 1.1: Expression patterns of keratins and the associated human disorders. The former designation is given 
in brackets. *   indicates diseases for which mutations have been found in only one of a keratin pair 
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1.2 Protein-protein interactions  

Proteins control and mediate many of the biological activities of cells. Although some proteins 

act as single monomeric units (enzymes that catalyze changes in small-molecule substrates), a 

significant percentage, if not, the majority of all proteins function in association with partner 

molecules or as components of large molecular assemblies. Their intrinsic biochemical and/or 

catalytic activities are, to large extent, regulated/modulated by dynamic, spatially and temporally 

confined physical (direct) and functional (indirect) protein–protein interactions. Protein–protein 

interactions (PPIs) are an essential aspect in virtually all biological processes, including the 

formation of macromolecular structures, cell signaling (Choi et al., 1994), regulation (Kischkel et 

al., 1995), and metabolic pathways. In addition, PPIs have emerged as important drug targets 

with small molecules binding to ‘hotspots’ on the protein contact surfaces (Ryan and Matthews, 

2005; Wells and McClendon, 2007). Aberrant protein-protein interactions have the potential to 

cause or contribute to human disease. The modulation of these interactions by drug-like 

molecules would offer previously unavailable opportunities to explore the relevance and 

therapeutic significance of pre-selected protein-protein interactions.  

The availability of completed genome sequences of several eukaryotic and prokaryotic species 

has shifted the focus towards the identification and characterization of all gene products that are 

expressed in a given organism. In order to cope with the huge amounts of data that have been 

generated by large-scale sequencing projects, high-throughout methodologies (Auerbach et al., 

2002) has to be applied in the process of identifying the interacting partners and their functional 

significance. 

1.2.1 General classification of detection methods 

The study of protein-protein interactions can be conceptually divided into three major domains: 

identification, characterization and manipulation. At present different methods have been 

developed to study and analyse protein-protein interactions, they can be   broadly categorized as : 

I. Genetic approaches  

1.Two Hybrid Systems  

 a) Yeast two hybrid system (Y2H) 

b) Bacterial two-hybrid system (B2H) 

c) Mammalian two-hybrid system (M2H) 

d) Phage display system  

e) Protein fragment complementation assays (PCA)  
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2. Three-hybrid systems 

 a) Kinase three-hybrid system (tri-brid) 

 b) Protein three-hybrid system 

 c) Peptide ligand and small ligand three-hybrid system 

 d) RNA three-hybrid system 

II. Biochemical methods 

a) Pull down studies using tagged fusion proteins 

b) Coimmunoprecipitation 

c) Far western blot technique 

d) Protein microarrays 

e) Matrix assisted laser desorption/ionization-time of flight(MALDI-TOF) 

III. Physical methods  

a) Protein Affinity Chromatography 

b) Affinity Blotting 

c) Tandem Affinity Purification (TAP) 

IV. Biophysical methods 

a) Fluorescence resonance energy transfer (FRET) 

b) Bioluminescence resonance energy transfer (BRET) 

c) Bimolecular fluorescence complementation (BiFC) 

d) Atomic force microscopy (AFM) 

Living cells monitor parameters of interest in their environment for any given interaction 

between the proteins. Each of the above mentioned techniques have been widely used to identify 

& characterize the interaction partners. As each technique has unique advantages & limitations, 

appropriate method has to be selected to create nearest internal representations of physiological 

conditions to implement appropriate adaptive responses to changing conditions depending on the 

scope and goal of the study to be conducted. 

In this present study two of the systems has been successfully used and are briefly introduced in 

the next section.  

 

1.2.2 Yeast two-hybrid 

 

The yeast two-hybrid system is an in vivo assay that detects binary physical interactions. The 

interaction between a ‘bait’ fusion and a ‘prey’ fusion re-constitutes a functional secondary 

signal which is used as read-out of the assay (growth at restrictive temperature, formation of 
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functional transcription factor). Many improvised methods have been established since its first 

application in 1989 (Fields and Song, 1989). The system is economical, scalable and hence 

perfectly suited for automated high-throughput approaches (Drewes and Bouwmeester, 2003). 

 

Sos recruitment system (SRS) 

 

This system is based upon generating fusion proteins whose interaction in the yeast cytoplasm 

activates the Ras-signaling pathway, inducing cell growth. This system enables the study of 

protein interactions that cannot be assayed by conventional two-hybrid or interaction trap 

systems. These include proteins that are transcriptional activators or repressors, proteins that 

require post-translational modification in the cytoplasm, and proteins that are toxic to yeast in 

conventional two-hybrid systems. 

 

 
Figure 1.6:  Schematic representation of SRS 

 

In this system yeast S. cerevisiae temperature-sensitive mutant strain cdc25H, containing a point 

mutation in CDC25 gene which is the yeast homolog of human Sos(hSos) gene, coding for 

guanyl nucleotide exchange factor that binds and activates Ras (Aronheim et al., 1994), 

beginning the Ras signal transduction pathway. The CDC25 mutated gene is complemented with 

hSos fused with the bait protein and the target protein/expression library is expressed as a fusion 

protein with a myristylation sequence that anchors the hSos to the plasma membrane. These 

fusion proteins are coexpressed in the cdc25H yeast strain, and the yeast cells are incubated at 

the restrictive temperature of 37°C. Physical interaction between bait and target proteins recruit 

hSos protein to membrane, thereby activating the Ras-signaling pathway and allowing the 

cdc25H yeast strain to grow at restrictive temperature 37°C. 
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1.2.3 The Bimolecular Fluorescence Complementation assay 
 
Direct visualization of protein complexes in living cells enables investigation of interactions in 

their normal environment. Many proteins can be divided into fragments that can associate to 

produce a functional complex. Direct visualization of protein complexes in living cells enables 

investigation of interactions in their normal environment. Bimolecular fluorescence 

complementation (BiFC) analysis is based on the formation of a fluorescent complex by 

fragments of fluorescent proteins, whose association is facilitated by an interaction between 

proteins that are fused to the non- fluorescent fragments. BiFC analysis enables visualization of 

protein interactions in living cells and organisms with minimal perturbation of the normal 

cellular environment.  

 

 
Figure 1.7:  Principle and  dynamics of bimolecular fluorescence complementation 
 

The most exciting feature of this method is that the complex can be directly visualized in living 

cells without the need for staining with exogenous molecules that could affect detection of the 

interaction. This system does not require structural information about the interaction partners, 

nevertheless, steric constraints can prevent association of the fragments within a complex which 

can be overcome by using peptide linkers between the fragments and the interaction partners. 

In this system interaction occurs in competition with mutually exclusive interactions with 

alternative interaction partners. A stable intermediate complex is formed on association of two 

non-fluorescent protein fragments that undergoes slow maturation to produce irreversible mature 

fluorophore complex, but sometimes in the presence of cellular chaperones might get 

dissociated.  The spectral characteristics of the bimolecular fluorescent complex are comparable 

 - 18 -



  Introduction                

to that of the intact fluorescent protein. The fluorescence intensity produced by BiFC complexes 

in living cells is generally less than 10% of that produced by expression of an intact fluorescent 

protein, nevertheless, because autofluorescence is detected in the visible range similar to that of 

emitted by intact fluorescent proteins with the same excitation (514 nm) and emission maximum 

of 527nm. Fluorescent-protein fragments that have not associated with complementary fragments 

undergo irreversible misfolding in vitro thereby reducing any non-specific signals. 
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2. Aim 
 
‘Keratins’ – the largest subgroup of intermediate filament proteins, form a complex network of 

keratin filaments in the cytoplasm of epithelial cells provides stability and integrity thereby 

protecting the cells from mechanical and non-mechanical stress. The keratin family comprises 

more than 50 individual members (Hesse et al., 2001; Moll et al., 1982; Schweizer et al., 2006) 

which are expressed in a tissue type-restricted pattern and differentiation stage. This raises the 

question on functional importance of the multiplicity of keratin sequences according to their 

expression profile, and is supported by the recent findings revealing the key role of keratins in 

regulatory functions of the cellular machinery like organelle transport apart from its well 

established structural functions. Understanding the molecular mechanism by which keratins exert 

regulatory functions will help to know about the unidentified contributions of keratins and their 

extended role beyond scaffolding cytoarchitecture. 

To understand the novel functions of keratins, knowledge of keratin-associated proteins is a 

major pre-requisite. As a first step, this study was designed with the aim of identifying associated 

proteins of “K5 and K14”, followed by the characterization of identified keratin associated 

proteins. 
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3. Materials and Methods 
 
3.1 Materials 
 
3.1.1 Chemicals used 
 

Unless otherwise stated, chemicals were purchased from Serva (Heidelberg, Germany), Sigma 

(Deisenhofen, Germany), Roche (Basel, Switzerland), Fermentas (St.Leon-Rot, Germany), 

Merck (Darmstadt, Germany), Fluka (Deisenhofen, Germany), Invitrogen Life Technologies 

(Karlsruhe, Germany), or Applichem (Darmstadt, Germany). 

All media base and salts for yeast culture were purchased from Becton, Dickinson and company, 

Sparks. MD21152 

All cell culture solutions, buffers, DNase I, antibiotics & normal goat serum were from Sigma 

(Deisenhofen, Germany), Invitrogen/Life technologies (Karlsruhe, Germany) & GibcoBRL 

(Karlsruhe). 

In vitro High Prime DNA labeling kit was from purchased from Roche (Basel, Switzerland). 

[α-32P]-dCTP was obtained from Amersham Biosciences (Buckinghamshire, UK). 

Restriction enzymes, protein and DNA markers dNTPs and NTP’s were from Fermentas 

(St.Leon-Rot,Germany). 

PCR reaction mix (Buffers, Taq polymerase enzyme, MgCl2), RT-PCR kit were purchased from 

Invitrogen/Life technologies (Karlsruhe, Germany). 

 

3.1.2 Ready-to-use solutions / reagents 
 
Acetic Acid 

Acrylamide solution (37.5:1) Acrylamide/Bisacrylamide for protein-SDS-gel 

Chloroform 

DAB substrate (Biogenex, DC138R006) 

Dimethylsulfoxide (DMSO) 

PBS- (Dulbecco’s Phosphate buffered saline) for cell culture 

Ethanol 

Ethidiumbromide, 10mg/ml 

Formaldehyde, 37 % 

Isopropanol 

Methanol 

ProLong® Gold antifade reagent (Molecular Probes, P36930) 

Roti-Phenol TE equilibrated for purification of nucleic acids 

 - 21 -



  Materials and Methods 

TEMED for protein-SDS gel 

TRIzol for isolation of RNA 

Taq-Polymerase (Invitrogen, 10342-020) 

Tween-20 

Triton-X100 

 
 
3.1.3 Kits 

 

High Prime DNA labeling system (Roche, 11585584001) 

QIAEX II Gel Extraction Kit (Qiagen, 20021) 

Nucleospin Plasmid for plasmid DNA miniprep (Macherey-Nagel, 740 588.250) 

Nucleobond AX for plasmid DNA midiprep (Macherey-Nagel, 740 410.100) 

Superscript II Reverse Transcriptase (Invitrogen, 18064-014) 

Protino Ni-IDA for recombinant protein purification (Macherey-Nagel, 745 210.5) 

 

3.1.4 Solutions for DNA analysis    
  

Name Final 
 Concentration Constituents and their amounts 

Sodium acetate 3 M 
 

40.82 g Sodium acetate in 100ml water. pH was adjusted 
5.2 with acetic acid and stored at room temperature. 

DNA loading Buffer
 

30% 

100 mM 

0.25% 

0.25% 

0.25% 

2% 

Ficoll Type 400 

3.72 g EDTA 

125 mg Bromphenolblue 

125 mg Xylenecyanol 

Orange G 

20% SDS 

Lysis buffer 

100 mM 

5 mM 
0.2% 

200 mM 

10 ml of 1 M  
Tris-HCl 

1 ml of 0.5 M EDTA 

1 ml SDS-solution, 20 % 

4 ml 5 M NaCl 

The above ingredients were added to 84ml of 
DNase/RNase free water and stored as 10ml aliquots at   
-20oC 

10 x TBE 
 

0.89 M 

0.89 M 

8 mM 

 

54 g Tris-base 

27.5 g Boric acid 

20 ml from 0.5 M pH 8 EDTA 

The solution was autoclaved and stored at room 
temperature. 
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20x SSC transfer 
buffer 

 

1.5 M 

0.5 M 

 

175.3 g NaCl 

88.2 g Sodium citrate 

pH was adjusted to 7.0 with a few drops of 10N NaOH 
solution. The volume was adjusted to 1L and sterilized 
by autoclaving. 

DNA denaturation 
solution 

 
0.4 M 

 
16 g NaOH in 1 L of water. Stored at room temperature.

Hybridization 
buffer 

 

50% 

5x 

5x 

1% 

0.1 mg/ml 

10% 

 

250 ml Formamid ultrapure. 

125 ml 20x SSC 

5ml 100x Denhardt’s solution  

25 ml 20% SDS 

5ml DNA, MB-grade; from fish sperm 10 mg/ml 

50 g Dextransulfate 

The contents were mixed and the volume was adjusted to 
500 ml with sterile water, aliquoted and stored at -20oC 

Proteinase K 
solution 

 

 
20 mg/ml 

 

 
1 g Proteinase K (Applichem, A38300025) was added to 
50 ml DNAase/RNAse free water, aliquoted and stored  
at -80°C. 
 

RNase 
Solution 

 
20 mg/ml 

 
500 mg RNase was dissolved in 25 ml DD water and 
heated for 15 min at 95oC. Aliquoted and stored at -80oC.

TBE (10 x) 
 

 
900 mM 

900 mM 

25 mM 

 
109 g Tris-base 

55.6 g Boric acid 

0.93 g EDTA 

Dissolved in 1L water and pH adjusted to 8.3 

TE buffer 
 

 
10 mM 

1 mM 

 

 
121 mg Tris 

37.2 mg EDTA 

Dissolved in 100 ml DD water, pH adjusted to 8.0 and 
sterilized by autoclaving. Stored at RT 

DNAse solution 
 

 
1 mg/ml 

50% 

50% 

 

 
3 mg DNAse I 

0.5 ml 0.3 M NaCl 

0.5 ml glycerol 

Stored at -20oC. 

β-Mercaptoethanol 
 

 
0.1 M 

 

 
69 μl of 14.4 M β-mercaptoethanol in 10 ml of DD water.
Stored at 4oC. 
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Pepsin stock 
solution 

 
 

10% 

 
1 g of pepsin dissolved in 10 ml of DD water. Stored 
 at –20oC. 
Pepsin working dilution: 50 μl pepsin stock solution was 
added to 70ml of DD water containing 700 μl of  
1 M HCl. 

10x PBS 
 

137 mM 

2.7 mM 

10 mM 

2 mM 

 

40 g NaCl 

1 g KCl 

89 g Na2HPO4.2H2O 

12 g KH2PO4 

Salts were dissolved in 4.5 L water, pH was adjusted to 
7.4 with HCl,and volume was adjusted to 5 L with water 
and autoclaved. Stored at RT. 

 
Magnesium 

chloride 
 

 
1 M 

 

 
101.65 g MgCl2 in 500 ml water. 
 

PBS Magnesium 
Chloride 

 

 
0.25 M 

 

 
5 ml 1 M Magnesium chloride 

95 ml 1x PBS 

Prepared fresh 

Table No 3.1.1: Solutions for DNA analysis  
 
 
3.1.5 Solutions for bacterial cultures 
 

Name 
 

Final 
Concentration

Constituents and their amounts 

Ampicillin 
solution 

 
5% 

 
50 g ampicillin in 50 ml of water. Sterile filtered. End 
concentration used was 100 mg/ml. 

LB Agar 
 

2% 
 

 
1 L LB Medium 

32 g LB Agar in 1 L water 

Sterilized by autoclaving. Antibiotics were added at 
55°C and plates were poured. 
 

LB Medium 
  

25 g LB medium was dissolved in 1 L water and 
sterilized by autoclaving. 
 

Table No 3.1.2: Solutions for bacterial cultures  
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3.1.6 Media and reagents for yeast two hybrid screening 
 

Name Final 
Concentration

Constituents and their amounts 

Synthetic Glucose 
Minimal Medium 
[SD/Glucose (–UL) 
 

 
1.7grams 

5 grams 

20 grams 
17grams 

 

Yeast nitrogen base without aminoacids 

Ammonium sulfate 

Dextrose 

Bacto agar for SD dropout agar plates 
Adjust the total volume to 900 ml with dH2O 
Autoclave for 15 minutes at 121°C, cool to 55°C. Add  
100 ml of the appropriate 
filter-sterilized 10× dropout solution 
 

Synthetic Galactose 
Minimal Medium 
[SD/Galactose (–UL)] 
(per Liter) 
 

 
1.7grams 

5 grams 

20grams 

10grams 

17 grams 

 
Yeast nitrogen base without aminoacid 

Ammonium sulphate 

Galactose 

Raffinose 

Bacto agar for SD dropout agar plates 

Adjust the total volume to 900 ml with dH2O. Autoclave 
for 15 minutes at 121°C, cool to 55°C. Add 100 ml of 
the appropriate filter-sterilized 10× dropout solution 

Cell Lysis Buffer for 
Protein 
Isolation 
 

 
140 mM 

2.7 mM 

10 mM 

1.8 mM 

1 % 

 

1 mM 

10 μg/ml 

1 μM 

100 μM 

1 μg/ml 

 
NaCl 

KCl 

Na2HPO4 

KH2PO4 

Triton® X-100 containing freshly added 

Protease inhibitors: 

PMSF 

aprotinin 

pepstatin A 

leupeptin 

chymostatin 

 
LB– Chloramphenicol 
Agar 
(per Liter) 
 

 
3 ml of 10-mg/ml

Prepare 1 liter of LB agar Autoclave. Cool to 55°C 
Add -filter-sterilized chloramphenicol 
Pour into petri dishes (~25 ml/100-mm plate) 
 

 
1.4 M β-ME (yeast 
competent cells) 
 

  
Dilute stock -mercaptoethanol 1:10 with 
sterile dH2O just prior to use 
 

NaOH/β-ME Buffer 
 

 
1.85 M 

 
NaOH 
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7.5% β-Mercaptoethanol 

Salmon Sperm DNA 
 
20 mg/ml 
 

 
Boil 400 μl of  sheared salmon sperm DNA for 10 
 minutes 

LiSORB (per Liter) 
 

100 mM 

10 mM 

1 mM 

1 M 

 

LiOAc 

Tris-HCl (pH 8.0) 

EDTA 

sorbitol 

Add dH2O to a volume of 1 liter Verify that the  
pH is 8.0 Autoclave. Store at room temperature 
 

PEG/LiOAc Solution 
 

 
10 mM 

1 mM 

100 mM 

40% (w/v) 

 

 
Tris-HCl (pH 8.0) 

EDTA (pH 8.0) 

LiOAc (pH 7.5) 

PEG 3350. Autoclave 

YPAD Agar (30–40 
Plates/Liter) 
 

 
1% 

2% 

2% 

2% 

40 mg 

 

 
yeast extract 

Bacto peptone 

dextrose 

Bacto agar 

adenine sulfate 

Autoclave at 121°C for 20 minutes Pour into petri dishes 
(~25 ml/100-mm plate) Dry plates at room temperature  
for 2–3 days Store plates in a sealed bag 

SU Buffer 
 

5% 

8 M 

125 mM 

0.1 mM 

0.005% (w/v) 

 

(w/v) SDS 

Urea 

Tris-HCl (pH 6.8) 

EDTA 

bromophenol blue 

Store at –20°C Add 15 mg of DTT/ml of SU  
buffer prior to use. 
 

YPAD Broth 
 

1% 

2% 

2% 

40 mg 

 

yeast extract 

Bacto peptone 

dextrose 

adenine sulfate 

Add deionized H2O to a final volume of 1 liter 
Autoclave at 121°C for 20 minutes 
 

Yeast Lysis Solution for 
DNA 
Isolation 

2.5 M 

50 mM 

LiCl 

Tris-HCl (pH 8.0) 
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 4% 

62.5 mM 

Triton X-100 

EDTA 

 
Table No 3.1.3: Solutions for yeast cultures 
 
 
3.1.7 Solutions for protein biochemistry 
 

Name 
 

Final 
Concentration 

Constituents and their amounts 
 

5x Laemmli 
sample 
buffer 

 
50 mM 

5% 

40 mM 

5 mM 

5 mM 

20% 

0.01% 

 
Sodium phosphate pH 6.8 

SDS 

DTT 

EDTA 

EGTA 

Glycerol 

Bromophenol blue 

Solution was stored at -20oC and freeze/thawed not more 
than 5 times. 

APS  
10% 

 
1g Ammonium persulphate in 10ml water. 
Stored at 4oC for not longer than 1 month. 

Stacking gel 
buffer (Upper 
Tris) 

0.5 M 

0.4% 

15.1 g Tris-base 

1 g SDS 

Volume made up to 250 ml after adjusting pH to 6.8,  
sterile filtered and stored at 4oC. 

Separating 
gel buffer 
(Lower Tris) 
 

1.5 M 

0.4% 

 

181.7 g Tris 

4 g SDS 

Volume made up to 1 L after adjusting to pH 8.8, sterile 
filtered and stored at 4oC. 

SDS-running 
buffer (1x 
Laemmli 
buffer) 
 

23 mM 

190 mM 

0.1% 

 

2.78 g Tris Base 

14.26 g Glycine. 

5 ml 20% SDS stock 

The contents were mixed in 1 L water and pH was  
adjusted to 8.8. Stored at room temperature 

Coomassie 
Staining solution
 

0.4% 

5 % 

40% 

 

1.0 g Coomassie Brilliant Blue G-250. 

25 ml Acetic Acid 

200 ml Methanol 

Volume was adjusted to 500 ml with distilled water,  
filtered through a Whatmann filter paper and stored at 
room temperature. Solution was used more than once. 
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Coomassie 
destaining 
solution 
 

10% 

30% 

50 ml Acetic Acid 

150 ml Methanol 

Solution made up to 500 ml with water. 
 

Ponceau  
staining 
solution 
 

0.5% 

1% 

 

0.5 g Ponceau S 

1 ml Acetic acid 

Contents were dissolved in 100 ml distilled water and 
filtered; Solution was stored in dark at room temperature. 
 

Transfer 
buffer (1x 
Towbin 
buffer) 
 

25 mM 

192 mM 

0.1% 

10% 

 

3.028 g Tris. 

14.41 g Glycine 

1 g SDS 

100 ml Methanol 

The contents were dissolved in 1 L water, and pH was 
adjusted to 8.3. Solution was stored at room temperature 

10x Tris 
buffered 
saline (TBS) 
 

0.1 M 

1.5 M 

 

12.1 g Tris 

87.6 g NaCl 

Contents were dissolved in 750 ml water, pH was adjusted 
to 7.5 and the volume was made up to 1 L. Solution was 
sterilized by autoclaving and stored at room temperature. 

Western 
washing 
buffer 
 

1x 

0.1% 

 

100 ml 10x TBS. 

1 ml Tween 20 

Volume was made up to 1 L with water 

Blocking 
solution 
 

5% 

1x 

0.5% 

 

5 g Skimmed milk (Sucofin). 

100 ml 10x TBS 

1 ml Tween 20 

Always prepared fresh 

Alternative 
blocking 
solution 
 

 
5% 

1x 

0.5% 

 

5 g BSA fraction V. 

100 ml 10x TBS 

1 ml Tween 20 

Always prepared fresh 

Protease 
inhibitor 
 

1x 
 

Complete Protease Inhibitor Cocktail Tablets. 7 x stock 
solution was prepared by dissolving one tablet in 1.5 ml 
water, aliquoted and stored up to 6 months at -20°C. 

Phosphatase 
inhibitor 
 

1x 
 

Phosphatase Inhibitor Cocktail Tablets. 10 x stock solution
was prepared by dissolving one tablet in 1 ml water, 
aliquoted and stored up to 6 months at -20°C. 

Table No 3.1.4: Solutions for protein biochemistry 
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3.1.8 Bacterial strain 
 

Description 
 

Characteristics and Application 
 

E. coli XL1- 

blue MRF 

 

 

RosettaBlue(DE3)pLysS  

Genotype: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 

lac [F´ proAB lacIqZΔM15 Tn10 (Tetr)] ; Amplification of plasmid 

endA1 hsdR17 (rK12- mK12+) supE44 thi-1 recA1  

gyrA96 relA1 lacF' [proA+B+ lacIqZΔM15::Tn10(tetR)] 

(DE3)pLysSRARE (CmR) 

Table No 3.1.5: Bacterial strain genotype 
 

3.1.9 Yeast strain 
 

Host strain Genotype 
cdc25H Yeast Strain 

(α) 

MATα ura3-52 his3-200 ade2-101 lys2-801 trp1-901leu2-3 112 

cdc25-2 Gal+ 

Table No 3.1.6: Yeast strain genotype 
 
 

3.1.10 Primers 
 

Name Sequence Product 

BN1019 
pSos-K5HD 
–-Fwd 

5` ATATGGATCCATGGAGCGCGAGCAGATCAAGACC 3` 

BN1020 
pSos -K5HD 
–Rev 

5` ATATGTCGACCTACTCGCCCTCCAGCAGCTTGCG 3` 

Keratin5 head 
domain 

BN1021 
pSos-K14HD 
–Fwd 

5` ATATGGATCCATGGAATGCAGACTCAGTGGAGAA 3` 

BN1022 
pSos-K14HD 
–Rev 

5` ATATGTCGACCTAGAACACATTCTGGAGGTAGTT 3` 

Keratin14 head 
domain 

BN1186 
pSos-K5RD-
Fwd 

5’ ATATGGATCCATGGAGCGCGAGCAGATCAAGACC 3’ 

BN1187 
pSos-K5RD-
Rev 

5’ TATGCGGCCGCTCACTCGCCCTCCAGCAGCTT 3’ 

Keratin5 rod domain 

BN1188 
pSos-K5TD-
Fwd 

5’ TATGGATCCAGATGGAATGCAGACTCAGTGGA 3’ 
 

BN1189 
pSos-K5TD-
Rev 

5’ ATATATGCGGCCGCTTAGCTCTTGAAGCTCTT 3’  
 

Keratin5 tail domain 

BN1190 
pSos- 5’ ATATGGATCCAAGGTGACCATGCAGAACCT 3’  

 

Keratin14 rod 
domain 

 - 29 -



  Materials and Methods 

K14RD-fwd 
BN1191 
pSos-
K14RD- Rev 

5’ ATATATGCGGCCGCTCAGAGGTGGGCGTCCTCGCC 3’ 

BN1192 
pSos-
K14TD- Fwd 

5’ ATAAGGATCCCACCTCATGTCCTCCTCCCAGTCC 3’  
 

BN1193 
pSos-
K14TD- Rev 

5’ ATATATGCGGCCGCGCCTCAGTTCTTGGTGCGAAG 3’ 

Keratin14 tail 
domain 

BN1090 
Rab34HA-
tag-C e/s 
Fwd 

5’GCGGCGAGTCGACCCGCAGGCAGGATGAACATTCTG  3’
  
 

BN1091 Rab 
34 HA-tag-C 
e/s FP WIK 
Kpn I 

 
5’ ATAATCCGGTACCCAGGCAGGATGAACATTCTG 3’  

 

Rab34 

BN1115 
AP2ß HA-
tag-C e/s RP 

5’ ATTATATGGTACCGTCATTTCCTGTGTTTCTCCTC 3’  
 AP2β 

hZwi-V1/2-
FL/HA 5' ATATGTCGACAGCTTTGTGGTGGTGCCATG 3' 

hZwi-V1/2-
FL/HA rev 5' ATA TCG GTA CCC TCA AAC TGT AGA CTG GTC 3' 

p86DM 

pV1-N Zwi 
fwd  5' ATATAAAGCTTTGTGGTGGTGCCATGCAGCAAGAA 3' 

pV1-N Zwi 
rev  5' ATATCGGTACCACTGTAGACTGGTCTCT 3' 

p86DM 

Table No 3.1.7: List of primers used to prepare constructs 
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3.1.11 Plasmids 
 
 

 Expression vector Description 

1 pSos 

contains DNA encoding amino acids (aa) 1 to 1067 of the 

hSos gene and unique 3´ cloning sites. It is used for 

constructing a bait plasmid containing a DNA insert 

encoding a bait protein 

2 pMyr 

contains DNA encoding the myristylation membrane 

localization signal (Myr) and unique 3´ cloning sites and is 

used for constructing plasmids or cDNA libraries that 

contain DNA inserts encoding target proteins 

3 pSos MAFB 
expresses the Sos protein and full-length MAFB as a 

hybrid protein 

4 pSos Cadherin expresses fused Sos protein and full-length cadherin 

5 pSos Col I 
expresses fused Sos protein and amino acids 148–357 

of murine 72-kDa type IV collagenase 

6 pMyr armadillo 
expresses the myristylation signal fused to full length 

armadillo protein 

7 pMyr MAFB 
expresses a hybrid protein that contains the 

myristylation signal fused to full-length MAFB 

8 pMyr SB 
expresses the myristylation signal fused to a Sos-

binding protein 

9 pMyr lamin C 
expresses the myristylation signal fused to amino acids 

67–230 of human lamin C 

10 pVen1-Flag-C E/S 
contains amino terminal half of Venus YFP tagged with 

FLAG tag 

11 pVen2-HA- C E/S 
contains carboxy terminal half of Venus YFP tagged 

with HA tag 

12 pVen1-N E/S contains amino terminal half of Venus YFP 

13 pVen2-N E/S contains carboxy terminal half of Venus YFP 

14 pET-SUMO used for expression of recombinant p86DM 

Table No 3.1.8: List of plasmids 
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3.1.12 Antibodies 
 
Name Antigen/ 

Anti-species 

Source Subclass Dilution/ 

Application 

Source 

Anti-

GFP 

GFP Mouse Monoclonal 

IgG2a 

1/500, 

Immunofluoresence 

 

Abcam 

Zwi-3 p86DM Guinea pig  1/2000, 

 Immuno blotting 

 

In-house 

Alexa 

594 

Mouse Goat IgG H+L  1/400, 

Immunofluoresence 

Molecular 

probes 

Alexa 

488 

Mouse Goat IgG H+L 1/400, 

Immunofluoresence 

Molecular 

probes 

HRP Mouse Goat  1/30,000,  

Immuno blotting 

Molecular 

probes 

HRP Guinea pig Goat  1/30,000,  

Immuno blotting 

Molecular 

probes 

Table No 3.1.9: List of antibodies 
 
 

3.1.13 General Lab Materials 

 

All sterile cell culture plastic-ware were purchased from Falcon, Sarstedt, Nunc and Becton 

Dickinson 

Pipette Tips and tubes were purchased from Sarstedt 

Fuji Medical X-Ray film (Fuji) 

High density photopaper (Mitsubishi) 

Hybond-N- blotting membrane 30cm x 3m (Amersham, RPN303B) 

Microscope slides 76 x 26 mm (Engelbrecht) 

Protran Nitrocellulose Hybridization Transfer Membrane, 0.2 μm, 30 cm x 3 m Roll 

(Schleicher &Schuell) 

Sterile filters 0.45 μm, 0.2 μm, 0.1 μm (Schleicher & Schuell) 

SuperFrost® Plus microscope slides (Menzel #041300) 

Universal agarose 

Whatman 3mm-Paper GB 002 (Schleicher & Schuell #426693) 

Whatmann filter paper (Schleicher & Schuell) 
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3.1.14 Equipment and materials used 

Instrument / Software Model / Version Company 

Agarose gel electrophoresis 

system  

B2; B1A Angewandte Genetechnologie 

Blotting Chamber  Fast blot B49 Biometra 

Centrifuges  5417R, 5810R, 5417C Eppendorf 

CO2 incubator  CB150; CB210 Binder 

Film Developer  Curix 60 Agfa 

Fluoresence Microscope  AxioPhot II Zeiss 

Incubators for bacterial / yeast 

cultures  

Function line Heraeus Instruments 

Inverted tissue culture 

microscope 

Telaval 31 Zeiss 

Laminar flow system-type  Herasafe Heraeus Instruments 

PCR-Thermocycler  TGradient Biometra 

pH-Meter  761 Calimatic Knick 

Scintillation counter  Beckmann LS-6500 Beckmann 

UV-spectrophotometer  Genesys 10UV Thermoelectron corporation 

Water purifier  Milli-Q Plus Nanopure Barnstead 

Electroporator  Gene Pulser II Biorad 

Table No 3.1.10: List of equipments 
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3.2 Methods 

3.2.1 Molecular biological methods 

 

3.2.1.1 Polymerase Chain Reaction 

Unless specified differently, PCR reactions were performed in a total volume of 25μl. To avoid 

nonspecific annealing of the primers and undesired PCR amplification, all the constituents 

(Table No. 3.2.1) were pipetted on ice and transferred to a cycler (iCycler, BioRad) immediately. 

The PCR was performed along with corresponding positive and negative controls. For multiple 

PCR reactions, a master mix was made and respective templates were added in appropriate 

aliquots of master mix. 

 

PCR condition optimization Taq polymerase enzyme 

 

PCR conditions (20 μl PCR   PCR programme : 

 master mix)     
Step Temperature Time Cycles

5 min 1  Denaturation
 95.0°C 

30sec 

Annealing 
59.2°C, 60.4°C
61.6°C 62.8°C
64.0°C 65.1°C

30 sec 

Extension 72.0°C 60 sec per kb 

35 

Final extension 72.0°C 10 min 1 

Storage 4.0°C 

1.0 ng Template DNA (linearised 

plasmid) 

2.5 μl 10x PCR buffer 

0.75 μl MgCl2 (50mM) 

1.0 μl dNTP’s (5mM) 

1.0 μl fwd sense primer 

1.0 μl rev anti-sense primer 
∞ 0.2 μl (IU) Taq polymerase 

13.55 μl water    
       Table 3.2.1: PCR program for optimization of conditions using  

       Taq polymerase enzyme  

 1 
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PCR amplification using proof reading Taq polymerase enzyme 

 

PCR conditions (20 μl PCR   PCR programme : 

 master mix) 

10.0 ng (1.0 μl) Template DNA 

(linearised plasmid) 

Step Temperature Time Cycles 
5 min 1 Denaturation

 95.0°C 
30sec 

Annealing 
X°C from 

optimization 
reaction 

30 sec 
 

Extension 72.0°C 60 sec per kb

20 

Final extension 72.0°C 10 min 1 

Storage 4.0°C ∞ 
 1 

 5.0 μl 5x high fidelity PCR buffer 

with MgCl2 (50mM) 

1.0 μl dNTP’s (5mM) 

1.0 μl fwd sense primer 

1.0 μl rev anti-sense primer 

0.25 μl (IU) Taq polymerase 

10.75 μl water   Table 3.2.2: PCR program for optimization of conditions using      

proof reading Taq polymerase enzyme  

 

3.2.1.2 Ligation of PCR products 

PCR products were ligated with the TOPO® cloning kit (Invitrogen). To avoid auto degradation 

of adenosine overhangs upon longer storage intervals, freshly prepared PCR products were used. 

If blunt end producing (3´-5´ exonuclease activity, proof reading activity) polymerase was used, 

the ligation was carried out using the Zero Blunt® TOPO® PCR cloning kit (Invitrogen). The 

ligation was done according to the manufacturer's directions. 

 

3.2.1.3 Transformation and culture of E. coli 

The ligation product (2 μl) was mixed with 20 μl of competent E. coli (XL1 blue) and incubated 

on ice for 30 min. The cells were heat shocked at 42°C for 90s and were quickly placed on ice 

for 2 min. 500 μl LB medium was added and cells were incubated in a bacterial shaker at 37°C 

for 1 h. The cells were spread on LB-plates with respective antibiotic.  

After 14-20 h of incubation at 37°C, colonies were chosen and kept for overnight cultures in 5 

ml LB-growth medium with the respective antibiotic. 

 

3.2.1.4 Preparation of plasmid DNA 

3.2.1.4.1 Plasmid DNA isolation (mini preparation) 

For analytical purposes, 5 ml of overnight bacterial culture was used. The plasmids were isolated 

using silica columns according to manufacturer's instructions (NucleoBond PC20, Machery-
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Nagel). 

 

3.2.1.4.2 Preparative Plasmid DNA isolation (midi/maxi preparations) 

For preparative purposes, 50 ml - 100 ml of overnight bacterial culture was used. The plasmids 

were isolated with silica columns according to manufacturer's instructions (NucleoBond PC100, 

Machery-Nagel). 

 

3.2.1.5 DNA restriction digestion 

Digestions of DNA with restriction endonucleases were performed according to the instructions 

given by the manufacturer (Fermentas Life sciences). 

 

3.2.1.6 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to resolve DNA constructs. Agarose gels were casted in 

TAE Buffer. 0.5 μg/ml ethidium bromide was added while casting gel. DNA samples were 

diluted in 10x loading dye before loading on agarose gels. One kb and 100 bp molecular weight 

ladders (Invitrogen) were used to analyze the molecular size of the DNA. Gels were run at 80-

120 V in TAE buffer.  

 

3.2.1.7 Isolation of DNA fragments from agarose gel 

Under UV-light desired bands were cut out from the gel using a sterile scalpel. DNA was 

extracted from the agarose using the Qiagen gel extraction kit. 

 

3.2.1.8 DNA precipitation in ethanol / isopropanol 

Ethanol and isopropanol precipitation was used for the purification of DNA and RNA. Ionic 

concentration of the aqueous DNA and/or RNA solution was increased by addition of 1/10 

volume 3 M sodium acetate solution (pH 5.2). About 2.5 times volumes of ethanol/isopropanol 

were added. The DNA and/or RNA was incubated at -20°C for 30-60 min. Afterwards the 

sample was centrifuged at 14,000 rpm, the pellet was washed with 70% ethanol and dried for 10 

min at 60°C. Then the DNA and/or RNA pellet was dissolved in the desired quantity of Sigma 

water or TE buffer pH 8.0 
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3.2.1.9 Concentration determination of nucleic acids 

To determine the concentration of DNA or RNA in a solution the optical density (OD) was 

measured. Nucleic acids have an absorption maximum at 260 nm and proteins absorb UV light 

maximally at a wavelength of 280 nm. An OD unit corresponds to the amount of nucleic acid in 

µg in a 1 ml volume using a 1 cm path length quartz cuvette that results in an OD260 reading of 

1. 

    For DNA OD260 1 = 50 mg / ml, 

    For RNA OD260 1 = 40 mg / ml, 

    For single stranded oligonucleotides OD260 1 ~ 33 mg / ml 

The ratio of readings taken at 260 nm and 280 nm wavelengths indicates of the purity of the 

nucleic acid. 

     For pure DNA OD260/OD280 = 1.8 

    For pure RNA OD260/OD280 = 2.0 

 

3.2.1.10 Sequencing of DNA 

The sequencing of plasmids was performed by the Macrogen Incorporations in Seoul (South 

Korea). 

 
3.2.1.11 Southern blotting 

Rod domains of Keratin 5 and 14 were amplified by PCR and obtained 929bps and 932bps 

amplified product respectively. The PCR products were loaded on a 0.7% agarose gel in 1x 

TBE- buffer with 0.5 μg/ml ethidiumbromide.  The samples were run for about 400- 700 Vh 

with a maximum of 80 V. Photograph of the gel was taken by exposing to limited UV. Gel 

was incubated 30- 40 min in 0.4 M NaOH and Hybond N+ and 3 sheets of filter paper were 

kept. Buffer reservoir with 300- 400 ml 20x SSC - 2x filter papers - Gel – membrane - 2x 

filter paper - pile of paper cloths - glass plate- about 200 g- weights were used. Transfer was 

carried out and then the membrane was removed carefully and the gel run was marked with a 

pencil. Membrane was washed for 15 seconds in 2 x SSC and dried totally on filter paper.  

DNA present on the membrane was baked at 80°C for 2 h or can be UV cross linked for ~30 

sec (0.16kJ/m2). The membrane was washed with 5X SSPE and then incubated in 25 ml 

hybridization buffer for 30 min (or longer – maximum overnight) at 42°C.  In the meantime 

probe was prepared. Labeling of the probe was done using dCTP. 25ng of DNA is mixed with 

10 μl of buffer and made up to 40μl with water. The sample is kept in boiling water bath for 

10 mins and snap cooled in ice. To the snapped chilled sample 3 µl MixC (dNTP without 
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dCTP), 5µl radioactive labelled dCTP, 1µl Klenow enzyme was added and incubated at 37°C 

for 5mins.To the above sample 4μl of dNTP was added and incubated at 37°C for 10 mins 

and the reaction was stopped by the addition of 1μl EDTA (0.5M). The sample is made to 

200μl with TE and then to that 400μl of 70% Ethanol, 40 µl NaAcetate, 1µl glycogen. Spun 

for 15 min 14.000 rpm in room temperature and the supernatant was collected for scintillation 

counter. The pellet was washed twice with 70% ethanol and dissolved in 50μl Sigma water. 

1μl was taken into counter.  

Calculation:  

counts supernatant + counts probe = counts total (~ 50-60 Mio in 5µl fresh dCTP). 

Incorporation rate = counts probe / counts total.  

Salmon sperm DNA (100 µg/ml hybridization solution) was added to the hybridization tubes 

containing the labeled probe and incubate 5 min at 95°C before adding probes. Spun briefly 

for a few seconds and the probe were added to the hybridization tubes (do not add directly on 

membrane) followed by incubation at 42°C for at least 16 h. After the hybridization, 

membrane was washed for Wash 20- 30 min at 68°C in the shaking water bath with 300 ml of 

pre-warmed washing solution. Exposed along with StrataLogos. 

 

3.2.1.12 Isolation of RNA 

For the isolation and the analysis of RNA some precautionary measures were followed. For all 

buffers and solutions sterile milli Q water was used. All used glassware was baked for at least 4 

h at 180°C before use. Metallic parts such as spatulas, pincets or the homogenizer were washed 

thoroughly with RNase off and followed by sterile milli Q water. The RNA was isolated with 

TRIzol reagent (Invitrogen). 1 mL TRIzol reagent was used per 10 cm2 cultured dish. The 

suspension was homogenized in TRIzol reagent with a homogenizator (T8 ultra turrax, IKA) and 

passed through a 21 G needle at least 10 times. Homogenized samples were left at room 

temperature for 5 min in 2 ml eppendorf tubes to allow complete dissociation of nucleoprotein 

complexes. The homogenate was centrifuged at 5,000 rpm at 4°C for 5 min. The supernatant was 

then mixed with 1/10 volume 1-Bromo-3-chloro-propane by vortexing. The mixture was 

incubated for 3 min and centrifuged at 4°C at 14,000 rpm. The aqueous phase was carefully 

transferred into a fresh tube and mixed with an equal volume isopropanol and incubated for 10 

min. Afterwards the sample was centrifuged at 4°C at 14,000 rpm. The resulting RNA pellet was 

washed with 75% ethanol. The pellet was dried in air for 10-15 min and dissolved in milli Q 

water by incubating 15 min at 55°C. The RNA concentration was estimated by reading O.D. 

using the Genesys 10uv. 
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3.2.1.13 Amplification of p86DM by RT-PCR from isolated RNA  

For the reverse transcription reaction, 1 μg total RNA isolated from Caco-2 cells was 

incubated with 20 pmol of oligonucleotide primers at 70°C for 10 min. After a short cooling 

on ice, 1x first strand buffer, 10mM dithiothreitol, 1 mM dNTP’s, 20 U of RNAsin (1U) were 

added to a total volume of 19 μl with RNase free water, mixed and incubated at 42oC for 2 

min. 200 U of Superscript II reverse transcriptase was added to the reaction mix, mixed by 

pipetting up and down and incubated at 42°C for 50 min. The reaction was stopped by 

incubating the reaction at 72oC for 15 min. The reaction mix was taken directly for the PCR 

reaction. PCR was performed in a 25 μl reaction mixture containing 1 μl of template cDNA, 

as detailed in section 3.2.1.1. 

 

3.2.2 Cell culture methods 

Common cell culture methods 

All cell lines were cultivated at 37°C in an incubator with 5% CO2 and humid atmosphere. 

Adherent growing cells were grown in tissue culture dishes on 6 or 10 cm diameter dishes.  

 

3.2.2.1 Passage of mammalian cells 

Almost confluent (80-90%) grown cells were passaged into a new culture dish. First the medium 

was removed and cells were washed with 10 ml PBS. Approximately 2 ml of a trypsin/EDTA 

solution (Invitrogen) were added and the plate was incubated at 37°C for 3-5 min to dislodge the 

cells. Trypsinization was inhibited by addition of 5 ml growth medium. Cells were mixed well 

by pipetting up and down with a 10 ml glass pipette and transferred into a Falcon tube. The cells 

were pelleted by centrifugation (1,200 rpm, 2 min), resuspended in growth medium and seeded 

at suitable density. 

 

3.2.2.2 Freezing and storage of cells 

A 15 cm confluent culture dish was passaged as above. Cells were resuspended in 5 ml freezing 

medium with 10% DMSO and transferred with a sterile 1 ml pipette in cryotubes. The cells were 

stored overnight at –20°C prior to -80°C long term storage.  

 

3.2.2.3 Thawing of cells 

Cells were thawed in a 37°C water bath as quickly as possible. In order to minimize the toxic 

effect of the DMSO, 5 ml fresh growth medium were added and cells were pelleted by 

centrifugation at 1,200 rpm for 2 min. The cell pellet was resuspended in the appropriate cell 
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culture medium and seeded depending upon desired cell density in tissue culture dishes and 

cultivated under standard conditions. 

 

3.2.2.4 Cell counting 

The cell number was determined using a Neubauer modified cell chamber. The cell number per 

ml was calculated by determining the average number of cells in the 4 large squares and 

multiplying by 104. 

 

3.2.2.5 Transient transfection of eukaryotic cells 

Cells were grown to 60-80% confluence before transient transfection. Transfection was 

performed using Lipofectamine reagent (Invitogen) according to the manufacturer's instructions.  

 

3.2.2.6 Immunocytochemistry 

Transiently transfected cells were cultured on glass cover slips to 50-80% confluence. Cells were 

fixed in 4% paraformaldehyde for 10 min followed by permeabilization with 0.1% Triton X-100 

for 10 min and blocking with 5% BSA for 1 h. Cells were incubated with desired primary 

antibody/antibodies, for 2 h in 1% BSA. Primary antibodies were detected by using conjugated 

secondary antibodies diluted as per the manufacturer’s instructions. Coverslips were mounted on 

glass slides using 15% Mowiol mounting medium. Images were acquired on a fluorescence 

inverted microscope (Zeiss). 

 

3.2.3 Screening of keratin associated proteins using Sos recruitment system 

3.2.3.1 Establishing streaked yeast agar plate 

Cells were obtained from the glycerol stock by scraping off splinters of solid ice with a sterile 

wire loop or sterile inoculating stick. Splinters were streaked on an YPAD agar plate. 

The plate was incubated at room temperature (22–25°C) until colonies appeared (~4 days). 

 

3.2.3.2 Preparation of - 80°C yeast glycerol stock 

Single colony grown on YPAD agar plate was inoculated in 10ml of YPAD broth and were 

grown to late log phase (OD600 = 0.8–1.0) at room temperature (22–25°C). 4.5 ml of a sterile 

solution of 50% glycerol in liquid YPAD (prepared as 5 ml of glycerol + 5 ml of YPAD 

broth) was added to the yeast culture from step with continuous mixing. Glycerol-containing 

cell suspension was aliquoted into sterile centrifuge tubes (1 ml/ tube) and stored at –80°C.  
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3.2.3.3 Verification of yeast host strain marker phenotype 
Yeast from the –80°C glycerol stock was streaked onto each of the four agar “dropout” 

(tryptophan (Trp), leucine (Leu), histidine (His), and uracil (Ura)) plates and the plates were 

incubated at room temperature (22–25°C) for 4–6 days. Simultaneously sample of the same 

glycerol stock was streaked onto a YPAD agar plate and incubated at room temperature (22–

25°C) for 4–6 days. After the phenotype has been verified (growth on the YPAD plate and no 

growth on any of the four SD agar dropout plates), colonies from the YPAD plate were used 

for the preparation of competent yeast cells.  

 
3.2.3.3 Preparation of cdc25H yeast competent cells 
In the preparation of the competent cell, if revertants have arisen, then it is not suitable for two-

hybrid screening experiments. Fresh plate of cdc25H (aor α,) was prepared from the glycerol 

stock by scraping off splinters of solid ice with a sterile wire loop and streaked the splinters 

onto a YPAD agar plate. Plate was incubated at room temperature (22–25°C) until colonies 

appeared (~4   days).  4–5 cdc25H yeast colonies were picked (from a plate that is less than one 

week old) into separate 1.5-ml microcentrifuge tubes containing 1 ml YPAD. Cell clumps were 

completely dispersed by vortexing and yeast cell suspensions were diluted to 50 ml with YPAD 

followed with incubation for 14–16 hours at room temperature (22–25°C) with shaking at 220–

250 rpm till the OD600 of the cultures was >1. 

Cultures were diluted for a total diluted culture volume of 300 ml (OD600=0.2) and 

incubated at room temperature (22–25°C) with shaking at 220–250 rpm for 3 hours 

(OD600>0.7). 75 µl (approximately 1 × 106 cells) of each culture was plated on YPAD 

agar plate, sealed and incubated at 37°C. The plates were observed daily for 4–6 days, 

checking for temperature-sensitive revertants. Plates  with more than 30 colonies after 6 

days of incubation were discarded. 

Remaining volume of the yeast cultures was pelleted by centrifugation at 1000×g for 5 

minutes at room temperature, yeast cell pellets were resuspended in 50 ml of dH2O and spun at 

1000×g for 10 minutes at room temperature. Supernatant was discarded and the pellet was 

resuspended in 50 ml of LiSORB followed by incubation at room temperature for 30 minutes. 

At the end of the 30-minutes incubation, yeast cells were pelleted by spinning at 1000 × g for 

5 minutes at room temperature and resuspend in 300µl of LiSORB. 600 µl of sheared salmon 

sperm DNA mixture was added to the 300 µl of yeast cells from the previous step. Mixed 

thoroughly, to each cell preparation 5.4ml of PEG/LiOAc solution and 530 µl of DMSO was 

added and mixed. Cells were aliquoted in volumes of 500µl and 100µl in separate micro 
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centrifuge tubes. 

 
3.2.3.4 Transforming yeast and detecting protein-protein interactions 
 
Yeast transformation mixtures were prepared as outlined in Table No: 3.2.3. Plasmid DNA 

was added in the combinations listed to separate aliquots of freshly prepared cdc25H yeast 

competent cells. 2 µl of 1.4 M β-mercaptoethanol was added to each tube and mixed the contents 

thoroughly but gently by inversion or tapping. 

Transformation suspensions were  incuba ted  at room temperature for 30 minutes with 

occasional tapping. Cell suspensions were subjected to heat-shock treatment by incubating the 

transformation suspensions at 42°C for 15 minutes. Placed immediately on ice and left for 3 min. 

Cells were collected by centrifugation for 30 seconds at 14,000 rpm at room temperature and 

the supernatant was discarded. Cells were resuspended in 0.5 ml of 1 M sorbitol. Each of the 

transformation mixture was spread on agar plates using sterile glass beads as indicated in Table 

No: 3.2.3. For transformation group1, 10 µl and 100 µl of the cells we r e  p l a t e d  on 

separate 150 mm SD/glucose (–UL) agar plates and incubated these plates at room 

temperature (22–25°C). These platings were used to determine cotransformation efficiency. 

Remainder of transformation reaction 1 was plated on a150-mm SD/glucose (–UL) agar plate 

and Incubated at 37°C, this plate was observed daily for 4–6 days to check for temperature-

sensitive revertants. 

After incubation of this plate 37°C for 4–6 days, observed for any growth of colonies ( no 

colonies should appear. Colonies present on this plate indicate that the cells used for the 

transformation contained temperature-sensitive revertants or were not cdc25H). 

Transformation efficiency for the competent cell preparation was evaluated if the reversion 

control plates met the above criteria. Number of colonies on plates from transformation group1 

(Table No: 3.2.3) incubated at room temperature (22–25°C) were counted. Cotransformation 

efficiency was calculated using the following equation (The transformation efficiency should be 

at least 0.5 × 103–1 × 104 cfu/µg). 

 
For transformations 2–12, the entire transformation reaction mixture was plated on a 100-mm 

SD/glucose plate (either SD/glucose (–U), SD/glucose (–L) or SD/glucose (–UL) according to 

Table No: 3.2.3). Incubated at room temperature (22–25°C) until colonies were seen (4–6 days). 

Three colonies from each of these transformations (5–8, and 10-12) were selected for transfer to 

SD/glucose (–UL) and SD/galactose (–UL) to test for protein-protein interactions that allow  
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Number 

 
Plasmid(s) 

 
Amount of 

Plasmid 
 

Volume of Yeast 
Competent Cells 

Medium for 
Plating 

1 pSos + pMyr 2 µg each 
 

500  µl SD/glucose (–UL)
 

2 pSos MAFB 100  ng 100  µl SD/glucose (–L) 
 

3 pMyr SB 100  ng 100  µl SD/glucose (–U)
 

4 pMyr Lamin C 100  ng 100  µl SD/glucose (–U)
 

5 pSos MAFB + 
pMyr MAFB 

300  ng each 
 

100  µl 
 

SD/glucose (–UL)
 

6 pSos MAFB + 
pMyr Lamin C 

300  ng each 
 

100  µl 
 

SD/glucose (–UL)
 

7 pSos Col I + 
pMyr MAFB 

300  ng each 100  µl SD/glucose (–UL)
 

8 pSos MAFB + 
pMyr SB 

300  ng each 
 

100  µl 
 

SD/glucose (–UL)
 

9 pSos Bait 100  ng 100  µl SD/glucose (–L) 
 

10 pSos Bait + 
pMyr Lamin C 

300  ng each 
 

100  µl 
 

SD/glucose (–UL)
 

11 pSos Bait + 
pMyr SB 

300  ng each 
 

100  µl 
 

SD/glucose (–UL)
 

12  300  ng each 
 

100  µl 
 

SD/glucose (–L) 
 

Table 3.2.3: Transforming yeast and detecting protein-protein interactions 
 

growth at 37°C. Each picked colony was resuspended in 25 µl of sterile H2O and transferred to 

separate wells of sterile 96-well plate. 2.5µl of the yeast/ H2O suspensions was spotted onto 

each of two SD/galactose (–UL) agar plates and two SD/glucose (–UL) agar plates. One plate of 

each type was incubated at 37°C. The second plate of each type was kept at room temperature 

(22–25°C) for 5 days. Growth in SD/galactose (–UL) agar plates that are incubated at 37°C was 

scored after 7–10 days incubation.  

 

3.2.3.5 Library screening 
 
40µg of pSos bait construct, 40µg of pMyr cDNA plasmid library and 200 µl of 1.4M β-
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mercaptoethanol was added to 10ml of freshly prepared cdc25H (α) yeast competent cells. The 

contents were mixed thoroughly and the contents were transferred into 20 separate 

microcentrifuge tubes. Cotransformation was done as mentioned in the previous section. Cells 

were resuspended in 0.5 ml of 1 M sorbitol. The entire transformation reaction in each tube was 

plated on a 150-mm SD/glucose (–UL) agar plate. Plates were incubated at room temperature 

(22–25°C) for 2-4 days. The transformants were replica plated onto SD/galactose (–UL) agar 

plates and the plates were incubated at 37°C.  

After 6 days, colonies (interactor candidates) from the experimental library screen 

transformation replicates were picked on galactose incubated at 37°C. In order to repress GAL1 

promoter-driven expression from the pMyr library prior to interaction tests, cells from the 

interactor candidate colonies were patched onto an SD/glucose (–UL) agar plate (candidate patch 

plate), and the plate incubated at 22–25°C for 48 hours. The original galactose transformation 

replica plates were returned to 37°C after picking colonies, since some additional colonies 

appeared much later (10 days). 

After 48 hrs incubation, cells from the SD/glucose (–UL) candidate patch plates were patched 

onto two fresh SD/glucose (–UL) plates and one SD/galactose (–UL) plate. As a primary test to 

identify interactors among the candidates, one SD/glucose (–UL) and the SD/galactose (–UL) 

plate was incubated at 37°C for approximately 48 hours. The other SD/glucose (–UL) agar plate 

was kept at room temperature (22–25°C) as a re-patching source plate. 

After  the  48  hour  incubation, the  primary  interaction test plates  (see  step  16) were 

evaluated,  identifying  the  patches  growing  at  37°C  on SD/galactose  (–UL)  plates,  but  

not  on  SD/glucose  (–UL)  plates. A  secondary  interaction  test was performed by  re-

patching  the  interactor candidates from the re-patching source plate kept at 22–25°C onto 

another set of one SD/glucose (–UL) and one SD/galactose (–UL) agar plate, and both plates 

w e r e  i n c u b a t e d  at 37°C for 48 hours. The candidates producing patches that grow on 

SD/galactose (–UL) plates but not on SD/glucose (–UL) plates at 37°C in both the primary and 

secondary interaction tests should be considered “putative positive” clones and analysed further. 

 
3.2.3.6 Verification of interaction by yeast co transformation 
 
Putative positive colonies were grown in SD/glucose (–UL) media, cDNA library inserted 

plasmid ‘pMyr’ was isolated from this yeast culture by lysing yeast cells followed by 

phenol/chloroform extraction. Top aqueous phase containing the DNA was transferred to a  new 

microcentrifuge tube and DNA was precipitated with 100% (v/v) ice-cold ethanol at –20°C 

overnight or at –80°C for 15 minutes. Suspension was spun at 14,000 × g for 10 minutes at 4°C. 
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DNA pellet was washed with 70% (v/v) ethanol and centrifuged at 14,000 × g for 5 minutes at 

room temperature and the pellet was air dried,  resuspended in 40 µl of dH2O. 

DNA was precipitated with 3M NaOAc (pH 5.2) and ethanol. The above mentioned washing 

steps were repeated twice. DNA pellet was resuspended in 20 µl of dH2O followed by 

retransformation in high-efficiency electroporation-competent E. coli cells. Transformed 

colonies were selected for pMyr cDNA plasmid by plating on LB-chloramphenicol agar plates. 

Colonies that contain the pMyr cDNA plasmid w e r e  i d e n t i f i e d  by preparing miniprep. 

Isolated p l a s m i d  DNA was subjected to restriction digest analysis and the cDNA insert was 

identified by sequencing. 

 
3.2.4 Expression, purification and analysis of recombinant p86DM 
 
 
3.2.4.1 Expression His SUMO fused-p86DM protein 
 
p86DM was cloned into pET-SUMO expression vector and retransformed (as mentioned in 

previous section) in Rosetta competent cells. Transformed cell suspension was spread on LB 

agar plate and incubated at 37°C for 12-16h. Positive clone was picked and inoculated in LB 

broth followed with incubation at 37°C until the absorbance showed 0.5 at OD600. Grown 

culture was shifted to 27°C, expression of fusion protein was induced by adding 1mM IPTG at 

27°C for 210 min. The cells were pelleted by centrifugation at 3,000 g at 4°C for 10 min, 

supernatant was discarded. Cell pellet were resuspended in 3 ml ice-cold PBS buffer per 50 ml 

culture and centrifuged at 3,000 g at 4°C for 10 min and the pellets were frozen at -80°C for 1 hr. 

The cells were thawed on ice and re-suspend cells in 3 ml of ice-cold PBS buffer per 50 ml 

culture. Cells were broken by brief pulses of sonication on ice until the sample was no longer 

viscous. 10 μl aliquots sample from both soluble and insoluble fractions for SDS-PAGE analysis 

were taken (by adding equal volume of 5X SDS sample loading buffer, boil for 5 min and run 

SDS-PAGE to determine the amount and solubility of the fusion protein).  

 

3.2.4.2 Purification of recombinant His SUMO fused-p86DM protein  

An appropriate amount of High-Affinity His resin (50% slurry) was transferred to a disposable 

column using a pipette. (Usually 1 ml of resin can bind more than 6 mg of His protein). The resin 

was equilibrated with 10 bed volumes of cold lysis buffer. Clear solution (supernatant of the cells 

lysed by sonication) containing fusion protein was applied to the pre equilibrated column and 

with the flow rate at 5 ml/min. Column was washed with 20 bed volumes of washing buffer 

containing protease inhibitors. The fusion protein was eluted with 10-15 bed volumes of freshly 
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made elution buffer containing 250mM imidazole. 10-20 μl aliquots of flow through, wash and 

the eluted protein were analyzed by running SDS-PAGE to confirm the presence of the target 

protein. The eluted fractions were pooled and dialysed against TBS at 4°C to remove imidazole. 

 

3.2.4.3 SDS –Polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein  lysates  were  separated  on  a SDS-polyacrylamide  gel  prepared  according  to  the 

compositions mentioned in table 3.1. 

Preparation of stacking gel (for 2 /10 gels 10/50 ml) 

Maxi gels Mini gels 
Ingredients 

Stacking Separating Stacking Separating 

30% Acrylamide 1.6 ml (4%) 22.2 ml 440 µl 3.3 ml 

Lower Tris --- 16.7 ml --- 2.5 ml 

Upper Tris 3 ml --- 1.0 µl --- 

Water 7.4  ml 27.8  ml 2.6 ml 4.2 ml 

Temed 20 µl 67 µl 6 µl 10 µl 

10 % APS 100 µl 70 µl 40 µl 100 µl 

Table 3.2.4: Composition of SDS polyacrylamide gels 
 

The protein samples were denatured at 98°C for 5 min, centrifuged briefly and allowed to cool to 

room temperature.  Depending on the molecular weight of the protein analysed, the samples were 

loaded onto SDS-PAGE of 8% or 10% gels, in an apparatus containing running buffer in both 

chambers. A constant voltage of 40 V was applied per gel until the loading dye (bromophenol 

blue) entered the separating gel. Then the voltage was increased to 80 V until the dye reached the 

bottom of the gel. The proteins were then blotted onto PVDF membranes. 

 

3.2.4.4 Western Blotting 

PVDF membrane was activated in methanol for 1 min and then equilibrated for 10 min in 1x 

Towbin buffer. The SDS-polyacrylamide gel was dismantled from the electrophoresis equipment 

and the stacking gel was excised.  The separating gel was equilibrated in 1x Towbin buffer for 10 

min and set up for semi-dry blotting as per manufacturers’ directions. Protein transfer was 

achieved at a constant current of 1.0 mA/cm2 of membrane. After blotting, the membrane was 

stained with Coomaasie G250 stain and destained with destaining solution. The marker was re-

marked using a pencil and the membrane was scanned for future reference.  

For Western blotting, the membrane was washed with TBST buffer. Non specific binding sites 

were blocked by incubating the membrane with either 5% skimmed milk powder or 5% BSA in 
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TBS containing 0.1% tween-20 (TBS-T) for 1h. After blocking, the membrane was incubated 

with primary antibody diluted in blocking solution for 1 hour at RT or o/n at 4°C and washed 

thrice with TBS-T for 5 min each at RT, to remove any unbound antibodies.  The membrane was 

then incubated with corresponding secondary antibody, diluted in blocking solution for 1 hour at 

RT and washed thrice with TBS-T for 5 min each at RT. A final wash was carried out with 1x 

TBS, pH 7.5. Bound antibodies were visualised with ECL system (Amersham Pharmacia) 

according to the manufacturer’s protocol or with indigenous ECL system. 
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4. Results 
 

4.1 Screening of keratin associated proteins by yeast two hybrid system 

4.1.1 Target cDNA library construction 

 

In order to construct a cDNA library to identify the K5 and K14 associated proteins, total RNA 

was isolated from human skin sample (kindly provided by Prof. Bruckner-Tuderman, Freiburg) 

and 500,000 cDNA fragments were prepared using random primers. The average size of the 

fragments measured 1.2 kb ranging from the smallest fragment 500 bp to 4 kb, which were 

subsequently inserted into pMyr expression vector as Myr-target fusions. 

Multiple cloning site of the pMyr expression vector was modified by inserting SalI and NotI 

restriction sites at 5` and 3´ ends respectively, to facilitate the insertion of the cDNA fragments.  

 
Figure 4.1: Size range from 500bp – 4kb of inserted cDNA fragments in the target cDNA library  

 

cDNA fragments from purified total RNA were inserted into the modified pMyr by RZPD 

GmbH. Berlin. This cDNA library was used in the screening experiments for identifying K5 and 

K14 associated proteins.    

 

4.1.2 Bait plasmid construction 

 

Head, rod and tail domains of K5 and K14 were used as baits to identify their interacting partners 

using Sos recruitment method.  

DNA encoding the head, rod and tail domains of K5 and K14 protein were prepared from the full 

length cDNA by PCR amplification using specific primers. PCR amplified product was cloned 

into the cloning vector, plasmid DNA was isolated by miniprep, specificity of the PCR amplified 

product was confirmed by sequencing. DNA coding for the respective domain was obtained by
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digesting the cloning vector containing desired insert with the restriction enzymes, purified by 

gel extraction and ligated into the pSos expression plasmid as gene fusion with hSos protein.   

Insertion sites 
 Bait domain 

Insert 

length 5´ 3´ 

Position in pSos 

expression vector 

1 
Keratin5 head 

(K5Hd) 
510 bp BamHI SalI 3223 - 3733 

2 
Keratin5 rod 

(K5Rd) 
929 bp BamHI NotI 3223 - 4512 

3 
Keratin5 tail 

(K5Td) 
343 bp BamHI NotI 3223 - 3566 

4 
Keratin14 head 

(K14Hd) 
363 bp BamHI SalI 3223 - 3586 

5 
Keratin14 rod 

(K14Rd) 
932 bp BamHI NotI 3223 - 4155 

6 
Keratin14 tail 

(K14Td) 
149 bp BamHI NotI 3223 - 3372 

 
Table 4.1: Cloning details of the bait inserts as fusion with hSos gene in pSos expression vector. 
 

The pSos vector contains DNA encoding amino acids (aa) 1 to 1067 of the hSos gene and unique 

3´ cloning sites with ADH1 promoter for the expression of the hSos-bait insert fusion.  

It contains the pUC and 2μ origins for replication in E. coli and yeast, respectively. The pSos 

also carry yeast biosynthetic genes LEU2 for selection of yeast transformants based on 

nutritional requirements. The pSos vector contains the ampicillin-resistance gene which enables 

for the selection while recovering plasmids from E. coli. Details of the cloned bait plasmids is 

listed in the above table No.4.1 

 

4.1.3 Verification of yeast host strain marker phenotype 

 

In the present study yeast strain cdc25H (α), genotype: ‘MATα ura3-52 his3-200 ade2-101 lys2-

801 trp1-901 leu2-3 112 cdc25-2 Gal+’ was used. The phenotype of the yeast host strain was 

verified prior to competent cell preparation for the subsequent experiments. Cells were obtained 

from the glycerol stock and were grown at 24°C on SD agar plates lacking the nutrients 

tryptophan (Trp), leucine (Leu), histidine (His), and uracil (Ura). The plates were incubated for 6 
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days at 24°C. Simultaneously another culture from the same stock was inoculated on YPAD agar 

plate and incubated at 24°C or 6 days.  

 

Growth media Growth 

SD agar(-Trp) – 

SD agar(-Leu) – 

SD agar(-His) – 

SD agar(-Ura) – 

YPAD agar + 

 
Table 4.2: Verification of yeast host strain marker phenotype by testing for growth using dropout media.  
 

Growth on YPAD agar plate and absence of growth on any of the four SD agar dropout plates as 

indicated in the table confirmed the phenotype of the yeast strain.  

The yeast colonies from the YPAD agar plates were used for preparing the competent cells.  

 

4.1.4 Confirmation for absence of temperature revertants 

 

The screening procedure is based on the selection of temperature sensitive growth of the yeast 

colonies for the detection of positive keratin interacting partners. So it is of utmost importance to 

check for the absence of temperature revertants in the prepared competent cells to avoid false 

positives in the process of screening for keratin associated proteins. 

Competent cells of cdc25H(α) were prepared from the phenotype verified yeast colonies, and 

cotransformed with the set of negative control plasmids  pSos MAFB and pMyr Lamin C as 

described in methods. The cotransformed cells were plated on SD/glucose (–UL) dropout agar 

plate and incubated at 37°C for 6 days.   

The incubated plate was observed daily for 6 days. No colonies were observed till 6th day of 

incubation at 37°C. This confirms that there were no temperature revertant CFUs present in the 

stock of yeast competent cells used for detection of keratin interacting partners.  

 

4.1.5 Control plasmids 

 

For validation of screening process, different sets of control plasmids have been used. These 

were cotransformed as control groups along with test groups which were used for the 

identification of positively interacting candidates. 
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The different combinations of control plasmids mentioned in section 3 were cotransformed in 

competent cells of cdc25H(α). Cotransformation was done in duplicate sets, first set of 

transformed mixture was spread on SD-glucose(-U,L) agar plates and incubated at 24°C for 4-6 

days till the colonies were visible. The other set of transformed mixture was spread on agar 

plates containing SD-galactose(-U,L) and the plates were incubated at restrictive temperature 

37°C for 6 days and observed daily for growth. The growth profile of the transformed colonies is 

tabulated below in table No: 4.3  

 

Combination of control  

plasmids cotransformed 
SD (–UL)/24°C SD (–UL)/37°C 

Sos fusion Myr fusion Glucose Galactose Glucose Galactose 

MAFB MAFB + + – + 

Cadherin Armadillo + + – + 

MAFB SB + + – + 

MAFB Lamin C + + – – 

Col I MAFB + + – – 

Table 4.3: Growth profile of the cdc25H(α) yeast cells cotransformed with control plasmids.  

Growth was observed in both sets of transformation which were spread on the agar plates 

containing SD-glucose(-U,L)/SD-galactose(-U,L), incubated at 24°C. Agar plates with SD-

galactose(-U,L) containing yeast cells cotransformed with positive control plasmids were able to 

grow when incubated at restrictive temperature 37°C, where as the plates containing yeast 

cotransformed with negative control plasmids failed to grow at restrictive temperature.  

These results validate the system to be used for the screening studies of keratin associated 

proteins.  

 

4.1.6 Verification of bait plasmid suitability for screening assays  
 

The constructed bait plasmids (pSos-bait) were verified for their compatibility with the system in 

order to avoid false positives arising from them. 
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4.1.6.1 Verification for auto-activation  
 

The fusion of bait sometimes results in self-activation of the signal recruitment system. 

Therefore, it is essential to test each bait for its inability to confer growth of cdc25H at the 

restrictive temperature. Prior to initiating the yeast two-hybrid screen using the constructed pSos 

bait plasmids, it was verified that the pSos-bait fusion does not interact with the myristylation 

signal in the absence of an interaction partner. The individual pSos bait plasmids (containing the 

genes of head, rod and tail domains of K5 and K14) were cotransformed into the yeast host with 

either pMyr empty vector or pMyr Lamin C to establish that the bait protein does not interact 

with the myristylation signal provided by the negative control plasmids. Co-transformation was 

performed according to the protocols outlined in Methods. After cotransformation, the plates 

containing glucose were initially incubated at room temperature (24°C) to allow colony 

formation. Colonies which were grown on these plates were patched onto fresh plates containing 

galactose, and assayed for growth at 37°C.  

If the bait plasmid cotransformed with the pMyr empty vector or pMyr Lamin C can induce 

cdc25H yeast growth at 37°C, then the bait plasmid is unsuitable for detecting protein-protein 

interactions in the CytoTrap system. Induction of growth of the yeast host at 37°C by the bait 

plasmid may also occur if the bait protein contains sequences that target them to the membrane. 

In the figure: 4.2/4.3 a, b and c, absence of growth of yeast colonies at 37°C cotransformed with 

the above mentioned pSos bait constructs and pMyr Lamin C indicates that there is no auto 

activation as  bait proteins do not  interact with the myristylation signal from the negative control 

plasmid and hence are suitable for the screening experiments.      

 
Figure 4.2: No growth confirms suitability of the K5 bait constructs for two hybrid screening 
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 a) pSos-K5Hd, b) pSos-K5Rd, c) pSos-K5Td, and pMyr Lamin C were cotransformed in cdc25 H yeast strain, 

plates containing glucose (-Leu/-Ura) were  initially incubated  at   room   temperature (24°C) for 4 days to allow 

colony formation. Three individual colonies grown at p e r mi s s ive  temperature were selected and spotted 

onto fresh plates containing galactose(-Leu/-Ura), and assayed for growth at restrictive temperature (37°C) for 6 

days to check if the bait plasmid cotransformed with the pMyr Lamin C can induce cdc25H yeast growth at 

37°C. 

 

Bait plasmids constructed using PCR amplified product of head, rod and tail domain encoding 

DNA of K5 was inserted in pSos vector, expressing as fusion protein with Sos protein. 300ng of 

each of the bait plasmid along with 300ng of pMyr Lamin C were cotransformed in 100µl of 

competent cdc25H(α) cells previously tested for absence of temperature revertion. Growth was 

observed after 4 days of incubation at permissive temperature on agar plates containing SD-

glucose(-U,L). Three of the grown colonies were picked randomly, resuspended in 20µl of sigma 

water and spotted on agar plates containing SD-galactose(-U,L). Plates were inverted and 

incubated at restrictive temperature and were observed daily for 6 days.  

No growth was observed till 6 days of incubation at 37°C indicating that, the bait plasmids 

constructed with different domains of K5 do not possess self-activation property and are suitable 

for the screening assay. 

 

 
Figure 4.3:  No growth confirms the suitability of K14 bait constructs for two hybrid screening 
 
a) pSos-K14Hd, b) pSos-K14Rd, c) pSos-K14Td, and pMyr Lamin C were cotransformed in cdc25 H yeast strain, 

plates containing glucose (-Leu/-Ura) were  initially incubated  at   room   temperature (24°C) for 4 days to allow 

colony formation. Three individual colonies grown at p e r mi s s ive  temperature were selected and spotted 

onto fresh plates containing galactose(-Leu/-Ura), and assayed for growth at restrictive temperature (37°C) for 6 
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days to check if the bait plasmid cotransformed with the pMyr Lamin C can induce cdc25H yeast growth at 

37°C. 

 

Bait plasmids constructed comprising head, rod and tail domains of K14 were cotransformed 

along with pMyr Lamin C (300ng each) in 100µl of competent cdc25H(α) cells previously tested 

for absence of temperature revertion. Absence of growth on SD- galactose(-U,L) plates 

incubated at 37°C was evaluated similar to that of previous results of K5 domain expressing bait 

constructs. Absence of growth indicated that, the bait plasmids constructed with different 

domains of K14 do not possess self-activation property and are suitable for the screening assay. 

 

4.1.6.2 Verifying bait insert cloning and expression 

 

The nucleotide sequence of the cloning junctions between pSos and DNA insert encoding for 

bait protein was determined by sequencing the column purified plasmid DNA. Which in turn 

also confirmed that the bait protein will be expressed in frame with the Sos domain and the DNA 

insert does not contain mutations.  

Expression of the bait protein can be verified by either  

a) Western blot analysis using an antibody that immunoreacts either with the protein 

expressed from the DNA insert or with the hSos protein  

b) The cytoplasmic localization of the bait protein can be verified by cotransformation 

of pMyr SB and the pSos bait plasmid followed by patching on galactose containing 

medium and assaying for growth at 37°C. 

In the present set of studies verification of expression of the DNA encoding bait proteins as 

fusion protein along with Sos protein was confirmed by the genetic interaction of the expressed 

Sos protein with the SB protein, which is expressed from pMyr SB to rescue the growth at 

restrictive temperature 37°C that confirms the integrity and cytoplasmic localization of the pSos 

vector. 

 

Expression and cytoplasmic localization of K5 and K14 domains in frame with Sos protein 

The cytoplasmic localization of the head, rod and tail domains of K5 bait protein was verified by 

cotransforming the pSos-K5 bait constructs with pMyr SB followed by patching on galactose 

containing dropout medium and assayed for growth at 37°C. 

Ability of the cotransformed colonies (figure 4.4) confirms that bait proteins pSos-K5Hd, pSos-

K5Rd and pSos-K5Td are intact and their cytoplasmic localization.  
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Expression and cytoplasmic localization of K14 bait constructs pSos-K14Hd, pSos-K14Rd and 

pSos-K14Td was also confirmed in the similar set of experiments. 

Ability for the growth of cotransformed yeast cells with pSos-K14bait and pMyr SB at restrictive 

temperature 37°C on galactose containing dropout media (figure 4.5) confirms the integrity and 

cytoplasmic localization of K14 bait fusion proteins. 

Expression and cytoplasmic localization of K5 head, rod and tail domains   

 
Figure 4.4: Growth of cotransformed yeast colonies confirms the integrity & expression of Sos-K5 head, rod 

and tail domains in cdc-25H 

a) pSos-K5Hd, b) pSos-K5Rd, c) pSos-K5Td, and pMyr SB were cotransformed in cdc25 H yeast strain, plates 

containing glucose (-Leu/-Ura) were  initially incubated  at   room   temperature (24°C) for 4 days to allow colony 

formation. Selected individual colonies grown at p e rmi s s iv e  temperature were selected and spotted onto 

fresh plates containing galactose(-Leu/-Ura), and assayed for growth at restrictive temperature (37°C) for 6 days to 

check if the bait plasmid cotransformed with the pMyr SB can induce cdc25H yeast growth at 37°C. 

Expression and cytoplasmic localization of K14 head, rod and tail domains   

 
Figure 4.5: Growth of cotransformed yeast colonies confirms the integrity & expression of Sos-K14 head, rod 

and tail domains in cdc-25H 

a) pSos-K14Hd, b) pSos-K14Rd, c) pSos-K14Td, and pMyr SB were cotransformed in cdc25 H yeast strain, plates 

containing glucose (-Leu/-Ura) were  initially incubated  at   room   temperature (24°C) for 4 days to allow colony 

formation. Selected individual colonies grown at p e rmi s s iv e  temperature were selected and spotted onto 

fresh plates containing galactose(-Leu/-Ura), and assayed for growth at restrictive temperature (37°C) for 6 days to 

check if the bait plasmid cotransformed with the pMyr SB can induce cdc25H yeast growth at 37°C. 

 

4.1.7 Detection of keratin associated proteins by cotransformation of K5/ K14 bait plasmids 
and target cDNA library 
 
Screening for the identification of novel keratin associated proteins was performed by 

introducing the keratin bait and target cDNA containing plasmids into the cdc25H(α) yeast strain 

by cotransformation.  This strategy of cotransformation allows results to be generated faster than 

mating technique as the latter method limits the number of generations of growth prior to the 
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interaction assay, and thus reduces the incidence of cdc25H reversion leading to false positives. 

Cotransformation is especially useful if the bait plasmid is toxic to the yeast cells.  

SD (–UL)/37°C 
 Number 

 

Plasmids 
Transformed 

 

SD Glucose    
(–UL) /24°C Glucose Galactose 

1 pSos  + pMyr + 

 
NA 

 
– 

 
2 pSos MAFB + 

pMyr MAFB 
+ 

 

– 

 
+* 

 
3 pSos MAFB + 

pMyr SB  
+ 

 
– 

 
+* 

 
4 pSos Col I + 

pMyr MAFB 
+ 

 

– 

 
–* 

 
5 pSos MAFB + 

pMyr Lamin C 
+ 

 

– 

 
– 

 

6 pSos K5Hd + 
pMyr cDNA lib 

+ 

 
– 

 
+ 

 
7 pSos K5Rd + 

pMyr cDNA lib 
+ 

 
– 

 
+ 

 
8 pSos K5Td + 

Myr cDNA lib 
+ 

 

– 

 
+ 

 

9 pSos K14Hd + 

pMyr cDNA lib 
+ 

 

– 

 
+ 

 

10 pSos K14Rd + 

pMyr cDNA lib 
+ 

 

– 

 
+ 

 

11 pSos K14Td + 
pMyr cDNA lib 

+ 
– + 

Table 4.4:  Combination of the plasmids cotransformed and the growth profile of the transformed cdc25H(α) 

yeast cells. 

 Group 1 is used for verification of temperature revertants and to calculate cotransformation efficiency. Groups 2-5 

served as positive and negative contols. Groups 6-11 represent the test groups for identification of positively 

interacting protein partners from cDNA library. * Colonies grown at 24°C on SD glucose containing plates were 

picked randomly and spotted on galactose containing plates followed with incubation at growth restrictive 

temperature 37°C. 

 
Cotrasformation of competent cdc25H(α) yeast cells was performed as detailed in the methods 

section. Growth profile of the transformed yeast colonies is outlined in table No. 4.4. The first 

group with empty pSos and pMyr plasmids was used to test for the temperature revertants and to 
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calculate the cotransformation efficiency. Second and third group served as positive controls 

(figure 4.5), fourth and fifth group of cotransformation were used as negative control (figure 4.6) 

for the experiment. 

Initially, the pMyr cDNA library and pSos bait cotransformant colonies are selected at 

permissive temperature 24°C on glucose containing SD droupout media. Candidate interactors 

are identified by replica plating the cotransformants to 37°C. “Putative positives” are identified 

among the candidates by two rounds of testing for galactose dependent growth at 37°C.  

The putative positives colonies obtained after the initial screening were picked individually and 

inoculated in glucose containing SD broth, incubated for four days at 24°C with shaking.  

Yeast DNA was isolated from the grown cultures and was retransformed into XL1 blue E.coli by 

electrotransformation. Transformed bacterial cells were spread on LB agar plates containing 

chloramphenicol for the selection of the bacterial cells containing cDNA fragments inserted 

pMyr plasmid. Column purified plasmid DNA containing putative interacting fragments from the 

cDNA library was isolated by miniprep. Each of the isolated samples were subjected to 

restriction with Sal I and Not I restriction enzymes to check for the size of inserted fragment. As 

mentioned in the previous section the minimum size of the inserted DNA fragment in the pMyr 

cDNA library was about 500bp, so only the fragments which were more than 500bp were 

selected for the further analysis. The number of putative positive candidates obtained by 

screening of individual bait is tabulated in table No. 4.5. 

 
4.1.7.1   Cotransformation of pSos MAFB – pMyr MAFB (positive control) and pSos Col I 
– pMyr MAFB (negative control) 
 

 
Figure 4.6: Positive and negative controls for yeast two hybrid screening 

a) pSos and pMyr plasmids encoding for MAFB protein were cotrasformed in cdc25H yeast strain and plated on 

tbe agar plates containing glucose(-Leu/-Ura), incubated at growth permissive temperature (24°C) for 3-4 days. 

Individual colonies were selected and spotted onto agar plates containing galactose(-Leu/-Ura). The plates were 

incubated at restrictive temperature (37°C) for 4-6 days. 

b) pSos and pMyr plasmids encoding for Col I, MAFB proteins respectively were cotrasformed in cdc25H yeast 

strain and plated on tbe agar plates containing glucose(-Leu/-Ura), incubated at growth permissive temperature 
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(24°C) for 3-4 days. Individual colonies were selected and spotted onto agar plates containing galactose(-Leu/-

Ura). The plates were incubated at restrictive temperature (37°C) for 4-6 days. 

 
Cotransformation of pSos MAFB – pMyr Lamin C (negative control) 
 

 
Figure 4.7: Negative control for yeast two hybrid screening 
 
a)   pSos and pMyr plasmids encoding for MAFB, laminC proteins respectively were cotrasformed in cdc25H yeast 

strain and plated on the agar plates containing glucose(-Leu/-Ura), incubated at growth permissive temperature 

(24°C) for 3-4 days.  

b)  The colonies which appeared at permissive temperature were replica plated onto agar plates containing 

galactose(-Leu/-Ura), incubated at growth restrictive temperature (37°C) for 6 days. 

 

The transformation mixture from group 1 (table No. 4.4) was used to check for the temperature 

revertants and to calculate cotranformation efficiency. 390µl of the transformed mixture was 

spread on SD glactose (-U, L) agar plates and incubated at 37°C. The plates were observed daily 

for 6 days to check for growth. No growth was observed indicating the competent cells used for 

screening experiments were void of temperature revertants. 110µl from the same transformation 

mixture was spread on SD glucose (-U, L) agar plate and incubated at 24°C for four days to 

evaluate the transformation efficiency of the competent cells used for screening experiment.  

Cotransformation efficiency was found to be 4.3 x 103 cfu/μg of plasmid DNA used which was 

in the standard range of 0.5 x 103 to 1 x 104 cfu/ μg DNA. 

The transformation mixture of test groups cotransformed with keratin bait plasmids and target 

cDNA library containing plasmids were spread on SDglucose (-U, L) agar plates (20 numbers) 

and incubated at room temperature for four days. The colonies grown were transferred on to 

galactose containing media followed with the incubation at 37°C for 6 days.  

The image below (figure 4.8) demonstrates the robustness of the selection system based on the 

growth of yeast colonies harboring putative positive interaction at restrictive temperature.  
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 Figure 4.8: Selection of temperature sensitive cotransformed yeast colonies  

pSos-K5Hd and pMyr-cDNA library containing plasmids were cotransformed in to cdc25H(α), spread on 

SDglucose(-U, L) agar plate and incubated for 4 days at 24°C. Approximately 3500 colonies appeared, which were 

subsequently replica plated on to galactose containing media followed with incubation at restrictive temperature 

37°C. Only 8 colonies appeared at restrictive temperature which represents putative positive interacting candidates 

for keratin 5 head domain. 

 

All the colonies which appeared on galactose containing plates incubated at 37°C, were picked 

individually and grown in liquid broth for four days. Yeast DNA was isolated from the grown 

cultures and retransformed into E.coli followed by chloramphenicol selection to isolate pMyr 

plasmid containing cDNA insert. Column purified plasmid DNA from E.coli was analyzed for 

the insert size by double digesting with Sal I and Not I restriction enzymes. In total 2475 putative 

positive candidates were identified as K5 and K14 associated proteins. The below table outlines 

the number of putative positive candidates obtained for each of the K5 and K14 domain used as 

bait to identify their interaction partners. 

 

4.1.8 Identification of positive candidates from screening 

 

DNA fragment contained in pMyr plasmid was identified by sequencing the insert using specific 

primers for the pMyr plasmid. 100 random samples for K5 and K14 associated candidates whose 

insert size was more than 500 bp were sequenced. Obtained sequence data was analyzed using 

BLAST bioinformatics tool to identify the interacting protein.  

Only the results which covered more than 75% of query length and above 90% sequence identity 

were considered (Figure: 4.9). The interesting candidates were confirmed for its interaction with 

their respective keratin domains by cotransforming the specific bait and isolated pMyr plasmids 

in cdc25H(α) assaying for the growth at restrictive temperature 37°C. 
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Sl.No Keratin bait 
 domain 

Number of positively 
interacting candidates 

isolated 

1 Keratin 5 head 434 

2 Keratin 5 rod 535 

3 Keratin 5 tail 240 

4 Keratin 14 head 460 

5 Keratin 14 rod 486 

6 Keratin 14 tail 320 

 

Table 4.5 : Number of positive interacting candidates isolated using head, rod and tail domains of K5 / K14 as 

bait against skin cDNA library by ‘Sos recruitment’ yeast two hybrid  genetic screening technique.  

 

Rod domains of keratins are responsible for formation of the keratin heterodimers with the other 

type of keratins. To evaluate if the candidates obtained by using rod domains as bait contained 

any keratins, Southern blotting was done using contemporary keratin rod domains as probes. For 

the candidates isolated with K5 rod as bait, K14 rod was used as probe and for the one identified 

as K14 rod interacting partners were tested against probe prepared from K5 rod domain.  

Among 535 candidates identified with K5 rod domain as bait, seven of them were found to type I 

keratins. 5 out of 460 candidates obtained as K14 rod interacting partners turned out to be type II 

keratins.   
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Figure 4.9: An example of BLAST report  
Query submitted from results obtained from sequencing the putative positive candidates identified as keratin 

associated proteins using Sos recruitment system.  

 
The keratin associated proteins identified from BLAST analysis contained well characterized, 

known proteins to unannotated and hypothetical ones which are yet be investigated for their 

functions and properties. Few of the candidates from the 200 sequenced results are mentioned in 

table No. 4.6 and 4.7   
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Positive interacting protein partners of K5  
 

 
Number 
 

Name identified by BLAST analysis 

1 Homo sapiens Annexin 2 

2 Bromodomain and PHD finger containing 3, (BRPF3) 

3 Calmodulin-like skin protein (CLSP), the CALML3 gene for calmodulin-like 3 
(CLP) and four CpG islands 

4 Homo sapians calmodulin-like 5 (CALML5) 

5 Homo sapiens Crm, cramped-like (Drosophila) (CRAMP1L) 

6 Homo sapiens DEAD (Asp-Glu-Ala-Asp) box polypeptide 17 (DDX17) 

7 Homo sapiens eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) 

8 Homo sapiens glycine amidinotransferase (L-arginine:glycine 
amidinotransferase) (GATM) 

9 Homo sapiens isocitrate dehydrogenase 3 (NAD+) beta (IDH3B) 

10 Homo sapiens LY6/PLAUR domain containing 3 (LYPD3), (C4.4A) 

11 Homo sapiens peroxiredoxin 5 (PRDX5) 

12 Homo sapiens TAP binding protein (tapasin) (TAPBP) 

13 Homo sapiens TBC1 domain family, member 10A (TBC1D10A) 

14 Homo sapiens transmembrane anterior posterior transformation 1 (TAPT1) 

15 Homo sapiens unc-84 homolog B (C.elegans) 

16 Homo sapiens WD repeat domain 71 (WDR71) 

17 Homo sapiens WW domain binding protein 1 (WBP1) 

18 Homo sapiens zinc finger, NFX1-type containing 1 (ZNFX1) 

19 Hypothetical protein LOC201895 

20 Hypothetical protein LOC283377 

 
Table 4.6: List of positive interacting candidates with K5 (alphabetical order) 
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Positive interacting protein partners of K14 
 

 
Number 
 

Name identified by BLAST analysis 

1 Calmodulin-like skin protein variant (CALML5) 

2 Homo sapiens calponin 3, acidic (CNN3) 

3 Homo sapiens calreticulin 

4 Homo sapiens CD74 antigen 

5 Homo sapiens chromodomain helicase DANN binding protein 3 (CHD3) 

6 Homo sapiens coiled-coil domain containing 72 (CCDC72) 

7 Homo sapiens cysteine-rich protein 2 

8 Homo sapiens Fibulin 2 

9 Homo sapiens immunoglobulin (CD79A) binding protein 1 (IGBP1) 

10 Homo sapiens mitogen-activated protein kinase kinase kinase kinase 2 

11 Homo sapiens RAB34 

12 Homo sapiens signal transducer and activator of transcription 6, (STAT6) 

13 Homo sapiens transcription factor AP-2 beta (TFAP2B) 

14 Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein, Theta polypeptide (14-3-3) 

15 Homo sapiens unc-84 homolog B (C. elegans) 

16 Homo sapiens zinc finger and BTB domain containing 4 (ZBTB4) 

17 hypothetical protein LOC727957 isoform 1 

18 p86DM 

19 Rho guanine nucleotide exchange factor (GEF) 19 

20 Uridine monophosphate kinase (UMPK protein) 

 
Table 4.7: List of positive interacting candidates with K14 (alphabetical order) 
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4.2 Verification of the positive interacting candidates in mammalian cell culture system 

 

Transcription factor AP2β, Rab34 a small GTPase of the ras superfamily, 14-3-3τ a member of 

14-3-3 family proteins and the unannotated protein p86DM which were identified as K14 head 

domain interacting proteins by Sos recruitment technique were selected for further investigation 

to confirm their interaction with K14 in mammalian cell culture system.  

Even though the above mentioned proteins were identified as interacting partners of K14 head 

domain, owing to the stability and expression pattern of K14 head domain in the cell culture 

system, full length K14 was used to verify the interaction with the identified candidate proteins.  

To confirm the interaction, firstly expression of K14 head domain as GST fusion protein and 

subsequent efforts to perform pulldown assays of endogenously expressed candidates was not 

successful because of the aggregation of GST fusion protein. Similar kind of challenge was 

experienced when tried to express K14 head domain alone in mammalian cells.  

To overcome these challenges, full length K14 was used to confirm the interaction by 

‘Bimolecular fluorescence complementation technique’, which enables direct visualization of 

protein complexes in living cells and investigation of interactions in normal physiological cell 

environment.  

Full length keratin protein was expressed along with ‘N’ terminal half of Venus-YFP and 

candidate proteins were expressed in fusion with ‘C’ terminal half Venus-YFP. Direct interaction 

of the expressed K14 and candidate protein, constituted full length active Venus-YFP.    
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4.2.1 Positive control for BiFC studies V1–Flag–p0071 WT and V2–HA–RhoA WT 

The interaction of armadillo protein p0071 with RhoA a member of Rho-family of GTPases was 

reported by Wolf et al., 2006 using BiFC technique. So for the present study Venus tagged 

proteins of p0071 and RhoA were used as positive controls, which exhibited similar kind of 

fluorescence pattern as reported by authors (figure 4.10).  

 
Figure 4.10: Transfection of Venus plasmids used as positive control for BiFC experiments  
 
Association was determined by co-transfecting p0071-arm repeats fused to a Flag-tagged C-terminal YFP–Venus 

fragment (V1–Flag–p0071 WT) and the indicated Rho variants fused to the corresponding N-terminal part of YFP–

Venus with a HA-tag (V2–HA–RhoA WT) (kind gift by Prof. Hatzfeld, Halle; Wolf et al., 2006). The green signal 

represents YFP autofluorescence.  
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a & a` : MCF7 cells were transiently cotransfected with V1–Flag–p0071 WT and V2–HA–RhoA WT, and were 

fixed using PFA after 48 hours of transfection. p0071 associates with wild-type RhoA at the midbody as shown by 

the authors and served as a positive control for BiFC experiments carried out in the present study.  

b & b` : MCF7 cells were transiently transfected with V1–Flag–p0071 WT and were fixed using PFA after 48 hours 

of transfection. Absence of the green signal for YFP indicates there is no false or nonspecific signal from the YFP-

Venus1 fragment.  

c & c` : MCF7 cells were transiently transfected with V2–HA–RhoA WT and were fixed using PFA after 48 hours 

of transfection. Absence of the green signal for YFP indicates there is no false or nonspecific signal from the YFP-

Venus2 fragment. 
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4.2.2 Confirmation of interaction between K14 and AP2β by BiFC 

 

Interaction of K14 with AP2β a transcription activator was identified for the first time in yeast 

two hybrid screening studies. To check and confirm the relevance of this interaction in cultured 

mammalian cells, full length Venus tagged proteins of K14 and AP2β were expressed by 

cotransfecting in MCF-7 mammary epithelial cells.  

Different combinations of the expression plasmids (Table No. 4.8) were transfected in the 

experiment in order to control and to avoid any false positive fluorescence.   

Results of the positive control transfections are shown in next section of results. 

 

Sl.No Plasmid(s) transfected Group Fluorescence

1 K14-pVen1flag + AP2β-pVen2 HA Test + 

2 K14-pVen1flag Control - 

3 AP2β-pVen2 HA Control - 

4 K14-pVen1flag + pVen2 HA Control - 

5 pVen1flag + AP2β-pVen2 HA Control - 

Table 4.8: Different transfection groups used in experiment to confirm direct interaction of K14 with AP2β 

 

Full length K14 cDNA (1.73kb) was cloned in frame with amino terminal half of Venus-YFP 

(first 480bp from total 747bp of Venus-YFP). Flag tag was used to link carboxy end of Venus-

YFP fragment with amino terminal end of keratin14 and also to facilitate folding of Venus-YFP 

fragment.  

Full length AP2β cDNA (1.35kb) was cloned in frame with carboxy terminal half of Venus-YFP 

(last 267bp from total 747bp of Venus-YFP). HA tag was used to link carboxy end of Venus-

YFP fragment with amino terminal end of AP2β which also helps in proper folding of Venus-

YFP fragment to reconstitute full length active Venus-YFP.  

 

 
Figure 4.11:  Schematic representation of the Venus-YFP constructs. 
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4.2.2.1 Cotransformation of full length cDNA inserted K14-pVen1flag and AP2β-pVen2 

HA plasmids 

 

In order to confirm the interaction of K14 and AP2β in mammalian cell culture system, Venus 

expression plasmids inserted with full length K14 and AP2β cDNA were cotransfected into 

MCF-7 cells. As a result of the direct interaction between the expressed proteins, Venus-YFP 

activity is reconstituted and led to accumulation of autofluorescence at the site of intracellular 

interaction (figure 4.12). A strong direct interaction was observed upon maturation of the YFP 

fluorescence along the expressed K14 filaments in the cytoplasm of transfected cells. 

Cotransformation efficiency of more than 40% was seen in all repetitive trials conducted to 

confirm the result. 

The autofluorescence emitted by the reconstitution of active Venus-YFP when cotransfected in 

MCF-7 cells strongly suggests that K14 binds to AP2β and sequesters in cytoplasm of the cells. 

 

 
  
Figure 4.12: BiFC analysis of transiently transfected MCF7 cells with AP2β and K14 Venus constructs. 

MCF7 cells were cotransfected with K14-Venus1Flag-N and AP2β-Venus2HA-C. Cells were fixed and analyzed 

after 48 hours of transfection. The green signal represents the YFP autofluorescence as a result of the formation of 

active YFP from the complementing halves due to the direct interaction between K14 and AP2β which are fused 

with the corresponding Venus halves. Distribution resembles to characteristic expression of endogenous keratin 

cytoskeleton.  Scale bar 10 μm 
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4.2.2.2 Individual transformation of full length cDNA inserted K14-pVen1flag and AP2β-

pVen2 HA plasmids 

 

Venus expression plasmids inserted with full length K14 and AP2β were transfected individually 

into MCF-7 cells to check for emittance of false fluorescence signal from the individual Venus-

YFP fragments. The results indicated that upon transfection of AP2β-pVen2 HA and K14-

pVen1flag, there was no non specific fluorescence emitted from the individual Venus-YFP 

fragments (figure 4.13). Transfection efficiency with eYFP plasmid ranged between 55 to 65 %. 

 

 
Figure 4.13: BiFC analysis of transiently transfected MCF7 cells with AP2β and K14 Venus constructs. 

a & a` : MCF7 cells transiently transfected with AP2β-Venus2HA-C and analyzed after 48 hours of transfection. 

Absence of the green signal for YFP indicates there is no nonspecific signal from the YFP-Venus2 fragment. 

b & b` : MCF7 cells transiently transfected with K14-Venus1Flag-N and analyzed after 48 hours of transfection. 

Absence of the green signal for YFP indicates there is no nonspecific signal from the YFP-Venus1 fragment. Scale 

bar 10 μm 
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4.2.2.3 Cotransformation of full length cDNA inserted and empty Venus plasmids 

 

Venus plasmids inserted with full length cDNAs were cotransfected with their corresponding 

empty Venus vectors containing the Venus-YFP moiety required for the reconstitution of full 

length active YFP. In this set of experiment K14-pVen1flag was cotransfected with pVen2 HA 

and empty pVen1flag with out K14 was contransfected along with AP2β-pVen2 HA, to check 

for any nonspecific interactions between the Venus1-YFP and Venus2-YFP fragments or 

between expressed proteins (K14/AP2β) and Venus-YFP fragment.  The results clearly indicated 

the absence of any non specific interactions in between either two Venus-YFP fragments or with 

the expressed protein (figure 4.14). 

 
Figure 4.14: Negative control for BiFC analysis of transiently transfected MCF7 cells. 

a & a` : MCF7 cells were cotransfected with AP2β-Venus2HA-C and empty Venus vector with the complementing 

half of the YFP pVenus1Flag-N, analyzed after 48 hours of transfection. Absence of the green signal for YFP 

indicates that the two complementing halves of the YFP do not form active YFP in presence of the fusion protein 

and it also doesn’t interact with AP2β fused to Venus2 half of the full length YFP. 

b & b` : MCF7 cells were cotransfected with K14-Venus1Flag-N and empty Venus vector with the complementing 

half of the YFP pVenus2HA-C, analyzed after 48 hours of transfection. Absence of the green signal for YFP 

indicates that the two complementing halves of the YFP do not form active YFP in presence of the fusion protein 

and it also does not interact with K14 fused to Venus1 half of the full length YFP. Scale bar 10 μm 
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Different sets of the above shown control experiments confirmed that, autofluorescence emitted 

by cotransfection of  Venus constructs tagged to K14 and AP2β is only due to the direct 

interaction of K14 and AP2β thereby reconstituting the mature Venus-YFP.  

These results confirm the interaction between two expressed proteins and strongly suggest that 

AP-2β is sequestered in the cytoplasm by interaction with K14 and also opens a new avenue for 

the first time to address a novel regulatory mechanism which controls the activity of AP-2β and 

possibly other AP-2 family members by interaction with keratins. 
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4.2.3 Confirmation of interaction between K14 and Rab34 by BiFC 

 

A member of Rab GTPase family protein Rab34 was identified as an interacting partner and 

confirmed for its association with K14 in yeast by two hybrid method. To investigate for 

existence of similar kind of affinity between the two proteins in mammalian cell culture model, 

which can shed light on involvement of keratins in vesicle transport by binding or harboring 

proteins involved in transport, Venus-YFP fragments were expressed in fusion with proteins 

under investigation. Upon cotransfecting these two constructs in MCF-7 mammary epithelial 

cells, full length active Venus-YFP was reconstituted emitting autofluorescence along the keratin 

filaments. 

In order to monitor the specificity of emitted fluorescence, different combinations of the 

expression plasmids (Table No. 4.9) were transfected in the experiment as controls.  

 

Sl.No Plasmid(s) transfected Group Fluorescence

1 K14-pVen1flag + Rab34-p ven2 HA Test + 

2 K14-pVen1flag Control - 

3 Rab34-p ven2 HA Control - 

4 K14-pVen1flag + pVen2 HA Control - 

5 pVen1flag + Rab34-p ven2 HA Control - 

Table 4.9: Different transfection groups used in experiment to confirm direct interaction of K14 with Rab34 

 

Full length K14 cDNA (1.73kb) was cloned in frame with amino terminal half of Venus1-YFP 

(first 480bp from total 747bp of Venus-YFP). Amino terminal of K14 was linked to carboxy end 

of Venus1-YFP fragment through ‘Flag’ tag which also to facilitates proper folding of Venus-

YFP fragment while reconstitution.  

 

Full length Rab34 cDNA (740bp) was cloned in frame with carboxy terminal half of Venus2-

YFP (last 267bp from total 747bp of Venus-YFP). HA tag was used to link carboxy end of 

Venus2-YFP fragment with amino terminal end of Rab34 which also helps in proper folding of 

Venus2-YFP fragment to reconstitute full length active Venus-YFP.  
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4.2.3.1 Cotransformation of full length cDNA inserted K14-pVen1flag and Rab34-pVen2 

HA plasmids 

 

Venus plasmids tagged with full length K14 and Rab34 were transiently cotransfected in MCF-7 

cells and observed for maturation of active Venus-YFP. Direct physical interaction of the two 

tagged proteins ensues the reconstitution of active Venus-YFP.  

Cotransformation of MCF-7 cells with K14-pVen1flag and Rab34-pVen2 HA plasmids followed 

by incubation at lower temperature to facilitate the maturation of Venus-YFP, reconstituted 

active Venus-YFP from amino and carboxy Venus fragments emitting clear autofluorescence 

indicating a direct interaction between K14 and Rab34. Emitted fluorescence was distributed 

evenly throughout the cytoplasm of transfected cells similar to cytoskeletal network of keratin 

filaments. 

Cotransformation efficiency of more than 40% was seen in all repetitive trials conducted to 

confirm the result. 

The autofluorescence emitted by the reconstitution of active Venus-YFP when cotransfected in 

MCF-7 cells strongly suggests that K14 binds to Rab34 and sequesters in cytoplasm of the cells 

(figure 4.15). 

  

 
Figure 4.15: BiFC analysis of transiently transfected MCF7 cells with RAB34 and keratin 14 Venus 

constructs. 

MCF7 cells were cotransfected with K14-Venus1Flag-N and RAB34-Venus2HA-C. Cells were fixed and analyzed 

after 48 hours of transfection. The green signal represents the YFP autofluorescence as a result of the formation of 

active YFP from the complementing halves due to the direct interaction between K14 and RAB34 which are fused 
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with the corresponding Venus halves. Distribution resembles to characteristic expression of endogenous keratin 

cytoskeleton. Scale bar 10 μm 

4.2.3.2 Individual transformation of full length cDNA inserted K14-pVen1flag and Rab34-

pVen2 HA plasmids 

 

Transfection of MCF-7 cells with Venus expression plasmids inserted with full length K14 and 

Rab34 was done individually to verify emittance of fluorescence from the individual Venus 

fragment in the absence of its complementing fraction which is necessary to form full length 

active Venus-YFP.  

The results indicated that upon transfection of Rab34-pVen2 HA and K14-pVen1flag, there was 

no non specific fluorescence emitted from the individual Venus-YFP fragments (figure 4.16). 

Transfection efficiency with eYFP plasmid ranged between 55 to 65 %. 

 
Figure 4.16: Negative control BiFC analysis of transiently transfected MCF7 cells with RAB 34 and keratin14 

Venus constructs. 

a & a` : MCF7 cells transiently transfected with RAB34-Venus2HA-C and analyzed after 48 hours of transfection. 

Absence of the green signal for YFP indicates there is no nonspecific signal from the YFP-Venus2 fragment. 

b & b` : MCF7 cells transiently transfected with K14-Venus1Flag-N and analyzed after 48 hours of transfection. 

Absence of the green signal for YFP indicates there is no nonspecific signal from the YFP-Venus1 fragment.        

Scale bar 10 μm 
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4.2.3.3 Cotransformation of full length cDNA inserted and empty Venus plasmids 

 

To confirm the result obtained in first part where it has shown the direct interaction between K14 

and Rab34 is genuine and not due to nonspecific interaction of expressed proteins with Venus-

YFP fragments, MCF-7 cells were cotransfected with K14-pVen1flag + pVen2 HA and Rab34-

pVen2 HA + pVen1flag Venus plasmids. 

The results clearly showed that, K14 tagged with Venus1 fragment does not interact with the 

Venus2 fragment in the absence of an interacting partner. The same was true for Rab34 tagged 

with Venus2 fragment (figure 4.17), which confirms the specificity of the detection system and 

thus the results obtained.  

 
Figure 4.17: Negative control for BiFC analysis of transiently transfected MCF7 cells. 

a & a` : MCF7 cells were cotransfected with RAB34-Venus2HA-C and empty Venus vector with the 

complementing half of the YFP pVenus1Flag-N, analyzed after 48 hours of transfection. Absence of the green 

signal for YFP indicates that the two complementing halves of the YFP do not form active YFP in presence of the 

fusion protein and it also doesn’t interact with RAB34 fused to Venus2 half of the full length YFP. 

b & b` : MCF7 cells were cotransfected with K14-Venus1Flag-N and empty Venus vector with the complementing 

half of the YFP pVenus2HA-C, analyzed after 48 hours of transfection. Absence of the green signal for YFP 

indicates that the two complementing halves of the YFP do not form active YFP in presence of the fusion protein 

and it also doesn’t interact with keratin14 fused to Venus1 half of the full length YFP. Scale bar 10 μm 
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BiFC analysis confirmed the direct interaction between cytoskeletal protein keratin14 and Rab34 

a transporter protein in the cytoplasm of MCF-7 cells. This result was supported by various 

control experiments conducted in parallel. 

The finding of interaction between K14 with transporter protein Rab34 will further support the 

recent reports stating the role of keratin in vesicle transport. Rab proteins (Rab27) are involved in 

melanosome transport and distribution in melanocytes, Rab34 being the member of same family 

and its interaction with K14 hints that, this specific interaction might be having some role to play 

in uptake and redistribution of melanosomes in keratinocytes. Further investigations towards this 

aspect would be highly significant to elucidate the role of keratins in melanosome transport and 

redistribution in keratinocytes.  
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4.2.4 BiFC analysis for verifying interactions between K14 with 14-3-3τ and p86DM 

Attempts to confirm the interaction of K14 with 14-3-3τ and p86DM in the similar lines to that 

of AP2β and Rab34 were not successful. Interaction of 14-3-3τ is dependent on phosphorylation 

of Ser33 like other members of 14-3-3 protein family. Since no artificial hyper-phosphorylation 

was induced in the experimental settings to look for the interaction, might be one of the reasons 

for not noticing the direct interaction with K14. 

Several experiments performed by co-workers showed that p86DM do not interact with K14 

directly. p86DM being identified for the first time, with its sequence analysis prediction pointing 

towards crucial role of this protein in many cellular process, led us to choose this protein for 

further investigation to characterize and to reveal its level of contribution in 

regulation/maintenance of cellular machinery.   

 
4.2.5 Analysis of p86DM 

Bioinformatic analysis of p86DM sequence identified in yeast two hybrid studies showed high 

level of sequence similarity with the sequence predicted in humans, mouse, fly and dog with the 

highest degree of identity being located at the C-terminus of coding sequence of orthologous 

proteins.  

In humans 5 transcript variants of different sizes ranging from 898bp to 2.5kb (figure 4.18) 

comprising 4 exons in the smallest and 10 exons in the larger sequence was predicted.   

 

12 3 4 5 7 8910
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Figure 4.18: Sequence analysis of p86DM predicted 5 different transcript variants in humans with 4 to 10 
number of exons.  
4.2.5.1 Identification of p86DM coding sequence  

 

To verify whether p86DM is encoded by a single functional gene or by multiple genes as 

predicted, total RNA was isolated from mammalian intestinal Caco2 cells, subjected to RT-PCR 

amplification in order to isolate full length cDNA. Specific primers were designed for each of the 

predicted sequence and PCR amplified product yielded product with two different sizes, the first 

one being about 900bp and the second with size of 2.5kb. This result was in par with that of the 

predicted ones (figure 4.19).  

 
Figure 4.19: Size of PCR amplified cDNA products from Caco2 isloated RNA 

Lane a : marker, Lane b - e : PCR amplified products using specific primer. 

 

From the size profile obtained by PCR amplification using specific primers, it looked evident 

that the primers designed for different sized predicted genes, efficiently amplified the product. In 

order to confirm the amplified sequence, PCR amplified products were cloned into cloning 

vectors and transformed into E.coli. Column purified plasmid DNA was isolated from the 

transformed bacterial cultures.  

Two of the predicted p86DM coding genes were of sizes 2449 and 2491bp respectively with a 

mere difference of 42bp but the latter one having an additional restriction site ‘Ava I’. The 

obtained largest PCR amplified fragment with an approximate size of 2.5kb was cloned in clonig 

vector and was subjected to restriction analysis with ‘Ava I’. Restriction results revealed that, the 

amplified product did not contain the specified restriction site ‘Ava I’ and hence confirms the 

expression of 2449bp fragment in Caco2 cells (Figure 4.20). 
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Figure 4.20: Restriction analysis with Ava I to differentiate between the two transcripts 

Lane a : marker, Lane b &d : un cut plasmid inserted with PCR amplified product, Lane c & e: Plasmid restricted 

with Ava I enzyme   

The vector backbone in which the PCR amplified product was inserted contained an Ava I restriction site. The single 

band with the size of 5.4kb reveals that, there is no second Ava I restriction present in the construct.   

 

The PCR amplified fragments were sequenced and the results proved that p86DM is represented 

by only one functional gene, and the sequence of smaller fragments identified were found to be a 

part of 2.4kb gene identified.  

 

4.2.5.2 Functional Studies 

 

Bioinformatic analysis predicted a single transcript giving rise to an open reading frame of 776 

amino acids in the mouse. The predicted protein carries an N-terminal 14-3-3 binding site, SH2 

and SH3 motifs, a clathrin-heavy chain binding site, a coiled-coil domain and a C-terminal PDZ-

binding site. 

To elucidate the meaning of different predicted domains and in order to gain a first insight on the 

potential mechanism by which p86DM may act, a search for p86DM associated proteins was 

done. In this independent experiment, β-actin was identified as one of the p86DM interacting 

candidates.  
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Figure 4.21: Schematic representation of p86DM gene, transcript and protein 

A Human p86DM gene, on chromosome 10, encompasses ~110 kb with 9 exons. The coding sequence starts in exon 

4 and ends in exon 9. B Processed mRNA with a coding sequence (CDS) of 2337 bps C, D predicted domain 

organization of human and mouse p86DM, respectively. 

 

4.2.5.3 Interaction of p86DM with actin 

 

As a further step to confirm the results from above mentioned independent experiment, an 

attempt to confirm interaction between actin and p86DM in MCF-7 mammary epithelial cells by 

BiFC was done.  

In order to monitor the specificity of emitted fluorescence, different combinations of the 

expression plasmids (Table No. 4.10) were transfected in the experiment as controls.  

Sl.No Plasmid(s) transfected Group Fluorescence

1 p86DM-Ven1-N + Y-C-Actin Test + 

2 p86DM-Ven1-N Control - 

3 Y-C-Actin Control - 

4 Y-C-Actin + p Ven1-N Control - 

Table 4.10: Different transfection groups used in experiment to confirm direct interaction of p86DM with 

actin 
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Full length p86DM cDNA (2.4kb) was cloned in frame with amino terminal half of Venus1-YFP 

(first 480bp from total 747bp of Venus-YFP). Full length actin cDNA cloned in frame with 

carboxy terminal half of Venus2-YFP (last 267bp from total 747bp of Venus-YFP) was used.  

 

4.2.5.3.1 Cotransformation of p86DM-pVen1 and Y-C-actin plasmids 

 

In order to confirm the interaction of p86DM and actin in mammalian cell culture system, Venus 

expression plasmids inserted with full length p86DM and actin cDNA were cotransfected into 

MCF-7 cells. As a result of the direct interaction between the expressed proteins, Venus-YFP 

activity is reconstituted and led to accumulation of autofluorescence at the site of intracellular 

interaction (figure 4.22). A direct interaction was observed upon maturation of the YFP 

fluorescence spread all over cytoplasm of transfected cells. Cotransformation efficiency of more 

than 40% was seen in all repetitive trials conducted to confirm the result. 

The autofluorescence emitted by the reconstitution of active Venus-YFP when cotransfected in 

MCF-7 cells strongly suggests that actin directly interacts with p86DM.  

 

 
Figure 4.22: BiFC analysis of transiently transfected MCF7 cells with P86DM-Ven1-N and Y-C-actin Venus 
constructs. 
 
MCF7 cells were cotransfected with P86DM-Ven1-N and Y-C-Actin. Cells were fixed and analyzed after 48 hours 

of transfection. The green signal represents the YFP autofluorescence as a result of the formation of active YFP 

from the complementing halves due to the direct interaction between P86DM and actin which are fused with the 

corresponding Venus halves.  

a) Autofluorescence from the reconstituted Venus-YFP  b) MCF-7 cells with DAPI staining 
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4.2.5.3.2 Individual transformation of full length cDNA inserted p86DM-Ven1-N and Y-C-

actin plasmids 

 

Venus expression plasmids inserted with full length p86DM and actin were transfected 

individually into MCF-7 cells to check for emittance of false fluorescence signal from the 

individual Venus-YFP fragments. The results indicated that upon transfection of p86DM-Ven1-

N and Y-C-actin, there was no non specific fluorescence emitted from the individual Venus-YFP 

fragments (figure 4.23). Transfection efficiency with eYFP plasmid ranged between 55 to 65 %. 

 
Figure 4.23: BiFC analysis of transiently transfected MCF7 cells. 

a and a` : MCF7 cells transiently transfected with P86DM-Ven1-N and analyzed after 48 hours of transfection. 

Absence of the green signal for YFP indicates there is no nonspecific signal from the YFP-Venus1 fragment. 

b and b` : MCF7 cells transiently transfected with Y-C-Actin and analyzed after 48 hours of transfection. Absence of 

the green signal for YFP indicates there is no nonspecific signal from the YFP-Venus1 fragment. Scale bar 20 μm 
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4.2.5.3.3 Cotransformation of full length cDNA inserted and empty Venus plasmids 

 

To confirm the result obtained in first part where it has shown the direct interaction between K14 

and Rab34 is genuine and not due to nonspecific interaction of expressed proteins with Venus-

YFP fragments, MCF-7 cells were cotransfected with K14-pVen1flag + pVen2 HA and Rab34-

pVen2 HA + pVen1flag Venus plasmids. 

The results clearly showed that, K4 tagged with Venus1 fragment does not interact with the 

Venus2 fragment in the absence of an interacting partner. The same was true for Rab34 tagged 

with Venus2 fragment (figure 4.24), which confirms the specificity of the detection system and 

thus the results obtained.  

 

 
Figure 4.24: BiFC analysis of transiently transfected MCF7 cells. 

MCF7 cells were cotransfected with Y-C-Actin and empty Venus vector with the complementing half of the YFP 

pVenus1-N, analyzed after 48 hours of transfection. Absence of the green signal for YFP indicates that the two 

complementing halves of the YFP do not form active YFP in presence of the fusion protein and it also doesn’t 

interact with actin fused to second half of the full length YFP. 

a) Autofluorescence from the reconstituted Venus-YFP  b) MCF-7 cells with DAPI staining 

An antiserum against a highly conserved C-terminal motif of p86DM was raised to examine the 

intracellular localization and tissue distribution of p86DM, By Western blotting and peptide 

competition experiments, the antiserum was found to be highly specific and detected a 

polypeptide of Mr 86 kDa in cultured cells (Wester. A., and Magin. TM).  

To confirm the expression of p86DM and actin in cotransfected cells, cells were stained with the 

antiserum raised against p86DM and anti-YFP antibody which identifies the epitope on C-
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terminal of YFP to look for the expression of actin. Staining images (Figure 4.25) supported the 

Venus-YFP fluorescence profile exhibited in BiFC experiments thereby confirming the 

interaction between p86DM and actin. 

 
Figure 4.25: BiFC analysis along with staining of transiently transfected MCF7 cells. 

MCF7 cells were cotransfected with p86DM-Ven1-N and Y-C-Actin. Cells were fixed and stained after 48 hours of 

transfection. Scale bar 10 μm. 

a: Red signal represents expression of p86DM from the transfected p86DM-Ven1-N plasmid. 

b: Transfected  cells stained against C-terminal half of YFP using anti-YFP antibody. Blue signal represents 

expression of actin–YFP fragment fusion protein from Y-C-Actin plasmid 

c: The green signal represents the YFP autofluorescence as a result of the formation of active YFP from the 

complementing halves due to the direct interaction between p86DM and actin which are fused with the 

corresponding Venus halves.  

d: Mergerd signals from p86DM stained red, actin-YFP with blue and Venus- YFP autofluorescence from 

reconstituted Venus –YFP. 

 

4.2.5.4 Expression of recombinant p86DM 

For further investigation of functional significance and to elucidate the structural properties of 

p86DM, it was expressed as a recombinant protein in E.coli. Full length p86DM was cloned in 

frame with pET-SUMO expression vector in which p86DM was expressed as N-terminal SUMO 

fusion. Expression was optimized by testing different strains of E.coli at different induction 
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temperatures. It was observed that E.coli strain ‘Rosetta’ was most suitable when expression was 

induced at 27°C (figure 4.26). Purification of the expressed fusion protein was optimized by 

altering down stream processing conditions at various points.  

 
Figure 4.26: Expression profile of p86DM after 210 min of induction at 37oC and 27oC 

p86DM was expressed as fusion protein with SUMO and His tags in Rosetta bacterial strain.   

 

Purified protein with intact His tag can be used for further binding studies, His sumo tag was 

cleaved off by exposing to sumo protease, an enzyme which identifies the tertiary structure of the 

ubiquitin-like (UBL) protein and cleaves in a highly specific manner. 

 
Figure 4.27: western blot analysis of recombinantly expressed p86DM followed by SUMO protease treatment 
to His-SUMO tag 
 

Lane a & b: Coomassie staining of supernatant of cell lysates expressing recombinant p86DM in fusion with HOS-

SUMO tag, Lane c & d: Coomassie staining of elutes treated with SUMO protease enzyme, Lane e : Marker, Lane f 

& g: Immuno blot of supernatant of cell lysates expressing recombinant p86DM in fusion with HOS-SUMO tag, 

Lane h & i: Immuno blot of elutes treated with SUMO protease enzyme. 
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5.  Discussion 
 
In order to understand how keratins act at the molecular level and how mutations in keratins 

cause pathological alterations, it is essential to have an in-depth understanding of keratin 

structure and its associated proteins. At the start of the work done in this thesis, very few keratin-

associated proteins were known, including the structural proteins desmoplakin, filaggrin and 

plectin. The major work was to identify keratin-associated proteins which might act together 

with keratins to execute its actions beyond maintenance of cyctoarchitecture and might provide 

insight to molecular mechanisms responsible for functions of keratins in normal and diseased 

keratinocytes.  

Keratins, being the major intermediate filament proteins of epithelia, display an outstanding 

degree of molecular diversity. The 54 human keratin genes which have been identified till date 

are expressed in highly specific patterns related to epithelial and stage of cellular differentiation, 

major of them being restricted to various compartments of hair follicles. 

In the present study major focus was on epidermal keratins, K5 and K14. 

K5 and K14 are expressed in the undifferentiated basal keratinocytes of stratified epithelium 

(Fuchs and Green, 1980), stratified follicular outer root sheath, basal and myoepithelial cells of 

complex glandular epithelial tissue (Purkis et al., 1990). During the process of terminal 

differentiation, expression of K5 and K14 is downregulated and a new set of keratins, K1 and 

K10 are expressed in the suprabasal spinous layer (Byrne et al., 1994). Most important function 

of K5 and K14 is to provide mechanical stability to epithelial cells and apart from this, these 

keratins have shown to be involved in other functions like vesicle transport. Mutations in genes 

encoding K5 and K14 lead to several skin disorders like Epidermolysis bullosa simplex (EBS), 

Naegeli-Franceschetti-Jadassohn syndrome (NFJS), Dermatopathia pigmentosa reticularis (DPR) 

and Dowling-Degos Disease (DDD). Thereby it raises the need for a detailed study in order to 

reveal the functions of keratins and keratin associated proteins, during physiological and 

pathological situations. 

A closer look at the diseases caused due to mutations in K5 and K14 reveals that more disorders 

arise from mutation in K5 than from K14 and certain disorders like Dowling-Degos Disease 

(DDD) arise from K5 but not from K14, and disorder Recessive EBS-WC arises from due to 

mutated K14. This raises the question whether in a pair, both partners have the same function. 
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In order to verify keratin-associated proteins, we have performed screening studies cDNA library 

constructed with 500,000 cDNA fragments isolated rom human skin sample. These fragments 

were inserted randomly in yeast expression vector. 

The screening was done using a novel genetic screening method ‘Sos recruitment system’’ in 

which the proteins like transcriptional activators/repressors, proteins that require post 

translational modification in the cytoplasm and the proteins /protein complex that are toxic to 

yeast can be identified which is not possible in the former Y2H screening techniques. 

In this system, temperature sensitive yeast strain S.cerevisiae which carries mutated CDC45 

gene, a homolog of human Sos protein. Bait is expressed as hSos fusion protein and prey is 

expressed as Myr fusion protein – myristylation signal containing gene. Upon physical 

interaction between the bait and the prey, anchors hSos to membrane there by activating the Ras 

signalling pathway which in turn enables the yeast to grow at restrictive temperature 37oC. 

All keratins have similar domain structure with a α-helical rod, flanked by non-helical head and 

tail domains. Type I and type II keratins form obligatory heterodimers via their highly conserved 

rod domains among different of keratins which are interrupted by non-α-helical linker 

sequences. The positively charged head domain permits the formation of filaments via 

antiparallel tetramers, while tail regulates the lateral association of individual filaments into 

bundles.  

A significant similarity of 70% in the amino acid sequence was observed between the rod 

domains of stratified epithelial keratins K5/K14 with their embryonic and simple epithelial 

keratins K8/K18, where as sequences of head tail domains share only about 30%. 

To get an insight into the differential properties of different keratin domains, head, rod and tail 

domains of K5 and K14 were individually expressed as fusion proteins with hSos and co-

transformed along with cDNA library fragment containing pMyr. 

The putative positive interacting candidates, which were isolated in the preliminary screening 

procedure, were confirmed for the interaction in yeast by replica plating on to the selective media 

followed by incubation at restrictive temperature. 

More than 2400 interacting candidates were confirmed by yeast two hybrid screening were 

obtained from screening of 6 domains in-total of K5 and K14. 

The purified plasmid DNA of these interacting yeast colonies was sequenced followed by 

bioinformatics analysis to identify the interacting candidates. Few of them are listed in the results 

section table 4.4 and table 4.5 
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Figure 5.1: Domain sequence coparison of K5/ K14 with K8/K18. Rod domains showed greater 

similarities and are more consereved than head and tails domains. 

 

We could identify wide array of proteins with diverse functions like calcium binding proteins: 

calponin, calmodulin, annexin, transporter proteins like GTPase family members proteins like 

Rab34, EP164 which play a direct role in vesicle transport. Membrane binding proteins like 

LYPD3, WW domain binding proteins like WBP1, TAPT1. Transcription factors like AP2ß, 

STAT6, translation elongation factor like EEF1A1, peroxyredoxin family of antioxidant 

enzymes like PRDX5 which reduce hydrogen peroxide to alkyl hydroperoxides and may play 

any antioxidant protective role in different tissues under normal conditions and during 

inflammatory process. Adapter protein 14-3-3 along with many hypothetical and un-annotated 

proteins were identified, out of which P86DM  raises a special interest as bioinformatics domain 

analysis predicts to be involved in the cell polarity and migration of the cells. Disruption of the 

interaction between keratins and translation elongation factor (eEF1Bγ) depresses translation by 
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20% with the selective increase of 80S ribosomes in epithelial cells, which establish that the 

keratin cytoskeleton and protein synthesis machinery are functionally integrated (Kim et al., 

2007). 

Among the 40 listed candidates, RAB34, 14-3-3 theta, AP2β and P86DM were selected for 

further analysis and confirmation of their interaction with keratins in mammalian cell culture 

system. 

To confirm the interaction in the mammalian cell system, bimolecular fluorescence 

complementation (BiFC) technique was used, which is based on the principle of formation of a 

mature fluorescent YFP from the two non-fluorescent fragments of YFP which are fused with the 

proteins whose interaction has to be studied. The physical interaction of the two proteins brings 

together the non-fluorescent fragments of YFP and forms a functionally active fluorescent 

complex. This method detects the direct physical interactions and has the advantage that 

autofluorescence reveals the confirmation of interaction thereby rendering the staining of cells 

non-essential.  
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Keratins and 14-3-3τ 

 

Using ‘Sos recruitment system’ Theta isoform of 14-3-3 family of proteins has been identified as 

one of the interacting candidate with K14 head domain.  

14-3-3 proteins were first described in the brain (Moore and Perez, 1967) and include seven 

members (β, γ, , η, σ, τ and ζ) that range in size between 28 and 33 kDa. 14-3-3 proteins are 

important regulators which are involved in many cellular processes like cell cycle regulation 

(Bridges and Moorhead, 2004; Hermeking, 2003; Hermeking and Benzinger, 2006) signal 

transduction and stress response (Fu et al., 1994; Yoshida et al., 2005), apoptosis (Datta et al., 

2000), transcriptional regulation (Brunet et al., 2002), co-ordination of cell adhesion and motility 

(Santoro et al., 2003).  

14-3-3 proteins regulate many cellular processes by binding to phosphorylated sites in diverse 

target proteins (Tzivion and Avruch, 2002). In general interaction of 14-3-3 proteins with target 

proteins is generally mediated through two canonical 14-3-3-binding motifs RSXpS/TXP or 

RXXXpS/TXP sequences, in which ‘X’ denotes ‘any amino acid residue’ and pS/T is 

phosphorylated (Yaffe, 2004).  

To confirm the interaction between K14 and 14-3-3τ , bimolecular fluorescence 

complementation technique (BiFC) which allows visualizing the direct interactions was used. 

Upon co-transfection of Venus-tagged 14-3-3τ and K14 cDNAs into MCF-7 mammary epithelial 

cells, no fluorescence signal was observed which hinted towards absence of direct interaction 

between K14 and 14-3-3τ.  

But it has been shown that 14-3-3 family proteins bind to keratin 18 in phosphorylation 

dependent manner with the mandatory phosphorylation of Ser33 for the association. Moreover 

the interaction of K18 with 14-3-3 proteins was observed only under induced 

hyperphosphorylated conditions by subjecting the transfected cells to heat or ocadiac acid 

treatment (Ku et al., 1998; Liao and Omary, 1996). 

In the present study experimental settings with minimal deviation from normal physiological 

conditions were used to detect interaction between K14 and 14-3-3τ. It is possible that the 

stoichiometry of basal phosphorylation might be low in the cells studied here, which might be 

acting as a limiting factor for the interaction of the transfected Venus tagged K14 and 14-3-

3τ proteins.  
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Keratins and Rab34 

 

With the growing list of keratin-based genetic diseases hint at the role of keratins in skin 

pigmentation.  EBS with mottled pigmentation (EBS-MP) is a rare EBS subtype, giving the skin 

a mottled appearance exhibiting hyper / hypo-pigmented skin. Until recently, all cases of EBS-

MP had been linked to a single missense allele, P25L, in K5 (Uttam et al., 1996), which no 

longer might be true, since a missense mutation in the a-helical rod domain of K14, M119T 

(Harel et al., 2006), as well as the 1649delG mutation in K5 were reported with telltale signs of 

EBS-MP (Horiguchi et al., 2005). Patients suffering from EBS-MCE develop hyper- or hypo-

pigmented patches as adults (Gu et al., 2003). Dowling-Degos disease (DDD) is typified by 

reticulate hyperpigmentation along with dark hyperkeratotic papules in skin known to be caused 

because of K5 haploinsufficiency (Betz et al., 2006). Naegeli–Franceschetti–Jadassohn 

syndrome caused by mutations located early in the head domain of K14 (Lugassy et al., 2006) 

causes mottled hyperpigmentation of the skin. Although the mechanism remains unclear, 

evidence supporting a novel role for keratin proteins in regulating skin pigmentation reveals that 

premature stop codons in the K5 gene affect melanosome distribution in keratinocytes (Betz et 

al., 2006; Liao et al., 2007). Also genetic mouse models with chemically induced mutations 

identify involvement of keratins in coat color determination (Fitch et al., 2003; McGowan et al., 

2006; McGowan et al., 2007). 

With all the above findings pointing towards the disturbed redistribution of melanosomes in skin, 

it becomes very important and interesting to understand the underlying mechanism in uptake of 

melanin granules packed in membrane-bound organelles termed ‘melanosomes’ from 

melanocytes - a neural-crest-derived, highly dendritic cell type to the neighboring keratinocytes 

and redistribution in keratinocytes. One hypothesis for melanosome uptake is endocytotic 

process and the redistribution through various transporter / motor proteins. 

In the process of identifying keratin associated proteins, we have identified the protein Rab34 a 

member of small GTPases of ras superfamily as interacting partner of K14 head domain using 

Sos recruitment system. 

Rab proteins are small GTPases of the ras superfamily that confer timing and target specificity to 

vesicle budding, tethering, docking, fusion, play essential roles in the endocytic and exocytic 

processes of transport vesicle formation within the eukaryotic secretory and endosomal pathways 

(Segev, 2001; Somsel Rodman and Wandinger-Ness, 2000; Zerial and McBride, 2001). They 

thus ensure accurate delivery of cargo macromolecules to the right target organelle. Most 

mammalian rabs are broadly expressed and regulate membrane transport between ubiquitous 
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compartments, such as endoplasmic reticulum and the golgi apparatus. However, certain cell 

types in higher eukaryotes harbor additional unique organelles that carry out tissue-specific 

functions. The best characterized are so-called lysosome-related organelles, which include 

melanosomes, the pigment organelle of melanocytes and of pigment epithelia in the eye. These 

proteins are also associated with particular vesicle membrane compartments and function in 

specific stages of the diverse vesicle trafficking events.  

Rab34 is a 29-kDa protein present both in the cytosol and in the Golgi apparatus. Rab34 is 

present in the Golgi apparatus and cytosol (Wang and Hong, 2005) and it interacts with Rab7-

interacting lysosomal protein (RILP) to regulate the morphology and spatial distribution of 

lysosomes(Wang and Hong, 2002). Rab34 is involved in the regulation of lysosome 

morphogenesis through cooperation with the dynein–dynactin complex (Jordens et al., 2001) 

Rab34 plays a crucial role in facilitating the formation of macropinosomes from the membrane 

ruffles (Wang and Hong, 2005). Rab34 is colocalized with actin to the membrane ruffles and 

macropinosome membrane (Sun et al., 2003). During macropinocytosis, Rab34 is associated 

with nascent macropinosomes and replaced by Rab5 at later stages. Overexpression of Rab34 

elevates the number of macropinosomes, whereas the expression of a dominant-negative Rab34 

prevents macropinosome formation induced by platelet-derived growth factor (PDGF) or PMA. 

The direct interaction between Rab34 and K14 in the mammalian cell system was confirmed 

using bimolecular fluorescence complementation (BiFC) in cytoplasm of human MCF-7 cells. 

Non fluorescent fragments of Venus were tagged to Rab34 and K14 cDNAs. Upon co-

transfection into MCF-7 mammary epithelial cells, a direct physical interaction between the two 

proteins was observed in the form of autofluorescence emitted by the reconstituted mature YFP 

(Figure: 4.15). In endogenously keratin expressing MCF-7 cells K14 gets incorporated with the 

other type II keratins like K8/K9 to form the filamentous structure (Planko et al., 2007; Werner 

et al., 2004). Control transfections with empty vectors revealed no interaction, demonstrating the 

specificity of the interaction. 

These data strongly suggest that Rab34 a member of transporter protein family directly interacts 

with K14. Understanding the significance of this interaction and further in-depth studies might 

definitely help in knowing process of import and regulation of melanosome by keratinocytes. 
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Keratins and AP-2β 

 

The transcription factor family AP-2 consists of upto five members which are known to exhibit a 

highly homologous structure. AP-2 proteins form homo- or hetero-dimers with other AP-2 

family members and bind specific DNA sequences. They are thought to stimulate cell 

proliferation and suppress terminal differentiation of specific cell types during embryonic 

development. Specific AP-2 family members differ in their expression patterns and binding 

affinity for different promoters. This protein functions as both a transcriptional activator and 

repressor, however their functions are considered to be different (Eckert et al., 2005). In skin AP-

2β is expressed in the basal layer while AP-2β is restricted to the sweat glands and AP-2γ is 

found in basal, spinous and granular layers (Byrne et al., 1994; Oyama et al., 2002; Panteleyev et 

al., 2003; Takahashi et al., 2000). 

A role of AP-2 in epidermal differentiation is substantiated by studies of embryonic and adult 

skin in Xenopus demonstrate that the keratin gene-regulatory factor KTF-1 is identical with or 

closely related to AP-2 (Snape et al., 1991; Winning et al., 1991). This factor, also known as 

KER1 from human keratinocytes, is involved in regulation of keratin gene promoters during 

epidermal differentiation (Leask et al., 1991). The keratin proteins K1, K5, K10 and K14 as well 

as the EGFR which play a critical role in epidermal development and differentiation have been 

shown to harbor functional AP-2 binding sites in their promoters (Byrne et al., 1994; Koster et 

al., 2006; Leask et al., 1991; Maytin et al., 1999; Wang et al., 1997). Analysis of murine 

embryonic skin development revealed that AP-2 mRNA is expressed in a pattern similar to, but 

preceding that of basal keratin mRNAs (Byrne et al., 1994). Most recently, the conditional 

ablation of both AP-2α and γ has demonstrated their major role in terminal differentiation in skin 

epidermis (Wang et al., 2008). 

The 5 members of the AP-2 family of helix-span-helix transcription factors determine the cell-

type-restricted proliferation and the suppression of terminal differentiation of epithelia and 

additional tissues. Regulation of activity of AP-2 proteins still not well known. 

All together more than 50 different type I and type II keratins form the major cytoskeleton of 

epithelial cells and are differentially expressed in all epithelia, creating protein scaffolds with 

unique properties. In addition to their well-established function as cytoskeletal scaffolds in 

epithelia, the disruption of which affects cytoarchitecture, recent papers have been reported 

establishing novel and unexpected keratin functions in cell proliferation, growth, survival and 

organelle transport. 
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In the yeast two hybrid screening for keratin associated proteins, we have isolated a clone 

encoding for the transcription factor AP-2β as a binding partner for the K14 head domain. Full 

length AP-2β cDNA was provided by Prof. Dr. Hubert Schorle, Bonn, was used for the further 

experiments. 

The direct interaction between AP-2β and K14 was confirmed using bimolecular fluorescence 

complementation (BiFC), in the cytoplasm of human MCF-7 cells.  

Upon co-transfection of Venus-tagged AP-2β and K14 cDNAs into MCF-7 mammary epithelial 

cells, a strong interaction between the two proteins was apparent that was highly reminiscent of 

staining these cells with a keratin antibody (Figure: 4.12). In fact, MCF-7 cells form an extensive 

cytoskeleton from endogenous keratins in which K14 becomes incorporated following 

transfection(Planko et al., 2007; Werner et al., 2004). Control transfections with empty vectors 

revealed no interaction, demonstrating the specificity of the interaction. These data strongly 

suggest that AP-2β is sequestered in the cytoplasm by interaction with K14. 

In eukaryotes, transcription factors (like most proteins) are transcribed in the nucleus but are then 

translated in the cell's cytoplasm. Many proteins that are active in the nucleus contain nuclear 

localization signals that direct them to the nucleus. But for many transcription factors this is a 

key point in their regulation. Important classes of transcription factors such as some nuclear 

receptors must first bind to a ligand while in the cytoplasm before they can relocate to the 

nucleus. 

We hypothesize that sequestration by distinct keratins represents a novel mechanism to regulate 

the activity of AP-2 transcription factors. 

AP-2β can be a potential drug target as therapeutic agent in treatment of cancer (Deng et al., 

2007). It has been validated as direct target gene mediating the anti-apoptotic function of 

PAX3/FKHR with a well known oncogenic role (Ebauer et al., 2007). AP-2 has been implicated 

to play a role in carcinogenesis, as well as in the development of the kidney. AP-2β expression 

was observed in the low-stage subtypes of renal cell carcinoma (Oya et al., 2004). AP-2β  is 

reported to be a promising target for treatment of type 2 diabetes where it is known to regulate 

adipocytokine gene expression contribute to the pathogenesis of type 2 diabetes through 

regulation of adipocytokine gene expression, and that AP-2β  may be a promising target for 

treatment or prevention of this disease (Maeda et al., 2005; Tsukada et al., 2006). 

To understand and to elucidate the functional role of interaction between K14 and AP-2β , it 

becomes important to look for the molecular mechanism for the long-proposed scaffolding role 

of keratins and the signalling pathways regulate the AP-2β – K14 interaction. 
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Analysis of p86DM 

 

We have isolated an unannotated protein as keratin associated protein using a genetic screening 

method ‘Sos recruitment system’ in yeast. We found this protein as interacting partner with K14 

head and rod domain. Unfortunately the effort to prove its direct interaction with K14 in 

mammalian cell culture system using BiFC was not successful. At present, it appears that 

p86DM does not directly interact with K14, based on a number of experiments carried out by 

others in the lab. 

p86DM still being  unannotated in the database and sequence analysis of p86DM using 

bioinformatics tools predicted interesting functions like role in endocytosis, migration and 

regulation of tight junctions with relevant domains in its sequence. The predicted protein carries 

an N-terminal 14-3-3 binding site, SH2 and SH3 motifs, a clathrin-heavy chain binding site, a 

coiled-coil domain and a C-terminal PDZ-binding site, a domain organization similar to that of 

TJ-associated proteins. 

These factors (see above) made us to select this protein for further investigation despite being not 

successful to identify the direct interaction in mammalian cells as the indirect interaction with 

functional significance cannot be ruled out.   

Bioinformatics analysis predicted a single transcript giving rise to an open reading frame of 776 

amino acids in the mouse and 5 isoforms for human p86DM gene. To verify whether p86DM is 

encoded by a single functional gene, total RNA was isolated from Caco-2 cells, full length 

cDNA was obtained by performing RT-PCR using the different set of primers according to the 

predicted isoforms with a coding sequence of 2337bp located in between exon 4 and exon 9. The 

multiple length cDNAs obtained by RT-PCR were sequenced and their analysis showed 

existence of a single functional gene for p86DM in cultured Caco-2 cells.    

In order to gain a first insight on the potential mechanism by which p86DM may act, in an 

independent experiment (Wester.A and Magin.T.M) β-actin was identified as one of the p86DM 

associated proteins. 

Immunofluorescence anylaysis in cultured epithelial cells demonstrated that at the apical 

plasmam membrane P86DM colocalized with actin at tight junctions (personal communication 

with Wester.A and Magin.T.M). The eukaryotic actin cytoskeleton has an important role in 

remarkable diverse processes, including cell migration, endocytosis, vesicle traffiking and 

cytokinesis, many of which are essential for survival of the cell (Goley and Welch, 2006). The 

dynamic assembly and disassembly of actin filaments and the formation of larger scale filament 
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structures are crucial aspects of actin’s function, and are therefore under scrupulous control by 

over a hundred actin-binding proteins.   

To investigate the interaction of p86DM with candidate proteins, its interaction with actin was 

investigated further. For this purpose we once again used BiFC technique which has successfully 

demonstrated the direct interactions between two proteins in previous experiments. Full length 

actin and p86DM were tagged with the non-fluorescent fragments of Venus-YFP, upon 

cotransfection in MCF-7 cells, autofluorescence as a result of formation of mature YFP revealed 

the interaction between actin and p86DM (Figure: 4.22). The cotransfected cells were stained for 

actin and p86DM, their staining profile and the images (Figure: 4.25) further supported the 

results obtained from BiFC experiment thereby confirming the interaction between actin and 

p86DM. 

To carry out the further functional studies for p86DM, recombinant protein was expressed in E. 

coli with the SUMO-His tag (Figure: 4.27), which will be used in the further functional studies. 

The purified protein which has been cleaved off from SUMO-His tag, can be used for structural 

analysis and to raise p86DM specific monoclonal antibody.   

Based on the preliminary set of results from the functional studies, p86DM enjoys the status of a 

promising candidate and requires thorough investigation to reveal the importance of its direct 

interaction with actin which might be involved in the local regulation of actin organization.   
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6. Summary 
 

Keratins are an integral and important constituent of the epithelial cytoskeleton and protect 

epithelial cells against stress. In addition to their well-established function as cytoskeletal 

scaffolds in epithelia, recent findings have revealed that beyond maintenance of cytoarchitecture, 

keratins play important role in cell proliferation, growth, survival and organelle transport along 

with its associated proteins. To understand these novel keratin functions and to address the 

molecular mechanisms, the identification of keratin-associated proteins was a major prerequisite.  

The aim of the present study was to find novel keratin associated proteins that might provide 

missing links. To this end, screening for the KAPs was carried out by a genetic approach ‘Sos 

recruitment’ technique based on temperature sensitive selection of positive interacting candidates 

in yeast to isolate K5 and K14 interacting proteins. As the first step, cDNA library was 

constructed with 500,000 cDNA fragments (size ranging from 500 bp to 4 kb) isolated from 

human skin sample. Yeast-two-hybrid screen was performed using head, rod and tail domains of 

epidermal keratins K5 and K14 as baits against cDNA library.  

Screening in yeast yielded more than 2400 interacting candidates, out of which 200 selected 

cDNA fragments were sequenced.  

It was observed that proteins affiliated with diverse functions seem to interact with K5 and K14. 

To name a few, small GTPase family members proteins (Rab34, EP164), membrane binding 

proteins (LYPD3), WW domain binding proteins (WBP1, TAPT1 etc), transcription factors 

(AP2β, STAT6), translation elongation factor (EEF1A1), 14-3-3theta a member of 14-3-3 family 

proteins along with many hypothetical and un-annotated proteins like p86DM were identified as 

interacting partners. 

K14 head domain interacting candidates ‘Rab34’ a small GTPase of the ras superfamily reported 

to be involved in the regulation of lysosome morphogenesis (Jordens et al., 2001) and in 

formation of macropinosomes (Wang and Hong, 2005), regulator protein ‘14-3-3 theta’, 

transcription factor ‘AP2-β’ a member AP-2 family of helix-span-helix transcription factors 

which determine the cell-type-restricted proliferation and the suppression of terminal 

differentiation of epithelia and additional tissues, and the anannotated protein ‘p86DM’  were 

selected for further analysis.  

A direct interaction of full length K14 with AP-2β, and Rab34 was confirmed in cytoplasm of 

mammary epithelial MCF-7 cells by bimolecular fluorescence complementation (BiFC) 

technique.   
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These results strongly suggest: 

1. Ras-related protein Rab-34 belonging to small GTPase Rab family directly interacts with 

K14. Understanding the significance of this interaction and further in-depth studies might 

definitely help in knowing process of import and regulation of melanosome by keratinocytes. 

2. Direct interaction between K14 with AP-2β strongly suggests that AP-2β is sequestered in 

the cytoplasm by interaction with K14 and can be hypothesized that sequestration by distinct 

keratins represents a novel mechanism to regulate the activity of AP-2 transcription factors. 

3. Preliminary set of results from the functional studies of p86DM displayed encouraging 

results and thus can be considered as a promising candidate and requires thorough 

investigation to reveal the importance of its direct interaction with actin.   

It is worthwhile to note that, for the first time a detailed screen has been undertaken to identify 

keratin-associated proteins and less than 10% of the candidates obtained from Y2H screen have 

been sequenced so far. Further analysis of the already identified proteins and identifying the 

preserved un-sequenced samples will be beneficial towards understanding the molecular 

mechanism of keratin regulated functions. 
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PROJECTS 

 

1. Identification and characterization of novel keratin associated proteins using a genetic 
interaction screening system 
Institue of Physiological chemistry 

Guide : Prof. Thomas M. Magin 

Brief project profile:  
Cell architecture is mainly based on the interaction of cytoskeletal proteins, which include 
intermediate filaments, micro filaments, microtubules as well as type-specific membrane 
attachment structures and associated proteins. 
Keratin 5 and keratin 14 form the major intermediate filaments of basal epidermis, their primary 
function is to impart mechanical strength to cells as highlighted by the dominant mutations 
causing inherited skin disorders. In order to understand the molecular mechanism of keratin 
dependent functions, we intend to identify novel keratin associated proteins. 

Yeast two hybrid screen was performed using K5 and K14 as bait against a cDNA library prepared 
from human skin tissue. From the six baits used about 2000 positive interacting candidates were 
obtained, which included anticipated transporter proteins along with some unexpected and un-
annotated proteins.  

Among the different methods tested to confirm the interaction between positive candidates from 
the screen and keratins, bimolecular fluorescence complementation (Bifc) was found to be the 
most suitable method and thus was used to confirm the interaction for some of the short listed 
candidates. At present further functional studies are being carried out for characterization of some 
of the selected interacting candidates identified by screening experiments. 

 
2. Evaluation of estrogenic activity using MCF -7 human breast cancer cells 

Natural Remedies Ltd., Bangalore, INDIA.  Team size: 1 

Brief project profile:   

This project is focused on discovering the potent phytoestrogens from the herbal extracts. 

Estrogenic activity is determined using an estrogen-dependent MCF-7 breast cancer cell 

proliferation assay. 

 

3. Nitric oxide scavenging activity in freshly isolated  macrophages 

Natural Remedies Ltd., Bangalore, INDIA.  Team size: 1 

Brief project profile:   

A mixture of water extracts of certain medicinal plants is being investigated for the nitric oxide 

scavenging activity in freshly isolated macrophages from the peritoneal cavity of mice. The nitric 

oxide release is stimulated using lipopolysaccharide (LPS) & the extract mixture is being tested 

for its scavenging activity by a microtitre plate assay method based on Griess reaction. 



 

4. Evaluation of anti-hyperglycemic effect of herbal extracts through the inhibition of intestinal 

enzymes in normal rats. 

Natural Remedies Ltd., Bangalore, INDIA.  Team size: 1 

Brief project profile:   

We examined the inhibitory effects of different herbal extracts on starch and sucrose loading 

induced hyperglycemia in normal Wistar rats. Blood glucose level was estimated at different 

intervals after the carbohydrate loading to examine the inhibitory activity of the test extracts on 

disaccharidases in the small intestine of rats. 

 

5. Evaluation of anti stress property by swim endurance test 

Natural Remedies Ltd., Bangalore, INDIA.  Team size: 1 

Brief project profile:   

The anti stress property of the herbal extracts was tested on Swiss albino mice, exposed to swim 

endurance test model of stress. Positive control compound and the test extracts were administered 

orally for 30 days. Reactivity of the mice, loss in body weight, length of endurance and incidence 

of mortality were graded and measured. 

 

6. Method Development For Isolation And Purification Of HBsAg Protein  

Yashraj Biotechnology Ltd., New Bombay, INDIA.  

 Brief project profile:   

The project involves the method development for isolation & purification of the diagnostically 

important proteins (HBsAg, Cancer antigens) from the biological fluids of human origin, scale-up 

to production process & the study of stability properties of the purified proteins. 

7. Tool for finding ORF in a nucleotide sequence. 
Manvish InfoTech Ltd, Bangalore, INDIA,. 
Guide: Dr. Raja Mugasimangalam. Team size: 3 
Brief project profile:   
A tool was developed using C programming language, to locate the Open Reading Frames (ORF) 
and its position in the original nucleotide sequence, along with six frame translations.  The results 
obtained from this tool were similar to that of the currently available online tools.  As a useful 
analytical tool, it also provided the percentage GC content. This utility is a useful and fast way to 
translate a sequence in combination with ORF analysis.  

8. In-vitro and in-vivo investigation on the hepatoprotective activity of certain medicinal    
plants. 
J.S.S College of Pharmacy, Ooty,  
Guides :Dr.P.Vijayan. Team size: 1  
Brief project profile:  



The methanolic extracts of the root, root bark and stem of Berberis tinctoria, ethanolic extract of 
whole plant of Phyllanthus amarus and the total alkaloids isolated from the leaves of Solanum 
pseudocapsicum were investigated for its hepatoprotective activity against CCl4 induced toxicity 
in freshly isolated rat hepatocytes, HepG2 cell line in-vitro and in animal models. The extracts 
were able to normalise the levels of ASAT, ALAT, ALP, TGL, total proteins, albumin, total 
bilirubin and direct bilirubin which were altered due to CCl4 intoxication in freshly isolated rat 
hepatocytes and also in animal models.  
 

9. Comparative cytotoxic studies of synthetic drugs in established cell lines and primary 
culture. 
J.S.S College of Pharmacy, Ooty,  
Guide : Dr. P. Vijayan & Ms. Sarita G.S  Team size : 2  
Brief project profile: 
Eight drugs belonging to pyridine & mannich bases were selected for systematic screening for 

cytotoxicity as a means of identifying potential anti-tumor drug moieties.  Long-term cytotoxicity 

studies were performed on HEp-2 and Vero cell lines and mouse lung & kidney primary cultures. 

The cytotoxic effect of all the eight drugs was estimated by dye exclusion, protein synthesis 

estimation and MTT assay methods. All studies confirmed that the drug activity was significant 

only at very high concentration. 

 

COMPUTER KNOWLEDGE 

• Windows, Linux, MS Office 

• Working knowledge in  C, HTML, ORACLE       
• Working knowledge of Bioinformatics related software and tools like EMBOSS, GCG, Vector 

NTI, ClustalW, FASTA, BLAST, SCOP, FUGUE, J-Pred, 3DPSSM, PDB-BLAST, Swiss-Model, 
SwissPDB Viewer, PDB tool, RASMOL, Pfam.  

 
PUBLICATIONS 
• Comparative cytotoxic studies of synthetic drugs in established cell lines and primary culture, 

paper accepted for presentation at 52nd IPC held at Hyderabad. 
• Hepatoprotective effect of the alkaloid fraction of Solanum pseudocapsicum leaves, 

Pharmaceutical Biology –2003; 41: 443 - 448  
• The cytotoxic activity of the total alkaloids isolated from different parts of Solanum 

pseudocapsicum,  Biol Pharm Bull. 2004 Apr;27(4):528-30. 
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