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Abstract

Geodetic VLBI delivers baseline length and Earth orientation parameter measurements, which offer the

most viable and precise way to study Earth crustal and core dynamics and to support space navigation.

The precision of these geodetic and astrometric measurements is degraded by instrumental errors of which

polarization leakage is one of the larger.

Its effect can be corrected in the data provided one knows the leakage characteristics of the stations.

In this work I introduce the concept of polarization, why it needs to be considered in the geodetic analysis

and present a VLBI experiment that measured the polarization leakage at 16 geodetic and VLBA stations

over the frequency range 8212.99 MHz to 8932.99 MHz and 2225.99 MHz to 2365.99 MHz. I describe

resulting polarization leakage measurements and the algorithm that was implemented to correct for their

effect on the geodetic delay measurables. I applied the correction for polarization leakage to a routine

geodetic VLBI experiment and check for the resulting improvement.

From the measured leakage terms, one would expect polarization leakage to affect the group delay

measurements by 0.5 ps to 7 ps, depending on the stations involved in the baseline. This proved to be

below the statistical noise in a single VLBI experiment and so the improvement from the correction could

not be detected.

Polarization leakage was found, unespectedly, not the dominant source of non-closing errors.

Zusammenfassung

Die durch geodätisches VLBI ermittelten Basislinenlängen und Erdrotationsparameter bieten die praezis-

este Methode, Erdkrusten- und Kerndynamik zu studieren und Weltraumnavigation zu unterstützen.

Polarisationsverluste gehören zu den instrumentellen Störungen, die die Präzision der geodätischen

und astrometrischen Messungen verringern. Ihr Effekt kann in den Daten korrigiert werden, vorausgesetzt

man kennt die Verlust-Charakteristika. In dieser Arbeit stelle ich kurz das Konzept der Polarisation vor

und warum sie in der geodätischen Analyse berücksichtigt werden muss. Ich stelle RD0705 vor, ein

Projekt zur Messung der Polarisationsverluste an einigen geodätischen VLBI Stationen und am VLBA.

Ich beschreibe die Beobachtungsstrategie, die verwendet wird, um die Verluste zu messen, den Prozess

der Korrelation, die Datenreduktion und die erzielten Ergebnisse.



Chapter 1

Introduction

1.1 Radio Interferometry and its Geodetic Application

Very long baseline interferometry (VLBI) is a radio interferometric technique used in astronomy to study

the sky at radio wavelengths (i.e. from a wavelength, λ, of about 1 mm to 10 m ) with an extremely

high angular resolution. Thanks to the high resolution compared to that of single radio telescopes, radio

interferometry enables the study of small structures within the cores of the quasi stellar radio objects

(quasars), gives precise positions of the quasars on the sky, and gives very high accuracy station positions

for geodesy. VLBI techniques pay a lot of attention to the geometry and can measure accurately the

arrival time of the wavefronts at the different radio telescopes. Because of this, this technique can be

used to localize the position of the stations within a few millimetres. These measurements are used to

study plate tectonics, earth rotation, polar motion and other geophysical phenomena. The use of VLBI

in geodesy is fundamental because it is one of the few techniques that is referenced to an approximately

inertial frame: the one defined by the quasars, which are effectively at infinite distance from the observer

and hence irrotational. Only VLBI and ring laser gyroscopes can keep trace of the orientation of the spin

axis of the earth and of the variation of the rotation of the earth over the long term.

The geodetic observable obtainable from VLBI measurements is the difference in propagation time of

electromagnetic radiation from the quasars to the antennas (group delay). Within the past 35 years the

precision of the geodetic measurements has improved by a factor 100, from metre precision (Hinteregger

et al 1972) down to a few millimetre precision (Niell et al 2007) opening possibilities for geophysicists

to study the earth interior dynamics and climatologists to study the climate (Chao 2004). Still, the

requirement to increase the precision drives geodesists to eliminate, where possible, factors that hinder

their goal of reaching the sub-millimetre level (Niell et al 2007). Among these factors, the primary

limitations come from the atmospheric and ionospheric refraction, source structure and instrumental

effects such as polarization leakage (D-term).

1.2 Past Studies

That polarization leakage affects the VLBI measurements has been known for more than a decade but

both the geodetic and astronomical communities have conducted only a very few studies to either model

theoretically or measure the contamination of the observables by polarization leakage. Rogers (1991) in

his brief theoretical work, adopted a nominal value for polarization leakage of -15 dB (corresponding to

a leakage of about 3 % of the power from one polarization into the other) and estimated from it, for

unpolarized radio sources, a group delay error of the order of 14 ps (4.2 mm) or less. For 10 %-polarized

radio sources typically an extra 8 ps (2.4 mm) error was determined assuming that the polarization

leakage introduces a phase gradient over a 360 MHz bandwidth. This work does not permit correction of
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polarization leakage on the individual geodetic stations because it did not make any measurements and

instead used a nominal worst case leakage.

Corey and Titus (2006) measured the polarization leakage of the antennas of the Very Long Baseline

Array (VLBA) and found them to be less than -20 dB at both 2.3 GHz (S-band) and 8.4 GHz (X-band),

so the leakage is less than 1 % of the power from one polarization into the other. They estimated from

that a maximum of 1.0 ps (0.3 mm) multiband delay (MBD) error at X-band and a maximum of 2.2 ps

(0.7 mm) MBD error at S-band. At a few geodetic sites, they measured the polarization leakage to be

typically greater than -20 dB, leading to MBD errors between 2 ps (0.6 mm) and 9 ps (2.7 mm) at X-band.

They observed using six VLBA antennas for 8 hours observing 16 frequencies, four at a time and derived

the leakage terms for these stations. Then those VLBA stations and ten geodetic stations observed for

another 16 hours. In the analysis they applied the leakage corrections to the VLBA stations to make

them effectively leakage free. Then they used the observations of radio sources to derive the leakage at

the geodetic stations acknowledging that any intrinsic source polarization would contaminate the leakage

measurements. Of these 10 geodetic stations, only four have the value of the leakage published and of

these four, three have unfortunately been decommissioned since then.

Another early attempt to measure the leakage characteristic for geodesy, was made by Petrov in

19981. Petrov added three scans to the end of the experiment Europe46 to derive leakage and conducted

a dedicated experiment (BRD01) but the results were never properly published.

In these investigations the errors caused by the polarization leakage appeared to be small at that

time, but are now significant compared to the target accuracy of 1 mm set as the goal for the VLBI2010

project (Niell et al 2007).

In an astronomical experiment, Massi et al (1997) measured the variation of leakage amplitude with

frequency using the European VLBI Network antennas. These changes in amplitude caused a reduction

in dynamic range (peak to rms ratio) in images made using these antennas compared to images made

using the VLBA antennas. The measured leakage amplitudes are shown in Figure 1.1. This was a

purely astronomical work and did not consider the effects of the leakage on the delay measurement. In

a later work (Sorgente and Massi 1997) developed the theoretical framework showing the effects of the

polarization leakage phases on VLBI observables, but without any further exploitation.

The need for new measurements arose because of increased accuracy requirements and because in

the previous studies only approximate values were established. The calibrators were assumed to be

unpolarized, the sources were not imaged, the bandwidth spanned for the geodetic antennas by Corey

and Titus (2006) was only 360 MHz of the 720 MHz available at X-band, and some stations upgraded

the receivers since when those measurements were made.

1.3 The New Project

The aim of this project was to investigate at what level the group delay measurements are affected by

polarization leakage, which is one of the biggest known instrumental effects, and to develop, implement

and demonstrate a procedure for the correction of polarization leakage effects. The results showed that

the leakage error is smaller than the value obtained by Corey and Titus (2006) and Rogers (1991) and

that there are larger sources of error that contaminate the delay that should be dealt with first.

In this study I carried out a 24 hour observing session with 16 IVS and VLBA stations and analyzed the

data assuming that the observed sources could be polarized and therefore I had to produce images of the

sources to determine simultaneously the source structure, the intrinsic polarization and the polarization

leakage. Hence I covered the full geodetic wide-band from 8212 MHz to 8932 MHz at X-band and from

2225 MHz to 2365 MHz at S-band. I determined the polarization leakage covering the full bandwidth

in 16 MHz steps, for better interpolation of the leakage vectors across the whole bands and in case the

geodetic frequency sequence is changed in the future. This study established a procedure for high-quality

1http://astrogeo.org/petrov/projects/plrz/plrz.html
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Figure 1.1: Polarization voltage leakage amplitudes of the European VLBI Network (EVN) antennas vs frequency

(Massi and Aaron 1997).

measurements and correction of the leakage. It applied the corrections to a routine geodetic VLBI network

observation to verify the improvement. The study is based upon a subset of antennas, but the procedure

can be applied to the whole geodetic network (at a later stage).



Chapter 2

Introduction to Very Long Baseline

Interferometry

2.1 VLBI Technique

The technique of very long baseline interferometry (VLBI) can be used to realize a reference frame defined

by distant radio sources (quasars). Since quasars appear to be stationary with respect to the earth on

the scale of a human life time, the reference frame defined by them is in good approximation inertial and

it is the best known inertial frame. Geodesy requires the use of an inertial frame to measure position and

motions of the earth and its long-term variation, therefore VLBI is a fundamental technique for geodesy.

In VLBI widely separated radio telescopes are used to form an interferometer array that can form images

or measure radio source positions with very high angular resolution. The stations have independent clocks

and data are recorded for later playback and correlation. Very precise atomic clocks (hydrogen masers)

are required to keep track of time to maintain coherence among the electronics of the various antennas

to permit coherent integration to build up signal-to-noise ratio. They are required also because, at the

correlators, the peak of the interference pattern can be searched for within a delay window of only a few

microseconds (maximum 20 µs, due to hardware limitations). Since there is no physical link among the

antennas, they can be located far away from each other. After recording, the data are sent to a correlator

where the signals coming from the various telescopes are superimposed and the interference pattern is

reconstructed. If one maps the interference pattern onto a coordinate system representing the sky, then

one obtains an image of the source observed. The more telescopes that participate in the observation, the

more detailed is the image. It is possible to quantify the resolution (i.e. the minimum angular distance

between distinguishable points on the sky) obtained by imaging devices from the Airy formula (Airy

1835) which is

sin Θ = 1.220 · λ
D

(2.1)

where Θ is the angular resolution in radians, λ is the wavelength of the radiation and D is the diameter of

the lens, which in radio interferometry corresponds to the distance between the two telescopes in the array

(i.e. the maximum baseline length). It is clear from Equation 2.1 that the further apart the telescopes,

the higher the angular resolution. For astronomers this means more detailed images of the radio source

studied, for geodesists this means higher accuracy in determining earth orientation parameters (EOP),

plate tectonics, polar motion and other geophysical phenomena (Robertson 1991).

9
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2.2 Response of an Interferometer

Two spatially separated telescopes observing a quasar receive the same wavefront at two different times

due to the geometry as shown in Figure 2.1. In this paragraph I will treat the signal as quasi-monochromatic

since real broad-band signals can be considered as sum of quasi-monochromatic signals. The path length,

and hence the number of turns of phase, that the signal has gone through from source to antenna

is different for the two antennas. After the signals have been received by the two antennas they are

cross-multiplied against each other and integrated in time (the signals are cross-correlated). Before cross-

multiplication the signals are V1 = V0 cos(2πνt) and V2 = V0 cos(2πν(t − τg)), where V1 and V2 are

the sinusoidal voltage responses of the antennas to the incoming electric field, V0 is the amplitude, ν is

the frequency and τg is the geometrical delay as described in Figure 2.1. After cross-multiplication and

integration the signal is

〈V1 · V2〉 = V 2
0 · cos(2πντg) (2.2)

The output of the correlator is a cosinusoid as the source moves, since the argument of the cosine involves

the geometrical delay, which changes while the source is moving in the sky as visible in Figure 2.2. In

the case that the argument of the cosine is (2n+1)π
2 where n ∈ Z, then the result of Equation 2.2 is zero.

Thus the information on the amplitude of the signal, which in turn is related to the source strength, is

lost. To recover this information, one would build complex correlators, which split the output from each

antenna into two copies and introduce a 90◦ shift in the signal phase in one of the two and cross correlate

as above. The output of this 90◦ shifted correlator channel is a sinusoid as the source moves. The zeros of

the sine channel are separated in phase by 90◦ with the zeros of the cosine channel, which guarantees no

loss of information. Therefore the response of an interferometer is constituted by two terms: a sinusoid

and a cosinusoid both of which are used for reconstructing the source position and its intensity.

In the real case the number of turns of phase depends not only on the geometrical delay, as consid-

ered above, but also on the tropospheric refraction, the ionospheric refraction and on telescope-based

phenomena, like different cable path lengths. The total phase delay in radians, φT, can be expressed as

the sum of all these terms, as

φT = 2πν(τg + τn) + τiono(ν) (2.3)

where τg is the geometrical delay in seconds, τn is the non-dispersive delay component due to the tro-

posphere and the instrumental effects and τiono is the frequency-dependent delay introduced by the

ionosphere (Fomalont 1999).

2.3 The Geometrical Delay: The Fundamental Geodetic VLBI

Observable

The total phase delay is, unfortunately unusable for geodesy over wide angles in the sky, since this

quantity is calculated by the correlator modulo 360◦ and has ambiguities (φT = φT + 2nπ, with n ∈ Z).

Geodesy instead uses the group delay, τgd, which is the first derivative of the phase delay expressed in

turns of phase with respect to frequency given by

τgd =
1

2π

dφT

dν
= τg + τn +

d

dν
(τiono(ν)) (2.4)

where τgd is the group delay. In this way, the ambiguities are avoided at the expense of precision, which

is higher for the phase delay that for the group delay.

The group delay still contains a dispersive contribution coming from the ionosphere that needs to

be removed. Geodetic VLBI measurements are made at two frequencies, from which the ionospheric
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Figure 2.1: Simplified representation of an interferometer (Thompson 1999). Only the geometrical delay (τg)

is shown, therefore the response of this interferometer, r(τg), is expressed as a function of the geometrical delay

only. The geometrical delay is also the major contribution to the total phase delay. The correlator depicted shows

only the cosine correlator channel.

contribution can be cancelled (Fomalont 1999). The term due to the troposphere is derived using the

group delay measurements themselves and will be treated in more detail later as one of the major sources

of error in determining precise delays.

The basic idea of how baseline length and source position are extracted from the group delay is

illustrated in Figure 2.2. For simplicity I will consider only the geometrical delay. The top panel illustrates

the apparent motion of the quasar above two antennas forming the baseline of length b. As the source

rises, the delay is maximum. As the source transits over the telescopes the delay is zero. As the source

sets in the west, the delay reaches again a maximum but with the opposite sense from that when the

source rose. The geometrical delay is the scalar product ~b ·~s where ~s is the direction to the source and
~b is the vector describing the baseline. The scalar product can be expressed as a function of the angle

(Θ) between the baseline and the source direction as b cosΘ. The bottom panel represents how the delay

changes with time. The curve is a sinusoid: at time zero the source rises and the delay is maximum

(cosΘ = 1). Six hours later, the source is at zero delay (cos Θ = 0) and 12 hours after rising, the source

sets and the delay is negative maximum (cosΘ = −1). In the two dimensional case, one can find the

baseline length from the amplitude of the sinusoid in Figure 2.2. From the phase of the sinusoid, one

can find a combination of the source position and the baseline orientation. From the vertical offset of the

sinusoid one can find the clock offset due to timing errors between the antennas. In reality one would

perform more observation than the number of parameters to be estimated, in this way the problem is

overdetermined and can be solved by least square parameter estimation (Sovers et al 1998).
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Figure 2.2: Top: motion of a source above two telescopes. Bottom: geometrical delay versus time for the

situation in the top plot. The delay describes a sinusoid while the source moves over the two antennas: from

the amplitude of the sinusoid it is possible to reconstruct the baseline length, from the phase of the sinusoid it is

possible to reconstruct the source position and the baseline orientation and from the vertical offset of the sinusoid

it is possible to reconstruct the clock model offset.
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2.4 VLBI Hardware Description

In order to understand technical implications addressed in later chapters, I will shortly introduce the

signal path from the antenna to the recorder. There are different kinds of VLBI hardware systems built

by different groups at different times, but all are more or less compatible with each other. The most

commonly used types are presently the VLBA, the Mark IV, the hybrid VLBA4 and the Japanese K5.

Figure 2.3 shows the analogue signal path along with the data acquisition rack for a VLBA antenna

(Thompson 1993) as representative of a typical VLBI system. The incoming electric field in free space

( ~E = E0 cos(ωt)) is first converted into a voltage on cables using an antenna (V = V0 cos(ωt)), it passes

through amplifiers and bandpass filters (V = gV0 cos(ωt), where g is a gain factor coming from the

amplification), is multiplied (mixed) against a local oscillator (LO) whose signal is (VLO cos(ωLOt), with

ωLO ≈ ω to become V = V0VLO

2 [cos(ω + ωLO) + cos(ω − ωLO). Finally it passes through a low pass filter

leaving V = V0VLO

2 cos(ω − ωLO).

The downconversion to lower frequencies is done because the performance of subsequent circuitry is

better at low frequencies (Brophy 1990), the selectivity of filters is improved enormously since the filters at

low frequency can have large fractional bandwidth unlike if filtering at the original radio frequency (RF),

and the attenuation during signal transmission through cables is much reduced1. The part described

above is in the receiver cabin at the antenna.

The signal is transported from the receiver cabin to the rack either via four IF cables (for the VLBA

stations) or via two intermediate frequency (IF) cables (for the Mark IV stations). Four cables allow for

two frequencies and two polarizations simultaneously, as needed for this experiment.

Upon arrival at the control room the signal passes through IF distributor modules, which amplify the

signal and split it eight ways per IF cable. The Mark IV station has the additional complexity that four

of those output passes through a band-pass filter leaving signals from 96 MHz to 224 MHz (IF1 low)

and the other four pass through a band-pass filter leaving signals from 216 MHz to 504 MHz (IF1 high)

(Clark and Rogers 1982). Another complication in the Mark IV rack is the later addition of a second

IF distributor module (IF3) to expand the spanned bandwidth from 360 MHz to 720 MHz for greater

precision in the delay measurement. The 8.4 GHz (X-band) IF signal is split into two signals, one of which

feeds the IF1 distributor and the other feeds the IF3 distributor. The IF3 output is split four ways. From

the IF distributors the signals pass to the baseband converters (BBC), where they are downconverted

from IF to baseband frequencies. The downconversion is performed with sideband-separating mixers

and tuneable LOs, each of which yields two outputs, one for the upper sideband and one for the lower

sideband. The signal is then low-pass filtered and time sampled with one or two bit resolution, formatted

into data frames with time stamps by the formatter and recorded onto magnetic discs with, e.g., Mark 5A

or Mark 5B recorders.

The VLBA4 is composed of a VLBA rack and a Mark IV formatter, replacing the original VLBA

formatter.

1attenuation proportional to the frequency to the power of two, Arndt 1996
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Figure 2.3: Block diagram of a VLBA analogue signal path including the data acquisition rack, at radio frequency,

intermediate frequency and baseband frequency (from Thompson 1993).



Chapter 3

Polarization Leakage Effects on the

Delay

3.1 Concept of Polarization

The equation describing a propagating monochromatic electromagnetic wave in space can be derived from

Maxwell’s equations (Jackson 1998) and is

~∇2~E = c−2 ∂
2~E

∂t2
(3.1)

where ~E is the electric field of the wave and c is the speed of light. I will confine myself to study only

the electric field of the wave, since the receiving antennas commonly used in VLBI respond only to the

electric component of the incoming electromagnetic wave. In free space, far enough from the source of

the emitted radiation, one of the possible solutions of Equation 3.1 is a plane propagating wave, e.g.,

along the z axis:

~E(x, y, z, t) = ~E0e
−i(kz−ωt+δ) (3.2)

where k is the propagation constant in m−1, ω is the angular frequency in rad s−1 and δ is a constant

phase in radians. Projecting the electric vector (Equation 3.2) onto two perpendicular axes, x and y,

that are perpendicular to the direction of propagation of the wave, z, we have the system:







Ex = E1 cos(kz − ωt+ δ1)

Ey = E2 cos(kz − ωt+ δ2)

Ez = 0

(3.3)

where E2
1 + E2

2 = E2
0 . Equation 3.3 represents the case illustrated in Figure 3.1a.

If we consider the motion of the tip of the electric vector with time at a fixed position in space, we

see that the tip of ~E describes a circle (Figure 3.1b), or oscillates along a line (Figure 3.1c), or describes

an ellipse (Figure 3.1d). The formula describing the locus traced out over all time is

(
Ex
E1

)2 + (
Ey
E2

)2 − 2
Ex
E1

Ey
E2

cos(δ1 − δ2) = sin2(δ1 − δ2) (3.4)

Equation 3.4 describes an ellipse. If E1 = E2 and simultaneously δ1 − δ2 = π
2 (2m + 1) (with m =

0,±1,±2, ...), then Equation 3.4 describes a circle. If either E1 = 0 or E2 = 0 or δ1 − δ2 = mπ (with

m = 0,±1,±2, ...), then Equation 3.4 describes a line (Rohlfs and Wilson 1996). More generally, the

orientation of the electric vector will change randomly with time and in this case the wave is unpolarized.
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Figure 3.1: Figure (a): cartoon of the electric field component of a plane monochromatic electromagnetic wave

propagating along the z direction. Panels (b), (c) and (d): movement of the tip of the electric vector drawn in

(a) after having eliminated the term ωt and having held the term kz constant in the system of Equations 3.3 and

representing respectively circular (b), linear (c) and elliptical (d) polarization states achieved by adjusting the

phase terms δ1 and δ2 in Equation 3.3 (Cotton 1999).

In any of the cases above, the vector describing the electric field can be expressed as ~E = Ex · î+ Ey · ĵ,
where î and ĵ are unit vectors in the orthonormal base of R

2 and Ex and Ey are the components of ~E

along the two axes described by î and ĵ. In a simple antenna, two perpendicular dipoles lie along these

two axes and define the so-called vertical and horizontal polarization states. Another simple antenna

selects two perpendicular polarization states that are left circular polarization (LCP) and right circular

polarization (RCP). Either system describes fully the electric field vector and are interchangeable without

loss of information (Jackson 1998).

The radiation from radio astronomical sources is found to be either unpolarized or only weakly linearly

polarized, which means that the radiation has either no statistical tendency or only weak statistical

tendency to favour one of the two polarization states and, further, that its phase is random from one

instant of time to the next.

3.2 Limitations of Geodetic VLBI: Atmosphere, Source Struc-

ture and Instrumental Effects

Group delay measurements are degraded by the presence of errors due to the ionosphere, the troposphere,

the electronics of the telescopes and the structure of the source. These effects will be treated in the

following sub-sections.

3.2.1 Ionosphere

The ionospheric contribution varies with frequency and changes with time of day, season and solar

activity. The ionospheric contribution is dealt with by observing two widely-separated frequencies since
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the ionospheric delay is proportional to the reciprocal of the second power of the frequency: τiono ∝ 1
ν2

(Fomalont 1999).

3.2.2 Troposphere

The atmospheric contribution is of the order of 2.3 m (or 8 ns) at the zenith, of which 2.2 m are due

to the dry constituents (mostly refraction due to oxygen and nitrogen molecules) and 0.1 m is due to

water vapour. The atmospheric delay is estimated from the VLBI group delay measurements by fitting

station-based atmospheric delay terms to the data in the form of approximately Z
sin(E) , where Z is the

zenith delay and E is the elevation angle (Carilli et al 1999).

3.2.3 Source Structure

Few sources are truly ideal point sources as required for geodesy when observed with the high resolution

of VLBI (Gontier and Britzen 1994; Tornatore and Charlot 2007).

The effect of source structure on geodetic observables can be understood from the following consider-

ations. It is possible to consider an extended source as sum of point-like sources, each of which produces

a response in the correlator output that has a phase related to that component’s position. The correlator

performs a vectorial sum of all the visibility vectors from all the components of the source, each of which

has a delay that differs slightly from that of a single point source at the core position resulting in a

systematic delay measurement error.

The position of the source at the two frequencies used for geodesy has been seen during dedicated

experiments to be different (Porcas 2009). This effect is not allowed for in present-day geodetic source

position determinations leading to a small error that propagates into an error of the baseline length.

3.2.4 Instrumental Effects

Instrumental effects can degrade the delay determination by typically up to 17 ps (Rogers 1991), which

is significant compared to the accuracy of the geodetic baseline length determination, presently of about

30 ps (1 cm) and is large compared to the target for VLBI 2010 of about 3 ps (1 mm) (Niell et al 2007).

Instrumental effects that can degrade the correlator phases can be grouped into three categories: the

error coming from the electronics, the error coming from the antenna and digital processing algorithmic

approximations. Among the errors produced by the electronics are

• error caused by the filters, whose group delay varies with temperature,

• error caused by spurious signals, which are narrow-band signals coherent with the calibration signal

used to detect and remove cable-related errors (phase cal) and having its same frequency,

• error caused by the saturation of the amplifiers, and

• error caused by the polarization leakage, which is a spurious signal entering in the signal path,

but coming from the wrong polarization and since, as it will be described below, it is frequency

dependent it contaminates the delay measurements.

• error caused by the algorithmic approximations, which are timing error in the correlator and quan-

tization errors.

3.3 Polarization Leakage

The polarization leakage is described mathematically using a vector quantity called D-term, whose di-

mensionsless amplitude describes the fractional voltage leakage from one polarization into the other and



CHAPTER 3. POLARIZATION LEAKAGE EFFECTS ON THE DELAY 18

whose phase (in degrees) is due to the electrical length1 of the leakage path.

The polarization leakage corrupts the true cross correlation leading to a measured cross correlation

that differs from the true one and therefore the leakage corrupts the delay, as shown in figure 3.2.

The effect of polarization leakage on the parallel hand fringe visibility measurement2 is given by the

Jones matrix (Cotton 1999)

(

V D
j (RCP)

V D
j (LCP)

)

=

(

1 Dj(LCP)

−Dj(RCP) 1

) (

Vj(LCP)

Vj(LCP)

)

(3.5)

where j = 1, 2 are the two antennas in the baseline, V D(RCP) and V D(LCP) are the complex time series

of the voltage response of the antenna, including the leakage term from the other polarization, Vi(RCP)

and Vi(LCP) are the complex uncontaminated time series and Di(RCP) = dre
iφ1 and Di(LCP) = dle

iφ2

are the D-terms, where dr and dl are the amplitude of the D-term and φ1 and φ2 are the phases of the

D-terms. The second Equation of the matrix in 3.5 is analogous to the first Equation, but with opposite

polarization. Since geodesy uses only RCP, I will continue describing the cross-correlation case for the

RCP versus RCP.

After performing the parallel-hand cross correlation,

〈V D
1 (RCP)V D

2 (RCP)〉 = 〈V1(RCP)V2(RCP)〉 +D1D2〈V1(LCP)V2(LCP)〉 (3.6)

The cross terms D2(LCP)〈V1(RCP)V2(LCP)〉 and D1(RCP)〈V1(LCP)V2(RCP)〉 do not appear in Equa-

tion 3.6 as they equal zero for the source OQ208 since it is unpolarized, causing V1(RCP) and V2(LCP)

to be uncorrelated. Thus the effect on the visibility is second order in Dj and since the typical values of

the D-term amplitude for this experiment range between 0.01 and 0.1 the effect of the leakage is quite

small. Expanding Equation 3.6 using the phases and the amplitudes, following (Sorgente and Massi 1997)

〈V D
1 (RCP)V D

2 (RCP)〉 = v1v2e
i(ψ1−ψ2)[1 +D1D

∗
2e

−2i(ψ1−ψ2)] (3.7)

where v1 and v2 are the voltage amplitudes, ψ1 and ψ2 are the parallactic angles of the source as seen from

the two antennas and D is the D-term. The ‘*’ represents the complex conjugate. The term of interest

for geodesy is the visibility phase, but what is measured is corrupted by the presence of the D-term. The

corrupting term in Equation 3.7 is the second term in square parentheses, and can be further expanded

as

[D1D
∗
2e

−2i(ψ1−ψ2)] ≈ (d1d2 cos[(φ1 − φ2) − 2(ψ1 − ψ2)])e
id1d2 sin[(φ1−φ2)−2(ψ1−ψ2)] (3.8)

(Massi et al 1997). From Equation 3.8, it is possible to quantify the corrupting visibility phase rotation

angle, θ12, as

θ12 = d1d2 sin[(φ1 − φ2) − 2(ψ1 − ψ2)] (3.9)

where d1 and d2 are the amplitudes of the D-term respectively of antenna 1 and antenna 2 and φ1 and

φ2 are the D-term phases. This is the angle that the visibility phases must be de-rotated to undo the

effects of polarization leakage.

The leakage varies with frequency and so the corruption of the visibility phase varies with frequency

which in turn corrupts the delay.

Among the errors produced by the antenna and the feed, the largest not yet corrected is produced by

the polarization leakage. Under certain assumptions about feed performance, Rogers (1991) estimated

1To explain electrical length one can draw a parallel to multi-pathing in GPS, in which the signal enters the antenna

along the direct line of sight and also along indirect lines of sight due to reflections off surrounding objects. The signal

arriving along the reflected path has travelled a greater distance or equivalently has travel along a path with a greater

electrical length and so comes in with a different phase relative to that of the signal arriving along the direct path
2Parallel hand fringe visibility is a VLBI termonology to describe the cross-correlation between the RCP-RCP signals

and LCP-LCP signals. The cross-correlation between RCP-LCP and LCP-RCP is the measurement between cross hand

fringe visibility.
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Figure 3.2: Plot of visibility in the real vs imaginary plane, for one scan. The vector labelled ’measured

cross correlation’ represents the measured visibility at the correlator, which is corrupted by the polariza-

tion leakage. The vector labelled ’cross correlation term due to leakage’ is the leakage term. The vector

labelled ’true cross correlation’ is the true visibility - the one that is wanted.

a group delay measurement error from polarization leakage of the order of 14 ps. In contrast, the few

values measured to date are typically in the range 2 ps to 9 ps at 8.4 GHz (X-band) (Corey and Titus

2006). Even at this lower level, the leakage error is still a major contributor, if not the dominant one, to

the total instrumental error in geodetic VLBI.

3.4 Phase Closure

Before entering into the detail of the effects of polarization impurities on the geodetic observable, it is

important to define the phase closure since they will be used in the later treatment. The signal coming

from one antenna can be expressed in exponential form as V= Aeiγ , where V is the signal in volt, A is

the amplitude in volt and γ is the phase in radians (similar expressions hold for antennas B and C). If

we consider a triangle of antennas, the cross-correlation products between the signals from each pair of

antennas will be

〈VA · VB〉 = ABei(γA−γB) (3.10)

〈VB · VC〉 = BCei(γB−γC) (3.11)

〈VC · VA〉 = CAei(γC−γA) (3.12)

where A, B and C represent the three different antennas, as illustrated in Figure 3.3. Considering the

three baselines and considering only the cross-correlation phases of Equations 3.10, 3.11 and 3.12

γAB = γA − γB (3.13)

γBC = γB − γC (3.14)

γCA = γC − γA (3.15)

If I sum these baseline phases around the triangle, ABC, I obtain the closure phase

γAB + γBC + γCA = (γA − γB) + (γB − γC) + (γC − γA) = 0 (3.16)
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Figure 3.3: Schematic diagram illustrating phase closure.

from which one can see that all the station-based phase errors cancel in the closure because they contribute

in a positive direction on one baseline and a negative direction on the other baseline. Station-based errors

that close are, for example, atmosphere and clock offsets. Phase errors that do not close are caused by

source structure, bandpass mismatch errors and polarization leakage. I will demonstrate now why the

polarization leakage does not close since the determination of the leakage is the main goal of this thesis,

and the same mathematics applies to non-closure due to source structure and bandpass missmatch. For

simplicity I will consider an unpolarized source. Suppose that the observer wants to use only the signal

coming from the right circular polarization (RCP) channel, then in the presence of leakage the signal can

be expressed as

V = V RCP + V LCP (3.17)

where V RCP is the signal and V LCP is the unwanted polarization leakage coming from the left circular

polarization (LCP). If neither, or only one of the antennas on a baseline is affected by the polarization

leakage, then the cross-correlation coefficients will not be affected, but if two antennas are affected by

leakage, then the closure phase will no longer be zero. To see this, suppose that the antenna signals are

VA = V RCP
A + ~dA · V LCP

A (3.18)

VB = V RCP
B + ~dB · V LCP

B (3.19)

VC = V RCP
C + 0 · V LCP

C (3.20)

where ~dA and ~dB are the vectors describing the non-zero leakage terms respectively for antenna A and

B (D-terms). In this example I assume that antenna C has no polarization leakage (i.e. ~dC = 0). The

cross-correlation product between antennas A and B is

〈VA · VB〉 = 〈V RCP
A · V RCP

B 〉 + 〈V RCP
A · ~dB · V LCP

B 〉 + 〈V RCP
B · ~dA · V LCP

A 〉 + 〈~dA · V LCP
A · ~dB · V LCP

B 〉(3.21)

of which:

〈V RCP
A · V RCP

B 〉 (3.22)

is the true cross-correlation and

〈V RCP
A · ~dB · V LCP

B 〉 = 〈V RCP
B · ~dA · V LCP

A 〉 = 0 (3.23)
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because there is no statistical coherence between RCP and LCP channels, but

〈~dA · V LCP
A · ~dB · V LCP

B 〉 6= 0 (3.24)

Equation 3.21 can be written for every permutation of the three antennas. Considering only the phases,

from Equation 3.21 I have

γ〈AB〉 = γRCP
〈AB〉 + φleak

〈AB〉 (3.25)

γ〈AC〉 = γRCP
〈AC〉 (3.26)

γ〈BC〉 = γRCP
〈BC〉 (3.27)

where the phase labelled ‘leak’ is the unwanted contribution from the leakage term. Equations 3.26 and

3.27 do not carry any leakage terms because antenna C is leakage free. The closure phase is non zero

leading to an error in the determination of the group delay. This demonstration holds also for the signals

coming from the LCP channel and leaking into the RCP channel. Each phase measurement on each

baseline gives a position circle on the sky on which the source lies (this concept is similar to that for

GPS, or sextant position determination except that the position circle is on the Earth instead of on the

sky). The circles should intercept at a point that corresponds to the source position, but if non-closing

errors are present, then one or more of the circles will be slightly displaced from the correct position

causing the intersection not to occur at a point but rather in a position triangle whose area represent a

position uncertainty of the source which propagates into an error in the baseline length.

Effects that produce station based offsets and close around a triangle do not affect the position triangle

since they are estimated during the geodetic analysis during the fit for the clock offset (see Figure 2.2).

The effect of polarization leakage does not close around a triangle and so it cannot be absorbed in the

estimate of the clock offset and needs to be corrected. The lack of corrections would lead to systematic

errors.

3.5 Polarizers and their Effects on the Geodetic Observables

VLBI, like most forms of interferometry, needs to preserve both the phase and the amplitude of the

incoming radiation to perform a measurement (Thompson et al 2001a). In radio astronomy there are

several kinds of receiving systems that can be used. Some of these systems preserve only the amplitude

information of the incoming radiation (like the bolometers), and some others preserve both amplitude

and phase of the incoming radiation (like a dipole antenna). Like GPS antennas, also VLBI antennas

couple the radiation coherently to the amplifiers and receiver.

A dipole responds to linear polarization (Hertz 1889), therefore by using only one dipole, one would

receive in general only part of the incoming electric field. By using two dipoles, one can reconstruct the

whole information of the incoming electric field, and so maximize the signal-to-noise ratio (SNR).

Since any device that separates out two polarization states is called a polarizer, the case of two dipoles

is the most simple form of polarizer that one can build.

However, the linear polarizer is not well suited for VLBI because dipoles at a station are generally not

parallel to the dipoles at another distant station (Figure 3.4). The lack of parallelism causes loss of SNR

in the cross-correlation. To avoid this situation, VLBI uses circular polarization (CP) instead, since the

lack of parallelism introduces simply a phase rotation of the cross-correlation coefficients, which can be

removed in the post-correlation data analysis.

One out of the various kinds of polarizers in use in VLBI is the septum polarizer. I will, for simplicity,

consider the incoming radiation as pure RCP, thus having the same amplitude in the x and y directions

and a 90◦ phase shift between the x and the y component of the wave. The wave encounters the septum

polarizer, which contains a metal fin within the waveguide as shown in Fig. 3.5. The component of the

electric field perpendicular to the fin (Ex) is divided, due to the boundary conditions on the conducting
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Figure 3.4: Sketch of two fictitious telescopes (red circle) and their dipoles (red perendiculars lines) as seen from

an observer located in space. Linear dipoles will generally not remain parallel throughout the array (unless the

dipoles can be rotated axially).

fin, into two electric field regions which have the same intensity and orientation as Ex. The component of

the electric field parallel to the fin (Ey) is divided, due to the boundary conditions on the conducting fin,

into two electric field regions which have the same intensity as Ey but the orientations are rotated into

the horizontal plane in the clockwise direction in one region and in the counterclockwise direction in the

other region. The phase velocities of the Ex and Ey components differ from each other while propagating

from the polarizer input to the dipole because the septum divides the waveguide into regions that have

different dimensions in the x and y directions (x is halved, y remains the same). These dimensions and

the length of the septum are chosen to introduce a 90◦ phase shift between the Ex and Ey components.

When those fields (i.e. Ex and the rotated Ey fields with 90◦ phase shift) superimpose at the dipoles, they

interfere constructively at one dipole and destructively at the other dipole. This logic can be repeated for

pure LCP and the output power will appear at the other dipole. The general case is a mixture of RCP

and LCP input, which will be separated to produce outputs on both dipoles. In the real case, a band

of frequencies is observed and, as developed in Fig. 3.6, the theoretical phase difference inserted by the

polarizer between the two linear polarizations measured at one dipole output is an accurate 90◦ at only

two frequencies. In this broad-band case, the septum polarizer will not separate the two polarizations

with perfect purity at most frequencies and some contamination from the unwanted polarization will add

algebraically to the signal.

The effect of leakage is to perturb the visibility phase in one polarization with a small amount of signal

leaking from the other polarization. The leakage and hence the phase perturbation is frequency dependent

and so perturbs the delay (Equation 3.28). For reference, delay is related to phase and frequency by:

τ =
dφ

dν
(3.28)

where τ is the group delay in second, φ is the phase in turns and ν is the frequency in hertz.
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Figure 3.5: Top: schematic diagram of a septum polarizer. Bottom: the field pattern in cross section across the

septum polarizer at the input, half way and at the output, courtesy of S. Srikanth.
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Figure 3.6: Modelled phase response of an MPIfR septum polarizer vs frequency, courtesy R. Keller. The figure

shows the difference in phase length between input and output for the x and y fields, that is the relative phase of

the Ex and rotated Ey field components at the output dipole, given Ex and Ey fields injected in phase with each

other at the polarizer input. A perfect system should deliver a constant 90◦, however deviations of up to 4◦ are

caused by the changing wavelength across the band causing an imperfect 90◦ phase shift. The curvature allows

one to optimize the design to produce a 90◦ phase shift at two frequencies. The largest fractional bandwidth

achievable with such polarizer is 16 %.

3.6 How to Measure the Leakage

Leakage is detected by the following procedure. In the absence of leakage the signals received in the LCP

channel and RCP channel are uncorrelated Gaussian noise processes and cross correlation between them

will yield no coherence. If leakage is present then some of the signal in one polarization channel will add

to the signal in the other polarization channel. By cross-correlating the contaminated LCP channel at

one antenna and the contaminated RCP channel at the other antenna one will find coherence caused by

the LCP in the LCP channel correlating against the LCP that leaked into the RCP channel at the other

antenna.

To disentangle the intrinsic polarization of a source and the polarization leakage terms, one needs a

wide parallactic angle coverage because the electric vector intrinsic to the source will not rotate as the

dipoles rotates whilst the vectors describing the leakage terms will rotate with the dipoles. The parallactic

angle is explained in Figure 3.7.

In the case of unpolarized sources, the argument above is not so important, as there is no source

polarization to be disentangled from the polarization leakage.

Geodetic stations mostly have only RCP, but measurements of the leakage for these stations are still

possible if the antenna at the other end of the baseline has dual-polarization receivers. Therefore, I used

the 10 VLBA antennas since they are among the few antennas that have dual polarization capability at S-

band and X-band and their hardware is carefully designed for VLBI observation plus 10 geodetic antennas

to measure the polarization leakage. Correlation was performed between all possible combinations of

polarization (i.e. RCP against RCP, LCP against LCP, RCP against LCP and LCP against RCP). The

appearence of the leakage in the data and the method used to correct for them will be given in the chapter

Data Reduction.
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Figure 3.7: The parallactic angle is the angle PX̂Z and is the angle between the line joining the source to the

north celestial pole (P) and the line joining the source to the zenith at the antenna (Z) where O is the observer

and X is the source on the celestial sphere. The parallactic angle varies as the Earth rotates.



Chapter 4

Observation to Measure the Leakage

4.1 Project Overview

To measure the leakage characteristic, one needs dual-polarization receivers, as explained in the previous

chapter, and to achieve that I used the VLBA antennas. To use the VLBA antennas one must write

an observing proposal, containing a detailed explanation of why the observation is scientifically relevant,

a plan of how the observation must take place, and which results can be drawn from the observation.

This proposal undergoes external review, and only if the four referees agree on the scientific relevance of

the project and robustness of the observing technique, the observing time is granted. Requests for usage

of the geodetic antennas are addressed to the international VLBI service (IVS) observing programme

committee. I wrote an observing proposal for time on the VLBA and IVS antennas and it was granted

24 hours.

The proposal’s aim was to measure the D-term variations over the wide X-band and the 2.3 GHz band

(S-band) for both IVS and VLBA antennas. I proposed to observe 10 sources during the 24 hours, of

which two main target sources were to measure the D-terms (one for the first 12 hours and one for the

second 12 hours), five backup target sources in case the first two did not deliver usable data and three

polarization position angle-calibrators. The position angle calibrators have known polarization position

angle and are required for calibrating the absolute phase offset between the two polarization channels at

the stations, if one wants to study source intrinsic polarization. The aim of this project, which was called

RD0705, was to measure polarization leakage, therefore I needed only the relative phase offset between

the two polarization channels and not the absolute phase offset. Nevertheless those sources were observed

for future possible study on the polarization of the target sources. Twelve hours per main target source

are required for sampling a wide range of parallactic angles. Although RD0705’s target sources were

selected to be unpolarized, I nevertheless scheduled complete parallactic angle coverage to encompass the

possibility that the target sources turned out to have detectable linear polarization, in which case having

the measurements span a range of parallactic angle would permit the separation of leakage effects from

source polarization effects.

The frequency scheme selected was to use 8 MHz baseband filters for both sidebands (for a total of

16 MHz per BBC), dual polarization (at the VLBA stations), and a total of eight BBCs (since that is

the number of BBCs available at each VLBA station). Thus I could observe eight frequencies and two

polarizations simultaneously: four BBCs were connected to the RCP channel and, in the case of the

VLBA, four BBCs were connected to the LCP channel. For the Mark IV stations all the eight BBCs

used were connected to the RCP channel and their frequencies were set to be the same as the VLBA

stations. I proposed to sample completely the 720 MHz radio frequency (RF) bandwidth at X-band

and 140 MHz RF bandwidth at S-band since these bandwidths are the ones spanned in the wide-band

geodetic experiments. This could be done using nearly 60 frequencies spaced 16 MHz apart in X-band

26
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and 10 MHz apart in S-band for a total of 15 frequency setups each of which observed four frequencies

at a time.

I proposed only a single epoch observation since time variability of the D-terms is not expected and

indeed leakage has been found to be stable over a period of 1.3 years (Gomez 2002). Further, data from

some VLBA monitoring programs suggest that the D-terms do not change much unless, station hardware

is changed.

I proposed to use the antennas listed in Table 4.1. This proposal was accepted and the observation

took place on day 11 of July, 2007.

The locations of the stations is shown in Figure 6.5.
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Figure 4.1: Station locations for those stations involved in RD0705. The red dots represent the VLBA antennas

and the cyan dots represent the geodetic antennas.
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antenna name Location DAR Network

Pie Town (Pt) New Mexico VLBA NRAO

Los Alamos (La) New Mexico VLBA NRAO

Brewster (Br) Washington VLBA NRAO

Fort Davies (Fd) Texas VLBA NRAO

Saint Croix (Sc) Virging Islands VLBA NRAO

North Liberty (Nl) Iowa VLBA NRAO

Owens Valley (Ov) California VLBA NRAO

Mauna Kea (Mk) Hawaii VLBA NRAO

Hanckock (Hh) New Hampshire VLBA NRAO

Medicina (Mc) Italy Mark IV EVN, IVS

Noto (Nt) Italy VLBA4 EVN, IVS

Onsala60 (On) Sweden Mark IV EVN, IVS

Effelsberg (Eb) Germany Mark IV EVN

Wettzell (Wz) Germany Mark IV IVS

Kokee (Kk) Hawaii VLBA4 IVS

Fortaleza (Ft) Brazil Mark IV IVS

Matera (Ma) Italy Mark IV IVS

Westford (Wf) New Hampshire Mark IV IVS

Ny Alesund (Ny) Svalbart Islands Mark IV IVS

Table 4.1: Antennas that were planned in RD0705, their data acquisition rack and the network for which the

antennas observe.



Chapter 5

Scheduling, Observation and

Correlation

5.1 Chapter Overview

In this chapter I will explain in detail how the VLBI observation are planned, observed and correlated.

Figure 5.1 shows graphically the process steps.

5.2 Concept of Scheduling

To prepare a radio astronomical observation using VLBI, it is required to produce a schedule file containing

the information needed by the telescope operators and the telescope control computers to conduct the

observation. The schedule file is produced using either the NRAO sched (Walker 2009) or the IVS sked

(Vandenberg 1999) program. The schedule file contains important information about the sources to be

observed and technical setup information tailored to the individual antennas. The following issues must

be considered when preparing the schedule.

• Source selection: target sources and calibrators must be visible at all the stations simultaneously.

• Time of the observation: all astronomical objects rise and set at different times for observers at

different locations on the Earth, and therefore they are not always visible to the telescopes and not

necessarily simultaneously.

• Source coordinates: the Earth precession and nutation causes the apparent source coordinates to

change and therefore the coordinates must be given at a defined epoch1 and need to be as precise

as possible (ideally to the milliarcsecond) to provide a priori accurate information for the correlator.

The coordinate system used is equatorial (right ascension (RA) and declination (dec)).

• Length of the observation: how long should the telescopes observe each source? This is a funda-

mental issue to guarantee that one detects the observed source: if the integration time chosen is

too short, this can lead, together with other factors, to low SNR or even to non-detections. This re-

quires the calculation of minimum flux density (expressed in the unit of jansky, 1 Jy = 10−26 W
Hz·m2 )

that can be detected on a single baseline. The minimum flux density depends on the sensitivity

of the antennas, which in turn depends on the collecting area of the antennas, the thermal noise

from the first amplifier and from the environment and from the bandwidth and the number of bits

1e.g. J2000: source positions are given at the date of the 1st of January 2000 and are precessed to the date of observation

using a defined precession and nutation model
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Figure 5.1: Cartoon describing the work flow described in this chapter.
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recorded. The sensitivity of an antenna is conveniently expressed in terms of its system equivalent

flux density (SEFD). This parameter is well known and is tabulated for each station.

• Repetition and order of the observation on selected sources: how many times will the telescopes

observe each source during the period of the whole observation.

• Receivers. The frequency bands that can be observed are generally not the same at all stations

since, by their design, some receivers have narrower bandwidth or different centre frequency than

others.

• Data Acquisition Rack. The most commonly used rack types are presently the VLBA, the Mark IV,

the hybrid VLBA4 and the K5. These racks have differences in detail that need to be taken into

account while scheduling. Specifically, the various racks can have a different number of frequency

channels that can be observed simultaneously, the way they are connected via IF cables to the

front-end is sometimes under software control and at other times requires reconnecting cables by

hands (re-patching). In addition the bandwidth capabilities can differ and need to be known.

• Polarization. Some receivers have the possibility of observing dual polarizations simultaneously

and others not. The schedule must specify which polarization mode is intended to be used (right

circular, left circular or both).

• Recording parameters. The sample rate and the number of bits per sample (one or two) must be

selected. These parameters influence the sensitivity and the amount of recording media that needs

to be sent to the stations for the observations.

Most of the information about station sensitivities, equipment capabilities, source positions and source

strengths is collected in regularly updated catalogues that are part of the sched or sked packages. Still,

the design of the experiment, including selections of the desired parameters is done by the observer.

5.3 Generation of the Schedule File for RD0705

To obtain the best results possible, I pushed the Mark IV stations beyond their standard usage. This

effort cost a huge amount of thinking, required some extension to sched and testing with the help of

Wettzell and Medicina before a working schedule file was produced. The preparation of the file required

a deep understanding of the VLBI data acquisition racks and their capabilities. The process of preparing

a schedule file requires in the worst case, about two days. The schedule of RD0705 demanded two months

of intense work with the support of highly qualified astronomers and geodesists. The preparation of the

key file2 which is normally done by hand editing, was only feasible, due to its complexity and length, by

writing dedicated C-programs.

5.3.1 Hardware Constraints

The production of the schedule file was made quite complicated by some tuning limitations and constraints

in connecting IF cables to the BBCs (patching) at both the VLBA and geodetic antennas. Whilst the

geodetic stations have 14 BBCs, the VLBA antennas are limited to eight BBCs and I paired those at the

same frequency, to get both hands of polarization (four LCP and four RCP). Instead of using only four

BBCs at the geodetic stations, since they can observe only RCP, I used all 14 for simplicity of scheduling,

providing redundant frequency coverage as backup in the case of a BBC problem, though with the risk of

increased crosstalk between BBCs, in which the signal of one BBC is contaminated by a spurious signal

induced by the neighbouring BBC tuned at the same frequency. An example of how the VLBA and

Mark IV BBCs were paired is shown on Figure 5.2

2input file for sched containing the frequency settings, LO tuning, the sources and scan lengths
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Figure 5.2: Cartoon describing how the VLBA and Mark IV BBCs were paired in one of the setups. For every

setup, depending on the tunability of the BBCs at the Mark IV stations, the BBC paring changed as is described

in Tables 5.3.2 and 5.3.2. Left: VLBA BBCs. The frequency agility of the VLBA permit to patch all the four

IFs to all the BBCs. The selection is done by the scheduler and is controlled by the antenna software and can

change while observing. Right: Mark IV BBCs. The Mark IV do not have the same capability as the VLBAs.

The patching can be changed, but require manual intervention, therefore is not doable during an observation.
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The ellipsoidal reflector that enables simultaneous S-band and X-band observing at the VLBA stations

remains deployed only when at least one BBC is tuned to X-band and at least one BBC is tuned to S-band,

otherwise it is automatically retracted by the station control software. Thus, I needed to observe with at

least one BBC in each band at all times. The retraction of the ellipsoidal reflector would have changed

the optical properties of the signal path and therefore would have changed the leakage characteristic

between the setups in this experiment biasing the results.

The Mark IV data acquisition racks have three IF inputs, each with their own band-limiting filters

(Clark and Rogers 1982 and Corey and Clark 1991) that leave a gap between 8580 MHz and 8680 MHz

that cannot be observed.

To have a SNR as high as possible, I observed the first 12 h at 512 Mbit/s with 2 bit sampling and

switched among the 15 frequency setups. Clearly observations done at 1 GB/s would lead to even higher

SNR, but presently the VLBA antennas are not capable of such a high data rate. This configuration had

never been used for geodetic experiments prior to this observation and, although the data acquisition

rack and receivers at the geodetic antennas are nominally capable of observing such mode, it had never

been tested before. Therefore, prior to the observation, I asked the stations to test whether the BBC

LOs remained coherent with the station hydrogen maser (i.e. the BBCs were locked) when generating

the required frequencies. The second 12 h were observed using the frequencies used for the weekly

geodetic experiments conducted for calculating the earth orientation parameters (so called R1 sessions)

at 256 Mbit/s, 1 bit sampling, which could be observed by switching among four frequency setups. The

change of strategy was forced on me because I did not know that the VLBA had granted us 24 hours until

after the recording media were sent to the stations. Therefore I had to reduce the total number of bits

recorded to fit the last 12 hours on the available media. The change in recording speed and bit sampling

gave confidence that, had the first 12 hours not been usable due to the very complicated setups, I still

would have had 12 hours of good data recorded in the usual way that the geodetic antennas perform

routine geodetic sessions.

5.3.2 Frequency Selection

Nearly 60 frequencies spaced 16 MHz apart in X-band and 10 MHz apart in S-band needed to be observed

to sample completely the 720 MHz RF bandwidth at X-band and 140 MHz at S-band with three frequency

channels in X-band and one frequency channel in S-band due to the constraints mentioned in the previous

paragraph.

Those were observed four at a time in parallel leading to the set of 15 frequency sequences in Tables

5.3.2, 5.3.2 and 5.3.2. Those satisfied the frequency and patching limitations at the Mark IV sites

and required no manual cable re-patching between sequences. Table 5.3.2 lists the observed X-band

frequencies and, for each one, which IFD or IF3 output can supply the IF signal in a Mark IV system.

The frequencies listed in Table 5.3.2 have the following properties.

• Cover 8212.99 MHz to 8932.99 MHz, which is the frequency span of the so-called geodetic wideband

sequence.

• Space frequencies 16 MHz apart, and record both 8-MHz bandwidth sidebands.

Tables 5.3.2 and 5.3.2 give the frequency sequences, including BBC assignments respectively for the

VLBA and Mark IV sites. The features of the sequences are as follows.

• First LO frequency changes are required only at the VLBA since some of the Mark IV stations do

not have this capacity.

• At the Mark IV sites, all frequencies satisfy the restrictions imposed by the standard geodetic

patching, as outlined in the Table 5.3.2.
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• Need to observe three X-band and one S-band frequency per frequency sequence as required to keep

the VLBA dichroic mirror deployed.

• To cover 8212.99 MHz to 8932.99 MHz completely requires 720/16 = 45 individual frequencies, or

15 sequences. I dropped one of the frequencies not accessible at the Mark IV stations (namely,

8628.99 MHz) and added in its place the frequency 8932.99 MHz.

• At the two sites with VLBA4 racks (Kokee Park and Noto) the same BBC frequency assignments

were used as at the Mark IV sites. However, Noto X-band receiver is, by design, narrowband, so it

could not observe frequencies above 8484.99 MHz.

• At the non-VLBA sites, every frequency was observed using two or more BBCs, to provide redun-

dancy in the event of a BBC problem. Crosstalk may be an issue when many BBCs are at the

same frequency, in which case it may be better to reduce to no more than two BBCs at the same

frequency (Walker 2007, private communication).

For S-band, I had 15 frequencies spaced 10 MHz apart, accepting an overlap in frequency between set-

tings, spanning 2225.99 MHz to 2365.99 MHz with dual, 8-MHz-bandwidth sidebands and with repetition

of 2325.99 MHz. The total frequency span did not completely cover the standard geodetic frequencies.

The frequency setup used by the geodetic experiments conducted for measuring the intra-European plate

stability go down to 2212.99 MHz, and the frequency sequence for the research and developement sessions

made using the VLBA antennas goes up to 2372.99 MHz, whereas the lowest and highest frequencies

in this experiment were 2221.99 MHz and 2369.99 MHz. The S-band frequencies observed covered also

the frequencies used by digital audio satellites (whose frequencies lie between 2320 MHz and 2345 MHz),

which caused strong radio frequency interference (RFI).

5.3.3 Source Selection

Target sources were OQ208 and 3C84 as they are known to be nearly unpolarized (Stanghellini et al 1996,

Jackson et al 2007). In addition I selected a few circumpolar sources as backup sources for measuring the

D-terms. In this way I had a good parallactic angle coverage at both the VLBA and the European stations.

I selected also two sources at low declination for visibility from Fortaleza (coordinates 3◦46′ S 38◦34′ W,

Brazil). The sources that were used for this experiment, their flux densities and their coordinates are

reported in Table 5.3.3. The mutual coverage of the main target sources at the various sites, their

elevations as a function of the universal time (UT) and the parallactic angle coverage in function of UT

calculated by sched for the epoch of the observation are shown in Figure 5.3 and Figure 5.4. This exercise

was done to check whether the selection of the sources was good, and was repeated for all the sources

reported in Table 5.3.3.

By looking at the plots shown in the right panels of Figure 5.3, I decided to observe OQ208 between

19:00 UT and 04:19 UT and to observe 3C 84 between 09:40 UT and 16:18 UT. Both sources had a good

parallactic angle coverage, as shown in Figure 5.4.

BBC 1-2 IF1 low 8180 MHz to 8300 MHz

BBC 3-4 IF1 high 8300MHz to 8580 MHz

BBC 5-8 IF3 8680 MHz to 8980 MHz or 8280 MHz to 8580 MHz

BBC 9-10 IF2 low 2120 MHz to 2240 MHz

BBC 11-14 IF2 high 2240 MHz to 2520 MHz

Table 5.1: Geodetic patching at the Mark IV stations.
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Freq Mark IV station accessibility

8212.99 MHz IF1 low

8228.99 MHz IF1 low

8244.99 MHz IF1 low

8260.99 MHz IF1 low

8276.99 MHz IF1 low or IF3

8292.99 MHz IF1 low or IF3

8308.99 MHz IF1 high or IF3

8324.99 MHz IF1 high or IF3

8340.99 MHz IF1 high or IF3

8356.99 MHz IF1 high or IF3

8372.99 MHz IF1 high or IF3

8388.99 MHz IF1 high or IF3

8404.99 MHz IF1 high or IF3

8420.99 MHz IF1 high or IF3

8436.99 MHz IF1 high or IF3

8452.99 MHz IF1 high or IF3

8468.99 MHz IF1 high or IF3

8484.99 MHz IF1 high or IF3

8500.99 MHz IF1 high or IF3

8516.99 MHz IF1 high or IF3

8532.99 MHz IF1 high or IF3

8548.99 MHz IF1 high or IF3

8564.99 MHz IF1 high or IF3

8579.99 MHz IF1 high or IF3 **

8596.99 MHz Not accessible

8612.99 MHz Not accessible

8644.99 MHz Not accessible

8660.99 MHz Not accessible

8676.99 MHz Not accessible

8692.99 MHz IF3

8708.99 MHz IF3

8724.99 MHz IF3

8740.99 MHz IF3

8756.99 MHz IF3

8772.99 MHz IF3

8788.99 MHz IF3

8804.99 MHz IF3

8820.99 MHz IF3

8836.99 MHz IF3

8852.99 MHz IF3

8868.99 MHz IF3

8884.99 MHz IF3

8900.99 MHz IF3

8916.99 MHz IF3

8932.99 MHz IF3

Table 5.2: X-band frequency coverage of RD0705, listing the 45 X-band frequencies that satisfy the constraints

given in the text along with the Mark IV rack IF input(s) that can supply each frequency. The frequency marked

with ‘**’ should be 8580.99 MHz to conform to 16 MHz spacings. However it is not accessible at Mark IV stations

as it would require the BBC LO to be set to 500.99 MHz which is above their maximum frequency of 500 MHz.

Instead 8579.99 MHz is accessible and is only 1 MHz lower.
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Figure 5.3: Top: periods of time when OQ208 (top left) and 3C 84 (top right) are above the horizon at each

telescope. OQ208 was observed between 19:00 UT and 04:19 UT on the first day of observation, and 3C 84 was

observed between 09:40 UT and 16:18 UT on the second day of observation. Bottom: elevation of OQ 208 (bottom

left) and 3C 84 (bottom right) as a function of UT. Both sources are visible for the VLBA and European antennas

simultaneously, within a limited range of UT.
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Figure 5.4: Top: parallactic angle coverage for OQ 208 as a function of UT. Bottom: parallactic angle coverage

for 3C 84 as a function of UT.
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setup name X-band X-band X-band S-band

sx 1 8212.99 MHz 8308.99 MHz 8324.99 MHz 2225.99 MHz

sx 2 8228.99 MHz 8340.99 MHz 8356.99 MHz 2235.99 MHz

sx 3 8244.99 MHz 8372.99 MHz 8388.99 MHz 2245.99 MHz

sx 4 8260.99 MHz 8404.99 MHz 8420.99 MHz 2255.99 MHz

sx 5 8276.99 MHz 8436.99 MHz 8452.99 MHz 2265.99 MHz

sx 6 8292.99 MHz 8468.99 MHz 8484.99 MHz 2275.99 MHz

sx 7 8500.99 MHz 8692.99 MHz 8708.99 MHz 2285.99 MHz

sx 8 8516.99 MHz 8724.99 MHz 8740.99 MHz 2295.99 MHz

sx 9 8532.99 MHz 8756.99 MHz 8772.99 MHz 2305.99 MHz

sx 10 8548.99 MHz 8788.99 MHz 8804.99 MHz 2315.99 MHz

sx 11 8564.99 MHz 8820.99 MHz 8836.99 MHz 2325.99 MHz

sx 12 8579.99 MHz 8852.99 MHz 8868.99 MHz 2325.99 MHz

sx 13 8596.99 MHz 8884.99 MHz 8900.99 MHz 2345.99 MHz

sx 14 8612.99 MHz 8916.99 MHz 8932.99 MHz 2355.99 MHz

sx 15 8644.99 MHz 8660.99 MHz 8676.99 MHz 2365.99 MHz

Table 5.3: Frequency sequences during RD0705, for the VLBA sites. The VLBA observed both LCP and RCP.

Frequencies shown are for odd- or even-numbered BBCs. Frequencies for other four BBCs are the same – they

just have the opposite polarization.

5.3.4 Integration Time

The integration time per scan was calculated using the radiometer equation (Wrobel and Walker 1999),

given the bandwidth, source strength and antenna sensitivities.

∆S =
1

ηeff
·
√

SEFD1 · SEFD2√
2 · ∆ν · τint

(5.1)

where SEFD1 and SEFD2 are the system equivalent flux densities expressed in jansky for the two antennas,

ηeff is the correlation efficiency (equal to 0.5 for 1 bit/sample and equal to 0.7 for 2 bit/sample), ∆ν is

the bandwidth in hertz, τint is the integration time in second, and ∆S is the root mean square (rms)

thermal noise fluctuations expected in the measurement, in jansky. The SEFDs of the antennas used in

this experiment are shown in Table 5.3.4. Knowing the SEFDs and the flux densities of the sources, I

calculated the SNR using

SNR =
S

∆S
(5.2)

where S is the source flux density (Wrobel and Walker 1999).

During the first 12 hours, one target source (OQ 208) was observed using 15 frequency setups (as

described in Section 5.2.1) plus two backup targets (1308+326 and 1357+769). In addition one position

angle calibrator (3C 454.3) was observed using four frequency setups covering the 720 MHz band used in

the geodetic wideband sequence.

Being satisfied with the source selection, integration time planning and considering that the telescope

systems need gaps between scans for slewing to the new source, I decided to observe the target source for

3.7 minutes per scan. The X-band SNR for OQ208 with a 16 MHz bandwidth, was SNRx = 17 on the

least sensitive baseline and SNRx = 33 on the most sensitive baseline; the S-band SNR for OQ208 with a

16 MHz bandwidth, was SNRs = 22 on the least sensitive baseline and SNRs = 46 on the most sensitive

baseline. The calibrators were observed for 2.3 minutes per scan. The X-band SNR for the calibrators

with a 16 MHz bandwidth, was SNRx = 7 on the least sensitive baseline and SNRx = 70 on the most
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BBC no. BBC1 BBC2 BBC3 BBC4 BBC5 BBC6 BBC7 BBC8 BBC11

IF no. IF1 IF1 IF1 IF1 IF3 IF3 IF3 IF3 IF2

Band X-band X-band X-band X-band X-band X-band X-band X-band S-band

sx 1 8212.99 MHz 8212.99 MHz 8308.99 MHz 8308.99 MHz 8324.99 MHz 8324.99 MHz 8308.99 MHz 8324.99 MHz 2225.99 MHz

sx 2 8228.99 MHz 8228.99 MHz 8340.99 MHz 8340.99 MHz 8356.99 MHz 8356.99 MHz 8340.99 MHz 8356.99 MHz 2235.99 MHz

sx 3 8244.99 MHz 8244.99 MHz 8372.99 MHz 8372.99 MHz 8388.99 MHz 8388.99 MHz 8372.99 MHz 8388.99 MHz 2245 MHz

sx 4 8260.99 MHz 8260.99 MHz 8404.99 MHz 8404.99 MHz 8420.99 MHz 8420.99 MHz 8404.99 MHz 8420.99 MHz 2255.99 MHz

sx 5 8276.99 MHz 8276.99 MHz 8436.99 MHz 8436.99 MHz 8452.99 MHz 8452.99 MHz 8436.99 MHz 8452.99 MHz 2265.99 MHz

sx 6 8292.99 MHz 8292.99 MHz 8468.99 MHz 8468.99 MHz 8484.99 MHz 8484.99 MHz 8468.99 MHz 8484.99 MHz 2275.99 MHz

sx 7 ntf nft 8500.99 MHz 8500.99 MHz 8692.99 MHz 8692.99 MHz 8708.99 MHz 8708.99 MHz 2285 MHz

sx 8 ntf nft 8516.99 MHz 8516.99 MHz 8724.99 MHz 8724.99 MHz 8740.99 MHz 8740.99 MHz 2295 MHz

sx 9 ntf ntf 8532.99 MHz 8532.99 MHz 8756.99 MHz 8756.99 MHz 8772.99 MHz 8772.99 MHz 2305.99 MHz

sx 10 ntf ntf 8548.99 MHz 8548.99 MHz 8788.99 MHz 8788.99 MHz 8804.99 MHz 8804.99 MHz 2315.99 MHz

sx 11 ntf ntf 8564.99 MHz 8564.99 MHz 8820.99 MHz 8820.99 MHz 8836.99 MHz 8836.99 MHz 2325.99 MHz

sx 12 ntf ntf 8579.99 MHz 8579.99 MHz 8852.99 MHz 8852.99 MHz 8868.99 MHz 8868.99 MHz 2325.99 MHz

sx 13 ntf ntf ntf ntf 8884.99 MHz 8884.99 MHz 8900.99 MHz 8900.99 MHz 2345.99 MHz

sx 14 ntf ntf ntf ntf 8916.99 MHz 8916.99 MHz 8932.99 MHz 8932.99 MHz 2355.99 MHz

sx 15 ntf ntf ntf ntf ntf ntf ntf ntf 2365.99 MHz

Table 5.4: Frequency sequences used in RD0705 for the Mark IV sites. Frequencies shown are for first 8 BBC/BBCs in a Mark IV rack. The frequencies for

the S-band for the Mark IV were the same as the single S-band frequency in the VLBA setup of the same name in Table 5.3.2. nft = no tunable frequency in

IF1 low range and or IF3 and that BBC could be set to any value. Setup sx 15 was observed for the VLBA stations, since they are also interested in the leakage

characteristic of their receivers. BBC9, BBC10, BBC12, BBC13 and BBC14 were unused.
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IVS name RA (J2000) Dec (J2000) flux density flux density Type

[hh:mm:sec] [deg:arcmin:arcsec] (8.4 GHz) (2.3 GHz)

OQ208 14:07:00.394414 +28:27:14.69021 0.48 Jy 0.65 Jy target

1357+769 13:57:55.371532 +76:43:21.05103 0.77 Jy 0.66 Jy backup target

1308+328 13:10:59.4027290 +32:33:34.449600 1.20 Jy 0.54 Jy backup target

3C 454.3 22:53:57.747942 +16:08:53.56087 1.21 Jy – position angle calibrator

0016+731 00:19:45.786416 +73:27:30.01749 1.02 Jy 0.12 Jy position angle calibrator

0552+398 05:55:30.805615 +39:48:49.16500 1.76 Jy 2.45 Jy backup target

1803+784 18:00:45.683908 +78:28:04.01844 1.16 Jy 1.08 Jy backup target

1849+670 18:49:16.072284 +67:05:41.68029 0.43 Jy 0.16 Jy backup target

3C 84 03:19:48.1601 +41:30:42.106 1.11 Jy 1.76 Jy main target

OJ 287 08:54:48.874930 +20:06:30.64086 1.36 Jy 1.06 Jy position angle calibrator

Table 5.5: Sources observed and their coordinates taken from Kovalev et al (2007) apart from 3C 84 whose flux

density was taken from: http://www.vlba.nrao.edu/astro/calib/vlbaCalib.txt.

Station SEFD (8.4 GHz) SEFD (2.3 GHz)

VLBA (all) 337 Jy 407 Jy

Onsala 1530 Jy 1663 Jy

Westford 1785 Jy 1595 Jy

Wettzell 1115 Jy 750 Jy

Medicina 420 Jy 285 Jy

Noto 900 Jy 1000 Jy

Matera 407 Jy 1337 Jy

Effelsberg 18 Jy 306 Jy

Table 5.6: SEFD at both S- and X-band of the antennas involved in this project as at July 2007, taken from

the schedule catalogue file (ftp://gemini.gsfc.nasa.gov/pub/sked/catalogs/equip.cat) as it was in 2007 before the

observation. Since SEFD values can change (with receiver upgrades, warm amplifiers and so on), the values in

the catalogues as at 2010 may differ from those in this table.
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sensitive baseline; the S-band SNR for the calibrators with a 16 MHz bandwidth, was SNRs = 3 on the

least sensitive baseline and SNRs = 35 on the most sensitive baseline. The gap between scans was set to

be 41 seconds.

5.3.5 Station Control File Generation

The control file is a station-specific low-level command file required to configure the station systems

and send commands to the telescope control computer during the observation. For VLBA stations, sched

produced the control file. For the Mark IV stations an additional step is required and is performed running

a program called drudg (Vandenberg 1997). Since drudg is normally run at the station shortly before the

observations, I would not know whether errors occurred for RD0705, hence I ran drudg to ensure that the

stations would not encounter unexpected problems. I also invited the participating stations to run it and

send back the results. Fortunately drudg ran to completion, however with many warnings. In this way I

detected some subtle bugs in the sched code extensions that had been written for this observation. These

bugs would have prevented the telescope software from understanding the commands. The command files

prepared for the Mark IV stations were missing the IF3-related commands, since sched requires IF3 to

be called ‘3’ and not ‘3N’ as drudg expected. This was easily solved by changing the sched code to accept

‘3N’. For the Mark IV stations drudg complained about one frequency setting, that was 0.01 MHz away

from the settable limit, but drudg still generated the correct commands. Therefore I ignored the warning

and asked the stations to check that the BBC in question locked at the selected frequency. After I had

dealt with all the warnings, I asked Medicina to run drudg on the schedule file again as a check and they

encountered no problems. The schedule file was then submitted to the stations with recommendations

about how to deal with the known warnings and how to skip them, along with some further instructions.

5.4 Observation

The observation took place on day 11 of July, 2007 from 18:00 UT and lasted 24 hours. The station

personnel took care of the observation as normal. No input was required from the principal investigator

(I) during observing beyond that provided prior to observing by sending the schedule file.

Ny Alesund was not scheduled in the end due to a manpower limitation and the VLBA station at

Hancock did not observe since it was down for repairs. This reduced the number of antennas in the

experiment, from 19 to 17.

5.5 Correlation and Fringe Fitting in HOPS

The data were correlated using the Bonn MPIfR/BKG Mark IV correlator (Whitney 2000 and Whitney

et al 2004). Before starting the correlation, I prepared the files that initialized the correlator and gave

the parameters concerning the experiment, the stations, and the scans. All control files are ASCII

format and use the VEX (VLBI EXperiment) language developed for VLBI observation3. Correlation

of the experiment started in October 2007 and lasted about two months. Since the correlator had eight

Mark 5A playback units and I had a total of 16 stations, I ran the correlation in six passes to form all

the baselines. Correlation was performed between all possible combinations of polarization (i.e. RCP

against RCP, LCP against LCP, RCP against LCP and LCP against RCP) as required to determine the

polarization leakages. The correlator can find cross-correlation if this is present in a very small interval

of delay (typically 2µs) due to computational power. The propagation delay across the earth is up to

42 ms whcih is much larger than the correlator can search, and so the bulk geometric delay is removed by

pre-shifting the data during the correlation. The bulk delay is calculated using a model called CALC 8

(Sovers et al 1998), which includes effects such station positions, earth rotation, tides. Due to effects

3http://www.vlbi.org/docs/vex%20definition%2015b1.pdf
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that are not modelled in CALC 8, like wet atmosphere and ionosphere, the correlator output phases

show unwanted residual changes versus time and versus frequency. These residual slopes are removed by

the post-correlation software which uses the algorithm described in Clark et al (1985). The results of

the correlation of this experiment were checked using the Haystack Observatory Postprocessing System

(HOPS, http://www.haystack.mit.edu/tech/vlbi/hops.html) and found that most setups yielded good

quality data, though some were degraded by radio frequency interference (RFI), especially in S-band.

Fringes were visible to the VLBA antennas and to most of the geodetic antennas. Unfortunately I

lost Kokee Park and Fortaleza due to technical reasons, which reduced the number of antennas in the

experiment to 15. Examples of the fringe-fitted data are shown in fourfit plots in Figures A.1, A.2 and

A.3. Figure A.1 is the cross-correlation between Westford (Wf) and North Liberty (Nl) on one scan

(220 s long), RCP against RCP for the target source OQ 208. OQ 208 and the calibrators yielded good

fringes in both polarizations. Since OQ 208 is unpolarized, one would not expect to see fringes between

RCP at the geodetic antenna and LCP at the VLBA antenna, however fringes are nevertheless visible.

This is a first evidence for the presence of polarization leakage. The SNR is, in this case, much lower

(SNRS−band ≈ 11 and SNRX−band ≈ 16) than the SNR of the fringes in the RCP-RCP cross-correlation

(SNRS−band ≈ 86 and SNRX−band ≈ 78). To help the reader with understanding, the complete fourfit

plots are explained in Appendix A.

After the data were fringe fitted with HOPS, the data reduction and the determination of the polar-

ization leakage proceeded using AIPS (Astronomical Image Processing System), which is one of the most

widely used interferometric data reduction packages for radio astronomy.



Chapter 6

Data Reduction to Determine

Polarization Leakage

6.1 Introduction

The determination of polarization leakage requires amplitude and phase calibration, fringe fitting, imag-

ing, deconvolution, self-calibration and leakage determination solving simultaneously for source polariza-

tion. For this purpose, the Astronomical Image Processing System (AIPS) package was chosen because

it implements the algorithms required to calculate the polarization leakage. Figure 6.1 is a cartoon

describing the work flow described in this chapter.

AIPS was developed by the National Radio Astronomy Observatory (NRAO) in the USA for processing

the data collected by the Very Large Array (VLA) in New Mexico and was subsequently enhanced to

accommodate the needs of VLBI data reduction. RD0705 correlated data were imported into AIPS and

processed up to and including the determination of the polarization leakage.

6.2 From Correlator Output Format to AIPS Format: MK4IN

The Mark IV correlator output is not directly readable into AIPS because it consists of lag-based complex

numbers in delay space, whilst AIPS reads data in the frequency domain (Romney 1999). To transform

the correlatior raw data into frequency domain, I processed them using the fourfit program in HOPS,

since it performs a Fourier transform from lag domain to frequency domain in addition to fringe fitting

(for proof of the Fourier transform relationship see Romney 1999).

The program MK4IN (Alef and Graham 2002) uses the HOPS input/output routines to read the

cross-spectral output created by fourfit and converted the calibrated data into AIPS internal format

along with ancillary information which was read from the correlator control files together with the station

coordinates, frequencies observed and other parameters that will be described in the next section. After

running MK4IN the data were in AIPS, ready for processing.

6.3 Astronomical Image Processing System (AIPS)

Before explaining the data reduction pipeline, I briefly summarize here the AIPS data structure and

philosophy, since it is relevant for the understanding of the following sections in this chapter. AIPS

reads in the correlation output in the form of amplitude and phase, also called fringe visibilities, and

stores them in binary format with their time stamps, a number that represents an antenna uniquely (i.e.

every antenna in the array has one number), and the baseline length. This information is stored for
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MK4IN : Correlated data are imported into AIPS

AIPS: Amplitude Calibration

AIPS: Fringe Fitting

AIPS: Imaging

AIPS: Leakage Determination

AIPS: Error Analysis on Leakage

Figure 6.1: Cartoon describing the data reduction flow.

every accumulation period (i.e. for RD0705, 2 s) and the correlator amplitudes and phases are stored

for every spectral channel of every BBC channel and for every polarization. Attached to these visibility

measurements are the following ancillary tables.

• Antenna Table: contains the name of the antennas, their mount type, their coordinates, axis offset

and a free space to insert the polarization leakage phases and amplitudes.

• Source Table: contains among other things, the name, the coordinates and their epoch for every

observed source.

• Frequency Table: lists the observed sky frequency for each BBC, along with the BBC bandwidth

in kHz and the bandwidth of the single spectral channel.

• System Temperature Table: contains the value of the system temperature (Tsys)
1 . They are read

separately into AIPS and are attached to the data.

• Gain Table: contains the antenna gains2 and their dependence on elevation.

• Calibration Table (CL): AIPS does not alter the original visibility measurements during the cali-

bration, but keeps the phases and amplitude corrections in this table.

• Solution Table (SN): contains incremental calibration that will be added vectorially to the previously

generated CL table to improve the calibration.

1System temperature is the temperature of a fictitious resistor that would emit the same power as does the sum of all

the noise contributions (the source, sky, ground pickup, and mostly receiver), referenced to the antenna terminals.
2the gain is a measure of the sensitivity of the antenna in K/Jy
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Since AIPS does not alter the original visibility measurements during the calibration, one can always

go back to the original data, which will never be corrupted by bad calibration. The first CL table contains

unity amplitude corrections and zero phase corrections as so has no effect if applied to the data. Fringe

fitting the data, for example, will produce an SN table that will be added vectorially to the previously

generated CL table (i.e. the phases will be summed and the amplitudes multiplied) to create a second

version of the CL table. In this way it is possible to make incremental improvements to the calibration

or to go back a step or more in the data reduction in case of errors.

AIPS has a collection of routines called tasks, that can perform a wide variety of operations on the

data and are controlled by setting the values of a group of adverbs prior to execution to perform a step

in the data reduction. For example, fringe fitting is performed by a task called FRING, and an adverb to

FRING is, for example, a parameter to control the fringe fitting, like the width of the multiband delay

window.

6.4 Data Reduction Pipeline

For practical reasons, I reduced first the data for a frequency setup in S-band at 2225 MHz (S1) because

it was particularly simple as it contained only one BBC. The reduction of this setup served as a pilot for

implementing a Python script to automate the whole data reduction and data quality checking. Since

the data reduction is very similar for all setups, I describe here only the data reduction of the setup at

2225 MHz.

The data were imported into AIPS and a priori amplitude calibration was performed to convert

between correlator amplitude and flux density in jansky, based on Tsys measurements at the stations

in each polarization and on the knowledge of the sensitivity of the antennas possibly as a function of

elevation for each polarization.

6.4.1 Amplitude Calibration

In a first step, I performed amplitude calibration since I needed to image the sources for robust D-term

determination in the presence of possible intrinsic source polarization. Amplitude calibration is funda-

mental for imaging since, as will be described later on in this section, the Fourier transform relationship

between fringe visibility and sky brightness distribution is a complex transform, requiring accurate phase

and amplitude measurements. Errors on either quantity degrade the image quality and can be detected

from the ratio of peak signal to root mean square noise (i.e. the SNR or dynamic range) of the resulting

image. Figure 6.2 shows the visibility amplitudes on OQ208 before and after a priori amplitude calibra-

tion as a function of baseline length measured in wavelengths. Before the calibration the amplitudes are

still expressed as correlator amplitude and have not yet been linked to the amplitude of the flux density

of the observed source. After calibration there is good consistency between baselines, with the amplitude

being higher on short baselines and lower on longer baselines, as expected, due to source structure. As

comparison, the case of a point-like source posed at the phase centre would give, after calibration, a

straight line parallel to the x-axis with amplitude equal to the source flux density. Since the point source

remains unresolved on all baseline lengths, all baselines see the full flux density. The a priori amplitude

calibration contained large systematic errors because the purely geodetic stations did not provide their

elevation-dependent gain curves and many did not provide their SEFD values and their variations with

frequency. The gain curves were assumed to be valid for the whole band which is expected to be a

good assumption for all stations. The remaining amplitude calibration errors could be corrected later by

applying amplitude self calibration after imaging the source.



CHAPTER 6. DATA REDUCTION TO DETERMINE POLARIZATION LEAKAGE 47

co
rr

. a
m

pl
. /

 1
0

co
rr

. a
m

pl
. /

 J
y−
3

Amplitude vs UV distance. Source OQ208. Pol RCP. Freq 2225.99 MHz

Baseline length in mega wavelength Baseline length in mega wavelength

Figure 6.2: Calibration of the amplitude scale from SNR (correlator output) (left) to jansky (right) using a priori

amplitude calibration based on Tsys and SEFD.

6.4.2 Fringe Fitting

After a priori amplitude calibration I performed phase, delay, and delay-rate calibration by fringe fitting

the parallel hands of polarization (RCP-RCP and LCP-LCP) in AIPS. The AIPS fringe-fit algorithm

is global (Schwab and Cotton 1983), i.e. it uses all constraints from the baselines when determining a

delay solution for an antenna and potentially gives better SNR compared to the baseline-based fringe fit

algorithm used by HOPS. Therefore I discarded the results of fourfit solutions and re-fringe fitted the

data in AIPS. As an example, the phase and the amplitude of the data for one scan and one baseline

before and after the fringe fit are illustrated in Figure 6.3. The top left panel of Figure 6.3 shows the

uncalibrated phase vesrus frequency, it rotates from 0◦ to −180◦ wraps to 180◦ and rotates to 100◦ across

the 16 MHz band. The top right panel shows the phase versus frequency after the data have been fringe

fitted to remove the residual delay. In this panel the phase lie on a horizontal line close to 0◦ as one

would expect in cases of good calibrated data. The bottom panels of Figure 6.3 show the amplitudes

versus frequency in jansky before (left) and after (right) fringe fitting the data. As one can notice they

are identical because fringe fit does not touch the amplitudes.

6.4.3 Imaging

The third step was to produce an image from the visibility data. Since there is no spatial coherence be-

tween electric fields generated by two surface elements within a radio source, their cross-correlation func-

tion is equal to the Fourier transform of the brightness distribution of the source, for quasi-monochromatic

waves (Van-Cittert-Zernike theorem; Born and Wolf 1999)

Vν(~r1, ~r2) ≈
∫ ∫

A(~s)Iν(~s)e
−2πiν~s·(~r1−~r2)

c dΩ (6.1)

where Vν(~r1) = 〈 ~Eν(~r1) ~E∗
ν (~r2)〉 is the cross-correlation function between the electric fields of two surface

elements, ‘*’ indicates the complex conjugate, ~r1 −~r2 is the vector separation between the two antennas,
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Figure 6.3: Example spectra on the North Liberty (VLBA) - Westford (IVS) baseline at 2225 MHz on OQ208

showing amplitude in jansky vs frequency and phase in degrees vs frequency. Left: phase and amplitude without

calibration: the phases rotates from 0◦ to −180◦ wraps to 180◦ and rotates to 100◦ across the 16 MHz band. Right:

the phases are now corrected by fringe fitting the data to remove a residual delay and now lie on a horizontal line

close to 0◦.
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A(~s) is the effective collecting area, Iν(~s) is the brightness distribution, ~s is the unit vector toward the

source and dΩ is an element of solid angle subtended by the source as visible from the antennas.

For imaging, it is more convenient to express the baseline length in terms of wavelengths at the centre

frequency of the RF band in the direction toward the East (coordinate u) and the North (coordinate v).

The plane defined by this coordinate system is called the (u, v) plane and each antenna pair measures a

point in the (u, v) plane (Clark 1999 and Thompson 1999). In this coordinate system,

ν~s · (~r1 − ~r2)

c
= ul + vm (6.2)

dΩ =
dldm√

1 − l2 −m2
(6.3)

where l and m are the source coordinates expressed as direction cosines in this reference frame. Figure

6.4 shows this coordinate system. In case of a source whose extension is small (like for geodesy) l ≈ 0

and m ≈ 0 therefore dΩ = dldm.

Thus, Equation 6.1 can be written as

Vν(u, v) =

∫ ∫

A(l,m)Iν(l,m)e−2πi(ul+vm)dldm (6.4)

which is equivalent to a Fourier transform, therefore, we can express the source brightness distribution

as a function of the visibility measurements by inverting Equation 6.4.

A(l,m)Iν(l,m) =

∫ ∫

Vν(u, v)e
2πi(ul+vm)dudv (6.5)

Since the antenna spacings are sparse and irregular, the (u,v) plane coverage is sparse and irregular as

well. For computational economy AIPS uses fast Fourier transforms (FFT) to calculate A(l,m)Iν(l,m).

The FFT requires the data to lie on a regular grid and that the number of sample points be a power of 2.

Thus AIPS grids the visibility measurements onto the (u,v) plane and fills every pixel of the (u,v) plane

with values. If the cell is empty then the value is zero. If the cell contains more than one measurement

then AIPS uses a weighted average of the measurements as the cell value. To do that AIPS folds each

visibility onto a regular grid with a gridding convolution function centred on the coordinates of the

measurements, in other words, AIPS multiplies the data by a gridding convolution function and translate

the convolution function to the centre of every (u,v) cell, integrates the product of the convolution function

with the discrete function describing the surrounding visibilities measurements and writes the result into

the corresponding (u,v) cell. In still other words, AIPS convolves the convolution function with the

discrete function describing the surrounding visibility measurements and multiply it by a comb function.

To avoid aliasing one wants to select a convolution function so that its Fourier transform remains unity

within the image (i.e. 256 x 256 pixel) and has small or absent side lobes beyond the edges of the image.

Sidelobes could allow a confusing source that lies outside the image to produce an aliased response within

the image. To see whether a source in the image is an aliased response from a source outside the image

one can change the cellsize as it would cause the aliased source to move within the image (Cornwell 1995).

The image obtained is called the dirty image (Id), since it corresponds to the sky brightness (also

called the real image), I, convolved with the synthesised beam (also called the dirty beam3), B and it is

Id = B ∗ I. The image can be deconvolved since B and Id are known i.e. AIPS solves the equation for I.

B is calculated by the imaging task IMAGR by replacing the measured amplitudes with a value equal to

one and phases zero degrees and Fourier transforming it to form the point spread function (PSF)4 in the

image domain. The simplest way to deconvolve the image and PSF would be to take the Fourier transform

of the above equation, and to divide the Fourier transform of Id by the Fourier transform of B and then

3The dirty beam is the diffraction pattern of the array, which is given by the Fourier transform of the (u,v) plane

coverage.
4The PSF is what I would see for a 1 Jansky (Jy) point source at the field centre
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Figure 6.4: Scheme describing the (u,v) coordinate system and how the source coordinate are related to the

(u,v) coordinate. At the top left the source of flux density Iν(l, m) is visble and at the bottom right there is the

two-telescope array observing it. Thompson 1999

Fourier transform the result back to the image domain. However this procedure fails because the Fourier

transform of B has zeroes where there are no measurements, therefore the division is undefined in some

areas. Instead this deconvolution can be performed using common algorithms such as CLEAN (Högbom

1974) or MEM (Maximum Entropy Method) (Burg 1967). I used the CLEAN algorithm, which iteratively

takes the peak in the image, translates and scales the PSF to the position of the peak and subtracts a

fraction of it from the whole image to partially remove the peak and its sidelobes. A δ-component with

the same flux density is added in the clean map at the same position. I stopped the cleaning process

when the largest negative value in the image was larger than the remaining positive peak and restored

the image by adding back in a Gaussian profile at the position of the components that were subtracted

away.

To reduce further the calibration errors in phase and amplitude, I iteratively improved my model of

the sky brightness distribution using a self calibration cycle consisting of determining the antenna gains,

imaging and deconvolving (CLEAN)(Cornwell and Fomalont 1999). This self-calibration cycle, when

iterated, uses the visibility measurements and solves simultaneously for antenna-based gains and for the

source structure.

Figure 6.5 shows the before-and-after images after two cycles of phase self calibration and one of

amplitude self calibration. The artifacts in the image were reduced by the improvement in the amplitude

calibration. Typically I used 12 iterations of self calibration to obtain a dynamic range between 200 : 1

to almost 400 : 1 depending on the setup, for the 1.6 Jansky (Jy) source OQ208. The imaging process is

required to calculate the leakage. The solutions (SN table) produced by the task IMAGR are required for

solving simultaneously for intrinsic polarization and polarization leakage. Clearly the better the image

the more precise the determination of the leakage.

6.4.4 Polarization Leakage Determination

At this point the total intensity calibration was complete and the polarization calibration began. The first

step was to correct the delay offset between the two opposite hands of polarization due to differences in
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Figure 6.5: Image of OQ208 at 2225 MHz with the VLBA and geodetic array with phase self calibration (left)

and after amplitude self calibration (right).

the electronic path length. This could in principle be done by measuring the delay offset at one reference

antenna between its LCP and RCP channels by performing a LCP-RCP autocorrelation for the following

reason. The fringe fit that was performed on the parallel hands tied the RCP channels of all the antennas

to the RCP channel of the selected reference antenna. Likewise the fringe fit tied the LCP channels of all

the antennas to the LCP channel of the selected reference antenna. What remains is to tie the RCP to

the LCP at the reference antenna. In practice the AIPS procedure VLBACPOL, which is a script that

calls a series of tasks in sequence, performs this operation using the cross-hand cross-correlation. Instead

of using the whole data within the frequency setup as is required in the step above, to tie the RCP to

the LCP one needs only one baseline in one scan. This scan was selected for having enough SNR in the

cross-hand cross-correlation to yield good delay solution during the fringe fit. This choice of using two

antennas instead of one is done since the Mark IV correlator cannot perform autocorrelation between LCP

and RCP channels and in any case the noise diode signal would dominate the RCP-LCP autocorrelation

phases. This cross-hand cross-correlation was performed between only two VLBA antennas and two delay

solutions were determined from the scan selected. The first delay solution was based on RCP-LCP cross-

correlation and the second one was based on LCP-RCP cross-correlation. The two solutions should be

equal except for a sign inversion and thermal noise. To improve SNR these two solutions were averaged,

allowing for their sign inversion when the polarizations are swapped (Kemball 1999). This procedure tied

the RCP and LCP channels at all antennas, including the geodetic antennas although they have no LCP

channels.

The derivation of leakage proceeded as follows. If the source is polarized, the LCP-RCP (and RCP-

LCP) cross correlations are non-zero. The RCP-LCP and LCP-RCP cross correlations contain also a

contribution due to leakage between the polarization channels. The two contributions can be separated

since the LCP-RCP phase due to source polarization rotates with the parallactic angle whereas the LCP-

RCP phase due to leakage remains constant throughout an observation and over much longer periods

(Cotton 1999). The result of this derivation is illustrated in Figure 6.6, which shows the LCP-RCP
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cross correlation real and imaginary components for OQ208 throughout the observation. The data were

corrected for the parallactic angle, which means that the visibility phases were rotated according to the

parallactic angle, causing the LCP-RCP phase due to source polarization to remain constant and the

LCP-RCP phase due to the leakage to rotate. The rotating leakage vector is centred at zero in the

real/imaginary plane as shown at the top of Figure 6.6. This is because OQ 208 is unpolarized. Had it

been polarized, the rotating leakage vector would have not been centered at zero in the real/imaginary

plane. The derivation of the leakage was performed using the AIPS task LPCAL (Leppanen et al 1995).

The leakage disappears as the D-terms were derived and correction for them were applied as shown in

the bottom of Figure 6.6.

The amplitudes of the leakage terms in this first setup were found to vary from -40 dB (1 % of power

leakage of one polarization into the other) at Wettzell to -15 dB (17 % of power leakage) at Westford as

is shown if Figure 6.7

Since the leakage value for Westford was so large, as an independent check on AIPS I checked with the

HOPS package whether I could detect the signal produced by the leakage in the cross-correlation of the

left circular feed at one VLBA antenna and the right circular feed at the Westford antenna and indeed

had a detection.

The large leakage values derived above need not yet be of concern, since this analysis represents only

one channel that lies at the extreme edge of the band where the worst leakage is expected. The concern

for the geodesist lies in the variation with frequency of both the phase and amplitude of the leakage.

Once the frequency dependence of the leakage was known, I could estimate and correct its effects on the

group delay measurements.

Determination of the frequency dependence required repeating the analysis above for 45 frequencies,

which called for automating the process.

6.5 Parsel Tongue Script

AIPS is an interactive program and all the tasks are performed on the fly, but there are two ways to

run AIPS in batch mode. The first way is to write an AIPS procedure, the second way is to write a

Python-based script. I chose the second way because it gave the option of complete access to the raw

(u,v) data, had that been required, which is not possible within AIPS. ParselTongue, the Python-based

interface to AIPS, was written and named by a convinced Herry Potter fan working for the Joint Institute

for Very Long Baseline Interferometry in Europe (JIVE). The code and a small cookbook can be found

at the web site http://www.jive.nl/dokuwiki/doku.php/parseltongue:parseltongue.

The script, which is reproduced in Appendix B, contained all the instructions for AIPS to calibrate

the data with a quality sufficient to make an image with dynamic range of 300. I then used the calibrated

data to derive the leakage by running the procedure VLBACPOL and the task LPCAL manually (as

described in the previous section).

6.6 Data Reduction in X-band

The data reduction for the X-band, was conducted in the same way as for the pilot S-band setup using the

Python script described in Appendix B. The only differences were in the number of BBCs present and in

the source model that was used, since the source structure changed with frequency. For the S-band, only

one setup was reduced, whilst for the X-band all 15 setups in the first 12 hours were reduced. Priority

was given to the X-band setups since the precision of the group delay measurements comes primarily

from the X-band.
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Figure 6.6: LCP-RCP visibility on the unpolarized source OQ208 plotted in the imaginary vs real plane for

the baseline North Liberty (VLBA) - Westford (IVS) (left column) and the baseline North Liberty - Wettzell

(IVS)(right column) before the corrections for the instrumental polarization were applied (top row) and after the

corrections were applied (bottom row). The big dot at the centre of the plots in the top row is the origin of the

axes and the crosses are the measured visibilities, which rotate around the origin during the observation due to

the relative rotation between the feed and the sky causing the leakage vector to appear to rotate. For clarity

one of the vectors has been drawn in full for the baseline North Liberty - Westford. After applying the D-term

correction the leakage vector has almost zero amplitude (bottom row).
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Figure 6.7: Amplitude of the polarization leakage for the IVS and VLBA stations for the frequency setup at

2225 MHz.

6.7 Error Budget

After having calculated the D-terms for all the antennas and all frequencies in X-band, I estimated the

error on the D-term measurements. To do that I selected one of the frequency setups, specifically the setup

sx 11 (X-band frequencies: 8564.99 MHz, 8820.99 MHz and 8836.99 MHz) because the data reduction

showed that sx 11 produced good SNR on the cross hand fringes. Within this setup I had one D-term per

station per frequency as calculated by the AIPS task LPCAL. Using another AIPS task, called DTSIM, I

simulated the setup sx 11. DTSIM requires a parameter file (reproduced in Appendix B) which contains:

• Antenna paramters like mounting type and position,

• Frequency parameters like observed frequencies, bandwidth, number of BBC channels and polar-

ization,

• Source parameters like coordinates and source model,

• Error parameters like thermal noise, antenna gain and D-terms,

• Observation parameters like when the source was observed, for how long and integration time.

In this case, the source was one source with the same characteristics as the source OQ208, the antennas

coordinates were selected to match the coordinate of the stations that really took part in the observation,

the thermal noise and gain were taken from the system temperatures and system equivalent flux density

monitored and tabulated by the stations for the real observation and the D-terms were taken to be those

calculated from LPCAL for the setup sx 11. In summary, all the DTSIM parameters were selected to

reproduce the real sx 11 observation. DTSIM generated from this parameter file a new set of cross-

correlation coefficients as if produced by the correlator. Then I processed this new set of cross-correlation



CHAPTER 6. DATA REDUCTION TO DETERMINE POLARIZATION LEAKAGE 55

coefficients artificially generated in the same way as I did for the real data, using the same Python

script. The D-term derived in such way were compared to the D-terms used as input in the simulation,

i.e. the ones calculated on the real data. This approach was used since the experiment is unique and

cannot be easily reobserved to check repeatability and the calculation of formal error propagation from

the observed data to the derived D-terms is not possible due to the complexity of the algorithms required

for the data reduction of radio interferometry data. One could think that there are enough scans to

make multiple independent determinations of the D-terms and compare their scatter to estimate the

uncertainty. This is not possible because the SNR is not sufficient within a subset of data to allow D-

term determination. Instead one must integrate over several scans to reduce fluctuations due to thermal

noise and the experiment duration was chosen to allow to determine one D-term value per frequency.

Thus the D-term solution is not an over-determined problem.

Before running the simulation, I checked that the source model description given to DTSIM was in

good agreement with the real data. For this check, I ran DTSIM to create a dataset from the source model

with no noise added and plotted the phases along with the real data (using the AIPS task VPLOT). If

the model is a good representation of the true source structure, then the phases generated within the

model should agree with the phases of the data. If there are problems with DTSIM’s calculation of the

data from the model, then it should show up as disagreement between the model and the data. Figure

6.8 shows the result of this test and one can see that the DTSIM-generated data agree with the source

model. This test gave confidence that the program used for simulating the data was giving the expected

results.

The comparison revealed the extent of systematic and random errors in the D-term derivation method,

as follows in the next subsections. The test was performed only once because it required five months of

work due to the poor documentation for this specific AIPS task and some errors in the code that I found

and rectified. Had it not be for that one would have wanted to repeat the test a number of times.

A possible weakness of this method is that it does not explore the sensitivity of the result to the choice

of data calibration and imaging techniques. Another possible method would have been to analyze the real

data many times with various different analysis pipelines and comparing the agreement between the results

(Monte-Carlo-style). A third possibility would be to re-observe and re-analyse RD0705 and compare the

agreement between the results, however this is prohibitively expensive. A technique that is almost as

good, without re-observing, is bootstrap resampling (Kemball and Martinsek 2005) in which many test

datasets are generated from the observed dataset by selecting samples at random. The bootstrap method

gives the statistical uncertainty on properties calculated from a set of measurements that are made

from a parent population. Since one does not know the true property values of the parent population

(e.g. median, interquartile range), one cannot estimate the errors by simply comparing by how much

the calculated property values differ from their true values. Instead, the concept behind bootstrap

resampling for estimating random measurement errors is to treat the set of measurements themselves as

a parent population, of which we take sets of measurements (resampling). For each new set of (resampled)

measurements, one calculates the property values (eg median, interquartile range) in the same way that

one did for the real measurements of the real parent population. The key is that the same statistical

fluctuations are at work in the real measurement process and in the resampling process since the sample

sizes and parent distribution shapes are the same. The property values calculated for each resampled set

of measurements will differ a little from each other due to the statistical sampling fluctuations. From the

spread of values obtained, one sees directly how large are the statistical fluctuations and can quote an

uncertainty due to this effect. Generally one would generate, say, 10000 such test datasets and analyse

them and construct a distribution of errors. Bootstraping and its implementation in AIPS though would

have implied to write a quite large amount of software (estimated at one year of effort) and so was not

used.
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Figure 6.8: Visibility phase versus time for real and simulated data for a sample of baselines. Green lines: the

model coming from the real data. Blue crosses: the phases of the simulated data. The phases show only small

deviations from zero due to a secondary weak component close to the main source component at the phase centre

(image centre). The simulated data follow the line relatively well.

6.7.1 Systematic Errors

One cannot normally determine systematic errors by repeated measurement since systematic error affects

all measurements in the same way and normally one does not know the true value to compare to look

for systematic bias between the measurements and the true value. The determination of the leakage will

be influenced by any effects that corrupts the cross-hand cross-correlations coefficients therefore possible

sources of systematic errors to be considered are:

• propagation effects. The tropospheric propagation delay is not polarization dependent since it

is a neutral medium, it is isotropic and does not display birefringence5. Therefore troposphere

does not change the cross-hand cross-correlations. The ionospheric propgation delay depends on

the orientation of the plane of polarization with respect to the direction of the magnetic field.

This causes Faraday rotation which could influence the measurement of the D-tems if it changes

significantly during the observation. The amount of Faraday rotation at X-band is in the range

between 0.08◦ and 0.8◦ for night time with total electron content of 5× 1016 m2 and day time with

total electron content of 5 × 1017 m2 (Thompson et al 2001a). These values are negligibly small.

• analog systems and cable lengths. Changes with time in the relative lengths of the electronic paths

in the two polarization channels will affect the cross-hand cross-correlations. Such changes occur

mostly due to temperature changes of the electronics and cables. This has been measured by

injecting a test signal at the receiver such as that it passes through the same electronic path as

the astronomical signal and the test signal is extracted in the data acquisition system. The test

signal phase is compared to a phase reference to detect changes in the electrical path length with

time. The test signal is injected in both polarization channels and extracted separately. This allows

comparison of the path length through the two polarization channel. The typical effect is shown in

5A birefringent medium is changing the index of refraction of the light in dependence of the orientation of the plane of

polarization. A birefringent medium is for example the ionosphere
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Figure 6.9. The Figure shows that the path lengths do not differ by more than 2◦ over six hours.

These values are also negligibly small.

• correlator. The correlator is a digital system whose behaviour is well known and by its design has

phase measurement errors below 2◦ (Rogers 1991. These errors are also negligibly small.

• algorithms used in the data reduction. This is the most likely place for systematic errors to arise

because the algorithms are non linear (i.e. deconvolution in imaging), in some places iterative (i.e.

self-calibration steps), therefore the systematic errors can accumulate, in some places operates with

low SNR (i.e. cross-hand fringes) and in some places involve a linear approximation to a non-linear

process (i.e. simultaneous solution of source structure, source polarization and the D-terms). This

is a sufficiently complex sequence of algorithmic steps, many of which lack a formal error analysis

and so it is not possible to calculate analytically the formal error propagation. Thus one must use

numerical experiments with datasets that should produce known results.

In the following discussion, I consider the errors introduced by the algorithms. Systematic errors were

searched for by differencing the D-terms derived from the simulated data (section 6.7) and those used to

generate the simulated data and seeing whether the differences have a zero mean and random scatter.

Plots of the differences are shown in Figures 6.10 for the imaginary components and in Figure 6.11 for

the real components. In this case, the situation is unusually easy because the true values of the D-terms

(that is the one put in to generate the simulated data set) are known. Thus, it is straightforward to

detect systematic error in the data reduction algorithms by looking at bias between the measured and

true values.

The null hypothesis was that there were no systematic errors, i.e. that the difference between true and

measured D-term was zero on average. I would have rejected the null hypothesis and concluded instead

that there was a systematic difference only if I saw a statistically significant departure of the measured

median away from zero. The probability of a given departure of the measured median away from zero is

given by the standard error of the mean (SEM) in the case that errors are not correlated. Since there is

no apriori knowledge of the degree of correlation of the errors, one would ideally measure the correlation

with repeated simulated datasets, with small variations in the parameter sets during the data reduction

and with different noise and calculate the covariance matrix. The process of simulation and analysis of

the first simulated data set took five months. At least another four datasets and preferably many more,

would be required to have statistical significance in the covariance matrix which amounts to a prohibitive

length of time. Instead of assuming Gaussian errors I used the real error distribution as revealed by

the simulation performed and using non-parametric statistics as follows. The median difference is 0.0015

(dimensionless quantity) for the real part and 0.0012 (dimensionless quantity) for the imaginary part.

The uncertainty on the median was estimated by bootstrap resampling (Johnson 2001) with 100 trials

and yielded a 95 % confidence interval that spanned from -0.00125 to 0.002800 (dimensionless quantities)

for the real part and from -0.0014 to 0.0030 for the imaginary part, thus the median did not differ from

zero by more than the 95 % confidence interval and so I cannot reject the null hypothesis with confidence,

thus there is no evidence for detectable systematic errors. This gave confidence that the data reduction

pipeline did not introduce a systematic bias in the case tested and there was no expectation that the

pipeline would have introduced systematic errors in the other setups too.

6.7.2 Random Errors

The 95 % confidence interval on the D-term measurement was estimated from the spread in the differences

between the D-terms derived from the simulated data and those used to generate the simulated data,

differencing both the real components and the imaginary components (Figures 6.10 and 6.11). The 95 %

confidence interval on the real part of the D-term is 0.016 (dimensionless) and the 95 % confidence interval

on the imaginary part of the D-term is 0.011 (dimensionless). I averaged these estimates and found the
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Figure 6.9: Effects of the cable length variation due to temperature changes. This effect influences the D-term

determination.

Figure 6.10: Top: Imaginary part of the LCP leakage (dimensionless) into the RCP feed at 8564.99 MHz versus

the antenna number as used to generate the simulated data and as derived from the real data. Bottom: difference

of the two lines in the top plot, with vertical scale magnified by a factor 3 compared to the top plot.
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Figure 6.11: Top: Real part of the LCP leakage into the RCP (dimensionless) feed at 8564.99 MHz versus the

antenna number as used to generate the simulated data and as derived from the real data. Bottom: difference of

the two lines in the top plot, with vertical scale magnified by a factor 10 compared to the top plot.

final 95 % confidence interval uncertainty was 0.013. This value is used later when quoting the D-terms

with their uncertainties.

From the error analysis one should capture errors due to algorithms, as explained in the itemized list

in Section 6.6.1 and due to thermal noise.

6.8 Converting Error Estimates from Real and Imaginary to

Amplitude and Phase

The errors on the amplitudes and the phases of the D-terms were derived from the random errors on the

real and imaginary components and they are not Gaussian, but rather are Rice distributed (Thompson

et al 2001b). The Rice distribution is the same as the Gaussian distribution for high SNR (SNR > 5), but

is noticeably different at low SNR (see Figure 6.12). The typical D-term measurements for the antennas

that took part in RD0705 have low enough SNR to be in that range where the Rice distribution is needed.

The Rice distribution is described by the following equations (Thompson et al 2001b):

p(Z) =
Z

σ2
exp(−Z

2 + |D|2
2σ2

)I0(
Z|D|
σ2

) (6.6)
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1

2π
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2σ2
){1 +

√
π

2

|D| cosφ

σ
exp(

|D|2 cos2 φ

2σ2
)[1 + erf(

|D| cosφ√
2σ

)]} (6.7)

where p(Z) and p(φ) are respectively the probability distribution for the amplitude and the phase, I0 is

the modified Bessel function of zero order, erf is the error function, D is the D-term vector, σ is the 95 %

confidence interval on the real or imaginary components of the D-terms and Z is the sum of the visibility

plus noise.

To estimate the amplitude errors I took each D-term amplitude measurement as |V | and the random

noise estimate (0.013) as σ in Equations 6.6 and 6.7. A C-program was written to integrate numerically the

area under the wings of the of the Rice distribution to find the 98 % confidence interval. The program is

reproduced in Appendix B and the resulting distributions are shown for three illustrative cases in Figure

6.12 and Figure 6.13. One can see that, for high-amplitude D-term (0.1637) the distributions look

Gaussian, but for low amplitudes (0.0009) the amplitude distribution becomes noticeably skewed. The
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Figure 6.12: D-term amplitude probability distribution for the maximum D-term amplitude (0.1637), the median

(0.0395) and the minimum (0.0009) D-term amplitude found in RD0705, for a 95 % confidence interval on the

real and imaginary components of 0.013. The lower the D-term amplitude the more skewd is the distribution.

Figure 6.13: D-term phase probability distribution for the maximum D-term amplitude (0.1637), the median

(0.0395) and the minimum (0.0009) D-term amplitude found in RD0705, for a 95 % confidence interval on the

real and imaginary components of 0.013.
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98 % confidence interval derived by this process is used as the error on quoted values of D-terms in this

work.

The errors on the D-term phases are related to the D-term amplitudes. If one considers the D-term

vector with an additive noise vector added, one would see that if the amplitude of the D-term vector is

large the noise vector does not cause much change of the phase away from the phase of the D-term. If

the amplitude of the D-term vector is small, then addition of the noise vector yields a resultant that can

vary a lot in phase.

6.9 D-Term Values

All the D-terms (about 1400 values of phase and amplitude) derived for all antennas, all the frequencies

and polarizations are given in the Tables in Appendix C. They were found to vary in amplitude from

0.0009 to 0.163. Every station has its own table and the values of the D-terms are reported with errors

calculated from the Rice distribution, described in the paragraph 6.6. In the Tables for the VLBA

antennas there are leakages from both the RCP channel into the LCP channel and from the LCP channel

into the RCP channel, whilst for the Mark IV antennas there are the leakages from only the LCP channel

into the RCP channel, because the Mark IV stations did not have dual polarization receivers.

An excerpt from the Tables in Appendix C is given in Table 6.1 . The first column is the frequency at

which the D-term was determined, the second is the dimensionless amplitude of the D-term for the RCP

leakage with its errors, the third is the phase in degree of the D-term for the RCP leakage with errors.

The fourth and fifth columns are amplitudes and phases for the LCP leakage and are present only for the

VLBA antennas since they have dual polarization receivers whilst the IVS stations do not (only RCP).

The D-term amplitudes and phases are also represented graphically in the Figures in the Appendix D.

In the case of Effelsberg, the D-terms of the receiver were known from laboratory measurements.

Figure 6.14 shows the leakage measurements made in the laboratory and the leakage measurements made

during this experiment. The measurement (Lochner, 1999) was made by injecting a polarized test signal

into the receiver and measuring the response of the orthogonally polarized receiver output, which would

have been zero for an ideal receiver.

The measurements are similar in their limited area of overlap giving additional confidence im my

D-term measurement technique, although the D-terms measured for Effelsberg in this thesis are all

systematically lower that those measured in the laboratory. This is most probably caused by the fact

that for the laboratory measurement the receiver was in the laboratory, whilst during observations the

receiver is sitting off-axis in the secondary focus. Off-axis illumination of a parabolic antenna creates

asymmetric electric field distribution on the surface of the parabola which creates additional polarization

leakage (Johnson and Jasik 1984), that is not included in the laboratory measurements.

Freq (MHz) Amp. RCP Phase RCP Amp. LCP Phase LCP

8228.99 0.022+0.018
−0.030 51◦ ± 73◦ 0.023+0.019

−0.030 118◦ ± 71◦

8244.99 0.026+0.020
−0.030 52◦ ± 67◦ 0.025+0.020

−0.030 111◦ ± 68◦

8276.99 0.033+0.023
−0.029 51◦ ± 58◦ 0.022+0.018

−0.030 120◦ ± 73◦

Table 6.1: Amplitudes and Phases of D-term for antenna Pie Town versus frequency
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Figure 6.14: Red: Laboratory measurement of leakage power for the Effelsberg X-band receiver expressed in

decibel (20×log10(amplitude)) from 7500 MHz to 9000 MHz versus frequency. The curve was prepared by Lochner

without error bars. Blue: Measurement of leakage made using the VLBI experiment RD0705. The error bars

show the 98 % confidence interval. The two curves agree within their errors. Below -40 dB, the leakage amplitude

is less than 0.01 which is negligible.



Chapter 7

Correction of the Delay for

Polarization Leakage

7.1 Correction of the Leakage

Correction for the error created by the leakage in the delay was implemented within the HOPS fourfit

program. The correction was based on Equation 3.9 and was convenient to implement after fourfit

decoded the correlator output, but before the data were fringe fitted. More precisely, the correction was

applied after the Fourier transform from single-band delay to power spectrum. The correction was a

2x2 rotation matrix that multiplied the real and imaginary visibility components for every accumulation

period to rotate the phases through an angle that depends on the measured leakages and parallactic

angles. First I copied the fourfit programs to a private version for developing the code and created an

ASCII file containing the measured D-terms for all the stations (reported as station correction Tables in

Appendix C) then I added to fourfit three functions.

• pang.c calculates the parallactic angle. This function is called from the main (fourfit.c). The code

of pang.c is reported in Appendix E.

• dterm load.c reads the D-term from file (dterm X-band.dat), calculates the correction angle using

Equation 3.9 for all possible combinations of antennas using the parallactic angle from pang.c. This

function is called from fourfit.c. The code of dterm load.c is reported in Appendix E.

• dterm apply.c reads the correction angle from dterm load.c for the baseline being fringe fitted and

if it finds one it returns it to norm.c. If it does not find one, then it linearly interpolates between

the nearest D-term values in frequency and returns the result to norm.c. The code of dterm apply.c

is reported in Appendix E.

The actual rotation of the visibility phases is performed in norm.c by adding the following code fragment

to implement multiplication by a rotation matrix.

/* Add a rotation to the phases to correct the d-term leakages */

/* call to dterm_apply */

dterm_corr_ang = dterm_apply(pass, fr);

/* dterm_corr_ang = 0.; */

/*dterm_corr_ang = phase angle through which we will rotate the visib. vector for D-term corr*/

/*dterm_corr_ang = 0 when no D-terms are applied */
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xcor_re_temp = xcor[l].re; /* temporary storage for applying rotation matrix*/

if (sb == 1)

dterm_corr_ang *= -1; /* adjusting the sign in case of LSB*/

xcor[l].re = xcor_re_temp * cos(dterm_corr_ang) - xcor[l].im * sin (dterm_corr_ang);

xcor[l].im = xcor_re_temp * sin(dterm_corr_ang) + xcor[l].im * cos (dterm_corr_ang);

/*rotate the xcor through angle dterm_cor_ang*/

where xcor[l].re and xcor[l].im are the real and imaginary components of the cross correlation, i.e. they

contain the contaminated visibility, xcor re temp is temporary storage for xcor[l].re during the phase

rotation. Had xcor re temp not been used, then xcor[l].im would have used xcor[l].re after it was rotated

rather than before rotation and therefore would have been wrong. Since the change in the MBD due

to the correction of the D-term could have been as small as the sub-picosecond level, I increased the

resolution of the MBD and visibility phases printed in the fourfit plot by a factor 10. This change was

made in the fourfit function make postplot.c.

7.2 Program Validation

To verify the correctness of the program modifications, I took a geodetic experiment correlated at Bonn

(R1399) and considered the baseline between Westford and Wettzell. I ran fourfit with and without

D-term correction applied, keeping the increased MBD output precision in both cases. The outputs from

both runs of fourfit are shown in Figure 7.1

The difference in MBD was 0.6 ps for this baseline. To check whether this result was reasonable I

extracted from fourfit the values of the D-term correction angles for the frequencies in R1399, and plotted

them against frequency and performed a linear regression with least squares minimization and the result

is shown in Figure 7.2. The linear regression was used since the delay is constant across the bandwidth

at this range of frequencies (X-band) since the medium is non dispersive. Since the delay is the first

derivative of phase with respect to frequency, then constant delay is equivalent to a straight line. The

slope of this line should equal the change in MBD due to the D-term correction. The linear regression

gave a delay correction of (0.6 ± 0.4) ps, which agrees with the fourfit result.

I also tested more thoroughly whether the rotation angle was calculated and applied to the visibil-

ities correctly, as follows. I considered as above R1399, fringe fitted all observations by the baseline

Westford-Wettzell of the source 3C418, both with and without D-term correction applied and extracted

the visibility phases in a file. The differences between the visibility phases with the D-term correction

applied and the ones without the D-term correction gave the applied rotation angle. I then checked the

correctness of these rotation angles using sched, which is a well tested and reliable program, to calculate

parallactic angles. I differenced the parallactic angles for Westford and Wettzell, and used the same D-

term values as were used for the D-term correction in fourfit, and calculated the correction angles using

Equation 3.9. I plotted these correction angles on the top of the correction angles as calculated from

the modified fourfit and show the results in Figure 7.3. The correction angles agree, thus validating the

fourfit modifications for D-term corrections.

7.3 Validation of Group Delay Improvement Using RD0705

To demonstrate whether the corrections improved the group delay measurements, I ran the modified

fourfit with and without D-term correction applied for the whole RD0705, and stored the resulting MBD

measurements in a file. The algorithms for D-term measurement and D-term correction are completely dif-

ferent since the derivation of the D-terms is performed on the cross-hand data, and the check is performed

on the parallel-hand data, so they are different correlator outputs depending on different properties of
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Figure 7.2: D-term correction angle versus frequency for the baseline Westford-Wettzell in the experiment R1399

on the source 3C 418 at 17:50 UT. The line is a least squares fit through the points whose gradient gives a delay

correction of (0.6 ± 0.4) ps, in agreement with the value calculated by fourfit.

Figure 7.3: Black dots: D-term correction angle as applied by fourfit to the visibility phases in R1399 for the

baseline Westford-Wettzell on the source 3C418. Crosses: D-term correction angle obtained using Equation 3.9

with the parallactic angles calculated by sched.
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the source. This already delivers a fair degree of independence between the D-term measurement and the

check. One way to have the two coupled is to assume that there is a bug in CALC 8 or in the correlator

harware or in correlator software that produces coupled errors in the cross-hands and the parallel hands,

then the errors in the cross hands in one experiment could be anticorrelated with the errors in the parallel

hands in another experiment, causing errors in the D-term measurement on RD0705 to be cancelled by

errors in the parallel hands in the R1 and so go undetected. Therefore it is extremely unlikely that an

error in one will be compensated by an opposite error in the other and the validation of the group delay

using RD0705 data is justified.

First, I differenced the MBD with and without D-term correction applied, for each baseline and scan.

The difference is the size of the correction that was applied to the data. Figure 7.4 shows the histogram

of the MDB differences and Figure 7.5 shows the same difference in cumulative form. The cumulative

form is presented to enable reading off the median and percentile values, which is not possible from the

histogram. The median correction was 0.18 ps and the 90th percentile was 1.6 ps i.e., the corrections are

mostly (90% of the time) less than 1.6 ps.

Second, I looked for a reduction in the MBD residual due to correction of the polarization leakage.

Unfortunately one cannot simply compare directly the MBD before and after the D-term correction since

the MBD is affected by residual correlator errors that are much larger than the effect sought. Instead, one

must resort to form closure triangles of three antennas and to sum the MBDs around the triangle since

this cancels all station-based errors and the result should be accurately zero except from the non-closing

errors, of which the polarization leakage is expected to be the biggest. To calculate the closure MBD I

wrote a C program, cmbd.c which identified all triangles of antennas for each scan, summed the MBD

values around each triangle, and wrote the resulting closure MBD values to an output file. This program

is reported in Appendix E.

Since the frequency channel spacing was not optimal to calculate the MBD, I saw very high sub-

ambiguities in the resulting closure quantities. This effect was present because the observation was

optimized for measuring the D-terms over a wide frequency range and was not optimized for determining

the MBD. Figure 7.6 shows the MBD for a scan in RD0705. These sub-ambiguities showed up in the

closure MBD and I accounted for them by wrapping them modulo 0.0625 µs, which is the ambiguity

spacing for the 16 MHz channel bandwidth used. At that point, most of the good data lay close to 0 ps

within 50 ps. I then created a histogram of the closure MBD values for both cases (with and without

D-term corrections), in differential and cumulative forms and these are shown in Figure 7.7 and Figure

7.8.

I estimated the width of the two distributions to see whether the closure error, was noticeably reduced

by the D-term correction. The width was taken as the difference between the 25th and 75th percentile

and is (27.5 ± 0.3) ps in both cases, where the uncertainty is the 95% confidence interval1 estimated by

boostrap resampling (Johnson 2001). Thus the D-term correction made no detectable reduction of the

closure errors. However, this experiment (RD0705) was not scheduled for the purpose to deliver precision

delay measurements, therefore the channel spacing was not optimal to deliver high resolution MBD. Thus

there was not enough sensitivity to detect a median change in the MBD of 0.18 ps as calculated above

when the closure MBD values are distributed around 0 ps with an inter-quartile range of 27.5 ps, as it will

be expalined in detail in section 7.4. RD0705 produced only 26400 useful closure MBD measurements,

from 12 antennas per scan, 480 scans, and with the number of independent closure measurements among

n stations being 1
2n(n − 1) − (n − 1) (Cornwell and Fomalont 1999). This was not enough to detect a

0.18 ps change in MBD.

The width of the closure error distribution was found to be 27.5 ps (inter-quartile range), therefore

the leakage is not the dominant error among the factors contributing to the total closure error, thus I

considered the other two most likely non-closing errors, i.e the source structure and the bandpass filter

1I.e. there is a 5 % probability that the true width differs by more than the ±0.3 ps uncertainy limit from the estimated

width of 27.5 ps due to a chance statistical fluctuation
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Figure 7.4: Histogram of the MBD change on OQ208 in RD0705 caused by correcting the leakage. Bin size

0.1 ps

Figure 7.5: Cumulative histogram of the MBD change on OQ208 in RD0705 caused by correcting the leakage.
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Figure 7.6: MBD function for one scan for RD0708 for the source OQ208 at X-band. The MBD function has

high sidelobes due to limited frequency sampling.
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Figure 7.7: Histogram of the closure MBD on OQ208 in RD0705 with and without D-terms correction applied.
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Figure 7.8: Histogram of the closure MBD on OQ208 in RD0705 with and without D-terms correction applied.

shape.

7.3.1 Source Structure

The target source was OQ208, which is not point-like, but has a small second component, as is visible in

Figure 6.5 in the bottom right part of the plot. Following the recipies of Charlot (1990), I could calculate

the effect of the source structure on the closure delay. The main component is located at the phase

centre in the map, therefore after the correlator delay model was applied, the main component has zero

delay. The secondary component, on the contrary, has an angular offset from the main component of

about 8 mas, therefore the residual delay after the correlator model was applied is non-zero. Figure 7.9

shows the geometry of the observation. The source is at infinity, therefore the radio waves arriving at the

telescopes A and B are parallel wavefronts. The angle between the radio waves incoming from the main

component (solid lines) and from the secondary component (dotted lines) is equal to the separation of

the two components, i.e. 8 mas. The delay from the secondary component is

τ =
b tanα

c
(7.1)

where b is the distance between the two stations, and α is the angle between the baseline and the line

from station B to the point D. By geometry, α = 8 mas or 3.88 × 10−8 radians. Considering the longest

baseline with mutual visibility of about 6000 km and considering the worst case when the projection of

the vector separation between the two components is parallel to the baseline, Equation 7.1 lead to a delay

of 776 ps. The response of the interferometer to this geometry is the flux-density-weighted average of the

two wavefronts. The flux density of the main component is 1.6 Jy and the flux density of the secondary

component is 0.16 Jy, as derived in the data analysis. Given a weight w1 = 1.6 for the main component
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Figure 7.9: Cartoon describing the geometry of an observation where the source is not point-like, but has a

secondary component with non-zero delay.

and a weight w2 = 0.16 for the secondary component, then the weighted average is

2
∑

n=1

wnτn
∑2

n=1 wn
(7.2)

where the sum goes with the number of components, which in this case is two. The amount by which

the delay is different from zero on this 6000 km baseline is then 70 ps.

The best case happens when the projection of the vector separation between the two components is

perpendicular to the baseline, in which case the delay error is 0 ps independent from the baseline length.

In a median case, the baseline length is 4000 km and the projection of the vector separation between the

two components is 45◦ relative to the baseline. Using Equations 7.1 and 7.2 in this case leads to a delay

of 33 ps.

With a simulation using the AIPS task DTSIM, I generated a dataset using the same characteristic

present in the real observation (same antennas, same source), though without any noise added, to see the

effects of the source structure on the closure quantities. I took a representative longer baseline across the

Atlantic from the VLBA station North Liberty, to Noto and chose a second VLBA station (Los Alamos)

to form a triangle. I calculated the closure phases on this triangle every second for the whole duration

of the experiment on the source OQ208 and the largest value was found to be 100◦ corresponding to a

delay of 33 ps when observing at X-band, which is acceptably close to the 27.5 ps inter-quartile range

of the closure MBD distribution that was found during data reduction. Thus source structure can cause

closure errors in the MBD of similar magnitude of those seen in the analysis of this experiment.
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7.3.2 Bandpass Filter Shape Missmatch

The bandpass filter in the ideal case has a flat passband for both phase and amplitude but is never

achievable in real cases. Thompson and D’Addario (1984) showed that a linear amplitude slope across

the passband gives almost zero phase error and that a sinusoidal ripple in the amplitude across the

passband can cause at most 0.02◦ error. The most probable source of errors comes from phase ripple

across the filter filter passbands. This particular case is not treated by Thompson and D’Addario (1984),

therefore I did it for this specific observation. I generated within a C-program, three sinusoids with

amplitudes of 3.5◦, 10◦ and 15◦ to simulate the phase ripples across the passband actually found to be

present by inspecting the data. This simulated the bandpass at each antenna in a triangle. I calculated the

closure phase around the triangle calculating the phase differences between antennas for each frequency

within the bandpass and vector-averaging the phase differences over the whole frequency range within

the passband. I then generated 100 such cases with randomly selected ripple periods and ripple phases,

though constrained to lie within the range of values actually seen in the data. I recorded the maximum

value of non-closing phase, which was 1.43◦ (closure delay of 5.5 ps when observing at X-band) and the

median value of non-closing phases, which was 0.96◦ (closure delay of 3.7 ps at X-band).

From this I can conclude that the source structure accounts for most of the closure MBD spread, that

the bandpass effect on closure is 13 % of the total spread, and that the polarization leakage effect is below

2 % of the total spread.

7.4 χ
2 Test

To test whether the closure MBD distributions before and after D-term correction (Figures 7.4 and 7.5)

differ I applied a χ2 test which demonstrated that there is no statistically significant difference between

the two distributions. I then tried to see whether this result would have changed, had I considered only

four stations with the largest D-terms (Matera, Noto, Westford and Onsala) and arrived at the same

conclusion that there is no statistically significant difference.

The power of the χ2 test to distinguish the two distributions was estimated from a numerical simula-

tion. For the simulation I took the measured closure MBD distribution and made a scaled copy of it that

had progressively broader width on each trial. Then I used the χ2 test to compare the measured and

scaled distributions. The χ2 test yielded a significant difference (95% significance) when the width of the

distribution changed by 15%. This means that the total closure errors would have to be reduced by 15%

to be noticeable. The polarization leakage is only one of many non-closing error (see Sections 3.3, 7.3.1

and 7.3.2) and since the error sources do not add linearly, the effect of the polarization leakage on the

MBD needs to be more than 15% of the total closure errors to be detectable. The open question is then

how large must be this number. To answer the question one must understand the way the errors combine,

which requires knowledge of the error distribution. It is reasonable to assume that the distribution of the

closure MBD correction has the same shape as, and is
√

3 times wider than the distribution of the MBD

correction. This is the case because the closure MBD correction is the sum of three MBD corrections

on the three baseline constituting a triangle. It is also reasonable to assume that the distribution of the

other non-closing errors is that of the distribution of the closure MBD after the leakage corrections have

been applied (Figure 7.7). These assumptions formed the basis for calculating the propagation of errors.

To combine the errors without assuming that the data are Gaussian distributed, one would need to con-

volve the distribution of the MBD correction with the distribution of the closure MBD. This is though

unnecessarily complicated, since it is a good approximation to assume that the two distributions are

Gaussian and use the simplest parametric statistic. This statement was proven by comparing the width

estimate of the closure MBD histogram from parametric and non-parametric estimators. The width,

using a non-parametric estimator (the inter-quartile range; Weisstein (1999)), was 27.5 ps. The width,

using a parametric estimator (the inter-quartile range of a Gaussian that was fit to the closure MBD

distribution), was 24.2 ps (corresponding to a dispersion of 17.5 ps). The two inter-quartile ranges differ
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by 10%, which represents the error that one would make by assuming that the distribution is Gaussian.

Since this difference is acceptably small, I used Gaussian statistics for answering the question of how large

must be the effect of the polarization leakage on closure MBD to be detectable when corrected. I consid-

ered two independent Gaussian error sources, one representing the effect of the polarization leakage on

closure MBD and the other representing all the other non-closing errors that affect closure MBD. These

sum together to give the measured dispersion of 17.5 ps. Correcting the polarization leakage would have

to reduce this dispersion by 15% to 14.9 ps for the change to be detectable by the χ2 test. This means

the polarization leakage would have to have a dispersion of 9.2 ps considering that Gaussian errors add

quadratically.



Chapter 8

Consideration on Polarization

Leakage for VLBI2010 Receivers

Having developed an analytical understanding of how D-term corrupts the delay, I applied it to develop

a guideline for polarization purity in the new VLBI2010 receivers presently being designed. This devel-

opement was done using a numerical simulation although one could have performed this investigation

purely theoretically.

VLBI2010 (Niell et al 2007) identifies a number of ways to improve the precision of geodetic ob-

servables. Within VLBI2010 there is a recommendation on new receivers, which are intended to span

16 GHz bandwidth. Typical design for feeds in VLBI2010 were discussed at the meeting Future Radio

Frequencies and Feeds1 held in Wettzell in 2009. Discussed were the 11 feed designed by Onsala (Olsson

et al 2006), the multiband corrugated horn presented by Göldi and the quad-ridge horn (ETS-Lindgren

3164-05 model). These feeds have cross polarization levels that vary between -10 dB to -35 dB, which is

equivalent to D-term amplitudes between 0.3 and 0.02.

Given these feed properties one can estimate whether the leakage is likely to cause problems for the

geodetic observables. If the feed is chosen to be linearly polarized I cannot make any statement about

tolerable leakage levels. That is because the effect of D-terms on the visibilities is totally different from

that of circularly polarized feeds and is outside the scope of this study. If the feed is chosen to be circularly

polarized, I can give an upper limit to allowable leakage by considering the case of 11 GHz of spanned

bandwidth and the worst D-term amplitude of 0.3. For the D-term phase gradient with frequency I

evaluated many possible gradients to find the worst possible case that yields the largest delay error. The

calculation was done numerically by vector addition at each frequency of the visibility vector and leakage

contamination with the D-term phase rotated through an angle that is frequency dependent. The delay

was derived following Corey and Titus (2006) approach but trying various parallactic angle differences.

Figure 8.1 shows how the delay error depends upon the D-term phase gradient and parallactic angle.

I found that the worst case delay error range between 2.5 ps and 3.4 ps depending on the parallactic

angle difference. Since 3.4 ps corresponds to 1.1 mm, this is quite close to the VLBI2010 goal of 1 mm

total error and therefore the leakage should be kept smaller than this worst case.

Therefore, although the leakage is high in some feed designs, the fact that the bandwidth spanned

is huge reduces the contribution to a value that is below the detectability of the leakage in the present

geodetic measurable. Future improvements through the VLBI2010 project may reduce the uncertainties to

the point that the polarization leakage effect becomes a relevant source of error in the delay determination.

To ensure that the polarization leakage is low enough for 1 mm precision for VLBI2010, one should

design the new feeds so that their polarization leakage characteristic is sufficiently low as it is estimated

below for circularly polarized feeds.

1http://www.wettzell.ifag.de/veranstaltungen/vlbi/frff2009/frff2009.html
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Figure 8.1: Effect on the delay due to polarization leakage produced by a linear gradient of D-term phase

difference between two stations with D-term amplitude of 0.3 and 11 GHz of spanned bandwidth for various

parallactic angles.

I began by considering that there are some ten independent sources of errors such as troposphere,

thermal expansion of telescopes, instrumental effects and each of them should contribute at most 1 mm√
10

=

0.3 mm. In the explicit case of the polarization leakage, there are two effects that contribute to the

delay error: the phase gradient across the spanned bandwidth and the D-term amplitude. Taking the

worst case of a phase gradient of 260◦ across the spanned bandwidth of 11 GHz and assuming that both

antennas have the same polarization leakage amplitude, then the D-term amplitude that yields 0.3 mm

delay perturbation is 0.17 corresponding to -15 dB. If the feed is built better than this, the delay error

will be less than 0.3 mm in all cases.



Chapter 9

Conclusion

9.1 Summary of Results

In this PhD thesis I determined the effects of polarization leakage on the delay observables in geodetic

VLBI using one dedicated observation with a 19-station global VLBI array consisting of the 10 VLBA and

9 geodetic VLBI stations. I found that the leakage of signal from one polarization channel to the opposite

polarization channel (the D-term) had a dimensionless amplitude that varied from 0.0009 to 0.1637 and

phases that mostly varied very little with frequency over the range 8212.99 MHz to 8932.99 MHz. The

errors on these quantities were calculated using the Rice statistic and vary for every D-term measurements.

The phase change of the leakage with frequency causes an error in the geodetic delay determination which,

from the measured leakage dependence on frequency was found to be 0.18 ps and the 90th percentile was

1.6 ps, i.e. the delay error due to leakage is less than 1.6 ps in 90 % of the cases.

To look for a reduction in the MBD residuals due to correction of the polarization leakage, one must

resort to form closure triangles of three antennas and to sum the MBDs around the triangle since this

cancels all station-based errors and the result should be zero except for the non-closing errors. The width

of the closure error distribution was found to be 17.5 ps, therefore the leakage is not the dominant error

among the factors contributing to the total closure error. Future works should, thus, concentrate on

identifying and reducing the dominant error sources. Typical sources of non-closing errors are:

• source structure, and

• different filter shapes at different stations

Having developed this analytical understanding I applied it to develop a guideline for polarization

purity in the new VLBI2010 receivers presently being designed. Within VLBI2010 there is a preliminary

specification for the new receivers to span 16 GHz bandwidth. Given the measured properties of the feeds

being considered for VLBI2010, one can estimate whether the leakage is likely to cause problems for the

geodetic observables. Although the leakage is high in some feed designs, the fact that the bandwidth

spanned is huge reduces the contribution to a value that is below the detectability of the leakage in

the present geodetic measurable. Future improvements through the VLBI2010 project may reduce the

uncertainties to the point that the polarization leakage effect becomes a relevant source of error in the

delay determination. To ensure that the polarization leakage is low enough for 1 mm precision (i.e.

0.3 mm error contribution from polarization leakage) for VLBI2010, one should design the new feeds so

that their polarization leakage characteristic is below -15 dB.
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9.2 Comparison with Previous Results

The results of this project are in agreement with the results obtained by Corey and Titus (2006) from

their measured D-term dependency on frequency. Corey and Titus (2006) found that polarization leakage

introduces an error on the MBD at X-band of 1.0 ps (0.3 mm) at the VLBA antennas and up to 9 ps

(2.7 mm) at the geodetic stations for 360 MHz bandwidth. I found that polarization leakage introduced

an error of 0.6 ps in the MBD on the baseline Westford-Wettzell (geodetic stations) for a bandwidth

of 720 MHz, or 6 ps had the bandwidth been 360 MHz. If the mean value of the error caused by the

D-terms is as big as that calculated by Corey and Titus (2006) for the baseline Westford – Kitt Peak

of (7 ps), then the improvement would be statistically detectable with 1300 independent closure MBD

measurements. This is clearly not the typical case, or I would have seen it in this study with the 26400

closure triangles considered.

Since this value is smaller than the 14 ps derived in the theoretical work of Rogers (1991), then Rogers

might have been pessimistic in both his assumptions of a phase gradient over 360 MHz and of a nominal

D-term amplitude of about 0.17 for all the antennas, which I measured to be the case only for the worst

antenna.



Chapter 10

Summary

Geodetic VLBI delivers baseline length and Earth orientation parameter measurements, which offer the

most viable and precise way to study Earth crustal and core dynamics and to support space navigation.

The geodetic observable obtainable from VLBI measurements is the propagation time difference of elec-

tromagnetic radiation from the quasars to the antennas measured as the phase slope versus frequency

(group delay). Within the past 35 years the precision of the geodetic measurements has improved by a

factor of 100, from metre precision (Hinteregger et al 1972) down to a few millimetre precision (Niell et al

2007) opening possibilities for the geophysicists to study the Earth’s interior dynamics and climatology

(Chao 2004). Still, the requirement to increase the precision drives geodesists to eliminate, where pos-

sible, factors that hinder their goal of reaching the sub-millimetre level (Niell et al 2007). Among these

factors, the primary limitations come from the atmospheric and ionospheric refraction, source structure

and instrumental effects such as polarization leakage (D-term). The polarization leakage has so far been

considered to be one of the biggest error sources not yet corrected in the geodetic analysis.

The polarization leakage corrupts the phase in a way that varies with frequency, and since the group

delay is the first derivative of the phase delay with respect to frequency, the polarization leakage corrupts

also the group delay. That polarization leakage affects the VLBI measurements has been known for

more than a decade but both the geodetic and astronomical communities have conducted only a few

studies to either model theoretically or measure the contamination of the observables by polarization

leakage. The need for new measurements arose because in the previous studies only approximate values

were established: the observed sources were assumed to be unpolarized, the bandwidth spanned for the

geodetic antennas by Corey and Titus (2006) was only 360 MHz of the 720 MHz available at X-band,

and some stations upgraded the receivers since those measurement were made.

In this study I made a 24 hour observation with some IVS and the 10 VLBA stations and analyzed the

data assuming that the observed sources could be polarized. For this reason, I first made images of the

sources to determine simultaneously the source structure, the intrinsic polarization and the polarization

leakage. I spanned the so-called geodetic wide-band that is from 8212 MHz to 8932 MHz at X-band

and from 2225 MHz to 2365 MHz at S-band. I also measured the polarization leakage more densely

in frequency, every 16 MHz, for better interpolation of the leakage vectors across the whole bands and

in case the geodetic frequency sequence is changed in the future. Nearly 60 frequencies divided in 15

frequency-setups were observed. To obtain the best results possible, I pushed the Mark IV stations

beyond their standard usage. The preparation of the observations required a deep understanding of the

VLBI data acquisition racks and their capabilities and was defined the most complex VLBI observation

made sofar.

Polarization leakage was detected by the following procedure. In the absence of leakage the signals

received in the LCP channel and RCP channel are uncorrelated Gaussian noise processes and cross

correlation between them will yield no coherence. If leakage is present then some of the signal in one
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polarization channel will add to the signal in the other polarization channel. By cross-correlating the

contaminated LCP channel at one antenna and the contaminated RCP channel at the other antenna one

will find coherence caused by the LCP in the LCP channel when correlating against the LCP that leaked

into the RCP channel at the other antenna. To disentangle the intrinsic polarization of a source and

the polarization leakage terms, one needs a wide parallactic angle coverage because the electric vector

intrinsic to the source will not rotate as the dipoles rotate whilst the vectors describing the leakage terms

will rotate with the dipoles. Geodetic stations mostly have only RCP, but measurements of the leakage

for these stations are still possible if the antenna at the other end of the baseline has dual-polarization

receivers. Therefore, I used the 10 VLBA antennas since they are among the few antennas that have

dual polarization capability at S-band and X-band and their hardware is carefully designed for VLBI

observations. In addition, 10 geodetic antennas were used as a test sample to measure the polarization

leakage. All the different frequency setups designed in this study were correlated at the Bonn correlator

and the correlation was done between all possible combinations of polarization (i.e. RCP against RCP,

LCP against LCP, RCP against LCP and LCP against RCP).

The correlated data were subsequently imported into the Astronomical Image Processing System

(AIPS) and processed up to and including the determination of the polarization leakage. The choice of

AIPS was made because it implements the algorithms required, namely amplitude and phase calibration,

fringe fitting, imaging, deconvolution, self-calibration and leakage determination solving simultaneously

for source polarization.

Errors were estimated on the leakages within AIPS by simulating a dataset with the same leakage

characteristics as the original one. The simulated dataset was then analyzed in the same way as for the

real data. The leakages obtained from the simulated dataset were compared with the leakages derived

by the real data to estimate errors from the repeatability. This approach was used since the experiment

is unique and cannot be reobserved without considerable efforts to check the repeatability.

Correction of geodetic data for the error created by the leakage in the delay was implemented within

the HOPS fourfit program. The correction was based on Equation 3.9 and it was convenient to implement

it after fourfit decoded the correlator output, but before the data were fringe fitted. The correction was

a 2x2 rotation matrix that multiplied the real and imaginary visibility components to rotate the phases

through an angle that depends on the measured leakages and parallactic angles. First I created an ASCII

file containing the measured D-terms for all stations (reported as station correction tables in Appendix C).

Then I added to fourfit three functions:

• pang.c calculates the parallactic angle. This function is called from the main (fourfit.c). The code

of pang.c is reported in Appendix E.

• dterm load.c reads the D-terms from file (dterm X-band.dat), calculates the correction angles using

Equation 3.9 for all possible combinations of antennas using the parallactic angle from pang.c. This

function is called from fourfit.c. The code of dterm load.c is reported in Appendix E.

• dterm apply.c reads the correction angle from dterm load.c for the baseline being fringe fitted and

if it finds one it returns it to norm.c. If it does not find one, then it linearly interpolates between

the nearest D-term values in frequency and returns the result to norm.c. The code of dterm apply.c

is reported in Appendix E.

The actual rotation of the visibility phases is performed in the existing, but slightly modified, fourfit

function norm.c.

To verify the correctness of the program modifications, I took a geodetic experiment correlated at

Bonn (R1399) and considered the baseline between two stations, Westford and Wettzell. I ran fourfit

with and without D-term corrections applied. The difference in MBD was 0.6 ps for a scan within these

two stations. To check this result I extracted from fourfit the values of the D-term correction angles for

the frequencies in the R1, and plotted them against frequency and performed a linear regression with
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least squares minimization using software that is independent of fourfit. The regression gave a delay

correction of (0.6 ± 0.4) ps, which agrees exactly with the fourfit result.

To demonstrate whether the corrections improved the group delay measurements, I ran the modified

fourfit with and without D-term correction applied for the whole RD0705. First, I differenced the MBD

with and without D-term correction applied, for each baseline and scan. The difference is the size of

the correction that was applied to the data. The median correction was 0.18 ps and the 90th percentile

was 1.6 ps i.e., the corrections are mostly (90% of the time) less than 1.6 ps. Second, I looked for a

reduction in the MBD residual due to correction of the polarization leakage. Unfortunately one cannot

simply compare directly the MBD before and after the D-term correction since the MBD is affected

by residual correlator errors that are much larger than the effect sought. Instead, one must resort to

form closure triangles of three antennas and to sum the MBDs around the triangle since this cancels all

station-based errors and the result should be accurately zero except from the non-closing errors, of which

the polarization leakage is expected to be the biggest. However the leakage correction measured in this

investigation, was found to make no detectable reductions in the closure errors.

The results of this project are in agreement with the results obtained by Corey and Titus (2006) from

their measured D-term dependency on frequency.

A χ2 test comparing the closure errors before and after polarization correction is unable to detect the

improvement due to leakage effects smaller than 9.2 ps and so was not sensitive enough to detect the

improvement made by polarization leakage corrections. Since the median value of the leakage correction

was found to be 0.18 ps and the width of the closure error distribution was found to be 17.5 ps, the

leakage is not the dominant error among the factors contributing to the total closure error. Future works

should concentrate in identifying and reducing the other non-closing error sources, which are:

• source structure, and

• filter shapes

Having developed this analytical understanding I applied it to develop a guideline for polarization

purity in the new VLBI2010 receivers presently being designed. Within VLBI2010 there is a preliminary

specification for the new receivers to span 16 GHz bandwidth. Given the measured properties of the feeds

being considered for VLBI2010, one can estimate whether the leakage is likely to cause problems for the

geodetic observables. Although the leakage is high in some feed designs, the fact that the bandwidth

spanned is huge reduces the contribution to a value that is below the detectability of the leakage in

the present geodetic observable. Future improvements through the VLBI2010 project may reduce the

uncertainties to the point that the polarization leakage effect becomes a relevant source of error in the

delay determination. To ensure that the polarization leakage is low enough for 1 mm precision (i.e.

0.3 mm error contribution from polarization leakage) for VLBI2010, one should design the new feeds so

that their polarization leakage characteristic is below -15 dB (or amplitude of 0.17), which correspond

to the amplitude seen for the worst case during this work. Considering that the feeds considered for

VLBI2010 have cross polarization levels that vary between -10 dB to -35 dB (or amplitudes from 0.3 to

0.02) the goal of reaching -15 dB is feasible.



Appendix A

Scheduling, Observation and

Correlation

A.1 Fourfit Plots

Examples of the fringe-fitted data are shown in fourfit plots in Figures A.1, A.2 and A.3. Figure A.1 is

the cross-correlation between Westford (Wf) and North Liberty (Nl) on one scan, 220 s, RCP against

RCP for the target source OQ 208. The left figure represents the S-band and the right figure is the

X-band. In both cases there is good correlated signal.

As a last example, Figure A.3 shows the presence of RFI due to a known satellite transmission. The

fringe fit plot shown is, in this case, an autocorrelation of Nl, because the effect is much more easily

recognized in the autocorrelation spectra than in the cross-correlation spectra. The broadband RFI is

present in the USB of the spectrum: its amplitude is so high compared to the amplitude of the radio

astronomical signal, that it dominated the signal. In such cases the data must be discarded.

A.2 Explanation of a Fourfit Plot

The fourfit plot is explained in detail by Bertarini et al (2009) and is summarized here. Please refer

to the top panel of Figure A.1. In the top plot within that panel, the red line shows the amplitude of

the cross-correlation coefficient versus the delay rate (DR) expressed in ns/s, i.e. how fast the fringes

move away from the delay tracking centre due to correlator model error. After fringe fitting, the peak

is centred at zero. The blue line in the top plot is the amplitude of the cross-correlation coefficients

versus the multiband delay (MBD) expressed in microseconds (note it is present only for the X-band,

where more than one BBC channel is present). The MBD is the geodetic observable and is given by the

slope of the visibility phase versus frequency over the whole spanned bandwidth. In the cases where only

one BBC channel is used (like the S-band), the MBD is equal to the singleband delay (SBD) and is not

drawn. The plot on the left on the second row is the amplitude of the cross correlation coefficient versus

lag, also called SBD, expressed in microseconds, averaged over all the BBCs within the band. The offset

of the peak from zero indicates residual correlator model errors. The plot on the right on the second

row represents the Fourier transform of the SBD averaged over all BBCs within the band (plot on the

left of that row). The plot is itself divided into two subplots representing the lower sideband (LSB) and

upper sideband (USB). The blue line is the amplitude of the frequency spectrum in units of correlation

coefficient times the number of lags time 10000 and the red line is the phase of the frequency spectrum

expressed in degrees.

To fringe fit the data with HOPS means to find the maximum amplitude of the correlator coefficient
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Amp. and Phase vs. time for each freq., 105 segs, 1 APs / seg (2.00 sec / seg.), time ticks 2 sec

U
Validity

L

Parity

U
Bias

L

U
Level

L

X (SU 5)
N (SU 0)

X N

X N

X N

2225.99 Freq (MHz)
64.4 Phase
1.8 Ampl.
34.7 Sbd box
105/105 APs usedU/L
3010:3010 PC freqsX:N
19:144 PC phaseX:N
0:0 Manl PCX:N
27:20 PC ampX:N
S7R,S6R Chan idsX 19,21,23,25,3,5,7,9 Tracks
S7L,S6L Chan idsN 27,29,31,33,11,13,15,17 Tracks

Group delay (usec)
Sband delay (usec)
Phase delay (usec)
Delay rate (us/s)
Total phase (deg)

4.80464882032E+03
4.80470209872E+03
4.80464890074E+03
-8.27479100301E-02

146.4

Apriori delay (usec)
Apriori clock (usec)
Apriori clockrate (us/s)
Apriori rate (us/s)
Apriori accel (us/s/s)

4.80464882032E+03
-1.4809984E+01

1.4738000E-07
-8.27477913462E-02
-2.50427971390E-05

Resid mbdelay (usec)
Resid sbdelay (usec)
Resid phdelay (usec)
Resid rate (us/s)
Resid phase (deg)

0.00000E+00
5.32784E-02
8.04130E-05

-1.18684E-07
64.4

+/-
+/-
+/-
+/-
+/-

6.1E-03
3.1E-03
6.3E-06
1.0E-07

5.1
RMS Theor. Amplitude 1.802 +/- 0.160 Pcal mode: NORMAL,  NORMAL

ph/seg (deg) 36.3 51.8 Search (256X8) 1.743 Pcal rate: -1.451E-08,  -2.359E-09  (us/s)
amp/seg (%) 86.5 90.4 Interp. 1.743 Bits/sample: 2 SampCntNorm: enabled 
ph/frq (deg) 0.0 0.0 Inc. seg. avg. 1.895 Sample rate(MSamp/s): 16
amp/frq (%) 0.0 0.0 Inc. frq. avg. 1.795 Data rate(Mb/s): 64 nlags: 32

Control file: cf_2096    Input file: /datafs/2096/192-1900_OQ208/XN..tdktrr    Output file: Suppressed by test mode

Mk4 Fringe Plot OQ208.tdkuhx, 192-1900_OQ208, XN
WESTFORD - VLBA_NL, fgroup X, pol RL

8

15.5
0.0e+00
207.349

1.488
-165.6

0.014309

0.022492

-0.002452

8212.9900
2.000

RD0705
2096

2007:192
190010.00
190340.00
190151.00

2007:297:085135

2010:020:140906

14h07m 0.3944s
+28˚27’14.690"

Fringe quality

SNR
PFD
Intg.time
Amp
Phase
Sbdelay (us)

Mbdelay (us)

Fr. rate (Hz)

Ref freq (MHz)

AP (sec)

Exp.
Exper #
Yr:day
Start
Stop
FRT
Corr. date:

Fourfit date:

Position (J2000)

Amp. and Phase vs. time for each freq., 53 segs, 2 APs / seg (4.00 sec / seg.), time ticks 5 sec

U
Validity

L

Parity

U
Bias

L

U
Level

L

X (SU 5)
N (SU 0)

X N

X N

X N

8212.99 Freq (MHz)
-165.4 Phase
2.0 Ampl.
33.5 Sbd box
105/105 APs usedU/L
5010:5010 PC freqsX:N
124:7 PC phaseX:N
0:0 Manl PCX:N
36:12 PC ampX:N
X1R,X0R Chan idsX 18,20,22,24,2,4,6,8
X1L,X0L Chan idsN 26,28,30,32,10,12,14,16

8308.99
-168.1
1.5
33.2
105/105
5010:5010
31:-74
0:0
35:12
X3R,X2R
19,21,23,25,3,5,7,9
X3L,X2L
27,29,31,33,11,13,15,17

8324.99
-162.5
1.0
33.8
105/105
5010:5010
-46:71
0:0
34:11
X5R,X4R
18,20,22,24,2,4,6,8 Tracks
X5L,X4L
26,28,30,32,10,12,14,16 Tracks

All
-165.6

1.5
33.5

Group delay (usec)
Sband delay (usec)
Phase delay (usec)
Delay rate (us/s)
Total phase (deg)

4.80467131218E+03
4.80466312897E+03
4.80464876430E+03
-8.27480558656E-02

91.7

Apriori delay (usec)
Apriori clock (usec)
Apriori clockrate (us/s)
Apriori rate (us/s)
Apriori accel (us/s/s)

4.80464882032E+03
-1.4809984E+01

1.4738000E-07
-8.27477913462E-02
-2.50427971390E-05

Resid mbdelay (usec)
Resid sbdelay (usec)
Resid phdelay (usec)
Resid rate (us/s)
Resid phase (deg)

2.24919E-02
1.43087E-02

-5.60257E-05
-2.64519E-07

-165.6

+/-
+/-
+/-
+/-
+/-

2.1E-04
2.2E-03
1.3E-06
2.1E-08

3.7
RMS Theor. Amplitude 1.488 +/- 0.096 Pcal mode: NORMAL,  NORMAL

ph/seg (deg) 39.2 26.7 Search (256X32) 1.300 Pcal rate: -3.374E-08,  3.148E-10  (us/s)
amp/seg (%) 69.4 46.6 Interp. 1.302 Bits/sample: 2 SampCntNorm: enabled 
ph/frq (deg) 2.3 5.2 Inc. seg. avg. 1.963 Sample rate(MSamp/s): 16
amp/frq (%) 28.2 9.1 Inc. frq. avg. 1.480 Data rate(Mb/s): 192 nlags: 32

Control file: cf_2096    Input file: /datafs/2096/192-1900_OQ208/XN..tdkuhx    Output file: Suppressed by test mode
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Figure A.3: HOPS fringe plot showing the autocorrelation for North Liberty, S-band. The amplitude of the

power spectrum in the USB is completely dominated by the RFI. This scan is not usable for further analysis.
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simultaneously versus SBD, MBD and DR. The plots described above, are slices through this 3D space.

The residual errors are written at the bottom of the fourfit plots, but are removed from the data themselves

before plotting i.e. the plotted data are the residual after the data are corrected using the delay and phase

solution found by fourfit during fringe fitting. The other plots in the third row will not be described as

they are out of the scope of this dissertation and are there for helping the correlator analysts to perform

data quality analysis and carry out recorrelations where necessary.



Appendix B

Data Reduction To Measure

Polarization Leakage - Programs

B.1 Python Script for Reduction of X-Band Data

This Python script was used to automate most of the data reduction, it reads a priori calibration from

a file of system temperature measurements, called the ANTAB file, performs fringe fitting, imaging,

deconvolution and self calibration. The python script had to be given the input and output filenames

and frequencies for every setup.

# Python script taylored for rd0705 data reduction.

# Based on the EVN python scripts from Cormac Reynolds.

# Changed by A. Bertarini and A. Roy

# Standard preliminaries

# the ’import’ serves two different purposes: it identifies an external

# file to be loaded, and it becomes a variable in the script,

# which references the module object after the file is loaded

# ’from’ imports the module file as usual, but adds an extra step

# that copies one or more names out of the file.

from AIPS import AIPS, AIPSDisk

from AIPSTask import AIPSTask, AIPSList

from AIPSData import AIPSUVData, AIPSImage, AIPSCat

from AIPSTV import AIPSTV

# Alessandra’s user ID

AIPS.userno = xxxx

# Ale decided to use AIPS stable version form dec 2007:

AIPSTask.version = ’OLD’

# This module provides instances to dispatch function calls locally

86
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# without doing any Remote Programm Call.

import LocalProxy

#A ServerProxy instance has a method corresponding to each remote

# procedure call accepted by the XML-RPC server

from xmlrpclib import ServerProxy

import copy, optparse, os, sys

import re, string, pprint, math

import time

FuncLog = sys.stdout

my_tv = AIPSTV()

pid_list = []

# Main program is at the end. Python complains otherwise.

# Just discovered that also that the program wants first the AIPS task, then the

# functions that call the AIPS task and at the end the main....

# ***** Start with the definition of the AIPS tasks with their parameters*****

#task IMAGR:

def runimagr(uvdata, source, clbox1, clbox2, nboxes, imsize,

cellsize, docalib, eif, niter, stokes, outdata,

dotv, flagver, nchan = 64, doband = -1):

""" must set indata, cellsize and source"""

#assert (indata != None, cellsize != None and source != None), ’’’cellsize

# not set in runimagr’’’

if dotv > 0:

my_tv.clear()

imagr = AIPSTask(’imagr’)

imagr.isbatch = 0

imagr.indata = uvdata

imagr.outname = outdata

imagr.outdisk = 1

imagr.outseq = 0

imagr.sources[1] = source

imagr.freqid = 1

# imagr.selband = -1

# imagr.selfreq = -1

# imagr.subarray = 0

imagr.docalib = docalib

imagr.dopol = -1
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imagr.bif = 1

imagr.eif = eif

imagr.bchan = 3

imagr.echan = 61

imagr.clbox [1:]= [clbox1] + [clbox2]

imagr.bpver = 1

imagr.doband = doband

imagr.nboxes = nboxes

imagr.nchav = nchan

imagr.chinc = nchan

imagr.flagver = flagver

imagr.stokes = stokes

imagr.uvwtfn = ’UO’

imagr.cellsize[1:] = [cellsize, cellsize]

imagr.imsize[1:] = [imsize, imsize]

imagr.robust = 0

imagr.xtype = 5

imagr.ytype = 5

imagr.niter = niter

# If FLUX < 0 then Clean stops after the first negative Clean component

imagr.flux = -1

imagr.allokay = -1

imagr.gain = 0.05

imagr.minpatch = imsize // 2

imagr.imagrprm[8:10] = [-0.1e-4, 1]

imagr.dotv = dotv

imagr.inp()

imagr.go()

# task CALIB:

def runcalib(uvdata, solint, calsour, solmode, antuse, uvrange,

docalib, refant, flagver, imgdata, doband=-1, bpver=1):

calib = AIPSTask(’calib’)

calib.indata = uvdata

if is_aipsdata(imgdata):

calib.in2data = imgdata

calib.calsour[1] = calsour

calib.smodel[1] = 0

calib.freqid = 1

calib.docalib = docalib

calib.gainuse = 0

calib.flagver = flagver

calib.doband = doband

calib.bpver = bpver

calib.bchan = 3

calib.echan = 61
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# use all the component that IMAGR found

calib.ncomp[1] =0

calib.solmode = solmode

if (solmode == ’P’):

calib.aparm[1] = 3

calib.cparm[2] = 1

else:

calib.aparm[1] = 4

calib.cparm[2] = 0

calib.aparm[6] = 1

# default to minimum allowed snr = 5

calib.aparm[7] = 0

calib.aparm[9] = 1

calib.solint = solint

calib.refant = refant

calib.soltype = ’L1R’

calib.cmethod = ’DFT’

calib.minamper = 10

calib.minphser = 20

calib.cparm[1] = 30

# calib.cparm[2] defined in the IF above

calib.cparm[3] = 10

calib.cparm[4] = 20

calib.antuse = antuse

calib.uvrange = uvrange

calib.snver = 0

calib.inp()

calib()

# function to run clcal. Don’t allow default snver.

def runclcal(uvdata, refant, calsour, source, snver):

clcal = AIPSTask(’clcal’)

clcal.indata = uvdata

clcal.subarray = 1

clcal.calsour = AIPSList([calsour])

clcal.sources = AIPSList([source])

clcal.opcode = ’CALI’

clcal.interpol = ’SELF’

clcal.samptype = ’’

clcal.doblank = 0

clcal.dobtween = 0

clcal.refant = refant

# snver is equal to one in the call to runclcal from apriori_cal

# but snver = to the last one in the call to runclcal from

# selfcal_map

clcal.snver = snver
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clcal.gainver = 0

clcal.gainuse = 0

clcal.inp()

clcal()

def runantab(uvdata, antab_file):

antab = AIPSTask(’antab’)

antab.indata = uvdata

antab.infile = antab_file

antab.offset = 1

antab.tyver = 0

antab.gcver = 0

antab.inp()

antab()

def runapcal(uvdata, eif):

apcal = AIPSTask(’apcal’)

apcal.indata = uvdata

apcal.antennas[1:] = [0]

apcal.stokes = ’’

apcal.bif = 1

apcal.eif =eif

apcal.sources = AIPSList([’’])

apcal.timerang[1:] = [0]

apcal.tyver = 0

apcal.gcver = 0

apcal.snver = 0

apcal.opcode = ’’

apcal.inp()

apcal()

def runclcor(uvdata, eif):

clcor = AIPSTask(’clcor’)

clcor.indata = uvdata

clcor.sources = AIPSList([’’])

clcor.stokes = ’’

clcor.selband = -1

clcor.selfreq = -1

clcor.freqid = -1

clcor.bif = 1

clcor.eif = eif

clcor.timerang[1:] = [0]

clcor.gainver = 0

clcor.gainus = 0

clcor.opcode = ’PANG’

clcor.clcorprm[1] = 1

clcor.inp()

clcor()
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def runfring(uvdata, flagver, refant, docalib):

fring = AIPSTask(’fring’)

fring.indata = uvdata

fring.gainus = 0

fring.flagver =flagver

fring.dparm[1] = 1

fring.dparm[2] = 2000

fring.dparm[3] = 300

fring.dparm[4] = 2

#### dparm(7) =1 hen the phase, rate and delays will not be

# re-referenced to a common antenna. This option is only

# desirable for VLBI polarization data.

fring.dparm(7) = 1

fring.aparm[1] = 2

fring.aparm[6] = 3

fring.aparm[7] = 10

fring.docalib = docalib

fring.timerang[1:] = [0]

fring.bchan = 3

fring.echan = 61

fring.refant =refant

fring.snver = 0

fring.weightit = 0

fring.solint = 1

fring.inp()

fring()

def runbpass(uvdata, flagver, docalib, eif, refant):

bpass = AIPSTask(’bpass’)

bpass.gainus = 0

bpass.indata = uvdata

bpass.ichansel [1] = AIPSList([5,59,1,0])

bpass.bpassprm [1] = 0

bpass.docalib = docalib

bpass.eif = eif

bpass.bif = 1

bpass.solint = 5

bpass.flagver = flagver

bpass.refant = refant

bpass.inp()

bpass()

def runimean(imgdata, blc=0, trc=0):

’’’Must set indata’’’

#assert (indata != None)

imean = AIPSTask(’imean’)

imean.indata = imgdata

imean.blc[1:] = blc
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imean.trc[1:] = trc

imean()

datamax = imgdata.header.datamax

return (datamax, imean.pixstd)

# Stop with AIPS tasks.

##### Start with the fuction definition:

# ----------------------------------

##### FUNCTION APRIORI_CAL ######

def apriori_cal(uvdata, antab_file, refant, eif, flagver, docalib):

# calls to AIPS tasks required in apriori_cal:

runantab(uvdata, antab_file)

runapcal(uvdata,eif)

# first run of clcal, i.e. snver = 0 -> 1

runclcal(uvdata, refant, calsour = ’’, source= ’’, snver = 0)

runclcor(uvdata, eif)

runfring(uvdata, flagver, refant, docalib)

# second run of clcal after fring. Therefore

# higher version of SN table to be passed into runclcal

sntable1 = uvdata.table_highver(’AIPS SN’)

runclcal(uvdata, refant, calsour= ’’, source= ’’, snver = sntable1)

# runbpass(uvdata, flagver, docalib, eif, refant)

##### FUNCTION SELFCAL_MAP ######

def selfcal_map(uvdata, source, calsour, nsc, solint, refant, cellsize, imsize, eif, niter,

flagver,prefix, imgseq, docalib, outdata, dotv):

# defined after a run on OQ208 X-band directly in AIPS.

nboxes = 2

clbox1 = AIPSList([116.67, 112.67, 139.00, 149.00])

clbox2 = AIPSList([158.67, 88.67, 180.33, 114.67])

# iterate on selfcal and mapping steps.

# create an empty image:

imgdata = AIPSImage(uvdata.name, ’ICL001’, uvdata.disk, imgseq)
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# call to subroutine create_image which calls runimagr and get_dyn_range.

# Get_dyn_range calls runimean.

create_image(uvdata, outdata, source, imgdata, niter, clbox1, clbox2,

nboxes, dotv, cellsize, imsize)

# self calibration loop

for i in range(nsc):

# starting with phase self calibration. I.e. solmode = ’P’

if (i <= 7):

# solint = 0.2 for Kp phase instability

solint = 0.2

solmode = ’P’

uvrange = AIPSList([0,0])

antuse = AIPSList([0,0])

# from nsc = 10 first round of amplitude & phase calibration. I.e. solmode =’A&P’

if (i >= 8):

solmode = ’A&P’

solint = 4

# A list of the antennas to be used in the calculation of

# the mean gain modulus. Antenna used are the one with good

# apriori calibration. Los Alamos (ante 3) is excluded due to

# bad weather on site). The trusted antennas are VLBA, Eb and Wz.

antuse = AIPSList([1, 2, 4, 5, 6, 7, 8, 9, 14, 19])

# restriction of UVRANGE to less than 200000 klambda due to source (OQ208)

# structure visible at longer baseline.

uvrange = AIPSList([0,200000])

# debugging prints statements:

# print >>FuncLog, "selfcal iteration ", i+1, \

# ’ using solmode= ’, solmode, ’ and source model ’, \

# aipsuvname(imgdata)

# print >>FuncLog, "solint=", solint

# call to runcalib after the first (empty) map has been created

runcalib(uvdata, solint, calsour, solmode, antuse, uvrange,

docalib, refant, flagver, imgdata, doband=-1, bpver=1)

# higher version of SN table to be passed into runclcal

sntable = uvdata.table_highver(’AIPS SN’)

# call to runclcal

runclcal(uvdata, refant, calsour, source, snver=sntable)

# next round of imaging
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imgseq += 1

imgdata = AIPSImage(uvdata.name, ’ICL001’, uvdata.disk, imgseq)

print >>FuncLog, ’Creating image:’, aipsuvname(imgdata)

# call to create image again:

create_image(uvdata, outdata, source, imgdata, niter, clbox1, clbox2,

nboxes, dotv, cellsize, imsize)

##### FUNCTION CREATE_IMAGE #####

def create_image(uvdata, outdata, source, imgdata, niter, clbox1, clbox2,

nboxes, dotv, cellsize, imsize):

# created an empty beam:

stokes = ’I’

beamklass = stokes + ’BM001’

beamdata = AIPSImage(imgdata.name, beamklass, imgdata.disk, imgdata.seq)

# call to zap_old_data. It destroys the onl clean images and beams.

zap_old_data(imgdata)

zap_old_data(beamdata)

# debugger print statement:

# print >>FuncLog, ’number pixels=’, imsize

# print >>FuncLog, ’pixel size=’, cellsize*1.e3, ’mas’

# call to runimagr (AIPS task imagr)

runimagr(uvdata, source, clbox1, clbox2, nboxes, imsize,

cellsize, docalib, eif, niter, stokes, outdata, dotv,

flagver, nchan = 64, doband = -1)

# call to subroutine get_dyn_range => runimean

peakflux, rmsflux = get_dyn_range(imgdata)

print >>FuncLog, ’peak flux=’, peakflux

print >>FuncLog, ’rms flux=’, rmsflux

print >>FuncLog, ’dynamic range=’, peakflux/rmsflux

# the value of peakflux and rms are returned to the main program

return peakflux, rmsflux

##### FUNCTION ZAP_OLD_DATA ##### (delete AIPS data from catalogue)

def zap_old_data(aipsdata):

if aipsdata.exists():

print >>FuncLog, ’zapping old data: ’ + aipsuvname(aipsdata)

aipsdata.zap(force=True)

else:

print >>FuncLog, ’no old data to zap: ’ + aipsuvname(aipsdata)
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##### FUNCTION AIPSUVNAME #####

# shortcut to return the aips catalogue name of an AIPSUVData object

def aipsuvname(aipsdata):

return aipsdata.name + ’.’ + aipsdata.klass + ’.’ + str(aipsdata.seq)

##### FUNCTION GET_DYN_RANGE #####

def get_dyn_range(imgdata):

x = imgdata.header.naxis[0]

y = imgdata.header.naxis[1]

(peakflux, pixstd) = runimean(imgdata, [0, 0], [x // 4, y // 4])

rmsflux = pixstd

if (rmsflux < 1.e-5):

rmsflux = 1.e-5

if (rmsflux > peakflux):

rmsflux = peakflux/4.

return peakflux, rmsflux

##### FUNCTION IS_AIPSDATA #####

# Check whether the passed object has the valid attributes for an AIPS data object

def is_aipsdata(aipsdata):

got_attr = False

if (hasattr(aipsdata, ’name’) and hasattr(aipsdata, ’disk’) and

hasattr(aipsdata, ’seq’) and hasattr(aipsdata, ’klass’) ):

got_attr = True

return got_attr

#**************************** MAIN PROGRAM!*******************#

# prefix = ’S_1’

prefix = ’X_11’

suffix = ’UVSRT’

indisk = 1

inseq = 2

imgseq = 1

antab_file = ’/aux/vlb052b/aips/sx_11/X_Band/rd0705.TSYS’

#******General use parameters*******#

solint = 1

refant = 7

source = ’OQ208’

calsour = ’OQ208’

docalib = 1

dotv = -1

#*** Flagging Table*****#
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flagver = 3

#*** Mapping parameters****:#

#cellsize for S-band:

#cellsize = 0.0005

#cellsize for X-band:

cellsize = 0.00015

# image size:

imsize = 256

# S-band end IF:

# eif = 1

# X-band end IF:

eif = 3

# nr. of max iteration in cleaning

niter = 1000

#maps outname:

# outdata = ’OQ208_S1_I’

outdata = ’X_11’

#****************************#

# confirmed: first is read indisk then inseq!

uvdata = AIPSUVData(prefix, suffix, indisk , inseq)

# Debugging checks:

#uvdata.exists()

#print uvdata.exists()

# number of cycle - 1 since Python starts from zero to count!!!

nsc = 11

# call to apriori_cal, which perform the AIPS tasks:

# antab, apcal, clcal, clcor, fring, clcal

# bpass

apriori_cal(uvdata, antab_file, refant, eif, flagver, docalib)

# call to selfcal_map, which perform the AIPS tasks:

# imagr, imean, calib, clcal

selfcal_map(uvdata, source, calsour, nsc, solint, refant, cellsize, imsize, eif, niter,

flagver, prefix, imgseq, docalib, outdata, dotv)
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B.2 DTSIM input file

The file below is the input file used for performing the data simulation in AIPS using DTSIM.

!!!! Setup X11 !!!!!!!!!!!!!!!

AN_TABLE VER = 1 /

STATION = ’VLBA_PT’

MNT = ’AZEL’

NO = 1

CARTPOS= -1640953.7120,5014816.0240,3575411.8800 /

STATION = ’VLBA_KP’

MNT = ’AZEL’

NO = 2

CARTPOS= -1995678.6260,5037317.7130,3357328.1290 /

STATION = ’VLBA_LA’

MNT = ’AZEL’

NO = 3

CARTPOS= -1449752.3590,4975298.5880,3709123.9280 /

STATION = ’VLBA_BR’

MNT = ’AZEL’

NO = 4

CARTPOS= -2112064.9760,3705356.5160,4726813.7980 /

STATION = ’VLBA_FD’

MNT = ’AZEL’

NO = 5

CARTPOS= -1324009.1270,5332181.9660,3231962.4740/

STATION = ’VLBA_SC’

MNT = ’AZEL’

NO = 6

CARTPOS= 2607848.5210,5488069.6850,1932739.5400/

STATION = ’VLBA_NL’

MNT = ’AZEL’

NO = 7

CARTPOS= -130872.2540,4762317.1160,4226851.0400/

STATION = ’VLBA_OV’

MNT = ’AZEL’

NO = 8

CARTPOS= -2409150.1120,4478573.2290,3838617.3990/

STATION = ’VLBA_MK’

MNT = ’AZEL’
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NO = 9

CARTPOS= -5464074.9600,2495249.1160,2148296.8440/

STATION = ’VLBA_HN’

MNT = ’AZEL’

NO = 10

CARTPOS= 1446375.1160,4447939.6560,4322306.1240/

STATION = ’MEDICINA’

MNT = ’AZEL’

NO = 11

CARTPOS= 4461369.9880,-919596.8300,4449559.1730/

STATION = ’NOTO’

MNT = ’AZEL’

NO = 12

CARTPOS= 4934563.1290,-1321201.2670,3806484.4710/

STATION = ’ONSALA60’

MNT = ’AZEL’

NO = 13

CARTPOS= 3370606.0450,-711917.4940,5349830.7260/

STATION = ’WETTZELL’

MNT = ’AZEL’

NO = 14

CARTPOS= 4075539.8990,-931735.2700,4801629.3520/

STATION = ’KOKEE’

MNT = ’AZEL’

NO = 15

CARTPOS= -5543837.6170,2054567.8480,2387851.9390/

STATION = ’FORTLEZA’

MNT = ’AZEL’

NO = 16

CARTPOS= 4985370.0490,3955020.3280,-428472.2810/

STATION = ’MATERA’

MNT = ’AZEL’

NO = 17

CARTPOS= 4641938.7830,-1393003.0260,4133325.5230/

STATION = ’WESTFORD’

MNT = ’AZEL’

NO = 18

CARTPOS= 1492206.6000,4458130.5070,4296015.5320/

STATION = ’EB_VLBA’
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MNT = ’AZEL’

NO = 19

CARTPOS= 4033947.5000,-486990.5200,4900430.8210/

END /

!!!!!!!!!!!!!!!!!!!!

FQ_TABLE /

FQID = 1

FREQ = 8564.99,8820.99,8836.99

TOTBW = 16,16,16

CHANBW = 0.25,0.25,0.25

SIDE = 1,1,1 /

END /

!!!!!!!!!!!!!!!!!!!!!!

SU_TABLE /

SU_ID = 1

NAME = ’OQ208’

RAEPO = 14:07:00.394414

DECEPO = 28:27:14.69023

EPOCH = 2000 /

END /

!!!!!!!!!!!!!!!!!!!!!!!

CAT_HDR /

REF_FREQ = 8564.99

NO_IF = 3

NO_CHAN = 64

STOKES = ’RR’, ’LL’, ’RL’, ’LR’

REF_DATE = ’11/07/07’

/

!!!!!!!!!!!!!!!!!!!!!!!!!

CAL_ERR LINPOL /

STATION = ’VLBA_PT’

FQID = 1

FEED_1R = 1, 0.0422, 48.75
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FEED_1L = 1, 0.0354, 114.40

FEED_2R = 1,0.0507,47.37

FEED_2L = 1, 0.0472,105.91

FEED_3R = 1, 0.0445,44.17

FEED_3L = 1, 0.0427,95.11

GAIN_1R = 1, 8.70

GAIN_1L = 1, 8.93

GAIN_2R = 1, 8.70

GAIN_2L = 1,8.93

GAIN_3R = 1, 8.70

GAIN_3L = 1,8.93

TSYS_1R = 1, 0, 2, 34.0, 0

TSYS_1L = 1,0, 2, 34.0, 0

TSYS_2R = 1, 0, 2, 34.0, 0

TSYS_2L = 1,0, 2, 34.0, 0

TSYS_3R = 1, 0, 2, 34.0, 0

TSYS_3L = 1,0, 2, 34.0, 0/

STATION = ’VLBA_KP’

FQID = 1

FEED_1R = 1,0.0671,40.06

FEED_1L = 1,0.0600, 121.66

FEED_2R = 1,0.0661,51.52

FEED_2L = 1,0.0546,116.49

FEED_3R = 1,0.0683,55.23

FEED_3L = 1,0.0593,115.75

GAIN_1R = 1, 10.53

GAIN_1L = 1, 9.17

GAIN_2R = 1, 10.53

GAIN_2L = 1, 9.17

GAIN_3R = 1, 10.53

GAIN_3L = 1, 9.17

TSYS_1R = 1, 0, 2, 42.0, 0

TSYS_1L = 1,0, 2, 42.0, 0

TSYS_2R = 1, 0, 2, 42.0, 0

TSYS_2L = 1,0, 2, 42.0, 0

TSYS_3R = 1, 0, 2, 42.0, 0

TSYS_3L = 1,0, 2, 42.0, 0 /

STATION = ’VLBA_LA’

FQID = 1

FEED_1R = 1,0.0459,31.57

FEED_1L = 1,0.0452,133.83

FEED_2R = 1,0.0481,34.46

FEED_2L = 1,0.0565,112.71

FEED_3R = 1,0.0491,35.62

FEED_3L = 1,0.0478,106.90

GAIN_1R = 1, 9.71

GAIN_1L = 1, 9.26
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GAIN_2R = 1, 9.71

GAIN_2L = 1, 9.26

GAIN_3R = 1, 9.71

GAIN_3L = 1, 9.26

TSYS_1R = 1, 0, 2, 43.0, 0

TSYS_1L = 1,0, 2, 43.0, 0

TSYS_2R = 1, 0, 2, 43.0, 0

TSYS_2L = 1,0, 2, 43.0, 0

TSYS_3R = 1, 0, 2, 43.0, 0

TSYS_3L = 1,0, 2, 43.0, 0 /

STATION = ’VLBA_BR’

FQID = 1

FEED_1R = 1,0.0477,64.15

FEED_1L = 1,0.0788, 115.12

FEED_2R = 1,0.0435,61.68

FEED_2L = 1,0.0728,105.77

FEED_3R = 1,0.0472,64.17

FEED_3L = 1,0.0715,95.70

GAIN_1R = 1, 8.93

GAIN_1L = 1, 9.26

GAIN_2R = 1, 8.93

GAIN_2L = 1, 9.26

GAIN_3R = 1, 8.93

GAIN_3L = 1, 9.26

TSYS_1R = 1, 0, 2, 38.0, 0

TSYS_1L = 1,0, 2, 38.0, 0

TSYS_2R = 1, 0, 2, 38.0, 0

TSYS_2L = 1,0, 2, 38.0, 0

TSYS_3R = 1, 0, 2, 38.0, 0

TSYS_3L = 1,0, 2, 38.0, 0 /

STATION = ’VLBA_FD’

FQID = 1

FEED_1R = 1,0.0455,40.00

FEED_1L = 1,0.0471,113.33

FEED_2R = 1,0.0494,34.77

FEED_2L = 1,0.0459,115.04

FEED_3R = 1,0.0459,44.18

FEED_3L = 1,0.0454,109.70

GAIN_1R = 1, 9.62

GAIN_1L = 1, 10.0

GAIN_2R = 1, 9.62

GAIN_2L = 1, 10.0

GAIN_3R = 1, 9.62

GAIN_3L = 1, 10.0

TSYS_1R = 1, 0, 2, 46.0, 0

TSYS_1L = 1,0, 2, 46.0, 0

TSYS_2R = 1, 0, 2, 46.0, 0
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TSYS_2L = 1,0, 2, 46.0, 0

TSYS_3R = 1, 0, 2, 46.0, 0

TSYS_3L = 1,0, 2, 46.0, 0 /

STATION = ’VLBA_SC’

FQID = 1

FEED_1R = 1,0.0335,37.30

FEED_1L = 1,0.0329,127.36

FEED_2R = 1,0.0226,33.42

FEED_2L = 1,0.0257,90.94

FEED_3R = 1,0.0326,32.50

FEED_3L = 1,0.0150,103.53

GAIN_1R = 1, 9.35

GAIN_1L = 1, 9.01

GAIN_2R = 1, 9.35

GAIN_2L = 1, 9.01

GAIN_3R = 1, 9.35

GAIN_3L = 1, 9.01

TSYS_1R = 1, 0, 2, 55.0, 0

TSYS_1L = 1,0, 2, 55.0, 0

TSYS_2R = 1, 0, 2, 55.0, 0

TSYS_2L = 1,0, 2, 55.0, 0

TSYS_3R = 1, 0, 2, 55.0, 0

TSYS_3L = 1,0, 2, 55.0, 0 /

STATION = ’VLBA_NL’

FQID = 1

FEED_1R = 1,0.0522,54.29

FEED_1L = 1,0.0604,125.80

FEED_2R = 1,0.0475,54.86

FEED_2L = 1,0.0573,113.64

FEED_3R = 1,0.0499,60.56

FEED_3L = 1,0.0569,111.82

GAIN_1R = 1, 9.09

GAIN_1L = 1, 8.93

GAIN_2R = 1, 9.09

GAIN_2L = 1, 8.93

GAIN_3R = 1, 9.09

GAIN_3L = 1, 8.93

TSYS_1R = 1, 0, 2, 38.0, 0

TSYS_1L = 1,0, 2, 38.0, 0

TSYS_2R = 1, 0, 2, 38.0, 0

TSYS_2L = 1,0, 2, 38.0, 0

TSYS_3R = 1, 0, 2, 38.0, 0

TSYS_3L = 1,0, 2, 38.0, 0/

STATION = ’VLBA_OV’

FQID = 1

FEED_1R = 1,0.0558,34.75
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FEED_1L = 1,0.0513,122.32

FEED_2R = 1,0.0652,42.51

FEED_2L = 1,0.0685,115.64

FEED_3R = 1,0.0662,44.04

FEED_3L = 1,0.0570,109.49

GAIN_1R = 1, 9.62

GAIN_1L = 1, 9.43

GAIN_2R = 1, 9.62

GAIN_2L = 1, 9.43

GAIN_3R = 1, 9.62

GAIN_3L = 1, 9.43

TSYS_1R = 1, 0, 2, 48.0, 0

TSYS_1L = 1,0, 2, 48.0, 0

TSYS_2R = 1, 0, 2, 48.0, 0

TSYS_2L = 1,0, 2, 48.0, 0

TSYS_3R = 1, 0, 2, 48.0, 0

TSYS_3L = 1,0, 2, 48.0, 0 /

STATION = ’VLBA_MK’

FQID = 1

FEED_1R = 1,0.0456,32.70

FEED_1L = 1,0.0456,124.29

FEED_2R = 1,0.0456,50.68

FEED_2L = 1,0.0434,117.42

FEED_3R = 1,0.0473,45.98

FEED_3L = 1,0.0490,109.88

GAIN_1R = 1, 9.26

GAIN_1L = 1, 9.71

GAIN_2R = 1, 9.26

GAIN_2L = 1, 9.71

GAIN_3R = 1, 9.26

GAIN_3L = 1, 9.71

TSYS_1R = 1, 0, 2, 46.0, 0

TSYS_1L = 1,0, 2, 46.0, 0

TSYS_2R = 1, 0, 2, 46.0, 0

TSYS_2L = 1,0, 2, 46.0, 0

TSYS_3R = 1, 0, 2, 46.0, 0

TSYS_3L = 1,0, 2, 46.0, 0 /

! STATION = ’VLBA_HN’

! FQID = 1

! FEED_1R = 1,0.0000 , 0.00

! FEED_1L = 1,0.0000,0.00

! FEED_2R = 1,0.0000 , 0.00

! FEED_2L = 1,0.0000,0.00

! FEED_3R = 1,0.0000 , 0.00

! FEED_3L = 1,0.0000,0.00

! GAIN_1R = 1, 1

! GAIN_1L = 1, 1
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! GAIN_2R = 1, 1

! GAIN_2L = 1, 1

! GAIN_3R = 1, 1

! GAIN_3L = 1, 1

! TSYS_1R = 1, 0, 2, 1.0, 0

! TSYS_1L = 1,0, 2, 1.0, 0

! TSYS_2R = 1, 0, 2, 1.0, 0

! TSYS_2L = 1,0, 2, 1.0, 0

! TSYS_3R = 1, 0, 2, 1.0, 0

! TSYS_3L = 1,0, 2, 1.0, 0 /

! STATION = ’MEDICINA’

! FQID = 1

! FEED_1R = 1,0.0000,0.00

! FEED_2R = 1,0.0000,0.00

! FEED_3R = 1,0.0000,0.00

! GAIN_1R = 1, 1

! GAIN_2R = 1, 1

! GAIN_3R = 1, 1

! TSYS_1R = 1, 0, 2, 1.0, 0

! TSYS_2R = 1, 0, 2, 1.0, 0

! TSYS_3R = 1, 0, 2, 1.0, 0/

STATION = ’NOTO’

FQID = 1

FEED_1R = 1,0.0583,141.08

FEED_2R = 1,0.0000,0.00

FEED_3R = 1,0.0000,0.00

GAIN_1R = 1, 6.49

GAIN_2R = 1, 6.49

GAIN_3R = 1, 6.49

TSYS_1R = 1, 0, 2, 102.0, 0

TSYS_2R = 1, 0, 2, 102.0, 0

TSYS_3R = 1, 0, 2, 102.0, 0 /

STATION = ’ONSALA60’

FQID = 1

FEED_1R = 1,0.0303,34.22

FEED_2R = 1,0.0000,0.00

FEED_3R = 1,0.0336,63.25

GAIN_1R = 1, 18.18

GAIN_2R = 1, 18.18

GAIN_3R = 1, 18.18

TSYS_1R = 1, 0, 2, 56.0, 0

TSYS_2R = 1, 0, 2, 56.0, 0

TSYS_3R = 1, 0, 2, 56.0, 0 /

STATION = ’WETTZELL’

FQID = 1
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FEED_1R = 1,0.0208,-70.91

FEED_2R = 1,0.0306,-47.61

FEED_3R = 1,0.0256,-31.15

GAIN_1R = 1, 16.67

GAIN_2R = 1, 16.67

GAIN_3R = 1, 16.67

TSYS_1R = 1, 0, 2, 27.0, 0

TSYS_2R = 1, 0, 2, 27.0, 0

TSYS_3R = 1, 0, 2, 27.0, 0 /

! STATION = ’KOKEE’

! FQID = 1

! FEED_1R = 1,0.0000,0.00

! FEED_2R = 1,0.0000,0.00

! FEED_3R = 1,0.0000,0.00

! GAIN_1R = 1, 1

! GAIN_2R = 1, 1

! GAIN_3R = 1, 1

! TSYS_1R = 1, 0, 2, 1.0, 0

! TSYS_2R = 1, 0, 2, 1.0, 0

! TSYS_3R = 1, 0, 2, 1.0, 0 /

! STATION = ’FORTLEZA’

! FQID = 1

! FEED_1R = 1,0.0000,0.00

! FEED_2R = 1,0.0000,0.00

! FEED_3R = 1,0.0000,0.00

! GAIN_1R = 1, 1

! GAIN_2R = 1, 1

! GAIN_3R = 1, 1

! TSYS_1R = 1, 0, 2, 1.0, 0

! TSYS_2R = 1, 0, 2, 1.0, 0

! TSYS_3R = 1, 0, 2, 1.0, 0 /

STATION = ’MATERA’

FQID = 1

FEED_1R = 1,0.0861,-174.66

FEED_2R = 1,0.0207,111.14

FEED_3R = 1,0.0206,133.26

GAIN_1R = 1, 25.0

GAIN_2R = 1, 25.0

GAIN_3R = 1, 25.0

TSYS_1R = 1, 0, 2, 41.0, 0

TSYS_2R = 1, 0, 2, 41.0, 0

TSYS_3R = 1, 0, 2, 41.0, 0 /

STATION = ’WESTFORD’

FQID = 1

FEED_1R = 1,0.1448,-139.12
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FEED_2R = 1,0.1510,93.38

FEED_3R = 1,0.1329,86.66

GAIN_1R = 1, 25.0

GAIN_2R = 1, 25.0

GAIN_3R = 1, 25.0

TSYS_1R = 1, 0, 2, 46.0, 0

TSYS_2R = 1, 0, 2, 46.0, 0

TSYS_3R = 1, 0, 2, 46.0, 0 /

STATION = ’EB_VLBA’

FQID = 1

FEED_1R = 1,0.0069,39.88

FEED_2R = 1,0.0330,63.58

FEED_3R = 1,0.0383,53.94

GAIN_1R = 1, 0.73

GAIN_2R = 1, 0.73

GAIN_3R = 1, 0.73

TSYS_1R = 1, 0, 2, 23.0, 0

TSYS_2R = 1, 0, 2, 23.0, 0

TSYS_3R = 1, 0, 2, 23.0, 0 /

END /

!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SU_MODEL /

SOURCE = ’OQ208’

!! old model maybe too large in size!!!!

! TYPE= 2, 0, 0, 2.8, 0.0012, 0.0009, 1.6,0,0,0 /

!!!

!! new model at 24.06.2009

TYPE= 2, 0, 0, 2.8, 0.00096,0.00072, 1.6,0,0,0 /

SOURCE = ’OQ208’

TYPE = 1, -0.005499, -0.003993, 0.16,0,0,0 /

END /

!!!!!!!!!!!!!!!!!!

SCHEDULE /

DAY = 11 MONTH = 07 YEAR = 2007

START = 19:43:31

STOP = 19:47:09

SOURCE = ’OQ208’

FQID = 1

TINT = 2 /



APPENDIX B. DATA REDUCTION TO MEASURE POLARIZATION LEAKAGE - PROGRAMS107

DAY = 11 MONTH = 07 YEAR = 2007

START = 21:20:35

STOP = 21:24:13

SOURCE = ’OQ208’

FQID = 1

TINT = 2 /

DAY = 11 MONTH = 07 YEAR = 2007

START = 23:45:29

STOP = 23:49:07

SOURCE = ’OQ208’

FQID = 1

TINT = 2 /

DAY = 12 MONTH = 07 YEAR = 2007

START = 01:22:33

STOP = 01:26:11

SOURCE = ’OQ208’

FQID = 1

TINT = 2 /

DAY = 12 MONTH = 07 YEAR = 2007

START = 02:42:13

STOP = 02:45:51

SOURCE = ’OQ208’

FQID = 1

TINT = 2

DAY = 12 MONTH = 07 YEAR = 2007

START = 04:01:53

STOP = 04:05:31

SOURCE = ’OQ208’

FQID = 1

TINT = 2

END /

B.3 C-program to Calculate the Rice Distribution

/*

* A. Bertarini

*

* rice.c : to find the error on dterm phases and amplitude

* following the rice distribution (pag 192 - Thomson-Moran-Swenson)

*

*

* to compile with math lib: gcc -lm -lc rice.c
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*/

#include <stdio.h>

#include <math.h>

#include <string.h>

#include <stdlib.h>

#define DEBUG 1 /* 1 = print debug messages. 0 = silent */

#define step 0.0001 /*step to calculate the rice distribution */

#define sigma 0.012 /* sigma from RE/Im */

/* #define amp 0.1637 max dterm amplitude -- 0.0009 min dterm ampl -- 0.0395 median */

/*#define amp 0.1637 */

#define INFIL "tderm.idl"

#define OUTFIL "amp_phase_error_bars.txt"

#define MAXLEN 1000

double bessi0 (double x);

double erff0 (double x);

main(int argc) {

FILE *fp1, *fp2; /* file pointers for I/O files */

int i,k;

double j;

double sq, bessi_arg, exponential, area;

double Z, phase;

double P_Z, P_phase;

double I_zero; /* modified bessel function */

double erf_zero, erf_arg, first_part, second_part, third_part;

char line[MAXLEN];

double freq, amp, pha;

int pol, ante_no;

double phase_error, amp_error;

double phase_1, phase_99, Z_1, Z_99;

sq = pow (sigma,2);

area = 0;

/* read input file*/

fp1 = fopen(INFIL, "r");

if (fp1 == NULL) {

printf("Trouble opening %s\n", INFIL);

exit(1);

}

/* Open output file containing phase errors */

fp2 = fopen(OUTFIL, "w");
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if (fp2 == NULL) {

printf("Trouble opening %s\n", OUTFIL);

exit(1);

}

/* read and process every line from input file */

k = 0;

fgets(line, MAXLEN, fp1);

while (!feof(fp1)) {

sscanf(line, "%lf %d %d %*lf %*lf %lf %lf", &freq, &ante_no, &pol, &amp, &pha);

/* printf ("%s\n", line); read correctly */

/* printf("%lf %d %d %lf %lf\n", freq, ante_no, pol, amp, pha); read correctly */

if(amp != 0.0000) {

/*printf ("%lf\n",amp); */

/* for loop for calculating the d-term amp. probablility distribution */

for (Z = 0.; Z < 0.3; Z+= step) {

bessi_arg = (Z * fabs(amp) / sq);

I_zero = bessi0(bessi_arg);

exponential = exp(-1. * (Z*Z + amp * amp)/ (2. * sq));

P_Z = (Z / sq) * exponential * I_zero;

/* printf("%lf %le\n", Z, P_Z); */

}

/* for loop to calculate the d-term phase probablility distribution*/

for (phase = -1. * M_PI; phase < M_PI; phase += step) {

erf_arg = (fabs(amp) * cos(phase)) / ((sqrt(2.)) * sigma);

erf_zero = erff0 (erf_arg);

first_part = 1. / ( 2. * M_PI) * exp (-1. * (amp * amp) / (2. * (sigma * sigma))) ;

second_part = 1. + sqrt(M_PI / 2.) * (fabs(amp) * cos (phase)) / sigma ;

third_part = exp((amp * amp * pow(cos(phase),2.)) / (2. * sigma * sigma));

P_phase = first_part * second_part * third_part * (1. + erf_zero);

}

/* calculation of the 2 % of the total area under the two asimmetric tails */

/* first percentile */

area = 0;

for (Z = 0.; area <= 0.01; Z += step) {

bessi_arg = (Z * fabs(amp) / sq);

I_zero = bessi0(bessi_arg);

exponential = exp(-1. * (Z*Z + amp * amp)/ (2. * sq));

P_Z = (Z / sq) * exponential * I_zero;
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area += P_Z * step;

}

Z_1 = Z;

/* printf("first amp percentile = %lf\n",Z); */

/* 99th percentile */

area = 0;

for (Z = 0.3; area <= 0.01; Z -= step) {

bessi_arg = (Z * fabs(amp) / sq);

I_zero = bessi0(bessi_arg);

exponential = exp(-1. * (Z*Z + amp * amp)/ (2. * sq));

P_Z = (Z / sq) * exponential * I_zero;

area += P_Z * step;

}

Z_99 = Z;

/* printf("99th amp percentile = %lf\n",Z); */

area = 0.;

for (phase = -1. * M_PI; area <= 0.01; phase += step) {

erf_arg = (fabs(amp) * cos(phase)) / ((sqrt(2.)) * sigma);

erf_zero = erff0 (erf_arg);

first_part = 1. / ( 2. * M_PI) * exp (-1. * (amp * amp) / (2. * (sigma * sigma))) ;

second_part = 1. + sqrt(M_PI / 2.) * (fabs(amp) * cos (phase)) / sigma ;

third_part = exp((amp * amp * pow(cos(phase),2.)) / (2. * sigma * sigma));

P_phase = first_part * second_part * third_part * (1. + erf_zero);

area += P_phase * step;

}

phase_1 = phase;

/* printf("1st phase percentile = %lf\n", (180. / M_PI) * 1_phase); */

area = 0.;

for (phase = M_PI; area <= 0.01; phase -= step) {

erf_arg = (fabs(amp) * cos(phase)) / ((sqrt(2.)) * sigma);

erf_zero = erff0 (erf_arg);

first_part = 1. / ( 2. * M_PI) * exp (-1. * (amp * amp) / (2. * (sigma * sigma))) ;

second_part = 1. + sqrt(M_PI / 2.) * (fabs(amp) * cos (phase)) / sigma ;

third_part = exp((amp * amp * pow(cos(phase),2.)) / (2. * sigma * sigma));

P_phase = first_part * second_part * third_part * (1. + erf_zero);

area += P_phase * step;

}

phase_99 = phase;

/*printf("%lf\n", phase_99); */

phase_error = (phase_99 - phase_1) / 2.;

/* printf("%lf %lf %lf\n", phase_1, phase_99, phase_error);*/

amp_error = (Z_99 - Z_1)/2.;

fprintf(fp2, "%7.2lf %d %d %7.4lf %7.4lf %7.4lf %7.2lf %7.2lf\n",
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freq, ante_no, pol, amp, Z_1, Z_99, pha, (180. / M_PI) * phase_error);

} /* close if amp != 0.*/

k++;

fgets(line, MAXLEN, fp1);

} /* while end*/

fclose(fp1);

fclose(fp2);

} /*main end */

double bessi0(double x) {

/*Returns the modifiedd Bessel function I0(x) for any real x. */

/* from Numerical Recepies in C */

double ax, I_zero;

double y; /* Accumulate polynomials in double precision */

if ((ax = fabs(x)) < 3.75) {

y = x / 3.75;

y= y * y;

I_zero = 1.0 + y*(3.5156229 + y*(3.0899424 + y*(1.2067492 +

y*(0.2659732 + y*(0.360768e-1 + y*0.45813e-2)))));

}

else {

y = 3.75 / ax;

I_zero = (exp(ax) / sqrt(ax)) * (0.39894228 + y*(0.1328592e-1 +

y*(0.225319e-2 + y*(-0.157565e-2 + y*(0.916281e-2 + y*(-0.2057706e-1 +

y*(0.2635537e-1 + y*(-0.1647633e-1 + y*0.392377e-2))))))));

}

return I_zero;

}

double erff0(double x) {

/* Returns the error function erf(x)

algorithm from http://mathworld.wolfram.com/Erf.html */

double erf_zero;

int n;

double n_fact;

erf_zero = 0.;

n_fact = 1;

if (x <= 6. && x >= -6.) {

for (n = 0; n < 100; n++) {

if (n == 0){
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n_fact = 1;

}

else {

n_fact *= n;

}

erf_zero += (pow(-1.,n) * pow(x,2.*n+1.)) / (n_fact * (2. *n + 1.));

}

erf_zero *= 2. / sqrt (M_PI);

}

else if (x > 6.) {

erf_zero = 1.;

}

else if (x < -6.) {

erf_zero = -1.;

}

/* printf("%lf %lf\n", x, erf_zero); */

return erf_zero;

}
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Table C.1: Amplitudes (dimensionless) and phases (in degrees) of D-term for antenna Pie Town versus

frequency

Freq (MHz) Amp. RCP Phase RCP Amp. LCP Phase LCP

8228.99 0.022+0.018
−0.030 51 ± 73 0.023+0.019

−0.030 118 ± 71

8244.99 0.026+0.020
−0.030 52 ± 67 0.025+0.020

−0.030 111 ± 68

8276.99 0.033+0.023
−0.029 51 ± 58 0.022+0.018

−0.030 120 ± 73

8356.99 0.036+0.024
−0.029 16 ± 52 0.029+0.022

−0.029 152 ± 63

8372.99 0.036+0.024
−0.029 28 ± 52 0.031+0.023

−0.029 129 ± 60

8404.99 0.040+0.025
−0.029 49 ± 46 0.033+0.024

−0.029 111 ± 56

8420.99 0.037+0.025
−0.029 49 ± 50 0.033+0.023

−0.029 106 ± 58

8436.99 0.036+0.024
−0.029 55 ± 52 0.029+0.022

−0.030 90 ± 63

8500.99 0.040+0.025
−0.029 44 ± 47 0.038+0.025

−0.029 107 ± 50

8516.99 0.039+0.025
−0.029 46 ± 47 0.038+0.024

−0.029 108 ± 50

8532.99 0.049+0.026
−0.029 53 ± 37 0.043+0.025

−0.029 96 ± 42

8564.99 0.042+0.025
−0.029 49 ± 43 0.035+0.024

−0.029 114 ± 53

8692.99 0.050+0.026
−0.029 58 ± 35 0.046+0.025

−0.029 109 ± 39

8708.99 0.054+0.026
−0.029 55 ± 32 0.050+0.026

−0.029 108 ± 35

8724.99 0.048+0.026
−0.029 44 ± 37 0.050+0.026

−0.029 111 ± 35

8740.99 0.051+0.026
−0.029 55 ± 34 0.048+0.026

−0.029 96 ± 37

8772.99 0.050+0.026
−0.029 47 ± 36 0.043+0.025

−0.029 106 ± 42

8788.99 0.052+0.026
−0.029 45 ± 34 0.043+0.025

−0.029 101 ± 43

8804.99 0.046+0.025
−0.029 50 ± 39 0.042+0.025

−0.029 102 ± 44

8820.99 0.051+0.026
−0.029 47 ± 35 0.047+0.026

−0.029 106 ± 38

8836.99 0.044+0.025
−0.029 44 ± 41 0.043+0.025

−0.029 95 ± 43
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Table C.2: Amplitudes (dimensionless) and phases (in degree) of D-term for antenna Kitt Peak versus

frequency

Freq (MHz) Amp. RCP Phase RCP Amp. LCP Phase LCP

8212.99 0.046+0.026
−0.029 28 ± 39 0.041+0.025

−0.029 137 ± 46

8228.99 0.043+0.025
−0.029 29 ± 42 0.044+0.025

−0.029 147 ± 42

8244.99 0.045+0.025
−0.029 32 ± 40 0.046+0.025

−0.029 141 ± 39

8276.99 0.046+0.025
−0.029 33 ± 39 0.045+0.025

−0.029 139 ± 40

8308.99 0.050+0.026
−0.029 32 ± 35 0.048+0.026

−0.029 134 ± 37

8324.99 0.052+0.026
−0.029 32 ± 33 0.047+0.025

−0.029 131 ± 38

8356.99 0.051+0.026
−0.029 3 ± 35 0.048+0.026

−0.029 161 ± 37

8372.99 0.054+0.026
−0.029 22 ± 32 0.047+0.026

−0.029 140 ± 38

8404.99 0.054+0.026
−0.029 39 ± 32 0.050+0.026

−0.029 123 ± 35

8420.99 0.050+0.026
−0.029 46 ± 35 0.051+0.026

−0.029 119 ± 35

8436.99 0.051+0.026
−0.029 53 ± 34 0.048+0.026

−0.029 115 ± 37

8500.99 0.058+0.026
−0.029 47 ± 30 0.050+0.026

−0.029 123 ± 35

8516.99 0.062+0.026
−0.029 41 ± 28 0.054+0.026

−0.029 130 ± 32

8532.99 0.066+0.026
−0.029 57 ± 26 0.056+0.026

−0.029 112 ± 31

8564.99 0.067+0.026
−0.029 40 ± 25 0.060+0.026

−0.029 122 ± 29

8692.99 0.065+0.026
−0.029 42 ± 26 0.046+0.025

−0.029 102 ± 40

8708.99 0.065+0.026
−0.029 44 ± 26 0.048+0.026

−0.029 112 ± 38

8724.99 0.059+0.026
−0.029 38 ± 29 0.047+0.026

−0.029 119 ± 38

8740.99 0.062+0.026
−0.029 53 ± 27 0.051+0.026

−0.029 113 ± 34

8772.99 0.068+0.026
−0.029 48 ± 25 0.061+0.026

−0.029 112 ± 28

8788.99 0.069+0.026
−0.029 51 ± 24 0.054+0.026

−0.029 105 ± 32

8804.99 0.066+0.026
−0.029 52 ± 26 0.051+0.026

−0.029 109 ± 34

8820.99 0.066+0.026
−0.029 52 ± 26 0.055+0.026

−0.029 116 ± 32

8836.99 0.068+0.027
−0.029 55 ± 25 0.059+0.026

−0.029 116 ± 29
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Table C.3: Amplitudes (dimensionless) and phases (in degrees) of D-term for antenna Los Alamos versus

frequency

Freq (MHz) Amp. RCP Phase RCP Amp. LCP Phase LCP

8212.99 0.039+0.025
−0.029 11 ± 48 0.030+0.023

−0.029 134 ± 61

8228.99 0.031+0.023
−0.030 15 ± 59 0.028+0.021

−0.030 145 ± 65

8244.99 0.035+0.024
−0.029 20 ± 54 0.030+0.022

−0.029 144 ± 61

8276.99 0.035+0.024
−0.029 18 ± 53 0.034+0.024

−0.029 143 ± 56

8308.99 0.045+0.025
−0.029 17 ± 41 0.038+0.025

−0.029 137 ± 49

8324.99 0.043+0.025
−0.029 13 ± 43 0.037+0.025

−0.029 133 ± 50

8356.99 0.038+0.025
−0.029 −17 ± 50 0.037+0.024

−0.029 166 ± 51

8372.99 0.042+0.025
−0.029 13 ± 44 0.040+0.025

−0.029 137 ± 46

8404.99 0.042+0.025
−0.029 22 ± 44 0.037+0.024

−0.029 121 ± 51

8420.99 0.043+0.025
−0.029 30 ± 43 0.034+0.024

−0.029 118 ± 55

8436.99 0.035+0.024
−0.029 35 ± 54 0.035+0.024

−0.029 120 ± 53

8500.99 0.047+0.026
−0.029 16 ± 38 0.036+0.024

−0.029 103 ± 53

8516.99 0.041+0.025
−0.029 29 ± 46 0.033+0.024

−0.029 127 ± 57

8532.99 0.056+0.026
−0.029 43 ± 31 0.046+0.026

−0.029 104 ± 39

8564.99 0.046+0.026
−0.029 32 ± 39 0.045+0.025

−0.029 134 ± 40

8692.99 0.047+0.025
−0.029 23 ± 38 0.060+0.026

−0.029 108 ± 29

8708.99 0.050+0.026
−0.029 24 ± 36 0.058+0.026

−0.029 106 ± 30

8724.99 0.043+0.025
−0.029 28 ± 42 0.052+0.026

−0.029 112 ± 33

8740.99 0.049+0.026
−0.029 44 ± 36 0.049+0.026

−0.029 103 ± 36

8772.99 0.059+0.026
−0.029 29 ± 29 0.044+0.025

−0.029 118 ± 41

8788.99 0.055+0.026
−0.029 32 ± 32 0.050+0.026

−0.029 111 ± 36

8804.99 0.048+0.026
−0.029 28 ± 37 0.050+0.026

−0.029 106 ± 35

8820.99 0.048+0.026
−0.029 34 ± 37 0.057+0.026

−0.029 113 ± 31

8836.99 0.049+0.026
−0.029 36 ± 36 0.048+0.026

−0.029 107 ± 37
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Table C.4: Amplitudes (dimensionless) and phases (in degrees) of D-term for antenna Brewster versus

frequency

Freq (MHz) Amp. RCP Phase RCP Amp. LCP Phase LCP

8212.99 0.023+0.018
−0.030 56 ± 72 0.058+0.026

−0.029 131 ± 30

8228.99 0.028+0.021
−0.030 67 ± 65 0.057+0.026

−0.029 129 ± 30

8244.99 0.034+0.024
−0.029 68 ± 56 0.052+0.026

−0.029 124 ± 34

8276.99 0.036+0.024
−0.029 50 ± 53 0.050+0.026

−0.029 130 ± 35

8324.99 0.032+0.023
−0.029 49 ± 59 0.052+0.026

−0.029 124 ± 34

8356.99 0.030+0.022
−0.029 24 ± 61 0.046+0.026

−0.029 149 ± 39

8372.99 0.033+0.024
−0.029 45 ± 57 0.051+0.026

−0.029 128 ± 34

8404.99 0.032+0.023
−0.029 55 ± 58 0.041+0.025

−0.029 131 ± 46

8420.99 0.041+0.025
−0.029 59 ± 45 0.053+0.026

−0.029 132 ± 33

8436.99 0.035+0.024
−0.029 67 ± 55 0.064+0.026

−0.029 122 ± 27

8500.99 0.041+0.025
−0.029 51 ± 45 0.070+0.026

−0.029 124 ± 24

8516.99 0.039+0.025
−0.029 54 ± 48 0.069+0.027

−0.029 125 ± 24

8532.99 0.060+0.026
−0.029 68 ± 29 0.060+0.026

−0.029 100 ± 29

8564.99 0.048+0.026
−0.029 64 ± 37 0.079+0.027

−0.029 115 ± 21

8692.99 0.056+0.026
−0.029 63 ± 31 0.064+0.026

−0.029 103 ± 26

8708.99 0.055+0.026
−0.029 63 ± 31 0.062+0.026

−0.029 108 ± 27

8724.99 0.054+0.026
−0.029 57 ± 32 0.064+0.026

−0.029 111 ± 26

8740.99 0.053+0.026
−0.029 66 ± 33 0.059+0.026

−0.029 101 ± 29

8772.99 0.054+0.026
−0.029 61 ± 32 0.063+0.026

−0.029 112 ± 27

8788.99 0.056+0.026
−0.029 65 ± 31 0.068+0.027

−0.029 103 ± 25

8804.99 0.055+0.026
−0.029 65 ± 32 0.072+0.027

−0.029 98 ± 23

8820.99 0.043+0.025
−0.029 62 ± 42 0.073+0.027

−0.029 106 ± 23

8836.99 0.047+0.026
−0.029 64 ± 38 0.071+0.026

−0.029 96 ± 24
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Table C.5: Amplitudes (dimensionless) and phases (in degrees) of D-term for antenna Fort Davis versus

frequency

Freq (MHz) Amp. RCP Phase RCP Amp. LCP Phase LCP

8212.99 0.024+0.019
−0.030 16 ± 70 0.027+0.021

−0.030 132 ± 65

8228.99 0.023+0.019
−0.030 23 ± 72 0.032+0.023

−0.029 140 ± 59

8244.99 0.023+0.018
−0.030 32 ± 72 0.038+0.025

−0.029 135 ± 49

8276.99 0.031+0.023
−0.029 40 ± 60 0.034+0.024

−0.029 118 ± 55

8308.99 0.034+0.024
−0.029 30 ± 55 0.029+0.022

−0.030 118 ± 62

8324.99 0.037+0.024
−0.029 29 ± 51 0.027+0.021

−0.030 133 ± 66

8356.99 0.033+0.024
−0.029 0 ± 57 0.036+0.024

−0.029 158 ± 53

8372.99 0.034+0.024
−0.029 21 ± 56 0.034+0.024

−0.029 140 ± 55

8404.99 0.037+0.024
−0.029 39 ± 51 0.034+0.024

−0.029 128 ± 56

8420.99 0.033+0.023
−0.029 42 ± 58 0.041+0.025

−0.029 115 ± 46

8436.99 0.035+0.024
−0.029 58 ± 53 0.041+0.025

−0.029 111 ± 45

8500.99 0.047+0.026
−0.029 35 ± 38 0.037+0.024

−0.029 107 ± 51

8516.99 0.039+0.025
−0.029 36 ± 48 0.041+0.025

−0.029 115 ± 45

8532.99 0.050+0.026
−0.029 50 ± 36 0.039+0.025

−0.029 110 ± 48

8564.99 0.045+0.025
−0.029 40 ± 40 0.047+0.026

−0.029 113 ± 38

8692.99 0.045+0.025
−0.029 42 ± 40 0.033+0.023

−0.029 99 ± 57

8708.99 0.050+0.026
−0.029 43 ± 35 0.036+0.024

−0.029 105 ± 52

8724.99 0.042+0.025
−0.029 35 ± 43 0.034+0.024

−0.029 119 ± 56

8740.99 0.041+0.025
−0.029 45 ± 45 0.037+0.024

−0.029 113 ± 50

8772.99 0.044+0.025
−0.029 37 ± 41 0.044+0.025

−0.029 115 ± 42

8788.99 0.045+0.025
−0.029 41 ± 40 0.043+0.025

−0.029 112 ± 42

8804.99 0.049+0.026
−0.029 45 ± 36 0.044+0.025

−0.029 107 ± 42

8820.99 0.049+0.026
−0.029 35 ± 36 0.046+0.026

−0.029 115 ± 39

8836.99 0.046+0.026
−0.029 44 ± 39 0.045+0.025

−0.029 110 ± 40
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Table C.6: Amplitudes (dimensionless) and phases (in degrees) of D-term for antenna Saint Croix versus

frequency

Freq (MHz) Amp. RCP Phase RCP Amp. LCP Phase LCP

8212.99 0.017+0.014
−0.030 16 ± 83 0.016+0.013

−0.031 139 ± 87

8228.99 0.014+0.011
−0.031 23 ± 94 0.021+0.017

−0.030 135 ± 74

8244.99 0.023+0.019
−0.030 20 ± 71 0.018+0.015

−0.030 131 ± 81

8276.99 0.022+0.018
−0.030 0 ± 73 0.010+0.008

−0.031 152 ± 121

8308.99 0.016+0.013
−0.030 −2 ± 86 0.022+0.018

−0.030 135 ± 73

8324.99 0.016+0.013
−0.030 −1 ± 86 0.021+0.017

−0.030 130 ± 74

8356.99 0.020+0.017
−0.030 −13 ± 76 0.021+0.017

−0.030 154 ± 74

8372.99 0.021+0.017
−0.030 −0 ± 74 0.018+0.015

−0.030 152 ± 81

8404.99 0.020+0.017
−0.030 41 ± 76 0.027+0.021

−0.030 134 ± 66

8420.99 0.017+0.014
−0.030 40 ± 83 0.030+0.023

−0.030 123 ± 61

8436.99 0.019+0.016
−0.030 40 ± 78 0.026+0.021

−0.030 107 ± 67

8500.99 0.025+0.020
−0.030 43 ± 69 0.027+0.021

−0.030 125 ± 65

8516.99 0.027+0.021
−0.030 37 ± 66 0.027+0.021

−0.030 122 ± 66

8532.99 0.027+0.021
−0.030 33 ± 66 0.038+0.025

−0.029 97 ± 49

8564.99 0.034+0.024
−0.029 37 ± 56 0.033+0.024

−0.029 127 ± 57

8692.99 0.032+0.023
−0.029 23 ± 58 0.034+0.024

−0.029 103 ± 55

8708.99 0.031+0.023
−0.030 35 ± 61 0.035+0.024

−0.029 100 ± 54

8724.99 0.023+0.019
−0.030 25 ± 72 0.032+0.023

−0.029 113 ± 58

8740.99 0.027+0.021
−0.030 45 ± 65 0.039+0.025

−0.029 102 ± 47

8772.99 0.029+0.022
−0.030 40 ± 63 0.029+0.022

−0.030 96 ± 63

8788.99 0.026+0.021
−0.030 44 ± 66 0.027+0.021

−0.030 98 ± 65

8804.99 0.034+0.024
−0.029 46 ± 56 0.020+0.017

−0.030 91 ± 76

8820.99 0.023+0.018
−0.030 33 ± 72 0.026+0.020

−0.030 91 ± 68

8836.99 0.033+0.023
−0.029 32 ± 58 0.015+0.012

−0.030 104 ± 89
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Table C.7: Amplitudes (dimensionless) and phases (in degrees) of D-term for antenna North Liberty

versus frequency

Freq (MHz) Amp. RCP Phase RCP Amp. LCP Phase LCP

8212.99 0.034+0.024
−0.029 40 ± 56 0.042+0.025

−0.029 135 ± 44

8228.99 0.027+0.021
−0.030 56 ± 65 0.044+0.025

−0.029 131 ± 42

8244.99 0.042+0.025
−0.029 64 ± 43 0.045+0.025

−0.029 125 ± 40

8276.99 0.054+0.026
−0.029 54 ± 32 0.043+0.025

−0.029 119 ± 42

8308.99 0.052+0.026
−0.029 31 ± 34 0.040+0.025

−0.029 129 ± 46

8324.99 0.046+0.025
−0.029 29 ± 39 0.042+0.025

−0.029 126 ± 44

8356.99 0.040+0.025
−0.029 15 ± 47 0.041+0.025

−0.029 154 ± 45

8372.99 0.043+0.025
−0.029 38 ± 42 0.039+0.025

−0.029 135 ± 48

8404.99 0.050+0.026
−0.029 42 ± 35 0.042+0.025

−0.029 123 ± 44

8420.99 0.046+0.025
−0.029 49 ± 39 0.044+0.025

−0.029 115 ± 41

8436.99 0.042+0.025
−0.029 56 ± 43 0.048+0.026

−0.029 109 ± 37

8500.99 0.051+0.026
−0.029 46 ± 35 0.054+0.026

−0.029 120 ± 33

8516.99 0.047+0.026
−0.029 44 ± 38 0.053+0.026

−0.029 122 ± 33

8532.99 0.046+0.025
−0.029 53 ± 39 0.053+0.026

−0.029 111 ± 33

8564.99 0.052+0.026
−0.029 54 ± 34 0.060+0.026

−0.029 126 ± 28

8692.99 0.059+0.026
−0.029 47 ± 29 0.053+0.026

−0.029 108 ± 33

8708.99 0.054+0.026
−0.029 46 ± 32 0.049+0.026

−0.029 109 ± 36

8724.99 0.047+0.026
−0.029 40 ± 38 0.047+0.025

−0.029 120 ± 38

8740.99 0.051+0.026
−0.029 52 ± 35 0.054+0.026

−0.029 108 ± 32

8772.99 0.044+0.025
−0.029 52 ± 41 0.054+0.026

−0.029 116 ± 32

8788.99 0.046+0.025
−0.029 61 ± 39 0.054+0.026

−0.029 112 ± 32

8804.99 0.048+0.026
−0.029 64 ± 37 0.058+0.026

−0.029 112 ± 30

8820.99 0.048+0.026
−0.029 55 ± 38 0.057+0.026

−0.029 114 ± 30

8836.99 0.050+0.026
−0.029 61 ± 35 0.057+0.026

−0.029 112 ± 30
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Table C.8: Amplitudes (dimensionless) and phases (in degrees) of D-term for antenna Owens Valley

versus frequency

Freq (MHz) Amp. RCP Phase RCP Amp. LCP Phase LCP

8212.99 0.044+0.025
−0.029 21 ± 41 0.048+0.026

−0.029 135 ± 37

8228.99 0.043+0.025
−0.029 17 ± 42 0.044+0.025

−0.029 136 ± 41

8244.99 0.046+0.025
−0.029 17 ± 39 0.044+0.025

−0.029 138 ± 42

8276.99 0.040+0.025
−0.029 18 ± 47 0.039+0.025

−0.029 143 ± 48

8308.99 0.040+0.025
−0.029 30 ± 46 0.054+0.026

−0.029 141 ± 32

8324.99 0.045+0.025
−0.029 22 ± 40 0.051+0.026

−0.029 143 ± 35

8356.99 0.041+0.025
−0.029 −9 ± 46 0.047+0.026

−0.029 172 ± 38

8372.99 0.055+0.026
−0.029 16 ± 32 0.036+0.024

−0.029 134 ± 52

8404.99 0.046+0.025
−0.029 32 ± 39 0.051+0.026

−0.029 131 ± 34

8420.99 0.050+0.026
−0.029 45 ± 35 0.052+0.026

−0.029 122 ± 33

8436.99 0.050+0.026
−0.029 46 ± 36 0.046+0.025

−0.029 114 ± 39

8500.99 0.054+0.026
−0.029 29 ± 32 0.054+0.026

−0.029 125 ± 32

8516.99 0.052+0.026
−0.029 32 ± 34 0.058+0.026

−0.029 126 ± 30

8532.99 0.061+0.026
−0.029 43 ± 28 0.061+0.026

−0.029 113 ± 28

8564.99 0.056+0.026
−0.029 35 ± 31 0.051+0.026

−0.029 122 ± 34

8692.99 0.057+0.026
−0.029 37 ± 30 0.072+0.026

−0.029 120 ± 23

8708.99 0.061+0.026
−0.029 40 ± 28 0.059+0.026

−0.029 116 ± 29

8724.99 0.058+0.026
−0.029 33 ± 30 0.059+0.026

−0.029 120 ± 29

8740.99 0.063+0.026
−0.029 48 ± 27 0.061+0.026

−0.029 113 ± 28

8772.99 0.059+0.026
−0.029 39 ± 29 0.061+0.026

−0.029 122 ± 28

8788.99 0.059+0.026
−0.029 45 ± 29 0.066+0.026

−0.029 114 ± 26

8804.99 0.063+0.026
−0.029 48 ± 27 0.062+0.026

−0.029 111 ± 28

8820.99 0.065+0.026
−0.029 43 ± 26 0.069+0.027

−0.029 116 ± 25

8836.99 0.066+0.026
−0.029 44 ± 26 0.057+0.026

−0.029 109 ± 30
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Table C.9: Amplitudes (dimensionless) and phases (in degrees) of D-term for antenna Mauna Kea versus

frequency

Freq (MHz) Amp. RCP Phase RCP Amp. LCP Phase LCP

8212.99 0.033+0.023
−0.029 27 ± 58 0.032+0.023

−0.029 136 ± 59

8228.99 0.031+0.023
−0.030 28 ± 59 0.031+0.023

−0.029 144 ± 60

8244.99 0.035+0.024
−0.029 26 ± 55 0.036+0.024

−0.029 144 ± 53

8276.99 0.032+0.023
−0.029 25 ± 58 0.042+0.025

−0.029 140 ± 44

8308.99 0.038+0.025
−0.029 24 ± 49 0.043+0.025

−0.029 122 ± 42

8324.99 0.036+0.024
−0.029 27 ± 52 0.043+0.025

−0.029 116 ± 42

8356.99 0.036+0.024
−0.029 −2 ± 52 0.036+0.024

−0.029 152 ± 52

8372.99 0.038+0.025
−0.029 21 ± 49 0.037+0.024

−0.029 146 ± 51

8404.99 0.043+0.025
−0.029 39 ± 42 0.038+0.025

−0.029 123 ± 49

8420.99 0.039+0.025
−0.029 46 ± 48 0.040+0.025

−0.029 118 ± 46

8436.99 0.039+0.025
−0.029 51 ± 48 0.049+0.026

−0.029 110 ± 36

8500.99 0.047+0.025
−0.029 33 ± 38 0.041+0.025

−0.029 122 ± 45

8516.99 0.042+0.025
−0.029 34 ± 43 0.043+0.025

−0.029 124 ± 43

8532.99 0.044+0.025
−0.029 39 ± 41 0.047+0.026

−0.029 100 ± 38

8564.99 0.046+0.025
−0.029 33 ± 40 0.046+0.025

−0.029 124 ± 40

8692.99 0.044+0.025
−0.029 39 ± 41 0.052+0.026

−0.029 107 ± 33

8708.99 0.049+0.026
−0.029 38 ± 36 0.057+0.026

−0.029 111 ± 30

8724.99 0.041+0.025
−0.029 26 ± 45 0.057+0.026

−0.029 113 ± 30

8740.99 0.039+0.025
−0.029 42 ± 48 0.052+0.026

−0.029 104 ± 34

8772.99 0.042+0.025
−0.029 41 ± 44 0.050+0.026

−0.029 108 ± 35

8788.99 0.041+0.025
−0.029 47 ± 45 0.041+0.025

−0.029 98 ± 45

8804.99 0.051+0.026
−0.029 48 ± 35 0.043+0.025

−0.029 104 ± 42

8820.99 0.046+0.025
−0.029 51 ± 40 0.043+0.025

−0.029 117 ± 42

8836.99 0.047+0.026
−0.029 46 ± 38 0.049+0.026

−0.029 110 ± 36
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Table C.10: Amplitudes (dimensionless) and phases (in degrees) of D-term for antenna Noto versus

frequency. Noto has fewer frequencies that the other stations since its receiver can observe only up to

about 8600 MHz.

Freq (MHz) Amp. RCP Phase RCP

8212.99 0.026+0.021
−0.030 113 ± 67

8228.99 0.035+0.024
−0.029 110 ± 53

8244.99 0.033+0.024
−0.029 109 ± 56

8276.99 0.030+0.023
−0.029 100 ± 61

8308.99 0.054+0.026
−0.029 63 ± 32

8324.99 0.031+0.023
−0.029 115 ± 60

8356.99 0.026+0.021
−0.030 67 ± 67

8372.99 0.040+0.025
−0.029 94 ± 46

8404.99 0.035+0.024
−0.029 78 ± 53

8420.99 0.032+0.023
−0.029 80 ± 58

8436.99 0.028+0.022
−0.030 127 ± 64

8500.99 0.021+0.017
−0.030 132 ± 75

8516.99 0.026+0.021
−0.030 126 ± 66

8564.99 0.058+0.026
−0.029 141 ± 30
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Table C.11: Amplitudes (dimensionless) and phases (in degrees) of D-term for antenna Onsala versus

frequency

Freq (MHz) Amp. RCP Phase RCP

8212.99 0.071+0.026
−0.029 18 ± 24

8228.99 0.051+0.026
−0.029 −14 ± 34

8244.99 0.060+0.026
−0.029 −5 ± 28

8276.99 0.035+0.024
−0.029 −12 ± 54

8308.99 0.016+0.014
−0.030 35 ± 84

8324.99 0.039+0.025
−0.029 48 ± 48

8356.99 0.021+0.018
−0.030 11 ± 74

8372.99 0.042+0.025
−0.029 35 ± 44

8404.99 0.061+0.026
−0.029 19 ± 28

8420.99 0.067+0.026
−0.029 23 ± 25

8436.99 0.059+0.026
−0.029 7 ± 29

8500.99 0.030+0.023
−0.030 −22 ± 61

8516.99 0.021+0.017
−0.030 −3 ± 75

8532.99 0.006+0.004
−0.032 −11 ± 166

8564.99 0.030+0.023
−0.029 34 ± 61

8692.99 0.056+0.026
−0.029 −25 ± 31

8708.99 0.052+0.026
−0.029 −14 ± 34

8724.99 0.053+0.026
−0.029 −37 ± 33

8740.99 0.037+0.025
−0.029 −46 ± 50

8772.99 0.007+0.005
−0.032 41 ± 156

8788.99 0.018+0.015
−0.030 55 ± 79

8804.99 0.011+0.009
−0.031 71 ± 113

8836.99 0.034+0.024
−0.029 63 ± 56
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Table C.12: Amplitudes (dimensionless) and phases (in degrees) of D-term for antenna Wettzell versus

frequency

Freq (MHz) Amp. RCP Phase RCP

8212.99 0.011+0.008
−0.031 −180 ± 114

8228.99 0.004+0.002
−0.033 −127 ± 171

8244.99 0.013+0.011
−0.031 −151± 96

8276.99 0.013+0.011
−0.031 −144± 96

8308.99 0.004+0.002
−0.033 172 ± 171

8324.99 0.006+0.004
−0.032 83 ± 165

8356.99 0.018+0.015
−0.030 −88 ± 79

8372.99 0.015+0.013
−0.030 −72 ± 88

8404.99 0.014+0.012
−0.031 −87 ± 92

8420.99 0.017+0.014
−0.030 −57 ± 82

8436.99 0.022+0.018
−0.030 −64 ± 72

8500.99 0.021+0.018
−0.030 −86 ± 74

8516.99 0.028+0.021
−0.030 −82 ± 65

8532.99 0.027+0.021
−0.030 −28 ± 66

8564.99 0.021+0.017
−0.030 −71 ± 75

8692.99 0.028+0.021
−0.030 −54 ± 65

8708.99 0.024+0.020
−0.030 −62 ± 69

8724.99 0.021+0.017
−0.030 −90 ± 74

8740.99 0.030+0.022
−0.029 −59 ± 61

8772.99 0.022+0.018
−0.030 −61 ± 72

8788.99 0.030+0.022
−0.029 −45 ± 62

8804.99 0.022+0.018
−0.030 −50 ± 73

8820.99 0.031+0.023
−0.030 −48 ± 61

8836.99 0.026+0.020
−0.030 −31 ± 68
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Table C.13: Amplitudes (dimensionless) and phases (in degrees) of D-term for antenna Matera versus

frequency

Freq (MHz) Amp. RCP Phase RCP

8212.99 0.051+0.026
−0.029 142 ± 35

8228.99 0.031+0.023
−0.030 123 ± 60

8244.99 0.025+0.020
−0.030 166 ± 68

8276.99 0.012+0.010
−0.031 36 ± 103

8308.99 0.081+0.027
−0.029 50 ± 20

8324.99 0.051+0.026
−0.029 11 ± 34

8356.99 0.021+0.017
−0.030 88 ± 74

8372.99 0.028+0.021
−0.030 131 ± 65

8404.99 0.018+0.015
−0.030 86 ± 79

8420.99 0.014+0.011
−0.031 177 ± 93

8436.99 0.013+0.011
−0.031 53 ± 97

8500.99 0.004+0.002
−0.033 94 ± 172

8516.99 0.019+0.016
−0.030 74 ± 77

8532.99 0.017+0.014
−0.030 145 ± 82

8564.99 0.086+0.027
−0.028 −175± 19

8692.99 0.023+0.019
−0.030 119 ± 71

8708.99 0.022+0.018
−0.030 84 ± 72

8724.99 0.023+0.019
−0.030 129 ± 71

8740.99 0.034+0.024
−0.029 −112± 56

8772.99 0.030+0.022
−0.029 151 ± 62

8788.99 0.010+0.008
−0.031 −13 ± 119

8804.99 0.011+0.009
−0.031 128 ± 112

8820.99 0.021+0.017
−0.030 111 ± 75

8836.99 0.021+0.017
−0.030 133 ± 75
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Table C.14: Amplitudes (dimensionless) and phases (in degrees) of D-term for antenna Westford versus

frequency

Freq (MHz) Amp. RCP Phase RCP

8212.99 0.122+0.027
−0.028 129 ± 13

8228.99 0.123+0.027
−0.028 115 ± 13

8244.99 0.112+0.027
−0.028 106 ± 15

8276.99 0.110+0.027
−0.028 78 ± 15

8308.99 0.111+0.027
−0.028 49 ± 15

8324.99 0.101+0.027
−0.028 39 ± 16

8356.99 0.101+0.027
−0.028 −19 ± 16

8372.99 0.100+0.027
−0.028 −15 ± 17

8404.99 0.104+0.027
−0.028 −26 ± 16

8420.99 0.110+0.027
−0.028 −33 ± 15

8436.99 0.112+0.027
−0.028 −42 ± 15

8500.99 0.125+0.027
−0.028 −100± 13

8516.99 0.133+0.027
−0.028 −112± 12

8532.99 0.157+0.027
−0.028 131 ± 10

8564.99 0.145+0.027
−0.028 −139± 11

8692.99 0.156+0.027
−0.028 160 ± 10

8708.99 0.154+0.027
−0.028 155 ± 11

8724.99 0.151+0.027
−0.028 136 ± 11

8740.99 0.158+0.027
−0.028 142 ± 10

8772.99 0.164+0.027
−0.028 118 ± 10

8788.99 0.153+0.027
−0.028 114 ± 11

8804.99 0.138+0.027
−0.028 106 ± 12

8820.99 0.151+0.027
−0.028 93 ± 11

8836.99 0.133+0.027
−0.028 87 ± 12
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Table C.15: Amplitudes (dimensionless) and phases (in degrees) of D-term for antenna Effelsberg versus

frequency

Freq (MHz) Amp. RCP Phase RCP

8212.99 0.010+0.008
−0.031 −52 ± 121

8228.99 0.003+0.002
−0.034 −174 ± 173

8244.99 0.004+0.002
−0.033 111 ± 172

8276.99 0.004+0.002
−0.033 61 ± 171

8308.99 0.007+0.005
−0.032 145 ± 161

8324.99 0.005+0.003
−0.033 14 ± 169

8356.99 0.008+0.006
−0.032 −38 ± 142

8372.99 0.005+0.003
−0.033 −100 ± 170

8404.99 0.008+0.006
−0.032 −173 ± 147

8420.99 0.007+0.005
−0.032 124 ± 159

8436.99 0.008+0.006
−0.032 155 ± 149

8500.99 0.005+0.003
−0.033 105 ± 169

8516.99 0.009+0.007
−0.032 53 ± 134

8532.99 0.011+0.008
−0.031 75 ± 115

8564.99 0.007+0.005
−0.032 40 ± 159

8692.99 0.022+0.018
−0.030 −11 ± 73

8708.99 0.017+0.014
−0.030 −20 ± 83

8724.99 0.012+0.009
−0.031 −37 ± 105

8740.99 0.009+0.007
−0.031 18 ± 127

8772.99 0.022+0.018
−0.030 52 ± 73

8788.99 0.022+0.018
−0.030 68 ± 72

8804.99 0.029+0.022
−0.029 61 ± 62

8820.99 0.033+0.024
−0.029 64 ± 57

8836.99 0.038+0.025
−0.029 54 ± 49
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Figure D.1: Left column: RCP D-term amplitudes (dimensionless) versus frequency. Right column: RCP

D-term phases versus frequency.
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Figure D.2: Left column: RCP D-term amplitudes (dimensionless) versus frequency. Right column: RCP

D-term phases versus frequency.
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Figure D.3: Left column: RCP D-term amplitudes (dimensionless) versus frequency. Right column: RCP

D-term phases versus frequency.
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Figure D.4: First three rows, left column RCP D-term amplitudes (dimensionless) versus frequency,

left column: RCP D-term phases versus frequency. Last row, left column: LCP D-term amplitudes

(dimensionless) versus frequency and left column: LCP D-term phases versus frequency.
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Figure D.5: Left column: LCP D-term amplitudes (dimensionless) versus frequency. Right column: LCP

D-term phases versus frequency.
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Figure D.6: Left column: LCP D-term amplitudes (dimensionless) versus frequency. Right column: LCP

D-term phases versus frequency.



Appendix E

Corrections of the Leakage on the

Delay

E.1 C-Program Source Codes

E.1.1 Pang.c

/*

*

* pang.c

* calculates the parallactic angle

*

*

* compile with gcc pang.c -lc -lm -o pang

*

*

*/

#include <stdio.h>

#include <math.h>

#include <string.h>

#include <stdlib.h>

#define INFIL "OQ208.tbwdhj"

#define INFIL1 "1741-038.ukdwut"

#define OUTFIL "parallactic_angle.txt"

#define MAXCOLUMN 1000

#define MAXSTAT 64

#include "mk4_data.h" /*living in include*/

#include "vex.h" /*living in include*/

#include "pass_struct.h" /*living in nfourfit directory */

#include "param_struct.h" /*living in nfourfit directory */

void doy2date(int doy, int yy, int *mm, int *dd);

void pang(struct vex *root, struct type_pass *pass)

/* the structure vex is contained in ../include/vex.h */
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{

extern double PA[MAXSTAT];

extern char PA_statid[MAXSTAT];

struct station_struct *st;

double argument1, argument2;

double lat, h, delta; /* h = hour angle of the source --

delta = declination of the source

lat = latitude of the antenna */

double LST; /* LST = local sidereal time --

ra = right ascension */

double GMST, longi; /* GST = Greenwich mean sidereal time --

longi = longitude */

double JD, UT, D; /* JD = Julian date --

UT = universal time */

double time;

int yy, mm, dd;

double hh, min;

int rah, ram ; /* rah = righ ascension hour --

ram = right ascension minute*/

float ras; /* ras = right ascension second */

int decdeg, decmin ;

float decsec; /* decdeg = declination degree --

decmin = decl. min --

decsec = decl. sec */

int UTh, UTmin, doy; /* UTh = as read from scan name --

UTmin = as read from scan name,

doy = as read from scan name */

int doyindex ; /* doyindex = doy + 1 in leap years */

double ra, dec; /* ra = right ascension in hours --

dec = declination in radians*/

int i = 0 ; /* i = index for filling the vector

containing the station names and coordinates */

int j; /* j = index for antennas coordinate and names */

int c; /* c = in between to calculate the JD */

int k; /* k = index for resetting GMST between 0h and 24h */

int l;

double x[MAXSTAT],y[MAXSTAT],z[MAXSTAT]; /* position of the station

in meter from the centre of the Earth*/

/* read the ra values from the structure sky_coord defined in mk4_typedefs.h

* root is variable name which is a pointer to data type vex contained in vex.h

* in the structure vex there is a variable named ovex, which itsefl is a pointer

* to a structure called scan_structure contained in ovex.h.

* In the structure scan_structure there si a variable called src, which is a

* structure of type source_struct contained in ovex.h. In the structure source_struct

* there is a variable called position, which is a structure of type sky_coord contained

* in mk4_typedefs.h. In the structure sky_coord there are RA and DEC as reported below. */
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rah = root->ovex->src.position.ra_hrs;

ram = root->ovex->src.position.ra_mins;

ras = root->ovex->src.position.ra_secs;

/* conversion of ra in hours of time to calculate GMST as required by the formula below */

ra = rah + ram / 60. + ras /3600. ;

/* read the dec values from the structure sky_coord defined in mk4_typedefs.h*/

decdeg = root->ovex->src.position.dec_degs;

decmin = root->ovex->src.position.dec_mins;

decsec = root->ovex->src.position.dec_secs;

/* conversion of dec in radiant for calculating the parallactic angle*/

dec = decdeg + decmin / 60. + decsec / 3600.; /* declination in degree of arc*/

dec = dec * (M_PI / 180.); /* dec in radians */

/* read from structure type_pass contained in the file pass_struct.h.

* reftime is the nr. of second since the start of the year*/

time = pass->reftime;

/* calculate the DOY. The +1. is because C start to count from zero*/

time = (time / 86400.) + 1. ;

doy = floor(time);

/* UT hour*/

hh = (time - doy) * 24.;

UTh = floor(hh);

/* UT min*/

UTmin = floor((hh - UTh) * 60.);

/* UT sec not used*/

/* conversion of UT in hours since --I belive-- to calculate JD I need UT in hours */

UT = UTh + UTmin / 60. ;

/* find the year of the observation in the strucure mk4_typedefs.h*/

yy = root->ovex->start_time.year;

// printf("year %d\n", yy);
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/* search for station one letter code in ovex.h

* .h file: vex.h

* ovex.h

* ovex.h

* ovex.h

* data type vex

* scan_struct

* station_struct

* char

* declared fourfit.c */

for (l = 0; l < root->ovex->nst; l++)

{

st = root->ovex->st + l;

PA_statid[l] = st->mk4_site_id;

/* search for station coordinates respect to the centre of the Earth in ovex.h */

x[l] = st->coordinates[0];

y[l] = st->coordinates[1];

z[l] = st->coordinates[2];

}

/* conversion from doy to dd and mm and from yy I see whether I have a leap year */

doy2date(doy, yy, &mm, &dd);

/* hour angle calculation from LST */

/* From http://www.astro.uu.nl/~strous/AA/en/reken/juliaansedag.html */

if ( mm < 3 ) {

mm = mm + 12 ;

yy = yy - 1;

}

c = 2 - floor( yy / 100) + floor (yy / 400);

JD = floor(1461 * (yy +4716) / 4) + floor (153 * (mm + 1) /5) + dd + c -1524.5 + UT /24.;

D = JD - 2451545.0;

/* from: http://aa.usno.navy.mil/faq/docs/GAST.php */

/* GMST in hours: */

GMST = 18.697374558 + 24.06570982441908 * D ;

/* the GMST must be reduced to the range from 0h to 24h */
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k = 0;

while (GMST > 0) {

GMST = GMST - 24.;

k += 1;

}

k--;

GMST = GMST + 24.;

/*http://www.csgnetwork.com/siderealjuliantimecalc.html

Greenw. lat = 51 deg 28 arcmin 38 arcsec N

long = o deg 0 arcmin 0 srcsec */

/* the longitude is now in radians */

for (j = 0; j < root->ovex->nst ; j++) {

longi = atan2 (y[j] , x[j]);

/* the longitude is measured in time-measurement i.e. 15 deg = 1h; 15 arcmin = 1 min ;

/* 15arcsec = 1 sec -- pag 41 Smart */

longi = (longi * 180./ M_PI) / 15. ; /* longi in hours */

LST = GMST + longi; /* - antenna is at east of Greenwich

+ antenna is at west of Greenwich*/

/* h is in hour */

h = LST - ra;

/* Calculation of the latitude starting from the positions

in meter from the centre of the Earth -- from Smart */

/* lat is in radians = arctg (z / sqrt (x^2+y^2)) */

lat = atan2 (z[j] , sqrt( x[j] * x[j] + y[j] * y[j]));

/* let’s select to have everything in radians*/

h = (h * 15.) * M_PI/ 180. ; /* hour angle in radians */

/* rotation due to the parallactic angle for altaz mounting from

Radio Image synthesis II p. 115 */

argument1 = (cos(lat) * sin(h));

argument2 = (sin(lat) * cos (dec) - cos(lat) * cos(h) * sin(dec));

PA[PA_statid[j] - ’A’] = atan2 (argument1 , argument2);
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} /* close of the for*/

return;

}

void doy2date(int doy, int yy, int *mm, int *dd) {

int month[12] = {31,28,31,30,31,30,31,31,30,31,30,31};

int i;

/* check if the year is a leap year*/

if (((yy % 4 == 0) && (yy % 100 != 0)) || (yy & 400 == 0)) {

month[1] = month[1] + 1;

}

/* for each month from Jan upward,

* subtract total number of days in month from day number in year,

* until total <= 0

*/

i = 0;

while (doy > 0) {

doy = doy - month[i];

i += 1;

}

/* back off one month, to make day number > 1 */

i--;

/* c counts from zero, i.e. Jan would have a value of mm = 0,

which is invalid */

*mm = i + 1;

*dd = doy + month[i];

return;

}

E.1.2 Dterm load.c

#include <stdio.h>

#include <math.h>

#include <string.h>

#include <stdlib.h>

#include "vex.h"

#define INFIL "/home/operator/GEO/BIN/Alessandra/fourfit/nfourfit/dterm_X-band.dat"

#define MAXCOLUMN 1000

#define bot_freq 8212.99 /*in MHz first freq observed*/

#define freq_int 16 /*in MHz - frequency interval*/



APPENDIX E. CORRECTIONS OF THE LEAKAGE ON THE DELAY 142

void dterm_load(struct vex *root)

{

extern double PA[64];

extern char PA_statid[64];

extern double dterm_theta[65][65][65][3]; /* storage for visibility angle

correction due to dterm -

ref - rem - freq - pol */

struct station_struct *sta;

FILE *fp1; /* pointer to dterm file*/

char line[MAXCOLUMN] ;

char dterm_pol, dterm_stat2id[3];

double dterm_amp, dterm_phase, dterm_freq;

double dterm[64][64][2][2]; /* storage for dterm station - freq - pol - amp/phase */

int freq_index, l;

int stat_index_ref, stat_index_rem;

int stat_index;

int pol_index;

double PA_ref, PA_rem;

/* read input log file*/

fp1 = fopen(INFIL, "r");

if (fp1 == NULL) {

printf("Trouble opening %s\n", INFIL);

exit(1);

}

/* dterm_theta and dterm initialization: */

for (pol_index = 0; pol_index <= 1; pol_index++) {

for (freq_index = 0; freq_index < 64; freq_index++) {

for (stat_index_ref = 0; stat_index_ref < 64; stat_index_ref++){

for (stat_index_rem = 0; stat_index_rem < 64; stat_index_rem++){

dterm_theta[stat_index_ref][stat_index_rem][freq_index][pol_index] = 0;

}

dterm[stat_index_ref][freq_index][pol_index][0] = 0;

dterm[stat_index_ref][freq_index][pol_index][1] = 0;

}

}

}

/* read and process every line from input dterm file */

fgets(line, MAXCOLUMN, fp1);

while (!feof(fp1)) {

sscanf(line, "%lf %2s %c %*lf %*lf %lf %lf", &dterm_freq, &dterm_stat2id,

&dterm_pol, &dterm_amp, &dterm_phase);
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freq_index = (dterm_freq - bot_freq) / freq_int;

l = 0;

sta = root->ovex->st;

while (strstr(dterm_stat2id, sta->site_id) == NULL && l < root->ovex->nst)

{

l++;

sta = root->ovex->st + l;

}

stat_index = sta->mk4_site_id - ’A’;

if (dterm_pol == ’R’) {

pol_index = 0; /* pol_index = 0 => RCP*/

}

else pol_index = 1; /*LCP*/

dterm[stat_index][freq_index][pol_index][0] = dterm_amp;

dterm[stat_index][freq_index][pol_index][1] = dterm_phase * (M_PI / 180.);

fgets(line, MAXCOLUMN, fp1);

} /* end while*/

for (pol_index = 0; pol_index <= 1; pol_index++) {

for (freq_index = 0; freq_index < 64; freq_index++) {

for (stat_index_ref = 0; stat_index_ref < 64; stat_index_ref++){

for (stat_index_rem = 0; stat_index_rem < 64; stat_index_rem++){

l = 0; /* now l is index for stepping along the PA_statid

array to find the matching ref/rem stations*/

while ((PA_statid[l] - ’A’ != stat_index_rem) && (l < 64)) {

l++;

} /*endwhile for PA_statid not equal to stat_index_ref*/

PA_rem = PA[stat_index_rem];

l= 0;

while ((PA_statid[l] - ’A’ != stat_index_ref) && (l < 64)) {

l++;

} /*endwhile for PA_statid not equal to stat_index_rem*/

PA_ref = PA[stat_index_ref];

dterm_theta[stat_index_ref][stat_index_rem][freq_index][pol_index] =

dterm[stat_index_ref][freq_index][pol_index][0] *

dterm[stat_index_rem][freq_index][pol_index][0] *

sin((dterm[stat_index_ref][freq_index][pol_index][1] -

dterm[stat_index_rem][freq_index][pol_index][1]) - 2 *

(PA_ref - PA_rem));

} /*endfor stat_index_rem*/

} /*endfor stat_index_ref*/

} /*endfor freq_index*/

} /* endfor pol_index */
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/* create a matix of dterm theta corrections that accomodate for all the possible fourfit

* baseline conbination I.e. AB and BA will be equally catered for.*/

return;

}

E.1.3 Dterm apply.c

#include <stdio.h>

#include <math.h>

#include <string.h>

#include <stdlib.h>

#include "param_struct.h"

#include "pass_struct.h"

#include "vex.h"

#define bot_freq 8212.99

#define freq_int 16.

#define MAXCOLUMN 1000

double dterm_apply(struct type_pass *pass, int fr)

{

extern struct mk4_fringe fringe;

extern double PA[64];

extern char PA_statid[64];

extern double dterm_theta[65][65][65][3];

extern struct type_param param;

double freq_index;

int stat_index_ref, stat_index_rem;

int stat_index;

int pol_index;

int miss_freq_top = 0;

int miss_freq_bot = 0;

double miss_re, miss_im;

double miss_freq;

double dterm_re_1, dterm_im_1, dterm_re_2, dterm_im_2;

double delta_dterm_re, delta_dterm_im;

double delta_freq;

double dterm_freq_top, dterm_freq_bot;

freq_index = (pass->pass_data[fr].frequency - bot_freq) / freq_int ;

/* test to see whether I am between the frequencies that I have in dterm_X-band.dat.

If no, then no correction to be implemented - > retunt zero*/

if ((freq_index < 0) || (freq_index >= 64)){

return(0.0);

}
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/*test whether dterm_theta is equal zero., i.e. I do not have any value in dterm_X-band.dat,

but I am within the min-max range of it. If == 0, then need interpolation */

if(dterm_theta[param.baseline[0]-’A’][param.baseline[1] -’A’][(int)floor(freq_index)][0] == 0

|| ((int)freq_index - freq_index) != 0.) {

/* search for the first occurrence in freq where dterm_theta has non zero value moving toward

* the lower freqs*/

while

(dterm_theta[param.baseline[0]-’A’][param.baseline[1] -’A’][(int)floor(freq_index)][0] == 0

&& freq_index > 0) {

freq_index--;

}

miss_freq_bot = (int)floor(freq_index);

/* reset the freq_index to the original value*/

freq_index = (pass->pass_data[fr].frequency - bot_freq) / freq_int ;

/* search for the first occurence in freq where dterm_theta has non zero value moving toward the

* higher freqs*/

while

(dterm_theta[param.baseline[0]-’A’][param.baseline[1] -’A’][(int)ceil(freq_index)][0] == 0

&& freq_index < 64) {

freq_index++;

}

miss_freq_top = (int)ceil(freq_index);

/*handle the case where I reach the top or the bottom of the frequencies present in the

file dterm_X-band.dat without having found any non-zero dterm_theta*/

if((int)freq_index == 64) {

return((dterm_theta[param.baseline[0]-’A’][param.baseline[1] -’A’][miss_freq_bot][0]));

}

else if (miss_freq_bot == 0) {

return((dterm_theta[param.baseline[0]-’A’][param.baseline[1] -’A’][miss_freq_top][0]));

}

/* reset the freq_index to the original value*/

freq_index = (pass->pass_data[fr].frequency - bot_freq) / freq_int ;

/* do the interpolation using real and imaginary, easy to handle that phase*/

dterm_re_1 =

cos (dterm_theta[param.baseline[0]-’A’][param.baseline[1] -’A’][miss_freq_bot][0]);

dterm_im_1 =

sin (dterm_theta[param.baseline[0]-’A’][param.baseline[1] -’A’][miss_freq_bot][0]);

dterm_re_2 =

cos (dterm_theta[param.baseline[0]-’A’][param.baseline[1] -’A’][miss_freq_top][0]);

dterm_im_2 =

sin (dterm_theta[param.baseline[0]-’A’][param.baseline[1] -’A’][miss_freq_top][0]);
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delta_dterm_re = dterm_re_2 - dterm_re_1;

delta_dterm_im = dterm_im_2 - dterm_im_1;

dterm_freq_top = (miss_freq_top * freq_int) + bot_freq ;

dterm_freq_bot = (miss_freq_bot * freq_int) + bot_freq ;

delta_freq = dterm_freq_top - dterm_freq_bot;

miss_freq = pass->pass_data[fr].frequency;

miss_im = (((miss_freq - dterm_freq_bot) / delta_freq) * delta_dterm_im) + dterm_im_1;

miss_re = (((miss_freq - dterm_freq_bot) / delta_freq) * delta_dterm_re) + dterm_re_1;

/*return the interpolated value of dterm_theta*/

return(atan2(miss_im, miss_re));

} /* endif for the dterm_theta == 0 */

else {

/* if dterm_thena != 0, then no interpolation is needed and the value is returned*/

return(dterm_theta[param.baseline[0]-’A’][param.baseline[1] -’A’][(int)freq_index][0]);

}

}

E.1.4 Cmbd.c

/*

*

* cmbd.c

* calculates the closure MBD

*

* compile with gcc cmbd.c -lc -lm -o cmbd

*

*

*/

#include <stdio.h>

#include <math.h>

#include <string.h>

#include <stdlib.h>

#define INFIL "MBD_wo_dterm.txt"

#define OUTFIL "temp.txt"

#define MAXCOLUMN 1000

#define MAXANT 20

#define MAXBAS (MAXANT *( MAXANT -1)) / 2

#define MAXTRI (MAXANT * (MAXANT-1) * (MAXANT - 2)) / 6

struct scan {

char ref[MAXBAS];

char rem[MAXBAS];

char root[MAXBAS][20];

double mbd[MAXBAS];
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char scan_name[MAXBAS][20];

};

struct scan sc;

double baseline_mbd (int ref, int rem, int nr_bas);

int fill_ante (int nr_bas);

char ante[MAXANT];

main() {

FILE *fp1, *fp2; /* file pointers for I/O files */

char band;

char line[MAXCOLUMN];

char *pt;

int i, j, k, l, x, y, z;

int maxtri, nt, nr_ant;

double ac;

char triangle[MAXTRI][4];

int scan_name_flag; /* flag for finding the scan name*/

double cmbd;

/* read mbd.txt file*/

fp1 = fopen(INFIL, "r");

if (fp1 == NULL) {

printf("Trouble opening %s\n", INFIL);

exit(1);

}

/* Open output file cmbd.txt */

fp2 = fopen(OUTFIL, "w");

if (fp2 == NULL) {

printf("Trouble opening %s\n", OUTFIL);

exit(1);

}

/* read and process every line from input root file */

fgets(line, MAXCOLUMN, fp1);

while (!feof(fp1)) {

i = 0;

scan_name_flag = 0;

/* read and process the root files within one scan*/

while (!feof(fp1) && (scan_name_flag == 0)) {

sscanf(line, "/datafs/%*4c/%s %c%c %c %lf",

&sc.scan_name[i], &sc.ref[i], &sc.rem[i], &band, &sc.mbd[i]);

if (band == ’X’) {



APPENDIX E. CORRECTIONS OF THE LEAKAGE ON THE DELAY 148

pt = strstr(sc.scan_name[i],"/");

*pt = ’\0’;

pt++;

sscanf(pt, "%s", &sc.root[i]);

/* test to see if we are within the same scan */

if(((strcmp(sc.scan_name[i], sc.scan_name[i-1]) != 0)

|| (strcmp(sc.root[i], sc.root[i-1]))) && (i > 0)) {

scan_name_flag = 1;

} /* close if strcmp */

else

i++;

} /* close the if band == X*/

if(scan_name_flag == 0){

fgets(line, MAXCOLUMN, fp1);

} /* close if scan_flag_name == 0 */

} /* close the while scan_name_flag == 0 loop */

/* calculate how many antennas are present in the scan */

nr_ant = fill_ante(i);

/* Triple nested loop over the antennas for calculating the cMBD */

/* Test if it is possible to build a triangle of baseline */

if (nr_ant >= 3) {

for (j = 0; j < nr_ant - 2; j++){

for (k = j + 1; k < nr_ant -1; k++){

for (l = k + 1; l < nr_ant; l++){

cmbd = baseline_mbd(j,k,i) + baseline_mbd(k,l,i) - baseline_mbd(j,l,i);

// fprintf(fp2, "%s %c%c%c %.7lf\n", sc.scan_name, ante[j], ante[k], ante[l], cmbd);

fprintf(fp2, " %.7lf\n", cmbd);

} /*close for l*/

} /*close for k */

} /*close for j */

} /*close if nr_ant >= 3*/

}/*close while eof*/

} /*close the main*/

double baseline_mbd (int ref, int rem, int nr_bas) {

int u;

u = 0;

for(u = 0; u < nr_bas; u++) {

if((sc.ref[u] == ante[ref]) && (sc.rem[u] == ante[rem])) {

return(sc.mbd[u]);

}

}

return(0);

}
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int fill_ante(nr_bas) {

int nr_ant;

int i,j;

int flag_rem, flag_ref;

nr_ant = 1;

ante[0] = sc.ref[0];

for(i = 0; i < nr_bas; i++){

flag_rem = 0;

flag_ref = 0;

for(j=0; j < nr_ant; j++){

if(ante[j] == sc.ref[i]) {

flag_ref = 1;

}

if(ante[j] == sc.rem[i]) {

flag_rem = 1;

}

}

if(flag_ref == 0) {

ante[nr_ant] = sc.ref[i];

nr_ant++;

}

if(flag_rem == 0) {

ante[nr_ant] = sc.rem[i];

nr_ant++;

}

}

return(nr_ant);

}



Appendix F

Glossary

AIPS Astronomical Image Processing System. Software used to reduce radio astronomical data.

Amplifier Device that increase the strength of a signal.

Angular Resolution or spatial resolution. Minimum angular distance between two sources that an

optical device (i.e. telescope) can separate.

Antenna Device that converts an electromagnetic wave into a current flowing on a wire, if receiving or

converts current into an electromagnetic wave, if transmitting.

BBC Baseband Converter. Device that downconverts the signal from intermediate frequency to base-

band frequency.

Baseline Distance in metre or wavelength between two radio telescopes which observe as an interfer-

ometer.

CALC 8 Geometrical model applied by the correlators to the data. It is an additional delay that is

inserted into the data stream, effectively moving the stations to be in the same wavefront.

Calibrator Well studied object whose characteristics are known and can be used to calibrate the system.

Clock offset Error present in the data due to imperfection in setting the station clock and imperfection

in its rate.

Closure Quantities that are used to remove station-based errors.

Correlator Device that multiplies and integrates in time the data streams coming from two telescopes

acting as an interferometer.

CP Circular Polarization. Property of a propagating electromagnetic wave in which the tip of the

electric vector describes a circle with time.

Coordinate (u,v) plane Plane consisting of the baseline lengths in the E-W and N-S directions.

Crosstalk Unwanted coupling between signals in neighbouring electronics due to electromagnetic in-

duction.

dB decibel. Logarithm in base 10 of the ratio between two measures multiplied by 10.

DAR Data Acquisition Rack. Electronics system for frequency conversion, filtering and sampling of

signal that arrive from the antenna on the IF cables and outputs to the recorder.

150
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D-term Vector that describes mathematically the polarization leakage. The amplitude (dimensionless)

of this vector describes the fractional voltage leakage from one polarization into the other and whose

phase (in degrees) is due to the electrical length of the leakage path.

Drudg Program run at the Mark IV stations for converting the schedule file into low level commands

for the telescope control system.

EOP Earth Orientation Parameters. They describe the orientation of the Earth’s rotation axis in space.

EVN European VLBI Network. Network of European radio observatories for regular astronomical

VLBI observations.

Fringe fitting Process that estimates the signal delay and the rate of change of the delay between the

signals received at two or more antennas.

Geometrical Delay Signal propagation time difference due to the physical separation between two

antennas. It is given by the scalar product between the unit vector in the direction of the source

and the vector between two antennas.

Group Delay Time for information to propagate between two places when transported by an electro-

magnetic wave. It is given by the first derivative of the phase delay expressed in turns of phase

with respect to frequency.

HOPS Haystack Observatory Postprocessing System. Software used to reduce radio astronomical data.

Feed Horn Component of the receiver. It transform the radiation from free space into a waveguide.

IF Intermediate Frequency. Frequency to which the radio signal is down converted during the reception

process for engineering reasons.

Flux Density Measure of the quantity of energy received per unit of time and area from a celestial

body.

Radio Image Image of a radio source, which can be obtained using the Fourier transform relationship

between the cross-correlation function and the brightness distribution of the source.

Interferometer Array of radio telescopes that observe simultaneously and combine their signal coher-

ently to exploit the physical effect of interference.

IVS International VLBI Service. It supports astrometric, geodetic and geophysical activities.

Jansky Unit of measure of the flux density. 1Jy = 10−26 W
Hz·m2

JIVE Joint Institute for VLBI in Europe. Dedicate institute for VLBI research in Europe.

K5 Japanese data acquisition rack.

LCP Left Circular Polarization. Property of a propagating electromagnetic wave in which the tip of

the electric vector describes a circle with time and rotates clockwise while looking at the source.

LO Local Oscillator. Device used to generate a sinusoidal signal of known frequency used to convert

the radio signal down to a more convenient frequency.

Maser Atomic clock used at the stations to keep track of the time.

Mark IV Technology developed at the Haystack Radio Observatory including the Mark IV correlator

and Mark IV data acquisition rack.
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Maxwell equations Equations describing the electromagnetic field.

MBD Multiband Delay. Geodetic observable obtained from VLBI measurements.

NRAO National Radio Astronomical Observatory. U.S.-based research institution.

Passband Filter Device that blocks frequencies above and below a defined frequency band.

Parallactic Angle Is the angle between the line joining the radio source to the north celestial pole and

the line joining the source to the zenith at the antenna.

Parsel Tongue Scripting language written in Python used as an interface to AIPS.

Patching Connection of the IFs to the BBCs.

Phase delay Total number of turn of phases though which an electromagnetic wave rotates when

propagating e.g. through the atmosphere, and electronics.

Polarizer Device used to separate two state of polarization.

Polarization of light Statistical tendency of the electric field of the electromagnetic radiation to be

oriented in a particular direction in space.

Polarization Leakage Contamination of the radio astronomical signal due to non-perfect separation

of the two polarizations in the polarizer.

Position angle calibrator Radio astronomical source with known polarization position angle for

calibrating the absolute phase offset between the two polarization channels at the stations.

PSF Point Spread Function. Response of an imaging system to a point-like source.

Quasar Quasi-stellar Radio Source.

Radiometer Equation.∆S = 1
ηeff

·
√

SEFD1·SEFD2√
2·∆ν·τint

. Where SEFD1 and SEFD2 are the system equivalent

flux densities expressed in jansky for the two antennas, ηeff is the correlation efficiency (equal to

0.5 for 1 bit/sample and equal to 0.7 for 2 bit/sample), ∆ν is the bandwidth in hertz, τint is

the integration time in second, and ∆S is the root mean square (rms) thermal noise fluctuations

expected in the measurement, in jansky.

RCP Right Circular Polarization. Property of a propagating electromagnetic wave in which the tip of

the electric vector describes a circle with time and rotates anticlockwise while looking at the source.

RD0705 VLBI experiment designed and used to calculate the polarization leakage.

Receiver Device composed of a feed horn, polarizer, antenna and amplifier.

Response of an Interferometer Behaviour of the correlator output as the source moves across the

sky.

RF Radio Frequency. Electromagnetic radiation whose frequency range from 3 kHz to 300 GHz.

Rice Distribution A non-parametric probability distribution.

S-band Frequency band between 2 GHz to 4 GHz.

Schedule File that contains the information needed by the telescope operators and the telescope control

computers to conduct the observation.

SEFD System Equivalent Flux Density. Parameter describing the sensitivity of antennas in Jy.
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Sensitivity Minimum flux density that can be detected by an antenna.

SNR Signal-to-noise Ratio.

UT Universal Time.

Visibility Cross-correlation coefficients between the signals coming from two radio telescopes.

VLBA Very Long Baseline Array. Set of 10 radio telescopes built and owned by NRAO.

VLBA4 Kind of data acquisition rack.

VLBI Very Long Baseline Interferometry.

Waveguide Metal pipe used to transport electromagnetic waves.

X-Band Frequency band between 8 GHz and 12 GHz.

Zenith delay Propagation delay due to atmospheric constituents.
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