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0.1. INTRODUCTION 1

0.1 Introduction

As early as thousands of years ago, people already started studying the world of heaven and the
universe. It is a long history involving science, philosophy, and religion, like that the ancient
Chinese philosophers term the universe by ‘Taiji’, which means ‘supreme ultimate’. Only in
recent decades, people gained solid knowledge of physics, which allowed to really explore the
universe in a scientific way. In the 1920s, Hubble found that galaxies are receding, which
is an evidence for an expansion of the universe, and is considered as the first cosmological
observation. Since then, the understanding of the universe has changed and grown rapidly
with the progress of both physical theory and telescope technology. Our understanding of the
universe is contained in some model of cosmology. The one currently popular is the ΛCDM
cosmology, which is favored by most cosmological observations, such as large volume galaxy
survey (SDSS)(Tegmark et al. 2004), cosmic microwave background (WMAP) (Komatsu et al.
2009) and cosmic shear (Fu et al. 2008). These measurements are accurate enough to constrain
the parameterizations of the cosmological model. With these parameters, some properties of
the universe on large-scales can be established, e.g. how the structure in the universe formed
or whether the universe is flat.

Despite these successes, we have little knowledge about the fundamental physics of the
universe. In the ΛCDM model, about 70% of the matter-energy in the universe consists of
Dark Energy and 25% of Cold Dark Matter, whose nature are still unknown. Furthermore,
the initial conditions for structure formation are given by some inflation scenarios, whose
predictions still need strict confirmation. Finally structure formation in the universe is not
fully understood on small scales (smaller than the Mpc scale), where non-linear processes play
an important role. Precise measurements of the matter distribution in the universe will help
to understand some of these issues.

Weak gravitational lensing provides an excellent tool to test cosmological models. The
light of distant galaxies is deflected by the tidal gravitational field of the intervening matter
along the line of sight to the observer. The distorted images reveal information about the
properties of the mass distribution between the observer and the source galaxies. Since
gravitational light deflection is independent of the nature or state of matter, it provides an
important tool to study the dark matter in the universe, and the relation of galaxies with the
underlying dark matter. Undoubtedly, the gravitational lensing studies will play an important
role in future cosmology.

The first order image distortion caused by lensing is called shear and is proportional to
the induced image ellipticity. If the image size is not small, compared to the scale over
which the shear varies, higher-order distortions, known as flexion, occur. Mathematically,
flexion corresponds to the derivative of the shear. In combination with a strong shear, the
effect is to deform circular images into arclets. Flexion is sensitive to small scale variations
in the potential. It thus probes the inner part of the mass profiles of galaxy clusters, and
the substructure within clusters. Furthermore, it can be used to measure the ellipticity of a
galaxy dark matter halo, by using galaxy-galaxy lensing techniques.

Gravitational flexion is a new topic. It needs to be developed both observationally and
theoretically. First of all, flexion is very difficult to quantify due to its mathematical com-
plexity. Moreover, it cannot be measured directly due to the mass-sheet degeneracy in lensing
systems, i.e. the observable quantity is the reduced flexion. In practical observations, there
is the additional complication of the point spread function, which can also produce a shear
and flexion signal that must be corrected.
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Although there are some measurements on flexion the results are not very accurate at
the moment. One can only make a rough estimate of how large the flexion contribution
can be to the result of a lensing analysis. Current conservative results indicate that flexion
measurements can significantly improve cluster mass reconstructions.

In this thesis, I will address the topic of flexion, from theory to measurements. The thesis
is organized as follows:

• Chapter 1 sets the foundation needed for the understanding of the standard model of
cosmology, introducing the homogeneous, isotropic, universe with structure formation.

• Chapter 2 describes the principle of weak gravitational lensing

• Chapter 3 introduces lensing flexion and reduced flexion, and derives a method to
measure reduced flexion through brightness moments.

• Chapter 4 deal with two-dimensional mass reconstruction of galaxy clusters using flex-
ion, and shows how to combine strong lensing with weak lensing shear and flexion, for
the mass reconstruction.

• Chapter 5 shows preliminary constraints on the ellipticity of galaxy dark matter halos
using galaxy-galaxy flexion, and introduces flexion in aperture statistics.

• Appendix A outlines the algorithm of higher-order KSB, used to measure reduced flex-
ion.



Chapter 1

Cosmological Standard Model

Cosmology is the study of the whole Universe. A cosmological model explains the overall
components, structure of the universe, and its time evolution. The standard model of cos-
mology, which is outlined here, is based on the assumption of large-scale homogeneity and
isotropy. The linear perturbation theory on the homogeneous background explains the growth
of matter inhomogeneities from small initial fluctuations to the large-scale structures. Non-
linear approaches based on N-body simulations try to model collapsed and virilized objects
like galaxy clusters.

In the standard model, the universe begins with the Big Bang, and expands at different
rates at different epoches (inflation, radiation-dominated epoch, matter-dominated epoch and
present accelerating expansion epoch). The duration of the different epochs depends on the
relative density of the universe’s constituent components, as can be seen from the names
of the epochs. Current observations find that most of the contents of the universe are not
normal matter within our knowledge of physics. And these mysterious contents are named
dark energy and dark matter, which comprise about 70% and 25% of the universe. The
standard cosmological model is thus based on cold dark matter (CDM) with a cosmological
constant Λ (a scenario of dark energy) and is abbreviated by the term ΛCDM model.

1.1 The expansion of the Universe

The most important cornerstone of modern cosmology is the assumption that the place we
occupy in the universe is not special. This is known as the cosmological principle, which
is favored by modern observations, such as the precise isotropy in the cosmic microwave
background (CMB hereafter). Based on the isotropic cosmic background, linear cosmological
perturbation theory explains the growth of matter inhomogeneities and the formation of large
scale structures. The standard cosmology is also a great success for General Relativity (Ein-
stein 1916), because gravity is the dominant force in the universe. Based on the cosmological
principle, the spacetime geometry can be described by the Robertson-Walker metric, and that
leads to the isotropic and homogeneous cosmic solution of the Einstein field equation − the
Friedmann equations.

3
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1.1.1 Spacetime geometry and the Einstein equation

The geometry of spacetime is described by a line element, which is

ds2 ≡ gνµdxνdxµ, (1.1)

where the indices ν and µ range from 0 to 3, with the first one reserved for the time coordinate
and the last three for spatial coordinates. We use the Einstein convention where the repeated
indices are summed over. The metric gνµ is usually assumed to be symmetric for simplicity,
with four diagonal and six off-diagonal components. To describe the trajectory of particles
in the spacetime, we define the Lagrangian as L = gµν ẋ

µẋν , where dot means derivative with
respect to the affine parameter λ, which parameterizes the trajectory. Inserting it into the
Euler-Lagrangian equation

d

dλ

∂L

∂ẋκ
− ∂L

∂xκ
= 0, (1.2)

we obtain the equation of motion as the geodesic equation 2gνσẍ
ν + ẋµẋκ(2gσκ,µ − gµκ,σ) = 0.

Since the indices µ and κ are interchangeable, i.e. ẋµẋκgσκ,µ = ẋκẋµgσµ,κ, the terms in
brackets can be written as (gσκ,µ + gµσ,κ − gµκ,σ). Defining the Christoffel symbol

Γν
µκ =

1

2
gνλ

[

∂gλµ

∂xκ
+
∂gλκ

∂xµ
− ∂gµκ

∂xλ

]

, (1.3)

the geodesic equation can be written as

ẍν + Γν
µκẋ

µẋκ = 0. (1.4)

A force-free particle falls along a geodesic, while the evolution of the separation between two
nearby geodesics δxν reflects the curvature of the local space,

D2δxν

Dλ2
= Rν

µκρδx
κẋµẋρ, (1.5)

where Rν
µκρ is the Riemann-Christoffel curvature tensor. In general relativity, gravity can be

described as a geometric property of space and time. We thus write the action of gµν as

SG =
−1

16πG

∫

d4x
√
gR, (1.6)

where G is Newton’s gravitational constant, g = detgµν , and the Ricci scalar R = gµνRµν is
defined from the Ricci tensor, which is a contraction of the curvature tensor Rµν = Rα

µαν .
The variation of the action is

δSG =
1

16πG

∫

d4x
√
g

[

Rµν − 1

2
gµνR

]

δgµν , (1.7)

and the term in brackets is the Einstein tensor Gµν ≡ Rµν − 1
2gµνR. The action principle

requires that SG be stationary, in other words, that the variation δSG is equal to the source,
i.e. the energy-momentum tensor. This leads to the field equation of gravity, the Einstein
equation

Rµν − 1

2
gµνR = 8πGTµν . (1.8)

The field equation is very difficult to solve. In fact, analytic solutions can only be found in
the case of a highly symmetric metric.
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1.1.2 The Robertson-Walker metric and the Friedmann equations

Based on the ‘cosmological principle’, which states that the universe is spatially isotropic and
homogeneous, a solution of the field equations for an expanding universe is found. To describe
the expanding universe, the scale factor a(t) is introduced. A comoving distance x0 is defined
such that the physical distance at cosmic time t is a(t)x0. The metric describing the expanding
universe is called the Robertson-Walker metric, and in spherical polar coordinates it is
written as

ds2 = −c2dt2 + a2(t)

(

dr2

1 −Kr2
+ r2dθ2 + sin2θdφ2

)

, (1.9)

where c is the speed of light, and K stands for the spatial curvature,

K =











> 0 spherical;

< 0 hyperbolic;

0 Euclidean,flat.

(1.10)

Using this diagonal and spherically symmetric metric on the left side of the field equation (1.8)
and introducing a perfect fluid energy-momentum tensor Tµν = (P/c2 + ρ)UµUν − P/c2gµν

on the right side, the field equations reduce to a temporal and a spatial component. These
are known as the Friedmann equations

(

ȧ

a

)2

+
Kc2

a2
=

8πGρ

3
, (1.11)

ä

a
= −4πG

3

(

3P

c2
+ ρ

)

. (1.12)

These are the fundamental equations which govern the evolution of the scale factor in an
isotropic and homogeneous universe; here ρ is the energy density and P is the pressure. From
the two Friedmann equations, it is easy to get an energy conservation equation (here only
shown for a flat universe, K = 0)

ρ̇+ 3

(

P

c2
+ ρ

)

ȧ

a
= 0. (1.13)

Equation (1.13) coupled with an equation of state P = P̂ (ρ), which relates the pressure to
the energy density, determines the evolution of energy density ρ = ρ̂(a) in the universe. In
particular if P = wρc2 with constant w, which is called the equation-of-state parameter, the
equation has solution

ρ ∝ a−3(1+w), (1.14)

and the scale factor varies with the time as a ∝ t2/[3(1+w)]. Typical values for w are w =
0, 1/3,−1, for the cases of non-relativistic matter, relativistic matter and vacuum energy,
respectively.

From Eq.(1.11), it is convenient to define a present critical density

ρc =
3H2

0

8πG
= 1.878 × 10−29h2g/cm3, (1.15)

where H0 ≡ ȧ(t0)/a(t0) is the Hubble constant, and h is the Hubble constant in units
of 100 kms−1Mpc−1. According to Eq.(1.11), the curvature constant K will be positive, 0
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or negative if the present density ρ0 is larger, equal or smaller than ρc. The parameters
Ωi ≡ ρi/ρc give the present fractional contribution of different components of the universe (i
can denote baryons, dark matter, radiation, etc) to the critical density.

The total energy density evolution can be derived from Eqs.(1.14) and (1.11), and is
written as

ρ =
3H2

0

8πG

[

ΩΛ + ΩM

(a0

a

)3
+ Ωr

(a0

a

)4
]

, (1.16)

with ΩΛ, ΩM and Ωr being the fraction of vacuum, non-relativistic and relativistic matter
energy density to the critical energy density, and the first Friedmann equation evaluated
today (a = a0), reduces to

ΩΛ + ΩM + Ωr + ΩK = 1, with ΩK ≡ − Kc2

a2
0H

2
0

. (1.17)

Inserting this into Eq.(1.11), it gives

dt =
dx

H0x
√

ΩΛ + ΩKx−2 + ΩMx−3 + Ωrx−4
, (1.18)

where x = a/a0. This equation allows us to write the present age of the universe as an integral
from x = 0, the beginning of the expansion of the universe to x = 1, (a = a0):

t0 =
1

H0

∫ 1

0

dx

x
√

ΩΛ + ΩKx−2 + ΩMx−3 + Ωrx−4
. (1.19)

1.1.3 The Cosmological redshift

If the universe is expanding, we should see galaxies receding from us. Therefore the observed
wavelength is larger than the emitted one. To calculate these wavelength shifts, let us consider
a light ray coming to us along the radial direction. A ray of light obeys the equation ds2 = 0,
so for such a trajectory, Eq.(1.9) gives the relation

∫ t0

t1

dt

a(t)
=

∫ r1

0

dr√
1 −Kr2

. (1.20)

Here we define that the observer sits at the center of the coordinates, light is emitted from a
source at comoving coordinate r1 and time t1, and it arrives at the origin r = 0 at time t0.
Taking the differential of this relation, we see that the interval δt1 between the departure of
subsequent light signals is related to the interval δt0 between the arrival of these light signals
by

δt1
a(t1)

=
δt0
a(t0)

. (1.21)

The emitted frequency is ν1 ∝ 1/δt1, and the observed frequency is ν0 ∝ 1/δt0, so ν0/ν1 =
a(t1)/a(t0). If a(t) is increasing, then this is a redshift. A decrease in frequency by a factor
a(t1)/a(t0) is equivalent to an increase in wavelength by a factor

1 + z = a(t0)/a(t1). (1.22)

This result shows that galaxies or other sources are receding from us produce a redshift.
Therefore, galaxies with redshift z are often said to have a cosmological radial velocity cz
(only valid if z ≪ 1).
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1.1.4 Luminosity distance and angular diameter distance

It is difficult to define ‘distance’ in a curved space-time, since different methods might give
different results in a curved and non-static space-time. It is these measurements that can tell
us whether the expansion of the universe is accelerating or decelerating, and how fast. The
most common method of determining distances in cosmology is based on the measurement of
the apparent luminosity of objects of known absolute luminosity. The absolute luminosity L
is the energy emitted per second, and the apparent luminosity, which is called flux l, is the
energy received per second per square centimeter of receiving area. If the energy is emitted
isotropically, we have the relation in Euclidean geometry, l = L/(4πd2). In the expanding
universe, we replace 1/d2 with 1/r2a2(t0) at the time t0 that the light reaches the observer.
Furthermore, the rate of the arrival of photons is lower than the rate at which they are
emitted, by the redshift factor 1/(1+z), and also the energy of the photons received on Earth
is less than the energy with which they were emitted, by the same redshift factor 1/(1 + z).
Putting this together, we can define a luminosity distance dL by

l =
L

4πd2
L

=
L

4πr2a2(t0)(1 + z)2
. (1.23)

From the denominator, we obtain dL = a(t0)r(1 + z).

There is another way of defining distance, by comparing angular sizes with physical di-
mensions. A source of physical size S at comoving radial coordinate r1 and time t1 is observed
to subtend a small angle θ. The angular diameter distance dA is defined so that θ is given
by the usual relation of Euclidean geometry θ = S/dA. In the Robertson-Walker metric, we
see that

dA = a(t1)r. (1.24)

A comparison of this result with Eq.(1.23) shows dL/dA = (1 + z)2. The angular distance is
the most important distance used in gravitational lensing and in the fluctuations of the CMB.

1.2 Early Universe

The story of the early universe takes place at very high temperatures (> 104K), and what hap-
pened in the extremely early and high temperature era is limited by our current observation
and knowledge of the physics. For example, the inflation model at the moment is a paradigm
not a theory. There exist a large number of models within the inflationary framework, none
of which have yet convincingly emerged as a standard model of inflation.

1.2.1 Inflation

The standard model assumes that before the period of radiation dominance, during which
the Robertson-Walker scale factor a(t) was growing as

√
t, there was an earlier period called

‘inflation’, during which a(t) grew more or less exponentially. It was Guth (1981) who first
incited interest in the possibility of inflation by noting that the existence of an era of inflation
would solve some of the outstanding problems of cosmology, the Three Puzzles. But his
version of inflation had a fatal problem, and was soon replaced with another inflation model
due to Linde (1982) and Albrecht & Steinhardt (1982).
The Flatness Puzzle
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Current observations such as CMB fluctuations, are consistent with a very small spatial
curvature parameter ΩK ≪ 1. But ΩK is just the present value of the dimensionless time
dependent curvature parameter −K/a(t)2H2 = −K/ȧ(t)2, where H = ȧ(t)/a(t) (in this
section, the speed of light c = 1). In the matter-dominated era, a(t) has been increasing as
t2/3 and |K|/ȧ2 has also been increasing as t2/3, and varies as T−1, where T is temperature.
Thus, if |ΩK | < 1, then at a temperature of 104K, |K|/ȧ2 could not have been greater
than about 10−4. Earlier, in the radiation era, a(t) was increasing as t1/2, and |K|/ȧ2 was
increasing as T−2, so it is necessary that |K|/ȧ2 was as most about 10−16 at the temperature
T ≃ 1010K, and even smaller at earlier times. But there is no reason to expect the curvature
to have been so very small.

Suppose the universe began with a period of inflation during which a(t) increased by N
e-foldings. Then ȧ/a would have been roughly constant, |K|/ȧ2 would have been decreasing
more or less like a−2. If |K|/a2H2 had a value of order unity at the beginning of inflation,
then at the time tI (end of the inflation), it would have a value |K|/a2

IH
2
I of order e−2N , and

today we will have

|ΩK | =
|K|
a2

0H
2
0

∼ e−2N

(

aIHI

a0H0

)2

. (1.25)

Thus the flatness problem is avoided if the expansion during inflation has the lower bound
eN > aIHI/(a0H0).
The Horizon Puzzle

The observation of the high degree of isotropy of the CMB posed a problem. The distance
that light could have traveled during the lifetime of the universe is finite, and the largest
distance is the horizon. The horizon size in a matter- or radiation-dominated universe is of
order t, which, because a(t) has increased as t2/3 since the time of last scattering, was of
order dH ≃ H−1

0 (1 + zL)−3/2, where zL is the redshift for the time of last scattering. The
angular diameter distance dA to that time is of order H−1

0 (1 + zL)−1, so the horizon at the
time of last scattering now subtends an angle of order dH/dA ≃ (1 + zL)−1/2 radians, which
for zL ≃ 1090 is about 1.6 degrees. Therefore it is difficult to understand why regions that
are separated by more than a few degrees on the sky are so similar in the CMB.
The Monopole Puzzle

Another problem arises from combining cosmology with particle physics. In Grand Unified
Theories, magnetic monopoles are predicted to have been produced with a high abundance at
a very early stage in the universe. They are predicted to be extraordinarily massive, around
1016GeV (electron volt). Such particles would be non-relativistic for most of the universe’s
history. If monopoles did not find each other to annihilate, the number density of monopoles
could reach at least one monopole per nucleon, which is in disagreement with what is observed.
Scalar fields and Slow roll

Inflation is the name given to any epoch during which the scale factor of the universe is
accelerating exponentially, ä > 0. An alternative expression of the condition for inflation is
given in terms of H−1/a, the comoving Hubble length. The condition for inflation is that
the comoving Hubble length is decreasing with time. In other words, the observable universe
becomes smaller during inflation (Liddle & Lyth 2000). Assuming that we work within general
relativity, the condition for inflation can be written as a requirement on the material driving
the expansion: ρ + 3P < 0. For inflation, we need a material with the unusual property
of a negative pressure. Such a material is a scalar field which was introduced by particle
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physicists. The energy density and pressure of a homogeneous scalar field φ(t) are

ρ =
1

2
φ̇2 + V (φ); P =

1

2
φ̇2 − V (φ), (1.26)

where V (φ) is the potential of the scalar field, which we hope to derive from some particle
physics motivation. So the energy conservation equation ρ̇ = −3H(ρ+ P ) takes the form

φ̈+ 3Hφ̇+ V ′(φ) = 0, (1.27)

where prime means derivative with respect to φ, and H is the time-dependent expansion rate,
which during the period of scalar field energy domination is

H2 =
8πGρ

3
=

8πG

3

(

1

2
φ̇2 + V (φ)

)

. (1.28)

From Eqs.(1.27) and (1.28) we can get the formula for Ḣ,

Ḣ = −4πGφ̇2. (1.29)

In order to have a nearly exponential expansion, the fractional change Ḣ/H2 must be much
less than unity. This requires that φ̇2 ≪ |V (φ)|. Thus, Eqs.(1.27) and (1.28) become

H2 ≃ 8πG

3
V (φ), 3Hφ̇ ≃ −V ′(φ), (1.30)

which is called the condition of slow-roll approximation. We can further define two slow-roll
parameters

ǫ(φ) =
1

16πG

(

V ′

V

)2

, η(φ) =
1

8πG

V ′′

V
. (1.31)

with the conditions ǫ(φ) ≪ 1, |η(φ)| ≪ 1 given by the slow-roll approximation. Note that they
are not sufficient conditions because they only restrict the form of the potential, whereas the
value of φ̇ can be chosen freely. Under these conditions the expansion is generally not strictly
exponential, but it can easily be exponentially large. Suppose that during some time interval
the field φ(t) shifts from an initial value φ1 to a final value φ2, with 0 < V (φ2) < V (φ1), and
the slow-roll conditions are valid. If the Robertson-Walker scale factor grows like eHt, it will
increase by a factor

a(t2)

a(t1)
= exp

[∫ t2

t1

Hdt

]

= exp

[∫ φ2

φ1

H

φ̇
dφ

]

≃ exp

[

−
∫ φ2

φ1

8πGV (φ)

V ′(φ)
dφ

]

. (1.32)

In the last step the slow-roll approximation is used. If |V ′(φ)/V (φ)| ≪
√

16πG, then this
factor is much greater than

√
4πG|φ1 − φ2|, so this guarantees that we get a large number

of e-foldings. As an example of the exact solution for inflation, we consider the potential to
take the form

V (φ) = V0 exp(−λφ), (1.33)

with V0 and λ arbitrary constants. The equation of motion (Eq.1.27) then has the particular
solution

φ(t) =
1

λ
ln

(

8πGV0ǫ
2t2

3 − ǫ

)

, and a ∝ t1/ǫ. (1.34)
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The increase in the Robertson-Walker scale factor during a time interval from t1 to t2 in
which the field drops from φ1 to φ2 is thus

a(t2)

a(t1)
=

(

t2
t1

)1/ǫ

= exp[(φ2 − φ1)λ/2ǫ]. (1.35)

In order to end inflation, there must be a coupling of the inflation scalar field to other fields,
including the fields of ordinary matter and radiation, so that the energy density of the inflation
field is able to decrease as

ρφ(t) = ρφ(tI)

(

a(tI)

a(t)

)3

e−Γ(t−tI ), (1.36)

where Γ is the rate of decay of the φ quanta into other particles, and tI is taken at the
beginning of the inflation oscillation and decay. Taking account of the flow of energy from
the inflation, the conservation equation of the particles yields

ρ̇M + 3H(ρM + PM) = Γρφ. (1.37)

we assume that the decay products of the inflation field are highly relativistic, so that PM =
ρM/3, then

ρM(t) =
ρφ(tI)Γa

3(tI)

a4(t)

∫ t

tI

a(t′)e−Γ(t′−tI )dt′ (1.38)

In contemporary models of inflation this is the source of all the matter and radiation in the
present universe. The matter energy density starts equal to zero at tI , then rises at first,
and finally falls as the density is attenuated by the expansion of the universe. So far, the
details of inflation are unknown, and the whole idea of inflation remains a speculation, though
one that is increasingly plausible. In addition to the classic problems that inflation solved at
the beginning, it has had one significant experimental success: a prediction of some of the
properties of the CMB and Large-Scale Structure.

1.2.2 Brief thermal history

In this section, the key point is temperature. At sufficiently early times and extremely high
temperatures > 1010K (and high densities), the collision rate of all kinds of particles (maybe
even dark matter particles at higher temperature) can keep them in thermal equilibrium.
With the expansion of the universe and with a decreasing temperature, the particle species
start to decouple. Some of the decoupling processes leave fossil imprints from which we can
learn the story of the early universe.

At the epoch when temperatures were between 104K and 1011K, the collision rate of
photons with electrons and other particles was greater than the expansion rate of the universe.
Thus the photons and particles can be assumed to have been in thermal equilibrium. The
condition of thermal equilibrium tells us that the entropy in a co-moving volume is fixed

s(T )a3 = constant, (1.39)

where s is the entropy density. The variation of the temperature with time is governed by this
equation and the first Friedmann equation (1.11). The energy density of massless particles

ρ(T ) = g

∫ ∞

0

4πp3dp

(2π~)3

(

1

exp(p/kBT ) ± 1

)

=

{

gaBT
4/2, for Bosons

7gaBT
4/16, for Fermions

(1.40)



1.2. EARLY UNIVERSE 11

where g is the number of spin states of the particles, ~ is the reduced Planck constant, kB is
the Stefan-Boltzmann constant, and aB is a factor calculated from the integral. Thus, during
the epoch that the dominant constituent of the universe is a highly relativistic ideal gas, the
entropy and energy densities are given by

s(T ) =
2NaBT

3

3
, ρ(T ) =

NaBT
4

2
, (1.41)

where N is the number of particle types, counting particles and antiparticles and each spin
state separately, and the extra factor of 7/8 for fermions.

At the time when the temperature was around 1011K, the neutrinos were kept in thermal
equilibrium by neutral current reactions, like e++e− ⇋ µ+µ−. Hence the constituents of the
universe at this time were photons with two spin states, plus three generations of neutrinos
and their anti-partners, each with one spin state, plus electrons and positrons, each with two
spin states, all in equilibrium and highly relativistic, giving

N = 2 +
7

8
(6 + 4) =

43

4
. (1.42)

The interesting point here is that the energy density depends on N , and can effect the
expansion rate, and thus the temperature at which the particles decouple. On the other
hand, in the weak interaction between a neutron and a proton, e.g. n+ ν ↔ p+ e−, the ratio
of neutron conversion to proton conversion also depends on the temperature

λ(p→ n)

λ(n→ p)
= exp (−Q/kBT ) , with Q = mn −mp = 1.293 MeV, (1.43)

which means that the different number of particle types N would lead to a different temper-
ature for when the neutrinos decouple from the others, and a different ratio of neutrons to
protons.

At a temperature of about 1010K neutrinos were just going out of equilibrium. The
collision rate of neutrinos with electrons or positrons was much lower than the expansion
rate. The neutrinos then began to move with the speed of light, and did not interact with the
other kinds of particles. This makes the number density distribution nν retain the form of
the Fermi-Dirac distribution without a chemical potential, and with a temperature Tν ∝ 1/a.
At this temperature we need to take into account the finite mass of the electron, so the
temperature T of the electrons, positrons and photons (still in coupled) will no longer be the
same as the neutrino temperature Tν . When the temperature dropped to 109K, meaning
kBT < mec

2, the electrons and positrons annihilated, N changed from 2 + 7
84 to 2. The

entropy conservation law (Eqs.1.39 and 1.41) gives a3T 3N ∼ constant, so the temperature
of photons rose by a factor of (11/4)1/3. In the other words, the ratio T/Tν rose from about
unity for T > 1011K to about 1.401 at T < 109K. In particular, at the present time,
the TCMB = 2.725K gives the neutrino temperature 1.945K, so there is a cosmic neutrino
background which we are not yet able to detect.

After the era of electron-positron annihilation, the energy density of the universe was
dominated for a long time by photons, neutrinos and antineutrinos, all of them highly rel-
ativistic, so we still have s(T ) ∝ T 3. Not until the lower temperature ∼ 4000K, must we
take into account the energy density of non-relativistic matter, and it took about hundreds
of thousands of years for the universe to cool down to that point.
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1.2.3 Recombination and Reionization

The universe is expanding, so we expect that in the past matter was hotter and denser than
at present, as discussed in previous sections. If we look far enough backward in time we come
to an era when it was too hot for electrons to be bound into atoms, and the rapid collisions of
photons with electrons would have kept radiation in thermal equilibrium with matter. Then,
the energy density of photons is given by the black-body spectrum

ǫ(ν, T )dν =
8πh

c3
ν3dν

exp(hν/kBT ) − 1
, (1.44)

where ν is the frequency of a photon, and h is Planck’s constant. As time passed, the matter
became cooler and less dense, and when the temperature dropped to about 105K, the photons
no longer exchanged energy efficiently with electrons. Photons continued to be scattered by
free electrons, but without gain or loss of energy. This terminated when the free electrons
become bound into hydrogen and helium atoms, ending the scattering of photons. At that
time, the cosmic temperature T was of order 3000K, and the redshift was about 1090. This
is called recombination. The photons then began a free expansion, with their spectrum
keeping the same form. This is the cosmic microwave radiation background observed
today, which keeps the emitted form but with a much lower temperature, 2.725K (Fig. 1.1).

The neutral phase of the baryonic pre-galactic medium lasts from z = 1100 to z ∼ 14.
During this period inhomogeneities in the matter field that were initially from quantum
fluctuations and enhanced by inflation, grow by gravitational instability. The primordial
density perturbations and formation of the structure will be described in Sec. 1.3.

From z ∼ 14 neutral hydrogen is reionized by UV radiation from the first generation of
luminous objects, either QSOs or the first stars. Unlike recombination, cosmic reionization
occurs over a large interval of redshift, from z ∼ 14 to 6. The epoch of a neutral medium
is called ‘Dark Ages’, and the process of reionization of this medium is still poorly studied
(see Fan et al. 2006; Ciardi & Ferrara 2005, for reviews). The future low-frequency radio
telescopes, like LOFAR and SKA, offer a probe of the neutral media by measuring the 21-cm
line of neutral hydrogen (Zaroubi & Silk 2005). Indeed, the 21-cm line, which is associated
with the hyperfine transition of HI, is an ideal probe of neutral hydrogen since it is not
absorbed by dust. The spin temperature quantifies how much HI atoms are in the higher
energy level of the hyperfine transition. It has information on the formation of the first
generation objects as well as large-scale HI distribution.

Observational evidence suggests that the first sources of light in the universe are stellar-
type objects, although the existence of primordial mini-quasars is not completely ruled out.
The objects which formed first are predicted to have mass corresponding to virial temperatures
Tvir < 104K. Once the gas has virialized in the potential wells of preexisting dark matter
halos, and is cooling to further collapse, star formation is ignited. Then energy injection
and radiation can affect the subsequent galaxy formation process and intergalactic medium
evolution.

1.3 Large-Scale Structure

The Universe is inhomogeneous on scales below ∼200h−1Mpc, showing structures such as
filaments, clusters and galaxies. The established mechanism for structure formation is that
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Figure 1.1: The cosmic microwave
temperature fluctuations from the 5-
year WMAP data seen over the full
sky. The average temperature is
2.725K, and the colors represent the
tiny temperature fluctuations, as in
a weather map. Red regions are
warmer and blue regions are colder
by about 0.0002 degrees. Credit:
NASA/WMAP Science Team.

primordial density perturbations grow through gravitational instability to form what we ob-
serve today (here structure mainly means structure of matter and photons). The equation
governing the overdensities δ schematically reads (Dodelson 2003)

δ̈ + [Pressure − Gravity] δ = 0. (1.45)

These forces act in opposite ways, Gravity acts to increase overdensities. While if the ‘Pres-
sure’ term in Eq.(1.45) is strong, inhomogeneities do not grow.

1.3.1 Boltzmann equation

The Boltzmann equation is one of the most important equations in statistical mechanics that
deals with system not in thermodynamic equilibrium. We are interested in the anisotropy
and inhomogeneities in the cosmic distribution of photons and matter. Their evolution can
be obtained from the Boltzmann equation for all species in an expanding universe

df(t, x, p)

dt
=
∂f

∂t
+
∂f

∂x

dx

dt
+
∂f

∂p

dp

dt
= C[f ], (1.46)

where f(t, x, p) is the distribution function in ‘particle’ position and momentum phase space,
at time t, position x and momentum p. The C[f ] term contains all possible collision terms,
and is related to the ‘Pressure’ term in Eq.(1.45), and

In order to get some useful physics from the Boltzmann equation, we need to determine
the coefficients dx/dt, dp/dt, hence the equations of motion, and specify the form of the
metric. Assuming small perturbations around the flat FRW universe model, the metric can
be written as

g00 = −1 − 2Ψ(x, t), g0i = 0, gij = a2δij(1 + 2Φ(x, t)). (1.47)

The coefficients dx/dt, dp/dt can thus be obtained by applying this metric to the geodesic
equation (1.4). Here the perturbation Ψ corresponds to the Newtonian potential, and Φ is
the perturbation to the spatial curvature. It is important to mention that Eq.(1.47) contains
only scalar perturbations. It is possible that the metric also has vector and tensor perturba-
tions. For example, inflation predicts that there will be tensor perturbations which will create
cosmic relic gravitational waves (Rubakov et al. 1982). Since we focus here on the matter
perturbations, which are mainly coupled to the scalar perturbations, we only need Ψ and
Φ, and treat them as small quantities. In current popular cosmological models, dark matter
plays an important role in structure formation and in determining the gravitational field in
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the universe. We will thus consider the derivation of Eq.(1.46) for cold dark matter (CDM)
only. First, there is no collision term in Eq.(1.46) since dark matter by definition does not
interact with any of the other constituents. It is convenient to define the number density for
dark matter particles

n ≡
∫

d3p

(2π)3
f, (1.48)

and the energy-momentum tensor

Pµ ≡ dxµ

dλ
=

(

dt

dλ
,

dx

dλ

)

= (E, p) , (1.49)

where E is the energy and p is the momentum vector. The velocity can be written in terms
of E and p,

v =
dx

dt
=

dx

dλ

dλ

dt
=

p

E
. (1.50)

Thus, the velocity for dark matter particles is

v =

∫

d3p

(2π)3
f
pp̂

E
. (1.51)

Since we are interested in the evolution of the dark matter distribution, we can use the integral
of Eq.(1.46) over the momentum p phase space, which is called nth moment

∫

d3p/(2π)3pnf .
Then the zeroth moment of the Eq.(1.46) for CDM leads to the cosmological generalization
of the continuity equation:

∂n

∂t
+

1

a

∂nvi

∂xi
+ 3

[

ȧ

a
+
∂Φ

∂t

]

n = 0. (1.52)

The first two terms are the standard continuity equation from fluid mechanics, the last term
arises due to the FRW metric and its perturbations. We neglect the metric perturbations Φ,
and replace the number density as mass density ρ by ρ = nmp in Eq.(1.52), where mp is the
mass of single particle, then the equation looks more familiar

∂ρ

∂t
+ 3Hρ+

1

a
∇(ρv) = 0, (1.53)

here ∇ is the gradient with respect to comoving spatial coordinates. In a similar way, the
first moment of the Boltzmann equation (1.46) for CDM becomes the momentum conservation
equation, or Euler equation

∂v

∂t
+
ȧ

a
v +

1

a
(v∇)v = −1

a
∇Ψ. (1.54)

These equations together with the Poisson equation

∇2Ψ = 4πGρa2, (1.55)

govern the evolution of the density ρ (of dark matter here), the potential Ψ and the peculiar
velocity field v in an expanding universe. The peculiar velocity can also be written as the
proper velocity u minus the Hubble flow v = u −Hx.
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It is useful to define the density contrast

δ =
ρ− ρ̄

ρ̄
, (1.56)

where ρ̄ is the background density of a homogeneous and isotropic universe. This δ which
departs from the homogeneity is the beginning of the large scale structure. Therefore in terms
of δ, Eq.(1.53)-(1.55) become

∂δ

∂t
+

1

a
∇ · [(1 + δ)v] = 0 Continuity equation, (1.57)

∂v

∂t
+Hv +

1

a
(v · ∇)v = −1

a
∇Ψ Euler equation, (1.58)

∇2Ψ =
3H2

0ΩM

2a
δ Poisson equation. (1.59)

1.3.2 Linear Evolution

Considering only terms linear in δ and v, Eq.(1.57) and Eq.(1.58) become v̇+Hv = −a−1∇Ψ
and δ̇+ a−1∇v = 0, respectively. Together with the Poisson equation, they can be combined
into a second-order linear differential equation for δ

δ̈ + 2Hδ̇ − 3H2
0ΩM

2a3
δ = 0. (1.60)

The general solution has the form

δ(x, a) = D+(a)δ+(x) +D−(a)δ−(x), (1.61)

where D±(t) are two linearly independent solutions of

D̈ + 2HḊ =
3H2

0ΩM

2a3
D. (1.62)

D−(a) is called the decaying mode and can be neglected for later times since density pertur-
bations in this mode quickly decay and play no role in structure formation. The other one
D+ is called the growing mode. In general it can be written as

D+(a) =
5ΩM

2

H(a)

H0

∫ a

0
da′
[

1 + ΩM

(

1

a′
− 1

)

+ ΩΛ

(

a′2 − 1
)

]−3/2

, (1.63)

where we assume Ωr and ΩK are 0. If D+(a) is normalized to unity today (D+(a0) = 1), it is
called the growth factor. Different solutions are obtained if different values of the density
parameters are considered. The explicitly solution for the growing mode of the EdS universe
(Ωm = 1,ΩΛ = 0) provides a rough approximation for others.

The perturbation evolution can be written for each Fourier mode of δ with wavelength
k, and one has to account for the exact expansion history during each different epoch of the
background evolution. The result depends on the wavelength mode being smaller or larger
than the evolving horizon dH. An important feature for the growth of a given mode, is if
it enters the horizon in the epoch of radiation domination (a ≪ aeq) or matter domination
(a ≫ aeq). The evolution of δ is summarized in Table 1.1. From the table is clear that short
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Table 1.1: The evolution of a linear perturbation during different epochs for different wave-
length modes.

Long-wavelength (λ≫ dH) short-wavelength (λ≪ dH)
δ ∝ a2 no growth if a≪ aeq,
δ ∝ a δ ∝ a if a≫ aeq.

wavelength modes that enter the horizon during radiation domination are suppressed by a
factor (aenter/aeq)

2 with respect to long wavelength modes.
To account for this scale-dependent linear growth, one can define a transfer function

T (k) =
δ(k, a = 1)

δ(k = 0, a = 1)

δ(k = 0, a)

δ(k, a)
, (1.64)

where k = 0 indicates some large scale (formally infinite). The initial perturbations at scale
factor ai are outside the horizon. Then T (k) is independent of ai for all relevant scales. For
CDM perturbations, the behavior of the transfer function is asymptotic for both large and
small k

T (k) ≈
{

1 for λ≫ λeq;

(λ/λeq)
2 for λ≪ λeq,

(1.65)

where λ = 2π/k is the comoving wavelength of a perturbation, and

λeq =
2π

keq
= dH(aenter). (1.66)

The behavior for intermediate value of k can be calculated numerically through some public
software, like CMBfast1. And a fitting formula has been given by Bardeen et al. (1986),

T (k) =
ln(1 + 2.34q)

2.34q
[1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]−1/4. (1.67)

with q = k/(ΓhMpc−1), and the shape parameter defined as

Γ = ΩMh. (1.68)

A generalization taking baryons into account was given by Sugiyama (1995),

Γ = ΩMh exp[−Ωb(1 +
√

2h/ΩM)], (1.69)

where Ωb is the fraction of baryon density to the critical energy density. This approach is
only an approximation. Eisenstein & Hu (1998) found a new transfer function with a more
complete treatment of baryons.

It is interesting to note that from the observations of CMB fluctuations, one knows that
at recombination (z ≈ 1090) the baryon density perturbations were of the order of 10−5.
Since then, with a growth of δ ∝ a, they could only grow by a factor of ∼ 103 reaching
today a density contrast of about 10−2. This is a very strong indication that the major

1www.cmbfast.org
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fraction of the matter is not baryonic, but only interacts gravitationally – dark matter –
since non-linear perturbations much larger than this exist. In order to describe the non-linear
evolution, one has to find exact solutions of the non-linear dynamical equations, which is
impossible in an analytic way. Therefore a semi-analytic method, like using a perturbative
approach, or numerical simulations are needed. Section 1.3.5 will mention aspects of non-
linear perturbation theory.

1.3.3 Correlation function and power spectrum

The matter density contrast field δ in the universe has to be described statistically. We con-
sider our universe as a random field, determined by its moments (mean, n-point correlation
functions). To completely describe its properties an infinite number of moments is needed in
general. For the special case of a Gaussian random field, the mean and two-point correlation
function are sufficient to completely describe the field. In the early universe, the initial inho-
mogeneities are Gaussian (a prediction of Inflation theory). Later, by gravitational instability,
non-linear and non-Gaussian features arise in the matter field and higher-order moments of
the density field need to be considered. Since the mean of the density contrast vanishes by
construction (〈δ(x)〉 = 0), the second and third moments are studied. In Fourier space, these
are the power spectrum and bispectrum, respectively.

Generally, the two-point correlation function (2PCF) is defined as

〈δ(x)δ(y)〉 = C(|x − y|), (1.70)

where angular brackets denote an ensemble average. The 2PCF depends only on the separa-
tion |x− y| of the two points if the δ field is statistically homogeneous. The power spectrum
of the density fluctuations Pδ is defined by

〈δ(k)δ(k′)〉 = (2π)3δD(k − k′)Pδ(|k|), (1.71)

where δD(k − k′) is the Dirac delta function.

From the results of last section, the power spectrum for a given time can be calculated
from the initial one, Pδ(k, ai), as

Pδ(k, a) = T 2(k)
D2

+(a)

D2
+(ai)

Pδ(k, ai). (1.72)

Usually one assumes a simple and scale-free power law Pδ(k, ai) ∝ kns , with spectral index
ns . 1. The power spectrum normalization is determined from observations, usually consider-
ing σ8, the variance of the density fluctuations in spheres of radius 8h−1Mpc. This particular
scale was chosen because the dispersion of the number of galaxies measured in this volume
is of order unity, σ8,gal ∼ 1. Assuming that galaxies are tracers of underlying dark matter,
one can relate the galaxies and dark matter fluctuation amplitudes. A simple linear relation
is σ2

8,gal = b2σ2
8 , where b is the linear bias factor.

1.3.4 The bispectrum

In regions that are highly non-linear due to gravitational collapse, non-Gaussian features
arise. A precise treatment requires higher order moments, nPCFs as a natural extension of
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Figure 1.2: The power spectrum of
density fluctuations in the Universe,
as determined by different methods.
Here, ∆2(k) ∝ k3P (k) vs scale (wave-
length) is plotted, where k = 2π/λ
is the wavenumber. Going from large
to small scales, the results presented
here are obtained from CMB tempera-
ture fluctuations, from the abundance
of galaxy clusters, from the large-scale
distribution of galaxies, from cosmic
shear, and from the statistical prop-
erties of the Lyα forest. One can see
that the power spectrum of a ΛCDM
model is able to describe all these
data over many orders of magnitude
in scale (Source: Max Tegmark)

2PCFs. The Fourier transform of the 3PCF is the bispectrum Bδ(k1,k2, a)

〈δ(k1, a)δ(k2, a)δ(k3, a)〉 = (2π)3δD(k1+k2+k3)[Bδ(k1,k2, a)+Bδ(k1,k3, a)+Bδ(k2,k3, a)].
(1.73)

Assuming an initial Gaussian density field, the bispectrum can be approximated through
second-order perturbation theory (Bernardeau et al. 2002),

Bδ(k1,k2, a) = F2(k1, k2, cosφ)Pδ(k1, a)Pδ(k2, a), (1.74)

where Pδ is the linear power spectrum and cosφ = (k1·k2)/(k1k2). Unlike the power spectrum,
the bispectrum is a function of three variables, i.e. the unique condition for a triangle. The
kernel function in an EdS-universe is

F2(k1, k2, cosφ) =
10

7
+ cosφ

(

k1

k2
+
k2

k1

)

+
4

7
cos2 φ. (1.75)

It is convenient to define the reduced bispectrum Q as

Q(k1, k2, cosφ, a) =
Bδ(k1,k2, a) +Bδ(k2,k3, a) +Bδ(k3,k1, a)

Pδ(k1, a)Pδ(k2, a) + Pδ(k2, a)Pδ(k3, a) + Pδ(k3, a)Pδ(k1, a)
. (1.76)

Since the bispectrum is proportional to P 2
δ , Q is mostly independent of time and cosmology,

but dependent on the triangle configuration of the three Fourier vectors k1,k2,k3.

1.3.5 Non-linear evolution

In the low-redshift universe the density contrast reaches values much higher than unity, up
to δ ∼ 1000 for galaxy clusters. These objects can no longer be described with linear theory.
One possible description is provided by the halo model, an empirical model which combines
results from simulations and theoretical models. The main assumption is that all dark matter
is distributed in spherically symmetric dark matter halos. The halo model was developed by
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Seljak (2000); Ma & Fry (2000); Scoccimarro et al. (2001). Galaxies are then introduced
according to the halo occupation distribution P (N |m), which is a conditional probability of
a halo of mass m to contain N galaxies. Then nPCF or power spectrum for galaxies can be
calculated approximately.

On small scale, the nPCF depend on the halo density profile. The halo radial mass profile
can be identified from numerical simulations. A universal functional form of the halo density
profile was found in simulations by Navarro et al. (1996), which is called the NFW-profile

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (1.77)

where ρs is the amplitude of the density profile, and rs specifies a characteristic radius. For
r ≪ rs, ρ ∝ r−1, and for r ≫ rs, the profile follows ρ ∝ r−3, which means rs is the radius
where the slope of the density profile changes.

The virial mass, which is approximately the mass contained in a region within which the
average density is ∼200 times the critical density at redshift z. Mvir = 4π/3r3200 200ρcr(z),
can be expressed as

Mvir =

∫ r200

0

ρs

r/rs(1 + r/rs)2
4πr2dr. (1.78)

The characteristic density can be expressed as

ρs =
200

3
ρcr(z)

c3

ln(1 + c) − c/(1 + c)
, (1.79)

where the concentration parameter c is defined as

c ≡ r200/rs. (1.80)

The larger the value of c, the more strongly the mass is concentrated towards the inner region.
The NFW profile has two parameters, either ρs and rs, or r200 and c, that describe the shape
of the mass distribution. These parameters can be estimated from observation, such as weak
lensing and X-ray of clusters.

There is another density profile, mathematically simple, which is not a bad approximation,
given by

ρ(r) =
σ2

v

2πGr2
, (1.81)

where σv is the velocity dispersion of the ‘particles’. This simpler analytic model is called
Singular Isothermal Sphere, and describes a spherically symmetric, self-gravitating system.
The lensing properties of these dark matter halo models are discussed in Chapter 5.

1.3.6 The substructure problem

The ΛCDM cosmology is up to now the most successful model in describing cosmological
observations. However there are some results in apparent conflict with observations, and it is
particularly interesting to look into these problems, since we can gain more knowledge about
the universe, and eventually could find out some new physics.

ΛCDM cosmological simulations of structure formation show that a halo of mass M con-
tains numerous halos of much lower mass, sub-halos. But they are not observed: For example,
only around 20 satellite galaxies are found around the Milky Way, whereas the simulations
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predict several hundreds of subhalos (Kauffmann et al. 1993; Klypin et al. 1999; Diemand
et al. 2007). The presence of substructure over a wide range of scales is a direct consequence
of hierarchical structure formation. The missing sub-halos in observation is thus a problem
for CDM models. On the other hand, simulations predict mass concentrations whereas ob-
servations look for light. Moreover the simulations only take CDM particles into account, the
baryonic process being still too complex for current computers.

This is a problem under debate (Kravtsov et al. 2004; Gao et al. 2004; Zentner et al. 2005;
Sawala et al. 2010). One powerful tool for probing sub-halos within galaxies and clusters is
gravitational lensing, since it measures the total amount of mass, dark and luminous. This
problem will be addressed in the following chapters of this thesis.



Chapter 2

Gravitational Lensing

In this chapter, we come to another application of the Einstein equation besides the Friedmann
cosmology−gravitational lensing (GL hereafter), which is the name of the phenomenon
of deflection of light in gravitational fields. The behavior of light rays in a gravitational field
was studied before General Relativity, 18th century by Newton and Laplace among others.
However in 1919, Eddington confirmed the value of the deflection angle produced by the Sun
during a Solar eclipse, which strongly supported the newborn gravity theory−GR. And this
may be considered the first observation of GL.

In 1924, Chwolson (1924) published a short note, in which he considered a star in the
foreground of a distant star. In case of perfect alignment of lens and source, a ring-shaped
image of the background star should form around the lens star. Such kind of image is now
known as the Einstein ring (should be called ‘Chwolson ring’ fairly). Not until the 1970’s,
did the observations make some real progress, thanks to the discovery of quasars, which are
ideal distant sources for GL.

In my thesis, I only study GL with light deflection in the weak-field, small deflection limit;
strong-field cases are not considered here (like near a black hole or neutron star). For details
about GL, the reader is referred to Schneider et al. (1992, 2006).

2.1 Basic lensing

2.1.1 Deflection angle

To calculate the image distortion of a background source by GL, we need to know first what is
the deflection angle for a light ray. This problem can be solved by applying the Schwarzschild
metric (Schwarzschild 1916) for a point mass case

ds2 =

[

1 − 2MG

c2r

]

c2dt2 −
[

1 − 2MG

c2r

]−1

dr2 − r2dθ2 − r2 sin2 θ dφ2, (2.1)

where M is the mass of the point and r is the distance to the point. Recalling the geodesic
equation (Eq.1.4), the equation of motion yields

1

r2

(

1 − 2MG

rc2

)−1(dr

dφ

)2

− r2

r20

1 − 2MG
r0c2

1 − 2MG
rc2

+ 1 = 0, (2.2)

21
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where r0 is the impact parameter, and is much larger than the Schwarzschild radius of the
lens (Rs = 2GM/c2). The absolute value of the deflection angle can be obtained in the weak
field approximation

α̂ = 2|φ(r0) − φ(∞)| − π ≈ 4GM

c2r0
. (2.3)

In order to determine the deflection angle of an extended mass lens with density ρ(r), we
can simply add up the deflection caused by each mass element dm(r) = ρ(r)dV of the mass
distribution. Then the deflection angle provided by an individual lens is

α̂(r) =
4G

c2

∫

d2r′
∫

dx′3 ρ(r
′, x′3)

r′ − r0

|r′ − r0|2
=

4G

c2

∫

d2r′Σ(r′)
r′ − r0

|r′ − r0|2
, (2.4)

where we have defined the surface mass density

Σ(r) =

∫

dx3 ρ(r, x3). (2.5)

The expression is valid as long as the extent of the mass distribution along the line of sight
is much smaller than the distances between source, lens and observer. This thin-lens approx-
imation is well satisfied when considering lensing by galaxies or clusters, but fails for cosmic
shear where the mass distribution causes multiple deflections all along the line of sight.

2.1.2 Lensing equation

Once given the deflection angle, it is easy to set up an equation known as the lens equation
which relates the position of the images and the source by the geometrical configuration of
the lens system (Fig.2.1). The source is located in the background at an angular position β.
The light emitted from the source is deflected in the gravitational potential of the foreground
mass distribution on its way to the observer. Thus, the image is observed at an angular
position θ. With the scaled deflection angle α(θ) = (Dds/Ds)α̂(Ddθ), we can get a concise
form for the lens equation

β = θ − α(θ). (2.6)

The solution of the lens equation for a given source position β is the observed position θ

of the image. If more than one solution(image) can be found, this corresponds to multiple
images.

It is convenient to define the critical surface density as

Σcr =
c2

4πG

Ds

DdDds
, (2.7)

then the dimensionless surface mass density κ(θ) = Σ(Ddθ)/Σcr is also the convergence. A
mass distribution with κ > 1 at some position θ produces multiple images when there is a
source at an appropriate position. The deflection angle can be rewritten using κ

α(θ) =
1

π

∫

d2θ′κ(θ′)
θ − θ′

|θ − θ′|2 . (2.8)

We therefore can define the deflection potential by

α(θ) = ∇ψ(θ), ψ(θ) =
1

π

∫

d2θ′ κ(θ′) ln|θ − θ′|, (2.9)
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Figure 2.1: Geometry of a thin
lens system: Dd, Ds and Dds

are the angular diameter dis-
tances from the observer to the
lens, from the observer to the
source and from the lens to the
source. Note that this figure is
a 2-D projection of lensing sys-
tem. The lens and source plane
are defined as being perpendic-
ular to the optical axis which is
the line connecting observer and
lens.

which is the 2-D projection of the gravitational potential. It satisfies the 2-D Poisson equation

∇2ψ = ψ,11 + ψ,22 = 2κ, (2.10)

where indices separated by a comma denote partial derivatives with respect to θi. The shear

is introduced

γ1 =
1

2
(ψ,11 − ψ,22), γ2 = ψ,12. (2.11)

The two-component shear γ = (γ1, γ2) is a spin-2 quantity, where a spin-N quantity means
that it has the same value after rotation by 2π/N . It is usual to write the shear as a complex
number γ = γ1 +iγ2 = |γ|e2iϕ, where the polar transformation property of the shear has been
accounted for by the factor 2 in front of the polar angle ϕ. The linear lensing equation for an
extended source in complex notation can thus be written as

β = (1 − κ)θ − γθ∗, (2.12)

where θ∗ is the complex conjugate of θ. It is also common to express the shear with respect
to a specified direction, like a foreground galaxy (Fig. 2.2). This defines the tangential and
cross shear

γt = −γ1 cos 2ϕ− γ2 sin 2ϕ, γ× = γ1 sin 2ϕ− γ2 cos 2ϕ, (2.13)

where ϕ is the polar angle to the specified direction.

2.2 Image distortion

Besides point sources (like QSO or stars), there are also extended sources in the universe,
like galaxies. Since they are usually small sources in angular size, and considering only small
deflection angles, the lens equation can be Taylor expanded. To linear order we get,

β(θ) = β(θ0) + A(θ0)(θ − θ0), (2.14)
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Figure 2.2: Illustration of the tangential
and cross component of shear (Eq.2.13),
measured with respect to the center of the
circles. Left panel: γt > 0, γ× = 0; right
panel: γt > 0, γ× = 1.

where β(θ0) and θ0 are the central positions of the source and image, and A is the Jacobian
matrix

Aij(θ) =
∂βi

∂θj
=

(

δij −
∂αi

∂θj

)

. (2.15)

Generally, the matrix can be decomposed into 3 parts: the trace, a symmetrical traceless
matrix and an antisymmetrical matrix,

A =

(

1 − κ 0
0 1 − κ

)

+

(

−γ1 −γ2

−γ2 γ1

)

+

(

0 ω
−ω 0

)

, (2.16)

where the quantities κ, γ1 + iγ2, and ω are known as the convergence, (complex) shear and
rotation, respectively. They all depend on the redshifts of source and lens. The rotation
component is a non-gravitational effect, and is not considered here. The matrix is symmet-
rical, if the rotation is zero ω = 0. The Jacobian can be simplified in terms of potential
Aij = βi,j = δij − ψ,ij .

In general, a circular source is mapped to an elliptical image by shear, and a source is
enlarged by convergence. Liouvilles theorem guarantees surface brightness conservation by
gravitational lensing, thus the observed intensity I at a position θ is related to the intensity
in the source plane Is via I(θ) = Is(β(θ)). An image is magnified by a factor equal to
the ratio of the integrated intensity distributions I(θ) and Is(β), which is the inverse of the
determinant of A,

µ =
1

detA =
1

(1 − κ)2 − (γ2
1 + γ2

2)
. (2.17)

Here µ can be either sign, depending on the parity of the lensed image with respect to the
unperturbed image. Regions with different parity are separated by critical curves in the
lens plane, which are defined by detA = 0. Critical curves are mapped back onto caustics in
the source plane. If detA = 0, the magnification would become infinite, which is impossible
in reality. In this case, the linear lensing equation breaks down, thus the magnification by
Eq.2.17 is no longer valid here. If an image lies near or crosses the critical curve, it will be
highly magnified and distorted, looking like an arc shape (Fig.2.3).

In the regime where κ > 1, which called strong lensing regime, multiple images may
form. Mathematically this means that multiple solutions of the lens equation (2.6) exist.
The positions and magnifications of the multiple images depend on the mass distribution of
the lens. In other words, using these strong lensing information one can constrain the lens
property.
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Figure 2.3: One of the most
massive galaxy clusters, Abell
1689, made from the Advanced
Camera of Hubble Space Tele-
scope. The gravity of the clus-
ter acts as a 2-million-light-
year-wide lens in space. Some
of the faintest objects in the
picture are probably over red-
shift 6. There are several arcs,
which are lensed images of the
distance background galaxies.

2.2.1 The relation between convergence and shear

The image distortion in weak lensing yields an estimate of the local shear. If we are capable of
measuring the shear field, we will be able to make a degenerate distribution of the projected
mass (by ‘degenerate’, I will explain in Sect. 2.2.3). In order to get a relation between the
shear and convergence, we can rewrite them in Fourier space (Kaiser & Squires 1993),

κ̂(l) = −1

2
(l21 + l22)ψ̂(l), γ̂1(l) = −1

2
(l21 − l22)ψ̂(l), γ̂2(l) = −l1l2ψ̂(l), (2.18)

and obtain

γ̂(l) = γ̂1(l) + iγ̂2(l) =
(l1 + l2i)

2

l2
κ̂(l) = e2iβκ̂(l), (2.19)

where β is the polar angle of the Fourier vector l. These relations are not defined for l = 0,
which corresponds to a uniform surface mass density and no shear signal. This relation may
be inverted

κ̂(l) =
(l1 − il2)

2

l2
γ̂(l) = e−2iβ γ̂(l). (2.20)

The inverse Fourier transformation of Eq.(2.20) follows immediately

κ(θ) − κ0 =
1

π

∫

R2

d2θ′γ(θ′)D∗(θ − θ′), with kernel D(θ) =
θ2
2 − θ2

1 − 2iθ1θ2
|θ|4 , (2.21)
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which means that κ can be determined from the shear only up to an additive constant.
Moreover, in principle κ(θ) should be real, (an imaginary component of mass does not make
real sense). However, noise in real data can produce an imaginary component. In analogy to
Eq.(1.71), the power spectra of the convergence and shear are defined and found to be equal,
Pκ = Pγ with

〈κ̂(l)κ̂∗(l)〉 = 〈γ̂(l)γ̂∗(l)〉 = (2π)2δD(l − l′)Pκ(l). (2.22)

2.2.2 Shear measurements

The local gravitational shear transforms round sources into ellipses. Thus, the shear could
be estimated from the shape of the observed galaxies if all galaxies were intrinsically circular.
However, they are not, and the shear cannot be measured from a single galaxy (in the weak
lensing case). Yet, it is reasonable to assume that the intrinsic orientation of galaxies is ran-
dom. The local shear therefore can be estimated by averaging over an ensemble of background
galaxies.

The shapes of galaxies are irregular, and poorly represented by ellipses. A number of ap-
proaches have been put forward to improve the shear measurement (Bridle et al. 2009), mainly
brightness moments and shapelets. The shapelets consist of the two-dimensional Cartesian
Gauss-Hermite functions, famous as the energy eigenstate of the 2-D quantum harmonic
oscillator. A 2-D function f(x), such as the image of a galaxy, can thus be decomposed as

f(θ) =

∞
∑

m,n=0

fmn Bmn(θ, β), with coefficients fmn =

∫

d2θ f(θ) Bmn(θ, β), (2.23)

where

Bmn(θ, β) = β−1ψn(β−1θ1)ψm(β−1θ2). (2.24)

Here β is a scale factor chosen for the galaxy, and ψn are reduced Hermite polynomials. The
shape parameters, like ellipticity can be characterized in terms of the shapelet coefficients
(Refregier & Bacon 2003; Massey & Refregier 2005; Kuijken 2006).

Since surface brightness is conserved by lensing, it is convenient to define the brightness
moment operation

Mom[F (β)] =

∫

d2β F (β) Is(β) =

∫

d2θ detA F (β(θ)) I(θ), (2.25)

where F (β) is a function of the source coordinate, with the origin of the image plane as the
center of light of the image

∫

d2θ θ I(θ) = 0. (2.26)

In particular, if setting F = 1, one finds that the zeroth-order moment

Mom[1] = S0 =

∫

d2β Is(β) = detA0 S, (2.27)

here S is the flux of the lensed image, so S = S0/detA0.

The origin of the coordinates in the source plane is the image of the origin in the lens
plane as mapped with the lens equation. But, this does not coincide with the center of light
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of the source, which is given by

β̄ =
1

S0

∫

d2β β Is(β) =
1

S0

∫

d2θ detA β(θ) I(θ); (2.28)

=
1

S0

∫

d2θ
[

(1 − κ)2 − γγ∗
]

[(1 − κ)θ − γθ∗] I(θ). (2.29)

The linear term in θ vanishes, due to Eq.(2.26), thus β̄ ≈ 0 if κ and γ are nearly constants
over the image. Therefore, using the linear lens equation, the centroid shift therefore does
not affect much in the 2nd order brightness moment of the source

Qs
2 =

1

S0

∫

d2β (β − β̄)2 Is(β); Qs
0 =

1

S0

∫

d2β (β − β̄)(β − β̄)∗ Is(β). (2.30)

Similarly, the 2nd order brightness moment can be written as

Q2 =
1

S

∫

d2θ θ2 I(θ); Q0 =
1

S

∫

d2θ θθ∗ I(θ). (2.31)

Note that if we use Eq.(2.12) to expand the integrand (Eq.2.30), we will obtain the relation
between the source and image brightness moments, which is only sufficient to constrain 2
parameters. There are however, 3 parameters need to be solved, i.e. κ, γ1 and γ2.

2.2.3 Mass-sheet degeneracy

For a general lens system the source position β and the source size are unknown. This leads
to a non-unique determination of the lens surface mass density κ, namely the observation
of a gravitational lens system is unchanged if the surface mass density κ is transformed as
κ(θ) → κλ(θ) = λκ(θ) + (1 − λ) (Gorenstein et al. 1988). The family κλ satisfies the Poisson
equation ∆ψλ = 2κλ with ψλ(θ) = (1 − λ)θ2/2 + λψ(θ).

In the case of weak lensing, the shapes of images are invariant under the transformation
(Schneider & Seitz 1995). Therefore the shear is not an observable, but only the reduced

shear g = γ/(1 − κ) is. We can thus rewrite the lensing equation (2.12)

β̂ ≡ β

1 − κ
= θ − gθ∗. (2.32)

With this reduced lens equation, the relation between the source and image brightness mo-
ments become

Qs
2 = Q2 − 2gQ0 + g2Q∗

2;

Qs
0 = −g∗Q2 + (1 + gg∗)Q0 − gQ∗

2. (2.33)

If we define the complex ellipticity χ = Q2/Q0, then we have the relation (Seitz & Schneider
1995)

χs =
χ− 2g + g2χ∗

1 + gg∗ − g∗χ− gχ∗
, (2.34)

which under the assumption 〈χs〉 = 0 gives the approximate estimator for the reduced shear
g ≈ 1/2〈χ〉. In another definition of ellipticity

ǫ =
1 − r

1 + r
e2iφ, (2.35)
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where r is axis ratio of elliptical isophotes, and φ yields the direction of distortion, the unbiased
estimator for the reduced shear is achieved by g = 〈ǫ〉 (Seitz & Schneider 1997).

The ambiguity of the lens surface mass density κ is called mass-sheet degeneracy (as
mentioned in Sect. 2.2.1). With additional knowledge use of the redshift distribution of the
background galaxies, the mass-sheet degeneracy can be weakly broken (Bradač et al. 2004).

2.3 Cosmic shear

The cosmic shear describes the weak lensing by matter inhomogeneities on large-scale struc-
ture. The distortions are small, therefore the cosmic shear has to be detected in a statistical
way over a large number of high-quality galaxy images. Here I mainly follow Bartelmann &
Schneider (2001)

2.3.1 Light propagation

For cosmic shear, the light of background galaxies is distorted continuously along the light
path, the thin lens approximation therefore fails (too many ‘lens planes’ ends up with no ‘lens
plane’). The propagation of light bundles is described by the geodesic deviation equation.
In a weakly inhomogeneous universe, it is assumed that the Newtonian potential is small
|Φ| ≪ c2, and varies on scales much smaller than the horizon. For the comoving separation
x between two light rays, the propagation equation is

d2x

dχ2
+Kx = − 2

c2

[

∇⊥Φ(x(θ, χ), χ) −∇⊥Φ(0)(χ)
]

, (2.36)

where χ is the comoving distance along the light ray, and K is the spatial curvature. ∇⊥

denotes the comoving gradient perpendicular to the light path. The solution of Eq.(2.36) can
be written by the Green’s functions

x(θ, χ) = fK(χ)θ − 2

c2

∫ χ

0
dχ′ fK(χ− χ′)

[

∇⊥Φ(x(θ, χ′), χ′) −∇⊥Φ(0)(χ′)
]

. (2.37)

Without ‘lens’ the source would be seen at the angular separation β = x/fK from the fiducial
ray. Hence, β can be interpreted as the unlensed angular position in a hypothetical source
plane at comoving distance χ. In analogy with standard lens theory, we can define the
Jacobian matrix

A(θ, χ) =
∂β

∂θ
=

1

fK(χ)

∂x

∂θ
(2.38)

= δij −
2

c2

∫ χ

0
dχ′ fK(χ− χ′)fK(χ′)

fK(χ)

∂2Φ(x(θ, χ′), χ′)

∂xi∂xk
Akj(θ, χ

′), (2.39)

to describe the locally linearized lens mapping. Expanding A in power of Φ and keeping the
linear terms

Aij = δij −
2

c2

∫ χ

0
dχ′ fK(χ− χ′)fK(χ′)

fK(χ)

∂2Φ(fK(χ′)θ, χ′)

∂xi∂xj
. (2.40)

To linear order, the distortion can be obtained by an integral along the unperturbed ray
x = fK(χ)θ, corrections are of order Φ2. This is called Born approximation. In this case,
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lensing by the 3−D matter distribution can be treated formally as in normal lensing, with
the deflection potential

ψ(θ, χ) =
2

c2

∫ χ

0
dχ′ fK(χ− χ′)

fK(χ′)fK(χ)
Φ(fK(χ′)θ, χ′), (2.41)

then Aij = δij − ψ,ij. Correspondingly, we have the effective surface mass density and shear
as

κ =
1

2
(ψ,11 + ψ,22), γ =

1

2
(ψ,11 − ψ,22) + iψ,12. (2.42)

Making use of the 3−D Poisson equation ∇2Ψ = 3H2
0ΩMδ/(2a), we obtain

κ(θ, χ) =
3H2

0ΩM

2c2

∫ χ

0
dχ′fK(χ− χ′)fK(χ′)

fK(χ)

δ(fk(χ
′)θ, χ′)

a(χ′)
. (2.43)

For a source redshift distribution pz(z)dz = pχ(χ)dχ, the effective surface mass density
becomes

κ(θ) =

∫

dχ pχ(χ) κ(θ, χ) =
3H2

0ΩM

2c2

∫ χh

0
dχ g(χ) fK(χ)

δ(fK(χ)θ, χ)

a(χ)
, (2.44)

with the effective source-redshift weighted lens efficiency factor

g(χ) =

∫ χh

χ
dχ′ pχ(χ′)

fK(χ′ − χ)

fK(χ′)
, (2.45)

where χ denotes the distance to the horizon.

2.3.2 The E- and B- mode of the shear field

From the relations between the shear, the convergence and the deflection potential, one can
derive the relation (Kaiser 1995)

∇cκ = ∇∗
cγ = F , (2.46)

where F is flexion, which will be discussed in the next chapter, and the complex gradient is
defined as

∇c =
∂

∂θ1
+ i

∂

∂θ2
; ∇∗

c =
∂

∂θ1
− i

∂

∂θ2
. (2.47)

In reality, when measuring F from data, it will have a non-gradient component due to noise
and systematic measurement errors. Moreover, other sources than measurement effects can
cause a non-zero curl component of F , e.g. intrinsic shape of galaxies.

One therefore introduces the new quantities κE and κB (Crittenden et al. 2002), called E-
and B- mode of the convergence (in analogy to the electromagnetic field) by

∇2κE = ∇c∇∗
cκ

E = ∇ · F ; ∇2κB = ∇× F , (2.48)

where F = (F1,F2). One can further define the E- and B-mode potentials via the Poisson
equation ∇2ψE,B = 2κE,B, and combine the E- and B-mode for simplification,

ψ = ψE + iψB; κ = κE + iκB. (2.49)
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The complex shear thus can be written as

γ =
1

2
(ψE

,11 − ψE
,22) − ψB

,12 + i

[

ψE
,12 +

1

2
(ψB

,11 − ψB
,22)

]

. (2.50)

The shear and convergence power spectrum as defined in Eq.(2.22) can be generalized to a
field which has both an E- and B-mode. The E-mode, the B-mode and the mixed power
spectra can be defined as

EE = 〈κ̂E(l)κ̂E(l′)〉 = (2π)2δD(l − l′)PE
κ (l);

BB = 〈κ̂B(l)κ̂B(l′)〉 = (2π)2δD(l − l′)PB
κ (l);

EB = 〈κ̂E(l)κ̂B(l′)〉 = (2π)2δD(l − l′)PEB
κ (l), (2.51)

and can be derived from the shear correlation function

〈γ̂(l)γ̂(l)∗〉 = (2π)2δD(l − l′)[PE
κ (l) + PB

κ (l)];

〈γ̂(l)γ̂(l)〉 = (2π)2δD(l − l′)[PE
κ (l) − PB

κ (l) + 2iPEB
κ (l)]. (2.52)

There are different sources of the B-mode in the shear field. It can arise from the measure-
ment errors. Also the lensing itself: source redshift clustering and lens-lens coupling which is
not accounted for in the Born approximation (Schneider et al. 2002b, 1998). However, these
effect are assumed to be small. The intrinsic alignment, which is the intrinsic correlation of
galaxy orientations, can show up in both the E- and B-mode shear signal.

2.3.3 Cosmic shear statistics

Since the projected density κ is a projection of δ, it also has to be described as a random
field. The convergence power spectrum, which is defined in Eq.(2.22), is related to that of δ
through Limber’s equation (Limber 1953)

Pκ(l) =
9H4

0Ω2
M

4c4

∫ χh

0
dχ

g2(χ)

a2(χ)
Pδ

(

l

fK(χ)
, χ

)

. (2.53)

The power spectrum Pκ yields information about Pδ, and is related to actual observable
quantities, the shear two-point correlation functions (2PCFs), which have three components

ξ±(θ) = 〈γt(θ
′)γt(θ

′ + θ)〉 ± 〈γ×(θ′)γ×(θ′ + θ)〉; ξ× = 〈γ×γt〉. (2.54)

Because the large-scale structure is statistically homogeneous and isotropic, the 2PCFs only
depend on the modulus θ of the vector connecting the two points.

The Fourier transform of the 2PCF of the shear is the shear power spectrum. Since
Pγ = Pκ (Eq.2.22), the 2PCF can be written in terms of the convergence power spectrum,
decomposed into E- and B-mode,

ξ±(θ) =
1

2π

∫

dl l J0,4(lθ)[P
E
κ (l) ± PB

κ (l)];

ξ×(θ) =
1

2π

∫

dl l J4(lθ)P
EB
κ (l), (2.55)

where Jν is the first kind Bessel function of order ν.
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It is important to possess a measurement which separates the E- and the B-mode power
spectra, since the first contains cosmological information, while the latter is usually due
to systematic effects. E- and B-mode correlation functions, ξE,B

± , could be calculated from
the above defined 2PCF ξ± (Crittenden et al. 2002). However, such calculation require the
knowledge of either arbitrarily large or small angular separations, which is not accessible
(Schneider et al. 2002a). Other statistics were defined concerning this problem.

The aperture mass Map was introduced by Kaiser (1994) and Schneider (1996) as a
quantity which measures a weighted integral of the local surface mass density κ in an aperture
of radius θ, centered at θ0. Alternatively it can be expressed in terms of the tangential shear
γt, where tangential is with respect to the aperture center θ0

Map(θ,θ0) =

∫

d2θ′U(|θ − θ′|)κ(θ′) =

∫

d2θ′Qθ(|θ − θ′|)γt(θ
′), (2.56)

where U(|θ|) is a compensated filter function, i.e.
∫

dθθU(θ) = 0. The fact of using a
compensated filter leaves Map invariant to a constant additive surface mass density. The
filter Q is obtained from U by

Q(θ) =
2

θ2

∫ θ

0
dθ′θ′U(θ′) − U(θ). (2.57)

If we use a function of the form

Q(θ) =
6

πr2
θ2

r2

(

1 −
(

θ2

r

)2
)

, (2.58)

where r is the radius of an aperture, the second moment or dispersion of Map(θ) is related to
the power spectrum through (Schneider et al. 1998)

〈M2
ap〉(θ) =

1

2π

∫ ∞

0
dl l Pκ(l)Wap(θl), with Wap(η) =

576J2
4 (η)

η4
. (2.59)

〈M2
ap〉 has the property of separating the E- and B-mode power spectrum. To see this, we

can define a complex aperture mass

M(θ,θ0) = Map(θ,θ0) + iM⊥(θ,θ0), (2.60)

where

M⊥(θ,θ0) =

∫ ∞

0
d2θ′Qθ(|θ − θ′|)γ×(θ′). (2.61)

With the complex aperture mass, one can define two second-order quantities 〈MM〉(θ) and
〈MM∗〉(θ), where the ensemble average is replaced by a spatial average over aperture centers
θ0. Using Eq.(2.56), they write as

〈MM∗〉(θ) = 〈M2
ap〉(θ) + 〈M2

⊥〉(θ) =
1

2π

∫ ∞

0
dl l [PE

κ (l) + PB
κ (l)]Û2(θl);

〈MM〉(θ) = 〈M2
ap〉(θ) − 〈M2

⊥〉(θ) + 2i〈MapM⊥〉(θ)

=
1

2π

∫ ∞

0
dl l [PE

κ (l) − PB
κ (l) + 2iPEB

κ (l)]Û2(θl). (2.62)
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Combining these expressions, one gets

〈M2
ap〉(θ) =

1

2π

∫ ∞

0
dl l PE

κ (l)Û2(θl);

〈M2
⊥〉(θ) =

1

2π

∫ ∞

0
dl l PB

κ (l)Û2(θl). (2.63)

The equations show that 〈M2
ap〉 depends only on the E-mode and 〈M2

⊥〉 on the B-mode power

spectrum. Here Û(θl) is the Fourier transform of the filter function Uθ. The aperture mass
statistic is a localized measure of the power spectrum since the filter function Û2(θl) is narrow.
For the case of E-mode only, the aperture measures can be expressed as finite integrals over
the correlation functions,

〈M2
ap〉(θ) =

1

2

∫ 2θ

0

dθ′ θ′

θ2

[

ξ+(θ′)T+

(

θ′

θ

)

+ ξ−(θ′)T−

(

θ′

θ

)]

; (2.64)

〈M2
⊥〉(θ) =

1

2

∫ 2θ

0

dθ′ θ′

θ2

[

ξ+(θ′)T+

(

θ′

θ

)

− ξ−(θ′)T−

(

θ′

θ

)]

,

where the two function T± are given in Schneider et al. (2002b). The aperture mass method
for E- and B-mode decomposition still require the 2PCF to be known down to arbitrary small
angular separations (Eq.2.64). In addition, measures in apertures are not very effective, since
large areas of the sky containing bright stars or foreground galaxies have to be omitted in
order not to bias the result.

Schneider & Kilbinger (2007); Eifler et al. (2010); Fu & Kilbinger (2010) introduced a new
method to perform an E- and B-mode decomposition using a shear 2PCF measured on finite
interval, which is called Ring statistics.

The ring statistics only involve correlations between points in an annulus ζ1 ≤ θ ≤ ζ2 and
points in a concentric annulus ζ3 ≤ θ ≤ ζ4 (see Fig. 2.4). The rings are non-overlapping, i.e.
ζi < ζj if i < j. The ring statistics correlator are thus calculated from shear 2PCF covering
the range [ηΨ = ζ3 − ζ2, Ψ = ζ2 + ζ4], and are defined as

〈RRE〉(Ψ, η) =

∫ Ψ

ηΨ

dθ

2θ
[ξ+(θ)Z+(θ, η) + ξ−(θ)Z−(θ, η)];

〈RRB〉(Ψ, η) =

∫ Ψ

ηΨ

dθ

2θ
[ξ+(θ)Z+(θ, η) − ξ−(θ)Z−(θ, η)], (2.65)

where the functions Z± are defined in Schneider & Kilbinger (2007) and η (with η < 1)
quantifies the separation between the outer and inner rings. 〈RRE〉 is related to the E-mode
power spectrum through

〈RRE〉(Ψ, η) =

∫ ∞

0

dl l

2π
PE(l)WE(lΨ, η) (2.66)

with

WE(lΨ, η) =

∫ Ψ

ηΨ

dθ

2θ
[J0(lθ)Z+(θ, η) + J4(lθ)Z−(θ, η)]. (2.67)

The covering range varies with (Ψ, η). An optimal choice of Ψ and η significantly improves
the ring statistics’s S/N (Eifler et al. 2010).
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Figure 2.4: Illustration of the
Ring statistics: The 2PCF is
calculated for each galaxy in
the inner ring with all galaxies
in the outer ring. Figure from
Eifler et al. (2010).

2.4 Galaxy-Galaxy lensing

The phenomenon of image distortion of background galaxies by a foreground galaxy is called
galaxy-galaxy lensing (GGL). The first detection of GGL was reported by Brainerd et al.
(1996). Its main application is the study of dark matter haloes of galaxies. The halo properties
of galaxies can provide a hint on the formation and evolution of clusters and galaxies.

Individual galaxies are not sufficiently massive to produce a significant distortion of the
images of background galaxies. Therefore, a population of galaxies is needed, and their
statistical properties are studied. The sample of galaxies is split into fore- and background
subsamples. The ellipticities of the background galaxies are expected to be tangentially
aligned with respect to each of the lensing foreground galaxies. The tangential shear, as
function of angular separation from the lens, yields an estimator, that can be used to measure
some galaxy halos properties.

If we define the fractional galaxy number density κg = ng/n̄ − 1, where ng is the galaxy
number density and n̄ the mean number density on the sky, the mean tangential/cross shear
at separation θ can be written as (Hoekstra et al. 2002a)

〈γt,×(θ)〉 = 〈γt,×(θ,θ0)κg(θ0)〉, (2.68)

where θ and θ0 are the source and lens galaxy positions respectively, θ = |θ − θ0|, and the
ensemble average is taken over the fore- and background pairs. Since γt + iγ× = −γe−2iφ,
where φ is the polar angle of γ, the GGL relates to the statistics of both the underlying galaxy
and dark matter density fields

〈γt(θ)〉 + i〈γ×(θ)〉 = −e−2iφ〈γ(θ,θ0)κg(θ0)〉

= −e−2iφ

∫

d2l

(2π)2

∫

d2l′

(2π)2
e−iθ·l〈γ̂(l)κ̂g(l

′)〉

= −e2i(β−φ)

∫

d2l

(2π)2

∫

d2l′

(2π)2
e−iθ·l〈κ̂(l)κ̂g(l

′)〉, (2.69)

where in the last step, the Kaiser-Squires relation (Eq.2.20) is used. If we define the cross
power spectrum of the galaxy and matter density field Pκg(l) = (2π)2δD(l − l′)〈κ̂(l)κ̂g(l

′)〉,
this becomes

〈γt(θ)〉 + i〈γ×(θ)〉 = −
∫ ∞

0

dl l

(2π)2

∫ 2π

0
dα eilθ cos α [cos 2α + i sin 2α]Pκg(l), (2.70)



34 CHAPTER 2. GRAVITATIONAL LENSING

The imaginary part, which corresponds to 〈γ×(θ)〉, vanishes in the integral since it is an odd
function. The remaining terms yield an expression relating Pκg with the tangential shear only

〈γt(θ)〉 =
1

2π

∫

dl lJ2(θl)Pκg(l), (2.71)

where J2(θl) is a Bessel function. The GGL is a measure for the cross-correlation of galaxies
and dark matter distribution.

The GGL signal is obtained by averaging over many galaxies. For the halos of similar
galaxy type, one expects to have similar properties. One can try to obtain a model for the
surface mass density Σ(θ) associated with a lens galaxy. The mean tangential shear measured
on the circle of radius θ can be related to average properties of the foreground halo through
(Schneider et al. 2006)

〈γt(θ)〉 = κ̄(θ) − κ(θ), (2.72)

where κ̄(θ) is the averaged convergence inside the circle and κ(θ) is the mean convergence
on the circle. The convergence is a dimensionless surface mass density, and depends on
the redshifts of source and lens. Thus when measuring GGL signal using the ellipticities of
galaxies, without redshift information, it is only possible to obtain a surface mass density
averaged over the fore- and background galaxies,

〈γt(θ)〉 =

∫

dzd pd(zd)

∫

dzs ps(zs)
Σ̄(zd, θ) − Σ(zd, θ)

Σcrit(zs, zd)
, (2.73)

where pd(zd) and ps(zs) are the fore- and background galaxy redshift distributions respectively.



Chapter 3

Weak Lensing Flexion

3.1 Lensing Flexion

3.1.1 Higher-order image distortions

As early in 1988 (Fort et al. 1988; Fort & Mellier 1994) the strongly distorted images of
background sources, namely the arclets, have already been observed. In these cases, the
locally linearized lens equation (Eq.2.12) is not sufficient to describe this phenomena, since
the images are not small compared to the length-scale over which the shear varies. On the
other hand, Goldberg & Natarajan (2002) have shown that valuable further information is
available from the skewedness and arciness of the source images. In Goldberg & Bacon (2005)
(GB05 hereafter), this effect has been introduced as flexion, and describes the second-order
gravitational lensing mapping distortion. However, in GB05 only one flexion component
is considered, which provides an incomplete description. In Bacon et al. (2006) (BGRT
hereafter), the second flexion component is studied. Moreover, the Twist and Turn effects
were recognized by Bacon & Schäfer (2009), and complete the second-order gravitational
lensing image distortion set. In addition, a related approach using ‘sextupole lensing’ has
been treated by Irwin & Shmakova (2006, 2005).

Arclets are the direct application for flexion. In general, flexion responds to small-scale
variations in the gravitational potential, and therefore can be used for studying small-scale
mass distribution, e.g. galaxy-galaxy lensing and substructure within the cluster.

In this chapter, I will introduce the basic theory of weak lensing flexion, and some mea-
surement issues related to flexion. Most results in this chapter, except the subsection of
shapelet can be found from Schneider & Er (2008).

3.1.2 Complex flexion notation

For a two dimensional vector x = (x1, x2), we define the complex number x = x1 + ix2.
Under rotations of the coordinate system by an angle ϕ, x gets multiplied by the phase factor
e−iϕ. A quantity is said to be spin-N if it has the same value after rotating 2π/N . The
product of spin-A and spin-B quantity is spin-(A+B), and the product of spin-A and spin-B∗

is spin-(A-B).

The lens equation β = θ − ∇ψ(θ) in locally linear expansion can be written as βi =
θi −ψ,ijθj , here summation over repeated indices is implied. Now we generalize this equation
to a second-order local expansion, which in Cartesian coordinates reads βi = θi − ψ,ijθj −

35
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Figure 3.1: Weak lensing image distortions.
Here an unlensed Gaussian galaxy has been
distorted with convergence, shear and two
flexions. Convergence is a spin-0 quantity,
first flexion is spin-1, shear is spin-2 and sec-
ond flexion is spin-3. Figure is from BGRT.

ψ,ijkθjθk/2, the third-order derivatives of ψ are related to the gradient of κ and γ. To write
these derivatives in complex form, we use the complex gradient (Eq.2.47),

∇cκ =
1

2
[ψ,111 + ψ,122 + i (ψ,112 + ψ,222)] ; ∇cγ =

1

2
[ψ,111 − 3ψ,122 + i (3ψ,112 − ψ,222)] .

(3.1)
The complex formalism provides a neat way to generalize the third-order derivatives of the
deflection potential. The differential operator ∇c turns a spin-n field into a spin-(n+1) field,
whereas ∇∗

c reduces the spin by one unit. The derivatives can be expressed as a spin-3 field
G ≡ ∇cγ and a spin-1 field F ≡ ∇∗

cγ, where we introduced the usual notation for the two
flexion quantities. The second-order lens equation in our complex notation then reads

β = (1 − κ)θ − γθ∗ − 1

4
F∗ θ2 − 1

2
F θθ∗ − 1

4
G (θ∗)2 . (3.2)

Since this is no longer a linear equation, a source at β may have more than one image. In fact,
up to four images of a source can be obtained, as can be seen for the special case of γ = F = 0
and by placing the source at β = 0. If we set G = |G|e3iζ , besides one solution θ = 0, there
are three more at θ = 4(1 − κ)/|G| eiϕ, with ϕ = ζ, ϕ = ζ + 2π/3 and ϕ = ζ + 4π/3. The
occurrence of these solutions lies in the fact that G is a spin-3 quantity. We shall later need
the Jacobian determinant detA of the lensing equation, which is

detA = (1 − κ)2 − γγ∗ + θ · ∇
[

(1 − κ)2 − γγ∗
]

+ O(θ2)

= (1 − κ)2 − γγ∗

−θ
[

(1 − κ)F∗ +
γ∗F + γ G∗

2

]

− θ∗
[

(1 − κ)F +
γ∗G + γ F∗

2

]

+ O(θ2) , (3.3)

where the first expression is just the zero- and first-order Taylor expansion of the Jacobian
around the origin, and in the second step we made use of the relation θ ·∇ = (θ∇∗

c +θ∗∇c)/2.
We point out that Eq.(3.3) is only the first-order expansion; the full Jacobian of Eq.(??)
contains quadratic terms in θ. In Sect. 3.3, we consider this issue and the critical curves and
caustics of the lens equation.

However, the study of the Jacobian A is incomplete, since there is an asymmetric com-
ponent of linear Jacobian (Eq.2.16), i.e. rotation w. The derivative of w which is the second
order rotation effect is define as turn

C ≡ 2∇cw. (3.4)
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This new distortion mode C describes how the amount of image rotation in the Jacobian
varies across the object. In addition, the second order distortion could have 8 components
(derivatives of 4 components with respect to θ1 and θ2), whereas F , G and C provide 6. The
rest components, which are named twist, do not occur independently due to the symmetry.
Nevertheless, rotation, turn and twist effects are non-gravitational distortion mode and not
measurable. Thus they are not discussed in the following. For more details, the reader is
referred to Bacon & Schäfer (2009).

3.1.3 Reduced flexion

Similar to the weak lensing shear measurement, the flexion also suffers from the mass-sheet
degeneracy, i.e. the observable of a gravitational lens system are unchanged if the surface mass
density κ is transformed as κ(θ) → κ′(θ) = λκ(θ)+ (1−λ). In fact, since we expect that the
most promising applications of flexion will come from situations where κ is not much smaller
than unity, the distinction between shear and reduced shear is more important for flexion
than for the usual weak lensing applications. Hence, at best we can expect from higher-order
shape measurements to obtain an estimate for the reduced shear and its derivatives. For this
reason, we define the reduced flexion (Schneider & Er 2008),

G1 ≡ ∇∗
cg =

F + gF∗

(1 − κ)
; G3 ≡ ∇cg =

G + gF
(1 − κ)

. (3.5)

The derivatives of the reduced shear G1,3 are those quantities we can actually observe. The
mass-sheet transformation is equivalent to an isotropic scaling of the source plane coordinates.
Hence, we divide Eq.(3.2) by (1 − κ) to obtain a ‘reduced lens equation’

β̂ ≡ β

(1 − κ)
= θ − gθ∗ − Ψ∗

1 θ
2 − 2Ψ1 θθ

∗ − Ψ3 (θ∗)2 with Ψ1 =
1

4

F
(1 − κ)

; Ψ3 =
1

4

G
(1 − κ)

.

(3.6)
The expression for F/(1−κ) in terms of the reduced shear and its derivatives has been derived
by Kaiser (1995); in our notation it reads

F
(1 − κ)

≡ −∇c ln(1 − κ) =
G1 − gG∗

1

1 − gg∗
⇒ Ψ1 =

G1 − gG∗
1

4 (1 − gg∗)
. (3.7)

The expression for the derivative of γ in terms of the reduced shear can be easily obtained
from differentiating the definition γ = (1 − κ)g,

∇cγ

(1 − κ)
=

G
(1 − κ)

= G3 − g
∇cκ

(1 − κ)
= G3 −

g (G1 − gG∗
1)

1 − gg∗
⇒ Ψ3 =

G3

4
− g (G1 − gG∗

1)

4 (1 − gg∗)
.

(3.8)
The Jacobian determinant detÂ of the mapping between the image position θ and the rescaled
source position β̂ then becomes

detÂ =
detA

(1 − κ)2
= 1 − gg∗ − η∗θ − ηθ∗,

where η = ∇∗
cg −

g (∇∗
cg)

∗

2
+
g∗∇cg

2
= G1 −

gG∗
1

2
+
g∗G3

2
(3.9)

Again, Eq.(3.9) is valid only to linear order in θ. A similar equation for the determinant was
obtained in Okura et al. (2007), but they only consider the case of |g| ≪ 1; this has also
consequences for the relations between source and image brightness moments, to be derived
further below.
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3.2 E/B mode flexion

Flexion has a total of four components, namely the real and imaginary parts of F and G.
A measurement of flexion will thus yield four components, and we might ask whether these
components are independent. We recall a similar situation in shear measurements. The shear
has two components; on the other hand, the shear is defined as second partial derivatives of
the deflection potential, which is a single scalar field. Therefore, the two shear components
cannot be mutually independent if they are due to a gravitational lensing signal. We have
already seen that the measured shear is not guaranteed to satisfy the condition that the two
shear components can be derived from a single scalar deflection potential due to noise and
systematic measurement errors. Therefore, one has introduced the notion of E- and B-modes
in shear measurement. Formally, the E- and B-mode decomposition can be written in terms
of a complex deflection potential ψ(θ) = ψE(θ) + iψB(θ), and thus the surface mass density
and the shear (Eqs.2.49 and 2.50).

The distinction between E- and B-mode shear can be obtained by considering second
partial derivatives of the shear components. Taking the derivative of Eq.(2.50), one obtains

F = ∇∗
cγ = (1/2)

(

ψE
,111 + ψE

,122 − ψB
,112 − ψB

,222

)

+ (i/2)
(

ψE
,112 + ψE

,222 + ψB
,111 + ψB

,122

)

= κE
,1 − κB

,2 + i
(

κE
,2 + κB

,1

)

, (3.10)

which can be expressed in more compact form as

F = ∇c

(

κE + iκB
)

= ∇cκ . (3.11)

A further derivative yields for the components

F1,1 = κE
,11 − κB

,12 ; F1,2 = κE
,12 − κB

,22 ; F2,1 = κE
,12 + κB

,11 ; F2,2 = κE
,22 + κB

,12 . (3.12)

However, it is easier to consider directly the complex derivative of F , from which we obtain

∇∗
cF = ∇∗

c∇∗
cγ = ∇2

(

κE + iκB
)

= F1,1 + F2,2 + i (F2,1 −F1,2) . (3.13)

Thus, if the shear field is a pure E-mode field, ∇∗
c∇∗

cγ is real. An imaginary part of ∇∗
c∇∗

cγ is
due to a B-mode field. This then yields the local distinction between E- and B-mode shear.

Since the flexion has four components, whereas the lens can be described by a single scalar
field, we expect that there are three constraint relations a flexion field has to satisfy if it is
due to a lensing potential. In fact, even if we leave the shear field arbitrary (that is, even if we
allow it to be composed of E- and B-modes), then we expect two constraint equations, since
the flexion field has two components more than the shear field. These constraint equations
are easy to obtain. First, if the flexion field is due to a shear field, then we have

∇c∇∗
cγ = ∇∗

c∇cγ → H := ∇cF −∇∗
cG = 0 , (3.14)

where we defined the spin-2 quantity H. It may describe contributions to the flexion which are
not caused by a shear field, such as due to noise, intrinsic source alignments or higher-order
terms (e.g. lens-lens coupling) in the propagation equation for light bundles. As a spin-2 field,
a non-zero H can be decomposed into its E- and B-modes. If H ≡ 0, then the spin-3 flexion
G is completely determined by the spin-1 flexion F up to an additive constant, as can be best
seen in Fourier space, for which Eq.(3.14) yields Ĝ(ℓ) = −iγ̂(ℓ) ℓ = (ℓ/ℓ∗)F̂(ℓ). Second, if the
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flexion field is solely caused by a gravitational lens effect, i.e., by a pure E-mode shear field,
then ∇∗

cF is real, i.e.,
Fi := ∇∗

cF −∇cF∗ = 0 . (3.15)

Thus, flexion from a pure E-mode shear field is characterized by the three constraint equations
H ≡ 0 and Fi ≡ 0, where the former is a two-component equation.

Turning now to the reduced flexion, the compatibility equations can be obtained as follows.
First, if the flexion is due to a shear field, we have

H := ∇cG1 −∇∗
cG3 = 0 , (3.16)

as follows from the definition Eq.(3.5) of the two flexion components in terms of the reduced
shear. Again, if this equation is satisfied, G3 is completely determined by G1, up to an
additive constant (in Fourier space, Ĝ3(l) = (l/l∗)Ĝ1(l)). Second, if the flexion is caused by
a pure E-mode shear, i.e., if the shear is due to a real surface mass density, then we employ
the quantity ln(1 − κ), which is real and invariant under mass-sheet transformations, up to
an additive constant. Therefore, K2 ≡ −∇∗

c∇c ln(1 − κ) must be real

K2 = ∇∗
c

( ∇cκ

1 − κ

)

= ∇∗
c

[

1

1 − gg∗
(G1 −G∗

1g)

]

=
[∇∗

cG1 − g (∇cG1)
∗]

1 − gg∗
+

(

G2
1g

∗ + gG1G
∗
3 −G1G

∗
1 − g2G∗

1G
∗
3

)

(1 − gg∗)2
, (3.17)

so that a flexion coming from an E-mode shear field satisfies K2 = K∗
2 .

3.2.1 The axially-symmetric case

To illustrate these compatibility relations, an example of axi-symmetric flexion field is shown
here. For that, we introduce polar coordinates (θ, ϕ); hence, in this subsection only, θ is the
radial coordinate, not a complex number. The gradient operators then become

∇c = eiϕ

(

∂

∂θ
+

i

θ

∂

∂ϕ

)

; ∇∗
c = e−iϕ

(

∂

∂θ
− i

θ

∂

∂ϕ

)

.

We first assume that the flexion derives from a shear field, which in the axi-symmetric case
takes the form γ(θ, ϕ) = Γ(θ) e2iϕ. In the case of a pure E-mode shear, Γ(θ) is real, whereas
for pure B-modes, Γ is imaginary. The two flexions then read

F(θ, ϕ) = ∇∗
cγ = eiϕ

(

dΓ

dθ
+

2Γ

θ

)

; G(θ, ϕ) = ∇cγ = e3iϕ

(

dΓ

dθ
− 2Γ

θ

)

. (3.18)

A further differentiation then yields the result that

∇cF = e2iϕ

(

d2Γ

dθ2
+

1

θ

dΓ

dθ
− 4Γ

θ2

)

= ∇∗
cG ,

so that the function H defined in Eq.3.14 vanishes, H ≡ 0.
If flexion does not derive from a shear field, then H 6= 0; for example, this is the case if

∇cF = −∇∗
cG = H/2, which we shall take in the following. Owing to their spin properties,

we can write

F(θ, ϕ) = F (θ) eiϕ ; H(θ, ϕ) = H(θ) e2iϕ ; G(θ, ϕ) = G(θ) e3iϕ ,
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Figure 3.2: The four different flexion fields discussed in the text. The upper left (right) panel
shows the flexion corresponding to an axially-symmetric E-mode (B-mode) shear field, where
arrows indicate the spin-1 flexion and the skeletons the spin-3 flexion component. In the lower
left (right) panel, the flexion fields are displayed which are not due to a shear field, but a
non-zero E-mode (B-mode) F field.
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which then leads to the differential equations

dF

dθ
− F

θ
=
H

2
;

dG

dθ
+

3G

θ
= −H

2

with the solutions

F (θ) =
F0θ

θ0
+
θ

2

∫ θ

θ0

dθ′
H(θ′)

θ′
; G(θ) =

G0θ
3
0

θ3
− 1

2θ3

∫ θ

θ0

dθ′ θ′3H(θ′) , (3.19)

where F0 and G0 are constants of integration. In case of a singular isothermal sphere with
Einstein radius θE, one then has

γ = −1

2

θE
θ

e2iϕ ; F = −1

2

θE
θ2

eiϕ ; G =
3

2

θE
θ2

e3iϕ . (3.20)

A further differentiation then shows that

∇cF =
3

2

θE
θ3

e2iϕ = ∇∗
cG ,

again confirming that H = 0. The corresponding case for a B-mode shear field is obtained by
multiplying all expressions in Eq.(3.20) by eiπ/2 = i.

To obtain a similar example for the case that flexion is not derived from a shear field, a
particular mode for H is chosen here

H =
3θE
θ3

e2iϕ .

By appropriately choosing the integration constants in Eq.(3.19), the flexions then become

F = − θE
2θ2

eiϕ ; G = −3θE
2θ2

e3iϕ . (3.21)

Thus, the flexion fields are very similar to those given in Eq.(3.20), except that the relative
signs are different. A graphical illustration of the different cases is provided in Fig. 3.2.

3.3 Critical curves and caustics

As mentioned before, the lensing equation Eq.(3.2) can give rise to multiple images. If the
flexion is sufficiently small, all but one of these multiple images will be located at a large
distance from the origin, and the central image of an extended source will be isolated. In this
case, this central, or primary image (from which we measure shear or flexion) is not crossed
by a critical curve, and thus the source is not crossed by a caustic. The multiple images at
large distances from the origin then result from the low-order Taylor expansion of the lens
equation, which most likely breaks down at these image positions. These additional images
are thus of no relevance. However, if the flexion becomes sufficiently large, or the source is
large enough, the multiple images of an extended source will merge. If that happens, the
shear or flexion cannot be measured, the whole concept will break down. This can be easily
seen by considering the caustic curve cutting the source. Different parts of the source will
be mapped onto a different number of image points in the lens plane, and the caustic curve
introduces a direction into the situation. Hence, the assumption of an isotropic orientation of
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sources can no longer be employed. Mathematically, the Jacobian determinant detA of the
lens equation will change sign over the image. In short, the condition that the central image
is isolated (so that locally no multiple images occur) can be expressed solely by the products
GnΘs, where Θs stands for the size of the source. These products approximately measure the
fractional change of the reduced shear across the image of a source.

To find the principal limits of the applicability of the flexion formalism, the full Jacobian
needs to be derived, which can easily be obtained from considering θ and θ∗ as independent
variables, and then use ∂/∂θ1 = ∂/∂θ + ∂/∂θ∗, ∂/∂θ2 = i (∂/∂θ − ∂/∂θ∗), which can be
inverted to yield ∂/∂θ = ∇∗

c/2, ∂/∂θ
∗ = ∇c/2. With these relations, one finds that detA =

(∂β/∂θ)(∂β∗/∂θ∗) − (∂β/∂θ∗)(∂β∗/∂θ) = (∇∗
cβ∇cβ

∗ −∇cβ∇∗
cβ

∗) /4. Carrying out these
derivatives, the Jacobian becomes

detA = 1 − gg∗ − η∗θ − ηθ∗ +A∗θ2 +Bθθ∗ +A(θ∗)2 , (3.22)

with

A = 4
(

Ψ2
1 − Ψ∗

1Ψ3

)

; B = 4 (Ψ1Ψ
∗
1 − Ψ3Ψ

∗
3) ; η = 4Ψ1 + 2gΨ∗

1 + 2g∗Ψ3 . (3.23)

Note that A is a spin-2 quantity, whereas B is a real scalar, i.e., has spin-0. In the generic case,
the critical curves (detA = 0) are conical sections, which may be degenerate, though. We will
now perform a complete classification of cases that can occur, as well as to derive the critical
curve(s) in parametric form; the caustics are then obtained by inserting the parametric form
of the critical curves into the second-order lens equation. As we shall see, the type of conical
section is determined, amongst other parameters, by the discriminant

∆ = B2 − 4AA∗ . (3.24)

3.3.1 Zero discriminant

We start with the case that ∆ = 0, which implies B2 = 4AA∗, or B = ±2|A|. The case
A = 0 = B either implies that Ψ1 = 0 = Ψ3, in which case also η = 0 so that no critical
curves occur, or that Ψ3 = Ψ2

1/Ψ
∗
1, for which η 6= 0 in general. In this case, the critical curve

is a straight line, satisfying η∗θ + ηθ∗ = 1 − gg∗. As can be seen by inspection, it reads

θ =
1 − gg∗

2η∗
+ iλη , −∞ < λ <∞ . (3.25)

If A 6= 0, the phase of A is defined. Since it is a spin-2 quantity, we write A = |A| e2iϕA .
Furthermore, we introduce the rotation θ = x eiϕA . Then the equation detA = 0 for the
critical curve reads, after dividing Eq.(3.22) by |A|,

(x± x∗)2 = ν∗x+ νx∗ +
gg∗ − 1

|A| , with ν =
η e−iϕA

|A| , (3.26)

and the sign on the left-hand side of the equation depends on the sign of B, where we used
B = ±2|A|. The parametric form of the critical curve, which takes the form of a parabola,
can then be written as

θ =
2eiϕA

(ν∗ − ν)

(

2λ2 − λν +
1 − gg∗

2|A|

)

; θ =
2eiϕA

(ν∗ + ν)

(

1 − gg∗

2|A| − iλν − 2λ2

)

, (3.27)

where the first (second) equation applies for B > 0 (B < 0). Note that the parabola de-
generates into a straight line if ν is real (for B > 0) or purely imaginary (for B < 0).
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Figure 3.3: The critical curves (right-hand panel) and caustics (left-hand panel) of the lens
equation (Eq.3.6) for the cases of elliptical critical curves. The parameters chosen here are
g = 0.05, G1 = 0.015 + 0.035i, G3 = 0.19 + 0.105i. A circular source is mapped onto four
images, as indicated. If the source size were increased, it would hit the caustic, three images
would merge, and the flexion concept would break down. The unit of the reduced flexion is
the inverse of the unit in which coordinates are measured
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Figure 3.4: Same as Fig. 3.3, but for the parabolic case, with parameters g = 0.05, G1 = −0.04,
G3 = 0.112
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Figure 3.5: Same as Fig. 3.3, but for the hyperbolic case, with parameters g = 0.05, G1 =
0.07 + 0.015i, G3 = 0.03 + 0.005i

3.3.2 Non-zero discriminant

If ∆ 6= 0, we can perform a translation to eliminate the linear term in detA. Hence we define
θ = θ0 + ϑ and choose θ0 such that terms linear in ϑ vanish. We then obtain for θ0 and for
the critical curve condition

θ0 =
Bη − 2Aη∗

∆
; A∗ϑ2 +Bϑϑ∗ +A(ϑ∗)2 = C , (3.28)

with

C =
Bηη∗ −A(η∗)2 −A∗η2

∆
+ gg∗ − 1 = − 1

∆
(gA∗ + g∗A+B)2 =: − 1

∆
V 2 , (3.29)

where the second step was obtained by inserting the expression for η in terms of the Ψ’s, and
in the final one we defined V as the expression in the parenthesis.

As the first case, we consider A = 0 and B 6= 0 (the case A = 0 = B was treated above),
which implies that Ψ1 = 0 and B = −4Ψ3Ψ

∗
3 < 0. The equation for the critical curve then

reduces to B|ϑ|2 = C. Furthermore, ∆ = B2, and C = −1. Thus, the critical curve is a circle
of radius 1/(2|Ψ3|) and center θ0, or θ = θ0 + eiλ/(2|Ψ3|), 0 ≤ λ < 2π.

We now consider the case A 6= 0; then the phase ϕA of A is defined, as used before.
Introducing a rotation by defining ϑ = x eiϕA , the equation for the critical curve becomes

|A|
[

x2 + (x∗)2
]

+Bxx∗ = (B + 2|A|) x2
1 + (B − 2|A|) x2

2 = C . (3.30)

The presence and topology of critical curves now depends on the signs of ∆ and C. We first
consider the case C = 0; then, if ∆ > 0, no critical curves occur, except for the isolated
point x = 0. If ∆ < 0, the critical curves are two straight lines, as can be obtained from
Eq.(3.28): inserting the ansatz ϑ = λ eiζ , one obtains e2i(ζ−ϕA) = (−B± i

√
−∆)/(2|A|). Thus,
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the critical curves are parameterized as

θ = θ0 + λ eiϕA

√

−B ± i
√
−∆

2|A| ; −∞ < λ <∞ . (3.31)

For the case of C 6= 0, the consideration of Eq.(3.30) yields the result that for ∆ < 0, the
critical curves consist of two hyperbolae. From Eq.(3.29) we see that negative ∆ implies
C > 0. Also note that ∆ < 0 implies that 2|A| − B > 0, 2|A| + B > 0. The critical curves
then read

θ = θ0 +
eiϕA V√
−∆

(

± coshλ
√

2|A| +B
+ i

sinhλ
√

2|A| −B

)

; −∞ < λ <∞ . (3.32)

For the other case, ∆ > 0, we find from Eq.(3.29) that C < 0. If B ± 2|A| > 0, we then
see from Eq.(3.30) that no critical curves exist. If B ± 2|A| < 0, which in particular implies
B < 0, the critical curve is an ellipse parameterized as

θ = θ0 +
eiϕA V√

∆

(

cos λ
√

−2|A| −B
+ i

sinλ
√

2|A| −B

)

; 0 ≤ λ < 2π . (3.33)

This concludes the classification of critical curves of the lens equation (Eq.3.6). The caustics
are obtained by inserting the parameterized form of the critical curves into the lens equation.
In order to see whether a critical curve cuts through the primary image of a circular source
of outer isophotal radius Θs, one can calculate the minimum value βmin of |β(λ)| along the
caustics, or control the sign of the Jacobian determint. If βmin > Θs, the image is not cut
by a critical curve. When the source size becomes too large, some points in the image will
have a negative Jacobian. For an elliptical critical curve, the maximum source size allowed is
βmin. In the cases where two critical curves exist (e.g., two straight lines or hyperbolae), the
situation is slightly more complicated. Consider, e.g., the case of two straight critical curves.
Only those sections of them that are closer to the origin are relevant for this consideration,
since if the primary image of the source is not cut by these closer sections of critical curves,
it will still be an isolated image; the caustics coming from the outer sections of the critical
curves correspond to multiply imaged source sections of secondary images. Accounting for this
complication, the limit of sources size and reduced flexion have been obtained. Some examples
of this are plotted in Fig. 3.6. Each panel shows the dividing line between parameter pairs
(G1Θ, G3Θ) for a circular source of limiting isophotal radius Θ; below the curves, no local
multiple images occur, whereas for parameter pairs above the lines, the shear and flexion
formalism breaks down. The different lines in each panel correspond to different values of g.

3.4 Flexion measurement

The estimation of flexion on real images is difficult even without the PSF effect or noise, since
there is no simple mathematical form to quantify what a ‘flexioned’ image is. Nevertheless,
there are two methods which are developed from shear measurement to estimate flexion, i.e.
shapelets and brightness moments.
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Figure 3.6: Constraints on the combination of source size and reduced flexion for the validity
of the concept of flexion. Each curve shows the dividing line between a circular source of
limiting isophote Θ being cut by a caustic (above the curve) or not (below the curve); in the
former case, the assumptions underlying the flexion concept break down. The different curves
in each panel are for different values of g, chosen as g = 0.4, 0.2, 0.1, 0.05, 0, as indicated by
different line types. Without loss of generality, we choose g to be real and non-negative. The
four panels differ in the phase of the reduced flexion, as indicated. E.g., in the upper left
panel, the phases of G1, G3 are the same as that of g
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3.4.1 Shapelets

A measurement of flexion ultimately requires very accurate knowledge of the distribution
of light in the image. The shapelets decompose image into shapelet coefficients with 2D
orthogonal basis functions. This technique has natural advantages. In the absence of a PSF,
all shapelet coefficients will have equal noise. Moreover, the basis set is quite localized, and
thus is ideal for modeling galaxies. And the generating ‘step-up’ and ‘step-down’ operators
for the Hermite polynomials are simply combinations of derivatives (Refregier & Bacon 2003;
Goldberg & Bacon 2005).

Here I only briefly introduce the shapelet method in polar coordinates. In Massey et al.
(2007b), a polar shapelet approach was introduced to measure flexion, in which the flexion
operators F̂ and Ĝ are much simpler than corresponding expressions in Cartesian shapelet
space. The observed image of galaxy f(r, θ) can be decomposed into a sum of orthogonal 2D
basis functions χn,m(r, θ) weighted by shapelet coefficients fn,m

f(r, θ) =

∞
∑

n=0

n
∑

m=−n

fn,mχn,m(r, θ). (3.34)

The basis functions are described in Massey & Refregier (2005); Bernstein & Jarvis (2002).
They are Laguerre polynomials in r multiplied by sines and cosines in θ, and a circular
Gaussian of width β. (Only in this shapelet section, (r, θ) are polar coordinates, and β is
the scale size. ) This scale size is chosen to match the observed size of each galaxy. The
shape of each galaxy can then be completely described by the array of its shapelet coefficients
fn,m. These are complex numbers, with fn,−m = f∗n,m. The indices n and m correspond to
the numbers of radial and tangential oscillations respectively: n can take any non-negative
integer, and m can take any integer between −n and n, in steps of two. The expansion surely
must be truncated to some nmax. The galaxy image flux can be written as

F =

∫ ∫

f(r, θ) rdr dθ = β
√

4π
∑∑

fn,m, (3.35)

and the galaxy size

R2 =
1

F

∫ ∫

r2f(r, θ) rdr dθ =
β3

√
16π

F

∑∑

(n+ 1)fn,m, (3.36)

where the summation is only over some specific conditions.

The action of the flexion operators F̂ and Ĝ can be determined in polar shapelet space,
and formally are written as

F̂ : fn,m → f ′n,m = fn,m + Fβ
∑

fn−i,m−j + F∗β
∑

fn−i,m−j;

Ĝ : fn,m → f ′n,m = fn,m + Gβ
∑

fn−i,m−j + G∗β
∑

fn−i,m−j, (3.37)

where f ′n,m are the coefficients for the unlensed galaxy and fn,m are those for the lensed
galaxy. Again the summation is over the specific conditions and fn−i,m−j stands for all these
coefficients that are needed to describe flexion. These operators are illustrated graphically in
Fig. 3.7. To account for the centroid shift correction, i.e. the shift of the center of f(r, θ) and
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Figure 3.7: The mixing of polar shapelet
coefficients under weak lensing transforma-
tions. If a galaxy initially contains power
in its f6,0 coefficient, it will contain addi-
tional power in f4,±2 and f8,±2 after shear.
After both types of flexion, it will con-
tain additional power in eight shapelet co-
efficients, as illustrated. The directions in
which power moves between adjacent co-
efficients are the same for a given opera-
tor wherever there are non-zero coefficients
across shapelet space, although the amount
of mixing varies. Wherever the pattern
would seem to couple coefficients that do not
exits, the amount of mixing is zero. Figure
is from Massey et al. (2007b).

f ′(r, θ), the real flexion operator used for estimation is

F̂T ≡ F̂ − T̂

(

R2

4β
(6F + 5F∗ǫ)

)

;

ĜT ≡ Ĝ − T̂

(

R2

4β
Gǫ∗
)

, (3.38)

where T̂ is the centroid shift operator. Finally the flexion estimator is given by

FT =
4β

3

f1,1

(β2 −R2)f0,0 +R2f2,0 − β2f4,0
;

GT =
4
√

6

3β

f3,3

f0,0 + f2, 0 − f4,0 − f6,0
. (3.39)

For the detail about polar shapelet for flexion measurement, the reader is referred to Massey
et al. (2007b).

The shapelets analysis can produce a good decomposition, and is convenient for the flexion
measurement. However, to find the best fit scaling parameter β requires large amount of
computational time. This may be a significant limitation of shapelets for large lensing field
application.

3.4.2 Brightness moments/ HOLICs

Apart from shapelets, the brightness moment approach provides a more intuitive picture of
the effects of flexion. In Okura et al. (2007), an approach named HOLICs (Higher-Order
Lensing Image characteristics) was developed to measure flexion, which is very similar to the
brightness moments method. In Schneider & Er (2008), the mass-sheet degeneracy was taken
into account, and the estimators for reduced flexion by brightness moments is obtained.
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The image of a source denote the brightness distribution by Is(β). Since surface brightness
is conserved by lensing, the brightness distribution of the image is I(θ) = Is(β(θ)). Since the
scaling of the source is unobservable, the following is shown in terms of the scaled source
plane coordinates, and therefore drop the hat on β and A (Eq.3.6, 3.9).

Recall the definition of brightness moment for a function of the source coordinate F (β)
(Eq.2.25)

Mom[F (β)] =

∫

d2β F (β) Is(β) =

∫

d2θ detA(θ)F (β(θ)) I(θ) (3.40)

≈
∫

d2θ (1 − gg∗ − η∗θ − ηθ∗) F (β(θ)) I(θ) , (3.41)

where here and in the following, we use the linear approximation for detA.
The centroid shift correction of the source image is important for the flexion measurement.

In particular, the first flexion is a spin-1 quantity, and so is the centroid shift, thus the centroid
shift directly affect the measurement result of the spin-1 flexion. The centroid shift is defined
as

β̄ =
1

S0

∫

d2β β Is(β) (3.42)

=
1

S (1 − gg∗)

∫

d2θ (1 − gg∗ − η∗θ − ηθ∗)
[

θ − gθ∗ − Ψ∗
1 θ

2 − 2Ψ1 θθ
∗ − Ψ3 (θ∗)2

]

I(θ) ,

where S/S0 are the flux of the lensed/unlensed image. Expanding the integrand, we note
that terms linear in θ vanish, due to Eq.(2.26). The second-order brightness moments of the
image in the form is defined in Chapter 2

Q2 ≡ 1

S

∫

d2θ θ2 I(θ) ; Q0 ≡ 1

S

∫

d2θ θ θ∗ I(θ) . (3.43)

The source centroid shift can be written in terms of second-order brightness moments

β̄ =
3G1g

∗ − 5G∗
1 − 2gG∗

3

4(1 − gg∗)
Q2 +

4gG∗
1 + g2G∗

3 −G3g
∗ −G1(3 + gg∗)

2(1 − gg∗)
Q0

+
5gG1 − 3g2G∗

1 − (1 − 3gg∗)G3

4(1 − gg∗)
Q∗

2 . (3.44)

We now write these equations in a more compact form; for this, we define the matrix G by
GT = (G∗

3, G
∗
1, G1, G3), where the ‘T’ denotes the transpose of the matrix. Then,

β̄ = BG , (3.45)

where the coefficients of B = (b1, b2, b3, b4) are given by

b1 =
g2Q0 − gQ2

2(1 − gg∗)
; b2 =

8gQ0 − 5Q2 − 3g2Q∗
2

4(1 − gg∗)
;

b3 =
3g∗Q2 − 2(3 + gg∗)Q0 + 5gQ∗

2

4(1 − gg∗)
; b4 =

(3gg∗ − 1)Q∗
2 − 2g∗Q0

4(1 − gg∗)
. (3.46)

The centroid shift in the source plane is thus given by the product of the derivatives of the
reduced shear (expressed by G1 and G3) and the area of the image, which is proportional to
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Q0 and Q2. Of course, since the reduced shear and its derivatives are not directly observable,
the centroid shift is unobservable as well. To get an order-of-magnitude estimate of β̄, we
assume that the source has a linear angular size Θs, consider the reduced shear to be of order
unity, and let Θc be the angular scale on which the reduced shear varies. Then,

Gn = O
(

1

Θc

)

; Qn = O
(

Θ2
s

)

⇒ β̄ = O
(

Θ2
s

Θc

)

. (3.47)

The second-order brightness moments of the source is defined as Qs
2 = Mom[(β−β̄)2]/S0 =

Mom[β2]/S0 − β̄2 and Qs
0 = Mom[(β − β̄)(β − β̄)∗]/S0 = Mom[ββ∗]/S0 − β̄β̄∗. By defining

the third-order brightness moments of the image through

T3 ≡ 1

S

∫

d2θ θ3 I(θ) ; T1 ≡ 1

S

∫

d2θ θ2 θ∗ I(θ) , (3.48)

we obtain

Qs
2 = Q2 − 2gQ0 + g2Q∗

2 +
8gG∗

1 − (4 + 3gg∗)G1 − g∗G3 + 2g2G∗
3

2(1 − gg∗)
T1

+
(7 + gg∗)gG1 − 7g2G∗

1 + (3gg∗ − 1)G3 − g3G∗
3

2(1 − gg∗)
T ∗

1

+
2g∗G1 − 3G∗

1 − gG∗
3

2(1 − gg∗)
T3 +

(1 − 2gg∗)gG3 − 3g2G1 + 2g3G∗
1

2(1 − gg∗)
T ∗

3 − β̄2 , (3.49)

Qs
0 = −g∗Q2 + (1 + gg∗)Q0 − gQ∗

2 +
6g∗G∗

1 + (3gg∗ − 1)G∗
3 − 4g∗2G1

4(1 − gg∗)
T3

+
2g∗2G3 + (11 + 3gg∗)g∗G1 − (7 + 9gg∗)G∗

1 − (1 + 3gg∗)gG∗
3

4(1 − gg∗)
T1

+
2g2G∗

3 + (11 + 3gg∗)gG∗
1 − (1 + 3gg∗)g∗G3 − (7 + 9gg∗)G1

4(1 − gg∗)
T ∗

1

+
6gG1 − 4g2G∗

1 − (1 − 3gg∗)G3

4(1 − gg∗)
T ∗

3 − β̄β̄∗ (3.50)

Note that Qs
0 is real. In a more compact notation, Eq.(3.49) reads

Qs
2 = Q2 − 2gQ0 + g2Q∗

2 +AG − β̄2 , (3.51)

where the matrix A = (a1, a2, a3, a4) has coefficients

a1 =
−g3T ∗

1 + 2g2T1 − gT3

2(1 − gg∗)
; a3 =

−3g2T ∗
3 + g(7 + gg∗)T ∗

1 − (4 + 3gg∗)T1 + 2g∗T3

2(1 − gg∗)
;

a2 =
2g3T ∗

3 − 7g2T ∗
1 + 8gT1 − 3T3

2(1 − gg∗)
; a4 =

g(1 − 2gg∗)T ∗
3 − (1 − 3gg∗)T ∗

1 − g∗T1

2(1 − gg∗)
.(3.52)

In order to get estimators for flexion, we write down the third-order brightness moments
of the source, separated into a spin-3 and a spin-1 component,

T s
3 =

Mom[
(

β − β̄
)3

]

S0
=

Mom[β3]

S0
−3β̄

Mom[β2]

S0
+3β̄2 Mom[β]

S0
−β̄3 =

Mom[β3]

S0
−3β̄Qs

2−β̄3 ,

(3.53)
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where we used that Mom[β2]/S0 = Qs
2 + β̄2 and Mom[ββ∗]/S0 = Qs

0 + β̄β̄∗. Similarly, we
obtain

T s
1 =

Mom[
(

β − β̄
)2

(β∗ − β̄∗)]

S0
=

Mom[β2β∗]

S0
− 2Qs

0β̄ −Qs
2β̄

∗ − β̄2β̄∗ . (3.54)

Defining the fourth-order brightness moments of the image by

F0 =
1

S

∫

d2θ (θθ∗)2I(θ) ; F2 =
1

S

∫

d2θ θ3θ∗ I(θ) ; F4 =
1

S

∫

d2θ θ4 I(θ) , (3.55)

where Fn is a spin-n quantity, we obtain for the third-order moments of the source:

T s = τ + C G + O(β̄3) , (3.56)

where the matrix T s is defined by its transpose T s,T = (T s∗
3 , T s∗

1 , T s
1 , T

s
3 ). The elements of τ

are

τ1 = T ∗
3 − 3g∗T ∗

1 + 3g∗2T1 − g∗3T3 ; τ2 = −gT ∗
3 + (1 + 2gg∗)T ∗

1 − g∗(2 + gg∗)T1 + g∗2T3 ;

τ3 = τ∗2 ; τ4 = τ∗1 , (3.57)

where the last two relations are obvious. The 4×4 matrix C is given explicitly in AppendixB;
each of its elements consists of a sum of terms proportional to fourth-order brightness mo-
ments, Fn, and terms proportional to squares of second-order brightness moments. Okura
et al. (2007a) and Goldberg & Leonard (2007) have derived expressions similar to Eq.(3.56),
though using a number of simplifying assumptions (such as |g| ≪ 1) and not considering the
reduced flexion.

There are a large number of terms in Eq.(3.56), and there is no need to take all of them
into account for the flexion estimator. Therefore the order-of-magnitudes of the various
terms appearing in Eq.(3.51) and Eq.(3.56) need to be considered. Assuming that the third-
order moments of the sources are small, then the third-order moments of the image are
given by the product of C and G. With G = O (1/Θc) and C = O

(

Θ4
s

)

, we find that
T = O

(

Θ4
s/Θc

)

= O
(

Θ3
s

)

(Θs/Θc). To get an estimate of the size of the various terms in
Eq.(3.51), we note that the first three terms on the right-hand side (those proportional to the
Qn) are of order O

(

Θ2
s

)

, whereas AG = O
(

Θ4
s/Θc

)

O (1/Θc) and β̄2 = O
(

Θ4
s/Θ

2
c

)

. Hence,
the last two terms are of equal magnitude in general, each of them being smaller than the first
three terms by a factor (Θs/Θc)

2. Only if the source is of the same order as the scale over
which the reduced shear varies do the last two terms in Eq.(3.51) contribute. In Eq.(3.56),
we have neglected the terms β̄3, since they are two powers of (Θs/Θc) smaller than the terms
written down.

3.4.3 Reduced shear and flexion estimates

Eq.(3.56) is a linear equation for G, which can thus be solved,

G = C−1 (T s − τ) . (3.58)

Inserting this into Eq.(3.51) then yields

Qs
2 = Q2 − 2gQ0 + g2Q∗

2 + AC−1 (T s − τ) − (BG)2 . (3.59)
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We are thus left with a single complex equation for g, which contains the observable brightness
moments of the image, as well as the unobservable brightness moments of the source. This
equation can be used to estimate the reduced shear if we make assumptions concerning the
properties of the source brightness moments. We assume that the sources are oriented ran-
domly, which implies that all quantities with spin unequal zero have a vanishing expectation
value. That is, we set Qs

2 = 0, T s = 0, to arrive at

Q2 − 2gQ0 + g2Q∗
2 = AC−1τ +

(

BC−1τ
)2

=: Y (g) , (3.60)

where we have indicated that the right-hand side depends on the reduced shear (in fact it
does so in a very complex manner). However, since we have argued above that the terms on
the left-hand are much larger than those on the right-hand side, an iterative solution of this
equation is suggested. Assume the right-hand side is given, then we get the solutions

g =
χ

|χ|2

(

1 ±
√

1 − |χ|2 +
Y χ∗

Q0

)

, where χ =
Q2

Q0
(3.61)

is the complex ellipticity of the image. Obviously, there are two solutions g for a given value
of Y . This situation is similar to that of ‘ordinary’ weak lensing, where this ambiguity also
occurs: as shown by Schneider and Seitz (1995), from shape measurements of background
galaxies, one cannot distinguish locally between an estimate g and 1/g∗ = g/|g|2. The
same occurs here; we therefore assume that we pick one of the two solutions, say the one
corresponding to the ‘−’ sign; this then yields for small shear g ≈ χ/2. It should be stressed
that flexion impacts the determination of shear from the second-order brightness moments,
due to its impact on higher-order brightness moments; hence, in general the determination of
shear and flexion are coupled.

We start the iteration by setting Y0 = 0. This yields a first-order solution for the estimate
of g,

g0 =
χ

|χ|2
(

1 −
√

1 − |χ|2
)

. (3.62)

We then use the iteration equations

Yn = Y (gn−1) ; gn =
χ

|χ|2

(

1 −
√

1 − |χ|2 +
Ynχ∗

Q0

)

. (3.63)

This procedure converges quickly to one of the two solutions (g,G1, G3); the other solution is
obtained by taking the ‘+’ sign in the above equations.

Of course, our approach of setting Qs
2 = 0 yields a biased estimator for g; this is true

even in the absence of flexion (e.g., Schneider & Seitz 1995). The reason is that, although
the expectation value of Qs

2 vanishes, the resulting estimator for g is a non-linear function of
χs = Qs

2/Q
s
0 and thus biased. The bias depends on the ellipticity distribution of the sources.

It should be stressed, however, that a modified definition of image ellipticity exist such that
its expectation value is an unbiased estimate of the reduced shear (Seitz & Schneider 1997).

The flexion estimator is given by Eq.(3.58). Since the matrix C contains many terms,
this is a fairly complicated equation in general. A simpler estimate is obtained if we assume
that the reduced shear is small, |g| ≪ 1, in which case the matrix C simplifies considerably
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– see AppendixB. Furthermore, if we assume that the brightness moments of spin 6= 0 are
much smaller than the corresponding ones with spin 0, then we find the simple relations

T s
1 ≈ T1 −

9F0 − 12Q2
0

4
G1 ; T s

3 ≈ T3 −
3F0

4
G3 . (3.64)

If we then set the T s
n = 0, as would be true for the expectation value, then we obtain as

estimates for the reduced flexion

G1 ≈ 4

9F0 − 12Q2
0

T1 ; G3 ≈ 4

3F0
T3. (3.65)

Thus, the flexion is then given by the third-order brightness moments of the image, divided
by a quantity that just depends on the size of the image. Similar relations to Eq.(3.65) have
been given in Goldberg & Leonard (2007) and Okura et al. (2007a).

3.4.4 Accuracy of brightness moment estimators

Some simulations were performed in order to test the behavior of the estimators by brightness
moments (Eq.3.65). We model the sources as elliptical Gaussians, truncated at three times
the scale ‘radius’ Θs chosen such that the area of a source is independent of its ellipticity. The
ellipticity of the sources follows a Gaussian distribution, with a dispersion of χs of R = 0.4
(i.e., we use the same ellipticity distribution as in Schneider & Seitz 1995). However, the
intrinsic ellipticity distribution is truncated at |χs| ≤ 0.9, since in the limit of |χs| → 1, there
will be orientation angles for which the source will hit a caustic. For each source, we map a
grid of pixels from the lens plane to the source plane using the lens equation to obtain the
brightness distribution in the lens plane. From this distribution, the brightness moments of
the image are measured. A shift in the lens plane coordinates is applied as to satisfy Eq.(2.26).
We then apply the shear and flexion estimators described above to the resulting brightness
moments Qn, Tn and Fn. The shear and flexion estimates are then averaged over the Gaussian
ellipticity distribution of the sources, in particular over their random orientation.

It should be noted that flexion is a dimensional quantity ∝ Θ−1
c . As can be checked

explicitly from its definition, the way flexion appears in the equations is always with one
order higher in the source (or image) size than the other terms in the equations. As an
example, we consider Eq.(3.56); the left-hand side and the first term on the right-hand side
are ∝ Θ3

s , whereas the coefficients of the matrix C ∝ Θ4
s . This then implies that the accuracy

of the flexion estimates does not depend on the magnitude of the flexion and the source
size individually, but only on the product GnΘs. Therefore, the following results are quoted
always in terms of this product.

We now present some results of our numerical simulation regarding the accuracy with
which the reduced shear and flexion can be obtained with our moment approach. For given
input values of g, G1 and G3, we either measure the brightness moments for a single circular
source, or average the results over an ellipticity distribution, as described above. It should
be noted that we have to deal with a 5-dimensional parameter space, namely the 3 complex
parameters g, G1 and G3, minus one overall phase that can be chosen, e.g., to make g real
and positive. Thus, instead of sampling the parameter space comprehensively, we only give a
few selected results.

We start by considering a circular source, and determine the effect of flexion on the
determination of the reduced shear. The left-hand panel of Fig. 3.9 shows contours of constant
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fractional deviation ∆g/g, in the flexion parameter plane. Here it is assumed that the phase
of both flexion components is the same as that of g (as would be the case in an axially-
symmetric lens potential). Errors of order 5% occur already for

√

|G2
1 +G2

3|Θs ∼ 0.03, and
the fractional error increases approximately linearly with the strength of flexion (or with the
source size), although it does not scale equally with both flexion components. The reason for
this effect has been mentioned before – flexion affects the transformation between source and
image quadruple moments, as can be seen in Eq.(3.49).

In Fig. 3.8, we show the expectation value of the reduced flexion components, as a function
of the input flexion. The expectation value has been determined by averaging over an isotropic
ensemble of elliptical sources, as described before. The left and right panel show the behavior
of the expectation value of G1 and G3, respectively, where the other flexion component was
set to zero. The dashed curve shows the identity, the plus symbols were obtained by using the
approximate estimator Eq.(3.65), whereas the crosses show the expectation values as obtained
by employing the full expression Eq.(3.58), where the corresponding value of g was obtained
by the iterative process described in last section. It is reassuring that the expectation value
closely traces the input value, i.e., that the estimates have a fairly small bias. Furthermore,
we see that the approximate estimator Eq.(3.65) performs remarkably well. It is seen that the
estimates for G3 behave better than those for G1. This can also be seen from the right-hand
panel of Fig. 3.9, where we plot contours of constant fractional error

∆G :=

√

∣

∣

∣

∣

∆G1

G1

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∆G3

G3

∣

∣

∣

∣

2

, (3.66)

where ∆Gn is the deviation of the estimate of Gn from its input value. For simplicity, we have
assumed a circular source. We see that the accuracy decreases much faster with increasing
G1 than with increasing G3.

In addition, the moment approach for flexion as presented in this chapter must be modified
in several ways to be applicable to real data. First, brightness moments must be weighted in
order to not be dominated by the very noisy outer regions of the image. As is known from
shear measurements, such a weighting affects the relation between source and image brightness
moments. Secondly, one needs to account for the effects of a point spread function. I will
present a preliminary result on that in Appendix A.

A word on the two approaches of flexion measurement. In Goldberg & Leonard (2007),
the Cartesian shapelets and the HOLICs are compared. And they give similar measurement
errors at fixed sky noise. However, there is strong correlation of the errors for spin-1 flexion
by the two approaches and much lower correlation for spin-3 flexion. The two techniques have
different response to the signal, and thus noise. In other words, the two techniques may mea-
sure ‘different’ spin-3 flexion. One might ask, which one is better? This is a difficult question
(at least you cannot trust the people who is in shapelets or brightness moment neither). It
may turn out that the shapelet is more convenient with measurement and PSF corrections,
the moment approach provides a more intuitive picture of the effects of flexion. Besides, the
shapelets approach is very expensive in computing time. The shapelet decomposition runs
several orders of magnitude slower than HOLICs. For large lensing survey, this may be a
limitation of shapelets.
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Figure 3.8: Comparison of the reduced flexion estimators Eq.(3.65) with the full expression
Eq.(3.58) and the input value. The horizontal and vertical axis show GiΘs, i = 1, 3. For both
panels, we take g = 0.05, and G3 = 0 (G1 = 0) for the left (right) panel. The line indicates
the input value, the plus symbols show the simplified reduced flexion estimate Eq.(3.65), and
the crosses result from the full expression of reduced flexion Eq.(3.58). As can be seen from
the left-hand panel, the full estimator for the reduced flexion yields a more biased result that
the approximate expression Eq.(3.65); we have not found a reasonable explanation for this
behavior

Figure 3.9: Accuracy of the estimates for reduced shear and flexion. The left panel shows
contour of constant fractional error of 5%, 10% and 15%, on the estimate of the reduced shear
g, as a function of GiΘs, where we chose g = 0.05 as input value, and assumed the phases
of G1, G3 to be the same as that of g. The estimate was obtained by solving the iteration
equations given in Sect. 3.4.3. The right panel shows the fractional error levels at 3, 5, and
10% for the reduced flexion, as quantified by Eq.3.66, where the estimate was obtained again
with the iterative procedure. In both cases, we assumed circular sources
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Chapter 4

Mass reconstruction of galaxy
clusters

Galaxy clusters have been the focus of a very intense ongoing research in the past decades,
since they are the most massive bound structures in the universe. Moreover, a cluster contains
hundreds or thousands of galaxies, which do not cover a large fraction of cluster mass. The
galaxy clusters thus are believed to be a probe of the matter content of the universe: the
ratio of their luminous mass to their total mass resembles the overall baryonic fraction in
the universe. And this can be measured only if reliable masses of clusters can be obtained.
The gravitational lensing effects offer an excellent tool to study the matter in the universe,
since it is independent of the nature (luminous or dark) or state of the matter. We therefore
can use gravitational lensing to constrain the projected mass distribution of galaxy clusters.
In this chapter, I discuss this problem on how flexion can contribute to the cluster mass
reconstruction.

4.1 Mass reconstruction by flexion

4.1.1 Kaiser-Squires inversion

The 2D projected matter density can be obtained from both flexions F and G (BGTR06)
directly, following the strategy of Kaiser & Squires (1993). The Fourier transform of the
relation Fi = ∂iκ is

F̂1 = −il1κ̂(l); F̂2 = −il2κ̂(l). (4.1)

We can invert both of these terms to obtain an estimate for κ, and perform the similar
calculation for G and κ. An explicit representation for the inversion equations is obtained in
Fourier space

κ̂F (l) = −i
l1F̂1 + l2F̂2

l21 + l22
;

κ̂G(l) = −i
(l31 − 3l1l

2
2)Ĝ1 + (3l21l2 − l32)Ĝ2

(l21 + l22)
2

, (4.2)

for l 6= 0. This provide us with the mass-mapping equations. We measure the flexion field,
take the Fourier transform, calculate κ̂ according to these equations and then take the inverse

57
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Fourier transform to find κ. These mapping relations can be expressed in the complex notation
(BGTR06)

(κE + iκB)F = ∇−2∇∗
cF ;

(κE + iκB)G = ∇−4∇∗
c∇∗

c∇∗
cG, (4.3)

where the imagine part again gives us the B-mode component (Eq.2.49), which can be used
as a test of systematics, and ∇−2 is the 2D inverse Laplacian, the κB field is included as the
complex part of the field.

Now the mass maps can be obtained with independent noise for γ, F and G. Further
we can combine these mass reconstructions κ̂a (a = γ,F ,G) linearly in Fourier space with
minimum noise variance weighting in order to obtain a best mass map (Okura et al. 2007)

κ̂(k) =
ΣaŴκa(k)κ̂a(k)

ΣaŴκa(k)
, (4.4)

where Ŵκa(k) = 1/P
(N)
κa (k). The noise power spectrum P

(N)
κa (k) of a κ map reconstructed

using ath observable is defined as

P (N)
κγ =

P
(N)
γ (k)

2
=

σ2
γ

8πng
;

P
(N)
κF =

P
(N)
F (k)

2k2
=

σ2
F

8πngfk2
;

P
(N)
κG =

P
(N)
G (k)

2k2
=

σ2
G

8πngfk2
, (4.5)

where P
(N)
a (k) is the shot noise power of the ath observable, σa is the intrinsic dispersion of

the ath observable and ng is the surface number density of background galaxies. Here one
should notice that the number density of flexion nrmgf may not be the same as that of shear.

In Okura et al. (2008), the KS inversion flexion mass reconstruction has been put into
use for real data. The cluster A1689 has been analyzed and the central density peaks are
identified which clearly correspond to peaks in galaxy counts (Fig. 4.1).

4.1.2 Finite-field inversion

There is a natural way to use flexion for the finite-field mass reconstructions in weak lensing.
Kaiser (1995) derived a relation between the gradient of K = ln(1 − κ) and combinations of
first derivatives of g

∇K =
−1

1 − gg∗

(

1 − g1 −g2
−g2 1 + g1

)(

g1,1 + g2,2

g2,1 − g1,2

)

≡ u(θ). (4.6)

Here the two components in the second bracket are the real and imagine part of spin-1
reduced flexion. The right side of this equation thus can be obtained from observation. Seitz
& Schneider (2001) formulated the finite-field method from measured reduced shear in terms
of a von Neumann boundary value problem, whose solution determines K up to an additive
constant. Eq.(4.6) can thus be solved by line integration, but different schemes yield different
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Figure 4.1: Image of cluster A1689 (z =
0.183) in the central 4′ × 4′ region, com-
posed of the Subaru/Suprime-Cam V and i’
images. Contours are the lensing κ-field re-
constructed from the spin-1 flexion measure-
ments using the i’-band data with a Gaus-
sian filter of FWHM (= 0′.33). The rms dis-
persion in the Gaussian smoothed B-mode
κ map is obtained as σ ≈ 0.51. The con-
tours are spaced in units of 1σ. The peak
has a value of κE = 2.66, and is detected
at 5.2σ significance. Figure is from Okura
et al. (2008).

results, since the vector field u comes from noisy observations. Moreover, K2 = ∇2K is
determined by the reduced shear and its derivatives, and is given by Eq.(3.17). If flexion
is measured, one can replace the ‘source’ for ∇2K by a weighted sum of the differentiated
reduced shear field and the combination (K2 + K∗

2 )/2 of the flexion field, with the weights
chosen according to the estimated noise properties of both contributions.

4.2 Mass reconstruction by shear and flexion

Although flexion can be used for mass reconstruction equally as shear, one should notice
that flexion is very sensitive to the small-scale variations in the gravitational potential, such
as substructure. Hence, the better way of making use of flexion for mass reconstruction is
combined with shear and even strong lensing information. The idea of this method is similar
with strong and weak lensing united (Bradač et al. 2005b,a), the difference here is that we
also include the flexion information. There is a strong flexion signal near the center of the
cluster and substructures. The result shows that flexion can significantly improve the cluster
mass profile to small radii and resolving of substructure.

4.2.1 The χ2-function

The method is to describe the cluster mass distribution by the deflection potential ψ on a
regular grid field, use the finite differencing method to calculate the deflection angle, the
reduced shear and flexion. All these quantities on the grids considered as a model compare
with data. Our aim is to seek a potential field ψ(θ) that minimizes the difference between
model (g,G1, G3) and data (ǫ, t1, t3). Here t1, t3 stand for the estimators of flexion using
brightness moments. We therefore define a χ2-function

χ2(ψ) = χ2
s(ψ) + χ2

ǫ (ψ) + χ2
f (ψ) + ηR(ψ), (4.7)

χ2
s, χ

2
ǫ(ψ) and χ2

f (ψ) contain the information from strong lensing multiple image system,
shear and flexion, respectively. ηR is a regularization term, which is a function to smooth out
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the small-scale numerical fluctuations. For a multiple image system with Nm images located
at θm, the χ2

s term is well defined by Bradač et al. (2005b)

χ2
s =

∑

Nm
∑

m=1

bTmS
−1bm, (4.8)

where the first
∑

is sum over all strong lens system, and bm = θm − α(θm) − βs. βs is the
average source position, and S is the covariance matrix S = diag(σ2

s1, σ
2
s2), where σs1 and σs2

are the errors on image positions, projected onto the source plane. The shear term χ2
ǫ is

χ2
ǫ =

Ng
∑

i=1

|ǫi − g(θ, zi)|2
σ2

ǫ

, (4.9)

where Ng is the number of background galaxies, and

σ2
ǫ =

(

1 − |g|2
)2
σ2

ǫs + σ2
err, (4.10)

with σǫs ≈ 0.3 is the standard deviation of intrinsic ellipticity of galaxies (Brainerd et al.
1996), σerr is the measurement error, which we take 0.1 in this chapter, and |g| refers to the
reconstructed value.

The flexion term is defined in a way similar to the shear

χ2
f =

Nf
∑

i=1

( |t1i −G1(θi, zi)|2
σ2

t1

+
|t3i −G3(θi, zi)|2

σ2
t3

)

, (4.11)

where the G1,3 are the reduced flexions at position θi and redshift zi in our model. Note that
what we can measure is not flexion but the reduced flexion. There is significant difference
between the reduced flexion and its approximation F/(1−κ) or G/(1−κ) in the region where
the shear is not small. On the other hand, the definition of reduced flexion (Eq.3.5) renders
the χ2

f function (Eq.4.11) complicated and the equations become difficult to solve. We thus
define

G′
1 ≡ F

1 − κ
; G′

3 ≡ G
1 − κ

. (4.12)

From Eq.(3.5) it is easy to obtain

G′
1 =

G1 − gG∗
1

1 − gg∗
; G′

3 = G3 − gG′
1. (4.13)

We thus use corrective estimators for the observed reduced flexion,

t′1 =
t1 − ǫt∗1
1 − ǫǫ∗

; t′3 = t3 − ǫt′1, (4.14)

and replace t1, t3 by t′1, t
′
3 in (Eq.4.11). The flexion term χ2

f is thus redefined as

χ2
f =

Nf
∑

i=1









| Fi

1 − κi
− t′1i|2

σ2
t1′

+
| Gi

1 − κi
− t′3i|2

σ2
t3′









. (4.15)



4.2. MASS RECONSTRUCTION BY SHEAR AND FLEXION 61

Here these σ2
t1′ and σ2

t3′ are different from the dispersion in flexion measurement or intrinsic
flexion variance, which are both difficult to obtain from current observation. In Goldberg &
Leonard (2007), the estimate of the intrinsic scatter of flexion are σa|F| = 0.03 and σa|G| =
0.04, where a is size of the image, thus the combination a|F| represents a dimensionless term.
Hawken & Bridle (2009); Leonard et al. (2009) used a conservative estimate σF = 0.1/′′. Here
we use

σ2
t1′ =

∣

∣

∣

∣

∂G′
1

∂g

∣

∣

∣

∣

2

σ2
ǫ + σ2

t1; σ2
t3′ =

∣

∣

∣

∣

∂G′
3

∂g

∣

∣

∣

∣

2

σ2
ǫ + σ2

t3, (4.16)

where σt1, σt3 are the dispersions of flexion data. The first term on the right is scatter due
to intrinsic ellipticity and shear measurement error.

In principle, the total number of flexion is the same as the number of galaxy images
Nf = Ng. But in reality, not all the 3rd-order brightness moments are measurable, besides
that, we discard the low signal-to-noise images. Thus the number of images from which flexion
can be estimated is usually smaller than the number of galaxy images.

To find the minimum χ2-function, we solve the equations

∂χ2(ψi)

∂ψi
=
∂χ2

s(ψi)

∂ψi
+
∂χ2

ǫ(ψi)

∂ψi
+
∂χ2

f (ψi)

∂ψi
+ η

∂R(ψi)

∂ψi
= 0, (4.17)

which is in general a non-linear set of equations. This problem is solved by an iterative
procedure (Bradač et al. 2005b). We perform a three-level iteration process, start with initial
model κ0 at a fixed regularization, linearize the system (Sect. 4.2.3), solve the linear system of
equations as the inner-level, the steps are repeated until convergence of κ. The middle-level
is to repeat the inner level with new regularization κ from previous step result, until we can
get χ2

red ∼ 1. At last we increase the number of grid points in the field and reperform the
first two level iterations on the new grids with new κ until we reach the final grid size.

For the regularization we choose

R = η

Nx,Ny
∑

i,j=1

(

κ
(n)
ij − κ(n−1)(θij)

)2
, (4.18)

where κ(n) and κ(n−1) are the current and previous resulting κ map in every middle-level.
The parameter η is chosen due to the quality of the data (Bradač et al. 2005b).

For the first step, we can use an initial model κ(0) which is obtained from other methods,
or simple set κ(0) = 0 across the whole field.

4.2.2 Grid point potential field

Finite differencing techniques (Abramowitz & Stegun 1972) provides a way to calculate κ and
γ on the potential ψ grid field. We need 9 grid points for second order quantities κ and γ,
and 16 points for flexion. But by using 4× 4 points, we obtain the flexion value at the center
of the grid. Thus we increase to 5×5 points to get the flexion value at the grid. For instance,

F1(i, j) =
1

12∆3

+2
∑

∆i,∆j=−2

W∆i,∆j
ψ(i + ∆i, j + ∆j), (4.19)

where the coefficients W∆i,∆j
used for spin-1 flexion are given in the left panel of Fig. 4.2.

Bilinear interpolation can be used for the points at arbitrary position in the field. Therefore,
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F1 → 1/(12∆3) G1 → 1/(8∆3)

Figure 4.2: The finite differencing coefficients of F1(left) and G1(right). And the coefficients
of F2(G2) are the same as that of F1(G1) after rotating π/2 anticlockwise(clockwise).

we need to extend two grid rows and columns on each boundaries of the entire field, which
means we use (N +4)2 grids to perform the method for inner N2 grids. But the flexion drops
quickly with the increasing distance to the cluster, in our case there are few images with
flexion signal near the boundary.

Since shear and flexion are the second- and third-order derivatives of ψ, the potential field
is not fixed under the shear and flexion constrain. This is not important to us because κ is also
an invariant under the transformation ψ(θ) → ψ(θ)+ψ0 +α ·θ, where ψ0 and α are arbitrary
constants. We leave the constants free to simplify the process of solving equations. The mass-
sheet degeneracy transformation of the potential is given by ψ → ψ′ = (1−λ)θ2/2+λψ. This
transformation doesn’t change the reduced shear but affects the κ result by

κ′ = (1 − λ) + λκ, (4.20)

which we called λ transformation. We will take advantage of this transformation for adjusting
κ later.

4.2.3 The linearization of the equations

We present here the details on how to linearize and solve the equation

∂χ2
s(ψi)

∂ψi
+
∂χ2

ǫ (ψi)

∂ψi
+
∂χ2

f (ψi)

∂ψi
+ η

∂R(ψi)

∂ψi
= 0. (4.21)

The lensing quantities are calculated by finite differencing, and are thus linear combina-
tions of ψ at each position. They are expressed in the following matrix notations (Fig. 4.2)

κ(θi) = Mκ
ikψk; γ1(θi) = Mγ1

ik ψk; γ2(θi) = Mγ2

ik ψk; (4.22)

F1(θi) = M f1
ikψk; F2(θi) = M f2

ikψk; G1(θi) = Mg1
ik ψk; G2(θi) = Mg2

ik ψk. (4.23)

Then we plug these into Eq.(4.17) and obtain the entire expression of the equations. Here
we show the first flexion term as an example. The strong lens multiple images, shear and
regularization part can be found in Bradač et al. (2005b) and the second flexion term will be
the same as the first one.

χ2
f1(ψ) =

Nf
∑

i=1

|(1 − κ)t1 − F |2
(1 − κ)2σ2

f

, (4.24)
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where t1 is already modified by Eq.(4.14), since in this section we only work with the modified
ones in the following, therefore drop the ′ of t1. We omit index i to all parameters of every
galaxy for simplicity, since they are all different. We fix the denominator σ̂2

f = (1 − κ)2σ2
f as

constant at each step. Then they will not appear in the derivative

∂χ2
f1

∂ψ
=

Nf
∑

i=1

−2

σ̂2
f

∑

r=1,2

[

((1 − κ)t1r − Fr)(t1r
∂κ

∂ψ
+
∂Fr

∂ψ
)

]

=
−2

σ̂2
f

[M f1
ijM

f1
ik +M f2

ijM
f2
ik + (t211 + t212)M

κ
ijM

κ
ik

+t11(M
f1
ijM

κ
ik +M f1

ikM
κ
ij) + t12(M

f2
ijM

κ
ik +M f2

ikM
κ
ij)]ψk

+
2

σ̂2
f

[

t11M
f1
ij + t12M

f2
ij + (t211 + t212)M

κ
ij

]

, (4.25)

where t11 and t12 are the two components of the spin-1 flexion estimator of galaxy image. The
same calculation can be performed to spin-3 flexion, and a similar formulation is obtained.

It is easy to separate the terms with or without ψ, and written Eq.4.17 in the form

Bijψi = Vj , (4.26)

where the matrix Bij and vector Vj contain the contributions from the nonlinear part. The
regularization term is already linear in ψk, therefore the full expression of matrix is given

Bij =

Nf
∑

i=1

1

σ̂2
t1

[M f1
ijM

f1
ik +M f2

ijM
f2
ik + t11(M

f1
ijM

κ
ik +M f1

ikM
κ
ij)

+t12(M
f2
ijM

κ
ik +M f2

ikM
κ
ij) + (t211 + t212)M

κ
ijM

κ
ik]

+
1

σ̂2
t3

[Mg1
ij M

g1
ik +Mg2

ij M
g2
ik + t31(M

g1
ij M

κ
ik +Mg1

ik M
κ
ij)

+t32(M
g2
ij M

κ
ik +Mg2

ik M
κ
ij) + (t231 + t232)M

κ
ijM

κ
ik]

+

NGal
∑

i=1

1

σ̂2
ǫ

[Mγ1
ij M

γ1
ik +Mγ2

ij M
γ2
ik + ǫ1(M

γ1
ij M

κ
ik +Mγ1

ik M
κ
ij)

+ǫ2(M
γ2
ij M

κ
ik +Mγ2

ik M
κ
ij) + (ǫ21 + ǫ22)M

κ
ijM

κ
ik]

+

NM
∑

m=1

1

σ2
s

[

b11(m)D
(1)
mjD

(1)
mk + b22(m)D

(2)
mjD

(2)
mk

]

+ η
∑

g

Mκ
gjM

κ
gk, (4.27)

where the sums over i, g and m denote summation over all galaxies images, all grid points,
and all images in the multiple imaged system, respectively. D(1) and D(2) are the matrices
for the deflection angle, which can be found in Bradač et al. (2005b). The Vj vector is in form
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of

Vj =

Nf
∑

i=1

1

σ̂2
t1

[t11M
f1
ij + t12M

f2
ij + (t211 + t212)M

κ
ij ]

+
1

σ̂2
t3

[t31M
g1
ij + t32M

g2
ij + (t231 + t232)M

κ
ij ]

+

NGal
∑

i=1

1

σ̂2
ǫ

[

ǫ1M
γ1
ij + ǫ2M

γ2
ij + (ǫ21 + ǫ22)M

κ
ij

]

+

NM
∑

m=1

1

σ2
s

[

b1(m)D
(1)
mj + b2(m)D

(2)
mj

]

+ η
∑

g

κ(n−1)Mκ
gj . (4.28)

4.2.4 Numerical test with NIS toy model

First we perform this method on a Non-singular Isothermal Sphere model. The data is
generated on a 40 × 40 grid potential field

ψ(θ) =
θE
2

√

θ2 + θ2
c +

θEθc

2
ln

(

√

θ2 + θ2
c − θc

θ

)

, (4.29)

where θE = 1 arcmin and θc = 0.2 arcmin. The reduced shear and reduced flexion are created
by finite differencing. We only use the data points of which the absolute value of reduced shear
is smaller than 0.9. Fig. 4.3 shows the original and reconstructed radial κ and |g| profiles.
The value is obtained by annular bin average on the grid field, the input one and the result
one. The small fluctuations of the result point to the input line is mainly due to noise and
low resolution. In the left panel, we plot convergence κ after applying the λ transformation
Eq.(4.20). We can see that convergence is well recovered for large θ until the vertical line.
For the small θ, the plus points from shear diverge from the input line. However, the result
from shear and flexion is significantly improved. In the right panel, the absolute value of the
reduced shear is shown, which is not affected by mass-sheet degeneracy. Both results by shear
or shear and flexion show agreement to the input model. Again for small θ, the result from
shear and flexion combination gives better agreement with the input line.

4.2.5 Simulated cluster data

We also test our method on two simulated cluster. Our mock data uses clusters from N-body
simulation by Jing & Suto (2002); Jing (2002), the cluster is simulated in the framework of
the ΛCDM model with cosmological parameters ΩΛ = 0.7, Ωm = 0.3, the normalization of
power spectrum 0.9 and the Hubble constant H0 = 70km s−1 Mpc−1. Dark matter halos are
identified with the friends-of-friends method using a linking length equal to 0.2 times the
mean particle separation. The halo mass M is defined as the virial mass enclosed within
the virial radius according to the spherical collapse model (Kitayama & Suto 1996; Bryan
& Norman 1998; Jing & Suto 2002) The virial mass of the cluster which we used here is
3.4×1014h−1M⊙ and the redshift is at 0.326. The particles within a box with side length of 2
virial radii were projected onto the lens plane. The surface densities are calculated using the
smoothed particle hydrodynamics smoothing algorithm (Monaghan 1992) on a 4096 × 4096
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Figure 4.3: Radial profile of the NIS cluster, the solid line is the input model, the plus points
are the reconstructed results with weak lensing shear only, and the cross points are the results
with weak lensing shear and flexion. The mock data is generated only in the region to the
right side of the vertical line. Left panel: convergence κ after λ transformation, Right panel:
the absolute value of reduced shear |g|, all for a source at zs → ∞.

grid. The lensing potential is obtained using the fast Fourier transform method (Bartelmann
et al. 1998).

A finer grid 0.1 arcsec resolution is created at the cluster center with side length of
4 arcmin. We obtain the source position by lensing equation for each grid point and the
corresponding second-order derivatives using cubic spline interpolation. We perform cubic
spline interpolation again to the second-order derivatives to get the third-order derivatives.
The background sources are located at different source planes randomly and their redshift
follows a Gamma distribution

p(z) =
z2

2 z3
0

exp (−z/z0) , (4.30)

where z0 = 1/3. The peak is at z = 2/3 and the mean redshift is 〈z〉 = 3z0 = 1. Newton-
Raphson method is used to find the corresponding images position on the image plane. The
reduced shear and flexion on each image were linear interpolated using the four nearest grid
points.

One simulated cluster with two different projected directions is used to generate the two
different sets of mock data (Fig. 4.4). We name the two sets of data as d02 and d03. All of
the reduced shear data is used in our calculation but for flexion, we only consider the absolute
value of the reduced flexion range from 0.01 to 0.5. Since the third-order brightness moments
cannot be measured when the flexion becomes sufficient large as we discussed in Chapter 3.
On the other hand, very small values of the reduced flexion are not easy to measure, neither
would they contribute any information due to the low signal-to-noise.
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Figure 4.4: The convergence map of two simulated clusters used for generating mock strong
lensing multiple images, weak lensing shear and flexion data. The triangles are the strong
lensing multiple images. Both are plotted for a source at zs → ∞. We name the left panel
cluster d02 and the right one cluster d03.

4.2.6 Reconstructed κ map

The two mock catalogues are used to test the performance of our method. We start with an
initial 20×20 grid, increase Nx and Ny by one each time, to a 30×30 grid. We use Ng = 1000
weak lensing galaxy images in each reconstruction, which is an accessible background galaxy
number density, ∼ 60 images arcmin−2. The result of the reconstructions are shown in Fig. 4.5
for d02 and Fig. 4.6 for d03. The initial regularization parameter is set to η = 200 for cluster
d02, η = 300 for cluster d03, and increased by 10 for each outer-level iteration to slow the
process and make sure we would overfit the noise. It is usually better to set high η and
allowing κ to change slowly. Since our reconstruction is done in a three-level iteration, and
in each step we ensure χ2/Ndof ∼ 1, the method can successfully adapt to the data and the
results are not sensitive to the value of η. We need also an initial κ0 field for the regularization.
A simple model κ0 = 0.01 is used here. We have also performed additional reconstructions
with different initial models, and found the results are nearly independent of the initial κ0.
But a realistic model allows for a faster convergence.

The number of flexion that we used for the two cluster is different. In reality what we
measure are the higher-order brightness moments. We exclude the low signal-to-noise data,
thus only use the flexion of which absolue value range from 0.01 to 0.5. We obtained 89
reduced flexion data in Fig. 4.5, and 60 reduced flexion data in Fig. 4.6. Since there is more
significant extended structure in cluster d02 than in d03, we found that there are more data
points of which the absolute value of spin-1 reduced flexion is between 0.01 and 0.5 in cluster
d02 than in cluster d03 in different realizations. We found that there are about 10% images
of all the galaxy images which have the suitable flexion value in the cluster d02 field, while
this number drops to about 5% in the cluster d03 field.
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The results show that our method can reproduce the main properties of the projected
mass distribution of both clusters, and is especially powerful in resolving the substructure.
Fig. 4.5 shows that our method can reconstruct the κ map by combining strong, weak lensing
shear and flexion data for cluster d02. Unfortunately we cannot distinguish the sub-clumps
which is due to noise from the true ones even with the help of flexion, like the one in the
bottom corner of Fig. 4.5. However we can see that in the right panel, which is the result
using strong lensing, weak lensing shear and flexion information, the halos become peaky and
the substructure are resolved with correct positions. In Fig. 4.6 it is encouraging to see that
besides the main properties of the big dark halo, our method can resolve the small clump after
combining the flexion data with shear information. The small clump is not very significant
even in the input convergence (Fig. 4.4), and that is with a resolution of 400 × 400. We also
have performed additional tests in which we use different sets of weak lensing shear and flexion
data for both clusters. This confirms the validity of our method. In some cases of cluster d03
data, the shape properties can be better reconstructed and the small clump can be clearly
resolved, but the position of the small clump can have an up to 10 arcsec offset from its real
position. In some other cases the small clump cannot be clearly resolved, which is due to the
noise and local low background images density around the small clump.

As an additional test, we calculate the difference D2 between our result and input κ, which
is defined as

D2 =
1

N ′

N ′

∑

i,j

|κij − κ
(input)
ij |2, (4.31)

where N ′ is number of grid points which are not inside the critical curves. We use D2
sw for

the mean difference between the result from strong lensing and weak lensing shear constraints
and input κ, and D2

swf for that from strong lensing, weak lensing shear and flexion constraints.
We apply the λ transformation (Eq.4.20) to the convergence results. The λ is fixed for the
smallest difference D2. For cluster d02, the D2

sw is 0.0086 and D2
swf is 0.0085. For cluster d03,

D2
sw = 0.0077 and D2

swf = 0.0066. Since we have strong constraints from strong lensing, the
improvement that from flexion is not such strong. In other cases of no strong lensing systems,
there is more significant improvement by flexion.

We also change the threshold of flexion, i.e. we use the reduced flexion of which absolute
value between [0.001, 0.5]. There are more flexion data with low signal-to-noise used in the
mass reconstruction. We find that in some cases the D2 becomes larger after combining the
flexion. After checking our result κ on all the grids, we find out the points which gives larger
D2 after combining flexion signal. We argue that the relation of the reduced flexion and the
reduced shear (Eq.4.14) can introduce extra noise from shear into flexion, especially in the case
of large intrinsic shear noise. In principle this is not important where flexion is strong, since
the shear is also strong, hence the signal-to-noise is high. However in regions where the shear
and flexion signals are weak, for instance much lower than the intrinsic ellipticity of galaxies,
the intrinsic noise dominates the signal, which means we perform mass reconstruction using
noise rather than signal, and combining flexion would reinforce the noise.

Finally a word on the dispersion of flexion σ′t. This is a difficult parameter to determine at
the moment, since we have little knowledge about the noise behavior in flexion measurement.
The one we used in this chapter (Eq.4.16) has a problem: as pointed out by Bacon et al.
(2009), the flexion variance is biased by the content of substructure. Moreover, we noticed
that the σt′ we used is underestimated, it can be seen from following: χ2

f/Nf is significant

smaller than 1, which means that χ2
ǫ/Ng is larger than that without flexion. If we apply more
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Figure 4.5: κ-maps obtained from shear and flexion reconstruction of the mock data cluster
d02 after the λ transformation (Eq.4.20), where λ is choose for the smallest D2. Left panel
shows the result using Ng = 1000 galaxies shear and 3 strong lensing system, while in the right
panel we add 89 galaxies flexion. Both figures are given in linear gray-scale and contours.

steps of iteration, the flexion noise might be over fitted. In that case, the cluster becomes
very peaky, and looks like being truncated at some edge region. Some other forms for σ′t have
been also tested, e.g. in analogy of shear

σ2
t′ =

[

1 − (θ0|t′|)2
]2
σ2

ts + σ′2err, (4.32)

where θ0 is size of the image. We can easily see that this σt′ is not independent of image size
and σ′err is different from that of shear (Eq.4.10), since it is not dimensionless. The result
turns out that the improvement by flexion is underestimated, of which the parameter we used
is σts = 0.1/′′ and σ′err = 0.1/′′.

4.3 Conclusions

In this chapter we proposed a method for projected cluster mass reconstruction, which com-
bines strong, weak lensing shear and flexion data. The method is based on a least-χ2 fitting
of the lensing potential ψ. The particular strength of this method is that the flexion data
provides more information to the inner parts of the cluster and substructure.

We test the performance of method on our mock clusters, compare the results with and
without flexion. In the NIS cluster, our method can reproduce the radial profile of the
convergence and the reduced shear. And flexion can significantly improve the result to the
inner part of the cluster. In the other test, we generate our mock data from simulated
clusters. We are able to reconstruct the main properties of the cluster mass distribution,
especially when the flexion data is included, our method can successfully resolve the cluster
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Figure 4.6: Reconstructed κ-maps from mock data cluster d03. Left panel shows result using
Ng = 1000 galaxies shear, and 3 strong lens. Right panel shows result after combining 60
flexion.

and substructure. In addition, our result is almost independent of the initial model κ0 and
the regularization parameter η.

We have assumed that the intrinsic flexion is small. However, the correction for the
reduced flexion introduces extra noise from shear to flexion, especially in the case that the
intrinsic galaxy image is highly elliptical. We can ignore the noise where the shear and flexion
is strong, since the intrinsic noise is relatively small. This is however not the case in the region
where the shear and flexion is not significant. It is of interest to study the relation of intrinsic
noise and flexion in detail.

In Leonard et al. (2007); Okura et al. (2008), the result of mass reconstruction by flexion
has shown that flexion is sensitive to substructure, and insensitive to the smooth component
of the cluster. Our method of combining shear and flexion takes the advantages of shear on
the clusters and flexion on the substructure.
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Chapter 5

Galaxy-Galaxy Lensing

Galaxy-galaxy lensing is concerned with background galaxies and foreground dark matter
halos which host galaxies. It can thus be used as a measure to determine the mass properties of
galaxies. In particular it directly probes the matter distribution in the halo. Other techniques,
such as rotation curves of spiral galaxies, are less direct since they require assumptions about
the dynamical state of the system, and only trace the dark matter halo out to distances of
100h−1kpc. On the other hand, GGL flexion allows better resolution on small scales than
the standard GGL technique with shear measurements; we have already seen that flexion
is sensitive to the small-scale variation of the potential field. It is thus an ideal tool for
measuring GGL at small separations. In addition, the information obtained from flexion is
complementary to that from shear, and thus, flexion can provide additional information about
the galaxy halos.

As in the traditional GGL shear measurement, the flexion induced by a single galaxy
is not strong enough to be detected, and the flexion signal around many galaxies must be
superposed statistically. This can be done for each foreground and background galaxy pair,
and the averaging result leads to a circularly symmetric flexion profile

〈F(θ)〉 =
1

Nfg

∫

d2 ϑnfg(ϑ)F(|θ − ϑ|);

〈G(θ)〉 =
1

Nfg

∫

d2 ϑnfg(ϑ)G(|θ − ϑ|), (5.1)

where nfg(ϑ) is the number density of foreground galaxies, and Nfg is the total number over
the survey. If one defines the fractional galaxy number density κg = nfg/n̄ − 1, where n̄ is
the galaxy mean number density, this can be written as (showing only the spin-1 flexion for
example)

〈F(θ)〉 =
1

A

∫

d2 ϑκg(ϑ)F(|θ − ϑ|), (5.2)

where A is the area of the survey from which Nfg is computed. In reality, it is calculated
through 〈F(θ)〉 = 〈κg(ϑ)F(|θ − ϑ|)〉. Under the assumption that the galaxy distribution is
homogeneous, the galaxies can be shifted to the origin, thus 〈F(θ)〉 = 〈κg(0)F(|θ|)〉. Fur-
thermore, in Fourier space, one has F̂(l) = −ilκ̂(l). Therefore the GGL flexion can also be
written as

〈F(θ)〉 = −
∫

d2l

(2π)2

∫

d2l′

(2π)2
e−iθ·l

′

i 〈κ̂g(l)κ̂(l
′)l′〉, (5.3)
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which shows explicitly the dependence on the convergence. Since the cross power spectrum
of galaxy and convergence is Pκg = (2π)2δD(l − l′)〈κ̂g(l)κ̂(l

′)〉, the extra factor of l′ implies
that GGL flexion has a greater power at large l than that of GGL shear. In other words,
GGL flexion is more sensitive on small scales.

5.1 Circular Halo profiles

The matter distribution in a halo may be approximated by a radial mass profile. The GGL
shear and flexion measurements can be used to estimate the radial profile parameters. Such
estimates are still useful to constrain halo properties even in the case of non-circularly sym-
metric halos. Some of the most popular models are described below. Most results of circular
halos in this section can be found in Bacon et al. (2006).

5.1.1 Singular Isothermal Sphere

The simplest model for an approximately flat rotation curve is given by ρ ∝ r−2. Such a profile
can be obtained by assuming a constant velocity dispersion for the dark matter throughout
the halo, and so it is known as the singular isothermal sphere (hereafter SIS). The projected
surface mass density of an SIS is

Σ(ξ) =
σ2

v

2Gξ
, (5.4)

where ξ is the distance from the center of the lens in the projected lens plane and σv is the one-
dimensional velocity dispersion of dark matter ‘particles’ within the gravitational potential. In
GGL studies, it is more convenient to use the dimensionless surface mass density κ = Σ/Σcr,
which reads

κ(θ) =
θE
2θ
, (5.5)

where θ = ξ/Dd is the angular distance from the lens center and θE = 4π(σv/c)
2Dds/Ds is

the Einstein radius. The shear caused by the SIS halo is

γ(θ) = −θE
2θ

e2iφ, (5.6)

(Bartelmann & Schneider 2001), where φ is the position angle around the lens. Applying
Eq.(3.18), the spin-1 flexion is given by

F(θ) = − θE
2θ2

eiφ, (5.7)

and one can see that the spin-1 flexion for a circularly symmetric halo is directed radially
inwards towards the center of the lens (Fig. 3.2). The spin-3 flexion is given by

G(θ) =
3θE
2θ2

e3iφ. (5.8)

It has an amplitude 3 times larger than the spin-1 flexion, drops off with the same power-law
index away from the lens, and oscillates around the lens as a spin-3 quantity.
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Figure 5.1: Comparison of the magnitude of flexion due to an NFW and SIS halo of M200 =
1 × 1012 h−1M⊙. Left is for spin-1 flexion, right is for spin-3 flexion. The concentration
parameter c of the NFW halo is 7.2 and Dds/Ds = 0.5. Figure is from BGRT06.

5.1.2 Nonsingular Isothermal Sphere

In the SIS model, the mass density becomes infinity for θ → 0. One simple modification is
the non-singular isothermal sphere (NIS) surface mass density

κ(θ) =
θE

2
√

θ2 + θ2
c

, (5.9)

where θc is a core radius within which the surface mass density flattens off to a value κ0 =
θE/2θc. The flexion due to NIS is

F(θ) = −θ
[

θE

2(θ2 + θ2
c)

3/2

]

eiφ;

G(θ) =
θE
2θ3

[

−8θc +
3θ4 + 12θ2θ2

c + 8θ4
c

(θ2 + θ2
c)

3/2

]

e3iφ. (5.10)

For θ ≫ θc the flexion is approximately equal to that of the SIS. At small separations, the
flexion goes to zero since the convergence profile tends to be flat for θ < θc.

5.1.3 Navarro-Frenk-White density profile

In N-body simulations of a ΛCDM universe, the density profile of halos was found to have an
universal form, i.e., independent of halo mass and size. This profile is shallower in the inner
region than the SIS one (Navarro et al. 1996, 1997). We have already presented this NFW
profile in Chapter 1. The NFW model is characterized by two parameters. Here we use the
scaling radius rs and the concentration c. The dimensionless surface mass density of an NFW
profile reads

κ(x) = 2κs
f(x)

x2 − 1
, (5.11)
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with

f(x) =















1 − 2√
x2 − 1

arctan

√

x− 1

x+ 1
(x > 1)

1 − 2√
1 − x2

artanh

√

1 − x

1 + x
(x < 1),

(5.12)

where we define x = r/rs, and κs = ρcritrsδc/Σcrit, with the critical density ρcrit. The
collapsing density contrast δc is related with c from numerical simulations as detailed in
Navarro et al. (1997). Here we use

δc =
200

3

c3

ln(1 + c) − c/(1 + c)
. (5.13)

For an axially symmetric mass profile, the shear can be calculated from γ(x) = [κ(x) −
κ̄(x)]exp[2iφ], where κ̄(x) is the mean surface mass density within a circle of radius x from
the lens center (Bartelmann & Schneider 2001). Thus,

γ(x) = κsl(x)e
2iφ, (5.14)

with

l(x) =















1 − 8arctan
√

(x− 1)/(x+ 1)

x2
√
x2 − 1

+
4

x2
ln
(x

2

)

− 2

x2 − 1
+

4arctan
√

(x− 1)/(x+ 1)

(x2 − 1)3/2
(x > 1)

1 − 8arctanh
√

(1 − x)/(x+ 1)

x2
√

1 − x2
+

4

x2
ln
(x

2

)

− 2

x2 − 1
+

4arctanh
√

(1 − x)/(x+ 1)

(x2 − 1)(1 − x2)1/2
(x < 1).

(5.15)
Defining Fs = κsDd/rs, the first flexion is calculated using F = ∇cκ = ∂κ/∂x exp[iφ], writes

F = − 2Fs

(x2 − 1)2
[2xf(x) − h(x)]eiφ, (5.16)

with

h(x) =















1 − 2x√
x2 − 1

arctan

√

x− 1

x+ 1
− 1/x (x > 1)

1 − 2x√
1 − x2

arctanh

√

1 − x

x+ 1
− 1/x (x < 1),

(5.17)

and f(x) given by Eq.(5.12). The analytic expression of the spin-3 flexion due to an NFW
halo is calculated using

G = ∇cγ =

(

∂γ

∂x
+

i

x

∂γ

∂φ

)

eiφ. (5.18)

Plugging in the expression of γ, we finally obtain

G = 2Fs

[

8

x3
ln
x

2
+

(3/x)(1 − 2x2) + g(x)

(x2 − 1)2

]

e3iφ, (5.19)

where

g(x) =















1 − (
8

x3
− 20

x
+ 15x)

2√
x2 − 1

arctan

√

x− 1

x+ 1
(x > 1)

1 − (
8

x3
− 20

x
+ 15x)

2√
1 − x2

arctanh

√

1 − x

x+ 1
(x < 1).

(5.20)
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Fig. 5.1 shows the radial profiles of the flexion for both the NFW and SIS models. Note that
the spin-3 flexion is larger in amplitude than the spin-1 flexion, as is the case for the SIS
results. Moreover, the flexions due to the SIS profile are stronger than those due to NFW
for small separations, since the NFW density on small scales varies as r−1 compared to the
steeper r−2 for the SIS (BGRT06).

From the studies of GGL for circular symmetric halo, we see that we can use the mea-
surements of shear and flexion to constrain the parameters of galaxy halo, such as σ2

v for SIS
profile or rs and c for NFW profile. In next sections, we will present more applications of
GGL flexion on more complicate cases.

5.2 Radial and Tangential Flexion

We have seen that the spin-1 flexion is a vector-like quantity, and it is the gradient of the
surface mass density. Therefore, the spin-1 flexion is directed towards the center of the lens
in the case of a circularly symmetric lens. However, this is not a realistic case. There are
several factors that make it unlikely for the spin-1 flexion to be directly towards the center
of the lens. Measurement noise and systematics are two such factors, but there are two other
ones of particular interest to us: elliptical halos and halo substructures. We address these
issues in the following sections.

In the general case, the spin-1 flexion can be decomposed into two parts, which are named
radial flexion and tangential flexion, as sketched in Fig. 5.2. They are defined as

FR = −F · r̂; (5.21)

FT = F · φ̂ = ± |F + FRr̂| , (5.22)

where r̂ and φ̂ are the unit direction vectors. Thus F = −FRr̂ + FT φ̂. This is similar to the
FR and FB in Hawken & Bridle (2009); Leonard et al. (2007)

FR = |F|cos(θ′F ); FB = |F|sin(θ′F ), (5.23)

where θ′F = θ − φ + π, and θ is the angle of spin-1 flexion stretch to the coordinate axes of
θ1, θ2. The FB here does not have the same physical meaning as the cosmic shear B-mode,
which is mainly due to the non-gravitational systematics, whereas the tangential flexion (or
FB) is due to non-circular lens contribution. The decomposition in radial and tangential
flexion can be easily performed in a GGL measurement. For the spin-3 flexion, there is not
such a clear intuitive picture of the radial or tangential components. We mainly consider the
spin-1 flexion in the following discussion.

5.3 Elliptical Halos

Most galaxies are elliptical or spiral, i.e. non circularly symmetric. Then a question may arise
naturally, whether the dark halo has the same shape as the galaxy. If there exists a significant
difference, that would be a strong evidence for dark matter and rule out modified gravity
models. For instance, elliptical galaxy dark matter halos disfavor the MOdified Newtonian
Dynamics paradigm (Hoekstra et al. 2004; Mandelbaum et al. 2006). Numerical simulations
with different assumptions predict halos with different shapes, e.g. simulation with non-
interacting cold dark matter predict that halos are triaxial prolate ellipsoids (Allgood et al.
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Figure 5.2: Sketch of the galaxy-
galaxy lensing flexion. The spin-
1 flexion F is decomposed into ra-
dial flexion FR and tangential flex-
ion FT .

2006). Therefore, the shape of dark matter halos can provide constraints on galaxy formation
models and the nature of dark matter.

Hawken & Bridle (2009) discussed the use of flexion to measure halo ellipticity, and found
that the constrains from flexion are comparable and tighter than those from shear. Flexion
appears thus to be a potential tool for measuring the shapes of galaxy halos in the future.

We have shown the flexion profile for a circular symmetric galaxy halo. For an elliptical
halo, it is difficult to obtain an analytic expression for flexion, especially for the spin-3 flexion.
Here we first consider the singular isothermal elliptical (SIE hereafter) halo case. Its surface
mass density profile can be written as

κ(θ1, θ2) =
θE

2
√

θ2
1/(1 + ǫ)2 + θ2

2/(1 − ǫ)2
, (5.24)

where the major axis a of the elliptical isodensity contours lies along the θ1 axis, and the
ellipticity ǫ is defined by

ǫ =
a− b

a+ b
. (5.25)

Then the spin-1 flexion vector is

F(θ1, θ2) = −θE(1 − ǫ2)

2

(1 − ǫ)2θ1 + i(1 + ǫ)2θ2
[

θ2
1(1 − ǫ)2 + θ2

2(1 + ǫ)2
]3/2

. (5.26)

This vector field is shown in Fig. 5.3 for the case of ǫ = 0.3. The radial flexion, according to
the definition (Eq.5.21), is

FR(θ1, θ2) =
θE(1 − ǫ2)

2

1
[

θ2
1(1 − ǫ)2 + θ2

2(1 + ǫ)2
]1/2

[θ2
1 + θ2

2]
1/2

, (5.27)

or, in polar coordinates,

FR(θ, φ) =
θE(1 − ǫ2)

2θ2

1

(1 − 2ǫ cos 2φ+ ǫ2)1/2
. (5.28)
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The tangential flexion is given by

FT (θ1, θ2) = θE(1 − ǫ2)

[

−2ǫθ1θ2(θ1 − iθ2)
[

θ2
1(1 − ǫ)2 + θ2

2(1 + ǫ)2
]3/2

(θ2
1 + θ2

2)

]

;

FT (θ, φ) =
θE(1 − ǫ2)

θ2

ǫ sin 2φ

(1 − 2ǫ cos 2φ+ ǫ2)3/2
. (5.29)

Here we choose the clockwise direction to be the positive one. This choice is not important
to determine the halo ellipticity, which depends only on the absolute value. It is convenient
to use the ratio of the tangential and radial components as an indicator of the halo ellipticity

r(θ1, θ2) =
FT

FR
=

4θ1θ2ǫ

θ2
1(1 − ǫ)2 + θ2

2(1 + ǫ)2
, (5.30)

or in polar coordinates,

r(φ) =
2ǫ sin 2φ

cos2 φ(1 − ǫ)2 + sin2 φ(1 + ǫ)2
=

2ǫ sin 2φ

1 − 2ǫ cos 2φ+ ǫ2
. (5.31)

Note that the ratio is independent of θE and θ, i.e., does not depend on the mass of the halo,
and the distance to the center of the halo. Therefore, its detection would be a clean measure-
ment of the halo ellipticity. Essentially, the ratio of the tangential flexion to radial flexion is
the tangent of the angle between the direction to the center and the actual direction of the
flexion vector. Fig. 5.4 shows the flexion ratio field produced by an nonsingular isothermal
elliptical (NIE hereafter) halo. One can see that there is a significant variation of the flexion
ratio with orientation φ, and that in this case (NIE halo), it does not depend on the distance
to the center of the halo. In the very inner part of the halo, where for the core model κ is
flat, both components become zero. Flexion cannot be measured in this region, where the
flexion becomes significantly large, and flexion concept break down. We take average of the
flexion ratio over the polar angle (Eq.5.31), and obtain a simple estimator of the ellipticity of
the SIE halo,

〈r〉 =
1

2π

∫ 2π

0
dφ

∣

∣

∣

∣

2ǫ sin 2φ

1 − 2ǫ cos 2φ+ ǫ2

∣

∣

∣

∣

=
2

π
ln

1 + ǫ

1 − ǫ
. (5.32)

Note that we take the absolute value of the ratio because the angle-average ratio is 0. Due to
its simplicity, this first flexion ratio test can be easily performed in measurements of a flexion
field over a given aperture.

5.3.1 Numerical test with NIE model

We perform the ellipticity estimator on nonsingular isothermal elliptical halos. The data is
generated on a 11 × 11 grid convergence field

κ(θ1, θ2) =
θE

2
√

θ2
c + θ2

1/(1 + ǫ)2 + θ2
2/(1 − ǫ)2

, (5.33)

where θE = 6 arcsec, and we consider θc = 1, 2 arcsec for two cases. The data points of which
|F| > 0.5 or close to the center of the halo |θ| < 6 arcsec are discarded. 100 flexion data on
1 × 1 arcsec2 are used in the end.
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Figure 5.3: Spin-1 flexion vector field for
an elliptical isothermal density distribu-
tion with ǫ = 0.3. F only points towards
the center when the background galaxy is
located on the major or minor axis of the
halo.
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Figure 5.4: Illustration of the flexion ratio
field for an elliptical core halo with θE = 6′′,
θc = 2′′ and ǫ = 0.3. It shows absolute
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We first calculate the flexion ratio for an NIE halo with ǫ = 0.3. The result is shown in
Fig. 5.5, the dash line is for an SIE halo (Eq.5.31), the points are result calculated from NIE
model. One can see that in this ideal case, the points agree the line, and there is almost no
difference between the SIE halos and NIE halo with θc = 1 arcsec and θc = 2 arcsec. The
reason for that is that the data points that we used are outside θE (> θc), and thus are not
affected much by θc.

In addition, we test the estimator of ellipticity. 20 sets of data using Eq.(5.33) are gener-
ated with different ǫ. For each set of data, ensemble average of flexion ratio 〈r〉 is calculated,
and the estimate of ellipticity is obtained through Eq.(5.32). In Fig. 5.6, the results for two
kinds of halos are shown. Again, there is not difference between the halos with two θc. One
can see that for ǫ from 0.03 to 0.6, the estimate agree with the input value.
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5.4 Aperture flexion

Technically, this section is not really an application of GGL. But since it is tightly following
the concept of radial flexion, I thus write them in the same chapter. In reality, the aperture
flexion can be applied to galaxy halos and galaxy clusters.

The idea of aperture flexion is similar to the aperture mass statistic. In Schneider (1996),
the formalism for the generalized aperture mass statistic for shear was shown. In Leonard
et al. (2009), an approach of aperture mass for flexion was expressed. And here we present
the statistic of aperture flexion, which has one integration step less.

In the previous section, we have seen that the radial flexion is caused by the gradient of
mass, whereas the tangential flexion mainly responds to the asymmetry of the dark halo. We
thus define the radial- and tangential- flexion aperture separately

Arf(x0, r) =

∫ ∞

0
d2xFR(x)W (r, x); (5.34)

Atf(x0, r) =

∫ ∞

0
d2xFT(x)W (r, x), (5.35)
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where x0 is the center of the aperture, FR and FT are with respect to the x0. W (r, x) is the
weight function with characteristic radius r. Here one should notice that the lower limit of the
integration should not be 0 since the flexion cannot be measured once it becomes sufficient
large. This is however not a real problem when we perform the aperture flexion on the real
data. We write down a discrete version of Eq.(5.35) as

Arf(x0, r) =

∑Ng

i FR(xi)W (r, xi)
∑Ng

i W (r, xi)
;

Atf(x0, r) =

∑Ng

i FT(xi)W (r, xi)
∑Ng

i W (r, xi)
. (5.36)

The denominator in Eq.(5.36) is to avoid the bias from the number density of background
galaxy images. Or we can define the signal to noise ratio S(x) in analogy with the shear
aperture mass statistic,

S(x0, r) =
1

σF

∑Ng

i FR(xi)W (r, xi)
√

∑Ng

i W 2(r, xi)
, (5.37)

where σF is the dispersion of flexion which is to be obtained from measurements. The signal
to noise ratio is only defined for Arf , since Atf is only sensitive to the asymmetry of mass
distribution in the aperture, therefore here it is mainly used for a check for the quality of
data.

5.4.1 Weight function

Two different families of weight functions are considered for the aperture flexion. The signal
of aperture flexion depends on various factors, such as the structure of the lens cluster and
the size of aperture. The optimal choice of weight function is strongly dependent on the
flexion profiles of the structures being studied. The weight function used here is not chosen
to be optimal for a lens profile, which allows us to detect the (sub-)structures without a priori
information of the cluster.

We use two simple weight functions,

w1(x) =
1

πr2
Exp

(−x2

r2

)

;

w2(x) =
x2e

πr4
Exp

(−x2

r2

)

, (5.38)

where r is the characteristic scale or the size of the aperture. In Fig. 5.7, one can see that w1(x)
is a normal Gaussian filter, which peaks at x = 0, but w2(x) peaks at x = r. If we calculate
the expected signal to noise, again we need to notice the lower limit in the integration, since
flexion cannot be measured when it become significant large, and the consequence would be
that the signal to noise is overestimated. For the weight function w2, the signal to noise
decreases with increasing aperture size r (???). On the other hand, small size aperture will
lower the number of galaxy images. There is no unique way to choose the size of aperture,
especially in clumpy clusters, with different sizes of substructures. We thus stack several
apertures of different r. This is equivalent to using the weight function that sum up different
r.
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5.4.2 Mock data

To test the aperture flexion method, we use a simulated cluster, which is taken from the
Millennium Simulation (Springel et al. 2005). The cluster is at redshift z = 0.62. Besides
the dark matter of the cluster, stellar mass components are added (Hilbert et al. 2008). The
flexion maps are created by using the multiple-plane ray-tracing method (Hilbert et al. 2009).
All the sources are at redshift z = 2.1.

We use 64×64 background images on a grid field of 6×6 arcmin2. The data with |F| > 0.5
arcsec−1 are discarded since they cannot be measured.

5.4.3 Aperture flexion from mock data

To compute the Arf on the field, we use a grid of 177×177 apertures of radius of r = 6i arcsec,
where i = 1, 2...10. Two cases are shown in Fig. 5.10 for w1 and Fig. 5.11 for w2. In both small
radius 6′′ maps, there are several peaks corresponding to the cluster and substructures. In
larger radius 36′′ maps, the peaks only show the center of the cluster, and are not sensitive to
the substructures which are smaller than the aperture. However, the stacked map (Fig. 5.12)
takes the advantage of all apertures sizes.
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Figure 5.8: The lensing properties of a simulated cluster used for generating the mock data.
Left: The surface mass density κ, right: the absolute value of the spin-1 flexion |F|, both for
sources at redshift z = 2.1, and are given in linear gray-scale and contours.
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Figure 5.9: The flexion vector field of the simulated cluster in Fig. 5.8. The points for which
|F| > 0.5 arcsec−1 are omitted.
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Figure 5.10: Aperture radial flexion with radius of 6′′ and 36′′ of weight function w1(x).
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Figure 5.11: Aperture radial flexion with radius of 6′′ and 36′′ of weight function w2(x).
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Figure 5.12: Stacked aperture radial flexion map of w1 (left) and w2 (right) for 10 different
characteristic radius r, which are taken from 6′′ to 60′′ increasing by 6′′ each time.
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Chapter 6

Summary and Outlook

6.1 Summary

In this thesis, I studied the higher order weak gravitational lensing effect, flexion, and some
of its potential applications in cosmology.

Flexion, as a new subject in lensing, has shown its advantages in various studies (at least
theoretically). Flexion is more sensitive to small-scale variations in the potential than shear,
and therefore has a higher signal-to-noise, in some regions than the shear.

In Chapter 1, I briefly introduced the standard model of cosmology, the ΛCDM model.
Although supported by most observations, such as CMB and large-scale galaxy surveys, the
ΛCDM model still has several unsolved problems. The very big unknowns are the nature of
dark energy and dark matter, which comprise more than 95% of the content of the whole
universe. In order to understand that, we need to know how the universe evolves and how
the matter is distributed in the universe.

Gravitational lensing offers a powerful tool to study the matter distribution in the universe.
I presented the basic concepts and definitions of gravitational lensing in Chapter 2, focusing on
weak lensing. The central observation in weak lensing studies is the ellipticity of background
galaxies. Due to mass-sheet degeneracy, the ellipticity is only an estimate of a reduced shear.
Further, I present some lensing statistical quantities since a single image does not provide
enough information. There are the 2-point correlation functions and aperture mass which
are widely used in weak lensing studies. Various approaches are used to analyze different
properties on different scales, such as cosmic shear, cluster mass reconstruction and galaxy-
galaxy lensing.

In Chapter 3, I introduced the higher-order weak lensing effect – flexion – and studied
the effect of flexion in weak gravitational lensing. A general flexion field can be decomposed
into a pair of components which is due to a shear field and a pair of components not related
to shear. The former pair can be further separated into flexion due to an E- and B-mode
shear, with only the E-mode flexion expected to arise from gravitational lensing. For the
second pair of components are most due to noise or intrinsic shape effects of source. Owing
to the mass-sheet degeneracy, only reduced flexion can be measured. The second-order lens
equation is given as well as the relations between the brightness moments of source and image
in terms of the reduced shear and the reduced flexion. I present approximate estimates for the
reduced shear and flexion using these moments equations. In a number of numerical tests I
have studied the bias of the reduced flexion estimators. The product of flexion and source size
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matters in the accuracy of estimates. I also pointed out a limit where the flexion formalism
ceases to be valid, namely when the product of source size and flexion is sufficiently large that
parts of the source are multiply imaged locally, i.e., where a caustic cuts through the source.
I gave this limitation in some cases and also a complete classification of the critical curves of
the second-order lens equation employed in flexion studies.

Chapter 4 deals with galaxy clusters, which are an important probe of the matter content
of the universe. I present some methods for cluster mass reconstruction, especially detailed
the method which combines strong lensing, weak lensing shear and flexion information. This
method allows one to extend the weak lensing analysis into the inner part of the clusters
and of substructures within the clusters. We tested the method with numerical simulations,
finding an agreement between the input and reconstructed mass also on the substructures.
Using flexion allows us to obtain a significant improvement on the results of inner part of
clusters and resolve the substructures. We conclude that with high resolution imaging data
the method can accurately reconstruct cluster masses and substructures.

In Chapter 5, I showed preliminary results on galaxy-galaxy lensing. The spin-1 flexion can
be decomposed into radial and tangential components, which respond to different properties
of the galaxy halo. The ratio of tangential flexion to radial flexion can be used to measure the
ellipticity of dark matter halos. In an ideal numerical test, the result perfectly agrees with
the input value. I also presented an aperture statistics for the radial flexion, which can be
used for substructure detections.

6.2 Outlook

In the next few years, there will be several weak lensing projects, e.g. PanSTARRS1, KIDS2,
and even space-based missions such as Euclid3 and SNAP4. The number density and quality
of the galaxy images will be highly improved. At that time we can really put the flexion to
extensive use. But before that, there are several preparation that need to be done.

First of all how to measure flexion from galaxy images. Although some methods have been
constructed, e.g. shapelets and higher-order KSB/HOLICs, none of them have been tested by
simulation. Thus we have no idea if these flexion estimates would be biased by the magnitude,
size, ellipticity of the galaxy images, or especially important PSF. From preliminary studies,
the bias of the flexion estimator is size dependent, since flexion has a dimension of length
inverse and the intrinsic flexion is inversely proportional to the image size. As mentioned
before, the second-order lens equation contains five essential parameters. The bias of an
estimator for reduced shear and flexion will depend on these parameters as well as on the
intrinsic ellipticity (and higher-order moments) distribution of sources. Beside the bias, the
covariance of flexion and shear is also interesting to calculate. Furthermore, the weak lensing
community has been studying and comparing several existing different methods to measure
shear 5 (Heymans et al. 2006; Massey et al. 2007a), and more new methods (even from
computer science) will be studied 6. The development of different techniques for measuring
flexion will be also interesting.

1http://www.ps1sc.org
2http://www.astro.wise.org/projects/KIDS
3http://www.dune-mission.net
4http://snap.lbl.gov
5http://www.physics.ubc.ca/∼heymans/step.html
6http://www.great08challenge.info
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The intrinsic flexion (higher-order moments) is another important issue in flexion studies.
Since the intrinsic flexion is inversely proportional to the image size, the variance of intrinsic
flexion is also correlated with the size of the image, and it is thus not a constant. Moreover,
what can we really observe is the reduced flexion, which is combination of flexion and reduced
shear. This introduces another noise into flexion. Thus what we studied here about flexion
is based on very simple intrinsic flexion model. The constraints by flexion in lensing analysis
need much more accuracy and careful study.

On the other hand, flexion shows several interesting applications on constraining the
substructure within clusters and galaxy halos. Chapter 5 provides a good starting point for
further work. On the scale of galaxies, the radial and tangential flexion and their ratio provide
a measurement of the ellipticity of the dark matter halo and its orientation. I have only shown
the result in ideal cases, namely no intrinsic noise, perfect knowledge of the halo center and
only for the NIE halo. It is interesting to see how well can we constrain these parameters
for a certain level of errors and whether the estimate is unbiased, and which precision do we
need if we want to perform this method on real data. Besides the elliptical halo, using GGL
shear and flexion to measure the circular symmetric halo is also interesting. In addition, I
present the preliminary study of aperture flexion. In aperture statistics, flexion is separated
into radial and tangential components too. Since the tangential flexion mainly responds to
the asymmetry of dark halo, and our main goal is to detect the cluster and substructures, the
aperture tangential flexion is designed for checking the quality of the data. But the second-
order statistics of aperture flexion is unclear, and shows some interesting behavior. It is thus
worthy some more studies. Besides that, an optimal weight function should be constructed
for the aperture flexion and also an combination of shear and flexion in aperture statistics.
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Appendix A

Higher-order KSB

In this Appendix, we come to a realistic method on how to measure flexion. The observed
galaxy images are not only distorted by a gravitational field, but also affected by non-
gravitational lensing various effects, e.g. the distortion by the telescope and the camera,
and the atmosphere in case of ground based telescopes. The image read out from a CCD is
a convolution of the unperturbed image with the point-spread function (PSF). In terms of
surface brightness, f(θ), the transformations may be written as

Iobs(θ) = p(θ) ⊗ (GIsource(θ)), (A.1)

where G is the gravitational lensing operator and p(θ) is the surface brightness of the PSF.

The correction of PSF is important for weak lensing studies, otherwise we get a wrong
estimate of the lensing shear or flexion. To account for this unwanted distortions, the indi-
vidual correction have to be taken into account using stellar images as references before being
combined into a final image. It is in principle possible, if the PSF is properly sampled on
the pixel grid and across the image. Kaiser, Squires & Broadhurst have developed a formal-
ism for the PSF correction, which is called the KSB method (Kaiser et al. 1995; Luppino &
Kaiser 1997; Hoekstra et al. 1998). Erben et al. (2001), Bacon et al. (2001) and Hoekstra
et al. (2002b) presented tests of KSB+ shape measurement on image simulations containing
an artifical shear signal. The PSF distortion can be determined by measuring the shapes of
stellar images at different positions, since they are point-like or intrinsically round sources.
Since for flexion measurement, higher-order brightness moments are used, the KSB method
which is desiged for shear measurements is not accurate enough for that of flexion. Here
I outline an upgraded version, higher-order KSB, which can be used for the future flexion
measurements. A similar approach (HOLICs) by Okura et al. (2008) was performed on real
data for flexion measurement. But what I present here is a bit different treatment about
centroid shift (Eq.A.23) and for weighting function (Eq.A.52). The work in this Appendix is
done together with Barnaby Rowe.

A.1 Notation

The notations in this chapter are a little different from others, since the higher-order KSB
method needs many parameters while they might stand for different quantities in other chap-
ters, and they only hold in this chapter. Firstly, the complex numbers are defined in a similar
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Figure A.1: PSF models, 0: no
anisotropy. Contours mark 90%,
25% and 3% of the peak inten-
sity. Figure is from Heymans et al.
(2006)

fashion to equation A1 of Okura et al. (2008) (OUF08 hereafter)

θN
M = (θ1 + iθ2)

N+M
2 (θ1 − iθ2)

N−M
2 . (A.2)

In this way, notation N gives the order of the complex number, and M gives the spin,
for instance θ3

1 = θ∗θθ and θ2
0 = θθ∗ = |θ2| etc. With the complex derivative definition

∂ = ∂1 + i∂2, the following results is useful:

∂θN
M = (N −M)θN−1

M+1; ∂∗θN
M = (N +M)θN−1

M−1, (A.3)

from which we can see that the complex derivative is spin up operator, and the conjugate
derivative is spin down operator. In particular for the weight function W = W (θ2

0/σ
2),

Eqs.A.3 become

∂W =
2θ1

1

σ2
W ′, ∂∗W =

2θ1
−1

σ2
W ′, with W ′ =

dW

d(θ2/σ2)
. (A.4)

The stellar anisotropy moments qi, qij and qijk defined in Bartelmann & Schneider (2001) can
also be defined in complex notation

d =

∫

d2φ q(φ) φ1
1 = q1 + iq2 (A.5)

q0 =

∫

d2φ q(φ) φ2
0 = q11 + q22 (A.6)

q2 =

∫

d2φ q(φ) φ2
2 = q11 − q22 + 2iq12 (A.7)

t1 =

∫

d2φ q(φ) φ3
1 = q111 + q122 + i(q112 + q222) (A.8)

t3 =

∫

d2φ q(φ) φ3
3 = q111 − 3q122 + i(3q112 − q222) (A.9)

f0 =

∫

d2φ q(φ) φ4
0 = q1111 + 2q1122 + q2222 (A.10)

f2 =

∫

d2φ q(φ) φ4
2 = q1111 − q2222 + 2i(q1112 + q1222) (A.11)

f4 =

∫

d2φ q(φ) φ4
4 = q1111 − 6q1122 + q2222 + 4i(q1112 − q1222) (A.12)

Note that for the PSF anisotropy kernel q(φ), will be defined in Eq.(A.15), is normalised and
has zero mean. Thus, we have q0 = f0 = 0 by definition. The definitions above can be com-
bined with Eq.(A.3) to give results which are necessary when performing Taylor expressions
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Figure A.2: The logical clue of the KSB method, with the three brightness distribution in the
top line are the source brightness IS , brightness after lensing distortion I, and the brightness
after PSF smearing Iobs, which is the observed one. The bottom three are hypothetical ones
in the KSB method. I iso is the lensed image only after isotropic PSF smearing. Î is the
unlensed source image smeared with P̂SF. Î0 is the unlensed source image smeared with P̂ iso.

using the complex notation.

qi
∂

∂θi
=

1

2
(d∂∗ + d∗∂) , (A.13)

qij
∂2

∂θi∂θj
=

1

4
(q2∂

∗∂∗ + 2q0∂
∗∂ + q∗2∂∂) =

1

4
(q2∂

∗∂∗ + q∗2∂∂) ,

qijk
∂3

∂θi∂θj∂θk
=

1

8
(t3∂

∗∂∗∂∗ + 3t1∂
∗∂∗∂ + 3t∗1∂∂∂

∗ + t∗3∂∂∂) ,

qijkl
∂4

∂θi∂θj∂θk∂θl
=

1

16
(f4∂

∗∂∗∂∗∂∗ + 4f2∂
∗∂∗∂∗∂ + 6f0∂

∗∂∗∂∂ + 4f∗2∂
∗∂∂∂ + f∗4∂∂∂∂)

=
1

16
(f4∂

∗∂∗∂∗∂∗ + 4f2∂
∗∂∗∂∗∂ + 4f∗2 ∂

∗∂∂∂ + f∗4∂∂∂∂) .

The form of these expressions is a direct consequence of the result for the binomial expansion.
Note that each expression can be seen to explicitly maintain the spin properties of the left-
hand side. The spin property of complex lensing algebra is useful to check many of the results
below in advance by ‘spin conservation’.

A.2 Higher-order KSB

We closely follow the logical steps of Section 4.6.2 in Bartelmann & Schneider (2001) (BS01
hereafter). The logical steps of the higher-order KSB method is show in Fig. A.2. Different
I stand for ‘different step’ surface brightness, the mathematic definition will be given later.
The ‘real’ process is that the source brightness is distorted by the gravitational field and
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then smeared by the PSF. The KSB method begins with the observed Iobs (of course, that is
what we have). The first step is the anisotropic correction, then the isotropic smear is done
together with the lensing effect, in the end another anisotropic part is needed.

The observed brightness profile is the true surface brightness having been smeared by an
anisotropic PSF

Iobs(θ) =

∫

d2ϕ I(ϕ) P (θ − ϕ). (A.14)

The PSF function P (ϕ) can be decomposed into two parts

P (ϕ) =

∫

d2ϑ q(ϑ) P iso(ϕ − ϑ) (A.15)

where P iso is the azimuthal average of P , and this is based on the assumption that the
anisotropic part of P (ϕ) is small compared with P . It is convenient to define the hypothetical
brightness profile

I iso(θ) =

∫

d2ϕ I(ϕ) P iso(θ − ϕ), (A.16)

which is the true surface brightness smeared only by the isotropic part of the PSF. For later,
another profile which is the source surface brightness smeared by the same isotropic part of
the PSF, is given by

Î0(θ) =

∫

d2ϕ Is(ϕ) P iso(θ − ϕ). (A.17)

A.2.1 From Iobs quantities to I iso quantities - the “smear” correction in-
cluding centroid shift

From Eqs.(A.15) and (A.16), one has

Iobs(θ) =

∫

d2ϕq(θ − ϕ)I iso(ϕ). (A.18)

Using this result, the integral of an arbitrary function f(θ) can be Taylor expanded to obtain
∫

d2θ f(θ) Iobs(θ) =

∫

d2ϕ I iso(ϕ)

∫

d2θ f(θ + ϕ) q(θ) (A.19)

≃
∫

d2ϕ I iso(ϕ) f(ϕ) + qi

∫

d2ϕ I iso(ϕ)
∂f

∂ϕi

+qij
1

2

∫

d2ϕ I iso(ϕ)
∂2f

∂ϕi∂ϕj
+ qijk

1

6

∫

d2ϕ I iso(ϕ)
∂3f

∂ϕi∂ϕj∂ϕk
,

up to third order in derivatives of f , where qi etc. are described in Eqs. (A.5-A.9). We then
rearrange to give
∫

d2ϕ f(ϕ) I iso(ϕ) ≃
∫

d2θ Iobs(θ) f(θ) − qi

∫

d2ϕ Iobs(ϕ)
∂f

∂ϕi

− qij
1

2

∫

d2ϕ Iobs(ϕ)
∂2f

∂ϕi∂ϕj
− qijk

1

6

∫

d2ϕ Iobs(ϕ)
∂3f

∂ϕi∂ϕj∂ϕk
.(A.20)

Intending only to calculate the PSF anisotropy corrections to linear order, here we have
replaced I iso by Iobs in the Taylor expansion terms in the above expression. The discrepancy
caused by using the latter will yield terms of order q2 and higher.



A.2. HIGHER-ORDER KSB 95

One important assumption that has gone into Eq.(A.20) is that the centroid of the object
is the same for both the observed and ‘iso’ profiles: this is not strictly true and needs to be
properly accounted for in higher order KSB. In the observed frame, the origin θ̄obs = 0 with
the coordinated θ gives

∫

d2θ Iobs(θ)
(

θ − θ̄obs
)1

1
W
[

(θ − θ̄obs)20/σ
2
]

= 0, (A.21)

where W (θ2
0/σ

2) is a weighting function of scale length σ. One effect of the PSF anisotropy
will have been to cause a small shift in the image centroid, and so a pre-smear centroid θ̄iso

is needed, which would be also calculated from the image surface brightness convolved only
with the isotropic part of the PSF. This centroid would then be defined by

∫

d2θ I iso(θ)
(

θ − θ̄iso
)1

1
W
[

(θ − θ̄iso)20/σ
2
]

= 0. (A.22)

If one defines the smear centroid shift ∆θ̄sm = θ̄obs − θ̄iso = −θ̄iso, this then gives

∫

d2θ I iso(θ)
(

θ + ∆θ̄sm
)1

1
W
[

(θ + ∆θ̄sm)20/σ
2
]

= 0. (A.23)

Assuming that ∆θ̄sm is small, the Taylor expansion of W to first order around (θ − θ̄obs) is

W
[

(θ + ∆θ̄sm)20/σ
2
]

≃W
[

θ2
0/σ

2
]

+
1

2

(

∆θ̄sm∂∗ + (∆θ̄sm)∗∂
)

W
[

θ2
0/σ

2
]

.

Substituting this into Eq.(A.23) and ignoring terms of order (∆θ̄sm)2 gives the result

∆θ̄sm ≃ − 1

Siso

{
∫

d2θ I iso(θ)θ1
1 W +

∆θ̄sm

2

∫

d2θ I iso(θ)θ1
1 ∂

∗W (A.24)

+
(∆θ̄sm)∗

2

∫

d2θ I iso(θ)θ1
1 ∂W

}

,

where the total flux is defined as

Siso =

∫

d2θ I iso(θ) W
[

θ2
0/σ

2
]

. (A.25)

Then, using Eqs. (A.13) and (A.20), and staying to linear order in d, q2, t1 and t3 (Eqs.A.5-
A.9), the centroid shift becomes

∆θ̄sm ≃ 1

2Siso

∫

d2θ Iobs(θ) [d∂∗ + d∗∂]
(

θ1
1W
)

(A.26)

+
1

8Siso

∫

d2θ Iobs(θ) [q2∂
∗∂∗ + q∗2∂∂]

(

θ1
1W
)

+
3

48Siso

∫

d2θ Iobs(θ) [t1∂
∗∂∗∂ + t∗1∂∂∂

∗]
(

θ1
1W
)

+
1

48Siso

∫

d2θ Iobs(θ) [t3∂
∗∂∗∂∗ + t∗3∂∂∂]

(

θ1
1W
)

− ∆θ̄sm

2Siso

∫

d2θ I iso(θ)θ1
1 ∂

∗W − (∆θ̄sm)∗

2Siso

∫

d2θ I iso(θ)θ1
1 ∂W.
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Now is a good time to define a series of weighted image brightness moments, using similarly
defined moments in Chapter 3

S =

∫

d2θ Iobs(θ) W, (A.27)

D =

∫

d2θ Iobs(θ)θ1
1 W, (A.28)

Q0 =

∫

d2θ Iobs(θ)θ2
0 W, Q2 =

∫

d2θ Iobs(θ)θ2
2 W, (A.29)

T1 =

∫

d2θ Iobs(θ)θ3
1 W, T3 =

∫

d2θ Iobs(θ)θ3
3 W, (A.30)

F0 =

∫

d2θ Iobs(θ)θ4
0 W, F2 =

∫

d2θ Iobs(θ)θ4
2 W, F4 =

∫

d2θ Iobs(θ)θ4
4 W, (A.31)

V1 =

∫

d2θ Iobs(θ)θ5
1 W, V3 =

∫

d2θ Iobs(θ)θ5
3 W, V5 =

∫

d2θ Iobs(θ)θ5
5 W, (A.32)

H0 =

∫

d2θ Iobs(θ)θ6
0 W, H2 =

∫

d2θ Iobs(θ)θ6
2 W, (A.33)

H4 =

∫

d2θ Iobs(θ)θ6
4 W, H6 =

∫

d2θ Iobs(θ)θ6
6 W. (A.34)

When integrals are required to be taken over W ′ (defined in equation A.4), rather than over
W , there are prime on the moments also, e.g.

Q′
2 =

∫

d2θ Iobs(θ)θ2
2 W

′, F ′′′
4 =

∫

d2θ Iobs(θ)θ4
4 W

′′′. (A.35)

Combining these definitions with the differentiation results of Sect. (A.1), one obtains the
following result for the centroid shift ∆θ̄sm to first order in d, q2, t1 and t3

(

1 +
Q′

0

σ2S

)

∆θ̄sm +
Q′

2

σ2S
(∆θ̄sm)∗ ≃ d

(

1 +
Q′

0

σ2S

)

+ d∗
Q′

2

σ2S
(A.36)

+ q2

(

D′

σ2S
+

T ′′
1

2σ4S

)∗

+ q∗2
T ′′

3

2σ4S

+ t1

(

S′

σ2S
+

2Q′′
0

σ4S
+

F ′′′
0

2σ6S

)

+ t∗1

(

3Q′′
2

2σ4S
+

F ′′′
2

2σ6S

)

+ t3

(

Q′′
2

2σ4S
+

F ′′′
2

6σ6S

)∗

+ t∗3
F ′′′

4

6σ6S
,

where we use approximation that S = Siso, S is the flux in the observational frame.

All of this allows us to formulate a new version of Eq.(A.20), taking into account the

centroid shift ∆θ̄sm to first order. This is to estimate the integral of some function f(θ− θ̄
iso

)
over I iso(θ), or to describe the hypothetical moments around the centroid of I iso. Using
a similar Taylor expansion to that performed in Eq.(A.24), the anisotropic q correction of
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moments, Eq.(A.20) becomes

∫

d2θ f(θ − θ̄
iso

) I iso(θ) ≃
∫

d2θ Iobs(θ) f(θ) (A.37)

+
∆θ̄sm

2

∫

d2θ Iobs(θ) ∂∗f(θ) +
(∆θ̄sm)∗

2

∫

d2θ Iobs(θ) ∂f(θ)

− 1

2

∫

d2θ Iobs(θ) [d∂∗ + d∗∂] f(θ)

− 1

8

∫

d2θ Iobs(θ) [q2∂
∗∂∗ + q∗2∂∂] f(θ)

− 3

48

∫

d2θ Iobs(θ) [t1∂
∗∂∗∂ + t∗1∂∂∂

∗] f(θ)

− 1

48

∫

d2θ Iobs(θ) [t3∂
∗∂∗∂∗ + t∗3∂∂∂] f(θ),

where ∆θ̄sm is calculated in advance using Eq.(A.36). This now gives us the relation we
need to correctly go from any observed moment or function to isotropic smeared ones. As an
example, for T1 (for which f(θ) = θ3

1W (θ2
0/σ

2)), we have

T iso
1 ≃ T obs

1 +
∆θ̄sm

2

∫

d2θIobs(θ)∂∗
[

θ3
1W
]

+
(∆θ̄sm)∗

2

∫

d2θIobs(θ)∂
[

θ3
1W
]

−1

2

∫

d2θIobs(θ) [d∂∗ + d∗∂]
[

θ3
1W
]

−1

8

∫

d2θIobs(θ) [q2∂
∗∂∗ + q∗2∂∂]

[

θ3
1W
]

− 3

48

∫

d2θIobs(θ) [t1∂
∗∂∗∂ + t∗1∂∂∂

∗]
[

θ3
1W
]

− 1

48

∫

d2θIobs(θ) [t3∂
∗∂∗∂∗ + t∗3∂∂∂]

[

θ3
1W
]

.

Working all this through is similar as HOLICs calculated in OUF08. By taking the origin of
the moment as D = 0 and D∗ = 0, and also for d, d∗ = 0, we get the hypothetical brightness
moments that smeared by the isotropic PSF,

Qiso
0 =

∫

d2θ I iso(θ)θ2
0 W (θ2

0/σ
2)

≃ Qobs
0 + (∆θ̄sm)

T ′∗
1

σ2
+ (∆θ̄sm)∗

T ′
1

σ2

−q2
(

Q′
2

σ2
+
F ′′

2

2σ4

)∗

− q∗2

(

Q′
2

σ2
+
F ′′

2

2σ4

)

−t1
(

2D′

σ2
+

5T ′′
1

2σ4
+
V ′′′

1

2σ6

)∗

− t∗1

(

2D′

σ2
+

5T ′′
1

2σ4
+
V ′′′

1

2σ6

)

−t3
(

T ′′
3

2σ4
+
V ′′′

3

6σ6

)∗

− t∗3

(

T ′′
3

2σ4
+
V ′′′

3

6σ6

)

, (A.38)
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Qiso
2 =

∫

d2θ I iso(θ)θ2
2 W (θ2

0/σ
2)

≃ Qobs
2 + (∆θ̄sm)

T ′
1

σ2
+ (∆θ̄sm)∗

T ′
3

σ2

−q2
(

S +
2Q′

0

σ2
+
F ′′

0

2σ4

)

− q∗2
F ′′

4

2σ4

−t1
(

3D′

σ2
+

3T ′′
1

σ4
+
V ′′′

1

2σ6

)

− t∗1

(

2T ′′
3

σ4
+
V ′′′

3

2σ6

)

−t3
(

D′

σ2
+
T ′′

1

σ4
+
V ′′′

1

6σ6

)∗

− t∗3
V ′′′

5

6σ6
, (A.39)

T iso
1 =

∫

d2θ I iso(θ)θ3
1 W (θ2

0/σ
2) ≡ T obs

1 + Pt1(q,Q
obs) (A.40)

≃ T obs
1 + (∆θ̄sm)

(

2Q0 +
F ′

0

σ2

)

+ (∆θ̄sm)∗
(

Q2 +
F ′

2

σ2

)

−q2
(

2T ′
1

σ2
+
V ′′

1

2σ4

)∗

− q∗2

(

T ′
3

σ2
+
V ′′

3

2σ4

)

−t1
(

S +
5Q′

0

σ2
+

7F ′′
0

2σ4
+
H ′′′

0

2σ6

)

− t∗1

(

3Q′
2

σ2
+

3F ′′
2

σ4
+
H ′′′

2

2σ6

)

−t3
(

Q′
2

σ2
+
F ′′

2

σ4
+
H ′′′

2

6σ6

)∗

− t∗3

(

F ′′
4

2σ4
+
H ′′′

4

6σ6

)

,

T iso
3 =

∫

d2θ I iso(θ)θ3
3 W (θ2

0/σ
2) ≡ T obs

3 + Pt3(q,Q
obs) (A.41)

≃ T obs
3 + (∆θ̄sm)

(

3Q2 +
F ′

2

σ2

)

+ (∆θ̄sm)∗
F ′

4

σ2

−q2
(

3T ′
1

σ2
+
V ′′

1

2σ4

)

− q∗2
V ′′

5

2σ4

−t1
(

6Q′
2

σ2
+

4F ′′
2

σ4
+
H ′′′

2

2σ6

)

− t∗1

(

5F ′′
4

2σ4
+
H ′′′

4

2σ6

)

−t3
(

S +
3Q′

0

σ2
+

3F ′′
0

2σ4
+
H ′′′

0

6σ6

)

− t∗3
H ′′′

6

6σ6
,

F iso
0 =

∫

d2θ I iso(θ)θ4
0 W (θ2

0/σ
2)

≃ F obs
0 + (∆θ̄sm)

(

2T1 +
V ′

1

σ2

)∗

+ (∆θ̄sm)∗
(

2T1 +
V ′

1

σ2

)

−q2
(

Q2 +
2F ′

2

σ2
+
H ′′

2

2σ4

)∗

− q∗2

(

Q2 +
2F ′

2

σ2
+
H ′′

2

2σ4

)

−t1
(

7T ′
1

σ2
+

4V ′′
1

σ4
+
Z ′′′

1

2σ6

)∗

− t∗1

(

7T ′
1

σ2
+

4V ′′
1

σ4
+
Z ′′′

1

2σ6

)

−t3
(

T ′
3

σ2
+
V ′′

3

σ4
+
Z ′′′

3

6σ6

)∗

− t∗3

(

T ′
3

σ2
+
V ′′

3

σ4
+
Z ′′′

3

6σ6

)

. (A.42)

In Eqs.(A.40) and (A.41), we write the corrections as Pt1(q,Q
obs) and Pt3(q,Q

obs).



A.2. HIGHER-ORDER KSB 99

A.2.2 From I iso quantities to Î0 quantities - the isotropic correction

First of all, we use the reduced lens equation (3.6)

l(θ) ≡ θ − gθ∗ − Ψ3θ
∗θ∗ − 2Ψ1θ

∗θ − Ψ∗
1θθ, (A.43)

where for later convenience I have defined the “lens function” l(θ) = β, and Ψ1, Ψ3 are
define in Eqs.(3.7) and (3.8). We also need the Jacobian determinant which encompasses the
higher-order lens equation (A.43), which is already defined in Chapter 3,

detA = 1 − g∗g − η1θ
∗ − η∗1θ, (A.44)

where η1 = G1 + (g∗G3 − gG∗
1)/2. We then follow the logical steps of BS01 closely as before,

but expand our treatment as necessary.

Since I(θ) = Is(l(θ)), we may write equation (A.16) as

I iso(θ) =

∫

d2ϕIs(l(ϕ))P iso(θ − ϕ). (A.45)

As in BS01, we may then transform the integration variable to β = l(ϕ). Now that we
are considering flexion, however, we need to be especially careful as equation A.43 does not
give single, unique solutions for θ and therefore cannot be uniquely inverted. As discussed
in Chapter 3, we must limit ourselves to the regime in which the flexion and source size
are sufficiently small to produce a single, primary image close to the origin. We may then
define an inverted lensing function l−1(β) corresponding to this observable image, such that
θ = l(l−1(θ)). This can be found by solving equation (A.43) for θ and taking only the solution
lying closest to the origin. We then allow ourselves to write β = l(ϕ) and ϕ = l−1(β), giving

I iso(θ) =

∫

d2β

detAI
s(β)P iso(θ − l−1(β)). (A.46)

We now define the surface brightness Î as

Î(θ) =

∫

d2ϕ Is(ϕ)P̂ (θ − ϕ), (A.47)

with

P̂ (θ) ≡ 1

detAP
iso(l−1(θ)), (A.48)

which may be thought of as a fictional PSF relating Î to Is, and which due to shear and
flexion is not purely isotropic in general. Putting all this together gives

I iso(θ) =

∫

d2βIs(β)
1

detAP
iso(l−1(l(θ) − β)) = Î(l(θ)). (A.49)

This is completely equivalent to equation (4.73) in BS01, except that now we have to define
the inverse of the lens equation more carefully and ensure we are operating in the “non-
breakdown” zone of flexion. This will then allow us to calculate moments on the Î image and
relate them to those we already have for the I iso image. The final step will then be to relate
these to moments from the Î0 image and that is the same work in the Sect.A2.1.
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All this will be similar to BS01 but we need to clearly understand the effect of the centroid
shift. This will begin to come in for our version of equation (4.75) of BS01 (and its equivalents
for the flexion moments).

Having all these preparation, we can make the isotropic correction. Using Eq.(A.49) in
the source plane brightness moments integration,

∫

d2β βN
M Î(β)W (β2

0/σ
2
s) =

∫

d2θ detA l(θ)NM I iso(θ)W (l(θ)20/σ
2
s) (A.50)

with the length-scale of the weighting

σ2
s = detA σ2 ≃ (1 − κ)2(1 − gg∗)σ2. (A.51)

Using the Taylor expansion to the weighting function as

W (β2
0 + δ) = W (β2

0) +W ′δ, (A.52)

and the linear approximation of detA, we can find out the relation between the brightness
moments of I iso and Î. As an example, for the 0-order moment, which is the total flux of the
image

Ŝ0 =

∫

d2β Î(β)W (β2
0) =

∫

d2θ detA I iso(θ)W (l(θ)20) = (1 − gg∗)

(

Siso − gQ′∗
2 g

∗Q2

σ2
s

)

.

(A.53)

However, here we still need to care about the centroid shift. We define the centroid shift
ˆ̄β in the source plane by the following, which is due to the isotropic PSF and lensing,

∫

d2β(β − ˆ̄β)Î(β)W [(β − ˆ̄β)20/σ
2
s ] = 0. (A.54)

Assuming that ˆ̄β is a small constant and using Eq.(A.52), we can rewrite Eq.(A.54) as

M [β] − ˆ̄βM ′[β2
0 ] − ˆ̄β∗M ′[β2

2 ] − ˆ̄βŜ0 + ˆ̄β2
2M

′[β∗] + ˆ̄β2
0M

′[β] = 0, (A.55)

with which we can solve for ˆ̄β numerically, and here M [β] is stand for the brightness moment

∫

d2β βÎ(β) W [β] ≃ −5

4
G∗

1Q2 −
3

2
G1Q0 −

1

4
G3Q

∗
2 +

5

4
gG∗

1F
′
0 +

1

4
g∗G3F

′
0, (A.56)

where there are prime on M , the integrals are required to be taken over W ′. After that we
can define the source brightness moment with respect to the correct center

∫

d2β f(β − ˆ̄β)Î(β)W [(β − ˆ̄β)20 /σ
2
s ] (A.57)

≃
∫

d2β f(β − ˆ̄β)Î(β)

[

W (β2
0 /σ

2
s) −

β∗ ˆ̄β + β ˆ̄β∗

σ2
s

W ′

]

≃
∫

d2θ detA f(l(θ)− ˆ̄β)I iso(θ)

[

W (θ2
0 /σ

2
s) −

gθ2
−2 + g∗θ2

2

σ2
s

W ′ − l(θ)∗ ˆ̄β + l(θ) ˆ̄β∗

σ2
s

W ′

]

.
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This result can be applied to the second-order moments by setting f(β − ˆ̄β) = (β − ˆ̄β)20 and

f(β − ˆ̄β) = (β − ˆ̄β)22, then we obtain the correction for the isotropic PSF

Q̂0 ≃ Qiso
0

Q̂2 ≃ Qiso
2 − 2gQiso

0 + g2Q∗iso
2

+ (− ˆ̄βT ′
1 − ˆ̄β∗T ′

3 − 2F ′
0g − 2F ′

4g
∗ + 4F ′∗

2 g
2 + 4gg∗F ′

2 − 2F ′∗
4 g

3 − 2F ′
0g

2g∗)/σ2
s .(A.58)

The shear estimator with higher-order KSB can be obtain from these equations. But here we

are more interested in the flexion, thus we set that f(β− ˆ̄β) = (β− ˆ̄β)31 and f(β− ˆ̄β) = (β− ˆ̄β)33
in Eq.(A.57). These equations give the relation for the third-order moments

T̂1 ≃ T iso
1 − 9F0 − 12Q2

0

4
G1 − 2 ˆ̄βQ0 − ˆ̄β∗Q2 −

ˆ̄βF ′
0 + ˆ̄β∗F ′

2

σ2
s

+ 9
(gH ′∗

2 + g∗H ′
2)

2σ2
s

G1 + 4
(gH ′

0 + g∗H ′
4)

σ2
s

G∗
1 +

(gH ′
2 + g∗H ′

6)

2σ2
s

G∗
3 +

(g∗H ′
0 + gH ′∗

4 )

σ2
s

G3;

T̂3 ≃ T iso
3 − 3F0

4
G3 − 3 ˆ̄βQ2 −

ˆ̄βF ′
2 + ˆ̄β∗F ′

4

σ2
s

+ 3
(gH ′∗

2 + g∗H ′
2)

σ2
s

G3 + 5
(gH ′

0 + g∗H ′
4)

σ2
s

G1, (A.59)

where we only keep the linear terms of ˆ̄β. In these relations we can see that the first two
terms on the right sides of the equations are the same as we have in Chap. 3 (Eq.3.64). The
rest terms are correction for the centroid shift due to isotropic PSF and weight function. If
we use the Gaussian weighting function, the derivative has the similar form as the original
one, we omit the prime on the moment. We make some further simplification, only the terms
which directly relate to G1/G3 are kept,

T̂1 ≃ T iso
1 −

(

9F0 − 12Q2
0

4
− 9

2
(gH∗

2 + g∗H2)/σ
2
s

)

G1

T̂3 ≃ T iso
3 −

(

3F0

4
− 3(gH∗

2 + g∗H2)/σ
2
s

)

G3. (A.60)

In the end, another pre-lensing isotropic smear correction is needed. In analogy to
Sect. A.2.1, we decompose P̂ into an isotropic and an anisotropic part, the latter one as-
sumed to be small

P̂ (θ) =

∫

d2ϕP̂ iso(ϕ)q̂(θ − ϕ). (A.61)

Following the same way as that between Iobs and I iso, we relate the brightness profile which
would be obtained from smearing the source with the isotropic PSF P iso and Î through

Î(θ) =

∫

d2ϕÎ0(ϕ)q̂(θ − ϕ). (A.62)

Then we can write the last step of higher-KSB

T̂ 0
1 = T̂1 + P̂t1(q̂, Q

′);

T̂ 0
3 = T̂3 + P̂t3(q̂, Q

′), (A.63)
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where P̂ti(q̂, Q
′), i = 1, 3 stand for anisotropic correction which should in principle be calcu-

lated using Î instead of Iobs in Eqs.(A.40) and (A.41). Here we however assume the differences
between Î, I iso and Iobs, and use q as q̂ in Eq.(A.63).

Combining all the 3 step results together, we obtain the final correction of higher-order
KSB

T̂ 0
1 = T obs

1 + Pt1(q,Q) + P̂t1(q̂, Q
′) −G1

(

9F0 − 12Q2
0

4
− 9

2
(gH∗

2 + g∗H2)/σ
2
s

)

T̂ 0
3 = T obs

3 + Pt3(q,Q) + P̂t3(q̂, Q
′) −G3

(

3F0

4
− 3(gH∗

2 + g∗H2)/σ
2
s

)

. (A.64)

This equations relate the observed brightness moments to that of the source smeared by an
isotropic PSF, using the anisotropy PSF and the reduced shear and reduced flexion. Since the
expectation value of T 0

1 and T 0
3 are zero, these equations yield the estimator for the reduced

flexion. The result shown here are preliminary. The accuracy and behavior of these estimators
need further test.



Appendix B

The matrix C

In this Appendix, we list the coefficients of the matrix C which occurs in (3.56):

4(1 − gg∗)C11 = −2gF ∗
2 + (9gg∗ − 3)F0 + 6g∗(1 − 2gg∗)F2 + g∗2(5gg∗ − 3)F4

+ 6gQ∗
2Q0 − 12gg∗Q2

0 + (3 − 9gg∗)Q∗
2Q2 + 6g∗(4gg∗ − 1)Q0Q2 + 3g∗2(1 − 3gg∗)Q2

2

4(1 − gg∗)C12 = 5gF ∗
4 − 2(5 + 6gg∗)F ∗

2 + 9g∗(3 + gg∗)F0 − 2g∗2(12 + gg∗)F2 + 7g∗3F4

− 9gQ∗2
2 + 6(3 + 4gg∗)Q∗

2Q0 − 12g∗(3 + gg∗)Q2
0 − 3g∗(5 + 3gg∗)Q∗

2Q2

+ 6g∗2(8 + gg∗)Q0Q2 − 15g∗3Q2
2

4(1 − gg∗)C13 = −7F ∗
4 + 26g∗F ∗

2 − 36g∗2F0 + 22g∗3F2 − 5g∗4F4

+ 15Q∗2
2 − 54g∗Q∗

2Q0 + 48g∗2Q2
0 + 24g∗2Q∗

2Q2 − 42g∗3Q0Q2 + 9g∗4Q2
2

4(1 − gg∗)C14 = −2g∗F ∗
4 + 6g∗2F ∗

2 − 6g∗3F0 + 2g∗4F2

+ 6g∗Q∗2
2 − 18g∗2Q∗

2Q0 + 12g∗3Q2
0 + 6g∗3Q∗

2Q2 − 6g∗4Q0Q2

4(1 − gg∗)C21 = 2g2F ∗
2 − 6g2g∗F0 + [4gg∗(1 + gg∗) − 2]F2 + 2g∗(1 − 2gg∗)F4

− 6g2Q∗
2Q0 + 4g(1 + 2gg∗)Q2

0 + 6g2g∗Q∗
2Q2 + [2 − 4gg∗(3 + 2gg∗)]Q0Q2

+ 2g∗(4gg∗ − 1)Q2
2

4(1 − gg∗)C22 = −5g2F ∗
4 + 2g(7 + 4gg∗)F ∗

2 − 3[3 + gg∗(8 + gg∗)]F0 + 2g∗(8 + 5gg∗)F2 − 7g∗2F4

+ 9g2Q∗2
2 − 2g(13 + 8gg∗)Q∗

2Q0 + 4[3 + gg∗(8 + gg∗)]Q2
0

+ [5 + gg∗(16 + 3gg∗)]Q∗
2Q2 − 2g∗(16 + 11gg∗)Q0Q2 + 15g∗2Q2

2

4(1 − gg∗)C23 = 7gF ∗
4 − 2(4 + 9gg∗)F ∗

2 + 3g∗(7 + 5gg∗)F0 − 2g∗2(9 + 2gg∗)F2 + 5g∗3F4

− 15gQ∗2
2 + (16 + 38gg∗)Q∗

2Q0 − 4g∗(7 + 5gg∗)Q2
0 − g∗(13 + 11gg∗)Q∗

2Q2

+ 2g∗2(17 + 4gg∗)Q0Q2 − 9g∗3Q2
2

4(1 − gg∗)C24 = (3gg∗ − 1)F ∗
4 − 6gg∗2F ∗

2 + 3g∗2(1 + gg∗)F0 − 2g∗3F2

+ (1 − 7gg∗)Q∗2
2 + 2g∗(2 + 7gg∗)Q∗

2Q0 − 4g∗2(2 + gg∗)Q2
0

− 3g∗2(1 + gg∗)Q∗
2Q2 + 6g∗3Q0Q2

The other eight elements follow trivially from the foregoing ones, since the second half of the
matrix is just the complex conjugate one of the first half, i.e., C44 = C∗

11, C34 = C∗
21 etc., or

in general, Cij = C∗
5−i,5−j .
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Bacon, D. J. & Schäfer, B. M. 2009, MNRAS, 396, 2167

Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. 1986, ApJ, 304, 15

Bartelmann, M., Huss, A., Colberg, J. M., Jenkins, A., & Pearce, F. R. 1998, A&A, 330, 1

Bartelmann, M. & Schneider, P. 2001, Phys. Rep., 340, 291
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