
Institut für Nutzpflanzenwissenschaften und Ressourcenschutz 

Bereich Bodenwissenschaften 

 

Hydrological Characterization of a Forest Soil Using Electrical Resistivity Hydrological Characterization of a Forest Soil Using Electrical Resistivity Hydrological Characterization of a Forest Soil Using Electrical Resistivity Hydrological Characterization of a Forest Soil Using Electrical Resistivity 

TomographyTomographyTomographyTomography    

I n a u g u r a l I n a u g u r a l I n a u g u r a l I n a u g u r a l ––––    D i s s e r t a t i o nD i s s e r t a t i o nD i s s e r t a t i o nD i s s e r t a t i o n    

zur 

Erlangung des Grades 

 

Doktor der Agrarwissenschaften 

(Dr. agr.) 

 

der 

Hohen Landwirtschaftlichen Fakultät 

der 

Rheinischen Friedrich-Wilhelms-Universität 

zu Bonn 

 

vorgelegt am 4. Mai 2010 

von 

Dipl.-Ing. agr. Christoph Oberdörster 

aus 

Bonn 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referent:   Prof. Dr. Harry Vereecken 

Korreferenten:  Prof. Dr. Andreas Kemna 

Prof. Dr. Jan Vanderborght 

Tag der mündlichen Prüfung: 08.07.2010 

Erscheinungsjahr:  2010 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

9And God said, “Let the waters under the sky 

be gathered together into one place, and let 

the dry land appear.” And it was so. 10God 

called the dry land Earth, and the waters 

that were gathered together he called Seas. 

And God saw that it was good. 

(Genesis 1:9 - 1:10) 
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Hydrological Characterization of a Forest Soil Using Electrical Resistivity 

Tomography 

Abstract 

An explicit knowledge of soil properties is required in agronomy, nature conservation, 
and hydrology to characterize water storage and water flow processes, even more in the 
context of climate change. Electrical resistivity tomography (ERT) has become a more 
frequently used method in soil science and hydrogeology to obtain this information since 
the bulk soil electrical conductivity, bσ , derived from ERT is directly linked to the soil 

water content, θ . 
In this work, a field plot (10 m x 10 m) which was located in a forest on the premises of 
the Forschungszentrum Jülich (Jülich, Germany) was equipped with 36 boreholes to 
investigate the soil hydraulic properties of a forest stand by means of ERT. 
First, the impact of the ERT data errors on bσ  was analyzed. A synthetic experiment was 

performed to clarify whether there is a significant difference between inverted ERT data 
sets once produced from a water saturated soil profile, and once from a drier profile. The 
related ERT data were noised in the framework of a Monte Carlo approach by means of 
authentic error distributions derived from field measurements. Different error models 
were used within the consecutive inversion process. It became obvious that data errors 
propagated ruthlessly into the final model, leading occasionally to an overlap of resulting 

bσ  distributions related to dry and wet soil conditions, respectively. The results of this 

study suggested to evaluate data errors precisely. If possible, data errors should be detected 
in dependence of the corresponding measurement geometry. 
Additionally, a long-term study was performed in the field to monitor changes in soil 
water content by means of ERT. A period of dewatering was chosen to calibrate the 
relationship between bσ  obtained from ERT and θ  derived from TDR. This petrophysical 

relationship was used to derive water contents in an ERT image plane for a period of nine 
months. The plausibility of the imaged spatial distributions of soil water content changes 
could be verified by different independent measurements (e.g., by TDR). The agreement 
with those measurement techniques as well as the plausibility of spatial soil water changes 
caused by root water uptake of the trees demonstrated the additional benefit when a 
median filter was applied to noisy time-lapse inversion results. 
Finally, a saline tracer experiment was performed in order to investigate the transport 
behavior of the soil. To parameterize solute transport processes, the convection-dispersion 
equation (CDE) and the mobile-immobile model (MIM) were fitted to ERT and TDR data. 
Although bσ  derived from ERT was lower than TDR measurements in almost all depths, 

estimated pore water velocities of the CDE model were very similar. Early peak arrival 
times at lower depths and long tailings of the breakthrough curves (BTCs) clearly 
indicated preferential flow phenomena which could not be described with an appropriate 
parameterization using classical transport approaches such as the CDE. Also the adaption 
of the MIM model did not lead to more reasonable solute transport parameters. However, 
typical features of preferential transport could be detected and the spatial variability of the 
preferential transport process could be imaged by ERT. 



II 

 



III 

Hydrologische Charakterisierung eines Waldbodens mittels Elektrischer 

Widerstandstomographie 

Kurzfassung 

Eine genaue Kenntnis der Bodeneigenschaften wird in der Landwirtschaft, Hydrologie 
und im Naturschutz benötigt, um Wasserspeicherung und Flussprozesse zu charakterisie-
ren, insbesondere im Hinblick auf den fortschreitenden Klimawandel. Die elektrische 
Widerstandstomographie (ERT) ist eine immer häufiger genutzte Methode in der Boden-
kunde und Hydrogeologie, um diese Informationen zu erhalten, denn die von ERT abge-
leitete elektrische Leitfähigkeit des Bodens, bσ , ist direkt abhängig vom Bodenwasserge-

halt, θ . 
In dieser Arbeit wurde ein Versuchsfeld (10 m x 10 m), das in einem Waldgebiet auf dem 
Gelände des Forschungszentrums Jülich eingerichtet wurde, mit 36 Bohrlöchern ausges-
tattet, um die bodenhydraulischen Eigenschaften eines Waldbestands mittels ERT zu 
untersuchen. 
Zunächst wurde der Einfluss der ERT-Datenfehler auf bσ  analysiert. Ein synthetisches 

Experiment wurde durchgeführt, um zu überprüfen, ob ein signifikanter Unterschied 
zwischen invertierten ERT-Datensätzen besteht, die einerseits von einem wassergesättig-
ten Profil abgeleitet wurden und andererseits von einem trockenerem. Die jeweiligen 
ERT-Daten wurden im Rahmen eines Monte Carlo Ansatzes verrauscht mittels einer au-
thentischen Fehlerverteilung, die von Feldmessungen abgeleitet wurde. Offensichtlich 
pflanzten sich die Fehler unmittelbar in das finale Modell fort, was gelegentlich zu einer 
Überlappung der resultierenden bσ -Verteilungen unter trockenen beziehungsweise 

feuchten Bedingungen führen konnte. Die Ergebnisse zeigten, dass es wichtig ist, Daten-
fehler präzise abzuschätzen. Falls möglich, sollten sie in Abhängigkeit von der jeweiligen 
Messgeometrie bestimmt werden. 
Des Weiteren wurde im Wald eine Langzeituntersuchung durchgeführt, um Änderungen 
des Bodenwassergehalts mittels ERT zu beobachten. Eine im Testfeld kalibrierte petro-
physikalische Beziehung wurde genutzt, um den Wassergehalt in einer von ERT darges-
tellten Bildebene während eines Zeitraums von neun Monaten darzustellen. Die Plausibi-
lität der räumlichen Wassergehaltsverteilungen konnte durch verschiedene unabhängige 
Messungen (z.B. durch TDR) verifiziert werden. Die Übereinstimmung mit diesen Mess-
methoden und die Glaubhaftigkeit der lokalen Bodenwasseränderungen belegt durch die 
Wurzelaktivität der Bäume zeigte den Mehrwert eines Medianfilters, der genutzt wurde, 
um die zeitlich rauschenden Inversionsergebnisse zu glätten. 
Letztlich wurde ein Tracerversuch mit einer Salzlösung durchgeführt. Zur Parametrisie-
rung der Transportprozesse im Boden wurden die Konvektions-Dispersions-Gleichung 
(CDE) und das Mobil-Immobil-Modell (MIM) an die ERT- und TDR-Daten gefittet. Kurze 
Transportzeiten des Konzentrationsmaximums in unteren Tiefen und lange Schwänze der 
Durchbruchskurven (BTCs) wiesen auf präferenziellen Fluss hin, der nicht mit einer rea-
listischen Parametrisierung durch die Transportmodelle beschrieben werden konnte. 
Aber es konnte gezeigt werden, dass ERT geeignet ist, um die räumliche Variabilität prä-
ferenzieller Transportprozesse darzustellen. 
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1.11.11.11.1 Background and StateBackground and StateBackground and StateBackground and State----ooooffff----thethethethe----ArtArtArtArt    

Accurate knowledge of soil water content is extremely important for agriculture, forestry, 

and environmental sciences. In arid regions agricultural production has to be performed as 

efficient as possible to conserve water and to prevent salinization in consequence of 

irrigation. In environmental sciences information about soil water content is requested to 

save nature protection areas and to understand natural processes. In all fields climate 

change plays a major role in presence and future. Therefore, a detailed measurement of 

soil water content is crucial to determine the status quo and to feed forecasting models. 

First reliable soil moisture measurements were performed in the early 1980s by means of 

time domain reflectometry (TDR) (Topp et al., 1980). Advantage of this technique is its 

high accuracy due to the fact that the measured dielectric permittivity is directly related 

to the soil water content. Furthermore, measurements can be taken in a high temporal 

resolution. However, to obtain information in a high spatial resolution or even more 

dimensional, many probes are required. This is not only difficult to manage but also very 

cost-intensive. Finally, the sample grid is still very coarse. Therefore, ground penetrating 

radar (GPR), which is based on the same measurement principle as TDR, showed to be 

very useful to perform a dense mapping of soil water contents at the field scale (Huisman 

et al., 2003). Additionally, geoelectrical methods were adapted in soil science. Actually, 

geoelectrics was applied in geophysics and geology to determine petroleum reservoirs by 

means of the identification of different electrical conductivities occurring in the 

subsurface. Due to the fact that the soil also consists of conducting materials (e.g., 

electrolytes) and isolating materials (e.g., air), it is obvious that those techniques are also 

applicable in the field of soil physics. First of all, geophysicists and soil physicists 

investigated the electrical properties of rock and soil cores by means of so-called four-

electrode methods (Nadler, 1982; Daily et al., 1987). Here, two electrodes are used to 

inject a current and two further to measure the resulting potential difference. With the 

aid of these quantities, the apparent electrical resistivity or its inverse, the apparent 

electrical conductivity, can be calculated. This method was also applied at the field scale. 

Much more electrodes and sophisticated inversion algorithms enhanced the spatial 

resolution of this technique in the last years. Therefore, those multi electrode 

measurements are called electrical resistivity tomography (ERT). The disadvantage of ERT 

compared to GPR is that the measured resistance is not only dependent on the soil water 
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content but also on other soil properties such as electrical conductivity of the soil solution. 

Therefore, monitoring of soil water content by means of ERT requires a constant (or well-

known) conductivity of the soil solution. One advantage of ERT is its applicability in areas 

where barriers are present (e.g., forests). Hence, resistivity methods were applied at the 

field scale by several authors to monitor infiltration tests (Daily et al., 1992; Park, 1998; al 

Hagrey and Michaelson, 1999) or natural changes in soil water content (Zhou et al., 2001; 

2002; Michot et al., 2003). 

Although already claimed as disadvantage, the sensitivity to the salt concentration of the 

soil is also advantageous to observe tracer experiments by means of ERT. Due to the 

impact of the soil water variation, it has to be taken care that steady state conditions are 

reached within the soil profile before the tracer is applied. Information obtained from 

tracer experiments is valuable to describe the transport behaviour of solutes as well as to 

demonstrate preferential flow. Conclusions derived from those experiments are highly 

relevant in terms of soil and groundwater pollution. Therefore, tracer experiments were 

investigated by means of ERT to describe solute transport processes at the laboratory scale 

(Binley et al., 1996; Slater et al., 2002; Köstel et al., 2009) as well as at the plot to field 

scale (Kemna et al., 2002; Looms et al., 2008). 

 



 

 

1.21.21.21.2 Motivation and StructureMotivation and StructureMotivation and StructureMotivation and Structure    

In the previous sub-section it was already outlined that there is a demand to determine 

soil water content and soil structure in several disciplines. The cited studies confirm that 

ERT is an appropriate means to cope with those requirements. However, investigations 

were rarely conducted at the larger scale and if they were, they focussed more on the 

deeper subsurface than on a good resolution within the soil. Additionally, long-term 

observations of the soil can be found only rarely since they are cost-intensive, difficult to 

manage, and exhausting for the measurement equipment as well as for the staff. Hence, 

the aim of the current study was to perform long-term ERT measurements at a relatively 

large scale. Furthermore, previous studies concentrated on simpler systems such as sandy 

soils or soils with low small scale variabilities. Therefore, the current investigation of a 

forest stand was challenged by a heterogeneous soil profile and also various anomalies 

caused by the tree roots. However, special emphasis was placed on a quantitative 

consideration, consisting of an accurate description of errors, reliable calibrations, and 

precise comparisons with independent techniques. Finally, the versatile facilities of ERT 

should be utilized comprehensively, i.e., by description of hydrological soil properties as 

well as of solute transport properties. Those requirements led to the following structure of 

the present manuscript: 

In chapter 2 the site is described where the field measurements were performed. First of 

all, the geology is treated and the soil profile is classified. After that, the installation and 

dimensions of the different measurement techniques are introduced. In chapter 3 the 

theory of ERT is explained. The measurement principle, data acquisition, and further data 

processing such as inversion are shortly demonstrated. Chapter 4 to 6 are the essential 

parts of the thesis: When the first ERT field measurements were analyzed, it was obvious 

that it had to be dealt with considerable data errors in the future. Hence, chapter 4 

addresses the statistical description of data errors and a synthetic experiment which 

proves whether ERT is capable to distinguish between dry and wet conditions in the soil 

given that high level of noise. In this framework, a new approach is developed to calibrate 

an error model which is needed for the geophysical inversion. Amongst another, this 

approach is tested by real data in chapter 5 where the monitoring of soil water contents 

during a period of nine months in 2006/2007 is analyzed: After a calibration of the 

petrophysical relationship water contents are derived from ERT and benchmarked by 
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means of several approaches. ERT based water contents are compared with those obtained 

from TDR and a water balance is established where the counterpart to soil water 

measurements is given by rain and evapotranspiration measurements. Additionally, the 

suitability of ERT to observe a single rain event, which occurred during the passage of a 

hurricane in January 2007, is analyzed. This low pressure area was termed “Kyrill” by the 

responsible institution (Institute of Meteorology, Freie Universität Berlin) and it became 

well-known due to the extensive deletion of forest stands in Europe. To utilize the 

sensibility of ERT to changes of ion concentration in the soil solution, chapter 6 focuses 

on a tracer experiment which was conducted in April 2008. On the one hand, the 

breakthrough curves obtained from ERT are again compared with TDR measurements. On 

the other hand, soil transport parameters are derived for 2D sections to demonstrate the 

imaging facilities of ERT at the field scale. In chapter 7 the results of all previous chapters 

are summarized and the overall conclusions are drawn. 
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2.12.12.12.1 GeologyGeologyGeologyGeology    

The investigated forest site (50°54'42.57"N, 6°24'45.33" E) is located on the premises of the 

Forschungszentrum Jülich in Jülich, Germany. The main tree species are beech (Fagus 

sylvatica L.), oak (Quercus robur L.), and birch (Betula pendula Roth). From the 

geographical perspective, this area belongs to the macrochore “Niederrheinische Bucht“, 

which is a wedge-shaped branch of the Northern Lowlands of Germany. This landscape is 

in its southern part surrounded by a low mountain range, the Rhenish Slate Mountains. 

Geologically, the investigated area is located on the upper part of a massif called 

“Rurscholle“ and within the river “Rur“ basin, respectively. At the next smaller scale, the 

area of interest is contained by the “Rur“ river itself in the South, and by the “Ellebach” 

creek in the North which finally empties into the “Rur” (Fig. 2.1). 

 
a) 

 
b) 

Fig. 2.1: a) Satellite image of the investigated area (Google Maps, 2009). b) Soil map 

(German soil classification) of the investigated area (Schalich, 1972). 

Loose translation to FAO classification (FAO/ISRIC/ISSS, 1998): brown → 

Luvisol; blue, grey → Gleysol; green → Histosol. 

 

The elevation of the plot is 90.0 m above sea level and the mean groundwater depth 

amounts 87.5 m above sea level, fluctuating between 2.0 m and 2.8 m below surface. The 

yearly average precipitation is 698 mm and mean temperature 9.9 °C. 
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The formation of recent soils in the “Niederrheinische Bucht” can be traced back to the 

end of the last cold stage “Weichsel” of the later glacial period when loess was deposited 

on the top surface as an eolian sediment (Paas and Schalich, 2005). During periglacial 

periods, the loess layer was relocated depending on the inclination of the landscape. An 

evidence for this phenomenon are small pebbles of the relictic bedrock which have been 

mixed in the soil above. 

a) 

 
b) 

Fig. 2.2: a) Soil profile classified as Stagnic Luvisol (FAO/ISRIC/ISSS, 1998). b) Profile of 

soil texture (modified after Linnemann (2001). 

 

The soil profile (Fig. 2.2a) can be divided into five characteristic horizons which 

diagnostic properties lead to the classification as a Stagnic Luvisol (FAO/ISRIC/ISSS, 

1998). 

a) At the top, an A horizon can be found (0–20 cm) which is identified by an 

accumulation of organic matter. The structure can be described as crumbly at the top and 

more coherent at the basis of the horizon. 

b) Weathering and washout led to lessivation and depletion of clay into the subsoil 

(supported by low clay contents of 10–16 %, Fig. 2.2b). This causes a frequent ponding in 

this Eg horizon (20–65 cm) which is transparent by mottling effects. The texture is 

dominated by loamy silt and a clay content of about 15 %, the structure is subprismatic. 

c) Accumulation of clay from the horizons above characterizes the Bt horizon (65–120 

cm) with a higher bulk density (Tab. 2.1). Here, the mean texture changes to silty loam 

due to an increased clay content of about 20 %. The structure is still subprismatic. 

d) In a depth of 120–160 cm, gleyic properties (Bg horizon) are evident. Here, variations 

of the groundwater level cause alternating effects of oxidation and reduction, indicated by 

mottling with manganese and iron concretions, respectively. The texture of those 
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horizons is now again described by loamy silt and a clay content of about 15 %. The 

structure is coherent. 

e) Strong reduction as a result of groundwater influence is existent in a depth below 160 

cm, related to a Br horizon. Anyway, observations of a nearby well provided a mean 

groundwater level in a depth of about 250 cm. This discrepancy can be explained by a 

drawdown of groundwater for the last decades due to the activities of a nearby opencast 

pit. 

Below a depth of 200 cm, the profile is formed by compacted sandy gravel of the main 

terrace of the “Rhine” river system. Detailed information about soil physical properties 

can be taken from Tab. 2.1 and from Fig. 2.2b, respectively. 

 

Tab. 2.1: Soil physical properties of the profile estimated from undisturbed soil samples 

(100 cm3): geometric mean of saturated hydraulic conductivity, sk
~
, related 

variance, ))(ln(2

sks , dry bulk density, bd ,ρ , and porosity, Φ . bd ,ρ  and Φ  are 

calculated from sample weights after wetting and drying. 

sample depth [cm] 10 50 100 not 
sampled 

200 

related horizon A Eg Bt Bg Br 

horizon depth [cm] 0 – 20 20 – 65 65 – 120 120 – 160 > 160 

no. of samples 9 9 35 - 15 

][
~ 1−

dcmk s  124.90 67.05 3.17 - 22.60 

))(ln(2

sks  0.85 0.69 5.15 - 6.50 

][ 3

,

−
cmgbdρ  0.996 1.565 1.649 - 1.717 

][ 33 −Φ cmcm  0.35 0.36 0.33 - 0.25 

clay content* [%] 12 15 20 14 15 

depth of TDR 
probes [cm] 

5 
7.5 
14 

24 
44 

84 124 184 

* after Linnemann (2001) 

 



 

 

2.22.22.22.2 Experimental SetupExperimental SetupExperimental SetupExperimental Setup    

Within the test plot of 10 by 10 m there are 36 boreholes, each of 2.84 m depth and 

equipped with 16 stainless steel electrodes (Fig. 2.3). Although it is common to backfill the 

space between electrode sticks and soil with conductive material this can lead to artifacts 

in the final image reconstruction (Nimmer et al., 2008). Hence, there was no backfilling 

performed after drilling. Since beginning of June 2005 ERT measurements were 

conducted by means of a dipole-dipole array (in-hole and cross-hole), since January 2006 

additionally with reciprocal measurements. 

0

2

4

6

8

10

0 2 4 6 8 10

y
 [

m
]

x [m] trench 1

trench 2 trench 3

N

50 cm

TDR’s

TDR’s TDR’s

ERT borehole

Electrode 
no. in x-

direction:

0 – 95

96 – 191

192 – 287

288 – 383

384 – 479

480 - 575

 
Fig. 2.3: Borehole and trench positions at the experimental site. Electrodes are numbered 

for each plane in x-direction. Trees are marked by green circles. 

 

The current and voltage dipole lengths, respectively, amounted 0.56 m at the top and 

increased to 1.64 m at the bottom in order to increase the signal strength. Electrode 
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switching and data acquisition were performed with the eight channel RESECS 

instrument provided by GeoServe (Kiel, Germany). At three corners of the plot, trenches 

were dug (Fig. 2.3). Each trench wall was 50 cm distant from the ERT plot and equipped 

with sixteen TDR probes. These were arranged in two transects, each consisting of eight 

probes. TDR probes consisted of three rods with a length of 30 cm, an inter rod distance of 

3 cm, and a rod diameter of 0.3 cm. Translation of dielectric permittivity to soil water 

content was accomplished using the relationship proposed by Topp et al. (1980). The 

depths of the TDR probes and of the ERT electrodes in each borehole can be taken out of 

Tab. 2.2. 

 

Tab. 2.2: Depths of different measurement devices. 

depth 

[cm] 

ERT 

electrodes 

TDR 

probes 

pF-

meters 

Temp. 

probes 

suction 

samplers 

5  •    

7.5 • • • • • 

14 • •    

24 • • • • • 

34 •     

44 • • • • • 

64 •     

84 • • • • • 

104 •     

124 • • • •  

144 •     

164 •     

184 • • • • • 

204 •     

224 •     

254 •     

284 •     

 

Additional soil physical measurements were taken in different depths (Tab. 2.2): Each 

vertical trench wall was equipped with 5 suction samplers and 6 pF-meters with 

integrated temperature probes (or tensiometers with separate temperature sensors in 

trenches 2 and 3) in different depths (Tab. 2.2). 

To prevent lateral water flow into the disturbed trench domain, a plastic foil was pulled 

along the trench wall before the trench was refilled with soil. Soil physical data 

acquisition was carried out hourly. A completed installation of the trenches 2 and 3 before 
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refilling can be seen in Fig. 2.4. During the excavation of trenches of 2 and 3, 3 levels were 

constructed opposite to the trench wall in 50 cm, 100 cm, and 200 cm depth, respectively. 

Each level was characterized in the laboratory by means of several undisturbed and 

disturbed soil samples (no. of undisturbed samples per depth: 100 cm3 cores: 10 cm: 12; 50 

cm: 16; 100 cm: 33; 200 cm: 30; 567 cm3 cores: 10 cm: 3; 50 cm: 2; 100 cm: 4; 200 cm: 3). 

 
Fig. 2.4: View on trenches 2 and 3 after installation of instrumentation. 
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3.13.13.13.1 Measurement PrincipMeasurement PrincipMeasurement PrincipMeasurement Principlelelele    

Applying ERT implies the use of at least four (commonly stainless steel) electrodes which 

are buried in boreholes or installed at the surface. Two electrodes (C1, C2) are needed to 

inject a current and two electrodes (P1, P2) to measure the resulting potential difference. 

According to Ohm’s law the resistance can be calculated from the ratio between the 

injected current and the measured voltage. If the measurement geometry is also taken into 

account, an apparent resistivity, aρ , can be calculated which represents that resistivity 

which a fictitious homogeneous (half-)space would have to produce the same potential 

difference. Inverse modeling (described later) can then be used to calculate the “true” bulk 

electrical resistivity, bρ , or its inverse, the “true” electrical conductivity, bσ , for the given 

parameterization. 

For the measurement a direct current (DC) is used that typically has the shape of a square 

wave, meaning that first a positive current pulse is injected and afterwards a negative 

(polarity change of current electrodes) (Fig. 3.1a). In between, the current is switched off 

to reduce polarization effects at the electrodes. According to the injected current, an 

electric potential field is created and the measurement between two potential electrodes 

results in a voltage trace which shows a response similar to the current waveform (Fig. 

3.1b). However, this voltage adds to a possible self-potential voltage, spV , which is the 

background voltage of the investigated system. This offset is taken into account when the 

polarity of the current is switched. Additionally, the resulting voltage is not established 

instantaneously due to capacitance effects caused by polarization mechanisms at the fluid-

grain interfaces of the soil. Therefore, voltage measurements are delayed and only 

recorded between times 
1St  and 

2St  for positive injection and between times 
3St  and 

4St  

for negative injection (Fig. 3.1b). 
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Fig. 3.1: a) Current waveform injected for a four-electrode measurement. b) Voltage 

waveform resulting from current according to a). 

1St , 
2St  and 

3St , 
4St  represent time limits of positive and negative voltage 

sampling, respectively. 
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The mean voltages of positive injection, 
+

V , and of negative injection, 
−

V , are calculated 

from the trace with 

 

∑
−

=

+

−
=

1

12

2

1

1 S

Ss

sV
SS

V  and 
[3.1] 

∑
−

=

−

−
−=

1

34

4

3

1 S

Ss

sV
SS

V , 
[3.2] 

 

where 1S  is the sample taken at time 
1St , 2S  is the sample taken at time 

2St , and so on. 

The total voltage, V , is calculated as arithmetic mean from 
+

V  and 
−

V : 
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Accordingly, the coefficient of variation, tCV , can be derived for each voltage trace: 
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Both V  and tCV  are calculated internally by the RESECS measurement device which was 

used for this study. 

 



 

 

3.23.23.23.2 ModelinModelinModelinModelingggg    

3.2.13.2.13.2.13.2.1 Physical FundamentalsPhysical FundamentalsPhysical FundamentalsPhysical Fundamentals    

In order to survey the electric potential in dependence of the location, x , the relation 

between electric potential, current, and electrical conductivity has to be known. 

According to Ohm’s law the electric current density, j , is given by 

 

Ej bσ= , [3.5] 

 

where bσ  is the bulk soil electrical conductivity and E  the electric field. Due to the fact 

that the current is static for DC applications, E  can be written as the gradient of the scalar 

electric potential, ϕ , with 

 

ϕ−∇=E . [3.6] 

 

The law of charge conservation and the assumption of an idealized point source at 

location cx  as current source with strength I , is given by 

 

( )cxxj −=
∂

∂
−=⋅∇ δI

t

Q
, 

[3.7] 

 

where Q  is the electrical charge density, t  is time, and δ  is the Dirac delta function. 

Combining Eqs. [3.5] to [3.7] yields the Poisson equation 

 

( ) ( )cxx −−=∇⋅∇ δϕσ Ib . [3.8] 

 

Additionally, it is postulated that there is no current flow normal to the ground surface 

(negligible conductivity of air). In terms of the potential this is expressed by the Neumann 

boundary condition 
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0=
∂

∂

n

ϕ
, 

[3.9] 

 

where n  is the outward normal. At the other boundaries, generally a so-called mixed 

boundary condition, 

 

0=+
∂

∂
ϕλ

ϕ
σ

n
b , 

[3.10] 

is assumed, with some weighting parameter λ  (see Kemna (2000)). 

 

3.2.23.2.23.2.23.2.2 Modeling ConceptsModeling ConceptsModeling ConceptsModeling Concepts    

The objective of resistivity tomography is to calculate the conductivity distribution with a 

relatively high resolution from a set of resistance measurements. This involves two steps: 

first, the so-called forward problem is solved, i.e., the Poisson equation [3.8] is solved for 

the given distribution (model) of bσ , measurement geometry, and boundary conditions 

(Eqs. [3.9] and [3.10]). This results in a set of modeled resistances or apparent resistivities. 

In a second step, the modeled data are compared with the measured data and the model is 

adapted such as to minimize the residues between modeled and measured data. This task 

is called the inverse problem (Fig. 3.2). The procedure is repeated until the measured data 

are explained by the model to an acceptable degree. 

 

Fig. 3.2: Definition of the electrical forward and inverse problems after Binley and 

Kemna (2005). 
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3.2.33.2.33.2.33.2.3 The Forward ProblemThe Forward ProblemThe Forward ProblemThe Forward Problem    

The 3D problem given by Eq. [3.8] can be reduced to a 2D problem if it is assumed that 

the conductivity distribution is constant in one spatial direction (here taken as the y  

direction). Then the Fourier cosine transform (note that ϕ  is even with respect to y ) 

 

( ) ( ) ( )∫
∞

=
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can be applied to Eq. [3.8], yielding 
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Here, k  is the wavenumber corresponding to the strike direction y , and ( )zkx ,,~ϕ  is the 

transformed potential, which is back-transformed into real space by means of an inverse 

Fourier cosine transform after Eq. [3.12] has been solved for a set of k  values (Kemna, 

2000). 

In the current study, the code “CRMod” (Kemna, 2000) was used for the geoelectrical 

modeling, which solves the partial differential equation [3.12] numerically by means of 

the finite-element (FE) method. This means that the conductivity distribution is 

discretized into a finite number of elements. They all are assumed to have a constant 

conductivity. Based on Eq. [3.12] the electric potential is calculated for each node (that 

means for all vertices of each element). 

For more details on the forward modeling procedure it is referred to Kemna (2000). 

3.2.43.2.43.2.43.2.4 The The The The Inverse ProblemInverse ProblemInverse ProblemInverse Problem    

For the solution of the inverse problem, a model vector, m , is defined which contains the 

logarithm of the bulk soil electrical conductivity, jb,σ , for each element 

 

( )Mjm jbj ...,,1ln , == σ , [3.13] 

 

where M  is the number of elements. A data vector, d , contains the measured, log 

transformed resistances, iR , obtained from the measured voltages (Eq. [3.3]), i.e., 

 

( )NiRd ii ...,,1ln == , [3.14] 



Theory of Electrical Resistivity Tomography (ERT) 27 

 

 

where N  represents the number of measurements. The logarithm in Eq. [3.13] and [3.14] 

is used due to the typically huge range of possible resistance and conductivity values. The 

main goal of the inversion process is to find an appropriate model m  which satisfies the 

data vector d  to a given degree of uncertainty. This is accomplished by minimizing the 

cost function (Tikhonov and Arsenin, 1977) 

 

( ) ( ) ( )mmm mrd ΨΨΨ α+= , [3.15] 

 

where ( )mdΨ  is the data misfit term, rα  is a regularization parameter responsible for the 

weighting of the roughness term, ( )mmΨ . The latter is calculated by 

 

( ) dzdxzxmDm ∫∫ ∇≈=
2

2

2
),(mRmψ , [3.16] 

 

where m  represents the continuous model bm σln= , D2∇  is the two-dimensional nabla 

operator, and R  is a roughness matrix which evaluates the first-order roughness of the 

discretized model mmmm. This kind of inversion, which punishes the deviation from a smooth 

model, is called “Occam’s inversion”. In field applications it might make sense to account 

for the anisotropy of the earth model, e.g., horizontally stratified layers. This can be 

incorporated by separating R  into xR  and zR , i.e. roughness matrices with respect to x  

and z  directions, and correspondingly rα  into xr ,α  and zr ,α , respectively. 

The first part of the objective function (Eq. [3.15]), i.e., the data misfit term, ( )mdΨ , is 

defined by 

 

( ) ( )[ ] 2
mfdWm −= ddΨ , [3.17] 

 

where f  represents the forward operator and dW  is a data weighting matrix. Assuming 

that the data errors are uncorrelated, dW  is a diagonal matrix containing in its i-th 

element the inverse of the standard deviation (error), iε , of the i-th datum, id , i.e., 

)(ln ii Rσε = . 

Due to the non-linearity of ( )mf , the minimization of the objective function ( )mΨ  has to 

be performed in an iterative manner. In order to calculate the model update, qm∆ , the 

Gauss-Newton approach is applied, in which at each iteration, q , the linear system of 

equations 
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qqq bmB =∆ , [3.18] 
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is solved. Here, qJ  is the Jacobian matrix with entities jiij mfJ ∂∂= / , calculated for the 

current model qm . The model update is finally added to the previous model: 

 

qqq mmm ∆+=+1 . [3.21] 

 

As starting model, 0m , usually a homogeneous half-space is adopted, i.e., the geometric 

mean of all measured apparent resistivities, aρ . 

Finally, the iteration process is stopped when the data misfit )( qdΨ m matches the misfit 

target value. This is evaluated using the “root mean square” (RMS) error given by  
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A final target value of 1)( =mRMSε  is desired in order to assure that, on average, the 

individual data misfit, )(mii fd − , is in the same range as the individual data error, iε . 

In order to solve the inverse problem the code “CRTomo” was used. For more details on 

the inverse modeling procedure it is referred to Kemna (2000). 

3.2.53.2.53.2.53.2.5 Error ModelError ModelError ModelError Model    

The data error, iε , can be estimated by means of normal and reciprocal measurements 

(Daily et al., 2004). This means that a measurement with a certain four-pole electrode 

configuration is repeated with interchanged current and voltage dipoles. Theoretically, 

the resulting resistances should be identical. Therefore, the difference between these (log 

transformed) resistances can be interpreted as a measure of the data error: 

 

( )NiRRRe recinoriii ...,,1lnlnln ,, =−=∆= , [3.23] 
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where noriR ,  and reciR ,  denote the resistance of the normal and the reciprocal 

measurement, respectively. To account for these errors during the inversion, an 

appropriate error model has to be incorporated to weight each data misfit, ( )mii fd − , 

according to the error level of the measurement. 

One commonly adopted method is the use of the dependency of iε  on the resistance. 

Similar to LaBrecque et al (1996), iε  is obtained by 

 

( )Ni
R

b
a

i

e

ei ...,,1=+=ε . 
[3.24] 

 

Here, iR  is the mean calculated from noriR ,  and reciR , , and ea  and eb  are fitting 

parameters where ea  corresponds with a relative resistance error and eb  with an absolute 

resistance error, the latter accounting for a minimal resistance error level which is always 

present (e.g., by the limited accuracy of the measurement apparatus). 

3.2.63.2.63.2.63.2.6 Robust InversionRobust InversionRobust InversionRobust Inversion    

The individual data errors are often not known exactly, and particularly may be strongly 

underestimated for data outliers. This may virtually result in an attempt to fit data errors 

and, in turn, may produce artefacts in the inverted model. LaBrecque and Ward (1991) 

proposed an approach, that they referred to as robust inversion, in which errors of data 

with relatively large individual misfits are successively increased during the inversion 

process. In this approach, the individual data misfit is calculated at each iteration q : 
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[3.25] 

 

Depending on this current data misfit, the data error is increased in a first intermediate 

step: 

 

( )Niqiqii ...,,1' ,, == χεε . [3.26] 

 

In a second step, this new data error is normalized by relating the L1-norm of the data 

misfit vector containing the data errors resulting from Eq. [3.26] to the L1-norm of the 

data misfit based on the original data errors at the given iteration (Eq.[3.25]): 
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Finally, the data error from Eq. [3.27] is assigned to the data error for the new iteration if 

it is larger than the current error: 
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Since the resulting data errors are generally larger than the original input errors, the 

robust approach may lead to a loss of resolution if the firstly specified errors had been 

estimated correctly. The method of robust inversion is applied in Chapter 4. 

3.2.73.2.73.2.73.2.7 Accumulated SensitivityAccumulated SensitivityAccumulated SensitivityAccumulated Sensitivity    

One easy method to assess the quality of the inversion results makes use of the 

accumulated sensitivity, which gives insight into the resolution for the given electrode 

arrangement, measurement protocol, and conductivity distribution. It is calculated by 

summing the absolute or squared sensitivities of all measurements for each model 

parameter. If an individual error scheme is used in the inversion, it is appropriate to also 

involve the corresponding data errors (Kemna, 2000): 
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3.2.83.2.83.2.83.2.8 Temperature CorrectionTemperature CorrectionTemperature CorrectionTemperature Correction    

Whenever a comparison of absolute bσ  values was performed in this work, both TDR and 

ERT based bσ  values were standardized at a temperature of C°25 , in order to obtain 

measurements independent of temporal temperature variations, by means of the 

correction factor proposed by Franson (1985): 

 

)()25( sbTb TfC σσ =° , with 
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[3.30] 
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where Tα  is a temperature coefficient, which is equal to 1)(0191.0 −°C  for a standard 
101.0 −lmol  KCl solution, and sT  is the temperature of the soil in C° . 

 



 

 



 

 

4444 Characterization of Data Characterization of Data Characterization of Data Characterization of Data Noise and its Noise and its Noise and its Noise and its 

Implementation in Electrical Resistivity Implementation in Electrical Resistivity Implementation in Electrical Resistivity Implementation in Electrical Resistivity 

Tomography for Imaging Bulk Electrical Tomography for Imaging Bulk Electrical Tomography for Imaging Bulk Electrical Tomography for Imaging Bulk Electrical 

Conductivity in the Vadose ZoneConductivity in the Vadose ZoneConductivity in the Vadose ZoneConductivity in the Vadose Zone    

 



34  Characterization of Data Noise and its Implementation 

 



 

 

4.14.14.14.1 AbstractAbstractAbstractAbstract    

An approach is presented to investigate the impact of data errors on the bulk electrical 

conductivity in the vadose zone derived by cross-hole electrical resistivity tomography 

(ERT). To place emphasis on hydrological aspects, a synthetic experiment should clarify 

whether there is a cognizable difference between inverted ERT data sets produced under 

different soil moisture conditions: On the basis of actual measurements of bulk soil 

electrical conductivity taken from time domain reflectometry (TDR), an earth model was 

once constructed from a saturated soil profile, and once from a rather dry profile. After 

simulating the corresponding resistances of a dipole-dipole survey between two boreholes, 

these were noised by means of authentic error distributions derived from field data in the 

framework of a Monte Carlo approach. Different error models were used within the 

consecutive inversion process. It could be seen that the variability of the resulting 

resistivities could be reduced when an error model was employed which was derived 

specifically for each electrode configuration. It became obvious that such data errors 

propagated ruthlessly into the final model, leading occasionally to an overlap of resulting 

resistivity distributions when data sets were taken under dry and wet soil conditions, 

respectively. The results of this study suggest to evaluate data errors precisely. If possible, 

data errors should be detected in dependence of the corresponding measurement 

geometry. 

 



 

 

4.24.24.24.2 IIIIntroductionntroductionntroductionntroduction    

Electrical resistivity tomography (ERT) has become a more frequently used method in soil 

science and hydrogeology to obtain information about the subsurface such as water 

content, porosity, and ion concentration of the soil solution. ERT was employed in water 

infiltration experiments (Daily et al., 1992; Park, 1998), tracer observation studies (al 

Hagrey and Michaelson, 1999; Slater et al., 2000; Binley et al., 2002a; Kemna et al., 2002), 

and moisture content monitoring (Zhou et al., 2001; Binley et al., 2002b; Zhou et al., 2002; 

Michot et al., 2003). Several authors reported that they observed considerable data errors 

in resistances exceeding 10 % (Slater et al., 2000; Binley et al., 2002a). Therefore, they 

removed these measurements prior to the inversion. There are three different sources 

influencing the measured data error (Binley et al., 1995): Systematic errors caused by poor 

electrode contact of certain electrodes, random errors resulting from the measurement 

device, and sporadic errors appearing due to external effects. To account for these errors 

during the inversion, most codes use an error model in which the error increases linearly 

with the magnitude of the measured resistance (LaBrecque et al., 1996). Binley et al. 

(1995) inverted noised synthetic data once individually with well known data errors, and 

once without any prior knowledge, weighting all measurements equally. The latter 

inversion resulted in a much poorer image reconstruction. LaBrecque et al. (1996) also 

pointed out the importance to estimate data errors as correctly as possible. In synthetic 

experiments they found out that underestimated standard deviations lead to rough images 

including artifacts, whereas overestimated standard deviations dramatically reduce the 

image resolution. Zhou and Dahlin (2003) derived from measurements at several test sites 

that the relative error increases as a power with the decrease of the potential reading. 

Once data errors are estimated, the propagation of the data errors or uncertainty into the 

estimated parameters can be evaluated. Alumbaugh and Newman (2000) referred to this 

approach as posterior image appraisal. Park and Van (1991) concluded from synthetic 

studies that larger weights in the sensitivity matrix roughly corresponded to areas where 

the geometry of a buried conductor was matched well. Alumbaugh and Newman (2000) 

employed for image appraisal after electromagnetic inversion the model resolution matrix, 

which filters the true model spatially to yield an imaged model. Furthermore, they 

evaluate the model covariance matrix, the main diagonal of which shows how the data 

error is mapped into uncertainty in the parameter estimates. Day-Lewis et al. (2005) dealt 
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in their study with correlation loss, that is the phenomenon that the spatial structure of 

tomograms may only weakly reflect the true spatial structure of the surface. By means of 

synthetic cross-hole experiments they compare the resolution of images derived from 

GPR with that derived from ERT for different case studies. In general, they come to the 

conclusion that GPR performs better in the area between the boreholes, whereas ERT 

provides a better resolution close to the boreholes. 

In this study, we mainly concentrate on the a priori analysis of data errors, but also on 

their impact on the resulting resistivity distribution. Therefore, two different earth 

models are constructed from TDR data. One is taken from a saturated soil profile, one 

during rather dry soil conditions. The corresponding modeled resistance measurements 

are noised by means of a representative error distribution. Finally, the uncertainty in 

resistivity is analyzed computing Monte Carlo simulations. The first aim of this study is to 

evaluate data errors occurring in ERT field measurements as properly as possible. The 

second is to investigate whether the difference between extreme soil moisture conditions 

can be determined by ERT even in presence of considerable data errors. 

 



 

 

4.34.34.34.3 Materials and MethoMaterials and MethoMaterials and MethoMaterials and Methodsdsdsds    

4.3.14.3.14.3.14.3.1 Forward SForward SForward SForward Simulationimulationimulationimulation    

In order to cover a broad range of soil water contents, two points in time were selected 

from the TDR time series: once when the soil was nearly saturated (06/05/2006) and once 

when very dry conditions (07/27/2006) predominated (Fig. 4.1). According to Eq. [3.30], 

the selected TDR bσ  profiles were corrected for temperature variations with depth, 

which were measured using temperature probes. 

 

 

 

Fig. 4.1: Volumetric soil water content, θ , (left) and bulk soil electrical conductivity, 

bσ , (right) measured by TDR. Dashed red lines represent dates when profiles 

were taken to generate an earth model for the synthetic ERT study. 

a) Measurements of upper five TDR probes. 

b) Measurements of lower three TDR probes. 

 

From the vertical bσ  profiles measured by TDR, a 2D distribution of bσ  values was 

constructed assuming no lateral variations (Fig. 4.2). This resulted in a layered earth 
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model which corresponds to the soil profile at the test site, that is classified as Stagnic 

Luvisol. Vertically, bσ  varies by one order of magnitude, whereas it changes seasonally 

only by a factor of 1.5 to 2. 

a) b) 

 
Fig. 4.2: Resulting earth models derived from TDR measurements. TDR positions are 

indicated by white dots, ERT electrodes by black dots. 

a) Wet conditions (06/05/2006). b) Dry conditions (07/27/2006). 

 

ERT resistances related to this earth model were calculated for 220 dipole-dipole 

configurations (in-hole and cross-hole), identical to the arrays used for the field 

measurements. This forward simulation was performed by means of the “CRMod” code 

(Kemna, 2000) for the wet and for the dry case, respectively. 

4.3.24.3.24.3.24.3.2 Generating Noisy DGenerating Noisy DGenerating Noisy DGenerating Noisy Dataataataata    

When analyzing the data errors, the question arose whether the resistance dependent 

error model (Eq. [3.24]) is capable of describing the measurement errors occurring in the 

field. Therefore, one data set collected at August 30, 2006 was considered in more detail. 

The normal-reciprocal error was taken for a certain dipole-dipole configuration across the 

first two boreholes of the field site. Consequently, the error was determined for the same 

configuration occurring across the second and third borehole, across the third and fourth 

borehole, and so forth (Fig. 4.3). Thus, each electrode configuration led to a distribution of 

normal-reciprocal errors. 
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Fig. 4.3: Selection of a certain electrode configuration across the first two boreholes (see 

cut-out in the upper left corner) and recovery within the remaining boreholes. 

 

Since the electrical properties are assumed to vary insignificantly in horizontal direction, 

each configuration was related to a mean resistance. This was given by the average of all 

resistances belonging to the same electrode configuration. 

Following the idea of the resistance dependent error model (Eq. [3.24]), configurations 

with similar resistances should exhibit similar distributions of normal-reciprocal errors. 

Fig. 4.4 shows distributions of differences between normal and reciprocal measurements 

for two cross-hole configurations with similar mean resistances, but different electrode 

configurations. Fig. 4.4a corresponds to an electrode configuration with a current dipole at 

the surface and a voltage dipole at the bottom of the next borehole, resulting in a 

resistance of Ω111.0 . The histogram of Fig. 4.4b was derived from measurements when 

both dipoles were located at the bottom of the respective boreholes, resulting in a 

resistance of Ω106.0 . It is obvious that both distributions differ considerably from each 

other. Despite of that, the resistance dependent error model would suggest the same error 

level for both configurations. 
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a) 

 
b) 

Fig. 4.4: Distribution of normal-reciprocal errors for measurements with similar 

resistance but different geometry. 

a) Current dipole top, voltage dipole bottom. 

b) Current dipole bottom, voltage dipole bottom. 

 

In consideration of all different electrode configurations occurring within one data set, 

Fig. 4.5 depicts a plot of the measured error level from each electrode configuration 

against its particular mean resistance. In addition, the errors calculated by the resistance 

dependent error model Eq. [3.24] are shown (red line). This model was calibrated by 

thirty data sets, leading to a parameterization of 126.0=ea  and Ω= 004-2.76eeb . It is 

evident that, for a given resistance, the measured error levels of different electrode 

configurations show a rather high variation, whereas the model suggests a constant value. 

 
Fig. 4.5: Error level dependent on resistance, each point represents one electrode 

configuration. Red line illustrates the error calculated by the resistance 

dependent error model Eq. [3.24]. 
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Therefore, we considered an individual error model for each electrode configuration, 

which is the equivalent of formulating the error dependent on the geometric factor. Due 

to the fact that the geometric factor is inversely related to the resistance, this error model 

is similar to the resistance error model given in Eq. [3.24] if a constant resistivity 

distribution is assumed. However, our study is based on a highly layered earth model. 

The error for a certain electrode configuration was derived from normal-reciprocal 

measurements for thirty data sets recorded from June 2 to November 10 of the year 2006. 

By defining the error model in this way, we aim at the overall uncertainty of the inverted 

resistivity distribution between any pair of boreholes but not for the uncertainty of a 

distribution between a specific pair of boreholes. 

The observed normal-reciprocal errors do not follow a Gaussian distribution but show 

very long tailings caused by some outliers (Fig. 4.6). Taking the standard deviation from 

that, a Gaussian model as assumed in this study would not be able to recover the high 

peak of this distribution (red line, Fig. 4.6). 

 
Fig. 4.6: Exemplary histogram of normal-reciprocal errors taken from a certain electrode 

configuration of 30 data sets, the resulting sample consists of 1690 error values. 

The red line represents a fit of a Gaussian model to this distribution. 

 

Therefore, the frequency of low-biased measurements would be highly underestimated. 

To derive a Gaussian model which describes the largest part of the error distribution 

correctly, a robust estimator of the standard deviation, )ln( iR∆σ  (Eq. [4.1]), was 

calculated. This is based on the interquartile range, IQR , of the sample and of the 

standard normal distribution, respectively. The interquartile range is derived from the 

upper quartile (i.e., 75th percentile) and lower quartile (i.e., 25th percentile) of the 

distribution. The indices s  and n  denote the distribution of the sampled errors, iRln∆ , 

and the standard normal distribution, respectively. 
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Assuming that the errors of the normal and reciprocal measurements are uncorrelated, the 

variance of the errors, )ln(2

iR∆σ , can be derived by 

 

( )NiRRRR norinorirecinori ,...,1)ln()(ln)ln(ln ,

2

,

2

,,

2 =−+=− σσσ . [4.2] 

 

Furthermore, the variances are assumed to be statistically identical for a normal as well as 

a reciprocal measurement of one configuration. The standard deviation of the logarithmic 

resistance is calculated by 

 

( )NiRR ii ,...,12/)ln()(ln =∆= σσ . [4.3] 

 

But, in the ERT inversion program that we used, the mean of the normal and reciprocal 

resistances, 

 

( ) ( )NiRRR recinorii ...,,12/lnlnln ,, =+= , [4.4] 

 

was used and its standard deviation was calculated from 

 

( )NiRR ii ,...,12/)ln()(ln =∆= σσ . [4.5] 

 

The noised logarithmic resistances, 'ln iR , were finally generated by the model 

 

( )NieRR isii ...,,12/ln'ln , =+= , [4.6] 

 

where ise ,  is randomly drawn from the i -th distribution of normal-reciprocal errors, 

iRln∆  (e.g., Fig. 4.6). The data sets recorded from June 2 to November 10 of 2006 served 

here as input data as well. Actually, this distribution of the differences between normal 

and reciprocal measurements cannot be scaled directly to the distribution of the average 

of the normal and reciprocal measurements when the error distribution is not Gaussian. 

However, to investigate the impact of a non-Gaussian distribution on the inversion 

results, the normal-reciprocal errors were taken as input data for the noise generation. 
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Following this approach, 500 synthetic data sets were generated, each consisting of 220 

measurements. 

4.3.34.3.34.3.34.3.3 Error Model Dependent on RError Model Dependent on RError Model Dependent on RError Model Dependent on Resistanceesistanceesistanceesistance    

According to Eq. [3.17], an appropriate error model is required which weights the data 

misfit of a certain measurement to a corresponding error level used within the inversion. 

One commonly adopted method is to estimate the error level from the resistance using Eq. 

[3.24]. This model was calibrated on the basis of the above mentioned thirty data sets. 

First, the normal-reciprocal errors of all measurements were grouped into 100 resistance 

bins. Secondly, the robust estimate of the standard deviation was calculated for each bin. 

Finally, the error model according to Eq. [3.24] was fitted to these standard deviations in 

consideration of Eq. [4.5]. This approach led to a parameterization of Eq. [3.24] with 

126.0=ea  and Ω= 004-2.76eeb , meaning a relative error of about 13 % regarding the 

mean. This error exceeds the values observed in other studies where all measurements 

with a normal-reciprocal error greater than 10 % could be removed (Slater et al., 2000; 

Binley et al., 2002a). Singha and Gorelick (2005) even found maximal discrepancies 

between normal and reciprocal measurements of only 5 %. 

For the inversion of the synthetically generated data sets, the expected standard deviation 

of the measurement error was calculated using the error model Eq. [3.24]. This estimate of 

the measurement error standard deviation was used to filter outliers of the error 

distribution. Data for which the difference between normal and reciprocal measurements 

was larger than twice its expected standard deviation were excluded from the data set. 

This led to data sets with different contributing electrode configurations. The mean 

number of measurements used for the inversion amounted 179 out of 220 possible 

measurements between two boreholes. 

4.3.44.3.44.3.44.3.4 Error Model Dependent on Electrode CError Model Dependent on Electrode CError Model Dependent on Electrode CError Model Dependent on Electrode Configurationonfigurationonfigurationonfiguration    

a) Without Fa) Without Fa) Without Fa) Without Filter ilter ilter ilter SSSSchemechemechemecheme    

Here, for each electrode configuration occurring within one borehole and between two 

adjacent boreholes, respectively, the error distribution which was the basis for the noise 

generation was employed: The robust estimated standard deviation of this distribution 

was taken and transformed to the desired standard deviation of the logarithmic mean 

resistance (Eq. [4.5]). These specific errors result in the data weighting matrix deployed 

for the individual error weighting during the inversion (Eq. [3.17]), 

b) With Filter Sb) With Filter Sb) With Filter Sb) With Filter Schemechemechemecheme    
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In this approach, outliers of the measurement error distribution were excluded from the 

inversion. Data with a measurement error that was larger than twice the robust estimate 

of the configuration-specific standard deviation were excluded from the inversion. After 

preprocessing, there remained on average 171 out of 220 measurements. 

4.3.54.3.54.3.54.3.5 InversionInversionInversionInversion    

Finally, the generated data sets were inverted. Therefore, the different inversion schemes 

used in this study can be summarized as follows: taking a) an error model dependent on 

resistances with previous filtering (hereafter referred to as fREM), b) an error model 

dependent on the electrode configuration (hereafter referred to as CEM), and c) the same 

model as b), but with previous data filtering (hereafter referred to as fCEM). Additionally, 

all cases were conducted once by means of a non-robust inversion scheme (errors are kept 

constant during all iterations) and once by means of a robust inversion scheme (Eq. [3.25] 

to [3.28]). 

The inversion of all data was performed by means of the 2.5D finite element code 

“CRTomo” (Kemna, 2000). 

 



 

 

4.44.44.44.4 RRRResults and Discussionesults and Discussionesults and Discussionesults and Discussion    

4.4.14.4.14.4.14.4.1 Reproduction of the Earth MReproduction of the Earth MReproduction of the Earth MReproduction of the Earth Modelodelodelodel    

To assess the reproduction of the earth model derived from TDR data, the mean of the 500 

resistivity distributions was calculated pixel-wise for each kind of inversion. In Fig. 4.7 

the results are shown for all scenarios of the non-robust inversion scheme, exemplary 

illustrated for wet soil conditions. In general, the boundary between the resistive top and 

the far less resistive bottom part is recovered well. 
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a) 

 
b) 

 
c) 

 
d) 

 
Fig. 4.7: Original earth model constructed during wet conditions compared with mean 

resistivity distributions calculated by non-robust inversion, electrode positions 

are depicted by black dots. 

a) Earth model derived by TDR. b) Mean resistivity produced by fREM....    

c) Mean resistivity produced by CEM.... d) Mean resistivity produced by fCEM....    
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But the magnitude of resistivities, particularly within the uppermost part of the soil, is 

underestimated independent on the chosen error model. The original distribution with its 

sharply separated layers given by the earth model (Fig. 4.7a) cannot be reproduced 

correctly. This is evoked by the regularization of the Occam’s inversion which causes a 

certain smearing between the high resistive layer at the surface and the low resistive layer 

in a depth below 1 m. This issue is also pointed out by Day-Lewis et al. (2005) who 

investigated for this reason the limitations of geophysical data. Assuming high data errors 

in a profile containing high resistive layers, LaBrecque et al. (1996) also observed images 

which were somewhat smoothed compared with the true model. They related this 

problem to the fact that for the simulation a grid is taken consisting of elements as small as 

possible to accurately approximate the geoelectrical boundaries. This leads to a highly 

underdetermined inversion since the number of elements is much larger than the number 

of measurements. However, the model derived by CEM    (Fig. 4.7c)    seems to recover the 

“truth” at the best, followed by the fCEM (Fig. 4.7d) based results. Both fREM (Fig. 4.7b) 

and fCEM (Fig. 4.7d) based resistivity distributions show artifacts between the boreholes 

at the near surface. Furthermore, the mean resistivity produced by inversions with CEM 

(Fig. 4.7c) contains an area with conspicuously underestimated values at the bottom of the 

considered grid. However, taking into account the variability of the inverted data sets 

(Fig. 4.9), it is obvious that all these artifacts are closely related to areas of high 

uncertainty (further analysis is perfomed in the following sub-section). 

Since measurement errors are often unknown or underestimated, it is sometimes advisable 

to employ a robust inversion scheme (Eq. [3.25] to [3.28]). Fig. 4.8 depicts these results for 

each scenario and again for the saturated soil profile. Independent on the chosen error 

model, these calculations lead to even lower resistivities close to the surface. Therefore, in 

case of layered media, the robust inversion scheme causes problems and the large 

differences of resistivities within the profile lead to large data misfits (Eq. [3.25]) nearby 

the surface. 

This is particularly the case when a homogeneous starting model (in this study, the mean 

of all measured apparent resistivities was chosen) is used, which value is dominated by the 

two lowest thirds of the profile that exhibit a rather low resistivity. Finally, the iterative 

rise of the error level leads to a loss of resolution and a reduction of the resistivity in the 

near surface area. 
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Fig. 4.8: Original earth model constructed during wet conditions compared with mean 

resistivity distributions calculated by robust inversion, electrode positions are 

depicted by black dots. 

a) Earth model derived by TDR. b) Mean resistivity produced by fREM....    

c) Mean resistivity produced by CEM.... d) Mean resistivity produced by fCEM....    

 
a) 

 
b) 

 
c) 

 
d) 
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4.4.24.4.24.4.24.4.2     Uncertainty in RUncertainty in RUncertainty in RUncertainty in Resistivityesistivityesistivityesistivity    

To get an idea concerning the uncertainty in resistivity, the coefficient of variation (CV) 

was calculated pixel-wise. Since it was identified to be most feasible, we focus on the non-

robust inversion scheme in the following. When the linear error model with a data filter 

(fREM) is used, highest variabilities can be found midway the boreholes at the surface and 

in a depth of about 1 m (Fig. 4.9a). In case of CEM, huge variabilities are observed (Fig. 

4.9b, be aware of the different plot scale), reaching maximum values at the bottom of the 

grid. However, when the filtered data sets for the inversion (fCEM) are used, the 

variability can effectively be reduced (Fig. 4.9c). The resulting variabilities are even lower 

than in case of fREM which shows again a better reproduction of the data errors when 

employing the fCEM model. 

In general, it is obvious that particularly regions at the surface located between the 

boreholes as well as elements in the immediate vicinity of the boreholes represent highest 

CV’s. When these results are compared with the plot of the accumulated sensitivity (Eq. 

[3.29]), these highly variable regions are evidently related to areas of high sensitivity (Fig. 

4.9d). At first notice, this might seem to be contradictory. But, when performing the 

inversions, regions with higher sensitivity are dominated by the data misfit term (Eq. 

[3.15]). Therefore, the inversion results in the highly sensitive regions are more sensitive 

to the measurements and consequently more influenced by the measurement errors. This 

causes higher variabilities calculated from a series of resistivity distributions. The opposite 

is the case for the low sensitivity regions: Here, the regularization term is dominating 

which introduces a smoothing of the model. Hence, the elements of these areas show 

more similar resistivities within the different realizations, resulting in lower variabilities. 

Taking into account the reproduction of the true model as well as the uncertainty, it can 

be concluded that the inversions based on fCEM    lead to a model with lowest variability 

and still recover the truth to an acceptable degree. 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 4.9: Distributions of coefficient of variation (CV) compared with accumulated 

sensitivity. CV’s are depicted again for wet conditions and the non-robust 

inversion scheme. 

a) CV derived from fREM-based inversions. b) CV derived from CEM-based 

inversions (be aware of the different plot scale). 

c) CV derived from fCEM-based inversions. d) Accumulated sensitivity (in 

consideration of CEM in Eq. [3.29]). 
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Finally, an interesting outcome is the fact that most of the distributions of logarithmic 

resistivities considered for one element show approximately a Gaussian behaviour (Fig. 

4.10). However, the error distributions which were used to produce the synthetic data 

were non-Gaussian (e.g., Fig. 4.6). This indicates a kind of smoothing introduced by the 

inversion process. 

 
Fig. 4.10: Histogram plotted for an exemplary set of model parameters calculated by 

means of fCEM.... 

4.4.34.4.34.4.34.4.3 Comparison Between wet and dry CComparison Between wet and dry CComparison Between wet and dry CComparison Between wet and dry Conditionsonditionsonditionsonditions    

To receive an optical impression of the difference between dry and wet conditions 

resulting from the synthetic experiment, the mean resistivity distributions are depicted 

again together with the “true” model derived from the TDR measurements (Fig. 4.11). 
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a) 

 
b) 

 
c) 

 
d) 

 
Fig. 4.11: Comparison of mean resistivity distributions between dry and wet conditions. 

a) Dry conditions, original earth model b) Wet conditions, original earth model. 

c) Dry conditions, mean resistivity based on fCEM, non-robust inversions. 

d) Wet conditions, mean resistivity based on fCEM, non-robust inversions. 
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According to the previous results, we consider here only the most feasible case, namely 

the non-robust scheme calculated by means of fCEM. It can already be seen that visible 

differences between the distributions calculated from the inversions seem to be small. 

To quantify the differences more precisely, Fig. 4.12 shows the factor of change, 

( )
w

b

d

bw

b

d

b
ρ

ρ
ρρζ =−= )(log)(log^10 1010 , which relates the mean resistivity of the dry 

condition, d

bρ , to the mean resistivity of the wet condition, w

bρ . Comparing the changes 

derived from the original earth models (Fig. 4.12a) with that derived from the fCEM 

inversions (Fig. 4.12b), it is evident that the values are highly underestimated within the 

uppermost layer. This is mainly caused by the underestimation of the “true” resistivities 

when considering dry conditions (Fig. 4.11a and c). Anyway, the ratio ζ  calculated from 

the fCEM inversions reaches its maximum value of about 1.5 to 1.7 in two regions: On the 

one hand, within the uppermost half meter, on the other hand, in a depth of 1.2 to 1.5 m. 

In the vicinity of the left borehole, the factors of change even agree with that derived 

from the original earth models. 

 
a) 

 
b) 

Fig. 4.12: Distribution of the relation between the mean resistivities of the dry and wet 

conditions, ζ . 

a) Calculated from original earth models. 

b) Calculated from non-robust inversions and fCEM....    

 

For further investigation it is important to take also the variance into account. Thus, 

eventual overlaps between resistivities belonging to dry and wet conditions, respectively, 

can be evaluated. Therefore, the difference between the logarithmic mean resistivities of 

both conditions was related to the standard deviation of this difference. The standard 

deviation can be expressed in terms of the sum of the variances of the resistivities: 
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[4.7] 

 

This parameter is also used as test statistic when employing a Student’s t-test. The 

calculation was again performed pixel-wise for the non-robust inversion schemes, the 

results are presented in Fig. 4.13. 

 
a) 

 
b) 

 
c) 

 

Fig. 4.13: Distributions of test statistic τ  for different treatments of data sets, results are 

shown for the non-robust inversion scheme. 

a) Based on fREM.... b) Based on CEM    (be aware of different plot scale). c) Based 

on fCEM....    

 

Assuming the difference between mean dry and wet resistivity to be in the same 

magnitude of order as its standard deviation, we expect τ  to be in the range of one. 

Therefore, τ  is generally desired to be much greater than 1. Lowest values (even much 

smaller than 1) are obtained in case of the CEM treatment (Fig. 4.13b). This result is not 

surprising when remembering the huge variabilities occurring in that case (Fig. 4.9b). 

Regarding the plots based on fREM (Fig. 4.13a) and fCEM (Fig. 4.13c), the upper limit of 

τ [-] 

τ [-] τ [-] 
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the plotscale is fixed at 4=τ  so that significant changes are indicated by the dark-red 

color. The general pattern of both cases is rather similar: Significant changes are given 

only in a depth below 1 m. Here, the difference between the means exceeds the standard 

deviation often by a factor of 10 (not recognizable from the Fig.). Above 1 m depth, the 

results produced by the fCEM method lead to τ -values of about 2, whereas the 

distribution from the fREM method is dominated by mean resistivities which difference is 

in the range of their standard deviation, i.e., 1≈τ . This phenomenon is particularly 

important with regard to hydrologic aspects, since changes in soil water content become 

most evident close to the surface. Due to the fact that extreme soil moisture conditions 

were taken as basis for this study, it is questionable whether the near surface resistivities 

obtained by ERT are an appropriate mean to derive soil water contents in this specific 

survey when high data errors are present. However, it is obvious that the sensitivity to 

changes in water content within the soil profile (Fig. 4.13c) is related to the vertical 

distribution of the electrical conductivities (Fig. 4.12a): The obtained τ -values are larger 

in the region of higher electrical conductivities. Therefore, the detection of changes in 

water content nearby the surface might be more effective when investigating a more 

homogeneous soil profile regarding the vertical distribution of resistivities. 

 



 

 

4.54.54.54.5 CCCConclusionsonclusionsonclusionsonclusions    

In this study, the impact of data errors on the uncertainty in bulk soil electrical 

conductivity, bσ , derived from ERT borehole measurements was assessed. Mean and 

coefficient of variation of bσ  were calculated by means of a Monte Carlo approach for 

two earth models, a saturated and a dry soil profile. For both cases, a heavily layered earth 

model with a highly resistive top soil layer and a more conductive subsoil was obtained 

due to the local pedology. The corresponding resistances of 220 dipole-dipole 

configurations that were calculated for both earth models using a forward model were 

noised with random errors. The distribution of measurement errors was derived from 

normal-reciprocal measurements and shown to depend on the electrode configuration 

rather than on the measured resistance as it is usually assumed in ERT error models. The 

error distribution was characterized by long tails, which could not be reproduced by a 

Gaussian distribution. 

The results of the Monte Carlo analysis show that the high resistive horizon at the surface 

is not properly reproduced but underestimated by the inversion. Using a robust inversion 

scheme even resulted in smaller estimates of the resistivities in the top soil layer. The 

variability of inverted resistivity distributions could be reduced effectively by filtering 

measurements with high data errors. Regarding the first aim of this study, to evaluate data 

errors as correctly as possible, it must be noted that normal and reciprocal measurements 

are needed to identify the magnitude of error. Also an error model that depends on the 

electrode configuration rather than the measured resistance reduced the variability of the 

inverted bσ  distributions. A second aim was to check the applicability of ERT in this field 

survey for monitoring changes in soil moisture: A statistically based investigation of the 

differences between dry and wet conditions showed that the difference between the mean 

resistivities is in the same magnitude of order as its standard deviation in the near surface 

region. This might cause an overlap of resulting resistivity distributions when taking data 

sets under dry and wet soil conditions, respectively. Therefore, it is recommended to 

reduce the data errors as much as possible in the field (e.g., by reducing the transfer 

resistances at the electrodes) and to look for an appropriate electrode array in 

consideration of the error dependence on the electrode configuration. Further 

investigation is needed to implement this error information into the inversion process. 
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5.15.15.15.1 AbstractAbstractAbstractAbstract    

A study was performed to monitor changes in soil water content by means of cross-hole 

electrical resistivity tomography (ERT). A period of dewatering was chosen to calibrate 

the relationship between bulk electrical conductivity, bσ , obtained from ERT and the soil 

water content, θ , measured by time domain reflectometry (TDR). This petrophysical 

relationship was used to derive mean water contents in an ERT image plane for a period of 

nine months. Due to data noise, ERT based bσ  exhibited a high variability in time. Hence, 

a median filter over time was applied to bσ  before the translation in water contents was 

carried out. The plausibility of the imaged spatial distributions of soil water content 

changes was verified in three manners: a) ERT-θ  was compared with TDR-θ  during the 

given period. Additionally, the impact of two different error models (errors depending on 

the resistance or on the electrode configuration) in the geophysical inversion on ERT-θ  

was investigated. b) Using a soil water balance model, it was proven that the total ERT-θ  

down to a depth of 2 m was in agreement with TDR-θ  as well as with the upper 

boundary condition determined by precipitation and eddy covariance measurements of 

evapotranspiration. c) The spatial distribution of θ  was analyzed by ERT during a heavy 

rain event in January 2007, which occurred with the passage of a hurricane, as well as 

during a long-term period. 

All of those case studies confirmed the suitability of ERT to describe dynamics in soil 

water content. The agreement with different measurement techniques as well as the 

plausibility of imaging spatial soil water changes demonstrated the additional benefit 

when a median filter was applied to noisy time-lapse inversion results. However, more 

sophisticated analyzing techniques are needed to reduce the roughness of the resulting 

water content distributions in space and time, respectively. 

 



 

 

5.25.25.25.2 IntroductionIntroductionIntroductionIntroduction    

An explicit knowledge of the stored water in soils is required by agronomic, ecological, 

and hydrological communities to understand water distributions and flow processes. 

Additionally, modified natural boundary conditions due to climate change such as heavy 

rainfall events and dry spells have a direct impact on the soil water balance so that reliable 

monitoring techniques of soil moisture are required. A detailed overview of numerous 

methods to measure soil moisture in the vadose zone is given by Vereecken et al. (2008) 

and Robinson et al. (2008). Robinson et al. (2008) pointed out that there exist significant 

gaps regarding the measurement scale, which are caused by two different historical 

directions of development: Point measurements have been predominantly developed for 

applications in agriculture to understand field-scale soil water dynamics, whereas satellite 

remote sensing has been developed to understand the hydrology up to the global scale. 

Hence, they concluded that new technologies and methods such as geophysical methods 

and sensor networks form a bridge between current sensor and remote sensing 

capabilities. A summary of several geophysical methods applied in hydrology is given by 

Vereecken et al. (2005). One geophysical method is based on a four-electrode setup to 

infer the electrical conductivity of soils and rocks from resistance measurements. 

Robinson et al. (2008) cite Briggs (1899) to be the first author who worked on the 

derivation of soil water contents from those measurements. When resistivity techniques 

were applied at the field scale, their use was first not very practical because of the 

difficulty to address the huge amount of electrodes manually. With further development 

of data acquisition systems and first inversion routines, the imaging capability of 

resistivity methods became suitable in environmental and engineering problems to 

investigate the subsurface in a high spatial resolution (Daily et al., 2004). This technique is 

referred to as electrical resistivity tomography (ERT). Since bulk electrical conductivity is 

highly affected by the moisture status of the medium, ERT was more and more 

implemented in hydrology to derive soil water contents in a high spatial resolution. For 

such applications, a detailed knowledge of the underlying petrophysical relationship 

between apparent electrical resistivity, texture, soluble salt concentration, and the soil 

volumetric water content is required. Different relationships were introduced empirically 

and semi-empirically by several authors (e.g., Archie, 1942; Rhoades et al., 1976; Mualem 

and Friedman, 1991). Those relationships permitted the derivation of spatial soil water 
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content distributions at the field scale during infiltration experiments (e.g., Daily et al., 

1992; Park, 1998; Binley et al., 2002a; Deiana et al., 2008; Batlle-Aguilar et al., 2009; 

Cassiani et al., 2009). But also in studies which dealt with the monitoring of naturally 

occurring changes in soil moisture, ERT was applied with oftentimes promising results 

(Zhou et al., 2001; Binley et al., 2002b; Zhou et al., 2002; Michot et al., 2003; Amidu, 

2007; Miller et al., 2008; Rings et al., 2008; Schwartz et al., 2008). However, only few 

authors evaluated ERT derived soil moisture quantitatively by means of a comparison 

with independent measurements (e.g., TDR, heat-probe-type sensors, gravimetric 

methods) serving as ground truth. In such comparisons, clear correlations between ERT 

based soil moisture and independently measured values were found. However, resulting 

coefficients of determination of about 0.67 (Zhou et al., 2001), 0.46 (Michot et al., 2003), 

and 0.57 (Schwartz et al., 2008) show that there is still a conspicuous uncertainty 

contained in the ERT derived water contents (assuming the comparing technique to be 

justified and reliable). 

Uncertainty is mainly introduced by the limited resolution of ERT which depends on 

several factors, namely measurement physics, parameterization, regularization, 

measurement errors, and spatial variability (Day-Lewis et al., 2005). Oldenburg and Li 

(1999) have shown that particularly measurements with electrodes that are positioned at 

the surface exhibit a boundary below which the earth structure is no longer constrained 

by the data. This is mainly caused by the fact that the sensitivity is highly decreasing with 

distance from the electrodes (Singha and Gorelick, 2006). One solution to overcome this 

problem in soil science is the use of borehole electrodes to approach the object of interest. 

However, the information content is low in the center between two boreholes (Day-Lewis 

et al., 2005). A further issue with borehole measurements is an increased noise level 

caused by a poor contact between the electrodes and the soil. To reduce the transfer 

resistances it is common to backfill the boreholes with conductive material such as 

bentonite. However, the contrast in resistivity between the fill and the host material leads 

to an additional source of error (Nimmer et al., 2008). Furthermore, the resolution of ERT 

is influenced by the survey design (Day-Lewis et al., 2005), i.e., the relative location and 

distance of transmitter and receiver electrodes. Depending on the purpose of the 

measurement, different electrode configurations are assumed to be appropriate: For 

instance, dipole-dipole arrays seem to be the method of choice if lateral structures or 

changes in near-surface resistivity should be investigated (Barker, 1998) which is actually 

the purpose of soil moisture monitoring as it is presented here. But, for cross-hole dipole-

dipole measurements where the current dipole is placed in one borehole and the voltage 

dipole in the other many data close to zero are obtained leading to a low signal-to-noise 

ratio (Zhou and Greenhalgh, 2000). In this regard borehole surveys are actually 
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counterproductive since those conspicuous measurement errors influence the image 

resolution negatively (Day-Lewis et al., 2005). Therefore, data with relative errors larger 

than 10 % must often be removed prior to inversion (e.g., Binley et al., 2002a; Deiana et 

al., 2008; Cassiani et al., 2009). However, cross-hole dipole-dipole measurements were 

used for the current study to capture also the soil water dynamics in the near-surface area. 

Besides the electrode configuration and the related relative measurement errors, also the 

quantification of the error level plays a crucial role since the inversion of the raw ERT 

data is affected critically by the assessment of the measurement error level. This is 

typically assessed using an error model which is implemented in the inversion scheme 

(Binley et al., 1995; LaBrecque et al., 1996). 

In the current study, the quantitative analysis of a long-term monitoring of soil water 

contents in a forest by means of cross-hole ERT is addressed. A first objective of the paper 

is to use water balance calculations as an alternative verification method of ERT-θ  besides 

correlations between ERT-θ  and TDR-θ . Using a soil water balance as a means to verify 

ERT-θ  exploits the capability of the ERT method to obtain a full coverage of the soil 

moisture distribution in the soil profile. The latter is obviously a limitation when sparse 

local soil moisture measurements must be interpolated. A second objective is to evaluate 

the impact of the error level assessment on the derived soil moisture distributions. Two 

different error models were used: a model that is commonly used and which assesses the 

error level based on the measured resistance (Binley et al., 1995; LaBrecque et al., 1996) 

and a model that assesses the error level for each measurement configuration separately. 

In a nutshell, the aim of the current study is the application of ERT to monitor water 

contents of a heterogeneous forest soil, taking into account a high level of data errors. 

 



 

 

5.35.35.35.3 Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods    

In the current study, the petrophysical relationship was derived from field data with bσ  

obtained from ERT and TDR based θ  during a wetting period. Here, TDR measurements 

of all trenches served as input and were related to bσ  measurements in the closest ERT 

planes, namely at y=0 and y=10 m (Fig. 2.3). After that, this calibration was used to 

transform inverted ERT resistivities of plane y=6 m to water contents. Finally, those water 

contents were evaluated by means of three criteria: a) The ERT based water contents were 

compared with those obtained from TDR. b) It was investigated whether precipitation and 

evapotranspiration were balanced by changes in soil water storage that were derived from 

ERT measurements. c) Changes in soil moisture due to rainfall events during the passage 

of a hurricane in January 2007 and due to seasonal variations caused by tree root water 

uptake were analyzed to demonstrate the capability of ERT to monitor soil water contents 

spatially. 

5.3.15.3.15.3.15.3.1 ERT Data ProcessingERT Data ProcessingERT Data ProcessingERT Data Processing    

ERT Data FilteringERT Data FilteringERT Data FilteringERT Data Filtering    

For the inversion, data sets were filtered previously. The first criterion was a sufficiently 

large injection current, so only data with injections greater than 0.09 mA were kept. The 

second criterion was the coefficient of variation derived from the voltage trace of each 

measurement, tCV  (Eq. [3.4]). Only measurements with 05.0<tCV  were taken into 

account for the following analysis. 

ERT Error EstimationERT Error EstimationERT Error EstimationERT Error Estimation    

Before any inversion of ERT data was started, an accurate evaluation of measurement 

errors was done. Therefore, we performed all the measurements in a reciprocal manner, 

meaning that after each measurement the measurement is repeated with interchanged 

current and voltage dipoles to obtain a guess of the data error. The outcome of the 

synthetic error analysis performed in chapter 4 was that most accurate inversion results 

were obtained when an error model was defined for each individual electrode 

configuration (referred to as configuration dependent error model, CEM) after an 

appropriate approach of raw data filtering. In this case, CEM led to more precise results 
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than the commonly used error model in which the error level is linearly dependent on the 

resistance (referred to as resistance dependent error model, REM). In this chapter, the two 

methods are compared for real data. 

Parameterization of both error models was derived separately for all planes used in this 

study (y=0; y=6 m; y=10 m). The data basis for the analysis was a set of measurements 

taken in the period between June 2, 2006 and April 29, 2007. Since only a beta version of 

the measurement software was available, the data acquisition during a survey of the entire 

field plot was not always complete so that for some data sets measurements in certain 

planes or its reciprocals were missing. This led to different numbers of normal-reciprocal 

data sets of the respective planes: 72, 82, and 72 for planes y=0, y=6 m, and y=10 m, 

respectively. 

For both error models, the final aim was an specific error weighting for each measured 

datum during the inversion, where the diagonal of the data weighting matrix, dW , (Eq. 

[3.17]) consists of the standard deviation, iε , of the i-th datum, id , i.e., )(ln ii Rσε = . 

From normal-reciprocal error estimations, only the standard deviations of the normal-

reciprocal differences, )ln( iR∆σ , are derived. In order to obtain a large time series of 

ERT data sets, either normal or reciprocal measurements were inverted later on instead of 

the mean, dependent on their availability. Hence, standard deviations )(ln ,noriRσ  and 

)(ln ,reciRσ  obtained by Eq. [4.3] were used. 

a) Error Model Dependent on Electrode Configuration (CEM) 

Similar to chapter 4, for each electrode configuration, a frequency distribution of the 

normal-reciprocal error (Eq. [3.23]) was derived. This led to 1130 distributions for 1130 

electrode configurations of 72 and 82 normal-reciprocal measurement errors in planes y=0 

and y=6 m, respectively. In case of plane y=10 m, the number of distributions or 

configurations amounted only 964 since there was a broken electrode stick, allowing no 

control of electrodes 551 to 555 (Fig. 2.3). A robust estimator (Eq. [4.1]) was used to derive 

a standard deviation of a Gaussian error distribution that approximates the real error 

distribution. 

b) Error Model Dependent on Resistance (REM) 

For each plane, the range between the minimal and the maximal resistance was divided 

into hundred bins. For each bin, the standard deviation of the respective difference in 

normal-reciprocal resistance, )ln( R∆σ , was calculated according to Eq. [4.2]. Due to the 

deviation of the error distribution from a Gaussian (i.e., high peaks and long tailings), 

again a robust estimator was used for the standard deviation (Eq. [4.1]). Finally, the linear 

error model (Eq. [3.24]) was fitted to the bin-wise estimated standard deviations. 
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Geoelectrical InversionGeoelectrical InversionGeoelectrical InversionGeoelectrical Inversion    

ERT resistances were inverted by means of the finite element code “CRTomo” (Kemna et 

al., 2000). To account for higher dynamics in water contents and electrical conductivity 

close to the soil surface, the resolution of the grid for the geoelectrical inversion was 

increased at the top (Fig. 5.1). 

 
Fig. 5.1: Exemplary grid illustrated for plane y=6 m. Red dots indicate electrode 

positions. 

 

5.3.25.3.25.3.25.3.2 Calibration of FieldCalibration of FieldCalibration of FieldCalibration of Field----ScaleScaleScaleScale    Petrophysical RelationshipPetrophysical RelationshipPetrophysical RelationshipPetrophysical Relationship    

The calibration of the petrophysical relationship was evaluated from field data with bσ  

obtained from ERT and θ  derived from TDR measurements. The calibration procedure 

was performed twice: once for the CEM and once for the REM model.  

For the calibration, inverted ERT data of the planes which are nearby calibration trenches 

served as input (i.e., y=0 and y=10 m). The petrophysical relationship was derived from 

measurements during the period from November 24, 2006 until February 8, 2007, which 

was characterized by a continuous increase in soil water content. This resulted in 19 data 

sets that were used for calibration. On the basis of the classification of the soil (Fig. 2.2), 

the calibration was derived for each horizon. Each inverted data set was corrected for 

temperature according to Eq. [3.30]. Here, the mean temperature recorded by temperature 

probes installed in all trenches (Tab. 2.2) was calculated for each depth. Subsequently, 

those values were interpolated in the z-direction.  

Afterwards, a calibration relation was established between bσ  and θ  measurements that 

were both averaged in space and in time. For the spatial average, all TDR and ERT image 

pixels measurements at a given time and at the same depth were averaged by taking the 

median. This led to only one TDR water content value, TDRθ , and one ERT electrical 
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conductivity value, ERT

bσ , per depth. Subsequently, an averaging of five consecutive 

measurements in time was performed, i.e., using a median filter of the order 4=µ : 

 

( ) ( )µµπµπµπσπσ +−+−−= 2/,...,12/,2/~
,

ERT

b

ERT

fb , [5.1] 

with 

2/,...,2/1 µµπ −Π+= ,  

 

where f  means “filtered”, ERT

bσ~  is the median, and Π  is the number of data sets (here: 

19=Π ). The same filter was applied to TDRθ . 

This averaging procedure was necessary to obtain a significant relation between ERT

bσ  and 

TDRθ . A direct comparison of measurements at a single location and one time showed only 

a weak correlation due to differences in sampling/ averaging volume of the different 

methods and due to data noise. 

Finally, the petrophysical relationship between TDR

fθ  and ERT

fb,σ  was calibrated for each 

soil horizon defined by the soil profile description (Fig. 2.2a). Hence, TDR

fθ  (and related 

ERT

fb,σ , respectively,) of different depths were merged with respect to the horizon where 

they were located in (Tab. 2.1). Usually, a power-law equation is used to relate bσ  and θ  

(e.g., Archie, 1942). However, since data are noisy and the range of θ  is small, the 

nonlinear equation was approximated by a linear relationship: 

 

ba b += σθ , [5.2] 

 

where a  and b  are fitting parameters. 

5.3.35.3.35.3.35.3.3 ApplicationApplicationApplicationApplication    of Fieldof Fieldof Fieldof Field----ScaleScaleScaleScale    Petrophysical RelationshipPetrophysical RelationshipPetrophysical RelationshipPetrophysical Relationship    

The petrophysical relationship was tested in three different ways: 

First, ERT and TDR derived water contents were compared for a different period to 

investigate whether the derived petrophysical relation can also be used to describe the 

dynamics of the water content in the soil profile under different conditions. Second, it 

was investigated whether the plot-scale water balance can be closed using the fluxes that 

were measured at the soil surface and the changes in water content in the field plot that 

were derived from ERT. Third, the petrophysical relations were used to demonstrate the 

capability of ERT to monitor the spatial soil water content distribution during the passage 

of a hurricane in January 2007 as well as during a long-term period. 
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5.3.3.15.3.3.15.3.3.15.3.3.1 Comparison with TDRComparison with TDRComparison with TDRComparison with TDR    

A first validation was performed by applying the field based relationship to ERT data 

obtained from plane y=6 m. The period with available measurements was between June 2, 

2006 and March 30, 2007, including 83 data sets. Therefore, the time window of 

validation extended the calibration period considerably. Additionally, in this section a 

comparison was performed between electrical conductivities which were inverted with 

the CEM and REM model, respectively. For each data set, the ERT measurements were 

processed in the same way as for the petrophysical model calibration and ERT

fb,σ  was 

transformed to desired water contents, ERT

fθ , using Eq. [5.2]. 

To check for reliability, the median filtered TDR water contents of all transects, TDR

fθ  

were compared for each depth with ERT

fθ . TDR based water content was obtained from 

averaged measurements during an ERT survey. Furthermore, the 5th and 95th percentiles of 

ERT derived filtered water contents were derived from all pixels of one depth related to a 

TDR probe. This was done in order to investigate whether any differences between ERT

fθ  

and TDR

fθ  can be related to the spatial variability of the soil water content. 

The correlation between ERT

fθ  and TDR

fθ  was calculated for each depth. In addition, the 

root mean square error, RMSE , was calculated. In order to compare the quality of ERT 

predicted water contents for different depths, the RMSE  was normalized by the mean 

TDR water content 
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5.3.3.25.3.3.25.3.3.25.3.3.2 Generation of a Water BalanceGeneration of a Water BalanceGeneration of a Water BalanceGeneration of a Water Balance    

An additional verification consisted of a water balance that was derived from the 

hydrological boundary conditions and the change in soil water storage. For the upper 

boundary condition, the difference between precipitation and actual evapotranspiration 

was calculated. Soil water storage was derived from ERT and TDR measurements. For the 

derivation of ERT-θ , electrical resistances were only inverted with the CEM model. 
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Determination of ThroughfallDetermination of ThroughfallDetermination of ThroughfallDetermination of Throughfall    

Precipitation data were obtained from the meteorological station of the research centre 

and were corrected for interception of the canopy. A calibration relation between rainfall 

and throughfall was established using measurements from July 1, 2005 to December 23, 

2005. Throughfall was measured by means of rain gauges which were installed on top of 

the ERT electrode sticks. Fig. 5.2 shows the relationship derived from free precipitation 

rate, fP , and throughfall, P . 
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Fig. 5.2: Relationship between free precipitation rate, fP , and throughfall, P . 

 

Fig 5.2 shows a strong linear relationship (correlation coefficient: 997.0=pr ) between 

free precipitation and throughfall, which is 79.5 % of the free precipitation rate. 

Determination of Actual EvapotranspirationDetermination of Actual EvapotranspirationDetermination of Actual EvapotranspirationDetermination of Actual Evapotranspiration    

Actual evapotranspiration was derived from eddy covariance measurements. The method 

calculates the net vertical flux of trace gases within the atmospheric boundary layer, cF , 

from the correlation between trace gas density (here: water vapor), cρ , and the vertical 

wind speed component, w , with 

 

cc wF ρ⋅= . [5.4] 

 

Relating cF  to the density of water, wρ , a volume flux density is obtained which is 

defined as evapotranspiration flux 

 

w

cF
ET

ρ
−= . 

[5.5] 
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Here, the minus sign is inserted since ET  is assumed to be oppositely directed to the 

precipitation flux. A detailed description of the eddy covariance method can be found, for 

instance, in the works of Ammann (1999), Kaimal and Finnigan (1994), or Van Dijk et al. 

(2004). 

 
a) 

 
b) 

Fig. 5.3: a) Observation tower for eddy covariance measurements. b) Ultrasonic 

anemometer and open path analyzer mounted on top of the tower. 

 

The eddy covariance method requires a high temporal resolution of both trace gas 

concentration and wind speed measurements which have to be accurately synchronized. 

The data acquisition was performed by an USA-1 ultrasonic anemometer (Metek, 

Elmshorn, Germany) and a Li-7500 open path infrared gas analyzer for CO2 and H2O 

density fluctuations (Li-Cor, Lincoln, NE, USA) which both were mounted on the top of 

an observation tower (height: 37 m, top 15 m above canopy) in the forest, 90 m distant 

from the field plot (Fig. 5.3). A sonic anemometer measures the speed of sound in air using 

a short burst of ultrasound transmitted via a transducer. Another transducer detects the 

reflections of the sound. The travel time of the sound is dependent on the wind speed. 

The open path analyzer samples water vapor (and also carbon dioxide) densities using 

absorption measurements of radiation in the infrared region of the electromagnetic 

spectrum. The sampling frequency of both instruments amounted 10 Hz. Device control 

and data logging were performed by a personal computer placed in a nearby cabin using a 

RS-232 connection, controlled by the software “knusalic” (Knaps, 2006). Processing of the 
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raw data to fluxes was performed offline with a custom software, that has been tested to 

provide similar results as the softwares TK2 (Mauder and Foken, 2004) and ECpack (Van 

Dijk et al., 2004). It included a despiking (Vickers and Mahrt, 1997), cross-correlation 

alignment (Mauder and Foken, 2004) and detrending of the raw data, as well as 

elimination of values where the AGC (automatic gain control) values of the Li-7500 

indicated presence of excess rain or dew in the measurement path. Turbulence statistics 

were subject to a double rotation of the wind data coordinate system (Kaimal and 

Finnigan, 1994), frequency response correction (Moore, 1986), sonic temperature and heat 

flux correction (Schotanus et al., 1983), and density fluctuation correction (Webb et al., 

1980) before calculating fluxes on a half-hourly basis. Only those fluxes were used here, 

where at least 90 % of the raw data records were present and valid, excluding the upper 

and lower 0.1 %-quantile. Half-hourly fluxes were than aggregated to hourly resolution. 

A time series of resulting ET  derived from eddy covariance data performed from summer 

2006 to spring 2007 is shown in Fig. 5.4. The annual course characterized by highest 

evapotranspiration fluxes in the mid of July and lowest at the end of December is clearly 

represented. 
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Fig. 5.4: Time series of evapotranspiration flux, ET , derived from eddy covariance 

measurements in the period June 2006 to April 2007. 

 

Water balanceWater balanceWater balanceWater balance    

The cumulative height of supplied water at the upper boundary, PET , was derived from 

the throughfall, P , and evapotranspiration flux, ET : 

 

( ) ( )
11 −− +−+= pppppp PETttETPPET , [5.6] 
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where pPET  was calculated between time 00 =t  (with 00 =PET ) and the p th 

measurement time pt . P  and ET  data were processed on daily basis. 

The change in water content within the soil profile was derived separately from TDR and 

ERT measurements and determined by 

 

( ) ω
ω

ωω θθ zH
Z

hh ∆−=∑
=1

0,, , 
[5.7] 

 

where h,ωθ  is the water content at the h th measurement time, ht , and in the ω th depth 

interval, ωz∆ , is the thickness of the depth interval, and 0,ωθ  is the initial water content. 

Note that different subscripts were used for pPET  and hH  since ERT measurements were 

not performed on daily basis, leading to different measurement times. The soil was 

divided into 8=Z  compartments. The compartment boundaries were at the center 

between the TDR depths (see table 5.1). The bottom of the lowest compartment was 

defined at 200 cm depth. In order to generate a closed water balance, it was assumed that 

there is no root water uptake below this depth. This assumption is justified since Kuhr 

(2000) reports on a maximal rooting depth of 120 cm for a tree population of species Fagus 

sylvatica L., also grown on a Stagnic Luvisol. Furthermore, no roots where observed below 

120 cm depth in the trenches that were dug out for the installation of the TDR probes. 
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Tab. 5.1: Derivation of compartment thickness, ωz∆ , for the derivation of the water 

balance. 

index of 

compartment, 

ω  

depth of 

TDR/ bottom 

depth 

[cm], ωz  

compartment 

thickness, 

ωz∆  

[cm] 

1 5 6.25 

2 7.5 4.5 

3 14 8.25 

4 24 15 

5 44 30 

6 84 40 

7 124 50 

8 184 46 

 200  

 

Finally, PET  and H  were plotted in the same diagram. Assuming no lateral flow, the 

difference between PET  and H  is equal to the cumulative amount of water that crossed 

the bottom boundary of the soil profile. An increase of HPET −  with time corresponds 

with a period of outflow or drainage from the soil profile whereas a decrease in HPET −  

corresponds with inflow or capillary rise. The water balance was calculated for the period 

between June 13, 2006 ( 0=t ) and March 30, 2007 when all data (ERT, TDR, and eddy 

covariance measurements) were available. 

Determination of Determination of Determination of Determination of Depth to Groundwater TableDepth to Groundwater TableDepth to Groundwater TableDepth to Groundwater Table    

In order to compare water contents derived from ERT additionally, the depth to 

groundwater table, GWL , was derived from readings of an observation well 130 m apart 

from the field plot. Measurements were performed monthly and corrected for the 

elevation of the field plot. Due to the distance of the observation well relative changes in 

groundwater level seem to be more reliable than its absolute values. 

5.3.3.35.3.3.35.3.3.35.3.3.3 Monitoring of Spatiotemporal Soil Water Content ChangesMonitoring of Spatiotemporal Soil Water Content ChangesMonitoring of Spatiotemporal Soil Water Content ChangesMonitoring of Spatiotemporal Soil Water Content Changes    

Observation of Soil Water Content Observation of Soil Water Content Observation of Soil Water Content Observation of Soil Water Content Changes due to a Changes due to a Changes due to a Changes due to a SSSSingle Rainfall ingle Rainfall ingle Rainfall ingle Rainfall EEEEventventventvent    

The capability of ERT to monitor seasonal changes in soil water contents was already 

addressed in the previous sub-sections. In this section, it is evaluated whether single rain 

events can still be monitored when a median filter is applied. In addition, the spatial 

distribution of the soil water content changes is investigated. Therefore, a time period 
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between January 12 and February 8, 2007 was selected in which a heavy rain event 

occurred during a windstorm and in which 10 ERT data sets were recorded. For the 

following analysis only data from plane y=6 m that were inverted with the CEM model 

were considered. 

Generally, the approach to derive water contents was similar to that described in chapter 

5.3.3.1 but the order of the filter was reduced to 2=µ . Otherwise the averaging time 

would be too large to analyze a single rain event. The filtered ERT

fb,σ  were translated to 

water contents, ERT

fθ , using soil horizon specific petrophysical relationships (Eq. [5.2]). In 

order to visualize relative changes in soil water contents, differences were related to a 

reference distribution taken at 2007/01/12. 

Since the rainfall during the passage of the storm was large and likely much larger than 

the downward flux at the bottom of the soil profile, the change in soil water during and 

shortly after the storm should be equal to the throughfall. Hence, a water balance starting 

from January 12, 2007 was established in the same manner as in the previous section. 

Observation of Seasonal Soil Water Content ChangesObservation of Seasonal Soil Water Content ChangesObservation of Seasonal Soil Water Content ChangesObservation of Seasonal Soil Water Content Changes    

In order to investigate not only spatiotemporal changes in soil water contents during a 

short-term period but also during several months containing summer and winter, relative 

changes between June 2006 and March 2007 were computed pixel-wise for plane y=6 m. 

The procedure to derive water contents was again related to chapter 5.3.3.1 (order of 

median filter: 4=µ ). For the calculation of relative changes, the water content 

distribution of 2006/06/13 served as reference state and 14 distributions of water content 

changes were plotted exemplarily. 

 



 

 

5.45.45.45.4 Results and DiscussionResults and DiscussionResults and DiscussionResults and Discussion    

5.4.15.4.15.4.15.4.1 ERT Data ProcessingERT Data ProcessingERT Data ProcessingERT Data Processing    

ERT Error EstimationERT Error EstimationERT Error EstimationERT Error Estimation    

a) Error Model Dependent on Electrode Configuration (CEM) 

Three error distributions obtained from normal-reciprocal measurements of an exemplary 

electrode configuration: C1: 20, C2: 23, P1: 35, P2: 39, are shown in Fig. 5.5 for three 

different planes: y=0 m, y=6 m, and y=10 m. Both current and potential dipoles are located 

in the center of the borehole. In planes y=0 and y=10 m, this configuration is located in 

direct vicinity of a trench. For both planes, the error distribution deviates considerably 

from the Gaussian distribution with a regularly derived standard deviation (black line, Fig. 

5.5). This illustrates that an error model that uses the standard deviation of a Gaussian 

error distribution largely underestimates the probability density of measurements with a 

small error. Since the model misfit is weighted by the measurement error in the ERT data 

inversion, an underestimation of the probability density of small measurement errors will 

lead to an acceptance of larger model misfits. In order to obtain a better description of the 

probability density of the small measurement errors by a Gaussian distribution, a robust 

estimator of the standard deviation, )ln( R∆σ , was used according to Eq. [4.1]. For the 

exemplary distributions shown in Fig. 5.5, this results in robust estimators, )ln( exampR∆σ , 

presented in Tab. 5.2. 
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c) 

 

Fig. 5.5: Error distribution derived from normal-reciprocal measurements for a certain 

electrode configuration: C1: 20, C2: 23, P1: 35, P2: 39 in plane y=0 (n=72) a); y=6 

m (n=82) b); y=10 m (n=72) c). 

Black line represents a fitted Gaussian distribution with regular standard 

deviation, red line a fitted Gaussian with a robust estimator used as standard 

deviation. 
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Tab. 5.2: Robust estimated standard deviations from error distributions according to Fig. 

5.5 calculated for different planes, )ln( exampR∆σ . )ln( R∆σ  and ))ln(( Rstd ∆σ  

are mean and standard deviation of robust estimators of all configurations in the 

given plane. 

 y=0 y=6 m y=10 m 

)ln( exampR∆σ  0.4659 0.3389 0.3594 

)ln( R∆σ  0.3228 0.2783 0.4509 

))ln(( Rstd ∆σ  0.4643 0.2916 0.6465 

 

From both the exemplary error and the mean error it is evident that the error is higher for 

the planes close to a trench (i.e., y=0, y=10 m). Furthermore, it is obvious that the 

standard deviation of the robust estimator, ))ln(( Rstd ∆σ , is generally very high for all 

planes. In case of the central plane, y=6 m, it ranges within the level of the mean, whereas 

it even exceeds the mean considerably for the outer planes (y=0, y=10 m). Those aspects 

indicate that the disturbance of the soil as well as the installed instrumentation close to 

the outer planes could have a negative impact on the quality of ERT measurements. 

Additionally, it seems likely that the high level of the standard deviation is caused by 

different error levels depending on the electrode configuration. Therefore, a robust 

estimator was also derived in dependence on the geometric factor, K , in Fig. 5.6. Here, 

the range of K  values was divided into 10 bins, spanning a width of 100 m each. It is 

evident that there is a distinct linear relationship between K  and )ln( R∆σ . Based on the 

coefficients of determination, 2

KR , there can be explained on average 84.77 % of the 

variation in error level by this linear relationship for the given division of the bins. 

However, it is obvious that for the highest bin, [900 m ; 1000 m[, the error level decreases 

erratically in all planes. This can be explained by the lithology of the field plot: Geometric 

factors within the bin [800 m ; 900 m[ are related to electrode configurations where the 

lower voltage electrode is located at the borehole bottom, i.e., within a gravel layer. The 

last bin, namely [900 m ; 1000 m[, is related to measurements with shorter voltage dipole 

lengths where the lower voltage electrode is coupled to fine textured material, leading to 

better electrode contact and, therefore, a lower error level. 
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Fig. 5.6: Robust estimated standard deviation of normal-reciprocal error, )ln( R∆σ , in 

dependence on geometric factor, K , in plane y=0 a); y=6 m b); y=10 m c). 
2

KR  denotes the coefficient of determination of a linear fit. 

 

Due to the fact that measurements with the same geometric factor led to different error 

levels (Fig. 5.5) and that particular electrode positions exhibit particular error levels (Fig. 

5.6), it is justified to apply an error model which is derived individually for each electrode 

configuration. 



80  Determination of Seasonal Water Content Dynamics 

 

b) Error Model Dependent on Resistance (REM) 

The linear error model was derived for each plane (y=0, y=6 m, y=10 m). Standard 

deviations of each class of resistances and the fitted model are depicted in Fig. 5.7. The 

error model parameters are given in Tab. 5.3. 
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c) 

Fig. 5.7: Robust estimated standard deviation of normal-reciprocal error, )ln( R∆σ , in 

dependence on the inverse of mean resistance, 1−R , in plane y=0 a); y=6 m b); 

y=10 m c). 
2

rR  denotes the coefficient of determination for the derivation of the linear 

error model (REM). 
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Tab. 5.3: Parameterization according to error model (REM) given in Eq. [3.24] for 

different planes. 

 y=0 y=6 m y=10 m 

][−ea  6.16 E-02 6.83 E-02 4.00 E-02 

][Ωeb  1.54 E-03 2.01 E-03 3.31 E-03 

 

The error models seem to be similar for the different planes (Tab. 5.3). It must be noted 

that the error model does not predict the error level in each resistance class exactly. From 

the coefficients of determination, 2

rR , it can be concluded that on average 39.7 % of the 

variation in error level is explained by this model when the given division of bins is used. 

As a consequence, for some electrode configurations, this model overestimates or 

underestimates the error level. This error model tries to describe the error level using only 

two parameters for each image plane. On the other hand, the number of parameters in the 

error model that is parameterized for each electrode configuration, CEM, is much higher. 

Here, the model is not only parameterized for all the configurations of the same geometry 

as it is in Fig. 5.6 but it is parameterized individually for each electrode configuration. As a 

consequence, it is obvious that the CEM should better describe the error level. 

5.4.25.4.25.4.25.4.2 CalibrCalibrCalibrCalibration of Fieldation of Fieldation of Fieldation of Field----ScaleScaleScaleScale    Petrophysical RelationshipPetrophysical RelationshipPetrophysical RelationshipPetrophysical Relationship    

a) Error Model Dependent on Electrode Configuration (CEM) 

Although data of several depths were merged for the individual horizons (different colors, 

Fig. 5.8), it is obvious that depths which are in the same soil horizon have more or less the 

same petrophysical relation. However, the petrophysical relationships seem to vary 

considerably between the different soil horizons. 
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Fig. 5.8: Calibration of the CEM model. 

a) Exemplary course of TDR

fθ  and ERT

fb,σ  for the calibration period in 5 cm depth. 

b)–f) Petrophysical relationship obtained from TDR

fθ  and ERT

fb,σ  for different 

horizons. 
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Although it is common to fit a polynomial of higher order to soil petrophysical data, it is 

evident from Fig. 5.8b–f that the scatter plots are sufficiently described by a linear 

equation in the form of Eq. [5.2]. Coefficients of linear regression analysis, a  (slope) and 

b  (intercept), as well as related correlation coefficients, cr , are given in Tab. 5.4. Since the 

range of water contents is not so large, also fits of the more sophisticated Archie law 

(Archie, 1942) are nearly congruent with straight lines (not shown here). Michot et al. 

(2003) also found out that a linear relationship derived from field calibration was adequate 

in their case. However, the regression parameters should not be interpreted as physical 

parameters. For instance, a more physically based petrophysical model, which also 

includes the effect of the electrical conductivity of the soil particle surface, would predict 

a positive bulk electrical conductivity when the volumetric water content approaches the 

residual water content. Since the surface electrical conductivity is nearly independent on 

the volumetric water content, the relation between bulk electrical and water content 

levels off, i.e., the slope of the θ - bσ  relation becomes small for small water contents. 

When a linear relation is fitted to the non-linear θ - bσ  relation in the range of higher 

water contents, the intercept, b , of this linear fit is positive and the linear regression 

relation will underestimate the water contents when it is extrapolated to the drier range 

of soil moisture contents. 

One characteristic of Fig. 5.8 is the conspicuous shift between the Eg and Bt-horizon: The 

range of ERT

fb.σ  values rises by nearly one order of magnitude. This boundary is also 

reflected in the fitted slope, a , which decreases considerably below the Eg-horizon. 
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Tab. 5.4: Parameters, a  and b , of a linear petrophysical relationship and related 

correlation coefficients, cr , between ERT

fθ  and TDR

fθ  taken during the calibration 

period. 

depth [cm] 0 – 20 20 – 65 65 – 120 120 – 160 > 160 

horizon A Eg Bt Bg Br 

Error model dependent on electrode configuration (CEM) 

][ 1−Sma  34.75 47.72 8.34 2.71 2.09 

][−b  0.16 0.17 0.13 0.24 0.26 

][−cr  0.92 0.81 0.91 0.69 0.97 

Error model dependent on resistance (REM) 

][ 1−Sma  39.49 54.50 5.53 2.74 0.73 

][−b  0.19 0.19 0.22 0.25 0.35 

][−cr  0.87 0.81 0.94 0.80 0.63 
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b) Error Model Dependent on Resistance (REM) 
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Fig. 5.9: Calibration of the REM model. 

a) Exemplary Course of TDR

fθ  and ERT

fb,σ  for the calibration period in 5 cm depth. 

b)–f) Petrophysical relationship obtained from TDR

fθ  and ERT

fb,σ  for different 

horizons. 
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Data based on the REM model (Fig. 5.9) look similar to that obtained from the CEM 

model (Fig. 5.8). Even the parameterizations of the derived petrophysical relationship 

agree well (Tab. 5.4). However, differences occur in the lowest horizons: For the Bg-

Horizon (Fig. 5.8e; Fig. 5.9e), the data based on REM exhibit a reduced spread whereas for 

the Br-Horizon (Fig. 5.8f; Fig. 5.9f), data inverted with CEM show a stronger linear 

relationship. A larger spread around the fitting line within the Bg-horizon is probably 

induced by the TDR measurements: This horizon is characterized by mottling caused by 

metal concretions which obviously influence the accurate detection of the end of the TDR 

probe in the TDR waveform (see also Fig. 4.1, 124 cm depth). Therefore, water contents 

obtained by TDR are partly contaminated by errors in this horizon. Generally, the mean 

of correlation coefficients, cr , of the CEM model is slightly higher. 

5.4.35.4.35.4.35.4.3 Application of FieldApplication of FieldApplication of FieldApplication of Field----Scale Scale Scale Scale Petrophysical RelationshipPetrophysical RelationshipPetrophysical RelationshipPetrophysical Relationship    

5.4.3.15.4.3.15.4.3.15.4.3.1 Comparison with TDRComparison with TDRComparison with TDRComparison with TDR    

The previously derived petrophysical relationship was applied to ERT data of the plane 

y=6 m (Fig. 2.3), results are presented in Fig. 5.10. From a comparison between ERT

fθ  and 

TDR

fθ  it is obvious that seasonal dynamics are generally described well by ERT for all 

depths and for both error models. Dry spells during end of July and beginning of 

November 2006 are reproduced just as well as wetting phases during end of August 2006 

and end of March 2007. Starting with the ERT derived water contents obtained from the 

CEM model, it is evident that the course runs not only in parallel with the TDR values but 

it also describe absolute water contents precisely. An exception is the depth of 84 cm 

where discrepancies between TDR and ERT are more pronounced. Furthermore, higher 

water contents at the beginning of the investigated period and the following decrease in 

soil moisture could not be captured accurately in depths of 44 cm and 124 cm, 

respectively. Deviations of ERT

fθ  from TDR

fθ  within the calibration period (green dashed 

lines, Fig. 5.10) are small and can be related to spatial variability in bσ  between the 

calibration planes (y=0; y=10 m) and the validation plane (y= 6 m), which was captured by 

ERT. It should be noted that TDR trenches are located at the outer area of the field plot 

whereas the plane for the underlying validation is placed at its center. 
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Fig. 5.10: Median of filtered water content from ERT with CEM, CEMERT

fθ , compared with 

median of filtered water content from ERT with REM, REMERT

fθ . 

Furthermore, median of filtered water content from TDR, TDR

fθ , is shown. 

Shaded area represents difference between 5th and 95th percentiles of all ERT 

derived water contents obtained from the CEM model at the related depth. 

Green lines assign the calibration period of the petrophysical relationship. 
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However, mean water contents derived from TDR are enclosed by the range within the 

5th and 95th percentiles at almost all depths for the entire period of investigation. The 5th 

percentile is slightly undercut in depths between 5 cm and 24 cm. Except for depths 5 cm, 

7.5 cm, and 84 cm the range spanned by the percentiles is rather narrow, indicating a 

small spatial heterogeneity in horizontal direction. Depth 84 cm is located within the Bt-

horizon, showing that here the variability is much higher in lateral direction. 

The median of CEM based ERT

fθ  is at some depths not centered between the 5th and 95th 

percentile of the local water contents in one depth but is nearer to the 5th percentile. This 

is caused by the positive skewness of the frequency distribution of ERT

fθ , indicating that 

there are few locations for which high water contents were derived. This might occur 

either due to real spatial variability of water contents in a soil horizon caused by 

heterogeneous water flow or due to artifacts that result from applying the same 

petrophysical relation to all locations in a soil horizon. 

The agreement between REM based ERT and TDR water contents is also satisfying. 

However, the course of REM based ERT water contents is more noisy and characterized 

by a few outliers, which are particularly present in the uppermost depths (i.e., 5–24 cm). 

Those outliers were even not eliminated by the median filter. 

 

Tab. 5.5: Correlation coefficient, vr , between ERT

fθ  and TDR

fθ  taken during the validation 

period and normalized root mean square error, RMSE , for each depth. 

depth [cm] 5 7.5 14 24 44 84 124 184 

horizon A Eg Bt Bg Br 

Error model dependent on electrode configuration (CEM) 

][−vr  0.91 0.92 0.95 0.94 0.92 0.91 0.50 0.83 

][)( −RMSECV  0.13 0.11 0.16 0.15 0.16 0.15 0.13 0.03 

Error model dependent on resistance (REM) 

][−vr  0.67 0.67 0.80 0.84 0.88 0.79 0.46 0.83 

][)( −RMSECV  0.27 0.26 0.21 0.13 0.10 0.09 0.11 0.05 

 

To analyze the relationship between ERT

fθ obtained from both error models and TDR

fθ  more 

quantitatively, correlation plots are given in Fig. 5.11 and Fig. 5.12, respectively. Related 

statistical parameters are listed in Tab. 5.5. 
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Fig. 5.11: Plots of TDR

fθ  versus ERT

fθ  obtained from inversions with CEM model at 

different depths in the soil profile. 

vr  is the correlation coefficient and the lines represent 1:1 lines. 
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Fig. 5.12: Plots of  TDR

fθ  versus ERT

fθ  obtained from inversions with REM model at 

different depths in the soil profile. 

vr  is the correlation coefficient and the lines represent 1:1 lines. 
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The results obtained from the CEM model generally lead to higher vr  for all depths 

(except for depth 184 cm where vr  is equal, Tab. 5.5). This means that the linear relation 

between ERT

fθ  and TDR

fθ  is more pronounced when the CEM model is applied. Obviously, 

the REM sometimes fails to represent the soil water dynamics precisely, which can be 

seen in 84 cm depth where ERT

fθ  based on the REM model reach a plateau level during 

summer 2006 (Fig. 5.10). Another reason are the already mentioned outliers which attract 

attention in Fig. 5.12 in depths 5–14 cm, leading to lower vr  compared to the results 

derived from the CEM model. For both error models the correlation is weaker between 
ERT

fθ  and TDR

fθ  in a depth of 124 cm. As already mentioned, this is probably caused by 

erroneous TDR measurements. 

The correlation coefficient quantifies the goodness of fit of a linear relation between ERT

fθ  

and TDR

fθ . However, the correlation coefficient does not quantify the systematic deviation 

of the relation between ERT

fθ  and TDR

fθ  from the 1:1 line. The correlation coefficient 

therefore does not quantify a systematic bias between ERT

fθ  and TDR

fθ . The normalized 

RMSE , )(RMSECV , is a valuable measure that also quantifies the systematic bias 

between ERT

fθ  and TDR

fθ  (Eq. [5.3]). )(RMSECV  derived from the CEM model is 

considerably lower than from the REM model for the uppermost depths (5–14 cm, Tab. 

5.5). On the one hand, this is caused again by outliers (5 and 7.5 cm depth). On the other 

hand, the general level of TDR

fθ  is overestimated by the values obtained from the REM 

model. Beneath a depth of 24 cm )(RMSECV  is somewhat lower for the REM model 

compared to data achieved from the CEM model. 

Therefore, it can be concluded that there are differences in quality of both models: The 

most apparent one is the presence of several outliers in ERT

fθ  based on the REM model. 

However, the bias between ERT

fθ  and TDR

fθ  is smaller compared to the CEM model in 

lower depths. But in general, the course of ERT

fθ  obtained from the CEM model is more 

accurate, taking into account the high correlation with TDR

fθ  and the robustness with 

respect to outliers. Furthermore, the bias between ERT

fθ  and TDR

fθ  rather reflects an 

inaccurate calibration relation, which can be corrected for using a recalibration, than an 

erroneous ERT inversion. Hence, the inversion with the CEM model is particularly the 

appropriate choice if relative changes in water contents should be considered accurately at 

the near-surface. 

Although the synthetic experiments conducted in chapter 4 definitely suggested choosing 

the CEM model, the difference between both error models was not so clearly observed in 

the filtered time series of ERT

fθ . The reason for the smaller effect of the choice of the error 
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model on the inverted ERT

fθ  is twofold: first, a relative error of 0.126 was used in the 

synthetic experiment whereas the data of the time window used for the current study had 

a smaller relative error of 0.04 to 0.07 (Tab. 5.3). Second, median filtered (both in space 

and time) inversion results were used which led to an additional reduction in the noise. 

Nevertheless, despite lower error level and the data filtering, the inversion results 

obtained from the REM model were still prone to considerably more noise and larger 

outliers than inversion results obtained from the CEM model.  

The inversions of the following subsections were performed with the CEM model to 

obtain accurate relative changes in water content, particularly close to the surface. 

5.4.3.25.4.3.25.4.3.25.4.3.2 Generation of a Water BalanceGeneration of a Water BalanceGeneration of a Water BalanceGeneration of a Water Balance    

Fig. 5.13 shows a plot of PET  and H  calculated for the period between June 13, 2006 and 

March 30, 2007. H  drawn from ERT

fθ  is denoted as ERTH  and H  from TDR

fθ  as TDRH . For 

comparison, the development of the depth to groundwater table, GWL , is shown. 
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Fig. 5.13: Cumulative height of supplied water at the upper bound, PET , and cumulative 

change in height of water in the soil, H , drawn from both ERT ( ERTH ) and 

TDR ( TDRH ). 

GWL  is the depth to groundwater table. Red arrow denotes hurricane “Kyrill”, 

passing Germany at January 18, 2007. 

 

Starting with the comparison between ERTH  and TDRH , it is evident that not only the 

course is very similar but also absolute values are consistent. However, in August 2006 

and in October 2006 to January 2007 curves deviate from each other where TDR 

measurements exhibit smaller values than ERT based values. This is caused by the 

oftentimes larger range of occurring TDR

fθ  compared to ERT

fθ  (Fig. 5.11). Hence, 

differences in TDR

fθ  are even stronger reflected in cumulative changes of water content, 

TDRH , as they are in ERTH . Apart from that, all hydrological events are well reproduced 

by both techniques although the course of TDRH  seems to be somewhat smoother. 

Comparing soil water storage, H , with the precipitation surplus PET , the assumption 

that both quantities are strongly correlated is supported. Additionally, both are clearly 

related to the depth to groundwater table, GWL . Dry periods during end of July 2006 and 

beginning of November 2006 are reproduced as well as the wetting period during August 

2006. On the other hand, between July 2006 and January 2007 the soil water reduction is 

greater than the amount of water which is lost by evapotranspiration. This means that 
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during summer and autumn 2006 there must have been occurred deep percolation, 

leading to a stored soil water, H , that was smaller than PET . However, this is not 

supported by the decreasing depth to groundwater table, GWL , in August 2006. Finally, 

soil moisture storage rises more rapidly at the beginning of January 2007 so that both H  

and PET  run congruently again. This suggests that during this period, water would flow 

into the soil profile through the bottom boundary of the profile. This corresponds with 

the rise of the water table during this period. At the end of January 2007, the soil water 

storage is again equal to the storage at the beginning of the observation period (June 13, 

2006). As a consequence, the water balance suggests that water drains out the soil profile 

during the summer period whereas an inflow is derived for the winter period. This seems 

opposite to what would be expected, namely that most drainage or leaching out of the soil 

profile occurs during the winter period. It must however be noted that the precipitation 

surplus during the entire monitoring period was small (60 mm) and that this surplus went 

along with an increase in water storage so that the amount of drainage or groundwater 

recharge was even smaller (about 30-40 mm). This amount underestimates the rate which 

was calculated by Bogena et al. (2005) who computed a recharge of 100-150 mm/a for this 

area on a basis of 21 years. This cannot be explained by a lower precipitation since the 

sum of free precipitation amounted 624 mm in the given period of ten months which was 

close to the yearly average precipitation which is 698 mm (source: meteorological station, 

Forschungszentrum Jülich). However, it has to be considered that groundwater recharge 

rates under forests can be locally very low. The derived drainage and inflow during the 

summer/ autumn and winter periods, respectively, are consequently also small. 

5.4.3.35.4.3.35.4.3.35.4.3.3 Monitoring of Spatiotemporal Soil Water Content ChangesMonitoring of Spatiotemporal Soil Water Content ChangesMonitoring of Spatiotemporal Soil Water Content ChangesMonitoring of Spatiotemporal Soil Water Content Changes    

Observation of Soil Water Content Changes due to a Single Rainfall EventObservation of Soil Water Content Changes due to a Single Rainfall EventObservation of Soil Water Content Changes due to a Single Rainfall EventObservation of Soil Water Content Changes due to a Single Rainfall Event    

Ten ERT data sets have been taken before and after the passage of a rainstorm. The 

hydrograph of precipitation throughfall during the investigated period is illustrated in Fig. 

5.14a. Dates of ERT measurements are marked by bars. There were ten data sets required 

to produce eight filtered distributions of water content if a median filter of order 2=µ  

was applied (last two measurements are not shown here). Changes in filtered water 

contents derived from ERT were calculated with respect to the background distribution 

on January 12, 2007 (Fig. 5.14b). 



Determination of Seasonal Water Content Dynamics  95 

 

 

01/12/07 01/17/07 01/22/07 01/27/07 02/01/07
0

0.05

0.1

date

P
 [
c
m

 h
−

1
]

 

0 5 10
−4

−2

0

z
 [
m

]

2007/01/12

0 5 10
−4

−2

0
2007/01/15

0 5 10
−4

−2

0

z
 [
m

]

2007/01/17

0 5 10
−4

−2

0
2007/01/19

0 5 10
−4

−2

0

z
 [
m

]

2007/01/23

0 5 10
−4

−2

0
2007/01/26

0 5 10
−4

−2

0

x [m]

z
 [
m

]

2007/01/31

0 5 10
−4

−2

0

x [m]

2007/02/02

 

change in θ
f

ERT
 [%]

−5 0 5

 

4 6 8 10
−4

−2

0

x [m]

z
 [
m

]

 

 

v
p
 [cm d

−1
]

0

50

100

 
 

a) 

b) 

c) 



96  Determination of Seasonal Water Content Dynamics 

 

 
Fig. 5.14: a) Throughfall during the investigated period. b) Change in filtered water 

content derived from ERT for plane y=6 m. c) Peak velocities, pv , derived from 

a tracer experiment (chapter 6). 

It should be noted that the tracer experiment was performed only on a part of 

the field plot. 

 

First of all, it is obvious that the rain event occurring at January 18 is detected by the ERT 

measurements since there is the most evident change in water contents. Also the drying 

process until the beginning of February is well described. Generally, the roughness of all 

distributions is quite high which is caused by the petrophysical relation. Small changes in 

bulk electrical conductivity are mapped into large changes in water content due to high 

slopes, a  (Tab. 5.4). However, several phenomena are clearly indicated by ERT based 

water contents: Obviously, there are regions which still dry out even after the main event 

at January 18 (e.g., region between 2nd and 3rd borehole, considered from left). On the 

other hand, there are locations which remain wetted all over the time (e.g., region 

between 1st and 2nd borehole). This shows not only the consistency of the different data 

sets but also the heterogeneity of the soil. Furthermore, there are signs of preferential 

flow, indicated by patches (lower end of boreholes 3 to 5) where water suddenly flows in 

at January 23 and disappears afterwards. Those regions are in close vicinity to locations 

which were characterized by a very fast breakthrough, i.e., high peak velocities, pv , when 

a tracer experiment was performed (analyzed in chapter 6). For comparison, a distribution 

of pv  is given in Fig. 5.14c. Furthermore, this figure indicates a small belt of higher pv  in 

0.5 m depth, located between x=6 m and x=9 m which is also reflected by a rapid rise in 

water content from January 17 to January 19, 2007. This layer is interrupted by a sharp-

cut boundary at about 0.7 m depth. This depth is located at the top of the Bt-horizon 

which will also be identified as initiator of preferential flow processes in the next chapter 

(highlighted by red lines in Fig. 5.14b and c). That conclusion is supported by the 

horizontal extension of low water contents in about 0.7 m depth which remains dry even 

after the main rain event at January 18, 2007 (Fig. 5.14b). Additionally, higher pv  (Fig. 

5.14c) as well as rapid rise in water content (Fig. 5.14b) are found consistently within the 

Bt-horizon due to preferential flow. 

To evaluate the reliability of ERT and TDR measurements supplementary, a water balance 

was established for the period of the passage of the storm. Results are shown in Fig. 5.15. 
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Fig. 5.15: Water balance during the passage of the rainstorm. 

Cumulative height of supplied water at the upper bound, PET , and cumulative 

change in height of water in the soil, H , drawn from both ERT ( ERTH ) and 

TDR ( TDRH ). GWL  is the depth to groundwater table. 

 

It is obvious that TDRH  increased more than PET  until January 25, leading to the 

assumption that there must have been an additional supply of water. This corresponds to 

the decreasing depth to groundwater table, GWL , during January 2007. However, ERTH  

does not capture that additional amount of water storage. This is also reflected in the main 

rain event at January 18 which is described smoother by the ERT measurements. 

Furthermore, little rain events after January 25 cannot be recovered correctly. This is 

caused by the application of the median filter, which extinguishes not only outliers but 

also extreme values. However, ERT in combination with an appropriate filter technique 

turns out to be valuable to establish a water balance in a short term period with 

exceptional weather conditions. 
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Observation of Seasonal Soil Water Content ChangesObservation of Seasonal Soil Water Content ChangesObservation of Seasonal Soil Water Content ChangesObservation of Seasonal Soil Water Content Changes    
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b) 

Fig. 5.16: a) Cumulative height of supplied water at the upper bound, PET , and depth to 

groundwater table, GWL , taken over from Fig. 5.13. b) Soil water content 

changes in the period between June 2006 and September 2006 for plane y=6 m 

with respect to a background taken at 2006/06/13. 
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Fig. 5.16 and Fig. 5.17 show changes in soil water content during the period investigated 

in chapter 5.4.3.2 with respect to the background distribution taken at 2006/06/13 for 

plane y=6 m. From comparison with hydrological boundary conditions presented in Fig. 

5.16a it is evident that all of the most prominent changes are captured by the water 

content distributions derived from ERT. In addition to Fig. 5.13, not only the temporal, 

but also the spatial variability of soil water contents is obvious. The top soil dries out 

continuously until end of July (2006/07/26, Fig. 5.16b), corresponding with the maximal 

evapotranspiration, reflected in PET . There are two spots of soil water reduction 

recognizable that extend to a depth of 2 m: The first one is located between x=0 to x=2 m, 

the second one between x=6 m and x=10 m. Those locations are obviously related to the 

positions of two trees (x=-2.5 m and x=8.6 m, respectively, Fig. 2.3) and demonstrate their 

root water uptake during the dry spell in summer 2006. Although the northern tree is 

positioned beyond the field plot (x=-2.5 m), its root system is assumed to influence the soil 

water distribution in the inner part of the field plot due to the tall habitus of the tree. 

After this dry spell the water content within the top soil obviously rises during August 

2006. Those locations where tree roots predominate remain still dry during precipitation 

events in beginning of August. On the other hand, there are again indications of 

preferential flow given: Locations between x=4  m and x=8 m show higher water contents 

in a depth of 3 m than the surrounding area (Fig. 5.16b, 2006/08/11). Those spots coincide 

exactly with those which were assumed to be connected to preferential flow paths during 

the passage of a windstorm with considerable rain events (Fig. 5.14b, 2007/01/23). 

Additionally, those positions were characterized by high peak velocities, pv , in a tracer 

experiment (analyzed in chapter 6, also depicted in Fig. 5.14c), supporting the assumption 

that preferential flow is the reason for rapidly rising water contents at these locations. 

Finally, decreasing depths to groundwater table, GWL , during August 2006 (Fig. 5.16a) 

are reproduced well by higher water contents in lower depths (i.e., below 2.5 m, Fig. 

5.16b). 

In October to November 2006 the depth to groundwater table reaches a further 

maximum, reflected in a desaturation in depths below 2.5 m (Fig. 5.17). Also the net water 

supply, i.e., PET , decreases during this period, which is supported by decreasing soil 

water contents within the topmost two meters of the soil. In contrast to the dry spell in 

summer 2006 (2006/07/26, Fig. 5.16b), the location between x=6 m and x=8 m (i.e., below 

a tree) dries less out in a depth of about 2 m. This indicates that long-term soil water 

monitoring using ERT is capable to map tree root systems. Therefore, it is possible to 

separate soil water dynamics caused by soil heterogeneity (dominating water fluxes in 

winter) from dynamics caused by the heterogeneity of the root system (dominating water 

fluxes in summer). 
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In the beginning of 2007, GWL  is decreasing continuously, attended by several rain 

events. The most apparent precipitation event at 2007/01/18 was analyzed in the previous 

chapter. Those conditions are represented by a continuous increase in soil water contents, 

reaching its maximum in 2007/03/30 (Fig. 5.17). 
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Fig. 5.17: Soil water content changes in the period between October 2006 and March 2007 

for plane y=6 m with respect to a background taken at 2006/06/13. 

 



 

 

5.55.55.55.5 ConclusionsConclusionsConclusionsConclusions    

Soil water content was monitored in several ERT sections in a forest stand during a nine 

months period, namely from the beginning of June 2006 until the end of March 2007. The 

two outer sections were used to calibrate the petrophysical relationship in order to derive 

water contents from ERT measurements. It turned out that a linear petrophysical model 

was sufficient to relate water contents to bulk soil electrical conductivity. Afterwards, a 

section located at the center of the field plot was used to validate previously derived 

relationships. For the geoelectrical inversion two different error models were used: one 

model that relates the error level to the measured resistance, REM, and one model that 

relates the error model to the electrode configuration, CEM. The mean ERT derived water 

content at a certain depth was recorded over time and plotted together with the average 

water contents obtained from TDR probes at the same depth. A median filter was used to 

reduce the noise of the time series of TDR and ERT measured moisture contents. The 

course of resulting water contents obtained for both error models was in high agreement 

with the TDR values. The CEM model seemed to describe the error level of the ERT 

measurements better than the REM model so that the correlation between ERT and TDR 

derived water contents was considerably larger for the CEM than for the REM model. 

Hence, the suitability of ERT to monitor soil water dynamics was further validated by 

means of the CEM model. Despite the use of a median filter which effectively reduced the 

noise level, short-term changes in water content resulting from extreme weather 

conditions could still be detected. A water balance was established where precipitation 

and evapotranspiration were opposed to changes in soil water storage measured by ERT 

and TDR. Here, ERT and TDR data were correlated well but evapotranspiration derived 

from eddy covariance method deviated during summer and autumn. But due to the fact 

that the agreement of ERT and TDR data was very good, ERT is assumed to be appropriate 

to estimate soil water balances. An underestimation of the sum of applied water as 

reported by other authors (Deiana et al., 2008) could not be observed. Finally, a heavy 

rainfall event in January 2007 was investigated by means of a 2D ERT section. Although a 

pixel wise median filter over time was applied, the rapid increase in soil water contents 

could still be detected. Furthermore, regions characterized by different soil water contents 

were observed to be consistent in time, pointing out the heterogeneity the water flow in 

the soil. Additionally, rapid transport into the subsoil indicated preferential flow. The 
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reliability of ERT measurements could be confirmed by the establishment of a water 

balance during and after the rainstorm although the real soil water storage was slightly 

underestimated. Furthermore, a long-term observation of soil water contents measured by 

ERT revealed locations of lower moisture during dry spells which could be assigned to 

tree roots. 

Summing up, ERT turned out to be an appropriate means to observe soil water dynamics 

as well as tree root activity. Although the temporal variability in electrical resistivity was 

originally very large due to data noise, seasonal changes as well as spatial patterns of soil 

water contents could be described accurately when a simple median filter was applied. 

However, more elegant regularization techniques (e.g., time regularization or joint 

inversion) are required to smooth the final distribution of soil water contents. 

 



Determination of Seasonal Water Content Dynamics  103 

 



 

 

 

 



 

 

6666 Investigating Preferential Flow Processes in a Investigating Preferential Flow Processes in a Investigating Preferential Flow Processes in a Investigating Preferential Flow Processes in a 

Forest Soil Using Forest Soil Using Forest Soil Using Forest Soil Using TTTTime ime ime ime DDDDomain omain omain omain RRRReflectometreflectometreflectometreflectometryyyy    and and and and 

EEEElectrical lectrical lectrical lectrical RRRResistivity esistivity esistivity esistivity TTTTomographyomographyomographyomography    

 



106  Investigating Preferential Flow Processes 

 



 

 

6.16.16.16.1 AbstractAbstractAbstractAbstract    

A comparison was made between the well-established time-domain reflectometry (TDR) 

method and electrical resistivity tomography (ERT) to monitor bulk electrical 

conductivity, bσ , during a saline tracer experiment. The experiment was conducted at a 

forest site on the premises of the Forschungszentrum Jülich. To parameterize solute 

transport processes, the convection-dispersion equation (CDE) and the mobile-immobile 

model (MIM) were fitted to the data. Although bσ  derived from ERT was lower than 

TDR measurements in almost all depths, estimated pore water velocities of the CDE 

model were very similar. Early peak arrival times at lower depths and long tailings of the 

breakthrough curves (BTC) clearly indicated preferential flow phenomena which could 

not be described with an appropriate parameterization using classical transport approaches 

such as the CDE. Also the adaption of the MIM model did not lead to more reasonable 

solute transport parameters. Additionally, preferential flow was reflected in high peak 

velocities in the lower depths which exceeded piston flow velocities. The strong decline in 

peak bσ  with depth showed that the volume through which transport takes place 

decreased with depth. Typical features of preferential transport could be detected and the 

spatial variability of the preferential transport process could be imaged by ERT. 

 



 

 

6.26.26.26.2 IntroductionIntroductionIntroductionIntroduction    

Characterization of flow and transport processes in soils relies on measurements that 

capture relevant processes. Preferential flow and transport or rapid transport through a 

part of the soil volume is an example of a process that is difficult to observe with 

measurement techniques that sample the soil solution in situ. Using local observation 

methods such as suction samplers or TDR probes, only a part of the total soil volume is 

sampled and the representativeness of the observed transport may be limited. The 

problem of representativeness of the observed local concentrations is even more 

prominent when large water and solute fluxes occur through only a small part of the soil 

volume. 

Bulk electrical conductivity, bσ , is a proxy of salt tracer concentrations that can be 

monitored non-invasively using techniques like TDR (time-domain reflectometry) and 

ERT (electrical resistivity tomography). These techniques may, therefore, be used to track 

the movement of saline tracers. Since the sampling volume of TDR is limited to a certain 

soil volume around the rods of the TDR probes, TDR measurements represent rather local 

measurements (Ferre et al., 1998; Nissen et al., 2003). In contrast, resistances that are 

measured in an ERT survey integrate the electrical conductivity of the subsurface over a 

larger soil volume. By inverting a data set of resistance measurements, a map or 3-D 

distribution of the bulk electrical conductivity in a larger image plane or soil volume is 

obtained. However, the inversion process may have an important impact on the spatial 

resolution and the contrast or variability in the obtained electrical conductivity 

distribution (LaBrecque et al., 1996; Kemna et al., 2002; Day-Lewis et al., 2005). 

In several studies TDR was used to monitor solute transport processes in soils on the 

laboratory scale (Vanclooster et al., 1993; Mallants et al., 1994; Ward et al., 1994; Risler et 

al., 1996; Vanderborght et al., 1996; Vogeler et al., 1997), the lysimeter scale (Vanclooster 

et al., 1995; Vanderborght et al., 1997; Vanderborght et al., 2000; Javaux and Vanclooster, 

2003), and the field scale (Kachanoski et al., 1992; Kachanoski et al., 1994; Jacques et al., 

1998; Noborio et al., 2006). Meanwhile, a number of studies reported on the application of 

ERT to monitor tracer experiments. They can also be summarized in terms of the scale on 

which they were carried out: Binley et al. (1996) and Olsen et al. (1999) derived 

tomographic images from ERT to analyze solute transport in undisturbed soil columns. On 
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the next larger scale, Köstel et al. (2008) recently monitored the movement of a calcium 

chloride tracer applied to an undisturbed soil monolith by means of ERT and TDR. Slater 

et al. (2000) and Slater et al. (2002) performed tracer experiments in large experimental 

tanks. On the field plot scale, Deiana et al. (2008) carried out a freshwater infiltration 

experiment using ERT and ground penetrating radar (GPR) and Looms et al. (2008) 

estimated solute transport parameters by monitoring a tracer plume. On the field scale, 

quantitative analysis of a tracer experiment was performed by Kemna et al. (2002). Most 

of the cited studies focussed on the deeper subsurface or sites with a rather coarse soil or 

sediment texture. In such soils or aquifers, flow heterogeneity is manifested on a relatively 

large scale, which can be resolved by ERT. In finer textured soils and closer to the soil 

surface, preferential flow and transport occurs through large inter-aggregate pores, cracks 

and biopores (Feyen et al., 1998). Therefore, we investigated in this study whether ERT 

could be used to image preferential flow processes in a forest soil with a fine texture. 

Imaging preferential flow and transport on the pore scale is however beyond the spatial 

resolution of field-scale ERT applications. However, the effect of the rapid saline tracer 

intrusion in the large inter-aggregate pores or macropores may be observed in the bulk 

electrical conductivity. Mass transfer processes were investigated by Singha et al. (2007) 

when they injected freshwater into a confined, brackish aquifer. They obtained a 

nonlinear, hysteretic relationship between fluid electrical conductivity, wσ , and bσ , 

which they interpreted as indication of mass transfer limitations between the mobile and 

immobile fractions of the pore water. Therefore, ERT might be used to monitor 

preferential transport and image its spatial variation. To describe preferential flow 

processes mathematically, van Genuchten and Wierenga (1976) proposed a mobile-

immobile model (MIM) in which the pore water is divided into a mobile and an immobile 

fraction, respectively. Advective flow is assumed to occur only in the mobile pore region, 

whereas exchange between both regions is allowed by molecular diffusion. This concept 

has been the basis for the interpretation of many transport experiments conducted in soils. 

A detailed overview of model applications for structured soils is given by Köhne et al. 

(2009). 

In this study, we investigate whether preferential flow that was induced during a tracer 

experiment in a fine textured forest soil can be monitored and imaged using ERT. First, 

bσ  values and transport model parameters that were derived from breakthrough curves 

obtained with ERT and TDR were compared. On the lysimeter scale, Köstel et al. (2008) 

already featured TDR to be a valuable reference which measurements agreed very well 

with ERT inverted bσ . But the soil they investigated showed a rather homogeneous 

transport on the larger scale characterized by a relatively small effective dispersivity and a 

pore water velocity which was close to the mean flow rate divided by the volumetric 
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water content. Therefore, a second topic of this work is to investigate whether ERT is 

capable of detecting and imaging more heterogeneous transport or more outspoken 

preferential flow and transport processes, which can be expected in a fine textured forest 

soil when a high infiltration rate is applied. 

 



 

 

6.36.36.36.3 Materials and Materials and Materials and Materials and MethodsMethodsMethodsMethods    

6.3.16.3.16.3.16.3.1 Experimental SetupExperimental SetupExperimental SetupExperimental Setup    

A field plot was equipped with 36 ERT boreholes for monitoring of natural changes in soil 

water content. For the tracer experiment, only a plot with twelve boreholes out of the 

entire setup was selected (Fig. 6.1). Each borehole consists of 16 stainless steal electrodes, 

distributed over a depth from 7.5 cm to 284 cm (Tab. 2.2). On the east side of the plot, 

additional soil physical measurements were taken in different depths: The vertical trench 

wall (related to trench 3, Fig. 6.1) was equipped with 8 horizontally installed TDR probes, 

5 suction samplers, and 6 temperature probes (Tab. 2.2). 
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Fig. 6.1: Overview of field site with installed trenches, sprinklers, and irrigated area. 
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These soil physical data were recorded hourly, whereas ERT monitoring was restricted by 

the duration of one measurement cycle (i.e., 10 h 31 min) which led to two measurements 

per day. An eight channel apparatus “Resecs” (GeoServe GmbH, Kiel, Germany) was used 

for the geoelectrical measurements. Based on test measurements a dipole-dipole electrode 

configuration was used for ERT data acquisition. To obtain a strong signal in measured 

voltages (i.e., low geometric factors), the current was injected between two boreholes (i.e., 

2 m apart). Due to internal restrictions of the device, the potential dipole had to be placed 

within one borehole (Fig. 6.2a). 

 
a) b) 

Fig. 6.2: a) Dipole-dipole configuration taken for the ERT measurements. C1, C2 denote 

current electrodes separated in two boreholes, and P1, P2 potential electrodes 

within one borehole. b) Experimental setup of the tracer experiment. 

 

Two sprinklers were used for irrigation of an area of about 6 m x 8 m. Both sprinklers 

were located in the outer area of the irrigated site (Fig. 6.1). The sprinklers were supplied 

by a fire hydrant 200 meters away from the field site. The irrigation rate was controlled 

by an electromagnetic valve with a clock timer that opened the valve only 15 minutes per 

hour so that a mean irrigation rate of 16.9 −dcm  was obtained. Two weeks before the 

tracer was applied, the irrigation with tap water was started to create a saturated soil 

profile with a homogeneous electrical conductivity of the pore water ( 121049.4 −−⋅ mS ). 

On April 15, 2007 at 5:45 p.m. the tracer application was initiated. The sprinklers were 

disconnected from the fire hydrant and connected by an electric pump to tanks (Fig. 6.2b) 

that were filled with a calcium chloride solution ( g3105.6 −⋅ CaCl2 3−
cm , 111087.9 −−⋅ mS ) 

for 24 hours. The electric pump was adjusted to keep the same irrigation rate as before. 
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Afterwards, the tracer was leached by means of tap water irrigation for 40 days, again 

with an irrigation rate of 16.9 −= dcmq f . Fig. 6.3 shows the distribution of the irrigation 

rate that was measured in twelve rain gauges and which served as basis for the derivation 

of mean irrigation rates. The rain shadow in the lower right corner is caused by a tree 

trunk. Since trees were still not foliating at the time of the experiment, transpiration was 

assumed to be negligible. 

 
Fig. 6.3: Mean flux density, fq , of tracer and tap water irrigation, respectively. 

Pentagrams denote rain gauges, open circles sprinklers, and closed circles trees. 

 

6.3.26.3.26.3.26.3.2 Data AnalysisData AnalysisData AnalysisData Analysis    

6.3.2.16.3.2.16.3.2.16.3.2.1 Derivation of Concentrations from Bulk Soil Derivation of Concentrations from Bulk Soil Derivation of Concentrations from Bulk Soil Derivation of Concentrations from Bulk Soil ElectricalElectricalElectricalElectrical    Conductivity Conductivity Conductivity Conductivity 

MeasurementsMeasurementsMeasurementsMeasurements    

Both TDR and ERT result in bulk electrical conductivity values, bσ , after post-processing. 

For constant soil water contents and bσ  values smaller than 15 −mS , a linear relation 

between bσ  and the salt tracer concentration, bC , can be assumed (Ward et al., 1994): 
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cbcbC βσα +=  [6.1] 

 

cα  and cβ  are calibration constants. For the parameterization of solute transport models, 

also relative concentration changes can be used. If bulk electrical conductivities are 

linearly related to the salt tracer concentrations, this implies that transport model 

parameters can also be derived from relative changes in bulk electrical conductivity. Eq. 

[6.1] is valid for resident concentrations at time t , )(tC , for background concentration at 

time 0=t , inC , and for the tracer input concentration, 0C . 

A relative concentration can be calculated which is independent on calibration 

parameters cα  and cβ : 
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[6.2] 

 

For a linear transport process, the relative concentration ]/[])([ 0 inin CCCtC −−  and 

relative bulk electrical conductivity are described by the same transport equation that is 

used for the absolute concentration C . When inbb ,0, σσ −  is unknown, it may be fitted 

from observed breakthrough curves. bσ  data (obtained from TDR or ERT) were 

standardized at a temperature of C°25  according to Eq. [3.30]. 

6.3.2.26.3.2.26.3.2.26.3.2.2 Analysis of Solute Analysis of Solute Analysis of Solute Analysis of Solute TransportTransportTransportTransport    

Comparison Between ERT and TDRComparison Between ERT and TDRComparison Between ERT and TDRComparison Between ERT and TDR    

First, a comparison was performed between ERT and TDR breakthrough curves (BTCs). 

Therefore, the “next neighbor pixel” to a respective TDR probe (8 in total) was taken out 

of a 2D distribution of background corrected ERT conductivities, inbb t ,)( σσ − . Here, plane 

y=0 (Fig. 6.1) was considered as reference, since boundary effects seemed to be too distinct 

when taking boundary elements out of plane x=8 m. First, BTCs derived from both TDR 

and ERT were compared in terms of peak arrival times, pt . This information was used to 

derive peak velocities, pp tzv /= , where z  is the observation depth. The peak velocity, 

pv , was compared with the piston flow velocity, 

 

θ

f

q

q
v = , 

[6.3] 
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where fq  is the applied irrigation rate of 16.9 −dcm . The soil water content, θ , was 

derived as mean of all available TDR water contents from the top surface to the respective 

depth of interest. Piston flow velocity was calculated assuming that the water flux was 

homogeneous in the soil profile and that the entire water-filled pore space contributed to 

the transport process. When preferential flow occurs, local water fluxes can be 

considerably larger than the mean water flux and parts of the pore volume may be 

bypassed by rapid transport in preferential flow zones or macropores. This rapid transport 

corresponds with a considerable tracer breakthrough that is much earlier than expected 

when flow is uniform and flow takes place uniformly in the entire water filled pore 

volume. Hence, a peak velocity that is much larger than the piston flow velocity is an 

indicator of preferential flow. 

To illustrate the spatial variability of the transport process and the resulting breakthrough 

curves (BTCs) of bulk soil electrical conductivities, TDR values were also compared with 

the mean and the 10th and 90th percentiles of all ERT derived bσ  BTCs calculated from all 

available inverted ERT planes (namely x=6 m, x=8 m, x=10 m, y=0, y=2 m, y=4 m, y=6m, 

Fig. 6.1). 

Comparison Between CDE and MIM ModelComparison Between CDE and MIM ModelComparison Between CDE and MIM ModelComparison Between CDE and MIM Model    

BTCs measured by TDR and ERT were analyzed by fitting the convection-dispersion 

equation (CDE): 
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where C  is the resident concentration, D  is the dispersion coefficient, v  is the pore 

water velocity, z  is depth, and t  is time. Also the mobile-immobile transport model 

(MIM) which accounts for rapid transport in the mobile pore region and a long tailing of 

the breakthrough curve due to rate limited solute exchange between the immobile and 

mobile pore regions was applied. The MIM model is expressed by following equations 

(van Genuchten and Wierenga, 1976): 
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where the subscripts m  and im  denote “mobile” and “immobile”, respectively, θ  is the 

volumetric water content, and α  is a first-order mass transfer coefficient. For simplicity, 

mobile water content is often expressed by the dimensionless quantity θθβ /m= , where 

θ  is the total volumetric water content. 

The CDE model was fitted to both TDR and ERT data whereas the MIM model was only 

fitted to ERT data. Here, mean electrical conductivities of ERT data were taken from all 

imaged planes in a related TDR depth. To cover the entire profile investigated by ERT 

(electrodes were buried down to a depth of 284 cm, Tab. 2.2), depths 247 cm and 292 cm 

were included additionally. Generally, optimization was performed by means of the 

CXTFIT code (Toride et al., 1999). Concentration data were considered as resident 

concentrations or volume averages of the mobile and immobile pore region concentration. 

As boundary condition, a solute pulse with application time dt 10 =  was used. The soil 

domain was assumed to be initially solute free. For the CDE model, fitted parameters were 

v , D , and 0,0, ][ tinbb σσ − . For the MIM model, pore water velocity, v , was fixed to the 

related piston flow velocity, qv  (Eq. [6.3]), and parameters D , α , β , and 0,0, ][ tinbb σσ −  

were optimized. 

 



 

 

6.46.46.46.4 Results and Results and Results and Results and DiscussionDiscussionDiscussionDiscussion    

Comparison Between ERT and TDRComparison Between ERT and TDRComparison Between ERT and TDRComparison Between ERT and TDR    

Fig. 6.4 shows BTCs derived from TDR and from ERT data in “near neighbor pixels”. For 

almost all depths (except for 24 cm, 84 cm), electrical conductivities measured by TDR are 

considerably higher than ERT derived values, particularly at the top. This can be 

explained by the smoothing in the geoelectric inversion: bσ  rises rapidly in the top layer 

during tracer application, whereas bσ  is much smaller within lower soil horizons. 

However, the regularization of the Occam’s inversion (Eq. [3.15]) causes a smearing of the 

sharp boundary between high and low conductive regions. This issue is also pointed out 

by Day-Lewis et al. (2005) who investigated the limitations of geophysical data. Singha 

and Gorelick (2005) underestimated the total tracer mass in their experiment, too. Besides 

the already mentioned issue of regularization, they also referred to low measurement 

sensitivity far from the boreholes. Additionally, Vanderborght et al. (2005) pointed out 

this source of error in their synthetic studies. However, this phenomenon should be less 

pronounced for the differences shown in Fig. 6.4 since depicted BTCs of ERT are derived 

from pixels directly located at a borehole where the ERT sensitivity is high. Slater et al. 

(2002) explained the differences between ERT and direct solute concentration 

measurements based on the differences in support volume between both methods. 
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Fig. 6.4: Measured tracer breakthrough (symbols) derived from TDR and ERT. ERT 

values are taken from grid elements next to TDR probes. Lines indicate CDE 

model fits. 
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Hence, different tailings of TDR and ERT based BTCs can be interpreted similarly: In case 

of TDR, the sampling volume is very small, so preferential flow channels might or might 

not be included (Mallants et al., 1994). In the current study, TDR probes consisted of 

three rods with a length of 30 cm, a spacing of 3 cm, and a diameter of 0.3 cm. For three-

rod probes, most of the measurement sensitivity is close to the rods (Ferre et al., 1998). 

The sampling volume of the TDR probe is roughly equal to the length of the rods 

multiplied by the area of a circle with a diameter that is equal to the distance between the 

two outer rods. Hence, the resulting sampling area of the TDR probes in a vertical ERT 

image plane amounts approximately 30 cm2. The ERT images are a result of an inversion 

of resistance measurements and the spatial resolution of the inverted images depends 

mainly on the used configurations of the electrodes, the regularization that is used to 

constrain the ill-posed inversion problem, and the spatial distribution of the bulk 

electrical conductivity. For the used dipole-dipole measurement configuration, the 

resolution is generally larger close to the electrodes. However, the resolution is difficult to 

estimate and should in fact be reevaluated for each measurement when the distribution of 

the bulk electrical conductivity changes. The resolution of the parameter grid that we 

used (150 cm2 at the soil surface to 200 cm2 at 184 cm depth) represents an upper 

boundary of the obtained resolution in the ERT derived images. Therefore, the volume 

sampled by ERT is expected to include more preferential flow paths leading to more 

obvious phenomena such as longer tails of BTCs compared to TDR. To investigate 

whether the differences between TDR and ERT can be explained by spatial variability in 

transport properties, which should also be reflected in the distribution of ERT based bσ , 

mean and percentiles (5th and 95th) of the bulk electrical conductivities are plotted in Fig. 

6.5 for several depths. 
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Fig. 6.5: Measured tracer breakthrough (symbols) derived from TDR and ERT, 

respectively. ERT conductivities are averaged values calculated from all grid 

elements of the respective depth. Range between 5th and 95th percentiles is 

plotted as shaded area. Lines indicate CDE model fits. 

 

For almost all depths (except for 24 cm, 84 cm), TDR based peak conductivities are higher 

than ERT based values. For several BTCs (particularly in lower depths), TDR based 
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conductivities are found beyond the 90 percent range of ERT based values. Only in a 

depth of 84 cm TDR measurements are completely enclosed by the ERT percentiles. 

Therefore, it can be concluded that differences between TDR and ERT are not due to 

spatial variation of the transport process that exists at a scale that is larger than the 

support volume of the ERT derived conductivities. As a consequence, these differences are 

caused by the regularization during the ERT inversion or are due to variations of the 

transport process at a scale that is smaller than the support volume of the ERT derived 

conductivities. 

 

Tab. 6.1: Flow velocities: piston flow velocity, qv , peak velocity, pv , and fitted CDE 

parameters: pore water velocity, v , dispersion coefficient, D , and the input 

conductivity, 0,0, ][ tinbb σσ − , derived from ERT and TDR measured BTCs at 

different depths, z . 

][cmz  
qv  

][ 1−dcm  
][ 1−

dcmv p  ][ 1−dcmv  ][ 12 −dcmD  
0,0, ][ tinbb σσ −  

][ 1 dmS −  

  ERT TDR ERT TDR ERT TDR ERT TDR 
5 21.53 4.61 4.31 6.04 6.24 185 11 0.33 0.26 

7.5 21.72 6.91 6.94 8.26 12.17 425 62 0.34 0.27 
14 22.17 12.90 9.33 10.24 10.73 1319 67 0.35 0.29 
24 22.43 22.11 11.11 6.54 5.07 1921 250 0.44 0.39 
44 22.33 20.79 37.93 2.55 6.26 1144 3034 0.59 0.61 
84 22.27 26.37 3.23 0.15 0.05 2093 626 7.82 20.00 

124 22.27 38.92 57.41 5.04 9.88 6087 6215 0.42 0.90 
184 22.27 31.40 40.90 20.14 17.64 4712 2371 0.19 0.33 

 

Computed peak velocities, pv , measured by ERT coincide fairly well with those derived 

from TDR for all depths (Tab. 6.1). An exception is the depth of 84 cm where TDR based 

pv  is much smaller than the value derived from ERT. But here, TDR measurements were 

very noisy leading to an apparently late breakthrough. This also leads to a much smaller 

peak conductivity measured by TDR in a depth of 84 cm (Fig. 6.4). Performing a linear 

regression between ERT- and TDR- pv  leads to a coefficient of determination of 82.02 =r  

if noisy TDR data in a depth of 0.84 cm are omitted (Fig. 6.6a). 
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Fig. 6.6: a) Linear regression between peak velocities, pv , derived from ERT and TDR, 

respectively. Noisy TDR data in a depth of 0.84 cm are omitted. b) Depth profile 

of peak velocities, pv , derived from ERT and TDR, respectively. Shaded area 

denotes Bt horizon. 

 

Generally, it is obvious from both TDR and ERT measurements that peak velocities in 

larger depths are much higher than in the uppermost regions, indicating a very fast tracer 

breakthrough in deeper soil layers (Tab. 6.1, Fig. 6.6b). A rapid change between 84 cm and 

124 cm depth is apparent, indicating an acceleration of the fluid from the fine-textured Bt 

horizon to Bg horizon. This acceleration coincides with a strong decrease in the peak of 

the electrical conductivity change. This suggests that the acceleration is caused by a 

considerable decrease in the effective pore volume through which tracer transport takes 

place. Additionally, below a depth of 124 cm the calculated peak velocity, pv , 

significantly exceeds the piston flow velocity, qv , derived from Eq. [6.3]. A depth profile 

of ERT based pv  is shown in Fig. 6.10b in comparison with a profile of qv  and will be 

discussed later on in more detail. This aspect is obviously a further indication of 

preferential flow processes which are clearly related to horizons underneath the clayey Bt 

horizon. In order to investigate whether pv  derived in this study (Tab. 6.1) are reasonable, 

they were cross-checked with values taken from literature. Nimmo (2007) provided a 

detailed analysis of 64 studies addressing preferential flow. He analyzed solute transport in 

terms of the fastest portion of the flow, maxv , defined as distance traveled divided by the 

first arrival time of a tracer. For experiments where a continuous water infiltration was 

applied at the land surface, he obtained a geometric mean 1

max 129 −= dcmv  with standard 
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deviation 153 −dcm . Germann and Hensel (2006) performed infiltration tests at 25 

different sites, leading to 215 maxv  values derived from TDR measurements. The majority 

of velocities ranged between 1

max 1728 −= dcmv  and 1

max 3456 −= dcmv . In contrast, 

maximal pv  observed in the current study only amounted 14.31 −dcm  for ERT and 

19.40 −dcm  for TDR, respectively (Tab. 6.1). Those considerable deviations originate from 

the fact that we calculated pv  on the basis of the peak arrival time instead of the first 

arrival time. This was done with respect to the relatively low temporal and spatial 

resolution of ERT which makes it difficult to derive first arrival times from BTCs. 

ERT based BTCs lead to higher dispersion coefficients than the TDR based BTCs, except 

for depths 44 cm and 124 cm (Tab. 6.1). Köstel et al. (2008) also report on higher 

dispersivities obtained from ERT compared to those derived from TDR . Here, this aspect 

is especially conspicuous at the top and can be explained by longer tailings of BTCs (Fig. 

6.4). Vanderborght et al. (2005) found that dispersivity derived from ERT data might be 

overestimated due to loss of spatial resolution in the ERT images. Kemna et al. (2002) 

pointed out that the estimation of dispersivity is sensitive to the regularization chosen in 

the geophysical inversion. 

Comparison Between CDE and MIM MComparison Between CDE and MIM MComparison Between CDE and MIM MComparison Between CDE and MIM Modelodelodelodel    

The CDE fits the observed BTCs generally well (Fig. 6.4). The misfit between the CDE 

model and the measurements is considerably smaller than the difference between the ERT 

and TDR measurements. Despite the relatively good fit by the CDE model, the fitted 

parameters indicate that the CDE is not an adequate model to explain the observed 

transport process (Tab. 6.1): The fitted pore water velocity is considerably smaller than 

the piston flow velocity and fitted dispersion coefficients are unrealistically high. 

Therefore, the MIM model (Eqs. [6.5], [6.6]) was fitted to ERT data. For comparison, Fig. 

6.7 shows mean ERT bσ  together with the CDE and MIM fits. Parameters of both models 

are summarized in Tab. 6.2. 

In the uppermost depths there is no significant difference recognizable between the fits of 

the CDE and MIM models. The MIM, in which the pore water velocity was fixed to the 

piston flow velocity, could equally well describe the breakthrough as the CDE model with 

a pore water velocity that was considerably smaller than the piston flow velocity. The 

slower breakthrough in the top soil layer could therefore be explained by rapid transport 

through only a small part of the pore volume in combination with a rapid mass exchange 

between the mobile and immobile pore regions. 
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Fig. 6.7: Measured tracer breakthrough (open circles) derived from ERT. Conductivities 

are averaged values calculated from all grid elements of the respective depth. 

Solid lines represent fits of the CDE model, dashed lines fits of the MIM model, 

where pore water velocity is fixed to piston flow velocity. 

 

Such a rapid mass exchange can be linked to the structure of the top soil layer which 

consists of loose and well aggregated soil. Below a depth of 84 cm, the quality of the MIM 
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fit is clearly worse than that of the CDE model (except for 184 cm). This is due to the 

lower degree of freedom caused by fixed pore water velocities. 

 

Tab. 6.2: CDE ( v  pore water velocity, D  dispersion coefficient, and 0,0, ][ tinbb σσ −  input 

conductivity) and MIM transport parameters (D  dispersion coefficient, 

0,0, ][ tinbb σσ −  input conductivity, α  mass transfer coefficient, and β  relative 

mobile water content) derived from fits to average BTCs at different depths, z , 

obtained with ERT. For the MIM model, v  was not fitted but fixed to piston 

flow velocity. 

][cmz  ][ 1−dcmv  ][ 12 −dcmD  
θθβ /m=  

][−  
][ 1−dα  

0,0, ][ tinbb σσ −  

][ 1 dmS −  

 CDE MIM+ CDE MIM MIM MIM CDE MIM 
5 8.97 21.53 229 1643 0.0001l 0.1773 0.26 0.26 

7.5 10.60 21.72 452 2286 0.0001l 0.1367 0.24 0.24 

14 15.87 22.17 1334 3403 0.0024 0.3794 0.24 0.24 
24 9.95 22.43 1443 10000u 0.0001l 0.0479 0.26 0.28 
44 1.22 22.33 950 10000u 0.0001l 0.0053 1.11 0.27 
84 0.84 22.27 1114 6329 0.0001l 0.0007 1.51 0.50 

124 5.11 22.27 5272 1801 0.0001l 0.0168 0.39 0.11 
184 23.27 22.27 3775 3994 0.0001l 0.1017 0.10 0.11 
247 26.61 22.27 4276 527 0.0001l 0.0020 0.04 0.06 

292 27.22 22.27 5015 856 0.0001l 0.0013 0.05 0.07 
+ fixed  l lower bound  u upper bound 

 

Noticeable is the dramatic decrease of the mass transfer coefficient, α , in the soil profile, 

exhibiting a minimum in a depth of 84 cm (Fig. 6.8). This means that the exchange into 

the immobile phase is significantly reduced here (Tab. 6.2). The depth of 84 cm is located 

within the Bt horizon indicating that this horizon is the initiator of preferential flow 

processes (Fig. 6.8). 
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Fig. 6.8: Depth profile of mass transfer coefficient, α , taken from Tab. 6.2. Shaded area 

denotes the Bt horizon. 

 

In this study, BTCs of volume averaged or resident concentrations were measured. 

Derivation of pore water velocities from BTCs of resident concentrations requires a 

translation of resident to flux concentrations since pore water velocity is inverse 

proportional to the first temporal moment of the flux concentration breakthrough curve. 

This translation depends on the transport model. A corner stone assumption of the CDE 

model is that solute fluxes are linearly related to a concentration gradient of resident 

concentrations. In the MIM, the flux concentrations are related only to the resident 

concentrations in the mobile pore region, which may be a small part of the total pore 

region. As a consequence, small total resident concentrations may be linked with large 

flux concentrations when the solute mass is mainly in the mobile pore region and the 

volume of this pore region is small. To illustrate the difference between the two models, 

which predict very similar resident concentration breakthrough curves, breakthrough 

curves of flux concentrations that are predicted by both models are shown in Fig. 6.9. 
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Fig. 6.9: Measured resident concentrations (open circles) and flux concentrations 

predicted by CDE and MIM models that were fitted to resident concentrations. 

Concentrations are expressed in terms of bσ , resident concentrations are 

denoted by index “r”, flux concentrations by index “f”. 

 

These predicted flux concentration BTCs show large differences between the MIM and 

CDE, particularly in lower depths. Hence, they demonstrate the impact of the transport 



128  Investigating Preferential Flow Processes 

 

model that is assumed when resident concentration BTCs are interpreted. Since the fitted 

pore water velocity is considerably smaller than the expected piston flow velocity and 

since the fitted dispersion coefficients are unrealistically high (Tab. 6.1), it is questionable 

whether the CDE model that was fitted to resident concentration BTCs can predict flux 

concentrations when preferential flow occurs. Underestimation of the pore water velocity 

that was derived from a CDE fit to a resident concentration breakthrough curve was also 

observed in other studies and attributed to preferential transport through a small fraction 

of the pore space (Vanderborght et al., 2000). 

Spatial Analysis of ERT based Solute TransportSpatial Analysis of ERT based Solute TransportSpatial Analysis of ERT based Solute TransportSpatial Analysis of ERT based Solute Transport    

Although the BTCs can be fitted fairly well by the CDE model, the obtained CDE 

parameters appear to be non realistic. Therefore, the spatial distributions of the peak 

velocity and the peak soil bulk conductivities are considered in a further analysis of the 

transport heterogeneity. Fig. 6.10a shows the mean peak conductivities, inbpb ,, σσ − , with 

10th and 90th percentiles derived for each depth of the geophysical inversion grid. At 

locations with very low inbpb ,, σσ − , very high peak velocities were derived. Although the 

values are still within the range of maxv  reported by Nimmo (2007) and Germann and 

Hensel (2006), they have to be interpreted as artifacts: These result from changes in 

electrical conductivity in the upper part of the soil profile due to the smoothness 

constraint in the ERT inversion. Those BTCs were indentified by a low plateau 

concentration after short time instead of a peak concentration. Hence, only BTCs were 

considered for further analysis in which inbpb ,, σσ −  exceeded a threshold of 

14104.8 −−⋅= mStσ . This value is the 5th percentile of the distribution of all inbpb ,, σσ − . 
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Fig. 6.10: a) Corrected mean peak conductivity, inbpb ,, σσ − , and its 10th and 90th 

percentiles, indicated by P10 and P90, respectively. Thick black line represents 

a reference illustrating a decrease with 5.0/1 z . b) Mean peak velocity, pv , and its 

10th and 90th percentiles, indicated by P10(vp) and P90(vp), respectively. Piston 

flow velocity, qv , is shown for comparison. 

 

For a constant dispersion coefficient, the peak concentration is expected to decrease with 
5.0/1 z  due to dilution. But here, it is evident that peak conductivities decrease 

dramatically below a depth of about 20 cm (i.e., underneath the A horizon). On the other 

hand, the peak conductivity remains almost constant below 65 cm, which is the upper 

boundary of the Bt horizon. Furthermore, a rapid reduction is observed in a depth of 

about 190 cm. Those strong declines can be caused by two mechanisms. The first is a 

“non-Fickian” transport process in which the dispersion coefficient increases with depth. 

A second is a change of the pore volume in which transport takes place with depth. The 

peak bσ  represents a volume weighted average of the concentrations in the mobile and 

immobile pore regions (Singha et al., 2007). A decrease with depth of the pore volume 

with mobile water also results in a decrease in peak bσ  with depth. This relationship may 

also explain an increase of bσ  with depth: Below the Bt horizon, i.e., below a depth of 120 

cm, a slight increase in peak bσ  can be observed. This increase cannot be explained by a 

transport process but it can be attributed to a rise in the pore volume of mobile water. As a 
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consequence, spatial patterns of peak conductivities also contain indirect information 

about the pore volume in which transport takes place. 

In contrast to the peak conductivities, the mean peak velocities are low at the top and 

increase rapidly within the uppermost 25 cm, as shown in Fig. 6.10b. Additionally, mean 

piston flow velocity, qv , interpolated from data provided in Tab. 6.1 was plotted. It can be 

seen that below 90 cm depth, the peak velocities become significantly larger than the 

piston flow velocities. This supports the conclusion drawn from the analysis of mass 

exchange coefficients, α , (Tab. 6.2) where the initialization of preferential flow was also 

related to a depth of 80 cm, located within the compacted Bt horizon. 

Generally, it is obvious that the spread around the mean illustrated by the range between 

the percentiles (Fig. 6.10b) is very high. Most apparent is the depth between 200 cm and 

300 cm. This can be linked to the lithology since below a depth of 200 cm gravel of a river 

terrace was found, causing partially high velocities. 
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Fig. 6.11: Two-dimensional distributions of corrected peak electrical conductivities, 

inbpb ,, σσ − , (left) and peak velocities, pv , (right). pv  related to 

14

,, 104.8 −−⋅<− mSinbpb σσ  (denoted by tσ  in the left colorbar) are blanked 

out. Mean piston flow velocity ( 122 −= dcmvq ) is marked in the right colorbar. 

Maps are shown exemplary for planes in x-direction. Black dots represent 

electrode positions, Bt horizon is denoted by red lines. 
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To discuss the spatial variation of peak concentrations and peak velocities in more detail 

2D-maps of inbpb ,, σσ −  and pv  for the different planes in x-direction are illustrated in Fig. 

6.11. Similar to Fig. 6.10, the 2D-maps also reflect a rapid decrease of peak bσ  within the 

uppermost 30 to 60 cm. This large peak conductivity at the top (i.e., in the A horizon) can 

be explained by a lower dry bulk density, bd ,ρ , (Tab. 2.1) caused by coarser material and 

organic matter. The drop in peak bσ  is clearly related to the upper bound of the Bt 

horizon although it is evident that this limit cannot be drawn sharply within one depth. It 

can also be seen that the volume in which transport takes place rises again underneath the 

Bt horizon (yellowish to red spots below Bt horizon, Fig. 6.11, left). But it is obvious that 

the locations of these zones are variable in vertical as well as horizontal direction. 

However, these locations are consistent in each plane (e.g., by anomaly with coordinates 

x=10 m, z=-2 m), indicating partly homogeneous soil structures in y-direction. In a depth 

of about 200 cm, where the dense river terrace is present, peak bσ  drops enormously. 

This is again information about preferential flow phenomena appearing in this layer. 

However, the depth of the top of the buried river terrace increases in all planes for x=8 m 

to 10 m. 

As already mentioned, at locations with very low peak concentrations, very high pv  may 

be due to artifacts and pixels with 14

,, 104.8 −−⋅<− mSinbpb σσ  were blanked out in Fig. 

6.11 (right). Contrary to the peak bσ , the peak velocities, pv , are low at the surface (Fig. 

6.11, right). In particular for y=0 m and y=2 m, a belt of low velocities is cognizable which 

coincides with the Bt horizon. This is also the boundary below which the peak velocities 

get larger than the mean piston flow, meaning again that preferential flow is initiated 

here. Generally, the variability of pv  is much higher compared to the variability of peak 

bσ . Spots of high peak velocities occur within the Bt horizon as well as in deeper horizons 

(i.e., the dense river terrace), but they are never found in the uppermost 60 cm. 

 



 

 

6.56.56.56.5 ConclusionsConclusionsConclusionsConclusions    

A tracer experiment was performed at a forest site with a structured soil. To derive solute 

transport properties of the soil from breakthrough curves, TDR as well as ERT 

measurements were conducted. The comparison between both techniques showed that 

bulk electrical conductivity, bσ , derived from ERT underestimated that derived from 

TDR. This deviation could not only be explained by different sample locations and spatial 

variability of soil properties. Therefore, differences between TDR and ERT are assumed to 

be caused by regularization effects induced by the geophysical inversion and by 

differences in support volume. Nevertheless, relative changes of bulk electrical 

conductivities contain valuable information about solute transport: BTCs obtained from 

both techniques illustrated preferential flow phenomena indicated by rapid peak arrival 

times in lower depths and long tailings. To parameterize BTCs the convection-dispersion 

equation (CDE) was fitted to both TDR and ERT based data. Pore water velocities, v , 

derived from CDE fits to BTCs obtained with ERT and TDR were in good agreement (Tab. 

6.1). Long tailings could properly be described by higher dispersion coefficients. However, 

the fitted CDE parameters lacked a physical meaning, i.e., the obtained dispersion 

coefficients were very large. If a dispersivity length, vD / , is calculated, the obtained 

values are much larger than those typically observed in soils (Vanderborght and 

Vereecken, 2007). Therefore, it was investigated whether the application of a mobile-

immobile model (MIM) to ERT data led to a more reasonable parameterization. Here, the 

pore water velocity was fixed to the piston flow velocity according to the irrigation rate 

and the water content. Although the MIM fitted the resident concentration BTCs worse 

than the CDE model due to the fixed pore water velocity, the correspondence between 

the two model fits was relatively large. However, the BTCs of predicted flux 

concentrations by the two models differed considerably. This illustrates that the 

parameterization of transport models on the basis of resident concentration breakthrough 

curves is problematic when preferential flow occurs. 

Therefore, we used the peak bulk conductivity and peak velocity of observed resident 

concentration BTCs from ERT to characterize the preferential transport that was observed 

in this study. Comparing peak velocities with piston flow velocities, it was obvious that 

below a depth of 80 cm the peak velocity exceeded the piston flow velocity. This 
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corresponds with the depth of a compacted Bt horizon which has a considerably lower 

hydraulic conductivity of the soil matrix than the top soil. Besides an increase in peak 

velocity from the surface to the Bt horizon, a drastic decrease in the peak electrical bulk 

conductivity was observed, which is attributed to a smaller pore volume in which rapid 

tracer transport takes place. Additionally, a conspicuous drop in fitted mass transfer 

coefficient, α , between the top soil and the Bt horizon indicated that preferential flow 

was initiated at the top of the Bt horizon. Finally, local structures of peak bσ  and peak pv  

could be identified in 2D maps derived from ERT. Due to the fact that similar structures 

often occurred in independently inverted ERT planes, it can be concluded that those 

anomalies represented indeed geologic realities which have an impact on the spatial 

variability of the preferential transport process. Hence, ERT turned out to be a promising 

means to map preferential flow. Although the method cannot resolve the tracer 

movement on the scale of the individual preferential flow paths, it offers the possibility to 

image the spatial distribution of the volume through which transport takes place and the 

related velocity within the flow paths. The results of our study indicated that the 

preferential flow process is spatially variable. It varies with depth due to soil layers with 

different properties and it also varies laterally with larger zones that are bypassed by 

preferential flow which furthermore varies from location to location. Implementation of 

these vertical and lateral variations in an effective parameterization of preferential 

transport models remains a challenge. 
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Three main issues were addressed in this thesis: First of all, an analysis of data errors was 

conducted to describe them statistically and to investigate their impact on the inversion 

results (chapter 4). This information was incorporated in a study where the seasonal 

variation of soil water content was observed by means of real measured ERT data (chapter 

5). Finally, a tracer experiment was interpreted where ERT was used to monitor changes 

in electrical conductivity both temporally and spatially (chapter 6). 

In the study dealing with data errors (chapter 4) earth models were derived from real 

measured TDR measurements for a dry and a wet scenario, respectively. Corresponding 

ERT resistances were calculated and finally noised by means of an error distribution 

which was obtained from real measured ERT data sets. There were three main conclusions 

derived from this Monte Carlo experiment: First of all, it was obvious that there was a 

certain “overlap” between the standard deviations of the respective realizations obtained 

from both scenarios. Hence, theoretically it can happen that an ERT data set taken in a 

wet soil leads to more resistive results than a data set taken in a desiccated soil. This 

uncertainty was effectively reduced when those data with the highest data error were 

eliminated prior to inversion. Finally, it turned out that for high error levels as present in 

the current data and a layered earth model, the error is dependent on electrode 

configurations rather than on resistances. This justified the idea to apply also error models 

within the geophysical inversion which are specifically related to each configuration. In 

fact, the difference of the mean electrical conductivity taken from both scenarios, dry and 

wet, was more significant compared to the “classical” approach of error treatment. 

Therefore, this error model dependent on electrode configurations was also adapted to a 

study where real measured ERT data were tested to describe naturally occurring changes 

in soil water contents (chapter 5). For the calibration of the petrophysical relationship, a 

relatively short time window was used to derive a function which describes the 

relationship between TDR-θ  and ERT- bσ . ERT resistances were inverted twice, once by 

means of the “classical” error model dependent on resistances and once by means of the 

error model dependent on electrode configurations. After that, water contents were 

achieved from ERT over a period of nine months. Unlike the results of the synthetic 

experiment, the difference between water contents obtained from both error models was 

not that pronounced in this case. However, there were far less outliers when the error 

model dependent on electrode configurations was used. The fact that the benefit of 

adopting this model was more distinct within the synthetic experiment (chapter 4), can be 

explained by the respective levels of data errors: If the error was calculated in dependence 

of the amount of the resistance, a relative error of about 13 % was obtained for the 

synthetic experiment, whereas a mean relative error of only 6 % was achieved for the 

experiment to monitor the seasonal soil water changes. The most obvious explanation for 
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this huge difference is that for the latter case the filter conditions were stricter. Here, data 

with a variability of the potential trace, tCV , (Eq. [3.4]) exceeding 5 % were not 

considered in the inversion. Hence, it can be concluded that an inversion with an error 

model dependent on the electrode configuration makes sense for very noisy data. 

However, removal of noisy data is even more important to obtain unique inversion 

results. Additionally, it turned out that for time-lapse monitoring of soil water contents 

the application of a median filter was highly effective when it has to be dealt with 

considerable ERT data errors. This could be verified by the comparison with a time series 

of water contents which were obtained from TDR measurements. Although a median 

filter cuts off the peaks occurring in a time series of water contents, it could be shown that 

there is still enough information contained in the filtered data to describe single but heavy 

rain events. Furthermore, a long-term observation of soil water contents measured by 

ERT revealed locations of lower moisture during dry spells which could be assigned to 

tree roots. Hence, ERT turned out to be an appropriate means to observe soil water 

dynamics as well as tree root activity spatially. 

In chapter 6 a tracer experiment was analyzed which was also observed by means of ERT. 

Due to a new measurement configuration, i.e., cross-hole current injection, smaller 

geometry factors led to optimized signal to noise ratios, making an additional smoothing 

with a median filter dispensable. However, TDR based breakthrough curves, which served 

again as reference, were underestimated in several depths. Peak bulk electrical 

conductivity and peak velocity of observed resident concentration BTCs were used to 

demonstrate preferential flow: High peak velocities and low peak electrical conductivities, 

which are related to a smaller pore volume where rapid tracer transport occurs, could be 

clearly assigned to the compacted Bt-horizon of the soil profile. Furthermore, similar 

anomalies in soil properties, again characterized by peak velocity and peak electrical 

conducivity, could be verified in different parallel 2D sections. This shows that those 

structures are really existent perpendicular to the investigated planes rather than 

exhibiting only artifacts in the different sections. Therefore, it can be concluded that 

preferential flow can be detected indirectly by means of ERT by using peak bσ  as a proxy 

which illustrates the volume of rapid tracer transport. 

Finally, the following overall conclusions can be summarized from the analysis of time-

lapse ERT measurements: ERT data generally contained valuable information in terms of 

state variables of the soil such as water content but also in terms of solute transport 

properties. A further essential feature consisted in the more dimensional mapping of those 

quantities. To obtain inversion results as reliable as possible, it turned out that it is crucial 

to discard noisy data prior to inversion. A “cleaned” data set with few data contained more 

information than a large data set including measurements of low-quality. This could be 
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accomplished either by means of a threshold regarding the stacking error of the voltage 

traces, which was delivered from the measurement device, or by means of reciprocal 

measurements, if available. Hence, it was important to visualize and inspect already raw 

data. Furthermore, it was important to evaluate the data error level and to incorporate this 

information in an appropriate error model rather than the error estimation using a rule of 

thumb. For smaller relative errors in resistance (i.e., smaller than 7 %) it was sufficient to 

calibrate a commonly used error model for the entire data set which assumes a linear 

relationship between resistance and the error in resistance. For larger errors (i.e., larger 

than 10 %) and a layered earth model it turned out that the error depends on the 

electrode configuration rather than on the resistance. To weight those data accurately 

within the inversion, the error should be determined specifically for each measurement 

geometry. Finally, the development of time-lapse parameters could be improved 

considerably if a median filter over time was applied. But if that approach is adapted, it is 

advisable to increase the temporal measurement density as much as possible to still 

capture natural soil water dynamics. 

However, future activities should still be focussed on an improved quality of raw data and 

on the further development of inversion techniques such as joint inversion, stochastic 

inversion, and time-lapse inversion, which all include additional information to constrain 

the final model parameters. 
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