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Abstract

The High-Energy Storage Ring (HESR) is part of the upcoming Facility
for Antiproton and Ion Research (FAIR) which is planned as a major
extension to the present facility of the Helmholtzzentrum für Schwerio-
nenforschung (GSI) in Darmstadt. The HESR will provide antiprotons
in the momentum range from 1.5 to 15GeV/c for the internal target ex-
periment PANDA. The demanding requirements of PANDA in terms of
beam quality and luminosity together with a limited production rate of
antiprotons call for a long beam life time and a minimum of beam loss.
Therefore, an e�ective closed orbit correction and a su�ciently large dy-
namic aperture of the HESR are crucial. With this thesis I present my
work on both of these topics.

The expected misalignments of beam guiding magnets have been esti-
mated and used to simulate the closed orbit in the HESR. A closed orbit
correction scheme has been developed for di�erent ion optical settings of
the HESR and numerical simulations have been performed to validate the
scheme. The proposed closed orbit correction method which uses the orbit
response matrix has been benchmarked at the Cooler Synchrotron COSY
of the Forschungszentrum Jülich.

A chromaticity correction scheme for the HESR consisting of sextupole
magnets has been developed to reduce tune spread and thus to minimize
the emittance growth caused by betatron resonances. The chromaticity
correction scheme has been optimized through dynamic aperture calcu-
lations. The estimated �eld errors of the HESR dipole and quadrupole
magnets have been included in the non-linear beam dynamics studies. In-
vestigations concerning their optimization have been carried out. The ion
optical settings of the HESR have been improved using dynamic aperture
calculations and the technique of frequency map analysis. The related
di�usion coe�cient was also used to predict long-term stability based on
short-term particle tracking.

With a reasonable reduction of the quadrupole magnets �eld errors
and a di�erent choice of tunes, the dynamic aperture was improved by
roughly a factor two. The inner area of the dynamic aperture where the
particle motion is stable on a long-term scale was increased to include more
than 3σ beam size and the speci�ed maximum closed orbit deviations.
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Chapter 1

Introduction

Experiments with particle accelerators have proven to be an essential in-
strument for nuclear and particle physics to investigate the structure and
the interaction of matter. Such investigations are usually based on scat-
tering experiments where particle beams with known energy are directed
onto targets where interactions take place. The reaction products can be
observed and measured with particle detectors. This information is used
to reconstruct the reactions and to determine properties of elementary
particles and the underlying interactions in the subatomic regime. The
kind of accelerated particles and their energy are determined by experi-
mental setup and the physical process under investigation.

The Facility for Antiproton and Ion Research (FAIR) has been pro-
posed by the Helmholtzzentrum für Schwerionenforschung (GSI) in Darm-
stadt and will provide a multitude of di�erent particle beams (e.g. an-
tiproton beams, beams with rare isotopes or with heavy ions) for a wide
range of scienti�c experiments [1, 2]. The FAIR project is planned to be
a major extension for the present accelerator facility at GSI in which the
High-Energy Storage Ring (HESR) [3] is is one of the new particle accel-
erators dedicated to antiproton physics. It will deliver antiprotons in the
momentum range from 1.5 to 15GeV/c for the internal target experiment
PANDA [4]. The institute for nuclear physics (IKP) of the Forschungszen-
trum Jülich is the leading institute of a consortium which plans the HESR.

For the HESR, a long beam life time and a minimum of beam loss
is critical. This is on one hand due to the demanding requirements of
PANDA in terms of beam quality and luminosity and on the other due
to the use of antiproton beams for which the production rate is a limiting
factor. Therefore an e�ective closed orbit correction and a su�ciently
large dynamic aperture are crucial. Investigations and concluding results
concerning both topics are covered by this thesis.
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2 Chapter 1. Introduction

In chapter two, the theoretical basis of this thesis is described. A �rst
part of it covers linear beam dynamics. The basic concepts of accelerator
physics like twiss parameters and chromaticity are explained. For closed
orbit correction, the orbit response matrix method will be used and is
therefore discussed together with the ways of its applications. The second
part of this chapter is dedicated to non-linear beam dynamics. Driving
terms are introduced to explain the in�uence of magnets on betatron
resonances a�ecting the beam motion. In order to quantify stability of
beam motion, the dynamic aperture is extensively used. The calculation
of the dynamic aperture is described and the technique of frequency map
analysis is introduced which is based on the KAM theorem. The de�nition
of the related di�usion coe�cient completes this chapter.

The High-Energy Storage Ring HESR with its internal target exper-
iment PANDA as well as the embedding in FAIR is discussed in chapter
three. The HESR layout is described together with the HESR magnets
and their alignment. Since PANDA has strong requirements on beam
quality and luminosity, the beam parameters and the modes of HESR op-
eration are presented. The ion optical properties of the HESR are listed.
Finally, the HESR is compared with the Cooler Synchrotron COSY [5, 6]
of the Forschungszentrum Jülich to justify benchmarking experiments.

The fourth chapter deals with closed orbit investigations. Magnet
alignment errors are estimated for the HESR to simulate the closed orbit.
A closed orbit correction scheme is developed to correct the resulting
closed orbit deviations. Numerical simulations are used to validate the
closed orbit correction scheme. Local closed orbit bumps are investigated
since the transverse position of the antiproton beam and its angle have
to be adjustable at various location in the HESR. The measurement of
the orbit response matrix at COSY and the results of its application for
a closed orbit correction are discussed.

Chapter �ve contains non-linear beam dynamics studies. A chromatic-
ity correction scheme is developed for the HESR and its optimization is
described. The �eld errors of the main HESR magnets are presented and
used for non-linear beam dynamics calculations. The non-linear beam dy-
namics is investigated for the two main experimental setups of the HESR.
This is done by using dynamic aperture calculations and frequency map
analysis which are used to optimize the ion optics of the HESR and the
�eld errors of the main HESR magnets.

In the last chapter the results of this thesis are summarized and dis-
cussed. An outlook on a possible continuation of this thesis is given.



Chapter 2

Theory

Electro-magnetic �elds are used in particle accelerators to guide and ac-
celerate charged particles. Under the assumption of single particle tra-
jectories, which means that no interaction between particles take place,
the only forces being considered are those created by the external electro-
magnetic �eld of the accelerator. Electric �elds are used to accelerate
and decelerate particles. To guide a beam of charged particles, electric
and magnetic �elds can be applied although the use of electric �elds is
restricted to low beam energies. The motion of particles is solely deter-
mined by the setup of the electro-magnetic �eld of the accelerator and
can be classi�ed into linear and non-linear beam dynamics.

2.1 Linear beam dynamics

Linear beam dynamics restricts the in�uence of electro-magnetic �elds to
constant or linear forces. Ideally, all particles travelling through an accel-
erator move on a single trajectory which is solely determined by the setup
of the electro-magnetic �eld of the accelerator. If this reference trajectory
is curved, bending forces are necessary to de�ect the charged particles. In
reality, most particles will not move of the reference trajectory. Therefore,
a focussing force has to be applied.

The bending and the focussing forces can be accomplished with electro-
magnetic �elds.

2.1.1 Charged particles in electro-magnetic �elds

All electro-magnetic forces acting on charged particles with charge q and
velocity ~v are described by the Lorentz force

~FLorentz = q( ~E +
~v

c
× ~B) (2.1)

where the electrical and the magnetic �elds are denoted by ~E and ~B
and the speed of light by c. The Lorentz force is conservative and holds
independently of the considered coordinate system.

3



4 Chapter 2. Theory

2.1.2 Co-moving coordinate system

A righthanded and orthogonal co-moving coordinate system (x, y, s) shown
in Figure 2.1 is customarily used in accelerator physics [7]. The local cur-
vature of the trajectory is denoted with ρ whereas the angle θ = 2π

C
corresponds to the angular advance in a ring accelerator with C being
its circumference. A trajectory of a single particle can be expressed in
deviations from the reference trajectory in all three directions (x, y, s).
The horizontal plane is de�ned to be the (x, s)-plane because particle
accelerators are typically built planar.

Figure 2.1: Co-moving coordinate system for charged particles in a ring ac-
celerator. The direction of movement is along s. The transverse deviations are
given in x and y. The local radius of curvature is denoted by ρ whereas the
angular advance is θ.

2.1.3 Hamiltonian

The particle motion is at all times determined by six coordinates consisting
of three generalized coordinates qi(t) and three conjugate momenta pi(t)
where
i = x, y, s. All six coordinates de�ne the phase space of the particle
motion. If only conservative forces are applied, the phase space volume
is constant although not necessarily in the same shape. This is described
by Liouville's theorem.

The Hamiltonian H(qi, pi, t) which describes the system under inves-
tigation connects the time derivatives of conjugate coordinates:

ṗ = −∂H
∂q

, q̇ =
∂H
∂p

. (2.2)

These di�erential equations are known as Hamilton equations.
A charged particle in presence of electro-magnetic �elds is in�uenced

by two kinds of potentials: a vector potential ~A(~q, t) and a scalar potential
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φ(~q, t). These potentials are connected to the electrical and magnetic
�elds by

~E = −~∇φ− 1
c

∂ ~A

∂t
, ~B = ~∇× ~A. (2.3)

In the laboratory frame, the Hamiltonian has the following form

H(qi, pi, t) =
1

2m

(
~p− q

c
~A(~q, t)

)2
+ qφ(~q, t). (2.4)

If the beam energy is constant and only magnetic �elds are used, the
Hamiltonian can be restricted to the vector potential. After a transfor-
mation of the Hamiltonian to the co-moving frame for which the phase
space coordinates are (x, px, y, py, −pt, ct)T and depend on s, it reads

H(x, px, y, py, −pt, ct; s) = − [1 + href (s)x]

×

 q

p0
A(s) +

√
1− 2

β
pt + p2

t −
[
px −

q

p0
Ax(s)

]2

−
[
py −

q

p0
Ay(s)

]2

(2.5)

where

pt ≡ −
E − E0

p0c
, href (s) ≡ 1

ρref (s)
, β ≡ v

c
(2.6)

and t being the absolute time of �ight. Its canonical momentum pt de-
pends on the di�erence of particle kinetic energy E and the reference
kinetic energy E0 as well as on the reference momentum p0. The local
radius of curvature along the reference trajectory is denoted with ρref . A
change of variables to introduce the relative momentum deviation

δ ≡ p− p0

p0
(2.7)

leads to the Hamiltonian

H(x, px, y, py, δ, ct; s) = − [1 + href (s)x]

×

 q

p0
A(s) +

√
(1 + δ)2 −

[
px −

q

p0
Ax(s)

]2

−
[
py −

q

p0
Ay(s)

]2

(2.8)

where the conjugate coordinate to δ is denoted with T and is given by the
canonical transformation

− cT = − β (1 + δ) ct√
1 + β2 (2δ + δ2)

. (2.9)

This implies that the conjugate coordinate of δ and the time of �ight are
not equal.
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A transformation of variables to the so called action-angle variables Ji
and φi which are de�ned by

Ji =
1

2π

˛
pidqi = const. (2.10)

over one oscillation period leads to a Hamiltonian which depends only on
the action Ji and not on the angle φi. The following relations ful�ll the
last equation

qi =
√

2Ji · cos (φi)
pi = −

√
2Ji · sin (φi) .

(2.11)

2.1.4 Multipolar expansion of magnetic �elds

For simplicity, all magnetic �elds are assumed to be orthogonal to the
direction of movement. This means that all magnets have only transverse
components. The vector potential ~A(x, y, s) can be reduced to the longi-
tudinal component As(x, y, s). The charge-free Laplace equation of this
potential As in a cylinder symmetrical coordinate system (r, ϕ, s) is given
by

4As =
∂2As
∂r2

+
1
r

∂As
∂r

+
1
r2

∂2As
∂ϕ2

+
∂2As
∂z2

≡ 0. (2.12)

The potential can be expanded in a Taylor series for r = 0 in this coordi-
nate system to

As(r, ϕ, s) =
cp0

q

∑
n>0

1
n!
An(s)rneinϕ. (2.13)

The sub index n must be positive to circumvent non-physical singularities
for r → 0. The coe�cients An can be derived from the Laplace equation.

The real and the imaginary part represent a solution and they di�er
by a rotation only. Particle accelerators are typically built planar which
motivates the notion of upright (imaginary part) and skewed (real part)
magnets. The so called harmonics bn (imaginary part) and an (real part)
of a magnetic �eld are represented by the coe�cients An(s) = bn(s) +
ian(s). The expansion of the magnetic �eld in harmonics is given by

By(s) + iBx(s) = Bρ
∑
n>0

[
bn(s) + ian(s)

] (
reiϕ

)n
. (2.14)

The sub index n represents a multipole component with (2n + 2) poles
and Bρ = cp0

q is known as magnetic rigidity. Field errors of magnets can

also be expressed in harmonics. They are usually given in terms of 10−4

and are expanded for a speci�c radius R0 [8]

By(s) + iBx(s) = 10−4BR0

∞∑
n=0

[bn(s) + ian(s)] einϕ
(
r

R0

)n
(2.15)
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where BR0 is the main magnetic �eld at the radius of expansion.
For n = 0, there is no dependence of the magnetic �eld on the radius

r which refers to a constant magnetic �eld. The trajectory of a particle
travelling through such a magnetic �eld is bent. This kind of magnetic
�eld is related to a dipole magnet. An ideal upright dipole magnet has a
vertical magnetic �eld component only. For n = 1, the magnetic �eld has
a linear dependence on the radius and is related to a quadrupole magnet
used to focus the beam. It is evident that an upright quadrupole magnet
can focus the beam in one transverse plane only whereas in the other
plane the beam is defocused. Therefore at least two quadrupole magnets
forming a doublet have to be used to get a net focussing e�ect in both
transverse planes.

Magnetic �elds with n ≥ 2 are related to non-linear beam dynamics.
The in�uence of these magnetic �eld cannot be avoided in an accelerator
since on hand it is not possible to design and build magnets having only
one single magnetic �eld geometry (�eld errors). On the other hand,
higher-order magnetic multipoles may be helpful or even necessary e.g.
for chromaticity correction.

2.1.5 Linear equation of motion and betatron functions

The expansion of the Hamiltonian to the second order in the vector poten-
tial and thus in the magnetic �eld, neglecting momentum deviations and
combining the Hamilton's equations, leads to the homogeneous di�erential
equation of motion1

u′′ +K(s)u = 0 (2.16)

where K(s) = 1
ρ2u(s)

+ ku(s) is the local property of the magnets and u

a transverse coordinate (x or y). The functions ρ(s) and k(s) are also
periodic and depend on the local radius of curvature and the focussing
strength. The homogeneous equation of motion is similar to the one of
the harmonic oscillator. Thus a periodic solution can be found by the
application of the Floquet's theorem with the ansatz [9]

u(s) =
√
ε
√
βu(s) cos(ψ(s)− ψu,0). (2.17)

The integration constants ε and ψu,0 are de�ned by the system under
investigation. The position dependent variable βu(s) is called betatron
amplitude. The second order derivative of u(s) reads

u′′(s) = +
√
ε
βuβ

′′
u − 1

2β
2
u

2β
2
3
u

cos (ψu − ψu,0)−
√
ε
β′u√
βu

sin (ψu − ψu,0)ψ′u

−
√
ε
√
βu sin (ψu − ψu,0)ψ′′u −

√
ε
√
βu cos (ψu − ψu,0)ψ′2u. (2.18)

1This kind of equation of motion for periodical systems like accelerator rings are
called Hills di�erential equations
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Putting both u and u′′ into equation 2.16 and sorting for sine and cosine
terms, the coe�cients have to vanish for all phases:

1
2

(
βuβ

′′
u −

1
2
β′2u

)
− β2

uψ
′2
u + β2

uK(s) = 0 (2.19)

β′uψ
′
u + βuψ

′′
u = 0. (2.20)

Integrating the latter equation, the phase ψu(s) is give by

ψu(s) =
ˆ s

0

ds̃

βu(s̃)
+ ψu,0. (2.21)

The phase di�erence of two locations is called phase advance. The set of
the betatron amplitude2 βu, the phase ψu, 0 and two additional parame-
ters

αu = −1
2
β′u and (2.22)

γu =

(
1 + α2

u

)
βu

(2.23)

is called �twiss parameters�. The twiss parameters describe the motion of
particles around the reference trajectory which is called betatron oscilla-
tion. For ring accelerators, the number of oscillations per turn is called
tune Qu

Qu =
ψu,ring

2π
(2.24)

where ψu,ring is the phase advance per turn.
Equation 2.19 can be rewritten in a simpli�ed form:

β′′u + 2Kβu = 0⇐⇒ Kβu − γu = α′u. (2.25)

The phase of u and u′ has to be eliminated to �nd the invariant of the
particle motion:

γuu
2 + 2αuuu′ + βuu

′2 = εu (2.26)

where ε is named Courant-Snyder invariant or single particle emittance.
This emittance is the invariant of the particle motion and is a conserved
quantity for a constant particle energy. The single particle emittance
decreases during acceleration and increases during deceleration. This de-
pendence on the particle energy is called adiabatic damping. To compare
emittances for di�erent particle energies, an energy-independent emit-
tance εu,normalized is introduced

εu,normalized = βγεu. (2.27)

Equation 2.26 corresponds to the equation of an ellipse with the area πε.
Figure 2.2 shows the phase space ellipse of the motion of a single parti-
cle. The phase space ellipse changes its shape and rotates with the twiss

2also called beta function
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parameters while the particle moves along its trajectory. A beam emit-
tance can be de�ned to parametrize an ensemble of particles in a beam.
It covers the whole phase space area of all single particle emittances. The
emittance of a beam can be speci�ed e.g. in standard deviations or as
a 90% beam emittance3. The choice strongly depends on the particle
distribution of the beam.

The transverse beam width at a location s depends on the transverse
beam emittance εu and the local beta function βu(s) :

σu =
√
βuεu. (2.28)

It can be speci�ed according to the beam emittance and the phase space
distribution.

Figure 2.2: Phase space ellipse of the motion of a single particle for one trans-
verse plane. The area A of the phase space ellipse is given by A = πε where ε is
the emittance.

2.1.6 Matrix formalism

The linear transverse equations of motion including momentum deviations
in �rst order can be written as

x′ = px

1+δ +O(2)

p′x = 1
ρ(s)δ −

(
1

ρ2(s)
+ kx(s)

)
x+O(2)

y′ = py

1+δ +O(2)
p′y = ky(s)y +O(2)

(2.29)

where a vertical radius of curvature has been assumed to be negligible. A
linear transfer map can be constructed by the integration of these equa-
tions and represents a linear coordinate transformation. Under the as-
sumption of a stepwise constant Hamiltonian, a matrix representation M

3contains 90% of the particles inside the beam
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of each element in the accelerator can be found. Symplecticity of these
matrix representations is crucial since it guarantees that matrices are en-
ergy conserving and do not introduce an arti�cial energy change during
the coordinate transformation. A matrix M̃ is symplectic if it ful�lls

M̃SM̃T = S (2.30)

where

S =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 . (2.31)

The matrix S is the symplectic unit matrix and is a re�ection of the
structure of the Hamilton's equations.

The concatenation of transfer matrices is performed by the usual ma-
trix multiplication

M1→3 = M2→3M1→2. (2.32)

The concatenation of all matrix representations of a ring accelerator cre-
ates the one-turn map. Some of the global properties like the tunes can
be derived from this map.

The 4×4 matrices based on equation 2.29 act on the four-dimensional
phase space with the coordinates ~x = (x, px, y, py)T . They are su�cient
to describe pure transverse linear motion. The inclusion of longitudinal
motion leads to the necessity to increase the dimensionality to 6× 6. The
6× 6 transfer matrices act on a six-dimensional phase space and a matrix
representation of physical elements can be found e.g. in chapter 5 of
reference [10].

2.1.7 Dispersion and Chromaticity

The de�ection of a particle beam using a dipole magnet is dependent on
the momentum. This means that the de�ection angle of a dipole magnet
is di�erent for each particle in a non-monochromatic4 beam. The per-
turbation is given by δ

ρ where the momentum deviation should be small
(δ � 1). The linear part of the transverse equation of motion reads

u′′ +K(s)u =
δ

ρ(s)
. (2.33)

Particles with a momentum deviation move along dispersion trajectories

xD = D
(1)
x δ where D

(1)
u (s) denotes the periodical horizontal5 linear dis-

persion function:

D(1)
u (s) =

√
βx(s)

2 sin (πQx)

˛ √
βx(s̃)
ρ(s̃)

cos (ψx(s̃)− ψx(s)− πQx) ds̃. (2.34)

4monochromatic: all particles have the same momentum
5The vertical dispersion is negligibly small in planar accelerator rings
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Also the focussing strength of quadrupole magnets is dependent on the
momentum of particles. This momentum dependency leads to changes of
the phase advances and in second consequence of the tunes. This e�ect is
the so called natural chromaticity ξ0 which is given by

ξu,0 =
∂Qu
∂δ

= − 1
4π

˛
ku(s)βu(s)ds. (2.35)

The momentum spread of the circulating beam introduces a tune spread
which can lead to particle loss for example due to resonances. The correc-
tion of chromaticities is used on one hand to minimize the induced tune
spread and on the other hand to prevent instabilities like the head-tail in-
stability [11]. The most e�cient way to correct chromaticity is the use of
sextupole magnets [12]. Ideally they are placed close to quadrupole mag-
nets where the chromatic e�ects occur. A local correction is not always
possible for example due to space restrictions or cost-related reasons. A
global chromaticity correction can be achieved by sextupole magnets at
places with non-zero dispersion:

∂Qx
∂δ

=
1

4π

˛
βx(s)r(s)Dx(s)ds

∂Qy
∂δ

=− 1
4π

˛
βy(s)r(s)Dx(s)ds,

(2.36)

where r(s) is the sextupole gradient.

2.1.8 Momentum compaction and transition energy

The trajectory of a particle and its length L changes with the particles
momentum due to dispersion. The momentum compaction factor αc is a
measure for the relative change of the trajectory length in dependence of
the momentum deviation:

αc =
4L/L
δ

=
1
L

˛
D(s)
ρ(s)

ds. (2.37)

The time T which a particle needs for one turn

T =
L

βc
(2.38)

is also changed

4T
T

=
4L
L
− 4β

β
= −

(
1
γ²
− αc

)
δ (2.39)

where 4TT denotes the relative change. This momentum dependence of
the travelling time for one turn results in a spread ∆f of the revolution
frequency f = 1

T = βc
C .
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The phase of on-momentum particles and the accelerating radio fre-
quency signal has to be kept �xed to accelerate particles. This boundary
condition depends on the revolution frequency fRF of the radio frequency
signal, the velocity of particles and is given by

fRF = h
βc

C
(2.40)

where h is the integer harmonic number which re�ects the number of
possible bunches in the accelerator. If particles are o�-momentum, they
oscillate in the longitudinal phase space around the reference phase. This
oscillation is called synchrotron oscillation. The phase of the radio fre-
quency signal has to be chosen that o�-momentum particles with longer
travelling time are a�ected by a higher acceleration voltage compared to
the on-momentum particles and vice versa. This is the so called phase
focussing.

The derivative of the revolution frequency with respect to the mo-
mentum deviation crosses zero for a certain beam energy which is called
transition energy Etr. This non-physical energy is independent of the par-
ticle mass and depends only on the ion optics of the accelerator and its
geometry. At the transition energy the phase focussing vanishes leading to
an increase of the momentum deviation of particles. If the momentum de-
viation becomes larger than the momentum acceptance of the accelerator,
particle loss is inevitable.

The ratio of the transition energy and the particles energy at rest is
related to momentum compaction factor by

γtr =
Etr
Erest

=
1
√
αc
. (2.41)

Its value is close to the horizontal tune in case of a regular lattice. The
frequency spread of the beam is related to its momentum spread via the
so called frequency slip factor

η =
1
f0

df

dδ
=

1
γ2
− 1
C

dC

dδ
=

1
γ2
− 1
γ2
tr

. (2.42)

2.1.9 Orbit response matrix

Besides dispersion, other e�ects like alignment errors or multipole �eld
errors of magnets a�ect the trajectories of particles, resulting in deviations
from the reference trajectory. The trajectory of the reference particle is
also deviated but is still closed. Therefore it is called closed orbit and all
other particles oscillate around this closed orbit.

The method using the orbit response matrix [13] can be used to cor-
rect the closed orbit. The matrix entries Rdi re�ect changes of an orbit
deviation ∆ud at beam position monitors [14] at location d due to changes
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in de�ection strength ∆θ′i of orbit correction dipole magnets located at
position i and are given by

Rdi =
∆ud
∆θ′i

=
√
βu,iβu,d

cos (πQu − ψu,d→i)
2 sin (πQu)

(2.43)

where ψu,d→i denotes the phase advance between both locations d and i.

For places with a non-zero dispersion, a correction term −Du,dDu,i

αcC
can be

added to the right hand side of equation 2.43. Du denotes the dispersion
function, αc the momentum compaction factor and C the circumference
of the accelerator.

The orbit response matrix depends on the transverse tune Qu, on the
beta function βu at beam position monitors and correction dipole mag-
nets and on the phase di�erences ∆ψu of their locations. It can either be
measured or it can be calculated from a computer model which mathe-
matically describes the particle accelerator under investigation [15].

The orbit response matrix can be used in an iterative process to suc-
cessively optimize the closed orbit. Its application can be performed in
two ways. One possibility is to use the orbit response matrix as it is in
an feed-forward process

~S = R · ~Θ (2.44)

where ~S is a vector containing all orbit deviations at beam position mon-
itors and ~Θ a vector with de�ection strengths of orbit correction dipole
magnets. The best correction can be achieved by variation of ~Θ to repro-
duce the measured orbit deviations at the beam position monitors, e.g.
with a χ2 minimization. Then, the vector −~Θ contains the proper settings
of all orbit correction dipole magnets to correct the closed orbit deviations.
The orbit response matrix can include errors due to measurement errors
or due to deviations between the computer model and the real accelera-
tor and explains why an iterative process is recommended. A thorough
investigation concerning the comparison of both orbit response matrices
(measured and calculated) can lead to an improvement of the accelerator
model. The other possibility to apply the orbit response matrix is via its
inversion

~Θ = R−1~S. (2.45)

Each method has its advantages and disadvantages. While the feed-
forward method is always applicable, the inversion of R is not. If R is not
square or is degenerated, a pseudo-inverse has to be constructed e.g. using
SVD6. On the other hand side, the inversion has to be calculated once only
and matrix vector multiplications should be much faster than variation
methods, especially if convergence of the iterative process is slow.

6Singular Value Decomposition
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2.1.10 In�uence of electron coolers toroid magnets on closed

orbit

If a beam of ions moves through a particle accelerator, the ions will occupy
a certain hypervolume in the multi-dimensional phase space. There exist
several techniques to reduce the size of the occupied phase space which
are referred as beam cooling [16]. One of this techniques is the electron
cooling.

To cool a circulating ion beam, a nearly monochromatic and parallel
electron beam is caused to overlap with the ion beam. The velocity of
electrons has to match the average velocity of the ions in the circulating
beam. If the point of observation is transferred to a frame which moves
with the electron velocity, all electrons will be at rest forming a grid.
The ions in the circulating beam will pass through the electron beam
from all directions and with a variety of velocities. The ions will be
a�ected by Coulomb scattering at the resting electrons and will loose
a certain amount of energy which is transferred to the electrons. The
loss of energy corresponds to transverse and longitudinal cooling at the
rest frame. Ideally, all ions in the circulating beam will have the same
velocity and no transverse momentum after the electrons will have been
removed. Since the electrons are constantly renewed, the ions are cooled
during each passing through the electron cooler.

An electron cooler itself usually consists of an electron gun and a col-
lector (see Figure 2.3) as well as of beam transportation devices. The
interaction region where electrons and ions are overlapping is located in-
side a solenoid magnet which has a longitudinal magnetic �eld. At both
end of the interaction region, there are toroid magnets used to guide the
electron beam in and out of the circulating ion beam. Toroid magnets are
basically bent solenoid magnets with an additional dipole �eld to com-
pensation centrifugal force. They a�ect not only the electron beam but
also the circulating ion beam. The de�ection is di�erently large for each
transverse direction.

In the following, it is assumed that the toroidal bending is vertical.
The equation for the vertical de�ection of the circulating beam can be
derived from simple geometry [17]:

x′ = −B0Re
Bρ

ln cos (ϕToroid) (2.46)

where B0 denotes the toroidal magnetic �eld strength at the reference
radius Re of the electrons and ϕToroid is the bending angle of the toroid
magnet itself. The magnetic rigidity of the circulating ion beam is given
by Bρ. In addition to the magnetic �eld of the toroid magnet, the dipole
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Figure 2.3: Schematic view of an electron cooler. The circulating beam (red)
travels from left to right. The electrons of the electron beam (yellow) are gen-
erated in the electron gun and accelerated. The electron beam travels through
both toroid magnets below the electron gun and the interaction straight inside
the solenoid magnet. Behind the latter, the electron beam is bent upwards by
the second two toroids, decelerated and dumped in the electron collector. In
the lower two toroid magnets, both beams are merged and after the cooling
section separated again. These toroid magnet are dimensioned large enough to
include the vacuum chamber of the circulating beam (gray). Next to the electron
cooler, there are correction dipole magnets (steerer) to correct the de�ections of
the circulating beam caused by the lower two toroid magnets.

�eld contributes to the horizontal de�ection adding up to

y′ =
´
B⊥ds+

´
Bdipds

Bρ
where (2.47)

ˆ
B⊥ds = −

ˆ ϕToroid

0

B2
0R

2

Bρ
ln (cos (ϕ)) dϕ and (2.48)

Bdip =

√
Te (2Ee + Te)

qcR
(2.49)

where Ee = mec
2 denotes the electrons energy at rest and Te their kinetic

energy. Whereas the horizontal de�ection angle x′ scales linearly with the
beam momentum via the magnetic rigidity Bρ = cp

q , the vertical one does

not. The vertical de�ection angle y′ scale di�erently since the integral´
B⊥ds depends on the magnetic rigidity itself.
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2.2 Non-linear beam dynamics

The stability of the particle motion is of major importance. Particle mo-
tion can become non-linear e.g. in presence of higher-order multipoles
like the necessary sextupole magnets or �eld errors. These non-linearities
make the beam behavior unpredictable and lead to the necessity of par-
ticle tracking. Furthermore, the higher-order multipoles can drive reso-
nances which restrict the area of stable motion in phase space. Generally,
dynamic aperture calculations are used to �nd the stable area in multi-
dimensional phase space.

2.2.1 Symplectic Maps

A more generalized form of transport matrices are transfer maps which
are not necessarily linear and per de�nition symplectic.

The Poisson bracket which is de�ned by

[f(~x), g(~x)] ≡
n∑
i=1

[
∂f(~x)
∂xi

∂g(~x)
∂pi

− ∂f(~x)
∂pi

∂g(~x)
∂xi

]
. (2.50)

can be used to express the total time derivative for any function f(~x; s)
of the phase space variables ~x = (x, px, y, py, δ, ct)T as

df(~x)
ds

= − [H, f(~x; s)] +
∂f(~x; s)
∂s

(2.51)

where time was replaced by s and H denotes the Hamiltonian. The total
time derivative is reduced to the Poisson bracket solely

df(~x)
ds

= − [H, f(~x; s)] (2.52)

if the function f(~x; s) is not explicitly dependent on s. One important
feature of the Poisson bracket is the invariance under canonical transfor-
mations (e.g. to action-angle variables [J, φ]). The Poisson bracket posses
also the three properties which de�ne a Lie algebra [18]: it is antisymmet-
ric and distributive and also ful�lls the Jacobi's identity. Thus it can be
written in Lie operator form

: f(~x) : g(~x) ≡ [f(~x), g(~x)] (2.53)

which changes equation 2.52 to

df(~x)
ds

= − : H : f(~x). (2.54)

It can be shown that two Lie operators are equal if the underlaying func-
tions only di�er by an arbitrary constant. Thus the Lie operators also
form a Lie algebra.
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A map acting on functions (of phase space coordinates) for a Hamil-
tonian which commutes at di�erent times can be expressed as

M~ξ0→1
= exp

(
: −
ˆ s1

s0

H(s)ds :
)

(2.55)

since the Hamiltonian is the generator of an in�nitesimal coordinate trans-
formation. The corresponding transfer map ~ξ acting on phase space co-
ordinates is given by

~x1 = ~ξ0→1(~x0) (2.56)

Assuming a stepwise constant Hamiltonian, a functional map of an ele-
ment with length L reads

M~ξ0→1
= exp (: −LH :) . (2.57)

Concatenation of functional transfer maps is done in reverse order
compared to concatenation of transfer matrices

M~ξ0→1
M~ξ1→2

≡M~ξ0→2
. (2.58)

Non-linearities are introduced by thin non-linear kicks. A kick describes
the transfer between transverse and longitudinal momenta induced by a
magnetic �eld. �Thin� means in this context that the length of the mag-
netic �eld is in�nitesimally small. The thin non-linear kicks are connected
by linear maps. A one-turn functional map looks then like

M~ξ0→n
=M~ξ0→1

e:V1:M~ξ1→2
e:V2:M~ξ2→3

. . . e:Vn−1:M~ξn−1→n
(2.59)

where Vi represent a thin non-linear kick at position i and n is the number
of elements in the accelerator. With the introduction of

V̂i ≡ A0M~ξ0→i
Vi = R0→iVi, (2.60)

all thin kicks can be shifted to the beginning of the lattice. The operator
R is the rotation operator. The one-turn map reads then

M~ξ0→n
= A−1

0 e:V̂1:e:V̂2: . . . e:V̂n−1:R0→nAn. (2.61)

After that, all thin kicks can be lumped into a single kick by the Baker-
Campbell-Hausdor� (BCH) theorem for non-commuting operators

eaeb = ea+b+[a, b]/2+... (2.62)

and the one-turn map �nally looks like

M~ξ0→n
= A−1

0 e:h:R0→nAn

= A−1
0 exp

:
N∑
i=1

V̂i +
1
2

N∑
i<j

[
V̂i, V̂j

]
+ . . . :

R0→nAn
(2.63)
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2.2.2 Driving terms

The driving terms represent the contribution of multipoles to speci�c ef-
fects, e.g. betatron resonances. To exemplify driving terms, they will be
derived for sextupole magnets in �rst order concerning their contribution
to the sextupole betatron resonances.

The vector potential for a thin sextupole magnet is given by

Vi =
q

p0
As (si) = −b2,i

3
(
x3 − 3xy2

)
(2.64)

where si is an arbitrary location. The thinness of sextupole magnets
implies a step wise constant potential As (si). With

Aix =
√
βx,ix+D

(1)
x,i δ (2.65)

where D
(1)
x represents the �rst-order horizontal dispersion, the transfor-

mation acts like

1
3Ai(x

3 − 3xy2) = 1
3

√
βx,i

(
x+D

(1)
x,i δ
)3
−
(√

βx,ix+D
(1)
x,i δ
)
βy,iy

2

=
√
βx,i

(
D

(1)
x,i

)2
xδ2 + 1

3β
3/2
x,i x

3 −
√
βx,iβy,ixy

2

+
(
βx,ix

2 − βy,iy2
)
D

(1)
x,i δ +O(δ3).

(2.66)
There are no terms with �rst-order vertical dispersion. The eigenvalues
of the rotational operator R in terms of a resonance basis

h±x ≡
√

2Jxe±iφx = x∓ ipx (2.67)

are

Ri→jh±x = Ri→j
√

2Je±iφx =
√

2Je±i(φx+ψi→j, x) = e±iψi→j, xh±x (2.68)

where ψi→j is the phase advance between locations i and j. Expressing x
and y in terms of the resonance basis, applying the rotational operator,
and sorting for orders in x and y delivers

R0→ix = 1
2

(
h+
x e

iψxi + c.c.
)
,

R0→ix
2 = 1

4

(
h+2
x ei2ψxi + c.c.+ 4J

)
,

R0→ix
3 = 1

8

(
h+3
x ei3ψxi + 3h+2

x h−x e
iψxi + c.c.

)
,

R0→ixy
2 = 1

8

(
h+
x h

+2
y ei(ψxi+2ψyi) + h+

x h
−2
x ei(ψxi−2ψyi)

+2h+
x h

+
y h
−
y e

iψxi + c.c.
)
.

(2.69)

The Lie generator : h : can be determined to have in �rst-order the fol-
lowing form

h(1) ≡
∑
|Ī|

hĪh
+i1
x h−i2x h+i3

y h−i4y δi5 (2.70)
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where Ī = [i1, i2, i3, i4, i5] and
∣∣Ī∣∣ ≡ i1 + i2 + i3 + i4 + i5. The �rst-order

driving terms can be extracted by comparison of equations 2.66 and 2.69
and collecting geometric7 terms. The geometric driving terms are

h21000 = h∗12000 = −1
8

∑N
i=1(b2,iL)β3/2

x,i e
iψx,i ,

h30000 = h∗03000 = − 1
24

∑N
i=1(b2,iL)β3/2

x,i e
i3ψx,i ,

h10110 = h∗01110 = 1
4

∑N
i=1(b2,iL)β1/2

x,i βy,ie
iψx,i ,

h10200 = h∗01020 = 1
8

∑N
i=1(b2,iL)β1/2

x,i βy,ie
i(ψx,i+2ψy,i),

h10020 = h∗01200 = 1
8

∑N
i=1(b2,iL)β1/2

x,i βy,ie
i(ψx,i−2ψy,i).

(2.71)

The driving terms marked with an asterisk are the complex conjugates.
Since driving terms are in general complex numbers, the individual con-
tribution of all sextupole magnets is as well. Thus the driving terms can
be written as

hjklmq =
N∑
i=1

Ajklmq,ie
iφjklm,i (2.72)

where Ajklmq,i and φjklm,i represent the amplitude and the phase of the
driving term at the locations of the sextupole magnets. The indices are
related to their dependencies e.g. on the beta functions or on the betatron
phases

Ajklmq,i ∝ β
(j+k)/2
x,i β

(l+m)/2
y,i

(
D

(1)
x,i

)q
φjklm,i ∝ (j − k)ψx,i + (m− l)ψy,i.

(2.73)

Driving terms with q > 0 are chromatic ones. For example, the driving
terms h11001 and h00111 depend linearly on dispersion and beta functions,
but not on the betatron phases. Both driving terms are related to chro-
maticity and re�ect equations 2.36. Driving terms are geometric for q = 0.
Those have pure oscillatory character and drive betatron resonances. The
frequencies of the resonances are determined by the other four indices
with

(j − k) ·Qx + (l −m) ·Qy (2.74)

Considering this, the driving terms in equation 2.71 contribute to betatron
resonances with the frequencies:

Qx, 3Qx, Qx, Qx + 2Qy, Qx − 2Qy. (2.75)

All of these driving terms are �rst-order driving terms only. According to
BCH theorem and the corresponding expansion of the symplectic map in
equation 2.63, two sextupolar potentials and thus driving terms contribute
in second order to octupole resonances and so forth.

7non-chromatic
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2.2.3 Tracking code

Tracking codes are used to simulate particle trajectories. They are based
on transfer maps either linear or non-linear. The maps have to be sym-
plectic to track particles in a realistic way without an arti�cial and non-
physical energy change. They represent a physical element or if con-
catenated even whole sections of an accelerator. Such a transfer map
performs a coordinate transformation and lets a particle or a bunch of
particles �travel� through an accelerator. In between two adjacent co-
ordinate transformations certain actions can be performed for example
calculation of space charge forces8 [19] or application of non-linear kicks.

The tracking code which has been used for this thesis is named SIM-
BAD [20] and it is based on ORBIT [21].

SIMBAD SIMBAD is a symplectic tracking code which uses linear
maps. It is able to read transfer matrices produced by the linear mod-
elling code MAD9 version 8 [22] or X [23]. SIMBAD tracks six-dimensional
phase space coordinates using these matrices. Non-linearities are included
by non-linear kicks performed between coordinate transformations. These
non-linear kicks represent �eld errors and sextupole magnets. Further-
more phase space coordinates can be dumped into an output �le. Those
turn by turn data can be analyzed afterwards (e.g. with frequency map
analysis). SIMBAD is written in C++ with a modular structure and is
therefore designed to be extendable. To speed up computation, SIMBAD
uses an implementation of the message passing interface (MPI) standard
to run on multiple cores, processors and/or computers.

2.2.4 Dynamic aperture

The dynamic aperture is commonly referred as the transition border from
regular, stable motion to irregular, unstable or chaotic motion. Sym-
plectic tracking codes are used to �nd the trajectories of particles over a
certain number of turns. The dynamic aperture is mostly de�ned as the
border of multi-dimensional phase space area of the starting coordinates
of particles which survive a prede�ned number of turns [24]. The number
of turns which particles have to survive is related to the time scale. For
the so called short-term dynamic aperture, it is su�cient to track several
hundred up to a few thousand turns to observe betatron resonances [25]
arising. Betatron resonances are commonly referred by the condition

m ·Qx + n ·Qy = p (2.76)

where m, n, and p have to be integer and the resonance order is given
by |m| + |n| . Resonances with n being even are commonly referred as

8Force of charged particles acting on other charged particles within the beam or
bunch

9Methodical Accelerator Design
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normal or upright whereas with n being odd as skew resonances. Since
the resonances are tune dependent, they can be drawn in a tune diagram in
which the vertical tune is plotted against the horizontal one. The density
of resonances in the tune diagram can be reduced by the introduction
of symmetry to the accelerator lattice [26], i.e. some resonances can be
suppressed. For an accelerator lattice with M equal periods, the integer
p in the resonance condition can be replaced by p = M · r where r has
also to be integer. The long-term dynamic aperture is typically in the
order of 109 turns to proof long-term stability. The long-term dynamic
aperture has according to the Nekhoroshev theorem an inverse logarithmic
dependence on the number of turns ([27, 28]).

For all dynamic aperture calculations, computation time is the major
restriction. Starting particles in a dense six-dimensional phase space over
several million turns can easily take weeks, months or even years. Thus, a
proper choice of starting coordinates is inevitable. There is a trade-o� be-
tween accuracy (number of particles, density of phase space coordinates),
number of turns, and computation time.

There are other approaches which help to �nd limiting resonances, for
example the analysis of resonance driving terms or the frequency map
analysis.

2.2.5 KAM theorem

The KAM theorem goes back to the work of Kolmogorov, Arnold, and
Moser [29]. For a system which can be described by a HamiltonianH with
an integrable part H0 and a small perturbation εH1 the KAM theorem
states that the motion is regular and con�ned to so called KAM tori if
three conditions are ful�lled [30]:

1. Linear independence of frequencies ωi = ∂H
∂Ji

2. Smoothness condition of the perturbation [31]

3. Su�cient distance of initial condition from a resonance

The KAM tori can be observed in phase space as circles if the scales of the
axes are properly chosen and the motion is regular. If a perturbation is
present and small enough to ful�ll the three conditions, the KAM tori will
be deformed. Such a deformation can be e.g. triangular for sextupolar
perturbations.

In a phase space plot of a disturbed motion, three regions can be
identi�ed. The inner region of stable motion is �lled with KAM tori.
Islands which represent �xpoints of the motion can appear in this stable
region between the KAM tori. Inside those thin chaotic layers, conditions
three is violated. Further outside, there is a transition to the second
region of chaotic motion. In this region the second and the third condition
is violated and no KAM tori can be observed. Islands can appear at
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�xpoints. The last transition to the region of unbound motion is reached
if condition one is not ful�lled.

There are in principle two kinds of �xpoints: elliptic and hyperbolic
ones. Elliptic �xpoints are stable and particles are able to reach them
forming islands potentially surrounded by KAM tori. The hyperbolic
�xpoints are unstable forming empty spots.

2.2.6 Frequency map analysis

Although the frequency map analysis was developed for celestial mechan-
ics, it is now widely used for studies from atomic physics [32] to galactical
dynamics [33] and nowadays even in accelerator physics [26]. This tech-
nique is based on a revised Fourier analysis which constructs the so-called
frequency map from the space on initial conditions to the tune space.
To do this, the NAFF algorithm [34] or a variant of it like SUSSIX [35]
searches for quasiperiodic approximation of the transverse motion over a
�nite time span or turns T . Starting a particle with two initial conditions
(x′0 = y′0 = 0), the discrete trajectory is recorded in a four-dimensional
surface of section x(t), x′(t), y(t), y′(t). Applying the re�ned Fourier tech-
nique, the quasiperiodic approximation, truncated to order N , of the form
zw(t) = w(t) + iw′(t) reads

zu(t) = aue
iQut +

N∑
k=1

a~mk
ei<~mk, ~Q>t,

where ~Q = (Qx, Qy, 1) is the fundamental frequency vector,

~mk = (m1k,m2k,m3k) is a multi-index, < ~mk, ~Q >= m1kQx + m2kQy +
m3k, and the complex amplitude a~mk

is ordered by decreasing magnitudes.

The frequency map F T itself is de�ned as the mapping of initial coor-
dinates to the transverse tunes

F T : R2 → R2

(x, y) 7→ (Qx, Qy).
(2.77)

The initial transverse momenta can be neglected and thus arbitrarily cho-
sen (e.g. x′0 = y′0 = 0) because the image of F T is largely independent of
them in the frequency plane [36]. The revised Fourier technique converges
with 1/T 4 [26] when a Hanning window is applied [37] (FFT converges
with 1/T [38]). That reduces the number of turns necessary to the con-
vergence to typically 1000, which saves computation time considerably.

If the approximation is a regular KAM solution, the frequency map
F T is invariant by time translations which means that the tunes are �xed
over time. If this is not the case, the time variation of the tunes is related
to the orbit di�usion10 and hence can be used as a stability criterion. Thus

10The general term is Arnold di�usion
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the study of the regularity of the frequency map can provide information
about resonances and non-linear behavior.

A stability criterion or a measure of stability related to the orbit dif-
fusion is the so called di�usion coe�cient D. The di�usion coe�cient is
de�ned as the root mean square of tune di�erences of two adjacent �nite
periods of time (e.g. 1000 turns)

D = log10

[√(
Q

(2)
x −Q(1)

x

)2
+
(
Q

(2)
y −Q(1)

y

)2
]

(2.78)

where Qx and Qy are the transverse tunes calculated from (1) the �rst
time period and (2) the second time period. A di�usion coe�cient of
D ≤ −7 is considered to belong to stable motion whereas a di�usion
coe�cient of D ≥ −2 is related to strongly chaotic and unbound motion
[39].



Chapter 3

The High-Energy Storage

Ring HESR

The High-Energy Storage Ring HESR is part of the upcoming Facility
of Antiproton and Ion Research at the Helmholtzzentrum für Schweri-
onenforschung and is dedicated to antiproton physics. It is a ring ac-
celerator which is able to store, accelerate and provide antiprotons in a
momentum range from 1.5 to 15GeV/c for the internal target experiment
PANDA [40, 4]. The HESR is designed by a consortium. Its members
are Institut für Kernphysik at Forschungszentrum Jülich (Germany) as
leading laboratory, GSI in Darmstadt (Germany), The Svedberg Labora-
tory in Upsala (Sweden), Soltan Institute for Nuclear Studies in Warsaw
(Poland), CAD/CAM Engineering Center in Tbilisi (Georgia), National
Institute for Research and Development in Electrical Engineering ICPE-
CA in Bucharest (Romania), and IAP in Sumy (Ukraine).

3.1 Antiproton beams at FAIR

As the name states, a whole branch of the Facility for Antiproton and Ion
Research is dedicated to antiproton physics from production over storage
to experimental use. A central part of this branch is the HESR with its
internal target experiment PANDA.

3.1.1 HESR at FAIR

FAIR is an international project and will be a major extension of the
present facility of the Helmholtzzentrum für Schwerionenforschung (GSI)
in Darmstadt. It o�ers forefront science for European and international
users in various �elds which include radioactive ion beams, antiproton
physics, compressed baryon matter, plasma physics, and atomic physics.
The new facility itself consists of di�erent experimental sites which enable
unprecedented experimental possibilities. A schematic overview is shown
in Fig. 3.1.

24
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Figure 3.1: Schematic view of the FAIR site. The new accelerators are drawn
in red, the present GSI accelerators in blue and experiments in gray. Important
for the HESR are the following parts in the injection chain: p-LINAC, SIS18,
SIS100, antiproton production target, CR, RESR. The HESR is aligned along
an north-south axis. On the right hand side of the HESR, there is the PANDA
experiment. The gray building on the left hand side of the HESR will house the
electron cooler. The upper direct injection way from the SIS18 to the HESR is
a possible upgrade which will allow the operation with protons moving in the
opposite direction of antiprotons.

The international PANDA collaboration with a rich scienti�c program
is working on a new experiment with antiprotons in the energy range be-
tween the Anti-Proton Decelerator AD [41] and the Tevatron [42] regime.
The HESR with its special equipment like multi harmonic radio frequency
cavities [43], electron cooling [44] and stochastic cooling devices [45] make
high precision experiments feasible which have not been possible before.
Besides PANDA, other experimental groups namely PAX and ASSIA ex-
pressed their interest in using the HESR for spin physics related experi-
ments [46, 47, 48]. Thus, su�cient space is reserved in the HESR design
to allow an upgrade for polarized beams [49, 50].

3.1.2 Injection chain for antiprotons

A high-intensity proton beam of 35mA and pulse length of 36µs is ac-
celerated in the new proton linac [51] to 70MeV . The repetition rate
is 4Hz. The proton beam is then injected into the existing SIS18 [52].
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Per cycle, roughly 2 · 1012 protons are accelerated to 2GeV and then in-
jected into SIS100 [53]. After a stacking of eight injections from SIS18,
up to 4 · 1013 protons per cycle are accelerated to an energy of 29GeV.
Afterwards the bunches are compressed to 25ns, ejected, and shot on an
antiproton production target [54]. The beam guiding system behind the
antiproton production target is capable of transporting antiprotons with
a beam energy of 3GeV and a maximum relative momentum spread of
∆p/p = 3% which corresponds to approximately 2 · 108 antiprotons. The
antiprotons are separated and guided to the collector ring CR [55] where
the antiprotons are collected and beam cooled for 10 s using a stochastic
cooling system to reduce the beam emittance. After the beam cooling,
the beam is rotated in the longitudinal phase space (bunch rotation) to
achieve a lower momentum spread. The cooled and rotated antiproton
beam is then injected into the RESR [56] where it is further cooled using
the RESR stochastic cooling system. The described injection chain can
provide antiprotons with a production rate of Ṅp̄ = 2 · 107 s−1.

3.1.3 PANDA experiment

PANDA (AntiProton Annihilation at Darmstadt) is a universal detec-
tor and will be used to study interactions between antiprotons and �xed
target protons and nuclei over the whole momentum range of the HESR.
The target is planned to be a frozen H2 pellet jet target. The scienti�c
program of the PANDA collaboration includes several measurement which
will address fundamental questions of QCDmostly in the non-perturbative
regime [4].

The study of QCD bound states is of fundamental importance as it
will help to improve the quantitative understanding of the theory. Pre-
cision measurements are necessary to distinguish between di�erent ap-
proaches. The PANDA measurements include charmonium, D meson and
baryon spectroscopy. This will be carried out by the study of the creation
mechanism of quark-antiquark pairs and their arrangement to hadrons.
Also hadrons in nuclear matter are part of the PANDA physics program.
The origin of hadron masses in the context of spontaneous chiral symme-
try breaking in QCD is going to be studied by medium modi�cations of
hadrons embedded in hadronic matter. Part of this investigation is also
related to the partial restoration of the chiral symmetry in hadronic mat-
ter. Since earlier experiments related to this topic have been restricted
to the light quark sector, PANDA is an extension to the charm sector
for hadron with open and hidden charm. PANDA also competes with
planned dedicated hypernuclei facilities. The availability of antiprotons
beams at FAIR will allow an e�cient way to produce hypernuclei with
more than one strange hadron which opens new perspectives for nuclear
structure spectroscopy. Also the study of forces between hyperons and a
nucleus is planned. The possibility of high-intensity antiproton beam in
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the HESR allows the production of large numbers of D-mesons which can
be used to observe rare weak decays to study electroweak physics.

All measurements will pro�t �rstly from the high yield of antiprotons
induced reactions and secondly from the fact that all non-exotic quan-
tum number combinations for directly formed states are allowed, whereas
states with exotic quantum number can be observed in production. Signif-
icant progress beyond the present understanding of all topics is expected
due to improvements in statistics and precision of the data.

3.2 HESR design

The HESR is designed as a storage ring with a racetrack shape. Its mag-
netic rigidity ranges from 5 to 50Tm which corresponds to the momentum
range of 1.5 to 15GeV/c. With its circumference of 575m it covers an
area of 120m by 250m.

3.2.1 Layout

The HESR layout is shown in Figure 3.2. Both arcs have a length of
155.5m. They are designed to be symmetric. The straight sections have
a length of roughly 132m. Each straight section has a larger installation,
namely the electron cooler and the PANDA experiment with target, and
are therefore named after those.

Target straight section The target straight section will house the in-
ternal experiment PANDA with its target and other experimental instal-
lations. For detection purposes, the target will be embedded inside of
a solenoid magnet. Another solenoid magnet will be installed in front
of the target solenoid magnet for compensation purposes. A large aper-
ture dipole magnet is part of the experimental installations of PANDA
to separate secondary particles at small laboratory angles. This PANDA
dipole magnet a�ects not only the charged particles created by reactions
of the antiprotons at the target but also the circulating antiproton beam.
Therefore, a chicane including two additional dipole magnets is necessary
to compensate the de�ections of the PANDA dipole magnet. Furthermore,
parts of the stochastic cooling namely the pick-ups as well as the injection
equipment and the accelerating radio frequency cavities will be installed
in the target straight section. There are two injection points planned. The
�rst one will be used to inject protons and antiprotons from the RESR.
The second injection from SIS18 which is planned as an upgrade which
allows protons to circulate in the opposite direction without changing the
polarity of the magnets installed in the HESR.

Cooler straight section The electron cooler will be part of the other
straight section. At both ends of the electron cooler, compensation solenoid
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magnets are foreseen to compensate the e�ects of the cooler solenoid mag-
net. Next to the compensation solenoid magnets, su�cient space is re-
served for an upgrade of the electron cooler for a Siberian snake [50].
This upgrade consists of skew quadrupole magnets and additional solenoid
magnets. For a full Siberian snake, a helix dipole magnet is needed in ad-
dition to the solenoidal �elds. It is planned to be located downstream
of the electron cooler. An H0 detector is included in the HESR design
and detects hydrogen atoms created by recombination of electrons and
protons in the electron cooler. Since the count rate is a measure of the
beam overlap, the H0 detector will be used for commissioning and opti-
mization of the electron cooler. Without the injection branch from SIS18,
protons have to move in the same direction as antiprotons. This implies
a change of polarity of all magnets due to the di�erent charge and the
location of the H0 detector being also downstream of the electron cooler
from the view of antiprotons. The stochastic kickers will be installed at
the beginning of this straight section.

Arcs The design of the arcs is based on regular FODO1 structures.
There are two demands which require a change to the FODO setup. The
straight sections have to be dispersion-free and the transition energy has
to be adjustable in the range from γtr = 6.2 to γtr = 15. While a regular
FODO lattice uses two quadrupole magnet families (one horizontal and
one vertical) to adjust the phase advance of the arcs, the revised design
include four quadrupole magnet families: Three horizontal and one verti-
cal. One horizontal and the vertical quadrupole magnet family is used to
adjust the tunes. The second horizontal quadrupole family is dedicated to
the adjustment of the transition energy. The second last dipole magnet at
each end of the arcs has been removed. This missing dipole magnet con-
cept form together with the third horizontal quadrupole magnet family a
dispersion suppressor. Since the straight sections have to be dispersion-
free, sextupole magnets for chromaticity correction must be placed in the
arcs. Due to the design of the arcs, the places for sextupole magnets and
orbit correction devices are limited to 48 per arc.

3.2.2 Magnets

The main magnet types [57] will be discussed in this chapter. All magnets
of the HESR will be normal-conducting and therefore iron-dominated.

Dipole magnet The HESR dipole magnet is a laminated room-tem-
perature magnet. Its yoke has a length of 4.126m and a width of 1.142m.
The yoke itself has to be bent due to space restrictions of the HESR tunnel.
Since the HESR design of the arcs requires 44 dipole magnets, each dipole

1A regular structure where dipole magnets (O) are located between horizontally
focussing (F) and defocusing (D) quadrupole magnets
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magnet has to de�ect the beam by 8.182° which corresponds to a local
curvature of 29.432m. The maximum magnetic �eld strength is 1.7T
for a beam momentum of 15GeV/c. A current of 2930A is necessary to
reach the maximum magnetic �eld. Since the magnetic �eld scales linearly
with the momentum, the lowest magnetic �eld is in the order of 0.17T .
However, the dipole magnets are designed for a nominal magnetic �eld
of 1T which corresponds to a momentum of 8.9GeV/c because the main
PANDA experiment will operate at this momentum.

Quadrupole magnet The design of the HESR quadrupole magnet is
based on the COSY one [58] although the yoke of the HESR quadrupole
magnet consists of four parts whereas the COSY quadrupole magnet has a
two-part yoke. The length of the iron yoke is 0.58m whereas the e�ective
length is 0.6m. The other dimensions of the yoke are 1.06m in width
and also in height. The aperture is with 100mm large enough to �t
in the vacuum chamber which has a diameter of 89mm. The maximum
gradient for operation has a design value of 20T/m. This corresponds to a
current of 426A. Depending on the acceleration strategy to overcome the
transition energy, the gradient of 20T/mmight not be su�cient. From the
design of the HESR quadrupole magnet, a gradient of 25T/m is possible
although not desired to be used regularly due to saturation e�ects. The
current necessary to achieve this gradient is larger than 700A. The number
of quadrupole magnets in the HESR is 84.

Sextupole magnet The HESR lattice includes 52 places for sextupole
magnets in the arcs which are going to be used for chromaticity correction.
Furthermore there are four places within each straight section reserved for
sextupole magnets or higher-order multipoles for resonance manipulation
if that will become necessary. The sextupole magnet design foresees a
two-part yoke. The yoke has a length of 0.3m. The sextupole magnet
design has equal dimensions in width and height of 0.45m. The diameter
of the aperture is 140mm. This is 40% larger than the aperture of a
quadrupole magnet. The purpose of the large aperture of the sextupole
magnet is to house a beam position monitor which besides others is caused
by the space restrictions in the arcs. With a current of 290A, a sextupole
magnet generates are gradient of 45T/m2. This corresponds to an overall
integrated sextupole magnet strength of 0.25m−2.

Orbit correction dipole magnets The orbit correction dipole mag-
nets can de�ect the circulating antiproton beam in one plane only. Be-
cause of the mounting, the design di�ers slightly for horizontally and ver-
tically de�ecting ones. There are two main types of orbit correction dipole
magnets. This �rst type has a de�ection strength of 1mrad at 15GeV/c
for orbit correction purposes. The second type can de�ect 2mrad at
15GeV/c where 1mrad is used for orbit correction and the other one for
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wanted displacements of the beam to e.g. bypass obstacles or direct the
beam onto the target. The doubling of the de�ection strength is per-
formed by increasing the windings per coil from 22 to 44. The maximum
de�ection strength corresponds to a current of roughly 304A. The gap
height is with 100mm equal to the diameter of the quadrupole magnets
aperture

3.2.3 Beam parameters

The quality of the antiproton beam delivered by the RESR is depending on
the number of accumulated antiprotons. The transverse beam emittance
and the momentum spread grow with the number of antiprotons. The
rms values are given by [3]

εx,y =
1mmmrad

βγ

(
N

N0

)4/5

σp
p

=
1.33 · 10−3

βγ

(
N

N0

)2/5

,

where N denotes the number of injected antiprotons and N0 = 3.5 · 1010

the reference number.

There are two de�ned modes of operation: A high luminosity mode
and a high resolution mode. The high luminosity mode will provide a
luminosity of up to 2 ·1032cm−2s−1 with 1011 antiprotons in the beam and
a momentum spread of σp/p ≈ 10−4. To achieve this high luminosity, a
pellet target of frozen hydrogen with an areal density of 4·1015 atoms/cm2

is planned to be used. For the high resolution mode the momentum
resolution of σp/p ≥ 4 · 10−5 is only available with a reduced number of
antiprotons in the order of 1010. Its upper momentum limit is de�ned at
8.9GeV/c where the main PANDA experiment takes place.

To prevent an unbound beam blow up due to interactions with the
target, beam cooling is used. This is especially important for the high
resolution mode due to the strong demands concerning the momentum
spread. Simulations of beam equilibria for both cooling methods have
been performed [59, 60, 61]. The beam loss and beam luminosity are
more important for the high luminosity mode. To estimate the luminosity,
the HESR cycle has been determined [62]. The beam loss is dominated
by hadronic interactions, Coulomb single scattering, and the energy loss
caused by the scattering at the target.

The beam parameter at injection and the experimental requirements
of PANDA for the antiproton beam as well the beam parameters for both
operation modes are listed in Table 3.1.



32 Chapter 3. The High-Energy Storage Ring HESR

Beam parameters at injection

Transverse Emittance 1mmmrad (norm., rms) at 3.5 · 1010 p̄
Relative momentum spread 1.33 · 10−3(norm., rms) at 3.5 · 1010 p̄

Bunch length 200m
Momentum 3.8GeV/c

Injection method Within a single turn (kicker injection)

Experimental beam requirements by PANDA

Kind of particles antiprotons
Antiproton production rate 2 · 107 s−1

Momentum range 1.5 to 15GeV/c (0.83 to 14.1GeV )
Number of antiprotons 1010to 1011

Areal target density 4 · 1015 atoms/cm2

Beam size at target ≈ 1mm (rms)

Beam parameters of mode high luminosity high resolution

Maximum luminosity 2 · 1032 cm−2s−1 2 · 1031 cm−2s−1

Momentum spread (rms) σp/p ≥ 4 · 10−5 σp/p ≈ 10−4

Momentrum range 1.5 to 15GeV/c 1.5 to 8.9GeV/c

Table 3.1: Beam parameter for the injection, requirements of PANDA, and
both modes of operation

3.2.4 Electron cooler

Since this thesis covers the calculations of an local close orbit correction
concerning the de�ections caused by the bending toroid magnets of the
electron cooler [63, 3], the latter is here of particular interest. It will be
used together with stochastic cooling to achieve the demanding require-
ments of PANDA. The electron cooler is capable to cool the antiproton
beam in the momentum range from 1.5 to 8.9GeV/c. This corresponds
to an electron energy in the range from 400 keV to 4.5MeV since the
velocity of the electrons and that of the antiprotons have to match. The
design of the electron cooler includes the possibility for a later upgrade
to a maximum electron energy of 8MeV. This upgrade will allow electron
cooling over the whole momentum range of the HESR. The circulating an-
tiproton beam can be pre-cooled with the stochastic cooling system. The
voltage of the electron cooler will be kept constant during one cycle to
achieve the desired stability of the electron energy. This implies that the
electron cooler can only be used at injection energy when this coincides
with the experimental energy. The electron cooler has to compensate
heating e�ects introduced by the interaction of the circulating antiproton
beam with the internal PANDA target. Such a compensation can only be
performed with magnetized cooling using a su�ciently strong longitudinal
magnetic �eld [64, 65, 66]. The necessary magnetic �eld strength inside



3.2. HESR design 33

the interaction straight was chosen as 0.2T to allow a larger diameter
of the electron beam. The resulting electron beam radius in the cooling
section was determined to be in the order of 5mm. The 24m long cool-
ing interaction straight matches the requirements since the cooling rate is
proportional to the product of the electron cooler length and the electron
current. A maximum electron current of 1A was selected according to the
recommendations in [64, 65, 66]. A controlled misalignment angle between
the antiproton and the electron beam avoids too small beam spots.

A schematic view of the HESR electron cooler is shown in Figure
3.3. It presents the beam path of the electrons which includes the bends
caused by toroid magnets. The toroid magnets at both end of the inter-
action straight a�ect also the circulating antiproton beam. The design
parameters of both relevant toroid magnets are equal although the toroid
magnets are di�erently aligned.

Figure 3.3: The layout of the HESR electron cooler consists of a high voltage
terminal and a beam path utilizing solenoid and toroid magnets. The cooler tank
houses besides the electron gun and the acceleration column also the collector.
The toroid magnets which are part of the electron guiding system can be seen.
Below the tank, there is a vertical bend whereas a horizontal one is at the end
of the interaction straight.
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3.2.5 Ion optical properties

Transition energy and de�ned ion optical settings The adjusta-
bility of the transition energy in the range from γtr = 6 to γtr = 15 is
important for the stochastic cooling system. The frequency slip factor η
has to be su�ciently small to reduce unwanted mixing from the stochastic
pickup to kicker [67] and changes with the beam energy. Therefore two
essential ion optical settings with γtr = 6.2 and γtr = 13.3 have been
de�ned which are suitable for a certain range of the beam energy. The
γtr = 6.2 setting will be used for a beam energy above the injection energy
of 3GeV. This means that the γtr = 6.2 lattice will be used for the main
PANDA experiment at 8.9GeV/c. The γtr = 13.3 setting is designed for
the lower momentum range of the antiproton beam. The ion optical set-
ting for injection is based on the γtr = 6.2 layout but with reduced beta
functions around the target since no focussing at the target is needed dur-
ing injection. The ion optics for both lattice settings are shown in Figure
3.4.

(a) The γtr = 6.2 lattice (b) The γtr = 13.3 lattice

Figure 3.4: Ion optics of the HESR for both lattices a) γtr = 6.2 and
b) γtr = 13.3. The target is located at the origin. The center of the elec-
tron cooler is at s ≈ 288m. Both plots show the modulation of the horizontal
dispersion (blue) function to achieve dispersion-free straight sections. The beta
functions (red and green) are much larger around the target than in the arcs
which is caused by the focusing at the target. The comparison of both ion optics
reveals the di�erently large maximum beta functions around the target. Also
the dispersion functions have di�erent shapes.

Beta functions The beta functions can be adjusted at several points
in the HESR, e.g. at the target or at the electron cooler.

The beta functions at the target are adjustable in the range from 1 to
20m to match the energy dependent beam size to the target size. Proper
beam target overlap requires a constant beam size of roughly 1mm (rms).
The necessary focusing leads to an increase of the beta functions in the
adjacent quadrupole triplets.
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The beta functions at the electron cooler interaction region are ad-
justable in a range from 20 to 200m. This is necessary to match the size
of both beams because the transverse dimensions of the antiproton beam
change signi�cantly with the energy through adiabatic damping whereas
the electron beam radius is �xed at 5mm.

Natural chromaticity The natural chromaticity introduced by mo-
mentum dependence of the focussing of the quadrupole magnets ranges
for the HESR from −10 to −15. It is ξx = −14.82 and ξy = −10.31 for
the γtr = 6.2 lattice. For the γtr = 13.3 lattice, the natural chromaticity
is with ξx = −14.53 horizontally slightly smaller whereas it is larger for
the vertical one: ξy = −11.13.

3.3 Comparison with COSY

Alike the HESR, the Cooler Synchrotron COSY of the Forschungszentrum
Jülich is a storage ring with an electron cooler and a stochastic cooling
system. It can store and accelerate polarized and unpolarized proton
and deuteron beams in a momentum range from approximately 0.30 (0.54
for deuterons) up to 3.7GeV/c [68, 69]. An overview of COSY with its
internal and external experiments is shown in Figure 3.5.

COSY has, similar to the HESR, a race track shape and consists of
two symmetric arcs and two straight sections. It has a circumference
of 183.4m and is approximately a factor three shorter than the HESR.
The straight sections have a length of 40m each. The ion optics of the
straights are adjustable to perform an identity mapping where the phase
advance is then ψ = 2π. Each arc is constructed out of three unit cells
and both arcs are mirror-symmetric. Each unit cell itself consists of two
mirror-symmetric halfcells using a FODO arrangement.

Although the injection types of COSY and HESR di�er (COSY has a
stripping injection whereas the HESR uses a kicker injection), there are
many similarities between the two accelerators. Both feature the same
beam cooling techniques and have an electron cooler and a stochastic
cooling system. Although the HESR will have only one experiment in-
stalled and COSY has several internal and external experiments. The
WASA experiment [73] installed in COSY is of particular interest for the
HESR development since it has a pellet target like PANDA. All of these
similarities justify the use of COSY as a benchmarking facility for the
HESR. Thus, several on-going experiments at COSY cover hardware and
experimental techniques which are relevant for HESR design and future
operation.

New cavities have been designed and built for example a barrier bucket
cavity [43] to compensate the mean energy loss induced by the internal
pellet target. Cooling hardware has also been developed. The stochas-
tic cooling system for the HESR will use hardware e.g. stochastic pick-
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Figure 3.5: Schematic overview of cooler synchrotron COSY. The location of
the ion sources for polarized and unpolarized beams are indicated. The cyclotron
Julic is used for pre-acceleration. The electron cooler and the stochastic cooling
devices of COSY are shown and the signal lines of the stochastic cooling system
are indicated. The positions of the accelerating radio frequency cavities and the
barrier bucket cavity as well as fast quadrupole and radio frequency solenoid
magnet for polarization preservation and manipulation are designated. The
locations of the internal experiments EDDA [70, 71], ANKE [72], WASA [73]
including its pellet target and PAX [47] are marked. Injection, extraction and
the external experiment TOF [74] are shown as well.

ups with slot coupler [43] which have not been used at COSY before.
Therefore prototypes have been built and tested at COSY. Besides new
hardware, stochastic cooling techniques like the time-of-�ight cooling have
been successfully applied and compared to notch-�lter cooling [67]. The
combination of a barrier bucket cavity together with stochastic cooling to
compensate beam-target interaction was veri�ed to be e�ectively working.
As a step toward the high energy electron cooler planned for the HESR,
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a 2MeV electron cooler is going to be built and installed into COSY to
investigate the cooling forces and possibilities at high energies [75]. Also
hardware related to beam diagnostics like a beam pro�le monitor was
tested at COSY [76].

The proposed orbit response matrix method for closed orbit correc-
tions at the HESR has been applied at COSY. Since COSY has an electron
cooler like the HESR, the local toroid magnet compensation bumps have
to be taken into account for closed orbit correction, resulting in similar
conditions as for the HESR. The orbit response matrix method could be
validated as it is described in chapter 4.2.



Chapter 4

Closed orbit correction

Alignment errors of accelerator components like magnets have been esti-
mated and used to calculate closed orbit deviations. An orbit correction
concept has been developed to allow e�cient closed orbit corrections in
the HESR. The orbit response matrix method is proposed for closed orbit
corrections in the HESR and has been used to correct the closed orbit at
COSY. Furthermore, the �exibility of local closed orbit bumps at various
locations has been checked.

4.1 Closed orbit correction system for HESR

4.1.1 Alignment errors

Magnets have to be aligned in three spatial and three rotational degrees
of freedom. All deviations from the ideal alignment lead to orbit dis-
tortions. For simulation purposes the assumed Gaussian distribution of
alignment errors was reasonably truncated at 2.5σ [77]. A uniform and
Gaussian distribution have already been compared [78] and thus this was
not checked again. Alignment errors have been applied to all elements
in the HESR including beam guiding magnets like dipole or quadrupole
magnets, beam position monitors, and orbit correction dipole magnets.
The alignment errors of COSY are shown in Table 4.1 and have been used
for the simulations for the HESR. The angular errors have been calculated
based on the spatial errors and on the element dimensions.

The COSY accelerator is surrounded by concrete walls and a concrete
roof, the so called COSY tunnel, inside the COSY hall. There are two
central reference points in the center of COSY hall. These reference points
are used to create an alignment grid inside the COSY tunnel. This grid
has been used to align all magnets and elements of COSY. The alignment
grid for the HESR will be created di�erently. FAIR will have a primary
alignment grid on the surface which will be transferred to the accelerators
[80]. The HESR tunnel will be surrounded by soil instead of being inside a
hall. Thus, there will be no central reference points as for COSY. Instead,

38
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Magnet type ds [mm] dx [mm] dy [mm]
Dipole magnet 1.0 0.2 0.2

Quadrupole magnet 0.2 0.5 0.2

Sextupole magnet 0.5 0.5 0.2

Correction dipole magnet 0.2 0.5 0.8

Table 4.1: Alignment errors of elements based on COSY alignment accuracy
[79]. The MAD-X nomenclature has been adopted. The alignment errors are
given in the local co-moving coordinate system which means that ds is a shift
along the beam axis whereas dx and dy are transverse misalignments.

there will be a certain number of reference points transferred from the
primary to the local alignment grid inside the HESR tunnel. The local
alignment grid in the HESR tunnel will base on these transferred refer-
ence points. The number of the reference points necessary to achieve the
desired alignment accuracy can be estimated by simulations but was not
done so far. The individual elements and magnets will be aligned using
a laser tracker system on the local alignment grid. The �nal, global ac-
curacy is not known by now since simulations of tunnels, detailed lattices
etc. have to be performed �rst.

4.1.2 Simulation of orbit distortions

The simulation of the orbit deviations has been performed using MAD-
X. Since MAD-X is not capable to calculate twiss parameters and closed
orbit with respect to �eld errors, the �eld errors of magnet have been
neglected in the �rst step. Alignment errors have been applied to all ele-
ments according to Table 4.1. The pseudo-random number generator has
been fed with a variety of di�erent seeds resulting in di�erent closed or-
bits. An example of ten orbits calculated with di�erent seeds is shown in
Figure 4.1. The largest orbit deviations occur around the target and have
a value of up to approximately 0.1m. Anywhere else in the HESR, the
maximum closed orbit deviations are with less than 0.04m a factor 2.5
smaller. This di�erences are caused by the very large beta functions of
several 100m around the target. Nevertheless, the resulting uncorrected
orbits are approximately one order of magnitude smaller than of the su-
perconducting version of the HESR [78]. This can be traced back to the
fact that the alignment of superconducting magnets is not as precise as
of normal-conducting ones. Whereas normal-conducting magnets can be
aligned in a direct way, superconducting magnets have to be aligned �rst
inside a cryostat which also has to be aligned itself.
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4.1.3 Orbit correction elements

While the design of the orbit correction dipole magnets allows a de�ection
of the beam in one transverse direction only, the proposed beam position
monitors can measure in both transverse directions.

Accuracy of beam position monitors and orbit correction dipole

magnets Beam position monitors can measure the position of a circu-
lating beam with a certain accuracy. This accuracy is a�ected by two
kinds of measurement errors. The �rst kind is an o�set error which is
independent of the beam position whereas the second kind is a scaling
error. This scaling error a�ects the measurement accuracy depending on
the beam position. The measurement errors applied to the simulation of
closed orbit correction for the HESR [81] are listed in Table 4.2. Both
error types are assumed to be Gaussian distributed because they shall
represent simulated measurement errors of the beam position.

Accuracy

Scaling 0.1
O�set [mm] 0.1

Table 4.2: Measurement accuracy of beam position monitors

The orbit correction dipole magnets are also misaligned (see Table 4.1).
Other errors like calibration errors are not taken into account. This is no
limitation because an iterative and converging method like the application
of an orbit response matrix is able to compensate this. Errors of polarity
of beam position monitors and orbit correction dipole magnets are easy
to identify with a comparison between a measured and a calculated orbit
response matrix. Thus there is no need to simulate this kind of error.

Location of beam position monitors and orbit correction dipole

magnets The type of beam position monitors which will be used in the
HESR is able to measure the orbit in both transverse planes. As it was
described in paragraph 3.2.2, they will be integrated into the sextupole
magnets. To �nd the best locations for beam position monitors and orbit
correction dipole magnets, some constraints have to be considered. On one
hand the e�ciency of pairs of beam position monitors and orbit correction
dipole magnets scales with the square root of beta function and with
the cosine of the phase advance in between them (see equation 2.43).
For chromaticity correction the e�ciency of a sextupole scale with the
horizontal dispersion.

Arcs Due to space restrictions, there are 48 possible locations per arc
for sextupoles with beam position monitors and orbit correction dipole
magnets. This implies that the phase advances are �xed and thus are not
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as important as the beta functions and the horizontal dispersion. The
locations for beam position monitors were chosen through the sextupoles
and do not break the described mirror symmetry of both arcs.

To be precise, calculations have shown that the number of necessary
beam position monitors is by four lower in each arc than the number of
sextupole magnets required for chromaticity correction. Beam position
monitors will also be included in the additional sextupoles to have a com-
mon design.

Straight sections The straight sections have di�erent characteristics
concerning the ion optical properties. The beta functions di�er due to
di�erent requirements of e.g. PANDA target or electron cooler. The
distribution of correction elements within the straights is guided by the
beta functions. This results in the correction elements being placed close
or within the quadrupole triplets. The mirror symmetry of the straights
is maintained whereever this is possible.

Number and distribution of correction elements The proposed
orbit correction scheme consists of 64 beam position monitors and 48 orbit
correction dipole magnets.. The orbit correction elements are distributed
as follows:

� 26 beam position monitors per arc

� 6 beam position monitors per straight

� 6 horizontal and 6 vertical orbit correction dipole magnets per arc

� 6 horizontal and 6 vertical orbit correction dipole magnets per straight.

4.1.4 Closed orbit correction for HESR

The orbit response matrix method is used for closed orbit corrections
in the HESR. A computer program has been written to calculated the
ideal orbit response matrix from the MAD-X closed orbit calculations.
�Ideal� means that no alignment and �eld errors of magnets are taken
into account. The orbit response matrix is inverted using SVD since this
algorithm and the necessary vector matrix multiplication is fast and easy
to implement in a control system for an automated closed orbit correc-
tion. After the inverted ideal orbit response matrix has been prepared,
the computer program generates the alignment errors and runs MAD-X
to calculate the resulting distorted closed orbit. The deviations from the
reference trajectory are determined at the locations of the beam position
monitors. To simulate measured close orbit deviations, the computer pro-
gram applies the measurement errors of the beam position monitors. The
necessary de�ection strengths are calculated and checked if they exceed a
pre-de�ned maximum correction strength. If that is the case, all values
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are scaled to �t the boundary condition. The scaled correction strengths
are applied to the MAD-X input which is used to calculate the resulting
closed orbit again.

This iterative process converges within a few iterations and is stopped
if the relative change of the calculated de�ection strengths from one step
to the other becomes smaller than 10−7. When a prede�ned maximum
closed orbit deviation is reached, the iteration process is stopped before
convergence to save computation time.

The closed orbit correction system has to ful�ll the following require-
ments [78]. Firstly, the maximum de�ection strength of orbit correction
dipole magnets shall not exceed 1mrad which is a typical value, e.g. for
SIS100/300. Secondly, the orbit deviations shall be corrected to below
5mm maximum closed orbit deviation. The number of iterations neces-
sary to correct a closed orbit was always below ten.

The simulated closed orbits which were shown in Figure 4.1 have been
corrected with the described closed orbit correction procedure. The cor-
rected closed orbit are shown in Figure 4.2 with the same color code. The
scale of the plot shows that all of the corrected closed orbits presented
in the Figure are con�ned within the requested 5mm range. The closed
orbit corrections have been performed for 10000 di�erent seeds and for
both de�ned ion optical settings. To compare correction results, the max-
imum deviation of the corrected closed orbits is used. The results are
summarized in Table 4.3.

Lattice γtr = 6.2 γtr = 13.3
Xmean [mm] 3.34± 0.54 3.35± 0.54
Xmin [mm] 1.88 1.92
Ymean [mm] 3.51± 0.71 3.42± 0.68
Ymin [mm] 1.70 1.59

Table 4.3: Statistical summary of closed orbit correction simulations for dif-
ferent seeds and ion optical settings. The index mean indicates the mean value
evaluated over all maximum closed orbit deviations and min the smallest value.
The statistics for both de�ned ion optical settings have been calculated from
corrections with 10000 di�erent seeds.

The minimum values of the maximum closed orbit deviations do not
belong to the same seeds. The closed orbit correction scheme and the
applied procedure work for both ion optical settings. For all 10000 seeds,
the maximum closed orbit deviations has been corrected to below the
5mm boundary. Since the optimization of the closed orbit correction was
stopped whenever the maximum closed orbit deviation became smaller
than the requested 5mm boundary, the closed orbits can be further opti-
mized. It also explains why the underlying distribution is not Gaussian.
In Figure 4.3, the latter is shown in the histograms which are related to
resulting maximum closed orbit deviations.
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(a) γtr = 6.2 (b) γtr = 13.3

Figure 4.3: Histograms of maximum deviation of 10000 corrected closed orbits
for both ion optical settings, a) the γtr = 6.2 lattice and b) the γtr = 13.3 lattice.
The scale of the abscissa marks the maximum deviation of corrected closed orbits
where the numbers represent the upper limit of a range, e.g. 5 corresponds to
the range of 4.5 to 5. The ordinate shows the number of maximum closed orbit
deviations for the given ranges. Both histograms show that the distributions are
not Gaussian.

The comparison of both histograms show that the distributions look
very similar. This indicates that the closed orbit correction system per-
form almost equally well for both investigated ion optical settings.

4.1.5 Orbit correction including �eld errors

The in�uence of �eld errors on the closed orbit cannot be investigated
using the regular MAD-X version since it takes �eld errors into account
only for tracking. There exist an extended version of MAD-X which con-
tains the PTC1 module [82]. PTC is capable to calculate the closed orbit
with respect to �eld errors and alignment errors and has been used to
investigate the relevance of �eld errors. Closed orbit correction simula-
tions including �eld errors have been performed according to the following
procedure:

1. Simulate and correct the closed orbit without �eld errors (MAD-X)

2. Retrieve the strengths needed for the closed correction dipole mag-
nets

3. Use PTC with �eld errors and apply the correction strengths to the
orbit correction dipole magnets

4. Determine the resulting maximum closed orbit deviations

This investigation was done for a smaller amount of seeds (500 per ion
optical setting) which is su�cient for a cross check. The �eld errors which

1Polymorphic Tracking Code
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have been used can be found in chapter 5.3. The dipole errors at 1.7T
main �eld have been used for the γtr = 6.2 lattice and at 0.17T for
γtr = 13.3 one. The used quadrupole errors are the ones for a current
of 550A (γtr = 6.2) and 200A (γtr = 13.3). It could be shown that the
resulting closed orbits are slightly changed by the �eld errors. For those
exceeding the 5mm border, further optimization with MAD-X has been
performed. This was su�cient to ful�ll the 5mm constraint even when
including �eld errors.

The dipole �eld can be in�uenced by the surrounding magnets, which
cause a shortening of the e�ective �eld length. Furthermore, ripples of
the power supplies and remanence e�ects also in�uence the close orbit.
Since these e�ects are dynamic, i.e. they change during a cycle, they
have not been investigated. The closed orbit corrections and simulations
are only performed for static accelerator settings and magnet properties.
Such investigations concerning dynamical changes of the accelerator and
magnets will be carried out at a later stage.

4.1.6 Closed local orbit bumps for HESR

In the HESR, a good beam alignment is necessary at various locations,
e.g. at the target. This adjustments of the beam position and angle
are achieved using so called local closed orbit bumps. For the HESR,
the local closed orbit consist typically of four correction dipole magnets
used to align the beam as necessary. Since the orbit bumps are local and
closed, they will not a�ect the global closed orbit outside of its boundaries.
These orbit bumps have to provide enough �exibility to adjust the beam
in the desired way. Except for the toroid magnet compensation and for
the H0 closed orbit bump, a de�ection angle of 1mrad is su�cient for all
necessary correction dipole magnets used for local closed orbit bumps.

At the target To maximize the interactions of the circulating beam
with the internal PANDA target, a good beam target overlap is crucial.
Two beam position monitors are planned to be located near the target to
determine beam position and angle. Using a local closed orbit bump, it is
possible to optimize beam target overlap by adjusting the location of the
beam until the count rate of the PANDA detector reaches a maximum.
The beam has to be adjustable in the range from +5 to −5 mm to pro-
vide enough �exibility. Simulations have shown that 1mrad is su�cient
to achieve this even with a worst case estimate concerning the 5mm closed
orbit deviations. The simulation has been performed with an angle ad-
justment to 0°. During the simulations, it could be observed that the orbit
is not fully closed and there was a slight change of the global closed orbit.
This is due to the simulation where the de�ection strengths are calculated
from the ideal computer model whereas for the closed orbit alignment er-



4.1. Closed orbit correction system for HESR 47

rors are taken into account. Such deviations can be minimized by an
optimization of the computer model.

At injection The beam location and its angle with respect to the ref-
erence trajectory have to be very accurate at the injection kicker. If the
injected and the circulating beam are not properly matched, this mis-
match would leads to unwanted emittance growth. There are basically
two ways to match the beams. The �rst approach is to adjust the closed
orbit of circulating beam to the parameters of the injected beam. This
implies that the closed orbit is changed completely and at all locations in
the HESR. The other way is to setup a local closed orbit bump around
the injection kicker. This is more preferable since this approach does not
change the global closed orbit.

At the H0 detector For proper beam cooling in the electron cooler,
a good overlap of the circulating and the electron beam is important.
For commissioning and optimization of the electron cooler, a circulating
proton beam will be used together with an H0 detector. Inside the cooling
section, protons and electrons can recombine to atomic hydrogen. Before
the atomic hydrogen reaches the H0detector, the electrons are removed
inside the surrounding material of the H0 detector and the protons are
counted. The count rate is a measure of the alignment accuracy of the
two beams.

The designated place of the H0 detector will be in between the two
quadrupole triplets behind the electron cooler. The circulating beam has
to be de�ected around the H0 detector to prevent the latter from counting
the protons of the beam. The are two possible solutions to install the H0

detector. The �rst possibility is to introduce a kink to the beam pipe
and to install the H0 detector outside. The second possibility is to place
the H0 detector within the beam pipe and to de�ect the circulating beam
around it. The latter is investigated due to a simpler setup and lesser
modi�cations to the beam pipe.

It is assumed in the following that both transverse phase space ellipses
lie within the electron cooler which implies |αx,y| � 1. The beta functions
at the electron cooler are adjustable to keep the diameter of the circulating
beam constant (see Table 4.4). The resulting 1σ radius of the atomic
hydrogen beam at the detector is smaller than or equal to 10.29 mm.
The maximum 1σ radius (at 1.5GeV/c) of the circulating beam is in the
range of 3.66 mm at the detector. For injection energy (3.8 GeV/c), the
1σ radius of the H0 beam is much smaller (approximately 4mm).
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p ε β umax,1σ pu,max,1σ uH0,1σ

[GeV/c] [mmmrad] [m] [mm] [mrad] [mm]
1.5 0.637 19.6 3.53 0.18 10.29

3.8 0.250 50.0 3.54 0.07 4.00

8.9 0.107 116.0 3.52 0.03 3.52

15 0.064 196.0 3.54 0.02 3.54

Table 4.4: Preferred beta functions at electron cooler where p denotes the
momentum, ε the transverse geometric emittance and β the beta functions at
the electron cooler. The resulting beam radius and angle as well as the resulting
H0 beam radius at the H0 detector are also shown. In the last three columns
�u� represents the coordinates x or y.

Compensation of toroid magnet de�ections at the electron cooler

Toroid magnets are part of the beam guiding system of an electron cooler
and are bent solenoid magnets with an additional dipole �eld to compen-
sate the centrifugal force. With these, the electron beam is de�ected into
and out of the beam pipe of the circulating beam. Since the magnetic
rigidities of antiprotons and electrons di�er, the de�ection of antiprotons
is smaller than that of electrons. The de�ections caused by the toroid
magnets are larger for lower momenta. The toroid magnet design param-
eters are given in Table 4.5.

Bending radius of electron beam R0 = 4m
Magnetic strength on B0 = 0.2T

Bending angle of toroid magnets ϕ0 = 30°

Table 4.5: Design parameters of electron cooler toroid magnets

To compensate the de�ections, four additional correction dipole mag-
nets have to be included in the HESR lattice, two on each side of the
electron cooler. The inner ones should be placed very close to the toroid
magnets to keep the orbit deviations introduced by transverse momenta as
small as possible. Due to space restrictions, the inner correction dipoles
should be designed to de�ect the circulating beam in both transverse
planes. The strengths of the correction dipole magnets for 1.5 GeV/c
beam momentum have to be 28.75 mrad and 3.32 mrad for both planes
of the the inner correction dipole magnets and 1.42mrad and 0.05mrad
for both planes of the outer ones. Depending on the distance between
extrapolated toroid magnet de�ection and inner steerers, these values will
increase. To give an example: If the distance is 0.3m, the strengths in-
crease to 31.03mrad and 3.58mrad for the inner steerers and 1.98mrad
and 0.06mrad for the outer ones. The strength of the inner steerers in-
creases faster than that of the outer steerers.

The toroid at the entrance of the electron cooler below the cooling
tower has a vertical bent whereas the toroid at the end of the interaction
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straight has a horizontal one (see Figure 3.3). The solutions at both end
di�er by a rotation of 90°. Therefore, it is su�cient to obtain one solution
only.

4.2 Closed orbit correction at COSY

During a PAX [47, 83] beam time, an orbit response matrix was measured
and applied to correct the closed orbit afterwards.

4.2.1 COSY settings

Two main settings have been used [84]. The �rst one use dispersion sup-
pression in the straight sections. The other setting was without dispersion
adjustments in the straight sections. The proton beam energy was set to
45.01MeV which corresponds to a momentum of 294.08MeV/c. The
proton beam was electron cooled. The tunes were set to di�erent values
in the range from 3.568 to 3.623 depending on the dispersion setting as it
is shown in Table 4.6. The ion optics for the D 6= 0 setting are shown in
Figure 4.4.

Dispersion setting D 6= 0 D = 0
Qx 3.620 3.580
Qy 3.582 3.623

Table 4.6: Tune settings during experiment

4.2.2 Measuring orbit response matrix

The D 6= 0 setting was used during the orbit response matrix measure-
ments. Neglecting coupling and because of time limitations, only the un-
coupled orbit response matrices for both transverse planes have been mea-
sured. For both measurements, 29 beam position monitors were available
including those in the electron cooler. All 20 horizontal orbit correction
dipole magnets, two horizontal back-leg-windings on ANKE dipole mag-
nets, and both compensation dipole magnets next to the electron cooler
toroid magnets (de�ecting horizontally only) where used for the measure-
ment of the horizontal orbit response matrix. For the measurement of the
vertical orbit response matrix, 17 orbit correction dipole magnets were
available.

The measurement procedure was to de�ect the beam in both trans-
verse planes (left and right; up and down) with a change of 5% in terms
of current. The 5% variation was used if no beam loss was indicated
by the BCT2 signal. Otherwise the adjustment of the de�ection current

2Beam current transformer
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Figure 4.4: COSY ion optics with D 6= 0 in straights. The main sections are
indicated. The center of the electron cooler is at s = 111.5m.

was reduced. The closed orbit changes at the beam position monitors
normalized to a 1% variation of current correspond to the entries in the
orbit response matrix. Thus the measured COSY orbit response matrices
can be used to calculate orbit changes in term of current changes of the
de�ecting devices.

4.2.3 Comparison of measured and calculated orbit re-

sponse matrix

As described in chapter 2.1.9 the orbit response matrix can be calculated
from a computer model of the accelerator. A comparison with a measured
orbit response matrix can provide useful information of and optimization
capabilities for the model. Besides extensive optimization and calibration
routines like LOCO [85], an easy and simple check is the ratio of corre-
sponding matrix elements. If the ratio is equal to one for all indices, the
model describes the accelerator perfectly. A column or row with nega-
tive values indicate that the corresponding correction element has wrong
polarity. To compare both matrices, the measured orbit response matrix
was renormalized to de�ection angles in mrad using the calibration table
of the COSY control system.

The check of the COSY orbit response matrix showed that the ratio
averaged over all matrix elements is in the order of 92%. The deviations
are mainly introduced by small values of matrix elements where small
di�erences between both matrices lead to large ratios.
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4.2.4 Orbit correction

Although the orbit response matrix was measured for one speci�c machine
setting, its application for other machine settings (D = 0) worked as well.
The orbit response matrix was used as it is which means that it was not
inverted but a χ2 minimization was used. This kind of application takes
more time for calculation but is easier and faster to set up.

One problem which occurred was related to the electron cooler. A
usual machine setup would be planned to correct the closed orbit �rst
and to set up the toroid magnet compensation for the electron cooler
afterwards. Instead, the local closed orbit bump for the electron cooler
was set up with an uncorrected closed orbit and could not be adjusted
afterwards. Thus, the closed orbit correction using the orbit response
matrix was used to correct the closed orbit while arti�cially maintaining
the toroid magnet compensation. This application of the orbit response
matrix with local boundary conditions led to a not fully corrected closed
orbit. A distortion of the local closed orbit bump around the electron
cooler could not be prevented and caused worse beam overlap of the pro-
ton and electron beams resulting in weaker cooling. The orbit correction
had to be stopped after two iterations since the cooling capabilities were
compromised after the third iteration.

Figure 4.5 shows the results of the orbit correction for both planes as
well as the distortion of the local closed orbit bump around the electron
cooler.

4.3 Discussion of results

Based on the alignment errors of COSY, closed orbit simulations have
been performed for HESR. They show that the uncorrected closed orbit
deviations can be nearly as large as 100mm which is more than twice the
beam pipe radius of 44.5mm. The largest closed orbit deviations occur
near the target and are caused by the large beta functions in the sur-
rounding triplets. Anywhere else is the HESR, the closed orbit deviations
are by more than a factor two smaller and at least close to the beam pipe
radius. The maximum closed orbit deviations are roughly one order of
magnitude smaller than for the superconducting version of the HESR.

To limit the closed orbit deviations, a closed orbit correction has been
developed and tested by various simulations. The boundary conditions of
1mrad maximum de�ection strength at 15GeV/c and a resulting maxi-
mum closed orbit deviation of less than 5mm have been satis�ed. Sta-
tistical investigations have also shown that the developed closed orbit
correction system works almost equally well for both ion optical settings,
the γtr = 6.2 and the γtr = 13.3 lattice. The necessary closed orbit bumps
have been checked to not exceed an additional 1mrad.
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Figure 4.5: Horizontal (top) and vertical (below) closed orbit correction for
COSY. The electron cooler is located at nearly 111m. The toroid magnet com-
pensation from approximately 104m to about 120m around the electron cooler
becomes distorted. The vertical orbit is in general much better. The third
iteration is not shown because it could not be used due to the weak electron
cooling.
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The orbit response matrix has been measured for COSY. Its appli-
cation has shown that the correction method proposed for the HESR
performs as expected except for the toroid magnet compensation. A cor-
rection of the maximum closed orbit deviations below 7.5mm was not
possible due to the toroid magnet compensation at the electron cooler.
The compensation bump could not be adjusted and had to be arti�cially
maintained during the orbit correction. On one hand, this restricted the
number of iterations to two. The third iteration compromised the cool-
ing capabilities of the electron cooler and could not be used. On the
other hand, there was no possibility to correct all orbit deviations larger
than the intended 5mm due to overcompensation and the use of a global
correction scheme with the local boundary conditions. Therefore, it is
necessary for future closed orbit corrections at COSY and the HESR to
adjust the local closed orbit bump around the electron cooler after each
iteration as it was done for the HESR closed orbit simulations.



Chapter 5

Dynamic aperture and

frequency map analysis

This chapter contains the calculations of dynamic aperture and frequency
map analysis. The choice of sextupole locations for chromaticity correc-
tion is discussed.

5.1 Dynamic aperture calculations

Dynamic aperture calculations are always connected with a trade-o� be-
tween computation time and accuracy. Tracking a whole six dimensional
phase space can take easily weeks, months, and even year depending on
its density and number of turns. Thus a proper reduction of the problem
is inevitable.

Several restrictions had to be made to �t within the available compu-
tation time and power:

� The phase space of start coordinates of all particles has been re-
stricted to the x,y-plane which is a common procedure [24]. Cross
checks have been performed to prove this restriction to be valid.

� The dynamic aperture calculations are limited to the short term
regime which ranges from several hundreds to a few thousands of
turns. This is justi�ed by the kind of investigation performed in
this thesis. The betatron motion and related resonances which are
driven by �eld errors of the magnets develop in this range of turns
[25]. Furthermore 2000 turns are su�cient to calculate the di�usion
coe�cient [26].

� The relative momentum deviation is also taken into account but
for discrete values only. Calculations have been performed for on-
momentum particles and o�-momentum particles with a maximum
relative momentum deviation of ±3σ.

54
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The particle tracking starts at the place of the geometric acceptance limit
which is located in the triplets around the target at the maximum beta
functions. This allows a immediate comparison of the dynamic aperture
with the geometric acceptance limit.

The calculation of the dynamic aperture is performed in the following
way. The linear lattice is calculated by MAD-X and read into SIMBAD.
The non-linearities caused by the �eld errors and sextupole magnets are
introduced via thin non-linear kicks. The individual �eld errors of mag-
nets are created by a pseudo random number generator and are Gaussian
distributed. The seed of the generator can be and has been changed for
statistical analysis. A grid of initial coordinates of particles is created in
the x,y-plane. Using SIMBAD, particles are tracked through the HESR
non-linear computer model for a speci�ed amount of turns. The initial co-
ordinates of surviving particles are transformed into transverse emittances
using the twiss parameters. The boundary condition of equal transverse
emittances restricts the dynamic aperture to be the largest circle covering
the stable area in this emittance-based, two dimensional phase space.

The dynamic aperture calculations have been used to develop and op-
timize a chromaticity correction scheme using sextupoles and to optimize
the �eld errors of the beam guiding magnets. There will be other non-
linearities in the HESR which are not covered by this thesis e.g. space
charge e�ects [19] or the non-linear kicks caused by the electron cooler's
beam [86, 87]. They both act on longer time scales compared to the rising
of betatron resonances.

5.2 Arrangement of sextupole magnets for chro-

maticity correction

Chromaticity leads to a tune spread induced by the momentum spread of
the beam. Thus a chromaticity correction scheme had to be developed
for the HESR [88]. Chromaticity can be corrected at places with non-zero
dispersion only, which means that all sextupole magnets for chromaticity
correction have to be installed in the arcs. Sextupole magnets are the
lowest multipole creating non-linear forces. The non-linear e�ect on beam
dynamics should be as small as possible or compensated if feasible to
prevent the dynamic aperture from shrinking.

The use of driving term techniques did not lead to the desired results.
This can be explained considering what follows. The dynamic aperture
de�nes the border to the chaotic motion and thus is far away from the area
where those techniques can be applied [89]. Furthermore, the sextupole
magnets contribute to ten �rst order driving terms. All phase dependent
driving terms require two families of sextupole magnets to be properly con-
trolled. This adds up to 12 families of sextupole magnets for correction of
the �rst order chromaticities and the geometric driving terms which drive
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betatron resonances. This does not even regard e.g. second order disper-
sion. However, the HESR lattice does not provide for example the proper
phase advances necessary for a driving term approach and there are not
enough sextupole magnets to justify a splitting into the desired number
of sextupole magnet families. Instead of a driving term approach, the
e�ect of pairs of sextupole magnets on the dynamic aperture is evaluated.
This means that the investigation searches for pairs of sextupole magnets
whose e�ect the dynamic aperture is smallest. These pairs compensate
best at design tunes for which this investigations have been performed.
The calculations are based on the linear lattices (γtr = 6.2 and γtr = 13.3)
and the sextupole magnets being the only non-linear elements.

The best compensating sextupole magnet pairs are di�erent for both
ion optical settings. Unfortunately, there are not enough of those pairs to
fully correct chromaticities. Thus, additional pairs of sextupole magnets
have to be included in the correction scheme. The simplest distribution of
sextupole magnets consits of two families. One of these families contain
only horizontal focussing sextupoles magnets and the other only vertical
focussing ones. This is su�cient to correct chromaticities. If this distribu-
tion is further split to form a total of four families, the best compensating
sextupole magnet pairs can be separated from the weaker compensating
pairs. If lower currents are supplied to the weaker compensating sextupole
magnet pairs, the negative e�ects on stability can be reduced.

The chromaticity correction scheme consists of 12 horizontal focussing
and of 14 vertical focussing sextupole magnets per arc. The additional
four sextupole magnets are necessary since the shape of the horizontal
dispersion function is di�erent for both ion optical settings (see Figure
3.4).

The dynamic aperture was calculated for both ion optical settings
and with two and four sextupole families. The dynamic aperture of the
γtr = 6.2 lattice could be increased from 817mmmrad to 1125mmmrad
by using four families. The dynamic aperture of the γtr = 13.3 is in
general much smaller. It is 79mmmrad for the design tunes. A di�erent
choice of tunes can help to increase this value. It is extremely complicated
to determine if the tunes in general or the phase advances between the
sextupole magnets are worse than for the γtr = 6.2 lattice. Even so, it is
possible to improve the dynamic aperture with the same four sextupole
families with di�erent strengths. The maximum improvement achieved is
in the order of 15% with a value of 91mmmrad.

5.3 Field errors of the HESR magnets

Since no magnet can be designed and built to provide the desired ideal
magnetic �eld con�guration like a pure dipole �eld, �eld errors have to be
taken into account.
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Dipole magnet 3D �eld calculations have been used to estimate the
�eld errors of the dipole magnets [90] and provide upright �eld components
only (see Table 5.1). The dipole magnet is optimized for 1T which is
re�ected by the corresponding relative �eld errors being smaller than 10−4.
For di�erent �eld straights, some relative �eld errors may increase by more
than one order of magnitude.

First design Optimized design

Component 0.17T 1.0T 1.7T 0.17T 1.0T 1.7T
4-pole −0.03 0.01 0.10 −0.03 0.01 0.10
6-pole −4.32 0.72 28.16 −1.57 0.88 3.52
8-pole 0.04 0.06 0.09 0.04 0.06 0.09
10-pole −1.62 −0.05 6.03 −0.44 0.53 7.96
12-pole 0.01 0.01 0.01 0.01 0.01 0.01
14-pole −0.06 0.10 0.43 0.03 0.13 0.79
16-pole < 10−2 < 10−2 < 10−2 < 10−2 < 10−2 < 10−2

18-pole 0.06 0.04 −0.10 0.06 0.05 −0.23
20-pole < 10−2 < 10−2 < 10−2 < 10−2 < 10−2 < 10−2

Table 5.1: Relative �eld errors of the bending dipole magnet retrieved from 3D
calculations. All values are in units of 10−4. Field errors are upright only.
The �eld of 0.17T corresponds to 1.5GeV/c, 1.0T to 8.9GeV/c, and 1.7T
to 15GeV/c respectively. The reference radius of this multipole expansion is
33mm.

The �rst dipole magnet design inherited a sextupole �eld component
with a relative strength of b2 = 28.16 · 10−4 at 1.7T main �eld. Such
a sextupole �eld component a�ects chromaticity heavily. The integrated
sextupole �eld strength of a dipole magnet at 1.7T is with a value of
nearly 0.75m−2 roughly three times larger than the maximum integrated
strength of a single sextupole magnet (see paragraph 3.2.2). The resulting
chromaticities were in the order of ξx > 70 and ξy < −70, which the
dedicated sextupole magnets were not able to compensate.

Thus the dipole magnet design has been further optimized. Gaps have
been introduced into the iron yoke to improve the relative sextupole �eld
component at 1.7T main �eld. A reduction by roughly a factor eight to
b2 = 3.52 · 10−4 has been achieved [57]. The chromaticities changed to
ξx ≈ −4.80 and ξy ≈ −17.96 for the improved sextupole �eld component
at1.7T main �eld. The sextupole �eld component at 0.17T decreased
by roughly a factor three resulting in chromaticities which are very close
to the natural chromaticities. A small drawback of the optimization of
the dipole magnet design is the increase of the relative decapole �eld
component by approximately 32% to b4 = 7.96 · 10−4 at 1.7T main �eld.
At 0.17T the relative decapole decreased by nearly by a factor four. In
general, the relative �eld errors are smaller than 1 · 10−4 except for the
sextupole and decapole �eld components.
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For the following dynamic aperture calculations which take �eld errors
into account, the �eld errors for 1.7T and 0.17T have been used.

Quadrupole magnet The HESR quadrupole magnet design is based on
the COSY quadrupole magnets. The estimated �eld errors of the HESR
quadrupole magnets will be roughly 10% higher [58] than the measured
�eld errors of the COSY quadrupole magnets shown in Table 5.2. The
increase is caused by the four-part yoke of the HESR quadrupole magnets
compared to the COSY ones having a two-part yoke. The increase is taken
into account for all calculations.

200A 550A
Component Normal Skew Normal Skew

6-pole 0.37± 0.33 0.91± 0.21 1.75± 0.24 4.73± 0.67
8-pole 0.25± 0.63 2.05± 1.72 −1.13± 0.68 −0.02± 0.22
10-pole −0.70± 0.28 0.91± 0.61 −0.13± 0.23 −0.09± 0.34
12-pole −10.33± 0.82 10.28± 0.47 49.03± 2.14 13.37± 0.41
14-pole −0.73± 0.20 2.82± 2.25 −1.17± 0.26 −1.17± 0.19
16-pole 3.19± 0.38 6.51± 0.58 3.08± 0.29 5.49± 0.54
18-pole −0.09± 0.40 0.03± 0.66 0.02± 0.16 0.22± 0.15
20-pole 83.66± 0.83 2.99± 0.81 107.76± 0.62 3.34± 0.25

Table 5.2: Relative �eld errors of COSY quadrupole magnets. All values are
given in units of 10−4. The errors of quadrupole magnets do not include the 10%
increase due to the iron yoke of the HESR type. The reference radius of this
multipole expansion is 70mm. The currents of 200A and 550A correspond to
�eld gradients of approximately 3.6T/m and 10T/m respectively.

Although there exist measurements also for the current of 400A which
is closer to the maximum current used in the HESR, it was preferred to use
550A for a worst case estimate due to saturation e�ects and the di�erent
gradients. The largest relative �eld errors are by far the errors of the 12-
and of the 20-pole. For the highest current of 550A the normal 12-pole
relative �eld component has a strength of b5 = 49.03 · 10−4. The 20-pole
relative �eld component is by more than a factor two larger than that of
the 12-pole. All other �eld components are smaller than 5.5 · 10−4 except
from the skew 12-pole (a5 = 13.37 · 10−4). For low currents near 200A,
the absolute value of normal and skew 12-pole relative �eld component
are almost equal (b4 ≈ −a4 ≈ 10 · 10−4). The 20-pole is still dominant
being approximately a factor eight larger than the 12-pole.

5.4 The γtr = 6.2 lattice

The most frequently used ion optical setting will be the γtr = 6.2 lat-
tice. This is justi�ed by the main PANDA experiment. Therefore a
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simulation for 15GeV/c is a worst case estimate due to �eld errors and
important for possible future upgrades. The geometric emittance is ε =
0.0637mmmrad (εnorm = 1mmmrad) at 15GeV/c or ε = 0.107mmmrad
at 8.9GeV/c. The emittance at 15GeV/c is used in the following. The
�eld errors which are taken into account are errors of the dipole magnet
at 1.7T main �eld and of the quadrupole magnet at 550A. The design
tunes are Qx = 7.618, Qy = 7.624.

5.4.1 Tune scans

While the frequency map analysis indicate which resonances are driven at
a speci�c tune setting, a tune scan provides information about strongest
resonances over a whole area in the tune diagram. Since momentum
spread and other e�ects can lead to coherent and incoherent tune spread,
tune scans are also used to �nd tune areas with enough space and large
dynamic aperture. Such a tune scan for ∆p

p = 0 is shown in Figure 5.1.
The strongest resonance seen in the tune scan corresponds to the oc-

tupole resonance line 2 · Qx + 2 · Qy = 31. This can be indeed a fourth
order resonance driven mainly by the 12- and 20-pole �eld components
of the quadrupole magnets. The resonance line which is referred as the
skew octupole resonance 3 ·Qx +Qy = 31 is presumably the eighth order
resonance 6 · Qx + 2 · Qy = 62. This re�ects the fact that the skew �eld
components of the quadrupole magnets are relatively small compared to
the upright ones. The main contribution to the �rst fourth order reso-
nance line at 2 ·Qx + 2 ·Qy = 31 can also be the eighth order resonance
4·Qx+4·Qy = 62 or an overlap of both. A separation is almost impossible
since di�erent driving terms contribute to the resonances.

For example, the resonance line 2 ·Qx + 2 ·Qy = 31 is a fourth order
resonance. The corresponding �rst order octupole driving term is h20200.
The 12-pole �rst order driving terms which contribute to the very same
resonance are h31200 and h20310. For the 20-pole there are the four coore-
sponding driving terms h53200, h42310, h31420, and h20530. Other multipole
�eld components can also contribute in �rst order. Since the resonance
lines 4 · Qx + 4 · Qy = 62 and 2 · Qx + 2 · Qy = 31 overlap, even more
driving terms are relevant. The driving terms h51400 and the h40510 are
the corresponding �rst order 20-pole driving terms. Even so, all those
driving terms contribute in �rst order solely. Higher orders can and do
also contribute, e.g. two sextupole driving terms contribute to octupole
driving terms and thus to fourth order resonances.
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Coming back to the resonance identi�cation, also the resonance line
indicated as 2 ·Qx +Qy = 23 belongs most likely not to a skew sextupole
resonance. The next higher order resonance overlapping is the sixth order
resonance 4 · Qx + 2 · Qy = 46 which would correspond to the strong
12-pole component in the quadrupole magnets. A con�rmation of this
interpretation is provided by the other sixth order resonance 4·Qx+2·Qy =
47 which is marked as 5 in the tune scan.

The resonance line 4Qx = 31 can be observed slight shifted to the hor-
izontal integer tune. From the resonance condition, it should be located
at Qx = 7.75 as the dotted line indicates. Instead, the resonance line is
moved to approximately Qx = 7.76. This is partly caused by the grid
density of tunes and the data processing. A closer look reveals that the
resonance seems to be shifted indeed and also asymmetric. The left shoul-
der of the resonance has a steeper fall than the right one. The same can
be observed for the third order resonance 3Qx = 23 at Qx = 7.68 which is
one of the weaker resonances. Similar behavior could be observed during
the development of the chromaticity correction scheme. Simulations with
a single sextupole and a single octupole magnet have shown that this res-
onance line can be shifted depending on the octupole strength. Also the
shapes of the shoulders and the depth of the resonance changed with the
octupole magnet strength. This is caused by a frequency mixing which
a�ects the resonance characteristics.

The dynamic aperture decreases when approaching the horizontal in-
teger resonance Qx = 8. This can be explained by a mismatch of the arcs
and straight sections leading to large beta functions in the triplets around
the target. This translates via increase of beam size together with the �eld
errors in the quadrupole magnets to stronger non-linearities and results in
a decrease of the dynamic aperture. The dynamic aperture shrinks until
even the linear lattice becomes unstable due to the mismatch. This is
denoted by a black area on the right hand side near the integer resonance.
Since the design tune and thus the tune area of main interest is far from
being integer, this constitutes no restriction.

The relation of geometric acceptance limit and dynamic aperture can-
not be displayed in a two-dimensional tune scan. A reduction to a one-
dimensional tune scan, e.g. with one of the tunes kept �xed, can be an
appropriate way for such a comparison. Two examples of this kind of tune
scans are shown in Figure 5.2.

The tune scan re�ects the behavior of the linear lattice. The change of
tunes lets the maximum beta functions grow due to the mismatch which
reduces the geometrical acceptance limit until the linear lattice becomes
unstable. This happens close to the integer or the half integer tune values
in the case of the horizontal tune being �xed. It also shows a linear
decrease of the geometric acceptance limit. For a �xed vertical tune it
is di�erent. The decrease is not linear and the transition to an unstable
linear lattice occurs further away from the integer tune value. In general,
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(a) Tune scan with vertical tune �xed at Qy = 7.62

(b) Tune scan with horizontal tune �xed at Qx = 7.62. The mark 2) refers in this case
to resonance line 2 ·Qx +Qy = 23 only.

Figure 5.2: Tune scan for one of the tunes kept �xed at Qx,y = 7.62. The
geometric aperture plotted in green shows the described increase of maximum
beta functions until the linear lattice becomes unstable. Strongest resonance
lines have been identi�ed using 2D tune scan: 1) 6 ·Qx + 4 ·Qy = 77; 2) overlap
of resonances lines 2 · Qx + Qy = 23 and 3 · Qx = 23; 3) 4 · Qx = 31; 4)
3 ·Qx +Qy = 31; 5) 2 ·Qx + 2 ·Qy = 31
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the linear lattice is clearly more sensitive to changes of the horizontal tune.
The consideration of the geometrical acceptance limit is an advantage of
this kind of data representation since it also provides information on the
available acceptance margin. Although one-dimensional tune scans show
a resonance structure, an identi�cation of resonances is easier to perform
using two dimensional tune scans. Although it is possible to estimate
the depth and width of resonances from one dimensional tune scans, the
direction of approaching the resonances and possible overlap make things
di�cult.

5.4.2 Design tunes

The design tunes of the γtr = 6.2 lattice are Qx = 7.618, Qy = 7.624 and
therefore close to the Qx −Qy = 0 skew quadrupole di�erence resonance.

The frequency map analysis does not only provide information about
tunes of single particles but also a stability criterion through the di�u-
sion coe�cient. The combination of tunes and di�usion coe�cient in a
single plot reveals the web of resonances1 a�ecting particle stability. Fur-
thermore the dynamic aperture is of another quality if combined with
the di�usion coe�cient since it transports resonance structures into the
dynamic aperture plots. It also provide information about long-term sta-
bility.

Both types of plots are shown in Figure 5.3 for on-momentum parti-
cles (∆p

p = 0). The �rst plot shows the frequency map where a resonance
knot can be seen at Qx = Qy = 7.625. A second resonance knot at
Qx = Qy = 7.666 is too far away to be displayed. The strongest res-
onances have been identi�ed and are marked by resonance lines. The
resonance lines themselves can be identi�ed by a tiplet of integers writ-
ten at one end. A triplet is given in form of m,n, p which represents the
resonance condition m · Qx + n · Qy = p. Resonances do not necessar-
ily correlate with the order of a multipole driving it although �rst order
e�ects are in general the strongest.

The resonance web is split by the skew quadrupole di�erence resonance
Qx −Qy = 0 into a main part on the left hand side and an island on the
right hand side. This resonance is one of the strongest resonances dragging
particles on and leaving only few particles around it. It also crosses both
mentioned resonance knots. The resonance knot at Qx = Qy = 7.625 is
the closest to the design tunes. Most of the relevant resonances which
cross this resonance knot are of eighth order.

This is re�ected by eight hyperbolic �xpoints in the chaotic region
of the horizontal phase space plots in Figure 5.4. The phase space plots
show a thin chaotic layer inside the stable region. This layer is located at
15mm which is close to the transition of the very stable, dark blue area in
the dynamic aperture plot to lighter blue. The KAM tori broaden in the

1so called Arnold web [29]
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(a) Frequency Map with identi�ed resonances

(b) Dynamic aperture

Figure 5.3: Frequency map and corresponding dynamic aperture for
∆p
p = 0. The color scale represent the di�usion coe�cient. The two curves

in b) represent emittances at the geometrical acceptance limit (white) and
at the dynamic aperture (black). The numbers in b) denote the resonances:
1) 1,7,61; 2) 0,8,61; 3) 1,-9,-61; 4) 2,-10,-61; 5) 5,-8,-23; 6) 4,-7,-23
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(a) Phase space with canonical variables

(b) Phase space with action-angle variables

Figure 5.4: Horizontal phase space plot for γtr = 6.2 lattice at design tunes.
Particles with no initial momenta (px = py = 0), a �xed vertical coordinate of
y = 1mm, and a positive x with a step size of 1mm are tracked over 50000
turns to �ll the phase space. Plot a) shows the horizontal phase space where the
axes are βx · px + αx · x versus x so that the regular KAM tori become circles
and are not elliptic. Plot b) shows the same phase space but transformed to
action-angle variables.
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outer region of the stable area. The KAM tori open out at the transition
to the chaotic region. This happens at nearly 36mm where the �rst yellow
stripe appears in the dynamic aperture plot. Besides the eight hyperbolic
�xpoints, there are also eleven elliptic ones further outside. Based on the
knowledge about the strong 20-pole �eld component of the quadrupole
magnets, it is extremely probable that this eleven islands re�ect a eleventh
order resonance driven by this �eld components in second order. Also the
strong 12-pole �eld components can be observed. The outer shape of the
phase space plot a) is almost hexagonal. This is shown even more clearly
in plot b) where from the six �hills� particles move away and enter the
region of unbound motion. In this region the amplitude can grow without
limit and the particles are going to be lost.

Figure 5.5 provide a closer look on the main part of Figure 5.3a and
reveals the existence of weaker resonances within the resonance web.

The dynamic aperture plot demonstrates clearly the advantage of the
di�usion coe�cient when used together with dynamic aperture: The dif-
fusion coe�cient provide information about long-term stability even with
a short-term dynamic aperture. Furthermore the resonance structure seen
in the frequency map is transferred to the dynamic aperture. With the
knowledge about the resonance lines in the frequency map, an identi�-
cation in the dynamic aperture plot is straight forward. A mapping of
those resonance lines which are easy to see in the dynamic aperture plot
is listed in the caption of Figure 5.3.

Figure 5.5: Enlarged view on main parts of frequency map of Figure 5.3a.
The color scale represent the di�usion coe�cient. The strong resonance lines
are marked by black lines although without a triplet identi�cation. Weaker
resonances within the resonance web can also be observed.
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The dynamic aperture plot does not show an island like the frequency
map but presents two structures on the left and right of the �main� area
with a more or less clear cut transition. These two structures contain
particles on the island and on the skew quadrupole resonance. Although
the dynamic aperture seems to be symmetric, there are some irregularities,
e.g. the shapes of the structures left and right and of the upper left part.
The geometrical acceptance limit is 6.63mmmrad (approximately 104σ)
and is marked with a white curve. The dynamic aperture is marked with
a black curve. The emittance which corresponds to the dynamic aperture
is 8.67mmmrad (roughly 136σ).

There is an obvious deformation in the central and the upper region
of the dynamic aperture plot. It is framed by dark red points re�ecting
chaotic behavior. The particles within this areas reside on a sextupole
or a decapole resonance line. The strongest resonances which can be
easily seen in the dynamic aperture plot are crossing the resonance knot
at Qx = Qy = 7.625 and are marked with numbers 1 to 4. Stronger
resonances hardly reach into the geometric acceptance limit.

A momentum deviation can lead among other things to tune shifts and
to changes of the closed orbit due to dispersion. A value of 3 · 10−4 was
chosen for the momentum deviation, which corresponds to three times the
rms momentum spread of the high luminosity mode. The results can be
seen in Figures 5.6 and 5.7.

Figure 5.6: Dynamic aperture for o�-momentum particles with a momentum
deviation of ∆p

p = +3 · 10−4. The color scale represent the di�usion coe�cient.
The geometric acceptance limit is given as a white line whereas the dynamic
aperture as a black one.
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Figure 5.7: Dynamic aperture for o�-momentum particles with a momentum
deviation of ∆p

p = −3 · 10−4. The color scale represent the di�usion coe�cient.
Some resonances are distorted. The geometric acceptance limit is given as a
white line whereas the dynamic aperture as a black one.

For ∆p
p = 3 · 10−4 the dynamic aperture is not reduced but increased

to 9.12mmmrad (approximately 146σ). Although the value of the dy-
namic aperture increased, the resonance line 8 ·Qy = 61 reaches into the
geometric acceptance limit. The main part of the dynamic aperture is
smaller in width. The unstable areas from the structures left and right
are now within the geometrical acceptance limit. Furthermore the inner
area with long-term stability decreased signi�cantly.

The relative momentum o�set of ∆p
p = −3 ·10−4 also shows a changed

situation. The dynamic aperture is reduced 8.03mmmrad. The struc-
tures on both sides are smaller. The resonance line 1 · Qx + 7 · Qy = 61
moved further into the unstable area at the top of the dynamic aperture
plot. The resonance lines at the sides of the dynamic aperture plot are
distorted. This distortion is caused by a folding inside the frequency map.
Such a folding can appear if terms of higher degrees in the Hamiltonian
become dominant over the quadratic terms. Stable areas can be folded on
resonance lines which then provide particles a way of fast orbit di�usion
[91]. The folding can be observed in the lower right corner of the main
part in the frequency map. A view on this folded area in the frequency
map is shown in Figure 5.8.
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Figure 5.8: Folding of frequency map for ∆p
p = −3 · 10−4. The color scale

represent the di�usion coe�cient.

The edge of the frequency map is folded near the 2 ·Qx−10 ·Qy = −61
resonance line. Due to the folding, two di�erent areas are crossed by a
resonance line in the same tune area. Figure 5.9 shows the dynamic
aperture plot 5.7 again where particles are colored black if their tunes are
con�ned within a tune range of ∆Q = 5·10−4 around a speci�ed resonance
line. This has been done for the resonance lines 1 · Qx − 9 · Qy = −61
and 2 · Qx − 10 · Qy = −61. Plot a) does not highlight a deformation
of a resonance line but clari�es that two separated areas in the dynamic
aperture plot are crossed by a resonance line at the same location in tune
space. The real resonance is the upper black area whereas the one below
is inside the folded stable area. Plot b) shows how the resonance line
2 ·Qx − 10 ·Qy = −61 is bent outwards.

The presented values of the dynamic aperture of the γtr = 6.2 lattice
for the di�erent momentum deviations have been determined for one spe-
ci�c set of �eld errors. The calculations have been repeated with 99 other
seeds for the pseudo random number generator. The statistics for all 100
sets is given in Table 5.3.

∆p/p −3 · 10−4 0 3 · 10−4

DA [mmmrad] 7.95± 0.09 8.54± 0.05 8.99± 0.04
DA [σ] 124.80± 1.41 134.04± 0.77 141.13± 0.63

Table 5.3: Statistics of dynamic aperture calculations with 100 di�erent seeds
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(a) 1 ·Qx − 9 ·Qy = −61 (1,-9,-61)

(b) 2 ·Qx − 10 ·Qy = −61 (2,-10,-61)

Figure 5.9: Distortion of resonance lines in the dynamic aperture plot for
∆p
p = −3 ·10−4. The color scale represent the di�usion coe�cient. Black colored

particles mark the speci�ed resonance with a maximum distance of 5 ·10−4 from
the resonance in the frequency map.
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5.4.3 Optimization

There are di�erent ways to optimize the dynamic aperture. The two main
ways are a di�erent choice of tunes and the reduction of �eld errors. A
third possibility though is the introduction of corrector magnets. These
can be used to manipulate single resonances but introduce additional non-
linearities themselves. Therefore, this way of optimization is not always
desirable.

Tunes As resonance driving terms depend on phase advances, a proper
choice of tunes and thus also a change of phase advance can help to im-
prove the dynamic aperture. In the following, two sets of tunes are sug-
gested. At the tunes Qx = 7.615, Qy = 7.605, there exist no strong res-
onances which reach inside the geometric acceptance limit. At the other
tunes at Qx = 7.568, Qy = 7.582, the dynamic aperture is increased by
more than 1mmmrad (more than 15σ).

Figure 5.10a shows the dynamic aperture for on-momentum particles
at the two di�erent tune settings. For the �rst plot the tunes have been set
to
Qx = 7.615, Qy = 7.605. The dynamic aperture could be determined
to be 9.70mmmrad (approximately 152σ). The dynamic aperture plot
shows a structure at the upper end which is split in two pieces. The �rst
guess that this structure is related to an island in the frequency plot which
is split in half by a resonance could be veri�ed to be true. The dynamic
aperture plot shows also that none of the stronger resonances reaches
inside the geometric acceptance limit. Although this is true even for o�-
momentum particles inside the ∆p

p = ±3 · 10−4 boundary, the dynamic
aperture changes with the momentum o�set. The dynamic aperture is
increased slightly to 9.88mmmrad for ∆p

p = 3 · 10−4 and decreased by
more than 0.5mmmrad to 9.07mmmrad for a momentum deviation of
∆p
p = −3 · 10−4.

Dynamic aperture calculations have also been performed for the other
tune setting at Qx = 7.568, Qy = 7.582. The dynamic aperture com-
pared to the previous tunes is increased by 10.7% to 10.74mmmrad
(approximately 169 sigma). For o�-momentum particles, the dynamic
aperture increases to 11.01mmmrad (∆p

p = 3 ·10−4) and 11.00mmmrad

(∆p
p = −3 · 10−4). The dynamic aperture and frequency map for on mo-

mentum particles are shown in Figure 5.10b.

Field errors The investigations have shown that the �eld errors of the
quadrupole magnet are dominant. The 12- and 20-pole �eld components
of the quadrupole magnets are by far the strongest (see Table 5.2). In the
following a series of reductions of both �eld errors has been performed.
Since the quadrupole design has not been �nished yet, this investiga-
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(a) Dynamic aperture for tunes Qx = 7.615, Qy = 7.605

(b) Dynamic aperture for tunes Qx = 7.568, Qy = 7.582

Figure 5.10: Dynamic aperture for di�erent tune settings a) Qx = 7.615,
Qy = 7.605 and b) Qx = 7.568, Qy = 7.582. The color scale represent the
di�usion coe�cient. The geometric acceptance limit is given as a white line
whereas the dynamic aperture as a black one.



5.4. The γtr = 6.2 lattice 73

tion was performed and the results will be incorporated in an optimized
quadrupole design.

Already the tune scan re�ected the strong 12- and 20-pole �eld com-
ponents of the quadrupole magnet design. A reduction of both �eld com-
ponents will help to increase the dynamic aperture on one hand and the
area with long-term stability in the inner region on the other. The dy-
namic aperture has been calculated for reduced strengths of the 12- and
20-pole �eld components. The results of these reductions are shown in
Table 5.4.

20-pole \ 12-pole 25.0 12.5 10.0 7.5 5.0

100.0 8.42 8.91 9.06 9.15 9.32

50.0 9.68 10.17 10.30 10.46 10.74

25.0 10.78 11.12 11.29 11.58 12.22

12.5 12.02 12.13 12.57 12.89 13.36

10.0 12.58 13.01 12.94 13.38 13.88

7.5 13.86 13.23 13.19 13.47 14.19

5.0 14.66 13.35 13.90 13.70 14.71

Table 5.4: Dynamic aperture calculated with 12- and 20-pole quadrupole �eld
components at 15GeV/c. The relative �eld errors include the 10% increase and
are given in units of 10−4. The dynamic aperture is given in mmmrad.

There are some dynamic aperture values which are smaller although
the 12- and 20-pole �eld components are further reduced, for example the
size of the dynamic aperture is 13.35mmmrad for b5 = 12.5 · 10−4 and
b9 = 5.0 · 10−4 compared to 14.66mmmrad for b5 = 25.0 · 10−4. This
can happen due to the chaotic behavior outside the dynamic aperture.
Since many driving terms may contribute to a single resonance, some of
the driving terms can amplify or compensate each other.

Nevertheless, a clear tendency can be observed. The 20-pole �eld
component restricts the dynamic aperture much more than the 12-pole
�eld component. As one can expect if one �eld component is dominant,
the reduction of the 12-pole �eld component lead to a smaller increase
of the dynamic aperture. The size of the dynamic aperture is heading
towards 15mmmrad with the reduction of the 20-pole �eld component.
To further increase the dynamic aperture a simultaneous reduction of both
multipole components has to be performed. Based on the reduction of the
dipole magnets sextupole �eld component, a reduction of both strong �eld
components of the quadrupole magnets by roughly a factor �ve appears to
be reasonable. The 20-pole �eld component is set to b9 = 25 · 10−4 while
reducing the 12-pole �eld component to b5 = 10 · 10−4. The resulting
dynamic aperture for the design tunes is shown in Figure 5.11.

The dynamic aperture of 11.29mmmrad corresponds to approximately
183σ. This is an increase by 30%. As the dynamic aperture plot shows,
the area within the geometric acceptance limit is mostly colored blue with
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Figure 5.11: Dynamic aperture of γtr = 6.2 lattice with reduced quadrupole
errors at design tune for on-momentum particles. The color scale represent the
di�usion coe�cient. The relative �eld errors of the 12- and 20-pole are reduced
to b5 = 10 · 10−4 and b9 = 25 · 10−4. The geometric acceptance limit and the
dynamic aperture are plotted with a white and with a black curve respectively.

only a few green parts which means that there are no strong resonances
reaching inside and that the area with long-term stability has increased.
The observed structure in the center of the plot is mainly created by the
skew quadrupole di�erence resonance Qx −Qy = 0.

The frequency map with reduced multipoles is more compact and does
not show the subtle web of resonances which appeared in the frequency
map for full �eld errors. Nevertheless, the stronger resonances crossing
the frequency map are still the same and remain easy to identify.

Combination of di�erent tunes and reduced �eld components

Better results can be achieved with the combination of both investigated
optimization methods. Changing the tune settings while reducing the 12-
and 20-pole �eld components can further improve the dynamic aperture.
Taking again the same reduced �eld errors as before and setting the tunes
to Qx = 7.568, Qy = 7.582, the dynamic aperture rises to 15.72mmmrad
with none of the resonances reaching inside the geometric acceptance limit.
The dynamic aperture is di�erent for o�-momentum particles: An increase
to 15.86mmmrad for ∆p

p = 3 · 10−4 and a decrease to 13.84mmmrad

for ∆p
p = −3 · 10−4. This means that the dynamic aperture is more than

twice as large as the geometric acceptance limit even for o�-momentum
particles.
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5.5 The γtr = 13.3 lattice

The other ion optical setting de�ned for the PANDA experiment is the
γtr = 13.3 lattice. It will be used for the low energy region of the
HESR in order to optimize the stochastic cooling. The following cal-
culations assume an energy of 1.5GeV/c. The geometric emittance is ε =
0.637mmmrad
(εnorm = 1mmmrad). The �eld errors which are taken into account
are errors of the dipole magnet at 0.17T main �eld and of the quadrupole
magnet at gradient of roughly 3.6T/m (200A). The design tune are cho-
sen to be Qx = 7.614, Qy = 7.615.

5.5.1 Tune scans

A tune scan has also been performed for the γtr = 13.3 lattice and is
displayed in Figure 5.12.

Compared to the γtr = 6.2 lattice, the γtr = 13.3 lattice is even
more sensitive to mismatches which is exhibited by an increase of the
black area. There is a general decrease of dynamic aperture when given
in terms of 1σ-emittance. This is mainly due to the fact that the 1σ-
emittance is by one order of magnitude larger caused by the lower energy.
Resonances similar to those of the tune scan for the γtr = 6.2 lattice
can still be observed. Although sextupole resonances are strong and the
sextupole magnets for the chromaticity correction do not perform as good
as for the γtr = 6.2 lattice, these sextupole resonance lines refer either to
a 12-pole resonance or a sextupole resonance driven by the 12-pole �eld
component. Since it is a simulation, certain multipoles can be excluded to
con�rm the assumption. Without the chromatic sextupole magnets, the
resonance lines are nearly unchanged which is a strong indication that
the resonance lines are not mainly driven by the sextupole magnets. The
main contribution to these resonance lines also come from higher-order
multipoles like 12- and 20-pole �eld components.

All upright sextupole resonance lines and the skew sextupole resonance
line can be driven in �rst order by the 12-pole �eld component. The 20-
pole �eld component can drive in �rst order the decapole resonance. All
upright and skew octupole resonance lines can be 16-pole resonance lines
driven in higher order by 12- and 20-pole �eld components.

5.5.2 Design tunes

The design tunes of the γtr = 13.3 lattice are Qx = 7.614, Qy = 7.615.
This means that they are even closer to the di�erence resonance line Qx−
Qy = 0 than the design tunes of the γtr = 6.2 lattice. The tunes being so
close, a considerable in�uence of the skew quadrupole di�erence resonance
Qx − Qy = 0 can be expected. This in�uence will a�ect the dynamic
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aperture as well as the long term stability. The dynamic aperture can be
seen in Figure 5.13.

From the dynamic aperture plot alone it should be clear that the
design tunes have to be chosen di�erently when it comes to non-linear
beam dynamics. The particles with long term stability are restricted to an
area which is smaller than 1

4σ. The dynamic aperture is 16.78mmmrad
for on-momentum particles but increases for particles with a momentum
deviation. The largest increase with a value of 17.95mmmrad happens for
∆p
p = −3·10−4. A general growth of the dynamic aperture can be observed
and can mainly be explained with the di�erent ion optical setting where
e.g. the �eld errors are smaller. Furthermore the maximum beta functions
are smaller by a factor two: 150m compared to the 300m of the γtr = 6.2
lattice. The maximum beta functions in x and y have similar values. This
is re�ected by the fact that the dynamic aperture is not longer dominated
by the horizontal limit only. The vertical limit of the dynamic aperture
is close to the edge of the stable area.

The frequency map demonstrates how close the design tunes are to the
di�erence resonance. There is also a folding for on-momentum particles
in the frequency map. The analysis of the phase space provide similar
information as for the γtr = 6.2 lattice.

Since di�erent tunes have to be chosen anyway, the dynamic aperture
plot is not shown for o�-momentum particles.

Figure 5.13: Dynamic aperture for on-momentum particles at design tune.
The color scale represent the di�usion coe�cient. Only a very small area with
long-term stability is observed. The geometric acceptance limit is given as a
white line whereas the dynamic aperture as a black one.
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5.5.3 Optimization

The two main ways of optimization are covered again. The decrease of
�eld errors and the di�erent choice of tunes are investigated.

Tunes An area of large dynamic aperture and as close as possible to
the design tune has been selected from the tune scan. This area is closely
located to Qx = 7.630, Qy = 7.640. One of the best results has been found
at
Qx = 7.637, Qy = 7.647. The dynamic aperture for on-momentum parti-
cles is 23.92mmmrad and can be seen in Figure 5.14. This is an increase
by 45%. The increase for o�-momentum particles is smaller and ranges
from 12% for ∆p

p = 3 · 10−4 to 19% for ∆p
p = −3 · 10−4. The most impor-

tant change is the increase of the area of long term stability which covers 3
to 4σ. Also here the calculation have been repeated with di�erent seeds.
The results are shown in Table 5.5.

∆p/p −3 · 10−4 0 3 · 10−4

DA [mmmrad] 21.43± 0.08 23.92± 0.07 18.92± 0.10
DA [σ] 33.65± 0.13 37.55± 0.11 29.70± 0.16

Table 5.5: Statistics of dynamic aperture calculations for tunes
Qx = 7.637, Qy = 7.647 with 100 di�erent seeds.

Figure 5.14: Dynamic aperture of the γtr = 13.3 lattice for tunes
Qx = 7.637, Qy = 7.647. The color scale represent the di�usion coe�cient.
The geometric acceptance limit is given as a white line whereas the dynamic
aperture as a black one.
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Field errors The �eld errors at the lower energy limit are less prob-
lematic since the 12-pole �eld component of the quadrupole magnets is
roughly a factor �ve smaller. Also the 20-pole �eld component is reduced
by more than 20% (b9 = 92.03 · 10−4 compared to the b9 = 118.54 · 10−4).
Nevertheless, the 20-pole �eld components is still absolutely dominant
(see Table 5.6) and has to be reduced in order to increase the dynamic
aperture and, what is probably more important, the area of long term sta-
bility. Since the design tunes had to be changed anyway, this investigation
was carried out for the new tunes at Qx = 7.637, Qy = 7.647.

A reduction by a factor �ve appears to be reasonable also at 1.5GeV/c.
The 20-pole �eld component is therefore set to b9 = 20·10−4. The resulting
dynamic aperture for on-momentum particles has a size of 31.67mmmrad
which is an overall increase of 89%. The dynamic aperture is up to 10.4%
smaller for o�-momentum particles, namely 27.77mmmrad for ∆p

p =

3 · 10−4 and 26.31mmmrad for ∆p
p = −3 · 10−4.

5.6 Multipole correction

The driving terms provide a way to access resonances. Manipulating the
driving terms can be useful to correct certain resonances. For example,
this method was applied at RHIC to preserve polarization [92]. This cor-
rection was performed using chromatic sextupole families. In contrast
to RHIC, the number of sextupole magnet families in the HESR is not
su�cient to manipulate the �rst order resonance driving terms of the
sextupole magnets independently. Furthermore, the splitting into four
families was based on dynamic aperture and not on resonance driving
terms. This means that the phase advances do not �t to correct a speci�c
resonance driving term. Considering this, there is only one way to access
the sextupole �rst order driving terms. With the introduction of geomet-
ric sextupole magnets in the straight sections, a correction of sextupole
driving terms can be performed independently of the chromatic sextupole
magnets. However, there is one drawback. The geometric sextupole mag-
nets introduce additional non-linearities themselves.

Nevertheless, the inclusion of geometric sextupole magnets has been
investigated. The e�ect on the dynamic aperture caused by the additional

12-pole \ 20-pole 50.0 25.0 12.5 10.0 7.5 5.0

10.0 26.13 30.27 33.35 33.96 34.25 34.84

7.5 26.47 30.78 34.26 34.88 35.08 35.57

5.0 26.88 31.52 35.15 35.80 35.99 36.19

Table 5.6: Independent reductions of 12- and 20-pole quadrupole �eld compo-
nents at 1.5GeV/c. The relative �eld errors include the 10% increase and are
given in units of 10−4.
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non-linearities is worse than the gain for the sextupole resonances. Fur-
thermore, the gain itself is small since the chromaticity correction scheme
performs well enough to make sextupole resonances a minor problem. The
main problem concerning resonances is related to the 12- and 20-pole �eld
components of the quadrupole magnets. That means that the investiga-
tion of a multipole correction scheme has to be delayed until the design
of the quadrupole magnet will have been �nished.

5.7 Discussion of the results

The reduction of the sextupole �eld component of the dipole magnets
made a chromaticity correction feasible. The developed chromaticity cor-
rection scheme does hardly a�ect the dynamic aperture of the γtr = 6.2
lattice. The γtr = 13.3 lattice is stronger in�uenced by the sextupole mag-
nets than the γtr = 6.2 lattice. The beta functions and phase advances
between sextupole magnets do not �t as good as for the γtr = 6.2 lattice
and compensating sextupole magnet pairs cannot be found easily. How-
ever, the dynamic aperture restrictions caused by the sextupole magnets
can be decreased with the grouping into four families.

Nevertheless, the main restrictions of the dynamic aperture is caused
by �eld errors of the quadrupole magnets. Thus an investigation was
carried out concerning the improvement of the dynamic aperture. Both
investigated ion optical settings, the γtr = 6.2 and the γtr = 13.3 lattice,
provide at least in the short term regime a dynamic aperture which is
larger than the geometrical acceptance limit. The acceptance limit of the
dynamic aperture itself depends on the beta functions and the dispersion.
While the dynamic aperture for the γtr = 6.2 lattice is limited horizontally
only, it is almost equal for both transverse directions for the γtr = 13.3
lattice.

The change of tunes and the reduction of �eld errors were successfully
applied and led to an overall increase of the dynamic aperture by roughly
a factor two. Based on the reduction of the sextupole �eld component
of the dipole magnets, a reduction of the dominating �eld errors (the 12-
and 20-pole �eld components) of a factor �ve appeared to be reasonable.
Further improvements of the �eld errors led to an additional increase of the
dynamic aperture. For the γtr = 13.3 lattice a di�erent choice of tunes
is crucial since the design tunes provide an area of long term stability
which is less than 1

4σ, a value which is not su�ciently large. Without any
optimization of �eld errors, this area could be increased to 3 to 4σ just
by choosing a di�erent tune setting.

In general, it can be stated that after correction the area with long
term stability became large enough to accept the necessary beam width
including the speci�ed closed orbit deviations of 5mm. This implies that
the closed orbit should be corrected all the time even during acceleration.
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Summary and outlook

Simulations of the closed orbit have shown that an uncorrected closed
orbit in the HESR is larger than the geometric acceptance limited by the
beam pipe. Therefore, a closed orbit correction scheme consisting of beam
position monitors and closed orbit correction dipole magnets has been
developed and veri�ed by numerical simulations. The scheme ful�lls the
requirements of a resulting closed orbit of 5mm realized with a maximum
correction strength of 1mrad. Local closed orbit bumps, e.g. at the target
and at the injection injection have been checked to provide the necessary
�exibility.

Furthermore, the e�ect of the electron cooler's toroid magnets have
been investigated and the de�ection of the circulating antiproton beam
caused by the toroid magnets calculated. The location of compensation
dipole magnets and their necessary strength have been determined.

The orbit correction method using the orbit response matrix could be
veri�ed at the Cooler Synchrotron COSY. The measurement showed good
agreement with the ion optical model of COSY. Although the closed orbit
correction at COSY was not as successful as it will have to be for the
HESR, the limiting factors have been identi�ed and can be overcome by
a di�erent setup of the electron cooler compensation bump.

A chromaticity correction scheme for the HESR has been developed
and optimized using dynamic aperture methods. A splitting of the two
sextupole families into four families (two horizontal and two vertical) leads
to further improvement through an increase of the dynamic aperture.
In this context it became evident that the current design of the dipole
mangets contained in the upper �eld range a large sextupole �eld com-
ponent. The chromaticities were a�ected strongly by this sextupole �eld
component and became too large to be correctable. Therefore, the dipole
magnet design was optimized by a modi�cation of the iron yoke.

With the inclusion of �eld errors of dipole and quadrupole magnets,
betatron resonances have been simulated. Since the quadrupole magnet
design is not �nished yet, possible multipole optimizations have been in-
vestigated. The 12- and 20-pole �eld components have been identi�ed

81



82 Chapter 6. Summary and outlook

as a major limitation. Furthermore, tune scans revealed areas with large
dynamic aperture and presented a global overview of the strongest reso-
nances in the resonance web. The frequency map analysis together with
the di�usion coe�cient provided additional information about long-term
stability and the local resonance structure. This information has been
used to improve the tune settings of the HESR. The dynamic aperture
was increased by roughly a factor two with reasonable reductions of �eld
errors and di�erent choices of tunes. In order to prevent beam loss due to
resonances during injection, acceleration, and storage, closed orbit correc-
tions have to be applied at all times to keep the beam within the speci�ed
limits.

In future, dynamic aperture calculations and frequency map analysis
for COSY will provide insight into the non-linear motion and the res-
onance structure. A related optimization strategy could also improve
experimental conditions e.g. for spin-�lter experiments.

The investigation of a multipole correction scheme for the HESR has
to be carried out after the quadrupole magnet design is �nished. The
latest developments and improvements in the �eld of supercomputing o�er
the opportunity to investigate long-term stability while overcoming the
limitations of dynamic aperture calculations which were necessary for the
thesis work. Other e�ects for example space charge forces or the non-
linear forces created by the electron cooler beam should be taken into
account. Since these other e�ects may act on longer time scales, the long
term dynamic aperture has be investigated together with its logarithmic
dependence on the number of turns.
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