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Kurzfassung

Methoden zur 6konomischen Modellierung landwirt$ticher
Betriebe

Die Arbeit untersucht und entwickelt Methoden zurewRrtung von
landwirtschaftlichen Betrieben im Rahmen der Effimanalyse und zur
Abschatzung von Anpassungsreaktionen induziert dwle Veranderung von
politischen und wirtschaftlichen Rahmenbedingundei® Dissertation ist in vier
Hauptkapitel gegliedert.

Im Kapitel 2 wird die Methodik der Effizienzanalyse, bekanntanrdem Namen
Data Envelopment Analysis (DEA) um den Ansatz zublefung von
Konfidenzintervallen erweitert, um die Aussagekrader EffizienzmalRe zu
Uberprifen. Die Bewertung und der Vergleich vondigintschaftlichen Betrieben
mit DEA sind in der Literatur haufig zu finden. Babwerden die Ursachen von
Ineffizienz oft mittels einer anschlieRenden Reg@msanalyse ermittelt. Die
abgeleiteten Konfidenzintervalle zeigen jedoch lifghytdass ohne Beriicksichtigung
der stochastischen Natur der EffizienzmalRe kaumsagmekraftige Schluss-
folgerungen Uber die wahre Natur von Ineffiziengegeben werden konnen.

Im Kapitel 3 wird das Simulationsverhalten von mathematischeogiam-
mierungsmodellen (MP) induziert durch die Verandgrwon politischen und
wirtschaftlichen Rahmenbedingungen untersucht. Bgegsatz zur Anwendung auf
einzelbetrieblicher Ebene, wo eine Spezifizierueg WModells durch vergleichweise
viele Informationen erfolgen kann, sind Analyserr Rplitikfolgenabschatzung
haufig nur sinnvoll, wenn diese auf repréasentatidatriebsgruppen basieren und
damit aggregierte Effekte quantifiziert werden kénn Zur Spezifizierung der
entsprechenden Modelle stehen jedoch oftmals nunigeeInformationen zur
Verfigung. Weiterhin besteht das Problem, dass tigehEntscheidungsvariablen
den beobachteten Werten entsprechen sollten, wasatibrierung des MP-Modells
bezeichnet wird. Um dennoch MP-Modelle fur repréastive Politikfolgen-
abschatzung auf Betriebsebene nutzen zu koénnen, positiv-mathematische
Programmierungsmodelle (PMP), die mittels einehtimearen Komponente der
Zielfunktion das Model kalibrieren und das Simuwasgverhalten mitbestimmen,
entwickelt worden. Der Einfluss verschiedener veoldagener PMP Methoden auf
das Simulationsergebnis werden mit dem Betriebsgmumodel FARMIS
guantifiziert undex post mit beobachteten Werten verglichen. Dafir werdén 4
Betriebsgruppen benutzt. Auf diese Betriebsgruppetaite werden die PMP-
Kalibrierungsmethoden fir das Jahr 1996/97 angeetendnd beobachtete
Deckungsbeitrage aus dem Jahr 2002/03 als Schogkerimntiert. Aus dem
Vergleich wird ersichtlich, dass das Simulationkadten stark durch die Wahl des
PMP Verfahrens bestimmt wird. IrKapitel 4 wird eine Schatzmethodik von



fruchtartenspezifischen Input Koeffizienten in MRsdkllen entwickelt. Fehlende
Daten dber die Inputallokation auf Fruchtartenebem@&e zum Beispiel der
Dingemitteleinsatz im Weizen oder die Hohe derR2#iaschutzaufwendungen in
der Zuckerribenproduktion, sind ein Problem bei depezifizierung von
aggregierten Betriebsgruppenmodellen. In Buchfugsangebnissen werden nur die
Gesamtaufwendungen im Betrieb dokumentiert. In egjgrten MP-Modellen spielt
die explizite Darstellung der Input Allokation jedoeine immer wichtigere Rolle,
um Umwelteffekte, wie zum Beispiel den Stickstaffteag aus der Landwirtschaft,
abbilden und daraufhin Alternativen modellierenkzinnen. In der Vergangenheit
wurden Input-Mengen entweded hoc von Informationen aus Bewirtschaftungs-
handbiichern auf alle Betriebsgruppen tbertragenvaeden Gesamtinputmengen
aus Betriebsabschliissen eine Input-Output Regregsischatzt. Der in dieser Arbeit
vorgestellte Ansatz kombiniert die Regression nat &chatzung des MP-Models
basierend auf einzelbetrieblichen Daten. Der eiglie Schatzansatz wird auf
belgische Buchfuhrungsergebnisse angewandt, diernhattionen Uber die Input
Allokation auf Fruchtartenebene zur Evaluierung demgebnisse enthélt. Im
Vergleich zur Regression lassen die Ergebnissenréte dass der Schatzansatz die
Beobachtungswerte besser widerspiegédapitel 5 prasentiert ein Betriebs-
gruppenmodell fur die EU-27 und ein dafur entwitkel Schatzansatz zur
Konsistenzrechung der CAPRI Datenbank (Common Agrtical Policy Regional
Impact) und der Daten der Europaischen Betriebgstirerhebung (FSS). Der
Schatzansatz basiert auf Daten der FSS, die auemahGriinden inkonsistent mit
den Daten von CAPRI sind. Ein méglicher Weg die &istenz zu erreichen, konnte
eine lineare Skalierung der Betriebsdaten sein. Bddge konnte jedoch die
Betriebsgruppenstruktur aus FSS (Betriebsgruppeuatyp -gré3e) verloren gehen.
Um dieses Problem zu umgehen wurde fur das Begnigppenmodell eine Methode
zur betriebstypen- und betriebsgréfRenkonsistentehéatdung entwickelt. Ein
Vergleich mit der linearen Skalierungsmethode zealgss die entwickelte Methode
einer einfachen Skalierung vorzuziehen ist, weihlasichergestellt werden kann,
dass die Betriebsstrukturinformationen von FSSeim geschatzten Betriebsmodellen
erhalten bleiben.



Abstract

Methods in Economic Farm Modelling

The objective of this thesis is to develop methfmisthe evaluation of agricultural
firms using efficiency analysis and to develop amskess farm responses in
mathematical programming (MP) models to changinditipal and economic
conditions. The dissertation is structured in fowin parts.

Chapter 2 extends Data Envelopment Analysis (DEA) by incoatiag
confidence intervals in the evaluation of the résgl point estimates. In the
literature, agricultural farms are often evaluated compared based on DEA, where
causes of inefficiencies within a farm group argewfanalysed by regressing
efficiency measures on other variables. Howevererwkonfidence intervals are
taken into account, the results of this analysiswskthat neglecting the stochastic
nature of efficiency measures cannot produce atig eanclusions about the real
nature of inefficiencies. Hence, DEA efficiency reeges need to be carefully
interpreted, and further research is necessaryd#fic methodology can be used as
a standard approach for evaluating the efficierfidaions and other firms.

Chapter 3 analyses the responses of MP farm group modelsé@ttiby a change
in political and economic conditions. MP models ardely used as decision models
in agricultural economics. In contrast to an amilan on the farm level with
considerable modelling detail, an analysis of macomomic effects is often only
reasonable if it is based on representative faHosever, only sparse information is
available for the specification of aggregated reeneative farm groups.
Furthermore, decision variables should reflect ke behaviour through a process
known as calibration of MP models. Positive Matheoah Programming (PMP) has
been developed for this purpose, a method thatreddis the objective function with
the help of a non-linear costs component and détesysimulation behaviour. The
influence of the different proposed PMP variantssonulation results is compared
ex post with observed values using the representative faodel FARMIS. This is
done through 45 farm groups; these data were daatafrom the German Farm
Accountancy Data Network (FADN). Based on thesenfgroups, PMP calibration
methods are applied for the year 1996/97, and akstintroduced for observed
gross margins of 2002/03. Comparison of the caidmamethods reveals that the
simulation strongly depends on the PMP method ag@pli

Chapter 4 develops an estimation method for the specificatb crop-specific
input coefficients in MP models. The lack of infation about input allocations for
different crop levelse.g., fertiliser inputs for wheat or the level of pegles used for
sugar beets, provides a challenge for the spetiditaof aggregated farm type
models. In farm accounting records available fomfgroup models, often only total
inputs per farm are reported. In aggregated MP faype models, the explicit



representation of input allocation plays an indreglg important role, for example in
the representation of environmental effects suahitaggen intake, and subsequently
in the modelling of policy alternatives. In the hasop-specific inputs were either
implementedad hoc in MP models based on management handbooks, er lveesed
on total input levels that were estimated with irputput regressions. This chapter
presents an approach that combines the regregsmoaech with the estimation of a
farm supply model using single farm data. The r@fship between the MP and the
linear regression model is defined, and an estanapproach based on the optimal
condition of the farm is presented. The developgiation approach is applied to
Belgian FADN data, where input allocations for was crop levels are collected in
the database. A comparison of observed and estindate is possible to validate the
suggested method. The results show that the dexelgstimation approach
successfully models the observed values of inplacation, in contrast to the
regression estimation. Furthermore, this approeaatld to a crop-specific breakdown
of variable inputs and a representation of the Itiegufarm type with a fully
specified non-linear component.

Chapter 5 presents the farm type module developed in theetting system
CAPRI (Common Agricultural Policy Regional Impacijhe integration of farm
types into the modelling system CAPRI provides dhance to directly quantify the
effects of market policies and developments onféme level and to reduce the
aggregation bias, resulting in an improved locélsa of farm type related
environmental effects. The farm types in CAPRI &@sed on data from the
European Farm Structure Survey (FSS). For sevexadons, these data are not
consistent with the CAPRI database. One possiblg ¥ overcome these
inconsistencies would be a simple linear up- andrdscaling of FSS to the quantity
structure of the CAPRI database. However, this pwktbould lead to a loss of
information about the type and size of the farnugrérom FSS. To avoid this effect,
an estimation approach is developed covering Eltha7does not violate the type of
farming or the economic size of the farm types.

Vi
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Chapter 1. Introduction

1.1 Background

The Common Agricultural Policy (CAP) of the Europednion led to increased
agricultural production in Europe during the 196@sl 1970s, resulting in structural
overproduction, expensive storage costs, and rvegativironmental effects. In the
1980s, the EU began systematic reforms to remowverpowduction, consider
negative impacts on the environment, and avoid dognpxcess production into
world markets. At the beginning of the 20th centding CAP increased its focus on
externalities of agricultural production and thenzibbution of the farming sector to
rural development. To satisfy legally required imipassessments (IA) of the
European Commission (COM, 2002) and also to suppatronal governments, the
research community developed and applied toolsufgp@t and accompany the
policy-making process. Multi-commodity country-spiec models such as those
reported in Banse et al. (2004), OECD (2007), ardtd®a et al. (2007) were
complemented with regionalised assessment toots €gg, Britz & Witzke, 2008;
Gomann et al., 2007) as responses to the CAP maudnoen price to direct income
support. However, regionalised supply models carsall farms in a region as a
territorial aggregation, which can lead to biasegivthe evolution and growing
importance of policy instruments and legislationd atheir differential impact
depending on individual farm characteristics sushfarm revenues, herd sizes,
stocking densities, or fertiliser applications. dccount for the heterogeneity in the
agricultural sector and to be able to conduct |Aet@luate the consequences of
policy implementations on the farm level within th&rious farming systems across
Europe, methods in economic farm modelling were developed. Economic farm
modelling is based on micro-level data on agricaltidirms, and differentiates
decision-makers through properties such as crorpat type of farming, animal
density, economic size, and legal form. The deveklp and evaluation of farm
tools for IA requires a great deal of data to repn¢ the heterogeneous structure of
the farming level and to infer information on infuttput relationships and income.
Official statistics for agricultural farm level dgsis mainly come in two forms. The
first is the Farm Structure Survey (FSS), which sito survey the structure of
agricultural holdings. This survey contains courgngl regional level information on
land use, animal head sizes, and the work forcés $hrvey is available from
Eurostat and is collected every three years asnglsasurvey and every ten years as
a complete survey. The second data source is thep&an Commissions Farm
Accountancy Data Network (FADN), which collects agnting information at the
farm level and is the most important source whendoeting country-wide farm



related IA. The European FADN is collected annualhd is sourced by national
accounting data. The two databases are accessibléefeloping policy IA tools
under specific rules that regulate the transmissibrdata, subject to statistical
confidentiality.

1.2  Objectives and methodological approaches

Against this background, the aim of this dissestaiis to contribute to the research
field of economic farm modelling by developing nadk that improve tools for 1A
of the CAP in Europe. The thesis gives speciahtte to four different methods in
farm economics. The first method deals with thebfmm of measuring and
comparing the performance of farmers, given thédrem produces more than one
output and uses more than one input. The heteragesfethe farming system with
respect to the composition and economic size ahdimidual farm makes it difficult
to differentiate economic performance. Data Envelept Analysis (DEA) as a
frontier method defines an efficiency score foamf relative to the best farms in the
sample. The objective of the study is to answertidreDEA as a non-parametric
approach yields robust efficiency rankings withpexg to statistical significance
(Chapter 2). A further topic of this thesis is #esessment of the impact of different
calibration methods on the explanatory power ofhwadatical farm group models,
which are often superior to econometric estimatexdiets because they are better
able to include policy instruments such as quotad @nvironmental restrictions
(Chapter 3). However, these models need to be rasdth using Positive
Mathematical Programming (PMP) methods. Also, motd of missing information
and inconsistent databases arise. One researchioguessults from the lack of
information on the input allocation per enterpri§@nce input allocation is not
available, this study aimed to develop a possibkereion of the standard linear
regression approach to estimate the input allogaidhapter 4). Methodological
development is also required when confronting tlhemsistencies in data sources
that are often caused by the statistical confidditytiregulations or by differences in
time dimensions and definitions (Chapter 5). Thigdives and the methods used to
accomplish them are briefly introduced in the rerdar of this section.

121 Efficiency analysiswith DEA

In efficiency analysis, each farm receives an wficy score relative to the best
practice, represented by a frontier (Farrell, 199Here are two main techniques
used to estimate the frontier and to calculate dffciency score - namely, the
stochastic frontier approach and DEA. The formeesustatistical methods to
estimate the frontier and the latter uses mathealafirogramming to calculate
efficiency scores compared to the best observerigprdhe efficiency score is a



performance indicator. Often, a second stage rsgmsof those scores on
explanatory variables such as off-farm earningstendre status is used to identify
the reasons for the efficiency or inefficiency. TDEA methodology is a technique
widely used in agricultural applications. The imjamice of performing statistical
inference on efficiency scores is concerned apglygimar & Wilson's (2004)
smoothed homogeneous bootstrap procedure to igaéstibias, variance and
confidence intervals for the attained DEA efficigrecores. Based on confidence
intervals for efficiency scores, the effect of ihgggregation and returns to scale on
the efficiency ranking is demonstrated using aistatthat facilitates a comparison
of the quality of the efficiency rankings.

122 Response behaviour of PMP methods

Heckelei & Wolff (2003) have analytically shown tagbitrariness of the response of
PMP calibration methods for MP models. Against théskdrop, the effect of the
PMP calibration method on the supply response \gsstigated using the German
wide farm model FARMISin anex post framework. The resulting response of the
different calibration methods is compared to theepbked behaviour. The approach
uses 845 identical farms over eight years from@eeman FADN; these farms were
aggregated into 45 farm groups. The groups aréredéid for the accounting year
1996/97, and the observed gross margins from tlae $602/03 were applied as
impacts. All investigated calibration approachely ren the assumption that an
observed production activity of a farm group is tlesult of profit maximising
behaviour. The production economic criterion - nr@abrevenue equals marginal
cost - is used to derive the calibration paramdimrshe PMP approach. When the
PMP methodology was published by Howitt (1995),yothle diagonal elements of
the additional cost matrix were identified. Thestfithree PMP calibration methods
considered in this investigation belong to thatugrof calibration approaches, and
were introduced by Howitt & Mean (1983), Paris (888nd Helming et al. (2001).
The other calibration approaches try to recoveissactivity relationships. The
literature has already provided some examples RafHowitt, 1998; Heckelei &
Britz, 2000). For thigx post assessment, the maximum entropy techniques prdpose
by Paris & Howitt (1998) are considered. Furthemmoa method proposed by
Heckelei & Wolff (2003) to estimate rather thaniloadte the model based on the
first order condition, is presented for a seledsedh group. Although Jansson (2007)
applied a similar method using Bayesian estimatiith sector data, this approach
represents the first use of time series data fré&xDNF while employing General
Maximum Entropy (GME) as an estimator.

! see Offermann et al., 2006; Hittel et al., 208érmeyer et al., 2005; Kleinhan® et al., 2006



123 Input allocation problem

The ability to explicitly define input demand pectigity is one advantage of MP
models compared to econometrically estimated farmdeis with implicit
representations of input demand. Additionally, timk between economic models
and explicit bio-physical models makes the relighibf input coefficients such as
fertiliser and pesticide application rates per crayy important. While official
statistics provided in FADN unfortunately do nohtain information about the input
allocations for production activities, FADN doedenfdata on the total farm or sector
purchases of various input categories. The totaluamof inputs per farm and the
output per crop were often used to estimate thetiajocation for activities by using
linear regression (Errington, 1989; Ray, 1985; Midey 1990; Léon et al. 1999).
Thus, crop-specific inputs in supply models arelsabased on real observations, but
instead are estimated before the actual supply Imiedeet up. This regression
approach is extended by proposing and applyingiaavative estimation approach
for farm group programming models using GME. Theopmsed set-up
simultaneously determines the cost function parameetnd the input allocations for
production activities. This methodology is appliedBelgium FADN data on arable
farms, for which the available input allocationdoal for a validation of the
estimation approach.

124 Consistent disaggregation of a sector moddl into farm types

Disaggregation of the supply models of the Commamnicdltural Policy Regional
Impact model (CAPRI) into farm group models wasvesly performed by
Adenauer et al. (2006a, 2006b). The major disacegnif this approach is that
during the disaggregation, the farm group datavipusly derived from FADN and
used as disaggregation information, could lose diharacteristics of the type of
farming and economic size because regional settadsto be disaggregated as
consistent break-down. This is necessary for migiimg a harmonised database
across scales, which allows for an iterative liekween supply and market modules.
A comparison of the differences between FADN an8 KScomparison to the sector
model data has shown that FSS fits the sector mdadtl better. Therefore, an
estimation approach is developed to smoothly iatiegthe information from FSS
with the top-down disaggregation approach. FSS isell-established statistical
database that is harmonised across Europe anduttales coverage by farm type.
However, even when using FSS, which itself underbs source of many of the
regional statistics for CAPRI, there are still insstencies when compared with
regional CAPRI data. First, regional models consal¢hree-year average, whereas
FSS is available for different Member States afiéidint years, so that no three-year
average is available. Additionally, regional supphodels deviate from official
statistics because they are already consistant ¢losed market balances), complete



(i.e,, data gaps have been filled using econometridrres, and harmonised over
time with regards to product/activity classificatso@.g., aggregation of the cheese
or wheat market commodities). Furthermore, regomation statistical confidentiality
define the transmission of FSS data. SpecificalyFSS data on farm groups used
as disaggregation information are rounded to timhteligit, and individual farm
data, which accounts for more than 80 percentw&riable, is deleted from the farm
group. Production statistics in CAPRI thus difféglstly compared to the original
statistics. Therefore, deviations exist betweertocsemodels and matching annual
FSS data. These inconsistencies in the data ceukhbily removed by multiplying
each production level in FSS with a variable-wiseection factor that is calculated
from the given regional level and the sum of thenfé&ypes from FSS. However, this
approach could first lead to a violation of polticequirements for set-aside in the
farm groups. Second, and more importantly, comectdf activity levels could
change the farming patterns such that a differgpe tof farming or a different
economic size results. The resulting farm typeslévoo longer represent the actual
farming structure observed in FSS. Last but nddt/|eghese changes could generate
unrealistic farm programs. To avoid this, it is @egary to replace the simple scaling
approach with a statistical estimator that ensuregional consistency and
compliance with set-aside obligations but preveignges in the type of farming
and economic size of the farm groups. We proposeafiplication of a Bayesian
motivated estimation framework that treats the labéé FSS disaggregated
information as a random variable. The disaggregdégd provides prior information
composed of consistency and definition based comdit The combination of these
parameters provides posterior estimates that ftiffd top-down disaggregation
requirement while exhausting the information contnthe FSS data. As result the
farm type models in CAPRI have two unique attrisutéirst, the reduction of the
aggregation bias leads to more profound impactsassents for farm and agri-
environmental related policy changes and reducedlifficulty in bridging results
from very highly aggregated models and bio-physicabdels. Second, the
integration of farm types in CAPRI, compared totandalone farm type approach,
gains from endogenous price feedback through tbleafjimarket model in CAPRI,
and enables a direct assessment of the effect eliE& market policies on farming
systems.

1.3 Sructure of thethesis

This thesis contains six chapters. Chapter 1 aglilne background, the objective,
and the methodological approaches.

Chapter 2 begins with a review of the concept of efficien@xplains the
bootstrapping approach, outlines the smoothed tvaptsapproach for deriving



confidence intervals in Section 2.2, and introdunesiel specification and summary
statistics in Section 2.3 that are used to meaberdegree of overlapping confidence
intervals. Section 2.4 then discusses the estimatesults. The final section
concludes and points to promising future reseapgiodunities. The author’s interest
in the research topic of this chapter began dumniagstudy at the Imperial College at
Wye, where his master's degree focused already B# [Dnethods. The work
presented in this chapter and the resulting puibicas mainly the outcome of the
work the author did during his time at the von Téidininstitute (former FAL)
Institute for Farm Economics in Braunschweig. Tlapgr of this chapter has been
published as Gocht & Balcombe (2006) in AgricultiEaonomics.

Chapter 3 investigates the response behaviour of selected Bpproaches using
an ex post framework on German FADN time series data from6198 to 2002/03.
After the introduction, Section 3.2 explains thexoept of PMP and points out the
methodology used to calibrate MP farm models toeoled production. The
following Section 3.3. describes the post approach by first describing the methods
used to calibrate the parameters of the cost fomcénd then introduces the data and
discusses implementation of the calibration methofigerwards, Section 3.4
discusses the findings and conclusions are draw®eittion 3.5. This chapter is a
modified version of Gocht (2005) published as mdrthe proceedings of the 89
European Seminar of the European Association oficAtjural Economists.
Although relevant literature that emerged aftes #aticle’s publication was included
in the current chapter, thex post evaluation was not further developed since
publication.

Chapter 4 proposes and applies an innovative estimationoaapr for farm group
programming models using GME. After the introduetiSection 4.2 reviews the
literature. Section 4.3 presents the derivatiorthef conceptual farm group model.
Section 4.4 develops the empirical model basedhenaforementioned discussion,
introduces the data, and describes the estimagproach. A discussion about Non-
sample information is also included. Section 4.aleates how the simultaneous
estimation of input allocations and behavioural eledcompares with a separate
linear regression, as employed in the literatube fiesults are discussed with respect
to the resulting input allocation and the fit oéthehavioural model. Furthermore, a
sensitivity analysis of the results is performecdider to validate the support point
design. Section 4.6 concludes the chapter and slissufurther promising research
directions. A prior version of this work was prethat the 107 EAAE Seminar by
Gocht (2008). The current version of the chaptes developed with T. Heckelei and
submitted to the Journal of Agricultural Economics.

Chapter 5 motivates and explains the EU-wide faypetmodel in CAPRI
through its characterisations and develops an astim approach to consistently
disaggregate the sector models in CAPRI into faype tmodels using FSS. The
chapter starts with an introduction and continudgh wwhe motivation for the



development of the model with respect to agricaltyolicy. Section 5.3 discusses
the characteristics of the farm types in CAPRI. Tdisaggregation problem is
outlined in Section 5.3.1, which follows a detaildidcussion on the layout of the
disaggregation estimator by starting with data tamgs before defining the
estimator. Section 5.5 presents the FSS data sskmis a comparison to FADN
data. Section 5.6 analyses the extent to whichptbposed estimator leads to an
improved presentation of the farming structure bgnparing the finding to a fixed
variable-wise number scaling approach. Sectionds@usses the results and draws
conclusions. A report about the farm types in CARRI be available in Gocht
(forthcoming). Furthermore, Adenéduer et al. (200&a)l Adenduer at al. (2006b)
are prior studies closely related to the work pnése: in this chapter. The paper of
the chapter was written with W. Britz (University Bonn) and has been submitted
for a special issue organised by JRC-IPTS Sevitle the Journal of Policy
Modelling.

At the end Chapter 6 concludes and identifies aneath further investigation.
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Chapter 2. Ranking efficiency units in DEA using bootstrappingan
applied analysis for Slovenian farm datd

Abstract

This article explores how data envelopment analf8isA), along with a smoothed
bootstrap method, can be used in applied analgsibtain more reliable efficiency
rankings for farms. The main focus is the smoothenogeneous bootstrap
procedure introduced by Simar and Wilson (1998)rplement statistical inference
for the original efficiency point estimates. Two imanodel specifications, constant
and variable returns to scale, are investigatedgalgith various choices regarding
data aggregation. The coefficient of separationS)Ca statistic that indicates
thedegree of statistical differentiation within tk@mple, is used to demonstrate the
findings. The CoS suggests a substantive dependefcthe results on the
methodology and assumptions employed. Accordirggyne observations are made
on how to conduct DEA in order to get more reliadfiiciency rankings, depending
on the purpose for which they are to be used. titiat, attention is drawn to the
ability of the SLICE MODEL, implemented in GAMS, tenable researchers to
overcome the computational burdens of conducting DEth bootstrapping).

JEL classifications: C15, D31, Q10

Keywords: Data envelopment analysis; Bootstrappidgriculture; Technical
efficiency; Confidence intervals; Slice DEA modélAMS

2.1 Introduction

Data Envelopment Analysis (DEA) is a potentiallyefus technique for measuring
efficiency. But some concerns need to be addrdssfede DEA can be accepted as a
routine tool in applied analysis. Since DEA is atireation procedure which relies
on extremal points, it could be extremely sensitiwedata selection, aggregation,
model specification and data errors. These pointstrbe borne in mind when
investigating the efficiency of farms. Since DEAaisechnique which is widely used
in agricultural applications, this paper aims t@whhe importance of performing

Y This paper has been published together with K.dabe inAgricultural Economics 35 (2006) 223-
229
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statistical inference on efficiency scores in tbantext, because the performance of
farms can be heavily influenced by measurementrerand effects like weather,
shocks and diseases. Furthermore most agriculagi@ntists have ignored the
sampling noise in DEA estimates, despite the grgwiterature on the statistical
properties of DEA estimators.

Therefore, this paper addresses how the Simar aitsoW(SW) smoothed
homogeneous bootstrap proceducan be used to investigate bias, variance and
confidence intervals for the attained efficiencpres in order to get more reliable
efficiency rankings. Based on the confidence irgkrvor the efficiency scores, it is
demonstrated how the choice of input aggregatiah raturns to scale affect the
ranking of the Decision Making Units (DMU). A Slavian data set will serve as the
background against which these issues are discu$sednalyse the findings, a
statistic called coefficient of separation (CoS)insroduced, which facilitates a
comparison of the quality of the efficiency ranlgnigr the sample farms used in the
investigation. In addition, attention is drawn teetability of the SLICE model,
implemented in GAMS, to enable researchers to @weec the computational
burdens of conducting DEA (with bootstrapping)

The article is structured as follows: in Sectio, 2he “concept of efficiency” is
introduced briefly along with some history regagdiBDEA analysis. Further, the
statistical model and the smoothed homogeneousstoaptprocedure are reviewed
briefly. In Section 2.3, the data, the model speaifons and the methods used to
compare the findings are introduced. Finally, timelihgs are discussed in Section
2.4, along with implications for the practical iraptentation of DEA. At the end,
conclusions are drawn and areas worth further tigeggon are identified.

2.2 Methods

221 The concept of efficiency

The concept of economic efficiency is generallyuassd to consist of two
components: technical efficiency and allocativaceghcy. Broadly, the former is
defined as the capacity and willingness of an ecooanit to produce the maximum
possible output from a given bundle of inputs aahnhology. The latter is defined as
the ability and willingness of an economic unitefguate its specific marginal value

! Bootstrap procedures suggested by Ferrier and hiesg (1999) or Léthgren (1998) are not taken
into account, because SW (1999a, 1999b, 2000) slaven that these procedures give inconsistent
estimators.
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product with its marginal cost. Farrell (1957) deped an isoquant method to
measure efficiency in frontier models. He suggesi#ter the use of a nonparametric
piecewise linear convex isoquant or the use oframatric function fitted to the data
in a way that no point should lie to the left ofb@low the frontier.

Farrell (1957) introduced technical efficiency a®kative notion, relative to best-
observed practices in the group. To get the “neddtiechnical efficiency of th&th
firm, we have to calculate the actual output dididey the maximum feasible
observable output. Because the actual output igrellle, the maximum output
must be estimated. To get the maximal output, thezalifferent methods.

The majority of early economists followed a parametpproach. However,
economists at Berkeley advanced a programming apprdor piecewise linear
frontier production functions that went largely otioed by the research community
(Forsund and Sarafoglou, 2002).

Charnes et al. (1978) (CCR) showed that the Fauretlisoquant model was a
special case of the ordinary linear programmingolam. At first, in operational
research and management science, but later albinveitonomics, CCR started a
new active research field, popularly called DEAr Bloe applied economists, the
great advantage compared to the aforementionedidroapproaches was the
possibility for using multiple outputs in a primapproach. DEA encompasses a
variety of related models for evaluating performanof the DMU. Another
advantage of the DEA approach is that it placesestictions on the functional form
of the frontier and it does not impose any (exflidistributional assumption on the
firm specific efficiency. DEA can accommodate muii outputs and inputs but is
extremely sensitive to variable selection and srror

DEA focuses on deriving results for each DMU. Oa tither hand, the stochastic
frontier analysis (SFA) approach, as originally gsed by Aigner et al. (1977) and
subsequent refinements (e.g., the Bayesian FroApperoaches in Fernandez et al.,
1997, 2000, and classical approaches in Coellil.et1898), of this model can test
hypotheses about the underlying technology andrrdetents of efficiency. Banker
(1996) and Grosskopf (1996) collectively providsuavey of statistical inference on
nonparametric, deterministic, linear programmingedzh frontier models. Several
researchers have tried to compare results of atiglics of different estimation
methods based on the same set of data. De Borgdemstens (1996) and Bauer et al.
(1998) attempt to give guidelines about what sbrhethodology should be employed.
Banker et al. (1985), Sharam et al. (1999), anddAt@nn (2000) compared DEA
with other estimation methods, whereby the strgctfr production was unknown.
Gong and Sickles (1992) utilized Monte Carlo teges to control the underlying
technology and compared SFA with DEA. The overargldgonclusion is that if the
functional form is close to the underlying techrmpip SFA outperforms DEA.
However, DEA seems to be more appropriate when kit@wvledge about the
underlying technology is weak (Kalirajan and Shat299). The practical advantage
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of dealing with multiple outputs is also very rédlhile stochastic frontier multiple-
output “distance functions” have been estimatetheliterature (Morrison Paul et
al., 2000), the choice and use of appropriate uinstnts to deal with problems of
endogeneity has not been sufficiently addressed.

From these surveys, it becomes evident that for D&Ae viewed as a true
competitor to SFA, point estimates of efficiencéee not enough. Fortunately, there
IS now a considerable body of research that hasacteised the statistical property
of DEA estimators. SW (1998) proposed a generahauzlogy for bootstrapping in
frontier models to conduced confidence intervalg] & subsequent articles (e.qg.,
SW, 2000a, 2000b) the method has been furtherdsted and developed. More
recent work has also examined the properties ofst®p estimators explaining
efficiency and adaptations of the standard bogqis{®W, 2003). However, the
question of which method, SFA or DEA, is the bestyvmuch dependent on the
nature of and knowledge about the data-generatiogeps (DGP). Without a priori
knowledge of the DGP, a nonparametric approach asddEA would seem to have
distinct advantages, since the constraints thamgoses on the technology are
arguably less severe than parametric methods. Mhebvess, the choice of DEA does
not completely decide on the nature of model cholde premise of this article is
that there is still room for guidance on the nawirenodel choice, particularly with
regard to the choice of constant return to scaRS)Cor variable returns to scale
(VRS), and its subsequent impact on the confideimtervals derived from
bootstrapping.

Finally, from a practical point of view, the apg@lt®on of bootstrapping methods
needs to be efficient in terms of computationaktiwithin the economics literature,
the applications of bootstrapping methods have hmmstrained for this reason.
With standard approaches, DEA becomes excessiialy ¢consuming to bootstrap
as the sample size grows (growing at a rate apmately related to the sample size
squared). Here, unlike most existing studies, weleynthe SLICE module within
GAMS. When using this method, computational expecs®@ no longer be
considered a reason for not conducting statisiiti@rence on DEA results with
bootstrapping.

222 Bootstrapping in DEA

Bootstrapping is a method of testing the reliapitit a data set by creating a pseudo-
replicate data set. Bootstrapping allows you tesssvhether the distribution has
been influenced by stochastic effects and can bd te build confidence intervals
for point estimates, which normally cannot be dedianalytically. Random samples
are obtained by sampling with replacement fromahginal data set, which provides
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an estimator of the parameter of interest. SW (¥oB#roduced a DEA bootstrap
where the DGP is repeatedly simulated by re-samphe sample data and applying
the original estimator to each simulated samplee Bbotstrap method is based on
the idea that the bootstrap distribution will mintfee original unknown sampling
distribution of the estimators of interest (usingh@nparametric estimate of their
densities). Hence, a bootstrap procedure can sientiile DGP by using Monte Carlo
approximation and may provide a reasonable estineétihe true unknown DGP.
The efficiency for a given pointx,, y, ) is

6, =min{6’|6’xk O X (y, )}

where X(y,)is a input requirement set. 1§ =1, the unitk is input efficient.
6. <1 represents the feasible proportionate reductiorinptits the DMU could
realize, if y, were produced efficiently. SW (1998) denote thécefht level of input
corresponding to the output lewglasx’(x, |y,)=6.x . Note thaf, is a radial
measure of the distance betwegx,,y,) and the corresponding frontier.
Unfortunately g, is unknown becaus (y) and g, x, are unknown.

223 The data generating process

Suppose the DGPP generates a random sample{(x .y, |k=1,...n)} . Using the
data X with a nonparametric method

6A?k=min{6?|yks2yiyi 6% 2> yx >y =1y = 0p= 0i= 1,..n}. (2.1)

i=1 i=1 i=1
To obtain )Z(y), aX (y), itis possible to estimate its efficiency
g, =min{ 616x 01X (y,) }.

Because the DGHP is unknown, the bootstrap procedure is used terdetbe the
DGP P as a reasonable estimator of the true unknown D&terated through the
data) . The efficiency estimates can be considered asaapopulation, from which
it is possible to draw a new data set

x={ (x.y)li=t..n}.

This pseudo-sample defines the corresponding qiﬁmﬁ*(y) andd)?i(y). Note
that conditionally or¥', the sampling distribution of the estimatok (y) and

2 As a recent published article which further inigeties the bootstrap method we refer to SW, 2004.
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dX'(y) are known, sinceP is known. Analytically, Pcould be difficult to
compute, therefore Monte Carlo Approximation is &ypd to obtain the sampling
distributions usingl5 to generateB pseudo-sample’, whereb =1, ..., B and
pseudo-estimates of the efficiency scores. The geapdistribution of these pseudo-
estimates gives an approximation of the unknown pdiagn distribution of the
efficiency scores.

224 Smoothed bootstrap procedure

Unfortunately, this "naive" bootstrap yields incistent estimates. Therefore, SW
introduced a homogeneous smoothed bootstrap pracedn easily implemented
algorithm for consistently generating the bootstvajues 67b* from a kernel density
estimate is given in SW (1998) and is summarizetiénfollowing steps:

(a) First, for each DMW given the input-output datg, ,y,) k=1,...n, compute
ék by the linear program to get the efficiency estimngatHere the linear model
specifications are different estimators of the saumknownd, . Hence,
ék estimators are random variables and merely speeifilizations of different
random variables.

(b) Generate the smoothed bootstrap sanip*lg..,é?n* for i=1,..n by letting
B ,...B3. , a simple bootstrap sample frod ,...,6, obtained by drawing
uniformly with replacement.

Define sequences

“|2-8 -he otherwise

é*—{ B +heé if B +& sl,}, 2.2)

and obtain the corrected bootstrap sample by
6 =B +UN1+h*16,)E" - B), (2.3)

with " =1/nY"" B andd,’ is the sample variance &,..0 .

Making these corrections ensures that the sampleevdave the same mean
and variance as the original values. Harés called the bandwidth factor and
& is a random deviate drawn from the standard nor®@l discussed in

detail how to calculate the bandwidth factor. I tidata (9) is normal
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distributed, then one may use the normal referenieeand set the bandwidth
by

h=1.065,n™°

In cases where the data is not normal distributedjn the case of DEA

estimates, SW (2004) suggested the to employ kpsdre cross-validation,
which involves choosing the bandwidth that minirsizen approximation to
mean integrated square error; see Silverman (1886gletails. In order to
obtainh in our study, the least square cross-validatigpr@gech was applied.

(c) Next, use the smoothed bootstrap sample sequercmmpute new data
Xo ={(x*ib,yi)|i :1,...n} :
where
X, =@ 18,)x, {i=1,...n} and

(d) compute the bootstrap efficiency estimates

{gli=1...n}

by solving the DEA model for each DMU but using thew dataX, . For
example, for DMk the bootstrap estimat@qb can be obtained by solving

67;',)=min{6>0|yk52yiyi 6% 2> ¥i%, Dy =1y 2 0j n} (2.4)
i=1 i=1 i=1

Finally, repeat step (b)-(d times to provide fok =1,...,n a set of estimates

{é;,bbzl,...,B}.

In our case, we s&= 2,000 to ensure adequate coverage of the cowfdietervals.
The bootstrap efficiency scor@ represent approximations to tt@ just as the
DEA efficiency scoresﬂ represent approximations ) .

® The software package “XPlore” was used to catetia
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225 Bootstrap bias corrections

The empirical bootstrap distribution can be useddiimate the bias. An estimate of
the bias is defined as the difference between thpirecal mean of the bootstrap
distribution and the original efficiency point estites. As shown above, the
bootstrap estimatqﬁ,b =1,...,B} are biased by construction (SW, 2000a).

By definition,

BIAS(6,)=E(4)-0
the empirical bootstrap bias for the original estion 9k is therefore
~ B ~ ~
BIAS,(4,) = B‘l(Ze;bj -4,.
b=1

The bias-corrected estimator is obtained by sutiig¢he bias from the original
efficiency estimates. However, the bias correciiminoduces additional noise and
could have a higher mean square error than thealigoint estimates, which can be
avoided for the interval estimation using the awtencorrection below.

2.2.6 Confidenceintervals

To find confidence intervals, SW proposed the medifpercentile method. They
introduce an improved procedure to derive confideintervals, which automatically
corrects for bias without explicit use of a noisgded estimator. Using the bootstrap
score, we can build confidence intervals for elachi we know the distribution of
(é* (xy)-6(x, y)) it would be possible to find, b, such that

Pr(-b, <6, (%, Ys) =0 (X,.Y,) < -8,) =1-a (2.5)
Becausea, ,b, are unknown, we use

{8.b=1,...8}

to find valuesf)a,éa such that

Pr(-b, <8, %.Yo)~ G %.¥o)< ~d, [P (1, )= 1-a. (2.6)

Finding BH,éa entails sorting the valueé’;qb(xo,yo)—ék(xo,yo), b=1,..,Bin
increasing order and then deletif(@r/ 2) x100]% of the rows at either end of the
list and setting-b,,—4, to the endpoints of the array wéh<h, . The 1-a percent
confidence interval is then;
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6, (%1 o) +8, <0(X, Vo) < 6, (X, Y o) b, 2.7)

This procedure is repeatedtimes to obtaim confidence intervals, one for each
farm. As a side note, thé, <0,b, <0 and the g, will lie above the confidence
interval. For proof, see Voelker (2002).

2.3  Data and model specification

2.3.1 Data

This article uses Slovenian farm cross-section& da investigate how efficiency

ranking depends on the model specifications and bomfidence intervals can be

used to give further insights into the validitytbe efficiency scores. The data used
in this study is based on the Research Institutéfsicultural and Food Economics

farm cost database in Slovenia in 1996. Sixty-rnfflevenian arable farms were

selected for the investigation. After the datavgas corrected for outliers, the mean
normalized procedure (Sarkis, 2002) was applie@ fbar inputs are (1) purchased
seed, home grown seed; (2) purchased fertilizenuneg (3) chemicals, other direct
costs, wages; and (4) services and other costinfalits are in monetary terms).

Output was defined as production of wheat in metnis.

232 Coefficient of separation

In order to provide a summary statistic of the éegof overlap between confidence
intervals, a useful measure is introduced in thiglyy which is called “the CoS”
(Latruffe et al., 2005). This statistic is calceldtby taking each farm in turn and then
identifying the farms in the sample that are sigaifitly more efficient than it, that is
to say the farms with a lower bound strictly gred@n the upper bound for the farm
in question.

More precisely, letN, = no. of farms “significantly” greater thamother farms
wheren=1,2,........] N — ‘and N =total number of farms. Thud\, =is the number
of farms significantly greater than one fari, is the number of farms significantly
greater than two farms. Under perfect separati@wauld observe

N,=(N-n), (2.8)

for n=1,2.......... N - .. Noting the identity

iz (N—n)+%=1, (2.9)
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a “CoS” can be constructed as

N-1

1
CoS=—)> N +—. 2.10
NE Z;, "N (2.10)
Under perfect separation this will be one fromithentity above
2 & 1
CoS=—>(N-n)+—=1. (2.11)
N° = N

Obviously, if N, =0for allN, then CoS=1/N (nearly zero for a large number
of farms). Hence, the CoS is a summary statistiichvis calculated by taking each
firm and identifying the farms in the sample theg significantly more efficient (at a
given significance level). The statistic tells apgroximately) what percentage of the
sample is significantly less efficient than a giyearcentage of the sample, after the
sample has been ranked. The CoS serves to dentertsigsfact that wider intervals
mean higher probability of overlapping intervals.essence, the smaller the CoS (at
a given level of significance), the less we caffedéntiate between farm efficiencies,
given the confidence intervals obtained by the stoap.

2.4  Estimation and results

DEA was performed using both CRS and VRS for apHfi-output and 4-input/1-
output case. For the 2-input cases, the inputsait? 3/4 were aggregated. The
confidence intervals and the bias-corrected efficies were estimated using the
homogeneous smoothed bootstrap procedure introdimc@devious sections with
2,000 bootstrap draws.

The results for the estimated confidence intergaltfie 2-input case, VRS/CRS,
are shown in Fig. 2-1.
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Fig. 2-1 depicts the sample observations ordereth&yias-corrected efficiency
score. The 95% confidence intervals for each farenrapresented by the lower
dashed line and the upper solid line, and origafétiencies are indicated by the
respective symbols. It is evident that the origiefdiciencies are not included in the
confidence interval. This result is not dependemtaay particular DGP and is an
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intrinsic outcome of the theory behind the congtaucof these intervals, as outlined
in equations (2.5)-(2.7). Importantly, the effioiynranking of the original farm
efficiencies changed compared to the bias-correetiéciencies ranking. Farms that
seemed to be perfectly efficient are ranked ataeitdevel, particularly in the VRS
case when the bias-corrected efficiencies are deresil. While we cannot provide an
intuitive explanation for this, it is evident thahile some farms were measured as
perfectly efficient in the first instance, the bstodp suggested that they were
measured with large degree of noise and this Isshkaen reflected in a large bias
correction downward. In contrast, some farms thatreot on the frontier will be
ranked on a higher level relative to the other farmhe estimated confidence
intervals for the CRS case are narrower than tmdidence intervals of the VRS,
which can be explained by the greater curvaturéheffrontier in the VRS case,
where many sample observations will typically hafBciency estimates equal to
unity (SW, 2004).

Fig. 2-1 reveals that the estimated bias is negativd in many cases quite large.
Among the observations which were originally e#iti, the lower boundary for the
estimated 95% confidence intervals ranges from @73.81 in the CRS case, and
from 0.02 to 0.85 in the VRS case for the 2-inpotdeis.

For one particular DMU, an original efficiency seasf 1.00 was estimated. The
bias-corrected efficiency was 0.57 and the lowed apper boundaries of the
confidence interval are 0.02 and 0.98, respectiv@lide confidence intervals for
particular DMUs have also been found by SW (200Mgvertheless, there are
observations where the confidence interval is ggnt@ll, in particular for the 2-input
CRS case. The widths of the confidence intervatg gansiderably over the sample
size, especially for the VRS case and for more twam inputs. Brimmer (2001)
states that it is easier to identify the observetiwith low-efficiency scores than to
identify high performers in his sample. The sameentation can be made for the
Slovenian farm sample, in particular for the VRSdelo
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Fig. 2-2 depicts the 4-input case. The width of thafidence intervals for the
VRS as well as for the CRS increases, and henc&dBedeclines (Table 2-1).
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Coefficient

Number of input Return to of separation
scale
(%)
2 CRS 70.8
2 VRS 48.2
4 CRS 494
4 VRS 26.9
Table 2-1: Coefficient of Separation for the diffiet model specifications

The highest CoS is reached in the case of the @GRS specification and the
lowest by the 4-inputs-VRS. If the discriminatogwer was improved by increasing
the number of inputs, the CoS declined by arourtd,d8dependent of the choice of
returns to scale.

Many studies use these estimates in subsequenisanahking DEA scores and
regressing them against potential explanatory kesasuch as education and so on.
The implication of the analysis above-mentionedlysis is that the dependent
variable is measured with considerable noise.

The results do highlight that there are importagtisions to be made with regard
to using CRS or VRS. The former may be more biabatjf the consequences of
using VRS is that the confidence intervals are weige, then CRS might actually
outperform it according to a mean square erroegat Thus, there is a bias versus
efficiency tradeoff here that is much the saméhagradeoff between using a flexible
or parsimonious functional form in SFA. The recentk of SW (2003) still requires
a choice of CRS or VRS. Therefore, we suspectdhaiconclusion remain relevant
even when the revised bootstrap procedures are used

To compute the confidence intervals, it is necgsdar solve nxb linear
programs. The GAMS/DEA tool was added to the GAMStam, which very
efficiently solves linear and mixed integer DEA grams (Ferris and Voelker, 2000;
Voelker, 2002). By using the SLICE module in GAM&IaCPLEX, it was possible
to significantly reduce the calculation tifngrable 2-2). Several performance runs
were made to test the power of the GAMS/DEA SLIC&daie and the finding was
that there is no computational burden for modets wp to 2,500 DMU, eight inputs
and 1 output. Therefore, a sensitivity analysiO&A estimates using bootstrapping

4 Using Hardware Intl Pentiun? 3 processor 800 MHz. We note that this is a camalile
improvement on the equivalent procedure conducteBAUSS using Simplex or QPROG to solve
the linear programs. Using a superior 2.4Ghz Penduit still required 48 hours for 2,000 bootstap
with 500 DMUs, and extrapolating this would suggesor 12 days for 2,500 DMUs.
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may be implemented as a standard routine, at feastthe computational point of
view.

Number of Number of Number of Number Solving time
bootstraps DMUs outputs of inputs
2,000 80 4 1 47 min
2,000 1,000 4 1 7 hours, 24
min
Table 2-2: Solution time for (CPLEX) Slice IntereaDEA (BBC)

2.5 Conclusion

As shown in the different model specifications, weuld suggest that any DEA
study should employ bootstrapping as standard ipeatd detect the reliability of
efficiency ranking. When bias-corrected efficiesciwere used to rank the farm
sample, the ranking order changed compared toahkirg order of the original
efficiencies. Farms that seemed to be perfectigiefft as indicated by the original
efficiency (point estimate) became less efficientapicted in Figs. 2-1 and 2-2.

Bootstrap interval estimation of technical effiagncan be used to assess DEA
results. But again, the confidence intervals dependthe model and on the
aggregation assumptions. The CoS proved a useafuhany statistic in assessing the
degree to which farms could be differentiated ditiehcy grounds. We found that a
large proportion of the farms in the sample coutd be usefully separated from
many other farms with any degree of confidenceti@darly when using VRS.
Consequently, we would recommend that researcheosilds be guarded about
making definitive judgments about individual unitis the basis of efficiency scores
alone.

On the basis of our results, we suggest alwaysgdoath CRS and VRS subject
to different input and output aggregations, wher#lihe bootstrap standard errors
for VRS are too large, the CRS can be used foresplsnt analysis. We also suggest
to try to increase the input aggregation subjedh&purpose for which the results
are to be used. The CoS gives a useful statistarder to assess and compare the
different resulting model specifications. Researstahould also be aware that the
ranking of the original efficiencies may changehié bias-corrected efficiencies are
used to interpret the relative performance of tHrade.

Apart from the different model specifications, & important to set up a
computational framework that ensures a conveniaaitutation of confidence
intervals for DEA. By using the SLICE model in GAM®Be statistical properties of
the estimator can easily be investigated for ampfieg study. Further research might
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exploit the high performance of the programmed GAMSCE bootstrap procedure.
This might extend the work conducted by SW by catidg Monte Carlo
experiments on more than two dimensions of inputd autputs while also
increasing the number of DMUs. Moreover, we woulygest that other related
procedures such as the bootstrapping of Malmgudities (e.g., SW, 1999c) might
be facilitated using the SLICE approach.
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Chapter 3. Assessment of the response behaviour of differergldration
approaches for farm programming mode¥

Abstract

This article investigates the response behaviourmathematical programming

models using farm groups derived from the GermammF&ccountancy Data

Network (FADN) and calibrating them using differeRositive Mathematical

Programming (PMP) methods for the year 1996/97emfards, gross margins for
the year 2002/03 are applied. By comparing the lsitad and observed production
in 2002/03 it can be shown that the simulated pcodo only poorly recovers the

observed production and that the response behaigastrongly influenced by the

applied PMP calibration method. Calibration witfog&nous elasticities overcomes
problems arising from the original PMP calibratimethod. In contrast to all other
considered PMP methods the calibration with Maximintropy (ME) can also

estimate cross-diagonal elements of the cost fomctHowever, the specification
(support point settings) seems unfavourable becthesenodel does not result in
different response behaviour. We also demonstrsiteggwone particular farm group
that the explicit optimisation model, which offére possibility to incorporate prior

information and avoids the general misspecificatbRMP, can be used with FADN

time series to estimate the cost function parareetdowever, further research is
necessary to overcome computational problems tty dpis method for sector-wide

farm group models.

Keywords: PMPex post evaluation, FADN

3.1 Introduction

The lack of detailed data for sector-wide farm nilnlg unavoidably leads
optimisation of linear mathematical programming lsdo a solution far from the

% This chapter is a modified version of Gocht (20p&blished by the author in: Arfini Filippo (ed.).

Modelling agricultural policies: state of the art and new challenges; proceedings of the 89th
European Seminar of the European Association of Agricultural Economists (EAAE), Parma, lItaly,
February 3rd-5th, 2005. Parma: Monte UniversitaxizaEditore, pp. 166-187.
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observed production. In order to prevent this mohl models are calibrated to the
observed production using the Positive Mathematitalgramming (PMP) method,
originally introduced to a wider range of economidty Howitt (1995). The
production economic criteriomge., marginal revenue equals marginal cost, is used to
derive the calibration parameters. Observed avecages are used in a three-step
procedure to derive additional unobservable costscpop, which are brought into
the parameters of the non-linear PMP term of th&nopation model. These
modifications of the objective equation, howeveaydr an impact on the resulting
simulation behaviour, through the choice of thectional form of the PMP term and
by the parameterization of the non-linear term.

PMP was criticised for its arbitrary simulation belour in several papersg.,
Heckelei (2002), Heckelei & Britz (2000), and Heleke& Wolff (2003). These
studies attempt to overcome the drawbacks of PMP, fdzusing on formal
econometric estimation procedures to obtain baidified non-linear parameters
from time series or cross-sectional data. Of majgrortance was the introduction of
ME and related techniques (Golan et al., 1996) tsedtimate the non-linear part of
the objective function, even when the model is udeeerminede.g., Paris & Howitt
(1998) and Paris (2001). Heckelei & Wolff (2003pposed a general alternative to
PMP in calibrating and estimating agricultural pgogming models based on the
first order conditions of the optimisation modehndson (2007) extended the
approach to Bayesian estimation using the sectatemGAPRI (Britz & Witzke,
2008). For sector-wide farm modelling approacheg.,(eOffermann et al., 2005;
Jones et al.,, 1995; Arfini & Paris, 1995), howevethe PMP method is still
commonly used to determine the cost function patarseand therefore influences
the simulation behaviour of the farm group modeirtupolicy analysis.

The objective of this paper is to evaluate the ichjpé the cost function parameter
determination of several prominent PMP calibratepproaches on the resulting
response behaviour of the model. The analysis ibedded into anex post
framework for arable farms in Germany, for whicte thvailable time series is
sufficient to validate the different PMP calibraticapproaches with respect to
observed production. The general approach is taheséarm group model FARMIS
and to build up farm supply models for the year 699, using different PMP
methods to calibrate the models to observed praducifterwards, the supply
model is shocked using gross margins observatiam the year 2002/03, and the
simulated production is compared with that obsemezD02/03.

This paper is structured as follows: Section 3igfly reviews the general PMP
approach to calibrating mathematical programmingle® Section 3.3 discusses the

1 FARMIS is a farm group supply model for Germangveloped at the vTI-Braunschweig

(Offermann et al., 2006; Huttel et al., 2006, Iseyer et al., 2005; Kleinhanl et al., 2006).
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PMP calibration methods that were considered, ptesihne data and explains the
implementation of the cost function estimation. $ection 3.4, the results are
discussed. The last section concludes and criticiituses on the remaining
problems with the discussed PMP methods, and pamots further research
directions.

3.2 The concept of PMP

PMP uses the information contained in dual vargblea linear programming model
(LP), which are bound to the observed activity Isevepplied through calibration
constraints. A non-linear objective function isided in such a way that the optimal
solution will exactly reproduce the observed atyivevels without employing any
additional constraints. The use of a non-lineaecidye function helps to prevent the
model from generating overspecialised solutionsthim literature, this approach is
called the three stage PMP approach (Howitt, 1995)hefirst step, the following
linear programming problem is considered:

maxZ =p X—-c'X
subject to

Ax < b[A], x= 0 (3.1)

whereZ denotes the objective function valyg,is the (N ><1) vector of product
prices,x is the (N x1) vector of production activity levels, is the (N x1) vector of
costs per unit of activityA denotesthe(M xN) matrix of coefficients for resource
constraints,b is the(M ><1) vector of available resource quantities ad is
the(M ><1) vector of dual variables associated with the resmapnstraints. Applying
the calibration constraints, the solution will lneded to the observed activity level.

maxZ =p X € X
subject to
Ax <b[r], x < (x°+s) [p]. x=0 (3.2

The (N ><1) vector x° denotes the observed activity levels; {ix1) ¢ is a vector
of small positive numbers, which guarantees thhtredource constrains remain
binding; andp are the dual variables associated with the cdldraconstraints. Let
us now consider an example of wheat and corn, gritiss margins of 300 €/ha and
100 €/ha, respectively, and land resources of 3flahes. Without any additional
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calibration constraints, wheat would be the prefractivity and the dual of land
would be 300 €/ha. If calibration constraints off#@tares for wheat and 10 hectares
for corn are included, the preferred activity wostdl be wheat and corn would be
the marginal activity. The vectotr can, hence, be divided into two subsets: a vector
of preferred activities”, which is constrained by the calibration constraimd a
vector x™ of marginal activities, which is bounded by theowgge constraint. In the
second step, the non-linear objective function will be calculdteuch that under
the production economic criterion — marginal reverguals marginal cost — the
model will obtain the observed production as a sofu The dual values will
certainly be smaller than those obtained in equoa{h1) because the marginal,
rather than the preferred, activities determine thel values of the resource
constraint (Heckelei, 2002).

The concept of PMP can therefore be understooctesting the hidden costs
for each crop, in order to obtain a solution to gregramming problem that is
calibrated to include the “true” costs of farmirtdence, the farm’s production is
assumed to be already at an economic optimum. &hee of the hidden costs is
unknown, and hidden costs are viewed as a consequ#rany factors that could
contribute to increasing marginal costs. Decreagsimgrginal returns can be
caused by increasing marginal costs while margregkenues remain constant.
Alternatively, the PMP approach can also be spegifior decreasing marginal
returns based on decreasing marginal crop yieldscanstant marginal costs.

Both approaches can be implemented by taking eitiests or production
functions for the parameter estimation. In the realer of the paper, the most
frequent PMP approach in the form of increasing gited costs is discussed.
Due to the lack of strong arguments, the oftendgpptjuadratic function is used
in this application, whereas Paris & Howitt (192830 discussed other functional
forms. In principle, any type of non-linear fungti@onvex in activities can be
applied. The following ‘variable cost function’ céme taken as the non-linear part
of the object function.

cV=d'x+%x'Qx, (3.3)

c’is an (Nx1) vector of variable costs and denotes the(Nx1) vector of
parameters associated with the linear term. Q‘Ne N) symmetric, positive (semi-)
definite matrix Q is associated with the quadratic term. To recaoostithe
parameters of th&€ Matrix and thed vector, the ‘marginal variable cost’ has to
fulfil:

6CV(x°)
MCV:a—:d +QXO=C+p. (34)
X
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Providing the PMP coefficients are recovered, timalfnon-linear programming
problem can be specified as:

max Z =p X -dX—;x Qx (3.5)
subject to
Ax < b[i],x=0. (3.6)

For theex post scenarios, different approaches exist for recogettie parameters of
the cost function, which are discussed in the segtion.

3.3 Expost approach

This section describes the methods consideredeiextipost approach to obtain the
parameters of the cost function, introduces thea,dand describes the
implementation of the method.

331 Methods to recover the parameters of the cost function

We consider the following PMP calibration methodistheex post analysis:

i) Original PMP
i) Paris(1988)
iii) Exogenous elagticities

iv)  Maximum Entropy

We will also discuss/) FOC the method proposed by Heckelei & Wolff (2003)
which estimates the parameters of the cost funatmmbined with the first order
condition and more than one observation. This nuktisonot applied to all farm
groups of thex post framework, but only for one particular fatm

All methods have to solve equation (3.4) in ordeccalibrate the programming
model to observed production. The PMP approachas fj) to iii) belong to the
group where the diagonal elements are calculatddo&irdiagonal elements are set

2 During the study it became clear that numericabfems did not allow for using the method for all
farm groups. The increased number of observatioosibined with the differentiated set of crop
activities, generates considerable computationatashel. In addition, initial numerical difficulties
must be overcome.
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to zero. The remaining approaches try to recoverfui Q matrix, and, therefore,
account for cross-effects between crops.

i) Original PMP

Here, the estimation of the non-linear cost functieas solved by lettingl =cand
setting all off-diagonal elements @Qfto zero (Howitt & Mean, 1983; Arfini & Paris,
1995; Bauer & Kasnakoglu, 1990). Thediagonal elements d@, indicated asy, ,
are calculated as:

a :% Oi=1..N. (3.7)

This specification gives a linear cost function floe ‘marginal’ activities, caused by
the zero dual value of the marginal activiti€s The resulting simulation behavior is
determined through the linear cost function ofrtigrginal activity.

ii) Paris (1988)

Paris (1988) tried to respond to the additionaldnfee prior information that arose
when the original PMP approach was improved anctldged a modified version,
settingd equal to zero along with the off-diagonal elemenfs Q, and then
calculating the diagonal elements@f by

g =P gi=1..N, (3.8)

which achieves positive diagonal elementfoélso for the marginal activities. The
vector p denotes the dual values of the constrained lipeagramming modelx® is

the observed crop allocation amdis a vector of observed costs from the linear
formulation.

iii) Exogenous elasticities

The method uses exogenous elasticities to rectveparameters of the marginal
cost function (Helming et al., 2001; Osterburg &t @001). The off-diagonal
elements ofQ are set to zero. In thex post analysis, land allocation elasticities with
respect to own gross margiaselasticities are considered for the calculatiorhef
diagonal elements . The exogenous land allocation elasticity can beduto
calculateQ because the partial derivativi /dp, is equal tog, ™.

(o)
P
XO

q =£i Oi=1,...N. (3.9)
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In order to satisfy the calibration condition inuaetjon(3.4), the linear parameter of
the variable cost function (equation(3.3)) is set t

d=c+p-qgx 0Oi=1..N. (3.10)

iv) Maximum Entropy

Paris & Howitt (1998) addressed the potentiallyiteaby parameter specification
problem by suggesting a Maximum Entropy (ME) pracedto generalise and
objectify the calibration phase. The informatiorgigen by the marginal costs from
the first step (3.2), settind =0 and the observed output levels. If each farm seali

N products withi =1,...,N, N(N+1)/2 parameters must be estimated, which results
in an ill-posed estimation problem. Using this mf@ation, the marginal cost function
as in (3.4) results in:

mc' =p+c=0Qx° (3.11)

The corresponding formulation in matrix notationtle¢ maximum entropy problem
for estimation of the fullQ matrix as shown in Paris & Howitt (1998) is repekfer
sake of traceability.

rpn%x Hpy b, )=—py 'Inpy —p, 'Inp, (3.12)
subject to

MC =Qx°=LDL X°=Zp )Z p LR X ° (3.13)
1=Ip, Ok=1,..L (3.14)
1=Ip, Ok=1..D (3.15)

p, >0 andp, >0,

whereH denotes the entropy measune,denotes the marginal cost vector of
dimension N, x is the allocation vector of siz&l, Z, and Z, are the support

matrices, andp,and p,are the individual probabilities. The formulatior the

Q matrix in (3.13) satisfies the theoretical requiegrnof a symmetric positive semi-
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definite matrix, which ensures the Cholesky fasttion. (3.14) and (3.15) ensure
that the probabilities sum up to one, witlas a summation vector.

V) First order condition with multiple data points

Paris & Howitt (1998) suggested in their conclusidghat their approach with ME
offers the ability to make use of more than oneeolztion in time. In this context,
PMP with multiple cross sectional data points wppliad by Heckelei and Britz
(2000). They extended the ME formulation to muétipbservations but still used the
PMP procedure. A limited theoretical basis for BMP approach leads one to argue
for alternative approaches to the estimation ofiekmptimisation models without
any PMP elements. Such an approach was introducétebkelei & Wolff (2003),
who stated that, assuming that the optimal landcatlon satisfies the land
constrainty the first order condition of the problem for thbservations T with
t=1,...,T can be obtained by using the Lagrangian formuiatio

gm’-AA-d-Q(x,°-¢)=0 0Ot (3.16)

A2 -e)=br, (3.17)

where e is added as afN x1) vector of stochastic error terms over T periodthto
observed land allocatiofito obtain the optimal land allocatior}., denotes the
shadow price vector | xT) for land, estimated endogenously. Bringing the
Entropy criteria into the error term is done by theltiplication of matrixV with the
vector of probabilitiesy .

e = Vw, (3.18)

Heckelei & Wolff (2003) showed that in the caseaobmall sample, the use of
external elasticities provides a way to include itwldal information when a

sufficient series of observations is missing. For éarm group, the number of
observations is small (1996 to 2000), therefore,immoduce prior information on

supply elasticities to specify our model, followiHgckelei & Wolff (2003):

3 The price vector in (3.5) is replaced by a vedfogross marginsdm )
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1

Viw® = diag (Q'l—Q‘lA’(A'Q'lA)_lAQ '1j o {g_} . (3.19f

I ]

The Generalised Maximum Entropy (GME) approachmpleyed for the estimation
problem (Golan et al., 1996) as follows:

.
max H(W,Wz) ==> w, 'Inw, -w* 'Inw* (3.20)
Wy W QL t=1

subject to (3.16), (3.17), (3.18), (3.19) and

Q=LL with,=0 O j>i (3.21)
l'w, =1 Dit (3.22)
['w® =1 D|,t (323)

H denotes the entropy measure and equation (3.2%amfeas the positive (semi-)
definiteness of), based on the Cholesky factorisation. Equatior@2j3and (3.23)
ensure that the probabilities add up to one, wihdsea summation vector.

3.3.2 Data

The assessment of the calibration methods is peerusing farm data from the
FADN. In order to aggregate the farm group, ideaitarable farms between 1996/97
and 2002/03 are selected. From about 6000 exi&dimgs records in Germany, 845
arable farms were used for teepost evaluation. The aggregation and stratification
of the single farm accounts in farm groups was deite the program WFARMIS
(Gocht, 2004) and resulted in 45 farm groups. Tflewing figures present the farm
groups selected for the application, aggregatenl fmir regions. Figure 3-1 depicts
the total amount of arable land for the 45 aggedyfirm groups from 1996 to 2003.
The use of arable land increased in the north byrat 7 percent, in the centre of
Germany by 11 percent and in the south by 9 perterthe eastern part the arable
area increased only by three percent, due to thEumturing process after the
reunification of Germany.

4 The symbolo represents the element wise product of two matrixe
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Figure 3-1: Total arable land in 1996/97 and 2082¢bouped by region

Figure 3-2 shows the crop allocation on the arddhel in 1996/97 and 2002/03.
Except in the southern region, the share of wimtkeat increased. Rye increased
only in the eastern part of Germany, whereas rage @xpanded the most in all
regions. Compulsory set-aside was reduced, whilnenNorth, Centre and South,
the specific regulation for small farms has toddeet into account.
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Figure 3-2: Land allocation in 1996/97 and 2002i93rop

Under Agenda 2000, the levels of direct paymentsleggscted in Figure 3-3 for
cereals, oilseeds and protein crops were harmanisedecomes clear that the
relative advantage of oilseed premiums declinethéolevel of cereals in 2002/03.
The direct payments for protein crops are distullpedegetable peas, for which no
payments are made.
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Figure 3-3: Direct payments 1996/97 and 2002/03

Figure 3-4 shows the price change of the selectegsc The price for wheat
decreased compared to the first year 1996/97, \abhehe price for rape increased.
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Figure 3-4: Price changes 1996/97 and 2002/03dyy ¢

333 Implementation of the calibration methods

To recover the cost function parameters of metfioalsd ii), no further assumptions
are needed besides the dual values of the condiregar model (see equations (3.7)
and (3.8)). For the method based on exogenouso#iastwo settings of elasticities,
as presented in Table 3-1, are used.\eosion |I, the elasticities for rape and for
wheat were assumed to be 3.
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Crops Elasticities Crops Elasticities

version | version |l version | version Il
Winter wheat 1.33 3.00 Pulses 1.50
Spring wheat 1.33 Rape 1.99 3.00
Rye 1.33 Non-food rape 1.99
Winter barley 1.33 Other oil seed 1.99
Spring barley 1.33 Potatoes 0.40
Oats 1.33 Sugar beet 1.33
Grain maize 1.40 Set aside compulsory 1.50
Other cereals 1.33 Set aside volunatry 1.50
Table 3-1: Elasticities used for recovering thstéanction parameter for
scenario iii)

For the calibration method witkaximum Entropy, two different alternative support
spaces are considered. For both versions, the guppatrices of the entropy
approach (equation (3.13)) are set as suggestBdria & Howitt (1998), whereas
for version |, the vector of weightdV, is set withk=5 to (-2; -1, O; 1; 2) andV, is
setto (0; 1; 2; 3; 4). Imersion II, W, is set to (-1; -.5, 0; .5; 1) and/, is set to (O;
.66; 1.33; 2; 2.66). The alternative versions wadrasen in order to test the impact of
the support point setting with respect to the tasglsimulation behaviour. The cost
function parameters were estimated using ME.

Calibration methods i) to iv) are applied to thenfagroup supply models using
the gross margin and production levels observel®86/97. Crop-specific costs are
calculated with generation modules of the farm prauodel FARMIS. After
estimation of the cost function parameters, thenfgroups are tested for calibration
to the observed production. Afterwards, the groasgims for 2002/03 are applied as
shocks to the supply model, and differences betweembserved and the simulated
production for 2002/03 are evaluated by calculatihg percentage absolute
deviation (PAD):

PAD =N™> ABS|(%-%)/X |, (3.24)

where N denotes the number of crogghe observed land use in 2002/03 anthe
calculated crop allocation.

The FOC Method is applied to one particular farm groumgsiime series from
1996 to 2000 to estimate the cost function pararsefehe support points for the
error term (equation (3.18)) bound the support ithivv 5 standard deviations of the

> See equation 29-33 in Paris and Howitt (1998).
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land allocation, and prior information on supplyagticities in (3.19) is done
analogously to the specification of the error temnere thé/®Matrix with 2
support points for each prior information on eleisyi bounds the support to
within 2 standard deviations. The cost functionapagters are estimated using
GME. For theFOC method, observed gross margins from 2002/03 gokedpto the
calibrated farm group. For comparison, t@eiginal PMP and theParis (1988)
methods are used, calibrated based on the averadecton from 1996 to 2000.

34 Results

Table 3-2 depicts the percentage absolute deviébioall farms groups for methods
i) to iv). It is interesting to note that the maaAD is relatively high for all scenarios.

Original Paris Exogenous Elasticities Maximum Entropy
PMP (1998)

Version 1 Version 2 Version 1 Version 2
Farm 1 82.2 69.1 76.9 82.9 69.1 69.1
Farm 2 101.6 99.2 99.9 85.5 99.0 99.3
Farm 3 134.2 119.0 116.4 119.5 118.9 118.4
Farm 4 72.8 49.5 475 40.9 49.5 49.6
Farm 5 29.0 273 26.1 24.6 273 27.3
Farm 6 85.8 76.1 43.7 38.6 60.9 44.9
Farm 7 90.4 55.3 585.7 51.1 56.5 57.7
Farm 8 91.2 78.3 727 65.3 78.4 78.4
Farm 10 36.4 32.0 35.7 39.4 32.0 32.0
Farm 11 99.1 65.8 67.5 63.6 66.8 65.8
Farm 12 32.3 27.1 31.4 33.2 27.1 27.1
Farm 13 84.1 80.6 56.8 56.5 80.6 80.6
Farm 14 16.8 15.7 15.1 16.3 15.7 15.7
Farm 15 73.7 73.1 77.6 75.6 73.1 73.1
Farm 16 83.0 70.2 63.5 58.9 70.2 70.2
Farm 17 74.6 56.4 60.0 60.7 56.4 56.4
Farm 18 39.5 33.8 32.2 30.8 33.9 33.9
Farm 19 169.0 104.7 103.7 101.0 104.7 104.7
Farm 20 108.6 108.5 106.0 100.9 108.5 108.4
Farm 21 93.4 67.2 63.0 53.5 67.2 66.9
Farm 22 93.1 30.5 30.5 28.7 30.5 30.5
Farm 23 109.5 96.1 93.8 91.7 96.1 96.1
Farm 24 110.5 35.3 33.7 318 35.3 35.3
Farm 25 141.4 83.1 83.4 82.1 83.1 83.1
Farm 26 58.7 31.8 29.3 30.8 317 317
Farm 27 96.8 95.8 775 69.7 95.9 95.8
Farm 28 160.3 152.3 143.3 136.5 152.3 152.3
Farm 29 26.4 24.6 26.8 22.7 24.6 24.6
Farm 30 51.7 46.7 515 53.1 46.7 46.7
Farm 31 146.3 138.0 144.9 114.4 128.4 113.4
Farm 32 100.5 103.3 53.7 39.4 103.3 103.3
Farm 33 156.1 129.0 137.8 120.0 129.1 129.1
Farm 34 137.4 141.3 141.9 125.4 141.3 141.3
Farm 35 78.1 82.1 75.8 65.2 82.1 82.1
Farm 36 183.0 196.0 186.2 184.4 196.0 196.0
Farm 37 170.2 174.2 174.0 167.1 174.2 174.2
Farm 38 44.2 43.3 35.6 43.5 43.3 43.3
Farm 39 72.5 74.0 72.2 63.7 74.0 74.0
Farm 40 126.9 114.8 129.2 138.0 114.7 114.4
Farm 41 109.6 126.7 154.8 155.4 126.7 126.7
Farm 42 82.2 96.9 93.0 79.2 96.9 96.9
Farm 43 61.6 49.8 46.2 48.4 46.0 38.6
Farm 44 97.4 95.5 97.8 92.6 95.6 95.6
Farm 45 47.2 43.1 45.7 39.1 42.7 43.1
Farm 46 124.7 96.5 102.7 103.4 96.5 96.5
Mean 93.0 80.2 78.1 73.9 79.6 78.8

Source: FADN, FARMIS

Table 3-2: Percentage Absolute Deviation (PAD)tfarex post experiment
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One explanation could be the low crop yield in 26@8sed by the strong winter, the
flood in August 2002 and the impact of Agenda 20D@e observed production of
the farm groups seem to be not yet fully-adjustethe new premium schemes, as
shown in Figure 3-6 for rape seed. In addition,hage to take into account the fact
that the PAD was obtained only for crops that webserved in the base year
1996/97. Therefore, the absolute value of the Phaukl be interpreted with
caution. Nevertheless, the relative differenceshef percentage absolute deviation
can be used to interpret the calibration method$ wespect to the simulation
behaviour. Theoriginal PMP scenario has the highest PAD value. Here, for the
‘marginal’ activities — crops with zero dual valoa the calibration constraint — the
cost function is linear. A price increase of thefprred production activity leads to a
substitution away from marginal activities, butvesa the other preferred activities
unchanged until the first marginal activity is ramd.

Two alternative exogenous own gross margin eldigticfor rape and wheat were
considered for the calibration scenario wikogenous elasticities. The results in
Figures 3-5 and 3-6 show the sensitivity of thisbcation approach (pillar 4-5). The
second version benefits from the increase of theggmargin elasticity for wheat.
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Figure 3-5: Allocation of wheat for large farmsl(3000 hectares)

The advantage of thilaximum Entropy method is the possibility of fully using
any amount of sample information, no matter howaeaThe recovery of a fully-
specified Q matrix for the cost function is no longer impossibMoreover, the
results for the ME approach are very similar todhkbration approach presented by
Paris (1988) (see Figures 3-5 and 3-6). This behaviour canxp&amed if equation
(3.8) and equation (3.11) are compared. For bofitogghes, the linear part of the
cost functiond was set to zero, whereas the ME approach recayéhia full Q
matrix and theParis (1988) approach calculated the diagonal elements of@he
matrix. Furthermore, the difference betweemsions | and Il of the Maximum
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Entropy method is very small, which implies that the difiet support points for the
simulation have only a marginal impact. The fulpesified Q matrix for one
observation does not seem to contain more infoonatn how the marginal
incentives change if one moves away from the oleseland allocation.
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Source: FARMIS 2004, FADN Germany.
Figure 3-6: Allocation of rape for large farmsZ600 hectares)

It appears that the support for the ME specificativas defined without any
additional prior information on the cost functiarhich causes a uniform distribution
of probabilities, since the centres of the suppaniges are already satisfied by the
data constraints and, therefore, the resultingrperars from the ME approach are
exactly the ones implied by tHearis (1988) method. These results coincide with
findings from Heckelei & Britz (2000).

Apart from the methods above, Figure 3-7 shows rdwmilts for the explicit
optimisation model based on five observations (38380) over time. The mean of
the land allocation from 1996 to 2000 is depictedhe first bar for each crop, the
calibrated land allocation for tHeOC method is presented in the second bar. The
observed land allocation in 2002/03 and the differeimulation scenarios are
presented in the remaining pillars. The crop aliooain 2002/03 indicates that the
FOC approach behaves differently. The total absolisge br theFOC method of
2.78 outperforms theriginal PMP version, which has a bias of 3.6. However, the
bias for theParis (1988) method has almost the same value a$-(€ approach. A
possible explanation is that Agenda 2000 is maiegponsible for the gross margin
changes, and the change in production in our obdetarget year is not considered
during theFOC estimation (see Table 3-A1 and 3A-2, appendixe fdtoveredQ
matrix of the method calibrates almost to the mafdand allocation over time, even
in the case where crops were not observed for @ae. JAlso interesting is the
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absolute deviation for winter wheat, where the mdttoutperforms the other
methods.
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Figure 3-7: Crop allocations for farm groups frdifierent calibration models

A distinctive difference of the approach is thatestimates duals of the land
constraint endogenously. Lambda in Figure 3-8 dentite estimated shadow prices
for land obtained from theOC model over the five years.
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Figure 3-8: Dual values of land for the farm group

Alternatively, the shadow prices for the final mbdesing the recovered)
matrixes are presented. The estimated shadow mtesease from 1996 to 2000 due
to the gross margin changes (see Table 3A-2, appertdowever, the resulting
shadow prices for all three final models have omlysmall deviation. For
completeness, we would like to mention that B@C approach also provides an
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estimate for the elasticity matrix in Tables 3-Ad the appendix and the fully
specified cost matrix presented in Table 3-A3 m dappendix.

3.5 Conclusions

The paper investigates, using @ post framework, the resulting simulation
behaviour of different methods used to estimateptdm@meters of the cost function
during supply model calibration. Four different hmeds proposed in the literature are
evaluated using 45 farm group models for the y886/97. Observed gross margins
for the year 2002/03 are applied to the calibratgaply model. We then assessed the
deviation as the percentage absolute deviation dstwobserved and simulated
production. Theax post framework shows that, as long as the conditioagnation
(3.13) is satisfied, the calibration of the resigtimodel is guaranteed, but different
specification ofd and Q results in different simulation behaviour, as alsported
by Cypris (2000).

If we want to discriminate between the PMP appreadbased on the findings of
the ex post experiment, we would have to prefer the calibratimethod with
exogenous elagticities (version 11). The PAD outperformed all other methods. The
resulting simulation behaviour is defined by theegi elasticities and reduces the
role of PMP to all it is: a calibration method.

The PMP approach, wheddaximum Entropy (Paris and Howitt, 1998) was
applied could not improve the supply response coetp#o the observed values in
the target year. This leads to the conclusion thatspecifications (support point
settings) to recover cost function parameters sdeamgavourable. However, the
applied methodology offers potential for furthevel®pment. The ME framework
has the possibility to introduce additional out sdmple information such as
elasticities and can, superior to tiBegenous elasticity method, account for cross-
effects between crops and incorporate multiple fag@ns.

Theoriginal PMP method has the highest PAD, resulting from thedmform of
the cost function of the marginal activity. Hentleis PMP method should not be
considered as a calibration method for MP models.

Apart from theex post experiment with 45 farm groups, we could demonstra
that the suggesteBOC approach introduced by Heckelei & Wolff (2003) dam
applied to FADN data time series. The approachmegés the cost function
parameter using the explicit optimisation modefers the possibility to incorporate
prior information and avoids the general misspeatfon of the PMP models. From
the findings of theFOC ex post experiment, we could see that the approach
outperforms the original PMP method but did notlfthat the method significantly
outperformsParis (1988). One reason is probably the short time serieshef t
estimation. From the methodological point of vidwewever, it should be mentioned
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that this method is the only approach where thpamese behaviour relies on real
observations. Jansson (2007) used B@C method with a Bayesian estimation
technique and aggregated the single productiowites into crop groups for the
cost function, which reduced the dimension of then@trix and, hence, results in
lower computational requirements and avoids suppomt-related complications.
The approach could replace the current GME setugeMbservation over time will
improve the specification, but in contrast to tleeter approach (Jansson, 2007),
FADN time series are rare due to the random nattitee sample, in which farms
can enter and leave the sample depending on thaiagrplan.

We can conclude that the PMP calibration methodsinglemented, result in
different response behaviour for tbaginal PMP, the exogenous eadticities. The
Paris (1988) and theMaximum entropy methods behaved similarly. Further, we can
conclude that for all PMP methddshe fit to the observed values is very poor. To
improve PMP approaches with respect to the sinmatehaviour, additional
information such as exogenous elasticities or afesefarming pattern must be
included during calibration. The estimation of twest function parameters under the
first order condition with prior information on ekiities and based on multiple
observation is a promising method, but computatiatemands and numerical
problems, as well the lack of sufficient time serfi®m FADN, prevents this method
from becoming a standard approach for farm grougetso
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3.7  Appendix

1996

1997

1998

1999 2000 2001 2002 2003
Winter wheat 788.1 535.5 457.1 479.5 485.1 805.2 915.0 2750.
Summer wheat 412.1 267.8 584.0 257.2 264.5 553.8 622.4
Rye 562.4 428.3 452.6 328.3 473.4 850.1 822.7 773.6
Winter barley 782.8 487.2 341.2 365.7 462.1 968.5 845.7 .H46
Summer barley 759.1 613.0 502.9 477.9 485.9 893.3 814.4 .0748
Oats 825.9 554.7 967.1 677.5 341.9 849.0 1401.6 754.0
Maize 296.1 557.7 -79.5 1.9 901.3 879.7 718.8
Other cereals 769.8 607.2 576.1 247.7 1111.4 1319.7 927.1
Rape 1070.1 1133.7 862.3 801.7 978.9 356.6 859.4
Potatoes 641.0 2122.1 2509.4 1414.5 1568.6 1111.1 1881.2 4.995
Sugar beet 1877.3 2478.2 2276.4 2154.4 2160.4 2503.3 2153. 2342.1
Source: FADN, FARMIS
Table 3-Al:  Gross Margins for the farm group
1996 1997 1998 1999 2000 2001 2002 2003
Winter wheat 5.78 5.55 5.81 5.53 5.57 5.46 5.08 5.49
Summer wheat 0.25 0.26 0.39 0.65 0.68 0.75 0.77 0.72
Rye 0.88 0.83 0.52 0.55 0.39 0.32 0.24 0.24
Winter barley 0.44 0.58 0.70 0.74 0.52 0.58 0.54 0.23
Summer barley 2.61 2.97 2.89 2.88 3.30 2.76 3.60 3.34
Oats 0.34 0.40 0.30 0.30 0.36 0.24 0.31 0.38
Maize 0.37 0.21 0.19 0.10 0.45 0.48 0.39
Other cereals 0.38 0.31 0.33 0.34 0.55 0.34 0.61
Rape 0.49 0.45 0.62 0.56 0.39 0.11 0.09
Potatoes 0.80 0.94 0.93 0.80 0.92 0.79 0.85 0.68
Sugar beet 2.41 2.30 2.50 2.47 2.55 2.38 2.29 2.26

Source: FADN, FARMIS

Table 3-A2:

Observed land allocation for the famougp
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Winter Summer  Rye Winter Summer  Oats Maize  Other Rape RestatdSugar

wheat  wheat barley  barley cereals beet
Winter wheat 114 -169 =77 87 43 -79 -149 -153 -4 -121 -200
Summer wheat -169 1148 409 -84 -140 485 -161 572 -200 -82 152
Rye =77 409 853 136 -200 -200 -200 -58 -139 -90 166
Winter barley 87 -84 136 1193 -200 -200 199 35 -200 -112 -191
Summer barley 43 -140 -200 -200 261 -101 -159 77 -200 -106 1-18
Oats -79 485 -200 -200 -101 2000 -200 170 -200 -74 167
Maize -149 -161 -200 199 -159 -200 882 94 123 -121 396
Other cereals -153 572 -58 35 77 170 94 2000 56 -87 -90
Rape -4 -200 -139 -200 -200 -200 123 56 1478 -65 287
Potatoes -121 -82 -90 -112 -106 -74 -121 -87 -65 2000 75
Sugar beet -200 152 166 -191 -181 167 396 -90 287 75 1203
Source: Own calculation.

Table 3-A3:  Recovered Q Matrix for the farm group

Winter Summer  Rye Winter Summer  Oats Maize  Other Rape RestatdSugar

wheat  wheat barley  barley cereals beet
Winter wheat 1.317 0.011 -0.119 -0.255 -0.857 -0.117 0.00®.131 -0.392 -0.034 0.444
Summer wheat 0.217 1.325 -0.984 0.123 -0.027 -0.687 -0.006.593 0.173 -0.070 -0.284
Rye -1.299 -0.552 1.326 -0.196 0484 0436 0.114 0.052 0.228.052 -2.233
Winter barley -2.714  0.068 -0.192 1.327 1707 0.100 -0.21€0.323 0.814 -0.101 0.428
Summer barley -1.596 -0.003 0.083  0.298 1.330 0.085 -0.020.210 0.428 -0.073 -0.481
Oats -1.579 -0.479 0541 0.127 0.615 1.330 0.062 -0.082 70.410.058 -1.909
Maize 0.351 -0.022 0.764 -1.440 -1.130 0.337 1399 -0.337.710 0.096 -8.215
Other cereals 2169 -0.507 0.079 -0.503 -1.869 -0.101 7€0.0 1.333 -0.935 -0.038 1.584
Rape -2490 0.057 0.131 0.486 1462 0.196 -0.062 -0.359 81.980.074 -1.777
Potatoes -0.074 -0.008 -0.010 -0.020 -0.084 -0.009 0.003.0050 -0.025 0.866 -0.271
Sugar beet 0.257 -0.008 -0.119 0.023 -0.150 -0.082 -0.065.0550 -0.162 -0.073 1.320

Source: Own calculation.

Table 3-A4:

Condition” approach with multiple data points
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Chapter 4. Estimating a farm group model and input allocationsusing
accountancy dat&

Abstract

This paper proposes and applies an innovative astimapproach for farm group
programming models using Generalised Maximum Emtrdfhe proposed set-up
simultaneously determines calibrating cost funcpanameters and input allocations
to production activities. The methodology is applte Belgium Farm Accountancy
Data Network (FADN) data of arable farms for whiatailable input allocations
allow to validate the estimation approach. Resoiltfperform separate estimates of
input allocations previously applied in the litena and this finding is robust with
respect to support point design.

Keyword: Input allocation, Accountancy data, Gefised Maximum Entropy

4.1 Introduction

Agricultural farms typically produce more than gm®duct in different enterprises.
For environmental and economic impact analyses,ktifmvledge on physical or
monetary input costs per enterprise is often vempartant but typically not
available. One way to circumvent this problem wasaltow for jointness in outputs
and only estimate relationships between multi-outpod aggregated multi-input
levels (for example in Mittelhammer et al., 1981istlet al., 1983; Hasenkamp,
1976).

Increasing public and political interest focusesesternalities from agriculture
such as nutrient concentration in ground waterestipide residues. In this context,
approaches which do not represent enterprise gpeagifut intensities are of limited
usefulness. Consequently, the use of Mathematicagr®@mming (MP) models for
agri-environmental policy assessment expanded. Tdrenulation based on
production activities defined by output and inpoefficients enables an explicit
representation of technologies and their adjustsnenpolicy constraints. However,

Y  The article has been submitted together with &cHelei (University of Bonn) to thdournal of

Agricultural Economics on the 9th of September 2009
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the necessary information on input coefficientsofsen not available in farm
accountancy data. To generate the required da&anpiut use at enterprise level was
generally determined prior to MP specificationdieitthroughad hoc approaches or
regressions of total input use on output quantities

For policy relevant simulations, the specificatmiMP models should be based
on observed behaviour. Positive Mathematical Pragreng (PMP, Howitt 1995a
and 1995b) contributed to improvements in this eegpbut empirical content and
theoretical consistency was limited. Heckelei & W¢2003) show how to specify
MP models based on optimality conditions using ipldtobservations (time series
or cross sectional data) and, if required, howntoiporate prior information on
parameters and shadow prices. However, most spegaifins of this sort require
information on enterprise specific input cost.

Here we propose a methodology for specifying a famup model while
simultaneously estimating input allocations to gmises instead of using the typical
two step approach with input allocation prior to Miodel specification. We
hypothesize that this will improve upon the qualitfythe input allocation results
compared to previous approaches. At the same tiveeestimate the farm group
model with a non-linear cost function using mukiglbservations from single farm
accountancy data and prior information on shadogepr This contributes to a better
empirical foundation for PMP type models.

The reminder of the paper is organised as folldwsthe next section a short
introduction to the PMP literature and its variaats well as to input allocation
approaches is given. Section 4.3 introduces theeminof the farm group model.
This is followed by the empirical approach with tisgatistical model, GME
estimation approach, data, and non-sample infoomati Section 4.4. Section 4.5
presents and discusses results on estimated ithpeataons and variables of the farm
group model, including a sensitivity analysis dfatient support point designs. The
final section concludes.

4.2 Literature Background

PMP was introduced to agricultural supply modellmygHowitt (1995a and 1995b).
This methodology, specifying a calibrating non-inebjective function based on
observed activity levels, promised to solve a diffi problem previously
encountered by analysts working with linear farnegpamming models: how to
calibrate the model without “polluting” it by pogrljustified constraints. The
advantages of PMP seemed especially large forypodilevant simulation analysis
and a considerable strand of literature developiéd methodological enhancements
and applications of PMP and variants. For an oegngee Heckelei & Britz (2005)
or Henry de Frahan et al. (2007). One of the ketjcams of the original PMP
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approach was that it lacked a sufficient empiricase for the specification of the
objective function and thereby also for the reaglupply behaviour. Consequently,
approaches have been suggested to estimate PMPPngtara using multiple
observations and/or prior information on behavibparameters (Heckelei & Britz,
2000; Heckelei & Wolff, 2003; Helming et al., 20(Buysse et al., 2007; Jansson,
2007). A limited theoretical base for the PMP apgio also lead to argue for
alternative approaches to the estimation of exptiptimisation models without any
PMP elements (Heckelei & Wolff, 2003; Jansson & lktdei 2009).

One common characteristic of PMP type approachethéospecification of farm
programming models in the literature is that infatimn on input allocations to the
different farm enterprises is available beforehafsd.this type of information is
rarely recorded, the allocations are often deriveoh aggregate data usiag hoc or
statistical methodologies prior to the specificataf the PMP parameters.

There is a long history of allocating inputs to gwotion activities in agriculture.
Apart from ad hoc approaches inferring the allocation from publishiediustry
standards’, agronomic field trials and expert apisi a system of linear multiple
regression functions is frequently used (e.g. R&35; Errington, 1989; Midmore,
1990; Moxey & Tiffin, 1994; Dixon & Hornbaker, 1992éon et al., 1999). In its
general form, one observation of a8 X1 vector of total input use in monetary
terms,b, is explained by a linear function of the monetanyput vectorN X1 x in
the form of

b=Ax+U, (3.25)

where A is an M XN matrix of unknown technological coefficients witts
elementsg, representing the amount of inputrequired per unit of output andis
an M x1 vector of random disturbances.

Errington (1989) proposed a single equation estonaif this type. However, the
employed Ordinary Least Squares (OLS) estimatiahrigue did not guarantee
positive estimated input coefficients. In some sabe sum of the input coefficients
across the M input categories were larger than preenpting the author to conclude
negative profits associated with the correspongirgducts. Ray (1985) discussed
several alternative estimation procedures basethathematical programming. He
emphasised that in view of the non-negativity prgpef the input coefficients, the
OLS method may lead to unacceptable estimates. B 990) pointed out that
farm specific input coefficients can be estimatexhf regional farm business survey
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data if a common commodity technology can be asdtraad a correction for
heteroscedasticity resulting from the size effacpioduction is considered, further
he noticed that accounting identities implying mwe exhaustion, i.e. equality of the
sum of monetary inputs us across all categoriamdoetary output values, violate
standard assumptions on the error distribution egnd least squares techniques
problematic.

An alternative Bayesian estimation approach forlithesar regression was offered
by Moxey & Tiffin (1994). He argued that the use Rdyesian priors is a natural
mean of conducting inequality constrained estinmatind suggested to use additional
prior information based on information from othéudies. In the same direction
Léon et al. (1999) proposed the use of Generaldedimum Entropy (GME)
estimation to introduce non-sample information loa ¢stimated coefficients. Apart
from non-negativity constraints on input coeffideenthey also imposed cross
equation restriction on the coefficient matAxto ensure adding up. They compared
the Entropy results of the different model desigmith those from classical
estimation techniques, namely minimizing absolwgiations, OLS, and Bayesian
estimation methods using accounting data from daef farms from France.
Furthermore they tested the sensitivity of the GMEcomes to different designs of
prior information implemented by the setting of gag points. They concluded that
standard estimation techniques are no real alieendte to the problems identified
in the literature before and stated that it isidift to discriminate between the
Bayesian and the GME approach.

This paper contributes to the two strands of ltteejust described by combining
the estimation of PMP parameters using multiplesolaions with the estimation of
input allocations. It is hypothesised that the mpooation of a behavioural model
will improve estimation results on input allocation

4.3  Conceptual farm group model

Farm supply models to be specified in this exeraball be suitable for policy
relevant simulation analyses and therefore comjitly the following requirements:

i) The implied simulation response should be basedhserved behaviour
leading to the estimation of parameters with mldtgbservations.

1 This commodity technology assumption implies thatinput structure of a commodity is the same,

regardless of the industry (farm type in the conte#fxagriculture) where it is produced Midmore
(1990).
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i) The estimated supply model should reproduce thereed practice. In other
words, we should obtain a calibrated model.

iii) The model should be able to explicitly represecht®logies and policy
constraints.

The first two points are strongly related to the PPMerature. Heckelei & Wolff
(2003) critically review the rationalisation of then-linear term and pointed out the
inconsistent estimation of the dual values in ttendard PMP approach. They
proposed a conceptually simple but general alteréd overcome the problem and
to calibrate and estimate the programming modelsdisgctly employing the
optimality conditions. Their suggestion allows tamsltaneously estimating
parameters of the behavioural functions and thé vhiaes of the constraints. The
proposed model in this paper builds upon this aggro To start let us assume
farmers maximize profits solving the following aptiation problent:

max f(x) = [p'oy' +s -1, Ax{d-0.5XQ] x (3.26)

subject to
Rx<c [A] (3.27)
x=0 (3.28)

wherex now represents thex 1 vector of acreages. The vecyop, andsareN x 1
dimensional vectors of expected yields, expectérbpr and subsidies, respectively.
R a 2xN matrix of coefficients of a land and a sugar qumastraint. Furthermore,
C is a2 x 1 vector of available resources ahdthe corresponding vector of shadow
prices. The second summand of the profit funct®a uadratic cost function with
anN x 1 parameter vectal and anN x N parameter matri .

Assuming that land and quota constraints are bindime first order optimality
conditions are given by:

poy+s—(1, A) —d-Qx-Rxr =0 (3.29)

2 The symbol © indicates and element-wise multiplication operaiad 1,, is an M-dimensional
column vector of ones.
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Rx-c=0 (3.30)

In the next section, we will use these first ordenditions together with equation
(3.25) in order to estimate the unknown technologyrix for variable inputé , the
parameters for the non-linear cost functidnand Q, and the dual values on land
and quotaa , using multiple observations and prior information

4.4  Empirical approach

This section develops the empirical model basetheraforementioned discussion,
introduces the data, and describes the estimagiproach.

44.1 Estimated model

Applying farm indices ad =1,...,F and indicating all observed data by the subscript
‘0, the first order condition from (3.29) can be tieh as:

0=p, Oy, +s -1 A -d-Qx -R'» Of (3.31)

We assume additive, iid errors for the endogencarsable of the optimisation
model, acreages, so that

X, =x$ +e, Of. (3.32)
Furthermore, producers are considered to have paive expectations of the form
P, =pj..te} Of (3.33)

where thee! is a vector of measurement errdisaive expectations also apply to the
yields but without error term.

Second order optimality conditions require that @enatrix has to be symmetric
positive semi-definite, which can be ensured byiregld Cholesky factorisation of
Q as a constraint to the equations:

Q=LL' withL =00j > (3.34)

One reason for the likely existence of a measargrerror is that implicit prices derived from sale
accounts of farm records are not the prices ohddioethe production of the same accounting year
as this generally does not coincide with the préidnccycle. Alternatively, one might interpret the
error as a random deviation from the naive expectdtypothesis across the different farms.
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We now re-parameterise the farm specific matrixnohetary input coefficients
A in terms of a equally dimensioned matrix of cosarels for each variable input
category i of the output categgryper ha,A , which is constant across farms. Oet
be aMxN matrix of total revenue per ha of a crop withidentical columns
T =(y‘§ op; +s‘f’) O j. Then we writeA, =A ©T, O f such that we can now
include a farm specific version of equation (3.285) our estimation setup as

b, =(AGT,)x, +u, Of (3.35)

Note that this formulation implies equality of tbtzost to total revenue if the
elements ofA add up to one across input categories. This iaeti by introducing
a residual input category ‘value added’ as sugdebte Leon et al. (1999) with
corresponding monetary input coefficients equalthte difference between crop
revenue plus subsidies and the observed variaplé sost per ha (sum of all other
monetary input coefficients across input categdri@s estimation stage we have to
guarantee the adding up condition of the shareésdbyding the N equations

A1™ =1V, (3.36)

In order to achieve a farm group model calibratmgggregate observed acreages
we impose

F F
D ox§ =%, (3.37)
f=1 f=1

and this concludes the model with equations (3t81(8.37) to be estimated. Note
again that this model allows to simultaneouslyreating the parametetsandQ of
the PMP-type cost function, the shadow priesd input cost sharés.

442 Data

The developed estimation approach is applied toeta o year 2000 FADN
accounting data (1999 for price and yield datanf&s Belgium farms. The Belgium
dataset has a distinct advantage, input cost matuption activity are additionally
collected compared to the other FADN datasets in Europe.fatms are classified
using the type of farming definition (European Coission, CD 85/377/EEC,
Article 6). Farms in the class ‘specialist cerealfseed and protein crops’ (FT13)
and ‘general field cropping’ (FT14) and above @#mold of 60 economic size units
are considered for estimation. The data distinggsthe five input categories

4 J. Buysse from University of Gent provided theadar the estimation.
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depicted in Table 4-1 and a ‘value-added’ categdotained residually. The inputs
are used to engage in seven production activities.

B Winter Winter . Vegetables Green peas
Unit Wheat barley Chicory in open air Potatoes for tin Sugar beet Land

Inputs (€/ha)

Contract work 12473) 130 (59) 346 (130) 560(285) 269 (215) 296 (128) 311(136)

Seeding 6723) 65 (25) 1132 573(285) 339 (99) 216 (58) 201(28)

Treatment 15Q41) 137 (39) 270 (96) 260 (84) 468 (112)  113@47) 205(74)

Fertilizer 75(29) 90 (63) 143 (79) 188 (88) 195 (78) 50 (0) 184 (109)
Land (ha) 27 (15) 10 (10) 9 (5) 8 (4) 14 (9) 8(2) 14 (8) 58 (28)
Yield (tha) 9(1) 7 Q) 47 (6) 43 (18) 44 ) 8() 71(10)
Price (€t) 118(8) 119 (10) 46 (4) 119 (102) 47 (26) 231 (26) 41 (s)
Observations 54 26 27 8 28 6 56

Note: standard deviations of variables are given in parenthesis
Table 4-1: Farm group sample

The available land resources and sugar quotasardinectly observed but instead
calculated for each farm as the total sum of a@eaanted and sugar production
quantity, respectively.

443 Estimation

In order to incorporate valuable prior informatiore employ a GME estimator as
introduced by Golan et al. (1996). For this purpose re-parameterise the
unknowns of the model in terms of probabilities a@ugport points. This applies to
the input allocation matriA, the vector of dual values for land and quota
constraints,A , the linear term of the quadratic object functihnand the various
error terms related to acreages, prices and inmsitghares. Starting with the input
cost shares we have

a; =sd pa Ui, j (3.38)
wheresa; andpa; areWx1 vectors of support points and corresponding prdibaisi
respectively. Similarly, the elements of all other-parameterised vectors are

expressed as

Ly =slypl, Oc,f (3.39)

d, =sd,pd, O] (3.40)
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Uy =su;pu, Ui, f (3.41)

ey =s¢ pg O j, f (3.42)

e} = sp; pp; O . f (3.43)

whereslys (Gx1), sd (Dx1), su; (Kx1), ser (Px1), sps (Hx1) are vectors of support
points anddl, pd;, pui;, pes, andpp;is are the corresponding vectors of probabilities.

We also need to introduce the following adding-upnstraints on the
probabilities:

1 pay =101, ; (3.44)
1°pl, =10c¢,f; (3.45)

1°pd, =10 j; (3.46)
1“pu, =10i,f ; (3.47)
1" pe, =10, f; (3.48)
1"pp, =10, f; (3.49)

The GME objective function following from this req@meterisation is given by
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max H(Daij Pl ’pdj PU; Pe;; PP )=

pajj Pl pd; puis Pejs ,PPjs

M
Zpaij 'In pa;
=
.| +Pd;Inpd, L , - (3.50)
_z F _zzpuifllnpuif_zzpldllnpld
1 +z pe; 'Inpe, | == =1 f=1
=
F
> .pp; 'Inpp
Lf=1 i

and is optimised subject to the model equation81§3to (3.37) and the GME
constraints (3.38) to (3.49). After the optimal dmn is obtained, the estimated
values of the unknown parameters and error termsbearecovered by equations
(3.39) to (3.43) using the optimal probability vedu

444 Non-sample information

Non-sample or prior information in the GME estimatiapproach is defined via the
support point settings. They are potentially higrdievant for the estimation results
and will therefore be subjected to sensitivity gaed later on. We first introduce here
an ‘initial’ or base’ support point setting in tas of bounds, spacing and the implied
prior expectation. The 11 discrete support poiotstifie elements of the matrix of
input cost shared, , is defined taking prior information on the magui¢ and range
of the specific total input cost shares acrossmalps into accountFor the residual
category ‘value added’, the support space is balinmdween zero and one and
support points are equally spaced with a distarfc®.b. This implies a prior
expectation equal to 0.5 noting that this categmy easily account for up to fifty
percent of the total revenue for each product dadarporates the remuneration to
all fixed factors. Furthermore the prior information seeding costs is introduced
with equally spaced support points between 0 aBdb8cause the average seeding
costs per hectare accounts for around ten perdetotad revenue and this share is
rather stable. For all other input categories, feetilizer, contract work, and plant
protection, the support space is symmetricallyridisted around an expectation of
0.15 with bounds 0 and 0.3.

> Following Léon et al. (1999), who used 11 suppoints.
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All support spaces for error terms are symmetycd#fined around zero with
three support points. The support space for theenmlated to total cost for each
input category (equation (3.35)) follows the widelgcepted three-sigma rule by
Pukelsheim (1994) with support3d,,0,35,), whered, is the standard deviation of
the total cost associated with each input categothie sample. The same approach
is not suitable for the error term on land allomatibecause they differ between
farms (equation (3.32)). Also noting that acreages likely observed with little
measurement error, we have defined a range of &@pearound observed activity
levels. The support space for the noise term orarp prices (equation (3.33)) is
again defined using the three-sigma rule for theegrobserved in the farm group
sample.

The support for the dual values on land and sugatagconstraints are also
symmetrically defined over three discrete suppom{s. The expected value — equal
to the middle support point — for the dual on lasmdet to the land rent information
available in the FADN data for each farm and thgpsut space was defined as plus
/minus one sample standard deviation of land rEéstimates for the sugar quota
rents for this sample were available from Buysseale{2007) for this sample and
taken as the expected value. Because this infomatas not directly observed, the
support space was defined by plus /minus 20 percktite expected value. The
expected values of the linear cost termsliare defined as the sample average of
corresponding total gross margins minus the exgedtl values of land and sugar
guota with a symmetrical support point setting lisp'minus ten times the expected
value to account for the uncertain nature of therpnformation.

45 Results

First we evaluate how the simultaneous estimatidninput allocations and

behavioural model compares to a separate lineaessign as previously employed
in the literature. For this assessment we use wbdevalues on monetary input
coefficients as presented in Table 1 that wereusetl in estimation. Then we look at
the fit of the behavioural model with respect te #ndogenous variables. Finally, the
sensitivity of the results with respect to alteivesupport point designs is presented.

451 Input allocation

We estimated the farm group optimisation model #ameously with the variable
input allocation (FOC-LR-Model) as introduced iretprevious section using the
FADN data. For comparison, we also estimated indeeetly the linear regression
model represented by equation (3.35) similar torLébal. (1999) with GME using
the same support points for the input cost shase®rathe simultaneous approach
(LR-Model). Both resulting input allocations areedsto calculate Pearson’s
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correlation coefficient with out-of-sample observieghut allocations across farms
(see Table 4-2). In line with our expectations, B@C-LR model performs slightly
better measured by the sum of the correlation wefits over all input categories.
But its performance is not dominant as the occueeaf the largest correlation
coefficient switches between models when movingnfrane input category. Only
with respect to the estimation for the input catggoeatment, the inclusion of the

behavioural model in the estimation exercise sdemsgynificantly improve upon the
LR-model results.

FOC-LR-Model LR-Model
Contract Work 0.88 0.81
Seeding 0.73 0.87
Treatment 0.4 0.01
Fertilzer 0.35 0.49

Value added 0.88 0.77
Sum 3.24 2.95

Table 4-2: Pearson’s correlation coefficient fguut allocations of the FOC-LR

and LR model with observed values

Table 4-3 depicts the deviation of estimated inpogt shares from the observed
averaged across all farms (bias) by input categady production activity. The bias
measures are smaller for the FOC-LR model in 20 aduthe 35 cases and the
aggregate bias over all input categories and ptediacthis model is smaller by
about 5%).

Cs\z)t:ia Seeding Treatment  Fertilizer \;31;]:(;

P LR -0,019 -0,004 0,035 0,005 -0,014
FOC-LR 0,017 -0,006 0,033 0,019 -0,065
Winter barley LR 0,010 -0,024 0,009 -0,052 0,057
FOC-LR -0,024 -0,023 0,011 -0,070 0,106
Chicory LR 0,053 -0,024 0,029 0,005 -0,062
FOC-LR -0,057 -0,024 0,010 -0,010 0,080
Vegetables in open air LR -0,103 0,046 -0,047 -0,033 0,138
FOC-LR -0,069 0,055 -0,023 -0,020 0,057
LR 0,049 0,005 0,037 0,011 -0,102

Potatoes
FOC-LR 0,004 -0,032 -0,013 -0,014 0,054
Green peas for tin LR -0,029 0,042 -0,048 -0,057 0,092
FOC-LR 0,008 0,035 -0,072 -0,081 0,111
s b LR 0,047 0,004 -0,040 0,004 -0,016
ugar beet FOC-LR 0,036 0,003 0,038 -0,004 0,003
Table 4-3: Bias of estimated input shares for tReaind the FOC-LR model
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Despite mixed results on single input categoried aroducts, we can infer a
consistently superior performance by the FOC-LR ehoelgarding the estimation of
input allocations for the aggregate measures ceresid

45.2 Fit of behavioural modéel

Although the comparison of input allocations betwelee two approaches already
points at a potential benefit of the simultaneoasn®tion approach, the actual
estimation of the farm group model is of considkrahterest by itself. Table 4-4
shows correlation coefficients of crop acreagecallions, prices as well as land and
quota rents with their ‘observed’ counterpdriéfe see that in most cases the fit for
acreage is high, above 0.9. Exceptions are vegetamlopen air and Green peas for
tin. This is, however, not surprising as Table 4ntlicates that for those two
production activities only very few observations the farm group were available
rendering the estimation generally more challengiftge fit for expected prices is
low for winter wheat, potatoes and green peas duké larger total price variation
(see Table 4-1 and Figures 4-Al to 4-A5 in the adpg.

Crop Land allocation Price
Winter Wheat 0.966 0.299
Winter barley 0.989 0.747
Chicory 0.753 0.638
Vegetables in open air 0.636 0.969
Potatoes 0.917 0.466
Green peas for tin 0.408 0.340
Sugar beet 0.999 0.643
Dual values
Land 0.922
Sugar Quota 0.907
Table 4-4: Pearson's correlation coefficient betwebserved” and fitted

values of model variables

Observed values and corresponding estimates fremF®C-LR Model for the
dual values of the land and sugar beet constraretshown in Figure 4-1 and Figure
4-2, respectively, ordered by size of the obsemaddes. A reasonably good fit with
the observed values can be inferred. This is riovial result in the context of PMP
literature, because many published approaches dlmngtandard PMP approach

5 ‘Observed’ refers to estimates from the Buyssele{2807) in the case of sugar quota rents as
described in the previous section.
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recover rather unrealistic dual values of resoemestraints. Nevertheless, there is
some recognisable downward bias of the estimaspeaally for the sugar beet case.
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Figure 4-1: Observed and estimated values for tantin Euro per hectare
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Figure 4-2: Observed and estimated values forrduggst rents in Euro per ton

" See Heckelei and Wolff (2003) for a theoreticals@ning and, for example, Judez et al. (2001) for a
counter-example.
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A possible explanation is our data induced asswnpthat observed sugar
production equals the sugar quota, whereas therebd’ values on sugar beet rents
estimated by Buysse et al. (2007) were applietiea¢al quota quantity. This would
also explain the downward bias of the estimatecethsugar beet price presented in
Figure 4-A2 in the appendix.

For completeness, we would also like to mentioniragiaat the approach also
provided estimates of the quadratic cost functianameters (see Table 4-Al in
appendix) thereby offering a fully specified sintida model of a farm group based
on single farm records.

45.3 Sensitivity of results to support point design

To shed some light on the robustness of the estimatesults regarding the
implementation of the prior information, we finighis result section with a
sensitivity analysis with respect to the numbesopport points and their form of
distribution. Because we have used well definedrgriformation from FADN for
the dual values of the resource constraints, the &location and expected prices,
we will focus here on the input allocation matdx. For this purpose we introduce
six additional support point designs similar toshased in Léon et al. (1999). They
are presented in Table 4-A2 in the appendix. Tis fiiree designs are defined again
with eleven discrete support points, the first asgmmetric, the second left-skewed,
and the third right-skewed.

The support designs 4-6 have six support points taedgeneral form of the
distribution with the same set-up as the first ¢hdesigns. Apart from the estimated
input cost shares, Table 4-5 also presents pegeidviations from the base design
no. 1 in parenthesis. Generally, the estimatessarssitive to the support point
design. Somewhat surprising, the number of suppontts is also relevant even
though the deviations of the symmetric distributidesign no. 4 with 6 support
points shows the smallest deviations to the basgalt Skewed distributions show
overall larger deviations. Given that the prior exied values associated with these
designs differ from the base case, we conclude phiatr information on input
allocation matters here for this sample. However can also see that it matters most
for those products that have little data informatioe. a low number of observations
in the sample, such as green peas. This phenonuértetreasing relevance of prior
information with increasing data information andeviversa is well known - at least
in Bayesian statistics - and highly desirable.

8  Golan et al. 1996, pp. 139-140, indicated thatedasing the number of support points beyond 5 will

not decrease the mean estimation error much anynhtoeever, that does not imply that the
estimates might not differ for a specific sample.
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Table 4-6 presents the correlation coefficientesifimated input allocations with
observed input allocations for the six support gies, for both, the FOC-LR- and the
LR-model. The superior performance of the FOC-LRdeloseems to be robust
across all support point designs looking at the s@ithe correlation coefficients for
both approaches.

Input Crop Design No. 1 Design No. 2 Design No. 3 Design No. 4 igvello. 5 Design No. 6
Contract work ~ Winter wheat 0.0503 0.0548 (9) 0.0577 (-15) 0.0535 (-6) 0.0566 (-13) 0.0574 (-14)
Barley 0.1052 0.0926 (12) 0.1119 (-6) 0.1058 (1) 0.0934 (11) 0.1055 (0)
Chicory for sugar 0.2066 0.2057 (0) 0.2294 (-11) 0.2173 (5) 0.2147 (-4) 0.2298 (-11)
Vegetables in open air 0.2194 0.2152 (2) 0.2381 (-9) 0.2265 (3) 0.2274 (-4) 0.2422 (-10)
Potato 0.0642 0.0605 (6) 0.0682 (-6) 0.0662 (-3) 0.0594 (7) 0.0649 (1)
Green peas for tin 0.1777 0.1646 (7) 0.2187 (-23) 0.1932 (9) 0.1855 (-4) 0.2175 (-22)
Sugar beet 0.0589 0.0576 (2) 0.0486 (17) 0.0545 (7) 0.0542 (8) 0.0493 (16)
Seeding Winter wheat 0.0574 0.0563 (2) 0.0601 (-5 0.059 (3) 0.0565 (2) 0.058 (1)
Barley 0.0705 0.0587 (17) 0.0913 (-30) 0.0744 (6) 0.0621 (12) 0.0812 (-15)
Chicory for sugar 0.0748 0.0652 (13) 0.0992 (-33) 0.0808 (8) 0.0713 (5 0.0905 (-21)
Vegetables in open air 0.1163 0.0916 (21) 0.1277 (100 0.1095 (6) 0.1004 (14) 0.1198 (-3)
Potato 0.1539 0.1567 (-2) 0.1614 (-5) 0.1582 (-3) 0.1605 (-4) 0.1648 (-7)
Green peas for tin 0.0922 0.0764 (17) 0.1305 (42) 0.1035 (-12) 0.089 (3) 0.1215 (-32)
Sugar beet 0.064 0.0646 (-1) 0.0559 (13) 0.0607 (5) 0.0619 (3) 0.0566 (12)
Treatment Winter wheat 0.0846 0.0843 (0) 0.0799 (6) 0.0839 (1) 0.0823 (3) 0.0794 (6)
Barley 0.123 0.1093 (11) 0.1447 (-18) 0.127 (-3) 0.1162 (6) 0.1352 (-10)
Chicory for sugar 0.1026 0.0903 (12) 0.123 (-20) 0.1049 (2) 0.0933 (9 0.1115 (-9)
Vegetables in open air 0.1039 0.0887 (15) 0.1195 (-15) 0.1045 (1) 0.0911 (12) 0.1083 (-4)
Potato 0.1724 0.1665 (3 0.1783 (-3) 0.1717 (0) 0.1704 (1) 0.1762 (2)
Green peas for tin 0.1384 0.1203 (13) 0.1847 (-33) 0.1517 (-10) 0.1355 (2) 0.1732 (-25)
Sugar beet 0.1034 0.1079 (-4) 0.1012 (2) 0.1041 (1) 0.1072 (-4) 0.1038 (0)
Fertilizer Winter wheat 0.0411 0.0428 (-4) 0.0296 (28) 0.0369 (10) 0.0355 (14) 0.0309 (25)
Barley 0.1567 0.1492 (5) 0.1805 (-15) 0.164 (-5) 0.161 (-3) 0.1757 (-12)
Chicory for sugar 0.0651 0.0585 (10) 0.0801 (-23) 0.0668 (-3) 0.0591 (9 0.0717 (-10)
Vegetables in open air 0.0775 0.0691 (11) 0.0837 (-8 0.0766 (1) 0.068 (12) 0.0774 (0)
Potato 0.0804 0.0747 (7) 0.08 (0) 0.0774 (4) 0.0748 (7) 0.0777 (3)
Green peas for tin 0.0851 0.071 (17) 0.1106 (-30) 0.0886 (-4) 0.0696 (18) 0.093 (-9)
Sugar beet 0.0625 0.0646 (-3) 0.066 (-6) 0.0655 (-5) 0.0687 (-10) 0.0676 (-8)
Value-added ~ Winter wheat 0.7666 0.762 (1) 0.7727 (-1) 0.7667 (0) 0.7691 (0) 0.7742 (1)
Barley 0.5447 0.5901 (-8) 0.4715 (13) 05289 (3) 0.5673 (-4) 05024 (8)
Chicory for sugar 0.5509 0.5804 (-5) 0.4683 (15) 0.5301 (4) 0.5616 (-2) 0.4966 (10)
Vegetables in open air 0.4829 0.5354 (-11) 0431 (11) 04829 (0) 0.5131 (-6) 04522 (6)
Potato 0.5291 0.5416 (-2) 0512 (3) 05264 (1) 0.5348 (-1) 05165 (2)
Green peas for tin 0.5066 0.5678 (-12) 0.3555 (30) 0.463 (9) 0.5204 (-3) 0.3948 (22)
Sugar beet 0.7112 0.7054 (1) 0.7283 (-2) 0.7151 (1) 0.708 (0) 0.7226 (-2)

Note: the numbersin parenthesis are percentage deviations to the base design no. 1

Table 4-5: Average estimated input cost sharediffarent support point designs

Apparently, the simultaneous approach is able ttebeise the available data
information. Interestingly, the left-skewed supppoint distributions show the best
performance for both models. This ‘insight’ is afmited empirical relevance,
however, because we only know by comparing withuirgdlocations not employed
in the estimation approach and normally not avélab
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Model Input Design No.

1 2 3 4 5 6
FOC-LR Contract work 0.879 0.865 0.904 0.891 0.889 0.907
Seeding 0.734 0.563 0.719 0.684 0.633 0.712
Treatment 0.399 0.439 0.174 0.307 0.361 0.201
Fertilizer 0.349 0.487 0.187 0.324 0.466 0.306
Value-added 0.882 0.899 0.782 0.838 0.869 0.806
Sum 3.243 3.253 2.765 3.044 3.218 2.931
LR Contract work 0.806 0.793 0.83 0.811 0.791 0.817
Seeding 0.873 0.838 0.812 0.884 0.88 0.876
Treatment 0.011 0.098 -11 -.,02 0.009 -.093
Fertilizer 0.494 0.573 0.461 0.515 0.627 0.538
Value-added 0.767 0.759 0.743 0.761 0.748 0.75
Sum 2.951 3.061 2.736 2.944 3.058 2.888
Table 4-6: Correlation Coefficients for sensiyvitesigns

46 Conclusion

This paper offered an approach to estimate a maadi farm group optimisation
model simultaneously with unknown input coefficeasing GME based on multiple
observations. This approach combines the more reebtP literature with the
extensive one on allocating variable inputs to potidn activities using farm
accountancy data. Using a sample of Belgium FADMNoaotancy records, the
hypothesis that this simultaneous approach woultbesform separate input
allocation regressions introduced by Léon et a@98) was confirmed. The new
approach showed better results for all consideggpfiegate measures across farms
comparing estimated input coefficients with obsdreaes available for this sample.

Apart from input allocation results, the concepoabffers a specification of a
farm group supply model with a PMP-type objectivadtion based on multiple farm
level observations. This is itself a relevant citmition, because most models of this
type are not based on a statistical estimationcgmbr. The fit of model variables to
the farm data and available prior information osowgce shadow prices was overall
very satisfactory. The ability to include prior @nfmation on resource shadow prices
promise more realistic results compared to stanBMB specifications.

The result on the superior performance of the ganelous estimation approach
also held up when support point specificationshef GME approach were varied. It
could be shown that support point designs matteedétimation results, especially if
prior expected values on parameters differ and d@#tarmation is limited. The
number of support points had only limited impaatdioe estimates.

The developed approach could be extended into rdiffedirections. More
observations over time will probably improve theeafication with respect to the
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price response behaviour of the resulting farm growdel. Panel data typically
show more price variation and will therefore likegsult in more robust estimates in
this respect. The focus of the current paper onluatiag estimates of input
coefficients required observed input allocationsnother direction of further
development could be the application of Bayesigor@gches as in Jansson (2007)
which promise a more straightforward and transpaieplementation of prior
information without support point related complioas and less computational
requirements.
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4.8  Appendix

Winter Winter . Vegetables Green peas
Wheat barley Chicory in open air Potatoes for tin Sugar beet
Winter Wheat 0.22 0.00 0.41 0.32 0.00 -0.48 -0.46
Winter barley 0.00 0.06 0.00 0.37 0.34 0.16 0.07
Chicory 0.41 0.00 171 1.16 0.97 0.44 -1.87
Vegetables in open air 0.32 0.37 1.16 2.98 -2.56 -1.41 -0.86
Potatoes 0.00 -0.34 -0.97 2.56 3.00 0.17 0.70
Green peas for tin -0.48 -0.16 -0.44 -1.41 0.17 2.07 0.27
Sugar beet -0.46 0.07 -1.87 -0.86 0.70 0.27 2.14
Table 4-Al: Estimated Q-Matrix of the quadratictdomction for farm group
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. Input Number of
Design No. Type of Spacin Se
9 Category Support Values b P 9 lected Support space

Design No. 1 Seeding 11 Symmetric 0.0,0.02,0.04,0.06,0.08,0.1120.0.14, 0.16 , 0.18 , 0.2
all other 0.0,0.03,0.06,0.09,0.12,0.15,0.18 , 0224, 0.27, 0.3
Value-added 0.0,01,0.2,03 ,04 ,05,06 ,008 ,09 ,1

Design No. 2 Seeding 11 Non-Symmetric, left skewed 0.0, 0.008, 0.016, 0.A2633, 0.041, 0.05, 0.066, 0.1 , 0.133, 0.2
all other 0.0, 0.012, 0.025, 0.037, 0.05, 0.062, 0.075, 115, 0.2 , 0.3
Value-added 0.0, 0.041, 0.083, 0.125, 0.166, 0.208, 0.25 ,9.8% , 0.666, 1

Design No. 3 Seeding 11 Non-Symmetric, right skewed 0.0,0.066, 0.1 , 0,1835 , 0.158, 0.166, 0.175, 0.183, 0.191, 0.2
all other 0.0,0.1 ,0.15,0.2 , 0.225, 0.237, 0.25, D, 26275, 0.287, 0.3
Value-added 0.0,0.333,0.5 , 0.666, 0.75 , 0.791, 0.833,5,87M16, 0.958, 1

Design No. 4 Seeding 6 Symmetric 0.0,0.04,0.08,0.12,0.16,0.2
all other 0.0,0.06,0.12,0.18,0.24, 0.3
Value-added 0.0,0.2 ,04 ,06 ,08 ,1

Design No. 5 Seeding 6 Non-Symmetric, left skewed 0.0,0.01, 0.02,0.0814 , 0.2
all other 0.0,0.015,0.03,0.12,0.21, 0.3
Value-added 0.0,0.05,0.1 ,04 ,07 ,1

Design No. 6 Seeding 6 Non-Symmetric, right skewed 0.0,0.06,0.12,0.089 , 0.2
all other 0.0,0.09,0.18,0.27,, 0.285, 0.3
Value-added 0.0,0.3 ,0.6 ,09 ,095,1

Table 4-A2:

Designs of the Support Set for theutripllocation Matrix
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Chapter 5. EU-wide farm types supply in CAPRI - How to consistntly
disaggregate sector models into farm type model

Abstract

The aim of the paper is to motivate the introduttémd characterisation of an EU-
wide farm type model in the CAPRI (Common AgricuétuPolicy Regional Impact)
model, partly based on a comparison with other fammodel approaches. The
proposed farm type disaggregation of the regioddPRI supply models aims firstly
at reduced aggregation bias. This is expecteddw dbr a more profound and robust
impact assessment of farm and agri-environmentaiee policy changes and to help
the linkage to bio-physical models. Secondly, titegration of the farm types in the
overall CAPRI modelling framework allows for endogeis price feedback through
CAPRI's global market model. The disaggregationbssed on an estimation
approach which smoothly integrates the informatfoom the EU-wide Farm
Structure Survey (FSS) into the CAPRI model databd&xample results from
Denmark show that this approach outperforms sirapsding by uniform factors by
endogenously taking information about the typeasfring and economic size into
account during the estimation.

Keywords: EU-wide farm supply analysis, Highest tpdsr density estimator,
CAPRI farm type layer

5.1 Introduction

The Common Agricultural Policy (CAP) is evolving igkly, shifting its focus to
externalities of agricultural production, provisioaf public goods and the
contribution of the farming sector to Rural Devetagnt. The legally required impact
assessments (EC, 2002) of EU legislation neeckitteese aspects into account, and
the research community supports and accompanieprtiaess of redirecting the
CAP by developing and applying tools for impacteasssnent. The CAPRI model
(Britz & Witzke, 2008) provides a prominent examgl such a tool used in

“The article was developed together with W. Britz ifi@msity of Bonn) and has been submitted for a
special issue organized by EU Commission JRC-IPT8I&é&w the Journal of Policy Modelling.
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different projects, such as in SEAMLESS (van lenset al., 2008), SENSOR
(Jansson et al.,, 2007) or EURURALIS (van Meijl dt, 2006), and impact
assessments, e.g., for the Mid-Term Review (Btital.e 2003) or the Sugar Market
Reform (Adenduer, 2005, Adenauer et al., 2007). dbeelopment of CAPRI
responded to the demand for regionalized analyisess @AP moving from price- to
direct income-support in the nineties, in ordectonplement the analysis of multi-
commodity models with a country or EU resolutiorclsias ESIM (Banse et al.,
2004) or AGLINK/COSIMO (OECD, 2007). Equally, enmmmental concerns were
taken into account in CAPRI by integration of diffeat environmental indicators
such as nitrogen (Leip et al. 2009) and GHG emims@irerez, 2005) accounting or a
Life Cycle analysis of energy use in agricultureefpen & Kranzlein 2008),
recently improved by spatial downscaling (Leip let2008) and links to bio-physical
models (Britz & Leip 2009).

However, as in many other economic models for grécaltural sector, CAPRI
simulates for each region only an aggregate overfaains. Such a territorial
representation might lead to aggregation bias amd dot allow analysis of impacts
on specific farm groups. We motivate and discussefiore in the following the
development of a layer of farm type models for CAPRtegrated in the overall
model chain, and describe the development of a mmgjcconsistent data base.
Section 5.2 motivates a disaggregation by farmgayjtereviews existing farm type
approaches and motivates and presents specifiotidse CAPRI farm type layer.
Section 5.3 discusses the definition of a suitédnien typology, where given regional
data are disaggregated based on farm structurdstis Section 5.4 introduces
details of the disaggregation methodology and 8ech.5 presents data and data
preparation. Section 5.6 shows results for an el@amggion and conclusions are
drawn and the approach critically discussed iniSe&.7.

5.2 The Farm Type Approach

521 Motivation of farm type models in the impact assessment of
agricultural policies

Disaggregation by farm type mainly aims to captheterogeneity in farming
practises and farms within a region, in order ttuge aggregation bias in response to
policy and market signals, with a focus on farm agement, farm income and
environmental impact. The argument is especiatikisy when policy instruments
are either targeting specific farm types or are utateéd depending on farm
characteristics. The evolvement of the accompangiegsures in the 1992 reform,
and the introduction of premium schemes dependmfaon characteristics, such as
stocking densities and herd sizes, the small prrdscheme and agri-environmental
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legislation such as the Nitrate and Water direstigenerated an incentive for tools
and analysis disaggregated by farm types. Examatesthe AROPA] system
(Baranger et al., 2008; Jayet, 1990), FARMIS (Off@nn et al., 2005) and LUAM
(Jones et al.,, 1995) where aggregates of speafim ftypes for administrative
regions at the sub-national scale are simulateddhas mathematical modelling and
sources by the European Farm Accountancy Data Nkt@ADN) database, so
called bio-economic farm models such as the FSSIbbehin SEAMLESS
(Louhichi et al., 2005) or econometrically estinthferm-household models (see,
e.g., Lansink & Perling, 1996).

Besides the reduced aggregation bias, a disaggedat farm types in impact
assessment contributes results regarding the ldiston of impact in the farming
community, e.g., regarding farm income distributienvironmental externalities or
provision of public goods. It might also allow lisdfe to modules for farm structural
change.

522 Review of existing approaches

The comparison presented in the following sectiomsaat emphasizing differences
between the three different approaches to farm tgpdels, to better motivate the
specific layout chosen for the CAPRI farm type layéhe first approach is based on
linear or non-linear programming models represgnéither single farms or groups
of farms defined from Farm Accountancy Data Netw{#RDN) or similar sources
at national or regional level. FADN, based on miaocounting data, provides output
coefficients such as crop yields, the selectioproduction activities, and resource
capacities such as land or family labour as welbatput prices. Input coefficients,
such as fertiliser application rates or feed remagnts per production activity, are
not provided by FADN, and therefore typically demv based on engineering
approaches or are econometrically estimated. Thmutirand outputs (I-O)
coefficients, along with related prices define grosargins per production activity.
The objective function maximizes the sum of thesesg margins by choosing an
optimal farm program, depending on the resourceownent and resource
requirements at activity level. The basic methodgltbcuses on currently observed
farming practices, as the production possibilityiselerived from FADN. However,
compared to CAPRI, where a non-linear cost funci®rintroduced and where
possible econometrically estimated (Jansson, 2BRPDPAj and LUAM, as many
linear programming models, face well-known problesh&inear Programming (LP)
such as overspecialization. Therefore, additiorefeguards such as maximum
cropping shares or bounds on the allowed changhsradfsizes are introduced in the
framework. The calibration of the AROPAj model e tobserved praxis (De Cara &
Jayet, 2000), unlike in CAPRI or FARMIS, does netult in an exact but in
approximated calibration by adjusting uncertain p@rameters to reduce the gap
between the observed cropping patterns and the weahgolution. The approaches
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based on FADN will inherit its properties, spedfly, its relatively low
representation of less frequent farm types.

Thesecond approach is more normative as a far wider rangmtdntial activities
defines the solution space of the model, deriveminfrcombining engineering
knowledge with simulations by biophysical models1 éxample is provided by the
farm models in the SEAMLESS modelling chain (Lottiet al., 2005). The farm
endowment, such as family labour, land or productights might be taken from
FADN, and the observed yields may serve as anatidic of potential yields, but
linking the potential choice set characterizing fhems to the observed one and the
given endowment requires expert knowledge. The inseleup is hence far more
resource-demanding than using solely observedipeaom FADN. Primary data
collection and link to GIS is necessary to soutw ltio-physical models, including
location specific data relating to soil, topologyimate or the crop calendar. As a
consequence, even a large-scale project such aMBE3S only populated some
EU regions with models, supposed to be represgatataind used statistical
extrapolation to generate results for the whole Ebf.a more detailed comparison of
FSSIM and CAPRI, see (Britz et al., (forthcomingpalibration to the observed
current state of the system, but even more, torgederesponses of the farming
systems to changes in its market and policy enmaient remains a challenge in bio-
economic model and is a partially unresolved issgejt is their application for
forward looking analysis where technical progresschto be taken into account.
Bio-economic models are however suitable to hidtiligghich potential activities
might be chosen by farmers under a different poting market environment. And
clearly, their detailed description of agriculturalanagement eases linkage to
environmental indicator calculators or bio-physicaidels, and allows simulation of
such policy measures linked to very specific faranagement practises.

The third approach rests in econometrically estimated faoosbhold models.
Requiring panel data or even cross-sectional tieres, they are mostly based on
FADN or, again, based on often richer national eeglonal farm record data sets.
Prominent examples are different variants of sucidets estimated by Lansink &
Perling (1996). Based on duality theory, utilityofit maximization is assumed to
derive behavioural functions representing firstesrd¢onditions, where parameter
restrictions and/or the choice of the functionainfoguarantee regularity. Their
biggest advantage lies in their fully empiricallgsed simulation behaviour, and their
ability to test for the underlying behavioural asgtions. However, the often highly
non-linear estimators restrict the size of the pater space, leading typically to a
far higher aggregation by activities/products coradato the programming
approaches discussed above. A further serious\dintae of these duality based
models for integrated assessment is the missindicéxpechnology description
where input demands can typically not be allocatedictivities. That renders it
difficult to link their results to bio-physical asgnting approaches or models.
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5.3 Characteristics of the farmtypesin CAPRI

Perhaps the most important characteristic of th&@RIAfarm type module is its full
integration in the CAPRI modelling chain, which eres price feedback based on
sequential calibration with the global, large-saakrket model (Britz, 2008). All the
other approaches discussed above are stand-alppd snodels, where prices are
exogenous. Linking these other farm models to xgsmarket models is far from
easy due to differences in product definitions, &gb, due to the missing match to
the data sets underlying market models, questibiib imtegration notwithstanding.
The strict and consistent top-down disaggregatmpr@ach in CAPRI discussed in
the following ensures a harmonized data set aceggsnal scales and farm types.

The farm type supply module in CAPRI consists oflependent aggregate
non-linear programming models for each farm type @ach region, representing as
an aggregate all activities of all farms falling that type and a specific
administrative regional unit at NUTS (Nomenclatudes unités territoriales
statistiques) Il level. As templates, they share #tructure of the regional
programming models in CAPRI and thus provide a comise between a pure LP
approach and the fully econometrically estimate@.cohhe latter is achieved by
combining a Leontief technology for variable costsering a low and high yield
variant for the different production activities twitan in part econometrically
estimated non-linear cost function (Jansson, 20&tgnding Positive Mathematical
Programming (PMP) (Howitt, 1995). The cost functoaptures the effects of labour
and capital on farmers’ decisions and allows bath gerfect calibration of the
models and a smooth simulation response. The faookels capture, similar to the
regional ones, in high detail, the premiums paidlarnthe CAP, include NPK
balances and a module with feeding activities dagenutrient requirements of
animals. Constraints besides the feed block rétatrable land and grassland, set-
aside obligations and milk quotas. Prices are axoge in the supply module and
provided by the market module, with whom they aotved sequentially until
convergence. Grass, silage and manure are assonfedrton-tradable and receive
internal prices based on their substitution valug @pportunity costs.
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CAPRI farm Type of Long text for the CAPRI farm type
type index farming FSS

1 FT13 Specialist cereals, oilseed and protein crops T 1
2 FT14 60 General field cropping (FT 14) + Mixed cropping (B0)
3 FT41_ Specialist dairying (FT 41)
4 FT 42 43 Specialist cattle-rearing and fattening (FT 42)atttl@-dairying,
rearing and fattening combined (FT 43)
5 FT44 Sheep, goats and other grazing livestock (FT 44)
6 FT50 Specialist granivores (FT 50)
7 FT7 Mixed livestock holdings (FT 7)
8 FT8 Mixed crops-livestock (FT 8)
9 FT31 Specialist vineyards (FT 31)
10 FT32 Specialist fruit and citrus fruit (FT 32)
11 FT33 Specialist olives (FT 33)
12 FT34 Various permanent crops combined (FT 34)
13 FT2 Specialist horticulture (FT 20)
14 FT9 Non-classifiable holdings'

Table 5-1: Type of Farming groups in CAPRI

The CAPRI farm type module comprises a maximum esf farm types per
region, which always include a residual farm typeexhaust regional production as
well as input and primary factor use. Each of #maaining up to nine farm groups is
characterized by the “type of farming,” see Tabld4,Sdefined by the relative
contribution of different production branches tce tigross margin of the farm
(European Commission, CD 85/377/EEC, Article 6)] #ime “economic size class”
based on “European size units” (E&W) concept defined in Chapter IV Article 8 in
CD 85/377/EEC and Annex lll. The EU classificatesheme allows for a far more
detailed characterisation of the farm’s specidtsatbut data confidentiality issues
and reduced average weights when using more diesgaigpd types on regional
aggregates render it suitable to stick to the ilagson shown below. Equally,
resources for reporting and result analysis cleatgpend on the level of
disaggregation. Similar arguments hold to allow dofely three farm size classes,
leading to 14*3=52 cells in overall typology.

°®  The following size classes had been chosen: 6LE3U (class 1), 16-<100 ESU(class 2), 100<

ESU(class 3)
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No. FSS Type of ESU class Utilised Number of Livestock  Rank for

groups  farming agricultural  holdings unit farm types
area in CAPRI
1,000 ha 1,000 1,000
1 FT8 3 394 241 1,318 1
2 FT50 3 160 1.56 1,229 2
3 FT41 3 352 3.67 724 3
4 FT13 3 447 8.72 85 4
5 FT14_60 3 326 1.53 177 5
6 FT8 2 110 2.44 268 6
7 FT14_60 2 224 4.49 78 7
8 FT13 3 232 0.94 56 8
9 FT41 2 68 1.69 119 9
10 FT13 1 140 10.62 13 10
11 FT14_60 1 59 5.06 12 10
12 FT2 1 0 0.09 0.01 10
13 FT2 2 2 0.26 0.23 10
14 FT2 3 7 0.45 0.09 10
15 FT32 1 1 0.14 0.01 10
16 FT32 2 4 0.16 0.02 10
17 FT32 3 2 0.02 10
18 FT34 2 0 0.10 10
19 FT34 3 3 0.08 10
20 FT41 1 0 0.08 1 10
21 FT_42_43 1 6 0.67 16 10
22 FT_42_43 2 7 0.20 20 10
23 FT_42_43 3 2 0.02 5 10
24 FT44 1 25 2.50 5 10
25 FT44 2 14 0.17 6 10
26 FT44 3 11 0.01 10
27 FT50 1 0 0.06 3 10
28 FT50 2 5 0.34 79 10
29 FT7 1 0 0.05 1 10
30 FT7 2 4 0.11 14 10
31 FT7 3 28 0.20 106 10
32 FT8 1 33 2.77 32 10
Sum for Farm Types 2,312 27.45 4,054
Sum Residual farm type 352 24.16 314
Total 2,664 52 4,367
Coverage % 87 53 93
Table 5-2: Ranking of farm types based on the B®@ fjroup statistics for
Denmark

The restriction to maximal ten farm groups per oagis based on storage and
computing time considerations, but also by the &inkeep database and model
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outputs at a manageable size for quality contral sesult analysis. Those farm
groups, differentiated by the typology based om sind specialisation, which are
represented explicitly in a region are selectedm@aling to their importance for the
regional agriculture measured by Livestock Unit&J Land Utilised Agricultural
Area (UAA). Compared to weights based on numberfasfns or economic
indicators, area farmed and livestock numbers peva compromise between
economic, social and environmental aspects of fagnirhe approach is shown for
Denmark®in Table 5-2.

In the chosen example of Denmark, the explicitlyirdsl nine farming types
cover more than 85 % of the UAA and more than 96f%e LU recorded by FSS
for this particular year, but account for only 53%%the agricultural holdings. All
remaining FSS farming groups indicated with a “Bd& aggregated to the residual
farm type. Applying the same methodology to all N&JIT regions in the EU leads to
the distribution as depicted in Table 5-3.

No. of types in

EU-27 EU-25 EU-15 EU-10 EU-02

A Economic size

<16 ESU 541 464 321 143 77

216< 100 ESU 715 698 628 70 17

> 100 ESU 460 440 346 94 20
B Type of Farming

Specialist cereals, oilseed and protein crops T 1 237 212 149 63 25

General field cropping (FT 14) + Mixed cropping (BU) 290 271 212 59 19

Specialist horticulture (FT 20) 9 9 9

Specialist vineyards (FT 31) 9 9 9

Specialist fruit and citrus fruit (FT 32) 16 16 14 2

Specialist olives (FT 33) 18 18 18

Various permanent crops combined (FT 34) 13 13 13

Specialist dairying (FT 41) 239 230 200 30 9

Specialist cattle-rearing and fattening (FT 42)aiti@-dairying, 168 168 152 16

rearing and fattening combined (FT 43)

Sheep, goats and other grazing livestock (FT 44) 194 172 159 13 22

Specialist granivores (FT 50) 118 108 76 32 10

Mixed livestock holdings (FT 7) 103 89 56 33 14

Mixed crops-livestock (FT 8) 302 287 228 59 15

C Residual farm type

Residue 225 211 170 41 14
Total (A+C or B+C) 1,941 1,813 1,465 348 128
Table 5-3: General overview of farm types seleéedhe CAPRI layer

10 Denmark has no further sub-regions in CAPRI, whittivated its use as an example.
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The map in Figure 5-1 (see also Figure 5-Al to $-Bélow shows where the
specialized dairy farm type with an ESU class latgan 100 is explicitly modelled,
coloured according to its share on regional UAA.

ey e |
T T

1.11 3.57 461 77 1411 2277

Figure 5-1: Share of UAA on the NUTS Il region%nfor the specialized
dairying farm type with an ESU greater than 100 ESU

531 Disaggregation problem

The disaggregation of the regional data base of RIA® farm types delivers

specific benefits, which relate to the existingastructure of CAPRI. The farm type
module shares the structure and technical implesttient of the regional database,
allowing use of existing procedures to populate ealibrate the individual farm

models, and to store and view results. Equally,ealsting post-model reporting
modules for the regional model can be applied, sashndicator calculators for
nutrient balances and green house gases accoudtng. the results from the farm
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type are re-aggregated to the NUTS Il level, thay be down-scaled to an 1x1 km
resolution (Leip et al., 2008). The top-down datasistency integrates the farm type
models smoothly in the overall system, ensuring #teir inter-operability with the
global market model.

For consistency, however, harmonization of the petidn levels found in the
Farm Structure Survey (FSS) data with the regidagh base of CAPRI is required,
a major challenge, also from the methodologicalvp@nt, which is discussed in
detail in the next section. We refrain here frorscdssing how a the full farm type
data base is constructed, including mutually coibft-O coefficients, see Gocht
(forthcoming) for a discussion.

The FSS delivers data on production levels, progda well-established
statistical database, harmonized across Europefeatdring suitable coverage by
farm type. Despite that fact that FSS underlies ynah the regional statistics
sourcing CAPRI, some inconsistencies to the redidata set in CAPRI remain.
This is the case because:

» CAPRI considers a three year average (for the aerdiscussed n here years
2001-2003) derived from regional time series, wagreSS provides data for
one specific year from the period 2003 — 2005, ddg on the Member
State.

* The regional CAPRI database is made consistenatiorral data sets such as
market balances and economic accounts, completddthat data gaps have
been filled in by means of econometric routines] Aarmonized over time
regarding product/activity classifications. As ansequence, regional data in
CAPRI can differ slightly from annual FSS data.

« The economic thresholds for the FSS survey areerdift from those
underlying the Economic Accounts for AgricultureA). This can lead to
inconsistencies for some selected activities sgafuaseries where production
guantities are not defined in physical units butonstant values.

e All figures in FSS are rounded to the first digitea the comma and those
individual farm data which account for more thangdcent of the aggregate
are replaced by missing values, as outcome of Hjisl&ion dealing with
statistical confidentiality (Council Regulations ECNo. 322/97, OJ No L
52/1, and EURATOM, EEC No. 1588/90, OJ No L 151/ 1)

One way to remove the data inconsistencies in geraad herd sizes consists in
multiplying each FSS value with a fixed correctfastor, calculated from the given
regional value in CAPRI and the sum over the faypes in that region in FSS.
However, this can first lead to a correction of #uotivity levels which changes the
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farming pattern such that a different type of farghor a different economic size
classification could result for some farm groups,tlse data base might no longer
represent the most important groups according ®. Becondly this approach could
also result in a violation of political requiremsrfor set-aside in the FSS grotips

Not least, the changes could generate unrealigtim fprograms. In order to avoid
reclassifications during the consistent top-dowisadgregation, we propose a
statistical estimator which ensures regional cdaessy and compliance with set-
aside obligations while preventing changes in yipe of farming and economic size
class. The estimator treats the original FSS faroug data as a random variable
comprising measurement errors, which seems reakonglven rounding,

introduction of missing values and reporting thddh. By assuming properties of
the error distribution, the most probable crop Isvand acreages for each farm
type are estimated recovering the given regiontd,da compliance with set-aside
obligation while maintaining the type of farmingdafiESU class of each farm

group.

54 The dtatistical disaggregation estimator

The following section we discuss in detail the latyof the disaggregation estimator,
starting with the data constraints, before the riigdn of the Highest Posterior
Density is motivated.

54.1 Data constraints

The estimator aims first at ensuring that each faroup keeps its “type of farming”
(see Table 5-1) during estimation, which requirasglation of tabular information
in official documents (European Commission, CD 83/&EEC, Annex Il Section B)
in numerical constraints. Specifically, the “typ& farming” is defined by rules
relating to the contribution of production branchepressed by the partial standard
gross margins (SGM)j, in relation to the total SGM)( Both, the partial and the
total SGM are expressed in Economic Size Units (ESdndp of a farm group is
determined by a set of standard coefficielgjswhich can be used to value areas
under crops and numbers of animals produced byfah®a groups, where it is
assumed that one ESU is worth 1.200 Euro.

During the estimation, these contribution of praduc branches shares are not
allowed to violate a set of constraints, similarctop rotation restrictions, which

1 The farm type base year is referenced to a threeayerage around 2002. Therefore set-aside was

still in place and had to be considered.
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define the given farm type. The total standard groargin {) is a (1 x F) vector and
therefore computed by

t=(D_s;x,)/ (1200« N )O fOF
i

for each farm group (f) wheré\ is the number of holdings represented by the
particular farm group (f) and 1.200 indicates tladue of one ESU. The matrix)(

for each region in CAPRI, consists of a farm typmehsion with f=1,.., F and of a
production activity dimension with j=1,.., J indied in Annex Table 5-A1 and holds
the production levels in hectare or animal headstestimated. The vect®) (s the
activity specific gross margin in Euro given pectage or animal head and provided
by Eurostdf for each sub-region. Constraints had been defifmedall types
according the rules outlined in EU Commission (A8 7/EEC), and ensure during
estimation of the production levelx)(that the selected types stay within their
definition. To give an example the type of farmimtpich comprises specialized
cereals, oilseed and protein crops have two canstrahich are implemented in the
estimation problem as:

(O sx)/(1200«N )/t 2/30 fIF

(( > sx)/(1200xN ))/t> 2/30 fIF.

joP13_14

The constraints which ensure that the farm groepsain in the economic size class
are for the smallest size class with less than36 E

t<16 OfOF

for the size class greater equal than 16 and hess100 ESU as
t>16 n t<1000 fOF

and for the large scale farm size class as

12 The SGM are collected by Eurostat from the MemhateS and are downloadable from the official

Eurostat webpage. The special treatment for grastiock and fodder crops is implemented in the
explained CAPRI farm type approach (see CD 85/377/BB@ex |, 5. treatment of special cases).
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t>100 OfOF.

A further restriction defines the obligatory seitdasarea as a function of the grandes
cultures area as:

Xoe = »,X0/ (100~ q) O fOF O j0A.

The crop production activities for arable land @& with A 0J . The set-aside
rate Q) is given for each crop in percentage. The nerstraint ensures that for each
production activity, the sum of all farm types sumpsto the regional levels indicated

by ()

> x,=x 0j0J;0r0OR

fOF

and the last equation calculates the UARfor each farm type.

ij —u Of0OF

j0J

54.2 Estimator

The data constraints alone do not allow a uniquitisa to be found, as there are the
FxJ unknown vectors of cropping hectares and aninal tsizes X) to be
estimated, which by far exceed the number of lifedequality constraints. The FSS
raw data on cropping acreages and animal herd aistherefore seen as random
variables distributed around the true, but unknowbservations which are
characterised by the above defined data constraigsassume that the error term is
white noise with co-variance zero, and follow thppmach in Heckelei et al. (2005,
2008) to derive a Highest Posterior Density estim#&b recover the data with the
highest posterior density. That leads to the falt@aestimator

minvec(x —=x",u-u” p"-p""t -t ")

x Y tvee(x-xP,u-u®,p"-p"Pt-t "

where the partial standard gross margini¢ defined as:

p'=> sxOfOF; nO1.£

joR,

The estimation framework combining the estimatod #re data constraints can be
interpreted as the search for the production dgtilévels which minimize the
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deviation between the prior information on levefs on total standard gross margins
t?, the partial standard gross margjfs and the UAAUP of each farm group with
respect to the constraints for each farm type énrtigion for the Type of Farming
and the Economic Size, the set-aside regulatioledtigal constraints) and the
consistency to regional data.

55 Data

551 Databases underlying the consistent EU-27 wide farm types
approach

One outstanding attribute of the farm type layerAPRI is its EU-27 wide
territorial coverage. Only two harmonized and stadited data sources provide
information on farm types at the EU-27 level: FARNd FSS. FADN is the most
often used database to source EU farm type modelsmprises single farm record
data on production and sales quantities, produeativity levels, yields for selected
activities, input cost aggregated on the farm lewgflormation about prices and
positions of the gain and loss accounts of a falus pome further elements. The
definitions in FADN are harmonized by EU legislatizvhich also requests yearly
updates by the EU Member States. The FADN covevgelier only a sample of
farms with aggregation weights attached, with a eashat low representativity for
less frequent farm types and production activi{fese also table 5-4 below). The
second data source, FSS, reports mainly data atugtion activities by region and
farm type, based on a sub-survey each third yedraatomplete survey each tenth
year. Both data sets exclude small farms based inimomm economic thresholds,
with lower thresholds in FSS and a hence betteresgmtation compared to FADN.
Equally, some enterprises, such as highly commesethfarms are not obliged to
provide accountancy information to FADN, but arelided in the FSS. The
combination of differences in thresholds and dééins, and the sample nature of
FADN leads to coverage differences; as shown irlelakt for the FADN year 2004
at Member State level for those EU countries whygoaips from our CAPRI farm
typology based on the FSS survey where completédging in FADN. To give an
indication about the size of the error, the nunmddanissing hectares is shown.
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T6

Belgium and Luxembourg

Germany
Greece

Spain

France

Irland

Italy

Austria

Portugal
Sweden
Finland

The United Kingdom
Cyprus

Czech Republic
Hungary
Slovak Republic

Specialist General field Specialist Specialist cattle- Sheep, goats and Specialist Mixed livestock Mixed crops-
cereals, oilseed  cropping (FT 14) +  dairying (FT 41) rearing and fattening other grazing granivores holdings (FT 7) livestock (FT 8)
and protein crops Mixed cropping (FT 42) + Cattle- livestock (FT 44) (FT 50)
(FT 13) (FT 60) dairying, rearing and
fattening combined
(FT 43)
ESC1 ESC2 ESC3 ESC1 ESC2 ESC3 [ESC1 ESC2 ESC3  ESC1 ESC2 ESC3 1 HSEC2 ESC3 ESC1 ESC2 ESC3 ESC1 ESC2 ESC3 ESC1 ESC2 ESC3
15 38 5 30 4 0 6 1 11 2 16 12
94 24 15 46 67 49 20 4 3 24 88
33 67 17 1 2 38 6 29
29 4 51 20 59 0 44 28 97 33 92
171 131 132 74 154 12 1 34
15
4
62 1 296 0 1
13 8 1 6 4
48 75 9 25 1 0 34
3 7 4 2 3 1 2
86 2,284 12
0
1 4 5 4 1 1 0 0 1
7 11
1

Table 5-4:

UAA in 1000 hectares without represéaitein FADN



For Germany, for example, almost 390,000 hectaeaa represented in FADN.
The table also illustrates that especially smalhféypes (<16) ESU are often poorly
represented in FADN, due to exclusion thresholdghldeviations are also found for
large farms specialized in granivores (FT50 + E&6@ FT50 + ESC3), highlighting
that commercial farms are not well representedADR, FSS draws, hence, a more
complete picture of the agricultural productiorusture compared to FADN, and is a
more inviting source in that respect for the faypet disaggregation. As FSS does
however only cover data on acreages and herd gimdds and input coefficients
have to be derived from FADN, for a thorough disiois see Adenauer et al.
(20064, 2006b) and Gocht (forthcoming).

55.2 FSSData preparation

Eurostat aggregated and processed the single FSS recordallfe250 CAPRI
regions for EU-27, according to the chosen typolafgplivering a data set respecting
the data confidentiality obligations mentioned ahofFarm groups were deleted,
where the UAA levels or the number of holdings wegeo. The data set covers data
on land use, livestock farming and labour forcava§ as number of farms for each
farm type and region. The example results presdmteel refer to Denmark, with 32
farm non empty groups by specialisation and sizssclas Table 5-2 shows.
Rounding and introduction of missing values due statistical confidentiality
obligations might lead to cases where the prioa @dae not in line with the type of
farming and the ESU class shown in the data setefbre, the type of farming and
the ESU class for each raw FSS group are re-cééclla order to apply the correct
constraints of the raw data during estimation andhtain the correct partial SGM
and the TSGM.

1 The work of Pol Marquer from EUROSTAT is gratejuticknowledged. He extracted different
data selections for the new farm type layer angstipd the whole data selection process with
his knowledge and expertise.
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FSS calculated FSS calculated

No. FSS Farm Type of ESU Typ of ESU CAPRI No. FSS Farm Type of ESU Typ of ESU CAPRI

Group Farming group farming Group farm Group Farming group farming Group farm
Name type Name type
Rank Rank
1 DK000131 13 1 13 1 10 19 DKooo414 41 4 41 4 3
2 DK000132 13 2 13 2 10 20  DK000421 42 1 42 4 10
3 DK000133 13 3 13 3 4 21 DK000422 42 2 81 2 10
4 DK000134 13 4 13 4 8 22 DK000423 42 3 81 3 10
5 DK000141 14 1 14 1 10 23 DK000424 42 4 81 4 10
6 DK000142 14 2 14 2 10 24 DK000441 44 1 44 1 10
7 DK000143 14 3 14 3 7 25 DK000442 44 2 a4 2 10
8 DK000144 14 4 14 4 5 26 DK000443 44 3 44 3 10
9 DK000202 20 2 20 2 10 27  DK000444 44 4 80 4 10
10 DK000203 20 3 20 3 10 28  DK000502 50 2 50 2 10
11 DK000204 20 4 20 4 10 29  DK000503 50 3 50 3 10
12 DK000322 32 2 32 2 10 30  DKO000504 50 4 50 4 2
13 DK000323 32 3 32 3 10 31  DK000702 70 2 81 2 10
14 DK000324 32 4 32 4 10 32  DK000703 70 3 81 3 10
15 DK000343 34 3 34 3 10 33 DK000704 70 4 72 4 10
16 DK000344 34 4 34 4 10 34 DK000802 80 2 81 2 10
17 DK000412 41 2 41 2 10 35  DK000803 80 3 61 3 6
18 DK000413 41 3 41 3 9 36 DK000804 80 4 80 4 1

Table 5-5: Farming types and ESU class recoverad the FSS raw data

Table 5-5 presents a comparison between identifigel of farming and economic
size class provided by Eurostat for the raw FS&.datan be seen that for the nine
most important farm types, which are retained dyxantthe data base and model,
only cell Nr. 35 was re-classified from an originaixed crop-livestock type to
mixed crops.

5.6 Results

In order to analyse to what extent the proposennastr leads to an improved
presentation of the farming structure, the resatts compared to a fixed number-
scaling. Table 5-6 reports the results for theigaB8GMs P1, P4 and Pper farm
type for Denmark. It can be seen that lower demmstifrom the prior shares in FSS
could be achieved, compared to applying a unifornrection factor for each
production activity.

2 Partial SGM P2 and P3 are not identified or vemall for the selected farm types because those

partial standard gross margins belong to farmimgpsynot identified in the case of Denmark (see
Table 5-Al, appendix).
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6

partial SGMs

Type of farming Economic Size Clas P1 P4 P5
c 5 c c s c c 5 c
8 = 8 8 = 8 8 = 8
g B s 3 g ® & % g & & %
a € % =% 3 @ & 3 T 3 B 8§ & ® 3
L n [a)] L o L n [a)] Ll [a)] L n o L o
Unit share share share share share share share share share
Specialist cereals, oilseed and protein ¢ > 16 ands 100 ESU 0.94 0.93 -2% 0.94 0% 0.04 0.06 29% 0.04 0% 0.02 0.02 -1% 0.02 0%
(FT 13)
Specialist cereals, oilseed and protein ¢ > 100 ESU 0.94 0.94 -1% 0.94 0% 0.02 0.02 21% 0.02 0% 0.04 0.04 5% 0.04 0%
(FT 13)
General field cropping (FT 14) + Mixed > 16 and< 100 ESU 0.88 0.87 -1% 0.88 0% 0.06 0.08 24% 0.06 0% 0.03 0.03 -8% 0.03 0%
cropping (FT 60)
General field cropping (FT 14) + Mixed > 100 ESU 0.86 0.86 -1% 0.86 0% 0.02 0.03 30% 0.02 0% 0.06 0.07 6% 0.06 -1%
cropping (FT 60)
Specialist dairying (FT 41) =16 ands< 100 ESU 0.29 0.33 12% 0.29 -1% 0.71 0.66 -7% 0.71 0%
Specialist dairying (FT 41) > 100 ESU 0.27 0.30 11% 027 2% 0.73 0.70 -5% 0.72 1%
Specialist granivores (FT 50) > 100 ESU 0.22 0.21 -5% 0.22 0% 0.78 0.79 1% 0.78 0%
Mixed crops-livestock (FT 8) > 16 and< 100 ESU 0.56 0.54 -4% 0.57 0% 0.17 0.22 22% 0.17 3% 0.26 024 -11% 0.27 -2%
> 100 ESU 0.50 0.48 -4% 0.49 1% 0.04 0.05 16% 0.04 1% 0.46 0.47 2% 0.46 -1.6%

Mixed crops-livestock (FT 8)

Table 5-6:

Priors for and estimated partial SGM&-IPB) for all farm type in Denmark



G6

Type of farming Economic Size Class ESU UAA
c c
& 2 & 5 S s
o = = = [e)) = = =
£ = g = £ 3 g 3
92} © > =] > 2} © > B >
(%] [&] [ 7] [ [7p] [&] <] 7] <]
L n [a) L [a)] L (] [a] Ll [a]
Unit ESU ESU ESU 1,000 hectare 1,000 hectare 1,000 teectar
Specialist cereals, oilseed and protein crops16 and< 100 ESU 36.7 35.1 -4% 36.4 -1% 446.7 433.8 -3% 459.5 3%
(FT 13)
Specialist cereals, oilseed and protein crops100 ESU 190.8 172.1 -11% 189.2 -1% 231.6 217.7 -6% 243.8 5%
(FT 13)
General field cropping (FT 14) + Mixed > 16 ands< 100 ESU 43.7 45.2 3% 43.7 0% 223.9 234.9 5% 229.6 2%
cropping (FT 60)
General field cropping (FT 14) + Mixed > 100 ESU 225.5 205.3 -10% 222.8 -1% 325.7 312.2 -4% 331.4 2%
cropping (FT 60)
Specialist dairying (FT 41) >16 ands 100 ESU 82.0 95.7 14% 84.1 2% 68.1 83.8 19% 67.0 -2%
Specialist dairying (FT 41) > 100 ESU 249.0 283.1 12% 258.3 4% 349.8 451.8 23% 368.5 5%
Specialist granivores (FT 50) > 100 ESU 328.7 3197 -3% 331.1 1% 159.5 152.7 -4% 170.8 7%
Mixed crops-livestock (FT 8) >16 ands 100 ESU 49.3 53.9 9% 50.3 2% 109.7 115.4 5% 1151 5%
Mixed crops-livestock (FT 8) > 100 ESU 244.0 229.3 -6% 236.1 -3% 394.5 376.2 -5% 410.7 4%
354.5 388.9 9% 371.1 4%

Aggregated residue

Table 5-7:

Priors for and estimated UAA and ESUdibfarm type in Denmark



Table 5-7 presents a comparison between the gherscaling method and the
estimated values for the economic size of the faype (ESU) and its land
endowment (UAA). Again, the estimator outperfornimm@e scaling, leading to
lower correction of total area and economic sizéheffarm groups.

Table 5-8 presents the deviation of crop groupsttier different farm types in
Denmark. Two aspects are worth commenting uporstliirthe deviation for the
residual farm type is larger than for the othenfdypes. The reason is the missing
rule for the residual farm type. The deviationdarm types with a clear definition
regarding specialization and economic size are pesse to deviations as changes
are restricted by the constraints which define faize and farm specialization.
Secondly, small observations are less robust aedpéicentage deviation can be
higher, as for example, rounding has a far stroeffect.

5.7 Discussion and conclusions

The paper motivated the introduction of a farm tyager in the CAPRI model,
compared it to alternative solutions and addrestex issue of a consistent
disaggregation of regional agricultural data byrfaupply. We will first discuss the
latter issue.

Consistent disaggregation problems are frequenedoanomic analysis when
working simultaneously on different spatial scabescombining different data sets.
Our example provides a solution when structurati@hs at the lower level need to
be maintained, here relating to the characterimatad farm size and farm
specialization. Examples for similar problems dre éestimation of land cover or
areas in a spatial disaggregation exercise, wheeewmuld like to keep cover and
crop share relations in certain bounds at lowetigpscales, or the estimation of 1/0
coefficients consistent to national accounts whilgintaining cost shares from the
original micro records.

We propose the application of a Bayesian motivattanation framework which
treats the available disaggregated informationg hibe FSS data, as a random
variable. Whereas the disaggregated data provide ipformation, consistency and
definition based conditions provide the data infation. Their combination provides
posterior estimates which fulfil the top-down digeggation requirement while
exhausting the information content of the raw d&taour example, the estimator
ensures that the type of farming of each groupyedsas the economic size of a farm
group were not violated, allowing for a consisteligaggregation of the CAPRI
regional data base based on the FSS database adt&uto source a layer of farm
type models.
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Type of farming Economic Size Ceareals Pulses, Potato and Sugar Beet Fodder Cropad Gras Set-aside
Class
c 5 c c 5 c c 5 c c 5 c
=] = =] =] = =] =] = 2 2 = 2
£ & £ B £ 3 § = £ 3 § % £ & E &
9] ] > = > ) © > = > ] c > = > ) < > = >
%) Q ] 7] ] (%) o @ 17} D 0 |3} D 7] D %) Q D 7] D
VS n [a] w [a] VS 2] [a] w o 18 2] o w o VS n o w o
Unit hectare 1,000 1,000 1,000 1,000 1,000 1,000 1,000 01,00 1,000 1,000 1,000 1,000
Specialist cereals, oilseed and protein> 16 and< 100 ESU 322 320 -0.6% 330 2.5% 13 15 15.1% 12 -3.9% 31 38 17.8% 67 537% 5 4 38 -17.8% 36 -26.1%
crops (FT 13)
Specialist cereals, oilseed and protein> 100 ESU 164 159 -2.7% 165 0.6% 7 8 10.7% 7 -7.4% 11 12 13.6% 2455.9% 20 18 -71.2% 21 5.6%
crops (FT 13)
General field cropping (FT 14) + Mix > 16 and< 100 ESU 105 106 0.6% 105 0.5% 19 19 0.7% 19 -1.4% 65 84 22.4% 77 15.3% 17 4 1-22.3% 16 -9.4%
cropping (FT 60)
General field cropping (FT 14) + Mix > 100 ESU 183 181 -0.9% 180 -1.4% 52 50 -2.8% 53 3.3% 28 35 %89 52 45.8% 28 22 -29.2% 22 -30.9%
cropping (FT 60)
Specialist dairying (FT 41) 216 ands< 100 ESU 16 17 2.9% 16 0.1% a7 63 25.5% 46 -1.9% 4 3 -23.4% 4 9.3%
Specialist dairying (FT 41) > 100 ESU 73 74 0.3% 78 5.4% 3 3 -0.1% 8 59.0% 239 355 32.6% 265 9.9% 28 17 -70.2% 17 -67.2%
Specialist granivores (FT 50) > 100 ESU 119 117 -17% 112 1.9% 2 2 2.4% 2 -11.4% 8 9 13.1% 14 41.5% 12 12 6.9% 15 22.6%
Mixed crops-livestock (FT 8) 216 ands< 100 ESU 66 66 -0.2% 67 2.0% 2 2 7.5% 2 -5.8% 29 37 21.8% 31 7.8% 7 7 0.5% 9 .5%1
Mixed crops-livestock (FT 8) > 100 ESU 275 269 -2.3% 280 1.7% 15 15 2.2% 11 -35.7% 29 34 13.8% 64 54.2% 31 30 -3.9% 26 1%d8.
Aggregated residue 167 170 1.3% 135 -24.2% 4 4 9.1% 6 33.2% 140 169 17.3% 195 -20.9%17 25 31.7% 21 -46.4%

Table 5-8:

Estimates for selected crop activitselen Denmark



The main aim of introducing farm types into the GfAFmodel was to improve
policy impact assessments by considering farm stralccharacteristics such as farm
size, crop mix, stocking density and vyields, in esrdo considerably reduce
aggregation bias and thus to improve the religbdit regional results. But equally,
income effects as well as environmental and sdciphcts can be analysed in the
context of farm specialization and size.

What are the down sides of the CAPRI farm type epgn? First of all, the use of
stylised and relatively simple template models Whice structurally identical and
express differences between farm type and regioletysdy parameters alone might
fall short of capturing the full diversity of farng systems in Europe. In particular,
the evaluation of policy measures which impactaimfmanagement decisions, such
as manure handling or feeding practices, demandel®aghich comprise these as
decision variables. The relatively simple repreatom of agricultural technology in
CAPRI compared to approaches parameterised baskidgimysical models narrows
down the scope of extensions in that directioneidlthe potential of the current
template is not yet fully exploited in CAPRI. Hovesy the dichotomy between
increased detail for specific activities, regionsd darm types, and a structurally
identical template model remains. Updating and taaiing a regional data base
with an additional breakdown by farm types requinesre resources, as does the
application of the enlarged simulation tool.

The CAPRI farm type layer provides a complementgpproach to alternative
farm type approaches. Its strength rests firstlytha fact that harmonized data
sources and assumptions are applied across Eusegendly, that the layer is
transparently linked with a complex agricultura@de model so that the full range of
CAP measures and their interactions can be analyhadly, that its maintenance
and application are cheaper compared to alternafipeoaches should one aim at a
full coverage of the EU.

A possible drawback of opting for a disaggregatipn farm type instead of
increasing the spatial resolution of the modelhis tact that farm groups are not
spatially explicit. That renders a link to bio-plga models challenging as, e.g., the
soils on which the farm groups operate are not knadowever, economic theory
suggests that the distributional moments of biospdal attributes as soil, slope,
surrounding land cover or climate for each farmetypll differ from the regional
aggregated ones. Some approaches therefore tgtial gpstribution of farm groups
(see, e.g., Elbersen et al., 2006).
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59  Appendix

< <
- —
. - | . - |
abbreviation CAPRI activity long text E 2 E 2 5 £ abbreviation CAPRI activity long text E ® E 2 FoR
a a
SWHE Soft wheat production activity TEXT Flax and hemp production activity
DWHE Durum wheat production activity TOBA Tobacco production activity
RYEM Rye and meslin production activity| TOMA Tomatoes production activity
BARL Barley production activity OVEG Other vegetables production activity
OATS Oats and summer cereal mixes APPL Apples pears and peaches productiop
without triticale activity
MAIZ Grain maize production activity OFRU Other fruits production activity
OCER Other cereals production activity CITR Citrus fruits production activity
including triticale
RAPE Rape production activity NONF Non food production activities on set|
aside
SUNF Sunflower production activity FALL Fallow land
SOYA Soya production activity OSET Set aside obligatory
QO0IL Other seed production activities fol VSET Set asice voluntary
oil industry
OIND Other industrial crops production BULL Male adult fattening activity low final
activity weight
NURS Nurseries production activity BULH Male adult fattening activity high fing
weight
FLOW Flowers production activity SCOW Suckler cows production activity
OCRO Other crops production activity HEIR Heifers raising activity
MAIF Fodder maize production activity CAMF Calves male fattening activity
ROOF Fodder root crops production activty CAFF Calves female fattening activity
OFAR Fodder other on arable land CAMR Calves male raising activity
production activity
GRAE Gras and grazings production acti CAFR Calves female raising activity
extensive
GRAI Gras and grazings production actif PIGF Pig fattening activity
intensive
PARI Paddy rice production activity SOWS Sows for piglet production
PULS Pulses production activity SHGM Sheep and goats activity for milk
production
POTA Potatoes production activity SHGF Sheep and goats activity for fattenin:
SUGB Sugar beet production activity HENS Laying hens production activity
POUF Poultry fattening activity

Table 5-A1l:  Cross set for calculating the parti@\s(P1-P5) for defining the
type of farming and the total SGM
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UAA in thousand hectares of farm type: Specialist cereals, oilseed and Number of holdings in thousand of farm type: Specialist cereals, oilseed and
protein crops (FT 13) - Less than 16 ESU in 66 Nuts 1| protein crops (FT 13) - Less than 16 ESU in 66 Nuts Il

a) b)

1<21 <487 1 17 4 8 18 65

Share of UAA an Nuts Il UAA in percentage of farm typa:
Specialist ceraals, ailseed and protein crops (-1 T3 - 1 ess than 16 FSI in 66 Nurs 1|
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Figure 5-Al: Distribution of (a) total UAA in 1,00tectares, (b) number of
holdings in thousand and (c) share on NUTS Il UA4eércentage
of farm type of farm type: Specialist cereals, edld and protein
crops (FT 13) - Less than 16 ESU in 66 NUTS |l
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Specialist cereals, oilseed and protein crops

(F1 13} - Greater 15 — lass 10U ESU

Distrihution of tolal UAA in theusand hectass - Humber of holdings In thausand
in 101 Huts 11 regions

Share of UAA on Nuts 1 UAA in percentaqe of farm typs:
Specialist corcals, silsced and protein crops (FT13)  Greater 16 less 100 ESU in 101 Nuts Il regions

c)

adHy

Figure 5-A2:  Distribution of (a) total UAA 1,00Cebtares, (b) number of holdings
in thousand and (c) share on NUTS Il UAA in pereget of farm
type of farm type: Specialist cereals, oilseed pratein crops (FT
13) — Greater 16 — less 100 ESU in 101 NUTS lloesi
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Figure 5-A3: Distribution of (a) total UAA 1,000 ttares, (b) number of holdings
in thousand and (c) share on NUTS Il UAA in peragetof farm type
of farm type: Specialist cereals, oilseed and pnoteops (FT 13) -
Greater 100 ESU in 70 NUTS Il regions
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UAA in thousand hectares of farm type Number of holdings in thousand of farm type

Specialist dairying (FT 41) - Less than 16 ESU (FT41L16) in 42 Nuts Il regions

Share of UAA on Nuts Il UAA in percentage of farm type:
Specialist dairying (FT 41) - Less than 16 ESU (FT41L16) in 42 Nuts Il regions

c)

27

Figure 5-A4: Distribution of (a) total UAA 1,000 ttares, (b) number of holdings

in thousand and (c) share on NUTS Il UAA in pereget of farm

type of farm type: Specialist dairying (FT 41) —skethan 16 ESU

(FT41L16) in 42 NUTS Il regions
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UAA in thousand hectares of farm type Number of holdings in thousand of farm type

Specialist daitying (FT 41) - Greater than 100 ESU (FT416T100) in 77 Nuts Il regions
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Share of UAA on Nuts Il UAA in percentage of farm type:
Specialist dairying (FT 41) greater 16 — less 100 ESU (FT41GT16L100) in 120 Nuts Il regions

Figure 5-A5: Distribution of (a) total UAA 1,000 ttares, (b) number of holdings
in thousand and (c) share on NUTS Il UAA in pereget of farm
type of farm type: Specialist dairying (FT 41) gexal6 — less 100
ESU (FT41GT16L100) in 120 NUTS Il regions
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Figure 5-A6:
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Chapter 6. Discussion

6.1 Conclusion

This thesis contributes to the development of nedhased for economic farm
modelling. In Chapter 2, attention was given tooa-parametric method to measure
technical efficiency. Most agricultural scientidtave ignored sampling noise and
often had little theoretical and empirical guidaecehow to correctly conduct Data
Envelopment Analysis (DEA). This chapter presemti@rent model specifications
using a bootstrap approach to derive confidenesvats. The results show that DEA
without considering statistical properties can lgaderroneous conclusions. It
follows that DEA results must be interpreted cauglg, and that further research is
necessary before DEA can be accepted as a staapardach for the evaluation of
input-output productivity. Apart from the model sgiecations, it was important to
develop the computational framework for the congenicalculation of confidence
intervals. Using the slice model in GAMS, we cowdbdow that the statistical
properties of DEA estimates can be easily obtained.

In Chapter 3, the response behaviour of promineogitike Mathematical
Programming (PMP) variants is assessed, utiligrgost time series from the
German Farm Accountancy Data Network (FADN) database results show that
the response behaviour is strongly determined ley different PMP approaches
recovering the parameters of the non-linear casttfan. Furthermore, we find that
the fit of the simulated farm group models to tthsearved values for all considered
calibration methods is poor. We conclude that wiree series or panel data are not
obtainable, the use of exogenous elasticities tterdene the cost function
parameters is a convenient method to introducebsample knowledge. However,
we should be careful because the calibration methittdexogenous elasticities does
not determine the cross relationships of the gumdmeost function parameter.
Furthermore, the elasticities applied during calilon are unlikely to be the same as
the ones in the final model, which results from ttfmn-linear functional form, its
parameter and the constraints of the model. If redwbservations are available but
the parameters cannot be identified with normall-pe$ed estimation techniques,
ill-posed estimation techniques such as Maximunmrdpyt (ME) offer a way to
include prior beliefs on the estimated parameterd # estimate the observed
relationship between the cropping pattern and teight of the received gross
margins for the non-diagonal matrix elements of ¢bet function. Furthermore, it
could be shown that an alternative cost functioimimadion under the first order
condition of the model with time series and prigiormation can be used instead of
a PMP approach for estimating the model. This aggras theoretically consistent
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and avoids the general misspecification of theiticathl PMP approach. However,
computational demands and numerical problems, #istieelack of sufficient time
series from FADN, prevent this method from beconargfandard approach for farm
group models.

Chapter 4 offers an approach to estimate a noasfifeem group optimisation
model simultaneously with unknown input coefficenising Generalised Maximum
Entropy (GME) based on multiple observations. Tdpproach combines the more
recent PMP literature with the extensive one omcalling variable inputs to
production activities using farm accountancy datsee model was estimated using a
cross-sectional sample of 58 FADN accountancy dcofhe special situation in
Belgium was used, in which input costs per actiatg collected to compare the
findings. The hypothesis that this simultaneousr@ggh would outperform separate
input allocation regressions was confirmed. Apaotrf this, the concept also offers a
specification of a farm group supply model with EIfRtype objective function
based on multiple farm level observations. Thidtsglf a relevant contribution,
because most models of this type are not basedstatiatical estimation approach.
The result on the superior performance of the ganelous estimation approach also
held up when support point specifications of the Esdpproach were varied. It could
be shown that support point designs matter fomegion results, especially if prior
expected values on parameters differ and datanmafon is limited. The number of
support points had only limited impacts on thereates.

Chapter 5 introduced the farm type layer in the @am Agricultural Policy
Regionalised Impact (CAPRI) model and addressed issee of a consistent
disaggregation of regional agricultural data byrfaaupply. Our example provides a
solution when structural relations at the lowereleneed to be maintained - in our
case, the characterisation of farm size and fareciafisation. We propose the
application of a Bayesian motivated estimation famrk that treats the available
disaggregated information, the Farm Structure SurfleSS) data, as a random
variable. Whereas the disaggregated data provide ipformation, consistency and
definition based conditions provide the data infation. Their combination provides
posterior estimates that fulfil the top-down disa&ggtion requirement while
exhausting the information content of the FSS dékee estimator ensures that the
type of farming of each group, as well as the entingize of a farm group, were not
violated, allowing for a consistent disaggregatainthe CAPRI regional database
based on the FSS to source a layer of farm typeelsddr the CAPRI model. The
developed method was compared to a variable-wisgali scaling approach, and
results show the superior performance of the pregh@ayesian approach compared
with the results from normal scaling.
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6.2 Outlook

This thesis gives special attention to differenthnds in economic farm modelling.
Because each single chapter of the thesis alreasiyustes further research
directions, the focus here is on two specific tegltat are turning out to be the most
interesting and promising for further research ftbeauthor’s perspective.

The first topic relates to the specification an@ tstimation of farm group
models. The approach in Chapter 4 with a simultasedetermination of input
allocation under the first order condition shoulel éxtended to more observations
over time to improve the specification with respecthe price response behaviour.
Panel data typically show more price variation avill therefore likely result in
more robust estimates in this respect. This extansiin line with the developments
of Chapter 3, in which for a single farm group tadibration PMP approach was
replaced by an estimation of the cost function petars over time. However, the
approach in Chapter 3 did not utilise single FARhis for the estimation but used
an aggregated farm group sample over time. Furiwerrihe inclusion of prior
information in the form of elasticities, also pretel in Chapter 3, would further
improve the specification of the farm group modedsgnted in Chapter 4. Another
direction for improvement is related to the estiorattechnique employed for the
farm group model. Findings from other studies ssydlkat a Bayesian approach,
rather than an ME or GME, promises a more straogiwdrd and transparent
implementation of prior information without supp@aint related complications and
with less computational requirements. Further nete#&s also needed to solve the
problem that arises when animal production acésitiare considered, because
inequality constraints, caused by the relation betwfodder production and fodder
use, can lead to non-closed optimisation problevhg;h are difficult to solve.

A second research direction results from the deweémts in Chapter 5 and
focuses on the farm type models in CAPRI. In cattta Chapters 3 and 4, in which
the farm group model was estimated based on arbatto approach using single
farm records or groups of farms, farm models in@E&a5 are developed top-down
using the Farm Structure Survey (FSS) as informattiodisaggregate the regional
sector models in CAPRI. The advantage is that #multing farm groups are
consistent with the sector approach. Although thenftype models use output
coefficients derived from FADN, the input allocatiooefficient is equal for all farm
types and is based on information from the uppgioreal model. The current model
can be extended by using the estimation model fedrapter 3 and would also lead
to a better specification of the cost function pagter and therefore to a improved
model response. Another extension is the inclusibrstructural change in the
“baseline” projection, which would imply estimatinghe changes of the
representativeness factor (humber of holdings ifaran type) over time. The
development of such an approach has to be lefufore research.
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