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Three-Body Halo Nuclei in an Effective Theory Framework
The universal properties and structure of halo nuclei composed of two neutrons (2n)
and a core are investigated within an effective quantum mechanics framework. We
construct an effective interaction potential that exploits the separation of scales in
halo nuclei and treat the nucleus as an effective three-body system, which to leading
order is described by the large S-wave scattering lengths in the underlying two-body
subsystems. The uncertainty from higher orders in the expansion is quantified through
theoretical error bands. First, we investigate the possibility to observe excited Efimov
states in 2n halo nuclei. Based on the experimental data, 20C is the only halo nucleus
candidate to possibly have an Efimov excited state, with an energy less than 7 keV
below the scattering threshold. Second, we study the structure of 20C and other 2n
halo nuclei. In particular, we calculate their matter density form factors, radii, and
two-neutron opening angles.
We then make a systematic improvement upon these calculations by extending the
effective potential to the next-to-leading order. To this order, we require an additional
two-body parameter, which we tune to the effective range of the interaction. In
addition to range corrections to the 2n halo nuclei results, we show corrections to the
Efimov effect in the three-boson system. Furthermore, we explore universality in the
linear range corrections to the Efimov spectrum.
Finally, we study the scattering of D0 and D∗0 mesons and their antiparticles off the
X(3872) in an effective field theory for short-range interactions. We present results for
the S-wave scattering amplitude, total interaction cross section and S-wave scattering
length.





Mom and Dad



By wisdom the LORD laid the earth’s foundations,

by understanding he set the heavens in place;
by his knowledge the deeps were divided,

and the clouds let drop the dew.
Proverbs 3:19–20

And these are but the outer fringe of his works;

how faint the whisper we hear of him!
Who then can understand the thunder of his power?

Job 26:14
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Chapter 1

Introduction

There has been a considerable interest in physical systems with large scattering lengths
recently. The scattering of two particles with short-range interactions at sufficiently
low energy is determined by their S-wave scattering length a. If a is much larger
than the range of the interaction R, the system shows universal properties which are
independent of the details of the underlying potential [Br06b]. The simplest example
is the existence of a shallow two-body bound state if a is large and positive, but there
are many more, including the effects of a limit cycle [Bed99] and the Efimov effect
[Ef70] in the three-body system.

The best known example of a nuclear system with a large scattering length is the
two-nucleon (NN) system. There are two independent S-wave scattering lengths that
govern the low-energy scattering of nucleons. Both scattering lengths are significantly
larger than the range of the interaction R ∼ 1/mπ ≈ 1.4 fm, with the scattering length
in the triplet channel being approximately three times as large, and that in the singlet
channel about nine times as large. The effective ranges in both channels are of the
same order as R. The corresponding shallow bound state in the NN system is the
deuteron.

The deuteron is also the simplest example of what are known as halo nuclei:
nuclear systems which consist of a tightly bound core surrounded by a “halo” of
lightly bound nucleons. Halo nuclei are characterized by their large nuclear radius
compared to the radius of the core, or equivalently, the separation energy of the halo
nucleons is small compared to the excitation energy of the core. For example, 6He can
be considered to be a three-body bound state of the alpha particle with two lightly
bound neutrons in the halo, therefore, known as a 2n halo nucleus. The two neutrons
are bound to the alpha particle with a separation energy of ≈ 0.97 MeV, which is
very small in comparison to the binding energy of the alpha particle, ≈ 28.3 MeV.
Due to this separation of scales, halo nuclei offer the possibility of exploring universal
behavior [Ri94, Zh93, Hans95, Ta96, Je04].

Also, the separation of scales found in systems with large scattering lengths al-
lows for the use of effective theories, which provide for systematically improvable
calculations of observables with realistic uncertainties. In few-nucleon systems, it
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is practical to use an effective theory built up of contact interactions in an expan-
sion in r0/|a|, where r0 is the effective range of the interaction. Such an effective
theory has successfully been applied to various two-, three-, and four-nucleon observ-
ables (See Refs. [Bed02, Bed03a, Pl05] and references therein). For halo nuclei, one
can assume the core to be a structureless particle, and treat the nucleus as a few-
body system of the core and the valence nucleons. An effective field theory (EFT)
comprised of contact interactions was first applied to study two-body halo nuclei in
Refs. [Ber02, Bed03b], where the unbound alpha-neutron system was considered.

In this thesis, we focus mainly on 2n halo nuclei composed of a core and two
valence neutrons. Such systems are interesting as they can display universal three-
body behavior, specifically the Efimov effect [Ef70]. Efimov found that in three-body
systems of non-relativistic particles, if at least two of the three pairs of particles have
a large scattering length |a| compared to the range R of the interaction, there occurs a
sequence of three-body bound states whose binding energies are spaced geometrically
between �

2/mR2 and �
2/ma2. The number of bound states grows to infinity, with an

accumulation point at the three-body scattering threshold, in the limit ±a→ ∞. The
sequence of three-body bound states has universal properties that are independent
of the details of the two-body potential at short distances. For example, in this so
called resonant limit, a = ±∞, there exists a discrete scaling symmetry and a discrete
scaling factor λ0 which relates the binding energies of neighboring Efimov states as
the threshold is approached: B

(n)
3 = λ2

0B
(n+1)
3 as n→ ∞.

The first experimental evidence for Efimov states was found through their signa-
ture in the recombination rate of ultracold Cesium atoms [Kr06]. In such ultracold
atomic systems, the scattering length can be experimentally tuned by varying an ex-
ternal magnetic field in what is known as a Feshbach resonance [Fes62]. In this way,
the scattering length can be set to an almost arbitrarily large value, where the physics
of the system is dominated by universal behavior, and in the three-body sector by so
called Efimov physics. Specifically, if there is an Efimov trimer near the scattering
threshold, there will be a resonant enhancement of scattering processes. There ap-
pears just such a resonant enhancement of the measured recombination rate in the
lowest hyperfine state of ultracold 133Cs atoms at a ∼ −850a0 due to the presence of
an Efimov trimer at the three-body threshold [Kr06]. At this value of the scattering
length, three atoms can form a shallow Efimov bound state, and consequently leave
the trap. More recent experiments have utilized Feshbach resonances and have pos-
sibly found the characteristic signature of the Efimov effect in other ultracold atomic
systems [Kn08, Ot08, Hu08, Ba09].

At this point we begin to understand what is meant by the universality of systems
with large scattering lengths. A property is considered to be universal if it applies to
various systems with much different length (or energy) scales. As mentioned above,
the simplest universal property of systems with a large and positive scattering length
is the shallow two-body bound state, with a binding energy given by the universal
formula: B2 = �

2/2µa2, where µ is the reduced mass of the dimer system. We have
already identified the deuteron as the dimer in the NN system. At the atomic scale,
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the large scattering length of the 4He system leads to a shallow 4He dimer which is
used to extract the scattering length [Gr00].

In this work, we are interested in looking at the universal properties of three-body
systems with large scattering lengths. As we already mentioned, the main focus will
be on 2n halo nuclei systems, but we will also show how these results can be applied
to the Efimov effect found for three identical bosons. Also, we explore the three-body
particle-dimer scattering in the growing field of mesonic molecules.

The thesis is organized as follows: In Ch. 2, we provide a brief overview of the
basic theoretical concepts which are central to this work. We discuss in more detail
the already often mentioned scattering length as it is defined through the effective
range expansion in scattering theory. We also define what is meant by the natural
low-energy length scale, as well as provide examples of systems with large scattering
lengths. We give a brief introduction to effective theories, and analyze the two-body
system with large scattering length through an EFT with contact interactions. This
EFT lays the groundwork for the effective quantum mechanics approach which is used
in the bulk of this work.

We then introduce the formalism needed in solving the non-relativistic three-body
problem through the well known Faddeev equations in Ch. 3. We also introduce
the Jacobi momenta which describe the motion of the three-body system and build
a complete set of partial wave projected basis states to be used in our quantum
mechanical framework. From the general results we derive the Faddeev equations for
solving the 2n halo nucleus problem.

In Ch. 4, we explore the occurrence of the Efimov effect and its well known univer-
sal properties for 2n halo nuclei with a core of spin zero using an effective potential.
We perform all of the calculations to leading order, in which only the scattering length
plays a role. We show explicitly the renormalization of the two-body potential, which
is necessary for a proper renormalization of the three-body problem. After doing this,
we review the universal properties of the Efimov effect, before determining which
known 2n halo nuclei exhibit the possibility of having an excited Efimov state. Gen-
erally, we show what the values of the two-body energies or, in other words, how large
the scattering lengths must be in order to produce at least one Efimov excited state,
when the three-body ground state energy is known. From the earliest studies of halo
nuclei, 20C has been suggested as a good candidate for Efimov states [Fed94], with
future theoretical work supporting this prediction [Amo96, Maz00]. We critically ex-
amine these earlier studies and perform an improved analysis in the framework of an
effective theory. We also look at the structure of known halo nuclei, calculating the
one- and two-body matter density form factors. From these results we can extract
various mean square radii, and calculate other geometrical properties, specifically the
two-neutron opening angle. Throughout this chapter, the uncertainties of our leading
order analysis are quantified through error bands.

In Ch. 5, we provide a systematic improvement of our LO results by including
the next-to-leading order (NLO) term in the effective potential. It is at this order
that the effective range of the interaction comes into play. After showing in detail the
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process of renormalizing the two-body potential, we discuss various characteristics of
the two-body problem to NLO which then play an important role in the three-body
problem. Specifically, we look at the pole structure of the two-body T-matrix, as well
as re-derive a constraint on the effective range arising from the use of a short-range
effective potential. We then apply our results to the three-boson system, in order
to calculate NLO corrections to the Efimov effect, which are important to systems of
ultracold atoms near a Feshbach resonance. We explore universality in the linear range
corrections similarly to that done in Ref. [Pl08]. We also look at universal aspects
of the structure of Efimov states to NLO by calculating the mean square distance of
the two bosons in the dimer subsystem, as well as the distance of the spectator boson
from the center of mass. We then move on to calculate the NLO corrections to the
2n halo nuclei results found in Ch. 4. Although the effective ranges for the various
two-body subsystems of known 2n halo nuclei are not well known, we estimate this
value to be of the order of the natural low-energy length scale.

In Ch. 6, we step away from the bound state problem to explore the universal
properties of particle-dimer scattering. For this analysis, we no longer use the quan-
tum mechanics framework, but rather return to an EFT similar to that derived in
Ref. [Bed99]. We also no longer consider nuclear systems, but rather explore the uni-
versal scattering which may be found in the growing field of exotic charmonium states.
The recently discovered X(3872) meson is very close to the D∗0D̄0 threshold, and as
a result, has a resonant S-wave coupling to the D∗0D̄0 system. It is then possible that
the X(3872) is a weakly bound D∗0D̄0 dimer molecule with a large positive scattering
length (see Ref. [Br08d] and references therein). We present novel predictions for the
scattering of D0 and D∗0 mesons and their antiparticles off the X(3872) in pionless
EFT.

In the final chapter we briefly summarize our main results and provide an outlook
to the possibilities for future studies of systems with large scattering lengths.



Chapter 2

Overview

To start the exploration into three-body systems with large scattering lengths, we
wish to provide a brief overview of the main theoretical topics which will be used
throughout this thesis. We begin with a review of quantum mechanical scattering
theory in order to define the already mentioned scattering length through its origin
in the effective range expansion. We then define the natural low-energy length scale
in order to understand what is meant by a large scattering length. As examples,
we briefly describe two systems with large scattering lengths, the neutron-neutron
interaction and the mesonic molecule X(3872), both of which appear in the two main
topics of this thesis.

The second half of this chapter provides a brief introduction to effective theories.
A review of the concepts of effective field theory (EFT) is illustrated by the EFT for
a two-boson system with large scattering length. This EFT is important to the rest
of this thesis, as it provides the foundation for the three-body systems we will later
explore. We also show explicitly the connection between the EFT solution and the
scattering theory results. We conclude this chapter by briefly describing the usefulness
of an effective quantum mechanical theory as an analogous approach to calculating
low-energy observables in systems with large scattering lengths.

2.1 Scattering Theory Concepts

In this section we give a brief review of some basic concepts of scattering theory
which are central to this work, including the scattering length, the effective range
expansion, and how these relate to the scattering amplitude and bound states. Then,
the unnaturally large scattering length will be defined in terms of a natural low-
energy length scale, and some examples of systems with large scattering lengths will
be given. More detailed reviews with a focus on ultracold atoms can be found in
Refs. [Da99, He99].
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2.1.1 Scattering Theory Basics

The most important parameter in the low-energy interactions of particles is the two-
body S-wave scattering length, which we now refer to as simply the scattering length.
Therefore, we now wish to review the origins of this parameter in the partial wave
expansion of the scattering amplitude. Let us start with the low-energy elastic scat-
tering of two identical particles with mass m which interact through a short-range
potential. In the center-of-mass frame, the momenta of the particles are ±��k and their
total kinetic energy E = �

2k2/m. The elastic scattering is described by a stationary
wave function ψ(�r) where �r is the separation of the two particles. The behavior in
the asymptotic limit r → ∞, is the sum of a plane wave, for the incoming part,
and a spherical wave, for the outgoing scattered part. Taking the z-direction as the
direction of the incoming wave, the wave function is

ψ(�r) = eikz + fk(θ)
eikr

r
, (2.1)

where fk(θ) is the scattering amplitude arising from the two-body interaction potential.
The scattering amplitude depends on the scattering angle θ and the wave number k,
and can be used to find the differential cross section:

dσ

dΩ
= |fk(θ) ± fk(π − θ)|2 , (2.2)

where the plus(minus) sign is used if the particles are identical bosons(fermions).
If the particles are distinguishable, the second term fk(π − θ) would be omitted.
Because the particles are identical, to obtain the cross section for elastic scattering,
one must integrate over only half of the 4π solid angle (and over the whole solid
angle for distinguishable particles). However, the total cross section is related to the
forward-scattering limit of the scattering amplitude by the optical theorem:

σ(total) =
8π

k
Imfk(θ = 0) . (2.3)

Distinguishable particles would have a prefactor of 4π rather than 8π. If there are no
inelastic channels in the two-body scattering, the total cross section is equal to the
elastic cross section found from integrating Eq. (2.2) over half of the total solid angle.
Otherwise, the total cross section would be the sum of the elastic and inelastic cross
sections.

In the low-energy limit (k → 0 or E → 0), the scattering amplitude becomes an
isotropic constant. This low-energy limit to the scattering amplitude is the sought
after scattering length a:

fk(θ) → −a as k → 0 . (2.4)

Measurement of the low-energy limit of the elastic cross section provides a way of
determining the absolute value of a:

σ(E) → 8πa2 as E → 0 , (2.5)
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where, again, distinguishable particles would have a prefactor of 4π rather than 8π.
Determining the sign of a requires the measurement of a more complicated interference
effect. Inelastic channels at E = 0 would require complex values of a, and thus a2 in
Eq. (2.5) would need to be replaced with |a|2.

Since we noted that a is the two-body S-wave scattering length, it is useful to
resolve the scattering amplitude fk(θ) into the contributions from the definite angular
momentum quantum number l (of which the S-wave corresponds to l = 0), by the
partial wave expansion, an expansion in terms of Legendre polynomials:

fk(θ) =
1

k

∞∑
l=0

(2l + 1)cl(k)Pl(cos θ) . (2.6)

For bosons, only the even values of l contribute to the differential cross section in
Eq. (2.2), while for fermions only the odd values of l contribute. Unitarity places a
constraint on the values of the coefficients cl(k) in Eq. (2.6): |cl| ≤ 1. Writing the
coefficients in terms of phase shifts δl(k) takes into account these unitarity constraints
automatically:

cl(k) = eiδl(k) sin δl(k) . (2.7)

Substituting this into Eq. (2.6) then gives a scattering amplitude:

fk(θ) =

∞∑
l=0

2l + 1

k cot δl(k) − ik
Pl(cos θ) . (2.8)

Inelastic channels in the scattering would produce complex values for the phase shifts
with positive imaginary parts. However, if there exists only elastic scattering, the
phase shifts are real valued and integrating Eq. (2.2) over half the solid angle with
Eq. (2.8) substituted for fk(θ) would give

σ(E) =
8π

k2

∞∑
l=0

(2l + 1) sin2 δl(k) . (2.9)

Distinguishable particles would have a prefactor of 4π rather than 8π. Recall that
the total kinetic energy in the system is related to the center-of-mass momentum,
E = �

2k2/m. Again, for bosons the summation is taken over only even values of l,
and for fermions over odd values.

We are interested in two-body scattering of identical particles due to a short-range
potential in the low-energy limit. In the limit k → 0 (or similarly E → 0) the phase
shift δl(k) approaches zero like k2l+1. The dominant term in the scattering amplitude
thus comes from the lowest partial wave contribution, the S-wave (l = 0) for bosons
or the P-wave (l = 1) for fermions. At these low energies the S-wave phase shift δ0(k)
can be expanded in powers of k in what is known as the effective range expansion. It
is most usefully written as

k cot δ0(k) = −1

a
+

1

2
r0k

2 − 1

4
P0k

4 + . . . , (2.10)
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where the first term gives the proper definition for the previously defined scattering
length a. The next two terms define the S-wave effective range r0, and the S-wave
shape parameter P0. These two parameters depend on the specific shape of the interac-
tion potential, and thus their measurement gives useful information on the interaction
potential. Substituting Eq. (2.10), keeping only the first two terms, into Eq (2.8) with
l = 0, gives the low-energy S-wave scattering amplitude:

fk(θ) =
1

−1/a+ r0k2/2 − ik
. (2.11)

This shows the isotropic nature of S-wave scattering as well as verifies the earlier
definition of a given in Eq. (2.4).

One possibility of the two-body interaction is the two-body bound state, also
known as a dimer. This requires that the potential have an attractive region which is
deep enough for the bound states to form. The poles of the scattering amplitude fk

in the upper half-plane of the complex variable k give the two-body binding energies
B2. It is then useful to define the binding wave number κ in terms of the binding
energies:

B2 =
�

2κ2

m
. (2.12)

To determine the S-wave bound states, the binding wave number can be found from
the pole of Eq. (2.8) for l = 0 with k = iκ. The binding wave number is then the
positive real-valued solution to

iκ cot δ0(iκ) + κ = 0 . (2.13)

For a shallow bound state, the effective range expansion of Eq. (2.10) can be sub-
stituted into this equation. If the scattering length is large compared to the other
coefficients, for example a� r0, then only the first term is necessary and the resulting
κ = 1/a gives a shallow binding energy of

B2 =
�

2

ma2
, (2.14)

with a first correction of order r0/a.

2.1.2 Natural Low-Energy Length Scale and the Large Scat-
tering Length

In order to define a large scattering length, we need the scattering length to be large
compared to some known scale. The necessary scale is the natural low-energy length
scale 	, sometimes called the characteristic radius of interaction, and thus related
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to the interaction potential. At low-energies, the scattering amplitude fk can be
expanded in powers of the wave number k:

fk = c0 + c1k + c2k
2 + . . . . (2.15)

The natural scale of the expansion coefficients, cn = (c0, c1, . . .), is then set by 	.
By dimensional analysis, fk must have the dimension of length, and since k has the
dimension of 	−1, the coefficient of the kn term must have the dimension [cn] = 	n+1.
Thus, the coefficient cn can be rewritten as 	n+1 multiplied by a new dimensionless
coefficient an:

fk = a0	+ a1	
2k + a2	

3k2 + . . . . (2.16)

While there is no general constraint on the magnitude of these coefficients, for a
generic potential, there usually exists a length scale 	 for which all of the coefficients
have a magnitude of or near order 1: |an| ∼ 1. To have a coefficient with an absolute
value of an order of magnitude much larger than 1 usually requires the fine-tuning of
specific parameters of the potential, generally related to the shape of the potential.
The natural low-energy length scale is defined as the length scale 	 for which most of
the coefficients of the 	n+1kn expansion of the scattering amplitude have magnitudes
of order 1.

Applied to the effective range expansion, one assumes that for a generic potential,
the scattering length a, the effective range parameter r0, etc. would all have magni-
tudes comparable to 	. Coefficients with a magnitude comparable to 	 we refer to as
having a natural size. A large scattering length would result if |a| � 	. As stated
before, the case of a large scattering length would normally require the fine-tuning
of some parameter of the interaction potential. However, even if a is large, the other
coefficients in the effective range expansion, such as r0, should be of natural size. To
have more than one coefficient large would require the fine-tuning of two parameters
of the potential simultaneously.

As shown at the end of the previous subsection, a large scattering length with
an attractive potential can produce a shallow two-body bound state with binding
energy B2 = �

2/ma2. Typically, the shallowest bound state energy would be set by
the natural low-energy length scale to �

2/m	2 multiplied by some coefficient ∼ 1.
A large scattering length |a| � 	 creates a bound state with energy of magnitude
much smaller than expected. Thus, the fine-tuning of the binding energy can be the
fine-tuning needed to produce a large positive scattering length.

The fine-tuning necessary to generate a large scattering length can be the lucky
consequence of the values of fundamental constants in nature, called accidental fine-
tuning, or it can be produced by the adjustment of conditions under experimental
control, called experimental fine-tuning.

An example of accidental fine-tuning important to this work, due to its appear-
ance in three-body halo nuclei, is the large scattering length of the neutron-neutron
interaction. Although the neutron is a spin-1/2 fermion, neutrons with opposite spins
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can scatter in the S-wave channel. The standard value for the scattering length is
a = (−18.7 ± 0.6) fm [Gon99], and a measurement of the effective range has found
r0 = (2.75±0.11) fm [Mi90]. The low-energy interactions between two neutrons can be
described by a short-range potential generated by the exchange of pions. Therefore,
the natural low-energy length scale is the range of the one-pion-exchange calculated
by the inverse of the pion mass scale: 	π ≈ �/mπc = 1.4 fm. One clearly sees that
although the effective range is of natural size, the absolute value of the scattering
length is an order of magnitude larger. We will later exploit this separation of scales
in order to describe the neutron-neutron interaction with a pionless effective theory
built up of zero-range contact interactions (see Ch. 4 and Ch. 5).

More recently, systems with large scattering lengths have been found in particle
physics, specifically mesonic molecules. Of particular interest is the X(3872) which
was discovered by the Belle collaboration [Ch03] in B± → K±π+π−J/ψ decays and
shortly after confirmed by the CDF collaboration in pp̄ collisions [Ac04]. This state
has quantum numbers JPC = 1++ and is very close to the D∗0D̄0 threshold. As
a consequence, the X(3872) has a resonant S-wave coupling to the D∗0D̄0 system.
Many studies have addressed the nature of the X(3872) and provided predictions
for its decay modes based on the assumption that it is a D∗0D̄0 molecule with even
C-parity:

(D∗0D̄0)+ ≡ 1√
2

(
D∗0D̄0 +D0D̄∗0) . (2.17)

A recent status report can be found in Ref. [Br08d]. Using the latest measurements
in the J/ψπ+π− channel [Ada08, Aub08, CDF08], the mass of the X(3872) is [Br09]:

mX = (3871.55 ± 0.20) MeV , (2.18)

which corresponds to an energy relative to the D∗0D̄0 threshold

EX = (−0.26 ± 0.41) MeV . (2.19)

The central value corresponds to a (D∗0D̄0)+ bound state with binding energy BX =
0.26 MeV, but a virtual state can not be excluded from the current data in the
J/ψπ+π− and D∗0D̄0 channels [Hanh07b]. The X(3872) is also very narrow with
a width smaller than 2.3 MeV. Since the binding energy is much smaller than the
natural scale, given by the pion mass scale: m2

πc
2/(2µ) ≈ 10 MeV/c2, where µ is the

reduced mass of the D∗0D̄0 system, the D∗0D̄0 scattering length must be much larger
than the natural low-energy length scale. If the X(3872) is indeed a D∗0D̄0 molecule,
it has universal low-energy properties that depend only on its binding energy, some
of which we explore in Ch. 6.

Experimental fine-tuning to generate a large scattering length can be done through
shape resonance, in which the depth or range of the potential is tuned to produce a
bound state near the threshold, as illustrated in Fig. 2.1(a). This technique uses
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Figure 2.1: Two mechanisms for experimentally generating a large scattering length
by tuning a bound state, represented by the dashed lines, to be at the scattering
threshold. Left panel(a): a shape resonance in which the bound state is in the poten-
tial for the open channel. Right panel(b): the bound state is in the potential for a
weakly-coupled closed channel, as in a Feshbach resonance. Figure reproduced with
permission from Ref. [Br06b].

only the open channel, defined by the scattering particles. Another mechanism for
experimentally tuning the scattering length, a Feshbach resonance [Fes62], requires
the use of a second closed channel that is weakly coupled to the open channel, as
shown in Fig. 2.1(b). Feshbach resonances in alkali atoms can be generated by tuning
the magnetic field [Ti92, Ti93], with the general goal of generating a very weak two-
body bound state. This technique is now widely used in ultracold atomic systems,
where it is possible to tune the scattering length to magnitudes for which universal
behavior is observed, for example in Ref. [Kr06].

2.2 Effective Theories

To understand the low-energy behavior of a physical system, an effective theory is
the most general approach. An effective theory is one that is developed within the
framework of a more fundamental theory in such a way as to apply only to the de-
sired conditions, interactions, and particles contained within a certain subsystem of
the more fundamental “whole.” This is done because the fundamental theories are
often impractical to work with when considering a smaller subsystem. This division
into effective theories normally separates the different behavior of physics at differ-
ent energy levels [Kap95]. When working at an energy level much lower than that
described by the fundamental theory, a more practical effective theory specific to
the desired energy level and conditions of the system can be developed. In a way,
all physical theories can be thought of as differing levels of effective theories specific
to the desired conditions, interactions, and particles of the described system. The
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theories that are thought of as most fundamental today also apply to a specific set
of parameters, conditions, and energies within the whole physical universe. In the
development of physics, this process most often has occurred the other way around.
Typically, but not always, the low-energy effective theory was first discovered, with
the more fundamental theories coming later.

For example, when measuring the effect of gravity on an object near earth, one
finds that the force F on the object is equal to the object’s mass m multiplied by a
constant acceleration due to gravity g: F = mg. Or, when thought of in terms of
the potential energy: V = mgh, where h is the height of the object. However, this is
only an effective theory which applies when considering heights small compared to the
radius of the earth. A more fundamental theory would be Newton’s theory of gravity:
F = GMEm/(RE +h)2, or in terms of the potential energy: V = −GMEm/(RE +h),
where G is the gravitational constant, and ME and RE are the mass and radius of the
earth. Expanding either of these formulas with respect to h/RE , one finds that g =
GME/R

2
E , and that the first correction to the effective theory is proportional to h/RE ,

which would be negligible for h 	 RE . This demonstrates the important principle
of correspondence between an effective theory and its more fundamental theory. The
two theories must correspond to one another when the appropriate expansions and
approximations are made to the fundamental theory. Moreover, Newton’s theory
of gravity is also just an effective theory when considering objects with sufficiently
light masses. The more fundamental theory is Einstein’s General Relativity, the
correspondence between the two having been well established [We72]. Going further,
General Relativity could be assumed to also be just another effective theory for an
even more fundamental theory yet to be discovered.

The application of this general effective theory approach, when applied to field
theories, is called effective field theory. For example, quantum electrodynamics (QED)
is a quantum field theory which describes the behavior of electrons, positrons, and
photons. However, the perturbative calculations in QED give rise to intermediate
steps with ultraviolet divergences which indicate a large dependence on physics at
high energies, or short distances. The process of renormalization creates a theory
that gives extremely accurate predictions for the behavior of these three particles in
terms of two fundamental parameters: the fine structure constant α and the mass of
the electron me. However, this theory is not complete in that it does not include the
effects of heavier charged particles, such as the muon. Adding terms to QED for the
interactions involving these heavier particle fields would ruin the renormalizability of
the theory. However, an effective theory can be made to describe the effects of virtual
heavier particles without adding any new particle fields, assuming that the momenta
of the electrons, positrons and photons, and hence the energy in the system, are small
compared to the mass of the heavier particles. The effects of virtual heavy particles
can be taken into account with increasing accuracy by constructing field theories out
of QED with additional interaction terms, for example a magnetic moment interaction
term. These terms are constructed from only the electron and photon fields, plus an
additional parameter that can be calculated from α, me, and the masses of the heavier
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particles.
The ultraviolet divergence of QED is representative of divergences found in most

calculations using quantum field theories, including work with the Standard Model.
From these problems and the growing work with renormalization, effective field theo-
ries have been developed to describe many aspects of particle physics [Kap95, Ge93,
Man96]. Starting from the Standard Model, effective field theories either work down
the energy scale, developing theories to describe low-energy approximations, or up
the energy scale, treating the Standard Model as the effective theory of a still more
fundamental theory.

In the following subsection, we review the basic components and concepts needed
in understanding and developing an effective field theory, and illustrate with the ex-
ample of low-energy two-body scattering with a large scattering length. After that, we
move back from field theories and reintroduce the basic concepts needed in developing
an effective quantum mechanical theory.

2.2.1 An Introduction to Effective Field Theories

We now wish to review the basic concepts and components required in an effective field
theory by exploring a system of identical particles in the low-energy regime. To start
with, the particles interact non-relativistically, and the most fundamental interaction
is that between two particles, governed by a two-body potential V (r). The system of
N particles of mass m and momentum �pi is then described through non-relativistic
quantum mechanics by the Schrödinger equation in the Hamiltonian formalism:

Ĥ(N) =

N∑
i=1

p2
i

2m
+
∑
i<j

V (rij) , (2.20)

where �rij = �ri − �rj is the separation between particles i and j and rij = |�rij|.
Low-energy for this system means energy close to the N -particle scattering thresh-

old. To describe the low-energy behavior of the system, we require that each particle
has kinetic energy and that each pair of particles have potential energy that is small
compared to a natural energy scale �

2/m	2, where 	 is the natural low-energy length
scale associated with the two-body potential V (r) (see Sec. 2.1.2). Therefore, an
effective theory can be developed through the simplest approach, using an effective
short-range two-body potential Veff(r) in the Schrödinger equation, which depends
on a set of parameters, Ci = (C0, C1, . . .), which can be tuned to reproduce physical
results. The number of tuning parameters used determines the level of accuracy of
the reproduced results.

We can now move on to describing the two-body system in a quantum field the-
ory. A quantum field theory equivalent to the quantum mechanical Schrödinger equa-
tion for the N -body problem can be formulated through second quantization.1 The

1For a textbook treatment of second quantization and quantum field theory see, e.g. [Pes95, Zi02]
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quantum field theory is defined in terms of the quantum field operator ψ(�r) and its
hermitian conjugate ψ†(�r) instead of the momentum and position operators p̂i and r̂i.
These operators, respectively, create or annihilate a particle at the point �r. Assuming
the particles are bosons, the canonical commutator relations of the momentum and
position operators are then replaced with the equal-time commutator relations[

ψ(�r, t), ψ(�r′, t)
]

= 0,
[
ψ(�r, t), ψ†(�r′, t)

]
= δ3(�r − �r′) . (2.21)

These quantum field operators work on quantum states |Z〉. For example, the
number operator defined by

N̂ =

∫
d3r ψ†(�r)ψ(�r) (2.22)

applied to the state |Z〉 containing exactly N particles will produce the eigenvalue
equation

N̂ |Z〉 = N |Z〉 . (2.23)

The quantum mechanical N -body problem defined in Eq. (2.20) along with the
canonical commutator relations of the position and momentum operators can be
equivalently described by a quantum field theory with the commutator relations in
Eq. (2.21), the N -body constraint in Eq. (2.23), and the time evolution Hamiltonian
of the quantum field:

Ĥ =

∫
d3r

�
2

2m
∇ψ† · ∇ψ +

1

2

∫
d3r

∫
d3r′ ψ†(�r)ψ(�r)V (|�r − �r′|)ψ†(�r′)ψ(�r′) .

(2.24)

Of course, replacing V (|�r − �r′|) with Veff(|�r − �r′|) in this equation would produce an
effective field theory.

In order to now formulate a suitable effective interaction, some of the concepts of
low-energy scattering in quantum theories are needed. At the desired low energies, the
particles will behave like point particles with a short-range interaction. Let us explain.
The de Broglie wavelength λ = 2π�/p, where p is the momentum of the particle, sets
the length scale of the quantum nature of the center-of-mass coordinate. The small
relative momentum of the two interacting particles in the low-energy limit results in
a de Broglie wavelength larger than the spacial extent of the particles, and thus the
particles are unable to resolve, or “see,” the other’s internal structure. The interaction
of the two particles is therefore the same as that of two point particles. Furthermore,
if the interaction potential is short-ranged, with a range of R, and p	 �/R, then the
particles also can not resolve the structure of the potential. The interaction potential
then becomes equivalent to a local potential with contact terms proportional to the
delta function δ3(�r − �r′) and derivatives of the delta function. Higher order effects
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of the interaction could be taken into account through the inclusion of higher order
derivatives of the delta function.

These concepts of low-energy interactions are taken into account in constructing
the effective field theory, and thus we use a local quantum field theory. This is equiv-
alent to taking the scaling limit. The scaling limit, sometimes called the zero-range
limit, is achieved by taking the range of the interaction to zero while keeping the
scattering length unchanged, thus constructing the effective potential out of contact
terms. The effective Hamiltonian can then be expressed as the integral of a Hamilto-
nian density Heff :

Ĥeff =

∫
d3r Heff . (2.25)

The Hamiltonian density can only depend on the quantum field at a point ψ(�r) and
the gradients of the field at the same point. While, in general, there are an infinite
number of terms that can be included in Heff , several principles can reduce this number
to give an effective theory specific to the conditions of the desired problem. Let us
first write out the Hamiltonian needed to describe the two-body system with large
scattering length and then discuss the principles used to form it:

Heff =
�

2

2m
∇ψ† · ∇ψ +

g2

4
(ψ†ψ)2 +

h2

4
∇(ψ†ψ) · ∇(ψ†ψ) + . . . . (2.26)

First, a symmetry in the system must also be found in the Hamiltonian, and all
symmetries found in the fundamental theory must also appear in the effective theory.
The phase symmetry ψ → eiαψ of Eq. (2.24), which generates a conservation of
particle number, requires that every term in Heff have an equal number of ψ and ψ†

factors. The term with N factors each of ψ and ψ† is referred to as an N -body term.
Also, the N -body system is only affected by terms with up to N factors each of ψ and
ψ†. Thus, the two-body problem does not require terms with more than 2 factors each
of ψ and ψ†. Next, in the non-relativistic problem, there is also a Galilean symmetry
which imposes great constraints on the terms in the Hamiltonian. We will not go into
the details of these constraints here, but only mention that due to these constraints,
no other two-body terms besides the two found in Eq. (2.26) are allowed [Br06b].
Another principle that reduces the number of terms in the effective Hamiltonian is
that boundary terms in Heff do not change the theory. Therefore, terms that differ by
integration by parts are equivalent. For example, the term ψ†ψ∇2(ψ†ψ) is equivalent
to the term ∇(ψ†ψ) ·∇(ψ†ψ), and can be excluded. Finally, the terms with additional
factors of ∇ have effects that scale with additional powers of the energy E. Therefore,
to achieve corrections that scale with the order En+1, only terms with 2n factors of ∇
are required. The Hamiltonian in Eq. (2.26) can thus predict two-body observables
up to order E2, but no higher order corrections can be found.

Just as the tuning parameters Ci of the effective potential Veff can be tuned to
reproduce physical observables, the coupling constants, g2 and h2 in Eq. (2.26), can
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be used as tuning parameters to reproduce low-energy observables. Tuned simultane-
ously, they can reproduce the scattering length a and the effective range r0 associated
with the two-body potential. By adding higher N -body terms to the local quantum
field theory, the additional coupling constants can be tuned in order to reproduce the
N -body scattering amplitude to a desired order in E, thus assuring the predictive
power of the effective field theory in describing low-energy behavior.

The general use of effective field theories of this type runs into the problem of
ultraviolet divergences occurring in integrations over virtual states. As stated before,
this shows a large dependence on physics at high energy, or small distance, and can
often be solved by a process of renormalization. In this case, it is common to resolve
this problem through the use of an ultraviolet cutoff Λ.

In order to perform calculations with quantum field theories, it is more practical
to use the Lagrangian rather than the Hamiltonian formalism. Using the Legendre
transformation

L = Π∂tψ −H , (2.27)

where Π = ∂L/∂(∂tψ), the Hamiltonian density can be transformed into the La-
grangian density. In our case, Π = ψ†i, and integration by parts can be used to set
∇ψ† · ∇ψ = ψ†∇2ψ. Therefore, the Lagrangian density for the two-body problem of
identical bosons with large scattering length in the scaling limit is

L = ψ†
(
i
∂

∂t
+

�

2m
∇2

)
ψ − g2

4

(
ψ†ψ

)2 − h2

4
∇(ψ†ψ) · ∇(ψ†ψ) + . . . . (2.28)

The scattering of two particles can be described by the interaction terms of
Eq. (2.28) by calculating the power series expansion of g2 and h2 in perturbation
theory. However, with a large scattering length one assumes that the interactions
are strong and, therefore, the on-shell scattering amplitude T should be calculated
non-perturbatively [Kap98, vK99].

Before this analysis can be done, a very brief explanation of the formalism must be
presented. The physical observables of a scattering problem come from the S-matrix
elements, where the Ŝ operator is (somewhat schematically):

Ŝ = Tei
∫

d4xLint.

= 1 + iT

∫
d4xLint. + · · · , (2.29)

where T is the time ordering operator and Lint. represents the interaction terms
of the Lagrangian. The S-matrix elements arising from the application of the LSZ
Theorem results in the Green’s function 〈0|Ŝ|0〉, where |0〉 is the vacuum state. For
our Lagrangian, this reduces to the 4-point Green’s function 〈0|T(ψψψ†ψ†)|0〉, where
the time and space coordinates have been suppressed. The physical observables are
contained more usefully in the truncated connected Green’s function in momentum
space iA obtained by subtracting the disconnected terms which have the factored form
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〈0|T(ψψ†)|0〉〈0|T(ψψ†)|0〉, Fourier transforming in all coordinates to enter momentum
space, and factoring out the overall energy-momentum conserving delta function as
well as the propagator arising from external legs. This analysis can more practically
be done through the use of Feynman diagrams2.

Returning to our example, we now calculate the amplitude iA of the two-body
problem with large scattering length to leading order. To this order, only the g2

interaction term of the Lagrangian is needed. We also use units such that � =
1, in order to simplify the calculations. The correct placement of � in the results
can be determined by dimensional analysis. As mentioned before, the scattering
amplitude resulting from interactions with a large scattering length must be solved
non-perturbatively. Therefore, the leading order amplitude is found by solving the
integral equation represented by the Feynman diagrams shown in Fig. 2.2.

� �� ��
Figure 2.2: Diagrammatic representation of the integral equation for the leading order
two-body scattering amplitude A.

The Feynman rules used to write the analytical form of the integral equation from
this diagram are shown in Fig. 2.3. These rules are derived from the Lagrangian found
in Eq. (2.28). The vertex factors shown in Fig. 2.3a),b) arise straightforwardly from
the interaction terms of the Lagrangian. In calculations, both energy and momentum
are conserved at each vertex. The loops are constructed from the propagator factor

2A complete coverage of the formalism of Feynman diagrams can be found in, e.g. [Pes95].

-i g2

-i h2 (k2 + k’2)

i
k0 – k2/2m + i

a)

b)

c)

Figure 2.3: Feynman rules for the Lagrangian in Eq. (2.28): a) the vertex for the g2

contact term, b) the vertex for the h2 contact term, c) the propagator for a particle

with energy k0, momentum �k, and mass m.
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shown in Fig. 2.3c), which comes from the inverse of the kinetic energy term of the
Lagrangian in momentum space. However, the energy q0 and the momentum �q of
propagators which are found in loops are not determined by the external energies and
momenta of the incoming and outgoing particles. They must, therefore, be integrated
over the phase space d4q/(2π)4. Also, every loop subdiagram that is invariant under
the permutation of n internal lines also has a symmetry factor of 1/n!. In our dia-
grams, the loop has a symmetry factor of 1/2 corresponding to the switching of the
two propagators found in the loop. Therefore, the integral equation shown diagram-
matically in Fig. 2.2, using total energy E, internal propagators with energy q0 and
E − q0 and momenta ±�q is

A(E) = −g2 −
i

2
g2

∫
d3q

(2π)3

∫
dq0
2π

1

q0 − q2/2m+ iε

1

E − q0 − q2/2m+ iε
A(E) .

(2.30)

The function A(E) is independent of �q and q0 and can therefore be taken out of the
integral. Next, the integral over q0 can be done easily through contour integration on
the complex plane, and we find:

A(E) = −g2 −
1

2
mg2A(E)

∫
d3q

(2π)3

1

mE − q2 + iε
. (2.31)

The integral over �q can be done in spherical coordinates. While the integration over
the 4π solid angle is easy to perform, the integral over q ≡ |�q| has the expected
ultraviolet divergence. This divergence is regularized by imposing an ultraviolet cutoff
on the upper limit of integration, q < Λ. The integral is now analytically solvable,
and in the limit Λ � |E|1/2 we find for our final result:

A(E) = −g2

[
1 +

mg2

4π2

(
Λ − π

2

√
−mE − iε

)]−1

. (2.32)

Generally, the amplitude A will depend on the energies and momentum of the four
external particle lines. It is called an off-shell amplitude because the energy k0 of an
external line with momentum �k does not need to be equal to its physical value k2/2m.
However, physical observables can only be found when the amplitude is evaluated
using the physical values for every external line, called the on-shell amplitude T . It
is most convenient to work in the center-of-mass frame, in which the two incoming
lines have opposite momenta ±�k, and the outgoing lines momenta ±�p. Therefore,
the amplitude A can depend on only �k, �p, and the four off-shell external energies.
However, for the local effective field theory, where the only interaction is the contact
interaction, at which momentum and energy are both conserved, the amplitude is
only dependent on the total momentum and the total energy E of the system. In the
center-of-mass frame, where the total momentum is by definition zero, it is only a
function of E. In fact, we used these assumptions already in the above calculation of
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A(E). At the on-shell point we have E = 2(k2/2m) = 2(p2/2m), which would require
that p = k. Therefore the T-matrix element for this two-body scattering is

T (k) = A(E = k2/m) . (2.33)

The conventional scattering amplitude fk(θ) for two-body scattering through an angle
θ is proportional to the on-shell amplitude:

fk(θ) =
m

8π
T (k) , (2.34)

where m is the mass of the particle. The k → 0 limit of fk, as defined in Eq. (2.4),
gives the scattering length:

a = −m

8π
T (0) = −m

8π
A(0) . (2.35)

We can now use our result for the two-body scattering amplitude, Eq. (2.32), in the
E → 0 limit in order to eliminate the coupling constant g2 in favor of the scattering
length a:

a =
mg2

8π

(
1 +

mg2Λ

4π2

)−1

. (2.36)

Solving for g2 gives

g2 =
8πa

m

(
1 − 2aΛ

π

)−1

. (2.37)

For a fixed ultraviolet cutoff Λ, Eq. (2.37) can be used to evaluate the value to which g2

must to be tuned in order to reproduce an experimentally measured scattering length
a. Conversely, for a given a, g2 can be interpreted as a running coupling constant
dependent on the momentum scale Λ. It is also interesting to note that for a large
Λ � 1/|a|, the coupling constant g2 is always negative, no matter the sign of a.

Substituting Eq. (2.37) into our result for the off-shell amplitude A now com-
pletes the so called renormalization process, whereby we eliminate the ultraviolet
divergences:

A(E) =
8π

m

1

−1/a+
√
−mE − iε

. (2.38)

In this simple two-body problem, the renormalization eliminates the dependence on
Λ immediately. Normally, we should expect this dependence to only be suppressed in
higher order terms proportional to powers of 1/(aΛ) or E/Λ2, which would disappear
in taking the limit Λ → ∞. Substituting in the on-shell point, mE = k2, in order to
find the on-shell T-matrix gives

T (k) =
8π

m

1

−1/a− ik
, (2.39)

which, along with the definition in Eq. (2.34), reproduces exactly the low-energy S-
wave scattering amplitude, Eq. (2.11). Therefore, the EFT has reproduced all of the
low-energy physics for two-body scattering with a large scattering length.
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2.2.2 Effective Quantum Mechanical Theories

Rather than using an EFT, systems of non-relativistic particles interacting through
short-range potentials can also be easily described through more familiar quantum
mechanical theories. We therefore return to the Schrödinger equation in the Hamil-
tonian formalism with two-body interactions defined through an effective potential
Veff(r), as was briefly introduced at the beginning of the previous subsection. Recall
that the effective potential depends on a set of parameters Ci which are analogous
to the coupling constants (g2, h2, . . .) of the EFT Lagrangian. These parameters can
likewise be tuned in order to reproduce physical observables.

Depending on the number of parameters included, the effective potential can re-
produce the low-energy behavior of the system with an arbitrary level of accuracy
proportional to powers of the low-momentum scale Mlow over the high-momentum
scale Mhigh. The theory is valid up to a momentum Mhigh at which the errors become
of order one. Therefore, if n coupling parameters are used, the error will be of the
order (Mlow/Mhigh)

n. For example, in the two-body system with a large scattering
length, a ∼ 1/Mlow, compared to the range of the interaction, R ∼ 1/Mhigh, to lead-
ing order only one coupling parameter C0 would be needed, which can be tuned to
reproduce this scattering length. Once this is done, we can predict other low-energy
observables with errors of the order Mlow/Mhigh. At next-to-leading order, we would
require a second coupling parameter, which can be tuned to reproduce the effective
range of the interaction.

In this work, we explore systems for which the two-body interactions have large
scattering lengths. Due to the success of EFTs in describing such systems [Br06b], we
have chosen to generate our effective potential directly from the corresponding EFT
Lagrangian, Eq. (2.28). This is equivalent to using field-theoretic language for the
problem at hand. This leads to a separable potential made up of contact interactions
in a momentum expansion. The two-body S-wave effective potential to next-to-leading
order is therefore:

〈�p | Veff | �p′〉 = C0 + C2(p
2 + p′2) + . . . , (2.40)

where �p and �p′ are the relative momenta of the incoming and outgoing particles,
respectively. The dots indicate higher order momentum dependent interactions which
will not be needed in this work. As in the EFT approach, calculating observables with
this potential leads to ultraviolet divergences, due to high-energy effects, which must
be regulated. Thus, the exact form of the potential will depend on the choice of
regularization scheme. Of course, the low-energy observables must be independent
of the regularization scheme, and one can choose the scheme most convenient for
calculations. The specific choice of regularization scheme and its effects on the effective
potential will be dealt with in detail in the following chapters.

This approach was chosen because it is especially well suited in solving the three-
body system. The solution of the three-body non-relativistic quantum mechanical
problem was derived by Faddeev in the 1960’s [Fa61]. In the following chapter we
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give a detailed derivation of the Faddeev equations, along with the specific form
needed to solve the 2n halo nucleus problem.





Chapter 3

The Non-Relativistic Three-Body
Problem

In this chapter, we detail the formalism needed in calculating observables in the non-
relativistic three-body problem. The approach was first formulated by Faddeev in the
1960’s [Fa61], and thus, the resulting coupled equations are the well known Faddeev
equations. In the following section, we give a brief but thorough derivation of the Fad-
deev equations in operator form, first for an arbitrary three-body system (Sec. 3.1.1),
then specializing to the 2n halo nucleus system (Sec. 3.1.2). For calculations, these
equations will need to be projected onto a suitable basis state, which we create from
the Jacobi momenta. We introduce the Jacobi momenta in Sec. 3.2.1, and describe
how to build a complete set of basis states from the partial wave projected Jacobi
momenta in Sec. 3.2.2. We then show the form of these Jacobi states for the two
possible choices of two-body subsystems found in the 2n halo system in Sec. 3.2.3.
Our goal is to derive a coupled set of integral equations with which we can compute
low-energy observables of 2n halo nuclei. This set of coupled integral equations is
shown in Sec. 3.3.

3.1 The Faddeev Equations

The Faddeev equations are used to compute three-body observables in a quantum
mechanical framework. In the following subsection we give a brief derivation of this
set of coupled equations starting from the Schrödinger equation. We follow that up
by deriving the specific form of the Faddeev equations needed to solve the 2n halo
nucleus problem.
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3.1.1 The Faddeev Equations for an Arbitrary Three-Body

System

Faddeev’s idea was to decompose the full wave function Ψ into components ψi related
to the two-body subsystems [Fa61]. In this way the contributions of the two-body
potentials can be treated in a disconnected way. We start from the Schrödinger
equation for the three-body system with only two-body potentials, which can be
written in an integral equation form:

Ψ =
1

E −H0

∑
i

ViΨ, (3.1)

where the summation is over the three particles (which we refer to as particles i, j,
and k), Vi refers the the two-body interaction between particles j and k,1 and H0 is
the total kinetic energy of the three-body system. Faddeev showed that one could
first sum up all the interactions within each two-body subsystem to infinite order by
decomposing Ψ into Faddeev components:

Ψ =
∑

i

ψi, (3.2)

where

ψi ≡ G0ViΨ, (3.3)

and we use the normal definition for the free three-body propagator:

G0 ≡
1

E −H0
. (3.4)

By inserting Eq. (3.2) into Eq. (3.3), we find:

ψi = G0Viψi +G0Vi

∑
j �=i

ψj . (3.5)

We can then single out one two-body subsystem by bringing the ψi component to
one side and solving:

ψi = (1 −G0Vi)
−1G0Vi

∑
j �=i

ψj . (3.6)

The operator in front can be iterated and expanded to all orders, and one finds
a familiar form for the two-body t-matrix. This is obvious from the Lippmann-
Schwinger equation:

ti = Vi + ViG0ti (3.7)

1The spectator notation is used throughout. In this notation the index refers to the spectator
particle of the three-body system.
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Figure 3.1: The Faddeev components of a 2n halo nucleus corresponding to their
two-body subsystems

or

ti = (1 − ViG0)
−1Vi. (3.8)

Therefore, we end up with the coupled Faddeev equations:

ψi = G0ti
∑
j �=i

ψj . (3.9)

3.1.2 The Faddeev Equations for 2n Halo Nuclei

For the case of 2n halo nuclei, made up of a core c and two neutrons n, there are two
types of two-body subsystems: two c-n subsystems and one n-n subsystem, with Fad-
deev components ψn1 , ψn2 , and ψc, respectively (see Fig. 3.1). The c-n subsystems’
interaction tn is characterized through the potential Vn, while the n-n interaction tc
by the corresponding potential Vc. Due to the symmetry of the two c-n subsystems,
assuming they have the same interaction, the Faddeev equations can be simplified
through the use of a permutation operator P which permutes the two neutrons. The
application of P on any of the t-operators ti or the potentials Vi will leave them un-
changed. However, the wave functions and their components must be antisymmetric
under the permutation of the two neutrons:

PΨ = −Ψ and Pψn1/2
= −ψn2/1

. (3.10)

Therefore, the ψn2 component can be written in terms of ψn1 , and we need only two
of the Faddeev components. We are left with two coupled equations (dropping the
subscript on n1):

ψn = −G0tnPψn +G0tnψc (3.11)

and

ψc = G0tcψn −G0tcPψn

= 2G0tcψn, (3.12)
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where the last step depends on an expansion in a suitable basis state (see Sec. 3.2
and 3.3). The full three-body wave function is then written as

Ψ = (1 − P )ψn + ψc. (3.13)

The coupled Faddeev equations can most easily be solved as a large matrix equation:[
ψn

ψc

]
=

[
−G0tnP G0tn
2G0tc 0

] [
ψn

ψc

]
. (3.14)

However, if we are only interested in finding the binding energies and not in the wave
function, we can eliminate the ψc component by substituting Eq. (3.12) into Eq. (3.11)
to obtain a large integral equation:

ψn = −G0tnPψn + 2G0tnG0tcψn. (3.15)

The energies, E < 0, for which this equation has a nontrivial solution or, equivalently,
for which the kernel matrix in Eq. (3.14) has an eigenvalue equal to 1 are binding
energies of the three-body system.

In order for observables to be calculated, the Faddeev equations must now be
projected onto a suitable set of basis states.

3.2 The Jacobi Momentum States

The Jacobi momenta are used to describe the motion of three-body systems. This
eliminates the motion of the center of mass in favor of a two-body subsystem motion
and the motion of the spectator particle in relation to the two-body subsystem. These
coordinates are then used in their partial wave projected form to create a complete
set of basis states onto which the Faddeev components of the wave function are then
projected.

3.2.1 Jacobi Momenta for an Arbitrary Three-Body System

For three particles (i, j and k) with momenta �ki and masses mi, the Jacobi momenta
are defined as:

�pi = µjk

(
�kj

mj

−
�kk

mk

)
, (3.16)

�qi = µi,jk

(
�ki

mi

−
�kj + �kk

mj +mk

)
, (3.17)

and

�K = �ki + �kj + �kk, (3.18)
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Figure 3.2: General Jacobi momenta

where �pi is the relative center-of-mass momentum of the two-body subsystem, com-
posed of particles j and k, �qi is the momentum of particle i relative to the center of
mass of the two-body subsystem (see Fig. 3.2), and �K is the total three-body mo-

mentum (which is zero in the center-of-mass frame, �K = 0).2 The two-body and
three-body reduced masses are:

µjk =
mjmk

mj +mk
, (3.19)

and

µi,jk =
mi(mj +mk)

mi +mj +mk
. (3.20)

Also, the total mass of the system is obviously

M ′ = mi +mj +mk. (3.21)

The free three-body Hamiltonian is the kinetic energy of the three-body system, and
thus in terms of the Jacobi momenta has the form

H0 =
K2

2M ′ +
p2

i

2µjk

+
q2
i

2µi,jk

. (3.22)

However, we will work in the center-of-mass frame, for which �K = 0. The relations
for other spectator particles can be easily obtained through a cyclic permutation of
ijk in Eqs. (3.16 - 3.22).

2The spectator notation is used throughout. In this notation the index refers to the spectator
particle of the three-body system. The exceptions are the variables which refer to individual particles,
for example, the individual particle momenta �ki, the individual masses mi, as well as the various
reduced masses µij or µi,jk.
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3.2.2 The Jacobi Momentum Basis States

The Jacobi momenta can be used to define a complete basis of vector Jacobi states:

| �p�q〉i ≡ | �pi�qi〉. (3.23)

One constructs a partial wave projected basis state from these states, following the
presentation by Glöckle [Gl83], which is then used in the application to the Faddeev
equations:

| pqJ 〉i ≡ | piqiJi〉

≡ | pq[(ls)j(λσ)j]JMJ(tt)TMT 〉i, (3.24)

where Ji is used as an abbreviation for all the discrete quantum numbers. The various
quantum numbers are defined in the following list:

• p = |�pi|, q = |�qi|

• l = the coupled orbital angular momentum of the two-body subsystem

• s = the coupled spin of the two-body subsystem

• j = the coupling of l and s

• λ = li = the orbital angular momentum of particle i relative to the two-body
subsystem

• σ = si = the spin of particle i

• j = coupling of λ and σ

• J = total angular momentum of the three-body system, i.e. the coupling of j
to j (with z-component MJ)

• t = isospin of the two-body subsystem

• t = ti the isospin of particle i

• T = total three-body isospin, i.e. the coupling of t to t (with z-component MT )

This basis state is complete:

∑
J

∫ ∞

0

dp p2

∫ ∞

0

dq q2 | pqJ 〉〈pqJ |= 1, (3.25)

and accordingly normalized:

i〈pqJ | p′q′J ′〉i =
δ(p− p′)
pp′

δ(q − q′)
qq′

δJJ ′. (3.26)
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Figure 3.3: The Jacobi momenta corresponding to the c-n subsystem

It is then suitable for the expansion of the Faddeev component ψi:

| ψ〉i =
∑
J

∫ ∞

0

dp p2

∫ ∞

0

dq q2 | pqJ 〉〈pqJ | ψ〉i. (3.27)

3.2.3 Jacobi States for 2n Halo Nuclei

We can now calculate the specific Jacobi momenta results for the two different halo
nuclei subsystems. First, looking at the momenta related to the c-n subsystem (see
Fig. 3.3), we can write the reduced mass relations:

µnc =
A

A+ 1
m and µn,nc =

A+ 1

A+ 2
m, (3.28)

where A is the number of nucleons in the core, and m is the nucleon mass. The Jacobi
momenta are (recall, we set n1 → n in Eqs. (3.11 - 3.15))

�pn = − 1

A + 1

(
�kc − A�kn2

)
(3.29)

and

�qn =
1

A+ 2
((A+ 1)�kn1 − �kn2 − �kc). (3.30)

The corresponding free Hamiltonian is

Hn
0 =

p2
n

2µnc

+
q2
n

2µn,nc

=
A+ 1

2Am
p2

n +
A+ 2

2m(A+ 1)
q2
n. (3.31)

Next, for the momenta related to the n-n subsystem (see Fig. 3.4), the relevant
reduced masses:

µnn =
1

2
m and µc,nn =

2A

A+ 2
m, (3.32)
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Figure 3.4: The Jacobi momenta corresponding to the n-n subsystem

lead to the Jacobi momenta

�pc =
1

2
(�kn1 − �kn2) (3.33)

and

�qc =
1

A+ 2

(
2�kc − A(�kn1 + �kn2)

)
. (3.34)

The corresponding Hamiltonian is

Hc
0 =

p2
c

2µnn
+

q2
c

2µc,nn
=
p2

c

m
+
A+ 2

4Am
q2
c . (3.35)

One important property of these Jacobi states is their behavior under the permu-
tation operator P . Because the two neutrons have opposite spins, for the | pqJ 〉c
state, one finds:

P | pqJ 〉c = − | pqJ 〉c. (3.36)

This relation justifies the simplification done in the second line of the Faddeev equation
Eq. (3.12), as the permutation operator will naturally be next to a | pqJ 〉c state when
an expansion is done (see Sec. 3.3).

The behavior of the | pqJ 〉n state under application of P requires that we explicitly
keep track of the positions of the two neutrons in the notation. For the S-wave state
with a spinless core we find:

P | pqJ 〉n1 = | pqJ 〉n2. (3.37)

This relation becomes useful in the expansion of the Faddeev equations.

3.3 The Faddeev Equations in the Jacobi Momen-

tum States

Now that we have found a suitable set of basis states, we can return to the Faddeev
equations for 2n halo nuclei, Eqs. (3.11, 3.12). We project these Faddeev equations
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onto the partial wave momentum space. We must now expand the terms using the
completeness relation, Eq. (3.25). For brevity we drop J as well as the summation
over J because the discrete quantum numbers will be specifically chosen for our halo
nuclei:

n〈pqJ | ψ〉n = n〈pqJ | −G0tnP | ψ〉n + n〈pqJ | G0tn | ψ〉c

=

∫ ∞

0

dp′p′2dq′q′2
∫ ∞

0

dp′′p′′2dq′′q′′2n〈pq | G0tn | p′q′〉n

×
[

n〈p′q′ | −P | p′′q′′〉n n〈p′′q′′ | ψ〉n

+ n〈p′q′ | p′′q′′〉c c〈p′′q′′ | ψ〉c
]
, (3.38)

c〈pqJ | ψ〉c = c〈pqJ | 2G0tc | ψ〉c

= 2

∫ ∞

0

dp′p′2dq′q′2
∫ ∞

0

dp′′p′′2dq′′q′′2c〈pq | G0tc | p′q′〉c

× c〈p′q′ | p′′q′′〉n n〈p′′q′′ | ψ〉n. (3.39)

Here we see that the coupled integral equations both have a similar form, with a
kernel comprised of T-matrix and overlap-matrix elements.

These coupled Faddeev equations form the starting point for exploring low-energy
observables in 2n halo nuclei, for example, the three-body binding energies and various
mean square radii can be found. Next, the two-body interactions must be suitably
described by a proper choice of T-matrix, and the overlap-matrix elements must be
solved for specific 2n halo systems. In the following chapters, we will show the results
using a T-matrix derived from a leading order (LO) and next-to-leading order (NLO)
S-wave effective potential (Ch. 4 and Ch. 5, respectively).





Chapter 4

Three-Body Halo Nuclei to
Leading Order

We now come to the leading order calculations for three-body halo nuclei1: a special
class of nuclear systems which offer the possibility of exploring universal behavior
[Ri94, Zh93, Hans95, Ta96, Je04]. Halo nuclei consist of a tightly bound core and a
“halo” of lightly bound nucleons. They are characterized by their large nuclear radius
compared to the radius of the core. Equivalently, the separation energy of the halo
nucleons is small compared to the excitation energy of the core. This separation of
scales allows for the use of effective theories, where one can assume the core to be
a structureless particle, and treat the nucleus as a few-body system of the core and
the valence nucleons, which interact through pair-wise potentials dominated by their
large S-wave scattering lengths.

The first application of effective field theory methods to halo nuclei was carried
out in Refs. [Ber02, Bed03b], where the neutron-alpha system (“5He”) was consid-
ered. More recent studies have focused on the consistent inclusion of the Coulomb
interaction in two-body halo nuclei such as the proton-alpha [Ber09] and alpha-alpha
systems [Hi08]. Three-body halo nuclei composed of a core and two valence neutrons
are of particular interest due to the possibility of these systems to display the Efimov
effect [Ef70]. Efimov found that in three-body systems of non-relativistic particles, if
at least two of the three pairs of particles have a large scattering length |a| compared
to the range R of the interaction, there occurs a sequence of three-body bound states
whose binding energies are spaced geometrically between �

2/mR2 and �
2/ma2. The

number of bound states grows to infinity, with an accumulation point at the three-
body scattering threshold, in the limit ±a → ∞. The sequence of three-body bound
states have universal properties that are independent of the details of the two-body
potential at short distances.

The first experimental evidence for Efimov states in ultracold Cesium atoms has
recently been found through their signature in three-body recombination rates [Kr06].

1The majority of this chapter has been published in [Ca08].
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This signature could be unraveled by varying the scattering length a over several
orders of magnitude using a Feshbach resonance. For halo nuclei, the interaction
strength can not easily be varied and one has to look for different signatures of the
Efimov effect. Since the ground state of a halo nucleus can not be uniquely identified
as an Efimov state for fixed a, it is customary to look for excited states that have the
Efimov character. One can then consider a halo nucleus to display the Efimov effect
if it has at least one excited state with universal properties.

In this chapter, we explore the occurrence of the Efimov effect and its well known
universal properties for 2n halo nuclei with a core of spin zero using an effective
potential. We start by deriving the two-body S-wave T-matrix from our leading order
effective potential (Sec. 4.1). In this process, we define the renormalization condition
which tunes our coupling constant to reproduce the scattering length. In Sec. 4.2,
we use this two-body result in the three-body problem, deriving the coupled Faddeev
integral equations with which we can solve the 2n halo nucleus problem. We then give
a short overview of the universal properties of the Efimov effect in 2n halo-like systems
with arbitrary core mass and scattering lengths (Sec. 4.3.1). We also explore which
known 2n halo nuclei have the possibility of displaying the Efimov effect (Sec. 4.3.2).
From the earliest studies of halo nuclei, 20C has been suggested as a good candidate
for Efimov states [Fed94], with future theoretical work supporting this prediction
[Amo96, Maz00]. We critically examine these earlier studies and perform an improved
analysis in the framework of an effective theory (Sec. 4.3.3). The uncertainties of our
leading order analysis are quantified through error bands. In the final part of this
chapter, we focus on the structure of 2n halo nuclei. In particular, we calculate
their matter form factors (Sec. 4.4.2), various radii, and two-neutron opening angles
(Sec. 4.4.3). We close the chapter with conclusions and a brief outlook.

4.1 The Leading Order Effective Potential

For our study, we choose the effective quantum mechanics framework of Refs. [Pl05,
Pl04a, Pl04b] which is equivalent to using field-theoretic language for the problem at
hand. The short-range interactions characteristic of halo nuclei are then described
using an effective interaction potential. The low-energy behavior of the system can be
reproduced with a level of accuracy proportional to powers of the low-momentum scale
Mlow over the high-momentum scale Mhigh. The theory is valid up to a momentum
Mhigh at which the errors become of order one. For example, the two-body interaction
of halo nuclei can be characterized by their large scattering length, a ∼ 1/Mlow, and
their effective range, r0 ∼ 1/Mhigh. Such systems need to leading order one coupling
parameter C0 for each pair interaction tuned to reproduce the scattering length. The
effective range of the interaction enters at next-to-leading order. For a > 0, there is
a two-body bound state, and the binding energy can be found through the universal
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formula:

B2 =
�

2

2µa2
+ . . . , (4.1)

where µ is the reduced mass of the two-body system. The dots indicate corrections
of the order

√
2µB2/Mhigh ∼ r0/a.

For the large separation of scales involved in halo nuclei, zero-range interactions
can be used in constructing the effective interaction potential. This leads to a sep-
arable potential made up of contact interactions in a momentum expansion. The
two-body S-wave potential to leading order is

〈�p | Veff | �p′〉 = C0 g(p)g(p
′) + . . . , (4.2)

where the dots indicate higher order momentum dependent interactions which we will
deal with to next-to-leading order in Ch. 5. g(p) is the regulator function (sometimes
called the form factor) of the theory. Of course, the low-energy observables must
be independent of the regularization scheme, and one can choose the scheme most
convenient for calculations. We use a momentum cutoff scheme, multiplying the
coupling parameter with a Gaussian regulator function

g(p) = exp

(
− p2

Λ2

)
, (4.3)

where Λ is the cutoff parameter. This regulator function obviously suppresses the
contributions of momenta p, p′ � Λ, where the effective potential would break down
and no longer be valid. A natural choice for the value of Λ is therefore Λ ∼ Mhigh,
but observables are independent of Λ after renormalization. The cutoff is inversely
related to the interaction radius (see [Ef90] and references within), thus taking the
limit Λ → ∞ is equivalent to taking the range of our potential to zero.

One convenient property of a separable potential is that the two-body scatter-
ing amplitude, known as the T-matrix, can be solved exactly. It is defined by the
Lippman-Schwinger equation:

T (�p, �p′) ≡ 〈�p | t | �p′〉 = V (�p, �p′) +

∫
d3q

V (�p, �q)

E − q2

2µ
+ iε

T (�q, �p′) (4.4)

= C0 g(p)g(p
′) + C0 g(p)

∫
d3q

g(q)

E − q2

2µ
+ iε

T (�q, �p′) (4.5)

= C0 g(p)g(p
′) + C0 g(p)B1, (4.6)

where in the last line we have defined an intermediate function B1. When we iterate
Eq. (4.5) once, we can by comparison find an iterative relation for B1:

B1 = C0 g(p
′)
∫
d3q

g(q)2

E − q2

2µ
+ iε

+ C0B1

∫
d3q

g(q)2

E − q2

2µ
+ iε

= C0 g(p
′)A1 + C0A1B1, (4.7)



36 Chapter 4: Three-Body Halo Nuclei to Leading Order

where we have now defined the integral as a function A1, which we will return to
shortly. First, we can easily solve for B1:

B1 =
C0g(p

′)A1

1 − C0A1
. (4.8)

Substituting this back into the Lippmann-Schwinger equation, Eq. (4.6), we find a
solution for the T-matrix:

T (�p, �p′) = g(p)g(p′)
1

1
C0

−A1

. (4.9)

Here we see that the T-matrix of a separable potential is itself separable.
We now return to the definition of the A1 integral, which can be simplified by

performing the trivial angular integration:

A1 ≡
∫
d3q

g(q)2

E − q2

2µ
+ iε

= 4π2µ

∫ ∞

0

dq
q2 exp

(
−2q2

Λ2

)
2µE − q2 + iε

. (4.10)

Since we will be chiefly concerned with bound states, we can assume that E < 0
and not only is the iε unnecessary , we can solve the A1 integral analytically. The
derivation of this relation is found in App. A:

A1 = −2π22µ

[
Λ

2

√
2

π
−
√

−2µE exp

(
2(−2µE)

Λ2

)
erfc

(√
2(−2µE)

Λ

)]
, (4.11)

where erfc(x) = 1− (2/
√
π)
∫ x

0
exp(−t2)dt denotes the complementary error function,

which will go quickly to 1 for x 	 1. Here one sees that in taking the zero-range
limit, Λ → ∞, the A1 integral has a divergent term which must be removed through
a proper renormalization.

In the case of two-body systems with a large scattering length a, the coupling
constant C0 can be tuned to reproduce this scattering length. For positive(negative)
scattering length there is a bound(virtual) state with energy to leading order described
by Eq. (4.1). For bound states, this appears in the T-matrix as a simple pole, and
we can now use A1 to tune C0(Λ) in order to reproduce a (now using units such that
� = c = 1):

1

C0
= A1(E = −B2)

= 2π22µ

[
1

a
exp

(
2

a2Λ2

)
erfc

( √
2

|a|Λ

)
− Λ

2

√
2

π

]
. (4.12)
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For |a|Λ � 1, the exp and erfc functions both quickly approach 1, and one finds the
simpler relations:

C0 =
a

2π22µ

[
1 − aΛ

2

√
2

π

]−1

(4.13)

and

a =
2π22µC0

1 + 2π22µC0
Λ
2

√
2
π

. (4.14)

These results are analogous to the findings of EFT using a strong cutoff regularization
scheme as seen in Sec. 2.2.1, Eqs. (2.36, 2.37) and in Ref. [Br06b].

With the potential now properly renormalized, we can return to the two-body
T-matrix for an S-wave interaction to leading order. By substituting Eqs. (4.11, 4.12)
into Eq. (4.9) we find for E < 0:

T (�p, �p′) = g(p)g(p′)
−1

2π22µ

[
−1

a
exp

(
2

a2Λ2

)
erfc

( √
2

|a|Λ

)

+
√

−2µE exp

(
2(−2µE)

Λ2

)
erfc

(√
2(−2µE)

Λ

)]−1

. (4.15)

If the cutoff is chosen large compared to all momentum scales involved in the problem:
Λ � 1/|a|,

√
2µE, this T-matrix reproduces the usual effective range expansion at

leading order.

4.2 The Leading Order Faddeev Equations

The two-body leading order T-matrix derived in the previous section can now be used
in the kernel of the Faddeev integral equations found in Sec. 3.3. The aim is to find
the bound states of 2n halo nuclei, by finding the energies B3 = −E > 0 for which
the coupled Eqs. (3.38, 3.39) have a nontrivial solution. We therefore return to the
general form of the T-matrix element found in these Faddeev equations. We use units
such that � = c = 1 and the nucleon mass m = 1:

i〈pq | G0ti | p′q′〉i = −Gi
0(p, q;B3) i〈pq | ti | p′q′〉i, (4.16)

where, depending on the choice of spectator particle i = n or c, we need to use the
proper free Hamiltonian H i

0 (see Sec. 3.2.3, Eqs. (3.31, 3.35)):

Gn
0 (p, q;B3) =

[
B3 +

A + 1

2A
p2 +

A + 2

2(A+ 1)
q2

]−1

, (4.17)

Gc
0(p, q;B3) =

[
B3 + p2 +

A+ 2

4A
q2

]−1

. (4.18)
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Recall that A is the mass of the core.
We know that the ti-operator is derived from the two-body interaction T-matrix

in our chosen two-body subsystem. Therefore, it must be diagonal in the quantum
numbers of the spectator particle:

i〈pq | ti | p′q′〉i =
δ(q − q′)
qq′ i〈p | ti | p′〉i. (4.19)

We can now relate the partial wave projected T-matrix to the LO T-matrix found
in the previous section, Eq. (4.15), knowing that T (�p, �p′) ≡ 〈�p | t | �p′〉, and using the
completeness relation (for brevity, we drop the index i on the basis states):

〈p | ti | p′〉 =

∫
d3p1

∫
d3p′1 〈p | �p1〉 Ti(�p1, �p

′
1) 〈�p′1 | p′〉. (4.20)

The overlap of a vector state onto a partial wave state is calculated with the corre-
sponding spherical harmonics:

〈p | �p1〉 =
δ(p1 − p)

pp1
Ym∗

l (p̂1). (4.21)

Using the delta functions, the amplitude part of the integrals are trivially done, and
thus we can ignore the subscript on p̂1, and p̂′1. However, in order to perform the
angular integration, we use a trick. The effective potential used to derive the T-
matrix is the S-wave two-body potential. Therefore, in the T-matrix exists a unitary
factor related to the Legendre polynomial with l = 0:

1 = P0(cos θ) ≡ P0(p̂ · p̂′). (4.22)

Then, we use the corresponding relation between Legendre polynomials and spherical
harmonics:

Pl(p̂ · p̂′) =
4π

2l + 1

l∑
m=−l

Ym∗
l (p̂′)Ym

l (p̂), (4.23)

in order to perform the angular integrations:

〈p | ti | p′〉 = Ti(�p, �p
′)
∫
dp̂

∫
dp̂′ 4π

0∑
m′′=0

Ym∗
l (p̂)Ym′′

0 (p̂)Ym′′∗
0 (p̂′)Ym′

l′ (p̂′)

= 4π Ti(�p, �p
′) δm0δl0δl′0δm′0. (4.24)

However, we have already assumed that the discrete quantum numbers in the partial
wave Jacobi states 〈p | were chosen to be S-wave, so that l = l′ = 0, and therefore
m = m′ = 0.
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Also of importance in applying the two-body T-matrix in the context of the three-
body Faddeev equations is the relation between the full three-body binding energy
B3 and the two-body subsystem energy Ei. The T-matrix must be calculated at the
two-body subsystem energy, which can be found by subtracting the kinetic energy
of the spectator particle from the three-body energy E = −B3. We therefore define
two-body subsystem energy functions as follows:

Ẽn(q′;B3) ≡ −2µEn =
2A

A + 1

(
B3 +

A + 2

2(A+ 1)
q′2
)
, (4.25)

Ẽc(q
′;B3) ≡ −2µEc = B3 +

A+ 2

4A
q′2. (4.26)

We are now ready to write the final form of the T-matrix elements to be used in
the Faddeev integral equations. Using the results found in Eqs. (4.24, 4.19), we write
the T-matrix element in the form:

i〈pq | G0ti | p′q′〉i = Gi
0(p, q;B3)

δ(q − q′)
qq′

g(p)g(p′)ti(q′;B3), (4.27)

where the propagators Gi
0(p, q;B3) are defined in Eqs. (4.17, 4.18), and the results of

the T-matrix interactions are found in the functions:

tn(q′;B3) =
1

π

A+ 1

A

[
− 1

anc
exp

(
2

a2
ncΛ

2

)
erfc

( √
2

|anc|Λ

)

+

√
Ẽn(q′;B3) exp

(
2Ẽn(q′;B3)

Λ2

)
erfc

⎛
⎝
√

2Ẽn(q′;B3)

Λ

⎞
⎠
⎤
⎦
−1

,

(4.28)

tc(q
′;B3) =

2

π

[
− 1

ann

exp

(
2

a2
nnΛ2

)
erfc

( √
2

|ann|Λ

)

+

√
Ẽc(q′;B3) exp

(
2Ẽc(q

′;B3)

Λ2

)
erfc

⎛
⎝
√

2Ẽc(q′;B3)

Λ

⎞
⎠
⎤
⎦
−1

,

(4.29)

where ann is the n-n, and anc the n-c scattering lengths.
For most halo nuclei, however, the S-wave scattering length is not as well known

as the two-body bound(virtual) state energy. Therefore, we will generally use the
two-body energies Enn and Enc as input parameters, from which we can calculate the
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scattering length to leading order through Eq. (4.1), 1/ani = ±
√

2µniEni, where the
+ refers to a bound state and the − to a virtual state, i = n or c, and µni is the
corresponding reduced mass. The difference between the two-body energy and the
S-wave scattering length is higher order in the expansion in Mlow/Mhigh ∼ r0/|a|.

Now that we have solved for the T-matrix element using a short-range effective
potential to describe the two-body interactions found in halo nuclei, we can derive a
form for the coupled Faddeev equations suitable for solving the bound 2n halo nucleus
problem.

As the next step in the derivation, we require the recoupling of two Jacobi states
in an overlap-matrix element of the form:

i〈pqJ | p′q′J ′〉j. (4.30)

The evaluation of this overlap-matrix element is at the heart of the three-body prob-
lem, however, the derivation is complicated and tedious. A more detailed explanation
can be found in App. B. For brevity, we present only the result here:

i〈pqJ | p′q′J ′〉j =

∫ 1

−1

dx
δ(p− π̃j)

pπ̃j

δ(p′ − π̃′
j)

p′π̃′
j

GJJ ′(qq′x)
π̃l

j π̃
′l′
j

, (4.31)

where

π̃j =

√(
µjk

mk

)2

q2 + q′2 + 2
µjk

mk
qq′x (4.32)

and

π̃′
j =

√
q2 +

(
µki

mk

)2

q′2 + 2
µki

mk
qq′x. (4.33)

The angular dependence is now found in the x variable, which is the cosine of the
angle between q and q′. For more details on the exact form of the function G, we
refer the reader to App. B. To leading order, only S-wave basis states are used, and
the function G is simply a multiplicative constant.

First we look at the overlap-matrix element corresponding to the swapping of the
spectator neutron:

n1〈pq | P | p′q′〉n1 = n1〈pq | p′q′〉n2. (4.34)

The two-body subsystem in both states is a c-n system, which to leading order is in the
S-wave. Therefore, due to the symmetry in the two-body subsystems, all the primed
quantum numbers are equal to their unprimed counterparts, for example l = l′ = 0
and σ = σ′ = 1/2. The quantum numbers with a neutron spectator are:

l = 0 s = 1/2 j = s = 1/2 t = tc + 1/2
λ = 0 σ = 1/2 j = σ = 1/2 t = 1/2
L = 0 S = 0 J = S = 0 T = tc + 1.

(4.35)
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Here we have assumed that we will only look at halo nuclei for which the core has as
many or more neutrons as protons. This is true for all of the known 2n halo nuclei
candidates (for example, 11Li, 14Be, or 20C), except for the triton (where the core is
just one proton). Therefore, the isospin of the core tc will be one half the number of
neutrons minus the number of protons in the core, and the additional halo neutrons
will then increase the total isospin, leading to the relations t = tc+1/2 and T = tc+1.
Also, due to the Pauli-exclusion principle, the halo neutrons must have opposite spin,
and therefore the total spin of the three-body system must be the same as the core
spin, which we have assumed to be zero: S = sc = 0. Using these quantum numbers
and the relation for the function G as found in App. B, it is a simple exercise to show
that G = −1/2, and therefore:

n1〈pq | P | p′q′〉n1 = −1

2

∫ 1

−1

dx
δ(p− π̃(q, q′))
pπ̃(q, q′)

δ(p′ − π̃(q′, q))
p′π̃(q′, q)

, (4.36)

where

π̃(q, q′) =

√(
1

A+ 1

)2

q2 + q′2 +
2

A+ 1
qq′x. (4.37)

Next we turn to the overlap-matrix element corresponding to switching the core
as spectator for a neutron spectator: n〈pq | p′q′〉c. The two-body subsystem of the
left-hand state is again the c-n subsystem. Therefore, all the unprimed quantum
numbers are exactly the same as those in Eq. (4.35). The other two-body subsystem
is now the n-n subsystem, which to leading order is also in the S-wave. The quantum
numbers with a core spectator are:

l′ = 0 s′ = 0 j′ = s′ = 0 t′ = 1
λ′ = 0 σ′ = 0 j′ = σ′ = 0 t′ = tc
L = 0 S = 0 J = S = 0 T = tc + 1.

(4.38)

Here we use the same arguments for the spin and isospin numbers as for the c-n case.
In this case, using these quantum numbers, we find that G = 1/2, and therefore:

n〈pq | p′q′〉c =
1

2

∫ 1

−1

dx
δ(p− π̃1(q, q

′))
pπ̃1(q, q′)

δ(p′ − π̃2(q, q
′))

p′π̃2(q, q′)
, (4.39)

where

π̃1(q, q
′) =

√(
A

A+ 1

)2

q2 + q′2 +
2A

A+ 1
qq′x, (4.40)

and

π̃2(q, q
′) =

√
q2 +

1

4
q′2 + qq′x . (4.41)
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We finally have all the pieces necessary for writing down the Faddeev equations
used to solve the bound 2n halo nucleus problem. Returning to Eqs. (3.38, 3.39),
we substitute in the results for the T-matrix element, Eq. (4.27), and the overlap-
matrix elements above. For brevity we define the function ψi(p, q) ≡ i〈pq | ψ〉i. After
performing all of the integrations involving delta functions, we find:

ψn(p, q) = Gn
0 (p, q;B3)g(p)tn(q;B3)

1

2

∫ ∞

0

dq′q′2
∫ 1

−1

dx

×
[
g(π̃(q, q′))ψn(π̃(q′, q), q′) + g(π̃1(q, q

′))ψc(π̃2(q, q
′), q′)

]
,

(4.42)

ψc(p, q) = Gc
0(p, q;B3)g(p)tc(q;B3)

∫ ∞

0

dq′q′2
∫ 1

−1

dx

× g(π̃2(q
′, q))ψn(π̃1(q

′, q), q′). (4.43)

This is a system of coupled homogeneous integral equations with one shifted variable.
However, we can simplify these equations further using a relation between the

Faddeev components and the so called spectator functions Fi(q), which represent the
dynamics of the core (i = c) and the halo neutron (i = n), and depend on only one
variable:

ψi(p, q) = Gi
0(p, q;B3)g(p)ti(q;B3)Fi(q). (4.44)

Using these spectator functions, to find the bound state of a halo nucleus composed
of two valence neutrons and a core with spin zero, the resulting coupled integral
equations are simply a generalization of the three-boson equation2 (see [Pl04a] and
references within):

Fn(q) =
1

2

∫ ∞

0

dq′q′2
∫ 1

−1

dx

[
g (π̃(q, q′)) g (π̃(q′, q))

× Gn
0 (π̃(q′, q), q′;B3) tn(q′;B3)Fn(q′)

+ g (π̃1(q, q
′)) g (π̃2(q, q

′))

× Gc
0 (π̃2(q, q

′), q′;B3) tc(q
′;B3)Fc(q

′)
]
, (4.45)

Fc(q) =

∫ ∞

0

dq′q′2
∫ 1

−1

dx

[
g (π̃1(q

′, q)) g (π̃2(q
′, q))

× Gn
0 (π̃1(q

′, q), q′;B3) tn(q′;B3)Fn(q′)
]
. (4.46)

2In fact, the equations are the same for any bound three-body system of two identical particles and
a core with spin zero, which interact through the pair-wise zero-range potentials given in Eq. (4.2).
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The three-body binding energies are given by the values of B3 for which the coupled
integral equations have a nontrivial solution. However, the coupled equations are
most easily solved by discretizing the variables q and q′, and solving the resulting
matrix equation: [

Fn

Fc

]
=

[
Knn Knc

Kcn 0

] [
Fn

Fc

]
, (4.47)

with kernels Kij taken from the coupled Faddeev equations above. Then, the binding
energies are given by the values of B3 for which the kernel matrix has an eigenvalue
of 1.

4.3 Universal Properties of Bound States

Three-body halo nuclei composed of a core and two valence neutrons are of particular
interest due to the possibility of these systems to display the Efimov effect [Ef70].
Efimov found that in three-body systems of non-relativistic particles, if at least two
of the three pairs of particles have a large scattering length |a| compared to the range
R of the interaction, there occurs a sequence of three-body bound states whose binding
energies are spaced geometrically between �

2/mR2 and �
2/ma2. The number of bound

states grows to infinity, with an accumulation point at the three-body scattering
threshold, in the limit ±a → ∞. The sequence of three-body bound states have
universal properties that are independent of the details of the two-body potential at
short distances.

4.3.1 The Efimov Effect in 2n Halo Nuclei

The three-body binding energies are given by the values of B3 for which the cou-
pled integral equations, Eqs. (4.45, 4.46), have a nontrivial solution, or accordingly
the kernel of the matrix equation, Eq. (4.47), has an eigenvalue of 1. In principle,
Eqs. (4.45, 4.46) should also include a three-body force term which is required for
proper renormalization. However, due to the limit cycle behavior of this three-body
force, it is always possible to choose a cutoff where the three-body force vanishes. As a
consequence, we can simply drop the three-body force and work with a finite cutoff Λ
as in Ref. [Pl04a]. Tuning this cutoff to reproduce a given three-body observable, we
can predict other low-energy observables by using the same cutoff [Br06b, Kh72]. The
cutoff is inversely related to the interaction radius (see [Ef90] and references within),
thus taking the cutoff to infinity is equivalent to taking the range of our potential to
zero. It is at this limit that the Thomas collapse [Thom35] will occur and the energy
of the three-body ground state will diverge.

The Thomas collapse is closely related to the Efimov effect in that the deepest
three-body bound states of the Thomas collapse can be identified with the deepest
Efimov states [Adh88]. The sequence of three-body Efimov states can be found from
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Figure 4.1: The three-body binding energy B
(n)
3 as a function of the cutoff parameter

Λ, for three particles with equal mass. The two-body scattering lengths are such that,
|ann| = |anc| = a, but ann < 0 and anc > 0. Only the first three bound states are
shown: n = 0 (solid), n = 1 (dashed), and n = 2 (dotted-dashed).

our integral equations with sufficiently large scattering lengths by finding the spec-
trum of binding energies for a fixed cutoff. By increasing the cutoff new three-body
bound states appear in the spectrum at critical values of Λ, which are geometrically
separated. Accordingly, the energies of the deeper bound states increase in magni-
tude. This dependence of the spectrum of binding energies on the cutoff is seen in
Fig. 4.1, where we work in units such that � = c = 1 and the nucleon mass m = 1.
The Thomas effect is seen by the divergence of the deepest bound state energy for
Λ → ∞. However, the states below the natural cutoff 1/R2 are physically irrelevant.
They are outside the range of validity of the effective theory and can be ignored.

Conversely, the sequence of three-body Efimov states have universal properties
that are insensitive to the details of the two-body potential at short distances, and
hence independent of the cutoff. One such property is that for the resonant limit,
a → ±∞, at which there are infinitely many arbitrarily-shallow three-body bound
states, the ratio of the binding energies of neighboring bound states approaches a
universal factor λ0 as the threshold is approached:

B
(n)
3 /B

(n+1)
3 −→ (λ0)

2, (4.48)

as n → +∞ with a = ±∞. This universal scaling factor λ0 depends on the masses
of the particles. In our case, the masses of the two neutrons are equal, m1 = m2, and
the core mass A = m3/m1. The values of B

(n)
3 for n = 1, 2, 3 as a function of the core
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Figure 4.2: Spectrum of three-body bound states, when two of the particles have
equal mass m1 = m2, as a function of the mass ratio A = m3/m1 in the resonant
limit a → ±∞. The cutoff parameter was fixed at a value of Λ = 10.0 (the units of

Λ and B
(n)
3 are arbitrary, for details see text).

mass A are shown in Fig. 4.2 for a finite value of Λ = 10. Note that because we have
taken a → ±∞, Λ is given in units of an arbitrary momentum scale κ. All energies
are then given in units of κ2. One interesting feature is the appearance of a minimum
in the binding energy. The absence of this minimum in the B

(0)
3 curve is due to the

fact that the magnitude of B
(0)
3 is near the order of magnitude of Λ, and details of

the regularization scheme become important. Also, we see that the binding energy
quickly reaches an asymptotic value for very large A, and diverges for A→ 0.

The dependence of the discrete scaling factor λ0 on the core mass A is well known,
and an analytic expression for calculating this dependence has been derived (see
[Br06b] and references therein). We have confirmed the results of our code by nu-
merically reproducing this core mass dependence of the scaling factor, which can be
seen in Fig. 4.3. Due to the small values of the binding energies in comparison to the
cutoff Λ for n > 0, we find an almost exact reproduction of the discrete scaling factor

using the ratio

√
B

(1)
3 /B

(2)
3 taken from the results of Fig. 4.2. The numerical results

only start to vary from the analytical results as A 	 1, and the binding energies
start to increase dramatically. In particular, the discrete scaling factor is largest for
all equal masses, where it has the same value λ0 ≈ 22.7 as for three identical bosons.
In the very large core limit, A � 1, the discrete scaling factor approaches 15.7. In
the vanishing core limit, A 	 1, it approaches 1 as all three-body binding energies
diverge.
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Figure 4.3: Discrete scaling factor λ0, when two particles have equal mass m1 = m2,
as a function of the mass ratio A = m3/m1, in the resonant limit a→ ±∞. Solid line:
Result found from solutions of an analytic expression, taken from [Br06b], Fig. 52.

Dotted-dashed line: Numerical result found taking the ratio

√
B

(1)
3 /B

(2)
3 from the

results of Fig. 4.2. The dot indicates the case of three identical bosons.

4.3.2 Possibility of Efimov Excited States in 2n Halo Nuclei

Our main aim in this section is to assess which halo nuclei have the possibility of pos-
sessing an excited Efimov state. The ground state energy and the two-body energies
can not be predicted by our theory and are taken from experiment. In other words,
we would generally like to know what the values of the two-body energies must be,
or correspondingly how large the scattering lengths must be, in order to produce an
excited Efimov state, knowing the ground state binding energy.

To this end, we construct a parametric region defined by the ratios

√
Enc/B

(n)
3

versus

√
Enn/B

(n)
3 . The boundary curves representing the existence of an excited

Efimov state for various values of the core mass are shown in Fig. 4.4. An analogous
study was carried out in Ref. [Amo96] (see below). All points which lie within the
boundary curve have at least one excited Efimov state above the state with energy
B

(n)
3 , while points outside the curve have no excited states above this state. The

curve itself is built up of the points for which the B
(n+1)
3 binding energy is equal to

the scattering threshold; i.e. B
(n+1)
3 = Eni for Enn or Enc bound, where Eni is the

larger of Enn and Enc, and B
(n+1)
3 = 0 for Enn and Enc virtual. The boundary curves
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Figure 4.4: Boundary curves in the

√
Enc/B

(n)
3 vs.

√
Enn/B

(n)
3 plane, where the

binding energy of the excited Efimov state B
(n+1)
3 is exactly at threshold. Negative

values on the axes correspond to virtual two-body states. Boundary curves shown
for various core masses A =1, 9, 18, and 100. Experimental data shown for 20C, 18C,
11Li, 12Be, and 14Be are taken from Ref. [TUNL].

in Fig. 4.4 were found with n = 1 in order to minimize the regulator effects. Due to
the scaling symmetry of the sequence of three-body bound states, the nth state can
always be interpreted as the ground state and the (n+ 1)th state as the first excited
state.3

Here it is of interest to note that these results differ from the results found by
Amorim, et al. in an analogous study [Amo96] using a hard momentum cutoff rather
than the Gaussian regulator scheme. We found that the results agree almost exactly
for a core mass equal to the nucleon mass, A = 1, but differ significantly for all other
values of the core mass. While the qualitative conclusions on the likelihood of Efimov
states in 2n halo nuclei are the same, the quantitative results are different. In fact, in
doing the numerical calculations with a hard cutoff ourselves, we found results that
match those presented here.

These results represent the leading order calculations with the effective potential
described in Eq. (4.2). The theoretical uncertainty in calculating the binding energy

3Because of the regulator effects, the curves found with n = 0 are slightly different from the
curves in Fig. 4.4. The curves are practically the same for larger values of n, as the numerical values
of B

(n)
3 are much smaller than the cutoff Λ for n > 0.
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Figure 4.5: Boundary curve in the

√
Enc/B

(n)
3 vs.

√
Enn/B

(n)
3 plane with leading

order error bands. Boundary curve shown for a core mass of A = 18 with the experi-
mental data for 20C from Ref. [TUNL, Aud95].

is of the order ≈ r0/a, where r0 is the effective range of the potential, and a is the
scattering length. As stated before, the cutoff parameter is related to the inverse of
the range of the potential, such that we can approximate r0 ≈ 1/Λ. However, it is
important in this error estimate that the Λ used comes from the result with n = 0, the
true ground state, rather than n = 1. This corresponds to taking the “natural” value
for the cutoff Λ. We therefore estimate the leading fractional error of our boundary
curves as ≈

√
2µniEni/Λ, for i = n and c, respectively. The resulting boundary curve

including leading order error bands, using the case of core mass A = 18, is shown
in Fig. 4.5. This graph is a good representation of the error bands for other core
masses. The uncertainty of our leading order calculation becomes large for values of√
Enn/B

(n)
3 + Enc/B

(n)
3 near 1 and greater. At this point the low-energy observables

approach the order of magnitude of Λ, where the effective potential is no longer a
good description of the three-body system.

Now we discuss the implications of Figs. 4.4 and 4.5 for the existence of excited
Efimov states in halo nuclei in more detail. The four quadrants of the parametric
plane in these figures correspond to the four different types of three-body halo nuclei,
determined by the different types of two-body subsystems. The upper-right quadrant
corresponds to both the n-n and the n-c subsystems being bound, and is accordingly
called All Bound. The lower-right quadrant is that in which the n-n subsystem is
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bound, but the n-c subsystem is unbound, and receives the name Tango [Ro99]. Of
course, because we are concerned with 2n halo nuclei, where the n particle is truly
a neutron, these two quadrants are not of much interest in the present study. The
upper-left quadrant corresponds to the unbound n-n subsystem with a bound n-c
subsystem, for which we use the name Samba as recommended in [Yam06]. The
final quadrant corresponds to the three-body systems for which none of the two-body
subsystems is bound. This system is referred to as a Borromean system.

We can now use our plot to analyze the likelihood of the Efimov effect for the
different types of three-body systems, with a focus on 2n halo nuclei. As one would
expect, the Borromean systems offer the smallest chance of having an excited Efimov
state, as the two-body energy would have to be very small, or accordingly the scatter-
ing length very large, to produce even one excited state. However, this can be achieved
in ultracold atoms, as the presence of so called Feshbach resonances allows one to tune
the two-body scattering length to a very large value [Ti93]. Interestingly, the Samba
systems have the largest region supporting the occurrence of excited Efimov states.
As long as the n-c scattering length is large enough, there can be a large variation
in the n-n scattering length that would still allow for the Efimov effect. This agrees
with the findings of Efimov [Ef70], that as long as 2 of the 3 two-body interactions
have a large scattering length, the sequence of three-body binding energies can occur.

Looking at possible halo nuclei candidates, we have plotted the positions of 20C,
18C, 11Li, 12Be, and 14Be in Fig. 4.4 using the experimental values of the ”Nuclear
Data Evaluation Project” of TUNL [TUNL] for the n-c and three-body ground state
energy data, and the standard value of the n-n scattering length, ann = (−18.7±0.6)
fm [Gon99] to calculate the n-n two-body energy according to Eq. (4.1). The only halo
candidate that has any possibility of an excited Efimov state is 20C, due to the large
uncertainty in the n-18C bound state energy. We will return to this nucleus shortly.
The positions and relatively small experimental errors in the other halo nuclei data
rule out the chance of finding excited Efimov states in these nuclei. Other halo nuclei
candidates which exist have values of the two-body energies which are too large to
even appear on our plot.

4.3.3 Efimov Excited State for 20C

The central value for the n-18C bound state energy, Enc = (162 ± 112) keV [Aud95],
lies almost exactly on the boundary region for A = 18 in Fig. 4.5. The large error
in this value, however, dips well into the region where at least one excited Efimov
state can occur. The error in the three-body ground state energy of 20C is small
compared to Enc. Thus, we can calculate the value of the excited state energies as a
function of Enc, using the standard value for ann, and fixing our cutoff to reproduce
the experimental value of the ground state energy B

(0)
3 = 3506.0 keV [TUNL, Aud95].

The result is plotted in Fig. 4.6, where the solid line is the excited state energy,
and the dashed line represents the scattering threshold. The inset graph shows the
excited state energy relative to the scattering threshold. We find only one excited
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Figure 4.6: Binding energy of the 20C excited Efimov state as a function of the n-
18C bound state energy (solid line) with leading order error bands. The dashed line

represents the scattering threshold which is given by B
(1)
3 = Enc. The inset shows the

excited state energy relative to the scattering threshold.

Efimov state, existing when Enc < 165 keV. For larger values of Enc, the 20C system
moves outside of the boundary curve, and the excited Efimov state is destroyed. This
rules out the possibility of finding an excited Efimov state using a competing value
for the n-18C bound state energy: Enc = (530 ± 130) keV [Na99].

The binding energy relative to the scattering threshold is always below 7 keV, a
value very small in comparison with the ground state energy. Also, the error bands are
large compared to the relative energy of the excited state to the scattering threshold,
with the lower error band almost always below the scattering threshold.

We have again estimated this error using the theoretical uncertainty of our effective
potential. In this first order calculation, the uncertainty in binding energies calculated
using the two-body effective potential of Eq. (4.2) is ≈ r0/a. Our effective potential,
made up of contact interactions, will break down for momenta of the order of the
pion mass scale. We therefore use the inverse of the pion mass mπ = 140 MeV to
estimate the effective range r0 ≈ 1/mπ. The uncertainty in the binding energy of
the excited state is then the quadratic sum of the uncertainties from the n-n and n-
18C interactions:

√
2µnnEnn/m2

π + 2µncEnc/m2
π. These uncertainties are of the same

order of magnitude as those found assuming that the effective range is related to the
inverse of the cutoff, r0 ≈ 1/Λ.

This result is in overall qualitative agreement with the previous studies of Amorim
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et al. [Amo96] and Mazumdar et al. [Maz00], who also found the presence of a very
weakly bound excited Efimov state in 20C for sufficiently small values of Enc. How-
ever, both of these studies have a larger value for the excited state energy, with the
Mazumdar group also finding a second excited state for Enc < 100 keV. Also, the
disagreement with the results of the Amorim paper mentioned before casts doubts
on the quantitative results of [Amo96], as a more recent study from the same group
[Yam08a] suggests better agreement with the results presented here. This newer anal-
ysis is one of a few recent studies extending the trajectory of this excited state into
the scattering region to explore the possibility of finding a resonance in the n-19C
scattering sector [Yam08a, Yam08b, Aro04, Maz06].

4.4 Form Factors and Mean Square Radii

We are now interested in calculating other low-energy physical properties of three-
body halo nuclei, specifically the matter density form factors and the mean square
radii. The information needed to calculate such quantities is held in the wave functions
of the known bound states. In the next subsection, the full three-body wave function
will be reconstructed from the Faddeev spectator functions Fn and Fc. Once the three-
body wave function is known, the corresponding one- and two-body matter density
form factors will be computed (Sec. 4.4.2). In Sec. 4.4.3, the mean square distances
between two of the three particles as well as the mean square distance of one of the
particles from the center of mass will be extracted from the proper form factor.

4.4.1 Reconstruction of the Wave Function

The full wave function of the bound 2n halo nucleus can be reconstructed from the
solutions for the spectator functions Fn and Fc found from our coupled integral equa-
tions, Eqs. (4.45, 4.46). However, the form of the wave function depends on the
choice of two-body subsystem and corresponding spectator particle. In this sub-
section, we derive the expressions for the S-wave part of the full wave functions:

i〈pq|Ψ〉 ≡ Ψi(p, q), where the index i = n, c labels the chosen spectator particle. In
the wave functions, the p Jacobi momentum describes the relative momentum between
the two particles in the chosen two-body subsystem, while q describes the momentum
of the spectator particle relative to the center of mass of the two-body subsystem.

For the neutron as spectator particle, using the relation for the wave function in
terms of its Faddeev components, Eq. (3.13), we find:

Ψn(p, q) = n〈pq | 1 − P | ψ〉n + n〈pq | ψ〉c

= ψn(p, q) −
∫
dp′p′2dq′q′2 n2〈pq | p′q′〉n1 ψn(p′, q′)

+

∫
dp′p′2dq′q′2 n〈pq | p′q′〉c ψc(p

′, q′). (4.49)
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The results of the overlap-matrix elements are similar to those found in App. B,
however, we now wish to find a form with which the dp′ and dq′ integrals can be
performed with delta functions. The general result for this case can be found in
[No01]. The results for S-waves are simple:

n2〈pq | p′q′〉n1 = −1

2

∫ 1

−1

dx
δ(p′ − π̃nn)

p′π̃nn

δ(q′ − π̃′
nn)

q′π̃′
nn

, (4.50)

where

π̃nn ≡ π̃nn(p, q) =

√
1

(A+ 1)2
p2 +

A2(A + 2)2

(A+ 1)4
q2 +

A(A+ 2)

(A+ 1)3
2pqx, (4.51)

π̃′
nn ≡ π̃′

nn(p, q) =

√
p2 +

1

(A+ 1)2
q2 − 1

A+ 1
2pqx; (4.52)

and

n〈pq | p′q′〉c =
1

2

∫ 1

−1

dx
δ(p′ − π̃nc)

p′π̃nc

δ(q′ − π̃′
nc)

q′π̃′
nc

, (4.53)

where

π̃nc ≡ π̃nc(p, q) =

√
1

4
p2 +

(A+ 2)2

4(A+ 1)2
q2 +

A+ 2

2(A+ 1)
pqx, (4.54)

π̃′
nc ≡ π̃′

nc(p, q) =

√
p2 +

A2

(A+ 1)2
q2 − A

A+ 1
2pqx. (4.55)

We substitute these relations back in, and use the expression defining the Faddeev
component in terms of the spectator function, Eq. (4.44). After performing the inte-
grations with the delta functions we find:

Ψn(p, q) = ψn(p, q) +
1

2

∫ 1

−1

dx [ψn(π̃nn, π̃
′
nn) + ψc(π̃nc, π̃

′
nc)]

= Gn
0 (p, q;B3)g(p)tn(q;B3)Fn(q)

+
1

2

∫ 1

−1

dx Gn
0 (π̃nn, π̃

′
nn;B3)g(π̃nn)tn(π̃′

nn;B3)Fn(π̃′
nn)

+
1

2

∫ 1

−1

dx Gc
0(π̃nc, π̃

′
nc;B3)g(π̃nc)tc(π̃

′
nc;B3)Fc(π̃

′
nc), (4.56)
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where the regulator function g and the T-matrices tn and tc are given in Eqs. (4.3,
4.28, 4.29). The expressions for the propagatorsGn

0 and Gc
0 can be found in Eqs. (4.17,

4.18). One can show through substitution that Gn
0 (π̃nn, π̃

′
nn;B3) = Gn

0 (p, q;B3), and
Gc

0(π̃nc, π̃
′
nc;B3) = Gn

0 (p, q;B3), and the propagators simplify.
If the core is the spectator particle, we follow the same procedure, but start by

projecting onto the other Jacobi basis state:

Ψc(p, q) = c〈pq | 1 − P | ψ〉n + c〈pq | ψ〉c

= 2

∫
dp′p′2dq′q′2 c〈pq | p′q′〉n ψn(p′, q′) + ψc(p, q). (4.57)

Again, we need to calculate the overlap-matrix element such that it eliminates the
integrations over dp′ and dq′. The result for S-waves is:

c〈pq | p′q′〉n =
1

2

∫ 1

−1

dx
δ(p′ − π̃cn)

p′π̃cn

δ(q′ − π̃′
cn)

q′π̃′
cn

(4.58)

where

π̃cn ≡ π̃cn(p, q) =

√
A2

(A+ 1)2
p2 +

(A + 2)2

4(A+ 1)2
q2 +

A(A+ 2)

2(A+ 1)2
2pqx, (4.59)

π̃′
cn ≡ π̃′

cn(p, q) =

√
p2 +

1

4
q2 − pqx. (4.60)

After the proper substitutions and integrations we find:

Ψc(p, q) =

∫ 1

−1

dx Gn
0 (π̃cn, π̃

′
cn;B3)g(π̃cn)tn(π̃′

cn;B3)Fn(π̃′
cn)

+ Gc
0(p, q;B3)g(p)tc(q;B3)Fc(q). (4.61)

Again, one can show through substitution that Gn
0 (π̃cn, π̃

′
cn;B3) = Gc

0(p, q;B3).
The full wave functions are now given in terms of the spectator functions, however,

in each expression there exists a spectator function which must be calculated at a
shifted momentum. Numerically, the value of the function at the shifted momentum
must be found through an interpolation. We use a cubic hermitian Spline interpolation
of the form:

Fi(π̃
′) ≈

∑
j

Sj(π̃
′)Fi(qj), (4.62)

where Sj are the Spline elements.
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4.4.2 One- and Two-Body Matter Density Form Factors

The three-body wave functions found in the previous subsection can be used to cal-
culate other low-energy properties of the three-body bound state. With the Jacobi
momentum states it is straightforward to calculate the Fourier transform of the one-
and two-body matter densities with respect to the momentum transfer squared. These
are defined as the one- and two-body matter density form factors Fi(k

2) and Fni(k
2),

respectively, where i = n, c. In the wave functions, the �p Jacobi momentum describes
the relative momentum between the two particles in the chosen two-body subsystem,
while �q describes the momentum of the spectator particle relative to the center of mass
of the two-body subsystem.4 Therefore, the one-body form factors can be obtained
as follows:

Fi(k
2) =

∫
d3p d3q Ψi(�p, �q)Ψi(�p, �q − �k), (4.63)

where i = n, c depending on the desired two-body subsystem. The two-body form
factors can be solved similarly:

Fnc(k
2) =

∫
d3p d3q Ψn(�p, �q)Ψn(�p− �k, �q), (4.64)

and

Fnn(k2) =

∫
d3p d3q Ψc(�p, �q)Ψc(�p− �k, �q). (4.65)

These relations can be simplified further by using the fact that at leading order
only S-waves contribute. Consequently, we project the three-body wave functions
onto the S-wave, and then perform the angular integrations. In our normalization,
the wave functions obey the relation:

Ψi(p, q) = 4π < Ψi(�p, �q) >, (4.66)

where < ... > denotes the angular average. This relation is then substituted into the
above form factor relations, and the trivial angular integrations can be performed.
Furthermore, the form factors will be normalized in the end such that F(k2 = 0) = 1,
so any constant overall factor can be dropped. For the one-body form factors we have:

Fi(k
2) =

∫
dp p2

∫
dq q2

∫ 1

−1

dx Ψi(p, q)Ψi(p,
√
q2 + k2 − 2qkx), (4.67)

and for the two-body form factors we have:

Fnc(k
2) =

∫
dp p2

∫
dq q2

∫ 1

−1

dx Ψn(p, q)Ψn(
√
p2 + k2 − 2pkx, q), (4.68)

4Recall that we use the spectator notation for the wave functions, where the index i on Ψi refers
to the spectator particle.
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Figure 4.7: The various one- and two-body matter density form factors with leading
order error bands for the ground state of 20C in the low-energy region: Fnn(k

2) black
solid line; Fnc(k

2) black dotted line; Fn(k2) lighter (red) dashed line; Fc(k
2) lighter

(red) dot-dashed line.

and

Fnn(k
2) =

∫
dp p2

∫
dq q2

∫ 1

−1

dx Ψc(p, q)Ψc(
√
p2 + k2 − 2pkx, q). (4.69)

The expressions relating Ψn(p, q) and Ψc(p, q) to the solutions Fn(q) and Fc(q) of
Eqs. (4.45, 4.46) are given in Sec. 4.4.1. We are now in the position to calculate these
form factors for halo nuclei.

As a general example, we have plotted the form factors for the ground state of 20C,
in the low-energy region in Fig. 4.7, using a bound state energy of 3506.0 keV, a n-n
two-body virtual energy of 116.04 keV, and a n-c bound state energy of 161.0 keV. The
theory breaks down for momentum transfers of the order of the pion-mass squared
(k2 ≈ 0.5 fm−2) where the one-pion exchange interaction cannot be approximated by
short-range contact interactions anymore. Here one can see that for low momentum
transfer the one-body neutron Fn(k2) and the two-body core-neutron Fnc(k

2) form
factors lie nearly on top of each other. This is due to the fact that the core consists
of 18 nucleons and, therefore, the center of mass is very near the core. This fact is
also seen in the shallow slope of the one-body core form factor Fc(k

2).
The theoretical error bands for the form factors are an estimate arising from the

theoretical uncertainty of our two-body effective potential, Eq. (4.2). In this first
order calculation, the uncertainty in the effective potential comes from the next term



56 Chapter 4: Three-Body Halo Nuclei to Leading Order

in the expansion, which is related to the effective range. Therefore, the theoretical
uncertainty is ≈ r0/a. As discussed in Sec. 4.3.3, we use the inverse of the pion mass
mπ = 140 MeV to approximate the effective range, r0 ≈ 1/mπ. With the form factors
normalized to F(k2 = 0) = 1, and because |Enc| > |Enn|, the theory error is estimated
to be ≈ (1 − F)

√
2µncEnc/mπ.

4.4.3 Mean Square Radii and Geometry of 2n Halo Nuclei

The mean square radii for our three-body bound states are calculated from the matter
density form factors in the low momentum transfer region. The matter density form
factor is defined as the Fourier transform of the matter density:

F(k2) =

∫
ρ(�x)ei�k·�xd3x, (4.70)

with the normalization F(k2 = 0) = 1. In the low momentum transfer region, the
exponential can be expanded, and assuming a spherically symmetric matter density,
we see that the slope of the form factor determines the mean square radius 〈r2〉:

F(k2) =

∫
ρ(�x)

(
1 + i�k · �x− (�k · �x)2

2
+ . . .

)
d3x

= 1 − 1

6
k2
〈
r2
〉

+ . . . . (4.71)

Of course, the mean square radius acquired depends on the choice of one- or two-
body form factor. Since �p describes the relative momentum of the two particles in the
two-body subsystem chosen, the slope of Fni(k

2) will give the mean square distance
between the two particles in the chosen two-body subsystem, either 〈r2

nn〉 or 〈r2
nc〉.

Analogously, because �q describes the momentum of the spectator particle relative to
the center of mass of the two-body subsystem, the slope of Fi(k

2) will give the mean
square distance of the spectator particle from the center of mass of the two-body
subsystem, either

〈
r2
c−nn

〉
or
〈
r2
n−nc

〉
. However, it is more useful to calculate the

distance of the individual particles from the center of mass of the three-body bound
state. If bi is the slope of the one-body form factor Fi(k

2) at the limit k2 = 0, the
mean square radius of one of the bodies i (i = n, c) from the three-body center of
mass is given by:

〈
r2
i

〉
= −6bi

(
1 − mi

2mn +mc

)2

, (4.72)

where mi is the mass of the desired particle i, and mn and mc are the neutron and
core masses, respectively. The various radii of the three-body system are illustrated
in Fig. 4.8(a).



4.4 Form Factors and Mean Square Radii 57

rnc

rc
rn

rnn rnn
rc−nn

θnn

(a) (b)

Figure 4.8: (a) The various radii of the three-body system. (b) Further geometry of
the 2n halo nucleus, specifically looking at the two neutron opening angle θnn.

We have extracted the radii by fitting a polynomial in k2 to the form factor results
for small k2. We have used polynomials of varying degree up to 5th order in k2 in
order to verify the stability and convergence of the fit. We have found a satisfactory
stability in the slope when fitting to a polynomial to the fourth order in k2, up to a
value of k2 at which the form factor has dropped less than 10 percent.

As with the binding energies in the sequence of three-body Efimov states, as
discussed in Sec. 4.3.1, the mean square radii of these states also display universal
properties that are insensitive to the details of the two-body potential at short dis-
tances. One such property is that for the resonant limit, a→ ±∞, at which there are
infinitely many arbitrarily-shallow three-body bound states, the ratio of the radii of
neighboring states approaches a universal factor as the threshold is approached. This
universal scaling factor is exactly the inverse of the universal scaling factor found for
the ratio of binding energies (see Eq. (4.48)):

〈
r2
〉(n)

/
〈
r2
〉(n+1) −→ (λ0)

−2, (4.73)

as n → +∞ with a = ±∞. Therefore, we can construct a dimensionless quantity
from the root of the product of the mean square radius and the three-body binding
energy

√
〈r2〉B3. The ratio of this quantity for neighboring states approaches unity

in the resonant limit as the threshold is approached.
The extracted radii for known halo nuclei are shown in Table 4.1. As input we

have used the standard value of the n-n scattering length, ann = (−18.7 ± 0.6) fm
[Gon99], to calculate the n-n two-body virtual energy, Enn = 116.04 keV, along with
the experimental values of the n-c two-body energies Enc shown in the third column
of Table 4.1 (negative values correspond to virtual energies). As a three-body input,

the cutoff is tuned to reproduce the experimental ground state binding energy B
(0)
3

shown in the second column of Table 4.1. These experimental values for the two-body
and three-body energies are taken from the most recent results of the ”Nuclear Data
Evaluation Project” of TUNL [TUNL], except where otherwise noted. In the last
column, we have given the experimental values for the n-n mean square radius, as
given by Marqués et al. [Mar00]. These experimental values for

√
〈r2

nn〉 were found
using the technique of intensity interferometry along with the two neutron correlation
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Nucleus B3 [keV] Enc [keV]
√
〈r2

nn〉 [fm]
√
〈r2

nc〉 [fm]
√
〈r2

n〉 [fm]
√
〈r2

c 〉 [fm]
√
〈r2

nn〉exp [fm]
11Li 247 -25 8.7±0.7 7.1±0.5 6.5±0.5 1.0±0.1

247 -800 [Wil75] 6.8±1.8 5.9±1.5 5.3±1.4 0.9±0.2 6.6±1.5
320 -800 [Wil75] 6.2±1.6 5.3±1.4 4.8±1.3 0.8±0.2
170 -800 [Wil75] 7.9±2.1 6.7±1.8 6.0±1.6 1.0±0.3

14Be 1120 -200 [Thoe00] 4.1±0.5 3.5±0.5 3.2±0.4 0.40±0.05 5.4±1.0
12Be 3673 503 3.0±0.6 2.5±0.5 2.3±0.5 0.32±0.07
18C 4940 731 2.6±0.7 2.2±0.6 2.1±0.5 0.18±0.05
20C 3506 161 2.8±0.3 2.4±0.3 2.3±0.3 0.19±0.02

3506 60 2.8±0.2 2.3±0.2 2.2±0.2 0.18±0.01
3506 0.0 2.7±0.2 2.2±0.2 2.1±0.2 0.18±0.01

20C* 65.0±6.8 60 42±3 38±3 41±3 2.2±0.2
20C* 1.02±0.08 0.0 130±10 97±7 93±7 6.9±0.5

Table 4.1: Various mean square radii of different halo nuclei. The second two columns
show the input values for the three-body ground state energy and the two-body n-
c energy (negative values corresponding to virtual energies), respectively, as given
by [TUNL], except where otherwise noted. The experimental values for the n-n
root mean square radii, shown in the last column, are taken from [Mar00]. The
rows marked by 20C* show the results for the excited Efimov state of 20C, with
binding energy displayed in the second column, which is found above the ground
state (B3 = 3506 keV).

function to study the dissociation at intermediate energies of two neutrons in halo
nuclei. However, the large uncertainty in these values is indicative of the need for
more precise measurements of the mean square distances in 2n halo nuclei. Also,
the recent work by Orr [Or08] discusses the care which must be taken in interpreting
the results of [Mar00]. Specifically, he mentions that the technique is sensitive to the
population of states in the continuum by the dissociation process rather than being
a true ground state measurement. For more details on this issue, see Ref. [Or08].

Our results agree overall with the study done by Yamashita et al. using a similar
three-body model [Yam04]. Our study expands on this previous work by showing the
leading order theoretical uncertainty as well as the results for an excited Efimov state
in the case of 20C.

The leading order theoretical error is again estimated by the uncertainty of the
two-body effective potential, Eq. (4.2), which is ≈ r0/a, where r0 is the effective range
of the interaction, and a the scattering length. Using the inverse of the pion mass to
estimate the effective range, r0 ≈ 1/mπ, the uncertainty in the radii is then calculated
from the greater of the error arising from the n-n or n-c interaction:

√
2µncEnc/mπ

or
√

2µnnEnn/mπ.

We will now discuss the results for the various known three-body halo nuclei as
shown in Table 4.1:

For 11Li, there is a relatively large uncertainty in the experimental values of both
the ground state energy, B

(0)
3 = (247 ± 80) keV [TUNL], and the n-c virtual energy,
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Figure 4.9: The various mean square radii for 11Li as a function of the n-9Li two-body
energy (negative values correspond to the virtual state) with error bands from the
theoretical uncertainty. As input, the n-n two-body energy Enn = −116.04 keV, and
the three-body binding energy B

(0)
3 = 247 keV were used.

with two competing values: Enc = (−25 ± 15) keV [TUNL], and Enc = (−800 ± 250)
keV [Wil75]. For this reason it is advantageous to plot the various mean square radii
over the full range of potential Enc values. The results, using the central value for
the three-body binding energy as input, B

(0)
3 = 247 keV, can be seen in Fig. 4.9, with

error bands estimated from the theoretical uncertainty, as described above. These
plots are a good general example of the relation between the mean square radii and
the virtual two-body n-c energy for Borromean halo nuclei, where none of the two-
body subsystems are bound. As the n-c virtual energy decreases in magnitude the
three-body bound state increases slowly in size, with a more rapid increase in size as
the energy approaches zero and crosses over into the Samba configuration, where the
n-c subsystem becomes bound.

In Table 4.1, we have highlighted, using the central value of the three-body binding
energy, the central values of the competing n-c energies. While the two-body virtual
energy reported in [Wil75], Enc = −800 keV leads to

√
〈r2

nn〉 = (6.8 ± 1.8) fm, in

close agreement with the experimental result
√

〈r2
nn〉exp

= (6.6 ± 1.5) fm, a definite
conclusion can not be reached due to the large error bars of the radii. We have also
listed the upper and lower limits of the three-body binding energy, B

(0)
3 = 170 and 320

keV, along with our preferred value of Enc = −800 keV, which shows a more general
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Figure 4.10: The various mean square radii for 20C as a function of the n-18C two-body
energy with error bands from the theoretical uncertainty. As input, the n-n two-body
energy Enn = −116.04 keV, and the three-body binding energy B

(0)
3 = 3506 keV were

used.

result: for halo nuclei, the larger the three-body binding energy, the smaller the mean
square radii. In terms of the plots in Fig. 4.9, using a larger(smaller) value for B

(0)
3

as input would shift the curve down(up) in each plot. Due to the large uncertainties
in both the theoretical and experimental values for 11Li, there exists a large range of
Enc values which would produce a

√
〈r2

nn〉 value in agreement with the experimental
value of Marqués et al. [Mar00].

As another example of a Borromean halo nucleus, we see that the calculated result
for the n-n mean square radius of 14Be,

√
〈r2

nn〉 = (4.1 ± 0.5) fm, is smaller than the

experimental value
√
〈r2

nn〉exp
= (5.4±1.0) fm [Mar00], but still within one error bar.

Here we have used the central value of the two-body n-c virtual energy as reported
by [Thoe00], Enc = −200 keV. In using the resonant limit, Enc = 0.0 keV, we see that
the largest theoretical value for

√
〈r2

nn〉 = (4.6±0.3) fm, which allows an unbound n-c
two-body subsystem, is still smaller than the experimental value. Another reported
value for the two-body virtual energy, Enc = (−1900 ± 500) keV [TUNL], would
produce even smaller mean square radii, even farther away from the experimental
value.

We now turn our attention to the so called Samba halo nuclei in which the n-c
subsystem is bound. As examples, we have listed the results for 12Be and 18C, using
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Figure 4.11: The various mean square radii for the Efimov excited state of 20C as a
function of the n-18C two-body energy with error bands from the theoretical uncer-
tainty. As input, the n-n two-body energy Enn = −116.04 keV, and the three-body
binding energy B

(0)
3 = 3506 keV were used.

the central values of the experimental energies [TUNL] in Table 4.1.

Of greater interest are the results from the case of 20C, as the large uncertainty
in the n-c energy, with two competing values, Enc = (162 ± 112) keV [TUNL], and
Enc = (530± 130) keV [Na99], suggests that we look at the mean square radii over a
range of Enc values. The results, using the central value for the three-body binding
energy as input, B

(0)
3 = 3506 keV, can be seen in Fig. 4.10, with error bands estimated

from the theoretical uncertainty, as described above. These plots are a good general
example of the relation between the mean square radii and the two-body n-c binding
energy for Samba halo nuclei. As the n-c binding energy decreases in magnitude the
three-body bound state decreases slowly in size, with a slightly more rapid decrease in
size as the energy approaches zero and crosses over into the Borromean configuration,
where the n-c subsystem becomes unbound. This suggests that as the two-body n-c
state is more weakly bound, the particles must be closer together in order for the
three-body state to be bound with the same energy.

As was shown in Sec. 4.3.3, there possibly exists one Efimov excited state in 20C
for Enc < 165 keV. The mean square radii for this excited state were calculated over a
range of Enc values and plotted, with leading order error bands, in Fig. 4.11. Here we
see the interesting phenomenon that although the radii remain relatively constant in
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the middle of the range of n-c energies which allow the excited state, as the endpoints
are approached, the radii begin to increase rapidly, and then to diverge, both when
Enc → 165 and → 0.0 keV. It is at these points that the 20C system moves outside
the boundary curve depicted in Fig. 4.5, the Efimov excited state is destroyed, and
the three particles consequently fly apart.

In Table 4.1, we have highlighted the result using the central value of the accepted
n-c two-body binding energy, as well as two values which lead to an Efimov excited
state, including the resonant limit Enc = 0.0 keV. The rows marked by 20C∗ repre-
sent the results of the Efimov excited state. The three-body binding energy of this
excited state is listed in the second column with leading order theoretical uncertainty
calculated as described in Sec. 4.3.3.

Next we looked at a further geometrical property of 2n halo nuclei, specifically the
two neutron opening angle. As defined in Fig. 4.8(b), it is straightforward to calculate
θnn using the pair of mean square radii found from the three-body wave function Ψc,√

〈r2
nn〉 and

√
〈r2

c−nn〉:

tan

(
θnn

2

)
=

1
2

√
〈r2

nn〉√
〈r2

c−nn〉
. (4.74)

Our results for known halo nuclei are shown in Table 4.2 using the central values
of the experimental two-body and three-body energies as inputs (compare with Ta-
ble 4.1). We show the results for the competing values of the n-c virtual energy for
the case of 11Li. For the case of 20C we also show the result with Enc = 0.0 keV, along
with its corresponding Efimov excited state. The opening angle has been calculated
from experimental data in two recent works by Bertulani et al. [Ber07], and Hagino
et al. [Hag07], and their results are shown in the last two columns, respectively. The
study by Bertulani et al. uses the experimental values of

√
〈r2

nn〉 found by Marqués et
al. [Mar00] seen in the last column of Table 4.1, along with two different determina-
tions of

√
〈r2

c−nn〉 (see [Ber07] and references within): using laser spectroscopy data
(results displayed in first row for 11Li and 14Be), and also using the B(E1) strength
(second row for 11Li). However, the result for 14Be also uses a theoretical calculation
for one of the inputs, rather than being a pure experimental result. On the other
hand, the study by Hagino et al. uses the experimental values of B(E1) to calculate√

〈r2
c−nn〉, along with two different determinations of

√
〈r2

nn〉 (see [Hag07] and ref-
erences within): using experimental values of the nuclear matter radii (first row for
11Li), and using the results of Marqués et al. [Mar00] (second row for 11Li). Also,
results found using a three-body model with density dependent two-body contact
interactions were found in [Hag07], and are displayed in the third row for 11Li. As
would be expected, our results agree very well with the results from the three-body
theoretical model used in [Hag07]. Our result for 11Li using our preferred choice of
Enc = −800 keV, also agrees very well with the experimental results obtained using
the value for

√
〈r2

nn〉exp
from Marqués et al., which would be expected as our

√
〈r2

nn〉
value also agrees with this experimental value. Overall there is a good agreement be-
tween our calculated results and the results of [Ber07] and [Hag07], as all θnn values
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Nucleus
√

〈r2
nn〉 [fm]

√
〈r2

c−nn〉 [fm] θnn θnn [Ber07] θnn [Hag07]
11Li 8.7±0.7 5.5±0.4 77◦+8

−9 58◦+10
−14 56.2◦+17.8

−21.3

6.8±1.8 5.0±1.3 68◦+31
−25 66◦+22

−18 65.2◦+11.4
−13.0

[65.29]
14Be 4.1±0.5 2.8±0.4 72◦+16

−13 64◦+9
−10

12Be 3.0±0.6 1.9±0.4 77◦+23
−22

18C 2.6±0.7 1.6±0.4 78◦+30
−27

20C 2.8±0.3 2.0±0.2 70◦+11
−11

2.7±0.2 1.8±0.1 74◦+7
−7

20C* 130±10 69±5 87◦+8
−9

Table 4.2: Various two neutron opening angles of different 2n halo nuclei calculated
from the results for the mean square radii shown. Compared with results of [Ber07]
and [Hag07] shown in the last two columns, respectively.

lie within one error bar of each other. However, the size of these error bars suggest
that further study should be done to improve both the experimental and theoretical
results.

4.5 Conclusion

In this chapter, we have investigated universal aspects of three-body halo nuclei within
an effective quantum mechanics approach to leading order. Assuming that the halo
nuclei have resonant S-wave interactions between the neutron and the core, the ef-
fective potential at leading order reduces to a separable S-wave potential. We have
shown that the renormalization of this potential to reproduce the scattering length is
analogous to results using an EFT approach [Br06b]. The corrections at next-to- and
next-to-next-to-leading order in the expansion in Mlow/Mhigh are determined by the
S-wave effective ranges [Ham01, Pl06a]. Corrections from P-wave interactions appear
at even higher orders [Bed02]. An important improvement compared to previous cal-
culations is the inclusion of error bands based on the omitted higher order terms in
the effective theory.

We have calculated the parametric region within which at least one excited Efimov
state will occur for different values of the core mass A. The boundary of this region
is given by a curve in the plane described by the root of the ratio of the two-body
bound(virtual) state energies to the ground state energy [Amo96]. We have calculated
the boundary of this region for various values of the core mass A and provided error
bands for the boundary curves. From the current experimental data, we conclude
that none of the known halo nuclei is likely to have an excited Efimov state. One
possible exception is 20C which could have one excited state with a binding energy of
less than 7 keV.
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We have also studied the structure of known 2n halo nuclei, calculating the one-
and two-body matter density form factors. From these form factors we were able to
extract the mean square distances between the two particles in the chosen two-body
subsystem, as well as the mean square distance of the spectator particle from the
center of mass. We found that our results for the n-n mean square radii agree well
with the experimental data for the Borromean halo nuclei 11Li and 14Be [Mar00].
We have explicitly not studied the case of 6He, which is dominated by a P-wave
resonance in the n-c interaction (“5He”) and requires a different counting scheme.
While various schemes to treat such P-wave resonances in EFT have been developed
[Ber02, Bed03b], their application to three-body systems remains to be worked out.
To the expected accuracy, our effective theory gives a good description of the studied
halo nuclei. Using our results for the mean square distances, we have also calculated
the two neutron opening angle, and found a good general agreement with the recent
results of [Ber07] and [Hag07].

Throughout this work, we have estimated the theoretical error of the leading order
effective potential, Eq. (4.2). This uncertainty was quantified in our results through
error bands. In the next chapter, we will systematically improve the theoretical error
through the inclusion of a momentum dependent next-to-leading order term in the
effective potential which can be matched to the effective range of the interaction.

Another interesting application of this effective theory will be the study of Coulomb
excitation data from existing and future facilities with exotic beams (such as FAIR
and FRIB). In these experiments a nuclear beam scatters off the Coulomb field of
a heavy nucleus. Such processes can populate excited states of the projectile which
subsequently decay, leading to its “Coulomb dissociation” [Ber88]. Effective theories
offer a systematic framework for a full quantum-mechanical treatment of these reac-
tions. In summary, with new improved experimental data for these weakly bound
nuclei, much more knowledge can be obtained about the structure of these interest-
ing systems as well as discovering whether they show universal behavior and excited
Efimov states.



Chapter 5

Three-Body Halo Nuclei to
Next-to-Leading Order

In principle, the low-energy behavior of a few-body system with a scattering length
|a| much larger than the range R of the underlying two-body interaction can be
described up to an arbitrary level of accuracy proportional to powers of the low-
momentum scale Mlow over the high-momentum scale Mhigh [Br06b]. This is achieved
by taking advantage of the separation of scales inherent in the system, thereby using
the ratio R/|a| as a small expansion parameter in perturbative calculations. The
theoretical uncertainty can then be systematically improved by including increasingly
higher order terms in the expansion. In this chapter, we improve upon the results
of the previous chapter by including the momentum dependent next-to-leading order
(NLO) term in a short-range effective potential made up of contact interactions. At
this order, the effective range r0 of the two-body interaction comes into play. We
should, therefore, be able to predict effective range corrections to low-energy results
up to a precision given by (r0/a)

2 ∼ (Mlow/Mhigh)
2.

Effective field theories with contact interactions have already been used to study
the NLO range corrections to various few-body systems with a large scattering length,
mostly focused on the three-nucleon system. The range corrections to S-wave neutron-
deuteron scattering in the doublet channel were calculated in perturbation theory in
Ref. [Ham01]. In Refs. [Bed03a, Pl06a, Pl06b], low-energy observables in the three-
nucleon system were calculated up to next-to-next-to-leading order (N2LO) with a
formalism using the resummation of range effects. Also, the three-body recombination
of atoms with a large scattering length were calculated with effective range corrections
in a similar EFT in Ref. [Ham06]. For a more exhaustive list of such NLO studies,
see Ref. [Bed03a] and references therein.

There has also been interest lately in calculating the effective range corrections
to the Efimov effect for three identical bosons. The study done by Thøgersen et al.
[Thog08] focused on the range corrections for ultracold atoms caught in an optical
trap. Also, an effective theory, using once-subtracted momentum-space integral equa-
tions, has explored the corrections to the Efimov spectrum linear in r0 [Pl08]. It was
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shown that discrete scale invariance connects the relative corrections for different Efi-
mov states through a discrete scaling factor related to the factor found in the well
known LO results [Br06b] (also see Sec. 4.3.1). In this chapter, we critically exam-
ine these studies, using an extension of the effective theory derived to leading order
in the previous chapter. While this is very similar to the work done in Ref. [Pl08],
our approach allows for further analysis of the linear range corrections to the Efimov
spectrum (Sec. 5.3.1). We also explore the effective range corrections to the structure
of Efimov states, specifically looking at the corrections to the mean square distance
of the spectator particle from the center of mass, as well as the mean square distance
of the two particles in the two-body dimer subsystem (Sec. 5.3.2).

As mentioned before, the first experimental evidence of the Efimov effect has re-
cently been found in ultracold Cesium atoms through their signature in three-body re-
combination rates [Kr06]. There appears a resonant enhancement of the measured re-
combination rate in the lowest hyperfine state of ultracold 133Cs atoms at a ∼ −850a0,
due to the presence of an Efimov trimer at the three-body threshold. Effective field
theories using a zero-range model have been very successful at describing this data
[Br04a, Br08c]. Other more recent experiments have possibly found evidence of Efi-
mov states for both positive and negative scattering lengths in various ultracold atom
experiments [Kn08, Ot08, Hu08, Ba09]. In order to provide a more precise theoretical
representation of these results, it is important to improve our understanding of the
effective range dependence of the Efimov spectrum.

While these NLO corrections to the Efimov effect for three identical bosons are
very interesting, we also are interested in the corrections to 2n halo nuclei results
arising from a non-zero effective range. The effective range of the neutron-neutron
interaction has been measured to be rnn = (2.75 ± 0.11) fm [Mi90], which is of the
same order of magnitude as the natural low-energy length scale of the halo nucleus
system, as defined by the pion mass scale: 	 ≈ �/mπc = 1.4 fm. However, the effective
ranges for the various neutron-core interactions of 2n halo nuclei are not well known.
We therefore estimate rnc to also be of the order of the low-energy length scale and
use the inverse of the pion mass: rnc ≈ 1.4 fm. We can then use this estimate for the
effective range to calculate the NLO corrections to the results of the previous chapter.
We discuss the impact that the inclusion of the effective range has on the possibility
of known 2n halo nuclei to have an excited Efimov state, and look at the corrections
to the binding energy of a possible 20C excited state (Sec. 5.4.1). We then calculate
the shift in the mean square radii of various halo nuclei due to the non-zero effective
range (Sec. 5.4.2).

The structure of this chapter is as follows: We start with a detailed look into the
underlying two-body system (Sec. 5.1), first deriving the NLO T-matrix from the ef-
fective potential, including the rather involved process of renormalization (Sec. 5.1.1).
We then discuss important features of the two-body effective theory: the T-matrix
pole structure in Sec. 5.1.2, an important constraint on the effective range known as
the Wigner Bound in Sec. 5.1.3, and the renormalization group behavior of our NLO
effective theory in Sec. 5.1.4. We then use the two-body T-matrix result in the three-
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body Faddeev equations in Sec. 5.2. However, to properly renormalize the three-body
problem, we also must add a three-body force term to the Faddeev equations, which
we do analogously to an EFT formalism [Br06b]. After this, the results for the NLO
corrections to the Efimov effect for three identical bosons are shown in Sec. 5.3, and
the NLO results for 2n halo nuclei in Sec. 5.4. We end the chapter with conclusions.

5.1 The Two-Body NLO T-Matrix

In this section, we focus on the short-range two-body interaction, taken to next-to-
leading order (NLO), which will be used to describe the interactions between the
pairs of particles in the subsystems of the three-body problem. Due to divergences
in the theory, a process of renormalization must be performed in order to reproduce
physical low-energy observables. Starting from an effective interaction potential, the
process of renormalization is used in deriving the interaction T-matrix (Sec. 5.1.1).
Important to physical applications and the numerical calculations is the pole structure
of the T-matrix, which we describe in Sec. 5.1.2. In the following section, Sec. 5.1.3,
we detail an important restriction found for the parameters of the T-matrix which
results from our renormalization procedure. Finally, the renormalization of the S-
wave interaction can be understood in terms of a renormalization group, which we
describe in Sec. 5.1.4.

5.1.1 The NLO Effective Potential

We are now interested in extending the effective quantum mechanics framework of
Refs. [Ca08, Pl05, Pl04a, Pl04b] to the next-to-leading order (NLO). The low-energy
behavior of the system will then be reproduced with a level of accuracy proportional to
the low-momentum scale Mlow over the high-momentum scale Mhigh squared. For this
level of accuracy, we require two coupling parameters C0 and C2 tuned to reproduce
the scattering length a and effective range r0 of the interaction.

We, therefore, return to the effective interaction potential introduced in Sec. 4.1,
but include the NLO interaction in the momentum expansion:

〈�p | Veff | �p′〉 = g(p)g(p′)(C0 + C2(p
2 + p′2) + . . . ), (5.1)

where the dots indicate even higher order momentum dependent interactions. The
potential can be written in a more explicitly separable form as a matrix equation:

〈�p | Veff | �p′〉 = g(p)g(p′)
(

1 p2
)( C0 C2

C2 0

)(
1
p′2

)
(5.2)

= g(p)g(p′)vT
µ (p2)Cµνvν(p

′2), (5.3)

where we have defined the coupling parameter matrix Cµν , and momentum dependent
column vector vµ(p2). We assume Einstein’s summation convention throughout.
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As in the previous chapter, g(p) is the regulator function (sometimes called the
form factor) of the theory. Of course, the low-energy observables must be indepen-
dent of the regularization scheme, and one can choose the scheme most convenient
for calculations. In this section focusing on the two-body system, we continue to use
a momentum cutoff scheme, multiplying the coupling constants with the Gaussian
regulator function g(p) = exp(−p2/Λ2), where Λ is the cutoff parameter. This regu-
lator function suppresses the contributions of momenta p, p′ � Λ, where the effective
potential would break down and no longer be valid. However, when we later move
on to the three-body system, it will become more convenient to use a strong cutoff
regularization technique, in which the effective potential is set to zero for momenta
greater than Λ. The strong cutoff allows a simpler inclusion of a three-body force
term. The details for switching to a strong cutoff from the Gaussian regulator are
discussed in Sec. 5.2.2. A natural choice for the value of Λ is Λ ∼ Mhigh, but ob-
servables are independent of Λ after renormalization, up to higher order corrections
which scale with 1/Λ. However, there is an interesting constraint on Λ depending
on the value of the effective range r0 known as the Wigner Bound. This condition is
discussed in detail in Sec. 5.1.3.

One convenient property of a separable potential is that the two-body scattering
amplitude, known as the T-matrix, can be solved exactly. However, inclusion of the
NLO interaction makes the derivation of the T-matrix more complicated. We start
with the definition of the T-matrix through the Lippmann-Schwinger equation:

T (�p, �p′) ≡ 〈�p | t | �p′〉 = V (�p, �p′) +

∫
d3q

V (�p, �q)

E − q2

2µ
+ iε

T (�q, �p′)

= g(p)g(p′)vT
µ (p2)Cµνvν(p

′2)

+ g(p)vT
µ (p2)Cµν

∫
d3q

g(q)vν(q
2)

E − q2

2µ
+ iε

T (�q, �p′) (5.4)

= g(p)g(p′)vT
µ (p2)Cµνvν(p

′2) + g(p)vT
µ (p2)CµνBν , (5.5)

where in the last line we have introduced an intermediate column vector function Bν .
When we iterate Eq. (5.4) once, we can by comparison find an iterative relation for
Bν :

Bν =

∫
d3q

g(q)2vν(q
2)vT

ρ (q2)

E − q2

2µ
+ iε

g(p′)Cρσvσ(p′2)

+

∫
d3q

g(q)2vν(q
2)vT

ρ (q2)

E − q2

2µ
+ iε

CρσBσ

= g(p′)AνρCρσvσ(p′2) + AνρCρσBσ, (5.6)
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where we have now defined the integral as a matrix function Aνρ. We will return to
the exact form of Aνρ shortly. First, we solve for the column vector B. After some
manipulation using the properties of matrix multiplication we find

Bλ = g(p′)(1 − AC)−1
λν AνρCρσvσ(p′2). (5.7)

Substituting this back into the Lippmann-Schwinger equation, Eq. (5.5), after some
more manipulation using matrix multiplication, we find a solution for the T-matrix:

T (�p, �p′) = g(p)g(p′)vT
µ (p2)(C−1 − A)−1

µν vν(p
′2). (5.8)

Here we see that the T-matrix of the NLO separable potential is again separable.
Also, the similarities and reduction to the LO result can be seen through comparison
with Eq. (4.9).

We now return to the definition of the Aµν integral matrix. We write Aµν in its
matrix form by multiplying the vectors vµ(q2)vT

ν (q2) and simplify by performing the
trivial angular integration:

Aµν = 4π2µ

∫ ∞

0

dq
q2 exp

(
−2q2

Λ2

)
2µE − q2 + iε

(
1 q2

q2 q4

)

≡
(
A1 A2

A2 A3

)
. (5.9)

Since we will be chiefly concerned with bound states, we can assume that E < 0 and
we can solve for the Ai integrals. The derivation of the recursive relationship between
the Ai integrals, as well as the solutions related to the complementary error function
can be found in App. A. Each Ai integral includes terms proportional to powers of
the cutoff, which diverge in the limit Λ → ∞. These are high-energy effects which
can be removed through a process of renormalization, first redefining the coupling
parameters until we have a form for the T-matrix which is suitable for matching to
low-energy observables.

We start this process by substituting in the definitions for the column vectors
v(p2) and the matrices A and C and performing the multiplications in Eq. (5.8). We
also assume the on-shell condition for the two-body T-matrix, p2 = p′2 = 2µE. This
gives a new form for the NLO interaction T-matrix:

T (�p, �p′) = g(p)g(p′)
C0 + 2C22µE + C2

2(A3 − 2A22µE + A1(2µE)2)

1 − C0A1 − 2C2A2 − C2
2 (A1A3 − A2

2)
. (5.10)

As a next step, we substitute the solutions for the Ai integrals, found in App. A, into
the T-matrix. Looking only at the numerator of the above equation, we find that
most of the Λ dependent terms cancel each other and we are left with:

C0 + 2C22µE + C2
2(A3 − 2A22µE + A1(2µE)2) =

C0 − 2π22µC2
2 3

(
Λ
2

)5
√

2
π

+ 2µE
(
2C2 + 2π22µC2

2

(
Λ
2

)3
√

2
π

)
. (5.11)
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Here we see two terms dependent on Λ which represent high-energy effects. Since all
such effects should be described by the coupling parameters, we can redefine the C’s
to absorb these terms:

CR
0 ≡ C0 − 2π22µC2

2 3

(
Λ

2

)5
√

2

π
, (5.12)

2CR
2 ≡ 2C2 + 2π22µC2

2

(
Λ

2

)3
√

2

π
. (5.13)

With these redefined coupling parameters, we rewrite Eq. (5.11) in a compact form:

C0 + 2C22µE + C2
2(A3 − 2A22µE + A1(2µE)2) = CR

0

[
1 + 2

CR
2

CR
0

2µE

]
, (5.14)

and we notice that the redefinitions simply absorbed the terms proportional to C2
2

on the left hand side of the equation. The redefinitions work in the same way on the
denominator of the T-matrix, Eq. (5.10), absorbing the high-energy effects that arise
from the terms proportional to C2

2 :

1 − C0A1 − 2C2A2 − C2
2(A1A3 −A2

2) = 1 − CR
0 A1 − 2CR

2 A2. (5.15)

For the next step in redefining the coupling parameters, we substitute the solutions
of A1 and A2, found in App. A, into the above equation for the denominator of the
T-matrix which we then write in the following form:

1 − CR
0 A1 − 2CR

2 A2 = −2π22µCR
0

[
−
(

1

2π22µCR
0

+ 2
CR

2

CR
0

(
Λ

2

)3
√

2

π

)

−
(

1 + 2
CR

2

CR
0

2µE

)((
Λ

2

)√
2

π
−
√

−2µE exp
(
x̃2
)
erfc (x̃)

)]
,

(5.16)

where, for brevity, we have defined the variable x̃:

x̃ ≡
√

2(−2µE)

Λ
. (5.17)

Here we have another term dependent on Λ which contributes only to the high-energy
effects and can be absorbed into the coupling parameters by a second redefinition:

1

2π22µCR2
0

≡ 1

2π22µCR
0

+ 2
CR

2

CR
0

(
Λ

2

)3
√

2

π
, (5.18)

1

2π22µCR2
2

≡ 1

2π22µCR
2

+ 2

(
Λ

2

)3
√

2

π
, (5.19)
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where the second redefinition of C2 was done so that

CR2
2

CR2
0

=
CR

2

CR
0

. (5.20)

These are the final redefinitions of the coupling parameters that can be performed
in order to absorb high-energy effects arising from cutoff dependent terms in the
T-matrix.

Now that we have derived relations for the numerator, Eq. (5.14), and the denom-
inator, Eq. (5.16), of the T-matrix, we apply the second redefinitions of the coupling
parameters and find the following form for the interaction T-matrix:

T (�p, �p′) = g(p)g(p′)
−1

2π22µ

[
1 + 2

CR2
2

CR2
0

2µE

]

×
[

−1

2π22µCR2
0

− Λ

2

√
2

π
+
√

−2µE exp
(
x̃2
)
erfc (x̃)

−2
CR2

2

CR2
0

2µE

((
Λ

2

)√
2

π
−
√
−2µE exp

(
x̃2
)
erfc (x̃)

)]−1

(5.21)

= g(p)g(p′)
−1

2π22µ

⎡
⎢⎣ −1

2π22µCR2
0

1

1 + 2
C

R2
2

C
R2
0

2µE

−Λ

2

√
2

π
+
√

−2µE exp
(
x̃2
)
erfc (x̃)

]−1

. (5.22)

We have written the T-matrix in the two different forms above because each form
is useful in certain applications. The second form will be used in the process of
renormalization, in order to match the coupling parameters to the scattering length
a and the effective range r0. After this renormalization, the resulting relations will
be substituted into the first form to give our final result for the two-body S-wave
T-matrix to NLO.

We wish to renormalize our NLO theory by tuning the coupling parameters to
reproduce the first two parameters in the effective range expansion. The effective
range expansion is an expansion of the inverse of the T-matrix in powers of the two-
body energy. Therefore, we expand the denominator of Eq. (5.22) up to NLO, ignoring
terms of E2 and higher. This is done by the following binomial expansion:

1

1 + 2
C

R2
2

C
R2
0

2µE
= 1 − 2

CR2
2

CR2
0

2µE +O(E2) + . . . . (5.23)
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This is then substituted into Eq. (5.22), and terms of like order in E are collected:

T−1 ∝ −
[

1

2π22µCR2
0

+

(
Λ

2

)√
2

π

]
+ 2

CR2
2

2π22µ(CR2
0 )2

2µE

+
√
−2µE exp

(
x̃2
)
erfc (x̃) +O(E2) + . . . . (5.24)

We now require a suitable form of the effective range expansion which also includes
the effects of the Gaussian regulator functions, which appear in the T-matrix through
the exp(x̃2)erfc(x̃) factor. Specifically, the effective range expansion should reproduce
the same pole structure, while including the regulator effects. By comparing with the
LO result, Eq (4.15), we write an analogous form of the inverse T-matrix, but include
the NLO term in the expansion:

T−1 ∝ −1

a
exp

(
x̃2

0

)
erfc (x̃0) +

r0
2

2µE exp
(
x̃2

0

)
erfc (x̃0)

+
√
−2µE exp

(
x̃2
)
erfc (x̃) +O(E2) + . . . , (5.25)

where we define x̃0 in the same way as x̃:

x̃0 ≡
√

2(−2µE2)

Λ
, (5.26)

with E2 the pole of the effective range expanded two-body T-matrix up to the NLO
term. In other words, E2 < 0 is the solution of

0 = −1

a
+
r0
2

2µE2 +
√

−2µE2. (5.27)

A more detailed discussion of the pole structure, with its implications to the two-body
systems involved in 2n halo nuclei will be given in Sec. 5.1.2.

By matching the like terms in Eqs. (5.24, 5.25), we find the relations needed to
tune the coupling parameters to reproduce low-energy observables, specifically the S-
wave scattering length and effective range. The LO coupling parameter as a function
of the cutoff CR2

0 (Λ) can be related to the scattering length:

1

CR2
0

= 2π22µ

[
1

a
exp

(
x̃2

0

)
erfc (x̃0) −

(
Λ

2

)√
2

π

]
, (5.28)

which is analogous to the LO result, Eq. (4.12), except now the pole in the two-
body system is calculated to the NLO, including corrections from the effective range
parameter. As expected, if r0 = 0, then 2µE2 = 1/a2, and Eq. (5.28) reduces exactly
to Eq. (4.12).
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For the effective range parameter r0 we match the terms proportional to 2µE to
find the relation:

r0
2

exp
(
x̃2

0

)
erfc (x̃0) = 2

CR2
2

2π22µ(CR2
0 )2

. (5.29)

Therefore, using the relation between CR2
0 (Λ) and a, we can relate CR2

2 (Λ) to r0:

CR2
2 =

1

4π22µ

⎡
⎢⎣ r0

2
exp (x̃2

0) erfc (x̃0)(
1
a
exp (x̃2

0) erfc (x̃0) −
(

Λ
2

)√
2
π

)2

⎤
⎥⎦ , (5.30)

which leads to the useful relation:

2
CR2

2

CR2
0

=
r0

2
exp (x̃2

0) erfc (x̃0)

1
a
exp (x̃2

0) erfc (x̃0) −
(

Λ
2

)√
2
π

. (5.31)

These results are analogous to the findings of EFT using a strong cutoff regularization
scheme [Br06b].

Using these relations, for a chosen Λ, we can determine what values of CR2
0 and

CR2
2 will reproduce the experimentally determined values of a and r0. Due to the

dependence of both coupling parameters on E2, which is of course dependent on a
and r0, both C’s must be tuned in order to reproduce these low-energy observables
to this order. However, if Λ is large compared to the momentum scale of the pole
Λ �

√
2µE2, then exp(x̃2

0)erfc(x̃0) → 1 and only CR2
0 must be tuned in order to

reproduce the scattering length a. Once this is done, we can tune the value of CR2
2 in

order to reproduce r0.
With the potential now renormalized, we can return to the two-body T-matrix for

an S-wave interaction to next-to-leading order. By substituting Eqs. (5.28, 5.31) into
Eq. (5.21) we find for E < 0:

T (�p, �p′) = g(p)g(p′)
−1

2π22µ

⎛
⎝1 − 2µE

r0

2
exp(x̃2

0)erfc(x̃0)(
Λ
2

)√
2
π
− 1

a
exp(x̃2

0)erfc(x̃0)

⎞
⎠

×
[
−1

a
exp(x̃2

0)erfc(x̃0) +
√
−2µE exp(x̃2)erfc(x̃)

+
r0
2

exp(x̃2
0)erfc(x̃0)2µE

⎛
⎝
(

Λ
2

)√
2
π
−

√
−2µE exp(x̃2)erfc(x̃)(

Λ
2

)√
2
π
− 1

a
exp(x̃2

0)erfc(x̃0)

⎞
⎠
⎤
⎦
−1

.

(5.32)

If the cutoff is chosen large compared to all momentum scales involved in the prob-
lem: Λ � 1/|a|,

√
2µE,

√
2µE2, this T-matrix reproduces the usual effective range

expansion at next-to-leading order.
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5.1.2 The NLO T-Matrix Pole Structure

In this subsection, we discuss the pole structure of the S-wave T-matrix in the NLO
effective range expansion. We also discuss the implications that this pole structure
has on 2n halo nuclei with large scattering lengths, and how the pole structure of the
full NLO two-body T-matrix found in Eq. (5.32) changes with a finite cutoff.

The value of the T-matrix pole E2 is important to our theory, as it is needed
as a parameter arising from the regularization scheme (see Eqs. (5.26, 5.27)). The
position of the poles to NLO is dependent on the value of the scattering length a
and the effective range parameter r0. The poles found in momentum space κ are the
solutions of the quadratic equation:

0 = −1

a
+
r0
2
κ2 − iκ, (5.33)

which has the two solutions:

κ = iγ± where γ± =
1 ±

√
1 − 2r0/a

r0
. (5.34)

As long as 2r0/a < 1, γ± are both real, and the poles lie on the imaginary axis. For
γ± > 0 the pole is on the positive imaginary axis, corresponding to a two-body bound
state at energy 2µB2 = γ2

±. For γ± < 0, the pole is on the negative imaginary axis,
corresponding to a two-body virtual state at energy 2µEv = γ2

±.
Three-body halo nuclei are characterized by their large S-wave scattering lengths

compared to the range of the interaction, a � r0. For this case we find that one
of the poles always appears in the high-momentum region, where our theory breaks
down and is no longer valid. This is most easily seen by taking the expansion of γ±
for small r0/a:

γ+ =
2

r0
− 1

a

(
1 +

r0
2a

+O(r2
0/a

2) + . . .
)
, (5.35)

γ− =
1

a

(
1 +

r0
2a

+O(r2
0/a

2) + . . .
)
. (5.36)

For a � r0, γ+ is in the high-momentum region. We, therefore, set the value of
E2 < 0 needed in our full NLO T-matrix, Eq. (5.32), using the γ− pole

|2µE2| =

(
1 −

√
1 − 2r0/a

r0

)2

. (5.37)

For a > 0(a < 0), this pole lies on the positive(negative) imaginary axis, corresponding
to a two-body bound(virtual) state with two-body energy B2 = E2(Ev = E2). In the
LO limit, r0 = 0, this reduces exactly to the universal formula for the two-body
binding energy given in Eq. (4.1).
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In the cases where r0 < 0, the γ+ pole gives rise to a virtual state, which decreases
from infinity as |r0| is increased. On the other hand, when r0 > 0, the γ+ pole is a
simple bound state, starting at infinity and decreasing quickly as r0 increases. For
the condition a � r0, this bound state stays in the high-momentum region and can
be ignored. However, it can cause numerical problems in calculations using the NLO
effective range expansion for values of r0 → a/2.

For completeness, in the case 2r0/a > 1, we see from Eq. (5.34), that the poles
become a complex conjugate pair with solutions:

γ± =
1

r0
± i

√
2r0/a− 1

r0
. (5.38)

These complex-conjugated poles generate a resonance in the phase shift, centered
around an energy 2µEr = 2/ar0. Just such a case occurs with the 2n halo nucleus
6He, in the α-n two-body subsystem, according to the partial wave analysis done in
Ref. [Arn73]. This agrees with the absence of a 5He bound state, although the S-wave
scattering length is positive. The α-n scattering is dominated by a resonant P-wave,
and, therefore, a study of the 6He halo nucleus is not done explicitly here. The case
2r0/a > 1 is not dealt with in this work, as it does not fulfill the condition of large
scattering length compared to the range of the interaction, a� r0, and therefore, can
not be accurately described by our effective theory.

As stated before, the NLO T-matrix found from the effective potential with Gaus-
sian regulator functions, Eq. (5.32), reproduces the effective range expansion in the
limit that the cutoff Λ → ∞, and therefore, in this limit, has the same pole structure
described above. However, for a finite cutoff, the pole structure changes, most impor-
tantly the position of the high-energy bound state pole γ+, which appears for r0 > 0.
As Λ decreases from infinity, the magnitude of this bound state pole increases, and
another simple pole appears from infinity and decreases toward γ2

+. At a particular
value of the cutoff ΛB the two poles annihilate each other. For values of Λ < ΛB,
there is no longer a pole in the high-energy region for the NLO T-matrix of Eq. (5.32).
This is exactly the expected effect of a momentum cutoff. A finite cutoff suppresses
the details of the potential for momentum larger than Λ, and thus at some sufficiently
small value of Λ the high-energy pole is destroyed. The position of ΛB for various
values of a, r0 has been numerically calculated and found to be, within a certain level
of accuracy, equal to the position of the Wigner bound, a constraint on the maximum
value of the cutoff (see Sec. 5.1.3). Therefore, for the values of Λ allowed by the
Wigner bound, no pole appears in the high-energy region for the NLO T-matrix of
Eq. (5.32), and we do not have to worry about numerical difficulties arising from such
a divergence.

While decreasing the cutoff from infinity eventually destroys the pole structure
in the high-energy region, there is relatively little change in the pole found in the
low-energy region. As desired, the position of the pole created by γ− remains almost
unchanged for sufficiently small values of r0 as long as Λ is not so small as to enter
the low-energy region.
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5.1.3 The S-Wave Wigner Bound

It has been shown that the renormalization of an effective potential made up of contact
interactions in a momentum expansion, regularized by a momentum cutoff scheme,
as is the case of our effective potential, Eq. (5.1), can only be performed if certain
constraints are placed on the effective range [Ph97]. Specifically, the effective range
must be negative in the zero-range limit of the potential. This constraint follows
directly from the general bound on the derivatives of the phase shifts derived first by
Wigner in 1954 [Wig55], and is hence known as the Wigner bound. Wigner derived
this bound from the fundamental principles of causality and unitarity, holding that a
scattered wave cannot leave the scatterer before the incident wave has reached it.

A more recent study showed analytically the relation between the Wigner bound
on the derivatives of phase shifts with the constraint on the effective range for short-
range potentials [Ph96]. In this work it was shown explicitly that for any energy-
independent potential in position space V (r, r′) which only acts up to a certain range
R,

V (r, r′) = 0 for all r, r′ > R, (5.39)

the effective range is bounded by

r0 ≤ 2

(
R − R2

a
+
R3

3a2

)
. (5.40)

It is then obvious that for the zero-range limit, the effective range must be equal to
or less than zero. It was also shown that this bound applies even if the potential
does not go strictly to zero, but merely decreases fast enough for the wave function to
approach the asymptotic solution sufficiently quickly. These position space arguments
were then translated into momentum space in a following study [Ph97], and the r0 ≤ 0
bound for zero-range potentials was shown to hold true no matter how many terms
in the momentum expansion are included in the potential.

We now show that the bound on the effective range can be derived straightfor-
wardly in momentum space from the process of renormalization, done in Sec. 5.1.1,
for our effective potential, Eq. (5.1).

In the renormalization process, the bare coupling constants C0 and C2 were rede-
fined twice in order to absorb high-energy effects proportional to powers of the cutoff
parameter. The exact form of the redefinitions are found in Eqs. (5.12, 5.13) and
Eqs. (5.18, 5.19). The bare couplings are then related to the final couplings by:

C0 =
CR2

0

1 − 4π22µCR2
2

(
Λ
2

)3
√

2
π

+ 3

(
Λ

2

)5
√

2

π
2π22µC2

2 , (5.41)

and

C2 =
1

2π22µ
(

Λ
2

)3
√

2
π

⎛
⎜⎝−1 ±

√√√√ 1

1 − 4π22µCR2
2

(
Λ
2

)3
√

2
π

⎞
⎟⎠ . (5.42)
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Figure 5.1: The Wigner bound, a constraint on the maximum value of the effective
range r0 depending on the value of the cutoff parameter Λ, or vice versa. Solid lines
taken from Eq. (5.44) including the full effects of the Gaussian regulator scheme.
Dashed lines taken from Eq. (5.45), the limit assuming large Λ. Upper(lower) curves
found for negative(positive) scattering length.

Here one sees that there are real values of CR2
2 for which the bare couplings are

complex. This would lead to an unphysical complex potential. Therefore, we must
place a constraint on the value of CR2

2 :

4π22µCR2
2

(
Λ

2

)3
√

2

π
≤ 1. (5.43)

The renormalization of the effective potential was completed by tuning the rede-
fined coupling constants to reproduce the scattering length and the effective range.
Substituting the expression which relates CR2

2 to a and r0, Eq. (5.30), into the above
equation, we find the Wigner bound on the effective range which results using a
Gaussian regulator scheme:

(
Λ

2

)3
√

2

π

r0

2
exp (x̃2

0) erfc (x̃0)(
1
a
exp (x̃2

0) erfc (x̃0) −
(

Λ
2

)√
2
π

)2 ≤ 1, (5.44)

where x̃0 is a parameter dependent on Λ and the two-body T-matrix pole E2, which
in turn is dependent on a and r0 (see Eq. (5.26), as well as Sec. 5.1.2). If the cutoff
is much larger than the momentum scale of the T-matrix pole, Λ �

√
2µE2, then
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exp(x̃2
0)erfc(x̃0) → 1 and we find a momentum space analog to Eq. (5.40):

r0 ≤ 2

(
2

Λ

√
2

π
− 8

aΛ2
+

8

a2Λ3

√
π

2

)
. (5.45)

The Wigner bounds, comparing the results including the Gaussian regulator factors
with the large cutoff limit, for both positive and negative scattering length, are dis-
played in Fig. 5.1.

5.1.4 The Renormalization Group

In this section, we analyze the renormalization of our two-body effective potential,
done in Sec. 5.1.1, in terms of the renormalization group (RG). We follow the analysis
of similar works on renormalization groups, Refs. [Kap98, Br06b]. These works assume
the limit in which the cutoff parameter is much larger than the momentum scale of
the two-body system, Λ �

√
2µE2. For the Gaussian regulator scheme, this leads to

the limit exp(x̃2
0)erfc(x̃0) → 1. However, for the present analysis, we do not assume

this limit, thereby including the regulator effects for small values of Λ.
First, we write the redefined coupling constants CR2

0 and CR2
2 in a dimensionless

form:

Ĉ0(Λ) ≡ 2π22µΛ√
2π

CR2
0 , Ĉ2(Λ) ≡ 4π2µΛ2

r0 exp(x̃2
0)erfc(x̃0)

CR2
2 , (5.46)

where the physical two-body system determines the fixed values for the reduced mass
µ and the effective range r0. The regulator parameter x̃0, defined in Eq. (5.26), is
proportional to the inverse of Λ and the square root of the two-body pole energy E2,
which in turn is dependent on a and r0 (see Sec. 5.1.2 for details). Using the tuning
equations for these coupling constants, Eqs. (5.28, 5.30), we find the relations:

Ĉ0(Λ) = − aΛ

aΛ −
√

2π exp(x̃2
0)erfc(x̃0)

, (5.47)

Ĉ2(Λ) =

(
aΛ

aΛ −
√

2π exp(x̃2
0)erfc(x̃0)

)2

. (5.48)

Here, the similarity between C0 and C2 can be seen as Ĉ2 = Ĉ2
0 .

For a fixed scattering length a and effective range r0, varying Λ produces the
renormalization group trajectory for the dimensionless coupling constants. With the
physical observables fixed, all points along a given trajectory correspond to the same
physical two-body system. The trajectories for a few different values of r0, for both
positive and negative a are displayed in Fig. 5.2, in which all quantities are scaled
with the magnitude of |a|. These are compared to the trajectories for which the limit
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Figure 5.2: The dimensionless 2-body coupling constants a) Ĉ0 and b) Ĉ2 as functions
of the ultraviolet cutoff Λ for both positive and negative scattering length a and several
values of the effective range r0; Solid(black): r0 = 0, Dashed(red): r0 = 0.5a, Dotted-
dashed(dark green): r0 = −0.5a. The double dotted-dashed(blue) lines correspond
to the trajectories when Λ is always assumed to be larger than the momentum scale
of the two-body system.

exp(x̃2
0)erfc(x̃0) → 1 was taken (thin double dotted-dashed(blue) lines). For positive

values of a with negative values of r0 (and also for the vanishing x̃0 limit), there is a
divergence in both Ĉ0 and Ĉ2, while for negative values of a or positive values of r0
there exists no such divergence.

One can see clearly the failure of the the vanishing x̃0 limit for smaller values of Λ.
When this limit is assumed both coupling constants vanish as the cutoff approaches
zero. This was interpreted as a value of Λ = 0 corresponding to the noninteracting
system with a = 0 [Br06b]. However, including the regulator effects we find that

Ĉ0 =

(
−1 +

1

a
√

2µE2

)−1

as Λ → 0 , (5.49)

and as stated before Ĉ2 = Ĉ2
0 . For example, if the effective range vanishes, r0 = 0, the

two-body pole energy obeys the universal relation
√

2µE2 = 1/|a|, and we find that
for negative a the coupling constant Ĉ0 → −1/2, while for positive a the coupling
constant diverges, Ĉ0 → −∞. Only for the case of an infinitely negative effective
range, r0 = −∞, will the coupling constants vanish as the cutoff approaches zero.
However, the vanishing cutoff does not fulfill the requirement that Λ be larger than
the momentum scale of the two-body system. In this case, the regulation scheme
affects the details of the potential in the low-energy scale, and can not be used to
reliably reproduce the physics of the desired system.

At the other end of the trajectory, the cutoff is much larger than the momentum
scale of the two-body system, and we see that all trajectories approach the same limit.
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Both Ĉ0 and Ĉ2 flow toward fixed-points as the cutoff is increased:

Ĉ0(Λ) → −1 , and Ĉ2(Λ) → +1 as Λ → ∞ . (5.50)

According to Eq. (5.28), this fixed-point corresponds to the two-body problem in the
resonant limit, a → ±∞. Since the scaling limit, in which the natural low-energy
length scale 	 → 0, was implicitly taken in the effective potential through the use
of only two-body contact interactions, the Λ → ∞ fixed-points correspond to the
special case of taking the resonant and scaling limits simultaneously. Although an
arbitrary system has a finite fixed value of a, the flow of all trajectories toward the
fixed-points suggests that as the energy scale increases to values larger and larger
compared to 1/a2, the system behaves more and more like the resonant limit. In
an actual physical system, there is a natural cutoff corresponding to the natural
low-energy length scale Λ ∼ 1/	, beyond which two-body contact interactions are
not sufficient to describe the physics. The behavior of the system will become more
complicated for Λ > 1/	, and will no longer flow toward the fixed-points. This value
for Λ is the momentum, or corresponding energy, at which our effective theory breaks
down and a more fundamental theory would be needed.

The properties of the renormalization group flow in the large cutoff (vanishing x̃0)
limit can also be seen through the analysis of the differential renormalization group
equations. Differentiating both sides of Eqs. (5.47, 5.48) with respect to Λ (after
assuming exp(x̃2

0)erfc(x̃0) → 1), one can derive the RG equations [Kap98]:

Λ
d

dΛ
Ĉ0 = Ĉ0(1 + Ĉ0) , Λ

d

dΛ
Ĉ2 = 2Ĉ2

(
1 ±

√
Ĉ2

)
, (5.51)

where we must first resolve the problem of the ±
√
Ĉ2. As has been already observed,

there is a fixed-point in the Ĉ2 trajectory of Ĉ2 = 1 as Λ → ∞, Eq. (5.50). Therefore,

in order for the RG equation to reproduce this fixed-point, we must choose −
√
Ĉ2.

Then the two RG equations produce the corresponding fixed-points already described
at Ĉ0 = −1, and Ĉ2 = +1, as well as the spurious fixed-points Ĉ0 = Ĉ2 = 0 which
appeared for Λ → 0 when one first assumes x̃0 = 0.

At the two fixed-points, the two-body system displays a scale invariance. Gener-
ally, the mapping of one theory onto another theory with a different scattering length
a can be done through a continuous scaling symmetry

a→ λa, E → λ−2E , (5.52)

where λ is an arbitrary positive real number. For our case, at the fixed-point a = ±∞,
the continuous scaling symmetry obviously does not change the value of a, so it maps
the theory onto itself, a scaling invariance. The scale invariance at this fixed-point
actually is part of the two-body system’s invariance under a larger group of conformal
symmetry transformations [Me00].
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5.2 The NLO Faddeev Equations

The two-body NLO T-matrix derived in Sec. 5.1.1 can be used in the kernel of the
Faddeev integral equations found in Sec. 3.3. In the following subsection we derive
the Faddeev equations for the 2n halo nucleus problem using the Gaussian regulator
functions. However, in order to properly renormalize the three-body system including
effective range corrections, it is necessary to include a three-body force term in the
Faddeev equations. It is most convenient to include the three-body term while working
with a strong cutoff regularization, and the details of switching to this regularization
scheme and including the three-body force term are discussed in Sec. 5.2.2.

5.2.1 The Faddeev Equations with Gaussian Regulators

We now wish to derive a form of the coupled Faddeev equations suitable for solving
the bound 2n halo nucleus problem. However, for S-waves, this has already been
done in Sec. 4.2. The resulting coupled integral equations are exactly those found in
Eqs. (4.45, 4.46):

Fn(q) =
1

2

∫ ∞

0

dq′q′2
∫ 1

−1

dx

[
g (π̃(q, q′)) g (π̃(q′, q))

× Gn
0 (π̃(q′, q), q′;B3) tn(q′;B3)Fn(q′)

+ g (π̃1(q, q
′)) g (π̃2(q, q

′))

× Gc
0 (π̃2(q, q

′), q′;B3) tc(q
′;B3)Fc(q

′)
]
, (5.53)

Fc(q) =

∫ ∞

0

dq′q′2
∫ 1

−1

dx

[
g (π̃1(q

′, q)) g (π̃2(q
′, q))

× Gn
0 (π̃1(q

′, q), q′;B3) tn(q′;B3)Fn(q′)
]
, (5.54)

where the propagators Gi
0(p, q;B3), with i = n, c, are defined in Eqs. (4.17, 4.18),

the Gaussian regulator function g(p) in Eq. (4.3), and the shifted momenta π̃, π̃1, π̃2

in Eqs. (4.37, 4.40, 4.41). The functions Fi(q) are known as the Faddeev spectator
functions, and their relation to the Faddeev components of the wave function is found
in Eq. (4.44). The three-body binding energies are given by the values of B3 for
which the coupled integral equations have a nontrivial solution. However, the coupled
equations are most easily solved by discretizing the variables q and q′, and solving the
resulting matrix equation (see Eq. (4.47)):[

Fn

Fc

]
=

[
Knn Knc

Kcn 0

] [
Fn

Fc

]
, (5.55)
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with kernels Kij taken from the coupled Faddeev equations above. Then, the binding
energies are given by the values of B3 for which the kernel matrix has an eigenvalue
of 1.

The only difference from the LO result is that the functions ti(q
′;B3) now describe

the effects of the NLO two-body interactions (see Eq. (5.32)):

tn(q′;B3) =
1

π

A+ 1

A

⎛
⎝1 + Ẽn(q′;B3)

rnc

2
exp(x̃2

nc)erfc(x̃nc)(
Λ
2

)√
2
π
− 1

anc
exp(x̃2

nc)erfc(x̃nc)

⎞
⎠

×
[
− 1

anc
exp(x̃2

nc)erfc(x̃nc) +

√
Ẽn(q′;B3) exp(x̃2

n)erfc(x̃n)

−rnc

2
exp(x̃2

nc)erfc(x̃nc)Ẽn(q′;B3)

×

⎛
⎜⎝
(

Λ
2

)√
2
π
−
√
Ẽn(q′;B3) exp(x̃2

n)erfc(x̃n)(
Λ
2

)√
2
π
− 1

anc
exp(x̃2

nc)erfc(x̃nc)

⎞
⎟⎠
⎤
⎥⎦
−1

, (5.56)

tc(q
′;B3) =

2

π

⎛
⎝1 + Ẽc(q

′;B3)
rnn

2
exp(x̃2

nn)erfc(x̃nn)(
Λ
2

)√
2
π
− 1

ann
exp(x̃2

nn)erfc(x̃nn)

⎞
⎠

×
[
− 1

ann
exp(x̃2

nn)erfc(x̃nn) +

√
Ẽc(q′;B3) exp(x̃2

c)erfc(x̃c)

−rnn

2
exp(x̃2

nn)erfc(x̃nn)Ẽc(q
′;B3)

×

⎛
⎜⎝
(

Λ
2

)√
2
π
−
√
Ẽc(q′;B3) exp(x̃2

c)erfc(x̃c)(
Λ
2

)√
2
π
− 1

ann
exp(x̃2

nn)erfc(x̃nn)

⎞
⎟⎠
⎤
⎥⎦
−1

, (5.57)

where ann, rnn, and anc, rnc are the n-n and n-c scattering lengths and effective ranges,
respectively. Also, for brevity we have defined the variables x̃i and x̃ni where i = n, c
(see Sec. 5.1.1):

x̃i ≡

√
2Ẽi(q′;B3)

Λ
, (5.58)

x̃ni ≡
√

2(2µEni)

Λ
, (5.59)

where Eni is the two-body bound(virtual) state energy calculated from the pole of the
two-body NLO T-matrix as prescribed in Eq. (5.37), and Ẽi(q

′;B3) is the two-body
subsystem energy function defined in Eqs. (4.25, 4.26).
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5.2.2 The Faddeev Equations with a Strong Cutoff

In calculating three-body observables to LO, it was not necessary to include a three-
body force term, as the limit cycle behavior of the three-body force allows one to tune
the cutoff to mimic the effects of a three-body force term (see Sec. 4.3.1). However,
to NLO, the renormalization of the three-body problem is not as simple, and a proper
renormalization can only be guaranteed by the inclusion of an explicit three-body force
term [Ham06]. Unfortunately, the inclusion of a three-body force is fairly complicated
when using Gaussian regulator functions [Pl04a]. Therefore, we now switch to a more
convenient choice of regularization, a strong momentum cutoff. In this regularization
scheme, the interaction potential, Eq. (5.1), is set to zero for momenta greater than
the cutoff parameter Λ. In this case, the regulator functions g(p) are not needed and
can be ignored.

The derivation of the two-body interaction T-matrix using a strong cutoff is anal-
ogous to that done in Sec. 5.1.1. One would simply eliminate all exponential functions
arising from the Gaussian regulator functions g(p) and instead set the upper limit of
all phase space integrals to Λ. One finds that the difference in the two regularization
schemes arises from the results of the Ai integrals defined in Eq. (5.9), and discussed
in detail in App. A. Solving the Ai integrals using a strong cutoff, we find that to
switch from a Gaussian regulator to a strong cutoff one must simply replace the forms
of the regulator factor and the Λ dependent terms in all equations using the following
prescription:

Gaussian Regulator Strong Cutoff

exp
(
x̃2
)
erfc (x̃)

2

π
arctan

(√
2

x̃

)

(n− 2)!!

(
Λ

2

)n
√

2

π

2

π

1

n
Λn.

Here we see that in both cases the regulator factors quickly approach 1 as x̃→ 0.
Therefore, the coupled Faddeev integral equations using a strong cutoff will be

similar to those found in Eqs. (5.53, 5.54) (see previous subsection), but with an upper
limit of Λ on the momentum integrals, the elimination of the g(π̃) regulator functions,
and the ti(q

′;B3) functions, Eq. (5.56, 5.57), having changed according to the above
prescription. With the elimination of the g(π̃) functions, the only x dependence
appears in the propagators Gi

0(π̃, q
′;B3) in such a form that the dx integration can

be performed analytically. The resulting coupled integral equations are:

Fn(q) =
1

2

∫ Λ

0

dq′q′2
[
G̃n(q, q′;B3) tn(q′;B3) Fn(q′)

+ G̃c(q, q
′;B3) tc(q

′;B3) Fc(q
′)
]
, (5.60)
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Fc(q) =

∫ Λ

0

dq′q′2
[
G̃c(q

′, q;B3) tn(q′;B3) Fn(q′)
]
, (5.61)

where

G̃n(q, q′;B3) =
A

qq′
ln

(
2A

A+1
B3 + q2 + q′2 + 2

A+1
qq′

2A
A+1

B3 + q2 + q′2 − 2
A+1

qq′

)
, (5.62)

G̃c(q, q
′;B3) =

1

qq′
ln

(
B3 + q2 + A+1

2A
q′2 + qq′

B3 + q2 + A+1
2A
q′2 − qq′

)
. (5.63)

We can now straightforwardly add a three-body force term to the above integral
equations by noticing that for the case of three identical particles in the LO limit,
Eqs. (5.60, 5.61) reproduce the well known three-boson bound state equation obtained
in Ref. [Br06b]. This study derived the three-body force term for identical bosons
by using an EFT including a three-body contact interaction. However, this three-
body interaction was simplified using the diatom field trick, in which the EFT was
formulated with an explicit diatom field d, a local operator that annihilates two atoms
at a point. The Lagrangian first derived by Bedaque, Hammer, and van Kolck [Bed99]
has the following form:

LBHvK = ψ†
(
i
∂

∂t
+

1

2
∇2

)
ψ +

g2

4
d†d− g2

4

(
d†ψ2 + ψ†2d

)
− g3

36
d†dψ†ψ ,

(5.64)

where ψ is the particle field operator, g2 is the leading order two-body coupling
constant, and g3 the three-body coupling constant. This Lagrangian can then be
used to derive the integral equation for the three-boson amplitude, diagrammatically
shown in Fig. 5.3, where the single and double lines represent the particle and diatom
field, respectively, and the thick solid line represents the full diatom propagator (for
details see Ref. [Br06b]). The homogeneous terms which appear in the bound state
integral equation arise from the two diagrams in the second line of Fig. 5.3, where
the first of these diagrams corresponds to the term dependent only on the two-body
contact interaction, analogous to those already found in Eqs. (5.60, 5.61).

The last diagram in the integral equation then represents the missing three-body
term. The dependence on the three-body coupling constant g3 is found only in a factor
proportional to the ratio g3/g

2
2, and it is most convenient to define a dimensionless

three-body function H(Λ)1:

H(Λ) = −2
g3

9g2
2

Λ2. (5.65)

1Note, the definition of H(Λ) in the present work differs from that found in [Br06b] by a factor
of 1/2.
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Figure 5.3: The integral equation for the three-body amplitude. Figure used with
permission from Ref. [Br06b].

We, therefore, include a three-body force term analogously to our coupled integral
equations for the 2n halo nucleus system:

Fn(q) =
1

2

∫ Λ

0

dq′q′2
[(

G̃n(q, q′;B3) +
H(Λ)

Λ2

)
tn(q′;B3) Fn(q′)

+

(
G̃c(q, q

′;B3) +
H(Λ)

Λ2

)
tc(q

′;B3) Fc(q
′)
]
, (5.66)

Fc(q) =

∫ Λ

0

dq′q′2
[(

G̃c(q
′, q;B3) +

H(Λ)

Λ2

)
tn(q′;B3) Fn(q′)

]
. (5.67)

The three-body binding energies are given by the values of B3 for which the coupled
integral equations have a nontrivial solution. The three-body system is determined by
the n-c and n-n scattering lengths and effective ranges. However, in order to correctly
renormalize the theory, one three-body parameter is required. For a fixed value of Λ,
the three-body term H(Λ) can be tuned to reproduce a given three-body observable
and then other low-energy observables can be predicted using the same H(Λ).

We are also interested in calculating other low-energy physical properties of three-
body halo nuclei, specifically the matter density form factors and the mean square
radii. The information needed to calculate such quantities is held in the wave functions
of the known bound states. The full wave function of the bound 2n halo nucleus
can be reconstructed from the solutions for the spectator functions Fn and Fc found
from our coupled integral equations, Eqs. (5.66, 5.67). However, the form of the
wave function, i〈pq|Ψ〉 ≡ Ψi(p, q), depends on the choice of two-body subsystem and
corresponding spectator particle, where the index i = n, c labels the chosen spectator
particle. Recall that in the wave functions, the p Jacobi momentum describes the
relative momentum between the two particles in the chosen two-body subsystem,
while q describes the momentum of the spectator particle relative to the center of mass
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of the two-body subsystem. The proper reconstruction of the full wave equations was
derived in Sec. 4.4.1 for the case of Gaussian regulator functions without the presence
of a three-body term. We now must derive the analogous relations for the strong
cutoff regularization scheme, along with a three-body force term.

The make-up of the full wave function in terms of its Faddeev components ψi

does not depend on the choice of regularization scheme, and for 2n halo nuclei is
derived from Eq. (3.13). We, therefore, use the same relations found in Sec. 4.4.1 (see
Eqs. (4.56, 4.57)):

Ψn(p, q) = ψn(p, q) +
1

2

∫ 1

−1

dx [ψn(π̃nn, π̃
′
nn) + ψc(π̃nc, π̃

′
nc)] , (5.68)

Ψc(p, q) =

∫ 1

−1

dx ψn(π̃cn, π̃
′
cn) + ψc(p, q), (5.69)

where the definitions of the various shifted momenta π̃ij are found in Sec. 4.4.1.
The difference between using Gaussian regulator functions and the strong cutoff now
appears in the definition of the Faddeev components ψi in terms of the spectator
functions Fi, which for Gaussian regulator functions is found in Eq. (4.44). We can
switch from the Gaussian regulator to a strong cutoff in the same way as before:
dropping the Gaussian regulator function g(p) and changing the ti(q;B3) functions
according to the prescription detailed at the beginning of this subsection.

However, we must now include the three-body term in order to properly recon-
struct the wave function from the spectator functions. We see that the inclusion of
the three-body force term H(Λ) into the coupled integral equations, Eqs. (5.66, 5.67),
occurs as a function added to the propagator factor G̃i such that, in operator nota-
tion, the operator corresponding to the propagator G→ G+H . Therefore, we include
the three-body term in the same way to the definition of the Faddeev components in
terms of the spectator functions, and find:

ψi(p, q) =
(
Gi

0(p, q;B3) +H(Λ)/Λ2
)
ti(q;B3)Fi(q), (5.70)

where the propagators Gi
0(p, q;B3) for i = n, c are defined in Eqs. (4.17, 4.18). Sub-

stituting this relation into Eqs. (5.68, 5.69), we again find that:

Gn
0 (π̃nn, π̃

′
nn;B3) = Gn

0 (p, q;B3), (5.71)

Gc
0(π̃nc, π̃

′
nc;B3) = Gn

0 (p, q;B3), (5.72)

Gn
0 (π̃cn, π̃

′
cn;B3) = Gc

0(p, q;B3). (5.73)

Therefore, to reconstruct the full wave functions in the S-wave with either a neutron
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or core spectator from the spectator functions we find:

Ψn(p, q) =

(
Gn

0 (p, q;B3) +
H(Λ)

Λ2

)[
tn(q;B3)Fn(q)

+
1

2

∫ 1

−1

dx tn(π̃′
nn;B3)Fn(π̃′

nn) + tc(π̃
′
nc;B3)Fc(π̃

′
nc)

]
, (5.74)

Ψc(p, q) =

(
Gc

0(p, q;B3) +
H(Λ)

Λ2

)[
tc(q;B3)Fc(q)

+

∫ 1

−1

dx tn(π̃′
cn;B3)Fn(π̃′

cn)

]
. (5.75)

The three-body wave functions can now be used to calculate other low-energy
properties of the three-body bound state. With the Jacobi momentum states it is
straightforward to calculate the Fourier transform of the one- and two-body matter
densities with respect to the momentum transfer squared. These are defined as the
one- and two-body matter density form factors Fi(k

2) and Fni(k
2), respectively, where

i = n, c. The derivation of the form factors from the three-body S-wave wave functions
was done in Sec. 4.4.2, and we refer the reader to that subsection for more details.
The result for the one-body form factors is:

Fi(k
2) =

∫
dp p2

∫
dq q2

∫ 1

−1

dx Ψi(p, q)Ψi(p,
√
q2 + k2 − 2qkx), (5.76)

and for the two-body form factors:

Fnc(k
2) =

∫
dp p2

∫
dq q2

∫ 1

−1

dx Ψn(p, q)Ψn(
√
p2 + k2 − 2pkx, q), (5.77)

and

Fnn(k
2) =

∫
dp p2

∫
dq q2

∫ 1

−1

dx Ψc(p, q)Ψc(
√
p2 + k2 − 2pkx, q). (5.78)

The mean square radii for our three-body bound states are calculated from the matter
density form factors in the low momentum transfer region, as described in Sec. 4.4.3.

With the formalism now in place, we proceed in finding NLO corrections to the
bound state spectrum and the mean square radii, first in the bound three-boson
system (Sec. 5.3), and then in 2n halo nuclei systems (Sec. 5.4).

5.3 Effective Range Corrections to Three-Boson

Bound States

As previously mentioned, the coupled Faddeev integral equations derived for 2n halo
nuclei, Eqs. (5.66, 5.67), are a generalization of the three-boson equation. To reduce



88 Chapter 5: Three-Body Halo Nuclei to NLO

to the NLO three-boson bound state equation we simply set the core mass equal to the
nucleon mass, A = 1, along with setting the n-c scattering length and effective range
equal to the n-n values: anc = ann = a, rnc = rnn = r0. When this is done, Eq. (5.66)
becomes identical to Eq. (5.67) and instead of a coupled set of integral equations, we
now must solve just one integral equation. We find the bound state spectrum of the
three-boson system by finding the energies B3 for which this integral equation has a
nontrivial solution, or in practice by discretizing the integral and finding the energies
which give an eigenvalue of 1 for the kernel matrix. In using the NLO T-matrix
in the kernel of the Faddeev equations, we explore the effective range corrections to
the three-boson bound state spectrum, as well as universality in these corrections in
Sec. 5.3.1. In the following subsection, Sec. 5.3.2, we look at the NLO effects on
the geometry of the Efimov states, specifically the mean square separation of the
particles in the two-body (dimer) subsystem as well as the mean square distance of
the spectator particle from the three-body center of mass.

5.3.1 Range Corrections to the Efimov Effect

We find the spectrum of three-boson bound states for different scattering lengths in
the region where the scattering length is much larger than the range of the interaction.
The spectrum of bound state energies B

(n)
3 as a function of the two-body pole energy

E2, which is related to the scattering length a and effective range r0 according to
Eq. (5.37), is shown in Fig. 5.4, where negative values on the E2-axis correspond
to negative scattering lengths a. We have scaled the energies by a power of 1/8 so
that a greater range of the bound state spectrum can be displayed, as the discrete
scaling factor λ0 is reduced from 22.7 to 22.71/8 = 1.48. Due to the discrete scale
invariance of the system, all quantities are found in units of the appropriate power of
an arbitrarily chosen momentum scale κ∗. As mentioned before, we require one three-
body parameter in order to renormalize the three-body system. We have renormalized
the binding energies by tuning the three-body term H(Λ), for a fixed Λ, such that the

state with index n∗ = 1 has a binding energy of B
(1)
3 = 10.0κ2

∗ in the resonant limit
E2 = 0. We use units such that the boson mass m = 1 as well as � = c = 1. The
leading order results are represented by the solid black lines, and agree with those
presented in Ref. [Br06b].

The NLO results are renormalized in the same way, finding the shifted value of
H(Λ), for the same fixed Λ, such that B

(1)
3 = 10.0κ2

∗ in the resonant limit E2 = 0.
Due to the Wigner bound, which limits the maximum positive effective range for a
chosen finite Λ, or vice versa (see Sec. 5.1.3), some care must be taken in choosing Λ.
For all results in Fig. 5.4, we have chosen Λ = 200.0κ∗, which constrains the effective
range at the resonant limit to r0 ≤ 0.019κ−1

∗ . The constraint on r0 does not change
dramatically for finite values of a as long as a � r0. As a representative example
of NLO corrections to the Efimov plot, we show the results for r0 = 0.01κ−1

∗ and
r0 = −0.01κ−1

∗ , represented by the dashed red lines and the dotted-dashed blue lines
in Fig. 5.4, respectively.
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Figure 5.4: The spectrum of three-boson bound states with short-range interactions,
as a function of the two-body pole energy E2. Negative values on the E2-axis cor-
respond to negative scattering lengths a. All quantities in units of the appropriate
power of an arbitrarily chosen momentum scale κ∗ (see text for details). Binding
energies B3 and two-body pole energy E2 are both scaled by a power of 1/8 so that a
greater range of bound states can be displayed. Black solid lines: LO case r0κ∗ = 0.0,
red dashed lines: NLO case with r0κ∗ = 0.01, blue dotted-dashed lines: NLO case
with r0κ∗ = −0.01, dotted line: atom-dimer breakup threshold.

We see that the shift in the binding energies ∆B
(n)
3 caused by effective range

corrections is only recognizable in the deeper Efimov states, although there are similar
shifts in the shallower excited states. Also, the shift in the resonant limit vanishes
(up to corrections ∼ 1/Λ) for all states within the range of validity of our effective

theory. The binding energy of the deepest state B
(0)
3 (E2 = 0) is near the order of

magnitude of the cutoff Λ and details of the regularization scheme become important
for this state. It is for this reason that the NLO result with r0 = −0.01κ−1

∗ is
not displayed for this state. These calculations agree with the analytically derived
result of Platter, Ji and Phillips in Ref. [Pl08], that in the resonant limit, if the

shift ∆B
(n∗)
3 is forced by the renormalization procedure to equal zero, the shift for all

states ∆B
(n)
3 = 0 for all n. This conclusion holds for the limit Λ → ∞, where the

regularization and renormalization of the theory respect discrete scale invariance. For
a finite Λ, there will be violations of discrete scale invariance, which result in 1/Λ-

suppressed corrections to ∆B
(n)
3 [Pl08]. However, as long as Λ is kept large compared

to the momentum scale of the system, these corrections will be of higher order than
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considered here.
For small values of the effective range, we assume that the effective range correc-

tions to the the binding energies can be treated perturbatively, with the first order
correction linear in r0. This leads to the universal function [Pl08]:

B
(n)
3 = κ2

∗

[
F (n)

(√
E2

κ∗

)
+ r0κ∗G(n)

(√
E2

κ∗

)
+ . . .

]
, (5.79)

where κ∗ is an arbitrarily chosen momentum scale which can be set through renor-
malization. For our calculations, we continue to renormalize the three-body system
such that the state n∗ = 1 has B

(1)
3 (E2 = 0) = 10.0κ2

∗. The function F (n) gives the LO
binding energy of the nth state at an arbitrary E2, and can be found in Ref. [Br06b].
The function G(n) then gives the NLO corrections to the binding energy of the nth
state which are linear in r0. In Ref. [Pl08], it was hypothesized that, due to discrete
scale invariance in the LO case, there should be an approximate discrete scaling factor
which would relate G(n) to G(n∗). The analysis of linear range corrections in the reso-
nant limit leads to the assumption of a κ3 scaling between the first order corrections,
which leads to the hypothesis for arbitrary E2 [Pl08]:

G(n)

(√
E2

κ∗

)
= θ(n)

(√
E2

κ∗

)
λ

3(n∗−n)
0 G(n∗)

(√
E2

κ∗
λn∗−n

0

)
, (5.80)

where λ0 is the universal scaling factor defined by: λ0 = exp(π/s0), and s0 = 1.00624
is a universal number [Br06b]. The function θ(n) accounts for the effects that modify
the scaling for finite E2 and obeys the constraints:

θ(n∗)(x) = 1 for all x, (5.81)

θ(n)(0) = 1 for all n. (5.82)

It is assumed that θ(n) ∼ 1 for all other E2.
Computing the function G(n)(

√
E2/κ∗) involves finding the slope of a curve in the

B
(n)
3 vs. r0 plane for a desired E2. In practice, we fit a straight line to B

(n)
3 vs. r0

data, calculated at a fixed E2 for effective ranges |r0| ≤ 0.001κ−1
∗ . This allowed us

to increase the cutoff parameter to a value of Λ = 1000κ∗, which corresponds to a
Wigner bound of r0 ≤ 0.0038κ−1

∗ . In order to find the slope in the r0 → 0 limit, the
fit was then repeated using a smaller maximum |r0|, and convergence was found for
|r0| ≤ 0.0001κ−1

∗ for most bound states. This procedure was repeated for a range
of E2 values, or corresponding scattering lengths a, which span the entire existence
of the nth bound state, for n = 0, 1, 2 and 3. Results of this procedure are shown
in Figs. 5.5, 5.6, where we have now normalized the arbitrarily chosen κ∗ scale such
that in the resonant limit B

(1)
3 (E2 = 0) = κ2

∗. These results agree in large part with
the results found in Ref. [Pl08], however our technique allows us to obtain sufficiently
accurate results for multiple bound states in the negative scattering length region.

Our results for negative scattering length are shown in Fig. 5.5, where the solid
black line represents the n∗ = 1 state, to which we have renormalized our three-body
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Figure 5.5: The function G(n) for negative scattering lengths, for n = 0, 1, 2. Solid
black lines represent the results for the n∗ = 1 state, the state to which our three-
body system is renormalized. Results for other states n �= 1 are scaled according to
Eq. (5.80); red dashed lines: n = 2, blue dot-dashed line: n = 0.

system. The results for n = 2 (dashed red line) and n = 0 (dotted-dashed blue
line) have been scaled according to Eq. (5.80). We see that scaling the two-body
pole energy λn−1

0

√
E2 does indeed bring all states onto the same horizontal scale. For

all states, the functions G(n) vanish at the critical value of the scattering length, or
corresponding

√
E2, in the r0 → 0 limit, where the bound system breaks up into three

bosons. In the LO limit, this critical scattering length is related to the binding energy
in the resonant limit by a universal relation [Br06b]:√

E
(n)
2− = 1/a

(n)
− = −0.6633

√
B

(n)
3 (E2 = 0). (5.83)

Also, the minima in the rescaled G(n) functions are all at approximately the same po-
sition,

√
E2 ≈ −0.47κ∗, however with the trend that the minimum position decreases

slightly in magnitude in going from deeper to shallower states. On the vertical scale,
the scaling assumed in Eq. (5.80), λ

3(n−1)
0 G(n), does allow the results for all Efimov

states to be plotted on the same scale. However, there is an obvious deviation from
a pure λ3

0 scaling between neighboring states. Here there is also a recognizable trend,
with shallower states having an increasingly larger magnitude of |G(n)| after rescaling.
This deviation in discrete scaling is encoded in the θ(n) function, and an investigation
into the form of this function will be done in a future work.

We also note that only G(1) goes to zero in the resonant limit, although it was
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stated before, that the NLO effective range corrections of all states should be zero
as long as the corrections for the n∗ state are forced to be zero by renormalization.
This is due to both the higher order corrections which appear when using a finite
Λ, as well as the numerical uncertainty in our calculations. The binding energies for
the n = 0 state for scattering lengths near the resonant limit approach the order of
magnitude of Λ and, therefore, the details of the regulator scheme become important.
The results for G(2), it should be recalled, are scaled by a factor λ3

0 = 11688.2, such
that even a small deviation from zero at the resonant limit becomes magnified by
four orders of magnitude. For practical purposes, the deviation from G(n) = 0.0 at√
E2 = 0.0 for the results corresponding to n �= n∗, can be used as an estimation of

the relative uncertainty in these curves.
The results for n = 1 for negative scattering length agree in large part to those

found by Platter, Ji and Phillips in Ref. [Pl08], especially on the horizontal scale,
where the position of the minimum is almost exactly the same. However, the magni-
tude of |G(1)| in our study is larger than that found in [Pl08] by a factor of ≈ 1.6. This
discrepancy could be due to numerical inaccuracy inherent in extracting such small
values of the function G(n), or could be attributed to higher order effects stemming
from the use of a finite Λ.

For future studies, it will be important to improve the numerical accuracy of our
calculations. The fluctuations seen in the n = 2 results in both Figs. 5.5, 5.6 are due
to limited numerical accuracy both in calculating the binding energies of these states,
and then performing a straight line fit to this data. While these fluctuations are
originally of an acceptable order of magnitude (≈ 10−5), one must consider that the
scaling factor λ3

0 = 11688.2 magnifies these fluctuations by four orders of magnitude.
Results for the n = 3 state, although calculated, can not be displayed, as the numerical
inaccuracy of calculating such small binding energies, now magnified by eight orders
of magnitude, becomes much too large.

We now turn to our results for positive scattering lengths, displayed in Fig. 5.6,
where the n∗ = 1 and scaled n = 2 results are represented by the solid black and the
dashed red lines, respectively. For positive scattering length, the binding energies of
the n = 0 state quickly move out of the range of validity of our theory, and thus this
state does not appear in our graph. Again, we find that the horizontal scale of all
states is related by the scaling of the two-body pole energy, λn−1

0

√
E2. Once again, the

functions G(n) vanish at the critical value of the scattering length, or corresponding√
E2, in the r0 → 0 limit, where the bound system now breaks up into an atom-dimer

pair. In the LO limit, this critical scattering length is related to the binding energy
in the resonant limit by the universal relation [Br06b]:√

E
(n)
2+ = 1/a

(n)
+ = 14.13

√
B

(n)
3 (E2 = 0). (5.84)

Also, the position of the maximum in the rescaled function is at approximately the
same position,

√
E2 ≈ 10.0κ∗, as for the n∗ = 1 state, although again showing a trend

of a slight decrease in the value of the maximum position in going from deeper to
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Figure 5.6: The function G(n) for positive scattering lengths, for n = 1, 2. Solid
black lines represent the results for the n∗ = 1 state, the state to which our three-
body system is renormalized. Results for other states n �= 1 are scaled according to
Eq. (5.80); red dashed lines: n = 2.

shallower states. The position of this maximum agrees very well with the results for
both n = 1, 2 found in Ref. [Pl08]. On the vertical scale, the scaling of G(n) according
to Eq. (5.80) does bring quantities which differ by four orders of magnitude onto
the same scale. However, there is again an obvious deviation from a pure λ3

0 scaling
between neighboring states. As with negative scattering lengths, the trend appears to
be toward a larger magnitude of |G(n)| for shallower bound states, except for values
approaching the critical scattering length, where G(2) drops much more quickly than
G(1). As stated before, the deviation in discrete scaling is encoded in the θ(n) function,
and an investigation into the form of this function will be done in a future work. For
positive scattering length, we find a much better agreement on the vertical scale with
the results of Ref. [Pl08]. Although the maximum of our n = 2 curve does not reach
as high, the n = 1 results appear to be in close quantitative agreement.

As stated before, in the LO limit, there are universal relations between the three-
boson binding energy in the resonant limit and the critical scattering lengths at which
the bound state breaks up into three bosons (for a < 0, Eq. (5.83)) or an atom-
dimer pair (for a > 0, Eq. (5.84)). In Fig. 5.4, it can be seen that the positions of
these critical scattering lengths are shifted due to NLO corrections. The positions of
these critical scattering lengths are important in cold atomic gases in determining the
positions of extrema of the three-body recombination rate near a Feshbach resonance
[Kr06]. In such Feshbach systems, the effective range of the interaction is related to
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n C
(n)
− C

(n)
+

0 1.4 –
1 2.6 -1.4
2 3.7 -2.0
3 4.8 -2.7
4 6.2 –

Table 5.1: Extracted slopes for the NLO corrections to the critical scattering length
which are linear in the effective range, as defined in Eq. (5.85), for both negative

(C
(n)
− ) and positive (C

(n)
+ ) scattering length. However, the uncertainty in extracting

these slopes leads us to an estimated error of ≈ 100% (see text for details).

the width of the Feshbach resonance [Pet06].
For small values of the effective range, we assume that the effective range correc-

tions to the the critical scattering lengths can be treated perturbatively, with the first
order correction linear in r0. We calculate these critical values by finding the value of
a for which the kernel of the three-boson integral equation has an eigenvalue of one
when the binding energy is set to threshold. Discrete scale invariance in the LO limit
suggests that there should be an approximate discrete scaling relation between the
NLO corrections for different Efimov states. Therefore, we look at the linear effective
range corrections to the critical scattering lengths normalized by the LO critical a
scale:

a
(n)
± (r0)

a
(n)
± (0)

=
ã

(n)
± (0)

a
(n)
± (0)

+ C
(n)
±

r0

|a(n)
± (r0)|

+ . . . , (5.85)

where a
(n)
± (0) is the LO critical scattering length calculated from the integral equation,

and ã
(n)
± (0) is found from the fit to our data. The slope C

(n)
± is extracted by fitting a

straight line to a(r0)/a(0) vs. r0/|a(r0)| data for small values of |r0|. The extraction
of this slope is numerically delicate, as a small change in r0 produces only a minor
shift in a±. Therefore, there is a large uncertainty in fitting a straight line to the
data. The uncertainty that this creates in the quantitative results presented here will
be discussed shortly.

Results for extracted values of C
(n)
± are displayed in Table 5.1. These results were

extracted from two different sets of data, using two different three-body parameters in
the renormalization of the three-body system. For C

(0)
− and all C

(n)
+ , in order to have

critical scattering lengths which were large in comparison to the range of r0 values
used in the fit, we renormalized the three-body system such that, for all r0 values, we
fixed the cutoff to Λ = 1000κ∗, and then tuned the three-body term H(Λ) so that the

binding energy of the n = 1 state in the resonant limit was B
(1)
3 (a = ±∞) = 10.0κ2

∗.
However, for the results found for C

(n)
− when n > 0 we required that the critical

scattering lengths be far enough away from the resonant limit as to reduce numerical
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Figure 5.7: Left panel: The negative critical scattering length, where a bound three-
boson state breaks up into three bosons, as a function of the effective range of the
interaction. Right panel: The positive critical scattering length, where a bound three-
boson state breaks up into an atom-dimer pair, as a function of the effective range
of the interaction. Circles: data points computed from the NLO three-boson bound
state integral equation. Lines: linear fit to the data for small r0.

inaccuracy. For this reason, we fixed Λ = 10000κ∗, and tuned the three-body term
so that the n = 2 state had a binding energy B

(2)
3 (a = ±∞) = 10.0κ2

∗. These
renormalization procedures allowed for a cutoff large enough to reduce higher order
1/Λ-suppressed corrections. Even with this renormalization, a

(0)
+ is at a threshold

energy which is too high to fall within the validity of our effective theory. Also, data
collected for a

(4)
+ was dominated by numerical fluctuations, and could not be used.

The slopes were then extracted from a straight line fit to values of |r0| ≤ 0.0001κ−1
∗ .

Interestingly, we found that the extracted values for C
(1)
− and C

(2)
− were approximately

the same using both sets of data. In Fig. 5.7 we have plotted the data sets used in
extracting the slopes found in Table 5.1, along with the corresponding linear fits.

Qualitatively, we can conclude that for increasing effective range r0 the absolute
value of the negative critical scattering length |a−| increases, while the absolute value
of the positive critical scattering length |a+| decreases. Also, the relative magnitude
of this shift appears to increase when going from deeper to shallower states (similarly
to the magnitude of the G(n) function).

Quantitatively, the relatively large uncertainty in extracting the slopes from our
data, along with other theoretical considerations, raise troubling questions about the
accuracy of our quantitative results, as displayed in Table 5.1. As mentioned before,
the shift in a± is very small for the small r0 values used in our data sets. The shift
due to r0 is often smaller than the relative shift in a± when using a different cutoff
Λ in the renormalization procedure. Also, the smallest reliable numerical accuracy is
often of the same order of magnitude as the a± shift. From this, we would conclude
that the extracted slopes have an error of the same order of magnitude as the result.
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It is, therefore, somewhat surprising that the extracted slope for the n = 0 state,
C

(0)
− = 1.4, matches well with the similar study done by Thøgersen et al.: C

(0)
− = 1.3

[Thog08]. Also, the data points found in [Thog08] for n = 1, 2, fall very close to the
corresponding linear fits presented here.

More questions arise when theoretical considerations of the discrete scaling in-
variance are taken into account. Due to this scale invariance, there is no way for
the system to know which state n corresponds to the ground state of the physical
system. In the LO limit, one can find the exact same low-energy physics by taking
one system and multiplying all quantities by the appropriate power of the discrete
scaling factor λ0. Consequently, to LO, an arbitrary state n can always be interpreted
as the ground state, with the (n+ 1)th state the first excited state, etc. Accordingly,
we could renormalize two different systems such that, for example, in the first system
the n = 1 and in the second system the n = 2 state both reproduce the same three-
body observable. To LO, due to discrete scale invariance, these two systems would
be identical, and give (up to higher order effects) the same results. Therefore, for
this discrete scale invariance to also appear in the NLO corrections, we would assume
that the slopes found from two different renormalizations, as long as we renormalize
in such a way as to reproduce the same three-body observable, should be the same.
However, this is not the case found here. As explained above, we extracted slopes
from two different sets of data. In the first, the n = 1 state was renormalized such
that B

(1)
3 (a = ±∞) = 10.0κ2

∗, and in the second, the n = 2 state was renormalized

such that B
(2)
3 (a = ±∞) = 10.0κ2

∗. Discrete scale invariance would then suggest that

C
(1)
± from the first set would be equal to C

(2)
± from the second set. But, this is not

what we have found from our results. This could, of course, be due to the uncertainty
in the linear fit, as described above, or it could suggest a deviation from the simple
discrete scale invariance for finite values of the scattering length similar to that seen
in the G(n) function.

Lastly, we find that there is also a rather large uncertainty arising from the chosen
value of Λ used in the renormalization procedure. Although low-energy observables
should be independent of Λ, the extracted slopes found when using different cutoffs
show a much larger Λ dependence than expected. As a general trend, the absolute
value of the slopes |C(n)

± | decreases slowly as Λ increases.

We conclude that although the qualitative results for the shift in the critical scat-
tering lengths confirms those found previously [Pl08, Thog08], a much more rigorous
investigation must be done to make definite quantitative conclusions.

5.3.2 Range Corrections to Three-Boson Mean Square Radii

Since the first studies of the Efimov effect [Ef70], it has been interpreted that the
bound three-body state decays into three free particles as the threshold at negative
critical scattering length is crossed, while on the other end of the spectrum, the decay
is into an atom-dimer pair at the positive critical scattering length. This implies that
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the structure of the three-body bound state moves toward three free particles at large
distance from each other, or a bound dimer state with a loosely bound atom at large
distance, as the respective thresholds are approached [Br06b].

This feature of the three-body state near the critical scattering lengths, along with
the corresponding effective range corrections arising at NLO, is best seen in the mean
square radii. The mean square radii for our three-body bound states are calculated
from the matter density form factors in the low momentum transfer region. The
matter density form factor is defined as the Fourier transform of the matter density:

F(k2) =

∫
ρ(�x)ei�k·�xd3x, (5.86)

with the normalization F(k2 = 0) = 1. In the low momentum transfer region, the
exponential can be expanded, and assuming a spherically symmetric matter density,
we see that the slope of the form factor determines the mean square radius 〈r2〉:

F(k2) =

∫
ρ(�x)

(
1 + i�k · �x− (�k · �x)2

2
+ . . .

)
d3x

= 1 − 1

6
k2
〈
r2
〉

+ . . . . (5.87)

Of course, the mean square radius acquired depends on the choice of one- or two-
body form factor, which are calculated from the the full wave function in Eqs. (5.76,
5.77, 5.78). Recall that the three-boson system is found from the derived formulas
for 2n halo nuclei by setting all parameters related to the core c equal to those of
the neutron n: i.e. the core mass A = 1, and all scattering lengths ann = anc = a
and effective ranges rnn = rnc = r0. The Jacobi momentum states are especially well
suited to explore the structure of the Efimov trimer as it is related to the two-body
subsystem (dimer), and the spectator boson (atom)2. Since �p describes the relative
momentum of the two bosons in the two-body subsystem, the slope of Fnn(k2) will
give the mean square distance between the two bosons in the two-body subsystem
〈r2

nn〉. Analogously, because �q describes the momentum of the spectator boson relative
to the center of mass of the two-body subsystem, the slope of Fn(k2) will give the
mean square distance of the spectator boson from the center of mass of the two-
body subsystem

〈
r2
n−nn

〉
. However, it is more useful to calculate the distance of the

spectator boson from the center of mass of the three-body bound state. If bn is the
slope of the one-body form factor Fn(k

2) at the limit k2 = 0, the mean square radius
of the spectator boson from the three-body center of mass is given by:

〈
r2
n

〉
= −8

3
bn. (5.88)

2In order to keep a connection to the equations derived in Sec. 5.2.2, we represent a boson with
the subscript n in the analysis that follows.
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Figure 5.8: Mean square distance of the spectator particle from the three-body center
of mass 〈r2

n〉 as a function of the two-body pole energy E2. Negative values on the
E2-axis correspond to negative scattering lengths a. All quantities in units of the
appropriate power of an arbitrarily chosen momentum scale κ∗ (see text for details).
Mean square distance and the two-body pole energy are both scaled by a power of
1/8 so that multiple bound states can be displayed. Results shown for multiple values
of the effective range r0.

We have extracted the radii by fitting a polynomial in k2 to the form factor results
for small k2. We have used polynomials of varying degree up to 5th order in k2 in
order to verify the stability and convergence of the fit. We have found a satisfactory
stability in the slope when fitting to a polynomial to the fourth order in k2, up to a
value of k2 at which the form factor has dropped less than 10 percent.

We show the results for 〈r2
n〉, in Fig. 5.8, and 〈r2

nn〉, in Fig. 5.9, as functions of the
two-body pole energy E2 for two neighboring Efimov states, where negative values
on the E2-axis correspond to negative scattering lengths a. We have scaled the mean
squared radii and the two-body pole energy by a power of 1/8 so that a greater
range of the bound state spectrum can be displayed, as the discrete scaling factor
λ0 is reduced from 22.7 to 22.71/8 = 1.48. All quantities are found in units of the
appropriate power of an arbitrarily chosen momentum scale κ∗. As mentioned earlier,
we require one three-body parameter in order to renormalize the three-body system.
We have renormalized in the same way as was done for the results shown in Fig. 5.4,
by tuning the three-body term H(Λ), for a fixed Λ = 200.0κ∗, such that the state

with index n∗ = 1 has a binding energy of B
(1)
3 = 10.0κ2

∗ in the resonant limit E2 = 0.
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Figure 5.9: Mean square distance between the two particles in the two-body subsystem
〈r2

nn〉 as a function of the two-body pole energy E2. Negative values on the E2-axis
correspond to negative scattering lengths a. All quantities in units of the appropriate
power of an arbitrarily chosen momentum scale κ∗ (see text for details). Mean square
distance and the two-body pole energy are both scaled by a power of 1/8 so that
multiple bound states can be displayed. Results shown for multiple values of the
effective range r0.

Therefore, the mean square radii shown in Figs. 5.8, 5.9 are those corresponding to
the binding energies shown in Fig. 5.4, for the states with indices n = 1, 2.

Here we see clearly the change in the three-body structure as the bound state
approaches the critical scattering lengths. For negative scattering lengths, there is
not a large change in either mean square radius until the critical scattering length
is approached. By increasing the magnitude of the two-body virtual energy toward
this point, both 〈r2

n〉 and 〈r2
nn〉 increase dramatically, as the bound three-body system

breaks up into three free particles.

On the other side of the spectrum, as the two-body bound state energy is increased,
or accordingly the positive scattering length decreased, the size of the three-body
system begins to decrease. Then, as the critical scattering length is approached,
the distance of the spectator particle from the three-body center of mass increases
dramatically, while the distance of the particles in the two-body subsystem continues
to decrease. This confirms that the positive critical scattering length corresponds to
the threshold of a bound three-body state breaking up into an atom-dimer pair.

We explore NLO corrections to the mean square radii by plotting the mean square
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radii results calculated for four non-zero effective ranges in Figs. 5.8, 5.9. We see that
the only recognizable corrections occur at scattering lengths approaching the critical
values. The shift in the critical scattering length due to a non-zero effective range,
as described in the previous subsection, determines where the bound state breaks
up and, therefore, where the corresponding mean square radius will increase toward
infinity. For negative scattering lengths, a positive(negative) effective range leads to
an increase(decrease) in the mean square radius. The opposite sign on the scatter-
ing length leads to exactly the opposite behavior. For positive scattering lengths,
a positive(negative) effective range leads to a decrease(increase) in the mean square
radius. This observed shift of the mean square radii for non-zero effective ranges is
related to the corresponding shift of the binding energies of these states, as seen in
Fig. 5.4. Specifically, in the resonant limit, E2 = 0, when we force the shift of one of
the Efimov states to be zero by our renormalization procedure, the shift for all states
in the resonant limit is zero, up to higher order corrections.

The result for r0 = 0.01κ−1
∗ appears to have an anomalous characteristic as it

approaches the positive critical scattering length. First off, the position of the critical
scattering length is shifted in the wrong direction from the LO result. Also, the
distance of the spectator particle from the center of mass 〈r2

n〉 does not increase
to infinity in approaching this threshold. However, this anomaly occurs due to the
effective range being in the same order of magnitude as the critical scattering length,
a+ ≈ 0.02κ−1

∗ . Therefore, this result does not fulfill the condition of our effective
theory, that the scattering length be much larger than the range of the interaction.

5.4 Effective Range Corrections to 2n Halo Nuclei

In Ch. 4, we performed the LO calculations of low-energy observables of three-body
halo nuclei composed of a core and two valence neutrons, including an exploration of
the Efimov effect, or the possibility thereof, in 2n halo nuclei (Sec. 4.3), as well as a
look into the structure of halo nuclei focusing on the matter density form factors and
the mean square radii (Sec. 4.4). We now turn to exploring the NLO corrections to
these results arising from the effective range of the two-body interactions. We start
in the following subsection by looking at range corrections to the results of Sec. 4.3.2
on the possibility of the Efimov effect in 2n halo nuclei, as well as Sec. 4.3.3 on the
binding energy of a possible Efimov excited state in 20C. After that, in Sec. 5.4.2, we
estimate effective range corrections to the mean square radii results first calculated
in Sec. 4.4.3.

5.4.1 Range Corrections to 2n Halo Nuclei Binding Energies

One of the main achievements of Sec. 4.3.2 was the calculation of boundary curves
representing the existence of an excited Efimov state for various values of the core

mass in the parametric region defined by the ratios

√
Enc/B

(n)
3 versus

√
Enn/B

(n)
3 ,
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shown in Fig. 4.4, where Enc and Enn are the n-c and n-n two-body energies related
to the S-wave scattering length to LO through Eq. (4.1). Recall that in Fig. 4.4,
all points which lie within the boundary curve have at least one excited Efimov state
above the state with energy B

(n)
3 , while points outside the curve have no excited states

above this state. The curve itself is built up of the points for which the B
(n+1)
3 binding

energy is equal to the scattering threshold. This is equivalent to finding the critical
scattering lengths of the three-body system, as was done for the three-boson system
in Sec. 5.3.1. There it was observed that including a non-zero effective range shifted
the position of the critical scattering lengths.

Therefore, we would assume that there is an analogous shift in the boundary
curves when calculated to NLO. We could observe this shift by again calculating

the boundary curves in the

√
Enc/B

(n)
3 versus

√
Enn/B

(n)
3 plane, where now, for a

fixed value of the effective range, we would find the two-body energies Eni to NLO in
terms of the scattering length ani and the effective range rni, where i = n, c, through
Eq. (5.37). However, for all values of effective ranges rnc and rnn which fulfill the
conditions of our effective theory (rni 	 ani), the shift in the boundary curves is so
small as to be nearly unrecognizable from the LO results. Also, the NLO results suffer
from the same uncertainty issues as the shift in critical scattering lengths for the three-
boson system (see Sec. 5.3.1), specifically, that the higher order theoretical corrections
are of the same order of magnitude or larger than the shifts due to the effective range.
Therefore, we conclude that the shifts are so small that boundary curves calculated
with a non-zero effective range are, up to higher order effects, nearly identical to those
already found in Fig. 4.4.

This means that the only halo candidate that has any possibility of an excited
Efimov state is still 20C, due to the large uncertainty in the n-18C bound state energy.
The central value for the n-18C bound state energy, Enc = (162 ± 112) keV [Aud95],
lies almost exactly on the boundary region for A = 18 in Fig. 4.4. The large error in
this value, however, dips well into the region where at least one excited Efimov state
can occur. The error in the three-body ground state energy of 20C is small compared
to Enc. Thus, in Sec. 4.3.3, we calculated the value of the excited state energies to
LO as a function of Enc, using the standard value for ann = (−18.7±0.6) fm [Gon99],
and fixing the cutoff to reproduce the experimental value of the ground state energy
B

(0)
3 = 3506.0 keV [TUNL, Aud95], as seen in Fig. 4.6.

We would now like to calculate the NLO corrections to these excited state energies
by including the effective ranges of both the n-n and the n-18C interactions. However,
there is to date no reliable experimental value for the n-18C S-wave effective range.
Therefore, we will need to use an educated estimate for the effective range of this
two-body interaction. Also, the n-n effective range has an accepted value of rnn =
(2.75±0.11) fm [Mi90]. However, the size of this effective range is only slightly larger
than the inverse of the pion mass scale, and our effective potential, made up of contact
interactions, will break down for momenta of the order of the pion mass scale. We
therefore use the inverse of the pion mass, mπ = 140 MeV, to estimate the effective
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Figure 5.10: Binding energy of the 20C excited Efimov state as a function of the n-18C
bound state energy to LO (solid black line) and NLO (dotted-dashed red line) with
NLO error bands. The dashed line represents the scattering threshold which is given
by B

(1)
3 = Enc. The inset shows the excited state energy relative to the scattering

threshold.

ranges of both the n-n and the n-18C interactions, rnn = rnc ≈ 1/mπ = 1.4 fm. This
can be interpreted as the maximum effective range allowed by our effective potential.

We use this estimation for the effective ranges rnn and rnc, along with the stan-
dard value for ann, to calculate the excited state energies as a function of Enc to
NLO, by fixing our cutoff Λ and tuning the three-body term H(Λ) to reproduce the

experimental value of the ground state energy B
(0)
3 = 3506.0 keV [TUNL, Aud95].

Recall, the scattering lengths are related to the two-body energies to NLO through
Eq. (5.37). Due to the Wigner bound, which limits the maximum positive effective
range for a chosen finite Λ, or vice versa (see Sec. 5.1.3), some care must be taken
in choosing Λ. Unfortunately, for the range of scattering lengths, or corresponding
two-body energies, which we wish to explore, using the inverse of the pion mass to
estimate the effective range leads to a maximum value for the cutoff of Λ ≤ 500 keV,
which is not much larger than the order of magnitude of the momentum scale of the
20C ground state. For our calculations we use a cutoff Λ = 490 keV.

The NLO result along with the LO result from Sec. 4.3.3 are plotted in Fig. 5.10,
where the solid black line is the excited state energy to LO, the dotted-dashed red
line to NLO, and the dashed line represents the scattering threshold. The inset graph
shows the excited state energy relative to the scattering threshold. Whereas the
excited state in the LO calculation exists when Enc < 165 keV, the state to NLO only
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exists when Enc < 155 keV. For larger values of Enc, the 20C system moves across the
scattering threshold, and the excited Efimov state is destroyed. We also see that the
effective range corrections lead to a shift toward smaller binding energies. However,
this shift is incredibly small, no greater than ≈ 1 keV over the whole range of Enc

values, and always smaller than the NLO error bands.
We have estimated this NLO error using the theoretical uncertainty of our effec-

tive potential. The uncertainty in binding energies calculated using the two-body
effective potential of Eq. (5.1) is ≈ (r0/a)

2. For effective ranges much smaller than
the scattering length we know that 1/a2 ≈ 2µE. Therefore, we calculate the theo-
retical uncertainty in the binding energy of the excited state using the sum of the
uncertainties from the n-n and n-18C interactions: (rnn/ann)2 + r2

nc(2µncEnc).

5.4.2 Range Corrections to 2n Halo Nuclei Mean Square
Radii

In this subsection, we will look at the NLO corrections to the mean square radii of
2n halo nuclei when we include the effective range of the two-body interactions. A
detailed description of the mean square radii and geometry of 2n halo nuclei is given
in Sec. 4.4.3, where more detail of the formalism can be found. We review only the
necessary information here.

The mean square radii are calculated from the matter density form factors in the
low momentum transfer region, where the slope of the form factor determines the
mean square radius 〈r2〉 (see Eq. (4.71)):

F(k2) = 1 − 1

6
k2
〈
r2
〉

+ . . . . (5.89)

Of course, the mean square radius acquired depends on the choice of one- or two-body
form factor. Recall that these matter density form factors are calculated from the full
wave function of the three-body system through Eqs. (5.76, 5.77, 5.78). The slope of
Fni(k

2), where i = n, c, will give the mean square distance between the two particles
in the chosen two-body subsystem, either 〈r2

nn〉 or 〈r2
nc〉. Analogously, the slope of

Fi(k
2), will give the mean square distance of the spectator particle from the center

of mass of the two-body subsystem, either
〈
r2
c−nn

〉
or
〈
r2
n−nc

〉
. However, it is more

useful to calculate the distance of the individual particles from the center of mass of
the three-body bound state. If bi is the slope of the one-body form factor Fi(k

2) at
the limit k2 = 0, the mean square radius of one of the bodies i from the three-body
center of mass is given by:

〈
r2
i

〉
= −6bi

(
1 − mi

2mn +mc

)2

, (5.90)

where mi is the mass of the desired particle i, and mn and mc are the neutron and
core masses, respectively.
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We have again extracted the radii by fitting a polynomial in k2 to the form factor
results for small k2. We have used polynomials of varying degree up to 5th order
in k2 in order to verify the stability and convergence of the fit. We have found a
satisfactory stability in the slope when fitting to a polynomial to the fourth order in
k2, up to a value of k2 at which the form factor has dropped less than 10 percent.

In Sec. 4.4.3, we found that to LO there is a universal relation between the radii of
neighboring Efimov states. Namely, the ratio of the mean square radii for neighboring
states in the resonant limit, a → ±∞, approaches the universal factor λ−2

0 as the
threshold is approached, n→ ∞, Eq. (4.73). We also showed in Sec. 5.3.2, that for the
three-boson system, up to higher order corrections, a non-zero effective range produces
no shift in the radii in the resonant limit, as long as the shift in one of the Efimov
states is forced to zero by our renormalization procedure. We have confirmed that
this universal property also occurs in the general 2n halo nucleus with an arbitrary
core mass A in the resonant limit.

Of further interest is the effective range corrections to the mean square radii of
known halo nuclei. However, as was described in the previous subsection, the effective
ranges of the various n-c interactions are not well known experimentally. Therefore,
we will need to use an estimate for the effective range of our n-c interactions. Also, the
n-n effective range has an accepted value of rnn = (2.75 ± 0.11) fm [Mi90]. However,
the size of this effective range is only slightly larger than the inverse of the pion mass
scale, and our effective potential, made up of contact interactions, will break down
for momenta of the order of the pion mass scale. As before, we use the inverse of
the pion mass, mπ = 140 MeV, to estimate the effective range of both the n-n and
the n-c interactions for all 2n halo nuclei, rnn = rnc ≈ 1/mπ = 1.4 fm. This can be
interpreted as the maximum effective range allowed by our effective potential.

The extracted radii for known halo nuclei to both LO and NLO are shown in
Table 5.2. We show only a selection of the LO results found in Table 4.1, to give a
general overview of NLO corrections to the LO results. As input we have used the
standard value of the n-n scattering length, ann = (−18.7 ± 0.6) fm [Gon99], along
with the experimental values of the n-c two-body energies Enc shown in the third
column of Table 5.2 (negative values correspond to virtual energies). The effective
range of both two-body subsystems is shown in the fourth column, indicating which
results refer to LO or NLO calculations. The relation between the scattering length
ani, the effective range rni and the two-body energy Eni, where i = n, c, is found
in Eq. (5.37). As a three-body input, the three-body term is tuned to reproduce

the experimental ground state binding energy B
(0)
3 shown in the second column of

Table 5.2. These experimental values for the two-body and three-body energies are
taken from the most recent results of the ”Nuclear Data Evaluation Project” of TUNL
[TUNL], except where otherwise noted. The cutoff Λ is held constant, but due to the
Wigner bound, some care must be taken in choosing Λ. Unfortunately, as first stated
in the previous subsection, for the range of scattering lengths, or corresponding two-
body energies, which we wish to explore, using the inverse of the pion mass to estimate
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Nucleus B3 [keV] Enc [keV] r0 [fm]
√
〈r2

nn〉 [fm]
√

〈r2
nc〉 [fm]

√
〈r2

n〉 [fm]
√
〈r2

c 〉 [fm]
11Li 247 -25 0.0 8.7±0.7 7.1±0.5 6.5±0.5 1.0±0.1

247 -25 1.4 8.87±0.05 7.25±0.04 6.54±0.04 1.044±0.006
247 -800 [Wil75] 0.0 6.8±1.8 5.9±1.5 5.3±1.4 0.9±0.2
247 -800 [Wil75] 1.4 6.0±0.4 5.3±0.4 4.7±0.3 0.79±0.05

14Be 1120 -200 [Thoe00] 0.0 4.1±0.5 3.5±0.5 3.2±0.4 0.40±0.05
1120 -200 [Thoe00] 1.4 3.77±0.07 3.32±0.06 3.04±0.05 0.392±0.007

12Be 3673 503 0.0 3.0±0.6 2.5±0.5 2.3±0.5 0.32±0.07
3673 503 1.4 3.51±0.15 2.88±0.13 2.62±0.11 0.368±0.016

18C 4940 731 0.0 2.6±0.7 2.2±0.6 2.1±0.5 0.18±0.05
4940 731 1.4 3.1±0.2 2.7±0.2 2.6±0.2 0.22±0.01

20C 3506 161 0.0 2.8±0.3 2.4±0.3 2.3±0.3 0.19±0.02
3506 161 1.4 3.25±0.05 2.72±0.04 2.58±0.04 0.209±0.003
3506 60 0.0 2.8±0.2 2.3±0.2 2.2±0.2 0.18±0.01
3506 60 1.4 3.08±0.02 2.62±0.01 2.49±0.01 0.203±0.001

20C* 65.0±6.8 60 0.0 42±3 38±3 41±3 2.2±0.2
20C* 64.7±0.7 60 1.4 43.8±0.2 39.5±0.2 43.6±0.2 2.29±0.01

Table 5.2: Various mean square radii of different halo nuclei. The second two columns
show the input values for the three-body ground state energy and the two-body n-c
energy (negative values corresponding to virtual energies), respectively, as given by
[TUNL], except where otherwise noted. The fourth column shows the input value for
both two-body effective ranges, related to LO (r0 = 0.0 fm) or NLO (r0 = 1.4 fm)
calculations. The rows marked by 20C* show the results for the excited Efimov state
of 20C, with binding energy displayed in the second column, which is found above the
ground state (B3 = 3506 keV).

the effective range leads to a maximum value for the cutoff for most of the 2n halo
nuclei of approximately Λ < 500 keV, which is not much larger than the order of
magnitude of the momentum scale of the 2n halo systems. This could lead to a
fairly large uncertainty in the calculations due to the details of the regulator. For
our calculations we use a cutoff Λ = 490 keV for all nuclei except 18C, for which the
relatively large n-16C binding energy constrains the cutoff to just below this value,
and we therefore use Λ = 436 keV.

The NLO theoretical error is again estimated by the uncertainty of the two-body
effective potential, Eq. (5.1), which is ≈ (r0/a)

2, where r0 is the effective range of
the interaction, and a the scattering length. For effective ranges much smaller than
the scattering length we know that 1/a2

nc ≈ 2µncEnc. The uncertainty in the radii is
then calculated from the greater of the error arising from the n-n or n-c interaction:
(rnn/ann)

2 or r2
nc(2µncEnc).

We will now discuss the results for the NLO corrections to the mean square radii,
due to the effective range of the interactions. Recall that we have only used an esti-
mated value for the effective range, setting r0 for both the n-n and the n-c interactions
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Figure 5.11: The various mean square radii for 20C as a function of the n-18C two-body
energy with error bands from the theoretical uncertainty. The LO results represented
by the solid black lines, with error bands represented by dashed lines (see Fig. 4.10).
The NLO results represented by the red dotted-dashed lines with solid error bands.
As input, the n-n scattering length ann = −18.7 fm, the three-body binding energy
B

(0)
3 = 3506 keV, and for NLO results the effective range r0 = 1.4 fm were used.

to the inverse of the pion mass. Also, due to the relatively small cutoff Λ which is only
slightly larger than the momentum scale of the 2n halo nuclei, there is the potential
of a large uncertainty arising from regulator effects. Therefore, the results displayed
in Table 5.2 give only a general estimate of the NLO shift.

For the Borromean halo nuclei 11Li and 14Be, in which all two-body subsystems
are unbound, the general tendency is for a positive effective range to shift all mean
square radii to smaller values. The only exception is the case of 11Li using the central
value of the n-c energy Enc = (−25 ± 15) keV [TUNL]. This difference seems to
be due to the fact that this value of the virtual energy is very close to the resonant
limit, while the competing value Enc = (−800 ± 250) keV [Wil75] is much larger in
comparison. The opposite is true for the so called Samba halo nuclei 12Be, 18C, and
20C, for which the n-c subsystem is bound. The positive effective range shifts the
mean square radii of these halo nuclei to larger values.

We also see that the shift in all mean square radii is relatively small. Except for
the 20C ground state, the NLO corrections are all within one error bar of the LO
results. The shift is small despite the fact that we have used the maximum estimate
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Figure 5.12: The various mean square radii for the Efimov excited state of 20C as
a function of the n-18C two-body energy with error bands from the theoretical un-
certainty. The LO results represented by the solid black lines, with error bands
represented by dashed lines (see Fig. 4.11). The NLO results represented by the
red dotted-dashed lines with solid error bands. As input, the n-n scattering length
ann = −18.7 fm, the three-body binding energy B

(0)
3 = 3506 keV, and for NLO results

the effective range r0 = 1.4 fm were used.

for the effective range which is allowable for our pionless effective theory built up of
contact interactions.

We now turn our focus to the case of 20C, as the large uncertainty in the n-c energy,
with two competing values, Enc = (162±112) keV [TUNL], and Enc = (530±130) keV
[Na99], suggests that we look at the mean square radii over a range of Enc values. The

results, using the central value for the three-body binding energy as input, B
(0)
3 = 3506

keV, were first calculated to LO in Sec. 4.4.3, Fig. 4.10. We have now calculated these
values to NLO, using the inverse of the pion mass as an estimation of the effective
range, and the results compared to the LO case can be seen in Fig. 5.11, with error
bands estimated from the theoretical uncertainty, as described above. The solid black
lines represent the LO results, with error bands represented by the dashed lines. The
dotted-dashed red lines represent the NLO results, with solid colored error bands. We
see that the mean square radii to NLO show the same behavior with changing Enc as
the LO case, with an increase in Enc leading to an increase in size. Also we see more
clearly the general shift toward larger radii due to the effective range corrections.
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As was shown in Sec. 4.3.3, there possibly exists one Efimov excited state in 20C for
Enc < 165 keV. The NLO corrections to the binding energy of this excited state, using
the inverse of the pion mass as an estimation of the effective range, were calculated in
Sec. 5.4.1. In Fig. 5.12, the mean square radii for this excited state to NLO are plotted
over a range of Enc values, together with the LO results from Fig. 4.11. Again we
see that the general behavior of the mean square radii as a function of the two-body
energy remains the same when calculated to NLO. At the endpoints, signifying the
critical Enc where the excited state breaks up, the mean square radii diverge as the
excited state is destroyed and the particles consequently fly apart. The positive shift
in the mean square radii for a positive effective range is also seen, although this shift
is relatively small, as compared to the relative shift in the ground state radii.

5.5 Conclusion

In this chapter, we have investigated universal aspects of two different three-body
systems, identical bosons and 2n halo nuclei, within an effective quantum mechanics
approach to next-to-leading order. Assuming that the halo nuclei have resonant S-
wave interactions between the neutron and the core, the effective potential reduces
to a separable S-wave potential. We have shown the renormalization of this potential
in detail, which to NLO reproduces the scattering length and effective range, with
results analogous to an EFT approach [Br06b]. The corrections at next-to-next-to-
leading order in the expansion in Mlow/Mhigh require no new low-energy parameters
[Ham01, Pl06a]. We have derived the two-body T-matrix in such a way as to explicitly
keep the regulator factors. This allowed for the elimination of a spurious pole found
in the high-momentum region, as long as we properly chose the cutoff parameter
Λ. We have also shown that the process of renormalizing the two-body potential,
specifically the redefinition of the coupling constants to absorb high-energy effects,
leads directly to a derivation of the Wigner bound in momentum space. For a chosen
scattering length and effective range, the maximum cutoff allowed by the Wigner
bound corresponds to the maximum cutoff which still eliminates the spurious high-
energy pole in the T-matrix. Also, we have confirmed Wigner’s original prediction,
that in the zero-range limit, in which Λ → ∞, the effective range must be negative
or vanishing [Wig55].

We have also taken another look at the two-body renormalization in terms of
a renormalization group, as was done in Refs. [Kap98, Br06b]. We have improved
upon these studies by explicitly keeping the regulator factors in the analysis, thereby
generating a more general RG trajectory in the limit Λ → 0. However, as expected, the
results match those found in these previous studies at the other end of the trajectory,
Λ → ∞, which is the limit desired in calculating physical observables.

We then calculated the effective range corrections to the Efimov plot for three
identical bosons, and found results that match well with other recent studies [Pl08,
Thog08]. For small r0, the binding energies of the Efimov trimers will be shifted
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linearly in r0, according to a universal function, Eq. (5.79) [Pl08]. In Ref. [Pl08],
it was shown that the NLO corrections to different Efimov states are approximately
related to each other through a discrete scale transformation. However, while this
discrete scaling is exact (up to higher order corrections in 1/Λ) in the resonant limit,
a → ±∞, for finite values of |a|, there is a breaking of the exact scaling symmetry.
We have reproduced the results of [Pl08] for positive scattering length, and have
improved upon them for negative scattering length, displaying multiple Efimov states,
and thereby confirming the approximate scale transformation in this region. With an
improvement of numerical accuracy, it could be possible to investigate the breaking
of discrete scale invariance in the NLO corrections away from the resonant limit.

Important in recombination rate experiments with ultracold atoms near a Fesh-
bach resonance is the position of the critical scattering length, where the Efimov
trimer breaks up either into three separate atoms or into an atom-dimer pair. The
positions of these critical scattering lengths determine the positions of extrema of the
three-body recombination rate near a Feshbach resonance [Kr06]. In such Feshbach
systems, the effective range of the interaction is related to the width of the Fesh-
bach resonance [Pet06]. We have confirmed the qualitative results of [Thog08], that
for increasing effective range r0 the absolute value of the negative critical scattering
length |a−| increases. We have also shown that for increasing effective range r0 the
absolute value of the positive critical scattering length |a+| decreases. Also, the rela-
tive magnitude of this shift appears to increase when going from deeper to shallower
states. However, it is difficult to conclude anything quantitatively from our calcula-
tions, as the magnitude of the shifts is of the same size as higher order corrections
and numerical uncertainty inherent in the problem.

We then showed effective range corrections to the structure of the Efimov trimers
over a range of scattering lengths. By calculating the mean square distance of the
spectator particle as well as the distance between the two particles in the dimer
subsystem, we confirmed that at the negative critical scattering length, the trimer
breaks up into three free particles, while at the positive critical scattering length, the
trimer breaks up into an atom-dimer pair [Ef70]. We also observed a shift of the
mean square radii for non-zero effective ranges, which is related to the correspond-
ing shift of the binding energies of these states. For negative scattering lengths, a
positive(negative) effective range leads to an increase(decrease) in the mean square
radius. However, for positive scattering lengths, a positive(negative) effective range
leads to a decrease(increase) in the mean square radius. In a future study, it would
be interesting to see if the corrections to the mean square radii for small r0 obey the
same universal function, with the same approximate scaling transformation, as was
found for the binding energies. If so, one could possibly investigate the deviations
from exact scale invariance more easily by calculating the effective range corrections
to the dimensionless quantity (〈r2〉B3).

Next, we turned our attention back to 2n halo nuclei, and calculated the NLO
correction to the parametric boundary curves within which at least one excited Efi-
mov state will occur. However, because the neutron-core effective range is not well
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known experimentally, we used the inverse of the pion mass, 1/mπ = 1.4 fm, as an
estimate for all effective ranges in the 2n halo system. We found that the correction
to the boundary curves was almost unrecognizable for this value of the effective range.
Therefore, the only halo candidate that has any possibility of an excited Efimov state
is still 20C. Using the estimated effective range, the magnitude of the excited state
binding energy decreased very slightly from the LO results, and the value of the n-18C
two-body energy at which this excited state is destroyed was also decreased.

We finished by calculating the shift from the LO results in the mean square radii
for known 2n halo nuclei, again using the inverse of the pion mass as an estimate for
all effective ranges. We found that for Borromean halo nuclei, the general tendency is
for a positive effective range to shift all mean square radii to smaller values, unless the
two-body n-c virtual energy is very close to threshold. The opposite was found to be
true for the so called Samba halo nuclei, for which the n-c subsystem is bound. The
positive effective range shifts the mean square radii of these halo nuclei to larger values.
Also, the shift found using our estimated value of the effective ranges was always small
relative to the theoretical error in the problem. For a better physical description, it will
be necessary to experimentally measure the as yet unknown parameters, specifically
the various neutron-core scattering lengths and effective ranges. With new improved
experimental data for these weakly bound nuclei (from such facilities as FAIR and
FRIB), much more knowledge can be obtained about the structure of these interesting
systems as well as discovering whether they show universal behavior and excited
Efimov states.

On the theoretical side, it would be beneficial in the future to use an effective
theory which does not suffer from the Wigner bound, such as those employed in e.g.
[Ham06, Pl08]. The value of the effective range used in these calculations constrained
the maximum value of Λ to values that were at times of the same order of magnitude
as the ground state binding energy of the 2n halo nuclei being explored. This not
only added to the amount of theoretical uncertainty, but also increased the level of
numerical uncertainty involved in extracting the mean square radii from the matter
density form factors. It is hoped that such an effective theory, which eliminates this
constraint, would also give more accurate results in all three-body systems for such
quantities as, for example, the critical scattering lengths, so that better quantitative
predictions of effective range corrections could be made.



Chapter 6

Scattering Properties of the
X(3872)

In this chapter, we move away from the bound state problem, and turn our focus
toward three-body scattering with large scattering lengths. If the scattering length
is positive, there exists a two-body bound state known as a dimer, which, in the
three-body problem, can scatter off a single particle. Also, we no longer work with
the quantum mechanics framework of the previous chapters, but rather exchange this
in favor of an effective field theory (EFT). A novel approach using a pionless EFT to
describe particle-dimer scattering involving three identical bosons was developed in
Ref. [Bed99], and reviewed in detail in Ref. [Br06b]. A generalization of this EFT can
be made to three-body systems in which two of the particles are identical (or at least
have the same mass), interacting with a particle of different mass. This could then
be applied to scattering in the 2n halo nucleus system. However, in what follows, we
will develop and apply this EFT in the growing field of mesonic molecules.

In recent years a cornucopia of new and possibly exotic charmonium states has
been discovered at the B-factories at SLAC and at KEK in Japan, and at the CESR
collider at Cornell. This has revived the field of charmonium spectroscopy [Sw06,
Ei07, Vo07, God08]. Such studies will also be an important part of PANDA at the
FAIR facility. Some of the new states are very close to scattering thresholds and can be
interpreted as hadronic molecules. A particularly interesting example is the X(3872)
which was discovered by the Belle collaboration [Ch03] in B± → K±π+π−J/ψ decays
and shortly after confirmed by the CDF collaboration in pp̄ collisions [Ac04]. This
state has quantum numbers JPC = 1++ and is very close to the D∗0D̄0 threshold.1

As a consequence, the X(3872) has a resonant S-wave coupling to the D∗0D̄0 system.
Many studies have addressed the nature of the X(3872) and provided predictions
for its decay modes based on the assumption that it is a D∗0D̄0 molecule with even

1Note, however, that JPC = 2−+ can not be excluded at present.
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C-parity:

(D∗0D̄0)+ ≡ 1√
2

(
D∗0D̄0 +D0D̄∗0) . (6.1)

A recent status report can be found in Ref. [Br08d].
The measured mass and width of the X(3872) differ significantly in the J/ψπ+π−

and D∗0D̄0 channels. This effect can be understood from a line shape analysis
which shows that the true mass and width of the X(3872) are measured in the
J/ψπ+π− channel because the D∗0D̄0 channel is contaminated by a threshold en-
hancement [Br07, Br08a]. Using the latest measurements in the J/ψπ+π− channel
[Ada08, Aub08, CDF08], the mass of the X(3872) is [Br09]:

mX = (3871.55 ± 0.20) MeV , (6.2)

which corresponds to an energy relative to the D∗0D̄0 threshold

EX = (−0.26 ± 0.41) MeV . (6.3)

The central value corresponds to a (D∗0D̄0)+ bound state with binding energy BX =
0.26 MeV, but a virtual state can not be excluded from the current data in the
J/ψπ+π− and D∗0D̄0 channels [Hanh07b]. The X(3872) is also very narrow with a
width smaller than 2.3 MeV.

Because theX(3872) is so close to theD∗0D̄0 threshold, it has universal low-energy
properties that depend only on its binding energy [Br06b]. In first approximation,
the coupling to charged D mesons can be neglected because the D∗+D− threshold is
about 8 MeV higher in energy. As a consequence, the properties of theX(3872) can be
described in a universal EFT with contact interactions only. This EFT is also called
pionless EFT (see Refs. [Ep08, Ph02, Bed02] and references therein). The study of the
X(3872) as a (D∗0D̄0)+ molecule in the pionless EFT was initiated by Braaten and
Kusunoki [Br04b]. A number of predictions for production amplitudes [Br04c, Br04d,
Br05a, Br06a], decays [Br05b, Br05c, Br06c, Br08b], and line shapes [Br07, Br08a]
followed. The interactions of the X(3872) with other hadrons are unknown.

In this chapter, we extend these studies to three-body processes in the pionless
EFT. Based on the assumption that the X(3872) is a S-wave (D∗0D̄0)+ molecule, we
provide novel predictions for the scattering of D0 and D∗0 mesons and their antipar-
ticles off the X(3872) in pionless EFT. This is analogous to particle-dimer scattering
in which two of the particles have the same mass, but the third particle has a differ-
ent mass, where only the particles with different masses have an interaction with a
large scattering length. For convenience, we will refer to these reactions collectively
as XD(∗) scattering in the following. This reaction will contribute to the final state
interaction in decays of Bc mesons into D and D∗ mesons and to rare events in BB̄
production where one of the B’s decays into a X and the other one into a D or
D∗ meson (see the discussion below). In the next section, we will present the EFT
for XD(∗) scattering. In section 6.2, we will present our results and discuss possible
scenarios for observing this process at the LHC or B-factories. We close the chapter
with a brief summary and conclusion.
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6.1 XD(∗) Scattering in Effective Field Theory

In this section, we set up the EFT for XD(∗) scattering, derive the integral equation
for the scattering amplitude, and provide relations for the total cross section. As
mentioned before, such a system is similar to the 2n halo nucleus, in that two of the
particles have the same mass while the third particle has different mass. Therefore,
we expect our results to include factors similar to those found in the bound state
equations derived in Sec. 4.2 and Sec. 5.2. For the derivation of the three-body
equations, it is convenient to introduce a non-dynamical auxiliary field X for the
X(3872). The EFT is organized into an expansion around the non-trivial fixed point
corresponding to infinite scattering length or, equivalently, a threshold bound state.
The expansion is then in powers of γ/Λb, where γ is the binding momentum of the
X and Λb the breakdown scale of the pionless EFT. To leading order in γ/Λb, the
effective Lagrangian for the interaction of the X(3872) with the D mesons can be
written as:

L =
∑

j=D0,D∗0,D̄0,D̄∗0
ψ†

j

(
i∂t +

∇2

2mj

)
ψj + ∆X†X

− g√
2

(
X†(ψD0ψD̄∗0 + ψD∗0ψD̄0) + H.c.

)
+ . . . , (6.4)

where H.c. denotes the Hermitian conjugate and the dots indicate terms with more
derivatives and/or fields. Moreover, the D0, D∗0, D̄0, and D̄∗0 mesons are treated as
distinguishable particles. Because of charge conjugation invariance, we have mD0 =
mD̄0 and mD∗0 = mD̄∗0 . The terms with more derivatives are suppressed at low
energies, while four- and higher-body forces do not contribute in three-body processes.
Since there is no Efimov effect [Ef70] in this system, three-body terms will also not
contribute up to next-to-next-to-leading order in the expansion in γ/Λb.

The parameters ∆ and g in Eq. (6.4) are not independent and only the combination
∆/g2 enters into physical observables. Since the theory is non-relativistic, all particles
propagate forward in time and the tadpoles vanish. The propagator for the D(∗)

mesons is

iSj(p0, �p) =
i

p0 − p2/(2mj) + iε
, j = D0, D∗0, D̄0, D̄∗0 , (6.5)

where p2 ≡ |�p|2. The X propagator is more complicated because of the coupling
to two-meson states. While the bare X propagator is constant, iD0(p0, �p) = i/∆,
it is dressed by D meson loops, which due to the large scattering length must be
summed to all orders, as illustrated in Fig. 6.1. The bare and full X propagators are
represented by the double dashed and double lines, respectively. The D mesons are
represented by the solid (D0 and D̄0) and dashed lines (D̄∗0 and D∗0). Note that each
loop receives contributions from two combinations of D mesons D∗0D̄0 and D0D̄∗0.
Summing the resulting geometric series leads to the full X propagator:

iD(p0, �p) = iD0(p0, �p) [1 −D0(p0, �p)Σ(p0, �p)]
−1 , (6.6)
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Figure 6.1: Dressing of the bare X propagator (double dashed line) by D meson loops
(solid and dashed lines).

where Σ(p0, �p) is the self energy of the X. Using the reduced mass of the D0 and D∗0

mesons, µX = mD0mD∗0/(mD0 +mD∗0), and their total mass, MX = mD0 +mD∗0 , the
self energy can be written

Σ(p0, �p) = −2µXg
2

∫
d3q

(2π)3

[
q2 − 2µXp0 +

p2

4
+

√
1 − 4µX

MX

�p · �q − iε

]−1

=
2µXg

2

4π

[√
−2µXp0 +

µX

MX
p2 − iε− 2

π
Λ + O(1/Λ)

]
, (6.7)

where the ultraviolet divergence was regulated with a strong momentum cutoff Λ.
Substituting this expression into Eq. (6.6) and dropping terms that vanish as Λ → ∞,
we obtain the full X propagator:

iD(p0, �p) =
−i4π
2µXg2

[
−γ +

√
−2µXp0 +

µX

MX
p2 − iε

]−1

, (6.8)

where we have eliminated the coupling constant dependence ∆/g2 as well as the
dependence on Λ, in favor of γ, by matching the pole position

γ ≡ 1

a
=

4π∆

2µXg2
+

2

π
Λ , (6.9)

to the binding energy of the X(3872): γ =
√

2µXBX and a is the D0D̄∗0 scattering
length.

The full X propagator can now be used to calculate the scattering of a D0 or
D∗0 meson (or their antiparticles) off the X(3872). Because of their different masses,
the scattering of a D0 or a D∗0 will lead to different scattering amplitudes and cross
sections even though the interaction strength is the same. The scattering amplitude
is the solution of the integral equation shown in Fig. 6.2. The X and the scattered
meson, denoted as S, are represented by a double line and a single line, respectively.
If an S particle is scattered, a second complementary particle type, denoted by S̄,
appears as the virtual exchange particle, and is represented by the dashed lines in
Fig. 6.2. The masses of the S and S̄ particles are different. For a given scattered
particle S, the corresponding complementary particle S̄ can be read off the flavor
wave function of the X(3872) in Eq. 6.1. For example, if S = D0 we have S̄ = D̄∗0,
and for S = D∗0 we have S̄ = D̄0.
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� = � +�
Figure 6.2: Integral equation for scattering of a particle S (single line) off the X(3872)
(double line). The dashed line indicates the complementary particle S̄ as explained
in the text.

We formulate the problem in the center-of-mass system of the XS system. Then,
with k the relative momentum of S and X, the total energy is

E =
k2

2µSX
− BX , (6.10)

where µSX = mSMX/(MX + mS) is the reduced mass of the XS system and S =
D0, D∗0, D̄0, D̄∗0. The resulting amplitude for XS scattering is:

T (�k, �p) =
2πγ

µX

(
p2 + k2 +

2µX

mS̄

�p · �k − 2µXE

)−1

+
1

(2π)2

∫
dΩq

∫ ∞

0

dq
q2 T (�k, �q)

−γ +
√
−2µX (E − q2/(2µSX)) − iε

×
(
p2 + q2 +

2µX

mS̄

�p · �q − 2µXE

)−1

. (6.11)

Performing a partial wave decomposition of T (�k, �p):

T (�k, �p) =
∑

l

(2l + 1)Tl(k, p)Pl(cos θkp) , (6.12)

where θkp is the angle between �k and �p and Pl(cos θkp) is a Legendre polynomial, we
obtain

Tl(k, p) =
2πγ

µX

mS̄

2µXpk
(−1)lQl

(
mS̄

2µXpk
(p2 + k2 − 2µXE)

)

+
1

π

∫ ∞

0

dq
q2 Tl(k, q)

−γ +
√

−2µX (E − q2/(2µSX)) − iε

× mS̄

2µXpq
(−1)lQl

(
mS̄

2µXpq
(p2 + q2 − 2µXE)

)
, (6.13)

where

Ql(z) =
1

2

∫ 1

−1

dx
Pl(x)

z − x
(6.14)
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is a Legendre function of the second kind. The integral equation for the S-wave
amplitude reduces to

T0(k, p) =
2πγ

µX

mS̄

4µXpk
ln

(
p2 + k2 + 2µX

mS̄
pk − 2µXE

p2 + k2 − 2µX

mS̄
pk − 2µXE

)

+
1

π

∫ ∞

0

dq
q2 T0(k, q)

−γ +
√
−2µX (E − q2/(2µSX)) − iε

× mS̄

4µXpq
ln

(
p2 + q2 + 2µX

mS̄
pq − 2µXE

p2 + q2 − 2µX

mS̄
pq − 2µXE

)
. (6.15)

Note that, as expected, the factors appearing in the kernel of the integral equation
are completely analogous to those found in the kernel of the corresponding 2n halo
nucleus bound state equations, Eqs. (5.60, 5.61), found in Sec. 5.2.2. Solutions of the
integral equations, Eqs. (6.13, 6.15), can be obtained using standard techniques.

We can now use the solutions for the amplitudes Tl to calculate the scattering
cross section. They are related to the scattering phase shifts through the relation:

Tl(k, k) =
2π

µSX

1

k cot δl(k) − ik
. (6.16)

The differential cross section can be calculated from the phase shifts in the usual way:

dσ

dΩ
=

∣∣∣∣∣
∑

l

2l + 1

k cot δl − ik
Pl(cos θ)

∣∣∣∣∣
2

, (6.17)

For the total cross section for XS scattering we then obtain the expression:

σXS(E) =
∑

l

(2l + 1)µ2
SX

π
|Tl(k, k)|2 . (6.18)

6.2 XD(∗) Scattering Results and Discussion

In Fig. 6.3, we show our results for the S-wave scattering amplitude f0(k) for scattering
of D0 and D∗0 mesons off the X(3872) obtained by solving Eq. (6.15). The scattering
amplitude f0 is related to the amplitude T0(k, k) through a mass dependent factor
(see analogous Eq. (2.34) in Sec. 2.2.1):

f0(k) =
µSX

2π
T0(k, k) =

1

k cot δ0(k) − ik
. (6.19)

One can see clearly in Fig. 6.3 the influence the different masses of the D0 and D∗0

have on the scattering amplitude. At their peak values, the amplitude for XD∗0
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Figure 6.3: S-wave scattering amplitude for scattering of D0 and D∗0 mesons off the
X(3872). Results displayed for f0(k) = (µSX/2π)T0(k, k). The scattering amplitude
is identical for particles and antiparticles.

scattering is almost twice as large as that for XD0 scattering for both the real and
imaginary parts. However, the real part of the XD∗0 amplitude falls more quickly,
moving below the real part of the XD0 amplitude for values of approximately k > 2
MeV. The scattering amplitudes are the same for the scattering of particles and
antiparticles.

In Fig. 6.4, we show the total cross section for scattering of D0 and D∗0 mesons
off the X(3872). We show the contribution of only S-waves (l = 0, solid lines) as
well as the full cross section with all partial waves up to l = 6 (dashed lines). As
one can see, the contribution of higher partial waves is negligible for momenta below
≈ 16 MeV. Also, one again clearly sees the influence of the mass difference, as the
full cross section in the k → 0 limit is almost three times as large for XD∗0 as for
XD0 scattering. As with the scattering amplitude, the cross sections are the same
for scattering of particles and antiparticles.

As was first defined in Sec. 2.1.1, the S-wave scattering length can be calculated
from either the scattering amplitude, Eq. (2.4), or the full cross section, Eq. (2.5), in
the limit k → 0. From our results we find that the particle-dimer scatting lengths for
scattering either a D0 or a D∗0 meson (or their antiparticles) off of a X(3872) are:

aXD0 = −85 fm, (6.20)

aXD∗0 = −146 fm. (6.21)

To observe the three-body interactions described here requires identifying an ex-
perimental process where two D0 and one D∗0 (or two D∗0 and one D0) particles are
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Figure 6.4: Total cross section for scattering of D0 and D∗0 mesons off the X(3872)
for S-waves (l = 0, solid lines) and including higher partial waves with l < 7 (dashed
lines). The cross section is the same for scattering of particles and antiparticles.

produced nearly simultaneously in space and time. One possibility is provided by the
decay of the Bc particle. The Bc was discovered through its decays into J/ψ in Run I
at CDF [Ab98a, Ab98b]. Particle Data Book (2007) averages are: mBc = 6.286±0.005
GeV and τBc = 0.46 ± 0.07 x 10−12 s. Several analyses have been undertaken (see
references in [Bram04], Chapter 4) to determine the most likely mode by which the
Bc would decay; the b quark decaying first, the c quark decaying first, the two valence
quarks annihilating, etc.

For access to the three-body neutral D meson interactions, we require that the
Bc decay in a mode such as that in Fig. 6.5, yielding three c(c) quarks in the final
state. The mass total for the three-body D meson system will be 5.75 to 5.88 GeV
(depending upon whether the third D is a D0 or a D∗0). Along with the additional
meson in a P-wave required to balance the Bc charge and spin, there is not much
phase space available. The q in the diagram could be the Cabbibo-favored strange
quark or the Cabbibo-suppressed (Vcd/Vcs ∼ 1/4) down quark. Relative suppression
of both decay modes is caused by Pauli interference between the spectator c and the
c from the (second vertex of the) weak decay of the b quark. From Ref. [Bram04]:
the estimate for the quark level Bc → cccs decay is about 1.4 % [Ki02]; the detection
efficiency for a single D0 is expected to be 11 to 31 %; the production cross section
at the LHC (not including feeddowns, which may provide an increase of more than a
factor of five, but might also be harder to identify) of the Bc is expected at the 30-60
nb level. At LHCb, the yield will be perhaps 107 Bc events per week of running. So
the prospect of seeing the three-body neutral D meson interactions through Bc decay
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Figure 6.5: An example of a quark-level Bc decay yielding three charmed or an-
ticharmed quarks in the final state

may well be difficult, but is worth investigating.
The effect of such final state interactions, along with the characteristics of the

two-body resonance, may be reflected in the distribution in space and energy of the
detected particles. Typically, (e.g., Ref. [Ama69]) there will be an enhancement or
de-enhancement of the total cross section relative to the situation where three-body
scattering does not occur in the final state.

6.3 Conclusion

In this chapter, we have explored the scattering of either a D0 or D∗0 meson (or
their antiparticles) on the recently discovered exotic charmonium state X(3872). The
X(3872) was assumed to be a weakly bound S-wave (D∗0D̄0)+ molecule, which would
then display universal behavior dependent only on its binding energy. We derived an
inhomogeneous integral equation for solving the scattering amplitude from a pionless
EFT approach, and found this to be a generalization to unequal masses of the particle-
dimer EFT found in the review [Br06b].

Using our integral equation, we solved for the S-wave scattering amplitudes and
the total cross sections with contributions of partial waves up to l = 6 for both the
XD0 and XD∗0 scattering. We found that, although the results are identical for the
scattering of particles and antiparticles due to charge conjugation invariance, the mass
difference between the D0 and D∗0 mesons produce different scattering results. We
then calculated the XD(∗)0 scattering lengths from our scattering amplitude results
and found aXD0 = −85 fm, and aXD∗0 = −146 fm. We concluded with a discussion
of the possible scenarios and likelihood for observing this process at the LHC or
B-factories.





Chapter 7

Summary and Outlook

In this thesis, we explored non-relativistic three-body systems through short-range
interactions with a large S-wave scattering length in the two-body subsystems. Such
short-range interactions are suitable for describing the two-body forces between the
pairs of particles in 2n halo nuclei, as well as in weakly bound mesonic molecules.
This illustrates the universality of our results, as they apply to all three-body systems
composed of two particles with the same mass interacting with a spin-zero particle of
arbitrary mass regardless of the details of the underlying interaction, as long as all
pair-wise interactions have a large scattering length. Due to the separation of scales
involved in such systems, we were able to use an effective S-wave separable potential
built up of contact interactions in a momentum expansion. This is equivalent to
taking the expansion in l/|a|, where l is the natural low-energy length scale of the
system, and a is the large scattering length, where large was defined in comparison to
l. The effective range of the interaction r0 is of the same order as l. By including the
next-to-leading order term in the expansion, we were able to calculate results for 2n
halo nuclei with a theoretical uncertainty of the order of (r0/a)

2. In generating our
effective potential directly from the effective Lagrangian used in pionless effective field
theory, we were able to show that the renormalization of the two-body interaction was
completely analogous to that from the EFT. The two-body interaction T-matrix was
then used in the Faddeev equations to solve the three-body problem. In the three-
body problem, we required one three-body observable be fixed in order to properly
renormalize our theory. For the LO case, we could simply tune the cutoff parameter
Λ to reproduce the chosen three-body observable. However, in the NLO case, we
included an explicit three-body force term, which was then tuned to reproduce the
chosen observable.

Our main focus was on three-body halo nucleus systems composed of a spinless
core surrounded by two loosely bound neutrons (2n halo nuclei). We calculated low-
energy universal results for these systems which are dominated by the S-wave part
of the interaction, first to LO, for which only the large scattering length is needed to
describe the two-body interaction, and then to NLO, for which the effective range also
appears (Ch. 4 and Ch. 5, respectively). After confirming that our theory reproduces
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the already well-known universal properties of the Efimov effect [Ef70], specifically in
the resonant limit, a→ ±∞, for systems where two of the particles have the same mass
and one particle has a different mass [Br06b], we explored the possibility of known
2n halo nuclei to possess an excited Efimov state. This was done by constructing
the boundary curve in the parametric plane defined by the root of the ratio of the

two-body energy to the three-body binding energy

√
Enc/B

(n)
3 versus

√
Enn/B

(n)
3 .

We calculated boundary curves for multiple values of the core mass. Points lying
within the boundary curve possess at least one Efimov excited state above the state
with binding energy B

(n)
3 . Due to the discrete scaling invariance in such Efimov

systems, we can always interpret the state with index n as the ground state. To
leading order, the two-body energy is determined by only the scattering length, but
to NLO by both a and the effective range r0. We found that to NLO, for values of
r0 which are allowed in our effective theory, r0 	 |a|, there is almost no recognizable
shift in the calculated boundary curves in comparison to the LO results. From the
current experimental data, we concluded that none of the known halo nuclei is likely
to have an excited Efimov state, with the possible exception of 20C. We calculated
the binding energy of the 20C excited state as a function of the n-18C binding energy
and found one excited state which to LO exists for Enc < 165 keV, with a binding
energy always less than 7 keV, and which to NLO exists for Enc < 155 keV, with
a binding energy always less than 6 keV. For these NLO calculations, we estimated
the as yet experimentally unknown effective ranges by the inverse of the pion mass
scale �/mπc = 1.4 fm, as this is considered the natural low-energy length scale of such
nuclear systems. Throughout this work, we have estimated the theoretical error of
the effective potential. This uncertainty was quantified in our results through error
bands.

We then studied the cluster-like structure of known 2n halo nuclei to both LO and
NLO, extracting the mean square distance of the two particles in a chosen two-body
subsystem, as well as the distance of the spectator particle from the three-body center
of mass. It was shown that the NLO corrections, using the estimated effective range,
generally decrease the size of Borromean halo nuclei, unless the n-c two-body virtual
energy is very close to threshold. On the other hand, the size of the so called Samba
halo nuclei, where the n-c subsystem is bound, generally increased due to effective
range corrections. We found that our results to both LO and NLO for the n-n mean
square radius agree well with the experimental data for the Borromean halo nuclei
11Li and 14Be [Mar00]. However, the large uncertainty in both the experimental and
theoretical results suggests the need for future precision studies of these systems.

An exploration of such light nuclei is currently being done at facilities such as
FAIR and FRIB, where a beam of exotic nuclei is scattered off of the Coulomb field of
a heavy nucleus in low-energy experiments. This scattering can populate the excited
states of the halo nuclei, which then decay in a process called “Coulomb dissociations”
[Ber88]. The data from such experiments leads to useful information on halo nuclei,
for example, the cluster structure, as well as scattering behavior of the underlying
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two-body interactions. The effective theory developed in this thesis provides a useful
quantum-mechanical framework for treating these reactions.

Also of importance is the determination of the effective range parameters, espe-
cially the scattering lengths and effective ranges, of the two-body systems found in
halo nuclei. The just mentioned experiments will provide new and more precise data
for some of these systems, which could lead to a more detailed analysis of effective
range parameters. However, the recent theoretical work of Quaglioni and Navratil
[Qu08] has produced an accurate description of S-wave neutron-core scattering of
light nuclei. By combining a cluster technique, the resonating-group method, with
the no-core shell model, this theory can treat the bound and scattering states of light
nuclei, starting from the fundamental nucleon-nucleon interaction. The accurate cal-
culation of S-wave neutron-core phase shifts could then be used to extract the effective
range parameters needed to study three-body halo nuclei.

Although there already exists much experimental data with which to compare (see,
i.e. [TUNL, Arn73], and references therein), we have purposefully not studied the 6He
halo nucleus, as the unbound “5He” subsystem is dominated by a P-wave resonance.
While various schemes to treat such P-wave resonances in EFT have been developed
[Ber02, Bed03b], their application to three-body systems remains to be worked out.
In a future study, we hope to generate a P-wave effective potential, similar to the one
used in this work, which can then be used in the Faddeev equations to investigate
three-body bound states of the 6He system. Such a study would also be interesting
for investigating the renormalization properties of a P-wave effective potential.

In Ch. 5, we also studied the NLO corrections to the Efimov effect for three
identical bosons which arise from a non-zero effective range, comparing our results to
recent studies [Pl08, Thog08]. For small effective ranges, the corrections to the trimer
binding energies appear linear in r0 according to a universal function, Eq. (5.79). We
explored the universal relationship between the corrections to different Efimov states
first proposed in Ref. [Pl08], showing explicitly the breaking of the discrete scale
symmetry for finite scattering lengths. We also discussed the shift in the position of
the critical scattering lengths, where the trimer breaks up into either three free bosons
(at a− < 0) or an atom-dimer pair (at a+ > 0). We have shown that for increasing
effective range, the absolute value of |a−| increases, while a+ decreases. These results
are important in experiments with ultracold atoms near a Feshbach resonance, as the
position of the critical scattering lengths determine the positions of extrema of the
three-body recombination rate [Kr06]. The effective range of the interaction is related
to the width of the Feshbach resonance [Pet06]. Unfortunately, the large amount of
numerical and theoretical uncertainty involved in our calculations made it difficult to
make definite quantitative conclusions on the size of these NLO corrections.

We also studied the structure of the Efimov bound states, looking at the mean
square distance of the two particles in the dimer subsystem, as well as the mean square
distance of the spectator particle from the center of mass. We confirmed the break-
up properties of these Efimov trimers at the negative and positive critical scattering
lengths, as described above, and discussed the general shift in the size of the trimers
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due to range corrections. We saw that the shift in the mean square radii corresponds
to the shift in the binding energy, and proposed that in a future study, the deviation
from discrete scaling invariance for a finite scattering length could be more easily
investigated through the dimensionless quantity (〈r2〉B3).

We then briefly moved away from the quantum-mechanical framework, and re-
turned to a pionless EFT, in order to study the universal properties of particle-dimer
scattering, for systems where two of the particles have the same mass while the third
particle has different mass. We formulated this investigation around the scattering of
either a D0 or D∗0 meson (or their antiparticles) on the X(3872) meson, assumed to
be a weakly bound S-wave (D∗0D̄0)+ molecule. We showed that the mass difference
between the D0 and D∗0 mesons produces a fairly large change in the S-wave scat-
tering amplitude and total cross section of the XD0 or XD∗0 scattering. From the
scattering amplitudes we were able to extract the particle-dimer scattering lengths
aXD0 = −85 fm, and aXD∗0 = −146 fm.

In the future it would be interesting to see how these effective theories can be
applied to other potential mesonic molecules. For example, it was recently suggested
that the Y (4660), which was seen in the π+π−ψ′ invariant mass distribution in e+e− →
γISRπ

+π−ψ′, with a mass of 4664 ± 11 ± 5 MeV and a width of 48 ± 15 ± 3 MeV
[Wa07], could potentially be a f0(980)ψ′ bound state [Gu08]. The threshold of the
f0(980)-ψ′ system is approximately 4666± 10 MeV [Yao06], which would correspond
to a Y (4660) binding energy of ≈ 2 MeV. As we have already seen, such a small
binding energy corresponds to a large S-wave scattering length. In turn, the f0(980)
has been successfully treated as a KK̄ molecule [Kal05, Hanh07a]. Therefore, we
could possibly treat the Y (4660) as a three-body halo-like bound state, for which
two of the particles (K and K̄) have the same mass, while the third particle (ψ′) has
different mass. This system is then analogous to the 2n halo nuclei studied in this
thesis.

The results of this thesis display the usefulness of universal effective theories as
a tool for describing a large variety of physical systems. Due to the large scattering
length of these systems, whether accidental or experimentally controlled, the effec-
tive theory using contact interactions has been successful in calculating results from
ultracold atomic systems, to 2n halo nuclei, up to mesonic molecules.



Appendix A

The Ai Integrals

The derivation of the two-body interaction T-matrix using a separable potential along
with a Gaussian regulator function includes Gaussian-like integrals of the form:

Ai = 4π2µ

∫ ∞

0

dq
q2i exp

(
−2q2

Λ2

)
2µE − q2

. (A.1)

For E < 0, these integrals can be solved using the Gaussian complementary error
function:

erfc(x) = 1 − 2√
π

∫ x

0

e−t2dt. (A.2)

The derivation begins with the A0 integral written as follows:

A0 =
4π2µ

2µE

√
2µE

∫ ∞

0

dx
exp

(
−2(2µE)

Λ2 x2
)

1 − x2
, (A.3)

where, here:

x ≡ q√
2µE

. (A.4)

We can now use the binomial expansion of the denominator:

1

1 − x2
=

∞∑
n=0

x2n. (A.5)
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Taking the summation outside of the integral, the Gaussian integral can be solved.

A0 =
4π2µ

2µE

√
2µE

∞∑
n=0

(
1

2

)n+1

(2n+ 1)!!

√
π(

2(2µE)
Λ2

) 2n+1
2

=
4π2µ

2µE

Λ

2

√
π

2

∞∑
n=0

(2n+ 1)!!

2n
(

2(2µE)
Λ2

)n

=
4π2µ

2µE

Λ

2

√
π

2

∞∑
n=0

(2n+ 1)!!

2n(−1)ny2n
, (A.6)

where

y ≡
√

2(−2µE)

Λ2
⇒ −y2 =

2(2µE)

Λ2
. (A.7)

The summation is then related to the complementary error function:

∞∑
n=0

(2n+ 1)!!

2n(−1)ny2n
=

√
πy exp(y2)erfc(y), (A.8)

leading to a final result for A0:

A0 =
4π2µ

2µE

Λ

2

√
π

2

√
πy exp(y2)erfc(y)

= −2π22µ

√
−2µE

−2µE
exp

(
2(−2µE)

Λ2

)
erfc

(√
2(−2µE)

Λ

)
. (A.9)

Now a recursive relation can be found in order to calculate the other Ai’s. For A1,
this is most easily seen by adding and subtracting by 2µE within the integral:

A1 = 4π2µ

∫ ∞

0

dq
exp

(
−2q2

Λ2

)
2µE − q2

(q2 + 2µE − 2µE)

= −4π2µ

∫ ∞

0

dq exp

(
−2q2

Λ2

)
+ 2µEA0

= −2π22µ
Λ

2

√
2

π
+ 2µEA0. (A.10)

By repeating this procedure one finds the relation:

Ai = −2π22µ(2i− 3)!!

(
Λ

2

)2i−1
√

2

π
+ 2µEAi−1, (A.11)
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or for j ≥ 1:

Aj = −2π22µ

j∑
i=1

(2µE)j−i(2i− 3)!!

(
Λ

2

)2i−1
√

2

π
+ (2µE)jA0. (A.12)

For reference A1 through A4 are listed here:

A1 = −2π22µ

[
Λ

2

√
2

π
−
√
−2µE exp

(
2(−2µE)

Λ2

)
erfc

(√
2(−2µE)

Λ

)]
,

(A.13)

A2 = −2π22µ

[(
Λ

2

)3
√

2

π
− (−2µE)

Λ

2

√
2

π

+
√

(−2µE)3 exp

(
2(−2µE)

Λ2

)
erfc

(√
2(−2µE)

Λ

)]
, (A.14)

A3 = −2π22µ

[
3

(
Λ

2

)5
√

2

π
− (−2µE)

(
Λ

2

)3
√

2

π
+ (−2µE)2Λ

2

√
2

π

−
√

(−2µE)5 exp

(
2(−2µE)

Λ2

)
erfc

(√
2(−2µE)

Λ

)]
, (A.15)

A4 = −2π22µ

[
15

(
Λ

2

)7
√

2

π
− (−2µE) 3

(
Λ

2

)5
√

2

π
+ (−2µE)2

(
Λ

2

)3
√

2

π

−(−2µE)3 Λ

2

√
2

π
+
√

(−2µE)7 exp

(
2(−2µE)

Λ2

)
erfc

(√
2(−2µE)

Λ

)]
.

(A.16)

The derivation of the two-body interaction T-matrix using a separable potential
along with a strong cutoff, as opposed to the Gaussian regulator scheme, differs due
to the results for the Ai integrals. The integrals using a strong cutoff are of the form:

Ai = 4π2µ

∫ Λ

0

dq
q2i

2µE − q2
. (A.17)

For E < 0, these integrals can be solved analytically using trigonometric functions.
Starting with the A0 and A1 integrals we find:

A0 = −2π22µ
1√

−2µE

2

π
arctan

(
Λ√

−2µE

)
, (A.18)
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A1 = −2π22µ

[
2

π
Λ −

√
−2µE

2

π
arctan

(
Λ√

−2µE

)]
, (A.19)

which we see are analogous to Eqs. (A.9, A.13). In solving for the other Ai integrals
using a strong cutoff, we find that to switch from a Gaussian regulator to a strong
cutoff one must simply replace the forms of the regulator factor and the Λ dependent
terms using the following prescription:

Gaussian Regulator Strong Cutoff

exp

(
2(−2µE)

Λ2

)
erfc

(√
2(−2µE)

Λ

)
2

π
arctan

(
Λ√

−2µE

)

(n− 2)!!

(
Λ

2

)n
√

2

π

2

π

1

n
Λn.

Here we see that in both cases the regulator factors quickly approach 1 as Λ becomes
much larger than

√
−2µE.
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The Overlap-Matrix Element

The solution of the Faddeev equations requires the solution of the recoupling of two
Jacobi momentum states. The derivation of this overlap-matrix element was done for
three identical spin-1/2 particles in the book by Glöckle [Gl83]. A good review of
the use of the overlap-matrix element in the Faddeev equations can also be found in
Ref. [Wit08]. The analogous result for an arbitrary three-body system is presented
here.

While a more detailed description of the Jacobi momentum and the corresponding
Jacobi momentum basis states is given in Sec. 3.2, we review the basic concepts needed
in the overlap-matrix elements.

For three particles (i, j and k) with momenta �ki and masses mi, the Jacobi mo-
menta are defined as:

�pi = µjk

(
�kj

mj
−
�kk

mk

)
and �qi = µi,jk

(
�ki

mi
−

�kj + �kk

mj +mk

)
, (B.1)

where �pi is the relative center-of-mass momentum of the two-body subsystem, com-
posed of particles j and k, and �qi is the momentum of particle i relative to the center
of mass of the two-body subsystem.1 The two-body and three-body reduced masses
are given by:

µjk =
mjmk

mj +mk
and µi,jk =

mi(mj +mk)

mi +mj +mk
. (B.2)

The relations for other choices of spectator particles can be easily obtained through
a cyclic permutation of ijk in Eqs. (B.1,B.2).

The Jacobi momenta can be used to define a complete basis of vector Jacobi states:

| �p�q〉i ≡| �pi�qi〉. (B.3)

1The spectator notation is used throughout. In this notation the index refers to the spectator
particle of the three-body system. The exceptions are the variables which refer to individual particles,
for example, the individual particle momenta �ki, the individual masses mi, or individual spin or
isospin quantum numbers si or ti, as well as the various reduced masses µij or µi,jk.
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One then constructs a partial wave projected basis state from these states, which is
then used in the application to the Faddeev equations:

| pqJ 〉i ≡ | piqiJi〉

≡ | pq[(ls)j(λσ)j]JMJ(tt)TMT 〉i, (B.4)

where Ji is used as an abbreviation for all the discrete quantum numbers. The
definition of every quantum number in the partial wave basis state can be found in
Sec. 3.2.2.

The solution of the Faddeev equations requires the recoupling of two Jacobi mo-
mentum states in an overlap-matrix element of the form:

i〈pqJ | p′q′J ′〉j. (B.5)

However, it is useful to decouple the momentum-, spin-, and isospin-space according
to the well known prescription using the 9j symbol [Ed96]:

| pqJ 〉i =
∑
LS

√
ĵ ĵL̂Ŝ

⎧⎨
⎩

l s j
λ σ j
L S J

⎫⎬
⎭ | pq(lλ)L〉i | (sσ)S〉i | (tt)T 〉i, (B.6)

where in all expressions, the hatted quantum numbers are

ĵ ≡ 2j + 1. (B.7)

The overlap-matrix element is therefore

i〈pqJ | p′q′J ′〉j =
∑
LS

∑
L′S′

√
ĵ ĵL̂Ŝ

√
ĵ ′̂j

′
L̂′Ŝ ′

⎧⎨
⎩

l s j
λ σ j
L S J

⎫⎬
⎭
⎧⎨
⎩

l′ s′ j′

λ′ σ′ j′

L′ S ′ J ′

⎫⎬
⎭

i〈pq(lλ)L | p′q′(l′λ′)L′〉j i〈(sσ)S | (s′σ′)S ′〉j i〈(tt)T | (t′t′)T ′〉j .
(B.8)

The problem is now the calculation of three recoupling matrix elements for the mo-
mentum, spin, and isospin.

The spin and isospin parts are completely analogous to one another and easily
solved from the known properties of angular momentum recoupling coefficients. Using
the 6j symbol [Ed96]:

i〈(sσ)S | (s′σ′)S ′〉j = δSS′
√
ŝŝ′(−1)si+2sj+sk+s′

{
sj sk s
si S s′

}
(B.9)

and

i〈(tt)T | (t′t′)T ′〉j = δTT ′
√
t̂t̂′(−1)ti+2tj+tk+t′

{
tj tk t
ti T t′

}
. (B.10)
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The momentum part of the overlap-matrix element in Eq. (B.8) is at the very root
of the three-body problem as it holds all the mechanics of the interplay between two
different three-body states. The derivation is complicated and tedious, and follows
the procedure in Ref. [Gl83]. For brevity, we present only the final result for arbitrary
masses and spins, which naturally has the same structure as the result of Ref. [Gl83]:

i〈pqJ | p′q′J ′〉j =

∫ 1

−1

dx
δ(p− π̃j)

pπ̃l+1
j

δ(p′ − π̃′
j)

p′π̃′l′+1
j

GJJ ′(qq′x), (B.11)

where

π̃j =

√(
µjk

mk

)2

q2 + q′2 + 2
µjk

mk

qq′x (B.12)

and

π̃′
j =

√
q2 +

(
µki

mk

)2

q′2 + 2
µki

mk
qq′x. (B.13)

The angular dependence is now found in the x variable, which is the cosine of the
angle between q and q′.

Notice the choice of delta functions in Eq. (B.11). The delta functions could be
chosen in order to fix two of the four momenta, or one momentum and the x variable.
In our present case, in order to derive the most useful form of the Faddeev equations
for halo nuclei, we fix the two-body subsystem momenta p and p′ in terms of the
spectator momenta q and q′. However, in reconstructing the full wave function from
its Faddeev components, it is more useful to fix the momentum on the right hand side
of the overlap-matrix element p′ and q′ in terms of the momentum on the left hand
side p and q. The solution for this choice of delta functions can be found in [No01].

The x dependence of the G function is expanded in Legendre polynomials, and
has the form:

GJJ ′(qq′x) =
∑
k

Pk(x)
∑

l1+l2=l

∑
l′1+l′2=l′

(
µjk

mk

)l1 (µki

mk

)l′2

(q)l1+l′1(q′)l2+l′2g
kl1l2l′1l′2
JJ ′ . (B.14)

The quantity g
kl1l2l′1l′2
JJ ′ is a completely geometrical function of the angular momentum

quantum numbers. Because the total three-body angular momentum cannot depend
on the choice of Jacobi coordinates, g is diagonal in J and MJ . Also, because the
parity is not changed (−1)l+λ = (−1)l′+λ′

. The explicit form of g for our choice of
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delta functions, using 6j and 9j symbols, as well as Clebsch-Gordan coefficients C, is:

g
kl1l2l′1l′2
JJ ′ =

1

2
k̂
∑
LS

L̂Ŝ

√
l̂ĵλ̂ĵl̂′ĵ′λ̂′̂j

′
(−1)l′

⎧⎨
⎩

l s j
λ σ j
L S J

⎫⎬
⎭
⎧⎨
⎩

l′ s′ j′

λ′ σ′ j′

L S J

⎫⎬
⎭

√
l̂!

(2l1)!(2l2)!

√
l̂′!

(2l′1)!(2l
′
2)!

√
ŝŝ′(−1)si+2sj+sk+s′

{
sj sk s
si S s′

}
√
t̂t̂′(−1)ti+2tj+tk+t′

{
tj tk t
ti T t′

}
∑
ff ′

{
l2 l1 l
λ L f

}
C(l1λf, 00)

{
l′1 l′2 l′

λ′ L f ′

}
C(l′2λ

′f ′, 00)

{
f l2 L
f ′ l′1 k

}
C(kl2f

′, 00)C(kl′1f, 00). (B.15)
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