
Efficient Point-Cloud Processing
with Primitive Shapes

Dissertation

zur
Erlangung des Doktorgrades (Dr. rer. nat.)

der
Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Dipl.-Inf. Ruwen Schnabel
aus

Konstanz

Bonn, Dezember 2009

Universität Bonn
Institut für Informatik II

Römerstraße 164, D-53117 Bonn

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Reinhard Klein

2. Gutachter: Prof. Dr. Stefan Gumhold

Tag der Promotion: 27.9.2010
Erscheinungsjahr: 2010

CONTENTS

List of Figures v

List of Tables xi

Abstract xiii

Zusammenfassung xv

Acknowledgements xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 3
1.3 Contributions . 4
1.4 Outline . 4
1.5 Preliminaries . 6

1.5.1 Normals . 6
1.5.2 Moving Least-Squares Surface 9
1.5.3 Primitives . 13

2 Primitive Detection 17
2.1 Introduction . 17
2.2 Previous work . 18

2.2.1 Vision . 18
2.2.2 Reverse engineering . 20
2.2.3 Graphics . 20
2.2.4 RANSAC . 21

2.3 Overview . 25
2.4 Shape estimation . 26
2.5 Complexity . 27

2.5.1 Probabilities . 27
2.6 Sampling strategy . 28

2.6.1 Localized sampling . 28

i

CONTENTS

2.6.2 Number of candidates 30
2.7 Score . 31

2.7.1 Connected components 32
2.8 Score evaluation . 32

2.8.1 Random subsets . 32
2.8.2 Octree . 34

2.9 Refitting . 35
2.10 Out-of-core detection . 35

2.10.1 Maximal primitive extent 35
2.11 Alternate score . 36

2.11.1 Minimum Description Length 37
2.12 Results . 40

2.12.1 Noise . 43
2.12.2 Comparison . 49
2.12.3 Out-of-core detection . 50
2.12.4 Alternate score . 51

2.13 Conclusion . 53

3 Compression 55
3.1 Introduction . 55
3.2 Previous work . 57
3.3 Overview . 58
3.4 Compression . 60

3.4.1 Resampling . 60
3.4.2 Filtering . 61
3.4.3 Vector quantization . 62
3.4.4 Codebook generation . 63
3.4.5 Hierarchy . 68
3.4.6 On-disk compression . 70

3.5 Decompression . 71
3.6 Rendering . 72

3.6.1 Level-of-detail . 72
3.6.2 Hole-free rendering . 72
3.6.3 Normal estimation . 73

3.7 Results . 74
3.8 Conclusion . 78

3.8.1 Limitations and future work 78

ii

CONTENTS

4 Recognition 81
4.1 Introduction . 81
4.2 Related work . 82

4.2.1 3D city reconstruction 82
4.2.2 Graph-based matching 83
4.2.3 Matching with local features 84

4.3 Overview . 84
4.4 Topology Graph . 86
4.5 Shape Matching . 86

4.5.1 Query graph . 87
4.5.2 Constrained subgraph matching 88
4.5.3 First results . 90
4.5.4 Query Graph Extensions 90

4.6 Conclusion . 95
4.6.1 Future work . 96

5 Completion and Reconstruction 97
5.1 Introduction . 97
5.2 Previous work . 100
5.3 Shape primitive guided completion 101

5.3.1 Shape primitive detection 103
5.4 Primitive adherence . 103

5.4.1 Discrete global minimization 105
5.4.2 Placement of inside and outside constraints 107

5.5 Primitive connectivity . 108
5.6 Reconstruction of detail . 109
5.7 Surface extraction . 110

5.7.1 Consistent edge labeling 111
5.8 Height-fields . 112
5.9 Experimental results . 114
5.10 Conclusion . 119

6 Conclusion 121
6.1 Discussion . 122
6.2 Future work . 123

Bibliography 127

Data Sources 148

Publications 153

iii

CONTENTS

iv

LIST OF FIGURES

1.1 Several scanned point-clouds from typical application scenarios.
From left to right: (a) A scanned street of houses for city plan-
ning (courtesy of the Institute for Cartography and Geoinformat-
ics Hannover http://www.ikg.uni-hannover.de/en/).
(b) Lobby of an office building scanned for building redesign
(courtesy of Autodesk Research http://www.digital210king.
org). (c) A point-cloud of an industrial complex acquired for
change management (courtesy of scannTec GmbH & CO. KG,
http://scanntec.com). (d) A turbine blade for reverse en-
gineering (courtesy of Georgia Tech Large Geometric Models Archive
www.cc.gatech.edu/projects/large_models/). . . . 2

1.2 Normal estimation: a) and d) The oil-pump and the box model
without normals rendered as OpenGL point primitives. b) and e)
The estimated normals using an adaptive neighborhood as pro-
posed in Jenke et al. [JKS08]. c) and f) Points colored according
to the normal confidence computed as suggested by Pauly et al.
[PMG+05] (blue high confidence, red low confidence). Surface
edges, registration errors and sampling irregularities reduce the
confidence in the normal estimation. 8

1.3 Ray-traced MLS-Surfaces. On the left the point-clouds are shown
rendered as simple OpenGL point primitives with normals. Nor-
mals are for visualization purposes only and are not required for
finding the MLS-Surface. On the right the corresponding ray-
traced MLS-Surfaces are shown. The MLS-Surfaces are smooth
and contiguous. 11

1.4 The shape primitives considered in this work from left to right:
Plane, sphere, cylinder, cone and torus. The coloring in this figure
is used throughout this thesis to signify primitive type: red for
planes, yellow for spheres, green for cylinders, purple for cones
and grey for tori. 13

v

http://www.ikg.uni-hannover.de/en/
http://www.digital210king.org
http://www.digital210king.org
http://scanntec.com
www.cc.gatech.edu/projects/large_models/

LIST OF FIGURES

2.1 A small cylinder that has been detected by our method. The shape
consists of 1066 points and was detected among 341,587 points.
That corresponds to a relative size of 1/3000. 29

2.2 To generate this image our algorithm was applied to the barycen-
ters of the triangles. The triangles were than colored according to
the shape of their barycenter and the vertices were projected onto
the shape. The jagged lines appear because the triangulation does
not contain the edges of the shapes. 40

2.3 The chart shows the times of detection of the shapes found in the
oil pump model when either subset evaluation or the localized
sampling is disabled. For comparison also the timings of the fully
optimized version are plotted. Total runtime for the version with-
out subsets was 272.5s, 199.1s without local sampling and 12.3s
with both optimizations activated. 41

2.4 The 372 detected shapes in the choir screen define a coarse ap-
proximation of the surface. 42

2.5 a) The original scanned model with ca. 500k points. b) Points
belonging to shapes in random colors. c) Points of the shapes col-
ored according to the type of the shape they have been assigned to:
planes are red, cylinders green, spheres yellow, cones purple and
tori are grey. No remaining points are shown. d) The bitmaps con-
structed for connected component computations provide a rough
reconstruction of the object. 44

2.6 a) Distorted model with Gaussian noise and outliers b)-c) Results
of the detection on the model with Gaussian noise but without
added outliers. d) In addition to the Gaussian noise, 10% outliers
were added (see a)). 45

2.7 First column: Original point-clouds. Second column: Shapes col-
ored randomly. Last column: Shapes colored by type as in Fig.
2.5. Models are from top to bottom: rolling stage, house, master
cylinder. For parameters and timings see Table 2.1. 46

2.8 First column: Original point-clouds. Second column: Shapes col-
ored randomly. Last column: Shapes colored by type as in Fig.
2.5. Models are from top to bottom: rocker arm, church, and
carter. For parameters and timings see Table 2.1. 47

2.9 Points on an octant of a sphere distorted by synthetic gaussian
noise with a σ of 10% relative to the sphere diameter and 80%
outliers. Our algorithm is able to robustly detect the sphere, see
also Table 2.2. 48

vi

LIST OF FIGURES

2.10 a) A part of the church model containing heavy noise. b) Points
belonging to shapes in random colors c) Points colored by type of
shape as in Fig. 2.5. 48

2.11 Primitives detected by the out-of-core version of the detection al-
gorithm on 25 Mio. sample points from an aerial stereo recon-
struction of Graz. The detection time was 470 sec. 50

2.12 Comparison of results obtained with a simple thresholding score
and the MDL based scoring approach. Left column: Input point-
clouds. Middle column: Detected primitives with thresholding
score, colored by type (cf. Fig. 2.7 and 2.8) Right column: Prim-
itives detected with MDL score. Both approaches use the same
distance and normal thresholds, bitmap resolution and minimum
support. The weight for the parameters in the MDL score was
set to 10. Note that the detected types are more consistent for the
MDL score and in general primitives with fewer parameters are
preferred. 52

3.1 Michelangelo’s St. Matthew rendered interactively at 3.31bpp in-
cluding normals. 56

3.2 Different stages in our compression algorithm. a) The object is de-
composed into parts corresponding to shape primitives. b) Height
fields over the primitives are generated to describe fine scale de-
tails. c) Laplace pyramids are computed for each height field d)
Pyramid levels are encoded with vector quantization. 59

3.3 Kd-tree filtering with missing values. Black points depict vectors
without missing values. The black line depicts a vector with a
missing value on the x axis. The bounding box Bmax is shown in
blue, the infinite boxBmin is shown in green dashed lines. The vi-
olet cluster center is pruned because its minimal distance to Bmin

is larger than the maximal distance of the orange cluster center to
Bmax. 65

3.4 Two consecutive levels of an image quad-tree. Each quad-tree cell
contains x2 pixels. Below the quad-tree tiles the array for the level
is depicted. Each entry stores a pointer to the parent tile, the child
relation and the code-vector index. Array entries corresponding to
partial tiles, i.e. tiles with incomplete occupancy masks, are sorted
to the beginning of the array. 69

3.5 The Ephesos point-cloud with colors after compression. 75
3.6 The PSNR of our method compared to that of Kalaiah et al. [KV05]

for the David statue. 76

vii

LIST OF FIGURES

3.7 Some simple interaction trivially supported in our system. A pipe
is highlighted by clicking on it. 77

3.8 Close-up of fine detail on Michelangelo’s Atlas. Hole free ren-
dering is achieved with our framebuffer pyramid. On the left de-
compressed normals are used. On the right normals have been
estimated in screen space. 79

3.9 The image on the left has been rendered with normals estimated
in screen-space. On the right only shape normals are shown. . . . 79

3.10 The behavior of the normal estimation for different distances from
the viewer. In the top row the Atlas model has been rendered with
compressed normals on the left. In the middle screen-space alias-
ing was achieved by splatting the points. On the right normals
have been estimated. The bottom row shows a zoomed in view.
On the left decompressed normals were used and on the right es-
timated normals are shown. 80

4.1 Two houses viewed from above that are separated by a narrow
alley. Primitive shapes have been detected and are depicted in
random colors. a) The topology graph was built with a cell width
of 50cm b) The cell width for the construction of the topology
graph was set to 2m. Note that the roofs have been connected
across the narrow alleyway. In c) and d) we show the resulting
topology graphs. In d), the additional edges resulting from large
cells are shown in red. 85

4.2 Illustration of the constraints that can be used to detect saddleback
roofs: The angle α is constraint to be less than 90 degrees and
similar for both planes. The intersection line is required to run
parallel to the ground. 87

4.3 A scan of a medieval chapel with Gothic windows containing
4.2M points. The windows were detected by matching the query
graph with subgraphs of the topology graph. In a) the original
point-cloud is depicted. b) shows the support of the detected shape
primitives in random colors. In c) the detected columns are high-
lighted in green. 91

4.4 A scan of a choir screen consisting of 2M points. The query graph
for the columns consisted of a cylinder connected to tori at both
ends. In a) the original point-cloud is depicted. b) shows the
support of the detected shape primitives in random colors. In c)
the detected columns are highlighted in green. 92

viii

LIST OF FIGURES

4.5 a) Detection of dormers on a roof. The roof plane shown in darker
green is a context shape of the dormers. b) The query graph con-
taining a context node. 93

4.6 An L-shaped roof may be hipped on either end. This is best mod-
eled by optional nodes in the query graph. a) A matched L-shaped
roof in a stereo reconstruction of a city containing 4M points. b)
The query graph used for detection. Optional nodes are shown in
grey. 94

4.7 Detection of a stairway in a sampled CAD model of a house. The
model was converted to a point-cloud by random sampling of the
surface. 94

5.1 Reconstruction of the fandisk model. Orange color signifies com-
pleted surface parts. (a) The input point-cloud with holes. (b) The
final result. Result without the connectivity enforcement algo-
rithm of Sec. 5.5. The disconnected primitive highlighted in red
cuts off part of the model. (d) Close-up views of result without
consistent edge labels and final result (see Sec. 5.7) 98

5.2 (a) A hole is indicated by the orange area. (b) Planar primitives in
the vicinity are extended. (c) Their intersection defines the com-
pleted surface. (d-e) Surface areas approximated by primitives
are colored. Black surface parts do not correspond to any prim-
itive. Due to inexact primitive estimation, holes cannot always
be closed with primitives only and gaps may need to be filled by
other means. (f-g) If primitives are not detected for some reason
(e.g. due to noise noise or because the surface cannot be approx-
imated by primitives at all) the algorithm should nonetheless use
the information of the available primitives and plausibly connect
the synthesized surface to the unapproximated areas. (h-j) The ef-
fect of the connectivity constraint. (h) Primitives are color coded.
(i) The desired reconstruction contains a completed circle. (j) If
connectivity of the primitives is not enforced another reconstruc-
tion that cuts off the circle is also possible. 102

5.3 The effect of different configurations on the energy term−
∫
S
H(〈n|v〉)dA

(see text). 104
5.4 (a) Graph construction and cost assignment: The colored edges

intersect a primitive and match its orientation. On these edges Êp
is set to cancel their area costs. (b) High costs result, if a cut does
not follow primitives or fails to match their orientation (flashes
mark edges with high costs). 106

ix

LIST OF FIGURES

5.5 Edge connectivity and edge/primitive correspondence. Cut-edges
are depicted in red. (a) The cut-edges connected to edge e are
highlighted. (b) Cut-edge f is intersected by both primitives. If
h is part of the original support S0

1 of ψ1 and the cost of g had
previously been increased, it is now reset because it is connected
to h, see Sec. 5.5. 108

5.6 Illustration of the different cases for the smoothness term V in eq.
(5.8). Left: Ve,g is of type (2) and will give the distance between
the primitives along edge e, while Vg,h is of type (3) and gives the
distance between the intersections of g. Right: Ve,g is of type (3)
and evaluates to zero because the primitives intersect within the
cube face. 110

5.7 (a) Height field with missing area. (b) Planar primitives are de-
tected on the ridges (c) Our result (d) Completion result obtained
by [JT04] . 112

5.8 Completion of the carter model. Orange color signifies completed
surface parts. Top row: Our final result with sharp features. Mid-
dle row: The input point-cloud with holes. Primitive types are col-
ored as follows: plane/red, sphere/yellow, cylinder/green, cone/purple,
grey/torus. Bottom row: The result with the algorithm of [LB07]. . 113

5.9 Completion of the master cylinder. (a)-(d): The final result us-
ing the detail reconstruction of Sec. 5.6 (e)-(f): Input point-cloud.
Areas corresponding to different primitives rendered in random
colors. 115

5.10 Removal of defective and undesired data from an aerial height-
field (highlighted in orange). Our algorithm infers missing fea-
tures such as dormers or walls by propagating surrounding struc-
ture represented as primitive shapes. 116

5.11 Reconstruction of the oil-pump from 9 scans. Top: Final result.
Bottom from left to right: Input point-cloud. Input point-cloud
colored by primitives. Final result. 117

5.12 A preliminary result of detail synthesis on the completed parts of
the master cylinder. The image inpainting approach of Komodakis
[Kom06] is used to complete the height field over the primitive. . . 118

x

LIST OF TABLES

2.1 Statistics on processed models. ε is given as ratio of maximum
bounding box width. Results have been averaged over 5 runs and
rounded. 41

2.2 Parameter errors for the fitted spheres under different noise condi-
tions compared to ground truth. All values are given in percent of
the sphere diameter. The values are, from left to right, the level of
gaussian noise σ, the percentage of outliers o, the mean values µr
for radius and µc for center deviation, and the standard deviations
σr of the radius and σc of the center. 49

2.3 Average percentage of correctly detected regions on the 40 test
range images of the Segmentation Comparison Project. The thresh-
old controls the ratio of required overlap between ground truth and
machine segmented regions. 49

3.1 Effects of the different acceleration methods when applied to the
oil-pump model (see Fig. 3.2). BF denotes brute force nearest
neighbor search, S subsampling, F filtering with kd-tree, L the
search in the list of l nearest neighbors and E ignores points close
to a cluster bisector. L and E are approximating strategies, but
bitrates are effected by less than 1%. The required time for con-
struction of the kd-trees for the final F/L/E/S algorithm is 0.6sec
(included in the overall timings above). 67

3.2 Compression statistics for various models. TD gives the time for
decomposition in hours and minutes. TV Q is the time for vector
quantization. All timings were obtained on an Intel Core 2 Duo
with 2GB Ram. Bpp are measured with respect to original points.
Disk1 bpp uses on-disk compression using simple adaptive arith-
metic coding while disk2 bpp lists results for breadth-first serial-
ized quad-trees. Timings and bitrates in parentheses are for points
and normals. For each model six levels-of-detail were used. For
Ephesos and Industrial no normals were compressed due to their
low quality. 74

xi

LIST OF TABLES

3.3 Compression statistics for colors on various models. Bpp gives
the bits required for colors only, i.e. without heights or normals. . 75

4.1 Some statistics on test models. #nodes gives the number of primi-
tive shapes detected in the point cloud (there is one node per prim-
itive in the topology graph). #edges states the number of edges in
the topology graph. top.graph lists the timings for construction of
the topology graph. The last column gives the timings for match-
ing the query graph. 96

5.1 Timings for shape detection in seconds (Ts), number of detected
primitives (|Φ|), timings for reconstruction in minutes (Tr), virtual
size of volume (|V |) . 118

xii

ABSTRACT

This thesis presents methods for efficient processing of point-clouds based on
primitive shapes. The set of considered simple parametric shapes consists of
planes, spheres, cylinders, cones and tori. The algorithms developed in this work
are targeted at scenarios in which the occurring surfaces can be well represented
by this set of shape primitives which is the case in many man-made environments
such as e.g. industrial compounds, cities or building interiors. A primitive sub-
sumes a set of corresponding points in the point-cloud and serves as a proxy for
them. Therefore primitives are well suited to directly address the unavoidable
oversampling of large point-clouds and lay the foundation for efficient point-cloud
processing algorithms.

The first contribution of this thesis is a novel shape primitive detection method
that is efficient even on very large and noisy point-clouds. Several applications for
the detected primitives are subsequently explored, resulting in a set of novel al-
gorithms for primitive-based point-cloud processing in the areas of compression,
recognition and completion. Each of these application directly exploits and bene-
fits from one or more of the detected primitives’ properties such as approximation,
abstraction, segmentation and continuability.

xiii

ABSTRACT

xiv

ZUSAMMENFASSUNG

Die vorliegende Arbeit präsentiert Methoden zur effizienten Verarbeitung von
Punktwolken auf Basis von simplen Oberflächenprimitiven. Die betrachtete Menge
von parametrischen Primitiven setzt sich aus Ebenen, Kugeln, Zylindern und Tori
zusammen. Die Algorithmen die in dieser Arbeit entwickelt werden sind aus-
gerichtet auf Szenarien in denen die vorkommenden Oberflächen gut durch diese
Menge an Primitiven repräsentiert werden können, wie etwa im Falle von durch
Menschenhand geschaffenen Umgebungen, z.B. Industrieanlagen, Städte oder Ge-
bäudeinnenräume. Ein Primitiv subsumiert eine Reihe von zugehörigen Punkten
aus der Punktwolke und dient als ersatzweiser Repräsentant. Daher sind Primi-
tive gut geeignet die unvermeidbare Überabtastung großer Punktwolken anzuge-
hen und bilden die Grundlage für effiziente Algorithmen zur Punktwolkenverar-
beitung.

Der erste Beitrag dieser Arbeit ist eine neuartige Detektionsmethode zur Prim-
itiverkennung die effizient auf sehr großen und verrauschten Punktwolken ar-
beitet. Mehrere Andwendungen der detektierten Primitive werden nachfolgend
untersucht und münden in einer Reihe von neuen Algorithmen für Primitiv-basierte
Punktwolkenverarbeitung in den Bereichen Kompression, Erkennung und Ver-
vollständigung. Jede dieser Andwendungen nutzt und profitiert direkt von einer
oder mehrerer der Eigenschaften der detektierten Primitive wie Approximation,
Abstraktion, Segmentierung oder Fortsetzbarkeit.

xv

ZUSAMMENFASSUNG

xvi

ACKNOWLEDGEMENTS

First and foremost, I have to thank my supervisor Prof. Dr. Reinhard Klein, whose
energetic enthusiasm for the field has never ceased to be a great source of moti-
vation for me as well as the whole group. Without his inspiration and the many
fruitful discussions this work would not have been possible.

I also want to express my gratitude to all my former colleagues in the com-
puter graphics group in Bonn. I always enjoyed the very friendly and cooperative
atmosphere that you created. In particular, I thank Roland Wahl, Raoul Wessel,
Sebastian Möser, Patrick Degener, Christopher Schwartz and Bao Li for all the
effort and long nights spent writing papers. Also, I had a very good time sharing
an office with Markus Schlattmann and Gero Müller and I want to thank Roland
Ruiters for some wonderful discussions over lunch.

Last but not least I need to thank my wife for her patience during all nights
that I spent working on some new idea and almost forgot all about her.

xvii

ACKNOWLEDGEMENTS

xviii

CHAPTER 1

INTRODUCTION

In Computer Graphics the term ’point-cloud’ usually refers to an unordered col-
lection of spatial locations - most often in 3D, but other dimensionality is also
common - that can additionally be equipped with a set of attributes such as e.g.
color or normal information at the respective locations in space. Generally, point-
clouds can represent volumetric data as well as surfaces and are indeed employed
in both respects. Common to both approaches is the usually unstructured and
irregular sampling of the underlying information. Point-clouds are used in vari-
ous fields of Computer Graphics and can stem from very different sources. Some
of the earliest uses of point-clouds can be attributed to procedural modeling and
simulation of natural phenomena such as smoke [CHP+79], clouds [Bli82], fire
[Ree83] as well as plants [Ree85]. With the complexity of geometric models
rising to a degree where available geometric detail is often much higher than rep-
resentable on comparatively low resolution screens, point-clouds were also intro-
duced as rendering primitives [RL00, ZPvBG01]. They promise simple resam-
pling techniques to adjust the sampling rate of the geometry to that of the screen
and thereby reduce overdraw and aliasing. Point-clouds can also serve as interme-
diate representations during rendering, e.g. for global illumination as in photon-
mapping [JC95] or subsurface scattering [Chr07]. Due to their simple structure
and resampling capability, point-clouds have also proven very suitable for inter-
active geometry modeling [Pau03] as well as animation and physical simulation
[Kei06]. However, the recent interest in point-clouds has arguably been driven
the most by the advent of cheap and versatile 3D acquisition devices. The most
popular acquisition techniques, laser range scanning [LPC+00], structured light
scanning [GTK92], shape from shading [HB89] and multi-view stereo [HZ04] in
general all produce unstructured 3D point-clouds that are sampled from the ac-
quired surface geometry. This work - while intentionally staying oblivious to the
technical details of acquisition - deals with exactly this kind of point-clouds and
in the following ’point-cloud’ will always refer to a sampling of a surface in 3D
which usually was acquired by one of the above techniques (see Fig. 1.1 for some

1

CHAPTER 1. INTRODUCTION

(a) (b) (c) (d)

Figure 1.1: Several scanned point-clouds from typical application scenarios.
From left to right: (a) A scanned street of houses for city planning (cour-
tesy of the Institute for Cartography and Geoinformatics Hannover http:
//www.ikg.uni-hannover.de/en/). (b) Lobby of an office building
scanned for building redesign (courtesy of Autodesk Research http://www.
digital210king.org). (c) A point-cloud of an industrial complex ac-
quired for change management (courtesy of scannTec GmbH & CO. KG, http:
//scanntec.com). (d) A turbine blade for reverse engineering (courtesy
of Georgia Tech Large Geometric Models Archive www.cc.gatech.edu/
projects/large_models/).

examples). Such acquired point-clouds find applications in a diverse set of areas:
reverse engineering and prototyping, construction and maintenance, quality con-
trol, city planning, cultural heritage, forensics, movie production and robotics to
mention just a few.

1.1 Motivation

However, point-clouds acquired from real-world objects commonly possess sev-
eral properties that pose challenges for any algorithm that further processes this
raw data. One major issue, which actually does not depend on the acquisition pro-
cess but rather is a natural property of all point-clouds, is the lack of any structure,
or connectivity information respectively, in the point data. This missing infor-
mation makes it hard to identify the true shape of the underlying surface even in
densely sampled regions. In case of real-world scans this difficulty is further in-
tensified by the inevitable presence of noise, which under adverse circumstances
can be on an order even larger than the sample spacing. This noise can be caused
by measuring principle specific characteristics or environmental influences, e.g.
unfavorable lighting conditions, dust or even vibrations. Therefore, algorithms

2

http://www.ikg.uni-hannover.de/en/
http://www.ikg.uni-hannover.de/en/
http://www.digital210king.org
http://www.digital210king.org
http://scanntec.com
http://scanntec.com
www.cc.gatech.edu/projects/large_models/
www.cc.gatech.edu/projects/large_models/

1.2. GOALS

operating on point-clouds need to be robust to this kind of noise as well as outliers.
Moreover, acquisition is usually incomplete in the sense that large parts of the ge-
ometry remain hidden to the scanning device due to occlusion and restrictions on
scanner placement. Often however, it is desired to obtain a complete model of
the acquired scene that fills these missing regions - if not necessarily correctly -
at least in a plausible manner. Last but not least there is the sheer size of the gen-
erated point-clouds which can easily be in the billions. On the one hand, the size
of the point-clouds is caused by the amount of acquired geometry of course, e.g.
if an entire city is scanned this will necessarily result in a relatively large point-
cloud, but on the other hand the size is usually needlessly inflated due to heavy
oversampling. This is because the scanning device does not adapt the sampling
rate to the acquired geometry and therefore even very flat areas, e.g. the roads
and house walls in the city, will be sampled at high rates resulting in an overly
redundant point-cloud. It thus seems necessary and reasonable to investigate rep-
resentations of the data that subsume redundant information on a higher level. In
this context, an observation fundamental to this work is that, especially in scenes
where man-made objects predominate, as is the case in many of the aforemen-
tioned application scenarios, e.g. when scanning mechanical parts, factory sites or
other building interiors, large parts of the acquired geometry can usually be well
represented by a set of simple parametric shape primitives: planes, spheres, cylin-
ders, cones and tori. Once detected, these primitives achieve the desired effect
with respect to the redundancy in the point-cloud, i.e. each primitive subsumes its
associated set of corresponding points and can serve as a rough proxy for these.
Importantly though, at the same time each primitive remains closely linked to
the original data and it is possible to access the subsumed points at any time if
operations are to be performed on a more detailed level.

1.2 Goals
The primary goal of this thesis is to address the above mentioned challenges posed
by point sampled real-world geometry through the use of these simple primitives.
A first step towards this end is developing an efficient method for detection of
these primitives. Building on this, the benefit of the primitives in several geometry
processing tasks shall be demonstrated. While fitted shape primitives have been
used previously for reverse engineering purposes [PLH+05, BMV01] and in com-
puter vision [LGB95, RL93] this work strives to further extend methods in these
areas to better exploit the primitives and highlights additional application areas
that have not been considered before. In general, the advantages of primitive based
algorithms can be expected to be twofold: They should achieve computational ef-
ficiency even on large point-clouds due to the concise representation and at the

3

CHAPTER 1. INTRODUCTION

same time - in contrast to general simplification approaches [PGK02, WK04] -
offer improved quality due to the geometric and semantic cues provided by the
primitives in the specific setting of man-made environments. In particular, appli-
cations benefit from the approximating nature of the fitted primitives which also
gives important clues to the true shape of the underlying sampled geometry. This
can for instance be exploited for compression of the point data. Moreover, the
type of a detected primitive can also serve as a very rough classification of the
subsumed surface part, which - in conjunction with the segmentation of the sur-
face - is helpful for recognition tasks. Since the primitives are parametric, they
also provide local parametrizations of the point-cloud which can for instance be
used to infer structured connectivity between the point samples. In addition, these
primitives are trivially extensible and can therefore be used to infer missing ge-
ometry plausibly in incomplete scans.

1.3 Contributions
In short, the main contributions of this thesis are:

• An efficient and robust algorithm for detection of shape primitives in large
real-world point-clouds.

• A compression algorithm based on a primitive-based decomposition of the
point-cloud. It supports interactive decompression and rendering on the
GPU.

• A feature recognition method based on configurations of shape primitives.
It allows automatic extraction of user specified entities.

• An approach to surface completion and reconstruction that uses shape prim-
itives to synthesize missing surface parts.

As usual in the field of computer graphics most of the algorithms presented in
this thesis have already been published at several international computer graphics
conferences [SWK07, LSSK09, SMK07, SMK08, SWWK08, SDK09].

1.4 Outline
After introducing a novel primitive detection algorithm that operates directly on
real-world scanned point-clouds and is specifically designed to handle their size
and ubiquitous noise, this work considers several important tasks in point-cloud

4

1.4. OUTLINE

processing where the above mentioned properties of the detected primitives can
be exploited to obtain efficient and effective novel algorithms.

Specifically, Chapter 2 presents and discusses our novel primitive extraction
algorithm. The method is a high performance Random Sample Consensus (RAN-
SAC) algorithm [FB81] that is capable to extract the above mentioned types of
primitive shapes, while retaining such favorable properties of the RANSAC para-
digm as robustness, generality and simplicity. At the heart of our algorithm are a
novel, hierarchically structured sampling strategy for candidate shape generation
as well as a novel, lazy cost function evaluation scheme, which significantly re-
duces overall computational cost. The algorithm extracts primitives according to
a user specified error tolerance such that even scenes not only comprised of the
primitives but also more organic shapes can be decomposed into parts approxi-
mated by simple primitives.

Chapter 3 presents a novel point-cloud compression algorithm based on the
approximation and parametrization provided by the detected primitives. Geomet-
ric detail that is not captured by the primitives is encoded as displacement maps
over the primitives. Fast vector quantization is used to compress the displace-
ment maps at several levels-of-detail. The compression is specifically designed to
allow fast parallel decompression on the GPU during rendering for interactive ap-
plications. The GPU decompression and rendering allows for interactive hole-free
level-of-detail point rendering directly from the compressed data. Bitrates of less
than four bits per normal-equipped point are achieved. Using only up to two bits
per point, high-quality renderings can still be obtained if normals are estimated in
image-space.

In Chapter 4 recognition of features in the point-cloud is considered. Build-
ing on the segmentation and classification provided by the primitives, features are
represented as graphs that describe characteristic configurations in space and ori-
entation of neighbored primitives, e.g. different roof types can be described by
graphs capturing the respective characteristic relations between the roof planes.
The detection is facilitated by a topology graph that is constructed on all detected
primitives and contains edges only between neighboring primitives. Using con-
strained subgraph matching, features can be extracted from the global topology
graph as instances of the given query graphs.

Finally, Chapter 5 presents a completion and reconstruction algorithm that
finds a closed mesh using the guidance provided by the detected set of primitive
shapes. The extensibility of the primitives is exploited to continue the surrounding
structure into the holes and also to synthesize plausible edges and corners from
the primitives’ intersections. To this end a novel surface energy functional is in-
troduced that incorporates the primitive shapes in a guiding vector field. Finding
a surface minimizing the functional gives the desired reconstruction and resolves
the possibly occurring ambiguities in a principled manner. The discretized func-

5

CHAPTER 1. INTRODUCTION

tional can be minimized with an efficient graph-cut algorithm. A novel greedy
optimization strategy is proposed to minimize the energy under the constraint that
surface parts corresponding to a given primitive must be connected. From the
primitive shapes the method can also reconstruct an idealized model that is suit-
able for use in a CAD system.

1.5 Preliminaries
Before discussing the details of the techniques developed in this work, this section
will introduce common notation and provide some background information on
point-cloud processing. Throughout this thesis

P = {(p1, a
1
1, . . . , a

k
1), (p2, a

1
2, . . . , a

k
2), . . . , (pN , a

1
N , . . . , a

k
N)}

will denote a point-cloud with point coordinates pi ∈ R3 and attributes aji . Typical
attributes that will frequently occur are point normals ni ∈ S2 and point colors
ci ∈ [0, 1]3.

1.5.1 Normals
Several of the algorithms presented in this work rely on normal vector information
at the point locations. However, scanning devices usually do not provide measure-
ments of surface normals. Therefore, normals usually need to be estimated from
the point data in a preprocess.

Finding normals is also the first step in many surface reconstruction methods
and a popular approach to normal estimation was first introduced by Hoppe et al.
[HDD+92] in this context. The method finds the k-nearest neighbors Nk(p) ⊂ P
of a point p and uses the normal to the total least squares best-fitting plane to
Nk(p), i.e. the eigenvector to the smallest eigenvalue of the neighborhood’s co-
variance matrix, as an estimate for the surface normal at p. This approach works
well if the points in P are evenly distributed on the surface, the surface is smooth
everywhere and the scale of the noise does not vary much over the surface. The
most critical parameter is of course the shape and size of the neighborhood used
for fitting the least squares plane. Intuitively, the shape of the neighborhood
should be roughly circular in smooth parts of the surface, a larger neighborhood
has to be used where the noise is high but conversely a smaller neighborhood
should be used in areas of high curvature.

Addressing these partly contradicting requirements, Mitra et al. [MNG04]
gave a method for adaptively choosing the size of the neighborhood at different
locations in P based on an analytic approach to bounding the error of the normal

6

1.5. PRELIMINARIES

under the assumption of a smooth surface. Following intuition, their analytic re-
sult strikes a balance between the opposing sources of error caused by noise and
curvature. However, their analysis requires a priori knowledge of certain parame-
ters of the sampling distribution as well as reliable estimates of the local curvature
and noise variance. In practice these are usually hard (or even impossible) to
obtain.

Alternative approaches that do not require these a priori parameters but nonethe-
less give similar results are based on a multi-scale analysis of the weighted covari-
ance matrix

C(Nk(p)) =
∑

j∈Nk(p)

(pj − µk)(pj − µk)Tφ(‖pj − p‖/hk), (1.1)

where µk is the weighted average of all the points in Nk(p), hk is the radius of
the smallest ball containingNk(p) centered at p and φ is a positive, monotonously
decreasing weighting function, e.g. φ(x) = exp(−x2).

Pauly et al. [PMG+05] suggested two local geometry classifiers based on
C(Nk(p)) to analyze the distribution of samples in Nk(p). The first classifier
c1 ∈ [0, 1] is the normalized weighted least squares error of the estimated tangent
plane, i.e. c1 = 1− 3λ0/(λ0 +λ1 +λ2) where λi are the eigenvalues of C(Nk(p))
and λ0 ≤ λ1 ≤ λ2. The second classifier c2 ∈ [0, 1] analyzes the uniformity of the
point distribution and is given as c2 = λ1/λ2. The neighborhood size for a point p
is then determined by finding a distinct local maximum of the combined classifier
c1 · c2 across the scale axis, i.e. increasing neighborhood sizes.

A similar approach was also proposed by Jenke et al. [JKS08]. The method
iteratively increases the size of the neighborhood until the estimated normal and
the eigenvalues of C(Nk(p)) stabilize. This has the advantage that potentially
less neighborhood sizes have to be considered if stability is detected early on.
However, both approaches are heuristics and an error bound cannot be established.
Nonetheless we empirically found both methods to yield similar results and to
estimate normals with a quality quite sufficient for the algorithms considered in
this work (see also Fig. 1.2).

An alternative approach to estimation of surface normals can be derived from
the Voronoi diagram of P . If P is fairly dense, the direction from a point p to the
farthest vertex of its Voronoi cell can be used as an estimate of the surface normal
at p. This is because the Voronoi cells on the exterior of P are elongated in a di-
rection perpendicular to the surface. Under specific assumptions about the nature
of the noise distribution the error of this estimate can be bounded as demonstrated
by Dey and Goswami [DG04]. While in a comparison by Dey et al. [DLS05] the
Voronoi based estimation was found to be slightly more accurate than total least
squares based approaches, it requires the computation of a Delaunay triangulation
on the entire point-cloud P which can be very time consuming on large input data.

7

CHAPTER 1. INTRODUCTION

(a) (b) (c)

(d) (e) (f)

Figure 1.2: Normal estimation: a) and d) The oil-pump and the box model with-
out normals rendered as OpenGL point primitives. b) and e) The estimated nor-
mals using an adaptive neighborhood as proposed in Jenke et al. [JKS08]. c) and
f) Points colored according to the normal confidence computed as suggested by
Pauly et al. [PMG+05] (blue high confidence, red low confidence). Surface edges,
registration errors and sampling irregularities reduce the confidence in the normal
estimation.

All of the above methods do not explicitly handle sharp features in the point-
cloud and therefore generally smooth out edges and corners. To correctly esti-
mate normals close to a sharp feature it is usually sufficient to adjust the shape
of the neighborhood N (p). For instance, for a point close to an edge no points
from the opposite side of the edge should be included in N (p). Several methods
based on robust statistics have been proposed to find such adapted neighborhoods
[FCOS05, ÖGG09]. The general idea of these approaches is to classify the points
on the wrong side of the feature as pseudo-outliers [Ste97]. The definition of
sharp features always involves a user defined parameter that controls at which
point edges are considered sharp. Moreover, these methods do not address the
problem of finding a suitable size of the neighborhood but rely on a user specified
global radius.

Therefore, since the algorithms in this work do not require correct normals
close to sharp features and can easily deal with some smoothing in these areas,
we estimate normals using the method of Jenke et al. which we found to work
quite well in practice. If a confidence value for the normal estimation is required,
we apply the classifier proposed by Pauly et al. to the neighborhood used for

8

1.5. PRELIMINARIES

estimating the normal. In principle, Voronoi based approaches might be a viable
alternative, but currently suffer from large processing times, especially on large
models as are considered in this work.

1.5.2 Moving Least-Squares Surface
At some points in this work it will be necessary to derive a closed surface from
the input point-cloud P . Obviously, any reconstruction algorithm, i.e. algorithms
creating a triangulated mesh from the input point-cloud, could be used for finding
such a surface. However, the reconstructed mesh is only C1 continuous and -
more importantly - full reconstruction is usually an involved and lengthy process
that often needs to consider the entire point-cloud P even if only a small part of
the reconstruction will be needed later on. Moreover, a mesh-based representation
is comparatively space consuming and not necessarily well suited for the tasks at
hand. For instance, implicit surface representations often lend themselves better
for computation of ray-surface intersections.

Moving least squares (MLS) surfaces on the other hand were introduced to
specifically address these issues and directly use the points themselves as the main
source of information about the shape. Therefore MLS surfaces have become the
most wide-spread surface definition in the point-based graphics community. MLS
surfaces were first introduced by Alexa et al. [ABCO+01, ABCO+03] building
on work of David Levin [Lev03]. This first definition of a MLS surface is based
on a projection operator: The surface is given as the union of all points stationary
under the projection operator. The operator is iterative and at each step a planar
approximation of the local neighborhood is found and used as parametrization
domain for a subsequent polynomial fitting. The local planar approximation at a
point r ∈ R3 is defined as the closest local minimum of the following energy:

eMLS(~a, t) =
1

α

∑
pi∈P

< ~a, pi − r + t~a >2 θ(r + t~a, pi), (1.2)

where ~a is the normal vector of the plane (‖~a‖ = 1), t ∈ R is the distance from
r to the plane, θ(x, pi) = e−‖x−pi‖

2/h2 with a constant scale factor h and α =∑
i θ(r + t~a, pi) is a normalization constant. The projection of r is given by the

intersection of the line r+λ~awith the local polynomial fit. If constant polynomials
are used then the projection is simply given as r + t~a. An equivalent formulation
for Eq. (1.2) is given by

e′MLS(x,~a) =
1

α

∑
pi∈P

< ~a, pi − x >2 θ(x, pi), (1.3)

where x ∈ R3. Of course, in order to obtain the same projection as with Eq.
(1.2) the minimization must only consider the same three dimensional subspace.

9

CHAPTER 1. INTRODUCTION

Therefore, finding the correct local plane unfortunately requires expensive non-
linear optimization in three dimensions. Amenta and Kil [AK04b] gave a some-
what simplified projection operator that only requires one dimensional non-linear
optimization but is still rather involved. Specifically, Amenta and Kil showed that
the MLS surface of Eq. (1.2) can be described as a subset of an extremal surface
[GM97, MLT00] which in turn is a subset of the zero-level of a certain implicit
function. This implicit surface has the following shape:

g(x) =< ~n(x),∇ys(y, x)|x >= 0, (1.4)

where ~n(x) is a vector field and ∇ys(y, x)|x is the gradient of an energy s(y, x)
(as a function of y) evaluated at x.

Amenta an Kil showed that the MLS surface defined by Eq. (1.3) can in this
setting be expressed with the following choices for ~n(x) and s(y, x):

~n(x) = arg min
~a

e′MLS(x,~a), (1.5)

which is, since fixing x fixes the weights, the normal to the least-squares best
fitting plane through x. Furthermore s(y, x) is given as

s(y, x) = e′MLS(y, ~n(x)) (1.6)

such that g(x) becomes

g(x) =< ~n(x),∇ye
′
MLS(y, ~n(x))|x > . (1.7)

Since the functions ~n(x) and s(y, x) are not fixed, it is possible to overcome
the need for non-linear optimization in this setting by replacing the energy s(y, x)
with the following slightly modified version:

s′(y, x) =
1

α′

∑
pi∈P

< ~n′(x), pi − y >2 θ(x, pi). (1.8)

where ~n′(x) = arg min~a e
′
MLS(µ(x),~a) with µ(x) = 1/α′

∑
pi∈P piθ(x, pi), i.e.

~n′(x) is the normal to the least-squares best fitting plane to the weighted setP , and
α′ =

∑
i θ(x, pi) is again a normalization constant. Note that in contrast to Eq.

(1.6) the weights θ(·, pi) no longer depend on y which simplifies the minimization
and removes the need for non-linear optimization. The above definitions then give
rise to the comparatively simple implicit surface

g′(x) = < ~n′(x),∇ys
′(y, x)|x >

=
2

α′

∑
pi∈P

< ~n′(x), pi − x > θ(x, pi)

= 2 < ~n′(x), µ(x)− x > (1.9)

10

1.5. PRELIMINARIES

Figure 1.3: Ray-traced MLS-Surfaces. On the left the point-clouds are shown
rendered as simple OpenGL point primitives with normals. Normals are for visu-
alization purposes only and are not required for finding the MLS-Surface. On the
right the corresponding ray-traced MLS-Surfaces are shown. The MLS-Surfaces
are smooth and contiguous.

11

CHAPTER 1. INTRODUCTION

This surface definition was first introduced by Adamson and Alexa [AA03a,
AA04] in the context of ray-tracing of point-clouds (see Fig. 1.3) but was also
independently implemented in the PointShop software [ZPKG02, Pau03]. The
algorithm for taking a point r to this surface starts by assigning weights θ(r, pi)
to the points pi of the input point-cloud P . It finds the total-least-squares best-fit
plane Hr to the weighted set P . r is projected onto Hr, giving a new estimate of
the projection r′, and the method iterates until convergence.

In practice it turns out that the geometrical differences between the surfaces
defined by Eq. (1.7) and Eq. (1.9) are negligible for all relevant purposes, but due
to the better performance of the linear projection operator Eq. (1.9) is usually the
preferred choice and will also be employed in this work. It is however important
to note that both surfaces are only defined in a tubular neighborhood near the input
point-cloud P [AK04a]. For practical implementations that means that the above
projection procedure cannot be applied to arbitrary points in space without first
finding an initial guess that lies within the domain of the surface definition. A
common choice in this respect is to use the nearest neighbor to r in P as the first
guess for r′.

Some theoretical guarantees of the reconstructed surface were also proven for
several variants of the MLS surface [Kol05, DGS05, DS05] but are based on sam-
pling conditions which are hard or even impossible to achieve in practice.

Another notable variant of the above surface definitions fits algebraic spheres
instead of planes and was recently proposed by Guennebaud et al. [GG07, GGG08].
They found that using algebraic spheres increases stability for low-sampling den-
sity and also gave some novel operators for real-time upsampling.

The definition as an implicit surface also gives an analytic expression for the
normal of the MLS surface [AA04] which, however, is rather complex and there-
fore is seldom used in practice. Instead, a popular approximation is to use the
normal of the local reference plane found in the last iteration of the projection op-
erator. Obviously, this results in normals similar to those described in the previous
section.

A problem of the MLS surface as defined above is the inherent low-pass fil-
tering and instability near sharp features. Fleishman et al. [FCOS05] were the
first to consider this drawback and proposed the use of robust statistics for fea-
ture detection. However their surface definition is not continuous and therefore
often produces implausible reconstructions. Öztireli et al. [ÖGG09] recently in-
troduced an alternative approach that is based on robust kernel regression and is
able to handle sharp features as well as outliers while always giving a continuous
surface.

12

1.5. PRELIMINARIES

Figure 1.4: The shape primitives considered in this work from left to right: Plane,
sphere, cylinder, cone and torus. The coloring in this figure is used throughout
this thesis to signify primitive type: red for planes, yellow for spheres, green for
cylinders, purple for cones and grey for tori.

1.5.3 Primitives
Simple geometric primitives constitute the major tool of this work and all types of
primitives considered in this thesis are depicted in Fig. 1.4. While the primitives
employed in this work should be well known to the reader, for completeness, this
section will nonetheless give the definitions of the primitives used throughout this
thesis. Parametrizations are chosen such that distances in the parameter domain
roughly equal distances on the surface.

Plane

The signed distance function for the plane is given by

d(x) =< n, x− p >=< n, x > − < n, p >, (1.10)

where n, ‖n‖ = 1 is the normal to the plane and p is an arbitrary point in the
plane.

A parametric representation of the plane F : R2 → R3 is given as

F (u, v) = R

 u
v
0

+ p, (1.11)

where R is a rotation matrix that specifies the orientation of the plane and maps
the z-Axis onto n, i.e. R = (x|y|n) where x ∈ R3, y ∈ R3, x × y = n are
orthogonal vectors in the plane.

Sphere

p being the center of a sphere with radius r the signed distance function is given
as

d(x) = ‖x− p‖ − r. (1.12)

13

CHAPTER 1. INTRODUCTION

The following parametrization F (u, v) : [−r, r]×[−r sin(u/r), r sin(u/r)]→
R3 of the sphere is used in this work:

F (u, v) = r

 sin(u/r) cos(v
r sin(u/r)

)

sin(u/r) sin(v
r sin(u/r)

)

cos(u/r)

+ p (1.13)

Cylinder

The signed distance to a cylinder with an axis p+ λa, λ ∈ R, ‖a‖ = 1 and radius
r can be computed as

d(x) =
√
‖x− p‖2− < a, x− p >2 − r. (1.14)

The cylinder is parameterized as follows:

F (u, v) = R

 r sin(u/r)
r cos(u/r)

v

+ p, (1.15)

where (u, v) ∈ [0, 2πr] × R and R is a rotation matrix specifying the orientation
of the cylinder, i.e. it maps the z-Axis onto a.

Cone

In this thesis only one-sided cones are considered. For a one sided-cone with apex
p and axis p + λa, λ ∈ R ≥ 0 (a points from the apex into the valid side of
the cone), ‖a‖ = 1 and semi-angle α the signed distance function is defined as
follows:

g(x) = < a, x− p >
f(x) =

√
‖x− p‖2 − g(x)2

opp(x) = g(x) < 0 ∧ f(x) · cos(α) + g(x) · sin(α) < 0

d(x) =

{
‖x− p‖ opp(x)
f(x) · cos(α)− g(x) · sin(α) ¬opp(x)

(1.16)

We use two different parametrizations for the cone. If α < 1/4π we use

F (u, v) = R

 sin(α)u sin(v/(sin(α)u))
sin(α)u cos(v/(sin(α)u))

cos(α)u

+ p, (1.17)

14

1.5. PRELIMINARIES

where (u, v) ∈ [0,∞]× [−sin(α)uπ, sin(α)uπ] and R again is a rotation matrix
for the orientation of the cone. In case α ≥ 1/4π we use instead:

F (u, v) = R

 sin(α)
√
u2 + v2 sin(atan2(u, v))

sin(α)
√
u2 + v2 cos(atan2(u, v))

cos(α)
√
u2 + v2

+ p, (1.18)

where (u, v) ∈ R2 and atan2(y, x) gives the angle between the positive x-Axis
and the point (x, y).

Torus

The signed distance to a torus is computed as

d(x) =
√
g(x)2 + (f(x)− rM)2 − rm, (1.19)

where g(x) and f(x) are defined as above in Eq. (1.16), p is the center of the
torus, a is the direction of the torus axis, ‖a‖ = 1, rM is the major radius and rm
the minor radius.

For (u, v) ∈ [−rmπ, rmπ]× [−(rM + cos(u/rm)rm)π, (rM + cos(u/rm)rm)π]
the torus is parameterized as follows:

φM =
v

rM + cos(u/rm)rm

RM =

 cos(φM) − sin(φM) 0
sin(φM) cos(φM) 0

0 0 1

F (u, v) = RRM

 rm cos(u/rm) + rM
0

rm sin(u/rm)

+ p, (1.20)

where R specifies the orientation of the torus, i.e. maps the z-Axis onto a.

15

CHAPTER 1. INTRODUCTION

16

CHAPTER 2

PRIMITIVE DETECTION

2.1 Introduction

This chapter presents our novel shape detection method that serves as a prerequi-
site for all following techniques proposed in this work. Since the shape detection
is primarily intended for processing real-world scanned point-clouds it needs to
specifically address the challenges of this type of data. In particular, the two most
relevant issues arising in this setting are: Firstly, the often huge size of the input
data and secondly, the corruption by noise and outliers. A common strategy to
address the large size of the point-cloud is to use local computations, i.e. consider
only those parts of the point-cloud relevant to the current computation. In the case
of shape detection we can usually expect a high degree of locality since a single
primitive will in general subsume only a small part of the entire dataset. The pres-
ence of noise and outliers in the point-cloud on the other hand suggests the use of
robust techniques for detection and fitting of primitives.

A very popular and versatile robust algorithm is the RANSAC scheme pro-
posed by Fischler and Bolles [FB81] which, beside its simplicity, is very general
and effective. Compared to other robust algorithms it has only a relatively small
set of parameters which in addition have intuitive interpretations. Moreover, it is
able to detect all types of primitives at the same time and concurrently chooses the
one of highest merit. Thus, it avoids the need to specify an order in that primitives
are considered which otherwise often leads to instabilities and missed primitives.
Last but not least, RANSAC requires only very little memory in addition to the
point-cloud itself, which is important when working with large datasets.

However, in its original formulation, the RANSAC scheme is a global ap-
proach, i.e. it frequently requires operations that consider the entire point-cloud.
A RANSAC algorithm creates a large number of candidate shapes by randomly
drawing so-called minimal sets from the point-cloud. A minimal-set consists of
just enough points to uniquely determine an interpolating primitive. Each can-
didate’s merit is then given as the number of inliers with regard to the respec-

17

CHAPTER 2. PRIMITIVE DETECTION

tive primitive. Therefore, indeed both major steps of the RANSAC paradigm are
global: Samples are drawn globally and determining a candidate’s merit considers
the entire point-cloud P . Thus, in this chapter we describe an efficient, localized
RANSAC algorithm for shape detection in point-clouds:

• We introduce and analyze a hierarchically structured sampling strategy for
generation of shape candidates. The sampling strategy accounts for the fact
that single primitive shapes constitute only comparatively small and con-
nected subsets of the point-cloud by drawing samples from spatial neigh-
borhoods across a variety of scales.

• The merit of each shape candidate is lazily evaluated on a series of subsets
of P . The first subsets of this series are very small and allow to identify
and discard candidates of low merit at an early stage. Subsequent subsets
become larger but are only evaluated if a candidate has proven to be promis-
ing.

Our method detects planes, spheres, cylinders, cones and tori. However, to be
feasible, the algorithm requires pre-computed normals associated with the input
points (see Sec. 1.5.1). Because normals are usually computed for visualization
purposes anyway, this turns out to be a minor limitation in practice though.

2.2 Previous work
The detection of primitive shapes is a common problem encountered in many areas
of geometry related computer science. Over the years a vast number of methods
have been proposed which cannot all be discussed here in depth. Instead, here we
give a short overview of the most important algorithms developed in the different
fields. We treat the previous work on RANSAC algorithms separately in section
2.2.4 as it is of special relevance to our work.

2.2.1 Vision

In computer vision, the two most widely known methodologies for shape extrac-
tion are the RANSAC paradigm [FB81] and the Hough transform [Hou62]. Both
have been proven to successfully detect shapes in 2D as well as 3D. RANSAC
and the Hough transform are reliable even in the presence of a high proportion of
outliers, but lack of efficiency or high memory consumption remains their major
drawback [IK88]. For both schemes, many acceleration techniques have been pro-
posed, but no one on its own, or combinations thereof, have been shown to be able

18

2.2. PREVIOUS WORK

to provide an algorithm as efficient as ours for the 3D primitive shape extraction
problem.

The Hough transform maps, for a given type of parameterized primitive, every
point in the data to a manifold in the parameter space. The manifold describes
all possible variants of the primitive that contain the original point, i.e. in practice
each point casts votes for many cells in a discretized parameter space. Shapes
are extracted by selecting those parameter vectors that have received a significant
amount of votes. If the parameter space is discretized naively using a simple
grid, the memory requirements quickly become prohibitive even for primitives
with a moderate number of parameters, such as, for instance, cones. Although
several methods have been suggested to alleviate this problem [IK87][XO93] its
major application area remains the 2D domain where the number of parameters
typically is quite small. A notable exception is the method of Vosselman et al.
[VGSR04] where the Hough transform is used to detect planes in 3D datasets,
as 3D planes still have only a small number of parameters. They also propose a
two-step procedure for the Hough-based detection of cylinders that uses estimated
normals in the data points.

In the vision community many approaches have been proposed for segmen-
tation of range images with primitive shapes. These algorithms are often based
on region growing or region merging. A drawback of this approach is with re-
spect to robustness because primitives need to be initialized from a very small
seed region and consequently noise and outliers have a strong adverse influence
on the initial estimation. Therefore primitives are usually initialized as planes
and several thresholds have to be defined that control when other types of prim-
itives are considered [FEF97, GBS03]. This is a fundamental difference to our
approach where points spread far apart can be used to robustly initialize a primi-
tive and no order is imposed on the different types of primitives. Leonardis et al.
[LGB95, LJS97] alleviated these issues by concurrently growing different seed
primitives and then selecting a suitable subset according to a minimal descrip-
tion length (MDL) criterion (coined the recover-and-select paradigm). However,
primitives are still initialized from small patches and the selection procedure is
computationally expensive. Gotardo et al. [GBS03] detect shapes using a genetic
algorithm to optimize a robust MSAC fitness function (see also Sec. 2.2.4), but
this approach is not feasible on large point-clouds. Marshall et al. [MLM01] in-
troduce involved non-linear fitting functions for primitive shapes that are able to
better handle geometric degeneracy in the context of recover-and-select segmen-
tation but are still not as robust as our method.

Another robust method frequently employed in the vision community is the
tensor voting framework [MLT00] which has been applied to successfully recon-
struct surface geometry from extremely cluttered scenes. While tensor voting can
compete with RANSAC in terms of robustness, it is, however, inherently model-

19

CHAPTER 2. PRIMITIVE DETECTION

free and therefore cannot be applied to the detection of predefined types of primi-
tive shapes.

2.2.2 Reverse engineering

In reverse engineering, surface recovery techniques are usually based on either a
separate segmentation step or on a variety of region growing algorithms [VMC97,
SB95, BGV+02]. Most methods call for some kind of connectivity information
and are not well equipped to deal with a large amount of outliers [VMC97]. Also
these approaches try to find a shape proxy for every part of the processed surface
with the intent of loading the reconstructed geometry information into a CAD ap-
plication. Benko et al. [BMV01] describe a system which reconstructs a boundary
representation that can be imported into a CAD application from an unorganized
point-cloud. However, their method is based on finding a triangulation for the
point-set, whereas the method presented in this work is able to operate directly
on the input points. This is advantageous as computing a suitable tesselation may
be extremely costly and becomes very intricate or even ill-defined when there is
heavy noise in the data. This chapter, however, does not intend to present a method
implementing all stages of a typical reverse engineering process.

2.2.3 Graphics

In computer graphics, Cohen-Steiner et al. [CSAD04] have proposed a general
variational framework for approximation of surfaces by planes, which was later
extended to a set of more elaborate shape proxies by Wu and Kobbelt [WK05].
Their aim is not only to extract certain shapes in the data, but to find a globally
optimal representation of the object by a given number of primitives. However,
these methods require connectivity information and are, due to their exclusive
use of least squares fitting, susceptible to errors induced by outliers. Also, the
optimization procedure is computationally expensive, which makes the method
less suitable for large data sets. The output of our algorithm, however, could
be used to initialize the set of shape proxies used by these methods, potentially
accelerating the convergence of the optimization procedure.

While the Hough transform and the RANSAC paradigm have been mainly
used in computer vision, some applications have also been proposed in the com-
puter graphics community. Décoret et al. [DDSD03] employ the Hough transform
to identify planes for billboard clouds on triangle data. They propose an extension
of the standard Hough transform to include a compactness criterion, but due to
the high computational demand of the Hough transform, the method exhibits poor
runtime performance on large or complex geometry.

20

2.2. PREVIOUS WORK

Wahl et al. [WGK05] proposed a RANSAC-based plane detection method for
hybrid rendering of point clouds. To facilitate an efficient plane detection, planes
are detected only in the cells of a hierarchical space decomposition and therefore
what is essentially one plane on the surface is approximated by several planar
patches. While this is acceptable for their hybrid rendering technique, our method
finds maximal surface patches in order to yield a more concise representation of
the object. Moreover, higher order primitives are not considered in their approach.

Gelfand and Guibas [GG04] detect so-called slippable shapes which is a su-
perset of the shapes recognized by our method. They use the eigenvalues of a
symmetric matrix derived from the points and their normals to determine the slip-
pability of a point-set. Their detection is a bottom-up approach that merges small
initial slippable surfaces to obtain a global decomposition of the model. How-
ever, the computation of the eigenvalues is costly for large models, the method is
sensitive to noise and it is hard to determine the correct size of the initial surface
patches. A related approach is taken by Hofer et al. [HOP+05]. They also use the
eigenvalues of a matrix derived from line element geometry to classify surfaces.
A RANSAC based segmentation algorithm is employed to detect several shapes in
a point-cloud. The method is aimed mainly at models containing small numbers
of points and shapes as no optimizations or extensions to the general RANSAC
framework are adopted.

2.2.4 RANSAC
The RANSAC paradigm extracts shapes by randomly drawing minimal sets from
the point data and constructing corresponding shape primitives. A minimal set
is the smallest number of points required to uniquely define a given type of ge-
ometric primitive. The resulting candidate shapes are tested against all points in
the data to determine how many of the points are well approximated by the prim-
itive (called the score of the shape). After a given number of trials, the shape
which approximates the most points (points well approximated by the primitive
are also referred to as inliers) is reported, all its inliers are extracted from P and
the algorithm continues on the remaining data. The number of necessary trials is
determined such that the probability of a miss is below a given threshold and de-
pends on the number of points belonging to the largest primitive. Since the size of
the best primitive is not known a priori, the probability of a miss is computed us-
ing the size of the best candidate detected so far as an estimate. RANSAC exhibits
the following, desirable properties:

• It is conceptually simple, which makes it easily extensible and straightfor-
ward to implement.

• It is very general, allowing its application in a wide range of settings.

21

CHAPTER 2. PRIMITIVE DETECTION

• It can robustly deal with data containing more than 50% of outliers [RL93].

Due to the global nature of the algorithm (i.e. both sampling and hypotheses veri-
fication operate on the entire point-cloud) its major deficiency is the considerable
computational demand if no further optimizations are applied.

Despite these performance issues, several authors have proposed to use this
global version of RANSAC for detection of shape primitives. Bolles and Fis-
chler [BF81] apply RANSAC to extract cylinders from range data, Chaperon and
Goulette [CG01] use RANSAC and the Gaussian image to find cylinders in 3D
point clouds. Both methods, though, do not consider a larger number of differ-
ent classes of shape primitives. In contrast, Roth and Levine [RL93] describe an
algorithm that uses RANSAC to detect a set of different types of simple shapes.
However, their method was adjusted to work in the image domain or on range
images and they did not provide the optimization necessary for processing large
unstructured 3D data sets.

A vast number of extensions to the general RANSAC scheme have been pro-
posed aiming either at improving the robustness or addressing the performance
issues. Among the more recent advances, methods such as MLESAC [TZ00] or
MSAC [TZ98] improve the robustness of RANSAC with a modified score func-
tion, but do not provide any enhancement in the performance of the algorithm,
which is the main focus of our work. Nonetheless, it is also possible to use these
score functions in our algorithm (see Sec. 2.11).

Performance improvements

The strategies proposed for performance improvements of RANSAC usually ei-
ther aim at accelerating the process of hypothesis evaluation or employ a modified
sampling scheme that increases the probability of creating useful hypotheses such
that the required number of overall hypotheses is reduced.

Accelerated evaluation Since RANSAC searches for the shape primitive that
achieves maximal score, the general idea for accelerated hypothesis evaluation is
to quickly identify those shape primitives that achieve lower score without evalu-
ating all samples in the point-cloud.

A very simple measure to quickly filter out bad hypotheses is the Td,d test pro-
posed by Matas and Chum [MC02]. Each generated primitive is tested on a small
random subset of P comprised of d � |P| points. Only if all d points are well
approximated by the primitive the remaining points in P are also evaluated. They
recommend to use d = 1 as an optimal setting. Of course, due to the randomized
nature of the evaluation, it is possible that also good primitives get rejected by the

22

2.2. PREVIOUS WORK

Td,d test. Therefore it becomes necessary to generate a larger number of primi-
tives, which however in practice generally turns out to be faster than evaluating
all hypotheses on all points.

David Capel [Cap05] proposed to terminate the evaluation of hypotheses as
soon as the probability that the currently evaluated hypothesis is better then the so
far best found falls below a threshold. Specifically, for a new hypothesis that has
been partially evaluated against a subset of n data points, the goal is to determine
the probability that having observed n̂ inliers so far, the total number of inliers
for the new hypothesis is greater than that of the currently best shape primitive.
Since the expected number of inliers follows a hypergeometric distribution this is
computationally expensive to calculate exactly and instead a lower bound n̂min is
derived on the number of inliers observed after evaluating n data points for a given
confidence Pconf . If, at this point, the number of inliers is below the threshold,
bail-out occurs and the hypothesis is discarded. In order to compute the lower
bound the hypergeometric distribution is approximated as a binomial distribution
for small n or as a normal distribution for larger n. Since new hypotheses are
always compared to the currently best model, the order in which hypotheses are
generated has a big influence on the effectiveness of the bail-out. The approach
proposed in this work on the other hand, while based on similar considerations,
always evaluates the most promising hypotheses first which further provides con-
siderable speed-up on average.

A theoretically optimal strategy (if the number of inliers were known a priori)
for early termination of hypothesis evaluation was proposed by Chum and Matas
[MC05, CM08] based on Wald’s theory of sequential decision making [Wal47].
Wald’s Sequential Probability Ratio Test (SPRT) is based on the likelihood ratio

λj =

j∏
r=1

p(xr|Hb)

p(xr|Hg)
(2.1)

where xr is equal to one if the rth data point is an inlier, and zero otherwise.
p(1|Hg) denotes the probability that a randomly chosen data point is an inlier of
the best primitive, i.e. it is the fraction κ of inliers contained in P . Similarly,
p(1|Hb) is the probability that a randomly chosen data point is an inlier of a bad
primitive (i.e. a primitive not achieving maximal score), and this can be modeled
using a Bernoulli distribution with parameter δ. If, after evaluating j data points,
the likelihood ratio becomes greater than some threshold A, the model is rejected.
The decision threshold A can be set to achieve optimal running time given κ and
δ [CM08]. Since the two parameters κ and δ have to be estimated during the
evaluation process, optimality is no longer guaranteed and in practice SPRT and
Capel’s bail-out achieve comparable performance [RFP08]. Note that similarly to
the bail-out test, SPRT also depends on the order in which hypotheses are consid-

23

CHAPTER 2. PRIMITIVE DETECTION

ered because the estimates for κ and δ are adjusted after rejection or acceptance
of a hypothesis respectively.

Improved sampling If there is a priori information on the reliability of the
points in P it may make sense to exploit this knowledge in order to generate
better hypotheses.

The Progressive Sample Consensus (PROSAC) suggested by Chum and Matas
[CM05] creates the same hypotheses as unmodified RANSAC but uses the addi-
tional information such that hypotheses are estimated first from data points with
high accuracy. Therefore there is in general an increased likelihood of generat-
ing the best model early on in the process. This reduces the required number of
overall hypotheses and also increases the effectiveness of both the bail-out test or
SPRT. Our method however only has a weak dependency on the order in which
hypotheses are generated and the effect of PROSAC can therefore be expected to
be relatively small.

A similar, yet somewhat simpler approach was suggested by Tordoff and Mur-
ray [TM02] who use the additional information on the points’ quality to design
a guided sampling. The sampling prefers points of high quality which therefore
are selected into minimal sets for estimation of new hypothesis more frequently.
They showed empirically that the runtime was drastically reduced because good
hypotheses were created much earlier.

A modified sampling approach that does not require any a priori informa-
tion is the locally optimized RANSAC proposed by Chum et al. [CMK03]. Usu-
ally RANSAC operates under the assumption that a hypothesis computed from
any samples that are inliers of the best possible model results in exactly this best
model. However, for noisy data that is often not the case as the estimated model
is distorted by the noise. The locally optimized RANSAC is designed to address
this issue. Since, despite the noise, a model estimated from a sample of inliers
does indeed tend to be consistent with a significant fraction of all the inliers, a
small constant number of hypotheses are generated using only the set of inliers to
the current best model. Note that these hypotheses do not necessarily have to be
generated from minimal subsets. In addition to providing a more robust fit, this
sampling technique has the effect of improving the consensus score more rapidly
than standard RANSAC and therefore results in faster termination.

Real-time approaches In a real-time setting it is mandatory to bound the run-
time of the algorithm. To this end, David Nistér [Nis05] proposes to fix the num-
ber of generated hypotheses in advance. All hypotheses are scored on a subset of
the data in parallel. The hypotheses are ordered according to the achieved score
and only a given fraction is retained and evaluated on the next subset. This is re-

24

2.3. OVERVIEW

peated until only a single hypothesis remains or all subsets have been considered.
This approach was subsequently refined by Raguram et al. [RFP08] in order

to allow the generation of fewer hypotheses in case there is a high inlier ratio. The
maximal number of allowed hypotheses remains bounded however.

In our case wee seek an unknown large number of possibly very small shapes
in huge point-clouds and the amount of necessary candidate primitives cannot be
reasonably specified in advance.

2.3 Overview

Given a point-cloud P = {p1, . . . , pN} with associated normals {n1, . . . , nN} the
output of our algorithm is a set of primitive shapes Ψ = {ψ1, . . . , ψn} with cor-
responding disjoint sets of points PΨ = {Pψ1 ⊂ P , . . . ,Pψn ⊂ P} and a set of
remaining pointsR = P\

⋃
ψ Pψ. Similar to Roth and Levine [RL93] and Décoret

et al. [DDSD03], we frame the shape extraction problem as an optimization prob-
lem defined by a score function. The overall structure of our method is outlined
in pseudo-code in Algorithm 1. In each iteration of the algorithm, the primitive
with maximal score is searched using the RANSAC paradigm. New shape candi-
dates are generated by randomly sampling minimal subsets of P using our novel
sampling strategy (see Sec. 2.6). Candidates of all considered shape types are
generated for every minimal set and all candidates are collected in the set C. Thus
no special ordering has to be imposed on the detection of different types of shapes.
After new candidates have been generated, the candidate m with the highest score
is computed employing the efficient lazy score evaluation scheme presented in
Sec. 2.8. The best candidate is only accepted if, given the number of inliers |m| of
the candidate and the number of drawn candidates |C|, the probability P (|m|, |C|)
that no better candidate was overlooked during sampling is high enough (see Sec.
2.5.1). We provide an analysis of our sampling strategy to derive a suitable prob-
ability computation. If a candidate is accepted, the corresponding points Pm are
removed from P and the candidates Cm generated with points in Pm are deleted
from C. The algorithm terminates as soon as P (τ, |C|) for a user defined minimal
shape size τ is large enough.

The following discussion is based on a standard score function that counts
the number of compatible points for a shape candidate [RL93, GBS03], we will
later show how alternative score functions can also be integrated in our setting.
The standard score function has two free parameters: ε specifies the maximum
distance of a compatible point while α restricts the deviation of a points’ normal
from that of the shape. We also ensure that only points forming a connected
component on the surface are considered (see Sec. 2.7).

25

CHAPTER 2. PRIMITIVE DETECTION

Algorithm 1 Extract shapes in the point cloud P
Ψ← ∅ {extracted shapes}
C ← ∅ {shape candidates}
repeat
C ← C∪ newCandidates() {see Sec. 2.4 and 2.6}
m← bestCandidate(C) {see Sec. 2.7}
if P (|m|, |C|) > pt then
P ← P \ Pm {remove points}
Ψ← Ψ ∪m
C ← C \ Cm {remove invalid candidates}

end if
until P (τ, |C|) > pt
return Ψ

2.4 Shape estimation

As mentioned above, the shapes we consider in this work are planes, spheres,
cylinders, cones and tori which have between three and seven parameters. Every
3D-point pi fixes only one parameter of the shape. In order to reduce the number
of points in a minimal set we require an unoriented approximate surface normal ni
for each point (see Sec. 1.5.1), so that the direction gives us two more parameters
per sample. That way it is possible to estimate each of the considered basic shapes
from at most three point samples. However, always using one additional sample
is advantageous because the surplus parameters can be used to immediately verify
a candidate and thus eliminate the need of evaluating many relatively low scored
shapes [MC02].

Plane For a plane, {p1, p2, p3} constitutes a minimal set when not taking
into account the normals in the points. To confirm the plausibility of the generated
plane, the deviation of the plane’s normal from n1, n2, n3 is determined and the
candidate plane is accepted only if all deviations are less than the predefined angle
α.

Sphere A sphere is fully defined by two points with corresponding normal
vectors. We use the midpoint of the shortest line segment between the two lines
given by the points p1 and p2 and their normals n1 and n2 to define the center
of the sphere c. We take r = ‖p1−c‖+‖p2−c‖

2
as the sphere radius. The sphere is

accepted as a shape candidate only if all three points are within a distance of ε of
the sphere and their normals do not deviate by more than α degrees.

Cylinder To generate a cylinder from two points with normals we first es-
tablish the direction of the axis with a = n1 × n2. Then we project the two
parametric lines p1 + tn1 and p2 + tn2 along the axis onto the a · x = 0 plane and

26

2.5. COMPLEXITY

take their intersection as the center c. We set the radius to the distance between
c and p1 in that plane. Again the cylinder is verified by applying the thresholds ε
and α to distance and normal deviation of the samples.

Cone Although the cone, too, is fully defined by two points with correspond-
ing normals, for simplicity we use all three points and normals in its generation.
To derive the position of the apex c, we intersect the three planes defined by the
point and normal pairs. Then the normal of the plane defined by the three points
{c + p1−c

‖p1−c‖ , . . . , c + p3−c
‖p3−c‖} gives the direction of the axis a. Now the opening

angle ω is given as ω =
∑
i arccos((pi−c)·a)

3
. Afterwards, similar to above, the cone

is verified before becoming a candidate shape.
Torus Just as in the case of the cone we use one more point than theoretically

necessary to ease the computations required for estimation, i.e. four point and
normal pairs. The rotational axis of the torus is found as one of the up to two lines
intersecting the four point-normal lines pi + λni [MLM01]. To choose between
the two possible axes, a full torus is estimated for both choices and the one which
causes the smaller error in respect to the four points is selected. To find the minor
radius, the points are collected in a plane that is rotated around the axis. Then a
circle is computed using three points in this plane. The major radius is given as
the distance of the circle center to the axis.

2.5 Complexity

The complexity of RANSAC is dominated by two major factors: The number of
minimal sets that are drawn and the cost of evaluating the score for every candidate
shape. As we desire to extract the shape that achieves the highest possible score,
the number of candidates that have to be considered is governed by the probability
that the best possible shape is indeed detected, i.e. that a minimal set is drawn that
defines this shape.

2.5.1 Probabilities

Consider a point cloud P of size N and a shape ψ therein consisting of n points.
Let k denote the size of a minimal set required to define a shape candidate. If we
assume that any k points of the shape will lead to an appropriate candidate shape
then the probability of detecting ψ in a single pass is:

P (n) =

(
n

k

)/(
N

k

)
≈
(n
N

)k
(2.2)

27

CHAPTER 2. PRIMITIVE DETECTION

The probability of a successful detection P (n, s) after s candidates have been
drawn equals the complementary of s consecutive failures:

P (n, s) = 1− (1− P (n))s (2.3)

Solving for s tells us the number of candidates T required to detect shapes of size
n with a probability P (n, T) ≥ pt:

T ≥ ln (1− pt)
ln (1− P (n))

(2.4)

For small P (n) the logarithm in the denominator can be approximated by its Tay-
lor series ln(1− P (n)) = −P (n) +O(P (n)2) so that:

T ≈ − ln (1− pt)
P (n)

(2.5)

Given the cost C of evaluating the score function, the asymptotic complexity
of the RANSAC approach is

O(TC) = O(
1

P (n)
C) (2.6)

.

2.6 Sampling strategy
As can be seen from the last formula, the runtime complexity is directly linked
to the success rate of finding good sample sets. Therefore we will now discuss in
detail how sampling is performed.

2.6.1 Localized sampling
Since shapes are local phenomena, the a priori probability that two points belong
to the same shape is higher the smaller the distance between the points. In our
sampling strategy we want to exploit this fact to increase the probability of draw-
ing minimal sets that belong to the same shape. In a different context, Myatt et
al. [MTN+02] have shown that non-uniform sampling based on locality leads to a
significantly increased probability of selecting a set of inliers. From a ball of given
radius around an initially unrestrainedly drawn sample the remaining samples are
picked to obtain a complete minimal set. This requires to fix a radius in advance,
which they derive from a known (or assumed) outlier density and distribution.
In our setup however, outlier density and distribution vary strongly for different

28

2.6. SAMPLING STRATEGY

Figure 2.1: A small cylinder that has been detected by our method. The shape
consists of 1066 points and was detected among 341,587 points. That corresponds
to a relative size of 1/3000.

models and even within in a single model, which renders a fixed radius inadequate.
Also, in our case, using minimal sets with small diameter introduces unnecessary
stability issues in the shape estimation procedure for shapes that could have been
estimated from samples spread farther apart. Therefore, we propose a novel sam-
pling strategy that is able to adapt the diameter of the minimal sets to both, outlier
density and shape size.

We use an octree to establish spatial proximity between samples very effi-
ciently. When choosing points for a new candidate, we draw the first sample p1

without restrictions among all points. Then a cell C is randomly chosen from any
level of the octree such that p1 is contained in C. The k−1 other samples are then
drawn only from within cell C.

The effect of this sampling strategy can be expressed in a new probability
Plocal(n) for finding a shape ψ of size n:

Plocal(n) = P (p1 ∈ ψ)P (p2 . . . pk ∈ ψ|p2 . . . pk ∈ C) (2.7)

The first factor evaluates to n/N . The second factor obviously depends on the
choice of C. C is well chosen if it contains mostly points belonging to ψ. The
existence of such a cell is backed by the observation that for most points on a
shape, except on edges and corners, there exists a neighborhood such that all of the
points therein belong to that shape. Although in general it is not guaranteed that
this neighborhood is captured in the cells of the octree, in the case of real-life data,
shapes have to be sampled with an adequate density for reliable representation
and, as a consequence, for all but very few points such a neighborhood will be
at least as large as the smallest cells of the octree. For the sake of analysis, we
assume that there exists a C for every pi ∈ ψ such that ψ will be supported by
half of the points in C, which accounts for up to 50% local noise and outliers. We

29

CHAPTER 2. PRIMITIVE DETECTION

conservatively estimate the probability of finding a good C by 1
d

where d is the
depth of the octree (in practice a subtree of cells rooted in the highest good cell
will be good as well). The conditional probability for p2, p3 ∈ ψ in the case of a

good cell is then described by (|C|/2k−1)
(|C|k−1)

≈ (1
2
)k−1. And substituting yields:

Plocal(n) =
n

Nd2k−1
(2.8)

As large shapes can still be estimated using points spread far apart in large oc-
tree cells, the stability of the shape estimation does not suffer from the localized
sampling strategy.

The impact of this sampling strategy is best illustrated with an example. The
cylinder depicted in Figure 2.1 consists of 1066 points. At the time that it belongs
to one of the largest shapes in the point-cloud, 341,547 points of the original 2
million still remain. Thus, it then comprises only three thousandth of the point-
cloud. If an ordinary uniform sampling strategy were to be applied, 151,522,829
candidates would have to be drawn to achieve a detection probability of 99%.
With our strategy only 64,929 candidates have to be generated for the same prob-
ability. That is an improvement by three orders of magnitude, i.e. in this case that
is the difference between hours and seconds.

Level weighting Choosing C from a proper level is an important aspect of our
sampling scheme. Here we propose a simple heuristic to further improve the
sampling efficiency: We choose C from a level according to a non-uniform distri-
bution that reflects the likelihood of the respective level to contain a good cell. To
this end, the probability Pl of choosing C from level l is first initialized with 1

d
.

Then for every level l, we keep track of the sum σl of the scores achieved by the
candidates generated from a cell on level l. After a given number of candidates
has been tested, a new distribution for the levels is computed. The new probability
P̂l of the level l is given as

P̂l = x
σl
wPl

+ (1− x)
1

d
, (2.9)

where w =
∑d

i=1
σ
Pi

. We set x = .9 to ensure that at all times at least 10% of the
samples are spread uniformly over the levels to be able to detect when new levels
start to become of greater importance as more and more points are removed from
P .

2.6.2 Number of candidates
In Section 2.5 we gave a formula for the number of candidates necessary to detect
a shape of size n with a given probability. However, in our case, the size n of

30

2.7. SCORE

the largest shape is not known in advance. Moreover, if the largest candidate has
been generated early in the process we should be able to detect this lucky case
and extract the shape well before achieving a precomputed number of candidates
while on the other hand we should use additional candidates if it is still unsure
that indeed the best candidate has been detected. Therefore, instead of fixing
the number of candidates, we repeatedly analyze small numbers t of additional
candidates and consider the best one ψm generated so far each time. As we want to
achieve a low probability that a shape is extracted which is not the real maximum,
we observe the probability P (|ψm|, s) with which we would have found another
shape of the same size as ψm. Once this probability is higher than a threshold pt
(we use 99%) we conclude that there is a low chance that we have overlooked a
better candidate and extract ψm. The algorithm terminates as soon as P (τ, s) > pt.

2.7 Score
The score function σP is responsible for measuring the quality of a given shape
candidate. We use the following aspects in our scoring function:

• To measure the support of a candidate, we use the number of points that fall
within an ε-band around the shape.

• To ensure that the points inside the band roughly follow the curvature pat-
tern of the given primitive, we only count those points inside the band whose
normals do not deviate from the normal of the shape more than a given angle
α.

• Additionally we incorporate a connectivity measure: Among the points that
fulfill the previous two conditions, only those are considered that constitute
the largest connected component on the shape.

More formally, given a shape ψ whose fidelity is to be evaluated, σP is defined as
follows:

σP(ψ) = |Pψ| , (2.10)

i.e. we count the number of points in Pψ. Pψ is defined in the following two steps:

P̂ψ = {p|p ∈ P ∧ |d(ψ, p)| < ε ∧ arccos(|n(p) · n(ψ, p)|) < α} (2.11)

Pψ = maxcomponent(ψ, P̂ψ) , (2.12)

where d(ψ, p) is the signed distance of point p to the shape primitive ψ (see Sec.
1.5.3), n(p) is the normal in p and n(ψ, p) is the normal of ψ in p’s projection on
ψ. maxcomponent(ψ, P̂ψ) extracts the group of points in P̂ψ whose projections
onto ψ belong to the largest connected component on ψ.

31

CHAPTER 2. PRIMITIVE DETECTION

2.7.1 Connected components

We find connected components in a bitmap located in the parameter domain of the
shape. A pixel in the bitmap is set if a point is projected into it. Ideally, the size β
of the pixels in the bitmap should correspond to the distance between neighboring
points in the data, i.e. the sampling resolution. If the data is irregularly sampled, β
should be chosen as the minimal sampling resolution satisfied everywhere in the
data.

We use the parameterizations given in Sec. 1.5.3 for the bitmaps. Connected
components are computed with accordant wrapping in order to deal with the dis-
continuities in the parameterizations of spheres, cylinders, cones and tori. In some
cases, e.g. for cylinders with very large radii, it may be that, due to the discontinu-
ity, the bitmap contains very large empty parts. Instead of allocating large bitmaps
in such cases, we resort to a hashtable representation of the bitmap which contains
only the set pixels. This turned out to be faster and more flexible then to adjust
the parametrization.

2.8 Score evaluation
The second major performance factor of the RANSAC scheme is the score func-
tion evaluation. In our case, in a naïve implementation, the distance to all points in
P would have to be computed together with a normal at a corresponding position
on the shape for each candidate. Then the largest connected component has to be
found among all compatible points.

2.8.1 Random subsets

Obviously the cost of evaluation would be prohibitive without any optimizations.
But since in each run we are only interested in the candidate that achieves the
highest score, using the entire point cloud P when computing σP(ψ) is not neces-
sary for every shape candidate. We significantly reduce the number of points that
have to be considered in the evaluation of σP(ψ) by splitting the point cloud P
into a set of disjoint random subsets: P = S1

⋃
. . .
⋃
Sr.

After a shape candidate was generated and successfully verified, the candidate
is only scored against the first subset S1 and no connected component is extracted
yet. From the score σS(ψ) on a subset S ⊂ P an estimate σ̂P(ψ) for the score
σP(ψ) on all points can be extrapolated using the well known induction from
inferential statistics:

σ̂P(ψ,S) = −1− f(−2− |S|,−2− |P|,−1− |Sψ|) , (2.13)

32

2.8. SCORE EVALUATION

where

f(N, x, n) =
xn±

√
xn(N−x)(N−n)

N−1

N
(2.14)

is the mean plus/minus the standard deviation of the hypergeometric distribution.
σ̂P(ψ) is a confidence interval [lψ, uψ] that describes a range of likely values for
the true score σP(ψ). The expected value E(σP(ψ)) is given by lψ+uψ

2
. With

this extrapolation the potentially best candidate ψm can be quickly identified by
choosing the one with the highest expected value. Since the uncertainty of the
estimation is captured in the confidence intervals, the truly maximal candidate
can be found by comparing the confidence intervals of the candidates.

If the confidence intervals of ψm and another candidate ψi overlap, the score
on an additional subset is evaluated for both candidates and new extrapolations
are computed, now taking into account the scores on all subsets that have already
been computed:

σ̂P(ψ) = σ̂(ψ,
⋃
i

Si) (2.15)

The more subsets have been considered, the smaller becomes the range of the
confidence intervals, since the uncertainty in the estimation decreases. Further
subsets are included until the confidence intervals of ψi and ψm no longer overlap
and it can be decided if either ψi or ψm is better.

To include the effect of the connectedness condition in the extrapolation, every
time an additional subset has been evaluated, the maximal connected component
is found among all the compatible points that have been discovered so far. The
resolution of the bitmap that is used to find the components has to be adapted to
reflect the lower sampling rate of the subsets. If 1

x
=

∑
i |Si|
|P| is the fraction of

points in P that have been tested so far, then the bitmap resolution is adjusted to
xβ.

Pseudocode for the score evaluation is given in Alg. 2. In line 1 a heap H
containing all candidates is constructed such that candidates with higher upper
bound uψ will be popped first. In lines 3 - 19 processing of candidates continues
until the heap is empty or an eligible best candidate was found. A candidate
m is eligible if its score is greater than the minimum required score τ and the
probability P (um, s) (where s is the number of candidates drawn so far) is greater
than pt. In lines 5-7 the score estimate of the currently best candidate m is refined
as long as additional subsets S ⊂ P exist and the lower bound lm is larger than the
upper bound uf of the next best candidate f . If after the refinement the candidate
m turns out to be no longer eligible, the next candidate f is considered (lines 8-9).
If the next candidate is also not eligible, no eligible candidate remains and the
algorithm returns signalling failure (lines 9-13). If on the other hand the lower
bound lm of the candidate m after refinement is still larger than the upper bound

33

CHAPTER 2. PRIMITIVE DETECTION

Algorithm 2 Find best candidate in candidate set C
1: H ← makeHeap(C)
2: m← popHeap(H)
3: while |H| > 0 do
4: f ← popHeap(H)
5: while lm 6= um ∧ uf ≤ lm do
6: improveBounds(m)
7: end while
8: if um < τ ∨ P (um, s) > pt then
9: m← f

10: if um < τ ∨ P (um, s) > pt then
11: return ∅
12: end if
13: end if
14: if lm > bf then
15: return m
16: end if
17: H ← pushHeap(m,H)
18: m← f
19: end while

uf of the next best candidate, then m is the best candidate and is returned (lines
14-15). Otherwise m is pushed back onto the heap and the same procedure is
repeated for the next best candidate (lines 17-18).

The advantage of this priority based candidate evaluation is that it is less de-
pendent on the random order in which candidates are generated. Compared to the
order dependent approach of David Capel [Cap05] (see Sec. 2.2.4) we achieve a
20% speedup on average on a single core machine. Yet, admittedly our approach
does not scale well with the number of cores. Indeed, already on a dual core ma-
chine the concurrent, yet order dependent evaluation is on par with a parallelized
version of our algorithm. This is due to the maintenance of the heap structure
which is not well suited for parallelization.

2.8.2 Octree

In order to accelerate the collection of the compatible points for a primitive ψ,
for each of the subsets Si ⊂ P an octree is constructed, so that during the cost
function evaluation only the points lying in cells within ε distance to the shape
have to be considered. To this end, the octree is traversed recursively and a cell
is only visited if the distance of ψ to the cell’s center is less than half the cell’s

34

2.9. REFITTING

diameter plus ε.

2.9 Refitting
When a candidate shape ψ has been selected for extraction, a refitting step is exe-
cuted before the shape is finally accepted. As is the standard in RANSAC based
algorithms, we use a least-squares approach [Sha98]. This optimizes the geomet-
ric error of the candidate shape. In refitting and extraction we include all com-
patible points within a distance of 3ε from the shape, as this removes unnecessary
clutter from the point-cloud [GBS03].

2.10 Out-of-core detection
Since the run-time complexity of the detection algorithm is inversely proportional
to the probability P (n) for detecting a shape of size n (see Eq. (2.6)), this may,
even despite our local sampling strategy, become a problem on very large point-
clouds such as e.g. huge city models. For instance, in the case of scanned city we
have to deal with thousands of individual buildings, most of which are of similar
size. Let us consider for example an aerial scan with a spatial resolution of 7cm of
the city of Munich roughly containing 200, 000 individual buildings and roughly
being spread over about 300km2. In this case the total raw data size consists of
61 · 109 points. For simplicity let us further assume that each building consists of
only 6 individual faces with a total surface area of approximately 1000m2 resulting
in about 32, 000 points per primitive shape. To find one of the individual faces with
a probability of 99% with the localized RANSAC approach as described above,
we would have to draw about 38 million different minimal sets from the point-
cloud which is still too much, especially since for each of the resulting individual
shapes the score function must be evaluated. One way to solve this problem is to
adapt the size of the primitive to be extracted to the total number of points in the
model, i.e. to keep the ration between the primitive size n and the number N of
points in the point-cloud bounded, which is discussed in detail in the following
section.

2.10.1 Maximal primitive extent
Since buildings typically do not exceed a maximal side length, we can safely
apply our original RANSAC scheme to local parts of the input point-cloud. Such
local parts have to be large enough so that no structures in the data can be missed.
Moreover, to be effective, these parts should be chosen such that the ratio 1/P (n)

35

CHAPTER 2. PRIMITIVE DETECTION

is bounded locally. Since arbitrarily small shapes can appear in general, the local
parts have to be hierarchical. To construct such local parts of the input point-
cloud, we propose to sort the point-cloud into a global, out-of-core octree data
structure, but other hierarchies might be suitable as well.

In principle, the shape detection is then executed for each of the cells in the
octree. Of course, some additional care has to be taken to ensure sufficient overlap
between cells. Also the octree should be constructed in a way such that the side
lengths of the cells correspond to the expected maximal side length of structures
in the point data.

The octree data structure

The side length of the largest cells is computed based on a maximal area A and
a maximal aspect ratio R of the surfaces contained in the data. These parameters
need to be specified by the user. The side length S of the cells is then given as
S =

√
R · A . The bounding cube of the octree is chosen such that on some

level L the side length of the contained cells is exactly S. In order to achieve
overlap between cells, when the shape detection is executed for cell C, the points
in neighboring cells on level L + 1 are included during the shape detection as
well (these have side length 1/2S). The minimal size of a shape is set to 1/4A
during the detection, as smaller shapes will be searched on the next finer level in
the octree. This way the ratio 1/P (n) is effectively bounded (since the side length
of a cell and the minimal size of a shape are coupled via the hierarchy) and the
data can be processed out-of-core due to the local nature of the algorithm. Thus,
once the detection has been executed on level L, we continue in the same manner
on level L+ 1 until all shapes have been detected.

2.11 Alternate score
The discussion so far has only considered the standard score function using the
criteria described in Sec. 2.7. While this scoring method already reliably detects
most primitives (see Sec. 2.12) there remain two issues: Firstly, this standard scor-
ing function does not differentiate between different types of primitives, i.e. if a
subset of P is representable by two different types of primitives the detected type
of primitive can be either one. Thus, if there are several similar such subsets in P ,
the separate, yet similar, subsets may be inconsistently represented by primitives
of different type. Secondly, the standard scoring function successfully ignores out-
liers but does not specifically consider noise present in the data, i.e. the standard
scoring function treats all points within the distance threshold ε equally, regard-
less of the actual distance from the primitive. Therefore the scoring function does

36

2.11. ALTERNATE SCORE

only weakly distinguish between primitives based on their approximation quality -
only a fixed threshold is considered, more subtle variations and noise are ignored.

In [TZ98] Torr and Zisserman, following a similar line of argumentation, pro-
posed MSAC in order to alleviate the influence of a fixed threshold. The scoring
method presented in this section is an extension of their idea and, besides address-
ing noise, also differentiates between primitive types. Both these aspects can be
effectively handled using a model selection criterion. Model selection is a branch
of statistics and information theory [BA02] which is concerned with finding the
right parametric model for a given set of data. A scoring function is used to eval-
uate different models that were fitted to the data. The model with the best score
is then selected as the most appropriate one. The scoring criterion aims to find a
trade-off between the complexity of the representation, i.e. the number of param-
eters used in the model, and the residual error, i.e. the approximation quality. In
the model selection literature there is a large body of different criterions to choose
from.

One of the popular scoring criteria is Akaike’s An Information Criterion (AIC)
[Aka73] which minimizes the expected entropy of yet unobserved data, but suf-
fers from a tendency to overfit [LB87]. Other popular model selection criteria are
based on minimizing the coding length of the observed data with respect to the
employed models: Wallace’s Minimum Message Length (MML) [WB68] and Ris-
sanen’s very similar, but independently developed, Minimum Description Length
(MDL) [Ris78]. Although based on an Bayesian standpoint the Bayesian Infor-
mation Criterion (BIC) by Schwarz [Sch78] also leads to a very similar measure.
However, in practice most of these models and their variants behave very simi-
larly and the differences are mostly negligible [BHG06]. Given the small prac-
tical differences, we base the remainder of this discussion on the MDL criterion
as it provides a small set of relatively simple and intuitive parameters for control-
ling the trade-off between complexity and error. However, other criteria would be
applicable as well.

2.11.1 Minimum Description Length
The MDL criterion is based on the following cost function C(ψ,Pψ):

C(ψ,Pψ) = L(Pψ|ψ) + L(ψ) (2.16)

where Pψ is defined as in Eq. (2.12), L(Pψ|ψ) denotes the coding length re-
quired for describing the deviation of Pψ from the given primitive ψ (usually
called residuals) and L(ψ) is the coding length for the primitive parameters re-
spectively. Commonly L(Pψ|ψ) is defined as L(Pψ|ψ) = 1

2σ2RSS in the MDL
framework, where RSS denotes the residual sum of squares and σ2 the noise

37

CHAPTER 2. PRIMITIVE DETECTION

variance in the data [HY01]. Thus in our setting, one would ideally like to base
L(Pψ|ψ) on the distance between ψ and S(Pψ), i.e.

L(Pψ|ψ) = α

∫
s∈S(Pψ)

d(s, ψ)2ds (2.17)

where S(Pψ) denotes a continuous surface represented by the point-cloud Pψ
(e.g. the MLS surface introduced in Sec. 1.5.2), α is an application dependent
weighting factor and d(s, ψ) denotes the distance of s to ψ (see Sec. 1.5.3). Since
computing

∫
s∈Pψ

d(s, ψ)2ds exactly is very involved we resort to a simple approx-
imation (this is a common approximation, similar for instance to [HDD+93]):

L(Pψ|ψ) = α
∑
pj∈Pψ

d(pj, ψ)2. (2.18)

The MDL criterion also assigns costs to unassigned points, i.e. all points col-
lected in the set of remaining pointsR. The cost for these pointsL(R|∅) is defined
as

L(R|∅) = γ|R| (2.19)

where γ again is a user specified factor.
Finally, L(ψ) considers the complexity of ψ and is defined as

L(Pi) = β|ψ| (2.20)

where |ψ| denotes the number parameters of ψ and β again is an application de-
pendent weighting factor. We set L(∅) to zero.

Given the cost function C(ψ,Pψ) for a single primitive we can define the cost
C(Ψ,PΨ) of the entire partitioning found by the primitive detection as follows:

C(Ψ,PΨ) =
∑
ψ∈Ψ

C(ψ,Pψ) + C(∅,R) (2.21)

The goal of the primitive detection is now to minimize the energy of Eq. (2.21).
To this end, in principle we have to simultaneously determine the number of par-
titions |Ψ|, the shape of the partitions PΨ = {Pψi} and the optimal type and
parameters of the primitives ψi - which all evidently are very tightly coupled. It is
quite clear that even for a relatively simple input point-cloud P , it is computation-
ally not feasible to explore all possible partitions and test all possible primitives
in order to find the optimal solution.

Here we follow a simple greedy strategy [LGB95] which nonetheless proves
to be effective in practice. In fact, we can greedily minimize Eq. (2.21) using the
RANSAC algorithm introduced in the previous section using a suitable score func-
tion which is presented in the following. Recently, we also proposed an approach

38

2.11. ALTERNATE SCORE

to jointly optimize the number of primitives, the partitioning and the primitives’
type and parameters [LSSK09]. While the joint optimization indeed outperforms
the simple greedy RANSAC approach and results in an improved partitioning -
especially on generic surfaces - it unfortunately has very long runtimes and is
therefore not suitable for larger point-clouds. The strategy employed here on the
other hand directly benefits from the efficiency of our RANSAC algorithm and is
applicable even to very large point-clouds.

Since RANSAC tries to maximize the score, we cannot directly employC(ψ,Pψ)
as the score of a primitive ψ. However, it is straightforward to derive a score based
on the benefit of a given primitive:

σ′P(ψ) = C(∅,Pψ)− C(ψ,Pψ) (2.22)
= L(Pψ|∅) + L(∅)− L(Pψ|ψ)− L(ψ) (2.23)

= γ|Pψ| − α
∑
pj∈Pψ

d(pj, ψ)2 − β|ψ| (2.24)

Parameters

The choice of the parameters in this MDL score function can be based on the fol-
lowing intuition: If γ is set to one, then β can be seen as controlling the number
of points a proxy has to subsume in order to become beneficial. For instance, a
sphere has four parameters and therefore has to approximate at least 4β points in
order to be worthwhile (The choice of β in general is quite subjective and in our
experiments we always use β = 10 as we found this to give a reasonable trade-
off). However, the degree to which each point is credited to the proxy depends
on the approximation error and is controlled by the parameter α. Intuitively α
controls the desired error of the resulting approximation. In practice, if we de-
sire an average approximation error of κ we set α = 1

(3κ)2
. Given γ = 1 this

means that any point farther than 3κ from a primitive will not be beneficial any-
more. Therefore we can use this distance as the threshold ε = 3κ during the score
evaluation.

Extrapolation

To use the MDL score function in our RANSAC approach it is necessary to extrap-
olate the score value computed on a subset to the score on the entire point-cloud.
For the standard score function it was sufficient to extrapolate the size using Eq.
(2.13), i.e. the number of points in the support region, of a candidate primitive
in order to extrapolate the score. We propose the following extrapolation for the

39

CHAPTER 2. PRIMITIVE DETECTION

Figure 2.2: To generate this image our algorithm was applied to the barycenters
of the triangles. The triangles were than colored according to the shape of their
barycenter and the vertices were projected onto the shape. The jagged lines appear
because the triangulation does not contain the edges of the shapes.

score defined by Eq. (2.22):

σ̂′P(S, ψ) =
L(Sψ|∅)− L(Sψ|ψ)

|Sψ|
σ̂P(S, ψ)− L(ψ), (2.25)

where σ̂P(S, ψ) is the extrapolated size defined in Eq. (2.13).

2.12 Results
We have run extensive tests of our algorithm on different kinds of geometry. The
results show that basic shapes are reliably detected if they are present in the data.
For parts of a surface that closely resemble a basic shape, a well approximating
representation is obtained. More involved areas are partitioned into basic shapes
in a reasonable manner and the number of remaining points reflects the complexity
of the surface. The algorithm exhibits high performance as is shown in the timings
of Table 2.1.

To illustrate the effect of the two major optimizations employed by our algo-
rithm, we disabled them independently and compare the resulting timings to the
optimized version in Fig. 2.3. The timings were obtained with the parameters
given in Table 2.1. The gain of the localized sampling strategy depends on the
relative sizes of the shapes with respect to the model. The localized sampling
improves the performance especially for smaller shapes detected later on in the
process, as their relative size decreases and a global sampling strategy requires far
more candidates. Conversely, the score evaluation on subsets has a greater impact

40

2.12. RESULTS

Figure 2.3: The chart shows the times of detection of the shapes found in the oil
pump model when either subset evaluation or the localized sampling is disabled.
For comparison also the timings of the fully optimized version are plotted. Total
runtime for the version without subsets was 272.5s, 199.1s without local sampling
and 12.3s with both optimizations activated.

early on in the process when the point-cloud and the shapes are both very large and
thus many distance evaluations on octree cells and points have to be performed.
In general the gain of the score evaluation on subsets increases with the size of
the model. This way these two optimizations complement one another leading to
significant performance gains at all stages of the detection.

model |P| ε α τ |Ψ| |R| sec
fandisk 12k 0.01 10 50 24 38 0.57
rocker arm 40k 0.003 20 50 73 1k 6.5
carter 546k 0.001 20 200 138 47k 29.1
rolling stage 606k 0.003 20 300 61 16k 15.1
oil pump 542k 0.0015 30 100 202 15k 30.9
master cyl. 418k 0.003 35 300 37 7k 12.1
house 379k 0.002 20 100 130 19k 10.7
church 1,802k 0.002 20 1000 160 690k 40.7

4,000 81 543k 20.8choir screen 1,922k 0.002 20
500 372 236k 61.5

Table 2.1: Statistics on processed models. ε is given as ratio of maximum bound-
ing box width. Results have been averaged over 5 runs and rounded.

The choir screen in Figure 2.4 consists of a number of basic shapes, e.g. large
planar areas, cylindrical or conical pillars, and more detailed parts such as the
persons. The data was obtained with a laser range scanner and consists of several

41

CHAPTER 2. PRIMITIVE DETECTION

(a) Original

(b) Approximation

Figure 2.4: The 372 detected shapes in the choir screen define a coarse approxi-
mation of the surface.

42

2.12. RESULTS

registered scans. In addition to some noise there also are some registration errors.
The planar regions and the pillars are well detected but even for the persons good
approximating shapes are found. Note that the small casks in the hands of the two
leftmost persons are reliably detected despite their small size relative to the whole
data set. The image was generated by projecting all points on their corresponding
basic shape. For parameter values see Table 2.1.

In contrast, the surface of the fandisk in Figure 2.2 is entirely composed of
basic shapes. As expected, our algorithm is able to find these shapes and decom-
poses the surface into the constituting parts without leaving any remaining points.
Note that the result is practically identical to that obtained by [WK05]. The oil
pump on the other hand does not only consist of the basic shapes detected by our
method. However, as is shown in Figure 2.5, existent basic shapes are well de-
tected and only areas of blending patches or small scale details are ignored. The
main characteristics of the model are captured concisely.

In Figure 2.7 additional results are presented. Outliers are ignored successfully
and fine detail geometry is well recognized.

2.12.1 Noise
We have performed a simple experiment to demonstrate the ability of our method
to handle noisy data. We use points of an octant of a sphere with increasing
amount of synthetic gaussian noise and outliers as test cases. The points’ nor-
mals have been obtained by locally fitting a least-squares plane to each sample’s
neighbors, and the radius in which the neighbors are collected is increased in ac-
cordance to the noise ratio. Note that no shape types have been deactivated during
the detection, but we did not allow tori with a major radius smaller than the mi-
nor one because these form a superset of spheres. In Figure 2.9 an example with
10% noise and 80% outliers is depicted. Outliers are generated with a uniform
distribution over the bounding box. Table 2.2 lists additional results together with
the respective noise ratios. As can be seen, the original sphere parameters are
reliably detected even for a large amount of noise as well as outliers. For a noise
degree higher than 20% the detection starts to become unstable and the algorithm
sometimes returns false shape types. Up to 95% outliers are tolerated for a noise
degree of 2%.

Figure 2.6 b)-c) show the behavior of our algorithm on noisy data for a more
complex model. The oil-pump model was distorted by synthetic Gaussian noise
with σ equalling 1% of the bounding box diagonal. For such heavy noise we ob-
serve that only small or very narrow shapes (e.g. some of the screw heads) can
no longer be reliably segmented since not enough support can be gathered for
them. Another reason is that the estimated normals become too unreliable for
these shapes, as the number of neighbor points used for the estimation needs to be

43

CHAPTER 2. PRIMITIVE DETECTION

(a) Original (b) Random colors

(c) Colored by type (d) Bitmaps

Figure 2.5: a) The original scanned model with ca. 500k points. b) Points be-
longing to shapes in random colors. c) Points of the shapes colored according to
the type of the shape they have been assigned to: planes are red, cylinders green,
spheres yellow, cones purple and tori are grey. No remaining points are shown. d)
The bitmaps constructed for connected component computations provide a rough
reconstruction of the object.

44

2.12. RESULTS

(a) Noisy original (b) Random colors

(c) Colored by type (d) Random colors

Figure 2.6: a) Distorted model with Gaussian noise and outliers b)-c) Results of
the detection on the model with Gaussian noise but without added outliers. d) In
addition to the Gaussian noise, 10% outliers were added (see a)).

45

CHAPTER 2. PRIMITIVE DETECTION

Figure 2.7: First column: Original point-clouds. Second column: Shapes colored
randomly. Last column: Shapes colored by type as in Fig. 2.5. Models are from
top to bottom: rolling stage, house, master cylinder. For parameters and timings
see Table 2.1.

46

2.12. RESULTS

Figure 2.8: First column: Original point-clouds. Second column: Shapes colored
randomly. Last column: Shapes colored by type as in Fig. 2.5. Models are from
top to bottom: rocker arm, church, and carter. For parameters and timings see
Table 2.1.

47

CHAPTER 2. PRIMITIVE DETECTION

(a) Points (b) Sphere (c) Associated points

Figure 2.9: Points on an octant of a sphere distorted by synthetic gaussian noise
with a σ of 10% relative to the sphere diameter and 80% outliers. Our algorithm
is able to robustly detect the sphere, see also Table 2.2.

increased in order to smooth out the effect of the noise. Therefore points belong-
ing to adjoining shapes adversely influence the estimated normals for such small
shapes. The larger shapes, however, are unaffected and therefore are successfully
and stably detected despite the heavy noise. In Figure 2.6 d) in addition to the
noise 10% of the points have been randomly repositioned as outliers (again by a
uniform distribution over the bounding box). As expected, the detection success-
fully ignores these outliers and the result is equivalent to that without outliers.

A real world example of heavy noise is demonstrated in Figure 2.10. Our
method is able to successfully detect the planes comprising the roofs of the two
spires despite the numerous outliers and noise artifacts.

(a) Original (b) Random colors (c) Colored by type

Figure 2.10: a) A part of the church model containing heavy noise. b) Points
belonging to shapes in random colors c) Points colored by type of shape as in Fig.
2.5.

48

2.12. RESULTS

before refitting after refitting
σ o µr µc σr σc µr µc σr σc

0 0 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00
1 25 1.73 2.24 1.16 0.95 0.07 0.07 0.004 0.004
2 25 1.79 2.60 1.43 1.47 0.31 0.31 0.021 0.023
5 50 2.25 3.96 1.65 2.19 0.35 0.26 0.054 0.025

10 50 8.11 11.87 4.15 4.44 4.32 7.20 0.53 0.91
10 80 7.17 10.58 5.18 4.68 5.12 5.99 1.65 1.96

Table 2.2: Parameter errors for the fitted spheres under different noise conditions
compared to ground truth. All values are given in percent of the sphere diameter.
The values are, from left to right, the level of gaussian noise σ, the percentage
of outliers o, the mean values µr for radius and µc for center deviation, and the
standard deviations σr of the radius and σc of the center.

Threshold [BJ88] [JB97] our
0.7 16.65% 66.93% 71.06%
0.8 16.12% 66.50% 68.04%
0.9 16.14% 62.42% 62.35%

Table 2.3: Average percentage of correctly detected regions on the 40 test range
images of the Segmentation Comparison Project. The threshold controls the ratio
of required overlap between ground truth and machine segmented regions.

2.12.2 Comparison
Comparing our algorithm to other existing methods operating on 3D point-clouds
is difficult. Most point-cloud segmentation algorithms do not explicitly detect
instances of primitive shapes but find areas that are consistent in some other,
predefined way. Moreover there are hardly any publicly available implementa-
tions or results. However, a benchmark for range image segmentation does exist
(http://marathon.csee.usf.edu/seg-comp/SegComp.html)[PBJB98]. Therefore we
resort to this benchmark to provide some comparisons of our method with other
existing algorithms. Please note though, that the original intent of our method
is not range image segmentation and the benchmark can therefore reflect only
a subset of our method’s abilities. The benchmark provides test images in con-
junction with manually obtained ground truth segmentations as well as a tool for
automatic evaluation. Due to the low quality of the used scanner the test images
contain heavy systematic noise. Range image segmentation, of course, is a very
special and simpler case of our far more general problem formulation that would
allow for many extra optimizations and assumptions in the algorithm. Nonetheless
we have tested our method as is on the test images provided by the benchmark.

49

CHAPTER 2. PRIMITIVE DETECTION

Figure 2.11: Primitives detected by the out-of-core version of the detection algo-
rithm on 25 Mio. sample points from an aerial stereo reconstruction of Graz. The
detection time was 470 sec.

Table 2.3 lists our detection results as well as those of the other two state-of-the-
art methods for which results are available. Our method is able to achieve similar
or even slightly higher rates of correctly detected regions as the UB segmenter
[JB97], while clearly outperforming the BJ segmenter [BJ88]. The results are en-
couraging in the sense that our method can easily compete with these native range
image segmenters without any further adaptations to this special case.

2.12.3 Out-of-core detection

We tested the out-of-core version of our algorithm on a part of the Graz dataset
kindly provided by Heiko Hirschmüller from the DLR. The first subset we con-
sidered contains about 15 million sample points generated using the stereo recon-
struction algorithm from aerial photographs described in [Hir08]. We restricted
the maximum area of a shape to 1000m2 and the aspect ratio of an individual shape
to 1 : 10. We extracted 1120 shapes. About 3.5 million points, mainly belonging
to other geometry like natural cover, were not assigned. The total extraction time
was about 259 sec. For this medium sized data set we were able to compare this to
our original algorithm which delivered a similar result with respect to the number
of shapes and remaining points: 1000 shapes with 3.8 million remaining points
were extracted in about 900 sec. Enhancing the area considered to a sub-set of
about 25 million points of the Graz dataset and using our out-of-core algorithm
we extracted about 2000 shapes with 5.7 million remaining points in about 470

50

2.12. RESULTS

sec (see Fig. 2.11), which is an approximately linear increase of runtime. The pa-
rameters were again a maximum area of 1000m2 per shape and an aspect ratio of
1 : 10. A comparison with the original algorithm was not possible in this case due
to the lack of main memory and the resulting disk-swapping. In summary we can
state that partitioning the raw data set in parts that are adapted to the size of the
sought primitives, enables the design of an efficient out-of-core RANSAC method
for point-cloud shape detection that is especially well suited for huge city models.
By adapting the size of the local subsets of the global point-cloud to the existent
primitive shapes, the run-time complexity can be kept approximately linear in the
overall number of points in the model.

2.12.4 Alternate score

In Fig. 2.12 results obtained with the simple score function of Sec. 2.7 and the
MDL-based alternate score of Sec. 2.11 are contrasted. As expected, the MDL-
based score finds more consistent types of primitives, i.e. similar parts in the point-
cloud are represented by primitives of the same type. For instance, on the rolling-
stage model (depicted in the bottom row) several cylindrical parts are represented
by tori in the result obtained with the simple threshold-based score. These parts
are all consistently approximated with cylinders in the MDL result. On the other
hand, the MDL-score prefers primitives with fewer parameters. For instance, in
the carter model (depicted in the top row) and also in the rolling-stage model, there
are several spherical primitives in the MDL results that could arguably have been
better classified as cylinders, cones or tori - as chosen by the simple score. This
is the direct result of the trade-off between approximation quality and complexity
offered by MDL which in this case prefers spheres as the additional approximation
error caused by the spherical approximation is very small since the respective
parts are quite narrow. For the rocker-arm model (depicted in the middle row)
on the other hand this trade-off results in a clearly more reasonable choice of
primitive types. Only on the tip on the lower right end there is a torus in the MDL
result where a cylinder would have been more appropriate. A reason for this
may be that the RANSAC algorithm can only choose from among the randomly
generated candidates. If, by chance, no good cylinder could be generated then
even the MDL score will select any other type of primitive that approximates the
region. A possible approach to remedy this effect would be to apply a MDL-
based post classification to each primitive. Indeed, in the case of the rocker-arm
this does result in a cylinder. We proposed a more complete approach to this kind
of post-processing that also considers the partitioning itself in Li et al. [LSSK09]
and achieved promising results. Yet, the algorithm is not very efficient and is
therefore not further discussed in this work where efficiency is a primary goal.

51

CHAPTER 2. PRIMITIVE DETECTION

Figure 2.12: Comparison of results obtained with a simple thresholding score
and the MDL based scoring approach. Left column: Input point-clouds. Middle
column: Detected primitives with thresholding score, colored by type (cf. Fig. 2.7
and 2.8) Right column: Primitives detected with MDL score. Both approaches
use the same distance and normal thresholds, bitmap resolution and minimum
support. The weight for the parameters in the MDL score was set to 10. Note that
the detected types are more consistent for the MDL score and in general primitives
with fewer parameters are preferred.

52

2.13. CONCLUSION

2.13 Conclusion
After having outlined the potential in the well known RANSAC paradigm we have
developed several fundamental extensions and derived new assessments for the
probabilities involved therein for the case of shape primitive detection. We were
able to present a randomized shape detection algorithm that is not dominated by
the imponderability of chance, but is extremely robust and fast, and can be applied
to a large variety of data from different sources and of different quality. Although
our algorithm, in contrast to previous methods in computer graphics, does not find
shape proxies for every part of the surface, we stress that this is not a requirement
in many applications. The speed of the method, the quality of the results and
its few requirements on the data render our algorithm a practical choice for shape
detection in many areas, some of which will be explored in the following chapters.

53

CHAPTER 2. PRIMITIVE DETECTION

54

CHAPTER 3

COMPRESSION

3.1 Introduction

As outlined in Chapter 1, one of the major challenges posed by scanned point-
clouds is the sheer amount of data - on the one hand caused by the size of the
acquired geometry but on the other hand additionally inflated by overwhelming
redundancy due to non-adaptive acquisition. For these gigantic point-clouds, even
seemingly simple tasks such as storage itself, let alone reconstruction and visual-
ization, often pose a challenge. More importantly though, in spite of increasing
bandwidth, it is still difficult to share these large datasets across a network. We
believe that in this context high compression rates are of major importance, since
we expect the size of datasets to grow much faster than e.g. hard-disk transfer rates
in the future, while the increased computational demand of decompression is met
well by the continuous and impressive gains in GPU processing performance. It is
therefore desirable to have a format for this data that achieves very high compres-
sion rates while lending itself to quick decompression and rendering at the same
time.

This chapter presents a novel algorithm that achieves just that: With the help
of the detected primitives, the point-cloud is transformed into a compressed for-
mat using a novel fast vector quantization algorithm, such that the data can be
decompressed in parallel on the GPU and rendered at interactive rates at the same
time. For large models the compression rates of our scheme are similar to state-
of-the art sequential point-cloud compressors. Besides geometry and normals we
also show that our approach is applicable to colors as well. The main features of
our algorithm are:

Bitrate We show that interactive high quality rendering at about 5-10fps on
current hardware is achieved with less than four bits per input point including
normals (see Fig. 3.1).

Normal estimation Our system allows trading compression of normals for
image-space normal estimation. This way coding of point positions alone suffices

55

CHAPTER 3. COMPRESSION

Figure 3.1: Michelangelo’s St. Matthew rendered interactively at 3.31bpp includ-
ing normals.

to obtain realistic renderings and point-clouds can be interactively rendered from
less than two bits per point.

Level-of-detail Our method uses progressive compression and inherently sup-
ports level-of-detail.

Fast vector quantization We have developed approximative strategies for ac-
celeration of the well-known Lloyd algorithm for vector quantization.

The compression is based on a decomposition of the point cloud into patches
that are each approximated by a primitive shape, i.e. either a plane, sphere, cylin-
der, cone or torus (see previous chapter). The fine-scale geometry can then be
encoded efficiently as height-fields over these patches. The height-fields are com-
pressed progressively using image-based methods giving a level-of-detail repre-
sentation.

The primitives provide a close approximation of the geometry for arbitrary
models, but the primitive information can also be used to allow some user inter-
action, such as suppressing the rendering of selected items, moving or copying
them. This is especially helpful in scenes such as buildings, cities or other man-
made environments where the primitives are predominant and often are closely
related to semantic entities. Moreover, in these scenes, the overall compression
rate can be higher since the geometry is even more closely approximated by shape
primitives.

56

3.2. PREVIOUS WORK

3.2 Previous work
One of the first approaches combining compression with direct rendering was the
QSplat system [RL00] which is based on a hierarchy of bounding spheres, giving
a level-of-detail representation. The positions and radii (as well as other attributes)
are delta coded in the hierarchy to reduce memory consumption. They require 6
bytes per input point with normal.

Botsch et al. [BWK02] use an octree as hierarchy for compression as well as
rendering and sample the characteristic function of the surface into this represen-
tation. To encode the hierarchy in a coarse to fine manner, only the subdivisions of
non-empty cells have to be stored in byte codes. This way they require less than 2
bits per leaf node. The number of leaf nodes is directly linked to the resolution of
the finest octree level, since the characteristic function is continuous. Therefore,
in general, more leaf nodes than original points are required to represent a model
at its full precision, leading to much higher bitrates. To reduce the required grid
precision, in each leaf, they store small offsets in normal direction, quantized to
additional 2 bits.

Kalaiah and Varshney [KV05] use a statistical representation of the point-
cloud to define a level-of-detail hierarchy. The hierarchy is constructed by com-
puting a PCA of the point positions for each node and than dividing along the most
significant axis. The parameters of the PCA, i.e. the local frame and the variances,
are quantized to 13 bytes per node. Since leaf nodes represent a cluster of points,
the hierarchy requires only about 8-9 bits per input point. The rendering of a node
is based on quasi-random sampling of the encoded Gaussian distribution. By pre-
computing a sequence of quasi-random numbers for a unit Gaussian distribution
the sampling can be shifted to the vertex shaders of the GPU. The decoding of the
node parameters however has to be done by the CPU.

Krueger et al. presented DuoDecim [KSW05], a point-cloud compression al-
gorithm suitable for real-time GPU decompression. They resample the original
point-cloud into a grid composed of Trapezo Rhombic Dodecahedra (TRD). Since
a cell in a grid of TRDs has no second order neighbors, adjacency relations be-
tween cells can be encoded very effectively in only 2.25 bits. Thus, for compres-
sion of the grid, continuous runs of neighboring occupied cells are stored based
on the simple adjacency relations. For decompression, several of these runs can
then be processed on the GPU in parallel. The method achieves high compression
rates of about 3bpp for positions and 5bpp for normals while introducing only a
small sampling error. However, several grids have to be stored independently to
obtain a level-of-detail representation.

In the context of raytracing Hubo et al. proposed two different algorithms
for rendering from compressed point data. Their quantized kd-tree [HMHB06]
allows decompression in depth-first manner which keeps the decompression over-

57

CHAPTER 3. COMPRESSION

head required during rendering low and is well suited for traditional raytracing
acceleration schemes. However the achieved bitrates vary between 7 and 15bpp.
In [HMHB07] Hubo et al. recently presented an alternative compression method
also intended for raytracing applications. The approach is based on vector quanti-
zation of small surface patches, which allows direct and concurrent random access
during raytracing. Bitrates as low as 1.4bpp are achieved, but result in noticeable
smoothing of the surface. Visually appealing results are obtained at about 3bpp.
Their algorithm is not suitable for GPU-based decompression as it does not sup-
port the fine-grained parallelism required for this architecture.

Compression of point-sampled geometry without having direct rendering in
mind has also been studied extensively. Most related to our approach is the work
of Ochotta and Saupe [OS04, OS08]. They partition the point-cloud into patches
parameterizable over a plane. Similar to us, they resample the geometry as height-
fields over these planes. Then they use progressive wavelet image compression
on these height-fields to achieve bitrates of 2-3bpp for point positions. Other
approaches in this area include the tree-based methods given in [HPKG06][SK06],
the multiresolution algorithm provided by Waschbüsch et al. [WGE+04] and the
single-rate coders of Gumhold et al. [GKIS05] and Merry et al. [MMG06]. While
all these methods achieve high compression rates, in contrast to our approach,
decompression is sequential and cannot be performed on the GPU for interactive
rendering. Nonetheless our algorithm is able to achieve similar bitrates on large
models.

The height-field geometry representation employed in our system is a well
known concept that, besides its use in compression (see above), spectral analy-
sis [PG01], simplification and reconstruction [BHGS06], has also been used for
rendering. Ivanov and Kuzmin [IK01] propose the use of planar range images
as rendering primitive in a hardware pipeline. However, they use a large num-
ber of very small patches and do not consider any compression. Ochotta and
Hiller [OH06] designed a rendering system based on height-fields that achieves
high quality renderings at interactive rates. However, they too, do not consider
compression or level-of-detail.

3.3 Overview
Our method is an asymmetric compression algorithm that is based on vector quan-
tization of the height-fields’ Laplace pyramids. The first step is the decomposition
of the input point-cloud into parts parameterizable over a primitive shape as de-
scribed in the previous chapter and depicted in Fig. 3.2 a).

Once the decomposition has been obtained, the geometry will be represented
as an atlas of height-fields that have been resampled on a regular grid located in

58

3.3. OVERVIEW

Figure 3.2: Different stages in our compression algorithm. a) The object is de-
composed into parts corresponding to shape primitives. b) Height fields over the
primitives are generated to describe fine scale details. c) Laplace pyramids are
computed for each height field d) Pyramid levels are encoded with vector quanti-
zation.

the domain of the respective primitive [PG01][OS04] (Fig. 3.2 b) and Sec. 3.4.1).
Note that these height-fields are allowed to have irregular boundaries and we store
with each field a binary occupancy mask to encode the existence of surface sam-
ples in the corresponding grid cells. Since height-fields are basically equivalent
to grey-scale images we also refer to the height-fields as images throughout this
work.

Each height-field is filtered and downsampled to yield a collection of equally
high image-pyramids (Fig. 3.2 c) and Sec. 3.4.2). Starting with the coarsest
pyramid level, the images of all shapes are simultaneously vector quantized. The
quantized versions are then upsampled and subtracted from the next finer reso-
lution images, resulting in difference images. Such difference images are then
successively vector quantized for each pyramid level (see Fig. 3.2 d) and Sec.
3.4.3).

Decompression then simply replaces codebook indices with codebook vec-
tors and sums up as many difference images as required to reconstruct a selected
pyramid level. This can be done efficiently on the GPU using dependent texture
lookups (see Sec. 3.5). The resulting height-fields are then reconverted into point-
clouds for rendering.

During rendering, level-of-detail is realized by choosing a pyramid level for
each patch such that the level’s resolution guarantees a hole-free point rendering.
Should a hole-free rendering require a higher resolution than available, a lower
resolution framebuffer is chosen as render target. These lower resolution images
are later scaled and merged into the target resolution to obtain the final rendering.

59

CHAPTER 3. COMPRESSION

During this image processing, normals can also be generated from the stored depth
information (see Sec. 3.6).

3.4 Compression

After the shape primitives have been obtained, the height-field atlas has to be gen-
erated. To this end, the point-cloud is resampled on a regular grid in the domain
of each shape. Recall that the compressed point-cloud will consist only of these
resampled positions, so that care has to be taken to avoid visible gaps between
the edges of different shape primitives. As was observed by Ochotta and Hiller
[OH06], in order to obtain hole free rendering, it suffices to have the patches
slightly overlap.

3.4.1 Resampling

The result of the resampling is a regularly sampled height-field (or grey-scale im-
age respectively) together with a binary mask specifying the valid entries. The
height-fields are sampled in the parametrization domain of the respective shape
primitive. To establish the location and extent of the resampling grid in the
parametrization domain for each patch, all points assigned to a shape are projected
onto the respective primitive and a bounding box is found for all these projected
points in the parametrization domain. In order to preserve the original number
of points, the resolution of each resampling grid should be chosen such that the
number of occupied cells equals the number of points in the respective patch.

We find the height-field’s resolution and the binary mask of occupied cells in
a joint iterative process. The initial resolution of the grid is set to the average
distance between a projected point and its nearest neighbor. In each iteration the
projected points are sorted into the grid and a morphological closing operation is
used to fill small holes in the resulting occupancy mask. Then, similar to a binary
search, if the number of occupied cells after the closing is larger than the original
number of points, the resolution is set to the middle value between a lower bound
and the current resolution. Otherwise the resolution is increased analogously.
After the correct resolution has been determined, the constructed binary mask is
dilated once to ensure a slight overlap between neighboring patches in space.

Heights Now, for each occupied cell a height value has to be computed. These
height values are obtained by intersecting a ray in direction of the shape prim-
itive’s normal with the moving least-squares (MLS) surface (see Sec. 1.5.2) for
each masked cell [AA03b]. Using the MLS-surface has the advantage that differ-

60

3.4. COMPRESSION

ent patches use a consistent surface definition across patch borders, which ensures
that no edges will be visible in the resampled point-cloud.

Normals In addition, the MLS surface can also be used to obtain approximate
normals, which can be stored along with the offset value if desired. Point normals
are encoded relative to the primitive’s normal using spherical coordinates. Using
the primitive’s normal as reference results in a low entropy for the polar angle, as
it will usually be close to zero.

Colors If the points are equipped with colors, the MLS-surface is also used to
resample the colors. For compression, colors are converted from RGB to YCrCb,
so that higher precision can be used for the intensity channel.

3.4.2 Filtering
The acquired height-fields are successively filtered and subsampled to obtain im-
age pyramids. The levels of these pyramids constitute the levels-of-detail sup-
ported by our method. A level Pi of the pyramid is obtained as

Pi =↓ g(Pi−1), (3.1)

where g is a low-pass analysis filter and ↓ denotes subsampling. P0 is the original
image. Rather than storing the pyramid levels independently we use the Laplacian
pyramid representation introduced by Adelson and Burt [AB81] to achieve better
decorrelation (and thus compression). A level of the Laplacian pyramid is the
difference between the corresponding level of the image pyramid and the upscaled
lower resolution level. Thus a level Li of the Laplacian pyramid is given as

Li = Pi − h(↑ Pi+1), (3.2)

where h is a synthesis filter and ↑ denotes upsampling. Only on the coarsest level l,
Laplacian and image pyramid are identical, i.e. Ll = Pl. We can then reconstruct
a level Pi from the Laplacian pyramid by recursively applying

Pi = Li + h(↑ Pi+1). (3.3)

Originally, Adelson and Burt suggested to use Gaussian-like filter kernels for g
and h in the pyramid construction. However, Gaussian analysis filters also require
Gaussian synthesis during reconstruction of pyramid levels. With a GPU imple-
mentation of the reconstruction in mind, we use the CDF 5/3 [CDF92] wavelet
instead, as in this case the low-pass synthesis filter simply is a bilinear interpola-
tion, which is natively supported in the hardware.

61

CHAPTER 3. COMPRESSION

3.4.3 Vector quantization
Vector quantization works by replacing small tiles of the original image with in-
dices into a codebook [GG92]. The codebook simply contains a set of represen-
tative tiles. The main reason to use vector quantization in our method is that this
simple scheme directly lends itself to parallel decompression while achieving high
compression ratios. To obtain the decompressed image all indices can be replaced
with the vectors from the codebook independently and concurrently. In principle,
all this amounts to are dependent texture look-ups on the GPU.

Several related approaches have also used vector quantization to enable fast
decompression. Beers et al. [BAC96] introduced the concept to the computer
graphics community in the context of texture compression and Levoy and Hanra-
han used vector quantization for Light field rendering [LH96]. In [SW03] Schnei-
der and Westermann showed that the scheme can also be applied to compression
and rendering of volume data.

Thus, to achieve compression we apply vector quantization to the pyramid
levels Li [HH88]. For the vector quantization the height-fields are decomposed
into small vectors corresponding to square tiles of side length x. All the vectors are
collected in a set V of data-vectors. Each data-vector carries a binary mask, that
has been generated from the occupancy bitmap, to identify any missing values.
No vectors are generated for empty regions in the patch.

The key to high compression rates is to find a small codebook together with
a mapping from original tiles to code-vectors such that the distortion introduced
by the replacement is minimized. Let C = {ci, . . . , ck} be a set of code-vectors
and V = {vi, . . . , vN} be the set of data-vectors (or image tiles respectively), then
distortion is measured as the root mean square (RMS) error:

R =

√√√√ 1

N

N∑
i=1

mp(vi, cM(i))2, (3.4)

where M : N→ N is the mapping assigning data-vectors to code-vectors and mp

is a Minkowski metric. In our case mp has to respect the missing values in some
of the data-vectors in V . Thus, we use

mp(x, y) = p

√√√√ d∑
i=1

bxi b
y
i |xi − yi|p, (3.5)

where bx ∈ {0, 1}d denotes the binary mask associated to vector x. Although
different choices would certainly be possible, for simplicity, we always use the
standard least squares error metric, i.e. p = 2.

62

3.4. COMPRESSION

In our system the user specifies a maximal RMS error Rmax prior to compres-
sion, such that a codebook and mapping have to be found accordingly. While
we treat different pyramid levels independently, on each level we use a common
codebook across all shape patches, i.e. the data-vectors V are collected on the
respective level from all patches in the atlas. We do not quantize across scales for
two reasons: Firstly, we can avoid accumulating quantization errors if we compute
the levels of the Laplace-pyramid using the previously quantized lower resolution
images. Secondly, any codebook across scales has to be large enough to achieve
an error less than Rmax on L0. This leads to an overly verbose codebook on
coarser levels and, consequently, to large code-vector indices requiring many bits.

3.4.4 Codebook generation
We base the codebook generation on the LBG-Algorithm [LBG80]. It is well
known however that a naïve implementation of this method exhibits extremely
poor runtime performance. Here we will describe several effective acceleration
methods, some of which we believe have not been described previously, and
achieve a runtime improvement of several orders of magnitude compared to the
unmodified algorithm with only marginally increased error.

LBG-Algorithm The Lloyd algorithm finds an optimal mapping M by assign-
ing each data-vector to its nearest code-vector, i.e.

M(i) = arg min
j=1...k

mp(cj, vi), (3.6)

where k denotes the number of clusters. Optimal code-vectors are then computed
as the centroid of all data-vectors which they are to represent.

ci =
1

|M−1(i)|
∑

j∈M−1(i)

vj, (3.7)

where M−1(i) denotes the set of data-vectors assigned to ci. This is repeated until
convergence. Building on Lloyd’s algorithm, the LBG-Algorithm also addresses
the problem of finding the necessary number of clusters k. Starting out with a
given set of cluster centers, the LBG-Algorithm executes Lloyd’s algorithm and
if the required error Rmax has not been achieved, inserts additional clusters and
iterates. The new centers are found by "splitting" of old cluster centers, i.e. by
adding small opposing random offsets to the old center.

A large body of work deals with the efficiency and scalability of the LBG-
Algorithm (also referred to as k-Means algorithm) in the context of vector quan-
tization as well as clustering. Many efficient techniques concentrate on accel-
erating the nearest neighbor queries necessary for finding the optimal mapping

63

CHAPTER 3. COMPRESSION

in every iteration of the algorithm with geometric reasoning or data structures
[KMN+02, ARS99, PM99, KR93, PH98, BG85, Elk03]. To apply these methods
in our case they have to be extended to deal with missing values. Other meth-
ods reduce the number of vectors that have to be inspected by either sampling
[KGKB03, FS06a] or by summarization [ZRL96, BFR98, GRS98, OLY05]. Both
sampling and summarization work best if the data contains strong natural clusters
and the number of sought cluster centers k corresponds to the number of these
natural clusters, as is often the case in data-mining applications. In our setting
however, the number of natural clusters usually is far less than the number of re-
quired code vectors because the natural clusters contain too much variation for the
sought error threshold Rmax. Consequently, sampling or summarization alone do
not suffice in our case. Thus we combine geometric data structures, sampling and
approximative evaluations to achieve the desired acceleration.

Filtering We choose to accelerate the nearest neighbor queries with a filtering
approach that is based on a kd-tree like structure containing the data-vectors, be-
cause of its effectiveness and simplicity. We augment the approach of Alsabti et
al. [ARS99] with respect to missing values. The method constructs a kd-tree on
the data-vectors. The nearest cluster center for each data-vector is then found in a
top-down traversal of the tree. During the traversal a list of active cluster centers
is maintained for every subtree. The list of active centers is pruned at each node
of the tree. To this end the minimal and maximal distance of each cluster center
to the node’s corresponding cell is computed. All centers with a minimal distance
larger than the minimum of the maximal distances are deleted from the list and
the traversal continues on the child nodes with the remaining clusters only. Once
a leaf is reached or the number of centers in the list drops below a small constant,
the nearest neighbor is found among the active centers for all data-vectors of the
current node in a brute-force fashion.

In case of missing values in the data-vectors two kinds of axis-aligned bounding-
boxes are necessary to compute the minimal and maximal distances for each node:
Bmin is used to find the minimal distances andBmax for the maximal distances re-
spectively. Bmin has infinite extent in all dimensions where missing values occur
in the data-vectors. On the other hand, to obtain Bmax, all missing values simply
are ignored (in an axis for which no data-vector has a valid entry, the bounding
box is marked invalid as well). This way correct minimal and maximal distances
can be obtained for each node of the tree, see Fig. 3.3.

However, a problem still arises during the construction of the tree. Each node
of the tree splits its corresponding cell into two parts along a plane orthogonal
to a chosen axis. Points on the left or right side of the plane are sorted into the
left or right child node respectively. But what happens if a data-vector’s value on

64

3.4. COMPRESSION

Figure 3.3: Kd-tree filtering with missing values. Black points depict vectors
without missing values. The black line depicts a vector with a missing value
on the x axis. The bounding box Bmax is shown in blue, the infinite box Bmin

is shown in green dashed lines. The violet cluster center is pruned because its
minimal distance toBmin is larger than the maximal distance of the orange cluster
center to Bmax.

the chosen axis is missing? These points could be sorted into either child node,
but there they would keep causing infinite extent in Bmin, which might hinder
effective pruning of centers. Thus we introduce a third child node into which we
sort all data-vectors with a missing value in the chosen axis. Then a subtree is
constructed recursively for all child nodes. Please note that more effective kd-tree
filtering techniques have been proposed in [KMN+02] and [PM99], but cannot
be adapted to the case of missing values in the data-vectors because they rely on
finding the midpoint of a node’s cell which is undefined ifBmin has infinite extent.

In every iteration of the LBG-Algorithm new cluster centers are introduced. It
is wasteful to consider all cluster centers to recompute the nearest neighbor of the
data-vectors since only the new cluster centers have changed. By keeping track
of the modified clusters and the distance to the previous nearest cluster of each
data-vector, unnecessary distance computations can be avoided in the search.

Approximate Lloyd Even with the kd-tree filtering in place, the nearest neigh-
bor queries still constitute the limiting factor in the runtime of the Lloyd algorithm.
Based on the observation that a data-vector is unlikely to be reassigned to a clus-
ter center which was not among its l nearest neighbors in the first iteration, we
suggest to replace exact nearest neighbor queries on the entire set of centers with
nearest neighbor queries on tiny, precomputed subsets of centers, one for each

65

CHAPTER 3. COMPRESSION

data-vector respectively. These subsets are chosen as the l nearest centers of each
data-vector during the first iteration of the Lloyd algorithm. Since these nearest
neighbors are found in the first iteration and then kept fixed, the true nearest center
of a data-vector may not always be found later on if centers should move wildly.
However, the observed error is extremely small.

We further propose an additional approximation, which is able to eliminate
about half of all distance computations in our experiments. In the algorithm the
lists containing the nearest neighbors of each point are initialized with the kd-tree
filtering approach described above, which can trivially be extended to find the l
nearest neighbors of each point. Just as was the case previously, in the following
iterations of the algorithm nearest neighbors are then found only from among
these lists respectively. However, all points whose distance to their second nearest
neighbor is less than 1 + ε the distance to their nearest neighbor are ignored, i.e.
they are always kept assigned to the cluster center which was nearest when the
list was created. We can expect the number of points for which this condition
holds to be a large fraction of the total number of data-vectors (and therefore
we can also expect an effective acceleration). This is due to the fact that, for
higher dimensions, the ratio of the distance between the nearest neighbor and the
farthest neighbor tends towards one. For a proof see e.g. Beyer et al. [BGRS99]
or Aggarwal et al. [AHK01]. A more graphic explanation is obtained if we take
a look at the ratio of volume between a sphere of radius r and (1 + ε)r which is
zero in the limit for infinite dimension d:

lim
d→∞

π
d
2 rd

Γ(d
2

+ 1)
·

Γ(d
2

+ 1)

π
d
2 ((1 + ε)r)d

= lim
d→∞

rd

(1 + ε)drd
= 0 (3.8)

Thus we can expect the second nearest neighbor to fall into the volume of the
ε envelope of the sphere enclosing the nearest neighbor with high probability.
The reason this approximative strategy introduces only small error is that these
points are very close to the bisector separating the Voronoi cells of their two near-
est neighbors, which causes them to be frequently reassigned to either of these
centers. But the reduction in total error gained by this reassignment is only neg-
ligible (probably less than 1

1+ε
). Thus keeping their assignment fixed introduces

only a small additional error but increases significantly the convergence rate of the
Lloyd algorithm, while at the same time eliminating a large fraction of the overall
required distance computations. However, in order to avoid prematurely fixing
cluster centers in their locations, we do reassign all vectors every 10 iterations. In
all our experiments we set ε = 1

10
.

Subsets Even though, in our setting, working on a subsampled set of data-
vectors usually does not allow us to identify all cluster centers necessary to achieve

66

3.4. COMPRESSION

Algorithm Time (sec) bpp
BF 398.59 3.40
BF/S 109.48 3.40
F 236.26 3.40
F/S 68.39 3.40
F/L 90.53 3.41
F/L/S 12.39 3.41
F/L/E 19.77 3.42
F/L/E/S 7.37 3.41

Table 3.1: Effects of the different acceleration methods when applied to the oil-
pump model (see Fig. 3.2). BF denotes brute force nearest neighbor search, S
subsampling, F filtering with kd-tree, L the search in the list of l nearest neigh-
bors and E ignores points close to a cluster bisector. L and E are approximating
strategies, but bitrates are effected by less than 1%. The required time for con-
struction of the kd-trees for the final F/L/E/S algorithm is 0.6sec (included in the
overall timings above).

the desired tolerance Rmax, starting the clustering on small subsets often helps to
quickly find good initial cluster positions and may even be able to identify tight
natural clusters early on. Therefore we incorporate sampling into our approach
in a simple but effective manner: We start with a small random subset of the
data-vectors on which we execute our codebook generation with the user speci-
fied Rmax. We then double the size of the subset by including additional random
data-vectors and restart the codebook generation using the cluster centers obtained
in the previous run for initialization.

Results In Table 3.1 timings for different combinations of the described accel-
eration methods are listed. Each time the same error threshold Rmax was used and
bitrates are computed from the written compressed file, i.e. they include codebook
vectors as well as shape primitive information. We tested the different variants on
a relatively small model (the oil-pump of Fig. 3.2) in order to be able to get
timings even for the inefficient strategies, e.g. the brute force search. On larger
models the acceleration factors are even higher.

Normals and colors Each normal is encoded relative to the shape primitive’s
normal with two angles φ and θ (see Sec. 3.4.1). We found that higher compres-
sion is achieved if, instead of storing φ and θ in a single vector, two vectors, one
for φ and one for θ, are generated for each square tile and then a single codebook
is generated for both kinds of vectors. This is due to the lower dimension of the

67

CHAPTER 3. COMPRESSION

separate vectors as well as the lower entropy of the θ vectors since it tends to be
close to zero.

In the case of colors we also generate two vectors for each image tile. One
vector contains the Y component, while the other vector contains both, the Cr and
Cb components. Again we achieve higher compression by this separate handling
of components. In the case of colors however it also makes sense to apply a
smaller threshold Rmax to the vector quantization of the CrCb vectors since the
human eye is less sensitive to errors in these channels than in the Y component.

Scalar quantization After the codebook generation, the elements of the code-
vectors additionally undergo scalar quantization into eight bits per element. This
way they can be stored in single component textures on the GPU.

3.4.5 Hierarchy
In principle, it is possible to store the compressed pyramid levels as two dimen-
sional arrays of code-vector indices. However, this would imply saving indices
even in empty regions of a level. Since the occupancy masks may indeed contain
large empty areas, this wastes a lot of space with useless information. Thus it is
significantly more efficient to use a quad-tree representation of the pyramid, in
which only the occupied areas have to be stored.

Quad-tree

Traditionally, each node of the quad-tree would contain a code-vector index to-
gether with a list of pointers to the existing child nodes. The list of pointers can
be replaced by four bits specifying the existing children if the quad-tree nodes are
stored in breadth- or depth-first order. However, during decompression we want
to be able to process many quad-tree nodes in parallel on the GPU, and while such
a representation is very space efficient, it is not well suited for parallel process-
ing due to the sequential nature of the traversal order. Thus, in the spirit of the
well-known recursive data pattern [MSM04], to enable efficient parallel decom-
pression we store instead a pointer to its parent together with two bits specifying
its child relation. We keep the levels of the quad-tree in separate arrays, such that
the pointers actually are offsets into these arrays. This representation allows us to
process each node on a level in parallel with all other nodes of the same level at
the cost of additional pointers in the leaf nodes.

Parent pointers The encoding of parent indexes in the quad-tree nodes may
become problematic if the images are very large, and therefore indices into large

68

3.4. COMPRESSION

Figure 3.4: Two consecutive levels of an image quad-tree. Each quad-tree cell
contains x2 pixels. Below the quad-tree tiles the array for the level is depicted.
Each entry stores a pointer to the parent tile, the child relation and the code-vector
index. Array entries corresponding to partial tiles, i.e. tiles with incomplete occu-
pancy masks, are sorted to the beginning of the array.

arrays would have to be stored. Thus, to avoid spending to many bits on the parent
indices, we subdivide every image into square blocks of side length 2lx (recall that
l is the number of pyramid levels and x is the side length of the quantized image
tiles). This limits the number of bits required to store parent offsets to 2(l − 1)
on the finest level. Moreover, as a side effect, we can use these sub-blocks to
define the granularity of our level-of-detail selection. To this end, we also store a
bounding box along with each block.

For a compression using five pyramid levels and using a tile side length of
four the expected bits per point required on the last level for the parent indices can
be now be computed as 2(l−1)

x2 = 1
2
. This is still a significant amount which we

can further reduce by sorting the tiles of the last and next to last level such that
nodes that have four children are stored in an order which allows implicit quad-
tree indexing of the parent (and therefore of the child relation as well). This way
we usually save more than 50% of the overhead caused by parent indexes on the
last level.

Occupancy bitmaps The number of bits needed for a node of the quad-tree now
depends on the number of bits required to encode a code-vector index, the offset
into the parent array and two bits for the child relation. Unfortunately however, it

69

CHAPTER 3. COMPRESSION

does not suffice to store the code-vector index alone for decompression, as some
of the quad-tree cells may only be partially occupied. For these cells a bitmap is
used to encode the occupancy. Please note that we call a quad-tree node partial
if not all of its associated image pixels are occupied, which is independent of the
number of children of the node.

To minimize storage overhead for the occupancy bitmaps, all partial quad-
tree tiles of each level are sorted to the beginning of the level’s array and the
corresponding bitmaps are stored in the same order in a second array. Fig. 3.4
illustrates the resulting layout of the data structure. This way, the only overhead is
the number of partial nodes that has to be encoded for each level and no additional
information is needed for full nodes.

3.4.6 On-disk compression

The compressed format as described up to now is suitable for direct decompres-
sion on the GPU as will be described in the following section. However for storage
on disk, further compression can be achieved using entropy coding. Entropy cod-
ing, especially arithmetic coding, is hard to parallelize due to the varying num-
ber of bits per symbol as well as the serial model updates in an adaptive coder
[You98]. However, adaptivity is very important in our setting to achieve notable
compression gains. Therefore arithmetic coding [RL79] is used to store the data
on disk and is decompressed on the CPU when the object is loaded to memory.
The parallelly decodeable format is kept in main memory for upload to the GPU.

The codebooks for each level are compressed using simple adaptive arithmetic
coding [WNC87]. For the occupancy bitmaps we employ context adaptive arith-
metic coding, where the context is defined by the causal neighborhood of each en-
try. To compress the hierarchy, i.e. parent pointers, child relations and code-vector
indices, we have developed two different variants. In the first one all entries of the
quad-tree arrays are compressed with adaptive arithmetic coding. This is very
simple and can be decompressed during loading with practically imperceptible
overhead. In the other variant the quad-tree structure is serialized in a breadth-first
manner, so that no parent pointers are required. This obviously achieves higher
compression gain but also causes notable overhead (which however is still uncriti-
cal) during decompression due to the necessary reordering of quad-tree nodes and
generation of parent pointers. Table 3.2 lists the results of the different compres-
sion modes when applied to a set of test models. On-disk compression achieves
improvements between 15% to 40% compared to the GPU decodeable format.

70

3.5. DECOMPRESSION

3.5 Decompression

The aim of our compression technique is to allow for fast decompression on the
GPU, which has two advantages: Firstly only the compressed data has to be sent
across the bus to the GPU during rendering and secondly the high degree of par-
allelism of the GPU’s SIMD structure can be fully exploited.

The decompression of a patch reconstructs the quad-tree level corresponding
to the level of the image pyramid which has been selected for rendering. As the re-
sult of the decompression the reconstructed quad-tree tiles will be stored in a ver-
tex buffer. The vertex buffer contains four floating point values per reconstructed
point or six if normals are also decompressed. These values are the height value
h, two coordinates u and v specifying the location of the point in the primitive’s
domain, as well as a value b that is zero if the point corresponds to a position that
was masked out by the occupancy bitmap. In case of decompressed normals there
are two additional values φ and θ. Since each quad-tree node specifies an index of
a single code-vector, a node decompresses into exactly x2 points. Using (u, v) the
height and normal values of the points will be transformed into world-coordinates
with respect to the shape primitive in a vertex shader during rendering. Points
with b = 0 are discarded in a geometry shader.

Thus, for reconstruction of a level Pj , the arrays of the quad-tree for level j
are uploaded into textures on the GPU. The reconstructed nodes of the previous
level Pj+1 are copied into textures as well. If the number of nodes in the quad-
tree on level j is k, than kx2 points have to be reconstructed, since every node
encodes a x2 image tile. We use the transform feedback OpenGL extension, render
kx2 points and perform the decompression of each point in a vertex shader. The
transform feedback stores the result of the vertex shader directly into a vertex
buffer which can then directly be used for rendering without any prior copying.

The decompression vertex shader reads the respective node information from
the quad-tree array. Note that to achieve maximal concurrency the node infor-
mation is actually read many times - once for each point. Due to caching of the
data this causes virtually no overhead however. All that has to be done for recon-
struction is to add the code-vector entry, which is read from a codebook texture,
to the respective interpolated parent value. The interpolation is handled automat-
ically in the texture unit. Additionally, the point’s coordinates are deferred from
the parent coordinates. Note that the interpolation of parent values is restricted
to the values belonging to the parent node by adjusting the texture coordinates
accordingly. This causes a slightly decreased compression performance but offers
the advantage that no neighboring quad-tree nodes have to be considered in the
decompression. Thus, computations as well as data structures are significantly
simplified.

71

CHAPTER 3. COMPRESSION

3.6 Rendering
In principle, during rendering, the decompressed height values only have to be
transformed into 3D coordinates in a vertex shader and can then be rastered as
simple point primitives. However we want to incorporate level-of-detail control
for better performance. Also hole-free renderings of close-up views are desired.

3.6.1 Level-of-detail
With our system, level-of-detail control can be achieved fairly simply: For each
patch the distance d of the bounding box to the viewer is obtained. Since the
sampling resolution of the patch is known, this distance can be used to select the
level-of-detail as follows:

lLOD = − log2(

√
2nrpatch
dp

), (3.9)

where rpatch is the resolution of the patch, n is the distance to the near plane and
p is the side length of a pixel in world coordinates. This choice guarantees a hole-
free rendering of objects as long as lLOD ≥ 0. For patches with lLOD < 0 we use
a hierarchy of coarser framebuffers to obtain hole-free renderings. The levels of
this framebuffer hierarchy are merged into a single image for each frame.

3.6.2 Hole-free rendering
To achieve a hole-free point rendering, splatting approaches such as those pro-
posed in [ZPvBG01] or [BK03a] usually are a first choice. Splatting however
requires a normal for each surface element so that it cannot be directly applied
if normals have to be estimated in image-space. Also splatting requires the ge-
ometry to be rendered in two passes, which causes significant overhead for large
models. The pyramid of framebuffer images that we employ instead requires only
a single geometry rendering pass followed by a few very fast image-based passes.
This is similar in concept to the point sample rendering of Grossman and Dally
[GD98]. However, we use a different GPU supported depth buffer technique and
propose a new splat-based merging strategy to combine framebuffer levels.

On the GPU we use a single off-screen framebuffer that is large enough to
contain the images of all pyramid levels. To render into a specific pyramid level
only the viewport needs to be adjusted accordingly. This way each pyramid level
has its own, separate depth buffer and therefore may contain parts that will not be
visible in the final image. Instead of color values, we store the points’ positions
and normals in the framebuffer. Additionally a radius is stored for each point.
The radius rfrag is derived from the resolution with which the respective patch

72

3.6. RENDERING

has been rendered, i.e. rfrag = 2max(lLOD,0)rpatch. This way each pixel encodes
the parameters of a circular splat.

To merge the pyramid levels into a single image, the framebuffers are pro-
cessed from coarse to fine. To this end the coarse level and the next finer level are
bound as textures and rendered into a new texture with the same dimensions as
the finer level to yield the combined image. A screen aligned quad is used to start
a fragment shader for each pixel of the combined image.

The fragment shader intersects the splats encoded in the pixels of a small
neighborhood in the coarse image with the ray corresponding to the combined
image’s pixel. The location of the intersection is used to evaluate an object-space
kernel for each splat which determines its influence for the pixel at hand. We use
a simple Gaussian gσ kernel with σ = 1

2
rfrag. The blended contribution b from

the coarse level can thus be obtained as

b =
1∑

i gσ(qi − pi)
∑
i

gσ(qi − pi)ai, (3.10)

where pi is the position of the splat and qi is the splat-ray intersection and a de-
notes any of the attributes position, normal or radius.

Since it is not guaranteed that splats from the coarse image always occlude
those in the finer image, we perform a depth test before writing the blended coarse
image to the result image. Should the depth test fail, the splat from the fine image
is written.

The blending of pyramid levels proceeds until the finest resolution has been
reached. Then, in a last step, deferred shading is applied to generate the final
on-screen rendering.

3.6.3 Normal estimation

If the point-cloud was compressed without normal information, normals have to
be estimated on-the-fly during rendering. To this end, we first render the points
in the framebuffer pyramid as described above and then compute the normals in
a second pass [KK05], similarly to deferred shading. This has to be done before
the pyramid levels are merged in order to obtain valid splats.

In the normal estimation pass, the point positions in 5x5 blocks of pixels are
used to estimate normals. We use weighted least-squares to fit a plane to the points
via PCA of the covariance matrix [HDD+92]. Again we use the object space
Gaussian kernel gσ to determine the influence of the neighbor points, where σ is
computed using rfrag of the center pixel as described above. Since the weights are
obtained in object space, no notable smoothing occurs across edges in the image.

73

CHAPTER 3. COMPRESSION

model N Rmax TD TV Q bpp disk1 bpp disk2 bpp
St. Matthew 186,810,938 0.1mm 1:28 0:13 (1:07) 1.95 (3.15) 1.57 (2.72) 1.1 (2.07)
Atlas 255,035,497 0.1mm 2:13 0:05 (1:52) 1.41 (3.0) 1.15 (2.49) 0.77 (2.11)
David 28,184,526 0.1mm 0:11 0:05 (0:24) 1.93 (4.01) 1.52 (3.2) 1.21 (2.89)
Ephesos 23,073,902 1mm 0:16 0:05 2.37 2.16 1.67
Industrial 23,207,348 5mm 0:21 0:02 1.75 1.47 1.1

Table 3.2: Compression statistics for various models. TD gives the time for de-
composition in hours and minutes. TV Q is the time for vector quantization. All
timings were obtained on an Intel Core 2 Duo with 2GB Ram. Bpp are measured
with respect to original points. Disk1 bpp uses on-disk compression using simple
adaptive arithmetic coding while disk2 bpp lists results for breadth-first serialized
quad-trees. Timings and bitrates in parentheses are for points and normals. For
each model six levels-of-detail were used. For Ephesos and Industrial no normals
were compressed due to their low quality.

The normal estimation is executed once for all pyramid levels by drawing a
screen-aligned quad over the whole off-screen framebuffer. After that the merging
of levels proceeds just as described above.

A problem may occur during the normal estimation if areas of the object are
viewed in a grazing angle. Then it can happen that neighboring pixels contain
only points that are so distant to the center pixel’s point that their weight becomes
zero due to numerical reasons. In such a case the normal estimation can produce
arbitrary results. While this is a principle drawback of image based normal es-
timation, in our case we can greatly alleviate the problem by incorporating the
additional information available in the form of point normals generated from the
underlying primitive shape. This normal can be used to appraise the angle un-
der which the point is viewed and the point’s radius can be enlarged accordingly.
Thus, we set

rfrag =
1

< n, v >
2max(lLOD,0)rpatch, (3.11)

where n is the shape normal of the point and v is the viewing direction. Since σ is
directly correlated with rfrag the kernel width is adjusted implicitly as well. Note
that the enlarged rfrag also increases the size of the splats used during merging of
pyramid levels which fills spurious gaps between splats that can occur for steep
viewing angles.

3.7 Results
In order to evaluate our system we conducted several experiments. Table 3.2
lists the bitrates achieved by our method for various models. The bitrates of our

74

3.7. RESULTS

Figure 3.5: The Ephesos point-cloud with colors after compression.

model N bpp
Santa 75,781 1.36
MaleWB 148,138 2.07
FemaleWB 121,723 1.84
Ephesos 23,073,902 2.3

Table 3.3: Compression statistics for colors on various models. Bpp gives the bits
required for colors only, i.e. without heights or normals.

75

CHAPTER 3. COMPRESSION

Figure 3.6: The PSNR of our method compared to that of Kalaiah et al. [KV05]
for the David statue.

method are of the same order as results reported on smaller models by previous
sequential coders. Where applicable we compressed normals with Rmax = 1◦.
In all cases we used an image tile side length of x = 4. Note that our method
performs better on larger models as the codebook costs are better amortized. For
all models, the ε parameter of the shape detection was set to equal three times
the desired RMS. The parameter α was set to 30 degrees, so that parameterizable
patches were found in all cases. Shape parameters and bounding boxes require
between 0.2-0.3bpp and occupancy bitmaps about 0.4bpp. Only for the extremely
irregularly sampled long-range scans of Ephesos and the industrial compound (see
Fig. 3.9), the bitmaps take up roughly 1bpp due to the many holes and complex
boundaries in the data. Due to several scanning artifacts in these scans the normals
computed in a preprocess are of low quality so that they do not provide signifi-
cant improvements over our screen-space estimation scheme. Thus we chose not
to compress them. Also note that for this data it is extremely valuable that our
method is able to adjust the sampling density locally for each patch, which is im-
possible to achieve with a global grid as employed by [KSW05]. Table 3.3 lists the
bpp required for additional compression of colors. For the compression a PSNR
of 34 was used for the Y channel and a PSNR of 32 for the UV components. For
a result see Fig. 3.5.

In Fig. 3.6 a comparison of our method with the approach of Kalaiah et al.
[KV05] is given. The error was measured as described in their work and the peak
signal is given by the bounding box diagonal. While our method performs slightly
worse for low bitrates below 0.7bpp, a high PSNR above 75 is achieved with far
fewer bits. For a PSNR of 78 our system requires less than 50% bits than their
method.

In order to asses the effect of the extended set of primitive shapes, we com-

76

3.7. RESULTS

Figure 3.7: Some simple interaction trivially supported in our system. A pipe is
highlighted by clicking on it.

pared results of our system with all primitive shape types activated to results for
which only planes were allowed. Obviously the benefit of the extended set of
primitives depends on the type of geometry. On the one hand, for objects in which
planar areas dominate or in which neither planes nor other shapes are actually
present, none, or only a very small, gain can be achieved with the extended set
of primitives (e.g. for the Michelangelo statues). On the other hand, for objects
such as the oil pump (see Fig. 3.2) or the industrial compounds in Fig. 3.7 and
3.9 the extended set of shapes is a distinct advantage, improving the bitrate about
12%. Since planes are included in the extended set as well, we never observed an
increased bitrate when all shapes were activated.

Fig. 3.8 shows two close-up images generated with our framebuffer pyramid.
Holes are smoothly filled while detail is retained. In the image on the left normals
were estimated in image-space before upsampling of the framebuffer levels. At
such a scale small artifacts in the estimated normals may become visible. Fig.
3.10 gives two images to illustrate the performance of the normal estimation at
another distance from the viewer. It can be seen that the estimated normals gener-
ally introduce a certain amount of smoothing. For larger distances this smoothing
is almost equivalent to screen-space anti-aliasing but for closer views some of the
detail may get lost due to the limited screen resolution. Note that detail becomes
visible when the screen resolution roughly matches, or is finer than, the model
resolution (see Fig. 3.8). The level-of-detail rendering ensures that this is mostly
the case. Estimating normals in screen-space takes about 6ms per frame. In cer-
tain scenes where primitive shapes are predominant, e.g. the industrial compound
shown in Fig. 3.9, rendering of shape normals alone already suffices to create a
realistic impression.

On a GeForce 8800 GTX we currently achieve framerates between 5 to 10 fps
for large models, such as Atlas or St. Matthew. We do not apply any culling tech-
niques besides frustum culling. For some models, back-face culling would result

77

CHAPTER 3. COMPRESSION

in considerable speed-up, but since many point-clouds are non-manifold (e.g. Fig.
3.7 and 3.9) back-face culling is not appropriate in general. We do plan on inte-
grating occlusion-culling in the future. Decompression speed varies between 5-10
million points per second, depending on the levels that are decoded. Coarser lev-
els are slower because of the render call overhead. Compared to our parallelized
CPU implementation this is a speedup of about a factor of 10 (measured on an
Intel Core 2 Duo).

Fig. 3.7 shows a small example of the interaction that is supported by our
compression format. Parts corresponding to shapes can easily be suppressed or
highlighted for visualization purposes. Moving or duplicating such parts would
be possible as well, but we have not implemented this form of interaction yet.

3.8 Conclusion
We have presented a progressive compression scheme for point-clouds that aims
for fast parallel decompression while achieving lower bitrates than other state-of-
the-art compression algorithms which aim at direct rendering. This is facilitated
by the close geometric approximation as well as the simple local parameteriza-
tions provided by the detected shape primitives. With this help, simple image-
based compression techniques can be employed and we have demonstrated that,
using Vector Quantization, the decompression can be executed well on today’s
GPUs, enabling inspection of the compressed geometry in interactive rendering.
In order to support efficient parallel processing several compromises in the layout
of the compressed format were made. For instance in the quad-tree hierarchy ev-
ery node redundantly stores a pointer to its parent so that nodes can be processed
independently. We also showed that with the use of arithmetic coding further com-
pression gains can be achieved for on-disk storage. However, streams generated
with this technique cannot straightforwardly be decompressed in parallel, but have
to be transformed to the parallelly decodeable format during loading. But even in
the GPU decompressable version, our current system’s compression rate on large
models is of the same order than that of previous sequential coders. To allow the
quick compression of large models several strategies for acceleration of the vector
quantization have been proposed and their effectiveness was demonstrated.

3.8.1 Limitations and future work
The level-of-detail obtained with our approach is not suitable for very far objects,
i.e. objects filling only a couple of pixels on the screen. This is due to the fact
that no filtering takes place across shape borders and the number of patches is not
reduced for distant views. Our approach could be extended by adding volumetric

78

3.8. CONCLUSION

Figure 3.8: Close-up of fine detail on Michelangelo’s Atlas. Hole free rendering
is achieved with our framebuffer pyramid. On the left decompressed normals are
used. On the right normals have been estimated in screen space.

Figure 3.9: The image on the left has been rendered with normals estimated in
screen-space. On the right only shape normals are shown.

hierarchies for very coarse views, resulting in a structure reminiscent of e.g. VS-
Trees [BHGS06]. Exploring these possibilities is a main avenue of future work.
We also plan to accelerate the rendering by incorporating occlusion culling and
reducing the render call overhead for coarse levels by combining different patches
in a hierarchy.

79

CHAPTER 3. COMPRESSION

Figure 3.10: The behavior of the normal estimation for different distances from
the viewer. In the top row the Atlas model has been rendered with compressed
normals on the left. In the middle screen-space aliasing was achieved by splatting
the points. On the right normals have been estimated. The bottom row shows a
zoomed in view. On the left decompressed normals were used and on the right
estimated normals are shown.

80

CHAPTER 4

RECOGNITION

4.1 Introduction

While the previous chapter has demonstrated the effective use of shape primitives
for compression and visualization of large and detailed point-clouds, interaction
capabilities on a semantic level are still very limited. Even tasks as basic as se-
lecting all windows in a scan of a house require a disproportional amount of user
interaction. The extraction of such semantic elements from 3D point clouds is an
important topic for a wide field of applications, including architecture, cultural
heritage and city model reconstruction. For instance, semantic enrichment of 3D
building models is of large interest to architects: Automatic retrieval and classifi-
cation of building units may allow to automatically determine the style of a build-
ing. Moreover, automatic identification of building units supports comfortable
cut-and-paste editing. Further applications can be envisioned in the engineering
context, e.g. automatic inventory of industrial plants, robotics or traditional re-
verse engineering processes.

This chapter presents a method that exploits both the concise description of the
input point-cloud as well as the classification provided by detected shape primi-
tives in order to recognize predefined surface structures. The two important build-
ing blocks of the algorithm are:

Decomposition By decomposing the point-cloud using shape primitives, we
obtain an abstraction of the data that eliminates much of the redundancy. A topol-
ogy graph captures the neighborhood relations between the primitives in a concise
manner.

Constrained subgraph matching Semantic elements such as e.g. windows,
roofs or columns can be described by characteristic configurations of primitive
shapes. These configurations are captured in query graphs. Semantic entities can
then be detected in the topology graph via constrained subgraph matching.

The system allows even unexperienced users to quickly formulate complex
configurations, since primitive shapes are easily graspable and combinable and

81

CHAPTER 4. RECOGNITION

are able to describe very different kinds of semantic entities on a geometric level.
Moreover the method supports optional and repetitive components in the query
graph so that generalized classes of semantic elements can easily be captured in a
concise and intuitive manner.

Our method was tested on a large amount of data including point-clouds from
different kinds of sensors like LIDAR (light detection and ranging) and stereo
reconstruction. We also applied our method to 3D CAD modeled buildings that
include interior structures. Due to the use of the detected primitives the approach
is robust against noise, clutter, registration errors or miscalibrations which are
frequently encountered in 3D laser scans.

4.2 Related work
Our shape matching technique is related to many works in the larger context of
(partial) matching, classification and retrieval of 3D shapes. Various approaches to
these challenges have been developed in the past. Here we concentrate on methods
for partial matching and retrieval of 3D objects in larger 3D scenes. For a more
detailed introduction to 3D matching and shape retrieval we refer to [TV04].

4.2.1 3D city reconstruction
Since in this chapter we mainly deal with data from the architectural domain, au-
tomatic reconstruction of 3D buildings and city models from aerial LIDAR data, a
special case of the above formulated tasks, is especially relevant to our approach.
In this setting detection is restricted to simple shapes of which most can be de-
scribed by configurations of planes. Automatic building reconstruction has been
studied extensively in the photogrammetry community. Most of the developed
semi-automatical or manual approaches rely on user interaction or on semantic
knowledge that is not contained in the 3D point-cloud. For Example, Vosselman
[Vos02] integrates LIDAR data with a 2D Geographic Information System (GIS)
database and aerial photographs. The GIS delivers ground plan information about
buildings in the point cloud. With this information at hand, the points belonging
to a single edifice can be extracted and parametric building models can be fitted.

A fully automatic approach that is only relying on the information contained
in the point-cloud is presented by Verma et al. [VKH06]. They use a region grow-
ing approach to detect planes in the point data. Roof-topology graphs are defined
to describe configurations of planes for some simple building forms shaped like
I, L and U. These configurations are sought in the set of the detected planes. In
a second step, the detected simple buildings are extended to more complicated
forms according to the plane configurations in the point-cloud. Compared to our

82

4.2. RELATED WORK

approach, there are two differences: First, as only planes are detected in the LI-
DAR data, the approach is restricted to those shapes that can be decomposed into
planar patches. Second, the method does not use any node or graph constraints
during the subgraph search and is therefore susceptible to misclassifications in
more general settings.

4.2.2 Graph-based matching
The retrieval and matching of 3D objects is of particular interest to the computer
graphics community. The developed methods often rely on triangle meshes or
parametric representations of the objects. Among the abundance of proposed ap-
proaches, several graph-based shape retrieval methods rely on the extraction of
certain geometric components and use a graph to capture the relations between
these components.

Model graph-based approaches are mainly used for geometry such as is gen-
erated in CAD applications. Model graphs describe solid objects in terms of con-
nectivity of freeform surfaces (Boundary Representation) or as a set of geometric
primitives that are connected by Boolean operations (Constructive Solid Geom-
etry). Local clique matching [EM03] [EMA03] or comparison of graph spectra
[MPSR01] are used to globally determine the similarity of the graphs, i.e. no par-
tial matching is supported. In [ZTS02], VRML objects are segmented according
to different decomposition techniques. The resulting patches are assigned ba-
sic shapes like planes and spheres. An attributed decomposition graph is built
containing the determined shapes as nodes. Neighboring shapes are connected
by edges. The similarity between two objects is computed by matching the as-
sociated decomposition graphs using error-correcting subgraph isomorphism (a
recognition paradigm that was first introduced by Nevatia and Binford [NB77]).
However they cannot handle user defined query graphs nor do they consider op-
tional or repetitive components.

Reeb graph-based methods rely on a function that is computed on the model
surface. The surface is divided into segments corresponding to intervals of this
function. A skeleton graph, in which the resulting segments are represented as
nodes, is built. Reeb graph-based methods are mainly used for matching of
articulated objects [HSKK01][TL07]. In [PSBM07], a robust method for fast
Reeb graph computation is proposed that even allows for the use of non-manifold
meshes. However, Reeb graph methods do not allow a user to easily describe
sought components in an intuitive manner but rely on specific example geometry
which might not always be available.

Skeleton graphs of 3D shapes can be computed using topological skinning
of voxel representations [BNdB99], medial axis transform, ridge point tracking
[CSM05] or deformable model-based reconstruction [SLSK07]. Matching of two

83

CHAPTER 4. RECOGNITION

shapes is done by comparing the associated skeleton graphs using greedy bipartite
graph matching [SSGD03] or by detecting subgraph isomorphisms using decision
trees [LJI+03].

4.2.3 Matching with local features
In general, these approaches consist of two steps. In the first step, local features
and shape descriptors are computed. In the second step, the similarity between
two objects is computed according to the similarity of the associated descriptors.
Compared to our approach, the employed local features and descriptors are unin-
tuitive and do not allow simple and generalized descriptions of sought entities but
focus on automatically deriving suitable descriptions for given geometry in order
to retrieve similar surface parts.

In [GCO06], local surface descriptors for triangle meshes are introduced. A
voting scheme is used to determine self-similarities, alignments and partial match-
ings in larger scenes. Partial matching of two shapes is addressed in [MGGP06]
where shape signatures based on spin-images are computed from surface patches.
Based on these signatures, a fast probabilistic search framework is used to esti-
mate partial similarity between two shapes. In [MGP06] Mitra et al. use local
features to perform a voting in transformation space in order to detect approxi-
mate symmetries on 3D objects. Mean-shift clustering in transformation space is
used to identify the most salient transformations which are likely to correspond to
symmetric surface parts.

In [SF06], [FS06b] and [SF07], a distinctiveness measure for local Spherical
Harmonics-based descriptors is introduced. Distinctiveness is determined with
respect to a pre-classified database of 3D objects. Those features providing a
certain amount of distinctiveness are used to establish partial matchings between
two 3D objects.

A hybrid between graph-based and feature based approaches was presented by
Berner et al. [BBW+08]. They detect local features based on a slippage analysis
and connect nearby features in a graph. Symmetries in the model are then discov-
ered by a randomized search for repetitive subgraphs. Bokeloh et al. [BBW+09]
later augmented the approach by using crease-line features instead.

4.3 Overview
The algorithm consists of two main steps: Firstly a shape based representation of
the data is derived by detecting primitive shapes in the unstructured point data and
constructing a topology graph that captures the neighborhood relations between
the different shapes. Then, in the second step, this topology graph is searched

84

4.3. OVERVIEW

for characteristic subgraphs corresponding to sought elements, as they have been
defined by the user.

The user is able to quickly define and retrieve new entities with geometric
constraints in an interactive framework. Moreover the detected subgraphs may
contain optional or repetitive components, which further simplifies the definition
of new entities for the user. This way our method is very flexible and easily
extensible, which renders it suitable in a broad range of applications.

(a) Small cell size (b) Large cell size

(c) Topology graph for small cell size (d) Topology graph for large cell size

Figure 4.1: Two houses viewed from above that are separated by a narrow alley.
Primitive shapes have been detected and are depicted in random colors. a) The
topology graph was built with a cell width of 50cm b) The cell width for the
construction of the topology graph was set to 2m. Note that the roofs have been
connected across the narrow alleyway. In c) and d) we show the resulting topology
graphs. In d), the additional edges resulting from large cells are shown in red.

85

CHAPTER 4. RECOGNITION

4.4 Topology Graph
The topology graph G(Ψ, E) describes the neighborhood relations between the
primitive shapes detected in the point-cloud data. For each primitive ψi a vertex
is inserted into the graph, i.e. Ψ = ψ1 . . . ψN . Two shapes are connected with an
edge if their supports are neighboring in space, i.e. the two vertices ψi and ψj are
joined by an edge e = (ψi, ψj) if

∃p ∈ Pψi , q ∈ Pψj : ‖p− q‖ < t (4.1)

holds, where Sψi is defined as in Eq. (2.12) and t is a user specified distance
threshold. Please note that computing the distance between the shapes directly
and ignoring the support would result in many edges that have no counterpart in
the data, since the shape primitives have indefinite extent.

Thus, to find the graph edges, the spatial proximity between the support of all
detected shapes has to be determined. To this end we employ an axis aligned 3D
grid. In a first step all points are sorted into the grid. Then for all grid cells that
contain points belonging to different shapes, edges connecting the corresponding
graph vertices are added to the graph, i.e. for each pair of shapes in the cell an
edge is created. In order to avoid discretization dependencies due to the location
of the grid cells, we use eight shifted and overlapping grids. Cells are stored in a
hash table, so that memory is only allocated for occupied cells.

The width of the grid cells defines how far apart shapes are allowed to be in
order to still get connected in the topology graph. Given the distance threshold t,
the width of the cells is set to t and the shifted versions of the grid are created with
an offset of 1

2
t along the respective axes. Of course this means that shapes can get

connected in some cases even though the distance between their support is in fact
only less than

√
3t. It would be possible to eliminate these cases by checking the

distance between the points in each cell, but we found this additional overhead
unnecessary in practice, as the few errors in the less restricted topology graph did
not influence the performance of our algorithm. In Figure 4.1 resulting graphs are
depicted for different cell widths.

Once the graph is complete the first step of our method is finished and a shape
based representation of the point-cloud data has been derived. It can now be
used to efficiently detect more complex configurations of primitive shapes that
correspond to semantic entities in the data.

4.5 Shape Matching
In order to achieve an automatic matching between semantic entities and point-
clouds, we have to find a common language for them. As we abstracted the point

86

4.5. SHAPE MATCHING

data to obtain a higher level description, we have to concretize the representation
of feature elements in terms of primitive shape configurations.

4.5.1 Query graph
To this end we define a query graph for an element as a graph that captures its
characteristic shape configuration. Basically a query graph is a topology graph
with the difference that it does not stem from a point-cloud, but from knowledge
about the shape of an element which is introduced by the user. The recognition of
an element in the data then corresponds to a matching of the query graph to a sub-
graph of the topology graph. Even though subgraph matching is a NP-complete
problem [Coo71], in our applications the query graphs will be small, i.e. usually
less than twenty vertices, matching is highly constrained so that a simple brute-
force implementation of subgraph matching performs well in such a setting.

Figure 4.2: Illustration of the constraints that can be used to detect saddleback
roofs: The angle α is constraint to be less than 90 degrees and similar for both
planes. The intersection line is required to run parallel to the ground.

However, a representation solely based on topology is not sufficient to dis-
criminate between many different feature elements. For example in the simple
case of a saddleback roof (see Figure 4.2), the query graph consists of two ver-
tices corresponding to planes connected by an edge. If such a graph is searched
in a topology graph numerous false matches can be expected, as such a simple
configuration occurs frequently. To make the detection more reliable, the user can

87

CHAPTER 4. RECOGNITION

add constraints to the query graph. For instance, in the case of the saddleback
roof we require the two planes to exceed a certain size, to be of similar size, and
to intersect in a line that is parallel to the ground.

If we take a closer look at these geometric constraints, we find that they can
be divided into classes that access different kinds of information. There are node
constraints which only restrict the primitive shape associated with a node (e.g.
type, size or orientation). There are edge constraints which restrict the relation
between two incident shapes (e.g. angle between two planes). Any constraint not
fitting into one of the first two classes belongs to the class of graph constraints,
because it relies on the topology to be checked (e.g. sums of sizes, parallelism of
disconnected planes).

Thus, when modeling a query graph the user specifies the sought shape config-
uration on a topological level by insertion of shape nodes and connecting edges.
Geometric relations, however, are attached to these graph elements in the form
of constraints which are formulated in a simple scripting language. The scripts
have access to all parameters of the supported primitives as well as to the set of
assigned points for each shape. Moreover, predefined functions for computation
of intersections, test for parallelism or orthogonality etc. exist.

4.5.2 Constrained subgraph matching

The outline of the recursive constrained query graph matching is illustrated in
Algorithm 3. To simplify the discussion of the procedure, no explicit statements
are given for neither the maintenance of a data structure storing the matching,
nor keeping track of visited nodes. However, these actions are assumed to take
place implicitly and it should be noted that they are mandatory for any correct
implementation of the method. In the following the different parts of the algorithm
will be described in detail:

In lines 2-8 the outer matching function is given, which searches for a suit-
able node in the topology graph, where the matching can be started. This outer
matching function has to be started repeatedly to retrieve all possible matches.

Matching a node In lines 10-18 the function for matching a node is sketched.
First a check is made to see if all edges of the node have already been matched
and if this is the case, the matching of the node has been successful (lines 11-14).
Otherwise a yet unmatched edge of the node is chosen and matched to an edge of
the topology graph by calling the MatchEdge function. If the edge was matched
successfully, MatchNode is called recursively on the same node, in order to match
any remaining edges of the node (lines 15-18).

88

4.5. SHAPE MATCHING

Algorithm 3 Recursive Constrained Subgraph Matching
1: Input A topology graph T = (VT , ET) and a query graph Q = (VQ, EQ)
2: Function MatchSubgraph(Q, T)
3: vQ ← StartNode(VQ)
4: for all vi ∈ VT do
5: if CheckNodeConstraint(vQ, vi) then
6: if MatchNode(vQ, vi) then
7: return true
8: end if
9: end if

10: end for
11: return false
12:
13: Function MatchNode(vQ, vT)
14: if vQ has no unmatched edge then
15: if all nodes in VQ are matched then
16: return CheckGraphConstraint()
17: end if
18: return true
19: end if
20: eQ ← first unmatched edge of vQ
21: if MatchEdge(eQ, vT) then
22: return MatchNode(vQ, vT)
23: end if
24: return false
25:
26: Function MatchEdge(eQ, vT)
27: for all unmatched outgoing edges ei of vT do
28: if CheckNodeConstraint(dest(eQ), dest(ei)) then
29: if CheckEdgeConstraint(eQ, ei) then
30: if MatchNode(dest(eQ), dest(ei)) then
31: return true
32: end if
33: end if
34: end if
35: end for
36: return false

89

CHAPTER 4. RECOGNITION

Matching an edge In lines 20-26 the MatchEdge function is outlined. It checks
if any of the unmatched edges of the given topology graph’s node can be matched
to the given query graph edge (line 21-25). This is the case if the end-nodes of the
edges can be matched successfully - which is tested via a call to MatchNode (line
24).

Checking constraints Constraints are always verified just before a match is
established (lines 5, 13, 22, 23). In line 13 the graph constraints are checked as
soon as all nodes of the query graph have been matched. If this test fails, the
matching will backtrack and continue the search. As can be seen, in contrast to
graph constraints, both, node and edge constraints, have the advantage that they
can be checked early on during the subgraph matching procedure, as they do not
rely on other parts of the graph. This is an important performance factor since this
way many of the topologically correct matches can be quickly discarded, without
causing extensive backtracking.

In order to avoid the need for graph constraints when using asymmetric edge
constraints (e.g. sphere A has to be larger than sphere B) we also support directed
edges as carriers of a constraint.

4.5.3 First results

At this point the methods presented so far are powerful enough to recognize large
classes of semantic entities and we will first give a couple of examples illustrating
the possibilities before presenting further extensions to the basic matching frame-
work:

In Figure 4.3 a query graph was designed to detect Gothic windows in a scan
of a medieval chapel. The windows were modeled as two spheres for the arches
and two planes for the sides of the window. The spheres were constrained to have
roughly equal radius and the planes to be tangential to the spheres.

To find the columns of the choir screen in Figure 4.4 they were modeled as a
cylinder connected to two tori at both ends. The cylinder and the tori were con-
strained to posses the same axis of rotation (with a small tolerance of 5 degrees).

4.5.4 Query Graph Extensions

Although the given definition of a query graph already covers many shape config-
urations, there remain cases which it is still insufficient for. In the following we
discuss some of these cases and demonstrate how they are overcome by extensions
to the query graph model:

90

4.5. SHAPE MATCHING

(a) Points (b) Shapes

(c) Windows

Figure 4.3: A scan of a medieval chapel with Gothic windows containing 4.2M
points. The windows were detected by matching the query graph with subgraphs
of the topology graph. In a) the original point-cloud is depicted. b) shows the
support of the detected shape primitives in random colors. In c) the detected
columns are highlighted in green.

Context nodes Certain features benefit from a context object to distinguish them
from other structures. For instance, a balcony needs a wall as context. Therefore
we need to model the context in the query graph, but without declaring it an in-
tegral part of the balcony. This is achieved by tagging these query graph nodes
as context nodes, so that after searching they can be removed from the match. In
Figure 4.5 a) we give an example for this concept. There the roof planes have
been modeled as the context shapes of the dormers, see Figure 4.5 b).

Optional nodes A limitation of the way we model queries so far is that we are
not able to specify variants of an entity without duplicating the original query
graph. For instance L-shaped roofs like the one shown in Figure 4.6 may occur
in four variants: not hipped, hipped on either end or hipped on both ends. Thus

91

CHAPTER 4. RECOGNITION

(a) Points (b) Shapes

(c) Columns

Figure 4.4: A scan of a choir screen consisting of 2M points. The query graph for
the columns consisted of a cylinder connected to tori at both ends. In a) the origi-
nal point-cloud is depicted. b) shows the support of the detected shape primitives
in random colors. In c) the detected columns are highlighted in green.

a total of four query graphs, that only marginally differ, would have to be defined
separately by the user. Since in practice this additional work may become quite
burdensome, we augment the query graphs with what we call optional nodes.
These nodes may be ignored by the matching procedure if it is unable to find any
suitable counterparts in the given topology graph. To incorporate optional nodes,
the matching procedure of Sec. 4.5.2 is extended in the following manner: First
the matching is performed in the same way as described above, but ignoring any
optional nodes. Then, for each matched instance of the query graph, as many

92

4.5. SHAPE MATCHING

(a) Matching (b) Query graph

Figure 4.5: a) Detection of dormers on a roof. The roof plane shown in darker
green is a context shape of the dormers. b) The query graph containing a context
node.

optional nodes as possible are matched. To this end the graph traversal examines
all possible matchings of the optional nodes but returns only those with the largest
number of matches.

A problem arises if there are optional query graph components, i.e. sets of
query nodes that should either be matched entirely or not at all, instead of only
single optional nodes. In such a case simply declaring all the nodes in question
as optional could lead to incomplete matchings of the component. Therefore, we
use a graph constraint which asserts the completeness of the matching.

Although optional nodes increase the complexity of the search, they greatly
reduce the number of required query graphs if different variants of a basic concept
have to be detected. In Figure 4.6 the single hip of an L-shaped roof was matched
by an optional node.

Multinodes An even more complex case arises if we want to be able to model
repetitive patterns like the steps of a stairway. In order to be able to model stair-
ways with an arbitrary number of steps, a generic way of model extension is nec-
essary. A simple approach is to define multinodes in the query graph that may
match several different topology graph nodes. A multinode is defined as a query
graph node that has a self-loop, i.e. an edge connecting the node with itself (this
edge is implicitly considered optional by the matching algorithm). Via multinodes

93

CHAPTER 4. RECOGNITION

(a) L-shaped roof (b) Query graph

Figure 4.6: An L-shaped roof may be hipped on either end. This is best modeled
by optional nodes in the query graph. a) A matched L-shaped roof in a stereo
reconstruction of a city containing 4M points. b) The query graph used for detec-
tion. Optional nodes are shown in grey.

Figure 4.7: Detection of a stairway in a sampled CAD model of a house. The
model was converted to a point-cloud by random sampling of the surface.

we are able to match arbitrarily large chains in the topology graph. This allows us
to define a query graph for stairways using only three nodes, as depicted in Figure

94

4.6. CONCLUSION

4.7. Note that we make use of directed edges in this example so that the multin-
odes do not need to match additional neighbor nodes each time the self-loop has
been traversed (since the multinode does not have an outgoing edge other than the
optional self-loop).

Query refinement After the search for a query graph, the system presents the
user with the results in an interactive framework that allows query refinement
by changing constraints as well as query graph topology at runtime. As soon
as an element of the query graph is modified, the new results are computed and
displayed. This was achieved in real-time for all our tested examples.

4.6 Conclusion
Our shape detection system works on point-clouds so that we are able to work
on data stemming from virtually arbitrary sources, such as terrestrial or airborne
LIDAR data or stereo reconstructed scenes. Even polygon soups as well as or-
dinary meshes can easily be converted into a point-cloud by random sampling
of the surface. As we mainly target applications in the architectural or cultural
heritage domain, we safely assumed that most objects under consideration can
be well represented by a set of primitive shapes. Thus we can employ the fast
primitive shape extraction method from Chapter 2 to effectively reduce the redun-
dancy in the point-cloud and to derive a concise shape representation consisting
of a topology graph on the shape primitives. In this graph, our system allows the
detection of features that can be described as compositions of simple primitive
shapes. Due to the simple structure of our representation it is not necessary for
the primitive shape detection to output an optimal segmentation with a minimal
number of primitives, nor to find the correct edges and transitions between differ-
ent shapes. Only the detection of the relevant structures and their rough outlines
has to be ensured.

Obviously, an inherent limitation of the method is that it is unable to deal with
cases for which features cannot be defined as configurations of primitive shapes,
e.g. if trying to detect ornate frescos. However, we have demonstrated that for a
wide range of frequently encountered structures our approach is very well suited
and is able to deliver results as expected by the user. The user is able to specify the
sought structures in a general way, even permitting fuzzy search within the limits
of the graph constraints and the inclusion of optional components.

A potential drawback of our method could arise if large topology graphs with
a lot of nodes and edges are used and at the same time the node and edge con-
straints of the query graph are chosen in a way that a wrong match will not be en-
countered early on during the matching procedure. Since the search for subgraph

95

CHAPTER 4. RECOGNITION

dataset #nodes #edges top. graph matching
chapel 232 406 1.8s < 10ms

(Figure 4.3)
choir screen 537 2731 1.8s < 10ms

(Figure 4.4)
dormer roof 106 138 0.27s < 10ms

(Figure 4.5)
city model 431 351 2.5s < 10ms

(Figure 4.6)
CAD-house 160 513 3.9s < 10ms

(Figure 4.7)

Table 4.1: Some statistics on test models. #nodes gives the number of primitive
shapes detected in the point cloud (there is one node per primitive in the topology
graph). #edges states the number of edges in the topology graph. top.graph lists
the timings for construction of the topology graph. The last column gives the
timings for matching the query graph.

isomorphisms is a NP-hard problem, the retrieval performance might degenerate.
However, such pathological cases are unlikely and in practice we observe very fast
response times of the system, i.e. in the order of a few milliseconds (see timings
in Table 4.1).

4.6.1 Future work
Future work concerning our method should address the improvement of usability.
Up to now, the query graphs and the attached constraints are defined by hand. To
make this process more comfortable for less experienced users we propose the
development of a graphical user interface in which query graphs and constraints
can easily be defined. A further step of research would be the automatic extraction
of query graphs from modeled or scanned objects by means of statistical learning.
Techniques like relevance feedback could be used to further enhance the retrieval
performance.

Moreover, we plan to apply our system to basic point-cloud editing operations
such as copy and paste of semantic units. Another interesting avenue of future
research is exploiting the ability to detect self-similarities in the data for compres-
sion. Replacing instances of a query graph by generic representations might lead
to very high compression ratios.

96

CHAPTER 5

COMPLETION AND RECONSTRUCTION

5.1 Introduction

This chapter presents the final application of detected primitives examined in this
work and addresses the reconstruction of incomplete models with the help of prim-
itive shapes. While reconstruction from primitives has been the standard proce-
dure in reverse engineering for many years [BMV01, PLH+05] here we will put
a special emphasis on model completion to an extent that has not been consid-
ered before. Completion of point-clouds is often necessary because, even despite
considerable effort, data obtained with range scanners or stereo capture usually
suffers from occluded or defective portions of objects that either could not be
perceived during acquisition or have adverse material properties that hinder the
scanning device. Nonetheless, a complete surface representation without holes is
usually desired, and sometimes even required, for further processing or rendering.
Therefore reconstruction algorithms must not only be able to recover the surface
parts that have been captured, but must also synthesize plausible geometry in hole
areas.

Previous work either uses general smoothness assumptions to derive the com-
pleting surface parts or relies on a database of suitable example cases from which
a completing surface can be retrieved. In contrast, the method presented in this
chapter is based on the fact that for a large class of objects encountered in man-
made environments, surface characteristics are well represented by a set of prim-
itive shapes (planes, spheres, cylinders, cones and tori). Besides global shape,
these primitives also capture local surface differential properties. Moreover, their
intersections naturally describe the structure of edges (see Fig. 5.1 and 5.2).

Thus, we propose to exploit the information given by a set of shape primitives
that has been detected on the input surface to automatically infer a closed recon-
struction of an incomplete 3D model. The primitive shapes can be extended into
the empty regions and serve as a guidance for hole-filling. Our algorithm differs
from previous work in several important aspects:

97

CHAPTER 5. COMPLETION AND RECONSTRUCTION

(a)

(b)

(c) (d)

Figure 5.1: Reconstruction of the fandisk model. Orange color signifies com-
pleted surface parts. (a) The input point-cloud with holes. (b) The final result.
Result without the connectivity enforcement algorithm of Sec. 5.5. The discon-
nected primitive highlighted in red cuts off part of the model. (d) Close-up views
of result without consistent edge labels and final result (see Sec. 5.7)

98

5.1. INTRODUCTION

• By using the primitive shapes as guidance for hole-filling, we find plausi-
ble completions that continue the geometric structure around the missing
area. We can not only extend existing edges into the hole, but also derive
the location of novel edges and corners in the synthesized surface from the
primitives’ intersections.

• Apart from completion of missing areas, our method also allows to use the
guidance of primitive shapes to reconstruct a mesh that adheres to the prim-
itives everywhere, i.e. not only in the holes. This results in an idealized and
noise free reconstruction that is composed only of the primitives and ig-
nores fine surface detail (e.g. engravings). Such a reconstruction is suitable
for processing in a CAD environment.

• Additionally, our algorithm can also faithfully recover surface parts not ap-
proximated by primitives. Even fine details in the areas of the surface that
are approximated by primitives can be recovered, while at the same time
primitives are still used to guide the completion of holes.

Our novel algorithm is based on an energy minimization approach that allows
us to infer missing geometry from a set of surrounding primitives and reconstruct
a closed, idealized 3D-model. In detail, this chapter makes the following technical
contributions:

• We derive a surface energy functional that incorporates the guidance given
by the shape primitives. We propose a discretization that allows the appli-
cation of an efficient graph-cut optimization algorithm.

• We give a novel greedy optimization strategy to minimize the above func-
tional under the constraint that surface parts corresponding to a given primi-
tive must be connected. This enables us to handle multiple holes in complex
3D models (see Fig. 5.1 (c)).

• We show that our method allows extraction of an idealized surface with
sharp features. To this end we give an algorithm that resolves ambiguities
arising from smooth transitions between primitives (see Fig. 5.1 (d)).

The proposed method is able to handle an arbitrary number of primitives that
may have arbitrarily complex intersections which, to the best of our knowledge,
was impossible previously. Finally, our method can also easily be adapted to the
special conditions for completion of range-images or height-fields.

99

CHAPTER 5. COMPLETION AND RECONSTRUCTION

5.2 Previous work
The problem of hole-filling has been regarded from several different perspectives
in previous work. Closely related to our setting is work on surface reconstruction
and completion as well as the completion of range images. In the following the
most relevant previous approaches from each area will be shortly reviewed.

Surface reconstruction involving fitted primitives has long been the stan-
dard in reverse engineering (see [BMV01]) but has also been considered in the
graphics community [HDD+94] [JWB+06] [JKS08] [GSH+07]. While these meth-
ods usually support the reconstruction of sharp features at the intersection of prim-
itives, they do not provide any means to infer larger regions of missing geometry
from the information contained in the shapes.

Our method uses energy functionals similar to the general purpose reconstruc-
tion methods of Kazhdan et al. [KBH06], Hornung and Kobbelt [HK06] as well
as Lempitsky and Boykov [LB07]. However, compared to their approaches, our
method is the first to incorporate information from fitted primitives and to explic-
itly address the problem of surface completion.

Surface completion is traditionally part of surface reconstruction algo-
rithms (see e.g. [CL96]), but has also received research attention in its own right.
Most methods have been inspired by image inpainting approaches [BSCB00]
[DCOY03] and can be attributed to one of two directions of research: (1) Meth-
ods based on level-set PDEs [DMGL02] [VCBS03] and energy minimization
[CDD+04] (2) Example-based approaches [SACO04] [PMW+08][WO02]. Meth-
ods in the first class focus on inferring smooth geometry in missing areas that also
has smooth transitions to the existing surface parts. Therefore they cannot model
the sharp features resulting from intersections of shape primitives. Moreover these
methods cannot guarantee that for instance a hole in a cylindrical surface is also
completed with the respective cylindrical geometry. The second class of meth-
ods is based on discovering (self-)similarity and regularity in or between models
in order to infer the missing information from other fully captured surface parts.
While example-based completion can achieve highly plausible reconstructions, it
very much depends on the existence of suitable surface parts fitting into the miss-
ing area.

Podolak et al. [PR05] used a graph-cut based approach to resolve topological
ambiguities of completing surfaces in 3D. In contrast to our approach no structural
constraints other than smoothness can be imposed.

Mesh repair algorithms [Ju04] [Lie03] [BPK05] are able to fill small gaps
in the input models but lack the capabilities to handle larger missing pieces and
cannot propagate structure therein.

Range image completion has been studied by Fisher et al. in [SDF01] and
[CLF02]. Similarly in spirit to our approach, albeit limited to 2D, missing regions

100

5.3. SHAPE PRIMITIVE GUIDED COMPLETION

are filled by continuation of primitive shapes that reach a hole’s boundary. How-
ever, only cases of two severed boundary edges are handled. Jia et al. propose a
tensor voting approach to range image completion in [JT04]. Even though some
discontinuities are preserved, intersections of surfaces are not explicitly handled.

5.3 Shape primitive guided completion
Given a point-cloud with oriented normals representing the potentially incomplete
surface S0, we seek to reconstruct a closed surface S that propagates the geometric
structure of the original surface into the missing areas. Our idea is to represent this
structure by a set of shape primitives Ψ = {ψ1, . . . , ψn} that has been detected
on the incomplete surface S0, see Fig. 5.2. Shape primitives are given as implicit
surfaces (planes, spheres, cylinders, cones and tori) of possibly infinite extent.
Using this definition of structure, the completion problem can be put as follows:
Find a suitable watertight surface S that approximates S0 and at any location
adheres to at least one of the primitives ψi ∈ Ψ. We may later relax this condition
if there exist areas of the input surface that cannot be represented by primitive
shapes.

While it is relatively easy to locally extend individual primitives into a hole
region, intersections of multiple primitives can be highly complex and reconstruc-
tion becomes non-trivial. See Fig. 5.7 for an illustrating case where several planar
primitives need to be intersected to form a complex rooftop geometry that has sev-
eral sharp edge features. Our solution handles such complex intersections of an
arbitrary number of primitives and gives plausible results. Other issues are caused
by inexactly fitted primitives or by surface parts that could not be approximated
by any primitive (cf. Fig. 5.2 (d-e) and (f-g)).

Since primitives are implicit surfaces of possibly infinite extent, it is possible
that a primitive ψi is used to complete the surface in multiple disconnected re-
gions that are far away from each other or dissimilar to the parts of S0 originally
approximated by ψi. As demonstrated in the bottom row of Fig. 5.2 this can lead
to undesirable completions or shortcuts. We therefore further require that all parts
of the surface S following a primitive ψi should be connected.

In summary there are two characteristics that make up our primitive guided
reconstruction: Primitive adherence makes the reconstructed surface follow the
input primitives (see Sec. 5.4). Adherence is always in effect in hole areas, but
surface parts that cannot be represented by primitive shapes at all as well as fine
details can be handled using a traditional reconstruction method as outlined in
Sec. 5.6. Primitive connectivity ensures that surface parts corresponding to a sin-
gle primitive form a connected subset of the reconstructed surface (see Sec. 5.5)
which, as argued above, is necessary for plausible reconstructions in case of mul-

101

CHAPTER 5. COMPLETION AND RECONSTRUCTION

(a) (b) (c)

(d) (e)

(f) (g)

(h) (i) (j)

Figure 5.2: (a) A hole is indicated by the orange area. (b) Planar primitives in
the vicinity are extended. (c) Their intersection defines the completed surface.
(d-e) Surface areas approximated by primitives are colored. Black surface parts
do not correspond to any primitive. Due to inexact primitive estimation, holes
cannot always be closed with primitives only and gaps may need to be filled by
other means. (f-g) If primitives are not detected for some reason (e.g. due to
noise noise or because the surface cannot be approximated by primitives at all)
the algorithm should nonetheless use the information of the available primitives
and plausibly connect the synthesized surface to the unapproximated areas. (h-
j) The effect of the connectivity constraint. (h) Primitives are color coded. (i)
The desired reconstruction contains a completed circle. (j) If connectivity of the
primitives is not enforced another reconstruction that cuts off the circle is also
possible.

102

5.4. PRIMITIVE ADHERENCE

tiple holes.

5.3.1 Shape primitive detection
We use the shape primitives detected by the method given in Chapter 2. Even
though the detection requires normal information, the correctness of normals close
to sharp edges is not critical for the estimation of shape primitives. In our recon-
struction, sharp features are deduced from the robustly fitted primitives directly,
without relying on potentially noisy and incorrect normal information.

Recall that the shape detection provides us with a set of primitive shapes
ψi ∈ Ψ where each primitive ψi is associated to a single connected support area
Si ⊂ ψi that corresponds to the region of S0 approximated by ψi. In general the
primitives computed by the method described in Chapter 2 are unoriented such
that for instance the normal of a detected plane can point either outwards or in-
wards. Our algorithm, however, will require oriented primitives. Therefore we
derive the orientation of primitives from the per-point normals of their support re-
gion. This of course implies that we are given oriented per-point normals - which
is generally not required by the primitive detection method. Fortunately, in prac-
tice the orientation of per-point normals can usually be deduced from the location
of the scanning device, i.e. normals should always point towards the scanner.

While in practice shape primitives ψi approximate the original surface only
up to a predefined tolerance, for the sake of simplicity the following discussion
assumes that the surface S0 is given as the union of the support sets, i.e. S0 =
S1 ∪ S2 ∪ . . . ∪ Sn. Thus we also have Si ⊂ S0. We postpone the discussion of
how details within the tolerance threshold and parts of the surface not covered by
primitives can also be considered to Sec. 5.6.

5.4 Primitive adherence
In this section, we propose an energy functional that assigns any given closed
surface S a cost according to how well the surface adheres to the given set of
shape primitives Ψ. By minimizing this cost over the set of all closed surfaces we
obtain a reconstruction S that is guided by Ψ and satisfies the primitive adherence
condition. For now we will disregard the connectivity condition and postpone the
discussion of enforcing connectivity to Sec. 5.5.

We define the cost E of S by measuring the surface area Ea of S. To reward
primitive adherence we do not take into account the area Ep of those surface parts
that coincide with a primitive. A third term Ec avoids ambiguities in the solution
and enforces the approximation of the original surface S0. Thus, denoting the
surface normal of S by n, the functional responsible for primitive adherence that

103

CHAPTER 5. COMPLETION AND RECONSTRUCTION

Figure 5.3: The effect of different configurations on the energy term
−
∫
S
H(〈n|v〉)dA (see text).

we want to minimize can be written as

E(S) = Ea(S)− Ep(S) + Ec(S)

=

∫
S
dA−

∫
S
H(〈n|v〉)dA+ Ec(S) (5.1)

where v : R3 → R3 is a vector field derived from the shape primitives’ normals
and H denotes the Heaviside function

H(x) :=

{
1 x > 0
0 otherwise (5.2)

Since the first term Ea in Eq. (5.1) is simply the surface area, minimizing E in
the absence of, or far away from, primitive shapes results in a surface of minimal
area.

Concerning the vector field v in the second term Ep, we compute for each
primitive ψi the normal field nψi : R3 → R3 which vanishes everywhere except
on the surface of ψi. We define v as the sum over the normal fields nψi of all
primitives. The idea behind this definition is illustrated in the left of Fig. 5.3. As
shown in the figure, the vector field v (shown in black) is non-zero only on the
shape primitives. Moreover, the term H(〈n|v〉) evaluates to 1 iff the orientation of
the surface normal field n (shown in green) and v coincide. For the configuration
shown on the left of the figure both criteria are met. In this case, the second term
cancels the area term resulting in zero cost. The sum of the terms increases if the
surface does not follow the primitive shapes (yellow on the right) or if surface nor-
mal and vector field are not consistently oriented (red surface). Thus, minimizing
the second term in the above energy aligns the surface with primitive shapes and
enforces the correct orientation of S.

Even though the first two terms of the cost function enforce adherence to the
primitive shapes ψi, there are usually multiple minima, including the trivial empty
surface. Therefore, the third termEc of the functionE is used to impose additional

104

5.4. PRIMITIVE ADHERENCE

inside and outside constraints given by two sets Cin ⊂ R3 and Cout ⊂ R3. As a
closed surface S divides the space into a well defined inside Sin and outside Sout
(see Fig. 5.4(b)) and we require C{in,out} to be contained in the inside/outside
S{in,out} respectively. The actual choice of the sets C{in,out} is derived from the
original surface S0 and detailed in Sec. 5.4.2. The third term in the cost function
which integrates over all violated constraints is given by

Ec(S) =

∫
Cin\Sin

λdV +

∫
Cout\Sout

λdV (5.3)

where λ is a constant that must be chosen sufficiently large to avoid constraint
violations, i.e. larger than the area of the reconstructed surface.

5.4.1 Discrete global minimization
While the cost function E enables an adequate formalization of the surface com-
pletion problem as sketched in Sec. 5.3, the multitude and structure of its lo-
cal minima hinders an efficient global minimization by variational methods. To
enable an efficient global optimization, we pursue an approach similar to Kol-
mogorov and Boykov [KB05] and formulate the surface completion problem de-
fined in the previous section as a cut on a discrete volumetric graph. Fast graph-cut
methods can then be used to compute a globally optimal solution in polynomial
time.

We start by defining a volumetric graph G = (V , E) where the set of vertices
V consists of all voxels in a regular 3D-grid that bounds the input surface S0. In
addition, V contains a special source vertex s and a sink vertex t. The edges in E
connect each grid node vijk to its 26 neighbors in the grid. The definition of the
volumetric graph is illustrated in Fig. 5.4 (a) for a 2D example.

On the edges of this graph we define a capacity function Ê, that assigns each
directed edge a cost. This function Ê can be regarded as a discrete counterpart
to the continuous cost function E in the previous section. Given the graph G and
the discrete cost function Ê, an optimal partition of the vertices into two sets Sin
and Sout - the cut - is computed by minimizing the costs of all edges from Sin to
Sout subject to the constraints s ∈ Sin and t ∈ Sout. With a suitable choice of the
cost function Ê, the discrete solution to the surface completion problem is then
implicitly defined by the cut (Sin, Sout) (see Fig. 5.4 (b)).

Corresponding to the three terms of the continuous cost function E, we define
the discrete edge costs assignment Ê as the sum of three functions

Ê = Êa − Êp + Êc (5.4)

that constitute discrete measures of surface area, primitive adherence and con-
straint violations respectively. For the area costs Êa we resort to the weighting

105

CHAPTER 5. COMPLETION AND RECONSTRUCTION

Figure 5.4: (a) Graph construction and cost assignment: The colored edges in-
tersect a primitive and match its orientation. On these edges Êp is set to cancel
their area costs. (b) High costs result, if a cut does not follow primitives or fails to
match their orientation (flashes mark edges with high costs).

scheme given in [BK03b] which provably converges to the continuous area term
for a growing number of grid neighbors connected to each voxel.

To define a discrete analogon of the second term in Eq. (5.1), for each directed
edge e ∈ E the set of intersecting primitives is computed. If the orientation of any
intersecting primitive ψi is consistent with the direction of e, we set Êp(e) to Êa(e)
so that it cancels the area term’s contribution (see Fig. 5.4(b)). Formally, we set

Êp(e) :=

{
Êa(e) a ψi intersects e and 〈nψi |e〉 > 0

0 otherwise

where nψi denotes the normal of ψi at the intersection point. This choice of Êp
does indeed mimic the behavior of the second term in the continuous formulation
(5.1) in the following sense: For a cut (Sin, Sout) as shown in Figure 5.4 high cost
results at edges that are not intersected by any primitive or if the orientation of
primitive and cut does not match. Therefore, a cut minimizing Êp(e) adheres to
shape primitives and the orientation of the resulting surface S matches that of the
followed primitives.

Just as in the continuous case we need to add a third term Êc to enforce certain
inside and outside constraints derived from the input surface S0. In the discrete
setting, we assume that Cin and Cout are given as sets of vertices corresponding to
voxels in the inside and outside respectively. In analogy to the continuous case, Êc
should be large if either Cin ⊂ Sin or Cout ⊂ Sout is violated. As by definition of
the graph cut we have s ∈ Sin and t ∈ Sout it is sufficient to add edges with high

106

5.4. PRIMITIVE ADHERENCE

costs connecting s to vertices in Cin and likewise connecting vertices in Cout to t.
More precisely, the cost function Êc is defined to zero on all but these extra edges
to which it assigns the high constant cost λ (in practice the maximal representable
value of the employed data type is a viable choice). A violation of e.g. an inside
constraint v ∈ Cin will therefore result in a cut through this extra edge and thus
in high overall costs. In the following section we will discuss the actual choice of
the sets Cin and Cout .

The above discrete formulation of surface completion is closely related to the
cut metric of Kolmogorov and Boykov [KB05] who proved for the 2D case that
all functionals representable by cut metrics are of the form in Eq. (5.1). Although
the construction used in the proof generalizes to 3D, there are some ambiguities
in the choice of the edge cost assignment. Therefore the choice of an optimal edge
assignment is not clear, in particular if sharp features at primitive intersections are
to be preserved. The discrete formulation presented here is directly adapted to
primitive shapes and thus circumvents this problem. Moreover, it establishes an
explicit edge to shape correspondence which is crucial for enforcing the connec-
tivity constraint described in Sec. 5.5.

In general, a drawback of the volumetric approach is the huge memory demand
of the 3D-grid graph. However, recently Lempitsky and Boykov [LB07] proposed
a hierarchical graph-cut approach that guarantees global optimality while operat-
ing only on a banded subset of the volume. Their technique is also applicable in
our setting and we use it for completion of large models.

5.4.2 Placement of inside and outside constraints

So far, the original support of primitives has not been considered in the definition
of Ê. We therefore propose a simple scheme to derive constraints Cin and Cout
from the support sets Si of all primitives. In case of a single oriented primitive ψi,
we start by computing the set of all directed edges ESi , that intersect the support
Si of ψi. We only consider those edges that run from the inside of ψi to the
outside, i.e. that match the orientation of ψi. Then a natural choice for the inside
constraints Cin consists of the set of voxels from which an edge in ESi emanates.
Appropriate outside constraints can be defined in a similar fashion.

In the general case, defining inside and outside constraints in this way can
lead to contradictions at primitive intersections. We therefore add a vertex v with
an emanating edge in ESi to Cin only if it is not contained in ESj for any other
primitive ψj .

107

CHAPTER 5. COMPLETION AND RECONSTRUCTION

(a) (b)

Figure 5.5: Edge connectivity and edge/primitive correspondence. Cut-edges are
depicted in red. (a) The cut-edges connected to edge e are highlighted. (b) Cut-
edge f is intersected by both primitives. If h is part of the original support S0

1 of
ψ1 and the cost of g had previously been increased, it is now reset because it is
connected to h, see Sec. 5.5.

5.5 Primitive connectivity
The above algorithm does not enforce connectivity of the areas Si ⊂ S corre-
sponding to primitive ψi. However, as outlined in Sec. 5.3 and illustrated in
Figures 5.2 and 2.2 this is often crucial. From the shape detection we do have
a connected region S0

i ∈ S0 for each primitive ψi where it is supported by the
original surface. Thus we require the following: The area Si corresponding to ψi
in the reconstructed surface S is a connected superset of S0

i .
Unfortunately this connectivity constraint cannot be formulated as a graph-

cut problem, see e.g. the work of Kolmogorov and Zabin [KZ04] who give a
good characterization of functions minimizable by graph-cuts. Instead, in order
to find the global optimum an involved combinatorial optimization is necessary
which quickly becomes infeasible with a growing number of shape primitives.
We therefore suggest a less complex but nonetheless effective iterative greedy
optimization scheme.

This iterative optimization makes use of the graph structure described in the
previous section. After the graph-cut, the reconstructed surface is implicitly de-
fined by the set of cut-edges, i.e. all halfedges running from Sin to Sout. Since our
graph construction provides an explicit edge/primitive correspondence, we can
use the cut-edges to determine connectivity on the surface and to efficiently iden-
tify correspondence between surface parts and primitives. In fact we treat each
cut-edge as a representative for a small local patch in the reconstructed surface.

108

5.6. RECONSTRUCTION OF DETAIL

For each cut-edge we identify the set of intersecting shape primitives in order
to establish surface/primitive correspondence, i.e. if a cut-edge is intersected by
primitive ψi the respective surface patch is part of Si, see Fig. 5.5 (b). We say two
edges are connected (and therefore also their respective surface patches) if they
share a common node in the graph, see Fig. 5.5 (a). With these definitions the
connectivity condition can be restated as follows: The cut-edges corresponding to
primitive ψi must form a connected superset of the cut-edges intersected by S0

i .
We call any cut-edge corresponding to ψi that does not belong to this connected
set a violating edge.

The basic idea of our connectivity enforcing algorithm is in each iteration to
greedily set the cost of all violating cut-edges equal to the cost given by Êa. Then
the graph-cut is re-run with the increased cost on the violating edges. This means
that the newly reconstructed surface will avoid the now costly edges and prefer
cheaper edges corresponding to other primitives. In order to remedy some of
the greedy decisions of earlier iterations, the cost of graph edges whose cost had
previously increased but are now connected to non-violating cut-edges is reset in
each iteration, see Fig. 5.5 (b). The procedure is repeated until the set of cut-edges
does not change between iterations.

In summary, the iterative optimization consists of the following main steps:
(1) Compute the reconstruction using the graph-cut algorithm (2) Detect viola-
tions of the connectivity constraint by inspection of the cut edges. Since Si must
contain S0

i the non-violating edges can be identified by a graph traversal visiting
all cut-edges connected to S0

i . (3) Increase cost of violating edges in the graph and
reset cost of revalidated edges (4) Reiterate until the set of cut-edges converges.
Although convergence cannot be guaranteed in general, we found that in practice
all of our test cases converged in less than fifteen iterations.

5.6 Reconstruction of detail
In the previous sections we have presented an algorithm that uses guidance from
primitives for hole-filling and gives an idealized reconstruction of the input surface
that adheres to the primitives everywhere. Such a reconstruction is often useful
if the model is to be used in CAD systems or if the input data was corrupted by
many outliers and noise. However, high quality scans may contain valuable detail
geometry, e.g. engravings, or models may contain parts that cannot by approxi-
mated by primitives at all, e.g. a small statue mounted on a wall. Depending on the
application it may be desirable to recover these features as well and in this section
we outline how we can seamlessly combine our primitive based reconstruction
with the one given by Lempitsky and Boykov [LB07] to this end.

Lempitsky and Boykov define a smooth vector field u from a set of input points

109

CHAPTER 5. COMPLETION AND RECONSTRUCTION

Figure 5.6: Illustration of the different cases for the smoothness term V in eq.
(5.8). Left: Ve,g is of type (2) and will give the distance between the primitives
along edge e, while Vg,h is of type (3) and gives the distance between the intersec-
tions of g. Right: Ve,g is of type (3) and evaluates to zero because the primitives
intersect within the cube face.

with oriented normals (please see the original paper for details). In our setting we
can either use the entire point-cloud for computation of u or, if we are certain that
the input model is in principle well represented by primitives, we can use only
the points associated to the primitives and ignore any remaining points as noise
and outliers. Thus, given the vector field u the detail preserving reconstruction
functional is stated as follows:

E(S) = Ea(S)− Ep(S)− λEu(S) (5.5)

where Ea and Ep are as in Eq. (5.1) and

Eu(S) =

∫
S
〈n|u〉 dA (5.6)

In contrast to Ep we can apply the divergence theorem to Eq. (5.6) because u is
smooth, such that

Eu(S) =

∫
Sin

div(u)dV (5.7)

Note that we no longer include the Ec(S) from Eq. (5.1) since adherence to the
original surface is now ensured by the term Eu(S). Except for the missing in/out
constraints, the graph construction of Sec. 5.4.1 remains unchanged. However
additionally, div(u) is evaluated on the grid nodes and depending on the sign s- or
t-links are added with a cost proportional to the divergence, please refer to [KB05]
for details.

5.7 Surface extraction
After application of the algorithms of the previous sections, all voxels have been
classified as either inside or outside and the final task is to extract the resulting sur-

110

5.7. SURFACE EXTRACTION

face mesh. Of course it is possible to extract a mesh using the standard marching
cubes algorithm [LC87], but this would not faithfully recover the shape primi-
tives and does not capture any sharp features at the intersections. Instead, we can
exploit the tight coupling between cut-edges and primitives discussed in the pre-
vious sections to employ the extended marching cubes algorithm of Kobbelt et al.
[KBSS01] for recovery of shape primitives as well as sharp features.

In order to recover sharp features, the extended marching cubes requires for
each cube edge intersected by the surface not only the point of intersection but
also the surface normal at that position. This information is easily obtained in
our setting: If a cut-edge is labeled with a shape primitive ψi then the point of
intersection as well as the normal are computed using ψi. If a cut-edge is not
associated with any primitive then the midpoint of the edge is taken as intersection
point and the normal is ignored.

However, it can happen that a single cut-edge is labeled with two or more
primitives, see e.g. Fig. 5.5. This is usually the case near primitive intersections
or locations where primitives come close to each other, see also Fig. 5.1. These
situations need to be disambiguated in order to achieve high quality results. For
the disambiguation only the cut-edges that will actually be inspected by the ex-
tended marching cubes algorithm need to be considered, i.e. only the axis aligned
edges of the cubes and no diagonals. We will denote this set of cube edges by Ec.
We will also need a neighborhood relation N ⊂ Ec × Ec between the edges in Ec
which is different from the one defined in Sec. 5.5 as this time the diagonal edges
are missing. In the following, two edges in Ec are said to be neighbors if they are
adjacent to a common cube face.

5.7.1 Consistent edge labeling
Our algorithm for derivation of consistent edge labels is based on the follow-
ing observation: Neighboring edges should have different primitive labels only if
the two primitives come very close or intersect in the space between the edges.
Otherwise continuation of a primitive should be preferred. Such label dependent
neighbor relations lead to a well studied class of energy functions of the following
type1 (see [SZS+08] for a survey):

C(f) =
∑
e∈Ec

De(fe) +
∑
e,g∈N

Ve,g(fe, fg) (5.8)

where Ec is a set of sites, in our case the set of edges introduced above. f is a
labeling of the sites, i.e. a mapping from Ec to Ψ. Thus, f assigns each edge a

1Interestingly, the discretization in Sec. 5.4.1 can also be interpreted as a realization of such a
functional, but the motivation from a geometric point of view is much more intuitive. See [KB05]
and [KZ04] for an in-depth discussion of the relationship.

111

CHAPTER 5. COMPLETION AND RECONSTRUCTION

(a) (b) (c) (d)

Figure 5.7: (a) Height field with missing area. (b) Planar primitives are detected
on the ridges (c) Our result (d) Completion result obtained by [JT04]

primitive from Ψ. De(fe) is a data cost term that specifies the cost of assigning
label fe to edge e and is used to restrict the set of possible labels for the edge e.
Ve,g measures the cost of assigning the labels fe, fg to the adjacent edges e, g and
is responsible for ensuring the above conditions on shape changes between edges.
The term De(i) vanishes if e is among the set of edges associated to primitive ψi,
otherwise we setDe(i) =∞. Ve,g(i, j) vanishes if i = j, otherwise we distinguish
the following cases (see also Fig. 5.6):

(1) One of the labels is invalid for the respective edge, i.e. e /∈ Si or g /∈ Sj .
In this situation the cost of Ve,g is meaningless as the data term De will be infinite
and we simply set Ve,g to zero.

(2) Both labels are valid on both edges. If shapes are approximately tangent,
the cost should be lowest at the point where both primitives are closest to each
other. If the shapes intersect within the cube we let Ve,g vanish, otherwise we let

Ve,g(i, j) = min(‖Ie(i)− Ie(j)‖, ‖Ig(i)− Ig(j)‖) (5.9)

where Ie(i) denotes the point of intersection of e and ψi. See Fig. 5.6 on the left.
(3) One edge is valid for both labels while the other can only be assigned one

of the labels. Here the same arguments hold as in case (2) and Ve,g vanishes if the
primitives intersect, otherwise we let Ve,g(i, j) = ‖Ih(i)−Ih(j)‖where h ∈ {e, g}
is the edge intersected by both primitives. See Fig. 5.6 on the right.

We use the graph-cut based algorithm of Boykov et al. [BVZ01] for opti-
mization of Eq. (5.8). While this method is quite efficient, performance can be
increased by optimizing different connected components of ambiguous edges sep-
arately.

5.8 Height-fields
Our algorithm can directly be applied to geometry derived from height-fields, but
the generated completion might not be representable as the graph of a function

112

5.8. HEIGHT-FIELDS

Figure 5.8: Completion of the carter model. Orange color signifies completed
surface parts. Top row: Our final result with sharp features. Middle row: The
input point-cloud with holes. Primitive types are colored as follows: plane/red,
sphere/yellow, cylinder/green, cone/purple, grey/torus. Bottom row: The result
with the algorithm of [LB07]. 113

CHAPTER 5. COMPLETION AND RECONSTRUCTION

over the ground. To ensure this we extend the graph-cut construction given in
Sec. 5.4.1. We only need to prevent cuts that produce switches from outside to
inside in direction of the height-axis. To this end it suffices to add maximal weight
to each directed edge (vi,j,h, vi,j,h−1) connecting a node with its neighbor below.
This follows from the graph rules given in [KZ04], a similar construction was also
used by Rubinstein et al. [RSA08].

For completion of height-fields we also allow the detection of primitives on
depth discontinuities by insertion of additional point samples on the surfaces im-
plicitly spanned by these discontinuities. Shapes on depth discontinuities will
allow propagation of the discontinuities into the empty region during hole-filling
(see e.g. Fig. 5.10).

5.9 Experimental results
To illustrate the ability of our method to handle complex intersections of primi-
tives we show a synthetic example of an incomplete height field in Fig. 5.7. The
result of the range-image completion method proposed by Jia and Tang [JT04] is
contrasted to the one of our approach. Our method produces a plausible result
even in this complex case, while the other algorithm fails to reconstruct any sharp
features and does not prolong the planar surface parts of the height-field.

Another synthetic example is given in Fig. 5.1. We manually removed several
parts of the fandisk point-cloud and applied our algorithm. In this Figure, the ef-
fects of both the connectivity enforcing as well as the consistent edge labeling can
be observed. In (c) the reconstruction result without connectivity enforcement is
depicted. On the right side of the model a part of the surface has been cut off by
a disconnected primitive. Our iterative connectivity enforcement algorithm suc-
cessfully increases the cost of the violating surface parts and arrives at the final
solution shown in (b). A part of the fandisk where a cylinder and a plane are
almost tangential is shown in (d). Without the consistent edge labeling the tran-
sition between the primitives appears bumpy in the reconstruction ((d) left). This
is because the edges considered in the marching cubes algorithm are associated
arbitrarily with one of the two shapes. Our edge labeling method on the other
hand finds a smooth transition ((d) right).

Results for a real-world case are shown in Fig. 5.8. Nine range scans of the
carter model were registered into an incomplete point-cloud. 38 shape primitives
were detected on this point-cloud (see second row). In the final reconstruction
shown in the first row all holes were successfully filled using the shape primitives.
Sharp features were faithfully recovered on the entire model. For comparison
we also show in the bottom row the result obtained with our implementation of
the algorithm of Lempitsky and Boykov [LB07], which fills holes with minimal

114

5.9. EXPERIMENTAL RESULTS

(a) (b) (c)

(d) (e) (f)

Figure 5.9: Completion of the master cylinder. (a)-(d): The final result using the
detail reconstruction of Sec. 5.6 (e)-(f): Input point-cloud. Areas corresponding
to different primitives rendered in random colors.

115

CHAPTER 5. COMPLETION AND RECONSTRUCTION

Figure 5.10: Removal of defective and undesired data from an aerial heightfield
(highlighted in orange). Our algorithm infers missing features such as dormers or
walls by propagating surrounding structure represented as primitive shapes.

surfaces but does not use any shape primitive guidance. While the algorithm re-
constructs a watertight surface, several holes are closed in an undesired manner.
Clearly, our method strongly benefits from the additional guidance provided by
the primitives and is therefore able to find the correct reconstruction.

To demonstrate a reconstruction using the detail preserving variant of our
method given in Sec. 5.6 we have applied our algorithm to the master cylinder
model depicted in Fig. 5.9. This model contains many elements that cannot, or
only very roughly, be approximated by shape primitives, e.g. the engraved writ-
ing. However the holes contained in the input model are well suited for completion
with primitives. As can be seen in the images, small detail is well preserved on
the original surface while at the same time the holes are plausibly filled using the
primitive information.

A case of height field completion is given in Fig. 5.10. We manually removed
occluding vegetation and defective elevation data from this aerial reconstruction.
The missing geometry of the houses and floor were successfully reconstructed.
The roof gable and the dormer were correctly inferred from the surrounding prim-
itives.

In Fig. 5.11 we show a reconstruction result from 9 scans of the oil-pump
model. The point-cloud has several large holes and is decomposed into 171 prim-
itives. With the guidance of the primitives our algorithm finds a very plausible
completion despite the significant amount of missing geometry. However, some
limitations of our approach become apparent as well. In the marked area of the
top right image our algorithm cannot follow the cylindrical shape of the protrud-
ing element because no primitive could be detected in the region. On the other
side of the model this is not the case and the protrusion is handled correctly. Since
our method has no concept of symmetry it cannot deduce the correct reconstruc-
tion from the information on the opposite side. Also tiny artifacts may occur
at primitive boundaries if primitives are slightly misaligned and resulting gaps
are filled with minimal surfaces (see e.g. backside of oil-pump in accompanying

116

5.9. EXPERIMENTAL RESULTS

Figure 5.11: Reconstruction of the oil-pump from 9 scans. Top: Final result. Bot-
tom from left to right: Input point-cloud. Input point-cloud colored by primitives.
Final result.

117

CHAPTER 5. COMPLETION AND RECONSTRUCTION

model Ts |Φ| Tr |V |
fandisk 0.27 22 1:11 193x113x199
carter 5.4 38 1:54 181x199x167
master cylinder 5.9 60 5:40 389x349x398
house 6.5 51 8:13 509x381x201
oil-pump 18.6 171 9:29 317x265x265

Table 5.1: Timings for shape detection in seconds (Ts), number of detected primi-
tives (|Φ|), timings for reconstruction in minutes (Tr), virtual size of volume (|V |)

video). This could be alleviated by applying a refitting algorithm as suggested in
[JKS08].

Finally, we give some timings of our method in Tab. 5.1. We also give the size
of the virtual grid used for the graph-cut. Although the worst-case complexity
is cubic with respect to the grid resolution, the actual amount of allocated nodes
is however far less than the full grid since we use only a banded subset of the
volume. On our examples we observed band sizes between only 10% and 15%
of the actual grid size and decreasing fractions for higher resolutions. In general
the choice of grid resolution is not critical as long as voxels are small enough to
separate between inside and outside areas of the volume. The precision of the re-
constructed surface is hardly affected by the voxel resolution since mesh vertices
are positioned exactly on the primitives. Primitive intersections are faithfully re-
covered due to the extended marching cubes algorithm.

Figure 5.12: A preliminary result of detail synthesis on the completed parts of the
master cylinder. The image inpainting approach of Komodakis [Kom06] is used
to complete the height field over the primitive.

118

5.10. CONCLUSION

5.10 Conclusion
We have proposed a novel method for reconstruction of 3D-models that is guided
by a set of primitive shapes and uses this guidance to complete missing parts of
the input geometry. We have shown that our algorithm performs well on various
involved examples with many holes on which previous methods fail to deliver
correct results. While we currently employ only a small set of implicit surfaces,
which is nonetheless sufficient in many cases, our method could also be extended
to more complex primitives such as e.g. NURBS. However, regardless of the na-
ture of the primitives, our algorithm is always limited to reconstructions deducible
from the set of primitives that have been detected in the vicinity of the holes and in
the future we plan to research a combination of our approach with methods based
on self-similarity such as symmetry detection or texture synthesis, which should
enable the completion of a whole new class of challenging scenarios. Moreover
it is relatively straightforward to combine our method with image inpainting ap-
proaches [DCOY03, Kom06] in order to synthesize detail geometry on the com-
pleted shape primitives [BF05]. A preliminary result is shown in Fig. 5.12.

119

CHAPTER 5. COMPLETION AND RECONSTRUCTION

120

CHAPTER 6

CONCLUSION

The focus of this work is the detection and use of shape primitives for efficient
point-cloud processing. While the traditional use of shape primitives has been
mainly limited to the reverse engineering field, this work explored several alter-
native applications and developed novel algorithms for their effective use in these
scenarios. The basis for the different applications is given by a novel efficient and
robust primitive detection method that operates directly on the point-clouds. In
summary, the following contributions have been made:
• A RANSAC based detection method has been introduced, discussed and an-

alyzed. A theoretical analysis of the employed local sampling strategy has
been given. The local sampling allows robust extraction of primitives with
high probability even in large point-clouds. In conjunction with the lazy
score evaluation scheme this leads to an efficient and effective algorithm.

• An algorithm for compression of the decomposed point-cloud has been pre-
sented. Due to the good approximation quality of the primitives it is possible
to efficiently compress displacement maps using image-based techniques.
This even allows for fast decompression on the GPU during interactive ren-
dering.

• The segmentation and classification provided by the primitives has been
exploited to automatically detect user specified entities in the point-cloud.
Detection is reduced to a graph matching problem: Entities are described by
their comprising primitives, represented as graph nodes, and their geomet-
rical relations, represented by graph edges. The matching is efficient even
on large point-clouds since the number of primitives is much lower than the
number of points and invalid matches can be quickly pruned if geometric
constraints associated with the edges are not met.

• Completion of unobserved parts of geometry has been approached by ex-
tending detected primitives in the empty areas. In order to allow the com-
pletion of even very complex holes with possibly multiple boundaries the

121

CHAPTER 6. CONCLUSION

proposed method minimizes a novel surface energy. The energy prefers
surfaces that follow the primitives such that the completed parts are effec-
tively closed by extended primitives. However, in case no suitable primi-
tives exists the method automatically and gracefully resorts to a completion
by minimal surfaces.

6.1 Discussion
The algorithms developed in this work show that primitive shapes can indeed be
helpful for efficient processing of large point-clouds. This is because primitive
shapes possess several advantageous assets which can be directly exploited. First
of all, due to the primitives’ comparatively small number of parameters they can
be efficiently and robustly detected. Because of the simple nature of the primi-
tives, the user controllable settings for the detection algorithm are very intuitive
and are directly related to easily understandable geometric properties such as dis-
tance and normal deviation which moreover are often of immediate relevance to
the ultimate application. Despite this simplicity, the primitives can nonetheless
often give a very close approximation of the input point-cloud. This way a sin-
gle primitive can subsume a large number of points and serve as a basis for an
efficient encoding of the small deviations to recover the original input geometry.
At the same time, detected primitives are likely to correlate with semantically
relevant structures. Therefore primitives lend themselves to recognition tasks as
well as simple editing operations such as copy-and-paste. Finally, the primitives
can be extended into regions where no points are available in order to complete
the geometry. Since primitives provide a close approximation of the input data,
the extension will usually be reasonable and also close to the true but unobserved
surface parts.

However, there are also several drawbacks inherent to primitive-based point-
cloud processing. The most obvious and arguably also most severe restriction is
that primitives can usually only provide useful information on man-made scenes.
But since a considerable portion of all point-cloud acquisition takes place in man-
made environments, specialized solutions for these scenarios are not only justified
but indeed actively called for. From a more technical point of view, another limi-
tation is that primitives do not offer a full-scale multi-resolution representation as
would for instance be desirable for compression and/or rendering. While prim-
itives can be detected at different scales by allowing greater deviations in both
euclidian distance as well as normal directions, the resulting segmentations do
not in general lend themselves to hierarchical representations in a straightforward
manner. Moreover, the greater the allowed tolerances, the more another drawback
of the proposed detection technique becomes noticeable: The detection operates

122

6.2. FUTURE WORK

in a greedy manner and optimality of the decomposition is not guaranteed. For
comparatively small tolerances, as used throughout this work, the suboptimality
of the detection algorithm is mostly irrelevant because there is only a very lim-
ited set of possible segmentations since they have to fit the data tightly. Once the
allowed tolerances are increased though, the number of possible segmentations
dramatically increases and the suboptimality of the algorithm clearly shows up.
Indeed, the effect is further intensified by the fact that in the RANSAC approach
candidates are generated only samples of the original data and are therefore nec-
essarily relatively closely aligned with the input surface. Finally, the types of
detectable primitives are restricted. On the one hand this is because the number of
parameters must be relatively small in order for the detection algorithm to remain
efficient and robust, on the other hand the compression method requires simple
parametrizations and the completion needs primitives that can be extended in a
clearly specified manner.

6.2 Future work
While this work has been able to demonstrate the merit of primitive-based point-
cloud processing there still remain many avenues to pursue for future research
in this area. For detection of primitives, further improvements in efficiency can
be envisioned, especially if additional information is known in advance, such as
e.g. the largest possible extent of a single primitive or the relative pose of certain
primitives. Also, work on the optimality of the decomposition is required which
retains the efficiency of the approach. A possible approach might be to relax the
greedy removal of points after detection of a primitive - retaining all points though
would deteriorate runtime performance and some sensible trade-off is required.

With respect to compression of point-clouds, incremental techniques are likely
to become of importance in the near future. Newest scanning technology captures
several millions of points per second and incremental processing and visualiza-
tion of this data is desirable for several reasons: First of all it would be very
beneficial to be able to visualize the measured data even during the acquisition
campaign in order to monitor the progress and quickly identify regions that have
been inadequately captured and where acquisition needs to be repeated. Secondly,
already existing point-clouds will be constantly amended by the addition of new
measurements and it would be very inefficient to restart compression of the en-
tire point-cloud each time. Due to the huge amount of data acquired per second,
compression - while, as demonstrated in this work, already beneficial in many sit-
uations on large, but static point-clouds - will become indispensable for many in-
cremental processing and visualization tasks in the near future. Since most of the
large-scale acquisition campaigns take place in man-made environments (cities,

123

CHAPTER 6. CONCLUSION

archeological sites, industrial compounds, etc.) it can be expected that compres-
sion with the aid of detected primitives will also be effective in these scenarios.
While the methods in this work can serve as a starting point for work in this direc-
tion, several challenges remain: The primitive detection has to be adapted to deal
with incremental addition of new point samples, i.e. points that can be assigned
to already existing primitives have to be quickly identified while new primitives
have to be estimated for previously unobserved surface parts. The compression of
surface details must use novel techniques that can be incrementally updated (Vec-
tor Quantization as used in this work is clearly not suitable) and are at the same
time still amenable to interactive rendering.

In the context of recognition, a promising direction of future research is the
automatic detection of rigid symmetries based on the detected primitives. For in-
stance, combining the graph-matching methodology of Chapter 4 with a RANSAC-
based generation of possible matches as suggested by Berner et al. [BBW+08]
could be a viable approach. The use of primitives would lift the algorithm from
working on a per-point level to operating on a set of surface patches. As a result,
not only the runtime performance of the method should be improved but also the
stability. Especially the influence of small holes and noise can be expected to
be better handled by a primitive-based approach. Last but not least, a primitive
based approach could potentially allow for generalized symmetries in the sense
that matches no longer need to adhere to a rigid transform but could allow for
stretches along zero-curvature directions of the primitives. For instance, it would
be possible to match similar parts that are connected by cylinders of different
length. Such a kind of symmetries is often encountered in man-made environ-
ments, in particular in industrial compounds.

Detected symmetries might also be beneficial to the completion of objects in
several respects: First, symmetric parts can often be directly used to fill gaps in
the point-cloud. Second, if regular patterns are also detected, the patterns can
be extended into empty regions (much like the algorithm currently does with the
primitives) and the current method can be used to automatically resolve ambigui-
ties and intersections between different recurring patterns. Third, symmetries can
be used to equalize the primitive-based completion of holes in similar parts of a
model if no complete symmetric match should be available (as e.g. in Fig. 5.11).

Other advancements of the completion method could consider the optimiza-
tion method. The currently employed graph-cuts are not efficient enough for pro-
cessing of large volumes even though the banded ’Touch-Expand’ approach does
alleviate that restriction somewhat. Optimization techniques operating on a con-
tinuous domain might constitute an advantageous alternative. As recently demon-
strated by Kolev et al. [KKBC09] energy functionals reminiscent of the one in
Eq. (5.1) used in our completion approach can be solved in a globally optimal
manner by variational methods and convex relaxation. Possibly, similar strategies

124

6.2. FUTURE WORK

can also be applied in our case. Since these variational methods can be solved on
the GPU, impressive speed-up can be expected and larger volumes should become
manageable.

Finally, further areas of point-cloud processing could benefit from the use of
primitives. Possible uses could for instance be envisioned for advanced editing
purposes, e.g. based on the stretchable principle described above. This could
possibly be extended, in conjunction with symmetry detection, to the derivation
of parametric procedural model descriptions.

125

CHAPTER 6. CONCLUSION

126

BIBLIOGRAPHY

[AA03a] Anders Adamson and Marc Alexa. Approximating and intersecting
surfaces from points. In Leif Kobbelt, Peter Schröder, and Hugues
Hoppe, editors, Proceedings of the Eurographics/ACM SIGGRAPH
symposium on Geometry processing, pages 230–239, Aachen, Ger-
many, 2003. Eurographics Association.

[AA03b] Anders Adamson and Marc Alexa. Ray tracing point set surfaces.
In SMI ’03: Proceedings of the Shape Modeling International 2003,
page 272, Washington, DC, USA, 2003. IEEE Computer Society.

[AA04] Marc Alexa and Anders Adamson. On normals and projection oper-
ators for surfaces defined by point sets. In Markus Gross, Hanspeter
Pfister, Marc Alexa, and Szymon Rusinkiewicz, editors, Sympo-
sium on Point-Based Graphics, pages 149–155, Zürich, Switzer-
land, 2004. Eurographics Association.

[AB81] E. H. Adelson and P. J. Burt. Image data compression with the
laplacian pyramid. In Pattern Recognition and Image Processing,
pages 218–223, 1981.

[ABCO+01] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva. Point set surfaces. IEEE Visualization 2001, pages 21–28,
October 2001. ISBN 0-7803-7200-x.

[ABCO+03] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman,
David Levin, and Claudio T. Silva. Computing and rendering point
set surfaces. IEEE Transactions on Visualization and Computer
Graphics, 9(1):3–15, January/March 2003.

[AHK01] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim.
On the surprising behavior of distance metrics in high dimensional
space. Lecture Notes in Computer Science, 1973:420–??, 2001.

[AK04a] Nina Amenta and Yong J. Kil. The domain of a point set sur-
face. In Markus Gross, Hanspeter Pfister, Marc Alexa, and Szymon

127

BIBLIOGRAPHY

Rusinkiewicz, editors, Symposium on Point-Based Graphics, pages
139–147, Zürich, Switzerland, 2004. Eurographics Association.

[AK04b] Nina Amenta and Yong Joo Kil. Defining point-set surfaces. ACM
Transactions on Graphics, 23(3):264–270, August 2004.

[Aka73] H. Akaike. Information theory and an extension of the maximum
likelihood principle. In Second International Symposium on Infor-
mation Theory, pages 267–281, Budapest, 1973. Akademiai Kaidó.

[ARS99] K. Alsabti, S. Ranka, and V. Singh. An efficient space-partitioning
based algorithm for the K-means clustering. Lecture Notes in Com-
puter Science, 1574:355–359, 1999.

[BA02] Kenneth P. Burnham and David R. Anderson. Model Selection
and Multi-Model Inference: A Practical Information-Theoretic Ap-
proach. Springer, 2002.

[BAC96] Andrew C. Beers, Maneesh Agrawala, and Navin Chaddha. Ren-
dering from compressed textures. In SIGGRAPH ’96: Proceedings
of the 23rd annual conference on Computer graphics and interac-
tive techniques, pages 373–378, New York, NY, USA, 1996. ACM
Press.

[BBW+08] Alexander Berner, Martin Bokeloh, Michael Wand, Andreas
Schilling, and Hans-Peter Seidel. A graph-based approach to sym-
metry detection. In Symposium on Volume and Point-Based Graph-
ics, pages 1–8, Los Angeles, CA, 2008. Eurographics Association.

[BBW+09] Martin Bokeloh, Alexander Berner, Michael Wand, Hans-Peter Sei-
del, and Andreas Schilling. Symmetry detection using line features.
Computer Graphics Forum (Proc. EUROGRAPHICS), 28(2):697–
706, 2009.

[BF81] R. C. Bolles and M. A. Fischler. A ransac-based approach to model
fitting and its application to finding cylinders in range data. In Pro-
ceedings of the 7th International Joint Conference on Artificial In-
telligence, pages 637–643, 1981.

[BF05] Toby P. Breckon and Robert B. Fisher. Plausible 3D colour surface
completion using non-parametric techniques. In Ralph R. Martin,
Helmut E. Bez, and Malcolm A. Sabin, editors, IMA Conference
on the Mathematics of Surfaces, volume 3604 of Lecture Notes in
Computer Science, pages 102–120. Springer, 2005.

128

BIBLIOGRAPHY

[BFR98] Paul S. Bradley, Usama M. Fayyad, and Cory Reina. Scaling clus-
tering algorithms to large databases. In KDD, pages 9–15, 1998.

[BG85] C. D. Bei and R. M. Gray. An improvement of the minimum distor-
tion encoding algorithm for vector quantization. IEEE Transactions
on Communications, 33:1132–1133, 1985.

[BGRS99] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri
Shaft. When is “nearest neighbor” meaningful? Lecture Notes in
Computer Science, 1540:217–235, 1999.

[BGV+02] P Benko, K. Géza, T. Várady, L. Andor, and R. Martin. Con-
strained fitting in reverse engineering. Comput. Aided Geom. Des.,
19(3):173–205, 2002.

[BHG06] Alireza Bab-Hadiashar and Niloofar Gheissari. Range image seg-
mentation using surface selection criterion. IEEE Transactions on
Image Processing, 15(7):2006–2018, 2006.

[BHGS06] Tamy Boubekeur, Wolfgang Heidrich, Xavier Granier, and
Christophe Schlick. Volume-surface trees. Computer Graphics
Forum (Proceedings of EUROGRAPHICS 2006), 25(3):399–406,
2006.

[BJ88] P. J. Besl and R. C. Jain. Segmentation through variable-order sur-
face fitting. IEEE Trans. Pattern Anal. Mach. Intell., 10(2):167–192,
1988.

[BK03a] Mario Botsch and Leif Kobbelt. High-quality point-based rendering
on modern gpus. In PG ’03: Proceedings of the 11th Pacific Con-
ference on Computer Graphics and Applications, page 335, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[BK03b] Yuri Boykov and Vladimir Kolmogorov. Computing geodesics and
minimal surfaces via graph cuts. In ICCV, pages 26–33, 2003.

[Bli82] J. F. Blinn. Light reflection functions for simulation of clouds and
dusty surfaces. Computer Graphics, 16:21–29, 1982.

[BMV01] Pál Benkö, Ralph R. Martin, and Tamás Várady. Algorithms for
reverse engineering boundary representation models. Computer-
Aided Design, 33(11):839–851, 2001.

129

BIBLIOGRAPHY

[BNdB99] Gunilla Borgefors, Ingela Nyström, and Gabriella Sanniti di Baja.
Computing skeletons in three dimensions. Pattern Recognition,
32(7):1225–1236, 1999.

[BPK05] Stephan Bischoff, Darko Pavic, and Leif Kobbelt. Automatic
restoration of polygon models. ACM Trans. Graph., 24(4):1332–
1352, 2005.

[BSCB00] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and
Coloma Ballester. Image inpainting. In SIGGRAPH, pages 417–
424, 2000.

[BVZ01] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate en-
ergy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach.
Intell., 23(11):1222–1239, 2001.

[BWK02] Mario Botsch, Andreas Wiratanaya, and Leif Kobbelt. Efficient high
quality rendering of point sampled geometry. In EGRW ’02: Pro-
ceedings of the 13th Eurographics workshop on Rendering, pages
53–64, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics
Association.

[Cap05] D. P. Capel. An effective bail-out test for RANSAC consensus scor-
ing. In Proc. British Machine Vision Conf., pages 629–638, 2005.

[CDD+04] Ulrich Clarenz, Udo Diewald, G. Dziuk, Martin Rumpf, and
R. Rusu. A finite element method for surface restoration with
smooth boundary conditions. CAGD, pages 427–445, 2004.

[CDF92] A. Cohen, I. Daubechies, and J. C. Feauveau. Biorthogonal bases
for compactly supported wavelets. Comm. Pure & Applied Math,
45:485–560, 1992.

[CG01] T. Chaperon and F. Goulette. Extracting cylinders in full 3-d data us-
ing a random sampling method and the gaussian image. In VMV01,
pages 35–42, 2001.

[CHP+79] C. Csuri, R. Hackathorn, R. Parent, W. Carlson, and M. Howard.
Towards an interactive high visual complexity animation system.
volume 13, pages 289–299, August 1979.

[Chr07] Per H. Christensen. Point-Based Graphics, chapter 8.4 Point Clouds
and Brick Maps for Movie Production. Morgan Kaufmann Publish-
ers, May 2007.

130

BIBLIOGRAPHY

[CL96] B. Curless and M. Levoy. A volumetric method for building com-
plex models from range images. In SIGGRAPH, pages 303–312,
1996.

[CLF02] Umberto Castellani, Salvatore Livatino, and Robert B. Fisher. Im-
proving environment modelling by edge occlusion surface comple-
tion. 3DPVT, pages 672–675, 2002.

[CM05] Ondřej Chum and Jiří Matas. Matching with PROSAC - progressive
sample consensus. In Cordelia Schmid, Stefano Soatto, and Carlo
Tomasi, editors, Proc. of Conference on Computer Vision and Pat-
tern Recognition (CVPR), volume 1, pages 220–226, Los Alamitos,
USA, June 2005. IEEE Computer Society.

[CM08] Ondrej Chum and Jiri Matas. Optimal randomized RANSAC. IEEE
Trans. Pattern Anal. Mach. Intell, 30(8):1472–1482, 2008.

[CMK03] Ondřej Chum, Jiří Matas, and Josef Kittler. Locally optimized
RANSAC. In J. van Leeuwen G. Goos, J. Hartmanis, editor, DAGM
2003: Proceedings of the 25th DAGM Symposium, number 2781 in
LNCS, pages 236–243, Heidelberger Platz 3, 14197, Berlin, Ger-
many, September 2003. Springer-Verlag.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures.
In STOC ’71: Proceedings of the third annual ACM symposium on
Theory of computing, pages 151–158, New York, NY, USA, 1971.
ACM Press.

[CSAD04] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Varia-
tional shape approximation. ACM Trans. Graph., 23(3):905–914,
2004.

[CSM05] Nicu D. Cornea, Deborah Silver, and Patrick Min. Curve-skeleton
applications. In IEEE Visualization, page 13. IEEE Computer Soci-
ety, 2005.

[DCOY03] Iddo Drori, Daniel Cohen-Or, and Hezy Yeshurun. Fragment-based
image completion. ACM Trans. Graph., 22(3):303–312, 2003.

[DDSD03] Xavier Décoret, Frédo Durand, François Sillion, and Julie Dorsey.
Billboard clouds for extreme model simplification. In Proceedings
of the ACM Siggraph. ACM Press, 2003.

131

BIBLIOGRAPHY

[DG04] Tamal K. Dey and Samrat Goswami. Provable surface reconstruc-
tion from noisy samples. In Jack Snoeyink and Jean-Daniel Bois-
sonnat, editors, Proceedings of the 20th ACM Symposium on Com-
putational Geometry, Brooklyn, New York, USA, pages 330–339.
ACM, 2004.

[DGS05] T. K. Dey, S. Goswami, and J. Sun. Extremal surface based pro-
jections converge and reconstruct with isotopy. Technical Report
OSU-CISRC-4-05-TR25, april 2005.

[DLS05] Tamal K. Dey, Gang Li, and Jian Sun. Normal estimation for point
clouds: A comparison study for a voronoi based method. In Marc
Alexa, Szymon Rusinkiewicz, Mark Pauly, and Matthias Zwicker,
editors, Symposium on Point-Based Graphics, pages 39–46, Stony
Brook, NY, 2005. Eurographics Association.

[DMGL02] J. Davis, S. R. Marschner, M. Garr, and M. Levoy. Filling holes
in complex surfaces using volumetric diffusion. In 3DPVT, pages
428–861, 2002.

[DS05] Tamal K. Dey and Jian Sun. An adaptive MLS surface for re-
construction with guarantees. In Mathieu Desbrun and Helmut
Pottmann, editors, EG Symposium on Geometry Processing, pages
43–52, Vienna, Austria, 2005. Eurographics Association.

[Elk03] Charles Elkan. Using the triangle inequality to accelerate k-means.
In Tom Fawcett and Nina Mishra, editors, Machine Learning, Pro-
ceedings of the Twentieth International Conference (ICML 2003),
August 21-24, 2003, Washington, DC, USA, pages 147–153. AAAI
Press, 2003.

[EM03] M. El-Mehalawi. A database system of mechanical components
based on geometric and topological similarity. part ii: indexing, re-
trieval, matching, and similarity assessment. Computer-Aided De-
sign, 35(1):95–105, January 2003.

[EMA03] Mohamed El-Mehalawi and Allen. A database system of mechani-
cal components based on geometric and topological similarity. part
i: representation. Computer-Aided Design, 35(1):83–94, January
2003.

[FB81] Martin A. Fischler and Robert C. Bolles. Random sample consen-
sus: a paradigm for model fitting with applications to image analysis
and automated cartography. Commun. ACM, 24(6):381–395, 1981.

132

BIBLIOGRAPHY

[FCOS05] Shachar Fleishman, Daniel Cohen-Or, and Cláudio T. Silva. Robust
moving least-squares fitting with sharp features. ACM Transactions
on Graphics, 24(3):544–552, July 2005.

[FEF97] Andrew W. Fitzgibbon, David W. Eggert, and Robert B. Fisher.
High-level CAD model acquisition from range images. Computer-
aided Design, 29(4):321–330, 1997.

[FS06a] Gereon Frahling and Christian Sohler. A fast k-means implementa-
tion using coresets. In SCG ’06: Proceedings of the twenty-second
annual symposium on Computational geometry, pages 135–143,
New York, NY, USA, 2006. ACM.

[FS06b] T. Funkhouser and P. Shilane. Partial matching of 3d shapes with
priority-driven search. In SGP ’06: Proceedings of the fourth Euro-
graphics symposium on Geometry processing, pages 131–142, Aire-
la-Ville, Switzerland, Switzerland, 2006. Eurographics Association.

[GBS03] Paulo F. U. Gotardo, Olga R. P. Bellon, and Luciano Silva. Range
image segmentation by surface extraction using an improved robust
estimator. cvpr, 02:33, 2003.

[GCO06] Ran Gal and Daniel Cohen-Or. Salient geometric features for par-
tial shape matching and similarity. ACM Transactions on Graphics,
25(1):130–150, 2006.

[GD98] J. P. Grossman and William J. Dally. Point sample rendering. In
George Drettakis and Nelson L. Max, editors, Rendering Tech-
niques, pages 181–192. Springer, 1998.

[GG92] A. Gersho and R. M. Gray. Vector Quantization and Signal Com-
pression. Kluwer Academic, Boston, 1992.

[GG04] Natasha Gelfand and Leonidas J. Guibas. Shape segmentation using
local slippage analysis. In SGP ’04: Proceedings of the 2004 Eu-
rographics/ACM SIGGRAPH symposium on Geometry processing,
pages 214–223, New York, NY, USA, 2004. ACM Press.

[GG07] Gaël Guennebaud and Markus Gross. Algebraic point set surfaces.
ACM Transactions on Graphics, 26(3):23:1–23:??, July 2007.

[GGG08] Gaël Guennebaud, Marcel Germann, and Markus H. Gross. Dy-
namic sampling and rendering of algebraic point set surfaces. Com-
put. Graph. Forum, 27(2):653–662, 2008.

133

BIBLIOGRAPHY

[GKIS05] Stefan Gumhold, Zachi Karni, Martin Isenburg, and Hans-Peter Sei-
del. Predictive point-cloud compression. In Sketch in Visual Pro-
ceedings of ACM SIGGRAPH, 2005.

[GM97] Gideon Guy and Gérard G. Medioni. Inference of surfaces, 3D
curves, and junctions from sparse, noisy, 3D data. IEEE Trans. Pat-
tern Anal. Mach. Intell, 19(11):1265–1277, 1997.

[GRS98] Guha, Rastogi, and Shim. CURE: An efficient clustering algorithm
for large databases. SIGMODREC: ACM SIGMOD Record, 27,
1998.

[GSH+07] Ran Gal, Ariel Shamir, Tal Hassner, Mark Pauly, and Daniel Cohen-
Or. Surface reconstruction using local shape priors. In Eurographics
SGP, pages 253–262, 2007.

[GTK92] A. Gruss, S. Tada, and Takeo Kanade. A vlsi smart sensor for fast
range imaging. In Proc. IEEE International Conference on Intelli-
gent Robots and Systems, volume 1, pages 349 – 358, July 1992.

[HB89] Berthold Klaus Paul Horn and Michael J. Brooks. Shape from Shad-
ing. MIT Press, Cambridge, Massachusetts, 1989.

[HDD+92] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Surface reconstruction from unorganized points.
In SIGGRAPH ’92: Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, pages 71–78, New
York, NY, USA, 1992. ACM Press.

[HDD+93] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Mesh optimization. In SIGGRAPH, volume 27,
pages 19–26, 1993.

[HDD+94] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hu-
bert Jin, John McDonald, Jean Schweitzer, and Werner Stuetzle.
Piecewise smooth surface reconstruction. In SIGGRAPH, pages
295–302. ACM, 1994.

[HH88] H.-M. Hang and B.G. Haskell. Interpolative vector quantization of
color images. IEEE Transactions on Communications, 36:465–470,
April 1988.

[Hir08] Heiko Hirschmüller. Stereo processing by semiglobal matching
and mutual information. IEEE Trans. Pattern Anal. Mach. Intell,
30(2):328–341, 2008.

134

BIBLIOGRAPHY

[HK06] Alexander Hornung and Leif Kobbelt. Robust reconstruction of wa-
tertight 3D models from non-uniformly sampled point clouds with-
out normal information. In Eurographics SGP, pages 41–50, 2006.

[HMHB06] E. Hubo, T. Mertens, T. Haber, and P. Bekaert. The quantized kd-
tree: Efficient ray tracing of compressed point clouds. In IEEE
Symposium on Interactive Ray Tracing, pages 105–113, September
2006.

[HMHB07] Erik Hubo, Tom Mertens, Tom Haber, and Philippe Bekaert. Self-
Similarity-Based Compression of Point Clouds, with Application to
Ray Tracing. In Eurographics Symposium on Point-Based Graphics,
pages 129–137. Eurographics Association, 2007.

[HOP+05] M. Hofer, B. Odehnal, H. Pottmann, T. Steiner, and J. Wallner. 3d
shape recognition and reconstruction based on line element geom-
etry. In Tenth IEEE International Conference on Computer Vision,
volume 2, pages 1532–1538. IEEE Computer Society, 2005.

[Hou62] P.V.C. Hough. Method and means for recognizing complex patterns.
In US Patent, 1962.

[HPKG06] Y. Huang, J. Peng, C.-C. Jay Kuo, and M. Gopi. Octree-based
progressive geometry coding of point clouds. In M. Botsch and
B. Chen, editors, Symposium on Point-Based Graphics 2006. Euro-
graphics, July 2006.

[HSKK01] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology
matching for fully automatic similarity estimation of 3D shapes. In
Proceedings of ACM SIGGRAPH, 2001.

[HY01] Mark H. Hansen and Bin Yu. Model selection and the principle of
minimum description length. Journal of the American Statistical
Association, 96(454):746–774, 2001.

[HZ04] R. I. Hartley and A. Zisserman. Multiple View Geometry in Com-
puter Vision. Cambridge University Press, June 2004.

[IK87] J. Illingworth and J.V. Kittler. The adaptive hough transform.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
9(5):690–698, September 1987.

[IK88] J. Illingworth and J. Kittler. A survey of the hough transform. Com-
put. Vision Graph. Image Process., 44(1):87–116, 1988.

135

BIBLIOGRAPHY

[IK01] D. Ivanov and Y. Kuzmin. Spatial patches - a primitive for 3d
model representation. Computer Graphics Forum, 20:511–521(11),
September 2001.

[JB97] Xiaoyi Jiang and Horst Bunke. Range image segmentation: Adap-
tive grouping of edges into regions. In ACCV ’98: Proceedings of
the Third Asian Conference on Computer Vision-Volume II, pages
299–306, London, UK, 1997. Springer-Verlag.

[JC95] Henrik Wann Jensen and Niels Jorgen Christensen. Photon maps in
bidirectional monte carlo ray tracing of complex objects. Computers
& Graphics, 19(2):215–224, 1995.

[JKS08] P. Jenke, B. Krückeberg, and W. StraSSer. Surface reconstruction
from fitted shape primitives. In 13th International Fall Workshop Vi-
sion, Modeling and Visualization, pages 31–40. Akademische Ver-
lagsgesellschaft Aka GmbH, Heidelberg, oct 2008.

[JT04] Jiaya Jia and Chi-Keung Tang. Inference of segmented color and
texture description by tensor voting. IEEE Trans. Pattern Anal.
Mach. Intell., 26(6):771–786, 2004.

[Ju04] Tao Ju. Robust repair of polygonal models. ACM Trans. Graph.,
23(3):888–895, 2004.

[JWB+06] Philipp Jenke, Michael Wand, Martin Bokeloh, Andreas Schilling,
and Wolfgang Straßer. Bayesian point cloud reconstruction. Com-
put. Graph. Forum, 25(3):379–388, 2006.

[KB05] Vladimir Kolmogorov and Yuri Boykov. What metrics can be ap-
proximated by geo-cuts, or global optimization of length/area and
flux. In ICCV, pages 564–571, 2005.

[KBH06] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson
surface reconstruction. In Eurographics SGP, pages 61–70, 2006.

[KBSS01] Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-Peter
Seidel. Feature sensitive surface extraction from volume data. In
SIGGRAPH, pages 57–66, 2001.

[Kei06] Richard Keiser. Meshless Lagrangian Methods for Physics-Based
Animations of Solids and Fluids. PhD thesis, ETH Zürich, 2006.

136

BIBLIOGRAPHY

[KGKB03] George Kollios, Dimitrios Gunopulos, Nick Koudas, and Stefan
Berchtold. Efficient biased sampling for approximate clustering and
outlier detection in large data sets. IEEE Trans. Knowl. Data Eng,
15(5):1170–1187, 2003.

[KK05] H. Kawata and T. Kanai. Direct point rendering on GPU. In Ad-
vances in Visual Computing, pages 587–594, 2005.

[KKBC09] K. Kolev, M. Klodt, T. Brox, and D. Cremers. Continuous global
optimization in multiview 3d reconstruction. International Journal
of Computer Vision, 84(1):80–96, August 2009.

[KMN+02] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and
A. Wu. An efficient k-means clustering algorithm: Analysis and im-
plementation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(7):881–892, 2002.

[Kol05] Ravikrishna Kolluri. Provably good moving least squares. In SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Courses, page 213, New York,
NY, USA, 2005. ACM.

[Kom06] Nikos Komodakis. Image completion using global optimization. In
CVPR, pages 442–452. IEEE Computer Society, 2006.

[KR93] J.-K. Kim and S.-W. Ra. A fast mean-distance-ordered partial code-
book search algorithm for image vector quantization. Circuits and
Systems II: Analog and Digital Signal Processing, IEEE Transac-
tions on [see also Circuits and Systems II: Express Briefs, IEEE
Transactions on], 40:576–579, 1993.

[KSW05] Jens Krüger, Jens Schneider, and Rüdiger Westermann. Duodecim
- a structure for point scan compression and rendering. In Proceed-
ings of the Symposium on Point-Based Graphics 2005, 2005.

[KV05] Aravind Kalaiah and Amitabh Varshney. Statistical geometry rep-
resentation for efficient transmission and rendering. ACM Trans.
Graph., 24(2):348–373, 2005.

[KZ04] V. Kolmogorov and R. Zabin. What energy functions can be min-
imized via graph cuts? IEEE Trans. on Pattern Anal. and Mach.
Intell., 26(2):147–159, 2004.

[LB87] I. J. Leontaritis and S. A. Billings. Model selection and valida-
tion methods for nonlinear systems. Int. J. Control, 45(1):311–341,
1987.

137

BIBLIOGRAPHY

[LB07] Victor S. Lempitsky and Yuri Boykov. Global optimization for
shape fitting. In CVPR, pages 1–8, 2007.

[LBG80] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quan-
tizer design. IEEE Trans. on Communications, COM-28(1):84–95,
January 1980.

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A
high resolution 3d surface construction algorithm. SIGGRAPH,
21(4):163–169, 1987.

[Lev03] David Levin. Mesh-independent surface interpolation. Geometric
Modeling for Scientific Visualization, pages 37–49, 2003.

[LGB95] Aleš Leonardis, Alok Gupta, and Ruzena Bajcsy. Segmenta-
tion of range images as the search for geometric parametric models.
Int. J. Comput. Vision, 14(3):253–277, 1995.

[LH96] Marc Levoy and Pat Hanrahan. Light field rendering. In SIG-
GRAPH ’96: Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 31–42, New York,
NY, USA, 1996. ACM Press.

[Lie03] Peter Liepa. Filling holes in meshes. In Eurographics SGP, pages
200–205, 2003.

[LJI+03] K. Lou, S. Janyanti, N. Iyer, Y. Kalyanaraman, S. Prabhakar, and
K. Ramani. A reconfigurable 3d engineering shape search system
part ii: database indexing, retrieval and clusturing. In DETC, 2003.

[LJS97] Aleš Leonardis, Aleš Jaklič, and Franc Solina. Superquadrics for
segmenting and modeling range data. IEEE Trans. Pattern Anal.
Mach. Intell., 19(11):1289–1295, 1997.

[LPC+00] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz,
David Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James
Davis, Jeremy Ginsberg, Jonathan Shade, and Duane Fulk. The
digital michelangelo project: 3d scanning of large statues. In SIG-
GRAPH ’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 131–144, New
York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[LSSK09] Bao Li, Ruwen Schnabel, Jin Shiyao, and Reinhard Klein. Vari-
ational surface approximation and model selection. Computer

138

BIBLIOGRAPHY

Graphics Forum (Proc. of Pacific Graphics), 28(7):1985–1994, Oc-
tober 2009.

[MC02] Jiri Matas and Ondrej Chum. Randomized RANSAC with t(d, d)
test. In Proceedings of the British Machine Vision Conference 2002
(BMVC), 2002.

[MC05] Jiri Matas and Ondrej Chum. Randomized RANSAC with sequen-
tial probability ratio test. In ICCV, pages 1727–1732. IEEE Com-
puter Society, 2005.

[MGGP06] N. J. Mitra, L. Guibas, J. Giesen, and M. Pauly. Probabilistic fin-
gerprints for shapes. In Symposium on Geometry Processing, pages
121–130, 2006.

[MGP06] Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. Partial and
approximate symmetry detection for 3d geometry. ACM Trans.
Graph., 25(3):560–568, 2006.

[MLM01] David Marshall, Gabor Lukacs, and Ralph Martin. Robust segmen-
tation of primitives from range data in the presence of geometric de-
generacy. IEEE Trans. Pattern Anal. Mach. Intell., 23(3):304–314,
2001.

[MLT00] G. Medioni, M. S. Lee, and C. K. Tang. A Computational Frame-
work for Segmentation and Grouping. Elsevier, 2000.

[MMG06] Bruce Merry, Patrick Marais, and James Gain. Compression
of dense and regular point clouds. Computer Graphics Forum,
25(4):709–716, 2006.

[MNG04] N. J. Mitra, A. Nguyen, and L. Guibas. Estimating surface normals
in noisy point cloud data. In special issue of International Journal of
Computational Geometry and Applications, volume 14, pages 261–
276, 2004.

[MPSR01] David McWherter, Mitchell Peabody, Ali C. Shokoufandeh, and
William Regli. Database techniques for archival of solid models. In
SMA ’01: Proceedings of the sixth ACM symposium on Solid mod-
eling and applications, pages 78–87, New York, NY, USA, 2001.
ACM Press.

[MSM04] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns
for Parallel Programming. Addison-Wesley Longman, Amsterdam,
September 2004.

139

BIBLIOGRAPHY

[MTN+02] D.R. Myatt, P.H.S. Torr, S.J. Nasuto, J.M. Bishop, and R. Craddock.
Napsac: High noise, high dimensional robust estimation - it’s in the
bag. In BMVC, page Computer Vision Tools, 2002.

[NB77] Ramakant Nevatia and Thomas O. Binford. Description and recog-
nition of curved objects. Artificial Intelligence, 8(1):77–98, 1977.

[Nis05] David Nistér. Preemptive RANSAC for live structure and motion
estimation. Mach. Vision Appl., 16(5):321–329, 2005.

[ÖGG09] C. Öztireli, G. Guennebaud, and M. Gross. Feature preserving
point set surfaces based on non-linear kernel regression. Computer
Graphics Forum, 28(2):493–501, 2009.

[OH06] Tilo Ochotta and Stefan Hiller. Hardware rendering of 3d geome-
try with elevation maps. In SMI ’06: Proceedings of the IEEE In-
ternational Conference on Shape Modeling and Applications 2006
(SMI’06), page 10, Washington, DC, USA, 2006. IEEE Computer
Society.

[OLY05] Ratko Orlandic, Ying Lai, and Wai Gen Yee. Clustering high-
dimensional data using an efficient and effective data space reduc-
tion. In Otthein Herzog, Hans-Jörg Schek, Norbert Fuhr, Abdur
Chowdhury, and Wilfried Teiken, editors, Proceedings of the 2005
ACM CIKM International Conference on Information and Knowl-
edge Management, Bremen, Germany, October 31 - November 5,
2005, pages 201–208. ACM, 2005.

[OS04] Tilo Ochotta and Dietmar Saupe. Compression of point-based 3d
models by shape-adaptive wavelet coding of multi-height fields.
In Proceedings of the Eurographics Symposium on Point-Based
Graphics, pages 103–112, June 2004.

[OS08] Tilo Ochotta and Dietmar Saupe. Image-based surface compression.
Comput. Graph. Forum, 27(6):1647–1663, 2008.

[Pau03] Mark Pauly. Point Primitives for Interactive Modeling and Process-
ing of 3D Geometry. PhD thesis, ETH Zürich, 2003.

[PBJB98] Mark W. Powell, Kevin W. Bowyer, Xiaoyi Jiang, and Horst Bunke.
Comparing curved-surface range image segmenters. In ICCV ’98:
Proceedings of the Sixth International Conference on Computer Vi-
sion, page 286, Washington, DC, USA, 1998. IEEE Computer So-
ciety.

140

BIBLIOGRAPHY

[PG01] Mark Pauly and Markus Gross. Spectral processing of point-
sampled geometry. In SIGGRAPH ’01: Proceedings of the 28th an-
nual conference on Computer graphics and interactive techniques,
pages 379–386, New York, NY, USA, 2001. ACM Press.

[PGK02] Mark Pauly, Markus Gross, and Leif P. Kobbelt. Efficient simplifi-
cation of point-sampled surfaces. In Robert J. Moorhead, Markus
Gross, and Kenneth I. Joy, editors, Proceedings of IEEE Visualiza-
tion 2002, pages 163–170. IEEE Computer Society, IEEE Computer
Society Press, October 2002.

[PH98] J. S. Pan and K. C. Huang. A new vector quantization image cod-
ing algorithm based on the extension of the bound for minkowski
metric. Pattern Recognition, 31(11):1757–1760, 1998.

[PLH+05] Helmut Pottmann, Stefan Leopoldseder, Michael Hofer, Tibor
Steiner, and Wenping Wang. Industrial geometry: recent advances
and applications in CAD. Computer-Aided Design, 37(7):751–766,
2005.

[PM99] Dan Pelleg and Andrew W. Moore. Accelerating exact k -means al-
gorithms with geometric reasoning. In KDD, pages 277–281, 1999.

[PMG+05] Mark Pauly, Niloy J. Mitra, Joachim Giesen, Markus Gross, and
Leonidas J. Guibas. Example-Based 3D Scan Completion. In Eu-
rographics SGP, pages 23–32, 2005.

[PMW+08] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. Guibas.
Discovering structural regularity in 3D geometry. ACM Trans. on
Graph., 27(3):1–11, 2008.

[PR05] Joshua Podolak and Szymon Rusinkiewicz. Atomic Volumes for
Mesh Completion. In Eurographics SGP, pages 33–41, 2005.

[PSBM07] Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, and Ajith
Mascarenhas. Robust on-line computation of reeb graphs: simplic-
ity and speed. ACM Trans. Graph., 26(3):58, 2007.

[Ree83] William T. Reeves. Particle systems - a technique for modeling a
class of fuzzy objects. ACM Trans. Graph, 2(2):91–108, 1983.

[Ree85] W. Reeves. Approximate and probabilistic algorithms for shad-
ing and rendering structured particle systems. Proceedings of SIG-
GRAPH’85, page 313, 1985.

141

BIBLIOGRAPHY

[RFP08] Rahul Raguram, Jan-Michael Frahm, and Marc Pollefeys. A com-
parative analysis of RANSAC techniques leading to adaptive real-
time random sample consensus. In David A. Forsyth, Philip H. S.
Torr, and Andrew Zisserman, editors, Computer Vision - ECCV
2008, 10th European Conference on Computer Vision, Marseille,
France, October 12-18, 2008, Proceedings, Part II, volume 5303 of
Lecture Notes in Computer Science, pages 500–513. Springer, 2008.

[Ris78] J. Rissanen. Modeling by shortest data description. Automatica,
14:465–471, 1978.

[RL79] Jorma J. Rissanen and Glen G. Langdon, Jr. Arithmetic coding.
IBM Journal of Research and Development, 23(2):149–162, March
1979.

[RL93] Gerhard Roth and Martin D. Levine. Extracting geometric primi-
tives. CVGIP: Image Underst., 58(1):1–22, 1993.

[RL00] Szymon Rusinkiewicz and Marc Levoy. Qsplat: a multiresolution
point rendering system for large meshes. In SIGGRAPH ’00: Pro-
ceedings of the 27th annual conference on Computer graphics and
interactive techniques, pages 343–352, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

[RSA08] Michael Rubinstein, Ariel Shamir, and Shai Avidan. Improved seam
carving for video retargeting. ACM Trans. Graph., 27(3):1–9, 2008.

[SACO04] Andrei Sharf, Marc Alexa, and Daniel Cohen-Or. Context-based
surface completion. ACM Trans. on Graph., 23(3):878–887, August
2004.

[SB95] Nickolas S. Sapidis and Paul J. Besl. Direct construction of poly-
nomial surfaces from dense range images through region growing.
ACM Trans. Graph., 14(2):171–200, 1995.

[Sch78] G. Schwarz. Estimating the dimension of a model. The Annals of
Statistics, 6:461–464, 1978.

[SDF01] Freek Stulp, Fabio Dell’Acqua, and Robert Fisher. Reconstruction
of surfaces behind occlusions in range images. In 3D Digital Imag-
ing and Modeling, pages 232–239, 2001.

[SDK09] Ruwen Schnabel, Patrick Degener, and Reinhard Klein. Comple-
tion and reconstruction with primitive shapes. Computer Graphics
Forum (Proc. of Eurographics), 28(2):503–512, March 2009.

142

BIBLIOGRAPHY

[SF06] Philip Shilane and Thomas Funkhouser. Selecting distinctive 3D
shape descriptors for similarity retrieval. In Shape Modeling Inter-
national, June 2006.

[SF07] Philip Shilane and Thomas Funkhouser. Distinctive regions of 3D
surfaces. ACM Transactions on Graphics, 26(2):Article 7, June
2007.

[Sha98] Craig M. Shakarji. Least-squares fitting algorithms of the NIST al-
gorithm testing system. J. Res. Nat. Inst. Stand. Techn., 103(6):633–
641, 1998.

[SK06] R. Schnabel and R. Klein. Octree-based point-cloud compression.
In M. Botsch and B. Chen, editors, Symposium on Point-Based
Graphics 2006. Eurographics, July 2006.

[SLSK07] Andrei Sharf, Thomas Lewiner, Ariel Shamir, and Leif Kobbelt.
On–the–fly curve-skeleton computation for 3d shapes. In Euro-
graphics, pages 323–328, Prague, september 2007.

[SMK07] Ruwen Schnabel, Sebastian Möser, and Reinhard Klein. A paral-
lelly decodeable compression scheme for efficient point-cloud ren-
dering. In Symposium on Point-Based Graphics 2007, pages 214–
226, September 2007.

[SMK08] Ruwen Schnabel, Sebastian Möser, and Reinhard Klein. Fast vec-
tor quantization for efficient rendering of compressed point-clouds.
Computers and Graphics, 32(2):246–259, April 2008.

[SSGD03] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton based
shape matching and retrieval, 2003.

[Ste97] C. V. Stewart. Bias in robust estimation caused by discontinuities
and multiple structures. IEEE Trans. Pattern Analysis and Machine
Intelligence, 19(8):818–833, August 1997.

[SW03] Jens Schneider and Rudiger Westermann. Compression domain vol-
ume rendering. In VIS ’03: Proceedings of the 14th IEEE Visual-
ization 2003 (VIS’03), page 39, Washington, DC, USA, 2003. IEEE
Computer Society.

[SWK07] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient ran-
sac for point-cloud shape detection. Computer Graphics Forum,
26(2):214–226, June 2007.

143

BIBLIOGRAPHY

[SWWK08] Ruwen Schnabel, Raoul Wessel, Roland Wahl, and Reinhard Klein.
Shape recognition in 3d point-clouds. In V. Skala, editor, The 16-th
International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision’2008. UNION Agency-Science
Press, February 2008.

[SZS+08] Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler,
Vladimir Kolmogorov, Aseem Agarwala, Marshall Tappen, and
Carsten Rother. A comparative study of energy minimization meth-
ods for markov random fields with smoothness-based priors. IEEE
Trans. Pattern Anal. Mach. Intell., 30(6):1068–1080, 2008.

[TL07] Gary K. L. Tam and Rynson W. H. Lau. Deformable model re-
trieval based on topological and geometric signatures. IEEE TVCG,
13(3):470–482, 2007.

[TM02] Ben Tordoff and David W. Murray. Guided sampling and consen-
sus for motion estimation. In Anders Heyden, Gunnar Sparr, Mads
Nielsen, and Peter Johansen, editors, Computer Vision - ECCV
2002, 7th European Conference on Computer Vision, Copenhagen,
Denmark, May 28-31, 2002, Proceedings, Part I, volume 2350 of
Lecture Notes in Computer Science, pages 82–98. Springer, 2002.

[TV04] J. W. Tangelder and R. C. Veltkamp. A survey of content based
3d shape retrieval methods. In SMI ’04: Proceedings of the Shape
Modeling International 2004 (SMI’04), pages 145–156, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[TZ98] Phil Torr and Andrew Zisserman. Robust computation and
parametrization of multiple view relations. In ICCV ’98: Proceed-
ings of the Sixth International Conference on Computer Vision, page
727, Washington, DC, USA, 1998. IEEE Computer Society.

[TZ00] P. Torr and A. Zisserman. MLESAC: A new robust estimator with
application to estimating image geometry. Computer Vision and
Image Understanding, 78:138–156, 2000.

[VCBS03] Joan Verdera, Vicent Caselles, Marcelo Bertalmío, and Guillermo
Sapiro. Inpainting surface holes. In ICIP (2), pages 903–906, 2003.

[VGSR04] G. Vosselman, B.G.H. Gorte, G. Sithole, and T. Rabbani. Recognis-
ing structure in laser scanner point clouds. International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, 46(8/W2):33–38, 2004.

144

BIBLIOGRAPHY

[VKH06] Vivek Verma, Rakesh Kumar, and Stephen Hsu. 3d building detec-
tion and modeling from aerial lidar data. In CVPR ’06: Proceedings
of the 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 2213–2220, Washington, DC, USA,
2006. IEEE Computer Society.

[VMC97] Tamás Várady, Ralph R. Martin, and Jordan Cox. Reverse engineer-
ing of geometric models - an introduction. Computer-Aided Design,
29(4):255–268, 1997.

[Vos02] George Vosselman. Fusion of laser scanning data, maps, and aerial
photographs for building reconstruction. In Geoscience and Remote
Sensing Symposium. IEEE International, 2002.

[Wal47] A. Wald. Sequential Analysis. Dover, 1947.

[WB68] C. S. Wallace and D. M. Boulton. An information measure for clas-
sification. The Computer Journal, 11(2):185–194, 1968.

[WGE+04] M. Waschbüsch, M. Gross, F. Eberhard, E. Lamboray, and S. Würm-
lin. Progressive compression of point-sampled models. In Pro-
ceedings of the Eurographics Symposium on Point-Based Graphics,
pages 95–102, June 2004.

[WGK05] R. Wahl, M. Guthe, and R. Klein. Identifying planes in point-clouds
for efficient hybrid rendering. In The 13th Pacific Conference on
Computer Graphics and Applications, October 2005.

[WK04] Jainhua Wu and Leif Kobbelt. Optimized sub-sampling of point sets
for surface splatting. Computer Graphics Forum, 23(3):643–652,
2004.

[WK05] J. Wu and L. Kobbelt. Structure recovery via hybrid variational
surface approximation. In Computer Graphics Forum, volume 24,
pages 277–284, 2005.

[WNC87] I. Witten, R. Neal, and J. Cleary. Arithmetic coding for data com-
pression. Communications of the ACM, 30:520–541, 1987.

[WO02] Jianning Wang and Manuel M. Oliveira. Improved scene reconstruc-
tion from range images. Computer Graphics Forum, 21(3):521–530,
September 2002.

145

BIBLIOGRAPHY

[XO93] Lei Xu and Erkki Oja. Randomized hough transform (RHT): basic
mechanisms, algorithms, and computational complexities. CVGIP:
Image Underst., 57(2):131–154, 1993.

[You98] Abdou Youssef. Parallel algorithms for entropy-coding techniques.
NISTIR (NISTIR 6113), December 1998.

[ZPKG02] Matthias Zwicker, Mark Pauly, Oliver Knoll, and Markus Gross.
Pointshop 3D: an interactive system for point-based surface editing.
ACM Transactions on Graphics, 21(3):322–329, July 2002.

[ZPvBG01] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus
Gross. Surface splatting. In SIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and interactive tech-
niques, pages 371–378, New York, NY, USA, 2001. ACM Press.

[ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an ef-
ficient data clustering method for very large databases. In SIGMOD
’96: Proceedings of the 1996 ACM SIGMOD international confer-
ence on Management of data, pages 103–114, New York, NY, USA,
1996. ACM.

[ZTS02] Emanoil Zuckerberger, Ayellet Tal, and Shymon Shlafman. Poly-
hedral surface decomposition with applications. Computers and
Graphics, 26(5):733–743, October 2002.

146

147

DATA SOURCES

DATA SOURCES

Atlas, Digital Michelangelo Project, Stan-
ford University, USA, http://graphics.
stanford.edu/projects/mich/

Box, Holger Wirth, Metronom Au-
tomation GmbH, http://www.
metronom-automation.de

Carter, model is provided courtesy of INRIA and
ISTI by the AIM@SHAPE Shape Repository,
http://shapes.aimatshape.net/

David, Digital Michelangelo Project, Stan-
ford University, USA, http://graphics.
stanford.edu/projects/mich/

148

http://graphics.stanford.edu/projects/mich/
http://graphics.stanford.edu/projects/mich/
http://www.metronom-automation.de
http://www.metronom-automation.de
http://shapes.aimatshape.net/
http://graphics.stanford.edu/projects/mich/
http://graphics.stanford.edu/projects/mich/

DATA SOURCES

Dragon, 3D Scanning Repository, Stanford
University, USA, http://graphics.
stanford.edu/data/3Dscanrep/

Ephesos, Michael Wimmer, TU Vienna,
http://www.cg.tuwien.ac.at/
staff/MichaelWimmer.html

Fandisk, Hugues Hoppe, Microsoft Research,
ftp://ftp.research.microsoft.
com/users/hhoppe/data/thesis/
input_pts/

FemaleWB and MaleWB, Cyberware Inc., USA,
www.cyberware.com

149

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://www.cg.tuwien.ac.at/staff/MichaelWimmer.html
http://www.cg.tuwien.ac.at/staff/MichaelWimmer.html
ftp://ftp.research.microsoft.com/users/hhoppe/data/thesis/input_pts/
ftp://ftp.research.microsoft.com/users/hhoppe/data/thesis/input_pts/
ftp://ftp.research.microsoft.com/users/hhoppe/data/thesis/input_pts/
www.cyberware.com

DATA SOURCES

Graz, courtesy of Heiko Hirschmüller, German
Aerospace Center (DLR) – Institute of Robotics
and Mechatronics. Model was derived by semi-
global matching from Vexcel Imaging GrazTM

imagery.

Industrial compounds, scannTec GmbH & CO.
KG, http://scanntec.com

Master cylinder, model is provided
courtesy of INRIA and ISTI by the
AIM@SHAPE Shape Repository, http:
//shapes.aimatshape.net/

Oil-pump, model is provided courtesy of INRIA
and ISTI by the AIM@SHAPE Shape Reposi-
tory, http://shapes.aimatshape.net/

Rocker arm, Cyberware Inc., USA, www.
cyberware.com

150

http://scanntec.com
http://shapes.aimatshape.net/
http://shapes.aimatshape.net/
http://shapes.aimatshape.net/
www.cyberware.com
www.cyberware.com

DATA SOURCES

Rolling stage, model is provided courtesy
of INRIA and ISTI by the AIM@SHAPE
Shape Repository, http://shapes.
aimatshape.net/

Santa, Cyberware Inc., USA, www.
cyberware.com

St. Matthew, Digital Michelangelo Project, Stan-
ford University, USA, http://graphics.
stanford.edu/projects/mich/

Venus, Cyberware Inc., USA, www.
cyberware.com

151

http://shapes.aimatshape.net/
http://shapes.aimatshape.net/
www.cyberware.com
www.cyberware.com
http://graphics.stanford.edu/projects/mich/
http://graphics.stanford.edu/projects/mich/
www.cyberware.com
www.cyberware.com

DATA SOURCES

152

PUBLICATIONS

• Gerhard H. Bendels, Ruwen Schnabel, and Reinhard Klein. Detail-Preserving
Surface Inpainting. In Pproceedings of The 6th International Symposium on
Virtual Reality, Archaeology and Cultural Heritage (VAST), Eurographics
Association, pages 41-48, Eurographics Association, Nov. 2005

• Gerhard H. Bendels, Ruwen Schnabel, and Reinhard Klein. Detecting Holes
in Point Set Surfaces. In Journal of WSCG, Feb. 2006, 14, pages 89-96

• Ruwen Schnabel and Reinhard Klein. Octree-based Point-Cloud Compres-
sion. In Proceedings of Symposium on Point-Based Graphics 2006, pp.
111-120, Eurographics, July 2006

• Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient RANSAC
for Point-Cloud Shape Detection. In Computer Graphics Forum, June 2007,
26:2(214-226)

• Ruwen Schnabel, Sebastian Möser, and Reinhard Klein. A Parallelly De-
codeable Compression Scheme for Efficient Point-Cloud Rendering. In
Proceedings of Symposium on Point-Based Graphics 2007, pages 214-226,
Sept. 2007

• Ruwen Schnabel, Raoul Wessel, Roland Wahl, and Reinhard Klein. Shape
Recognition in 3D Point-Clouds. In Proceedings of The 16-th International
Conference in Central Europe on Computer Graphics, Visualization and
Computer Vision’2008, UNION Agency-Science Press, Feb. 2008

• Ruwen Schnabel, Roland Wahl, and Reinhard Klein. RANSAC Based Out-
of-Core Point-Cloud Shape Detection for City-Modeling. In Schriftenreihe
des DVW, Terrestrisches Laser-Scanning (TLS 2007), 2007

• Ruwen Schnabel, Sebastian Möser, and Reinhard Klein. Fast Vector Quan-
tization for Efficient Rendering of Compressed Point-Clouds. In Computers
and Graphics, (Apr. 2008), 32:2(246-259)

153

PUBLICATIONS

• Patrick Degener, Ruwen Schnabel, Christopher Schwartz, and Reinhard
Klein. Effective Visualization of Short Routes. In IEEE Transactions on
Visualization and Computer Graphics, Oct. 2008, 14:6(1452-1458)

• Fabian Giesen, Ruwen Schnabel, and Reinhard Klein. Augmented Com-
pression for Server-Side Rendering. In Proceedings of Vision, Modeling,
and Visualization 2008 (VMV 2008), Akademische Verlagsgesellschaft Aka
GmbH, Heidelberg, Oct. 2008

• Roland Wahl, Ruwen Schnabel, and Reinhard Klein. From Detailed Dig-
ital Surface Models to City Models Using Constrained Simplification, In
Photogrammetrie, Fernerkundung, Geoinformation (2008):3(207-215)

• Ruwen Schnabel, Patrick Degener, and Reinhard Klein. Completion and
Reconstruction with Primitive Shapes. In Computer Graphics Forum (Proc.
of Eurographics), Mar. 2009, 28:2(503-512)

• Bao Li, Ruwen Schnabel, Jin Shiyao, and Reinhard Klein. Variational Sur-
face Approximation and Model Selection. In Computer Graphics Forum
(Proc. of Pacific Graphics), Oct. 2009, 28:7(1985-1994)

• Christopher Schwartz, Ruwen Schnabel, Patrick Degener und Reinhard Klein.
PhotoPath: Single Image Path Depictions from Multiple Photographs. In:
Journal of WSCG, Feb. 2010, 18:1-3

• Bao Li, Ruwen Schnabel, Reinhard Klein, Zhiquan Cheng, Gang Dang und
Jin Shiyao. Robust normal estimation for point clouds with sharp features.
In: Computers and Graphics, Apr. 2010, 34:2(94-106)

• Roland Ruiters, Ruwen Schnabel und Reinhard Klein. Patch-based Texture
Interpolation. In Computer Graphics Forum, June 2010, 29:4(1421-1429)

154

	List of Figures
	List of Tables
	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Motivation
	Goals
	Contributions
	Outline
	Preliminaries
	Normals
	Moving Least-Squares Surface
	Primitives

	Primitive Detection
	Introduction
	Previous work
	Vision
	Reverse engineering
	Graphics
	RANSAC

	Overview
	Shape estimation
	Complexity
	Probabilities

	Sampling strategy
	Localized sampling
	Number of candidates

	Score
	Connected components

	Score evaluation
	Random subsets
	Octree

	Refitting
	Out-of-core detection
	Maximal primitive extent

	Alternate score
	Minimum Description Length

	Results
	Noise
	Comparison
	Out-of-core detection
	Alternate score

	Conclusion

	Compression
	Introduction
	Previous work
	Overview
	Compression
	Resampling
	Filtering
	Vector quantization
	Codebook generation
	Hierarchy
	On-disk compression

	Decompression
	Rendering
	Level-of-detail
	Hole-free rendering
	Normal estimation

	Results
	Conclusion
	Limitations and future work

	Recognition
	Introduction
	Related work
	3D city reconstruction
	Graph-based matching
	Matching with local features

	Overview
	Topology Graph
	Shape Matching
	Query graph
	Constrained subgraph matching
	First results
	Query Graph Extensions

	Conclusion
	Future work

	Completion and Reconstruction
	Introduction
	Previous work
	Shape primitive guided completion
	Shape primitive detection

	Primitive adherence
	Discrete global minimization
	Placement of inside and outside constraints

	Primitive connectivity
	Reconstruction of detail
	Surface extraction
	Consistent edge labeling

	Height-fields
	Experimental results
	Conclusion

	Conclusion
	Discussion
	Future work

	Bibliography
	Data Sources
	Publications

