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Introduction

The Large Hadron Collider (LHC) at CERN1 has been operated for a short period of time in 2008 during
which no controlled proton-proton collisions have taken place. Operation has resumed after a year-long
shutdown with first collisions in November 2009. The LHC willallow the exploration of an energy
scale that is expected to yield insight into the electroweaksymmetry breaking of the Standard Model of
particle physics. Despite detailed searches at earlier particle colliders such as LEP2 and the Tevatron, no
direct evidence of the mechanism that may explain electroweak symmetry breaking has yet been found.

The prospects for the search for the Standard Model Higgs boson in the vector boson fusion process
at small and intermediate Higgs boson masses with the ATLAS experiment using a fast simulation of the
detector were studied and summarized in [1]. Recently, the estimates have been updated using a detailed
simulation of the detector [2]. The results indicate that a discovery of the Standard Model Higgs boson
with a mass close to the LEP limit produced in vector boson fusion and decaying into aτ +τ− lepton pair
will be possible with an integrated luminosity of approximately 30fb−1. The data will be taken during
the initial years of operation when the luminosity will be increased gradually to the nominal value.

The lepton-hadron final state has a larger branching ratio than the lepton-lepton final state and was
found to have a larger expected signal significance. The analysis in the lepton-hadron mode requires
the identification of the hadronicτ lepton decay. At the LHC,τ leptons in Standard Model weak boson
production processes are expected to have an average transverse flight distance of approximately 2 mm.
This flight distance allows the reconstruction of the impactparameter in 1-prongτ decays and of the
transverse flight distance in multi-prongτ decays. In chapter 3, a study of the performance of the ATLAS
Inner Detector for the reconstruction of those observablesand the expected increase of the rejection of
light jets is presented.

The operation of the LHC has started at a low luminosity and center of mass energy. Both the
center of mass energy and the luminosity will be increased over time with the aim to achieve 14 TeV
and 1034 cm−2 s−1 after several years. At the nominal luminosity, approximately 23 minimum bias
interactions are expected to take place on average in each bunch crossing. The dataset that will allow the
first discovery of a Standard Model Higgs boson with a small mass in the vector boson fusion process will
be composed of data taken at different luminosities and withvarying numbers of additional minimum
bias interactions superimposed on the triggered event. Theeffects of these additional interactions taking
place close in time to the triggered event, which are commonly referred to as pileup, have not been taken
into account in previous estimates of the signal significance.

In the vector boson fusion analysis, a veto against jets in the central region of the detector is applied.
This central jet veto is one of several elements of the vectorboson fusion analysis sensitive to pileup from
additional minimum bias interactions. In the presence of pileup, jets not originating from the primary
proton-proton interaction are reconstructed in the calorimeter which leads to a reduced efficiency of the
jet veto. A method for associating jets reconstructed in thecentral detector region with the primary vertex
of the primary proton-proton interaction is described in chapter 4. The method is used to remove jets that

1Conseil Europèen pour la Recherche Nuclèaire, European Laboratory for Particle Physics near Geneva, Switzerland
2Large electron positron collider
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are not part of the primary interaction before applying the central jet veto.
In the design of the ATLAS calorimeter, pileup has been takeninto account in a way that minimizes

the dependence of the average cell energy in randomly triggered events on the luminosity. The intrinsic
pileup cancellation that ensures vanishing average cell energies independent of the luminosity is incom-
plete for a bunch spacing different from the nominal bunch spacing. In such configurations, a bias is
observed in some regions of the calorimeter or the whole calorimeter depending on the configuration.
An additional bias is introduced by the cluster formation. These effects are discussed in chapter 5 and a
modification of the clustering procedure that reduces the observed biases is presented and tested.

The physics background for the search for the Standard ModelHiggs boson in the vector boson
fusion process is briefly reviewed in chapter 1. An overview of the ATLAS detector is given in chapter
2. In chapter 3, the study of the impact parameter and transverse flight path reconstruction and their use
for the identification of hadronicτ lepton decays is presented. The method developed for the jet-vertex
association and its use for the central jet veto are detailedin chapter 4. The study of the effect of pileup
on the calorimeter reconstruction and cluster formation isdiscussed in chapter 5.
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Chapter 1

Theory

The current Standard Model of particle physics [3, 4] is a relativistic quantum field theory with interac-
tions introduced by the requirement of local gauge invariance. The model describes spin 1/2 fermions
and the interactions between them mediated by the spin 1 gauge bosons. The gauge symmetry is broken
spontaneously by the introduction of a scalar field called the Higgs field.

The fermion content of the Standard Model is listed in table 1.1. There are two categories of fermions,
quarks and leptons. The particles are arranged in 3 generations with each generation of particles having
identical properties except for their interactions with the Higgs field.

The gauge group of the Standard Model isSU(3)×SU(2)×U(1). It describes three of the four
known fundamental forces, the strong interaction, the electromagnetic interaction and the weak inter-
action. Gravity is not yet included in the model. At the energies studied at current particle collider
experiments gravity is weak and has no effect on experimental observations.

The theory of theSU(3) part of the gauge group describes the strong interaction andis called quantum
chromodynamics. It contains 8 gauge bosons called gluons. Quarks transform under the fundamental
3 representation, antiquarks under the fundamental3̄ representation ofSU(3). Leptons do not interact
strongly.

The SU(2)×U(1) part of the gauge group describes the electroweak interaction [5, 6, 7]. The
SU(2) andU(1) quantum numbers are called weak isospin and weak hypercharge, respectively. Left-
handed and right-handed particles have different electroweak quantum numbers. In particular, only left-
handed particles interact via theSU(2) gauge bosons. Left-handed particles are assigned to weak isospin

Generation
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e

)
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νµ
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(
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d
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(

c
s

)

L
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t
b
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L

2/3
−1/3

uR cR tR 2/3
dR sR bR −1/3

Table 1.1: Fermion content of the Standard Model of particlephysics. The particles are arranged in weak
isospin multiplets. The indicesRandL refer to the chirality of the particle.
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Figure 1.1: Contours at 68% confidence level in the plane spanned by theW boson and top quark masses
and lines of constant Standard Model Higgs boson mass (left). Contours are shown for direct measure-
ments at LEP2 and the Tevatron (blue, solid line) and for indirect measurements at LEP1 and SLC (red,
dashed line). Direct exclusion limits for the Standard Model Higgs boson (yellow areas) and∆χ2 of a fit
to electroweak precision observables as a function of the Higgs boson mass (right). [8]

doublets, right-handed particles to weak isospin singlets. The weak isospin 0 gauge boson ofSU(2) and
theU(1) gauge boson mix by the Weinberg angleθW to form theZ and theγ.

The electroweak symmetry is known to be broken since the weakbosons are observed to have non-
zero masses. In the description of electroweak symmetry breaking adopted in the Standard Model a
scalar weak isospin doublet field, the Higgs field, is introduced. The potential of the Higgs field is cho-
sen in a way such that the vacuum state is not invariant under gauge transformations. The Lagrangian
remains invariant under the full gauge group and the renormalizability of the theory is ensured, however
the electroweakSU(2)×U(1) symmetry is broken spontaneously to theU(1) symmetry of electromag-
netism. The weak bosonsW± andZ acquire a mass while the photon remains massless. Fermion mass
terms are added to the Lagrangian by introducing interaction terms between the fermion fields and the
Higgs field. After the symmetry breaking, the theory contains a single scalar boson, the Higgs boson.
The Higgs boson couples to the fermions of the theory by coupling terms analogous to the mass terms
and to the weak bosons with couplings in each case proportional to the mass of the fermion or gauge
boson.

The description of electroweak symmetry breaking adopted in the Standard Model is not unique. The
Higgs sector may be extended by additional fields and particles, as required by supersymmetric theories,
or there may be no fundamental scalar fields, as in technicolor theories.

So far, no direct evidence of the electroweak symmetry breaking sector in the form of a discovery of
a particle has been obtained. The search for the Standard Model Higgs boson at LEP has resulted in a
lower limit for its mass of 114.4 GeV at 95% confidence level [8]. The mass range between 163 GeV and
166 GeV has been excluded at 95% confidence level by the Tevatron experiments CDF and D0 [9]. An
estimate of the Standard Model Higgs boson mass can be obtained from measurements of electroweak
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Figure 1.2: Cross section at NLO QCD for the production of a Standard Model Higgs boson in proton-
proton collisions at

√
s= 14 TeV as a function of the Higgs boson mass (left) and branching ratios of the

Standard Model Higgs boson as a function of the Higgs boson mass (right). The cross sections for the
production of a Higgs boson in association with abb̄ or att̄ quark pair are shown at LO. [10]

precision observables which are sensitive to the Higgs boson mass through loop corrections. Figure 1.1
shows contours at 68% confidence level in the plane spanned bytheW boson and top quark masses
and lines of constant mass of a Standard Model Higgs boson. A second plot shows the∆χ2 of a fit to
electroweak precision measurements by the LEP experiments, SLD, CDF and D0. Both figures indicate
a preference for small Higgs boson masses. From the fit, an upper limit at 95% confidence level for
the mass of the Standard Model Higgs boson of 157 GeV is obtained. The upper limit from the fit is
increased to 186 GeV if the lower limit from direct searches at LEP is taken into account.

1.1 Standard Model Higgs Boson Signatures at the LHC

Figure 1.2 shows the expected cross section for the production of a Standard Model Higgs boson in
proton-proton collisions at a center of mass energy of 14 TeV. The process with the largest cross section is
the fusion of two gluons to a Higgs boson. Since this is a QCD process it shows a jet activity similar to the
most important background processes which are also QCD processes. The largest background rejection
is obtained from the signature of the Higgs boson decay products. At large Higgs boson masses, the
decay to a pair ofZ bosons which allows the direct reconstruction of the Higgs boson mass dominates.
The decay to a pair ofW bosons has a larger branching ratio, as can be seen from the second plot in
figure 1.2, however the Higgs boson mass cannot be directly reconstructed due the neutrinos in the final
state. This decay channel nevertheless dominates the discovery potential around theWWpair production
threshold. At small Higgs boson masses, the decay to aγγ pair has been studied. This decay has a
clear signature if the invariant mass of the photon pair can be reconstructed with a good precision. The
branching ratio for the decay is rather small, hence the large cross section of the gluon fusion process is
needed for an observation in this channel.

The process with the second largest cross section is vector boson fusion in which the Higgs boson
couples to a weak boson that is exchanged between two quarks.The two quarks acquire a significant
transverse momentum and are typically scattered at relatively small angles to the beam direction. The
resulting jets can be used to identify the event. Since no color is exchanged between the quarks, additional
jet activity is expected only in the forward direction between the tagging jets and the beam. Due to the
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small branching ratio, the decay toγγ is not significant in this process, however the jet signatureallows
the observation of a signal at small Higgs boson masses in theτ +τ− final state. At larger Higgs boson
masses the same decays into pairs of weak gauge bosons as for the gluon fusion process are the most
promising ones.

At small Higgs boson masses, the production of a Standard Model Higgs boson in association with
a tt̄ quark pair has been studied. In this process, the decay to abb̄ quark pair is considered due to the
large branching ratio. However, the hadronic Higgs boson decay and the small cross section make the
identification of this process challenging and an observation is expected to require a larger dataset than
for other processes. The production of a Higgs boson in association with a weak gauge boson, which
was the dominant search mode at LEP, is also studied at small Higgs boson masses. Current results for
the Higgs boson decaying to abb̄ pair indicate that this channel may contribute to a discovery at small
Higgs boson masses [11].
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Chapter 2

The ATLAS Experiment at the LHC

2.1 The LHC

The LHC [12] is a proton-proton collider designed for beams with a proton energy of 7 TeV and a center-
of-mass energy of 14 TeV. It has been constructed in the 27 km long tunnel originally used for LEP. As in
the case of LEP, the achievable beam energy is limited by the radius of the accelerator. However, unlike
LEP which was a positron-electron collider the achievable beam energy in the LHC is limited mainly by
the strength of the magnetic field of the bending magnets rather than by radiative energy losses. The LHC
magnets are cooled using superfluid helium and operate in thesuperconducting state at a temperature of
1.9 K. Their magnetic field has a strength of 8.33 T at the nominal beam energy.

A nominal LHC fill consists of 2808 bunches. The nominal bunchspacing time is 25 ns. At the
design luminosity of 1034 cm−2 s−1, 23 inelastic proton-proton interactions are expected to take place on
average in each bunch crossing. A large luminosity is required due to the small expected cross sections
for typical signal processes. Pileup of several interactions per bunch crossings cannot easily be avoided
due to the large range of cross sections from the order of a picobarn for Higgs boson production processes
to approximately 60mb for inelastic, non single diffractive proton-proton interactions. Pileup was one of
the constraints that had to be taken into account in the design of the experiments at the LHC. In general,
detectors must have a fast response and small readout time and a fine spatial granularity to keep the
occupancy low. In addition, detectors and readout electronics, especially close to the interaction point,
must be radiation hard.

Four large experiments have been constructed at the LHC. Theexperiments ALICE and LHCb are
dedicated to the study of B-physics and heavy ion collisions, respectively. For the ALICE experiment the
LHC will be operated as a lead ion collider. The other two large experiments, ATLAS [13] and CMS1

[14], were designed as multi-purpose experiments. Both experiments contain a silicon pixel detector as
the innermost part of the tracking system. The pixel detectors are enclosed by silicon strip detectors.
The CMS silicon detector extends to the calorimeter while the ATLAS Inner Detector contains a third
component, a straw tube detector with particle identification capability using transition radiation. The
ATLAS calorimeter consists of a liquid argon (LAr) calorimeter at small radius and a plastic scintillator
tile calorimeter at large radius. The electromagnetic calorimeter of CMS consists of lead tungstate crys-
tals which in comparison with the ATLAS LAr calorimeter lacka longitudinal segmentation but have
an excellent energy resolution. At larger radius a tile calorimeter is used also in CMS. Due to space
constraints imposed by the CMS solenoid the thickness of thecalorimeter is limited and a tail catcher
had to be added outside the solenoid leading to a reduced precision of the energy measurement in the
hadronic calorimeter compared to the ATLAS tile calorimeter.

1Compact muon solenoid
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Figure 2.1: Cut-away view of the ATLAS detector. [13]

ATLAS has two separate magnet systems, a solenoid surrounding the Inner Detector and a large
toroid for the muon spectrometer. CMS instead has a single large solenoid with a strong magnetic field
that encloses the calorimeter and is used both for the inner tracking system and the muon system. This
choice has led to a more compact design for CMS. The CMS solenoid is embedded in an iron return
yoke instrumented with muon stations. In ATLAS the tile calorimeter serves as the return yoke for the
solenoid. For the toroid no return yoke is needed and the ATLAS muon spectrometer covers a large
volume with a relatively small amount of material.

2.2 The ATLAS Detector

Figure 2.1 shows a cut-away view of the ATLAS detector. The detector has a length of 44m and a
height of 25m. The largest fraction of its volume is occupiedby the muon spectrometer followed by the
calorimeter and the Inner Detector at the center.

A right-handed coordinate system is used with thex axis pointing towards the center of the LHC
ring. They axis points upwards and thez axis is parallel to the beam at the interaction point with the
direction defined by the right-handedness of the coordinatesystem. Coordinates are often expressed in
a cylindrical system as thez coordinate, the radiusr given by the distance from from thez axis and
the pseudorapidityη . The pseudorapidityη = − ln tan

(θ
2

)

is a measure of the angleθ with respect
to the beam direction. For highly relativistic particles itis a good approximation for the rapidity in
the z direction. Differences in the rapidity are invariant underboosts in thez direction and hence are
well-defined physical observables at a hadron collider.

The components of the ATLAS detector are described in this chapter.
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Figure 2.2: View of a section of the Inner Detector (top) and a magnified view of a section of the Pixel
Detector (bottom) including dimensions and envelopes of the components. [13]

2.3 Inner Detector

The Inner Detector is composed of three different subsystems. A silicon pixel detector is used at the
center of the Inner Detector detector to resolve tracks in the region of the largest particle density and to
provide a precision measurement of the track origin in the interaction region. At larger radii a silicon
strip detector provides further three-dimensional pattern recognition and precision measurements in the
φ direction. Between the silicon detectors and the solenoid astraw-tube tracking detector with particle
identification capability from transition radiation provides a large number of measurements in theφ
direction. The Inner Detector provides track reconstruction capability in the range|η | < 2.5 with the
transition radiation tracker covering approximately the range|η | < 1.9.

2.3.1 Pixel Detector

The innermost component of the ATLAS detector is a silicon pixel detector. The use of silicon pixel
technology ensures an occupancy below 10−3 at the nominal luminosity and it allows the measurement
of the z coordinate of tracks with sufficient precision to discriminate between tracks from the primary
interaction and tracks from additional minimum bias interactions. Due to the small distance to the inter-
action region, the radiation level in the Pixel Detector will be high and achieving radiation hardness of
the sensor and electronics was a significant challenge during the design of the detector.

The Pixel Detector has been constructed around the central section of the ATLAS beam pipe. The
central section of the beam pipe has an inner radius of 29mm and a thickness of 0.8mm. It consists of
beryllium to minimize the amount of material passed by the particles from the interaction region.

The layout of the Pixel Detector is is illustrated in figure 2.2. It consists of 3 barrel layers at average

9



Figure 2.3: Structure of a module of the Pixel Detector. [13]

radii of 50.5mm, 88.5mm and 122.5mm and two endcaps made of 3 disks each. The detector contains
1744 identical modules with 1456 modules in the barrel and 144 modules in each endcap. Each module
consists of a silicon sensor connected by bump bonds to 16 front-end readout chips arranged in two rows.
Each front-end chip has 2880 readout channels arranged in 18columns and 160 rows. The nominal pixel
size is(50× 400)µm2 in the φ and z directions, respectively. To bridge the gap between front-end
chips one column on each side of a front-end chip near the edgeis connected to pixels with a size of
(50×600)µm2. In the middle of a module where the two rows of front-end chips meet, each column of
pixels contains 4 ganged pixels that are connected to the same readout channel as another pixel. Thus,
each sensor has 47232 pixels and each module has 46080 readout channels. The Pixel Detector has
approximately 80 million readout channels.

The noise in the Pixel Detector was found to be dominated by fixed pattern noise. After mask-
ing a fraction of approximately 0.02% of pixels showing a noise occupancy above 10−5 per read-out
bunch crossing an occupancy from noise hits of approximately 10−10 was observed during a cosmics
data taking period in autumn 2008. With a readout of one bunchcrossing for each triggered event this
occupancy corresponds to an average rate of 0.008 noise hitsper event, making it negligible for the track
reconstruction.

The front-end chips perform signal discrimination and provide a measurement of the deposited
charge through the time-over-threshold. For pixel clusters with a size of at least 2 pixels the charge
information can be used to improve the precision of the cluster position estimate.

The intrinsic measurement accuracies are 10µm in theφ direction and 115µm in thezdirection.
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Figure 2.4: Drawing (left) and photograph (right) of a barrel module of the SCT. [13]

Figure 2.5: Drawing (left) and photograph (right) of an endcap module of the SCT [15].

2.3.2 Semiconductor Tracker (SCT)

The Semiconductor Tracker is a silicon strip detector located next to the Pixel Detector in the radial
direction. The reduced charged particle density and radiation level in that region allow the use of silicon
strips which have a coarser overall granularity while stillproviding an excellent measurement accuracy
in theφ direction. The use of silicon strips rather than pixels allows to cover a large area at a reasonable
cost and with acceptable requirements on the readout chain.The accuracy of the measurement of thez
coordinate must be sufficient to allow an association of silicon strip hits to tracks with little ambiguity.
In addition, it contributes to the precision of theη coordinate measurement at the calorimeter entrance
since the transition radiation tracker provides no precision measurement of theη coordinate.

The SCT consists of 4 layers in the barrel region located at radii between 299mm and 514mm and
of 2 endcaps with 9 disks each. The layout of the detector is shown in figure 2.2. The SCT modules
in the barrel region and most modules in the endcaps consist of two pairs of silicon sensors mounted
back-to-back with a stereo angle of 40mrad. In the barrel region the sensors have a size of 6.40cm×
6.36cm. Each sensor contains 768 active strips with a strip pitch of 80µm. On each side of a module
two sensors are mounted with the strips connected in the middle of the module. Thus, each strip has a
length of 12.8cm. Figure 2.4 shows a barrel module of the SCT.The modules in the endcaps of the SCT
have a trapezoidal shape. The strip pitch in those modules increases with the distance from the center of
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Figure 2.6: Photographs of a section of the TRT barrel (left) and of a section of the TRT endcap(right).
[13]

the detector. Figure 2.5 shows an endcap module of the SCT. The SCT contains 4088 modules in total.
It has approximately 6.3 million readout channels. The average noise occupancy is of the order 5·10−5.

The readout of the SCT is binary and no information on the deposited charge is available. Clusters
are created separately for each side of a module and the individual clusters are used for a track fit. For
the pattern recognition, however, three-dimensional space points are formed using the information from
both sides of a module [16].

The intrinsic accuracy in theφ direction is 17µm. Due to the stereo angle an intrinsic accuracy in
thezdirection in the barrel and in ther direction in the endcaps of approximately 6mm is achieved.

2.3.3 Transition Radiation Tracker (TRT)

The Transition Radiation Tracker is a straw tube tracking detector that surrounds the SCT in the radial
direction. The detector consists of a barrel section with axially aligned straw tubes with a length of
144cm and two endcap sections with radially aligned straw tubes with a length of 37cm. The TRT
covers a range of pseudorapidity of approximately|η | < 1.9. The detector was originally designed to
extend to the full range of the Inner Detector of up to|η |= 2.5 [15], however the outer endcap segments
are not present in the final layout. The layout of the detectoris illustrated in figure 2.2. Photographs of a
section of the barrel and a section of an endcap are shown in figure 2.6.

The detector contains approximately 300,000 straw tubes made of polyimide with gold-plated tung-
sten anode wires. The straw tubes have a diameter of 4mm and are filled with a gas mixture of 70%
Xenon, 27% CO2 and 3% O2. Each particle traverses approximately 36 straw tubes on average. The
ambiguity of the sign of the distance between the track and the wire in theφ direction is resolved dur-
ing the track reconstruction. The intrinsic accuracy usingthe drift time information and after ambiguity
resolution in theφ direction is 130µm. The TRT provides no precision measurement of theη coordi-
nate, however limited information on theη coordinate is available from thez position of the last straw
traversed in the endcaps. The noise occupancy is approximately 2%.

In the barrel region the straw tubes are embedded in polypropylene fibers used to induce transition
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Figure 2.7: Material distribution of the Inner Detector as afunction of|η | expressed in radiation lengths
(left) and in interaction lengths (right). [13]

radiation. In the endcaps individual layers of straw tubes are separated by polypropylene foils. CO2 gas is
circulated through the space between the straw tubes to avoid contamination from Xenon permeating the
straw tube walls or exiting through possible leaks which would absorb the transition radiation. Transition
radiation hits produce a larger signal on average and two different thresholds are used to differentiate
between signals from minimum ionising particles and signals from transition radiation. For electrons
with energies above 2 GeV between 7 and 10 high-threshold hits are expected.

2.3.4 Material Distribution in the Inner Detector

The distribution of material in the Inner Detector as a function of |η | expressed in radiation and in-
teraction lengths is shown in figure 2.7. The thickness of theInner Detector material varies between
approximately 0.5 radiation lengths in the central region and up to 2.4 radiation lengths in the endcaps.

2.3.5 Inner Detector Performance

The resolution of the inverse transverse momentum in the central region of the Inner Detector can be
approximated by

σ
(

1
pT

)

= 0.34 TeV−1
(

1⊕ 44 GeV
pT

)

(2.1)

where the first term represents the geometric resolution of the detector and the second term represents the
contribution from multiple scattering. The numerator of the second term indicates thepT at which the
two terms are equal. For particles with a transverse momentum of 100 GeV the transverse momentum
resolution is approximately 3.8% atη = 0. At η = 2.5 a resolution of 11% is expected [17].

The resolution of the transverse impact parameter for tracks with pT = 100 GeV is approximately
11µm. The multiple scattering term is equal to the geometric term at transverse momenta between
14 GeV and 20 GeV depending on the angle with respect to thez axis. The resolution of the impact
parameter in thez directionz0 varies between approximately 90µm in the central region and 190µm in
the forward direction. The multiple scattering term is equal to the geometric term for thez0 measurement
at transverse momenta between 2.3 GeV and 3.7 GeV.
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2.4 Solenoid

The superconducting solenoid that provides an axial magnetic field of 2T to the Inner Detector is located
between the TRT and the electromagnetic calorimeter. Due toits location inside the calorimeter it was
designed to require a minimum amount of material. At normal incidence it constitutes approximately
0.66 radiation lengths. The magnetic flux is returned through the tile calorimeter and its girder support
structure. The strength of the magnetic field in the axial andradial directions as a function ofz and a
photograph of the solenoid are shown in figure 2.8.

2.5 Calorimeter

The ATLAS calorimeter consists of a section at small radius in which liquid argon is used as the active
material and a section at large radius in which plastic scintillator tiles are used as the active material. The
calorimeter is divided into a presampler, an electromagnetic calorimeter and a hadronic calorimeter. The
tile calorimeter constitutes the central part of the hadronic calorimeter. The endcaps of the liquid argon
calorimeter consist of an electromagnetic endcap and a hadronic endcap each. The forward calorimeter
which is located at small radius at the center of the calorimeter endcaps consists of one electromagnetic
module and two hadronic modules on each side of the detector.

The different components of the liquid argon calorimeter are housed in three different cryostats, one
for the barrel section and one for each endcap. The barrel cryostat contains the electromagnetic barrel
calorimeter, the barrel presampler and the solenoid magnet. The endcap cryostats contain the endcap
presampler, the electromagnetic endcap calorimeter, the hadronic endcap calorimeter at larger|z| and the
forward calorimeter at small radius. The structure of the calorimeter is illustrated in figure 2.9.

2.5.1 Electromagnetic Calorimeter

The barrel section of the liquid argon calorimeter and the electromagnetic endcap consist of lead absorber
plates with a thickness between 1.1mm and 2.2mm interleavedwith copper electrodes. In the barrel
section a 2.1mm gap on each side of the electrodes is filled with liquid argon. In the electromagnetic
endcap the width of the liquid argon gap increases with the radius from 0.9mm to 3.1mm.

Both the absorbers and electrodes have an “accordion” shapeas shown in figures 2.10 and 2.11.
The plates are aligned along the axial and radial directions. The crests of the waves are aligned axially
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Figure 2.9: Cut-away view of the ATLAS calorimeter. [13]

Figure 2.10: Photographs of sections of the electromagnetic barrel (left) and endcap (right) calorimeters.
[13]
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Figure 2.11: Drawing of a section of the electromagnetic barrel calorimeter. [13]

in the barrel section and radially in the endcaps. The barrelsection of the calorimeter is segmented
radially into a front, middle and back section as illustrated in figure 2.11. The endcaps consist of two
concentric wheels separated at|η |= 2.5. The region between|η |= 1.5 and|η |= 2.5 of the outer wheels
is segmented in thezdirection into three sections as in the barrel. The outermost part of the outer wheel
and the inner wheel are segmented into two sections in thezdirection.

The segmentation of each section inφ is achieved by combining the output of several electrodes.
The segmentation inη is achieved by etching of the electrodes. The segmentation is projective inη . The
front layers of the barrel calorimeter and the endcaps in theregion of the endcaps with three sections in
thez direction have a fine segmentation inη to allow a separation between prompt photons and neutral
pions. In the barrel region each cell has a width inη of 0.025/8. The segmentation becomes coarser in
the endcap with increasing|η | to maintain a strip width of several mm.

The barrel and the endcaps in the region between|η |= 1.5 and|η |= 1.8 are covered by presamplers
which consist of separate instrumented liquid argon layers. The presamplers provide a measurement of
the showers that started in the Inner Detector and the solenoid. Their segmentation is relatively coarse
compared to the front layer of the calorimeter.

Figure 2.12 shows the thickness of the electromagnetic calorimeter expressed in radiation lengths as
a function of|η |. The thickness varies between approximately 25 and 40 radiation lengths.

2.5.2 Hadronic Endcap Calorimeter

The hadronic endcap calorimeter consists of two wheels in each endcap. Each wheel is segmented into
two sections in thez direction. The wheels consist of wedge-shaped modules as shown in figure 2.13.
Flat copper plates are used as the absorber. The copper plates have a thickness of 25mm in the front

16



Pseudorapidity
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0
X

0

5

10

15

20

25

30

35

40

Pseudorapidity
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0
X

0

5

10

15

20

25

30

35

40 Layer 3
Layer 2
Layer 1
Before accordion

Pseudorapidity
1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

0
X

0

5

10

15

20

25

30

35

40

45

Pseudorapidity
1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

0
X

0

5

10

15

20

25

30

35

40

45 Layer 3
Layer 2
Layer 1
Before accordion

Figure 2.12: Thickness of the barrel (left) and the endcap (right) electromagnetic calorimeter expressed
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Figure 2.13: Drawings of a module of the hadronic endcap calorimeter (left) and of a cross-section of
the hadronic endcap calorimeter in theR-zplane (right). [13]
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Figure 2.14: Layout and location of the forward calorimeter(left) and internal structure of the first
module of the forward calorimeter (right). [13]

wheel and of 50mm in the back wheel. Liquid argon gaps betweenthe copper plates with a width of
8.5mm are instrumented with copper electrodes. The gaps aresubdivided by the electrodes into four
separate volumes with a width of 1.8mm each. The calorimeteris segmented inη andφ by etching of
the electrodes. The segmentation is almost projective inη as shown in figure 2.13. The coarseness of
the granularity increases with|η | in a single step at|η | = 2.5.

2.5.3 Forward Calorimeter

The forward calorimeter consists of three modules in each endcap located between the beam pipe and the
hadronic endcap calorimeter as shown in figure 2.14. The electrodes of the forward calorimeter consist
of axially-aligned rods inserted in copper tubes with a gap between the rods and the tubes. The gap has
a width of 0.269mm, 0.376mm and 0.508mm in the first, second and third FCal module, respectively,
and is filled with liquid argon. The rods in the first module of the forward calorimeter are made of
copper. The tubes in the first module are embedded in a set of copper absorber plates with holes for the
electrodes. In the second and third modules the rods and the absorber surrounding the tubes are made of
tungsten.

The structure of the first FCal module is shown in figure 2.14. In the first, second and third module
the signal from four, six and nine electrodes is combined forthe readout, respectively.

2.5.4 Hadronic Barrel Calorimeter

The tile calorimeter consists of a barrel section surrounding the electromagnetic barrel calorimeter in the
radial direction and two extended barrel sections surrounding the liquid argon endcap calorimeters. It is
made of steel absorber interleaved with plastic scintillator tiles with the steel occupying approximately
82% of the volume. The structure of a tile calorimeter moduleis shown in figure 2.15. The light from
the scintillator tiles is transported by readout fibers to photomultipliers located in the steel girder on the
outside of the calorimeter. The calorimeter is segmented bycombining the fibers from several tiles in a
common photomultiplier. The segmentation is illustrated in 2.16. In the barrel section the segmentation
is projective inη to a good approximation. In the extended barrel the approximation of a projective
geometry is less accurate.
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[13]

The gap region between the barrel and the extended barrel sections is instrumented with a subsection
of a standard tile calorimeter module, the plug calorimeter, and several scintillators.

Figure 2.17 shows the thickness of the calorimeter expressed in hadronic interaction lengths. The
thickness of the hadronic calorimeter, excluding the transition regions, varies between approximately 8
and 14 interaction lengths.

2.5.5 Calorimeter performance

The energy resolution of the calorimeter can be expressed as

σ(E)

E
=

a
√

E( GeV)
⊕ b

E( GeV)
⊕c (2.2)

where the first term is a stochastic term representing fluctuations of the shower development and the
energy deposit in the absorber, the second term represents the contribution from noise and the third
constant term arises from local non-uniformities of the calorimeter response.

In the central detector region stochastic and constant terms of(10.1±0.4)%
√

GeV and(0.2±0.1)%,
respectively, have been determined from electron testbeamdata. For hadrons a stochastic term of(52.0±
1.0)%

√
GeV, a constant term of(3.0±0.1)% and a noise term of 1.6 GeV±0.1% have been observed.

In the forward calorimeter, stochastic and constant terms of (28.5±1.0)%
√

GeV and(3.5±0.1)%,
respectively, were measured for electrons. For pions stochastic and constant terms of(94.2±1.6)%

√
GeV

and(7.5±0.4)%, respectively, have been determined using a basic technique that does not take into ac-
count the structure of the energy deposits within the individual FCal modules.
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Figure 2.18: Layout of the ATLAS magnet system (left) and strength of the azimuthal magnetic field at
z= 10m in the plane of an endcap coil (solid) and in the plane of a barrel coil (dotted). [13, 18]

2.6 Toroid Magnet

The magnetic field for the ATLAS muon spectrometer is provided by a system of superconducting air-
core toroid magnets. The system consists of 2 endcaps with 8 magnets each and a barrel part with 8
magnets surrounding the calorimeter and the endcap toroidsin the radial direction. The layout of the
system is illustrated in figure 2.18. The barrel magnets are contained in individual cryostats. The endcap
magnets are contained in a common cryostat for each endcap. The strength of the magnetic field varies
between 0.15T and 2.5T depending on the location. The azimuthal component of the magnetic field as
a function of the radius is shown in figure 2.18.

2.7 Muon Spectrometer

The muon spectrometer consists of a combination of precision tracking chambers and trigger chambers.
The chambers are arranged in a barrel section in 3 layers at approximately 5m, 7.5m and 10m radius
and in two endcaps. The chambers in the barrel section and theendcap wheels are arranged in 8 sectors
matching the toroid magnets. In each layer or disk 8 large chambers are placed between the magnets in
the azimuthal direction and 8 smaller chambers are placed atthe azimuth of the magnet either outside or
inside the magnet with a small overlap with the large chambers. The layout of the muon spectrometer is
shown in figure 2.19.

Monitored drift tube (MDT) chambers are used as precision tracking chambers over the full coverage
of the muon spectrometer of|η | < 2.7 except for the region|η | > 2.0 of the innermost disks of the
endcaps which is instrumented with cathode strip chambers (CSC). Gaps are present in the central region
at η = 0 for services to the solenoid, the calorimeter and the InnerDetector and in the region of the
ATLAS support structure. The drift tubes of the monitored drift tube chambers have a diameter of
approximately 30mm. They are filled with a mixture of argon and CO2 at a pressure of 3 bar. Tungsten-
rhenium wires are used as the anodes. The maximum drift time is 700ns which corresponds to 28 bunch
crossings at the nominal bunch spacing. In each MDT module the drift tubes are arranged in two sheets
of 4 layers each in the innermost section of the muon spectrometer and of 3 layers each in the middle and
outer sections. The sheets are separated by a spacer structure as shown in figure 2.20. The drift tubes are
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Figure 2.19: Layout of the muon spectrometer barrel (left) and drawing of a sector of the muon spec-
trometer in ther-zplane (right). [13]

Figure 2.20: Layout of an MDT chamber with 3 layers (left) and illustration of the readout of the preci-
sion coordinate of the cathode strip chambers (right). [13]
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Figure 2.21: Layout of the muon trigger chambers and illustration of the angular acceptance for different
transverse momentum thresholds of the level 1 trigger. [13]

aligned in the azimuthal direction and provide a precision measurement in theη direction orthogonal to
the bending plane of the toroid magnets. The intrinsic precision of the measurement in chambers with 6
(8) tubes is 35µm (30µm). The measurement of theφ coordinate is provided by the trigger chambers.

Cathode strip chambers are multiwire proportional chambers. They are used in the innermost section
of the inner wheel due to their capability to operate at the high rates expected in that region. The wires
are aligned radially. One cathode providing the precision measurement in theη direction is segmented
into strips orthogonal to the wires. The other cathode is segmented into strips parallel to the wires. The
precision coordinate is determined from the distribution of the measured charge deposition along the wire
direction as illustrated in figure 2.20. Cathode strip chambers consist of 4 layers of wires and readout
electrodes. The precision of the measurement of ther coordinate is 40µm.

In the barrel section of the muon spectrometer, resistive plate chambers (RPC) are used as trigger
chambers. Each chamber consists of two independent pairs ofparallel plates instrumented with readout
strips and a 2mm gap filled with gas. The chambers operate at a high voltage in the avalanche mode
with a signal width of 5ns. The RPC modules are mounted in a common support structure with the
MDT modules. The middle MDT layer is instrumented with two RPC modules and the outer MDT layer
with one. The transverse momentum of the muons is estimated for the level 1 trigger from the angle of
the track segment reconstructed in two chambers with respect to the line from one of the chambers to
the interaction point. The transverse momentum thresholdsare defined as the corresponding widths of
coincidence windows. Three low thresholds are defined between the inner and middle RPC layers and
three high thresholds are defined between the middle and outer layers. The layout of the trigger chambers
and the principle of the determination ofpT thresholds are illustrated in figure 2.21.

In the forward region, thin gap chambers (TGC) are used as thetrigger chambers. The chambers
are multi-wire chambers with a wire pitch of 1.8mm and a widthof the gas gap of 2.8mm. They are
operated in a quasi-saturated mode with a gas gain of approximately 3× 105 with a 99% efficiency of
observing a signal in a 25ns window. In the forward region, coincidence windows are defined between
the TGC layers of the big wheels outside the endcap toroid as shown in figure 2.21. As in the barrel,
three high-pT thresholds and three low-pT thresholds are defined. The position of a hit in theη direction
is determined from the anode wire signal. The wires are aligned azimuthally and read out in groups of
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Figure 2.22: ATLAS radiation shielding elements. [13]

6 to 31 wires corresponding to widths between 10.8mm and 55.8mm. TGC modules contain two wire
planes in the innermost wheels and the two outer wheels and three wire planes in the intermediate wheels
located in front of the big MDT wheels. In each module, two cathodes are segmented with strips in the
radial direction which provide a measurement of the azimuthal coordinate. The big TGC wheels consist
of an outer section and an inner section with different segmentations in theφ direction. Each module
covers an azimuthal angle of 7.5◦ in the outer and of 15◦ in the inner section. The wheels cover the
region 1.05< |η | < 2.4 except for the innermost wheel which covers the region 1.05< |η | < 1.92.

2.8 Muon Spectrometer Performance

The ATLAS muon spectrometer provides an additional measurement of the transverse momentum of
muons over the range|η | < 2.7 that does not depend on the momentum measurement in the Inner De-
tector. For muons with a momentum of 100 GeV a momentum resolution of 3.1% is expected both in
the central and forward regions [17]. In the forward region the resolution degrades for muons with low
momenta due to multiple scattering and energy loss fluctuations [18]. The resolution expected for muons
with a momentum of 10 GeV in directions close toη = 2 is 6.4%. In the central region, the resolution for
muons with a large momentum degrades due to the reduced bending by the magnetic field. For muons
with a momentum of 1000 GeV the expected resolution is 10.5% in the central region.

2.9 Shielding

Several shielding components have been installed in the forward regions of ATLAS to protect the Inner
Detector and the forward muon chambers from radiation produced mainly in the endcap and forward
calorimeters, the beam pipe and the TAS collimator. The layout of the shielding is shown in figure
2.22. The innermost part of the shielding is installed on theinside surfaces of the electromagnetic
endcap calorimeter and the forward calorimeter. It is made of polyethylene doped with B4C. Low-
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energetic neutrons from the calorimeters are captured by the dopant and thus the radiation level in the
Inner Detector coming from the forward calorimeters is reduced. Several brass shielding elements and
calorimeter endcap plugs are installed inside the endcap cryostats on the outside of the endcap and
forward calorimeters in the direction of increasing|z|. These shielding elements reduce the radiation
level in the forward muon spectrometer coming from the calorimeter. The moderator shielding and the
forward LAr calorimeter plugs are shown in figure 2.14.

A large steel shielding disk is installed in front of the firstmuon endcap disks. In addition to providing
shielding it serves as support for the muon chambers and as a link between the central detector region
and the tile calorimeter for the solenoid field flux return. The endcap toroid cryostats contain several
moderator shielding elements made of polyethylene doped with boron to further reduce the radiation in
the middle and outer muon spectrometer wheels. The beam pipeinside the toroid cryostats is covered
with a cast-iron tube surrounded by moderator and the toroidbore tube made of steel. The forward
region contains further shielding elements around the beampipe and the TAS collimator made of cast
iron and concrete as shown in figure 2.22. The TAS collimator serves to protect the first LHC quadrupole
magnet from the products of collisions inside ATLAS and absorbs the largest fraction of the energy from
collisions together with the forward calorimeter.

2.10 Trigger

The ATLAS trigger consists of 3 layers operating at different rates and levels of detail. The level 1
trigger has been implemented using custom-made electronics. It reduces the event rate from 40MHz
at which bunch crossings will take place under nominal conditions to 75kHz at which the full detector
readout can be operated. The level 2 trigger uses the information in regions of interest around the trigger
objects identified by the level 1 trigger to reduce the event rate to 3.5kHz. At this rate the analysis of
the complete event information is feasible. The third levelof the trigger is called event filter. It uses the
complete event information to reduce the event rate to 200Hzat which the data is written to long-term
storage.

The level 1 trigger is based on the calorimeter, the muon trigger chambers and special additional
triggers such as a filled-bunch trigger based on the beam-pickup monitors and a minimum bias trigger
for the early low luminosity phase based on dedicated scintillator counters installed in front of the endcap
calorimeters. In the muon trigger chambers, coincidences in at least two chambers passing one of sixpT

thresholds are used as the trigger. Typically, coincidences are required in all but one of the individual
layers of the participating multi-layer chambers. Six differentpT thresholds can be defined by the width
of the coincidence window as described in section 2.7. Threelow-pT thresholds in the approximate
range from 6 GeV to 9 GeV are defined using a chamber close to a reference chamber as illustrated in
figure 2.21. Three high-pT thresholds in the range from 9 GeV to 35 GeV are defined using a chamber at
a larger distance from the reference chamber.

For the level 1 calorimeter trigger e/γ, jet andτ signatures are reconstructed and identified. Groups
of calorimeter cells in an area of a fixed size in theη -φ plane called trigger towers are used as the
basic objects. Trigger towers have a surface area in theη -φ plane of 0.1×0.1 in a large fraction of the
calorimeter. They are created separately for the electromagnetic and hadronic calorimeters.

Groups of 2×2 trigger towers in both the hadronic and electromagnetic calorimeters called jet ele-
ments are used to search for jet signatures. A jet trigger canbe defined for search windows with a size of
2×2, 3×3 or 4×4 jet elements. For each allowed group of jet elements in the calorimeter the transverse
energy is calculated and compared with a list of thresholds.To avoid overlap, the area of the jet trigger
candidate is required to be centered around a 2×2 set of jet elements that are a local maximum. In total,
eight combinations of thresholds and search window sizes can be defined.

Groups of 2×2 trigger towers in the electromagnetic calorimeter are used to search for e/γ signatures.
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The transverse energy is calculated for all 4 combinations of 1×2 or 2×1 trigger towers and compared
with a list of thresholds. For a trigger at least one of the combinations is required to pass the threshold.
Each of the 12 towers surrounding the 2× 2 group and the 4 towers in the adjacent 2× 2 group in the
hadronic calorimeter is required to have a transverse energy below an isolation threshold. To avoid
overlaps, the 2× 2 group in the electromagnetic calorimeter is required to bea local maximum. The
algorithm is applied to all groups of 2×2 electromagnetic towers. The principle of operation of thee/γ
trigger is illustrated in figure 2.23.

Tau trigger signatures are defined in a similar way to e/γ signatures. The transverse energy of the
4 possible combinations of electromagnetic tower pairs in agroup of 2× 2 is added to the transverse
energy of the adjacent 2× 2 group of hadronic towers and the result for at least one combination is
required to pass a predefined threshold. Isolation thresholds are set for the 12 towers surrounding the
2× 2 group in the electromagnetic calorimeter and the 12 towerssurrounding the 2× 2 group in the
hadronic calorimeter.

Eight sets of thresholds are available for the e/γ trigger and an additional 8 sets are available for either
the e/γ trigger or theτ trigger. The numbers of signatures passing each set of thresholds are counted and
Emiss

T and several other quantities are calculated and forwarded to the central trigger processor. The
results of the muon and calorimeter triggers are combined and a level 1 accept signal together with an 8
bit word describing the type of trigger is issued if the conditions for at least one trigger item are satisfied.

The level 1 trigger has a latency of less than 2.5µs during which the data is stored in subdetector-
specific pipeline memories. When a level 1 accept signal is issued the data is processed by the detector-
specific readout drivers and stored in readout buffers. The information on regions of interest is passed
to the level 2 trigger which requests and analyses the data inthe regions of interest. If the event passes
the level 2 selection criteria the data is forwarded from thereadout buffers to an event builder which
prepares the data for reconstruction in the event filter. Theevent filter processes the event using the
reconstruction framework that is used for offline event reconstruction. Events that pass the event filter
selection are assigned to trigger streams and stored on output nodes of the ATLAS trigger and data
acquisition system. From the output nodes the events are copied to the CERN long-term storage system.
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Chapter 3

Identification of hadronic τ decays using
the τ lepton flight path

At the LHC, many processes involving undiscovered non-Standard Model particles are expected to have
signatures withτ leptons in the final state. In supersymmetric models decays to τ leptons can be dominant
for both charged and neutral Higgs bosons with a large range of possible masses. Tau leptons also occur
as final state particles in supersymmetric cascade decays [2]. The production of a Standard Model Higgs
boson in vector boson fusion with the decayH → τ +τ− is one of the potential discovery processes with
the ATLAS experiment at small Higgs boson masses [19, 1, 2]. In models beyond the Standard Model,
more resonances with large masses may occur which predominantly decay intoτ leptons [2].

Tau leptons decay to electrons or muons with a total branching ratio of approximately 35%. Hadronic
τ decays are classified by the number of charged hadrons as 1-prong (approximately 50%) or 3-prong
(approximately 15%) decays. Decays with more than 3 chargedhadrons have a branching ratio of ap-
proximately 0.1% and are usually neglected for the purpose of identifying the decays of new particles.
The branching ratios for the most common classes ofτ decays are given in table 3.1.

Hadronicτ lepton decays exhibit characteristic signatures with low track multiplicities and strongly
collimated energy deposits in the calorimeter. In addition, the lifetime of theτ lepton leads to measurable
non-zero impact parameters of the decay products. The latter are characteristic also for electrons and
muons from leptonicτ lepton decays. Dedicated algorithms have been implementedfor the identification
of hadronicτ lepton decays.

The quantities characterising the collimation of theτ decay products depend on the momentum of
the τ lepton and the dependence has to be taken into account in identification methods. Tau leptons
in decays of a Standard Model Higgs boson with a mass of 120 GeVproduced in vector boson fusion
will have a transverse momentum of the order 40 GeV to 60 GeV. In early ATLAS data the Standard
Model processesW → τν andZ → τ +τ− will allow the study of the performance of the reconstruction
and identification of hadronicτ decays usingτ leptons of slightly smaller average transverse momenta.
Decays of non-Standard Model bosons with large masses may lead to τ leptons with larger average
transverse momenta of up to several hundred GeV. Tau leptonswith smaller average transverse momenta
are expected from supersymmetric cascade decays in some Supersymmetry scenarios [2].

Tau leptons have a lifetime ofcτ = 87.11µm and a transverse flight distance at intermediate momenta
at the LHC of approximately 2-3mm. In 1-prong decays the non-zero impact parameter may be used
for the identification of the decay. In 3-prong decays it is possible to reconstruct the flight path of theτ
lepton using a secondary vertex fit.

Charm- and bottom-flavoured hadrons also feature a non-zeroflight distance and their decay products
have non-zero impact parameters. The multiplicity of charged particles resulting from bottom decays
is larger and the decay products are less collimated than in the case ofτ lepton decays. Hence, an

27



τ → µνµντ (17.36±0.05)%
τ → eνeντ (17.85±0.05)%

τ → h±ντ (11.61±0.06)%
τ → π±ντ (10.91±0.07)%

τ → h±π0ντ (25.94±0.09)%
τ → h±2π0ντ (9.51±0.11)%
τ → h±3π0ντ (1.34±0.07)%

τ → 3h±ντ (9.80±0.08)%
τ → 3h±π0ντ (4.75±0.06)%

Table 3.1: Branching ratios for different categories ofτ decays. [20]

identification based purely on the impact parameter or the flight distance is feasible in the case ofb-
tagging while for theτ identification it is preferable to use the impact parametersand the flight distance
in combination with other Inner Detector and calorimeter observables.

The offline reconstruction of hadronicτ decays is seeded by a jet reconstructed in the calorimeter
passing a transverse momentum threshold or by a track passing a quality selection and a transverse
momentum threshold. Two algorithms for the different seed choices have been developed [21, 22, 23]
using different reconstruction and identification approaches. In both algorithms,τ candidate objects are
created starting from the seeds. The energy, momentum, charge and charged particle multiplicity of the
visible τ decay products are estimated and quantities characterising the collimation and isolation of the
τ candidate are calculated and used for aτ candidate selection based on cuts or advanced multivariate
techniques.

The energy of theτ candidate is estimated in the calorimeter-based algorithmfrom the seed energy
using an H1-style calibration as discussed briefly in section 4.2.3. In the track-seeded algorithm, the
track selection is optimized to balance a large efficiency with a small migration rate between the 1-prong
and 3-prong categories and to reject tracks from conversions in decays with neutral pions. The energy
of theτ candidates is calculated following an energy-flow approachusing the track momentum at small
transverse momenta instead of charged energy deposits in the calorimeter. A dedicated reconstruction of
π0 subclusters is performed.

The calorimeter-seeded and track-seeded algorithms have been merged into a single algorithm using
either type of seed. The merged algorithm provides a common set of τ candidates with the properties
calculated by each sub-algorithm depending on the availability of the respective seed. In this chapter
track-seededτ candidates are used.

The efficiency of the track reconstruction in hadronicτ decays is discussed in section 3.1. The
performance of the ATLAS detector for the reconstruction ofprimary vertices is studied in section 3.2.
In sections 3.3 and 3.4, the performance of the reconstruction of the impact parameters and the transverse
flight distance is presented. In section 3.5 an improvedτ identification is described which uses the
impact parameter significances and the transverse flight path significance in combination with other
discriminating observables in an artificial neural network. The studies in this chapter are performed
using mostly datasets of simulatedZ → τ +τ− andW → τν events. Additionally, simulated QCD dijet
events are used for studies requiring fakeτ candidates. The datasets are listed in table 3.2.
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Dataset Process
√

s (TeV) Task ID Events used

106052 Z → τ +τ− 10 95953 - 95955 998421
106023 W → τν 10 95962, 95964 - 95966 1199273
106573 A→ τ +τ−,mA = 800 GeV 10 95978, 95979 99954
105010 QCD dijet 10 99034, 99035 1000000
105011 QCD dijet 10 95975, 95976 936178
105012 QCD dijet 10 95970 - 95973 1400000

Table 3.2: Monte Carlo datasets used for the study of hadronic τ decays. ATLAS software releases
14.2.10.1 and 15.3.1.6 were used for the simulation and the reconstruction, respectively.

3.1 Track reconstruction performance

The track reconstruction efficiency is studied for charged pions from hadronicτ decays using simulated
Z → τ +τ− andW → τν events. The tracks are required to pass a quality selection as defined in [13].
The selection consists of the following cuts:

• pT > 1 GeV

• |η | < 2.5

• |d0| < 2mm

• |z0 sin(θ)| < 10mm

• Number of hits in the silicon detectors≥ 7

In addition, it is required that at least 80% of the hits of a track weighted by the detector element
were created by the original pion. The weights 10, 5 and 1, respectively, are assigned to hits in the Pixel
Detector, the SCT and the TRT.

Here, the track parameters at the perigee with respect to theprimary vertex are used. The perigee is
defined as the point on the track at the position of closest approach to the vertex in the transverse plane.
The transverse impact parameterd0 is defined as the distance between the perigee and the vertex in the
transverse plane. The impact parameterz0 is the distance between the perigee and the vertex in thez
direction. The component orthogonal to the track is obtained by multiplying z0 by sin(θ). The perigee
parametrisation of tracks is illustrated in figure 3.1.

Figure 3.2 shows the track reconstruction efficiency as a function of the pT and |η | of the pion.
Compared to a similar study presented in [2] that used an earlier release of the ATLAS software and a
different detector geometry the efficiency is observed to bereduced by approximately 2%. A difference
of slightly above one percent is explained by a reduction of the primary vertex reconstruction efficiency.
The fraction ofZ → τ +τ− events without a reconstructed primary vertex is 1.6% in thedataset used for
figure 3.2. In a dataset produced using a software release anddetector geometry similar to the ones used
for [2] the fraction of events without a primary vertex is 0.4%. In events without a reconstructed primary
vertex the impact parameterz0 is calculated with respect to the center of the interaction region and tracks
are likely to fail the cut on|z0 sin(θ)|. A similar effect may explain the reduced efficiency for 1-prong
decays with respect to the efficiency for 3-prong decays since the primary vertex will be defined better
on average in events with 3-prong decays. For comparison theefficiency without the application of track
quality cuts is shown in figure 3.3.
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Figure 3.2: Track reconstruction efficiency for charged pions fromτ lepton decays as a function ofpT

(left) and|η | (right) using standard track quality cuts in simulatedZ → τ +τ− andW → τν events.

30



 (GeV)
T

p
0 5 10 15 20 25 30 35 40 45 50

E
ffi

ci
en

cy

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96  decaysτ1-prong 
 decaysτ3-prong 

|η|
0 0.5 1 1.5 2 2.5

E
ffi

ci
en

cy

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

 decaysτ1-prong 
 decaysτ3-prong 

 = 15-25 GeV
T

p
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(left) and|η | (right) without track quality cuts in simulatedZ → τ +τ− andW → τν events.

The track reconstruction efficiency in three-prong decays decreases with increasing visible transverse
momentum of theτ lepton due to the decreasing opening angle between the pions. Figure 3.4 shows the
maximum distance∆R in theη -φ plane among the three possible combinations of pions from 3-prong
τ decays for three different ranges of the visible transversemomentum of theτ candidate. Figure 3.5
shows the fraction of pion pairs reconstructed as a pair of tracks as a function of∆R between the pions
and the track reconstruction efficiency as a function of the visible transverse momentum of theτ lepton.
A dataset of simulatedA → τ +τ− events with anA boson mass of 800 GeV is used as it providesτ
leptons with a large range of visible transverse momenta. Atsmall opening angles the efficiency of the
reconstruction of 2 tracks decreases by approximately 15% with respect to the maximum. The difference
of the track reconstruction efficiencies for 1-prong decaysand 3-prong decays increases to up to 10% at
visible transverse momenta close to 500 GeV.

3.2 Primary vertex reconstruction

At the nominal LHC luminosity of 1034cm−2s−1 and a center-of-mass energy of 14 TeV, 23 proton-
proton interactions are expected to take place on average inevery bunch crossing. The interaction region
is expected to have a Gaussian shape with aσ of approximately 11µm in thexandy directions and 5.6cm
in thez direction. The resolution of the Inner Detector is approximately 100µm in thez direction. This
allows the separate reconstruction of the primary interaction vertex and interaction vertices of additional
minimum bias interactions.

The primary vertex reconstruction algorithm used in the ATLAS offline reconstruction [25] is an
implementation of an adaptive multi-vertex fit [26]. Initially, a single vertex is fitted to tracks passing
a loose preselection requiring compatibility with an origin in the expected interaction region. After the
fit the compatibility of the tracks with the fitted vertex is evaluated and tracks found to be incompatible
are used to form a new vertex seed. The procedure is iterated.In each iteration the compatibility of
the tracks with all vertices is evaluated and the assignmentof tracks to vertices is allowed to change.
A weight function is used to determine the compatibility of atrack with a given vertex. The weight
function is adjusted in each iteration in a way such that theχ2 interval covering the largest variation of
weights is reduced and the assignment becomes stricter. In an analogy with the thermodynamic process
of annealing the parameter that is reduced to increase the rigidity of the track-vertex association is called
temperature. The vertex of the signal interaction is identified from the list of reconstructed vertices as
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the vertex with the largest
√

NΣp2
T where the sum is calculated over allN tracks used in the vertex fit.

Figure 3.6 shows the primary vertex multiplicity reconstructed in single minimum bias events and
in minimum bias events at luminosities corresponding to average numbers of 2.3 and 4.6 interactions
per bunch crossing at the nominal spacing of 25ns and of 6.9 interactions per bunch crossing at a bunch
spacing of 75ns. The average reconstructed primary vertex multiplicity is close to the true one. The
simulation of datasets with multiple minimum bias interactions close in time to the triggered bunch
crossing is discussed in section 4.4.

Residuals and pulls of the primary vertex position in thex andz directions in simulatedZ → τ +τ−

andW → τν events are shown in figure 3.7. The residuals are defined here as the difference between the
measured value and the true value of the measured quantity. The pulls are defined as the residuals divided
by the expected error on the measured quantity. The distribution of the residual of thex coordinate has
a σ from a Gaussian fit of 14.1µm which is close to theσ of the distribution of the truex coordinate
of 15.0µm. The distributions in they direction are similar to the distributions in thex direction. The
distribution of the residual of thez coordinate has significant tails, hence the resolution is determined
from a Gaussian fit in the range[−0.1,0.1]mm. A σ of 55.6µm is observed. The pull distributions of
both coordinates have a Gaussian shape with aσ close to one.

Since the primary vertex resolution in thex andy directions is similar to the width of the interaction
region, the transverse impact parameter calculated with respect to the center of the interaction region is
a good approximation for the impact parameter with respect to the primary vertex.

3.3 Impact parameter reconstruction performance

The performance for the reconstruction of the impact parameters and the transverse flight distance is
studied for tracks assigned toτ candidates. Here, onlyτ candidates reconstructed by the track-seededτ
reconstruction algorithm are considered. The seed track isrequired to pass the standard track selection
and to have a transverse momentum above 6 GeV. Additional tracks are required to pass stricter require-
ments on the impact parameters and to have a hit in theB-layer to reject tracks from conversions inτ
decays with neutral pions.
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Figure 3.7: Residual (left) and pull (right) of the primary vertex position in thex (top) andz (bottom)
directions in simulatedZ → τ +τ− andW → τν events.
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The following track quality requirements are applied to theseed track:

• pT > 6 GeV

• |d0| < 2mm

• |z0 sin(θ)| < 10mm

• Number of hits in the silicon detectors≥ 7

The following track quality requirements are applied to additional tracks:

• pT > 1 GeV

• |d0| < 1mm

• |z0 sin(θ)| < 1.5mm

• Number of hits in the silicon detectors≥ 7

• Number of hits in theB-layer≥ 1

• Number of hits in the Pixel Detector≥ 2

Figure 3.8 shows the residuals and pulls of the transverse impact parameterd0 and the impact pa-
rameter in a plane containing thez axisz0 sin(θ) for pions from 1-prongτ decays reconstructed by the
track-seeded algorithm in simulatedZ → τ +τ− andW → τν events. The impact parameter is calculated
with respect to the identified primary vertex. For the calculation of the impact parameter, the position of
the primary vertex is estimated without using the track fromtheτ candidate.

The residual distributions are composed of contributions with different widths depending on thepT

and|η | of the track. Since the variation of the widths of the different contributions is not significantly
larger than an order of magnitude, the distributions may be approximated by a double Gaussian. The
resolutions are determined from a double Gaussian fit. For the transverse impact parameterσ values of
20µm and 42µm are obtained. Forz0sin(θ) the fit results inσ values of 51µm and 119µm. The pull
distributions are Gaussian with aσ close to one in each case.

The resolutions of the impact parametersd0 andz0 sin(θ) are shown in figure 3.9 for pions from
1-prongτ decays as a function of|η |. Different distributions are shown for the impact parameter with
respect to the true primary vertex and the impact parameter with respect to the reconstructed primary
vertex. In both cases the true impact parameter with respectto the true primary vertex is used as the
reference value in the calculation of the residuals. The resolution is calculated as theσ from a Gaussian fit
to the central interval covering 80% of the distribution. The resolution of the transverse impact parameter
with respect to the reconstructed primary vertex increasesfrom 20µm in the central detector region to
30µm in the forward region. The resolution ofz0 sin(θ) decreases from approximately 130µm in the
central region to 55µm in the forward region.

Figure 3.10 shows the significance ofd0 andz0 sin(θ) of the track associated with 1-prongτ candi-
dates, where the significance is calculated as the value divided by its estimated error,

Significance(d0) = d0/σ(d0) (3.1)

Significance(z0 sin(θ)) = z0 sin(θ)/σ(z0 sin(θ)). (3.2)

Distributions are shown forτ candidates reconstructed from 1-prongτ decays,τ candidates seeded by
a track from ab- or c-hadron decay andτ candidates seeded by other tracks. The sign of the impact
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Figure 3.8: Residual (left) and pull (right) of the transverse impact parameterd0 (top) and the impact
parameter in a plane containing thezaxisz0 sin(θ) (bottom). The resolution includes contributions from
the primary vertex reconstruction and the track reconstruction.
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Figure 3.10: Significance of the signed transverse impact parameterd0 (left) and the impact parameter
in a plane containing thez axisz0 sin(θ) (right) for 1-prongτ candidates reconstructed from the decay
products of hadronicτ decays, for 1-prongτ candidates reconstructed from the decay products ofb or c
hadron decays and for 1-prongτ candidates reconstructed from light jets.

Figure 3.11: Graphical illustration of the vectors used in the calculation of the lifetime sign of the impact
parameter for 1-prongτ candidates (not to scale).
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parameter is calculated with respect to the direction of thetransverse energy-weighted barycenter of the
π0 clusters associated with theτ candidate if present. The sign is calculated as [2, 27]

sign(d0) = sign
(

(~Pπ0 ×~Pt) · (~Pt × (~XPV −~Xt))
)

(3.3)

where~Pπ0 is a vector in the direction of the transverse energy-weighted barycenter of theπ0 clusters,
~Pt is a vector in the direction of the track momentum at the perigee,~XPV is the position of the primary
vertex and~Xt is the position of the perigee. The different vectors are depicted in figure 3.11. This sign is
positive if the point of closest approach between the track linearized at the perigee and the axis defined
by theπ0 clusters is located in front of the vertex in the direction oftheπ0 clusters. For pions fromτ
lepton decays, the sign is positive in the ideal case of a track reconstruction without errors if the sign is
calculated with respect to theτ lepton momentum. Thus, it reflects the finite lifetime and flight distance
of theτ lepton. The direction of the axis defined by theπ0 clusters is taken from the calorimeter and the
axis is assumed to pass through the primary vertex. If noπ0 clusters are associated with theτ candidate
and theτ candidate has a calorimeter seed, the sign of the impact parameter is calculated with respect to
the direction of the calorimeter seed. If neitherπ0 clusters nor a calorimeter seed are present, the default
sign is used which is positive if the difference between the azimuthal angle of the track at the perigee and
the azimuthal angle of the vector pointing from the vertex tothe perigee isπ/2+ n2π with n∈ Z and
negative otherwise.

The distribution of thed0 significance shows a moderate discrimination power betweentracks from
τ decays and tracks from light jets. The absolute value of the impact parameter of tracks fromb- or
c-hadron decays is slightly larger than the one fromτ decays. The lifetime sign of the impact parameter
introduces a positive bias of the distribution as expected.The discrimination power of thez0 sin(θ)
significance distribution is smaller than the one of thed0 significance distribution.

3.4 Secondary vertex reconstruction performance

For τ candidates with at least 2 associated tracks a secondary vertex fit is performed. Currently, there
are five different algorithms available in the ATLAS software suitable to perform the fit of a secondary
vertex. All algorithms minimize aχ2 calculated using the measured track parameters and the track
parameters expressed as a function of the vertex position. The algorithms are implementations of filtering
methods in which the information of individual tracks is added sequentially to the vertex estimate [28,
29, 30]. The fitters differ in the details of the implementation and the approximations [25]. Two of the
vertex fitters, VKalVrt and the adaptive vertex fitter, offerthe possibility to down-weight tracks with a
largeχ2. In the case of the adaptive fitter the fit is iterated and a temperature parameter is lowered as
described in section 3.2 for the primary vertex fit. The vertex fit is iterated also with VKalVrt since the
calculation of the weights, which is based on theχ2 with respect to the reconstructed vertex, requires
an estimate of the vertex position. However, the weight function is not modified between iterations. In
the following section, the distributions characterizing the secondary vertex fit are introduced using the
adaptive vertex fitter. The performance of the different vertex fitters is compared after the introduction
of the distributions.

Figure 3.12 shows the residuals of the secondary vertex position in the directions parallel to theτ
candidate axis and orthogonal to theτ candidate axis and thezaxis. Distributions are shown for 3-prong
τ decays where each charged particle has been correctly reconstructed as a track and the 3 tracks have
been assigned to a 3-prongτ candidate and for multi-prong candidates where at least onetrack originates
from a charged particle from aτ decay. The resolution of the secondary vertex position is sensitive to
the opening angle of the tracks and hence the momentum of theτ lepton. Double Gaussians are fitted to
the distributions for correctly reconstructed 3-prong decays. In the parallel directionσ values of 576µm
and 1.93mm are observed. In the orthogonal directionσ values of 9.95µm and 21.2µm are observed.
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Figure 3.12: Residual of the secondary vertex position in the directions parallel (left) and orthogonal
(right) to the momentum of theτ candidate inZ→ τ +τ− andW→ τν events. Distributions are shown for
fully reconstructed 3-prong decays and for multi-prongτ candidates where at least one track originates
from a particle from aτ lepton decay. The adaptive vertex fitter is used.

Residuals and pulls of the secondary vertex position in thex andzdirections are shown in figure 3.13.
The distributions of residuals consist of contributions with resolutions varying by almost two orders of
magnitude. Hence, the distributions cannot be approximated well by double Gaussians and no fit is
performed. The distributions of pulls have a Gaussian shapewith a σ obtained from a fit of 1.03 and
1.04 in thex andz directions, respectively, indicating that the errors are underestimated on average by
3% and 4%, respectively.

Figure 3.14 shows the residual and pull of the transverse flight distance. Aσ of 457µm is obtained
for the narrow component of a double Gaussian fitted to the residual distribution. The distribution of pulls
has a Gaussian shape with aσ from a fit of 1.03. The resolution of the transverse flight pathas a function
of |η | andpT is shown in figure 3.15. The resolution is dominated by the secondary vertex resolution in
the transverse direction and hence the opening angle of the tracks and the transverse momentum of theτ
lepton. ThepT of theτ leptons inZ→ τ +τ− andW → τν events is to a good approximation independent
of η in the range of the Inner Detector acceptance,|η | < 2.5.

Figure 3.16 shows the distributions of residuals of the secondary vertex position in the direction
parallel to theτ candidate axis obtained with the different vertex fitters for fully reconstructed 3-prong
τ decays. No significant difference between the different vertex fitters is observed. The transverse flight
path significance, which is calculated as the transverse flight path divided by its estimated error, forτ
candidates reconstructed from light jets is sensitive to the rejection of outlying tracks. This is illustrated
in figure 3.16 which shows the transverse flight path significance calculated with the five available vertex
fitters for τ candidates from light jets. The sign of the transverse flightpath significance is calculated
with respect to the visible transverse momentum of theτ candidate. The distribution obtained with the
adaptive vertex fitter contains the smallest fraction ofτ candidates with a large transverse flight path
significance and has a less pronounced tail for negative significances. Figure 3.17 shows the efficiency
of a cut on the transverse flight path significance forτ candidates fromτ decays as a function of the
efficiency forτ candidates from light jets and the difference of the efficiency obtained with four of the
vertex fitters with respect to the efficiency obtained with the fast Billoir fitter. The adaptive vertex fitter is
up to 7% more efficient than the fast Billoir fitter for the selection of τ candidates fromτ decay products
at small efficiencies forτ candidates reconstructed from light jets. Hence, currently the adaptive vertex
fitter is used for theτ identification.

The vertex calculated by the adaptive vertex fitter may be assigned a negativeχ2 or number of de-
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Figure 3.13: Residuals (left) and pulls (right) of the secondary vertex position in thex (top) andz(bottom)
directions for fully reconstructed 3-prongτ candidates inZ → τ +τ− andW → τν events.
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Figure 3.14: Residual (left) and pull (right) of the transverse flight path for fully reconstructed 3-prong
τ decays inZ → τ +τ− andW → τν events.
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Figure 3.15: Resolution of the transverse flight path for fully reconstructed 3-prongτ decays inZ →
τ +τ− andW → τν events as a function ofpT (left) and|η | (right). Theσ from a single Gaussian fit to
the central interval covering 80% of the residual distribution (markers) and the half-widths of the central
intervals covering 68.3% (dashed line) and 95% (solid line) of the residual distributions are shown.

grees of freedom if more than one track was effectively excluded from the vertex fit due to the weighting
procedure. It is assumed that the tracks for the affectedτ candidates are incompatible with a common
vertex. The affectedτ candidates are included in theτ identification asτ candidates without a sec-
ondary vertex. For fully reconstructed 3-prong candidatesfrom hadronicτ decays an inefficiency of the
vertex reconstruction of 0.37% is observed. Forτ candidates with less than 4 tracks from light jets an
inefficiency of 2.6% is observed.

Figure 3.18 shows the significance of the transverse flight path for fully reconstructed 3-prongτ
decays, for other multi-prongτ candidates originating from aτ decay, forτ candidates reconstructed
from light jets and forτ candidates with at least one track originating from the decay of a b or c hadron
or one of its decay products. The distributions show a good discrimination power betweenτ candidates
reconstructed fromτ decay products andτ candidates reconstructed from light jets.

3.5 Tau identification using the impact parameter and transverse flight
path

The signature that is selected during the identification step generally consists of a collimated, isolated
object in the calorimeter and the Inner Detector. The track multiplicity is required to be 1 or 3 by
many analyses. Two-prongτ candidates can be used to study the migration from the 1-prong and 3-
prong categories. Tau candidates with more than 3 tracks arereconstructed, however the fraction ofτ
candidates fromτ decays at those track multiplicities is negligible and theτ candidates are intended to be
used as a control sample in the determination of the efficiency and fake rate ofτ identification methods
with collision data. The hadronic energy deposit in the calorimeter is checked for consistency with the
momentum of the reconstructed tracks. The invariant mass oftheτ candidate is expected to be below the
τ lepton mass.

The impact parameter significances and the transverse flightpath significance are used together with
other observables in an artificial neural network to identify hadronicτ decays. The neural network is
trained usingτ candidates fromτ decays in simulatedW → τν andZ → τ +τ− events andτ candidates
from light jets in simulated QCD dijet events reconstructedby the track-seeded algorithm in ATLAS
software release 13.0.30. The Stuttgart Neural Network Simulator [31] is used to create and train the
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Figure 3.16: Secondary vertex residual in the direction parallel to theτ candidate momentum calculated
with different vertex fitters for fully reconstructed 3-prong τ candidates (left) and significance of the
transverse flight path calculated with different vertex fitters forτ candidates reconstructed from light jets
(right). Only τ candidates with less than 4 tracks are used.
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products as a function of the efficiency forτ candidates reconstructed from other sources (left) and the
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to the efficiency for the fast Billoir fitter (right). Only τ candidates with less than 4 tracks are used.
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Figure 3.18: Significance of the transverse flight path for different categories of multi-prongτ candidates.

neural network. The layout of the network is based on an updated version of the neural network described
in [32]. The artificial neural network is a feed-forward network with 2 hidden layers containing 30 nodes
each and a single output node. The set of input variables is taken from the previous implementation of
the neural network with minimal changes. Due to the similarity of the invariant mass of the track system
for multi-prongτ candidates and the invariant mass of theτ candidate, the former quantity is removed
from the list of input variables. For 1-prongτ candidates the significances of the impact parameters
d0 andz0sin(θ) and for multi-prong candidates the transverse flight path significance are added. The
unsigned impact parameter significances are used since at the time of the training the sign was not
yet implemented. The additional input variables are used only if all quantities are available which are
necessary for the calculation of the variables. A primary vertex is required for the calculation of both the
impact parameters and the transverse flight path. A secondary vertex is required for the calculation of the
transverse flight path. Separate neural networks with and without the impact parameter and transverse
flight path significances are trained. Tau candidates are divided into 1-prong candidates withπ0 clusters,
1-prong candidates withoutπ0 clusters, 2-prong candidates and 3-prong candidates and neural networks
are trained for each category. In total, 8 neural networks are trained.

The following input variables are common to all neural networks [22]. Unless indicated, all calori-
metric quantities are calculated using cells within a cone of ∆R< 0.2 around the seed track.

• Transverse energy of theτ candidate.

• Number of cells in the first electromagnetic calorimeter layer with a transverse energy above a
certain threshold.

• Width of the transverse energy deposit in the first electromagnetic calorimeter layer calculated as
theET-weighted variance

Wstrips =
∑(∆η )2ET

∑ET
− ∑(∆ηET)2

(∑ET)2 (3.4)

where the difference inη is calculated with respect to the cell closest inη to the track at the first
electromagnetic calorimeter layer.

• Transverse energy deposited in the area 0.1 < ∆R< 0.2 around the seed track taking into account
all calorimeter layers divided by the transverse energy in acone of∆R< 0.2 around the seed track.
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Figure 3.19: Neural network output for 1-prong (left) and 3-prong (right) τ candidates inZ → τ +τ−,
W → τν and QCD dijet events.

• Average∆R with respect to the seed track of cells in the presampler and the first two layers of
the electromagnetic calorimeter, theη strip and electromagnetic middle layers, weighted by the
transverse energy deposited in the cells

Rem=
∑∆R·ET

∑ET
. (3.5)

• Transverse energy deposited in the back layer of the electromagnetic calorimeter and the hadronic
calorimeter divided by the sum of the transverse momenta of the tracks.

• Transverse energy in the area 0.2 < ∆R < 0.4 around the seed track divided by the transverse
energy in a cone of∆R< 0.2 around the seed track.

• Invariant mass of theτ candidate.

• Number of tracks in the area 0.2 < ∆R< 0.4 around the seed track.

For 1-prong candidates the following input variables are added if a primary vertex has been reconstructed:

• Transverse impact parameter significance|d0|/σ(d0).

• Impact parameter significance in a plane containing thezaxis |z0|sin(θ)/σ(z0 sin(θ)).

For multi-prong candidates the following input variables are added:

• Width of the track system calculated in a way analogous to equation 3.5.

• Transverse flight path significance if a primary and secondary vertex are available and the sec-
ondary vertex passes the minimal requirement of a positiveχ2 and a positive number of degrees
of freedom as discussed in the text.

The performance of the neural network is evaluated using versions of the datasets listed in table 3.2
reconstructed with release 14.2.25.8. Figure 3.19 shows the neural network output for 1-prong and 3-
prongτ candidates in simulatedW → τν , Z→ τ +τ− and QCD dijet events. The rejection ofτ candidates
from light jets that is achieved by a cut on the neural networkoutput is shown in figure 3.20 as a function
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Figure 3.20: Rejection of light jets as a function of the efficiency for 1-prong (left) and 3-prong (right) τ
decays inW → τν and QCD dijet events obtained by a cut on the neural network output variable.

Rejection at 30% Efficiency 1-prong 3-prong

pT = 10-30 GeV with IP/FP 593±13 942±27
without IP/FP 438±9 451±9

pT = 30-60 GeV with IP/FP 897±73 1827±192
without IP/FP 747±54 740±49

pT = 60-100 GeV with IP/FP 2089±331 3595±723
without IP/FP 1365±173 1064±117

Table 3.3: Rejection ofτ candidates reconstructed from light jets at 30% efficiency for τ candidates from
τ lepton decays obtained by a cut on the neural network output.Numbers are given for the full set of 8
neural networks and a reduced set of 4 neural networks not using the impact parameter and transverse
flight path significances. Statistical errors due to the limited size of the Monte-Carlo datasets are given.

of the efficiency forτ candidates fromτ lepton decays inW → τν events. The efficiency is calculated
with respect to true 1-prong or 3-prongτ lepton decays. Onlyτ leptons are considered whose decay
products are within the geometrical acceptance of the InnerDetector, which decay into at least one
charged particle with a transverse momentum above 6 GeV and whose visible transverse momentum
exceeds 10 GeV. The tracks of the reconstructedτ candidate are required to correspond to the charged
particles from theτ decay and the track multiplicity of theτ candidate must be equal to the charged
particle multiplicity of theτ decay. The rejection is calculated as the inverse of the efficiency of the
selection ofτ candidates from light jets minus one. The efficiency of the selection of fakeτ candidates
from light jets is calculated with respect to the truth jets reconstructed with the ATLAS cone algorithm
[2] using as input the simulated visible hadronic final stateparticles excluding muons. Table 3.3 lists the
rejection at 30% efficiency. The rejection is given for the full set of 8 neural networks and for the reduced
set of 4 neural networks without the impact parameter and transverse flight path significances. For 1-
prong decays an increase of the rejection of at least 20% is observed. For 3-prong decays an increase of
more than a factor 2 is observed.
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Chapter 4

Use of jet-vertex association for the central
jet veto in the VBF H → τ +τ− analysis

The production of a Standard Model Higgs boson in vector boson fusion at small Higgs boson masses
at the LHC has a cross section approximately one order of magnitude below the cross section for the
production of a Standard Model Higgs boson in gluon fusion asshown in figure 1.2. The ratio of the
gluon fusion cross section to the vector boson fusion cross section decreases as the assumed Higgs boson
mass increases and tends towards 1 at large Higgs boson masses close to 1 TeV as shown in figure 1.2.
Hence, the vector boson fusion channel [33, 34] was originally considered only for the search at large
Higgs boson masses [35]. By exploiting the hadronic structure of vector boson fusion events, the process
was found to have a large expected signal significance also atsmall Higgs boson masses [19]. The
prospects for the analysis with the ATLAS experiment were studied initially using a fast simulation [1]
and more recently using a detailed simulation of the ATLAS detector [2]. For Higgs boson masses in the
range 115 GeV to 135 GeV, vector boson fusion with the decayH → τ +τ− was found to be a possible
discovery channel for a Standard Model Higgs boson with the ATLAS detector. The analysis is sensitive
to pileup from additional minimum bias interactions [2]. Inprevious estimates of the signal significance
pileup was not taken into account.

The datasets used in this chapter are listed in section 4.1. The original event selection optimized
for the analysis in the absence of pileup is described in section 4.2. The expected effects of pileup are
reviewed in section 4.5. A method for the improvement of the event selection in the presence of pileup
is presented in sections 4.6 and 4.7. The method aims to identify jets not originating from the primary
vertex of the main event and to discard them for the purpose ofapplying the central jet veto. The expected
effects of the improved method on the vector boson fusion analysis is evaluated in section 4.8.

HW/Z

W/Zq q

qq

H

g

g

Figure 4.1: Feynman diagrams describing the production of aHiggs boson in vector boson fusion (left)
and in gluon fusion (right) at a proton-proton collider.
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4.1 Monte Carlo Datasets

The invariantτ +τ− mass distributions after the event selection of the vector boson fusion analysis are
calculated using VBFH → τ +τ− datasets generated with Herwig 6.510 [36] andZ+2 j andZ+3 j with
Z→ τ +τ− datasets generated with Alpgen [37] and Herwig. In the notation Z+n j, n denotes the number
of cone jets with a cone radius of∆R= 0.7 reconstructed at the parton level after the parton showering that
have a transverse energy above 20 GeV. The MLM matching procedure [38] is applied which requires
the jets to correspond one-to-one to the partons generated by the matrix-element calculation. Purely
electroweak production ofZ+ 2 j andZ+ 3 j is not included. Tau decays are simulated with TAUOLA
2.7 [39] and PHOTOS 2.15 [40]. Multiple parton interactionsare simulated with Jimmy 4.3 [41]. A
GEANT4 [42] simulation of the ATLAS detector and the ATLAS digitization and reconstruction software
are used to simulate the detector response. The datasets were generated for a center-of-mass energy of
14 TeV.

The performance of the jet-vertex association method and the efficiency of the central jet veto are
evaluated using simulated VBFH → τ +τ−, Z+2 j/3 j (QCD) withZ→ τ +τ− andtt̄ events for a center-
of-mass energy of 14 TeV and two different luminosity scenarios. The datasets for thett̄ process were
generated with MC@NLO 3.1 [43] and Herwig. Minimum bias events were generated with Pythia 6.4
[44]. Datasets for a luminosity of 2·1033cm−2s−1 with a bunch spacing of 25ns, corresponding to an
average number of 4.6 minimum bias interactions per bunch crossing, were simulated and digitized with
ATLAS software release 12.0.7.1 and reconstructed with release 14.2.0.2. Datasets for a luminosity of
1033cm−2s−1 with a bunch spacing of 75ns, corresponding to an average number of 6.9 minimum bias
interactions per bunch crossing, were simulated and digitized with ATLAS software release 14.2.25.2 and
reconstructed with release 14.2.25.8. The luminosity scenario with a bunch spacing of 75ns is a special
scenario for the early LHC operation. A dominant fraction ofthe dataset that may allow a first discovery
of a Standard Model Higgs boson is currently expected to be taken at the nominal bunch spacing of
25ns. The datasets for the scenario with a bunch spacing of 75ns were simulated using minimum bias
events which were generated for a center-of-mass energy of 10 TeV, hence the rate of additional high-
pT QCD interactions in those datasets is significantly smallerthan that expected in a dataset with the
same operation mode at a center-of-mass energy of 14 TeV. Thediscrimination power of the jet-vertex
association method for thett̄ process is evaluated using a dataset simulated for a center-of-mass energy
of 10 TeV. The dataset is simulated with pileup, corresponding to 4.6 interactions per bunch crossing at
a bunch spacing of 25ns.

Additional datasets of simulatedZ andW production events are used for the evaluation of the primary
vertex reconstruction and selection efficiencies. Datasets of Z → µ+µ− andW → eν events are used to
study the performance of the primary vertex identification at an average number of 4.6 events per bunch
crossing at a bunch spacing of 25ns. The performance at the nominal luminosity which corresponds to
23 interactions per bunch crossing at a bunch spacing of 25nsis evaluated using datasets of simulated
Z → e+e−, W → eν andW → µν events. All datasets used in this study are listed in table 4.1.

For brevity, the luminosity scenario corresponding to an average number of 4.6 interactions per bunch
crossing at a bunch spacing of 25ns will be referred to as luminosity scenario I in the following. The
luminosity scenario corresponding to an average number of 6.9 interactions at a bunch spacing of 75ns
will be denoted luminosity scenario II.

4.2 Vector Boson FusionH → τ+τ− in ATLAS

Figure 4.1 shows Feynman diagrams describing the production of a Higgs boson at a proton-proton
collider in vector boson fusion and gluon fusion. The quarksparticipating in the vector boson fusion
process are typically scattered at small angles to the beam.The jets initiated by the quarks are used to tag
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Dataset Process
√

s (TeV) Luminosity scenario Task ID Events Used

005334 VBFH → τ +τ− → lh 14 – 7517 49000
005334 VBFH → τ +τ− → lh 14 4.6ev/bc, 25ns 15067 44819
205334 VBFH → τ +τ− → lh 14 – 58441, 58442 49999
205334 VBFH → τ +τ− → lh 14 6.9ev/bc, 75ns 95136 48323
205333 VBFH → τ +τ− → ll 14 – 56679, 56680 49750
205333 VBFH → τ +τ− → ll 14 6.9ev/bc, 75ns 95134 41491

005200 tt̄ 14 – 28350 539387
005200 tt̄ 14 4.6ev/bc, 25ns 7554, 8990 106149

8992, 8993
6786

205200 tt̄ 14 – 72511 997340
205200 tt̄ 14 6.9ev/bc, 75ns 80893 957113
105200 tt̄ 10 4.6ev/bc, 25ns 41348 50000

208162 Z+2 j,Z → τ +τ− 14 – 75186 327983
208162 Z+2 j,Z → τ +τ− 14 6.9ev/bc, 75ns 76984 310745
208163 Z+3 j,Z → τ +τ− 14 – 78311 282197
208163 Z+3 j,Z → τ +τ− 14 6.9ev/bc, 75ns 78372 281447
206129 Z+2 j,Z → τ +τ− → ll 14 – 76975 338748
206130 Z+3 j,Z → τ +τ− → ll 14 – 77623 217011

106031 W− → eν 10 4.6ev/bc, 25ns 80129, 80130 948088
106051 Z → µ+µ− 10 4.6ev/bc, 25ns 78911, 78912 745810

78914, 78917
005001 Minimum Bias 14 – 23536 100000

106043 W → eν 14 23ev/bc, 25ns 105324 10000
106043 W → µν 14 23ev/bc, 25ns 105323 10000
106046 Z → ee 14 23ev/bc, 25ns 101032 10000

005001 Minimum Bias 14 – 4278 100000
007903 Cavern Background – – 6304 10000

Table 4.1: Monte Carlo datasets used for the vector boson fusion analysis and the study of jet-vertex
association and the central jet veto in the presence of pileup. A Higgs boson mass of 120 GeV is assumed.
The tt̄ dataset 005200 for a luminosity corresponding to 4.6 eventsper bunch crossing at 25ns bunch
spacing was digitized with release 12.0.7.1 using the minimum bias and cavern background datasets
005001 and 007903. Thett̄ dataset 005200 and the VBF dataset 005334 were reconstructed with release
14.2.0.2 with additional tags applied to treat known problems in the reconstruction.
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vector boson fusion events. Since no color is exchanged between the quarks, QCD radiation is expected
only in the direction between the scattered quark and the beam. This signature allows an additional
discrimination against background processes that is not possible in the gluon fusion process. At leading
order, the gluon fusion process contains no tagging jets. Since gluon fusion is a QCD process, radiation
similar to the majority of background processes which are also QCD processes is expected.

The jet topology in vector boson fusion andtt̄ events is illustrated in figure 4.2, which shows theη
distribution of the jet with the largest transverse momentum in an event and the difference inη between
the tagging jets.

The signature that is selected in the vector boson fusion analysis consists of two tagging jets with a
large separation inη , the absence of hadronic activity inη between the tagging jets, two isolated leptons,
where each lepton can be either an electron or a muon, or an isolated lepton and a hadronicτ candidate
in the central detector region between the tagging jets, anda reconstructed mass of theτ +τ− lepton pair
close to the Higgs boson mass. The event selection is based on[2] with minimal changes.

4.2.1 Electron reconstruction

Electrons are reconstructed starting from clusters in the electromagnetic calorimeter with a fixed size
of 3× 7 cells in theη and φ directions in the electromagnetic middle layer corresponding to a size
of ∆η ×∆φ = 0.075× 0.175. The cluster width in theφ direction is chosen to be larger to collect
contributions from soft bremsstrahlung photons radiated in front of the calorimeter. Clusters of a fixed
size rather than topological clusters as described in section 5.1 may be used due to the compactness and
homogeneity of purely electromagnetic showers. An advantage of clusters with a fixed size is that the
energy of the clusters is not intrinsically biased by pileupas discussed in chapter 5. An electron candidate
is formed if an Inner Detector track which is not identified asoriginating from a conversion electron is
matched to the electromagnetic cluster in a window of∆η ×∆φ = 0.05×0.10 andE/p is less than 10,
whereE denotes the energy of the cluster andp the momentum of the track.

Here, electrons are required to pass the “medium” electron cuts which are defined as:

• The electron cluster is required to match the track within|∆η | < 0.1.

• The track must have at least one hit in the Pixel Detector.

• The track must have at least seven hits in the silicon detectors.

• The track must have a transverse impact parameter with an absolute value of less than 5mm.

• The energy-weighted barycenter of the cluster in the electromagnetic middle layer must be found
within |η | < 2.47.

• η and ET dependent cuts on the ratio of the transverse energy reconstructed in the hadronic
calorimeter to the transverse energy of the electromagnetic cluster are applied.

• For the electromagnetic middle layer,η andET dependent cuts on the shower width and the ratio
of the energy in a 3×7 window to the energy in a 7×7 window are applied. The energy in a 7×7
window is required to be positive.

• If the fraction of the cluster energy deposited in the electromagnetic front layer, theη strip layer,
exceeds 0.5% and the energy-weighted barycenter of the cluster in the electromagnetic middle
layer is found within 1.52 < |η | < 2.37 or |η | < 1.37, η andET dependent cuts on the width of
the energy deposit and the difference between the first and second maxima in theη strip layer are
applied.
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4.2.2 Muon reconstruction

Muons reconstructed by the Staco algorithm [2] are used in the vector boson fusion analysis. Tracks are
reconstructed separately in the muon spectrometer and the Inner Detector. The tracks are extrapolated to
the interaction region and aχ2-based matching between the Inner Detector and muon spectrometer tracks
is performed. Combined muon objects are created for pairs ofmatching tracks. Track parameters for
the combined muon objects are obtained from a statistical combination analogous to an error-weighted
average of the track parameters of the Inner Detector and muon spectrometer tracks.

4.2.3 Jet reconstruction and calibration

The analyses presented in this thesis were developed using jets reconstructed with the ATLAS seeded
cone algorithm. Topological clusters [45] of calorimeter cells are used as the input objects. The clusters
are formed by connecting cells based on the energy depositedin them and have a variable size and
shape. The cluster formation is discussed in section 5.1. The ATLAS seeded cone algorithm is seeded
by clusters with a transverse energy above 1 GeV. For each seed a jet axis is determined by calculating
the sum of the momenta of all clusters included in a circle in theη -φ plane of a fixed radius around the
seed cluster. The jets used in this study are created with a radius of 0.4. The direction of the cluster is
determined during the cluster formation as the absolute-energy weighted mean of the cell directions. The
determination of the jet axis is iterated using the clustersin a cone around the current jet axis until the
distance between the updated jet axis and the current jet axis is smaller than a cut value of∆R= 0.05 that
defines the stability of a cone or a maximum number of iterations is reached. Cones that are not stable are
discarded. The reconstruction of stable cones is followed by a split and merge step to resolve ambiguities
in the case of overlapping cones. If the transverse energy shared between two cones is larger than 50%
of the transverse energy of the jet with the smaller transverse energy the jets are merged. Otherwise, the
jets are split with shared clusters being assigned to the jetthat is geometrically closer to the cluster. Jets
are required to have a transverse energy above 7 GeV.

Seeded cone algorithms are known to be infrared and collinear unsafe [46]. Recently, the AntiKt
algorithm [47] has been adopted as the algorithm recommended for ATLAS physics analyses which is
both infrared and collinear safe. Jets reconstructed with the AntiKt algorithm generally have a circular
shape in theη -φ plane. The AntiKt algorithm begins with a calculation of thedistance measures

di j = min
(

k−2
t,i ,k−2

t, j

) ∆2
i j

R2 (4.1)

between pairs of input objects(i, j) with transverse momentakt,i andkt, j and

diB = k−2
t,i (4.2)

between each input object and the beam.∆i j =
√

(∆y)2 +(∆φ)2 is the distance between objectsi and
j in they-φ plane with the rapidityy and the azimuthφ. R is a parameter that defines the radius of the
jet. Objectsi and j are clustered ifdi j is the minimal distance. If the minimal distance isdiB, object i
is added to the list of jets and removed from the list of input objects. The procedure is iterated until the
list of input objects is empty. The resulting jets typicallyhave a radiusR in theη -φ plane. In this study,
topological clusters of calorimeter cells are used as the input objects.

The response of the ATLAS calorimeters to electromagnetic and hadronic particle showers is dif-
ferent. On average, the energy reconstructed for a hadronically interacting particle is smaller than the
energy reconstructed for an electron or photon of the same energy. The calorimeter is calibrated in a way
such that the energy for electrons is reconstructed correctly on average [48, 49]. For hadronic particles
and jets an additional calibration is applied during the offline reconstruction. Methods implemented in
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the ATLAS software attempt to identify electromagnetic andhadronic shower components and apply
weights to correct the hadronic component such that the reconstructed energy is equal on average to the
energy of the particles entering the calorimeter. For the standard reconstruction of jets, currently two
methods are used in the ATLAS software, a cell-energy weighting method previously used at the H1
experiment [2] and a cluster-level calibration method called local hadronic calibration [50].

In the H1-style calibration, weights are applied after the jet finding to the energies reconstructed in
cells that form the jet constituents, which may be either calorimeter towers or topological clusters. The
weights are functions of the cell energy density and the cellposition. The dependence of the weights
on the energy density is motivated by the observation that energy deposits with a low energy density are
more likely to originate from the hadronic component of a shower.

In the local hadronic calibration, topological clusters are classified by their shape, position and the
structure of the energy deposit as hadronic or electromagnetic clusters. Weights similar to the weights
applied in the H1-style calibration are applied to the energies of cells in hadronic clusters. A correction
for energy not included in the cluster is applied. In this method, the calibrated clusters are used as the
input to the jet reconstruction.

At the jet level, both methods yield comparable results. After the calibration, additional corrections
are applied at the jet level to correct for particles not reaching the calorimeter and for inefficiencies of
the jet-finding algorithm.

4.2.4 Event selection for the channelH → τ+τ− → ll

• Events are required to pass the single electron or muon trigger with a transverse momentum above
approximately 20 GeV (EFe20 loose or EFmu20).

• An electron with a transverse momentum above 25 GeV or a muon with a transverse momentum
above 20 GeV is required. Both leptons must be found in the central detector region within|η | <
2.7. The electron candidate must have been reconstructed by the standard electron reconstruction
algorithm [2], indicated by value of the author variable assigned to the electron candidate of 1 or
3. In addition, the electron must satisfy the “medium” selection cuts as described in section 4.2.1.
Only isolated electrons are selected by requiring the ratioof the energy in a cone with a radius
of ∆R = 0.2 around the electron cluster, excluding the energy deposited in the electromagnetic
calorimeter in a window with a size given by 5×7 cells in the middle layer and excluding energy
deposited in the TileGap3 scintillator, to the transverse momentum of the electron track to be
smaller than 0.1 (etcone20/pT < 0.1).

The muon must have been reconstructed as a combined muon by the Staco algorithm [2]. Theχ2 of
the combined muon track must be smaller than 500 (fitChi2< 500) and the difference between the
χ2 of the combined muon track and the sum of theχ2 of the Inner Detector and muon spectrometer
tracks must be smaller than 100 (matchChi2< 100). Only isolated muons are selected by requiring
the ratio of the energy in a cone with a radius of∆R= 0.2 around the muon, excluding the energy
deposited by the muon itself, to the transverse momentum of the muon to be smaller than 0.1
(etcone20/pT < 0.1).

• The total number of leptons must be 2 and the leptons must haveopposite charges. Leptons are
selected according to the above criteria, however the transverse momentum threshold is lowered
for the second lepton to 15 GeV for electrons and to 10 GeV for muons. Electrons found within
∆R< 0.2 of a selected muon are discarded.

• The missing transverse energy must exceed 40 GeV.
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• The fraction of theτ lepton momentum carried by each lepton as calculated from the lepton mo-
menta and the missing transverse energy [2] has to be positive and smaller than 0.75. The angle
between the lepton momenta is required to satisfy|cos(∆φ)| < 0.9.

• At least 2 jets with a transverse momentum above 20 GeV within|η | < 4.8 are required. At least
one jet must have a transverse momentum above 40 GeV. Jets reconstructed with the ATLAS cone
algorithm using a cone size of∆R = 0.4 are used. Jets within∆R < 0.2 of a selected muon or
electron are discarded.

• The two tagging jets, which are selected as the jets with the largest transverse momenta, must be
found in opposite detector hemispheres.

• The leptons must be found between the tagging jets in theη direction.

• The tagging jets must not have been identified asb-jets. The IP3D + SV1b-tagger [2] is used,
which combines impact parameter information with topological information of a reconstructed
secondary vertex. A jet is considered ab-jet if the weight returned by theb-tagging algorithm is
larger than 1.

• The tagging jets must be separated inη by at least 4.4.

• The tagging jets must have an invariant mass above 700 GeV.

• Events are rejected if a jet is found within|η | < 3.2 which is not a tagging jet.

• For a calculation of the signal significance based purely on the numbers of selected events, the
invariant mass of theτ +τ− lepton pair reconstructed from theτ decay products and the missing
transverse energy is required to be within 15 GeV of the Higgsboson mass for a given mass
hypothesis. This cut is not applied in the standard analysisin which the signal significance is
calculated using a fit to the reconstructedτ +τ− mass spectrum as discussed below.

4.2.5 Event selection for the channelH → τ+τ− → lh

• The same trigger requirement as in the dilepton channel is used.

• A lepton passing the same selection as in the lepton-lepton channel with the high transverse mo-
mentum thresholds is required.

• No additional leptons passing the same selection as in the lepton-lepton channel with the reduced
transverse momentum thresholds are allowed.

• A hadronicτ candidate with a transverse momentum above 30 GeV is required. Theτ candidate
must have 1 or 3 tracks and a charge of 1 or−1. The charge must be opposite to the charge of the
lepton. Theτ candidate must pass the “medium” likelihood cut and the “medium” electron veto
and the muon veto cuts. Tau candidates found within∆R< 0.2 of a selected lepton are discarded.
The number of selectedτ candidates must be 1.

• A missing transverse energy above 30 GeV is required.

• The transverse mass of the lepton and the missing transverseenergy,mT =
√

2plep
T Emiss

T · (1−cos∆φ),
must be below 30 GeV.
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Figure 4.2: Pseudorapidity of the jet with the largest transverse momentum (left) and difference inη
between the jets selected as tagging jets (right) in simulated vector boson fusion andtt̄ events in the
lepton-hadron channel after a preselection requiring a lepton and two tagging jets in opposite detector
hemispheres.

• The fraction of theτ momentum carried by the lepton must be positive and smaller than 0.75. The
fraction of the momentum of the otherτ lepton carried by the hadronicτ decay products must
be positive and smaller than 1. The angle between the lepton and the hadronicτ candidate must
satisfy|cos(∆φ)| < 0.9.

• The event selection based on the tagging jets is the same as inthe lepton-lepton channel with the
single exception that nob-tag veto is applied.

Figure 4.3 shows the expected distribution of the reconstructed invariant mass of theτ +τ− lepton
pair for an integrated luminosity of 30fb−1 in the lepton-lepton and lepton-hadron channels for signal
events and the background processZ+2 j/3 j, Z→ τ +τ− (QCD). The cross section for the signal process
is taken from [2]. The cross sections for theZ+ 2 j andZ+ 3 j processes are taken from the generators
Alpgen and Herwig. A factor of 1.24 to correct the leading-order generator result to a next-to-next-to-
leading-order result as discussed in [51] is applied. Only the dominantZ+ jetsbackground is shown due
to a lack of Monte Carlo statistics for the other background processes. The expected signal significance
taking into account all background processes for an integrated luminosity of 30fb−1 determined from a
likelihood ratio from a fit [2] is shown in figure 4.4. At a Higgsboson mass of 120 GeV, an expected
signal significance of 4.85 is obtained by combining the results in the lepton-lepton and lepton-hadron
channels. The effects of pileup are not taken into account inthis estimate.

4.3 Simulation of minimum bias interactions

The total cross section for proton-proton collisions at a center-of-mass energy of 14 TeV is approximately
100mb. Figure 4.5 shows values of the cross section measuredat the ISR1 and a cosmic air shower
experiment [52] as a function of the center-of-mass energy and the results of a fit and model predictions.
The expected values for the total cross section at the LHC derived from the data are 111.5±1.2+4.1

−2.1 mb
at 14 TeV and 105.1±1.1+3.6

−1.9 mb at 10 TeV [53, 54].
Additional interactions taking place close in time to the triggered bunch crossing will affect the signal

reconstructed in the detector. This effect is called pileup. The effect of additional proton-proton interac-

1Intersecting Storage Rings
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Figure 4.3: Invariant mass of theτ +τ− lepton pair in the lepton-lepton channel (left) and the lepton-
hadron channel (right) normalized to an integrated luminosity of 30fb−1 for simulated signal andZ+
2 j/3 j (QCD) events.
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Figure 4.4: Expected signal significance for a Standard Model Higgs boson produced in vector boson
fusion decaying into aτ +τ− lepton pair for an integrated luminosity of 30fb−1 as a function of the Higgs
boson mass. [2] The estimate does not take into account pileup.
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Figure 4.5: Total cross section for proton-proton scattering as a function of the center-of-mass energy
measured at the ISR (low center-of-mass energy) and a cosmic air shower experiment (high center-of-
mass energy). Fit results including the statistical errors are shown asa black band. Two curves close
to the band show the sum of statistical and systematic errors. Two additional curves at a larger distance
from the band show model uncertainties considered in [54].

tions is taken into account in the simulation by overlaying the main proton-proton collision event with
the signal from additional minimum bias interactions taking place close in time to the main interaction.
Experimentally, minimum bias interactions may be defined asproton-proton interactions triggered by a
minimum bias trigger and not triggered by a high-pT trigger. A minimum bias trigger, which may be
a combination of several independent triggers, typically requires a minimum amount of activity in the
detector that is sufficient to indicate that a proton-protoninteraction has taken place. For the purpose
of the simulation, minimum bias interactions are commonly defined as non-single diffractive inelastic
proton-proton interactions. For this study, minimum bias interactions simulated with Pythia [44] are
used. The simulation includes non-diffractive inelastic proton-proton collisions and high-pT QCD inter-
actions. The total cross section of the process is 51.6mb at 10 TeV and 54.7mb at 14 TeV. The difference
with respect to the total proton-proton scattering cross section is given by the cross section for diffractive
and elastic scattering.

The cross section predicted by Pythia for QCD dijet production with a transverse parton momentum
above 17 GeV is 0.926mb at 10 TeV and 1.48mb at 14 TeV. Hence, this process is expected to con-
stitute approximately 1.8% of the simulated minimum bias events at 10 TeV and 2.7% at 14 TeV. At
1034 cm−2 s−1, QCD dijet production with a transverse parton momentum above 17 GeV can be ex-
pected to occur in between 40% and 50% of all bunch crossings.In this study, lower luminosities are
considered which lead to average numbers of between 2.3 and 6.9 interactions per bunch crossing. At
those luminosities, the QCD dijet process with a transverseparton momentum above 17 GeV may be
expected to contribute to between 5% and 15% of all bunch crossings.

The expected charged particle multiplicity in minimum biasevents at a center-of-mass energy of
14 TeV as a function ofη and pT is shown in figure 4.6. In the central detector region, between 4
and 10 charged particles per unit ofη are expected approximately. The neutral particle multiplicity
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Figure 4.6: Multiplicity of stable charged particles in simulated minimum bias events for a proton-proton
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after π0 decays is approximately equal to the charged particle multiplicity [48]. Figure 4.7 shows the
total charged particle multiplicity measured at the SPS2 and the Tevatron as a function of the center-
of-mass energy. Also shown are extrapolations of the total charged particle multiplicity to the nominal
center-of-mass energy of the LHC using Pythia with two different sets of parameters and Phojet [55].
The extrapolations have a large uncertainty and the chargedparticle multiplicity will be one of the first
measurements at the LHC.

4.4 Simulation of pileup

Pileup is simulated by overlaying the hits from the GEANT4 [42] simulation of the primary proton-
proton interaction with the hits from additional events. The dominant contribution is given by minimum
bias events. In addition, small numbers of interactions of outlying protons with parts of the detector or
a collimator and interactions of protons with gas present inthe beam pipe are added. For each bunch
crossing in the time interval of sensitivity of the ATLAS detector around the triggered bunch crossing,
a number of events distributed randomly according to a Poisson distribution for the expected average
number of events at the given luminosity is selected from datasets of simulated single events. The
simulated hits are passed to the digitization algorithms for all subdetectors that are sensitive to the given
bunch crossing. Interactions from radiation background inthe cavern for the selected luminosity are
added at a constant rate. For each bunch crossing, the same number of cavern background events is
selected randomly from a dataset of simulated cavern background events. The events are assigned a time
offset within the bunch crossing such that events are distributed uniformly over time. The subdetector
digitization algorithms simulate the detector response and produce a signal which can be used by the
reconstruction.

The subsystems of the Inner Detector are sensitive to interacting particles in a small time window
around the triggered bunch crossing. The Pixel Detector is currently operated with a readout interval of
[−2,2] bunch crossings. A reduction of the readout interval to[−1,+1] bunch crossings at low luminosity
and intermediate luminosities is foreseen. At the nominal luminosity, the readout interval will include
only the triggered bunch crossing [56]. The SCT is expected to be operated in a mode in which 3 bunch
crossings are read out and the absence of a hit in the bunch crossing preceding the triggered bunch
crossing followed by a hit in the triggered bunch crossing will be required. The TRT will operate in a
mode in which 3 consecutive bunch crossings are read out. Since the TRT signal has a length of up to
60ns the detector will be sensitive to up to two additional bunch crossings preceding and following the
readout window. The time resolution of the detector will allow a discrimination between hits in different
bunch crossings.

The signals of the liquid argon calorimeters have differentlengths depending on the width of the
liquid argon gap, the voltage and the electrode structure. Signals in the forward calorimeter are relatively
short with a drift time in the first FCal module of 60ns, and longer drift times in the second and third
modules as expected from the increased width of the liquid argon gaps. In the electromagnetic endcap,
the signal length increases with the radius as the width of the liquid argon gap increases. The maximum
signal length in the LAr calorimeters is 800ns which corresponds to 32 bunch crossings. The signal
is sampled in 5 bunch crossings starting with the triggered bunch crossing. Hence, the detectors are
sensitive to an interval of[−32,5] bunch crossings. Signals in the tile calorimeter are shorter. Seven
bunch crossings are sampled. The detector is sensitive to aninterval of[−8,7] bunch crossings.

The RPCs of the muon spectrometer are sensitive to a single bunch crossing. The TGCs will operate
in a mode in which three consecutive bunch crossings are readout. The detectors are sensitive to hits from
collisions in an interval of[−2,4] bunch crossings. The CSCs are sensitive to an interval of approximately

2Super Proton Synchrotron
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Subdetector Sensitive interval (25ns)

Pixel (highL ) [-1,1]
Pixel (lowL ) [-2,4]

SCT [-2,1]
TRT [-2,2]

LAr EM [-31,5]
LAr HEC [-28,5]
LAr FCAL [-23,5]

Tile [-8,6]

TGC [-2,3]
CSC [-3,3]
RPC [-4,4]
MDT [-32,32]

Table 4.2: Interval of sensitivity of individual subdetectors used in the digitization of simulated pileup
datasets.

[−15,4] bunch crossings. The MDTs have the longest signals and readout time and are sensitive to an
interval of[−32,32] bunch crossings.

Table 4.2 summarizes the time intervals currently used for the digitization of simulated data with
pileup.

4.5 Effects of pileup on the analysis

The discovery of a Standard Model Higgs boson at small Higgs boson masses in the vector boson fu-
sion process is expected to require an integrated luminosity of approximately 30fb−1. The dataset will be
composed of data taken at different luminosities during theinitial years of LHC operation while the lumi-
nosity will be increased gradually to the design luminosityof 1034 cm−2 s−1. The analysis of the vector
boson fusion process will be affected in several ways by the presence of pileup. The calorimeter-based
discriminating observables used for the identification of hadronicτ decays are known to be sensitive
to pileup. The resolution of the missing transverse energy measurement is degraded in the presence of
pileup which will affect the resolution of the invariant mass of theτ +τ− lepton pair. Finally, the cen-
tral jet veto will be affected by additional jets reconstructed in the calorimeter not originating from the
primary interaction.

Additional jets affecting the efficiency of the central jet veto are expected from QCD dijet production
in the same bunch crossing as the triggered event as discussed in section 4.3. The number of jets in the
primary event passing a fixed transverse energy threshold isexpected to increase due to a degradation
of the jet energy resolution. In addition, a positive bias ofthe jet energy is introduced by the current
cluster formation as is discussed in detail in chapter 5. Theefficiency of the central jet veto for different
luminosity scenarios is shown in figure 4.8.

4.6 Primary Vertex Selection

Figure 4.9 shows the residual of thez coordinate of the primary vertex in simulatedtt̄, H → τ +τ− → lh
and minimum bias events without pileup. The residual distribution for single minimum bias events has a
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Figure 4.8: Efficiency [2] of the central jet veto in the vector boson fusionH → τ +τ− analysis for three
different luminosity scenarios at a bunch spacing of 25 ns.

σ from a Gaussian fit of 82µm. The tails deviate significantly from a Gaussian shape. Thedistributions
for vector boson fusionH → τ +τ− → lh and tt̄ events have Gaussian widths of 52µm and 34µm,
respectively.

From the list of reconstructed primary vertices, the primary vertex of the main interaction is identified
by the primary vertex reconstruction algorithm as the vertex with the maximum value of

√
N∑ p2

T , where
the sum is taken over allN tracks assigned to the vertex. Intt̄ events the primary interaction vertex is
reconstructed and identified correctly by this method in almost all cases. InH → τ +τ− → lh events there
is a significant fraction of events in which the primary interaction vertex is either not reconstructed or not
identified correctly. The identification efficiency, definedhere as the fraction of all events in which the
selected primary vertex candidate has a distance in thez direction from the true primary vertex of less
than 300µm, is 99.7% intt̄ events and 94.7% inH → τ +τ− → lh events.

In physics analyses of processes including charged particles with a large transverse momentum the
tracks associated with the high-pT objects provide additional information on the position of the primary
interaction vertex. In particular, the impact parameterz0 of the lepton tracks in theH → τ +τ− → lh and
H → τ +τ− → ℓ+ℓ− analyses may be used for the primary vertex selection. Figure 4.10 shows thez0 of
the reconstructed electron or muon with respect to the true primary vertex inH → τ +τ− → lh events.
The distributions are wider than the distribution of thezcoordinate residual of the reconstructed primary
vertex which is shown for comparison. Due to the flight path ofthe τ lepton thez0 distributions have
non-Gaussian tails.

After requiring a lepton trigger and a reconstructed lepton, the significance of thez0 of the lepton
with respect to the true primary vertex, which is defined as the value divided by its estimated error, is
smaller than 20 in 99.9% of allH → τ +τ− → lh events in luminosity scenario I. The significance of
the distance in thez direction between the true primary vertex and the selected reconstructed primary
vertex candidate is smaller than 20 in 95.7% of events after the same preselection and using the standard
method for the primary vertex selection.

The primary vertex selection is extended to use thez0 of a reconstructed lepton according to the
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Process Reconstruction Standard Selection Lepton-based Selection

4.6ev/bc, 25ns

tt̄ (99.91±0.01)% (99.79±0.02)% (99.90±0.02)%
W− → eν (92.64±0.04)% (79.67±0.07)% (92.14±0.05)%
Z → µ+µ− (96.74±0.03)% (90.90±0.04)% (96.30±0.03)%

VBF H → τ +τ− → lh (97.38±0.14)% (95.11±0.19)% (97.34±0.14)%

6.9ev/bc, 75ns

tt̄ (99.79±0.01)% (99.04±0.02)% (99.58±0.01)%
Z+2 j, Z → τ +τ− (99.07±0.03)% (95.43±0.07)% (98.35±0.05)%
Z+3 j, Z → τ +τ− (99.49±0.03)% (97.58±0.06)% (98.96±0.04)%

VBF H → τ +τ− → lh (92.99±0.21)% (87.47±0.28)% (92.23±0.23)%
VBF H → τ +τ− → ll (95.03±0.13)% (94.48±0.14)% (94.50±0.14)%

23ev/bc, 25ns

W → eν (80.17±0.01)% (57.19±0.01)% (78.63±0.01)%
W → µν (81.56±0.01)% (64.02±0.01)% (80.26±0.01)%
Z → e+e− (81.60±0.01)% (60.35±0.01)% (79.91±0.01)%

Table 4.3: Primary vertex reconstruction and identification efficiencies. The reconstruction efficiency is
defined as the fraction of events in which at least one primaryvertex candidate is reconstructed within
300µm in thezdirection of the true primary vertex. The selection efficiency is defined as the fraction of
events where the selected primary vertex candidate is foundwithin 300µm of the true primary vertex.

following method:

• The list of primary vertex candidates is initialized by the primary vertex reconstruction algorithm
using the standard procedure. The primary vertex candidates are sorted in order of decreasing√

N∑ p2
T with the sum taken over allN tracks assigned to the vertex.

• For each candidate, the weight∑ pT/(z0/σ(z0)) is calculated with thez0 of the lepton with respect
to the candidate and the sum taken over all tracks assigned tothe candidate. A value of 1 is used
in place of thez0 significance if thez0 significance is smaller than 1.

• Iterating through the list once, the currently selected primary vertex candidate is replaced if the
weight of the new candidate is larger than 3 times the weight of the currently selected candidate.

The efficiencies of the primary vertex reconstruction and the default and lepton-based selection meth-
ods are listed in table 4.3 for several physics processes in luminosity scenarios I, II, and for the case of
an average number of 23 interactions per bunch crossing at a bunch spacing of 25ns. Here, the recon-
struction efficiency is defined as the fraction of events in which at least one primary vertex candidate
is reconstructed within 300µm of the true primary vertex. For processes with one lepton inthe final
state, exactly one reconstructed lepton passing the leptonselection of the vector boson fusion analysis
is required. For processes with more than one lepton in the final state, at least one reconstructed lepton
passing the lepton selection of the vector boson fusion analysis is required. If at least one reconstructed
muon passing the selection is present in the event the muon with the largest transverse momentum is
used for the identification. Otherwise, the electron with the largest transverse momentum is used.
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The selection efficiency is improved for all processes if theimpact parameter information of the
lepton is used. The selection is observed to be close to optimal for the tt̄ and vector boson fusion
processes in luminosity scenario I. For all processes and luminosity scenarios I and II, the fraction of
events where a primary vertex candidate has been reconstructed within 300µm of the true primary vertex
but the selected primary vertex is not found within the same interval is well below 1% with the lepton-
based selection. At the nominal luminosity, the same fraction is below 2%.

Future studies may include the optimization of the use of information in events with more than
one lepton. It may also be possible to improve the primary vertex reconstruction efficiency using the
knowledge of high-pT objects in an event.

4.7 Jet-vertex association

In this section, the reduction of the central jet veto efficiency shown in figure 4.8 is addressed by studying
the possibility to identify jets from the primary interaction. Jets reconstructed in the calorimeter are
linked to the interaction region by tracks pointing to the area of the jet. Thezcoordinate of the perigee of
the tracks is used to discriminate between tracks originating from the primary interaction and tracks from
additional minimum bias interactions. Jets are assigned tothe primary interaction or the remainder of the
event based on the fraction of the transverse momentum of tracks pointing to the jet contributed by tracks
originating from the primary interaction vertex. This technique has been used at the D0 experiment and
an implementation is available in the ATLAS software [57]. Differences between the implementation
developed for this study and the alternate implementation available in the ATLAS software are discussed
where relevant and the performance is compared.

Tracks are selected according to the following criteria:

• Number of hits in the silicon detectors≥ 6

• Number of pixel hits≥ 2

• Transverse momentum≥ 0.8 GeV

The selected tracks are extrapolated to the entrance of the electromagnetic middle calorimeter layer.
A track is assigned to a jet if the distance expressed as∆R=

√

∆φ2 +∆η 2 between the direction of the
impact point and the jet direction is less than the jet radius. Cone jets with a radius of∆R= 0.4 using
topological clusters and H1-style calibration are used. Asa cross-check, some distributions are shown
for AntiKt jets with a radius parameter of 0.4 using topological clusters and local hadron calibration.

A track is assigned to the selected primary interaction vertex of the event if itsz0 significance with
respect to the vertex is smaller than 30 and the track is not found close to a pileup vertex. A track is
defined as being found close to a pileup vertex if a primary vertex candidate identified as a pileup vertex
is reconstructed within a certain maximal distance in thezdirection from the perigee with respect to the
selected primary vertex. The maximal distance is chosen as the distance in thez direction between the
pileup vertexpu and the selected primary interaction vertexpv multiplied by ∑ pT(pu)/(∑ pT(pu) +

∑ pT(pv)). Figure 4.11 shows the significance ofz0 with respect to the selected primary vertex for
tracks from the main interaction and from pileup. Distributions are shown both for all tracks and for
tracks assigned to the primary vertex. For luminosity scenario I, tracks assigned to the primary vertex
are observed to be more likely to originate from the mainpp interaction than from additional minimum
bias interactions over the whole accepted interval of thez0 significance. The performance of the track-
vertex association is similar in luminosity scenario II. Anincreased rate of tracks from minimum bias
interactions is observed in the second scenario.
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Figure 4.11: Significance ofz0 with respect to the selected primary interaction vertex of tracks from
the mainpp interaction and from pileup. An event preselection requiring a reconstructed lepton as
in section 4.2 and track quality cuts are applied. Distributions are shown for all tracks (black) and
for tracks assigned to the primary interaction vertex (colored) both for H → τ +τ− → lh events (left)
and fortt̄ events (right) in the luminosity scenarios I (top) and II. The distribution for pileup tracks in
H → τ +τ− → lh events shows a peak around 0 which is due to a small fraction ofmisidentified primary
vertex candidates.
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For each jet, the fraction∑ pT( jet and pv)/∑ pT( jet) is calculated where∑ pT( jet) denotes the
total transverse momentum of all tracks associated with thejet and∑ pT( jet and pv) denotes the total
transverse momentum of all such tracks which originate fromthe primary interaction vertex. Jets with
a total associated trackpT of less than 2 GeV are assigned a negative value as in [57]. Figure 4.12
shows the fraction of the transverse momentum associated with a jet which originates from the primary
vertex forH → τ +τ− → lh andtt̄ events and three different luminosity scenarios. As expected, for the
zero-luminosity case the transverse momentum fraction is concentrated near 1. For the other luminosity
scenarios significant contributions are observed also fromjets with a small transverse momentum fraction
from the primary vertex.

The discrimination power of the primary vertexpT fraction is estimated by studying separately its
distributions for jets that are part of the mainppevent and for additional jets caused by pileup. To distin-
guish between jets from pileup and jets resulting from the primary interaction, the events are simulated
with and without pileup. Jets in the pileup dataset for whicha jet is found within the jet radius in the
same event in the no-pileup dataset are labeled jets from themain pp interaction. The remaining jets
present in the pileup dataset are labeled pileup jets. The distributions of the primary vertexpT fraction
for jets from the mainpp interaction and for pileup jets are shown in figure 4.13. The distribution for
pileup jets has a maximum towards 0 and decreases with increasing primary vertexpT fraction. The
distribution for jets from the mainpp interaction shows the opposite behavior.

Figure 4.14 shows the rejection of pileup jets as a function of the efficiency for jets from the main
pp interaction with the rejection defined here as the inverse ofthe efficiency. For comparison, figure
4.14 shows rejections which are obtained with the implementation of the method available in the AT-
LAS software. Release 15.0.0 is used for luminosity scenario I. Release 15.6.0 is used for luminosity
scenario II. In release 15.0.0 a fix is applied to correct the calculation of the impact parameter. The
impact parameter is calculated correctly in release 15.6.0 and the track selection cuts are loosened with
respect to release 15.0.0. The performance of the implementation in release 15.6.0 is closer to the im-
plementation developed for this study, however a small difference remains. The implementations differ
by the methods used for the primary vertex selection and the assignment of tracks to the primary vertex.
The implementation in release 15.6.0 uses the standard method implemented in the primary vertexre-
construction algorithm for the selection of the primary vertex. The assignment of tracks to the primary
vertex in release 15.6.0 is inherited from the primary vertex reconstruction algorithm. The tracks used
for the vertex fit are considered to originate from the primary vertex.

At an efficiency for signal jets of 80% a rejection of 9.6 is observed for pileup jets inH → τ +τ− → lh
events at a center-of-mass energy of 14 TeV in luminosity scenario I. Fortt̄ events at a center-of-mass
energy of 10 TeV the observed rejection is 7.3 for the same luminosity scenario. In luminosity scenario
II, the rejection is 7.5 in H → τ +τ− → lh and 7.0 in Z+ 2 j, Z → τ +τ− events. Figure 4.15 shows the
rejection of pileup jets as a function of the efficiency for jets from the mainpp interaction for cone jets
with H1-style calibration and for AntiKt jets with local hadronic calibration for luminosity scenario II.
The rejection for AntiKt jets is observed to be slightly larger than the rejection for cone jets.

4.8 Central Jet Veto Performance

The efficiency of the central jet veto is evaluated after a preselection requiring a lepton trigger, a single
reconstructed lepton and the identification and separationin η of the tagging jets as in section 4.2. Noτ
identification is applied to increase the number of events passing the preselection, however jets that are
reconstructed within∆R< 0.4 of the true decay products of a hadronicτ decay are excluded from the
analysis. Only jets in the region|η | < 2.5 covered by the Inner Detector are considered.

Figure 4.16 shows the number of jets in the region|η | < 2.5, with a transverse momentum above
20 GeV, not selected as tagging jets, and after the preselection. With pileup corresponding to luminosity
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Figure 4.12: Fraction of the transverse momentum associated with a jet contributed by tracks from the
primary vertex forH → τ +τ− → lh events (left) andtt̄ events (right) without pileup (top), in luminosity
scenario I (middle) and in luminosity scenario II (bottom).
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Figure 4.13: Fraction of the transverse momentum associated with a jet contributed by tracks from the
primary vertex for jets not selected as tagging jets inH → τ +τ− → lh events (left) and background events
(right). The transverse momentum fraction is shown separately forjets from the primary interaction
(black) and for jets caused by pileup (white). A preselection requiring a lepton trigger and a reconstructed
lepton as in section 4.2 is applied. The VBF andZ + 2 j datasets were simulated for a center-of-mass
energy of 14 TeV. Thett̄ dataset was simulated for a center-of-mass energy of 10 TeV.
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Figure 4.14: Rejection of jets caused by additional minimumbias interactions after a cut on the primary
vertex pT fraction as a function of the efficiency for jets from the mainpp interaction. Only jets that
do not have the largest or second-largest transverse momentum in an event are used. A preselection
requiring a lepton trigger and a reconstructed lepton as in section 4.2 is applied. The rejections obtained
with the implementation available in ATLAS software release 15.0.0 (left) and 15.6.0 (right) are shown
for comparison.
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Figure 4.15: Rejection of jets caused by additional minimumbias interactions after a cut on the primary
vertex pT fraction as a function of the efficiency for jets from the mainpp interaction. Distributions
are shown for jets reconstructed with the cone algorithm with a radius of 0.4 and H1-style calibration
and for jets reconstructed with the AntiKt algorithm with a radius parameter of 0.4 and local hadronic
calibration. Jets are used only if they do not have the largest or second-largest transverse momentum
in an event. A preselection is applied which requires a lepton trigger and a reconstructed lepton as in
section 4.2.
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Figure 4.16: Number of jets not identified as tagging jets in the region|η | < 2.5 with a transverse
momentum above 20 GeV inH → τ +τ− → lh events (left) andtt̄ events (right). The event samples are
simulated with (white) and without (black) pileup for the luminosity scenarios I (top) and II (bottom).
Jets found within a cone of∆R< 0.4 of the true hadronic decay products of aτ lepton decay have been
excluded.

scenario I, the average number of jets increases by 0.76 inH → τ +τ− → lh events and by 0.97 intt̄
events. In luminosity scenario II, the average number of jets increases by 0.43 inH → τ +τ− → lh
and by 0.55 intt̄ events. As mentioned in section 4.1, the rate of additional QCD dijet events in the
datasets for luminosity scenario II is expected to be underestimated due to the use of minimum bias
events generated for a center-of-mass energy of 10 TeV. Fromthe cross sections given in section 4.3
one can expect a rate of approximately two thirds of the rate in datasets generated for a center-of-mass
energy of 14 TeV. A likely explanation for the increase of thejet multiplicity being greater intt̄ events
is the larger jet multiplicity intt̄ events and a positive bias of the jet energy due to pileup as discussed
in section 4.5. The fraction of events without a jet decreases by 34.9% in H → τ +τ− → lh events and
by 39.5% in tt̄ events by the addition of pileup corresponding to luminosity scenario I. In luminosity
scenario II, the decrease is 24.2% inH → τ +τ− → lh events and 29.9% in tt̄ events.

The efficiency of the central jet veto applied in the region|η | < 2.5 using a transverse momentum
threshold of 20 GeV is shown in figure 4.17. In the presence of pileup, the efficiency for signal events
without a cut on the primary vertexpT fraction is significantly reduced with respect to the no-pileup
scenario. The efficiency is observed to be(56.0±0.9)% with pileup and(88.4±0.5)% without pileup.
A large fraction of the efficiency lost in the pileup case is regained by considering only jets with a primary
vertexpT fraction above a certain cut value. Depending on the cut value, efficiencies between 74% and
87% are observed. A similar general behavior is observed forthett̄ process.
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The performance of the central jet veto is evaluated usingH → τ +τ− → lh andtt̄ events only since
the production of complete background datasets for both considered luminosity scenarios was not feasi-
ble. Figure 4.17 shows the expected changes of the signal-to-background ratio and the Gaussian signal
significance obtained by applying the central jet veto in thepresence of pileup relative to the changes
expected in the no-pileup scenario. The signal significancehas a maximum at 0.5 in luminosity scenario
I. The signal-to-background ratio has a secondary maximum at the same value. The global maximum of
the signal-to-background ratio is observed for the case in which no jets are discarded. The efficiency for
signal jets as defined in section 4.7 at a cut value of 0.5 is 80%in H → τ +τ− → lh events and 92% in
tt̄ events. The signal significance after the application of theprimary vertexpT fraction cut is expected
to be reduced by 5.9% with respect to the no-pileup case. The signal significance is expected to be 12%
larger than for the case in which no cut is applied.

In luminosity scenario II, the signal-to-background ratiois observed to decrease continuously with
an increasing cut value to below 50% at a cut value of 0.9. The signal significance has a maximum at
a cut value of 0.1. After the application of the primary vertex pT fraction cut, the signal significance is
expected to be reduced by 10.0% with respect to the no-pileup case. The signal significance is expected
to be 2.8% larger than in the case in which no cut is applied. The differences with respect to luminosity
scenario I are explained by the lower pileup jet multiplicity as shown in figure 4.16 and the larger pileup
track multiplicity as seen in figure 4.11 in luminosity scenario II. For an increase of the signal significance
achieved by the central jet veto, a large rejection of pileupjets in H → τ +τ− → lh events has to be
balanced against a large efficiency for jets originating from tt̄ events. Intt̄ events for luminosity scenario
II, a significant fraction of jets from the main interaction that would trigger the jet veto without pileup
are rejected due to contributions to the primary vertexpT fraction from pileup tracks. The dependence
on the pileup track multiplicity can be reduced by only requiring a certain minimumpT fraction if the
total pT of all tracks which are associated to the primary vertex is below 4 GeV. This is illustrated in
figure 4.17. The dependence of the efficiency on the cut value for H → τ +τ− → lh andtt̄ at large cut
values is reduced by this modification as expected. The increase of the signal significance is unchanged.

Future studies may include a comparison with purely track-based methods for a central jet veto and
a comparison with a cut on the transverse momentum from the primary vertex instead of a cut on the
transverse momentum fraction. The cut value on the primary vertexpT fraction may be optimized using
simulated signal events overlaid with minimum bias data from the detector for a given luminosity.

4.9 Summary

The use of jet-vertex association for the rejection of pileup jets and its application to the central jet
veto in the vector boson fusion process are studied. Two luminosity scenarios of 4.6 interactions per
bunch crossing at 25ns bunch spacing and 6.9 interactions per bunch crossing at 75ns bunch spacing are
considered. Jets caused by pileup from minimum bias interactions are discarded by requiring a minimum
fraction of the transverse momentum of tracks pointing to the position of the jet in the calorimeter to
originate from the primary vertex.

The selection of the primary vertex can be improved by exploiting the impact parameter information
of the reconstructed leptons. If a lepton is reconstructed,the correct primary vertex is selected in more
than 99% of the events at intermediate luminosities and in more than 98% of the events at the design
luminosity.

In datasets for luminosity scenario I at a center-of-mass energy of 14 TeV, the jet-vertex association
method implemented for this study is shown to reject approximately 90% of the jets caused by pileup
that may trigger the central jet veto in vector boson fusion events while keeping 80% of the jets from
the primarypp interaction. Intt̄ events at a center-of-mass energy of 10 TeV approximately 86% of jets
caused by pileup are rejected at the same efficiency for jets from the main interaction. In datasets for
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Figure 4.17: Efficiency of the central jet veto applied in therange|η | < 2.5 using a preselection as de-
scribed in the text and a transverse momentum threshold of 20GeV after a cut on the primary vertex
pT fraction as a function of the cut value (left) for H → τ +τ− → lh (black) andtt̄ (white) events. The
efficiencies without pileup and without a cut on the primary vertex pT fraction are shown for compari-
son. The plots on theright show the expected changes of the signal-to-background ratio (dashed) and
the Gaussian signal significance (solid) obtained by applying the central jet veto in the pileup scenario
relative to the changes expected for the no-pileup case. Distributions are shown for luminosity scenarios
I (top) and II (middleandbottom). The bottom pair of plots shows distributions for which alljets with
a transverse momentum from tracks from the primary vertex above 4 GeV are assigned a primary vertex
transverse momentum fraction of 1.
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luminosity scenario II, 87% and 86% of pileup jets are rejected in signal andtt̄ events, respectively, at an
efficiency of 80% for jets from the main interaction.

The efficiency of the central jet veto after an event preselection is observed to be reduced from
(88.4±0.5)% to(56.0±0.9)% for H → τ +τ− → lh events in luminosity scenario I. A cut on the fraction
of the transverse momentum from the primary interaction vertex recovers a large fraction of the efficiency
lost due to pileup. After a cut on the primary vertexpT fraction of 0.5 the efficiency of the central jet
veto for the signal process is expected to be(80.3±0.6)%. The Gaussian signal significance after the
application of the central jet veto is expected to increase by 12% by the requirement of an association
of the jets to the mainpp interaction vertex. In a dataset for luminosity scenario II, a maximum of the
expected signal significance at a small cut value of 0.1 is observed. At large cut values, many jets in
tt̄ events are rejected due to a large contribution from pileup.As a consequence, these events are not
rejected by the central jet veto. The latter can be improved by also accepting jets if the sum of the
transverse momenta exceeds a certain threshold, where the sum is taken over all tracks which point to
the jet and originate from the primary vertex.
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Chapter 5

Formation of topological clusters in the
presence of pileup

Jets are reconstructed using clusters of calorimeter cells[45] as input objects. The clusters are formed
either by assigning all cells within a square in a fixed grid intheη -φ plane to a calorimeter tower object
or by forming topological clusters that represent extendedsignal energy deposits of a variable size and
shape.

Cells are selected during the formation of topological clusters by applying cuts on the energy recon-
structed in the cells. The reconstructed energy in a cell maybe negative due to the finite resolution of
the energy reconstruction. To cancel the noise contribution, clusters are formed from cells with positive
and negative signals. In the presence of pileup the cancellation is incomplete and the topological cluster
formation introduces a significant positive bias to the reconstructed jet energy. A method is suggested
which significantly reduces the bias.

The formation of topological clusters is described in section 5.1. In section 5.4 the Monte-Carlo
datasets used for this study are listed. The effects of two-sided symmetric signal significance cuts on the
average cell and cluster energies in minimum bias data are discussed in section 5.5. An improved method
for the cell selection is suggested in section 5.6. The method is applied to QCD dijet andtt̄ events and
results are given in section 5.7.

5.1 Formation of topological clusters

Topological clusters are seeded by cells that pass a relatively large seed cut on the signal significance.
The signal significance is defined in this context as the energy reconstructed in a cell divided by the RMS
of the noise in the cell. The cut can be applied either to the signal significance or to its absolute value,
accepting also cells with a large negative energy deposit. Cells located next to a cell contained in the
cluster are added to the cluster if their signal significancepasses a moderate neighbor cut. This second
step is iterated until no further neighboring cells passingthe neighbor cut are present. The clusters are
finalized by adding all cells which are located next to a cell contained in the cluster and which pass a third
small cut on the signal significance. With this procedure, the number of clusters is determined mostly by
the seed cut while the size of the clusters is more sensitive to the intermediate neighbor cut. The largest
rejection of noise is achieved by the seed cut while the cluster growing procedure ensures that energy
deposits in the tails of the showers are included in the object. The cluster creation is followed by a cluster
splitting step around local maxima that is described in detail in [45].

In this study, cut values of 4, 2 and 0 are used as the seed cut, the neighbor cut and the cluster
finalization cut, respectively, which are the standard cut values for the topological clusters used as input
to the jet reconstruction. In the standard clustering procedure, these cuts are applied to the absolute value
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of the signal significance so that on average the negative noise contributions cancel the positive ones. In
a pure noise dataset the average energy in clusters after theapplication of these two-sided symmetric cuts
vanishes if the cell energy distributions are symmetric anduncorrelated.

5.2 Treatment of pileup in the liquid argon calorimeter

The signal in the liquid argon calorimeter is sampled in five consecutive bunch crossings starting with
the triggered bunch crossing. Due to the length of the electron drift time in the liquid argon, the sampled
signal is affected by energy deposits in up to 32 bunch crossings preceding the triggered bunch crossing.
The signal shaping and readout of the calorimeter are optimized to minimize the impact of pileup on
the measurement. A bipolar signal shape is used. It has a relatively short initial peak used to measure
the amplitude and time. The peak is followed by a long negative tail. The amplitude and time of the
signal are determined from the measured values using optimal filtering [58]. The integral of the pulse
shape vanishes and the average cell energy in randomly triggered events is close to 0 and independent of
the luminosity for the nominal bunch spacing of 25ns. With anincreasing bunch spacing, the discrete
integral will start to differ from 0, depending on the exact pulse shape of a cell. For a bunch spacing of
75ns this effect is demonstrated later in this chapter.

Figure 5.1 shows pulse shapes for the electromagnetic barrel and the forward calorimeter measured
during a data taking period with cosmic muons in September 2008. Typical pulse shapes used in the
digitization of the liquid argon calorimeter are shown in figures 5.2 and 5.3. The increase of the width of
the liquid argon gap in the EM endcap with the radius leads to an increase of the drift time. This effect
is visible in figure 5.2.

At a luminosity of 0, the reconstructed cell energies have a Gaussian distribution given by the elec-
tronic noise. The width of the cell energy distributions in randomly triggered events increases with the
luminosity. The increase is due to an increase of the electronic noise contribution and due to energy
deposits mainly from additional minimum bias interactions. The electronic noise contribution increases
due to a different choice of the optimal filtering coefficients which are optimized to minimize the total
noise. The increase due to energy deposits is taken into account in the topological cluster formation by
adding a pileup noise term to the electronic noise at the given luminosity in the definition of the noise
RMS that determines the cell selection cuts. In the following, the cell noise is understood to include
pileup noise if not indicated otherwise. The RMS of the totalcell noise is shown in figure 5.4 for the
case of a luminosity of 0 and for the case of luminosity scenario I, as defined in section 4.1.

Figure 5.5 shows the expected total noise, expressed as the reconstructed transverse energy, in a
3x5 electromagnetic cluster in the barrel of the calorimeter for different luminosity scenarios. Both
the width of the noise distribution and the positive tail areobserved to increase with the luminosity.
Since the average energy remains 0 due to the bipolar pulse shape, the most probable value becomes
negative. Figure 5.6 shows the total noise in individual cells in the electromagnetic barrel middle layer
at η = 0 and in the first FCal module atη = 4 for a luminosity scenario of 2.3 interactions per bunch
crossing at a bunch spacing of 25ns and for luminosity scenarios I and II. The distributions at 25ns have
similar characteristics to the ones shown in figure 5.5. At 75ns bunch spacing, the negative part of the
distribution is reduced in the forward calorimeter and the average reconstructed energy becomes positive.
In the electromagnetic barrel middle layer the distributions for 2.3 interactions per bunch crossing at 25ns
bunch spacing and for luminosity scenario II do not differ significantly.

5.3 Treatment of pileup in the tile calorimeter

The signal in the tile calorimeter is sampled in seven consecutive bunch crossings. The shaped signal
is unipolar with a full width at half maximum of 50ns. The pulse shape is shown in figure 5.7. In the
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Figure 5.1: Pulse shapes observed during data taking with cosmic muons in the electromagnetic barrel
middle layer (left) and in the third FCal module (right).
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Figure 5.2: Pulse shapes used for the digitization of simulated data for different cells of the electromag-
netic barrel middle layer (left) and the electromagnetic endcap middle layer (right). [59]
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Figure 5.4: Expected RMS of the noise in individual calorimeter cells as a function of|η | for a luminosity
of 0 (left) and for luminosity scenario I (right). [13]

Figure 5.5: Total noise, expressed as the reconstructed transverse energy, in a 3x5 electromagnetic cluster
in the barrel region of the calorimeter for different luminosity scenarios. [59]
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Figure 5.6: Total noise, expressed as the reconstructed energy, in a individual cells of the electromagnetic
barrel middle layer (left) at η = 0 and the first FCal module (right) at η = 4 for different luminosity
scenarios.

tile calorimeter there is no intrinsic cancellation of pileup due to the pulse shape as in the liquid argon
calorimeter, but due to the significantly shorter pulse and the shielding by the liquid argon calorimeter
the tile calorimeter is less affected by pileup.

5.4 Monte Carlo Datasets

For the study of the properties of cell noise distributions including pileup noise and for the determination
of asymmetric cuts, datasets of simulated minimum bias events are used. Minimum bias datasets for three
different luminosity scenarios were produced using ATLAS software release 14.2.25. The jet response
is studied using centrally produced mc08 Monte Carlo for theQCD dijet andtt̄ processes. All datasets
used in this study are listed in table 5.1.

5.5 Average cell energies in minimum bias data with symmetric cuts

Due to the bipolar pulse shape [59] of the ATLAS LAr calorimeter, the average energy reconstructed
for an event in a calorimeter cell remains 0 for any luminosity at a bunch spacing of 25 ns. Thus,
large signals are reconstructed without a bias from noise. In calorimeter regions without signal energy
deposits, two-sided symmetric cuts introduce a positive bias on the average cell and cluster energies due
to the asymmetric shapes of the noise distributions in the presence of pileup [61, 62]. Figure 5.8 shows
the average cell energy in the electromagnetic barrel middle layer and the first FCal module as a function
of η in simulated single minimum bias events and in simulated minimum bias events for luminosity
scenarios I and II. The average energy is close to 0 at the nominal bunch spacing of 25ns. At a bunch
spacing of 75ns, the average energy is close to 0 in the electromagnetic barrel middle layer, however in
the forward calorimeter the average cell energy is positiveand several GeV above the average cell energy
in single minimum bias events. Distributions for all layersof the liquid argon calorimeter are shown in
appendix A. The average cell energy in luminosity scenario II is generally observed to be close to 0 in
the central detector region and to increase with|η |.

Figure 5.9 shows the average cell energy after the application of two-sided symmetric 4σ1 and

1Here and in the following, the letterσ is used to denote the RMS of the cell noise including pileup noise as returned by the
CaloNoiseTool.
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Figure 5.7: Pulse shape used for the digitization of simulated data in a cell of the tile calorimeter [60].
The histogram shows the sampled energies. The hatched area extends over the bins with the five largest
entries. The line shows a fit of the pulse shape to the histogram.

Dataset Process
√

s (TeV) Luminosity scenario Task ID Events used

107499 Minimum Bias 10 4.6 events/bc, 25 ns private 49750
107499 Minimum Bias 10 2.3 events/bc, 25 ns private 50000
107499 Minimum Bias 10 6.9 events/bc, 75 ns private 50000
105012 QCD Dijet 10 4.6 events/bc, 25 ns 64886, 64887 376472
105012 QCD Dijet 10 – 61101 355784
105200 tt̄ 10 4.6 events/bc, 25 ns 41348 29788
105200 tt̄ 10 6.9 events/bc, 75 ns 69466 119419
105200 tt̄ 10 – 63975 42467

105001 Minimum Bias 10 – 24528 500000
005008 Cavern Background – – 28773 900000

Table 5.1: Monte Carlo datasets used for the study of the topological cluster formation. The minimum
bias datasets with non-zero luminosity were produced usingthe job transforms and job options available
in release 14.2.25. The minimum bias and cavern background datasets 105001 and 005008 were used
during the digitization step for the minimum bias samples with non-zero luminosity.
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2σ cuts as a function ofη in the electromagnetic barrel middle layer and the first FCalmodule. For
comparison, the average cell energy in minimum bias events without cuts and in single minimum bias
events is shown. Distributions for all layers of the liquid argon calorimeter are shown in appendix B.
Symmetric cuts are observed to introduce a positive bias dueto the positive tails of the cell energy
distributions. The bias is of the same order of magnitude as the average energy in single minimum bias
events. In the central detector region, the ratio of the biasto the average energy in single minimum bias
events is larger than in the endcaps and the forward calorimeter. In the liquid argon calorimeter, the bias
introduced by the 2σ cut is larger than the one introduced by the 4σ cut.

5.6 Determination and application of asymmetric cuts

Asymmetric cuts that result in average cell energies of 0 aredetermined numerically from the cell energy
distributions observed in simulated minimum bias data. Thecut values are calculated separately for each
calorimeter layer in 200 bins of the pseudorapidityη after the average cell energies in the same bins have
been subtracted. The positive cut values are left unchangedat 4σ and 2σ and the negative cut values
are adjusted separately for the 4σ and the 2σ cut in a way such that the average cell energies after the
application of the cuts are 0. Figure 5.10 shows the average cell energies for 4 exemplary calorimeter
layers after the application of the unmodified and the modified cuts.

The ratio of the positive cut values to the absolute value of the negative cut values is shown in figure
5.11. The ratio is shown for a luminosity scenario of 2.3 interactions per bunch crossing at 25 ns bunch
spacing and for luminosity scenarios I and II. The ratio for the 4σ cuts is observed to be larger than the
ratio for the 2σ cuts. Typical values for the ratio are between 1 and 3. The ratios generally increase with
|η | and reach values of up to 5 in the endcaps and the forward calorimeter. Theη dependence changes
with the luminosity. At a bunch spacing of 25 ns the difference for an increase of the luminosity from
2.3 to 4.6 events per bunch crossing is of the order 10%.

The average transverse energy of topological clusters at the EM scale constructed with symmetric
cuts and with asymmetric cuts as a function ofη is shown in figure 5.12. Both the average transverse
energy per cluster and the average transverse energy in a circle in theη -φ plane with a radius of 0.4 are
shown. With symmetric cuts, the largest average transverseenergy per cluster is observed in the forward
calorimeter. The largest average transverse energy in a fixed cone for a bunch spacing of 25ns is observed
in the central detector region. In luminosity scenario I, anaverage transverse energy in a cone with a
radius of 0.4 in the central region of approximately 2 GeV is observed. The shape of the distribution of the
average transverse energy in a fixed cone corresponds roughly to the expectations from the distribution of
the transverse energy in single minimum bias events and the bias introduced by the symmetric cuts. For a
bunch spacing of 75 ns, the average transverse energy in a fixed cone in the forward calorimeter is larger
than for a bunch spacing of 25 ns due to the non-zero average ofthe cell energy in the forward region at
that bunch spacing. Before the cluster formation, the average cell energies are determined and subtracted
for each calorimeter layer and in the same bins ofη as the asymmetric cuts. After the subtraction of the
average cell energies and using asymmetric cuts for the cluster formation, the average transverse energy
in clusters is observed to be close to 0.

The cluster multiplicity in a fixed cone with a radius of 0.4 isshown in figure 5.13 as a function of
η . The multiplicity increases by a factor between 2 and 3 over alarge fraction of theη distribution when
using the asymmetric cuts.

Figure 5.14 shows the probability for individual cells to pass the asymmetric clustering cuts. The
probabilities are observed to increase with|η |. In the forward region, the probability for cells to pass
the negative 2σ cut reaches values significantly above 10% which leads to thereconstruction of large
clusters.

The average cell energy in a given event is correlated with the number of minimum bias interac-
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events without cuts and in single minimum bias events is shown.

80



η
-5 -4 -3 -2 -1 0 1 2 3 4 5

E
 (

G
eV

)

0

0.0005

0.001

0.0015

0.002

 symmetric cutσ2

 symmetric cutσ4

 asymmetric cutσ2

 asymmetric cutσ4

EMB2

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

E
 (

G
eV

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8  symmetric cutσ2
 symmetric cutσ4
 asymmetric cutσ2
 asymmetric cutσ4

FCAL0

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

E
 (

G
eV

)

0

0.005

0.01

0.015

0.02

0.025  symmetric cutσ2
 symmetric cutσ4
 asymmetric cutσ2
 asymmetric cutσ4

HEC0

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

E
 (

G
eV

)

0

0.0005

0.001

0.0015

0.002

0.0025
 symmetric cutσ2

 symmetric cutσ4

 asymmetric cutσ2

 asymmetric cutσ4

TileBar0
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with 2.3 events per bunch crossing at a bunch spacing of 25 ns and for luminosity scenarios I and II.
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tions taking place in the triggered bunch crossing. Figure 5.15 shows typical cell energy distributions in
simulated minimum bias events in luminosity scenario I in the central detector region and the forward
calorimeter. To illustrate the dependence on the amount of energy from additional minimum bias in-
teractions in the triggered bunch crossing, or in-time pileup, separate distributions are shown for events
without primary vertices and with a number of primary vertices significantly above the average. In
the central detector region mostly the positive tails are affected by in-time pileup while in the forward
calorimeter due to the larger cell occupancy also a significant shift of the most probable value is observed.

The shift of the distributions in the forward calorimeter increases the probability for cells to pass the
negative cuts if the number of interactions in the event is below average. The large probabilities to pass
the negative 2σ cut in the forward region lead to large clusters that often cover a significant fraction of
an FCal module. During the cluster splitting step, secondary maxima are identified and clusters are split
between the maxima. A cell is required to have an energy of at least 500 MeV to be eligible as a local
maximum. In the presence of pileup the total noise RMS in the forward region is significantly larger than
500 MeV, hence cells that pass the clustering cuts are generally eligible as local maxima and large noise
clusters are split. However, the noise clusters created in this way may still contribute to the structure of
theη distribution shown in figure 5.12.

5.7 Effect of asymmetric cell energy cuts on the jet response

The effect of asymmetric cuts applied during the cluster formation on the jet response is studied using
jets reconstructed with the cone algorithm with a cone radius of 0.4 and H1 calibration. The H1 weights
obtained in simulated data without pileup are used. They areexpected to give a good approximation to the
correct weights in the presence of pileup since the average cell energy density before the cluster formation
is invariant under a variation of the luminosity as long as the average noise energy is fixed at 0. In the
standard jet reconstruction, clusters are used as the inputwhich are created using two-sided symmetric
cuts with the thresholds at 4, 2 and 0. During the cluster formation, clusters with a negative seed cell
energy and clusters with a negative energy are allowed. In the standard jet reconstruction, clusters with
a negative energy are discarded. In order to achieve a reconstruction of the jet energy that is not biased
by contributions from noise, including pileup noise, it is necessary to include the contributions from
clusters with a negative energy. Hence, the jet reconstruction procedure is extended to include negative
energy clusters in the determination of the jet energy. Clusters with a negative energy are not used for
the determination of stable cones as described in section 4.2.3, however all clusters located inside stable
cones are included in the calculation of the jet energy.

Figure 5.16 shows the jet response as a function of|η | in two bins of the transverse energy in QCD
dijet andtt̄ events for luminosity scenarios I and II. The jet response isshown for standard jets recon-
structed without considering clusters with a negative energy in events with and without pileup and for
jets reconstructed in events with pileup taking into account clusters with a negative energy and using
asymmetric cuts. For comparison, the jet response in QCD dijet events for jets reconstructed with the
AntiKt algorithm with a radius parameter of 0.4 using H1-style calibration is shown in figure 5.17. The
response for jets reconstructed with the AntiKt algorithm is observed to be smaller by several percent
than the response for jets reconstructed with the Cone algorithm, but the shapes of theη distributions
with symmetric and asymmetric cuts are similar to the shapesof the distributions for the Cone algorithm.

A significant positive bias is observed in figure 5.16 in the central detector region in the presence
of pileup for jets reconstructed using the standard clustering procedure. The bias is absent in the distri-
butions for jets reconstructed from clusters which are created using asymmetric cuts. The jet response
with asymmetric clustering cuts in the presence of pileup isobserved to be slightly smaller than the jet
response for standard jets in events without pileup. The difference between the distributions with pileup
and asymmetric cuts and without pileup increases with|η |. Such a difference in the jet response may be
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Figure 5.14: Probability for individual cells in a noise distribution including pileup noise to pass the
asymmetric 2σ (left) and 4σ (right) cuts.
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Figure 5.15: Cell energy in simulated minimum bias data in luminosity scenario I for two exemplary
calorimeter layers andη bins. Distributions for all events and for events with a small and a large number
of reconstructed primary vertices are shown to illustrate the effect of in-time pileup.

explained by the increase with|η | of the noise RMS used to define the clustering cuts in the presence of
pileup. Further studies would be needed to confirm this effect. The jet response in the forward calorime-
ter is not significantly affected by the change from symmetric to asymmetric cuts. For a bunch spacing
of 75 ns a significant bias is observed in the forward region for standard jets in the presence of pileup.
This bias is removed by the subtraction of the average cell energy before the cluster formation.

Figure 5.18 shows the resolution of the jet response in two bins of the transverse energy in QCD dijet
events with pileup. The resolution is shown for jets reconstructed from clusters built with symmetric
cuts and for jets reconstructed from clusters built with asymmetric cuts. For the case of symmetric
cuts, distributions are shown for jets reconstructed usingthe standard procedure in which clusters with
a negative energy are excluded. For the case of asymmetric cuts, clusters with a negative energy are
included in the determination of the jet energy. For symmetric cuts, the resolution is observed not to be
significantly affected by the inclusion of negative energy clusters in the determination of the jet energy.
With asymmetric cuts, the resolution degrades by approximately 1.5% in the central detector region for
jets with a transverse energy between 17 GeV and 35 GeV. Sincethe degradation is due to a constant
contribution from noise its size decreases as the jet energyincreases.

5.8 Summary and Conclusions

At non-vanishing luminosities the distributions of the calorimeter cell energies in randomly triggered
events are asymmetric. The cell energies in randomly triggered events represent the total noise, including
pileup noise, in the cells and the width of the distributionsmay be used to determine the cuts applied
during the formation of topological clusters. During the standard cluster formation, symmetric cuts on
the cell energy are applied which result in a bias on the cluster energy in calorimeter regions without
significant signal energy deposits. In luminosity scenarioI, an average energy in topological clusters in
a cone in theη -φ plane with a radius of 0.4 of 2 GeV at the EM scale is observed inthe central detector
region. The average energy in topological clusters in a fixedcone is observed to be smaller in the forward
region. It is shown that the bias can be reduced significantlyby using asymmetric cuts during the cluster
formation.

The positive average energy in topological clusters causedby the symmetric clustering cuts in signal-
free calorimeter regions results in a corresponding bias ofthe jet response. The bias at the jet level is
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Figure 5.16: Jet response as a function of|η | for cone jets with a radius of 0.4. The response is shown
for jets reconstructed from clusters created with symmetric cuts and for jets reconstructed from clusters
created with asymmetric cuts. Only for the case of asymmetric cuts clusters with a negative energy are
included in the determination of the jet energy.
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Figure 5.17: Jet response as a function of|η | for AntiKt jets with a radius parameter of 0.4. The
response is shown for jets reconstructed from clusters created with symmetric cuts and jets reconstructed
from clusters created with asymmetric cuts. Only for the case of asymmetric cuts clusters with a negative
energy are included in the determination of the jet energy.
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Figure 5.18: Resolution of the jet response as a function of|η | for cone jets with a radius of 0.4. The
resolution is determined as theσ of a Gaussian fitted to the central part of the jet response distribution.
The resolution is shown for jets reconstructed from clusters built with symmetric cuts and for jets recon-
structed from clusters built with asymmetric cuts. For the case of symmetric cuts distributions are shown
for jets reconstructed using the standard procedure in which clusters with a negative energy are excluded
and for jets reconstructed using a modified procedure in which clusters with a negative energy are in-
cluded in the determination of the jet energy. For the case ofasymmetric cuts clusters with a negative
energy are included in the determination of the jet energy.
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removed if asymmetric cuts are used during the cluster formation. At a bunch spacing of 75 ns an
additional bias in the forward region is observed which originates from a non-zero average of the cell
energies in that region due to an incomplete pileup cancellation from the bipolar LAr calorimeter pulse
shapes. The bias is removed by subtracting the average cell energies before the cluster formation.

The cluster formation with asymmetric cuts is shown to result in larger average cluster multiplicities.
An additional constant noise contribution to the resolution of the jet response is observed, resulting
in a degradation of the resolution for jets with a transverseenergy between 17 GeV and 35 GeV of
approximately 1.5%.

The ratio of the positive cut to the negative cut is shown to depend weakly on the luminosity scenario.
For an increase of the luminosity by a factor 2 a difference ofthe cut ratios of approximately 10% is
observed. The difference between the ratios for different luminosity scenarios is observed to depend on
|η |.

The method using asymmetric cuts during the cluster formation allows the determination of the jet
energy in the presence of pileup without a bias from noise. The bias from noise that is observed if two-
sided symmetric cuts or one-sided cuts are used during the cluster formation is expected to depend on the
jet size and structure since only calorimeter regions without significant energy deposits are affected. By
using asymmetric cuts, the bias is removed without knowledge of the jet size or structure. The method
introduces an additional noise contribution to the jet energy resolution. For QCD dijets with a transverse
energy between 17 and 35 GeV in luminosity scenario I, a bias of up to 2.7 GeV is removed while the jet
transverse energy resolution degrades by approximately 0.3 GeV.

At the studied luminosities, the occupancy in the barrel calorimeter and most parts of the endcaps is
sufficiently small to apply the method without modifications. In the forward calorimeter and some parts
of the endcaps where the occupancy is larger, the method is still applicable, however it may be possible
to improve the resolution by applying a cell energy correction depending on the amount of in-time pileup
in a given event.
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Chapter 6

Summary

The search for a Standard Model Higgs boson at small Higgs boson masses in the vector boson fusion
channel with the decayH → τ +τ− is studied for the ATLAS experiment. Several ways to improvethis
search are found. In particular, some problems are identified which occur in the presence of pileup and
improvements are developed.

The identification of hadronicτ lepton decays is improved by exploiting the significant average
flight distance ofτ leptons at the LHC. The large average flight distance leads tosignificant non-zero
impact parameters of the decay products and a significantly displaced decay vertex. The performance of
the reconstruction of the impact parameters and the transverse flight distance is studied in detail. The
rejection of fakeτ candidates can be increased by adding the impact parameter significance for 1-prong
τ candidates and the transverse flight path significance for 3-prongτ candidates to the artificial neural
network used by ATLAS for theτ identification. The rejection of 1-prongτ candidates from sources
other thanτ lepton decays in QCD dijet events is found to increase by morethan 20% if the impact
parameter significances are used. The rejection of fake 3-prong τ candidates in QCD dijet events is
found to increase by more than a factor 2 if the transverse flight path significance is used.

The central jet veto applied in the search for a Standard Model Higgs boson at small Higgs boson
masses in vector boson fusion is expected to be sensitive to the presence of pileup from minimum bias
interactions. In a significant fraction of events, the additional proton-proton interactions produce dijets
with sufficiently large transverse momenta to trigger the central jet veto. Additionally, the number of
jets passing the transverse energy threshold for the central jet veto increases due to a degradation of the
jet energy resolution in the presence of pileup and a positive bias of the jet energy caused by the current
cluster formation method.

To reduce the effect of pileup on the central jet veto, a method is implemented that rejects jets not
originating from the main proton-proton interaction. Tracks are used to link jets to the primary vertex.
The fraction of the transverse momentum originating from the primary vertex is used as the discrim-
inating observable. The same method is used at the D0 experiment and an alternate implementation
exists in the ATLAS software. The implementation of the method for this study has led to an optimized
track selection and a more efficient way to associate tracks with the primary vertex in the presence of
pileup. Additionally, in the case of primary interactions with high-pT leptons such asH → τ +τ− → ll or
H → τ +τ− → lh, the primary vertex is identified correctly in more than 99% of the events if the impact
parameter of the leptons is exploited.

The use of jet-vertex association for the central jet veto isfound to recover a large fraction of the
efficiency for vector boson fusion signal events lost due to pileup jets. In a scenario with an average
number of 4.6 interactions per bunch crossing at the nominalbunch spacing of 25ns, the use of jet-vertex
association leads to an improvement of the expected signal significance by 12% when considering the
simplified case of a vector boson fusion signal with a purelytt̄ background. In a luminosity scenario
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with a larger track multiplicity and a smaller rate of jets caused by pileup for a bunch spacing of 75ns, a
recovery of the signal efficiency similar to the recovery in the scenario with a nominal bunch spacing is
observed. Due to an increased rejection rate for jets from the main proton-proton interaction intt̄ events
it is found preferable to modify the method in a way such that only jets with a transverse momentum
from the primary vertex below a certain threshold are considered for rejection.

In the presence of pileup, the reconstructed energy of jets in the central region of the detector is
observed to have a positive bias. In a luminosity scenario with an average number of 4.6 interactions per
bunch crossing at a bunch spacing of 25ns, a bias of approximately 2 GeV at the EM scale is observed.
The bias is found to originate from the cell selection cuts applied during the cluster formation. The bias
is significantly reduced by adjusting the cuts applied during the cluster formation in a way such that the
average energy in individual cells after application of thecuts vanishes. The cluster multiplicity increases
and an additional noise contribution to the jet energy resolution with a size of approximately 10% of the
removed bias is introduced. The method using adjusted cuts in the cluster formation is independent of
the jet algorithm, size and structure.

92



Appendix A

Average cell energy in simulated minimum
bias data
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Figure A.1: Average cell energy in simulated minimum bias events with an average number of 4.6 events
per bunch crossing at a bunch spacing of 25 ns (red) and 6.9 events per bunch crossing at a bunch spacing
of 75 ns (blue) in different layers of the liquid argon calorimeter. For comparison the average energy in
single minimum bias events (black) is shown.
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Figure A.2: Average cell energy in simulated minimum bias events with an average number of 4.6 events
per bunch crossing at a bunch spacing of 25 ns (red) and 6.9 events per bunch crossing at a bunch spacing
of 75 ns (blue) in different layers of the liquid argon calorimeter. For comparison the average energy in
single minimum bias events (black) is shown.
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Figure A.3: Average cell energy in simulated minimum bias events with an average number of 4.6 events
per bunch crossing at a bunch spacing of 25 ns (red) and 6.9 events per bunch crossing at a bunch spacing
of 75 ns (blue) in different layers of the liquid argon calorimeter. For comparison the average energy in
single minimum bias events (black) and distributions in the barrel section of the tile calorimeter are
shown.
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Appendix B

Average cell energy with two-sided
symmetric cuts
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Figure B.1: Average cell energy in simulated minimum bias events with an average number of 4.6 events
per bunch crossing at a bunch spacing of 25 ns (red) after the application of two-sided symmetric 2σ and
4σ cuts. Distributions without cuts and for single minimum bias events are shown for comparison.
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Figure B.2: Average cell energy in simulated minimum bias events with an average number of 4.6 events
per bunch crossing at a bunch spacing of 25 ns (red) after the application of two-sided symmetric 2σ and
4σ cuts. Distributions without cuts and for single minimum bias events are shown for comparison.
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Figure B.3: Average cell energy in simulated minimum bias events with an average number of 4.6 events
per bunch crossing at a bunch spacing of 25 ns (red) after the application of two-sided symmetric 2σ and
4σ cuts. Distributions without cuts and for single minimum bias events are shown for comparison.
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