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Kurzfassung 
 

Methoden zur ökonomischen Modellierung landwirtschaftlicher 
Betriebe 

 
Die Arbeit untersucht und entwickelt Methoden zur Bewertung von 
landwirtschaftlichen Betrieben im Rahmen der Effizienzanalyse und zur 
Abschätzung von Anpassungsreaktionen induziert durch die Veränderung von 
politischen und wirtschaftlichen Rahmenbedingungen. Die Dissertation ist in vier 
Hauptkapitel gegliedert.  

Im Kapitel 2 wird die Methodik der Effizienzanalyse, bekannt unter dem Namen 
Data Envelopment Analysis (DEA) um den Ansatz zur Ableitung von 
Konfidenzintervallen erweitert, um die Aussagekraft der Effizienzmaße zu 
überprüfen. Die Bewertung und der Vergleich von landwirtschaftlichen Betrieben 
mit DEA sind in der Literatur häufig zu finden. Dabei werden die Ursachen von 
Ineffizienz oft mittels einer anschließenden Regressionsanalyse ermittelt. Die 
abgeleiteten Konfidenzintervalle zeigen jedoch deutlich, dass ohne Berücksichtigung 
der stochastischen Natur der Effizienzmaße kaum aussagekräftige Schluss-
folgerungen über die wahre Natur von Ineffizienzen gegeben werden können. 

Im Kapitel 3 wird das Simulationsverhalten von mathematischen Program-
mierungsmodellen (MP) induziert durch die Veränderung von politischen und 
wirtschaftlichen Rahmenbedingungen untersucht. Im Gegensatz zur Anwendung auf 
einzelbetrieblicher Ebene, wo eine Spezifizierung des Modells durch vergleichweise 
viele Informationen erfolgen kann, sind Analysen zur Politikfolgenabschätzung 
häufig nur sinnvoll, wenn diese auf repräsentativen Betriebsgruppen basieren und 
damit aggregierte Effekte quantifiziert werden können. Zur Spezifizierung der 
entsprechenden Modelle stehen jedoch oftmals nur wenige Informationen zur 
Verfügung. Weiterhin besteht das Problem, dass wichtige Entscheidungsvariablen 
den beobachteten Werten entsprechen sollten, was als Kalibrierung des MP-Modells 
bezeichnet wird. Um dennoch MP-Modelle für repräsentative Politikfolgen-
abschätzung auf Betriebsebene nutzen zu können, sind positiv-mathematische 
Programmierungsmodelle (PMP), die mittels einer nicht-linearen Komponente der 
Zielfunktion das Model kalibrieren und das Simulationsverhalten mitbestimmen, 
entwickelt worden. Der Einfluss verschiedener vorgeschlagener PMP Methoden auf 
das Simulationsergebnis werden mit dem Betriebsgruppenmodel FARMIS 
quantifiziert und ex post mit beobachteten Werten verglichen. Dafür werden 45 
Betriebsgruppen benutzt. Auf diese Betriebsgruppenmodelle werden die PMP-
Kalibrierungsmethoden für das Jahr 1996/97 angewendet und beobachtete 
Deckungsbeiträge aus dem Jahr 2002/03 als Schock implementiert. Aus dem 
Vergleich wird ersichtlich, dass das Simulationsverhalten stark durch die Wahl des 
PMP Verfahrens bestimmt wird. Im Kapitel 4 wird eine Schätzmethodik von 
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fruchtartenspezifischen Input Koeffizienten in MP-Modellen entwickelt. Fehlende 
Daten über die Inputallokation auf Fruchtartenebene, wie zum Beispiel der 
Düngemitteleinsatz im Weizen oder die Höhe der Pflanzenschutzaufwendungen in 
der Zuckerrübenproduktion, sind ein Problem bei der Spezifizierung von 
aggregierten Betriebsgruppenmodellen. In Buchführungsergebnissen werden nur die 
Gesamtaufwendungen im Betrieb dokumentiert. In aggregierten MP-Modellen spielt 
die explizite Darstellung der Input Allokation jedoch eine immer wichtigere Rolle, 
um Umwelteffekte, wie zum Beispiel den Stickstoffeintrag aus der Landwirtschaft, 
abbilden und daraufhin Alternativen modellieren zu können. In der Vergangenheit 
wurden Input-Mengen entweder ad hoc von Informationen aus Bewirtschaftungs-
handbüchern auf alle Betriebsgruppen übertragen oder von den Gesamtinputmengen 
aus Betriebsabschlüssen eine Input-Output Regression geschätzt. Der in dieser Arbeit 
vorgestellte Ansatz kombiniert die Regression mit der Schätzung des MP-Models 
basierend auf einzelbetrieblichen Daten. Der entwickelte Schätzansatz wird auf 
belgische Buchführungsergebnisse angewandt, die Informationen über die Input 
Allokation auf Fruchtartenebene zur Evaluierung der Ergebnisse enthält. Im 
Vergleich zur Regression lassen die Ergebnisse erkennen, dass der Schätzansatz die 
Beobachtungswerte besser widerspiegelt. Kapitel 5 präsentiert ein Betriebs-
gruppenmodell für die EU-27 und ein dafür entwickelten Schätzansatz zur 
Konsistenzrechung der CAPRI Datenbank (Common Agricultural Policy Regional 
Impact) und der Daten der Europäischen Betriebsstrukturerhebung (FSS). Der 
Schätzansatz basiert auf Daten der FSS, die aus mehreren Gründen inkonsistent mit 
den Daten von CAPRI sind. Ein möglicher Weg die Konsistenz zu erreichen, könnte 
eine lineare Skalierung der Betriebsdaten sein. Als Folge könnte jedoch die 
Betriebsgruppenstruktur aus FSS (Betriebsgruppentyp und -größe) verloren gehen. 
Um dieses Problem zu umgehen wurde für das Betriebsgruppenmodell eine Methode 
zur betriebstypen- und betriebsgrößenkonsistenten Schätzung entwickelt. Ein 
Vergleich mit der linearen Skalierungsmethode zeigt, dass die entwickelte Methode 
einer einfachen Skalierung vorzuziehen ist, weil damit sichergestellt werden kann, 
dass die Betriebsstrukturinformationen von FSS in den geschätzten Betriebsmodellen 
erhalten bleiben. 
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Abstract  
 

Methods in Economic Farm Modelling  
 

The objective of this thesis is to develop methods for the evaluation of agricultural 
firms using efficiency analysis and to develop and assess farm responses in 
mathematical programming (MP) models to changing political and economic 
conditions. The dissertation is structured in four main parts.  

Chapter 2 extends Data Envelopment Analysis (DEA) by incorporating 
confidence intervals in the evaluation of the resulting point estimates. In the 
literature, agricultural farms are often evaluated and compared based on DEA, where 
causes of inefficiencies within a farm group are often analysed by regressing 
efficiency measures on other variables. However, when confidence intervals are 
taken into account, the results of this analysis show that neglecting the stochastic 
nature of efficiency measures cannot produce any valid conclusions about the real 
nature of inefficiencies. Hence, DEA efficiency measures need to be carefully 
interpreted, and further research is necessary before this methodology can be used as 
a standard approach for evaluating the efficiency of farms and other firms.  

Chapter 3 analyses the responses of MP farm group models induced by a change 
in political and economic conditions. MP models are widely used as decision models 
in agricultural economics. In contrast to an application on the farm level with 
considerable modelling detail, an analysis of macroeconomic effects is often only 
reasonable if it is based on representative farms. However, only sparse information is 
available for the specification of aggregated representative farm groups. 
Furthermore, decision variables should reflect observed behaviour through a process 
known as calibration of MP models. Positive Mathematical Programming (PMP) has 
been developed for this purpose, a method that calibrates the objective function with 
the help of a non-linear costs component and determines simulation behaviour. The 
influence of the different proposed PMP variants on simulation results is compared 
ex post with observed values using the representative farm model FARMIS. This is 
done through 45 farm groups; these data were obtained from the German Farm 
Accountancy Data Network (FADN). Based on these farm groups, PMP calibration 
methods are applied for the year 1996/97, and a shock is introduced for observed 
gross margins of 2002/03. Comparison of the calibration methods reveals that the 
simulation strongly depends on the PMP method applied.  

Chapter 4 develops an estimation method for the specification of crop-specific 
input coefficients in MP models. The lack of information about input allocations for 
different crop levels, e.g., fertiliser inputs for wheat or the level of pesticides used for 
sugar beets, provides a challenge for the specification of aggregated farm type 
models. In farm accounting records available for farm group models, often only total 
inputs per farm are reported. In aggregated MP farm type models, the explicit 
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representation of input allocation plays an increasingly important role, for example in 
the representation of environmental effects such as nitrogen intake, and subsequently 
in the modelling of policy alternatives. In the past, crop-specific inputs were either 
implemented ad hoc in MP models based on management handbooks, or were based 
on total input levels that were estimated with input-output regressions. This chapter 
presents an approach that combines the regression approach with the estimation of a 
farm supply model using single farm data. The relationship between the MP and the 
linear regression model is defined, and an estimation approach based on the optimal 
condition of the farm is presented. The developed estimation approach is applied to 
Belgian FADN data, where input allocations for various crop levels are collected in 
the database. A comparison of observed and estimated data is possible to validate the 
suggested method. The results show that the developed estimation approach 
successfully models the observed values of input allocation, in contrast to the 
regression estimation. Furthermore, this approach leads to a crop-specific breakdown 
of variable inputs and a representation of the resulting farm type with a fully 
specified non-linear component.  

Chapter 5 presents the farm type module developed in the modelling system 
CAPRI (Common Agricultural Policy Regional Impact). The integration of farm 
types into the modelling system CAPRI provides the chance to directly quantify the 
effects of market policies and developments on the farm level and to reduce the 
aggregation bias, resulting in an improved localisation of farm type related 
environmental effects. The farm types in CAPRI are based on data from the 
European Farm Structure Survey (FSS). For several reasons, these data are not 
consistent with the CAPRI database. One possible way to overcome these 
inconsistencies would be a simple linear up- and down-scaling of FSS to the quantity 
structure of the CAPRI database. However, this method could lead to a loss of 
information about the type and size of the farm group from FSS. To avoid this effect, 
an estimation approach is developed covering EU-27 that does not violate the type of 
farming or the economic size of the farm types. 
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Chapter  1. Introduction 

1.1 Background  

The Common Agricultural Policy (CAP) of the European Union led to increased 
agricultural production in Europe during the 1960s and 1970s, resulting in structural 
overproduction, expensive storage costs, and negative environmental effects. In the 
1980s, the EU began systematic reforms to remove overproduction, consider 
negative impacts on the environment, and avoid dumping excess production into 
world markets. At the beginning of the 20th century, the CAP increased its focus on 
externalities of agricultural production and the contribution of the farming sector to 
rural development. To satisfy legally required impact assessments (IA) of the 
European Commission (COM, 2002) and also to support national governments, the 
research community developed and applied tools to support and accompany the 
policy-making process. Multi-commodity country-specific models such as those 
reported in Banse et al. (2004), OECD (2007), and Bartova et al. (2007) were 
complemented with regionalised assessment tools (see, e.g., Britz & Witzke, 2008; 
Gömann et al., 2007) as responses to the CAP movement from price to direct income 
support. However, regionalised supply models consider all farms in a region as a 
territorial aggregation, which can lead to bias given the evolution and growing 
importance of policy instruments and legislation and their differential impact 
depending on individual farm characteristics such as farm revenues, herd sizes, 
stocking densities, or fertiliser applications. To account for the heterogeneity in the 
agricultural sector and to be able to conduct IA to evaluate the consequences of 
policy implementations on the farm level within the various farming systems across 
Europe, methods in economic farm modelling were developed. Economic farm 
modelling is based on micro-level data on agricultural firms, and differentiates 
decision-makers through properties such as crop patterns, type of farming, animal 
density, economic size, and legal form. The development and evaluation of farm 
tools for IA requires a great deal of data to represent the heterogeneous structure of 
the farming level and to infer information on input-output relationships and income. 
Official statistics for agricultural farm level analysis mainly come in two forms. The 
first is the Farm Structure Survey (FSS), which aims to survey the structure of 
agricultural holdings. This survey contains country and regional level information on 
land use, animal head sizes, and the work force. This survey is available from 
Eurostat and is collected every three years as a sample survey and every ten years as 
a complete survey. The second data source is the European Commissions Farm 
Accountancy Data Network (FADN), which collects accounting information at the 
farm level and is the most important source when conducting country-wide farm 
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related IA. The European FADN is collected annually and is sourced by national 
accounting data. The two databases are accessible for developing policy IA tools 
under specific rules that regulate the transmission of data, subject to statistical 
confidentiality.  

1.2 Objectives and methodological approaches  

Against this background, the aim of this dissertation is to contribute to the research 
field of economic farm modelling by developing methods that improve tools for IA 
of the CAP in Europe. The thesis gives special attention to four different methods in 
farm economics. The first method deals with the problem of measuring and 
comparing the performance of farmers, given that a farm produces more than one 
output and uses more than one input. The heterogeneity of the farming system with 
respect to the composition and economic size of an individual farm makes it difficult 
to differentiate economic performance. Data Envelopment Analysis (DEA) as a 
frontier method defines an efficiency score for a farm relative to the best farms in the 
sample. The objective of the study is to answer whether DEA as a non-parametric 
approach yields robust efficiency rankings with respect to statistical significance 
(Chapter 2). A further topic of this thesis is the assessment of the impact of different 
calibration methods on the explanatory power of mathematical farm group models, 
which are often superior to econometric estimated models because they are better 
able to include policy instruments such as quotas and environmental restrictions 
(Chapter 3). However, these models need to be calibrated, using Positive 
Mathematical Programming (PMP) methods. Also, problems of missing information 
and inconsistent databases arise. One research question results from the lack of 
information on the input allocation per enterprise. Since input allocation is not 
available, this study aimed to develop a possible extension of the standard linear 
regression approach to estimate the input allocation (Chapter 4). Methodological 
development is also required when confronting the inconsistencies in data sources 
that are often caused by the statistical confidentiality regulations or by differences in 
time dimensions and definitions (Chapter 5). The objectives and the methods used to 
accomplish them are briefly introduced in the remainder of this section.  

1.2.1 Efficiency analysis with DEA 

In efficiency analysis, each farm receives an efficiency score relative to the best 
practice, represented by a frontier (Farrell, 1957). There are two main techniques 
used to estimate the frontier and to calculate the efficiency score - namely, the 
stochastic frontier approach and DEA. The former uses statistical methods to 
estimate the frontier and the latter uses mathematical programming to calculate 
efficiency scores compared to the best observed praxis. The efficiency score is a 
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performance indicator. Often, a second stage regression of those scores on 
explanatory variables such as off-farm earnings and tenure status is used to identify 
the reasons for the efficiency or inefficiency. The DEA methodology is a technique 
widely used in agricultural applications. The importance of performing statistical 
inference on efficiency scores is concerned applying Simar & Wilson’s (2004) 
smoothed homogeneous bootstrap procedure to investigate bias, variance and 
confidence intervals for the attained DEA efficiency scores. Based on confidence 
intervals for efficiency scores, the effect of input aggregation and returns to scale on 
the efficiency ranking is demonstrated using a statistic that facilitates a comparison 
of the quality of the efficiency rankings.  

1.2.2 Response behaviour of PMP methods 

Heckelei & Wolff (2003) have analytically shown the arbitrariness of the response of 
PMP calibration methods for MP models. Against this backdrop, the effect of the 
PMP calibration method on the supply response is investigated using the German 
wide farm model FARMIS1 in an ex post framework. The resulting response of the 
different calibration methods is compared to the observed behaviour. The approach 
uses 845 identical farms over eight years from the German FADN; these farms were 
aggregated into 45 farm groups. The groups are calibrated for the accounting year 
1996/97, and the observed gross margins from the year 2002/03 were applied as 
impacts. All investigated calibration approaches rely on the assumption that an 
observed production activity of a farm group is the result of profit maximising 
behaviour. The production economic criterion - marginal revenue equals marginal 
cost - is used to derive the calibration parameters for the PMP approach. When the 
PMP methodology was published by Howitt (1995), only the diagonal elements of 
the additional cost matrix were identified. The first three PMP calibration methods 
considered in this investigation belong to that group of calibration approaches, and 
were introduced by Howitt & Mean (1983), Paris (1988), and Helming et al. (2001). 
The other calibration approaches try to recover cross-activity relationships. The 
literature has already provided some examples (Paris & Howitt, 1998; Heckelei & 
Britz, 2000). For this ex post assessment, the maximum entropy techniques proposed 
by Paris & Howitt (1998) are considered. Furthermore, a method proposed by 
Heckelei & Wolff (2003) to estimate rather than calibrate the model based on the 
first order condition, is presented for a selected farm group. Although Jansson (2007) 
applied a similar method using  Bayesian estimation with sector data, this approach 
represents the first use of time series data from FADN while employing General 
Maximum Entropy (GME) as an estimator. 

                                                      
 
 
1  see Offermann et al., 2006; Hüttel et al., 2006; Isermeyer et al., 2005; Kleinhanß et al., 2006 
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1.2.3 Input allocation problem  

The ability to explicitly define input demand per activity is one advantage of MP 
models compared to econometrically estimated farm models with implicit 
representations of input demand. Additionally, the link between economic models 
and explicit bio-physical models makes the reliability of input coefficients such as 
fertiliser and pesticide application rates per crop very important. While official 
statistics provided in FADN unfortunately do not contain information about the input 
allocations for production activities, FADN does offer data on the total farm or sector 
purchases of various input categories. The total amount of inputs per farm and the 
output per crop were often used to estimate the input allocation for activities by using 
linear regression (Errington, 1989; Ray, 1985; Midmore, 1990; Léon et al. 1999). 
Thus, crop-specific inputs in supply models are rarely based on real observations, but 
instead are estimated before the actual supply model is set up. This regression 
approach is extended by proposing and applying an innovative estimation approach 
for farm group programming models using GME. The proposed set-up 
simultaneously determines the cost function parameters and the input allocations for 
production activities. This methodology is applied to Belgium FADN data on arable 
farms, for which the available input allocations allow for a validation of the 
estimation approach.  

1.2.4 Consistent disaggregation of a sector model into farm types 

Disaggregation of the supply models of the Common Agricultural Policy Regional 
Impact model (CAPRI) into farm group models was previously performed by 
Adenäuer et al. (2006a, 2006b). The major disadvantage of this approach is that 
during the disaggregation, the farm group data, previously derived from FADN and 
used as disaggregation information, could lose the characteristics of the type of 
farming and economic size because regional sectors had to be disaggregated as 
consistent break-down. This is necessary for maintaining a harmonised database 
across scales, which allows for an iterative link between supply and market modules. 
A comparison of the differences between FADN and FSS in comparison to the sector 
model data has shown that FSS fits the sector model data better. Therefore, an 
estimation approach is developed to smoothly integrate the information from FSS 
with the top-down disaggregation approach. FSS is a well-established statistical 
database that is harmonised across Europe and has suitable coverage by farm type. 
However, even when using FSS, which itself underlies as source of many of the 
regional statistics for CAPRI, there are still inconsistencies when compared with 
regional CAPRI data. First, regional models consider a three-year average, whereas 
FSS is available for different Member States and different years, so that no three-year 
average is available. Additionally, regional supply models deviate from official 
statistics because they are already consistent (e.g., closed market balances), complete 
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(i.e., data gaps have been filled using econometric routines), and harmonised over 
time with regards to product/activity classifications (e.g., aggregation of the cheese 
or wheat market commodities). Furthermore, regulations on statistical confidentiality 
define the transmission of FSS data. Specifically, all FSS data on farm groups used 
as disaggregation information are rounded to the tenth digit, and individual farm 
data, which accounts for more than 80 percent of a variable, is deleted from the farm 
group. Production statistics in CAPRI thus differ slightly compared to the original 
statistics. Therefore, deviations exist between sector models and matching annual 
FSS data. These inconsistencies in the data could be easily removed by multiplying 
each production level in FSS with a variable-wise correction factor that is calculated 
from the given regional level and the sum of the farm types from FSS. However, this 
approach could first lead to a violation of political requirements for set-aside in the 
farm groups. Second, and more importantly, correction of activity levels could 
change the farming patterns such that a different type of farming or a different 
economic size results. The resulting farm types would no longer represent the actual 
farming structure observed in FSS. Last but not least, these changes could generate 
unrealistic farm programs. To avoid this, it is necessary to replace the simple scaling 
approach with a statistical estimator that ensures regional consistency and 
compliance with set-aside obligations but prevents changes in the type of farming 
and economic size of the farm groups. We propose the application of a Bayesian 
motivated estimation framework that treats the available FSS disaggregated 
information as a random variable. The disaggregated data provides prior information 
composed of consistency and definition based conditions. The combination of these 
parameters provides posterior estimates that fulfil the top-down disaggregation 
requirement while exhausting the information content of the FSS data. As result the  
farm type models in CAPRI have two unique attributes. First, the reduction of the 
aggregation bias leads to more profound impact assessments for farm and agri-
environmental related policy changes and reduces the difficulty in bridging results 
from very highly aggregated models and bio-physical models. Second, the 
integration of farm types in CAPRI, compared to a standalone farm type approach, 
gains from endogenous price feedback through the global market model in CAPRI, 
and enables a direct assessment of the effect of EU-wide market policies on farming 
systems.  

1.3 Structure of the thesis  

This thesis contains six chapters. Chapter 1 outlines the background, the objective, 
and the methodological approaches.  

Chapter 2 begins with a review of the concept of efficiency, explains the 
bootstrapping approach, outlines the smoothed bootstrap approach for deriving 
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confidence intervals in Section 2.2, and introduces model specification and summary 
statistics in Section 2.3 that are used to measure the degree of overlapping confidence 
intervals. Section 2.4 then discusses the estimation results. The final section 
concludes and points to promising future research opportunities. The author’s interest 
in the research topic of this chapter began during his study at the Imperial College at 
Wye, where his master’s degree focused already on DEA methods. The work 
presented in this chapter and the resulting publication is mainly the outcome of the 
work the author did during his time at the von Thünen Institute (former FAL) 
Institute for Farm Economics in Braunschweig. The paper of this chapter has been 
published as Gocht & Balcombe (2006) in Agricultural Economics. 

Chapter 3 investigates the response behaviour of selected PMP approaches using 
an ex post framework on German FADN time series data from 1996/97 to 2002/03. 
After the introduction, Section 3.2 explains the concept of PMP and points out the 
methodology used to calibrate MP farm models to observed production. The 
following Section 3.3. describes the ex post approach by first describing the methods 
used to calibrate the parameters of the cost function, and then introduces the data and 
discusses implementation of the calibration methods. Afterwards, Section 3.4 
discusses the findings and conclusions are drawn in Section 3.5. This chapter is a 
modified version of Gocht (2005) published as part of the proceedings of the 89th 
European Seminar of the European Association of Agricultural Economists. 
Although relevant literature that emerged after this article’s publication was included 
in the current chapter, the ex post evaluation was not further developed since 
publication. 

Chapter 4 proposes and applies an innovative estimation approach for farm group 
programming models using GME. After the introduction Section 4.2 reviews the 
literature. Section 4.3 presents the derivation of the conceptual farm group model. 
Section 4.4 develops the empirical model based on the aforementioned discussion, 
introduces the data, and describes the estimation approach. A discussion about Non-
sample information is also included. Section 4.5 evaluates how the simultaneous 
estimation of input allocations and behavioural models compares with a separate 
linear regression, as employed in the literature. The results are discussed with respect 
to the resulting input allocation and the fit of the behavioural model. Furthermore, a 
sensitivity analysis of the results is performed in order to validate the support point 
design. Section 4.6 concludes the chapter and discusses further promising research 
directions. A prior version of this work was presented at the 107th EAAE Seminar by 
Gocht (2008). The current version of the chapter was developed with T. Heckelei and 
submitted to the Journal of Agricultural Economics.  

Chapter 5 motivates and explains the EU-wide farm type model in CAPRI 
through its characterisations and develops an estimation approach to consistently 
disaggregate the sector models in CAPRI into farm type models using FSS. The 
chapter starts with an introduction and continues with the motivation for the 
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development of the model with respect to agricultural policy. Section 5.3 discusses 
the characteristics of the farm types in CAPRI. The disaggregation problem is 
outlined in Section 5.3.1, which follows a detailed discussion on the layout of the 
disaggregation estimator by starting with data constraints before defining the 
estimator. Section 5.5 presents the FSS data and presents a comparison to FADN 
data. Section 5.6 analyses the extent to which the proposed estimator leads to an 
improved presentation of the farming structure by comparing the finding to a fixed 
variable-wise number scaling approach. Section 5.7 discusses the results and draws 
conclusions. A report about the farm types in CAPRI will be available in Gocht 
(forthcoming). Furthermore, Adenäuer et al. (2006a) and Adenäuer at al. (2006b) 
are prior studies closely related to the work presented in this chapter. The paper of 
the chapter was written with W. Britz (University of Bonn) and has been submitted 
for a special issue organised by JRC-IPTS Seville for the Journal of Policy 
Modelling.  

At the end Chapter 6 concludes and identifies areas worth further investigation. 
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Chapter  2. Ranking efficiency units in DEA using bootstrapping an 
applied analysis for Slovenian farm data∗∗∗∗ 

 
Abstract 
 
This article explores how data envelopment analysis (DEA), along with a smoothed 
bootstrap method, can be used in applied analysis to obtain more reliable efficiency 
rankings for farms. The main focus is the smoothed homogeneous bootstrap 
procedure introduced by Simar and Wilson (1998) to implement statistical inference 
for the original efficiency point estimates. Two main model specifications, constant 
and variable returns to scale, are investigated along with various choices regarding 
data aggregation. The coefficient of separation (CoS), a statistic that indicates 
thedegree of statistical differentiation within the sample, is used to demonstrate the 
findings. The CoS suggests a substantive dependency of the results on the 
methodology and assumptions employed. Accordingly, some observations are made 
on how to conduct DEA in order to get more reliable efficiency rankings, depending 
on the purpose for which they are to be used. In addition, attention is drawn to the 
ability of the SLICE MODEL, implemented in GAMS, to enable researchers to 
overcome the computational burdens of conducting DEA (with bootstrapping). 
 
JEL classifications: C15, D31, Q10 
 
Keywords: Data envelopment analysis; Bootstrapping; Agriculture; Technical 
efficiency; Confidence intervals; Slice DEA model; GAMS 

2.1 Introduction 

Data Envelopment Analysis (DEA) is a potentially useful technique for measuring 
efficiency. But some concerns need to be addressed before DEA can be accepted as a 
routine tool in applied analysis. Since DEA is an estimation procedure which relies 
on extremal points, it could be extremely sensitive to data selection, aggregation, 
model specification and data errors. These points must be borne in mind when 
investigating the efficiency of farms. Since DEA is a technique which is widely used 
in agricultural applications, this paper aims to show the importance of performing 
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statistical inference on efficiency scores in that context, because the performance of 
farms can be heavily influenced by measurement errors and effects like weather, 
shocks and diseases. Furthermore most agricultural scientists have ignored the 
sampling noise in DEA estimates, despite the growing literature on the statistical 
properties of DEA estimators. 

Therefore, this paper addresses how the Simar and Wilson (SW) smoothed 
homogeneous bootstrap procedure1 can be used to investigate bias, variance and 
confidence intervals for the attained efficiency scores in order to get more reliable 
efficiency rankings. Based on the confidence intervals for the efficiency scores, it is 
demonstrated how the choice of input aggregation and returns to scale affect the 
ranking of the Decision Making Units (DMU). A Slovenian data set will serve as the 
background against which these issues are discussed. To analyse the findings, a 
statistic called coefficient of separation (CoS) is introduced, which facilitates a 
comparison of the quality of the efficiency rankings for the sample farms used in the 
investigation. In addition, attention is drawn to the ability of the SLICE model, 
implemented in GAMS, to enable researchers to overcome the computational 
burdens of conducting DEA (with bootstrapping). 

The article is structured as follows: in Section 2.2, the “concept of efficiency” is 
introduced briefly along with some history regarding DEA analysis. Further, the 
statistical model and the smoothed homogeneous bootstrap procedure are reviewed 
briefly. In Section 2.3, the data, the model specifications and the methods used to 
compare the findings are introduced. Finally, the findings are discussed in Section 
2.4, along with implications for the practical implementation of DEA. At the end, 
conclusions are drawn and areas worth further investigation are identified. 

2.2  Methods 

2.2.1 The concept of efficiency 

The concept of economic efficiency is generally assumed to consist of two 
components: technical efficiency and allocative efficiency. Broadly, the former is 
defined as the capacity and willingness of an economic unit to produce the maximum 
possible output from a given bundle of inputs and technology. The latter is defined as 
the ability and willingness of an economic unit to equate its specific marginal value 

                                                      
 
 
1 Bootstrap procedures suggested by Ferrier and Hirschberg (1999) or Löthgren (1998) are not taken 

into account, because SW (1999a, 1999b, 2000) have shown that these procedures give inconsistent 
estimators. 
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product with its marginal cost. Farrell (1957) developed an isoquant method to 
measure efficiency in frontier models. He suggested either the use of a nonparametric 
piecewise linear convex isoquant or the use of a parametric function fitted to the data 
in a way that no point should lie to the left of or below the frontier.  

Farrell (1957) introduced technical efficiency as a relative notion, relative to best-
observed practices in the group. To get the “relative” technical efficiency of the kth 
firm, we have to calculate the actual output divided by the maximum feasible 
observable output. Because the actual output is observable, the maximum output 
must be estimated. To get the maximal output, there are different methods.  

The majority of early economists followed a parametric approach. However, 
economists at Berkeley advanced a programming approach for piecewise linear 
frontier production functions that went largely unnoticed by the research community 
(Forsund and Sarafoglou, 2002). 

Charnes et al. (1978) (CCR) showed that the Farrell unit isoquant model was a 
special case of the ordinary linear programming problem. At first, in operational 
research and management science, but later also within economics, CCR started a 
new active research field, popularly called DEA. For the applied economists, the 
great advantage compared to the aforementioned frontier approaches was the 
possibility for using multiple outputs in a primal approach. DEA encompasses a 
variety of related models for evaluating performance of the DMU. Another 
advantage of the DEA approach is that it places no restrictions on the functional form 
of the frontier and it does not impose any (explicit) distributional assumption on the 
firm specific efficiency. DEA can accommodate multiple outputs and inputs but is 
extremely sensitive to variable selection and errors.   

DEA focuses on deriving results for each DMU. On the other hand, the stochastic 
frontier analysis (SFA) approach, as originally proposed by Aigner et al. (1977) and 
subsequent refinements (e.g., the Bayesian Frontier Approaches in Fernández et al., 
1997, 2000, and classical approaches in Coelli et al., 1998), of this model can test 
hypotheses about the underlying technology and determinants of efficiency. Banker 
(1996) and Grosskopf (1996) collectively provide a survey of statistical inference on 
nonparametric, deterministic, linear programming-based frontier models. Several 
researchers have tried to compare results of applications of different estimation 
methods based on the same set of data. De Borger and Kerstens (1996) and Bauer et al. 
(1998) attempt to give guidelines about what sort of methodology should be employed. 
Banker et al. (1985), Sharam et al. (1999), and Plessmann (2000) compared DEA 
with other estimation methods, whereby the structure of production was unknown. 
Gong and Sickles (1992) utilized Monte Carlo techniques to control the underlying 
technology and compared SFA with DEA. The overarching conclusion is that if the 
functional form is close to the underlying technology, SFA outperforms DEA. 
However, DEA seems to be more appropriate when the knowledge about the 
underlying technology is weak (Kalirajan and Shand, 1999). The practical advantage 
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of dealing with multiple outputs is also very real. While stochastic frontier multiple-
output “distance functions” have been estimated in the literature (Morrison Paul et 
al., 2000), the choice and use of appropriate instruments to deal with problems of 
endogeneity has not been sufficiently addressed.  

From these surveys, it becomes evident that for DEA to be viewed as a true 
competitor to SFA, point estimates of efficiencies are not enough. Fortunately, there 
is now a considerable body of research that has characterised the statistical property 
of DEA estimators. SW (1998) proposed a general methodology for bootstrapping in 
frontier models to conduced confidence intervals, and in subsequent articles (e.g., 
SW, 2000a, 2000b) the method has been further elucidated and developed. More 
recent work has also examined the properties of two-step estimators explaining 
efficiency and adaptations of the standard bootstrap (SW, 2003). However, the 
question of which method, SFA or DEA, is the best very much dependent on the 
nature of and knowledge about the data-generating process (DGP). Without a priori 
knowledge of the DGP, a nonparametric approach such as DEA would seem to have 
distinct advantages, since the constraints that it imposes on the technology are 
arguably less severe than parametric methods. Nevertheless, the choice of DEA does 
not completely decide on the nature of model choice. The premise of this article is 
that there is still room for guidance on the nature of model choice, particularly with 
regard to the choice of constant return to scale (CRS) or variable returns to scale 
(VRS), and its subsequent impact on the confidence intervals derived from 
bootstrapping. 

Finally, from a practical point of view, the application of bootstrapping methods 
needs to be efficient in terms of computational time. Within the economics literature, 
the applications of bootstrapping methods have been constrained for this reason. 
With standard approaches, DEA becomes excessively time consuming to bootstrap 
as the sample size grows (growing at a rate approximately related to the sample size 
squared). Here, unlike most existing studies, we employ the SLICE module within 
GAMS. When using this method, computational expense can no longer be 
considered a reason for not conducting statistical inference on DEA results with 
bootstrapping.  

2.2.2 Bootstrapping in DEA  

Bootstrapping is a method of testing the reliability of a data set by creating a pseudo- 
replicate data set. Bootstrapping allows you to assess whether the distribution has 
been influenced by stochastic effects and can be used to build confidence intervals 
for point estimates, which normally cannot be derived analytically. Random samples 
are obtained by sampling with replacement from the original data set, which provides 
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an estimator of the parameter of interest. SW (1998)2 introduced a DEA bootstrap 
where the DGP is repeatedly simulated by re-sampling the sample data and applying 
the original estimator to each simulated sample. The bootstrap method is based on 
the idea that the bootstrap distribution will mimic the original unknown sampling 
distribution of the estimators of interest (using a nonparametric estimate of their 
densities). Hence, a bootstrap procedure can simulate the DGP by using Monte Carlo 
approximation and may provide a reasonable estimator of the true unknown DGP. 

The efficiency for a given point ( , )k kx y is 

{ }min | ( )k k kx X yθ θ θ= ∈  

where ( )kX y is a input requirement set. If 1kθ = , the unit k is input efficient.  
1kθ ≤ represents the feasible proportionate reduction of inputs the DMU could 

realize, if ky were produced efficiently. SW (1998) denote the efficient level of input 
corresponding to the output levelky as ( | )k k k kx x y xθ θ= . Note that kθ is a radial 
measure of the distance between ( , )k kx y  and the corresponding frontier. 
Unfortunately, kθ is unknown because ( )X y and k kxθ are unknown. 

2.2.3 The data generating process 

Suppose the DGP, P  generates a random sample ( ){ }, | 1,...,
k k

x y k nχ = = . Using the 
data χ  with a nonparametric method 

1 1 1

ˆ min | | | 1, 0 | 0 | 1,...,
n n n

k k i i k i i i i
i i i

y y x x i nθ θ γ θ γ γ γ θ
= = =

 = ≤ ≥ = ≥ ≥ = 
 

∑ ∑ ∑ . (2.1) 

To obtain ˆ ˆ( ),  ( )X y X y∂ , it is possible to estimate its efficiency 

{ }ˆ ˆmin | ( )k k kx X yθ θ θ= ∈ .  

Because the DGP P  is unknown, the bootstrap procedure is used to determine the 
DGP P̂  as a reasonable estimator of the true unknown DGP generated through the 
dataχ . The efficiency estimates can be considered as a new population, from which 
it is possible to draw a new data set 

( ){ }* * *, | 1,...,i ix y i nχ = = . 

This pseudo-sample defines the corresponding quantities *ˆ ( )X y  and *ˆ ( )X y∂ . Note 
that conditionally onχ , the sampling distribution of the estimators *ˆ ( )X y  and 

                                                      
 
 
2 As a recent published article which further investigates the bootstrap method we refer to SW, 2004. 
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*ˆ ( )X y∂  are known, since ̂P  is known. Analytically, P̂ could be difficult to 
compute, therefore Monte Carlo Approximation is employed to obtain the sampling 
distributions using P̂  to generate B pseudo-samples *

bχ , where b =1, …, B and 
pseudo-estimates of the efficiency scores. The empirical distribution of these pseudo-
estimates gives an approximation of the unknown sampling distribution of the 
efficiency scores. 

2.2.4  Smoothed bootstrap procedure 

Unfortunately, this "naïve" bootstrap yields inconsistent estimates. Therefore, SW 
introduced a homogeneous smoothed bootstrap procedure. An easily implemented 
algorithm for consistently generating the bootstrap values *

b̂θ from a kernel density 
estimate is given in SW (1998) and is summarized in the following steps: 

 
(a) First, for each DMU k given the input-output data ( , ) 1,...,k kx y k n= , compute 

k̂θ by the linear program to get the efficiency estimators. Here the linear model 
specifications are different estimators of the same unknown kθ . Hence, 

k̂θ estimators are random variables and merely specific realizations of different 
random variables. 

(b) Generate the smoothed bootstrap sample * *
1 ,..., nθ θ for 1,...,i n=  by letting 

* *
1 ,..., nβ β , a simple bootstrap sample from * *

1̂
ˆ,..., nθ θ obtained by drawing 

uniformly with replacement. 

Define sequences 

* * * *
*

* *

if 1,

2 otherwise
i i i i

i

i i

h

h

β ε β εθ
β ε

 + + ≤=  − −  

ɶ , (2.2) 

and obtain the corrected bootstrap sample by  

)
~

)(ˆ/1/(1 **2
ˆ

2** βθσβθ θ −++= ii h , (2.3) 

with * *

1
1/

n

ii
nβ β

=
= ∑  and 2

ˆˆ
θσ  is the sample variance of * *

1̂
ˆ,..., nθ θ .  

Making these corrections ensures that the sample values have the same mean 
and variance as the original values. Here h  is called the bandwidth factor and 

*
iε  is a random deviate drawn from the standard normal. SW discussed in 

detail how to calculate the bandwidth factor. If the data (̂θ ) is normal 
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distributed, then one may use the normal reference rule and set the bandwidth 
by 

1/5
ˆ

ˆ ˆ1.06h nθσ −=   

In cases where the data is not normal distributed, as in the case of DEA 
estimates, SW (2004) suggested the to employ least square cross-validation, 
which involves choosing the bandwidth that minimizes an approximation to 
mean integrated square error; see Silverman (1986) for details. In order to 
obtain h in our study, the least square cross-validation approach3 was applied.  
 

(c) Next, use the smoothed bootstrap sample sequence to compute new data  

( ){ }* * , | 1,...,b ib ix y i nχ = = , 

where 

{ }* *ˆ ˆ( / ) , 1,...,ib i ib ix x i nθ θ= =  and  

(d) compute the bootstrap efficiency estimates  

{ }*ˆ | 1, ,i i nθ = …   

by solving the DEA model for each DMU but using the new data *
bχ . For 

example, for DMU k the bootstrap estimates *
,

ˆ
k bθ  can be obtained by solving  

* *
, ,

1 1 1

ˆ min 0 | | | 1, 0, ,...,
n n n

k b k i i k i i b i i
i i i

y y x x i nθ θ γ θ γ γ γ
= = =

 = > ≤ ≥ = ≥ 
 

∑ ∑ ∑ . (2.4) 

Finally, repeat step (b)-(d) B times to provide for k =1,…, n a set of estimates 

{ }*
,

ˆ 1,...,k bb Bθ = . 

In our case, we set B = 2,000 to ensure adequate coverage of the confidence intervals. 
The bootstrap efficiency scores *k̂θ  represent approximations to the k̂θ , just as the 
DEA efficiency scores ̂kθ represent approximations to kθ . 

                                                      
 
 
3  The software package “XPlore” was used to calculate h.    
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2.2.5 Bootstrap bias corrections 

The empirical bootstrap distribution can be used to estimate the bias. An estimate of 
the bias is defined as the difference between the empirical mean of the bootstrap 
distribution and the original efficiency point estimates. As shown above, the 
bootstrap estimates *

,
ˆ{ 1,..., }k b Bθ = are biased by construction (SW, 2000a). 

By definition, 

( ) ( )ˆ ˆ
k kBIAS Eθ θ θ= −  

the empirical bootstrap bias for the original estimator k̂θ  is therefore  

1 *
,

1

ˆ ˆ ˆ( )
B

B k k b k
b

BIAS Bθ θ θ−

=

 = − 
 
∑ . 

The bias-corrected estimator is obtained by subtracting the bias from the original 
efficiency estimates. However, the bias correction introduces additional noise and 
could have a higher mean square error than the original point estimates, which can be 
avoided for the interval estimation using the automatic correction below.  

2.2.6 Confidence intervals  

To find confidence intervals, SW proposed the modified percentile method. They 
introduce an improved procedure to derive confidence intervals, which automatically 
corrects for bias without explicit use of a noisy biased estimator. Using the bootstrap 
score, we can build confidence intervals for each k. If we know the distribution of 

( ) ( )( )*ˆ , ,x y x yθ θ− , it would be possible to find ,a bα α such that  

αθθ αα −=−≤−≤− 1)),(),(ˆPr( 0000 ayxyxb k  (2.5) 

Because ,a bα α are unknown, we use  

{ }*
,

ˆ 1,...,k bb Bθ =   

to find values ̂ ˆ,b aα α such that  

*
, 0 0 0 0

ˆ ˆ ˆ ˆˆPr( ( , ) ( , ) | ( )) 1k b k nb x y x y P aα αθ θ α χ− ≤ − ≤ − = − . (2.6) 

Finding ˆ ˆ,b aα α  entails sorting the values * , 0 0 0 0
ˆ ˆ( , ) ( , )k b kx y x yθ θ− , b =1,…, B in 

increasing order and then deleting [( / 2) 100]%α ×  of the rows at either end of the 
list and setting ˆ ˆ,b aα α− − to the endpoints of the array with ˆâ bα α≤ . The 1 α− percent 
confidence interval is then;  
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0 0 0 0 0 0
ˆˆ ˆˆ( , ) ( , ) ( , )k kx y a x y x y bα αθ θ θ+ ≤ ≤ + . (2.7) 

This procedure is repeated n times to obtain n confidence intervals, one for each 
farm. As a side note, the ˆ 0, 0a bα α≤ ≤  and the k̂θ will lie above the confidence 
interval. For proof, see Voelker (2002).  

2.3  Data and model specification  

2.3.1 Data 

This article uses Slovenian farm cross-sectional data to investigate how efficiency 
ranking depends on the model specifications and how confidence intervals can be 
used to give further insights into the validity of the efficiency scores. The data used 
in this study is based on the Research Institute for Agricultural and Food Economics 
farm cost database in Slovenia in 1996. Sixty-nine Slovenian arable farms were 
selected for the investigation. After the data set was corrected for outliers, the mean 
normalized procedure (Sarkis, 2002) was applied. The four inputs are (1) purchased 
seed, home grown seed; (2) purchased fertilizer, manure; (3) chemicals, other direct 
costs, wages; and (4) services and other cost (all inputs are in monetary terms). 
Output was defined as production of wheat in metric tons.  

2.3.2 Coefficient of separation 

In order to provide a summary statistic of the degree of overlap between confidence 
intervals, a useful measure is introduced in this study, which is called “the CoS” 
(Latruffe et al., 2005). This statistic is calculated by taking each farm in turn and then 
identifying the farms in the sample that are significantly more efficient than it, that is 
to say the farms with a lower bound strictly greater than the upper bound for the farm 
in question.  

More precisely, let nN =  no. of farms “significantly” greater than n other farms 
where 1, 2, .......... 1n N= − and N = total number of farms. Thus, 1N = is the number 
of farms significantly greater than one farm, 2N is the number of farms significantly 
greater than two farms. Under perfect separation, we would observe  

 ( )nN N n= − , (2.8) 

for 1, 2........... 1n N= − . Noting the identity 

( ) 1
12 1

1
2 =+−∑

−

= N
nN

N

N

n

,  (2.9) 
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a “CoS” can be constructed as 

1

2
1

2 1N

n
n

CoS N
N N

−

=

= +∑ .  (2.10) 

Under perfect separation this will be one from the identity above 

( )
1

2
1

2 1
1

N

n

CoS N n
N N

−

=

= − + =∑ .  (2.11) 

Obviously, if 0nN = for all N , then 1/CoS N= (nearly zero for a large number 
of farms). Hence, the CoS is a summary statistic which is calculated by taking each 
firm and identifying the farms in the sample that are significantly more efficient (at a 
given significance level). The statistic tells us (approximately) what percentage of the 
sample is significantly less efficient than a given percentage of the sample, after the 
sample has been ranked. The CoS serves to demonstrate the fact that wider intervals 
mean higher probability of overlapping intervals. In essence, the smaller the CoS (at 
a given level of significance), the less we can differentiate between farm efficiencies, 
given the confidence intervals obtained by the bootstrap.  

2.4  Estimation and results  

DEA was performed using both CRS and VRS for a 2-input/1-output and 4-input/1-
output case. For the 2-input cases, the inputs 1/2 and 3/4 were aggregated. The 
confidence intervals and the bias-corrected efficiencies were estimated using the 
homogeneous smoothed bootstrap procedure introduced in previous sections with 
2,000 bootstrap draws.  

The results for the estimated confidence interval for the 2-input case, VRS/CRS, 
are shown in Fig. 2-1. 
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Fig. 2-1 a:  Confidence intervals and point estimates for VRS with two inputs 

 

Fig. 2-1 b:  Confidence intervals and point estimates for CRS with two inputs. 

Fig. 2-1 depicts the sample observations ordered by the bias-corrected efficiency 
score. The 95% confidence intervals for each farm are represented by the lower 
dashed line and the upper solid line, and original efficiencies are indicated by the 
respective symbols. It is evident that the original efficiencies are not included in the 
confidence interval. This result is not dependent on any particular DGP and is an 
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intrinsic outcome of the theory behind the construction of these intervals, as outlined 
in equations (2.5)-(2.7). Importantly, the efficiency ranking of the original farm 
efficiencies changed compared to the bias-corrected efficiencies ranking. Farms that 
seemed to be perfectly efficient are ranked at a lower level, particularly in the VRS 
case when the bias-corrected efficiencies are considered. While we cannot provide an 
intuitive explanation for this, it is evident that while some farms were measured as 
perfectly efficient in the first instance, the bootstrap suggested that they were 
measured with large degree of noise and this has also been reflected in a large bias 
correction downward. In contrast, some farms that are not on the frontier will be 
ranked on a higher level relative to the other farms. The estimated confidence 
intervals for the CRS case are narrower than the confidence intervals of the VRS, 
which can be explained by the greater curvature of the frontier in the VRS case, 
where many sample observations will typically have efficiency estimates equal to 
unity (SW, 2004). 

Fig. 2-1 reveals that the estimated bias is negative and in many cases quite large. 
Among the observations which were originally efficient, the lower boundary for the 
estimated 95% confidence intervals ranges from 0.73 to 0.81 in the CRS case, and 
from 0.02 to 0.85 in the VRS case for the 2-input models. 

For one particular DMU, an original efficiency score of 1.00 was estimated. The 
bias-corrected efficiency was 0.57 and the lower and upper boundaries of the 
confidence interval are 0.02 and 0.98, respectively. Wide confidence intervals for 
particular DMUs have also been found by SW (2000b). Nevertheless, there are 
observations where the confidence interval is quite small, in particular for the 2-input 
CRS case. The widths of the confidence intervals vary considerably over the sample 
size, especially for the VRS case and for more than two inputs. Brümmer (2001) 
states that it is easier to identify the observations with low-efficiency scores than to 
identify high performers in his sample. The same observation can be made for the 
Slovenian farm sample, in particular for the VRS model.  



 

 23 

VRS h=0.0927 4 Inputs CoS = 26.9

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 10 20 30 40 50 60 70farms

ef
fic

ie
nc

y

orig. eff iciency

low er bound

upper bound

bias corrected eff . 

 

Fig. 2-2 a: Confidence intervals and point estimates for and VRS with four 
inputs 

CRS h=0.0923 4 Inputs CoS = 49.4
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Fig. 2-2 b:  Confidence intervals and point estimates for CRS with four inputs  

Fig. 2-2 depicts the 4-input case. The width of the confidence intervals for the 
VRS as well as for the CRS increases, and hence the CoS declines (Table 2-1).  
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Number of input 
Return to 

scale 

Coefficient 
of separation  

(%) 
2 CRS 70.8 
2 VRS 48.2 
4 CRS 49.4 
4 VRS 26.9 

Table 2-1: Coefficient of Separation for the different model specifications 

The highest CoS is reached in the case of the 2-input-CRS specification and the 
lowest by the 4-inputs-VRS. If the discriminatory power was improved by increasing 
the number of inputs, the CoS declined by around 20%, independent of the choice of 
returns to scale. 

Many studies use these estimates in subsequent analysis, taking DEA scores and 
regressing them against potential explanatory variables such as education and so on. 
The implication of the analysis above-mentioned analysis is that the dependent 
variable is measured with considerable noise.  

The results do highlight that there are important decisions to be made with regard 
to using CRS or VRS. The former may be more biased, but if the consequences of 
using VRS is that the confidence intervals are very wide, then CRS might actually 
outperform it according to a mean square error criteria. Thus, there is a bias versus 
efficiency tradeoff here that is much the same as the tradeoff between using a flexible 
or parsimonious functional form in SFA. The recent work of SW (2003) still requires 
a choice of CRS or VRS. Therefore, we suspect that our conclusion remain relevant 
even when the revised bootstrap procedures are used. 

To compute the confidence intervals, it is necessary to solve n b×  linear 
programs. The GAMS/DEA tool was added to the GAMS system, which very 
efficiently solves linear and mixed integer DEA programs (Ferris and Voelker, 2000; 
Voelker, 2002). By using the SLICE module in GAMS and CPLEX, it was possible 
to significantly reduce the calculation time4 (Table 2-2). Several performance runs 
were made to test the power of the GAMS/DEA SLICE module and the finding was 
that there is no computational burden for models with up to 2,500 DMU, eight inputs 
and 1 output. Therefore, a sensitivity analysis on DEA estimates using bootstrapping 

                                                      
 
 
4 Using Hardware Intel® Pentium® 3 processor 800 MHz. We note that this is a considerable 

improvement on the equivalent procedure conducted in GAUSS using Simplex or QPROG to solve 
the linear programs. Using a superior 2.4Ghz Pentium 4, it still required 48 hours for 2,000 bootstraps 
with 500 DMUs, and extrapolating this would suggest 10 or 12 days for 2,500  DMUs. 
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may be implemented as a standard routine, at least from the computational point of 
view.   
 

Number of 
bootstraps 

Number of 
DMUs 

Number of 
outputs 

Number  
of inputs 

Solving time 

2,000 80 4 1 47 min 

2,000 1,000 4 1 
7 hours, 24 

min 

Table 2-2: Solution time for (CPLEX) Slice Interface DEA (BBC)  

2.5 Conclusion 

As shown in the different model specifications, we would suggest that any DEA 
study should employ bootstrapping as standard practice to detect the reliability of 
efficiency ranking. When bias-corrected efficiencies were used to rank the farm 
sample, the ranking order changed compared to the ranking order of the original 
efficiencies. Farms that seemed to be perfectly efficient as indicated by the original 
efficiency (point estimate) became less efficient as depicted in Figs. 2-1 and 2-2.  

Bootstrap interval estimation of technical efficiency can be used to assess DEA 
results. But again, the confidence intervals depend on the model and on the 
aggregation assumptions. The CoS proved a useful summary statistic in assessing the 
degree to which farms could be differentiated on efficiency grounds. We found that a 
large proportion of the farms in the sample could not be usefully separated from 
many other farms with any degree of confidence, particularly when using VRS. 
Consequently, we would recommend that researchers should be guarded about 
making definitive judgments about individual units on the basis of efficiency scores 
alone.  

On the basis of our results, we suggest always doing both CRS and VRS subject 
to different input and output aggregations, whereby if the bootstrap standard errors 
for VRS are too large, the CRS can be used for subsequent analysis. We also suggest 
to try to increase the input aggregation subject to the purpose for which the results 
are to be used. The CoS gives a useful statistic in order to assess and compare the 
different resulting model specifications. Researchers should also be aware that the 
ranking of the original efficiencies may change if the bias-corrected efficiencies are 
used to interpret the relative performance of the sample.  

Apart from the different model specifications, it is important to set up a 
computational framework that ensures a convenient calculation of confidence 
intervals for DEA. By using the SLICE model in GAMS, the statistical properties of 
the estimator can easily be investigated for any applied study. Further research might 
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exploit the high performance of the programmed GAMS/SLICE bootstrap procedure. 
This might extend the work conducted by SW by conducting Monte Carlo 
experiments on more than two dimensions of inputs and outputs while also 
increasing the number of DMUs. Moreover, we would suggest that other related 
procedures such as the bootstrapping of Malmquist indicies (e.g., SW, 1999c) might 
be facilitated using the SLICE approach. 
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Chapter  3. Assessment of the response behaviour of different calibration 
approaches for farm programming model∗∗∗∗ 

 
 
 

Abstract 
 

This article investigates the response behaviour of mathematical programming 
models using farm groups derived from the German Farm Accountancy Data 
Network (FADN) and calibrating them using different Positive Mathematical 
Programming (PMP) methods for the year 1996/97. Afterwards, gross margins for 
the year 2002/03 are applied. By comparing the simulated and observed production 
in 2002/03 it can be shown that the simulated production only poorly recovers the 
observed production and that the response behaviour is strongly influenced by the 
applied PMP calibration method. Calibration with exogenous elasticities overcomes 
problems arising from the original PMP calibration method. In contrast to all other 
considered PMP methods the calibration with Maximum Entropy (ME) can also 
estimate cross-diagonal elements of the cost function. However, the specification 
(support point settings) seems unfavourable because the model does not result in 
different response behaviour. We also demonstrate using one particular farm group 
that the explicit optimisation model, which offers the possibility to incorporate prior 
information and avoids the general misspecification of PMP, can be used with FADN 
time series to estimate the cost function parameters. However, further research is 
necessary to overcome computational problems to apply this method for sector-wide 
farm group models. 

 
Keywords: PMP, ex post evaluation, FADN 

3.1 Introduction  

The lack of detailed data for sector-wide farm modelling unavoidably leads 
optimisation of linear mathematical programming models to a solution far from the 

                                                      
 
 
∗  This chapter is a modified version of Gocht (2005) published by the author in: Arfini Filippo (ed.). 

Modelling agricultural policies: state of the art and new challenges; proceedings of the 89th 
European Seminar of the European Association of Agricultural Economists (EAAE), Parma, Italy, 
February 3rd-5th, 2005. Parma: Monte Universita Parma Editore, pp. 166-187. 
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observed production. In order to prevent this problem, models are calibrated to the 
observed production using the Positive Mathematical Programming (PMP) method, 
originally introduced to a wider range of economists by Howitt (1995). The 
production economic criterion, i.e., marginal revenue equals marginal cost, is used to 
derive the calibration parameters. Observed average costs are used in a three-step 
procedure to derive additional unobservable costs per crop, which are brought into 
the parameters of the non-linear PMP term of the optimization model. These 
modifications of the objective equation, however, have an impact on the resulting 
simulation behaviour, through the choice of the functional form of the PMP term and 
by the parameterization of the non-linear term.  

PMP was criticised for its arbitrary simulation behaviour in several papers, e.g., 
Heckelei (2002), Heckelei & Britz (2000), and Heckelei & Wolff (2003). These 
studies attempt to overcome the drawbacks of PMP, by focusing on formal 
econometric estimation procedures to obtain better-justified non-linear parameters 
from time series or cross-sectional data. Of major importance was the introduction of 
ME and related techniques (Golan et al., 1996) used to estimate the non-linear part of 
the objective function, even when the model is underdetermined, e.g., Paris & Howitt 
(1998) and Paris (2001). Heckelei & Wolff (2003) proposed a general alternative to 
PMP in calibrating and estimating agricultural programming models based on the 
first order conditions of the optimisation model. Jansson (2007) extended the 
approach to Bayesian estimation using the sector model CAPRI (Britz & Witzke, 
2008). For sector-wide farm modelling approaches (e.g., Offermann et al., 2005; 
Jones et al., 1995; Arfini & Paris, 1995), however,  the PMP method is still 
commonly used to determine the cost function parameters and therefore influences 
the simulation behaviour of the farm group model during policy analysis. 

The objective of this paper is to evaluate the impact of the cost function parameter 
determination of several prominent PMP calibration approaches on the resulting 
response behaviour of the model. The analysis is embedded into an ex post 
framework for arable farms in Germany, for which the available time series is 
sufficient to validate the different PMP calibration approaches with respect to 
observed production. The general approach is to use the farm group model FARMIS1 
and to build up farm supply models for the year 1996/97, using different PMP 
methods to calibrate the models to observed production. Afterwards, the supply 
model is shocked using gross margins observations from the year 2002/03, and the 
simulated production is compared with that observed in 2002/03. 

 This paper is structured as follows: Section 3.2 briefly reviews the general PMP 
approach to calibrating mathematical programming models. Section 3.3 discusses the 
                                                      
 
 
1   FARMIS is a farm group supply model for Germany developed at the vTI-Braunschweig 

(Offermann et al., 2006; Hüttel et al., 2006, Isermeyer et al., 2005; Kleinhanß et al., 2006). 
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PMP calibration methods that were considered, presents the data and explains the 
implementation of the cost function estimation. In Section 3.4, the results are 
discussed. The last section concludes and critically focuses on the remaining 
problems with the discussed PMP methods, and points out further research 
directions. 

3.2 The concept of PMP 

PMP uses the information contained in dual variables of a linear programming model 
(LP), which are bound to the observed activity levels applied through calibration 
constraints. A non-linear objective function is derived in such a way that the optimal 
solution will exactly reproduce the observed activity levels without employing any 
additional constraints. The use of a non-linear objective function helps to prevent the 
model from generating overspecialised solutions. In the literature, this approach is 
called the three stage PMP approach (Howitt, 1995). In the first step, the following 
linear programming problem is considered: 

max ' '
x

Z = −p x c x  

subject to 

[ ]    ≤Ax b λ ,   0≥ x   (3.1) 

whereZ denotes the objective function value, p is the ( )N 1×  vector of product 
prices, x is the ( )N 1×  vector of production activity levels, c is the ( )N 1×  vector of 
costs per unit of activity, A denotes the( )M N×  matrix of coefficients for resource 
constraints, b is the( )M 1×  vector of available resource quantities and λ  is 
the( )M 1× vector of dual variables associated with the resource constraints. Applying 
the calibration constraints, the solution will be forced to the observed activity level. 

x
max Z ' - '= p x c x   

subject to 

[ ]  ≤Ax b λ , ( ) [ ]o     ≤ +x x ε ρ , ≥x 0  (3.2) 

The ( )N 1×  vector ox denotes the observed activity levels; the ( 1)N ×  ε  is a vector 
of small positive numbers, which guarantees that all resource constrains remain 
binding; and ρ  are the dual variables associated with the calibration constraints. Let 
us now consider an example of wheat and corn, with gross margins of 300 €/ha and 
100 €/ha, respectively, and land resources of 30 hectares. Without any additional 
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calibration constraints, wheat would be the preferred activity and the dual of land 
would be 300 €/ha. If calibration constraints of 20 hectares for wheat and 10 hectares 
for corn are included, the preferred activity would still be wheat and corn would be 
the marginal activity. The vector x  can, hence, be divided into two subsets: a vector 
of preferred activities px , which is constrained by the calibration constraint, and a 
vector mx of marginal activities, which is bounded by the resource constraint. In the 
second step, the non-linear objective function will be calculated such that under 
the production economic criterion – marginal revenue equals marginal cost – the 
model will obtain the observed production as a solution. The dual values will 
certainly be smaller than those obtained in equation (3.1) because the marginal, 
rather than the preferred, activities determine the dual values of the resource 
constraint (Heckelei, 2002). 

The concept of PMP can therefore be understood as detecting the hidden costs 
for each crop, in order to obtain a solution to the programming problem that is 
calibrated to include the “true” costs of farming. Hence, the farm’s production is 
assumed to be already at an economic optimum. The nature of the hidden costs is 
unknown, and hidden costs are viewed as a consequence of any factors that could 
contribute to increasing marginal costs. Decreasing marginal returns can be 
caused by increasing marginal costs while marginal revenues remain constant. 
Alternatively, the PMP approach can also be specified for decreasing marginal 
returns based on decreasing marginal crop yields and constant marginal costs.  

Both approaches can be implemented by taking either costs or production 
functions for the parameter estimation. In the remainder of the paper, the most 
frequent PMP approach in the form of increasing marginal costs is discussed. 
Due to the lack of strong arguments, the often-applied quadratic function is used 
in this application, whereas Paris & Howitt (1998) also discussed other functional 
forms. In principle, any type of non-linear function convex in activities can be 
applied. The following ‘variable cost function’ can be taken as the non-linear part 
of the object function.  

1
' '

2
= +vc d x x Qx ,  (3.3) 

vc is an ( 1N × ) vector of variable costs and d  denotes the ( )N 1×  vector of 
parameters associated with the linear term. The ( )N N× symmetric, positive (semi-) 
definite matrix Q  is associated with the quadratic term. To reconstruct the 
parameters of the Q  Matrix and the d  vector, the ‘marginal variable cost’ has to 
fulfil: 

( )o

o
∂

= = + = +
∂

v

v
C x

MC d Qx c ρ
x

.  (3.4) 
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Providing the PMP coefficients are recovered, the final non-linear programming 
problem can be specified as: 

x

1
max Z ' - ' - '

2
= p x d x x Qx    (3.5) 

 subject to  

 [ ]    ≤Ax b λ , 0≥x .  (3.6) 

For the ex post scenarios, different approaches exist for recovering the parameters of 
the cost function, which are discussed in the next section.  

3.3 Ex post approach 

This section describes the methods considered in the ex post approach to obtain the 
parameters of the cost function, introduces the data, and describes the 
implementation of the method.  

3.3.1 Methods to recover the parameters of the cost function  

We consider the following PMP calibration methods for the ex post analysis: 
 

i) Original PMP  

ii) Paris (1988) 

iii) Exogenous elasticities  

iv) Maximum Entropy 

 
We will also discuss v) FOC the method proposed by Heckelei & Wolff (2003) 
which estimates the parameters of the cost function combined with the first order 
condition and more than one observation. This method is not applied to all farm 
groups of the ex post framework, but only for one particular farm2. 

All methods have to solve equation (3.4) in order to calibrate the programming 
model to observed production. The PMP approaches from i) to iii) belong to the 
group where the diagonal elements are calculated and off-diagonal elements are set 

                                                      
 
 
2  During the study it became clear that numerical problems did not allow for using the method for all 

farm groups. The increased number of observations, combined with the differentiated set of crop 
activities, generates considerable computational demand. In addition, initial numerical difficulties 
must be overcome.  
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to zero. The remaining approaches try to recover the full Q  matrix, and, therefore, 
account for cross-effects between crops. 

i) Original PMP 

Here, the estimation of the non-linear cost function was solved by letting =d cand 
setting all off-diagonal elements of Q to zero (Howitt & Mean, 1983; Arfini & Paris, 
1995; Bauer & Kasnakoglu, 1990). The N diagonal elements of Q , indicated as iiq , 
are calculated as: 

1,...,i
ii o

i

q i N
x

ρ
= ∀ = .  (3.7) 

This specification gives a linear cost function for the ‘marginal’ activities, caused by 
the zero dual value of the marginal activitiesmx . The resulting simulation behavior is 
determined through the linear cost function of the marginal activity. 

ii) Paris (1988) 

Paris (1988) tried to respond to the additional need for prior information that arose 
when the original PMP approach was improved and developed a modified version, 
settingd equal to zero along with the off-diagonal elements of Q , and then 
calculating the diagonal elements of Q  by 

1,...,i i
ii o

i

c
q i N

x

ρ+
= ∀ = ,   (3.8) 

which achieves positive diagonal elements of Q also for the marginal activities. The 
vector ρ  denotes the dual values of the constrained linear programming model, ox  is 
the observed crop allocation and c  is a vector of observed costs from the linear 
formulation. 

iii) Exogenous elasticities  

The method uses exogenous elasticities to recover the parameters of the marginal 
cost function (Helming et al., 2001; Osterburg et al., 2001). The off-diagonal 
elements of Q are set to zero. In the ex post analysis, land allocation elasticities with 
respect to own gross margins ε  elasticities are considered for the calculation of the 
diagonal elements ofQ . The exogenous land allocation elasticity can be used to 
calculate Q because the partial derivative /i ix p∂ ∂ is equal to 1

iiq − . 

1
1,...,

o
i

ii o
ii i

p
q i N

xε
= ∀ = .  (3.9) 
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In order to satisfy the calibration condition in equation(3.4), the linear parameter of 
the variable cost function (equation(3.3)) is set to: 

1,...,o
i i i ii id c q x i Nρ= + − ∀ = .  (3.10) 

iv) Maximum Entropy 

Paris & Howitt (1998) addressed the potentially arbitrary parameter specification 
problem by suggesting a Maximum Entropy (ME) procedure to generalise and 
objectify the calibration phase. The information is given by the marginal costs from 
the first step (3.2), setting 0=d  and the observed output levels. If each farm realises 
N products with 1, ,i N= … , N(N+1)/2 parameters must be estimated, which results 
in an ill-posed estimation problem. Using this information, the marginal cost function 
as in (3.4) results in: 

= + =v omc ρ c Qx   (3.11) 

The corresponding formulation in matrix notation of the maximum entropy problem 
for estimation of the full Q matrix as shown in Paris & Howitt (1998) is repeated for 
sake of traceability. 

,
max H( , ) 'ln 'ln= − −

d l
d l d d l l

p p
p p p p p p   (3.12) 

subject to 

' ( )( )( )′= = =o o o
l l d d l lMC Qx LDL x Z p Z p Z p x  (3.13) 

1 ' 1,...,k L= ∀ =ll p   (3.14) 

1 ' 1,...,k D= ∀ =dl p   (3.15) 

0>lp  and 0>dp , 

whereH denotes the entropy measure,mc denotes the marginal cost vector of 
dimension N , x  is the allocation vector of size N , lZ  and dZ  are the support 
matrices, and lp and dp are the individual probabilities. The formulation of the 
Q matrix in (3.13) satisfies the theoretical requirement of a symmetric positive semi-
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definite matrix, which ensures the Cholesky factorisation. (3.14) and (3.15) ensure 
that the probabilities sum up to one, with l  as a summation vector. 

v) First order condition with multiple data points 

Paris & Howitt (1998) suggested in their conclusions that their approach with ME 
offers the ability to make use of more than one observation in time. In this context, 
PMP with multiple cross sectional data points was applied by Heckelei and Britz 
(2000). They extended the ME formulation to multiple observations but still used the 
PMP procedure. A limited theoretical basis for the PMP approach leads one to argue 
for alternative approaches to the estimation of explicit optimisation models without 
any PMP elements. Such an approach was introduced by Heckelei & Wolff (2003), 
who stated that, assuming that the optimal land allocation satisfies the land 
constraints3, the first order condition of the problem for the observations T with 

1, ,t T= …  can be obtained by using the Lagrangian formulation: 

( )− − − − = ∀o o
t t t tgm λ A d Q x e 0 t   (3.16) 

'( )− =o o
t t tA x e b ,  (3.17) 

where e is added as an ( 1)N ×  vector of stochastic error terms over T periods to the 
observed land allocationox to obtain the optimal land allocation. tλ denotes the 
shadow price vector (M T× ) for land, estimated endogenously. Bringing the 
Entropy criteria into the error term is done by the multiplication of matrix V with the 
vector of probabilitiesw . 

=t te Vw   (3.18) 

Heckelei & Wolff (2003) showed that in the case of a small sample, the use of 
external elasticities provides a way to include additional information when a 
sufficient series of observations is missing. For our farm group, the number of 
observations is small (1996 to 2000), therefore, we introduce prior information on 
supply elasticities to specify our model, following Heckelei & Wolff (2003): 

                                                      
 
 
3  The price vector in (3.5) is replaced by a vector of gross margins (gm ) 
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( )
1

-1 -1diag
−

′    ′−    °    

ε ε ' -1 -1 gm
V w = Q Q A A Q A AQ

I
⊙ . (3.19)4 

The Generalised Maximum Entropy (GME) approach is employed for the estimation 
problem (Golan et al., 1996) as follows: 

( )
, ,
max H 'ln 'ln= − −∑ε

t t

T
ε ε ε

t t
w w Q,L,λ t=1

w,w w w w w  (3.20) 

subject to (3.16), (3.17), (3.18), (3.19) and 

'  with L = 0    j > i   ij= ∀Q LL   (3.21) 

' 1 ,i t= ∀tl w   (3.22) 

' 1 ,i t= ∀εl w   (3.23) 

H denotes the entropy measure and equation (3.21) guarantees the positive (semi-) 
definiteness of Q, based on the Cholesky factorisation. Equations (3.22) and (3.23) 
ensure that the probabilities add up to one, where l  is a summation vector.  

3.3.2 Data 

The assessment of the calibration methods is performed using farm data from the 
FADN. In order to aggregate the farm group, identical arable farms between 1996/97 
and 2002/03 are selected. From about 6000 existing farms records in Germany, 845 
arable farms were used for the ex post evaluation. The aggregation and stratification 
of the single farm accounts in farm groups was done with the program WFARMIS 
(Gocht, 2004) and resulted in 45 farm groups. The following figures present the farm 
groups selected for the application, aggregated into four regions. Figure 3-1 depicts 
the total amount of arable land for the 45 aggregated farm groups from 1996 to 2003. 
The use of arable land increased in the north by around 7 percent, in the centre of 
Germany by 11 percent and in the south by 9 percent. In the eastern part the arable 
area increased only by three percent, due to the restructuring process after the 
reunification of Germany.  

                                                      
 
 
4 

The symbol ⊙  represents the element wise product of two matrixes. 
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Source: FARMIS 2004, FADN Germany.
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Figure 3-1: Total arable land in 1996/97 and 2002/03, grouped by region 

Figure 3-2 shows the crop allocation on the arable land in 1996/97 and 2002/03. 
Except in the southern region, the share of winter wheat increased. Rye increased 
only in the eastern part of Germany, whereas rape was expanded the most in all 
regions. Compulsory set-aside was reduced, while in the North, Centre and South, 
the specific regulation for small farms has to be taken into account. 
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Figure 3-2: Land allocation in 1996/97 and 2002/03 by crop 

Under Agenda 2000, the levels of direct payments as depicted in Figure 3-3 for 
cereals, oilseeds and protein crops were harmonised. It becomes clear that the 
relative advantage of oilseed premiums declined to the level of cereals in 2002/03. 
The direct payments for protein crops are disturbed by vegetable peas, for which no 
payments are made. 
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Figure 3-3:  Direct payments 1996/97 and 2002/03 

Figure 3-4 shows the price change of the selected crops. The price for wheat 
decreased compared to the first year 1996/97, whereas the price for rape increased.  
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Figure 3-4:  Price changes 1996/97 and 2002/03 by crop 

3.3.3 Implementation of the calibration methods 

To recover the cost function parameters of methods i) and ii), no further assumptions 
are needed besides the dual values of the constraint linear model (see equations (3.7) 
and (3.8)). For the method based on exogenous elasticity, two settings of elasticities, 
as presented in Table 3-1, are used. For version II, the elasticities for rape and for 
wheat were assumed to be 3. 
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Crops Crops

version I version II version I version II

Winter wheat 1.33 3.00 Pulses
Spring wheat Rape 1.99 3.00
Rye Non-food rape
Winter barley Other oil seed
Spring barley Potatoes
Oats Sugar beet
Grain maize Set aside compulsory
Other cereals Set aside volunatry

1.50
1.50

1.50

1.99
1.99
0.40
1.33

Elasticities Elasticities

1.33
1.33
1.33
1.33
1.33
1.40
1.33

 

Table 3-1:  Elasticities used for recovering the cost function parameter for 
scenario iii) 

For the calibration method with Maximum Entropy, two different alternative support 
spaces are considered. For both versions, the support matrices of the entropy 
approach (equation (3.13)) are set as suggested in Paris & Howitt (1998)5, whereas 
for version I, the vector of weights lW  is set with k=5 to (-2; -1, 0; 1; 2) and dW  is 
set to (0; 1; 2; 3; 4). In version II, lW  is set to (-1; -.5, 0; .5; 1) and dW  is set to (0; 
.66; 1.33; 2; 2.66). The alternative versions were chosen in order to test the impact of 
the support point setting with respect to the resulting simulation behaviour. The cost 
function parameters were estimated using ME. 

Calibration methods i) to iv) are applied to the farm group supply models using 
the gross margin and production levels observed in 1996/97. Crop-specific costs are 
calculated with generation modules of the farm group model FARMIS. After 
estimation of the cost function parameters, the farm groups are tested for calibration 
to the observed production. Afterwards, the gross margins for 2002/03 are applied as 
shocks to the supply model, and differences between the observed and the simulated 
production for 2002/03 are evaluated by calculating the percentage absolute 
deviation (PAD): 

1 ˆ| ( ) / |i i i
i

PAD N ABS x x x−= −∑ ,  (3.24) 

where N denotes the number of crops, ix the observed land use in 2002/03 and ˆix the 
calculated crop allocation.  

The FOC Method is applied to one particular farm group using time series from 
1996 to 2000 to estimate the cost function parameters. The support points for the 
error term (equation (3.18)) bound the support to within 5 standard deviations of the 

                                                      
 
 
5  See equation 29-33 in Paris and Howitt (1998). 
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land allocation, and prior information on supply elasticities in (3.19) is done 
analogously to the specification of the error term, where the εV Matrix with 2 
support points for each prior information on elasticity bounds the support to 
within 2 standard deviations. The cost function parameters are estimated using 
GME. For the FOC method, observed gross margins from 2002/03 are applied to the 
calibrated farm group. For comparison, the Original PMP and the Paris (1988) 
methods are used, calibrated based on the average production from 1996 to 2000.  

3.4 Results  

Table 3-2 depicts the percentage absolute deviation for all farms groups for methods 
i) to iv). It is interesting to note that the mean PAD is relatively high for all scenarios.  

Farm 1 82.2 69.1 76.9 82.9 69.1 69.1
Farm 2 101.6 99.2 99.9 85.5 99.0 99.3
Farm 3 134.2 119.0 116.4 119.5 118.9 118.4
Farm 4 72.8 49.5 47.5 40.9 49.5 49.6
Farm 5 29.0 27.3 26.1 24.6 27.3 27.3
Farm 6 85.8 76.1 43.7 38.6 60.9 44.9
Farm 7 90.4 55.3 55.7 51.1 56.5 57.7
Farm 8 91.2 78.3 72.7 65.3 78.4 78.4
Farm 10 36.4 32.0 35.7 39.4 32.0 32.0
Farm 11 99.1 65.8 67.5 63.6 66.8 65.8
Farm 12 32.3 27.1 31.4 33.2 27.1 27.1
Farm 13 84.1 80.6 56.8 56.5 80.6 80.6
Farm 14 16.8 15.7 15.1 16.3 15.7 15.7
Farm 15 73.7 73.1 77.6 75.6 73.1 73.1
Farm 16 83.0 70.2 63.5 58.9 70.2 70.2
Farm 17 74.6 56.4 60.0 60.7 56.4 56.4
Farm 18 39.5 33.8 32.2 30.8 33.9 33.9
Farm 19 169.0 104.7 103.7 101.0 104.7 104.7
Farm 20 108.6 108.5 106.0 100.9 108.5 108.4
Farm 21 93.4 67.2 63.0 53.5 67.2 66.9
Farm 22 93.1 30.5 30.5 28.7 30.5 30.5
Farm 23 109.5 96.1 93.8 91.7 96.1 96.1
Farm 24 110.5 35.3 33.7 31.8 35.3 35.3
Farm 25 141.4 83.1 83.4 82.1 83.1 83.1
Farm 26 58.7 31.8 29.3 30.8 31.7 31.7
Farm 27 96.8 95.8 77.5 69.7 95.9 95.8
Farm 28 160.3 152.3 143.3 136.5 152.3 152.3
Farm 29 26.4 24.6 26.8 22.7 24.6 24.6
Farm 30 51.7 46.7 51.5 53.1 46.7 46.7
Farm 31 146.3 138.0 144.9 114.4 128.4 113.4
Farm 32 100.5 103.3 53.7 39.4 103.3 103.3
Farm 33 156.1 129.0 137.8 120.0 129.1 129.1
Farm 34 137.4 141.3 141.9 125.4 141.3 141.3
Farm 35 78.1 82.1 75.8 65.2 82.1 82.1
Farm 36 183.0 196.0 186.2 184.4 196.0 196.0
Farm 37 170.2 174.2 174.0 167.1 174.2 174.2
Farm 38 44.2 43.3 35.6 43.5 43.3 43.3
Farm 39 72.5 74.0 72.2 63.7 74.0 74.0
Farm 40 126.9 114.8 129.2 138.0 114.7 114.4
Farm 41 109.6 126.7 154.8 155.4 126.7 126.7
Farm 42 82.2 96.9 93.0 79.2 96.9 96.9
Farm 43 61.6 49.8 46.2 48.4 46.0 38.6
Farm 44 97.4 95.5 97.8 92.6 95.6 95.6
Farm 45 47.2 43.1 45.7 39.1 42.7 43.1
Farm 46 124.7 96.5 102.7 103.4 96.5 96.5

Mean 93.0 80.2 78.1 73.9 79.6 78.8

Source: FADN, FARMIS

PMP (1998)
Exogenous Elasticities Maximum EntropyParisOriginal

Version 1 Version 2 Version 1 Version 2

 

Table 3-2:  Percentage Absolute Deviation (PAD) for the ex post experiment 



 

 42 

One explanation could be the low crop yield in 2002 caused by the strong winter, the 
flood in August 2002 and the impact of Agenda 2000. The observed production of 
the farm groups seem to be not yet fully-adjusted to the new premium schemes, as 
shown in Figure 3-6 for rape seed. In addition, we have to take into account the fact 
that the PAD was obtained only for crops that were observed in the base year 
1996/97. Therefore, the absolute value of the PDA should be interpreted with 
caution. Nevertheless, the relative differences of the percentage absolute deviation 
can be used to interpret the calibration methods with respect to the simulation 
behaviour. The original PMP scenario has the highest PAD value. Here, for the 
‘marginal’ activities – crops with zero dual value on the calibration constraint – the 
cost function is linear. A price increase of the preferred production activity leads to a 
substitution away from marginal activities, but leaves the other preferred activities 
unchanged until the first marginal activity is replaced. 

Two alternative exogenous own gross margin elasticities for rape and wheat were 
considered for the calibration scenario with exogenous elasticities. The results in 
Figures 3-5 and 3-6 show the sensitivity of this calibration approach (pillar 4-5). The 
second version benefits from the increase of the gross margin elasticity for wheat.  

Farm 25 Farm 36 Farm 28 Farm 33 Farm 6 Farm 39 Farm 2 Farm 8 Farm 45 Farm 41
0

10

20

30

40

50

60

70

T
sd

. h
ec

ta
re

Source: FARMIS 2004, FADN Germany.

1996/97

2002/03Exogenous Elasticities Version 1

Original PMP

Maximum Entropy Version 2Paris (1998)

Maximum Entropy Version 1

Exogenous Elasticities Version 2

 

Figure 3-5:  Allocation of wheat for large farms (>10,000 hectares) 

The advantage of the Maximum Entropy method is the possibility of fully using 
any amount of sample information, no matter how scarce. The recovery of a fully-
specified Q matrix for the cost function is no longer impossible. Moreover, the 
results for the ME approach are very similar to the calibration approach presented by 
Paris (1988) (see Figures 3-5 and 3-6). This behaviour can be explained if equation 
(3.8) and equation (3.11) are compared. For both approaches, the linear part of the 
cost function d was set to zero, whereas the ME approach recovering the full Q  
matrix and the Paris (1988) approach calculated the diagonal elements of the Q  
matrix. Furthermore, the difference between versions I and II of the Maximum 
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Entropy method is very small, which implies that the different support points for the 
simulation have only a marginal impact. The fully-specified Q  matrix for one 
observation does not seem to contain more information on how the marginal 
incentives change if one moves away from the observed land allocation.  
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Figure 3-6:  Allocation of rape for large farms (> 2000 hectares) 

It appears that the support for the ME specification was defined without any 
additional prior information on the cost function, which causes a uniform distribution 
of probabilities, since the centres of the support ranges are already satisfied by the 
data constraints and, therefore, the resulting parameters from the ME approach are 
exactly the ones implied by the Paris (1988) method. These results coincide with 
findings from Heckelei & Britz (2000).  

Apart from the methods above, Figure 3-7 shows the results for the explicit 
optimisation model based on five observations (1996-2000) over time. The mean of 
the land allocation from 1996 to 2000 is depicted in the first bar for each crop, the 
calibrated land allocation for the FOC method is presented in the second bar. The 
observed land allocation in 2002/03 and the different simulation scenarios are 
presented in the remaining pillars. The crop allocation in 2002/03 indicates that the 
FOC approach behaves differently. The total absolute bias for the FOC method of 
2.78 outperforms the original PMP version, which has a bias of 3.6. However, the 
bias for the Paris (1988) method has almost the same value as the FOC approach. A 
possible explanation is that Agenda 2000 is mainly responsible for the gross margin 
changes, and the change in production in our observed target year is not considered 
during the FOC estimation (see Table 3-A1 and 3A-2, appendix). The recovered Q  
matrix of the method calibrates almost to the mean of land allocation over time, even 
in the case where crops were not observed for one year. Also interesting is the 
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absolute deviation for winter wheat, where the method outperforms the other 
methods.  
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Figure 3-7:  Crop allocations for farm groups from different calibration models  

A distinctive difference of the approach is that it estimates duals of the land 
constraint endogenously. Lambda in Figure 3-8 denotes the estimated shadow prices 
for land obtained from the FOC model over the five years. 
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Figure 3-8:  Dual values of land for the farm group  

Alternatively, the shadow prices for the final model using the recovered Q  
matrixes are presented. The estimated shadow prices decrease from 1996 to 2000 due 
to the gross margin changes (see Table 3A-2, appendix). However, the resulting 
shadow prices for all three final models have only a small deviation. For 
completeness, we would like to mention that the FOC approach also provides an 
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estimate for the elasticity matrix in Tables 3-A4 in the appendix and the fully 
specified cost matrix presented in Table 3-A3 in the appendix. 

3.5 Conclusions 

The paper investigates, using an ex post framework, the resulting simulation 
behaviour of different methods used to estimate the parameters of the cost function 
during supply model calibration. Four different methods proposed in the literature are 
evaluated using 45 farm group models for the year 1996/97. Observed gross margins 
for the year 2002/03 are applied to the calibrated supply model. We then assessed the 
deviation as the percentage absolute deviation between observed and simulated 
production. The ex post framework shows that, as long as the condition in equation 
(3.13) is satisfied, the calibration of the resulting model is guaranteed, but different 
specification of d  and Q  results in different simulation behaviour, as also reported 
by Cypris (2000).  

If we want to discriminate between the PMP approaches based on the findings of 
the ex post experiment, we would have to prefer the calibration method with 
exogenous elasticities (version II). The PAD outperformed all other methods. The 
resulting simulation behaviour is defined by the given elasticities and reduces the 
role of PMP to all it is: a calibration method.  

The PMP approach, where Maximum Entropy (Paris and Howitt, 1998) was 
applied could not improve the supply response compared to the observed values in 
the target year. This leads to the conclusion that the specifications (support point 
settings) to recover cost function parameters seemed unfavourable. However, the 
applied methodology offers potential for further development. The ME framework 
has the possibility to introduce additional out of sample information such as 
elasticities and can, superior to the exogenous elasticity method, account for cross-
effects between crops and incorporate multiple observations.  

The original PMP method has the highest PAD, resulting from the linear form of 
the cost function of the marginal activity. Hence, this PMP method should not be 
considered as a calibration method for MP models.  

Apart from the ex post experiment with 45 farm groups, we could demonstrate 
that the suggested FOC approach introduced by Heckelei & Wolff (2003) can be 
applied to FADN data time series. The approach estimates the cost function 
parameter using the explicit optimisation model, offers the possibility to incorporate 
prior information and avoids the general misspecification of the PMP models. From 
the findings of the FOC ex post experiment, we could see that the approach 
outperforms the original PMP method but did not find that the method significantly 
outperforms Paris (1988). One reason is probably the short time series of the 
estimation. From the methodological point of view, however, it should be mentioned 
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that this method is the only approach where the response behaviour relies on real 
observations. Jansson (2007) used the FOC method with a Bayesian estimation 
technique and aggregated the single production activities into crop groups for the 
cost function, which reduced the dimension of the Q matrix and, hence, results in 
lower computational requirements and avoids support point-related complications. 
The approach could replace the current GME setup. More observation over time will 
improve the specification, but in contrast to the sector approach (Jansson, 2007), 
FADN time series are rare due to the random nature of the sample, in which farms 
can enter and leave the sample depending on the sampling plan. 

We can conclude that the PMP calibration methods, as implemented, result in 
different response behaviour for the original PMP, the exogenous elasticities. The 
Paris (1988) and the Maximum entropy methods behaved similarly. Further, we can 
conclude that for all PMP methods6, the fit to the observed values is very poor. To 
improve PMP approaches with respect to the simulation behaviour, additional 
information such as exogenous elasticities or observed farming pattern must be 
included during calibration. The estimation of the cost function parameters under the 
first order condition with prior information on elasticities and based on multiple 
observation is a promising method, but computational demands and numerical 
problems, as well the lack of sufficient time series from FADN, prevents this method 
from becoming a standard approach for farm group models.  
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3.7 Appendix 

1996 1997 1998 1999 2000 2001 2002 2003

Winter wheat 788.1 535.5 457.1 479.5 485.1 805.2 915.0 750.2
Summer wheat 412.1 267.8 584.0 257.2 264.5 553.8 622.4
Rye 562.4 428.3 452.6 328.3 473.4 850.1 822.7 773.6
Winter barley 782.8 487.2 341.2 365.7 462.1 968.5 845.7 646.9
Summer barley 759.1 613.0 502.9 477.9 485.9 893.3 814.4 748.0
Oats 825.9 554.7 967.1 677.5 341.9 849.0 1401.6 754.0
Maize 296.1 557.7 -79.5 1.9 901.3 879.7 718.8
Other cereals 769.8 607.2 576.1 247.7 1111.4 1319.7 927.1
Rape 1070.1 1133.7 862.3 801.7 978.9 356.6 859.4
Potatoes 641.0 2122.1 2509.4 1414.5 1568.6 1111.1 1881.2 954.9
Sugar beet 1877.3 2478.2 2276.4 2154.4 2160.4 2503.3 2153.3 2342.1

Source: FADN, FARMIS  

Table 3-A1:  Gross Margins for the farm group  

1996 1997 1998 1999 2000 2001 2002 2003

Winter wheat 5.78 5.55 5.81 5.53 5.57 5.46 5.08 5.49
Summer wheat 0.25 0.26 0.39 0.65 0.68 0.75 0.77 0.72
Rye 0.88 0.83 0.52 0.55 0.39 0.32 0.24 0.24
Winter barley 0.44 0.58 0.70 0.74 0.52 0.58 0.54 0.23
Summer barley 2.61 2.97 2.89 2.88 3.30 2.76 3.60 3.34
Oats 0.34 0.40 0.30 0.30 0.36 0.24 0.31 0.38
Maize 0.37 0.21 0.19 0.10 0.45 0.48 0.39
Other cereals 0.38 0.31 0.33 0.34 0.55 0.34 0.61
Rape 0.49 0.45 0.62 0.56 0.39 0.11 0.09
Potatoes 0.80 0.94 0.93 0.80 0.92 0.79 0.85 0.68
Sugar beet 2.41 2.30 2.50 2.47 2.55 2.38 2.29 2.26

Source: FADN, FARMIS  

Table 3-A2: Observed land allocation for the farm group 
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Winter Summer Rye Winter Summer Oats Maize Other Rape Potatoes Sugar
wheat wheat barley barley cereals beet

Winter wheat 114 -169 -77 87 43 -79 -149 -153 -4 -121 -200
Summer wheat -169 1148 409 -84 -140 485 -161 572 -200 -82 152
Rye -77 409 853 136 -200 -200 -200 -58 -139 -90 166
Winter barley 87 -84 136 1193 -200 -200 199 35 -200 -112 -191
Summer barley 43 -140 -200 -200 261 -101 -159 77 -200 -106 -181
Oats -79 485 -200 -200 -101 2000 -200 170 -200 -74 167
Maize -149 -161 -200 199 -159 -200 882 94 123 -121 396
Other cereals -153 572 -58 35 77 170 94 2000 56 -87 -90
Rape -4 -200 -139 -200 -200 -200 123 56 1478 -65 287
Potatoes -121 -82 -90 -112 -106 -74 -121 -87 -65 2000 75
Sugar beet -200 152 166 -191 -181 167 396 -90 287 75 1203

Source: Own calculation.  

Table 3-A3:  Recovered Q Matrix for the farm group  

Winter Summer Rye Winter Summer Oats Maize Other Rape Potatoes Sugar
wheat wheat barley barley cereals beet

Winter wheat 1.317 0.011 -0.119 -0.255 -0.857 -0.117 0.0050.131 -0.392 -0.034 0.444
Summer wheat 0.217 1.325 -0.984 0.123 -0.027 -0.687 -0.006-0.593 0.173 -0.070 -0.284
Rye -1.299 -0.552 1.326 -0.196 0.484 0.436 0.114 0.052 0.225-0.052 -2.233
Winter barley -2.714 0.068 -0.192 1.327 1.707 0.100 -0.210-0.323 0.814 -0.101 0.428
Summer barley -1.596 -0.003 0.083 0.298 1.330 0.085 -0.029-0.210 0.428 -0.073 -0.481
Oats -1.579 -0.479 0.541 0.127 0.615 1.330 0.062 -0.082 0.417 -0.058 -1.909
Maize 0.351 -0.022 0.764 -1.440 -1.130 0.337 1.399 -0.337 -0.717 0.096 -8.215
Other cereals 2.169 -0.507 0.079 -0.503 -1.869 -0.101 -0.076 1.333 -0.935 -0.038 1.584
Rape -2.490 0.057 0.131 0.486 1.462 0.196 -0.062 -0.359 1.988 -0.074 -1.777
Potatoes -0.074 -0.008 -0.010 -0.020 -0.084 -0.009 0.003 -0.005 -0.025 0.866 -0.271
Sugar beet 0.257 -0.008 -0.119 0.023 -0.150 -0.082 -0.065 0.055 -0.162 -0.073 1.320

Source: Own calculation.  

Table 3-A4:  Recovered Elasticity Matrix for the farm group with the “First Order 
Condition” approach with multiple data points 
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Chapter  4. Estimating a farm group model and input allocations using 
accountancy data∗∗∗∗ 

 
 
 

Abstract 
 
This paper proposes and applies an innovative estimation approach for farm group 
programming models using Generalised Maximum Entropy. The proposed set-up 
simultaneously determines calibrating cost function parameters and input allocations 
to production activities. The methodology is applied to Belgium Farm Accountancy 
Data Network (FADN) data of arable farms for which available input allocations 
allow to validate the estimation approach. Results outperform separate estimates of 
input allocations previously applied in the literature and this finding is robust with 
respect to support point design. 

 
Keyword: Input allocation, Accountancy data, Generalised Maximum Entropy 

4.1 Introduction 

Agricultural farms typically produce more than one product in different enterprises. 
For environmental and economic impact analyses, the knowledge on physical or 
monetary input costs per enterprise is often very important but typically not 
available. One way to circumvent this problem was to allow for jointness in outputs 
and only estimate relationships between multi-output and aggregated multi-input 
levels (for example in Mittelhammer et al., 1981; Just et al., 1983; Hasenkamp, 
1976). 

Increasing public and political interest focuses on externalities from agriculture 
such as nutrient concentration in ground water or pesticide residues. In this context, 
approaches which do not represent enterprise specific input intensities are of limited 
usefulness. Consequently, the use of Mathematical Programming (MP) models for 
agri-environmental policy assessment expanded. The formulation based on 
production activities defined by output and input coefficients enables an explicit 
representation of technologies and their adjustments to policy constraints. However, 

                                                      
 
 
∗  The article has been submitted together with T. Heckelei (University of Bonn) to the Journal of 

Agricultural Economics on the 9th of September 2009 
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the necessary information on input coefficients is often not available in farm 
accountancy data. To generate the required data, the input use at enterprise level was 
generally determined prior to MP specifications either through ad hoc approaches or 
regressions of total input use on output quantities.  

For policy relevant simulations, the specification of MP models should be based 
on observed behaviour. Positive Mathematical Programming (PMP, Howitt 1995a 
and 1995b) contributed to improvements in this respect, but empirical content and 
theoretical consistency was limited. Heckelei & Wolff (2003) show how to specify 
MP models based on optimality conditions using multiple observations (time series 
or cross sectional data) and, if required, how to incorporate prior information on 
parameters and shadow prices. However, most specifications of this sort require 
information on enterprise specific input cost.  

Here we propose a methodology for specifying a farm group model while 
simultaneously estimating input allocations to enterprises instead of using the typical 
two step approach with input allocation prior to MP model specification. We 
hypothesize that this will improve upon the quality of the input allocation results 
compared to previous approaches. At the same time, we estimate the farm group 
model with a non-linear cost function using multiple observations from single farm 
accountancy data and prior information on shadow prices. This contributes to a better 
empirical foundation for PMP type models.  

The reminder of the paper is organised as follows. In the next section a short 
introduction to the PMP literature and its variants as well as to input allocation 
approaches is given. Section 4.3 introduces the concept of the farm group model. 
This is followed by the empirical approach with the statistical model, GME 
estimation approach, data, and non-sample information in Section 4.4. Section 4.5 
presents and discusses results on estimated input allocations and variables of the farm 
group model, including a sensitivity analysis of different support point designs. The 
final section concludes. 

4.2 Literature Background 

PMP was introduced to agricultural supply modelling by Howitt (1995a and 1995b). 
This methodology, specifying a calibrating non-linear objective function based on 
observed activity levels, promised to solve a difficult problem previously 
encountered by analysts working with linear farm programming models: how to 
calibrate the model without “polluting” it by poorly justified constraints. The 
advantages of PMP seemed especially large for policy relevant simulation analysis 
and a considerable strand of literature developed with methodological enhancements 
and applications of PMP and variants. For an overview see Heckelei & Britz (2005) 
or Henry de Frahan et al. (2007). One of the key criticisms of the original PMP 
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approach was that it lacked a sufficient empirical base for the specification of the 
objective function and thereby also for the resulting supply behaviour. Consequently, 
approaches have been suggested to estimate PMP parameters using multiple 
observations and/or prior information on behavioural parameters (Heckelei & Britz, 
2000; Heckelei & Wolff, 2003; Helming et al., 2001; Buysse et al., 2007; Jansson, 
2007). A limited theoretical base for the PMP approach also lead to argue for 
alternative approaches to the estimation of explicit optimisation models without any 
PMP elements (Heckelei & Wolff, 2003; Jansson & Heckelei 2009).  

One common characteristic of PMP type approaches for the specification of farm 
programming models in the literature is that information on input allocations to the 
different farm enterprises is available beforehand. As this type of information is 
rarely recorded, the allocations are often derived from aggregate data using ad hoc or 
statistical methodologies prior to the specification of the PMP parameters.  

There is a long history of allocating inputs to production activities in agriculture. 
Apart from ad hoc approaches inferring the allocation from published ‘industry 
standards’, agronomic field trials and expert opinions, a system of linear multiple 
regression functions is frequently used (e.g. Ray, 1985; Errington, 1989; Midmore, 
1990; Moxey & Tiffin, 1994; Dixon & Hornbaker, 1992; Léon et al., 1999). In its 
general form, one observation of an ×1M  vector of total input use in monetary 
terms, b, is explained by a linear function of the monetary output vector ×1N  x in 
the form of 

 = +b Ax u ,  (3.25) 

where A is an ×M N  matrix of unknown technological coefficients with its 
elements ija representing the amount of input i  required per unit of output and u is 
an 1×M  vector of random disturbances.  

Errington (1989) proposed a single equation estimation of this type. However, the 
employed Ordinary Least Squares (OLS) estimation technique did not guarantee 
positive estimated input coefficients. In some cases the sum of the input coefficients 
across the M input categories were larger than one, prompting the author to conclude 
negative profits associated with the corresponding products. Ray (1985) discussed 
several alternative estimation procedures based on mathematical programming. He 
emphasised that in view of the non-negativity property of the input coefficients, the 
OLS method may lead to unacceptable estimates. Midmore (1990) pointed out that 
farm specific input coefficients can be estimated from regional farm business survey 
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data if a common commodity technology can be assumed1 and a correction for 
heteroscedasticity resulting from the size effect in production is considered, further 
he noticed that accounting identities implying revenue exhaustion, i.e. equality of the 
sum of monetary inputs us across all categories to monetary output values, violate 
standard assumptions on the error distribution rendering least squares techniques 
problematic. 

An alternative Bayesian estimation approach for the linear regression was offered 
by Moxey & Tiffin (1994). He argued that the use of Bayesian priors is a natural 
mean of conducting inequality constrained estimation and suggested to use additional 
prior information based on information from other studies. In the same direction 
Léon et al. (1999) proposed the use of Generalised Maximum Entropy (GME) 
estimation to introduce non-sample information on the estimated coefficients. Apart 
from non-negativity constraints on input coefficients they also imposed cross 
equation restriction on the coefficient matrix A to ensure adding up. They compared 
the Entropy results of the different model designs with those from classical 
estimation techniques, namely minimizing absolute deviations, OLS, and Bayesian 
estimation methods using accounting data from dairy/beef farms from France. 
Furthermore they tested the sensitivity of the GME outcomes to different designs of 
prior information implemented by the setting of support points. They concluded that 
standard estimation techniques are no real alternative due to the problems identified 
in the literature before and stated that it is difficult to discriminate between the 
Bayesian and the GME approach.  

This paper contributes to the two strands of literature just described by combining 
the estimation of PMP parameters using multiple observations with the estimation of 
input allocations. It is hypothesised that the incorporation of a behavioural model 
will improve estimation results on input allocation. 

4.3 Conceptual farm group model 

Farm supply models to be specified in this exercise shall be suitable for policy 
relevant simulation analyses and therefore comply with the following requirements: 
 

i) The implied simulation response should be based on observed behaviour 
leading to the estimation of parameters with multiple observations.  

                                                      
 
 
1  This commodity technology assumption implies that the input structure of a commodity is the same, 

regardless of the industry (farm type in the context of agriculture) where it is produced Midmore 
(1990).  



 

 55 

ii)  The estimated supply model should reproduce the observed practice. In other 
words, we should obtain a calibrated model. 

iii)  The model should be able to explicitly represent technologies and policy 
constraints. 
 

The first two points are strongly related to the PMP literature. Heckelei & Wolff 
(2003) critically review the rationalisation of the non-linear term and pointed out the 
inconsistent estimation of the dual values in the standard PMP approach. They 
proposed a conceptually simple but general alternative to overcome the problem and 
to calibrate and estimate the programming models by directly employing the 
optimality conditions. Their suggestion allows to simultaneously estimating 
parameters of the behavioural functions and the dual values of the constraints. The 
proposed model in this paper builds upon this approach. To start let us assume 
farmers maximize profits solving the following optimization problem:2 

 ( ) [ ] [ 0.5 ]max ′ ′ ′ ′ ′ ′= + − −
x

x p y s -1 A x d x Q x⊙ Mf  (3.26) 

subject to  

 [ ]≤R x c λ  (3.27) 

 0≥x  (3.28) 

where x now represents the N× 1 vector of acreages. The vector y, p, and s are N × 1 
dimensional vectors of expected yields, expected prices, and subsidies, respectively. 
R a 2 × N  matrix of coefficients of a land and a sugar quota constraint. Furthermore, 
c  is a 2 × 1 vector of available resources and λ  the corresponding vector of shadow 
prices. The second summand of the profit function is a quadratic cost function with 
an N × 1 parameter vector d and an N × N parameter matrixQ .  

Assuming that land and quota constraints are binding, the first order optimality 
conditions are given by:  

 ( )M
′′ ′+ − − − − =p y s 1 A d Qx Rλ 0⊙  (3.29) 

                                                      
 
 
2  The symbol ⊙ indicates and element-wise multiplication operator and 1M is an M-dimensional 

column vector of ones. 
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 − =R x c 0 (3.30) 

In the next section, we will use these first order conditions together with equation 
(3.25) in order to estimate the unknown technology matrix for variable inputsA , the 
parameters for the non-linear cost function ,d  and Q , and the dual values on land 
and quota, λ , using multiple observations and prior information. 

4.4 Empirical approach  

This section develops the empirical model based on the aforementioned discussion, 
introduces the data, and describes the estimation approach. 

4.4.1 Estimated model 

Applying farm indices as 1,...,=f F and indicating all observed data by the subscript 
‘o’, the first order condition from (3.29) can be written as: 

 o

f f f f f

M o
f f f= + − − − −′ ′ ∀0 p y s 1 A d Qx R λ⊙  (3.31) 

We assume additive, iid errors for the endogenous variable of the optimisation 
model, acreages xf, so that 

 = + ∀x x eo
f f f f . (3.32) 

Furthermore, producers are considered to have naïve price expectations of the form 

 , , -1= + ∀p p eo p

f t f t f f  (3.33) 

where the ep
f  is a vector of measurement errors.3 Naïve expectations also apply to the 

yields but without error term. 
Second order optimality conditions require that the Q matrix has to be symmetric 

positive semi-definite, which can be ensured by adding a Cholesky factorisation of 
Q  as a constraint to the equations: 

 '      with   0    >= = ∀Q LL L ij j i  (3.34) 

                                                      
 
 
3  One reason for the likely existence of a measurement error is that implicit prices derived from sales 

accounts of farm records are not the prices obtained for the production of the same accounting year 
as this generally does not coincide with the production cycle. Alternatively, one might interpret the 
error as a random deviation from the naïve expectation hypothesis across the different farms.  
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We now re-parameterise the farm specific matrix of monetary input coefficients 
Af in terms of a equally dimensioned matrix of cost shares for each variable input 
category i of the output category j per ha, Aɶ , which is constant across farms. Let Tf 
be a M×N matrix of total revenue per ha of a crop with N identical columns 

( ), = ∀T y p + s⊙
o o

j f f f f j . Then we write = ∀A A Tɶ ⊙f f f  such that we can now 
include a farm specific version of equation (3.25) into our estimation setup as 

 ( )= + ∀b A T x uɶ ⊙f f f f f  (3.35) 

Note that this formulation implies equality of total cost to total revenue if the 
elements of Aɶ  add up to one across input categories. This is achieved by introducing 
a residual input category ‘value added’ as suggested by Leon et al. (1999) with 
corresponding monetary input coefficients equal to the difference between crop 
revenue plus subsidies and the observed variable input cost per ha (sum of all other 
monetary input coefficients across input categories). At estimation stage we have to 
guarantee the adding up condition of the shares by including the N equations 

 M N′ =A 1 1ɶ . (3.36) 

In order to achieve a farm group model calibrating to aggregate observed acreages 
we impose 

 
F F

f 1 f =1

o
f f

=

=∑ ∑x x  (3.37) 

and this concludes the model with equations (3.31) to (3.37) to be estimated. Note 
again that this model allows to simultaneously estimating the parameters d and Q of 
the PMP-type cost function, the shadow prices λλλλ and input cost sharesAɶ .  

4.4.2 Data 

The developed estimation approach is applied to a set of year 2000 FADN 
accounting data (1999 for price and yield data) from 56 Belgium farms. The Belgium 
dataset has a distinct advantage, input cost per production activity are additionally 
collected4 compared to the other FADN datasets in Europe. The farms are classified 
using the type of farming definition (European Commission, CD 85/377/EEC, 
Article 6). Farms in the class ‘specialist cereals, oilseed and protein crops’ (FT13) 
and ‘general field cropping’ (FT14) and above a threshold of 60 economic size units 
are considered for estimation. The data distinguishes the five input categories 
                                                      
 
 
4  J. Buysse from University of Gent provided the data for the estimation.  
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depicted in Table 4-1 and a ‘value-added’ category obtained residually. The inputs 
are used to engage in seven production activities. 

Unit

Inputs (€/ha)

Contract work 124(73) 130 (59) 346 (130) 560 (285) 269 (215) 296 (128) 311 (136)

Seeding 67(23) 65 (25) 113 (2) 573 (285) 339 (99) 216 (58) 201 (28)

Treatment 150(41) 137 (39) 270 (96) 260 (84) 468 (112) 113 (47) 205 (74)

Fertilizer 75(29) 90 (63) 143 (79) 188 (88) 195 (78) 50 (0) 184 (109)

Land (ha) 27 (15) 10 (10) 9 (5) 8 (4) 14 (9) 8 (2) 14 (8) 58 (28)

Yield (t/ha) 9 (1) 7 (1) 47 (6) 43 (18) 44 (7) 8 (1) 71 (10)

Price (€/t) 118 (8) 119 (10) 46 (4) 119 (102) 47 (26) 231 (26) 41 (5)

Observations 54 26 27 8 28 6 56

Potatoes
Green peas 

for tin  
Sugar beet Land

Winter 
Wheat

Winter 
barley 

Chicory
Vegetables 
in open air

 
Note: standard deviations of variables are given in parenthesis 

Table 4-1: Farm group sample  

The available land resources and sugar quotas are not directly observed but instead 
calculated for each farm as the total sum of acreages planted and sugar production 
quantity, respectively. 

4.4.3 Estimation 

In order to incorporate valuable prior information we employ a GME estimator as 
introduced by Golan et al. (1996). For this purpose, we re-parameterise the 
unknowns of the model in terms of probabilities and support points. This applies to 
the input allocation matrix,Aɶ , the vector of dual values for land and quota 
constraints, λ , the linear term of the quadratic object function d, and the various 
error terms related to acreages, prices and input cost shares.  Starting with the input 
cost shares we have  

 ,ij ij ij i j′= ∀a sa paɶ  (3.38) 

where saij and paij are W×1 vectors of support points and corresponding probabilities, 
respectively. Similarly, the elements of all other re-parameterised vectors are 
expressed as  

 ,cf cf cf c f′= ∀λ sl pl  (3.39) 

 j j j j′= ∀d sd pd  (3.40) 
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 ,if if if i f′= ∀u su pu  (3.41) 

 ,jf jf jf j f′= ∀e se pe  (3.42) 

 p ,jf jf jf j f′= ∀e sp pp  (3.43) 

where slcf (G×1), sdj (D×1), suif (K×1), seif (P×1), spif (H×1) are vectors of support 
points and plcf, pdj, puif, peif, and ppif  are the corresponding vectors of probabilities.  

We also need to introduce the following adding-up constraints on the 
probabilities: 

 1 , ;W
ij i j′ = ∀1 pa  (3.44) 

 1 , ;G
cf c f′ = ∀1 pl  (3.45) 

 1 ;D
j j′ = ∀1 pd  (3.46) 

 1 , ;K
if i f′ = ∀1 pu  (3.47) 

 1 , ;P
jf j f′ = ∀1 pe  (3.48) 

 1 , ;H
jf j f′ = ∀1 pp  (3.49) 

The GME objective function following from this re-parameterisation is given by 
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and is optimised subject to the model equations (3.31) to (3.37) and the GME 
constraints (3.38) to (3.49). After the optimal solution is obtained, the estimated 
values of the unknown parameters and error terms can be recovered by equations 
(3.39) to (3.43) using the optimal probability values.  

4.4.4 Non-sample information 

Non-sample or prior information in the GME estimation approach is defined via the 
support point settings. They are potentially highly relevant for the estimation results 
and will therefore be subjected to sensitivity analysis later on. We first introduce here 
an ‘initial’ or ’base’ support point setting in terms of bounds, spacing and the implied 
prior expectation. The 11 discrete support points for the elements of the matrix of 
input cost shares,Aɶ , is defined taking prior information on the magnitude and range 
of the specific total input cost shares across all crops into account.5 For the residual 
category ‘value added’, the support space is bounded between zero and one and 
support points are equally spaced with a distance of 0.1. This implies a prior 
expectation equal to 0.5 noting that this category can easily account for up to fifty 
percent of the total revenue for each product as in incorporates the remuneration to 
all fixed factors. Furthermore the prior information on seeding costs is introduced 
with equally spaced support points between 0 and 0.2 because the average seeding 
costs per hectare accounts for around ten percent of total revenue and this share is 
rather stable. For all other input categories, i.e. fertilizer, contract work, and plant 
protection, the support space is symmetrically distributed around an expectation of 
0.15 with bounds 0 and 0.3.  

                                                      
 
 
5  Following Léon et al. (1999), who used 11 support points.  
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All support spaces for error terms are symmetrically defined around zero with 
three support points. The support space for the noise related to total cost for each 
input category (equation (3.35)) follows the widely accepted three-sigma rule by 
Pukelsheim (1994) with support ( ˆ ˆ3 ,0,3u uσ σ− ), where uσ̂ is the standard deviation of 
the total cost associated with each input category in the sample. The same approach 
is not suitable for the error term on land allocation, because they differ between 
farms (equation (3.32)). Also noting that acreages are likely observed with little 
measurement error, we have defined a range of 20 percent around observed activity 
levels. The support space for the noise term on expected prices (equation (3.33)) is 
again defined using the three-sigma rule for the prices observed in the farm group 
sample. 

The support for the dual values on land and sugar quota constraints are also 
symmetrically defined over three discrete support points. The expected value – equal 
to the middle support point – for the dual on land is set to the land rent information 
available in the FADN data for each farm and the support space was defined as plus 
/minus one sample standard deviation of land rent. Estimates for the sugar quota 
rents for this sample were available from Buysse et al. (2007) for this sample and 
taken as the expected value. Because this information was not directly observed, the 
support space was defined by plus /minus 20 percent of the expected value. The 
expected values of the linear cost terms in d are defined as the sample average of 
corresponding total gross margins minus the expected dual values of land and sugar 
quota with a symmetrical support point setting of plus /minus ten times the expected 
value to account for the uncertain nature of the prior information. 

4.5 Results 

First we evaluate how the simultaneous estimation of input allocations and 
behavioural model compares to a separate linear regression as previously employed 
in the literature. For this assessment we use observed values on monetary input 
coefficients as presented in Table 1 that were not used in estimation. Then we look at 
the fit of the behavioural model with respect to the endogenous variables. Finally, the 
sensitivity of the results with respect to alternative support point designs is presented. 

4.5.1 Input allocation 

We estimated the farm group optimisation model simultaneously with the variable 
input allocation (FOC-LR-Model) as introduced in the previous section using the 
FADN data. For comparison, we also estimated independently the linear regression 
model represented by equation (3.35) similar to Léon et al. (1999) with GME using 
the same support points for the input cost shares as for the simultaneous approach 
(LR-Model). Both resulting input allocations are used to calculate Pearson’s 
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correlation coefficient with out-of-sample observed input allocations across farms 
(see Table 4-2). In line with our expectations, the FOC-LR model performs slightly 
better measured by the sum of the correlation coefficients over all input categories. 
But its performance is not dominant as the occurrence of the largest correlation 
coefficient switches between models when moving from one input category. Only 
with respect to the estimation for the input category treatment, the inclusion of the 
behavioural model in the estimation exercise seems to significantly improve upon the 
LR-model results.  

FOC-LR-Model LR-Model

Contract Work 0.88 0.81
Seeding 0.73 0.87

Treatment 0.4 0.01
Fertilzer 0.35 0.49

Value added 0.88 0.77

Sum 3.24 2.95
 

Table 4-2:  Pearson’s correlation coefficient for input allocations of the FOC-LR 
and LR model with observed values 

Table 4-3 depicts the deviation of estimated input cost shares from the observed 
averaged across all farms (bias) by input category and production activity. The bias 
measures are smaller for the FOC-LR model in 20 out of the 35 cases and the 
aggregate bias over all input categories and products to this model is smaller by 
about 5%). 

Contract 
work

Seeding Treatment Fertilizer
Value-
added

LR -0,019 -0,004 0,035 0,005 -0,014

FOC-LR 0,017 -0,006 0,033 0,019 -0,065

LR 0,010 -0,024 0,009 -0,052 0,057

FOC-LR -0,024 -0,023 0,011 -0,070 0,106

LR 0,053 -0,024 0,029 0,005 -0,062

FOC-LR -0,057 -0,024 0,010 -0,010 0,080

LR -0,103 0,046 -0,047 -0,033 0,138

FOC-LR -0,069 0,055 -0,023 -0,020 0,057

LR 0,049 0,005 0,037 0,011 -0,102

FOC-LR 0,004 -0,032 -0,013 -0,014 0,054

LR -0,029 0,042 -0,048 -0,057 0,092

FOC-LR 0,008 0,035 -0,072 -0,081 0,111

LR 0,047 0,004 -0,040 0,004 -0,016

FOC-LR 0,036 0,003 -0,038 -0,004 0,003

Potatoes

Green peas for tin  

Sugar beet

Winter Wheat

Winter barley 

Chicory

Vegetables in open air

 

Table 4-3: Bias of estimated input shares for the LR and the FOC-LR model  
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Despite mixed results on single input categories and products, we can infer a 
consistently superior performance by the FOC-LR model regarding the estimation of 
input allocations for the aggregate measures considered.  

4.5.2 Fit of behavioural model 

Although the comparison of input allocations between the two approaches already 
points at a potential benefit of the simultaneous estimation approach, the actual 
estimation of the farm group model is of considerable interest by itself. Table 4-4 
shows correlation coefficients of crop acreage allocations, prices as well as land and 
quota rents with their ‘observed’ counterparts.6 We see that in most cases the fit for 
acreage is high, above 0.9. Exceptions are vegetables in open air and Green peas for 
tin. This is, however, not surprising as Table 4-1 indicates that for those two 
production activities only very few observations for the farm group were available 
rendering the estimation generally more challenging. The fit for expected prices is 
low for winter wheat, potatoes and green peas due to the larger total price variation 
(see Table 4-1 and Figures 4-A1 to 4-A5 in the appendix).  

Crop Land allocation Price

Winter Wheat 0.966 0.299
Winter barley 0.989 0.747
Chicory 0.753 0.638
Vegetables in open air 0.636 0.969
Potatoes 0.917 0.466
Green peas for tin  0.408 0.340
Sugar beet 0.999 0.643

Dual values

Land 0.922
Sugar Quota 0.907

 

Table 4-4: Pearson's correlation coefficient between “observed” and fitted 
values of model variables 

Observed values and corresponding estimates from the FOC-LR Model for the 
dual values of the land and sugar beet constraints are shown in Figure 4-1 and Figure 
4-2, respectively, ordered by size of the observed values. A reasonably good fit with 
the observed values can be inferred. This is not a trivial result in the context of PMP 
literature, because many published approaches along the standard PMP approach 

                                                      
 
 
6 ‘Observed’ refers to estimates from the Buysse et al. (2007) in the case of sugar quota rents as 

described in the previous section. 
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recover rather unrealistic dual values of resource constraints.7 Nevertheless, there is 
some recognisable downward bias of the estimator, especially for the sugar beet case.  
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Figure 4-1: Observed and estimated values for land rent in Euro per hectare 
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Figure 4-2:  Observed and estimated values for sugar beet rents in Euro per ton 
                                                      
 
 
7 See Heckelei and Wolff (2003) for a theoretical reasoning and, for example, Júdez et al. (2001) for a 

counter-example. 
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A possible explanation is our data induced assumption that observed sugar 
production equals the sugar quota, whereas the ‘observed’ values on sugar beet rents 
estimated by Buysse et al. (2007) were applied to the real quota quantity. This would 
also explain the downward bias of the estimated mixed sugar beet price presented in 
Figure 4-A2 in the appendix.  

For completeness, we would also like to mention again that the approach also 
provided estimates of the quadratic cost function parameters (see Table 4-A1 in 
appendix) thereby offering a fully specified simulation model of a farm group based 
on single farm records. 

4.5.3 Sensitivity of results to support point design 

To shed some light on the robustness of the estimation results regarding the 
implementation of the prior information, we finish this result section with a 
sensitivity analysis with respect to the number of support points and their form of 
distribution. Because we have used well defined prior information from FADN for 
the dual values of the resource constraints, the land allocation and expected prices, 
we will focus here on the input allocation matrix Aɶ . For this purpose we introduce 
six additional support point designs similar to those used in Léon et al. (1999). They 
are presented in Table 4-A2 in the appendix. The first three designs are defined again 
with eleven discrete support points, the first one symmetric, the second left-skewed, 
and the third right-skewed.  

The support designs 4-6 have six support points and the general form of the 
distribution with the same set-up as the first three designs. Apart from the estimated 
input cost shares, Table 4-5 also presents percentage deviations from the base design 
no. 1 in parenthesis. Generally, the estimates are sensitive to the support point 
design. Somewhat surprising, the number of support points is also relevant even 
though the deviations of the symmetric distribution design no. 4 with 6 support 
points shows the smallest deviations to the base design.8 Skewed distributions show 
overall larger deviations. Given that the prior expected values associated with these 
designs differ from the base case, we conclude that prior information on input 
allocation matters here for this sample. However, we can also see that it matters most 
for those products that have little data information, i.e. a low number of observations 
in the sample, such as green peas. This phenomenon of decreasing relevance of prior 
information with increasing data information and vice versa is well known - at least 
in Bayesian statistics - and highly desirable. 

                                                      
 
 
8  Golan et al. 1996, pp. 139-140, indicated that increasing the number of support points beyond 5 will 

not decrease the mean estimation error much anymore. However, that does not imply that the 
estimates might not differ for a specific sample. 
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Table 4-6 presents the correlation coefficients of estimated input allocations with 
observed input allocations for the six support designs, for both, the FOC-LR- and the 
LR-model. The superior performance of the FOC-LR model seems to be robust 
across all support point designs looking at the sum of the correlation coefficients for 
both approaches. 

Contract work Winter wheat 0.0503 0.0548 (-9) 0.0577 (-15) 0.0535 (-6) 0.0566 (-13) 0.0574 (-14)
Barley 0.1052 0.0926 (12) 0.1119 (-6) 0.1058 (-1) 0.0934 (11) 0.1055 (0)
Chicory for sugar 0.2066 0.2057 (0) 0.2294 (-11) 0.2173 (-5) 0.2147 (-4) 0.2298 (-11)
Vegetables in open air 0.2194 0.2152 (2) 0.2381 (-9) 0.2265 (-3) 0.2274 (-4) 0.2422 (-10)
Potato 0.0642 0.0605 (6) 0.0682 (-6) 0.0662 (-3) 0.0594 (7) 0.0649 (-1)
Green peas for tin  0.1777 0.1646 (7) 0.2187 (-23) 0.1932 (-9) 0.1855 (-4) 0.2175 (-22)
Sugar beet 0.0589 0.0576 (2) 0.0486 (17) 0.0545 (7) 0.0542 (8) 0.0493 (16)

Seeding Winter wheat 0.0574 0.0563 (2) 0.0601 (-5) 0.059 (-3) 0.0565 (2) 0.058 (-1)
Barley 0.0705 0.0587 (17) 0.0913 (-30) 0.0744 (-6) 0.0621 (12) 0.0812 (-15)
Chicory for sugar 0.0748 0.0652 (13) 0.0992 (-33) 0.0808 (-8) 0.0713 (5) 0.0905 (-21)
Vegetables in open air 0.1163 0.0916 (21) 0.1277 (-10) 0.1095 (6) 0.1004 (14) 0.1198 (-3)

Potato 0.1539 0.1567 (-2) 0.1614 (-5) 0.1582 (-3) 0.1605 (-4) 0.1648 (-7)
Green peas for tin  0.0922 0.0764 (17) 0.1305 (-42) 0.1035 (-12) 0.089 (3) 0.1215 (-32)
Sugar beet 0.064 0.0646 (-1) 0.0559 (13) 0.0607 (5) 0.0619 (3) 0.0566 (12)

Treatment Winter wheat 0.0846 0.0843 (0) 0.0799 (6) 0.0839 (1) 0.0823 (3) 0.0794 (6)
Barley 0.123 0.1093 (11) 0.1447 (-18) 0.127 (-3) 0.1162 (6) 0.1352 (-10)

Chicory for sugar 0.1026 0.0903 (12) 0.123 (-20) 0.1049 (-2) 0.0933 (9) 0.1115 (-9)
Vegetables in open air 0.1039 0.0887 (15) 0.1195 (-15) 0.1045 (-1) 0.0911 (12) 0.1083 (-4)
Potato 0.1724 0.1665 (3) 0.1783 (-3) 0.1717 (0) 0.1704 (1) 0.1762 (-2)
Green peas for tin  0.1384 0.1203 (13) 0.1847 (-33) 0.1517 (-10) 0.1355 (2) 0.1732 (-25)
Sugar beet 0.1034 0.1079 (-4) 0.1012 (2) 0.1041 (-1) 0.1072 (-4) 0.1038 (0)

Fertilizer Winter wheat 0.0411 0.0428 (-4) 0.0296 (28) 0.0369 (10) 0.0355 (14) 0.0309 (25)
Barley 0.1567 0.1492 (5) 0.1805 (-15) 0.164 (-5) 0.161 (-3) 0.1757 (-12)
Chicory for sugar 0.0651 0.0585 (10) 0.0801 (-23) 0.0668 (-3) 0.0591 (9) 0.0717 (-10)
Vegetables in open air 0.0775 0.0691 (11) 0.0837 (-8) 0.0766 (1) 0.068 (12) 0.0774 (0)
Potato 0.0804 0.0747 (7) 0.08  (0) 0.0774 (4) 0.0748 (7) 0.0777 (3)
Green peas for tin  0.0851 0.071 (17) 0.1106 (-30) 0.0886 (-4) 0.0696 (18) 0.093 (-9)
Sugar beet 0.0625 0.0646 (-3) 0.066 (-6) 0.0655 (-5) 0.0687 (-10) 0.0676 (-8)

Value-added Winter wheat 0.7666 0.762 (1) 0.7727 (-1) 0.7667 (0) 0.7691 (0) 0.7742 (-1)
Barley 0.5447 0.5901 (-8) 0.4715 (13) 0.5289 (3) 0.5673 (-4) 0.5024 (8)
Chicory for sugar 0.5509 0.5804 (-5) 0.4683 (15) 0.5301 (4) 0.5616 (-2) 0.4966 (10)
Vegetables in open air 0.4829 0.5354 (-11) 0.431 (11) 0.4829 (0) 0.5131 (-6) 0.4522 (6)
Potato 0.5291 0.5416 (-2) 0.512 (3) 0.5264 (1) 0.5348 (-1) 0.5165 (2)

Green peas for tin  0.5066 0.5678 (-12) 0.3555 (30) 0.463 (9) 0.5204 (-3) 0.3948 (22)
Sugar beet 0.7112 0.7054 (1) 0.7283 (-2) 0.7151 (-1) 0.708 (0) 0.7226 (-2)

Input Crop Design No. 6Design No. 1 Design No. 2 Design No. 3 Design No. 4 Design No. 5

 
Note: the numbers in parenthesis are percentage deviations to the base design no. 1 

Table 4-5:  Average estimated input cost shares for different support point designs 

Apparently, the simultaneous approach is able to better use the available data 
information. Interestingly, the left-skewed support point distributions show the best 
performance for both models. This ‘insight’ is of limited empirical relevance, 
however, because we only know by comparing with input allocations not employed 
in the estimation approach and normally not available.   
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Model Input

1 2 3 4 5 6

FOC-LR Contract work 0.879 0.865 0.904 0.891 0.889 0.907
Seeding 0.734 0.563 0.719 0.684 0.633 0.712
Treatment 0.399 0.439 0.174 0.307 0.361 0.201
Fertilizer 0.349 0.487 0.187 0.324 0.466 0.306
Value-added 0.882 0.899 0.782 0.838 0.869 0.806
Sum 3.243 3.253 2.765 3.044 3.218 2.931

LR Contract work 0.806 0.793 0.83 0.811 0.791 0.817
Seeding 0.873 0.838 0.812 0.884 0.88 0.876
Treatment 0.011 0.098 -.11 -.,02 0.009 -.093
Fertilizer 0.494 0.573 0.461 0.515 0.627 0.538
Value-added 0.767 0.759 0.743 0.761 0.748 0.75 
Sum 2.951 3.061 2.736 2.944 3.058 2.888

Design No.

 

Table 4-6:  Correlation Coefficients for sensitivity designs 

4.6 Conclusion 

This paper offered an approach to estimate a non-linear farm group optimisation 
model simultaneously with unknown input coefficients using GME based on multiple 
observations. This approach combines the more recent PMP literature with the 
extensive one on allocating variable inputs to production activities using farm 
accountancy data. Using a sample of Belgium FADN accountancy records, the 
hypothesis that this simultaneous approach would outperform separate input 
allocation regressions introduced by Léon et al. (1999) was confirmed. The new 
approach showed better results for all considered aggregate measures across farms 
comparing estimated input coefficients with observed ones available for this sample. 

Apart from input allocation results, the concept also offers a specification of a 
farm group supply model with a PMP-type objective function based on multiple farm 
level observations. This is itself a relevant contribution, because most models of this 
type are not based on a statistical estimation approach. The fit of model variables to 
the farm data and available prior information on resource shadow prices was overall 
very satisfactory. The ability to include prior information on resource shadow prices 
promise more realistic results compared to standard PMP specifications. 

The result on the superior performance of the simultaneous estimation approach 
also held up when support point specifications of the GME approach were varied. It 
could be shown that support point designs matter for estimation results, especially if 
prior expected values on parameters differ and data information is limited. The 
number of support points had only limited impacts on the estimates.  

The developed approach could be extended into different directions. More 
observations over time will probably improve the specification with respect to the 
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price response behaviour of the resulting farm group model. Panel data typically 
show more price variation and will therefore likely result in more robust estimates in 
this respect. The focus of the current paper on evaluating estimates of input 
coefficients required observed input allocations. Another direction of further 
development could be the application of Bayesian approaches as in Jansson (2007) 
which promise a more straightforward and transparent implementation of prior 
information without support point related complications and less computational 
requirements. 
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4.8 Appendix  

Winter 
Wheat

Winter 
barley 

Chicory
Vegetables 
in open air

Potatoes
Green peas 

for tin  
Sugar beet

Winter Wheat 0.22 0.00 0.41 0.32 0.00 -0.48 -0.46

Winter barley 0.00 0.06 0.00 0.37 -0.34 -0.16 0.07

Chicory 0.41 0.00 1.71 1.16 -0.97 -0.44 -1.87

Vegetables in open air 0.32 0.37 1.16 2.98 -2.56 -1.41 -0.86

Potatoes 0.00 -0.34 -0.97 -2.56 3.00 0.17 0.70

Green peas for tin  -0.48 -0.16 -0.44 -1.41 0.17 2.07 0.27

Sugar beet -0.46 0.07 -1.87 -0.86 0.70 0.27 2.14
 

Table 4-A1: Estimated Q-Matrix of the quadratic cost function for farm group 
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Figure 4-A1: Estimated and observed wheat prices 
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Figure 4-A2: Estimated and observed barley prices 
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Figure 4-A3: Estimated and observed sugar beet price 
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Figure 4-A4: Estimated and observed chicory prices 
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Figure 4-A5: Estimated and observed vegetable prices 
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Figure 4-A6:  Estimated and observed potato prices 
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Figure 4-A7: Estimated and observed Green peas for tin prices 
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Design No.
Input 
Category

Number of 
Support Values

Type of Spacing Selected Support space

Design No. 1 Seeding 11 Symmetric 0.0, 0.02 , 0.04 , 0.06 , 0.08 , 0.1  , 0.12 , 0.14 , 0.16 , 0.18 , 0.2  

all other 0.0, 0.03 , 0.06 , 0.09 , 0.12 , 0.15 , 0.18 , 0.21 , 0.24 , 0.27 , 0.3  

Value-added 0.0, 0.1  , 0.2  , 0.3  , 0.4  , 0.5  , 0.6  , 0.7  , 0.8  , 0.9  , 1    

Design No. 2 Seeding 11 Non-Symmetric, left skewed 0.0, 0.008, 0.016, 0.025, 0.033, 0.041, 0.05 , 0.066, 0.1  , 0.133, 0.2  

all other 0.0, 0.012, 0.025, 0.037, 0.05 , 0.062, 0.075, 0.1  , 0.15 , 0.2  , 0.3  

Value-added 0.0, 0.041, 0.083, 0.125, 0.166, 0.208, 0.25 , 0.333, 0.5  , 0.666, 1    

Design No. 3 Seeding 11 Non-Symmetric, right skewed 0.0, 0.066, 0.1  , 0.133, 0.15 , 0.158, 0.166, 0.175, 0.183, 0.191, 0.2  

all other 0.0, 0.1  , 0.15 , 0.2  , 0.225, 0.237, 0.25 , 0.262, 0.275, 0.287, 0.3  

Value-added 0.0, 0.333, 0.5  , 0.666, 0.75 , 0.791, 0.833, 0.875, 0.916, 0.958, 1    

Design No. 4 Seeding 6 Symmetric 0.0, 0.04 , 0.08 , 0.12 , 0.16 , 0.2  

all other 0.0, 0.06 , 0.12 , 0.18 , 0.24 , 0.3  

Value-added 0.0, 0.2  , 0.4  , 0.6  , 0.8  , 1    

Design No. 5 Seeding 6 Non-Symmetric, left skewed 0.0, 0.01 , 0.02 , 0.08 , 0.14 , 0.2  

all other 0.0, 0.015, 0.03 , 0.12 , 0.21 , 0.3  

Value-added 0.0, 0.05 , 0.1  , 0.4  , 0.7  , 1    

Design No. 6 Seeding 6 Non-Symmetric, right skewed 0.0, 0.06 , 0.12 , 0.18 , 0.19 , 0.2  

all other 0.0, 0.09 , 0.18 , 0.27 , 0.285, 0.3  

Value-added 0.0, 0.3  , 0.6  , 0.9  , 0.95 , 1     

Table 4-A2:  Designs of the Support Set for the Input Allocation Matrix  
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Chapter  5. EU-wide farm types supply in CAPRI - How to consistently 
disaggregate sector models into farm type model∗∗∗∗ 

 
 
 

Abstract 
 

The aim of the paper is to motivate the introduction and characterisation of an EU-
wide farm type model in the CAPRI (Common Agricultural Policy Regional Impact) 
model, partly based on a comparison with other farm model approaches. The 
proposed farm type disaggregation of the regional CAPRI supply models aims firstly 
at reduced aggregation bias. This is expected to allow for a more profound and robust 
impact assessment of farm and agri-environmental related policy changes and to help 
the linkage to bio-physical models. Secondly, the integration of the farm types in the 
overall CAPRI modelling framework allows for endogenous price feedback through 
CAPRI’s global market model. The disaggregation is based on an estimation 
approach which smoothly integrates the information from the EU-wide Farm 
Structure Survey (FSS) into the CAPRI model database. Example results from 
Denmark show that this approach outperforms simple scaling by uniform factors by 
endogenously taking information about the type of farming and economic size into 
account during the estimation. 
 
Keywords: EU-wide farm supply analysis, Highest posterior density estimator, 
CAPRI farm type layer 

5.1 Introduction 

The Common Agricultural Policy (CAP) is evolving quickly, shifting its focus to 
externalities of agricultural production, provision of public goods and the 
contribution of the farming sector to Rural Development. The legally required impact 
assessments (EC, 2002) of EU legislation need to take these aspects into account, and 
the research community supports and accompanies the process of redirecting the 
CAP by developing and applying tools for impact assessment. The CAPRI model 
(Britz & Witzke, 2008) provides a prominent example for such a tool used in 
                                                      
 
 
∗ The article was developed together with W. Britz (University of Bonn) and has been submitted for a 

special issue organized by EU Commission JRC-IPTS Seville for the Journal of Policy Modelling. 
 



 

 78 

different projects, such as in SEAMLESS (van Ittersum et al., 2008), SENSOR 
(Jansson et al., 2007) or EURURALIS (van Meijl et al., 2006), and impact 
assessments, e.g., for the Mid-Term Review (Britz et al., 2003) or the Sugar Market 
Reform (Adenäuer, 2005, Adenäuer et al., 2007). The development of CAPRI 
responded to the demand for regionalized analysis of a CAP moving from price- to 
direct income-support in the nineties, in order to complement the analysis of multi-
commodity models with a country or EU resolution such as ESIM (Banse et al., 
2004) or AGLINK/COSIMO (OECD, 2007). Equally, environmental concerns were 
taken into account in CAPRI by integration of different environmental indicators 
such as nitrogen (Leip et al. 2009) and GHG emission (Perez, 2005) accounting or a 
Life Cycle analysis of energy use in agriculture (Kempen & Kränzlein 2008), 
recently improved by spatial downscaling (Leip et al., 2008) and links to bio-physical 
models (Britz & Leip 2009). 

However, as in many other economic models for the agricultural sector, CAPRI 
simulates for each region only an aggregate over all farms. Such a territorial 
representation might lead to aggregation bias and does not allow analysis of impacts 
on specific farm groups. We motivate and discuss therefore in the following the 
development of a layer of farm type models for CAPRI, integrated in the overall 
model chain, and describe the development of a matching consistent data base. 
Section 5.2 motivates a disaggregation by farm types. It reviews existing farm type 
approaches and motivates and presents specificities of the CAPRI farm type layer. 
Section 5.3 discusses the definition of a suitable farm typology, where given regional 
data are disaggregated based on farm structural statistics. Section 5.4 introduces 
details of the disaggregation methodology and Section 5.5 presents data and data 
preparation. Section 5.6 shows results for an example region and conclusions are 
drawn and the approach critically discussed in Section 5.7. 

5.2 The Farm Type Approach 

5.2.1 Motivation of farm type models in the impact assessment of 
agricultural policies 

Disaggregation by farm type mainly aims to capture heterogeneity in farming 
practises and farms within a region, in order to reduce aggregation bias in response to 
policy and market signals, with a focus on farm management, farm income and 
environmental impact. The argument is especially striking when policy instruments 
are either targeting specific farm types or are modulated depending on farm 
characteristics. The evolvement of the accompanying measures in the 1992 reform, 
and the introduction of premium schemes depending on farm characteristics, such as 
stocking densities and herd sizes, the small producer scheme and agri-environmental 
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legislation such as the Nitrate and Water directives generated an incentive for tools 
and analysis disaggregated by farm types. Examples are the AROPAj system 
(Baranger et al., 2008; Jayet, 1990), FARMIS (Offermann et al., 2005) and LUAM 
(Jones et al., 1995) where aggregates of specific farm types for administrative 
regions at the sub-national scale are simulated based on mathematical modelling and 
sources by the European Farm Accountancy Data Network (FADN) database, so 
called bio-economic farm models such as the FSSIM model in SEAMLESS 
(Louhichi et al., 2005) or econometrically estimated farm-household models (see, 
e.g., Lansink & Perling, 1996). 

Besides the reduced aggregation bias, a disaggregation by farm types in impact 
assessment contributes results regarding the distribution of impact in the farming 
community, e.g., regarding farm income distribution, environmental externalities or 
provision of public goods. It might also allow linkage to modules for farm structural 
change. 

5.2.2 Review of existing approaches 

The comparison presented in the following section aims at emphasizing differences 
between the three different approaches to farm type models, to better motivate the 
specific layout chosen for the CAPRI farm type layer. The first approach is based on 
linear or non-linear programming models representing either single farms or groups 
of farms defined from Farm Accountancy Data Network (FADN) or similar sources 
at national or regional level. FADN, based on micro-accounting data, provides output 
coefficients such as crop yields, the selection of production activities, and resource 
capacities such as land or family labour as well as output prices. Input coefficients, 
such as fertiliser application rates or feed requirements per production activity, are 
not provided by FADN, and therefore typically derived based on engineering 
approaches or are econometrically estimated. The input and outputs (I-O) 
coefficients, along with related prices define gross margins per production activity. 
The objective function maximizes the sum of these gross margins by choosing an 
optimal farm program, depending on the resource endowment and resource 
requirements at activity level. The basic methodology focuses on currently observed 
farming practices, as the production possibility set is derived from FADN. However, 
compared to CAPRI, where a non-linear cost function is introduced and where 
possible econometrically estimated (Jansson, 2007), AROPAj and LUAM, as many 
linear programming models, face well-known problems of Linear Programming (LP) 
such as overspecialization. Therefore, additional safeguards such as maximum 
cropping shares or bounds on the allowed changes of herd sizes are introduced in the 
framework. The calibration of the AROPAj model to the observed praxis (De Cara & 
Jayet, 2000), unlike in CAPRI or FARMIS, does not result in an exact but in 
approximated calibration by adjusting uncertain I-O parameters to reduce the gap 
between the observed cropping patterns and the computed solution. The approaches 
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based on FADN will inherit its properties, specifically, its relatively low 
representation of less frequent farm types. 

The second approach is more normative as a far wider range of potential activities 
defines the solution space of the model, derived from combining engineering 
knowledge with simulations by biophysical models. An example is provided by the 
farm models in the SEAMLESS modelling chain (Louhichi et al., 2005). The farm 
endowment, such as family labour, land or production rights might be taken from 
FADN, and the observed yields may serve as an indication of potential yields, but 
linking the potential choice set characterizing the farms to the observed one and the 
given endowment requires expert knowledge. The model set-up is hence far more 
resource-demanding than using solely observed practise from FADN. Primary data 
collection and link to GIS is necessary to source the bio-physical models, including 
location specific data relating to soil, topology, climate or the crop calendar. As a 
consequence, even a large-scale project such as SEAMLESS only populated some 
EU regions with models, supposed to be representative, and used statistical 
extrapolation to generate results for the whole EU. For a more detailed comparison of 
FSSIM and CAPRI, see (Britz et al., (forthcoming)). Calibration to the observed 
current state of the system, but even more, to observed responses of the farming 
systems to changes in its market and policy environment remains a challenge in bio-
economic model and is a partially unresolved issue, as it is their application for 
forward looking analysis where technical progress need to be taken into account. 
Bio-economic models are however suitable to highlight which potential activities 
might be chosen by farmers under a different policy and market environment. And 
clearly, their detailed description of agricultural management eases linkage to 
environmental indicator calculators or bio-physical models, and allows simulation of 
such policy measures linked to very specific farm management practises.  

The third approach rests in econometrically estimated farm-household models. 
Requiring panel data or even cross-sectional time series, they are mostly based on 
FADN or, again, based on often richer national and regional farm record data sets. 
Prominent examples are different variants of such models estimated by Lansink & 
Perling (1996). Based on duality theory, utility or profit maximization is assumed to 
derive behavioural functions representing first order conditions, where parameter 
restrictions and/or the choice of the functional form guarantee regularity. Their 
biggest advantage lies in their fully empirically based simulation behaviour, and their 
ability to test for the underlying behavioural assumptions. However, the often highly 
non-linear estimators restrict the size of the parameter space, leading typically to a 
far higher aggregation by activities/products compared to the programming 
approaches discussed above. A further serious disadvantage of these duality based 
models for integrated assessment is the missing explicit technology description 
where input demands can typically not be allocated to activities. That renders it 
difficult to link their results to bio-physical accounting approaches or models. 
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5.3 Characteristics of the farm types in CAPRI 

Perhaps the most important characteristic of the CAPRI farm type module is its full 
integration in the CAPRI modelling chain, which ensures price feedback based on 
sequential calibration with the global, large-scale market model (Britz, 2008). All the 
other approaches discussed above are stand-alone supply models, where prices are 
exogenous. Linking these other farm models to existing market models is far from 
easy due to differences in product definitions, but also, due to the missing match to 
the data sets underlying market models, questions of IT integration notwithstanding. 
The strict and consistent top-down disaggregation approach in CAPRI discussed in 
the following ensures a harmonized data set across regional scales and farm types. 

The farm type supply module in CAPRI consists of independent aggregate 
non-linear programming models for each farm type and each region, representing as 
an aggregate all activities of all farms falling in that type and a specific 
administrative regional unit at NUTS (Nomenclature des unités territoriales 
statistiques) II level. As templates, they share the structure of the regional 
programming models in CAPRI and thus provide a compromise between a pure LP 
approach and the fully econometrically estimated one. The latter is achieved by 
combining a Leontief technology for variable costs covering a low and high yield 
variant for the different production activities with an in part econometrically 
estimated non-linear cost function (Jansson, 2007), extending Positive Mathematical 
Programming (PMP) (Howitt, 1995). The cost function captures the effects of labour 
and capital on farmers’ decisions and allows both for perfect calibration of the 
models and a smooth simulation response. The farm models capture, similar to the 
regional ones, in high detail, the premiums paid under the CAP, include NPK 
balances and a module with feeding activities covering nutrient requirements of 
animals. Constraints besides the feed block relate to arable land and grassland, set-
aside obligations and milk quotas. Prices are exogenous in the supply module and 
provided by the market module, with whom they are solved sequentially until 
convergence. Grass, silage and manure are assumed to be non-tradable and receive 
internal prices based on their substitution value and opportunity costs. 
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Type of 
farming FSS 
short text

Long text for the CAPRI farm type

1 FT13 Specialist cereals, oilseed and protein crops (FT 13)

2 FT14_60 General field cropping (FT 14) + Mixed cropping (FT 60)

3 FT41 Specialist dairying (FT 41)

4 FT_42_43 Specialist cattle-rearing and fattening (FT 42) + Cattle-dairying,
rearing and fattening combined (FT 43)

5 FT44 Sheep, goats and other grazing livestock (FT 44)

6 FT50 Specialist granivores (FT 50)

7 FT7 Mixed livestock holdings (FT 7)

8 FT8 Mixed crops-livestock (FT 8)

9 FT31 Specialist vineyards (FT 31)

10 FT32 Specialist fruit and citrus fruit (FT 32)

11 FT33 Specialist olives (FT 33)

12 FT34 Various permanent crops combined (FT 34)

13 FT2 Specialist horticulture (FT 20)

14 FT9 Non-classifiable holdings'

CAPRI farm 
type index

 

Table 5-1: Type of Farming groups in CAPRI 

The CAPRI farm type module comprises a maximum of ten farm types per 
region, which always include a residual farm type to exhaust regional production as 
well as input and primary factor use. Each of the remaining up to nine farm groups is 
characterized by the “type of farming,” see Table 5-1, defined by the relative 
contribution of different production branches to the gross margin of the farm 
(European Commission, CD 85/377/EEC, Article 6), and the “economic size class” 
based on “European size units” (ESU)9, a concept defined in Chapter IV Article 8 in 
CD 85/377/EEC and Annex III. The EU classification scheme allows for a far more 
detailed characterisation of the farm’s specialisation, but data confidentiality issues 
and reduced average weights when using more disaggregated types on regional 
aggregates render it suitable to stick to the classification shown below. Equally, 
resources for reporting and result analysis clearly depend on the level of 
disaggregation. Similar arguments hold to allow for solely three farm size classes, 
leading to 14*3=52 cells in overall typology. 

                                                      
 
 
9  The following size classes had been chosen: <1-<16 ESU (class 1), 16-<100 ESU(class 2), 100< 

ESU(class 3) 
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Type of 
farming

   Utilised 
agricultural 

area 

Number of 
holdings

Livestock 
unit 

Rank for 
farm types 
in CAPRI

1,000 ha 1,000 1,000

1 FT8 3 394 2.41 1,318 1
2 FT50 3 160 1.56 1,229 2
3 FT41 3 352 3.67 724 3
4 FT13 3 447 8.72 85 4
5 FT14_60 3 326 1.53 177 5
6 FT8 2 110 2.44 268 6
7 FT14_60 2 224 4.49 78 7
8 FT13 3 232 0.94 56 8
9 FT41 2 68 1.69 119 9

10 FT13 1 140 10.62 13 10
11 FT14_60 1 59 5.06 12 10
12 FT2 1 0 0.09 0.01 10
13 FT2 2 2 0.26 0.23 10
14 FT2 3 7 0.45 0.09 10
15 FT32 1 1 0.14 0.01 10
16 FT32 2 4 0.16 0.02 10
17 FT32 3 2 0.02 10
18 FT34 2 0 0.10 10
19 FT34 3 3 0.08 10
20 FT41 1 0 0.08 1 10
21 FT_42_43 1 6 0.67 16 10
22 FT_42_43 2 7 0.20 20 10
23 FT_42_43 3 2 0.02 5 10
24 FT44 1 25 2.50 5 10
25 FT44 2 14 0.17 6 10
26 FT44 3 11 0.01 10
27 FT50 1 0 0.06 3 10
28 FT50 2 5 0.34 79 10
29 FT7 1 0 0.05 1 10
30 FT7 2 4 0.11 14 10
31 FT7 3 28 0.20 106 10
32 FT8 1 33 2.77 32 10

Sum for Farm Types 2,312 27.45 4,054
Sum Residual farm type 352 24.16 314
Total 2,664 52 4,367
Coverage % 87 53 93

No. FSS 
groups

ESU class

 

Table 5-2: Ranking of farm types based on the FSS farm group statistics for 
Denmark 

The restriction to maximal ten farm groups per region is based on storage and 
computing time considerations, but also by the aim to keep database and model 
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outputs at a manageable size for quality control and result analysis. Those farm 
groups, differentiated by the typology based on size and specialisation, which are 
represented explicitly in a region are selected according to their importance for the 
regional agriculture measured by Livestock Units (LU) and Utilised Agricultural 
Area (UAA). Compared to weights based on number of farms or economic 
indicators, area farmed and livestock numbers provide a compromise between 
economic, social and environmental aspects of farming. The approach is shown for 
Denmark10 in Table 5-2. 

In the chosen example of Denmark, the explicitly defined nine farming types 
cover more than 85 % of the UAA and more than 90 % of the LU recorded by FSS 
for this particular year, but account for only 53% of the agricultural holdings. All 
remaining FSS farming groups indicated with a “10” are aggregated to the residual 
farm type. Applying the same methodology to all NUTS II regions in the EU leads to 
the distribution as depicted in Table 5-3.  

EU-27 EU-25  EU-15  EU-10  EU-02

A Economic size
< 16 ESU 541 464 321 143 77
≥ 16 ≤ 100 ESU 715 698 628 70 17
> 100 ESU 460 440 346 94 20

B Type of Farming
Specialist cereals, oilseed and protein crops (FT 13) 237 212 149 63 25
General field cropping (FT 14) + Mixed cropping (FT 60) 290 271 212 59 19
Specialist horticulture (FT 20) 9 9 9
Specialist vineyards (FT 31) 9 9 9
Specialist fruit and citrus fruit (FT 32) 16 16 14 2
Specialist olives (FT 33) 18 18 18
Various permanent crops combined (FT 34) 13 13 13
Specialist dairying (FT 41) 239 230 200 30 9
Specialist cattle-rearing and fattening (FT 42) + Cattle-dairying,
rearing and fattening combined (FT 43)

168 168 152 16

Sheep, goats and other grazing livestock (FT 44) 194 172 159 13 22
Specialist granivores (FT 50) 118 108 76 32 10
Mixed livestock holdings (FT 7) 103 89 56 33 14
Mixed crops-livestock (FT 8) 302 287 228 59 15

C Residual farm type
Residue 225 211 170 41 14

Total (A+C or B+C) 1,941 1,813 1,465 348 128

No. of types in 

 

Table 5-3:  General overview of farm types selected for the CAPRI layer 

                                                      
 
 
10  Denmark has no further sub-regions in CAPRI, which motivated its use as an example. 
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The map in Figure 5-1 (see also Figure 5-A1 to 5-A6) below shows where the 
specialized dairy farm type with an ESU class larger than 100 is explicitly modelled, 
coloured according to its share on regional UAA. 

 

Figure 5-1:  Share of UAA on the NUTS II region in % for the specialized 
dairying farm type with an ESU greater than 100 ESU  

5.3.1 Disaggregation problem 

The disaggregation of the regional data base of CAPRI to farm types delivers 
specific benefits, which relate to the existing infrastructure of CAPRI. The farm type 
module shares the structure and technical implementation of the regional database, 
allowing use of existing procedures to populate and calibrate the individual farm 
models, and to store and view results. Equally, all existing post-model reporting 
modules for the regional model can be applied, such as indicator calculators for 
nutrient balances and green house gases accounting. Once the results from the farm 
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type are re-aggregated to the NUTS II level, they can be down-scaled to an 1x1 km 
resolution (Leip et al., 2008). The top-down data consistency integrates the farm type 
models smoothly in the overall system, ensuring also their inter-operability with the 
global market model. 

For consistency, however, harmonization of the production levels found in the 
Farm Structure Survey (FSS) data with the regional data base of CAPRI is required, 
a major challenge, also from the methodological viewpoint, which is discussed in 
detail in the next section. We refrain here from discussing how a the full farm type 
data base is constructed, including mutually compatible I-O coefficients, see Gocht 
(forthcoming) for a discussion. 

The FSS delivers data on production levels, providing a well-established 
statistical database, harmonized across Europe and featuring suitable coverage by 
farm type. Despite that fact that FSS underlies many of the regional statistics 
sourcing CAPRI, some inconsistencies to the regional data set in CAPRI remain. 
This is the case because: 

 
• CAPRI considers a three year average (for the version discussed n here years 

2001-2003) derived from regional time series, whereas FSS provides data for 
one specific year from the period 2003 – 2005, depending on the Member 
State. 

• The regional CAPRI database is made consistent to national data sets such as 
market balances and economic accounts, completed such that data gaps have 
been filled in by means of econometric routines, and harmonized over time 
regarding product/activity classifications. As a consequence, regional data in 
CAPRI can differ slightly from annual FSS data. 

• The economic thresholds for the FSS survey are different from those 
underlying the Economic Accounts for Agriculture (EAA). This can lead to 
inconsistencies for some selected activities such as nurseries where production 
quantities are not defined in physical units but in constant values. 

• All figures in FSS are rounded to the first digit after the comma and those 
individual farm data which account for more than 80 percent of the aggregate 
are replaced by missing values, as outcome of EU legislation dealing with 
statistical confidentiality (Council Regulations (CE) No. 322/97, OJ No L 
52/1, and EURATOM, EEC No. 1588/90, OJ No L 151/ 1). 

One way to remove the data inconsistencies in acreage and herd sizes consists in 
multiplying each FSS value with a fixed correction factor, calculated from the given 
regional value in CAPRI and the sum over the farm types in that region in FSS. 
However, this can first lead to a correction of the activity levels which changes the 
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farming pattern such that a different type of farming or a different economic size 
classification could result for some farm groups, so the data base might no longer 
represent the most important groups according to FSS. Secondly this approach could 
also result in a violation of political requirements for set-aside in the FSS groups11. 
Not least, the changes could generate unrealistic farm programs. In order to avoid 
reclassifications during the consistent top-down disaggregation, we propose a 
statistical estimator which ensures regional consistency and compliance with set-
aside obligations while preventing changes in the type of farming and economic size 
class. The estimator treats the original FSS farm group data as a random variable 
comprising measurement errors, which seems reasonable given rounding, 
introduction of missing values and reporting thresholds. By assuming properties of 
the error distribution, the most probable crop levels and acreages for each farm 
type are estimated recovering the given regional data, in compliance with set-aside 
obligation while maintaining the type of farming and ESU class of each farm 
group. 

5.4 The statistical disaggregation estimator 

The following section we discuss in detail the layout of the disaggregation estimator, 
starting with the data constraints, before the definition of the Highest Posterior 
Density is motivated. 

5.4.1 Data constraints 

The estimator aims first at ensuring that each farm group keeps its “type of farming” 
(see Table 5-1) during estimation, which requires translation of tabular information 
in official documents (European Commission, CD 85/377/EEC, Annex II Section B) 
in numerical constraints. Specifically, the “type of farming” is defined by rules 
relating to the contribution of production branches, expressed by the partial standard 
gross margins (SGM) (p), in relation to the total SGM (t). Both, the partial and the 
total SGM are expressed in Economic Size Units (ESU). t and p of a farm group is 
determined by a set of standard coefficients (s) which can be used to value areas 
under crops and numbers of animals produced by the farm groups, where it is 
assumed that one ESU is worth 1.200 Euro.  

During the estimation, these contribution of production branches shares are not 
allowed to violate a set of constraints, similar to crop rotation restrictions, which 

                                                      
 
 
11  The farm type base year is referenced to a three year average around 2002. Therefore set-aside was 

still in place and had to be considered. 
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define the given farm type. The total standard gross margin (t) is a (1 x F) vector and 
therefore computed by  

 t ( s x ) / (1200 ) fj j
j

N= × ∀ ∈∑ F   

for each farm group (f) where N  is the number of holdings represented by the 
particular farm group (f) and 1.200 indicates the value of one ESU. The matrix (x), 
for each region in CAPRI, consists of a farm type dimension with f=1,.., F and of a 
production activity dimension with j=1,.., J indicated in Annex Table 5-A1 and holds 
the production levels in hectare or animal heads to be estimated. The vector (s) is the 
activity specific gross margin in Euro given per hectare or animal head and provided 
by Eurostat12 for each sub-region. Constraints had been defined for all types 
according the rules outlined in EU Commission (CD 85/377/EEC), and ensure during 
estimation of the production levels (x) that the selected types stay within their 
definition. To give an example the type of farming which comprises specialized 
cereals, oilseed and protein crops have two constraints which are implemented in the 
estimation problem as: 

 
P1

(( s x) / (1200 )) / t 2 / 3 f
j

N
∈

× > ∀ ∈∑ F  

P13_14

(( s x) / (1200 )) / t 2 / 3 f
j

N
∈

× > ∀ ∈∑ F . 

The constraints which ensure that the farm groups remain in the economic size class 
are for the smallest size class with less than 16 ESU  

t 16 f< ∀ ∈F  

for the size class greater equal than 16 and less than 100 ESU as 

t 16   t 100 f≥ ∩ < ∀ ∈F  

and for the large scale farm size class as 

                                                      
 
 
12  The SGM are collected by Eurostat from the Member States and are downloadable from the official 

Eurostat webpage. The special treatment for grazing stock and fodder crops is implemented in the 
explained CAPRI farm type approach (see CD 85/377/EEC, Annex I, 5. treatment of special cases). 
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t 100 f≥ ∀ ∈F . 

A further restriction defines the obligatory set-aside area as a function of the grandes 
cultures area as:  

x xq/ (100 q) f ; joset = − ∀ ∈ ∀ ∈∑ F A . 

The crop production activities for arable land are (A) with A J  ⊂ . The set-aside 
rate (q) is given for each crop in percentage. The next constraint ensures that for each 
production activity, the sum of all farm types sums up to the regional levels indicated 
by (r ) 

F

x x   j J; r Rf
f ∈

= ∀ ∈ ∀ ∈∑  

and the last equation calculates the UAA (u) for each farm type.  

J

x u f Fj
j∈

= ∀ ∈∑  

5.4.2 Estimator 

The data constraints alone do not allow a unique solution to be found, as there are the 
F× J unknown vectors of cropping hectares and animal herd sizes (x ) to be 
estimated, which by far exceed the number of linear (in)equality constraints. The FSS 
raw data on cropping acreages and animal herd sizes are therefore seen as random 
variables distributed around the true, but unknown observations which are 
characterised by the above defined data constraints. We assume that the error term is 
white noise with co-variance zero, and follow the approach in Heckelei et al. (2005, 
2008) to derive a Highest Posterior Density estimator to recover the data with the 
highest posterior density. That leads to the following estimator 

p p n n,p p

1 p p n n,p p

min ( , , , ) '

( , , , )

vec

vec−

− − − −

× ∑ − − − −

x x u u p p t t

x x u u p p t t
  

where the partial standard gross margin (p) is defined as: 

n

np sx f ; n 1..5
j P∈

= ∀ ∈ ∈∑ F  

The estimation framework combining the estimator and the data constraints can be 
interpreted as the search for the production activity levels which minimize the 
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deviation between the prior information on levels px , on total standard gross margins 
pt , the partial standard gross margins pp  and the UAA pu  of each farm group with 

respect to the constraints for each farm type in the region for the Type of Farming 
and the Economic Size, the set-aside regulations (political constraints) and the 
consistency to regional data. 

5.5 Data  

5.5.1 Databases underlying the consistent EU-27 wide farm types 
approach 

One outstanding attribute of the farm type layer in CAPRI is its EU-27 wide 
territorial coverage. Only two harmonized and standardized data sources provide 
information on farm types at the EU-27 level: FADN and FSS. FADN is the most 
often used database to source EU farm type models. It comprises single farm record 
data on production and sales quantities, production activity levels, yields for selected 
activities, input cost aggregated on the farm level; information about prices and 
positions of the gain and loss accounts of a farm plus some further elements. The 
definitions in FADN are harmonized by EU legislation which also requests yearly 
updates by the EU Member States. The FADN covers however only a sample of 
farms with aggregation weights attached, with a somewhat low representativity for 
less frequent farm types and production activities (see also table 5-4 below). The 
second data source, FSS, reports mainly data on production activities by region and 
farm type, based on a sub-survey each third year and a complete survey each tenth 
year. Both data sets exclude small farms based on minimum economic thresholds, 
with lower thresholds in FSS and a hence better representation compared to FADN. 
Equally, some enterprises, such as highly commercialised farms are not obliged to 
provide accountancy information to FADN, but are included in the FSS. The 
combination of differences in thresholds and definitions, and the sample nature of 
FADN leads to coverage differences; as shown in Table 5-4 for the FADN year 2004 
at Member State level for those EU countries where groups from our CAPRI farm 
typology based on the FSS survey where completely missing in FADN. To give an 
indication about the size of the error, the number of missing hectares is shown. 
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ESC1 ESC2 ESC3 ESC1 ESC2 ESC3 ESC1 ESC2 ESC3 ESC1 ESC2 ESC3 ESC1 ESC2 ESC3 ESC1 ESC2 ESC3 ESC1 ESC2 ESC3 ESC1 ESC2 ESC3

Belgium and Luxembourg 15 38 5 30 4 0 6 1 11 2 16 12
Germany 94 24 15 46 67 49 20 4 3 24 88
Greece 33 67 17 1 2 38 6 29
Spain 29 4 51 20 59 0 44 28 97 33 92
France 171 131 132 74 154 12 1 34
Irland 15 4
Italy 4
Austria 62 1 296 0 1
Portugal 13 8 1 6 4
Sweden 48 75 9 25 1 0 34 6
Finland 3 7 4 2 3 1 2
The United Kingdom 86 2,284 12
Cyprus 0
Czech Republic 1 4 5 4 1 1 0 0 1
Hungary 7 11
Slovak Republic 1

Specialist
cereals, oilseed

and protein crops 
(FT 13)

General field
cropping (FT 14) + 

Mixed cropping
(FT 60)

Specialist
dairying (FT 41)

Specialist cattle-
rearing and fattening

(FT 42) + Cattle-
dairying, rearing and
fattening combined

(FT 43)

Sheep, goats and
other grazing

livestock (FT 44)

Specialist
granivores

(FT 50)

Mixed livestock
holdings (FT 7)

Mixed crops-
livestock (FT 8)

 

Table 5-4: UAA in 1000 hectares without representation in FADN 
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For Germany, for example, almost 390,000 hectares are not represented in FADN. 
The table also illustrates that especially small farm types (<16) ESU are often poorly 
represented in FADN, due to exclusion thresholds. High deviations are also found for 
large farms specialized in granivores (FT50 + ESC2 and FT50 + ESC3), highlighting 
that commercial farms are not well represented in FADN, FSS draws, hence, a more 
complete picture of the agricultural production structure compared to FADN, and is a 
more inviting source in that respect for the farm type disaggregation. As FSS does 
however only cover data on acreages and herd sizes, yields and input coefficients 
have to be derived from FADN, for a thorough discussion see Adenäuer et al. 
(2006a, 2006b) and Gocht (forthcoming). 

5.5.2 FSS Data preparation 

Eurostat1 aggregated and processed the single FSS records for all ~250 CAPRI 
regions for EU-27, according to the chosen typology, delivering a data set respecting 
the data confidentiality obligations mentioned above. Farm groups were deleted, 
where the UAA levels or the number of holdings were zero. The data set covers data 
on land use, livestock farming and labour force as well as number of farms for each 
farm type and region. The example results presented here refer to Denmark, with 32 
farm non empty groups by specialisation and size class as Table 5-2 shows. 
Rounding and introduction of missing values due to statistical confidentiality 
obligations might lead to cases where the prior data are not in line with the type of 
farming and the ESU class shown in the data set. Therefore, the type of farming and 
the ESU class for each raw FSS group are re-calculated in order to apply the correct 
constraints of the raw data during estimation and to obtain the correct partial SGM 
and the TSGM.  

                                                      
 
 
1  The work of Pol Marquer from EUROSTAT is gratefully acknowledged. He extracted different 

data selections for the new farm type layer and supported the whole data selection process with 
his knowledge and expertise. 
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FSS Farm 

Group 
Name

Type  of 
Farmi ng

ESU 
group

Typ of  
farming 

ESU 
Group

CAPRI 
farm 
type 
Rank

FSS Farm  
Group 
Nam e

Type  of  
Farm ing

ESU 
group

Typ of 
farming 

ESU 
Grou p

C APRI 
farm 
type  

R ank

1 DK000131 13 1 13 1 10 19 DK000414 41 4 41 4 3
2 DK000132 13 2 13 2 10 20 DK000421 42 1 42 4 10
3 DK000133 13 3 13 3 4 21 DK000422 42 2 81 2 10
4 DK000134 13 4 13 4 8 22 DK000423 42 3 81 3 10
5 DK000141 14 1 14 1 10 23 DK000424 42 4 81 4 10
6 DK000142 14 2 14 2 10 24 DK000441 44 1 44 1 10
7 DK000143 14 3 14 3 7 25 DK000442 44 2 44 2 10
8 DK000144 14 4 14 4 5 26 DK000443 44 3 44 3 10
9 DK000202 20 2 20 2 10 27 DK000444 44 4 80 4 10

10 DK000203 20 3 20 3 10 28 DK000502 50 2 50 2 10
11 DK000204 20 4 20 4 10 29 DK000503 50 3 50 3 10
12 DK000322 32 2 32 2 10 30 DK000504 50 4 50 4 2
13 DK000323 32 3 32 3 10 31 DK000702 70 2 81 2 10
14 DK000324 32 4 32 4 10 32 DK000703 70 3 81 3 10
15 DK000343 34 3 34 3 10 33 DK000704 70 4 72 4 10
16 DK000344 34 4 34 4 10 34 DK000802 80 2 81 2 10
17 DK000412 41 2 41 2 10 35 DK000803 80 3 61 3 6
18 DK000413 41 3 41 3 9 36 DK000804 80 4 80 4 1

No. No.

calculated FSS FSS calculated 

 

Table 5-5: Farming types and ESU class recovered from the FSS raw data 

Table 5-5 presents a comparison between identified type of farming and economic 
size class provided by Eurostat for the raw FSS data. It can be seen that for the nine 
most important farm types, which are retained exactly in the data base and model, 
only cell Nr. 35 was re-classified from an original mixed crop-livestock type to 
mixed crops. 

5.6 Results 

In order to analyse to what extent the proposed estimator leads to an improved 
presentation of the farming structure, the results are compared to a fixed number-
scaling. Table 5-6 reports the results for the partial SGMs P1, P4 and P52 per farm 
type for Denmark. It can be seen that lower deviations from the prior shares in FSS 
could be achieved, compared to applying a uniform correction factor for each 
production activity.

                                                      
 
 
2  Partial SGM P2 and P3 are not identified or very small for the selected farm types because those 

partial standard gross margins belong to farming types not identified in the case of Denmark (see 
Table 5-A1, appendix).  
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 Type of farming Economic Size Class
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Unit share share share share share share share share share

Specialist cereals, oilseed and protein crops 
(FT 13)

≥ 16 and ≤ 100 ESU 0.94      0.93      -2% 0.94      0% 0.04      0.06      29% 0.04      0% 0.02      0.02      -1% 0.02      0%

Specialist cereals, oilseed and protein crops 
(FT 13)

> 100 ESU 0.94      0.94      -1% 0.94      0% 0.02      0.02      21% 0.02      0% 0.04      0.04      5% 0.04      0%

General field cropping (FT 14) + Mixed 
cropping (FT 60)

≥ 16 and ≤ 100 ESU 0.88      0.87      -1% 0.88      0% 0.06      0.08      24% 0.06      0% 0.03      0.03      -8% 0.03      0%

General field cropping (FT 14) + Mixed 
cropping (FT 60)

> 100 ESU 0.86      0.86      -1% 0.86      0% 0.02      0.03      30% 0.02      0% 0.06      0.07      6% 0.06      -1%

Specialist dairying (FT 41) ≥ 16 and ≤ 100 ESU 0.29      0.33      12% 0.29      -1% 0.71      0.66      -7% 0.71      0%

Specialist dairying (FT 41) > 100 ESU 0.27      0.30      11% 0.27      -2% 0.73      0.70      -5% 0.72      1%

Specialist granivores (FT 50) > 100 ESU 0.22      0.21      -5% 0.22      0% 0.78      0.79      1% 0.78      0%

Mixed crops-livestock (FT 8) ≥ 16 and ≤ 100 ESU 0.56      0.54      -4% 0.57      0% 0.17      0.22      22% 0.17      3% 0.26      0.24      -11% 0.27      -2%

Mixed crops-livestock (FT 8) > 100 ESU 0.50      0.48      -4% 0.49      1% 0.04      0.05      16% 0.04      1% 0.46      0.47      2% 0.46      -1.6%

P5

partial SGMs

P1 P4

 

Table 5-6: Priors for and estimated partial SGMs (P1-P5) for all farm type in Denmark 
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 Type of farming Economic Size Class
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Unit ESU ESU ESU 1,000 hectare 1,000 hectare 1,000 hectare

Specialist cereals, oilseed and protein crops 
(FT 13)

≥ 16 and ≤ 100 ESU 36.7         35.1         -4% 36.4         -1% 446.7             433.8             -3% 459.5             3%

Specialist cereals, oilseed and protein crops 
(FT 13)

> 100 ESU 190.8       172.1       -11% 189.2       -1% 231.6             217.7             -6% 243.8             5%

General field cropping (FT 14) + Mixed 
cropping (FT 60)

≥ 16 and ≤ 100 ESU 43.7         45.2         3% 43.7         0% 223.9             234.9             5% 229.6             2%

General field cropping (FT 14) + Mixed 
cropping (FT 60)

> 100 ESU 225.5       205.3       -10% 222.8       -1% 325.7             312.2             -4% 331.4             2%

Specialist dairying (FT 41) ≥ 16 and ≤ 100 ESU 82.0         95.7         14% 84.1         2% 68.1               83.8               19% 67.0               -2%

Specialist dairying (FT 41) > 100 ESU 249.0       283.1       12% 258.3       4% 349.8             451.8             23% 368.5             5%

Specialist granivores (FT 50) > 100 ESU 328.7       319.7       -3% 331.1       1% 159.5             152.7             -4% 170.8             7%

Mixed crops-livestock (FT 8) ≥ 16 and ≤ 100 ESU 49.3         53.9         9% 50.3         2% 109.7             115.4             5% 115.1             5%

Mixed crops-livestock (FT 8) > 100 ESU 244.0       229.3       -6% 236.1       -3% 394.5             376.2             -5% 410.7             4%

Aggregated residue 354.5             388.9             9% 371.1             4%

ESU UAA

 

Table 5-7: Priors for and estimated UAA and ESU for all farm type in Denmark 
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Table 5-7 presents a comparison between the prior, the scaling method and the 
estimated values for the economic size of the farm type (ESU) and its land 
endowment (UAA). Again, the estimator outperforms simple scaling, leading to 
lower correction of total area and economic size of the farm groups. 

Table 5-8 presents the deviation of crop groups for the different farm types in 
Denmark. Two aspects are worth commenting upon. Firstly, the deviation for the 
residual farm type is larger than for the other farm types. The reason is the missing 
rule for the residual farm type. The deviations of farm types with a clear definition 
regarding specialization and economic size are less prone to deviations as changes 
are restricted by the constraints which define farm size and farm specialization. 
Secondly, small observations are less robust and the percentage deviation can be 
higher, as for example, rounding has a far stronger effect. 

5.7 Discussion and conclusions 

The paper motivated the introduction of a farm type layer in the CAPRI model, 
compared it to alternative solutions and addressed the issue of a consistent 
disaggregation of regional agricultural data by farm supply. We will first discuss the 
latter issue. 

Consistent disaggregation problems are frequent in economic analysis when 
working simultaneously on different spatial scales or combining different data sets. 
Our example provides a solution when structural relations at the lower level need to 
be maintained, here relating to the characterization of farm size and farm 
specialization. Examples for similar problems are the estimation of land cover or 
areas in a spatial disaggregation exercise, where one would like to keep cover and 
crop share relations in certain bounds at lower spatial scales, or the estimation of I/O 
coefficients consistent to national accounts while maintaining cost shares from the 
original micro records. 

We propose the application of a Bayesian motivated estimation framework which 
treats the available disaggregated information, here the FSS data, as a random 
variable. Whereas the disaggregated data provide prior information, consistency and 
definition based conditions provide the data information. Their combination provides 
posterior estimates which fulfil the top-down disaggregation requirement while 
exhausting the information content of the raw data. In our example, the estimator 
ensures that the type of farming of each group, as well as the economic size of a farm 
group were not violated, allowing for a consistent disaggregation of the CAPRI 
regional data base based on the FSS database of Eurostat to source a layer of farm 
type models. 
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Type of farming Economic Size 
Class
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Unit hectare 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Specialist cereals, oilseed and protein 
crops (FT 13)

≥ 16 and ≤ 100 ESU 322 320 -0.6% 330 2.5% 13 15 15.1% 12 -3.9% 31 38 17.8% 67 53.7% 45 38 -17.8% 36 -26.1%

Specialist cereals, oilseed and protein 
crops (FT 13)

> 100 ESU 164 159 -2.7% 165 0.6% 7 8 10.7% 7 -7.4% 11 12 13.6% 2455.9% 20 18 -7.2% 21 5.6%

General field cropping (FT 14) + Mixed 
cropping (FT 60)

≥ 16 and ≤ 100 ESU 105 106 0.6% 105 0.5% 19 19 0.7% 19 -1.4% 65 84 22.4% 77 15.3% 17 14 -22.3% 16 -9.4%

General field cropping (FT 14) + Mixed 
cropping (FT 60)

> 100 ESU 183 181 -0.9% 180 -1.4% 52 50 -2.8% 53 3.3% 28 35 18.9% 52 45.8% 28 22 -29.2% 22 -30.9%

Specialist dairying (FT 41) ≥ 16 and ≤ 100 ESU 16 17 2.9% 16 0.1% 47 63 25.5% 46 -1.9% 4 3 -23.4% 4 9.3%

Specialist dairying (FT 41) > 100 ESU 73 74 0.3% 78 5.4% 3 3 -0.1% 8 59.0% 239 355 32.6% 265 9.9% 28 17 -70.2% 17 -67.2%

Specialist granivores (FT 50) > 100 ESU 119 117 -1.7% 121 1.9% 2 2 2.4% 2 -11.4% 8 9 13.1% 14 41.5% 12 12 6.9% 15 22.6%

Mixed crops-livestock (FT 8) ≥ 16 and ≤ 100 ESU 66 66 -0.2% 67 2.0% 2 2 7.5% 2 -5.8% 29 37 21.8% 31 7.8% 7 7 0.5% 9 21.5%

Mixed crops-livestock (FT 8) > 100 ESU 275 269 -2.3% 280 1.7% 15 15 2.2% 11 -35.7% 29 34 13.8% 64 54.2% 31 30 -3.9% 26 -18.1%

Aggregated residue 167 170 1.3% 135 -24.2% 4 4 9.1% 6 33.2% 140 169 17.3% 195 -20.9% 17 25 31.7% 21 -46.4%

Set-asideCeareals Pulses, Potato and Sugar Beet Fodder Crops and Gras

 

Table 5-8:  Estimates for selected crop activity level in Denmark 
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The main aim of introducing farm types into the CAPRI model was to improve 

policy impact assessments by considering farm structural characteristics such as farm 
size, crop mix, stocking density and yields, in order to considerably reduce 
aggregation bias and thus to improve the reliability of regional results. But equally, 
income effects as well as environmental and social impacts can be analysed in the 
context of farm specialization and size. 

What are the down sides of the CAPRI farm type approach? First of all, the use of 
stylised and relatively simple template models which are structurally identical and 
express differences between farm type and regions solely by parameters alone might 
fall short of capturing the full diversity of farming systems in Europe. In particular, 
the evaluation of policy measures which impact on farm management decisions, such 
as manure handling or feeding practices, demand models which comprise these as 
decision variables. The relatively simple representation of agricultural technology in 
CAPRI compared to approaches parameterised based on biophysical models narrows 
down the scope of extensions in that direction, albeit the potential of the current 
template is not yet fully exploited in CAPRI. However, the dichotomy between 
increased detail for specific activities, regions and farm types, and a structurally 
identical template model remains. Updating and maintaining a regional data base 
with an additional breakdown by farm types requires more resources, as does the 
application of the enlarged simulation tool. 

The CAPRI farm type layer provides a complementary approach to alternative 
farm type approaches. Its strength rests firstly in the fact that harmonized data 
sources and assumptions are applied across Europe; secondly, that the layer is 
transparently linked with a complex agricultural trade model so that the full range of 
CAP measures and their interactions can be analyzed; thirdly, that its maintenance 
and application are cheaper compared to alternative approaches should one aim at a 
full coverage of the EU. 

A possible drawback of opting for a disaggregation by farm type instead of 
increasing the spatial resolution of the model is the fact that farm groups are not 
spatially explicit. That renders a link to bio-physical models challenging as, e.g., the 
soils on which the farm groups operate are not known. However, economic theory 
suggests that the distributional moments of bio-physical attributes as soil, slope, 
surrounding land cover or climate for each farm type will differ from the regional 
aggregated ones. Some approaches therefore try a spatial distribution of farm groups 
(see, e.g., Elbersen et al., 2006). 
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5.9 Appendix 

abbreviation CAPRI activity long text P
1

P
13

_1
4

P
2

P
3

P
4

P
5 abbreviation CAPRI activity long text P
1

P
13

_1
4

P
2

P
3

P
4

P
5

SWHE Soft wheat production activity TEXT Flax and hemp production activity 

DWHE Durum wheat production activity TOBA Tobacco production activity 

RYEM Rye and meslin production activity TOMA Tomatoes production activity 

BARL Barley production activity OVEG Other vegetables production activity 

OATS Oats and summer cereal mixes 
without tri ticale 

APPL Apples pears and peaches production 
activity 

MAIZ Grain maize production activity OFRU Other fruits production activity 

OCER Other cereals production activity 
including triticale 

CITR Citrus fruits production activity 

RAPE  Rape production activity NONF Non food production activities on set 
aside 

SUNF Sunflower production activity FALL  Fallow land 

SOYA Soya production activity OSET Set aside obligatory 

OOIL Other seed production activities for 
oil  industry 

VSET Set asice voluntary 

OIND Other industrial crops production 
activity 

BULL Male adult fattening activity low final 
weight 

NURS Nurseries production activity BULH  Male adult fattening activity high final 
weight 

FLOW Flowers production activity SCOW Suckler cows production activity 

OCRO Other crops production activity HEIR Heifers raising activity 

MAIF Fodder maize production activity CAMF Calves male fattening activity 

ROOF Fodder root c rops production activity CAFF Calves female fattening activity 

OFAR  Fodder other on arable land 
production activity 

CAMR Calves male raising activity 

GRAE Gras and grazings production activity 
extensive 

CAFR Calves female raising activity 

GRAI  Gras and grazings production activity 
intensive 

PIGF Pig fattening activity 

PARI Paddy rice production activity SOWS Sows for piglet production 

PULS Pulses production activity SHGM Sheep and goats activity for milk 
production 

POTA Potatoes production activity SHGF  Sheep and goats activity for fattening 

SUGB Sugar beet production activity HENS Laying hens production activity 

POUF Poultry fattening activity

 

Table 5-A1: Cross set for calculating the partial SGM (P1-P5) for defining the 
type of farming and the total SGM 
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Figure 5-A1: Distribution of (a) total UAA in 1,000 hectares, (b) number of 
holdings in thousand and (c) share on NUTS II UAA in percentage 
of farm type of farm type: Specialist cereals, oilseed and protein 
crops (FT 13) - Less than 16 ESU in 66 NUTS II  
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Figure 5-A2:  Distribution of (a) total UAA 1,000 hectares, (b) number of holdings 
in thousand and (c) share on NUTS II UAA in percentage of farm 
type of farm type: Specialist cereals, oilseed and protein crops (FT 
13) – Greater 16 – less 100 ESU in 101 NUTS II regions 
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Figure 5-A3: Distribution of (a) total UAA 1,000 hectares, (b) number of holdings 
in thousand and (c) share on NUTS II UAA in percentage of farm type 
of farm type: Specialist cereals, oilseed and protein crops (FT 13) - 
Greater 100 ESU in 70 NUTS II regions 
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Figure 5-A4: Distribution of (a) total UAA 1,000 hectares, (b) number of holdings 
in thousand and (c) share on NUTS II UAA in percentage of farm 
type of farm type: Specialist dairying (FT 41) – Less than 16 ESU 
(FT41L16) in 42 NUTS II regions 
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Figure 5-A5: Distribution of (a) total UAA 1,000 hectares, (b) number of holdings 
in thousand and (c) share on NUTS II UAA in percentage of farm 
type of farm type: Specialist dairying (FT 41) greater 16 – less 100 
ESU (FT41GT16L100) in 120 NUTS II regions 
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Figure 5-A6: Distribution of (a) total UAA 1,000 hectares, (b) number of holdings 
in thousand and (c) share on NUTS II UAA in percentage of farm 
type of farm type: Specialist dairying (FT 41) - Greater than 100 
ESU (FT41GT100) in 77 NUTS II regions
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Chapter  6. Discussion 

6.1 Conclusion 

This thesis contributes to the development of methods used for economic farm 
modelling. In Chapter 2, attention was given to a non-parametric method to measure 
technical efficiency. Most agricultural scientists have ignored sampling noise and 
often had little theoretical and empirical guidance on how to correctly conduct Data 
Envelopment Analysis (DEA). This chapter presented different model specifications 
using a bootstrap approach to derive confidence intervals. The results show that DEA 
without considering statistical properties can lead to erroneous conclusions. It 
follows that DEA results must be interpreted cautiously, and that further research is 
necessary before DEA can be accepted as a standard approach for the evaluation of 
input-output productivity. Apart from the model specifications, it was important to 
develop the computational framework for the convenient calculation of confidence 
intervals. Using the slice model in GAMS, we could show that the statistical 
properties of DEA estimates can be easily obtained. 

In Chapter 3, the response behaviour of prominent Positive Mathematical 
Programming (PMP) variants is assessed, utilising ex post time series from the 
German Farm Accountancy Data Network (FADN) database. The results show that 
the response behaviour is strongly determined by the different PMP approaches 
recovering the parameters of the non-linear cost function. Furthermore, we find that 
the fit of the simulated farm group models to the observed values for all considered 
calibration methods is poor. We conclude that when time series or panel data are not 
obtainable, the use of exogenous elasticities to determine the cost function 
parameters is a convenient method to introduce out of sample knowledge. However, 
we should be careful because the calibration method with exogenous elasticities does 
not determine the cross relationships of the quadratic cost function parameter. 
Furthermore, the elasticities applied during calibration are unlikely to be the same as 
the ones in the final model, which results from the non-linear functional form, its 
parameter and the constraints of the model. If several observations are available but 
the parameters cannot be identified with normal well-posed estimation techniques, 
ill-posed estimation techniques such as Maximum Entropy (ME) offer a way to 
include prior beliefs on the estimated parameters and to estimate the observed 
relationship between the cropping pattern and the height of the received gross 
margins for the non-diagonal matrix elements of the cost function. Furthermore, it 
could be shown that an alternative cost function estimation under the first order 
condition of the model with time series and prior information can be used instead of 
a PMP approach for estimating the model. This approach is theoretically consistent 
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and avoids the general misspecification of the traditional PMP approach. However, 
computational demands and numerical problems, as well the lack of sufficient time 
series from FADN, prevent this method from becoming a standard approach for farm 
group models.  

Chapter 4 offers an approach to estimate a non-linear farm group optimisation 
model simultaneously with unknown input coefficients using Generalised Maximum 
Entropy (GME) based on multiple observations. This approach combines the more 
recent PMP literature with the extensive one on allocating variable inputs to 
production activities using farm accountancy data. The model was estimated using a 
cross-sectional sample of 58 FADN accountancy records. The special situation in 
Belgium was used, in which input costs per activity are collected to compare the 
findings. The hypothesis that this simultaneous approach would outperform separate 
input allocation regressions was confirmed. Apart from this, the concept also offers a 
specification of a farm group supply model with a PMP-type objective function 
based on multiple farm level observations. This is itself a relevant contribution, 
because most models of this type are not based on a statistical estimation approach. 
The result on the superior performance of the simultaneous estimation approach also 
held up when support point specifications of the GME approach were varied. It could 
be shown that support point designs matter for estimation results, especially if prior 
expected values on parameters differ and data information is limited. The number of 
support points had only limited impacts on the estimates.  

Chapter 5 introduced the farm type layer in the Common Agricultural Policy 
Regionalised Impact (CAPRI) model and addressed the issue of a consistent 
disaggregation of regional agricultural data by farm supply. Our example provides a 
solution when structural relations at the lower level need to be maintained - in our 
case, the characterisation of farm size and farm specialisation. We propose the 
application of a Bayesian motivated estimation framework that treats the available 
disaggregated information, the Farm Structure Survey (FSS) data, as a random 
variable. Whereas the disaggregated data provide prior information, consistency and 
definition based conditions provide the data information. Their combination provides 
posterior estimates that fulfil the top-down disaggregation requirement while 
exhausting the information content of the FSS data. The estimator ensures that the 
type of farming of each group, as well as the economic size of a farm group, were not 
violated, allowing for a consistent disaggregation of the CAPRI regional database 
based on the FSS to source a layer of farm type models for the CAPRI model. The 
developed method was compared to a variable-wise linear scaling approach, and 
results show the superior performance of the proposed Bayesian approach compared 
with the results from normal scaling. 
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6.2 Outlook 

This thesis gives special attention to different methods in economic farm modelling. 
Because each single chapter of the thesis already discusses further research 
directions, the focus here is on two specific topics that are turning out to be the most 
interesting and promising for further research from the author’s perspective. 

The first topic relates to the specification and the estimation of farm group 
models. The approach in Chapter 4 with a simultaneous determination of input 
allocation under the first order condition should be extended to more observations 
over time to improve the specification with respect to the price response behaviour. 
Panel data typically show more price variation and will therefore likely result in 
more robust estimates in this respect. This extension is in line with the developments 
of Chapter 3, in which for a single farm group the calibration PMP approach was 
replaced by an estimation of the cost function parameters over time. However, the 
approach in Chapter 3 did not utilise single FADN farms for the estimation but used 
an aggregated farm group sample over time. Furthermore, the inclusion of prior 
information in the form of elasticities, also presented in Chapter 3, would further 
improve the specification of the farm group model presented in Chapter 4. Another 
direction for improvement is related to the estimation technique employed for the 
farm group model. Findings from other studies suggest that a Bayesian approach, 
rather than an ME or GME, promises a more straightforward and transparent 
implementation of prior information without support point related complications and 
with less computational requirements. Further research is also needed to solve the 
problem that arises when animal production activities are considered, because 
inequality constraints, caused by the relation between fodder production and fodder 
use, can lead to non-closed optimisation problems, which are difficult to solve.  

A second research direction results from the developments in Chapter 5 and 
focuses on the farm type models in CAPRI. In contrast to Chapters 3 and 4, in which 
the farm group model was estimated based on a bottom-up approach using single 
farm records or groups of farms, farm models in Chapter 5 are developed top-down 
using the Farm Structure Survey (FSS) as information to disaggregate the regional 
sector models in CAPRI. The advantage is that the resulting farm groups are 
consistent with the sector approach. Although the farm type models use output 
coefficients derived from FADN, the input allocation coefficient is equal for all farm 
types and is based on information from the upper regional model. The current model 
can be extended by using the estimation model from Chapter 3 and would also lead 
to a better specification of the cost function parameter and therefore to a improved 
model response. Another extension is the inclusion of structural change in the 
“baseline” projection, which would imply estimating the changes of the 
representativeness factor (number of holdings in a farm type) over time. The 
development of such an approach has to be left for future research. 


