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AIMS AND OVERVIEW 
 

 

Predictions of species distributions derived from correlative models can help to 

understand the spatial patterns of biodiversity and identification of possible threats for 

populations caused by climate change. The amount of available data and software is 

rapidly increasing as well as the number of studies applying niche model techniques. 

However, a discrepancy between increasingly complex studies and the understanding of 

underlying processes, derivation of valid assumptions, and the development of conceptual 

backgrounds is still a problem (JIMÉNEZ-VALVERDE et al. 2008). The aim of this thesis at 

hand is an assessment of the relative importance of macro-climate, biotic interactions and 

accessibility shaping realized distributions of amphibian and reptile species. The results are 

comprised in sections each with two or more complementary chapters linked with the 

research theme but distinct in the questions elucidated. It needs to be noted that the use of 

slightly different analysis methods used in this thesis mirror the improvements in 

modelling techniques and the wider availability of GIS data over the period this thesis has 

been conducted. 

 

 

Section 1 

The first section provides a general overview over the current knowledge concerning 

impacts of climate change on biota, niche concepts, availability of both climate and species 

occurrence data and the methods used herein. Additionally, potential ‘pitfalls’ when 

applying environmental niche models or climate envelope models are highlighted, 

illustrated and discussed using examples.  

 

 

Section 2 

The second section focuses on the structure of climate niches. Climatic variability 

within species ranges and habitat choice are analysed and discussed in the context of 

natural history properties and corresponding constrains on habitat choice of the respective 

species. In chapter 2.1, the hypothesise that climatic requirements allowing successful egg 

incubation and balanced sex ratios are the major driver for the geographic distribution of 
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Trachemys scripta is assessed. It is tested if the observed variation in monthly mean 

temperatures throughout the native distribution of T. scripta can be used as a

predictor for its geographic range. The results confirm this hypothesis, although adaptive 

strategies such as nest site choice by females, plasticity in nesting phenology or regional 

variation in embryonic temperature sensitivity may exist. However, facing climate change, 

these adaptive strategies may account only for partial compensation of negative effects.  

Recently, several authors observed a climatic mismatch between native and invasive 

ranges predicted by Climate Envelope Models (CEMs). In chapter 2.2, the issue of possible 

niche shifts in alien invasive species versus variable choice by deriving CEMs based on 

multiple variable sets is studied. The main result is that CEMs using variables focusing on 

the species physiology depicts its worldwide potential distribution better than any other 

approach. The results indicate that a natural history driven understanding is crucial in 

developing statistical models.  

A necessary assumption when applying CEMs is that climatic niches are rather 

conservative, but recent findings of niche shifts during biological invasion indicate that this 

assumption is not valid in every case. As illustrated in chapter 2.2, selection of predictor 

variables may be one reason for observed shifts. In chapter 2.3, differences in climatic 

niches in the native and invaded ranges of the Mediterranean Housegecko (Hemidactylus 

turcicus) in terms of commonly applied climate variables in CEMs are assessed. It is 

analyzed which variables are more conserved versus relaxed (i.e. subject to niche shift) and 

assess degrees of niche similarity and conservatism per predictor and per set of predictor 

using both Hellinger distances and Schoener’s index. The results indicate that the degree of 

niche similarity and conservatism varied greatly among predictors and variable sets 

applied. Shifts observed in some variables can be attributed to active habitat selection 

whereby others apparently reflect background effects.  

 

 

Section 3 

Section 3 of the thesis at hand focus on the relative importance of dispersal abilities, 

accessibility and biotic interactions shaping a species’ realized distribution. Among reptiles 

two gecko species, Hemidactylus frenatus and Hemidactylus mabouia, have considerably 

increased their range during the last century. Only few sympatric populations are known. 

The aim of chapter 3.1 is the identification of areas potentially suitable for the geckos 

using a CEM approach, prediction of their potential distribution under current conditions, 
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and an assessment why sympatric populations of both geckos are apparently rare. The 

results presented suggest that climatic suitable areas for both species can be found in nearly 

all tropical regions and allow the conclusion that both competitive exclusion and a non 

equilibrium in the ranges of the species explain the virtual absence of sympatric 

populations.  

It was suggested that CEMs may be only of limited use if the target species’ range is 

not predominately limited by unsuitable climate. In chapter 3.2, this hypothesis was tested 

using the alien invasive anuran Eleutherodactylus coqui as model species. The Coqui is 

presently distributed in many Caribbean islands and Hawaiian Islands. Using only native 

records within Puerto Rico for model training, climate envelope models indicate that the 

invasive range in the Hawaiian Islands can be predicted with high accuracy if predictors 

are carefully chosen. In chapter 3.3, the invasive alien Cuban treefrog Osteopilus 

septentrionalis native to Cuba, the Bahamas and some adjacent islands is used as a second 

example. As in chapter 3.2, the results indicate that the invasive range in Florida can be 

predicted with high accuracy using only native records within Cuba and the Bahamas for 

model training using appropriate predictor variables.  

Biotic interactions such as competitive exclusion or predation may limit the realized 

distribution of species in some areas although climatic conditions are well suitable. In 

chapter 3.4 such a pattern as observed in the Brown tree snake (Boiga irregularis) is 

analyzed. The snake is native to South-East Asia and Australia and has been introduced to 

Guam. It is considered to belong to the 100 worldwide worst alien invasive species. In the 

larger vicinity of the snake’s known distribution, highest suitability was found for the 

Northern Mariana and Hawaiian Islands, Madagascar, New Caledonia and Fiji Islands. 

However, although most East Asian mainland and islands are climatically suitable the 

invasive populations of this species do virtually not exist. The predicted potential 

distribution is highly coincident with the general distribution of the genus Boiga. Since B. 

irregularis does not coexist with other members of the genus or other potential competitors 

in its native range, competitive exclusion may be the best explanation for the observed 

pattern.  

Next to macro-climate, anthropogenic habitat alteration has a strong impact on native 

biota and can significantly shape distribution patterns. Eleutherodactylus johnstonei, native 

to the northern lesser Antilles, has established numerous invasive populations at Caribbean 

islands and the adjacent Central and South American mainland. The species is a highly 

successful colonizer, but only able to invade anthropogenic disturbed habitats. In Chapter 



                                                                                                                  Aims and overview 

 13

3.5, a Climate Envelope Model approach is used to model the geographic distribution of 

this species and to project that model into other potentially threatened areas. Results 

obtained from the model are compared with a measure of anthropogenic habitat 

disturbance (Human Footprint).  

 

 

Section 4 

The focus of the last section is the breadths of climate niches, their evolution and 

dynamics in space and time. In chapter 4.1, information is provided on the climatic history 

within the range of Phelsuma parkeri native to the relatively flat island of Pemba 

(elevational range 0 to <100 m a.s.l.). A comparison with paleoclimatic conditions in the 

Last Glacial Maximum on Pemba revealed that P. parkeri and other endemic species of the 

island survived climatic conditions in the past completely different from the current 

climatic conditions despite absence of possibilities to compensate these changes by 

altitudinal range shifts. The results suggest that P. parkeri is currently unlikely to be 

threatened by climate change although projection of its current realized climate niche 

would suggest a complete range loss. The results of chapter 4.1 illustrate the importance of 

possible discrepancies between a species’ realized nich and its fundamental niche when 

assessing climate change impacts. 

In chapter 4.2 the disturbance vicariance hypothesis (DV) has been proposed to 

explain speciation in Amazonia and adjacent areas, e.g. in harlequin frogs (Atelopus). In 

this chapter, in concordance with DV predictions the expectations that (i) these amphibians 

display a natural distribution gap in central Amazonia; (ii) east of this gap they constitute a 

monophyletic lineage which is nested within in a pre-Andean/western clade; (iii) climatic 

envelopes of Atelopus west and east of the distribution gap are similar with some 

divergence in precipitation-related parameters; (iv) potential distributions of western and 

eastern Atelopus range into central Amazonia but with limited overlap, are tested.  
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1.1. Species in a changing world1 

The earth’s climate has changed since the industrial revolution and future 

anthropogenic climate change undoubtedly will take place over the next decades (IPCC 

2007). Today, the climate is warmer in most regions and extreme events such as excessive 

rainfall or drought tend to take place more frequent. Globally, the averadge annual 

temperature has increased by about 0.6-0.7 °C during the 20th century (IPCC 2007) and the 

rate, at which climate has changed, has almost doubled within the last decades (HOUGHTON 

et al. 2001). Such warming can not be explained by natural climate variability or factors 

such as volcanic activity. It may be rather caused by anthropogen activities: mankind is 

changing the Earth’s climate on a global scale due to massive emissions of greenhouse 

gases and sulphate aerosols (STOTT et al. 2000; HOUGHTON et al. 2001; STOTT 2003; 

BARNETT et al. 2005).  

HULME and VINER (1998) and MACCRACKEN et al. (2001) describe, among many 

other authors, the potential impacts of climate change. The global temperature is expected 

to rise globally, whereby the increase in middle and high latitudes and on the continents 

will be greater. Globally, the amount of annual rainfall will increase. Higher temperatures 

during the summer will regionally increase evaporation rates and reduce soil moisture, and 

more frequent storms and heavy rains are expected. In the tropics model projections 

suggest prolonged dry periods and a greater variability in seasonal rainfall patterns. 

Recently observed trends in tropical highland areas, where reduced cloud formation hence 

lower orographic precipitation (e.g. POUNDS et al. 1999), seem to meet these forecasts.  

Of particular concern is the high rate of climate change affecting the world’s biota 

(e.g. PARMESAN and YOHE 2003; THOMAS et al. 2004). Meta-analysis comparing responses 

of a wide range of different taxonomic groups to climate change across several 

biogeographical regions alredy indicate shifts in phenology and distribution patterns of 

many plants and animals (e.g. PARMESAN and YOHE 2003). These shifts may have effects 

on the reproductive success and thus on the survival of the species (e.g. BLAUSTEIN et al. 

2001; ROOT et al. 2005). Changes in a species’ phenology influencing intra-specific 

                                                 
1 Parts of Section 1 are in press as a book chapter to be published in ‘Surviving on 
Changing Climate - Phylogeography and Conservation of Relict Species’, Springer, and 
other parts were submitted as a book chapter to be published in ‘Systematics and Climate 
Change’, Cambridge University Press. The work reported in this section was conducted in 
collaboration with JOHANNES DAMBACH  from the Zoologisches Forschungsmuseum 
Alexander Koenig, Bonn, Germany, SUSANNE SCHICK and STEFAN LÖTTERS from the 
University of Trier, Faculty of Geosciences, Germany, and SEBASTIAN SCHMIDTLEIN  from 
the Geography Department, University of Bonn, Bonn, Germany. 
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interactions and thus existing (micro-) niche structures may have serve effects on species 

communities (PARMESAN and YOHE 2003). 

There is much debate about species’ responses to global warming which remains 

largely unknown, however. One assumption is that a high percentage of them may be 

committed to extinction (THOMAS et al. 2004). Background is that every species occurs 

within a defined climatic envelope, i.e. part of its fundamental niche, which is expected to 

lack the ability to adapt as rapid as climate will change (THOMAS et al. 2004). However, 

only limited robust data on the structure of species’ climate niches and their ability to adapt 

to novel condicitons is currently available, which is often contra indicating and therefore 

mixed debated (e.g. PEARMAN et al. 2008). 

It is well known that distribution patterns of species may vary over space and time. 

This becomes most evident considering the differences between current and Last Glacial 

Maximum (LGM, 21,000 y BP) distribution patterns of species in the northern hemisphere 

(see also e.g. HABEL et al. 2009). Most warm-adapted species experienced reduction and 

fragmentation of ranges because of intrusion by uninhabitable continental ice sheets 

causing distributional shifts and fragmentation of primary habitats. On the other hand, 

cold-adapted species were able to expand their ranges. Today, ranges of those species are 

restricted to current refugia as can be observed in glacial relict species, respectively. 

Understanding refugial distributions of species has been a core task in historical bio-

geography. Before the 1990s, refugia were preliminarily identified based on disjunctions of 

species distributions, distribution patterns of sister species, and the fossil records (e.g. 

HOFFMAN 1981). Unfortunately, historical biogeography is often descriptive making future 

projections difficult. More recently, phylogeographic approaches based on intraspecific 

molecular analyses and spatial modeling approaches based on ecological properties of 

species have been developed, but many theoretical concepts and techniques are still in their 

infanty. 

 

 

1.2 Climate niches and the spatial distribution of species 

The observation of ecological properties of species and their areas of distribution 

being related is not new (GRINNELL 1917; BÖHME 1978; JAMES et al. 1984), but the 

increasing availability of information on the variation of environmental parameters in 

geographic space, species distribution data, and computation capacities during the last 

decade now allow large scale assessments of relationships between distributions observed 
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and explanatory parameters (KOZAK et al. 2008). Relationships can be assessed by 

calculating ‘environmental’ or ‘ecological’ niches and their subsequent projection into 

geographic space (GUISAN and ZIMMERMANN  2000). Here, GIS-based environmental data 

offer huge opportunities to assess variations in environmental factors within the species 

ranges, especially when combined with spatial modeling techniques (WALTARI  et al. 2007; 

KOZAK et al. 2008; WALTARI  and GURALNICK 2009). Such techniques were proposed as a 

useful supplemental tool despite long time established techniques for the identification of 

refuges and potential migration pathways (WALTARI  et al. 2007; RÖDDER and DAMBACH  

2009).  

Model techniques can be classified into two different groups: (i) mechanistic models, 

which predict the potential distribution of a species based on its physiological tolerances 

measured in laboratory experiments and (ii) spatial model techniques, which derive from 

the distribution model based on statistical relationships between distribution patterns 

observed and environmental parameters. In the latter case, Climatic Envelope Models 

(CEMs) use exclusively climatic variables as predictors whereby a wider range of variables 

is used in Ecological Niche Models (ENMs) (e.g. soil and vegetation layers or remote 

sensing data). The development of mechanistic models is just at the beginning (KEARNEY 

and PORTER 2004; KEARNEY et al. 2008; MITCHELL et al. 2008), but CEMs and ENMs 

have been applied to predict species’ potential distributions (PDs) under current, past, and 

future climate scenarios for some time now (e.g. ARAÚJO et al. 2004; ARAÚJO and GUISAN 

2006; HEIKKINEN  et al. 2006; HIJMANS and GRAHAM  2006; PEARMAN et al. 2008), invasive 

species biology (e.g. PETERSON 2003; PETERSON and VIEGLAIS 2001; RÖDDER et al. 2008; 

RÖDDER 2009), conservation priority setting (e.g. ARAÚJO et al. 2004; KREMEN et al. 2008; 

LÖTTERS et al. 2008), and ecology and evolutionary biology (e.g. PETERSON et al. 1999; 

GRAHAM  et al. 2004; KOZAK et al. 2008). Especially CEMs were suggested to be useful for 

identification of potential Pleistocene refugia with high accuracy suggesting that 

predictions even across millennia are possible (PETERSON and NYÁRI 2007; WALTARI  et al. 

2007; WALTARI  and GURALNICK 2009).  

In CEM approaches, the climate envelope is understood as a part of a species’ 

fundamental or realized niche depending on variables selected and assumptions made 

(SOBERÓN and PETERSON 2005; SOBERÓN 2007). As defined by HUTCHINSON (1957; 1978) 

and modified by SOBERÓN and PETERSON (2005), a species’ fundamental niche represents 

the complete set of environmental conditions under which a species can persist, i.e. under 

which its fitness is greater than or equal to one in the absence of competitors or predators. 
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Its realized niche in environmental space (= realized distribution in geographic space) is a 

subset of the fundamental niche considering dispersal limitations and biotic interactions, 

such as food availability, competition, or interactions with pathogens (Figure 1.2-1). Niche 

variables can be subdivided concerning specific classes regarding the spatial extent in 

which they operate and if competition may play a role or not. The Grinnellian class is 

defined by fundamentally non-interactive variables (e.g. climate) (GRINNELL 1917) 

whereby the Eltonian class focuses on biotic interactions and resource-consumer dynamics 

(ELTON 1927). The former operates on a coarse scale and is the main subject in CEM 

approaches, whereby the latter can principally be measured only at local scales and is 

commonly not addressed in CEM approaches (SOBERÓN 2007).  

 

 

Figure 1.2-1. Relationships between abiotic (= fundamental) niche, biotic interaction and 
accessibility after HUTCHINSON (1957) as modified by SOBERÓN and PETERSON (2005). 
The potential distribution is a subset of the abiotic niche considering biotic interactions, 
whereby the realized distribution is a subset of the potential distribution considering 
accessibility. Dots represent species records. 
 

 

It is important to note that Grinnellian (and Eltonian) niches are not always 

corresponding completely to a species actual range because history and chance are also 

triggering observed distributions. Remnant populations, source-sink dynamics and 
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incomplete “filling” of a niche due to dispersal limitations or other factors may lead to 

deviant patterns (PULIAM  2000; GUISAN and THUILLER 2005). This implies that 

environmental conditions observed at species occurrences may not necessarily cover the 

entire niche spectrum suitable for the species or may go well beyond the range of 

conditions suitable for long-term persistence (TILMAN  et al. 1994). Species may be in 

disequilibrium with climate conditions (ARAÚJO and PEARSON 2007; RÖDDER et al. 2008). 

 

 

1.3. What is needed? 

Mapped climate data offer remarkable opportunities to approach variation in 

environmental factors belonging to the Grinnellian class within the ranges of species, 

especially when combined with spatial modelling and GIS techniques (KOZAK et al. 2008). 

Such approaches are known as Climate Envelope Models (CEMs). Before CEMs can be 

computed it is necessary to compile a set of species occurrence records and a set of suitable 

predictor variables (e.g. GIS layers containing information on climatic parameters). 

 

 

Species records 

A huge amount of species records are available through the Global Biodiversity 

Information Facility (GBIF, www.gbif.org) and HerpNet databases (www.herpnet.org). In 

addition, species records can be obtained from own field trips, museum collections or 

literature. If necessary, the Alexandria Digital Library Gazetteer Server Client 

(www.middleware.alexandria.ucsb.edu/client/gaz/adl/index.jsp) can be used to 

georeference records. Despite georeferencing records one-by-one, batch processing has 

become possible facilitating the procedure (SOBERÓN and PETERSON 2004), e.g. using the 

BioGeoMancer software (http://biogeomancer.org). The spatial accuracy of the 

geographical coordinates necessary for robust model building depends on the spatial 

resolution of the environmental layers used and the algorithm applied (GRAHAM  et al. 

2008). A minimum amount of at least 10-30 distribution records for the species (or 

occasionally subspecies, superspecies etc.) under study depending on the algorithm later 

applied is necessary (e.g. ELITH  et al. 2006; PEARSON et al. 2007; WISZ et al. 2008). 

The accuracy of coordinates can be assessed with the ‘Check coordinates tool’ 

provided by DIVA-GIS 5.4 (HIJMANS et al. 2001; HIJMANS et al. 2002). This tool allows 

testing the accuracy by comparing the species records and an administrative boundaries 
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database on the smallest possible level (state / country / city). This information should be 

the same, and any mismatches probably reflect errors (HIJMANS et al. 1999). In addition, it 

is possible to use altitudinal information to spot likely errors in the coordinate data when 

this information was provided with the museum records. Altitude can be compared with an 

estimate of the altitude of the locality, using the ‘Extract values by points’ function of 

DIVA-GIS. When compiling species records it is important to evaluate possible bias 

(SOBERÓN and PETERSON 2004), which can comprise spatial sample selection bias 

(JIMÉNEZ-VALVERDE and LOBO 2006), historical (HORTAL et al. 2008) or taxonomical 

components (SOBERÓN and PETERSON 2004).  

Most algorithms build models based on species presence records, but there is also a 

variety of applications which can, in addition, deal with species absence data. Presence 

only methods may be preferable since true absence records of species remain difficult to 

proof (GU and SWIHART 2004), especially for rare or highly mobile species. A problem 

arises also from the circumstance that it is often unclear whether a species is absent from a 

given locality because the site is outside of its climate envelope or because of other factors 

such as biotic interaction, disturbance or dispersal limits. This can lead to 

misinterpretations, i.e. if the climate at a locality treated as absence locality is within the 

target species’ climate envelope the model algorithm misinterprets the climate at this site 

as unsuitable. To construct models for migratory species is a special challenge, since 

tempo-spatial patterns need to be considered when compiling species records and 

predictors (MARTINEZ-MEYER et al. 2004; HIRZEL and LE LAY  2008). 

 

 

Climate data 

Climate information can be incorporated into CEMs from various sources, whereby 

the selection of the most suitable data set depends on the spatial extend of the target area 

and the goals of the study at hand. Some examples of freely available climate data sets are 

given in KOZAK et al. (2008). For example, data on current climate from all over the world 

can be obtained from the Worldclim database, version 1.4, which is based on weather 

conditions recorded at roughly 50,000 locations for precipitation and 25,000 locations for 

temperature between 1950 and 2000 (http://www.worldclim.org; HIJMANS et al. 2005), 

respectively. This grid-based (resolution 30 arc sec) database was created by interpolation 

using a thin-plate smoothing spline of observed climate at weather stations, with latitude, 

longitude and elevation as independent variables (HUTCHINSON 1995; 2004). Regional 
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climate data, which is usually preferred for non-global studies if available, is provided by 

national weather agencies and other local sources.  

When projecting species CEMs into past or future climate scenarios it is important to 

acknowledge that different scenarios will reveal different results and no single ‘best’ model 

exists. Hence, strength and weaknesses of different climate models should be considered 

(BEAUMONT et al. 2008). Evaluation of a variety of scenarios may help to assess variations 

in outputs. For example, climate change projections for based on the CCCMA, CSIRO and 

HADCM3 models (FLATO et al. 2000; GORDON et al. 2000) and the emission scenarios 

reported in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental 

Panel on Climate Change, IPCC (http://www.grida.no/climate/ipcc/emission/) the years 

2020, 2050, 2080 can be obtained via the Worldclim homepage (resolution 30 arc sec). 

Future projections using other IPCC scenarios are also available from the Climate 

Research Unit (CRU) of the University of East Anglia, UK 

(http://www.cru.uea.ac.uk/cru/data/hrg.htm; NEW et al. 1999; NEW et al. 2000). Upcoming 

regional models are providing spatially more detailed information and take account of 

regional-scale topographic variability not after the fact as in the Worldclim dataset but 

from the very beginning. 

For paleoclimate during the Last Glacial Maximum (ca. 21,000 years BP), General 

Circulation Model (GCM) simulations from the Community Climate System Model 

(CCSM) are available (http://www.ccsm.ucar.edu/; KIEHL and GENT 2004). As second set 

the Model for Interdisciplinary Research on Climate (MIROC, version 3.2; 115 

http://www.ccsr.u-tokyo.ac.jp/~hasumi/MIROC/) can be used, respectively. 

Results from each climate scenario include a broad range of variables, with minimum 

and maximum temperatures and the mean precipitation per month (= 36 climate 

parameters) as the most commonly used for ecological niche modelling. Based on these 

monthly layers, 19 bioclimatic parameters can be generated, e.g. with DIVA-GIS 5.4 

(http://www.diva-gis.org; HIJMANS et al. 2002). These are often used in CEMs and 

represent annual seasonality and extreme or limiting climate factors (Table 1.3-1). 

Bioclimatic parameters are more useful than ‘raw’ monthly values since they are 

independent from latitudinal variation. This becomes obvious considering that the 

‘maximum temperature of the warmest month’ is more informative with respect to species 

biology than the maximum temperature of a specific month because the latter varies with 

latitude (NIX  1986; BUSBY 1991).  
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Table 1.3-1 Bioclimatic parameters and their abbreviations representing annual trends, 
seasonality and extreme or limiting climate factors. 

 

 

Parameter      Abbreviated as 
Annual mean temperature     Bio1 
Mean monthly temperature range    Bio2 
Isothermality       Bio3 
Temperature seasonality     Bio4 
Maximum temperature warmest month   Bio5 
Minimum temperature coldest month   Bio6 
Temperature annual range     Bio7 
Mean temperature wettest quarter    Bio8 
Mean temperature driest quarter    Bio9 
Mean temperature warmest quarter    Bio10 
Mean temperature coldest quarter    Bio11 
Annual precipitation      Bio12 
Precipitation wettest month     Bio13 
Precipitation direst month     Bio14 
Precipitation seasonality     Bio15 
Precipitation wettest quarter     Bio16 
Precipitation driest quarter     Bio17 
Precipitation warmest quarter    Bio18 
Precipitation coldest quarter     Bio19 

 

 

Mulitcolinearity among predictor variables may hamper the analysis of species-

environment relationships because ecologically more causal variables may be excluded 

from models if other inter-correlated variables explain the variation in response variable 

better in statistical terms (HEIKKINEN  et al. 2006). E.g., if two variables are similarly 

distributed in space both are similarly represented in a species model. Independent 

variation of the two variables may lead to false predictions when one of them is causally 

linked to a species distribution and one is not. Therefore, variable selection should be 

guided by a throughout assessment of the target species’ ecology and rather a minimalistic 

set of predictors should be preferred depending on the focal species. E.g. Bio1, 10, 11, 12, 

16 and 17 from the Worldclim dataset reflect the availability and range of thermal energy 

and humidity and are suitable for CEM projections between different climate scenarios, 

according to different authors (see CARNAVAL  and MORITZ 2008). Specific adjustment of 

variables according to specific ecological needs of the target species may improve the 

model output (BEAUMONT et al. 2005). It needs to be noted that negative effects of 

multicolinearity may vary among algorithms applied. 
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1.4. How do CEMs work? 

Once species records and predictor variables have been compiled, the next step is the 

development of a multidimensional view of the species’ climatic niche. This is a 

considerable challenge given the complex nature of species’ niches (PETERSON and 

VARGAS 1993). In plain text: in CEM, climatic information for species presence localities 

are summarized to an 'ideal' climatic niche for the target species (note that this can also be 

done with reliable absence data) that is afterwards compared to climatic conditions at the 

query localities, i.e. where the presence/absence of the species is unknown (Figure 1.4-1). 

The results are geographic maps showing the similarity of an area with the 'ideal' climatic 

niche. The selection of a suitable algorithm for the computation of the CEM depends on 

the amount of distribution records available, their quality, and the specific goal of the study 

(for a brief overview of available algorithms see JESCHKE and STRAYER 2008).  

One of the earlier applied algorithms for presence only data are BIOCLIM (NIX  

1986; BUSBY 1991) and DOMAIN (CARPENTER et al. 1993), as implemented in DIVA-

GIS. Whereas BIOCLIM measures the distance to the midpoint of the training sites in 

suitable climate space as suggested by conditions at training records, DOMAIN measures 

the environmental similarity of each grid cell to the most similar training site (NIX  1986; 

CARPENTER et al. 1993) (Figure 1.4-2). More sophisticated algorithms are GARP 

(STOCKWELL and NOBLE 1992; STOCKWELL and PETERS 1999) and MaxEnt (PHILLIPS et al. 

2004; PHILLIPS et al. 2006). The more recently developed methods derive predictions by 

developing sets of rules or by machine-learning approaches (GARP, Maxent) and are 

superior to most other methods (for a comparison of performance quality see ELITH  et al. 

2006; HEIKKINEN  et al. 2006; WISZ et al. 2008). If absence records are available or even 

abundances, algorithms such as ‘artificial neuronal networks’, ‘classification and 

regression trees’, ‘generalized additive models’ or ‘generalized dissimilarity models’ can 

be applied. These algorithms are implemented in the BIOMOD tool (THUILLER 2003) for 

example. 
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Figure 1.4-1. Flow chart illustrating the main steps for building a Climate Envelope 
Model.  
 

 

 

Figure 1.4-2. Assumptions and concepts may vary between different modelling 
algorithms. In BIOCLIM (left) the environmental niche is defined as a boxcar 
environmental envelope in climate space, whereby ‘core’ (black box; enclosing 90 % of all 
species records) and ‘marginal’ areas (grey box; enclosing 100 % of the records) are 
defined (NIX  1986). All grey dots enclosed by the boxcar envelope are suggested to be 
suitable for the target species. In DOMAIN (right) the relative distance between conditions 
as observed at species records (black points) and at locations to be assessed (grey points) is 
measured in climate space (CARPENTER et al. 1993). Conditions at species records (black 
points) and conditions at locations in question are indicated (grey points). 
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1.5. Evaluation of results 

One of the most frequently used model tests is an assessment of the Area Under the 

Curve (AUC) statistics, referring to the ROC (Receiver Operation Characteristic) curve 

using (Figure 1.5-1) e.g. 25 % of the records as test points and the remaining ones for 

training (HANLEY  and MCNEIL 1982; PHILLIPS et al. 2006). This method is recommended 

for ecological applications because it is non-parametric (PEARCE and FERRIER 2000). 

Values of AUC range from 0.5 (i.e. random) for models with no predictive ability to 1.0 

for models giving perfect predictions. According to the classification of SWETS (1988) 

AUC values > 0.9 describe ‘very good’, > 0.8 ‘good’ and > 0.7 ‘useful’ discrimination 

ability. A second possibility is Cohen’s kappa statistic of similarity (k) (FIELDING and 

BELL 1997; PEARCE and FERRIER 2000). Cohen’s kappa yields values ranging from 0.0 (no 

predictive ability) to 1.0 (perfect predictive ability), whereby k values above 0.7 describe 

‘very good’ discrimination ability (MONSERUD and LEEMANS 1992). If only few species 

records for model building are available (e.g. less than 25), a jackknife test can be 

performed (PEARSON et al. 2007). Additionally, in some cases invasive populations of the 

target species can be used as independent test (SAX  et al. 2008). 

 

 

Figure 1.5-1. The Receiver Operating Characteristic (ROC) Curve is formed by plotting 
values of the relative frequency of true positive records predicted by a given model against 
the values of the relative frequency of false positive records (HANLEY  and MCNEIL 1982). 
The solid 1:1 line signifies random predictive ability, whereby there is no ability to 
distinguish occupied and unoccupied sites. The dashed line may be characteristic for a 
model with good predictive abilities. 
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It needs to be noted that test statistics, such as AUC or Cohen’s kappa scores are a 

measure of model fit compared to the observed distribution of a species and must not be 

interpreted as a measure in the ecological sense of a model. Profound knowledge of a 

species' natural history is necessary for an evaluation, when a model meets the ecological 

requirements of the target species.  

 

 

1.6 CEM applications in taxonomy and ecology: afrotropical reed frogs as examples 

Reed frogs (Hyperoliidae: Hyperolius) are a monophyletic group of small nocturnal 

and arborical amphibians which are known from savannahs and forests in sub-Saharan 

Africa (SCHIØTZ 1999; VEITH et al. in press). More than 130 species have been recognized 

(FROST 2008). Due to limited inter-specific and remarkable intra-specific morpohological 

variation, the taxonomy of numerous Hyperolius is poorly understood. Certain nominal 

species may actually represent complexes of distinct taxa. Bioacoustics and DNA 

barcoding have been proven as useful tools in species discrimination; however, the 

availability of samples is still sparse (e.g. KÖHLER et al. 2005; VEITH et al. in press). Here 

are some examples provide provided how CEMs can performs well as a supplement to 

other methods and outline some potential problems. 

 

 

Hyperolius cinnamomeoventris sensu lato 

This is a reed frog from the Congo Basin and vicinities. LÖTTERS et al. (2004), VEITH 

et al. (in press) and the own’ unpublished molecular data suggest that several sister species 

are involved. Samples studied from part of this reed frog’s range in eastern DRC, Uganda 

and western Kenya are genetically distinct from those from elsewhere within the 

geographic range encompassed by H. cinnamomeoventris sensu lato (Figure 1.6-1). It can 

be concluded that they represent an 'eastern taxon' within the species complex. However, 

the relatively few genetic samples do not allow for an appreciation of the species' spatial 

delimitation. Also it remains unclear how to apply the nomenclature, i.e. the different 

available names currently in the synonym of H. cinnamomeoventris (FROST 2008).  

A MaxEnt CEM (Figure 1.6-2A) using 17 presence data points of the 'eastern taxon' 

and based on Bio1, 10, 11, 12, 16 and 17 (see Table 1.3-1) advocates that this species is 

potentially distributed in the northern Lake Victoria catchment, part of the northern Congo 

Basin, the Eastern Arc Mountains and the Ethiopian Highlands (AUC = 0.992). Eastern 
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Arc and Ethiopia are outside the realized distribution of any Hyperolius referable to H. 

cinnamomeoventris sensu lato (Figure 1.6-1) that it can be ignored when analyzing the 

geographic range of the 'eastern taxon'. Today, all potential junior synonym names are 

outside of the PD of the ‘eastern taxon’; however it might be possible that they represent 

glacial relicts. In order to assess this hypothesis I here projected the MaxEnt CEM as 

shown in Figure 1.6-2A onto paleoclimate data derived from the General Circulation 

Model (GCM) simulations from the Community Climate System Model (CCSM) as 

explained above. Figure 1.6-2B indicates how this eastern species was potentially 

distributed during the Last Glacial Maximum, ca. 21,000 years BP. During this cooler and 

drier period, the 'eastern taxon' within H. cinnamomeoventris sensu lato might have been 

more widely distributed in the Congo Basin than today. Regarding the type localities of the 

different junior synonym names, they all are situated outside the potential distribution of 

the 'eastern taxon' under current and Last Glacial Maximum conditions except that of H. 

ituriensis (Figure 1.6-2A). Therefore, it was concluded that H. ituriensis may be the best 

applicable name. 
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Figure 1.6-1. Distribution of three reed frog species, genus Hyperolius, according to the 
IUCN Red List (http://www.iucnredlist.org). In the case of H. cinnamomeoventris sensu 
lato, DNA barcoding (ca. 550 bp of the 16S mitochondrial rRNA gene) of samples from 
different localities (all circles, some of which lay outside the geographic range according to 
the IUCN Red List) revealed that different sibling species are involved; white circles 
combine samples which belong to an 'eastern taxon' within this species complex (authors' 
unpubl. data). 

 

 

Unfortunately distribution data to generate CEMs for other species hidden behind the 

name H. cinnamomeoventris are lacking but genetic evidence (S. LÖTTERS, unpubl. data) 

supports that at least the 'eastern taxon' does not occur in sympatry with any other species 

within H. cinnamomeoventris sensu lato (Figure 1.6-1). This is well supported by the 

observation that sister species commonly exhibit allopatric distributions, especially in 



                                                                                                Section 1: General introduction 

 30

amphibians (FISHER et al. 2001; GRAHAM  et al. 2004). An explanation may be that due to 

geographic separation it is likely that some degree of shift in climate envelopes as an 

adaptation to the local environment takes place (GRAHAM  et al. 2004).  

 

 

Hyperolius mitchelli and H. puncticulatus 

It is not always given that sister species have different climate envelopes. This is the 

case in two East African reed frogs, Hyperolius mitchelli and H. puncticulatus, which by 

their vocalizations and when applying DNA taxonomy can be well distinguished (SCHIØTZ 

1999; RÖDDER and BÖHME, in press; authors' unpubl. data). Their known geographic 

ranges largely overlap (Figure 1.6-1), and a MaxEnt model (using 18 and 27 presence 

points, respectively, and based on Bio1, 10, 11, 12, 16 and 17; see Table 1.6-1; AUC = 

0.903 and 0.952 for the two species, respectively) uncovered that similarity in their climate 

envelopes is so high (Figure 1.6-2C, E) that the two cannot be separated using CEMs. As 

expectable, even projecting the MaxEnt models onto CCSM paleoclimate simulations, the 

potential geographic distributions of H. mitchelli and H. puncticulatus remained largely 

similar (Figure 1.6-2D, F). 

Apparently, climate niches in these two reed frogs show a high degree of 

conservatism and have not changed with speciation. This gives an interesting insight into 

their evolution and poses some questions: Have H. mitchelli and H. puncticulatus speciated 

in sympatry? Or have they speciated in allopatry but have retained their climate envelopes 

because these were overall little specialized? Both patterns are uncommon in amphibians 

as made clear above. However, sympatric speciation has never been demonstrated in 

amphibian species. The most likely explanation is that speciation has taken place on 

isolated refuges during a warm phase allowing isolation. Climatic conditions at these 

isolates (likely mountains) apparently had shown similar climates, thus explaining the lack 

of niche divergence during speciation. The examples of H. mitchelli and H. puncticulatus 

illustrate also the effects of limited accessibility. Both species may find climatically 

suitable regions outside their realized distribution in great parts of central Africa and 

Madagascar. While range expansions to Madagascar are restricted by the sea, apparently 

the Albertine Rift valley with its numerous lakes prevents westward range extensions. In 

addition, this lowland region is climatically relatively unsuitable for both species (Figure 

1.6-2C, D, indicated in green). 
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Figure 1.6-2. Climate Envelope Models computed with MaxEnt for different African reed 
frog species (Hyperolius) under current climate (A, C, E) and paleoclimate (B, D, F, 
considering past sea level fluctuation) conditions. White circles indicate presence data for 
species used for modelling; other symbols used in A represent type localities of nominal 
species currently in the synonymy of Hyperolius cinnamomeoventris (filled square: H. 
fimbriolatus and H. olivaceus, filled circle: H. cinnamomeoventris sensu stricto and H. 
tristis, filled triangle: H. wittei, grey circle: H. ituriensis; for synonym list see FROST 
2008). 
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1.7. Strengths of CEMs and potential ‘pitfalls’ when interpreting results 

CEMs are easy to use and inexpensive. A steadily increasing number of studies has 

been showing that, when CEMs are properly applied, results can have a high quality (e.g. 

PETERSON 2003; WALTARI  and GURALNICK 2009; WALTARI  et al. 2007). They have been a 

rich source of quantitative projections concerning geographic ranges of species with great 

value in many areas of both basic and applied ecology and conservation. They allow the 

identification of possible threats due to climate change (e.g. see HABEL et al. 2009) or past 

migration pathways (Figures 1.7-1, 1.7-2; WALTARI  et al. 2007; RÖDDER and DAMBACH  

2009; RÖDDER et al. 2009; WALTARI  and GURALNICK 2009).  

For example, CEM projection of the potential distribution (PD) of the Azure Hawker 

(Aeshna caerulea (STROEM, 1783)) onto palaeo-climatic scenarios reflecting conditions as 

expected for the LGM 21,000 BP suggest that climatically suitable areas were widely 

distributed in Europe throughout the LGM (Figure 1.7-1). The PD would have connected 

current refugia. It is also possible to reconstruct past refugia of currently wide-spread 

species (WALTARI  et al. 2007), e.g. as shown for the yellow-bellied toad Bombina 

variegata (Figure 1.7-2). Furthermore, CEMs can be used as a guideline for efficient 

further sampling, since phylogeographic studies are expensive in terms of both time and 

resources. Regarding relict species, CEMs may be useful for the identification of 

potentially suitable areas which may harbor relict populations unknown so far. 

As outlined before, strengths and weaknesses of different climate models should be 

taken into consideration (BEAUMONT et al. 2008). Evaluation of a variety of scenarios may 

help to assess output variations. For example, when comparing Figures 1.7-1B, C and 1.7-

2B, C the general patterns are similar, but fine scale differences, especially in northward 

PD limits, can be identified. These can be traced back to different assumptions made in the 

palaeo-climatic scenarios used, e.g. concerning assumed CO2 concentrations.  

CEMs are derived from a subset of environmental conditions at species records (= 

variables selected); hence they capture only a more or less extensive part of the climatic 

niche depending on the variables selected and other factors influencing the distribution of 

species (see below). They are generally unable to capture the niche completely, and output 

maps show regions with similar conditions as the testing records according to the predictor 

variables selected rather than ‘complete’ niches. 
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Figure 1.7-1. Today’s distribution of Aeshna caerulea (A, hatched, source: KUHN and 
BURBACH 1998; STERNBERG and BUCHWALD 2000) and its potential distribution computed 
with MaxEnt 3.2.1 derived from current climatic conditions. Higher MaxEnt values 
suggest higher climatic suitability. Figure B and C show potential distributions of Aeshna 
caerulea assuming two different paleoclimatic scenarios depicting climatic conditions as 
expected for 21,000 BP (B: CCSM; C: MIROC). Areas of currently known distribution of 
A. caerulea are highly congruent with the proposed potential distribution of the CEM even 
in small and disjunctive ranges. Projections of the CEM onto palaeoclimatic scenarios 
suggest potential migration pathways during the LGM connecting most current refugia. 
Source: RÖDDER and DAMBACH  (2009). 
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Figure 1.7-2. Today’s distribution of Bombina variegata (A, hatched, source: IUCN, 
2006) and its potential distribution computed with MaxEnt 3.2.1 derived from current 
climatic conditions. Higher MaxEnt values suggest higher climatic suitability. Figure B 
and C show projections of the climate envelope of B. variegata assuming two different 
paleoclimatic scenarios depicting climatic conditions as expected for 21,000 BP (B: 
CCSM; C: MIROC). Areas of currently known distribution of B. variegata are highly 
congruent with the proposed potential distribution of the CEM even in small and 
disjunctive ranges, e.g. in France. Projections of the CEM onto palaeoclimatic scenarios 
suggest potential refugia during the LGM. Source: RÖDDER and DAMBACH  (2009). 
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Quality and spatial properties of distribution records used for model building can 

significantly influence the results, e.g. when samples do not cover the whole climatic niche 

space suitable of the target species. Another concern is spatial autocorrelation, which is 

always present in spatial datasets and may bear heavily on models (DORMANN et al. 2007) 

since some algorithms require that samples are independently distributed of each other, 

which is seldom the case in biological data. Spatial autocorrelation is basically a lack of 

independence between observations due to the fact that vicinity in space alters the chance 

of occurrence. An analogous phenomenon is observed in time if multi-temporal datasets 

are used. Methods dealing with spatial autocorrelation like SAR models or PCNM 

approaches are treated in detail by DORMAN et al. (2007).  

Unfortunately, most commonly applied methods to reduce sample bias, such as 

selecting specific distance buffers, and / or spatial autocorrelation, such as SAR or PCNM 

methods, can not be properly combined with some modelling techniques such as Maxent. 

In regions exhibiting a steep varieng environmental gradients selection of specific distance 

buffers may excude species records which may significantly contribute to the feature 

space. To avoid this drawback I have developed a technique to reduce sample bias by 

removing duplicate information in climate space from the data set. The genrall idea is that 

species records situated close by each other should tend to be most similar in feature space. 

Hence, they can be identified by running a cluster analyses based on their environmental 

properties and – since 10-30 species records are commonly sufficient for successful model 

building –records very similar in feature space can be removed from the data set without 

loosing too much valuable information.  

When applying CEMs some key assumptions regarding biological aspects are 

commonly made: (1) species occur at all locations where the climate is favorable, (2) biotic 

interactions are unimportant in determining ranges and are constant over space and time 

and (3) genetic and phenotypic compositions of species are constant over space and time 

(JESCHKE and STRAYER 2008). (1) Ideally CEMs highlight all areas that are climatically 

suitable for the target species reflecting its potential distribution regardless dispersal 

limitations and thus accessibility. When interpreting potential distribution maps it is 

important to evaluate the dispersal properties of the target species. For example, although 

Bombina variegata (Linnaeus, 1758) could find climatically suitable areas in England 

today (Figure 1.7-2), the species is unable to colonize the UK due to dispersal limitation by 

the sea. Genrall methodontologial uncertainities are summarized in Figure 1.7-3. 
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(2) Biotic interactions are commonly not considered during model building since 

interactions, such as competition or predation in species assemblages are often too 

complex to be gathered in a single step during model building. For example, the PD of 

Bombina variegata is considerably wider than its realized distribution in Germany, the 

Czech Republic, Slovakia and Hungary (Figure 1.7-2A). Here, climate is not the limiting 

factor since a hybrid-zone between B. variegata and its sister species Bombina bombina 

(LINNAEUS, 1761) hamper further dispersal (SZYMURA  1993). Under different climate 

scenarios, PDs of species can respond spatially in a different manner which can cause 

strong variations over space and time and result in discrepancies (e.g. as shown by 

SCHWEIGER et al. (2008) in an ENM approach for a butterfly / host plant system). For 

simplicity's purpose it may be useful to focus in a first step on the climatic niches of each 

target species to assess its potential distribution and subsequently compare models for 

potentially interacting species.  

(3) An important point when projecting CEMs onto past or future climate scenarios is 

that fundamental niches can be subject to evolution. In a recent review, it has been shown 

that, independent of the taxonomic group, the fundamental niche can remain stable for tens 

of thousands of years or it can shift substantially within only a few generations (PEARMAN 

et al. 2008). ‘Niche conservatism’ of closely related species is a phenomenon that has been 

observed in several different taxonomic groups (e.g., PETERSON et al. 1999; WIENS and 

GRAHAM  2005), but, on the other hand, niche shifts have also proposed (e.g. GRAHAM  et 

al. 2004; BROENNIMANN et al. 2007; FITZPATRICK et al. 2007; BROENNIMANN and GUISAN 

2008; FITZPATRICK et al. 2008; PEARMAN et al. 2008; RÖDDER and LÖTTERS 2009). So 

evidence for the degree of niche shifts or niche conservatism in closely related species is 

mixed and debated (PEARMAN et al. 2008; WIENS and GRAHAM  2005). When applying 

CEMs, it is an important issue if (climatic) niches are rather conservative or not, especially 

when the aim is an assessment of changes in potential distributions under different climate 

scenarios. However, in general, there is a considerable lack of knowledge regarding the 

processes triggering shift in climatic niches as well as in suitable methods to analyze it. 

 

 

 

 

 

 



                                                                                                Section 1: General introduction 

 37

 

 

 

Figure 1.7-3. Potential error sources and uncertainties in CEMs after PEARSON (2007), 
modified. Species records (x) available for model training commonly reflect neither the 
species’ entire realized distribution (A, C; grey), its potential distribution (solid lines) nor 
the complete suitable niche space (B: grey). Since CEMs are fitted based on a subset of the 
suitable niche space (C: dashed line), the model may not identify the whole realized or 
potential distribution. Subsequent projection of the model in geographic space may identify 
three different distribution types: projected area 1 identifies the known distribution of the 
training records, area 2 identifies a part of the realized distribution from which no species 
records were available, and area 3 identifies a potential distribution that is actually not 
inhabited, e.g. due to biotic interactions or limited accessibility.  
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SECTION 2: STRUCTURE OF CLIMATE NICHES 
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2.1. Translating natural history into geographic space: a 

macroecological perspective on the North American Slider, Trachemys 

scripta (Reptilia, Cryptodira, Emydidae)2 

 

 

 

 

Trachemys scripta ssp. 

 

                                                 
2 This part was submitted to the Journal of Natural History. 
 
The work reported in this chapter was conducted in collaboration with AXEL KWET 
from the Staatliches Museum für Naturkunde, Suttgart, Gemany, and STEFAN LÖTTERS 
from the Faculty of Geosciences, University of Trier, Germany. 
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Introduction  

It is not new that climate elements and factors have an important influence on the 

distribution of plant and animal species, as the ecological niche concept has been well 

discussed over decades (GRINNELL 1917; JAMES et al. 1984). Temperature has a strong 

impact on physiology, activity and development in most species (PARMESAN 2006). 

Climatic factors may strongly affect taxa with temperature-dependent sex determination 

(TDS) such as many crocodiles, turtles and lizards (JANZEN and PAUKSTIS 1991; EWERT 

et al. 1994). Several studies have suggested that species with TDS may be threatened by 

anthropogenic global climate change, i.e. mainly warming, affecting sex ratios (JANZEN 

1994a; MORJAN 2003). However, a throughout assessment of broad scale geographic 

variation in climate factors influencing sex ratios of species with TDS is currently 

lacking, but may be pivotal for an assessment of potential threats caused by climate 

change.  

In recent years, there has been noted a remarkable increase in availability of 

information on climatic parameters in geographic space, including remote regions and 

species distribution data. Accompanied by improved computation capacities, these have 

allowed for an increase of large scale assessments regarding the relationship between 

observed species distributions and explanatory environmental (climatic) parameters. 

Such studies can be approached by modelling climate niches (also called climate 

envelopes) of species and their projection into geographic space (GUISAN and 

ZIMMERMANN  2000), allowing for a broad-scale assessment of climatic variations 

throughout a species geographic range. 

Herein, we assess broad scale climatic variation in the Slider, Trachemys scripta 

(Reptilia, Cryptodira, Emydidae), distributed in the southern and the southeastern USA 

and adjacent northeastern Mexico. As all emydids, T. scripta lays eggs in subterranean 

nests. Breeding throughout the whole range takes place from March to July, with 

nesting in mid-April to mid-July (GIBBONS et al. 1982; ARESCO 2004). The duration 

between egg deposition and hatching of the neonates takes 60–130 days in the northern 

range depending on egg incubation temperature, whereby low temperatures cause 

slower development (e.g. NÖLLERT 1992). In Lousiana, eggs were reported to hatch in 

approximately 68–70 days (DUNDEE and ROSSMAN 1989). For successful egg 

development, the soil surrounding the nest has to provide enough moisture (TUCKER et 
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al. 1998) and warmth, ca. 26.0–32.5 °C (WIBBELS et al. 1991; CREWS et al. 1994). Sex 

determination of Trachemys embryos is temperature-dependent, with cooler egg 

incubation temperatures increasing the number of males and warmer egg incubation 

temperatures favouring females (EWERT et al. 1994). The differentiation of both sexes is 

possible within a range of temperature called the transitional range of temperatures 

(TRT; MOROSOVSKY and PIEAU 1991; CREWS et al. 1994), which spans 2.31 °C (28.3–

30.6 °C; CREWS et al. 1994; CADI et al. 2004). Both the initiation date and the length of 

this period depend on the overall egg incubation temperature, although, in general, the 

temperature-sensitive phase extends for approximately two weeks (WIBBELS et al. 1991; 

CADI et al. 2004). Clutch development and sex-ratios are therefore highly influenced by 

climatic conditions during the breeding season and specific climatic conditions during 

egg development are essential for establishment and maintenance of populations. 

We hypothesise that climatic requirements allowing for successful egg incubation 

and a balanced sex ratio in T. scripta are the major driver for its geographic distribution. 

In this paper, we (1) evaluate the variation in monthly mean temperatures throughout 

the native distribution of this species and (2) test if it is a good predictor for its 

geographic range.  

 

 

Methods 

Presence data points of Trachemys scripta 

We found 377 records of Trachemys scripta in collections linked to the Global 

Biodiversity Information Facility (GBIF) and HerpNet databases within the native range 

of the species following the definition of the Nonindigenous Aquatic Species 

information resource of the United States Geological Survey (http://nas.er.usgs.gov). 

All data was checked with DIVA-GIS for bias and errors (HIJMANS et al. 1999; 2002). 

For georeferencing, we used the Alexandria Digital Library Gazetteer Server Client 

(http://middleware.alexandria.ucsb.edu/client/gaz/adl/index.jsp).  
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Climate data 

Mean soil temperature is largely not available. However, mean air temperature can 

be used as proxy for mean soil temperature as both are closely correlated, whereby soil 

temperature is commonly slightly higher than air temperature (e.g. HAYS et al. 2003; 

HAWKES et al. 2007). The climate information used here goes back to Worldclim, 

version 1.4 (HIJMANS et al. 2005), which is based on weather conditions recorded 

between 1950 and 2000 at spatial resolution of 2.5 minutes (about 4 x 4 km in the study 

area). The dataset was created by interpolation using a thin-plate smoothing spline of 

observed climate at ~25,000 worldwide weather stations, with latitude, longitude and 

elevation as independent variables (HUTCHINSON 1995; 2004). The climate data set 

comprising 12 layers describing the monthly mean temperature (TMEAN1–TMEAN12) 

was downloaded from the Worldclim homepage (http://www.worldclim.org; 15 May 

2007). In order to examine the thermal limits of the mean monthly temperature during 

reproductive period, we extracted at each distribution record the monthly mean 

temperature and calculated boxplots for comparisons between months (Figure 2.1-1). 

We acknowledge that short-term variation in weather conditions may cause 

change in the sex ratio or even prevent successful breeding in particular years. 

However, such negative effects may be compensated when such events do occur 

occasionally accompanied by high longevity in this species (BULL  and BULMER 1989). 

The maximum life span of Trachemys scripta may be up to 42 years in the wild 

(commonly ca. 30 years; HARDING 1997), whereby first reproduction on average can 

take place at the age of eight years (GIBBONS et al. 1981). Hence, it appears likely that 

single or even few years with suboptimal reproductive success may not cause extinction 

of local populations. Mean temperature over a longer time span might be more 

important for long-term maintenance of populations and hence for a species’ geographic 

distribution. 

 

 

Assessing the explanative power of variables 

In order to evaluate the relative importance of monthly variables, we computed 

Climate Envelope Models with MaxEnt 3.2.19 (PHILLIPS et al. 2004; 2006; 

http://www.cs.princeton.edu/~shapire/Maxent; downloaded 15 October 2008). MaxEnt 
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is a machine-learning algorithm for species potential distribution models with 

environmental predictors. In multiple tests, MaxEnt generally revealed better results 

than comparable methods (ELITH  et al. 2006; HEIKKINEN  et al. 2006; WISZ et al. 2008). 

The general concept behind MaxEnt is to find a probability distribution covering the 

study area derived from environmental constraints at species presence. The program 

chooses the distribution that is closest to uniform and therefore maximises entropy 

(JAYNES 1957) within all distributions (PHILLIPS et al. 2006; PHILLIPS and DUDÍK 2008). 

Runs used herein were conducted using the default values for MaxEnt settings.  

In order to evaluate the predictive performance of the monthly temperature 

variables, we computed (1) 12 models using the 12 monthly mean temperatures 

separately as variables (Figure 2.1-2) and (2) a single model based on all 12 variables in 

combination (Figure 2.1-3).  

Maxent allows for model testing by calculation of the ‘Area Under the receiver 

operation characteristic Curve’ (AUC) based on training and random background data, 

which represent the ability of the model to distinguish presence data from background 

(PHILLIPS et al. 2006). This method is recommended for ecological applications because 

it is non-parametric (PEARCE and FERRIER 2000). Values of AUC range from 0.5 (i.e. 

random) for models with no predictive ability to 1.0 for models giving perfect 

predictions. According to the classification of SWETS (1988), AUC values > 0.9 

describe “very good”, > 0.8 “good” and > 0.7 “useful” discrimination ability. 

While a MaxEnt model is being trained with multiple predictors, it is possible to 

keep track of which environmental variables are making the greatest contribution to the 

model. During each step of the MaxEnt algorithm, the gain of the model is increased by 

modifying the coefficient for a single feature. The program subsequently assigns the 

increase in the gain to the environmental variable(s) that the feature depends on. These 

are automatically converted into percentages at the end of the training process. These 

percent contribution values depend on the particular path that the MaxEnt code uses to 

get to the optimal solution and are therefore heuristically defined (PHILLIPS et al. 2006).  
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Results and discussion 

Monthly temperature variation at Slider records 

Variability of mean monthly temperatures within the geographic range of 

Trachemys scripta was highest during winter and lowest during summer (Figure 2.1-1, 

Table 2.1-1). Highest variation with an amplitude of 22.5 °C was observed in the mean 

temperature in January (median 3.85 °C; range -7.75–14.75 °C) and lowest with an 

amplitude of 7.59 °C in the mean temperature in July (median 26.80 °C; range 22.45–

30.40 °C). This indicates a high variation throughout the large geographic range 

encompassed by the Slider in winter and likewise the contrast in summer. We found a 

strong correlation between the amplitudes of the monthly mean temperature from June 

to August and the sensitive phase for sex-determination in the Slider (Figure 2.1-1A).  

 

 

Table 2.1-1 Variation in monthly mean temperature [°C] throughout the realised 
geographic range of Trachemys scripta. Mean monthly temperature data was obtained 
from 377 species records. 
 
 
Month Minimum  Maximum Amplitude 1. Quartile Median 3. Quartile 

January -7.75 14.75 22.50 -0.30 3.85 6.85 

February -5.20 16.80 22.00 2.50 5.90 9.15 

March 1.10 20.95 19.85 7.55 10.60 13.25 

April 8.15 24.55 16.40 13.45 15.65 17.90 

May 14.45 27.25 12.80 18.50 20.05 22.15 

June 20.10 29.45 9.35 23.35 24.40 25.95 

July 22.45 30.40 7.95 25.90 26.80 27.50 

August 21.05 30.50 9.45 24.95 25.85 27.05 

September 16.65 28.15 11.50 20.80 22.10 23.95 

October 10.35 24.15 13.80 14.55 15.90 18.25 

November 2.90 19.75 16.85 7.25 10.40 12.65 

December -4.50 15.95 20.45 1.65 5.55 8.10 
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In the Hawksbill turtle (Eretmochelys imbricata), developing nests can increase 

their temperature for about 3.4 °C so that soil temperature may be raised (GLEN and 

MROSOVSKY 2004). The authors suggested that increase was attributable to metabolic 

heat produced by the developing eggs but magnitude of metabolic heating depends on 

clutch size (BOOTH and ASTILL 2001; BRODERICK et al. 2001). It cannot be ruled out 

that metabolic heating may also be important in nests of T. scripta, which could result in 

an underestimation of the actual nest temperature when applying mean air temperature 

as proxy for soil temperature (see above). But clutch size in E. imbricata is remarkably 

larger than in T. scripta, likely lowering the available amount of metabolic heat. 

Furthermore, eggs at the edge of a clutch of the Hawksbill turtle can be cooler than 

those in the centre (GODFREY et al. 1997; BOOTH and ASTILL 2001) and variation 

between the top of the clutch and the bottom may also exist (HOUGHTON and HAYS 

2001). Therefore, we conclude that nest temperature in the Slider is well reflected by the 

soil temperature. As a consequence, mean air temperature cannot only be used as a 

proxy for mean soil temperature (e.g. HAYS et al. 2003; HAWKES et al. 2007) but also 

for the nest temperature in the Slider. 

 

 

Which climatic factor best predicts the Slider's geographic range? 

Performance of Climate Envelope Models computed with each the single monthly 

mean temperature as variables largely varied (Figure 2.1-1B), whereby the mean 

temperature in June and July (summer) had the greatest predictive power. Generally, 

AUC values obtained from models computed with monthly mean temperatures for 

winter times were lower than those revealed for summer times. These observations lead 

us to advocate that the monthly mean temperature during summer months at Slider 

presence records provide a stronger contrast to random background in MaxEnt 

approaches. The model received when using the mean June temperature resulted in the 

highest AUC value suggesting that it is the best predictor (among those studied) for the 

species’ geographic range (Figure 2.1-1B). 
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Figure 2.1-1 A: Boxplots illustrating the variability of the monthly mean temperature at 
377 distribution records within the native range of Trachemys scripta. Note that the 
variation is lowest during the incubation of eggs (June-August). B: performance of 
monthly mean temperature observed at the Slider records in models computed with 
single variables (see text). Higher AUC values suggest that the respective model has a 
higher ability to distinguish climatic conditions at Slider records from random 
background. 
 

 

The model computed with all 12 monthly mean temperatures as variables received a 

‘very good’ (see SWEETS 1988) AUC value of 0.957. The known geographic range of 

Trachemys scripta in North America was well matched (Figure 3) which also confirms 

the predictive power of this model. Maxent's analysis of variable contribution to the 

model revealed that the mean temperature in August had the highest explanative power, 

followed by those for June and May, while all others had minor explanative power only 

(Table 2.1-2).  
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Figure 2.1-2 MaxEnt Climate Envelope Models computed using the mean temperature 
for each month as single variables. Darker grey-scale suggests higher climatic suitability 
(same scale as in Figure 3). Species records used for modelling are indicated by white 
dots. 
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Table 2.1-2 Heuristic estimate of the explanative power of the mean temperature per 
month to the MaxEnt Climate Envelope Model. To determine the estimate, in each 
iteration of the training algorithm, the increase in regularised gain is added to the 
contribution of the corresponding variable, or subtracted from it if the change to the 
absolute value of lambda is negative. 
 

Mean Temperature per Month Percent Contribution 

August 27.7 

June 27.1 

May 24.3 

February 4.8 

October 4.6 

November 4.5 

July 3.3 

January 2.1 

December 1.0 

April 0.2 

March 0.2 

September 0.1 

 

 

When computing models with multiple variables, it needs to be noted that 

multicolinearity among predictor variables may bear the risk of hampering the analysis 

of species-environment relationships. Ecologically more causal variables may be 

excluded from the modelling process if other inter-correlated variables explain the 

variation in response variable better in terms of statistics (HEIKKINEN  et al. 2006). We 

expect such multicolinearity for monthly mean temperatures included in our model, 

evident through the limited explanative power (in contrast to the single variable 

approach) of the mean temperature in July suggested by the MaxEnt analysis of variable 

contribution (Table 2.1-2).  
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Figure 2.1-3 Trachemys scripta records (white dots) used for model training and the 
species' potential distribution according to a MaxEnt Climate Envelope Model based on 
mean temperature of all 12 months as variables. Darker grey-scale suggests higher 
climatic suitability. 
 

 

Impact of winter temperatures 

PACKARD et al. (1997) have suggested that the northern geographic range limit of 

Trachemys scripta may be set ultimately by the inability of hatchlings to tolerate 

freezing. Slider offspring commonly hibernates inside the nest during the first winter in 

northern populations and they are sensitive to nest temperatures below -0.6 to -4.0 °C, at 

which they die (PACKARD et al. 1997; TUCKER and PACKARD 1998; COSTANZO et al. 

2008). According to our observations, winter temperatures exhibit the greatest variation 

throughout the native geographic range (Figure 2.1-1A) and at the same time had the 

lowest explanative power (Figure 2.1-1B). Although the minimum of the mean monthly 

temperature was well above 0 °C at the majority of the Slider records studied (Figure 

2.1-1A), the mean temperature was lower than -0.6 °C at 88 records in January, at 28 

records in February and at 35 records in December. The minimum mean temperature 

recorded at our records was -7.75 °C in January. We acknowledge that freezing may 
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limit the geographic distribution of T. scripa in the North. However, projection of 

monthly climate envelopes in geographic space illustrates that monthly mean 

temperatures during December, January and February were not coincident with the 

species’ range limits in the North-East or the West. This makes us believe that low 

winter temperatures are not the major driver for most of the northern portion of the 

actual geographic range of the Slider. Summer temperatures may be more important for 

the geographic distribution of the species as these better meet the native range of the 

Slider. 

 

 

Possible strategies for compensation of climatic variation 

Although our results argue for a strong relationship between mean temperatures in 

summer and the spatial distribution of Trachemys scripta, the climatic variation 

throughout this species’ range is larger than expected when assuming fixed TRTs. 

Mechanisms compensating local differences in temperature regimes can comprise either 

regional differences in behaviours such as nest site choice by females and plasticity in 

nesting phenology or regional variations in embryonic temperature sensitivity.  

For the Painted turtle (Chrysemys picta), also native to North America, it has been 

demonstrated that vegetation cover plays an important role in determining nest 

temperatures and nest sex ratios over the year (JANZEN 1994b; WEISROCK and JANZEN 

1999). However, July mean air temperature determines the average nest sex ratio each 

year and strongly predicts the cohort sex ratio (SCHWARZKOPF and BROOKS 1987; 

JANZEN 1994a; 1994b; WEISROCK and JANZEN 1999). In the study of SCHWARZKOPF 

and BROOKS (1987), sex ratios were not correlated with any nest parameters except 

temperature which, on the other hand, was more dependent on annual climatic variation 

than on variation in site characteristics. The authors concluded that Painted turtle 

females selected nest sites to maximise the probability for their eggs to hatch rather than 

to influence the offspring sex ration. If this is also the case in T. scripta, the Slider may 

not be able to compensate variation in summer temperatures throughout its range. 

Comparing geographic variation in timing of nesting, ARESCO (2004) found little 

variation in T. scripta. He concluded that it is unrelated to regional temperature 

differences and fixed as a result of stabilizing selection. Even if phenotypic plasticity of 
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timing of nesting will be possible, it might not be sufficient, like it has been suggested 

by SCHWARZ and JANZEN (2008) for the Painted turtle. The authors underlined that 

phenotypic plasticity of labile nesting dates depended on the climate of the previous 

winter, but argued that this plasticity appears to be insufficient to prevent potentially 

negative effects of climate warming on offspring sex ratios. Even a minor increase in 

the summer temperature had a much stronger effect on nest sex ratios than, 

alternatively, laying eggs earlier in the season (SCHWARZ and JANZEN 2008).  

If environmental temperature differs between populations, then sex-ratio selection 

is expected to adjust either maternal behaviour (as discussed above) or embryonic 

temperature sensitivity to maintain balanced sex-ratios in different populations (BULL  

1982). Physiological studies suggest that seasonal shifts in hormone levels, affecting the 

sex ratio may buffer extreme ratios in some species (BOWDEN et al. 2000). Such effects 

were uncovered in T. scripta by SHEEHAN et al. (1999), who artificially treated eggs 

with hormones. However, BULL  (1982) found no evidence for natural differences in 

embryonic temperature sensitivity between northern and southern Slider populations. 

 

 

Conclusion 

Our study indicates that freezing during the winter may regionally but not 

generally limit the Slider's geographic distribution. It appears to be more likely that 

climatic requirements allowing for successful egg incubation and balanced sex ratios in 

T. scripta are the major driver for the Slider’s spatial range. Although adaptive 

strategies such as nest site choice by females, plasticity in nesting phenology or regional 

variation in embryonic temperature sensitivity may account for partial compensation of 

negative effects caused by local differences or climate change, they might be 

insufficient for entire compensation.  
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2.2. Alien invasive Slider in unpredicted habitat: a matter of niche shift 

or variables studied?3 

 

 

 

 

Trachemys scripta elegans 

 

 

                                                 
3 This part was submitted to PLoS ONE. 
 
The work reported in this chapter was conducted in collaboration with SEBASTIAN 
SCHMIDTLEIN  from the Geography Department, University of Bonn, Bonn, Germany, and 
MICHAEL VEITH and STEFAN LÖTTERS from the Faculty of Geosciences, University of 
Trier, Trier, Germany. 
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Introduction 

Alien invasive species are a concern in nature conservation as they may have a 

negative impact on native biodiversity (LOWE et al. 2000). Potential distribution maps of 

invasive species based on Climate Envelope Models (CEM) have been shown to represent 

a powerful tool to identify areas climatically suitable for alien invasive species (e.g. 

PETERSON and VIEGLAIS 2001; WELK et al. 2002; GIOVANELLI  et al. 2007; RÖDDER et al. 

2008; RÖDDER 2009). In these approaches, the climate envelope can be understood as a 

part of a species’ fundamental niche (e.g. SOBERÓN and PETERSON 2005; but see also 

PULLIAM  2000), which is the entirety of abiotic and biotic conditions under which it can 

survive. According to HUTCHINSON (1957, 1978) as modified by SOBERÓN and PETERSON 

(2005), the portion of the fundamental niche exploited by a species is commonly limited by 

biological interaction with other species (e.g. competition, predation) and by spatial 

accessibility (e.g. physical barriers) (Figure 2.2-1A). Fundamental niches are subject to 

evolution: in a recent review, it has been shown that, independent of the taxonomic group, 

the fundamental niche can remain stable for tens of thousands of years or it can shift 

substantially within only a few generations (PEARMAN et al. 2008). However, in general, 

there is a considerable lack of knowledge regarding the processes triggering niche shifts. 

SAX  et al. (2007) pointed out that alien invasive species can provide unexpected 

experiments providing valuable insights into ecological and evolutionary processes. 

Indeed, some recent studies have addressed the question of rapid niche shifts during 

invasion processes. Using CEMs, BROENNIMANN et al. (2007) found that in the Spotted 

knapweed (Centaurea maculosa) the climate envelopes in its native range (western North 

America) differed from its invasive range in Europe. Similarly, FITZPATRICK et al. (2007) 

demonstrated in a CEM approach that Fire ants (Solenopis invicta) can be ascribed to 

climate envelopes in their invaded range (North America) from which they are absent in 

their native South American range. These observations made by BROENNIMANN et al. 

(2007) and FITZPATRICK et al. (2007) could represent a shift either in the fundamental 

(Figure 2.2-1B) or realized niche (Figure 2.2-1C). Since alien invasive species, by 

definition, access areas they were absent from before, the “new” climate envelope might 

most likely simply represent a better exploitation of the existing fundamental niche (Figure 

2.2-1C). To the best of our knowledge, information on the physiological limits of 

Centaurea maculosa and Solenopis invicta is sparse. Hence, it cannot be ruled out that the 

climate variables chosen by BROENNIMANN et al. (2007) and FITZPATRICK et al. (2007) are 

not physiologically limiting for the native range borders of these species.  
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Figure 2.2-1 (A) Relationships between fundamental niche, biotic interaction and 
accessibility after HUTCHINSON (1957) as modified by SOBERÓN and PETERSON (2005); (B) 
fundamental niche shift; (C) better exploitation of the fundamental niche after access into 
new areas. Dots represent native species records. 
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We think that this striking question – i.e. genetic novelty (niche evolution) versus a better 

insight into the existing fundamental niche breadth – should be addressed when applying 

CEM.  

Some authors have argued that CEM approaches using observed distributions for 

model computation per se rather reflect realized than fundamental niches (e.g. PULLIAM  

2000). That may cause errors when projecting CEMs into new areas, since suitable areas 

may be excluded although being physiologically suitable for the target species. Modeling 

should thus focus on the physiological limits of species for optimal predictions. Without 

this information, many of the observed mismatches (or “niche shifts”) might simply be 

artifacts caused by a choice of unsuitable variables. We hypothesize that a selection of 

predictors aiming at a description or even at a complete depiction of the climatic conditions 

in the native range may be less useful for statistical model training than predictor selections 

based on a mechanistic understanding of physiologically limiting factors. 

So far, only a few studies have tried to model the fundamental niche of a species 

without using distribution records. In a comprehensive study, KEARNEY and PORTER 

(2004) combined physiological measurements of the Australian gecko Heteronotia binoei 

and high-resolution climatic data to calculate its climate envelope and to project it onto 

geographic space. KEARNEY et al. (2008) undertook a similar study in Cane toads, 

Chaunus marinus, which is an invasive alien species in Australia. Such a mechanistic 

approach, as suggested by these authors, seems to be clearly superior to the commonly 

used empirical methods. However, detailed information on the physiology and natural 

history traits required to fully address the fundamental niches from a mechanistic point of 

view will remain unavailable for most of our planet’s species (KEARNEY and PORTER 2004; 

KEARNEY et al. 2008). However, at least the variables with physiological relevance are 

often known. Accordingly, empirical records and statistical models will remain a starting 

point, with predictor sets based on natural history providing the most successful 

calibrations - a hypothesis to be tested here. 

In order to test this hypothesis, the Slider (Trachemys scripta SCHOEPFF, 1792) may 

be a suitable study organism. It is an alien invasive species in many parts of the world and 

its ecology has been thoroughly studied. Between 1989 and 1997, about 52 million 

individuals were produced in the United States for the foreign pet trade (TELECKY 2001). 

Released by pet owners, it has established feral populations in many different regions of 

the world (e.g. OTA et al. 2004; PERRY et al. 2007; RAMSAY  et al. 2007; IUCN Invasive 

Species Specialist Group: “Trachemys scripta elegans” under: www.issg.org). At the same 
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time, the natural history (including thermal tolerance, reproduction and physiology) of the 

slider has been the object of numerous studies (e.g. HUTCHISON et al. 1966; HUTCHISON 

1979; GARSTKA et al. 1991; WIBBELS et al. 1991; CREWS et al. 1994; BACCARI et al. 1993; 

BAILEY  and DRIEDZIC 1995; LAMB  et al. 1995; PACKARD et al. 1997; TUCKER et al. 1998; 

TUCKER and PACKARD 1998), providing the basis for a natural history-driven modeling 

approach.  

 

 

Methods 

Slider record data 

We used 375 Slider records available through the Global Biodiversity Information Facility 

(GBIF; www.gbif.org) and HerpNet databases (www.herpnet.org) within the native range 

of the species, as defined by L. A. SOMMA , A. FOSTER and P. FULLER (2008): “Trachemys 

scripta” in the USGS Nonindigenous Aquatic Species Database 

(http://nas.er.usgs.gov/queries/FactSheet.asp?speciesID=1259). In addition, 205 records of 

invasive populations were obtained from the source by SOMMA  and colleagues, the 

Delivering Alien Invasive Species Inventories for Europe database (DAISE; www.europe-

aliens.org), the IUCN Invasive Species Specialist Group (www.issg.org), the Brazilian 

Instituto Hórus (www.instutohorus.org.br) and additional published references (JONES 

1988; SCHWARTZ and HENDERSON 1991; DA SILVA  and BLASCO 1995; DEGENHARDT et al. 

1996; MCKEOWN 1996; PLATT and SNYDER 1996; LUISELLI et al. 1997; MARTÍNEZ-

SILVESTRE et al. 1997; NOVOTNY 1997; ARVY and SERVAN 1998; SAENZ and COLLINS 

1999; DIXON 2000; MINTON 2001; FICETOLA et al. 2002; TOWNSEND et al. 2002; EMER 

2004; OTA et al. 2004; STITT et al. 2004; EHRET and PARKER 2005; ARESCO and JACKSON 

2006; BRUEKERS and BROUWER 2006; CHEN 2006; PIEH and LAUFER 2006; PRÉVOT-

JULLIARD  et al. 2007). For georeferencing we used the Alexandria Digital Library 

Gazetteer Server Client (www.middleware.alexandria.ucsb.edu/client/gaz/adl/index.jsp). 

The accuracy of coordinates processed by us was assessed with DIVA-GIS (HIJMANS et al. 

1999; 2001). In doing so, we only included invasive records with confirmed successful 

reproduction.  
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Climate data 

Our climate information stems from Worldclim 1.4 (HIJMANS et al. 2005), which is 

based on climate conditions in the period 1950-2000 at a spatial resolution of about 1 x 1 

km. It was created by interpolation using a thin-plate smoothing spline of observed climate 

at weather stations, with latitude, longitude and elevation as independent variables 

(HUTCHINSON 1995; 2004). The climate data set was downloaded from the DIVA-GIS 

homepage (http://www.diva-gis.org), i.e. 36 monthly mean variables (minimum 

temperature, maximum temperature and precipitation). Based on these data, we calculated 

19 ‘bioclimate’ variables for further processing with DIVA-GIS 5.4 (see Figure 2.2-2 and 

Appendix 2.2-S1; HIJMANS et al. 2001). DIVA-GIS provide the opportunity to plot the 

cumulative frequency of distribution records according to ‘bioclimate’ variables. This 

allowed us to compare the climatic tolerance between the native and invasive distributions 

of the Slider for all 19 ‘bioclimate’ variables. 

 

 

Selection of climate variables  

We chose three sets of variables: ‘comprehensive’ set: all 19 ‘bioclimate’ layers 

depicting the most comprehensive climatic pattern following the approach of different 

authors running CEM (e.g. BROENNIMANN et al. 2007; GIOVANELLI  et al. 2007); 

‘minimalistic’ set: a subset of seven variables out of the ‘comprehensive’ data set defining 

the availability of thermal energy and water (e.g. the minimum, maximum and mean values 

at the species records) as applied to different taxa by HIJMANS and GRAHAM  (2006), 

PETERSON and NYÁRI (2007), FITZPATRICK et al. (2007) and FICETOLA et al. (2007); 

‘natural history’ set: a subset of five variables out of the ‘comprehensive’ set aiming at 

reflecting the physiological limits of the Slider’s climate envelope (see results for details). 

To be clear, we did not use these variables to map the known physiological limits. The 

variables were used as predictors in the same way as the other sets. In addition, we 

analyzed random subsets of seven and five ‘bioclimate’ variables, respectively, to test the 

null hypotheses that our selected variable sets ’minimalistic’ and ’natural history’ do not 

predict the potential distribution of invasive populations better than any random set 

consisting of the same number of variables. All sets, including the ‘minimalistic’ and 

‘natural history’ sets, were extracted from the same set of 19 Worldclim variables 

Selection of the ‘natural history set’ of variables: The Slider strongly depends on 

continuous availability of water throughout the year, whereby almost any kind of water 
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body is suitable (SOMMA  et al. 2008). Therefore, it is not surprising that the south-western 

limit of its native range border is found in the North American deserts, which are 

characterized by low precipitation throughout the year (SOMMA  et al. 2008). To take this 

into account, we included the ‘annual precipitation’ and the ‘precipitation of the driest 

quarter’ in our data set for CEMs. It has been demonstrated that the feeding behavior and 

digestive turnover rates in the Slider are strongly temperature-dependent. At body 

temperature < 10 °C the species does not feed anymore (PARMENTER 1980; RAMSAY  et al. 

2007). Hence, in accordance with a positive energetic balance over the year, we added the 

‘annual mean temperature’ into our modeling approaches. The physiologically determined 

minimum equates with the minimum value recorded within the native range (8.3 °C; see 

Appendix 2.2-S1). HUTCHISON (1979) has shown that the upper avoidance temperature is 

around 37 °C which is remarkably similar to the upper limit of the ‘maximum temperature 

of the warmest month’ recorded within the native range (i.e. 37.4 °C; see Appendix 2.2-

S1). To account for this we included the ‘maximum temperature of the warmest month’ in 

CEM approaches. 

Adult Sliders commonly hibernate at the bottom of icebound water bodies being 

largely insulated against cold air. They maintain a body temperature of approximately 4 

°C, which makes the species insensitive to cold winters. Nevertheless, PACKARD et al. 

(1997) compared Slider records from Illinois and eastern Iowa with contours identifying 

locations where frost penetrates to a depth of 12 cm in 11 out of 14 winters and found a 

strong relationship. In colder parts of the native range, Slider neonates hibernate inside 

their nests and are sensitive to temperatures below -0.6 °C, at which they die (see also 

TUCKER and PACKARD 1998). As a consequence, adult Sliders hibernating in water may 

tolerate frost, but neonates in nests may be negatively affected by frost. The native range of 

our study species to the north is therefore reasonably defined by minimum temperatures 

during winter. Considering this relationship, we included ‘minimum temperature of the 

coldest month’ when computing CEM. 

 

 

Computation of CEM 

For the CEM calculation we used MaxEnt 3.2.1 (PHILLIPS et al. 2006; 

http://www.cs.princeton.edu/~shapire/maxent), a machine-learning algorithm following the 

principles of maximum entropy. It has been shown to reveal better CEM results than other 

comparable methods (e.g. ELITH  et al. 2006; JESCHKE and STRAYER 2008; WISZ et al. 
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2008). A disadvantage of MaxEnt is that it is a ‘black box’ method. Since results can 

remarkably vary between different algorithms, we compared MaxEnt results with those 

obtained from a second algorithm BIOCLIM (NIX  1986; BUSBY 1991), as implemented in 

DIVA-GIS. BIOCLIM develops climate envelope models by intersecting the ranges 

inhabited by the species along each environmental axis. An advantage of this method is 

that results are completely transparent for interpretation. 

Clumped records can violate the statistical independence of observations and 

therefore assumptions of CEMs (e.g. DORMANN et al. 2007). To account for this we 

extracted all ‘bioclimate’ values from the native distribution records and performed a 

cluster analysis with XLSTAT 2008 (Addinsoft; www.xlstat.com) in order to remove 

redundant information in the data set. XLSTAT allows to blunt cluster classes at a 

predefined threshold of similarity (herein 99.9 %), and calculates mean values for each 

resulting class. These class means were used for further processing in CEMs.  

DIVA-GIS allows for model testing by calculation of the Area Under the Curve 

(AUC), referring to the ROC (Receiver Operation Characteristic) curve by using a subset 

of data (commonly 25-30 %) as test points and the remaining ones as training points 

(ELITH  et al. 2006; PEARCE and FERRIER 2000). Independent validation (i.e. with invasive 

records) was suggested to be superior to data splitting (e.g. JESCHKE and STRAYER 2008); 

therefore, we used all invasive Slider records as subsets and in a second run 25 % of the 

native records. Because absence data are lacking, DIVA-GIS uses a set of random pseudo 

absence points (HIJMANS et al. 2001). AUC calculation is recommended for ecological 

applications because it is non-parametric. Values of AUC range from 0.5 for models with 

no predictive ability to 1.0 for models giving perfect predictions. According to the 

classification of SWETS (1988), AUC values > 0.9 describe ‘very good’, > 0.8 ‘good’ and > 

0.7 ‘useable’ discrimination ability. 

For thresholds derived from the natural history and physiological traits describing the 

climate envelope of the Slider, it is important to reduce the contribution of variables to 

their upper or lower tails, respectively. This is reasonable considering the limiting function 

of the ‘minimum temperature of the coldest month’, which may kill neonates. Here, only the 

lower tail has a biological meaning, but warmer temperatures may provide no disadvantage 

for the species. In BIOCLIM this kind of function is implemented directly, but is 

unfortunately absent in Maxent. Therefore, we used grids of each variable containing 

categorical classes between the upper or lower limits and the mean of the variables within 

the native range of the Slider for MaxEnt runs. For parts of a grid representing the 
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biologically meaningless tail, values greater or smaller than the mean of the variable within 

the native range were combined into a single category. These procedures remove the 

influence of meaningless tails during MaxEnt runs. 

The logistic output of MaxEnt is a continuous map which allows fine distinctions to 

be made between the modeled suitability of different areas. MaxEnt calculates a threshold 

value at each run (PHILLIPS et al. 2006). Values greater than this threshold may be 

interpreted as reasonable approximation of a species’ potential distribution, but the higher 

a MaxEnt value, the better the prediction and therefore the climatic suitability for a species.  

Six types of areas are mapped in the BIOCLIM output: areas outside the 0-100 

percentile climatic envelope of the species for one or more ‘bioclimate’ variables are 

considered unsuitable, grid cells within the 0-2.5 percentile have a ‘low’ climatic 

suitability, those within the 2.5-5 percentile a ‘medium’, those within the 5-10 percentile a 

‘high’, those within the 10-20 percentile a ‘very high’ and cells within the 20-100 

percentile an ‘excellent’ climatic suitability (HIJMANS et al. 2001). 

 

 

Results 

Figure 2.2-2 compares each of the 19 ‘bioclimate’ variables of the native and 

invasive ranges of the Slider, respectively. Ranges of variables observed in invasive 

populations which exceed those observed in native ones can be interpreted as shifts in 

niche dimension. Ranges in the following variables were most similar in native and 

invasive ranges: ‘annual mean temperature’, ‘mean temperature of the wettest quarter’, 

‘mean temperature of the driest quarter’, ‘annual precipitation’, ‘precipitation of the driest 

month’, ‘precipitation of the driest quarter’ and ‘precipitation of the coldest quarter’. The 

highest dissimilarity was found in ‘isothermality’, ‘temperature seasonality’, ‘annual 

temperature range’, ‘minimum temperature of the coldest month’ and ‘mean temperature 

of the coldest quarter’. Lower temperature limits in the native and invasive ranges were 

almost equal for ‘annual mean temperature’, ‘isothermality’, ‘minimum temperature of the 

coldest month’, ‘mean temperature of the wettest quarter’ and ‘mean temperature of the 

driest quarter’, but the upper limits within the invasive range frequently exceeded those of 

the native range.  

Areas meeting all climatic requirements of the species according to the expected 

physiological limits of the Slider are mapped in Figure 2.2-3. Areas where any of the 

proposed climatic variables are outside the physiological limit of the species were 
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excluded. The remaining area is highly coincident with the native range as well as records 

of native and invasive populations (AUCnative = 0.849; AUCinvasive = 0.795). 

Applying the ’comprehensive set’ of ‘bioclimate’ variables to CEM calculation 

predicted the native range in a way which matched the known natural distribution of the 

Slider in both MaxEnt and BIOCLIM models. However, the models largely failed to 

predict populations elsewhere in the world due to overfitting (Figure 2.2-4A, also see 

Appendix 2.2-S2; MaxEnt AUCnative = 0.991; AUCinvasive = 0.716; BIOCLIM AUCnative = 

0.990; AUCinvasive = 0.547). Using the ’minimalistic’ subset of ‘bioclimate’ variables, CEM 

accuracy within the native range was reasonably met. However, predictions for invasion of 

the Slider outside North America remained poor (Figure 2.2-4B; also see Appendix 2.2-S2; 

MaxEnt AUCnative = 0.989; AUCinvasive = 0.702; BIOCLIM AUCnative = 0.988; AUCinvasive = 

0.535). In contrast, only the results for the ‘natural histroy’ subset of variables met both 

native and invasive potential distributions of the Slider (Figures 4C; also see Appendix 2.2-

S2; MaxEnt AUCnative = 0.974; AUCinvasive = 0.861; BIOCLIM AUCnative = 0.974; 

AUCinvasive = 0.757). 

The randomly selected subsets of five and seven ‘bioclimate’ variables revealed that 

all models were ‘very good’ in describing the native range (AUC seven variables 0.987 – 0.994; 

AUC five variables 0.977 – 0.994; Figures 2.2-5, 2.2-6), which is slightly better then our 

models derived from the ‘natural history’ set. Comparing the predictive performance of the 

models outside the Slider’s native range, selection of a lower number of variables was 

associated with a broader area classified as suitable in a limited number of models (< 10 

%). The AUC value of our model for invasive records derived from natural history criteria 

was higher than all AUC values obtained from random variable selection confirming a 

better prediction ability (AUC ranges seven random variables: native: 0.987–0.994, 

invasive: 0.587–0.847, AUC ranges five random variables: native: 0.977–0.994, invasive: 

0.569–0.855; AUC data set ‘natural history’ = 0.861). In both random iterations, invasive 

records were less frequently captured than invasive records at the same latitudes as the 

native records (Figures 2.2-6A, B). This applies especially to records situated at lower 

latitudes (between 26° N and S corresponding to the southernmost known native records). 

This latitudinal decrease in predictive performance was confirmed when testing the models 

using only invasive records between 26° N and S as test points (n = 62; Figures 2.2-6D, E; 

AUC range seven random variables: 0.356–0.708; AUC range five random variables: 

0.279–0.749), whereas our model derived from natural history criteria performed well here 
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(Figure 2.2-6C, AUC = 0.795). Thus, the vast majority of models did not capture the 

Slider’s actual climate envelope.  

 

 

 

Figure 2.2-2 Comparison of 19 ‘bioclimate’ variables at 375 native and 205 invasive 
records of the Slider. Ranges of variables within the native records are indicated with 
vertical dashed lines. Note that some upper and lower limits of both native and invasive 
records are highly congruent.  



 

 

 

 

 

 

Figure 2.2-3 Presence of the Slider in its native range (grey dots) and in its invasive range where it is known to reproduce (white dots). Areas 
considered as suitable for the Slider with respect to physiological limits as described in the text are indicated (black). 
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Figure 2.2-4 Presence of the Slider in its native range (green dots) and invasive range 
where it is known to reproduce (red dots), countries from which reproducing populations 
are known but no specific localities are available (hatched) and potential distribution 
derived from MaxEnt climate envelope (colored): (A) using 19 ‘bioclime’ variables, 
approach ‘comprehensive’; (B) using 7 ‘bioclime’ variables, approach ‘minimum’; (C) 
using 5 ‘bioclime’ variables derived from physiological and natural history traits of the 
Slider, approach ‘natural history’. 
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Figure 2.2-5 Prediction accuracy of 2 × 100 MaxEnt models calculated with a random 
selection of seven (A) and five (B) variables out of the complete set of 19 ‘bioclimate’ 
variables. Note that the native range is well captured by each model whereby the invasive 
populations, especially between 26.0° N and S longitude, are not. 
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Figure 2.2-6 The predictive performance for invasive populations largely decrease at 
lower Latitudes in models computed with random subsets of variables (A, B), but not in a 
MaxEnt model derived from natural history criteria (C) (filled dots: native records; open 
triangles: invasive records). Test statistics of 100 MaxEnt models based on random 
selection of each seven (D) and five variables (E) out of the complete set of 19 ‘bioclimate’ 
variables. Model accuracy was tested with native (AUC nat), invasive (AUC inv) and 
‘tropical’ invasive records (AUC 26°; 26° latitude N and S; n = 62). Note that the native 
range is well captured by each model whereby the invasive populations, especially in the 
tropics, are not. Arrows indicate AUC inv values of the MaxEnt model derived from 
natural history criteria (AUC inv = 0.861; AUC 26° = 0.795). 
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Discussion 

Our results provide evidence that the observation of an apparent ‘niche’ (i.e. climate 

envelope) shift in the Slider strongly depends on the choice of the variables applied during 

modeling. The observed range of a species reflects multiple determinants, including 

climatic tolerances, biotic interactions, equilibrium with climate and dispersal limitation. 

Hence, niche-based models derived from distribution alone will predict the geographic 

equivalent of the realized niche rather than the potential range of a species (PULLIAM  

2000). A CEM derived from the realized niche may therefore under-predict a species’ 

fundamental niche because it does not consider biotic interactions and abiotic factors 

which may limit distributions. In our study species, one such abiotic factor is probably the 

ocean, which limits the native range south- and eastwards. This illustrates that not all range 

limits can be explained by climate alone what strongly affects the models herein by 

frequently excluding areas between 26° N and 26° S.  

Furthermore, when applying a data set depicting the complete climatic variation 

within the realized distribution of a species, the limits of all dimensions of its fundamental 

niche are unlikely to be reached because some niche dimensions may have a wide-reaching 

impact defining a large part of the native range border (as the ‘minimum temperature of the 

coldest month’ in the Slider). Likewise, others may have no impact. However, the 

parameters without an actual limiting function could be treated as limiting in CEM and 

may exclude areas suitable for the target species outside the native range from a natural 

history point of view. 

Although the CEM approach may provide insight into the fundamental niche of a 

species (PETERSON 2001; PETERSON and VIEGLAIS 2001), it cannot provide a complete 

picture and might be poor in choosing the relevant determinants of distribution patterns. 

Our results imply that parameters, which are unrelated to a species’ natural history and 

physiology albeit congruent with its range limits, are frequently used by the models as 

proxies for a species’ climatic envelope. This becomes evident in comparing the predictive 

performance of our models in the invaded range computed with a random selection of 

variables and a model derived from natural history criteria (Figures 2.2-5A, B). Only the 

model considering explicit natural history traits performed significantly better than models 

based on an equal number of randomly chosen variables (Figures 2.2-4C, 2.2-6C; also see 

Appendix 2.2-S2). The vast majority of random models did not capture the Slider’s actual 

climate envelope although test statistics may suggest a reasonably high model quality. 

Hence, the observed mismatches may be misinterpreted as range shifts rather than as errors 
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in the selection of variable (Figures 2.2-4A, B, 2.2-5A, B; also see Appendix 2.2-S2). 

PETERSON and NAKAZAWA  (2008) also found that the predictive power of models in 

respect of native and introduced distributions is strongly affected by the different 

environmental data sets applied. These findings are congruent with our results, since 

different sets of predictor variables have a different chance of capturing a greater or 

smaller part of the niche dimensions restricting a species’ native range, thus explaining 

their different prediction success.  

Assuming a shift in the sliders’ fundamental niche is not necessary to explain the 

range of invasive populations in CEM, as mismatches between climate envelopes in native 

and invasive ranges can simply be explained by the choice of variables in CEM. Before 

any conclusions on niche shifts are made, an assessment of a species’ fundamental niche 

should be addressed based on a mechanistic understanding of the limiting factors of its 

range. Our results indicate that such an understanding of causal factors is essential when 

assessing the climatic suitability of a geographic area or potential range shifts in past or 

future scenarios.  

Our study does not aim at a principle rejection of a fundamental niche shift 

occurring during invasion processes (e.g. as suggested by BROENNIMANN et al. 2007; 

FITZPATRICK et al. 2007). If in fact a niche shift had occurred in invasive populations of the 

Slider, our conclusions would be based on the false assumption of no niche shift. However, 

assuming inappropriate model selection instead of niche shift (evolutionary response) in a 

successful invader that has conquered large areas in different parts of the world within 

about 30 years is a more parsimonious assumption, especially in the light of all the 

methodological uncertainties accompanying with CEM (ELITH  et al. 2006). This raises 

some concerns about the simplistic approach of applying ‘standard datasets’ of predictors 

in climate envelope modeling. 

 

 

Conclusions 

The mismatch between ‘very good’ (as defined by SWETS, 1988) model 

performance in a mere statistical sense and the model’s ability to capture the climatic niche 

of an organism is of particular concern. Selection of variables must be conducted carefully 

and needs to be fitted to the ecological and physiological characteristics of each species. 

Unfortunately, the lack of physiological data for the vast majority of species and the 

application of ‘standard’ sets of environmental variables make predictions for whole 
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species’ communities and biodiversity loss questionable (e.g. MALCOM et al. 2006; 

THOMAS et al. 2004). Thus, future research should place more emphasis on the evaluation 

of the physiological and ecological important characteristics which are important for each 

single species instead of being content with deductions from distributional information.  
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2.3. Niche shift versus niche conservatism? Climatic characteristics 

within the native and invasive ranges of the Mediterranean Housegecko 

(Hemidactylus turcicus)4 

 

 

 

 
©William Flaxington                                                                                       Hemidactylus turcicus 

 

                                                 
4 This part is accepted for publication in Global Ecology and Biogeography. 
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Introduction  

Invasive species, as unanticipated experiments, may provide valuable insights for 

ecology and evolutionary biology including niche characteristics (KOZAK et al. 2008; SAX  

et al. 2008). Successful establishment of a non-indigenous species into a species 

community depends on existing species richness, competitors, predators, food availability 

and human footprint on its climatic similarity compared to the source ecosystem (EHRLICH 

1989; WILLIAMSON  1996). Here, GIS-based Climate Envelope Models (CEMs) can 

provide an easy-to-use method to assess the potential distribution (PD) of species derived 

from their climatic niches (i.e. climate envelopes). In recent years, the number of studies 

using CEMs to assess PDs of species has exploded; they address past, present and future 

distributions applying different climate scenarios (e.g. JESCHKE and STRAYER 2008). Also 

it has been demonstrated how useful CEMs can be for the identification of climatically 

suitable regions to species and hence for predicting the potential of invasive species (e.g. 

PETERSON and VIEGLAIS 2001; GIOVANELLI  et al. 2007; JESCHKE and STRAYER 2008; 

RÖDDER et al. 2008; RÖDDER 2009).  

When applying CEMs to project PDs of invasive species in new regions, one has to 

distinguish between the fundamental and realized niches. As defined by HUTCHINSON 

(1957; 1978), a species’ fundamental niche represents the complete set of environmental 

conditions under which it can persist. The realized niche in environmental space is a subset 

of the fundamental niche considering physical dispersal limitations and biotic interactions 

(e.g. competition, predation; Figure 2.3-1). Generally, niche variables can be subdivided 

concerning specific classes regarding the spatial extent in which they operate and if 

competition may play a role or not (SOBERÓN 2007). The Grinnellian class is defined by 

fundamentally non-interactive variables, as climate-related ones (GRINNELL 1917), 

whereby the Eltonian class focuses on biotic interactions and resource-consumer dynamics 

(ELTON 1927). The former operates on a coarse scale and is the main subject in CEM 

approaches, while the latter can be measured at local scales only and is commonly not 

addressed in CEMs (SOBERÓN 2007). 

When calculating CEMs, it is assumed that the range of the target species is in 

equilibrium with climate (ARAÚJO and PEARSON 2005) and that the climate envelope of the 

studied species is conservative across space and time (WIENS and GRAHAM  2005; 

PEARMAN et al. 2008). Evidence to which degree climate envelopes are conservative is 

ambiguous why the entire issue is currently under debate. Several studies have tried to 

assess the degree of niche conservatism, but momentarily general conclusions are lacking 
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(PEARMAN et al. 2008). One reason might be that strikingly different comparative methods 

and null hypothesis were used to quantify and define niche conservatism (WARREN et al. 

2008). PETERSON et al. (1999), for example, assessed niche similarity, which asks whether 

CEMs derived from occurrences of one species predict occurrences of a second better than 

expected under a null hypothesis that they provide no information about one another’s 

range. On the other hand, GRAHAM  et al. (2004) performed a test of niche equivalency 

asking whether the niches of two species are effectively indistinguishable, i.e. more similar 

than random (see also KNOUFT et al. 2006; PFENNINGER et al. 2007). Both tests of niche 

similarity and equivalency contrast extremes within a spectrum of niche conservation 

which might cause conflicting conclusions when applying one or the other (WARREN et al. 

2008).  

 

 

Figure 2.3-1 (A) Relationships between fundamental niche, biotic interaction and 
accessibility in ecological space (after HUTCHINSON 1957 as modified by SOBERÓN and 
PETERSON 2005); the realized niche (= conditions as observed within the realized 
distribution) is indicated in grey and native species records as dots; (B) increase of 
fundamental niche space resulting a an shift in the realized niche; (C) better exploitation of 
the fundamental niche after access into new areas; (D) different degrees in limitation of the 
realized niche between variables: variables 1-3 are actually limiting the realized niche, 
whereby the limits of the ‘relaxed’ variable 4 is not reached within the realized niche.  
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Recently, several authors have found a mismatch between species’ native and 

invasive ranges in terms of climate envelopes (e.g. BROENNIMANN et al. 2007; 

FITZPATRICK et al. 2007; BROENNIMANN and GUISAN, 2008). It was suggested that niche 

shifts during biological invasion may have taken place what would seriously violate basic 

assumptions behind many CEM applications. However, PETERSON and NAKAZAWA  (2008) 

showed that differences in predictive abilities of CEMs for invasive species are correlated 

with the choice of environmental data sets involved. The authors pointed out that variable 

selection is a crucial step, which can highly influence CEM output. Climatic conditions in 

different geographic regions may show variation in many parameters including some 

biologically meaningful ones actually restricting the range of a species under study and 

some variables, which may have a weak or no impact (termed ‘relaxed’ hereafter; Figure 

2.3-1). Since different variable sets are likely to cover different parts of the environmental 

niche space suitable to a species, differences in predictive abilities of models are most 

likely if a species occupies a different niche space in its native and invasive ranges 

regarding some (relaxed) variables involved (FITZPATRICK et al. 2008).  

In this paper, we assess differences in climatic niches in the native and invaded 

ranges of the Mediterranean Housegecko (Hemidactylus turcicus) in terms of commonly 

applied climate variables in CEMs. We analyze which variables are more conserved versus 

relaxed (i.e. subject to niche shift). Furthermore, we study the predictive power of different 

sets of climate variables aiming at either comprehensiveness or minimalism of 

temperature, precipitation and both temperature and precipitation combined.  

 

 

Methods 

Studied species 

Some Old World House Geckos, genus Hemidactylus (Reptilia; Gekkonidae), have 

remarkably extended their distributions since the last century (e.g. CARRANZA and 

ARNOLD, 2006). There are more apparent cases of large range extensions in these squamate 

reptiles than in any other reptile group. Today, Hemidactylus turcicus, which has its native 

range in the Mediterranean basin (BÖHME 1981), is considered a widespread species 

outside this region species and has also been introduced into the New World (CARRANZA 

and ARNOLD 2006).  

The population density of H. turcicus within the invasive range is generally high 

(e.g., 544-2210 geckos ha-1 in Edinburg, Texas (SELCER 1986), and 478 geckos ha-1 in 
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Edmond, Oklahoma (LOCEY and STONE 2006)), but genetic exchange between populations 

may be limited since diffusion dispersal abilities are restricted in this species (about 5-20 m 

per year; LOCEY and STONE 2006). On the other hand, jump dispersal caused by accidental 

transport of adult geckos or their eggs by humans is suggested to occur frequently since 

high population densities are often associated with highway arteries (DAVIS 1974). The 

species is suggested to be highly adaptive and a successful colonizer (e.g. SELCER 1986; 

MESHAKA 1995). 

First records of the Mediterranean Housegecko in the New World were documented 

in 1910 in Key West, Florida (FOWLER 1915). In 1950, it had arrived at Brownsville, Texas 

(DAVIS 1974). Today, this House Gecko is widespread in the southern USA including 

Alabama, Arizona, Arkansas, southern California, Florida, Georgia, Louisiana, Maryland, 

Mississippi, Missouri, New Mexico, Nevada, Oklahoma, South Carolina, Texas, and 

Virginia (Appendix 2.3-S1). In addition, H. turcicus has been introduced into Panama and 

Mexico (COLLINS and IRWIN 2000) and to Cuba (SCHWARTZ and HENDERSON 1991).  

 

 

Species records 

We used 1,400 (1,173 native, 227 invasive; Figure 2.3-2) georeferenced records of 

Hemidactylus turcicus situated in unique grid cells from collections linked to the Global 

Biodiversity Information Facility (GBIF, 2007) and the HerpNet (2007) databases; 

literature data were added for complementation purposes. However, for model 

computation, only those records within areas with confirmed reproduction were considered 

(see Appendix 2.3-S1). Georeferencing was conducted when necessary with the 

Alexandria Digital Library Gazetteer 

(http://middleware.alexandria.ucsb.edu/client/gaz/adl/index.jsp).  

We used DIVA-GIS 5.4 (http://www.diva-gis.org; HIJMANS et al. 2002) to test the 

accuracy of coordinates (Check Coordinates tool) by comparing the species records and an 

administrative boundaries database at the smallest possible level (state/country/city). This 

information should be the same, and any mismatches probably reflect errors (HIJMANS et 

al. 1999). In addition, we used altitudinal information to spot likely errors in the coordinate 

data when this information was provided with the record data used. Altitude was compared 

with an estimate of the altitude of the locality, using the Extract Values by Points function 

in DIVA-GIS.  
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Figure 2.3-2 Hemidactylus turcicus records in native European (A) and invasive American 
ranges (B), used for model training.  
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Climate data  

Information on current climate was obtained from the Worldclim database (version 

1.4), which is based on weather conditions recorded between 1950 and 2000 with grid cell 

resolution 5 minutes (HIJMANS et al. 2005; http://www.worldclim.org). It was created by 

interpolation using a thin-plate smoothing spline of observed climate at weather stations, 

with latitude, longitude and elevation as independent variables (HUTCHINSON 1995; 2004). 

Climate data include monthly mean variables of minimum and maximum temperature and 

precipitation. Based on these data, 19 so called ‘bioclimate’ variables (Table 2.3-1) were 

calculated with DIVA-GIS 5.4. Bioclimate variables have been proven to be useful for 

CEM approaches (e.g. FITZPATRICK et al. 2007, 2008; PETERSON and NAKAZAWA  2008; 

WARREN et al. 2008) and are more useful than monthly values, since they are independent 

from latitudinal variation. This becomes obvious when considering that the ‘maximum 

temperature of the warmest month’ is more informative to a warmth-dependent species 

than the ‘maximum temperature’ of a specific month, since the same month at the same 

time might not be the warmest within the entire geographic range of a species. With the 

goal to compare conditions at native and invasive House Gecko records, we extracted all 

19 bioclimate variables at each record and visualized them using stripe plots computed 

with XLSTAT 2008 (http://www.addinsoft.com). 

Multi-co-linearity among predictor variables, e.g. as expectable for the ‘minimum 

temperature of the coldest month’ and the ‘minimum temperature of the coldest quarter’, 

may hamper the analysis of species-environment relationships because ecologically more 

causal variables can be excluded from models if other correlated variables explain the 

variation in response variable better in statistical terms (HEIKKINEN  et al. 2006). To 

account for this, we selected in each set of variables either monthly or quarterly variables if 

a priori we expected co-linearity. 

CEMs derived from climatic conditions as observed at native and invasive gecko 

records were separately computed for each bioclimate variable. Further, we selected nine 

different sets of variables (Table 2.3-1): two sets comprising most bioclimatic variables 

with exclusion of highly collinear ones (Comprehensive month; Comprehensive quarter), two 

extreme minimalistic sets of variables (Minimum month; Minimum quarter), which aim on the 

availability of water and energy, two sets describing temperature related parameters 

(Temperature month; Temperature quarter), two sets describing precipitation related parameters 

(Precipitation month; Precipitation quarter), one set comprising variables which combine 

temperature and precipitation characteristics (Combined variables). 
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Climate Envelope Models  

For CEM computation we used MaxEnt 3.2.19 

(http://www.cs.princeton.edu/~shapire/Maxent; PHILLIPS et al. 2006), a machine learning 

algorithm for species PD models with environmental predictors. In multiple tests, MaxEnt 

generally revealed better results than comparable methods (ELITH  et al. 2006; HEIKKINEN  

et al. 2006; WISZ et al. 2008). The general concept behind MaxEnt is to find a probability 

distribution covering the study area that satisfies a set of constraints derived from 

conditions at species presence. Each constraint requires that the expected value of an 

environmental variable or a function thereof must be within a confidence interval of its 

empirical mean over the presence records. The program chooses the distribution that is 

closest to uniform and therefore maximizes entropy (JAYNES 1957) within all distributions 

that satisfy the constraints as any other choice would represent constraints on the 

distribution that are not justified by the data (PHILLIPS et al. 2006).  

Runs used herein were conducted using the default values for all program settings. 

Background points were randomly chosen within the area enclosed by a minimum convex 

polygon comprising all native (likewise invasive, respectively) records. MaxEnt allows for 

model testing by calculation of the area under the receiver operation characteristics curve 

(AUC) based on training and test data, which represent the ability of the model to 

distinguish presence data from background data (PHILLIPS et al. 2006).  

 

 

Niche overlap, similarity and equivalency 

We compared climate envelopes in terms of potential distributions quantitatively 

with SCHOENER’S (1968) index for niche overlap (D) (e.g. WARREN et al. 2008). This 

index allows for a quantification niche similarity between two probability distributions 

over geographic space:  

, ,

1
( , ) 1

2x y x i y i
i

D p p p p= − −∑
, 

whereby px,i and py,i each denote the probability assigned in the CEM for species X and Y 

to grid cell i. D values range from 0 (niche models have no overlap) to 1 (niche models are 

identical). Schoener’s D was originally developed for values reflecting relative use of 

particular microhabitats or prey items. Although it has been proposed to be useful in 

comparisons of potential distributions there is no assurance that px,i (and py,i) are 

proportional to local species density or any other measure of relative use in CEMs 
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(WARREN et al. 2008). For this reason, these authors proposed the Hellinger distance (H) to 

be used in addition, defined as  

2
, ,( , ) ( )x y x i y i

i

H p p p p= −∑
. 

Since H ranges from 0 to 2, a modification approaching the D range, i.e. from 0 (no 

overlap) to 1 (identical), according to  

1
( , ) 1 ( , )

2x y x yI p p H p p= −
 

was suggested by WARREN et al. (2008). We evaluated the significance of D and I values 

with null models regarding niche similarity and equivalency (WARREN et al. 2008). 

For niche equivalency we applied a randomization test as proposed by WARREN et al. 

(2008) that relies on the metrics D and I. For the native (nnat) and invasive occurrences 

(ninv) we created 100 pseudoreplicate datasets by randomly partitioning the pooled sets of 

nnat + ninv occurrences into sets of size nnat and ninv. CEMs were created from each 

pseudoreplicate and compared using D and I. The observed D and I values were compared 

to the percentiles of these null distributions in a one-tailed test to evaluate the hypothesis 

that niche models for native and invasive records were not significantly different. The test 

allows for an assessment of niche conservatism in a strictest sense: i.e. the effective 

equivalency of the climate niche in the native and invasive ranges. It is expected to be only 

met if native and invasive populations of one species tolerate exactly the same set of 

climatic conditions and have the same set of environmental conditions available to them.  

In order to assess niche similarity, we again used a randomization test of WARREN et 

al. (2008). This test compares the actual similarity of CEMs based on native records in 

terms of D and I values to the distribution of similarities obtained by comparing them to a 

CEM obtained by randomly choosing ninv cells from among the cells in the study area of 

the invasive records. The same procedure was performed in both directions (invasive <-> 

native records) 100 times to construct an expected distribution of D and I values between a 

CEM generated using actual occurrences and one generated from random background data 

points. As background, we defined the area within a minimum convex polygon comprising 

all native (or invasive) records, respectively. These null distributions served as two-tailed 

test to assess the following null hypothesis: measured niche overlap between native and 

invasive ranges is explained by regional similarities or differences in available habitat. 

This hypothesis is rejected if the actual similarity falls outside the 95 % confidence limits 

of the null distribution. Significantly higher values suggest that CEMs are more similar 

than expected by chance and lower values indicate greater differences, whereby the 
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difference between the observed and closest value in the null distribution may be a 

quantitative measure. Computations of D, I, niche similarity and equivalency were 

performed with a Perl script also used by WARREN et al. (2008). 

 

 

Results 

Bioclimatic conditions at native and invasive records 

Figure 2.3-3 summarizes bioclimatic conditions at native and invasive records of 

Hemidactylus turcicus. The ranges of the ‘mean temperature of the wettest quarter’, 

‘precipitation seasonality’, and ‘precipitation of the coldest month’ at invasive records 

completely fell within the ranges observed at native records. Ranges of the ‘annual mean 

temperature’, ‘mean monthly temperature range’, ‘maximum temperature of the warmest 

month’, ‘mean temperature of the warmest quarter’, ‘annual precipitation’, ‘precipitation 

of the wettest month’ and ‘precipitation of the wettest quarter’ exceeded the conditions as 

observed at native records only slightly or the number of exceeding records was relatively 

low. High proportions of the ranges of ‘isothermality’, ‘temperature seasonality’, 

‘minimum temperature of the coldest month’, ‘temperature annual range’, ‘mean 

temperature of the wettest quarter’, ‘mean temperature of the coldest quarter’, 

‘precipitation of the driest month’, ‘precipitation of the driest quarter’ and ‘precipitation of 

the warmest quarter’ at invasive records well exceeded those observed at the native 

records. 

 

 

Single variables: niche overlap, similarity and equivalency 

Table 3.2-2 provides results of the niche overlap, similarity and equivalency tests. D 

values ranged from 0.38 to 0.76 and I values from 0.60 to 0.84 (i.e. always higher the D 

values). Highest niche overlap (D ≥ 0.70; I ≥ 0.80) was found in the ‘minimum 

temperature of the coldest month’, ‘precipitation seasonality’ and ‘precipitation of the 

coldest quarter’. Lowest overlap (D ≤ 0.50; I ≤ 0.70) was detected in the ‘annual mean 

temperature’, ‘mean temperature of the wettest quarter’, ‘mean temperature of the warmest 

quarter’ and ‘precipitation of the warmest quarter’. Values of the other variables were 

intermediate. The hypothesis of niche equivalency was rejected in all cases. 
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Figure 2.3-3 Comparison of bioclimate variable scores as observed at native (nat) and 
invasive (inv) records of Hemidactylus turcicus. 

 

 

Results from the niche similarity test based on native records compared to the 

invasive background revealed that climatic conditions described by nine parameters were 

more different and eight more similar to those expected by chance when applying both D 

and I measures (Table 3.2-2). Two tests applying D and three applying I revealed no 

significant results. Greatest differences (D ≥ ± 0.20; I ≥ ± 0.10) to the null distributions 

were found in the ‘minimum temperature of the coldest month’ and a small differences 
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only (D ≤ ± 0.02; I ≤ ± 0.02) in the ‘mean temperature of the coldest quarter’. Results 

based on invasive records compared to the native background revealed that climatic 

conditions described by nine parameters were more different and only three more similar 

to those expected by chance when applying both measures (Table 3.2-2). One test applying 

D and four applying I revealed no significant results and in three cases the background 

tests revealed contraindicating results for D and I. Greatest differences (D ≥ ± 0.20; I ≥ ± 

0.10) to the null distributions were found in the ‘mean monthly temperature range’ and the 

‘mean temperature of the warmest quarter’. Small differences only (D ≤ ± 0.02; I ≤ ± 0.02) 

were detected in the ‘mean temperature of the wettest quarter’, ‘precipitation of the driest 

month’, ‘precipitation of the wettest quarter’ and ‘precipitation of the coldest quarter’. 

Those variables showing a relatively high degree of similarity of native and invasive 

ranges were tentatively more similar to those expected by random (e.g. ‘minimum 

temperature coldest month’, ‘precipitation coldest quarter’; Table 2.3-2) when compared to 

those showing low overlap (Figure 2.3-4), although this relationship was not significant 

(R2 < 0.1). 

 

 

CEMs computed with sets of variables 

Figures 2.3-5 and Appendix 2.3-S2 show crosswise projections of climate envelopes 

developed with the nine sets of variables, and Table 2.3-1 summarizes the importance of 

variables in each set of variables. We received excellent AUC values in all models 

following the classification accuracy of SWETS (1988) (Table 3.2-2). Models computed 

with monthly and quarterly temperature and precipitation variables were highly coincident 

(see Figures 2.3-5 and Appendix 2.3-S2; Table 2.3-3). Models obtained from the data sets 

‘Comprehensive’ and ‘Combined variables’ widely failed to predict the invasive (likewise 

native) range in crosswise projections. Those computed with the data sets ‘Minimum’ 

captured comparatively higher proportions when trained with native records, but not when 

trained with invasive records. Models resulting from the variable sets ‘Precipitation’ and 

‘Temperature’ performed intermediated, but frequently over-predicted the ranges. 
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Figure 2.3-4 Niche overlap in terms of D and I values and distance to expected null 
distribution of the 19 bioclimate parameters analyzed (for details see Table 2.3-1). 
 

 

Sets of variables: niche overlap, equivalency and similarity 

D Values observed in models computed with nine sets of variables ranged from 0.12 

to 0.55 and I values from 0.44 to 0.71 (i.e. higher than D values; Table 2.3-3). High niche 

overlap (D ≥ 0.50; I ≥ 0.70) was observed between CEMs received from the two 

‘Precipitation’ data sets, whereby lowest overlap (D ≤ 0.15; I ≤ 0.45) was detected using 

the ‘Comprehensive’ data sets. The hypothesis of niche equivalency was rejected in all 

cases. 
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Figure 2.3-5 Crosswise projections of climate envelopes developed with variable sets 
‘Comprehensive’, ‘Minimum’, ‘Precipitation’, ‘Temperature’ and ‘Combined variables’. 
Arrows indicate direction of projections, i.e. climate envelopes were developed based on 
records within one area and projected into the other. 



 

Table 2.3-1 Bioclimatic parameters, sets used for Climate Envelope Model generation and relative contribution of parameters in final models 
[%]. Data sets are referred to as Comprehensive month (1), Comprehensive quarter (2), Minimum month (3), Minimum quarter (4), Temperature month (5), 
Temperature quarter (6), Precipitation month (7), Precipitation quarter (8), Combined variables (9) in the text. 
 

Source of variation Abbreviation Data set, nat Data set, inv 
  1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 
                      
annual mean temperature Bio 1 10.8 13.3 38.7 29.9 30.7 26.1    41.6 40.7 49.3 42.1 60 59.1    
mean monthly temperature range Bio 2 21.6 22.1   25.5 28.4    0.5 0.7   13.1 17    
isothermality Bio 3 1.7 1.4   7.9 6.6    0.1 0.2   0.5 1.5    
temperature seasonality Bio 4 12.9 13.1   13.8 18.4    1.9 1.4   2 2.4    
max temperature warmest month Bio 5 1.1  12.7  2.7     4.2  2.7  19.9     
min temperature coldest month Bio 6 4.5  42.2  15.9     0.5  0.7  1.8     
temperature annual range Bio 7 1.8 3.4   3.5     0.6 0.7   2.7     
mean temperature wettest quarter Bio 8 9.6 9.6       19.6 1.9 1.9       18.5 
mean temperature driest quarter Bio 9 10.8 10.4       40.9 0.7 1       32.5 
mean temperature warmest quarter Bio 10   1.7  25.2  5.6      10.5  12.8  19.8    
mean temperature coldest quarter Bio 11   0.1  35.6  15      0.6  1.6  0.3    
annual precipitationipitation Bio 12 0.4 0.3 4.1 6.9   29.1 27.5  0.6 4 4.9 8.6   20.6 37.7  
precipitation wettest month Bio 13 0.2  2    8.6   13.5  11.6    51.9   
precipitation direst month Bio 14 0.2  0.2    41.9   15.3  30.8    20   
precipitation seasonality Bio 15 0.1 0     20.4 22.3  1.2 0.6     7.4 8  
precipitation wettest quarter Bio 16   0.1  1.7    12.2    1.3  1    10.4  
precipitation driest quarter Bio 17   0.2  0.7    39    22.6  33.9    44  
precipitation warmest quarter Bio 18 12.5 12.9       15.2 5.8 6.7       26.3 
precipitation coldest quarter Bio 19 11.9 11.4             24.3 11.5 7.1             22.6 
 

 



Table 3.2-2 AUC values per model, niche overlap in terms of I and D values and assessment of niche similarity and equivalency via 
randomization tests (see text). Significant values of niche equivalency are indicated with asterisks; ns = p > 0.05; * = p < 0.05; ** = p < 0.01; obs 
= observed significance level; nat = native; inv = invasive; dN0 = minimum difference between null distribution and observed overlap; values 
where overlap > dN0 are bolt, values where overlap < dN0 are italicized. 
 

 

 

Source of variation Model fit D I  
 AUCnat, AUCinv Overlap Similarity Overlap Similarity 
   obsnat dN0nat obsinv dN0inv   obsnat dN0nat obsinv dN0inv 
annual mean temperature 0.935, 0.898 0.47** < 0.01 -0.08 < 0.01 -0.13 0.68** < 0.01 -0.05 < 0.01 -0.03 
mean monthly temperature range 0.786, 0.757 0.52** < 0.01 0.15 < 0.01 -0.26 0.68** < 0.01 0.09 < 0.01 -0.10 
isothermality 0.850, 0.770 0.57** ns - < 0.01 -0.17 0.70** ns - < 0.01 -0.07 
temperature seasonality 0.894, 0.746 0.59** < 0.01 0.11 < 0.01 -0.21 0.74** < 0.01 0.06 < 0.01 -0.06 
max temperature warmest month 0.858, 0.886 0.54** < 0.01 -0.12 < 0.01 -0.07 0.71** < 0.01 -0.07 < 0.01 -0.03 
min temperature coldest month 0.877, 0.804 0.72** < 0.01 0.23 < 0.01 -0.08 0.80** < 0.01 0.12 ns - 
temperature annual range 0.867, 0.746 0.66** < 0.01 0.17 < 0.01 -0.21 0.76** < 0.01 0.08 < 0.01 -0.11 
mean temperature wettest quarter 0.819, 0.830 0.43**  < 0.05 - < 0.05 - 0.60** < 0.01 -0.01 < 0.01 -0.01 
mean temperature driest quarter 0.903, 0.798 0.61** < 0.01 0.04 < 0.01 -0.16 0.76** < 0.01 0.03 < 0.01 -0.07 
mean temperature warmest quarter 0.917, 0.902 0.41** < 0.01 -0.18 < 0.01 -0.21 0.65** < 0.01 -0.11 < 0.01 -0.10 
mean temperature coldest quarter 0.923, 0.844 0.66**  < 0.01 0.02 < 0.01 -0.05 0.76** < 0.05 - < 0.05 - 
annual precipitationipitation 0.750, 0.820 0.62** < 0.01 -0.07 < 0.01 -0.05 0.76** < 0.01 -0.03 < 0.01 0.01 
precipitation wettest month 0.705, 0.840 0.63** < 0.01 -0.08 < 0.01 -0.01 0.78** < 0.01 -0.03 < 0.01 0.01 
precipitation direst month 0.817, 0.800 0.65** < 0.01 -0.04 < 0.01 0.01 0.77** ns - ns - 
precipitation seasonality 0.747, 0.676 0.75** ns - < 0.01 -0.07 0.84** ns - < 0.01 -0.04 
precipitation wettest quarter 0.722, 0.800 0.68** < 0.01 -0.06 ns - 0.81** < 0.01 -0.02 < 0.01 0.02 
precipitation driest quarter 0.818, 0.836 0.63** < 0.01 -0.10 < 0.01 0.01 0.75** < 0.01 -0.02 < 0.01 0.04 
precipitation warmest quarter 0.872, 0.782 0.38** < 0.05 - < 0.01 -0.03 0.61** < 0.01 -0.01 ns - 
precipitation coldest quarter 0.817, 0.785 0.76** < 0.01 0.05 < 0.01 -0.02 0.82** < 0.01 0.03 ns - 



 

Table 2.3-3 AUC values per model, niche overlap in terms of I and D values and assessment of niche similarity and equivalency via randomization 
tests (see text). Significant values of niche equivalency are indicated with asterisks; ns = p > 0.05; * = p < 0.05; ** = p < 0.01; obs = observed 
significance level; nat = native; inv = invasive; dN0 = minimum difference between null distribution and observed overlap; values where overlap > 
dN0 are bolt, values where overlap < dN0 are italicized. 
 

Variable set Model fit  I   D 
  AUCnat, AUCinv Overlap   Similarity   Overlap   Similarity 
     obsnat dN0nat obsinv dN0inv     obsnat dN0nat obsinv dN0inv 
Comprehensive month 0.990, 0.982 0.44**  < 0.01 0.01 < 0.01 0.03  0.12**  < 0.05 - < 0.01 0.01 
Comprehensive quarter 0.989, 0.983 0.44**  < 0.01 0.01 < 0.01 0.03  0.13**  < 0.05 - < 0.01 0.02 
Minimum month 0.981, 0.973  0.56**  < 0.01 -0.01 < 0.01 0.02  0.29**  < 0.01 -0.03 ns - 
Minimum quarter 0.980, 0.973 0.57**  < 0.01 -0.07 < 0.01 0.04  0.31**  < 0.01 -0.17 < 0.01 0.02 
Temperature month 0.985, 0.959 0.57**  < 0.01 0.01 < 0.01 -0.04  0.32**  < 0.01 0.02 < 0.01 -0.11 
Temperature quarter 0.985, 0.950 0.58**  < 0.01 0.02 < 0.01 -0.07  0.38**  < 0.01 0.07 < 0.01 -0.22 
Precipitation month 0.927, 0.918 0.70**  ns - < 0.01 0.01  0.52**  < 0.05 - ns - 
Precipitation quarter 0.902, 0.918 0.71**  ns - < 0.01 0.01  0.55**  < 0.05 - < 0.01 0.05 
Combined variables 0.983, 0.962 0.51**   < 0.01 0.01 < 0.01 0.03   0.26**   < 0.01 0.02 < 0.01 0.02 
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Results from the niche similarity test based on native records compared to the 

invasive background revealed that climatic conditions described by the ‘Comprehensive’, 

‘Temperature’ and ‘Combined variables’ sets were more similar and those described by the 

‘Minimum’ variable sets were more different to those expected by chance when applying 

both D and I measures (Table 3.2-3). The ‘Precipitation’ data sets revealed no significant 

results regarding I values, but were more different regarding D values at a significance of P 

< 0.05. Greatest differences to the null distributions were found in the data set ‘Minimum 

quarter’, whereas only small differences were observed in the others. Results based on 

invasive records compared to the native background revealed that climatic conditions 

described by the variable sets ‘Temperature’ are more different than expected by chance 

when applying both measures (Table 3.2-3). Two tests applying D values revealed no 

significant results (Minimum month, Precipitation month) but were significantly different with 

respect to I values. The greatest differences to the null distributions were found in the 

variable sets ‘Temperature’. Only small differences (D ≤ ± 0.05; I ≤ ± 0.03) were detected 

among the other sets. 

 

 

Discussion 

Our results clearly indicate that the degree of conservatism of the climate niches of 

Hemidactylus turcicus varies among predictors and variable sets applied. The study was 

based on comprehensive occurrence data from all regions in which this gecko is present in 

Europe and North and Central America, providing a robust basis. Results presented herein 

have important implications for studies on biological invasion, impact of climate change 

and niche evolution.  

Which circumstances may facilitate establishment of invasive populations and 

subsequent shifts in ecological niches? Release from competitors, pathogens or predators is 

one of the most commonly invoked explanations for the establishment and proliferation of 

invasive populations (e.g. COLAUTTI  et al. 2004). Although some native species have been 

observed to predate on the Mediterranean Housegecko in its invasive range, the gecko 

generally occupies a niche that offers little competition with native species (SELCER 1986). 

Therefore, reduction of biotic stress may have facilitated initial establishment of invasive 

populations. However, today several other, more recently introduced geckkonid species 

compete with H. turcicus in some regions. For instance, at Port of Galveston, Texas, H. 

turcicus apparently has been replaced by the recently introduced lizard Cyrtopodion 



                                        Section 2: Structure of climate niches 
                                                                                                       2.3. Hemidactylus turcicus 

 88

scabrum (KLAWINSKI  et al. 1994). Hemidactylus turcicus is also declining in southern 

Florida due to interspecific competition with the congenerics H. garnotti and H. mabouia 

(MESHAKA et al. 1994).  

It was suggested that climatic suitability may have a strong impact on competition 

success, especially in ectotherms (e.g. RÖDDER et al. 2008). Our CEMs based on the 

variable sets suggest a relative low climatic suitability for H. turcicus in Florida, mainly 

caused by higher precipitation compared to its native range. Climatic suitability for H. 

mabouia is much higher than for H. turcicus in Florida, making it more vulnerable to 

interspecific competition (RÖDDER et al. 2008). This well supports the findings of 

MESHAKA et al. (1994). 

 

 

Niche conservatism versus niche shift 

HOLT et al. (2005) theorized that evolution of environmental tolerance may be most 

likely if a species is introduced into a novel environment marginal to its tolerance. 

Interestingly, earliest observations of established populations of the Mediterranean 

Housegecko were reported from Key West, Florida (FOWLER 1915), which is characterized 

by our models computed with sets of variables as an area with the most different climate as 

present in the native distribution. Differences are mainly caused by Florida being wetter 

what may indicate that parameters related to precipitation are biologically less important 

than those related to temperature. On the other hand, possible lack of competition during 

initial establishment may have caused advantages allowing for population establishment 

despite adverse circumstances. 

Our results clearly indicate varying degrees of conservatism of climatic niches among 

predictors and variable sets applied in H. turcicus. Given the complex nature of climatic 

niches, it might be reasonable to assume varying degrees of conservatism among predictor 

variables. Niches may be conserved along some environmental axes but not along others 

(FITZPATRICK et al. 2008). Observed niche shifts may be either assigned to shifts in both 

the fundamental and the realized niches (PEARMAN et al. 2008; Figure 2.3-1B) or to shifts 

in the realized niche only (e.g. due to extended accessibility or due to relaxation of biotic 

constraints; Figure 2.3-1C). Since the realized niche is a subset of a species’ fundamental 

niche (HUTCHINSON 1957; 1978), the likelihood of a given variable to be classified by our 

approach as conservative is expected to depend on the degree its realization covers the 

species’ fundamental niche (Figure 2.3-1D). If the realized niche covers the entire 
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fundamental niche, shifts per se have to be considered as an evolutionary response 

accompanied by novel adaptations. Shifts in the realized niche may occur more easily if 

the fundamental niche is only in part realized in a species’ actual geographic range (relaxed 

variables; Figure 2.3-1 D). 

 

 

Habitat selection versus background effects 

Rejection of the null hypothesis in the niche similarity test indicate that the observed 

niche difference between native and invasive populations is a function of habitat selection 

and/or suitability rather than an artifact of the underlying environmental difference 

between the suit of the habitats available. If one assumes that the degree of difference 

between the observed overlap and the null distribution is correlated with the degree of 

habitat selection, it is possible to identify an interesting tendency: those variables showing 

a relatively high degree of similarity within the native and invasive range are also 

tentatively more similar than expectable by chance (e.g. ‘minimum temperature coldest 

month’, ‘precipitation coldest quarter’) compared to those showing limited overlap (Figure 

2.3-4). This may indicate that these variables are biologically more important for H. 

turcicus. 

 

 

Methodical caveats 

Generally, relaxed variables should be a poor predictor for a species’ realized 

distribution in statistical terms. Environmental conditions, as observed at the training 

records, should exhibit minor contrast to background points only (if any), whereby such 

contrast is expected to be high when applying conserved variables. In turn, this should 

result in lower AUC values in CEMs computed with relaxed variables compared to those 

derived from conserved ones. However, our results obtained from models developed with 

single variables indicate right the opposite pattern. AUC values slightly decreased with 

increasing D and I values (Table 3.2-3, Appendix 3.2-S3).  

The fit of models based on our data sets including multiple predictors was generally 

superior to models computed with single variables. Novel machine-learning algorithms for 

presence-only applications, such as Maxent, assess the explanatory power of each variable 

used for model building (i.e. the ability to distinguish conditions observed at presence 

records form those obtained from random background points). Thereby, they address the 
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issue of possible over-restriction of PDs by lowering the importance or excluding variables 

from the model, which are less suitable for a characterization of the observed distribution 

pattern compared to other variables. However, we noted that variable importance varied 

remarkably in our CEMs trained with native or invasive records as well as the data sets 

applied (Table 3.2-1). There may be two explanations: (1) the different sets of background 

data available within the native and invasive ranges each provide different contrasts during 

model training and (2) poorer models may tentatively characterize a relatively large area as 

suitable in contrast to highly accurate models. That, in turn, may result in a better chance to 

detect a high degree of conservatism in terms of D and I values comparing poor models. 

 

 

Conclusions 

Our results indicate that the selection of variables involved can highly influence 

CEM results. When analyzing niche conservatism with CEM approaches, as proposed by 

WIENS and GRAHAM  (2005) and WARREN et al. (2008), different sets of conservative 

predictors should be applied in order to evaluate variability. Results need to be critically 

evaluated and interpreted with caution, whereby assessments of models developed with 

single variables may facilitate their interpretation of results.  

It was suggested by BROENNIMANN and GUISAN (2008) that training models with 

records from both the native and invasive ranges can improve the model output by 

incorporating more information on the target species’ fundamental niche. Although this 

approach clearly provides some advantages, still there may be one major drawback: the 

possible incorporation of relaxed variables. This may limit the predictive ability of the 

model when projected into different areas or climate scenarios. Therefore, for invasive 

species, we recommend a throughout assessment of the species’ ecology and degree of 

conservatism among predictor variables by comparing climatic properties of the native and 

invasive range. Final models should be based on biologically important and more 

conserved variables to avoid over-restrictive predictions. A set of rather few variables 

should be preferred.  
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SECTION 3: HOW DO ACCESSIBILITY AND BIOTIC 

INTERACTIONS SHAPE REALIZED DISTRIBUTIONS? 
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3.1. Predicting the potential distributions of two alien invasive 

Housegeckos (Gekkonidae: Hemidactylus frenatus, Hemidactylus 

mabouia)5 

 

 
© William Flaxington                                  Hemidactylus frenatus (A) and H. mabouia (B) 

 

                                                 
5 This part was published in North-Western Journal of Zoology 4(2): 236-246. 
 
The work reported in this chapter was conducted in collaboration with MIRCO SOLÉ from 
the Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Ilhéus, 
BA, Brazil, and WOLFGANG BÖHME from the Herpetology Department, Zoologisches 
Forschungsmuseum Alexander Koenig, Bonn, Germany. 
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Introduction  

Globalization has led to a heightened spread of alien invasive species, a leading 

anthropogenic disturbance with far-reaching implications (NAEEM et al. 1995). Invasive 

species can alter mutualistic relationships, community dynamics, ecosystem function and 

resource distributions (MOONEY and CLELAND  2001). They can cause extinctions affecting 

thereby local and global diversity (COLLINS et al. 2002; VITOUSEK et al. 1996). 

Within the Squamata, some Hemidactylus geckos (Hemidactylus mabouia (MOREAU 

DE JONNÈS, 1818), H. turcicus LINNAEUS, 1758, H. brookii GRAY, 1845, H. frenatus 

SCHLEGEL 1836, H. garnotii DUMÉRIL and BIBRON, 1836, H. persicus ANDERSON, 1872, 

H. flaviviridis RÜPEL, 1835 and H. bowringii GRAY, 1845) have largely extended their 

ranges during the last century (e.g. CARRANZA and ARNOLD 2006). They have more 

apparent cases of larger range extensions than any other reptilian group. Hemidactylus 

frenatus, which has its native range in tropical Asia and the Indo-Pacific (CASE et al. 

1994), and Hemidactylus mabouia, which has its native range in Central and East Africa, 

are especially widespread (CARRANZA and ARNOLD 2006). Hemidactylus frenatus has 

already colonized many pacific islands, Florida, Central America and the Venezuelan coast 

(e.g. CASE et al. 1994; MESHAKA et al. 2004). Invasive populations of Hemidactylus 

mabouia are currently well distributed in West Africa, all over the Caribbean (VAN BUURT 

2006), South America (COLLI 2005; FUENMAYOR et al. 2005) and Florida (MESHAKA et al. 

2004). Although most common in urban areas, it is also abundant in natural environments 

of several biomes, e.g. within Brazil (COLLI 2005; VANZOLINI  1968a,b; ZAMPROGNO and 

TEIXEIRA 1997). Both species are very adaptive and effective colonizers (e.g. BONFIGLIO et 

al. 2006; CASE et al. 1994; FUENMAYOR et al. 2005), widely distributed in tropical regions 

and may have reached South America by both natural transmarine colonization (KLUGE 

1969) and human-mediated colonization (CARRANZA and ARNOLD 2006). The latter is 

suggested by virtually no genetic variation over their huge range and their presence in 

many coastal urban areas (CARRANZA and ARNOLD 2006). Sympatric populations of both 

are rare and known only from Florida (MESHAKA 2000; KRYSKO et al. 2003), Colombia, 

Costa Rica (GBIF 2007), and Madagascar (GBIF 2007; GLAW and VENCES 2007).  

On occasion, the introduction of H. frenatus and H. mabouia had devastating 

consequences for native species independent from ecotypes such as small and large 

species, diurnal and nocturnal taxa, as well species with parthenogenetic and sexual 

reproduction. Hemidactylus frenatus is displacing Lepidodactylus lugubris DUMÉRIL and 

BIBRON, 1836 and H. garnotii on a global scale (CASE et al. 1994; PETREN et al. 1993; 
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PETREN and CASE 1995; DAME and PETREN 2006), and H. mabouia is competing with 

Hemidactylus angulatus HALLOWELL , 1852 in Cameroon (BÖHME 1975), Gymnodactylus 

darwinii (GRAY, 1845) in Brazil (TEIXEIRA 2002; ZAMPROGNO and TEIXEIRA 1997), with 

Phyllodactylus martini LIDTH DE JEUDE, 1887 and Gonatodes antillensis LIDTH DE JEUDE, 

1887 in Curaçao and Bonaire (VAN BUURT 2006), and with Gonatodes vittatus 

(LICHTENSTEIN, 1856) and Thecadactylus rapicauda (HOUTTUYN, 1782) in Venezuela 

(FUENMAYOR et al. 2005), respectively. The arrival of H. frenatus in the Mascarene Island 

decimated six species of Nactus geckos, and three of them are now considered to be 

entirely extinct (ARNOLD 2000; COLE et al. 2005). Considering these possible 

consequences of invasion, an assessment and identification of regions with a high invasion 

potential is necessary for effective conservation planning. 

Ecological niche-modelling is a good tool to assess potential geographic distributions 

of species derived from their climatic niches (‘climate envelope’; GUISAN and THUILLER 

2005; ELITH  et al. 2006), providing in some cases additional information for conservation 

planning strategies and selection of protection areas (e.g. JEGANATHAN et al. 2004; YOUNG 

2007). Ecological niche modelling has also been applied to the prediction of the invasive 

potential of non-native species (e.g. PAPES and PETERSON 2003; PETERSON and VIEGLAIS 

2001; FICETOLA et al. 2007). Such approaches relay on the assumption that climatic 

tolerances of species are the primary determinants of their current distributions and that 

climatic niches are rather conservative, at least within evolutionary relatively short time 

frames (e.g. some hundreds to thousands of years) (e.g. WIENS and GRAHAM  2005). 

Herein, we want to (1) identify areas potentially suitable for the geckos using a 

climate envelope approach, (2) predict their potential distribution (PD) for 2100 under a 

climate change scenario, and (3) try to assess why sympatric populations of both species 

are rare. 

 

 

Material and methods 

Species records 

We used 456 georeferenced records of H. frenatus and 279 georeferenced records of 

H. mabouia taken from collections linked to the Global Biodiversity Information Facility 

(GBIF 2007), the HerpNet (2007) database, and listed by the Instituto Hórus (2007). 

Literature data was added for complementation purposes (BÖHME 1975; GLAW and 

VENCES 2007; FUENMAYOR et al. 2005). Georeferencing was conducted when necessary 
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with the Alexandria Digital Library Gazetteer 

(http://middleware.alexandria.ucsb.edu/client/gaz/adl/index.jsp). All data was checked in 

the DIVA-GIS software (HIJMANS et al. 1999; 2002) for bias and errors.  

 

 

Climate data  

For information on current climate, we used the Worldclim database, version 1.4, 

based on weather conditions recorded 1950-2000, with spatial resolution approximately 1 x 

1 km (HIJMANS et al. 2005). It was created by interpolation using a thin-plate smoothing 

spline of observed climate at weather stations, with latitude, longitude and elevation as 

independent variables (HUTCHINSON 1995; 2004).  

Projected climate data we used go back to DUFFY et al. (2003) and GOVINDASAMY  et 

al. (2003) who ran the Community Climate Model 3 (CCM3) developed by the National 

Center for Atmospheric Research (NCAR) at about 50 x 50 km² spatial resolution to 

simulate conditions at doubled atmospheric levels of CO2 compared to pre-industrial 

conditions, as is expected for approximately the year 2100. These future data were rescaled 

to a spatial resolution of approximately 1 x 1 km² by HIJMANS and GRAHAM  (2006) and 

presently represent the highest available spatial resolution for future global climate data 

(HIJMANS et al. 2005). Both present-day and future climate data sets were downloaded 

from the DIVA-GIS homepage (http://www.diva-gis.org; accessed 15 May 2007) and 

included the following 36 monthly mean variables: minimum temperature and maximum 

temperature, and precipitation.  

Based on the climate data mentioned, so called ‘bioclimate’ variables can be 

calculated with DIVA-GIS 5.4 (http://www.diva-gis.org; downloaded 15 May 2007; 

HIJMANS et al. 2001). For our models we selected the annual mean temperature, maximum 

temperature of the warmest month, minimum temperature of the coldest month, annual 

precipitation, precipitation of wettest month, and precipitation of the driest month 

representing a set of parameters, which describe the availability of water and energy and 

the species tolerances regarding these parameters. 
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Climate Envelope Models  

For CEMs, MaxEnt 3.2.1 (PHILLIPS et al. 2004, 2006; 

http://www.cs.princeton.edu/~shapire/Maxent; downloaded 15 March 2008) was used, a 

machine learning algorithm for species PD models with environmental predictors (e.g. 

climatic layers), which reveals better results than comparable methods (ELITH  et al. 2006; 

HEIKKINEN  et al. 2006), especially when the number of data points is relatively few 

(HERNANDEZ et al. 2006).  

Maxent allows for model testing by calculation of the area under the ROC (receiver 

operation characteristic) curve (AUC) (PHILLIPS et al. 2006). Therefore, we (1) selected 25 

% random test points out of each data set for the native distribution and we (2) run the 

model using all records within the native distribution of the species as training points and 

used the records where they are invasive as test points. The second approach allowed us to 

test for the predictive power for invasiveness of our models. The MaxEnt results were 

imported into DIVA-GIS as *asc files for further analysis.  

We assessed the degree of overlap in the climate envelope between H. frenatus and 

H. mabouia comparing the MaxEnt probabilities at each record crosswise, e.g. we 

extracted the MaxEnt probabilities of H. frenatus at the locations where H. mabouia was 

recorded, respectively. This procedure allowed us to assess if the two species can occur in 

microsympatry and if they can, the identification of which species can cope with a broader 

climatic diversity within the PD of the other. The Mann-Whitney-U test was used to 

compare the results and box plots to visualize them. All calculations were conducted with 

XLSTAT 2007 (www.adinsoft.com). 

 

 

Results  

Using 25 % random test points out of each data set for testing we received excellent 

AUC values (H. frenatus: test AUC = 0.969; training AUC = 0.966; H. mabouia: test AUC 

= 0.955; training AUC = 0.938), following the classification accuracy of SWETS (1988). 

Running the model using only records within the native distribution of the species and 

using the records where the species are invasive as test points, we received also ‘excellent’ 

AUC values (H. frenatus: test AUC = 0.941; training AUC = 0.967; H. mabouia: test AUC 

= 0.959 ; training AUC = 0.942). PD maps predicted by our models are presented in Figure 

3.1-1 and 3.1-2.  
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Our CEMs suggest that H. frenatus can find climatically optimal habitats under 

current conditions in tropical Asia, at the Australian east coast, Central America, within the 

Amazon basin, the Guiana Region, the West African coast (Figure 3.1-1). Therefore, a 

further spread of the species is most likely in large parts of South America and tropical 

Africa. Hemidactylus mabouia can find climatically optimal habitats mainly throughout the 

Congo basin towards the Kenyan coast, in southern India, coastal regions in tropical Asia, 

Central America, the Guiana Region, northern parts of the Amazon basin and at the eastern 

Coast of Brazil in Bahia (Figure 3.1-2). In most regions it is already invasive. Risk of 

further invasion is highest in Central America and tropical Asia.  



 

Figure 3.1-1. Predicted potential distribution for Hemidactylus frenatus under current (A) and future (B; CCM3) conditions. Higher MaxEnt 
values reflect a higher climatic suitability for the species. 
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Under CCM3 conditions, there will be more regions with suitable climate for H. 

frenatus and less for H. mabouia (Figure 3.1-1, 3.1-2). Major improvements for H. 

frenatus will occur in the native range of the species in Asia, northern parts of Australia, in 

the Amazon basin and the Guiana Highlands, eastern parts of Colombia and Peru, along 

the West African coast and in Botswana and Namibia. Reductions will occur in Burma, 

Bangladesh and eastern parts of India. Better climatic conditions within the Amazon basin 

might enhance the spread of H. frenatus in northern and central parts of South America. 

For H. mabouia our predictions suggest only small improvements, which would be situated 

in our scenario at the coast of Somalia, the Central African Republic, South Africa, eastern 

parts of Madagascar, and southern Brazil. Reductions of climatic suitability will occur in 

the Congo basin, along the West African coast, in Mozambique, in Central America, in the 

Amazon basin, eastern parts of Columbia, Peru, Bolivia, Paraguay, and within the Guiana 

Highlands. 

On a global scale, a crosswise comparison between the MaxEnt probabilities at the 

records revealed, that the climatic suitability for H. frenatus at H. mabouia’s records is 

higher than the climatic suitability of H. mabouia at H. frenatus’ records under current 

conditions (Figure 3.1-3). This difference was significant (Mann-Whitney-U test: P = 

0.046). However, the climatic suitability for the species is much lower in crosswise 

comparisons than within the known ranges of each species (Figure 3.1-3). 

 

 

Discussion 

Although there are different patterns of climatically optimal regions, our PD maps 

suggest that both species can occur nearly everywhere in the tropics. Looking at the PD 

maps of both species, huge overlaps become obvious and it is surprising that they 

apparently only occasionally co-occur. Hemidactylus frenatus seems to be absent in Africa 

and main parts of South America although the climatic conditions are suitable for the 

species, since we found no records in the data bases and literature. For Brazil, its absence 

is further supported because it is not listed by the Brazilian invasive species data base 

(INSTITUTO HÓRUS 2007). There are two possible explanations for this pattern: (1) H. 

frenatus and H. mabouia are still spreading and could simply not have reached their 

maximal distribution and/or (2) factors related to different climatic conditions and/or 

interspecific interactions such as competition and predation could hamper successful 

invasion in some areas.  



 

Figure 3.1-2. Predicted potential distribution for Hemidactylus mabouia under current (A) and future (B; CCM3) conditions. Higher MaxEnt 
values reflect a higher climatic suitability for the species. 
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Do the current ranges of the two geckos reflect equilibrium or are they still spreading? 

Facilitated due to human travel and trade activities, H. frenatus has spread to all the 

major islands in between tropical Asia and Hawaii during the 20th century, where it was 

first recorded short after World War II (CASE et al. 1994). Its colonization success is very 

high; in 1971 it was absent in Vanuatu (MEDWAY and MARSHALL 1975), but in 1986 ”it 

was virtually the only urban gecko seen in the city of Port Vila on Efaté and is by far the 

most common gecko in the town of Santo on Espiritu Santo” (CASE et al. 1992). In their 

1994 review, CASE et al. do not report from records in Australia, where it is common today 

(Figure 3.1-1). The summary given by the authors supports the hypothesis that H. frenatus 

could be still spreading eastward from its native range. When it has reached Central and 

South America remains unclear, but it was suggested that the species is established in 

Venezuela since more than 10 years (FUENMAYOR et al. 2005). Recent dispersal is 

supported by genetic studies, since specimens of H. frenatus from Hawaii and Colombia 

are genetically identical (CARRANZA and ARNOLD 2006).  

Time series illustrating the dispersal of H. mabouia in the Americans remain widely 

unknown. Hemidactylus mabouia was recorded in Curaçao in the late 1980’s, in Bonaire 

around 2000, an in Aruba in 2002 for the first time (VAN BUURT 2006). KLUGE (1969) 

suggested that a natural colonization of the Americas by H. mabouia could be also 

possible, but the uniformity of genetic samples of H. mabouia from Central and South 

America and Africa indicates it at least too has spread comparatively rapidly and recently 

(CARRANZA and ARNOLD 2006). In tropical America, recent records indicate that it is still 

spreading (e.g. VAN BUURT 2006; CARRANZA and ARNOLD 2006; FUENMAYOR et al. 

2005). 

We think that, today, (1) can explain the apparently absence of H. mabouia in 

tropical Asia and the rarity of H. frenatus in South America only in parts. Both H. frenatus 

and H. mabouia were introduced to nearly all tropical regions including even smallest 

islands, where they have established themselves rapidly. Thus the chance that specimens of 

H. frenatus were transported by human beings to either Africa or South America (or 

specimens of H. mabouia to tropical Asia) should be great. Furthermore, their high 

colonization success in urban areas together with their high population densities should 

enhance the chance to detect them and therefore enhance their chance to be present in 

collections. This would suggest that the pattern is not likely to be a collection bias. 
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Competitive exclusion 

It is known that Hemidactylus species can replace each other because many are 

ecologically analogous (MESHAKA 2000; DAME and PETREN 2006). Habitat features such 

as structure have an effect on successful competition (e.g. PETREN and CASE 1996), but 

ability of successful competition may be related to climatic suitability of a region, too. 

Rather pessimal climatic conditions may cause environmental stress, which can reduce a 

species’ fitness and its ability for successful competition.  

 

 

 

Figure 3.1-3. MaxEnt values at the records for each species (left) and crosswise 
comparison between the MaxEnt values per species record (right). For the crosswise 
comparison, MaxEnt values of one species were extracted at records where the other was 
found.  

 

 

MESHAKA et al. (2004) reported that H. frenatus and H. garnotii were replaced by H. 

mabouia in Key West, Florida. On the other hand, POWELL et al. (1998) suggested that H. 

frenatus has displaced H. mabouia in Veracruz, México. Comparison of the MaxEnt scores 

of the two species in this regions revealed, that MaxEnt scores in Key West, Florida are 

much higher for H. mabouia (0.72) than for H. frenatus (0.50), but MaxEnt scores for H. 

mabouia (0.61) are nearly equal to scores of H. frenatus (0.59) in Veracruz. This could be 

a possible explanation of the different observations, but is pending further studies. On a 

global scale, the crosswise comparison between the MaxEnt probabilities at the records 

revealed, that the climatic suitability for H. frenatus at H. mabouia’s records is 

significantly higher than the climatic suitability for H. mabouia at H. frenatus’ records 
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(Figure 3.1-3). As a consequence, the ability of H. mabouia for successful competition 

should be more restricted than in H. frenatus. However, the climatic suitability for the 

species is much lower in crosswise comparisons than within the known ranges of each 

species (Figure 3.1-3). The better climatic suitability of Africa and South America for H. 

mabouia compared to H. frenatus may favour H. mabouia here. The opposite might be true 

for Asia and Central America explaining the virtually absence of H. mabouia.  

 

 

Conclusions 

We conclude that both competitive exclusion and a non equilibrium in the ranges of 

the species explain the virtual lack of sympatric populations, although the impact of 

climate on competition success is pending further testing in the field. The raised climatic 

suitability for H. frenatus combined with the reduced suitability for H. mabouia within the 

Amazon basin and the Guiana Highlands in our future scenario may alter the abundances 

of the species here, what might provide an interesting possibility for field studies. Further 

research is needed to start understanding the dynamics of competitive exclusion, climate 

and competition success. 
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3.2. ‘Sleepless in Hawaii’ – does anthropogenic climate change enhance 

ecological and socioeconomic impacts of the alien invasive 

Eleutherodactylus coqui Thomas 1966 (Anura: Eleutherodactylidae)?6 

 

 

 

 
©Wilfredo Falcón-Linero                                                                            Eleutherodactylus coqui 

 

                                                 
6 This part was published in North-Western Journal of Zoology 5 (1): 16-25. 
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Introduction  

Alien invasive species are a concern in nature conservation as they may have 

negative impact on native biodiversity (LOWE et al. 2000). Furthermore, they can have 

major socioeconomic impacts as reported for the coqui (Eleutherodactylus coqui; KRAUS 

and CAMPBELL 2002). This species is a small (33-57 mm), brown or grey-brown, arboreal 

frog, which has been accidentally introduced into several tropical areas and was listed as 

one of the 100 worst alien invasive species (LOWE et al. 2000).  

In its native range, Puerto Rico, E. coqui is found in more habitat types than any 

other eleutherodactylid species (JOGLAR 1998). It is ecologically a generalist utilizing the 

entire vertical spectrum of their habitat from forest floor to canopy (GOSNER and 

WOOLBRIGHT 1995). Eleutherodactylus coqui utilize internal fertilization and fertilized 

eggs undergo direct development making them independent from stagnant water 

(TOWNSEND and STEWART 1994). The species is highly fertile; females deposit 4-6 

clutches of about 28 eggs each (min = 16, max = 41) per year in subterranean nests, which 

develop within 17-26 days (KRAUS et al. 1999). Time between generations (i.e. from egg to 

egg-laying adult) is about eight months (TOWNSEND and STEWART 1994; KRAUS et al. 

1999). Densities of E. coqui are with around 20 000 individuals ha-1 in its native range and 

around 50 000 individuals ha-1 in its invasive range - on the Island of Hawaii - among the 

highest known for any amphibian in the world (STEWART 1995; STEWART and 

WOOLBRIGHT 1996; WOOLBRIGHT et al. 2006). Population densities are also known to 

increase after hurricane disturbances which define the structure and function of an 

ecosystem (WOOLBRIGHT 1991; 1996). Diet of the frog varies depending on age and size 

but is primarily composed of arthropods. Juveniles consume smaller prey such as ants 

while adults consume a more varied diet that includes spiders, moths, crickets, snails, and 

small frogs. As a nocturnal predator occurring in such high densities 114 000 to 350 000 

invertebrates ha-1 can be consumed each night (BREAD 2007; STEWART and WOOLBRIGHT 

1996). That may have a major ecological impact.  

One of the major ways in which E. coqui spreads is the nursery and ornamental plant 

trade where clutches or frogs accidently hitchhike on plants (KRAUS 2003; KRAUS and 

CAMPBELL 2002; KRAUS et al. 1999). Travelling by plants has been reported from several 

regions including Guam and mainland United States including California and Connecticut 

(Joglar 1998), and the Hawaiian Islands (KRAUS et al. 1999). Many accidently exported 

specimens have subsequently established nonindigenous feral populations as reported for 

the Bahamas (KAIRO et al. 2003), Culebra and Vieques (JOGLAR 1998; JOGLAR and RIOS-
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LÓPEZ 1998), Dominican Republic (CAMPBELL 2000), Maui, the Island of Hawaii, Kauai, 

Oahu (KRAUS et al. 1999), the Galapagos Islands (SNELL and REA 1999), Florida, and the 

US Virgin Islands (CAMPBELL 2000; KAIRO et al. 2003). One single specimen was reported 

for Guam, Mariana Islands, but has since been eradicated and no further records are known 

(MCCOID 1993), so it was not included herein. Records for New Orleans, Louisiana as 

reported by CONANT and COLLINS (1991) are most likely erroneous (DUNDEE 1991). 

Eleutherodactylus coqui has a loud, piercing call that can measure 90–100 decibels at 

a distance of 0.5 meters from a frog. In the Hawaiian Islands, the calls are a serious 

problem for local residents and hotel guests who complain about the noise keeping them 

awake at night (KRAUS et al. 1999; KRAUS and CAMPBELL 2002). Residents are 

encountering reduced property values and increased difficulty selling property (KRAUS and 

CAMPBELL 2002). This is also a problem for other areas where Eleutherodactylus species 

have been introduced outside their native ranges. For example, in French Guiana in South 

America, the calls of introduced E. johnstonei BARBOUR, 1914 are disturbing the sleep of 

local residents (LEVER 2003). The coqui can also be a serious problem for international 

trade: according to KRAUS and CAMPBELL (2002), frogs on the Island of Hawaii may lead 

to rejection by trading partners of goods that may be infested with the frogs or their eggs. 

In April 2004, the coqui situation was declared by the Mayor of Hilo as a state of 

emergency because ‘the threat that excessive noise emitted by the coqui frogs poses to 

human health and welfare, the unknown impact of the coqui frogs on the Island of Hawaii 

ecosystems as well as its threat to the economic welfare of the Island of Hawaii’ (BEARD 

and PITT 2005). Multimillion US dollar campaigns were launched to eradicate the species. 

However, no spatial assessment of areas climatically suitable for the species is available. 

Therefore, I assess (i) the potential distribution of the coqui under current climate 

conditions in order to identify regions with high potentials for coqui invasions and (ii) 

possible changes within its invasive Hawaiian range applying future climate change 

scenarios herein. 

 

 

Material and methods 

Climate and computation of Climate Envelope Models 

GIS-based Climate Envelope Models (CEMs) may provide an easy-to-use method to 

assess the potential distribution of species. In recent times, there have been several 

examples using CEMs for species potential distributions under past, present and future 

climate scenarios (e.g. HIJMANS and GRAHAM 2006; MALCOM et al. 2006; PETERSON and 
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NYÁRI 2007; CARNAVAL and MORITZ 2008). Such approaches rely on the assumption that 

climatic tolerances of species are the primary determinants of their current distributions 

and that specific climatic niches are conservative, at least within an evolutionary short time 

frames of some hundreds to thousands years (e.g. WIENS and GRAHAM  2005; but see also 

PEARMAN et al. 2007). Herein, MaxEnt 3.2.1 (PHILLIPS et al. 2004; 2006; 

http://www.cs.princeton.edu/~shapire/maxent) was used for CEM calculation in order to 

assess the potential distribution of the coqui. MaxEnt is a machine-learning algorithm 

following the principles of maximum entropy (JAYNES 1957). It has been shown to reveal 

better results than other comparable methods such as BIOCLIM, DOMAIN or GARP (e.g. 

ELITH  et al. 2006).  

Information on current climate was obtained from the Worldclim database, version 

1.4, which is based on weather conditions recorded between 1950 and 2000 with grid cell 

resolution 30 arc seconds (HIJMANS et al. 2005; http://www.worldclim.org). It was created 

by interpolation using a thin-plate smoothing spline of observed climate at weather 

stations, with latitude, longitude and elevation as independent variables (HUTCHINSON 

1995; 2004).  

For future climate scenarios, I used climate change projections with a spatial 

resolution of 2.5 minutes based on the CCCMA, CSIRO and HADCM3 (FLATO et al. 

2000; GORDON et al. 2000) models and the emission scenarios reported in the Special 

Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate 

Change, IPCC (http://www.grida.no/climate/ipcc/emission/). A set of different families of 

emission scenarios was formulated based on future production of greenhouse gases and 

aerosol precursor emissions. The SRES scenarios of A2a and B2a were used in this study. 

Each scenario described one possible demographic, politico-economic, social and 

technological future as expected for the years 2020, 2050 and 2080. Scenario B2a 

emphasizes more environmentally conscious, more regionalized solutions to economic, 

social and environmental sustainability. Compared to B2a, scenario A2a also emphasizes 

regionalized solutions to economic and social development, but it is less environmentally 

conscious.  

For the models I selected the ‘annual mean temperature’, ‘maximum temperature of 

the warmest month’, ‘minimum temperature of the coldest month’, ‘annual precipitation’, 

‘precipitation of wettest month’, and ‘precipitation of the driest month’ as variables 

representing a set of parameters, which describe the availability of water and energy and 

the species tolerances regarding these parameters. 
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Species records 

A total number of 198 unique records of E. coqui within its native range of were 

available through the Global Biodiversity Information Facility (GBIF; www.gbif.org) and 

HerpNet databases (www.herpnet.org), 31 of them were situated in unique grid cells and 

used for model building. In addition, 41 records of invasive populations were obtained 

from the Nonindigenous Aquatic Species information resource of the United States 

Geological Survey (SOMMA  2008), the IUCN Invasive Species Specialist Group 

(www.issg.org), and additional published references. For georeferencing Alexandria 

Digital Library Gazetteer Server Client 

(www.middleware.alexandria.ucsb.edu/client/gaz/adl/index.jsp) was used. The accuracy of 

coordinates processed was assessed with DIVA-GIS (HIJMANS et al. 1999; 2001). In doing 

so, only invasive records within areas with confirmed reproduction were included. Land 

use maps were downloaded from the State of Hawaii Land Use Commission 

(http://luc.state.hi.us/luc_maps.htm) in order to evaluate the overlap between urban, rural 

and protected areas and the potential distribution of E. coqui. 

 

 

Results 

Maxent allows for model testing by calculation of the Area Under the Curve (AUC), 

referring to the ROC (Receiver Operation Characteristic) curve using the invasive records 

as test points and the native records for training (HANLEY  and MCNEIL 1982; PHILLIPS et 

al. 2006). This method is recommended for ecological applications because it is non-

parametric (PEARCE and FERRIER 2000). Values of AUC range from 0.5 (i.e. random) for 

models with no predictive ability to 1.0 for models giving perfect predictions. According to 

the classification of SWETS (1988) AUC values > 0.9 describe ‘very good’, > 0.8 ‘good’ 

and > 0.7 ‘useful’ discrimination ability. I received ‘very good’ AUC values in the model 

(AUCtraining = 0.997; AUCtest = 0.996). All known invasive ranges of E. coqui are situated 

within higher MaxEnt classes (> 0.6) confirming the predictive power of the model. 

Under current climatic conditions, E. coqui can find suitable areas nearly everywhere 

in the tropics (Figure 3.2-1). Especially the South American Andes, the Venezuelan 

Pantepui region, Eastern Brazil, the Congo basin and most Asian Islands may be 

potentially suitable for the species. Within the Caribbean, major parts of the Bahamas, 

Cuba, the Dominican Republic, Haiti, Jamaica, and the Antilles are highlighted by the 

MaxEnt model (Figure 3.2-2). On Hawaii and Maui, areas suitable for E. coqui are 
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restricted to lower elevations mainly at the coast, whereas climatic conditions at Honolulu 

and Kauai are suitable throughout the whole islands (Figure 3.2-3). These areas are highly 

overlapping with urban areas, whereas the species finds proportionally less suitable areas 

within reserves (Figure 3.2-4). 

 

 

 
Figure 3.2-1. Potential distribution of Eleutherodactylus coqui under current climate 
conditions. Higher MaxEnt values suggest higher climatic suitability. 
 

 

 

Figure 3.2-2. Potential distribution of Eleutherodactylus coqui under current climate 
conditions within the Caribbean. Higher MaxEnt values suggest higher climatic suitability. 
Native records are indicated as triangles and invasive as points. 
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Figure 3.2-3. Potential distribution of Eleutherodactylus coqui under current climate 
conditions within Hawaii. Higher MaxEnt values suggest higher climatic suitability. 
 
 

 

 

Figure 3.2-4. Land use patterns on the major Hawaiian Islands in 2007. Urban areas are 
indicated in black and reserves in green. Source: Land Use Commission of the State of 
Hawaii. 
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Figure 3.2-5. Potential distribution of Eleutherodactylus coqui under future climate change 
scenarios assuming A2a conditions. Higher MaxEnt values suggest higher climatic 
suitability. 

 

Figure 3.2-6. Potential distribution of Eleutherodactylus coqui under future climate change 
scenarios assuming B2a conditions. Higher MaxEnt values suggest higher climatic 
suitability. 
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Projections of the CEM of E. coqui onto the future climate change scenarios revealed 

that, over all, the amount of suitable grid cells remain roughly stable (i.e. changes are less 

than 10 % relative to current conditions, Table 3.2-1) within the Hawaiian Islands. 

Generally, the B2a scenarios suggested a greater range expansion than the A2a scenarios. 

Looking at the spatial patterns at the Islands of Hawaii and Maui, E. coqui may be able to 

expand its range towards higher elevations (Figures 3.2-5, 3.2-6). On the other hand, 

decreases in climatic suitability around Cape Kumukahi, situated at the east coast of the 

Island of Hawaii, may also occur. Potential distribution patters on the smaller islands Oahu 

and Kauai remain roughly stable. 

 

 

Table 3.2-1 Changes in climatically suitable areas for Eleutherodactylus coqui relative to 
current conditions at the Hawaiian Islands assuming climate change scenarios A2a and 
B2a. 
 

Model    Climate Change Scenario 
   A2a    B2a  

  2020 2050  2080  2020 2050 2080 
CCCMA  101.4 % 103.1 % 98.9 %  100.2 % 103.6 % 104.1 % 
CSIRO  98.4 % 102.2 % 90.4 %  101.4 % 101.4 % 102.5 % 
HADCM3   102.3 % 102.7 % 98.3 %   102.1 % 102.3 % 102.7 % 

 

 

Discussion 

The spatial modelling approach suggests that E. coqui may find climatically suitable 

regions throughout all major tropical areas. Although all islands and most parts of adjacent 

continents provide climatically suitable conditions for E. coqui, only a few have been 

invaded. One reason may be that all of these islands are inhabited by a diverse anuran 

fauna which is rich in ecologically similar Eleutherodactylus species (HEDGES et al. 2008). 

Adjacent areas in Central and South America harbour a diverse fauna of Craugastoridae 

and Strabomantidae of which many are also ecologically similar (HEDGES et al. 2008). 

This would most likely make a successful establishment E. coqui difficult. However, care 

need to be taken to prevent further spread towards the Pacific and Asian islands lacking 

such potential competitors.  

In the Hawaiian Islands the situation is different because a native amphibian fauna is 

absent (KRAUS 2003) and potential predators are rare (BEARD and PITT 2006; 

WOOLBRIGHT et al. 2006). This lack of competition and predators was also assumed to 
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have caused the extraordinary high population densities of E. coqui here. It was suggested 

that E. coqui can reduce endemic invertebrates in the Hawaiian Islands (SIN et al. 2008). A 

comparison between the potential distribution of the coqui under current conditions (Figure 

3.2-3) and protected areas on the major Hawaiian Islands (Figure 3.2-4) revealed that main 

parts of the reserves on Hawaii and Maui are outside the climatic envelope of E. coqui. 

Within these areas, winters are too cold to maintain feral populations (KRAUS and 

CAMPBELL 2002). So, endemics inhabiting these areas may be not threatened by the 

invader yet. Unfortunately, the whole islands Kauai, Molokai, and Oahu, including all 

protected areas, provide suitable climatic conditions. 

Applying future anthropogenic climate change scenarios the models suggest an 

extension of the potential distribution of E. coqui towards higher altitudes in the Hawaiian 

Islands, and thereby into uninfected nature reserves. The range alternation may already 

have started since such a trend was recently observed by KRAUS and CAMPBELL (2002). 

The authors reported that E. coqui has expanded its altitudinal range on the Island of 

Hawaii form previously 0-670 m to 1170 m, where it maintained feral populations which 

successfully survived at least the winters of 1999-2000 and 2000-2001. KRAUS et al. 

(1999) and KRAUS and CAMPBELL (2002) pointed out that E. coqui may cause serious 

ecological problems if they invade mid-elevation native forests situated between 900 and 

1200 m at the Island of Hawaii.  

Looking at the socioeconomic impact it becomes obvious that all urban and rural 

areas of the Hawaiian Islands are within the climatic optimum of E. coqui. In the future 

scenarios, this pattern remains stable and the potential distribution of the frog may even 

increase. This threatens the multimillion dollar floriculture and nursery industries because 

of quarantine restrictions and de-infestation measures that are required before plants can be 

exported (KRAUS and CAMPBELL 2002). This is especially important since E. coqui 

densities on the Island of Hawaii are the highest in the world (STEWART 1995; STEWART 

and WOOLBRIGHT 1996; WOOLBRIGHT et al. 2006). Populations of E. coqui are expanding 

(KRAUS and CAMPBELL 2002) and this trend will most likely continue. During the next 

decades many residents and hotel guests may stay ‘sleepless in Hawaii’.  
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3.3. Will future anthropogenic climate change increase the potential 

distribution of the alien invasive Cuban treefrog (Anura: Hylidae)?‡‡ 

 

 

 

 
© FRANK TEIGLER/Hippocampus Bildarchiv                                                                                                                Osteopilus septentrionalis 

 

                                                 
‡‡ This part was published in the Journal of Natural History 43: 1207-1217. 
 
The work reported in this chapter was conducted in collaboration with FRANK 

WEINSHEIMER from the the Herpetology Department, Zoologisches Forschungsmuseum 
Alexander Koenig, Bonn, Germany. 



                               Section 3: Accessibility and biotic interactions 
                                                                                                 3.3. Osteopilus septentrionalis 

 115

Introduction  

Invasive alien species are a concern in nature conservation as they may have negative 

impacts on native biodiversity and can have major socioeconomic impacts (VITOUSEK et 

al. 1996), e.g. as reported for the Cuban treefrog (Osteopilus septentrionalis (DUMÉRIL and 

BIBRON, 1841)), a tropical, mostly arboreal and nocturnal hylid with a snout-vent-length of 

28-165 mm (MESHAKA 2001; VARGAS-SALINAS  2006). In addition to Cuba, the natural 

distribution of O. septentrionalis includes the Bahamas, Isla de la Juventud, San Salvador, 

the Acklins Islands and the Cayman Islands (DUELLMAN  and CROMBIE 1970; MESHAKA 

2001). During recent decades, this hylid has been introduced to Anguilla (TOWNSEND 

2000), the Bahamas (FRANZ et al. 1993), the British Virgin Islands (MASHAKA  2001; 

OWEN et al. 2005; 2006), Curaçao (VAN BUURT 2007), Florida (SCHWARZ 1952), the 

French Antilleans (BREUIL and IBÉNÉ 2008), Puerto Rico (SCHWARTZ and HENDERSON 

1991), and the Virgin Islands (MESHAKA 2001) where it has become invasive. A 

population introduced to Hawaii has reportedly been extinguished (BANKS et al. 2004). 

The first reports of the Cuban treefrog occurring in the United States came from Key 

West in 1931, although the species was likely already established well before it was 

reported (JOHNSON 2007). Introduction was most likely accidental, maybe as undetected 

stowaways in import vegetables from Cuba (BEHLER 1979; MESHAKA 1996). By the early 

1950s, O. septentrionalis was present in most of the Keys, and by 1952 the first specimens 

were detected in Miami (SCHWARTZ 1952). During subsequent years, northward range 

expansion continued. Feral populations of the species were detected in Broward County by 

1960, and in St. Lucie and Indian River counties less than 20 years later (KING 1960; 

MYERS 1977). Range expansion continued on the Gulf coast of Florida such that the 

species reached Naples about 1970 and Fort Meyers and Sanibel Island by the early 1980s 

(DUELLMAN  and CROMBIE 1970; WILSON and PORRAS 1983). Established populations have 

existed in Marion County since at least 2002 (Florida Museum of Natural History, 

Herpetology Collection, voucher No. 145041) and in 2003 specimens were collected in 

Duval County (Florida Museum of Natural History, Herpetology Collection, voucher No. 

133206, 137173). Today, Cuban treefrogs are found throughout peninsular Florida, with 

breeding populations found as far north as Jacksonville on the east coast and Cedar Key on 

the Gulf Coast (JOHNSON 2007; MCGARRITY and JOHNSON 2008). Some scattered 

individuals have been reported in the Florida panhandle and also from coastal Georgia and 

South Carolina, but these do not represent breeding populations (JOHNSON 2007; 

MCGARRITY and JOHNSON 2008). Further unintended introductions of O. septentrionalis to 
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new locations appear to be most likely still facilitated through the transportation of 

individuals hidden in shipping crates or on potted plants and transplanted shrubs (BEHLER 

1979; JOHNSON 2007). 

Important natural history properties accounting for the high invasiveness of O. 

septentrionalis include its high fecundity, short larval period, broad diet, and broad habitat 

and dietary niches (MESHAKA 2001; VARGAS-SALINAS  2006). Females are continuously 

fertile, laying very large clutches of 1,200 to over 16,000 eggs in any warm, shallow 

bodies of water lacking predators such as fish (MESHAKA 2001). In its native range, 

reproduction takes place year round (MESHAKA 2001); its spawning season is more 

restricted in its invasive range in Florida (May through October; BEHLER 1979).  

Cuban treefrogs can have major impacts on native species. It is the biggest hylid in 

the USA and is larger than other anuran species on Caribbean Islands (with exception of 

the Cane toad Rhinella marina; e.g. SMITH  2005), which might confer competitive 

advantage. For example, in Florida the gecko Hemidactylus mabouia is the only competitor 

of adult Cuban treefrogs (MASHEKA 2001). SMITH  (2005) showed that Cuban treefrog 

tadpoles compete with indigenous anuran larvae in Florida and have a negative impact on 

their growth and development. Furthermore, tadpoles of O. septentrionalis are omnivorous, 

cannibalistic, and could potentially eat the eggs of indigenous frogs (MESHAKA 2001). 

Because of its large size and its broad trophic niche, O. septentrionalis can have a strong 

impact on ecosystems since it can consume huge amounts of small arthropods and 

vertebrates including even lizards and other frogs (CARMICHAEL and WILLIAMS  1991; 

CONANT and COLLINS 1991; WYATT and FORYS 2004).  

Successful establishment of a non-indigenous species into an ecosystem depends on 

the presence of competitors and predators, food availability, and human footprint (EHRLICH 

1989; WILLIAMSON  1996). Additionally, the climatic similarity of the novel ecosystem 

compared to the source ecosystem is an important issue (BOMFORD et al. 2008), and 

therefore anthropogenic climate change is expected to affect range-size patterns of invasive 

species (e.g. HELLMANN  et al. 2008). Here, GIS-based Climate Envelope Models (CEMs) 

can provide an easy-to-use method to assess the potential distribution of species derived 

from their climatic niches (‘climate envelope’). In recent times, there have been several 

examples using CEMs to assess potential distributions of species under past, present and 

future climate scenarios (e.g. PETERSON 2001; PETERSON and VIEGLAIS 2001; CARNAVAL  

and MORITZ 2008; RÖDDER et al. 2008). CEMs can be helpful for the identification of 

climatically suitable areas and have been widely applied to the prediction of the invasive 
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potential of non-native species (e.g. PETERSON and VIEGLAIS 2001; GIOVANELLI  et al. 

2007; JESCHKE and STRAYER 2008; RÖDDER et al. 2008, RÖDDER 2009). Such approaches 

rely on the assumption that climatic tolerances of species shape major parts of their current 

distributions and that specific climatic niches are conservative, at least within an 

evolutionary short time frame of some hundreds to thousands years (e.g. WIENS and 

GRAHAM  2005; but see also PEARMAN et al. 2007). Herein, we aim to assess (i) the 

potential distribution under current climate conditions in order to identify regions with high 

potential for invasions within the Caribbean and (ii) possible changes in the potential 

distribution of O. septentrionalis due to anthropogenic global warming. 

 

 

Material and Methods 

Species records 

In total, 6,665 records of O. septentrionalis were available through the Global 

Biodiversity Information Facility (GBIF; www.gbif.org) and HerpNet databases 

(www.herpnet.org). Of these, 72 records were situated within unique grid cells in its native 

range and used for model building. In addition, 68 records of invasive populations were 

obtained from the US Geological Survey data base (www.nas.er.usgs.gov) and the IUCN 

Invasive Species Specialist Group (www.issg.org). For georeferencing, Alexandria Digital 

Library Gazetteer Server Client 

(www.middleware.alexandria.ucsb.edu/client/gaz/adl/index.jsp) was used. The accuracy of 

coordinates processed was assessed with DIVA-GIS (HIJMANS et al. 1999; 2001).  

 

 

Climate data 

Information on current climate was obtained from the Worldclim database, version 

1.4, which is based on weather conditions recorded between 1950 and 2000 with grid cell 

resolution of 30 arc seconds (HIJMANS et al. 2005; http://www.worldclim.org). It was 

created by interpolation using a thin-plate smoothing spline of observed climate at weather 

stations, with latitude, longitude and elevation as independent variables (HUTCHINSON 

1995, 2004). For future climate scenarios, we used climate change projections based on the 

CCCMA, CSIRO and HADCM3 models (FLATO et al. 2000; GORDON et al. 2000) and the 

emission scenarios reported in the Special Report on Emissions Scenarios (SRES) by the 

Intergovernmental Panel on Climate Change; IPCC 
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(http://www.grida.no/climate/ipcc/emission/). A set of different families of emission 

scenarios was formulated based on future production of greenhouse gases and aerosol 

precursor emissions. The SRES scenarios of A2a and B2a were used in this study. Each 

scenario described one possible demographic, politico-economic, social and technological 

future as expected for 2020, 2050 and 2080. Scenario B2a emphasizes more 

environmentally conscious, more regionalized solutions to economic, social and 

environmental sustainability. Compared to B2a, scenario A2a also emphasizes regionalized 

solutions to economic and social development, but it is less environmentally conscious.  

For model computation we selected the ‘annual mean temperature’, ‘mean maximum 

temperature of the warmest quarter’, ‘mean minimum temperature of the coldest quarter’, 

‘annual precipitation’, ‘mean precipitation of wettest quarter’, and ‘mean precipitation of 

the driest quarter’ as variables representing a set of parameters, which describe the 

availability of water and energy. In order to compare bioclimatic conditions between native 

and invasive records, the cumulative frequency of bioclimatic parameters was plotted with 

DIVA-GIS. 

 

 

Computation of Climate Envelope Models 

In this study MaxEnt 3.2.1 (PHILLIPS et al. 2004; 2006; 

http://www.cs.princeton.edu/~shapire/maxent) was used for CEM computation in order to 

assess the potential distribution of the Cuban treefrog. MaxEnt is a machine-learning 

algorithm following the principles of maximum entropy (JAYNES 1957). It has been shown 

to produce more reliable results than other comparable methods such as BIOCLIM, 

DOMAIN or GARP (e.g. ELITH  et al. 2006; WISZ et al. 2008). The reliability of the results 

obtained from MaxEnt models has been confirmed by its good capacity to predict novel 

presence localities fo less well known species (PEARSON et al. 2007) and the outcome of 

introductions of invasive species outside the native range (FICETOLA et al. 2007; RÖDDER 

et al. 2008; RÖDDER 2009). Herein, 10, 000 random background points were automatically 

selected by MaxEnt within a minimum convex polygon covering and including the native 

records. The logistic output format with suitability values ranging from 0 (unsuitable) to 1 

(optimal) (PHILLIPS and DUDÍK 2008) was used.  

Maxent allows for model testing by calculation of the Area Under the Curve (AUC), 

referring to the Receiver Operation Characteristic (ROC) curve using either the invasive 

records as test points and the native records for training (AUCtest) or all native records for 
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training and background points for testing (AUCtraining) (HANLEY  and MCNEIL 1982; 

PHILLIPS et al. 2006). This method is recommended for ecological applications because it 

is non-parametric (PEARCE and FERRIER 2000). Values of AUC range from 0.5 (i.e. 

random) for models with no predictive ability to 1.0 for models giving perfect predictions. 

According to the classification of SWETS (1988), AUC values > 0.9 describe ‘very good’, > 

0.8 ‘good’ and > 0.7 ‘useful’ discrimination ability. We acknowledge that there is currently 

some discussion about the suitability of this method (LOBO et al. 2008) but, in the absence 

of a more useful method and because AUC has been and is still widely used (e.g. ELITH  et 

al. 2006; PHILLIPS et al. 2006; JESCHKE and STRAYER 2008; WISZ et al. 2008), we have 

continued to use it here. 

 

 

Results 

We received ‘very good’ AUC values in the model (AUCtraining = 0.959; AUCtest 

=0.914). Analysis of variable contributions in the model revealed that the ‘mean minimum 

temperature of the warmest quarter’ had, with 42.1%, the highest explanatory power 

followed by ‘mean precipitation of the wettest quarter’ (21.4%), ‘mean temperature of the 

coldest quarter’ (15.2%), ‘annual mean temperature’ (13.7%), ‘mean precipitation of the 

driest quarter (6.5%) and ‘annual mean precipitation’ (1.2%). Climatic conditions observed 

at the invasive records are mainly coincidental with the conditions at the native records, 

with exception of the ‘mean temperature of the coldest quarter’ which is lower at some 

northern records in the invasive range (Figure 3.3-1). 

Under current climatic conditions, O. septentrionalis could find suitable areas in most 

of the coastal regions adjacent to its native range around the Gulf of Mexico and in the 

Caribbean Islands (Figure 3.3-2). On the American mainland, the borderland between the 

United States and Mexico, and the Yucatan Peninsula, are at especially high risk of 

invasion. Most islands of the Bahamas are colonized by this big hylid and the remaining 

islands which are not colonized at present show good climatic conditions for the survival 

of this species. In Florida, O. septentrionalis covers the whole climatically-suitable area 

already. Here, the known invasive range of O. septentrionalis is highly coincidental within 

suitable areas predicted by our model, additionally confirming its predictive power (Figure 

3.3-3). 
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Figure 3.3-1 Comparison of climatic conditions at native and invasive records of 
Osteopilus septentrionalis. Native records used for model building are indicated in black, 
invasive records in grey. 
 

 

 

Figure 3.3-2 Potential distribution of O. septentrionalis under current climate conditions 
within the Caribbean. Higher MaxEnt values suggest higher climatic suitability. Native 
records are indicated as points and invasive records as triangles. 
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Figure 3.3-3 Comparison between the known distribution of O. septentrionalis (A; Source: 
JOHNSON 2007; MCGARRITY and JOHNSON 2008) and model prediction for Florida (B). 
Spread history of O. septentrionalis is indicated. 
 

 

Projections of the CEM of O. septentrionalis onto the future climate change scenarios 

indicate that climatically-suitable areas may become more widespread overall (Figure 3.3-

4). These areas include the whole Atlantic coastline from the Mexican border to North 

Carolina, which may connect suitable areas with today’s potential distribution. In contrast 

the climatic suitability in its native range, as well as on the Yucatan Peninsula, will 

decrease. Only minor differences were observed in model projections onto climate change 

scenarios derived from CCCMA, CSIRO and HADCM3 scenarios, therefore only mean 

values are presented. Between the A2a and B2a prediction families, a greater extension of 

the potential distribution in family A2a compared with B2a was suggested by our models.  
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Figure 3.3-4 Maps of the potential distribution of O. septentrionalis as expected for 2020, 
2050 and 2080 assuming A2a and B2a conditions. Maps show mean values of MaxEnt 
values derived from models projected onto CCCMA, CISRO and HADCM3 scenarios. 
 

 

Discussion 

Our climate envelope modeling approach suggests that O. septentrionalis may find 

climatically suitable regions all over the Caribbean and the countries adjacent to the Gulf 

of Mexico. In Florida, our model accurately depictes its current invasive range with 

decreasing climatic suitability with increasing degrees in north latitude. Recently, 

MCGARRITY and JOHNSON (2008) detected a significant gradient in sexual size 

dimorphism decreasing with increasing degrees north latitude paralleling our results. This 

gradient is largely driven by a pronounced decrease in female mean snout to vent length 
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(MCGARRITY and JOHNSON 2008). The authors argued that this gradient may be traced 

back to reduced growth rates, increased time to maturity and reduced life expectancy 

whereby all of these possible explanations may be closely tied to climatic variation. 

Furthermore, they suggested that the decreasing female mean size toward the northernmost 

extent of the current non-indigenous range may be associated with diminished impacts and 

invasive success.  

Comparison between climatic conditions at the native and invasive records revealed 

that they are roughly similar with the exception that ‘mean temperature of the coldest 

quarter’ is lower than the observed minimum of the native records (Figure 3.3-1). This may 

indicate that temperature limits as present it its native range might not reflect the total 

range of the physiological tolerance of O. septentrionalis, which may be reached in its 

northern limit of its invasive range as suggested by MCGARRITY and JOHNSON (2008). On 

the other hand O. septentrionalis might be able to endure cold snaps in microclimatically-

suitable places (e.g. inside houses or old roof trusses) - at least within short time frames. 

This appears to be reasonable since it is well known that Cuban treefrogs frequently utilize 

man-made structures (MESHAKA 2001).  

Our projections onto anthropogenic climate-change scenarios indicate a possible 

extension of the current potential distribution of the Cuban treefrog in Northern America. 

However, successful colonization of newly arising suitable areas may depend on the 

propagation speed of O. septentrionalis. Time series suggest that the frog was able to 

expand its range at about 10 km y-1 in Florida (e.g., Key West-Miami, ~250 km / 21 y; 

Miami-Indian River Country, ~250 km/ 28 y; Miami-Duval Country: 570 km / 51 y) and, 

assuming this spread rate, it could reach Louisiana and Virginia within the next 80 years. 

Assuming that O. septentrionalis might be able to increase its invasive range as suggested 

by the models, it might compete with native species such as Hyla cinerea, H. squirella and 

H. femoralis within much larger proportions of their ranges than today, increasing its 

negative effects as reported by WYATT  and FORYS (2004).  

Next to its natural propagation rate, human facilitated propagation is an important 

factor, e.g. national (and international) plant trade. Here the species can be displaced 

uncontrollably and may reach remote areas rapidly (MESHAKA 2001; OWEN et al. 2005; 

2006). Therefore, means of control have to focus on prevention to avoid a further 

spreading through human activities, campaigns to sensitize the urban population to this 

ecological threat as well as strict regulation of the plant trade. The selection and prospect 

of success of eradication and containment measures may depend on the stability and 
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demographic structure of the target population. It should therefore be guided by a thorough 

assessment of the relationships between population density and intraspecific competition 

(e.g. GOVINDARAJULU et al. 2005). Unsuitable eradication methods may even increase 

population densities, e.g. as shown by American bullfrogs (Rana catesbeiana) by 

GOVINDARAJULU et al. (2005). The authors demonstrated that control efforts for bullfrogs 

by removing tadpoles and breeding adults may not be optimal, since (1) partial removal of 

tadpoles may lead to higher tadpole survival and development rates and higher 

postmetamorphic survival due to decreased density-dependent competition and (2) removal 

of adults may lead to higher survival of early metamorphic stages through reduced 

cannibalism. For American bullfrogs, culling of metamorphs in fall may be the most 

effective method of decreasing bullfrog population growth rate (Govindarajulu et al. 2005). 

However, a similar assessment for the Cuban treefrog is currently lacking.  

In addition, regional differences in population structure and fitness may require 

different regulation or eradication approaches. At the edge of the potential distribution, 

populations of Cuban treefrogs are expected to be more vulnerable to eradication methods; 

here more sustainable methods can be applied. This may include culling of metamorphs, 

collecting adult frogs or removal of clutches by hand as well as attempts to avoid creating 

unintended breeding sites (e.g. open rain barrels). Increased climatic suitability may be 

accompanied by increased survival rates, fecundity and numbers of generations per year 

making more aggressive control strategies necessary, e.g. establishing fish at breeding sites 

or application of chemical agents. However, selection of appropriate methods guided by an 

assessment of relationships between population densities and regulating mechanisms such 

as intraspecific competition or predation may improve their efficiency. 
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3.4. Potential distribution of the alien invasive Brown tree snake, Boiga 

irregularis (Reptilia: Colubridae)8 

 

 

 

 
©David Fischer                                                                                                     Boiga irregularis 

 

                                                 
8 This part is accepted for publication in Pacific Science 64(1). 
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Introduction  

 Alien invasive species are a concern in nature conservation as they may have 

negative impact on native biodiversity and can have major socioeconomic impacts. A 

remarkable example is the Brown tree snake, Boiga irregularis MERREM, 1802 (SAVIDGE 

1987; RODDA and FRITTS 1992; FRITTS and RODDA 1998; WILES et al. 2003). This 

venomous, 1-3 m long arboreal colubrid snake is native to Papua New Guinea, the 

Solomon Islands and the northern and eastern coasts of Australia (Figure 3.4-1, RODDA et 

al. 1999). Its status in Sulawesi (Indonesia) is uncertain. RODDA et al. (1999) listed 

populations from Sulawesi as ‘native’, while ISKANDAR and TJAN (1996) suggested that B. 

irregularis may have reached the island only via trade. Ecologically, this snake can be 

regarded a ‘generalist’ concerning habitat requirements and prey selectivity. Boiga 

irregularis is known from natural forest and grass land as well as agricultural and urban 

areas and does not show particular food preferences (RODDA et al. 1999).  

 

 

 

Figure 3.4-1 Native distribution of B. irregularis. Source: RODDA 1999. 

 

 The Brown tree snake has been accidentally brought to several islands in the Pacific 

shortly after World War II where it successfully established local populations due to 

obviously un-occupied niches and plenty of naïve prey (RODDA et al. 1992). As a result, B. 
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irregularis today is listed among the 100 worldwide worst alien invasive species (LOWE et 

al. 2000). The most devastating consequences of its introduction are known from Guam 

where it has led to decimation of vertebrate species including flying foxes, several small 

terrestrial mammals and lizards as well as the extinction of eight out of 11 endemic bird 

species in the 1980s (SAVIDGE 1987; WILES et al. 2003). It is suggested that here B. 

irregularis has significantly altered food web structures enhancing its effect on native biota 

and explaining its extraordinarily devastating effect (D'ANTONIO and DUDLEY 1995; 

FRITTS and RODDA 1998).  One of the major means of spread of B. irregularis is as a 

stowaway in military equipment and cargo (FRITTS 1987; KRAUS 2007). Currently, 

anthropogenic dispersal is more associated with large-scale exercises and personal cargo of 

people moving from Guam to other duty posts. Also sea freight (container/bulk) may play 

a role in dispersal (KRAUS 2007) and several tree snakes translocated by aircraft cargoes 

have been detected at Honolulu airport in recent years (e.g. ATKINSON and ATKINSON 

2000). During the last decades, the Brown tree snake has arrived to Cocos Islands, Diego 

Garcia, Hawaiian Islands (Honolulu, Oahu), Indonesia (Java), Japan, New Zealand, 

Northern Mariana Islands (Saipan, Tinian), Malaysia (Singapore), Marshall Islands 

(Kwajalein), Micronesian Islands (Pohnpei), Ryukyu Islands (Okinawa), Spain (Rota), 

Taiwan, USA (Texas, Corpus Christi) and Wake Island (MITO and UESUGI 2004; IUCN 

Invasive Species Specialist Group 2007, www.issg.org). Although, it apparently has so far 

not become residential at any of these places, this list of geographic sites and their 

distances from the native occurrence demonstrate the snake’s ‘efficiency’ in dispersal. A 

result is that this clearly demands for special concern with regard to conservation (BUDEN 

et al. 2001; GILL  et al. 2001; KRAUS and CARVALHO  2001; RODDA et al. 2002). In the 

USA, incursions by B. irregularis have been repeatedly intercepted (MCCOID et al. 1994), 

but eradication of established populations are expensive and difficult (RODDA et al. 2002).  

 It appears to be a question of time until the Brown tree snake will establish 

additional invasive populations. FRITTS and RODDA (1998) studied the risk of invasion by 

the species using biological and natural history information. They concluded that the 

Mariana, Hawaiian and Caroline Islands are most at risk because a native snake fauna is 

absent and potential prey density is high. Invasion risk will depend next to the arrival of 

founder individuals over time, also on environmental conditions making areas more perfect 

for the ectothermic species.  We see an urgent need to identify those regions in which this 

species finds suitable conditions for successful establishment of invasive populations. 

Climate Envelope Models (CEMs) are a useful tool to study potential distributions of 
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species both under past, current and future climatic scenarios (e.g. HIJMANS and GRAHAM  

2006; MALCOM et al. 2006; PETERSON and NYÁRI 2007; CARNAVAL  and MORITZ 2008; 

RÖDDER et al. 2008; RÖDDER 2009). The scope of the present study is to assess the 

worldwide potential distribution of B. irregularis under current climatic conditions in order 

to identify regions with high potential for invasions.  

 

 

Material and Methods 

Species records and climate data 

 A total of 2,679 Boiga irregularis records were available through the Global 

Biodiversity Information Facility (GBIF, www.gbif.org) and HerpNet databases 

(www.herpnet.org). In addition, records of invasive populations were obtained from the 

IUCN Invasive Species Specialist Group (www.issg.org), whereby only records within 

areas with confirmed reproduction were included. For georeferencing, the Alexandria 

Digital Library Gazetteer Server Client 

(www.middleware.alexandria.ucsb.edu/client/gaz/adl/index.jsp) was used.  

 We used DIVA-GIS 5.4 (HIJMANS et al. 2001) to test the accuracy of coordinates 

(Check Coordinates tool) by comparing information accompanying the species records and 

locality data extracted from an administrative boundaries database at the smallest possible 

level (state/country/city). This information should be the same, and any mismatches may 

reflect errors (see HIJMANS et al. 1999). In addition, we used altitudinal information to spot 

likely errors in the coordinate data when this information was provided with the records 

used. Altitude was compared with the altitude of the locality in a digital elevation model, 

using the Extract Values by Points function of DIVA-GIS. Of the total records available, 

337 were situated in unique grid cells within the species’ native range, classified as being 

accurate and hence suitable for model building (see below).  

 Information on current climate was obtained from the Worldclim database, version 

1.4, which is based on weather conditions recorded between 1950 and 2000 with a grid cell 

resolution of 2.5 minutes (HIJMANS et al. 2005, www.worldclim.org). It was created by 

interpolation using a thin-plate smoothing spline of observed climate at weather stations, 

with latitude, longitude and elevation as independent variables (HUTCHINSON 1995, 2004).  
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Variable selection 

 RODDA et al. (2007) approached the climate envelope of the Brown tree snake in its 

native geographic range regarding annual mean monthly temperature and precipitation. 

They found that the amount of precipitation was a good predictor for its distribution. Such 

a relationship appears to be further supported by natural history observations since the 

seasonal activity of the Brown tree snake is limited to the warmer and wetter summer 

months in its Australian range (COVACBVICH and LIMPUS 1973; SHINE 1991a). It was also 

observed that the snake is unable to shed properly when the relative humidity is lower than 

60 % (RODDA et al. 1999). Within the native distribution of the target species, this 

dependency is reflected in the geographic range in Australia where B. irregularis inhabits 

mainly humid areas close to the sea. Therefore, next to the mean annual values, minimum 

and maximum annual values may be important suggesting that ‘annual precipitation’, 

‘precipitation of wettest month’ and ‘precipitation of the driest month’ are suitable 

predictor variables.  

 Temperature is a key factor influencing ectothermic species; therefore the ‘annual 

mean temperature’ is a significant variable related to energetic balances and digestive turn 

over rates. MATHEIS and MILLER (2002) showed that temperature seasonality is 

physiologically important influencing reproduction. These authors investigated the effect 

of two different temperature regimes for eliciting reproduction in male and female B. 

irregularis. They found that specimens maintained at 24 °C followed by a 60-day cool 

period at 19 °C exhibited substantial reproductive activity. Clutches were produced by 

females shortly after returning to 24 °C. In contrast, individuals maintained at 28 °C 

followed by an identical 19 °C cooling period exhibited relatively little reproductive 

activity and none of the females had produced eggs. Considering these effects we added 

the ‘maximum temperature of the warmest month’, ‘minimum temperature of the coldest 

month’ as predictor variables for model computation.  

 

 

Climate Envelope Models 

 Maxent 3.2.1 (PHILLIPS et al. 2006, www.cs.princeton.edu/~shapire/maxent) was 

applied for CEM calculation in order to assess the potential distribution of the Brown tree 

snake and to map it into geographic space. MaxEnt is a grid-based machine-learning 

algorithm following the principles of maximum entropy (JAYNES 1957). The general 

concept is to find a probability distribution covering the study area that satisfies a set of 
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constraints derived from occurrence data. Each constraint requires that the expected value 

of an environmental variable or a function thereof must be within a confidence interval of 

its empirical mean over the presence records. The program chooses the distribution that is 

closest to uniform and therefore maximizes entropy within all distributions that satisfy the 

constraints as any other choice would represent constraints on the distribution that are not 

justified by the data. MaxEnt is able to incorporate complex dependencies between 

predictor variables and has been shown to reveal better results than other comparable 

methods (e.g. ELITH  et al. 2006; WISZ et al. 2008). The reliability of the results obtained 

from MaxEnt models has been confirmed by its capacity to predict novel presence 

localities for poorly known species (PEARSON et al. 2007) and the outcome of introductions 

of alien invasive species outside the native distribution (e.g. PETERSON and VIEGLAIS 2001; 

FICETOLA et al. 2007; JESCHKE and STRAYER 2008; RÖDDER et al. 2008; RÖDDER 2009).  

 Runs used herein were conducted using the default values for all program settings, 

whereby randomly chosen background points were restricted to an area defined by a 

minimum convex polygon including all native records. Herein, the logistic output format 

with suitability values ranging from 0 (unsuitable) to 1 (optimal) was used and areas where 

‘clamping’ (i.e. nonanalogous climatic condition as present in the training area) occurred 

during projections were subsequently excluded (PHILLIPS and DUDÍK 2008). 

 Maxent allows for model testing by calculation of the Area Under the Curve 

(AUC), referring to the ROC (Receiver Operation Characteristic) curve; herein we 

assessed the ability of the model to distinguish background points from training points 

(HANLEY  and MCNEIL 1982; PHILLIPS et al. 2006). This method is recommended for 

ecological applications because it is non-parametric (PEARCE and FERRIER 2000, but see 

LOBO et al. 2008). Values of AUC range from 0.5 (random) for models with no predictive 

ability to 1.0 for models giving perfect predictions. According to the classification of 

SWETS (1988), AUC values > 0.9 describe ‘very good’, > 0.8 ‘good’ and > 0.7 ‘useful’ 

discrimination abilities. MaxEnt allows for an assessment of the relative contribution of 

variables included using a jackknifing approach.  
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Results 

Current potential distribution 

 We received ‘very good’ AUC values in the model (AUC = 0.971), and the known 

invasive range of Boiga irregularis at Guam is situated within higher MaxEnt classes (> 

0.780), also confirming the predictive power of the model. The lowest observed MaxEnt 

value at the presence point used for model training was 0.201. Analyses of variable 

contributions in the model revealed that ‘annual precipitation’ with 33.3 % has the highest 

explanative power, followed by ‘maximum temperature of the warmest month’ (28.5 %), 

‘annual mean temperature’ (13.8 %), ‘precipitation of the driest month’ (11.7 %), 

‘precipitation of the wettest month’ (7.7 %) and the ‘minimum temperature of the coldest 

month’ (4.9 %). The relative variable importance obtained via jackknifing from the 

MaxEnt model appears to be consistent with natural history observation (see above). 

‘Clamping’ occurred only at very few sites such as at a very small ridge at the west coast 

of India. Those areas were excluded from further analyses. 

 Under current climatic conditions, the Brown tree snake performs a geographically 

wide potential distribution almost all over the Tropics and adjacent subtropical regions, 

especially widespread within the southern hemisphere, but also extending to Northern 

Armerica including Florida and coastal areas next to the Gulf of Mexico (Figure 3.4-2). 

Regarding the general region, in which the Brown tree snake occurs, i.e. South-East Asia 

and Australia, major parts of New Caledonia, New Zealand, the Fiji Islands and Vanuatu 

were uncovered as highly suitable to B. irregularis by the CEM (Figure 3.4-3). Guam, the 

Caroline Islands and the Northern Mariana Islands including Saipan are entirely suitable to 

B. irregularis (Figure 3.4-3, Table 3.4-1). Apart from regions in the vicinity of the species’ 

native geographic range in South-East Asia, its climate envelope is elsewhere mirrored in 

both lowland (e.g. Congo and Amazon basins) and montane (e.g. southern coastal Brazil, 

Ethiopian Highlands) regions. Apart from this, high suitability was found on the Hawaiian 

Islands (lower elevations) (Figure 3.4-4) and Madagascar (mainly east coast and higher 

elevations, Figure 3.4-5).  



 

 

 

 

 

 

Figure. 3.4-2 Potential distribution of Boiga irregularis under current climate. Any area with a MaxEnt value above 0.201 may be climatically 
suitable for B. irregularis, although higher MaxEnt values suggest higher climatic suitability. 
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Figure 3.4-3 Potential distribution of Boiga irregularis under current climate within 
South-East Asia and Australia. Higher MaxEnt values suggest higher climatic suitability. 
Native records are indicated as open circles and invasive ones as triangles. 
 

 

Discussion 

 When interpreting the results and assessing an invasion risk, it is important to 

evaluate possible discrepancies between the realized and fundamental climatic niche of B. 

irregularis and the relative contribution of ecological factors other than climate, which 

may limit the species’ current distribution. Next to a species’ climate envelope these are 

accessibility limitations and/or biotic interactions such as competition or predation (see 

also SOBERÓN and PETERSON 2005).  

 

 

Biotic interactions and/or accessibility 

 Although, the modeled potential distribution in the eastern portion of the native 

range of Boiga irregularis is coincident with the realized distribution (i.e. current species 

records), western is not (Figure 3.4-3). Climatically, the Brown tree snake can find suitable 

areas on Borneo, Java and Sumatra west of the Wallace line, but none of these islands has 

been successfully invaded, as far known (RODDA et al. 1999; IUCN Invasive Species 
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Specialist Group 2007, www.issg.org). Possible explanations could be a non equilibrium of 

the actual range with climate due to limited accessibility or ongoing spreading, limited 

prey availability or the presence of predators or competitors (e.g. ARAÚJO and PEARSON 

2005; RODDA et al. 1999; RÖDDER et al. 2008).  

 Accessibility highly influences the number of jurisdictions where a species is 

introduced, which is a significant predictor of the probability a species can establish 

invasive populations (BOMFORD et al. 2008). Limited accessibility appears to be an 

unlikely explanation for the absence of B. irregularis west of the Wallace line. Although 

faunal exchange between the westernmost populations in Sulawesi and New Guinea and 

adjacent Indonesian islands in geological times was rather restricted (e.g. INGER and VORIS 

2001), cargo traffic within Indonesia and adjacent islands increased during the last century 

and is generally high today (ESPADA and KUMAZAWA  2005). Therefore, the chance for 

accidentally introduced specimens is expected to be high considering that cargo is one of 

the major spread ways (KRAUS 2007).  

 In the case of the Brown tree snake, presence of competitors perhaps explains best 

the observed pattern. SHINE (1991a, b) suggested that colubrid snakes such as B. 

irregularis are not in significant competition with the endemic elapid snakes and pythons 

in Australia because they have invaded the continent with ecological specializations that 

are rare amongst the endemics. Especially differences in foraging habitats and in the 

preferred prey spectrum in comparison to the endemic Australian snakes may have 

enhanced their success (SHINE 1991b). This might not be true for the snake fauna west of 

the Wallace line. The genus Boiga currently comprises 34 species and 11 of them inhabit 

allopatric ranges adjacent to the native range of B. irregulatis (B. angulata, B. 

bengkuluensis, B. cynodon, B. dendrophila, B. drapiezii, B. jaspidea, B. multimaculata, B. 

nigriceps, B. philippina, B. schultzei, B. tanahjampeana, UETZ et al. 2007), but none of 

them is known to be invasive (www.issg.org). It is remarkable that although other snakes 

occur in sympatry with the Brown tree snake, other Boiga species do commonly not. Only 

at Sulawesi B. dendrophila and B. multomaculata occur together with the Brown tree 

snake, but here B. irregularis was only reported from the immediate neighborhood of sea 

ports where it might have been introduced (ISKANDAR and TJAN 1996). It is unclear if 

actually at Sulawesi inland populations do exist or not (INGER and VORIS 2001). 

 Interestingly, the Brown tree snake is the only member of the genus known to have 

established invasive populations. Differences in behavioral traits, which might provide 

superior abilities to establish invasive populations, are not known. For us, the most likely 
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explanation is that the native range of Brown tree snake is much closer to areas lacking a 

native terrestrial snake fauna enhancing the chance of translocation.  

 

 

Climate 

 MATHIES and MILLER (2002) showed that a period of cool temperatures elicits 

reproductive activity in both sexes. The authors pointed out that temperatures experienced 

during the artificial hibernation were much lower than the snakes would experience on 

Guam, where temperature seasonality is relatively invariant throughout the year (± 1 °C, 

RODDA et al. 1999). Comparing native populations in Australia and invasive populations at 

Guam, MOORE et al. (2005) found that snake specimens from Guam exhibited significantly 

reduced body conditions compared to individuals from Australia. The authors suggested 

that Brown tree snakes on Guam were living under stressful conditions, possibly due to 

overcrowding and overexploitation of food resources, resulting in decreased adult 

size/weight and suppressed reproduction. The findings of MATHIES and MILLER (2002) 

might provide an additional explanation for their finding since environmental stress may 

cause absence of hibernation and disturbed seasonal reproductive cycles. However, 

although reproductive activity at Guam may be suppressed and desynchronized 

reproductive activity, only minor enhanced fluctuations in temperature throughout the year 

may be sufficient to elicit reproduction; therefore fluctuations and / or extreme weather 

events due to anthropogenic climate change might enhance the snake problem. 

Furthermore, the observation that a moderate hibernation enhances the reproductive cycle 

allows the hypothesis that Boiga irregularis may find climatically suitable habitats also in 

more temperate regions with a higher degree of seasonality, such as the northern parts of 

New Zealand, Japan or Taiwan. Generally, climatic similarities of a novel environment 

compared to the native range enhance the probability of successful establishment of alien 

invasive species (BOMFORD et al. 2008). 

 

 

Which regions are at high risk of invasion by the Brown tree snake? 

 FRITTS and RODDA (1998) studied the risk of invasion by the Brown tree snake 

using biological and natural history information. They concluded that the Northern 

Mariana, Hawaiian and Caroline Islands are most at risk because a native (competing) 

snake fauna is absent and prey is available. Since the Mariana and Caroline Islands are 
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comparable in terms of faunal composition to Guam, an invasion in these islands may have 

similarly dramatic ecological consequences. The faunal composition of the Hawaiian 

Islands might also generally support the establishment of Boiga irregularis (KRAUS and 

CARVALHO  2001). However, predictions based on natural history and biological 

information appears to bear a higher degree of uncertainty here, because the faunal 

composition of the Hawaiian Islands is distinctly different from that found at Guam 

(FRITTS and RODDA 1998).  

 

 

 

 

Figure 3.4-4 Potential distribution of Boiga irregularis under current climate on the 
Hawaiian Islands. Higher MaxEnt values suggest higher climatic suitability. 
 

 

 CEM predictions obtained in this paper confirm the expected climatic suitability of 

the Northern Mariana, Hawaiian and Caroline Islands. Additionally, our models highlight 

major parts of Central Africa, Central and Southern America and a broad swath of the 

southeastern US coastal plain (coincident with the prediction presented by RODDA et al. 

(2007)) New Caledonia, New Zealand and Madagascar as having high climatic suitability 

to B. irregularis. Records of Brown tree snakes which were accidentally imported to 

Hawaii and New Zealand do already exist (GILL  et al. 2001, IUCN Invasive Species 

Specialist Group 2007, www.issg.org) and it may be feared that the Brown tree snake will 
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establish here. Impacts may be enhanced due high availability of prey affecting population 

dynamics of the invader. Establishment of B. irregularis in New Zealand, in addition, may 

be facilitated due to the absence of competitors, since exclusively sea snakes occur there 

(Hydrophiidae). Similarly, for New Caledonia and the Fiji Islands only 19 and seven snake 

species are known respectively (UETZ et al. 2007). Sixteen of the New Caledonian species 

again are hydrophiids, two are fossorial thyphlopida while Candoia bibroni (Boidae) could 

be a potential competitor to the Brown tree snake. At Fiji, there are each three hydrophiids 

and thyphlopids plus Candoia bibroni.  

 

 

 

 

Figure 3.4-5 Potential distribution of Boiga irregularis under current climate conditions in 
Madagascar. Higher MaxEnt values suggest higher climatic suitability. 
 

 

 It needs to be noted that possible discrepancies between the realized climatic niche 

(= climatic conditions within realized distribution) and the fundamental climatic niche of 

B. irregularis may lead to an underestimation of threat in some regions. Unfortunately, the 

relationship between realized and fundamental niche can only be addressed experimentally 
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but not with CEM approaches leaving some degree of uncertainty. However, interestingly 

the potential distribution of B. irregularis derived from our model is remarkably coincident 

with the realized distributions of all other members of the genus Boiga, implying that 

climatic niches are rather conservative within the genus - at least regarding the variables 

chosen herein - and that we captured a great part of its fundamental niche with our model. 

However, areas outside the potential distribution proposed may exhibit different climatic 

conditions as present within the realized distribution of B. irregularis, but they may not 

necessarily be unsuitable. 

 

 

Conclusions 

 We conclude that the Boiga irregularis is a species causing a high extinction risk to 

endemic faunas in regions where specimens are frequently translocated via military 

shipment and cargo (FRITTS 1987; KRAUS 2007; BOMFORD et al. 2008) and which at the 

same time are suitable under current climate and lack competitors, namely the Northern 

Mariana and Hawaiian Islands, New Caledonia and Fiji Islands. Climatically suitable 

regions harboring minimal or lacking native snake species are likely to be most impacted. 

Here, availability of resources may be enhanced compared to an ecosystem already 

harboring competing snakes.  

 Under future anthropogenic climate change, the situation will not change 

essentially but climatic suitability for B. irregularis will generally remain high in 

Madagascar and New Caledonia and even increase in New Zealand (D. RÖDDER, 

unpublished data). Possible spread routes to Madagascar, New Caledonia and Fiji Islands 

include sea cargo, military equipment (FRITTS 1987; KRAUS 2007) and also accidentally 

translocations via aircraft cargoes (ATKINSON and ATKINSON 2000). Preventing further 

spread to the areas highlighted may depend on maintaining very strict cargo checks of 

boats and searches at airports.  
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3.5. Human Footprint, facilitated jump dispersal, and the potential 

distribution of the invasive Eleutherodactylus johnstonei Barbour 1914 

(Anura: Eleutherodactylidae)9 

 

 

 

 

Eleutherodactylus johnstonei 

 

 

                                                 
9 This part was submitted to Tropical Zoology. 
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Introduction  

Alien invasive species are a concern in nature conservation as they may have a broad 

range of negative impacts. These can comprise various aspects such as extinction of 

species, biotic homogenization, alteration of community structure, disruption of food-

webs, losses to agriculture, damage to human structures, disease epidemics and 

degradation of human quality of life (KRAUS 2008), respectively. Eleutherodactylus 

johnstonei is a small (17-35 mm), dull-coloured, nocturnal frog, most likely native to the 

Lesser Antilles (Antigua, Barbuda, Nevis, Monserrat, Saba, St. Martin, St. Eustatius, St. 

Kitts, St. Lucia, St. Vincent; LEVER 2003). The geographic distribution of E. johnstonei 

has been continuously expanding during the last centuries (KAISER 1992; KAISER & 

WAGENSEIL 1995). Its exact origin, however, remains unclear although many hypotheses 

have been formulated (e.g. KAISER 1997). As a highly adaptive species, the frog has 

established invasive populations in several Caribbean islands including Aruba, Barbados, 

Bonaire, Curaçao, Jamaica (HARDY and HARRIS 1979; KAISER 1997; LEVER 2003; BUURT 

2006) and Bermuda, as well at the Central and South American mainland (Colombia, 

Costa Rica, French Guiana, Guyana, Panama, Venezuela; KAISER et al. 2002; LEVER 

2003). Today, it is the most widely distributed frog in the eastern Caribbean. 

Eleutherodactylus johnstonei disperses by a variety of means, whereby the major 

ways are human facilitated jump dispersal via ornamental plant trade, transportation of 

roadside litter, merchandise and man made irrigation schemes (BARBOUR 1930; CHENSKY 

1989; LEVER 2003). Subsequent accidental or intentional introductions by residents is 

indicated by its predominate presence in upscale urban areas such as private residences and 

areas where transportation of goods is centred (KAISER et al. 2002; BUURT 2006). The key 

of the success of E. johnstonei in establishing invasive populations may be its broad 

ecological versatility, tolerance of xeric conditions (POUGH et al. 1977) and independence 

of standing water due to direct developing eggs (KAISER et al. 2002). It is apparently more 

successful in occupying even heavily anthropogenic disturbed habitats than other members 

of the genus (STEWART 1977; STEWART and MARTIN 1980; GERMANO et al. 2003) and a 

highly successful colonizer once introduced (BOMFORD et al. 2009).  

It was shown that E. johnstonei frequently outcompetes native species in disturbed 

habitats, but it is commonly unable to establish itself in undisturbed areas occupied by 

ecologically similar species (e.g. POUGH et al. 1977; KAISER and HENDERSON 1994; 

KAISER and WAGENSEIL 1995; KAISER 1997; KAISER et al. 2002; KRAUS 2008). For 

example, KAISER et al. (1994) suggested that introduced E. johnstonei in Grenada may 
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have led to the decline of the native E. euphronides through interspecific competition. 

Similar interactions between E. johnstonei and other native species were reported from 

Antigua (SCHWARTZ 1967), Dominica (KAISER and HENDERSON 1994), and Jamaica 

(POUGH et al. 1977), respectively. Therefore, in combination with rapidly progressing 

habitat destruction, it may be a catalyst for the disappearance of other species (HARDY and 

HARRIS 1979).  

Next to competition with native species, further possible impacts of introduced 

Eleutherodactylus include transmission of diseases (e.g. of Batrachochytrium 

dendrobatidis as reported for Eleutherodactylus coqui THOMAS, 1966; BEARD and 

O´NEILL  2005)) or of parasites (e.g. Leptospira interrogans; EVERARD et al. 1990) and 

socioeconomic damages (KRAUS and CAMPBELL 2002; LEVER 2003). In French Guiana, 

the calls of introduced E. johnstonei are disturbing the sleep of local residents (LEVER 

2003). This is also a problem for other areas where Eleutherodactylus species have been 

introduced outside their native ranges. In the Hawaiian Islands, the calls of E. coqui are a 

serious problem for local residents and hotel guests who complain about the noise keeping 

them awake at night (KRAUS et al. 1999, KRAUS and CAMPBELL 2002). In Hawaii, 

residents are encountering reduced property values and increased difficulty selling property 

(KRAUS and CAMPBELL 2002).  

A risk assessment identifying regions in which E. johnstonei can find suitable 

conditions for successful establishment of invasive populations may be helpful to prevent 

further introductions and to coordinate effective conservation measurements. Successful 

establishment of a non-indigenous species into an ecosystem depends on the presence of 

competitors and predators, food availability, and human footprint (EHRLICH 1989; 

WILLIAMSON  1996). Additionally, the climatic similarity of the novel ecosystem compared 

with the source ecosystem is an important issue (BOMFORD et al. 2008). For such an 

assessment, GIS-based analyses such as Climate Envelope Models (CEMs) can be a 

powerful tool (e.g. PETERSON and VIEGLAIS 2001; RÖDDER et al. 2008; BOMFORD et al. 

2009; RÖDDER 2009). Herein, I compare the potential distribution of E. johnstonei under 

current climate conditions and the spatial distribution of anthropogenic modified habitats 

in order to identify regions with high potentials for E. johnstonei invasions. 
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Material and methods 

Species records 

For model building 3,362 species records were obtained from through the Global 

Biodiversity Information Facility (GBIF; www.gbif.org) and HerpNet databases 

(www.herpnet.org), and additional published references (SCHWARTZ and HENDERSON 

1991; KAISER et al. 2002; LEVER 2003; BUURT 2006). A total number of 124 records were 

situated in unique grid cells and used for model building (39 native and 85 invasive 

records). If necessary, the Alexandria Digital Library Gazetteer Server Client 

(www.middleware.alexandria.ucsb.edu/client/gaz/adl/index.jsp) was used for 

georeferencing. The accuracy of coordinates processed was assessed with DIVA-GIS 5.4 

(HIJMANS et al. 1999; 2002).  

 

 

Variable selection  

POUGH et al. (1977) showed that climatic conditions are directly correlated with 

activity patterns and habitat choice in E. johnstonei, whereby temperature and moisture 

conditions of its preferred habitats are closely related to its physiological properties. 

According to laboratory experiments conducted by these authors, the preferred temperature 

of E. johnstonei is 25.7 ± 0.67 °C (n= 49), whereby its critical maximum temperature 

ranges between 36.2 – 40.8 °C (acclimated to 20°C: mean= 39.2 ± 0.47 °C, range= 36.2-

40.8 °C, n= 10; acclimated to 30°C: mean= 38.6 ± 0.19 °C, range= 38.0-40.0 °C, n= 10). 

Although E. johnstonei is apparently more tolerant to dehydration than most other 

Eleutherodactylus (POUGH et al. 1977), a continuous availability of water may be 

necessary for its persistence. Therefore, I selected the ‘annual mean temperature’, 

‘maximum temperature of the warmest month’, ‘minimum temperature of the coldest 

month’, ‘annual precipitation’, ‘precipitation of wettest month’, and ‘precipitation of the 

driest month’ as variables representing a set of parameters, which describe the availability 

of water and energy and their minimum and maximum. Information on current climate was 

obtained from the Worldclim database, version 1.4, which is based on weather conditions 

recorded between 1950 and 2000 with grid cell resolution 30 arc seconds (HIJMANS et al. 

2005; http://www.worldclim.org). It was created by interpolation using a thin-plate 

smoothing spline of observed climate at weather stations, with latitude, longitude and 

elevation as independent variables (HUTCHINSON 1995, 2004). In order to compare 

bioclimatic conditions between native, invasive records and published data provided by 



                              Section 3: Accessibility and biotic interactions 
                                                                                            3.5. Eleutherodactylus johnstonei  

 143

POUGH et al. (1977), I plotted the cumulative frequency at the records per bioclimatic 

parameter with DIVA-GIS. 

It was shown that successful establishment of invasive populations of E. johnstonei is 

often facilitated by anthropogenic habitat disturbance (e.g. POUGH et al. 1977; KAISER and 

WAGENSEIL 1995; KAISER 1997; KAISER et al. 2002), which can be quantified by the 

Human Footprint (HF; SANDERSON et al. 2002). Therefore, I compare the results obtained 

from the potential distribution map derived from the CEM with the HF values describing 

the human influence within a given area. HF values range from 0 to 100 and can be 

understood as the sum total of ecological footprints of human populations including 

population density, land transformation, access, electric power infrastructure, and biome 

normalization (SANDERSON et al. 2002). Higher HF values suggest a higher anthropogenic 

impact.  

 

 

Computation and evaluation of the Climate Envelope Model 

For CEM calculation I used MaxEnt 3.2.19 (PHILLIPS et al. 2004; 2006; 

http://www.cs.princeton.edu/~shapire/maxent), a machine-learning algorithm following the 

principles of maximum entropy (JAYNES 1957). It has been shown to reveal better results 

than other comparable methods such as BIOCLIM, DOMAIN or GARP (e.g. ELITH  et al. 

2006). The reliability of the results obtained from MaxEnt models has been confirmed by 

its good capacity to predict novel presence localities of less well known species (e.g. 

PEARSON et al. 2007) and the outcome of introductions of invasive species outside the 

native range (e.g. RÖDDER et al. 2008; RÖDDER 2009). Both native and invasive 

Eleutherodactylus johnstonei records were pooled for model building following 

BROENNIMANN and GUISAN (2008). The records were not randomly distributed over its 

native and invasive range (Figure 3.5-1), leaving the problem of clumped records due to 

biased sampling which may violate CEM assumptions (e.g. DORMANN et al. 2007). To 

account for this, I extracted all bioclimatic values at the records and performed a cluster 

analysis based on Euclidean distances, whereby resulting classes were blunted at a 

threshold leaving 60 classes. The mean values of the bioclimatic variables per class were 

used for further processing. This method reduces the amount of duplicate information in 

the data set and thereby the impact of clumped records due to biased sample selection. 

Calculations were performed with XLSTAT 2008 (Addinsoft, http://www.xlstat.com; 

downloaded 1 July 2008). For model building, 10,000 random background points were 
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automatically selected by MaxEnt within a minimum convex polygon covering and 

including both native and invasive records. The logistic output format with suitability 

values linear ranging from 0 (unsuitable) to 1 (optimal) was used (PHILLIPS and DUDÍK  

2008). CEM predictions may become unreliable if the model is predicted onto climate 

parameters outside the training range (termed ‘clamping’; PHILLIPS et al. 2006); therefore 

such areas were removed from the final potential distribution map. 

Maxent allows for model testing by calculation of the Area Under the Curve (AUC), 

referring to the ROC (Receiver Operation Characteristic) curve (HANLEY  and MCNEIL 

1982; PHILLIPS et al. 2006). I used the class means of the bioclimatic variables as described 

above for model training and (1) all original species records as test points (referred to as 

AUCtest) and (2) random background points within the training area as test points (referred 

to as AUCtraining). This method is recommended for ecological applications because it is 

non-parametric (PEARCE and FERRIER 2000). Values of AUC range from 0.5 (i.e. random) 

for models with no predictive ability to 1.0 for models giving perfect predictions. 

According to the classification of SWETS (1988) AUC values > 0.9 describe ‘very good’, > 

0.8 ‘good’ and > 0.7 ‘useful’ discrimination ability. Furthermore, MaxEnt offers the option 

to perform a jackknife analyses to determine the relative importance of the variables in the 

final model.  

 

 

Results  

I received ‘good’ to ‘very good’ AUC values in the model (AUCtraining = 0.897; 

AUCtest = 0.921). Clamping occurred only in a small stripe along the western Coast of 

Southern America from northern Peru to central Chile, which was excluded from further 

analyses. Analysis of variable contributions in the model revealed that the ‘maximum 

temperature of the warmest month’ had with 40.2 % the highest explanative power 

followed by ‘precipitation of the wettest month’ (35.1 %), the ‘annual mean temperature’ 

(9.5 %), ‘mean temperature of the coldest quarter’ (6.8 %), the ‘precipitation of the driest 

month’ (6.1 %) and the ‘annual mean precipitation’ (2.3 %). Climatic conditions observed 

at the invasive records frequently exceed conditions at the native records, with exception of 

the ‘maximum precipitation of the wettest quarter’ (Figure 3.5-1). The by POUGH et al. 

(1977) experimentally determined preferred temperature of E. johnstonei corresponds well 

with the annual mean temperature at the native records (median= 25.7 °C, range= 23.0 – 

26.7 °C; Figure 3.5-1), but the upper and lower values are frequently exceeded the invasive 
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range (median= 26.0 °C, range= 17.8 – 27.7 °C; Figure 1). Upper and lower values of the 

maximum temperature of the warmest month within the native range (median= 30.4 °C, 

range= 27.6 – 31.4 °C; Figure 3.5-1) are also frequently exceeded in the invasive range 

(median= 31.1 °C, range= 23.8 – 34.1 °C; Figure 3.5-1), but still much lower than the 

critical maximum temperature (as reported by POUGH et al. 1977). 

 

 

 

 

Figure 3.5-1 Comparison of climatic conditions at native and invasive records of 
Eleutherodactylus johnstonei. Native records are indicated in black, invasive records in 
grey. 

 

 

Under current climatic conditions, E. johnstonei can find suitable areas everywhere in 

the Antilles, coastal parts of the Dominican Republic and Haiti, Jamaica, Puerto Rico and 

coastal parts of Panama, Columbia, Venezuela and Guyana (Figure 3.5-2). In the South 

American mainland, the Iquitos region in Peru, upper parts of the Amazon basin and 

coastal parts of north-eastern Brazil are highlighted by the model. Looking at fine scale 

patterns within the invasive range, further spread of E. johnstonei may be hampered by 

climatically unsuitable areas within the inlands of Colombia and Venezuela. However, 

climatically suitable potential dispersal routes along the Andes and eastern parts of the 

pantepui region may exist (Figure 3.5-2).  
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Figure 3.5-2 Potential distribution of Eleutherodactylus johnstonei under current climate 
conditions. Higher MaxEnt values suggest higher climatic suitability. Native records are 
indicated as white points, invasive records as black triangles. 

 

Figure 3.5-3 Human Footprint (HF), a quantitative evaluation reflecting the continuum of 
human influence across terrestrial biomes. Higher values suggest a stronger anthropogenic 
habitat disturbance. Native records of Eleutherodactylus johnstonei are indicated as white 
points, invasive records as black triangles. Source: SANDERSON et al. (2002). 
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Most known populations of E. johnstonei are situated in areas characterized by high 

HF values (native range: mean= 50.9 ± 9.6, range= 34 – 73; invasive range: mean= 49.3 ± 

15.5, range= 12 – 93; Figure 3.5-3). Comparing the spatial patterns of E. johnstonei’s 

potential distribution (Figure 2) and HF values (Figure 3.5-3) it becomes evident that Costa 

Rica, Panama, the North coast of South America including major parts of the Andes in 

Colombia, Ecuador and Venezuela and coastal parts of north-eastern Brazil are highly 

suitable in terms of climatic conditions and anthropogenic habitat disturbance. Although 

climatically suitable, the Iquitos region in Peru and parts of the Amazon basin are 

characterized by low HF values probably hampering an invasion. 

 

 

Discussion 

My results indicate that almost all Caribbean islands and most parts of adjacent 

continents provide suitable conditions for E. johnstonei and invasive populations are 

already known from most of them. However, a few islands situated within already invaded 

islands (i.e. Haiti, the Dominican Republic, Puerto Rico and the US Virgin Islands) have 

not been invaded yet. One reason may be that all of these islands are inhabited by a diverse 

anuran fauna which is rich in ecologically similar Eleutherodactylus species (HEDGES et al. 

2008). A possible competitor in Puerto Rico and the US Virgin Islands may be 

Eleutherodactylus coqui. Within its native range in Puerto Rico, densities of E. coqui are 

with around 20,000 individuals ha-1 among the highest known for any amphibian in the 

world (STEWART 1995; WOOLBRIGHT et al. 2006). Eleutherodactylus coqui is ecologically 

a generalist, highly adaptive and tolerates habitat modifications (as E. johnstonei) 

(WOOLBRIGHT 1991; 1996). The presence of E. coqui would most likely make a successful 

establishment E. johnstonei difficult.  

Despite harbouring an anuran fauna diverse in ecologically similar species, E. 

johnstonei has established numerous invasive populations at the Colombian and 

Venezuelan coast. KAISER et al. (2002) suggested that one of the potential barriers 

hampering its further dispersal in Colombia and Venezuela may be temperature decrease 

with increased altitude. The highest known population occurs in Mérida, Venezuela at up 

to 1400 m a.s.l. and the authors argued that this altitude is the maximum possible for the 

species. The influence of altitude is also highlighted by the CEM in the Andes of Colombia 

and Venezuela, whereby the potential distribution of E. johnstonei is disrupted (Figure 3.5-

2). However, invasive populations are already known from these patchy suitable sites and, 
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since human facilitated dispersal is the main spread way, the lack of continuous suitable 

areas may finally not prevent further spreadings.  

In the capital city of Georgetown, Guyana, E. johnstonei has remained confined to 

the urban area although agricultural land and anthropogenic disturbed forests were close by 

(KAISER et al. 2002). Hence, KAISER et al. (2002) concluded that in may cause no harm to 

native species because its expansion ability is limited by the availability of disturbed 

habitats. This may hold true for Georgetown since the area around the city is characterized 

by comparatively low HF values (Figure 3.5-3), but not necessarily for invasive 

populations in Colombia, Costa Rica, Panama and Venezuela where HF values in 

surrounding areas are overall high. The Andes of Colombia, Ecuador and Venezuela are 

therefore most suitable for E. johnstonei in terms of climate and habitat modification 

(Figure 3.5-3). This Andean region harbours a highly diverse amphibian fauna which is 

highly threatened due to anthropogenic habitat alteration (e.g. STUART et al. 2008) and the 

emerging infectious disease Chytridiomycosis (e.g. LIPS et al. 2008). The high number of 

ecologically similar Strabomantid species (HEDGES et al. 2008; STUART et al. 2008) may 

prevent the spread of E. johnstonei in natural habitats. However, E. johnstonei may be able 

to compete with them in the next future. Many of those species have very restricted ranges, 

most likely a low adaptation capacity to environmental stress and are vulnerable to the 

rapidly progressing anthropogenic habitat alteration (STUART et al. 2008). Facing the 

rapidly progressing habitat destruction in this area, E. johnstonei may be a catalyst for the 

disappearance of other species. 

 

 

Methodical caveats 

CEM approaches rely two basic the assumptions: (1) that climatic tolerances of 

species are the primary determinants of their current distributions and (2) that specific 

climatic niches are conservative, at least within an evolutionary short time frames of some 

hundreds to thousands years (e.g. WIENS and GRAHAM  2005; but see also PEARMAN et al. 

2008). In the case of species inhabiting islands such as E. johnstonei, climate is not the 

primary limiting factor for the geographic distribution violating assumption (1). Hence, 

climatic conditions potentially suitable for the species but not present in its native range 

may be unintentionally excluded from the CEM leading to an underestimation of its 

potential distribution. However, several examples have shown that CEMs can successfully 

predict invasive populations of species originating from islands (e.g. RÖDDER 2009; 
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RÖDDER and WEINSHEIMER 2009) if the problem of possible underestimation is taken into 

account. To minimize this problem, I used climatic conditions as present in both E. 

johnstonei’s native and invasive distribution for model building herein, e.g. as suggested 

by BROENNIMANN and GUISAN (2008), including all information currently available. 

However, it needs to be noted that the climatic niche breadth of E. johnstonei may still be 

broader than suggested by the model.  

 

 

Conclusions 

It took several centuries of presumably human-mitigated introductions until E. 

johnstonei as established invasive populations in all currently known regions (KAISER 

1992; 1996). First specimens at the South America mainland were detected in Georgetown, 

British Guyana prior 1919; it was introduced in the late 1950s to Caracas, Venezuela, from 

where it most likely expanded its range to Colombia (HARDY and HARRIS 1979) and was 

introduced with plants from Venezuela to Curaçao in the late 1970s and later to Aruba and 

Bonaire (BUURT 2005, 2006). These spatial and temporal patterns suggest that it can 

establish invasive populations more rapidly today then in the past. KAISER et al. (2002) 

suggested that E. johnstonei will continue to expand its range by chance without a 

possibility of stopping it. The progressing anthropogenic habitat disturbance and enhanced 

transportation of goods during the last decades may even enhance its spread rate.  
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4.1. Environmental niche plasticity of the endemic gecko Phelsuma 

parkeri from Pemba Island, Tanzania: a case study of extinction risk on 

flat islands by climate change10 

 

 

 

 

                                                                                            Phelsuma parkeri 

. 

                                                 
10 This part was submitted to Tropical Zoology 
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Introduction  

Habitat loss, overexploitation and climate change are among the most serious threats 

for species (STUART et al. 2004; THOMAS et al. 2004), whereby species inhabiting islands 

with restricted ranges are at greater risk of extinction than those found on continents 

(Frankham, 1998). The greater risk for island endemics can be traced back to (1) their 

greater susceptibility to perturbation from invasive species or pathogens, (2) their 

commonly fewer and smaller populations caused by the small range size, and (3) their 

greater vulnerability to changes in environmental conditions due to small genetic 

variability allowing often only little adaptation capacity. Additionally, their small range 

size makes them more vulnerable to habitat fragmentation since even moderate 

fragmentation may prevent gene flow among populations.  

A great part of the geographic distribution of a species is determined by its 

fundamental niche, i.e. those environmental conditions under which populations can 

persist. As defined by HUTCHINSON (1957; 1978), a species’ climatic niche or climate 

envelope is part of its fundamental niche (Figure 4.1-1). The realized niche of a species is 

understood to represent a subset of the fundamental niche considering dispersal limitations 

and biotic interaction such as competition, or interaction with pathogens (SOBERÓN and 

PETERSON 2005; Figure 4.1-1). It was shown that climatic factors directly affect the 

distribution, abundance and life cycles of species. Anthropogenic climate change has 

already caused shifts in geographic distribution of numerous taxa (PARMESAN and YOHE 

2003; PARMESAN 2006). If climate changes, island endemics may be restricted in their 

ability to conduct range shifts depending on the topographic variability and the size of the 

island. Species inhabiting islands characterized by low altitudinal variation might be most 

strongly affected by climate change due to the lack of possibilities for horizontal or upward 

range shifts. On the other hand only a small part of the fundamental niche may be realized 

since climate is commonly not the major factor limiting the distribution of island species. 

In order to assess the relative proportion of the fundamental niche and the realized niche, a 

comparison between conditions tolerated in the present and in the past may be helpful. 

One species meeting these characteristics is Phelsuma parkeri, a medium sized (total 

length up to 165 mm), green day gecko endemic to Pemba Island which is - like all species 

in the genus - listed on CITES Appendix II (HALLMANN  et al. 2008). According to recent 

molecular analyses P. parkeri is the sister species to the much larger Phelsuma grandis and 

has reached the island by oversea dispersal from Madagascar (RAXWORTHY et al. 2007; 

ROCHA et al. 2007). Although the genetic distance between P. parkeri and its next relative 
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P. grandis is comparatively low in comparison to other Phelsuma species, there is no doubt 

that this difference predates the Pleistocene period. Assuming that the ancestor of P. 

parkeri has arrived immediately from Madagascar (i.e. excluding the possibility of step 

stone dispersal followed by subsequent extinction) the species has most likely maintained 

feral populations on Pemba during the climatic fluctuations in the Pleistocene. 

 

 

Figure 4.1-1 Relationships between abiotic (= fundamental) niche, biotic interaction and 
accessibility after HUTCHINSON (1957) as modified by SOBERÓN and PETERSON (2005). 
The potential distribution is a subset of the abiotic niche considering biotic interactions, 
whereby the realized distribution is a subset of the potential distribution considering 
accessibility. Dots represent species records. 

 

 

Pemba Island is situated ca. 50 km off the African coast in the Indian Ocean and part 

of the Zanzibar archipelago that includes the islands of Zanzibar and Pemba. Pemba Island, 

with a length of ca. 67 km and a breadth of ca. 22 km, covers an area of approximately 

1040 km2 (PAKENHAM  1979). Compared to the Tanzanian interior, climate on the Zanzibar 

archipelago is characterized by high humidity (JUMA  2004), whereby south-western Pemba 

receives with a maximum of 1940 mm y-1 the highest mean annual rainfall in East Africa 

(JUMA  2004; Table 4.1-1). Pemba’s driest area is situated in eastern parts of central Pemba 
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(1117 mm y-1; Figure 4.1-S1). The temperature throughout the island is relatively invariant 

throughout the year (Table 4.1-1; Figure 4.1-2).  

Pemba Island is a network of small valleys and hills, whereby only few exceed 90 m 

a.s.l. (Figure 4.1-2). Western and central parts of the island are covered by hygrophilous 

tropical vegetation. In contrast, along most of the eastern seaboard of Pemba, a band of 

bushland of varying width can be found. This unique, xerophytic vegetation grows on the 

old outcropping coral rock, named coral-rag (PAKENHAM  1983) – a soil type having much 

lower water capacity compared to the western soils.  

Pemba Island is part of the East African coastal forest mosaic according to SPAWLS et 

al. (2002). A comparative species diversity analysis comprising 29 East African coastal 

forests based on distributions of birds, mammals and reptiles revealed that Pemba harbours 

one of the most unique faunas with only very limited overlap with other coastal forests 

(AZERIA et al. 2007). Pemba Island is - unlike its neighbour Zanzibar - thought to have 

been isolated from the continent by a 700 - 800 m deep oceanic channel for several 

millions of years and can be considered a true oceanic island (ARCHER and TURNER 1993; 

JUMA  2004). The island is characterized by a remarkable number of endemic species, some 

of which have their closest relatives in the Madagascan region such as plants (Aloe 

pembanum), mammals (Pteropus voeltzkowi), and several reptiles (Lygosoma pembanum, 

Natriciteres pembana, Lycophidion pembanum, Leptotyphlops pembae, Phelsuma parkeri) 

(PAKENHAM  1983; NAHONYO et al. 2005).  

The goal of the present study is (i) to evaluate the current distribution of Phelsuma 

parkeri on Pemba Island; (ii) to assess its environmental niche plasticity in terms of 

microhabitat utilization and macroclimatic factors as actually present and as expected 

during the last glacial maximum; (iii) to discuss its conservation status facing invasive 

species, changing climate and land use. Inspired by a recent proposal of the CITES 

commission / Tanzanian Government for commercial use, we also discuss the potential 

impact of sustainable use for pet trade. 

 

 

Material and methods 

We conducted visual encounter surveys on Pemba Island between 9th and 22nd 

January 2009 in a period of sunny weather and almost no rain. Study plots distributed all 

over the island were mainly restricted to easily accessible areas and therefore more often 

situated along the existing road network (Figure 4.1-2). Specimens were determined 



                               Section 4: Niche dynamics in space and time 
                                                                                                              4.1. Phelsuma parkeri  

 155

visually and captured only occasionally. For each specimen encountered we recorded exact 

locality information including longitude, latitude and altitude using a Garmin Etrex 

Venture HC GPS. Microhabitat data included perch site (plant species) and estimated 

elevation above ground to the nearest 0.5 m. Additional locality data was taken from 

literature and georeferenced with Google Earth (http://earth.google.de/) (five sites; 

PAKENHAM  1983). 

 

 

Climate data  

Information on current climate (annual mean temperature and precipitation as well as 

minimum and maximum temperature / precipitation of the warmest / coldest and wettest / 

driest month) was obtained from the Worldclim database, version 1.4, which is based on 

weather conditions recorded between 1950 and 2000 with a grid cell resolution of 30 arc 

sec (HIJMANS et al. 2005, www.worldclim.org). It was created by interpolation using a 

thin-plate smoothing spline of observed climate at weather stations, with latitude, longitude 

and elevation as independent variables (HUTCHINSON 1995; 2004). 

For paleoclimate as expected for Pemba Island during the Last Glacial Maximum 

(LGM), General Circulation Model (GCM) simulations from the Community Climate 

System Model (CCSM; http://www.ccsm.ucar.edu/; KIEHL and GENT 2004) and the Model 

for Interdisciplinary Research on Climate (MIROC, version 3.2; 115 http://www.ccsr.u-

tokyo.ac.jp/~hasumi/MIROC/) were provided by R. J. HIJMANS. Original GCM data were 

downloaded from the PIMP2 website (http://www.pimp2.cnrs-gif.fr/) with spatial 

resolution of roughly 300 x 300 km. Surfaces were created as described by PETERSON and 

NYÁRI (2007).  

For future climate scenarios, we used climate change projections based on the 

CCCMA, CSIRO and HADCM3 (FLATO et al. 2000; GORDON et al. 2000) models and the 

emission scenarios reported in the Special Report on Emissions Scenarios (SRES) by the 

Intergovernmental Panel on Climate Change, IPCC 

(www.grida.no/climate/ipcc/emission/). A set of different families of emission scenarios 

was formulated based on future production of greenhouse gases and aerosol precursor 

emissions. The SRES scenarios of A2a and B2a were used in this study. Each scenario 

described one possible demographic, politico-economic, social and technological future as 

expected for 2080. Scenario B2a emphasizes more environmentally conscious, more 

regionalized solutions to economic, social and environmental sustainability. Compared to 
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B2a, scenario A2a also emphasizes regionalized solutions to economic and social 

development, but it is less environmentally conscious. 

Modelling algorithm 

Maxent 3.2.19 (PHILLIPS et al. 2004; 2006, www.cs.princeton.edu/~shapire/maxent) 

was applied for Climate Envelope Model (CEM) calculation in order to assess the potential 

distribution of P. parkeri and to map it into geographic space. MaxEnt is a grid-based 

machine-learning algorithm following the principles of maximum entropy (JAYNES 1957). 

The idea behind MaxEnt is to find a probability distribution covering the study area that 

satisfies a set of constraints derived from the environmental conditions at the species 

records. MaxEnt is able to incorporate complex dependencies between predictor variables 

and has been shown to reveal better results than other comparable methods (e.g. ELITH  et 

al. 2006; WISZ et al. 2008). The reliability of the results obtained from MaxEnt models has 

been confirmed by its capacity to predict novel presence localities for poorly known 

species (PEARSON et al. 2007) and the outcome of introductions of alien invasive species 

outside the native distribution (e.g. PETERSON and VIEGLAIS 2001; RÖDDER et al. 2008; 

RÖDDER 2009). Runs used herein were conducted using the default values for all program 

settings. The logistic output format with suitability values ranging from 0 (unsuitable) to 1 

(optimal) was used (PHILLIPS and DUDÍK 2008).  

Maxent allows for model testing by calculation of the Area Under the Curve (AUC), 

referring to the ROC (Receiver Operation Characteristic) curve; herein we assessed the 

ability of the model to distinguish background points from training points (HANLEY  and 

MCNEIL 1982; PHILLIPS et al. 2006). This method is recommended for ecological 

applications because it is non-parametric (PEARCE and FERRIER 2000). Values of AUC 

range from 0.5 (random) for models with no predictive ability to 1.0 for models giving 

perfect predictions. According to the classification of Swets (1988), AUC values > 0.9 

describe ‘very good’, > 0.8 ‘good’ and > 0.7 ‘useful’ discrimination abilities. In the case of 

MaxEnt AUC values reflect the model’s ability to distinguish presence records from 

random background points (PHILLIPS et al. 2006). 

 

 

Results 

During our surveys we encountered P. parkeri in a total number of 39 localities 

distributed all over the island with exception of the dry coral-rag region (Figure 4.1-2) and 

the offshore islets which were not surveyed. Preferred perch sites of P. parkeri included 
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coconut trees (Cocos nucifera; n= 23; n%=71.88), banana plants (Musa sp.; n= 6; n%= 

18.75) and palm trees (Raphia sp.; n= 3; n%= 9.38). One specimen was encountered on a 

jacktree (Artocarpus heterophyllus), and two specimens on unidentified trees (one dead, 

one alive). Perch sites varied in estimated elevation between 1.5 m and 12 m (mean= 3.7 

m; SD= 3.1 m). The number of encountered specimens greatly varied during the day, 

whereby most specimens were observed in the afternoon (~ 15 – 18 hrs). No specimens 

were encountered at night. With exception of one hatchling, all other geckos apparently 

had a similar size and were therefore classified as adults. 

 

 

Potential distribution and changes in climatic conditions 

The ability of our model to distinguish presence from random background records 

was ‘good’ (AUC = 0.821) according the classification of SWETS (1988). The minimum 

MaxEnt value observed at the training points was 0.306 and the lowest 10 percentile was 

0.447. Our CEM approach suggest that P. parkeri can find climatically suitable conditions 

almost on the whole island (Figure 4.1-3) what meets our impression during field work. 

The region with lowest MaxEnt scores is coincident with the coral-rag area and 

characterized by much lower annual mean, minimum and maximum precipitation 

compared to the rest of the island.  

Comparison of current climatic conditions and those as suggested by CCSM and 

MIROC simulations for 21,000 BP revealed that no analogous climate to today’s 

conditions has existed during the LGM (Table 4.1-1). Main differences are related to 

climatic parameters comprising decreases between 1.4 to 2.8 °C in the maximum 

temperature of the coldest month and 2.1 to 3.4 °C in the minimum temperature of the 

warmest month throughout the island (Table 4.1-1). Suggested changes in precipitation 

patterns are inconsistent among models whereby CCSM suggest decreases and MIROC 

suggest increases (Table 4.1-1). 
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Figure 4.1-2 Distribution of sampled localities (grey dots) and Phelsuma parkeri records 
on Pemba Island (black points) and climatic variability throughout the island, exemplified 
on two selected grid cells (right).  
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Figure 4.1-3 Potential distribution of Phelsuma parkeri in Pemba Island. Warmer colours 
suggest higher climatic suitability. The minimum MaxEnt value observed at the training 
points was 0.306 and the lowest 10 percentile was 0.447. 
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Future anthropogenic climate change as proposed by CCCMA, CSIRO and 

HADCM3 simulations assuming A2a and B2a conditions suggest overall increases in the 

annual mean temperature between 2.0 and 4.2 °C throughout the island relative to current 

conditions. The minimum temperature of the coldest month may increase about 1.2 to 3.8 

°C and the maximum temperature of the warmest month at about 2.0 to 3.7 °C (Table 4.1-

1). Suggested changes in precipitation patterns are inconsistent among scenarios; annual 

mean precipitation may vary between -168 and +427 mm y-1, precipitation of the driest 

month between -15 and +4 mm and precipitation of the wettest month between -175 and 

+142 mm (Table 4.1-1).  

 

 

Discussion 

Possible threats  

When assessing risks caused by habitat modification, biotic interactions and changing 

climate, it is important to evaluate possible discrepancies between the realized and 

fundamental climatic niches and the relative contribution of each ecological factor which 

may limit a species’ distribution. Next to a species’ climate envelope these are accessibility 

limitations caused by habitat fragmentation and/or biotic interactions such as competition 

or predation (see also SOBERÓN and PETERSON 2005). 

Our results imply that P. parkeri was hitherto not negatively affected by 

anthropogenic habitat modifications since it is currently widespread and abundant on 

Pemba Island. The only exceptions are the drier, savannah like east coast (coral-rag 

region), the coastal natural dry forest in the northeast (Msitu Mkuu), clove plantations and 

mangroves. During our survey the species was most abundant in cultivated areas such as 

coconut and / or banana plantations which currently cover large parts of the island. In the 

remaining natural forest habitats, we encountered only few specimens. These observations 

may indicate that P. parkeri may even have taken advantage of the deforestation and the 

transformation of natural vegetation to cultivation. The situation might change if higher 

proportions of the island are transformed into rice fields or clove plantations. Enhanced use 

of biocides in agriculture may be also a potential threat. However, no such tendencies are 

evident at present.  
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Table 4.1-1 Comparison of current climatic conditions and those as expected during the 
Last Glacial Maximum 21,000 y BP (MIROC, CCSM) and assuming future anthropogenic 
climate change scenarios A2a and B2a. Minimum and maximum values reflect the 
variation within Pemba Island. 
 
 
 Variable Current   Paleoclimate 
    MIROC  CCSM 
 min max  min max  min max 
annual mean temperature 25.1 26.4  22.0 24.8  22.1 24.8 
max. temperature warmest 
month 31.4 33.0  28.0 30.8  28.1 30.9 
min. temperature coldest month 18.9 20.3  16.1 18.9  16.1 18.8 
         
annual precipitation 1117 1940  1022 1662  1454 2392 
precipitation of the wettest 
month 204 505  199 434  283 625 
precipitation of the driest month 16 46  14 39  21 56 
         

 
Future climate as expected in 2080 assuming A2a 

conditions 
 CCCMA  CSIRO  HADCM3 

 min max  min max  min max 
annual mean temperature 28.3 29.5  28.5 29.6  29.3 30.3 
max. temperature warmest 
month 34.1 35.5  33.8 35.1  35.2 36.0 
min. temperature coldest month 22.3 23.6  22.6 23.8  21.9 23.1 
         
annual precipitation 1266 2018  1527 2367  1095 1550 
precipitation of the wettest 
month 293 600  277 586  180 330 
precipitation of the driest month 15 47  13 43  11 31 
         

 
Future climate as expected in 2080 assuming B2a 

conditions 
 CCCMA  CSIRO  HADCM3 
 min max  min max  min max 
annual mean temperature 27.2 28.4  27.8 29.0  27.6 28.7 
max. temperature warmest 
month 32.6 34.0  33.9 35.2  33.3 34.6 
min. temperature coldest month 21.1 22.4  21.4 22.7  21.0 22.3 
         
annual precipitation 1316 2128  1342 2164  1190 1772 
precipitation of the wettest 
month 311 647  272 577  214 448 
precipitation of the driest month 15 45  11 40  15 50 
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Invasive species may have negative effects on native taxa, whereby island endemics 

can be especially affected (ATKINSON 1989; TOWNS et al. 2006). It was shown that gecko 

species can be effective competitors (e.g. DAME and PETREN 2006) leading in extreme 

cases to the extinction of endemic species (e.g. introduction of Hemidactylus frenatus has 

caused the extinction of three Nactus species in the Mascarene Islands; COLE et al. 2005). 

On Pemba Island, five other gecko species are known. Two diurnal geckos (Lygodactylus 

capensis pakenhami and Lygodactylus viscatus) occurring in the same microhabitat are 

much smaller in adult size and are therefore not likely to compete with P. parkeri. 

Predominately nocturnal geckos known from Pemba include Hemidactylus angulatus, H. 

mercatorius, H. platycephalus and Ebenavia sp. (PAKENHAM  1983). Hemidactylus 

platycephalus is widely distributed on Pemba Island and has much overlap in microhabitat 

use with P. parkeri. However, we failed to find any evidence for strong competition since 

both H. platycephalus and P. parkeri frequently occupied the same coconut tree. The other 

three are much smaller than P. parkeri in adult size and therefore most likely no effective 

competitors. Another potential competitor for P. parkeri might be P. dubia. This species, 

originating from Madagascar, was introduced to parts of the East African coast, including 

Zanzibar (ROCHA et al. 2007). In contrast to the gecko species mentioned above, P. dubia 

is only slightly smaller than P. parkeri and shares its diurnal, tree-dwelling habits. 

Therefore, in case of its introduction to Pemba, it might prove an important threat to the 

native Phelsuma species. However, competition success may be highly influenced by 

climatic suitability for (ectotherm) competitors such as geckos (RÖDDER et al. 2008). Since 

climate change is likely to alter competition success in ectotherm species we recommend a 

monitoring program regularly evaluating the population status of P. parkeri.  

Are P. parkeri and other species endemic to the rather flat Pemba Island likely to be 

affected by climate change? According to our CEM, the breadth of currently realized 

climatic niche of P. parkeri is rather small (Table 4.1-1) and climatic conditions as 

currently present on Pemba Island will most likely not be present in the near future. 

Assuming a complete coverage of the gecko’s currently realized climate niche and its 

fundamental, extinction may be most likely. However, paleo-climatological models 

suggest a climate which was quite different from today’s conditions observed at Pemba 

Island. Although potential refuges with conditions equivalent to today’s environment were 

most likely absent, P. parkeri and other terrestrial endemics persisted. Possible 

explanations of the survival of P. parkeri may comprise: (1) compensation of 

macroclimatic variations by microclimate, allowing shifts in phenology, such as 
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thermoregulation, activity patterns and / or microhabitat use, (2) pre-adaptation due to a 

broader fundamental climatic niche than currently realized, and (3) evolutionary responses 

causing shifts in the fundamental climatic niche. Future climate change scenarios suggest 

overall a rapid temperature increase. An evolutionary response (3) may be unlikely due to 

the short timeframe available. Explanation (1) appears to be most likely for short term 

responses to changing climates, whereby the compensation capacity of the microhabitat 

may depend on the magnitude of changes. We expect that P. parkeri will be able to 

compensate the moderate climate warming in the near future e. g. by earlier begin of daily 

activity, earlier retreat into shaded perch sites, and preference of habitats with denser 

vegetation. Shifts in phenological patterns as response to anthropogenic climate change 

were already shown for many species (PARMESAN 2006). Additionally, inhabiting an 

island, climate is not the range limiting factor in P. parkeri, hence it is most likely that the 

realized climate niche is smaller than it’s fundamental. In conclusion we do not expect that 

the anthropogenic climate change of the near future will be an important threat to P. 

parkeri and other endemic species on Pemba. 

 

 

IUCN status and potential sustainable use 

Recently, a discussion about the actual conservation status and potential sustainable 

use of P. parkeri has emerged (K. HOWELL, pers. comm.). Our results indicate that P. 

parkeri is distributed over the largest part of the island in high abundances, is well adapted 

to current land use and most likely not threatened by climate change. As discussed above, 

however, potential future threats to P. parkeri might arise from the introduction of invasive 

species, especially P. dubia and shifts in land use. As none of these potential threats are 

evident at present to justify inclusion in the categories Critically Endangered, Endangered 

or Vulnerable according to the criteria defined in IUCN (2001), the status Near Threatened 

(NT) is proposed for P. parkeri. A further potential threat could arise from over-

exploitation of P. parkeri for pet-trade. Until present, P. parkeri was virtually absent from 

pet-trade and apparently only few specimens are bred in captivity (HALLMANN  et al. 2008). 

Recently, it was suggested to export live specimens of P. parkeri for captive breeding and 

pet trade (K. HOWELL, pers. comm.). According to our results, we are confident that annual 

export of a limited number of specimens (up to 1,000 specimens / year) would not 

significantly affect the population size. To ensure sustainability, we propose that (1) the 

population of P. parkeri is monitored continuously to assess the impact of the removal of 
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specimens and to detect possible upcoming threats, as discussed above, and that (2) the 

maximum number of animals exported per year is limited pending on the population status. 
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4.2. Reinforcing the predictions of the disturbance vicariance hypothesis 

in Amazonian harlequin frogs: a molecular phylogenetic and climatic 

envelope modelling approach11 
 

 

 

 
© Stefan Lötters                                                                                                     Atelopus pulcher 

                                                 
11 This part was submitted to Biodiversity and Conservation. 
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Introduction  

 There is a lot of ongoing debate regarding the explanation of plant and animal 

diversification and distributions in the Amazon basin and adjacent Guianas. Several 

historical biogeographic scenarios have been suggested (e.g. HAFFER 1997, 2008; HALL  

and HARVEY 2002; NOONAN and WRAY 2006). This paper deals with the disturbance 

vicariance hypothesis (DV), applicable to speciation in the Pleistocene (BUSH 1994; 

NOONAN and GAUCHER 2005; HAFFER 2008). Prolonged but slight cooling prior to this, in 

late Miocene (Huayquerian, 5.4-9 mya), allowed plant and animal taxa from the eastern 

Andean versant to occupy altitudinal ranges several hundred meters lower. Forest species 

dispersal into the lower Amazon basin eastward up to the eastern Guiana Shield was 

possible (Figure 4.2-1A). With comparatively warmer conditions during most of the 

Pliocene cool-adapted species were locally retracted to higher elevations and regional 

vicariant speciation processes started (Figure 4.2-1B). With every Pleistocene glacial 

(starting only ca. 500,000 years BP), this retraction was ‘disturbed’ as again cooling 

allowed for lowland dispersal (Figure 4.2-1C-D). Dispersal abilities were limited, however, 

as glacial cooling was accompanied by forest loss due to the reduction of precipitation of 

up to 20 %. Glacial lowland forest fragments remained in western Amazonia (pre-Andean 

region) and on the eastern Guiana Shield (Figure 4.2-1C). Examples which fit DV include 

caesalpinioid trees (Vouacapoua americana, DUTECH et al. 2003) or poison frogs 

(Dendrobates tinctorius, NOONAN and GAUCHER 2006). 

 Harlequin frogs (Atelopus) are a species-rich bufonid genus of Andean origin, with 

more than 80 species occurring in forest habitats in the Andes (LÖTTERS 1996; LA MARCA 

et al. 2005). In this paper we focus on the less than 10 (depending on the taxonomy 

applied; see LÖTTERS et al. 2002) Atelopus occurring exclusively in forest habitats in the 

Amazon basin and on the eastern Guiana Shield. In an earlier molecular genetic study, 

NOONAN and GAUCHER (2005) showed that the five nominal species of the Guianan 

harlequin frogs are genetically little differentiated and that they apparently interbreed in 

nature (in fact they may represent one or two species only; first author’s unpubl. data). 

Supported by divergence time estimates, the authors suggested that their observed 

phylogeographical patterns fit DV predictions, i.e. that with change of Pleistocene glacial 

and interglacial phases divergence processes on the eastern Guianan Shield were 

‘disturbed’ going back to a single Andean ancestor, likely of late Miocene origin.  

 

 



 Section 4: Niche dynamics in space and time 
                                                                                                          4.2. Amazonian Atelopus 
 

 167

 

 

 

Figure 4.2-1 Schematic illustration of DV with Andes in the West (left) and the eastern 
Guiana Shield in the East: (A) cooling during the late Miocene allowed for dispersal 
(arrow in drawing, grey in phylogenetic tree) of cool-adapted forest taxa from the Andean 
versant eastward up to the eastern Guiana Shield; (B) due to subsequent warming 
(Pliocene) cool-adapted species were retracted to higher elevations (arrows) resulting in 
vicariant speciation (Guiana Shield species indicated in grey in phylogenetic tree); (C) 
speciation is 'disturbed' during Pleistocene glacials cool-adapted species as lowland 
dispersal was possible again (with limitations due to forest loss and the development of a 
western and an eastern forest fragment); (D) retraction to higher elevations and speciation 
continued during warmer interglacials (Guiana Shield species indicated in grey in 
phylogenetic tree). Scenario (D) was followed by (C) for several times. Scheme not to 
scale. 
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 To their molecular phylogeny, NOONAN and GAUCHER (2005) added only four 

Atelopus species from outside the Guiana Shield. As a result, the validity of their study is 

pending additional corroboration. This is especially significant because our knowledge on 

the current-day distribution of harlequin frogs in central Amazonia is poorly understood: 

LESCURE and GASC (1986) proposed a continuous distribution of harlequin frogs from the 

Andes to the eastern Guiana Shield, whereas LÖTTERS et al. (2002), in a taxonomic study, 

were unable to trace Atelopus material in scientific collections from a large part of central 

Amazonia, casting some doubt on a continuous distribution. Such a hiatus could be well 

explainable by DV predictions, since the recolonisation of central Amazonia should not be 

possible during the current interglacial (Figure 4.2-1D). If DV is applicable to harlequin 

frogs, we expect that nowadays they display a natural distribution gap in central Amazonia. 

From a phylogenetic point of view, according to DV predictions and the results of 

NOONAN and GAUCHER (2005), we expect that harlequin frogs from east of this 

distribution gap in central Amazonia constitute a clade nested within those from the Andes 

and the adjacent Amazonian lowlands (Figure 4.2-1D) when expanding the genetic 

samples by inclusion of more species from outside Amazonia than available to NOONAN 

and GAUCHER (2005).  

 Species can respond to climate change in two ways. One is horizontal or vertical 

change of geographic range (i.e. increase, decrease up to extinction, shift) and maintenance 

of the specific climate envelope (also termed niche conservancy; WIENS and GRAHAM  

2005). In the other the geographical range is retained, necessarily accompanied by climate 

envelope shift (PEARMAN et al. 2007). In DV, species change their geographic ranges 

(Figure 4.2-1A-D). Hence, there is reason to generally assume climate envelope 

maintenance. Vertical range shift of cool-adapted species along the Andean versant was up 

to 800 m (BUSH 1994). However, maximum altitudes found on the eastern Guiana Shield 

have been about 300 m above today's sea level only. Therefore, it is obvious that within the 

eastern glacial forest fragment (Figure 4.2-1C) climate envelopes have shifted in those 

cool-adapted species which have survived warmer periods. As a consequence, when 

comparing current-day Atelopus populations from western and eastern Amazonia (i.e. the 

former western and eastern forest fragments; Figure 4.2-1C), their climate envelopes under 

today's macroclimate, although overall similar, are expected to show some divergence.  

 The current interglacial reached its climate optimum about 8,000-4,500 years BP 

and temperature has decreased since then. According to DV, harlequin frog species should 

currently expand their distributions into lower areas. When mapping climate envelopes of 
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current-day Atelopus populations from both western and eastern Amazonia under 

macroclimatic conditions into geographic space, they should range into central Amazonia. 

However, because of the expected climate envelope shift in eastern Amazonian Atelopus, 

mapped climate envelopes are expected to be rather allopatric than sympatric. 

 With the goal to reinforce DV predictions we combined different methodical 

approaches to study (i) if extant harlequin frogs display a central Amazonian distribution 

gap; (ii) if eastern Amazonian Atelopus constitute a single clade nested in a phylogeny 

comprising an enlarged data set from the Andes and adjacent lowlands; (iii) if climate 

envelopes of western versus eastern Amazonian populations are divergent under today's 

macroclimate; (iv) if allopatry is the result rather than sympatry when mapping these 

climate envelopes into geographic space. 

 

 

Methods  

A central Amazonian distribution gap 

 In order to determine the extant distribution of Atelopus in Amazonia, 87 presence 

data points from all over Amazonia were employed in this study (Figure 4.2-2). They were 

taken from published references and obtained through interviews with seven experts (see 

Appendix 4.2-S1). Interviews were open, non-standardized, as described by ATTESLANDER 

(1974). Only acknowledged experts in anuran taxonomy and with field experience in 

Amazonia or the Guiana Shield were interviewed. Additional presence data were taken 

from scientific collections. As an altitudinal limit for pre-Andean/western Amazonia we 

chose 800 m above sea level, the approximate upper border of the tierra caliente lowlands. 

Latitude and longitude coordinates for presence data points were obtained from the sources 

listed in the Appendix. If not provided, they were obtained through the Alexandria Digital 

Library Gazetteer (HILL  and ZHENG 1999; http://www.alexandria.ucsb.edu/gazetteer). 

 In addition, 42 data points of apparent absence of harlequin frogs, illustrated in 

Figure 4.2-2 (see Appendix 4.2-S1), were obtained from published references and expert 

interviews as described above. We only included data points at elevations ≤ 800 m above 

sea level and situated in an area defined through a Minimum Convex Polygon (MCP) for 

all presence data, created with DIVA-GIS 5.4 (Points to Convex Polygon function). 
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Figure 4.2-2 Northern South America showing data points of presence (filled circles) and 
apparent absence (open circles) of harlequin frogs in Amazonia (see Appendix). 
 

 

 

 

 

Figure 4.2-3 Ripley’s K functions showing that presence data points (left) are significantly 
inhomogeneous (i.e. clustered) while apparent absence data points are homogeneously 
distributed (compare Fig. 2). Bold lack line: expected K function with lower and upper 
confidence envelopes (dashed), bold grey line: observed K function. 
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 Ripley’s K function, a multi-distance spatial cluster analysis, was used to study 

spatial dependence of both presence and apparent absence point patterns (Figure 4.2-2) by 

comparison to homogenous point patterns (RIPLEY 1977). If the K function varies 

significantly from a homogenous function, data points under study are clustered. Analysis 

was performed with the Spatial Statistics (confidence envelope: 99 permutations) tool box 

of ArcGIS Desktop 9.2 (ESRI; http://www.esri.com).  

 

 

Nested monophyly of eastern Amazonian Atelopus  

 NOONAN and GAUCHER (2005) based their study on fragments of the mitochondrial 

genes cyt b and ND2. We here chose a fragment of the mitochondrial 16S rRNA gene for 

two reasons. First, this locus is a widely used marker in amphibian systematics, especially 

suitable because of strong constancy of priming sites and information content at the species 

level (VENCES et al. 2005). Second, the use of 16S allowed us to maximize the species 

sample size in order to study nested monophyly of eastern Amazonian harlequin frogs. As 

listed in Table 4.2-1, sequences of nine Atelopus (three outgroup species) were available 

via GenBank (http://www.ncbi.nlm.nih.gov; BENSON et al. 2004). We supplemented these 

data by sequencing 16S for 11 additional Atelopus plus four outgroup taxa (Table 1; 

Appendix 4.2-S2).  

 DNA was extracted from toe clips. Tissue samples (stored in 99 % ethanol) were 

digested using proteinase K (final concentration 1 mg/mL), homogenised and subsequently 

purified following a high-salt extraction protocol (BRUFORD et al. 1992). Polymerase chain 

reaction (PCR) primers for the fragment of the 16S rRNA gene were 16SA-L and 16SB-H 

of PALUMBI  et al. (1991), used as in VAN DER MEIJDEN et al. (2007). PCR products were 

purified via spin columns (Qiagen). Sequencing was performed directly using the 

corresponding PCR primers. New sequences were combined with existing sequences taken 

from GenBank in the final dataset containing 27 taxa including bufonid and non-bufonid 

outgroups (Table 1). Sequences were aligned using ClustalW (THOMPSON et al. 1994) and 

subsequently edited by hand. The final alignment contained a total of 570 positions of 

which 219 were variable and 136 were parsimony-informative.  
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Figure 4.2-4 ML phylogram of different Atelopus species from all over the genus’ range 
(Table 1) based on the mitochondrial 16S rRNA gene. Numbers above branches indicate 
Maximum Likelihood bootstrap support/Bayesian posterior probabilities values. Species 
names are accompanied by GenBank accession numbers. This tree was rooted with 
Eleutherodactylus johnstonei (not shown). 
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 Phylogeny reconstruction was performed using Maximum Likelihood (ML) and 

Bayesian Inference (BI) methods. Gaps were treated as unknown characters. The best 

fitting models of sequence evolution were determined by the AIC criterion as implemented 

in Modeltest 3.06 (POSADA and CRANDALL  1998). ML tree searches were performed using 

PhyML, version 2.4.4 (GUINDON and GASCUEL 2003). Bootstrap branch support values 

were calculated with 200 replicates. The Bayesian analyses of the combined and separate 

datasets was conducted with MrBayes 2.0 (HUELSENBECK and RONQUIST 2001) with 2 

million generations, sampling trees every 10th generation and calculating a consensus tree 

after omitting the first 200,000 trees as burn-in determined with the Tracer 1.4 

(http://beast.bio.ed.ac.uk/Tracer). No well supported topological differences were found 

between the BI and ML trees; the ML tree was used in the subsequent analysis. 

 

 

Divergence in climate envelopes and allopatry  

 Climate envelopes for western and eastern Amazonian Atelopus were modelled, 

compared and subsequently mapped into geographic space. For our approach we used the 

presence data points listed in the Appendix (30 for all western and 54 for all eastern 

Amazonian Atelopus; Figure 4.2-2) and seven macroscale bioclimatic parameters (Table 2) 

describing the availability of thermal energy and water, widely used in climate envelope 

models (e.g. CARNAVAL  and MORITZ 2008). Using DIVA-GIS 5.4 (HIJMANS et al. 2001; 

http://www.diva-gis.org), bioclimatic parameters were extracted from the Worldclim 1.4 

interpolation model with grid cell resolution 2.5 minutes for the period 1950-2000 

(HIJMANS et al. 2005; http://www.worldclim.org). Climate envelope models were 

generated and mapped with MaxEnt 3.2.19 (PHILLIPS et al. 2006; 

http://www.cs.princeton.edu/~shapire/maxent) following the principle of maximum 

entropy (JAYNES 1957). This approach reveals more reliable results than comparable 

methods (ELITH  et al. 2006; HEIKKINEN  et al. 2006; WISZ et al. 2008), especially when data 

points for species number relatively few (e.g. HERNANDEZ et al. 2006). Using default 

settings, 25 % of the data points were randomly reserved for model testing (duplicate 

presence records in one grid cell were automatically removed). Prediction accuracy was 

evaluated through threshold-independent receiver operating characteristic (ROC) curves 

and the calculation of the area under the curve (AUC) method (e.g. HANLEY  and MCNEIL 

1982). We acknowledge that there is currently some discussion about the suitability of 

AUC (LOBO et al. 2008). However, for our application, AUC is the best possible choice, 
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following ELITH  and GRAHAM  (in press) who pointed out that none of the frequently 

applied statistics is misleading and that appropriate statistics relevant to the application of 

the model need to be selected. The logistic MaxEnt output was chosen which is continuous 

and linear scaled (0-1, with 0.1 already suggesting suitability to the species under study; 

PHILLIPS et al. 2006).  

 We quantitatively compared climate envelopes of western and eastern Amazonian 

Atelopus with Schoener’s index (D) and Hellinger distance (I) as modified by WARREN et 

al. (2008). Both indices allow for testing climate envelope similarity between two 

probability distributions of (e.g. climate envelope) distributions over geographic space, 

whereby D and I values range from 0 to 1 (i.e. models have no to entire overlap). We 

evaluated the significance of D and I values with null models regarding climate envelope 

similarity and equivalency representing two extremes within the spectrum of niche 

conservatism (WARREN et al. 2008). Tests were performed separately for each climatic 

parameter in the manner of RÖDDER and LÖTTERS (in press). Moreover, for climate 

envelope equivalency, we applied a randomization test as proposed by WARREN et al. 

(2008) which relies on the metrics D and I. For western and eastern Amazonian harlequin 

frog occurrences 100 pseudoreplicate datasets were created by randomly partitioning the 

pooled sets of nwestern + neastern occurrences into sets of the same size of nwestern and neastern, 

respectively. Climate envelope models were built from each pseudoreplicate and compared 

to the percentiles of these null distributions in a one-tailed test to evaluate the hypothesis 

that climate envelope models for western and eastern records were not significantly 

different. This test allows for an assessment of climate envelope maintenance (i.e. niche 

conservancy) in a strictest sense, i.e. the effective equivalency of the climate envelope in 

the western and eastern geographic ranges. It is expected to be only met if western and 

eastern harlequin frogs tolerate exactly the same set of climatic conditions and have the 

same set of environmental conditions available to them.  

 In order to assess climate envelope similarity, we again used a randomization test of 

WARREN et al. (2008). It compares the actual similarity of climate envelopes in terms of D 

and I values to the distribution of similarities obtained by comparing them to a climate 

envelope model created through randomly choosing cells from among the cells in the study 

area. The same procedure was performed in both directions (western to eastern records 

vice versa) 100 times to construct an expected distribution of D and I values between a 

climate envelope model generated using actual occurrences and another one generated 

from random background data points extracted within a MCP enclosing one set of records. 
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These null distributions served as a two-tailed test to assess the null hypothesis that 

measured climate envelope overlap between western and eastern Amazonian Atelopus is 

explained by regional similarities or differences in available habitat. This hypothesis is 

rejected if the actual similarity falls outside the 95 % confidence limits of the null 

distribution. Significantly higher values suggest that climate envelopes are more similar 

than expected by chance and lower values indicate greater differences. Computations of D, 

I, climate envelope similarity and equivalency were performed with a Perl script developed 

by WARREN et al. (2008). 

 

 

Results and Discussion 

A central Amazonian distribution gap 

 Figure 4.2-2 suggests that indeed Amazonian harlequin frogs display a distribution 

gap in central Amazonia. Ripley’s K function for presence data points revealed 

significantly clustered results (i.e. inhomogeneous distributions), while those of apparent 

absence data points fall within the confidence intervals of a homogenous function (Figure 

4.2-3). Clustered presence data points advocate that the distribution gap (Figure 4.2-2) is 

not random. Likewise, equally distributed absence data points (i.e. over the entire study 

area; Figure 4.2-2) suggest that not sampling bias can be made responsible for this 

distribution gap. These findings meet our expectation and hence support DV in Amazonian 

harlequin frogs. Taking into consideration other possible scenarios of Amazonian historical 

biogeography (summarized by NOONAN and WRAY 2006; HAFFER 2008), the 

paleogeographic hypothesis needs to be addressed here. It proposes marine incursions from 

the Pacific Ocean and the Caribbean Sea into western Amazonia in Late Miocene/Pliocene 

or an extensive Amazonian lake in Pliocene (see HAFFER 2008 and references therein). 

This may well explain a nowadays Atelopus distribution gap in this region. But also, the 

paleogeographic hypothesis does not contradict DV, as under both it is predicted that 

during Pliocene species were retracted to higher elevations, as shown in Figure 4.2-1B.  
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Table 4.2-1 List of species used for the molecular analysis, their GenBank accession 
numbers and origin. Note that some sequences provided in Appendix 4.2-S2 will only be 
uploaded to Gene Bank upon acceptance of the manuscript. 
 

 

Species Accession 
number 

Locality 

Atelopus bomolochos AF375508 Ecuador: near Zhund 
Atelopus chiriquiensis U52780 Panama 
Atelopus flavescens flavescens 328 French Guiana: Lac des 

Americains 
Atelopus barbotini barbotini neu 336 French Guiana: near Saül 
Atelopus halihelos AF375510 Ecuador: near Plan de Milagro 
Atelopus hoogmoedi hoogmoedi 334 French Guiana: Monts Bakra 
Atelopus longirostris  AF375511 Ecuador 
Atelopus pulcher pulcher s str Peru 

298 
Peru: Tarapoto region 

Atelopus hoogmoedi rafael BO702 Guiana: Mabura Hill region 
Atelopus hoogmoedi DQ283260 French Guiana: near Saül 
Atelopus spurrelli Spurrelli Colombia: Bahía Solano 
Atelopus seminiferus semiferus Peru 

308 
Peru: Alto Mayo 

Atelopus cf. spumarius cf. Spumarius 
Peru 317 

Peru: Iquitos region 

Atelopus tricolor tricolor Bolivi 
319 

Bolivia: Yungas de La Paz 

Atelopus varius U52779 Panama 
Atelopus varius AY325996 Costa Rica: near Las Alturas 
Atelopus zeteki DQ283252 Panama: Las Filipinas 
Atelopus sp. ‘oxapampa’ sp Peru 299 Peru: Oxapampa region 
Atelopus sp. ‘cusco sp. Peru 320 Peru: near Puente Fortaleza 
Atelopus sp. ‘cocha’ AF375509 Ecuador 
Bufo marinus DQ283062 Peru 
Dendrophryniscus 
brevipollicatus 

AF375515 Brazil 

Osornophryne cf. Chiles AGG532 Ecuador 
Osornophryne puruanta AGG572 Ecuador 
Osornophryne antisana antisana 

LaAngelin 
Ecuador 

Osornophryne sp. ‘Ecuador’ Osorno Equador 
312 

Ecuador 

Eleutherodactylus cf. johnstonei  AF124123 unknown 
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Nested monophyly of eastern Amazonian Atelopus  

 Figure 4.2-4 illustrates a ML phylogram for 20 harlequin frogs and outgroups. All 

Amazonian Atelopus comprise a well supported monophyletic lineage, which is sister to all 

other members in the genus (i.e. a combination of Andean and trans-Andean species; Table 

4.2-1). Within this Amazonian clade, two sub-clades are evident, supported by high 

bootstrap and Bayesian posterior probability values. One unites the species from central to 

southern Peru and Bolivia, i.e. an Atelopus tricolor-clade (compare Figure 4.2-4). The 

other is comprised of species from the region of the upper portion of the Amazon River 

plus the Guiana Shield and the adjacent Amazon basin. This clade provides strong support 

for the Guiana Shield Atelopus forming a monophyletic lineage. As already shown by 

NOONAN and GAUCHER (2005), Atelopus species within this clade are little differentiated, 

as reflected by the weak support of groupings among them.  

 In summary, evidently a single Atelopus ancestor has survived and recently 

speciated in eastern Amazonia, in particular on the Guiana Shield. This does not only well 

support findings by NOONAN and GAUCHER (2005) but also well meets our expectation 

under DV. The molecular phylogenetic data leave little space for other interpretations than 

DV (see discussion in NOONAN and GAUCHER 2005). 

 

 

Divergence in climate envelopes and allopatry  

 Prediction accuracy of MaxEnt climate envelope models computed with all 

bioclimatic variables was high as suggested by ‘excellent’ AUC values (western 

Amazonian Atelopus: test 0.955, training 0.980; eastern Amazonian Atelopus: test 0.979, 

training 0.985) following the classification accuracy of SWETS (1988).  

 Comparing box plots (Figure 4.2-5), climate envelopes of western and eastern 

Amazonian Atelopus are similar as ranges of all bioclimatic parameters in our modelling 

approach overlap. Two of the temperature parameters, ‘annual mean temperature’ and 

‘maximum temperature of the warmest month’, are rather alike (not significantly different; 

Table 4.2-2), while one temperature and two of the precipitation parameters, ‘mean 

monthly temperature range’, ‘precipitation of the wettest month’ and ‘precipitation of the 

driest month’, show significant divergence (Table 2). These observations are highly 

coincident with the D and I values characterizing the climate envelope overlap (Table 2). 

The niche identity tests revealed that the climate envelopes of eastern and western 

harlequin frogs were identical in terms of annual means of temperature and precipitation, 
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slightly divergent in the ‘maximum temperature of the warmest month’ and the ‘mean 

monthly temperature range’ (significance level < 0.05). The null hypothesis that climate 

envelopes are equivalent in the western and eastern ranges was rejected for all other 

parameters. The climate envelope similarity test revealed that overlap in the ‘annual mean 

temperature’ and the ‘maximum temperature of the warmest month’ can be traced back to 

active habitat choice. These findings corroborate our expectation that climate envelopes of 

western and eastern Amazonian harlequin frogs show some divergence. However, 

background effects may at least partly explain the overlap patterns observed the other 

parameters, whereby eastern Atelpus actively chose their habitats according to some 

parameters but background effects have been involved in the habitat choice of western 

Atelopus vice versa. Such patterns are reasonable since different parameter may be widely 

available or limiting in eastern or western ranges influencing habitat choice. 

 

 

 

 

Figure 4.2-5 Box plots of seven bioclimatic parameters in climate envelope models of 
western and eastern Amazonian Atelopus. Values given in the upper row refer to 
temperature in °C and those in the lower row refer to precipitation in mm.  
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Table 4.2-2 AUC values per model, climate envelope overlap in terms of I and D values and assessment of their similarity and equivalency via 
randomization tests (see text). Significant values of climate envelope equivalency are indicated with asterisks; ns = p > 0.05; * = p < 0.05; ** = p < 
0.01. Values where observed overlap is greater than the null distribution are indicated in bold, values where overlap was smaller than the null 
distribution are italicized. 
 

Bioclimatic variables Model fit D I 
 AUC Western, AUC 

Eastern 
Overla

p 
Identit

y 
Similarity Overla

p 
Identit

y 
Similarity 

    Western, 
Eastern 

  Western, 
Eastern 

Annual mean temperature 0.798, 0.750  0.93 ns < 0.001, < 0.05 0.94 ns < 0.001, < 0.05 
Mean monthly temperature range 0.796, 0.896  0.58 < 0.001 < 0.001, ns 0.72 < 0.05 < 0.001, ns 
Maximum temperature of the warmest 
month 

0.738, 0.806  0.81 < 0.05 < 0.05, < 0.001 0.87 < 0.05 < 0.05, < 0.001 

Minimum temperature of the coldest month 0.871, 0.850  0.74 < 0.001 < 0.05, ns 0.82 < 0.001 < 0.05, ns 
Annual precipitation 0.881, 0.839 0.90 ns < 0.001, ns 0.94 ns < 0.001, ns 
Precipitation of the wettest month 0.743, 0.849  0.78 < 0.001 ns, < 0.001 0.86 < 0.001 ns, < 0.05 
Precipitation of the driest month 0.914, 0.857  0.55 < 0.001 ns, < 0.001 0.70 < 0.001 ns, < 0.001 
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 Due to ‘excellent’ AUC values suggesting high prediction accuracy (see above), we 

mapped climate envelope of western and eastern Amazonian Atelopus into geographic 

space on the full presence data point sets (i.e. this time no data points were set aside for 

testing), to take advantage of all available information and to provide best estimated 

prediction maps (see PHILLIPS et al. 2006). Results are shown in Figure 4.2-6. Fitting well 

with the comparison of the climate envelops of the two units studied (Figure 4.2-5; Table 

4.2-2), their geographic distributions are largely allopatric with overlap corresponding to 

lower suitability (i.e. lower MaxEnt values). Areas of higher suitability of climate 

envelopes (i.e. warmer colours in Figure 4.2-6) of western and eastern Amazonian 

Atelopus show little or no overlap.  

 Application of a climate envelope modelling approach and using macroscale 

bioclimate supports the presence of a western and eastern group of Amazonian Atelopus. 

Taking into account the different historical biogeographic scenarios of Amazonian 

diversification (summarized by NOONAN and WRAY 2006; HAFFER 2008), none of these 

addresses climate envelope change. In contrast, climate envelope maintenance due to 

geographic distribution change is expectable in the disturbance-vicariance, 

paleogeographic, riverine barrier, refuge, river-refuge, canopy density, gradient and 

museum hypotheses. On the other hand, this does not per se rule out climate envelope 

change posterior to geographic range increase, decrease or shift. Such a scenario is most 

plausible in the case of cool-adapted taxa of Andean origin.  

 

 

Conclusions 

 Different scenarios have been proposed attempting to explain plant and animal 

diversification and distributions in the Amazon basin and adjacent areas. There is an 

ongoing debate on them, as hypotheses in part contradict, while others can be ‘harmonised’ 

with each other (e.g. DV and the paleogeographic hypothesis as discussed above). We here 

address DV in harlequin frogs and found that four expectations formulated, combining 

different methods, were fulfilled reinforcing this hypothesis. We suggest that not only 

species change their geographic ranges but also their climate envelopes. This led us to 

include a climate envelope assessment, never addressed before in historical biogeography 

of Amazonia and its vicinities. 

 

 



Section 4: Niche dynamics in space and time 
                                                                                                          4.2. Amazonian Atelopus 

 181

 

 

 

 

 

Figure 4.2-6 Potential distributions of western (A) and eastern (B) Amazonian Atelopus. 
Colours from green via yellow to red refer to MaxEnt values of probability with warmer 
colours standing for areas with better predicted conditions (range 0-1, logistic MaxEnt 
output). Illustrations were performed with DIVA-GIS 5.4. 
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The present thesis investigates relationships of variation in large scale climate, 

ecological niches of amphibians and reptiles and their corresponding geographic 

distribution patterns. As suggested by several authors, anthropogenic climate change may 

harm much of the world’s biota. However, our knowledge on processes leading to these 

threats and our ability to make robust predictions of possible impacts is still limited but 

pivotal to develop successful management strategies. The goal of the thesis at hand is to 

narrow some of those knowledge gaps. The results are presented in four sections, each with 

several chapters focussing on different aspects of the link between macro-climate, species’ 

ecological niches and their distribution patterns.  

 

 

Section 1 

A general overview is provided of the pertinent knowledge on the impact of climate 

change on biota, ecological niche concepts, availability of both climate and species 

occurrence data and the methods used herein. Additionally, potential methodical or 

conceptual ‘pitfalls’ when applying so called environmental niche models or climate 

envelope models are highlighted, illustrated and discussed using examples.  

 

 

Section 2 

The focus here lays on the structure of species' climate niches. Climatic variability 

within species ranges and habitat choice are analysed and discussed in the context of 

natural history properties of the respective species. 

Chapter 2.1. Climate is suggested to be one major driver shaping species range 

patterns. Especially species with temperature-dependent sex determination may rely on 

particular climatic conditions, such as the Slider (Trachemys scripta) from North America. 

In this chapter, it is hypothesised that climatic requirements allowing successful egg 

incubation and balanced sex ratios in T. scripta are the major driver for the species’ 

geographic distribution. It is tested if the observed variation in monthly mean temperatures 

at 377 records throughout the native distribution of the target species can be used as a 

predictor for its geographic range. This study shows that apparently climatic requirements 

during egg-incubation are the major driver for the species’ distribution. Merely freezing 

events during winter may regionally limit its distribution. Adaptive strategies such as nest 

site choice by females, plasticity in nesting phenology or regional variation in embryonic 
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temperature sensitivity exist. However, regional variation may account only for partial 

compensation of negative effects caused by regional differences in temperature related 

parameters or a changing climate.  

Chapter 2.2. Recently, several authors have observed a climatic mismatch between 

native and invasive ranges predicted by Climate Envelope Models (CEMs). The present 

chapter address the issue of climate niche shift in alien invasive species versus variable 

choice by deriving CEMs based on multiple variable sets. The first selection of predictors 

aims at representing the physiological limits of the well studied alien invasive Slider. This 

model was compared to numerous other models based on various subsets of environmental 

variables or aiming at comprehensiveness. The CEMs aiming to represent the species 

physiology depicts its worldwide potential distribution better than any of the other 

approaches. The results indicate that a natural history driven understanding is crucial in 

developing statistical models of niches while ‘comprehensive’ or ‘standard’ sets of 

explanatory variables may be of limited use. 

Chapter 2.3. The use of CEMs to predict potential distributions of species is steadily 

increasing. A necessary assumption is that climatic niches are rather conservative, but 

recent findings of (climate) niche shifts during biological invasion indicate that this 

assumption is not valid in every case. Selection of predictor variables may be one reason 

for observed shifts. This chapter addresses differences in climatic niches in the native and 

invaded ranges of the Mediterranean Housegecko (Hemidactylus turcicus) in terms of 

commonly applied climate variables in CEMs. It is analyzed which variables are more 

conserved versus relaxed (i.e. subject to niche shift). Furthermore, the predictive power of 

different sets of climate variables is studied. Models for the Mediterranean region and the 

conterminous United States (US) are created using various subsets of variables out of 19 

environmental layers. Occurrence data from the native range in the Mediterranean region 

were used to predict the introduced range in the US and vice versa. Niche similarity and 

conservatism per predictor and per set of predictors are contrasted using Schoener’s index 

and modified Hellinger distance. Significance of results was tested using null models. The 

results indicate that the degree of niche similarity and conservatism vary greatly among 

predictors and variable sets applied. Shifts observed in some variables can be attributed to 

active habitat selection whereby others apparently reflect so called background effects. The 

study is based on comprehensive occurrence data from all regions where H. turcicus is 

present in Europe and the New World providing a robust fundament for the study. Further, 

the results suggest that the degree of niche similarity and conservatism considerably vary 
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among predictors and variable sets applied. These results have important implications for 

studies of biological invasion, impacts of climate change and niche evolution. 

 

 

Section 3 

This part of the thesis at hand focus on the relative importance of dispersal abilities, 

accessibility and biotic interactions shaping a species’ realized distribution. 

Chapter 3.1. Globalization has led to a heightened spread of alien invasive species, 

which can alter mutualistic relationships, community dynamics, ecosystem function 

resource distributions etc. They can cause species extinctions affecting thereby local and 

global diversity. Among the reptiles two gecko species, Hemidactylus frenatus and H. 

mabouia, have considerably increased their geographic ranges during the last century. It 

has been shown that within their invasive ranges both have caused local decimations and 

extinctions of native taxa. Records of invasive populations of H. frenatus are known from 

tropical Asia, Central America and adjacent North America (Florida), while invasive H. 

mabouia populations occur in Central and Southern Africa as well as in large portions of 

Central and South America. Only few sympatric populations of these geckos are known. 

The aim here is to identify worldwide areas potentially suitable for these species using 

CEMs, to predict their potential distributions under current conditions and a future climate 

change scenario and to try to assess for what reason sympatric populations of both are 

apparently rare. The results demonstrate that climatically suitable areas of both species can 

be found in nearly all tropical regions. Future projections revealed that the amount of 

climatic suitable areas will increase for H. frenatus at the global scale, but decrease for H. 

mabouia. Most remarkable changes are suggested for South America where further 

spreading of H. frenatus will be enhanced due to changing climate. In contrast, climatic 

conditions for H. mabouia will be aggravated here. It is concluded that both competitive 

exclusion and a non equilibrium in the geographic ranges of these geckos explain the 

virtual absence of sympatry, although the impact of climate on competition success is 

pending further testing in the field. 

Chapter 3.2. It is suggested that CEMs may only be of limited use if the target 

species’ range is not predominately limited by unsuitable climate. The goal of this chapter 

is to test this assumption using the alien invasive anuran Eleutherodactylus coqui as a 

model species, originating from Puerto Rico. It is presently distributed on many Caribbean 

islands and Hawaiian Islands where it causes major ecological and socioeconomic 
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problems. In the given approach the climate envelope of the native potential distribution of 

this species is projected into geographic space in order to identify further areas suitable for 

successful establishment. The results advocate that under current climate there exist high 

probabilities of occurrence in tropical regions including the Caribbean, Florida, major parts 

of the Amazon basin and the adjacent Andes, the Pantepui region, Africa's Congo basin 

and many Asian islands. Using native Puerto Rican occurrence data for CEM training, the 

results indicate that the invasive range on the Hawaiian Islands can be predicted with high 

accuracy. Projections of potential distributions under future anthropogenic global warming 

scenarios on the Hawaiian Islands suggest an overall stable potential distribution, but fine 

scale patterns suggest a possible range allocation towards higher elevations which may 

affect existing nature reserves of high species richness and endemism. If the predictive 

maps are interpreted as depicting invasiveness potential of E. coqui, strategies to prevent 

further invasion should focus on biosafety measurements within the areas highlighted. 

Chapter 3.3. Here, the invasive alien treefrog Osteopilus sepentrionalis, native to 

Cuba, the Bahamas and some adjacent islands, was used as an example to study if climate 

is not the predominantly driver of the geographic range. This anuran was accidentally 

introduced to Florida, Puerto Rico and some Hawaiian islands, where it it predates to and 

competes with native wildlife. The potential spread derived from present climate 

conditions in its native geographic distribution is modeled and projected onto future 

climate change scenarios in order to detect new areas which are potentially threatened. The 

CEM, applying current climatic conditions, suggests high probabilities of occurrence in the 

Gulf of Mexico. As in chapter 3.2, the findings indicate that the invasive range in Florida 

can be predicted with high accuracy using native records only (Cuba and Bahamas) for 

model training if the predictor variables are carefully chosen in respect of natural history 

properties of the target species.  

Chapter 3.4. Biotic interaction such as competitive exclusion or predation limits the 

realized distribution of species although climatic conditions are well suitable to them. Such 

a pattern is assessed here, as observed in the Brown tree snake (Boiga irregularis). This 

snake is native to South-East Asia and Australia and has been introduced to the island of 

Guam. Here, it has caused major ecological and socioeconomic problems and why it is 

considered as one of the 100 worldwide worst alien invasive species. A CEM is used to 

identify areas outside the species’ known range which worldwide are potentially suitable 

under current climate. Projections revealed that this invasive alien species potentially 

occurs in tropical and in part subtropical regions. In the larger vicinity of the snake’s 
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known distribution, highest suitability was found for the Northern Mariana and Hawaiian 

Islands, Madagascar, New Caledonia and Fiji Islands, all areas of high species richness 

and/or local endemism. However, although most East Asian mainland and island areas are 

climatically suitable to B. irregularis, the invasive populations of this species do virtually 

not exist. The predicted potential distribution is highly coincident with the general 

distribution of the genus Boiga. Since B. irregularis does not coexist with other members 

of the genus or other potential competitors in its native range, competitive exclusion may 

be considered as a possible explanation for the observed pattern.  

Chapter 3.5. Anthropogenic habitat alteration has a strong impact on native biota and 

can significantly shape distribution patterns. Eleutherodactylus johnstonei, native to the 

northern lesser Antilles, has established numerous invasive populations on Caribbean 

islands and the adjacent Central and South American mainland. The species is a highly 

successful colonizer, but is able to invade anthropogenic disturbed habitats only. A CEM is 

applied to model the geographic distribution of this species and to project it onto other 

potentially threatened areas. Results obtained from the model are compared with a measure 

of anthropogenic habitat disturbance (Human Footprint). Results suggest a high probability 

of occurrence in large parts of southern Central America, at the northern and north-eastern 

coast of South America and in the Andes of Colombia, Ecuador and Venezuela. The 

Andean region, harbouring a diverse amphibian fauna, which is considered to be highly 

threatened due to anthropogenic habitat alteration, appears to be at highest risk with regard 

to further spread of E. johnstonei. If the predictive maps are interpreted as depicting 

invasiveness potential of this species, strategies to prevent further invasion should focus on 

biosafety measurements within the areas identified here. 

 

 

Section 4 

The breadths of climate niches, their evolution and dynamics in space and time are 

the target here. 

Chapter 4.1. If climate changes a species’ range may shift as a respond. If dispersal 

limitation exists hampering range shifts, a species’ range may (i) shrink, (ii) the species’ 

niche breadth may be large enough to buffer changing environmental conditions or (iii) the 

species may adapt to them. The day-gecko Phelsuma parkeri, endemic to the island of 

Pemba (Tanzania, with elevational range 0 to < 100 m a.s.l. only), is used as a case study 

to focus on these aspects. Information on its distribution on the island and its conservation 
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status is poor. Information on the potential distribution of P. parkeri and its adaptability to 

habitat modification and changing climates are provided here using a CEM. Findings 

suggest that P. parkeri is hitherto highly adaptable to anthropogenic habitat modification. 

A comparison with paleoclimatic conditions during the Last Glacial Maximum (ca. 21 k 

BP) on Pemba revealed that this reptile and likewise other endemic species of the island 

survived an entirely different climate compared to today due to the absence of possibilities 

to compensate these changes by altitudinal range shift. it is concluded that P. parkeri is 

currently unlikely to be threatened by climate change although projection of its current 

realized climate niche suggest a complete range loss. The main potential threat identified 

may include the introduction of invasive species such as Phelsuma dubia, which is already 

established on the nearest island Zanzibar. Based on the findings, it is propose that P. 

parkeri should be categorized as Near Threatened under the IUCN Red List of Threatened 

Species.  

Chapter 4.2. The disturbance vicariance hypothesis (DV) has been proposed to 

explain speciation in Amazonia, especially its edge regions, e.g. in Guianan harlequin frogs 

(Atelopus). There is evidence that these have originated from a cool-adapted Andean 

ancestor. In this chapter, in concordance with DV predictions, it is expected that: (i) these 

amphibians display a natural distribution gap in central Amazonia; (ii) east of this gap they 

constitute a monophyletic lineage which is nested within in a pre-Andean/western clade; 

(iii) climate envelopes of Atelopus west and east of the distribution gap show some 

macroclimatic divergence due to regional climate envelope shift; (iv) geographic 

distributions of climate envelopes of western and eastern Atelopus (i.e. the species' 

potential distributions) range into central Amazonia but with limited spatial overlap. It is 

tested if presence and apparent absence data points of Atelopus are homogenously 

distributed applying Ripley’s K function. A molecular phylogeny (mitochondrial 16S 

rRNA gene), by application of Maximum Likelihood and Bayesian Inference, was 

reconstructed to study if Guianan Atelopus constitute a nested clade within a larger genus 

phylogeny. Climate envelope divergence and geographic distribution are focused by 

computing CEMs based on macroscale bioclimatic parameters and testing them with using 

Schoener’s index and modified Hellinger distance. All four expectations are corroborated 

leading to the conclusion that DV predictions are well applicable to Amazonian harlequin 

frogs.  
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Conclusions in brief 

The results of this thesis update our status of knowledge on the link between 

climate change and corresponding responses of species in terms of changes in their 

phenology and/or their distribution patterns. They will hopefully enhance our ability to 

understand and probably manage some of the problems arising due to anthropogenic 

climate change. However, although our qualitative understanding of processes and 

mechanisms causing patterns of species phenology and distribution has been largely 

extended during the last decades, it is still far from being comprehensive and our ability to 

make robust quantitative predictions is still limited.  
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Appendix 2.2-S1  

Variation of 19 ‘bioclimate’ variables within the native and invasive ranges of the Slider. 

 

 

  Native records   Invasive Records 
  min mean max SD   min mean max SD 
annual mean temperature [°C] 8.3 15.6 23.3 2.9  6.4 16.8 28.0 5.4 
mean monthly temperature [°C] 7.6 13.4 18.6 1.8  5.3 11.5 20.0 3.8 
Isothermality 26.2 37.3 48.5 4.6  26.4 45.2 76.6 12.5 
temperature seasonality 548.6 849.1 1095.4 130.0  41.0 564.5 1123.1 270.1 
maximum temperature warmest month [°C] 28.9 33.3 37.4 1.6  19.2 30.5 41.4 4.0 
minimum temperature coldest month [°C] -12.6 -2.9 8.9 4.7  -12.6 3.7 21.8 8.7 
temperature annual range [°C] 24.6 36.2 44.5 4.5  9.3 26.8 43.4 9.2 
mean temperature wettest quarter [°C] 5.3 20.0 27.9 5.7  1.9 19.8 32.3 7.1 
mean temperature driest quarter [°C] -5.8 10.4 28.7 9.5  -5.6 14.5 28.0 8.8 
mean temperature warmest quarter [°C] 21.2 25.8 30.1 1.5  13.3 23.7 32.5 3.5 
mean temperature coldest quarter [°C] -5.8 4.8 15.8 4.4  -5.6 9.9 26.9 8.2 
annual precipitation [mm] 278.0 989.6 1652.0 372.1  142.0 942.6 2682.0 521.4 
precipitation wettest month [mm] 55.0 121.9 203.0 32.9  25.0 135.2 460.0 80.9 
precipitation driest month [mm] 6.0 47.3 102.0 28.7  0.0 34.6 114.0 26.8 
precipitation seasonality 9.9 35.6 77.3 18.3  7.9 48.1 118.3 27.1 
precipitation wettest quarter [mm] 138.0 327.6 524.0 89.8  59.0 369.1 1190.0 221.8 
precipitation driest quarter [mm] 22.0 164.6 337.0 96.1  2.0 121.2 389.0 87.9 
precipitation warmest quarter [mm] 123.0 277.8 524.0 82.1  6.0 281.6 967.0 207.1 
precipitation coldest quarter [mm] 22.0 202.6 449.0 139.0  9.0 176.7 674.0 116.2 
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Appendix 2.2-S2  
Presence of the Slider in its native range (green dots) and invasive range where it is known 
to reproduce (red dots), countries from which reproducing populations are known but no 
specific localities are available (hatched) and potential distribution derived from BIOCLIM 
climate envelope (colored): (A) using 19 ‘bioclimate’ variables, approach 
‘comprehensive’; (B) using 7 ‘bioclimate’ variables, approach ‘minimalistic’; (C) using 5 
‘bioclimate’ variables derived from physiological and natural history traits of the Slider, 
approach ‘natural history’. 
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Appendix 2.3-S1 

Additional records of Hemidactylus turcicus were obtained from the following references: 

 

BEAMAN , K.R., D.M. GOODWARD, N.T. MOORHATCH &  C.W. BROWN (2005) Geographic 

distribution: Hemidactylus turcicus (Mediterranean House Gecko). Herpetological 

Review 36: 79. 

BUFALINO, A.P. (2004) Geographic distributon: Hemidactylus turcicus. Herpetological 

Review 35: 188. 

COLLINS, J.T., &  K.J. IRWIN (2000) Geographic distribution: Hemidactylus turcicus. 

Herpetological Review: 32: 276. 

CONANT, R. &  J.T. COLLINS (1998) Reptiles and amphibians of eastern / central North 

America. 3rd edition, Houghton Mifflin Company, New York. 

DANIEL , R.E., B.S. EDMOND &  J.T. BRIGGLER (2004) New herpetological records from 

Missouri for 2004. Newsletter of the Missouri Herpetological Association 17: 9-12. 

DOWLING, R.G. (1996) The Mediterranean gecko, Hemidactylus trucicus, in Prattville, 

Alabama. Bulletin of the Chicago Herpetological Society 21: 203. 

EASON, G.W., &  D.R. MCMILLAN (2000) Geographic distribution: Hemidactylus turcicus. 

Herpetological Review 31: 53. 

GOMEZ-ZLATAR , P., M.P. MOULTON &  R. FRANZ (2006) Microhabitat use by introduced 

Hemidactylus turcicus (Mediterranean Gecko) in North Central Florida. 

Southeastern Naturalist 5: 425-434. 

JADIN , R.C., &  J.L. COLEMAN (2007) New country records of the Mediterranean House 

Gecko (Hemidactylus turcicus) in northeastern Texas, with comments on range 

expansion. Applied Herpetology 4: 90-94. 

KNIGHT, C.M. (1993) A northern range extension of Hemidactylus turcicus in the United 

States. Dactylus 2: 49-50. 

KRYSKO, K.L., K.M. ENGE, J.H. TOWNSEND, E.M. LANGAN, S.A. JOHNSON &  T.S. 

CAMPBELL (2005) New country records of amphibians and reptiles from Florida. 

Herpetological Review 36: 85-87. 

LEE, J.R. (2008) Geographic distribution of Hemidactylus turcicus (Reptilia: Squamata: 

Gekkonidae) in Mississippi. Journal of the Mississippi Academy of Sciences 53: 

184-188. 

LARDIE, R.L. (2001) Geographic distribution: Hemidactylus turcicus. Herpetological 

Review 32: 119. 
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MANNING, G.J., &  J.T. BRIGGLER (2003) Geographic distribution: Hemidactylus turcicus. 

Herpetological Review 34: 384. 

NORDEN, A.W., &  B.B. NORDEN (1991) The Mediterranean gecko (Hemidactylus turcicus) 

in Baltimore, Maryland. Maryland Naturalist 33: 57-58. 

PAINTER, C.W., P.W. HYDER &  G. SWINFORD (1992) Three species new to the herpetofauna 

of New Mexico. Herpetological Review 23: 62. 

PAULISSEN, M.A., &  T.M. BUCHANAN (1990) Geographic distribution: Hemidactylus 

turcicus. Herpetological Review 21: 22. 

SAETHRE, M.B., &  P.A. MEDICA (1993) Hemidactylus turcicus (Mediterranean gecko). 

USA: Nevada. Herpetological Review 24: 154-155. 

SATTLER, P., C. LANE &  K. HARRIS (2007) Status and distribution of the Mediterranean 

gecko (Hemidactylus turcicus) in Virginia. Catesbeiana, 27. 

SIAS, D.S., &  P.E. HUMPHREY (2002) Geographic distribution: Hemidactylus turcicus. 

Herpetological Review 33: 66. 

SHEEHY, C.M.I. (2004) Geographic distribution: Hemidactylus turcicus. Herpetological 

Review 35: 287. 

TOWNSEND, J.H., &  K.L. KRYSKO (2003) The distribution of Hemidactylus (Sauria: 

Gekkonidae) in northern peninsular Florida. Biological Sciences 66: 204-2008. 

TOWNSEND, J.H., K.L. KRYSKO, A.T. REPPAS &  C.M. SHEEHY (2002) Noteworthy records 

for introduced reptiles and amphibians from Florida, USA. Herpetological Review 

33: 75. 

UGURTAS, I.H., H.S. YILDIRIMHAN &  M. SEVINC (2007) Distribution of the gekkonidae 

species in southeast Anatolia, Turkey, and new localities. Turkish Journal of 

Zoology 31: 137-141. 

VENCHI, A. (2006) Hemidactylus turcicus. In: R. SINDACO, G. DORIA, E. RAZZETTI &  F. 

BERNINI (eds) Atlante digli Anfibi e dei Rettili d' Italia / Atlas of Italian amphibians 

and reptiles. Societas herpetologica Italica, Edizioni Polistampa, Firenze. 

WHITE, G., &  R. TUMLISON (1999) Geographic distribution: Hemidactylus turcicus. 

Herpetological Review 30: 110. 
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Appendix 2.3-S2  

Crosswise projections of climate envelopes developed with variable sets ‘Comprehensive’, 
‘Minimum’, ‘Precipitation’, and ‘Temperature’. Arrows indicate direction of projections, 
i.e. climate envelopes were developed based on records within one area and projected into 
the other. 
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Appendix 2.3-S3  
Relationship between niche overlap in terms of D and I values and performance of model 
trained with native or invasive records in terms of AUC values of the 19 bioclimatic 
parameters analyzed (for details see Table 2.3-1). R2

D nat = 0.140, P D nat = 0.020; R2
D inv = 

0.207, P D inv = 0.004; R2
I nat = 0.160, P I nat = 0.013; R2

I inv = 0.147, P I inv = 0.017. 
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Appendix 4.1-S1  
 
Variation in annual mean precipitation throughout Pemba Island based on the sources 
described in the chapter "climate data". 
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Appendix 4.2-S1 

List of localities in Amazonia and on the Guiana Shield of presence and apparent absence of harlequin frogs (Atelopus). 

Abbreviations: Depto. = Departamento; Edo. = Estado; Prov. = Provincia; PN = Parque Nacional/Nacionão; + = present; –– = apparently 
absent; pc = personal communication; AMNH = American Museum of Natural History, New York; BM = British Museum (Natural History), 
London; ICN = Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Santafé de Bogotá; KU = Natural History Museum, The 
University of Kansas, Lawrence; MUSM = Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Lima; MZUSP = 
Museu de Zoologia, Universidade de São Paulo; NRM = Naturhistoriska Rijkmuseet, Stockholm; QCAZ = Pontificia Universidad Católica del 
Ecuador, Quito; ZFMK = Zoologisches Forschungsmuseum Alexander Koenig, Bonn; ZUEC = Museu de História Natural, Universidade 
Estadual de Campinas, São Paulo. 
 

Locality Approximate Presence or Source(s) 

 Location Apparent Absence  

Bolivia (3 localities, 0 presence) 

Cobija, Depto. Pando 11.01S, 68.45W –– Köhler and Lötters, 1999 

Río Ortón, Depto. Pando 10.58S, 69.40W –– I. De la Riva, pc; S. Reichle, pc 

Tahuamanu, Depto. Pando 11.24S, 69.10W –– I. De la Riva, pc; S. Reichle, pc 

 

Brazil (39 localities, 21 presence) 

Ajarani region, Edo. Roraima 02.0N, 62.45W ― C. Azevedo-Ramos, pc 

Alto Rio Juruá region, Edo. Amazonas 08.0S, 72.50W ― C. Azevedo-Ramos, pc 

Baixo Rio Juruá region, Edo. Amazonas 03.15S, 66.15W ― C. Azevedo-Ramos, pc 

Belém region, Edo. Pará 01.29S, 48.24W ― C. Azevedo-Ramos, pc 

Boa Vista region, Edo. Roraima 02.49N, 60.40W –– J.P. Caldwell, pc 

Caiman region, Edo. Amapá 03.18N, 52.15W + Lescure, 1981a 
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Chanpiom region, Edo. Pará 01.20N, 51.16W ― C. Azevedo-Ramos, pc 

Carajás region, Edo. Pará 06.02S, 50.25W + C. Azevedo-Ramos, pc 

CEMEX, SE of Santarém, Edo. Pará 03.09S, 54.51W + J.P. Caldwell, pc 

Cruzeiro do Sul, Edo. Acre 07.37S, 72.35W ― authors’ pers. observ. 

Igarapé de Piranha, Edo. Amazonas 05.43S, 61.16W + MZUSP 

Ituxi region, Edo. Amazonas 08.17S, 65.30W ― C. Azevedo-Ramos, pc 

Jacareacanga, Edo. Pará 01.32S, 47.03W + ZUEC 

Lago do Castanho, Edo. Amazonas 03.45S, 60.30W + ZUEC 

Mamirauá region, Edo. Amazonas 03.30S, 64.35W ― C. Azevedo-Ramos, pc 

Maués, Edo. Amazonas 03.24S, 57.42W + AMNH 

Monte Cristo, Edo. Pará 04.40S, 55.38W + MZUSP 

Municipio de Castanho, Edo. Amazonas 03.30S, 59.54W –– J.P. Caldwell, pc 

Paragominas region, Edo. Pará 03.45S, 48.20W + C. Azevedo-Ramos, pc 

PN da Serra do Divisor, Edo. Acre 08.20S, 73.32W ― authors’ pers. observ. 

Pojuca, Serra do Carajás, Edo. Pará 06.10S, 51.05W + ZUEC 

Porto Platon, Edo. Amapá 00.42N, 51.27W + MZUSP 

Porto Grande, Edo. Amapá 00.42N, 51.24W + ZUEC 

Porto Walter, Edo. Acre 08.15S, 72.47W –– J.P. Caldwell, pc 

Presidente Figuereido, Edo. Amazonas 02.00S, 60.00W –– authors’ pers. observ. 

Reserva Campina, Edo. Amazonas 03.07S, 60.03W + ZUEC 

Reserva INPA-WWF, Edo. Amazonas 02.25S, 59.43W + MZUSP 

Reserva Pacanari, Edo. Pará 00.52S, 52.31W + ZUEC 
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Río Amaparí, Edo. Amapá 01.15N, 52.15W + MZUSP 

Rio Formoso, Edo. Rondônia 10.19S, 64.34W –– J.P. Caldwell, pc 

Rio Ituxi, Edo. Amazonas 08.29S, 65.43W –– J.P. Caldwell, pc 

Rio Manjuru, Edo. Amazonas 04.00S, 57.00W  + AMNH 

Río Maú, Edo. Roraima 04.20N, 59.45W + MZUSP 

Serra do Navio, Edo. Amapá 01.55N, 51.50W + MZUSP; McDiarmid, 1973 

Terra Verde Lodge, Edo. Amazonas 03.37S, 59.86W –– J.P. Caldwell, pc 

Urucú region, Edo. Amazonas 05.00S, 65.30W ― C. Azevedo-Ramos, pc 

Circa 90 km N of Manaus, Edo. Amazonas 01.45S, 60.05W + Gascon, 1989 

1.0 km NW of Caracaraí, Edo. Roraima 01.50N, 61.08W –– J.P. Caldwell, pc 

 

Colombia (11 localities, 3 presence) 

Calderón, Depto. Amazonas 03.46S, 69.53W ― Ardila-R. and Ruiz-C, 1997 

Caño Cabina, Léticia, Depto. Amazonas 03.40N, 70.25W + J.M. Renjifo, pc 

Igara Parana, Depto. Amazonas 00.44N, 72.58W + BM; Lescure, 1981a 

La Pedrera, Depto. Amazonas 01.18S, 69.22W ― Ardila-R. and Ruiz-C, 1997 

Río Apaporis, Depto. Vaupes 00.45N, 72.00W  –– J.M. Renjifo, pc 

Río Mirití, Depto. Amazonas 01.12S, 69.53 W  ― Ardila-R. and Ruiz-C, 1997 

Río Puré, Depto. Putumayo 02.10S, 69.42W + ICN 

Río Tiquie, Depto. Vaupes 00.20N, 70.20W –– J.M. Renjifo, pc 

Tarapacá, Depto. Amazonas 02.52S, 69.44W ― Ardila-R. and Ruiz-C, 1997 

Tomachipan, Depto. Guaviare 02.18S, 71.46W –– J.M. Renjifo, pc 
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Serrania de Taraira, Depto. Vaupes 00.55S, 69.40W –– J.M. Renjifo, pc 

 

Ecuador (8 localities, 7 presence) 

Cuyabeno Reserve, Prov. Sucumbíos 00.00, 76.00W –– L.A. Coloma, pc; J.P. Caldwell, pc 

Jatun Sacha Reserve, Prov. Napo 01.05S, 77.45W + L.A. Coloma, pc 

Miazal, Prov. Morona-Santiago 02.37S, 77.47W + Rivero, 1968 

PN Yasuní, Prov. Orellana 00.36S, 76.20 W + QCAZ 

Río Cononaco, Prov. Orellana 01.25S, 75.50W + Patzelt, 1989 

Río Oglán, Prov. Pastaza 01.19S, 77.35W + Rivero, 1968 

Río Villano, Prov. Pastaza 01.29S, 77.38W + BM 

Circa 66 km E of Pompeya, PN Yasuní,  

Prov. Orellana 00.45S, 76.21W + QCAZ 

 

French Guiana (24 localities, 24 presence) 

Between Dorlin and Sophie 03.51N, 53.34W + McDiarmid, 1973 

Between La Greve and Sophie 03.57N, 53.35W + McDiarmid, 1973 

Boulanger 04.32N, 52.25W + ZFMK 

Cayenne region 04.50N, 52.22W + Lescure, 1976 

Chaumière 04.53N, 52.22W + Lescure, 1973 

Crique Grégoire (Kerenroch) 05.05N, 53.20W + Lescure, 1973 

Crique Ipoucin 04.09N, 52.25W + Lescure, 1976 

Kaw region 04.29N, 52.20W + Lescure, 1976, 1981b 
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Koulimapopane 02.19N, 54.36W + Lescure, 1976 

Maripasoula 03.37N, 53.12W + NRM 

Matoury 04.50N, 52.25W + Lescure, 1976 

Montagne Belvédère 03.37N, 53.12W + Kok, 2000 

Montagne Saint-Marcel 02.25N, 53.00W + Lescure, 1981a 

Monts Atachi-Bacca 03.35N, 54.00W + Lescure, 1976 

Petit Saut 05.21N, 53.41W + Hoogmoed and Avila-Pires, 1991 

Rivière Matarony 04.02N, 52.15W + McDiarmid, 1973 

Rivière Yaroupi 02.35N, 52.40W + Lescure, 1976 

Roura region 04.45N, 52.20W + Lescure, 1976 

Saint Laurent region 05.30N, 53.55W + Lescure, 1981a 

Saül region 03.35N, 53.55W + Lescure, 1981a 

Sophie region 03.55N, 53.40W + Lescure, 1981a 

Tortue region 04.11N, 52.23W + Lescure, 1976 

Trois-Sauts 02.15N, 52.50W + Lescure, 1981a; Lescure and Gasc, 

1986 

Circa 30 km S of Saül 03.20N, 52.10W + Lescure, 1981a 

 

Guiana (9 localities, 9 presence) 

Between Chenapowu and Saveritih 04.55N, 59.34W + AMNH 

Demerara River 04.47N, 58.26W  + AMNH 

Iwokrama 04.50N, 59.15W + M.L. Donnelly, pc 
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Kalacoon 06.24N, 58.39W + AMNH; McDiarmid, 1973 

Kangaruma 05.18N, 59.17W + AMNH; McDiarmid, 1973 

Karisparu 04.58N, 59.30W + BM 

Kartabo 06.21N, 57.50W + AMNH; McDiarmid, 1973 

Potaro River  05.20N, 59.17W + BM 

25 mi WSW of Mabura Hill 05.13N, 59.21W + AMNH 

 

Peru (31 localities, 21 presence) 

Achinamisa, Depto. San Martín 06.25S, 75.54W + AMNH 

Balta, Depto. Ucayali 10.08S, 71.13W –– Duellman and Thomas, 1996 

Barranca, Depto. San Martín 07.16S, 76.28W + AMNH 

Bolognesi region, Depto. Ucayali 10.02S, 73.57W –– Lehr, 2002 

Cachiyacu, Depto. San Martín 05.44S, 77.29W + Rivero, 1968 

Chayahuitas, Depto. Loreto 05.50S, 76.10W + Rivero, 1968; Lötters et al. 2002 

Cocha Cashu/PN Manu, Depto. Madre de Dios 11.54S, 71.22W –– Rodríguez, 1992 

Cuzco Amazónico, Madre de Dios 12.35S, 69.05W –– Duellman and Salas, 1991 

Explorama, Depto. Loreto 02.35S, 71.57W –– Duellman and Thomas, 1996 

Genaro Herrera, Depto. Loreto 04.59S, 73.46W + MUSM 

Iquitos region, Depto. Loreto 03.40S, 73.20W + AMNH; Rodríguez and Duellman, 

1994 

Manseriche, Depto. Loreto 04.25S, 77.35W + Rivero, 1968 

Milagros, Depto. Ucayali 10.08S, 74.01W –– Lehr, 2002 
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Monte Alegre, Depto. Loreto 06.42S, 74.15W + AMNH 

Nauta region, Depto. Loreto 04.30S, 73.40W + Asquith and Altig, 1987 

Panguana, Depto. Huánuco 09.35S, 74.48W –– Schlüter, 2005 

Pebas region, Depto. Loreto 03.20S, 71.50W + AMNH; Lescure, 1981a 

Roabaya, Depto. Loreto 04.10S, 73.20W + Rivero, 1968 

Río Ampiyacu, Depto. Loreto 03.10S, 72.00W + Lötters et al. 2002 

Río Cachiyacu, Depto. Loreto 08.09S, 76.32W + Lötters et al. 2002 

Río Loretoyacu, Depto. Loreto 03.49S, 70.26W + AMNH 

Río Pisqui, Depto. Loreto 08.05S, 75.35W + Lötters et al. 2002 

Río Sepahua, Depto. Ucayali 11.10S, 73.01W + Rivero, 1968 

Río Távara, Depto. Puno 13.31S, 69.41W + Bärtschi and MacQuarrie, 2001 

Río Tambo, Depto. Loreto 01.15S, 75.21W + Rivero, 1968 

Río Yubineto, Depto. Loreto 01.02S, 74.13W + Lescure and Gasc, 1986, Lescure, 

1981a 

San Jacinto, Depto. Loreto 02.19S, 75.52W –– Duellman and Mendelson, 1995 

Tacsha, Depto. Loreto 03.40S, 77.21W + Rivero, 1968 

Tambopata, Depto. Madre de Dios 12.44S, 69.11W + MUSN 

Teniente López, Depto. Loreto 02.36S, 76.07W –– Duellman and Mendelson, 1995 

Yurimaguas, Depto. Loreto 05.54S, 76.05W –– authors’ pers. observ 

 

Suriname (4 localities, 3 presence) 

Brownsberg 04.55N, 55.10W + AMNH, KU 
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Corentijne River 05.10N, 57.20W –– S. Reichle, pc 

Monts Tumuc-Humac 02.20N, 54.40W + Lescure, 1976, 1981a 

Mt. Kasikasima 03.00N, 55.30W + MZUSP 

 

Venezuela (1 locality, 0 presence) 

Cerro Duida, Edo. Amazonas 03.30N, 65.40W 
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Appendix 4.2-S2 

Atelopus flavescens 328  

???????????TGC-CCAGTGATTCCTGTTAACGGCCGCGGTATCCTAACCGTGCGAA-GGTAGCGNAATCACT

TGTTCTTTAAATGAGGACTAGTATGAATGGCACCACGAAGGTTTTACTGTCTCCTTTTCCTAATCAGTGAAA

CT-AATCTTCCCGTGAAGAAGCGGGAATAAACGAATAAGACGAGAAGACCCTATGGAGCTTTAAACACAAT

AACAAATACTACTTTA-AACAAAAAT-TTCTTAATGAC---TTACTTACTGGTATTATGATTATTAGTTTTAGGTT

GGGGTGACCGCGGAGAAAAACACAACCTCCACATTGAATGATAAAA-TTCTAAGCAAAGAATTACATTTCC

ACGCATCAATACATTGACATCAATTGACCCAA-TTATTTT-GATCAACGAACCAAGTTACCCTAGGGATAACA

GCGCAATCTACTTCAAGAGCCCATATCGACAAGTGGGTTTACGACCTCGATGTT-GGATCAGGGTACCCCA

GTGGTGCAGCCGCTACTAAAGGTTCGTTTGTTCAACGATTAAAACCCTACGTGATCTGAGT 

Atelopus spumarius barbotini neu 336  

??????????????-?????????????TTAACGGCCGCGGTATCCTAACCGTGCGAA-GGTAGCGGAATCACTTG

TTCTTTAAATGAGGACTAGTATGAATGGCACCACGAAGGTTTTACTGTCTCCTTTTCCTAATCAGTGAAACT-

AATCTTCCCGTGAAGAAGCGGGAATAAACGAATAAGACGAGAAGACCCTATGGAGCTTTAAACACAATAA

CAAATACTACTTTA-AACAAAAAT-TTCTTAATGAC---TTACTCCCTGGTATTATGATTATTAGTTTTAGGTTG

GGGTGACCGCGGAGAAAAACACAACCTCCACATTGAATGATAAAA-TTCTAAGCAAAGAATTACATTTCCA

CGCATCAATACATTGACATCAATTGACCCAA-TTATTTT-GATCAACGAACCAAGTTACCCTAGGGATAACAG

CGCAATCTACTTCAAGAGCCCATATCGACAAGTGGGTTTACGACCTCGATGTT-GGATCAGGGTACCCCAGT

GGTGCAGCCGCTACTAAAGGTTCGTTTGTTCAACGATTAAAACCCTACGTGATCTGAGT 

Atelopus hoogmoedi 334  

??????????????-???????????????????????????????????????????-???????????????????????????

????????????????????????????GTTTTACTGTCTCCTTTTCCTAATCAGTGAAACT-AATCTTCCCGTGAAG

AAGCGGGAATAAACGAATAAGACGAGAAGACCCTATGGAGCTTTAAACACAATAACAAATACTACTTTAA

ACAA-AAAT-TTCTTAAT-GA-CTTACTCCCTGGTATTATGATTATTAGTTTTAGGTTGGGGTGACCGCGGAGA

AAAACACAACCTCCACATTGAATGATAAAA-TTCTAAGCAAAGAATTACATTTCCACGCATCAATACATTGA

CATCAATTGACCCAA-TTATTTT-GATCAACGAACCAAGTTACCCTAGGGATAACAGCGCAATCTACTTCAAG

AGCCCATATCGACAAGTGGGTTTACGACCTCGATGTT-GGATCAGGGTACCCCAGTGGTGCAGCCGCTACT

AAAGGTTCGTTTGGTCAACGATTAAAACCCTACGTGATCTGAGT 

Atelopus pulcher s. str. Peru 298 

GAGGTCCCGCCTGC-CCAGTGATTTAATTTAACGGCCGCGGTATCCTAACCGTGCGAA-GGTAGCGTAATCA

CTTGTTCTTTAAATGAGGACTAGTATGAATGGCATCACGAGGGTTTTACTGTCTCCTTTTCTTAATCAGTGAA

ACT-AATCTTCCCGTGAAGAAGCGGGAATAAACGAATAAGACGAGAAGACCCTATGGAGCTTTAAACACAA

TAACAAGTACTACTTTA-AACAAAA-T-TTCTTAATAAC---TTACTACCTGGTACTATGATTATTAGTTTTAGGT

TGGGGTGACCGCGGAGAAAAACATAACCTCCACAT-GAATGATAAAA-TTCTAAGCAAAGAATTACATCTCT

AAGCATCAATATATTGACATCAATTGACCCAA-TTATTTT-GATCAACGAACCAAGTTACCCTAGGGATAACA

GCGCAATCTACTTCAAGAGCCCATATCGACAAGTGGGTTTACGACCTCGATGTT-GGATCAGGGTACCCCA

GTGGTGCAGCCGCTACTAAAGGTTCGT?????????????????????????????????? 
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Atelopus rafael BO702 

?AGGTCCAGCCTGC-CCAGTGATTAAATTTAACGGCCGCGGTATCCTAACCGTGCGAA-GGTAGCGTAATCA

CTTGTTCTTTAAATGAGGACTAGTATGAATGGCACCACGAAGGTTTTACTGTCTCCTTTTCCTAATCAGTGA

AACT-AATCTTCCCGTGAAGAAGCGGGAATAAGCGAATAAGACGAGAAGACCCTATGGAGCTTTAAACACA

ATAACAAATACTACTTTA-AACAAAAAT-TTCTTAATGAC---TTACTCCCCGGTATTATGATTATTAGTTTTAG

GTTGGGGTGACCGCGGAGAAAAACACAACCTCCACATTGAATGATAAAA-TTCTAAGCAAAGAATCACATT

TCCACGCATCAATACATTGACATCAATTGACCCAA-TTATTTT-GATCAACGAACCAAGTTACCCTAGGGATA

ACAGCGCAATCTACTTCAAGAGCCCATATCGACAAGTGGGTTTACGACCTCGATGTT-GGATCAGGGTACC

CCAGCGGTGCAGACGCTACTAAAGGTTCGTTTGTTCAACGATTAAAACCC?????????????? 

Atelopus spurrelli 

GAGGTCCCGCCTGC-CCAGTGATTAAATTTAACGGCCGCGGTATCCTAACCGTGCGAA-GGTAGCGTAATCA

CTTGTTCTTTAAATGAGGACTAGTATGAACGGCATCACGAAGGTTACACTGTCTCCTTTTTCTAATCAGTGA

AACT-AATTTCCCCGTGAAGAAGCGGGGATACTTTAATAAGACGAGAAGACCCTATGGAACTTTAAACAAA

GTAACAAGTACTATCATTTATTAATAAATTTCCGAAT-CA-AACATGACCTAGTATTATGATTACTAGTTTTAG

GTTGGGGTGACCGCGGAGAAAAACATAACCTCCACATTGAAAGAAAAAC-TCTAAGCCCAAAGCTACAACT

TAAAGCATCAACATATTGACATTAATTGACCCAA-TTAAATT-GAGCAACGAACCAAGCTACCCTAGGGATA

ACAGCGCAATCCACTTTAAGAGCCCCTATCGACAAGTGGGTTTACGACCTCGATGTT-GGATCAGGGTTTCC

CAGTGGTGCAGCCGCTACTAAAGGTTCGTTTGTTCAACGATTAATACCCT????????????? 

Atelopus semiferus Peru 308 

??????????????-????AGATTAAATTTAACGGCCGCGGTATCCTAACCGTGCGAA-GGTAGCGTAATCACTT

GTTCTTTAAATGAGGACTAGTATGAATGGCACCACGAAGGTTTTACTGTCTCCTTTTCCTAATCAGTGAAAC

T-AATCTTCCCGTGAAGAAGCGGGAATAAACGAATAAGACGAGAAGACCCTATGGAGCTTTAAACACAATA

ACAAGTACTACTTTA-AACAAAA-T-TTCTTAATGAC-TTACTACCTGGTATCATGATTATTAGTTTTAGGTTGG

GGTGACCGCGGAGAAAAACATAACCTCCACATTGAATGATAAAG-TTCTAAGCAAAGAACTACATTTCTAT

GCATCAATATATTGACATCAATTGACCCAA-TTATTTT-GATCAACGAACCAAGTTACCCTAGGGATAACAGC

GCAATCTACTTCAAGAGTCCATATCGACAAGTGGGTTTACGACCTCGATGTT-GGATCAGGGTACCCnAGTG

GTGCAGCCGCTACTAAAGGTTCGTTTGTTCAACGATTA???????????????????? 

Atelopus cf. spumarius Peru 317 

????????????TC-CATAAGCTTAAATTTAACGGCCGCGGTATCCTAACCGTGCGAA-GGTAGCGTAATCACT

TGTTCTTTAAATGAGGACTAGTATGAATGGCACCACGAAGGTTTTACTGTCTCCTTTTCCTAATCAGTGAAA

CT-AATCTTCCCGTGAAGAAGCGGGAATAAACGAATAAGACGAGAAGACCCTATGGAGCTTTAAACACAAT

AACAAGTACTACTTTA-AACAAAAAT-TTCTTAATCAC---TCTTCACCTGGTATTATGATTATTAGTTTTAGGTT

GGGGTGACCGCGGAGAAAAACATAACCTCCACATTGAATGATAAAA-TTCTAAGCAAAGAATTACATTTCT

ATGCATCAACACATTGACATCAATTGACCCAA-TTATTTT-GAGCAACGAACCAAGTTACCCTAGGGATAACA

GCGCAATCTACTTCAAGAGCCCATATCGACAAGTGGGTTTACGACCTCGATGTT-GGATCAGGGTACCCCA

GTGGTGCAGCCTCTACTAAAGGTTCGTTTGTTCAACGATTAA??????????????????? 

Osornophryne cf. chiles AGG532 

??????????CTGC-CCAGTGACTCAATTCAACGGCCGCGGTATCCTAACCGTGCAAA-GGTAGCGTAATCACT

TGTTCTTTAAATCAGGACTAGTATGAACGGCATCACGAAGGTTATACTGTCTCCTTTTTCCAATCAGTGAAA

CT-AATCTCCCCGTGAAGAAGCGGGGATAGAACTATAAGACGAGAAGACCCTATGGAGCTTCAAACGACAC
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AACAAATGCTAAACT-ACTTAAAAAT-TTCAGAACCAC-AACTC-TATAGCACTATGATTGTTAATTTTAGGTT

GGGGTGACCGCGGAGCAAAACACAACCTCCACATTGAAAGAATTTTATTCTAAGCCAAGAACCACAACTCA

AAGCATCAATACACTGACATA-ATTGACCCAATAAACTT---GAACAACGAACCAAGTTACCCTAGGGATAAC

AGCGCAATCTACTTCAAGAGCCCCTATCGACAAGTAGGTTTACGACCTCGATGTT-GGATCAGGGTCTCCCA

GTGGTGCAGCCACTACTAAAGGTTCGTTTGTTCAACGATTAATAC???????????????? 

Osornophryne puruanta AGG572  

???AGCCAGCCTGC-CCAGTGACTCAATTCAACGGCCGCGGTATCCTAACCGTGCAAA-GGTAGCGTAATCA

CTTGTTCTTTAAATCAGGACTAGTATGAACGGCATCACGAAGGTTATACTGTCTCCTTTTTCCAATCAGTGA

AACT-AATTTCCCCGTGAAGAAGCGGGGATATAACTATAAGACGAGAAGACCCTATGGAGCTTCAAACGAC

ACAACAAATGCTAAACT-CCTTAAAAAT-TTCAGAACCCCCCAACTCACTATAGCACCATGATTGTTAGTTTTA

GGTTGGGGTGACCGCGGAGCAAAACACAACCTCCACATTGAAAGAATTTTATTCTAAGCCAAGAACCACAA

CTCAAAGCATCAATACACTGACATA-ATTGACCCAATAAACTT---GAACAACGAACCAAGTTACCCTAGGGA

TAACAGCGCAATCTACTTCAAGAGCCCCTATCGACAAGTAGGTTTACGACCTCGATGTT-GGATCAGGGTCT

CCCGGTGGTGCAGCCGCTACTAAAGGTTCGTTTGTTCAACGATTAATACCCTACGTGATCTGAGT 

Osornophryne antisana La Angelin 

???????AGCCTGC-CCAGTGACTCAATTCAACGGCCGCGGTATCCTAACCGTGCGAA-GGTAGCGTAATCAC

TTGTTCTTTAAATCAGGACTAGTATGAACGGCATCACGAAGGTTATACTGTCTCCTTTTTCCAATCAGTGAA

ACT-AATTTCCCCGTGAAGAAGCGGGGATAGAACTATAAGACGAGAAGACCCTATGGAGCTTCAAACGACA

CAACAAATGCTAAACT-CCTTAAAAAT-TTCAGAACCCC-AACTCACTATAGCACTATGATTGTCAGTTTTAGG

TTGGGGTGACCGCGGAGCAAAACACAACCTCCACATTGAAAGAATTCCATTCTAAGCCAAGAACCACAACT

CAAAGCATCAATACACTGACATA-ATTGACCCAATACACTT---GAACAACGAACCAAGTTACCCTAGGGATA

ACAGCGCAATCTACTTCAAGAGCCCCTATCGACAAGTAGGTTTACGACCTCGATGTT-GGATCAGGGTCTCC

CAGTGGTGCAGCCGCTACTAAAGGTTCGTTTGTTCAACGATTAATACCCTACGTGATCTGAGT 

Osornophryne Equador 312 

??????????CTGCTCCAGTGACTCAATTCA-CGGCCGCGGTATCCTAACCGTGCGAA-GGTAGCGTAATCACT

TGTTCTTTAAATCAGGACTAGTATGAACGGCATCACGAAGGTTATACTGTCTCCTTTTTCCAATCAGTGAAA

CT-AATTTCCCCGTGAAGAAGCGGGGATAGAACTATAAGACGAGAAGACCCTATGGAGCTTCAAACGACAC

AACAAATGCTAAACT-CCTTAAAAAT-TTCAGAACCCC-AACTCACTATAGCACTATGATTGTCAGTTTTAGGT

TGGGGTGACCGCGGAGCAAAACACAACCTCCACATTGAAAGAATTCCATTCTAAGCCAAGAACCACAACTC

AAAGCATCAATACACTGACATA-ATTGACCCAATACACTT---GAACAACGAACCAAGTTACCCTAGGGATAA

CAGCGCAATCTACTTCAAGAGCCCCTATCGACAAGTAGGTTTACGACCTCGATGTT-GGATCAGGGTCTCCC

AGTGGTGCAGCCGCTACTAAAGGTTCGTTTGTTCAACGATTAATACCCTACGTGATCTGAGT 
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Appendix 7.1. Species records used in this thesis 

(given as: Longitude, Latitude, Loclity) 

 

Atelopus, eastern 

-59.3500, 5.2167, Guyana, Potaro-Siparuni; -59.5667, 4.9167, Guyana, Potaro-Siparuni; -53.5667, 

3.8500, Guyane, Saint-Laurent-du-Maroni, Maripasoula; -53.5833, 3.9500, Guyane, Saint-Laurent-du-

Maroni, Saül; -52.4167, 4.5333, Guyane, Cayenne, Roura; -55.1667, 4.9167, Suriname, Brokopondo, 

Sarakreek; -52.2500, 3.3000, Guyane, Cayenne, Camopi; -50.4167, -6.0333, Brazil, Pará, Parauapebas, 

Parauapebas; -52.3667, 4.8333, Guyane, Cayenne, Matoury; -54.8500, -3.1500, Brazil, Pará, Belterra, 

Belterra; -52.3667, 4.8833, Guyane, Cayenne, Matoury; -52.1667, 3.3333, Brazil, Amapá, Oiapoque, 

Clevelandia do Norte; -60.0833, -1.7500, Brazil, Amazonas, Presidente Figueiredo, Balbina; -53.3333, 

5.0833, Guyane, Cayenne, Iracoubo; -52.4167, 4.1500, Guyane, Cayenne, Régina (-Kaw); -58.4333, 4.7833, 

Guyana, Upper Takutu-Upper Essequibo; -61.2667, -5.7167, Brazil, Amazonas, Manicore, Manicore; -

59.2500, 4.8333, Guyana, Potaro-Siparuni; -47.0500, -1.5333, Brazil, Pará, Ourém, Ourém; -58.6500, 

6.4000, ; -59.2833, 5.3000, Guyana, Potaro-Siparuni; -59.5000, 4.9667, Guyana, Potaro-Siparuni; -57.8333, 

6.3500, Guyana, Essequibo Islands-West Demerara, Rising Sun / Profit; -52.3333, 4.4833, Guyane, Cayenne, 

Roura; -54.6000, 2.3167, Brazil, Amapá, Laranjal do Jari, Laranjal do Jari; -60.5000, -3.7500, Brazil, 

Amazonas, Manaquiri, Manaquiri; -53.2000, 3.6167, Guyane, Saint-Laurent-du-Maroni, Saül; -52.4167, 

4.8333, Guyane, Cayenne, Montsinéry-Tonnégrande; -57.7000, -3.4000, Brazil, Amazonas, Maués, Maués; -

53.2000, 3.6167, Guyane, Saint-Laurent-du-Maroni, Saül; -53.0000, 2.4167, Guyane, Cayenne, Camopi; -

55.6333, -4.0667, Brazil, Pará, Aveiro, Brazilia Legal; -54.0000, 3.5833, Suriname, Sipaliwini, Tapanahony; 

-54.8333, 2.3333, Brazil, Pará, Almerim, Monte dourado; -55.5000, 3.0000, Suriname, Sipaliwini, 

Tapanahony; -48.3333, -3.7500, Brazil, Pará, Paragominas, Paragominas; -53.6833, 5.3500, Guyane, Saint-

Laurent-du-Maroni, Mana; -51.0833, -6.1667, Brazil, Pará, Parauapebas, Parauapebas; -51.4000, 0.7000, 

Brazil, Amapá, Porto Grande, Porto Grande; -51.4500, 0.7000, Brazil, Amapá, Porto Grande, Porto Grande; -

59.2833, 5.3333, Guyana, Potaro-Siparuni; -60.0500, -3.1167, Brazil, Amazonas, Maués, Segunda R.A.; -

59.7167, -2.4167, Brazil, Amazonas, Rio Preto da Eva, Rio Preto da Eva; -52.5167, -0.8667, Brazil, Pará, 

Almerim, Monte dourado; -52.2500, 1.2500, Brazil, Amapá, Serra do Navio, Serra do Navio; -57.0000, -

4.0000, Brazil, Pará, Itaituba, Itaituba; -59.7500, 4.3333, Brazil, Roraima, Uiramutã, Uiramutã; -52.2500, 

4.0333, Guyane, Cayenne, Régina (-Kaw); -52.6667, 2.5833, Guyane, Cayenne, Camopi; -52.3333, 4.7500, 

Guyane, Cayenne, Matoury; -53.9167, 5.5000, Guyane, Saint-Laurent-du-Maroni, Mana; -53.9167, 3.5833, 

Guyane, Saint-Laurent-du-Maroni, Maripasoula; -51.8333, 1.9167, Brazil, Amapá, Calçoene, Lourenco; -

53.6667, 3.9167, Guyane, Saint-Laurent-du-Maroni, Maripasoula; -52.3833, 4.1833, Guyane, Cayenne, 

Régina (-Kaw); -52.8333, 2.2500, Brazil, Amapá, Oiapoque, Clevelandia do Norte; -51.8333, 0.5000, Brazil, 

Amapá, Porto Grande, Porto Grande. 
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Atelopus, western 

-75.9000, -6.4167, Perú, San Martín, San Martín, Chipurana; -76.4667, -7.2667, Perú, San Martín, 

Bellavista, Alto Biavo; -76.6167, -5.8833, Perú, Loreto, Alto Amazonas, Balsapuerto; -70.4167, 3.6667, 

Colombia, Vichada, San Jose de Ocune; -76.1667, -5.8333, Perú, Loreto, Alto Amazonas, Yurimaguas; -

76.3500, -0.7500, Ecuador, Orellana, Aguarico, Cononaco; -73.7667, -4.9833, Perú, Loreto, Requena, Jenaro 

Herrera; -72.9667, 0.7333, Colombia, Caquetá, Solano; -73.3333, -3.6667, Perú, Loreto, Maynas, Punchana; 

-77.7500, -1.0833, Ecuador, Orellana, Tena, Puerto Napo; -77.5833, -4.4167, Perú, Amazonas, 

Condorcanqui, Rio Santiago; -77.7833, -2.6167, Ecuador, Morona Santiago, Morona, Sevilla Don Bosco; -

74.2500, -6.7000, Perú, Loreto, Requena, Alto Tapiche; -73.6667, -4.5000, Perú, Loreto, Loreto, Nauta; -

71.8333, -3.3333, Perú, Loreto, Mariscal Ramón Castilla, Pebas; -76.3333, -0.6000, Ecuador, Orellana, 

Orellana, Taracoa; -72.0000, -3.1667, Perú, Loreto, Mariscal Ramón Castilla, Pebas; -76.5333, -8.1500, Perú, 

San Martín, Tocache, Tocache; -75.8333, -1.4167, Ecuador, Pastaza, Pastaza, Curaray; -70.4333, -3.8167, 

Colombia, Amazonas, Puerto Nariño; -77.5833, -1.3167, Ecuador, Pastaza, Pastaza, Curaray; -75.5833, -

8.0833, Perú, Loreto, Ucayali, Contamana; -69.7333, -2.1667, Colombia, Amazonas, Tarapacá; -73.0167, -

11.1667, Perú, Ucayali, Atalaya, Sepahua; -75.3500, -1.2500, Perú, Loreto, Maynas, Napo; -69.6833, -

13.5167, Perú, Puno, Sandia, Limbani; -74.2167, -1.0333, Perú, Loreto, Maynas, Putumayo; -73.3333, -

4.1667, Perú, Loreto, Maynas, Fernando Lores; -77.3500, -3.6667, Perú, Loreto, Alto Amazonas, Morona; -

69.1833, -12.7333, Perú, Madre de Dios, Tambopata, Tambopata. 

 

 

Boiga irregularis, native 

129.6330, -15.6000, Australia, Northern Territory; 130.8330, -12.4500, Australia, Northern Territory, 

Darwin; 131.1170, -12.9830, Australia, Northern Territory, Coomalie; 131.2000, -13.0500, Australia, 

Northern Territory, Coomalie; 131.2500, -12.6330, Australia, Northern Territory, Litchfield; 131.3830, -

13.4500, Australia, Northern Territory; 132.1330, -11.3670, Australia, Northern Territory; 132.2670, -

14.4670, Australia, Northern Territory, Katherine; 132.2670, -14.1500, Australia, Northern Territory; 

132.3000, -14.5000, Australia, Northern Territory, Katherine; 132.6500, -12.7500, Australia, Northern 

Territory; 132.8330, -12.8830, Australia, Northern Territory; 132.9000, -12.5330, Australia, Northern 

Territory; 132.9170, -12.5500, Australia, Northern Territory; 132.9500, -12.5170, Australia, Northern 

Territory; 133.0670, -14.9330, Australia, Northern Territory; 133.0670, -14.7830, Australia, Northern 

Territory; 134.7000, -14.7000, Australia, Northern Territory; 134.7330, -14.7330, Australia, Northern 

Territory; 134.8000, -12.4000, Australia, Northern Territory; 134.9000, -12.1000, Australia, Northern 

Territory; 135.0000, -12.4000, Australia, Northern Territory; 135.7000, -14.3000, Australia, Northern 

Territory; 135.7330, -14.2830, Australia, Northern Territory; 136.4670, -13.9830, Australia, Northern 

Territory; 136.6000, -13.8000, Australia, Northern Territory; 141.8670, -12.5670, Australia, Queensland, 

Cook; 141.9000, -12.6330, Australia, Queensland, Cook; 142.0500, -12.2500, Australia, Queensland, Cook; 

142.1330, -11.2170, Australia, Queensland, Cook; 142.2830, -10.6170, Australia, Queensland, Torres; 

142.6670, -9.3830, Australia, Queensland, Torres; 143.4670, -13.8170, Australia, Queensland, Cook; 

143.7000, -16.0000, Australia, Queensland, Cook; 144.2500, -16.9170, Australia, Queensland, Mareeba; 

144.6830, -17.3500, Australia, Queensland, Mareeba; 144.8500, -17.9670, Australia, Queensland, Mareeba; 

145.0000, -17.7500, Australia, Queensland, Herberton; 145.0830, -17.0170, Australia, Queensland, Mareeba; 
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145.1330, -16.5330, Australia, Queensland, Mareeba; 145.2400, -15.4600, Australia, Queensland, Cook; 

145.2400, -15.4600, Australia, Queensland, Cook; 145.2500, -15.4670, Australia, Queensland, Cook; 

145.2670, -17.7330, Australia, Queensland, Herberton; 145.3170, -15.9670, Australia, Queensland, Douglas; 

145.3330, -15.9500, Australia, Queensland, Cook; 145.3830, -17.3830, Australia, Queensland, Herberton; 

145.5700, -17.0000, Australia, Queensland, Mareeba; 145.5700, -17.0000, Australia, Queensland, Mareeba; 

145.7670, -16.9170, Australia, Queensland, Cairns; 145.7700, -16.9200, Australia, Queensland, Cairns; 

145.7700, -16.9200, Australia, Queensland, Cairns; 145.8900, -17.5800, Australia, Queensland, Johnstone; 

145.9670, -17.5330, Australia, Queensland, Johnstone; 146.0170, -17.7500, Australia, Queensland, 

Johnstone; 146.0330, -17.5330, Australia, Queensland, Johnstone; 146.0330, -17.5330, Australia, 

Queensland, Johnstone; 146.1500, -17.9500, Australia, Queensland, Cardwell; 146.8170, -19.2670, Australia, 

Queensland, Townsville; 147.7170, -20.7330, Australia, Queensland, Bowen; 148.0500, -19.9660, Australia, 

Queensland, Bowen; 148.0500, -19.9660, Australia, Queensland, Bowen; 149.0330, -20.4500, Australia, 

Queensland, Mackay; 149.1830, -21.1500, Australia, Queensland, Mackay; 150.6670, -32.9670, Australia, 

New South Wales, Singleton; 150.7330, -33.4330, Australia, New South Wales, Hawkesbury; 150.7330, -

23.2670, Australia, Queensland, Livingstone; 150.8170, -34.0670, Australia, New South Wales, 

Campbelltown; 150.9670, -34.1830, Australia, New South Wales, Wollongong; 151.0110, -32.6690, 

Australia, New South Wales, Singleton; 151.0330, -33.6830, Australia, New South Wales, Hornsby; 

151.0330, -23.6670, Australia, Queensland, Calliope; 151.0500, -33.6500, Australia, New South Wales, 

Hornsby; 151.0670, -34.1170, Australia, New South Wales, Sutherland; 151.0670, -34.0330, Australia, New 

South Wales, Sutherland; 151.0670, -33.9830, Australia, New South Wales, Hurstville; 151.1170, -33.9500, 

Australia, New South Wales, Rockdale; 151.1170, -33.8830, Australia, New South Wales, Ashfield; 

151.1170, -33.7170, Australia, New South Wales, Ku-ring-gai; 151.1500, -33.7500, Australia, New South 

Wales, Ku-ring-gai; 151.1670, -33.7670, Australia, New South Wales, Ku-ring-gai; 151.1830, -33.7170, 

Australia, New South Wales, Ku-ring-gai; 151.2000, -33.9000, Australia, New South Wales, South Sydney; 

151.2000, -24.0000, Australia, Queensland, Calliope; 151.2170, -33.8000, Australia, New South Wales, 

Willoughby; 151.2170, -33.7670, Australia, New South Wales, Warringah; 151.2170, -33.7330, Australia, 

New South Wales, Warringah; 151.2170, -33.6500, Australia, New South Wales, Warringah; 151.2340, -

33.4350, Australia, New South Wales, Gosford; 151.2500, -33.8330, Australia, New South Wales, Mosman; 

151.2500, -33.7670, Australia, New South Wales, Warringah; 151.2500, -33.6670, Australia, New South 

Wales, Warringah; 151.2670, -33.8000, Australia, New South Wales, Manly; 151.2830, -33.7830, Australia, 

New South Wales, Warringah; 151.2830, -33.6500, Australia, New South Wales, Pittwater; 151.3000, -

33.7170, Australia, New South Wales, Warringah; 151.3000, -33.6830, Australia, New South Wales, 

Pittwater; 151.3000, -33.5500, Australia, New South Wales, Gosford; 151.3330, -33.4830, Australia, New 

South Wales, Gosford; 151.3500, -33.4330, Australia, New South Wales, Gosford; 151.4830, -24.5170, 

Australia, Queensland, Miriam Vale; 151.6170, -25.6170, Australia, Queensland, Gayndah; 151.7500, -

30.5330, Australia, New South Wales, Dumaresq; 151.9500, -25.0000, Australia, Queensland, Kolan; 

152.3330, -29.5330, Australia, New South Wales, Severn; 152.4000, -24.9000, Australia, Queensland, 

Burnett; 152.4670, -27.1330, Australia, Queensland, Esk; 152.4830, -31.9000, Australia, New South Wales, 

Greater Taree; 152.6000, -29.2170, Australia, New South Wales, Copmanhurst; 152.6030, -29.9550, 

Australia, New South Wales, Nymboida; 152.6170, -29.5500, Australia, New South Wales, Nymboida; 

152.6330, -30.7170, Australia, New South Wales, Nambucca; 152.7000, -29.5000, Australia, New South 
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Wales, Copmanhurst; 152.7170, -31.5170, Australia, New South Wales, Hastings; 152.7500, -29.7500, 

Australia, New South Wales, Nymboida; 152.7670, -29.5830, Australia, New South Wales, Copmanhurst; 

152.8330, -31.0830, Australia, New South Wales, Kempsey; 152.8330, -30.3670, Australia, New South 

Wales, Bellingen; 152.8570, -27.5670, Australia, Queensland, Brisbane; 152.8570, -27.5670, Australia, 

Queensland, Brisbane; 152.8830, -30.7670, Australia, New South Wales, Nambucca; 152.9000, -30.4500, 

Australia, New South Wales, Bellingen; 152.9830, -30.7330, Australia, New South Wales, Nambucca; 

152.9830, -30.0500, Australia, New South Wales, Ulmarra; 153.0500, -28.8670, Australia, New South 

Wales, Casino; 153.1000, -30.3000, Australia, New South Wales, Coffs Harbour; 153.1160, -30.2600, 

Australia, New South Wales, Coffs Harbour; 153.1330, -30.3000, Australia, New South Wales, Coffs 

Harbour; 153.1500, -30.2330, Australia, New South Wales, Coffs Harbour; 153.1670, -30.1170, Australia, 

New South Wales, Coffs Harbour; 153.2000, -29.7670, Australia, New South Wales, Ulmarra; 153.2000, -

29.4670, Australia, New South Wales, Maclean; 153.2670, -28.8170, Australia, New South Wales, Lismore; 

153.2670, -28.3500, Australia, New South Wales, Tweed; 153.3500, -29.1000, Australia, New South Wales, 

Richmond Valley; 153.3500, -28.5330, Australia, New South Wales, Byron; 153.4330, -29.0170, Australia, 

New South Wales, Richmond Valley; 153.4330, -28.9830, Australia, New South Wales, Ballina; 153.4330, -

28.8330, Australia, New South Wales, Ballina; 153.4670, -28.8500, Australia, New South Wales, Ballina; 

153.4670, -28.2830, Australia, New South Wales, Tweed; 153.5670, -28.3330, Australia, New South Wales, 

Tweed; 153.6170, -28.6500, Australia, New South Wales, Byron; 120.0000, 0.0000, Indonesia, Sulawesi 

Tengah, Parigi Moutong; 120.4170, -3.7330, Indonesia, Sulawesi Selatan, Wajo; 128.2000, 1.1000, 

Indonesia, Maluku Utara, Halmahera Tengah; 129.0000, -3.0000, Indonesia, Maluku, Maluku Tengah; 

129.3500, -3.3330, Indonesia, Maluku, Maluku Tengah; 133.0500, -5.6000, Indonesia, Maluku, Maluku 

Tenggara; 133.0830, -0.8670, Indonesia, Irian Jaya Barat, Manokwari; 134.0830, -0.8670, Indonesia, Irian 

Jaya Barat, Manokwari; 134.0830, -0.8670, Indonesia, Irian Jaya Barat, Manokwari; 136.0500, -4.0830, 

Indonesia, Papua, Nabire; 136.6700, -1.7500, Indonesia, Papua, Yapen Waropen; 138.6000, -3.6300, 

Indonesia, Papua, Tolikara; 126.5170, -3.7670, Indonesia, Maluku, Buru; 128.2000, -3.7170, Indonesia, 

Maluku, Maluku Tengah; 128.2170, -3.6660, Indonesia, Maluku, Maluku Tengah; 126.5170, -3.6330, 

Indonesia, Maluku, Buru; 126.5330, -3.4330, Indonesia, Maluku, Buru; 129.0000, -3.0000, Indonesia, 

Maluku, Maluku Tengah; 128.0000, 1.0000, Indonesia, Maluku Utara, Halmahera Tengah; 128.4100, 2.3330, 

Indonesia, Maluku Utara, Halmahera Utara; 140.9000, -6.6000, Papua New Guinea, Western, North Fly; 

141.1830, -3.2330, Papua New Guinea, Sandaun, Vanimo-Green River; 141.2000, -4.5830, Papua New 

Guinea, Sandaun, Telefomin; 141.4330, -6.7830, Papua New Guinea, Western, Bamu Rural; 141.4330, -

5.1170, Papua New Guinea, Sandaun, Telefomin; 141.6330, -5.1370, Papua New Guinea, Sandaun, 

Telefomin; 142.1000, -3.4170, Papua New Guinea, Sandaun, Aitape-Lumi; 142.3500, -3.1330, Papua New 

Guinea, Sandaun, Aitape-Lumi; 142.5230, -3.3990, Papua New Guinea, Sandaun, Nuku; 142.6750, -4.5230, 

Papua New Guinea, East Sepik, Ambunti-Drekikir; 142.7110, -4.4660, Papua New Guinea, East Sepik, 

Ambunti-Drekikir; 142.7330, -9.2670, Papua New Guinea, Western, Morehead Rural; 142.7670, -6.2000, 

Papua New Guinea, Southern Highlands, Komo-Margarima; 142.7830, -6.2500, Papua New Guinea, 

Southern Highlands, Nipa-Kutubu; 142.8330, -3.8000, Papua New Guinea, East Sepik, Wosera Gawi; 

142.9000, -8.8500, Papua New Guinea, Western, Morehead Rural; 142.9000, -8.7000, Papua New Guinea, 

Western, Morehead Rural; 142.9500, -3.8500, Papua New Guinea, East Sepik, Wosera Gawi; 142.9570, -

8.0470, Papua New Guinea, Western, Bamu Rural; 143.0000, -3.9670, Papua New Guinea, East Sepik, 
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Wosera Gawi; 143.0830, -6.5170, Papua New Guinea, Southern Highlands, Nipa-Kutubu; 143.1830, -9.0330, 

Papua New Guinea, Western, Morehead Rural; 143.2000, -9.0830, Papua New Guinea, Western, Morehead 

Rural; 143.6330, -3.7000, Papua New Guinea, East Sepik, Boikin-Dagua Rural; 143.6330, -3.5500, Papua 

New Guinea, East Sepik, Boikin-Dagua Rural; 143.9170, -5.6170, Papua New Guinea, Enga, Wapenamanda; 

144.0000, -5.5500, Papua New Guinea, Western Highlands, Mul-Baiyer; 144.2330, -5.9000, Papua New 

Guinea, Western Highlands, Mount Hagen; 144.8330, -6.5500, Papua New Guinea, Chimbu, Karimui-

Nomane; 144.8500, -6.5330, Papua New Guinea, Chimbu, Karimui-Nomane; 145.0370, -6.7890, Papua New 

Guinea, Chimbu, Karimui-Nomane; 145.0370, -6.7890, Papua New Guinea, Chimbu, Karimui-Nomane; 

145.0670, -4.0670, Papua New Guinea, Madang, Bogia; 145.3560, -5.5640, Papua New Guinea, Madang, 

Usino Bundi; 145.6000, -6.2170, Papua New Guinea, Eastern Highlands, Henganofi; 145.7830, -5.2000, 

Papua New Guinea, Madang, Madang; 145.7830, -5.1000, Papua New Guinea, Madang, Madang; 145.9000, 

-4.6170, Papua New Guinea, Madang, Sumgilbar Rural; 145.9000, -4.6000, Papua New Guinea, Madang, 

Sumgilbar Rural; 145.9100, -5.9970, Papua New Guinea, Morobe, Markham; 145.9100, -4.7000, Papua New 

Guinea, Madang, Sumgilbar Rural; 145.9110, -5.9970, Papua New Guinea, Morobe, Markham; 145.9160, -

6.0060, Papua New Guinea, Morobe, Markham; 145.9200, -4.6900, Papua New Guinea, Madang, Sumgilbar 

Rural; 145.9510, -6.0490, Papua New Guinea, Morobe, Markham; 145.9670, -4.6170, Papua New Guinea, 

Madang, Sumgilbar Rural; 146.0000, -4.5670, Papua New Guinea, Madang, Sumgilbar Rural; 146.0460, -

6.0110, Papua New Guinea, Morobe, Markham; 146.4960, -7.7350, Papua New Guinea, Gulf, Kerema; 

146.4960, -7.7350, Papua New Guinea, Gulf, Kerema; 146.5580, -7.1830, Papua New Guinea, Morobe, 

Bulolo; 146.6000, -7.9000, Papua New Guinea, Central, Goilala; 146.6000, -5.9330, Papua New Guinea, 

Madang, Rai Coast; 146.6330, -7.1830, Papua New Guinea, Morobe, Bulolo; 146.6390, -7.2030, Papua New 

Guinea, Morobe, Bulolo; 146.6810, -7.2740, Papua New Guinea, Morobe, Bulolo; 146.7010, -7.3420, Papua 

New Guinea, Morobe, Bulolo; 146.7040, -7.3400, Papua New Guinea, Morobe, Bulolo; 146.7060, -7.3500, 

Papua New Guinea, Morobe, Bulolo; 146.7070, -7.3440, Papua New Guinea, Morobe, Bulolo; 146.7130, -

7.3430, Papua New Guinea, Morobe, Bulolo; 146.7170, -7.3330, Papua New Guinea, Morobe, Bulolo; 

146.7420, -7.3720, Papua New Guinea, Morobe, Bulolo; 146.7430, -7.3750, Papua New Guinea, Morobe, 

Bulolo; 146.7650, -7.2890, Papua New Guinea, Morobe, Bulolo; 146.7690, -7.2830, Papua New Guinea, 

Morobe, Bulolo; 146.7700, -7.2830, Papua New Guinea, Morobe, Bulolo; 146.7740, -7.2780, Papua New 

Guinea, Morobe, Bulolo; 147.0830, -2.1170, Papua New Guinea, Manus, Manus; 147.0930, -7.2960, Papua 

New Guinea, Morobe, Huon; 147.1500, -6.6670, Papua New Guinea, Morobe, Nabak Rural; 147.3500, -

2.3830, Papua New Guinea, Manus, Manus; 147.3690, -2.0570, Papua New Guinea, Manus, Manus; 

147.3690, -2.0570, Papua New Guinea, Manus, Manus; 147.4000, -2.0670, Papua New Guinea, Manus, 

Manus; 147.4170, -2.0170, Papua New Guinea, Manus, Manus; 147.8670, -6.6330, Papua New Guinea, 

Morobe, Finschafen; 147.9220, -9.4630, Papua New Guinea, Central, Rigo; 147.9840, -9.4440, Papua New 

Guinea, Central, Rigo; 148.1670, -8.9330, Papua New Guinea, Northern, Ijivitari; 148.2250, -8.7750, Papua 

New Guinea, Northern, Ijivitari; 148.2350, -8.7640, Papua New Guinea, Northern, Ijivitari; 148.2830, -

8.7080, Papua New Guinea, Northern, Ijivitari; 148.2850, -8.7070, Papua New Guinea, Northern, Ijivitari; 

148.3170, -8.7080, Papua New Guinea, Northern, Ijivitari; 149.5950, -10.0210, Papua New Guinea, Milne 

Bay, Alotau; 150.4000, -10.3000, Papua New Guinea, Milne Bay, Alotau; 150.5470, -9.4690, Papua New 

Guinea, Milne Bay, Esa'ala; 150.6170, -6.1000, Papua New Guinea, West New Britain, Kandrian-Gloucester; 

150.7830, -2.5670, Papua New Guinea, New Ireland, Kavieng; 150.7890, -9.4580, Papua New Guinea, Milne 
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Bay, Esa'ala; 150.8250, -9.4520, Papua New Guinea, Milne Bay, Esa'ala; 150.8330, -2.6000, Papua New 

Guinea, New Ireland, Kavieng; 150.9720, -10.0520, Papua New Guinea, Milne Bay, Esa'ala; 150.9810, -

10.0330, Papua New Guinea, Milne Bay, Esa'ala; 150.9820, -10.0390, Papua New Guinea, Milne Bay, 

Esa'ala; 151.0670, -8.5330, Papua New Guinea, Milne Bay, Kiriwina-Goodenough; 151.4630, -5.4470, 

Papua New Guinea, East New Britain, Pomio; 151.4630, -5.4450, Papua New Guinea, East New Britain, 

Pomio; 151.4890, -5.5000, Papua New Guinea, East New Britain, Pomio; 151.5020, -5.5190, Papua New 

Guinea, East New Britain, Pomio; 152.0000, -4.5830, Papua New Guinea, East New Britain, Gazelle; 

152.0000, -3.3170, Papua New Guinea, New Ireland, Namanatai; 152.1830, -4.2000, Papua New Guinea, 

East New Britain, Rabaul; 152.2000, -4.2000, Papua New Guinea, East New Britain, Rabaul; 152.4670, -

4.1670, Papua New Guinea, East New Britain, Kokopo; 152.8330, -10.6670, Papua New Guinea, Milne Bay, 

Samarai-Murua; 152.9370, -4.5040, Papua New Guinea, New Ireland, Namanatai; 152.9370, -4.5030, Papua 

New Guinea, New Ireland, Namanatai; 152.9430, -9.2230, Papua New Guinea, Milne Bay, Samarai-Murua; 

153.0200, -4.6310, Papua New Guinea, New Ireland, Namanatai; 153.4200, -11.4900, Papua New Guinea, 

Milne Bay, Samarai-Murua; 154.6830, -5.4000, Papua New Guinea, North Solomons, North Bougainville; 

154.9000, -5.7000, Papua New Guinea, North Solomons, North Bougainville; 155.0000, -6.2000, Papua New 

Guinea, North Solomons, South Bougainville; 155.0940, -5.6450, Papua New Guinea, North Solomons, 

North Bougainville; 155.1000, -6.2000, Papua New Guinea, North Solomons, South Bougainville; 155.3000, 

-6.4000, Papua New Guinea, North Solomons, South Bougainville; 155.6830, -6.7670, Papua New Guinea, 

North Solomons, South Bougainville; 155.7000, -6.8000, Papua New Guinea, North Solomons, South 

Bougainville; 155.7330, -6.8330, Papua New Guinea, North Solomons, South Bougainville; 155.5500, -

7.3500, Solomon Islands, Western, 155.5670, -7.3500, Solomon Islands, Western, 155.7500, -7.0500, 

Solomon Islands, Western; 156.5330, -6.7670, Solomon Islands, Choiseul; 156.7000, -7.9330, Solomon 

Islands, Western; 156.7770, -7.0490, Solomon Islands, Choiseul; 156.9640, -8.0420, Solomon Islands, 

Western; 157.6170, -8.2930, Solomon Islands, Western; 157.6170, -8.2930, Solomon Islands, Western; 

157.8170, -8.3170, Solomon Islands, Western; 159.0000, -8.0000, Solomon Islands, Isabel; 159.1000, -

9.0500, Solomon Islands, Guadalcanal; 159.5330, -8.1170, Solomon Islands, Isabel; 159.8070, -8.3850, 

Solomon Islands, Isabel; 159.9400, -9.4300, Solomon Islands, Guadalcanal; 159.9670, -9.4670, Solomon 

Islands, Guadalcanal; 159.9800, -9.4800, Solomon Islands, Guadalcanal; 160.0170, -9.8000, Solomon 

Islands, Guadalcanal; 160.1980, -9.5860, Solomon Islands, Guadalcanal; 160.1980, -9.5860, Solomon 

Islands, Guadalcanal; 160.2000, -9.5330, Solomon Islands, Guadalcanal; 160.2670, -9.4170, Solomon 

Islands, Guadalcanal; 160.4830, -9.5330, Solomon Islands, Guadalcanal; 160.6000, -8.4000, Solomon 

Islands, Malaita; 160.6760, -8.5950, Solomon Islands, Malaita; 160.7600, -8.8900, Solomon Islands, Malaita; 

160.7700, -8.8800, Solomon Islands, Malaita; 160.7900, -8.8900, Solomon Islands, Malaita; 161.0000, -

9.0000, Solomon Islands, Malaita; 127.7000, 0.9000, 127.9000, 1.0000, Australia; 130.8000, -12.5000, 

Australia; 130.8000, -12.4500, Australia; 132.1330, -11.2000, Australia; 132.1330, -11.1170, Australia; 

132.1500, -11.2670, Australia; 132.1500, -11.1670, Australia; 134.2170, -12.0500, Australia; 136.4330, -

13.9000, Australia; 136.5000, -1.2500, Australia; 141.8000, -12.7000, Australia; 141.8670, -12.6170, 

Australia; 143.6000, -12.9000, Australia;143.7670, -14.2330, Australia; 145.7920, -5.1500, Papua New 

Guinea; 145.8000, -16.9000, Australia; 145.8000, -16.7000, Australia; 145.8000, -5.1330, Papua New 

Guinea; 145.8830, -4.6330, Papua New Guinea; 145.9330, -4.5500, Papua New Guinea; 147.0000, -6.8000, 

Papua New Guinea; 147.0000, -6.7500, Papua New Guinea; 147.1500, -9.4670, Papua New Guinea; 
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147.2000, -9.5000, Papua New Guinea; 147.3100, -2.0600, Papua New Guinea; 147.3600, -1.9800, Papua 

New Guinea; 147.3670, -2.0330, Papua New Guinea; 147.8420, -6.6640, Papua New Guinea; 147.8420, -

6.6640, Papua New Guinea; 149.1000, -20.5000, Australia; 149.2830, -20.8170, Australia; 150.0170, -

10.6000, Australia; 150.6500, -10.6000, Australia; 151.2170, -33.7830, Australia; 151.2830, -33.8000, 

Australia; 151.3330, -33.4330, Australia; 151.6830, -10.0670, Australia; 152.9330, -9.2500, Australia; 

153.1500, -30.2830, Australia; 153.6670, -4.0830, Australia; 155.6000, -6.2000, Australia; 155.8670, -

7.0500, Australia; 156.5960, -7.8500, Australia; 156.8500, -8.1000, Australia; 157.3950, -8.4400, Australia; 

159.5820, -8.1320, Australia; 159.5830, -8.1330, Australia; 159.9430, -9.4250, Australia; 160.0000, -

10.0000, Australia; 160.4170, -9.4330, Australia; 132.6600, -5.7500, Australia; 128.3000, -2.0330, Australia; 

127.4000, 0.8000, Australia. 

 

 

Boiga irregularis, invasive  

144.6210, 13.4430, Guam, Santa Rita; 144.6210, 13.4490, Guam, Santa Rita; 144.6210, 13.4430, 

Guam, Santa Rita; 144.6210, 13.4490, Guam, Santa Rita; 144.6240, 13.4430, Guam, Santa Rita; 144.6240, 

13.4430, Guam, Santa Rita; 144.6740, 13.3540, Guam, Agat; 144.6740, 13.3540, Guam, Agat; 144.6800, 

13.3500, Guam, Agat; 144.6990, 13.3640, Guam, Santa Rita; 144.6990, 13.3640, Guam, Santa Rita; 

144.7020, 13.3780, Guam, Santa Rita; 144.7020, 13.3780, Guam, Santa Rita; 144.7350, 13.4750, Guam, 

Agana Heights; 144.7670, 13.4780, Guam, Mongmong-Toto-Maite; 144.7670, 13.4780, Guam, Mongmong-

Toto-Maite; 144.7700, 13.4100, Guam, Yona; 144.7820, 13.4830, Guam, Tamuning; 144.7820, 13.4830, 

Guam, Tamuning; 144.7950, 13.4900, Guam, Tamuning; 144.8000, 13.5000, Guam, Tamuning; 144.8600, 

13.5900, Guam, Dededo; 144.8600, 13.6500, Guam, Dededo; 144.8640, 13.6510, Guam, Yigo; 144.8640, 

13.6510, Guam, Yigo; 144.9200, 13.5700, Guam, Yigo, -157.9190, 21.3290, United States, Hawaii, 

Honolulu; -157.9700, 21.3300, United States, Hawaii; 144.6240, 13.4490, United States, Hawaii; 144.6240, 

13.4490, United States, Hawaii; 144.9620, 13.6390, United States, Hawaii; 144.9620, 13.6390, United States, 

Hawaii; 145.2000, 14.2000, United States, Hawaii; 145.8000, 15.2000, United States, Hawaii. 

 

 

Eleutherodactylus coqui, native  

-67.1400, 18.2031, Puerto Rico, Mayagüez; -66.8775, 18.2967, Puerto Rico, Lares; -66.7922, 18.2922, 

Puerto Rico, Utuado; -66.7225, 18.1647, Puerto Rico, Adjuntas; -66.5110, 18.1607, Puerto Rico, Orocovis; -

66.5000, 18.3333, Puerto Rico, Ciales; -66.4614, 18.0788, Puerto Rico, Juana Díaz; -66.4143, 18.2947, 

Puerto Rico, Morovis; -66.2664, 18.1419, Puerto Rico, Aibonito; -66.2520, 18.1941, Puerto Rico, Comerío; -

66.2196, 18.3119, Puerto Rico, Naranjito; -66.1703, 17.9553, Puerto Rico, Guayama; -66.1664, 18.1139, 

Puerto Rico, Cayey; -66.1166, 18.2306, Puerto Rico, Aguas Buenas; -66.1033, 18.2589, Puerto Rico, Aguas 

Buenas; -66.0489, 18.2361, Puerto Rico, Caguas; -65.9317, 18.1224, Puerto Rico, San Lorenzo; -65.8623, 

18.2520, Puerto Rico, Juncos; -65.8324, 18.3168, Puerto Rico, Río Grande; -65.8261, 18.3408, Puerto Rico, 

Río Grande; -65.8261, 18.3408, Puerto Rico, Río Grande; -65.8200, 18.3217, Puerto Rico, Río Grande; -

65.7931, 18.2997, Puerto Rico, Río Grande; -65.7917, 18.3133, Puerto Rico, Río Grande; -65.7917, 18.3125, 
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Puerto Rico, Río Grande; -65.7892, 18.3003, Puerto Rico, Río Grande; -65.7858, 18.2969, Puerto Rico, Río 

Grande; -65.7833, 18.3347, Puerto Rico, Río Grande; -65.7594, 18.3692, Puerto Rico, Luquillo; -65.4528, 

18.1407, Puerto Rico, Vieques. 

 

 

Eleutherodactylus coqui, invasive  

-78.0170, 24.7300, Bahamas, North Andros; -91.1310, -0.4060, Ecuador, Galápagos, Isabela; -

65.3300, 18.3300, Puerto Rico, Culebra; -69.9750, 18.6060, República Dominicana, Santo Domingo; -

154.9020, 19.4830, United States, Hawaii, Hawaii; -154.9120, 19.4610, United States, Hawaii, Hawaii; -

154.9360, 19.4600, United States, Hawaii, Hawaii; -154.9510, 19.4980, United States, Hawaii, Hawaii; -

155.0730, 19.6020, United States, Hawaii, Hawaii; -155.0760, 19.5120, United States, Hawaii, Hawaii; -

155.0790, 19.5910, United States, Hawaii, Hawaii; -155.0800, 19.5910, United States, Hawaii, Hawaii; -

155.1000, 19.7300, United States, Hawaii, Hawaii; -155.1010, 19.6010, United States, Hawaii, Hawaii; -

155.1520, 19.5150, United States, Hawaii, Hawaii; -155.2130, 19.4340, United States, Hawaii, Hawaii; -

155.8260, 19.1100, United States, Hawaii, Hawaii; -155.9450, 19.6190, United States, Hawaii, Hawaii; -

156.2600, 20.9200, United States, Hawaii, Maui; -156.3200, 20.9200, United States, Hawaii, Maui; -

156.3260, 20.9180, United States, Hawaii, Maui; -156.3390, 20.8300, United States, Hawaii, Maui; -

156.3400, 20.7800, United States, Hawaii, Maui; -156.6540, 21.0000, United States, Hawaii, Maui; -

156.6650, 21.0030, United States, Hawaii, Maui; -157.0120, 21.1740, United States, Hawaii, Kalawao; -

157.7250, 21.3400, United States, Hawaii, Honolulu; -157.8300, 21.2970, United States, Hawaii, Honolulu; -

157.8480, 21.4700, United States, Hawaii, Honolulu; -158.0020, 21.5020, United States, Hawaii, Honolulu; -

158.0330, 21.3320, United States, Hawaii, Honolulu; -158.0850, 21.6140, United States, Hawaii, Honolulu; -

158.0850, 21.6180, United States, Hawaii, Honolulu; -80.1340, 26.0590, United States, Florida, Broward; -

80.3000, 25.8420, United States, Florida, Miami-Dade; -80.4540, 25.5020, United States, Florida, Miami-

Dade; -64.7480, 17.7660, U.S. Virgin Islands, Saint Croix, -64.8820, 17.7140, U.S. Virgin Islands, Saint 

Croix, -156.1570, 20.8630, United States; -157.8370, 21.4630, United States; -64.8200, 18.3220, United 

States; -65.4450, 18.1490, United States. 

 

 

Eleutherodactylus johnstonei, native  

-61.8833, 17.0333, Antigua and Barbuda, Saint Mary; -61.8000, 17.0500, Antigua and Barbuda, Saint 

Paul; -61.7000, 17.0667, Antigua and Barbuda, Saint Philip; -61.8500, 17.1167, Antigua and Barbuda, Saint 

John; -61.8333, 17.6333, Antigua and Barbuda, Barbuda; -61.6333, 15.9667, Guadeloupe, Basse-Terre; -

61.6833, 15.9833, Guadeloupe, Basse-Terre; -61.5167, 16.2333, Guadeloupe, Pointe-à-Pitre; -61.7167, 

16.2833, Guadeloupe, Basse-Terre; -60.8833, 14.4333, Martinique, Le Marin, Sainte-Anne; -61.1667, 

14.7333, Martinique, Saint-Pierre, Saint-Pierre; -61.1333, 14.7333, Martinique, Saint-Pierre, Saint-Pierre; -

61.1333, 14.7667, Martinique, Saint-Pierre, Le Morne-Rouge; -61.2167, 14.8000, Martinique, Saint-Pierre, 

Le Prêcheur; -61.1167, 14.8667, Martinique, Le Trinité, Basse-Pointe; -62.2167, 16.7167, Montserrat; -

62.2000, 16.7333, Montserrat; -62.2167, 16.7500, Montserrat; -62.2000, 16.7667, Montserrat; -62.1833, 

16.7667, Montserrat; -62.5500, 17.1167, Saint Kitts and Nevis, Saint George Gingerland; -62.6167, 17.1333, 
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Saint Kitts and Nevis, Saint John Figtree; -62.5667, 17.1333, Saint Kitts and Nevis, Saint George 

Gingerland; -62.6167, 17.1667, Saint Kitts and Nevis, Saint Thomas Lowland; -62.7167, 17.3333, Saint Kitts 

and Nevis, Saint Peter Basseterre; -60.9500, 13.7167, Santa Lucia, Vieux Fort; -61.0500, 13.8500, Santa 

Lucia, Soufrière; -61.0000, 13.9667, Santa Lucia, Castries; -60.9833, 13.9833, Santa Lucia, Castries; -

61.0000, 14.0000, Santa Lucia, Castries; -60.9833, 13.7333, Santa Lucia, Castries;  -61.0333, 14.4667, Santa 

Lucia, Castries; -60.9167, 14.4667, Martinique; -61.5833, 16.0000, Martinique; -62.2167, 16.7000, 

Martinique; -62.2333, 16.7167, Martinique; -62.2194, 16.7819, Martinique; -62.5500, 17.2000, Martinique; -

62.8333, 17.8833, Martinique.  

 

 

Eleutherodactylus johnstonei, invasive 

 -66.9167, 10.5000, Venezuela, Distrito Capital, Caracas, Isla de Aves; -66.9167, 10.5000, Venezuela, 

Distrito Capital, Caracas, Isla de Aves; -79.5333, 8.9667, Panamá, Panamá, Panamá, La Exposición o 

Calidonia; -70.0019, 12.5199, Aruba, -59.5500, 13.1333, Barbados, Saint George, -59.6333, 13.2000, 

Barbados, Saint James, -64.7839, 32.2942, Bermuda, Hamilton Municipality, -64.6781, 32.3817, Bermuda, 

Saint George municipality, -74.7958, 10.9727, Colombia, Atlántico, Barranquilla; -73.1258, 7.1297, 

Colombia, Santander, Bucaramanga; -76.5225, 3.4372, Colombia, Valle del Cauca, Santiago de Cali; -

75.5144, 10.3997, Colombia, Bolívar, Cartagena de Indias; -83.9975, 10.0000, Costa Rica, San José, 

Vásquez de Coronado; -61.7500, 12.0167, Grenada, Saint George, -61.6830, 12.0330, Grenada, Saint David, 

-61.7167, 12.0333, Grenada, Saint George, -61.6667, 12.0333, Grenada, Saint David, -61.7500, 12.0500, 

Grenada, Saint George, -61.6833, 12.0500, Grenada, Saint David, -61.7330, 12.0670, Grenada, Saint George, 

-61.7167, 12.0833, Grenada, Saint George, -61.6167, 12.1333, Grenada, Saint Andrew, -61.6170, 12.1500, 

Grenada, Saint Andrew, -61.6333, 12.2167, Grenada, Saint Patrick, -58.1667, 6.8000, Guyana, East Berbice-

Corentyne, City of Georgetown; -52.7667, 4.7500, Guyane, Cayenne, Kourou; -52.3333, 4.9333, Guyane, 

Cayenne, Rémire-Montjoly; -76.8000, 18.0000, Jamaica, Saint Andrew, -77.5000, 18.0333, Jamaica, 

Manchester, -76.7167, 18.0833, Jamaica, Portland, -77.2333, 18.1500, Jamaica, Clarendon, -77.4833, 

18.1667, Jamaica, Manchester, -77.0833, 18.1833, Jamaica, Saint Catherine, -76.4667, 18.1833, Jamaica, 

Portland; -77.6167, 18.2500, Jamaica, Trelawny; -78.3500, 18.2667, Jamaica, Westmoreland; -77.3500, 

18.3167, Jamaica, Saint Ann; -76.9000, 18.3667, Jamaica, Saint Mary; -77.4833, 18.4167, Jamaica, 

Trelawny; -77.4000, 18.4500, Jamaica, Saint Ann; -77.5333, 18.4667, Jamaica, Trelawny; -68.8784, 

12.1491, Nederlandse Antillen, Curaçao; -68.2585, 12.1767, Nederlandse Antillen, Bonaire; -61.4446, 

12.6049, Saint Vincent and the Grenadines, Grenadines; -61.3282, 12.7254, Saint Vincent and the 

Grenadines, Grenadines; -61.1796, 12.8799, Saint Vincent and the Grenadines, Grenadines; -61.2333, 

13.0167, Saint Vincent and the Grenadines, Grenadines; -61.2000, 13.1333, Saint Vincent and the 

Grenadines, Saint George; -61.2330, 13.2000, Saint Vincent and the Grenadines, Saint Andrew; -61.2167, 

13.2000, Saint Vincent and the Grenadines, Saint Andrew; -61.2170, 13.2330, Saint Vincent and the 

Grenadines, Saint Patrick, -61.2170, 13.2500, Saint Vincent and the Grenadines, Saint Patrick; -61.2500, 

13.2667, Saint Vincent and the Grenadines, Saint Patrick; -61.2167, 13.3167, Saint Vincent and the 

Grenadines, Saint David; -61.1670, 13.3330, Saint Vincent and the Grenadines, Charlotte; -61.5167, 10.6500, 

Trinidad and Tobago, Port of Spain; -62.8333, 7.6500, Venezuela, Bolívar, Piar; -62.3989, 8.0861, 

Venezuela, Bolívar, Piar; -63.5497, 8.1222, Venezuela, Anzoátegui, Independencia; -71.1450, 8.5983, 
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Venezuela, Mérida, Libertador; -71.0922, 9.1544, Venezuela, Mérida, Tulio Febres Cordero; -69.3228, 

10.0739, Venezuela, Lara, Iribarren; -66.2117, 10.2053, Venezuela, Miranda, Acevedo; -64.1833, 10.4667, 

Venezuela, Sucre, Sucre; -66.9333, 10.6000, Venezuela, Distrito Capital, Vargas; -66.9833, 10.6000, 

Venezuela, Distrito Capital, Vargas; -64.6167, 10.2167, Venezuela, Anzoátegui, Sotillo; -67.5958, 10.2469, 

Venezuela, Aragua, Girardot; -62.6528, 8.3533, Venezuela, Monagas, Sotillo; -62.7186, 8.2981, Venezuela, 

Bolívar, Caroní; -68.0186, 10.2600, Venezuela, Carabobo, Montalbán; -71.2000, 8.5667, Venezuela, Mérida, 

Campo Elías; -66.9278, 10.3467, Venezuela, Miranda, Guaicaipuro; -63.4989, 10.1744, Venezuela, 

Monagas, Caripe; -63.1767, 9.7500, Venezuela, Monagas, Maturín; -64.1667, 10.4667, Venezuela, Sucre, 

Sucre; -62.5842, 10.5675, Venezuela, Sucre, Mariño; -61.6170, 12.1170, -61.6330, 12.2330, Grenada, -

61.2333, 12.9833, St. Vincent and the Grenadines; -59.5833, 13.0667, St. Vincent and the Grenadines; -

61.2167, 13.1333, St. Vincent and the Grenadines; -59.5167, 13.2167, St. Vincent and the Grenadines; -

77.1167, 18.4167, St. Vincent and the Grenadines; -64.7000, 32.3667, St. Vincent and the Grenadines. 

 

 

Hemidactylus frenatus, native  

121.0500, 14.4167, Pilipinas, Metropolitan Manila, Muntinlupa, Alabang; 122.1069, 11.4158, 

Pilipinas, Antique, Culasi, Alojipan; 99.9394, 9.5539, Thailand, Surat Thani, Ko Samui, Ang Thong; 

102.8000, 16.5000, Thailand, Khon Kaen, Muang Khon Kaen, Ban Kho; 125.0256, 12.0549, Pilipinas, 

Samar, San Jose de Buan, Barangay 4; 123.5706, 9.8555, Pilipinas, Cebu, Argao, Bogo; 124.0490, 12.9660, 

Pilipinas, Sorsogon, Sorsogon, Buhatan; 108.0500, 12.6667, Vietnam, Tây Nguyên, Buon Ma Thuot City; 

108.0500, 12.6667, Vietnam, Tây Nguyên, Buon Ma Thuot City; 121.5000, 19.3000, Pilipinas, Cagayan, 

Calayan, Cabudadan; 122.6644, 12.4612, Pilipinas, Romblon, Cajidiocan, Cambalo; 123.9010, 10.3182, 

Pilipinas, Cebu, Cebu City, Camputhaw; 121.9682, 14.7526, Pilipinas, Quezon, Polillo, Canicanian; 

119.2500, 10.1500, Pilipinas, Palawan, Roxas, Caramay; 125.5737, 10.3619, Pilipinas, Surigao Del Norte, 

Loreto, Carmen; 109.5500, 19.5000, China, Hainan, Hainan, Danzhou; 109.6595, 19.2658, China, Hainan, 

Hainan, Danzhou; 109.6600, 19.2658, China, Hainan, Hainan, Danzhou; 123.3077, 9.3155, Pilipinas, Negros 

Oriental, Dumaguete City, Daro; 125.6109, 10.3864, Pilipinas, Surigao Del Norte, Loreto, Esperanza; 

125.6138, 10.3850, Pilipinas, Surigao Del Norte, Loreto, Esperanza; 124.8836, 11.7664, Pilipinas, Samar, 

Catbalogan, Guinsorongan; 105.8500, 21.0333, Vietnam; 105.8500, 21.0333, Vietnam; 88.4600, 22.9500, 

India, West Bengal, Nadia, Kalyani; 96.2472, 23.0879, Myanmar, Shan, Shan, Kyaukme, Mong Mit; 

96.3421, 23.0711, Myanmar, Shan, Shan, Kyaukme, Mong Mit; 96.3572, 23.0704, Myanmar, Shan, Shan, 

Kyaukme, Mong Mit; 96.0080, 21.6434, Myanmar, Mandalay, Mandalay, Kyaukse, Kyaukse; 96.1487, 

21.6006, Myanmar, Mandalay, Mandalay, Kyaukse, Kyaukse; 96.2568, 21.3760, Myanmar, Mandalay, 

Mandalay, Kyaukse, Myitha; 121.4125, 18.3491, Pilipinas, Cagayan, Abulug, Libertad, 122.7826, 14.0899, 

Pilipinas, Camarines Norte, Labo, Lugui, 123.6667, 13.7197, Pilipinas, Camarines Sur, Presentacion, 

Maangas; 121.1726, 17.3471, Pilipinas, Kalinga, Lubuagan, Mabilong; 121.4141, 12.7354, Pilipinas, 

Oriental Mindoro, Bongabong, Malitbog; 96.1141, 22.0056, Myanmar, Mandalay, Mandalay, Mandalay, 

Mandalay; 97.7173, 16.3409, Myanmar, Mon, Mon, Mawlamyine, Mudon; 122.6556, 10.6925, Pilipinas, 

Guimaras, Buenavista, Mclain; 95.9600, 20.9600, Myanmar, Mandalay, Mandalay, Meiktila, Wudwin; 

95.9652, 20.9686, Myanmar, Mandalay, Mandalay, Meiktila, Wudwin; 95.9700, 20.9700, Myanmar, 

Mandalay, Mandalay, Meiktila, Wudwin; 96.0731, 21.3299, Myanmar, Mandalay, Mandalay, Meiktila, 
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Wudwin; 96.3108, 20.7542, Myanmar, Mandalay, Mandalay, Meiktila, Thazi; 94.4564, 20.1924, Myanmar, 

Magway, Magway, Minbu, Pwinbyu; 94.4587, 20.1931, Myanmar, Magway, Magway, Minbu, Pwinbyu; 

94.4632, 20.1915, Myanmar, Magway, Magway, Minbu, Pwinbyu; 94.4637, 20.1908, Myanmar, Magway, 

Magway, Minbu, Pwinbyu; 94.4825, 20.1862, Myanmar, Magway, Magway, Minbu, Pwinbyu; 94.5254, 

20.2634, Myanmar, Magway, Magway, Minbu, Pwinbyu; 94.5314, 20.2373, Myanmar, Magway, Magway, 

Minbu, Pwinbyu; 94.5369, 20.2186, Myanmar, Magway, Magway, Minbu, Pwinbyu; 94.5371, 20.2236, 

Myanmar, Magway, Magway, Minbu, Pwinbyu; 94.5418, 20.3259, Myanmar, Magway, Magway, Minbu, 

Pwinbyu; 94.5509, 20.2899, Myanmar, Magway, Magway, Minbu, Pwinbyu; 94.5531, 20.2322, Myanmar, 

Magway, Magway, Minbu, Pwinbyu; 94.5547, 20.3143, Myanmar, Magway, Magway, Minbu, Pwinbyu; 

94.5558, 20.2312, Myanmar, Magway, Magway, Minbu, Pwinbyu; 94.5577, 20.3013, Myanmar, Magway, 

Magway, Minbu, Pwinbyu; 94.5681, 20.3197, Myanmar, Magway, Magway, Minbu, Pwinbyu; 94.5938, 

20.0567, Myanmar, Magway, Magway, Minbu, Minbu (Sagu); 94.5975, 20.0579, Myanmar, Magway, 

Magway, Minbu, Minbu (Sagu); 94.6107, 20.1156, Myanmar, Magway, Magway, Minbu, Minbu (Sagu); 

94.6211, 20.1233, Myanmar, Magway, Magway, Minbu, Minbu (Sagu); 94.6365, 20.1265, Myanmar, 

Magway, Magway, Minbu, Minbu (Sagu); 94.6429, 20.1459, Myanmar, Magway, Magway, Minbu, Minbu 

(Sagu); 94.6812, 20.3370, Myanmar, Magway, Magway, Minbu, Pwinbyu; 94.7465, 20.3243, Myanmar, 

Magway, Magway, Minbu, Pwinbyu; 94.7690, 20.3200, Myanmar, Magway, Magway, Minbu, Pwinbyu; 

94.4139, 21.8820, Myanmar, Sagaing, Sagaing, Monywa, Pale; 94.4334, 21.8730, Myanmar, Sagaing, 

Sagaing, Monywa, Pale; 94.4756, 22.3185, Myanmar, Sagaing, Sagaing, Monywa, Kani; 94.4757, 22.3182, 

Myanmar, Sagaing, Sagaing, Monywa, Kani; 94.4865, 22.3223, Myanmar, Sagaing, Sagaing, Monywa, 

Kani; 94.4874, 22.3207, Myanmar, Sagaing, Sagaing, Monywa, Kani; 94.6177, 22.2176, Myanmar, Sagaing, 

Sagaing, Monywa, Yinmabin; 94.6305, 22.2444, Myanmar, Sagaing, Sagaing, Monywa, Yinmabin; 94.6495, 

22.2444, Myanmar, Sagaing, Sagaing, Monywa, Yinmabin; 94.6497, 22.2434, Myanmar, Sagaing, Sagaing, 

Monywa, Yinmabin; 94.6517, 22.2569, Myanmar, Sagaing, Sagaing, Monywa, Yinmabin; 94.6737, 22.1608, 

Myanmar, Sagaing, Sagaing, Monywa, Pale; 94.6781, 22.2109, Myanmar, Sagaing, Sagaing, Monywa, 

Yinmabin; 94.6782, 22.1995, Myanmar, Sagaing, Sagaing, Monywa, Yinmabin; 94.6833, 22.1863, 

Myanmar, Sagaing, Sagaing, Monywa, Yinmabin; 94.7689, 22.0796, Myanmar, Sagaing, Sagaing, Monywa, 

Pale; 94.8602, 22.0884, Myanmar, Sagaing, Sagaing, Monywa, Yinmabin; 94.8620, 22.0893, Myanmar, 

Sagaing, Sagaing, Monywa, Yinmabin; 94.9016, 22.0726, Myanmar, Sagaing, Sagaing, Monywa, Yinmabin; 

95.3400, 22.2100, Myanmar, Sagaing, Sagaing, Monywa, Ayadaw; 95.3413, 22.2182, Myanmar, Sagaing, 

Sagaing, Monywa, Ayadaw; 94.8587, 21.1287, Myanmar, Mandalay, Mandalay, Myingyan, Nyaungu; 

95.2421, 20.8998, Myanmar, Mandalay, Mandalay, Myingyan, Kyaukpadaung; 95.2559, 20.9732, Myanmar, 

Mandalay, Mandalay, Myingyan, Kyaukpadaung; 95.2583, 20.9185, Myanmar, Mandalay, Mandalay, 

Myingyan, Kyaukpadaung; 95.7738, 21.3777, Myanmar, Mandalay, Mandalay, Myingyan, Natogyi; 95.7773, 

21.4081, Myanmar, Mandalay, Mandalay, Myingyan, Natogyi; 95.7836, 21.4533, Myanmar, Mandalay, 

Mandalay, Myingyan, Natogyi; 95.7856, 21.3996, Myanmar, Mandalay, Mandalay, Myingyan, Natogyi; 

95.7865, 21.3963, Myanmar, Mandalay, Mandalay, Myingyan, Natogyi; 95.7977, 21.3992, Myanmar, 

Mandalay, Mandalay, Myingyan, Natogyi; 95.8017, 21.4027, Myanmar, Mandalay, Mandalay, Myingyan, 

Natogyi; 95.8064, 21.3907, Myanmar, Mandalay, Mandalay, Myingyan, Natogyi; 95.8106, 21.3839, 

Myanmar, Mandalay, Mandalay, Myingyan, Natogyi; 95.8317, 21.4121, Myanmar, Mandalay, Mandalay, 

Myingyan, Natogyi; 94.7332, 16.2770, Myanmar, Ayeyarwady, Ayeyarwady, Myoungmya, Myaungmya; 
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94.7541, 16.2778, Myanmar, Ayeyarwady, Ayeyarwady, Myoungmya, Myaungmya; 94.7687, 16.2806, 

Myanmar, Ayeyarwady, Ayeyarwady, Myoungmya, Myaungmya; 94.7706, 16.2910, Myanmar, 

Ayeyarwady, Ayeyarwady, Myoungmya, Myaungmya; 94.7707, 16.2791, Myanmar, Ayeyarwady, 

Ayeyarwady, Myoungmya, Myaungmya; 94.7732, 16.2781, Myanmar, Ayeyarwady, Ayeyarwady, 

Myoungmya, Myaungmya; 98.3000, 7.9000, Thailand, Phuket, Kathu, Pa Tong; 94.1597, 21.0079, 

Myanmar, Magway, Magway, Pakokku, Saw; 94.1649, 21.2460, Myanmar, Magway, Magway, Pakokku, 

Saw; 95.0656, 21.5930, Myanmar, Magway, Magway, Pakokku, Myaing; 95.1010, 21.5896, Myanmar, 

Magway, Magway, Pakokku, Yesagyo; 95.2278, 21.5346, Myanmar, Magway, Magway, Pakokku, Yesagyo; 

123.2477, 13.6151, Pilipinas, Camarines Sur, Pili, Palestina; 124.2717, 7.3697, Pilipinas, Maguindanao, 

Parang, Poblacion II; 122.1341, 12.5670, Pilipinas, Romblon, San Agustin, Poblacion; 124.0014, 12.9695, 

Pilipinas, Sorsogon, Sorsogon, Polvorista; 95.9872, 22.8898, Myanmar, Mandalay, Mandalay, Pyin-Oo-

Lwin, Thabeikkyin; 96.0493, 23.0120, Myanmar, Mandalay, Mandalay, Pyin-Oo-Lwin, Thabeikkyin; 

96.0508, 23.0140, Myanmar, Mandalay, Mandalay, Pyin-Oo-Lwin, Thabeikkyin; 96.1041, 22.9129, 

Myanmar, Mandalay, Mandalay, Pyin-Oo-Lwin, Thabeikkyin; 96.1071, 22.9783, Myanmar, Mandalay, 

Mandalay, Pyin-Oo-Lwin, Thabeikkyin; 96.1469, 23.0844, Myanmar, Mandalay, Mandalay, Pyin-Oo-Lwin, 

Thabeikkyin; 96.1519, 23.1012, Myanmar, Mandalay, Mandalay, Pyin-Oo-Lwin, Thabeikkyin; 96.2407, 

22.9547, Myanmar, Mandalay, Mandalay, Pyin-Oo-Lwin, Mogok; 110.4167, 19.2500, China, Hainan, 

Hainan, Qionghai; 110.4170, 19.2500, China, Hainan, Hainan, Qionghai; 109.6640, 19.0563, China, Hainan, 

Hainan, Qiongzhong Li and Miao; 109.6643, 19.0563, China, Hainan, Hainan, Qiongzhong Li and Miao; 

109.7400, 19.2196, China, Hainan, Hainan, Qiongzhong Li and Miao; 109.9550, 19.1622, China, Hainan, 

Hainan, Qiongzhong Li and Miao; 106.6700, 10.7500, Vietnam, Ðông Nam B?, H? Chí Minh city; 122.0617, 

12.6179, Pilipinas, Romblon, Calatrava, San Roque; 121.7249, 12.9156, Pilipinas, Romblon, Concepcion, 

San Vicente; 125.0231, 11.9396, Pilipinas, Samar, Motiong, Sarao; 95.7380, 23.5740, Myanmar, Sagaing, 

Sagaing, Shwebo, Kanbalu; 122.5909, 12.4916, Pilipinas, Romblon, Magdiwang, Silum; 124.3000, 13.8000, 

Pilipinas, Catanduanes, Gigmoto, Sioron; 92.8782, 21.0174, Myanmar, Rakhine, Rakhine, Sittwe, Kyauktaw; 

92.9807, 21.0065, Myanmar, Rakhine, Rakhine, Sittwe, Kyauktaw; 92.9987, 21.0066, Myanmar, Rakhine, 

Rakhine, Sittwe, Kyauktaw; 122.6928, 10.9217, Pilipinas, Iloilo, Barotac Nuevo, Sohoton; 108.4830, 

15.5667, Vietnam, Nam Trung B, Qung Nam, Tam K; 108.4833, 15.5667, Vietnam, Nam Trung B, Qung 

Nam, Tam K; 96.8910, 20.0788, Myanmar, Shan, Shan, Taunggye, Pinlaung; 96.1700, 18.8600, Myanmar, 

Bago, Bago, Taungoo, Thoungoo; 96.1726, 18.8560, Myanmar, Bago, Bago, Taungoo, Thoungoo; 96.1732, 

18.8545, Myanmar, Bago, Bago, Taungoo, Thoungoo; 94.5429, 17.7248, Myanmar, Rakhine, Rakhine, 

Thandwe, Gwa; 94.5888, 17.6160, Myanmar, Rakhine, Rakhine, Thandwe, Gwa; 94.6086, 17.5164, 

Myanmar, Rakhine, Rakhine, Thandwe, Gwa; 123.4024, 9.9291, Pilipinas, Cebu, Moalboal, Tomonoy; 

120.1597, 13.7955, Pilipinas, Occidental Mindoro, Lubang, Vigo; 96.0926, 17.0462, Myanmar, Yangon, 

Yangon, Yangon-N, Hmawbi; 96.0934, 17.0455, Myanmar, Yangon, Yangon, Yangon-N, Hmawbi; 96.0950, 

17.0475, Myanmar, Yangon, Yangon, Yangon-N, Hmawbi; 96.0971, 17.0456, Myanmar, Yangon, Yangon, 

Yangon-N, Hmawbi; 96.0984, 17.0406, Myanmar, Yangon, Yangon, Yangon-N, Hmawbi; 96.0997, 17.0427, 

Myanmar, Yangon, Yangon, Yangon-N, Hmawbi; 96.1161, 17.0432, Myanmar, Yangon, Yangon, Yangon-

N, Hlegu; 96.1174, 17.0434, Myanmar, Yangon, Yangon, Yangon-N, Hlegu; 96.1186, 17.0425, Myanmar, 

Yangon, Yangon, Yangon-N, Hlegu; 96.1193, 17.0439, Myanmar, Yangon, Yangon, Yangon-N, Hlegu; 

96.2519, 17.0630, Myanmar, Yangon, Yangon, Yangon-N, Hlegu; 96.1379, 16.8596, Myanmar, Yangon, 
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Yangon, Yangon-W, Yangon (Rangoon); 96.1386, 16.8596, Myanmar, Yangon, Yangon, Yangon-W, 

Yangon (Rangoon); 96.1400, 16.8600, Myanmar, Yangon, Yangon, Yangon-W, Yangon (Rangoon); 

96.1413, 16.8580, Myanmar, Yangon, Yangon, Yangon-W, Yangon (Rangoon); 105.5800, -10.5000, 

Christmas Island; 105.5830, -10.5000, Christmas Island; 177.4198, -17.7700, Fiji, Western, Ba; 144.6236, 

13.4431, Guam, Santa Rita; 144.6622, 13.3831, Guam, Agat; 144.6710, 13.4600, Guam, Piti; 144.6889, 

13.3789, Guam, Santa Rita; 144.6942, 13.4592, Guam, Piti; 144.7067, 13.4689, Guam, Piti; 144.7669, 

13.4778, Guam, Mongmong-Toto-Maite; 144.8000, 13.5000, Guam, Tamuning; 144.8489, 13.6331, Guam, 

Dededo; 144.8600, 13.5900, Guam, Dededo; 144.8600, 13.6500, Guam, Dededo; 144.8639, 13.6511, Guam, 

Yigo; 102.2708, -5.3474, Indonesia, Bengkulu, Bengkulu Utara; 102.2710, -5.3474, Indonesia, Bengkulu, 

Bengkulu Utara; 102.2740, -5.3484, Indonesia, Bengkulu, Bengkulu Utara; 102.2743, -5.3484, Indonesia, 

Bengkulu, Bengkulu Utara; 102.2766, -5.3483, Indonesia, Bengkulu, Bengkulu Utara; 102.2770, -5.3483, 

Indonesia, Bengkulu, Bengkulu Utara; 102.2810, -5.3628, Indonesia, Bengkulu, Bengkulu Utara; 102.2812, -

5.3628, Indonesia, Bengkulu, Bengkulu Utara; 102.2825, -5.3573, Indonesia, Bengkulu, Bengkulu Utara; 

102.2830, -5.3573, Indonesia, Bengkulu, Bengkulu Utara; 102.2830, -5.3584, Indonesia, Bengkulu, 

Bengkulu Utara; 102.2834, -5.3584, Indonesia, Bengkulu, Bengkulu Utara; 106.8000, -6.1700, Indonesia, 

Jakarta Raya, Jakarta Barat; 135.4830, -3.3670, Indonesia, Papua, Nabire; 136.1000, -1.1700, Indonesia, 

Papua, Biak Numfor; 136.2300, -1.8800, Indonesia, Papua, Yapen Waropen; 140.6200, -2.6000, Indonesia, 

Papua, Jayapura; 113.8000, 3.8000, Malaysia, Sarawak, Niah Suai; 151.8440, 7.4292, Micronesia, Chuuk, 

158.2030, 6.9667, Micronesia, Pohnpei, 158.2080, 6.9611, Micronesia, Pohnpei, 158.2080, 6.9667, 

Micronesia, Pohnpei, 162.9810, 5.2866, Micronesia, Kosrae, 162.9815, 5.2866, Micronesia, Kosrae, 

164.9330, -20.6833, New Caledonia, Nord, Hienghène; 164.9333, -20.6833, New Caledonia, Nord, 

Hienghène; 166.8330, -22.3000, New Caledonia, Sud, Mont-Dore; 127.7747, 26.3478, Nippon, Saga; 

127.7750, 26.3478, Nippon, Saga; 128.0240, 26.5781, Nippon, Saga; 128.0244, 26.5781, Nippon, Saga; 

135.7756, 34.9481, Nippon, Kyoto; 135.7760, 34.9481, Nippon, Kyoto; 145.1294, 14.1311, Northern 

Mariana Islands, Rota; 145.1417, 14.1419, Northern Mariana Islands, Rota; 145.2406, 14.1775, Northern 

Mariana Islands, Rota; 145.2414, 14.1783, Northern Mariana Islands, Rota; 145.7461, 15.0961, Northern 

Mariana Islands, Saipan; 145.7480, 15.1925, Northern Mariana Islands, Saipan; 145.7481, 15.1925, Northern 

Mariana Islands, Saipan; 134.4539, 7.3331, Palau, Koror; 134.4739, 7.3350, Palau, Koror; 134.4780, 7.3403, 

Palau, Koror; 134.4790, 7.3417, Palau, Koror; 134.4800, 7.3353, Palau, Koror; 134.4950, 7.3339, Palau, 

Koror; 134.4950, 7.3381, Palau, Koror; 134.5011, 7.4561, Palau, Aimeliik; 134.5170, 7.3600, Palau, Airai; 

134.6000, 7.5000, Palau, Melekeok; 134.6290, 7.4880, Palau, Melekeok; 134.6340, 7.5520, Palau, Ngiwal; 

141.5850, -3.3890, Papua New Guinea, Sandaun, Vanimo-Green River; 145.8000, -5.1600, Papua New 

Guinea, Madang, Madang; 145.8820, -5.9538, Papua New Guinea, Madang, Usino Bundi; 145.9100, -

5.9968, Papua New Guinea, Morobe, Markham; 146.5480, -7.6840, Papua New Guinea, Morobe, Bulolo; 

146.6387, -7.2029, Papua New Guinea, Morobe, Bulolo; 146.6390, -7.2028, Papua New Guinea, Morobe, 

Bulolo; 146.6650, -6.7906, Papua New Guinea, Morobe, Bulolo; 146.7010, -7.3420, Papua New Guinea, 

Morobe, Bulolo; 146.7050, -7.3410, Papua New Guinea, Morobe, Bulolo; 146.7270, -6.5680, Papua New 

Guinea, Morobe, Huon; 147.0010, -6.7342, Papua New Guinea, Morobe, Lae; 147.1410, -7.8760, Papua 

New Guinea, Morobe, Bulolo; 147.5980, -9.4380, Papua New Guinea, Central, Kairuku-Hiri; 150.3070, -

10.4184, Papua New Guinea, Milne Bay, Alotau; 151.5020, -5.5190, Papua New Guinea, East New Britain, 

Pomio; 152.0000, -4.3333, Papua New Guinea, East New Britain, Gazelle; 152.6870, -10.6588, Papua New 
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Guinea, Milne Bay, Samarai-Murua; 152.6940, -10.6594, Papua New Guinea, Milne Bay, Samarai-Murua; 

152.8420, -10.6899, Papua New Guinea, Milne Bay, Samarai-Murua; 152.9430, -9.2233, Papua New Guinea, 

Milne Bay, Samarai-Murua; 153.0130, -4.6410, Papua New Guinea, New Ireland, Namanatai; 153.2340, -

11.3161, Papua New Guinea, Milne Bay, Samarai-Murua; 155.0940, -5.6449, Papua New Guinea, North 

Solomons, North Bougainville; 121.4141, 12.0228, Pilipinas, Antique, Caluya; 120.6330, 23.0000, Taiwan, 

Taiwan, Kaohsiung; 120.6333, 23.0000, Taiwan, Taiwan, Kaohsiung; 120.9500, 23.9667, Taiwan, Taiwan, 

Nantou; 120.9500, 23.9667, Taiwan, Taiwan, Nantou; 100.9330, 13.3333, Thailand, Chon Buri, Muang Chon 

Buri; 100.9333, 13.3333, Thailand, Chon Buri, Muang Chon Buri; 101.2887, 14.2703, Thailand, Nakhon 

Nayok, Muang Nakhon Nayok; 101.2890, 14.2703, Thailand, Nakhon Nayok, Muang Nakhon Nayok; 

101.3786, 14.4097, Thailand, Nakhon Nayok, Muang Nakhon Nayok; 101.3790, 14.4097, Thailand, Nakhon 

Nayok, Muang Nakhon Nayok; 120.2044, 14.4144; 120.2167, 14.7500; 120.2170, 14.7500; 121.8403, 

20.2903; 122.9700, -12.1700; 123.0300, -12.5000; 124.3814, 10.6730; 127.7000, 0.9000; 127.9000, 1.0000; 

128.0000, 1.1000; 134.2670, -1.3500; 134.4470, 7.3250; 134.4470, -7.3250; 134.4489, 7.3261; 134.4720, 

7.3333; 144.6169, 13.4461; 144.6439, 13.4131, Northern Mariana Islands; 144.6481, 13.3761, Northern 

Mariana Islands; 144.6489, 13.3781, Northern Mariana Islands; 144.6500, 13.2400; 144.7039, 13.2431, 

Northern Mariana Islands; 144.7669, 13.4911, Northern Mariana Islands; 144.9619, 13.6389; 145.6000, 

14.8000; 147.2920, -2.0180; 149.5330, -6.2333; 153.0600, -4.5350; 158.2639, 6.9819; 158.2640, 6.9819; 

163.0090, 5.3785; 165.8090, -21.8453, New Caledonia; 166.4390, -22.3056; 166.4394, -22.3056; 166.6300, 

19.3000; 94.5321, 17.7177; 98.2833, 7.8955, Thailand. 

 

 

Hemidactylus frenatus, invasive  

48.3600, -13.6600, Madagascar, Antsiranana, Diana, Ambanja, Ankatafa; 44.3300, -22.4500, 

Madagascar, Toliary, Atsimo-Andrefana, Ankazoabo-Sud, Ankazoabo; 50.2100, -14.7500, Madagascar, 

Antsiranana, Sava, Antalaha, Ampahana; 44.6100, -18.7000, Madagascar, Mahajanga, Melaky, Antsalova, 

Antsalova; 49.2000, -12.4800, Madagascar, Antsiranana, Diana, Antsiranana Rural, Joffreville; 49.3600, -

12.3600, Madagascar, Antsiranana, Diana, Antsiranana Rural, Ramena; 44.5000, -16.4600, Madagascar, 

Mahajanga, Melaky, Besalampy, Soananga; 44.7600, -16.4000, Madagascar, Mahajanga, Melaky, 

Besalampy, Ankasakasa Tsibiray; -170.7000, -14.3000, American Samoa, Eastern, Ituau, Faganeanea, 

46.5600, -18.5000, Madagascar, Antananarivo, Bongolava, Fenoarivo-Centre, Fenoarivobe; 76.0000, 

13.5000, India, Karnataka, Chikmagalur, Kadur; 46.3100, -15.7100, Madagascar, Mahajanga, Boeny, 

Mahajanga Urban, Mahajanga I; 43.8600, -21.7600, Madagascar, Toliary, Menabe, Manja, Ankiliabo; 

47.0300, -16.1500, Madagascar, Mahajanga, Boeny, Marovoay, Ankazomborona; 45.4600, -19.5100, 

Madagascar, Toliary, Menabe, Miandrivazo, Miandrivazo; 43.6100, -21.9500, Madagascar, Toliary, Atsimo-

Andrefana, Morombe, Basibasy; 76.5000, 10.0000, India, Kerala, Ernakulam, Perumbavur, 47.6100, -

15.5600, Madagascar, Mahajanga, Sofia, Port Berg, Boriziny CR; 44.5330, -22.9000, Madagascar, Toliary, 

Atsimo-Andrefana, Sakaraha, Sakaraha; 49.5000, -14.0000, Madagascar, Antsiranana, Sava, Sambava, 

Bevohotra; 47.2100, -24.7600, Madagascar, Toliary, Anosy, Taolagnaro, Mahatalaky; 43.7600, -23.5500, 

Madagascar, Toliary, Atsimo-Andrefana, Toliary, Saint Augustin; 43.6600, -23.3500, Madagascar, Toliary, 

Atsimo-Andrefana, Toliary Urban, Toliara I; 130.3000, -13.6300, Australia, Northern Territory; 130.6300, -

11.4000, Australia, Northern Territory; 130.6700, -11.4200, Australia, Northern Territory; 130.8300, -
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12.4500, Australia, Northern Territory, Darwin; 130.8330, -12.4500, Australia, Northern Territory, Darwin; 

130.8330, -12.4583, Australia, Northern Territory, Darwin; 130.8500, -11.8500, Australia, Northern 

Territory; 130.8500, -12.3833, Australia, Northern Territory, Darwin; 130.8500, -12.4167, Australia, 

Northern Territory, Darwin; 130.8500, -12.4500, Australia, Northern Territory, Darwin; 130.8500, -12.4600, 

Australia, Northern Territory, Darwin; 130.8500, -12.4700, Australia, Northern Territory, Darwin; 130.8670, 

-12.3833, Australia, Northern Territory, Darwin; 130.8700, -12.4200, Australia, Northern Territory, Darwin; 

130.8800, -12.4200, Australia, Northern Territory, Darwin; 130.8800, -12.4300, Australia, Northern 

Territory, Darwin; 130.8900, -11.7700, Australia, Northern Territory; 130.9000, -12.3833, Australia, 

Northern Territory, Darwin; 130.9200, -12.4200, Australia, Northern Territory, Darwin; 130.9200, -12.4700, 

Australia, Northern Territory; 130.9700, -12.7000, Australia, Northern Territory, Litchfield; 131.0170, -

12.5167, Australia, Northern Territory, Litchfield; 131.0330, -12.0500, Australia, Northern Territory; 

131.0500, -12.4500, Australia, Northern Territory, Litchfield; 131.1170, -13.2500, Australia, Northern 

Territory, Coomalie; 131.1200, -15.6200, Australia, Northern Territory; 131.3200, -12.6500, Australia, 

Northern Territory, Litchfield; 131.7200, -12.6700, Australia, Northern Territory; 132.1500, -11.1500, 

Australia, Northern Territory; 132.2700, -14.4700, Australia, Northern Territory, Katherine; 132.5700, -

11.1500, Australia, Northern Territory; 132.8830, -12.6500, Australia, Northern Territory; 133.0700, -

14.9300, Australia, Northern Territory; 133.3830, -16.3000, Australia, Northern Territory; 133.4200, -

22.0800, Australia, Northern Territory; 133.4200, -22.1300, Australia, Northern Territory; 134.1830, -

19.6500, Australia, Northern Territory, Tennant Creek; 134.3700, -14.6700, Australia, Northern Territory; 

134.8830, -12.0833, Australia, Northern Territory; 134.9200, -12.1100, Australia, Northern Territory; 

135.4000, -19.4300, Australia, Northern Territory; 135.5670, -12.0333, Australia, Northern Territory; 

135.8280, -19.7114, Australia, Northern Territory; 136.3000, -16.0700, Australia, Northern Territory; 

136.7300, -11.0300, Australia, Northern Territory; 139.4830, -20.7333, Australia, Queensland, Mount Isa; 

144.1920, -20.8500, Australia, Queensland, Flinders; 144.3190, -18.1483, Australia, Queensland, Etheridge; 

145.7670, -16.9333, Australia, Queensland, Cairns; 146.8170, -19.2667, Australia, Queensland, Townsville; 

146.8170, -19.2670, Australia, Queensland, Townsville; -67.4800, 6.1800, Colombia, Vichada, Puerto 

Carreño; 43.3278, -11.3812, Comoros, Njazídja, 43.3278, -11.3812, Comoros, Njazídja, -149.8263, -17.4906, 

French Polynesia, -100.0106, 17.9325, México, Guerrero, General Heliodoro Castillo; -100.0110, 17.9325, 

México, Guerrero, General Heliodoro Castillo; -104.3156, 19.0517, México, Colima, Manzanillo; -104.3160, 

19.0517, México, Colima, Manzanillo; -92.6903, 15.2814, México, Chiapas, Acapetahua; -92.6903, 15.2814, 

México, Chiapas, Acapetahua; -99.0097, 21.9819, México, San Luis Potosí, Ciudad Valles; -99.0097, 

21.9819, México, San Luis Potosí, Ciudad Valles; -99.9536, 16.8969, México, Guerrero, Acapulco de Juárez; 

-99.9536, 16.8969, México, Guerrero, Acapulco de Juárez; 49.1788, 11.2855, Somalia, Bari, Bosaaso; -

155.0874, 19.7004, United States, Hawaii, Hawaii; -155.0930, 19.2969, United States, Hawaii, Hawaii; -

155.0980, 19.2951, United States, Hawaii, Hawaii; -155.1470, 19.2915, United States, Hawaii, Hawaii; -

155.8180, 20.0243, United States, Hawaii, Hawaii; -155.9050, 19.4143, United States, Hawaii, Hawaii; -

155.9080, 19.4187, United States, Hawaii, Hawaii; -155.9743, 19.6037, United States, Hawaii, Hawaii; -

156.0210, 19.6815, United States, Hawaii, Hawaii; -156.0210, 19.6843, United States, Hawaii, Hawaii; -

156.0220, 19.6827, United States, Hawaii, Hawaii; -156.4440, 20.8935, United States, Hawaii, Maui; -

156.4560, 20.8964, United States, Hawaii, Maui; -156.6160, 20.5417, United States, Hawaii, Maui; -

156.9200, 20.8255, United States, Hawaii, Maui; -157.0120, 21.1401, United States, Hawaii, Maui; -
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157.7888, 21.4324, United States, Hawaii, Honolulu; -157.7890, 21.4324, United States, Hawaii, Honolulu; -

157.8000, 21.4113, United States, Hawaii, Honolulu; -157.8690, 21.3370, United States, Hawaii, Honolulu; -

157.8710, 21.3332, United States, Hawaii, Honolulu; -158.0350, 21.6795, United States, Hawaii, Honolulu; -

158.1000, 21.4313, United States, Hawaii, Honolulu; -158.1290, 21.4758, United States, Hawaii, Honolulu; -

158.1300, 21.4389, United States, Hawaii, Honolulu; -158.1320, 21.4700, United States, Hawaii, Honolulu; -

158.1340, 21.4714, United States, Hawaii, Honolulu; -158.1390, 21.4340, United States, Hawaii, Honolulu; -

158.1410, 21.4270, United States, Hawaii, Honolulu; -158.1440, 21.4520, United States, Hawaii, Honolulu; -

158.2740, 21.5737, United States, Hawaii, Honolulu; -80.4872, 25.4836, United States, Florida, Miami-

Dade; -176.4794, 0.1947, United States Minor Outlying Island, Baker, -177.3900, 28.2000, United States 

Minor Outlying Island, Midway, -71.8881, 10.5531, Venezuela, Zulia, Jesús Enrique Lossada; -72.0778, 

11.1220, Venezuela, Zulia, Páez; -156.4320, 20.9057, United States; -156.4350, 20.9067, United States; -

156.4360, 20.9053, United States; -156.4410, 20.9031, United States; -156.8200, 20.0284; -157.4140, 

1.9860, Kiribati; -157.7210, 21.4000, United States; -171.8000, -13.8000, -177.3700; 28.2000, -178.3000; 

28.4000, -178.3130 28.3875; 43.6100, -23.1500, Madagascar; 72.4167, -7.3333; 72.4631, -7.3494; -85.2000, 

15.9000, Honduras; -89.3167, 13.4833, El Salvador; 130.0300, -13.0200, 130.2000, -11.6500, Australia; 

130.8200, -12.4000, Australia; 132.1700, -11.2300, Australia; 132.5700, -11.3500, Australia; 133.0200, -

10.9000, Australia; 133.0300, -10.9200, Australia, 122.2000, -17.9500, Australia.  

 

 

Hemidactylus mabouia, native  

3.3800, 6.4400, Nigeria, Lagos, Apapa, Apapa; 39.8750, -3.5360, Kenya, Coast, Kilifi, Bahari, Tezo, 

Mtondia Majaoni; 39.8750, -3.5360, Kenya, Coast, Kilifi, Bahari, Tezo, Mtondia Majaoni; 39.8750, -3.5360, 

Kenya, Coast, Kilifi, Bahari, Tezo, Mtondia Majaoni; 37.1120, 1.5800, Kenya, Rift Valley, Samburu, 

Baragoi, Ndoto, Latakweny; 37.1120, 1.5800, Kenya, Rift Valley, Samburu, Baragoi, Ndoto, Latakweny; 

31.8770, -0.3560, Uganda, Masaka, Bukoto, Bukakata/Mpugwe; 31.8770, -0.3560, Uganda, Masaka, Bukoto, 

Bukakata/Mpugwe; 31.8770, -0.3560, Uganda, Masaka, Bukoto, Bukakata/Mpugwe; 31.8780, -0.3530, 

Uganda, Masaka, Bukoto, Bukakata/Mpugwe; 31.8780, -0.3530, Uganda, Masaka, Bukoto, 

Bukakata/Mpugwe; 31.8780, -0.3530, Uganda, Masaka, Bukoto, Bukakata/Mpugwe; 20.3000, 3.3000, The 

Democratic Republic of the Congo, Équateur, Nord-Ubangi, Businga; 20.3000, 3.3000, The Democratic 

Republic of the Congo, Équateur, Nord-Ubangi, Businga; 36.6230, -1.9270, Kenya, Rift Valley, Nakuru, 

Central, Loodokilani, Elangata-Wuas; 36.6230, -1.9270, Kenya, Rift Valley, Nakuru, Central, Loodokilani, 

Elangata-Wuas; 36.6230, -1.9270, Kenya, Rift Valley, Nakuru, Central, Loodokilani, Elangata-Wuas; 

36.8160, -1.2750, Kenya, Nairobi, Nairobi, Central, Ngara, Ngara West; 36.8160, -1.2750, Kenya, Nairobi, 

Nairobi, Central, Ngara, Ngara West; 36.8160, -1.2750, Kenya, Nairobi, Nairobi, Central, Ngara, Ngara 

West; 36.9100, -1.2800, Kenya, Nairobi, Nairobi, Embakasi, Njiru, Umoja; 38.3300, 0.0830, Kenya, Eastern, 

Isiolo, Garba Tulla, Kinna, Rapsu; 32.9000, -2.5100, Tanzania, Mwanza, Nyamagana, Isamilo; 39.5500, -

3.9000, Kenya, Coast, Kilifi, Kalolenli, Rabai, Kaliang'ombe/Jimba; 39.5500, -3.9000, Kenya, Coast, Kilifi, 

Kalolenli, Rabai, Kaliang'ombe/Jimba; 27.9100, -11.1800, The Democratic Republic of the Congo, Katanga, 

Haut-Shaba, Kasenga; 29.6160, -0.9890, Uganda, Kanungu, Kinkizi, Kayonza; 29.6160, -0.9890, Uganda, 

Kanungu, Kinkizi, Kayonza; 29.6160, -0.9890, Uganda, Kanungu, Kinkizi, Kayonza; 15.3150, -4.3300, The 

Democratic Republic of the Congo, Kinshasa City, Kinshasa, Kinshasa Urban; 15.3150, -4.3300, The 
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Democratic Republic of the Congo, Kinshasa City, Kinshasa, Kinshasa Urban; 38.6330, -5.1000, Tanzania, 

Tanga, Muheza, Kisiwani; 38.6330, -5.1000, Tanzania, Tanga, Muheza, Kisiwani; 38.6330, -5.1000, 

Tanzania, Tanga, Muheza, Kisiwani; 40.8380, -1.7760, Kenya, Coast, Lamu, Kiunga, Kiunga, Milimani; 

40.8380, -1.7760, Kenya, Coast, Lamu, Kiunga, Kiunga, Milimani; 30.1420, -0.0250, Uganda, Kasese, 

Busongora, Lake Katwe; 30.1420, -0.0250, Uganda, Kasese, Busongora, Lake Katwe; 46.3100, -15.7100, 

Madagascar, Mahajanga, Boeny, Mahajanga Urban, Mahajanga I; 46.3200, -15.7200, Madagascar, 

Mahajanga, Boeny, Mahajanga Urban, Mahajanga I; 39.8740, -3.1770, Kenya, Coast, Kilifi, Malindi, Jilore, 

Makobeni; 39.8740, -3.1770, Kenya, Coast, Kilifi, Malindi, Jilore, Makobeni; 39.8740, -3.1780, Kenya, 

Coast, Kilifi, Malindi, Jilore, Makobeni; 36.0000, 0.5000, Kenya, Rift Valley, Baringo, Marigat, Marigat, 

Perkerra; 46.6300, -16.1000, Madagascar, Mahajanga, Boeny, Marovoay, Marovoay; 39.1000, -13.3830, 

Mozambique, Cabo Delgado, Namuno, Meloco; 39.1000, -13.3830, Mozambique, Cabo Delgado, Namuno, 

Meloco; 36.7850, 3.2400, Kenya, Eastern, Marsabit, North Horr, North Horr, Galas; 36.7850, 3.2400, Kenya, 

Eastern, Marsabit, North Horr, North Horr, Galas; 34.5000, -0.5000, Kenya, Nyanza, Homa Bay, Rangwe, 

East Kanyada, Kothidha; 34.7500, 0.0700, Kenya, Western, Vihiga, Sabatia, North Maragoli, Kivagala; 

34.7500, 0.0700, Kenya, Western, Vihiga, Sabatia, North Maragoli, Kivagala; -8.7000, 7.3620, Liberia, 

Nimba, Sanniquelleh-Mahn, Sehyi; 47.2100, -24.7600, Madagascar, Toliary, Anosy, Taolagnaro, 

Mahatalaky; 37.9100, -2.9100, Kenya, Coast, Taita Taveta, Tsavo National Park (E&W); 38.5670, -3.3830, 

Kenya, Coast, Taita Taveta, Voi, Voi, Mwangea; 38.5670, -3.3830, Kenya, Coast, Taita Taveta, Voi, Voi, 

Mwangea; 38.5670, -3.3830, Kenya, Coast, Taita Taveta, Voi, Voi, Mwangea; 37.3170, 1.5670, Kenya, Rift 

Valley, Samburu, Wamba, Ngilai, Ngare Narok; 37.3170, 1.5670, Kenya, Rift Valley, Samburu, Wamba, 

Ngilai, Ngare Narok; 37.5570, 0.8540, Kenya, Rift Valley, Samburu, Wamba, Wamba, Koiting; 37.5570, 

0.8540, Kenya, Rift Valley, Samburu, Wamba, Wamba, Koiting; 37.5570, 0.8540, Kenya, Rift Valley, 

Samburu, Wamba, Wamba, Koiting; 23.1000, -19.1000, Botswana, North-West, Ngamiland West; 23.1000, -

19.1000, Botswana, North-West, Ngamiland West; 11.5100, 3.8000, Cameroun, Centre, Méfou; 11.5100, 

3.9000, Cameroun, Centre, Mfoundi; 11.5100, 3.9000, Cameroun, Centre, Mfoundi; 13.7110, 9.5160, 

Cameroun, Nord, Bénoué; 9.7000, 4.0500, Cameroun, Littoral, Moungo; 9.7000, 4.0500, Cameroun, Littoral, 

Moungo; 9.7500, 3.7500, Cameroun, Littoral, Wouri; 9.9100, 2.9500, Cameroun, Sud, Océan; 8.5520, 

3.4610, Equatorial Guinea, Bioko Sur; 8.5520, 3.4610, Equatorial Guinea, Bioko Sur; 8.5520, 3.4610, 

Equatorial Guinea, Bioko Sur; 8.7810, 3.7570, Equatorial Guinea, Bioko Norte; 8.7810, 3.7570, Equatorial 

Guinea, Bioko Norte; 8.7810, 3.7570, Equatorial Guinea, Bioko Norte; 8.7830, 3.7520, Equatorial Guinea, 

Bioko Norte; 8.7830, 3.7520, Equatorial Guinea, Bioko Norte; 8.7830, 3.7520, Equatorial Guinea, Bioko 

Norte; 10.5920, -2.3370, Gabon, Nyanga, Mougoutsi; 10.5920, -2.3370, Gabon, Nyanga, Mougoutsi; 

10.7340, -2.5580, Gabon, Nyanga, Douigny; 10.7340, -2.5580, Gabon, Nyanga, Douigny; 12.8600, 0.5600, 

Gabon, Ogooué-Ivindo, Ivindo; 9.6000, -2.3000, Gabon, Ogooué-Maritime, Ndougou; 9.6000, -2.3000, 

Gabon, Ogooué-Maritime, Ndougou; 9.8810, -1.9370, Gabon, Ogooué-Maritime, Étimboué; 9.8810, -1.9370, 

Gabon, Ogooué-Maritime, Étimboué; 0.0380, 5.8800, Ghana, Greater Accra, Dangbe East; 0.0380, 5.8800, 

Ghana, Greater Accra, Dangbe East; 0.5090, 8.2580, Ghana, Volta, Nkwanta; 0.5090, 8.2580, Ghana, Volta, 

Nkwanta; 0.5550, 8.3250, Ghana, Volta, Nkwanta; 0.5550, 8.3250, Ghana, Volta, Nkwanta; 0.5560, 8.3230, 

Ghana, Volta, Nkwanta; 0.5560, 8.3230, Ghana, Volta, Nkwanta; -2.6490, 5.2840, Ghana, Western, Jomoro; 

-2.6490, 5.2840, Ghana, Western, Jomoro; 6.6510, 0.2610, São Tomé and Príncipe, São Tomé; 6.6510, 

0.2610, São Tomé and Príncipe, São Tomé; 6.6510, 0.2610, São Tomé and Príncipe, São Tomé; 6.6770, 
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0.1710, São Tomé and Príncipe, São Tomé; 6.6770, 0.1710, São Tomé and Príncipe, São Tomé; 6.6770, 

0.1710, São Tomé and Príncipe, São Tomé; 6.7170, 0.3740, São Tomé and Príncipe, São Tomé; 6.7170, 

0.3740, São Tomé and Príncipe, São Tomé; 6.7170, 0.3740, São Tomé and Príncipe, São Tomé; 6.7290, 

0.3300, São Tomé and Príncipe, São Tomé; 6.7290, 0.3300, São Tomé and Príncipe, São Tomé; 6.7290, 

0.3300, São Tomé and Príncipe, São Tomé; 7.4200, 1.6410, São Tomé and Príncipe, Príncipe; 7.4200, 

1.6410, São Tomé and Príncipe, Príncipe; 7.4200, 1.6410, São Tomé and Príncipe, Príncipe; 28.1660, -

25.7500, South Africa, Gauteng, Pretoria; 29.8300, -22.7100, South Africa, Limpopo, Messina; 29.8300, -

22.7100, South Africa, Limpopo, Messina; 30.0000, -22.4100, South Africa, Limpopo, Messina; 30.0000, -

22.4100, South Africa, Limpopo, Messina; 30.5100, -30.6600, South Africa, KwaZulu-Natal, Port 

Shepstone; 30.6080, -30.2730, South Africa, KwaZulu-Natal, Umzinto; 30.6080, -30.2730, South Africa, 

KwaZulu-Natal, Umzinto; 30.8300, -24.0700, South Africa, Limpopo, Phalaborwa; 30.8300, -24.0700, South 

Africa, Limpopo, Phalaborwa; 32.2190, -27.5990, South Africa, KwaZulu-Natal, Ubombo; 32.2190, -

27.5990, South Africa, KwaZulu-Natal, Ubombo; 32.4230, -27.0430, South Africa, KwaZulu-Natal, 

Ingwavuma; 32.4230, -27.0430, South Africa, KwaZulu-Natal, Ingwavuma; 24.2810, -17.4850, Zambia, 

Western; 24.2810, -17.4850, Zambia, Western; 24.2810, -17.4850, Zambia, Western; 25.8600, -17.8500, 

Zambia, Southern; 32.7760, -17.6040, Zimbabwe, Manicaland, Nyanga; 32.7760, -17.6040, Zimbabwe, 

Manicaland, Nyanga.  

 

 

Hemidactylus mabouia, invasive  

-52.2000, -3.2000, Brazil, Pará, Altamira, Altamira; -52.2000, -3.2000, Brazil, Pará, Altamira, 

Altamira; -50.0000, -0.5000, Brazil, Pará, Anajas, Anajas; -50.0000, -0.5000, Brazil, Pará, Anajas, Anajas; -

48.4800, -1.4500, Brazil, Pará, Belém, Belém; -48.4833, -1.4500, Brazil, Pará, Belém, Belém; -48.4833, -

1.4500, Brazil, Pará, Belém, Belém; -60.7000, 2.8000, Brazil, Roraima, Boa Vista, Boa Vista; -60.7000, 

2.8000, Brazil, Roraima, Boa Vista, Boa Vista; -45.4100, -23.6100, Brazil, São Paulo, Caraguatatuba, 

Caraguatatuba; -42.2000, -22.4800, Brazil, Rio de Janeiro, Casimiro de Abreu, Casimiro de Abreu; -60.6300, 

-9.1600, Brazil, Mato Grosso, Aripuanã, Colniza; -47.5617, -24.6956, Brazil, São Paulo, Iguape, Iguape; -

47.5617, -24.6956, Brazil, São Paulo, Iguape, Iguape; -45.3000, -23.8000, Brazil, São Paulo, Ilhabela, 

Ilhabela; -45.3000, -23.8000, Brazil, São Paulo, Ilhabela, Ilhabela; -73.2500, -3.7600, Perú, Loreto, Maynas, 

Iquitos; -66.9100, 10.5000, Venezuela, Distrito Capital, Caracas, Isla de Aves; -66.9100, 10.5000, 

Venezuela, Distrito Capital, Caracas, Isla de Aves; -43.1000, -22.4000, Brazil, Rio de Janeiro, Petrópolis, 

Itaipava; -43.1000, -22.4000, Brazil, Rio de Janeiro, Petrópolis, Itaipava; -46.7800, -24.1800, Brazil, São 

Paulo, Itanhaém, Itanhaém; -42.8100, -22.9100, Brazil, Rio de Janeiro, Maricá, Maricá; -73.9500, -4.6330, 

Perú, Loreto, Loreto, Nauta; -55.5100, -1.9000, Brazil, Pará, Óbidos, Óbidos; -50.4000, -19.9000, Brazil, São 

Paulo, Ouroeste, Ouroeste; -50.4000, -19.9000, Brazil, São Paulo, Ouroeste, Ouroeste; -45.5337, -23.5067, 

Brazil, São Paulo, Paraibuna, Paraibuna; -45.5337, -23.5067, Brazil, São Paulo, Paraibuna, Paraibuna; -

51.1800, -30.0600, Brazil, Rio Grande do Sul, Porto Alegre, Porto Alegre; -40.6000, -19.9100, Brazil, 

Espírito Santo, Santa Teresa, Santa Teresa; -39.8500, -18.7300, Brazil, Espírito Santo, São Mateus, São 

Mateus; -60.0200, -3.1133, Brazil, Amazonas, Maués, Sexta R.A.; -60.0253, -3.1133, Brazil, Amazonas, 

Maués, Sexta R.A.; -60.0253, -3.1133, Brazil, Amazonas, Maués, Sexta R.A.; -75.1781, -0.9706, Perú, 

Loreto, Maynas, Torres Causana; -75.1781, -0.9706, Perú, Loreto, Maynas, Torres Causana; -76.1600, -
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2.5100, Perú, Loreto, Loreto, Trompeteros; -70.0300, 12.5100, Aruba; -64.6000, 18.4500, British Virgin 

Islands; -76.5500, 3.4167, Colombia, Valle del Cauca, Santiago de Cali; -76.5500, 3.4167, Colombia, Valle 

del Cauca, Santiago de Cali; -76.5500, 3.4167, Colombia, Valle del Cauca, Santiago de Cali; -75.2000, 

20.1450, Cuba, Guantánamo; -61.4600, 12.4600, Grenada, Carriacou; -61.5800, 16.2500, Guadeloupe, 

Basse-Terre; -61.6000, 15.8600, Guadeloupe, Basse-Terre; -57.8589, 5.6819, Guyana, Upper Takutu-Upper 

Essequibo, Berbice River settlements; -57.8589, 5.6819, Guyana, Upper Takutu-Upper Essequibo, Berbice 

River settlements; -58.0000, 6.7000, Guyana, East Berbice-Corentyne, Grove / Haslington; -58.0000, 6.7000, 

Guyana, East Berbice-Corentyne, Grove / Haslington; -58.2000, 6.8000, Guyana, Demerara-Mahaica, Meer 

Zorgen / Malgre Tout; -58.2000, 6.8000, Guyana, Demerara-Mahaica, Meer Zorgen / Malgre Tout; -65.4100, 

18.1250, Puerto Rico, Vieques, -65.4664, 18.1415, Puerto Rico, Vieques; -65.4664, 18.1415, Puerto Rico, 

Vieques; -66.8594, 17.9556, Puerto Rico, Yauco; -66.8594, 17.9557, Puerto Rico, Yauco; -66.8594, 17.9556, 

Puerto Rico, Yauco; -61.2333, 13.1667, Saint Vincent and the Grenadines, Saint Andrew; -61.2333, 13.1667, 

Saint Vincent and the Grenadines, Saint Andrew; -60.9500, 14.0660, Santa Lucia, Gros Islet; -61.0000, 

14.0160, Santa Lucia, Castries; -57.3000, 4.8000, Suriname, Sipaliwini, Kabalebo; -57.3000, 4.8000, 

Suriname, Sipaliwini, Kabalebo; -60.5000, 11.3000, Trinidad and Tobago, Tobago; -60.5000, 11.3000, 

Trinidad and Tobago, Tobago; -60.8300, 11.1500, Trinidad and Tobago, Tobago; -80.4711, 25.4472, United 

States, Florida, Miami-Dade; -80.4711, 25.4472, United States, Florida, Miami-Dade; -80.5844, 25.3944, 

United States, Florida, Miami-Dade; -80.5844, 25.3944, United States, Florida, Miami-Dade; -80.6567, 

25.4017, United States, Florida, Miami-Dade; -80.6567, 25.4017, United States, Florida, Miami-Dade; -

80.9228, 25.1425, United States, Florida, Monroe; -80.9228, 25.1425, United States, Florida, Monroe; -

81.7408, 24.5722, United States, Florida, Monroe; -81.7828, 24.5553, United States, Florida, Monroe; -

63.1400, 10.6100, Venezuela, Sucre, Benítez; -63.1400, 10.6100, Venezuela, Sucre, Benítez; -63.1800, 

10.2500, Venezuela, Sucre, Andrés Eloy Blanco; -63.1800, 10.2500, Venezuela, Sucre, Andrés Eloy Blanco; 

-63.9400, 11.0300, Venezuela, Nueva Esparta, Díaz; -63.9400, 11.0300, Venezuela, Nueva Esparta, Díaz; -

64.5000, 9.0000, Venezuela, Anzoátegui, Aragua; -64.5000, 9.0000, Venezuela, Anzoátegui, Aragua; -

64.7200, 10.0260, Venezuela, Anzoátegui, Bolívar; -64.7200, 10.0260, Venezuela, Anzoátegui, Bolívar; -

66.4500, 10.5300, Venezuela, Miranda, Zamora; -66.4500, 10.5300, Venezuela, Miranda, Zamora; -66.8500, 

10.5500, Venezuela, Distrito Capital, Vargas; -66.8500, 10.5500, Venezuela, Distrito Capital, Vargas; -

67.1800, 10.3600, Venezuela, Aragua, José Félix Ribas; -67.1800, 10.3600, Venezuela, Aragua, José Félix 

Ribas; -67.4800, 10.4400, Venezuela, Aragua, Santiago Mariño; -67.4800, 10.4400, Venezuela, Aragua, 

Santiago Mariño; -67.8600, 10.3800, Venezuela, Carabobo, Guacara; -67.8600, 10.3800, Venezuela, 

Carabobo, Guacara; -68.3200, 10.2100, Venezuela, Carabobo, Miranda; -68.3200, 10.2100, Venezuela, 

Carabobo, Miranda; -68.4100, 9.4700, Venezuela, Cojedes, San Carlos; -68.4100, 9.4700, Venezuela, 

Cojedes, San Carlos; -68.4700, 10.3400, Venezuela, Yaracuy, Autonomo San Felipe; -68.4700, 10.3400, 

Venezuela, Yaracuy, Autonomo San Felipe; -68.8900, 10.7000, Venezuela, Lara, Urdaneta; -68.8900, 

10.7000, Venezuela, Lara, Urdaneta; -69.5200, 10.1900, Venezuela, Lara, Iribarren; -69.5200, 10.1900, 

Venezuela, Lara, Iribarren; -69.5900, 11.4100, Venezuela, Falcón, Colina; -69.5900, 11.4100, Venezuela, 

Falcón, Colina; -70.8900, 9.3700, Venezuela, Trujillo, Rafael Rangel; -70.8900, 9.3700, Venezuela, Trujillo, 

Rafael Rangel; -71.8200, 10.8000, Venezuela, Zulia, Mara; -71.8200, 10.8000, Venezuela, Zulia, Mara; -

61.1160, 16.1600; -61.1300, 14.6300; -61.1600, 16.2500, Guadeloupe; -61.2500, 13.0000; -61.2500, 

13.0000; -61.3800, 12.5100; -61.4800, 16.2000; -62.2167, 16.7000; -62.2167, 16.7000; -62.2167, 16.7000; -
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66.2064, 17.9476, Puerto Rico; -66.2064, 17.9476, Puerto Rico; -69.7890, 18.0830; -85.2000, 15.9000, 

Honduras; -85.2000, 15.9000, Honduras; -39.2500, -17.7500, Brazil.  

 

 

Hemidactylus turcicus, native  

-0.4150, 38.5970, España, Comunidad Valenciana, Alicante, Alacanti, Torremanzanas; -0.4200, 

38.4200, España, Comunidad Valenciana, Alicante, Alacanti, Sant Joan d'Alacant; -0.4200, 38.5100, España, 

Comunidad Valenciana, Alicante, Alacanti, Busot; -0.5300, 38.5100, España, Comunidad Valenciana, 

Alicante, Alacanti, Jijona; -0.5400, 38.3300, España, Comunidad Valenciana, Alicante, Alacanti, Alicante; -

0.5400, 38.4200, España, Comunidad Valenciana, Alicante, Alacanti, San Vicente del Raspeig; -0.6500, 

38.4200, España, Comunidad Valenciana, Alicante, Alacanti, Agost; -0.6500, 38.5100, España, Comunidad 

Valenciana, Alicante, Alcoia, Tibi; -0.4800, 39.9500, España, Comunidad Valenciana, Castellón, Alt 

Palancia, Matet; -0.4900, 39.7700, España, Comunidad Valenciana, Castellón, Alt Palancia, Segorbe; -

0.6100, 39.7700, España, Comunidad Valenciana, Castellón, Alt Palancia, Altura; -0.9890, 38.6080, España, 

Comunidad Valenciana, Alicante, Alt Vinalopo, Villena; -0.9900, 38.6100, España, Comunidad Valenciana, 

Alicante, Alt Vinalopo, Villena; -0.9900, 38.6060, España, Comunidad Valenciana, Alicante, Alt Vinalopo, 

Villena; -1.1000, 38.6100, España, Región de Murcia, Murcia, Altiplano, Yecla; -1.1100, 38.3400, España, 

Región de Murcia, Murcia, Altiplano, Jumilla; -1.2200, 38.4300, España, Región de Murcia, Murcia, 

Altiplano, Jumilla; -1.2300, 38.3400, España, Región de Murcia, Murcia, Altiplano, Jumilla; -1.3400, 

38.5200, España, Región de Murcia, Murcia, Altiplano, Jumilla; -1.5810, 37.7150, España, Región de 

Murcia, Murcia, Alto Guadalentin, Lorca; -1.5820, 37.7140, España, Región de Murcia, Murcia, Alto 

Guadalentin, Lorca; -1.5900, 37.4400, España, Región de Murcia, Murcia, Alto Guadalentin, Águilas; -

1.7000, 37.4400, España, Región de Murcia, Murcia, Alto Guadalentin, Lorca; -1.8100, 37.5400, España, 

Región de Murcia, Murcia, Alto Guadalentin, Puerto Lumbreras; -1.8100, 37.7200, España, Región de 

Murcia, Murcia, Alto Guadalentin, Lorca; -3.1700, 37.9000, España, Andalucía, Jaén, Alto Guadalquivir, 

Peal de Becerro; -3.6200, 37.8100, España, Andalucía, Jaén, Área metropolitana de Jaén, Mancha Real; -

3.7400, 37.7200, España, Andalucía, Jaén, Área metropolitana de Jaén, Jaén; -3.7400, 37.8100, España, 

Andalucía, Jaén, Área metropolitana de Jaén, Jaén; -3.8500, 37.7200, España, Andalucía, Jaén, Área 

metropolitana de Jaén, Los Villares; -3.8500, 37.8100, España, Andalucía, Jaén, Área metropolitana de Jaén, 

Torre del Campo; -3.8510, 37.7190, España, Andalucía, Jaén, Área metropolitana de Jaén, Los Villares; -

3.8510, 37.7210, España, Andalucía, Jaén, Área metropolitana de Jaén, Los Villares; -3.9600, 37.6300, 

España, Andalucía, Jaén, Área metropolitana de Jaén, Martos; -4.1900, 37.7200, España, Andalucía, Jaén, 

Área metropolitana de Jaén, Santiago de Calatrava; -4.1900, 37.8100, España, Andalucía, Jaén, Área 

metropolitana de Jaén, Porcuna; -6.1500, 36.5200, España, Andalucía, Cádiz, Bahía de Cádiz, Puerto Real; -

6.1500, 36.6100, España, Andalucía, Cádiz, Bahía de Cádiz, El Puerto de Santa María; -6.1600, 36.4300, 

España, Andalucía, Cádiz, Bahía de Cádiz, Chiclana de la Frontera; -6.2600, 36.6100, España, Andalucía, 

Cádiz, Bahía de Cádiz, El Puerto de Santa María; 0.3210, 40.3970, España, Comunidad Valenciana, 

Castellón, Baix Maestrat, Peñíscola; 0.3220, 40.3950, España, Comunidad Valenciana, Castellón, Baix 

Maestrat, Peñíscola; 0.4600, 40.4900, España, Comunidad Valenciana, Castellón, Baix Maestrat, Vinaròs; -

0.6600, 38.0600, España, Comunidad Valenciana, Alicante, Baix Segura, Guardamar del Segura; -0.7700, 

38.1500, España, Comunidad Valenciana, Alicante, Baix Segura, Dolores; -0.7800, 37.8800, España, 
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Comunidad Valenciana, Alicante, Baix Segura, Pilar de la Horadada; -0.7800, 37.9700, España, Comunidad 

Valenciana, Alicante, Baix Segura, San Miguel de Salinas; -0.8900, 38.0600, España, Comunidad 

Valenciana, Alicante, Baix Segura, Orihuela; -0.8900, 38.1500, España, Comunidad Valenciana, Alicante, 

Baix Segura, Granja de Rocamora; -0.8900, 38.2400, España, Comunidad Valenciana, Alicante, Baix Segura, 

Albatera; -1.0000, 38.1600, España, Comunidad Valenciana, Alicante, Baix Segura, Benferri; -1.0020, 

38.1570, España, Comunidad Valenciana, Alicante, Baix Segura, Benferri; -1.0030, 38.1560, España, 

Comunidad Valenciana, Alicante, Baix Segura, Benferri; -1.0100, 38.0700, España, Comunidad Valenciana, 

Alicante, Baix Segura, Orihuela; -1.4600, 37.8900, España, Región de Murcia, Murcia, Bajo Guadalentín, 

Alhama de Murcia; -1.4700, 37.8000, España, Región de Murcia, Murcia, Bajo Guadalentín, Totana; -

1.5800, 37.8900, España, Región de Murcia, Murcia, Bajo Guadalentín, Totana; -0.2600, 39.6700, España, 

Comunidad Valenciana, Valencia, Camp de Morvedre, Sagunto; -0.3800, 39.6800, España, Comunidad 

Valenciana, Valencia, Camp de Morvedre, Segart; -0.4900, 39.6800, España, Comunidad Valenciana, 

Valencia, Camp de Túria, Serra; -0.5000, 39.5900, España, Comunidad Valenciana, Valencia, Camp de 

Túria, Bétera; -0.6100, 39.5900, España, Comunidad Valenciana, Valencia, Camp de Túria, Benaguasil; -

0.6100, 39.6800, España, Comunidad Valenciana, Valencia, Camp de Túria, Llíria; -0.7300, 39.6800, 

España, Comunidad Valenciana, Valencia, Camp de Túria, Casinos; -3.8560, 38.1720, España, Andalucía, 

Jaén, Campiña, Villanueva de la Reina; -3.8560, 38.1700, España, Andalucía, Jaén, Campiña, Villanueva de 

la Reina; -3.9700, 38.2600, España, Andalucía, Jaén, Campiña, Andújar; -3.9700, 38.3500, España, 

Andalucía, Jaén, Campiña, Andújar; -4.0800, 38.0800, España, Andalucía, Jaén, Campiña, Andújar; -4.0800, 

38.1700, España, Andalucía, Jaén, Campiña, Andújar; -5.5200, 36.6100, España, Andalucía, Cádiz, Campiña 

de Jerez, Jerez de la Frontera; -5.6300, 36.6100, España, Andalucía, Cádiz, Campiña de Jerez, Jerez de la 

Frontera; -5.9700, 36.6900, España, Andalucía, Cádiz, Campiña de Jerez, Jerez de la Frontera; -6.1500, 

36.7000, España, Andalucía, Cádiz, Campiña de Jerez, Jerez de la Frontera; -0.7900, 37.6100, España, 

Región de Murcia, Murcia, Campo de Cartagena, Cartagena; -0.9000, 37.6100, España, Región de Murcia, 

Murcia, Campo de Cartagena, Cartagena; -1.0100, 37.7100, España, Región de Murcia, Murcia, Campo de 

Cartagena, Cartagena; -1.0140, 37.7070, España, Región de Murcia, Murcia, Campo de Cartagena, 

Cartagena; -1.0150, 37.7060, España, Región de Murcia, Murcia, Campo de Cartagena, Cartagena; -1.0200, 

37.6200, España, Región de Murcia, Murcia, Campo de Cartagena, Cartagena; -1.1300, 37.6200, España, 

Región de Murcia, Murcia, Campo de Cartagena, Cartagena; -1.2400, 37.8000, España, Región de Murcia, 

Murcia, Campo de Cartagena, Fuente Álamo de Murcia; -5.3900, 36.2600, España, Andalucía, Cádiz, Campo 

de Gibraltar, San Roque; -5.4000, 36.3500, España, Andalucía, Cádiz, Campo de Gibraltar, Jimena de la 

Frontera; -5.4000, 36.4400, España, Andalucía, Cádiz, Campo de Gibraltar, Jimena de la Frontera; -5.5000, 

36.1600, España, Andalucía, Cádiz, Campo de Gibraltar, Los Barrios; -5.5000, 36.2500, España, Andalucía, 

Cádiz, Campo de Gibraltar, Los Barrios; -5.5070, 36.3440, España, Andalucía, Cádiz, Campo de Gibraltar, 

Castellar de la Frontera; -5.5070, 36.3460, España, Andalucía, Cádiz, Campo de Gibraltar, Castellar de la 

Frontera; -5.5100, 36.3400, España, Andalucía, Cádiz, Campo de Gibraltar, Castellar de la Frontera; -5.5100, 

36.4300, España, Andalucía, Cádiz, Campo de Gibraltar, Jimena de la Frontera; -5.6100, 36.0700, España, 

Andalucía, Cádiz, Campo de Gibraltar, Tarifa; -5.6100, 36.1600, España, Andalucía, Cádiz, Campo de 

Gibraltar, Tarifa; -5.6200, 36.2500, España, Andalucía, Cádiz, Campo de Gibraltar, Los Barrios; -5.7200, 

36.0700, España, Andalucía, Cádiz, Campo de Gibraltar, Tarifa; -0.8600, 39.0500, España, Comunidad 

Valenciana, Valencia, Canal de Navarres, Bicorp; -0.3800, 39.5000, España, Comunidad Valenciana, 
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Valencia, Ciutat de Valencia, Valencia; -0.4100, 38.7800, España, Comunidad Valenciana, Alicante, Comtat, 

Muro de Alcoy; -0.5200, 38.9600, España, Comunidad Valenciana, Valencia, Costera, Xàtiva; -0.7500, 

38.8700, España, Comunidad Valenciana, Valencia, Costera, Mogente; -3.0600, 38.3500, España, Andalucía, 

Jaén, El Condado, Montizón; -3.1700, 38.2600, España, Andalucía, Jaén, El Condado, Santisteban del 

Puerto; -3.2850, 38.1740, España, Andalucía, Jaén, El Condado, Navas de San Juan; -3.2850, 38.1730, 

España, Andalucía, Jaén, El Condado, Navas de San Juan; -3.4000, 38.3500, España, Andalucía, Jaén, El 

Condado, Vilches; -3.5100, 38.2600, España, Andalucía, Jaén, El Condado, Vilches; -0.6200, 39.5000, 

España, Comunidad Valenciana, Valencia, Foia de Bunyol, Cheste; -0.3370, 39.4960, España, Comunidad 

Valenciana, Valencia, Horta Nord, Alboraya; -0.3370, 39.4940, España, Comunidad Valenciana, Valencia, 

Horta Nord, Alboraya; -0.3800, 39.5900, España, Comunidad Valenciana, Valencia, Horta Nord, Museros; -

0.5000, 39.4100, España, Comunidad Valenciana, Valencia, Horta Oest, Torrent; -0.5000, 39.5000, España, 

Comunidad Valenciana, Valencia, Horta Oest, Manises; -0.5100, 39.3200, España, Comunidad Valenciana, 

Valencia, Horta Sud, Picassent; -1.0100, 37.9800, España, Región de Murcia, Murcia, Huera de Murcia, 

Murcia; -1.1200, 37.8900, España, Región de Murcia, Murcia, Huera de Murcia, Murcia; -1.1200, 37.9800, 

España, Región de Murcia, Murcia, Huera de Murcia, Murcia; -1.1200, 38.0700, España, Región de Murcia, 

Murcia, Huera de Murcia, Murcia; -1.2400, 37.8900, España, Región de Murcia, Murcia, Huera de Murcia, 

Murcia; -1.2400, 37.9800, España, Región de Murcia, Murcia, Huera de Murcia, Alcantarilla; -5.6200, 

36.3400, España, Andalucía, Cádiz, La Janda, Alcalá de los Gazules; -5.6200, 36.4300, España, Andalucía, 

Cádiz, La Janda, Alcalá de los Gazules; -5.6200, 36.5200, España, Andalucía, Cádiz, La Janda, Alcalá de los 

Gazules; -5.7300, 36.2500, España, Andalucía, Cádiz, La Janda, Medina-Sidonia; -5.7300, 36.3400, España, 

Andalucía, Cádiz, La Janda, Benalup-Casas Viejas; -5.7300, 36.4300, España, Andalucía, Cádiz, La Janda, 

Alcalá de los Gazules; -5.7400, 36.5200, España, Andalucía, Cádiz, La Janda, Alcalá de los Gazules; -

5.8400, 36.2500, España, Andalucía, Cádiz, La Janda, Vejer de la Frontera; -5.9600, 36.4200, España, 

Andalucía, Cádiz, La Janda, Medina-Sidonia; -6.0500, 36.2400, España, Andalucía, Cádiz, La Janda, Vejer 

de la Frontera; -3.4000, 38.0800, España, Andalucía, Jaén, Lalomay Lasvillas, Úbeda; -0.9000, 37.7900, 

España, Región de Murcia, Murcia, Mar Menor, Torre-Pacheco; -0.0700, 38.7700, España, Comunidad 

Valenciana, Alicante, Marina Alta, Murla; -0.1800, 38.7700, España, Comunidad Valenciana, Alicante, 

Marina Alta, Castell de Castells; 0.0600, 38.8600, España, Comunidad Valenciana, Alicante, Marina Alta, 

Dénia; 0.0700, 38.6800, España, Comunidad Valenciana, Alicante, Marina Alta, Benissa; 0.0700, 38.7700, 

España, Comunidad Valenciana, Alicante, Marina Alta, Gata de Gorgos; 0.1800, 38.7700, España, 

Comunidad Valenciana, Alicante, Marina Alta, Jávea; -0.0700, 38.5900, España, Comunidad Valenciana, 

Alicante, Marina Baixa, Altea; -0.1900, 38.5900, España, Comunidad Valenciana, Alicante, Marina Baixa, 

Finestrat; -0.3000, 38.5900, España, Comunidad Valenciana, Alicante, Marina Baixa, Relleu; -0.3520, 

38.5940, España, Comunidad Valenciana, Alicante, Marina Baixa, Relleu; 2.6960, 42.2290, España, 

Cataluña, Girona, Beuda; 2.6970, 42.2270, España, Cataluña, Girona, Beuda; 2.6970, 42.3900, España, 

Cataluña, Girona, Maçanet de Cabrenys; 3.0570, 42.3900, España, Cataluña, Girona, Rabós; 3.0600, 

42.3200, España, Cataluña, Girona, Garriguella; 3.1800, 42.3200, España, Cataluña, Girona, La Selva de 

Mar; 3.3000, 42.3200, España, Cataluña, Girona, Cadaqués; 2.6990, 41.7790, España, Cataluña, Girona, 

Maçanet de la Selva; 2.6990, 41.7770, España, Cataluña, Girona, Maçanet de la Selva; 2.8200, 41.6900, 

España, Cataluña, Girona, Lloret de Mar; 0.2900, 41.9300, España, Aragón, Huesca, San Esteban de Litera; 

0.2970, 41.7470, España, Aragón, Huesca, Esplús; 0.2970, 41.7450, España, Aragón, Huesca, Esplús; -
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6.2100, 37.8700, España, Andalucía, Huelva, Santa Olalla del Cala; -6.2100, 37.9600, España, Andalucía, 

Huelva, Santa Olalla del Cala; -6.2200, 37.7800, España, Andalucía, Huelva, Zufre; -6.3300, 37.7800, 

España, Andalucía, Huelva, Zufre; -6.3300, 37.8700, España, Andalucía, Huelva, Zufre; -6.4400, 37.7800, 

España, Andalucía, Huelva, Zufre; -6.4400, 37.9600, España, Andalucía, Huelva, Arroyomolinos de León; -

6.6700, 37.7900, España, Andalucía, Huelva, Almonaster la Real; -6.6700, 37.8800, España, Andalucía, 

Huelva, Castaño del Robledo; -6.6700, 37.9700, España, Andalucía, Huelva, Valdelarco; -6.7800, 37.8800, 

España, Andalucía, Huelva, Almonaster la Real; -6.7800, 37.9700, España, Andalucía, Huelva, La Nava; -

6.7800, 38.0600, España, Andalucía, Huelva, Cumbres de San Bartolomé; -6.7900, 37.7900, España, 

Andalucía, Huelva, Almonaster la Real; -6.8900, 37.9700, España, Andalucía, Huelva, Aroche; -6.8900, 

38.0600, España, Andalucía, Huelva, Encinasola; -6.8900, 38.1500, España, Andalucía, Huelva, Encinasola; 

-6.9000, 37.7900, España, Andalucía, Huelva, Cortegana; -6.9000, 37.8800, España, Andalucía, Huelva, 

Cortegana; -7.0100, 37.8000, España, Andalucía, Huelva, Cortegana; -7.0100, 37.8900, España, Andalucía, 

Huelva, Aroche; -7.0100, 37.9800, España, Andalucía, Huelva, Aroche; -7.1200, 37.8900, España, 

Andalucía, Huelva, Aroche; -7.1200, 37.9800, España, Andalucía, Huelva, Rosal de la Frontera; -7.2400, 

37.8900, España, Andalucía, Huelva, Rosal de la Frontera; -7.2400, 37.9800, España, Andalucía, Huelva, 

Rosal de la Frontera; -7.0100, 37.7100, España, Andalucía, Huelva, El Cerro de Andévalo; -7.0200, 37.5300, 

España, Andalucía, Huelva, Alosno; -7.0200, 37.6200, España, Andalucía, Huelva, Villanueva de las Cruces; 

-7.1300, 37.4400, España, Andalucía, Huelva, San Bartolomé de la Torre; -7.1300, 37.5300, España, 

Andalucía, Huelva, Alosno; -7.1300, 37.6200, España, Andalucía, Huelva, Alosno; -7.1300, 37.7100, 

España, Andalucía, Huelva, Cabezas Rubias; -7.1300, 37.8000, España, Andalucía, Huelva, Cabezas Rubias; 

-7.2400, 37.6200, España, Andalucía, Huelva, Puebla de Guzmán; -7.2400, 37.7100, España, Andalucía, 

Huelva, Paymogo; -7.2400, 37.8000, España, Andalucía, Huelva, Santa Bárbara de Casa; -7.2500, 37.4400, 

España, Andalucía, Huelva, Villanueva de los Castillejos; -7.2500, 37.5300, España, Andalucía, Huelva, El 

Almendro; -7.3500, 37.7100, España, Andalucía, Huelva, Paymogo; -7.3500, 37.8000, España, Andalucía, 

Huelva, Paymogo; -7.3600, 37.2600, España, Andalucía, Huelva, Ayamonte; -7.3600, 37.3500, España, 

Andalucía, Huelva, Ayamonte; -7.3600, 37.4400, España, Andalucía, Huelva, El Granado; -7.3600, 37.5300, 

España, Andalucía, Huelva, El Almendro; -7.3600, 37.6200, España, Andalucía, Huelva, Puebla de Guzmán; 

-7.4700, 37.5300, España, Andalucía, Huelva, El Granado; -7.4700, 37.6200, España, Andalucía, Huelva, 

Puebla de Guzmán; -6.4500, 37.6000, España, Andalucía, Huelva, Berrocal; -6.5600, 37.6100, España, 

Andalucía, Huelva, Zalamea la Real; -6.5600, 37.7000, España, Andalucía, Huelva, Minas de Riotinto; -

6.5600, 37.7900, España, Andalucía, Huelva, Campofrío; -6.6700, 37.7000, España, Andalucía, Huelva, El 

Campillo; -6.6800, 37.5200, España, Andalucía, Huelva, Valverde del Camino; -6.6800, 37.6100, España, 

Andalucía, Huelva, Zalamea la Real; -6.7900, 37.5200, España, Andalucía, Huelva, Valverde del Camino; -

6.7900, 37.6100, España, Andalucía, Huelva, Valverde del Camino; -6.7900, 37.7000, España, Andalucía, 

Huelva, Zalamea la Real; -6.9000, 37.6100, España, Andalucía, Huelva, Calañas; -6.9000, 37.7000, España, 

Andalucía, Huelva, Calañas; -6.9100, 37.2500, España, Andalucía, Huelva, Moguer; -6.9100, 37.3400, 

España, Andalucía, Huelva, Moguer; -6.9100, 37.4300, España, Andalucía, Huelva, Gibraleón; -7.0200, 

37.3500, España, Andalucía, Huelva, Gibraleón; -7.0200, 37.4400, España, Andalucía, Huelva, Gibraleón; -

7.0300, 37.2600, España, Andalucía, Huelva, Aljaraque; -7.1400, 37.2600, España, Andalucía, Huelva, 

Cartaya; -7.1400, 37.3500, España, Andalucía, Huelva, Cartaya; -6.4600, 37.3300, España, Andalucía, 

Huelva, Hinojos; -6.4620, 37.2470, España, Andalucía, Huelva, Almonte; -6.4630, 37.2440, España, 
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Andalucía, Huelva, Almonte; -6.5800, 37.1600, España, Andalucía, Huelva, Almonte; -6.5800, 37.2500, 

España, Andalucía, Huelva, Almonte; -6.6900, 37.1600, España, Andalucía, Huelva, Almonte; -6.8000, 

37.1600, España, Andalucía, Huelva, Moguer; -6.9200, 37.1600, España, Andalucía, Huelva, Moguer; -

6.3400, 37.4200, España, Andalucía, Huelva, Escacena del Campo; -6.4500, 37.5100, España, Andalucía, 

Huelva, Paterna del Campo; -6.5700, 37.3400, España, Andalucía, Huelva, Bollullos Par del Condado; -

6.5700, 37.4300, España, Andalucía, Huelva, La Palma del Condado; -6.5700, 37.5200, España, Andalucía, 

Huelva, Paterna del Campo; -6.6900, 37.2500, España, Andalucía, Huelva, Bonares; -6.6900, 37.3400, 

España, Andalucía, Huelva, Bonares; -6.8000, 37.3400, España, Andalucía, Huelva, Trigueros; -6.8000, 

37.4300, España, Andalucía, Huelva, Beas; -6.9100, 37.5200, España, Andalucía, Huelva, Beas; -5.5600, 

37.9600, España, Andalucía, Sevilla, Constantina; -5.6700, 37.8700, España, Andalucía, Sevilla, 

Constantina; -5.6800, 37.9600, España, Andalucía, Sevilla, Alanís; -5.7800, 37.7800, España, Andalucía, 

Sevilla, El Pedroso; -5.7900, 37.8700, España, Andalucía, Sevilla, El Pedroso; -5.8900, 37.6900, España, 

Andalucía, Sevilla, Castilblanco de los Arroyos; -5.9000, 37.7800, España, Andalucía, Sevilla, Castilblanco 

de los Arroyos; -5.9000, 37.9600, España, Andalucía, Sevilla, Cazalla de la Sierra; -5.9100, 38.0500, España, 

Andalucía, Sevilla, Guadalcanal; -5.9990, 37.6910, España, Andalucía, Sevilla, Castilblanco de los Arroyos; 

-6.1000, 37.7800, España, Andalucía, Sevilla, Almadén de la Plata; -6.1000, 37.8700, España, Andalucía, 

Sevilla, Almadén de la Plata; -6.1000, 37.9600, España, Andalucía, Sevilla, El Real de la Jara; -6.1100, 

37.6000, España, Andalucía, Sevilla, Guillena; -6.1100, 37.6900, España, Andalucía, Sevilla, Guillena; -

6.1200, 37.5100, España, Andalucía, Sevilla, Gerena; -6.2200, 37.6900, España, Andalucía, Sevilla, El 

Castillo de las Guardas; -6.2300, 37.5100, España, Andalucía, Sevilla, Aznalcóllar; -6.3300, 37.6900, 

España, Andalucía, Sevilla, El Castillo de las Guardas; -6.3400, 37.5100, España, Andalucía, Sevilla, 

Aznalcóllar; -6.4500, 37.6900, España, Andalucía, Sevilla, El Madroño; -5.5400, 37.2400, España, 

Andalucía, Sevilla, Arahal; -5.6400, 36.9700, España, Andalucía, Sevilla, Utrera; -5.7700, 37.3300, España, 

Andalucía, Sevilla, Alcalá de Guadaíra; -5.7700, 37.5100, España, Andalucía, Sevilla, Carmona; -5.8800, 

37.3300, España, Andalucía, Sevilla, Alcalá de Guadaíra; -5.6700, 37.6900, España, Andalucía, Sevilla, 

Villanueva del Río y Minas; -5.7800, 37.6900, España, Andalucía, Sevilla, Villanueva del Río y Minas; -

5.8800, 37.5100, España, Andalucía, Sevilla, La Rinconada; -5.9900, 37.3200, España, Andalucía, Sevilla, 

Sevilla; -6.0100, 37.4100, España, Andalucía, Sevilla, Sevilla; -6.0100, 37.3200, España, Andalucía, Sevilla, 

Gelves; -6.3500, 37.3300, España, Andalucía, Sevilla, Huévar del Aljarafe; -6.1300, 37.2400, España, 

Andalucía, Sevilla, La Puebla del Río; -6.3500, 37.1500, España, Andalucía, Sevilla, Aznalcázar; -5.5300, 

37.1500, España, Andalucía, Sevilla, Morón de la Frontera; 1.3800, 41.4100, España, Cataluña, Tarragona, 

Querol; 1.5060, 41.3190, España, Cataluña, Tarragona, El Montmell; 1.5070, 41.3170, España, Cataluña, 

Tarragona, El Montmell; 1.5100, 41.2300, España, Cataluña, Tarragona, El Vendrell; 1.2700, 41.1300, 

España, Cataluña, Tarragona, Tarragona; 1.3900, 41.1400, España, Cataluña, Tarragona, Torredembarra; 

0.5500, 41.2100, España, Cataluña, Tarragona, Flix; 0.6800, 41.1200, España, Cataluña, Tarragona, Garcia; 

0.3130, 40.8470, España, Cataluña, Tarragona, Horta de Sant Joan; 0.3140, 40.8450, España, Cataluña, 

Tarragona, Horta de Sant Joan; 0.3300, 40.7600, España, Cataluña, Tarragona, Mas de Barberans; 0.5700, 

40.6700, España, Cataluña, Tarragona, Amposta; 0.5700, 40.7600, España, Cataluña, Tarragona, Tortosa; 

0.6900, 40.6700, España, Cataluña, Tarragona, Amposta; 0.6900, 40.7600, España, Cataluña, Tarragona, 

Deltebre; 0.6900, 40.8500, España, Cataluña, Tarragona, El Perelló; 0.7000, 40.5800, España, Cataluña, 

Tarragona, Sant Carles de la Ràpita; 0.8100, 40.6800, España, Cataluña, Tarragona, Sant Jaume d'Enveja; 
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0.2000, 41.2000, España, Aragón, Zaragoza, Nonaspe; 2.4600, 41.6000, España, Cataluña, Barcelona, 

Dosrius; 2.5800, 41.6000, España, Cataluña, Barcelona, Canet de Mar; 2.2200, 41.6800, España, Cataluña, 

Barcelona, Bigues i Riells; 2.3400, 41.5900, España, Cataluña, Barcelona, La Roca del Vallès; 2.0980, 

41.7730, España, Cataluña, Barcelona, Castellterçol; 2.0980, 41.7750, España, Cataluña, Barcelona, 

Castellterçol; 1.7300, 41.8600, España, Cataluña, Barcelona, Navàs; 1.8600, 41.7700, España, Cataluña, 

Barcelona, Sant Fruitós de Bages; 1.8600, 41.5900, España, Cataluña, Barcelona, Esparreguera; 1.9800, 

41.3200, España, Cataluña, Barcelona, Sant Climent de Llobregat; 1.9800, 41.4100, España, Cataluña, 

Barcelona, La Palma de Cervelló; 1.9800, 41.5000, España, Cataluña, Barcelona, Castellbisbal; 2.1000, 

41.3200, España, Cataluña, Barcelona, El Prat de Llobregat; 2.1000, 41.4100, España, Cataluña, Barcelona, 

Barcelona; 2.1030, 41.3240, España, Cataluña, Barcelona, El Prat de Llobregat; 2.1040, 41.3230, España, 

Cataluña, Barcelona, El Prat de Llobregat; 2.2200, 41.4100, España, Cataluña, Barcelona, Barcelona; 1.7500, 

41.2300, España, Cataluña, Barcelona, Sant Pere de Ribes; 1.8600, 41.4100, España, Cataluña, Barcelona, 

Gelida; 1.8600, 41.5000, España, Cataluña, Barcelona, Sant Esteve Sesrovires; -6.9800, 38.8800, España, 

Extremadura, Badajoz, Badajoz; -6.1700, 38.9500, España, Extremadura, Badajoz, San Pedro de Mérida; -

6.1800, 38.7700, España, Extremadura, Badajoz, Oliva de Mérida; -6.2800, 39.0400, España, Extremadura, 

Badajoz, Mérida; -6.2900, 38.9500, España, Extremadura, Badajoz, Mérida; -6.3430, 39.0460, España, 

Extremadura, Badajoz, Aljucén; -6.3440, 39.0440, España, Extremadura, Badajoz, Aljucén; -6.4000, 

38.9600, España, Extremadura, Badajoz, Mérida; -6.4100, 38.8700, España, Extremadura, Badajoz, Mérida; -

6.0700, 38.5900, España, Extremadura, Badajoz, Hornachos; -6.0800, 38.5000, España, Extremadura, 

Badajoz, Hornachos; -6.4200, 38.4200, España, Extremadura, Badajoz, Zafra; -6.5300, 38.5100, España, 

Extremadura, Badajoz, Feria; -6.5300, 38.6900, España, Extremadura, Badajoz, Aceuchal; -6.6400, 38.6900, 

España, Extremadura, Badajoz, Santa Marta; -6.5400, 38.4200, España, Extremadura, Badajoz, Burguillos 

del Cerro; -6.6600, 38.1500, España, Extremadura, Badajoz, Fregenal de la Sierra; -6.7700, 38.1500, España, 

Extremadura, Badajoz, Higuera la Real; -6.7700, 38.3300, España, Extremadura, Badajoz, Jerez de los 

Caballeros; -7.0000, 38.3400, España, Extremadura, Badajoz, Zahínos; -5.9100, 38.1400, España, 

Extremadura, Badajoz, Fuente del Arco; -5.9990, 38.1410, España, Extremadura, Badajoz, Fuente del Arco; -

6.4300, 38.3300, España, Extremadura, Badajoz, Medina de las Torres; -5.5700, 38.1500, España, 

Extremadura, Badajoz, Azuaga; -5.6800, 38.2300, España, Extremadura, Badajoz, Azuaga; -5.8000, 38.2300, 

España, Extremadura, Badajoz, Valverde de Llerena; -5.6560, 39.0460, España, Extremadura, Badajoz, Don 

Benito; -5.6560, 39.0440, España, Extremadura, Badajoz, Don Benito; -5.8300, 38.9500, España, 

Extremadura, Badajoz, Don Benito; 3.8780, 39.9740, España, Islas Baleares, Baleares, Ciutadella de 

Menorca; 3.8780, 39.9720, España, Islas Baleares, Baleares, Ciutadella de Menorca; 3.8800, 39.9700, 

España, Islas Baleares, Baleares, Ciutadella de Menorca; 4.0000, 40.0000, España, Islas Baleares, Baleares, 

Ferreries; 1.3300, 38.8800, España, Islas Baleares, Baleares, Sant Josep de sa Talaia; 1.3300, 38.9700, 

España, Islas Baleares, Baleares, Sant Antoni de Portmany; 1.4400, 39.0600, España, Islas Baleares, 

Baleares, Sant Joan de Labritja; 1.4500, 38.7000, España, Islas Baleares, Baleares, Formentera; 1.5540, 

39.0670, España, Islas Baleares, Baleares, Sant Joan de Labritja; 1.5550, 39.0650, España, Islas Baleares, 

Baleares, Sant Joan de Labritja; 1.5600, 39.0700, España, Islas Baleares, Baleares, Sant Joan de Labritja; 

4.1100, 39.8800, España, Islas Baleares, Baleares, Alaior; 4.2300, 39.8800, España, Islas Baleares, Baleares, 

Mahón; 3.2900, 39.5260, España, Islas Baleares, Baleares, Manacor; 3.2910, 39.5240, España, Islas 

Baleares, Baleares, Manacor; 3.1700, 39.3400, España, Islas Baleares, Baleares, Santanyí; 3.1700, 39.4300, 
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España, Islas Baleares, Baleares, Felanitx; 2.4800, 39.5200, España, Islas Baleares, Baleares, Calvià; 2.5900, 

39.6100, España, Islas Baleares, Baleares, Puigpunyent; 2.7100, 39.7900, España, Islas Baleares, Baleares, 

Sóller; 2.8200, 39.8000, España, Islas Baleares, Baleares, Escorca; 2.9400, 39.8900, España, Islas Baleares, 

Baleares, Pollença; 2.7100, 39.6100, España, Islas Baleares, Baleares, Marratxí; 2.9400, 39.8000, España, 

Islas Baleares, Baleares, Campanet; -5.6000, 39.1400, España, Extremadura, Cáceres, Madrigalejo; -5.7300, 

39.3100, España, Extremadura, Cáceres, Zorita; -6.2700, 39.3100, España, Extremadura, Cáceres, 

Torreorgaz; -6.2700, 39.4000, España, Extremadura, Cáceres, Cáceres; -6.2800, 39.2200, España, 

Extremadura, Cáceres, Casas de Don Antonio; -6.3360, 39.4960, España, Extremadura, Cáceres, Cáceres; -

6.3370, 39.4940, España, Extremadura, Cáceres, Cáceres; -6.3800, 39.5000, España, Extremadura, Cáceres, 

Cáceres; -5.6630, 39.4960, España, Extremadura, Cáceres, Aldeacentenera; -5.6630, 39.4940, España, 

Extremadura, Cáceres, Aldeacentenera; -1.6900, 38.0800, España, Región de Murcia, Murcia, Noroeste, 

Bullas; -1.6900, 38.2600, España, Región de Murcia, Murcia, Noroeste, Calasparra; -1.8000, 38.0800, 

España, Región de Murcia, Murcia, Noroeste, Cehegín; -2.1430, 38.1720, España, Región de Murcia, 

Murcia, Noroeste, Moratalla; -2.1440, 38.1700, España, Región de Murcia, Murcia, Noroeste, Moratalla; -

1.0000, 38.2500, España, Región de Murcia, Murcia, Oriental, Abanilla; -1.1100, 38.2500, España, Región 

de Murcia, Murcia, Oriental, Abanilla; -1.1200, 38.1600, España, Región de Murcia, Murcia, Oriental, 

Fortuna; -0.0100, 40.0300, España, Comunidad Valenciana, Castellón, Plana Alta, Castellón de la Plana; -

0.0100, 40.1200, España, Comunidad Valenciana, Castellón, Plana Alta, Vilafamés; -0.0200, 39.9400, 

España, Comunidad Valenciana, Castellón, Plana Alta, Almazora; 0.0100, 40.0300, España, Comunidad 

Valenciana, Castellón, Plana Alta, Castellón de la Plana; 0.0100, 40.1200, España, Comunidad Valenciana, 

Castellón, Plana Alta, La Pobla Tornesa; 0.1200, 40.1200, España, Comunidad Valenciana, Castellón, Plana 

Alta, Cabanes; -0.1300, 39.9400, España, Comunidad Valenciana, Castellón, Plana Baixa, Villarreal; -

0.2500, 39.9400, España, Comunidad Valenciana, Castellón, Plana Baixa, Onda; -0.3290, 39.9460, España, 

Comunidad Valenciana, Castellón, Plana Baixa, Sueras; -0.3290, 39.9440, España, Comunidad Valenciana, 

Castellón, Plana Baixa, Tales; -0.3700, 39.9500, España, Comunidad Valenciana, Castellón, Plana Baixa, 

Sueras; -1.0900, 39.3300, España, Comunidad Valenciana, Valencia, Requena-Utiel, Requena; -0.5100, 

39.2300, España, Comunidad Valenciana, Valencia, Ribera Alta, Carlet; -0.6200, 39.2300, España, 

Comunidad Valenciana, Valencia, Ribera Alta, Tous; -0.2800, 39.1300, España, Comunidad Valenciana, 

Valencia, Ribera Baixa, Favara; -0.2800, 39.2200, España, Comunidad Valenciana, Valencia, Ribera Baixa, 

Sueca; -1.4600, 37.9800, España, Región de Murcia, Murcia, Rio Mua, Mula; -1.4600, 38.0700, España, 

Región de Murcia, Murcia, Rio Mua, Mula; -1.5700, 38.0700, España, Región de Murcia, Murcia, Rio Mua, 

Mula; -1.5720, 38.1660, España, Región de Murcia, Murcia, Rio Mua, Mula; -1.5730, 38.1640, España, 

Región de Murcia, Murcia, Rio Mua, Mula; -0.7300, 39.5900, España, Comunidad Valenciana, Valencia, 

Serranos, Pedralba; -0.8400, 39.6800, España, Comunidad Valenciana, Valencia, Serranos, Chulilla; -0.9600, 

39.6900, España, Comunidad Valenciana, Valencia, Serranos, Domeño; -5.3000, 36.8900, España, 

Andalucía, Cádiz, Sierra de Cádiz, Olvera; -5.3000, 36.9800, España, Andalucía, Cádiz, Sierra de Cádiz, 

Olvera; -5.4100, 36.7100, España, Andalucía, Cádiz, Sierra de Cádiz, Benaocaz; -5.5200, 36.7000, España, 

Andalucía, Cádiz, Sierra de Cádiz, Benaocaz; -5.5220, 36.7940, España, Andalucía, Cádiz, Sierra de Cádiz, 

Prado del Rey; -5.5220, 36.7960, España, Andalucía, Cádiz, Sierra de Cádiz, Prado del Rey; -5.6300, 

36.7000, España, Andalucía, Cádiz, Sierra de Cádiz, Arcos de la Frontera; -5.7500, 36.7900, España, 

Andalucía, Cádiz, Sierra de Cádiz, Arcos de la Frontera; -5.7500, 36.8800, España, Andalucía, Cádiz, Sierra 
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de Cádiz, Espera; -5.8600, 36.7900, España, Andalucía, Cádiz, Sierra de Cádiz, Arcos de la Frontera; -

3.2830, 37.7240, España, Andalucía, Jaén, Sierra Magina, Cabra del Santo Cristo; -3.2840, 37.7220, España, 

Andalucía, Jaén, Sierra Magina, Cabra del Santo Cristo; -3.6200, 37.6300, España, Andalucía, Jaén, Sierra 

Magina, Cárcheles; -3.6200, 37.7200, España, Andalucía, Jaén, Sierra Magina, Pegalajar; -3.5200, 38.3500, 

España, Andalucía, Jaén, Sierra Norte, Santa Elena; -3.6300, 38.1700, España, Andalucía, Jaén, Sierra Norte, 

Guarromán; -3.6300, 38.2600, España, Andalucía, Jaén, Sierra Norte, La Carolina; -3.7400, 38.0800, España, 

Andalucía, Jaén, Sierra Norte, Bailén; -3.7400, 38.1700, España, Andalucía, Jaén, Sierra Norte, Baños de la 

Encina; -3.8500, 37.6300, España, Andalucía, Jaén, Sierra Sur, Valdepeñas de Jaén; -4.1900, 37.6300, 

España, Andalucía, Jaén, Sierra Sur, Alcaudete; -0.4100, 38.8700, España, Comunidad Valenciana, Valencia, 

Vall d'Albaida, Ráfol de Salem; -0.5200, 38.8700, España, Comunidad Valenciana, Valencia, Vall d'Albaida, 

Albaida; -1.0900, 39.2400, España, Comunidad Valenciana, Valencia, Vall de Confrents, Cofrentes; -1.3400, 

38.1600, España, Región de Murcia, Murcia, Valle de Ricote, Ojós; -1.3500, 38.0700, España, Región de 

Murcia, Murcia, Valle de Ricote, Ojós; -1.4600, 38.2500, España, Región de Murcia, Murcia, Vega Alta, 

Cieza; -1.5700, 38.2500, España, Región de Murcia, Murcia, Vega Alta, Cieza; -1.2300, 38.0700, España, 

Región de Murcia, Murcia, Vega Media, Molina de Segura; -1.2300, 38.1600, España, Región de Murcia, 

Murcia, Vega Media, Molina de Segura; -0.5400, 38.2400, España, Comunidad Valenciana, Alicante, 

Vinalopo, Santa Pola; -0.6500, 38.3300, España, Comunidad Valenciana, Alicante, Vinalopo, Elche; -0.6600, 

38.1500, España, Comunidad Valenciana, Alicante, Vinalopo, Elche; -0.6600, 38.2400, España, Comunidad 

Valenciana, Alicante, Vinalopo, Elche; -0.7700, 38.2400, España, Comunidad Valenciana, Alicante, 

Vinalopo, Elche; -0.7600, 38.5100, España, Comunidad Valenciana, Alicante, Vinalopo Mitja, Petrer; -

0.7700, 38.3300, España, Comunidad Valenciana, Alicante, Vinalopo Mitja, Aspe; -0.7700, 38.4200, España, 

Comunidad Valenciana, Alicante, Vinalopo Mitja, Novelda; -1.0000, 38.4300, España, Comunidad 

Valenciana, Alicante, Vinalopo Mitja, Pinoso; 19.4810, 41.3600, Albania, Durrës, Durrës; -0.6420, 35.6910, 

Algeria, Oran, -0.7410, 35.6120, Algeria, Oran, 0.7500, 35.7000, Algeria, Relizane, 2.4000, 36.3830, 

Algeria, Aïn Defla, 3.0510, 36.7630, Algeria, Alger, 3.2500, 34.6600, Algeria, Djelfa, 3.6890, 36.1500, 

Algeria, Bouira, 4.3000, 36.3000, Algeria, Bouira; 5.7330, 34.8500, Algeria, Biskra; 7.7670, 36.9000, 

Algeria, Annaba; 14.6100, 45.3300, Croatia, Primorsko-Goranska; 14.8760, 45.1550, Croatia, Primorsko-

Goranska; 14.9440, 44.7980, Croatia, Licko-Senjska; 15.1190, 44.5700, Croatia, Licko-Senjska; 15.4150, 

44.0920, Croatia, Zadarska; 15.6120, 43.9250, Croatia, Zadarska; 15.8100, 43.8180, Croatia, Šibensko-

Kninska; 16.0450, 43.6130, Croatia, Šibensko-Kninska; 16.1440, 43.0510, Croatia, Splitsko-Dalmatinska; 

16.2660, 43.3930, Croatia, Splitsko-Dalmatinska; 16.6530, 43.3170, Croatia, Splitsko-Dalmatinska; 16.7740, 

42.9300, Croatia, Dubrovacko-Neretvanska; 16.9340, 42.9370, Croatia, Dubrovacko-Neretvanska; 17.9140, 

42.8010, Croatia, Dubrovacko-Neretvanska; 18.3090, 42.5580, Croatia, Dubrovacko-Neretvanska; 33.1800, 

34.7300, Cyprus, Limassol; 33.3520, 35.2020, Cyprus, Nicosia; 27.2300, 31.2500, Egypt, Matruh; 27.2330, 

31.3500, Egypt, Matruh; 29.7500, 31.0000, Egypt, Al Iskandariyah; 29.8500, 31.1500, Egypt, Al 

Iskandariyah; 30.0670, 31.3170, Egypt, Al Iskandariyah; 30.9100, 29.4500, Egypt, Al Fayyum; 30.9800, 

30.3800, Egypt, Al Minufiyah; 31.3000, 29.7670, Egypt, Al Jizah; 31.3330, 30.1000, Egypt, Al Qahirah; 

32.3000, 30.5830, Egypt, Al Isma`iliyah; 32.3100, 30.3100, Egypt, Al Isma`iliyah; 32.5500, 29.9800, Egypt, 

As Suways; 32.8670, 24.9670, Egypt, Aswan, 33.8300, 27.2300, Egypt, Al Bahr al Ahmar, 34.3600, 

30.6600, Egypt, Shamal Sina', -0.0900, 41.0200, España, Aragón, Teruel, Alcañiz; -0.1700, 38.9500, España, 

Comunidad Valenciana, Valencia, Bellreguard; -0.1900, 41.4700, España, Aragón, Zaragoza, Bujaraloz; -
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0.2000, 41.1100, España, Aragón, Teruel, Alcañiz; -0.2900, 38.9500, España, Comunidad Valenciana, 

Valencia, Ador; -0.2960, 41.7470, España, Aragón, Huesca, Sariñena; -0.2970, 41.7450, España, Aragón, 

Huesca, Sariñena; -0.3130, 40.8470, España, Aragón, Teruel, Castellote; -0.3140, 40.8450, España, Aragón, 

Teruel, Castellote; -0.3210, 40.3970, España, Aragón, Teruel, Mosqueruela; -0.3220, 40.3950, España, 

Aragón, Teruel, Mosqueruela; -0.3300, 40.9400, España, Aragón, Teruel, Alcorisa; -0.3440, 39.0460, 

España, Comunidad Valenciana, Valencia, Simat de la Valldigna; -0.3440, 39.0440, España, Comunidad 

Valenciana, Valencia, Simat de la Valldigna; -0.4000, 42.1100, España, Aragón, Huesca, Huesca; -0.4300, 

41.3000, España, Aragón, Teruel, La Puebla de Híjar; -0.4300, 41.3900, España, Aragón, Zaragoza, Velilla 

de Ebro; -0.4400, 41.0300, España, Aragón, Teruel, Andorra; -0.4400, 41.1200, España, Aragón, Teruel, 

Híjar; -0.4400, 41.2100, España, Aragón, Teruel, La Puebla de Híjar; -0.5300, 41.7500, España, Aragón, 

Zaragoza, Perdiguera; -0.5400, 41.4800, España, Aragón, Zaragoza, Quinto; -0.5600, 41.0300, España, 

Aragón, Teruel, Ariño; -0.5600, 41.1200, España, Aragón, Teruel, Albalate del Arzobispo; -0.7700, 41.7600, 

España, Aragón, Zaragoza, Zaragoza; -0.7800, 41.5800, España, Aragón, Zaragoza, El Burgo de Ebro; -

0.7800, 41.6700, España, Aragón, Zaragoza, Zaragoza; -0.8940, 41.7600, España, Aragón, Zaragoza, 

Zaragoza; -0.8950, 41.7580, España, Aragón, Zaragoza, Zaragoza; -0.9000, 41.6700, España, Aragón, 

Zaragoza, Zaragoza; -1.3800, 41.5000, España, Aragón, Zaragoza, La Almunia de Doña Godina; -1.5630, 

38.6160, España, Castilla-La Mancha, Albacete, Tobarra; -1.5640, 38.6150, España, Castilla-La Mancha, 

Albacete, Tobarra; -1.7000, 37.3500, España, Andalucía, Almería, Pulpí; -1.8100, 37.3600, España, 

Andalucía, Almería, Cuevas del Almanzora; -1.8100, 37.4500, España, Andalucía, Almería, Pulpí; -1.8200, 

37.2700, España, Andalucía, Almería, Cuevas del Almanzora; -1.9300, 37.0000, España, Andalucía, 

Almería, Carboneras; -1.9300, 37.0900, España, Andalucía, Almería, Turre; -1.9300, 37.1800, España, 

Andalucía, Almería, Los Gallardos; -1.9300, 37.2700, España, Andalucía, Almería, Antas; -1.9300, 37.3600, 

España, Andalucía, Almería, Huércal-Overa; -2.0400, 37.0000, España, Andalucía, Almería, Lucainena de 

las Torres; -2.0400, 37.0900, España, Andalucía, Almería, Sorbas; -2.0400, 37.1800, España, Andalucía, 

Almería, Lubrín; -2.0400, 37.2700, España, Andalucía, Almería, Lubrín; -2.0400, 37.3600, España, 

Andalucía, Almería, Zurgena; -2.0400, 37.5400, España, Andalucía, Almería, Vélez-Rubio; -2.0500, 

36.8200, España, Andalucía, Almería, Níjar; -2.0500, 36.9100, España, Andalucía, Almería, Níjar; -2.1480, 

37.7210, España, Andalucía, Almería, María; -2.1490, 37.7190, España, Andalucía, Almería, María; -2.1500, 

37.2700, España, Andalucía, Almería, Albánchez; -2.1500, 37.3600, España, Andalucía, Almería, Albox; -

2.1500, 37.4500, España, Andalucía, Almería, Albox; -2.1500, 37.5400, España, Andalucía, Almería, Albox; 

-2.1580, 36.8200, España, Andalucía, Almería, Níjar; -2.1590, 36.8180, España, Andalucía, Almería, Níjar; -

2.1600, 36.7300, España, Andalucía, Almería, Níjar; -2.1600, 36.8200, España, Andalucía, Almería, Níjar; -

2.1600, 36.9100, España, Andalucía, Almería, Níjar; -2.1600, 37.0000, España, Andalucía, Almería, Níjar; -

2.1600, 37.0900, España, Andalucía, Almería, Sorbas; -2.1600, 37.1800, España, Andalucía, Almería, Uleila 

del Campo; -2.2600, 38.1700, España, Castilla-La Mancha, Albacete, Nerpio; -2.2700, 36.8200, España, 

Andalucía, Almería, Almería; -2.2700, 36.9100, España, Andalucía, Almería, Almería; -2.2700, 37.0000, 

España, Andalucía, Almería, Turrillas; -2.2700, 37.0900, España, Andalucía, Almería, Tabernas; -2.2700, 

37.2700, España, Andalucía, Almería, Chercos; -2.2700, 37.3600, España, Andalucía, Almería, Fines; -

2.2700, 37.4500, España, Andalucía, Almería, Oria; -2.3800, 36.9100, España, Andalucía, Almería, Viator; -

2.3800, 37.0900, España, Andalucía, Almería, Tabernas; -2.3800, 37.1800, España, Andalucía, Almería, 

Velefique; -2.4900, 37.0000, España, Andalucía, Almería, Gádor; -2.4900, 37.0900, España, Andalucía, 
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Almería, Gérgal; -2.6100, 37.0900, España, Andalucía, Almería, Alboloduy; -2.6100, 37.1800, España, 

Andalucía, Almería, Gérgal; -2.7190, 36.8230, España, Andalucía, Almería, Vícar; -2.7200, 36.8210, 

España, Andalucía, Almería, Dalías; -2.8300, 36.7300, España, Andalucía, Almería, El Ejido; -2.9400, 

36.8200, España, Andalucía, Almería, Berja; -2.9400, 36.9100, España, Andalucía, Almería, Berja; -2.9400, 

37.3600, España, Andalucía, Granada, Gor; -3.0600, 36.8200, España, Andalucía, Almería, Berja; -3.1700, 

36.8200, España, Andalucía, Granada, Albuñol; -3.2800, 36.8230, España, Andalucía, Granada, Sorvilán; -

3.2800, 36.8200, España, Andalucía, Granada, Sorvilán; -3.2800, 36.8210, España, Andalucía, Granada, 

Sorvilán; -3.2810, 37.2730, España, Andalucía, Granada, La Peza; -3.2820, 37.2710, España, Andalucía, 

Granada, La Peza; -3.3900, 36.7300, España, Andalucía, Granada, Gualchos; -3.3900, 36.9100, España, 

Andalucía, Granada, Carataunas; -3.5000, 36.7300, España, Andalucía, Granada, Motril; -3.5000, 36.8200, 

España, Andalucía, Granada, Vélez de Benaudalla; -3.5100, 36.9100, España, Andalucía, Granada, Lanjarón; 

-3.6200, 36.8200, España, Andalucía, Granada, Itrabo; -3.6200, 37.0900, España, Andalucía, Granada, Otura; 

-3.6200, 37.1800, España, Andalucía, Granada, Granada; -3.7300, 36.7300, España, Andalucía, Granada, 

Almuñécar; -3.7300, 36.8200, España, Andalucía, Granada, Otívar; -3.7300, 37.3600, España, Andalucía, 

Granada, Colomera; -3.8400, 36.8200, España, Andalucía, Málaga, Nerja; -3.8410, 36.8180, España, 

Andalucía, Málaga, Nerja; -3.8460, 37.2700, España, Andalucía, Granada, Illora; -3.8460, 37.2690, España, 

Andalucía, Granada, Illora; -3.9500, 36.8200, España, Andalucía, Málaga, Cómpeta; -3.9600, 37.1800, 

España, Andalucía, Granada, Moraleda de Zafayona; -4.0700, 36.8200, España, Andalucía, Málaga, Arenas; 

-4.0700, 37.1800, España, Andalucía, Granada, Huétor Tájar; -4.1800, 36.7300, España, Andalucía, Málaga, 

Vélez-Málaga; -4.1800, 36.8200, España, Andalucía, Málaga, Benamargosa; -4.1800, 36.9100, España, 

Andalucía, Málaga, Periana; -4.1800, 37.0000, España, Andalucía, Granada, Zafarraya; -4.1800, 37.1800, 

España, Andalucía, Granada, Loja; -4.1800, 37.2700, España, Andalucía, Granada, Algarinejo; -4.2900, 

36.7200, España, Andalucía, Málaga, Rincón de la Victoria; -4.2900, 36.8100, España, Andalucía, Málaga, 

Málaga; -4.2900, 36.9000, España, Andalucía, Málaga, Riogordo; -4.3000, 37.1700, España, Andalucía, 

Granada, Loja; -4.3000, 37.4400, España, Andalucía, Córdoba, Carcabuey; -4.3000, 37.5300, España, 

Andalucía, Córdoba, Zuheros; -4.3100, 37.8100, España, Andalucía, Córdoba, Baena; -4.3100, 37.9900, 

España, Andalucía, Córdoba, Villa del Río; -4.3100, 38.0800, España, Andalucía, Córdoba, Montoro; -

4.4000, 36.8100, España, Andalucía, Málaga, Málaga; -4.4090, 37.2650, España, Andalucía, Málaga, Cuevas 

de San Marcos; -4.4100, 37.2630, España, Andalucía, Málaga, Cuevas de San Marcos; -4.4100, 37.0800, 

España, Andalucía, Málaga, Archidona; -4.4360, 38.6150, España, Castilla-La Mancha, Ciudad Real, 

Almodóvar del Campo; -4.4360, 38.6160, España, Castilla-La Mancha, Ciudad Real, Almodóvar del Campo; 

-4.5100, 36.6300, España, Andalucía, Málaga, Torremolinos; -4.6200, 36.5400, España, Andalucía, Málaga, 

Fuengirola; -4.6200, 36.6300, España, Andalucía, Málaga, Alhaurín de la Torre; -4.6600, 38.5200, España, 

Andalucía, Córdoba, Torrecampo; -4.7300, 36.5400, España, Andalucía, Málaga, Mijas; -4.7400, 36.9000, 

España, Andalucía, Málaga, Álora; -4.7400, 36.9900, España, Andalucía, Málaga, Antequera; -4.7600, 

37.8900, España, Andalucía, Córdoba, Córdoba; -4.7600, 37.9800, España, Andalucía, Córdoba, Córdoba; -

4.7700, 38.0700, España, Andalucía, Córdoba, Obejo; -4.7700, 38.1600, España, Andalucía, Córdoba, 

Pozoblanco; -4.7800, 38.7000, España, Castilla-La Mancha, Ciudad Real, Alamillo; -4.8400, 36.5400, 

España, Andalucía, Málaga, Ojén; -4.8500, 36.7200, España, Andalucía, Málaga, Alozaina; -4.8500, 

36.9000, España, Andalucía, Málaga, Ardales; -4.8500, 36.9900, España, Andalucía, Málaga, Teba; -4.8600, 

37.1700, España, Andalucía, Málaga, Sierra de Yeguas; -4.8800, 37.8900, España, Andalucía, Córdoba, 
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Córdoba; -4.8800, 38.0700, España, Andalucía, Córdoba, Villaviciosa de Córdoba; -4.8800, 38.1600, 

España, Andalucía, Córdoba, Pozoblanco; -4.9000, 38.6100, España, Andalucía, Córdoba, Santa Eufemia; -

4.9000, 38.7000, España, Castilla-La Mancha, Ciudad Real, Guadalmez; -4.9500, 36.5300, España, 

Andalucía, Málaga, Marbella; -4.9600, 36.6200, España, Andalucía, Málaga, Istán; -4.9600, 36.8000, 

España, Andalucía, Málaga, El Burgo; -4.9600, 36.8900, España, Andalucía, Málaga, Cañete la Real; -

4.9850, 37.7070, España, Andalucía, Córdoba, La Carlota; -4.9850, 37.7060, España, Andalucía, Córdoba, 

La Carlota; -4.9970, 38.1560, España, Andalucía, Córdoba, Espiel; -4.9980, 38.1570, España, Andalucía, 

Córdoba, Espiel; -5.0000, 38.1600, España, Andalucía, Córdoba, Espiel; -5.0000, 38.3400, España, 

Andalucía, Córdoba, Villanueva del Duque; -5.1100, 38.1500, España, Andalucía, Córdoba, Espiel; -5.1100, 

38.2400, España, Andalucía, Córdoba, Villanueva del Rey; -5.1200, 38.4200, España, Andalucía, Córdoba, 

Hinojosa del Duque; -5.1200, 38.6000, España, Andalucía, Córdoba, Belalcázar; -5.1300, 38.6900, España, 

Andalucía, Córdoba, El Viso; -5.1400, 39.2300, España, Extremadura, Badajoz, Valdecaballeros; -5.1800, 

36.4400, España, Andalucía, Málaga, Estepona; -5.1800, 36.7100, España, Andalucía, Málaga, Ronda; -

5.1900, 36.8000, España, Andalucía, Málaga, Ronda; -5.2300, 38.1500, España, Andalucía, Córdoba, 

Villanueva del Rey; -5.2300, 38.2400, España, Andalucía, Córdoba, Belmez; -5.2400, 38.6900, España, 

Extremadura, Badajoz, Cabeza del Buey; -5.2800, 36.3500, España, Andalucía, Málaga, Manilva; -5.2900, 

36.4400, España, Andalucía, Málaga, Casares; -5.2900, 36.6200, España, Andalucía, Málaga, Benadalid; -

5.3000, 36.7100, España, Andalucía, Málaga, Montejaque; -5.3000, 36.8000, España, Andalucía, Málaga, 

Ronda; -5.3100, 37.0700, España, Andalucía, Sevilla, Morón de la Frontera; -5.4000, 36.5300, España, 

Andalucía, Málaga, Gaucín; -5.4000, 36.6200, España, Andalucía, Málaga, Cortes de la Frontera; -5.4200, 

36.9800, España, Andalucía, Sevilla, Coripe; -5.4200, 37.1600, España, Andalucía, Sevilla, Morón de la 

Frontera; -5.4200, 37.2500, España, Andalucía, Sevilla, Marchena; -5.4400, 37.7900, España, Andalucía, 

Sevilla, La Puebla de los Infantes; -5.4500, 38.1500, España, Andalucía, Córdoba, Fuente Obejuna; -5.5100, 

36.5200, España, Andalucía, Málaga, Cortes de la Frontera; 2.6950, 42.6790, France, Languedoc-Roussillon, 

Pyrénées-Orientales, 2.6950, 42.6770, France, Languedoc-Roussillon, Pyrénées-Orientales, 3.7770, 43.4700, 

France, Languedoc-Roussillon, Hérault, 3.9280, 43.5760, France, Languedoc-Roussillon, Hérault, 3.9290, 

43.5740, France, Languedoc-Roussillon, Hérault, 4.5590, 44.0200, France, Languedoc-Roussillon, Gard, 

4.5600, 44.0180, France, Languedoc-Roussillon, Gard, 5.1670, 43.5570, France, Provence-Alpes-Côte-

d'Azur, Bouches-Du-Rhône, 5.1670, 43.5590, France, Provence-Alpes-Côte-d'Azur, Bouches-Du-Rhône, 

5.5770, 43.2900, France, Provence-Alpes-Côte-d'Azur, Bouches-Du-Rhône, 5.7370, 43.5470, France, 

Provence-Alpes-Côte-d'Azur, Var; 5.7380, 43.5450, France, Provence-Alpes-Côte-d'Azur, Var; 6.2970, 

43.1100, France, Provence-Alpes-Côte-d'Azur, Var; 6.3930, 43.0050, France, Provence-Alpes-Côte-d'Azur, 

Var; 19.8500, 39.5480, Hellas, Ionioi Nisoi, Corfu; 20.6070, 38.6500, Hellas, Ionioi Nisoi, Levkas; 21.2850, 

38.5620, Hellas, Dytiki Ellada, Aitolia and Akarnania; 21.6460, 37.0750, Hellas, Peloponnisos, Messinia; 

22.2790, 36.8990, Hellas, Peloponnisos, Messinia; 22.4110, 36.8280, Hellas, Peloponnisos, Laconia; 

22.5170, 36.7490, Hellas, Peloponnisos, Laconia; 22.6930, 37.6380, Hellas, Peloponnisos, Argolis; 22.8430, 

39.3630, Hellas, Thessalia, Magnesia; 22.9830, 36.2740, Hellas, Attiki, Attica; 23.1240, 37.9900, Hellas, 

Peloponnisos, Corinth; 23.1510, 37.3740, Hellas, Peloponnisos, Argolis; 23.3000, 35.8870, Hellas, Attiki, 

Attica; 23.4150, 37.4880, Hellas, Attiki, Attica; 23.5950, 35.2750, Hellas, Kriti, Khania; 23.6000, 38.4000, 

Hellas, Stereá Elláda, Euboea; 23.6790, 39.1430, Hellas, Thessalia, Magnesia; 23.8110, 38.5790, Hellas, 

Stereá Elláda, Euboea; 24.0350, 35.2530, Hellas, Kriti, Khania; 24.0920, 35.5920, Hellas, Kriti, Khania; 
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24.1490, 35.5740, Hellas, Kriti, Khania; 24.2510, 35.3540, Hellas, Kriti, Khania; 24.3800, 38.0660, Hellas, 

Stereá Elláda, Euboea; 24.4130, 37.4010, Hellas, Notio Aigaio, Cyclades; 24.5320, 38.9230, Hellas, Stereá 

Elláda, Euboea; 24.6470, 40.6830, Hellas, Anatoliki Makedonia kai Thraki, Kavala; 24.7790, 35.0730, 

Hellas, Kriti, Heraklion; 24.9160, 37.4150, Hellas, Notio Aigaio, Cyclades; 24.9900, 36.9650, Hellas, Notio 

Aigaio, Cyclades; 25.0410, 37.0010, Hellas, Notio Aigaio, Cyclades; 25.1010, 36.6760, Hellas, Notio 

Aigaio, Cyclades; 25.1500, 37.0800, Hellas, Notio Aigaio, Cyclades; 25.2190, 37.4080, Hellas, Notio 

Aigaio, Cyclades; 25.3220, 36.7130, Hellas, Notio Aigaio, Cyclades; 25.4480, 36.3810, Hellas, Notio 

Aigaio, Cyclades; 25.4780, 37.0680, Hellas, Notio Aigaio, Cyclades; 25.5880, 40.4720, Hellas, Anatoliki 

Makedonia kai Thraki, Evros; 25.6060, 35.2530, Hellas, Kriti, Lasithi; 25.6400, 36.8910, Hellas, Notio 

Aigaio, Cyclades; 25.6980, 35.1470, Hellas, Kriti, Lasithi; 25.7070, 35.3000, Hellas, Kriti, Lasithi; 25.7990, 

35.0510, Hellas, Kriti, Lasithi; 25.8690, 36.8240, Hellas, Notio Aigaio, Cyclades; 26.1600, 37.5800, Hellas, 

Voreio Aigaio, Samos; 26.2980, 36.5430, Hellas, Notio Aigaio, Dodecanese; 26.5910, 41.3870, Hellas, 

Anatoliki Makedonia kai Thraki, Evros; 27.1180, 35.6340, Hellas, Notio Aigaio, Dodecanese; 34.7520, 

32.0530, Israel, Tel Aviv; 34.7830, 31.2500, Israel, HaDarom; 34.8570, 32.2470, Israel, HaMerkaz; 34.8800, 

32.1600, Israel, HaMerkaz; 34.8900, 32.1900, Israel, HaMerkaz; 34.9170, 31.5000, Israel, HaDarom; 

34.9830, 32.8170, Israel, Haifa; 35.0330, 32.7500, Israel, Haifa; 35.2170, 32.9830, Israel, HaZafon; 10.1000, 

45.6000, Italia, Lombardia, Brescia; 10.5000, 43.3000, Italia, Toscana, Livorno; 11.0000, 43.9000, Italia, 

Toscana, Pistoia; 11.3000, 43.7000, Italia, Toscana, Florence; 11.3000, 43.8000, Italia, Toscana, Florence; 

11.4000, 42.4000, Italia, Toscana, Grosseto; 11.5000, 45.5000, Italia, Veneto, Vicenza; 11.7000, 42.3000, 

Italia, Lazio, Viterbo; 11.7000, 45.1000, Italia, Veneto, Rovigo; 11.8000, 42.4000, Italia, Lazio, Viterbo; 

12.0000, 42.0000, Italia, Lazio, Rome; 12.0000, 42.2000, Italia, Lazio, Viterbo; 12.0000, 42.7000, Italia, 

Umbria, Terni; 12.1000, 42.7000, Italia, Umbria, Terni; 12.1000, 44.3000, Italia, Emilia-Romagna, Ravenna; 

12.2000, 42.3000, Italia, Lazio, Viterbo; 12.2000, 42.4000, Italia, Lazio, Viterbo; 12.3000, 42.2000, Italia, 

Lazio, Viterbo; 12.4000, 41.7000, Italia, Lazio, Rome; 12.4000, 41.8000, Italia, Lazio, Rome; 12.4000, 

41.9000, Italia, Lazio, Rome; 12.4000, 43.5000, Italia, Marche, Pesaro e Urbino; 12.5000, 41.6000, Italia, 

Lazio, Rome; 12.5000, 41.7000, Italia, Lazio, Rome; 12.5000, 41.8000, Italia, Lazio, Rome; 12.5000, 

41.9000, Italia, Lazio, Rome; 12.5000, 42.0000, Italia, Lazio, Rome; 12.5000, 43.5000, Italia, Marche, 

Pesaro e Urbino; 12.6000, 41.5000, Italia, Lazio, Rome; 12.7000, 37.6000, Italia, Sicily, Trapani; 12.7000, 

41.6000, Italia, Lazio, Rome; 12.7000, 42.0000, Italia, Lazio, Rome; 12.7000, 43.8000, Italia, Marche, 

Pesaro e Urbino; 12.9000, 41.7000, Italia, Lazio, Rome; 12.9000, 42.3000, Italia, Lazio, Rieti; 12.9000, 

43.9000, Italia, Marche, Pesaro e Urbino; 13.0000, 41.4000, Italia, Lazio, Latina; 13.0000, 41.6000, Italia, 

Lazio, Latina; 13.0000, 41.7000, Italia, Lazio, Rome; 13.2000, 41.3000, Italia, Lazio, Latina; 13.2000, 

41.4000, Italia, Lazio, Latina; 13.2000, 41.5000, Italia, Lazio, Latina; 13.2000, 41.6000, Italia, Lazio, 

Frosinone; 13.2000, 43.6000, Italia, Marche, Ancona; 13.3000, 41.4000, Italia, Lazio, Frosinone; 13.3000, 

41.6000, Italia, Lazio, Frosinone; 13.3000, 43.6000, Italia, Marche, Ancona; 13.5000, 43.5000, Italia, 

Marche, Ancona; 13.5000, 43.6000, Italia, Marche, Ancona; 13.6000, 41.3000, Italia, Lazio, Latina; 13.6000, 

41.7000, Italia, Lazio, Frosinone; 13.6000, 45.8000, Italia, Friuli-Venezia Giulia, Gorizia; 13.7000, 41.3000, 

Italia, Lazio, Latina; 13.7000, 41.4000, Italia, Lazio, Frosinone; 14.2000, 40.8000, Italia, Campania, Napoli; 

14.2000, 40.9000, Italia, Campania, Napoli; 14.2000, 41.3000, Italia, Campania, Caserta; 14.5000, 40.7000, 

Italia, Campania, Napoli; 14.5000, 40.8000, Italia, Campania, Napoli; 14.6000, 41.0000, Italia, Campania, 

Avellino; 14.7000, 40.7000, Italia, Campania, Salerno; 14.8000, 40.8000, Italia, Campania, Avellino; 
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14.9000, 37.0000, Italia, Sicily, Syracuse; 14.9000, 37.4000, Italia, Sicily, Syracuse; 15.1000, 37.6000, Italia, 

Sicily, Catania; 15.3000, 40.7000, Italia, Campania, Salerno; 15.3000, 41.5000, Italia, Apulia, Foggia; 

15.3000, 41.6000, Italia, Apulia, Foggia; 15.4000, 40.0000, Italia, Campania, Salerno; 15.5000, 40.1000, 

Italia, Campania, Salerno; 15.5000, 41.5000, Italia, Apulia, Foggia; 15.5000, 41.9000, Italia, Apulia, Foggia; 

15.6000, 40.1000, Italia, Campania, Salerno; 15.7000, 38.1000, Italia, Calabria, Reggio di Calabria; 15.7000, 

40.0000, Italia, Basilicata, Potenza; 16.0000, 38.0000, Italia, Calabria, Reggio di Calabria; 16.0000, 38.6000, 

Italia, Calabria, Vibo Valentia; 16.0000, 41.3000, Italia, Apulia, Barletta-Andria-Trani; 16.0000, 41.7000, 

Italia, Apulia, Foggia; 16.1000, 38.1000, Italia, Calabria, Reggio di Calabria; 16.1000, 38.2000, Italia, 

Calabria, Reggio di Calabria; 16.1000, 38.3000, Italia, Calabria, Reggio di Calabria; 16.1000, 38.4000, Italia, 

Calabria, Reggio di Calabria; 16.1000, 39.3000, Italia, Calabria, Cosenza; 16.1000, 39.7000, Italia, Calabria, 

Cosenza; 16.3000, 38.3000, Italia, Calabria, Reggio di Calabria; 16.3000, 39.3000, Italia, Calabria, Cosenza; 

16.3000, 39.6000, Italia, Calabria, Cosenza; 16.3000, 39.7000, Italia, Calabria, Cosenza; 16.3000, 41.3000, 

Italia, Apulia, Barletta-Andria-Trani; 16.4000, 39.1000, Italia, Calabria, Catanzaro; 16.5000, 39.5000, Italia, 

Calabria, Cosenza; 16.5000, 39.6000, Italia, Calabria, Cosenza; 16.5000, 39.7000, Italia, Calabria, Cosenza; 

16.6000, 40.7000, Italia, Basilicata, Matera; 16.6000, 41.1000, Italia, Apulia, Bari; 16.7000, 41.1000, Italia, 

Apulia, Bari; 16.8000, 41.1000, Italia, Apulia, Bari; 16.9000, 40.7000, Italia, Apulia, Taranto; 16.9000, 

41.1000, Italia, Apulia, Bari; 17.0000, 39.3000, Italia, Calabria, Crotone; 17.1000, 39.0000, Italia, Calabria, 

Crotone; 17.1000, 40.6000, Italia, Apulia, Taranto; 17.1000, 40.7000, Italia, Apulia, Taranto; 17.3000, 

40.6000, Italia, Apulia, Taranto; 17.3000, 40.7000, Italia, Apulia, Taranto; 17.3000, 40.8000, Italia, Apulia, 

Bari; 17.3000, 40.9000, Italia, Apulia, Bari; 17.6000, 40.3000, Italia, Apulia, Taranto; 17.6000, 40.5000, 

Italia, Apulia, Brindisi; 17.6000, 40.6000, Italia, Apulia, Brindisi; 17.7000, 40.6000, Italia, Apulia, Brindisi; 

17.8000, 40.5000, Italia, Apulia, Brindisi; 18.1000, 40.3000, Italia, Apulia, Lecce; 8.2000, 44.1000, Italia, 

Liguria, Savona; 8.3000, 41.1000, Italia, Sardegna, Sassari; 8.4000, 39.0000, Italia, Sardegna, Carbonia-

Iglesias; 8.4000, 39.1000, Italia, Sardegna, Carbonia-Iglesias; 8.4000, 39.4000, Italia, Sardegna, Carbonia-

Iglesias; 8.4000, 44.3000, Italia, Liguria, Savona; 8.6000, 39.0000, Italia, Sardegna, Carbonia-Iglesias; 

8.7000, 39.2000, Italia, Sardegna, Carbonia-Iglesias; 8.7000, 39.3000, Italia, Sardegna, Cagliari; 8.7000, 

39.7000, Italia, Sardegna, Oristano; 8.8000, 38.9000, Italia, Sardegna, Cagliari; 8.8000, 39.0000, Italia, 

Sardegna, Cagliari; 8.8000, 44.5000, Italia, Liguria, Genoa; 8.9000, 39.0000, Italia, Sardegna, Cagliari; 

9.0000, 39.0000, Italia, Sardegna, Cagliari; 9.0000, 44.4000, Italia, Liguria, Genoa; 9.1000, 39.5000, Italia, 

Sardegna, Cagliari; 9.1000, 44.4000, Italia, Liguria, Genoa; 9.1000, 45.5000, Italia, Lombardia, Milan; 

9.6000, 39.5000, Italia, Sardegna, Cagliari; 9.6000, 40.3000, Italia, Sardegna, Nuoro; 9.6000, 40.5000, Italia, 

Sardegna, Nuoro; 9.6000, 40.9000, Italia, Sardegna, Olbia-Tempio; 9.6000, 44.2000, Italia, Liguria, La 

Spezia; 9.7000, 40.6000, Italia, Sardegna, Nuoro; 9.9000, 44.2000, Italia, Toscana, Massa-Carrara; 13.1800, 

32.8930, Libya, Tripoli, 20.0670, 32.1170, Libya, Benghazi, 21.9670, 32.9000, Libya, Al Jabal al Akhdar, 

24.4720, 26.6910, Libya, Al Kufrah, 24.5170, 29.7500, Libya, Tobruk, -2.4120, 35.0680, Morocco, Oriental, 

Nador; -3.1990, 34.3030, Morocco, Taza - Al Hoceima - Taounate, Taza; -3.8550, 35.1110, Morocco, Taza - 

Al Hoceima - Taounate, Al Hoceima; -5.3800, 35.9000, Morocco, Tanger - Tétouan, Tétouan; -5.5380, 

34.7180, Morocco, Gharb - Chrarda - Béni Hssen, Sidi Kacem; -5.8440, 34.9150, Morocco, Gharb - Chrarda 

- Béni Hssen, Sidi Kacem; -6.0620, 35.1550, Morocco, Tanger - Tétouan, Larache; -7.3950, 33.5600, 

Morocco, Grand Casablanca, Sidi Bern./Moham.-Znata; -7.6160, 33.5930, Morocco, Grand Casablanca, 

Casa-Anfa; -6.9760, 39.0580, Portugal, Portalegre; -6.9780, 39.0570, Portugal, Portalegre; -7.0000, 38.1600, 
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Portugal, Beja; -7.0100, 38.0700, Portugal, Beja; -7.1200, 38.0700, Portugal, Beja; -7.4700, 37.4400, 

Portugal, Faro; -7.4700, 37.7100, Portugal, Beja; -7.4700, 37.8000, Portugal, Beja; -7.4800, 37.2600, 

Portugal, Faro; -7.4800, 37.3500, Portugal, Faro; -7.5630, 38.6160, Portugal, Évora; -7.5640, 38.6150, 

Portugal, Évora; -7.5810, 37.7150, Portugal, Beja; -7.5820, 37.7140, Portugal, Beja; -7.5890, 37.2650, 

Portugal, Faro; -7.5900, 37.2630, Portugal, Faro; -8.1370, 38.6220, Portugal, Évora; -8.1380, 38.6200, 

Portugal, Évora; -8.1530, 37.2700, Portugal, Faro; -8.1540, 37.2690, Portugal, Faro; -8.7170, 37.2730, 

Portugal, Faro; -8.7180, 37.2710, Portugal, Faro; 37.0830, 32.8000, Syria, As Suwayda'; 10.7580, 34.7430, 

Tunisia, Sfax; 8.6660, 35.5830, Tunisia, Kassérine; 9.9580, 36.5160, Tunisia, Zaghouan; 27.4300, 38.6000, 

Turkey, Manisa; 27.4300, 39.8800, Turkey, Çanakkale; 29.7500, 36.6000, Turkey, Antalya; 30.5500, 

38.7500, Turkey, Afyon; 31.4300, 36.7800, Turkey, Antalya; 32.8130, 36.0340, Turkey, Mersin; 32.8300, 

36.1000, Turkey, Mersin; 35.7800, 37.0600, Turkey, Adana; 36.0800, 37.3800, Turkey, Adana; 36.0810, 

36.0980, Turkey, Hatay; 36.1100, 36.2300, Turkey, Hatay; 36.6700, 37.2300, Turkey, Adana; 36.8000, 

37.1100, Turkey, Gaziantep; 36.8500, 36.9500, Turkey, Gaziantep; 36.9100, 37.6000, Turkey, K. Maras; 

36.9500, 36.8800, Turkey, Gaziantep; 37.0580, 37.7860, Turkey, K. Maras; 37.0800, 36.7300, Turkey, 

Gaziantep; 37.1500, 38.7900, Turkey, Sivas; 37.1500, 38.8000, Turkey, Sivas; 37.2300, 38.4500, Turkey, K. 

Maras; 37.6600, 36.7500, Turkey, Gaziantep; 37.8600, 38.4500, Turkey, Malatya; -0.1700, 39.1300, Spain; -

0.1900, 38.5000, Spain; -0.2700, 39.3100, Spain; -0.3590, 38.1430, Spain; -0.4300, 38.1500, Spain; -0.4300, 

38.3300, Spain; -0.4310, 38.1470, Spain; -0.5500, 38.1500, Spain; -0.6170, 35.7170, Algeria; -0.6700, 

37.9700; -0.7900, 37.7000; -0.7900, 37.7900; -1.2500, 37.5300; -1.5890, 37.2650; -1.5900, 37.2630; -1.7000, 

37.2600; -1.8200, 37.0900; -1.8200, 37.1800, Spain; -2.0500, 36.7300, Spain; -2.3800, 36.8200, Spain; -

2.5000, 36.8200, Spain; -2.9400, 36.7300, Spain; -3.0600, 36.7300, Spain; -3.1700, 36.7300, Spain; -3.2800, 

36.7300, Spain; -3.8400, 36.7300, Spain; -4.0600, 36.7300, Spain; -4.2600, 35.1900, Spain; -4.3930, 

36.3640, Spain; -4.3930, 36.3620, Spain; -4.4000, 36.7200, Spain; -4.5100, 36.5400, Spain; -4.9500, 

36.4400, Spain; -4.9500, 36.3560, Spain; -4.9500, 36.3540, Spain; -5.0600, 36.4400, Spain; -5.2700, 

35.9000, Spain; -5.2800, 36.2600, Spain; -5.3900, 36.0800, Spain; -5.3900, 36.1700, Spain; -5.4930, 

35.8960, Spain; -5.4930, 35.8930, Spain; -5.6100, 35.9800, Spain; -5.8300, 36.0700, Spain; -6.2700, 

36.4300, Spain; -6.3700, 36.6100, Spain; -6.3700, 36.7900, Spain; -6.4760, 36.7960, Spain; -6.4780, 

36.7940, Spain; -6.5800, 36.9800, Spain; -6.6900, 37.0700, Spain; 0.0000, 38.5910, Spain; -7.0300, 37.1700, 

Spain; -8.1580, 36.8200, Spain; -8.1590, 36.8180, Spain; 0.0200, 39.9400, Spain; 0.0700, 38.5900, Spain; 

0.1300, 40.0300, Spain; 0.1800, 38.6800, Spain; 0.1800, 38.8600, Spain; 0.3290, 39.9440, Spain; 0.3290, 

39.9460, Spain; 0.3440, 39.0460, Spain; 0.3440, 39.0440, Spain; 0.3520, 38.5940, Spain; 0.4160, 38.5970, 

Spain; 0.5800, 40.5800, Spain; 0.9230, 40.8590, Spain; 0.9240, 40.8570, Spain; 0.9760, 39.0580, Spain; 

0.9780, 39.0570, Spain; 1.2100, 38.9700, Spain; 1.3200, 39.0600, Spain; 1.3300, 38.6100, Spain; 1.4400, 

38.8800, Spain; 1.4500, 38.7900, Spain; 1.5500, 39.1600, Spain; 1.5600, 38.7000, Spain; 1.5600, 38.9800, 

Spain; 1.5630, 38.6160, Spain; 1.5640, 38.6150, Spain; 1.8700, 41.2300, Spain; 1.9900, 41.2300, Spain; 

10.0000, 42.6000, Spain; 10.1000, 42.9000, Spain; 10.2000, 42.3000, Spain; 10.5000, 42.9000, Spain; 

11.1000, 42.3000, Spain; 11.7000, 42.2000, Italy; 12.1000, 41.9000, Italy; 12.2000, 37.9000, Italy; 12.4000, 

37.9000, Italy; 12.5000, 41.5000, Italy; 12.9000, 35.9000, Italy; 12.9000, 40.9000, Italy; 13.0000, 38.1000, 

Italy; 13.0000, 41.3000, Italy; 13.2000, 43.8000, Italy; 13.3000, 43.7000, Italy; 13.5000, 43.7000, Italy; 

13.6000, 43.6000, Italy; 13.7000, 43.4000, Italy; 13.7000, 45.7000, Italy; 13.8000, 40.7000, Italy; 13.8000, 

40.8000, Italy; 14.0000, 40.8000, Italy; 14.1000, 40.8000, Italy; 14.2000, 40.5000, Italy; 14.4000, 38.5000, 
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Italy; 14.4000, 40.7000, Italy; 14.5000, 40.6000, Italy; 14.7000, 36.7000, Italy; 14.8000, 38.6000, Italy; 

14.9000, 40.3000, Italy; 14.9000, 40.4000, Italy; 15.1000, 37.4000, Italy; 15.3000, 37.2000, Italy; 15.3000, 

37.3000, Italy; 15.3000, 37.7000, Italy; 15.6000, 38.0000, Italy; 15.6000, 38.2000, Italy; 15.7000, 38.3000, 

Italy; 15.7000, 42.3000, Italy; 16.0000, 37.9000, Italy; 16.0000, 39.4000, Italy; 16.1000, 37.9000, Italy; 

16.1000, 41.7000, Italy; 16.3000, 38.1000, Italy; 16.3000, 38.2000, Italy; 16.4000, 38.3000, Italy; 16.5000, 

41.3000, Italy; 16.6000, 38.4000, Italy; 16.6000, 38.6000, Italy; 16.6000, 38.7000, Italy; 16.7000, 41.2000, 

Italy; 16.7000, 41.4000, Italy; 16.8000, 41.2000, Italy; 16.9000, 41.2000, Italy; 17.0000, 43.0000, Italy; 

17.1000, 41.1000, Italy; 17.3000, 41.1000, Italy; 18.1000, 39.8000, Italy; 18.2000, 39.8000, Italy; 2.2200, 

41.3200; 2.4600, 41.5100; 2.5900, 39.5200; 2.7060, 39.9770; 2.7070, 39.9750; 2.7080, 39.5260; 2.7090, 

39.5240; 2.7110, 39.0750; 2.7110, 39.0740; 2.8200, 39.8900; 2.9400, 39.1600; 20.7040, 39.0110; 20.9500, 

32.7170, Libya; 23.5290, 35.3230; 23.6170, 35.5210, Greece; 24.0170, 35.5210, Greece; 24.0970, 39.3540; 

24.4000, 36.7500; 25.1000, 31.7660; 25.1090, 35.3450; 25.9000, 36.7300; 26.9600, 37.7600; 3.0600, 

41.7800; 3.1800, 42.1400; 3.1800, 42.2300; 3.1800, 42.4100, Spain; 3.2900, 39.4300, Spain; 3.3000, 

41.7790, Spain; 3.3010, 41.7770, Spain; 3.3020, 42.2290, Spain; 3.3030, 42.2270, Spain; 3.3050, 42.6790, 

Spain; 3.3050, 42.6770, Spain; 3.3070, 43.1300, Spain; 3.3070, 43.1270, Spain; 3.8800, 40.0600, Spain; 

30.3500, 32.1800, Spain; 30.7000, 36.8800, Spain; 33.6170, 28.2330, Egypt; 35.0830, 33.0170; 35.1200, 

33.2100; 4.0000, 40.0600, Spain; 4.1100, 40.0600, Spain; 4.2300, 40.0600, Spain; 4.3400, 39.8800, Spain; 

4.4630, 39.9680, Spain; 4.4640, 39.9660, Spain; 5.1510, 43.1090, Spain; 5.1510, 43.1080, Spain; 5.7280, 

43.0970, Spain; 5.7290, 43.0950, Spain; 6.2700, 43.0970, Spain; 6.2710, 43.0950, Spain; 7.7000, 43.7000, 

Italy; 7.8000, 43.7000, Italy; 8.1000, 43.9000, Italy; 8.2000, 39.2000, Italy; 8.2000, 39.3000, Italy; 8.2000, 

41.1000, Italy; 8.3000, 38.8000, Italy; 8.3000, 39.2000, Italy; 8.3000, 39.3000, Italy; 8.3000, 41.2000, Italy; 

8.4000, 39.3000, Italy; 8.4000, 39.6000, Italy; 8.4000, 40.3000, Italy; 8.9000, 44.4000, Italy; 9.1000, 

44.3000, Italy; 9.4000, 41.2000, Italy; 9.6000, 39.2000, Italy; 9.7000, 43.0000, Italy; 9.7000, 44.0000, Italy; 

9.9000, 43.4000, Italy.  

 

 

Hemidactylus turcicus, invasive  

-48.9330, -27.1000, Brazil, Santa Catarina, Brusque, Brusque; -15.4600, 28.0700, España, Islas 

Canarias, Las Palmas, Las Palmas de Gran Canaria; -43.8500, -19.9830, Brazil, Minas Gerais, Nova Lima, 

Nova Lima; -81.5780, 23.0410, Cuba, Matanzas, -82.4300, 23.0770, Cuba, Ciudad de la Habana, -100.1830, 

26.5000, México, Nuevo León, Sabinas Hidalgo; -102.0400, 26.0900, México, Coahuila, Parras; -102.0670, 

26.9830, México, Coahuila, Cuatrociénegas; -102.0800, 26.9500, México, Coahuila, Cuatrociénegas; -

103.4300, 26.0300, México, Coahuila, Francisco I. Madero; -103.9200, 24.0100, México, Durango, Poanas; -

104.0300, 24.8400, México, Durango, Peñón Blanco; -104.0700, 24.4800, México, Durango, Guadalupe 

Victoria; -105.9100, 27.0800, México, Chihuahua, Hidalgo del Parral; -108.9800, 27.4000, México, Sonora, 

Álamos; -110.7600, 29.2100, México, Sonora, Hermosillo; -111.3500, 26.0170, México, Baja California Sur, 

Comondú; -89.4100, 20.3000, México, Yucatán, Maní; -90.0300, 21.1600, México, Yucatán, Hunucmá; -

90.4000, 20.8500, México, Yucatán, Celestún; -90.4000, 20.8600, México, Yucatán, Celestún; -93.3500, 

16.3300, México, Chiapas, Villaflores; -96.1600, 19.1300, México, Veracruz, Medellín; -97.0600, 16.4100, 

México, Oaxaca, Dist. Ejutla; -97.1830, 18.2500, México, Puebla, San José Miahuatlán; -97.7340, 25.3790, 

México, Tamaulipas, Matamoros; -97.7900, 22.9800, México, Tamaulipas, Aldama; -97.8130, 22.2840, 
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México, Tamaulipas, Ciudad Madero; -98.7800, 21.2600, México, San Luis Potosí, Tamazunchale; -98.9500, 

20.6800, México, Hidalgo, Cardonal; -99.1400, 19.4400, México, Distrito Federal, Azcapotzalco; -99.7100, 

27.5500, México, Tamaulipas, Nuevo Laredo; -99.7500, 25.1800, México, Nuevo León, Montemorelos; -

100.3100, 28.7900, United States, Texas, Maverick; -101.1600, 29.9400, United States, Texas, Val Verde; -

103.2500, 29.8300, United States, Texas, Brewster; -105.9200, 32.9000, United States, New Mexico, Otero; -

106.2300, 31.7900, United States, Texas, El Paso; -107.2600, 33.1200, United States, New Mexico, Sierra; -

107.2600, 33.1300, United States, New Mexico, Sierra; -109.5400, 31.3400, United States, Arizona, Cochise; 

-110.9330, 32.2670, United States, Arizona, Pima; -110.9670, 32.2670, United States, Arizona, Pima; -

110.9760, 32.2760, United States, Arizona, Pima; -111.3330, 32.0000, United States, Arizona, Pima; -

111.7900, 31.9100, United States, Arizona, Pima; -111.8400, 33.3000, United States, Arizona, Maricopa; -

111.9090, 33.4150, United States, Arizona, Maricopa; -112.1300, 33.4400, United States, Arizona, 

Maricopa; -112.7120, 32.9480, United States, Arizona, Maricopa; -114.2400, 33.5700, United States, 

Arizona, La Paz; -114.2960, 34.1660, United States, California, San Bernardino; -114.3010, 34.1650, United 

States, California, San Bernardino; -114.6300, 32.7200, United States, Arizona, Yuma; -114.6600, 34.6600, 

United States, California, San Bernardino; -114.6700, 33.7000, United States, California, Riverside; -

115.1020, 36.1570, United States, Nevada, Clark; -115.5520, 32.7780, United States, California, Imperial; -

115.5940, 32.7860, United States, California, Imperial; -115.7200, 33.0600, United States, California, 

Imperial; -115.9930, 32.7390, United States, California, Imperial; -116.2200, 33.8000, United States, 

California, Riverside; -116.9100, 32.7600, United States, California, San Diego; -76.7100, 39.2500, United 

States, Maryland, Baltimore; -76.9300, 39.1100, United States, Maryland, Montgomery; -77.1800, 38.8700, 

United States, Virginia, Fairfax; -79.2500, 37.3700, United States, Virginia, Bedford; -80.1700, 26.0500, 

United States, Florida, Broward; -80.3400, 27.4800, United States, Florida, Saint Lucie; -80.4200, 37.2200, 

United States, Virginia, Montgomery; -80.9500, 27.4500, United States, Florida, Okeechobee; -81.5700, 

29.2200, United States, Florida, Volusia; -81.6200, 30.4800, United States, Florida, Duval; -81.7100, 

26.0500, United States, Florida, Collier; -81.7600, 28.5300, United States, Florida, Lake; -82.0000, 28.2900, 

United States, Florida, Polk; -82.0300, 29.7800, United States, Florida, Clay; -82.0500, 29.7000, United 

States, Florida, Putnam; -82.0700, 29.7000, United States, Florida, Alachua; -82.0800, 27.3100, United 

States, Florida, Manatee; -82.0800, 29.3000, United States, Florida, Marion; -82.3300, 28.8380, United 

States, Florida, Citrus; -82.3700, 28.8900, United States, Florida, Citrus; -82.4300, 29.7000, United States, 

Florida, Alachua; -82.4900, 30.1100, United States, Florida, Columbia; -82.5000, 27.5800, United States, 

Florida, Manatee; -82.5700, 28.5100, United States, Florida, Hernando; -82.5800, 28.9100, United States, 

Florida, Citrus; -82.6000, 29.9900, United States, Florida, Columbia; -82.6900, 29.3900, United States, 

Florida, Levy; -82.7200, 28.1100, United States, Florida, Pinellas; -82.8300, 29.7900, United States, Florida, 

Gilchrist; -82.9400, 30.4400, United States, Florida, Hamilton; -83.0300, 29.3000, United States, Florida, 

Levy; -83.5000, 30.6000, United States, Florida, Madison; -84.7500, 30.2400, United States, Florida, 

Liberty; -84.7600, 30.0000, United States, Florida, Franklin; -84.9830, 29.7260, United States, Florida, 

Franklin; -85.0200, 29.7400, United States, Florida, Franklin; -85.5500, 30.6500, United States, Florida, 

Washington; -87.3500, 31.4600, United States, Alabama, Monroe; -88.6500, 31.6800, United States, 

Mississippi, Wayne; -88.8300, 30.4800, United States, Mississippi, Jackson; -88.9500, 30.4900, United 

States, Mississippi, Harrison; -89.0100, 31.1700, United States, Mississippi, Perry; -89.1400, 30.8200, 

United States, Mississippi, Stone; -89.1800, 31.1100, United States, Mississippi, Forrest; -89.2500, 31.1800, 
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United States, Mississippi, Forrest; -89.2900, 31.3100, United States, Mississippi, Forrest; -89.3100, 

31.2900, United States, Mississippi, Forrest; -89.3800, 31.2900, United States, Mississippi, Lamar; -89.4700, 

30.8900, United States, Mississippi, Pearl River; -89.5800, 30.2600, United States, Mississippi, Hancock; -

89.5800, 34.3600, United States, Mississippi, Lafayette; -89.6300, 30.3500, United States, Mississippi, 

Hancock; -89.6700, 30.4900, United States, Mississippi, Pearl River; -89.7200, 30.2700, United States, 

Louisiana, Saint Tammany; -89.7900, 33.4800, United States, Mississippi, Carroll; -89.8300, 30.3300, 

United States, Louisiana, Saint Tammany; -89.9700, 32.5400, United States, Mississippi, Madison; -90.0200, 

29.9200, United States, Louisiana, Orleans; -90.0400, 30.5100, United States, Louisiana, Saint Tammany; -

90.1300, 29.7200, United States, Louisiana, Jefferson; -90.1600, 29.8600, United States, Louisiana, 

Jefferson; -90.1700, 29.9200, United States, Louisiana, Jefferson; -90.2900, 32.1900, United States, 

Mississippi, Hinds; -90.3500, 29.8700, United States, Louisiana, Saint Charles; -90.4200, 38.7100, United 

States, Missouri, Saint Louis; -90.4400, 30.5200, United States, Louisiana, Tangipahoa; -90.6900, 29.3800, 

United States, Louisiana, Terrebonne; -90.7700, 35.7700, United States, Arkansas, Craighead; -90.8700, 

32.3800, United States, Mississippi, Warren; -90.9500, 30.2500, United States, Louisiana, Ascension; -

91.1300, 30.8200, United States, Louisiana, East Feliciana; -91.1700, 30.5500, United States, Louisiana, East 

Baton Rouge; -91.1800, 30.4000, United States, Louisiana, East Baton Rouge; -91.3500, 30.4700, United 

States, Louisiana, West Baton Rouge; -91.3600, 30.7900, United States, Louisiana, West Feliciana; -91.3600, 

31.5600, United States, Mississippi, Adams; -91.3700, 30.5990, United States, Louisiana, Pointe Coupee; -

91.8200, 30.0100, United States, Louisiana, Iberia; -91.8500, 35.2200, United States, Arkansas, White; -

92.0700, 30.5400, United States, Louisiana, Saint Landry; -92.1400, 32.4400, United States, Louisiana, 

Ouachita; -92.1500, 32.4900, United States, Louisiana, Ouachita; -92.2300, 30.9300, United States, 

Louisiana, Avoyelles; -92.3000, 34.6600, United States, Arkansas, Pulaski; -92.3200, 30.6100, United States, 

Louisiana, Evangeline; -92.3600, 30.2300, United States, Louisiana, Acadia; -92.4300, 30.4900, United 

States, Louisiana, Saint Landry; -92.4300, 30.6000, United States, Louisiana, Evangeline; -92.5400, 30.0300, 

United States, Louisiana, Vermilion; -92.7100, 29.7000, United States, Louisiana, Cameron; -93.0800, 

31.7200, United States, Louisiana, Natchitoches; -93.1800, 31.0900, United States, Louisiana, Vernon; -

93.1900, 34.0200, United States, Arkansas, Clark; -93.2000, 34.5400, United States, Arkansas, Garland; -

93.2600, 32.6400, United States, Louisiana, Webster; -93.3100, 30.2000, United States, Louisiana, 

Calcasieu; -93.5300, 34.4800, United States, Arkansas, Montgomery; -93.7400, 32.4600, United States, 

Louisiana, Caddo; -93.9200, 33.2600, United States, Arkansas, Miller; -94.0500, 30.4200, United States, 

Texas, Jasper; -94.2000, 35.8200, United States, Arkansas, Washington; -94.2400, 35.1900, United States, 

Arkansas, Sebastian; -94.2500, 31.9400, United States, Texas, Shelby; -94.2600, 29.8800, United States, 

Texas, Jefferson; -94.3100, 32.6100, United States, Texas, Harrison; -94.6300, 32.9900, United States, 

Texas, Cass; -94.7600, 31.8900, United States, Texas, Rusk; -94.9400, 32.5300, United States, Texas, Gregg; 

-94.9400, 33.2400, United States, Texas, Titus; -95.0500, 29.3800, United States, Texas, Galveston; -

95.1400, 32.2700, United States, Texas, Smith; -95.2700, 29.7900, United States, Texas, Harris; -95.2700, 

31.9500, United States, Texas, Cherokee; -95.3700, 30.2500, United States, Texas, Montgomery; -95.4700, 

32.3000, United States, Texas, Henderson; -95.5000, 32.6600, United States, Texas, Wood; -95.5400, 

29.1100, United States, Texas, Brazoria; -95.7000, 32.6700, United States, Texas, Van Zandt; -95.7300, 

29.4300, United States, Texas, Fort Bend; -95.9700, 31.9500, United States, Texas, Anderson; -96.1000, 

29.1800, United States, Texas, Wharton; -96.2200, 32.1200, United States, Texas, Navarro; -96.2600, 
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30.5900, United States, Texas, Brazos; -96.2800, 32.7300, United States, Texas, Kaufman; -96.4100, 

33.6100, United States, Texas, Grayson; -96.4900, 29.6600, United States, Texas, Colorado; -96.8700, 

29.3500, United States, Texas, Lavaca; -96.9400, 28.8100, United States, Texas, Victoria; -96.9400, 28.9400, 

United States, Texas, Victoria; -96.9400, 30.2800, United States, Texas, Lee; -97.0000, 29.8100, United 

States, Texas, Fayette; -97.0900, 31.5700, United States, Texas, McLennan; -97.1600, 29.1300, United 

States, Texas, Dewitt; -97.2400, 28.2600, United States, Texas, Refugio; -97.3300, 32.6600, United States, 

Texas, Tarrant; -97.3400, 32.4700, United States, Texas, Johnson; -97.4770, 35.6520, United States, 

Oklahoma, Oklahoma; -97.5100, 27.9800, United States, Texas, San Patricio; -97.5500, 26.0800, United 

States, Texas, Cameron; -97.5700, 32.5300, United States, Texas, Johnson; -97.5800, 29.3000, United States, 

Texas, Gonzales; -97.6000, 30.2800, United States, Texas, Travis; -97.6500, 26.4500, United States, Texas, 

Willacy; -97.7000, 34.9100, United States, Oklahoma, Grady; -97.7100, 27.7400, United States, Texas, 

Nueces; -97.8700, 28.9100, United States, Texas, Karnes; -97.8900, 30.0600, United States, Texas, Hays; -

97.9400, 27.4300, United States, Texas, Kleberg; -98.1200, 27.7400, United States, Texas, Jim Wells; -

98.2100, 27.0800, United States, Texas, Brooks; -98.3600, 29.4700, United States, Texas, Bexar; -98.4100, 

26.2330, United States, Texas, Hidalgo; -98.7000, 26.5300, United States, Texas, Starr; -98.7000, 27.0400, 

United States, Texas, Jim Hogg; -99.0400, 28.2800, United States, Texas, La Salle; -99.0800, 28.3700, 

United States, Texas, La Salle; -99.1600, 27.0300, United States, Texas, Zapata; -99.2800, 27.7400, United 

States, Texas, Webb; -99.8400, 28.8100, United States, Texas, Zavala.  

 

 

Osteopilus septentrionalis, native  

-75.1136, 23.2211, Bahamas, Long Island; -77.9382, 24.7259, Bahamas, North Andros; -76.2372, 

24.7547, Bahamas, South Eleuthera; -78.0536, 24.9565, Bahamas, North Andros; -76.7057, 25.4849, 

Bahamas, North Eleuthera; -77.1021, 26.3981, Bahamas, Central Abaco; -78.5437, 26.7153, Bahamas, West 

Grand Bahama; -77.6303, 26.8926, Bahamas, North Abaco; -81.3000, 19.2667, Cayman Islands, Bodden 

Town; -81.2000, 19.3000, Cayman Islands, North Side; -80.0000, 19.7000, Cayman Islands, Little Cayman; -

77.7333, 19.8832, Cuba, Granma; -77.7002, 19.9062, Cuba, Granma; -75.1065, 19.9121, Cuba, Guantánamo; 

-75.1148, 19.9189, Cuba, Guantánamo; -75.1217, 19.9189, Cuba, Guantánamo; -75.1262, 19.9268, Cuba, 

Guantánamo; -77.6499, 19.9615, Cuba, Granma; -76.8300, 19.9800, Cuba, Santiago de Cuba; -76.8333, 

19.9833, Cuba, Santiago de Cuba; -75.8219, 20.0247, Cuba, Santiago de Cuba; -77.4350, 20.1419, Cuba, 

Granma; -74.2754, 20.1445, Cuba, Guantánamo; -75.2061, 20.1453, Cuba, Guantánamo; -74.6833, 20.1500, 

Cuba, Guantánamo; -75.1492, 20.1505, Cuba, Guantánamo; -74.2967, 20.3008, Cuba, Guantánamo; -

75.0000, 20.3167, Cuba, Guantánamo; -74.5000, 20.3500, Cuba, Guantánamo; -74.8200, 20.5639, Cuba, 

Holguín; -77.1676, 20.7623, Cuba, Las Tunas; -75.7186, 20.9625, Cuba, Holguín; -78.0190, 21.2875, Cuba, 

Camagüey; -77.9167, 21.3833, Cuba, Camagüey; -78.0034, 21.3833, Cuba, Camagüey; -77.9848, 21.4472, 

Cuba, Camagüey; -82.8333, 21.6667, Cuba, Isla de la Juventud; -84.9508, 21.8631, Cuba, Pinar del Río; -

82.8000, 21.8833, Cuba, Isla de la Juventud; -80.0219, 21.9136, Cuba, Villa Clara; -80.0000, 21.9333, Cuba, 

Villa Clara; -80.1558, 21.9333, Cuba, Cienfuegos; -80.1667, 22.0667, Cuba, Cienfuegos; -81.0317, 22.0669, 

Cuba, Matanzas; -80.4403, 22.1444, Cuba, Cienfuegos; -84.0800, 22.2000, Cuba, Pinar del Río; -83.4000, 

22.3000, Cuba, Pinar del Río; -83.7500, 22.3167, Cuba, Pinar del Río; -80.5500, 22.3333, Cuba, Cienfuegos; 

-83.6981, 22.4175, Cuba, Pinar del Río; -80.4667, 22.4667, Cuba, Cienfuegos; -79.5500, 22.5000, Cuba, 
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Villa Clara; -83.4158, 22.5183, Cuba, Pinar del Río; -79.4669, 22.5206, Cuba, Villa Clara; -79.8220, 

22.5526, Cuba, Villa Clara; -83.7078, 22.6164, Cuba, Pinar del Río; -83.3500, 22.6167, Cuba, Pinar del Río; 

-83.3697, 22.6467, Cuba, Pinar del Río; -83.7167, 22.6667, Cuba, Pinar del Río; -83.1833, 22.7500, Cuba, 

Pinar del Río; -83.0167, 22.8000, Cuba, Pinar del Río; -80.6833, 22.8167, Cuba, Villa Clara; -80.4667, 

22.9000, Cuba, Villa Clara; -81.2047, 23.0375, Cuba, Matanzas; -82.4300, 23.0767, Cuba, Ciudad de la 

Habana; -82.1667, 23.1319, Cuba, Ciudad de la Habana; -82.3667, 23.1333, Cuba, Ciudad de la Habana; -

81.2000, 19.4000; -76.8000, 19.9333, Cuba; -84.6000, 21.8500; -84.2850, 22.4906; -75.4299, 24.2069, 

Bahamas; -75.5452, 24.4664, Bahamas. 

 

 

Osteopilus septentrionalis, invasive  

-72.0830, 18.3000, Haiti, Sud-Est, Belle-Anse, Belle-Anse; 80.4524, 25.4238, India, Uttar Pradesh, 

Banda, Naraini; -63.0410, 18.2333, Anguilla Island; -61.8164, 17.0981, Antigua and Barbuda, Saint John; -

64.5700, 18.3500, British Virgin Islands; -62.8333, 17.9000, Guadeloupe, Saint-Martin et Saint-Barthélémy; 

-63.0667, 18.0667, Guadeloupe, Saint-Martin et Saint-Barthélémy; -63.0668, 18.0667, Guadeloupe, Saint-

Martin et Saint-Barthélémy; -63.0669, 18.0667, Guadeloupe, Saint-Martin et Saint-Barthélémy; -68.9589, 

12.1503, Nederlandse Antillen, Curaçao; -68.9611, 12.1519, Nederlandse Antillen, Curaçao; -67.1146, 

18.4557, Puerto Rico, Aguadilla; -156.4470, 20.7250, United States, Hawaii, Maui; -160.0800, 21.9867, 

United States, Hawaii, Kauai; -81.7920, 24.5540, United States, Florida, Monroe; -81.7840, 24.5561, United 

States, Florida, Monroe; -81.7794, 24.5562, United States, Florida, Monroe; -81.7408, 24.5722, United 

States, Florida, Monroe; -81.7499, 24.5728, United States, Florida, Monroe; -81.3876, 24.6742, United 

States, Florida, Monroe; -81.4074, 24.6831, United States, Florida, Monroe; -81.3689, 24.6868, United 

States, Florida, Monroe; -81.3689, 24.6868, United States, Florida, Monroe; -81.0903, 24.7138, United 

States, Florida, Monroe; -80.6380, 24.9140, United States, Florida, Monroe; -80.4180, 25.1185, United 

States, Florida, Monroe; -80.9375, 25.1383, United States, Florida, Monroe; -80.9228, 25.1425, United 

States, Florida, Monroe; -80.9056, 25.1750, United States, Florida, Monroe; -80.8503, 25.2153, United 

States, Florida, Miami-Dade; -80.7833, 25.3206, United States, Florida, Miami-Dade; -80.8339, 25.3206, 

United States, Florida, Miami-Dade; -80.5844, 25.3944, United States, Florida, Miami-Dade; -80.6567, 

25.4017, United States, Florida, Miami-Dade; -80.6792, 25.4400, United States, Florida, Miami-Dade; -

80.2500, 25.8170, United States, Florida, Miami-Dade; -80.4288, 25.9309, United States, Florida, Miami-

Dade; -81.7008, 26.0532, United States, Florida, Collier; -80.4433, 26.1462, United States, Florida, Broward; 

-81.6713, 26.1551, United States, Florida, Collier; -81.8044, 26.1900, United States, Florida, Collier; -

81.7330, 26.6830, United States, Florida, Lee; -81.1916, 26.6964, United States, Florida, Hendry; -80.0540, 

26.7150, United States, Florida, Palm Beach; -81.1684, 26.8920, United States, Florida, Glades; -82.1312, 

26.9529, United States, Florida, Charlotte; -82.1312, 26.9529, United States, Florida, Charlotte; -80.1286, 

27.0061, United States, Florida, Martin; -80.2559, 27.1324, United States, Florida, Martin; -82.3989, 

27.1649, United States, Florida, Sarasota; -81.8720, 27.2010, United States, Florida, Desoto; -81.8720, 

27.2010, United States, Florida, Desoto; -80.3151, 27.2574, United States, Florida, Saint Lucie; -80.8709, 

27.3252, United States, Florida, Okeechobee; -81.4285, 27.4397, United States, Florida, Highlands; -

82.5491, 27.4878, United States, Florida, Manatee; -82.5491, 27.4878, United States, Florida, Manatee; -
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81.8091, 27.5382, United States, Florida, Hardee; -82.4590, 27.9470, United States, Florida, Hillsborough; -

82.2542, 28.0792, United States, Florida, Hillsborough; -81.3197, 28.2319, United States, Florida, Osceola; -

81.3908, 28.4711, United States, Florida, Orange; -81.3108, 28.7099, United States, Florida, Seminole; -

82.4692, 28.8946, United States, Florida, Citrus; -82.1275, 29.1808, United States, Florida, Marion; -

82.3720, 29.6133, United States, Florida, Alachua; -81.6223, 30.1807, United States, Florida, Duval; -

84.2609, 30.4629, United States, Florida, Leon; -84.2609, 30.4629, United States, Florida, Leon; -64.8292, 

18.3099, U.S. Virgin Islands, Saint Thomas, -64.9459, 18.3230, U.S. Virgin Islands, Saint Thomas; -

64.8842, 18.3238, U.S. Virgin Islands, Saint Thomas; -64.8359, 18.3255, U.S. Virgin Islands, Saint Thomas; 

-64.7836, 18.3306, U.S. Virgin Islands, Saint John; -64.7820, 18.3377, U.S. Virgin Islands, Saint John; -

64.9922, 18.3543, U.S. Virgin Islands, Saint Thomas; -64.8983, 18.3551, U.S. Virgin Islands, Saint Thomas; 

-65.0203, 18.3583, U.S. Virgin Islands, Saint Thomas. 

 

 

Phelsuma parkeri  

39.6530, -5.4340, Tanzania, Kusini-Pemba, Mkoani, Chokocho; 39.7530, -5.3030, Tanzania, Kusini-

Pemba, Chakechake, Chonga; 39.6940, -5.3760, Tanzania, Kusini-Pemba, Mkoani, Kangani; 39.7170, -

5.3960, Tanzania, Kusini-Pemba, Mkoani, Kengeja; 39.7300, -5.4220, Tanzania, Kusini-Pemba, Mkoani, 

Kengeja; 39.7300, -5.4330, Tanzania, Kusini-Pemba, Mkoani, Kengeja; 39.7140, -5.4080, Tanzania, Kusini-

Pemba, Mkoani, Kengeja; 39.7100, -5.3870, Tanzania, Kusini-Pemba, Mkoani, Kengeja; 39.7220, -5.0600, 

Tanzania, Kaskazini-Pemba, Wete, Kipangani; 39.8060, -5.1510, Tanzania, Kaskazini-Pemba, Wete, Kiuyu; 

39.7060, -4.9640, Tanzania, Kaskazini-Pemba, Micheweni, Konde; 39.7060, -4.9640, Tanzania, Kaskazini-

Pemba, Micheweni, Konde; 39.7060, -4.9640, Tanzania, Kaskazini-Pemba, Micheweni, Konde; 39.7210, -

4.9450, Tanzania, Kaskazini-Pemba, Micheweni, Konde; 39.7150, -4.9420, Tanzania, Kaskazini-Pemba, 

Micheweni, Konde; 39.7390, -4.9670, Tanzania, Kaskazini-Pemba, Micheweni, Konde; 39.6830, -4.9230, 

Tanzania, Kaskazini-Pemba, Micheweni, Makangale; 39.6660, -5.3750, Tanzania, Kusini-Pemba, Mkoani, 

Mbuguani; 39.7370, -4.9990, Tanzania, Kaskazini-Pemba, Micheweni, Mgogoni; 39.7370, -4.9990, 

Tanzania, Kaskazini-Pemba, Micheweni, Mgogoni; 39.7360, -5.0410, Tanzania, Kaskazini-Pemba, 

Micheweni, Mgogoni; 39.6680, -5.3990, Tanzania, Kusini-Pemba, Mkoani, Mkanyageni; 39.7560, -4.9220, 

Tanzania, Kaskazini-Pemba, Micheweni, Msuka; 39.7850, -5.3740, Tanzania, Kusini-Pemba, Mkoani, 

Mtangani; 39.7770, -5.3670, Tanzania, Kusini-Pemba, Mkoani, Mtangani; 39.7310, -5.4350, Tanzania, 

Kusini-Pemba, Mkoani, Muambe; 39.8000, -5.2620, Tanzania, Kusini-Pemba, Chakechake, Mvumoni; 

39.6460, -5.3690, Tanzania, Kusini-Pemba, Mkoani, Ngombeni; 39.8000, -5.1840, Tanzania, Kaskazini-

Pemba, Wete, Ole; 39.8010, -5.1870, Tanzania, Kaskazini-Pemba, Wete, Ole; 39.8070, -5.1880, Tanzania, 

Kaskazini-Pemba, Wete, Ole; 39.8120, -5.1840, Tanzania, Kaskazini-Pemba, Wete, Ole; 39.8220, -5.1700, 

Tanzania, Kaskazini-Pemba, Wete, Ole; 39.8220, -5.1700, Tanzania, Kaskazini-Pemba, Wete, Ole; 39.7760, 

-5.0970, Tanzania, Kaskazini-Pemba, Wete, Piki; 39.7690, -5.0870, Tanzania, Kaskazini-Pemba, Wete, Piki; 

39.8160, -5.0430, Tanzania, Kaskazini-Pemba, Wete, Shengejuu; 39.7620, -5.2270, Tanzania, Kusini-Pemba, 

Chakechake, Tibirinzi; 39.8020, -4.9650, Tanzania, Kaskazini-Pemba, Micheweni, Tumbe; 39.7610, -5.3450, 

Tanzania, Kusini-Pemba, Mkoani, Ukutini; 39.7560, -5.0720, Tanzania, Kaskazini-Pemba, Wete, Utaani; 

39.6740, -5.3050, Tanzania, Kusini-Pemba, Mkoani, Wambaa; 39.8060, -5.0180, Tanzania, Kaskazini-

Pemba, Micheweni, Wingwi Mapofu; 39.8180, -5.0350, Tanzania, Kaskazini-Pemba, Micheweni, Wingwi 
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Njuguni; 39.8180, -5.0350, Tanzania, Kaskazini-Pemba, Micheweni, Wingwi Njuguni; 39.7780, -5.1920, 

Tanzania, Kusini-Pemba, Chakechake, Ziwani. 

 

 

Trachemys scripta, native  

-104.6700, 34.9100, United States, New Mexico, Guadalupe; -104.5700, 32.0000, United States, 

Texas, Culberson; -104.5300, 32.9400, United States, New Mexico, Eddy; -104.5000, 32.0700, United 

States, New Mexico, Eddy; -104.4200, 32.4800, United States, New Mexico, Eddy; -104.4100, 34.0700, 

United States, New Mexico, Debaca; -104.4100, 35.7000, United States, New Mexico, San Miguel; -

104.4000, 33.4500, United States, New Mexico, Chaves; -104.3900, 33.4000, United States, New Mexico, 

Chaves; -104.3800, 32.0700, United States, New Mexico, Eddy; -104.3600, 33.2000, United States, New 

Mexico, Chaves; -104.3400, 32.0500, United States, New Mexico, Eddy; -104.3400, 33.3400, United States, 

New Mexico, Chaves; -104.3300, 33.3600, United States, New Mexico, Chaves; -104.3100, 32.1000, United 

States, New Mexico, Eddy; -104.2900, 32.0000, United States, Texas, Culberson; -104.2700, 32.5000, 

United States, New Mexico, Eddy; -104.2500, 32.0000, United States, Texas, Culberson; -104.2500, 

32.4900, United States, New Mexico, Eddy; -104.2300, 32.1500, United States, New Mexico, Eddy; -

104.2300, 32.4900, United States, New Mexico, Eddy; -104.2300, 35.4600, United States, New Mexico, San 

Miguel; -104.2200, 32.4100, United States, New Mexico, Eddy; -104.2200, 32.4200, United States, New 

Mexico, Eddy; -104.1900, 32.2200, United States, New Mexico, Eddy; -104.1900, 35.4000, United States, 

New Mexico, San Miguel; -104.1800, 35.4100, United States, New Mexico, San Miguel; -104.1700, 

35.4200, United States, New Mexico, San Miguel; -104.1600, 32.3900, United States, New Mexico, Eddy; -

104.1500, 32.3900, United States, New Mexico, Eddy; -104.0800, 32.1900, United States, New Mexico, 

Eddy; -104.0600, 32.0200, United States, New Mexico, Eddy; -104.0200, 32.0400, United States, New 

Mexico, Eddy; -104.0000, 31.0000, United States, Texas, Jeff Davis; -103.9900, 32.0300, United States, 

New Mexico, Eddy; -103.7200, 35.9600, United States, New Mexico, Harding; -103.3100, 36.0500, United 

States, New Mexico, Union; -101.9500, 33.7600, United States, Texas, Lubbock; -101.7300, 32.4200, United 

States, Texas, Martin; -101.3240, 37.5910, United States, Kansas, Grant; -101.3240, 37.5910, United States, 

Kansas, Grant; -100.9910, 37.9740, United States, Kansas, Finney; -100.9910, 37.9740, United States, 

Kansas, Finney; -100.8940, 37.0690, United States, Kansas, Seward; -100.8940, 37.0690, United States, 

Kansas, Seward; -100.7790, 37.1410, United States, Kansas, Seward; -100.7790, 37.1410, United States, 

Kansas, Seward; -100.5600, 38.0680, United States, Kansas, Finney; -100.5600, 38.0680, United States, 

Kansas, Finney; -100.3540, 37.7990, United States, Kansas, Gray; -100.3540, 37.7990, United States, 

Kansas, Gray; -100.3000, 37.2000, United States, Kansas, Meade; -100.1860, 37.7800, United States, 

Kansas, Ford; -100.1860, 37.7800, United States, Kansas, Ford; -100.1500, 38.3700, United States, Kansas, 

Ness; -100.1500, 38.3700, United States, Kansas, Ness; -100.0820, 38.0490, United States, Kansas, 

Hodgeman; -100.0820, 38.0490, United States, Kansas, Hodgeman; -100.0010, 38.0690, United States, 

Kansas, Hodgeman; -100.0010, 38.0690, United States, Kansas, Hodgeman; -100.0010, 38.0690, United 

States, Kansas, Hodgeman; -100.0000, 38.0690, United States, Kansas, Hodgeman; -99.9920, 38.5420, 

United States, Kansas, Ness; -99.8100, 31.5300, United States, Texas, Concho; -99.7800, 30.9100, United 

States, Texas, Menard; -99.7770, 37.0460, United States, Kansas, Clark; -99.7300, 33.1500, United States, 

Texas, Haskell; -99.7140, 38.7940, United States, Kansas, Trego; -99.7120, 29.5530, United States, Texas, 
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Uvalde; 99.6850, 37.3100, United States, Kansas, Clark; -99.5700, 38.5800, United States, Kansas, Rush; -

99.5700, 39.6600, United States, Kansas, Phillips; -99.4200, 27.7900, United States, Texas, Webb; -99.4200, 

31.8200, United States, Texas, Coleman; -99.2700, 26.9000, United States, Texas, Zapata; -99.2240, 

38.1820, United States, Kansas, Pawnee; -99.1710, 37.1210, United States, Kansas, Comanche; -99.1700, 

33.1700, United States, Texas, Throckmorton; -99.1520, 38.7140, United States, Kansas, Ellis; -99.1510, 

38.7140, United States, Kansas, Ellis; -99.1470, 37.2180, United States, Kansas, Comanche; -99.1470, 

37.2180, United States, Kansas, Comanche; -99.0600, 32.3400, United States, Texas, Eastland; -98.9630, 

37.1310, United States, Kansas, Barber; -98.9220, 37.2620, United States, Kansas, Barber; -98.7870, 

39.5260, United States, Kansas, Osborne; -98.7870, 39.5260, United States, Kansas, Osborne; -98.7300, 

29.2600, United States, Texas, Bexar; -98.7240, 37.2750, United States, Kansas, Barber; -98.7100, 31.1900, 

United States, Texas, San Saba; -98.6700, 30.7400, United States, Texas, Llano; -98.6500, 37.0640, United 

States, Kansas, Barber; -98.6280, 37.1230, United States, Kansas, Barber; -98.5830, 37.3010, United States, 

Kansas, Barber; -98.5100, 37.3000, United States, Kansas, Barber; -98.4900, 39.4260, United States, Kansas, 

Osborne; -98.4200, 30.0900, United States, Texas, Blanco; -98.3230, 39.5100, United States, Kansas, 

Mitchell; -98.2900, 32.7600, United States, Texas, Palo Pinto; -98.2600, 26.1000, United States, Texas, 

Hidalgo; -98.1450, 27.2250, United States, Texas, Brooks; -98.1200, 32.6600, United States, Texas, Palo 

Pinto; -98.1120, 37.1920, United States, Kansas, Harper; -98.0800, 26.1700, United States, Texas, Hidalgo; -

97.9600, 32.6100, United States, Texas, Parker; -97.9290, 38.0900, United States, Kansas, Reno; -97.8400, 

28.8100, United States, Texas, Karnes; -97.8220, 38.6680, United States, Kansas, Saline; -97.7700, 27.9500, 

United States, Texas, San Patricio; -97.7430, 30.2670, United States, Texas, Travis; -97.6100, 31.5400, 

United States, Texas, Coryell; -97.5570, 30.2680, United States, Texas, Travis; -97.5200, 34.9000, United 

States, Oklahoma, McClain; -97.4000, 30.5700, United States, Texas, Williamson; -97.3500, 35.0140, United 

States, Oklahoma, McClain; -97.3100, 30.1100, United States, Texas, Bastrop; -97.2700, 28.3000, United 

States, Texas, Refugio; -97.0830, 37.0780, United States, Kansas, Cowley; -97.0000, 28.8000, United States, 

Texas, Victoria; -96.9700, 30.8500, United States, Texas, Milam; -96.8800, 32.7100, United States, Texas, 

Dallas; -96.8680, 37.0490, United States, Kansas, Cowley; -96.8600, 29.6910, United States, Texas, Fayette; 

-96.8010, 33.7210, United States, Texas, Grayson; -96.7740, 33.6920, United States, Texas, Grayson; -

96.7700, 32.2900, United States, Texas, Ellis; -96.6720, 33.7740, United States, Texas, Grayson; -96.6200, 

33.0500, United States, Texas, Collin; -96.6090, 33.6200, United States, Texas, Grayson; -96.5300, 33.8000, 

United States, Texas, Grayson; -96.4820, 36.0030, United States, Oklahoma, Creek; -96.4500, 32.9300, 

United States, Texas, Rockwall; -96.4290, 30.5460, United States, Texas, Burleson; -96.4130, 33.6220, 

United States, Texas, Grayson; -96.3800, 32.5100, United States, Texas, Kaufman; -96.3340, 30.6280, 

United States, Texas, Brazos; -96.1600, 38.6500, United States, Kansas, Lyon; -96.1500, 30.3200, United 

States, Texas, Washington; -96.1000, 29.3100, United States, Texas, Wharton; -96.0700, 31.8400, United 

States, Texas, Freestone; -95.9550, 37.0260, United States, Kansas, Montgomery; -95.9280, 37.3980, United 

States, Kansas, Wilson; -95.8720, 36.0920, United States, Oklahoma, Tulsa; -95.8500, 36.9700, United 

States, Oklahoma, Washington; -95.6700, 32.6000, United States, Texas, Van Zandt; -95.4300, 32.9200, 

United States, Texas, Wood; -95.3390, 37.4170, United States, Kansas, Neosho; -95.3230, 37.6010, United 

States, Kansas, Neosho; -95.2790, 38.5710, United States, Kansas, Franklin; -95.2320, 37.0620, United 

States, Kansas, Labette; -95.1950, 39.8800, United States, Kansas, Doniphan; -95.1950, 39.8800, United 

States, Kansas, Doniphan; -95.1800, 37.5340, United States, Kansas, Neosho; -95.1680, 37.1630, United 
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States, Kansas, Labette; -95.1650, 37.1630, United States, Kansas, Labette; -95.1520, 37.4780, United States, 

Kansas, Neosho; -95.1520, 37.1280, United States, Kansas, Labette; -95.0820, 37.1660, United States, 

Kansas, Labette; -95.0700, 37.1800, United States, Kansas, Cherokee; -94.8910, 29.8480, United States, 

Texas, Chambers; -94.8700, 29.2700, United States, Texas, Galveston; -94.8370, 38.5690, United States, 

Kansas, Miami; -94.8080, 37.3300, United States, Kansas, Cherokee; -94.7800, 36.8500, United States, 

Oklahoma, Ottawa; -94.7610, 38.3500, United States, Kansas, Linn; -94.7580, 33.9510, United States, 

Oklahoma, McCurtain; -94.7030, 37.8370, United States, Kansas, Bourbon; -94.6950, 37.0750, United 

States, Kansas, Cherokee; -94.6900, 38.0640, United States, Kansas, Linn; -94.6400, 37.8560, United States, 

Kansas, Bourbon; -94.6360, 37.0410, United States, Kansas, Cherokee; -94.4400, 32.8800, United States, 

Texas, Marion; -94.3400, 32.7400, United States, Texas, Marion; -94.3200, 32.5400, United States, Texas, 

Harrison; -94.2500, 39.7600, United States, Missouri, De Kalb; -94.1100, 40.5800, United States, Iowa, 

Ringgold; -94.0600, 33.1900, United States, Texas, Cass; -94.0000, 31.0000, United States, Texas, Jasper; -

93.9600, 36.6300, United States, Missouri, Barry; -93.8400, 31.3400, United States, Texas, Sabine; -93.8400, 

31.5900, United States, Texas, Shelby; -93.8100, 38.4000, United States, Missouri, Henry; -93.8000, 

36.6500, United States, Missouri, Barry; -93.7600, 31.2400, United States, Texas, Sabine; -93.7500, 30.8400, 

United States, Texas, Newton; -93.4570, 30.2360, United States, Louisiana, Calcasieu; -93.3200, 30.1000, 

United States, Louisiana, Calcasieu; -93.1600, 39.7800, United States, Missouri, Linn; -93.0800, 31.7400, 

United States, Louisiana, Natchitoches; -92.7800, 40.5700, United States, Missouri, Putnam; -92.5700, 

30.2600, United States, Louisiana, Acadia; -92.4300, 31.3220, United States, Louisiana, Rapides; -92.0700, 

32.7500, United States, Louisiana, Union; -92.0200, 30.2240, United States, Louisiana, Lafayette; -91.9700, 

37.5500, United States, Missouri, Texas; -91.8900, 34.7800, United States, Arkansas, Lonoke; -91.8200, 

29.9900, United States, Louisiana, Iberia; -91.7600, 39.1300, United States, Missouri, Audrain; -91.7360, 

35.2510, United States, Arkansas, White; -91.7300, 39.6500, United States, Missouri, Monroe; -91.7000, 

30.2100, United States, Louisiana, Saint Martin; -91.6800, 40.4200, United States, Missouri, Clark; -

91.6700, 35.7300, United States, Arkansas, Independence; -91.4300, 30.7300, United States, Louisiana, 

Pointe Coupee; -91.4200, 31.5600, United States, Mississippi, Adams; -91.3400, 34.0200, United States, 

Arkansas, Arkansas; -91.2500, 32.0500, United States, Louisiana, Tensas; -91.2300, 31.2220, United States, 

Mississippi, Wilkinson; -91.1800, 30.4450, United States, Louisiana, East Baton Rouge; -91.1600, 30.3300, 

United States, Louisiana, West Baton Rouge; -91.1300, 33.7300, United States, Mississippi, Bolivar; -

91.1300, 41.3700, United States, Iowa, Muscatine; -91.1100, 40.8000, United States, Iowa, Des Moines; -

91.1100, 30.2900, United States, Louisiana, Iberville; -91.1000, 34.7300, United States, Arkansas, Monroe; -

91.0700, 33.5900, United States, Mississippi, Bolivar; -90.9400, 40.2000, United States, Illinois, Hancock; -

90.8000, 29.7600, United States, Louisiana, Lafourche; -90.7400, 36.6100, United States, Missouri, Ripley; -

90.7200, 29.7500, United States, Louisiana, Lafourche; -90.7000, 32.8500, United States, Mississippi, 

Yazoo; -90.6200, 39.1500, United States, Illinois, Calhoun; -90.5800, 35.8100, United States, Arkansas, 

Craighead; -90.4290, 30.3970, United States, Louisiana, Tangipahoa; -90.3800, 34.6800, United States, 

Mississippi, Tunica; -90.2600, 39.9600, United States, Illinois, Cass; -90.2420, 30.4370, United States, 

Louisiana, Saint Tammany; -90.1900, 37.2100, United States, Missouri, Bollinger; -90.1670, 35.8800, 

United States, Arkansas, Mississippi; -90.1500, 29.9600, United States, Louisiana, Jefferson; -90.1400, 

36.4500, United States, Arkansas, Clay; -90.1200, 29.9100, United States, Louisiana, Orleans; -90.1200, 

32.4600, United States, Mississippi, Madison; -90.0300, 39.7200, United States, Illinois, Morgan; -89.9900, 
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35.2400, United States, Tennessee, Shelby; -89.8650, 30.5920, United States, Louisiana, Saint Tammany; -

89.8500, 29.8600, United States, Louisiana, Saint Bernard; -89.8500, 35.1500, United States, Tennessee, 

Shelby; -89.8500, 39.8400, United States, Illinois, Sangamon; -89.8100, 35.4100, United States, Tennessee, 

Tipton; -89.7600, 38.9800, United States, Illinois, Madison; -89.7500, 40.7400, United States, Illinois, 

Peoria; -89.5800, 40.7100, United States, Illinois, Peoria; -89.4400, 35.2300, United States, Tennessee, 

Fayette; -89.3300, 40.4800, United States, Illinois, Tazewell; -89.3100, 33.8500, United States, Mississippi, 

Calhoun; -89.2000, 35.3600, United States, Tennessee, Fayette; -89.1900, 36.2400, United States, Tennessee, 

Obion; -89.1800, 36.5700, United States, Kentucky, Fulton; -89.0900, 41.3300, United States, Illinois, La 

Salle; -88.9800, 40.3700, United States, Illinois, McLean; -88.9600, 40.1500, United States, Illinois, De Witt; 

-88.8000, 32.5800, United States, Mississippi, Kemper; -88.8000, 33.4500, United States, Mississippi, 

Oktibbeha; -88.7300, 37.0100, United States, Kentucky, McCracken; -88.7100, 31.9700, United States, 

Mississippi, Clarke; -88.6400, 42.4400, United States, Illinois, McHenry; -88.5400, 39.1200, United States, 

Illinois, Effingham; -88.4700, 39.5200, United States, Illinois, Coles; -88.4100, 36.2000, United States, 

Tennessee, Henry; -88.3070, 33.2680, United States, Mississippi, Noxubee; -88.2300, 36.9400, United 

States, Kentucky, Marshall; -88.1800, 41.8700, United States, Illinois, Dupage; -88.0950, 33.2640, United 

States, Alabama, Pickens; -88.0400, 38.6500, United States, Illinois, Richland; -88.0330, 30.6930, United 

States, Alabama, Mobile; -87.9700, 34.7500, United States, Alabama, Colbert; -87.9300, 36.8900, United 

States, Kentucky, Trigg; -87.8900, 32.3800, United States, Alabama, Marengo; -87.7970, 32.3070, United 

States, Alabama, Marengo; -87.7800, 39.3600, United States, Illinois, Clark; -87.7200, 41.8400, United 

States, Illinois, Cook; -87.6800, 33.1030, United States, Alabama, Tuscaloosa; -87.6800, 33.1940, United 

States, Alabama, Tuscaloosa; -87.6410, 33.1190, United States, Alabama, Tuscaloosa; -87.6080, 33.1660, 

United States, Alabama, Tuscaloosa; -87.6050, 39.7300, United States, Illinois, Edgar; -87.5950, 32.7050, 

United States, Alabama, Hale; -87.5800, 39.5800, United States, Illinois, Edgar; -87.5700, 33.2110, United 

States, Alabama, Tuscaloosa; -87.5440, 32.6050, United States, Alabama, Hale; -87.5330, 32.5940, United 

States, Alabama, Hale; -87.5230, 33.1940, United States, Alabama, Tuscaloosa; -87.3170, 32.6340, United 

States, Alabama, Perry; -87.2500, 34.1400, United States, Alabama, Winston; -87.0000, 35.0000, United 

States, Tennessee, Giles; -87.0000, 36.0000, United States, Tennessee, Williamson; -86.9470, 34.6790, 

United States, Alabama, Limestone; -86.9100, 33.3300, United States, Alabama, Jefferson; -86.7900, 

33.9300, United States, Alabama, Blount; -86.5800, 33.1100, United States, Alabama, Shelby; -86.5700, 

34.7400, United States, Alabama, Madison; -86.5700, 35.3300, United States, Tennessee, Lincoln; -86.5120, 

34.7450, United States, Alabama, Madison; -86.4570, 31.4320, United States, Alabama, Covington; -

86.3100, 32.5300, United States, Alabama, Elmore; -86.2980, 34.3620, United States, Alabama, Marshall; -

86.1400, 34.2400, United States, Alabama, Marshall; -86.0890, 33.9730, United States, Alabama, Etowah; -

86.0700, 31.4800, United States, Alabama, Coffee; -86.0200, 33.6070, United States, Alabama, Calhoun; -

86.0200, 36.5200, United States, Tennessee, Macon; -85.8280, 33.6640, United States, Alabama, Calhoun; -

85.5970, 33.6590, United States, Alabama, Cleburne; -85.4400, 34.2400, United States, Georgia, Floyd; -

85.3000, 37.3000, United States, Kentucky, Taylor; -85.1300, 33.1500, United States, Georgia, Troup; -

85.0700, 33.1000, United States, Georgia, Troup; -85.0200, 38.0000, United States, Kentucky, Anderson; -

84.9900, 37.9300, United States, Kentucky, Anderson; -84.9300, 32.4200, United States, Georgia, 

Muscogee; -84.7800, 33.6800, United States, Georgia, Douglas; -84.7100, 35.6800, United States, 

Tennessee, Meigs; -84.5100, 33.6900, United States, Georgia, Fulton; -84.4800, 33.8000, United States, 
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Georgia, Fulton; -84.4600, 33.4100, United States, Georgia, Fayette; -84.4080, 30.3990, United States, 

Florida, Leon; -84.3550, 34.0280, United States, Georgia, Fulton; -84.3470, 30.4050, United States, Florida, 

Leon; -84.3330, 30.4670, United States, Florida, Leon; -84.2900, 33.7700, United States, Georgia, DeKalb; -

84.2700, 38.0400, United States, Kentucky, Clark; -84.2400, 35.8000, United States, Tennessee, Loudon; -

84.2100, 37.2900, United States, Kentucky, Laurel; -84.0700, 32.0100, United States, Georgia, Sumter; -

84.0600, 34.3800, United States, Georgia, Dawson; -83.3800, 32.9000, United States, Georgia, Wilkinson; -

82.8390, 34.6780, United States, South Carolina, Pickens; -82.6700, 38.6400, United States, Ohio, Lawrence; 

-82.5400, 37.3700, United States, Kentucky, Pike; -82.4700, 32.8700, United States, Georgia, Jefferson; -

82.3500, 31.7900, United States, Georgia, Appling; -82.2430, 32.8070, United States, Georgia, Emanuel; -

82.0000, 34.0000, United States, South Carolina, Greenwood; -81.9500, 32.3900, United States, Georgia, 

Candler; -81.1200, 31.9300, United States, Georgia, Chatham; -81.1000, 32.0000, United States, Georgia, 

Chatham; -80.3300, 35.6200, United States, North Carolina, Rowan; -80.0000, 35.0000, United States, North 

Carolina, Anson; -80.0000, 36.0000, United States, North Carolina, Guilford; -78.6420, 35.8210, United 

States, North Carolina, Wake; -78.6100, 36.5900, United States, Virginia, Mecklenburg; -78.5100, 35.8800, 

United States, North Carolina, Wake; -78.3060, 36.5860, United States, Virginia, Mecklenburg; -78.0440, 

34.0420, United States, North Carolina, Brunswick; -77.4310, 34.7540, United States, North Carolina, 

Onslow; -77.1260, 36.9070, United States, Virginia, Sussex; -76.2900, 36.8400, United States, Virginia, 

Norfolk; -76.1500, 36.8200, United States, Virginia, Virginia Beach; -75.8870, 36.5810, United States, 

Virginia, Virginia Beach. 

 

 

Trachemys scripta, invasive  

-0.4000, 40.2100, España, Comunidad Valenciana, Castellón, Alt Millars, Villahermosa del Río; -

55.9690, -20.5110, Brazil, Mato Grosso do Sul, Anastácio, Anastcio; -49.3330, -16.8280, Brazil, Goiás, 

Aparecida de Goiânia, Aparecida de Goiânia; -48.2670, -7.3170, Brazil, Tocantins, Araguaína, Araguaína; -

43.4080, -22.7890, Brazil, Rio de Janeiro, Nova Iguaçu, Banco de Areia; -43.4690, -22.8780, Brazil, Rio de 

Janeiro, Rio de Janeiro, Bangu; -49.0890, -27.0190, Brazil, Santa Catarina, Blumenau, Blumenau; -47.9030, -

15.8250, Brazil, Distrito Federal, Brasília, Brazilia; -42.8890, -22.8360, Brazil, Rio de Janeiro, Itaboraí, 

Cabucu; -43.5670, -22.7810, Brazil, Rio de Janeiro, Nova Iguaçu, CabuçU; -54.7470, -20.5280, Brazil, Mato 

Grosso do Sul, Campo Grande, Campo Grande; -52.5970, -29.7830, Brazil, Rio Grande do Sul, Candelária, 

Candelária; -52.4190, -31.8110, Brazil, Rio Grande do Sul, Capitão, Capão do Leão; -51.2560, -29.2690, 

Brazil, Rio Grande do Sul, Caxias do Sul, Caxias do Sul; -43.2000, -21.5330, Brazil, Minas Gerais, Goianá, 

Goianá; 105.8500, 21.0330, Vietnam; -43.7860, -22.7690, Brazil, Rio de Janeiro, Itaguaí, Ibituporanga; -

43.7670, -22.7030, Brazil, Rio de Janeiro, Itaguaí, Ibituporanga; -43.9250, -22.9060, Brazil, Rio de Janeiro, 

Mangaratiba, Itacurussa; -43.4170, -22.9440, Brazil, Rio de Janeiro, Rio de Janeiro, Jagarepagua; -40.1690, -

19.3530, Brazil, Espírito Santo, Linhares, Linhares; -44.1390, -22.9750, Brazil, Rio de Janeiro, Mangaratiba, 

Mangaratiba; -48.9250, -25.5810, Brazil, Paraná, Morretes, Morretes; -16.6400, 28.2700, España, Islas 

Canarias, Las Palmas, La Orotava; -15.5800, 28.0000, España, Islas Canarias, Las Palmas, Vega de San 

Mateo; 1.8000, 41.5000, España, Cataluña, Barcelona, Masquefa; -6.1830, 38.9830, España, Extremadura, 

Badajoz, Mérida; 4.0000, 40.0000, España, Islas Baleares, Baleares, Ferreries; -43.9860, -19.9780, Brazil, 

Minas Gerais, Belo Horizonte, Oeste; 7.8170, 48.5670, Deutschland, Baden-Württemberg, Freiburg, 
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Ortenaukreis; -48.3890, -10.2190, Brazil, Tocantins, Palmas, Palmas; -48.3500, -9.9580, Brazil, Tocantins, 

Palmas, Palmas; -43.7860, -22.6810, Brazil, Rio de Janeiro, Paracambi, Paracambi; -43.4530, -22.8470, 

Brazil, Rio de Janeiro, Rio de Janeiro, Realengo; -52.2610, -32.2720, Brazil, Rio Grande do Sul, Rio Grande, 

Rio Grande; -49.3830, -25.4830, Brazil, Paraná, Curitiba, Santa Felicidade; -43.0560, -22.5810, Brazil, Rio 

de Janeiro, Magé, Santo Aleixo; -43.3670, -22.8030, Brazil, Rio de Janeiro, São João de Meriti, São João de 

Meriti; -42.7420, -22.7830, Brazil, Rio de Janeiro, Tanguá, Tanguá; -42.8860, -5.1420, Brazil, Goiás, Timon, 

Timon; -46.7310, -23.6250, Brazil, São Paulo, São Paulo, Vila Andrade; -54.5780, -25.5970, Argentina, 

Misiones, Iguazú; 151.2000, -33.8830, Australia, New South Wales, Sydney; -64.6230, 18.4270, British 

Virgin Islands; -64.4400, 18.4450, British Virgin Islands; 0.6830, 47.3830, France, Centre, Indre-Et-Loire; 

1.4330, 43.6000, France, Midi-Pyrénées, Haute-Garonne; 2.3830, 48.9170, France, Île-de-France, Seine-

Saint-Denis; 2.5000, 48.9500, France, Île-de-France, Seine-Saint-Denis; 4.0670, 44.1170, France, 

Languedoc-Roussillon, Gard; 4.7500, 44.5500, France, Rhône-Alpes, Drôme; 9.0000, 42.0000, France, 

Corse, Corse-Du-Sud; -61.5830, 16.2500, Guadeloupe, Basse-Terre, -92.1830, 14.5170, Guatemala, San 

Marcos, Ocos; -88.2400, 14.8460, Honduras, Santa Bárbara, Santa Bárbara; -86.6330, 14.0000, Honduras, El 

Paraíso, Jacaleapa; 112.1500, -7.5670, Indonesia, Jawa Timur, Jombang; 8.0000, 45.0000, Italia, Piemonte, 

Asti; 8.8330, 44.5000, Italia, Liguria, Genoa; 9.5000, 45.6600, Italia, Lombardia, Bergamo; 11.0000, 

44.7500, Italia, Emilia-Romagna, Modena; 12.0330, 44.5000, Italia, Emilia-Romagna, Ravenna; 12.4830, 

41.9000, Italia, Lazio, Rome; 12.5000, 42.0000, Italia, Lazio, Rome; 12.9000, 41.4830, Italia, Lazio, Latina; 

13.4330, 46.0830, Italia, Friuli-Venezia Giulia, Udine; 13.7500, 42.2500, Italia, Abruzzo, L'Aquila; 14.4800, 

41.6300, Italia, Molise, Campobasso; 16.2500, 41.2500, Italia, Apulia, Barletta-Andria-Trani; 16.5000, 

40.5000, Italia, Basilicata, Matera; 16.5000, 39.0000, Italia, Calabria, Catanzaro; -111.0610, 24.8750, 

México, Baja California Sur, Comondú; -109.8910, 27.8130, México, Sonora, Cajeme; -108.8870, 26.9490, 

México, Sonora, Álamos; -108.6940, 26.9030, México, Sonora, Álamos; -103.0000, 29.0000, México, 

Coahuila, Ocampo; 128.1830, 26.7000, Nippon, Saga; 129.3330, 28.2500, Nippon, Saga; 126.7830, 26.3330, 

Nippon, Saga; 131.2500, 25.8330, Nippon, Saga; 125.3330, 24.7830, Nippon, Saga; -66.5040, 18.0660, 

Puerto Rico, Juana Díaz; -66.5410, 17.9860, Puerto Rico, Ponce; -65.3010, 18.3050, Puerto Rico, Culebra; -

65.8280, 18.1520, Puerto Rico, Humacao; 13.6100, 45.5300, Republika Slovenija, Obalno-kraška, Izola; 

22.7100, 42.9300, Serbia, Pirotski, Dimitrovgrad; 103.8560, 1.2930, Singapore, 120.6170, 24.0670, Taiwan, 

Taiwan, Changhwa; 121.0000, 24.0000, Taiwan, Taiwan, Nantou; 121.1170, 24.9000, Taiwan, Taiwan, 

Taoyuan; 121.2830, 25.0500, Taiwan, Taiwan, Taipei; 121.4500, 25.0000, Taiwan, Taipei, Taipei City; 

100.5170, 13.7500, Thailand, Bangkok Metropolis, Pathum Wan; 27.3010, 37.0380, Turkey, Mugla; -2.1430, 

50.7100, United Kingdom, England, Dorset; -2.0010, 50.6200, United Kingdom, England, Dorset; -1.8570, 

51.6090, United Kingdom, England, Wiltshire; -1.5610, 52.3270, United Kingdom, England, Warwickshire; 

-0.7100, 51.3320, United Kingdom, England, Surrey; -157.9340, 21.3360, United States, Hawaii, Honolulu; -

157.8070, 21.3120, United States, Hawaii, Honolulu; -157.7380, 21.3730, United States, Hawaii, Honolulu; -

157.7170, 21.3830, United States, Hawaii, Honolulu; -122.2140, 40.4170, United States, California, Shasta; -

121.1500, 38.6500, United States, California, Sacramento; -119.6630, 34.4190, United States, California, 

Santa Barbara; -118.8660, 34.1370, United States, California, Ventura; -117.8870, 33.8870, United States, 

California, Orange; -113.0000, 33.0000, United States, Arizona, Maricopa; -112.0000, 33.0000, United 

States, Arizona, Pinal; -111.9330, 33.4500, United States, Arizona, Maricopa; -111.8900, 40.7300, United 

States, Utah, Salt Lake; -108.7100, 32.7100, United States, New Mexico, Grant; -108.5800, 39.0850, United 
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States, Colorado, Mesa; -107.1900, 33.2500, United States, New Mexico, Sierra; -107.1700, 33.2000, United 

States, New Mexico, Sierra; -107.0600, 33.4900, United States, New Mexico, Socorro; -107.0000, 33.0000, 

United States, New Mexico, Sierra; -107.0000, 34.0000, United States, New Mexico, Socorro; -106.9100, 

33.7600, United States, New Mexico, Socorro; -106.9070, 33.8050, United States, New Mexico, Socorro; -

106.9000, 33.8300, United States, New Mexico, Socorro; -106.9000, 34.1200, United States, New Mexico, 

Socorro; -106.8900, 33.8100, United States, New Mexico, Socorro; -106.8800, 33.8200, United States, New 

Mexico, Socorro; -106.6000, 35.0800, United States, New Mexico, Bernalillo; -106.0000, 32.0000, United 

States, Texas, El Paso; -106.0000, 34.0000, United States, New Mexico, Socorro; -106.0000, 35.0000, 

United States, New Mexico, Torrance; -105.0350, 39.6960, United States, Colorado, Denver; -104.3700, 

29.5600, United States, Texas, Presidio; -102.0180, 38.9680, United States, Kansas, Wallace; -99.8300, 

40.9800, United States, Nebraska, Dawson; -93.6600, 41.6000, United States, Iowa, Polk; -91.6600, 42.0300, 

United States, Iowa, Linn; -86.0000, 39.0000, United States, Indiana, Jackson; -85.7920, 40.4540, United 

States, Indiana, Grant; -84.5000, 42.7000, United States, Michigan, Ingham; -84.3200, 42.2300, United 

States, Michigan, Jackson; -83.3670, 40.2330, United States, Ohio, Union; -83.0010, 29.2730, United States, 

Florida, Levy; -82.8000, 27.8000, United States, Florida, Pinellas; -82.7650, 29.9820, United States, Florida, 

Suwannee; -82.7000, 33.2100, United States, Georgia, Glascock; -82.6880, 27.7150, United States, Florida, 

Pinellas; -82.5000, 27.7000, United States, Florida, Hillsborough; -82.3320, 30.3860, United States, Florida, 

Baker; -81.3500, 28.4680, United States, Florida, Orange; -81.0000, 29.1500, United States, Florida, Volusia; 

-80.8110, 27.8300, United States, Florida, Brevard; -80.2530, 25.8440, United States, Florida, Miami-Dade; -

80.2000, 26.0700, United States, Florida, Broward; -77.0000, 38.0000, United States, Virginia, Essex; -

77.0000, 39.0000, United States, Maryland, Montgomery; -75.0000, 40.5000, United States, New Jersey, 

Hunterdon; -74.4800, 40.8200, United States, New Jersey, Morris; -74.1400, 41.1910, United States, New 

York, Rockland; -73.1820, 41.2090, United States, Connecticut, Fairfield; -73.0090, 41.3520, United States, 

Connecticut, New Haven.  

 


