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Abstract

The exploration of structure-activity relationships (SARs) of small bioactive
molecules is a central task in medicinal chemistry. Typically, SARs are analyzed
on a case-by-case basis for series of closely related molecules. Classical methods
that explore SARs include quantitative SAR (QSAR) modeling and molecular
similarity analysis. These methods conceptually rely on the similarity—property
principle which states that similar molecules should also have similar biologi-
cal activity. Although this principle is intuitive and supported by a wealth of
observations, it is well-recognized that SARs can have fundamentally different
character. Small chemical modifications of active molecules often dramatically
alter biological responses, giving rise to “activity cliffs” and “discontinuous”
SARs. By contrast, structurally diverse molecules can have similar activity,
a situation that is indicative of “continuous” SARs. The combination of con-
tinuous and discontinuous components characterizes “heterogeneous” SARs, a
phenotype that is frequently encountered in medicinal chemistry.

This thesis focuses on the systematic computational analysis of SARs present
in sets of active molecules. Approaches to quantitatively describe, classify, and
compare SARs at multiple levels of detail are introduced. Initially, a compar-
ative study of crystallographic enzyme—inhibitor complexes is presented that
relates two-dimensional and three-dimensional inhibitor similarity and potency
to each other. The analysis reveals the presence of systematic and in part un-
expected relationships between molecular similarity and potency and explains
why apparently inconsistent SARs can coexist in compound activity classes. For
the systematic characterization of complex SARs, a numerical function termed
SAR Index (SARI) is developed that quantitatively describes continuous and
discontinuous SAR components present in sets of active molecules. On the
basis of two-dimensional molecular similarity and potency, SARI distinguishes
between the three basic SAR categories described above. Heterogeneous SARs
are further divided into two previously unobserved subtypes that are distin-
guished by the way they combine different SAR features. SARI profiling of
various enzyme inhibitor classes demonstrates the prevalence of heterogeneous
SARs for many classes. Furthermore, control calculations are conducted in
order to assess the influence of molecular representation and data set size on
SARI scoring. It is shown that SARI scores remain largely stable in response
to variation of these critical parameters.

Based on the SARI formalism, a methodology is developed to study mul-
tiple global and local SAR components of compound activity classes. The ap-
proach combines graphical analysis of Network-like Similarity Graphs (NSGs)
and SARI score calculations at multiple levels of detail. Compound classes of
different global SAR character are found to produce distinct network topolo-
gies. Local SAR features are studied in subsets of similar compounds and



systematically related to global SAR character. Furthermore, key compounds
are identified that are major determinants of local and global SAR character-
istics. The approach is also applied to study structure—selectivity relationships
(SSRs). Compound selectivity often results from potency differences for mul-
tiple targets and presents a critical factor in lead optimization projects. Here,
SSRs are explored for sets of compounds that are active against pairs of re-
lated targets. For this purpose, the molecular network approach is adapted
to the evaluation of SSRs. Results show that SSRs can be quantitatively de-
scribed and categorized in analogy to single-target SARs. In addition, local SSR
environments are identified and compared to SAR features. Within these envi-
ronments, key compounds are identified that determine characteristic features
of single-target SARs and dual-target SSRs. Comparison of similar compounds
that have significantly different selectivity reveals chemical modifications that
render compounds target-selective.

Furthermore, a methodology is introduced to study SAR contributions from
functional groups and substitution sites in series of analogous molecules. Analog
series are systematically organized according to substitution sites in a hierarchi-
cal data structure termed Combinatorial Analog Graph (CAG), and the SARI
scoring scheme is applied to evaluate SAR contributions of variable functional
groups at specific substitution sites. Combinations of sites that determine SARs
within analog series and make large contributions to SAR discontinuity are
identified. These sites are prime targets for further chemical modification. In
addition to determining key substitution patterns, CAG analysis also identifies
substitution sites that have not been thoroughly explored.
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Chapter 1

Introduction

It is a central paradigm in medicinal chemistry that molecules having similar
structure should also share similar biological activity. This viewpoint has been
articulated in 1990 by the “similarity—property principle” (Johnson and Mag-
giora, 1990) and continues to be widely accepted in the medicinal chemistry
community. Specifically, this concept provides the basis for numerous estab-
lished computational methods supporting the drug discovery process, includ-
ing molecular similarity searching, compound library design, and quantitative
structure—activity relationship (QSAR) modeling (Bajorath, 2001). Although
this concept is intuitive and supported by a wealth of observations, medic-
inal chemists also know that small chemical modifications can render active
molecules completely or nearly inactive or, by contrast, increase their potency
dramatically (Kubinyi, 1998). Moreover, it has been shown that compounds
that are similar to known active molecules are themselves far less frequently
active than one might expect (Martin et al., 2002). This apparent inconsis-
tency suggests that there must be fundamental differences in the nature of
structure—activity relationships (SARs) characterizing different classes of ac-
tive molecules (Eckert and Bajorath, 2007).

Understanding the relationship between chemical structure and biological
activity of small molecules is a key challenge in medicinal and pharmaceuti-
cal research. The identification of novel active molecules and their systematic
chemical optimization require the thorough exploration of the underlying SARs.
Traditionally, SARs are studied on a case-by-case basis for series of closely
related molecules. However, with the advance of high-throughput screening
(HTS) technologies that generate ever growing amounts of biological data, com-
putational approaches to SAR analysis gain increasing importance. Medicinal
chemists are challenged to prioritize active molecules that are most promising
for further exploration in hit-to-lead projects and have a high potential for
chemical optimization. Systematic evaluation of the SAR features present in
sets of active molecules could guide this process in a directed manner. These
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Figure 1.1: Heterogeneous SAR Inhibitors of phosphodiesterase IV are shown that combine
continuous and discontinuous SAR features. At the top, nanomolar inhibitors of increasing struc-
tural diversity are displayed. The inhibitors belong to different chemotypes but display only gradual
potency differences, thus presenting a prime example of a continuous SAR. At the bottom, close
analogs to each of these compounds are shown that display a notable increase in potency and
hence cause considerable SAR discontinuity. Combination of continuous and discontinuous SAR
features within a data set characterizes the heterogeneous SAR phenotype.

considerations have motivated the development of methods to systematically
classify and compare SARs, which are presented in this dissertation.

The Nature of Structure—Activity Relationships

SARs are essentially distinguished by the way active compounds respond to
chemical alterations. Depending on the types of molecules under investiga-
tion, the magnitude of biological responses can vary considerably. Structural
modifications of active molecules can be accompanied by only small or moder-
ate changes in potency. In such cases, the underlying SAR is “continuous” in
nature. In the presence of continuous SARs, similar molecules display compara-
ble activity. Furthermore, structural departures from a known active compound
may result in gradual potency changes, giving rise to a spectrum of increasingly
diverse structures having similar activity and often a relatively narrow potency



distribution. Accordingly, a hallmark of continuous SARs is the presence of
different chemotypes sharing the same biological activity. This SAR type is
consistent with the similarity—property principle and presents a prerequisite
for the successful application of whole-molecule similarity methods that aim at
the identification of novel structural motifs having a specific biological activity
(often referred to as “scaffold hopping”; Schneider et al., 2006). By contrast,
large-magnitude biological responses to minor chemical changes are characteris-
tic of “discontinuous” SARs. In the presence of this SAR type, a small chemical
modification can dramatically alter the activity of a molecule. SAR disconti-
nuity is thought to result from the presence or absence of structural patterns
that are required for biological activity. Accordingly, the primary indicator
of discontinuous SARs is the occurrence of “activity cliffs” marked by similar
molecules having large differences in potency (Maggiora, 2006). In medicinal
chemistry, this situation is exploited in lead optimization efforts where active
compounds are modified in a systematic manner to achieve an increase in po-
tency (Kubinyi, 1998). However, discontinuous SARs fall outside the scope of
the similarity—property principle and greatly complicate molecular similarity
analysis. In particular, in the vicinity of an activity cliff, structurally simi-
lar compounds might have distinctly different potency, which presents a major
obstacle for any similarity method.

Importantly, continuous and discontinuous SAR types are not mutually ex-
clusive because we frequently also observe that different structural classes share
the same biological activity, but that close analogs within each class might have
large differences in potency (Eckert and Bajorath, 2007). The corresponding
SAR phenotype is termed “heterogeneous” because it combines continuous and
discontinuous components. Figure 1.1 shows an exemplary compound set that
illustrates the presence of different SAR phenotypes. Molecules of increasing
structural diversity belonging to different chemical series are shown that retain
nanomolar potency, which represents an exemplary continuous SAR. For each
of these compounds, a close analog is found that provides a notable increase in
potency and thus reflects SAR discontinuity. The combination of such continu-
ous and discontinuous SAR elements characterizes heterogeneous SARs, which
are of practical importance for medicinal chemistry because they provide the
opportunity to identify diverse active molecules (in continuous SAR regions)
and subsequently optimize them (by exploring activity cliffs). In essence, the
continuous, discontinuous, and heterogeneous SAR categories define the spec-
trum of small-molecule SARs one encounters in medicinal chemistry.

Activity Landscapes

In order to understand these SAR phenotypes and rationalize SAR information,
it is generally required to relate compound similarity and potency to each other.
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Figure 1.2: Hypothetical activity landscape Activity landscapes visualize the potency dis-
tribution of a set of active molecules projected into a two-dimensional chemical reference space.
Shown are three exemplary cathepsin S inhibitors on a schematic representation of a hypothetical
activity landscape that contains rugged and smooth regions. The two structures on the left and
in the middle represent the same chemotype but have potency values that differ by several orders
of magnitude, thus forming an activity cliff. By contrast, the structure on the right represents a
distinct chemotype but has similar potency as the second structure, indicating a continuous SAR

region.

Similarity and potency information can be combined in an activity landscape
to conceptualize SAR characteristics, as illustrated in Figure 1.2. Models of
activity landscapes can be envisioned as topological maps that project chemi-
cal compounds into a two-dimensional plane spanned by molecular descriptors
and add compound potency as a third dimension (Maggiora, 2006). Hence, the
xy-plane represents a projection of chemical space where data points represent
active compounds and the distance between them is proportional to chemi-
cal dissimilarity. Thus, the further two compounds are apart in the chemical
reference space, the more dissimilar they are. Potency is reported along the
z-axis, producing a surface where elevated regions correspond to high potency
levels. For different sets of active molecules, activity landscapes display specific
topologies reminiscent of geographical landscapes that can directly be associ-
ated with the different SAR categories discussed above. For example, a gently



sloped activity landscape is produced by structurally diverse compounds hav-
ing only small or moderate differences in potency, which is the characteristic
feature of continuous SARs. By contrast, rugged landscapes are indicative of
SAR discontinuity and are produced by compounds with significant potency
differences. In this topology, activity cliffs are the most prominent feature,
where small moves within the xy-plane are accompanied by a large change in
z-direction. Finally, activity landscapes corresponding to heterogeneous SARs
are characterized by gently sloped regions that are interspersed with activity
cliffs. For the exploration of SARs, a major challenge is posed by the need to
account for these variable regions within an activity landscape.

Traditional Computational SAR Analysis

In medicinal chemistry, SARs are traditionally explored on a case-by-case basis,
evaluating individual series of related compounds to infer rules of how to mod-
ify a given chemotype and optimize its potency. This exercise typically involves
iterative steps to select, modify, and test compounds and relies to a large extent
on a medicinal chemist’s experience and intuition. The standard tool to support
this process are SAR tables that report core structures, substituents, and bio-
logical activities of the studied compounds in a spreadsheet-like manner. SAR
tables present a common concept in medicinal chemistry and also serve as a
basis for combinatorial QSAR analysis. Recently, attempts have been made to
enhance their design, for example by incorporating interactive functionality or
combining them with additional representation types (Agrafiotis et al., 2007b).
In addition, various computational tools have been developed for the graphical
representation of property distributions in large compound data sets (Wawer
and Bajorath, 2009). The spectrum of visualization techniques comprises basic
types of diagrams such as histograms, scatter plots, or heat maps, as well as
displays tailored toward the analysis of multifactorial data, like tree maps or
radial clustergrams (Agrafiotis et al., 2007a; Kibbey and Calvet, 2005).

Given their mostly graphical nature, the methodologies described thus far
are designed to structure and visualize SAR data, but they do not reveal any
SAR information by themselves. Rather, they support the subjective derivation
of SAR hypotheses by providing an intuitive access to the analysis of SAR
features (Wawer and Bajorath, 2009). A step toward automation of this task
has recently been taken by Birchall et al. (2006) who have attempted to extract
chemically intuitive SAR rules from screening data through the development of
reduced chemical graph queries using an evolutionary algorithm. This is one of
the rare examples where the application of machine learning techniques yields
interpretable SAR information, in contrast to the usual “black box” character
of such methods.

For the aim of deriving and modeling quantitative SAR information, the
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QSAR paradigm has become a cornerstone of computational medicinal chem-
istry (Esposito et al., 2004). QSAR analysis attempts to establish mathematical
models that relate chemical structure (or deduced properties) to compound po-
tency in a quantitative manner. The underlying hypothesis is that if such a
numerical relationship can be established for sets of known active molecules,
then the model can be applied to predict the potency of newly designed com-
pounds. QSAR models can also be utilized as a guidance for compound modifi-
cation and analog design. Originating from classical linear 2D QSAR, a variety
of QSAR methodologies have been developed over the years, including 3D ap-
proaches (Kubinyi, 1997) and nonlinear extensions (Kubinyi, 1977; Manallack
et al., 1994). Regardless of the conceptual design of different methods, QSAR
models are essentially restricted to series of congeneric molecules. Hence, their
ability to extrapolate from learning sets to test compounds that represent differ-
ent chemotypes is generally limited. Furthermore, in order to successfully model
an SAR, a continuous activity landscape is required, i.e. successive structural al-
terations of analogs should be accompanied by gradual changes in potency. The
presence of activity cliffs, which characterizes many activity landscapes, cannot
(or only inaccurately) be accounted for in QSAR models (Johnson, 2008). In
addition, compounds representing activity cliffs are often considered statistical
outliers and removed from the analysis, although actually they represent the
most interesting compounds for lead optimization (Maggiora, 2006).

Besides quantitative approaches, a number of methods within the medici-
nal chemistry spectrum explores the relationship between molecular structure
and biological activity in qualitative terms. Methods that focus on molecular
similarity make use of SAR information that is implicitly encoded in molecular
structure rather than trying to deduce explicit SAR rules. For example, in
chemical similarity searching, known active molecules are taken as templates
and compound databases are screened for similar compounds that are supposed
to have similar biological activity, according to the similarity—property princi-
ple (Willett et al., 1998). Hence, in similarity analysis, it is of fundamental
importance that chosen molecular representations be related to biological ac-
tivity; in other words, that they display “neighborhood behavior” (Patterson et
al., 1996). Different from whole-molecular similarity analysis, pharmacophore
modeling investigates local similarity (Sheridan et al., 1989). Preliminary SAR
information extracted from known active molecules is utilized to derive phar-
macophore patterns that are likely to be responsible for biological activity. As
discussed above, molecular similarity methods generally require the presence
of continuous SARs and smooth activity landscapes; in rugged regions of an
activity landscape, they are likely to fail.

All of the approaches discussed thus far have in common that they are de-
signed to explore SARs on the basis of series of analogous or at least highly
similar compounds. In addition, methods like QSAR modeling or similarity



searching rely on the presence of continuous SARs. Hence, the presented meth-
ods are capable of reflecting only a limited region of an activity landscape. This
distinguishes them from the approaches introduced in this dissertation, which
aim at the systematic assessment of SARs present in compound classes on a
global scale.

Research Topics

The primary goal of this dissertation has been to develop approaches for the sys-
tematic assessment and comparison of structure—activity relationships within
sets of active molecules. Established methods for the analysis of SARs tradition-
ally focus on individual compound series and investigate SARs on a case-by-case
basis; comparative studies that depart from this paradigm have until recently
not been reported. However, qualitative evidence pointing at fundamental dif-
ferences in the nature of small-molecule SARs is accumulating, emphasizing the
need for approaches that are capable of detecting and unambiguously evaluating
distinct SAR features.

In light of these considerations, an initial study has been designed to gain
qualitative insights concerning the nature of SARs. Accounting for the fact
that SARs are essentially the result of specific target—ligand interactions, the
analysis focuses on crystallographic complex structures for well-established tar-
get enzymes. Systematic comparison of inhibitor similarity, binding modes,
and potency reveals previously unobserved relationships and demonstrates the
highly variable character of small-molecule SARs. These findings directly lead
to the first central goal of this dissertation.

Goal 1: Design of a conceptual framework to systematically charac-
terize and classify SARs present in sets of active molecules.

Following the qualitative characterization of SARs, the next step toward
this goal attempts to put the assessment of different SARs on a formal ba-
sis. Therefore, a numerical function is developed that captures the elementary
SAR features within sets of active molecules in a quantitative manner. Based
on molecular similarity and potency data, this function implements a scoring
scheme that distinguishes between three basic SAR categories and provides
a framework for the classification and comparison of SARs within different
compound activity classes. This study relies on a two-dimensional molecular
representation, thereby departing from the target-centric view adopted in the
initial analysis. This makes it possible to extend the analysis to a wide spec-
trum of activity classes for which no, or only few, relevant crystal structures
are available.

Application of the SAR analysis function to various compound classes shows
that different SAR elements can coexist within classes of specifically active
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compounds. Thus, a second major goal of this dissertation is to study local
SAR features associated with individual compounds or compound series within
an activity class.

Goal 2: Development of a methodology to explore SARs at multiple
levels of detail that enables the investigation of local SAR
features and relationships between global and local SARs.

In order to extend the quantitative SAR analysis to the level of compound
series, we divide activity classes into subsets of similar molecules that provide
the basis for the analysis of local SAR features. The previously developed
scoring scheme is used to quantify local SAR character within these compound
subsets. Furthermore, a modified SAR analysis function is introduced that
assesses how individual molecules contribute to local and global SAR character
of a compound class. In order to relate these different SAR elements to each
other, a graphical representation is developed that visualizes similarity and
potency distributions of an activity class and makes it possible to investigate
local environments of different SAR character. SAR contributions made by
individual compounds are also visualized, which permits the identification of
key compounds that strongly influence local and global SARs.

Having established a methodology to assess the role that individual mole-
cules play for SARs within a compound class, we are also interested in inves-
tigating SAR contributions at the sub-molecular level. Hence, the final goal of
this thesis is to systematically quantify SAR contributions made by functional
groups in a molecule.

Goal 3: Quantitative evaluation of SAR contributions from functional
groups and identification of sub-molecular SAR determinants.

For the assessment of SAR contributions from well-defined parts of a mole-
cule, we focus on series of analogous compounds sharing a common molecular
scaffold. Within these analog series, comparison of molecules that differ only
at specific substitution sites makes it possible to directly assign observed SAR
behavior to variations of functional groups at these sites. The SAR analy-
sis function introduced herein is applied to quantify SAR contributions from
substitution sites and combinations of sites. A graphical organization scheme
visualizes these SAR contributions, enabling an intuitive analysis of SAR char-
acteristics within series of analogous molecules. Thus, key substitution patterns
are identified that largely determine the SAR character within series of analo-
gous molecules.



Outline of the Thesis

This thesis is organized as follows. Chapter 2 presents the initial study that
provides qualitative insights into the nature of small-molecule SARs including
target information. Fundamental considerations concerning SARs as a result of
target—ligand interactions and the assessment of molecular similarity as a basic
tool for computational SAR analysis are discussed. Methodological details of
the applied similarity measures are also provided. Then, a comparative study
of two-dimensional and three-dimensional compound similarity and potency is
presented. Instructive results and their significance for the exploration of SARs
are discussed.

Chapter 3 addresses the first goal presented above. Initially, the concep-
tual design of a quantitative SAR analysis function is presented. Then, the
methodology is applied to study SARs within 16 compound activity classes,
and exemplary classes are discussed in detail. The second part of this chapter
reports the results of control calculations that have been conducted to assess
the stability of the scoring scheme. Finally, methods that are related to our
approach are summarized.

Chapter 4 is concerned with the second goal of this dissertation. An ap-
proach for multi-level SAR analysis is introduced and the methodology is de-
scribed in detail. The method is applied to six representative compound classes
and the results are discussed with regard to key aspects of global and local SAR
analysis. In addition, an exemplary high-throughput screening (HTS) data set
illustrates the utility of the approach for the analysis of complex SARs present
in such data sets.

In Chapter 5, the multi-level approach introduced in Chapter 4 is extended
to the analysis of structure-selectivity relationships (SSRs). First, the utilized
selectivity data sets and the methodological details of the SSR analysis approach
are summarized. Then, two representative compound sets with activity against
pairs of related targets are studied in detail, including the comparison of local
SAR and SSR features and the identification of molecular and sub-molecular
selectivity determinants.

In Chapter 6, the third major goal of this thesis is addressed. A methodology
for the quantification of SAR determinants in analog series is introduced. Key
aspects of the approach are discussed using representative compound series.
Furthermore, the method is also applied to the analysis of SARs within series
of analogs active against multiple related targets.

Finally, Chapter 7 summarizes the major results and presents general con-
clusions of this dissertation.






Chapter 2

Qualitative Characterization of
Structure—Activity
Relationships

In medicinal chemistry, it is widely recognized that biological responses to struc-
tural modifications of active molecules are often highly variable and that the
underlying structure-activity relationships can have fundamentally different na-
ture (Eckert and Bajorath, 2007). Taking into account that the biological activ-
ity of small molecules results from specific interactions with a macromolecular
target, many SAR features can directly be related to binding characteristics
at the molecular level of detail. However, general analyses comparing protein—
ligand interactions and SAR features have rarely been reported. Therefore,
we systematically explored information about two-dimensional ligand struc-
ture, three-dimensional binding geometry and compound potency (Peltason
and Bajorath, 2007a). 2D similarity between ligands was assessed to account
for chemical modifications, and a 3D similarity measure captured changes in
binding modes. Similarity relationships were systematically compared and re-
lated to potency differences to better understand SARs. This chapter presents
the study of experimentally determined inhibitor structures for four classical
enzyme targets. In Section 2.1, SARs are discussed in the context of target—
ligand interaction. General aspects of molecular similarity assessment as a basic
tool for computational SAR analysis are addressed in Section 2.2, and the 2D
and 3D similarity measures utilized in this study are described. Section 2.3
presents the data sets and results for each enzyme inhibitor set. Conclusions
and general implications of the results are discussed in Section 2.4.

11
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2.1 SARs and Target—Ligand Interactions

For a small molecule, efficient binding to a target, most often an enzyme or
receptor protein, requires a high degree of geometrical and chemical comple-
mentarity. Geometrical complementarity involves the precise fit of the ligand
into the target’s binding site, as originally postulated by the lock-and-key anal-
ogy (Fischer, 1894) or the induced-fit model of ligand binding (Koshland, 1958),
which is often more appropriate. Chemical complementarity implies the ability
to form highly specific chemical interactions including hydrogen bonds, elec-
trostatic or ionic interactions, and van der Waals interactions. In addition,
hydrophobic or other solvation effects often also contribute to a specific bind-
ing event.

Given these well-defined binding requirements, the SAR behavior of active
molecules can often be rationalized. Accordingly, the frequently encountered
occurrence of “activity cliffs” (Maggiora, 2006) can be assigned to the presence
of key features that are crucial for target-ligand binding. Hence, a minute
structural modification that prevents a specific key interaction might render
an inhibitor completely inactive. In contrast to such “all-or-nothing” binding
events, many targets permit at least some degree of ligand variability. Bind-
ing sites can often adapt to different chemotypes, giving rise to an “activity
radius” that is populated by active molecules of increasing structural diver-
sity (Eckert and Bajorath, 2007). This situation is indicative of continuous
SARs and can also be interpreted from a target-centric point of view. Distinct
molecular structures that adopt similar spatial conformations and arrange their
interaction-relevant features in a preferred way might interact with the target
in a similar manner. In conclusion, small molecule SARs are to a large extent
determined by the degree of plasticity of the binding site and the presence of
more or less stringent binding constraints. Systematic analyses that go be-
yond the study of individual cases aim at obtaining a more general view on
SAR features that are prevalent for specific inhibitors and how they might be
related.

2.2 Molecular Similarity Assessment

Structure—activity relationships are characterized by the way chemical modifica-
tions of small molecules affect their biological activity. Consequently, the anal-
ysis of SARs requires the systematic evaluation of these modifications through
pairwise comparison of molecular structures. For this purpose, whole-molecule
similarity assessment (Johnson and Maggiora, 1990) presents a well-established
technique that has become an integral part of many chemoinformatics applica-
tions including virtual screening of compound databases, compound clustering,
and the design of targeted or diverse structural libraries (Bajorath, 2001, 2002).



2.2  Molecular Similarity Assessment 13

Molecular similarity assessment conceptually involves two independent as-
pects: the computational representation of molecular structure and a metric
to numerically compare these representations. For the representation of chemi-
cal structures, a wealth of different descriptors has been designed that capture
structural features, physicochemical properties, surface or shape attributes of a
molecule (Todeschini et al., 2000). The descriptors that are used to represent a
set of molecules span a chemical reference space of which each descriptor defines
one dimension. Molecules are located in a reference space according to their
descriptor values; molecular “coordinates” in the reference space correspond to
the values that descriptors adopt for individual compounds. Similarity or dis-
similarity between molecules is defined through their proximity or distance in
reference space. Depending on the type of descriptors used, several measures to
calculate the similarity or distance between them are available (Willett et al.,
1998). For numerical descriptors, popular distance metrics are, for example, the
Euclidean distance or the Hamming distance. Common similarity coefficients
include the Cosine, the Tversky or the Tanimoto coefficient, which is the most
widely used similarity measure in conjunction with binary fingerprints (Willett,
2006).

It is important to note that there is no generally applicable chemical ref-
erence space and for different applications and compound classes, different de-
scriptor sets might prove useful (Sheridan and Kearsley, 2002). However, the
choice of molecular representations and the definition of molecular similarity
strongly influence the shape of an activity landscape. Hence, for the analysis
of SARs, similarity assessment is a critical parameter. A major challenge is
posed by the need to identify molecular descriptors that are related to com-
pound activity and capable to consistently model an activity landscape. At
the same time, similarity assessment must always be chemically meaningful,
i.e. evident structural similarity should be numerically reflected by similarity
calculations. For example, a similarity measure that (artificially) discriminates
between closely related structures in order to account for potency differences
might lead to a biased representation of an activity landscape.

2.2.1 2D Similarity Calculation

For the comparison of molecules based on their chemical graph representation,
the use of binary molecular fingerprints has become widely accepted (Willett,
2006). Fingerprints are composite numerical descriptors that are represented
by arrays of bits accounting for specific structural patterns. Available finger-
prints incorporate a number of different chemical features and differ in part
substantially in their design and complexity. Simple structural key type fin-
gerprints monitor the presence of a collection of predefined molecular substruc-
tures and often consist only of a few hundred bit positions. Hybrid fingerprints
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have also been introduced that combine structural keys and property descrip-
tors (Eckert and Bajorath, 2007). Other common 2D fingerprint types are
based on topological pharmacophore patterns, atom environments or extended
atom connectivity (Bajorath, 2002).

For many applications, similarity assessment using structural keys is intu-
itive and leads to chemically meaningful and easily interpretable results. For
this reason, we selected the widely used MACCS structural keys for the rep-
resentation of molecular structures in our studies. The publicly available set
of MACCS keys! consists of 166 bits that indicate the presence of predefined
structural features in the molecular graph. Each of these structural features is
represented by a position in the fingerprint bit string. If a specific substructure
is found in a molecule, the corresponding bit is set to 1 (“on”); otherwise, it is
set to 0 (“off”). The similarity between two molecules is then determined by
comparison of their fingerprint representations. In the present work, the Tan-
imoto coefficient (Tc) was utilized to calculate MACCS fingerprint similarity.
The Tc presents a measure of bit string overlap and is defined as follows for
two binary fingerprints A and B:

Nag

Tc(A, B) =
A B) = N, =N

(2.1)

Here, N,p is the number of bits that are set on in both fingerprints, and N4
and Np refer to the number of bits that are set on in A and B, respectively.
Given this formulation, identical fingerprints obtain a maximal Tc value of 1,
whereas non-overlapping fingerprints are assigned a Tc value of 0. Fingerprint
representations were calculated using the Molecular Operating Environment
(MOE).

2.2.2 3D Similarity Calculation

A variety of different methods have been developed for the purpose of three-
dimensional molecular comparison (Willett et al., 1998). Irrespective of the
specific method, 3D molecular similarity is calculated either on experimentally
determined or on modeled molecular conformations. Some representations are
also capable of accounting for molecular flexibility by using multiple conforma-
tions (Senese et al., 2004; von Korff et al., 2008). Many 3D similarity methods
rely on descriptors that are calculated from molecular conformations, taking
into account molecular surface, volume, or three-dimensional charge distribu-
tions (Todeschini et al., 2000), or fingerprints accounting for 3D pharmacophore
patterns (Mason et al., 2001) or molecular shape (Good et al., 1995; Haigh et al.,

!Fingerprint methods, software and databases used in this work are summarized in Ap-
pendix A.
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Ayt e e

Figure 2.1: 3D similarity calculation The calculation of atomic property density overlap
for two molecules is illustrated schematically. The atoms of each molecule are represented by
spherically symmetric density functions, indicated by fading spheres (top). The similarity between
two overlapping molecular conformations is then calculated as the intersection of their density
functions (bottom).

2005). Another class of 3D similarity methods transforms molecular structures
into histograms or “spectra” and then calculates the overlap between these his-
tograms (Ankerst et al., 1999; Schuur et al., 1996). By contrast, superposition-
based similarity methods directly try to map the compared molecules onto each
other by optimizing the overlap of atoms or “fields” calculated around atoms,
e.g. electrostatic, steric or atom property derived fields (Lemmen and Lengauer,
2000). Although computationally more demanding, an advantage of superposi-
tion methods is that they establish direct equivalences between corresponding
parts of molecules.

For the spatial comparison of target-bound enzyme inhibitors, we utilized a
modified superposition approach based on the overlap of atomic property den-
sity functions (Labute et al., 2001), as illustrated schematically in Figure 2.1.
The aim was to compare experimentally determined binding conformations of
the inhibitors while taking into account their absolute orientation and position
within the binding site. Consequently, we first established a common reference
frame by superposing the protein o carbon atoms of all corresponding enzyme-—
inhibitor complex structures using the protein superposition function in MOE.
As a result, the actual binding geometries of the bound inhibitors became di-
rectly comparable. Then, a property density function for the coordinates of
each ligand was defined and calculated as follows. For each atom 7, the follow-
ing four properties were calculated using a pharmacophore atom typing scheme
implemented in MOE (Bush and Sheridan, 1993). A corresponding property
weight w!” was assigned accordingly, obtaining the value 1 if atom 4 had the
property P and the value 0 otherwise.

Aromatic The aromatic property was assigned to an atom i if it was sp’-
hybridized and belonged to a ring that obeyed the Hiickel rule. In that
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aro __

case, the corresponding property weight was set to 1, i.e. w

Donor The H-bond donor property was assigned by setting wé" = 1 if atom
1 was classified as “donor” or “basic” under the pharmacophore atom
typing scheme.

Acceptor The H-bond acceptor property was assigned by setting w{* = 1
if atom 7 was classified as “acceptor” or “acidic” under the atom typing
scheme.

Hydrophobic The hydrophobic property was assigned by setting w? vh — 1 if
atom 7 was of type “hydrophobe” under the atom typing scheme.

For a given atom property P, each atom ¢ was represented by a spherically
symmetric Gaussian density function ff centered at the position x; of the
atom nucleus; the width of the Gaussian was determined by the van der Waals
atom radius r;:

3/2
77w =l (sag) oo {mplo—aif} (2:2)

27r?

Here, the parameter a was used to scale the atom radii simultaneously and was
set to 2 in our calculations. The property density ff for a molecule was then
defined as the mean of the property density functions of its n atoms:

» n wP a2 3/2 a2 )
o =3 () en{-ggle- ol (2.3

i=1

For the comparison of two molecules or conformations X and Y, the overlap
of their property densities was calculated, obtaining again a sum-of-Gaussians
density. Let zq,...,z, and vy, ..., y,, denote the spatial positions of the atoms
in conformations X and Y, and 7, ...,r, and 7, ...,7. be their van der Waals
radii. Let further be w!, ...,w? and w/F, ...,w" the property weights of the
atoms in X and Y, respectively. Then, the density overlap of X and Y for
property P was defined as follows:

n m P

, wiuf (@ ) @ i =y’
FrX,Y)= L) = 9 2.4
( ’ ) ZZ nm (27T(7”Z-2—|—7’§-2)) exp 9 7“1-24—7“92 ( )

i=1 j=1

This formulation generalizes to more than one property through summation of
the overlap equations for the individual properties. For the four atom properties
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listed above, the density overlap for two molecules X and Y was defined to be

hyd  thyd
n.om ;zrowgaro _{_w;lonw;don _|_w;zccw;acc ‘l’wiy w Y

FXY) =33 2 — i

=1 j—1
3/2 2
a2 / eXp _CL_Z |,ZCZ — y]|
2m(r? + 7"92) 2 r?+ 7“32

A final normalization was carried out in order to obtain 3D similarity values
between 0 (distinct spatial arrangement with no common atom positions) and
1 (identical conformation and position). The final 3D similarity values were
obtained by dividing the overlap of the molecular property density functions
by the mean self-overlap of the respective conformations:

(2.5)

F(X,Y)
[F(X, X) + F(Y,Y)]

Fromm(X,Y) = (2.6)

1
2

2.3 Relationships between 2D and 3D Similar-
ity and Potency

In order to evaluate SAR characteristics in a detailed manner, we systematically
analyzed crystallographic enzyme-inhibitor complex structures. Pairwise 2D
and 3D similarity relationships of the inhibitors were quantitatively assessed,
compared and related to differences in compound potency.

2.3.1 Data and Calculations

As a data basis for the analysis, sets of inhibitors were assembled for which
experimentally determined complex structures and potency measurements for
a given target were available. On the basis of a survey of the PDBbind
database (Wang et al., 2004, 2005), we selected four representative target en-
zymes for which sufficient inhibitor data were available: elastase and coagu-
lation factor Xa, two serine proteases; the metalloenzyme carbonic anhydrase
IT; and the RNA-cleaving enzyme ribonuclease A. These enzymes are long-
established targets in pharmaceutical research and represent active sites of dis-
tinct chemical and spatial architecture. Table 2.1 summarizes the structural
data used for the analysis, and their PDB codes are provided in Appendix B.
For each set of inhibitors, pairwise 2D and 3D similarity coefficients were
calculated as described above. In order to support the systematic assessment
of similarity relationships, scatter plots were created that correlated 2D and 3D
similarity values of every compound pair. Figure 2.2 shows the 2D-3D similar-
ity plots for individual inhibitor sets. These plots facilitated the detection of
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correlations or discrepancies between 2D and 3D similarity relationships. Fur-
thermore, in order to relate molecular similarity to compound potency, each
data point was colored according to the potency difference of the correspond-
ing compound pair using a continuous spectrum from black for smallest to red
for largest potency differences in a data set. For this purpose, absolute differ-
ences between pK; or plCsy values were used. In addition, Pearson correlation
coefficients between 2D and 3D similarity were calculated for each inhibitor set
and are reported in Table 2.1. Results for individual enzyme inhibitor sets are
discussed in the following section.

2.3.2 Results

Ribonuclease A A characteristic feature of the active site of ribonuclease
A is the presence of a positively charged binding pocket that inhibitors need
to fill in order to bind efficiently. This binding constraint is reflected by the
structure of the studied inhibitors. The nine selected compounds are nucleotide
derivatives containing adenine or uracil and one or more phosphate groups
that are accommodated in the binding pocket and compensate the positively

Table 2.1: Summary of inhibitor data sets

carbonic anhy-

clastase factor Xa ribonuclease A
drase II
no. structures 27 14 16 9
2D similarity
minimum 0.07 0.34 0.24 0.76
maximum 1.00 0.92 1.00 0.98
average 0.59 0.52 0.50 0.87
3D similarity
minimum 0.00 0.09 0.28 0.13
maximum 0.99 0.96 0.96 0.87
average 0.60 0.36 0.58 0.44
cor. 2D/3D 0.79 0.31 0.46 0.58
potency
minimum 0.03nM 0.46 nM 0.007nM 27nM
maximum 125 nM 890 pM 131 nM 82 uM

Potency and similarity distributions are given for the four enzyme inhibitor sets discussed in the
text. ‘no. structures' reports the number of inhibitor structures and ‘cor. 2D/3D’ denotes the
correlation coefficient between pairwise 2D and 3D similarity calculated as described in the text.
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Figure 2.2: Comparison of 2D and 3D similarity Each dot represents 2D and 3D similarity
values of a pairwise comparison of two inhibitors. Data points are color-coded according to
potency differences by using a continuous spectrum from black for smallest to red for largest
potency difference within each compound set. Scatter plots were created using R.

charged residues. Accordingly, the inhibitors have very similar structures and
obtain pairwise MACCS Tc similarity values greater than 0.75 (Figure 2.2(a)).
However, despite their distinct structural similarity, significant 3D variations
are observed among ribonuclease inhibitors. Figure 2.2(a) shows that pairwise
3D similarity values essentially cover the entire range from a minimum of 0.13 to
a maximum of 0.87. These varying levels of 3D similarity are due to the fact that
inhibitors containing different nucleobases adopt distinct binding modes. As
illustrated in Figure 2.3(a), overall similar structures can bind very differently
as long as the phosphate group constraint is satisfied. Furthermore, there is
little correlation between structural similarity and potency. Similar structures
have different potency levels irrespective of whether their binding modes are
similar or not. In fact, inhibitors with nearly identical binding conformations
are found to differ by up to three orders of magnitude in potency, solely due to
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Figure 2.3: Ribonuclease A inhibitors On the left side, the 2D structures of selected inhibitors
are shown. On the right, the same inhibitors are shown in their binding conformations within the
active site of ribonuclease A. In the 3D representation, the carbon atoms of the inhibitor whose
2D structure is shown at the top of each subfigure are colored in light gray, and the carbons of
the inhibitor whose structure is shown at the bottom are colored in dark gray. Blue areas on
the protein surface indicate regions of positive partial charge and highlight the phosphate binding
pocket that presents a major binding constraint. (a) A pair of inhibitors that adopt different
binding modes in the ribonuclease active site. (b) Two closely related analogs with very similar
binding modes but dramatic differences in potency.

two additional phosphate groups in the highly potent analogue (Figure 2.3(b)).
Hence, in this case, binding characteristics are determined by local structural
features and are only weakly related to whole-molecule similarity. The binding
constraint posed by the positively charged phosphate-binding pocket makes
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Figure 2.4: Carbonic anhydrase Il inhibitors (a) Highly potent inhibitors representing differ-
ent chemotypes that share a sulfonamide group. Potency values of the most and the least potent
molecules are colored according to ligand colors in the 3D representation shown in part (b). (b)
Compounds from (a) with highest and lowest potency are displayed in the carbonic anhydrase
binding pocket. The compounds have distinct chemical scaffolds and display differences in binding
geometry. The zinc cation within the active site, represented as yellow sphere, is coordinated by
three histidine residues and the sulfonamide group of the ligand.

ribonuclease inhibitors a prime example for discontinuous SARs that manifest
themselves on both the 2D and 3D level.

Carbonic Anhydrase II Carbonic anhydrase presents another example of
an enzyme whose binding site architecture poses a severe structural constraint
on ligand binding. In this metalloenzyme, the need to coordinate a catalytically
important zinc cation within the active site presents the major prerequisite for
ligand—target interaction. Known inhibitors meet the constraint by means of a
sulfonamide group, which is a hallmark of carbonic anhydrase inhibitors. On
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Figure 2.5: Factor Xa inhibitors Inhibitor pair with low 2D but notable 3D similarity and
potency in the low nanomolar range.

the basis of these characteristics, one might expect to observe discontinuous
SARs, similar to ribonuclease A. However, analysis of the inhibitors reveals
a different situation. The studied carbonic anhydrase inhibitors cover a wide
spectrum of 2D similarity and are structurally much more diverse than the ri-
bonuclease inhibitors discussed above (Figure 2.2(b)). Although most inhibitors
share the sulfonamide group, other structural moieties show in part substantial
variations. Different chemotypes are found among highly potent compounds,
as shown in Figure 2.4(a). Moreover, 3D binding similarity strongly correlates
with structural similarity (r = 0.79), i.e. 2D similar molecules bind in a similar
manner and with comparable potency, whereas molecules with limited similar-
ity also show differences in their binding geometry (Figure 2.4(b)). Moreover,
largest potency differences are observed among dissimilar compounds, indicated
by the red data points in Figure 2.2(b). Thus, in this case, continuous SARs
exist proximal to an activity cliff formed by the sulfonamide constraint.

Factor Xa The coagulation factor Xa is found to have less stringent require-
ments for inhibitor binding than the enzymes discussed so far. Accordingly, the
majority of inhibitors are related by a continuous SAR. There is a significant
degree of structural diversity and most similar 2D structures bind very similarly
and with comparable potency. By contrast, compounds with limited 2D and
3D similarity display the largest differences in potency (Figure 2.2(c)). A per-
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haps unexpected characteristic of diverse factor Xa inhibitors is their tendency
to bind in similar conformations. Structures with distinct chemical scaffolds
adopt comparable binding modes that match the shape of the binding pocket
(Figure 2.5). This indicates that in this case, binding to the target protein is
largely governed by shape complementarity, which provides the basis for SAR
continuity among factor Xa inhibitors. The active site of the enzyme toler-
ates structural variations provided a high degree of spatial complementarity is
maintained and a few key interactions are formed.

Elastase In the case of elastase, another serine protease with a comparably
permissive binding site, structurally related compounds display only minor po-
tency differences and, in addition, potent inhibitors represent diverse structural
features, similar to factor Xa. However, analysis of 3D structures reveals a more
complex picture than observed for factor Xa. There is no significant correlation
between 2D and 3D similarity. In fact, different subsets of elastase inhibitors
are identified for which 2D and 3D similarity is either strongly or inversely
correlated. For the inhibitor series shown in Figure 2.6(a), strong correlation
between structural and binding similarity is observed (r = 0.82), and compound
potency is found to decrease with decreasing similarity. More precisely, if we
consider the most potent compound in Figure 2.6(a) as a reference point, struc-
tural departure from a preferred inhibitor is accompanied by a gradual loss in
potency, which is prototypic for a continuous SAR. On the other hand, for
a series of trifluoro-acetyl-dipeptide anilides with overall comparable potency,
2D and 3D similarity show an inverse correlation (r = —0.52; Figure 2.6(b)).
This means that within this series of inhibitors, decreasingly similar compounds
adopt increasingly similar binding modes, which represents a different type of
a continuous SAR. How can these observations be rationalized? As shown in
Figure 2.7, elastase accepts multiple binding modes which can be adopted by
structurally diverse inhibitors that present their functional groups in spatially
corresponding positions. Interestingly, binding modes appear to have no signif-
icant influence on compound potency. Thus, in the case of elastase, different
continuous SARs can be distinguished, characterized either by a potency gra-
dient accompanying changes in 2D /3D structure or by the presence of 2D and
3D diverse inhibitors with comparable potency.

2.4 Summary and Conclusions

In summary, the analysis of inhibitor structures of four well-studied target en-
zymes reveals complex similarity—potency relationships. The enzymes ribonu-
clease A and carbonic anhydrase II impose significant constraints on inhibitor
binding due to the architecture of their binding sites, but with different effects
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Figure 2.6: Elastase inhibitors For inhibitor series with direct or inverse correlation between
2D and 3D similarity, 2D (top) and 3D structures (bottom) are shown. The compound at the
left is used as reference compound, and 2D and 3D similarity values to the reference compound
are reported for each inhibitor in a series. Potency values are reported below each 3D structure.
(a) Direct correlation between 2D and 3D similarity in a subset of elastase inhibitors. Structural
departure from a preferred inhibitor is accompanied by steady potency decrease. (b) Inverse
correlation between 2D and 3D similarity in another subset of elastase inhibitors with overall
comparable potency.
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Figure 2.7: Alternative binding modes in elastase Binding conformations of four selected
elastase inhibitors are shown. 2D and 3D similarity values to the reference molecule shown in the
upper left corner are reported in black and blue, respectively. The two molecules at the top have
only limited structural similarity but share the same binding mode. The molecules at the bottom
are structurally more similar to the reference compound but adopt different binding modes.

on ligand SARs. The studied set of ribonuclease inhibitors is marked by the lack
of structural diversity and displays discontinuous SARs, albeit with a remark-
able degree of 3D variability. By contrast, carbonic anhydrase inhibitors are
related by continuous SARs within the boundaries determined by a structural
binding constraint. Furthermore, a prime example of continuous SARs is pre-
sented by factor Xa inhibitors that include a high degree of stuctural diversity.
For factor Xa and carbonic anhydrase, 2D and 3D similarity correspond well
to each other, which gives rise to SAR continuity also at the 3D level. In the
case of elastase, by contrast, different continuous SARs characterize individual
inhibitor series. In one series, 2D similarity correlates with 3D similarity and
is consistent with observed potency differences. Another series of elastase in-
hibitors is characterized by different binding modes that are adopted by similar
structures having comparable potency levels.

Taken together, the comparison of 2D and 3D similarity with compound
potency reveals that relationships between similarity and potency are variable
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and often highly complex. Even in the presence of severe binding constraints,
targets permit a sometimes surprising variability of ligand structure and bind-
ing modes. These findings revise previous views that similar ligands generally
bind in a similar way to a target (Bostrom et al., 2006). Moreover, the anal-
ysis shows that different continuous SARs can coexist in an enzyme, as well
as continuous and discontinuous SARs, depending on the structural features
of ligands. Thus, the results provide evidence for the presence of multiple and
heterogeneous SARs within target-specific activity landscapes. These obser-
vations imply that the nature of SARs is not uniquely “dictated” by target
features, but is also influenced to a comparable extent by the chemical nature
of ligands. The picture that emerges from our analysis is that different SAR
features are not mutually exclusive and that SARs are generally more hetero-
geneous in nature than often thought. These findings suggest that continuous
and discontinuous regions coexist in many activity landscapes, which has also
practical implications for drug design. In particular, focusing on continuous
regions should in principle enable the identification of small molecules with
diverse structures but similar activity for many different protein targets.



Chapter 3

Quantitative Description of
Structure—Activity
Relationships

The qualitative analysis of similarity—potency relationships presented in the
previous chapter has elucidated the often highly complex nature of SARs.
The coexistence of distinct SAR features in many compound activity classes
yields heterogeneous SARs that are characterized by variable activity land-
scapes where activity cliffs are separated by gently sloped or even flat regions.
It is evident that the variable nature of small molecule SARs to a great extent
complicates their systematic study or classification. Typically, SARs are inves-
tigated on a case-by-case basis for classes of closely related molecules. Methods
to systematically explore SARs on a large scale have only recently been in-
troduced (Peltason and Bajorath, 2009). This chapter presents a numerical
function, termed SAR Index (SARI), that attempts to put the characteriza-
tion and comparison of SARs on a quantitative basis (Peltason and Bajorath,
2007b). The approach is based on systematic assessment of structural simi-
larity and potency relationships and thus departs from the target-centric view
of the 3D similarity-oriented studies presented in Chapter 2. Limiting simi-
larity assessment to 2D molecular representations makes it possible to extend
quantitative SAR analysis to targets for which no, or only few, relevant X-ray
structures are available. The SARI formalism provides a consistent framework
for the evaluation of activity landscape topology and classifies SARs in com-
pound activity classes into three different categories. Section 3.1 presents these
categories and the conceptual basis of SARI. The results of SAR profiling for 16
enzyme inhibitor sets are reported in Section 3.2. Furthermore, the influence
of fingerprint representations and data set size is investigated for another set of
activity classes in Section 3.3. Finally, we present approaches that are related
to SARI in Section 3.4 and discuss general conclusions in Section 3.5.

27
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3.1 SARI Methodology

SARI presents a scoring scheme designed to quantitatively capture the nature
of SARs for a given set of compounds active against a specific target. The
SARI score is calculated from two individual components, the continuity and
discontinuity score, that quantify the composition of smooth and rugged parts
of an activity landscape, respectively. To these ends, pairwise 2D similarity
relationships and differences in compound potency are assessed and related to
each other. Structural similarity between molecules is calculated as the Tc for
comparison of MACCS fingerprints and potency is represented by pK; or pICsg
values.

3.1.1 Continuity Score

The continuity score estimates the continuous character of SARs, corresponding
to smooth regions in the activity landscape. Continuous SARs are characterized
by gradual biological responses to chemical changes and ultimately delineate
an activity radius that is populated by increasingly diverse structures with
similar potency. Therefore, the continuity score measures the potency-weighted
structural diversity within a class of active compounds. For this purpose, the
similarity between each pair of compounds is assessed and a weighted mean
of the reciprocal pairwise compound similarity is calculated for all compound
pairs. The weights combine the potency values of both compounds in a pair
and the difference in potency between them. The “raw” (i.e. non-normalized)
continuity score for a compound class A is defined as follows:!

1
Wij 7~
i.j)EAfi£] 1 + sim(3, j)
ContraW(A) _ {( J)EA] #]}Z (31)
’LUij
{(.5)eAli#5}
PP
- 3.2

Here, sim(i, j) stands for the similarity between compounds ¢ and j, w;; denotes
the weight for the compound pair and P; and P; denote their potency values,
respectively. Hence, the continuity score measures the global diversity in a set of
active compounds, assigning high weights to compound pairs with high potency
but low potency differences. This weighting scheme takes into account that
SAR continuity is primarily characterized by the presence of comparably potent
inhibitors of increasing structural diversity. Compound pairs with overall low

L Addition of 1 to the similarity in the score definition and to the potency difference in the
weight definition prevents division by 0.
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potency and/or high differences in potency convey only a limited amount of
information concerning the continuous nature of an SAR.

3.1.2 Discontinuity Score

In discontinuous SARs, on the other hand, the most prominent characteristic
is the presence of activity cliffs formed by similar compounds having markedly
different potency. Accordingly, the discontinuity score accounts for potency
differences among similar compounds. It is defined as the mean of potency
differences between pairs of similar molecules multiplied by pairwise similarity.
Here only compound pairs are considered that exceed a predefined similarity
threshold. We set this similarity threshold to a MACCS Tc of 0.65, which is
a relatively “soft” threshold, in order to be able to detect also activity cliffs
between remotely similar compounds. However, multiplication with similarity
puts more emphasis on potency differences between highly similar molecules.
Furthermore, we apply a cutoff for the pairwise potency difference. For a com-
pound pair to be considered for discontinuity score calculation, we require a
potency difference of more than one order of magnitude in order to focus the
analysis on significant activity cliffs. Hence, the discontinuity score for a com-
pound class A is calculated as follows:

discaw(A) = mean P, — P;| - sim(i, j 3.3
(4) {(i7j)eA\sim(i,j)>0.65, ( il (4,7)) (3.3)
| P —Pj|>1

3.1.3 Normalization

For ease of comparison, the raw continuity and discontinuity scores are stan-
dardized and normalized to the value range [0,1]. For this purpose, a panel of
activity classes is taken as a basis, and the raw scores of each class are nor-
malized with respect to the score distribution within this reference panel, as
described in the following. Initially, the sample mean (cont,ay, diSCay) and
sample standard deviation (Scons, Saisc) Of the scores within the set of refer-
ence classes are calculated. These reference values are then used to calculate
standardized or Z-scores from the raw scores of each activity class A:

CoNtay (A) — contyay

CONbyseore(A) = (3.4)
Scont
. A s e
diSCzscore(A) = dISCraW( ) dlscraw (35)
Sdisc

Z-scores report how many standard deviations a score value is above or be-
low the mean. Thus, the continuity and discontinuity scores are expressed in
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Figure 3.1: Cumulative distribution function for the normal distribution For different
values for the mean (u) and standard deviation (o) of a normal distribution, the cumulative
distribution function is plotted. The standard normal distribution with a mean of 0 and a standard
deviation of 1 is indicated by the blue line.

units of standard deviations and can be directly compared. Finally, the scores
are mapped onto the value range [0,1] by calculating the value of the cumula-
tive distribution function for each Z-score under the assumption of a standard
normal distribution:

contzscore (A)
1 1
contporm(A) = P(contseore(A)) = —— exp | —=2? | dz (3.6)
V2 2
diSCzscore(A)
1 1
disCporm (A) = @ (discscore(A)) = —— exp | —=2? ) dr (3.7)
V2 2

This function indicates for a given Z-score value the probability of the event
that the standardized score of a randomly chosen activity class is less than
or equal to this value. Hence, a Z-score of 0 obtains a value of 0.5 because
it corresponds to the mean of the entire raw score distribution, and other Z-
scores have a probability of 0.5 to fall into the range below or above the mean,
respectively. As illustrated in Figure 3.1, increasing Z-scores obtain values
closer to 1, and decreasing Z-scores approach a value of 0. Hence, normalized
continuity and discontinuity score values near 0 correspond to a low degree of
SAR continuity and discontinuity, respectively, whereas values near 1 indicate
the opposite situation.
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3.1.4 SARI Score

The final SARI combines the normalized continuity and discontinuity scores:

SARI(A) CONbporm (A) + (21 — dischorm(A)) (3.5)

Given this formulation, the SARI also falls into the value range between 0 and
1. Since continuity and discontinuity account for contrary SAR character, the
discontinuity score is transformed to its complementary value by subtraction
from 1. Accordingly, high SARI values result from high continuity and low dis-
continuity scores and correspond to continuous SARs, whereas low SARI values
are produced by the inverse score combination and indicate SAR discontinu-
ity. Intermediate values of SARI around 0.5 correspond to heterogeneous SARs
that combine continuous and discontinuous elements. As will be discussed in
detail below, intermediate SARI values can arise from two different situations:
either high continuity and discontinuity scores, or low values for both score
components. The former situation indicates the coexistence of continuous and
discontinuous SAR elements and can be envisioned as a smooth activity land-
scape that contains diverse active compounds and is interspersed with activity
cliffs. We call this phenotype “heterogeneous-relaxed” as opposed to the other
heterogeneous subtype that is marked by a low degree of continuity and discon-
tinuity. Here, the lack of structural diversity within a data set is accompanied
by the absence of significant activity cliffs, a situation which is often indica-
tive of continuous SARs within the boundaries of an activity cliff imposed by a
structural binding constraint. Accordingly, this subtype of heterogeneous SARs
is termed “heterogeneous-constrained”.

3.2 SAR Profiling

In order to evaluate the design and utility of the SAR index, we calculated SARI
scores for a panel of 16 inhibitor classes directed at a variety of target enzymes.
The compound sets were classified according to their SARI profile and the
results were compared to qualitative observations on the basis of representative
molecular structures.

3.2.1 Data and Calculations

For our analysis, we searched for compound activity classes that covered a wide
range of targets and had varying degrees of structural diversity and significantly
different potency distributions. Given these criteria, we selected 16 sets of en-
zyme inhibitors consisting of between 9 and 33 molecules taken from the PDB-
bind and MDDR databases, as summarized in Table 3.1. The selected activity
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Figure 3.2: Different regions in a similarity—potency plot Four major regions can be iden-
tified in a plot of potency difference versus similarity, as indicated by the gray and white fields.
The lower left region contains compounds that have diverse structures but similar potency and
represent SAR continuity. By contrast, the upper right region contains similar compounds with
high differences in potency that participate in activity cliffs and give rise to SAR discontinuity.

Table 3.1: Enzyme inhibitor classes and their similarity and potency distributions

MACCS Tc potency [nM]

target cpds min max avg min max
poly(ADP-ribose) polymerase 23 0.29 0.82 0.47 5 35000
coagulation factor Xa 16 0.24 1 0.50 0.007 131
cyclooxygenase 2 21 0.21 096 0.48 0.09 3380
cyclin-dependent kinase 2 27 0.25 0.99 0.49 3 38000
protein-tyrosine phosphatase 1b 22 0.13 091 0.49 1.8 63000
carbonic anhydrase II 27 0.07 1 0.59 0.03 125000
thromboxane synthase 23 0.21 1 0.48 0.8 33000
acetylcholine esterase 19 0.22 1 0.46 0.13 8900
elastase 14 0.34 091 0.52 0.46 890000
trypsin 33 0.14 1 0.49 5.2 32500 000
dihydrofolate reductase 23 0.34 0.84 0.54 0.1 19500
peptidylprolyl isomerase 14 0.09 0.99 0.54 0.2 500 000
thrombin 28 0.23 1 0.49 0.0014 85000
thymidylate synthase 18 0.29 098 0.66 2 36 000
ribonuclease A 9 0.76 0.99 0.87 27 82000
adenosine deaminase 19 0.34 1 0.67 0.0001 9000

For 16 activity classes, the number of compounds (‘cpds’), minimum (‘min’), maximum (‘max’)
and average (‘avg') MACCS Tc similarity values and minimum and maximum potency values are
reported.
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Figure 3.3: Potency differences versus 2D similarity Each data point represents a pairwise
comparison of inhibitors within an activity class. Compound similarity is assessed using MACCS
Tc values, and potency differences are calculated between pK; (or plCsg) values. Hence, one unit
on the y-axis corresponds to a difference between K; (ICso) values of one order of magnitude.
Data points are color-coded according to the sum of their logarithmic potency values using a
continuous spectrum from black (lowest) to red (highest potency). Shown are distributions for
four exemplary inhibitor sets discussed in the text.

classes covered a large intra-class diversity spread and differed significantly in
their potency distribution. To illustrate the distinct similarity and potency
distributions within individual compound sets, we plotted potency differences
against similarity values in a pairwise manner. In order to highlight pairs of
highly potent compounds, a color code was applied that colored each data point
according to the sum of pK; or pICsy values of the corresponding compounds
in a pair, using a continuous spectrum from black for lowest to red for high-
est potency sums in a class. Hence, red data points indicate compound pairs
consisting of two highly potent molecules. In these plots, four major regions
representing different SAR information can be distinguished, as illustrated in
Figure 3.2. The lower left quadrant contains data points for compound pairs
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with limited structural similarity having low potency differences. Thus, these
compounds reflect SAR continuity. By contrast, the upper right quadrant is
populated by compound pairs that have similar structures but large differences
in potency. This plot region accounts for activity cliffs and SAR discontinuity.
The other two regions either contain compound pairs with low similarity and
high potency differences (upper left) or compound pairs with similar structure
and potency (lower right). From these parts of the plot, only limited SAR
information can be derived. Figure 3.3 shows similarity—potency scatter plots
for four representative classes that will be discussed in the following.

3.2.2 Results

We calculated SARI scores for the selected enzyme inhibitor sets and found that
they covered a wide spectrum of SAR characteristics. For normalization of the
continuity and discontinuity scores, we utilized the same 16 activity classes as
reference, i.e. the scores are scaled to the score distribution within this set of
activity classes. The calculated continuity, discontinuity, and SARI scores for
the inhibitor sets are reported in Table 3.2 and differ substantially. Continuity
scores ranged from less than 0.01 to 0.84, discontinuity scores from 0.05 to

Table 3.2: SAR indices for different classes of enzyme inhibitors

SARI scores

target cont disc SARI SAR category
poly(ADP-ribose) polymerase 0.82 0.05 0.89 continuous
coagulation factor Xa 0.71  0.08 0.82 continuous
cyclooxygenase 2 0.81 0.45 0.68 continuous
cyclin-dependent kinase 2 0.74 0.41  0.66 continuous
protein-tyrosine phosphatase 1b 0.77 0.47  0.65 continuous
carbonic anhydrase 11 0.27  0.06 0.61 heterogeneous-constrained
thromboxane synthase 0.84 0.75 0.54 heterogeneous-relaxed
acetylcholine esterase 0.84 0.78 0.53 heterogeneous-relaxed
elastase 0.61 0.54 0.53 heterogeneous-relaxed
trypsin 0.38 0.39 0.50 heterogeneous-constrained
dihydrofolate reductase 0.55 0.65 0.45 heterogeneous-relaxed
peptidylprolyl isomerase 0.16 0.39 0.39 heterogeneous-constrained
thrombin 0.69 0.90 0.39 heterogeneous-relaxed
thymidylate synthase 0.14 0.60 0.27 discontinuous
ribonuclease A 0.01 052 0.24 discontinuous
adenosine deaminase 0.13  0.98 0.07 discontinuous

Shown are continuity (‘cont’), discontinuity (‘disc’), and SARI scores. In addition, the SAR
category is reported for each activity class.
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Figure 3.4: Diverse inhibitors of factor Xa Shown are potent factor Xa inhibitors that
represent different chemotypes. The numbers report pairwise MACCS Tc similarity values.

0.98, and the resulting SARI scores from 0.07 to 0.89. Three sets of inhibitors
produced SARI scores smaller than 0.3 and two other classes had SARI scores
greater than 0.8. A total of 8 of our 16 classes fell into an intermediate scoring
range between 0.39 and 0.61. In the following, we discuss the results of our
analysis for four exemplary inhibitor classes that are representative of the four
SAR categories described above.

Factor Xa The distribution of pairwise similarity and potency differences
shown in Figure 3.3(a) reveals that studied factor Xa inhibitors cover a wide
similarity range of Tc values from 0.2 to 1. As indicated by red data points,
pairs of highly potent compounds essentially cover the entire similarity range
and are also found in the lower left part of the plot where structurally diverse
compound pairs are located. Furthermore, potency differences between similar
compounds are only minor, as reflected by the absence of data points in the
upper right portion of the distribution plot. These findings are well in accord
with the high continuity (0.71), low discontinuity (0.08) and consequently high
SARI (0.82) scores that clearly indicate a continuous SAR. Accordingly, this
class of factor Xa inhibitors is characterized by high structural diversity among
highly potent molecules, as illustrated in Figure 3.4 that shows a spectrum of
diverse inhibitors all of which have nanomolar potency. Moreover, structurally
similar compounds also have similar potency. This set of factor Xa inhibitors
corresponds to the factor Xa data set discussed in Chapter 2, and that the
qualitative characterization provided there is also reflected by SARI score cal-
culations.
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Figure 3.5: Adenosine deaminase inhibitors Shown are three analogous inhibitors that have
potency differences of several orders of magnitude. Pairwise MACCS Tc similarity values and
potency values are reported (black and blue numbers, respectively).

Adenosine Deaminase In marked contrast to factor Xa, the adenosine
deaminase inhibitor set produced a very low continuity score of 0.13, a dis-
continuity score close to 1 (0.98) and a SARI score of 0.07, revealing a strongly
discontinuous SAR. Within this class, many potent inhibitors are structurally
similar , but compound pairs with low similarity (Tc < 0.5) have only mod-
erate potency in the micromolar range. In Figure 3.3(b), this is mirrored by
the unbalanced distribution of red data points that correspond to highly po-
tent compound pairs. This observation is reflected by the low continuity score.
The SAR is dominated by an activity cliff that results from the requirement
to coordinate a zinc cation in the active site of the enzyme. Potent inhibitors
fulfill this requirement by means of a hydroxyl group which increases potency
dramatically, as illustrated in Figure 3.5. Potency differences between similar
compounds can amount to several orders of magnitude. This discontinuous
SAR is recognized by SARI calculations only on the basis of 2D structural
information and potency values of inhibitors.

Thromboxane Synthase In contrast to the inhibitor classes discussed above,
the set of thromboxane synthase inhibitors is characterized by an intermediate
SARI score of 0.54, which results from high continuity (0.84) and discontinuity
(0.75) scores. These values suggest that continuous and discontinuous elements
coexist within the activity landscape of this inhibitor class. The presence of
SAR continuity can be appreciated in Figure 3.3(c) where highly potent in-
hibitor pairs (red points) accumulate at lower similarity levels. However, there
is also a significant number of similar structures having large differences in
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Figure 3.6: Heterogeneous SAR for thromboxane synthase inhibitors The top row presents
inhibitors with decreasing similarity and potency values, taking the first compound as a reference.
The molecule at the bottom is structurally similar to the reference compound but has significantly
lower potency.

potency, located in the upper right part of Figure 3.3(c). Accordingly, the
SAR also displays a detectable degree of discontinuity. The individual SAR
elements are illustrated in Figure 3.6. As an example of continuous SARs, the
upper part of the figure presents a series of thromboxane synthase inhibitors for
which similarity and potency are gradually decreasing, considering the leftmost
molecule as a reference. By contrast, at the bottom, a molecule is depicted that
is closely related to the reference molecule but has significantly lower potency,
which is characteristic of a discontinuous SAR. Thus, in the case of thrombox-
ane synthase, different continuous and discontinuous SAR components coexist.
This enzyme tolerates different types of small molecule SARs and presents a
prototypic example for heterogeneous-relaxed SARs.

Carbonic Anhydrase The set of carbonic anhydrase inhibitors, which cor-
responds to the data set discussed in Chapter 2, also represents a heterogeneous
SAR. With a SARI score of 0.61, it tends toward the continuous value range.
However, the intermediate SARI score of carbonic anhydrase inhibitors is the
result of low continuity (0.27) and low discontinuity (0.06) scores. Figure 3.3(d)
shows that inhibitor pairs with high potency have relatively high similarity val-
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Figure 3.7: Continuous SAR for sulfonamide-inhibitors of carbonic anhydrase Taking the
leftmost compound as a reference, MACCS Tc similarity and potency gradually decrease from
left to right.

ues within the range of 0.5 to 1. Moreover, the lower left and upper right
portions of the plot, which are responsible for SAR continuity and discontinu-
ity, are essentially empty. Although perhaps puzzling at first glance, this SAR
phenotype can be well rationalized: it is characterized by SAR continuity within
the boundaries of a structural constraint. As discussed in Chapter 2, the major
determinant for carbonic anhydrase inhibition is the presence of a sulfonamide
group that complexes a zinc cation in the enzyme’s active site, similar to adeno-
sine deaminase inhibition discussed above. However, in contrast to adenosine
deaminase inhibitors, the studied carbonic anhydrase inhibitors display signif-
icant scaffold diversity. Moreover, similar compounds always have comparable
potency, resulting in the absence of activity cliffs. This is illustrated in Fig-
ure 3.7, which reveals a continuous SAR for diverse sulfonamide-containing
inhibitors with potency in the low (sub-)nanomolar range.

The heterogeneous SAR exemplified by the carbonic anhydrase inhibitor
set is distinct from the heterogeneous SAR phenotype presented by thrombox-
ane synthase inhibitors. In the latter case, different continuous and discon-
tinuous SARs coexist, whereas in the case of carbonic anhydrase, a continu-
ous SAR is observed within the limits of a structural constraint. In contrast
to heterogeneous-relaxed SARs, the characteristic features of heterogeneous-
constrained SARs are low continuity and low discontinuity scores. Both sub-
types of heterogeneous SARs are clearly distinguished on the basis of SARI
analysis.

3.2.3 Discussion

SAR profiling of 16 inhibitor classes directed at diverse target enzymes has
shown that the SARI formalism is capable of numerically characterizing SAR
elements prevalent in sets of active compounds. Relying solely on 2D sim-
ilarity and potency values, SARI calculations can quantitatively distinguish
between different SAR categories and provide a framework for the compari-
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son of compound activity classes on the basis of their SAR character. Thus,
these calculations are useful to classify SARs on a large scale. The majority
of compound classes investigated in this initial analysis produced intermediate
SARI scores that are indicative of heterogeneous SARs. These findings are
consistent with earlier proposals that many small molecule SARs should be
heterogeneous in nature (Eckert and Bajorath, 2007) and confirm the conclu-
sions that were drawn from the qualitative SAR study presented in Chapter 2.
Moreover, SARI analysis makes it possible to further divide heterogeneous
SARs into two previously unobserved categories, heterogeneous-relaxed and
heterogeneous-constrained, that are distinguished by the magnitude of conti-
nuity and discontinuity scores and reflect different activity landscape topology.
Using the SARI scoring scheme, different SAR characteristics are identified that
are consistent with qualitative observations.

3.3 Control Calculations

Encouraged by our initial findings, we applied the SARI scoring scheme on
another set of activity classes. The aim of these calculations was to provide
a sound data basis in order to further establish the SARI formalism also on
larger data sets of different composition. In addition, it is evident that the
SARI formulation depends on parameters that are generally critical for the
study of small molecule SARs, in particular, the representation of molecular
structure and the composition of the compound sets under investigation. To
evaluate the influence of these parameters on SARI scoring, a number of control
calculations were carried out using alternative fingerprint representations and
compound data sets of varying size.

3.3.1 Data Sets

For the analysis, we assembled compound classes from the MDDR that were of
larger size and (as a consequence) of more inhomogeneous composition than the
data sets analyzed in the initial study. As summarized in Table 3.3, selected
compound sets are active against a variety of targets and include between 71
and 252 molecules. SARI calculations using these 13 activity classes as reference
for normalization show that these classes cover a broad spectrum ranging from
discontinuous to heterogeneous and continuous SARs (Table 3.4). Similar to
the compound sets discussed above, a multitude of activity classes fall into the
intermediate value range and accordingly have heterogeneous SARs.
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3.3.2 Fingerprint Dependence

Considering the fact that SAR descriptions generally depend on the nature
of the chosen molecular representation, we compared MACCS-based results
with two different molecular fingerprints, Molprint2D (Bender et al., 2004) and
TGT. Molprint2D generates molecular representations based on layered atom
environments, whereas TGT is a topological three-point pharmacophore fin-
gerprint implemented in MOE. Pairwise compound similarity was calculated
using the Tc on each of the alternative fingerprint representations, and simi-
larity thresholds for SARI discontinuity scores were adjusted to the similarity
distribution for the individual fingerprints. SARI scores and individual score
components for the different fingerprints are presented in Table 3.4. We observe
that for many activity classes, SARI scores calculated on the basis of different
fingerprints yield comparable results and are overall well correlated (MACCS—
TGT: r = 0.85, MACCS—Molprint2D: r = 0.63, Molprint2D-TGT: r = 0.77).
The majority of inhibitor sets are assigned to the same SAR category according
to SARI scores for at least two fingerprints. For classes ACH, FAR, LIP, and
THR, for example, the SAR type remains invariant for all three alternative

Table 3.3: Enzyme inhibitor classes used for control calculations

MACCS Tc Potency [nM]
class target cpds min max avg min max
S5HT  5-HT transporter 129 0.12 1 0.46 0.01 2700
ACA ACAT 195 0.11 1 0.45 0.26 120000
ACH acetylcholinesterase 112 0.15 1 0.46 0.02 85000
COX cyclooxygenase 2 149 0.05 1 0.45 0.09 50 000
ELA  elastase 92 012 1 0.48 0.007 6000
FAR  farnesyl transferase 146 0.01 1 0.45 0.036 304 000
FXA factor Xa 152 0.11 1 0.50 0.007 30000
HIV  HIV-1 protease 179 014 1 0.53 0.000014 43000
LIP  lipoxygenase 252 0.02 1 0.36 1 100000
PH4  phosphodiesterase IV~ 209 0.11 1 0.45 0.0025 348 000
PH5 phosphodiesterase V 71 0.26 0.99 0.56 0.006 1000
SQA  squalene synthase 71 0.08 1 0.44 0.071 500000
THR thrombin 172 0.14 1 0.55 0.0019 30000

A set of 13 enzyme inhibitor classes is summarized. Column ‘class’ provides an identifier code and
‘cpds’ reports the number of compounds for each activity class. The distribution of MACCS Tc
similarity and potency values is given in the following columns (‘min’ stands for minimum, ‘max’
for maximum and ‘avg’ for average).
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fingerprints. In other cases, however, the scores differ significantly, e.g. in the
case of PH5 that is classified into three different categories according to SARI
scores based on MACCS, Molprint2D and TGT. These in part substantial dif-
ferences can be attributed to the different design and resolution of the utilized
fingerprints.

3.3.3 Influence of Compound Set Size

A second set of control calculations was carried out in order to assess how
composition and size of the data sets might influence SARI scores. For this
purpose, we randomly extracted compound subsets of increasing size from the
13 activity classes described above and calculated SARI scores for these random
samples. From each of the activity classes, we successively selected subsets of
10, 20 and 50 compounds. For classes consisting of more than 100 (or 200)
compounds, also subsets of 100 (and 200) molecules were sampled. Beginning
with a compound subset of size 10, the subsets were incrementally extended by
randomly adding compounds. The subset selection process was independently
repeated 10 times for each activity class. SARI scores were then calculated for
each compound subset and averaged over the 10 subsets of a given size. Fig-

Table 3.4: SARI scores for different fingerprint representations

MACCS Molprint2D TGT
class cont disc SARI cont disc SARI cont disc SARI
5HT 0.55 0.22 0.67 0.77 0.40 0.68 091 0.27 0.82

ACA 0.57 0.28 0.6 0.18 0.26 0.46 0.20 0.21 049
ACH 0.62 0.72 0.45 0.53 0.64 0.44 0.72 0.61 0.56
COX 0.74 0.21 0.76 0.51 0.24 0.63 0.56 0.23 0.66

ELA 0.36 0.59 0.39 0.77 048 0.65 0.64 0.54 0.55
FAR 0.58 0.71 0.44 0.58 0.64 0.47 0.76 0.81 0.47
FXA 0.30 0.27  0.52 0.62 0.34 0.64 021 0.39 041
HIV 0.12 0.53 0.30 0.01 0.48 0.26 0.07 0.48 0.30
LIP 0.99 0.04 0.97 0.95 0.16 0.89 091 0.06 0.92
PH4 0.66 0.59 0.54 0.62 0.35 0.63 0.52 0.40 0.56
PH5 0.08 0.53 0.27 0.76 0.33 0.71 0.36 0.38 0.49
SQA 0.79 0.99 0.40 0.33 1.00 0.17 0.79 0.99 0.40

THR 0.08 0.67 0.21 0.16 0.57 0.30 0.03 0.77 0.13

For three different fingerprints, the continuity (‘cont’), discontinuity (‘disc’), and SARI scores are
reported for 13 activity classes. Class identifiers are according to Table 3.3.
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Figure 3.8: Standard deviations of SARI scores for compound subsets of increasing size
The distribution of standard deviations of the SARI score calculated on random subsets taken
from 13 activity classes is shown as box plot. From each of the 13 activity classes, 10 random
subsets of a given size were sampled. Each box represents the distribution of standard deviations
for the scores calculated on compound subsets of a given size for each class. The bottom and
top of each box report the lower and upper quartile, and the dashed lines mark the most extreme
data points. The median of the distribution is represented as thick horizontal line.

ure 3.8 reports the distribution of SARI standard deviations for the individual
subset sizes in the 13 activity classes. It should be noted that for subset size
100, classes ELA, PH5 and SQA did not contain sufficient compounds and for
subset size 200, only classes LIP and PH4 were considered. The figure shows
that standard deviations of SARI scores are consistently lower than 0.3 already
for small sets of 10-20 compounds and rapidly decrease when compound subsets
are enlarged. Although large score variations might be observed in individual
cases, these findings suggest that SARI scores calculated for subsets of varying
size remain essentially stable.

3.3.4 Discussion

Application of the SARI scoring scheme to a second set of inhibitor classes
further established the methodology for quantitative assessment of SAR char-
acteristics and demonstrated its applicability also to large and diverse data
sets. Consistent with our initial study, the heterogeneous SAR type was found
to be prevalent among the analyzed data sets. Control calculations suggested
that SARI scores are remarkably robust with respect to variations of molecular
representation and data set size, which are critical parameters for the assess-
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ment of SARs. Scores for three different fingerprint representations were com-
pared and found to produce similar results in many cases. However, alternative
fingerprints generally capture distinct molecular features and yield different
levels of resolution, which might substantially affect SARI calculations in in-
dividual cases. Accordingly, molecular representations should be chosen that
consistently describe the activity landscape of a given compound set and en-
able chemically meaningful similarity assessment. Furthermore, the influence
of data set size on SARI scoring was investigated. The analysis showed that
SARI scores calculated on compound subsets of increasing size remained to
a large extent stable. Hence, SARI calculations yield meaningful results also
for very small compound data sets. It should be noted, however, that SARI
scores reflect the composition and SAR features of a given data set and cannot
necessarily extrapolate or predict different sets of compounds sharing the same
biological activity.

3.4 Related Methods

Quantitative assessment of SARs in sets of active compounds is still in its in-
fancy, and only few methods have been reported thus far. Earlier approaches
include Structure—Activity Similarity (SAS) maps that compare biologically ac-
tive compounds in a pairwise manner and relate similarity in potency and struc-
tural similarity to each other, such as the similarity—potency plots described
above (Shanmugasundaram and Maggiora, 2001). An information-theoretic
measure was used to compare similarity—potency relationships within an SAS
map to idealized activity landscapes in order to estimate the “smoothness”
or “roughness” of the activity landscape under investigation. A more recent
approach has been presented by Houghten and coworkers that also utilized
similarity—potency plots for the detection of “consensus activity cliffs” on the
basis of different 2D and 3D similarity methods (Medina-Franco et al., 2009).
With the Structure-Activity Landscape Index (SALI), another scoring func-
tion for the quantification of SAR features has been introduced (Guha and van
Drie, 2008). In order to account for activity cliffs of varying magnitude, SALI
characterizes pairs of compounds by means of their pairwise potency difference
divided by compound similarity. SALI scores can be visualized in a so-called
SALI graph that represents compounds as nodes that are connected by edges if
their SALI score exceeds a user-defined threshold value. Conceptually, SALI re-
sembles the discontinuity score of the SARI framework insofar as both methods
aim at the identification of activity cliffs through assessment of potency differ-
ences of similar compounds. Regardless of differences in their design, all of
these methods can be traced back to the analysis of “neighborhood behavior”,
which describes how changes in descriptor settings or molecular representations
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relate to changes in the biological activity of test compounds (Papadatos et al.,
2009; Patterson et al., 1996).

3.5 Conclusions

With SARI and its individual score components, we have introduced an ap-
proach to quantitatively describe the nature of SARs. SARI provides a frame-
work to classify the SAR character with compound activity classes and also
makes it possible to compare SARs between different compound classes. Adopt-
ing a global view on SARs in compound activity classes, the scoring scheme
departs from the traditional case-by-case study of SARs and enables their anal-
ysis on a large scale. Three principal SAR types that have long been recognized
based on qualitative evidence are for the first time described in numerical terms:
continuous, discontinuous, and heterogeneous SARs. Moreover, SARI calcula-
tions distinguish between two previously unobserved subtypes of heterogeneous
SARs that reflect different composition of continuous and discontinuous ele-
ments. Profiling of various activity classes has shown that many small-molecule
SARs are heterogeneous in nature, which is consistent with earlier observations
and has practical relevance for medicinal chemistry. The heterogeneous-relaxed
SAR phenotype is considered particularly attractive for compound screening
and chemical optimization efforts because it is likely that structurally diverse
active compounds can be identified (in continuous SAR regions) and also op-
timized (if they map to the vicinity of activity cliffs). Taken together, our
findings suggest that SARI presents a simple and robust method for the numeri-
cal assessment, classification and comparison of structure—activity relationships
within sets of biologically active molecules.



Chapter 4

Analysis of (Global and Local

Structure—Activity
Relationships

The qualitative and quantitative characterization of structure—activity relation-
ships has demonstrated that many activity landscapes are heterogeneous in
nature and often contain regions of fundamentally different SAR character.
The SARI scoring scheme presented in the previous chapter permits global
assessment of SARs in compound activity classes and enables their compari-
son between different classes. However, this method cannot be applied to study
multiple SAR features contained within a set of active compounds at the level of
compound subsets or individual molecules. Open questions include, for exam-
ple: Can we systematically identify subsets of compounds that display different
SAR behavior? How are local and global SAR elements related to each other?
How do individual compounds influence global SARs?

In order to dissect activity landscapes and analyze multiple SAR compo-
nents of compound classes with different SAR character, we have developed a
SARI score variant that is capable of accounting for SAR contributions from
individual compounds. In addition, this chapter introduces Network-like Simi-
larity Graphs (NSG) that provide a detailed graphical representation of po-
tency and similarity relationships within sets of active compounds (Wawer
et al., 2008). In computational medicinal chemistry, molecular network rep-
resentations have previously been used to represent target—ligand relation-
ships (Mestres et al., 2006; Paolini et al., 2006) or relationships between dif-
ferent classes of drug molecules (Hert et al., 2008), among other applications.
In this chapter, we utilize NSG representations and SARI scoring on the ba-
sis of individual compounds and compound subsets to describe different SAR
features that coexist in compound activity classes. This approach makes it
possible to better understand how local SAR characteristics are related to each

45
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other and identify individual molecules that are SAR determinants. The de-
sign of NSGs and compound SARI scores is described in detail in Section 4.1.
The methodology is applied in Section 4.2 to thoroughly analyze SARs in six
representative compound sets and utilized also for the characterization of more
complex SARs, as discussed in Section 4.3 for an exemplary screening data set.

4.1 Methodology

In order to characterize and compare global and local SAR elements, SARI
scoring was applied at three different levels of detail. SARI scores were cal-
culated for entire compound activity classes, for compound subsets identified
through similarity-based clustering, and on the basis of individual molecules.
NSG representations were designed to visualize relationships between SARs at
these different levels.

4.1.1 Compound Clustering and Cluster Scoring

For the identification and characterization of multiple local SARs, activity
classes were divided into subsets of similar molecules. For this purpose, the
molecules of an activity class were subjected to hierarchical clustering using
their pairwise MACCS Tc similarity values and Ward’s minimum variance link-
age method (Ward, 1963), which yielded intuitive cluster distributions for our
data sets. The resulting cluster dendrograms were pruned at heights between
1 and 2 for different classes to obtain clusters of reasonable size and consti-
tution. For each compound cluster, SARI discontinuity scores were calculated
as described in Section 3.1 in order to estimate subset-dependent SAR fea-
tures. High discontinuity score values indicated subsets with a high degree of
local SAR discontinuity including similar molecules with significant potency
differences. For our analysis on the level of compound subsets, the continuity
score was not considered because it was designed to capture structural diversity,
which is primarily a feature of global SARs.

4.1.2 Compound Discontinuity Scores

In order to estimate the contributions that individual compounds make to
global SAR discontinuity, we developed a variant of the SARI discontinuity
score calculated on a per compound basis. The aim was to focus on compounds
responsible for introducing activity cliffs in an activity landscape; hence, local
continuity score calculations were not required for our analysis. The compound
discontinuity score was designed to account for potency differences between a
given active molecule and all molecules that are similar to it, again applying
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a MACCS Tec similarity threshold of 0.65. In contrast to global SARI calcula-
tions for compound classes or clusters, no potency difference cutoff is required
here because for the assessment of discontinuity contributions from individual
compounds, all potency differences among similar compounds must be taken
into account. For a given molecule 7 in the activity class A, the compound
discontinuity score is defined as

disCpaw (2) = mean P, — P;| - sim(z, ) 4.1
(?) {jEAlj, sim(i,j)>0.65}(‘ il (i.7)) (4.1)

This function assigns high scores to molecules that have significantly different
potency from their neighbors and are involved in the formation of activity cliffs.

4.1.3 Score Normalization

Global and local discontinuity scores were normalized to adopt values between
0 and 1 by calculation of Z-scores and cumulative distribution functions, as
described in Section 3.1. However, we utilized different reference values for
standardization of both score variants. Global SARI scores calculated on entire
activity classes were normalized with respect to the score distribution within
the set of 13 MDDR activity classes presented in Section 3.3. The same refer-
ence set was also used for normalization of discontinuity scores calculated for
compound clusters. This common normalization reference made it possible to
directly compare local cluster discontinuity scores to global scores for an entire
activity class and also across different classes. By contrast, discontinuity scores
calculated for individual compounds were standardized relative to all compound
scores within the same activity class. Hence, key compounds making largest
SAR contributions in a given activity class could be readily identified; however,
this design does not permit the comparison of compound scores across different
classes.

4.1.4 Network-like Similarity Graphs

Similarity and potency relationships within an activity class were visualized us-
ing NSGs. In these graphs, compounds are represented by nodes (circles), and
edges (lines) between them display similarity relationships. Figure 4.1 shows
a schematic representation of an NSG and the information it conveys. Five
different levels of information can be distinguished. Firstly, similarity relation-
ships between molecules are reflected by edges that connect two nodes in an
NSG if the corresponding molecules exceed a MACCS Tc similarity thresh-
old of 0.65. Secondly, the potency distribution is represented by node colors.
Nodes are color-coded according to the pK; or pICsq values of the correspond-
ing compounds using a color gradient from green via yellow to red, with green
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Figure 4.1: Schematic representation of NSG information levels (a) Nodes represent com-
pounds and are connected by edges if their MACCS Tc similarity exceeds a predefined threshold
value. (b) Nodes are color-coded according to potency. (c) Compounds are clustered based
on pairwise similarity values. For compound clusters, SARI discontinuity scores are calculated.
(d) Compound discontinuity scores are calculated and nodes are scaled in size according to the
magnitude of the scores.

indicating lowest and red highest potency within a class. A third level of in-
formation is presented by compound clusters that indicate subsets of similar
molecules. It should be noted that the applied clustering algorithm might as-
sign compounds to the same cluster even if they are not connected by an edge
(because their similarity value is below the threshold), and compounds that are
connected by an edge can be assigned to different clusters. Hence, compound
clusters complement the binary similarity information provided by edges and
signify compound subsets that are associated by remote similarity relationships.
The fourth level of information is provided by local discontinuity scores in com-
pound clusters. In NSGs, clusters are annotated with their discontinuity score,
which makes it possible to highlight regions of different SAR character within
a compound set. Finally, presenting the fifth level of information, compound
discontinuity scores reveal contributions to overall SAR discontinuity made by
individual compounds. Nodes in an NSG are scaled in size according to com-
pound discontinuity scores, with the largest nodes corresponding to compounds
that make most significant contributions to global SAR discontinuity in a class.

NSGs were calculated and displayed using the R igraph package (Csardi and
Nepusz, 2006). The layout of NSGs was calculated on the basis of node connec-
tivity using the Fruchterman—Reingold algorithm (Fruchterman and Reingold,
1991). Accordingly, distances between nodes are not scaled by similarity values
but rather indicate how densely nodes within regions of a network are connected
by edges.

4.2 Analysis of Network-like Similarity Graphs

Our analysis focused on how to identify SAR features that coexist in activity
classes and explore potential relationships between them at the level of com-



4.2 Analysis of Network-like Similarity Graphs 49

Table 4.1: Global and local SAR character for different enzyme inhibitor classes

global scores cluster scores
class cpds clusters cont disc SARI min max avg
LIP 252 11 0.99 0.04 0.97 0.02 0.15 0.06
COX 149 7 0.74 0.21 0.76 0.00 0.70 0.26
FXA 152 5 0.30 0.27 0.52 0.02 0.45 0.26
FAR 146 8 0.58 0.71 0.44 0.01 1.00 0.59
SQA 71 8 0.79 0.99 0.40 0.00 1.00 0.48
THR 172 6 0.08 0.67 0.21 0.01 0.80 0.53

For six sets of enzyme inhibitors, the global continuity (‘cont’), discontinuity (‘disc’), and SARI
scores are reported. In addition, cluster discontinuity score distributions are given (‘min’, mini-
mum; ‘max’, maximum; ‘avg', average scores). Columns ‘cpds’ and ‘clusters’ report the number
of compounds and clusters in each class, respectively. Class identifiers are according to Table 3.3.

pound subsets and individual molecules. Therefore, we calculated global and
local SARI scores and generated NSG representations for the set of 13 activ-
ity classes presented in Section 3.3. The size and heterogeneity of these classes
made them instructive test cases for the application of the NSG-SARI method-
ology. In the following, we discuss the results for six activity classes representing
different SAR categories: LIP and COX (continuous), FXA (heterogeneous-
constrained), FAR and SQA (heterogeneous-relaxed), and THR (discontinu-
ous). Table 4.1 reports their global SARI scores and the distribution of cluster
discontinuity scores.

4.2.1 Network Topology

The topology of NSGs is determined by pairwise similarity relationships and
their distribution within an activity class. Figure 4.2 shows that the six exem-
plary classes studied here produce NSGs of different topology and that distinct
topologies are also observed for compound sets belonging to the same global
SAR category. For example, the LIP and COX compound sets display glob-
ally continuous SARs, as indicated by their high SARI scores. With an average
pairwise MACCS Tec of 0.36, LIP is characterized by a high degree of intra-class
structural diversity, which is clearly reflected in the topology of the correspond-
ing NSG. The network consists of several distinct subgraphs, and many nodes
are only sparsely connected. However, a number of densely connected clusters
with very low discontinuity scores are also observed (Figure 4.2(a)). Thus, the
high degree of structural diversity within this activity class partly results from
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Figure 4.2: NSG representations for six classes of enzyme inhibitors
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Figure 4.2: NSG representations for six classes of enzyme inhibitors (continued)
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Figure 4.2: NSG representations for six classes of enzyme inhibitors (continued) Nodes
represent compounds and edges are drawn between them if pairwise MACCS Tc values exceed
0.65. Nodes are color-coded according to potency using a continuous spectrum from green to
red and scaled in size according to their compound discontinuity scores. Compound clusters are
displayed on a light blue background and annotated with their discontinuity scores. Clusters and
key compounds discussed in the text are labeled with capital letters and numbers, respectively.
Unconnected nodes are omitted for clarity.
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the presence of chemically different series of active compounds. Compared to
LIP, COX is less structurally diverse (average MACCS Tc = 0.45) and its NSG
is overall more densely connected (Figure 4.2(b)). Most compounds are orga-
nized in a large major network component, and only a few peripheral clusters
can be found.

In heterogeneous-constrained SAR types, by contrast, the degree of struc-
tural diversity is typically limited. Structural variations of active compounds
occur within the boundaries of activity cliffs and are frequently accompanied by
only minor potency changes, giving rise to continuous SARs within the limits of
a discontinuous one. Often, functional groups involved in key interactions are
conserved, while other molecular regions are more variable. The FXA inhibitor
set studied here belongs to this category, as indicated by the low values for
global continuity and discontinuity scores and an intermediate SARI score. As
illustrated in Figure 4.2(c), its NSG consists of a few densely connected com-
ponents, reflecting the relatively low degree of structural diversity in this class
(average MACCS Tc = 0.50). By contrast, heterogeneous-relaxed SARs are
marked by the coexistence of continuous and discontinuous SAR components
and compound classes belonging to this category are often structurally diverse,
similar to continuous compound sets. This SAR type also produces an in-
termediate SARI score but is distinguished from its heterogeneous-constrained
counterpart by high global continuity and discontinuity score values. Class FAR
provides a representative example. The structural diversity within this class is
comparable to COX and so is its NSG topology (Figure 4.2(d)). SQA also
belongs to the heterogeneous-relaxed SAR category and has intra-class struc-
tural diversity comparable to FAR but produces an NSG of different topology
(Figure 4.2(e)). The graph consists of several distinct components that are
clearly separated from each other. These subgraphs are well-defined and corre-
spond to structurally distinct subsets of compounds that display different SAR
characteristics, as indicated by their cluster discontinuity scores.

Finally, the set of THR inhibitors analyzed in this study represents the
structurally most homogeneous class with an average MACCS Tc of 0.55 and
displays the most discontinuous SAR character. Its NSG contains a single and
densely connected major network component, which reflects a high degree of
intra-class similarity. Consistent with the global SAR type, many individual
compounds are found to make large local contributions to SAR discontinuity
(indicated by the large size of the corresponding nodes).

In all NSGs studied here, edges are found that connect individual com-
pounds belonging to distinct clusters with in part very different discontinuity
scores, as in the case of FAR or SQA. Thus, structurally similar compounds
can be identified that are involved in different local SARs and can be seen as
“chemical bridges” between local SAR environments. Furthermore, all NSGs
show a clear correspondence between compound clusters and graph or subgraph
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Figure 4.3: Exemplary compound cluster for class SQA Shown are the compounds belong-
ing to cluster A in Figure 4.2(e) with their potency values (‘pot’) and compound discontinuity
scores (‘disc'). Pairwise MACCS Tc values are reported along the edges in the cluster.

communities, which are formed by topologically distinct collections of densely
connected nodes. Thus, compound clusters can serve as an adequate basis for
studying local SAR characteristics.

4.2.2 SARs in Compound Clusters

SARI discontinuity scores were calculated for compound clusters in order to
investigate local SAR features present in subsets of similar compounds. Indi-
vidual clusters can be isolated from NSGs and analyzed separately. This makes
it possible to select compound subsets on the basis of their SAR characteristics
and study their composition in detail. Figure 4.3 shows an exemplary clus-
ter for class SQA. According to its high discontinuity score (0.94), it includes
structurally related compounds with distinct potency differences. For a detailed
analysis of this cluster, similarity relationships and the individual compound
discontinuity scores are reported. Structurally related representatives of two
compound series can be identified. Moreover, two compounds are found that
make large local discontinuity contributions (corresponding to the large green
and red nodes) and are largely responsible for the overall discontinuous SAR
character within this cluster. These compounds can be considered to mark the
beginning (green) and end (red) of a compound optimization pathway. Thus,
detailed analysis of individual clusters makes it possible to elucidate compound
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Figure 4.4: Distribution of cluster discontinuity scores For each activity class, the distribu-
tion of discontinuity scores for all clusters is presented as a box plot.

and cluster SARs and identify compounds that largely determine local and
global SAR character.

4.2.3 Cluster SARs versus Global SARs

In order to relate discontinuity within individual compound subsets to global
SAR features, we have calculated the distribution of cluster discontinuity scores
for each activity class, as shown in Figure 4.4. Classes representing different
SAR types were found to display characteristic score distributions, which be-
comes also apparent by comparison of the cluster scores given in Figure 4.2.
Compound classes having globally continuous or heterogeneous-constrained
SARs lack steep activity cliffs. Accordingly, the cluster discontinuity scores for
these classes range from low to intermediate values. Both continuous classes LIP
and COX contain clusters with overall low discontinuity scores, and scores in the
heterogeneous-constrained class FXA are on average only slightly higher. COX
contains only one cluster of noteworthy discontinuous character; LIP none. In
LIP, most compound clusters are assigned discontinuity scores at the lower end
of the spectrum. For example, cluster A in Figure 4.2(a) obtains a score of
0.02. The low degree of SAR discontinuity within this cluster is a result of the
presence of similarly potent compounds (indicated by small orange nodes), as
illustrated in Figure 4.5. In globally discontinuous classes like THR, clusters
show significantly higher discontinuity scores, as expected. THR contains a few
clusters that obtain high discontinuity scores and include strong activity cliffs
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Figure 4.5: Representative compounds from class LIP forming a continuous local SAR
Shown are selected compounds from cluster A in Figure 4.2(a) that represent a continuous local
SAR over a relatively narrow potency range. Pairwise MACCS Tc values are reported along the
arrows.

that dominate global SAR features. However, cluster scores in heterogeneous-
relaxed compound classes show the largest variations, due to the coexistence of
continuous and discontinuous local SAR components. In classes FAR and SQA,
several clusters can be identified whose discontinuity scores range from 0 to 1.
The heterogeneous SAR character can be easily discerned in the NSG of class
SQA (Figure 4.2(e)) which contains clusters that correspond to continuous or
even flat SARs (e.g. cluster B) or, by contrast, represent prototypic instances of
a rugged activity landscape that contains similar compounds with large potency
spread, corresponding to steep activity cliffs (cluster C).

4.2.4 Compound Discontinuity and Key Compounds

In order to focus on individual activity cliffs, discontinuity scores were calcu-
lated on a per compound basis. For all activity classes, highly and weakly
potent compounds making large contributions to SAR discontinuity were iden-
tified, irrespective of the global SAR phenotype. Selected compound pairs are
labeled in Figure 4.2 and displayed in Figure 4.6. These key compound pairs
have similar structures but significant differences in potency and are thus ac-
tivity cliff markers that are easily identified in NSGs as pairs of large red and
green nodes. Because compound discontinuity scores are standardized relative
to each individual compound class, key compounds from different classes typ-
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Figure 4.7: Influence of key compounds on global SAR discontinuity For each activity
class, compounds with highest compound discontinuity scores were iteratively removed from the
compound sets and global discontinuity scores were recalculated following each iteration.

ically represent different levels of discontinuity, depending on the overall score
distribution within the given class. The ability to identify activity cliff mark-
ers for all compound classes studied here emphasizes the value of discontinuity
scores on the basis of individual compounds.

In order to estimate the influence of key compounds on global SARs, mo-
lecules with highest local scores were selected and iteratively removed from
activity classes. Global SARI scores and compound discontinuity scores were
recalculated after each step. The results presented in Figure 4.7 show that
for discontinuous and heterogeneous-relaxed SAR types the global discontinu-
ity score constantly decreases and thus shifts global SARs more toward the
continuous range. Thus, in these cases, key compounds having high discon-
tinuity scores also strongly influence global SAR characteristics. By contrast,
for continuous or heterogeneous-constrained classes, activity cliffs identified on
the basis of compound scores are of moderate magnitude and accordingly have
only limited influence on global SARs.

4.2.5 Summary

The quantitative assessment of global and local SARs in conjunction with
graphical representation of similarity and potency distributions has made it
possible to relate different SAR components to each other. The global SAR
character of compound activity classes was found to be closely linked to the
topology of molecular similarity graphs. Continuous or heterogeneous-relaxed
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SAR phenotypes are characterized by a notable degree of intra-class structural
diversity, which was reflected by the formation of distinct subgraphs in the cor-
responding NSG. By contrast, classes of more homogeneous composition such
as globally discontinuous or heterogeneous-constrained classes produced a more
densely connected network topology. Furthermore, analysis of SARs within in-
dividual compound clusters has shown a clear correspondence between cluster
discontinuity score distributions and global SAR type. As expected, continu-
ous classes contained clusters with discontinuity scores at the lower end of the
spectrum, whereas discontinuous classes obtained overall highest cluster scores.
Heterogeneous-relaxed classes covered the widest range of cluster scores, as a
result of the coexistence of continuous and discontinuous local SARs. Disconti-
nuity scores on a per compound basis were utilized to identify key compounds
forming activity cliffs and contributing strongly to overall SAR discontinuity.
In all activity classes studied here, key compounds were identified that corre-
sponded to activity cliffs of varying magnitude. In a number of instances, these
compounds were capable of shaping the activity landscape of compound sets.

4.3 Application to Screening Data Sets

The dissection of SAR phenotypes at different levels of detail is particularly
valuable for large collections of active molecules that cannot be easily orga-
nized manually. Therefore, the NSG methodology was thought to be useful for
the analysis of hit sets identified by high-throughput screening (HTS), which
is of considerable practical relevance in drug discovery (Wawer and Bajorath,
2009). In order to investigate the utility of the NSG-SARI approach for this
type of data, we applied the analysis to screening data sets extracted from Pub-
Chem BioAssay. Screening data sets principally differ from compound activity
classes extracted from biologically annotated databases or lead optimization
sets because they are much larger in size and contain many weakly active hits
including false-positives. Taking also into account their high degree of struc-
tural diversity, one would expect that global SAR features of screening data
should be highly continuous in nature. Consistent with this assumption, we
observed that SARI scores calculated for screening data sets were generally
high (Wawer et al., 2009). In order to explore local SAR features within the
globally continuous activity landscape, NSG analysis was applied. For this
purpose, the similarity threshold for discontinuity score calculation and edges
was set to 0.75. Figure 4.8 shows the NSG for an exemplary cytochrome P450
inhibitor set (PubChem AID 884) containing 3439 hits. For clarity, cluster an-
notations were omitted in this example. With a global SARI score of 0.98, this
data set displays strongly continuous SAR character. However, the network
reveals a notable degree of local SAR heterogeneity. Many compounds form
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Figure 4.8: NSG representation of a cytochrome P450 inhibitor set A set of 3439 screening
hits from a P450 3a4 inhibition assay are displayed in an NSG which reveals different local SAR
environments.

communities that correspond to local environments with distinct SAR charac-
ter. A number of potent compounds cluster in one large network component
and form activity cliffs with similar compounds of lower potency. However,
potent hits and activity cliffs are also found in other regions of the network. It
should be noted that activity cliffs in screening data sets are mostly of smaller
magnitude than those observed in optimized compound series, due to the typi-
cally narrow potency range. We also clustered the molecules according to their
MACCS Tec similarity and calculated discontinuity scores for the resulting com-
pound subsets. While the vast majority of clusters obtained scores close to 0,
individual clusters were identified that displayed a considerable degree of dis-
continuity (with scores of 0.84 and 0.50 for the two most discontinuous clusters).
Hence, despite the highly continuous global SAR characteristic of HTS data,
regions of relative SAR discontinuity and even (moderate) activity cliffs were
observed. These initial findings have been further extended in a systematic



4.4 Conclusions 61

manner and exploited for the automatic extraction of SAR information from
compound pathways in screening data NSGs (Wawer et al., 2009).

4.4 Conclusions

A comparative analysis of potency and similarity distributions among differ-
ent classes of active compounds has been carried out in order to study SARs
at varying levels of detail. SARI scores have been calculated on the basis of
compound activity classes, compound subsets and individual molecules. Com-
plemented by visualization in network-like similarity graphs, this multi-level
approach makes it possible to dissect SAR phenotypes and relate local and
global SAR features to each other. Compound discontinuity scores have been
introduced to identify key compounds that are activity cliff markers and make
strong contributions to global SAR discontinuity. These compounds can be
considered SAR determinants and often present the beginning and end points
of compound optimization pathways. The methodology has also been applied
to analyze SAR components present in screening data. The NSG-SARI ap-
proach provides an opportunity to identify distinct local SAR environments
within molecular networks and can in practice assist in the prioritization of
compounds for further study on the basis of their SAR character.






Chapter 5

Analysis of Structure—Selectivity
Relationships

Approaches for the analysis of structure—activity relationships traditionally
focus on target-specific compound potency and ultimately aim at predicting
highly potent molecules. However, potency is only one of several critical fac-
tors considered in lead optimization. Importantly, a promising drug candidate
must also have a desired selectivity profile against a number of targets and anti-
targets. Contrary to accepted views, target selectivity of active compounds is
often not the result of exclusive target binding events but rather emerges from
differential potency profiles against multiple targets (Hopkins, 2008). In par-
ticular, this implies that collections of active molecules might form multi-target
SARs for closely related members of protein families that determine different
degrees of compound selectivity.

The analysis of such multi-target SARs has only recently been facilitated
through the design of selectivity benchmark systems for chemical biology ap-
plications and the adaption of fingerprint similarity searching to identify and
distinguish target-selective molecules (Stumpfe et al., 2007, 2008; Vogt et al.,
2007). However, for the systematic evaluation of structure-selectivity relation-
ships (SSRs), no computational methods have as yet been established. In this
chapter, we report a first step in this direction by extending the numerical and
graphical functions developed for the analysis of target-specific SARs to the
study of SSRs (Peltason et al., 2009a). Taking into account that SSRs are
often a consequence of SARs against multiple targets, we present a compar-
ative study of single-target SARs and dual-target SSRs using the NSG-SARI
methodology described in the previous chapter.

63
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5.1 Selectivity Data Sets

For the study of SARs and SSRs, we have analyzed inhibitor sets for cathepsin
(cat) B, K, and L for which potency measurements for at least two related
cysteine proteases were available. These cathepsin inhibitor data were taken
from previously reported compound collections assembled from original litera-
ture (Stumpfe et al., 2008). A pool of 287 inhibitors was subdivided into two
partly overlapping sets of compounds with potency against two target pairs,
respectively: cat L versus B (LB), and cat K versus L (KL). The LB set con-
tained 159 inhibitors, and KL 234 inhibitors. Both sets shared 106 inhibitors
for which potency measurements were available for all three cathepsins. The
two inhibitor sets are summarized in Table 5.1.

For a given target pair, compound selectivity was determined on the basis
of differential potency against the corresponding targets. Selectivity values for
target A over target B were calculated as the difference between pK; or plCsg
values of each compound:

S, = P(A) ~ P(B) (5.1)

Here, S; stands for the selectivity value of compound i for target A over target
B, and P;(A) and P;(B) denote its potency values for targets A and B, respec-
tively. In order to distinguish between selective and non-selective compounds,
we adopted the selectivity criterion introduced by Stumpfe et al. (2008) that
considered compounds to be selective for target A if they had a logarithmic
selectivity value greater than 1.7 and selective for target B if their selectivity
value was below —1.7. Compounds falling within this range were considered
non-selective. This threshold corresponds to a 50-fold difference in potency for
the two targets.

5.2 Potency and Selectivity NSGs

For each data set, NSG-SARI analysis was carried out on the basis of potency
values for individual targets and target-pair selectivity values. Three different
graph representations were generated using potency values against targets A
and B and selectivity values for target A over B, respectively, and the corre-
sponding potency- and selectivity-based SARI scores were calculated. First, we
separately calculated global SARI scores, cluster and compound discontinuity
scores and NSGs utilizing the potency information for individual targets, thus
producing two “potency NSGs”, NSG, and NSGg. These potency NSGs pro-
vided the basis for characterization of single-target SARs. In order to enable a
direct comparison between potency NSGs for related targets, compound discon-
tinuity scores were normalized relative to all compound scores in a given data
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Table 5.1: Summary of selectivity data sets

LB KL

cpds 159 / 26 / 4 234 /76 ] 47
potency range

A 3.82 —10.40 4.00 — 11.05
B 3.00 - 8.07 3.82 - 10.40
selectivity range

A/B —2.21 - 3.17 —5.08 — 4.96
SARI scores (A)

cont 0.41 0.12
disc 0.41 0.84
SARI 0.50 0.14
SARI scores (B)

cont 0.44 0.09
disc 0.26 0.66
SARI 0.59 0.22
SARI scores (A/B)

cont 0.44 0.09
disc 0.33 0.79
SARI 0.55 0.15

The composition of compound data sets and global SARI scores are reported. The row ‘cpds’
reports the number of compounds in each set; the first number reports the total number of
compounds, the second the number of compounds selective for target A (the first target in a
pair), and the third the number of compounds selective for target B (second target). In addition,
SARI scores are reported for calculations using potency values for target A or B and selectivity
values for target A over B (‘A/B’). ‘cont’ and ‘disc’ stand for continuity and discontinuity score,
respectively.

set calculated for both activities. Due to this common normalization scheme,
compound scores and node sizes can be directly compared in both potency
NSGs. Furthermore, the same color spectrum was used to color-code nodes
in NSG, and NSGpg according to their potency values, ranging from the low-
est to the highest potency value observed for one or the other target. Hence,
corresponding colors in both potency NSGs denote the same potency values.

In addition, a “selectivity NSG” (NSGap) was generated for each data set
on the basis of selectivity values for target A over target B. Nodes in selectivity
NSGs were colored according to selectivity values using a gradient from red
for the highest observed selectivity for one target to green for the correspond-
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ing inverse selectivity value. Non-selective compounds with similar potency
values for both targets and a resulting selectivity value close to 0 were rep-
resented by yellow nodes. Global SARI scores and discontinuity scores for
compound clusters and individual compounds were calculated as described in
Section 4.1 using selectivity values instead of potency values. This definition of
selectivity-based SARI scores was appropriate because selectivity values repre-
sent potency differences and can accordingly be employed in the same manner.
Thus, selectivity-based discontinuity scores served to identify regions of SSR
discontinuity and “selectivity cliffs” formed by structurally similar molecules
having markedly different selectivity. Selectivity-based compound scores were
normalized with respect to all selectivity-based scores in the data set to re-
flect its unique selectivity distribution and thus cannot be directly compared
to scores in potency NSGs or selectivity NSGs for other target pairs.

In order to relate global SSR character to the established SAR categories,
selectivity-based SARI scores for entire data sets and for individual clusters
were normalized to the same reference as potency-based SARI scores. For this
purpose, the set of 13 activity classes from the MDDR described in Section 3.3
was utilized as reference. This common normalization scheme could be applied
because selectivity-based scores were of the same dimension as their potency-
based counterparts.

5.3 Selectivity NSG Analysis

The aim of our analysis was to characterize different global and local SSRs and
investigate their relationships to single-target SARs. Specifically, we explored
NSG environments that represented distinct local SSR features. Focusing on
such environments made it possible to distinguish individual compounds mak-
ing large contributions to single-target SARs and dual-target SSRs and identify
structural modifications that were selectivity determinants.

5.3.1 Global SAR and SSR Features

For the analysis of global SAR and SSR character, global SARI scores were
calculated for the selectivity data sets on the basis of compound potency and
selectivity. Selectivity-based SARI scores fall into the value range between 0
and 1 and permit the classification of SSRs in analogy to SARs. High scores
close to 1 are indicative of continuous SSRs where gradual changes in molecular
structure are accompanied by moderate changes in compound selectivity. By
contrast, low scores close to 0 reflect discontinuous SSRs that are characterized
by the presence of similar molecules having different selectivity and thus form-
ing selectivity cliffs. Similar to their potency-based counterparts, intermediate
selectivity SARI values around 0.5 indicate heterogeneous SSRs that combine
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different SSR elements. The global SAR and SSR characteristics of the two
selectivity data sets are reported in Table 5.1. For the LB compound set, both
target SARs are heterogeneous as well as the SSR for cat L over B. By contrast,
for the KL set, both single-target SARs are globally discontinuous and the SSR
for cat K over L is also characterized by strong discontinuity. Thus, in the case
of the two cathepsin data sets studied here, SAR and SSR phenotypes are well
in accord.

Figure 5.1 shows both potency NSGs and the selectivity NSG for the two
compound sets. The topology of the NSGs is determined by pairwise similarity
relationships between compounds and is thus identical in potency and selec-
tivity NSGs for a data set. Comparison of the LB and KL network topology
reveals distinct features that are characteristic of heterogeneous and discontin-
uous compound classes, respectively. Representing the heterogeneous category,
the LB topology is marked by the presence of several distinct subgraphs or
communities of varying potency and selectivity composition, as indicated by
different node color distributions within local NSG regions. In NSGyg, highly
selective compounds (red and green nodes) are distributed over different net-
work regions. This phenotype is a hallmark of SAR and SSR heterogeneity. In
contrast, graph representations for the KL data set are more densely connected,
which reflects a higher degree of structural homogeneity of the KL than the LB
set. Omne large central network component is found that includes many large
nodes representing key compounds, which is characteristic of SAR and SSR
discontinuity. However, in NSGgy,, highly selective compounds are also found
in different network environments, similar to NSGyg.

5.3.2 Comparison of SAR and SSR Elements

In order to compare the composition of local SAR and SSR elements, we cal-
culated the distribution of cluster discontinuity scores in both potency and
selectivity NSGs for the LB and KL compound sets. Figure 5.2 shows that
potency-based and selectivity-based scores essentially cover the entire value
range between 0 and 1, which reflects a high degree of local SAR and SSR vari-
ability. For both sets, the cluster discontinuity for one target is significantly
higher (L for LB and K for KL) and largely determines the overall SSR het-
erogeneity. Although the LB set displays globally heterogeneous SAR and SSR
character and KL SARs and SSR are more discontinuous, cluster score distri-
butions are overall comparable for both sets. Thus, differences in global SAR
and SSR categories for the two sets can be largely assigned to different levels
of chemical diversity.

In order to investigate how SAR and SSR characteristics are related to
each other and how they are determined by specific compound subsets, corre-
sponding network regions in potency and selectivity NSGs were compared. For
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Figure 5.1: NSG representations for selected target pairs
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(b)
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Figure 5.1: NSG representations for selected target pairs (continued) The graph at the top
of each subfigure shows the selectivity NSG for a target pair. At the bottom, the corresponding
potency NSGs for individual targets are shown. (a) Potency and selectivity NSGs for cat L versus
B. (b) Potency and selectivity NSGs for cat K versus L.
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Figure 5.2: Distribution of cluster discontinuity scores Cluster discontinuity score distri-
butions are reported as box plots for the LB and KL selectivity sets. For each set, three boxes
are shown that represent the cluster scores for the two potency NSGs and the corresponding
selectivity NSG, respectively.

example, compounds in the upper left regions of NSGy, in Figure 5.1(a) make
significant contributions to local SAR discontinuity, as reflected by the large
size of the nodes. By contrast, in NSGpg, these compounds have only minor
potency differences and accordingly form a continuous local SAR, indicated by
the smaller size of the corresponding nodes. The compounds represented in this
network region respond differently to cat L and B, as illustrated by the different
coloring of the nodes in both potency NSGs. Accordingly, the corresponding
region in the selectivity graph NSGpp shows that many of these inhibitors are
highly selective, whereas also non-selective compounds are found in the same
cluster. Hence, this network region is marked by strong local SSR discontinuity
and significantly contributes to global SSR heterogeneity.

By contrast, compounds in the network region of NSGx and NSGy, con-
taining cluster A in Figure 5.1(b) include highly and weakly active compounds
that form activity cliffs for both targets and make similarly strong contributions
to local and global SAR discontinuity. However, these compounds respond to
both targets in a similar way and thus are non-selective or only weakly selective
for cat K. Consistent with the comparable selectivity behavior of similar com-
pounds, this network region in NSGyy, is characterized by a highly continuous
local SSR, as illustrated by the presence of small yellow and orange nodes. Thus,
comparison of local SAR and SSR elements reveals the complementary nature
of SAR and SSR information captured in NSG representations. In selectivity
NSGs, node colors represent potency information for two related targets and
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node sizes reflect the selectivity differences of individual compounds compared
to their neighbors. Local SSR character is often highly variable, depending on
potency distributions and the way similar molecules respond to related targets.

5.3.3 Local SSR Environments

After analyzing relationships between local SAR and SSR features, we focus
on local network environments of distinct SSR character. The analysis aims at
distinguishing between continuous and discontinuous local SSRs and identify-
ing key compounds that correspond to selectivity determinants. In Figure 5.1,
selected clusters in the selectivity graphs are annotated with their cluster dis-
continuity scores. Despite their different topology, the selectivity NSGs for both
data sets, LB and KL, contain distinct local SSR environments, represented by
compound clusters with very low or high discontinuity scores. Continuous SSR
regions are formed by groups of similar molecules with comparable selectivity.
Such continuous environments can either be composed of non-selective com-
pounds or compounds that are selective for the same target. For example,
cluster A in NSGg or cluster A in NSGgp, mostly consist of non-selective in-
hibitors that make essentially no contributions to SSR discontinuity and are
represented as small yellow, pale green, or orange nodes. Such environments
of local SSR continuity frequently occur in selectivity NSGs and identify com-
pound subsets that provide only little information for the exploration of selec-
tivity at the molecular level. By contrast, cluster B at the bottom of NSGgy, is
formed exclusively by K-selective compounds (nodes colored in bright red) that
show only little differences in their selectivity values. Due to its homogeneous
selectivity composition, this cluster represents a continuous SSR region, as re-
flected by the small size of the corresponding nodes and a cluster discontinuity
score of 0.

Other SSR environments are strongly discontinuous in nature. For exam-
ple, cluster C in NSGgy, consists of selective (orange) and non-selective (pale
green) compounds that make large contributions to SSR discontinuity. Further-
more, clusters B and C in NSGpg or clusters in the central network component
of NSGky, contain inhibitors with high (red) and low (yellow) or even inverse
(green) selectivity. These clusters obtain high discontinuity scores. Hence, clus-
ter discontinuity scores detect environments in NSGs that are characterized by
a high degree of SSR discontinuity and thus represent the most interesting re-
gions for the selection of compounds to explore selectivity determinants. Within
these local environments, compound discontinuity scores provide a measure for
the identification of molecules that play a key role for target-pair SSRs.
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Figure 5.3: Key compounds (continued) Key compounds are shown together with their NSG
environments. Network details of the two potency NSGs (left/right) and the corresponding
selectivity NSG (top) of a target pair show the key compound (encircled node) and its closest
neighbors. Graph labels are colored red if the selected compound is an activity or selectivity cliff
marker. For each key compound, logarithmic potency (‘pot’) and selectivity (‘sel’) values and
compound discontinuity scores (‘disc’) are reported.

5.3.4 SAR and SSR Key Compounds

Network regions of strong local SAR and SSR discontinuity contain key com-
pounds that have high compound discontinuity scores and are thus involved in
the formation of activity or selectivity cliffs. Most prominent selectivity cliffs
are formed by pairs of structural analogs where one molecule is selective for
target A and the other for target B (i.e. a pair of large red and green nodes
in the selectivity NSG). In the selectivity NSGs shown in Figure 5.1, several
selectivity cliffs are apparent in discontinuous local environments. On the basis
of compound discontinuity scores, we have selected compounds that are activity
and/or selectivity cliff markers and hence major determinants of SAR and/or
SSR features. Figure 5.3 shows compounds that are selectivity cliff markers
but contribute to single-target SARs in different ways. In Figure 5.3(a), an
inhibitor belonging to cluster B in the LB selectivity graph is shown that is
selective for cat B and strongly contributes to the formation of selectivity cliffs,
as reflected by a maximal compound discontinuity score of 1.0. In NSGyg,
this inhibitor is the only B-selective compound (green node) within a region
containing structurally similar non-selective (yellow) or L-selective compounds
(red nodes). The selected compound is B-selective due to its low potency for
L (pK; = 5.0) and intermediate potency for B (pK; = 6.8). With this potency
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profile, this compound has the lowest potency for L and the highest potency for
B compared to its neighbors in the network environment. Accordingly, it also
strongly contributes to local SAR discontinuity in NSGp, and NSGg with discon-
tinuity scores of 1.0 and 0.8, respectively. However, selectivity cliff markers are
not always also activity cliff markers. Figure 5.3(b) shows a compound from the
central NSG component of the KL. data set that is a prominent selectivity cliff
marker because it is highly selective for K (red node), whereas its neighbors are
mostly selective for L. The selectivity of this compound is largely determined
by its low potency against cat L, as illustrated by the complementarity of the
node colors in its NSGgy, and NSGy, environments. In NSGy, this compound
contributes significantly to local SAR discontinuity because it has considerably
lower potency than its neighbors. In NSGg, however, there is no activity cliff
in the corresponding region, because the selected compound is similarly potent
against cat K as its neighbors. Hence, this compound represents a selectivity
cliff marker that is also an activity cliff marker for one target, but not for the
other. Moreover, compounds that do not play a key role for individual SARs
might also become key compounds in selectivity NSGs. Figure 5.3(c) shows an
example from the LB set belonging to cluster C in NSGyg. This inhibitor is
only weakly potent against cat B and L, similar to the other compounds within
its network environment. Hence, the compound contributes only little to single-
target SAR discontinuity. However, due to its higher potency for L than B, this
inhibitor is L-selective, whereas its neighbors are mostly non-selective or selec-
tive for cat B. Thus, the selected compound induces a significant degree of local
SSR discontinuity in NSGyg. Hence, key compounds that are involved in the
formation of selectivity cliffs can have different influence on single-target SARs.
The NSG neighborhood of such selectivity cliff markers is populated by similar
compounds that have markedly different selectivity and thus present interesting
starting points for the analysis of molecular selectivity determinants.

5.3.5 Selectivity Determinants

In addition to identifying key compounds that are responsible for SAR and
SSR. discontinuity, another major goal of selectivity NSG analysis is the ex-
ploration of structural features that determine compound selectivity. This can
be accomplished by focusing on collections of similar compounds with varying
selectivity levels, represented by sets of large connected nodes with different
colors in the network. Inspecting the environment of key compounds for simi-
lar molecules having different selectivity has led to the identification of analogs
that are distinguished by selectivity-determining substitutions.

Four exemplary sets of analogs and their network environments are pre-
sented in Figure 5.4. Figure 5.4(a) presents the B-selective key compound from
the LB data set discussed above (Figure 5.3(a)) together with two of its clos-
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Figure 5.4: Selectivity determinants (continued) In (a) — (d), examples of structurally analo-
gous compounds from the environment of key compounds are shown that form selectivity cliffs of
different magnitude. The network environments of these compounds in the selectivity NSG and
their discontinuity scores and selectivity values are also displayed. Substituents that distinguish
between compounds having different selectivity are colored red.
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est neighbors that are highly selective for cat L. Hence, these compounds are
prominent selectivity cliff markers. The presence of nitrile groups (or other
strong nucleophiles) generally represents a hallmark of non-selective cathepsin
inhibition. Thus, target selectivity must be determined by other functional
groups. Comparison of the three inhibitors indicates that halogenated phenyl
substituents at the sulfonyl group render analogs L-selective (indicated by red
coloring), whereas the halogenated biphenyl derivative is B-selective (green).
The second key compound from the LB set discussed in the previous section is
shown in Figure 5.4(b) together with three other analogs that differ only in a
substituent at the phenyl ring. The compound containing the iodine substitu-
tion is highly selective for cat L (red node). Selectivity decreases for the more
electronegative substituents chlorine (orange) and fluorine (yellow node) and is
shifted toward the inverse for a non-substituted phenyl derivative (green node).
In addition, Figure 5.4(c) shows a series of analogs from cluster C in NSGgy, that
are either selective for K or non-selective with a tendency toward cat L. The
six compounds only differ in a hydrophobic substituent at the pyrazole moiety.
With increasing bulkiness of this substituent, compound selectivity is gradually
shifted from cat K (orange) to L (green nodes). Furthermore, in the series of
analogs shown in Figure 5.4(d), various oxygen-containing N-substituents at
the piperazine ring are observed that determine whether a compound is selec-
tive for L (orange nodes on the right) or non-selective (yellow nodes on the
left).

These examples illustrate crucial aspects of potency and selectivity NSG
analysis. Discontinuous local SSR environments can be readily identified con-
taining key compounds that are responsible for SAR and/or SSR discontinuity
and often play different roles for SARs and SSRs of target pairs. Further-
more, series of analogs found in network neighborhoods of key compounds can
be utilized to explore SSRs at the level of individual compounds and identify
selectivity-determining substitution sites and patterns.

5.4 Conclusions

Target selectivity of compounds active against multiple targets is a critical
aspect in medicinal chemistry. In order to quantitatively assess relationships
between molecular structure and selectivity, we have applied the NSG-SARI
analysis to sets of inhibitors active against two related cathepsins. The potency-
centric analysis has been complemented by score calculations and graphical
analysis based on selectivity values that were calculated from potency differ-
ences. Following this approach, structure-selectivity relationships could be clas-
sified into the same categories that were originally established for SARs. Similar
to SARs, global SSR types were found to correspond to characteristic graphical
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features and were composed of different local SSR elements. Comparison of such
elements with local SAR features revealed the variability of SSRs and their de-
pendence of potency distributions in the corresponding network environments.
Furthermore, we detected regions of local SSR discontinuity containing selec-
tivity cliffs of different magnitude. Key compounds involved in the formation
of selectivity cliffs were identified that influenced SSRs and SARs in similar or
different ways. In the network environments of such key compounds, analo-
gous molecules having different selectivity were found. These molecules were
distinguished by well-defined substitutions that determined their selectivity.

For medicinal chemistry, the comparative study of SARs and SSRs has
considerable practical utility. Specifically, NSG-SARI analysis can aid in the
selection of compounds that have a desired potency and selectivity profile and
present promising starting points for further optimization. In order to facilitate
the systematic optimization of compound selectivity, discontinuous regions in
selectivity NSGs can be explored and selectivity determinants at the structural
level can be identified. This makes the NSG-SARI methodology a useful tool
for the exploration of relationships between molecular structure, compound
potency and selectivity.



Chapter 6

Structure—Activity Relationship
Determinants in Analog Series

Methods for the systematic analysis of structure—activity relationships as dis-
cussed thus far have aimed at classifying global and local SARs present in sets of
active molecules. Such compound collections are typically composed of several
compound series representing different chemotypes. The introduced methods
are particularly useful for the identification of local SAR features and the prior-
itization of compounds based on their SAR character. Hence, they are designed
to aid in hit selection. The requirements change when selected compounds are
subjected to hit-to-lead projects. In hit-to-lead or lead optimization efforts, one
primarily focuses on individual chemotypes and systematically explores chem-
ical modifications to optimize their potency and other desired properties. This
process of designing analogs and evolving leads is largely guided by SAR in-
formation that is already available and investigates one chemical modification
at a time in order to plan the next step. Hence a central question is, which
compounds should be tested in order to obtain as much additional SAR infor-
mation as possible? Specifically, it is often unclear which parts of a molecule
are relevant for a given SAR and, accordingly, at which positions modifications
should be made. Often, the analysis is complicated by the variable nature of
SARs and the presence of multi-layered SAR information in analog series.

For this reason, we have adopted the SARI formalism and developed Com-
binatorial Analog Graphs (CAGs) that provide ways and means to organize
existing SAR information in analog series with a focus on contributions from in-
dividual functional groups and combinations of groups (Peltason et al., 2009b).
These graph representations hierarchically organize compounds according to
substitution patterns and are annotated with SARI discontinuity scores in order
to account for SAR discontinuity at the level of functional groups. The approach
makes it possible to identify undersampled regions and highlight key substitu-
tion patterns that determine the SAR of a compound series. The methodology
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Table 6.1: Source data sets

target source no. cpds no. series  potency range
hsd17b4 PubChem AID 893 1366 134 251 nM — 40 pM
thrombin PubChem AID 1215 51 6 1nM - 50 pM
cyt P450 3a4 PubChem AID 884 1251 134 25nM — 40 pM
hadh2 PubChem AID 886 400 42 32nM - 40 nM
cathepsin K (Stumpfe et al., 2008) 264 37  0.01nM — 1 mM
cathepsin L (Stumpfe et al., 2008) 290 43  0.04nM — 150 pM
cathepsin S (Stumpfe et al., 2008) 296 42 0.13nM — 1 mM

Data sets containing a number of analog series were collected from PubChem or from compound
selectivity sets and served as reference for score normalization. ‘no. cpds' reports the number of
compounds and ‘no. series’ the number of analog series with distinct molecular scaffolds present
in a data set. ‘hsd17b4' stands for hydroxysteroid-173-dehydrogenase 4, ‘cyt’ for cytochrome,
and ‘hadh2’ for hydroxyacyl-CoA dehydrogenase Il.

is presented in Section 6.1, and key aspects of the analysis are discussed in
Section 6.2 for four exemplary analog series directed at different targets. Fur-
thermore, as demonstrated in Section 6.3, the analysis is also applied to series
of analogous cathepsin inhibitors in order to compare SAR determinants for
multiple related targets.

6.1 Methodology

In order to analyze SARs of analog series at the level of individual substitution
sites, compound series were extracted from various data sources and divided
into subsets of molecules that differed only at specific substitution sites or site
combinations. Substitution sites were identified through R-group decomposi-
tion. For the resulting compound subsets, SARI discontinuity scores were calcu-
lated that directly reflected SAR contributions of functional groups at variable
sites. Compound subsets distinguished by modifications at well-defined substi-
tution sites and the corresponding discontinuity scores were then organized in
a hierarchical graph structure. Figure 6.1 illustrates the subsequent steps.

6.1.1 Data Sets and Analog Series Identification

Analog series were extracted from screening data sets available in PubChem
BioAssay including inhibitors of hydroxysteroid-17-dehydrogenase 4 (hsd17b4,
AID 893), thrombin (AID 1215), cytochrome P450 3a4 (AID 884), and hydroxy-
acyl-CoA dehydrogenase II (hadh2, AID 886). Compounds considered to be
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Figure 6.1: Combinatorial analog graph calculation (a) For all molecules in a compound
data set, molecular scaffolds are calculated by deleting all side chains. Molecules with identical
scaffolds are grouped into the same analog series. (b) For a series of analogous molecules sharing
a common scaffold, the maximum common substructure (MCS) is calculated. (c) Variable func-
tional groups are consistently numbered and assigned to corresponding substitution sites through
R-group decomposition. (d) SARI discontinuity scores are calculated for subsets of molecules
that differ at well-defined substitution sites. Shown are two pairs of molecules that differ at site
3 (top) or at sites 1 and 3 (bottom). (e) Discontinuity scores reflect SAR contributions from
individual substitution sites and are organized in a combinatorial analog graph (CAG).
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inactive under screening conditions were assigned a potency value equal to
the chosen activity threshold. In addition to analog series collected from
screening data, inhibitors of cathepsin K, L, and S were taken from previ-
ously reported compound sets that included optimized and highly selective
compounds (Stumpfe et al., 2008). From these source data sets, series of anal-
ogous structures were automatically extracted through analysis of molecular
scaffolds following the definition of Bemis and Murcko (1996). Accordingly,
scaffolds were derived by deleting all side chains (R-groups) from a molecule,
and rings and linkers were retained together with atom element, hybridiza-
tion, and bond order information. Molecules with identical scaffolds were then
grouped into analog series. Table 6.1 summarizes the data sets used in this
study.

6.1.2 R-Group Decomposition

Compounds in analog series were divided into constant and variable regions
through R-group decomposition. Typically, invariant regions included the mo-
lecular scaffold and possibly R-groups that were conserved in all compounds of
a series. Initially, invariant molecular regions were determined by calculating
the maximum common substructure (MCS) shared by all analogs in a series.
The MCS was then used as core structure for R-group decomposition, which
defined the substitution sites and functional groups for each molecule. For this
purpose, the MCS was mapped onto each molecule in a series and the sub-
stituents were assigned to corresponding R-groups and consistently numbered.
MCS identification and R-group decomposition were automatically carried out
with Pipeline Pilot. SAR tables that report core structures, substitution sites,
and R-groups for all series discussed in this chapter are found in Appendix C.

6.1.3 SAR Contributions from R-Groups

In order to assess SAR contributions of functional groups, we organized series
of analogs into subsets of molecules that differed only at specified substituent
positions. Thus, to quantify contributions of a specific substitution site, all
compounds were selected from a series that had different R-groups attached
to this site, but were otherwise identical. For the resulting compound subsets,
the SARI discontinuity score was calculated as described in Section 3.1. As in
previous studies, pairwise compound similarity was calculated using MACCS
Tc values. For this study, however, the application of a similarity threshold
value was not required because all analogs have highly similar structures. Fur-
thermore, no potency difference threshold was applied to enable the detection
of varying levels of SAR discontinuity. Accordingly, for a set S of analogous
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compounds, the modified discontinuity score was then defined as follows:

disCaw (S) = mean (|P; — P;|-sim(i, j 6.1
(5) = mean, ([Pi= Py|-sim(i. ) 6.1

Because compounds in a subset were only distinguished at well-defined substi-
tution sites, observed SAR discontinuity could be directly attributed to R-group
variation at these sites. Furthermore, SAR contributions from combinations of
substitution sites were calculated for compounds that had different R-groups
attached at site pairs or triplets but identical substituents at the remaining
sites. Combinations of up to three different substitution sites were considered.
For a given substitution site or combination of sites, several subsets might exist
that consist of compounds that differ only at the given sites but are distin-
guished at another site (see Subsection 6.2.1 for an example). Discontinuity
scores for these subsets were calculated independently and averaged to yield
the final score for the substitution site combination under consideration. In
addition, in order to estimate the SAR character within a given analog series,
the SARI discontinuity score as defined in equation 6.1 was calculated also for
the entire series, irrespective of individual substitution patterns of compounds.

The “raw” discontinuity scores for an analog series and corresponding com-
pound subsets were normalized by Z-score calculation and mapped to the value
range [0,1] by calculating the cumulative distribution function as described in
Chapter 3. As summarized in Table 6.1, all analog series used in this study were
taken from source data sets consisting of several analog series. The score distri-
bution of all compound subsets from all analog series within a source data set
served as the reference for score normalization of its analog series. Accordingly,
the scores reflect the target-specific score distribution in the entire data set,
which makes it possible to differentiate relatively narrow potency distributions.
Using this scoring scheme, scores for different analog series originating from
the same source set can be directly compared, thus allowing to discriminate
between compound series having different degrees of SAR discontinuity. How-
ever, for analog series taken from different data sets, the magnitude of scores
cannot be compared.

6.1.4 Combinatorial Analog Graphs

SAR features of analog structures were visualized in a hierarchical graph repre-
sentation. In a CAG, nodes correspond to compound subsets and edges indicate
that compounds in connected subsets have modifications at the same substi-
tution sites (see below). The root node represents the entire analog series and
non-root nodes represent subsets of compounds that only differ at individual
substitution sites or unique site combinations. Node labels identify these sub-
stitution sites and report discontinuity scores for the corresponding compound
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subsets. Furthermore, nodes in a CAG are color-coded according to disconti-
nuity scores using a color gradient from black (score 0) to red (score 1) and
hierarchically arranged in layers according to the number of substitution sites
that are considered. Substitution site combinations for which no compounds
are available are shown as small white nodes and represent “SAR holes” (i.e.
unexplored sites or combinations). Edges are drawn from a node to all other
nodes in the next layer whose substitution site combinations include all of the
sites represented by the originating node (e.g. node 2 is connected to nodes 1-2
and 2-3, but not to 1-3). However, it should be noted that in CAGs, only the
location of substitutions is considered and not their chemical character. Hence,
connected nodes might contain compound sets with distinct substituents at
corresponding sites.

6.2 SAR Analysis in Analog Series

A primary goal of our analysis has been to systematically evaluate the SAR
contributions of combinatorial R-group patterns in analog series and identify
substitution sites that are SAR determinants (“SAR hotspots”) and preferred
targets for further chemical exploration. The CAG-SARI approach combines
the hierarchical organization of analog series according to substitution site com-
binations with a quantitative SAR analysis function to assess site-dependent
contributions to SAR discontinuity. In the following, key aspects of the ap-
proach are discussed on the basis of four representative compound series ex-
tracted from screening data sets for different targets.

6.2.1 Interpretation of CAGs

To illustrate the compound organization scheme, Figure 6.2 shows a proto-
typic CAG representation generated for five exemplary hydroxysteroid-173-
dehydrogenase 4 inhibitors with three substitution sites. The compounds and
their common core structure are also shown. The root node at the top repre-
sents the entire compound set and reports its discontinuity score. With a score
value of 0.45, this small series is characterized by intermediate SAR discontinu-
ity. Each subsequent node corresponds to a unique combination of substitution
sites and reports the degree of SAR discontinuity induced by modifications at
these sites. In Figure 6.2, nodes are annotated with compound subsets (in this
case, pairs of compounds) that differ only at the corresponding substitution
sites and provide the basis for score calculations at the individual nodes. The
figure illustrates that analogs usually participate in different subsets, given the
distribution of substituents, and multiple compound subsets might exist for in-
dividual nodes. For example, the compounds forming the pairs AB and CD only
differ at substitution site 3 and are thus assigned to the corresponding node.
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Figure 6.2: CAG for inhibitors of hydroxysteroid-173-dehydrogenase 4 An exemplary
CAG representation for five analogous inhibitors of hydroxysteroid-173-dehydrogenase 4 is shown.
Nodes in the CAG correspond to compound subsets: the root node represents the entire analog
series and non-root nodes correspond to subsets of compounds that differ only at predefined
substitution sites. Node labels identify variable substitution sites and report SARI discontinuity
scores calculated for the corresponding compound subsets. Nodes are color-coded according to
discontinuity scores (black: 0, red: 1) and annotated with inhibitor labels that provide the basis
for score calculations at the individual nodes.

However, these two compound subsets are distinguished from each other at site
2. Thus, for each pair, the discontinuity score is separately calculated and both
scores are averaged to yield the final score that reflects the overall discontinuity
introduced by R-group variation at site 3. For the exemplary compound set
shown in Figure 6.2, simultaneous modifications at all three substitution sites
are detected and hence, all possible nodes are populated.

Although CAG-SARI analysis of small data sets is meaningful, larger com-
pound series provide more SAR information for CAG representations. Due to
the combinatorial nature of the representation scheme, the complexity of a CAG
increases with the number of substitution sites present in a compound series.
For example, for three substitution sites, one bottom node with a three-site
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Figure 6.3: CAG for thrombin inhibitors Shown is the CAG representation and the common
core structure for a series of 11 analogous thrombin inhibitors with variations at four substitution
sites and potency in the low nanomolar to micromolar range.

combination is obtained (Figure 6.2) but for four sites, there are four bottom
nodes, as illustrated in Figure 6.3.

6.2.2 SAR Hotspots

Figure 6.3 shows the CAG representation for a series of 11 thrombin inhibitors
that cover a wide potency range (1 nM — 14 pM). With a discontinuity score of
0.75, the entire series shows a considerable degree of discontinuity. This SAR
character can be assigned to well-defined substitution patterns, represented by
CAG nodes that obtain high discontinuity scores. These nodes are associated
with compound subsets that include variations at site 1 (nodes 1, 1-4, 1-2-4)
and at site 4 (nodes 4, 2-4, 2-3-4). Figure 6.4(a) presents compound pairs
with variations at site 1 that form activity cliffs of increasing significance, with
potency differences of up to four orders of magnitude. Modifications at sites 1
and 4 are consistently responsible for SAR discontinuity, whereas modifications
at other sites have only limited effects. This is illustrated in Figure 6.4(b) that
shows three compounds that are distinguished at sites 2, 4, or both. Removal
of the chlorine substituent at site 4 increases potency by more than one order
of magnitude, regardless of the simultaneous addition of a methoxy group at
site 2. Adding this group at site 2 without simultaneously changing site 4 only
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Figure 6.4: Thrombin inhibitors (a) Pairs of compounds with modifications at site 1 that form
activity cliffs of increasing magnitude. Variable functional groups are colored red. (b) Compounds
with variations at sites 2 and 4. Numbers along the arrows identify variable substitution sites for
pairwise compound comparison that make strong (red) or weak (black) discontinuity contributions.
Individual modification of site 4 or simultaneous modification of sites 2 and 4 of the molecule
shown at the top increases potency by more than one order of magnitude. Variation of site 2
alone does not affect the potency of the two compounds at the bottom. Thus, site 4 presents an
SAR hotspot for this inhibitor series.
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yields a minor increase in potency. Hence, in this series, the SAR is determined
by two SAR hotspots at substitution sites 1 and 4.

For data sets spanning a more limited potency range, the presence of multi-
ple steep activity cliffs is unlikely. However, CAGs highlight the most significant
discontinuity contributions within a given data set and thus reveal SAR features
that are characteristic for the data set. Figure 6.5(a) presents the CAG for 35
cytochrome P450 3a4 inhibitors with six different substitution sites that span
a relatively narrow potency range. Nevertheless, at each layer in the graph, a
number of different sites or site combinations are found that produce signifi-
cant SAR discontinuity, for example, nodes 2, 24, 26, 2-4-6, or nodes 1-2-5
and 1-2-6. Different from the thrombin inhibitor series, the observed SAR dis-
continuity is not associated with well-defined node patterns in the CAG. For
example, not all nodes including substitution site 2 obtain comparably high
scores. However, similar to the thrombin series, individual SAR hotspots can
be detected that are responsible for overall SAR discontinuity. As illustrated in
Figure 6.6, simultaneous modification of sites 2, 4, and 6 induces a high degree
of discontinuity, similar to individual modification of site 2. The corresponding
modifications introduced separately at sites 4 and 6 do not have any measur-
able effect. Hence, site 2 is an SAR hotspot that largely determines the overall
discontinuity within this compound series.

Furthermore, to demonstrate the significance of SAR hotspots in CAGs for
analog selection, the analysis was repeated after removal of the most potent
compounds with potency lower than 200nM from the series. Figure 6.5(b)
shows the CAG recalculated for the remaining 23 active compounds. As ex-
pected, the overall discontinuity decreases due to the more limited potency
range. Comparison of both graphs in Figure 6.5 shows that SAR hotspots
at nodes 1-2-4, 1-2-5 and 1-2-6 are retained, although in the second graph
the most potent compounds were not taken into account. However, in this
graph, nodes corresponding to the most potent compounds are now empty.
These nodes capture variation of sites 2, 24 or 2-6. If we utilize the CAG
representation in Figure 6.5(b) to predict which substitution sites should be
further explored, combinations involving site 2 would have high priority be-
cause this site consistently contributes to high-scoring nodes and has not been
thoroughly explored. Thus, we focus on site combinations capturing the most
potent analogs in Figure 6.5(a). It follows that the information provided by
CAGs can be utilized to identify molecular regions where changes are most
likely to introduce SAR discontinuity and yield highly potent analogs.

6.2.3 SAR Holes

In addition to revealing SAR hotspots, CAG analysis readily identifies SAR
holes, i.e. missing substituent combinations within analog series. This is il-
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Figure 6.5: CAG for cytochrome P450 inhibitors (a) For a series of 35 analogs with six
substitution sites, the CAG representation is shown together with the molecular scaffold shared
by all compounds in this series. (b) CAG representation for the same analog series after removal of
12 inhibitors with potency lower than 200 nM. Nodes 2, 2-4, and 2—6 that present SAR hotspots
in (a) are now empty.
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Figure 6.6: Inhibitors of cytochrome P450 3a4 Shown are four analogs that differ in their
substituents at sites 2, 4, and 6, colored in red. Individual modifications at sites 4 and 6 have no
effect on potency (compound pairs at the top and bottom, respectively), whereas simultaneous
variations at sites 2, 4, and 6 lead to significant potency changes, similar to individual modification
of site 2.

lustrated in Figure 6.7, which describes a set of analogous hydroxyacyl-CoA
dehydrogenase 11 inhibitors with variations at up to six substitution sites. Sim-
ilar to the P450 inhibitor series discussed above, this series also shows a notable
degree of SAR heterogeneity (discontinuity score: 0.52), which is reflected by
score variations between individual nodes. Substitution patterns at specific site
combinations produce considerable SAR discontinuity, for example, sites 1-3,
3-6, 1-3-6, and 4-6. However, at the level of individual sites, no significant
discontinuity contributions are observed. For site 3, which is involved in combi-
nations that obtain highest discontinuity scores, individual variations have not
been tested. Hence, this node remains empty and presents an SAR hole that
needs to be explored in order to complete available SAR information. For this
purpose, substitution patterns found at combinations of site 3 with other sites
present promising starting points. Figure 6.8 shows two compound pairs with
modifications at site 1 or at sites 1 and 3, corresponding to nodes 1 and 1-3.
The compound pair at the top is distinguished by the presence of an ethyl ac-
etate side chain at site 1 and a hydroxyl group at site 3. These two co-occurring
modifications cause a considerable potency difference, consistent with the high
score for node 1-3. By contrast, individual addition of the ethyl acetate group
to site 1 in another analog has only a minor effect, as illustrated in Figure 6.8
(bottom). In order to elucidate the effect of the site 3 OH group, individual
modifications of site 3 and of site 1 in the presence or absence of this group
might be explored. In addition, the two compound pairs shown in Figure 6.8
have different R-group configurations at other sites, which might also influence
their SAR behavior and should be tested individually.
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Figure 6.7: CAG for hydroxyacyl-CoA dehydrogenase Il inhibitors Shown is the CAG
representation for a series of 44 inhibitors of hydroxyacyl-CoA dehydrogenase Il and their common

core structure that contains six substitution sites.
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Figure 6.8: Hydroxyacyl-CoA dehydrogenase Il inhibitors The two analogous inhibitors
shown at the top differ at substitution sites 1 and 3 and have a potency difference of one order
of magnitude. The two compounds at the bottom have corresponding substitutions at site 1 but

have comparable potency.
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Furthermore, inspection of the compounds that correspond to CAG nodes
reveals regions of the analog space that have not been thoroughly sampled.
For example, nodes for site combinations 3-6, 1-3-6, and 46 indicate SAR
hotspots, but the corresponding single-site nodes 1,4 and 6 display similarly low
SAR discontinuity. Accordingly, it is not apparent from the CAG if the SAR
discontinuity at these nodes can be assigned to individual sites or if it results
from modifications at site combinations that act in concert. Thus, in order to
estimate the influence of individual sites, the substituents found in nodes 3-6, 1-
3-6, and 4-6 at these sites should be systematically varied without modifying
other sites. In this manner, CAG representations can provide guidance for
further analog design to complement existing SAR information.

6.3 SAR Determinants for Multiple Targets

CAG-SARI analysis was also applied to study multi-target SARs in series of
cathepsin (cat) inhibitors with potency measurements against cat K, L, and
S. Figure 6.9 shows the CAG representations for three different analog series
that were found to inhibit the three related cysteine proteases at significantly
different levels. Comparison of the graphs for related targets reveals variable
SARs and substitution patterns that influence target-specific SARs in different
ways.

The analog series in Figure 6.9(a) has very similar SAR characteristics for
cat K and L. Scores for the entire series and all subsets are low and of compara-
ble magnitude for both targets. This phenotype is indicative of flat SARs that
often present difficult cases in medicinal chemistry because it remains unclear
whether or not compounds can be further optimized. By contrast, this series
behaves differently against cat S. Here, the overall discontinuity is intermediate
and there is clear SAR heterogeneity among the substitution sites and their
combinations, with node 1-2 presenting an apparent activity cliff. Accordingly,
this series shows highest changes in potency for cat S and includes compounds
that are highly selective for this target. Thus, substitution patterns observed
in this series would be expected to offer greater potential for compound opti-
mization against cat S than cat K or L. Furthermore, the inhibitor series in
Figure 6.9(b) displays similar overall SAR discontinuity and score variability
among substitution site combinations against cat L and S but differs in the
behavior against cat K. In the latter case, SAR discontinuity is much reduced
compared to the other two enzymes, with only node 2-3 displaying a consider-
able degree of discontinuity. This node also points at SAR hotspots in cat L
and S. For these targets, however, SAR discontinuity is also observed for other
substitution sites, e.g. sites 2 (L) or 3 (S). Variations at these sites are likely
to determine compound selectivity for these targets. Hence, substitution sites
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Figure 6.9: CAG for cathepsin inhibitors (continued) For three different series of cathepsin
inhibitors, CAG representations are shown utilizing potency values for cat K, L, and S. Parts (a),
(b), and (c) represent graphs and molecular scaffolds for individual series.

that indicate SAR hotspots of similar or different magnitude for related targets
can be used to explore R-group substituents that determine target selectivity.

Differences in the distribution of SAR discontinuity are also observed for
the analog series described in Figure 6.9(c). This series is characterized by a
significant degree of discontinuity against all three enzymes and includes several
SAR hotspots. For example, combinations 1-3 and 2-3 contribute strongly to
SAR discontinuity for cat K, L, and S, whereas site 1 analogs have low discon-
tinuity for cat K and L but high discontinuity for cat S. Individual sites 2 and 3
produce only low to moderate discontinuity levels. In this case, discontinuity in
combinations of sites 2 and 3 results from a synergistic effect of two substituents
at these sites, as illustrated in Figure 6.10. For the compound in the upper left
part of the figure, separately exchanging the trifluoromethyl benzene at site 2
to a methyl cyclohexane or adding an isopropyl substituent at site 3 does not
have a measurable effect on potency against cat K and only a weak effect for L.
However, combination of these two variations induces a potency leap for both
enzymes, leading to the molecule shown at the lower right part of Figure 6.10.
For cat S, by contrast, the same modifications of sites 2 and 3 individually
lead to a notable potency increase and achieve an additive effect when they
are combined. Thus, different discontinuity levels in CAG nodes corresponding
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Figure 6.10: Cathepsin inhibitors Four analogous cathepsin inhibitors from the series in
Figure 6.9(c) are shown that differ at sites 2 and 3. For the compound displayed at the top left,
individual modifications at sites 2 and 3 have no significant effect on potency against cat K and
L, but lead to an improved potency for cat S. Combination of the same variations at these sites
yield the compound at the bottom right, which has significantly increased potency for all three
related targets.

to single substitution sites and their combinations reveal the effects of specific
substitution patterns and their mutual dependence.

6.4 Conclusions

By organizing analog series in hierarchical graph structures and applying a
simple and robust scoring scheme, SAR contributions of substitution sites and
their combinations have been quantitatively analyzed in a systematic manner.
Contributions of molecular sites to the overall SAR character have been quanti-
fied using the SARI discontinuity score that yielded meaningful results also for
relatively narrow potency ranges, as typically observed in screening data. Pur-
suing a whole-molecule approach, assessment of SAR discontinuity at the level
of functional groups was enabled by using a compound organization scheme
that divides analog series into subsets of compounds that are distinguished at
well-defined substitution sites. This approach permits the exploration of SAR
characteristics within large series of analogous compounds. The graph represen-
tations introduced herein make it possible to analyze the distribution of substi-
tution site combinations in a straightforward and intuitive manner. Attention is
immediately focused on SAR hotspots, i.e. site combinations that make largest
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contributions to SAR discontinuity and include SAR determinants, which are
prime targets for chemical optimization efforts. In addition, SAR holes and
missing substitution combinations are readily discovered. Moreover, it is pos-
sible to compare multi-target SARs for series including highly optimized and
selective compounds and describe differential characteristics in detail.

Our approach is distinguished from related methods such as SAR tables,
analysis of matched molecular pairs (Leach and Law, 2006), and Free-Wilson
analysis (Free and Wilson, 1964), by the systematic exploration of substitution
sites and site combinations without directly considering the chemical nature
of substituents. This makes it possible to prioritize sites in a molecule that
are susceptible to chemical modifications that affect potency and thus provide
promising starting points for chemical optimization. Focusing on combinations
of substitution sites often reveals key substitutions for individual sites or, al-
ternatively, the mutual dependence of individual sites and modifications that
act in concert, thus departing from classical additive QSAR or Free-Wilson
approaches. Taken together, our findings suggest that the CAG-SARI method
has the potential to significantly aid in extracting SAR information from differ-
ent compound series. By highlighting key substitution patterns, undersampled
regions and differential SAR characteristics for related targets, the approach
can guide analog design to complement existing SAR information and optimize
compound potency and selectivity.



Chapter 7

Summary and Conclusions

This thesis focuses on the systematic computational analysis of structure—
activity relationships (SARs) of small molecules. Guided by three central goals
stated in the introductory chapter, several novel approaches have been intro-
duced to characterize, quantify, and compare SARs in a systematic manner.
The major results of this dissertation are summarized in this chapter. Fig-
ure 7.1 illustrates key aspects of the presented methods.

Goal 1: Design of a conceptual framework to systematically charac-
terize and classify SARs present in sets of active molecules.

A comparative study of crystallographic enzyme—inhibitor complexes pre-
sented an initial step toward this goal. Comparison of 2D and 3D inhibitor
similarity and potency revealed systematic and in part unexpected trends. A
notable degree of variability in ligand structures and binding modes was ob-
served even in the presence of severe structural constraints posed by the archi-
tecture of an enzyme’s active site. Furthermore, it was shown that different
SAR features are not mutually exclusive but often coexist within classes of ac-
tive compounds. The results revealed that relationships between similarity and
potency are often complex and provide evidence of the heterogeneous nature of
many SARs.

In order to put the evaluation of variable SARs on a formal and quan-
titative basis, a numerical scoring scheme was developed. Relying solely on
2D inhibitor similarity and potency data, the SAR Index (SARI) combines
two individual scores that quantitatively describe continuous and discontinu-
ous components of an activity landscape. The SARI function was designed to
distinguish between three elementary SAR categories; continuous, discontinu-
ous, and heterogeneous. These well-recognized SAR phenotypes were for the
first time described in numerical terms. In addition, two previously unobserved
subtypes of heterogeneous SARs were established that combine continuous and
discontinuous elements in different ways. SARI calculations were applied to
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profile various enzyme inhibitor classes. The results showed that heterogeneous
SARs are prevalent among many classes, consistent with previous findings. Ad-
ditional control calculations demonstrated the robustness of the SARI scoring
scheme against variation of molecular representations and data set size. Hence,
with the SARI framework, we have introduced a methodology that enables for
the first time the quantitative classification and comparison of SARs on a large
scale.

Goal 2: Development of a methodology to explore SARs at multiple
levels of detail that enables the investigation of local SAR
features and relationships between global and local SARs.

For the evaluation of different local SAR components that might coexist
in compound classes, a methodology was developed to explore SARs at the
level of entire compound classes, series of similar compounds, and individual
molecules. Network-like Similarity Graphs (NSGs) were designed to visual-
ize potency distributions and similarity relationships within compound classes.
In these graphs, subsets of similar molecules were identified and provided the
basis for local SAR characterization using SARI scores. Furthermore, a mod-
ified SARI score was introduced to assess SAR contributions from individual
molecules. This made it possible to identify key compounds that were activity
cliff markers and strongly influenced the SAR character of a collection of active
molecules. The NSG approach combined with SARI scoring at multiple levels
provides ways and means to dissect SAR phenotypes and relate local and global
SAR features to each other. Hence, it is readily possible to elucidate multiple
SAR components present in large data sets and prioritize compound subsets
for further analysis and chemical optimization. The NSG-SARI approach was
also applied to study structure-selectivity relationships (SSRs) within sets of
compounds active against multiple related targets. Accounting for the fact that
target selectivity often results from differences in compound potency against
multiple targets, a comparative analysis of single-target SARs and target-pair
SSRs was conducted. The quantitative SAR analysis approach was successfully
adapted to evaluate SSRs, demonstrating that SSR phenotypes can be catego-
rized in analogy to SARs. Different local SSRs were detected and compared
to corresponding SAR features. In addition, key compounds involved in the
formation of selectivity cliffs were identified, which made it possible to identify
structural patterns that determined compound selectivity.

Goal 3: Quantitative evaluation of SAR contributions from functional
groups and identification of sub-molecular SAR determinants.

In addition to the identification of individual molecules that were SAR and
SSR. determinants, we also investigated SAR contributions made by molecular
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substructures. For this purpose, we focused on series of analogous molecules
that shared a common molecular scaffold and were distinguished at well-defined
substitution sites. Applying the SARI scoring scheme to subsets of molecules
that differed only at specific substitution sites made it possible to relate ob-
served SAR characteristics to different functional groups present at these sites.
A hierarchical organization scheme termed Combinatorial Analog Graph (CAG)
was devised to visualize the levels of SAR discontinuity that resulted from vari-
ations at individual substitution sites or combinations of sites. Hence, key
substitution patterns that were responsible for SAR discontinuity and thus
presented the most promising starting points for chemical optimization could
immediately be identified. In addition, CAG representations also highlight sub-
stitution sites that have not been thoroughly explored. Thus, the CAG-SARI
approach enables the intuitive analysis of SAR contributions from functional
groups and can be used to guide analog design in a directed manner.

In summary, the approaches introduced in this dissertation provide the op-
portunity to systematically explore different aspects of small-molecule SARs
in a quantitative manner. Departing from conventional case-by-case analysis,
these methods complement and extend existing approaches. Key aspects are
their ability to quantify SARs on a large scale and characterize SARs at differ-
ent levels of detail. Graphical representation of SAR features plays a central
role for the intuitive application of these methods and the interpretation of the
results. While the systematic analysis of SARs is still a relatively new area of
research, a paradigm shift in the SAR analysis field can be anticipated in the
coming years. Future challenges include the integration of SAR analysis, com-
pound selection, and prospective compound design, as well as the incorporation
of other parameters such as bioavailability criteria or chemical accessibility into
the currently potency-centric SAR analysis methodologies.
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Appendix A

Software and Databases

Fingerprint methods, databases, and software used in this dissertation are listed
in alphabetical order.

Table A.1: Fingerprints

MACCS MACCS structural keys

Description MACCS structural keys are a binary molecular fingerprint. In this
thesis, the publicly available set of 166 bits coding for 166 structural
fragments was utilized for representation of molecular structures.

Provider Symyx Software, San Ramon, CA (USA)
URL  http://www.symyx.com/

Molprint2D

Description Molprint2D is a topological molecular fingerprint that is based on
layered atom environments (Bender et al., 2004).
Provider Unilever Centre for Molecular Science Informatics, University of
Cambridge, Cambridge (UK)
URL http://www.molprint.com/

TGT Typed Graph Triangles

Description TGT is a topological 3-point pharmacophore fingerprint imple-
mented in MOE that encodes graph distances between triplets of
typed pharmacophore points in a molecule.

Provider Chemical Computing Group Inc., Montreal, QC (Canada)
URL  http://www.chemcomp.com/
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Table A.2: Databases

MDDR MDL Drug Data Report

Description The MDDR is a commercial database containing over 150 000 biolog-
ically active compounds from patent literature, journals, meetings,
and congresses.

Provider Symyx Software, San Ramon, CA (USA)
URL http://www.symyx.com/

PDBbind

Description The PDBbind database is a comprehensive collection of experimen-
tally measured binding affinity data for protein-ligand complexes
deposited in the Protein Data Bank (Berman et al., 2000; Wang et
al., 2004).

Provider Shaomeng Wang Laboratory, University of Michigan, Ann Arbor,
MI (USA)
URL http://www.pdbbind.org/

PubChem BioAssay

Description The PubChem BioAssay database contains results from more than
1700 bioactivity screens of chemical substances, including over 700
confirmatory assays that provide quantitative potency measure-
ments.

Provider National Center for Biotechnology Information (NCBI), Bethesda,
MD (USA)
URL  http://pubchem.ncbi.nlm.nih.gov/
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Table A.3: Software

MOE Molecular Operating Environment
Description MOE is a chemical computing and molecular modeling tool that
provides a variety of chemoinformatics applications, including an
implementation of the 166 publicly available MACCS keys.
Provider Chemical Computing Group Inc., Montreal, QC (Canada)
URL http://www.chemcomp.com/

Pipeline Pilot

Description Scitegic Pipeline Pilot is a graphical software for creating workflow
protocols and provides components for data analysis and various
scientific applications.

Provider Accelrys Inc., San Diego, CA (USA)
URL http://www.accelrys.com/products/scitegic/

R The R Project for Statistical Computing

Description R is a language and free software environment for statistical com-
puting and graphics.

Provider R Development Core Team, R Foundation for Statistical Comput-
ing, Vienna (Austria)
URL http://www.r-project.org/







Appendix B

Enzyme—Inhibitor Complexes

Crystallographic structures of the enzyme-inhibitor complexes analyzed in Chap-
ter 2 are summarized in Table B.1. For each enzyme, the PDB codes of the stud-
ied complex structures are given. In addition, the corresponding inhibitors are
identified by their unique PDB ligand ID (in parentheses). Peptide inhibitors
do not obtain a unique ligand identifier and are instead signified ‘n-mer’, where
n denotes the number of residues.
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Table B.1: Crystallographic enzyme—inhibitor structures

carbonic anhydrase II  elastase factor Xa ribonuclease A
1la42 (BZO) 1bma (4-mer) 1lezq (RPR) 1lafk (PAP)
lavn (HSM) leas (TFK) 1f0r (815) lafl (ATR)
1bed (FMS) leat (TFI) 1f0s (PR2) 1jnd (139)
1bnl (AL5) lela (4-mer)  1fjs (Z34) 1o0f (A3P)
1bn3 (ALG6) lelb (4-mer)  1g21 (T87)  1loOh (ADP)
1bn4 (AL9) lelc (4-mer) lksn (FXV)  1loOm (U2P)
1bnn (AL1) leld (4-mer)  1llpg (IMA)  1loOn (U3P)
1bnq (AL4) lele (4-mer) 1lpk (CBB)  1o0o (A2P)
1bnt (AL2) lgvk (4-mer) 1llpz (CMB) 1ghc (PUA)
1bnu (AL3) 1h9l (4-mer)  1mgb (XLC)

1bnv (AL7) linc (ICL) 1mq6 (XLD)

1bnw (TPS) 1qr3 (8-mer)  1nfu (RRP)

1lcil (ETS) 4est (5-mer)  1nfw (RRR)

lcim (PTS) Sest (3-mer)  Infx (RDR)

lcin (MTS) Infy (RTR)

lenw (EG1) 1xka (4PP)

lenx (EG2)

leny (EG3)

1g1d (FSB)

1g52 (F2B)

1g53 (F6B)

1g54 (FFB)

1if7 (SBR)

1if8 (SBS)

1okl (MNS)

lokn (STB)

1ttm (667)




Appendix C
SAR Tables

The following SAR tables report substituents (‘R1’,R2’, ...) and potency val-
ues (‘pot’) for all compounds in the seven analog series discussed in Chapter 6.
Compounds from PubChem BioAssay data are identified by their unique Pub-
Chem CID. Compounds from selectivity data sets are identified by an arbitrarily
assigned index. Attachment points are marked with ‘Z’.

Table C.1: Hydroxysteroid-173-dehydrogenase 4 inhibitors

CID pot [pM] RI R2 R3
890639 13 7~ 7~
890163 25 Z—NH,

2938438 25 77 77
662549 32 z”

2938604 32 727 779N
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Table C.2: Thrombin inhibitors

CID pot [nM] R1 R2 R3 R4
977140 1 275 7O~
1088427 82 -5
1088428 159 275 77
976363 204 275N O 7O~
828590 741 Z—NH, o
1084416 828 Z—NH, O
828588 926 Z—NH,

828591 1462 Z—NH, ;-

969825 2227 Z—NH; O 77O

969710 6933 Z—NH, 5O
828593 13951 Z—NH, ,-C!
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Table C.3: Cytochrome P450 3a4 inhibitors

pot

co P R1 R2 R3 R4 R5 R
F
3235235 79 4\ 7
z7°F
F
3235476 79 4\ 77O~
z7°F
3234995 100 O~ z”
3234666 126 A PO AN
F
3235489 126 4\
z F
F
H
N O
3234829 158 z” \|< e
O
|
3232982 199 N N DN
3233999 199 ,L 7790~
z7 ™
3234568 199 5O~ 77O
3234784 199 O 77O 77
3234813 199 z—=N vadl
3235150 199 ,-C 7O
H
N %O (o) (e}
3232886 251 2780 20N 77O
O
3233050 251 O~
N._ o
PR 0]
3235328 251 7767 O~
O
3232698 316 7~
3233287 316 O~ 779 779~
3233374 316
3234593 316 z—=N 7O~ 77O
F
3235521 316 4\F 27O~ 7790
F
| 0 0
2BAT 38 5 N 779 77O~
3233799 398 279 727
3233983 398 < 77
3234079 398 7~ 7790 77O
3235193 398 5, z”
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Table C.3: Cytochrome P450 3a4 inhibitors (continued)

O
3233488 501 ZJKN/ 77O 77O
|
3234501 501 e TN 77O~
3235200 501 779~ 77O~
o}
3232915 631 O
Z\/N\ 4
N 0
NP
3233258 631 276
O
o}
3235026 631 Z)kN/ 77
|
3234812 1259 z—=n
3234434 1995 ,L
N
O
3232748 2512 Z)kN/ 77O~
|
O
3234651 2512 A
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Table C.4: Hydroxyacyl-CoA dehydrogenase Il inhibitors

CID pot R1 R2 R3 R4 R5 R6
[mM]
5273569 0.8 270 2O e
OH
716094 1.3 7 Z/O\%(
OH
421461 2.0 77 27 7~ z N
5280567 2.5 P ,-OH
(0]
- OH
5310805 2.5 Z/\)KOH 7 5
cl OH NS
5740001 2.5 27N il o 7~ P
z
92249 32 2 Z—NH;,
(0]
~
93864 32 7 Z\H)ko/\
| f OH
5384392 3.2 - Z\/N\)l\OH -
(0]
935137 32 P SO~
H
0o (0]
~
4223974 32 7 2 NP
H
5553318 3.2 27N 7~ - b
| H
5739939 3.2 27N ol 2-° 77° 2 A
5739885 3.2 7 77 2 7~ N
(0]
P OH
s3si36 40 Lz -
0 O
o a0 L o A~
o
889783 4.0 N -
z z Z/O\)LNHZ
o (0]
3237311 4.0 72 z\o)l\ z\N)K
H
390799 4.0 7 ,-OH N
179503 10.0 A 77 A0
(0] o
~
1212755 126 z Z\HWOH
5281416 12.6 A A
(0]
778746 158 7—Br 2 M
O O
(0]
933257 20.0 7 -
z 2/0\)}\
(0]
(0]
- /O\)l\ PN -
1751698 20.0 ZAAO/\ z z z
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Table C.4: Hydroxyacyl-CoA dehydrogenase Il inhibitors (continued)

0]

(0]
~
148769 25.1 z 2., . 2, M

(@]
646866  25.1 7 2, )Lo - 5
HH f
875166  25.1 7 Z/NNOH 7
[¢]
0 NN
e N
647115  25.1 Z\)}\o/\ 7 ]
(0]
1799746  25.1 2 - 77 77O
(0]
P TN
659204  25.1 e I
z~ TOH z
879545  25.1 77 27O~ z
(@]
(0]
~
2955775 25.1 ZVLO  zZ Z/O%O/\ z
O
889425  25.1 77~ 2 Z/OJN/ 7
|
(0]
890072  25.1 S - )\
z ) z Z/oQkO z
(0]
906996  25.1 =
z o V4 Z/le\ V4
(@]
843236 25.1 72 7 ,© - 7
|
(0]
662287  25.1 77> -
Z/o\)}\OH P /Z\
7050 31.6 2 N
z
O
890738  31.6 77 il 0 o
(0]
975169  31.6 vadl ,-© N 2

(@]

666304  31.6 7 A Z/OW)‘\ S
O

663048 316 77 Z/O%OH z”

5381321 316 ZQl\O/\ 727 AT A
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Table C.5: Cathepsin inhibitors

(a)
compound po[tnc;[t] K po[tnﬁt] L po[;ijl[; § R1 R2 R3
1 100000 100000 19 27 Z<
2 100000 100000 80 v Z<
3 30000 100000 143 77 >oH
4 30000 30000 226 v

5 30000 30000 2950
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Table C.5: Cathepsin inhibitors (continued)
(b)
ot cat K pot cat L ot cat
compound P [nM] P [nM] g[nM] R1 R2 R3
- ~
1 3710 123 3 b z_
O
2 20000 10000 12 Z\)k
OH
P ~
3 100000 4670 15 b z_
4 14700 849 15 27
2z~ o
5 4870 369 21 N7
|
6 10000 2830 26 -
0]
7 100000 70000 27 ZQ&
OH
O
8 100000 50000 71 \)k
Z 5 N
9 30000 9670 151 7
10 30000 10000 222
)
11 100000 100000 730 Z\)J\ )<
O
12 100000 30000 12300 vidl Z=0
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Table C.5: Cathepsin inhibitors (continued)

(c)
potcat K potcatL potcatS
compound R1 R2 R3 [nM] [nM] [nM]
o _F 5 o)
rT T /\O O 260 98 5
F |
2
2 - 995 193 11
F z
0O F 2
3 z W<F /\O 77> 217 2678 12
F
Z/O F Z
4 \y<F 7 557 285 13
F
_0O F z
5 N AO 77N 907 267 16
F
Z/O F
6 e oz cl 100000 100000 21
F z
_O F
7 A N ZOF J\ 11530 11530 24
z
0O F
8 z ﬁ<F z—@ /K 11530 11530 25
F z
_O F
9 N J\ 84 372 27
d Z
Z/O F 7
10 e 7z 24290 18900 28
F
Z/O F 7
1 e 7 3706 30000 31
_O F
12 z \KF Z/\Q J\ 1140 8990 38
F z
o F F
Z/
13 e ZAQ—GF /k 100000 100000 43
F F yA
_0O E
4o 7T 27 291 588 60
F Z
0O F z
R AO BN a0 1520 69
F |
Z/O F
16 e 7z~ 100000 100000 70
F z
0O F
17 2 N Q 30000 65000 105
F z
_0O F
18 2 z@— /K 30000 100000 134
F 4
Z/O F z
19 e 100000 30000 194
F



122

APPENDIX C. SAR Tables

20

21

22

23

24

25

26

Table C.5: Cathepsin inhibitors (continued)

4
z
Z

plias
=

K
)
F
F
F
F
E
F
;F Z
F F
Z
E Z
F
)

F

~

Z/

A
PN

2331

30000

100000

100000

100000

100000

100000

100000

30000

100000

100000

30000

100000

100000

408

1368

1590

15600

18530

100000

100000
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