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Abstract

SURFACE processing tools and techniques have a long history in the fields of computer
graphics, computer aided geometric design and engineering. In this thesis we consider

variational methods and geometric evolution problems for various surface processing ap-
plications including surface fairing, surface restoration and surface matching. Geometric
evolution problems are often based on the gradient flow of geometric energies. The Will-
more functional, defined as the integral of the squared mean curvature over the surface, is a
geometric energy that measures the deviation of a surface from a sphere. Therefore, it is a
suitable functional for surface restoration, where a destroyed surface patch is replaced by a
smooth patch defined as the minimizer of the Willmore functional with boundary conditions
for the position and the normal at the patch boundary.

Surface denoising (left) and surface restoration (right) by the Willmore flow.

However, using the Willmore functional does not lead to satisfying results if an edge or a
corner of the surface is destroyed. The anisotropic Willmore energy is a natural general-
ization of the Willmore energy which has crystal-shaped surfaces like cubes or octahedra

Surface restoration by the semi-implicit scheme
of the anisotropic Willmore flow.

as minimizers. The corresponding L2-gra-
dient flow, the anisotropic Willmore flow,
leads to a fourth-order partial differential
equation that can be written as a system
of two coupled second second order equa-
tions. Using linear Finite Elements, we de-
velop a semi-implicit scheme for the aniso-
tropic Willmore flow with boundary condi-
tions. This approach suffer from significant
restrictions on the time step size. Effectively,
one usually has to enforce time steps smaller
than the squared spatial grid size. Based on
a natural approach for the time discretization of gradient flows we present a new scheme
for the time and space discretization of the isotropic and anisotropic Willmore flow. The
approach is variational and takes into account an approximation of the L2-distance between



the surface at the current time step and the unknown surface at the new time step as well
as a fully implicity approximation of the anisotropic Willmore functional at the new time
step. To evaluate the anisotropic Willmore energy on the unknown surface of the next time
step, we first ask for the solution of an inner, secondary variational problem describing a
time step of anisotropic mean curvature motion. The time discrete velocity deduced from
the solution of the latter problem is regarded as an approximation of the anisotropic mean
curvature vector and enters the approximation of the actual anisotropic Willmore functional.
The resulting two step time discretization of the Willmore flow is applied to polygonal curves
and triangular surfaces and is independent of the co-dimension. Various numerical exam-
ples underline the stability of the new scheme, which enables time steps of the order of the
spatial grid size.

Different time steps of the two step time discretization for the anisotropic Willmore flow of an
original bunny-shaped curve towards a square.

The Willmore functional of a surface is referred to as the elastic surface energy. Another
interesting application of modeling elastic surfaces as minimizers of elastic energies is sur-
face matching, where a correspondence between two surfaces is subject of investigation.
There, we seek a mapping between two surfaces respecting certain properties of the sur-
faces. The approach is variational and based on well-established matching methods from
image processing in the parameter domains of the surfaces instead of finding a correspon-
dence between the two surfaces directly in 3D. Besides the appropriate modeling we analyze
the derived model theoretically. The resulting deformations are globally smooth, one-to-one
mappings. A physically proper morphing of characters in computergraphic is capable with
the resulting computational approach.

A 3D morph between two different faces is shown.
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NOTATION ix

Notation

Geometric analysis

M d-dimensional surface embedded in Rm with m≥ d + 1
x :M→ Rm its parametrization

(assumed to be the identity on the surface M =M[x])
Sd unit sphere in Rd+1

n :M→ Sd Gauß map, normal mapping of M, cf. Definition 2.1.1
TpM embedded tangent space, cf. Definition 2.1.2
∂M boundary of M
nco co-normal at the boundary of M, perpendicular to n and ∂M
∂nϑ = n · ∇M ϑ, derivative of ϑ in direction n
∇ usual gradient in Rd+1

∇M tangential gradient,
orthogonal projection of ∇ onto TpM, cf. Definition 2.1.3

h mean curvature, cf. Definition 2.1.7
divM tangential divergence, cf. Definition 2.1.4
∆M divM∇M Laplace-Beltrami operator, cf. Definition 2.1.5
S =∇M n Weingarten map or Shape operator, cf. Definition 2.1.6

Concept of Anisotropy

γ elliptical integrand γ : Rd+1→ R+0 ∈ C3(Rd+1 \ 0)∩ C0(Rd+1),
positive, positively homogeneous of degree one, convex, cf.
Definition 2.2.1

γz first derivative of γ
γzz second derivaive of γ
Fγ Frank diagram of γ, cf. Definition 2.2.2
Wγ Wulff shape of γ, cf. Definition 2.2.2
nγ = γz ◦ n :M→Wγ Cahn–Hoffmann vector, cf. Definition 2.2.3
hγ anisotropic mean curvature, cf. Definition 2.2.3
Sγ =∇Mnγ = γzz∇Mn generalized Weingarten map, cf. Definition 2.2.4
∆γ = divM(γzz ∇M) generalized Laplace-Beltrami operator, cf.

Definition 2.2.5



x NOTATION

Generalized gradient flows

e[x] general energy functional

a[x] =
∫

M da area functional

aγ[x] =
∫

M γ(n)da anisotropic area functional

w[x] = 1
2

∫

M h2 da Willmore functional

wγ[x] = 1
2

∫

M h2
γ

da anisotropic Willmore functional

〈e′[x],ϑ〉 = ∂ε
�

�

ε=0 e[x + εϑ] first variation of e at x in direction ϑ

ϑ test function ϑ ∈ C1(M,Rm), cf. Equation (3.1)

Discretization

M[X ] simplicial mesh, approximation of the surface M[x]
Mint[X ] ⊂M[X ] surface with inner nodes of M[X ], cf. Equation (2.45)
V(M[X ]) Finite Element space corresponding to M[X ], cf. Equation (2.34)
V int(M[X ]) Finite Element space of M[X ] with vanishing boundary values, cf.

Equation (2.34)
X ∈ V(M[X ])m, identity on the simplicial mesh M[X ]
X̄ vector of vertex positions of the mesh
M[X ] mass matrix, cf. Equation (2.36)
L[X ] stiffness matrix, cf. Equation (2.37)
Lγ[X ] weighted stiffness matrix,

γ :M[X ]→ R scalar weight, cf. Equation (2.38)
Lµ[X ] weighted stiffness matrix,

µ :M[X ]→ Rm,m matrix-valued weight, cf. Equation (2.39)
Lµγzz
[X ] weighted anisotropic stiffness matrix,

µ :M[X ]→ Rm,m matrix-valued weight, cf. Equation (2.42)
E extension operator, cf. Equation (2.47)
R restriction operator, cf. Equation (2.48)

Miscellaneous

I identity mapping
I Lagrange interpolation on the linear Finite Element space
· Euclidean scalar product
δi j Kronecker symbol
a⊗ b ∈ Rd+1,d+1, a⊗ b := (ai b j)1≤i, j≤d+1 tensor product matrix
ai bi =

∑

i ai bi, Einstein summation convention
a ∧ b cross product of a, b ∈ R3

es sth coordinate direction in Rm

Ps projection onto the plane spanned by the vectors es−1 and es+1

Dαs counter-clockwise rotation by α degrees in the above plane
Dα counter-clockwise rotation by α degrees in R2

V⊥ = D
π
2 V for V ∈ R2
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Chapter 1

Introduction

IN this thesis a new approach for the time discretization of the discrete isotropic and an-
isotropic Willmore flow of polygonal curves and triangulated surfaces is presented. The

Willmore flow is the L2-gradient flow of surfaces for the Willmore energy, which measures
the squared mean curvature on the surface. Let M be a two-dimensional surface embedded
in R3. Then, the Willmore energy is given by

w(M) =
1

2

∫

M

h2 da,

where h denotes the mean curvature, i.e. h is the sum of the principle curvatures on M
and da is the area element of the induced metric of M. It is named after the English
geometer TOM WILLMORE [170] and referred to as the elastic surface energy. Modeling elastic
surfaces as minimizers of elastic energies appears in many research areas including biology,
physics, solid mechanics and computer graphics. In biology, biophysics and bioengineering
bending energies arise to model cell membranes, vesicles and liquid bilayers [154, 79]. The
lipid bilayer of a biological membrane forms the boundary of a cell and consists of many
different lipids and proteins that are embedded in the lipid bilayer to ensure the essential
functional properties of the biomembrane like cell adhesion, ion channel conductance and
cell signaling. The intracellular cytoskeleton is anchored to the membrane endowing it with
further structural stability and elasticity, which is particularly observed in red blood cells.
They can squeeze through tiny capillaries and still recover their shape. Mathematically, the
cell membrane can be modeled as an embedded two-dimensional surface M, because the
thickness of a lipid bilayer is significantly smaller then the other dimensions of the whole
layer. The shape of such elastic surfaces is determined by minimizing a general bending
energy that was introduced by CANHAM [35], HELFRICH [109] and EVANS [89]. Provided that
the constants α,β , h0,γ fulfill certain structural inequalities, this energy reads

wH(M) =
∫

M

α+ β(h− h0)
2− γkda . (1.1)

Here, k is the Gauß curvature, i.e. k is the product of the principle curvatures on M. For
α = γ = h0 = 0 and β = 1

2
this model reduces to the Willmore energy. In solid me-

chanics it arises as the limit energy for thin plate theory, cf. [45, 46, 106, 105, 94, 93].
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Figure 1.1: Surface fairing of the Stanford armadillo [2].

In computer aided geometric design and computer graphics the Willmore energy appears in
the context of surface fairing and restoration of smooth surfaces [70, 176, 51, 25]. The ad-
vent of laser range scan technology in the last decade enables high-resolution models of real
world surfaces and sculptures. The triangulated surfaces generated from this data are typ-
ically disturbed by noise, which is often due to local measurement errors. Therefore, these
models have to be denoised in a post-processing step for further use. Often, parts of these
surfaces are destroyed and have to be restored in a suitable way. Since the mean curvature
arises as the first variation of the area functional

a(M) =
∫

M
da,

one can define an anisotropic mean curvature hγ as the minimizer of the anisotropic area
functional

aγ(M) =
∫

M
γ(n)da

depending on an anisotropy γ : R3 → R. Here, n denotes the normal field on the surface
M. The anisotropic mean curvature plays an important role in crystallography. In 1901
WULFF [174] found a method to determine the equilibrium shape of a crystal of fixed volume
inside a separate phase. The shape of this perfect crystal is referred to as Wulff shape and
appears as the minimizer of the anisotropic area functional with prescribed volume. In the
context of restoration of surfaces with edges and corners one is interested in a fourth-order
energy having Wulff shapes as minimizers. The generalization of the classical Willmore
functional, the anisotropic Willmore energy, is given by

wγ(M) =
1

2

∫

M

h2
γ

da.

CLARENZ [50] proved that Wulff shapes are its only minimizers. Another interesting applica-
tion of bending energies appears in the context of surface matching, where a correspondence
between two surfaces is the subject of investigation. Comparing a scan of a physical object
with a CAD description or fitting a canonical surface model to triangular mesh data from a
3D scanning system is an important application of surface matching. There, we seek a map-
ping φM between two surfaces MA and MB respecting certain properties of the surfaces.
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�

MA

MB

Figure 1.2: A physical interpretation of φM is the pressing of a thin shell MA into a mould
of the surface MB to be matched. The bending of normals (1) and stretching (2) of the thin
shell is measured by the proposed matching energy. Image courtesy of LITKE ET AL. [126].

We consider the first surface MA as a thin elastic shell which is pressed into a mould repre-
senting the second surface MB. One can distinguish between stresses induced by stretching
and compression, and stresses induced by bending that occur in the surface if the shell is
pressed into the mould, cf. Figure 1.2. Thus, φM can be regarded as the deformation of
such a thin elastic shell. Since we are aiming for a proper correspondence of shape, we
incorporate the bending of normals. The bending energy is then given by

wbend(φM) =

∫

MA

�

hB ◦φM − hA
�2 da,

where hA and hB denote the mean curvature on the surface MA and MB, respectively.

The thesis is organized as follows. In the following section we give a short overview of the
Willmore functional and its L2-gradient flow. In Section 1.2 we show how to incorporate
boundary conditions to blend and restore surfaces. The extension to the anisotropic version
is described in Section 1.3. Finally, in Section 1.4 the surface matching method is illus-
trated. In Chapter 2 we recapitulate some useful definitions and results from differential
geometry and Finsler geometry. To calculate the continuous flow for the anisotropic Will-
more functional we need the conceptual framework for general gradient flows. To discretize
continuous gradient flows we introduce a suitable space discretization based on piecewise
affine Finite Elements. We calculate the first variation of the anisotropic Willmore functional
and its corresponding L2-gradient flow following DIEWALD [71] and provide a semi-implicit
Finite Element scheme for the anisotropic Willmore flow with boundary conditions in Chap-
ter 3. The resulting scheme is used to restore surface patches with corner and edge type
singularities. In Chapter 4 we develop a completely new scheme for Willmore flow based on
the two step time discretization scheme for general gradient flows. We apply the developed
numerical algorithm to the evolution of curves in R2 and R3 and of two-dimensional surfaces
in R3 and compare the new approach to the semi-implicit scheme. The main advantage of
this new method is that it is robust and allows time steps of the order of the spatial grid
size. To restore surfaces we extend the two step time discretization of Willmore flow to
surfaces with boundaries in Chapter 5. The anisotropic version is developed in Chapter 6.
A variational method with corresponding existence results for surface matching is given in
Chapter 7.
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Figure 1.3: Different time steps of the two step time discretization for the isotropic Willmore
flow of the Stanford bunny [2] towards a sphere.

1.1 The Willmore flow

The formulation of the Willmore flow problem depends on the mathematical model, which
is chosen, to represent the surface or interface. We consider parametric surfaces, i.e. the
surface is prescribed by a parametrization, instead of an implicit (level set) representation
as in DROSKE & RUMPF [77], where the surface is prescribed as the zero level set of a real
valued function. The Willmore flow for graphs was intensively investigated by DECKELNICK

& DZIUK [65]. Let M be a closed d-dimensional surface embedded in Rm with m ≥ d + 1
and denote by x the identity map on M =M[x]. Then the Willmore energy is defined as

w[x] :=
1

2

∫

M

h2 da

with mean curvature h and surface area element da. The Willmore flow in the hypersurface
case (m = d + 1) can be described by the following highly nonlinear fourth order parabolic
evolution problem

∂t x(t) =
�

∆M(t)h(t) + h(t)
�

|S(t)|22−
1

2
h(t)2

��

n(t) , (1.2)

which defines for a given initial surface M0 a family of surfaces M(t) for t ≥ 0 with
M(0) = M0. Here, ∆M(t) is the Laplace Beltrami operator on M(t), S(t) denotes the
shape operator on M(t), n(t) the normal field on M(t), and | · |2 the Frobenius norm on
the space of endomorphisms on the tangent bundle T M(t). Critical points of the Willmore
functional are referred to as Willmore surfaces and play an important role in many areas.
Since the Willmore functional is invariant under conformal transformations of the metric
of the ambient space [169, 41], the property of being Willmore surface is preserved under
conformal transformations. This property makes the Willmore functional also an important
functional in the theory of surfaces and study of conformal geometry [170, 173]. A geometric
analysis concerning the structure of integrands such as (1.1) is due to NITSCHE [132]. Any
minimal surface, i.e. any surface with h = 0, is an absolute minimum of w, since the Euler–
Lagrange equation of the Willmore functional can be written as

∆Mh+
1

2
h(h2− k) = 0.
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Figure 1.4: Solutions of the Willmore flow for an initial coarse polygonal approximation of
a sphere and a torus towards a sphere and the Clifford torus.

In the literature many Willmore surfaces are known [139, 170]. Since the Möbius group
is non-compact, minimizers of the Willmore energy can not be found via a direct method.
Nevertheless, if S2 denotes the two-dimensional sphere in R3 (m = d + 1 = 3), it holds for
all surfaces M that

w(M)≥ 4π= w(S2), (1.3)

and spheres are absolute minimizers of the Willmore functional. A proof for embedded
surfaces in co-dimension one can be found in WILLMORE [172, Theorem 7.2.2]. There are no
closed minimal surfaces in R3 due to the maximum principle. Instead, the Clifford torus

TCliff :=
1
p

2
(S1× S1)⊂ R3

is a minimal surface in S3. Stereographic projections of compact minimal surfaces in S3

produce Willmore surfaces in R3 by a result of WEINER [167]. The stereographic projection
of the Clifford torus

MCliff =

¨

x ∈ R3

�

�

�

�

(1−
p

x2
1 + x2

2)
2+ x2

3 =
1

2

«

is a Willmore torus in R3 with w(MCliff) = 2π2. In 1965, Willmore conjectured that the
Willmore energy of a torus T 2 immersed in R3 is at least 2π2:

w(T 2)≥ w(TCliff) = a(TCliff) = 2π2

with a(·) being the area of the surface, cf. Figure 1.4. SIMON proved in [156] that there exists
a torus which minimizes the Willmore energy under all tori in Rm. For further existence and
regularity results for closed Willmore surfaces of prescribed genus we refer to [156, 164,
16, 125, 121]. Recently, RIVIÈRE [144] extended results of KUWERT & SCHÄTZLE [120] for
co-dimension 3 to arbitrary co-dimension. Via a point removability result established for
Willmore surfaces he proved a weak compactness result for Willmore surfaces with energy
less than 8π and a strong compactness of Willmore tori below the energy level 8π. He
provided also a new formulation for the weak Euler–Lagrange equation of the Willmore
functional for immersed surfaces in Rm as a nonlinear elliptic equation in divergence form.
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Figure 1.5: Elastic flow of a vertically perturbed hypocycloid towards a circle.

The analytic treatment of the Willmore flow has been considered for closed surfaces exten-
sively. SIMONETT [157] was able to prove that a unique local solution of Equation (1.2) exists
provided that M(0) is a compact closed immersed and orientable two-dimensional C2,α-
surface in R3. Existence results are obtained globally in time if M(0) is sufficiently close to
a sphere in the C2,α-topology. Using different methods KUWERT & SCHÄTZLE [117, 119, 118]
obtained sharp results on long time existence and regularity. They proved that for two-
dimensional surfaces of sphere type and initial energy less than or equal 8π, the Willmore
flow converges to a round sphere. MAYER & SIMONETT [129] proved that the flow develops
a singularity if the initial surface has energy greater than 16π. Willmore flow for curves
is referred to as elastic flow of curves, cf. Figure 1.5, and has been considered by DZIUK,
KUWERT & SCHÄTZLE in [85], where they generalize results of POLDEN [140, 141] for planar
curves.

Numerical methods for Willmore flow on triangulated surfaces were developed by RUSU [148],
BARRETT, GARCKE & NÜRNBERG [14], BOBENKO & SCHRÖDER [25], and DZIUK [84]. For numer-
ous results concerning the numerical treatment of the elastic flow of curves we refer to
DZIUK [82], DZIUK, KUWERT & SCHÄTZLE [85], DECKELNICK & DZIUK [66], BARRETT, GARCKE &
NÜRNBERG [14]. On the numerical treatment of the Willmore flow problem using level set
methods we refer to DROSKE & RUMPF [77]. The evolution of two-dimensional graphs under
Willmore flow was investigated by DECKELNICK & DZIUK [65]. Introducing a weighted mean
curvature as new variable, the fourth order problem can be split into two coupled second or-
der problems with height and the new variable as unkowns. Numerical approaches are often
characterized by an explicit or semi-implicit time discretization, which requires the solution
of a linear system of equations in each time step. One observes significant restrictions on the
time step size. Effectively, one usually has to enforce time steps τ = O(h2), where h is the
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spatial grid size. This shortcoming motivates the development of a new concept for the time
discretization of Willmore flow in picking up the variational time discretization of general
gradient flows. Given an energy e[·] on a manifold the gradient flow ẋ = −gradg e[x] with
initial data x0 defines a sequence of time discrete solutions (x k)k=0,1,···, where xk ≈ x(kτ)
for the time step size τ via a variational problem, to be solved in each time step, i.e.

x k+1 = arg min
x

�

dist(x , x k)2+ 2τ e[x]
�

,

where

dist(x , x k) = inf
γ∈Γ

∫ 1

0

p

gγ(s)(γ̇(s), γ̇(s))dσ

is the shortest path length on the manifold, given the metric g(·, ·). Here Γ denotes the set
of smooth curves γ with γ(0) = x k and γ(1) = x . As an immediate consequence, one obtains
the energy estimate

e[x k+1] +
1

2τ
dist(x k+1, x k)2 ≤ e[x k] + 0 .

We refer to OTTO [136] for the conceptual framework for general gradient flows. For
geometric problems, this approach has already been considered by LUCKHAUS & STURZEN-
HECKER [127] in the case of mean curvature motion, which is the L2-gradient flow of the
surface area. They proposed a corresponding fully implicit time discretization based on a
variational problem in BV to be solved in each time step. In fact, in each time step the
symmetric distance between two consecutive shapes corresponding to the current and the
next time step is balanced by the time step τ multiplied by the perimeter of the shape at the
next time step. CHAMBOLLE [36] investigated a reformulation of this approach in terms of a
level set method. A related method for anisotropic mean curvature motion is discussed in
[18, 37].

In the case of Willmore flow, we proceed as follows. We aim at balancing the squared dis-
tance of the unknown surface at time tk+1 = tk+τ from the current surface at time tk and a
suitable approximation of the Willmore energy at time tk+1 scaled by twice the time step size.
Solving a fully implicit time discrete problem for the mean curvature motion of the unknown
surface at time tk+1, we are able to regard the corresponding difference quotient in time as a
time discrete, fully implicit approximation of the mean curvature vector. Based on this mean
curvature vector, the Willmore functional can be approximated. Thus, we are led to a nested
minimization problem in each time step. In the inner problem on the new time step, an
implicit mean curvature vector is identified. Then, the outer problem is the actual implicit
variational formulation of Willmore flow. Indeed, the resulting two step time discretization
experimentally turns out to be unconditionally stable and effectively allows for time steps of
the order of the spatial grid size. To solve the resulting nested variational problem in each
time step, a sequential quadratic programming approach and numerical relaxation theory
from PDE constraint optimization is used. The approach is applied to polygonal curves and
triangular surfaces and is independent of the co-dimension, cf. Figures 1.5 and 1.3. Part of
this work has already been published in OLISCHLÄGER & RUMPF [135].
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Figure 1.6: Evolution of the blending problem of a higher genus topology by the isotropic
Willmore flow with boundary condition determined by six cylinders is depicted. The surface
patch to be replaced is shown in red. We show the surface at time step k = 0, 2 and 4.

1.2 Surface blending and surface restoration

To restore surfaces we have to incorporate boundary conditions into the Willmore flow. Since
the corresponding flow leads to a system of fourth order partial differential equations, we
can prescribe Dirichlet and Neumann boundary conditions to achieve C1-continuity at the
patch boundary. Suppose M[x(t)] ⊂ Rm, m ≤ d + 1, is a bounded d-dimensional surface
with parametrization x(t) over itself and n(t) its Gauß map. M[x0] is the initial surface
with parametrization x0 and Gauß map n0. We assume a surface ÝM[x0] to be given such
that

M[x0]⊂ ÝM0

is a subset visually not fitting with the surrounding surface. Either M[x0] is a destroyed
region on the surface ÝM[x0], where the remaining surface

Mex t[x0] := ÝM[x0] \M[x0]

is in good condition, orM[x0] is an initial blending surface closing a given surfaceMex t[x0].
In both cases we ask for a C1-surface restoration or blending. We are searching for a surface
patch M[x] that minimizes the Willmore energy

w[x] =

∫

M[x]

h2 da

over all C1-surfaces with fixed exterior surface Mex t[x] = ÝM[x] \M[x]. Considering the
L2-gradient flow

∂t x(t) =−gradL2 w[x(t)]

with boundary conditions

x(t) = x0 and n(t) = n0

on ∂M[x(t)]we expect thatM[x(t)] converges to a critical point of the Willmore problem.
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Figure 1.7: Initial (left) and restored surface (right) of a Egea head dataset.

The classical form of the above initial boundary value problem for the Willmore energy is
then given by

∂t x(t) = ∆M[x(t)] h(t)n(t) + h(t)
�

�

�∇Mn
�

�

2

2−
1

2
h(t)2

�

n(t) .

Instead of the normal n on the boundary we can also prescribe the outer co-normal field nco

on ∂M. Existence of Willmore surfaces with boundaries has not been extensively studied
yet. NITSCHE [131, 132] provides existence results for possible choices of boundary con-
ditions. Recently, SCHÄTZLE [150] proved existence and regularity of branched Willmore
immersions in Sm satisfying prescribed boundary conditions. For existence and classical reg-
ularity of axially symmetric Willmore surfaces with arbitrary symmetric Dirichlet boundary
conditions we refer to [60, 21, 61].
Numerically, fourth order problems with boundary conditions are very popular in the context
of image inpainting and surface restoration [23, 22, 51, 143, 175]. For the restoration of
surfaces, second order approaches do not lead to satisfying results, since one can prescribe
boundary conditions for the position vector only, but not for the surface normal. Hence, one
cannot expect C1-smooth surfaces. CLARENZ ET AL. [51] extended the approach of RUSU [148]
to surfaces with boundaries and provided a proper weak formulation of the corresponding
initial and boundary value Willmore flow problem, to discretize this in space consistently
using a Finite Element scheme on triangular grids, and in time applying a semi-implicit
backward Euler discretization. For several methods based on the same or similar ideas we
refer to [151, 152, 176]. An early variational approach for surface modeling is described
in WELCH & WITKIN [168]. A surface blending method was presented by GREINER [103,
104], where in a fix point iteration parameterized patches are constructed which minimize
a linearized total curvature. Using a fourth order method and constructing a surface of
prescribed mean curvature, where the mean curvature is obtained by elliptic interpolation
of the mean curvature at the boundary, KOBBELT & SCHNEIDER [152] obtained smoothness
of the surface at the boundary. A gradient descent method for a discrete version of the
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Willmore energy has been presented by YOSHIZAWA & BELYAEV [176] for the restoration of
surfaces. Starting with the Euler–Lagrange equation ∆Mh+ 1

2
h(h2 − k) = 0 they defined a

discrete Willmore flow by assembling the components from individual, well-known discrete
operators. In particular the mean curvature is evaluated applying the umbrella operator
[114]. Since the time discretization is explicit they need a large number of time steps even
for moderately fine discretized surfaces. Due to the Gauß–Bonnett theorem [170, pp. 146]
the integral of the Gauß curvature is a topological invariant. Therefore, it is equivalent to
minimizing the integral of 1

2
h2−k instead of the Willmore energy. BOBENKO & SCHRÖDER [25]

prefer this integrand since it is invariant under Möbius transformations [24]. Obviously, it is
invariant under translations and rotations. The invariance under uniform scale and inversion
follow from the change of variable formula [40]. Their derivation of the discrete Willmore
energy is based on this observation. Let us denote that the integrand of the Willmore energy
is not Möbius invariant, only the energy itself is conformal invariant.
We incorporate boundary conditions in our nested variational minimization in each time
step as follows. In the inner problem, on the new time step we solve a fully implicit time
discrete problem for the mean curvature motion of the unknown surface at time tk+1 with
prescribed Neumann boundary condition. Then, in the outer problem, the actual implicit
variational formulation of Willmore flow, we prescribe Dirichlet boundary conditions for the
new time step. If the inner time step size converges to zero, the co-normal for the new time
step converges to the prescribed co-normal of the inner problem. For the discretization of the
Neumann boundary condition, we introduce two different numerical methods. The first one
considers the boundary conditions to be explicitly calculated whereas in the second one the
co-normal is implicitly incorporated to avoid its calculation. The integration domain for the
inner mean curvature functional is changed to ÝM[x] and the integral over the boundary
is omitted. We apply the developed numerical algorithm with boundary conditions to the
evolution of curves in R2 and two dimensional surfaces in R3. Various numerical examples
underline the stability of the new scheme, cf. Figure 1.1 and Figure 1.6, which enables time
steps of the order of the spatial grid size.

1.3 The anisotropic Willmore flow

Real world restoration problems often have an anisotropic character. Using the isotropic
Willmore functional does not lead to results respecting the edges and corners of a surface,
cf. Figure 1.8. Therefore, one is interested in a fourth order anisotropic flow where surfaces
evolve to crystal-shaped surfaces like cubes or octahedra, for examples Wulff shapes, which
appear as minimizers of anisotropic surface energies of the form

aγ[x] =

∫

M

γ(n)da

where γ : Rd+1→ R+0 ∈ C3(Rd+1 \0)∩ C0(Rd+1) is a given anisotropy function. γ is assumed
to be elliptic, i.e. positive, positively homogeneous of degree one and convex. The unique
isoperimetric property of the Wulff shape was first proved by TAYLOR [159, 160, 161] in a
geometric measure theory setting. For a proof with analytic methods we refer to FONSECA &
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Figure 1.8: The destroyed surface on the left hand side is restored by the isotropic Willmore
flow (middle) and in comparison by the anisotropic Willmore flow (right).

MÜLLER [92]. If γ(z) = |z| this energy reduces to the area functional a[·]. The first variation
of a[·] with respect to a test function ϑ ∈ C1(M,Rm) is given by




a′[x],ϑ
�

:= ∂ε
�

�

ε=0a[x + εϑ] =

∫

M

h n · ϑda.

For the first variation of the anisotropic version of the area functional we get

¬

(aγ)
′[x],ϑ

¶

=

∫

M

divM
�

γz(n)
�

· ϑda,

where γz := Dγ denotes the gradient of γ. For a proof we refer to CLARENZ [48, 49] for
surfaces without boundaries and to DIEWALD [71] for surfaces with boundaries. The corre-
sponding anisotropic curvature flow has been studied for instance by BELLETTINI & PAOLINI

[20]. For an application to surface fairing we refer to CLARENZ, DZIUK & RUMPF [55]. It is
quite natural to define the anisotropic mean curvature as the L2-gradient of the anisotropic
area functional

hγ := divM
�

γz(n)
�

.

The corresponding anisotropic Willmore functional is then given by

wγ[x] =
1

2

∫

M
h2
γ da .

CLARENZ [50] has shown that Wulff shapes are the only minimizers of this highly nonlinear
fourth order functional which makes it well suited for anisotropic restoration problems. In
the literature, one can find only a few existence results for the anisotropic Willmore func-
tional. Recently, BELLETTINI & MUGNAI [19] discussed the anisotropic Willmore functional
and computed its first variation in the smooth case. CLARENZ [49] and PALMER [137, 138]
studied variational problems involving anisotropic bending energies for surfaces with and
without boundaries. Numerically, DIEWALD [71] extended the approach of RUSU [148] to
the parametric anisotropic Willmore flow. NEMITZ [130] used the anisotropic Willmore func-
tional to restore and engrave surfaces in the level-set context. The Euler–Lagrange equation
for the anisotropic Willmore functional is given by

−∆γ hγ− hγ
�

�∇M n
�

�

2

γ
+

1

2
hh2

γ = 0,
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where ∆γ := divM(γzz(n) ∇M) is the generalized Laplace–Beltrami operator and γzz = D2γ
the second derivatives of the anisotropy function γ. We review the calculation in Chapter
3,cf. Proposition (3.1.1). Considering the corresponding L2-gradient flow for the anisotropic
Willmore energy with initial and Dirichlet boundary conditions we are interested in solutions
of the evolution problem

∂t x =
�

∆γ hγ+ hγ
�

�∇M n
�

�

2

γ
−

1

2
hh2

γ

�

n on (0, T]×M,

x = x0 on (0, T]× ∂M,

n= n0 on (0, T]× ∂M,

x(0) = x0 .

One can derive a variational form for the parametric Willmore flow which uses a mixed
method with position and mean curvature vector as independent variables and allows using
piecewise linear Finite Elements for the spatial discretization. This method is founded upon
the corresponding approach of RUSU [148] for the isotropic Willmore flow of surfaces with-
out boundary. We are searching for a family of bounded surfaces {M(t)} with coordinate
vector x(t) and an accompanying vector field y(t) on M(t), such that

∫

M

∂t x · ϑda = 2

∫

M

ninl ∇M yi ·
�

γzz(n)∇M ϑl
�

da−
∫

M

∇M y : γzz(n)∇M ϑda

−
1

2

∫

M

|y|2 ∇M x :∇M ϑda ,

∫

M

y ·ψda =

∫

M

�

∇M x γz(n)
�

·
�

∇Mψn
�

da−
∫

M

γ(n) ∇M x :∇Mψda

+

∫

∂M

γ(n)ψ · nco dH1−
∫

∂M

γz(n) · nco n ·ψ dH1 ,

for all ϑ ∈ H1
0(M,R3), ψ ∈ H1(M,R3), and for almost every t ∈ (0, T]. Furthermore, we

assume x = x0 on (0, T]×∂M and x(0) = x0. For the case without boundary conditions we
refer to DIEWALD [71]. We review the calculation in Chapter 3, cf. Proposition 3.2.3. Using
a Finite Element scheme on triangular grids in space and applying a semi-implicit backward
Euler discretization in time, the resulting scheme is used to restore surface patches with
corner and edge type singularities. It turns out that severe tangential distortions have to
be compensated, if we choose time step sizes of the order of the square of the spatial grid
size. This compensation is realized via mesh adaptation. Indeed, the use of edge swapping
and edge collapsing turned out to be beneficial to compensate these artifacts for surfaces
with boundaries. For compact closed surfaces the Willmore energy is conformally invari-
ant [24, 169, 173] which can lead to grid degeneration caused by Möbius transformations.
For closed surfaces one can optimize the grid via conformal parametrization as described in
CLARENZ & DZIUK [54] and OLISCHLÄGER [134, Chapter 5], where a good parametrization of
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a sphere is mapped onto the surface to reparametrize the mesh via a conformal mapping.
To overcome this difficulty we extend the two step time discretization for discrete isotro-
pic Willmore flow to the anisotropic case. To evaluate the anisotropic Willmore energy on
the unknown surface of the next time step, we first solve an inner, secondary variational
problem describing a time step of anisotropic mean curvature motion, which only involves
the anisotropy but not its derivatives. In the anisotropic case we end up with a scheme for
a single fully implicit time step of anisotropic mean curvature motion to be solved with a
Newton approach, instead solving a linear system of equations in the isotropic model. The
difference quotient in time between the given surface and the next time step surface of the
anisotropic mean curvature motion can again be regarded as a time discrete, fully implicit
approximation of the anisotropic mean curvature vector. Based on this anisotropic mean
curvature vector, the generalized Willmore functional can be approximated. The approach is
applied to polygonal curves, where the anisotropy could be chosen almost crystalline. Vari-
ous numerical examples underline again the stability of the new scheme, which enables time
steps of the order of the spatial grid size.

1.4 Surface matching

Finding a correspondence between two surfaces is a fundamental step in many geometry
processing operations. For example one can use the matching function to map displacements
or textures between surfaces, cf. Figure 1.9, or to blend the surfaces to generate a 3D
animation between two different shapes. Given two surface patches, MA and MB, we
would like to find a non-rigid spatial deformation,

φM :MA→ R3,

such that corresponding regions of MA are mapped onto regions of MB. Instead of match-
ing the surfaces directly in 3D, we apply well-established matching methods from image
processing in the parameter domains of the surfaces. If ωA and ωB, respectively, denote the
parameter domains of the surfaces, we are searching for an elastic deformationφ :ωA→ωB.
Variations of normals are represented in the metric by the shape operator which is the sur-
face gradient of the normal mapping. If SA and SB are the corresponding shape operators of
the surface patches MA and MB, respectively,

tr (SB ◦φ)− tr (SA)

is a local measure for the bending of normals. Since the trace of the shape operator is the
mean curvature, we can instead aim to compare the mean curvature hB = tr (SB) of the
surface MB at the deformed position φM(x) and the mean curvature hA = tr (SA) of the
surface MA. A similar observation was used by GRINSPUN ET AL. [105] to define a bending
energy for discrete thin shells. Finally, we define the following bending energy

Ebend[φ] =

∫

ωA

(hB ◦φ − hA)
2
p

det gA dξ ,

where gA denote the induced metric on the surface patches. By minimizing this energy, we
ensure that the deformation properly matches mean curvature on the surfaces. The corre-
sponding minimization problem is ill-posed if one considers the full space of deformations
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Figure 1.9: Instead of finding a correspondence between the two surfaces directly in 3D we
apply well-established matching methods from image processing in the parameter domains
of the surfaces (first and second figure, bottom). The optimal matching deformation be-
tween the first and second surface is shown in the parameter domain on the right (bottom).
Quantities such as texture maps can be mapped between the surfaces (third surface, top).

[101, 165]. Therefore, one asks for a suitable regularization energy which in particular also
allows the control of area shrinkage and simultaneously ensures continuity and injectivity for
the minimizing deformation. We confine to hyperelastic energy functionals on deformations
φ based on classical concepts from continuum mechanics and in particular from the theory
of elasticity [44, 128] and incorporate a regularization energy Ereg to control length and
area changes in the induced non-rigid deformation between the two surfaces. Another diffi-
culty is the proper alignment of selected features during the parametrization process. Early
work used parametrizations of the meshes over a common parameter domain to establish a
direct correspondence between the two surfaces [122]. Typically these methods are driven
by user-supplied feature correspondences which are then used to drive a mutual parame-
trization. GU & VEMURI [107] considered one-to-one correspondence of topological spheres
through conformal maps with applications to brain matching. Therefore they do not have to
address the difficult problem of partial correspondences between surfaces with boundaries.
In our approach we cover the two parameter domains of the surfaces to be matched with
user-defined feature characteristics. A feature energy EF then measures the mismatch of
features and we avoid theoretical problems introduced by point-wise constraints [44]. Nu-
merically, we mark the desired feature sets in the image domains which are discretized by
regular grids. Therefore, the actual feature lines are pixel lines or regions drawn by the user
on the texture image with a pen of at least one pixel width. Thus the feature lines are now
two-dimensional sets and we avoid the theoretical treatment of the Hausdorff measure.
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The variational method for matching two-dimensional surfaces in R3 based on finding a
minimizing deformation between their two-dimensional parameter domains was developed
by LITKE ET AL. [126]. In this thesis we provide a proof for the existence of minimizers of
the matching energy, which are the optimal matching deformations, by applying the direct
methods from the Calculus of Variations. We analyze under which assumptions the optimal
matching deformations are global injective, so that we can expect to obtain smooth defor-
mations that are free of folds and singularity. The matching energy does not lend itself to
a robust numerical minimization, thus we establish a suitable approximation and prove the
existence of minimizing deformations for the approximation. We show by Γ-convergence
that the sequence of minimizers of the approximating energy converges to the solution of
the limit problem.
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Chapter 2

Foundations

THE aim of this chapter is to recapitulate some useful definitions and results from differ-
ential geometry and Finsler geometry that we need in the following chapters. We refer

to [100, 99, 73, 111, 113, 38] for a more detailed exposition of this material. To calculate
the continuous flow for the anisotropic Willmore functional in Chapter 3 we need the con-
ceptual framework for general gradient flows from Section 2.3. We refer to [136, 75] for
an overview on general gradient flows. For generalized surface flows for mesh processing
we refer to [87, 86]. To discretize continuous gradient flows we introduce a suitable space
discretization based on piecewise affine Finite Elements in Section 2.4.

2.1 Some geometric analysis

Let M be a d-dimensional surface embedded in Rd+1. Its parameterization x : M→ Rd+1

is assumed to be the identity on the surface M =M[x],

x :M→Rd+1

p 7→ x(p) = p .

The metric on M is induced by the ambient space. The corresponding area element will be
denoted by da.

Definition 2.1.1. (Gauß map)
Let Sd be the unit sphere in Rd+1. The Gauß map is defined as the normal mapping

n :M→Sd

p 7→n(p) ,

where n(p) is the outer normal on the surface M at point p ∈M.

Definition 2.1.2. (Tangent space)
The tangent space TpM is the d-dimensional linear subspace of Rd+1 that is orthogonal to
the normal n(p) at a point p ∈M,

TpM = {v ∈ Rd+1| v · n(p) = 0} .
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We will use the concept of the tangential or surface gradient of a function. See GILBARG &
TRUDINGER [100, pp. 389] and DECKELNICK, DZIUK & ELLIOT [67, pp. 150] for a detailed
exposition of this material.

Definition 2.1.3. (Tangential gradient)
The tangential gradient of a function f :M→ R on the surface M with Gauß map n, which
is differentiable in an open neighborhood of M, is defined as

∇M f =∇Rd+1 f − (n · ∇Rd+1 f )n ,

where · denotes the Euclidian scalar product and ∇Rd+1 is the usual gradient in Rd+1. For
f : Rd+1 → R the tangential gradient ∇M f is the orthogonal projection of ∇Rd+1 f onto
TpM, ∇M f = P∇Rd+1 f , with

Pi j = δi j − nin j , i, j = 1, · · · , d + 1,

and δi j being the usual Kronecker symbol

δi j :=

(

1 i = j
0 else.

With I being the identity on the surface M we have P = I − n ⊗ n. a ⊗ b ∈ R(d+1),(d+1)

is the tensor product matrix of two vectors a, b ∈ Rd+1 and defined by a ⊗ b := abT =
(ai b j)1≤i, j≤d+1, where bT is the transposed vector of b. We shall use the Einstein summation
convention where it is convenient. Then, the tangential gradient of a function f is given by

∇M f = P∇Rd+1 f =
�

∂i f − nin j∂ j f
�

i
=:
�

∇M,i f
�

i
, 1≤ i ≤ d + 1 .

It is straightforward to show that ∇M f only depends on the values of f on M. It holds that

∇M f · n=∇M,i f ni = 0 . (2.1)

Let us denote that the tangential gradient is the unique Levi–Civita connection on M. We
refer to [158, 123, 39, 26] for a more detailed overview.

Lemma 2.1.1. (Sum and product rule for ∇M)
If f , g ∈ C1(M), then

∇M( f + g) = ∇M f +∇M g, (2.2)

∇M( f g) = ∇M f g + f ∇M g. (2.3)

Proof. Direct consequence of the sum and product rule for the Euclidian gradient. �

Definition 2.1.4. (Tangential divergence)
Analogously the tangential divergence of a vector field ϑ ∈ C1(M,Rd+1) is defined as the sum
of the tangential partial derivatives of ϑ

divMϑ =∇M,iϑi = tr
�

∇M ϑ
�

.



2.1. SOME GEOMETRIC ANALYSIS 19

Lemma 2.1.2. (Sum and product rule for divM)
Let ϑ1,ϑ2 ∈ C1(M,Rd+1) be two vector fields and f ∈ C1(M). Then it holds that

divM(ϑ1+ ϑ2) = divMϑ1+ divMϑ2,

divM( f ϑ1) = f divMϑ1+∇M f · ϑ1.

Proof. Direct consequence of the product rule for the Euclidian divergence. �

Definition 2.1.5. (Laplace–Beltrami operator)
The Laplace–Beltrami operator of a function f ∈ C1(M) is the tangential divergence of the
tangential gradient

∆M f = divM
�

∇M f
�

=∇M,i∇M,i f .

Let us next turn to the notion of mean curvature. The curvature of a plane curve parametrized
by arc length is defined as the norm of the second derivative of its parameterization and mea-
sures the variation of the normal along the curve. On a surface the curvature measures the
variation of the surface normal in tangential direction. An important concept is the Wein-
garten map S that measures the variation in direction of vectors of the tangent space TpM.
Since the variation of the normal in the direction of the surface normal n vanishes, S is an
endomorphism on TpM, S : TpM→ TpM.

Definition 2.1.6. (Weingarten map, Shape operator)
The extended Weingarten map or shape operator S : Rd+1 → Rd+1 is defined as the surface
gradient of the Gauß map

S :=∇Mn,

with corresponding matrix entries

Si j :=∇M,in j, 1≤ i, j ≤ d + 1 .

Since |n|= 1 on M, it holds that

Sn=∇M, jnk nk =
1

2
∇M, j|n|2 = 0 . (2.4)

Furthermore, S is symmetric. Let v, w ∈ TpM be tangent vectors, i.e. n · v = 0, then it holds

nkvk = 0

⇒ ∇M, jnk vk =−nk∇M, j vk.

Therefore, we obtain

Sv ·w = w j∇M, jnk vk =−w j nk∇M, j vk =−nk w j

�

∂ j vk − n jni∂i vk

�

= − nk w j ∂ j vk =−nk ∂w vk =−nk ∂vwk =−v j nk∇M, jwk = v j∇M, jnk wk

= v · Sw .

Thus, S is symmetric on TpM. Because of Equation (2.4), S is symmetric on Rd+1, i.e.

Si j = S ji . (2.5)

S has one eigenvalue which is equal to zero with corresponding eigenvector n. The remain-
ing d eigenvalues κ1, · · · ,κd are referred to as the principal curvatures ofM. We now define
the mean curvature of M as the trace of the matrix S.
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Definition 2.1.7. (Mean curvature)
The mean curvature is defined as

h=
d
∑

i=1

κi = tr
�

∇M n
�

= tr (S) .

Note that this differs from the more common definition as the arithmetic average of the
principal curvatures.

Lemma 2.1.3. Let f ∈ C1(M), n the surface normal of M and h its mean curvature. Then it
holds

divM( f n) = f h . (2.6)

Proof. By definition of the tangential divergence, cf. Definition 2.1.4, we have

divM( f n) =∇M,i( f ni)∇M,i f ni + f ∇M,ini

�

Choosing f ≡ 1 in Lemma 2.1.3 we derive the expression

h= divMn (2.7)

for the mean curvature. Another useful formula can be obtained by choosing f (x) = x j,
1 ≤ j ≤ d + 1, in Definition 2.1.5 and observing that ∇M,i x j = δi j − n jni. We then deduce
with Equation (2.7) that

∆Mx j = −∇M,i(n jni) =−∇M n j · n− n j divMn=−h n j

so that

∆Mx = − h n . (2.8)

We also need the following lemmas for integration of vector fields on M.

Lemma 2.1.4. (Integration by parts of tangential vector fields)
Let v be a tangential vector field and f ∈ C1(M) be a continuously differentiable function on
M. Besides the normal mapping n : M→ Sd the immersion x induces a co-normal mapping
nco : ∂M→ Sd if ∂M 6= ;. nco is perpendicular to n and perpendicular to the boundary ∂M.
The area element of M will be denoted by da. The induced area element on the boundary ∂M
is denoted by dσ. Then it holds that

∫

M

divMv f da =−
∫

M

v · ∇M f da+

∫

∂M

v · nco f dσ . (2.9)

Proof. A proof can be found in DO CARMO [74, p. 60]. �
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Lemma 2.1.5. (Integration by parts of non-tangential vector fields)
Let w be a not necessarily tangential vector field and f ∈ C1(M) be a continuously differentiable
function on M. Then it holds that

∫

M

divMw f da =−
∫

M

w · ∇M f da+

∫

M

h w · n f da+

∫

∂M

w · nco f dσ , (2.10)

where nco denotes the co-normal at the boundary of M, n the surface normal and h the mean
curvature.

Proof. A proof for ∂M = ; can be found in CLARENZ [48, Lemma 1.2], for ∂M 6= ; in
DIEWALD [71, Korollar 53]. �

Lemma 2.1.6. (Green’s formula on surfaces)
For functions f ∈ H2(M) and ψ ∈ H1(M) on a surface M with boundary the following
integration by parts formula holds

∫

M

∇M f · ∇Mψ da =−
∫

M

∆M f ψ da+

∫

∂M

∂nco f ψdσ . (2.11)

Proof. A proof can be found in CLARENZ ET AL. [51, Lemma 3.1]. �

As matrix norm we choose the Frobenis norm:

Definition 2.1.8. (Frobenius norm)
The Frobenius norm on the space of matrices in Rd,d is denoted by |A|2 :=

p

tr
�

AT A
�

, with
corresponding scalar product

A : B = tr
�

AT B
�

= ai j bi j .

Calculating in local coordinates

In Chapter 7 we need the above quantities in a more differential geometric setting. Suppose
M ⊂ Rd+1 is a smooth immersed orientable d-dimensional surface, which is parametrized
locally by a bijective mapping

x :ω→ M, (2.12)

ξ 7→x(ξ)

from the parameter domain ω ⊂ Rd onto the surface M. The vectors ∂ξ1
x , · · · ,∂ξd

x form a
basis of TpM at p = x(ξ). The scalar product · of Rd+1 induces the Riemannian metric on
ω by

gi j(ξ) := ∂ξi
x(ξ) · ∂ξ j

x(ξ), i, j = 1, · · · , d,

with corresponding matrix
g :=∇x T ∇x = (gi j)i, j=1,··· ,d .
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Let g i j be the components of the inverse matrix of g. We have the following formulae for
the tangential gradient of a function f (defined in a neighborhood of M) and the Laplace–
Beltrami operator (cf. WILLMORE [171, pp. 231]):

∇M f = g i j∂ξ j
( f ◦ x)∂ξi

x ,

∆M f =
1

p

det g
∂ξi

�
p

det g g i j∂ξ j
( f ◦ x)

�

.

The integral of a function f :M→ R is then
∫

M

f da =

∫

ω

f ◦ x
p

det g dξ.

The metric g acts on tangent vectors v, w on the parameter domain ω with

(gv) ·w =∇x v · ∇x w ,

which is simply the inner product of tangent vectors ∇x v,∇x w on the surface. Thus, it fol-
lows that the metric describes how length and area are distorted under the parameterization
function:
Let c : [0, 1] →M be a differentiable curve on the surface M. The length of the corre-
sponding curve x−1 ◦ c in the parameter domain is given by

l[x−1 ◦ c] =

1
∫

0

�

�

�∂t

�

x−1 ◦ c
�

�

�

� dt =

1
∫

0

p

g−1 ċ · ċ dt. (2.13)

Thus,
p

tr
�

g−1
�

measures the average change of length of tangent vectors under the map-
ping from the surface onto the parameter plane. The corresponding change of area under
the inverse parameterization x−1 is measured by

p

det (g−1):

area(Ω) =

∫

x−1(Ω)

p

det (g−1) dξ (2.14)

for a surface patch Ω⊂M.
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2.2 The concept of anisotropy

In surface restoration problems it is often necessary to treat surfaces that evolve to anisotro-
pic or even almost crystal-shaped surfaces like cubes or octahedra. Let γ : Sd → R+ be a given
smooth anisotropy function. To generalize the notion of mean curvature it will be necessary
to restrict the admissible anisotropies to a certain class, cf. DZIUK [83, Definition 2.1].

Definition 2.2.1. (Elliptical integrand)
An elliptical integrand γ is a mapping γ : Rd+1→ R+0 with following properties:

1. Smoothness:

γ ∈ C3(Rd+1 \ 0)∩ C0(Rd+1).

2. Positivity:

γ(z)> 0 for z 6= 0.

3. Positive homogeneity of degree one:

γ(λz) = |λ|γ(z) for all λ 6= 0, z 6= 0. (2.15)

4. Convexity:

There exists γ0 > 0 such that

γzz(z)ξ · ξ≥ γ0|ξ|2 (2.16)

holds for all z,ξ ∈ Rd+1, |z|= 1 and ξ · z = 0. γz :=∇γ denotes the first derivative and
γzz :=∇2γ the second derivative of γ.

An anisotropy function is referred to as admissible if it is an elliptical integrand. Any admis-
sible anisotropy has the following properties, cf. DZIUK [83, Proposition 2.2]. For a detailed
exposition of convex analysis, we refer to ROCKAFELLAR [145] and BONNESEN & FENCHEL [27].

Lemma 2.2.1. The elliptical integrand γ is convex and fulfills

γz(z) · z = γ(z), γzz(z)z = 0, (2.17)

γz(λz) =
|λ|
λ
γz(z), γzz(λz) =

1

|λ|
γzz(z) (2.18)

for all z ∈ Rd+1 \ {0} and λ 6= 0.

Proof. Partial differentiation of Equation (2.15) with respect to λ leads to

0= ∂λ
�

γ(λz)−λγ(z)
�

= γz(λz) · z− γ(z) for all λ > 0. (2.19)

Differentiating Equation (2.19) with respect to λ yields

0= ∂λ
�

γz(λz) · z− γ(z)
�

= γzz(λz)z · z for all ξ ∈ Rd+1, λ > 0. (2.20)
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Choosing λ= 1 in Equations (2.19) and (2.20) proves Equation (2.17).

Differentiating Equation (2.15) twice with respect to z shows Equation (2.18):

0= ∂z
�

γ(λz)− |λ|γ(z)
�

= λγz(λz)− |λ|γz(z) ,

0= ∂z
�

λγz(λz)− |λ|γz(z)
�

= λ2γzz(λz)− |λ|γzz(z) .

Since γ is convex iff γzz is positive semi-definite, we have to show that

γzz(z)ξ · ξ≥ 0 ∀ξ ∈ Rd+1 .

ξ ∈ Rd+1 can be written as ξ = α z + β z⊥, where z, z⊥ ∈ Rd+1 \ {0}, z · z⊥ = 0 and α,β ∈ R.
Since γzz is symmetric, we get

γzz(z)ξ · ξ = γzz(z)
�

α z+ β z⊥
�

·
�

α z+ β z⊥
�

= α2 γzz(z)z · z
︸ ︷︷ ︸

(2.17)
= 0

+2αβ γzz(z)z · z⊥
︸ ︷︷ ︸

(2.17)
= 0

+β2 γzz

�

z

|z|
|z|
�

z⊥ · z⊥

(2.18)
= β2 1

|z|
γzz

�

z

|z|

�

z⊥ · z⊥

(2.16)
≥ β2 1

|z|
γ0

�

�z⊥
�

�

2 ≥ 0 .

�

Lemma 2.2.2. Let p ∈M and let n = n(p) denote the surface normal. An elliptical integrand
γ induces a symmetric automorphism on the tangential space of the surface M as follows:

γzz(n) : TpM→ TpM .

Proof. It holds for v ∈ TpM that

γzz(n)v · n
(2.17)
= 0 .

Therefore γzz(n)v lies in {n}⊥ = TpM. �

In the context of the Frobenius norm we use the following abbreviation on the space of
matrices in Rd,d

|A|γ :=
p

tr
�

γzz AT A
�

. (2.21)

Anisotropies are visualized using the Frank diagram and the Wulff shape:

Definition 2.2.2. (Wulff shape, Frank diagram)
Let γ be an elliptical integrand. The Frank diagram Fγ and the Wulff shape Wγ are given by

Fγ =
¦

z ∈ Rd+1|γ(z)≤ 1
©

,

Wγ =
¦

z ∈ Rd+1|γ∗(z)≤ 1
©

.
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Wγs
Wγe

Wγc

Fγs
Fγe

Fγc

Figure 2.1: Two-dimensional visualization of the boundary of the Wulff shapes ∂Wγ (top)
and corresponding Frank diagrams ∂Fγ (bottom) for different choices of the anisotropy γ.
From left to right: sphere with anisotropy γs(z) = |z| (cf. Example 2.2.6), ellipsoid with

γe(z) =
p

z2
1 + 2 z2

2 (cf. Example 2.2.7) and cube with γc(z) =
2
∑

l=1

p

0.00001 |z|2+ z2
l (cf. Ex-

ample 2.2.9).

Here γ∗ is the dual of γ, given by

γ∗(z) = sup
x∈Rd+1\{0}

z · x
γ(x)

.

The next proposition justifies the term „dual“:

Proposition 2.2.3. Let γ : Rd+1 → R+0 be an elliptical integrand, then the duality relation
γ∗∗ = γ holds.

Proof. A proof can be found in LEICHTWEISS [124, page 127]. �

Lemma 2.2.4. The Frank diagram Fγ and the Wulff shape Wγ is convex for an admissible
anisotropy γ.

Proof. Wulff shapes are convex due to Chapter 6.8 in VAN TIEL[166]. Frank diagrams for γ
are always convex since γ is convex. �
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Figure 2.2: Wulff shape (left) and Frank diagram (right) for the anisotropy γ(z) =
p

z2
1 + z2

2 + 2 z2
3 , cf. Example 2.2.7.

Lemma 2.2.5. Let Sd be the unit sphere in Rd+1. Then the boundaries of the Frank diagram
∂Fγ and the Wulff shape ∂Wγ are given as

∂Fγ = γ
�

Sd
�−1

Sd ,

∂Wγ = γz

�

Sd
�

.

Proof. A proof can be found in CLARENZ [48, Lemma 5.3]. �

Let us consider some examples. Not all of them are admissible.

Example 2.2.6. (Isotropic case)
The choice

γ(z) = |z| (2.22)

is referred to as the isotropic case. In particular, we have that

Fγ =Wγ = {z ∈ Rd+1| |z| ≤ 1}= B1(0)

is the closed unit ball.

Example 2.2.7. (Ellipsoid)
Another example is the elliptical integrand γ : Rd+1→ R+0

γ(z) =
r

∑

l=1,··· ,d+1

a2
l z2

l , (2.23)

where ai ∈ R+. Although the formulation of the two step time discretization of the anisotropic
Willmore flow incorporates only the anisotropy and not its derivatives, we need first and second
derivatives of the anisotropy for a gradient decent method and also third derivatives for the SQP
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approach. The derivatives of the anisotropy are

γzi
(z) =

a2
i zi

Ç

∑

l=1,··· ,d+1
a2

l z2
l

,

γziz j
(z) =

a2
i δi j

Ç

∑

l=1,··· ,d+1
a2

l z2
l

−
a2

i a2
j ziz j

 

Ç

∑

l=1,··· ,d+1
a2

l z2
l

!3 ,

γziz jzk
(z) = −

a2
i a2

k δi j zk
 

Ç

∑

l=1,··· ,d+1
a2

l z2
l

!3 −
(a2

i a2
j (δikz j +δ jkzk)

 

Ç

∑

l=1,··· ,d+1
a2

l z2
l

!5 +
3 a2

i a2
j a

2
kziz jzk

 

Ç

∑

l=1,··· ,d+1
a2

l z2
l

!5 ,

with δi j being the Kronecker symbol. Since ∂Wγ = γz

�

Sd−1
�

the Wulff shape is an ellipsoid
with semi-axes al , l = 1, · · · , d + 1. The Frank diagram Fγ =

¦

z ∈ Rd+1|γ(z)≤ 1
©

is an
ellipsoid with semi-axes 1

al
, l = 1, · · · , d + 1.

Example 2.2.8. (l1-norm)
A typical choice for a positive, 1-homogeneous and convex function is the discrete l1-norm,

γ(z) = ‖z‖1 =
d+1
∑

l=1

|zl | . (2.24)

Its Wulff shape is the d-dimensional cube, whereas the Frank diagram is given by the d-
dimensional octahedron.

Example 2.2.9. (Regularized l1-norm)
Since the discrete l1-norm is not differentiable we consider the regularized l1-norm, cf. Fig-
ure 2.3,

γ(z) =
d+1
∑

l=1

p

ε|z|2+ z2
l , ε > 0 .

Its derivatives are

γzi
(z) =

d+1
∑

l=1

(ε+δl i)zi
p

ε|z|2+ z2
l

,

γziz j
(z) = δi j

d+1
∑

l=1

ε+δl i
p

ε|z|2+ z2
l

−
d+1
∑

l=1

(ε+δl i)(ε+δ jl)ziz j
�

p

ε|z|2+ z2
l

�3 ,
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Figure 2.3: Boundaries of the Wulff shapes ∂Wγ for the regularized l1-anisotropy γ(z) =
∑d+1

l=1

p

ε|z|2+ z2
l with ε = 0.01, 0.001,0.00001 for curves (d = 1, top row) and surfaces

(d = 2, bottom row), cf. Example 2.2.9.

γziz jzk
(z) = −δi j

d+1
∑

l=1

(ε+δl i)(ε+δkl)zk
�

p

ε|z|2+ z2
l

�3 −
d+1
∑

l=1

(ε+δl i)(ε+δ jl)(δkiz j +δk jzi)
�

p

ε|z|2+ z2
l

�3

+
d+1
∑

l=1

3 (ε+δl i)(ε+δ jl)(ε+δlk)ziz jzk
�

p

ε|z|2+ z2
l

�5

For a more detailed exposition of the concept of anisotropies we refer to DIEWALD [71] and
NEMITZ [130]. Here, we ask for a generalization of the mean curvature. Since h = divMn,
cf. Equation (2.7), the next definition is justified.

Definition 2.2.3. (Cahn–Hoffmann vector and anisotropic mean curvature)
Suppose that γ is an admissible anisotropy function and that M ⊂ Rd+1 is an oriented d-
dimensional surface with normal mapping n : M → Sd . We define the Cahn–Hoffmann
vector nγ :M→Wγ by

nγ(p) := γz ◦ n(p), p ∈M ,

and the anisotropic mean curvature hγ by

hγ := divM(nγ(p)), p ∈M .

This generalization of the Gauß map n is named after and John W. Cahn and David W. Hoff-
mann [33, 34].
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Note that hγ = h in the isotropic case. The Cahn–Hoffmann vector induces the definition of
a generalized Weingarten map.

Definition 2.2.4. (Generalized Weingarten map)
Let γ be an admissible anisotropy function, M ⊂ Rd+1 an oriented d-dimensional surface
with Cahn–Hoffmann vector nγ. We define the generalized Weingarten map Sγ by

Sγ :=∇Mnγ =∇M(γz ◦ n) = γzz(n)∇Mn .

The mean curvature was defined as h = tr (S). The following lemma shows that hγ is a
natural generalization of mean curvature.

Lemma 2.2.10. Let γ be an elliptical integrand as in Definition 2.2.1 and let n be the surface
normal of surface M. The anisotropic mean curvature can be written as

hγ = tr
�

Sγ
�

. (2.25)

Proof. Direct consequence of the definition of the tangential divergence, cf. Definition 2.1.4.
�

Lemma 2.2.11. (Tangential gradient of the anisotropic mean curvature)
Let γ and n be given as in Lemma 2.2.10. The tangential gradient of the anisotropic mean
curvature is given as

∇M hγ = divM
�

∇M nγzz(n)
�

.

Proof. This follows from Equation (12) in CLARENZ [50]. In CLARENZ & VON DER MOSEL [57,
Corollary 4.2] a proof is given based on the calculation of a mixed second variation of a
suitable functional. �

Definition 2.2.5. (Generalized Laplace–Beltrami operator)
Let γ be an elliptical integrand. The generalized Laplace–Beltrami operator applied to a
smooth function ϕ :M→ R is defined as

∆γϕ := divM
�

γzz(n) ∇Mϕ
�

Proposition 2.2.12. (Generalized Laplace–Beltrami operator of the Gauß map)

∆γ n=∇M hγ−
�

�∇M n
�

�

2

γ
n (2.26)

Proof. Due to Theorem 1.1 in CLARENZ & VON DER MOSEL[57] we get

divM
�

γzz(n) ∇M n
�

+ tr
�

γzz(n)∇T
Mn ∇M n

�

n= divM
�

∇M nγzz(n)
�

Together with Lemma 2.2.11 this proves Equation (2.26). �
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2.3 General gradient flows

LetM be a closed d-dimensional surface embedded in Rm, m≥ d+1, with parameterization
x : M → Rm assumed to be the identity on M. Our main goal in this thesis will be the
minimization of the highly nonlinear anisotropic Willmore functional

wγ[x] =
1

2

∫

M
h2
γ da , (2.27)

where hγ is the generalized mean curvature. One method to find a solution of the mini-
mization of an energy is to consider its gradient flow. Given an energy functional e[·], the
corresponding gradient flow is the motion of the surface that follows the steepest descent
of the energy functional given by its negative gradient. The derivative of e defined on an
infinite-dimensional space is given by its first variation. Disturbing the parametrization x of
a surface M[x] by a test function ϑ ∈ C1(M,Rm) we get




e′[x],ϑ
�

:= ∂εe[x + εϑ]
�

�

ε=0 . (2.28)

To measure the velocity of the evolution, we equip the space of deformations with a metric
g(·, ·). Then, the gradient is defined by the representation of the first variation in the metric
g, i.e.

g
�

gradg e[x],ϑ
�

=



e′[x],ϑ
�

∀ϑ ∈ C1(M,Rm) . (2.29)

Given energy and metric the corresponding gradient flow is the evolution of an initial para-
metrization x0 of the surface M[x0] in the direction of the negative gradient and defines a
one parameter family of parametrizations x(t) via

∂t x(t) = −gradg e[x(t)] ,

x(0) = x0 ,
(2.30)

which leads to finding a family of parametrizations x(t), such that

�

∂t x(t),ϑ
�

g =−



e′[x(t)],ϑ
�

∀ϑ ∈ C1(M,Rm) .

This evolution does preserve descent directions, i.e.
¬

e′[x(t)],−gradg e[x(t)]
¶

= g
�

gradg e[x(t)],−gradg e[x(t)]
�

≤ 0 .

One choice for the metric is the L2-metric given by the intrinsic L2-scalar product on M,
namely

g(ϕ,ϑ) = (ϕ,ϑ)L2(M) =

∫

M

ϕϑda .
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The gradient flow with respect to (·, ·)L2(M) is then given by

∂t x(t) =−gradL2(M)e[x(t)]

or equivalently

�

∂t x(t),ϑ
�

L2(M) =−



e′[x(t)],ϑ
�

∀ϑ ∈ C1(M,Rm) .

Let us first consider the steepest decent of the anisotropic area functional

aγ[x] =

∫

M
γ(n)da ,

where n is the surface normal and γ is a given elliptical integrand as in Definition 2.2.1. To
calculate the first variation of aγ, we consider the disturbed surface xε = x + εϑ for test
functions ϑ ∈ C1(M,Rm). The test function is decomposed into a normal and tangential
part

ϑ = ϕ n+ v, (2.31)

where ϕ ∈ C1(M) is a smooth function and v ∈ C1(M, TpM) is a smooth tangential vector
field. We get the following proposition:

Proposition 2.3.1. Let x : M → Rm be an immersion. For the derivative of the anisotropic
area functional in direction ϑ given as in Equation (2.31) we have

D

a′γ[x],ϑ
E

=

∫

M

hγ n · ϑ da .

Proof. A proof can be found in CLARENZ [49, p. 5]. �

It is well known that the steepest descent of the isotropic area functional corresponds to
the evolution of the surface in normal direction weighted by the negative mean curvature.
We refer to [64, 67, 13, 14] for a more detailed overview on the L2-gradient flow of the
area functional, the mean curvature motion for surfaces. The curve shortening flow was for
example discussed in [97, 102]. Since hγ appears as the first variation of the anisotropic
area functional, hγ is a natural generalization of the mean curvature. The gradient flow of
the anisotropic area functional with respect to the L2-metric is now given by

∂t x = − hγ n . (2.32)

We refer to the works [20, 63, 83, 15] on the anisotropic mean curvature motion or aniso-
tropic curve shortening flow. Let us remark that every inner product yields its own gradient
and thus, a different gradient flow. Another example for the inner product is the H−1-metric

g(ϕ,ϑ) = (ϕ,ϑ)H−1(M) =−
∫

M

∆−1
Mϕ · ϑda .
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It is well known that surface diffusion

∂t x = (∆Mh)n

is the gradient flow of the area functional with respect to the H−1-metric [32, 12, 11]. One of
its main applications is in the modeling of epitaxial growth of crystals [149, 10]. Anisotropic
surface diffusion can be obtained similarly, see [31, 68, 69] for further details.

Let us remark that the first variation of aγ is independent of tangential variations. Therefore,
it is sufficient to consider only only variations w.r.t. normal direction, i.e. we only have to
consider a family of surfaces with parametrizations xε = x + εϕ n. The same holds for the
first variation of the anisotropic Willmore functional (2.27), where we have the following
proposition for its gradient flow corresponding to the L2-metric.

Proposition 2.3.2. Let x : M → R3 be an immersion. For the derivative of the anisotropic
Willmore functional in direction ϑ given as in Equation (2.31) we have

D

w′γ[x],ϑ
E

=

∫

M

�

∆γ hγ+ hγ
�

�∇M n
�

�

2

γ
−

1

2
hh2

γ

�

n · ϑ da.

Proof. A proof can be found in CLARENZ [50, (15)]. �

The L2-gradient flow of the anisotropic Willmore functional for closed surfaces is then given
by

∂t x =
�

∆γ hγ+ hγ
�

�∇M n
�

�

2

γ
−

1

2
hh2

γ

�

n. (2.33)

We review the calculation for surfaces with boundaries in Section 3.2.

2.4 Finite Element space discretization

To discretize the semi-implicit scheme and the two step time discretization in space we use
piecewise affine Finite Elements. The ingredients that will be needed in both algorithms are
collected in this section. We follow the guideline for Finite Elements on surfaces introduced
by DZIUK [80]. For further information we refer to BRAESS [28] and BRENNER & SCOTT [30].
Thus, we consider simplicial meshes M[X ] – polygonal curves for d = 1 and triangular
surfaces for d = 2 – as approximations of the d-dimensional surfaces M[x]. Here, X is
the identity on the simplicial mesh M[X ] embedded in Rm, m = 2, 3 for curves and m = 3
for surfaces, which is described by a vector X̄ of vertex positions of the mesh. To clarify
the notation we will always denote discrete quantities with upper case letters to distinguish
them from the corresponding continuous quantities in lower case letters. Furthermore, a bar
on top of a discrete function indicates the corresponding nodal vector, i.e.

X̄ = (X̄ i)i∈I ,

where
X̄ i = (X

1
i , · · · , X m

i )
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is the coordinate vector of the ith vertex of the mesh and I denotes the index set of vertices.
Using also local indices each element T of a polygonal curve is a line segment with nodes
X1 and X2 and elements T of a triangulation are planar triangles with vertices X0, X1 and X2

and face vectors F0 = X2 − X1, F1 = X0 − X2 and F2 = X1 − X0. Given a simplicial surface
M[X ] we denote by

V(M[X ]) :=
¦

U ∈ C0(M[X ]) |U |T ∈ P1∀T ⊂M[X ]
©

(2.34)

the corresponding piecewise affine Finite Element space consisting of those functions which
are affine on each element T of M[X ]. P1 denotes the space of affine linear polynomi-
als. With a slight misuse of notation the mapping X itself is considered as an element in
V(M[X ])m. Let {Φi}i∈I be the nodal basis of V(M[X ]). Thus, for U ∈ V(M[X ]) we obtain

U =
∑

i∈I

U(X i)Φi, Ū = (U(X i))i∈I , (2.35)

in particular in accordance to our definition above we recover X̄ = (X i)i∈I .

Next, let us introduce the mass matrix M[X ] and the stiffness matrix L[X ] on the discrete
surface M[X ], whose entries are given by

Mi j[X ] =

∫

M[X ]
ΦiΦ j da , (2.36)

Li j[X ] =

∫

M[X ]
∇M[X ]Φi · ∇M[X ]Φ j da , (2.37)

i, j ∈ I . To apply mass and stiffness matrices to discrete maps from M[X ] to Rm, we need
corresponding block matrices M[X ] and L[X ] in Rm]I ,m]I :

M[X ] =









M[X ]
. . .

M[X ]









,

L[X ] =









L[X ]
. . .

L[X ]









.

Both, mass and stiffness matrix M and L can be assembled from corresponding local mass
and stiffness matrices m(T ) and l(T ) for all simplices T on M[X ]. The global matrices are
initialized with zero entries. Traversing over all simplices T we calculate local matrices with
entries corresponding to all pairs of local nodal basis functions. Then the local matrix entries
are added to the matching entries in the global matrix.
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To discretize anisotropic energy functionals we also need two different kinds of anisotropic
versions of the stiffness matrix, weighted stiffness matrices and weighted anisotropic stiffness
matrices:

Weighted stiffness matrices. Let η :M[X ]→ R be a scalar weight and µ :M[X ]→ Rm,m

a matrix-valued weight, µ = (µkl), k, l = 1, · · · , m. The entries of the weighted stiffness
matrices Lη[X ] and Lµkl[X ], k, l = 1, · · · , m, on the discrete surface M[X ] are given by

Lηi j[X ] =

∫

M[X ]
η∇M[X ]Φi · ∇M[X ]Φ j da, (2.38)

Lµkl
i j [X ] =

∫

M[X ]
µkl∇M[X ]Φi · ∇M[X ]Φ j da , (2.39)

with corresponding block matrices Lη[X ] and Lµ[X ] in R3]I ,3]I

Lη[X ] =







Lη[X ]
Lη[X ]

Lη[X ]






,

Lµ[X ] =







Lµ11[X ] Lµ12[X ] Lµ13[X ]
Lµ21[X ] Lµ22[X ] Lµ23[X ]
Lµ31[X ] Lµ32[X ] Lµ33[X ]






.

for surfaces. Analogously, we get the corresponding block matrices Lη[X ] and Lµ[X ] in
R2]I ,2]I for polygonal curves. Both anisotropic stiffness matrices Lη and Lµkl can be assembled
from corresponding local matrices lη(T ) and lµkl (T ) for all simplices T onM[X ]. In the two
step time discretization of the anisotropic Willmore flow we will need weighted mass and
stiffness matrices with weights η = γ or η = N ⊗ γz, where γ is an elliptical integrand with
derivative γz and N the surface normal. For the semi-implicit scheme we also need stiffness
matrices weighted by η = |Y |2. If the matrices are weighted by the anisotropy function γ
depending on the normal mapping, we need the piecewise constant surface normal:

Surface normal. For simplicial meshes M[X ] the normal NT of an element T with segment
F0 for polygonal curves with m= 2 and sides F0, F1, F2 for triangulated surfaces with m= 3,
is given by

NT =
D90F0

|F0|
=

D90F0

|T |
, NT =

F2 ∧ F1

|F2 ∧ F1|
=

1

2

F2 ∧ F1

|T |
, (2.40)

respectively, where D90 denotes a counter-clockwise rotation by the angle of 90 degrees.
The discrete surface normal Ni at node i ∈ I is then given by

Ni =

∑

ωi
|T |NT

�

�

�

∑

ωi
|T |NT

�

�

�

, (2.41)

where ωi consists of all triangles that contain node i ∈ I .
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Weighted anisotropic stiffness matrix. Besides weighted stiffness matrices Lγ, LN⊗γz ,
and L|Y |

2
we need weighted anisotropic stiffness matrices in the semi-implicit discretiza-

tion scheme in time for the anisotropic Willmore flow. Let γ be an elliptical integrand with
second derivative γzz and µ : M[X ] → Rm,m, µ = (µkl), k, l = 1, · · · , m, a matrix-valued
weight. The entries of the weighted anisotropic stiffness matrix Lµkl

γzz
[X ], k, l = 1, · · · , m, on

the discrete surface M[X ] are given by

Lµkl
γzz ,i j[X ] =

∫

M[X ]
µkl γzz(N)∇M[X ]Φi · ∇M[X ]Φ j da (2.42)

with corresponding block matrix Lµγzz
[X ]. Let

Lγzz
[X ] = L1

γzz
[X ] (2.43)

denote the non-weighted anisotropic stiffness matrix.

Let us give explicit formulae for the entries of the mass and all kinds of stiffness matrices.
Later in Section 2.4.1 we will have to compute variations of these entries as well.

Polygonal curves. In the case of curves we consider a lumped mass matrix, cf. THOMÉE [163],
with entries

M L
i j[X ] = Mi j[X ] =

∫

M[X ]
I(ΦiΦ j)da , (2.44)

where I denotes the Lagrange interpolation on the linear Finite Element space. We obtain
directly for the global matrices

M[X ] = diag
�

1

2
(Q i +Q i+1)

�

,

L[X ] = tridiag
�

−
1

Q i
,

1

Q i
+

1

Q i+1
,−

1

Q i+1

�

,

where Q i = |X i − X i−1| is the length of the ith line segment and diag() and tridiag() denote
diagonal or tridiagonal matrices with the corresponding entries in each row. Here, we as-
sume a cyclic indexing, i.e. we identify the indices i = 0 and i = ]I for closed curves with
X0 = X]I . Therefore, we get additional entries in the first and last bands of the matrices. We
will consider piecewise constant weights η and µ and the corresponding anisotropic versions
of the anisotropic matrices are given by

Mη[X ] = diag
�

1

2
(ηi Q i +ηi+1 Q i+1)

�

,

Lη[X ] = tridiag
�

−
ηi

Q i
,
ηi

Q i
+
ηi+1

Q i+1
,−
ηi+1

Q i+1

�

,

Lµkl[X ] = tridiag
�

−
µkl,i

Q i
,
µkl,i

Q i
+
µkl,(i+1)

Q i+1
,−
µkl,(i+1)

Q i+1

�

,

where ηi = η|Ti
and µkl,i = µkl |Ti

.
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Triangular surfaces. Due to the greater variability of triangular surfaces compared to poly-
gonal curves, let us consider the local matrices on triangles separately. Denoting the local
basis function on a triangle T by Φ0, Φ1, Φ2, where Φi(X j) = δi j with δi j being the Kronecker
symbol we verify by a straightforward computation, cf. DIEWALD, MORIGI & RUMPF[72], that

mη(T ) =









∫

T

ηΦiΦ j da









i, j=0,1,2

= η|T
|T |
12







2 1 1
1 2 1
1 1 2






,

with |T |= 1
2
|F2 ∧ F1| being the area of the triangle T and the corresponding lumped version

mη(T ) =









∫

T

ηI
�

ΦiΦ j

�

da









i, j=0,1,2

= η|T
|T |
3







1 0 0
0 1 0
0 0 1






.

The local stiffness matrices are given by

lη(T )i j =

∫

T

η|T ∇TΦi · ∇TΦ j da = η|T
Fi · F j

4|T |
,

where ∇T is the gradient on the planar element T . There we have used that

∇TΦi =
νi

hi
=

Fi

hi|Fi|
=

Fi

2|T |
,

where νi is the outer normal to the edge Fi and hi the height of the triangle over the edge Fi.

Dirichlet boundary condition. We will extend the anisotropic Willmore flow to surfaces
with boundaries to solve surface restoration problems. LetM[X ] be a surface with boundary
∂M[X ]. In Chapters 3 and 5 we study the discrete anisotropic Willmore flow ofM[X ] with
fixed boundary ∂M[X ], i.e. Dirichlet boundary conditions for the coordinate vector X . We
define Mint[X ]⊂M[X ] with

Mint[X ] = {T ∈M[X ]
�

� T ∩ ∂M[X ] = ;} . (2.45)

Let I and I int be the index sets of the vertices of M[X ] and Mint[X ]. The set of nodes of
M[X ] is denoted by N and splits into interior nodes N int and boundary nodes N ∂ with
index set I∂ = I \ I int , i.e. N =N int ∪N ∂ . We denote by

V int(M[X ]) :=
¦

U ∈ C0(M[X ]) |U |T ∈ P1∀T ∈M[X ], U |∂M[X ] = 0
©

(2.46)

the piecewise affine Finite Element space of M[X ] with vanishing boundary values and by
V ex t(M[X ]) with vanishing exterior values, i.e. we have

V(M[X ]) = V int(M[X ])⊕V ex t(M[X ]).
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To map between the function spaces V(M[X ]) and V int(M[X ]]) we define a restriction
operator R : V(M[X ]) → V int(M[X ]) and an extension operator E : V int(M[X ]) →
V(M[X ]) that extend a function on ∂M[X ] by zero. With a slight misuse of notation

E : R]I
int
→ R]I (2.47)

and
R : R]I → R]I

int
(2.48)

denote also the matrices corresponding to the operators. The corresponding block matrices
are R in Rm]I int ,m]Iand E in Rm]I ,m]I int

. Again, a bar on top of a discrete function indicates the
corresponding nodal vector, i.e. X̄ (t) = (X̄ i(t))i∈I int is the coordinate vector of the interior
vertices of the mesh. Let

EX̄ + X̄ ex t (2.49)

be the corresponding nodal vector in Rm]I , where X̄ ex t is the position vector for the boundary
nodes with zero entries for all interior nodes.

2.4.1 Variations of the mass and stiffness matrix

Since the two step time dicretization of the Willmore flow is fully implicit, we have to com-
pute variations of the mass and stiffness matrix with respect to test functionsΘ ∈ V(M[X ])m
of the simplicial grid,

∂X M[X ](Θ) =









∂X M[X ](Θ)
. . .

∂X M[X ](Θ)









,

∂X L[X ](Θ) =









∂X L[X ](Θ)
. . .

∂X L[X ](Θ)









,

where

∂X M[X ](Θ) =
∂

∂ ε
M[X + εΘ]

�

�

ε=0 and ∂X L[X ](Θ) =
∂

∂ ε
L[X + εΘ]

�

�

ε=0 .

We will solve the minimization problem with a sequential quadratic programming (SQP)
approach that is a Newton type method. Therefore we also need second derivatives of the
mass and stiffness matrix with respect to test functions Θ,Ψ ∈ V(M[X ])m,

∂ 2
X M[X ](Θ,Ψ) =









∂ 2
X M[X ](Θ,Ψ)

. . .
∂X M[X ](Θ,Ψ)









,

∂ 2
X L[X ](Θ,Ψ) =









∂ 2
X L[X ](Θ,Ψ)

. . .
∂ 2

X L[X ](Θ,Ψ)









,
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where

∂ 2
X M[X ](Θ,Ψ) =

∂ 2

∂ µ∂ η
M[X +ηΘ+µΨ]

�

�

η,µ=0 and

∂ 2
X L[X ](Θ,Ψ) =

∂ 2

∂ µ∂ η
L[X +ηΘ+µΨ]

�

�

η,µ=0 .

Polygonal curves. We obtain for the derivatives of the mass matrix (using again the usual
Kroneckersymbol δir) with respect to a variation of node r in direction s

∂X M[X ](Φr es) = diag

�

(X s
i−1−X s

i )(δ(i−1)r−δir)

2Q i
+
(X s

i−X s
i+1)(δir−δ(i+1)r)

2Q i+1

�

,

where as above Q i = |X i − X i−1|. Furthermore, we get for the derivatives for the stiffness
matrix in the same direction

∂X L[X ](Φr es) = tridiag(∂X Li−1,∂X Li,∂X Li+1),

where

∂X Li−1 :=
(X s

i−1− X s
i )(δ(i−1)r −δir)

Q3
i

,

∂X Li := −
(X s

i−1− X s
i )(δ(i−1)r −δir)

Q3
i

−
(X s

i − X s
i+1)(δir −δ(i+1)r)

Q3
i+1

,

∂X Li+1 :=
(X s

i − X s
i+1)(δir −δ(i+1)r)

Q3
i+1

.

The second derivative of the mass matrix with respect to a first variation of node r in direc-
tion s and a second variation of node q in direction t is given by

∂ 2
X M[X ](Φr es,Φqet) = diag

�

δts(δ(i−1)q −δiq)

2Q i

−
(X s

i−1− X s
i )(δ(i−1)r −δir)(X t

i−1− X t
i )(δ(i−1)q −δiq)

2Q3
i

+
δts(δiq −δ(i+1)iq)

2Q i

−
(X s

i − X s
i+1)(δir −δ(i+1)r)(X t

i − X t
i+1)(δiq −δ(i+1)q)

2Q3
i+1

�

.

We get for the second derivatives of the stiffness matrix in the same direction

∂ 2
X L[X ](Φr es,Φqet) = tridiag(∂ 2

X Li−1,∂ 2
X Li,∂

2
X Li+1),
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where

∂ 2
X Li−1 :=

δts(δ(i−1)q −δiq)(δ(i−1)r −δir)

Q3
i

− 3 ·
(X s

i−1− X s
i )(δ(i−1)r −δir)(X t

i−1− X t
i )(δ(i−1)q −δiq)

Q5
i

,

∂ 2
X Li+1 :=

δts(δiq −δ(i+1)q)(δir −δ(i+1)r)

Q3
i+1

− 3 ·
(X s

i − X s
i+1)(δir −δ(i+1)r)(X t

i − X t
i+1)(δiq −δ(i+1)q)

Q5
i+1

,

∂ 2
X Li := − ∂ 2

X X Li−1− ∂ 2
X X Li+1 .

Triangular surfaces. The first variation of |T | with respect to a variation of node r in
direction s is given by

∂X |T |(Φr es) =
1

2

F1 ∧ F2

|F1 ∧ F2|
· D90

s PsFr ,

where ∧ denotes the cross product. Ps is a projection onto the plane spanned by the vectors
es−1 and es+1 and D90

s a counter-clockwise rotation by 90 degree in this plane. Here, we
assumed vertex indices to be in {0,1, 2} and take them modulo 2 if this is not the case. Now,
we obtain for the derivative of the local mass matrix with respect to a variation of node r in
direction s

∂X m(T )(Φr es) =
∂X |T |(Φr es)

12







2 1 1
1 2 1
1 1 2






.

The corresponding derivative of the local stiffness matrix is given by

∂X l(T )i j(Φr es) =
1

4|T |
((δr(i−1)−δr(i+1))F

s
j + (δr( j−1)−δr( j+1))F

s
i )

−
∂X |T |(Φr es)

4|T |2
Fi · F j .

The second variation of |T | with respect to a variation of node r in direction s and node q in
direction t, respectively, is given by

∂ 2
X |T |(Φr es,Φqet) =

1

2

�

∂X (F1 ∧ F2)(Φqet)

|F1 ∧ F2|
−
(F1 ∧ F2)((F1 ∧ F2) · D90

t Pt Fq)

|F1 ∧ F2|3

�

· D90
s PsFr

+
1

2

F1 ∧ F2

|F1 ∧ F2|
·
�

(δq(r−1)−δq(r+1))D
90
s Pset

�

with

∂X (F1 ∧ F2)(Φqet) = (1−δkt)
�

(δ0q −δ2q)F
(5−t)
2 − (δ1q −δ0q)F

(5−t)
1

�

(1−δ(k+1)t),
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where we identify indices 4 and 1. For the second derivative of the local mass matrix with
respect to a first variation of node r in direction s and a second variation of node q in
direction t we have

∂ 2
X m(T )(Φr es,Φqet) =

∂ 2
X |T |(Φr es,Φqet)

12







2 1 1
1 2 1
1 1 2






.

The corresponding second derivative of the local stiffness matrix is given by

∂ 2
X l(T )i j(Φr es,Φqet) =

δts

4|T |
((δr(i−1)−δr(i+1))(δq( j−1)−δq( j+1))

+ (δr( j−1)−δr( j+1))(δq(i−1)−δq(i+1)))

−
∂X |T |(Φqet)

16|T |2
((δr(i−1)−δr(i+1))F

s
j + (δr( j−1)−δr( j+1))F

s
i )

−
∂ 2

X |T |(Φr es,Φqet)|T | − 2∂X |T |(Φr es)∂X |T |(Φqet)

4|T |3
Fi · F j

−
∂X |T |(Φr es)

4|T |2
((δq(i−1)−δq(i+1))F

t
j + (δr( j−1)−δr( j+1))F

t
i ) .

Variations of the weighted mass and stiffness matrix. We have also implemented a SQP
approach for the two step time discretization of the anisotropic Willmore flow for polygo-
nal curves. Because of Equations (2.17) and (2.18) we can simplify the derivatives of the
weighted mass and stiffness matrices with weight γ. The calculations are collected in Chap-
ter 6. We also need the second variations of the mass and stiffness matrices to calculate the
Hessian in the SQP approach. We refer to Chapter 6 for the derivatives for the anisotropic
Willmore flow for polygonal curves.
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Chapter 3

Review of the anisotropic Willmore flow
for surfaces

IN this chapter we develop a semi-implicit time discretization of the anisotropic Willmore
flow for parametric surfaces with boundaries. We compare the resulting scheme with

the two step time discretization of the Willmore flow for closed surfaces in Section 4.5 of
Chapter 4 and for surfaces with boundaries in Section 5.4 of Chapter 5. RUSU derived in
[148] a variational form for the parametric Willmore flow which uses a mixed method with
position and mean curvature vector as independent variables and allows the use of piece-
wise linear Finite Elements for the spatial discretization. This approach was extended by
CLARENZ ET AL. [51] to surfaces with boundaries and applied to problems in surface restora-
tion. There, a destroyed surface patch is restored by a smooth patch defined as the minimizer
of the Willmore functional with boundary conditions for the position and the normal. Using
the isotropic Willmore functional will not lead to results respecting the edges and corners of
the surface, cf. Figure 3.1. DIEWALD [71] extended the approach of RUSU [148] to the an-
isotropic Willmore flow for surfaces without boundaries. In this chapter we discuss surface
restoration based on Willmore flow with boundary conditions. In Section 3.1 we calculate
the first variation of the anisotropic Willmore functional following DIEWALD [71]. Then we
study the resulting boundary value problem in Section 3.2. In Section 3.3 we describe the
Finite Element scheme on triangular grids in space and the semi-implicit backward Euler
discretization in time. The resulting scheme is used to restore surface patches with corner
and edge type singularities in Section 3.4. It turns out that severe tangential distortions have
to be compensated for, if we choose time step sizes of the order of the square of the spatial
grid size. This compensation is realized via mesh adaptation and is described in the last
Section 3.4 of this chapter.

3.1 First variation of the anisotropic Willmore functional

We consider an oriented embedded surface M ⊂ R3 with parameterization x being the
identity on the surface M and boundary ∂M. Let γ denote an elliptical integrand. In
this section we collect the main results about the first variation of the anisotropic Willmore
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Figure 3.1: Using the isotropic Willmore functional will not lead to results respecting the
edges and corners of the surface: The destroyed surface on the left is restored by the isotropic

(center) and anisotropic Willmore flow with γ(z) = 1
2

n

�

�

p

z2
1 + z2

2 + z3

�

�

δ
+
�

�

p

z2
1 + z2

2 − z3

�

�

δ

o

,

where |a| ≈ |a|δ =
p

a2+δ2, δ = 0.00001, cf. NEMITZ [130, Equation (79)] (right).

energy

wγ[x] =
1

2

∫

M
h2
γ da ,

where hγ = dimM(γz◦n) is the generalized mean curvature, cf. Definition 2.2.3. To calculate
the first variation of wγ, we consider the disturbed surface xε = x + εϑ for test functions
ϑ ∈ C1(M,R3). The test function is decomposed into a normal and tangential part

ϑ = ϕ n+ v, (3.1)

where ϕ ∈ C1(M) is a smooth function and v ∈ C1(M, TpM) is a smooth tangential vector
field. The classical version is not suited for a linear Finite Element approximation, because
expressions containing the gradient of the Gauß map ∇M n appears:

Proposition 3.1.1. (First variation of wγ, classical version)
Let M ⊂ R3 be an oriented embedded surface with parameterization x being the identity on
the surface M with boundary ∂M. If γ is an elliptical integrand, the first variation of the
anisotropic Willmore functional in direction of a test function ϑ given as in Equation (3.1) is
given by

D

w′γ[x],ϑ
E

=

∫

M

�

−∆γ hγ− hγ
�

�∇M n
�

�

2

γ
+

1

2
hh2

γ

�

n · ϑ da

+

∫

∂M

�

ϕγzz(n) ∇M hγ− hγ γzz ∇Mϕ+
1

2
h2
γ

v
�

· nco dσ

Proof. A proof can be found in CLARENZ [50, Equation (14)] for surfaces M with ∂M = ;
and in DIEWALD [71, Satz 68] for surfaces with ∂M 6= ;. �

The normal field of a triangulated surface is piecewise constant, so that its derivative van-
ishes. Therefore, we have to calculate the first variation of the anisotropic Willmore func-
tional without incorporating ∇M n. For simplicity we omit the argument for the second
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derivatives of the anisotropy function γ and write γzz for γzz(n). Let hεγ denote the gen-
eralized mean curvature and daε the area element of the disturbed surface xε. Then we
get

D

w′γ[x],ϑ
E

= ∂ε
1

2

∫

M

�

hεγ
�2

daε

�

�

�

�

�

ε=0

=

∫

M

hγ ∂εh
ε
γ

�

�

ε=0 da+
1

2

∫

M

h2
γ ∂ε daε

�

�

ε=0 .

The derivative of the area element was calculated by SIMON [155] and is given by

∂ε daε
�

�

ε=0 = divMϑda .

Since we identify the surface M and its parametrization x , we get the following expression
for the divergence of the test function

divMϑ = tr
�

∇M ϑ
�

= I :∇M ϑ =∇M x :∇M ϑ . (3.2)

We reformulate the derivative of the area element and get

∂ε daε
�

�

ε=0 =∇M x :∇M ϑ . (3.3)

Due to CLARENZ [50, Equation (13)], we get for the first variation of the generalized mean
curvature hγ

∂εh
ε
γ

�

�

ε=0 =−∆γϕ−
�

�∇M n
�

�

γ
ϕ+∇M hγ · v , (3.4)

where
�

�∇M n
�

�

γ
= tr

�

γzz∇M n∇M n
�

, cf. Equation (2.21). Using (3.4) and (3.3), we obtain

D

w′γ[x],ϑ
E

=

∫

M

hγ
�

−∆γϕ−
�

�∇M n
�

�

γ
ϕ+∇M hγ · v

�

da+
1

2

∫

M

h2
γ ∇M x :∇M ϑda

Following the calculation in the proof corresponding to Satz 71 in DIEWALD[71], we infer for
the integrand of the first integral in the above formulation

hγ
�

−∆γϕ−
�

�∇M n
�

�

γ
ϕ+∇M hγ · v

�

=−hγn ·
�

∆γϑ+ 2 n
�

γzz∇M n :∇M ϑ
�

�

and get a generalization of Lemma 2.1 in RUSU [148]:

Lemma 3.1.2. Let the assumption of Proposition 3.1.1 be fulfilled. The first variation of the
anisotropic Willmore functional in direction of the test function ϑ is given by

D

w′γ[x],ϑ
E

= −
∫

M

hγn ·
�

∆γϑ+ 2n
��

γzz∇M n
�

:∇M ϑ
�

�

da

+
1

2

∫

M

h2
γ∇M x :∇M ϑ da .

(3.5)
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Let us remark that the calculation of the first variation of the anisotropic Willmore functional
does not use integration by parts so that boundary integrals do not appear thus far. Lemma
3.1.2 is a generalization of Lemma 2.1 in RUSU [148]. Introducing an additional variable y ,
we are able to remove the gradient from the Gauß map. Therefore, we define the generalized
mean curvature vector

y :=−hγ n.

Now, following RUSU [148], we can rewrite the first summand of Equation (3.5) using the
next lemma.

Lemma 3.1.3. Let x and γ be as in Proposition 3.1.1. If y = −hγ n denotes the generalized
mean curvature vector, we get
∫

M

y · n
��

γzz∇M n
�

:∇M ϑ
�

da =

∫

M

∇M y :
�

γzz∇M ϑ
�

− ninl ∇M yi ·
�

γzz∇M ϑl
�

da .

Proof. Rewriting the integrand on the left with summation convention and applying the
product rule gives

y · n
��

γzz∇M n
�

:∇M ϑ
�

= y · n∇M n :
�

γzz∇M ϑ
�

= yini∇M nl ·
�

γzz∇M ϑl
�

=
�

∇M
�

yininl
�

−∇M
�

yini
�

nl
�

·
�

γzz∇M ϑl
�

= ∇M yl ·
�

γzz∇M ϑl
�

−
�

∇M yi ninl
�

·
�

γzz∇M ϑl
�

− yinl ∇M ni ·
�

γzz∇M ϑl
�

.

Since the shape operator ∇M n is symmetric, cf. Equation (2.5), and yi = −hγni the last
term vanishes. �

The next proposition is a generalization of Proposition 3.2 in CLARENZ ET AL. [51] to the
anisotropic functional for surfaces with boundaries.

Proposition 3.1.4. (First variation of wγ in weak form)
Let x and γ be as in Proposition 3.1.1. Using the definition y = −hγ n, the derivative of the
anisotropic Willmore functional in direction ϑ is given by

D

w′γ[x],ϑ
E

=

∫

M

∇M y :
�

γzz∇M ϑ
�

da− 2

∫

M

ninl ∇M yi ·
�

γzz∇M ϑl
�

da

+
1

2

∫

M

|y|2 ∇M x :∇M ϑ da+

∫

∂M

γzz∇M ϑ · nco dσ ,

where nco denotes the co-normal at the boundary of M.
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Proof. The first summand in Equation (3.5) can be written as
∫

M

y ·∆γϑda =

∫

M

y · divM
�

γzz∇M ϑ
�

da

(2.9)
= −

∫

M

∇M y :
�

γzz∇M ϑ
�

da+

∫

∂M

γzz∇M ϑ · nco dσ .

Using Lemma 3.1.3 we get for the second summand in Equation (3.5)
∫

M

y · 2 n
�

γzz∇M n :∇M ϑ
�

da = 2

∫

M

∇M y :
�

γzz∇M ϑ
�

da

− 2

∫

M

ninl ∇M yi ·
�

γzz∇M ϑl
�

da .

Now, we can rewrite the first variation of the anisotropic Willmore functional given as in
(3.5) and verify the assertion. �

3.2 Boundary value problem for the anisotropic
Willmore flow

In this section we calculate the anisotropic Willmore flow with boundary conditions. Since
we are interested in smooth boundary condition at the boundary ∂M of the surface M, we
prescribe Dirichlet boundary conditions for the coordinate vector x ∈ ∂M and Neumann
boundary conditions. The L2-gradient flow of the anisotropic Willmore functional wγ is
defined as

�

∂t x ,ϑ
�

L2 =−
D

w′
γ
[x],ϑ

E

,

where ( , )L2 denotes the L2-scalar product (cf. Section 2.3). We have to choose the set of
admissible test function carefully to ensure proper C1-type boundary conditions. Let ∂nco

denote the directional derivative in direction of the co-normal nco, i.e. ∂ncoϑ =∇Mϑ · nco for
a test function ϑ. The set of admissible test functions is given by

A :=
¦

ϑ ∈ C1(M,R3)
�

� ϑ|∂M = 0 and ∂ncoϑ
�

�

∂M

©

.

Splitting an admissible test function ϑ into a normal and tangential part as in Equation (3.1),
we get the following lemma

Lemma 3.2.1. If the test function ϑ ∈ A is decomposed into a normal and tangential part
ϑ = ϕ n + v, where ϕ ∈ C1(M) is a smooth function and v ∈ C1(M, TpM) is a smooth
tangential vector field, the following boundary conditions hold

ϕ
�

�

∂M = v|∂M = ∂ncoϕ
�

�

∂M = 0 .
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Proof. Multiplying equation 0 = ϑ|∂M = ϕn
�

�

∂M + v|∂M by n and using n · v = 0 gives the
first two conditions. Analogously, multiplying equation

0= ∂ncoϑ
�

�

∂M = ∂ncoϕ n
�

�

∂M + ϕ∂nco n
�

�

∂M + ∂nco v
�

�

∂M

by n and using n · n= 1, ∂nco n · n= 0 and the product rule we get

0= ∂ncoϕ
�

�

∂M + ∂nco(v · n)
�

�

∂M + v · ∂nco n
�

�

∂M .

Since v · n= 0 and v|∂M = 0, the proof of the lemma is finished. �

Because of Lemma 3.2.1 and Proposition 3.1.1 the classical version of the initial boundary
value problem for the anisotropic Willmore flow is given as follows:

∂t x =
�

∆γ hγ+ hγ
�

�∇M n
�

�

2

γ
−

1

2
hh2

γ

�

n on (0, T]×M, (3.6)

x = x0 on (0, T]× ∂M,

n= n0 on (0, T]× ∂M,

x(0) = x0

for some T > 0. Here, {M(t)} is a family of bounded surfaces and x(t) indicates the pa-
rameterization of M(t) over itself and n(t) its Gauß map. M0 is the initial surface with
parameterization x0 and Gauß map n0. Now, we derive the corresponding weak formula-
tion. Using Proposition 3.1.4 the L2-gradient flow of the anisotropic Willmore flow for test
functions ϑ ∈A is given by

∫

M

∂t x · ϑda = −
∫

M

∇M y :
�

γzz∇M ϑ
�

da+ 2

∫

M

ninl ∇M yi ·
�

γzz∇M ϑl
�

da

−
1

2

∫

M

|y|2 ∇M x :∇M ϑda.

(3.7)

Next, we have to calculate the weak form of the generalized mean curvature vector:

Lemma 3.2.2. (Weak definition of the generalized mean curvature vector)
Let ψ ∈ C1(M,R3) be a test function. We get

−
∫

M

hγ n ·ψda =

∫

M

�

∇M x γz(n)
�

·
�

∇Mψn
�

da−
∫

M

γ(n) ∇M x :∇Mψda

+

∫

∂M

γ(n)ψ · nco dσ−
∫

∂M

γz(n) · nco n ·ψdσ
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Proof. We decompose the test function ψ into a normal and tangential part ψ = ζn+ w,
where ζ is a smooth function and w ∈ TpM is a smooth tangential vector field, cf. Equation
(3.1). Using integration by parts, cf. Lemma 2.1.5 and Lemma 2.1.4, we infer

−
∫

M

hγ n ·ψda = −
∫

M

hγ n · (ζn+w)da =−
∫

M

hγ ζda =−
∫

M

divMγz(n)ζda

=

∫

M

γz(n) · ∇M ζda−
∫

M

hζ
︸︷︷︸

(2.10)
=

divM(ζn)

=ψ−w

γz(n) · n
︸ ︷︷ ︸

(2.17)
= γ(n)

da−
∫

∂M

γz(n) · nco ζdσ

=

∫

M

γz(n) · ∇M ζda−
∫

M

γ(n)divMψda+

∫

M

γ(n)divMw da

−
∫

∂M

(γz(n) · nco) (n ·ψ)dσ

=

∫

M

γz(n) · ∇M ζda−
∫

M

γ(n)divMψda−
∫

M

∇M γ(n) ·w da

+

∫

∂M

γ(n)w · nco dσ−
∫

∂M

(γz(n) · nco) (n ·ψ)dσ

Using∇M γ(n) = γz(n) ∇M n, Equation (3.2) and the symmetry of∇M n, cf. Equation (2.5),
we get

−
∫

M

hγ n ·ψda =

∫

M

γz(n) ·
�

∇M ζ−∇M n w
�

da−
∫

M

γ(n) ∇M x :∇Mψda

+

∫

∂M

γ(n)ψ · nco dσ−
∫

∂M

(γz(n) · nco) (n ·ψ)dσ

Writing the integrand of the first term on the right hand side with summation convention
and applying the product rule, cf. Equation (2.3), gives

∇M ζ−∇M n w =∇M,iζ−∇M,in j w j=∇M,iζ−∇M,i
�

n j w j
︸︷︷︸

=0

�

+ n j∇M,i v j

=∇M,iζ n j n j
︸︷︷︸

=1

+ζ ∇M, jni n j
︸ ︷︷ ︸

(2.1)
= 0

+∇M,i v j n j

=
�

∇M,iζn j + ζ∇M,in j +∇M,i v j

�

n j=∇M,i

�

ζn j + v j

�

n j

= ∇Mψn .

Since we identify M and x(M) we verify the assertion. �
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Applying Proposition 3.1.4 and Lemma 3.2.2 we get a weak formulation for the anisotropic
Willmore flow. For numerical stability, RUSU [148] suggests to subtract the first summand
of the right hand side of Equation (3.7) from both sides of the equation for the isotropic
Willmore flow. In the anisotropic case this leads to

Problem 3.2.3. (Weak formulation of anisotropic Willmore flow)
Find a family of bounded surfaces {M(t)} with coordinate vector x(t) and an accompanying
vector field y(t) on M(t), such that

∫

M

∂t x · ϑ da−
∫

M

∇M y :
�

γzz∇M ϑ
�

da = − 2

∫

M

∇M y :
�

γzz∇M ϑ
�

da

+ 2

∫

M

ninl ∇M yi ·
�

γzz∇M ϑl
�

da

−
1

2

∫

M

|y|2 ∇M x :∇M ϑ da ,

(3.8)

∫

M

y ·ψda =

∫

M

�

∇M x γz(n)
�

·
�

∇Mψn
�

da−
∫

M

γ(n) ∇M x :∇Mψda

+

∫

∂M

γ(n)ψ · nco dσ−
∫

∂M

(γz(n) · nco) (n ·ψ)dσ ,

(3.9)

for all ϑ ∈ H1
0(M,R3), ψ ∈ H1(M,R3) and for almost every t ∈ (0, T]. Furthermore we

assume x = x0 on (0, T]× ∂M and x(0) = x0.

3.3 Semi-implicit space discretization scheme

Let us now consider a Finite Element discretization for Problem 3.2.3, the weak formulation
of the anisotropic Willmore flow. To apply the resulting semi-implicit space discretization
scheme to surface restoration or bending problems, we have to carefully construct discrete
ansatz spaces for x and y to ensure proper C1-type boundary conditions. We will use the no-
tation of CLARENZ ET AL. [51], where a Finite Element discretization for a suitable boundary
value problem for the isotropic Willmore flow is presented. As in CLARENZ ET AL. [51] we will
discuss two different numerical schemes for anisotropic Willmore flow with boundary condi-
tions that differ with respect to the actual handling of the boundary condition for the surface
normals. Suppose a triangulated surface ÝM[X 0] is given and a subset M[X 0] ⊂ ÝM[X 0] is
either a destroyed region on the surface ÝM[X 0], where the remaining surface

Mex t[X 0] := ÝM[X 0] \M[X 0]

is in good shape, or M[X 0] is an initial blending surface closing a given surface Mex t[X 0].
We seek a family of discrete surfaces (M[X (t)])0<t which obey a discrete anisotropic Will-
more flow under prescribed discrete boundary conditions. Mex t[X (t)] is supposed to be
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fixed in time, i.e. Mex t[X 0] =Mex t[X (t)]. For the actual handling of the boundary condi-
tion for the surface normals we present two methods. In the first variant (Variant I below)
we prescribe the co-normal on the boundary whereas in (Variant II) we consider a whole
boundary layer consisting of all triangles T in Mex t[X 0] with T ∩ ∂M[X 0] 6= ;, where we
assume triangles to be closed sets. In this sense, we take into account an inner boundary
M[X 0] and an outer boundary defined by the layer. Fixing inner and outer boundary for
the position vector means obviously fixing the normal on triangles of the boundary layer. We
use the notation of Section 2.4 and define Mint[X (t)]⊂M[X (t)]⊂ ÝM[X (t)] with

M[X (t)] = {T ∈ ÝM[X (t)]
�

� T ∩ ∂ ÝM[X (t)] = ;}

and
Mint[X (t)] = {T ∈M[X (t)]

�

� T ∩ ∂M[X (t)] = ;} .

Let I int , I and Ĩ be the index sets of the vertices of Mint[X (t)], M[X (t)] and ÝM[X (t)],
cf. Equation (2.45). The set of nodes of M[X (t)] is denoted by N (t) and splits into inte-
rior nodes N int(t) and boundary nodes N ∂ (t), i.e. N (t) =N int(t)∪N ∂ (t) with index set
I∂ = I \ I int .

Let X (t)|Mint[X (t)], X (t)|M[X (t)] and X (t)|
ÝM[X (t)] be the identities on the simplicial meshes

Mint[X (t)], M[X (t)] and ÝM[X (t)], respectively. With a slight misuse of notation the
mapping X (t)|M[X (t)] itself is considered as an element in the corresponding piecewise affine
Finite Element space V(M[X (t)])3 on the time-dependent surfaces: X (t) ∈ V(M[X (t)])3,
cf. Equation (2.34).

We consider the discrete anisotropic Willmore flow of ÝM[X (t)] with fixed boundary and
fixed triangles in Mex t[X (t)] = ÝM[X (t)] \M[X (t)], i.e. we consider the evolution of
M[X (t)] with fixed boundary ∂M[X (t)], but in addition taking into account also infor-
mation about the surface normal on Mex t[X 0] =Mex t[X (t)] during the discrete evolution
process. Hence, in the discrete case, we consider the above weak formulation (3.8) not for all
test functions ϑ ∈ H1

0(M[X (t)],R3), but now for test functions Θ(t) ∈ (V int(M[X (t)]))3,
where V int(M[X (t)]) are the linear Finite Element functions of M[X (t)] with vanishing
boundary values, cf. Equation (2.46).

To map between the function spaces V(M[X (t)]) and V int(M[X (t)]]) we define a restric-
tion operator

R : V(M[X (t)])→ V int(M[X (t)])
and an extension operator

E : V int(M[X (t)])→ V(M[X (t)])

that extend a function on ∂M[X (t)] by zero. The corresponding block operators are de-
noted by R : V(M[X (t)])3→ V int(M[X (t)])3 and E : V int(M[X (t)])3→ V(M[X ])3.

Again, a bar on top of a discrete function indicates the corresponding nodal vector, i.e.
X̄ (t) = (X̄ i(t))i∈I int , where X̄ i(t) = (X 1

i (t), X 2
i (t), X 3

i (t)) is the coordinate vector of the ith
inner vertex of the mesh. As in Section 2.4, a nodal vector in R3#I is then EX̄ (t) + X̄ ex t(t),
cf. Equation (2.49), where X̄ ex t(t) is the position vector for the boundary nodes with zero
entries for all interior nodes. Now, we are able to formulate the two variants of the discrete
anisotropic Willmore flow for the case with boundary.
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Variant I: Explicitly encoding the co-normal N co

At first we explicitly encode the discrete co-normal N co. If T is a triangle with at least one
edge on ∂M[X (t)] than N co lies in the plane of T pointing outwards. N co is a fixed function
on ∂M[X (t)] being piecewise constant on the edges. The piecewise constant normal on
each edge is denoted by N(t) in the following, cf. Equations (2.40) and (2.41).

Problem 3.3.1. (Variant I of the semi-discrete anisotropic Willmore flow)
Find a family of triangulated surfaces M[X (t)] with parametrization

X (t) = (X 1(t), X 2(t), X 3(t)) ∈ V(M[X (t)])3

with fixed boundary Mex t[X (t)] and a family of accompanying vector-valued functions

Y (t) = (Y 1(t), Y 2(t), Y 3(t)) ∈ V(M[X (t)])3

such that
∫

M[X (t)]

∂tRX (t) ·Θ(t)da−
∫

M[X (t)]

∇M[X(t)] Y (t) : γzz(N(t))∇M[X(t)]Θ(t)da

= − 2

∫

M[X (t)]

∇M[X(t)] Y (t) : γzz(N(t))∇M[X(t)]Θ(t)da

+ 2

∫

M[X (t)]

N i(t)N l(t) ∇M[X(t)] Y i(t) ·
�

γzz(N(t))∇M[X(t)]Θ(t)l
�

da

−
1

2

∫

M[X (t)]

|Y (t)|2 ∇M[X(t)] X (t) :∇M[X(t)]Θ(t)da ,

(3.10)

holds for all test functions Θ(t) ∈ V int(M[X (t)])3, t > 0 and
∫

M[X (t)]

Y (t) ·Ψ(t)da =

∫

M[X (t)]

�

∇M[X(t)] X (t)γz(N(t))
�

·
�

∇M[X(t)]Ψ(t)N
�

da

−
∫

M[X (t)]

γ(N(t)) ∇M[X(t)] X (t) :∇M[X(t)]Ψ(t)da

+

∫

∂M[X (t)]

γ(N(t))N co ·Ψ(t)dσ

−
∫

∂M[X (t)]

γz(N(t)) · N co N(t) ·Ψ(t)dσ ,

(3.11)

holds for all test functions Ψ(t) ∈ V(M[X (t)])3 and t > 0.
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We can rewrite this problem in matrix formulation as follows. Let {Φi(t)}i∈I be the nodal
basis of V(M[X (t)]). Then {Φi(t)}i∈I int is a basis of V int(M[X (t)]). The representation of
RX (t) and X (t) in the basis is then given by

RX (t) =
∑

j∈I int

X̄ j(t)Φ j(t) ,

X (t) =
∑

j∈I int

X̄ j(t)Φ j(t) +
∑

j∈I\I int

X̄ jΦ j(t).

For the representation of Y (t) we have

Y (t) =
∑

j∈I

Ȳj(t)Φ j(t).

The degrees of freedom are the position vectors X̄ i(t) ∈ R3 for all nodes in N int(t) and cou-
pled with the vector Ȳ (t) ∈ R3#I for all nodes in N (t). Using the notation for the mass and
stiffness matrix we are able to rewrite this problem in matrix formulation:

Let M[X (t)] denote the lumped mass matrix on the discrete surface M[X (t)], cf. Equa-
tions (2.36) and (2.44),

Mi j[X (t)] =

∫

M[X (t)]
I(Φi(t)Φ j(t))da . (3.12)

Via restriction and extension, the mass matrix M int[X (t)] ∈ R#I int ,#I int
corresponds only to

the inner nodes N int(t) is defined as M int[X (t)] = RM[X (t)]E. Mint[X (t)] is the corre-
sponding block matrix. The stiffness matrices are Lγ(N(t))[X (t)], L|Y (t)|

2
[X (t)] (cf. Equa-

tion (2.38)), LN(t)⊗γz(N(t))[X (t)] (cf. Equation (2.39)), LN(t)⊗N(t)
γzz(N(t))

[X (t)] (cf. Equation (2.42))
and Lγzz(N(t))[X (t)] (cf. Equation (2.43)). Furthermore, we define the following vectors

N̄ co,γ[X (t)] := N̄ co
γ [X (t)]− N̄ co

γz
[X (t)] ∈ R3]I , with

N̄ co
γ [X (t)] :=









∫

∂M[X ](t)

γ(N(t))N coΦi(t)dσ









i∈I

∈ R3]I ,

N̄ co
γz
[X (t)] :=









∫

∂M[X ](t)

γz(N(t)) · N co N(t)Φi(t)dσ









i∈I

∈ R3]I , .

The corresponding matrix formulation is then given by

Mint[X (t)]∂t X̄ (t)−RLγzz(N(t))[X (t)]Ȳ (t) =

− 2R
�

Lγzz(N(t))[X (t)]− LN(t)⊗N(t)
γzz [X (t)]

�

Ȳ (t)−
1

2
RL|Y (t)|

2
[X (t)](EX̄ (t) + X̄ ex t(t))
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with

Ȳ (t) =

− (M[X (t)])−1
��

Lγ(N(t))[X (t)]− Lγz(N(t))⊗N(t)[X (t)]
�

(EX̄ (t) + X̄ ex t(t))− N̄ co,γ[X (t)]
�

.

Finally, we use a usual Euler time stepping for ∂t X and approximate

∂t X̄ ((k+ 1)τ)≈
X̄ k+1− X̄ k

τ
,

where τ > 0 is the time step size and (X̄ k)k=0,1,··· ⊂ R3]I int
the sequence of nodal vectors for

each time step. Considering the matrices for the old surface we introduce a sequence of fully
discrete anisotropic mean curvature vectors

�

Ȳ k
�

k=0,1,···
⊂ R3]I , with

Ȳ k+1 =

− (M[X k])−1
�

Lγ(N
k)[X k]− Lγz(N k)⊗N k

[X k]
�

(EX̄ k+1+ X̄ ex t) + (M[X k])−1N̄ co,γ(N k)[X k] .

The implicit time discretization and using matrices for the old surface result in the following
fully discrete problem:

Problem 3.3.2. (Full discrete semi-implicit anisotropic Willmore flow, Variant I)
Given some initial surface M[X 0] we seek a sequence (M[X k])k=1,··· of discrete surfaces such
that

�

Mint[X k] +τRLγzz
[X k](M[X k])−1

�

Lγ[X k]− Lγz⊗N k
[X k]

�

E+τ
1

2
RL|Y |

2
[X k]E

�

X̄ k+1

= τF̄ k +Mint[X k]X̄ k −τRLγzz
[X k](M[X k])−1

��

Lγ[X k]− Lγz⊗N k
[X k]

�

X̄ ex t − N̄ co,γ[X k]
�

with

F̄ k = 2R
�

Lγzz
[X k]− LN k⊗N k

γzz [X k]
�

(M[X k])−1

��

Lγ[X k]− Lγz⊗N k
[X k]

�

(EX̄ k + X̄ ex t)− N̄ co,γ[X k]
�

−
1

2
RL|Y

k|2[X k]X̄ ex t ,

where γ = (N k), γz = γz(N k) and γzz = γzz(N k) are valuated at the surface normal N k of the
old surface X k.

We end up with a linear system of equations to be solved in each time step.
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Figure 3.2: Restoration of a destroyed Wulff shape with anisotropy γ(z) =
3
∑

j=1

Æ

δ2 ‖z‖2+ z2
j

(δ = 0.01) without (first row) and with mesh modification (third row). The grid consists of
8192 triangles. The 5th, 25th and 85th iterations are shown above. Since the triangles de-
generate without remeshing, the surface regularity deteriorates during the iterative scheme
for Willmore flow (first row). Furthermore, a part of the destroyed area of the grid of the
25th and 85th iterations is shown (second and fourth row). In the fourth row the grids of
the corresponding meshes involving edge swaps and edge collapses are shown.
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Variant II: Implicitly encoding the co-normal N co

As a variant of the above scheme we do not explicitly incorporate the co-normal but incor-
porate the discrete surface normals on Mex t[X (t)]. Hence, we are not forced to compute
N̄ co,γ[X (t)]. We skip the integrals over the boundary ∂M[X (t)] in the Equation (3.11) and
exchange the integration domain, replacing ∂M[X (t)] by ∂ ÝM[X (t)]. A motivation for this
modification can be found in NEMITZ [130, Section 5.7.3] and (5.8) in Chapter 5. We get

Problem 3.3.3. (Variant II of the semi-discrete anisotropic Willmore flow)
Find a family of triangulated surfaces M[X (t)] with parametrization X (t) ∈ V(M[X (t)])3
with fixed boundaryMex t[X (t)] and a family of accompanying function Y (t) ∈ V(M[X (t)])3
such that

∫

M[X (t)]

∂tRX (t) ·Θ(t)da−
∫

M[X (t)]

∇M[X(t)] Y (t) : γzz(N(t))∇M[X(t)]Θ(t)da (3.13)

= − 2

∫

M[X (t)]

∇M[X(t)] Y (t) : γzz(N(t))∇M[X(t)]Θ(t)da

−
1

2

∫

M[X (t)]

|Y (t)|2 ∇M[X(t)] X (t) :∇M[X(t)]Θ(t)da

+ 2

∫

M[X (t)]

N i(t)N l(t) ∇M[X(t)] Y i(t) ·
�

γzz(N(t))∇M[X(t)]Θl(t)
�

da ,

for all test functions Θ(t) ∈ V int(M[X (t)])3, t > 0 and
∫

ÝM[X (t)]

Y (t) ·Ψ(t)da =

∫

ÝM[X (t)]

�

∇M[X(t)] X (t)γz(N(t))
�

·
�

∇M[X(t)]Ψ(t)N(t)
�

da

−
∫

ÝM[X (t)]

γ(N(t)) ∇M[X(t)] X (t) :∇M[X(t)]Ψ(t)da

(3.14)

holds for all test functions Ψ(t) ∈ V(M[X (t)])3 and t > 0.

Let eM[X k] and eL[X k] denote the mass and stiffness matrices corresponding to the integration
domain ÝM[X k] instead of M[X k], then we get

Problem 3.3.4. (Full discrete semi-implicit anisotropic Willmore flow (Variant II))
Given some initial surfaceM[X 0], find a sequence (X k)k=1,··· of parametrizations corresponding
to a family of discrete surfaces such that
�

Mint[X k] +τRLγzz
[X k](eM[X k])−1

�

eLγ[X k]− eLγz⊗N k
[X k]

�

E+τ
1

2
RL|Y |

2
[X k]E

�

X̄ k+1

= τF̄ k +Mint[X k]−τRLγzz
[X k](eM[X k])−1

�

eLγ[X k]− eLγz⊗N k
[X k]

�

X̄ ex t
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Figure 3.3: Restoration of a destroyed Wulff shape of Figure 3.2 with grid modifications.
Comparison of variant I (bottom) and variant II (top) of the discretization. We show the
initial surfaces on the left (above with a red surface patch M[X 0]), intermediate time steps
in the middle and the restored surfaces on the right. Both variants obviously lead to very
similar results.

with

F̄ k = 2R
�

Lγzz
[X k]− LN⊗N

γzz [X
k]
�

(eM[X k])−1
��

eLγ[X k]− eLγz⊗N[X k]
�

(EX̄ + X̄ ex t)
�

−
1

2
RL|Y |

2
[X k]X̄ ex t ,

where γ = (N k), γz = γz(N k) and γzz = γzz(N k) are valuated at the surface normal N k of the
old surface X k.

The matrix corresponding to the system of equation is symmetric, but not necessarily positive
definite. We use a biCG-method to solve the full discrete semi-implicit anisotropic Willmore
flow, but our numerical experiments show that a simple CG-solver works well, too.
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Figure 3.4: Anisotropic Willmore flow from an initial sphere with anisotropy γ(z) =
3
∑

j=1

Æ

δ2 ‖z‖2+ z2
j (δ = 0.001) without (first row) and with mesh reparametrization (sec-

ond row). The grid consists of 8192 triangles. Since the triangles degenerate without
reparametrization, the surface regularity deteriorates during the iterative scheme for an-
isotropic Willmore flow (first row). ∂M[X ] = ;. The grid size of the initial mesh varied
between 0.038 and 0.025. The time step size was choosen τ= 10−6.

3.4 Numerical results

For smooth Wulff shapes the corresponding discrete evolutions turn out to be robust, at least
in the experiments we ran. On the background of our surface restoration task, we are in par-
ticular interested in Wulff shapes with at least approximate edges which can be considered
as templates for surfaces with destroyed edges. In case of these approximately singular Wulff
shapes, even for the isotropic case, we observe a significant tangential shift of vertex posi-
tions on the discrete surface which deteriorates the mesh quality significantly, cf. Figure 3.2.
Since spheres are stationary solutions of the isotropic Willmore flow, we expect that discrete
spheres rearrange the nodes and then remain stationary in the discrete algorithm. But this is
not the case for the full discrete semi-implicit Willmore flow corresponding to Problem 3.3.2
or Problem 3.3.4. For compact closed surfaces the Willmore energy is conformally invariant
[24, 169, 173]. The only conformal automorphism of the sphere S2 ⊂ R3 are the Möbius
transformations [17, 134]. In Figure 4.8 of Section 4.5.2 we show the grid degeneration
caused by this fact if we use no grid smoothing technique. For closed surfaces one can op-
timize the grid via conformal parametrization as described in CLARENZ & DZIUK [54] and
OLISCHLÄGER [134, Chapter 5]. This, however, works only for closed surfaces. If the surface
is not closed we have to use other topological mesh regularization during the discrete evo-
lution. Indeed, the use of edge swapping and edge collapsing turned out to be beneficial
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Figure 3.5: We perform node insertion (middle) of a given mesh (left). Then we traverse
over all triangles and swap edges (right).

to compensate these artifacts for smooth Wulff shapes, cf. Figure 3.2. Node insertion or
deletion improve the local length scale of the mesh. We perform edge swapping and edge
collapsing, cf. Figure 3.5, to improve the mesh. Given two triangles Ti = (X i, X2, X3), i = 0, 1
incident to an edge E = (X2, X3). Let Θi be the angle at the node X i of the triangle Ti op-
posite the edge E. If Θi ≤ π, i = 0,1 and Θ0 +Θ1 > (π+ ε) we swap edge E to (X0, X1)
and change the topology of the mesh. In our implementation we have chosen ε = 0.01. An
edge collapse takes an edge E = (X2, X3) in the mesh and collapses it to a single vertex Xnew,
if the length of the edge E is smaller a small real value ε̃. The edge is removed and the
triangles containing this edge collapse to an edge. As mentioned above, the algorithm for
surfaces with boundaries and mesh improvement via edge collapse works only for smooth
Wulff shapes. Choosing δ < 0.01 for the anisotropy in Figure 3.2 the resulting scheme is
not stable any more. For surfaces without boundaries and reparametrization via the method
by CLARENZ & DZIUK [54] we could choose δ = 0.001, if the time step size is of the order
of (∆X )2, where ∆X is the spatial grid size, cf. Figure 3.4. To overcome this difficulties we
have developed a completely new scheme for Willmore flow, which is present in the next
chapter.
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Chapter 4

Natural time discretization for the
isotropic Willmore flow

THE developed Finite Element scheme for anisotropic Willmore flow in Chapter 3 has
three disadvantages. At first, severe tangential distortions have to be compensated for.

Secondly, the developed Finite Element scheme for anisotropic Willmore flow requires the
evaluation of higher order derivatives of the anisotropy γ(·), even though in the relevant
singular case the anisotropy is only Lipschitz continuous. Thirdly, one observes significant
restrictions on the time step size in the above approach. Effectively, one usually has to en-
force time steps τ << (∆X )2, where ∆X is the spatial grid size to ensure stability of the
semi-implicit time discretization. To overcome this difficulties we develop a completely new
scheme for Willmore flow that is based on the idea of natural time discretization schemes for
gradient flows. In each time step a PDE constrained optimization problem has to be solved.
This variational formulation is based on the splitting of dissipation and energy. The Will-
more energy at the new time step is approximated based on an inner, secondary variational
problem describing a time step of mean curvature motion. The latter approximation is given
via the discrete velocity of an implicit Euler time step for mean curvature flow and regarded
as an approximation of the mean curvature vector. It enters the approximation of the actual
Willmore functional, so that the resulting new scheme can be interpreted as a variational
two step scheme.
The starting point was the paper by LUCKHAUS & STURZENHECKER [127] on the natural dis-
cretization of mean curvature motion. They proposed a fully implicit time discretization
based on a variational problem in BV to be solved in each time step. In fact, in each time
step the symmetric distance between two consecutive shapes corresponding to the current
and the next time step is balanced by the time step τ times the perimeter of the shape at
the next time step. This implicit time discretization has already been proposed by ALM-
GREN ET AL. [4]. CHAMBOLLE [36] investigated a reformulation of this approach in terms of
a level set method. A related method for anisotropic mean curvature motion is discussed in
[18, 37].
We ask for a generalization of this type of approach to Willmore flow. Thus, we would like to
balance the squared distance of the next time step geometry at time tk+1 = tk + τ from the
current time step geometry at time tk and a suitable approximation of the Willmore energy
at time tk+1 scaled by the time step size. Solving a fully implicit time discrete problem for
mean curvature motion of the unknown surface at time tk+1, we can regard the correspond-
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Figure 4.1: Different time steps of the Willmore flow of an original ellipsoid curve with 100
vertices is shown (top row). The time step size was chosen of the order of the spatial grid
size (∆X ) = τ = 0.0632847. Willmore flow of a deformed sphere towards a round sphere
is depicted in the bottom row. We show the surface at times t = 0, t = τ, t = 50τ and
t = 150τ, where τ=∆X = 0.02325548045.

ing difference quotient in time as a time discrete, fully implicit approximation of the mean
curvature vector. Based on this mean curvature vector, we can define a Willmore functional.
Thus, we are lead to a nested minimization problem in each time step. In the inner problem
on the new time step an implicit mean curvature vector is identified. Then, the outer prob-
lem is the actual implicit, variational formulation of Willmore flow. Indeed, the resulting two
step time discretization experimentally turns out to be unconditionally stable and effectively
allows for time steps of the order of the spatial grid size. Furthermore, the anisotropic mean
curvature vector can be approximated via a variational time step problem, which conceptu-
ally only involves the anisotropy γ but not its derivatives. Hence, the same will hold true
for a corresponding two step discretization of anisotropic Willmore flow. This chapter has
already been published in OLISCHLÄGER & RUMPF [135].

4.1 Natural time discretization for gradient flows

The new concept for the time discretization of the Willmore flow picks up the variational time
discretization of general gradient flows. Suppose that we are given an energy functional
e[·] on a d-dimensional Riemannian manifold S with metric g, e : S → R. Functional
minimization can be performed by the gradient flow with initial data x0 ∈ S defining a
curve x(t) on the manifold S , cf. Equation (2.30) in Section 2.3, via

∂t x = − gradg e[x] ,
(4.1)

x(0) = x0 .
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Let p ∈M, v ∈ TpM and ex pp : TpM→ S be the exponential map defined to be geov(0),
where geov : R→ S , t 7→ geo(t), is the unique geodesic through p with velocity v at time 0,
i.e. geov(0) = p and ∂t geov(0) = v. We refer to [158, 123, 39] for a more detailed overview.
If gp denotes the scalar product on the tangent space TpM induced by the Riemannian
metric g of the manifold S , then Equation (4.1) leads to finding a curve x(t) with x(0) = x0,
such that

gp( ẋ(t), v) =−



e′[x(t)], v
�

=−∂εe
�

ex pp(ε v)
��

�

ε=0, ∀v ∈ TpM , (4.2)

where ex pp(ε v) = geoε v(1) = geov(ε) for 0≤ ε≤ 1, cf. LEE [123, Lemma 5.8]. Let

ξ(s) = (ξ1(s), · · · ,ξd(s)) ∈ Rd

be the local coordinates of x and (gi j)i, j∈{1,··· ,d} the coefficent matrix corresponding to the
Riemannian metric g, i.e. if {e1, · · · , ed} is a basis of TpM, then we have gi j = gp(ei, e j).
Let g−1 denote its invers. Then, choosing v = e j in Equation (4.2) the gradient flow can be
written in local coordinates:

gi jξ̇ j =−∂ξe[x(ξ)], ∀ j = 1, · · · , d

⇔ ξ̇=−g−1∇ξe[x(ξ)].

Now, we construct time discrete solutions (x k)k=0,1,···, where xk ≈ x(kτ) for the time step
size τ iteratively by solving the following variational problem

x k+1 := argmin
x

dist(x , x k)2+ 2τ e[x] , (4.3)

where dist(·, ·) is the shortest path length on the manifold, given the metric g(·, ·):

dist(x , x k) := inf
c∈Γ

∫ 1

0

p

g(ċ(s), ċ(s))ds ,

with

Γ :=
¦

c ∈ C1
�

�c(0) = x k and c(1) = x
©

.

As an immediate consequence, one obtains the energy estimate

e[x k+1] +
1

2τ
dist(x k+1, x k)2 ≤ e[x k] +

1

2τ
dist(x k, x k)2 = e[x k] .

The new approach is motivated by the following considerations. Typically, in the context of
geodesics in Riemannian geometry one introduces

sqrdist(x , x k) := inf
c∈Γ

∫ 1

0

g(ċ(s), ċ(s))ds .

It is then enough to minimize
∫ 1

0
g(ċ(s), ċ(s))ds, owing to the Cauchy-Schwarz inequality for

the L2-scalar product
 

∫ 1

0

p

g(ċ(s), ċ(s))ds

!2

≤
∫ 1

0

g(ċ(s), ċ(s))ds

with equality iff |ċ| is constant.
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Furthermore, every x ∈M can be written as

x = x k + x − x k = x k +

1
∫

0

ċ(s)ds , ∀c ∈ Γ . (4.4)

To calculate the Euler–Lagrange equation for

1

2τ

1
∫

0

g (ċ, ċ) ds+ e
�

x k +

1
∫

0

ċ(s)ds
�

we consider for a test function ϑ ∈ C1 the disturbed curve c+ εϑ. We get

∂ε

�

1

2τ

1
∫

0

g
�

ċ+ ε ϕ̇, ċ+ ε ϕ̇
�

ds+ e
�

x k +

1
∫

0

(ċ(s) + ε ϑ̇)ds
��

�

�

�

�

�

ε=0

= 0 (4.5)

One the other hand, we can rewrite the gradient flow ∂t x =−gradg e[x] by introducing the
variable s = 1

τ
t. Changing the time derivative ∂t into 1

τ
∂s and using Equation (4.4) we can

rewrite Equation (4.1) as

1

τ
ċ+ gradg e

�

x k +

1
∫

0

ċ(s)ds
�

= 0 .

Multiplying this equation with ϑ̇ and integration over
∫ 1

0
we get

1
∫

0

g
�

1

τ
ċ+ gradg e

�

x k +

1
∫

0

ċ(s)ds
�

, ϑ̇
�

ds̃ = 0

⇔ 1
τ

1
∫

0

g
�

ċ, ϑ̇
�

ds+

1
∫

0

g
�

gradg e
�

x k +

1
∫

0

ċ(s)ds
�

, ϑ̇
�

ds̃ = 0

For the second summand we have
1
∫

0

g
�

gradg e
�

x k +

1
∫

0

ċ(s)ds
�

, ϑ̇
�

ds̃
(2.29)
=

1
∫

0

�

e′
�

x k +
1
∫

0

ċ(s)ds
�

, ϑ̇
�

ds̃

=
�

e′
�

x k +

1
∫

0

ċ(s)ds
�

,

1
∫

0

ϑ̇ds̃
�

(2.28)
= ∂εe

�

x k +

1
∫

0

(ċ(s) + ε ϑ̇)ds
�

�

�

�

�

�

ε=0
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Therefore, we get

∂ε

�

1

2τ

1
∫

0

g
�

ċ+ ε ϑ̇, ċ+ ε ϑ̇
�

ds+ e
�

x k +

1
∫

0

(ċ(s) + ε ϑ̇)ds
��

�

�

�

�

�

ε=0

= 0 ,

which is the Euler–Lagrange equation (4.5). Finally, we end up with the following variational
time discretization for a general gradient flow. In each time step the following problem has
to be solved:

x k+1 = argmin
x

sqrdist(x , x k) + 2τ e[x].

Let us consider some examples for different gradient flows:

Euclidian case. Suppose e[·] : Rd → R is a real valued function. Then we get for the natural
time discretization

x k+1 = arg min
x

1

2τ
|x − x k|2+ e[x] .

If x k+1 is a minimizer then it holds

0=
|x k+1− x k|

τ
· v+ e′[x k+1](v) ∀v ∈ Rd .

This results into an implicit Euler scheme as expected

|x k+1− x k|
τ

=−∇x e[x k+1] .

Generalization to the heat equation. For a function u(x , t)with spatial variable x ∈ Ω⊂ Rd

and time variable t, the heat equation is given by

∂tu−∆xu= 0

with corresponding Euler–Lagrange equation
∫

Ω

∂tuϑ+∇xu · ∇xϑdx = 0 , (4.6)

for all test functions ϑ ∈ C1
0(R

d ,R). The heat equation describes the L2-gradient flow of the
Dirichlet integral

e(u) =
1

2

∫

Ω

|∇xu|2 dx .

The natural time discretization of the L2-gradient flow corresponding to the Dirichlet integral
is then

uk+1 = argmin
u

1

2τ

∫

Ω

�

u− uk
�2

dx +
1

2

∫

Ω

|∇xu|2 dx .
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For a test functions ϑ ∈ C1 we get the fully implicit Euler Scheme

0=

∫

Ω

uk+1− uk

τ
ϑ+∇xuk+1 · ∇xϑdx . (4.7)

4.2 Derivation of the two step time discretization

Before we consider the actual time discretization of Willmore flow, let us briefly review the
time discretization of mean curvature motion.

4.2.1 Variational time discretization of mean curvature motion

Let M[y] be a d-dimensional surface embedded in Rm with m ≥ d + 1 and parameterized
by a mapping y . Let h be the mean curvature. Following the above abstract approach the
variational time discretization of mean curvature motion for a given surface M =M[x]
defines the mapping y = y[x] surface M[y] of the next time step as

y[x] = arg min
y

dist(M[y],M[x])2+ 2τ̃

∫

M[y]
da, (4.8)

where τ̃ is the considered time step, dist(·, ·) is the L2-distance between surfaces and the
surface area of M[y] as the underlying energy. Then, the mean curvature motion is the
L2-gradient flow of the surface area

a[y] =

∫

M[y]
da .

Since −h n=∆M[y] y , cf. Equation (2.8), the flow is given by

∂t y =∆M[y] y .

The Euler–Lagrange equation for this problem is, cf. Equation (2.11),

0=

∫

M[y]
∂t y · ϑda+

∫

M[y]
∇M[y] y :∇M[y]ϑda

for all ϑ ∈ C1
0(M[y],Rm). A : B = tr(AT B) denotes scalar product to the Frobenius norm,

cf. Definition 2.1.8. Because the geometrical counterpart of the Euclidian Laplacian ∆ on
smooth surfaces is the Laplace–Beltrami operator ∆M[y] the Euler–Lagrange equation can
be considered as a generalization for the variational formulation of the heat equation, cf.
Equation (4.6).
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Figure 4.2: We pick up two examples of CHAMBOLLE [36] for the evolution under the curve
shortening flow with the variational time discretization of mean curvature motion. The time
step τ is chosen of the order of the spatial grid size. The red curve is the initial curve that
converges to a round point. We show the evolution of the left examples for iterations 1, 3,
5, 7, 9, 11, 13, 15, 17 and for the second examples for iterations 1, 5, 10, 15, 20, 25, 27, 28.

Applying a classical scheme for a single semi-implicit time step of mean curvature motion
already proposed by DZIUK [81] the resulting weak form of the Euler–Lagrange equations is

0=

∫

M[x]
(y − x) · ϑ+ τ̃∇M[x] y :∇M[x]ϑda

for test functions ϑ, cf. Equation (4.7). Considering the corresponding strong form the
corresponding Euler–Lagrange equations we obtain the following variational problem:

Given a surfaceM[x] parameterized by a mapping x we ask for a mapping y = y[x] which
solves the minimization problem

y[x] =argmin
y

e[x , y] , with

(4.9)

e[x , y] =

∫

M[x]

(y − x)2+ τ̃|∇M[x] y|2 da

for given x . In what follows the time step size τ̃ is chosen independent of the time step size
for the actual time discrete Willmore flow. In our later spatially discrete model we consider
a τ̃ equal to the square of the spatial grid size. In Figure 4.2 we show two examples for the
evolution under the curve shortening flow with the variational time discretization of mean
curvature motion.



66 CHAPTER 4. NATURAL TIME DISCRETIZATION FOR ISOTROPIC WILLMORE FLOW

4.2.2 Two step time discretization for the isotropic Willmore flow

In this section we derive the two step time discretization for the isotropic Willmore flow. The
idea is to solve the fully implicit time discrete problem (4.9) for mean curvature motion for
the unknown surface. We can then regard the corresponding difference quotient in time as a
time discrete, fully implicit approximation of the mean curvature vector. Based on this mean
curvature vector, we can define a Willmore functional and the corresponding natural time
discretization:
We deduce from the time continuous evolution equation ∂t x = h n that the difference quo-
tient y[x]−x

τ̃
, where y[x] is a solution for the fully implicit time discrete problem (4.9) for

mean curvature motion, can be considered as a regularized approximation of the mean cur-
vature vector h n on M[x]. Thus, the functional

1

2

∫

M[x]

(y[x]− x)2

τ̃2 da

approximates the Willmore functional on M[x]. This enables us to define a time discretiza-
tion of Willmore flow which does no require the explicit evaluation of the mean curvature
on the unknown surface of the next time step. Indeed, in the abstract variational problem

dist(M[x],M[x k])2+τ

∫

M[x]
h2 da→min

we consider the same linearization of the L2-distance as for mean curvature motion and use
the above approximation of the Willmore energy. Finally, we obtain the following scheme:

Given an initial surface M[x0] we define a sequence of surfaces M[x k] with k = 1, 2, · · · ,
where x k+1 minimizes the functional

w[x k, x , y[x]] =

∫

M[xk]

(x − x k)2 da+
τ

τ̃2

∫

M[x]
(y[x]− x)2 da

for given xk. Hence, x k is assumed to approximate x(tk) with tk = kτ for the given time
step τ. Thus, in each time step we have to solve the nested variational problem

x k+1 = arg min
x

w[x k, x , y[x]] with (4.10)

y[x] = arg min
y

e[x , y] . (4.11)

The inner problem is quadratic, hence the Euler–Lagrange equation is a linear elliptic PDE
and we end up with a PDE constrained optimization problem for each time step.
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Figure 4.3: Evolution of the two examples from Figure 4.2 under the two step time dis-
cretization of the Willmore flow. The computational data are τ=∆X and τ̃= (∆X )2, where
∆X = 0.19 in the left example and ∆X = 0.34 in the right example of the initial red curve.
λ was chosen 0.03. We show the evolution of the left examples for iterations 1, 5, 10, 20
and for the second examples for iterations 1, 10, 20, 40.

To be more explicit, let us examine circles in the plane. Under Willmore flow circles expand
according the ODE

Ṙ(t) =
1

2
R(t)−3

for the radius. In comparison to this the radius Rk+1 in the above time discrete scheme turns
out to be a solution of the nonlinear equation

R− Rk

τ
=

1

2

R4− 3R2τ

(R2+τ)3 Rk
,

which is an implicit first order scheme for the above ODE. For a more detailed exposition we
refer to Section 4.5.1.
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Figure 4.4: The grids of the evolution under Willmore flow of the initial ellipsoid curve and
deformed sphere of Figure 4.1 are shown at the same times. We did not reparametrize the
curve since our scheme does not suffer from significant tangential motions.

4.3 Finite Element space discretization

In this section we discretize Equations (4.10) and 4.11 in space with piecewise affine Fi-
nite Elements as already introduced in Section 2.4. Again, we consider simplicial meshes
M[X ] - polygonal curves for d = 1 and triangular surfaces for d = 2 - as approximations
of the d-dimensional surfaces M[x]. As above, X is the identity on the simplicial mesh
M[X ] which is described by a vector X̄ of vertex positions of the mesh. As in Section 2.4
we use upper case letter for discrete quantities and lower case letter for the corresponding
continuous quantities. Furthermore, a bar on top of a discrete function indicates the corre-
sponding nodal vector, i.e. X̄ = (X̄ i)i∈I , where X̄ i = (X 1

i , · · · , X m
i ) is the coordinate vector of

the ith vertex of the mesh and I denotes the index set of vertices. With a slight misuse of
notation the mapping X itself is considered as an element in the corresponding piecewise
affine Finite Element space V(M[X ])m. In particular in accordance to Definition 2.35 in
Section 2.4 we recover X̄ = (X i)i∈I . Hence, given some initial parametrization X 0 of the sur-
face M[X 0] we seek a sequence (X k)k=1,2,··· of parametrizations corresponding to discrete
surfaces (M[X k])k=1,2,···.

Now, we have all the ingredients at hand to derive the fully discrete two step time discretiza-
tion of Willmore flow, cf. Figure 4.4, which can be regarded as a discrete counterpart of
(4.10). Given a discrete surface M[X k] in time step k we define X k+1 ∈ V(M[X k])m as the
minimizer of the following spatially discrete, nested variational problem

X k+1 = arg min
X∈V(M[X k])m

W[X k, X , Y [X ]] with

(4.12)
Y [X ] = arg min

Y∈V(M[X ])m
E[X , Y ] ,
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where

E[X , Y ] :=

∫

M[X ]

(Y − X )2+ τ̃|∇M[X ]Y |2 da

=M[X ](Ȳ − X̄ ) · (Ȳ − X̄ ) + τ̃L[X ]Ȳ · Ȳ ,

W[X k, X , Y ] :=

∫

M[X k]

(X − X k)2 da+
τ

τ̃2

∫

M[X ]
(Y − X )2 da

=M[X k](X̄ − X̄ k) · (X̄ − X̄ k) +
τ

τ̃2 M[X ](Ȳ − X̄ ) · (Ȳ − X̄ )

are the straightforward spatially discrete counterpart of the functionals e[x , y] and
w[x k, x , y], respectively. Here, M[X ] denote the mass matrix and L[X ] the stiffness ma-
trix, i.e.

Mi j[X ] =

∫

M[X ]
ΦiΦ j da ,

Li j[X ] =

∫

M[X ]
∇M[X ]Φi · ∇M[X ]Φ j da ,

i, j ∈ I , with corresponding block matrices M[X ] and L[X ] in Rm]I ,m]I

M[X ] =









M[X ]
. . .

M[X ]









,

L[X ] =









L[X ]
. . .

L[X ]









,

cf. Equations (2.36), (2.44) and (2.37) in Section 2.4. In analogy to the continuous case for
given X Y [X ] requires to solve

0= ∂Y E[X , Y ](Θ) = ∂εE[X , Y + εΘ]
�

�

ε=0

=

∫

M[X ]

(Y − X ) ·Θ+ τ̃∇M[X ]Y :∇M[X ]Θda

for all test functions Θ ∈ V(M[X ])m. Therefore the nodal vector Ȳ [X ] solves the linear
system of equations

(M[X ] + τ̃L[X ]) Ȳ [X ] =M[X ] X̄ . (4.13)
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4.4 Numerical solution of the optimization problem

In this section, we discuss how to numerically solve in each time step the nonlinear optimiza-
tion problem (4.12). Here, we will confine to a gradient descent approach or a sequential
quadratic programming (SQP) approach that is a Newton like method and take into account
a suitable duality technique to effectively compute the gradient and the Hessian of the energy
functional

cW[X ] :=W[X k, X , Y [X ]]

given the fact that the argument Y [X ] is a solution of the inner minimization problem and
as such solves the linear system of equations (4.13). Indeed, we obtain for the variation of
cW in a direction Θ ∈ V(M[X k])m

∂X
cW[X ](Θ) = ∂X W[X k, X , Y [X ]](Θ)+ ∂Y W[X k, X , Y [X ]]

�

∂X Y [X ](Θ)
�

.

A direct computation of ∂X Y [X ](Θ) would require the solution of the inner minimization
problem and thus specifically a linear system, cf. (4.13), would have to be solved for
every test function Θ. This can be avoided applying the following duality argument, cf.
HASLINGER & MÄKINEN [108, Chapter 3] and HINZE ET AL. [110, Chapter 1.6]:

From the optimality of Y [X ] in the inner problem, we deduce the equation

0= ∂Y E[X , Y [X ]](Ψ)

for any test function Ψ ∈ V(M[X ])m. Now, differentiating with respect to X we obtain

0= ∂X
�

∂Y E[X , Y [X ]](Ψ)
�

(Θ)

= ∂X∂Y E[X , Y ](Ψ,Θ)+ ∂ 2
Y E[X , Y [X ]](Ψ,∂X Y [X ](Θ))

for any test function Ψ. Let us now define P ∈ V(M[X k])m as the solution of the dual
problem

∂ 2
Y E[X , Y [X ]](P,Υ) = ∂Y W[X k, X , Y [X ]](Υ) . (4.14)

for all test functions Υ ∈ V(M[X k])m. Now, choosing Υ = ∂X Y [X ](Θ) and Ψ = P one
obtains

�

∂Y W
�

[X k, X , Y [X ]]
�

∂X Y [X ](Θ)
�

=−∂X∂Y E[X , Y ](P,Θ) .

Thus, we can finally rewrite the variation of cW with respect to X in a direction Θ as

∂X
cW[X ](Θ) = ∂X W[X k, X , Y [X ]](Θ)− ∂X∂Y E[X , Y ](P,Θ). (4.15)

The solution P of the dual problem (4.14) requires to solve
∫

M[X ]

P ·Ψ+ τ̃∇M[X ]P :∇M[X ]Ψda =

∫

M[X ]

τ

τ̃2 (Y − X ) ·Ψda

for all test functions Ψ. In matrix vector notation, this can be written as the linear system of
equations

(M[X ] + τ̃L[X ]) P̄ =
τ

τ̃2 M[X ](Ȳ − X̄ ) .
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The terms on the right hand side of (4.15) are evaluated as follows

�

∂X W
�

[X k, X , Y ](Θ) = 2M[X k](X̄ − X̄ k) · Θ̄ + 2
τ

τ̃2 M[X ](X̄ − Ȳ ) · Θ̄

+
τ

τ̃2 (∂X M[X ](Θ))(Ȳ − X̄ ) · (Ȳ − X̄ ) ,

∂X∂Y E[X , Y ](P,Θ) = ∂X
�

2M[X ](Ȳ − X̄ ) · P̄ + 2τ̃L[X ]Ȳ · P̄
�

(Θ)

= 2(∂X M[X ](Θ))(Ȳ − X̄ ) · P̄ − 2M[X ]Θ̄ · P̄

+ 2τ̃(∂X L[X ](Θ))Ȳ · P̄ .

The variations of the mass and stiffness matrix with respect to a variation Θ of the simplicial
grid,

∂X M[X ](Θ) =









∂X M[X ](Θ)
∂X M[X ](Θ)

∂X M[X ](Θ)









,

∂X L[X ](Θ) =









∂X L[X ](Θ)
∂X L[X ](Θ)

∂X L[X ](Θ)









,

where

∂X M[X ](Θ) = ∂εM[X + εΘ]
�

�

ε=0 and ∂X L[X ](Θ) = ∂εL[X + εΘ]
�

�

ε=0 ,

are calculated in Section 2.4.1. Finally, we can compute the descent direction in Rm]I of the
energy cW at a given simplicial mesh M[X ] described by the nodal vector X̄ and obtain

gradX
cW[X ] =

�

∂X
cW[X ](Φr es)

�

r∈I , s=1,··· ,m
,

where es denotes the sth coordinate direction in Rm.

In the concrete numerical Algorithm 4.1 we now perform a gradient descent method with
the Amijo step size control [7, 134] starting from the initial position given by the previous
time step. The Armijo’s line search strategy consists of finding

ArmijoStepSize
�

cW , X , D
�

:=max
§

β n : n ∈ Z and cW[X + β n D]≤cW[X ] +αβ n gradX
cW[X ] · D

ª

,

with α,β ∈ (0,1) be fixed and D be a given decent direction, such that gradX
cW[X ] · D < 0.

We choose the parameters as α = 0.25 and β = 0.5 in the alogorithm. This strategy ensures
that the energy decreases in every step.
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Algorithm 4.1: Gradient decent method for two step time discrete Willmore flow

input data: surface M[X 0];
calculate spatial grid size ∆X 0;
set time step sizes τ=∆X 0 and τ̃= τ2;
set X̄ k = X̄ 0;
set counter for the two step time discretization k = 0;
repeat

set counter of the gradient decent method l = 0;
set X̄ k,l = X̄ k;
repeat

solve
�

M[X k,l] + τ̃L[X k,l]
�

Ȳ =M[X k,l] X̄ ;

solve
�

M[X k,l] + τ̃L[X k,l]
�

P̄ = τ

τ̃2 M[X k,l](Ȳ − X̄ k,l+1);

D =
�

∂X W[X k, X k,l , Y ](Φr es)− ∂X∂Y E[X k,l](P,Φr es)
�

r∈I , s=1,··· ,m
;

X̄ k,l+1 = X̄ k,l− ArmijoStepSize
�

cW , X k,l , D
�

D;
l ← l + 1;

until |X̄ k,l+1− X̄ k,l |< ε ;

X̄ k+1 = X̄ k;
k← k+ 1;

until |X̄ k+1− X̄ k|< ε ;

One of the most effective methods for nonlinear constrained optimization generates steps
by solving quadratic subproblems. We refer to NOCEDAL & WRIGHT [133] for an overview
on numerical optimization. This sequential quadratic programming (SQP) approach
can be used to solve problems with significant nonlinearities in the contraints. The sim-
plest derivation of SQP methods views them as an application of Newton’s methods to the
Karush–Kuhn–Tucker (also known as KKT) optimality conditions, cf. KARUSH [112] and
KUHN & TUCKER [116]. The KKT conditions are the necessary condition for a solution in
nonlinear programming to be optimal. We consider the following Lagrangian function for
problem (4.12)

L[X , Y, P] =W[X k, X , Y ]− ∂Y E[X , Y ](P)

for the now independent unknowns X , Y ∈ Rm]I and Lagrange parameter P ∈ Rm]I . The
first-order KKT conditions are









∂X L[X , Y, P](Θ)

∂Y L[X , Y, P](Θ)

∂P L[X , Y, P](Θ)









=









∂X W[X k, X , Y ](Θ)− ∂X∂Y E[X , Y ](P,Θ)

∂Y W[X k, X , Y ](Θ)− ∂Y∂Y E[X , Y ](P,Θ)

−∂Y E[X , Y ](Θ)









= 0 ,

for any test functions Θ ∈ V(M[X k])m. The first equation corresponds to equation (4.15),
the second to equation (4.14) and the third to equation (4.13). Together with the above
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calculations the gradient of L is given by

grad[X ,Y,P]L[X , Y, P] =









∂X L[X , Y, P](Φr es)

∂Y L[X , Y, P](Φr es)

∂P L[X , Y, P](Φr es)









r∈I , s=1,··· ,m

.

For a test functions Θ ∈ V(M[X k])m the components of the gradient of L are

∂X L[X , Y, P](Θ) =2M[X k](X̄ − X̄ k) · Θ̄ + 2
τ

τ̃2 M[X ](X̄ − Ȳ ) · Θ̄

+ (∂X M[X ](Θ))(Ȳ − X̄ ) ·
� τ

τ̃2 (Ȳ − X̄ )− 2 P̄
�

+ 2M[X ]Θ̄ · P̄ − 2τ̃(∂X L[X ](Θ))Ȳ · P̄ ,

∂Y L[X , Y, P](Θ) = 2
τ

τ̃2 M[X ](Ȳ − X̄ ) · Θ̄− 2 (M[X ] + τ̃L[X ]) P̄ · Θ̄,

∂P L[X , Y, P](Θ) = 2M[X ]X̄ · Θ̄− 2 (M[X ] + τ̃L[X ]) Ȳ · Θ̄.

Now, to set up Newton’s method, we also need the Hessian of L,

Hess[X ,Y,P]L[X , Y, P] =









∂X∂X L(Φr es,Φr̃ es̃) ∂Y∂X L(Φr es,Φr̃ es̃) ∂P∂X L(Φr es,Φr̃ es̃)

∂X∂Y L(Φr es,Φr̃ es̃) ∂Y∂Y L(Φr es,Φr̃ es̃) ∂P∂Y L(Φr es,Φr̃ es̃)

∂X∂P L(Φr es,Φr̃ es̃) ∂Y∂P L(Φr es,Φr̃ es̃) ∂P∂P L(Φr es,Φr̃ es̃)









with r, r̃ ∈ I and s, s̃ = 1, · · · , m. For test functions Θ,Ψ ∈ V(M[X k])m the components of
the first row of the Hessian of L are given by

∂X∂X L(Θ,Ψ) =2M[X k]Ψ̄ · Θ̄ + 2
τ

τ̃2 M[X ]Ψ̄ · Θ̄− 2τ̃(∂ 2
X L[X ](Θ,Ψ))Ȳ · P̄

+ (∂ 2
X M[X ](Θ,Ψ))(Ȳ − X̄ ) ·

� τ

τ̃2 (Ȳ − X̄ )− 2 P̄
�

+ 2(∂X M[X ](Θ))
� τ

τ̃2 (X̄ − Ȳ ) + P̄
�

· Ψ̄

+ 2(∂X M[X ](Ψ))
� τ

τ̃2 (X̄ − Ȳ ) + P̄
�

· Θ̄,

∂Y∂X L(Θ,Ψ) =− 2
τ

τ̃2 M[X ]Ψ̄ · Θ̄− 2τ̃(∂X L[X ](Θ))Ψ̄ · P̄

− 2(∂X M[X ](Θ))
� τ

τ̃2 (X̄ − Ȳ ) + P̄
�

· Ψ̄,

∂P∂X L(Θ,Ψ) =− 2 (∂X M[X ](Θ))(Ȳ − X̄ ) · Ψ̄

+ 2M[X ]Θ̄ · Ψ̄− 2τ̃(∂X L[X ](Θ))Ȳ · Ψ̄ ,



74 CHAPTER 4. NATURAL TIME DISCRETIZATION FOR ISOTROPIC WILLMORE FLOW

whereas for the components of the second row of the Hessian of L we have

∂X∂Y L(Θ,Ψ) =∂Y∂X L(Ψ,Θ),

∂Y∂Y L(Θ,Ψ) =2
τ

τ̃2 M[X ]Ψ̄ · Θ̄,

∂P∂Y L(Θ,Ψ) =− 2 (M[X ] + τ̃L[X ]) Ψ̄ · Θ̄ .

The third row of the Hessian of L consists of the entries ∂X∂P L(Θ,Ψ) = ∂P∂X L(Ψ,Θ),
∂Y∂P L(Θ,Ψ) = ∂P∂Y L(Ψ,Θ) and ∂P∂P L(Θ,Ψ) = 0. Thus, the Newton step from the iterate
(X k,l , Y l , P l) is given by







X̄ k,l+1

Ȳ l+1

P̄ l+1






=







X̄ k,l

Ȳ l

P̄ l






+







∆X̄ l

∆Ȳ l

∆P̄ l






, (4.16)

where we have to solve in each iteration of the Newton Algorithm 4.2

Hess[X ,Y,P]L[X k,l , Y l , P l]
�

∆X̄ l , ∆Ȳ l , ∆P̄ l
�T
=−grad[X ,Y,P]L[X k,l , Y l , P l] . (4.17)

There is an alternative way to view iteration (4.16) and (4.17) namely as the solution
of a quadratic program. At first we introduce some notation. We identify the variations
of the mass and stiffness matrix with third order tensors ∂X M and ∂X L that map a vector
V̄ = (V k

j ) j∈I ,k=1,··· ,m ∈ Rm]I to a matrix via

(∂X M)V̄ =
�

∂X M(r̃,s̃)( j,k)[X ](Φr es)V
k
j

�

r,r̃∈I ,s,s̃=1,··· ,m
∈ Rm]I ,m]I (4.18)

and

(∂X L)V̄ =
�

∂X L(r̃,s̃)( j,k)[X ](Φr es)V
k
j

�

r,r̃∈I ,s,s̃=1,··· ,m
∈ Rm]I ,m]I . (4.19)

Then we are able to define a matrix

A[X , Y ] := grad[X ,Y ](∂P L[X , Y, P])

=− grad[X ,Y ](∂Y E[X , Y ])

=− 2

 

(∂X M)(Ȳ − X̄ )−M[X ] + τ̃(∂X L[X ])Ȳ

M[X ] + τ̃L[X ]

!

.

Let us remark that A is independent of P and that we identify

A[X , Y ](P) =− grad[X ,Y ](∂Y E[X , Y ](P)) .
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Algorithm 4.2: Newton method for two step time discrete isotropic Willmore flow

input data: surface M[X 0];
calculate spatial grid size ∆X 0;
set time step sizes τ=∆X 0 and τ̃= τ2;
set X̄ k = X̄ 0;
set counter for the two step time discretization k = 0;
repeat

set counter of the Newton method l = 0;
set X̄ k,l = X̄ k;
set Ȳ l = X̄ k;
set P̄ l = 0;
repeat

calculate H := Hess[X ,Y,P]L[X k,l , Y l , P l];

calculate G := grad[X ,Y,P]L[X k,l , Y l , P l];

solve H
�

∆X̄ , ∆Ȳ , ∆P̄
�T
=−G;

D :=
�

∆X̄ , ∆Ȳ , ∆P̄
�T

;

σ :=ArmijoStepSize
h

g,
�

X̄ k,l , Ȳ l , P̄ l
�T

, D
i

;
�

X̄ k,l+1, Ȳ l+1, P̄ l+1
�T
=
�

X̄ k,l , Ȳ l , P̄ l
�T
+σ D;

l ← l + 1;
until D < ε ;

X̄ k+1 = X̄ k;
k← k+ 1;

until |X̄ k+1− X̄ k|< ε ;

Together with P̄ l+1 = P̄ l +∆P̄ l we can write iteration (4.17) as

 

Hess[X ,Y ]L[X k,l , Y l , P l] A[X k,l , Y l]

AT[X k,l , Y l] 0

!

�

(∆X̄ l , ∆Ȳ l)
∆P̄ l

�

=

 

−grad[X ,Y ]W[X
k, X k,l , Y l] + grad[X ,Y ](∂Y E[X k,l , X l](P l))

∂Y E[X k,l , Y l]

!

. (4.20)

If we subtract grad[X ,Y ](∂Y E[X k,l , X l](P l)) from both sides of the first equation of (4.20) we
obtain
 

Hess[X ,Y ]L[X k,l , Y l , P l] A[X k,l , Y l]

AT[X k,l , Y l] 0

!

�

(∆X̄ l , ∆Ȳ l)
P̄ l+1

�

=

 

−grad[X ,Y ]W[X
k, X k,l , Y l]

∂Y E[X k,l , Y l]

!

.
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Suppose that at the iterate (X k,l , Y l , P l) we model problem (4.12) using the quadratic pro-
gram

min
(∆X̄ ,∆Ȳ )

W[X k, X k,l , Y l] + grad[X ,Y ]W[X
k, X k,l , Y l] · (∆X̄ ,∆Ȳ ) (4.21)

+
1

2
(∆X̄ ,∆Ȳ )T Hess[X ,Y ]L[X

k,l , Y l , P l](∆X̄ ,∆Ȳ )

subject to AT[X k,l , Y l](∆X̄ ,∆Ȳ )− ∂Y E[X k,l , Y l] = 0. (4.22)

If Hess[X ,Y ]L[X , Y, P] is positive definite on the tangent space of the optimality condition of
Y , that is, Z̄ T Hess[X ,Y ]L[X , Y, P]Z̄ > 0 for all Z̄ 6= 0 such that A[X , Y ]Z̄ = 0, this problem has
a unique solution (∆X̄ l ,∆Ȳ l , Z̄ l) that satisfies

0= Hess[X ,Y ]L[X
k,l , Y l , P l](∆X̄ l ,∆Ȳ l) + grad[X ,Y ]W[X

k, X k,l , Y l] (4.23)

+ A[X k,l , Y l]Z̄ l

0= AT[X k,l , Y l](∆X̄ l ,∆Ȳ l)− ∂Y E[X k,l , Y l]. (4.24)

The vectors (∆X̄ l ,∆Ȳ l) and Z̄ l can be identified with the solution of the Newton equa-
tion (4.20). We have that P̄ l+1 = Z̄ l and that (∆X̄ l ,∆Ȳ l) solves (4.21), (4.22) and (4.17).

The new iterate (X k,l+1, Y l+1, P l+1) can therefore be defined either as the solution of the
quadratic programm (4.21), (4.22) or as the iterate generated by the Newton method (4.16),
(4.17). For the analysis the Newton point of view is useful, whereas the SQP framework en-
ables us to derive practical algorithms, cf. Algorithm 4.3.

We solve the quadratic programm by solving the linear system of equations (4.23) and (4.24)
that are the KKT-conditions for the quadratic programm. If we replace the linear term
grad[X ,Y ] W[X k, X k,l , Y l] · (∆X̄ ,∆Ȳ ) by grad[X ,Y ] L[X k,l , Y l , P l] · (∆X̄ ,∆Ȳ ) in the objected
(4.21) of the quadratic program, (4.21) is a quadratic approximation of the Lagrangian
function. This motivates our choice of the quadratic model. We first replace the nonlinear
program (4.12) by the problem of solving the KKT optimality conditions for the correspond-
ing Lagrangian, then we make a quadratic approximation to the Lagrangian and a linear ap-
proximation to the constrains to obtain (4.21) and (4.22). Replacing Hess[X ,Y ]L[X k,l , Y l , P l]
in (4.21) by the identity matrix leads to the gradient decent method, whereas an update
matrix to a Quasi–Newton method. The SQP approach with Hess[X ,Y ]L[X k,l , Y l , P l] can be
shown to be quadratically convergent, cf. NOCEDAL & WRIGHT[133, Theorem 18.4].

In our case, the Hessian of L, Hess[X ,Y,P]L[X , Y, P], is symmetric, but in general not positive
definite. Nevertheless, we can use a CG-solver in the Newton and SQP method. We observed
that in some cases, i.e. if the grid consists of triangles, where the ration between longest
edge and radius of the inscribed circle is greater or equal of the order of 10−6, cf. e.g. Fig-
ure 4.16, the matrix is symmetric but not positive definite. Then, we apply a Cholesky solver
after multiplying the linear system of equations with the transpose of the system matrix, i.e.
instead of solving AX̄ = B̄, A∈ Rr,r , X̄ , B̄ ∈ Rr with r = {2,3}m]d, we solve AT AX̄ = AT B̄. Let
Z = (ZX , ZY ) 6= 0, ZX , ZY ∈ V(M[X ])m, then, the tangent space of the optimality conditions
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Algorithm 4.3: SQP method for two step time discrete isotropic Willmore flow

input data: surface M[X 0];
calculate spatial grid size ∆X 0;
set time step sizes τ=∆X 0 and τ̃= τ2;
set X̄ k = X̄ 0;
set counter for the two step time discretization k = 0;
repeat

set counter of the SQP method l = 0;
set X̄ k,l = X̄ k;
set Ȳ l = X̄ k;
set P̄ l = 0;
repeat

calculate W[X k, X k,l , Y l] and grad[X ,Y ]W[X
k, X k,l , Y l];

calculate Hess[X ,Y ]L[X k,l , Y l , P l];
calculate AT[X k,l , Y l] and −∂Y E[X k,l , Y l];
solve (4.21), (4.22) to obtain (∆X̄ l ,∆Ȳ l) and Z̄ l;
set X̄ k,l+1 = X̄ k,l +∆X̄ l;
set Ȳ l+1 = Ȳ l +∆Ȳ l;
set P̄ l+1 = Z̄ l;
l ← l + 1;

until |(X k,l+1, Y l+1, P l+1)− (X k,l , Y l , P l)|< ε ;

X̄ k+1 = X̄ k;
k← k+ 1;

until |X̄ k+1− X̄ k|< ε ;

of Y , i.e. A[X , Y ]Z̄ = 0, is 0=−grad[X ,Y ](∂Y E[X , Y ](Z)) or equivalently

0=

 

2(∂X M)(X̄ − Ȳ )Z̄X + 2M[X ]Z̄X − 2τ̃(∂X L[X ])Ȳ Z̄X

M[X ]Z̄Y + τ̃L[X ]Z̄Y

!

. (4.25)

Differenziation of the two Equations in (4.25) w.r.t. X in direction P and multiplication with
Z̄ T

X and Z̄ T
Y , respectively, reduces inequality Z̄ T Hess[X ,Y ]L[X , Y, P]Z̄ > 0 to

2Z̄ T
X M[X k]Z̄X + 2

τ

τ̃2 Z̄ T
X M[X ]Z̄X + 2

τ

τ̃2 Z̄ T
X M[X ]Z̄X > 0.

Using mass lumping, cf. Equation (2.44) and THOMÉE [163]), the mass matrices are diagonal
with positive diagonal entries and therefore positive definite. Since additionally

Z̄ T L[X ]Z =

∫

M[X ]
∇M[X ]Zk · ∇M[X ]Zk > 0

for Z ∈ V(M[X ]) with non-vanishing support, the matrix M[X ]+τL[X ] is positive definite
and we use a CG-solver in the gradient decent method.
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Following the same arguments in the anisotropic case we also end up with a gradient descent
or SQP method, where the inner problem, i.e. a single fully implicit time step of anisotropic
mean curvature motion, is solved with a Newton method, too. There, we also use a Cholesky
solver.

4.5 Numerical results

We have applied the developed numerical algorithm to the evolution of curves in R2 and R3

and of two-dimensional surfaces in R3. Here, the presented results in particular demonstrate
the robustness of the proposed method. In fact, the applications underline that time steps
up to the order the spatial grid size ∆X are feasible.

4.5.1 Elastic flow for curves

Since circles expand under the Willmore flow, we consider a slight generalization of the
above Willmore flow model. In fact, we add λ a[x] to the Willmore energy, where λ is
a fixed constant and a[x] denotes the length of the curve. Here, λ can be regarded as a
Lagrangian multiplier with respect to a length constraint. Hence, for proper choices of λ the
generalized model avoids expansion.
Let M[X ] represents a discrete closed curve as in Section 2.4, i.e. each element Ti, i ∈ I ,
of a polygonal curve is a line segment with nodes X i−1 and X i. Here, we assume a cyclic
indexing, i.e. we identify the indices i = 0 and i = ]I for closed curves with X0 = X]I . Then,
we obtain for the discrete length functional

A[X ] =
∑

i∈I

Q i,

where Q i = |X i− X i−1| is the length of the ith line segment. Furthermore, its gradient vector
in Rm]I is given by

gradX A[X ] = L[X ]X̄ .

At first we have studied the evolution of circles in R2:

Comparison to exact solutions for radially symmetric evolution

The mean curvature for a circle M[x] in the plane with radius r is given by h = r−1. If
n is the normal to the curve we get |∇M[X ]n|2 = ‖n′(t, s)‖2 = r(t)−2. Then, for radially
symmetric evolution of curves under the Willmore flow we see by Equation (2.33) that the
solution can be described by an ordinary differential equation of the radius

ṙ(t) =
1

2
r(t)−3.

Therefore, for a positiv initial radius r(0) = r0 the evolution in time of the Willmore flow for
the radius r is given by

r(t) =
�

r4
0 + 2t

�
1
4 .
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Step (k) Exact solution (r0(t)) Numerical solution (Rk+1) L∞-Error

0 1.0019 1.0019 6.5337*10−6

1 1.0039 1.0039 1.2959*10−5

2 1.0058 1.0058 1.9278*10−5

3 1.0078 1.0077 2.5493*10−5

4 1.0097 1.0096 3.1607*10−5

5 1.0116 1.0115 3.7623*10−5

10 1.0210 1.0209 6.6291*10−5

102 1.1578 1.1574 3.5201*10−4

103 1.7272 1.7267 5.6002*10−4

104 2.9901 2.9897 3.9209*10−3

Table 4.1: A circle of radius r0 = 1 expands in two dimension due to its propagation via
Willmore flow. The exact solution (r0(t) = (r4

0 + 2t)
1
4 ) and the corresponding discrete so-

lution computed by the SQP approach of the two step time discretization for 2000 polygon
vertices and a time step size which equals the grid size are calculated for different time steps.
The L∞-Error is the maximum of the absolut value of the difference between r0((k + 1)τ)
and ‖X̄ k+1‖.

To calculate the in space continuous and time discrete radially symmetric solutions for (4.11)
we have to solve the mean curvature flow for y , that is

ṙ(t) =−r(t)−1.

The evolution in time of the radius must hence be given by

r(t) =
�

r2
0 − 2t

�
1
2 .

Let r̃ be the radius of the curve y that solves the time discrete, but spatially continuous mean
curvature flow

y − x

τ̃
=∆M[x] y . (4.26)

Then, by simple calculations, it holds that

r̃ − r

τ̃
=−

r̃

r2 ⇔ r̃ =
r3

r2+ τ̃
. (4.27)

Let τ, τ̃ be fixed and x k = ∂ Brk
be the circle with radius rk, x = ∂ Br(τ) be the circle with

radius r := r(τ) and y = ∂ B r3

r2+τ̃

the time discrete solution of the evolution of the mean

curvature flow.
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Figure 4.5: A circle of radius r0 = 2 expands in two dimension under Willmore flow
(top row)). The exact solution (blue dashed line) and the corresponding discrete solu-
tion computed by the two step time discretization for 200 polygon vertices and a time
step size which equals the grid size (green crosses) are plotted for different times t =
100 (∆X )2, 500 (∆X )2, 1000 (∆X )2. The radius of growing circles under Willmore flow is
plotted for the known continuous solution (green) and the discrete solution (red). (bottom
row)

We consider the Willmore energy for radial symmetric solutions without length term:

w[r] =

∫

∂ Brk

(x − x k)2dσ+
τ

τ̃2

∫

∂ Br

(y − x)2dσ

=2πrk
�

r − rk
�2+

τ

τ̃2 2πr

�

r3

r2+ τ̃
− r

�2

,

where dσ is the arc length element. Therefore we get

0= ∂r w[r] = 4πrk(r − rk) + 4πr
τ

τ̃2

�

r3

r2+ τ̃
− r

��

3r2(r2+ τ̃)− r3 2 r
�

r2+ τ̃
�2 − 1

�

+ 2π
τ

τ̃2

�

r3

r2+ τ̃
− r

�2

.
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That is equivalent to

0=rk(r − rk) + r
τ

τ̃2

�

r3− r(r2+ τ̃)
r2+ τ̃

��

3r4+ 3r2τ̃− 2 r4− (r2+ τ̃)2

(r2+ τ̃)2

�

+
τ

τ̃2

�

r3− r(r2+ τ̃)
�2

2(r2+ τ̃)2

=rk(r − rk) + r
τ

τ̃2

� −rτ̃

r2+ τ̃

�

�

r2τ̃− τ̃2

(r2+ τ̃)2

�

+
τ

τ̃2

r2τ̃2

2(r2+ τ̃)2

=rk(r − rk) +τ
1

2

−r4+ 3r2τ̃

(r2+ τ̃)3

And finally the radius rk+1 in the time discrete scheme turns out to be a solution of the
nonlinear equation

r − rk

τ
=

1

2

r4− 3r2τ̃

(r2+ τ̃)3 rk
,

which is an implicit first order scheme for the above ODE. Let us remark that it is very
important to integrate the approximation of the mean curvature over the new curve. E.g.
one can easily show that if one integrate over the old surface xk we get

r − rk

τ
=

r3− rτ̃

(r2+ τ̃)3
. (4.28)

We observe that the radius of the discrete evolution would grow twice as fast.

Evolution of an ellipse towards a circle

As a first example for the resulting flow we consider the evolution of an ellipse towards a cir-
cle under the elastic flow, cf. the first rows in Figure 4.1 and 4.4. The initial parametrization
is given as

x0(t) = (sin(t), 4 cos(t), 0) for t ∈ [0,2π].

The computational parameters are h= 0.0632847, τ = h and λ = 0.025. One observes that
the ellipse evolves to a circle and the polygonal vertices stay well-distributed on the evolving
curve.
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Figure 4.6: Different time steps of the evolution of a planar hypocycloid towards a fivefold
covering of a circle with δ = 0 under the two step time discretization of Willmore flow. The
curves are scaled to diameter one. The computational parameters are N = 200, λ = 0.025,
τ = ∆X = 0.5 and τ̃ = (∆X )2. We show the curve at times t = 0, t = 560, t = 2940,
t = 4690, t = 7070 and t = 9870.

Hypocycloid

In the next application we pick up an example already discussed by DZIUK & DECKELNICK [66],
where a hypocycloid is considered as initial data. The parametrization of the initial curve is
given by

X0(t) =
�

−
5

2
cos(t) + 4 cos(5t),−

5

2
sin(t) + 4 sin(5t),δ sin(3t)

�

.

It is well known, cf. POLDEN [141], that multiple coverings of a circle are stable station-
ary solutions for codimension one, i.e. for d = 2. This is not true for higher codimension
(d ≥ 3). Obviously, for d = 2, the initial curve evolves to a fivefold covering of a cir-
cle, cf. Figure 4.6. Here, the computational parameters were λ = 0.025, N = 200 and
τ = (∆X0) = 0.5. The evolution is almost the same as in the example in DZIUK & DECKEL-
NICK [66, Figure 3], also the time scale is similar. If we start with an initial curve which is
slightly perturbed in vertical direction, i.e. δ was chosen 0.1, the curve begins to unfold and
evolves to a single circle. This is shown in Figure 4.7. We observe similar phenomena as in
DZIUK & DECKELNICK [66, Figure 6], i.e. for small time steps the evolution is almost identical
to the case in two-dimension. Then, the curve starts to unfold in a sightly different way,
compared to DZIUK & DECKELNICK [66, Figure 6] and converges to single circle.
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Figure 4.7: Different time steps of the evolution of a vertically perturbed hypocycloid to-
wards a circle with δ = 0.1, λ = 0.025, N = 200, τ = ∆X = 0.5 and τ̃ = (∆X )2 = 0.25.
We show the curve at times t = 0.0, t = 1348.9, t = 4467.1, t = 5511.4, t = 6555.7,
t = 6839.3, 7123.0, t = 7406.6, t = 8257.2, t = 8682.8, t = 9108.4, t = 9297.0,
t = 9361.3, t = 9426.8, t = 9489.1.



84 CHAPTER 4. NATURAL TIME DISCRETIZATION FOR ISOTROPIC WILLMORE FLOW

EOC-analysis for radially symmetric evolution

We study the experimental order of convergence (EOC) for successively refined curves. The
number of nodes N is doubled so that the discretization parameter ∆X , the spacial grid
size, is halved in every refinement step. If X̄ k+1

N is the nodal vector of the discrete solution
computed by the SQP approach of the two step time discretization for a time step size which
equals the grid size and the L∞-Error ‖X̄ k+1

N − r0((k+1)τ)‖L∞ is the maximum of the absolut
value of the difference between r0((k+ 1)τ) and ‖X̄ k+1

N ‖ then the EOC is given by:

EOCN := log2

�

‖X̄ k+1
N − r0((k+ 1)τ)‖L∞

‖X̄ k+1
2N − r0((k+ 1)τ)‖L∞

�

with k = 500, r0 = 2, τ = ∆X1600 = 7.9 ∗ 10−3 and τ̃ = (∆X1600)2 = 6.2 ∗ 10−5. As
expected we verify that ‖X̄ k+1

2N − r0((k+ 1)τ)‖L∞ ≤ C(∆X2N)2, hence the numerical error of
the converged solution is in the order of the interpolation error (see Table 4.2).

N 50 100 200 400 800 1600

EOCN 2.03 1.98 1.78 1.99 1.78

Table 4.2: EOC-analysis for radially symmetric evolution.

4.5.2 Willmore flow for surfaces

Spheres are minima of the Willmore functional with energy 8π. In our first example for two
dimensional surfaces in R3 we show the evolution of a cubical surface into a round sphere,
cf. Figures 4.10 and 4.11. In Figure 4.12 we depict the evolution of a coarse polygonal
approximation of a torus towards the Clifford torus

MCli f f =

¨

x ∈ R3

�

�

�

�

(1−
p

x2
1 + x2

2)
2+ x2

3 =
1

2

«

.

Finally, in Figure 4.13 we compare the discrete evolution at a fixed time for different choices
of the time step τ used in the computation.

Comparison of algorithms

Since spheres are stationary solutions of Willmore flow. We expect that discrete spheres
rearrange the nodes and then remain stationary in the discrete algorithm. This is not the
case for the full discrete semi-implicit anisotropic Willmore flow presented in Chapter 3
with isotropic elliptical integrand γ(z) = |z|. For compact closed surfaces the Willmore
energy is conformally invariant [24, 169, 173]. The only conformal automorphism of the
sphere S2 ⊂ R3 are the Möbius transformations [17, 134]. In Figure 4.8 we show the grid
degeneration caused by this fact if we use no grid smoothing technique. If we choose the time
step of the semi-implicit algorithm of the order of the spacial grid size, the grid degenerates,
too, cf. Figure 4.9.
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Figure 4.8: Spheres are stationary solutions of Willmore flow. We expect that discrete
spheres rearrange the nodes and then remain stationary in the discrete algorithm (bottom
tow for the two step time discretization). This is not the case for the semi-implicit algorithm
of Chapter 3 , where a Möbius transformation leads to a grid degeneration if we use no
grid smoothing technique (top row). The initial discrete sphere is shown for times t = 0.0,
t = 2381.9, t = 2442.2, t = 2472.4. The sphere has 258 nodes and 512 traingles. The
computational data are ∆X = 0.301512, τ = (∆X )4 in both methods and τ=̃(∆X )4 for the
two step time discretization of Willmore flow.

Surface denoising

One application for Willmore flow is surface denoising. For example 3d scans are often
corrupted by noise. In Figure 4.15 we show the denoising of the Stanford bunny and in Fig-
ure 4.16 of the Stanford armadillo [2]. Because of the non-shrinking nature of the Willmore
flow mesh smoothing via Willmore flow is favored over standard approaches based on mean
curvature flow. Figure 4.14 shows the evolution of the Stanford bunny towards the sphere.
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τ= τ̃= 0.1 ∗ (∆X )

τ= 0.1 ∗ (∆X )

τ= (∆X )4

Figure 4.9: Comparison of the Willmore flow for an initial cubical surface with 6144 el-
ements at times t = 0.0, t = 0.1464 and t = 0.366, where ∆X = 0.02589 between the
semi-implicit algorithm of Chapter 3 (second row) and the two step time discretization (first
row) for τ = 0.1 (∆X ). t̃au = τ = 0.1 (∆X ) in the first row. In the third row the Willmore
flow of the semi-implicit algorithm is shown for τ= (∆X )4.
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Figure 4.10: Willmore flow for an initial cubical surface with 768 (1st row), 1536 elements
(2nd row) and 3072 elements (3rd, 4th rows) are shown at times t = 0.0, t = 0.0366,
t = 0.0732, t = 0.1464 and t = 0.366. The computational data were ∆X = 0.07322 and
τ = 0.5 (∆X ) = 0.0366 in the first row, ∆X = 0.05178 and τ = 0.707 (∆X ) = 0.0366 in the
second row, ∆X = 0.0366 and τ = (∆X ) = 0.0366 in the third row. τ̃ = 1.34 ∗ 10−3 for all
calculations.
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Figure 4.11: Willmore flow for an initial cubical surface with 24576 elements is shown at
times t = 0.0, t = 0.0046, t = 0.0092, t = 0.0137, t = 0.0366, t = 0.0732, t = 0.1464 and
t = 0.366, where (∆X ) = 0.01294, τ= 0.36 (∆X ) = 0.0046 and τ̃= 1.34 ∗ 10−3.
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Figure 4.12: Different time steps of Willmore flow towards the Clifford torus MCli f f for
an initial macro torus with 522 (1st row), 1224 (2nd row) and 2736 elements (3rd and 4th
row). We render the surfaces at times t = 0.0, t = 0.09, t = 0.15 and t = 0.97, where
∆X = 0.0977, ∆X = 0.0745 and ∆X = 0.0089, respectively. The computational data were
τ= 0.09 ∗ (∆X ), τ= 0.12 ∗ (∆X ) and τ= (∆X ). τ̃= (∆X )2 for all calculations.

Figure 4.13: From the evolution towards the Clifford torus MCli f f , cf. Figure 4.12, discrete
surfaces at time t = 0.3735 are shown based on a computation with time step sizes towards
a sphere for an initial macro torus with 1224 elements for different time steps sizes (from
left to right) τ = (∆X )4, τ = (∆X )2 and τ = ∆X , where ∆X = 0.0745. τ̃ = (∆X )2 for all
calculations.
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Figure 4.14: Evolution of the Stanford bunny [2] towards the sphere. The grid consists of
40648 nodes and 81292 triangles. The time step size equals the spacial grid size. τ̃= τ2.
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Figure 4.15: Denoising of the Stanford bunny [2]. The noisy initial surface and the first
time step under the Willmore flow for different time steps sizes τ = (∆X )4, τ = (∆X )2 and
τ=∆X are shown. τ̃= τ2.
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Figure 4.16: Denoising of the Stanford armadillo [2]. The grid consists of 172974 nodes and
345944 triangles. The grid size of the initial mesh varies between 10−7 and ∆X = 0.01226.
The initial object is scaled to diameter 1. The noisy initial surface is shown in the left picture
of the first row. The first time step under the Willmore flow for different time steps sizes τ=
τ̃= 0.1∗(∆X )4 = 2.26∗10−9, τ= τ̃= (∆X )3 = 1.84∗10−6 and τ= τ̃= (∆X )2 = 1.5∗10−4

are shown.
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Chapter 5

Surface restoration based on the two step
time discrete isotropic Willmore flow

IN Chapter 3 we developed the semi-implicit scheme for the anisotropic Willmore flow with
boundary condition to restore crystal-like surfaces, i.e. Wulff shapes. Extending the two

step time discretization of the isotropic Willmore flow to boundary conditions, we present
isotropic surface restoration in this chapter. E.g. we apply the new scheme to a real world
restoration problem, where we reconstruct damaged regions of an Egea sculpture. Suppose
M[x(t)] ⊂ Rm, m ≤ d + 1, is a bounded d-dimensional surface with parametrization x(t)
over itself and n(t) its Gauß map. M[x0] ⊂ ÝM[x0] is the initial surface with parameteri-
zation x0 and Gauß map n0. We use the notation of Chapter 3 and denote by

Mex t[x0] = ÝM[x0] \M[x0]

the fixed surrounding surface. Since we are interest in smooth boundary condition, we have
to carefully choose boundary conditions in the nested variational problem for the two step
time discretization for the unknown y and the next time step surface x . To achieve C0-
continuity condition at the patch boundary, we prescribe Dirichlet boundary condition for
x . It turned out that we can only predict the co-normal field of the surface x , denoted by
nco[x], if we prescribe Neumann boundary conditions for y . Let us review the boundary
value problem for the isotropic Willmore flow. In the hypersurface case (m = d + 1 = 3)
we are searching for a family {M[x(t)]}, M[x(t)] =M[x] of bounded two-dimensional
surfaces that solve the classical form of the initial boundary value problem for the Willmore
energy, i.e.

∂t x = ∆M[x] h n+ h
�

|S|22−
1

2
h2

�

n on (0, T]×M[x] , (5.1)

x = x0 on (0, T]× ∂M[x] , (5.2)

n= n0 on (0, T]× ∂M[x] , (5.3)

M(0) =M0 (5.4)

for some T > 0, where S = ∇Mn is the shape operator defined as the surface gradient of
the Gauß map, cf. Definition 2.1.6. As seen in Chapter 3 we can also prescribe the outer
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co-normal field nco on ∂M instead of the normal n on the boundary. To understand that pre-
scribing Dirichlet boundary condition for y does not lead to the desired boundary condition
on the normal mapping at the patch boundary, we recall the coupled variational problem
to the isotropic Willmore flow and show that its weak solutions solve the classical problem
(5.1) with the above boundary conditions (5.2), (5.3) and (5.4) following the arguments
of CLARENZ ET. AL [51]. Therefore, let us recall the coupled weak formulation for the iso-
tropic Willmore flow. Introducing a second variable y , one can rewrite the Willmore flow
as a system of equations for the parametrization x and the mean curvature vector y , cf.
Equations (3.8), (3.9) and CLARENZ ET. AL [51, Equations (10) and (11)]. Then, we are
searching for a family of bounded surfaces {M[x(t)]} with coordinate vector x = x(t) and
an accompanying vector field y = y(t) on M[x(t)], such that

∫

M[x]

∂t x · ϑda =−
∫

M[x]

∇M[x] y :∇M[x] ϑda+ 2

∫

M[x]

ninl ∇M[x] yi · ∇M[x] ϑl da (5.5)

−
1

2

∫

M[x]

|y|2 ∇M[x] x :∇M[x] ϑda ,

∫

M[x]

y ·ψda =−
∫

M[x]

∇M[x] x :∇M[x]ψda+

∫

∂M[x]

ψ · nco dσ , (5.6)

for all ϑ ∈ H1
0(M,R3), ψ ∈ H1(M,R3) and for almost every t ∈ (0, T]. Furthermore, we

assume x = x0 on (0, T]×∂M and x(0) = x0. nco is an a priori given and prescribed vector
field on the boundary ∂M.

If M =M[x(t)] is a C2-surface for almost every t ∈ (0, T], then a solution of the above
variational problem is a solution of the classical problem with the above boundary conditions
(5.2), (5.3) and (5.4), cf. CLARENZ ET AL. [51, Lemma 3.3]. The boundary condition (5.3)
is coded solely in the second Equation (5.6) of the variational problem. Applying Green’s
formula on surfaces (2.1.6) we get

∫

∂M

�

∂nco[x]x − nco
�

ψdσ =

∫

M

�

y −∆Mx
�

ψ da

for all ψ ∈ H1(M). Choosing ψ ∈ H1
0(M) we obtain that y = ∆Mx almost everywhere in

M by the Fundamental lemma in the Calculus of Variations, cf. ALT[5, 2.21]. Hence, the
right hand side vanishes and again by the Fundamental lemma with respect to ∂M we get

∂nco[x]x = nco.

Since x is the identity map on M, it holds that

∂nco[x]x =∇Mx nco[x] = Inco[x] = nco[x]

for the co-normal nco[x] of the surface x and we get the desired boundary condition (5.3).
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The boundary condition can also be achieved by changing the integration domain of the
boundary integral in Equation (5.6) to the external surface ÝM[x] = ÝM instead of M:

∫

ÝM

y ·ψda =−
∫

ÝM

∇M x :∇Mψda . (5.7)

Applying again Green’s formula on surfaces (2.1.6) we get
∫

ÝM

y ·ψda =−
∫

ÝM

∇M x :∇Mψda =−
∫

M

∇M x :∇Mψda−
∫

ÝM\M

∇M x :∇Mψda

=

∫

M

∆Mx ψda−
∫

∂M

nco[x]ψdσ

+

∫

ÝM\M

∆Mxψda+

∫

∂M

ncoψdσ−
∫

∂ ÝM

nco[x]ψdσ

=

∫

ÝM

∆Mx ψda+

∫

∂M

(nco − nco[x])ψdσ

for all ψ ∈ H1
0(ÝM). Choosing ψ ∈ H1

0(M) we obtain by the Fundamental lemma that
y = ∆Mx almost everywhere in M. Restricting to test functions ψ ∈ H1

0(ÝM \M) we
get again by the Fundamental lemma that y = ∆Mx almost everywhere in ÝM. Hence the
integrals over ÝM vanishes and again by the Fundamental lemma with respect to ∂M we
get the boundary condition

∂nco[x]x = nco. (5.8)

We would like to extend the two step time discretization of the isotropic Willmore flow to
boundary conditions using the same ideas as above.

5.1 Boundary value problem for the isotropic Willmore flow

Let us review the two step time discretization for the isotropic Willmore flow. If x k is assumed
to approximate x(tk) with tk = kτ for the given time step τ, in each time step we have to
solve the nested variational problem

x k+1 = argmin
x

w[x k, x , y[x]] with

y[x] = argmin
y

e[x , y] ,

Recall that

w[x k, x , y[x]] =

∫

M[xk]

(x − x k)2 da+
τ

τ̃2

∫

M[x]
(y[x]− x)2 da ,
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Figure 5.1: Different time steps of the Willmore flow with Dirichlet boundary conditions
for X and Neumann boundary conditions for Y of an original destroyed circle with 100
vertices is shown (top row). The red line denotes inner line segments, whereas the black
line corresponds to Dirichlet nodes for the curve X . The time step size was chosen of the
order of the spatial grid size τ = ∆X = 0.0632847. We show the curve at times t = 0,
t = τ, t = 2τ, and t = 3τ. Different time steps of Willmore flow with Dirichlet boundary
conditions for X and Neumann boundary conditions for Y towards a sphere for an initial
spherical surface with flattened part is depicted in the bottom row. The surface M[X 0] is
marked in red on the left. We show the surface at times t = 0, t = 0.0224245, t = 0.44849
and t = 1.121225, where τ=∆X = 0.0224245 and τ̃= (∆X )2.

and

e[x , y] =

∫

M[x]
(y − x)2+ τ̃|∇M[x] y|2 da .

We aim for C1-continuity at the patch boundary, in particular

x k+1 = x0 on ∂M[x0] , (5.9)

nk+1 = n0 on ∂M[x0] . (5.10)

Since no derivatives of x appear in w, we can only prescribe Dirichlet boundary condi-
tions (5.9) for x . We have to incorporate Dirichlet or Neumann boundary conditions for
y into our scheme to achieve smooth boundary conditions for x . If we choose Dirichlet
boundary conditions for y on ∂M[x]. i.e.

y[x] = x0 on ∂M[x0] ,

the resulting surface for a spherical surface with a flattened part is a flattened sphere, cf.
Figure 5.2:
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Figure 5.2: We have to carefully choose boundary conditions in the nested variational prob-
lem for the two step time discretization for the unknown y and the next timestep surface x .
Choosing Dirichlet boundary condition for x and y does not lead to the desired result. The
solution (third and forth picture) of an initial spherical surface with a flattened part (first
and second picture) is not a sphere, but a flatted sphere.

If y is a minimizer of e, we get for test functions ψ ∈ H1(M[x])

0=
1

2τ̃




e′[x],ψ
�

=

∫

M[x]

y − x

τ̃
·ψ+∇M[x] y∇M[x]ψda

=

∫

M[x]

�

y − x

τ̃
−∆M[x] y

�

·ψda+

∫

∂M[x]

∂nco[x] y ·ψdσ .

Choosing ψ ∈ H1
0(M) we obtain by the Fundamental lemma that

y − x

τ̃
=∆M[x] y

almost everywhere in M. Again by the Fundamental lemma with respect to ∂M we get

∂nco[x] y = 0.

Therefore, we prescribe Neumann boundary condition for y:

Variant I: Neumann boundary conditions for y

Given a surface M[x] parameterized by a mapping x we ask for a mapping y[x], which
solves the minimization problem

y[x] =arg min
y

e∂ [x , y] , with (5.11)

e∂ [x , y] =

∫

M[x]

(y − x)2+ τ̃|∇M[x] y|2 da− 2τ̃

∫

∂M[x]

nco · y[x]dσ
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for given x and nco. If y solves the minimization problem (5.11), we have for a test function
ψ ∈ H1(M[x])

0=
1

2τ̃

¬

(e∂ )′[x],ψ
¶

=

∫

M[x]

y − x

τ̃
·ψ+∇M[x] y∇M[x]ψda−

∫

∂M[x]

nco ·ψdσ

=

∫

M[x]

�

y − x

τ̃
−∆M[x] y

�

·ψda+

∫

∂M[x]

�

∂nco[x] y − nco
�

·ψdσ .

Choosing ψ ∈ H1
0(M) we obtain by the Fundamental lemma that

y − x

τ̃
=∆M[x] y

almost everywhere in M. Again by the Fundamental lemma with respect to ∂M we get

∂nco[x] y = nco.

Since y = x + τ̃δx with δx :=∆M[x] y we get

∂nco[x] y =∇M[x] y · nco[x] =∇M[x](x + τ̃δx) · nco[x]

=∇M[x]x · nco[x] +O(τ̃)

= nco[x] +O(τ̃) ,

so that ∂nco[x] y converges to nco[x] as τ̃ converges to 0 and therefore nco[x] converges to nco

as τ̃ converges to 0. Let us remark that we still assume M[x] and M[y] to be C2-surfaces.
Finally, we end up with the following nested variational problem for the isotropic Willmore
flow with boundary condition to be solved in each time step

x k+1 = arg min
{x | x=x0 on ∂M[x0]}

w[x k, x , y[x]] with (5.12)

y[x] = argmin
y

e∂ [x , y] . (5.13)

Variant II: Implicit boundary conditions – integration domain ÝM[x]

As in the semi-implicit case we can also incorporate the co-normal implicitly to avoid its
calculation. The desired boundary condition can also be achieved by changing the integra-
tion domain of the mean curvature functional e∂ [·] to ÝM[x]. The corresponding nested
variational problem is then given by

x k+1 = argmin
{x | x=x0 on ∂M[x0]}

w[x k, x , y[x]] (5.14)

with

y[x] = argmin
y

ẽ∂ [x , y] , (5.15)
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Figure 5.3: Solution of the boundary problem with Variant II for an initial destroyed circle
(red line) of a circle with radius one (green line) for time step size τ = ∆X = 0.0628 and
different values of the parameter τ̃, τ̃= 0.1∗∆X (light blue line), τ̃= 0.01∗∆X (blue line),
τ̃ = 0.001 ∗∆X (dark blue line). The right picture is a clipping of the left picture. We see
that N co[X ] converges to N co as τ̃ converges to 0.

where

ẽ∂ [x , y] =

∫

ÝM[x]

(y − x)2+ τ̃|∇M[x] y|2 da .

For a test function ψ ∈ H1
0(ÝM) we have

0=
1

2τ̃

¬

(ẽ∂ )′[x],ψ
¶

=

∫

ÝM[x]

y − x

τ̃
·ψ+∇M[x] y∇M[x]ψda

=

∫

ÝM[x]

y − x

τ̃
·ψda+

∫

M[x]

∇M[x] y∇M[x]ψda+

∫

Mex t[x]

∇M[x] y∇M[x]ψda

=

∫

ÝM[x]

y − x

τ̃
·ψda−

∫

M[x]

∆M[x] y ·ψda+

∫

∂M[x]

∂nco[x] y ·ψdσ

−
∫

Mex t[x]

∆M[x] y ·ψda+

∫

∂Mex t[x]∩∂M[x]

∂nco
ex t[x]
︸ ︷︷ ︸

=−nco

y ·ψdσ

=

∫

ÝM[x]

�

y − x

τ̃
−∆M[x] y

�

·ψda+

∫

∂M[x]

�

∂nco[x] y − ∂nco y
�

·ψdσ ,
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Figure 5.4: The grids of the evolution under the two step time discrete Willmore flow with
Neumann boundary conditions for Y (Variant I) of the initial destroyed circle and destroyed
sphere of Figure 5.1 are shown at the same times. Red crosses denote inner nodes, whereas
black nodes are Dirichlet nodes for the curve X . The surface M[X 0] is marked in red on the
left (bottom row).

where nco
ex t[x] is the outer co-normal on the boundary of Mex t[x] = ÝM[x] \M[x] and

identical to the a priori given and prescribed vector field nco on the boundary ∂M[x]. With
similar arguments as above we get that

y − x

τ̃
=∆M[x] y

almost everywhere in ÝM = ÝM[x] and the boundary condition

∂nco y = ∂nco[x] y

on ∂M = ∂M[x]. Since y = x + τ̃δx we get with the same arguments

0=∂nco y − ∂nco[x] y =∇M[x] y · nco −∇M[x] y · nco[x]

=∇M[x](x + τ̃δx) · nco −∇M[x](x + τ̃δx) · nco[x]

=∇M[x]x · nco −∇M[x]x · nco[x] +O(τ̃)

= (nco − nco[x]) +O(τ̃) ,

so that nco[x] converges to nco as τ̃ converges to 0, whereM[x] andM[y] are C2-surfaces,
cf. Figure 5.3.
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5.2 Finite Element space discretization

In this Chapter we consider a Finite Element discretization. We use the notation of Chapter 3:
Suppose a simplical mesh ÝM[X 0] with destroyed subset M[X 0] ⊂ ÝM[X 0] is given. The
remaining surface that is in good shape is again denoted by

Mex t[X 0] := ÝM[X 0] \M[X 0].

Either M[X 0] is a destroyed curve or surface patch or an initial blending surface closing
the given surface Mex t[X 0]. We seek a sequence (M[X k])k=1,2··· of discrete surfaces that
solve the nested variational problem of the discrete Willmore flow corresponding to (5.12)
(Variant I) or (5.14) (Variant II). Mex t[X ] is as above supposed to be fixed in time. Let us
review some notations and definitions. We define Mint[X ]⊂M[X ]⊂ ÝM[X ] with

M[X ] = {T ∈ ÝM[X ]
�

� T ∩ ∂ ÝM[X ] = ;}

and
Mint[X ] = {T ∈M[X ]

�

� T ∩ ∂M[X ] = ;} .

Elements T of the d-dimensional simplicial mesh M[X ] are line segments of the polygonal
curve for d = 1 and planar triangles of the triangular surface for d = 2. The index sets of
the vertices of Mint[X ], M[X ], and ÝM[X ] are I int , I , and Ĩ , cf. Equation (2.45). Again,
the set of nodes of M[X ] is denoted by N and splits into interior nodes N int and boundary
nodes N ∂ , i.e., N =N int ∪N ∂ with index set I∂ = I \ I int .
The mapping X = X (t) ∈ V(M[X ])3 is considered as an element in the corresponding piece-
wise affine Finite Element space V(M[X ])3, cf. Equation (2.34), on the time-dependent sur-
faces. V int(M[X ]) are the linear Finite Element functions of M[X ] with vanishing bound-
ary values, cf. Equation (2.46).
To map between the function spaces V(M[X ]) and V int(M[X ]]) we have defined restric-
tion operators R : V(M[X ]) → V int(M[X ]) and extension operators E : V int(M[X ]) →
V(M[X ]) that continues a function on ∂M[X ] by 0. The corresponding block operators
are denoted by R : V(M[X ])3→ V int(M[X ])3 and E : V int(M[X ])3→ V(M[X ])3.
Again, a bar on top of a discrete function indicates the corresponding nodal vector, i.e. X̄ (t) =
(X̄ i(t))i∈I int , where X̄ i(t) = (X 1

i (t), X 2
i (t), X 3

i (t)) is the coordinate vector of the ith inner ver-
tex of the mesh. As in Section 2.4 nodal vector in R3]I is then EX̄ + X̄ ex t , cf. Equation (2.49),
where X̄ ex t is the position vector for the boundary nodes with zero entries for all interior
nodes.
Let M[X ] and L[X ] denote the mass and stiffness matrix on the discrete surface M[X ] (cf.
Equations (2.36), (2.44), (2.37)) with corresponding block matrices M[X ] and L[X ].

Variant I: Neumann boundary conditions for y

At first we explicitly encode the co-normal N co that is a fixed function on M[X (t)] being
piecewise constant on the edges for triangular surfaces and piecewise constant on the nodes
for polygonal curves. If T is a triangle with at least one edge on ∂M[X (t)] than N co lies in
the plane of T and points outwards. If T is a line segment of a planar curve with vertices
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X1, X2 and face F0 = (X2− X1) than N co = (X2− X1) if X1 ∈ ∂M[X (t)] and N co = (X1− X2)
if X2 ∈ ∂M[X (t)]. We define the following vector

N̄ co[X ] :=









∫

∂M[X ]

N coΦi dσ









i∈I

∈ R3]I , .

Now, we have all the ingredients at hand to derive the fully discrete two step time discretiza-
tion of Willmore flow with boundary conditions, cf. Figure 5.4. Given a discrete surface
M[X k] in time step k and fixed external surface Mex t[X ] we define X k+1 ∈ V(M[X k])m as
the minimizer of the following spatially discrete, nested variational problem

X k+1 = arg min
X∈V(M[X k])m

W ∂ [X k, X , Y [X ]]

with

Y [X ] = arg min
Y∈V(M[X ])m

E∂ [X , Y ] ,

where

E∂ [X , Y ] :=

∫

M[X ]

(Y − X )2+ τ̃|∇M[X ]Y |2 da− 2τ̃

∫

∂M[X ]

N co · Y dσ (5.16)

=M[X ](Ȳ − EX̄ − X̄ ex t) · (Ȳ − EX̄ − X̄ ex t)

+ τ̃L[X ]Ȳ · Ȳ − 2τ̃N̄ co · Ȳ ,

W ∂ [X k, X , Y ] :=

∫

M[X k]

(X − X k)2 da+
τ

τ̃2

∫

M[X ]

(Y − X )2 da (5.17)

= RM[X k](X̄ − X̄ k) · (X̄ − X̄ k)

+
τ

τ̃2 M[X ](Ȳ − EX̄ − X̄ ex t) · (Ȳ − EX̄ − X̄ ex t)

are the straightforward spatially discrete counterpart of the functionals e∂ [x , y] and w[x k, x , y],
respectively. Y [X ] requires to solve

0= ∂Y E∂ [X , Y ](Θ) = ∂ε
�

�

ε=0E∂ [X , Y + εΘ]

= 2

∫

M[X ]

(Y − X ) ·Θ+ τ̃∇M[X ]Y :∇M[X ]Θda− 2τ̃

∫

∂M[X ]

N co ·Θdσ

for all test functions Θ ∈ V(M[X ])m. Therefore, the nodal vector Ȳ [X ] solves the linear
system of equation

(M[X ] + τ̃L[X ]) Ȳ [X ] =M[X ] (EX̄ − X̄ ex t) + τ̃N̄ co .
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Figure 5.5: Several solutions of the blending problem for 50 and 215 inner nodes, respec-
tively. The time step size was chosen of the order of the spatial grid size τ=∆X = 0.01386.
We show the curve at time t = 0.02772 (red line left picture), and t = 0.04158 (red line
right picture). τ̃ = 0.001 ∗∆X = 1.386 ∗ 10−5. The solution on the right hand side is sta-
ble, whereas the red curve is still evolving and expanding, cf. also Figure 5.6. This can be
avoided by adding the length of the curve multiplied by a constant to the Willmore energy,
cf. Equation (5.20).

Variant II: Implicit boundary conditions – integration domain ÝM[x]

Let eM and eL denote the mass and stiffness matrices corresponding to the integration domain
ÝM[X ] instead of M[X ]. Then we get the variational problem for the second variant: Given
a discrete surface M[X k] in time step k and fixed external surface Mex t[X ] we define
X k+1 ∈ V(M[X k])m as the minimizer of the following spatially discrete, nested variational
problem

X k+1 = argmin
X∈V(M[X k])m

W ∂ [X k, X , Y [X ]]

with

Y [X ] = argmin
Y∈V(M[X ])m

eE∂ [X , Y ] ,
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where

eE∂ [X , Y ] :=

∫

ÝM[X ]

(Y − X )2+ τ̃|∇M[X ]Y |2 da

= eM[X ](Ȳ − EX̄ − X̄ ex t) · (Ȳ − EX̄ − X̄ ex t) + τ̃eL[X ]Ȳ · Ȳ

is the straightforward spatially discrete counterpart of the functional ẽ∂ [x , y]. Y [X ] requires
to solve

0= ∂Y
eE∂ [X , Y ](Θ) = ∂ε

�

�

ε=0
eE∂ [X , Y + εΘ]

= 2

∫

ÝM[X ]

(Y − X ) ·Θ+ τ̃∇M[X ]Y :∇M[X ]Θda

for all test functions Θ ∈ V(M[X ])m. Therefore, the nodal vector Ȳ [X ] solves the linear
system of equation

�

eM[X ] + τ̃eL[X ]
�

Ȳ [X ] = eM[X ] (EX̄ − X̄ ex t) .

5.3 Numerical solution of the optimization problem

We proceed as in the case without boundary condition and take into account the same duality
technique to effectively compute the gradient and Hessian of the energy functional

cW ∂ [X ] :=W ∂ [X k, X , Y [X ]]

and fW ∂ [X k, X , Y [X ]] (Variant II), respectively. To avoid a direct computation of ∂X Y [X ](Θ)
we rewrite the variation of cW ∂ with respect to X in a direction Θ ∈ V(M[X k])m as

∂X
cW[X ](Θ) = ∂X W ∂ [X k, X , Y [X ]](Θ)− ∂X∂Y E∂ [X , Y ](P,Θ), (5.18)

where P ∈ V(M[X k])m is the solution of the dual problem

∂ 2
Y E∂ [X , Y [X ]](P,Υ) = ∂Y W ∂ [X k, X , Y [X ]](Υ) (5.19)

for all test functions Υ ∈ V(M[X k])m. For Variant I P requires to solve the linear system of
equations

(M[X ] + τ̃L[X ]) P̄ =
τ

τ̃2 M[X ](Ȳ − EX̄ − X̄ ex t) ,
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Figure 5.6: Different time steps of the Willmore flow for a blending problem with 50 inner
nodes. The evolution expands for increasing time. The last curve was scaled by 0.3 so that
it fits into the picture. Modifying the Willmore functional by adding the constant λ times
length would prevent the expanding (cf. Figure 5.7). We show the curve at times t = 0.078,
t = 0.098, t = 0.118, and t = 0.392. The time step size was chosen of the order of the
spatial grid size τ=∆X = 0.0196. τ̃= 0.001 ∗ (∆X ) = 1.96 ∗ 10−5.

and the terms on the right hand side of (5.18) are to be evaluated as follows

�

∂X W ∂
�

[X k, X , Y ](Θ) = 2RM[X k](X̄ − X̄ k) · Θ̄ + 2
τ

τ̃2 M[X ](EX̄ + X̄ ex t − Ȳ ) · EΘ̄

+
τ

τ̃2 (∂X M[X ](Θ))(Ȳ − EX̄ − X̄ ex t) · (Ȳ − EX̄ − X̄ ex t) ,

∂X∂Y E∂ [X , Y ](P,Θ) = ∂X
�

2M[X ](Ȳ − EX̄ − X̄ ex t) · P̄

+2τ̃L[X ]Ȳ · P̄ − 2τ̃N̄ co� (Θ)

= 2(∂X M[X ](Θ))(Ȳ − EX̄ − X̄ ex t) · P̄ − 2M[X ]EΘ̄ · P̄

+ 2τ̃(∂X L[X ](Θ))Ȳ · P̄ .

For Variant II P solves

�

eM[X ] + τ̃eL[X ]
�

P̄ =
τ

τ̃2 M[X ](Ȳ − EX̄ − X̄ ex t).
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Figure 5.7: Different time steps of the Willmore flow for the blending problem of Figure 5.6.
The evolution does not expand for increasing time, because we modified the Willmore func-
tional by adding the constant λ times length of the curve, cf. Equation 5.20. λ was chosen
1.0. We show the curve at times t = 0.078, t = 0.098, and t = 0.392. The time step size was
chosen of the order of the spatial grid size τ=∆X = 0.0196. τ̃= 0.001 ∗∆X = 1.96 ∗10−5.

We have

∂X∂Y
eE∂ [X , Y ](P,Θ) = ∂X

�

2eM[X ](Ȳ − EX̄ − X̄ ex t) · P̄ + 2τ̃eL[X ]Ȳ · P̄
�

(Θ)

= 2(∂X
eM[X ](Θ))(Ȳ − EX̄ − X̄ ex t) · P̄ − 2eM[X ]EΘ̄ · P̄

+ 2τ̃(∂X
eL[X ](Θ))Ȳ · P̄ .

Finally, we obtain the descent direction in Rm]I of the energy cW ∂ at a given simplicial mesh
M[X ] described by the nodal vector X̄

gradX
cW ∂ [X ] =

�

∂X
cW ∂ [X ](Φr es)

�

r∈I int , s=1,··· ,m
,

where es denotes the sth coordinate direction in Rm. We can solve the two step time dis-
cretization for the isotropic Willmore flow with boundary conditions with a gradient descent
method (cf. Algorithm 4.1). The Hessian of cW ∂ [X ] can be computed analogously. We have
also implemented Algorithm 4.3 for the boundary case.

5.4 Numerical results

We have applied the developed numerical algorithm to the evolution of curves in R2 and of
two dimensional surfaces in R3. Various numerical examples underline the stability of the
new scheme, which enables time steps of the order of the spatial grid size.
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Figure 5.8: Different time steps of the Willmore flow of an original destroyed circle with
100 vertices is shown (top row). The corresponding grid is shown on the bottom row. Red
crosses denote inner nodes, whereas black nodes are Dirichlet nodes for X . The time step
size was chosen of the order of the spatial grid size τ = ∆X = 0.0632847. We show the
curve at times t = 0, t = τ, and t = 2τ.

Elastic flow for curves with boundary conditions

As in Section 4.5.1 in Chapter 4 we penalize length in view of the scaling properties of the
bending energy by adding λ a[x] to the Willmore energy, where Lagrangian multiplier λ is a
fixed constant and a[x] denotes the length of the curve, cf. Figures 5.6 and 5.7. Therefore,
in each time step, we have to solve the modified nested variational problem of the isotropic
Willmore flow with boundary condition for polygonal curves

x k+1 = arg min
{x | x=x0 on ∂M[x0]}

w[x k, x , y[x]] + a[x] with (5.20)

y[x] = argmin
y

e∂ [x , y] ,

cf. Equations (5.12) and (5.13). Let M[X ] be a discrete curve in R2, i.e. each element Ti,
i ∈ I , of a polygonal curve is a line segment with nodes X i−1 and X i. X0 6= X]I is possible.
The index set of the inner nodes is I int as above. The discrete length functional is given by

A[X ] =
∑

i∈I

Q i,

where Q i = |X i − X i−1| is the length of the ith line segment. Then, in the modified discrete,
nested variational problem, we have to solve

X k+1 = argmin
X∈V(M[X k])2

W ∂ [X k, X , Y [X ]] + A[X ] with (5.21)

Y [X ] = argmin
Y∈V(M[X ])2

E∂ [X , Y ]
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Figure 5.9: Comparison of the two variants. In Variant I, the co-normal N co is explicitly en-
coded as an a priori given and prescribed vector field on the boundary ∂M[X 0] as Neumann
data for Y . Replacing the integration domain by an external surface ÝM[X 0] without incor-
porating the co-normal N co explicitly leads to Variant II. Both variants produce very similar
results. The computational data were τ=∆X = 0.01386 and τ̃= 0.001∗∆X = 1.386∗10−5.
We show the curve at time t = 0.02772, cf. Figure 5.5.

in each time step. W ∂ and E∂ are given as in Equations (5.16) and (5.17). Since the gradient
vector in Rm]I of the discrete length functional is

gradX A[X ] = L[X ]X̄

we have to add L[X ]X̄ to the descent direction in the corresponding algorithm.

As a first example for the resulting flow we consider the evolution of a destroyed circle
towards a circle under the elastic flow (cf. the first rows in Figure 5.1 and 5.4). The compu-
tational parameters are ∆X = 0.0632847, τ= h4 and λ= 0.0. If we choose τ=∆X we just
need three time steps to restore the circle and the polygonal vertices stay well-distributed on
the evolving segment of the curve. Therefore, solutions of the above variational problem do
not exist for some geometric configurations if λ= 0.0. Another example is Figure 5.5 where
two given curve segments have to be blended. The Willmore energy for a circular segment
with an opening angle α and radius r is given by α

r
. Thus, for two given curve segments

which have to be blended we can continue these segments by straight line segments and
connect them by such a circular arc (cf. left configuration of Figure 5.5). As the length of the
straight line segments tends to infinity the Willmore energy of the whole blending construc-
tion tends to zero (cf. right configuration of Figure 5.5). A similar construction is possible
for half planes of codimension one, whose boundaries are parallel.
We also compared the two variants given in Section 5.1 (cf. Figure 5.9). The red curve shows
the evolution results for boundary conditions explicitly encoded in the considered spaces
with Neumann conditions (variant I). The blue curve shows the corresponding solution using
variant II without incorporating the co-normal explicitly. From an application oriented point
of view, the quality of the results is identical. They differ slightly in the corresponding
parameterization. In general one will prefer variant II because it is easier to implement.
Nevertheless, especially w.r.t. surface modeling it is important to have both methods at
hand.
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Figure 5.10: Solution of the blending problem of a cylinder and a disk with a circle shaped
hole. The computational data are τ = ∆X = 0.14 and τ̃ = (∆X )4. We show the surface at
time steps k = 0 and 2.

Figure 5.11: Solution of the blending problem of a cylinder and a disk with a circle shaped
hole different values of the parameter τ̃, τ̃ = 0.1(∆X )2 (left), τ̃ = (∆X )4 (right). The
computational data are h = ∆X = 0.14 and τ = τ̃ = (∆X )4. We show the surfaces at time
step k = 10.

We also compared different values of the parameter τ̃ for an initial destroyed circle of a
circle with radius one (green dashed line of Figure 5.3) for time step τ = ∆X = 0.0628
and different values of the parameter τ̃, τ̃ = 0.1 ∗ (∆X ) (light blue line), τ̃ = 0.01 ∗ (∆X )
(blue line), τ̃ = 0.001 ∗ (∆X ) (red line). The smaller τ̃ the better the approximation of the
co-normal N co by the co-normal of the solution of the two step time discretization of the
Willmore flow problem with boundaries N co[X ]. Therefore, we start the iterations e.g. with
τ̃ = 0.1 ∗ (∆X ) and reduce τ̃ at a later stage of the algorithm to achieve the desired smooth
boundary conditions.

Surface blending

Figures 5.10 and 5.13 show the solution of a typical blending problem of a cylinder and a
disk with a circle shaped hole. The two step time discretization leads to a smooth surface. We
also compared different values for the time step size τ̃ of the inner mean curvature problem,
cf. Figure 5.11. If we choose τ̃ smaller than 0.1τ̃4 the grid degenerates, because the area
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Figure 5.12: The surface corresponding to the solution of the blending problem of Fig-
ure 5.10 is color-coded with the z-coordinate value of the normal mapping N[X ]. The grey
value corresponds to a z-coordinate value one, whereas the dark blue value stands for a
zero z-coordinate. The two step time discretization of the Willmore flow leads to a smooth
blending.

of the triangles at the edge of the initial configuration converges to zero. In Figure 5.13 we
compare the solution with the semi-implicit scheme of Chapter 3 with anisotropy γ(z) = |z|
(cf. Problem 3.3.2). The different algorithms lead to similar results. They differ in the para-
metrization in the neighborhood of the initial configuration. There, the area of the triangles
for the semi-implicit scheme is greater than for the two step time discretization.

In the next example we pick up a blending problem of a higher genus topology already cal-
culated by CLARENZ ET AL. [51]. The initial surface consists of edges and corners. Connecting
6 cylinders with the two step time discretization leads to a smooth blending, cf. Figure 5.14.

Surface restoration

In this section we consider surface restoration with the two step time discretization of the
Willmore flow. In Figures 5.1 and 5.4 we show the evolution of a destroyed spherical surface.
Since spheres are absolut minimizers of the Willmore energy, cf. Equation (1.3), one expect
that the algorithm reconstruct the sphere. We apply variant I to the destroyed flat part with
Dirichlet and Neumann boundary condition of the non-destroyed outer part of the sphere.
Indeed, the surface evolve to the complete sphere.

The next examples show several surface restoration results for the Standford bunny [2]. In
Figure 5.15 (first row) a small part of its flank is replaced by a disturbed surface patch that is
color coded in red. The restoration with the corresponding Willmore surfaces with boundary
conditions given by the outer surface is smooth at the patch boundary due to the boundary
information and the normal taken from the outer surface. The isotropic Willmore flow is
not able to restore patches with edges and corners, which is demonstrated in Figure 5.15.
There, we destroyed the leg of the Standford bunny including the edge of the leg. Although
the isotropic Willmore flow can not restore the edge, the resulting restoration leads to a good
result. In Figure 5.16 a large part of the flank of the bunny is restored. The evolution leads
to a smooth result.
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Figure 5.13: Comparison of the evolution of the blending problem of a cylinder and a disk
with a circle shaped hole of the semi-implicit time discretization (first row) and the two step
time discretization of Willmore flow (second row). The computational data are ∆X = 0.14
and τ = τ̃ = (∆X )4. We show the surface at time steps k = 0,1, 10. The surface patch M0

is marked in red. The grids of time step 10 are shown on the bottom. The grid on the left
hand side corresponds to the semi-implicit time discretization, whereas the grid on the right
hand side is a zoom for the two step time discretization of Willmore flow.

Figure 5.17 shows a real world restoration problem, where we reconstruct damaged regions
of an Egea sculpture already discussed by CLARENZ ET AL. [51] and BOBENKO & SCHRÖDER [25].
The red colored domain of the model is replaced by the corresponding Willmore surface with
boundary conditions given by the outer surface. Dirichlet boundary conditions for X and
Neumann conditions for Y with a small time step size τ̃ ensure smoothness of the restored
surfaces.
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Figure 5.14: Solution of the blending problem of a higher genus topology. The boundary
condition is determined by six cylinders. The grid size of the initial mesh varied between
0.0032 and 0.013. The computational data were τ= τ̃= 10−6. We show the surface at time
step k = 0,2 and 4.



5.4. NUMERICAL RESULTS 113

Figure 5.15: A small part of the flank of the Stanford bunny [2] is replaced by a disturbed
surface patch that is color coded in red (first row). The restoration with the corresponding
Willmore surface with boundary conditions given by the outer surface is smooth at the patch
boundary due to the boundary information and the normal taken from the outer surface.
The leg of the Stanford bunny including the edge of the leg is destroyed and replaced by
a denoised surface patch in the second row. Although the isotropic Willmore flow can not
restore the edge, the resulting restoration leads to a good result. The computational data
were τ= (∆X ) = 0.0265 and τ̃= (∆X )4 for the first row, where we show the bunny at time
steps 0, 2 and 4. In the second row we chose τ = ∆X = 0.027 and τ̃ = (∆X )4. The bunny
is shown at time steps 0, 3 and 4.



114 CHAPTER 5. SURFACE RESTORATION VIA TWO STEP TIME DISCRETE WILLMORE FLOW

Figure 5.16: A large part of the flank of the Stanford bunny [2] is restored. The destroyed
surface is shown on the top row. The part to be restored is color coded in red. The evolution
leads to a smooth result that is shown on the bottom row. The grid size of the initial mesh
varied between 0.000255 and 0.03366. The computational data were τ = 0.0001 and τ̃ =
0.00001. We show the bunny at time step 10.



5.4. NUMERICAL RESULTS 115

Figure 5.17: Evolution of an Egea head dataset. The model is courtesy of CYBERWARE [1].
The initial surface is shown in the top row. The areas of the surface to be restored are shown
in red. The time step sizes were chosen as τ = 10−3 and τ̃ = 10−7. We show the surface
at time steps 0,2,4. The grid size of the initial mesh varied between 0.0013 and 0.012. The
initial object was scaled to diameter 1.
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Chapter 6

Two step time discretization of the
anisotropic Willmore flow

THE gradient flow of the anisotropic Willmore energy of a surface,
∫

hγ
2 da, as a function

of the generalized mean curvature, plays an important role in digital geometry process-
ing like surface restoration especially if the edge or corner of a surface is destroyed as we
saw in Chapter 3. In this chapter we will extend the two step time discretization for discrete
isotropic Willmore flow from Chapter 4 to the anisotropic case. To evaluate the anisotro-
pic Willmore energy on the unknown surface of the next time step, we first solve an inner,
secondary variational problem describing a time step of anisotropic mean curvature motion,
which only involves the anisotropy but not its derivatives. We define the mapping y as the
minimizer of the L2-distance between surfaces and the generalized surface area of M[y].
In the isotropic case a single semi-implicit time step of mean curvature motion has to be
solved in each time step. Now, we end up with a scheme for a single fully implicit time step
of anisotropic mean curvature motion to be solved with a Newton approach. The difference
quotient in time between the given surface and the next time step surface of the anisotropic
mean curvature motion can again be regard as a time discrete, fully implicit approximation
of the anisotropic mean curvature vector. Based on this anisotropic mean curvature vec-
tor, the generalized Willmore functional can be approximated. To solve the resulting nested
variational problem in each time step a sequential quadratic programming approach and
numerically relaxation theory from PDE constraint optimization are taken into account. The
approach is applied to polygonal curves, where the anisotropy could be chosen almost crys-
talline. Various numerical examples underline again the stability of the new scheme, which
enables time steps of the order of the spatial grid size.

6.1 Derivation of the two step time discretization

The abstract time-discrete variational problem of the anisotropic Willmore flow is given by

dist(M[x],M[x k])2+τ

∫

M[x]

hγ
2 da→min ,
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Figure 6.1: Different time steps of the anisotropic Willmore flow of an original circle with
50 vertices is shown. The time step size was chosen of the order of the spatial grid size
∆X = τ= 0.1256. The anisotropy γ(z) =

p

z2
0 + 4 z2

1 is an ellipse (cf. Example 2.2.7).

where hγ = divM(nγ) = divM(γz ◦ n), cf. Definition 2.2.3, denotes the generalized mean
curvature. Before we consider the actual time discretization of the anisotropic Willmore flow,
we study the time discretization of the anisotropic mean curvature motion. Following the
abstract approach as in the isotropic case the variational time discretization of the anisotropic
mean curvature motion for a given surface M =M[x] defines the mapping y = y[x] of
the next time step surface M[y] as the minimizer of the functional

dist(M[y],M[x])2+ 2τ̃

∫

M[y]

γ(n)da ,

where τ̃ is the considered time step, dist(·, ·) is the L2− distance between surfaces and

aγ[y] =

∫

M[y]

γ(n)da

the anisotropic surface area of M[y] as the underlying energy. We obtain the following
variational problem:

Given a surface M[x] parameterized by a mapping x we ask for a mapping y = y[x],
which minimizes the functional

eγ[x , y] =

∫

M[x]

(y − x)2 da+ 2τ̃

∫

M[y]

γ(n)da

for given x . As above the time step size τ̃ is chosen in principle independent of the time step
size for the actual time discrete anisotropic Willmore flow. The resulting weak form of the
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corresponding Euler–Lagrange equations is

0=

∫

M[x]

1

τ̃
(y − x) · θ da+

∫

M[y]

hγn · θ da

=

∫

M[x]

1

τ̃
(y − x) · θ da

+

∫

M[y]

γ(n)∇M[y] y :∇M[y]θ da−
∫

M[y]

nk γzl
(n)∇M[y] yl · ∇M[y]θk da

for test functions θ , cf. Lemma 3.2.2. nk denotes the kth coordinate of the normal n.
Choosing γ(n) = |n| isotropic we get

0=

∫

M[x]

(y − x) · θ da+ τ̃

∫

M[y]

∇M[y] y :∇M[y]θ da .

Comparing the corresponding Euler–Lagrange equations for the two step time discretization
of the isotropic Willmore flow

0=

∫

M[x]

(y − x) · θ + τ̃∇M[x] y :∇M[x]θ da ,

we end up with a fully implicit scheme. Now, we integrate over M[y] instead of the known
surfaceM[x] in the second summand. A semi-implicit time discretization of the anisotropic
mean curvature flow has been proposed by CLARENZ, DZIUK & RUMPF [55] that is based on
the schemes in DZIUK [81, 83] with convergence results for curves [83, 82]. They use the
following time discretization, cf. Equation (16) in CLARENZ, DZIUK & RUMPF [55],

0=

∫

M[x]

1

τ̃
(y − x) · θ da

+

∫

M[x]

γ(n)∇M[x] y :∇M[x]θ da−
∫

M[x]

nk γzl
(n)∇M[x]x l · ∇M[x]θk da .

In the corresponding Finite Element scheme they have to solve a linear system of equations.
Since we integrate over the surface of the next time step, we have to solve a nonlinear system
of equations with a Newton method in each time step.

Because of the time continuous evolution equation ∂t x = hγn the difference quotient

y[x]− x

τ̃

can be considered as a regularized approximation of the anisotropic mean curvature vector
hγn on M[x]. As in the isotropic case this enables us to define a time discretization of the
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Figure 6.2: The grids of the evolution under Willmore flow of the initial circle of Figure 6.1
are shown at the same times.

anisotropic Willmore flow, which does no require the explicit evaluation of the anisotropic
mean curvature on the unknown surface of the next time step. Indeed, in the abstract
variational problem

dist(M[x],M[x k])2+τ

∫

M[x]

hγ
2 da→min

we consider the same linearization of the L2-distance as for anisotropic mean curvature
motion and use the above approximation of the anisotropic Willmore energy. Finally, we
obtain the following scheme:

Given an initial surface M[x0] we define a sequence of surfaces M[x k] with k = 1, · · · ,
where x k+1 minimizes the functional

wγ[x
k, x , y[x]] =

∫

M[xk]

(x − x k)2 da+
τ

τ̃2

∫

M[x]

(y[x]− x)2 da

for given xk. Hence, x k is assumed to approximate x(tk) with tk = kτ for the given time
step τ. Thus, in each time step we have to solve the nested variational problem

x k+1 = arg min
x

wγ[x
k, x , y[x]] with (6.1)

y[x] = argmin
y

eγ[x , y] .

6.2 Finite Element space discretization

Before using the space discretization of Section 2.4 to derive the fully discrete two step time
discretization of the anisotropic Willmore flow, let us first review the basic notations. We
consider simplicial meshes M[X ] and as in Section 2.4 we use upper case letter for discrete
quantities and lower case letter for the corresponding continuous quantities. Furthermore, a
bar on top of a discrete function indicates the corresponding nodal vector. The correspond-
ing Finite Element space is denoted by V(M[X ])m. Let M[X ] be the mass matrix and L[X ],
Lγ[X ], LN⊗γ[X ] the stiffness matrices with corresponding block matrices M[X ] and L[X ],
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Lγ[X ], LN⊗γ[X ]. Given some initial surface M[X 0] we seek a sequence (M[X k])k=1,2··· of
discrete surfaces that solve the fully discrete two step time discretization of the anisotropic
Willmore flow:

Given a discrete surface M[X k] in time step k we define X k+1 ∈ V(M[X k])m as the mini-
mizer of the following spatially discrete, nested variational problem

X k+1 = argmin
X∈V(M[X k])m

Wγ[X
k, X , Y [X ]] with (6.2)

Y [X ] = argmin
Y∈V(M[X ])m

Eγ[X , Y ] ,

where

Eγ[X , Y ] :=

∫

M[X ]

(Y − X )2 da+ 2 τ̃

∫

M[Y ]

γ(N[Y ])da

=M[X ](Ȳ − X̄ ) · (Ȳ − X̄ ) + 2 τ̃

∫

M[Y ]

γ(N[Y ])da ,

Wγ[X
k, X , Y ] :=

∫

M[X k]

(X − X k)2 da+
τ

τ̃2

∫

M[X ]

(Y − X )2 da

=M[X k](X̄ − X̄ k) · (X̄ − X̄ k) +
τ

τ̃2 M[X ](Ȳ − X̄ ) · (Ȳ − X̄ )

The first variation of the discrete anisotropic area functional

Aγ[Y ] :=

∫

M[Y ]

γ(N[Y ])da

for some test function Θ is given by

∂Y Aγ[Y ](Θ) =

∫

M[Y ]

γ(N[Y ])∇M[Y ]Y :∇M[Y ]Θda−
∫

M[Y ]

γzk
(N[Y ])N l[Y ] · ∇M[Y ]Θl da .

Therefore the first variation of Eγ with respect to Y is

∂Y Eγ[X , Y ](Θ) = 2

∫

M[X ]

(Y − X ) ·Θda (6.3)

+ 2τ̃

∫

M[Y ]

γ(N[Y ])∇M[Y ]Y :∇M[Y ]Θda

− 2τ̃

∫

M[Y ]

γzk
(N[Y ])N l[Y ] · ∇M[Y ]Θl da .
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and the nodal vector Ȳ [X ] solves the nonlinear system of equations

M[X ](Ȳ [X ]− X̄ ) + τ̃Lγ[Y ]Ȳ [X ]− τ̃LN⊗γ[Y ]Ȳ [X ] = 0 . (6.4)

We solve this equation with a Newton method. In each Newton iteration and for each test
function Θ we have to solve

∂Y F[Y ](Θ)∆Y =−F[Y ] ,

where

F[Y ] :=M[X ](Ȳ − X̄ ) + τ̃Lγ[Y ]Ȳ − τ̃LN⊗γ[Y ]Ȳ .

∂Y F[Y ](Θ) =M[X ] + τ̃∂Y Lγ[Y ](Θ)Ȳ + τ̃Lγ[Y ]Θ
− τ̃∂Y LN⊗γ[Y ](Θ)Ȳ − τ̃LN⊗γ[Y ]Θ .

If we define the vector

Vγz[Y ] :=
�

Lγ[Y ]− LN⊗γ[Y ]
�

Ȳ , (6.5)

and the block matrix

Lγzz[Y ] :=
�

Lγ[Y ]− LN⊗γ[Y ] + ∂Y Lγ[Y ](Φr es)Ȳ − ∂Y LN⊗γ[Y ](Φr es)Ȳ
�

r∈I ,s=0,··· ,m
, (6.6)

respectively, where Φr is the nodal test function corresponding to node r, we have to solve

(M[X ] + τ̃Lγzz[Y ]) ∆Y =−
�

M[X ](Ȳ − X̄ ) + τ̃Vγz[Y ]
�

.

Obviously, it holds that

∂Y Vγz[Y ](Θ) = Lγzz[Y ]Θ̄ . (6.7)

Finite Element space discretization for polygonal curves and triangular surfaces

Recalling Equations (2.17) and (2.18) we can simplify Eγ and ∂Y Eγ, respectively, cf. Equa-
tion (6.3), for polygonal curves and triangulated surfaces. Let NT denote the normal NT of
an element T for a simplicial mesh M[Y ]. In the case of polygonal curves the normal of an
element T with face F0 is given by

NT[Y ] =
D
π
2 F0

|F0|
=

D
π
2 F0

|T |
,

whereas for triangulated surfaces the surface normal for an element T consists of faces
F0, F1, F2 and is defined as

NT[Y ] =
F2 ∧ F1

|F2 ∧ F1|
=

1

2

F2 ∧ F1

|T |
,

cf. Equation (2.40) in Section 2.4. Let D
π
2 denote a clockwise rotation through the angle π

2
in the plane. Defining

N F
T [Y ] :=

|T |
α

NT[Y ]
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with α= 1 for polygonal curves and α= 0.5 for triangulated surfaces, i.e.

N F
T [Y ] = D

π
2 F0 ,

for polygonal curves and
N F

T [Y ] = F2 ∧ F1 ,

for triangulated surfaces, we get

Eγ[X , Y ] =M[X ](Ȳ − X̄ ) · (Ȳ − X̄ ) + 2 τ̃α
∑

T∈M[Y ]
γ(N F

T [Y ]) .

Therefore the first variation of Eγ is given by

∂Y Eγ[X , Y ](Θ) = 2M[X ](Ȳ [X ]− X̄ ) · Θ̄ + 2 τ̃α
∑

T∈M[Y ]
γz(N

F
T [Y ]) · ∂Y N F

T (Θ) .

With the above definition (6.5) we get

Vγz[Y ] = α





∑

T∈M[Y ]
γz(N

F
T [Y ]) · ∂Y N F

T (Φr es)





rs

and the nodal vector Ȳ [X ] solves

M[X ](Ȳ [X ]− X̄ ) + τ̃Vγz[Y ] = 0 . (6.8)

6.3 Numerical solution of the anisotropic
optimization problem

As in the isotropic case, cf. Section 4.4, we would like to avoid a direct computation of
∂X Y [X ](Θ). Therefore we apply the same duality argument:

Defining P ∈ V(M[X k])m as the solution of the dual problem

∂ 2
Y Eγ[X , Y [X ]](P,Υ) = ∂Y Wγ[X

k, X , Y [X ]](Υ) . (6.9)

for all test functions Υ ∈ V(M[X k])m we obtain for the first variation of

cWγ[X ] :=Wγ[X
k, X , Y [X ]]

with respect to X in a direction Θ

∂X
cWγ[X ](Θ) = ∂X Wγ[X

k, X , Y [X ]](Θ)− ∂X∂Y Eγ[X , Y ](P,Θ). (6.10)

The solution P of the dual problem (6.9) requires to solve

M[X ]P̄ · Θ̄ + τ̃Lγ[Y ]P̄ · Θ̄− τ̃LN⊗γz[Y ]P̄ · Θ̄

+ τ̃∂Y Lγ[Y ](Θ)Ȳ · P̄ − τ̃∂Y LN⊗γz[Y ](Θ)Ȳ · P̄ =
τ

τ̃2 M[X ](Ȳ − X̄ ) · Θ̄ (6.11)
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for all test functions Θ. With Definition (6.6) this reduces to solve the linear system of
equations with block matrix Lγzz[Y ] (cf. Equation (6.22) for simplical meshes)

(M[X ] + τ̃Lγzz[Y ]) P̄ =
τ

τ̃2 M[X ](Ȳ − X̄ ) . (6.12)

The terms on the right hand side of (6.10) are to be evaluated as follows
�

∂X Wγ

�

[X k, X , Y ](Θ) = 2M[X k](X̄ − X̄ k) · Θ̄ + 2
τ

τ̃2 M[X ](X̄ − Ȳ ) · Θ̄

+
τ

τ̃2 (∂X M[X ](Θ))(Ȳ − X̄ ) · (Ȳ − X̄ ) ,

∂X∂Y Eγ[X , Y ](P,Θ) = 2(∂X M[X ](Θ))(Ȳ − X̄ ) · P̄ − 2M[X ]P̄ · Θ̄ .

In the concrete numerical algorithm we either perform a gradient descent method with the
Armijo step size control starting from the initial position given by the previous time step (Al-
gorithm 6.1) or a SQP approach (Algorithm 6.2). Let ∂X M[X ](Θ) and ∂Y Lγzz[Y ](Θ) denote
the variation of the mass and stiffness matrix with respect to a variation Θ of the simplicial
grid. As in Section 4.4, cf. Equations (4.18) and (4.19), we define the corresponding block
operators as third order tensors ∂X M and ∂Y Lγzz that map a vector V̄ = (V k

j ) j∈I ,k=1,··· ,m ∈ Rm]I

to a matrix via

(∂X M)V̄ =
�

∂X M(r̃,s̃)( j,k)[X ](Φr es)V
k
j

�

r,r̃∈I ,s,s̃=1,··· ,m
∈ Rm]I ,m]I

and

(∂Y Lγzz)V̄ =
�

∂Y Lγzz
(r̃,s̃)( j,k)[Y ](Φr es)V

k
j

�

r,r̃∈I ,s,s̃=1,··· ,m
∈ Rm]I ,m]I .

We can compute the descent direction in Rm]I of the energy cWγ at a given simplicial mesh
M[X ] described by the nodal vector X̄ and obtain

gradX
cWγ[X ] =

�

∂X
cWγ[X ](Φr es)

�

r∈I , s=1,··· ,m
,

= 2M[X k](X̄ − X̄ k) + 2M[X ]
� τ

τ̃2 (X̄ − Ȳ ) + P̄
�

+
�

∂X M[X ](Ȳ − X̄ )
�

� τ

τ̃2 (Ȳ − X̄ )− 2 P̄
�

, (6.13)

where es denotes the sth coordinate direction in Rm.

To derive the SQP approach we consider the following Lagrangian function for Problem (6.2)

Lγ[X , Y, P] =Wγ[X
k, X , Y ]− ∂Y Eγ[X , Y ](P)

for the independent unknowns X , Y ∈ Rm]I and Lagrange parameter P ∈ Rm]I corresponding
to the dual variable, cf. Equation (6.9). For any test functions Θ ∈ V(M[X k])m we have

∂X Lγ[X , Y, P](Θ) = ∂X Wγ[X
k, X , Y ](Θ)− ∂X∂Y Eγ[X , Y ](P,Θ),

∂Y Lγ[X , Y, P](Θ) =Wγ[X
k, X , Y ](Θ)− ∂Y∂Y Eγ[X , Y ](P,Θ),

∂Z Lγ[X , Y, P](Θ) = − ∂Y Eγ[X , Y ](Θ),
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Algorithm 6.1: Gradient decent method for two step time discretization of anisotropic
Willmore flow

input data: surface M[X 0];
calculate spatial grid size ∆X 0;
set time step sizes τ=∆X 0 and τ̃= τ2;
set X̄ k = X̄ 0;
set counter for the two step time discretization k = 0;
repeat

set counter of the gradient decent method l = 0;
set X̄ k,l = X̄ k;
repeat

solve
�

M[X k,l](Ȳ − X̄ k,l) + τ̃Vγz[Y ] = 0
�

by a Newton method; // Eq. (6.4)

solve
�

M[X k,l] + τ̃Lγzz[Y ]
�

P̄ = τ

τ̃2 M[X k,l](Ȳ − X̄ k,l); // Eq. (6.12)

D = gradX
cWγ[X ] ; // Eq. (6.13)

X̄ k,l+1 = X̄ k,l− ArmijoStepSize
�

cWγ, X k,l , D
�

D;
l ← l + 1;

until |X̄ k,l+1− X̄ k,l |< ε ;

X̄ k+1 = X̄ k;
k← k+ 1;

until |X̄ k+1− X̄ k|< ε ;

where the gradient of Wγ is given by

grad[X ,Y ]Wγ[X
k, X , Y ] =

 

2M[X k](X̄ − X̄ k) + 2 τ

τ̃2 M[X ](X̄ − Ȳ )

2 τ

τ̃2 M[X ](Ȳ − X̄ )

!

(6.14)

and the variation of Eγ with respect to Y by

−∂Y Eγ[X , Y ] = 2M[X ](X̄ − Ȳ )− 2 τ̃Vγz[V ]. (6.15)

We also define the matrix

Aγ[X , Y ] := − grad[X ,Y ]

�

∂Y Eγ[X , Y ]
�

=

 

�

∂X M[X ](Ȳ − X̄ )
�

�

τ

τ̃2 (Ȳ − X̄ )− 2 P̄
�

+ 2M[X ]P̄

−2 (M[X ] + τ̃Lγzz[Y ]) P̄

!

. (6.16)

The last ingredient of the SQP approach is the Hessian Hess[X ,Y ]Lγ[X k, Y, P]. Its components
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Algorithm 6.2: SQP method for two step time discretization of anisotropic Willmore
flow

input data: surface M[X 0];
calculate spatial grid size ∆X 0;
set time step sizes τ=∆X 0 and τ̃= τ2;
set X̄ k = X̄ 0;
set counter for the two step time discretization k = 0;
repeat

set counter of the SQP method l = 0;
set X̄ k,l = X̄ k;
set Ȳ l = X̄ k;
set P̄ l = 0;
repeat

calculate Wγ[X k, X k,l , Y l] and grad[X ,Y ]Wγ[X k, X k,l , Y l]; // Eq. (6.14)
calculate Hess[X ,Y ]Lγ[X k,l , Y l , P l]; // Eq. (6.17)

calculate AT
γ
[X k,l , Y l] and −∂Y Eγ[X k,l , Y l]; // Eq. (6.16) and (6.15)

solve (6.18), (6.19) to obtain (∆X̄ l ,∆Ȳ l) and Z̄ l;
set X̄ k,l+1 = X̄ k,l +∆X̄ l;
set Ȳ l+1 = Ȳ l +∆Ȳ l;
set P̄ l+1 = Z̄ l;
l ← l + 1;

until |(X k,l+1, Y l+1, P l+1)− (X k,l , Y l , P l)|< ε ;

X̄ k+1 = X̄ k;
k← k+ 1;

until |X̄ k+1− X̄ k|< ε ;

for the first row with respect to test functions Θ and Ψ are given by

∂X∂X Lγ(Θ,Ψ) = 2M[X k]Ψ̄ · Θ̄ + 2
τ

τ̃2 M[X ]Ψ̄ · Θ̄

+ (∂ 2
X M[X ](Θ,Ψ))(Ȳ − X̄ ) ·

� τ

τ̃2 (Ȳ − X̄ )− 2 P̄
�

+ 2(∂X M[X ](Θ))
� τ

τ̃2 (X̄ − Ȳ ) + P̄
�

· Ψ̄

+ 2(∂X M[X ](Ψ))
� τ

τ̃2 (X̄ − Ȳ ) + P̄
�

· Θ̄,

∂Y∂X Lγ(Θ,Ψ) = − 2
τ

τ̃2 M[X ]Ψ̄ · Θ̄

− 2(∂X M[X ](Θ))
� τ

τ̃2 (X̄ − Ȳ ) + P̄
�

· Ψ̄
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and for the second row we get

∂X∂Y Lγ(Θ,Ψ) = ∂Y∂X L(Ψ,Θ),

∂Y∂Y Lγ(Θ,Ψ) = 2
τ

τ̃2 M[X ]Ψ̄ · Θ̄− 2 τ̃∂Y Lγzz[Y ](Ψ)P̄ · Θ̄,

so that the Hessian in the anisotropic case is

Hess[X ,Y ]Lγ[X
k, Y, P] =

 

∂X∂X Lγ(Φr es,Φr̃ es̃) ∂Y∂X Lγ(Φr es,Φr̃ es̃)

∂X∂Y Lγ(Φr es,Φr̃ es̃) ∂Y∂Y Lγ(Φr es,Φr̃ es̃)

!

r,r̃∈I , s,s̃=1,··· ,m

(6.17)

The quadratic program to model Problem (6.2) is given by

min
(∆X̄ ,∆Ȳ )

Wγ[X
k, X k,l , Y l] + grad[X ,Y ]Wγ[X

k, X k,l , Y l] · (∆X̄ ,∆Ȳ ) (6.18)

+
1

2
(∆X̄ ,∆Ȳ )T Hess[X ,Y ]Lγ[X

k,l , Y l , P l](∆X̄ ,∆Ȳ )

subject to AT
γ[X

k,l , Y l](∆X̄ ,∆Ȳ )− ∂Y Eγ[X
k,l , Y l] = 0 (6.19)

and we can formulate the SQP Algorithm 6.2 to solve the two step time discretization for the
anisotropic Willmore flow.

6.4 Anisotropic elastic flow of parametrized curves

6.4.1 Finite element space discretization

Let X be an one-dimensional polygonal closed curve with points X i ∈ R2 and line segments
Ti with endpoints X i and X i+1, i = 0, · · · , n− 1. The curve is parametrized contra-clockwise.
For X = (X 0, X 1) ∈ R2 let X⊥ := (−X 1, X 0) denote a clockwise rotation of X through the
angle π

2
that is 90 degree. The normal Ni[X ] of the element Ti is given as

Ni = Ni[X ] =
�

X i − X i+1

�⊥ 1

‖X i − X i+1‖
=









− (X
1
i −X 1

i+1)

‖X i−X i+1‖

(X 0
i −X 0

i+1)

‖X i−X i+1‖









.

Recalling Equations (2.17) and (2.18) it holds that

γ(Ni[X ]) =
1

‖X i − X i+1‖
γ
�

�

X i − X i+1

�⊥
�

,

γz(Ni[X ]) = γz

�

�

X i − X i+1

�⊥
�

.
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Therefore, given fixed constant λ > 0 and a parameterization X k at time step k, in each time
step we have to solve the nested variational problem

X k+1 = argmin
X

�

Wγ[X
k, X , Y [X ]] +λA[X ]

�

with (6.20)

Y [x] = argmin
Y

Eγ[X , Y ] ,

where

Wγ[X
k, X , Y ] =M[X k](X̄ − X̄ k) · (X̄ − X̄ k) +

τ

τ̃2 M[X ](Ȳ − X̄ ) · (Ȳ − X̄ ) ,

Eγ[X , Y ] =M[X ](Ȳ − X̄ ) · (Ȳ − X̄ ) + 2 τ̃
∑

i=0,··· ,n−1

γ
�

(Yi − Yi+1)
⊥
�

, (6.21)

and A[X ] =
∑

i=0,··· ,n−1 ‖X i − X i+1‖ denotes the length of the curve X as in the previous
chapter.

Inner variational problem: Discrete anisotropic curve shortening flow

The inner variational problem solves one time step of the anisotropic mean curvature flow. In
the case of curves we approximate the anisotropic mean curvature flow for one-dimensional
interfaces, the anisotropic curve shortening flow. This two step time discretization is fast
and efficient and allows us to choose the time step size of the order of the spatial grid size.
The problem of anisotropic or isotropic mean curvature flow has been successfully studied
in past years [96, 102, 20, 64, 63, 67, 83, 14, 13, 15].
Recalling again Equations (2.17) and (2.18), it holds that

Eγ[X , Y [X ]] =M[X ](Ȳ − X̄ ) · (Ȳ − X̄ ) + 2 τ̃
∑

i=0,··· ,n−1

γ(Ni[Y ])|Ti|

=M[X ](Ȳ − X̄ ) · (Ȳ − X̄ ) + 2 τ̃
∑

i=0,··· ,n−1

γ⊥
�

Yi − Yi+1

�

,

where γ⊥ := γ ◦ D
π
2 . To solve the inner variational problem (6.8) we have to calculate the

first variation of the anisotropic mean curvature energy Eγ. For a test function Θ we have

∂Y Eγ[X , Y [X ]](Θ) = 2M[X ](Ȳ − X̄ ) · Θ̄ + 2 τ̃
∑

i∈I

�

γ⊥
�

z
(Yi − Yi+1) · (Θi −Θi+1)

= 2M[X ](Ȳ − X̄ ) · Θ̄ + 2 τ̃
∑

i∈I

�

γz1

�

(Yi − Yi+1)⊥
�

−γz0

�

(Yi − Yi+1)⊥
�

�

· (Θi −Θi+1)

Choosing Θ= Φr es we get for the sum in the second summand

(Vγz[Y ])s,r =
∑

i∈I

�

γ⊥
�

z
(Yi − Yi+1) · ((Φr es)i − (Φr es)i+1)

=

�

γ⊥z1

�

(Yr−1− Yr)
�

−γz0

�

(Yr−1− Yr)⊥
�

�

· (−es) +

�

γz1

�

(Yr − Yr+1)⊥
�

−γz0

�

(Yr − Yr+1)⊥
�

�

· es

= (2s− 1)γz1−s

�

(Yr−1− Yr)
⊥
�

+ (1− 2s)γz1−s

�

(Yr − Yr+1)
⊥
�

.
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Figure 6.3: We pick up two examples of CHAMBOLLE [36] for the evolution under the aniso-
tropic curve shortening flow with the variational time discretization of anisotropic mean cur-
vature motion. The elliptical integrand is the regularized l1-norm γ(z) =

∑2
l=1

p

ε|z|2+ z2
l

with ε= 0.000001 (cf. Example 2.2.9). The time step τ̃ is chosen of the order of the spatial
grid size. The red curve is the initial curve that converges to a squared point. We show the
evolution of the left examples for iterations 1, 20, 40, 60, 80, 100, 120, 140, 250 and for the
second examples for iterations 1, 5, 10, 20, 30, 40, 60, 80.

To solve Equation (6.8) with a Newton method, we need the second variation of Eγ. For test
functions Θ and Ψ we have

∂ 2
Y Eγ[X , Y [X ]](Θ,Ψ) = 2M[X ]Θ̄ · Ψ̄ + 2 τ̃

∑

i∈I

�

γ⊥
�

zz
(Yi − Yi+1)(Θi −Θi+1) · (Ψi −Ψi+1)

= 2M[X ]Θ̄ · Ψ̄

+ 2 τ̃
∑

i∈I

�

γz1z1

�

(Yi − Yi+1)⊥
�

−γz1z0

�

(Yi − Yi+1)⊥
�

−γz0z1

�

(Yi − Yi+1)⊥
�

γz0z0

�

(Yi − Yi+1)⊥
�

�

(Θi −Θi+1) · (Ψi −Ψi+1)

Choosing Θ= Φr es and Ψ= Φr̃ es̃ we get for the sum in the second summand

L
γzszs̃
r r̃ [Y ] =

∑

i∈I

�

γ⊥
�

zz
(Yi − Yi+1)((Φr es)i − (Φr es)i+1) · ((Φr̃ es̃)i − (Φr̃ es̃)i+1)

=
�

γ⊥
�

zz
(Yr−1− Yr)(−es) · ((Φr̃ es̃)r−1− (Φr̃ es̃)r)

+
�

γ⊥
�

zz
(Yr − Yr+1)es · ((Φr̃ es̃)r − (Φr̃ es̃)r+1) .

Therefore Lγzszs̃ [Y ] =
�

L
γzszs̃
r r̃ [Y ]

�

r r̃
is a tridiagonal matrix

Lγzszs̃ [Y ] = tridiag(L
γzszs̃
r−1 , L

γzszs̃
r , L

γzszs̃
r+1 )
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with its corresponding entries

L
γzszs̃
r−1 := (2s− 1)(1− 2s̃)γz1−sz1−s̃

�

(Yr−1− Yr)
⊥
�

,

L
γzszs̃
r := (2s− 1)(2s̃− 1)γz1−sz1−s̃

�

(Yr−1− Yr)
⊥
�

+ (1− 2s)(1− 2s̃)γz1−sz1−s̃

�

(Yr − Yr+1)
⊥
�

,

L
γzszs̃
r+1 := (1− 2s)(2s̃− 1)γz1−sz1−s̃

�

(Yr − Yr+1)
⊥
�

in each row. With block matrix Lγzz[Y ]

Lγzz[Y ] =
�

Lγz0z0[Y ] Lγz0z1[Y ]
Lγz1z0[Y ] Lγz1z1[Y ]

�

we have to solve the following system of equations (cf. (6.12)) in each Newton iteration

(2M[X ] + 2 τ̃Lγzz[Y ])∆Ȳ =−
�

2M[X ](Ȳ − X̄ ) + 2 τ̃Vγz[Y ]
�

.

Numerical solution of the optimization problem

For the dual problem (6.9) we have to solve

∂ 2
Y Eγ[X , Y [X ]](P,Θ) = ∂Y Wγ[X

k, X , Y [X ]](Θ)

for all test functions Θ, P = PiΦi, Pi ∈ R2, {Φi}i∈I the nodal basis on the curve. This is
equivalent to solve the following linear system of equations (cf. 6.12)

(M[X ] + τ̃Lγzz[Y ]) P̄ =
τ

τ̃2 M[X ](Ȳ − X̄ ) . (6.22)

Implementing the SQP approach to solve the anisotropic Willmore flow, we need the first
variation of Lγzszs̃ [Y ]. We obtain for its derivatives with respect to a variation of node i in
direction k

∂Y (L
γzszs̃ [Y ]) (Φiek) = tridiag(∂Y L

γzszs̃
r−1 ,∂Y L

γzszs̃
r ,∂Y L

γzszs̃
r+1 )

where

∂Y L
γzszs̃
r−1 := (2s− 1)(1− 2s̃)(1− 2δ1k)γz1−sz1−s̃z1−k

�

(Yr−1− Yr)
⊥
�

(δi(r−1)−δir) ,

∂Y L
γzszs̃
r := (2s− 1)(2s̃− 1)(1− 2δ1k)γz1−sz1−s̃z1−k

�

(Yr−1− Yr)
⊥
�

(δi(r−1)−δir)

+ (1− 2s)(1− 2s̃)(1− 2δ1k)γz1−sz1−s̃z1−k

�

(Yr − Yr+1)
⊥
�

(δir −δi(r+1)) ,

∂Y L
γzszs̃
r+1 := (1− 2s)(2s̃− 1)(1− 2δ1k)γz1−sz1−s̃z1−k

�

(Yr − Yr+1)
⊥
�

(δir −δi(r+1)) .

in each row. The corresponding block matrix ∂Y (Lγzz[Y ]) (Φiek) is given by

∂Y Lγzz[Y ](Φiek) =
�

∂Y Lγz0z0[Y ] ∂Y Lγz0z1[Y ]
∂Y Lγz1z0[Y ] ∂Y Lγz1z1[Y ]

�

.
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Figure 6.4: Evolution of the two examples from Figure 6.3 under the two step time
discretization of the Willmore flow. The elliptical integrand is the regularized l1-norm
γ(z) =

∑2
l=1

p

ε|z|2+ z2
l with ε = 0.0001 (cf. Example 2.2.9). The time step τ is cho-

sen of the order of the spatial grid size. τ̃= τ2 and λ= 0.03. The initial red curves converge
to a square. We show the evolution of the left examples for iterations 30, 60, 90, 120 and
for the second examples for iterations 5, 10, 15, 20.

6.4.2 Numerical results

Comparison to exact solutions for radially symmetric evolution

At first we analyze the evolution of circles in the plane under the anisotropic Willmore flow
with γ(n) = |n| in comparison to the isotropic model of Chapter 4, cf. Table 6.1. As seen
above, we first calculate a single fully implicit time step of anisotropic mean curvature mo-
tion with a Newton approach instead of a semi-implicit time step of mean curvature motion
by solving a linear system of equations. To calculate the in space continuous and time dis-
crete radially symmetric solutions for the inner variational problem we have to solve the
mean curvature flow for y , that is

ṙ(t) =−r(t)−1, (6.23)

so that the evolution in time of the radius is given by

r(t) =
�

r2
0 − 2t

�
1
2 .

Let r̃ be the radius of the curve y that solves the time discrete, but spatially continuous
anisotropic mean curvature flow with γ(n) = |n|

y − x

τ̃
=∆M[x] y ,

cf. Equation (4.26). Then, again by simple calculations, it holds that

r̃ − r

τ̃
=−

1

r̃
⇔ r̃ =

1

2
r
−
+

r

r2

4
− τ̃ ,
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Figure 6.5: Evolution of a circle towards a square under the elastic flow with anisotropy

γ(z) =
2
∑

l=1

p

ε|z|2+ z2
l , where ε= 10−7 is shown. The example underlines that we can chose

the anisotropy in our algorithm almost crystalline. The time step τ was chosen of the order
of the spatial grid size, τ̃= (∆X )2 and λ= 0.02. The curves are scaled to diameter one.

which is an implicit first order scheme for the above ODE (6.23). In the isotropic case this
led to the semi-implicit scheme, cf. Equation (4.27),

r̃ − r

τ̃
=−

r̃

r2 ⇔ r̃ =
r3

r2+ τ̃
.

Let τ, τ̃ be fixed and x k = ∂ Brk
be the circle with radius rk, x = ∂ Br(τ) be the circle with

radius r := r(τ) and y = ∂ B�
1
2

r
−
+
q

r2

4
−τ̃
� the time discrete solution of the evolution of the

mean curvature flow. We consider the anisotropic Willmore energy for radial symmetric
solutions without length term and γ(n) = |n|.

wγ[r] =

∫

∂ Brk

(x − x k)2dσ+
τ

τ̃2

∫

∂ Br

(y − x)2dσ

= 2πrk
�

r − rk
�2+

τ

τ̃2 2πr

 

−
r

2

−
+

r

r2

4
− τ̃

!2

Therefore we get

0= ∂r wγ[r]

= 4πrk(r − rk) + 4π
τ

τ̃2 r

 

−
r

2

−
+

r

r2

4
− τ̃

!






−

1

2

−
+

r

4
Æ

r2

4
− τ̃







+ 2π
τ

τ̃2

 

−
r

2

−
+

r

r2

4
− τ̃

!2

.

That is equivalent to

r − rk

τ
= −

1

4τ̃2 rk



3r2− 2τ̃
−
+
−3r3+ 8rτ̃
p

r2− 4τ̃



 ..
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Step (k) isotropic L∞-Error anisotropic L∞-Error

0 6.5339*10−6 1.9203*10−6

1 1.2954*10−5 3.8035*10−6

2 1.9278*10−5 5.6505*10−6

3 2.5494*10−5 7.4619*10−6

4 3.1608*10−5 9.2389*10−6

5 3.7623*10−5 1.0982*10−5

10 6.6292*10−5 1.7635*10−5

102 3.5202*10−4 9.2909*10−5

103 5.6003*10−4 1.0451*10−4

104 3.9209*10−3 4.0398*10−4

Table 6.1: Comparison of the L∞-Error between the exact solution r0((k + 1)τ) and the
corresponding discrete solution computed by the SQP approach of the two step time dis-
cretization of the isotropic Willmore flow and the anisotropic Willmore flow with isotropic
anisotropy γ(z) = |z| for 2000 polygon vertices (cf. Table 4.1). The L∞-Error is the maximum
of the absolut value of the difference between r0((k+ 1)τ) and ‖X k+1‖. The time step size
equals the grid size. The L∞-Error of the anisotropic version is smaller than the L∞-Error of
the isotropic algorithm.

Evolution in case of an ellipsoidal Wulff shape

As a first example for the resulting flow we consider the evolution of a curve towards an
ellipse under the elastic flow with anisotropy γ(z) =

p

z2
0 + 4 z2

1 , cf. Figures 6.1 and 6.2. The
initial parametrization is given as

x0(t) = (sin(t), cos(t), 0) for t ∈ [0, 2π].

The computational parameters are ∆X = 0.1256, τ = ∆X and λ = 0.025. In Figures 6.6
and 6.7 we show the evolution of a square towards an ellipse for different grid sizes.

Evolution in case of a cubical Wulff shape

The next example underlines that we can chose the anisotropy in our algorithm almost
crystalline. The anisotropy is the regularized l1-norm

γ(z) =
2
∑

l=1

p

ε|z|2+ z2
l ,

with ε= 10−7, cf. Figure 6.5.

Evolution of a bunny model under the anisotropic Willmore flow

Figure 6.8 and 6.9 show the evolution of a bunny towards an ellipse for grid sizes ∆X =
0.03125 and∆X = 0.00865 and in Figure 6.10 towards a square for grid size∆X = 0.00865.
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Figure 6.6: Anisotropic Willmore flow for an initial square with 128 (1st row) and 256 line
segments (2nd and 3rd row) are shown at times t = 0.0, t = 0.18732, t = 0.37464 and
t = 0.56196, where ∆X = 0.09366 and ∆X = 0.046875, respectively.

6.5 Remark on the anisotropic Willmore flow for surfaces

We have seen that the two step time discretization of the anisotropic Willmore flow of poly-
gonal curves is stable and effectively allows for time steps of the order of the spatial grid size.
In this thesis we also derived the scheme for the anisotropic Willmore flow for surfaces, but
its implementation is ongoing research. Due to the fact that the formulation of the two step
time discretization of the anisotropic Willmore flow incorporates only the anisotropy and not
its derivatives, it seems to be promising that we can chose e.g. the regularized l1-anisotropy
γ(z) =

∑3
l=1

p

ε|z|2+ z2
l with ε > 0.001 in comparison to the semi-implicit scheme, where ε

was chosen 0.01 or 0.001.
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Figure 6.7: Anisotropic Willmore flow for an initial square with 1024 line segments is shown
at times t = 0.0, t = 0.048308, t = 0.096616, t = 0.132847, t = 0.18732, t = 0.37464,
t = 0.46832 and t = 0.56196, with τ = ∆X = 0.02344 and τ̃ = (∆X )2 = 5.5 ∗ 10−4, cf.
Figure 6.6.

Figure 6.8: Evolution of a bunny with 218 nodes towards an ellipse. The time step size
τ = ∆X = 0.03125 equals the spacial grid size. λ was chosen 0.025 and τ=̃(∆X )2. We
show the bunny at time steps 0, 1, 2, 5, 7, 10, 14, 20.
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Figure 6.9: Evolution of a bunny with 436 nodes towards an ellipse. The time step size
τ = ∆X = 0.00865 equals the spacial grid size. λ was chosen 0.025 and τ=̃(∆X )2. We
show the bunny at time steps 0, 5, 10, 30, 50, 100, 200, 300.

Figure 6.10: Evolution of a bunny with 436 nodes towards a square under the elastic flow

with anisotropy γ(z) =
2
∑

l=1

p

ε|z|2+ z2
l , where ε = 1.0e−7. The time step size τ = ∆X =

0.00865 equals the spacial grid size. τ̃ = τ. λ was chosen 0.025. We show the bunny at
time steps 0, 10, 20, 40, 60, 80, 150, 230, 250.
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Chapter 7

Variational methods for surface matching

FINDING a correspondence between two surfaces is a fundamental step in many geom-
etry processing operations. A correspondence between two surfaces is a mapping from

one onto the other that respects certain properties of the surfaces. A variational method for
matching three-dimensional surfaces based on finding a minimizing deformation between
their two-dimensional parameter domains was developed by LITKE ET AL. [126]. In this
chapter, we prove the existence of minimizers of the matching energy, which are the opti-
mal matching deformations, applying the direct methods from the Calculus of Variations.
We proof global injectivity and regularity of the optimal matching deformations, so that we
can expect to obtain smooth deformations that are free of folds and singularities, cf. Fig-
ure 7.1. The matching energy does not lend itself to a robust numerical minimization, thus
we establish a suitable approximation. In the minimization algorithm, already a gradient
descent method require the calculation of the derivatives of the energy with respect to the
deformations, which incorporate integrals over the boundary. We avoid this by extending
the dependent-domain of integration to a superset and introducing a regularized character-
istic function to ignore the energy contributions at some distance away from the formally
dependent-domain. We prove the existence of minimizing deformations for the approxi-
mation and show by Γ-convergence that the sequence of minimizers of the approximating
energy converges to the solution of the limit problem.
The approach is based on mapping geometric attributes like the metric and mean curvature
into the two-dimensional parameter plane and employing well-established non-rigid match-
ing techniques from image processing in the parameter domains of the surfaces, which
avoids the problems that come with matching triangulations in three dimension [3, 177].
Image matching, also known as image registration, is one of the fundamental tasks in im-
age processing. For a detailed exposition we refer to [53, 78, 52, 75, 146]. Given a reference
image uA : ω → R and a template image uB : ω → R one asks for a general non rigid spa-
tial deformation φ : ω → ω such that uB ◦φ is optimally correlated to uA. The parameter
domain ω ⊂ R2 is supposed to be bounded with Lipschitz boundary. Searching for a direct
correspondence between the image intensities the basic matching energy is given by

Em[φ] :=

∫

ω

|uA(ξ) ◦φ − uB(ξ)|2 dξ.

As boundary condition we constrain φ to be the identity on ∂ω. In the surface matching
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Figure 7.1: A checkerboard is texture mapped onto the surfaces (top). The optimal matching
deformation between the first and second (green) surface is shown in the parameter domain
on the right (bottom). It is smooth and regular, even where the distortion is high, e.g. around
the outlines of the mouth and eyes. Image courtesy of LITKE ET AL. [126].

approach, this idea represented by a bending energy Ebend which measures the squared
L2-error with respect to mean curvatures of the two surfaces. The corresponding minimiza-
tion problem is known to be ill-posed if one considers the infinite space of deformations
[101, 165]. Therefore one ask for a suitable regularization energy. Different regularization
approaches have been proposed [43, 42, 62]. We are searching for a regularization energy
which in particular also allows to control area shrinkage and simultaneously ensures conti-
nuity and injectivity for the minimizing deformation. Therefore we confine to hyperelastic
energy functionals Eelast[φ] on deformations φ based on classical concepts from continuum
mechanics and in particular from the theory of elasticity [44, 128]. Let ω be an isotropic
elastic body where the identity represents the stress free deformation. Let us consider the
change of length and area under a deformation φ. The length of a curve γ : [0, 1] → ω
under the deformation φ is given by

a[φ ◦ γ] =

1
∫

0

�

�∂t
�

φ ◦ γ
�

�

� dt =

1
∫

0

p

DφT Dφγ̇ · γ̇dt. (7.1)

Hence, just as
p

tr
�

AT A
�

measures the average change of length under a linear mapping

A, the Frobenius norm |Dφ|2 =
p

tr
�

DφT Dφ
�

, cf. Definition 2.1.8, controls the average
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change of length under the linear mapping Dφ. The corresponding change of area in an
isotropic elastic body is obviously measured by det(Dφ):

area(φ(ω̃)) =

∫

ω̃

|det(Dφ(x))|dx (7.2)

for an area patch ω̃ ⊂ ω. If det(Dφ(x)) < 0, self penetration may be observed. The isotro-
pic elastic energy which separately cares about length and area deformation and especially
penalizes area shrinkage is then defined by

Eelast[φ] :=

∫

ω

W (|Dφ(x)|2, det(Dφ(x)))dx ,

where W : R2→ R is supposed to be convex and fulfills a growth condition prescribed next.
CLARENZ, LITKE & RUMPF [56] derived a class of simple energy functionals based on a set of
natural axioms for measuring the distortion of a single parametrization. The concrete energy
density is then

W (a, d) := αl a
p
2 +αa

�

d
r
2 + βd−

s
2

�

, (7.3)

with r, s > 0, αl ,αa,β > 0, a = a(A) = tr
�

AT A
�

and d = d(A) = det(A) for a matrix A∈ R2,2.
W depends on the principal invariants ιA := (tr (A) , det(A)) of the Jacobian matrix of the
deformation φ. Here, αl a

p
2 controls the length change under the deformation. Since

lim
d→∞

αa

�

d
r
2 + βd−

s
2

�

= lim
d→0
αa

�

d
r
2 + βd−

s
2

�

=∞

the second summand of the energy density penalizes area compression and expansion under
the deformation. The energy fW : R2,2→ R

fW (A) :=W (|A|2, det(A))

is not convex, but polyconvex [58]. A function eF : R2,2 → R, A 7→ eF(A) is referred to as
polyconvex if there exists a convex function F : R2→ R such that

eF(A) = F(A, det A).

In our surface matching problem, we consider the surfaces as thin elastic shells. Then,
surface deformations lead to tangential stretching and shearing, cf. Figure 1.2 (2) in the
introduction. Therefore, we incorporate a regularization energy Ereg to control length and
area changes in the induced non-rigid deformation between the two surfaces. Its energy
density is given by (7.3) depending on a distortion tensor that measures distortion between
tangential vectors on the two surfaces.

In an early work of LEE ET AL. [122], parameterizations of the meshes over a common pa-
rameter domain are used to establish a direct correspondence between them. Typically these
methods are driven by user-supplied feature correspondences which are then used to drive
a mutual parametrization. The main difficulty is the proper alignment of selected features
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during the parameterizations process [115, 142, 153]. In our approach, we cover the two
parameter domains of the surfaces to be matched with user-defined feature characteristics.
A feature energy EF then measures the mismatch of features and we avoid point-wise con-
straints. GU & VEMURI [107] considered one-to-one correspondence of topological spheres
through conformal maps with applications to brain matching. Therefore, they do not have to
address the difficult problem of partial correspondences between surfaces with boundaries.

7.1 Variational model

Our goal is to correlate two surface patches, MA and MB, through a non-rigid spatial de-
formation,

φM :MA→ R3

such that corresponding regions of MA are mapped onto regions of MB. As already de-
scribed in the introduction, we consider the first surface as a thin shell which we press into a
mould representing the second surface, cf. Figure 1.2. One can distinguish between stresses
induced by stretching and compression, and stresses induced by bending that occurs in the
surface as it is being pressed. Thus, φM can be regarded as the deformation of such a thin
shell. We assume this deformation to be elastic. We give a short overview of the variational
approach developed in LITKE ET AL. [126]. The matching energy consists of three energy
contributions. A regularization energy measures the induced in-plane stresses, and the con-
crete energy density allows control over length and area distortion in this surface-to-surface
deformation. Since we are aiming for a proper correspondence of shape, we incorporate the
bending of normals in our energy. Furthermore, surfaces are characterized by geometric or
texture features which should be matched properly as well. We reflect this in the variational
approach with a third energy which penalizes a non-proper match of feature lines drawn on
the surface.

7.1.1 Measuring distortion via a deformation

Let xA and xB be parametrizations of the surfaces MA and MB defined in an initial step,
cf. Equation (2.12) in Section 2.1. Their metrics are defined on the parameter domains
denoted by ωA and ωB, respectively,

gC = Dx T
C DxC (7.4)

where DxC ∈ R3,2 is the Jacobian of the parameterization xC , C = A, B. First, let us consider
deformations φ : ωA→ ωB which are one-to-one. A deformation φ between the parameter
domains induces a deformation between the surface patches φM :MA→MB defined by

φM := xB ◦φ ◦ x−1
A .

The complete mapping is illustrated in Figure 7.2. We have seen, cf. Equation (7.1) and
(7.2), that, in elasticity, the distortion under an elastic deformation φ is measured by the
Cauchy-Green strain tensor DφT Dφ. We wish to adapt this definition to measure the dis-
tortion between tangent vectors on the two surfaces, as we did with the metric g = Dx T Dx
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MA
MB

φM

φ

xA xB

ωA

ωA[φ]
ωB

φ(ωA)

x1

x2

x3

ξ1

ξ2

Figure 7.2: The matching function φM := xB ◦ φ ◦ x−1
A is a mapping between the cor-

responding shaded regions of the two surfaces. The partial correspondence is defined on
ωA[φ] = φ−1 (φ(ωA)∩ωB) in 2D. Image courtesy of LITKE ET AL. [126].

in Section 2.1,cf. Equation (2.13) and (2.14). Incorporating the metrics gA and gB at the
deformed position, the distortion from the surface MA onto the surface MB is controlled by
a distortion tensor G[φ] ∈ R2,2,

G[φ] = g−1
A DφT (gB ◦φ)Dφ , (7.5)

acting on tangent vectors in the parameter domainωA. Mathematically, this tensor is defined
implicitly via the identity (gAG[φ]v)·w = (gB◦φ)Dφ v ·Dφ w for tangent vectors v, w on the
surface MA and their images as tangent vectors Dφ v, Dφ w on MB, where here we have
identified tangent vectors on the surfaces with vectors in the parameter domains. As above
p

tr G[φ] measures the average change of length of tangent vectors from MA when being

mapped onto MB and
p

detG[φ] measures the change of area under the deformation φM.
The regularization energy is then defined by

Ereg[φ] =

∫

ωA

W (tr G[φ], detG[φ])
p

det gA dξ

with following energy density

W (a, d) = αl a
p
2 +αa

�

d
r
2 + βd−

s
2

�

, (7.6)

cf. Equation (7.3), with 2 < p < ∞, r > 1, s > p
p−2

and αl ,αa,β > 0. a = a(A) = trG[φ]
controls length distortion, whereas d = d(A) = detG[φ] penalizes area expansion and d−1

area compression. The weights αl ,αa are chosen by the user preference to the relative
importance of length and area distortion.



142 CHAPTER 7. VARIATIONAL METHODS FOR SURFACE MATCHING

7.1.2 Measuring bending via a deformation

When we press a given surface MA into the mould of a surface MB, a major source of stress
results from the bending of normals. We assume these stresses to be elastic as well and to
depend on changes in normal variations under the deformation. Variations of normals are
represented in the metric by the shape operator. We define the shape operator S ∈ R2,2 of
the surface M with respect to the parameterization x as the representation of the normal
variation in the metric, i.e.

(g S v) ·w = Dn v · Dx w ,

where n is the normal field on M. Thus SA = g−1
A (DxA)T DnA. For SB[φ] at the deformed

position φM(x) with respect to the metric gA, we obtain

(gA SB[φ] v) ·w = D(nB ◦φ) v · D(xB ◦φ)w

= (DnB ◦φ)Dφ v · (DxB ◦φ)Dφ w

and deduce

SB[φ] = g−1
A DφT (DxB ◦φ)T (DnB ◦φ)Dφ

= g−1
A DφT (gB ◦φ) (SB ◦φ)Dφ,

where SB is the shape operator of the surface MB taking into account the original metric gB.
Up to a factor 1

2
, the average change of the normal variation on the tangent space TxMA is

given by

tr
�

SB[φ]− SA
�

= tr
�

g−1
A DφT (gB ◦φ) (SB ◦φ)Dφ − SA

�

= tr
�

(SB ◦φ)Dφ g−1
A DφT (gB ◦φ)− SA

�

= tr
�

(SB ◦φ)Dφ G[φ]Dφ−1− SA)
�

,

where we use that tr (A+ B) = tr (A) + tr (B) and tr (AB) = tr (BA). Neglecting the impact of
the metric distortion G[φ], we decouple bending completely from tangential distortion. If
G[φ] is the identity mapping I, we have

tr (SB ◦φ)− tr (SA)

as a local measure for the bending of normals. Since the trace of the shape operator is the
mean curvature, we can instead aim to compare the mean curvature hB = tr (SB) of the
surface MB at the deformed position φM(x) and the mean curvature hA = tr (SA) of the
surface MA. A similar observation was used by GRINSPUN ET AL. [105] to define a bending
energy for discrete thin shells. Finally, we define the following bending energy

Ebend[φ] =

∫

ωA

(hB ◦φ − hA)
2
p

det gA dξ . (7.7)

By minimizing this energy, we ensure that the deformation properly matches mean curvature
on the surfaces, although an energy depending solely on hB ◦φ − hA does not recognize, if
the deformation aligns a curve with positive curvature on the first surface to a curve with
negative curvature on the second surface and vice versa.
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Figure 7.3: The two-dimensional parameter domains of the three-dimensional surfaces of
Figures 7.5 and 7.6 are shown. Quantities such as texture maps can be mapped onto the
domains. The desired feature sets are marked in the image domains (left). For surfaces with
boundaries, a partial correspondence is often desired. The correspondence is defined where
their parameter domains intersect under the matching deformation (right). The unmatched
regions are in black. Image courtesy of LITKE ET AL. [126].

7.1.3 Matching features

To match geometric or texture features properly, we incorporate a correspondence of fea-
ture sets in the variational approach to match characteristic lines drawn on the surface. We
denote the feature sets by FMA

⊂MA and FMB
⊂MB on the respective surfaces. Further-

more, let FA ⊂ ωA and FB ⊂ ωB be the corresponding sets on the parameter domains. The
feature sets on the surface have co-dimension two. We are aiming for a proper match of
these sets via the deformation, i.e.

φM(FMA
) = FMB

or in terms of differences,

FMA
\φ−1

M(FMB
) = ; and FMB

\φM(FMA
) = ;,

so that the energy

EH :=H1
�

FMA
\φ−1

M(FMB
)
�

+H1
�

FMB
\φM(FMA

)
�

(7.8)

with one-dimensional Hausdorff measure H1 penalizes a non proper match of one-dimen-
sional feature lines drawn on the surface. But, numerically, we mark the desired feature sets
in the image domains that are discretized by regular grids. Therefore, the actual feature
lines are pixel lines or regions drawn by the user on the texture image with a pen of at least
one pixel width, cf. Figure 7.3. Thus, the feature lines are now two-dimensional sets and we
propose the feature energy

EF[φ] = γF
�

LA

�

FA \φ−1(FB)
�

+LB

�

FB \φ(FA
)
��

, (7.9)

where

LA(Ω) :=

∫

ωA

χΩ
p

det gA dξ (7.10)
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is the Lebesgue measure of a set Ω with respect to the metric gA on ωA. LB(Ω) is defined
analogously:

LB(Ω) :=

∫

ωB

χΩ
p

det gB dξ. (7.11)

Let L(·) denote the Lebesgue measure. γF is a fixed constant of order one in case of feature
sets that have a variable width (e.g. eyes on a face) and 1

w
for feature lines with constant

width w. This energy is an approximation of the length of one-dimensional feature lines and
the one-dimensional Hausdorff measure, respectively, as the width of the feature sets tends
to zero.

7.2 Existence of an optimal surface matching

Our final matching energy consists of three different cost functionals. The class of energy
functionals that measure the regularity of a surface deformation,

Ereg[φ] =

∫

ωA

W (tr G[φ], detG[φ])
p

det gA dξ (7.12)

with the energy density given as in Equation (7.6). Since we also want to match surfaces
where certain subregions of MA have no corresponding counter part on MA and vise versa,
we cannot expect that φ(ωA) = ωB, cf. Figure 7.3. But assuming high enough regularity
of the parameterizations, the metric function gB is continuous and we denote its continuous
extension of gB onto φ(ωA) ∪ωB again by gB. Hence the energy Ereg is well defined. As
above motivated, the following bending energy, cf. Equation (7.7),

Ebend[φ] =

∫

ωA

(hB ◦φ − hA)
2
p

det gA dξ ,

measures the bending of normals to ensure a proper correspondence of the shape. hA and
hB, respectively, denote the mean curvature of the corresponding surfaces. If φ(ωA) 6= ωB

we incorporate the characteristic function χωB
into the energy density and define φM only

on xA(ωA[φ]) where

ωA[φ] := φ−1 (φ(ωA)∩ωB)

is the corresponding subset of the parameter domain ωA. We define the new bending energy
as

Ebend[φ] =

∫

ωA

χωB
◦φ
�

hB ◦φ − hA

�2p

det gA dξ . (7.13)

Supposing that gB, initially only defined on ωB, is extended to R2 it is still useful for Ereg to
control the regularity of the deformation outside the actual matching domain ωA[φ]. The
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third energy contribution EF , cf. (7.9), penalizes a non-proper match of two-dimensional
feature lines marked in the images domains. We define the global matching energy

E[φ] := βbend Ebend[φ] + βreg Ereg[φ] + βF EF[φ] , (7.14)

which measures the quality of a matching deformation φ on the domain ωA. The weights
βbend ,βreg ,βF are chosen by the user’s preference. Applying the direct method in the Cal-
culus of Variations, cf. DACOROGNA [58], it is possible to prove the existence of minimizing
deformations for the matching energy:

Theorem 7.2.1. (Existence of minimizing deformations.)
Suppose MA and MB are C2−surfaces. Let xA and xB be their bi-Lipschitz continuous parame-
terizations over the bounded parameter domains ωA and ωB with Lipschitz boundary. Consider
the total energy (7.14) with βbend , βreg , βF > 0 and the three energy contributions Ebend[φ]
(cf. 7.13), Ereg[φ] (cf. 7.12), and EF[φ], cf. Equation (7.9), acting on deformations from the
set of admissible deformations

A :=
�

φ ∈ H1,p(ωA,R2); det Dφ ∈ L r(ωA), det Dφ > 0 a.e. in ωA ,

(7.15)
∫

ωA

det Dφ dξ≤ L
�

φ(ωA)
�

�

with 2< p <∞ and r > 1. Furthermore, we assume

fW (Dφ, det Dφ) :=W
�

tr G[φ], det G[φ]
�

to be convex and that the following growth condition holds:

W (a, d)≥ αl a
p
2 +αa

�

d
r
2 + βd−

s
2

�

, (7.16)

where αl , αa, β > 0 and s > p
p−2

. We denote the feature sets on the parameter domains by
FA ⊂ ωA and FB ⊂ ωB. FA and FB are supposed to have Lipschitz boundaries with non-
vanishing Lebesgue measure LA(FA) > 0 and LB(FB) > 0. Let φF ∈ A be given in such way
that the regularization and bending energy of φF are finite and that there exists θ < 1 such
that

LA

�

FA \φ−1
F (FB)

�

+LB
�

FB \φF (FA)
�

≤ θ
�

LA(FA) +LB(FB)
�

. (7.17)

If βF fulfills

βbend Ebend[φF] + βreg Ereg[φF]≤ (1− θ)βF γF
�

LA(FA) +LB(FB)
�

, (7.18)

then E attains its minimum over all deformations φ ∈ A and the minimizer φ is continuous
and injective in the sense that

cardφ−1(ξ) = 1 for almost all ξ ∈ φ(ωA) .

There exists a continuous deformation ψ ∈ H1,σ(φ(ωA)) with σ = p(1+s)
s+p

, which is almost
everywhere on φ(ωA) the inverse of φ.



146 CHAPTER 7. VARIATIONAL METHODS FOR SURFACE MATCHING

Proof. First, let us remark on the constraint of the set of admissible deformation. Local injec-
tivity of the deformation is ensured by det Dφ > 0 a.e. in ωA and prevents local overfolding
in the interior of the parameter domain. Still, global injectivity can be violated. The ad-
ditional constraint

∫

ωA
det Dφ dξ ≤ L(φ(ωA)) enforces that the mapping is injective in the

sense that cardφ−1(ξ) = 1 for almost all ξ ∈ φ(ωA), because for general deformations we
get from the area formula, cf. AMBROSIO ET AL. [6, Theorem 2.71], that

∫

ωA

det Dφ dξ=

∫

φ(ωA)
card

�

φ−1(ξ)
�

dξ.

Nevertheless self-contact on the boundary of the deformed parameter domain φ(ωA) is still
possible.

We give a brief sketch for the existence proof that relies on the following ingredients:

(i) Estimate from below. There exists c ∈ R such that for all φ ∈A we have E[φ]> c.

(ii) Compactness. Every sequence (φk) ⊂ A that fulfills E[φk] < C has a subsequence
which converges w.r.t. the weak topology in H1,p to φ ∈A.

(iii) Lower-semicontinuity. For every converging sequence φk +φ w.r.t. the weak topol-
ogy in H1,p the energy fulfills

E[φ]≤ lim inf
k→∞

E[φk].

Then, the proof of existence proceeds as follows. Due to the first condition (i) we choose
a minimizing sequence (φk) such that infψ∈A E[ψ] = lim infk→∞ E[φk], which by (ii) has
a subsequence converging to some φ ∈ A. Denoting the subsequence again by (φk) we
deduce together with (iii)

E[φ]≤ lim inf
k→∞

E[φk] = inf
ψ∈A

E[ψ].

The proof of the theorem proceeds in 6 steps. Following BALL [8, 9] we show that the
minimizing sequence (φk) is uniformly convergent to φ ∈ C0(ω̄A) (Step 1 and 2) and that
det Dφ > 0 a.e. onωA (Step 3). The volume of the neighborhood of the set ∂ωB∪∂FB can be
controlled following the singularity control of DROSKE & RUMPF [76] in Step 4 and 5. Based
on CIARLET & NEČAS [47], φ fulfills the additional constraint

∫

ωA
det Dφ dξ≤ L(φ(ωA)) and

we infer that φ ∈A (Step 6).

Step 1. φF ∈A and E[φF]<∞, thus

E := inf
ψ∈A

E[ψ]<∞ .

Due to the growth condition (7.16) on W we get E ≥ 0. Let us consider a minimizing
sequence

�

φk
�

k=0,1,...
⊂A with E[φk]→ inf

ψ∈A
E[ψ].
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We denote by E an upper bound of the energy E on this sequence. From the bi-Lipschitz as-
sumption on the parameterizations xA and xB we deduce that g−1

A ∈ L∞(ωA) and
gB ∈ L∞(ωB) and that they are uniformly positive definite. It holds

tr
�

g−1
A AT (gB ◦φ)A

�

= tr
�

�

(gB ◦φ)
1
2 A g

− 1
2

A

�T �

(gB ◦φ)
1
2 A g

− 1
2

A

�

�

and hence,

|A|g :=
q

tr
�

g−1
A AT (gB ◦φ)A

�

is a norm on linear mappings A ∈ R2,2 and we can estimate due to the norm equivalence in
finite dimension and the bi-Lipschitz assumptions on the parametrization xA:
∫

ωA

�

tr G[φ]
�

p
2

p

det gA dξ=

∫

ωA

�

�(gB ◦φ)
1
2 Dφg

− 1
2

A

�

�

p

2

p

det gA dξ=

∫

ωA

�

�Dφ
�

�

p

g

p

det gA dξ

≥ Cg

∫

ωA

�

�Dφ
�

�

p

2 dξ=




Dφ






p

Lp(ωA)
(7.19)

with constant Cg > 0. Together with (7.16) and (7.19) we infer that there exists a constant
C > 0 such that

E[φk]≥ C
�





Dφk






p

Lp(ωA)
+




det Dφk






r

Lr (ωA)

�

.

Thus, the sequence
¦�

Dφk, det Dφk
�©

k=0,1,...
is uniformly bounded in Lp × L r . Because of

the reflexivity of H1,p × L r for∞ > p, r > 1, cf. ALT [5, Examples 6.10 (2) and (3)], we can
extract a weakly convergent subsequence, again denoted by an index k, such that

�

Dφk, det Dφk
�

+
�

Dφ, d
�

in H1,p × L r with d ∈ L r(ωA). By BALL [8, Lemma 6.1 (i) and Theorem 6.2] or CIARLET [44,
Section 7.6, Theorem 7.6-1.] we get that d = det Dφ.

Step 2 assures the control of the H1,p-norm. The constraint (7.17) implies the boundedness
of the Lp-norm of the deformations. Using (7.17) and (7.18) we obtain that

¦

φk
©

k=0,1,...
is

uniformly bounded in H1,p(ωA):

Applying the general Poincaré-Lemma, cf. ALT [5, 6.15], to estimate the Lp-norm of φk we
have to show that its assumption are fulfilled, i.e. that there exists a constant C0, such that

φF + ξ ∈
¦

φk
©

k=0,1,...
⇒ ‖ξ‖ ≤ C0

for all ξ ∈ R2. If this is not the case, we modify the set
¦

φk
©

k=0,1,...
as follows:

Assume that there exists φ k̃ ∈
¦

φk
©

k=0,1,...
such that

φ k̃ = φF + ξ
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ωA ωB

(φF + ξ)(ωA)

ξ

φF

φF (ωA)

Figure 7.4: There exists θ < 1 such that LA(FA\φ−1
F (FB))+LB(FB\φF (FA))≤ θ (LA(FA)+

LB(FB)) for φF ∈A. (φF + ξ) shifts FA out of ωB if ‖ξ‖ ≥ diam(ωB) + diam(φF (ωA)).

and ‖ξ‖ large enough such that φ k̃(ωA)∩ωB = ; and therefore

EF[φ k̃] = γF
�

LA(FA) +LB(FB)
�

, (7.20)

cf. Figure 7.4. Since βF fulfills Equation (7.18), we obtain

E[φF] = βbend Ebend[φF] + βreg Ereg[φF]
︸ ︷︷ ︸

(7.18)
≤ (1−θ)βF γF (LA(FA)+LB(FB))

+βF EF[φF]
︸ ︷︷ ︸

(7.17)
≤ θ γF (LA(FA)+LB(FB))

≤ βF γF
�

LA(FA) +LB(FB)
� (7.20)
= βF EF[φ k̃]≤ E[φ k̃] .

We replace φ k̃ by φF without loosing the minimal sequence property. Hence the image of
the feature set FA under φk remains in ωB, i.e. φk(FA)∩ωB 6= ;, for all k. φk does not shift
FA out of ωB and we deduce for C0 := diam(ωB) + diam(φF (ωA))<∞

φF + ξ ∈
¦

φk
©

k=0,1,...
⇒ ‖ξ‖ ≤ C0 . (7.21)

Since ωA has Lipschitz-boundary, 2 < p <∞, and Equation (7.21) we can apply the general
Poincaré-Lemma, cf. ALT [5, 6.15], and obtain that there exists a constant C <∞ with





φk






Lp(ωA)
≤ C

�





Dφk






Lp(ωA)
+ 1
�

.

Therefore,





φk






H1,p(ωA)
≤ C

�





Dφk






Lp(ωA)
+ 1
�

.
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Let us assume without loss of generality that the sequence of energy values E[φk] is mono-
tone decreasing and for given ε > 0 we get

E[φk]≤ E + ε .

Using again the equivalence of norms in finite dimension, cf. Equation (7.19), we deduce





φk






p

H1,p(ωA)
≤ C

�





Dφk






p

Lp(ωA)
+ 1
�

= C

 

∫

ωA

�

�Dφk
�

�

p

2 dξ+ 1

!

≤ C
�

E[φk] + 1
�

≤ C
�

E + ε+ 1
�

.

Finally, we obtain that
¦

φk
©

k=0,1,...
is uniformly bounded in H1,p(ωA). Due to the reflexivity

of H1,p we can extract a weakly convergent subsequence. Since ωA has Lipschitz boundary
and p > 2 the Sobolev space H1,p(ωA,R2) is compactly embedded in C0(ω̄A) by Sobolev’s
embedding theorem. Hence, we can again extract a uniformly convergent subsequence and
obtain φ ∈ C0(ω̄A).

Step 3. Controlling the set

Sε :=
¦

x ∈ωA

�

� det Dφ ≤ ε
©

where the volume shrinks by a factor of more than ε for the limit deformation we show that
det Dφ > 0 a.e. on ωA. For given ε > 0 we denote by k(ε) the smallest index such that

E[φk]≤ E[φk(ε)]≤ E + ε ∀k ≥ k(ε) .

From Step 1 we know that the sequence Ψk :=
�

Dφk, det Dφk
�

converges weakly to
Ψ :=

�

Dφ, det Dφ
�

in Lp × L r . By Mazur’s Lemma, cf. EKELAND & TÉMAM [88, p.6], there
exists a family of weights

�

�

λk
i

�

k(ε)≤i≤k

�

k≥k(ε)

with λk
i ≥ 0 and

∑k
i=k(ε)λ

k
i = 1, such that

k
∑

i=k(ε)
λk

iΨ
i −−−−−→

k→∞
Lp × L r

Ψ and
k
∑

i=k(ε)
λk

iφ
i −−−−→

k→∞
Lp

φ .

For simplicity we omit
∑k

i=k(ε) and assume sum convention. Due to the bi-Lipschitz assump-
tions on the parameterizations xA and xB we get

�

det g−1
A

�− s
2
�

det gB ◦φ
�− s

2

p

det gA ≥ eC on Sε. (7.22)

Furthermore, we have

det G[φ] = det(g−1
A gB) (det Dφ)2 (7.23)

and

tr G[φ] =
�

�(gB ◦φ)
1
2 Dφg

− 1
2

A

�

�

2

2 . (7.24)



150 CHAPTER 7. VARIATIONAL METHODS FOR SURFACE MATCHING

Now, due to the growth condition, the convexity of fW , Fatou’s Lemma, Equations (7.22) and
(7.23) we estimate

βreg αa β eC ε
−sL(Sε)

≤ βreg

∫

Sε

αa β eC
�

(det Dφ)2
�− s

2 dξ≤ βreg

∫

Sε

αa β
�

detG[φ]
�− s

2

p

det gA dξ

≤ βreg

∫

Sε

W
�

trG[φ], detG[φ]
�

p

det gA dξ= βreg

∫

Sε

fW (Ψ)
p

det gA dξ

≤ βreg

∫

Sε

lim inf
k→∞

fW (λk
iΨ

i)
p

det gA dξ≤ βreg

∫

Sε

lim inf
k→∞

λk
i
fW (Ψi)

p

det gA dξ

≤ lim inf
k→∞

λk
i βreg

∫

Sε

fW (Ψi)
p

det gA dξ

≤ lim inf
k→∞

λk
i βreg

∫

ωA

fW (Ψi)
p

det gA dξ+ βbendEbend[φ
i] + βFEF[φ

i]

≤ E

and infer

L(Sε)≤
Eεs

βreg αa β eC
=: CSε

s .

Since

L(S0)≤ L(Sε), ∀ε > 0,

we infer that L(S0) = 0 and thus det Dφ > 0 a.e. on ωA.

Step 4 deals with the singularity set SB := ∂ωB ∪ ∂FB. Since ∂ωB and ∂FB have Lipschitz-
boundary we know that for given δ > 0 there exists εB(δ) = εB > 0 such that

L
�

BεB
(SB)

�

≤ δ .

From this and the injectivity, cf. BALL [9, Theorem 1 (ii)], we especially deduce the estimate

L
�

φ−1
�

BεB
(SB)

�

\ Sε
�

≤
1

ε

∫

φ−1(BεB (SB))

det Dφ dξ=
1

ε
L
�

BεB
(SB)

�

≤
δ

ε
,

for all ε > 0. Hence, we can control the preimage of the neighborhood of the singularity set
SB with respect to φ but restricted to ωA \ Sε.
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In Step 5 we show the lower-semicontinuity of the functional E . The measure of the set

Rε,δ :=
�

φ−1(BεB
(SB)) \ Sε

�

∪ Sε ,

can be estimated in terms of ε and δ (cf. Step 3 and 4), i.e.

L
�

Rε,δ

�

≤
δ

ε
+ CSε

s .

On account of the uniform convergence of the φ i the sequence of (χωB
◦φ i �hB ◦φ i − hA

�2)
converges uniformly to χωB

◦φ
�

hB ◦φ − hA
�2 on ωA \Rε,δ, due to the uniform continuity

of hA and hB since MA and MB are C2-surfaces (cf. Step 2) and the discontinuities of χωB

are in Rε,δ. There exists an index, again denoted by k(ε), so that for all i ≥ k(ε)

χωB
◦φ

�

hB ◦φ − hA
�2−χωB

◦φ i
�

hB ◦φ i − hA

�2
≤ ε in ωA \Rε,δ . (7.25)

Analogously, χFA

�

1−χFB
◦φ i

�

converges uniformly to χFA

�

1−χFB
◦φ
�

and

χFB
◦φ i

�

1−χFA

�

to χFB
◦φ
�

1−χFA

�

and there exists an index, denoted by k(ε), so that
for all i ≥ k(ε)

χFA

�

1−χFB
◦φ
�

−χFA

�

1−χFB
◦φ i

�

≤ ε in ωA \Rε,δ .

Now we are able to estimate E[φ]:
Using again the convexity of fW , Fatou’s Lemma and Mazur’s Lemma we obtain for Ereg[φ]

Ereg[φ] =

∫

ωA

fW (Ψ)
p

det gA dξ≤
∫

ωA

lim inf
k→∞

λk
i
fW (Ψi)

p

det gA dξ

≤ lim inf
k→∞

λk
i

∫

ωA

fW (Ψi)
p

det gA dξ= lim inf
k→∞

λk
i Ereg[φ

i]

From Equation (7.25) we infer an estimation for Ebend[φ]

Ebend[φ] =

∫

ωA\Rε,δ

χωB
◦φ

�

hB ◦φ − hA
�2
p

det gA dξ

+

∫

Rε,δ

χωB
◦φ

�

hB ◦φ − hA
�2
p

det gA
︸ ︷︷ ︸

≤
�

‖hB‖2

∞+‖hA‖2

∞

�

‖det gA‖
1
2
∞=:C∞<∞

dξ

≤ lim inf
k→∞

λk
i

∫

ωA\Rε,δ

�

χωB
◦φ

�

hB ◦φ − hA
�2−χωB

◦φ i
�

hB ◦φ i − hA

�2

+ χωB
◦φ i

�

hB ◦φ i − hA

�2
�
p

det gA dξ

+ C∞L(Rε,δ)

≤εL(ωA) + lim inf
k→∞

λk
i

∫

ωA

χωB
◦φ i

�

hB ◦φ i − hA

�2 p

det gA dξ+ C∞L(Rε,δ) .
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Thus

Ebend[φ]≤ lim inf
k→∞

λk
i Ebend[φ

i] + εL(ωA) + C∞L(Rε,δ) .

To get an estimation for the feature energy we reformulate this energy:

1

γF
EF[φ] =

∫

ωA

χFA

�

1−χFB
◦φ
�
p

det gA dξ

+

∫

ωA

χFB
◦φ
�

1−χFA

�
p

det gB(φ(ξ)) det Dφ dξ

= : EF1
[φ] + EF2

[φ] (7.26)

Controlling the volume of the preimage of the neighborhood of the set ∂FB we infer an
estimation for the first summand EF1

[φ]:

EF1
[φ] =

∫

ωA

χFA

�

1−χFB
◦φ
�
p

det gA dξ

=

∫

ωA\Rε,δ

χFA

�

1−χFB
◦φ
�
p

det gA dξ+

∫

Rε,δ

χFA

�

1−χFB
◦φ
�

︸ ︷︷ ︸

≤1

p

det gA
︸ ︷︷ ︸

≤‖det gA‖
1
2
∞:=CA

dξ

≤ lim inf
k→∞

λk
i

∫

ωA\Rε,δ

�

χFA

�

1−χFB
◦φ
�

−χFA

�

1−χFB
◦φ i

��
p

det gA dξ

+ lim inf
k→∞

λk
i

∫

ωA\Rε,δ

χFA

�

1−χFB
◦φ i

�
p

det gA dξ+ CAL(Rε,δ)

≤ CAεL(ωA) + lim inf
k→∞

λk
i

∫

ωA

χFA

�

1−χFB
◦φ i

�
p

det gA dξ

We get

EF1
[φ] ≤ CAεL(ωA) + lim inf

k→∞
λk

i

∫

ωA

χFA

�

1−χFB
◦φ i

�
p

det gA dξ + CAL(Rε,δ).
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Since λk
i det Dφ i → det Dφ converges in L r(ωA \Rε,δ) and

χFB
◦φ i

�

1−χFA

�
p

det gB(φ i(ξ))→ χFB
◦φ
�

1−χFA

�
p

det gB(φ(ξ))

converges uniformly on ωA \Rε,δ, its product converges weakly in L1(ωA \Rε,δ), cf. ALT [5,
Ü 6.2/6.3]. In particular we can choose an index, again denoted by k(ε), to ensure that

�

�

�

�

�

∫

ωA\Rε,δ

χFB
◦φ
�

1−χFA

�
p

det gB(φ(ξ)) det Dφ dξ

−
∫

ωA\Rε,δ

χFB
◦φ i

�

1−χFA

�
p

det gB(φ i(ξ))λk
i det Dφ i dξ

�

�

�

�

�

≤ ε .

Splitting the second summand EF2
[φ] in (7.26) into the integral over ωA \Rε,δ and Rε,δ

EF2
[φ] =

∫

ωA\Rε,δ

χFB
◦φ
�

1−χFA

�
p

det gB(φ(ξ))det Dφ dξ

+

∫

Rε,δ

χFB
◦φ
�

1−χFA

�
p

det gB(φ(ξ))det Dφ dξ

= : EωA\Rε,δ
F2

[φ] + ERε,δF2
[φ]

we get for the first term

EωA\Rε,δ
F2

[φ] =

∫

ωA\Rε,δ

χFB
◦φ
�

1−χFA

�
p

det gB(φ(ξ))det Dφ dξ

= lim inf
k→∞

�

∫

ωA\Rε,δ

χFB
◦φ
�

1−χFA

�
p

det gB(φ(ξ)) det Dφ dξ

−
∫

ωA\Rε,δ

χFB
◦φ i

�

1−χFA

�

λk
i

p

det gB(φ i(ξ)) det Dφ i dξ

+

∫

ωA\Rε,δ

χFB
◦φ i

�

1−χFA

�

λk
i

p

det gB(φ i(ξ)) det Dφ i dξ
�

≤ε+ lim inf
k→∞

λk
i

∫

ωA

χFB
◦φ i

�

1−χFA

�
p

det gB(φ i(ξ)) det Dφ i dξ.
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The second integral ERε,δF2
[φ] can be estimated as follows

ERε,δF2
[φ] =

∫

Rε,δ

χFB
◦φ
�

1−χFA

�

︸ ︷︷ ︸

≤1

p

det gB(φ(ξ))
︸ ︷︷ ︸

≤‖det gB◦φ‖
1
2
∞:=CB

det Dφ dξ (7.27)

≤ CB

∫

Sε

det Dφ dξ+ CB

∫

φ−1(BεB (SB ))

det Dφ dξ

≤ CB εL(Sε) + CBL(BεB(SB))≤ CB CS ε
s+1+ CB δ.

Therefore

EF[φ]≤ lim inf
k→∞

λk
i EF[φ

i] + εγF (CAL(ωA) + 1) + γF CB CS ε
s+1+ γF CB δ+ CAL(Rε,δ),

and we receive for the total energy E[φ]

E[φ]≤ lim inf
k→∞

λk
i E[φ

i] + ε
�

βbend L(ωA) + βF γF
�

CAL(ωA) + 1
��

+ βbend C∞L(Rε,δ) + βF γF CB CS ε
s+1+ βF γF CB δ+ βF CAL(Rε,δ).

For given ε̄ we choose ε and then δ and the dependent εB small enough and k(ε̄) large
enough to ensure that

ε
�

βbend L(ωA) + βF γF
�

CAL(ωA) + 1
��

+ βbend C∞L(Rε,δ) + βF γF CB CS ε
s+1+ βF γF CB δ+ βF CAL(Rε,δ)≤ ε̄ .

Hence, we get E[φ]≤ E + ε̄ for all ε̄ > 0 and conclude

E[φ]≤ E = inf
ψ∈A

E[ψ] .

Step 6. Following the proof of Theorem 5 in CIARLET & NEČAS [47] and using the weak
continuity of det Dφ we get that the set of admissible deformations is weakly closed and
conclude that

∫

ωA

det Dφ dξ≤ L(φ(ωA))

to deduce that φ ∈ A. Due to CIARLET & NEČAS [47, Theorem 1] the minimizer is injective
almost everywhere in the sense that

cardφ−1(ξ) = 1 for almost all ξ ∈ φ(ωA) .

In particular the deformation φ is almost everywhere invertible.
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Now, if φ is a diffeomorphism with inverse ψ = φ−1, we deduce that the candidate for the
gradient of the inverse

�

Dφ
�−1 is in Lσ with σ = p(1+s)

s+p
:

According to Step 1 there exists a constant c > 0 such that

E[φ]≥ c
�





Dφ






p

Lp(ωA)
+




det Dφ






r

Lr (ωA)
+




det Dφ−1






s

Ls(ωA)

�

. (7.28)

Then, together with Hölder’s inequality, we get that

Dψ(ξ) = (Dφ)−1(ξ) = det Dφ−1

�

φ2,2 −φ1,2

−φ2,1 φ1,1

�

︸ ︷︷ ︸

=:C[φ]∈Lp , (7.28)

⇒
∫

φ(ωA)





Dψ






σ
dξ̃=

∫

ωA

�

|det Dφ−1| |||C[φ]|||
�σ
|det Dφ| dξ

≤

 

∫

ωA

|det Dφ|
p(1−σ)

p−σ

!
p−σ

p
 

∫

ωA

|||C[φ]|||

!
σ
p

.

Due to Equation (7.28), det Dφ ∈ L−s. Since

p(1−σ)
p−σ

=−s⇔ σ =
(s+ 1)p

s+ p

we conclude thatψ ∈ H1,σ(φ(ωA)). We have that σ > 2. Then, following the technical proof
of BALL [9] that is based on a smoothing argument, one can show that φ is a diffeomorphism
with inverse ψ a.e. and its gradient at the deformed position is actually Dφ−1. By Sobolev’s
embedding theorem ψ is continuous. �

Remark 7.2.1. As seen above, polyconvexity implies under suitable growth conditions weak
lower semicontinuity which allow to prove existence of minimizers applying the framework
of the direct methods in the calculus of variations for regularization energies with polycon-
vex integrands. Practically, we consider the energy density that fulfills equality in Equa-
tion (7.16), i.e.

fW (A, d) := αl

�

tr
�

g−1
A AT gB(φ)A

��
p
2

+αa

�

det(g−1
A gB(φ))

r
2

︸ ︷︷ ︸

=:C1>0

d r + β det(g−1
A gB(φ))

− s
2

︸ ︷︷ ︸

=:C2>0

d−s
�

= αl

�

tr
�

g−1
A AT gB(φ)A

��
p
2 +αa

�

C1 d r + β C2 d−s�

with A= Dφ and d = det Dφ. If the conditions of Theorem 7.2.1 hold, this energy is convex,
because its second variations are positive, cf. CIARLET [44, Theorem 4.7-7], and we get that
fW is polyconvex. The first variations of fW (A, d) with respect to A in a direction G ∈ R2,2 and
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d in a direction g ∈ R2 are given by

∂A
fW (A, d)(G) =

∂

∂ ε

�

�

ε=0
fW (A+ εG, d)

= αl

p

2
tr
�

g−1
A AT gB(φ)A

�
p
2
−1

2 tr
�

g−1
A AT gB(φ)G

�

,

∂d
fW (A, d)(g) =

∂

∂ ε

�

�

ε=0
fW (A, d + ε g)

= αa

�

C1 r d r−1 g − β C2 s d−s−1 g
�

.

We get for the second variations offW (A, d)with respect to A in a direction (G, H) ∈ R2,2×R2,2

and with respect to d in a direction (g, h) ∈ R2

∂ 2
A
fW (A, d)(G, H) =

∂

∂ ε

�

�

ε=0∂A
fW (A+ εH, d)(G)

= αl

p

2

�p

2
− 1
�

tr
�

g−1
A AT gB(φ)A

�
p
2
−2

tr
�

g−1
A AT gB(φ)H

�

tr
�

g−1
A AT gB(φ)G

�

+αl

p

2
tr
�

g−1
A AT gB(φ)A

�
p
2
−1

tr
�

g−1
A HT gB(φ)G

�

,

∂ 2
d
fW (A, d)(g, h) =

∂

∂ ε

�

�

ε=0∂d
fW (A, d + εh)(g)

= αa

�

C1 r (r − 1) d r−2 h g + β C2 s (s+ 1) d−s−2 h g
�

.

For d > 0 and all g ∈ R, G ∈ R2,2 we get the desired positiv second variations

∂ 2
A
fW (A, d)(G, G) = αl

p

2

�p

2
− 1
�

tr
�

g−1
A AT gB(φ)A

�
p
2
−2

tr
�

g−1
A AT gB(φ)G

�2

+αl

p

2
tr
�

g−1
A AT gB(φ)A

�
p
2
−1

tr
�

g−1
A GT gB(φ)G

�

> 0,

∂ 2
d
fW (A, d)(g, g) = αa C1 r (r − 1) d r−2 g2+αa β C2 s (s+ 1) d−s−2 g2 > 0 .
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7.3 Fully practical approximation

In the minimization algorithm, descent directions are needed which involve derivatives of
the energy with respect to the deformation φ. In taking these derivatives, integrals over the
variable boundary ∂ωA[φ] appear. Since these are tedious to treat numerically, for the sake
of simplicity we rely on another approximation. Our strategy here is to change the domain
of integration ωA[φ] to a superset ω which extends beyond the boundary ∂ωA[φ]. Doing
so means that special treatment of boundary integrals is no longer necessary, although we
are now required to evaluate the integrands of the energies outside of ωA, and similarly for
deformed positions outside of ωB. To achieve this, we extend our surface quantities onto
ω \ωA and ω \ωB, respectively, by applying a harmonic extension with natural boundary
conditions on ∂ω to gA, gB and hA, hB, e.g. we define hA as the solution of Laplace’s equation
on ω\ωA with vanishing flux on ∂ω. Additionally, we introduce a regularized characteristic
function

χεA(ξ) =max(1− ε−1dist(ξ,A), 0) (7.29)

to ignore the energy contributions at some distance ε away from ωA[φ]. Thus, instead of
dealing with a deformation dependent-domainω[φ] in the definition of our different energy
contributions, we always integrate over the whole image domain ω and replace χωB

by the
product of the two regularized characteristic functions

χε(ξ) = χε
ωA
(ξ)χεωB

(φ(ξ))

in the bending energy integrand and insert the regularized characteristic function ofωA as an
additional factor in the regularization and feature energy integrand. We denote the resulting
energies by

E εreg , E εbend , and E εF ,

respectively. We define the energy

E ε[φ] := βbend E εbend[φ] + βreg E εreg[φ] + βF E
ε
F[φ] , (7.30)

which measures the quality of a matching deformation φ on the domain ω. Following the
techniques of the proof already used in the existence proof of Theorem 7.2.1 it is possible
to prove the existence of minimizing deformations for the approximation of the matching
energy:

Theorem 7.3.1. (Existence of minimizing deformations for E ε.)
Suppose MA and MB are C2−surfaces with bi-Lipschitz continuous parameterizations xA and
xB over the bounded parameter domains ωA and ωB with Lipschitz boundary. The feature
sets on the parameter domains are denoted by FA ⊂ ωA and FB ⊂ ωB and are supposed to
have Lipschitz boundaries with non-vanishing Lebesgue measure LA(FA) > 0 and LB(FB) > 0.
Let φF ∈ A be given analogously to Theorem 7.2.1. Let ω be a compact superset of
ωA[φF] = φ

−1
F (φF(ωA) ∩ ωB), i.e. diam(ω) > diam(ωB) + diam(φF(ωA)). Suppose that

the surface quantities gA, gB and hA, hB are extended onto ω\ωA and ω\ωB, respectively, such
that g−1

A ∈ L∞(ω) and gB ∈ L∞(ω) and that they are uniformly positive definite and that hA,
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hB are uniformly continuous. We achieve this by applying a harmonic extension with natural
boundary conditions on ∂ω to gA, gB and hA, hB, e.g. we define hA as the solution of Laplace’s
equation on ω \ωA with vanishing flux on ∂ω, i.e.

∆ f = 0 on ω \ωC

f = fC on ∂ωC

∂n f = 0 on ∂ω ,

where n denotes the normal on ∂ω and fC = gC or fC = hC with C = A, B. Consider the
total energy (7.30) with βbend , βreg , βF > 0 and βF as in Theorem 7.2.1 and the three energy
contributions

E εreg[φ] =

∫

ω

χεωA
W (tr G[φ], detG[φ])

p

det gA dξ

E εbend[φ] =

∫

ω

χεωA
χεωB
◦φ
�

hB ◦φ − hA

�2p

det gA dξ

E εF[φ] =
∫

ω

χε
ωA
χεFA

�

1−χεFB
◦φ
�
p

det gA dξ

+

∫

ω

χεωA
χεFB
◦φ
�

1−χεFA

�
p

det gB(φ(ξ)) det Dφ dξ

acting on deformations from the set of admissible deformations

A] :=
�

φ :ω→ω, φ ∈ H1,p(ω), det Dφ ∈ L r(ω), det Dφ > 0 a.e. in ω ,

(7.31)
∫

ω

det Dφ dξ≤ L
�

φ(ω)
�

�

,

with 2< p <∞ and r > 1. Furthermore, we assume
fW (Dφ, det Dφ) :=W

�

tr G[φ], det G[φ]
�

to be convex and that the growth condition (7.16) of Theorem 7.2.1 holds, where s > p
p−2

. Then

E ε attains its minimum over all deformations φ ∈ A] and the minimizer φ is continuous and
injective in the sense that

cardφ−1(ξ) = 1 for almost all ξ ∈ φ(ωA) .

There exists a continuous deformation ψ ∈ H1,σ(φ(ωA)) with σ = p(1+s)
s+p

, which is almost
everywhere the inverse of φ.

Proof. Following the proof of Theorem 7.2.1 , we get the desired existence of minimizing de-
formations for E ε. Let us remark that χε

ωA
and χεFB

are uniformly continuous, even Lipschitz-
continuous and bounded and that we do not have to control the set SB = ∂ωB∪∂FB. �

The aim of the next section is to study the behavior of the minimizers when the regularization
parameter ε goes to zero and verify a variational convergence of this approximation.
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7.3.1 Γ-convergence of the approximated surface matching energy

The convergence of variational functionals is a central interest in many research areas where
approximation of variational functionals appear. Γ-convergence is probably the most general
notion of variational convergence and provides a well-developed framework for a large class
of problems. First, we will collect definitions and Theorems, that will be need in the forth-
coming section. We refer to DAL MASO [59] and BRAIDES [29] for comprehensive overviews
on this topic.

Definition 7.3.1. (Γ-convergence.)
Let (A, d) be a metric space. We say that a sequence E ε : A → R := R ∪ {−∞,∞} of
functionals Γ-convergences to E :A→ R, iff for all φ ∈A we have

1. (lim inf-inequality.) For every sequence (φε) converging to φ in A

E[φ]≤ lim inf
ε→0

E ε[φε] . (7.32)

2. (limsup-inequality.) There exists a sequence (φε) converging to φ in A such that

E[φ]≥ limsup
ε→0

E ε[φε] . (7.33)

The function E is referred to as the Γ-limit of (E ε) and denoted by E = Γ− limε→0 E ε.

Definition 7.3.2. (Coerciveness conditions.)
Let (A, d) be a metric space. A function E : A→ R is coercive if for every t ∈ R the closure
of the set {E ≤ t} is compact, cf. DAL MASO [59, Definition 1.12].
A sequence (E ε) is equi-coercive on the space A if for every t ∈ R there exists a closed com-
pact subset Kt of A, such that {E ε ≤ t} ⊂ Kt for every ε, cf. DAL MASO [59, Definition 1.12].

Proposition 7.3.2. Let (A, d) be a metric space. The sequence (E ε) is equi-coercive iff there
exists a lower semicontinuous coercive function G : A → R such that Eε ≥ G on A for every
ε > 0.

Proof. A proof can be found in DAL MASO [59, Proposition 7.7]. �

Theorem 7.3.3. Let (A, d) be a metric space, (E ε) be a sequence of equi-coercive functionals
on A, and let E := Γ − limε→0 E ε. Then, there exists a minimum point φ ∈ A of E , i.e.
φ ∈ arg min

A
E , with

min
A
E = E(φ) = lim

ε→0
inf
A
E ε .

Moreover, if (φε) is a precompact sequence such that

lim
ε→0
E ε[φε] = lim

ε→0
inf
A
E ε ,

then for every subsequence of (φε) converging to φ, φ is a minimum point of E .

Proof. A proof can be found in BRAIDES [29, Theorem 1.21] or DAL MASO [59, Theorem 7.23].
�
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Now, we study the surface matching functionals E ε defined in Equation (7.30) with respect
to Γ-convergence. To prove Γ-convergence and equi-coercivity the function space as to be a
metric space. Since H1,p(ω) is not metrizable with respect to its weak topology, we extend
the overall energies E , cf. Equation (7.14), and E ε, cf. Equation (7.30), that are defined for
deformations φ in the set of admissible deformations A], cf. (7.15), to the Lp(ω,R2)-space
by∞. We define the set of admissible deformations by

eA :=A] ∪ Lp(ω,R2). (7.34)

Then, the extensions of the energies are

eE[φ] :=

(

E[φ] φ ∈A]

∞ else
(7.35)

and

eE ε[φ] :=

(

E ε[φ] φ ∈A]

∞ else.
(7.36)

We get the following Γ-convergence result:

Theorem 7.3.4. Let the assumptions of Theorem 7.2.1 and Theorem 7.3.1 be fulfilled. The
overall energies eE , cf. Equation (7.35), and eE ε, cf. Equation (7.36), are defined for deformations
φ in the set of admissible deformations eA, cf. Definition (7.34). Then

Γ− lim
ε→0

eE ε = eE

with respect to the topology of Lp(ω,R2).

Proof. The proof relies on the techniques already used in the proof of Theorem 7.2.1, espe-
cially the restriction to the complement of a set whose measure is arbitrary small. At first we
show the lim inf-inequality 7.32 that is

eE[φ]≤ lim inf
ε→0

eE ε[φε] ∀φε→ φ in Lp(ω,R2) .

Case 1. If φ ∈ Lp(ω,R2) \A], its energy is given by eE[φ] =∞.

(a) If φε ∈ Lp(ω,R2) \A] for all ε > 0, eE ε[φ] =∞ and the lim inf-inequality is fulfilled.

(b) Assume that there exists a subsequence, again denoted by ε, with φε ∈A] converging to
φ /∈ H1,p(ω,R2). Then, for all δ > 0 exists an ε0 > 0, such that

eE ε[φε] = E ε[φε]≥ c




Dφε






p

Lp > δ (7.37)

for all ε < ε0 with constant c > 0, cf. Equation (7.19) in Step 1 of Theorem 7.2.1. Therefore,
lim infε→0

eE ε[φε] =∞ and the lim inf-inequality is fulfilled.
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Case 2. Let φ ∈A]. Since eE ε[φε] =∞ for φε ∈ Lp(ω,R2) \A], let w.l.o.g. φε ∈A].

Then, eE ε[φε] = E ε[φε] and eE[φ] = E[φ]. Let φε → φ in Lp(ω,R2). If the sequence
{Dφε} is not bounded in Lp(ω,R2) we have that eE ε[φε] = ∞ and the lim inf-inequality
is fulfilled, cf. Inequality (7.37). Because of the reflexivity of H1,p for ∞ > p, r > 1,
cf. ALT [5, Example 6.10 (3)], we can extract a weakly convergent subsequence, again de-
noted by an index k, such that φε+φ in H1,p(ω,R2). By Sobolev’s embedding theorem, we
know that the Sobolev space H1,p(ω,R2) is compactly embedded in C0(ω,R2). Therefore,
A] ⊂⊂ C0(ω,ω) and hence φε converges uniformly to φ ∈ C0 ∩ H1,p. Now, for δ > 0, we
choose σB(δ) = σB > 0, such that L(BSB

(∂ωB))≤ δ (Step 4 of Theorem 7.2.1). We set

Sσ :=
¦

x ∈ω
�

�det Dφ(x)≤ σ
©

,

and estimate its Lebesgue measure by L(Sσ) ≤ Mσs. The measure of the preimage of the
neighborhood of the singularity set of SB := ∂ωB ∪ ∂FB can be controlled by

L
�

φ−1
�

BσB
(SB)

�

\ Sσ
�

≤
δ

σ
.

As in Step 5 of Theorem 7.2.1, we define the set

Rσ,δ :=
�

φ−1
�

BσB
(SB)

�

\ Sσ
�

∪ Sσ

whose measure can be estimated by

L
�

Rσ,δ

�

≤
δ

σ
+Mσs.

We observe that χωB
◦φε

�

hB ◦φε− hA
�2 converges uniformly to χωB

◦φ
�

hB ◦φ − hA
�2 on

ω \Rσ,δ. Analogously, χFA

�

1−χFB
◦φε

�

converges uniformly to χFA

�

1−χFB
◦φ
�

and

χFB
◦φε

�

1−χFA

�

to χFB
◦φ
�

1−χFA

�

on ω \Rσ,δ.

We estimate for Ebend:

Ebend[φ] =

∫

ωA\Rσ,δ

χωB
◦φ

�

hB ◦φ − hA
�2
p

det gA dξ

+

∫

Rσ,δ

χωB
◦φ

�

hB ◦φ − hA
�2
p

det gA dξ

≤C∞L(Rσ,δ) +

∫

ωA\Rσ,δ

�

χωB
◦φ

�

hB ◦φ − hA
�2

−χωB
◦φε

�

hB ◦φε− hA
�2 �

p

det gA dξ

+

∫

ωA\Rσ,δ

χωB
◦φε

�

hB ◦φε− hA
�2
p

det gA dξ.



162 CHAPTER 7. VARIATIONAL METHODS FOR SURFACE MATCHING

We further estimate

Ebend[φ]≤C∞L(Rσ,δ) +σCAL(ωA)

+

∫

ωA

χωB
◦φε

︸ ︷︷ ︸

≤χεωB
◦φε

�

hB ◦φε− hA
�2
p

det gA dξ

≤C∞L(Rσ,δ) +σCAL(ωA) + E εbend[φε].

For given arbitrary σ, on can choose σ and then δ, such that

Ebend[φ]≤ σ+ E εbend[φε] ∀ε > 0,

and therefore

Ebend[φ]≤ lim inf
ε→0

E εbend[φε].

Using the convexity of fW , the semicontinuity of the determinant, Fatou’s Lemma and the
inequality χωA

≤ χεωA
we obtain for the regularization energy:

Ereg[φ] =

∫

ωA

fW (Dφ, det Dφ)
p

det gA dξ

≤
∫

ω

lim inf
ε→0

χεωA
fW (Dφε, det Dφε)

p

det gA dξ

≤ lim inf
ε→0

∫

ω

χεωA
fW (Dφε, det Dφε)

p

det gA dξ

and therefore

Ereg[φ]≤ lim inf
ε→0

E εreg[φε].

We define, cf. Step 5 of Theorem 7.2.1,

1

γF
EF[φ] =

∫

ωA

χFA

�

1−χFB
◦φ
�
p

det gA dξ

+

∫

ωA

χFB
◦φ
�

1−χFA

�
p

det gB(φ(ξ)) det Dφ dξ

= : EF1
[φ] + EF2

[φ]. (7.38)

E εF1
and E εF2

are defined analogously.
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We choose ε small enough, such that σB > ε, and infer the following estimation for EF1
:

∫

ωA

χFA

�

1−χFB
◦φ
�
p

det gA dξ

=

∫

ωA\Rσ,δ

χFA

�

1−χFB
◦φ
�
p

det gA dξ+

∫

Rσ,δ

χFA

�

1−χFB
◦φ
�
p

det gA dξ

≤
∫

ωA\Rσ,δ

�

χFA

�

1−χFB
◦φ
�

−χFA

�

1−χFB
◦φε

��
p

det gA dξ

+

∫

ωA\Rσ,δ

χFA

�

1−χFB
◦φε

�
p

det gA dξ+ CAL(Rσ,δ).

≤CAσL(ωA) + CAL(Rσ,δ) +

∫

ωA\Rσ,δ

χFA

�

1−χFB
◦φε

�

︸ ︷︷ ︸

=χεFA

�

1−χεFB
◦φε

�

p

det gA dξ

≤CAσL(ωA) + CAL(Rσ,δ) + E εF1
[φε]

Using (7.27) of Step 5 in Theorem 7.2.1 EF2
, cf. Equation (7.38), can be estimated via

∫

ωA

χFB
◦φ
�

1−χFA

�
p

det gB(φ(ξ)) det Dφ dξ

≤
∫

ωA\Rσ,δ

χFB
◦φ
�

1−χFA

�
p

det gB(φ(ξ)) det Dφ

−χFB
◦φε

�

1−χFA

�
p

det gB(φε(ξ)) det Dφε dξ

+

∫

Rσ,δ

χFB
◦φ
�

1−χFA

�
p

det gB(φ(ξ)) det Dφ dξ

+

∫

ωA\Rσ,δ

χFB
◦φε

�

1−χFA

�
p

det gB(φε(ξ)) det Dφε dξ

≤σCBL(ωA) + CB M σs+1+ CB δ+

∫

ωA\Rσ,δ

χFB
◦φε

�

1−χFA

�

︸ ︷︷ ︸

=χεFB
◦φε

�

1−χεFA

�

p

det gB(φε(ξ)) det Dφε dξ.



164 CHAPTER 7. VARIATIONAL METHODS FOR SURFACE MATCHING

Figure 7.5: The optimal matching deformation between the first and second surface is
shown in the parameter domain on the right (bottom). Quantities such as texture maps can
be mapped between the surfaces (third surface, top). Image courtesy of LITKE ET AL. [126].

Therefore

EF[φ]≤ σγF ((CA+ CB)L(ωA)) + γF CAL(Rσ,δ) + γF CB M σs+1+ γF CB δ+ E εF[φε].

For given arbitrary σ, on can choose σ and than δ, such that

EF[φ]≤ σ+ E εF[φε] ∀ε < σB,

and therefore

EF[φ]≤ lim inf
ε→0

E εF[φε].

Collecting the tree terms of the total energy we get

E[φ]≤ lim inf
ε→0

βbendE εbend[φε] + lim inf
ε→0

βregE εreg[φε] + βF lim inf
ε→0

E εF[φε]≤ lim inf
ε→0

E ε[φε],

that is the lim inf-inequality (7.32).
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To obtain the desired limsup-inequality we have to show that for each φ ∈ Lp(ω,R2)∪A],
there exists a sequence (φε), φε ∈ Lp(ω,R2)∪A] with φε→ φ in Lp(ω,R2), such that

eE[φ]≥ limsup
ε→0

eE ε[φε].

We set φε := φ.

Case 1. φ ∈ Łp(ω,R2) \A]. It holds that

eE[φ] =∞= limsup
ε→0

eE ε[φε]

and the lim sup-inequality is fulfilled.

Case 2. φ ∈ A]. Then, eE ε[φε] = E ε[φε] and eE[φ] = E[φ]. Since ∂ωA has Lipschitz-
boundary and is bounded we know that for given ε̄ > 0 there exists εA > 0 such that

L
�

BεA
(∂ωA)

�

≤ ε̄ .

We obtain for all ε≤ εA

E εbend[φ] =

∫

ω

χε
ωA
χε
ωB
◦φ(hB ◦φ − hA)

2
p

det gA dξ

=

∫

ω\(BεA(∂ωA)∪Rσ,δ)

χωA
χωB
◦φ(hB ◦φ − hA)

2
p

det gA dξ

+

∫

BεA(∂ωA)∪Rσ,δ

χεωA
χεωB
◦φ(hB ◦φ − hA)

2
p

det gA dξ

≤ Ebend[φ] +L(BεA
(∂ωA))

�

δ

σ
+Mσs

�

C∞ CA.

Analogously, we estimate E εreg[φ] and E εF[φ]. Hence, we get the desired lim sup-inequality (7.33)

limsup
ε→0

E ε[φε] = limsup
ε→0

E ε[φ]≤ E[φ]

and conclude the Γ-convergence of E ε to E . �

In order to apply Theorem 7.3.3, we have to prove the equi-coercivity of (E ε). From the
proof of Theorem 7.2.1, we also know that Ereg is lower semicontinuous, i.e.

Ereg[φ]≤ lim inf
ε→0

Ereg[φε] ∀φε+φ in H1,p .

Due to the growth condition of W , βregEreg is coercive. Since E ε ≥ βregEreg the equi-
coercivity follows by Proposition 7.3.2.
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Figure 7.6: 3D morphs between two different faces. Images courtesy of LITKE ET AL. [126].

7.4 Some applications revisited

Figures 7.1 and 7.5 show two examples of surface matching. One application of surface
matching is texture mapping. In Figure 7.5 the texture of the second surface is mapped
onto the first with φ−1

M . The result underlines also the accuracy of the match, especially
around the eyes and mouth. 3D morphs between two different faces based on a linear blend
x ← λx + (1 − λ)φM(x), x ∈ MA and λ ∈ [0, 1], is shown in Figure 7.6, which also
demonstrates that the algorithm is good at matching surfaces where certain features does
not have an exact correspondences, e. g. as the crack in the surface of Figure 7.6. For details
on the matching algorithm we refer to LITKE ET AL. [126].
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[47] P. G. Ciarlet and J. Nečas. Injectivity and self-contact in nonlinear elasticity. Archive
for Rational Mechanics and Analysis, 97:171–188, 1987.

[48] U. Clarenz. Sätze über Extremalen zu parametrischen Funktionalen. Dissertation,
Rheinische Friedrich–Wilhelms–Universität Bonn, 1999.

[49] U. Clarenz. Enclosure theorems for extremals of elliptic parametric functionals. Cal-
culus of Variations and Partial Differential Equations, 15:313–324, 2002.

[50] U. Clarenz. The Wulff-shape minimizes an anisotropic Willmore functional. Interfaces
and Free Boundaries, 6(3):351–359, 2004.

[51] U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf, and R. Rusu. A Finite Element method
for surface restoration with smooth boundary conditions. Computer Aided Geometric
Design, 21(5):427–445, 2004.

[52] U. Clarenz, M. Droske, S. Henn, M. Rumpf, and K. Witsch. Computational methods for
nonlinear image registration. DFG Schwerpunktprogramm 1114, Preprint 79, Januar
2005.

[53] U. Clarenz, M. Droske, and M. Rumpf. Towards fast non–rigid registration. In In-
verse Problems, Image Analysis and Medical Imaging, AMS Special Session Interaction of
Inverse Problems and Image Analysis, volume 313, pages 67–84. AMS, 2002.

[54] U. Clarenz and G. Dziuk. Grid optimization via conformal reparametrization. to be
published, 2005.

[55] U. Clarenz, G. Dziuk, and M. Rumpf. On generalized mean curvature flow in sur-
face processing. In H. Karcher and S. Hildebrandt, editors, Geometric analysis and
nonlinear partial differential equations, pages 217–248. Springer, 2003.

[56] U. Clarenz, N. Litke, and M. Rumpf. Axioms and variational problems in surface
parameterization. Computer Aided Geometric Design, 21(8):727–749, 2004.

[57] U. Clarenz and H. von der Mosel. On surfaces of prescribed f -mean curvature. Pacific
Journal of Mathematics, 213(1):15–36, 2004.

[58] B. Dacorogna. Direct Methods in the Calculus of Variations. Applied Mathematical
Sciences 78. Springer–Verlag, Berlin, 1989.

[59] G. Dal Maso. An Introduction to Γ-Convergence. Birkhäuser, 1993.

[60] A. Dall’Acqua, K. Deckelnick, and H.-C. Grunau. Classical solutions to the Dirich-
let problem for Willmore surfaces of revolution. Advances in Calculus of Variations,
1(4):379–397, 2008.

[61] A. Dall’Acqua, H.-C. Grunau, S. Fröhlich, and F. Schieweck. Symmetric Willmore
surfaces of revolution satisfying arbitrary Dirichlet boundary data. Technical report,
Universität Magdeburg, 2008. preprint.



BIBLIOGRAPHY 171

[62] C. A. Davatzikos, R. N. Bryan, and J. L. Prince. Image registration based on boundary
mapping. IEEE Transaction Medical Imaging, 15(1):112–115, 1996.

[63] K. Deckelnick and G. Dziuk. A fully discrete numerical scheme for weighted mean
curvature flow. Numerische Mathematik, 91(3):423–452, 2002.

[64] K. Deckelnick and G. Dziuk. Mean curvature flow and related topics. In Frontiers in
numerical analysis. 10th LMS-EPSRC numerical analysis summer school, Durham, UK,
July 7-19, 2002. Springer. Universitext 63-108, 2003.

[65] K. Deckelnick and G. Dziuk. Error analysis of a Finite Element method for the Will-
more flow of graphs. Interfaces and Free Boundaries, 8:21–46, 2006.

[66] K. Deckelnick and G. Dziuk. Error analysis for the elastic flow of parametrized curves.
Preprint Fakultät für Mathematik und Physik, 14(07):1–25, 2007.

[67] K. Deckelnick, G. Dziuk, and C. M. Elliott. Computation of geometric partial differen-
tial equations and mean curvature flow. Acta Numerica, 14:139–232, 2005.

[68] K. Deckelnick, G. Dziuk, and C. M. Elliott. Fully discrete Finite Element approximation
for anisotropic surface diffusion of graphs. SIAM Journal on Mathematical Analysis,
43(33):1112–1138, 2005.

[69] K. Deckelnick, G. Dziuk, and C. M. Elliott. Fully discrete simi-implicit second or-
der splitting for anisotropic surface diffusion of graphs. SIAM Journal on Numerical
Analysis, 43:1112–1138, 2005.

[70] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit fairing of irregular meshes
using diffusion and curvature Flow. In Proceedings of SIGGRAPH 99, Computer Graph-
ics Proceedings, Annual Conference Series, pages 317–324, Aug. 1999.

[71] U. Diewald. Anisotrope Krümmungsflüsse parametrischer Flächen sowie deren Anwen-
dung in der Flächenverarbeitung. Dissertation, Universität Duisburg-Essen, Campus
Duisburg, 2005.

[72] U. Diewald, S. Morigi, and M. Rumpf. A cascadic geometric filtering approach to
subdivision. Computer Aided Geometric Design, 19:675–694, 2002.

[73] M. P. do Carmo. Riemannian geometry. Birkhäuser, Boston, 1992.

[74] M. P. do Carmo. Differential forms and applications. Springer, 1994.

[75] M. Droske. On Variational Problems and Gradient Flows in Image Processing. Disserta-
tion, Universität Duisburg-Essen, Campus Duisburg, 2005.

[76] M. Droske and M. M. Rumpf. A variational approach to non-rigid morphological
image matching. SIAM Journal on Applied Mathematics, 64(2):668–687, 2004.

[77] M. Droske and M. Rumpf. A level set formulation for Willmore flow. Interfaces and
Free Boundaries, 6(3):361–378, 2004.



172 BIBLIOGRAPHY

[78] M. Droske and M. Rumpf. A variational approach to non-rigid morphological regis-
tration. SIAM Journal on Applied Mathematics, 64(2):668–687, 2004.

[79] Q. Du, C. Liu, and X. Wang. Simulating the deformation of vesicle membranes un-
der elastic bending energy in three dimensions. Journal of Computational Physics,
212:757–777, 2006.

[80] G. Dziuk. Finite Elements for the Beltrami operator on arbitrary surfaces. In S. Hilde-
brandt and R. Leis, editors, Partial Differential Equations and Calculus of Variations,
pages 142–155. Springer, 1988.

[81] G. Dziuk. An algorithm for evolutionary surfaces. Numerische Mathematik, 58:603–
611, 1991.

[82] G. Dziuk. Convergence of a semi-discrete scheme for the curve shortening flow. Math-
ematical Models and Methods in Applied Sciences, 4:589–606, 1994.

[83] G. Dziuk. Discrete anisotropic curve shortening flow. SIAM Journal on Numerical
Analysis, 36(6):1808–1830, 1999.

[84] G. Dziuk. Computational parametric Willmore flow. Preprint Fakultät für Mathematik
und Physik, Universität Freiburg, 13-07, 2007.

[85] G. Dziuk, E. Kuwert, and R. Schätzle. Evolution of elastic curves in Rn: Existence
and computation. SIAM Journal on Mathematical Analysis, 33, no. 5(5):1228–1245,
2002.

[86] I. Eckstein, A. A. Joshi, C.-C. Kuo, J. R. Leahy, and M. Desbrun. Generalized Surface
Flows for Deformable Registration and Cortical Matching. In Medical Image Comput-
ing and Computer-Assisted Intervention – MICCAI 2007, pages 692–700, 2007.

[87] I. Eckstein, J.-P. Pons, Y. Tong, C.-C. J. Kuo, and M. Desbrun. Generalized surface flows
for mesh processing. In SGP ’07: Proceedings of the fifth Eurographics symposium on
Geometry processing, pages 183–192, Aire-la-Ville, Switzerland, Switzerland, 2007.
Eurographics Association.

[88] I. Ekeland and R. Témam. Convex Analysis and Variational Problems, volume 28 of
Classics in applied mathematics. SIAM, Society for Industrical and Applied Mathemat-
ics, 1999.

[89] E. Evans. Bending Resistance and Chemically Induced Moments in Membrane Bilay-
ers. Biophysical Journal, 14(12):923–931, 1974.

[90] E. Fein. d3f – ein Programmpaket zur Modellierung von Dichteströmungen. GRS, Braun-
schweig, 1998.

[91] E. Fein. r3t – a program suite to model transport and retention in porous media. GRS,
Braunschweig, 2003.

[92] I. Fonseca and S. Müller. A uniqueness proof for the Wulff theorem. Proceedings of
the Royal Society of Edinburgh, 119:125–136, 1991.



BIBLIOGRAPHY 173

[93] G. Friesecke, R. James, and S. Müller. A theorem on geometric rigidity and the deriva-
tion of nonlinear plate theory from three dimensional elasticity. Communications on
Pure and Applied Mathematics, 55(11):1461–1506, 2002.

[94] G. Friesecke, R. D. James, and S. Müller. Rigorous derivation of nonlinear plate theory
and geometric rigidity. Technical report, Max-Planck-Institut, Leipzig, 2001.

[95] P. Frolkovic, M. Lampe, and G. Wittum. r3t - software package for numerical simu-
lations of radioactive contaminant transport in groundwater. Technical report, WiR,
2005.

[96] M. Gage and R. Hamilton. The heat equation shrinking convex plane curves. Journal
of Differential Geometry, 23(1):69–96, 1986.

[97] M. Gage and R. Hamilton. Numerical approximation of anisotropic geometric evolu-
tion equations. Journal of Differential Geometry, 23:69–96, 1986.

[98] T. Geßner, B. Haasdonk, R. Kende, M. Lenz, R. Neubauer, M. Metscher, M. Ohlberger,
W. Rosenbaum, M. Rumpf, R. Schwörer, M. Spielberg, and U. Weikard. A procedu-
ral interface to hierarchical grids. Technical report, SFB 256, Rheinische Friedrich–
Wilhelms–Universität Bonn, 1999.

[99] Y. Giga. Surface evolution equations: a level set method. Technical report, Hokkaido
University Technical Report Series in Mathematics No. 71, 2002.

[100] D. Gilbarg and N. Trudinger. Elliptic partial differential equations of second order.
Grundlehren der Mathematischen Wissenschaften. 224. Berlin-Heidelberg-New York:
Springer–Verlag, 1992.

[101] L. Gottesfeld Brown. A survey of image registration techniques. ACM Computing
Surveys, 24(4):325–376, 1992.

[102] M. A. Grayson. The heat equation shrinks embedded plane curves to round points.
Journal of Differential Geometry, 26(2):285–314, 1987.

[103] G. Greiner. Variational Design and Fairing of Spline Surfaces. In Computer Graphics
Forum (Proc. Eurographics ’94), volume 13, pages 143–154, 1994.

[104] G. Greiner, J. Loos, and W. Wesselink. Data dependent thin plate energy and its use
in interactive surface modeling. Computer Graphics Forum (Proc. Eurographics ’96),
15(3):175–186, 1996.

[105] E. Grinspun, A. N. Hirani, M. Desbrun, and P. Schröder. Discrete shells. In 2003 ACM
SIGGRAPH / Eurographics Symposium on Computer Animation, pages 62–67, 2003.

[106] E. Grinspun, P. Krysl, and P. Schröder. CHARMS: A Simple Franmework for Adaptive
Simulation. In Computer Graphics (SIGGRAPH ’02 Proceedings), 2002.

[107] X. Gu and B. C. Vemuri. Matching 3D shapes using 2D conformal representations. In
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004, pages
771–780, 2004.



174 BIBLIOGRAPHY

[108] J. Haslinger and R. A. E. Mäkinen. Introduction to shape optimization: theory, approx-
imation, and computation. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, USA, 2003.

[109] W. Helfrich. Elastic properties of lipid bilayers: Theory and possible experiments.
Zeitschrift für Naturforschung, 28c:693–703, 1973.

[110] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints,
volume 23 of Mathematical Modelling: Theory and Applications. Springer, 2009.

[111] J. Jost. Riemannian geometry and geometric analysis. Springer, 1998.

[112] W. Karush. Minima of Functions of Several Variables with Inequalities as Side Con-
straints. M.sc. dissertation, Dept. of Mathematics, University of Chicago, Chicago,
Illinois, 1939.

[113] W. Klingenberg. A course in differential geometry. Springer-Verlag, New York, 1978.

[114] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multi-resolution
modeling on arbitrary meshes. ACM SIGGRAPH ’98 proceedings, pages 105–114, 1998.

[115] V. Kraevoy and A. Sheffer. Cross-parameterization and compatible remeshing of 3D
models. ACM Transactions on Graphics, 23(3):861–869, Aug. 2004.

[116] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceedings of 2nd Berkeley
Symposium, pages 481–492. University of California Press, 1951.

[117] E. Kuwert and R. Schätzle. The Willmore flow with small initial energy. Journal of
Differential Geometry, 57(3):409–441, 2001.

[118] E. Kuwert and R. Schätzle. Gradient flow for the Willmore functional. Communica-
tions in Analysis and Geometry, 10(5):1228–1245 (electronic), 2002.

[119] E. Kuwert and R. Schätzle. Removability of Point Singularities of Willmore Surfaces.
Preprint SFB 611, Bonn, 2002.

[120] E. Kuwert and R. Schätzle. Removability of point singularities of Willmore surfaces.
Annals of Mathematics (2), 160(1):315–357, 2004.

[121] E. Kuwert and R. Schätzle. Closed surfaces with bounds on their Willmore energy.
Technical report, Universität Freiburg, 2008.

[122] A. Lee, D. Dobkin, W. Sweldens, and P. Schroeder. Multiresolution mesh morphing.
Proceedings of SIGGRAPH 99, pages 343–350, 1999.

[123] J. M. Lee. Riemannian manifolds: an introduction to curvature. Springer, 1997.

[124] K. Leichtweiß. Konvexe Mengen. Springer-Verlag, Berlin–Heidelberg–New York, 1980.

[125] K. Leschke, F. Pedit, and U. Pinkall. Willmore tori in the 4–sphere with nontrivial
normal bundle. Annals of Mathematics, 332:381–394, 2005.



BIBLIOGRAPHY 175

[126] N. Litke, M. Droske, M. Rumpf, and P. Schröder. An image processing approach to
surface matching. In M. Desbrun and H. Pottmann, editors, Third Eurographics Sym-
posium on Geometry Processing, pages 207–216, 2005.

[127] S. Luckhaus and T. Sturzenhecker. Implicit time discretization for the mean curvature
flow equation. Calculus of Variations and Partial Differential Equations, 3:253–271,
1995.

[128] J. E. Marsden and T. J. R. Hughes. Mathematical foundations of Elasticity. Prentice–
Hall, Englewood Cliffs, 1983.

[129] U. Mayer and G. Simonett. A numerical scheme for axisymmetric solutions of cur-
vature driven free boundary problems with applications to the Willmore flow. Inter-
phases and Free Boundaries, 4(1):89–109, 2002.

[130] O. Nemitz. Anisotrope Verfahren in der Bildverarbeitung: Gradientenflüsse, Level-Sets
und Narrow Bands. Dissertation, Rheinische Friedrich–Wilhelms–Universität Bonn,
2008.

[131] J. Nitsche. Boundary value problems for variational integrals involving surfaces cur-
vatures. Quarterly of Applied Mathematics, LI, no. 2:363–387, 1993.

[132] J. Nitsche. Periodic surfaces that are extremal for energy functionals containing curva-
ture functions. In H. Davis and J. Nitsche, editors, Proceedings of Workshop Statistical
Thermodynamics and Differential Geometry of Microstructured Materials. IMA vol. in
Math. and its Appl., Springer, 1993.

[133] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York / Berlin,
1999.

[134] N. Olischläger. Optimale konforme Parametrisierungen von topologischen Sphären.
Diploma thesis, Universität Duisburg-Essen, Campus Duisburg, 2005.

[135] N. Olischläger and M. Rumpf. Two Step Time Discretization of Willmore Flow. In
Proceedings of the 13th IMA International Conference on Mathematics of Surfaces XIII,
pages 278–292, Berlin, Heidelberg, 2009. Springer-Verlag.

[136] F. Otto. The geometry of dissipative evolution equations: the porous medium equa-
tion. Communications in Partial Differential Equations, 26(1-2):101–174, 2001.

[137] B. Palmer. Variational Problems which are Quadratic in the Surface Curvatures. In AIP
Conference Proceedings: Curvature and Variational Modeling in Physics and Biophysics,
volume 1002, pages 33–70, 2007.

[138] B. Palmer. Equilibria for anisotropic bending energies. Journal of Mathematical
Physics, 50(2), 2009.

[139] U. Pinkall and I. Sterling. Willmore surfaces. The Mathematical Intelligencer, 9(2):38–
43, 1987.



176 BIBLIOGRAPHY

[140] A. Polden. Closed Curves of Least Total Curvature. SFB 382 Tübingen, Preprint, 13:,
1995.

[141] A. Polden. Curves and Surfaces of Least Total Curvature and Fouth–Order Flows. Ph.d.
dissertation, Universität Tübingen, Tübingen, Germany, 1996.

[142] E. Praun, W. Sweldens, and P. Schröder. Consistent mesh parameterizations. In Pro-
ceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Confer-
ence Series, pages 179–184, 2001.

[143] S. D. Rane, J. Remus, and G. Sapiro. Wavelet-domain reconstruction of lost blocks
in wireless image transmission and packet-switched networks. In Image Processing.
2002. Proceedings. 2002 International Conference on 22-25 Sept. 2002, Vol.1, 2002.

[144] T. Rivière. Analysis aspects of Willmore surfaces. Inventiones mathematicae, (174):1–
45, 2008.

[145] R. T. Rockafellar. Convex Analysis. Princeton University Press, New Jersey, 1970.

[146] M. Rumpf. Variational methods in image matching and motion extraction in level set
and pde based reconstruction methods: Applications to inverse problems and image
processing. 2009.

[147] M. Rumpf and A. Wierse. GRAPE, Eine Interaktive Umgebung für Visualisierung und
numerik. Informatik, Forschung und Entwicklung, 7:145–151, 1992.

[148] R. Rusu. An algorithm for the elastic flow of surfaces. Interfaces and Free Boundaries,
7:229–239, 2005.

[149] T. V. Savina, A. A. Golovin, and S. H. Davis. Faceting of a growing crystal surface by
surface diffusion. Physical Review, 67 (021606):021606–1 — 021606–16, 2003.

[150] Schätzle. The Willmore boundary problem. Calculus of Variations and Partial Differ-
ential Equations, 2009. to appear.

[151] R. Schneider and L. Kobbelt. Discrete Fairing of Curves and Surfaces based on Linear
Curvature Distribution. In Curve and Surface Design: Saint-Malo, pages 371–380,
1999.

[152] R. Schneider and L. Kobbelt. Generating fair meshes with G1 boundary conditions. In
Geometric Modeling and Processing Conference Proceedings, pages 251–261, 2000.

[153] J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe. Inter-surface mapping. ACM
Transactions on Graphics, 23(3):870–877, 2004.

[154] U. Seifert. Configurations of fluid membranes and vesicles. Advances in Physics,
46:13–137, 1997.

[155] L. Simon. Lectures on geometric measure theory. In Proceedings of the Centre for
Mathematical Analysis, volume 3. Australian National University, Canberra, 1984.



BIBLIOGRAPHY 177

[156] L. Simon. Existence of surfaces minimizing the Willmore functional. Communications
in Mathematical Analysis, 1:281–326, 1993.

[157] G. Simonett. The Willmore flow near spheres. Differential and Integral Equations,
14(8):1005–1014, 2001.

[158] M. Spivak. A Comprehensive Introduction to Differential Geometry, five volumes. Publish
or Perish Press, 1979.

[159] J. E. Taylor. Unique structure of solutions to a class of nonelliptic variational problems.
In Proceedings of Symposia in Pure Mathematics, volume 27, pages 419–427, 1975.

[160] J. E. Taylor. Crystalline variational problems. Bulletin of the American Mathematical
Society, 84:568–588, 1978.

[161] J. E. Taylor. Some crystalline variational techniques and results. Astérisque, 154–
155:307–320, 1987.

[162] G. team. GRAPE Manual. Rheinische Friedrich–Wilhelms–Universität Bonn, 1997.

[163] V. Thomée. Galerkin finite element methods for parabolic problems, volume 25 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2nd edition,
2006.

[164] T. Topping. Towards the Willmore conjecture. Calculus of Variations and Partial Dif-
ferential Equations, 11(4):361–393, 2000.

[165] P. A. van den Elsen, E.-J. J. Pol, and M. A. Viergever. Medical image matching: A
review with classification. IEEE Engineering in Medicine and Biology, 12:26–39, 1993.

[166] J. Van Tiel. Convex Analysis: An Introductory Text. John Wiley & Sons Ltd, 1984.

[167] J. L. Weiner. On a problem of Chen, Willmore, et al. Indiana University Math. J.,
27:19–35, 1978.

[168] W. Welch and A. Witkin. Variational surface modeling. In SIGGFRAPH Computer
Graphics, volume 26, pages 157–166, 1992.

[169] J. H. White. A global invariant of conformal mappings in space. In Proceedings of the
American Mathematical Society, volume 38, pages 162–164, 1973.

[170] T. Willmore. Riemannian Geometry. Claredon Press, Oxford, 1993.

[171] T. J. Willmore. An introduction to differential geometry. Oxford University Press, 1959.

[172] T. J. Willmore. Total curvature in Riemannian Geometry. Ellis Horwood Series in
Mathematics and its Applications. Wiley, New York, 1982.

[173] T. J. Willmore. Surfaces in Conformal Geometry. Annals of Global Analysis and Geom-
etry, 18(3–4):255–264, 2000.



178 BIBLIOGRAPHY

[174] G. Wulff. Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der
Kristallflächen. Zeitschrift der Kristallographie, 34:449–530, 1901.

[175] G. Xu and Q. Pan. G1 surface modelling using fourth order geometric flows.
Computer–Aided Design, 38(4):392–403, 2006.

[176] S. Yoshizawa and A. G. Belyaev. Fair triangle mesh generation with discrete elas-
tica. In GMP ’02: Proceedings of the Geometric Modeling and Processing – Theory and
Applications (GMP’02), pages 119–123, Washington, DC, USA, 2002. IEEE Computer
Society.

[177] L. Zhang, N. Snavely, B. Curless, and S. M. Seitz. Spacetime faces: high resolution
capture for modeling and animation. ACM Transactions on Graphics, 23(3):548–558,
Aug. 2004.


	Introduction
	The Willmore flow
	Surface blending and surface restoration
	The anisotropic Willmore flow
	Surface matching

	Foundations
	Some geometric analysis
	The concept of anisotropy
	General gradient flows
	Finite Element space discretization
	Variations of the mass and stiffness matrix


	Review of the anisotropic Willmore flow for surfaces
	First variation of the anisotropic Willmore functional
	Boundary value problem for the anisotropic Willmore flow
	Semi-implicit space discretization scheme
	Numerical results

	Natural time discretization for isotropic Willmore flow
	Natural time discretization for gradient flows
	Derivation of the two step time discretization
	Variational time discretization of mean curvature motion
	Two step time discretization for the isotropic Willmore flow

	Finite Element space discretization
	Numerical solution of the optimization problem
	Numerical results
	Elastic flow for curves
	Willmore flow for surfaces


	Surface restoration via two step time discrete Willmore flow
	Boundary value problem for the isotropic Willmore flow
	Finite Element space discretization
	Numerical solution of the optimization problem
	Numerical results

	Natural time discretization for anisotropic Willmore flow
	Derivation of the two step time discretization
	Finite Element space discretization
	Numerical solution of the anisotropic optimization problem
	Anisotropic elastic flow of parametrized curves
	Finite element space discretization
	Numerical results

	Remark on the anisotropic Willmore flow for surfaces

	Variational methods for surface matching
	Variational model
	Measuring distortion via a deformation
	Measuring bending via a deformation
	Matching features

	Existence of an optimal surface matching
	Fully practical approximation
	-convergence of the approximated surface matching energy

	Some applications revisited

	Bibliography

