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Maŕıa Guadalupe Castillo Pérez
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Abstract

This work is about link invariants arising from enhanced Yang-Baxter opera-
tors. For each enhanced Yang-Baxter operator R = (R,D, λ, β) and any braid
Br(n) Turaev defined a link invariant TR(ξ) = λ−ω(ξ)β−ntrace(bR(ξ) ◦ D⊗n),
where ω : Br(n) → Z is a homomorphism and bR is the representation of the
Artin braid group Br(n) arising from the solution of the Yang-Baxter equati-
on R. Therefore, we first introduce new solutions of the Yang-Baxter equation
Bϕ : V ⊗2 → V ⊗2, Bϕ(a ⊗ b) = abϕ(a)−1 ⊗ ϕ(a), for V = K[G], ϕ ∈ Aut(G),
where G is any group. We call these solutions twisted conjugation braidings.
Then we give sufficient and necessary conditions for a map D to decide whe-
ther the quadruple (Bϕ, D, λ, β) is an EYB-operator. Moreover, we prove that
the twisted conjugation braidings Bϕ can be enhanced using character theory.
These enhancements are called character enhancements. It turns out that for
every character enhancement D of the twisted conjugation brading Bϕ the link
invariant is constantly 1, i.e., TB(ξ) = 1 for all ξ ∈ Br(n). In general, we prove
that the link invariant for all ξ ∈ Br(n) and for every enhancement D of the
twisted conjugation braiding Bϕ is a map TB(ξ) = β−ntrace(bBϕ) ◦D⊗n .
Our main result is the following theorem.
Let γ be a fixed invertible element of K and let D denote a linear map. Asumme

that D ⊗D commutes with the twisted conjugation braiding Bϕ. Then

1. Sp2((B
ϕ)±1 ◦ (D ⊗D)) = γD =⇒ D2 = γD

2. Sp2(B
ϕ ◦ (D ⊗D)) = γD ⇐⇒ Sp2((B

ϕ)−1 ◦ (D ⊗D)) = γD
In the last part of this work, we prove that for finite groups G the twisted conju-
gation braiding Bϕ satisfies (Bϕ)l(a⊗ b) = a⊗ b, with l = 2 · lcm(ord(a), ord(b).

From this follows that the link invariant is TB(ξ) =
(

m1

β

)n

, for braids ξ in Br(n),

with ξ = σǫ1
σi1

. . . σǫl

il
, and with ǫ1, . . . , ǫl ≡ 0 mod l, where m1 = trace(D). We

call such braids mod-l braids. Furthermore, it follows that the link invariant is

TB =
(

m1

β

)n−1

for braids ξ ∈ Br(n) such that ξ = σǫ
i , with ǫ ≡ 0 mod l. We

call these braids single-power braids. Moreover, we wrote a program in JAVA
programming language which computes the link invariants for the enhancement
D = γI, (γ ∈ K

∗) for braids ξ ∈ Br(p), (p prime) with ξ = (σ1σ2 . . . σp−1)
q,

and with (p, q) = 1 for the cases G = Σn and G = Z/nZ. In the cases were we
have computed the link invariants TB “the polynomial is constant,” i.e., TB ∈ K,
since the only braidings we consider are permutations of the basis K[G]⊗2.
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Introduction

In the 1988’s [14] Turaev defined a criteria called an enhancement. If satisfied, would produce a
Markov trace and hence lead to a link invariant. To describe his criteria let K be a commutative
ring with 1 and let V be a K− free module of finite rank m ≥ 0. A solution of the Yang-
Baxter equation R is an invertible linear map R : V ⊗ V → R ⊗ R which satisfies the equation
(R ⊗ 1)(1 ⊗ R)(R ⊗ 1) = (1 ⊗ R)(R ⊗ 1)(1 ⊗ R) in Aut(V ⊗3). This equation first has appeared in
independent papers of C. N. Yang and R. J. Baxter in the late 1960’s and early 1970’s, respectively.
This equation and its solutions play a fundamental role in statistical mechanics ([18]) and in knot
theory ([7], [9], [10]). For example, a relationship between the Yang-Baxter equation and polynomial
invariants of links can be found in [6]. In this paper, Jones introduced his famous polynomial of
links via the study of certain finite dimensional von Neumann algebras. A remark of D. Evans
mentioned in [6] points out that these algebras were earlier discovered by physicists who used them
to study the Potts model of statistical mechanics.

For describing Turaev’s criteria we need to recall as well his definition of an enhanced Yang-Baxter
operator. An enhanced Yang-Baxter operator (EYB) is a quadruple R = (R,D : V → V, λ ∈
K

∗, β ∈ K
∗), where R is a solution of the Yang-Baxter equation and D is an endomorphism of V

which satisfies

(T1) D ⊗D commutes with R,

(T2a) Sp2(R ◦ (D ⊗D)) = λ±1βD,

(T2b) Sp2(R
−1 ◦ (D ⊗D)) = λ±1βD, where Sp2 : V → V denotes the partial trace on the second

factor. For the definition and properties of partial trace we refer the reader to Definition
2.1.1, Lemma 2.1.2 and Lemma 2.1.3.

In chapter 1 we use group rings V = K[G] and automorphisms of the group G to introduce new
solutions of the Yang-Baxter equation Bϕ : V ⊗2 → V ⊗2. We define Bϕ(a⊗b) = abϕ(a)−1⊗ϕ(a), for
any group G and for V = K[G], and ϕ ∈ Aut(G). Throughout this work Bϕ will be called twisted

conjugation braiding and by a link we will understand a finite family of disjoint, smooth oriented or
unoriented, closed curves in R

3, or equivalently S3. An example of a solution Bϕ is the following.
Set G to be an abelian group. Then the twisted conjugation braiding Bϕ(a ⊗ b) = aba−1 ⊗ a.
Moreover, observe that if G is commutative then Bϕ is the twist map.
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In Theorem 2.2.6 we completely characterize EYB-operators by a set of three equations. This
allows us to show that the twisted conjugation braiding Bϕ is an enhanced Yang-Baxter operator.
(We refer the reader to Theorem 2.2.6 for a precise formulation).

As a corollary of Theorem 2.2.6, we have:

Corollary 2.2.7 Let G be any finite group, V = K[G], and D = qId, where q is an invertible

element of K. Then, B′ = (Bϕ,D, λ = 1, β = q) is an EYB-operator.

Moreover, in Chapter 3 we prove in terms of characters of the group G × G that the twisted
conjugation braiding Bϕ is an enhanced Yang-Baxter operator. Indeed we have

Theorem 3.2.1 Let χ be a character defined from G × G into K
∗. Define the K-linear map

D : K[G] → K[G], via its action on the basis elements a ∈ G,

D(a) =
∑

c∈G

χ(a, c)c,

then the following three conditions are satisfied:

1. The quadruple B = (Bϕ,D, λ = 1, β = trace(D)) is an EYB-operator,

2. Bϕ ◦ (D ⊗D) = D ⊗D,

3. Sp2(B
ϕ ◦ (D ⊗D)) = trace(D) D

Coming back to the description of Turaev’s criteria. For each EYB operator R, Turaev defines in
[14] a map TR :

∐
Br(n) → K, as follows.

For a braid ξ ∈ Br(n),
TR(ξ) = λ−ω(ξ)β−n trace(bR(ξ) ◦D⊗n),

where ω is the homomorphism fromBr(n) to the additive group of integers Z which sends σ1, . . . , σn−1

into 1, and bR is the representation of the Artin braid group Br(n), arising from the Yang-Baxter
solution R : V ⊗2 → V ⊗2. Namely, bR sends σi into id⊗(i−1) ⊗R⊗ id(n−i−1).

The most important properties of the map TR are given by the following theorem.

Theorem ((3.1.2), [14]) For any ξ, η,∈ Br(n)

TR(η−1ξη) = TR(ξσn) = TR(ξσ−1
n ) = TR(ξ).

Due to a theorem of J.W. Alexander (first part) and A. A. Markov, any oriented link is isotopic to
the closure of some braid. The closures of two braids are isotopic (in the category of oriented links)
if and only if these braids are equivalent with respect to the equivalence relation in

∐
nBr(n)

generated by the Markov moves ξ 7→ η−1ξη, ξ 7→ ξσ±1
n , where ξ, η ∈ Br(n). Turaev’s theorem
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(Theorem 2.3.1) shows that for any enhanced Yang-Baxter operator R = (R,D, λ, β), the mapping
TR :

∐
nBr(n) → K induces a mapping of the set of oriented isotopy classes of links into K.

Motivated by Turaev’s work (mentioned above), we prove in Chapter 2 (Corollary 2.5.3) that the
link invariant TB of any EYB-operator B = (Bϕ,D, λ, β) of the twisted conjugation braiding Bϕ is
given by the formula

TB(ξ) = β−n trace(bBϕ(ξ) ◦D⊗n)

for any braid ξ ∈ Br(n).

Moreover, in Chapter 3 we prove that the link invariant associated to any character enhancement
Dχ of the twisted conjugation braiding Bϕ is constantly 1, i.e., TB(ξ) = 1 for all ξ ∈ Br(n). (We
refer the reader to Theorem 3.3.2 for a precise formulation).

Remark Theorem 3.3.2 shows that new link invariants will only arise from enhancements D of
the twisted conjugation braiding Bϕ that do not arise from a character χ : G×G→ K.

The main result in this work is that any enhancement D of the twisted conjugation braiding Bϕ is
idempotent. Indeed we have the following theorem.

Theorem 4.1.1 (Idempotence) Let γ be fixed invertible element of K, and let D denote a linear

map. Assume that D ⊗D commutes with the twisted conjugation braiding Bϕ.

1. If Sp2(B
ϕ ◦ (D ⊗D)) = γ · D, then D2 = γ D.

2. If Sp2((B
ϕ)−1 ◦ (D ⊗D)) = γ · D, then D2 = γ D.

3. The following two statements are equivalent.

(a) Sp2(B
ϕ ◦ (D ⊗D)) = γ D,

(b) Sp2((B
ϕ)−1 ◦ (D ⊗D)) = γ D.

Other important properties of the map TR are given by the following result of Turaev (see [14]).

For the trivial knot © we have
TR(©) = β−1trace(D).

If a link L = L1 ⊔ L2 is the disjoint union of two links L1 and L2 then

TR(L) = TR(L1) TR(L2),

i.e., the map TR is multiplicative.

In particular, if L is the trivial n-component link, then

TR(L) = β−ntrace(D)n.
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In this work, we compute the link invariants TB for enhancements of the twisted conjugation
braiding Bϕ, for braids ξ in Br(n), with ξ = σǫ1i1 . . . σ

ǫl
il
, and with ǫ1, . . . , ǫl ≡ 0 mod l. Such

braids are called mod-l braids. We also compute the link invariants TB for enhancements of the
twisted conjugation braiding Bϕ for braids ξ ∈ Br(n) such that ξ = σǫi , with ǫ ≡ 1 mod l. We call
these braids single-power braids. In Chapter 6, by using the program “Bhi orders” we compute
the link invariants for the enhancement D = γI, (γ ∈ K∗) for braids ξ ∈ Br(p), (p prime) with
ξ = (σ1σ2 . . . σp−1)

q, and with (p, q) = 1.

Our results are the following.

Remark In the cases were we have computed the link invariants TB, “the polynomial is constant”,
i.e, TB ∈ K as we see in the following table (Table 6.13), since the only braidings we consider are
permutations of the basis of K[G]⊗2.

Table 1: Link invariants for G = Σ5, ϕ(s) = s2ss
−1
2 and D = γI

Knot Name (p, q) TB
Hop link (2, 2) 840

31 Trefoil knot (2, 3) 600

51 Solomon’s seal knot (2, 5) 720

71 7 crossing torus knot (2, 7) 120

819 8 crossing torus knot (3, 4) 1200

91 9 crossing torus knot (2, 9) 600

10124 10 crossing torus knot (3, 5) 600

11 crossing torus knot (2, 11) 120

Proposition 5.1.1 Asumme that D is an enhancement of the twisted conjugation braiding Bϕ.

Moreover, assume that (Bϕ)l ◦ (D ⊗D) = D ⊗D for some l ∈ N. Then

1. TB(ξ) =
(
m1
β

)n
, for all mod-lbraids ξ ∈ Br(n), where m1 = rank (D).

2. TB(ξ) =
(
m1
β

)n−1
, for all single-power braids ξ = σǫi ∈ Br(n), with ǫ ≡ 1 mod l.

In particular, for the enhancement D = qI, with q ∈ K (invertible)

1. TB(ξ) = |d|n, for all mod-l braids ξ ∈ Br(n), where, d = |G|

2. TB(ξ) = |d|n−1, for all single-power braids ξ = σǫi ∈ Br(n), with ǫ ≡ 1 mod l.

Examples of enhancements D of the twisted conjugation braiding Bϕ, satisfying the hypothesis
(Bϕ)l ◦ (D ⊗D) = D ⊗D, occur for example in the following situations.

Examples

4



1. Let G be commutative group and set ϕ = id. Then the twisted conjugation braiding Bϕ is
the twist map, i.e. Bϕ(a⊗ b) = b⊗ a. Therefore, (Bϕ)2 = id (see Proposition 5.1.3).

Let G = Z/3Z = {1, x, x2}, with x3 = 1 and assume that ϕ is the automorphims which sends
x 7→ x2, x2 7→ x. Then, (Bϕ)3 = id (see Proposition 5.1.5).

Another example of enhancements D of the twisted conjugation braiding Bϕ, satisfying the condi-
tion (Bϕ)l ◦ (D ⊗D) = D ⊗D of previous Lemma is given by the following theorem.

Theorem 5.1.9 Let D : K[G] → K[G], defined as D(a) =
∑

∆c∈(a, c)c. Assume that (D ⊗ D)

commutes with the twisted conjugation braiding Bϕ. Moreover, assume that there is no pair of

elements a and c ∈ G such that ∆(a, c) and ∆(ϕ(a), ϕ(c)) vanish at the same time. Then

Bϕ ◦ (D ⊗D) ◦Bϕ = D ⊗D

In particular,

(Bϕ)2 ⊗ (D ⊗D) = D ⊗D = (D ⊗D) ◦ (Bϕ)2.

Our work is organized as follows:

In Chapter 1, we introduce the twisted conjugation braiding (solution of the Yang-Baxter equa-
tion) Bϕ. Moreover, motivated by the work of Sarah Schardt, (see [11]), we define an action of
the Braid group Br(n) on K[G]⊗n. With the help of this action, we give a slight generalization
of Schardt’s Hopf algebra H(G). Namely, we define two Hopf algebra structures, (µϕR,∆, ǫ, η) and
(µϕR,∆, ǫ, η), on the tensor algebra Hϕ := ⊕n≥0V

⊗n, compare with [11] Moreover, we prove that
these Hopf algebras have invertible antipode maps SϕL and SϕR, respectively.

In Chapter 2, we recall the definition of the partial trace (Definition 2.1.1, Definition 2.1.4, see
[3, 8]), and we prove that the partial trace does not depend on the choice of the basis (Lemma
2.1.2). Moreover, we recall Turaev’s work (see [14]) and we give the proof of Theorem 2.2.6 and
Corollary 2.2.7.

In Chapter 3, we prove in terms of characters of the group G ×G that the twisted conjugation
braiding Bϕ is an enhanced Yang-Baxter operator. Namely, we prove that if the map D : K[G] →
K[G] is defined as D(a) =

∑
c∈G χ(a, c)c, for all a ∈ G, with χ a character from G×G into a field K.

Then D is an enhancement of the twisted braiding Bϕ. Such enhancements will be called character

enhancements and will be denoted by Dχ. Moreover, we prove that character enhancements Dχ of
the twisted conjugation braiding Bϕ satisfy the property

Bϕ ◦ (D ⊗D) = D ⊗D.

At the end of this chapter we give the proof of Theorem 3.3.2.
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In Chapter 4, we prove that any enhancement D of the twisted conjugation braiding Bϕ satisifies
D2 = γ · D, where γ is a fixed invertible element in K. In particular, if D is invertible then D = γI,
i.e. we recover the enhancement D given by Corollary 2.2.7.

In Chapter 5, we give the proof of Proposition 5.1.1 and give some examples of enhancements D
of the twisted conjugation braiding Bϕ, satisfying the hypothesis (Bϕ)l ◦ (D⊗D) = D⊗D. At the
end of this chapter we give the proof of Theorem 5.1.9.

In Chapter 6, we prove that ord(Bϕ) = ord(Bid) for all ϕ ∈ Inn(G). Moreover, we prove that if
the least common mutiple m of the order of all elements a ∈ G exists, then the order of the twisted
conjugation braiding Bϕ is smaller than or equal to 2m. With the help of he computer program
“Bphi orders,” which is written in JAVA programming language, we compute at the end of this
chapter the link invariants TB for the enhancement D = γI (γ ∈ K

∗) for braids ξ ∈ Br(p) (p prime)
with ξ = (σ1 . . . σp−1)

q, and with (p, q) = 1 for the cases G = Σn and G = Z/nZ.

In Appendix A, we prove that the Hopf algebras (Hϕ(G), µϕL,∆, η, ǫ, S
ϕ
L) and (Hϕ(G), µϕR,∆, η, ǫ, S

ϕ
R)

are neither quasi-commutative nor quasi-cocommutative, therefore they are not quantum groups.

In Appendix B, using Whitehouse and Worocnicz’s (see [15] and [17]) solutions of the YB-
equation, we prove that the Hopf algebras (Hϕ(G), µϕL,∆, η, ǫ, S

ϕ
L) and (Hϕ(G),muϕR,∆, η, ǫ, S

ϕ
R)

are not braided Hopf algebras.

In Appendix C, we recall the main properties of the tensor product of matrices.

In Appendix D, we explain how to use the program ”Bphi orders” which is written in JAVA
programming language.
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Chapter 1

The twisted shuffle Hopf algebra of a

group

In the first section of this chapter we recall Schardt’s Hopf algebra H(G), (see[11]). In the second
section, we define the twisted conjugation braiding Bϕ (solution of the Yang-Baxter equation),
which will play an important role throughout this work, since it will help us to describe some link
invariants for some finite groups, as we will see in the next chapter of this thesis. In section 3,
we give a slight generalization of Schardt’s Hopf algebra HG. The main part of this chapter is
based on her work. We define two Hopf algebra structures on the tensor algebra Hϕ(G). First,
we define the two products µϕL and µϕR, respectively. We then define the twist maps twϕL and twϕR,
respectively, and a coproduct ∆. Secondly, we prove that the coproduct ∆ is compatible with both
products, and finally we show that the Hopf algebras (Hϕ(G), µϕL,∆, η, ǫ) and (Hϕ(G), µϕR,∆, η, ǫ)
have antipode maps SϕL and SϕR, respectively. Moreover, in Apendix A and Appendix B, we prove
that these Hopf algebras are neither quasi-commutative nor quasi-cocommutative; therefore they
are not quantum groups. We will show as well using Whitehouse and Woroniwicz’s solutions of the
YBE Ψ,Ψ′; respectively Φ,Φ′. (See [15], [17]), that they are not braided Hopf algebras.

1.1 Schardt’s Hopf algebra H(G)

In this section, we recall Schardt’s Hopf algebra, which has been introduced in [11], for two reasons.
First, because the main part of this chapter is based on her work and second, because it is an
example of the Hopf algebra Hϕ(G), which will be introduced later in this chapter. Thus, using
her definition of the shuffle product on H(G), we compute the shuffle-products, coproduct and
antipode maps, when we set G to be the trivial group.

In [11], Schardt introduced the Hopf algebra H(G), associated to a group as follows: Let K be any
commutative ring with unit 1, and denote V = K[G] the ring group of G. Set H(G) =

⊕
n≥0 V

⊗n.
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If we use the usual concatenation product

(x1 ⊗ · · · ⊗ xn)(y1 ⊗ · · · ⊗ ym) = (x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ ym)

on H(G) we called it the tensor algebra, but Schardt defined a shuffle-product µ, as:

(x1 ⊗ · · · ⊗ xl).(xl+1 ⊗ · · · ⊗ xn) =
∑

σ∈(l,n−l)−shuffle

sgn(σ)(xσ1 ⊗ · · · ⊗ xσn)

with

xσj =





xσ−1(j) if σ−1(j), ∈ {l + 1, . . . , n}

(xσ−1(j))xl+1...xl+r
if σ−1(j), ∈ {1, . . . , l}

and σ(l + r) < j < σ(l + r + 1)

and xy = y−1xy.

Moreover, she defined a coproduct ∆ and an antipode map S, which are given as:

∆(x1 ⊗ · · · ⊗ xn) =
∑n

l=0(x1, . . . , xl) ⊗ (xl+1, . . . , xn)

S(x1 ⊗ . . . xn) = (−1)⌈
n
2
⌉n(xn, (xn−1)xn , . . . , (x2)x3...xn , (x1)x2...xn)

(1.1.1)

Furthermore, she proved that H(G)

1. is a graded differential algebra with the differential given by

∂ =
n−1∑

i=1

∂i

with
∂i(x1 ⊗ · · · ⊗ xn) = (x1, . . . , xixi+1, . . . , xn).

2. S has finite order if the order of all elements of the group G have finite smallest common
multiple. In particular, S is invertible for all finite groups.

3. H is neither commutative nor cocommutative.

Example

Set G = {e}. Recall that K[G] ∼= K and that Aut(G) ∼= {id}.
Denote by ǫk = 1⊗ · · · ⊗ 1 (k times) and ǫl = 1⊗ · · · ⊗ 1 (l-times) the generators of Hk = K[G]k

and Hl = K[G]l, respectively. If k = l = 1 the shuffle product ǫ1 • ǫ1 = ǫ2 − ǫ2 vanishes. For any k
and l = 1, the shuffle product is given by:

ǫk • ǫ1 = ǫk+1 − ǫk+1 + · · · + (−1)kǫk+1 =

{
0 for k odd
ǫk+1 for k even

=

(
1 + (−1)k

2

)
ǫk+1

Recursively, one can deduce that the shuffle product of ǫk and ǫl is given by:

9



ǫk • ǫl =
∑

σ∈Sh(k,l)

sgn(σ) ǫk+l := Ck,l . ǫk+l =

{
ǫk+l if k = 0 or l = 0
0 otherwise

where

Ck,l =

(
1 + (−1)k+l−1

2

)
Ck,l−1 =

l∏

i=1

(
1 + (−1)k+i−1

2

)
Ck,0 (1.1.2)

Ck,0 = 1, C0,l = 1, C0,0 = 1 and 1+(−1)k+i−1

2 =

{
0 for k + i even
1 for k + i odd

The antipode and the coproduct maps are given by:

∆(ǫk) =
∑

i+j=k ǫi ⊗ ǫj
= ǫ0 ⊗ ǫk + ǫ1 ⊗ ǫk−1 + · · · + ǫk ⊗ ǫ0

where by convention we set ǫ0 ∈ (K[G])⊗0 = K, ǫ0 = 1 in K

S(ǫk) = (−1)⌈
k
2
⌉ǫk

1.2 The twisted conjugation braiding Bϕ

In this section, we give a slight generalization of Schardt’s conjugation braiding, which has been
introduced in [11]. More precisely, for a a group G (not necessarily commutative) she defines
B : K[G]⊗2 → K[G]⊗2 as a⊗ b 7→ aba−1 ⊗ a.

Before we give the generalization of Schardt’s conjugation braidingB, we need to recall the following
definition.

Definition 1.2.1. A solution of the Yang-Baxter equation is a linear map R : V ⊗2 → V ⊗2 which

satisfies

(R⊗ idV )(idV ⊗R)(R⊗ idV ) = (idV ⊗R)(R ⊗ idV )(idV ⊗R)

in Aut(V ⊗3), where V is a finitely generated K-module of rank m ≥ 0.

10



Definition 1.2.2. Let G be a group, and let ϕ : G → G be an automorphism. Define the twisted

conjugation braidng Bϕ : V ⊗2 → V ⊗2, where V = K[G] by:

Bϕ(a⊗ b) := abϕ(a)−1 ⊗ ϕ(a).

It is easy to see that Bϕ is invertible. Its inverse (Bϕ)−1 : K[G]⊗2 → K[G]⊗2 is given by

a⊗ b 7−→ ϕ−1(b) ⊗ ϕ−1(b)−1ab

for all a⊗b generator of K[G]⊗2. Figure 1.1 gives a graphic representation of the twisted conjugation
brading Bϕ.

abϕ(a)−1 ϕ(a)

aa b b

ϕ−1(b)−1abϕ−1(b)−1

Bϕ (Bϕ)−1

Figure 1.1: The braiding Bϕ and its inverse (Bϕ)−1.

Proposition 1.2.3. Bϕ satisfies the braiding equation in Aut(V ⊗3), i.e.,

B12B23B12 = B23B12B23,

where B12 = Bϕ ⊗ 1 and B23 = 1 ⊗Bϕ.

Proof Let a⊗ b⊗ c be a generator of V ⊗3 then:

B12(a⊗ b⊗ c) = abϕ(a)−1 ⊗ ϕ(a) ⊗ c

and
B23(a⊗ b⊗ c) = a⊗ bcϕ(b)−1 ⊗ ϕ(b).

Therefore,

B12B23B12(a⊗ b⊗ c) = B12B23(abϕ(a)−1 ⊗ ϕ(a) ⊗ c)
= B12(abϕ(a)−1 ⊗ ϕ(a)cϕ2(a)−1 ⊗ ϕ2(a))
= abcϕ(ab)−1 ⊗ ϕ(ab)ϕ2(a)−1 ⊗ ϕ2(a)
= B23(abcϕ(ab)−1 ⊗ ϕ(a) ⊗ ϕ(b))
= B12B23(a⊗ bcϕ(b)−1 ⊗ ϕ(b))
= B23B12B23(a⊗ b⊗ c)

From this follows that Bϕ satisfies the braid equation.
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Remark 1.2.4.

1. Here, unless mentioned otherwise, we will understand by a braiding a solution of the Yang-

Baxter equation.

2. Let ψ,ϕ : G → G be homomorphism of the group G. Define Bψ, Bψ : K[G]⊗2 → K[G]⊗2 as

above. Consider B = Bψ ◦Bϕ, which is

a⊗ b 7−→ ab ψϕ(a) ψ(ab)−1 ⊗ ψ(ab) ψϕ(a)−1.

It is easy to see that B does not satisfy the Yang Baxter equation. But, up to an isomorphism

C it is

Cψ(ab) (Bψϕ(a⊗ b)) = Bψ(Bϕ(a⊗ b))

with Cx(a⊗ b) := ax−1 ⊗ xb.

Therefore, in general composition of the Yang-Baxter equation is not a solution of the Yang-

Baxter equation.

Lemma 1.2.5. Let V = K[G]⊗l, let ϕ = ϕ1 ×ϕ2 ×· · ·×ϕl, with ϕi inAut(G) for all i ∈ {1, . . . , l}.

Define B : V ⊗ V → V ⊗ V as:

a⊗ b 7→ a1b1ϕ1(a1)
−1 ⊗ a2b2ϕ2(a2)

−1 ⊗ · · · ⊗ alblϕl(al)
−1 ⊗ ϕ1(a1) ⊗ ϕ2(a2) ⊗ · · · ⊗ ϕl(al),

for a⊗ b generator of V ⊗ V . (a = (a1, . . . , al), b = (b1, b2, . . . , bl)). Then B is a braiding on V .

Proof It is similar to the proof of Proposition 1.2.3.

1.3 Action of the braid group Br(k) on TkG

In this section, we define two actions of the braid group on K[G]⊗k.

Let G denote a group G (not necessarily commutative). Let ϕ be an automorphism of the group G.
The following proposition gives two actions of the braid group Br(k) on TkG, where TkG = K[G]⊗k.
In the next section, we will use these actions to describe the two algebras and coalgebras structures
on the tensor algebra Hϕ(G) =

⊕
k≥0 TkG. Moreover, with the help of these actions we define

twists maps and the antipode maps of the corresponding Hopf algebras.
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Definition 1.3.1. For each k > 0 the braid group Br(k) is defined as:

Br(k) = < b1, . . . , bk−1 | ∀ 1 ≤ i, j ≤ k − 1 : bibj = bjbi for |i− j| > 1

and bibi+1bi = bi+1bibi+1 >

Proposition 1.3.2. For all k ≥ 0, the braid group Br(k) acts on TkG, this action is given by:

bi · (g1, . . . , gi, gi+1, . . . , gk) := (g1, . . . , gigi+1ϕ(gi)
−1, ϕ(gi), . . . , gk)

and

(g1, . . . , gi, gi+1, . . . , gk) · bi := (g1, . . . , ϕ
−1(gi+1), ϕ

−1(gi+1)
−1gigi+1, ϕ(gi), . . . , gk)

for all tuple (g1, g2, . . . , gk) ∈ TkG and each generator bi of Br(k).

Proof The action of bi ∈ Br(k) is an automorphism of TkG; an inverse is given by:

TkG −→ TkG
(g1, . . . , gi, gi+1, . . . , gk) 7−→ (g1, . . . , ϕ

−1(gi+1), ϕ
−1(gi+1)

−1gigi+1, . . . , gk).

Now, it remains to prove the compatibility with the relations on the braid group.

Let bi, bj ∈ Brk with i < j, |i− j| > 1. Then:

bibj · (g1 . . . , gi, gi+1, . . . , gj , gj+1, . . . , gk)

= (g1, . . . , gigi+1ϕ(gi)
−1, ϕ(gi), . . . , gjgj+1ϕ(gj)

−1, ϕ(gj), . . . , gk)

= bjbi · (g1, . . . , gi, gi+1, . . . , gj , gj+1, . . . , gk)

Now, if i < j, |i− j| = 1 and j = i+ 1, then

bibi+1bi · (g1, . . . , gk) = bibi+1 · (g1, . . . , gigi+1ϕ(gi)
−1, ϕ(gi), . . . , gk)

= bi · (g1, . . . , gigi+1ϕ(gi)
−1, ϕ(gi)gi+2ϕ

2(gi)
−1, ϕ(gi), . . . , gk)

= (g1, g2, . . . , gigi+1gi+2ϕ(gigi+1)
−1, ϕ(gigi+1ϕ

2(gi)
−1, ϕ2(gi), . . . , gk)

On the other hand:

bi+1bibi+1 · (g1, . . . , gk) = bi+1bi · (g1, . . . , gi, gi+1gi+2ϕ(gi+1)
−1, ϕ(gi+1, . . . , gk)

= bi+1 · (g1, . . . , gigi+1gi+2ϕ(gigi+1)
−1, ϕ(gi), ϕ(gi+1, . . . , gk)

From this follows that bibi+1bi = bi+1bibi+1.
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bi

g1

g1 gk

gk

gi

ϕ(gi)

gi+1

gigi+1ϕ(gi)
−1

Figure 1.2: Left braid action.

bi

g1

g1 gi gi+1 gk

gkϕ−1(gi+1) ϕ−1(gi+1)
−1gigi+1

Figure 1.3: Right braid action.

1.4 Algebra structure on Hϕ(G).

With the help of proposition 1.3.2 we define in this section two algebra structures µϕL respectively
µϕR on Hϕ(G).

Definition 1.4.1. (Left Product) We define a left product: µϕL : TlG⊗ Tk−lG→ TkG:

µϕL(a⊗ b) :=
∑

σ∈(l,k−l)
−shuffle

sgn(σ)(bσ(k) . . . bk−2bk−1) . . . (bσ(l+2) . . . blbl+1) · (bσ(l+1) . . . bl−1bl) · (a, b)︸ ︷︷ ︸
=:Sϕ

L
(a,b;σ)l,k−l

for a ∈ TlG and for b ∈ Tk−lG.
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We define a unit:
η : K −→ Hϕ(G)

1 7−→ 1 ∈ T0G = K

Remark In view of the definition of the action of the braid group Br(n) on TnV (see Proposition
1.3.2), we can describe µϕL as in Figure 1.4.

Definition 1.4.2. (Right product) We define a right product: µϕR : TlG⊗ Tk−lG→ TkG

µϕR : (a⊗ b) :=
∑

σ∈(l,k−l)−shuffle

sgn(σ)(a⊗ b) · (blbl+1 . . . bσ(l−1) · (bl−1bl . . . bσ(l−1)−1) . . . (b1b2 . . . bσ(1)−1)︸ ︷︷ ︸
=:Sϕ

R
(a,b;σ)l,k−l

for a ∈ TlG and for b ∈ Tk−lG.

We define a unit:
η : K → Hϕ(G)

1 7−→ 1 ∈ T0G.

Note, that each of these products together with the unit η give a structure of graded algebra to
Hϕ(G).

Remark The algebra Hϕ(G) is not commutative. Indeed we have that he following diagram

TlG⊗ Tk−lG

T **T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

µ
ϕ
L // TkG

Tk−lG⊗ TlG

µ
ϕ
L

OO

does not commute in general, where T denotes the twist map, Tk(a⊗ b) = (−1)pqb⊗ a for a ∈ TpG
and b ∈ TqG and p+ q = k.

Notation Let a = (g1, . . . , gl) ∈ TlG and let b = (gl+1, . . . , gk) ∈ Tk−lG. Denote by SϕL,σ(a, b) :=

SϕL(a, b, σ)l,k−l.
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1.5 Coalgebra structure on Hϕ(G)

In this section, we describe a coalgebra structure on (Hϕ(G), µϕL, η), and on (Hϕ(G), µϕr , η), respec-
tively. Moreover, we define right and twist maps twϕR, twϕL and we prove that the coproduct is
compatible with both products.

Definition 1.5.1. We define

∆ : TkG→ (TG⊗ TG)k =
k⊕

l=0

(TlG⊗ Tk−lG)

∆(g1, . . . , gk) :=

k∑

l=0

(g1, . . . , gl) ⊗ (gl+1, . . . , gk)︸ ︷︷ ︸
=:∆l(g1,...,gk)

Define a counit ǫ : Hϕ(G) → K as T0G ∋ 1 7−→ 1 (g1, . . . , gk) 7−→ 0 for all k > 0.

The above definition of ∆ together with the definition of the counit ǫ give a graded coalgebra
structure to Hϕ(G).

Remark Hϕ(G) is not cocommutative. Indeed we have that the following diagram

⊕k
l=0(TlG⊗ Tk−lG)

T **V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

TkG
∆oo

∆
��⊕k

l=0(Tk−lG⊗ TlG)

does not commute in general, where T denotes the twist map.

Definition 1.5.2. (Right twist map) Let a = (g1, . . . , gl) ∈ TlG and let b = (g∈Tk−lG. We

define the rigth twist map:

twϕR : TlG⊗ Tk−lG→ Tk−lG⊗ TlG

twϕR(a⊗ b) := (−1)l(k−l) ∆k−l((a, b) · (blbl+1 . . . bk−1) · (bl−1bl . . . bk−2) . . . (b1b2 . . . bk−l)︸ ︷︷ ︸
t
ϕ
R

(a,b)l,k−l

)
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Definition 1.5.3. (Left Twist map) Let a = (g1, . . . , gl) ∈ TlG and let b = (gl+1, . . . , gk) ∈

Tk−lG. We define the left twist map:

twϕL : TlG⊗ Tk−lG→ Tk−lG⊗ TlG

twϕL(a⊗ b) : = (−1)l(k−l) ∆k−l((bk−l . . . bk−2bk−1) . . . (b2 . . . blbl+1) · (b1 . . . bl−1bl) · (a, b)︸ ︷︷ ︸
t
ϕ
L
(a,b)l,k−l

)

Using the action of the braid group Br(k) on TkG, we see that the left twist map and the right
twist map respectively, can be defined as

twϕL(a⊗ b) = (−1)l(k−l)(agl+1ϕ(a)−1, ϕ(a)gl+2ϕ
2(a)−1, . . . , ϕk−l−2(g1 . . . gl−1)gk)

⊗ (ϕl−2(g1), . . . , ϕ
k−l−2(gl−1), ϕ

k−l−1(gl))

This is graphically represented in Figure 1.5.

twϕR(a⊗ b) = (−1)l(k−l)(ϕ−(l+2)(gl+1), ϕ
(l−1)(gl+2), . . . , ϕ

−(k−l−1)(gk))

⊗ (ϕ(−k−l−2)(g1, . . . , ), . . . , ϕ
−2(gk . . . gl+1)

−1gl−1ϕ
−1(gk . . . , gl+1gl), ϕ

−1(gl · b))

This is graphically represented in Figure 1.6.

Remark 1.5.4. twϕR ◦ twϕL = twϕL ◦ twϕR = id.
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g1

g1

gl gkgl−1 gl+1 gl+2

bl

bl

bl−1

bl+1

bσ(l+1)

bσ(l+2)

bk−2

bk−1

g̃ =

bσ(k)

ϕk−l−1(gl)
ϕk−l−2(gl−1)

ϕk−r−2(grk) . . .ϕk−l−2(g1) gkϕ
k−r−1(grk)−1

g̃ḡ

ḡ = grl+1
. . . gl+1 ϕ(grl+1

. . . gl)
−1

Figure 1.4: Graphic representation of the left-shuffle product.
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bl−1

b1

bl+1

bl

bl

b2

bk−1

bk−l

bk−2

g1 . . . gl+1ϕ(g1 . . . gl)
−1

ϕ(g1 . . . gl)gl+2ϕ
2(g1 . . . gl)

−1

ϕk−l−2(g1 . . . gl−1)gk ϕk−l−2(gl−1)

ϕk−l−1(gl)

Figure 1.5: Graphic representation of the left twist map.
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g1 gl−1 gl gl+1 gl+2 gk

bl+1

bk−1

bk−1

bl−1

bl

bl

b1

b2

bk−2

ϕ−(l+2)(gl+1)

ϕ−(l+1)(gl+2)

ϕ−2(gk . . . gl+1)
−1gl−1ϕ

−1(gk . . . gl)

ϕ−1(gl . . . gk)

Figure 1.6: Graphic representation of the right twist map.
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Proposition 1.5.5. ∆ is an algebra homomorphism for µϕR and for µϕL; i.e

∆ ◦ µϕL = (µϕL ⊗ µϕL) ◦ (id⊗ twϕL ⊗ id) ◦ (∆ ⊗ ∆)

∆ ◦ µϕR = (µϕR ⊗ µϕR) ◦ (id⊗ twϕR ⊗ id) ◦ (∆ ⊗ ∆),

respectively.

Proof We only will prove the first equality, because the proof for the second equality is similar.

Let a = (a1, . . . , as) ∈ TsG and b = (b1, . . . , bt) ∈ TtG. Let s′ ∈ {0, . . . s} and t′ ∈ {0, . . . , t}. Let σ1

and σ2 denote a fixed (s′, t′) and (s− s′, t− t′)- shuffles respectively. We have:

((µϕL ⊗ µϕL) ◦ (id⊗ twϕL ⊗ id) ◦ (∆ ⊗ ∆)(a⊗ b))s′,t′,σ1,σ2: =

= (Sϕ( L, σ1) ⊗ Sϕ( L, σ2)) ◦ (id⊗ twϕL ⊗ id)(∆s(a1, . . . , as) ⊗ ∆t(b1, . . . , bt))

= (SϕL,σ1
⊗ SϕL,σ2

)((−1)(s−s
′)t′((a1, . . . , as′) ⊗ tϕL(a, b)s−s′,t′) ⊗ (bt′+1, . . . , bt)

= (−1)(s−s
′)t′SϕL(a, b, σ1)s′,t′ ⊗ SϕL(a, b, σ2)s−s′,t−t′

Now, consider the permutation σ0 ∈ Σs+t which is given by:

{1, . . . , s+ t} −→ {1, . . . , s+ t}

i 7−→





i if 1 ≤ i ≤ s′

i+ t′ if s′ + 1 ≤ i ≤ s
i− (s− s′) if s+ 1 ≤ i ≤ s+ t′

i if s+ t′ + 1 ≤ i ≤ s+ t

Clearly, sgn(σ0) = (−1)(s−s
′)t′ . On the other hand, let σ′1 ∈ Σs+t denote the permutation that

coincides with σ1 in the first k + l positions, and the identity in the remained positions. Let
σ′2 ∈ Σs+t denote the permutation that coincides with σ2 in the last s + t − (k + l) positions,
and the identity in the remained positions. It is not difficult to see that σ′ := σ′1 . σ

′
2 . σ0 is a

(s, t)-shuffle.

We have:

(∆ ◦ µϕL)s′+t′,σ′(a⊗ b) := ∆s′+t′ ◦ S
ϕ
L(a, b, σ′)

= (−)(s−s
′)t′∆s′+t′(S

ϕ
L(a, b, σ′1σ

′
2))

= (−1)(s−s
′)t′(SϕL(a, b, σ1) ⊗ SϕL(a, b, σ2)),

supp(σ′1) ⊆ {1, . . . , s′ + t′} and supp(σ′2) ⊆ {s′ + t′ + 1, . . . , s+ t}.
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1.6 The antipode maps S
ϕ
L and S

ϕ
R.

Before we define the antipode maps, we need to recall the definition of a convolution product.

Definition 1.6.1. Given an algebra (A,µ, η) and a coalgebra (C,∆, ǫ), and given f, g ∈ Hom(C,A),

then its convolution product ⋆, is defined by the following commutative diagram:

C
∆ //

f⋆g
))T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T C ⊗ C
f⊗g // A⊗A

µ

��
A

Definition 1.6.2. Let (H,µ, η,∆, ǫ) be a Hopf algebra. An endomorphism S of H is called an

antipode for H if

S ⋆ idH = idH ⋆ S = η ◦ ǫ.

Therefore, to define an antipode SϕL for (Hϕ(G), µϕL,∆, η, ǫ) we must have the following equalities:

µϕL ◦ (id⊗ SϕL) ◦ ∆ = η ◦ ǫ = µϕL ◦ (SϕL ⊗ id) ◦ ∆,

and for defining an antipode for (Hϕ(G), µϕR,∆, η, ǫ) we have to have the following equalities:

µϕR ◦ (id⊗ SϕR) ◦ ∆ = η ◦ ǫ = µϕR ◦ (SϕR ⊗ id) ◦ ∆.

Theorem 1.6.3. For (HϕG,µϕL,∆, η, ǫ) and (HϕG,µϕR,∆, η, ǫ) there are unique antipodes

SϕL : TkG→ TkG and SϕR : TkG→ TkG

defined as:

SϕL(g1, . . . , gk) = (−1)⌈
k
2
⌉ bk−1 . (bk−2bk−1) . . . (b1 . . . bk−2bk−1) . (g1, . . . , gk),

SϕR(g1, . . . , gk) = (−1)⌈
k
2
⌉(g1, . . . , gk) . (b1 . . . bk−1) . . . (b1b2) .
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These antipodes are given by using de definition of the action of the braid group (Lemma 1.3.2),
as: (see Figure 1.7 and 1.8).

SϕL(g1, . . . , gk) = (−1)⌈
k
2
⌉(g1 . . . gkϕ(g1 . . . gk−1)

−1, ϕ(g1 . . . gk−1)ϕ
2(g1 . . . gk−2)

−1, . . . ,

ϕk−2(g1)ϕ
k−2(g2)ϕ

k−1(g1)
−1, ϕk−1(g1))

and

SϕR(g1, . . . , gk) = (−1)⌈
k
2
⌉(ϕ−(k−1)(gk), ϕ

−(k−1)(gk−1)
−1ϕ−(k−2)(gkgk−1), . . . ,

ϕ−2(g3 . . . gk)ϕ
−1(g2 . . . gk), ϕ

−1(g2 . . . gk)g1 . . . gk))

Proof of Theorem 1.6.3 We only do the proof the theorem for SϕL, because the proof for SϕR is
similar.

Induction on the lenght k.

For k = 0

µϕL ◦ (id⊗ SϕL) ◦ ∆(1) = µϕL ◦ (SϕL ⊗ id) ◦ ∆(1)

= SϕL(1) = 1 = η ◦ ǫ(1)

For k = 1,

µϕL ◦ (id ⊗ SϕL) ◦ ∆(g1, g2) = µϕL ◦ (id⊗ SϕL)[1 ⊗ (g1, g2) + g1 ⊗ g2 + (g1, g2) ⊗ 1]

= µϕL[1 ⊗ (g1, g2) − g1 ⊗ g2 − (g1g2ϕ(g1)
−1, ϕ(g1)) ⊗ 1]

= (g1, g2) − (g1, g2) + (g1g2ϕ(g1)
−1, ϕ(g1)) − (g1g2ϕ(g1), ϕ(g1))

= 0

The last equality follows by definition η ◦ ǫ = 0 for all k > 0.

Induction step:

Let (g1, . . . , gk) ∈ TkG. Then

µϕL ◦ (id⊗ SϕL) ◦ ∆(g1, . . . , gk) =

= µϕL ◦ (id ⊗ SϕL)(
∑k

l=0(g1, . . . , gl) ⊗ (gl+1, . . . , gk))

= µϕL(
∑k

l=0(g1, . . . , gl) ⊗ SϕL(gl+1, . . . , gk))

= SϕL(g1, . . . , gk) + µϕL(
∑k−1

l=1 (g1, . . . , gl) ⊗ SϕL(gl+1, . . . , gk)) + (g1, . . . , gk)

= SϕL(g1, . . . , gk)+µ
ϕ
L(
∑k−1

l=1 (g1, . . . , gl)⊗(−1)⌈
k−l
2

⌉(gl+1 . . . gkϕ(gl . . . gk)
−1, ϕ(gl+1 . . . gk)ϕ

2(gl . . . gk)
−1,
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, . . . , ϕk−2(gl)ϕ
k−2(gl+1ϕ

k−1(gl)
−1, ϕk−1(gl)) + (g1, . . . , gk)

By induction step and analyzing the above formula one can easily see that the last shuffle product
on the sum will cancel the element (g1, . . . , gk) and that all the other elements will cancel each
other up to the tuple

(−1)k−1(−1)⌈
k−1

2
⌉(g1 . . . gk−1ϕ(g1 . . . gk)

−1, . . . , ϕk−1(g1)).

Therefore, we must have

SϕL(g1, . . . , gk) + (−1)k−1(−1)⌈
k−1

2
⌉(g1 . . . gk−1ϕ(g1 . . . gk)

−1, . . . , ϕk−1(g1)) = 0.

From this follows µϕL ◦ (id⊗ SϕL) ◦ ∆ = η ◦ ǫ.

Now SϕL is unique, because if there is another S̃ϕL such that

S̃ϕL ⋆ id = id ⋆ S̃ϕL = η ◦ ǫ

then
Sϕ = Sϕ ⋆ (ηǫ) = Sϕ ⋆ (id ⋆ S̃ϕ) = (Sϕ ⋆ id) ∗ S̃ϕ = (ηǫ) ⋆ S̃ϕ = S̃ϕ.

A similar argument will prove that SϕR is an antipode for (Hϕ(G), µϕR,∆, η, ǫ).

The above theorem proves that (Hϕ(G), µϕL,∆, S
ϕ
L , η, ǫ) and (Hϕ(G), µϕR,∆, S

ϕ
R, η, ǫ) are graded

Hopf algebras with an antipode map.

Lemma 1.6.4. The antipode maps SϕL and SϕR are invertible. Namely we have

SϕL ◦ SϕR = SϕR ◦ SϕL = id.

Proof Induction on the lenght k.

For k = 0

(SϕL ◦ SϕR)(1) = SϕR(1) = 1

For k = 2, let (g1, g2) ∈ T2G then

(SϕL ◦ SϕR)(g1, g2) = −SϕLϕ(g2)
−1, ϕ−1(g2g1)g1g2)) = (g1, g2)

Now assume the result for k − 1 , i.e. for all (g1, . . . , gk−1) ∈ Tk−1G we have

SϕL ◦ SϕR(g1, . . . , gk−1) = (g1, . . . , gk−1).
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So, let (g1, . . . , gk) ∈ TkG then:

(SϕL ◦ SϕR)(g1, . . . , gk) = SϕL((−1)⌈
k
2
⌉(ϕ−(k−1)(gk), . . . , ϕ

−1(g2, . . . , gk)g1 . . . gk)

= (g1, . . . , gk)

The last equality follows by the induction step k − 1.

Proposition 1.6.5. Let µϕ, Sϕ, ∆ be defined as before. Then

µϕ ◦ (µϕ ⊗ 1) ◦ (1 ⊗ Sϕ ⊗ 1) ◦ (∆ ⊗ 1) ◦ ∆ = 1.

Proof By definition of Sϕ we have:

µϕ ◦ (Sϕ ⊗ 1) ◦ ∆ = µϕ ◦ (1 ⊗ Sϕ) ◦ ∆ = η ◦ ǫ (1.6.1)

From it follows that:

µϕ ◦ (µϕ⊗̄1) ◦ (1⊗̄Sϕ⊗̄1) ◦ (∆⊗̄1) ◦ ∆ = µϕ ⊗ [(η ◦ ǫ)⊗̄1] ◦ ∆
= µϕ ◦ [(η⊗̄1) ◦ (ǫ⊗̄1)] ◦ ∆

Let (x1, . . . , xk) =: x be generator of TkG, then:

case 1: If x = 1, then:

µϕ ◦ (µϕ⊗̄1) ◦ (1⊗̄Sϕ⊗̄1) ◦ (∆⊗̄1) ◦ ∆(1) = µϕ ⊗ [(η ◦ ǫ)⊗̄1](1⊗̄1)

= µϕ ◦ [(η⊗̄1) ◦ (1⊗̄1)] = 1

Case 2: If |x| > 0, then:

(ǫ⊗̄1) ◦ ∆(x1, . . . , xk) = (ǫ⊗̄1)[
∑k

l=0(x1 ⊗ · · · ⊗ xl)⊗̄(xl+1 ⊗ · · · ⊗ xk)]

=
∑k

l=0 ǫ(x1 ⊗ · · · ⊗ xl)⊗̄(xl+1 ⊗ · · · ⊗ xk)

= 1⊗̄(x1 ⊗ · · · ⊗ xk)

The last equality holds by definition ǫ(x1 ⊗ · · · ⊗ xl) = 0 for all l > 0. Therefore, we get:

µϕ ◦ (η⊗̄1)(1⊗̄(x1 ⊗ · · · ⊗ xk) = µϕ(1⊗̄(x1⊗̄(x1 ⊗ · · · ⊗ xk)

= (x1 ⊗ · · · ⊗ xk)
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Figure 1.7: Graphic respresentation of the left antipode map.
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ϕ−(k−1)(gk−1)
−1ϕ−(k−2)(gkgk−1)

ϕ−2(g3 . . . gk)ϕ
−1(g2 . . . gk)
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Figure 1.8: Graphic representation of the right antipode map.
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Chapter 2

The Yang-Baxter Equation and knot

invariants

In this chapter we recall the definition of enhanced Yang Baxter operator introduced in [14]. Just
like in the case when we have solutions of the Yang-Baxter equation, we give a lemma that allows
to construct new enhancements from old ones. We give a survey about Turaev’s work ([14], Thm.
2.3.1, Thm. 3.1.2). Based on Turaev’s work, we prove that the twisted conjugation braiding Bϕ

introduced in chapter 2, is an enhanced Yang-Baxter operator for any finite group G. In the last
section, we prove that for the twisted conjugation braiding Bϕ, the link invariant TB is

TB(ξ) = β−n trace(bBϕ(ξ) ◦D⊗n), for all braid ξ ∈ Br(n).

2.1 Traces and partial traces

In this section, we recall the definition of trace of a homomorphism f : V → V . Moreover, we recall
the definition of partial trace and its properties.

Notation and agreements

Here K denotes a fixed commutative ring with 1, and V denotes a fixed finitely generated free K-
module of rank m ≥ 1. For n ≥ 0 the n-fold tensor product V ⊗KV ⊗K · · ·⊗KV is denoted by V ⊗n.
Each basis v1, . . . , vm in V gives rise to a basis in V ⊗n which consists of vectors vi1 ⊗· · ·⊗vin , with
i1, . . . , in ∈ {1, 2, . . . ,m}. In this basis, each endomorphism f of V ⊗n determines the multindexed
matrix (f j1,...,jni1,...,in

), 1 ≤ i1, j1, . . . , in, jn ≤ m defined by the equation

f(vi1 ⊗ · · · ⊗ vin) =
∑

1≤j1,...,jn≤m

f j1,...,jni1,...,in
vj1 ⊗ · · · ⊗ vjn .
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Definition 2.1.1. For each homomorphism f : V ⊗n → V ⊗n its partial trace (on the k-th factor)

Spk(f) is the homomorphism V ⊗(n−1) → V ⊗(n−1), where k ∈ {1, . . . , n} is given as follows.

For any i1, . . . , in−1 ∈ {1, 2, . . . ,m}

Spk(f)(vi1 ⊗ · · · ⊗ vin−1) =
∑

1≤j1,...,bjk,...,jn≤m

(

m∑

jk=1

f j1,...,jk,...,jni1,...,jk,...,in−1
)vj1 ⊗ · · · ⊗ v̂jk ⊗ · · · ⊗ vjn ,

Lemma 2.1.2. The partial trace Spk(f) does not depend on the choice of a basis of V .

Proof We do the proof for n = 2, i.e. when f : V ⊗2 → V ⊗2. A similar argument will prove the
result in the case when we consider homomorphisms f : V ⊗n → V ⊗n.

We have to prove

Sp2((A⊗A) ◦ f ◦ (A⊗A)−1) = A ◦ Sp2(f) ◦ A−1,

where A = [aij ]

Notation

1. Fix a basis B = {v1, . . . , vm} of V then we get a basis B′ = {v1 ⊗ v1, v1 ⊗ v2, . . . , vm ⊗ vm}.
Notice that this basis comes with a given order, namely the lexicographic order.

2. On the basis B, the homomorphism f has the following matrix representation (by blocks),

[f(i, j)] :=




f(1, 1) . . . f(1,m)
. . . . . . . . .

f(m, 1) . . . f(m,m)




where each f(i, j) is a square m×mmatrix .Notice that [f(i, j)] is a m2×m2 matrix composed
by m2 matrices of size m×m.

3. On the basis B′, the partial trace Sp2(f) : V → V has an associated m×m matrix S = [Si,j],
with the entry Di,j = trace (f(i, j)).

4. If A = [aij ], then A⊗A = [aijA]

5. If A is invertible, then (A⊗A)−1 = A−1 ⊗A−1

Parts (2) and (3) of previous Remark imply that

A ◦ Sp2(f) ◦ A−1 = [aij ] [trace (f(j, k))] [bkl]

= [
∑

j,k aij trace (f(j, k)) bkl]
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(A⊗A) ◦ f ◦ (A⊗A)−1 = [aijA] [f(j, k)] [bklA
−1]

= [
∑

j,k(aijA f(j, k) A−1) bkl]

Using part (4) and (5) of previous remark we get :

Sp2((A⊗A) ◦ f ◦ (A⊗A)−1) = [trace(
∑

j,k(aijA f(j, k) A−1) bkl)]

= [
∑

j,k aijtraceA f(j, k) A−1] bkl]

= [
∑

j,k aijtrace (f(j, k)) bkl]

= A ◦ Sp2(f) ◦ A−1

The last equality follows from the fact that trace is invariant under change of basis.

Remark In general, we have
Sp1(f) 6= Sp2(f)

Because, let dimV = 2, then with the above notations we have:

f(1, 1) :=

(
a11 a12

a21 a22

)
, f(1, 2) :=

(
b11 b12
b21 b22

)

f(2, 1) :=

(
c11 c12
c21 c22

)
, f(2, 2) :=

(
d11 d12

d21 d22

)

From it follows that the f : V ⊗2 → V ⊗2, has the following matrix representation:

A(f) =




a11 a12 b11 b12
a21 a22 b21 b22
c11 c12 d11 d12

c21 c22 d21 d22




Moreover, we have:

Sp1(f) =

(
a11 + d11 a12 + d12

a21 + d21 a22 + d22

)
6=

(
a11 + a22 b11 + b22
c11 + c22 d11 + d22

)
= Sp2(f)

Lemma 2.1.3. If f, g, h are endomorphisms of V ⊗(n+1), V ⊗n, V ⊗k (n ≥ k) respectively then,

1. trace(Spk(g)) = trace(g), where trace is the ordinary trace of a homomorphism.

2. Spn+1((g ⊗ IdV ) ◦ f)) = g ◦ Spn+1(f),
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3. Spn+1(f ◦ (g ⊗ IdV )) = Spn+1(f) ◦ g,

4. Spn+1(Id
⊗(n−k)
V ⊗ h) = Id

⊗(n−k)
V ⊗ Spn−k(h)

Proof We do the proof for (2), since (3) and (4) will hold by a similar argument. First of all, we
have that:

((f ⊗ Id) ◦ g) =
∑

j1,...,jn+1

f ⊗ Id(g
i1,...,in+1

j1,...,jn+1
vj1,...,jn+1)

=
∑

k1,...,kn

∑

j1,...,jn+1

f j1,...,jnk1,...,kn
g
i1,...,in+1

j1,...,jn+1
vk1,...,kn,jn+1.

Notice that all summands in above equation range from 1 to n. Now, by the definition of partial
trace on the n+ 1 factor, we get:

Spn+1((f ⊗ id) ◦ g)(vi1 , . . . , vin) =
∑

k1,...,kn

∑

kn+1

((f ⊗ id) ◦ g)k1 , . . . , kn, kn+1
i1,...,in,kn+1

vk1,...,kn

=
∑

k1,...,kn

∑

kn+1

∑

j1,...,jn

f j1,...,jnk1,...,kn
g
i1,...,in,kn+1

j1,...,jn,kn+1
vk1,...,kn

∑

j1,...,jn

∑

kn+1

f(g
i1,...,in,kn+1

j1,...,jn,kn+1
vj1,...,jn)

= (f ⊗ Spn+1)(vi1,...,in)

There is an equivalent definition of partial trace Spk on the k-th factor, for an endomorphism
f : V ⊗n → V ⊗n, k ∈ {1, . . . , n}, which sometimes will be useful for avoiding nasty computations.

Recall that End(V ⊗n) ∼= End(V )⊗k−1 ⊗ End(V ) ⊗ End(V )⊗(n−k) , where End(V ) denotes the
group of endomorphisms of V . Denote this isomorphism by λ̄.

Definition 2.1.4. The partial trace on the k−th-factor Spk, is defined by the following commutative

diagram

End(V ⊗n)
Spk //

λ̄
��

End(V ⊗(n−1))

End(V )⊗(k−1) ⊗ End(V ) ⊗ End(V )⊗(n−k)

Φ̃

// End(V )⊗(k−1) ⊗ K ⊗ End(V )(n−k)

∼=

OO

with Φ̃ := id⊗(k−1) ⊗ trace ⊗ id⊗(n−k).
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As an example we have the following:

Example If f(vi ⊗ vj) =
∑m

k,l=1 f
k,l
i,j vk ⊗ vl, then

Sp2(f)(vi) =
m∑

j,k=1

fk,ji,j vk and Sp1(f)(vj) =
m∑

i,l=1

f i,li,jvl.

Moreover, Sp1(Sp1(f)) = Sp1(Sp2(f)) = trace(f).

2.2 Enhanced Yang-Baxter operator

In this section, we recall the notion (due to Turaev, [14]) of an Enhanced Yang-Baxter operator.
For simplicity, we will write EYB-operator. Moreover, we give some examples of EYB-operators
and a lemma which allows to construct new EYB-operators from old ones, just like in the case when
we have a solution of the Yang-Baxter equation. At the end of this section, we recall a theorem due
to Turaev ([14], Thm. ), which restates conditions (T1), (T2) of the definition of a EYB-operator
such that a solution of the Yang-Baxter equation R : V ⊗2 → V ⊗2 is a EYB-operator, when the
map D : V → V, is defined as D(vi) = aivi, with vi element of the basis of the vector space V and
ai ∈ K

∗, for all i ∈ {1, . . . ,m}.

Definition 2.2.1. Let V be a free module of finite rank over a commutative ring K. An enhanced

(quantum) Yang-Baxter Operator on V ⊗ V is a quadruple (R,D, λ, β) consisting of an invertible

solution R ∈ End(V ⊗ V ) of the Yang-Baxter equation and a map D ∈ End(V ), such that

(T1) (D ⊗D) ◦R = R ◦ (D ⊗D)

(T2a) Sp2(R ◦ (D ⊗D)) = λβ D, and

(T2b) Sp2(R
−1 ◦ (D ⊗D)) = λ−1β D

where λ, β are invertible elements of the ring K

Remark 2.2.2. 1. If D is an invertible map, condition (T2a), and (T2b) of Definition 2.2.1

are equivalent to

Sp2(R
±1 ◦ (1 ⊗D)) = λ±1βIdV ,

because we can write (D ⊗D) = (1 ⊗D) (D ⊗ 1), and thus, the claim follows from Lemma

2.1.3.
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2. It is not loss of generality to assume that λ, β = 1 in the above definition, for (R,D, λ, µ) is

an enhanced Yang-Baxter operator, (λ−1R,β−1D, 1, 1) is one too. However, it is not always

covenient to make this normalization.

Example 1. 1. Let V be a vector space of dimension 1. For each solution R = (α), α ∈ K
∗

of the Yang-Baxter equation and D = (γ), γ ∈ K
∗. Then, the quadruple R = (R,D, λ, β)

is an enhanced Yang-Baxter operator.

2. Consider the following solution of the Yang-Baxter equation

R =




1 . . .

. . q .

. q 1 − q2 .

. . . 1




with q ∈ C an invertible element.

The quadruple R = (R,D, λ = ±1, β = ±1), is a EYB-operator, where D is given as follows:

(
1 0

0 q2

)

The following lemma gives a method how to construct new enhanced Yang-Baxter operators from
old ones.

Lemma 2.2.3.

1. Let R = (R,D, λ, β) be an enhanced Yang-Baxter operator. Then R̃ = (pR, qD, pλ, qβ) with

p, q ∈ K
∗, is an enhanced Yang-Baxter operator.

2. If R = (R,D, λ, β) is an enhanced Yang-Baxter operator. Then the quadruples (Rt,Dt, λ, β)

and (R−1,D, λ−1, β) are enhanced Yang-Baxter operators.

3. If R = (R,D, λ, β) is an enhanced Yang-Baxter operator and if A ∈ Aut(V ). Then (R′,D′, λ, β),

where

R′ = (A⊗A) ◦R ◦ (A⊗A)−1, D′ = A ◦D ◦A−1,

is an enhanced Yang-Baxter operator.
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Proof Notice that D′ ⊗D′ = (A⊗A) ◦ (D⊗D) ◦ (A⊗A)−1. Therefore, last part of the theorem
follows by Lemma 2.1.2 i.e by the invariance of the partial trace Sp2 on the second factor under
conjugation.

Now, if we consider the case when D is an isomorphism presented by a diagonal matrix with
respect to some basis of V . The following theorem restates conditions (T1), (T2a) and (T2b) in
the Definition of a EYB-operator (Definition 2.2.1) such that a solution R : V ⊗2 → V ⊗2 is an
EYB-operator.

Theorem 2.2.4. (Turaev, [14]) Let R : V ⊗2 → V ⊗2 be a solution of the YBE. Let v1, . . . , vm be

basis of the m-dimensional vector space V and D be an isomorphism V → V given by

D(vi) = aivi

with a1, . . . , am ∈ K
∗. The collection (R,D, λ ∈ K

∗, β ∈ K
∗) is an EYB-operator if and only if the

following two conditions are satisfied:

1. For any i, j, k, l ∈ {1, . . . ,m}

(aiaj − akal)R
k,l
i,j = 0.

2. For any i, k ∈ {1, 2, . . . ,m}

m∑

j=1

Rk,ji,j aj = λβδki ,
m∑

j=1

(R−1)k,ji,j aj = λ−1βδki

(here δki denotes the Kronecker symbol.)

Proof Under the conditions of Theorem we have that, for all i, i1, i2 ∈ {1, . . . ,m}

R(vi1 ⊗ vi2) =
∑

1≤j1,j2≤m

Rj1,j2i1,i2
vj1 ⊗ vj2, D(vi) = aivi, and the tensor product D ⊗D is

(D ⊗D)(vi ⊗ vj) = aiaj (vi ⊗ vj)

Now, it is easy to see that

(R ◦ (D ⊗D))(vi ⊗ vj) =
∑

k,l

aiajR
k,l
i,j (vk ⊗ vl) (2.2.1)

and that
((D ⊗D) ◦R)(vi ⊗ vj) =

∑

k,l

akalR
k,l
i,j (vk ⊗ vl) (2.2.2)
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Moreover, we have that

(R−1 ◦ (D ⊗D))(vi ⊗ vj) =
∑

k,l

aiaj(R
−1)k,li,j (vk ⊗ vl) (2.2.3)

Therefore, R commutes with D ⊗D if and only if aiajR
k,l
i,j = akalR

k,l
i,j . Moreover, from equations

2.2.1 and 2.2.3 we can compute Sp2(R
±1 ◦ (D ◦D)), by summing over all the terms with j = l; i.e

Sp2(R ◦ (D ⊗D))(vi) =
∑m

j=1R
k,j
i,j aj ;

Sp2(R
−1 ◦ (D ⊗D))(vi) =

∑m
j=1(R

−1)k,ji,j aj

(2.2.4)

From equation 2.2.4, we get then that Sp2(R
±−1 ◦ (D ⊗D)) = λ±1βD if and only

m∑

j=1

Rk,ji,j aj = δki λβ

and
m∑

j=1

(R±1)k,ji,j aj = λ−1βδki .

Remarks Clearly, D⊗D commutes with R if and only if D⊗D commutes with R−1. Therefore,
any of the conditions (1), (2) in Theorem 2.2.4 implies that for arbitrary i, j, k, l

(aiaj − akal)(R
−1)k,li,j = 0.

The condition (2) of Theorem 2.2.4 implies that

R̃a =




λβ
...
λβ


 ,

R̃ is the m×m-matrix R̃, with R̃ij = Ri,ji,j and a = (a1, . . . , am).

The same is true for the matrix R̃−1 if we replace λ by λ−1. Therefore, if at least one of the
matrices R̃ or R̃−1 is invertible over K then there exist at most one sequence a1, . . . , am which
satisfy (2) for given λ, β.

In the general case a1, . . . , am (if exist) are not uniquely determined by R,λ, β. Because of the
following Lemma.

Lemma 2.2.5. For any homomorphism D : V → V the collection (IdV ⊗2 ,D, λ = 1, β = Sp(D))

is a EYB-operator.
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Proof Denote by R = IdV ⊗2. Then, on the respectively basis of V and V ⊗ V , we have.

R(vi ⊗ vj) =
∑

k,lR
k,l
i,j vk ⊗ vl

with

Rk,li,j =

{
1 if i = k, and j = l
0 otherwise

Moreover, we have

D(vi) =
∑

kDi,k vk
trace(D(vi)) =

∑
iDi,i vi

(D ⊗D)(vi ⊗ vj) =
∑

k,lDi,k Dj,l vk ⊗ vl

From it follows:

(R ◦ (D ⊗D))(vi ⊗ vj) =
∑

k,l,s,tDi,k Dj,l R
s,t
k,l vs ⊗ vt

with

Rs,tk,l =

{
1 if k = s, and l = t
0 otherwise

Hence, (R ◦ (D ⊗D))(vi ⊗ vj) =
∑

s,tDi,s Dj,t vs ⊗ vt.

On the other hand,

((D ⊗D) ◦R)(vi ⊗ vj) =
∑

k,l,s,t

Di,s Dj,t R
k,l
s,t vs ⊗ vt

with

Rk,ls,t =

{
1 if s = k, and t = l
0 otherwise

Hence,

((D ⊗D) ◦R)(vi ⊗ vj) =
∑

s,t

Di,s Dj,t vs ⊗ vt. (2.2.5)

Thus, (T1), holds. To finish the proof, rest to prove, conditions (T2a) and (T2b) of the Definition
2.2.1. To do it, we need to compute Sp2 of (R±1 ◦(D⊗D). But, it can be computed, from equation
2.2.5, just by summing over the terms which satisfy j = t; i.e

Sp2(R
±1 ◦ (D ⊗D)) =

∑

j

Di,s Dj,j vj

Notation Here G will denote a finite group and unless that is is specified K will denote a
commutative ring with 1.
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Consider the twisted conjugation braiding Bϕ : K[G]⊗2 → K[G]⊗2.(See Definition 1.1). Can the
twisted conjugation braiding Bϕ be enhanced ? i.e., is there a homomorphism D : K[G] → K[G],
such that satisfies Turaev’s conditions (T1), (T2a) and (T2b) of Definition 2.2.1.

In this part we give an answer to question A. Moreover we give some explicit examples for such a
D.

It is very well known that a basis for K is given by the elements of G; which here we will denote
by g1, g2, . . . , g|G|. So, we get a basis {gi ⊗ gk} with i, j ∈ {1, 2, . . . , |G|}, for K[G] ⊗ K[G]. On the
basis of K[G], the map D is given as

D(gi) =

|G|∑

j=1

Di,j gj

Moreover, on the basis for K[G]⊗2, we have:

(D ⊗D)(gj ⊗ gk) =

|G|∑

m,n=1

Dm,jDn,kgm ⊗ gn

and
Bϕ(gm ⊗ gn) = θ(m,n) ⊗ ϕ(gm)

with θ(m,n) = gmgnϕ(gm)−1.

Notice that ϕ(gj) ∈ G, so there is an index Φ(j) 1 such that ϕ(gj) = gΦ(j). for the same reason,
there is an index Θ(j, k) 2 such that θ(j, k) = gΘ(j,k). From it follows that Bϕ has the following
matrix representation.

[Bϕ]p,q;m,n =

{
1 if p = Θ(m,n) and q = Φ(n)
0 otherwise

Since the twisted conjugation braiding Bϕ is invertible (Remark 1.2.4, (4)) , we have that for
every indexes (p, q) there is a second pair (m,n) such that p = Θ(m,n) and q = Φ(m). Thus the
commutativity of D ⊗D and Bϕ is granted under the following condition:

Dm,j Dn,k = DΘ(m,n),Θ(j,k) DΦ(m),Φ(j) (2.2.6)

Moreover, Sp2((D⊗D) ◦Bϕ) can be calculated from 2.2.6 by adding all the terms whose (second)
indices satisfy k = Φ(m). In order to simplify notation, we fix p = Θ(m,n).

λβ Dp,j =

|G|∑

k=1

Dp,Θ(j,k) Dk,Φ(j) (2.2.7)

1
Notice that Φ ∈ Σ|G|

2
Notice that Θ : |G| × |G| → |G|.
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Therefore, now, the inverse (Bϕ)−1 is given by:

(Bϕ)−1(gΘ(p,q) ⊗ gΦ(p)) = gp ⊗ gq.

So, we have that (Bϕ)−1 has the following matrix representation.

[Bϕ]−1
p,q;m,n =

{
1 if m = Θ(p, q) and n = Φ(p)
0 otherwise

Notice that D⊗D commutes with the inverse of the twisted conjugation braiding (Bϕ)−1, because
it does with the twisted conjugation braiding Bϕ. Again, we can compute Sp2(B

ϕ)−1 ⊗ (D ⊗D)),
by summing over all terms whose (second) indices satisfy k = q,

λ−1β Dp,j =

|G|∑

q=1

DΘ(p,q),j DΦ(p),q. (2.2.8)

Hence, we have proved the following Theorem.

Theorem 2.2.6. The collection B = (Bϕ,D, λ, β) is a EYB-operator if and only if the conditions

(2.2.6), (2.2.7), (2.2.8) are satisfied.

The following Corollaries are an easy consequence of Theorem 2.2.6.

Corollary 2.2.7. Define D : KG→ KG as gi 7→ qgi , for all i ∈ {1, . . . , |G]}, q ∈ K
∗ i.e its matrix

representation is:

[D] =




q 0 . . . 0

0 q . . . 0
...

...
. . .

...

0 0 . . . q




The quadruple B = (Bϕ,D, λ = 1, β = q) is an enhanced Yang- Baxter operator.

Proof we have that

D(gi) =

|G|∑

m=1

Dm,i gm,

with

Dm,i =

{
q if m = i
0 otherwise

Its tensor product is

(D ⊗D)(gi ⊗ gj) =

|G|∑

i,j=1

Dm,i Dn,j gm ⊗ gn
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with

Dm,i Dn,j =

{
q2 if m = i and n = j
0 otherwise

From, it follows

(D ⊗D)(gi ⊗ gj) =

|G|∑

i,j=1

q2 gi ⊗ gj . (2.2.9)

Now,

(Bϕ ◦ (D ⊗D))(gi ⊗ gj) =

|G|∑

i,j=1

q2 (gigjϕ(gi)
−1 ⊗ ϕ(gi)

On the other hand:

((D ⊗D) ◦Bϕ)(gi ⊗ gj) = (D ⊗D)(gigjϕ(gi)
−1 ⊗ ϕ(gi)

=
∑|G|

m,n=1DΘ(m,n),s DΦ(m),t gs ⊗ gt

with

DΘ(m,n),sDΦ(m),t =

{
q2 if Θ(m,n) = s and Φ(m) = t
0 otherwise

Therefore,

((D ⊗D) ◦Bϕ)(gi ⊗ gj) =
∑

m,n

q2 gΘ(m,n) ⊗ gΦ(m) (2.2.10)

Thus, (T1), follows from equations (2.2.9), and (2.2.10) and Theorem 2.2.6.

Thus, it remains to prove that the equations (2.2.7) and (2.2.8) are satisifed. But, they follows
from (2.2.9) and (2.2.10), just by summing over the terms n = j and Φ(m) = t.

Corollary 2.2.8. Define D as D(g) = qN , for all g ∈ G, and with N = g1 + · · · + g|G|, the norm

element in V = K[G]; i.e.

[D] =




q q . . . q

q q . . . q
...

...
. . .

...

q q . . . q




The collection (Bϕ,D, λ = 1, β = traceD) is an EYB-operator.
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2.3 Invariants of braids and links

Recall that every Yang-Baxter operator R : V ⊗ → V ⊗2 gives rise to a finite dimensional represen-
tation of Artin’s braid group

Br(n) = < σ1, . . . , σk−1 | ∀ 1 ≤ i, j ≤ k − 1 : σiσj = σjσi for |i− j| > 1
and σiσi+1σi = σi+1σiσi+1 >

(here n ≥ 1, See [2]). Namely, put Ri = Ri(n) : V ⊗n → V ⊗n and notice that RiRj = RjRi for
|i− j| ≥ 2 and (in view of the Yang Baxter equality) RiRi+1Ri = Ri+1RiRi+1 for i = 1, . . . , n− 1.
Therefore there is a unique homomorphism Br(n) → Aut(V ⊗n) which transforms σi into Ri for all
i. Denote this homomorphism by bR. We shall also use the homomorphism ω from Br(n) to the
additive group of integers which sends σ1, . . . , σn−1 into 1.

Every EYB-operator R = (R,D, λ, β) determines a mapping TR :
∐
n≥1Br(n) → K as follows. For

n ≥ 1 denote the homomorphism D ⊗ · · · ⊗D : V ⊗n → V ⊗n by D⊗n. For a braid ξ ∈ Br(n) put

TR(ξ) = λ−ω(ξ) β−n trace(bR(ξ) ◦D⊗n : V ⊗n → V ⊗n). (2.3.1)

The most important porperties of TR are given by the following theorem.

Theorem 2.3.1. (Turaev, [14]) For any ξ, η ∈ Br(n)

TR(η−1ξη) = TR(ξσn) = TR(ξσ−1
n ) = TR(ξ).

Proof of Theorem 2.3.1 It follows from the definition of EYB-operator that

(D⊗n ◦ b(η)) = (b(η) ◦D⊗n), for any η ∈ Br(n),where b = bR : Br(n) → Aut(V ⊗n).

Thus

trace(b(η−1ξη) ◦D⊗n = trace(b(η−1)b(ξ)b(η) ◦D⊗n)
= trace(b(η−1)b(ξ) ◦D⊗nb(η))

By properties of the usual trace (Lemma C.2.1), the last equality is equal to:

trace(b(ξ) ◦D⊗n)

Also,
ω(η−1ξη) = ω(ξ), since ω : Br(n) → Z is a homomorphism.

Therefore

TR(η−1 ξ η) = λ−ω(η−1ξη) β−n trace[bR(η−1ξη) ◦D⊗n) : V ⊗n → V ⊗n]

= λ−ω(ξ) β−n trace[bR(ξ) ◦D⊗n : V ⊗n → V ⊗n]
= TR(ξ)
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Now, we want to prove that
TR(ξσn) = TR(ξ)

Notice,
b(ξσn) = (b(ξ) ⊗ IdV ) ◦Rn : V ⊗(n+1) → V ⊗(n+1).

Thus,

trace[b(ξσn) ◦D
⊗(n+1)) = trace[(b(ξ) ⊗ IdV ) ◦Rn) ◦D

⊗(n+1)]

= trace[(b(ξ) ⊗ IdV ) ◦Rn ◦ (Id
⊗(n−1)
V ⊗D ⊗D) ◦ (D⊗(n−1) ⊗ Id⊗2

V )]

= trace( (b(ξ) ⊗ IdV ) ◦ (Id
⊗(n−1)
V ⊗R) ◦ (Id

⊗(n−1)
V ⊗D ⊗D)

◦ (D⊗(n−1) ⊗ Id⊗2
V ) )

= trace{(b(ξ) ⊗ IdV ) ⊗ (Id
⊗(n−1)
v ⊗ (R ◦ (D ⊗D)}) ◦ (D⊗(n−1) ⊗ Id⊗2

V ))

= trace{Spn+1( (b(ξ) ⊗ IdV ) ◦ (Id
⊗(n−1)
V ⊗ (R ◦ (D ⊗D) )

◦ (D⊗(n−1) ⊗ Id⊗2
V )]}

By properties of the partial trace (Lemma 2.1.3) , the last equality is equal to

b(ξ) ◦ {Id⊗(n−1) ⊗ Sp2(R ◦ (D ⊗D))} ◦ (D⊗(n−1) ◦ IdV ).

thus, by definition of EYB-operator ( Definition 2.2.1), this is equal to λ β (b(ξ) ⊗D⊗n). Hence

trace(b(ξσn) ◦D
⊗(n+1)) = λ β trace(b(ξ) ◦D⊗n).

Clearly, ω(ξσn) = ω(ξ) + 1. These equalities imply that

TR(ξσn) = TR(ξ).

to finish the proof, one notice that the equality

TR(ξσ−1) = TR(ξ)

is proved similarly.

Remark Due to a theorem of J. Alexander (first part) and A. Markov [2]. Any oriented link is
isotopic to the clousure of some braid (Figure 2.1). The closures of two braids are isotopic (in the
category of oriented links) if and only if these braids are equivalent with respect to the equivalence
relation in

∐
nBr(n) generated by Markov moves ξ 7→ η−1ξη, ξ 7→ ξσ±1

n , where ξ, η, ∈ Br(n).
Tuaev’s theorem (Theorem 2.3.1) shows that for any EYB-operator R = (R,D, λ, β) the mapping
TR :

∐
nBr(n) → K induces a mapping of the set of oriented isotopy classes of links into K.
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Figure 2.1: Closure of a braid.

2.4 Elementary properties of TR.

In this section, we recall the properties of the link invariant TR.

Theorem 2.4.1. 1. For the trivial knot © we have

TR(©) = β−1Sp(D)

2. TR is multiplicative, i.e. if L = L1 ⊔ L2 is the disjoint union of two links L1 and L2 then

TR(L) = TR(L1) · TR(L2).

Corollary 2.4.2. If L is the trivial n-component link then

TR(L) = β−nSp(D)n.

Proof of Theorem 2.4.1

1. Consider the generator σ1 of Br(2), then

TR(©) = λ−1 β−2 trace(R ◦ (D ⊗D)
= λ−1 β−2 trace(Sp2(R ◦ (D ⊗D))
= β−1 trace(D)
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2. Let σ1 ∈ Br(n1) and β2 ∈ Br(n2) two braids which closures are the links L1 and L2 respec-
tively. It follows from Figure 2.2 that β1 ⊔ β2 ∈ Br(n1 + n2) is a braid which clousure is
L1 ⊔ L2. Therefore

bR,n1+n2(β1β2) = bR,n1+n2(β1) ◦ bR,n1+n2(β2)
= bR,n1(β1) ⊗ bR,n2(β2)

Now, by part (6) of Lemma C.2.1

TR(bR,n1+n2(β1β2)) = trace(bR,n1(β1) ⊗ bR,n2(β2))

= trace(bR,n1(β1)). trace(bR,n2(β2))

From it follows:

TR(L1 ⊔ L2) = λ−ω(β1+β2)β−(n1+n2)Sp(bR,n1+n2
(β1β2))

= λ−ω(β1) λ−β2 β−n1 β−n2 trace(bR,n1(β1)) . trace(bR,n2(β2))

Proof of Corollary 2.4.2 It follows from Theorem 2.4.1, that for the trivial link ©,

TR(©) = β−1 trace(D),

and that TR is multiplicative. Thus,

TR(©n) = β−n trace(D)n

.     .     .

.     .     ..     .     .

.     .     .

β1 β2
⊔

Figure 2.2:
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The following proposition, gives the link invariants associated to the new EYB-operators con-
structed on Lemma 2.2.3.

Proposition 2.4.3. Let TR be the associated link invariant to an enhanced Yang-Baxter operator

R = (R,D, λ, β). Then:

1. If R′ = (pR, qD, pλ, qβ), then TR′ = q TR,

2. If R̃ = (Rt,Dt, λ, β), then TR = T eR,

3. If A ∈ Aut(V ), and R̃ = (A ⊗ A) ◦ R ◦ (A ⊗ A)−1 and D̃ = A ⊗D ⊗ A−1, then TR = TR′ ,

where R′ is the enhanced Yang-Baxter operator (R̃, D̃, β, λ).

Proof First of all notice that, by properties of the tensor product (See [5]).

bR(σi)
t = (id⊗(i−1) ⊗R⊗ id⊗(n−i−1))t = id⊗(i−1) ⊗Rt ⊗ id⊗(n−i−1).

Thus, the second part of proposition holds.

For the third part, we have
(D̃)⊗n = A⊗n ◦D⊗n ◦ A⊗−n.

Moreover, we have: id⊗(i−1) ⊗ R̃⊗ id⊗(n−i−1) = A⊗n ◦ (id⊗(i−1 ⊗R⊗ id⊗(n−i−1)) ◦ A⊗−n.

Therefore, TR = TR̃, holds from the invariance of the trace (Lemma C.2.1).

2.5 The link invariants for the twisted conjugation braiding

Notation Here G denotes a finite group, ϕ ∈ Aut(G),K denotes a fixed commutative ring with
1; unless it is mentioned K will denote the field of complex numbers C. Recall that given a basis
{g}g∈G for K[G], we get a basis {a⊗ b}a,b∈G for K[G]⊗2.

In this section we prove that for any enhancement D of the twisted conjugation braiding Bϕ, λ = 1;
i.e. the link invariant TB associated to any enhancement of the twisted conjugation braiding Bϕ is
given by

TB(ξ) = β−n trace(bBϕ ◦D⊗n),

for any braid ξ ∈ Br(n) and β ∈ K
∗.

Notice that for any EYB-operator R = (R,D, λ, β), it is not always true that λ = 1.
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Remark 2.5.1. Since the twisted conjugation braiding Bϕ is invertible, we have that for every

basis element c⊗ d ∈ K[G] there is a second basis element a⊗ b ∈ K[G]⊗2 sucht that c = abϕ(a)−1

and d = ϕ(a).

Now, let D be the linear map from K[G] into K[G]. We may characterise D via its action on the
basic elements a ∈ G. Thus, we have a collection of coefficients ∆(a, c) ∈ K such that

D(a) =
∑

c∈G

∆(a, c) c (2.5.1)

D(
∑

a∈G

βaa) =
∑

a∈G

βa D(a) =
∑

a,c∈G

βa ∆(a, c) c.

the tensor product D ⊗D is also defined via its action on the basis elements a⊗ b of K[G]⊗2

(D ⊗D)(a⊗ b) =
∑

c,d∈G

∆(a, c)∆(b, d)c ⊗ d (2.5.2)

Using the definition of the twisted conjugation braiding Bϕ ( Definition 1.1), and equation (2.5.2),
is easy to see that:

(Bϕ ◦ (D ⊗D))(a⊗ b) =
∑

c,d∈G∆(a, c) ∆(b, d) D(c⊗ d)

=
∑

c,d∈G∆(a, c) ∆(b, d) (cd ϕ(c)−1 ⊗ ϕ(c))
(2.5.3)

and that:

((D ⊗D) ◦Bϕ)(a⊗ b) = (D ⊗D)(ab ϕ(a)−1 ⊗ ϕ(a))

=
∑

s,t∈G∆(ab ϕ(a)−1, s) ∆(ϕ(a), t)s ⊗ t
(2.5.4)

Now, by Remark 2.5.1 , for every basic element s⊗ t there is a second basis element c⊗d such that
s = cd ϕ(c)−1 and t = ϕ(c). Therefore D ⊗D commutes with the twisted onjugation braiding Bϕ

if and only if
∆(a, c)∆(b, d) = ∆(ab ϕ(a)−1, cd ϕ(c)−1) ∆(ϕ(a), ϕ(c)) (2.5.5)

In particular,

∆(a, c)∆(b, ϕ(c)) = ∆(abϕ(a)−1, c)∆(ϕ(a), ϕ(c))
∆(a, c)∆(ϕ(a), d) = ∆(a, cdϕ(c)−1)∆(ϕ(a), ϕ(c))

(2.5.6)
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Theorem 2.5.2. Assume that D is a non-zero linear map. Moreover, assume that D⊗D commutes

with Bϕ and that there exist a pair of elements β1, β2 ∈ K
∗ (invertible elements) such that:

Sp2(B
ϕ ◦ (D ⊗D)) = β1 · D and Sp2((B

ϕ)−1 ◦ (D ⊗D)) = β2 · D (2.5.7)

Then,

β1 = β2.

Proof First of all notice that by Remark 2.5.1, the equation

(D ⊗D)(a⊗ b) =
∑

c,d∈G

∆(a, c) ∆(b, d) c⊗ d

is equivalent to the following equation:

(D ⊗D)(a⊗ b) =
∑

c,d∈G

∆(a, cd ϕ(c)−1) ∆(b, ϕ(c) (cd ϕ(c)−1 ⊗ ϕ(c) (2.5.8)

Now, it is very easy to see that:

(Bϕ ◦ (D ⊗D))(a⊗ b) =
∑

c,d∈G

∆(ab ϕ(a)−1, c) ∆(ϕ(a), d) c⊗ d (2.5.9)

and
((Bϕ)−1 ◦ (D ⊗D))(a⊗ b) =

∑

c,d∈G

∆(a, cd ϕ(c)−1)∆(b, ϕ(c)) c⊗ d (2.5.10)

Thus from the equations (2.5.9) and (2.5.10), we can calculate the partial traces on the second
factor of (Bϕ ◦ (D ⊗D)) and of (Bϕ)−1 ◦ (D ⊗D) respectively.

Sp2(B
ϕ ◦ (D ⊗D))(a) =

∑

c∈G

(
∑

d∈G

∆(ad ϕ(a)−1, c) ∆(ϕ(a), d) ) c (2.5.11)

and
Sp2((B

ϕ)−1 ◦ (D ⊗D))(a) =
∑

c∈G

(
∑

d∈G

∆(a, cd ϕ(c)−1) ∆(d, ϕ(c) ) ) c (2.5.12)

A direct application of equations (2.5.11) and (2.5.12) yields that equations (2.5.7) holds if and
only if the following equations are satisfied:

β1 . ∆(a, c) =
∑

d∈G

∆(ad ϕ(a)−1, c) ∆(ϕ(a), d) (2.5.13)

and
β2 . ∆(a, c) =

∑

d∈G

∆(a, cd ϕ(c)−1) ∆(d, ϕ(c)) (2.5.14)
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Multiplying equations (2.5.13) and (4.1.6) by ∆(a, c) respectively and using equations 2.5.6, we get
the desired result β1 = β2, because there is at least one entry ∆(a, c) 6= 0. i.e

β1 · ∆(a, c)2 =
∑

d∈G ∆(ad ϕ(a)−1, c)∆(a, cd ϕ(c)−1)∆(ϕ(a), ϕ(c))

= β2 · ∆(a, c)2.

Corollary 2.5.3. If B = (Bϕ,D, λ, β) is an enhanced Yang-Baxter operator of the twisted conju-

gation braiding Bϕ. Then its associated link invariant TR is

TB(ξ) = β−n trace(bBϕ(ξ) ◦D⊗n).

Proof By definition B = (Bϕ,D, λ, β) is an EYB-operator, i.e.

(T1) D ⊗D commutes with Bϕ,

(T2a) Sp2((B
ϕ) ◦ (D ⊗D)) = λ βD, and

(T2b) Sp2((B
ϕ)−1 ◦ (D ⊗D)) = λ−1 βD.

Thus, Theorem 2.5.2 implies λβ = λ−1β, the last equality implies that λ = 1, because λ, β ∈ K
∗

are invertible elements. Thus by the definition of TB we get that

TB(ξ) = β−nSp(bBϕ(ξ) ⊗D⊗n).
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Chapter 3

Character enhancements

In this chapter, we prove in terms of characters of the group G ×G that the twisted conjugation
braiding Bϕ is an enhanced Yang-Baxter operator. Indeed we prove that if D : K[G] → K[G]
is defined as D(a) =

∑
c∈G χ(a, c)c, with χ a character from G × G into a field K, then D is an

enhancement of the twisted conjugation braiding Bϕ; such enhancements will be called character

enhancements and will be denoted by Dχ. Moreover, we prove that character enhancements satisfy
the following property Bϕ ◦ (D ⊗ D) = D ⊗ D. This condition implies that the link invariant
TB(ξ) = 1 for all braid ξ ∈ Br(n).

3.1 Character χ

In this section, we recall the definition of character and give some examples.

Definition 3.1.1. If G is group and K is a field. A character is a group homomorphism χ from

G into K
∗. See [1].

If G is an abelian group, then the set Ch(G) of these characters forms a group under the operation

(χ1 . χ2)(a) = χ1(a) .χ2(a).

It is called, the character group. Sometimes only unitary characteres are considered (so that the
image is in the unit circle); other such homomorphisms are then called quasi-characteres.
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3.2 Character enhancements Dχ

In this section we prove in terms of character theory of G×G that the twisted conjugation braiding
Bϕ is an enhanced Yang-Baxter operator.

Given a character χ : G ×G → K
∗. Define the K- linear map D : K[G] → K[G] via its action on

the basis elements a ∈ G,

D(a) =
∑

c∈G

χ(a, c)c, (3.2.1)

therefore,

D(
∑

a∈G

βaa) =
∑

c∈G

χ(a, c)βac.

The tensor product D ⊗D is also defined via its action on the basic elements a⊗ b of K[G]⊗2,

(D ⊗D)(a⊗ b) =
∑

c⊗d χ(a, c) χ(b, d) c⊗ d

=
∑

c⊗d χ(ab, cd) (c⊗ d).

We have that:

(Bϕ ◦ (D ⊗D))(a ⊗ b) = Bϕ(
∑

c⊗d χ(a, c) cχ(b, d) c⊗ d)
=

∑
c⊗d χ(ab, cd) (cd ϕ(c)−1 ⊗ ϕ(c))

On the other hand,

(D ⊗D) ◦ (Bϕ)(a⊗ b) = (D ⊗D) (abϕ(a)−1 ⊗ ϕ(a))
=

∑
c⊗d χ(abϕ(a)−1 ϕ(a), cd) c⊗ d

=
∑

c⊗d χ(ab, cd) (c⊗ d)

Since Bϕ is invertible for each basis element c ⊗ d, there exists a basis element s ⊗ t such that
s = cd ϕ(c)−1 and t = ϕ(c). Hence, commutativity of D ⊗ D with Bϕ holds if and only if the
following equation holds for all a, b, c, d ∈ G,

χ(ab, cd ϕ(c)−1 ϕ(c)) = χ(ab, cd).

From it follows, then:

(D ⊗D) = Bϕ ◦ (D ⊗D) = (D ⊗D) ◦Bϕ = (Bϕ)−1 ◦ (D ⊗D) = (D ⊗D) ◦ (Bϕ)−1. (3.2.2)

It implies:

Sp2(B
ϕ ◦ (D ⊗D)) = Sp2((B

ϕ)−1 ◦ (D ⊗D)) = Sp2(D ⊗D) = trace(D) . D

Hence, we have proved the following theorem.
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Theorem 3.2.1. Define D : KG→ KG as in 3.2.1. Then, the following three statements hold:

1. B = (Bϕ,D, λ = 1, β = trace(D) is an enhanced Yang-Baxter operator.

2. Bϕ(D ⊗D) = (D ⊗D) = (D ⊗D) ◦Bϕ = (D ⊗D)(Bϕ)−1.

3. Sp2(B
ϕ ◦ (D ⊗D)) = trace(D) . D

Remark 3.2.2. 1. The definition of D does not depend on the automorphism ϕ of G.

2. Enhancements D of the twisted braiding Bϕ, arising from a character χ will be denoted by

Dχ and will be called character enhancements.

Given a character χ : G×G→ K
∗. Define D : K[G] → K[G], as

D(a) =
∑

c

χ(a, c) c̄ (3.2.3)

with c̄ = ψ(c), with ψ a homomorphism from G into G. The tensor product D ⊗D, is given as

(D ⊗D)(a⊗ b) =
∑

c⊗d

χ(a, c) χ(b, d) (c̄⊗ d̄)

Thus,

(Bϕ ◦ (D ⊗D))(a⊗ b) = Bϕ(
∑

c⊗d χ(a, c) χ(b, d) (c̄⊗ d̄)

=
∑

c⊗d χ(a, c) χ(c, d) (c̄d̄ ϕ(c̄)−1 ⊗ ϕ(c̄))

=
∑
χ(a, c) χ(b, d) (ψ(c)ψ(d)ϕ(ψ(c)−1) ⊗ ϕ(ψ(c)))

(3.2.4)

On the other hand,

((D ⊗D) ◦Bϕ))(a⊗ b) = (D ⊗D)(ab ϕ(a)−1 ⊗ ϕ(a))

=
∑

s⊗t χ(abϕ(a)−1, s) χ(ϕ(a), t)(s̄ ⊗ t̄)
=

∑
s⊗t χ(abϕ(a)−1, s) χ(ϕ(a), t) (ψ(s) ⊗ ψ(t))

(3.2.5)

Notice, that ψ(s), ψ(t) ∈ G. Hence, by the invertibiliy of Bϕ, for each basis element c̄ ⊗ d̄, there
exist a basis element ψ(s) ⊗ ψ(t), such that, ψ(s) = ψ(cd)ϕ(ψ(c))−1 , and ψ(t) = ϕ(ψ(c)). From it
follows, that D ⊗D commutes with Bϕ if and only if the following equation holds

χ(a, c)χ(b, d) = χ(abϕ(a)−1, s)χ(ϕ(a), t) (3.2.6)

for all a, b ∈ G. However, if we assume ψ to be an automorphism, then equation 3.2.6 is equivalent
to have:

χ(a, c)χ(b, d) = χ(abϕ(a)−1, cdϕ(c)−1)χ(ϕ(a), ϕ(c)) (3.2.7)

and it will imply that
(D ⊗D) ◦Bϕ = D ⊗D.
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3.3 Constancy of the link invariant TB(ξ)

We have seen that B = (Bϕ,D, λ, β), where D(a) =
∑

c∈G χ(a, c)c, is an enhanced Yang-Baxter
operator, (Theorem 3.2.1). Moreover we have proved that

(D ⊗D) = (D ⊗D) ◦Bϕ = (D ⊗D)(Bϕ)−1.

In this section we prove that all for any group G, all the link invariants arising from these enhance-
ments are constantly 1.

Recall from chapter Yang-Baxter solution R gives rise to a representation bR of the braid group
Br(n) on n-strands.

Remark 3.3.1. Let Dχ denote any character enhnacement of the twisted conjugation braiding Bϕ.

For n ≥ 0,

(Bϕ)n ◦ (D ⊗D) = D ⊗D, (Bϕ)⊗(n−1) ◦D⊗n = D⊗n.

The above remark, follows from equation (3.2.2).

Theorem 3.3.2. Let B be the enhanced Yang-Baxter operator of Theorem 3.2.1. Let ξ ∈ Br(n)

denote a braid, and bB the corresponding braid representation of Bϕ. Then, the link invariant

associated to any character enhancement Dχ is trivial; i.e., for all ξ ∈ Br(n)

TB(ξ) = 1

Proof

Let ξ ∈ Br(n). Then β can be written as the product of the σ′is and their inverses, i.e., ξ =
σǫ1i1 . . . σ

ǫk
ik

with 1 ≤ i1, . . . , ik ≤ n− 1, ǫi ∈ {±1} for 1 ≤ i ≤ k, k ∈ N.

Furthemore, notice that

Bm
i := (id⊗i−1 ⊗Bϕ ⊗ id⊗n−i−1)m = id⊗i−1 ⊗ (Bϕ)m ⊗ id⊗n−i−1

Bm
i ◦D⊗n = D⊗i−1 ⊗Bϕ ⊗D⊗n−i−1

(3.3.1)

Moreover, it follows from Remark 3.3.1 that

Bm
i ◦D⊗n = D⊗n
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Thus,

T (ξ) = β−n trace(bBϕ(ξ) ◦D⊗n)
= β−n trace(bBϕ(σǫ1i1 . . . σ

ǫk
ik

) ◦D⊗n)

= β−n trace((Bǫ1
i1
. . . Bǫk

ik
) ◦D⊗n)

(3.3.1)
= β−n trace((Bǫ1

i1
. . . B

ǫk−1

ik−1
) ◦ (D⊗i−1 ⊗ (Bϕ)k ⊗D⊗n−i−1))

(3.3.1)
= β−n trace((Bǫ1

i1
. . . B

ǫk−1

ik−1
) ◦D⊗n)

...
= β−n trace(Bǫ1

i1
⊗D⊗n)

= β−n trace(D⊗n)
(3.2.1)

= 1

Example 3.3.3. 1. Consider the character χ : G → K
∗. Defined as χa ≡ 1, Let q be a fixed

element in K
∗. Then, qχ, is the map D of Corollary 2.2.8.

2. The following function

χ(a⊗ b) =

{
1 if a = 1

0 otherwise

is not a character. But, it is invariant under Bϕ; i.e.

χ(a, b)χ(c, d) = χ(acϕ(a)−1, b)χ(ϕ(a), d)

and it is the type of invariance that one needs to prove the three conditions of theorem 3.2.1.

3. If we replace the linear map D in Theorem 3.2.1, by the following map

D(a) = χ(ā, c) c,

where χ is a character and c̄ = ψ(c), with ψ : G → G a homomorphism. Then, we do not

change the invariant TB, of Theorem 3.3.2, because it is easy to see that

D ⊗D = Bϕ ◦ (D ⊗D).

4. Given Z/3Z = {1, x, x2} and ρ = exp(2πi3), the character χ(xj⊗xk) = ρj−k yields the matrix

[D] =




1 ρ2 ρ

ρ 1 ρ2

ρ2 ρ 1




52



Chapter 4

The projection enhancements

In this chapter, we prove that any enhancement D of the twisted conjugation braiding Bϕ satisfies
D2 = γ D, with γ a fixed invertible element in K. In particular, if D is invertible then, D = γ I,
i.e., we recover the enhancement D of Corollary 2.2.7.

4.1 The idempotence Theorem

Theorem 4.1.1. (Idempotence)

Let γ be a fixed invertible element in K. Let D denote an endomorphism of K[G]. Assume that

D ⊗D commutes with the twisted conjugation braiding Bϕ.

1. If Sp2(B
ϕ ◦ (D ⊗D)) = γ D, then D2 = γ D.

2. If Sp2((B
ϕ)−1 ◦ (D ⊗D)) = γ D, then D2 = γ D.

3. The following two statements are equivalent.

(a) Sp2(B
ϕ ◦ (D ⊗D)) = γ D,

(b) Sp2((B
ϕ)−1 ◦ (D ⊗D)) = γ D.

Proof It is not loss of generality to assume that D is a non zero, because the above three
statements are obviously equivalent if D the zero map.

Let D(a) =
∑
c ∈ G∆(a, c)c for all a ∈ G. First of all, notice that

(Bϕ ◦ (D ⊗D))(a⊗ b) =
∑

c,d∈G

∆(ab ϕ(a)−1, c) ∆(ϕ(a), d) c⊗ d (4.1.1)
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and
((Bϕ)−1 ◦ (D ⊗D))(a⊗ b) =

∑

c,d∈G

∆(a, cd ϕ(c)−1)∆(b, ϕ(c)) c⊗ d (4.1.2)

Thus from 4.1.1 and 4.1.2, we can calculate the partial traces on the second factor of (Bϕ◦(D⊗D))
and of (Bϕ)−1 ◦ (D ⊗D):

Sp2(B
ϕ ◦ (D ⊗D))(a) =

∑

c∈G

(
∑

d∈G

∆(ad ϕ(a)−1, c) ∆(ϕ(a), d) ) c (4.1.3)

and
Sp2((B

ϕ)−1 ◦ (D ⊗D))(a) =
∑

c∈G

(
∑

d∈G

∆(a, cd ϕ(c)−1) ∆(d, ϕ(c) ) ) c (4.1.4)

A direct application of equations 4.1.3 and 4.1.4 yields that equations

Sp2(B
ϕ ◦ (D ⊗D)) = γ D and Sp2((B

ϕ)−1 ◦ (D ⊗D)) = γ D

holds if and only if the following equations are satisfied:

γ · ∆(a, c) =
∑

d∈G

∆(ad ϕ(a)−1, c) ∆(ϕ(a), d) (4.1.5)

and
γ · ∆(a, c) =

∑

d∈G

∆(a, cd ϕ(c)−1) ∆(d, ϕ(c)) (4.1.6)

for all a, c ∈ G. Multiplying, both sides of the last two equations by ∆(ϕ(a), ϕ(c), we get

γ .∆(ϕ(a), ϕ(c)) ∆(a, c) =
∑

d∈G ∆(adϕ(a)−1, c) ∆(ϕ(a), d) ∆(ϕ(a), ϕ(c))

γ . ∆(a, c) ∆(ϕ(a), ϕ(c)) =
∑

d∈G ∆(a, cdϕ(c)−1) ∆(d, ϕ(c)) ∆(ϕ(a), ϕ(c))
(4.1.7)

But, by hypothesis there is a least one entry ∆(a, c) 6= 0 ,thus Sp2(B
ϕ ◦ (D ⊗ D)) = γ D and

Sp2((B
ϕ)−1 ◦ (D ⊗D)) = γ D, if and only if the following equations holds

γ . ∆(ϕ(a), ϕ(c)) =
∑

d∈G
∆(adϕ(a)−1 ,c) ∆(ϕ(a),d) ∆(ϕ(a),ϕ(c))

∆(a,c)

(2.5.6)
=

∑
d∈G∆(ϕ(a), d)∆(d, ϕ(c))

(4.1.8)

and
γ . ∆(ϕ(a), ϕ(c)) =

∑
d∈G

∆(a,cdϕ(c)−1) ∆(d,ϕ(c)) ∆(ϕ(a),ϕ(c))
∆(a,c)

(2.5.6)
=

∑
d∈G ∆(ϕ(a), d) ∆(d, ϕ(c))

(4.1.9)

for some a, c ∈ G.

Now, is easy to deduce that Sp2((B
ϕ)±1 ◦ (D⊗D)) = γ D implies D2 = γ D, because ϕ is bijective

and the last part of equations 4.1.8 and 4.1.9 are indeed

(D ◦D)(a) =
∑

d∈G∆(a, c) ∆(c, d) d (4.1.10)
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Two finish the proof of theorem rest to prove the equivalence between statements (a) and (b), but
it holds from a direct application of Theorem 2.5.2.

The following corollary is an easy consequence of Theorem 4.1.1.

Corollary 4.1.2. Let γ be a fixed invertible element in K. Then, any enhancement D, of the twisted

conjugation braiding Bϕ satisifies D2 = γD.

In particular, if D is invertible then D = γI, with γ ∈ K
∗

Remark 4.1.3. Asumme that D in an enhancement of the twisted braiding Bϕ, and let γ ∈ K

(fixed and invertible). Set D′ = 1
γ
D; it is easy to see that D′ is an idempotent. Moreover,

1

γ2
Sp2((B

ϕ)−1 ◦ (D ⊗D)) =
1

γ
D′

and by Lemma C.2.1,

(D′ ⊗D′)2 = (D′ ⊗D′);

i.e., its tensor product is an idempotent, too.

Remark 4.1.4. Let D be an enhancement of the twisted conjugation braiding Bϕ. Then, V =

K[G] = V1 ⊕ V2, with V1 = Im(D) and V2 = Ker(D). The map D has the matrix representation

(
D1 0

0 D2

)
,

where D1 : V1 → V1 and D2 : V2 → V2. Notice that in some basis of V the matrix representation of

D is given as follows (
γI 0

0 0

)

where γ is the fixed invertible element in K of the idempotent Theorem 4.1.3. Moreover, we have

that trace(D) = γ dim Im(D).

Indeed we have, that for all (o, v2) ∈ Ker(D),

0 = D(0, v2)
t =

(
D1 0
0 D2

)(
0
v2

)
=

(
0

D2 v2

)

The last equation implies that D2 v2 = 0 for all v2 ∈ V2, thus D2 = 0. Now, it follows from the
idempotent theorem (Theorem 4.1.3) that D2

1 = γ D1, for a fixed invertible element in K. Moreover,
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since D1 acts on Im(D), then Ker(D1) = 0, i.e., D1 is invertible. Therefore D1 = γ I, where I is
the m1 ×m1 matrix, with m1 = dim Im(D).

The last part of the remark follows, because D2 = γ D (Theorem 4.1.3), and it says that there
exist an invertible d× d matrix P such that

P ◦D ◦ P−1 =

(
γ I 0
0 0

)

where I is the m1 ×m1 identity matrix. From it follows,

trace(D) = trace(P ◦D ◦ P−1) = γ dim Im(D).

Lemma 4.1.5. 1. Let B,C denote matrices and let A denote a non-singular matrix. The matrix

A−1BA commutes with the matrix C if and only if the matrix B commutes with the matrix

ACA−1.

2. Let D be an enhancement of the twisted conjugation braiding Bϕ. The tensor product D⊗D

commutes with the twisted conjugation braiding Bϕ if and only its Jordan form J̃ commutes

with A⊗2BϕA⊗(−2), (A ◦ J̃ ◦ A−1 = D.)

3. For the twisted conjugation braiding the following holds

(
B1 0

0 B2

)
= (A⊗A) ◦Bϕ ◦ (A⊗A)−1

where B1 is a diagonal matrix m2
1 ×m2

1.

4.2 Examples of projection enhancements

Consider the twisted conjugation braiding Bϕ, and define D : K[G] → K[G] as D(g) = Ψ(g), with
Ψ = K(ψ), with ψ ∈ End(G). Assume that ϕ and ψ commute.

Claim The map D ⊗D commutes with the twisted conjugation braiding Bϕ.

Proof Let a⊗ b denote a basis element of K[G]. Then,

(Bϕ ◦ (D ⊗D))(a⊗ b) = Bϕ(ψ(a) ⊗ ψ(b)) = ψ(ab)ϕ(ψ(a))−1 ⊗ ϕ(ψ(a) (4.2.1)

56



On the other hand

((D ⊗D) ◦Bϕ)(a⊗ b) = (D ⊗D)(abϕ(a)−1 ⊗ ϕ(a) = ψ(ab)ψ(ϕ(a)−1 ⊗ ψ(ϕ(a)) (4.2.2)

Now, claim follows from equations (4.2.1), (4.2.2) and the commutativity of ψ and ϕ.

Set F := Bϕ ◦ (D ⊗ D), lets compute the partial trace Sp2 of F. First of all, we observe that
F (a⊗ b) = ψ(ab)ψ(ϕ(a))−1

︸ ︷︷ ︸
:=c

⊗ψ(ϕ(a))︸ ︷︷ ︸
:=d

.

Notice that c is a function which depends on a and on b, while d is a function which depends on a.
Now, write F (a⊗ b) =

∑
c,d∈G f

c,d
a,b c⊗ d, where

f c,da,b =

{
1 if c = ψ(ab)ψ(ϕ(a)−1 and d = ψ(ϕ(a))
0 else

Observe that for each a⊗ b there is exactly one c ⊗D such that f c,da,b 6= 0, and that from equation
(4.2.1) we can compute the partial trace Sp2 of F, by summing over all terms with the property
b = d, i.e.,

Sp2(F )(a) =
∑

b∈G

f c,ba,b c (4.2.3)

But, now notice that for a given a, there is for each b exactly one f c,ba,b 6= 0. Namely

∑
f
ψ(ab)ψ(ϕ(a)−1 ,ψ(ϕ(a))
a,ψ(ϕ(a) .

Therefore last equation is equal to have the following equation

Sp2(F )(a) =
∑

f
ψ(ab)ψ(ϕ(a)−1 ,ψ(ϕ(a))
a,ψ(ϕ(a) ψ(ab)ψ(ϕ(a)−1 = ψ(a)ψ(ψ(ϕ(a)))ψ(ϕ(a))−1 (4.2.4)

Hence, the condition (T2a) of the definition of EYB-operator (Definition 2.2.1) holds if and only if

ψ(a)ψ(ψ(ϕ(a)))ψ(ϕ(a))−1 = β ψ(a)

Properties

1. If Ψ = id, then Sp2(F ) = id.

2. If ψϕ(g−1)ϕ(g) ∈ Ker(ψ) for all g. Then, ψ2 = ψ

Remark 4.2.1. Note that the last property (Property (2) 2), shows thatD = [ψ] is an enhancement

of the twisted conjugation braiding if and only if ψϕ(g−1)ϕ(g) ∈ Ker(ψ) for all g.
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Chapter 5

Link invariants for EYB-operators of

the twisted conjugation braiding

In this chapter we compute the associated link invariants TR, for any EYB-operator B of the twisted
conjugation braiding Bϕ, for the case when we assume that (Bϕ)l ◦ (D ⊗ D) = D ⊗ D, and for
all braids ξ ∈ Br(n), with ξ = σǫ1i1 . . . σ

ǫl
il

with ǫ1, . . . , ǫl ≡ 0 mod l and for all braids ξ = σǫi ,
with ǫ ≡ 1 mod l. As a particular case, we get the link invariants for the case when we consider
commutative groups G and we set ϕ to be the identity automorphism. In particular, we get the
associated link invariants of the EYB-operator given by Corollary 2.2.7; i.e. when D = qId, q ∈ K

∗.
At the end of this section, we compute TB, for any EYB-operator B of the twisted braiding Bϕ, for
the cyclic group Z/3Z, when we consider ϕ 6= id. In particular, the invariants for the EYB-operator
given by Corollary 2.2.7.

5.1 Computations of link invariants for some braids ξ ∈ Br(n)

First of all we fix our notation.

1. A braid ξ ∈ Br(n), with ξ = σǫ1i1 . . . σ
ǫl
il
, and ǫ1, . . . , ǫl ≡ 0 mod l, will be called a mod-l braid.

2. A braid ξ ∈ Br(n), with ξ = σǫi (for some i = 1, . . . , n− 1), will be called single-power braid.

Proposition 5.1.1. Asumme that D is an enhancement of the twisted conjugation braiding Bϕ.

Moreover, assume that (Bϕ)l ◦ (D ⊗D) = D ⊗D for some l ∈ N. Then

1. TB(ξ) =
(
m1
β

)n
, for all mod-l braids ξ ∈ Br(n), where m1 = trace(D) = dim Im(D),

2. TB(ξ) =
(
m1
β

)n−1
, for all single-power braids ξ = σǫi ∈ Br(n), with ǫ ≡ 1 mod l.

58



Proof

1. First of all, notice that

Bm
i := (id⊗(i−1) ⊗Bϕ ⊗ id⊗(n−i−1) = id⊗(i−1) ⊗ (Bϕ)m ⊗ id⊗(n−i−1)

Bm
i ◦D⊗n = D⊗(i−1) ⊗ (Bϕ)m ⊗D⊗(n−i−1)

(5.1.1)

for all m ≥ 0 and for all i ∈ {1, . . . , n − 1}.

Now, observe that the hypothesis (Bϕ)l ◦ (D ⊗D) = D ⊗D, together with the last equation
imply that Bm

i ◦D⊗n = D⊗n, for all m ≡ 0 mod l.

Therefore, if ξ is a mod-l braid in Br(n), then

trace(bBϕ(ξ) ◦D⊗n) = trace(bBϕ(σǫ1i1 . . . σ
ǫl
il
) ◦D⊗n)

= trace((Bǫ1
i1
. . . Bǫl

il
) ◦D⊗n)

(5.1.1)
= trace((Bǫ1

i1
. . . B

ǫl−1

il−1
) ◦D⊗(il−1) ⊗ (Bϕ)ǫl ⊗D⊗(n−il−1))

= trace((Bǫ1
i1
. . . B

ǫl−1

il−1
) ◦D⊗n)

...
= trace(Bǫ1

i1
◦D⊗n)

= trace(D⊗n)
(C.2.1)

= trace(D)n

(4.1.4)
= mn

1

Now, proof of part (1) of Lemma, follows by the definition of TB.

2. Part (2) follows from equation 5.1.1, the fact that (Bϕ)ǫ = Bϕ, properties of the partial
trace trace(Bϕ ◦ (D⊗D)) = trace(Sp2(B

ϕ ◦ (D⊗D)) and part (T2a) of the Definition of an
enhanced Yang-Baxter operator.

Corollary 5.1.2. Assume that the twisted conjugation braiding Bϕ satisifies the following equation

(Bϕ)l ◦ (D ⊗D) = D ⊗D, for some l ≥ 0. If D = qD, with q ∈ K (invertible)

1. TB(ξ) = |G|n, for all mod-l braids ξ ∈ Br(n), where,

2. TB(ξ) = |G|n−1, for all single-power braids ξ = σǫi ∈ Br(n), with ǫ ≡ 1 mod l.

Example Consider the braid ξ given as in Figure 5.1, which closure is the trefoil knot.

We have ξ = b31 and that the braid representation ρ : Br(2) → Aut(K[G]⊗2) associated to b1, where
b1 denotes the generator of the braid group in 2 strings Br(2) is Bϕ. Hence,

59



Figure 5.1: Braid with 3 crossings.

TB(b31) = q−1 trace(b(σ3
1) ◦D

⊗2)
= 2

Examples of enhancements D of the twisted conjugation braiding Bϕ, satisfying the hypothesis
(Bϕ)l ◦ (D ⊗D) = D ⊗D, of Lemma 5.1.1 occur for example in the following situations.

Proposition 5.1.3. Let B denote a EYB-operator of the twisted conjugation braiding Bϕ. Assume

that G is commutative and that ϕ is the identity automorphism. Then,

1. TB(ξ) =
(
d
β

)n
, for all mod-l braids ξ ∈ Br(n), where d = trace(D),

2. TB(ξ) =
(
d
β

)n−1
, for all single-power braids ξ = σǫi ∈ Br(n), with ǫ ≡ 1 mod l.

Proof of Proposition 5.1.3 Since, G is assumed to be a commutative, Bϕ is the twist map, i.e.,

Bϕ(a⊗ b) = b⊗ a.

Therefore, (Bϕ)2 = id. Hence, proof follows by Lemma 5.1.1

Remark 5.1.4. Observe, that if in Lemma 5.1.1 we assume that the EYB-operator B of the twisted

conjugation braiding Bϕ is given as B = (Bϕ,D, λ = 1, β = traceD). Then, TB(ξ) = 1 for all mod-l

braids ξ ∈ Br(n) and for all single-power braids ξ = σǫi , with ǫ ≡ 1 mod l.
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Proposition 5.1.5. Let B denote a EYB-operator of the twisted conjugation braiding Bϕ. Set

G = Z/3Z =< x > . Let ϕ denote the automorphism which sends x 7→ x2, x2 7→ x.

1. TB(ξ) =
(
d
β

)n
, for all mod-3 braids ξ ∈ Br(n), where d = trace(D),

2. TB(ξ) =
(
d
β

)n−1
, for all single-power braids ξ = σǫi ∈ Br(n), with ǫ ≡ 1 mod 3.

3. TB(ξ) = βn−1 d̃ for all single-power braids ξ = σǫi ∈ Br(n), with ǫ ≡ 2 mod 3, where

d̃ = trace((Bϕ)2 ◦ (D ⊗D)).

Proof Notice, that a basis for K[G]⊗2 is:

C = {1 ⊗ 1, 1 ⊗ x, 1 ⊗ x2, x⊗ 1, x⊗ x, x⊗ x2, x2 ⊗ 1, x2 ⊗ x, x2 ⊗ x2}.

On the basis C the braiding Bϕ has the following matrix representation:




1 . . . . . . . .

. . . . . . . . 1

. . . . 1 . . . .

. 1 . . . . . . .

. . . . . . 1 . .

. . . . . 1 . . .

. . 1 . . . . . .

. . . . . . . 1 .

. . . 1 . . . . .




Now, it is not difficult to prove that for all m ≥ 0,

(Bϕ)m =





Id if m = 3k, k ∈ N

Bϕ if m = 3k + 1, k = 0, 1, . . .
(Bϕ)2 if m = 3k + 2, k = 0, 1, . . .

Hence, proof of proposition follows by Lemma 5.1.1.

As a consequence of previous Proposition, we get the following Corollary.

Corollary 5.1.6. Consider B to be the EYB-operator given by Corollary 2.2.7; i.e. D = qI, with

q ∈ K invertible.

1. TB(ξ) = 1, for all mod-3 braids ξ ∈ Br(n), where d = trace(D),

2. TB(ξ) = 3, for all single-power braids ξ = σǫi ∈ Br(n), with ǫ ≡ 1 mod 3.
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3. TB(ξ) = 2 for all single-power braids ξ = σǫi ∈ Br(n), with ǫ ≡ 2 mod 3,

Another examples where the hypothesis (Bϕ)l ◦ (D ⊗D) = D ⊗D of Lemma 5.1.1 is satisified are
given by the following theorems.

Definition 5.1.7. Consider the K-linear D, given as in 2.5.1. We say that D satisfies the weak

hypothesis with respect to ϕ if and only if ∆(a, c) 6= 0 whenever ∆(ϕ(a), ϕ(c)) = 0.

Theorem 5.1.8. Assume that the twisted conjugation braiding Bϕ commutes with D⊗D, and that

D satisfies the weak hypothesis with respect to ϕ. Then

(D−1 ⊗D−1) ◦Bϕ ◦ (D ⊗D) = (Bϕ)−1 (5.1.2)

In particular,

(Bϕ)2 ◦ (D ⊗D) = D ⊗D.

Proof Using the definition of the twisted conjugation braiding Bϕ (Definition 1.1), and formula
2.5.3, we get

(Bϕ ◦ (D ◦D) ◦Bϕ)(a⊗ b) =
∑

c,d∈G

∆(abϕ(a)−1, c)∆(ϕ(a), d)(cdϕ(c)−1 ⊗ ϕ(c))

On the other hand we have seen that D ⊗D is given by the formula

(D ⊗D)(a⊗ b) =
∑

s,t∈G

∆(a, s)∆(b, t)s ⊗ t

Therefore, using again the fact that for every basis element s ⊗ t, there is a second element c ⊗ d
such that s = cdϕ(c)−1 and t = ϕ(c), equality 5.1.2 will hold if and only if

∆(ab ϕ(a)−1, c)∆(ϕ(a), d) = ∆(a, cd ϕ(c)−1)∆(b, ϕ(c)).

Now, assume that ∆(ϕ(a), ϕ(c)) 6= 0, then equation 2.5.6 implies

∆(abϕ(a)−1, c)∆(ϕ(a), d) =
∆(a, b)∆(b, ϕ(c))∆(ϕ(a), d)

∆(ϕ(a), ϕ(c)
= ∆(a, cdϕ(c)−1)∆(b, ϕ(c))

On the other hand, if ∆(ϕ(a), ϕ(ϕ(c)) 6= 0, then by the given hypothesis ∆(a, b) 6= 0. So, equation
2.5.6 implies that ∆(b, ϕ(c)) and ∆(ϕ(a), d) both will vanish and therefore
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∆(abϕ(a)−1, c)∆(ϕ(a), d) = 0 = ∆(a, cdϕ(c)−1)∆(b, ϕ(c)).

Remark We can write Theorem 5.1.2 a little bit more general as follows:

Theorem 5.1.9. Suppose that D,D ⊗ D and Bϕ are defined as in Theorem 5.1.2. Moreover,

assume that (D⊗D) and Bϕ commute and that there is no pair of elements a and c ∈ G such that

∆(a, c) and ∆(ϕ(a), ϕ(c)) vanish at the same time. Then

Bϕ ◦ (D ⊗D) ◦Bϕ = D ⊗D (5.1.3)

In particular

(Bϕ)2 ◦ (D ⊗D) = D ⊗D = (D ⊗D) ◦ (Bϕ)2.

Proof It is similar to proof of Theorem 5.1.2. Because equation 5.1.3 holds if and only if

∆(ab ϕ(a)−1, c)∆(ϕ(a), d) = ∆(a, cd ϕ(c)−1)∆(b, ϕ(c))

Now, if ∆(a, c) 6= 0, equation 2.5.6 implies

∆(ab ϕ(a)−1, c)∆(ϕ(a), d) = ∆(ab ϕ(a)−1,c) ∆(ϕ(a),ϕ(c)) ∆(a,cd ϕ(c)−1)
∆(a,c) = ∆(a, cd ϕ(c)−1)∆(b, ϕ(c))

On the other hand, if ∆(ϕ(a), ϕ(c)) 6= 0, equation 2.5.6 implies

∆(abϕ(a)−1, c)∆(ϕ(a), d) =
∆(b, ϕ(c)) ∆(a, c) ∆(ϕ(a), d)

∆(ϕ(a), ϕ(c))
= ∆(a, cdϕ(c)−1)∆(b, ϕ(c)).
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Chapter 6

Specific computations

In the first section of this chapter, we prove that ord(Bϕ) = ord(Bid) for all ϕ ∈ Inn(G). Moreover,
we prove that for finite groups G the twisted conjugation braiding Bϕ satisifies (Bϕ)l(a⊗b) = a⊗b),
for l = 2 · lcm(ord(a), ord(b)). From this and Proposition 5.1.1 follows that the link invariant is

TB(ξ) =
(
m1
β

)n
, for all mod-l braids ξ ∈ Br(n), where m1 = trace(D) and TB(ξ) =

(
m1
β

)n−1
for

all single power braids ξ = σǫi ∈ Br(n), with ǫ ≡ 1 mod l. With the help of he computer program
“Bphi orders,” which is written in JAVA programming language, we compute at the end of this
chapter the link invariants TB for the enhancement D = γI (γ ∈ K

∗) for braids ξ ∈ Br(p) (p prime)
with ξ = (σ1 . . . σp−1)

q, and with (p, q) = 1 for the cases G = Σn and G = Z/nZ.

6.1 Orders of Bϕ for symmetric groups

In this section, we prove that ord(Bϕc) = ord(Bid), where ϕ(c) = cgc−1. Moreover, we prove
that for finite groups G the twisted conjugation braiding Bϕ satisfies (Bϕ)l(a ⊗ b) = a ⊗ b for
l = 2 · lcm(ord(a), ord(b)). We give a table of the orders of the twisted conjugation braiding Bϕ, for
the case when we consider the symmetric group Σn, with n = 3, 4, 5, 7. For the case we consider G
to be the symmetric group Σ6, we compute the orders of the twisted conjugation braiding only for
the case when the automorphism ϕ is an inner automorphism.

Proposition 6.1.1. Let G be any group and let ϕ(g) := cgc−1 be an inner automorphism of G.

There exists an invertible map Γ : K[G]⊗2 → K[G]⊗2, such that Bϕ = Γ ◦Bid ◦ Γ−1.

In particular, ord(Bϕ) = ord(Bid) for all ϕ ∈ Inn(G).
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Proof Define the map Γ : K[G]⊗2 → K[G]⊗2 as:

Γ(a⊗ b) = (Lc)
−1(a) ⊗ (Rc)

−1(b),

where (Lc)
−1 and (Rc)

−1 denote the inverse maps of the left and right translation maps, respectively.
It is easy to see that Γ is invertible; an inverse is:

(Γ)−1(a⊗ b) = Lc(a) ⊗Rc(b).

Now, it is left to prove that Bϕ = Γ ◦Bid ◦ Γ−1.

On the one hand we have:

Γ ◦Bid(a⊗ b) = Γ(aba−1 ⊗ a) = c−1(aba−1) ⊗ ac−1

On the other hand:

Bϕ ◦ Γ(a⊗B) = Bϕ(c−1a⊗ bc−1) = (c−1abc−1ϕc(c
−1a)−1 ⊗ ϕc(c

−1a)
= c−1abc−1(cc−1ac−1)−1 ⊗ cc−1ac−1

= c−1aba−1 ⊗ ac−1

Now, it follows from the bijectivity of Γ that:

Bϕ = Γ ◦Bid ◦ Γ−1.

In particular, ord(Bϕ) = ord(Bid) for all ϕ ∈ Inn(G).

Remark 6.1.2. 1. For the symmetric group Σn (n 6= 6) we have ord(Bϕ) = ord(Bid), for all

ϕ ∈ Aut(Σn).

2. If Σ6, then ord(Bϕ) = ord(Bid), for all ϕ ∈ Inn(Σ6).

3. trace((Bϕ)m) = trace((Bid)m) for all ϕ ∈ Inn(G).

Notation Let a, b ∈ G. Denote by ba := aba−1

Lemma 6.1.3. Let G be any group and a, b ∈ G, and let k ∈ N.

(a) If k = 2l + 1 is odd, then (Bid)2l+1(a⊗ b) = (ba)(ab)l ⊗ a(ab)l

(b) If k = 2l is even, then (Bid)2l(a⊗ b) = a(ab)l ⊗ b(ab)l
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Proof Follows by an easy computation.

Proposition 6.1.4. Let G denote a finite group and let a, b ∈ G. Assume that ϕ ∈ Inn(G) then

(Bϕ)2·lcm(ord(a),ord(b))(a⊗ b) = a⊗ b

Proof Note that, since G is finite there exists lcm(ord(a), ord(b)). From Lemma 6.1.1, we saw that
there exists an invertible map Γ : K[G]⊗2 → K[G]⊗2 such that Bϕ = ΓBidΓ−1 for all ϕ ∈ Inn(G).
Thus, it is enough to prove the proposition for Bid.

From Lemma 6.1.3 follows that:

(Bid)2·lcm(ord(a),ord(b))(a⊗ b) = a(ab)lcm(ord(a),ord(b)) ⊗ b(ab)lcm(ord(a),ord(b)) = a⊗ b

Remark The above proposition shows that if the least common mutiple m of the order of all
elements a ∈ G exists, then the order of the twisted conjugation braiding Bϕ is smaller than or
equal to 2m. From Proposition 5.1.1 and the above proposition follows that the link invariant is

TB(ξ) =
(
m1
β

)n
for all mod-l braids ξ ∈ Br(n), where m1 = trace(D) and TB(ξ) =

(
m1
β

)n−1
for all

single power braids ξ = σǫi ∈ Br(n), with ǫ ≡ 1 mod l.

Proposition 6.1.5. Consider the symmetric group Σn. Let ϕ ∈ Inn(G), and let a, b ∈ G. Then

(Bid)2·lcm(1,2,...,n)(a⊗ b) = a⊗ b

Moreover, the order l′ of the twisted conjugation braiding Bϕ is equal to 2 · lcm(1, 2, . . . , n).

Proof It is enough to prove the proposition for the case ϕ = id, because according to Proposition
6.1.1 there exists an invertible map Γ : K[G]⊗2 → K[G]⊗2 such that Bϕ = ΓBidΓ−1, for all
ϕ ∈ Inn(G).

Now, from Lemma 6.1.3 follows that

(Bid)2·lcm(1,2,...,n)(a⊗ b) = a(ab)lcm(1,2,...,n) ⊗ b(ab)lcm(1,2,...,n)

Note that the permutation ab decomposes into a product of disjoint cycles c1, . . . , cm of length
l1, . . . , lm, with

∑m
i=1 li = n.

We have ord(ci) = li for all i = 1, . . . ,m. Thus, ord(ab) = ord(c1 . . . cm) = lcm(l1, . . . , lm).

Observe that lcm(l1, . . . , lm) | lcm(1, 2, . . . , n). Therefore, (Bid)2·lcm(1,2,...,n)(a⊗ b) = a⊗ b
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Now, it is left to prove that the order l′ of the twisted conjugation braiding Bϕ is equal to 2 ·
lcm(1, 2, . . . , n). To prove it, we have to show that for all m ∈ {1, 2, . . . , n} there exist g ∈ K[Σn]

⊗2

such that (Bϕ)2m(g) = g and (Bϕ)r(g) 6= g for all r ≤ 2m.

Choose m ∈ {1, 2, . . . , n} and define g := (1, 2)(2, 3) · · · (s− 1, s) ⊗ (s, s+ 1) · · · (m− 1,m)
Observe that ((1, 2)(2, 3) · · · (m− 1,m))m = 1 = (23 . . . m1)m. Therefore, (Bϕ)2m(g) = g.
For all s ∈ {1, . . . ,m− 1} it holds:

(s)(23...m1)k ⊗ (s+ 1)(23...m1)k = s+ k (mod m) ⊗ s+ 1 + k (mod m) 6= s⊗ (s+ 1) for k < m

Therefore, (Bϕ)2k(g) 6= g for k < m.

Moreover, it holds:

(s)(12)(s−1,s) ⊗ (s+ 1)(12)(s−1,s) = (s)(23...s1) ⊗ (s+ 1)(23...s1) = 1 ⊗ (s+ 1)

and

(1)(23...m1)k ⊗ (s+ 1)(23...m1)k = 1 + k (mod m) ⊗ r + 1 (mod m) 6= s⊗ (s + 1) for k < m

Therefore, (Bϕ)2k+1(g) 6= g for k < 2m. Thus, for all r < 2m the twisted conjugation braiding Bϕ

satisifies (Bϕ(g))r 6= g.

Examples

The table below (Table (6.1)) shows the order of the twisted conjugation braiding for the symmetric
groups Σn (for n = 3, 4, 5, 6, 7).

Table 6.1: Orders of Bϕ for Σn

Automorphism ϕ Group Σn Order of the Bϕ

ϕ(s) = s2ss
−1
2 Σ3 12

ϕ(s) = s2ss
−1
2 Σ4 24

ϕ(s) = s2ss
−1
2 Σ5 120

ϕ(s) = s2ss
−1
2 Σ6 120

ϕ(s) = s2ss
−1
2 Σ7 840

Remark For Σ6 we consider only inner automorphisms.
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6.2 Orders of Bϕ for cyclic groups Cp

In this section, we give tables of the values of the orders of the twisted conjugation braiding Bϕ for
7 cyclic groups Z/nZ =< x, xn = 1 > . To compute the orders of the twisted conjugation braiding
Bϕ, we used the fact that if ϕ ∈ Aut(Z/nZ), then ϕ(x) = xl for some l with gcd(n, l) = 1.

Proposition 6.2.1. Let G = Z/nZ =< x, xn = 1 > . Let ϕ ∈ Aut(G), i.e ϕ(x) = xl for some

l ∈ Z with gcd(n, l) = 1. For the twisted conjugation braiding Bϕ it holds:

(Bϕ)k(a⊗ b) = a⊗ b,

k =





p−1
gcd(k1, p−1) if n = p

lcm

(
p

αi
i (pi−1)

gcd(li, p
αi−1
i (pi−1))

)
if n = pα1

1 . . . pαr
r

where k1 ∈ Z with (−l) ≡ ak1 mod p and with a a primitive root of unity mod p. And where li ∈ Z

for all i = 1, . . . , r with (−l) ≡ alii mod pαi

i , and with ai a primitive root of unity mod pαi

i for all

i = 1, . . . , r.

Proof For every generator a⊗b ∈ K[G]⊗2 we write the twisted conjugation braiding Bϕ additively:

Bϕ(a, b) = (a+ b− la, la).

As a matrix it is:

(
1 − l 1
l 0

)

It is not difficult to see that the above matrix is similar to the following matrix:

(
1 0
1 −l

)

Moreover, it is not difficult to see that :

(
1 0
1 −l

)k
=

(
1 0

ck−1(−l) (−l)k

)

where ck−1(−l) = 1 − l + l2 + · · · + (−1)k−1lk−1.

To finish the proof, we have to find the minimun k such that the following congruences hold:

(i) Ck−1(−l) ≡ 2 · mod n and

(ii) (−l)k − 1 ≡ 2 · mod n
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Case 1 l = −1, then k = n

Case 2 l 6= −l, then k = ord(−l) in (Z/nZ)∗

If n = p, (p prime) then ord(−l) = p−1
gcd(k1, p−1) , where k1 ∈ Z, with (−l) ≡ ak1 mod p, and with a

a primitive root of the unity mod p.

For n = pα1
1 pα2

2 . . . pαr
r , it is known that:

1. (Z/nZ)∗ ∼= (Z/pα1
1 )∗ × · · · × (Z/pαr

r )∗

2. (Z/2αZ)∗ ∼= Z/2Z × Z/2α−2 for α ≥ 2

3. (Z/pαZ)∗ ∼= Z/pα−1(p− 1)

From this follows, that ord(−l) = lcm

(
p

αi
i (pi−1)

gcd(li, p
αi−1
i (pi−1)

)
, where (−l) ≡ alii mod pαi

i , and with ai

a primitive root of unity mod pαi

i for all i = 1, . . . , r.

Examples

The following tables contain the orders of the twisted conjugation braiding Bϕ for the case when
we consider G = Z/nZ, where n = 3, 5, 7, 8, 10, 11, 13, 17 and all its automorphisms.

Table 6.2: Orders of the Bϕ for C3

Automorphism ϕ Order of the Bϕ

ϕ(x) = x 2

ϕ(x) = x2 3

Table 6.3: Orders of the Bϕ for C5

Automorphism ϕ Order of the Bϕ

ϕ(x) = x 2

ϕ(x) = x2 4

ϕ(x) = x3 4

ϕ(x) = x4 5
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Table 6.4: Orders of the Bϕ for C7

Automorphism ϕ Order of the Bϕ

ϕ(x) = x 2

ϕ(x) = x2 6

ϕ(x) = x3 3

ϕ(x) = x4 6

ϕ(x) = x5 3

ϕ(x) = x6 7

Table 6.5: Orders of the Bϕ for C11

Automorphism ϕ Order of the Bϕ

ϕ(x) = x 2

ϕ(x) = x2 5

ϕ(x) = x3 10

ϕ(x) = x4 10

ϕ(x) = x5 10

ϕ(x) = x6 5

ϕ(x) = x7 5

ϕ(x) = x8 5

ϕ(x) = x9 10

ϕ(x) = x10 11

Table 6.6: Orders of the Bϕ for C13

Automorphism ϕ Order of the Bϕ

ϕ(x) = x 2

ϕ(x) = x2 12

ϕ(x) = x3 6

ϕ(x) = x4 3

ϕ(x) = x5 4

ϕ(x) = x6 12

ϕ(x) = x7 12

ϕ(x) = x8 4

ϕ(x) = x9 6

ϕ(x) = x10 3

ϕ(x) = x11 12

ϕ(x) = x12 13
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Table 6.7: Orders of the Bϕ for C17

Automorphism ϕ Order of the Bϕ

ϕ(x) = x 2

ϕ(x) = x2 8

ϕ(x) = x3 16

ϕ(x) = x4 4

ϕ(x) = x5 16

ϕ(x) = x6 16

ϕ(x) = x7 16

ϕ(x) = x8 8

ϕ(x) = x9 8

ϕ(x) = x10 16

ϕ(x) = x11 16

ϕ(x) = x12 16

ϕ(x) = x13 4

ϕ(x) = x14 16

ϕ(x) = x15 8

ϕ(x) = x16 17

The following tables contain the orders of the twisted conjugation braiding Bϕ for the cyclic group
Z/8Z and for the cyclic group Z/10Z.

Table 6.8: Orders of the Bϕ for Z/8Z

Automorphism ϕ Order of the Bϕ

ϕ(x) = x 2

ϕ(x) = x3 8

ϕ(x) = x5 4

ϕ(x) = x7 8

Table 6.9: Orders of the Bϕ for Z/10Z

Automorphism ϕ Order of the Bϕ

ϕ(x) = x 2

ϕ(x) = x3 4

ϕ(x) = x7 4

ϕ(x) = x9 10

Remark All orders of the twisted conjugation braiding Bϕ were computed using the program
“Bphi orders”.
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6.3 Consideration of the matrix sizes

The size of the matrices Bi of the tensor product id⊗(i−1) ⊗ Bϕ ⊗ id⊗(p−i−1) is dp × dp, where
d = |G|. Therefore, to compute the traces for the word braid (σ1σ2 . . . σp−1)

q, when we consider
the enhancement D = γI, where γ ∈ K

∗ of the twisted conjugation braiding Bϕ, turns out to be a
very complicated computation by using the program “Bphi orders” , as we can see in the following
tables for the case when we set the group G to be either the symmetric group Σn (n=3, . . . , 7) or
to be the cyclic group.

Notation Denote by a = dp, where d = |G| and p as above. The following tables show the values
of a for the case when we consider the symmetric group Σn and the cyclic group Z/nZ.

Table 6.10: Symmetric group and the values of a = (n!)p

p:=2 3 4 5 6 7 8 9 10

n:=2 4 8 16 32 64 128 256 512 1024

3 36 216 1296 7776 46656 279936 1679616 10077696 60466176

4 576 13824 331776 7962624 19 × 107 45 × 108 11 × 1010 26 × 1011 63 × 1012

5 14400 1728000 207 × 106 24 × 109 29 × 1011 35 × 1013 42 × 1015

6 518400 373 × 106 26 × 1011 19 × 1013

7 25 × 106 12 × 1010 64 × 1013

Table 6.11: Cyclic group and the values of a = np

p:=2 3 4 5 6 7 8 9 10

n:=2 4 8 16 32 64 128 256 512 1024

3 9 27 81 243 729 2187 6561 19683 59049

4 16 64 256 1024 4096 16384 65536 262144 1048576

5 25 125 625 3125 15625 78125 390625 1953125 9765625

6 36 216 1296 7776 46656 279936 1679616 10077696

Remark The program computes the trace of (σ1 . . . σp−1)
q for bigger cyclic groups, but never-

theless

Table 6.12: Cyclic group a x a matrix

p=6 7 8

n=11 1771561 19 × 106 21 × 106

12 2925924 35 × 106 42 × 107

13 4226209 62 × 106 752 × 107

Remark By using the above tables (Tables (6.9), (6.10) and (6.11) we can compute the amount of
required RAM memory for the computation: multiply the value of a with 4-bytes and then divide
it by 1 GB (Giga-byte). For example, if a = (n!), then a × 4/(1024)3 = number of GB you need
for computing the trace of the map bBϕ(ξ), where ξ = (σ1 . . . σp−1)

q.
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6.4 Link invariants of torus knots

Notation Here, K denotes the field of the complex numbers C. Let D denote the enhancement
D = qI, where q is an invertible element of the field C. Let (p, q) denote a pair of coprime integers.

In this section, we give a table of the values of the link invariants of a (p, q)-torus knot, for the cases
when we consider the enhancement D = γ ; I, where q ∈ K

∗ of the twisted conjugation braiding
Bϕ. These values have been calculated by using the computer program “Bphi orders”.

Recall that any (p, q)-torus knot can be made from a closed braid with p strands. The appropiate
braid word is

(σ1σ2 . . . σp−1)
q

Notice that torus knots are trivial if and only if either p or q is equal to 1. The simplest nontrivial
example is the (2, 3)-torus knot, also known as the trefoil knot (see following Figure ).

Remark 6.4.1. If D is an invertible enhancement of the twisted conjugation braiding Bϕ, then

TB(ξ) = trace(b(ξ)),

for any braid ξ ∈ Br(n). Thus, if ξ ∈ Br(p), with ξ = (σ1σ2 . . . σp−1)
q, and with (p, q) = 1, then

TB(ξ) = trace(b(σ1 . . . σp−1)
q).

73



Indeed we proved that the link invariant TB associated to any enhancement of twisted conjugation
braiding Bϕ is given by the following formula

TB(ξ) = β−ntrace (b(ξ) ◦D⊗n)

for any braid ξ ∈ Br(n). (See Corollary 2.5.3). Moreover, we proved that any enhancement D of
the twisted conjugation braiding Bϕ satisfies D2 = γ ·D. (Idempotent Theorem 4.1.3).

Notation In the programm we used the following notation for the elements of the symmetric group
s0 = 1, s1, . . . , sn!−1.

Now, recall that if G is a finite group, then trace((Bϕ)m) = trace((Bid)m) for all ϕ ∈ Inn(G)
(see Remark 6.1.2). By using the program “Bphi orders” we get the following values for the
link invariants TB of the torus knot for the case when we set G to be the symmetric group Σ5,
ϕ(s) = s2ss

−1
2 , for all s ∈ Σ5 and with s2 ∈ Σ5, and for the case that we consider the enhancement

D = γI of the twisted conjugation braiding Bϕ.

Table 6.13: Link invariants for G = Σ5, ϕ(s) = s2ss
−1
2 and D = γI

Knot Name (p, q) TB
Hopf link (2, 2) 840

31 Trefoil knot (2, 3) 600

51 Solomon’s seal knot (2, 5) 720

71 7 crossing torus knot (2, 7) 120

819 8 crossing torus knot (3, 4) 1200

91 9 crossing torus knot (2, 9) 600

10124 10 crossing torus knot (3, 5) 600

11 crossing torus knot (2, 11) 120

Remark From the previous table (Table (6.13)) we can see that the trefoil knot σ3
1, the 9 crossing

torus knot and the 10 crossing knot have the same link invariant TB associated to the enhancement
D = γI (γ invertible).

By using the program Bphi orders we get the following link invariants TB (see Table 6.16) of
the enhancement D = γI of the twisted conjugation braiding Bϕ. For the case that we consider
torus knots and for the case that we set the group G to be the symmetric group Σ4. We set the
automorphism to be ϕ(s) = s3ss

−1
3 for all s ∈ Σ4.
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Table 6.14: Link invariants for G = Σ4, ϕ(s) = s3ss
−1
3 and D = γI

Knot Name (p, q) TB
Hopf link (2, 2) 120

31 Trefoil knot (2, 3) 96

51 Solomon’s seal knot (2, 5) 24

71 7 crossing torus knot (2, 7) 24

819 8 crossing torus knot (3, 4) 144

91 9 crossing torus knot (2, 9) 96

10124 10 crossing torus knot (3, 5) 24

11 crossing torus knot (2, 11) 24

By using the program “Bphi orders” we get the following link invariants TB (see Table 6.15) of the
enhancement D = γI of the twisted conjugation braiding Bϕ, for the case when we consider torus
knots.

Table 6.15: Link invariants for G = Σ7, ϕ(s) = s2ss
−1
2 and D = γI

Knot Name (p, q) TB
Hopf link (2, 2) 7920

31 Trefoil knot (2, 3) 6480

51 Solomon’s seal knot (2, 5) 11520

71 7 crossing torus knot (2, 7) 720

91 9 crossing torus knot (2, 9) 6480

11 crossing torus knot (2, 11) 720

Remark By looking at the above tables (see Tables 6.13, 6.16 and 6.15), we can see that our
results are almost of the kind “the polynomial is constant,” i.e., TB ∈ K. Since the only braidings
we consider are permutations of the basis of K[G]⊗2.

Table 6.16: Link invariants for G = Z/10Z, ϕ(x) = x9 and D = γI

Knot Name (p, q) TB
Hopf link (2, 2) 20

31 Trefoil knot (2, 3) 10

51 Solomon’s seal knot (2, 5) 50

71 7 crossing torus knot (2, 7) 10

819 8 crossing torus knot (3, 4) 10

91 9 crossing torus knot (2, 9) 10

10124 10 crossing torus knot (3, 5) 10

11 crossing torus knot (2, 11) 10
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Table 6.17: Link invariants for G = Z/20Z, ϕ(x) = x7 and D = γI

Knot Name (p, q) TB
Hopf link (2, 2) 40

31 Trefoil knot (2, 3) 20

51 Solomon’s seal knot (2, 5) 20

71 7 crossing torus knot (2, 7) 20

819 8 crossing torus knot (3, 4) 20

91 9 crossing torus knot (2, 9) 20

10124 10 crossing torus knot (3, 5) 20

11 crossing torus knot (2, 11) 20
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Appendix A

A.1 Connection to quasi-cocommutative Hopf algebras.

In Chapter 1, we defined the Hopf algebras (Hϕ(G), µϕL, η,∆, ǫ, S
ϕ
L), and(Hϕ(G), µϕR, η,∆, ǫ, S

ϕ
R).

Moreover, we saw that these are neither commutative nor cocommutative Hopf algebras. So, our
next task is to prove whether these Hopf algebras are quasi-cocommutative or quasi-commutative.
The answer is given by the following lemma:

Lemma A.1.1. The Hopf algebras (Hϕ, µϕL, η,∆, ǫ, S
ϕ
L), (Hϕ, µϕR, η,∆, ǫ, S

ϕ
R) are neither quasi-

cocommutative nor quasicocommutative. Therefore they are not quantum groups.

Before proving the previous lemma, we recall the definition and some properties about quasi-
cocommutative and quasi-commutative Hopf algebras.

Definition A.1.2. A bialgebra (H,µ, η,∆, ǫ, S) is called quasi-cocommutative if there exists an

invertible element R ∈ H ⊗H such that: ∀ x ∈ H : τH,H ◦ ∆(x) = R∆R−1, where τH,H is the

twist map on H.

An element R with above property is called Universal R− matrix.

Definition A.1.3. A Hopf algebra (H,µ, η,∆, ǫ, S) is called quasi-triangular or quantum group if

is is a quasi-cocommutative and the R satisifies the following two properties

1. (∆ ⊗ id)(R) = R1,3R23

2. (id⊗ ∆)(R) = R13R12
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Theorem A.1.4. Let (H,µ, η,∆, ǫ, S, S−1, R) be a quasi-cocommutative Hopf algebra with an in-

vertible antipode. Then there exists an element u ∈ H such that:

∀ x ∈ H : S2(x) = uxu−1

Proof See [8].

Definition A.1.5. A bialgebra (H,µ, η,∆, ǫ, S) is called quasi-commutative if there exists a linear

form r in H ⊗H such that

1. There is a linear form r̄ in H ⊗H, such that r ⋆ r̄ = r̄ ⋆ r = ǫ,

2. µ⊗ τH,H = r ⋆ µ ⋆ r̄

where τH,H is the twist map in H ⊗H and ⋆ is the convolution product. (See Definition 1.6.1.)

An element r with these properties is called universal R−form.

Definition A.1.6. A quasi-commutative Hopf algebra (H,µ, η,∆, ǫ, S, r) is called quasi-triangular

or quantum group if r satisfies the following property:

r(µ⊗ idH) = r13 ⋆ r23 and r(idH ⊗ µ) = r13 ⋆ r12

Theorem A.1.7. Let (H,µ, η,∆, ǫ, S, S−1, r) be a quasi-commutative Hopf algebra with an invert-

ible antipode. Then there is an invertible element u ∈ H∗ such that

S2 = u ⋆ idH ⋆ ū.

Proof See [8].

Proof of lemma A.1.1 : Every invertible element u in Hϕ(G) has to be of the form

u = 1Hϕ(G) + . . .︸︷︷︸
degree>0

.

And every invetible linear form in Hϕ(G)∗ has to send 1Hϕ to 1Z.
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Assume that (HϕG,µϕL, η,∆, ǫ, S
ϕ
L) is a quasi-cocommutative Hopf algebra. Then, by Theorem

A.1.4, there exists an invertible element u ∈ Hϕ(G) such that

(SϕL)2(g) = u(g1, . . . , gk)u
−1(g1, . . . , gk) + . . .︸︷︷︸

degree>0

∀ g = (g1, . . . , gk) ∈ HϕG

The last equation does not hold in general. Indeed set ϕ = id, then we get Schardt’s Hopf algebra
H(G). And it has been proved in [11] that it is not a quasi-cocommutative Hopf algebra.

By a similar argument, we can porve that Hϕ(G) is not a quasi-commutative Hopf algebra.
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Appendix B

B.1 Connection to braided Hopf algebras

In the previous section, we saw that the Hopf algebras (HϕG,µϕL,∆, ǫ, η, S
ϕ
L),

(HϕG,µϕR,∆, ǫ, η, S
ϕ
R) are neither quasi-commutative nor quasi-cocommutative Hopf algebras with

an invertible antipode SϕL , S
ϕ
R respectively . Therefore by Whitehouse’s work [15] we have solutions

of the YBE Ψ,Ψ′ respectively. In the same way, by Worocnocz’s work [17] we have that there exist
solutions of the Yang Baxter equation Φ,Φ′.
Hence, the next question to be asked is whether they are braided Hopf algebras. The answer is
given by the following proposition:

Proposition B.1.1. The Hopf algebras (HϕG,µϕL,∆, ǫ, η, S
ϕ
L , S

ϕ
L), (HϕG,µϕR,∆, ǫ, η, S

ϕ
R), SϕR) are

not braided algebras with respect to Whitehouse’s solutions of the YB equation Ψ,Ψ′ respectively

with the Woronocwicz solutions of the Yang-Baxter equation Φ,Φ′.

To prove Lemma B.1.1 we first need to recall Whitehouse and Woronowicz’s work. Moreover we
need to recall the definition of braided Hopf algebra.

B.1.1 Whitehouse’s solutions of the Yang-Baxter-equation

In this section, we briefly recall Whitehouse’s work on the Yang-Baxter equation. See [15].

In [15], Whitehouse described two different actions of the braid group Br(n) on H⊗n, where H is a
Hopf algebra with multiplication µ, diagonal ∆ and an invertible antipode S. Namely, she proved
the following:
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Theorem B.1.2. ([15], Theo 2.1] Let H be as above. Then Ψ : H⊗2 → H⊗2 defined by

Ψ = (µ⊗ 1) ◦ (µ⊗ 1 ⊗ 1) ◦ (1 ⊗ S ⊗ 1 ⊗ 1) ◦ (243) ◦ (∆ ⊗ 1 ⊗ 1) ◦ (∆ ◦ 1)

is a solution of the Yang-Baxter equation. Since S is invertible its inverse is given by:

Ψ−1 = (1 ⊗ µ) ◦ (1 ⊗ 1 ⊗ µ) ◦ (1423) ◦ (1 ⊗ S−1 ⊗ 1 ⊗ 1) ◦ (1 ⊗ 1 ⊗ ∆) ◦ (1 ⊗ ∆).

Proof: Under Sweedler’s notations, we have that the map Ψ is given by

Ψ(x⊗ y) =
∑

x(1)S(x3)y ⊗ x2.

Now, we would like to prove that the following equation

(Ψ ⊗ 1)(1 ⊗ Ψ)(Ψ ⊗ 1) = (1 ⊗ Ψ)(Ψ ⊗ 1)(1 ⊗ Ψ)

holds in Aut(H⊗3).

It is easy to compute that the left hand side of the formula is given by

∑
x1S(x5)y1S(y3)z ⊗ x2S(x4)y2 ⊗ x3

To obtain the same formula for the right hand side of equation, use first coassociativity repeatedly,
that the comultiplication is an algebra map, that S is an anti-algebra homomorphism; that S is an
anti-coalgebra homomorphism (twice), the formula µ◦(S⊗1)◦∆ = ηǫ and unit (counit) properties.

We recall that the dual H∗ = Hom(H,K) of a finite dimensional Hopf algebra is also a Hopf algebra,
H∗ = (H∗,∆∗, ǫ∗, µ∗, η∗, S∗). The following Yang-Baxter solution is dual to that of theorem B.1.2.

Theorem B.1.3. ([15], Theo 2.2] Let (H, µ, η,∆, ǫ, S) be a Hopf algebra over K. Define

Ψ′ : H⊗H → H⊗H by

Ψ′ = (µ⊗ 1) ◦ (µ⊗ 1 ⊗ 1) ◦ (234) ◦ (1 ⊗ S ⊗ 1 ⊗ 1) ◦ (∆ ⊗ 1 ⊗ 1) ◦ (∆ ⊗ 1)

Then Ψ′ is a solution of the Yang-Baxter equation. Moreover if the antipode S of H is invertible

then Ψ′ is invertible.

Lemma B.1.4. 1. If H is cocommutative then Ψ is the twist map.

2. If H is commutative, then Ψ′ is the twist map.
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Proof: Use cossasociative, then associativity. The fact that H is a cocommutative (respectively
commutative) Hopf algebra. Again, use coassociativity and associativity and the formula

µ ◦ (1 ⊗ S) ◦ ∆ = η ◦ ǫ.

Proposition B.1.5. Let H be a Hopf algebra and consider Whitehouse’s solutions Ψ,Ψ′ respectively

of the Yang-Baxter equation. If D is an isomorphism of the Hopf algebra H, then D⊗D commutes

with Ψ and Ψ′, i.e.

1. (D ⊗D) ◦ Ψ = Ψ ◦ (D ⊗D),

2. (D ⊗D) ◦ Ψ′ = Ψ′ ◦ (D ⊗D).

Proof of Proposition B.1.5: The proof follows by the commutativity of the following dia-
gram:

H ⊗H
D⊗D //

∆⊗1
��

H ⊗H

∆⊗1
��

H ⊗H ⊗H //

∆⊗1⊗1
��

H ⊗H ⊗H

∆⊗1⊗1
��

H ⊗H ⊗H ⊗H //

(234)
��

H ⊗H ⊗H ⊗H

(234)
��

H ⊗H ⊗H ⊗H //

1⊗S⊗1⊗1
��

H ⊗H ⊗H ⊗H

1⊗S⊗1⊗1
��

H ⊗H ⊗H ⊗H //

µ⊗1⊗1

��

H ⊗H ⊗H ⊗H

µ⊗1⊗1

��
H ⊗H ⊗H //

µ⊗1

��

H ⊗H ⊗H

µ⊗1

��
H ⊗H

D⊗D
// H ⊗H

Note, that the composition of the maps on the left and right vertical arrows is Ψ′. A similar
commutative diagram will prove the proposition for Ψ.
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B.1.2 Woronowicz’s solutions of the Yang-Baxter equation

In this section, the two Woronowicz solutions Φ,Φ′ of the Yang-Baxter equation defined in [17] are
recalled.

LetH be a Hopf algebra with multiplication µ, comultiplication ∆, counit η, unit ǫ and an invertible
antipode S. Here, we use the notation of Sweedler [13].

∆(b) =
∑

(b) b
(1) ⊗ b(2),

(1 ⊗ ∆)∆(b) = (∆ ⊗ 1)∆(b) =
∑

(b) b
(1) ⊗ b(2) ⊗ b(3).

Theorem B.1.6. [17] Let Φ,Φ′ be linear operators acting on H ⊗H introduced by the formula

Φ(a⊗ b) =
∑

(b)

b(2) ⊗ aS(b(1))b(3),

Φ′(a⊗ b) =
∑

(b)

b(1) ⊗ S(b(2))ab(3),

for any a, b ∈ H. But, S is invertible thus both maps are invertible with inverses given by:

Φ−1(a⊗ b) =
∑

(b)

bS−1(a(3))a(1) ⊗ a(2),

Φ′−1(a⊗ b) =
∑

(b)

a(3)bS−1(a(2)) ⊗ a(1),

for any a, b ∈ H. These operators satisfy the Yang-Baxter equation.

Remark B.1.7. 1. Φ((a⊗ 1)∆(b)) = (1 ⊗ a)∆(b)

2. If H is either cocommutative or commutative , then Φ is the twist map.

Proof of Remark B.1.7. First of all, note that since H is cocommutative, we have

∑

(b)

b(1) ⊗ b(2) =
∑

(b)

b(2) ⊗ b(1)

and
Φ = (a⊗ b) =

∑

(b)

b(1) ⊗ aS(b(2))b(3) = b⊗ a.

Similarly, if H is commutative, then

Φ(a⊗ b) =
∑

(b)

b(1) ⊗ aS(b(2))b(3) = b⊗ a.
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Proof of Theorem B.1.6: For any b ∈ H set ad(a) =
∑

(b) b
(2) ⊗S(b(1))b(3). Is easy to verify that

Φ(a⊗ b) = (1 ⊗ a)ad(b), (B.1.1)

(ad⊗ 1)ad(b) = (1 ⊗ ∆)ad(b), (B.1.2)

Φ((a⊗ b)∆(c)) = (1 ⊗ a) ad(b) ∆(c). (B.1.3)

Using equation B.1.2, we get

(Φ ⊗ 1) (1 ⊗ Φ) (q ⊗ c) = (1 ⊗ q) (1 ⊗ ∆) ad(c). (B.1.4)

For any a, b, c ∈ H and q ∈ H ⊗H. Let a, b, c ∈ H. Using B.1.4 and B.1.3, we get

(1 ⊗ Φ) (Φ ⊗ 1) (1 ⊗ Φ) (a⊗ b⊗ c) = (1 ⊗ 1 ⊗ a) (1 ⊗ ad(b)) (1 ⊗ ∆) ad(c).

On the other hand, using B.1.2 and B.1.4, we obtain

(Φ ⊗ 1) (1 ⊗ Φ) (Φ ⊗ 1) (a⊗ b⊗ c) = (1 ⊗ 1 ⊗ a) (1 ⊗ ad(b)) (1 ⊗ ∆) ad(c).

From these equations follows that Φ is a solution of the Yang-Baxter equation.

The second proof follows by duality.

In analogy to Proposition B.1.5, we get the following Proposition, when we consider Worocnicz’s
solutions of the Yang-Baxter equation.

Proposition B.1.8. Let Φ,Φ′ denote the Woronocwiz solutions of the Yang-Baxter equation. Let

D and H be given as in Proposition B.1.5. Then, D ⊗D commutes with Φ and Φ′, i.e.

1. (D ⊗D) ◦ Φ = Φ ◦ (D ⊗D),

2. (D ⊗D) ◦ Φ′ = Φ′ ◦ (D ⊗D)

Proof: We will not prove this Proposition, since it follows by a similar commutative diagram used in
the proof of Proposition B.1.5.
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B.1.3 Braided Hopf algebras

Let C be a monoidal category, for instance, the category of vector spaces over a field K. We write

⊗ and I for the tensor product and the unit of C, respectively. Let V,W be objects in C and let
c : V ⊗W →W ⊗ V be a morphism in C. The following definition was taken from [4].

Definition B.1.9. A braided bialgebra in C is an object H of C endowed with an algebra structure,

a coalgebra structure and a solution of the Yang Baxter equation cH such that:

1. cH is compatible with the algebra and coalgebra structures of H; i.e

(a) cH ◦ (η ⊗ 1) = 1 ⊗ η and cH ◦ (µ⊗ 1) = (1 ⊗ µ) ◦ (cH ⊗ 1) ◦ (1 ⊗ c).

(b) (1 ⊗ ǫ) ◦ cH = ǫ⊗ 1 and (1 ⊗ ∆) ◦ cH = (cH ⊗ 1) ◦ (1 ⊗ cH) ◦ (∆ ⊗ 1).

2. η is a coalgebra morphism and ǫ is an algebra morphism and

3. ∆ ◦ µ = (µ⊗ µ) ◦ (1 ⊗ cH ⊗ 1) ◦ (∆ ⊗ ∆).

Moreover, if the antipode S of H is invertible we say that H is a braided Hopf algebra. To read
more about braided Hopf algebras and its connection to knot invariants see [12].

Before giving the proof of Proposition B.1.1, we need the following Lemma.

Let V (r, n) =
⊕

n1+···+nr=rHn1 ⊗ · · · ⊗ Hnr be the finite dimensional subspaces of (Hϕ(G))⊗n,
where Hm = K[G]⊗m.

Lemma B.1.10. Let Ψ,Ψ′ be Whitehouse’s solutions of the Yang-Baxter equation. The finite

dimensional subspaces V (r, n) of (Hϕ(G))⊗n are invariant under Ψ,Ψ′.

Proof: We do the proof for Ψ, because by a similar argument the proof will hold for Ψ′. Consider
a, b ∈ Hϕ(G), with a = (a1 ⊗ · · · ⊗ am) and b = (b1 ⊗ · · · ⊗ bn). Let m′ ∈ {1, . . . m}, n′ ∈ {1, . . . , n}.
Let S(a)n

:= SϕL(a) denote the left antipode map. Fix σ1 to be the (m′, n′) shuffle, and σ2 to be the
(n− n′, n′ +m′)-shuffle. Then,

(Ψ(a⊗ b))m′,n′,σ1,σ2 := (µ⊗ 1) ◦ (µ⊗ 1 ⊗ 1) ◦ (1 ⊗ S ⊗ 1 ⊗ 1) ◦ (243) ◦ (∆ ⊗ 1 ⊗ 1)

◦ (∆ ◦ 1))m′,n′,σ2,σ1(a⊗ b)

:= (SϕL,σ2
⊗ 1) ◦ (SϕL,σ1

⊗ 1 ⊗ 1) ◦ (1 ⊗ S ⊗ 1 ⊗ 1)(∆′
m ⊗ ∆′

n)(a⊗ b)
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= (SϕL,σ2
⊗ 1) ◦ (SϕL,σ1

⊗ 1 ⊗ 1)((a1, . . . , a
′
m) ⊗ (b1, . . . , b

′
n)

⊗ (bn′+1, . . . , bn) ⊗ (am′+1, . . . , am))

= (SϕL,σ2
⊗ 1)(SϕL,σ1

⊗ 1 ⊗ 1)((a1, . . . , am′) ⊗ S(b)n′

⊗ (bn′+1, . . . , bn) ⊗ (am′+1, . . . , am))

= (SϕL,σ2
⊗ 1)(SϕL(a, S(b)n′ , σ1)m′,n′ ⊗ (bn′+1, . . . , bn) ⊗ (am′+1, . . . , am))

= SϕL(SϕL,σ1
(aS(b)n′ ), b, σ2)n−n′,n′+m′ ⊗ (am′+1, . . . , am)

We observe that (am′+1, . . . , am) ∈ Hm−m′ and we observe that S(b)n′ ∈ Hn′ , because for each
g ∈ G ϕ(g) ∈ G. Now, it is not difficult to see that SϕL(SϕL,σ1

(a, S(b)n′ ), b, σ2)n−n′,n′+m′ ∈ Hn+m′ .

Thus, (Ψ(a⊗ b))m′,n′,σ1,σ2 ⊆ V (r, n)

Lemma B.1.11. Let Ψ,Ψ′ be Whitehouse’s solutions of the Yang Baxter equation. Let G be any

commutative group. Asumme that, ϕ = id, and let a1, a2 be generators of H1. Then:

1. Ψ(a1⊗̄a2) = a2⊗̄a1

Ψ′(a1⊗̄a2) = a2⊗̄a1 − 2(a2 ⊗ a1)⊗̄1 + 2(a1 ⊗ a2)⊗̄1

2. Ψ(a1⊗̄1) = 1⊗̄a1

Ψ′(a1⊗̄1) = 1⊗̄a1 − 2(1 ⊗ a1)⊗̄1 + 2(a1 ⊗ 1)⊗̄1

3. Ψ(1⊗̄1) = Ψ′(1⊗̄1) = 1⊗̄1

4. Ψ′(1⊗̄a2) = a2⊗̄1 − 2(a2 ⊗ 1)⊗̄1 + 2(1 ⊗ a2)⊗̄1

5. Let a1, (a2 ⊗ a3) be generators of H1 and H2, respectively. Then,

Ψ(a1⊗̄(a2 ⊗ a3)) = (a2 ⊗ a3)⊗̄a1

Ψ′(a1⊗̄(a2 ⊗ a3)) = (a2 ⊗ a3)⊗̄a1 − (a2 ⊗ a3 ⊗ a1)⊗̄1 + (a1 ⊗ a2 ⊗ a3)⊗̄1

Proof: Follows by the definition of Ψ,∆, µϕL and SϕL.

In analogy to Lemmas B.1.10 and B.1.11, we get the following Lemmas.
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Lemma B.1.12. Woronowicz solutions of the Yang-Baxter equation Φ, Φ′, leave invariant the

finite dimensional subspaces V (r, n).

Lemma B.1.13. Let Φ,Φ′, denote Worocnowicz’s solutions of the Yang-Baxter equation. Assume

that G is commutative. Moreover, assume that ϕ is the identity automorphism. Let a1, a2 be

generators of H1, then:

1. Φ(a1⊗̄a2) = a2⊗̄a1

Φ′(a1⊗̄a2) = a2⊗̄a1 + 2(1⊗̄(a1 ⊗ a2)) − 2(1⊗̄(a2 ⊗ a1)

2. Φ(1⊗̄1) = 1⊗̄1 = Φ′(1⊗̄1)

3. Φ(a1⊗̄1) = −1⊗̄a1 + a1⊗̄1

Φ′(a1⊗̄1) = 1⊗̄a1

4. Let a1, (a2 ⊗ a3) be generators of H1 and H2, repectively. Then

Φ(a1⊗̄(a2 ⊗ a3)) = a2⊗̄(a1 ⊗ a3) − a2⊗̄(a3 ⊗ a1) + (a2 ⊗ a3)⊗̄a1 − a3⊗̄(a1 ⊗ a2)

+ a3⊗̄(a2 ⊗ a1) + 2(1⊗̄(a2 ⊗ a1 ⊗ a3)) − 2(1⊗̄(a3 ⊗ a1 ⊗ a2))

+ 1⊗̄(a1 ⊗ a3 ⊗ a2) − 1⊗̄(a1 ⊗ a2 ⊗ a3)

Φ′(a1⊗̄(a2 ⊗ a3)) = (a2 ⊗ a3)⊗̄a1 − 2(a2⊗̄(a3 ⊗ a1)) + 2(a2⊗̄(a1 ⊗ a3))

− 1⊗̄(a3 ⊗ a2 ⊗ a1) + 1⊗̄(a3 ⊗ a1 ⊗ a2) − 2(1⊗̄(a2 ⊗ a1 ⊗ a3))

+ 2(1⊗̄(a1 ⊗ a2 ⊗ a3))

Lemma B.1.14. Let G be a group and V = K[G]. Define the coproduct structure by ∆(g) =

1 ⊗ g + g ⊗ 1 and the coproduct structure µ given by the product on G and antipode map S given

by S(g) = g−1, for all g ∈ G.

1. Consider Whithouse’s solution of the Yang-Baxter equation Ψ. Then

(µ⊗ µ) ◦ (1 ⊗ Ψ ⊗ 1) ◦ (∆ ⊗ ∆) = ∆ ◦ µ+ id+ Ψ.
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2. If we consider the solution Bϕ of the Yang-Baxter equation, then it is compatible with the

algebra and coalgebra structure of V , but

∆ ◦ µ 6= (µ⊗ µ) ◦ (1 ⊗Bϕ ⊗ 1) ◦ (∆ ⊗ ∆).

Proof: Let v,w generators of V , then by the definition of the coproduct ,product and the antipode
map, we have:

(∆ ⊗ ∆)(v ⊗w) = 1 ⊗ v ⊗ 1 ⊗ w + 1 ⊗ v ⊗ w ⊗ 1 + v ⊗ 1 ⊗ 1 ⊗ w + v ⊗ 1 ⊗ w ⊗ 1

Ψ(v ⊗ w) = v−1w ⊗ 1 + w ⊗ v + vw ⊗ 1

(∆ ◦ µ)(v ⊗ w) = 1 ⊗ vw + vw ⊗ 1

Ψ(1 ⊗ w) = w ⊗ 1

Ψ(v ⊗ 1) = 1 ⊗ v

Thus,

(µ⊗ µ) ◦ (1 ⊗ Ψ ⊗ 1) ◦ (∆ ⊗ ∆)(v ⊗ w) = (µ⊗ µ) ◦ (1 ⊗ Ψ ⊗ 1)(1 ⊗ v ⊗ 1 ⊗ w + 1 ⊗ v ⊗ w ⊗ 1

+ v ⊗ 1 ⊗ 1 ⊗ w + v ⊗ 1 ⊗ w ⊗ 1)

= (µ⊗ µ)(1 ⊗ Ψ(v ⊗ 1) ⊗ w + 1 ⊗ Ψ(v ⊗ w) ⊗ 1

+ v ⊗ Ψ(1 ⊗ 1) ⊗ w + v ⊗ Ψ(1 ⊗ w) ⊗ 1)

= 1 ⊗ vw + vw ⊗ 1 + v ⊗ w + vw ⊗ 1 + v−1w ⊗ 1

+ w ⊗ v

= (∆ ◦ µ)(v ⊗ w) + id(v ⊗ w) + Ψ(v ⊗w)

Using Lemma B.1.11 and B.1.13, respectively, we get the following remarks.

Remark B.1.15. 1. The above lemma implies that K[G] is not a braided Hopf algebra, neither

with respect to Whitehouse’s solution of the Yang-Baxter equation Ψ nor with respect to the

solution of the Yang-Baxter solution Bϕ.

2. Consider Whitehouse’s solutions of the Yang-Baxter equation Ψ,Ψ′ respectively. For any

group G.
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(a) Ψ,Ψ′ are not compatible with the algebra and coalgebra structures of Hϕ(G). Moreover,

we have

(b) (µ⊗ µ) ◦ (1 ⊗ Ψ ⊗ 1) ◦ (∆ ⊗ ∆) 6= ∆ ◦ µ

(c) (µ⊗ µ) ◦ (1 ⊗ Ψ′ ⊗ 1) ◦ (∆ ⊗ ∆) 6= ∆ ◦ µ

3. Consider Woronowicz’s solutions of the Yang-Baxter equation Φ,Φ′ respectively. For any

group G.

(a’) In general, is not true that Φ,Φ′ are compatible with the algebra and coalgebra structures

of Hϕ(G). Moreover, we have

(b’) (µ⊗ µ) ◦ (1 ⊗ Φ ⊗ 1) ◦ (∆ ⊗ ∆) 6= ∆ ◦ µ

(c’) (µ⊗ µ) ◦ (1 ⊗ Φ′ ⊗ 1) ◦ (∆ ⊗ ∆) 6= ∆ ◦ µ

Proof of Proposition B.1.1. Follows from Remark B.1.15.
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Appendix C

C.1 Tensor product of matrices

In this appendix we recalled the tensor product of matrices. In analysis or linear algebra it is
named Kronecker product after Leopold Kronecker, even though there is a little evidence that he
was the first to define and use it. Indeed, in the past the tensor product of matrcies was sometimes
called the Zehfuss matrix, after Johann Georg Zehfuss. All the material of this Appendix has been
taken from the book of Horn, (see [5]).

Definition C.1.1. If A is an n×n matrix and B is a p× q matrix, then the tensor product A⊗B

is the mp⊗ nq block matrix.

A⊗B =




a11B . . . a1nB
...

. . .
...

am1B . . . amnB




More explicity, we have

A⊗B =




a11b11 a11b12 . . . a11b1q . . . . . . a1nb1n a1nb12 . . . a1nb1q

an1b21 a11b12 . . . a11b1q . . . . . . a1nb21 a1nb22 . . . a1nb2q

...
...

...
. . .

... . . .
...

...
...

...
. . .

... . . .
...

a11bp1 a11bp2 . . . a11bpq . . . . . . a1nbp1 a1nbp2 . . . a1nbpq

...
...

. . .
...

...
. . .

...

am1b11 am1b12 . . . am1b1q . . . . . . amnb11 amnb12 . . . amnbpq

am1b21 am1b12 . . . am1b1q . . . . . . amnb11 amnb12 . . . amnbpq

...
...

. . .
...

...
. . .

...

am1bp1 am1bp2 . . . am1bpq . . . . . . amnbp1 amnbp2 . . . amnbpq



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Remark C.1.2. The tensor product of matrices, corresponds to the tensor product of linear maps.

Specifically, if the vector spaces, V,W,X and Y have bases {v1, . . . , vm}, {w1, . . . , wn}, {x1, . . . , xd}

and {y1, . . . , yl}, respectively, and if the matrices A and B represent the linear transfromations

S : V → X and T : W → Y, respectively in the corresponding bases, then the matrix A ⊗ B

represents the tensor product of the two maps S ⊗ T : V ⊗W → X ⊗ Y with respect to the basis

{v1 ⊗ w1, v1 ⊗ w2, . . . , v2 ⊗w1, . . . , vm ⊗ wn} of V ⊗W and the similarly basis of X ⊗ Y.

C.2 Properties

In the following is assumed that A,B,C and D take values in a field K, and that α ∈ K. Some
identities only hold for appropriately dimensional matrices.

Lemma C.2.1. 1. The tensor product of matrices is bilinear:

A⊗ (αB) = α(A⊗B)

(αA) ⊗B = α(A⊗B).

2. It distributes over addition:

(A+B) ⊗ C = (A⊗ C) + (B ⊗C)

A⊗ (B + C) = (A⊗B) + (A⊗ C)

3. It is associtive, and in general it is not commutative:

(A⊗B) ⊗ C = A⊗ (B ⊗ C)

4.

(A⊗B)(C ⊗D) = AC ⊗BD,

this property is called the mixed-product property, because it mixes the ordinary matrix product

and the tensor product of matrices. It follows that A⊗B is invertible if and only if A and B

are invertible, in which case the inverse is given by

(A⊗B)−1 = A−1 ⊗B−1.

5.

det(An×n ⊗Bm×m) = det(A)m . det(B)n
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6.

trace(A⊗B) = trace(A) . trace(B).

Proof We only prove part (6) of the Lemma. Because the other proofs are similar.
It follows from Remark C.1.2, that the tensor product of matrices corresponds to the tensor product
of linear maps. Therefore, it is enough to prove that, if U, V are finite dimensional vector spaces,
and if f (respectively g) is a an endomorphism of U (respectively V .) Then

trace(f ⊗ g) = trace(f) trace(g).

Let u1, u2, . . . , un and v1, v2, . . . , vm be basis of U resp. V . Then:

f(ui) =

n∑

j=1

f ijuj and

g(vi) =

m∑

j=1

gijvj

for the map f ⊗ g then we have:

(f ⊗ g)(ui1 ⊗ vi2) =

n∑

j1

m∑

j2=1

f i1j1g
i2
j2
uj1 ⊗ vj2

From it we get:

trace(f ⊗ g) =
∑n

i1

∑m
i2
f i1i1 g

i2
i2

= (
∑n

i1=1 f
i1
i1

)(
∑i2

i2
gi2i2 )

= trace(f) trace(g)

92



Appendix D

D.1 The computer program

In this Appendix, we explain how to use the program “Bhi orders” which has been written in Java
programming language.

This program calculates the orders of the twisted conjugation braiding Bϕ introduced in Chapter 1
of this thesis. (see 1.2.3). It also computes the trace of the following composition of maps bBϕ ◦D⊗p

for the case when we consider the enhancementD = γ I (γ ∈ C
∗) of the twisted conjugation braiding

Bϕ, and when we consider braids ξ ∈ Br(p), with ξ = (σ1σ2 . . . σp−1)
q, and with (p, q) = 1.

1. Compute the order of the twisted conjugation braiding Bϕ for the symmetric group Σn (n=3,
. . . , 7) and for the cyclic group Z/nZ.

Input:

java Bphi orders <arg1> <arg2>

<arg1> of type String declares which group will be considered.

“sym” for symmetric group

“cyc” for cyclic group

<arg2> of type int defines the level of the chosen group (G = Σn or G = Z/nZ)

2. Compute the trace of the link invariant TB

Input:

93



java Bphi orders <arg0> <arg1> <arg2> <arg3> <arg4>

<arg0> of type String, declares the trace of the group which will be considered

“trsym” for computing the trace of the composition of the torus knot (σ1σ2 . . . σp−1)
q.

<arg1> of type int defines the level of the chosen group G = Σn

<arg2> of type int defines the inner automorphism

<arg3> of type int defines the value of p

<arg4> of type int defines the value of q

Remark In case of the computation of the trace the user should give integers p and q sucht that
(p, q) = 1 as an input.

Output:

• Bphi orders calculates the order of the twisted conjugation braiding Bϕ, where
G is either the symmetric group Σn, with n = 3, 4, 5, 7 or G is the cyclic group Z/nZ.

• If G = Σ6, then it computes the orders of the twisted conjugation braiding Bϕ for the inner
automorphims, i.e., ϕ ∈ Inn(G).

• If G = Σn (n=3, 4, 5, 6, 7), (or G = Z/nZ) then it calculates the trace of the map
bBϕ(ξ) ◦D⊗p, for the case that we consider the enhancement D = γI (γ invertible) of the twisted
congation braiding Bϕ. For braids ξ ∈ Br(p), with ξ = (σ1 . . . σp−1)

q with p and q integers sucht
that (p, q) = 1.

Using Bphi orders:

To run the program, the folder Bphi orders should contain the following three classes:

1. Bphi orders.class

2. CyclicGroup.class

3. SymmetricGroup.class
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Set the path of the shell command line to the directory “../Bphi orders”. For the symmetric
group use the command line:

java Bphi orders sym 4

For the cyclic group use the command line:

java Bphi orders cyc 11

For computing the trace use the command line:

java Bphi orders trsym 5 2 3 4

or the command line: java Bphi orders trcyc 5 2 3 7

Compiling:

Set the path of the shell to the folder where the source code “Bphi orders.java” is located (here
“../Bphi orders”).

Compile with the command

javac Bphi orders.java

The compiler generates the classes into the same folder of the source code file “Bphi orders.java”.

After compiling, the folder will contain the following files:

1. Bphi orders.java

2. Bphi orders.class

3. CyclicGroup.class

4. SymmetricGroup.class

Now the folder contains the executable classes.
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