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Introduction

In strategic decision making, the agents’ decisions depend crucially on the information

they have. Less information means more uncertainty about the other agents’ possible

behavior, making strategic decisions more complex. As information has a strategic value,

it seems natural to expect that in competitive environments an agent has an advantage if

his rivaling agents know as little as possible about him. In this thesis, we study competitive

strategic situations where this is not necessarily the case: we look at first-price auctions

and innovation contests in which the participating agents voluntarily reveal information

about themselves.

The value of information depends very much on the specific context. Consider a second-

price auction with independent private values for a single object: every bidder has the

weakly dominant strategy to bid his own valuation – irrespective of his information on

the number of other bidders, the a priori distributions of the other bidders’ values or any

signals about their realized valuations, no matter how precise. This changes drastically in

a first-price auction, keeping everything else fixed: the number of other bidders and the

belief about their valuation has a huge impact on bidding behavior. This makes informa-

tion valuable, and controlling information gives a strategic advantage. An auctioneer for

example might raise his revenue by publishing information on the common value of an

object for sale. Or the agents might optionally acquire the right to investigate the object

and receive a signal about its valuation at some cost. Then, it becomes part of the agents’

strategic decision whether to acquire information – and how precise the information should

be if costs increase with precision.

In the settings studied in this thesis, every agent controls some relevant information about

his valuation (in an auction) or his performance (in a contest). It is the decision of the

agent whether he keeps the information to himself, or, depending on the context, reveals

this information completely or partially. We incorporate this decision in the strategic

considerations of an agent and show that even in highly competitive environments as

first-price auctions and innovation contests agents may benefit from the coordination

that arises when information is revealed voluntarily.

In Chapter 1, information disclosure is discussed in the context of innovation contests. In

an innovation contest, the contest designer seeks to buy a new product which does not

exist so far. The firms participating in the contest have multiple opportunities to develop
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an idea, and the best of all the products resulting from these ideas wins the contest.

The contest designer awards a fixed prize to the winning firm. The prize is known to the

participants in advance.

Particularly, we use the basic model of an innovation contest according to Taylor (1995),

where the research process is modeled as being random: in each round, firms can pay

a fixed cost to get an innovation and the quality of the innovation is realized according

to a draw from a probability distribution. The possible maximum number of research

draws (the number of rounds) is fixed in advance, e.g. due to time constraints. The firms

can make their decision whether to conduct research or not contingent on the results of

the previous rounds. In our basic model, we focus on the case with two firms and two

research rounds and add a new element: the revelation of intermediate research results.

The main decision influenced by the presence of additional information is whether to

continue research in the second period, after having developed a first innovation in period

one. If the revelation of the first-period research results is mandatory, the ranking of the

realized first-period research qualities is of major importance. If a firm has a medium

quality, she will only possibly continue if she is behind – a leading firm with a medium

quality will stop innovating and hopes to win without further effort. Furthermore, contrary

to the case without information revelation, firms with very good research results are able

to deter the opponent from continuing his research. Overall, due to this coordination effect

firms need less research effort in expectation if the additional information on first-period

results is available. If everything else is kept fixed, firms thus prefer to participate in a

contest with mandatory information revelation compared to a contest without information

revelation, as research costs are lower while the prize stays the same.

Nevertheless, from the contest designer’s perspective the coordination effect on research

is not large enough to make up for the loss in research effort by the firms. He thus

prefers if firms do not reveal their intermediate research results, as the expected quality

of the best innovation is higher without information disclosure. As a consequence, contest

designer and research firms have opposing interests with regard to the revelation policy.

Is it possible for the firms to establish voluntary revelation in an equilibrium, such that no

firm has an incentive to keep the own information secret and profit from the information

revealed by the other firm? We analyze two different ways of doing so: in the first way,

firms can play a game ex ante, where they simultaneously decide whether they want to

commit on revealing the quality of their first-period innovation after learning it. In the

second way, the decision is made after the first period, when firms already learned the

value of their first innovation. In both cases, voluntary revelation emerges in equilibrium.

This result is robust to a different innovation technology, where the innovation in the

second period is an improvement of the first-period innovation. Furthermore, we extend

the result to n firms and to m periods.

In Chapter 1, firms either reveal the value of their first-period innovation completely or
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not at all. Alternatively, values could be revealed partially by sending informative signals.

This approach is of particular interest when it is not beneficial for an agent to fully reveal

his private information to the opponent. In Chapter 3, Signaling in First-Price Auctions,

we study the incentives for partial information revelation of two bidders in a standard

first-price auction with independent private values. It is quite intuitive that full revelation

of the own valuation is not beneficial: if the valuation is high, this will increase the bid

of the opponent. If the valuation is low, the opponent can safely reduce his own bid to

increase his winnings, incuring only a minor increase in the risk of losing compared to

the potential gain. Things are not so clear if a bidder sends out a signal about his own

valuation which contains a medium amount of information. Such a signal can realize to

a high value although the true valuation is low, making the opponent believe that the

sending bidder is strong although he is weak – and vice versa. It is still a bad thing for the

sending bidder if he is believed to be strong, may it be true or not, as this will increase

the bid of his opponent. However, if the signal is of medium precision, chances are that

the sending bidder is believed to be weak although he is strong. Then, the opponent will

choose a lower bid, increasing the potential gain of the sending bidder. From a quantitative

perspective, it is not clear which of these two effects is dominating without further analysis.

The aim of Chapter 3 is to quantify the gain or loss from sending informative signals on

the own valuation, depending on the nature of the signals.

It can be profitable to release an informative signal – this is the first major insight of the

chapter. It is derived from a simple discrete auction model, where bidders’ valuations are

drawn from a finite set. For a particular class of signals, we calculate the expected revenue

of using the signals depending on their precision. Starting from an uninformative signal,

increasing the signaling precision also increases the expected revenue up to the optimal

revenue, which is given for a signal of medium precision. If the precision is increased

further, expected revenue declines – and the profitability of signals gets lost when they

are too precise. This is the second major insight: signaling is not beneficial if it is very

precise. In a general context, we show this result for an auction model with a continuous

typespace and a wide range of possible signal distributions. In this model, the support

of the signals is an interval around the true valuation. For different realizations of the

valuation, the densities of the signals have the same shape, but they are shifted such

that the true valuation is in the middle of the support. We use the length of the support

interval as a measure for the precision of the signal. Depending on the signal distribution

we derive a bound on the signal precision: if the signal is more precise than this bound,

it is not profitable to use it. Such a bound exists for all signals with a positive density,

leading to the general result that signaling is not profitable if it is too precise.

The major difficulty of analyzing the case of continuous typespaces is given by the asym-

metric auction that is played after the release of a signal – the updating of beliefs according

to the additional information breaks the symmetry of the bidders. To exactly pin down the
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quantitative effects of signaling for all precisions, explicit knowledge on the equilibrium

strategies in the corresponding asymmetric auctions is needed. So far, only little is known

about these explicit strategies. We are thus restricted to focus our analysis on uniform

signaling distributions, where the equilibrium strategies are known: in this case, we show

that signaling is never profitable, no matter how precise the signal is. However, it is likely

that this negative result is driven by the assumption of a uniform distribution. Signals

that extend the peak-shaped form of the signals in the discrete case are good candidates

for being profitable in the continuous case as well.

Chapter 2, Ascending Combinatorial Scoring Auctions, takes a different perspective – the

auctioneer is in the focus of the analysis. He is a manufacturer and wishes to acquire

multiple components necessary to construct his product. Thus, he makes use of a reverse

multi-unit auction with package bidding. Additionally, for him, not only the price of the

components is important, but also their quality. Consequently, the bids of the potential

suppliers specify prices and qualities. These price-quality combinations are evaluated by

means of a function, the scoring rule. It is fixed in advance and aggregates the preferences

of the auctioneer over a set of bids to a single number, the score. The winning bids

maximize this score. We depart from the standard auction framework by allowing the

qualities of the components to be interdependent: for example, a fast delivery time of

one component is only valuable if the other components are delivered quickly as well.

These interdependencies are reflected in the scoring rule. Particularly, the values of bids

of different suppliers now dependent on each other as well: the score generated by a bid

offering fast delivery may change drastically, depending whether the other bidders offer

fast delivery on complementing components as well or not.

It is the goal of this chapter to provide an auction format that is able to deal with interde-

pendent scoring rules. The first obvious candidate, the Vickrey-Clarke-Groves mechanism,

is not able to guarantee the auctioneer a nonnegative payoff. We thus look at a different

mechanism, the Ausubel-Milgrom proxy auction. In this auction, a proxy bidder bids in

an ascending process on behalf of the real bidders according to a predefined strategy: it

bids myopically on all packages currently promising the highest potential payoff. We adapt

this auction to interdependent scoring rules basically by additionally allowing the proxy

bidder to simultaneously submit several bids on the same set of items, but with different

qualities. For example, a bidder could ask for a low price if he is allowed to deliver an

object slowly, but simultaneously offer to deliver the object faster for a higher price.

We show that this modified version maintains some of the desirable properties of the

Ausubel-Milgrom proxy auction: equilibria in profit-target strategies exist, the final allo-

cation maximizes the surplus and the payoff vector is in the core. Furthermore, the scoring

rule used to evaluate the bids may contain valuable information about the auctioneer for

his competitors, providing an incentive not to reveal it. We discuss the properties of secret

scoring rules: it is possible to keep the scoring rule secret without changing the outcome of
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the auction and a universal equilibrium strategy, truthful reporting, exists for a particular

class of scoring rules. Additionally, for additive scoring rules there is a close connection

to the original proxy auction.

The possibility of keeping the scoring rule secret connects Chapter 2 with Chapter 3:

assume the manufacturer of Chapter 2 is himself competing in a first-price auction to sell

his product. Before bidding in the first-price auction, he acquires the components for his

product using our modified Ausubel-Milgrom proxy scoring auction. The quality of his

product, and thus his type in the first-price auction, depends on the result of the Ausubel-

Milgrom scoring auction. Particularly, a public scoring rule provides his competitors in the

first-price auction with some noisy information about his type – this is corresponding to

the informative signal of Chapter 3. As long as the result of the Ausubel-Milgrom scoring

auction is the same for both a public and a secret scoring rule, the decision whether to

make the scoring rule public or not depends on the profitability of the signals generated

by a public scoring rule, as analyzed in Chapter 3.





Chapter 1

Information Disclosure in Innovation

Contests

1.1 Introduction

Contests have been used to stimulate research in a variety of contexts: from refrigerators

over computer programs to aerospace research. To win the contest, only the best final

innovation of all competitors matters. Nevertheless, if the progress of the participating

firms is publicly known, intermediate stages of the research process already reveal interim

leaders. This knowledge influences future research efforts. It is thus important to identify

the impact of intermediate information revelation both from the participants’ and from

the contest designer’s viewpoint. Intuitively, information disclosure has two major op-

posing effects on research effort. On the one hand, the publication can serve as a kind of

positive coordination device for the participants, prohibiting excessive research: a firm will

decrease research effort due to the observation of a very valuable or a worthless innovation

made by her opponent. On the other hand, the additional information can also expand

research effort: if the competitor of a firm turns out to unexpectedly have a slightly better

innovation, a firm might discover the need for an improvement.

From the firms’ perspective, the disclosure policy leading to lower research costs is prefer-

able. In contrast, the contest designer cares about the value of the best innovation. In this

chapter, we use a contest model with multiple stochastic research opportunities to com-

pare two settings: obligatory intermediate information revelation by the firms opposed to

keeping their progress secret. Both the firms’ and the contest designer’s view are analyzed.

Furthermore, we study the possibility of endogenous information revelation.

Examples for information disclosure in contests occur in different areas. When a new

drug needs to be developed, different pharmaceutical firms conduct research. To test the

effectiveness of a new drug – and thus its chances of beating the rivals’ developments –

firms conduct clinical trials. These trials can be publicly registered in a trial registry like
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clinicaltrials.gov, giving also the opportunity to post a short result summary. Specifically,

for drugs, biologics and medical devices regulated by the US Food and Drug Administra-

tion, U.S. Public Law forces sponsors of clinical trials to post results on their effectiveness

in such a trial registry1. Additionally, some voluntary disclosure of research results takes

place in the trial registries and peer-reviewed journals. Similarly, the performance of par-

ticipants in the Netflix Prize (www.netflixprize.com) can be seen on a public leaderboard.

Netflix, a popular video renting company, pays a prize of $1,000,000 for a new algorithm

to predict the movie preferences of a user based on the past ratings he submitted. The

accuracy of an algorithm is measured by a single number, which can only be ascertained

by submitting the algorithm to the website. Interestingly, the website publishes the best

result of each contestant automatically.

To capture the influence of intermediate information revelation on the participants’ in-

centives to innovate, we compare two settings in the framework of an innovation contest,

which only differ in the treatment of intermediate information. We model an innovation

contest in the spirit of Taylor (1995): two firms have the possibility to make stochastic

innovations at a fixed cost. Firms can develop up to two independent innovations. They

decide sequentially whether they innovate or not. As it is common in contests, only the

best of all innovations wins a fixed prize. The main decision problem of a firm appears

after the first innovation is made: how good are the chances to beat the other firm with

the current innovation? Should a second one be developed? Of course, information on the

quality of the opponent’s innovation has significant impact on the firm’s decision. Hence,

we compare two different versions of the model: in the benchmark setting, following Tay-

lor (1995), no information about the first innovations is revealed. In our basic setting,

intermediate information disclosure is mandatory. We extend it to include the possibility

of voluntary information revelation, the main focus of this chapter.

In most of the chapter, a key assumption is the independence of innovations. It is mo-

tivated by interpreting different innovations as substantially different ideas that have to

be explored independently. Specifically, we treat one innovation as fully developed and

neglect small improvements due to extended research on an already completed innova-

tion2. Consequently, in case of information revelation, the model does not leave room for

spillovers between the firms. In a sense, spillovers are assumed to be smaller than the

difference between firms’ innovation values and would thus have no effect on the contest

winner anyway. This is also in line with the revelation policy in both examples. There,

only simple summary statistics of the contestants’ performances are publicly available.

Hence, competitors know how good their opponents are – but they do not know how

they did it, so no direct spillovers are possible. Furthermore, in an extension of the basic

1see e.g. Groves (2008)
2Another way to think about independent innovations is the proof of a theorem: one approach might

fail and its a completely different one that will lead to a success.
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model, we use a different interpretation of a multi-round innovation contest and model

the innovation process as an improvement of a single idea over several stages.

Surprisingly, only very mild assumptions on the distribution of innovation values are

needed for the analysis of the basic model, which has two firms and two periods. In fact,

the results essentially turn out to hold true independent of the specific functional form

of the distribution of innovation values. Instead, the relative size of the final prize to the

cost of developing an innovation is the most important parameter for the firms’ incentives.

The analysis of the basic model with mandatory information disclosure shows that both

firms innovate in the first period in case the prize is not too low compared to the costs

of developing an innovation. Then, second-period equilibrium behavior depends on the

value of the first-period innovation according to two cutoffs: if one firm has an innovation

value in the high range, the leading firm is confident to win, while the probability for

the following firm to develop something better is too low compared to the costs. Hence,

both stop innovating. Similarly, if the highest innovation is in the intermediate range,

only the follower continues to innovate – and if both innovations are below the lower

cutoff, both firms continue. We show that the total number of innovations – and thus

the research costs – is lower in this equilibrium compared to the equilibrium with secret

innovation values. Thus, there is a coordination effect which is favorable for the firms:

a contest with information disclosure leads to lower expected research costs and thus a

higher expected payoff for the firms. Yet, this does not necessarily mean that the prize

sponsor prefers the setting without information disclosure: he cares about the expected

value of the highest innovation, which is different from the total number of innovations.

As firms stop innovating when they observe a high innovation value, the coordination

effect could be strong enough to compensate for the lower total number of innovations.

We show that this is not the case if the prize/cost-ratio is sufficiently high. Consequently,

the prize sponsor gets a higher expected innovation in the setting without information

disclosure. If a prize sponsor is able to enforce this secrecy, he should thus do so. However,

if he does not do so, firms might be willing to voluntarily reveal their first-period value.

We pursue this question by modeling voluntary disclosure in two different ways: in the

first version, the firms decide in an ex ante-game whether they are going to reveal after

the first period or not. In the second version, the decision to disclose is delayed until firms

learn their first-period innovation value. In both cases, it turns out that there is essentially

a unique equilibrium in which both firms disclose. Continuing this train of thought, the

voluntary revelation has consequences for the contest designer: if he chooses the size of

the prize optimally, he should choose it with respect to the setting where information is

revealed in case he does not prevent voluntary disclosure. We also prove the existence of

an equilibrium with voluntary revelation in case there are n firms or m periods.

In the extension with improving innovations, given mandatory information revelation the

decision whether to continue research in the second period does not only depend on the
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leader’s value, but also on the value of the runner-up. The cutoffs identified for the basic

model still exist qualitatively but change in their quantitative value. Particularly, the

incentives to continue research increase for the firms, as it becomes more likely that the

runner-up can produce a better second-period innovation. Nevertheless, the main result of

this chapter carries over to this setting with improving innovations: there is an equilibrium

where firms voluntary reveal their own value.

This chapter extends the analysis of research tournaments by Taylor (1995). In his model

with a secret innovation process, there is a unique symmetric equilibrium in which firms

continue to innovate if their best innovation value does not exceed a certain threshold.

Due to the information disclosure, which we introduce in our version of the model, a

second cutoff value arises – the contestants are able to coordinate. Of course, the approach

followed by Taylor (1995) is not the only one to model research contests. For example,

Che and Gale (2003) find the optimal contest to be an auction given a deterministic

research technology, Schoettner (2008) builds on the famous model by Lazear and Rosen

(1981) to show that given a stochastic innovation technology, fixed-prize contests may in

fact be superior to a first-price auction. Also building on Taylor (1995), Fullerton et al.

(2002) study auction-style research tournaments. Finally, Baye and Hoppe (2003) show

that there is a strategic equivalence between different models of rent-seeking, patent races

and innovation contests.

The idea of intermediate revelation of research results is also studied by Gill (2008) in

the context of patent contests with exogenously given leader and follower. In his model,

research is a two-stage process where both steps are necessary to develop a single in-

novation. We use value distributions similar to his distributions in our extension with

improving innovations. In Gill’s model, the leader decides whether or not to disclose his

performance after the first stage. Then, the follower may choose to drop out after the first

stage. Whether or not the leader discloses depends on the research costs. By contrast,

in our model leader and follower are endogenously determined, as multiple innovations

can be developed. Furthermore, in Gill (2008) the patent winner is determined randomly,

while in our model the best innovation wins for sure. In Aoyagi (2010) all information on

intermediate performance is controlled by the contest designer. Related to our model, per-

formance is stochastic. Furthermore, it is additive over the two rounds, while we mostly

consider multiple independent innovations. The optimal feedback policy to the partici-

pants regarding this information is derived – it depends on the shape of the cost function

whether a no-feedback or a full-feedback policy is optimal. In a related paper, Gershkov

and Perry (2009) study the design of midterm reviews. Given a fixed prize, it is always

optimal to have such a review, if the results of intermediate and final review are optimally

aggregated.

This chapter also connects to the literature on multiple-round contests. In Konrad and

Kovenock (2009), contestants have to win several component contests, modeled as all-pay
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auctions, to win the overall prize. Contrary to our model, the follower is not fully dis-

couraged from continuing the contest even if he is far behind. Moldovanu and Sela (2006)

investigate how to split contestants over sub-contests where only the winners continue

to compete. In Yildirim (2005), building on work by Dixit (1987), heterogeneous partici-

pants can split their effort over two rounds with observable first-round effort. Similar to

one result in this chapter, information disclosure can be endogenized by an ex ante game:

agents can choose between non-observable effort (which equals one-shot play there) or

two-round effort with intermediate revelation. In equilibrium they decide to reveal effort.

In our model, we also get voluntary revelation – however, it is revelation of (stochastic) in-

novation values and not of effort. Furthermore, our model does not boil down to one-shot

play in case of secret intermediate results.

Finally, an experimental study of information disclosure is provided by Ludwig and Lu-

enser (2008). They compare two settings with and without intermediate information re-

lease, where equilibrium play is not affected by the information structure. Nevertheless,

subjects in the experiments behave differently if they observe their opponent’s effort.

The chapter is organized as follows: the basic model and equilibrium behavior with in-

formation disclosure is presented in Section 1.2. We compare it to the benchmark case

without disclosure in Section 1.3. In Section 1.4 we endogenize information revelation.

Extensions with a second innovation that improves the first one and with n firms and m

periods are considered in Section 1.5. Finally, we conclude in Section 1.6. Proofs can be

found in Appendix 1.A.

1.2 The Model and Equilibrium Derivation

We consider two risk-neutral research firms, i = 1, 2. They compete in an innovation

contest to win a fixed prize p > 0. Firms are assumed to know the prize sponsor’s utility

function over research outcomes. Both firms have an innovation technology similar to Tay-

lor (1995): research is modeled as drawing an innovation x out of a probability distribution

F with strictly positive density f . F is defined on [0, b] with b ≤ ∞. Each innovation draw

is associated with a cost of c > 0 for each firm. Firms are not capital constrained. There

are two periods t = 1, 2 in which firms may innovate. Innovation values xti are independent

across periods and firms. For each firm, only the best draw (max{x1
i , x

2
i }) is relevant for

the contest. The firm with the highest draw wins the contest and the prize of p. Ties

are randomly broken. We assume that innovations that do not win have a value of zero

outside the contest, so that loosing innovations cannot be sold afterwards. In contrast to

Taylor (1995), in the basic version of our model we assume in the spirit of Yildirim (2005)

that first-period innovations become common knowledge after both firms have made their

decision whether to conduct research or not, and have taken their draw.
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We first analyze equilibrium behavior of the two firms. We look for subgame perfect Nash

equilibria by backward induction and thus start with the second period. First note that for

p < c both firms would make a loss from conducting research. Thus, both do not conduct

any research (neither in the first nor in the second period). Consequently, we focus on the

case c ≤ p. Additionally, we will narrow the reasonable prize/cost combinations further

down later.

1.2.1 Second Period

Suppose at least one firm has taken a draw in the first period, such that one of the two

firms has taken the lead, x1
H > x1

L ≥ 0. H stands for the firm with the higher first round

innovation (the leader) and L for the firm with the lower innovation (the follower). We

calculate best responses:

If the follower does not continue to innovate, it is a best response for the leading firm to

stop innovating as well – she will win in any case.

So suppose now the firm with the higher value does not draw again. Then, the firm with

the lower value wants to continue if the following condition holds:

P
(
x2
L > x1

H

)
p− c ≥ 0 ⇐⇒

(
1− F

(
x1
H

))
p− c ≥ 0 ⇐⇒ F

(
x1
H

)
≤ 1− c

p
.

This inequality defines a threshold x∗ indicating an innovation high enough to make all

firms stop research. x∗ solves the following equation:

F (x∗) = 1− c

p
. (1.1)

Then, if some x > x∗ is drawn by any of the two firms, the contest stops immediately and

no new research will be conducted in the second round: the follower has no incentive to

draw again if the leader has already drawn such a high innovation. Then, the leader will

obviously not draw again as well.

Now consider the case x1
H ≤ x∗, such that the firm with the lower value wants to draw

again if the leader does not. What is the best response of the leader against the drawing

follower? The firm with the higher value wants to draw again as well if the following

condition holds: [
P
(
x2
H > x2

L > x1
H

)
+ P

(
x1
H > x2

L

)]
p− c ≥ P

(
x1
H > x2

L

)
p

⇐⇒ 1

2

(
1− F

(
x1
H

))2
p− c ≥ 0

⇐⇒ F
(
x1
H

)
≤ 1−

√
2
c

p
.

This inequality defines a threshold x̄ making both firms innovate again if there is no

innovation above it. x̄ solves

F (x̄) = 1−
√

2
c

p
(1.2)
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and note that x̄ < x∗. What is the best response of the follower against a leader drawing

again for x1
H ≤ x̄? Drawing again is a best response according to the following condition:

P
(
x2
L > x1

H , x
2
H

)
p− c ≥ 0

⇐⇒
[

1

2

(
1− F

(
x1
H

))2
+
(
1− F

(
x1
H

)) (
F
(
x1
H

))]
p− c ≥ 0.

(1.3)

We know that
1

2

(
1− F

(
x1
H

))2
p− c ≥ 0

because x1
H ≤ x̄. Hence, (1.3) is fulfilled. Consequently, the follower wants to draw again

in the second round as well. This is intuitive: the leader already has an advantage after

the first round, so incentives for the follower to draw again are even higher.

We summarize our findings in the following proposition:

Proposition 1.1 Given first-period innovations x1
H > x1

L, there are the following second-

period equilibrium strategies:

• If x1
H > x∗ both firms stop their research effort and the contest ends after the first

period.

• If x∗ ≥ x1
H > x̄ only the follower conducts research in the second period.

• If x̄ ≥ x1
H both firms conduct research in the second period.

Note that for small prize values p < 2c we get x̄ < 0, thus, the leader will never draw

again in the second period. Furthermore, the proposition implies that there are no mixed

equilibria:

Corollary 1.2 Given first-period innovations x1
H > x1

L there is no second-period equi-

librium in which players mix at values other than x̄ and x∗. Thus, the equilibrium in

Proposition 1.1 is almost everywhere unique.

It follows immediately from Proposition 1.1 that a leading firm with x1
H > x̄ does not

do any research irrespective of the following firm’s behavior and is thus playing a pure

strategy. Similarly, a follower with x1
L < x̄ will always do research. Thus, neglecting the

cutoff values, there is always at least one firm playing a pure strategy, with a pure best

reply by the other firm according to Proposition 1.1.

Let us now consider the case that both firms did not innovate in the first period, which

is important for the calculation of first-period equilibrium behavior.

Proposition 1.3 Suppose both firms did not innovate in the first period. Then, there are

the following second-period equilibrium strategies:
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• If p ≤ 2c, there is an equilibrium where both firms do not conduct any research in

the second period.

• If p ≥ 2c there is an equilibrium where both firms conduct research in the second

period.

The proof is given in Appendix 1.A. Note that if at least one firm takes a draw in the

first period, a tie appears with zero probability, and thus second-period equilibrium play

is almost everywhere unique in the sense of Corollary 1.2 for almost all possible first-

period realizations. For this reason, we can safely skip the calculation of equilibria in case

x1
1 = x1

2: this case will appear with zero probability given any first-period play and we

will thus not need it in future calculations.

1.2.2 First Period

The first-period pure-strategy equilibria can be now derived, taking into account second-

period equilibrium play. As the main focus of this chapter is on information revelation

after the first period, we are especially interested in the conditions under which both firms

start innovating in the first period. If they do not innovate in the first period, information

revelation is only of minor interest. It turns out that the size of the prize compared to

the innovation costs is the crucial parameter for first-period innovation to take place. We

make use of the following short notations: r := c
p

and s :=
√

2r.

Proposition 1.4 Let v∗ be the solution of the following equation:

1

6
− v∗ +

2

3
v∗
√

2v∗ − 1

2
(v∗)2 − 1

2
(v∗)3 = 0

Then, v∗ < 1
2

and in the first period, we get the following pure-strategy equilibrium behavior

with firms continuing in the second period as described in Proposition 1.1:

• For r > 1
2

both firms do not conduct any research in the first period.

• For 0 < r < v∗ both firms conduct research in the first period.

• For 1
2
≥ r > v∗ equilibrium behavior is asymmetric – one firm conducts research,

the other does not.

Proof See Appendix 1.A. �

Numerically, v∗ is given by v∗ ≈ 0.2428 and by Proposition 1.4 both firms conduct research

if c
p

= r < 0.2428. This means that a prize value of p ≈ 4c is high enough to ensure the

maximum amount of research in the first period.
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The proposition shows that if the prize is too low compared to the costs, both firms

will invest neither in the first nor in the second period. Additionally, there are two pure-

strategy equilibria if r takes intermediate values. Furthermore, there is a more prominent

symmetric mixed strategy equilibrium in this case as well, which we do not calculate here

because we focus on r < v∗ in the following: we are interested in information revelation

with firms in fact doing research in the first period. This problem has no meaning if the

setting is such that firms do not have full incentives to invest in the first period – and

these incentives are already given at a very reasonable prize level. There is thus no need

to consider the mixed equilibrium here.

1.3 Comparison with No Information Release

In this section, we compare the setting with information release after the first period,

which we just analyzed, with the setting known from the literature (Taylor 1995) where

information is kept secret after the first period. We want to find the preferred setting

for both the firms and the contest designer. First, we compare the settings from the

perspective of the firms, then we turn to the contest designer.

1.3.1 Firms’ Perspective

To analyze the firms’ perspective, we compare the expected number of innovation draws in

the setting with information revelation to no information revelation after the first period

– firms prefer the setting with lower research costs, which means less innovation draws

in this context. The first step is to calculate the expected number of draws dR(r) in the

equilibrium with information release, given that both firms do research in the first period.

Proposition 1.5 Given r < v∗ the expected number of draws in equilibrium fulfills

dR(r) = 4− 2s+ r2.

Proof See Appendix 1.A. �

We now come back to the setting of Taylor (1995), where no information is released. He

shows that there is a unique equilibrium in which firms play a stopping strategy with

stop value z: they take draws as long as they do not have an innovation that exceeds z

and stop as soon as an innovation exceeds z. However, Taylor does not calculate the z

explicitly but characterizes it implicitly. We rewrite his implicit characterization to make

it suitable for our purposes. According to Proposition 2 in Taylor (1995), z is the solution

of the following equation:

0 = p

∫ b

z

[
F 2(z) +

(
1− F 2(z)

) F (x)− F (z)

1− F (z)
− F 2(z)

]
dF (x)− c.
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Calculating the integral, this can be rewritten as follows:

0 = p (1 + F (z))

[∫ b

z

F (x)f(x)dx− F (z)

∫ b

z

f(x)dx

]
− c

= p (1 + F (z))

[
1

2

(
1− F 2(z)

)
− F (z) (1− F (z))

]
− c

= p
1

2
(1 + F (z)) (1− F (z))2 − c

⇐⇒ 0 = (1 + F (z)) (1− F (z))2 − 2r (1.4)

The first line follows by factoring out 1+F (z) and changing the notation of the integration.

The second line uses integration by parts. Unfortunately, the explicit solution of this

equation is quite messy. The following lemma gives a feeling of the size of z.

Lemma 1.6 For p > 2c the stop value in the setting without information release is

between the two thresholds of the setting with information release, x̄ < z < x∗.

Proof See Appendix 1.A. �

We make a comparison between the setting of Taylor (1995) and our setting. As the

expected number of innovations a firm makes represents her cost, we compare the number

of draws the firms take in expectation in each setting. For our case with information

revelation we already calculated the expected number of draws (dR(r), Proposition 1.5).

For the setting without information revelation, the expected number of draws can be

written as dNR(r) = 2(1 + F (z)) (a firm is drawing again if and only if the first period

value did not exceed z, this happens with probability F (z)). z is implicitly defined by

(1.4) for a given r.

Proposition 1.7 Considering 0 < r < v∗, the expected number of draws dNR(r) in case

no information is revealed after the first period is larger then the expected number of draws

dR(r) in case information is revealed, dNR(r) > dR(r).

Proof See Appendix 1.A. �

We immediately get the following corollary, as both players win in expectation 1
2
p in

equilibrium in both settings, but have lower costs in the setting with information disclosure

because they take less draws:

Corollary 1.8 For 0 < r < v∗, both research firms prefer the setting with information

disclosure over the setting without information disclosure.

Note that r < v∗ is exactly the range of r-values guaranteeing research draws by both

firms in the first period. This is the range we focus on as revelation decisions after the

first period are only interesting if firms do innovate in the first period.
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1.3.2 Designer’s Perspective

From the prize sponsor’s perspective, a higher number of innovation draws is in principle

favorable, as more draws suggest a higher expected final prize. However, it is not obvious

that this relationship really holds in this context: draws are taken conditional on already

realized innovations. Thus, if a draw is not taken, a good innovation has already been

made. But the equilibrium decision rules whether another draw is taken differ between

the two settings. Thus, a higher number of draws is an indicator for a higher expected

final innovation, but does not allow a sure conclusion.

The key to the comparison from the designer’s perspective is the highest expected inno-

vation generated by the two different settings. The designer prefers the setting yielding

the higher one.

To calculate the highest expected innovation for the two settings, we need the respective

distribution functions of the highest innovation. In the setting without information release,

the two firms are innovating independently. Let Φ be the distribution of the highest

innovation for a single firm. Then, the joint distribution is given by Φ2. Using the result

by Taylor (1995) regarding Φ, we get

Φ2(x) =

F 4(x) if x ≤ z

(F (x)− F (z) + F (z)F (x))2 if x > z

For the setting with information revelation, the two firms do not innovate independently.

The distribution Ψ of the joint highest innovation has the following structure, given the

equilibrium play of the two firms – they both draw in the first period as we assume r < v∗:

Ψ(x) =


F 4(x) if x ≤ x̄

A if x̄ < x ≤ x∗

B if x∗ < x

Denote the highest innovation in period j by xj(1). Then, A and B are given according to

A = P
(
x1

(1) < x̄
)
P
(
x2

(1) < x
)

+ P
(
x̄ < x1

(1) ≤ x
)
P
(
x2

(1) < x
)

= F 2(x)F 2(x̄) + F (x)
(
F (x)2 − F (x̄)2

)
B = P

(
x1

(1) < x̄
)
P
(
x2

(1) < x
)

+ P
(
x̄ < x1

(1) < x∗
)
P
(
x2

(1) < x
)

+ P
(
x∗ < x1

(1)

)
= F (x)2F (x̄)2 − F (x)F (x̄)2 + F (x)F (x∗)2 + F (x2)− F (x∗)2

Given these distribution functions, we can calculate which setting provides the higher

expected innovation – no information revelation is preferred if the following condition

holds: ∫ b

0

1− Φ2(x)dx ≥
∫ b

0

1−Ψ(x)dx ⇐⇒
∫ b

0

Φ2(x)−Ψ(x)dx ≤ 0. (1.5)
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Note that, different to the results from the firms’ perspective, it depends on F whether

condition (1.5) is fulfilled or not. This is because the designer cares about the absolute

value of the innovations, while the firms care about their relative ranking. Additionally,

the size of r is crucial for the profitability of the settings. We provide a bound on r such

that (1.5) is fulfilled independent of F . This bound is called v′:

Theorem 1.9 The expected value of the highest innovation is larger in the setting without

information revelation if r < v′ holds. Then, this setting is preferred by the prize sponsor.

The derivation of v′ can be found in Appendix 1.A. It basically uses a stochastic dominance

argument: the integrand of the integral on the left-hand side of (1.5) is shown to be

negative on the whole interval [0, b] when r < v′ = 0.1647. However, this bound is in

general not binding, as the solution to (1.5) (with equality) differs for each F . For example,

for F being the uniform distribution on [0, 1], a calculation of (1.5) shows that the designer

prefers the setting without information revelation for all relecant r-values (r < v∗).

1.4 Endogenous Information Release

We have seen in the previous section that firms prefer the setting with information dis-

closure after the first draw to the setting without information disclosure. However, the

contest designer has opposite preferences, and he is the one to choose the setup. This

raises the question whether firms could play the information revelation setting by volun-

tary revelation of their first-period innovation value.3 We take two approaches to model

this: first, we extend our model by adding a stage zero where firms can ex ante decide

whether to disclose the level of their innovation after the first draw or not. This is an

extension in the spirit of the analysis in Yildirim (2005). Second, we consider an inter-

mediate decision, where the firms only decide whether they disclose the information after

having observed the value of the first-period innovation.

1.4.1 Ex Ante Decision

We add an initial stage zero in which the firms simultaneously decide whether to reveal

their information (action R) or whether they do not reveal (action N). The decision is

observable. It is our goal to identify equilibria of this simultaneous-move game to find out

whether the analysis in the previous sections can be supported by endogenous information

revelation. This would be the case if (R,R) is an equilibrium of this game. In case both

firms play R, the contest following afterwards is the same as the one described in the

previous sections. Hence, we already know the corresponding equilibrium strategies. The

3We implicitly assume that the contest designer either does not set rules to prevent voluntary revelation

or is not able to enforce such rules.
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same holds true in case both firms play N . Then, we are back in the setting of Taylor

(1995). To derive the best responses in this initial stage, we need to deduce the equilibrium

strategies in the case of asymmetric information revelation. In the resulting contest, one

firm reveals her first draw, the other one does not. We will analyze equilibria by backward

induction. To provide incentives for research, we focus on the main case p > 2c in the

following, and assume thus r < 0.5.

For the second-period equilibrium, we take the first draw as given. One firm has played R

in the initial stage, we denote her draw by x1
R and call her firm R. The draw of the firm

playing N (short: firm N) is denoted by x1
N .

Proposition 1.10 In the setting with asymmetric information release, given first-period

innovations x1
R and x1

N , there are the following second-period equilibrium strategies:

• Firm R takes a second draw iff x1
R < z.

• Firm N takes a second draw iff x1
N < x1

R < x∗ or x̄ > x1
N > x1

R.

In case firm N does not take a draw in the first period, it is the best reply for firm R to

take a second draw iff x̄ > x1
R. Firm N takes a draw in the second period if x1

R < x∗.

In case firm R does not take a draw in the first period, it is the best reply for firm N to

take a second draw iff x̄ > x1
N . Firm R always takes a draw in the second period.

Proof See Appendix 1.A. �

Roughly speaking, firm R thus behaves as in the setting with no information release,

while firm N plays the same strategy as with full information release. If both firms do not

innovate in the first period, they both take a draw in the second period, as we assumed

p > 2c. Note that Proposition 1.10 w.l.o.g. ignores the case x1
R = x1

N for values larger

than zero, as it appears with zero probability – it is thus not payoff relevant and we can

safely omit it here.

The first-period equilibrium behavior can be summarized as follows (again, we do not

calculate possible mixed equilibria, as we later on focus on r-values inducing an equilibrium

with research in the first period):

Proposition 1.11 Let v̂ be the solution to the following equation:

− 1

24
− 1

3
v̂3 +

1

2
F (z)− 1

4
F (z)2 − 1

6
F (z)3 +

1

8
F (z)4 − F (z)v̂ = 0

where F (z) is determined by (1.4) with r = v̂.

Furthermore, let ṽ be the solution to

1

6
− 2ṽ − 1

2
ṽ2 − 1

6
ṽ3 + 2

√
2ṽṽ − 1

2

√
2ṽṽ2 = 0.
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Then, in the first period of the contest with asymmetric information disclosure we get the

following pure-strategy equilibrium behavior with firms continuing in the second period as

described in Proposition 1.10:

• For r < v̂ there is an equilibrium where both firms draw in the first period.

• For 0.5 > r > ṽ there is an equilibrium where firm R draws in the first period and

firm N does not.

• For 0.5 > r > v̂ there is an equilibrium where firm N draws in the first period and

firm R does not.

The proof is given in Appendix 1.A. Numerically, we can approximate v̂ ≈ 0.2623 and

ṽ ≈ 0.1722. Note that firm R plays different strategies in the two equilibria involving a

draw by firm R: as Proposition 1.10 shows, firm R will continue to innovate in less cases

if firm N does not innovate in the first period. Consequently, the best reply of firm N is

affected by the change in strategy, yielding two different equilibria involving a draw by

firm R in the range ṽ < r < v̂. We focus in our analysis on the symmetric equilibrium

involving draws by both firms. It is also unique for small r-values.

With this characterization of pure-strategy equilibria we are ready to address the main

question of this section: are the two firms willing to ex ante commit to revealing their

information after the first draw or not? The answer is given by the following theorem:

Theorem 1.12 Let v̄ solve

5

24
− 2v̄ +

2
√

2

3
v̄

3
2 − 1

6
v̄3 − 1

2
F (z) +

1

4
F (z)2 +

1

6
F (z)3 − 1

8
F (z)4 = 0, (1.6)

where F (z) is determined by (1.4) with r = v̄.

For r < v̄ there is a subgame perfect Nash equilibrium in which both firms ex ante commit

to revealing their information after the first period. For r < ṽ it is unique.

The proof is given in Appendix 1.A. A numerical approximation gives v̄ ≈ 0.2325. Hence,

we have shown that the disclosure of information can be endogenized – the firms are

voluntarily agreeing to it ex ante.

1.4.2 Intermediate Decision

So far, we modeled the revelation decision as taking place before any research is done

by the firms. In that setup, firms need to be able to commit to their decision. In the

following, we drop the assumption that ex ante commitment is possible – the revelation

decision is postponed after the first period, when firms are able to observe their first

innovation. As the revelation decision works as a kind of signaling device, a firm holds a



1.5 Extensions 21

belief on the value of the other firm’s innovation. We thus refine our equilibrium concept

to Perfect Bayesian equilibrium. Nevertheless, firms reveal the information voluntarily, as

the following theorem shows:

Theorem 1.13 If firms i = 1, 2 can make their revelation decision simultaneously after

learning their first-period innovation value xi, in a Perfect Bayesian equilibrium both firms

reveal their value if xi 6= x∗. If xi = x∗ firm i is indifferent between revealing or not. The

revelation decision in a Perfect Bayesian equilibrium is thus unique up to firms’ behavior

for value x∗. Off the equilibrium path, in case one firm does not reveal, the other firm

believes the deviating firm has value x∗ with probability 1 and reacts accordingly.

The intuition for the proof is as follows: no firm has an incentive to hide her value – then,

she would be treated as a firm with value x∗, which is no improvement no matter what

the true value of the firm is. Revelation in combination with this punishment thus forms

an equilibrium. To show the uniqueness, one has to consider the fact that a firm wants to

show that she has a high type (and discourage lower types from continuing to innovate)

or a low type (and make intermediate types stop innovating). For intermediate types, one

can show that if a firm keeps the information secret, she does so for an interval of values.

However, for the lowest of these values a firm has an incentive to reveal – she does not

want to pool with higher values against which the other firm would more often like to

continue innovating. The details of the proof are given in Appendix 1.A.

1.5 Extensions

1.5.1 Second Innovation as Improvement

So far, we modeled the two innovations in the two periods as substantially different ideas:

the resulting innovation values do not depend on each other and represent fully devel-

oped innovations. A different way of thinking about a multi-period contest is to interpret

the second-period innovation not as a new idea, but as an extension of the first-period

innovation that improves the innovation value. As a consequence, the distributions of the

innovation values in the two periods are not the same (as they have been in our model so

far), but the second-period distribution depends on the value of the first-period innova-

tion. In this section, we adapt our model to this interpretation and show that voluntary

revelation also appears when the second-period innovation builds on the first-period in-

novation.

Notation and assumptions stay the same except for the distribution functions: for tractabil-

ity reasons we assume in this section that F is a uniform distribution on [0, 1] with

F (x) = x. Furthermore, in the second period, firm i can improve her innovation by taking
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a draw from the distribution Fi(x|x1
i ) at costs c. We assume that Fi is derived from F

and fitted to the interval [x1
i , 1] according to

Fi(x|x1
i ) := F

(
x− x1

i

1− x1
i

)
=
x− x1

i

1− x1
i

.

We start our analysis by identifying the equilibrium behavior of the two firms in the

second period in case information is revealed after the first period. Again, we assume

that the prize is high enough compared to the costs such that both firms innovate in the

first period, which surely guarantees r < 1
2
. The leading firm, with the higher first-period

innovation value, is once more denoted by H, the following firm with the lower innovation

value by L. Thus, we have x1
H > x1

L, again omitting the equality case as it appears with

zero probability and is thus not payoff relevant.

Proposition 1.14 Given first-period innovations x1
H > x1

L, there are the following second-

period equilibrium strategies:

• If x1
H > 1− (1− x1

L)r both firms stop innovating and the contest ends after the first

period.

• If 1− (1− x1
L)2r < x1

H ≤ 1− (1− x1
L)r only firm L innovates in the second period.

• If x1
H ≤ 1− (1− x1

L)2r both firms innovate in the second period.

Proof See Appendix 1.A. �

Compared to the equilibrium with independent innovations, the continuation decision

does not depend only on the leader’s value, but also on the value of the runner-up. This

leads to an increased amount of research. Particularly, as in the independent case, the

runner-up will always continue to innovate if the leader’s value is below 1− r = x∗ – but

additionally, he will also continue to innovate for higher values of firm H if his own first-

period value, x1
L, is not too far behind. Similarly, the leading firm will always innovate if

her own value is smaller than 1− 2r > 1−
√

2r = x̄, which is already a larger set than in

the case with independent values (where firm H only continues for x1
H ≤ x̄). Furthermore,

the leading firm will also continue if the runner-up is only close behind. This is a major

strategic difference to the case with independent values: two innovations of approximately

the same size are worth almost the same. It is much less important which firm has the

lead.

What is the effect of this strategic difference on voluntary revelation? If the revelation

decision is made after the first period, the equilibrium in Theorem 1.13 uses a maximum

punishment idea: if firm i does not reveal its value firm j believes firm i has value x∗,

making firm j continue to innovate for the largest possible set of values – which is a bad

thing for the hiding firm i. On the contrary, if the second innovation builds on the first
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one, firm i with a first-period innovation value above x∗ can in fact profit from keeping

the value secret for some values of firm j in the top range: if firm j believes to face a firm

i with value x∗, hiding goes along with an underestimation of i’s value by firm j, making

j stop innovating for these values. However, at the same time a firm j with a value at the

lower end will continue to innovate although she would stop if she knew the true value of

i. We thus have two opposing effects. In the following theorem we show that the latter

effect is the dominating one and voluntary revelation extends to this model of improving

innovations.

Theorem 1.15 If firms i = 1, 2 can make their revelation decision simultaneously after

learning their first-period innovation value x1
i and the second innovation always improves

the first innovation, there is a Perfect Bayesian equilibrium in which both firms reveal their

value. Off the equilibrium path, in case one firm does not reveal, the other firm believes

the deviating firm has value x∗ with probability 1 and reacts accordingly.

Proof See Appendix 1.A. �

Note that there will be no equilibrium in which both firms always hide their value: there

is always an interval at the lower end of possible values for which it is beneficial to reveal,

showing the opponent that the own value is much lower than he expected. Compared to

no revelation, this makes the opponent stop innovating for some medium values and is

thus profitable for a firm with a low value realization.

1.5.2 n Firms and m Periods

Voluntary revelation of intermediate research results is not limited to the case of two firms

and two periods we have studied in detail until now. In this section, we extend the main

result with independent research draws and an intermediate revelation decision to n firms

(and two periods) and m periods (and two firms).

We start with the case of n firms and two periods, otherwise the setting is the same as

with two firms. Again, we assume that the prize is large enough compared to the cost

to make all firms innovate in the first period. Particularly, all participating firms should

make nonnegative profit as they would not innovate at all otherwise. We thus assume that

p > nc ⇐⇒ r <
1

n
.

In second-period equilibrium play with information disclosure, compared to the case with

only two firms, incentives to innovate are lower if more competing firms are present.

Particularly, if firm i has a first-period innovation better than x∗, no other firm will try

to beat firm i in the second period. Furthermore, as long as no other firm is continuing to
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innovate, the incentives for firm j 6= i to draw in the second period are the same as in the

case with only the two firms i and j. Hence, some research is going on in period two if the

highest value of the first period, x1
H , is smaller than x∗. In a pure strategy equilibrium,

only one firm will continue to innovate for values slightly below x∗, and there will be

additional thresholds at lower values of the leading firm for which more firms continue to

innovate. As this type of equilibrium is asymmetric, it comes along with a coordination

problem. We will thus focus on a symmetric equilibrium which is in mixed strategies: for

values slightly lower than x∗, all firms will continue to innovate with a positive probability

depending on x1
H , q (x1

H). This probability is obviously fixed by making all firms that are

not in the lead indifferent between drawing or not. The largest value of x1
H for which all

other firms draw with probability one is denoted by x̂:

x̂ := max{x1
H |q

(
x1
H

)
= 1}

By definition, all firms who are not in the lead make zero profit if x1
H = x̂. Thus, as all

these firms draw with probability one in this case, we can conclude that each of these firms

wins the contest with probability r = c
p
, as p · c

p
− c = 0. Consequently, the remaining

winning probability is with the leading firm, who wins with probability 1 − (n − 1)r

and does not draw herself, as due to the current leadership the incentives to draw are

strictly lower for this firm. Thus, the leading firm wins exactly if all drawing firms have a

second-period value lower than x̂, and we can conclude that

F (x̂)n−1 = 1− (n− 1)r ⇐⇒ F (x̂) = n−1
√

1− (n− 1)r.

We summarize these results in the following proposition4.

Proposition 1.16 Given the largest first-period innovation x1
H , in the symmetric second-

period equilibrium strategies

• no firm draws if x1
H > x∗,

• non-leading firms draw with probability q (x1
H) if x̂ ≤ x1

H ≤ x∗, with q (x1
H) ∈ (0, 1)

for x̂ < x1
H < x∗,

• non-leading firms draw if x̂ > x1
H ,

• the leading firm does not draw if x̂ ≤ x1
H .

As in the previous sections, we endogenize the information disclosure by letting firms de-

cide whether they reveal or not after learning their first-period value. Again, the equilib-

rium we derive builds on maximum punishment: if a firm hides her first-period innovation

4Note that Proposition 1.16 is not a full equilibrium characterization but contains only the parts

necessary for our purposes.
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value, the other firms believe that a hiding firm has value x̂, as stated in the following

theorem:

Theorem 1.17 If firms i = 1, 2, . . . , n can make their revelation decision simultaneously

after learning their first-period innovation value x1
i , there is a Perfect Bayesian equilibrium

in which all firms reveal their value. Off the equilibrium path, in case one firm does not

reveal, the other firms believe the deviating firm has value x̂ with probability 1 and reacts

accordingly.

Proof See Appendix 1.A. �

If all other firms have a value smaller than x̂, they will all continue to innovate and the

punishment is maximal. However, contrary to the case with two firms, there is potentially

some room for benefiting from these beliefs about a hiding firm. Suppose the second high-

est value is x1
L, and the values are ordered as follows: x∗ > x1

H > x1
L > x̂. If firm H hides

her value, the remaining firms will believe that firm L is in fact the leading firm. Partic-

ularly, this will make firm L stop innovating in the second period – this is in the interest

of firm H. Hence, as this constellation of values only happens with some probability, the

main part of proving the effectiveness of the punishment is thus to show that the expected

loss from the other value constellations outweighs this potential gain.

Next, we consider m periods and two firms. The prize is assumed to be large enough

compared to the costs such that both firms innovate in the first period. Suppose first

that revelation is mandatory. Then, if one firm has an innovation with a value above

x∗, incentives to continue innovating are similar to the second period of the two period

case and it is never beneficial to continue innovating. The following corollary is a direct

consequence of the corresponding argument in Proposition 1.1.

Corollary 1.18 Consider an innovation contest with two firms, m periods and manda-

tory information revelation. Suppose firm i made an innovation in period t with xti > x∗.

Then, in any following period both firms do not innovate. In case the firm i made the

highest innovation in period t and xti = x∗, firm j 6= i is indifferent between innovating or

not in any following period where xti = x∗ is still the highest innovation.

Now suppose the revelation decision of the firms is voluntary and they can decide after

each period whether to reveal or not. As a consequence of Corollary 1.18, it is immediate

to see that the threat of Theorem 1.13 has bite with m periods as well:

Corollary 1.19 Suppose firms i, j = 1, 2 can make a revelation decision simultaneously

after learning their innovation value of each period t = 1, . . . ,m − 1. Then, there is

a Perfect Bayesian equilibrium in which both firms always reveal their value. Off the

equilibrium path, in case firm i does not reveal, firm j believes the deviating firm i has
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value x∗ with probability 1. Then, firm j continues to innovate until she has an innovation

better than x∗ or firm i reveals such an innovation.

For firm i, hiding the own value will lead to the maximum punishment, firm j innovates

in the next period for all values smaller than x∗. This is always worse for firm i then

revealing, as there is no potential future advantage of an additional innovation of firm j

for firm i.

1.6 Conclusion

We show that in a basic innovation contest with multiple rounds, firms and contest de-

signer have opposing interests regarding the revelation policy of intermediate research

results. Although the contest designer prefers firms to keep intermediate information se-

cret, they are able to establish voluntary revelation of their research progress. For most

of our analysis of the basic model – which has two firms, two periods and independent

innovations – only mild assumptions on the research technology are needed. Furthermore,

our main result of voluntary revelation turns out to be very robust: we consider extensions

to n firms, m periods and improving innovations. The possibility of voluntary revelation

has an impact on the prize setting by the contest designer. Suppose he wants to set his

prize optimally, uses a setting without information disclosure (which he prefers) and does

not prevent voluntary revelation. Then, if the firms decide to disclose on their own, using

the optimal prize with respect to secret information can lead to a lower payoff for the

designer than the optimal prize with respect to mandatory information disclosure. Con-

sequently, the contest designer should then choose his prize as if information disclosure

was mandatory.

Considering further extensions of the model, the most prominent one would be a joint

examination of n firms, m periods and improving innovations. The existing results suggest

that voluntary revelation would extend to this setting as well. Furthermore, we did not

fully characterize the equilibrium research behavior for multiple firms and periods in the

setting with mandatory information disclosure. Particularly, we simply assumed that the

prize is large enough compared to the costs such that all firms start innovating in the first

period. From a quantitative perspective, it would be possible to explicitly calculate the

respective critical prize/cost ratios, although it has no impact on the qualitative nature

of the results. Furthermore, our extension with improving innovations only considers a

uniform distribution – it would be interesting to see the impact of a change in distribution.

A completely different extension could be made by considering heterogeneous firms with

different research costs or different research technologies. As long as the heterogeneity

is only mild, we do not expect qualitative effects on the results, although quantitatively

heterogeneity will lead to different cutoffs for the firms.
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1.A Appendix: Proofs

Proof of Proposition 1.3

Suppose firm i decides not to draw again. Then, not drawing again is a best response for

firm j 6= i in case

P
(
x2
j ≥ x1

)
p− c ≤ 1

2
p ⇐⇒

(
1− F

(
x1
))
p− c ≤ 1

2
p ⇐⇒ 1

2
− c

p
≤ F

(
x1
)

(1.7)

Thus, we get that both firms not drawing again is an equilibrium if (1.7) holds.

Here, we can directly see that both firms do not want to draw in the second period in

case p < 2c. Even if both firms did not invest in the first period, and a firm could win for

sure by conducting research, expected profit is higher if no research is done.

Let us get to the best response in case firm i decides to draw in the second period. Then,

drawing is a best response for firm j 6= i according to the following condition:

1

2
p− c ≥ P

(
x2
i ≤ x1

) 1

2
p ⇐⇒ 1

2
p− c ≥ F

(
x1
) 1

2
p ⇐⇒ 1− 2

c

p
≥ F

(
x1
)

(1.8)

Hence, both firms drawing again is an equilibrium if (1.8) is fulfilled, which is obviously

the case for p ≥ 2c. Again, we can see that a firm does not want to draw again in case

p < 2c. �

Proof of Proposition 1.4

To derive first-period equilibrium play, first consider the case p < 2c. As we have seen,

both firms will not invest in the second period in case no research is done in the first

period. If research is conducted by at least one firm, only the lower firm might invest

again, because x̄ < 0 if p < 2c. By backward induction, we can conclude that both firms

will not draw in the first period: we have seen in the analysis of the second period that

a single draw is too expensive for a firm even when it wins for sure. In the first period,

incentives for conducting research are even lower. An investing firm will not win for sure,

as the other firm might decide to invest in the second period. Hence, both firms will not

invest in the first period if the prize is too low. This is no problem for the firms, as they

make a positive expected profit of 1
2
p. It is a problem of the prize sponsor, who will get

no research done but has to pay the prize anyway.

So let us consider the case p ≥ 2c. What is the best response against an opponent not

taking a draw in the first period? Note that we know the following:

P
(
x2
i > x∗

)
= 1− F (x∗) =

c

p
= r

P
(
x̄ < x2

i ≤ x∗
)

= F (x∗)− F (x̄) =

√
2
c

p
− c

p
= s− r

P
(
x2
i ≤ x̄

)
= F (x̄) = 1−

√
2
c

p
= 1− s
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We can thus write down the condition for player i taking a draw in the first round

against a player j 6= i not taking a draw in the first round, bearing in mind second-period

equilibrium behavior:

[
P
(
x1
i > x∗

)
+ P

(
x̄ < x1

i ≤ x∗
)(

P
(
x2
j ≤ x̄

)
+

1

2
P
(
x̄ < x2

j ≤ x∗
))

+P
(
x1
i ≤ x̄

)(
P
(
x2
i > x̄

)(
P
(
x2
j ≤ x̄

)
+

1

2
P
(
x2
j > x̄

))
+

2

3
P
(
x2
i ≤ x̄

)
P
(
x2
j ≤ x̄

))]
p− c− P

(
x1
i ≤ x̄

)
c ≥ 1

2
p− c

⇐⇒
[
r + (s− r)

(
(1− s) +

1

2
(s− r)

)
+ (1− s)

(
s

(
(1− s) +

1

2
s

)
+

2

3
(1− s) (1− s)

)]
p− (1− s) c ≥ 1

2
p

⇐⇒
[
r + (s− r)

(
1− 1

2
(s+ r)

)
+ (1− s)

(
(s− r) +

2

3
(1− 2s+ 2r)

)]
p

− (1− s) c ≥ 1

2
p

⇐⇒
[
s− r +

1

2
r2 +

2

3
− 1

3
s+

1

3
r − 2

3
s+

2

3
r − 1

3
rs

]
p− (1− s) c ≥ 1

2
p

⇐⇒
[

1

6
− 1

3
rs+

1

2
r2

]
− (1− s) r ≥ 0

⇐⇒ 1

6
− r +

2

3
rs+

1

2
r2 ≥ 0

⇐⇒ 1

6
− r +

2

3

√
2r

3
2 +

1

2
r2 ≥ 0

(1.9)

We thus have to show now that (1.9) holds. To check this, we calculate the minimum of

the left side in (1.9) with the help of the substitution t :=
√
r. The FOC with respect to

r is

−1 +
√

2r
1
2 + r = 0

⇐⇒ t2 +
√

2t− 1 = 0

=⇒ t = −
√

1

2
+

√
3

2
=

√
3− 1√

2

Only the positive solution matters here, as t =
√
r is restricted to be positive. Hence, we

get r =
(
√

3−1)
2

2
≈ 0.2679, leading to an expected gain from drawing compared to not

drawing of approximately 0.0654 > 0, which is clearly a minimum on [0; 0.5] (r ≤ 0.5

holds as p ≥ 2c). Hence, it is always a best response to draw in the first period if the

opponent does not take a draw.

Finally, we get to the best response of firm i in case the other agent j 6= i takes a draw

in the first period. We compare the expected profit of drawing as well (and thus playing
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the same strategy and sharing the prize) with the expected profit of not drawing in the

first period. Note that we just calculated above the expected share of the prize a firm

gets when taking a draw in the first period against a firm not taking a draw in the first

period. We can thus subtract this share from the whole prize to get the share of the firm

not drawing against a drawing firm.

1

2
p− c−

[
P
(
x1
i ≤ x̄

)
P
(
x1
j ≤ x∗

)
+

1

2
P
(
x̄ < x1

i ≤ x∗
)
P
(
x̄ < x1

j ≤ x∗
)]
c

≥
[
1−

(
2

3
− 1

3
rs+

1

2
r2

)]
p− P

(
x1
j ≤ x∗

)
c (1.10)

Computing the probabilities yields

1

2
p− c−

[
(1− s) (1− r) +

1

2
(s− r) (s− r)

]
c ≥

[
1

3
+

1

3
rs− 1

2
r2

]
p− (1− r) c

⇐⇒ 1

2
p− c−

[
1− s+

1

2
r2

]
c ≥

[
1

3
+

1

3
rs− 1

2
r2

]
p− (1− r) c

⇐⇒
[

1

6
− 1

3
rs+

1

2
r2

]
−
[
1− s+ r +

1

2
r2

]
r ≥ 0

⇐⇒ 1

6
− r +

2

3
rs− 1

2
r2 − 1

2
r3 ≥ 0 (1.11)

We can see that the left side of (1.11) is decreasing by checking the first derivative, bearing

in mind that r ∈ [0, 0.5]:

−1 +
√

2r − r − 3

2
r2 ≤ −r − 3

2
r2 ≤ 0

Numerically, we get that the left side of (1.11) equals zero for r ≈ 0.2428 – we call this

boundary value v∗. Hence, drawing as well is a best response for all r < v∗ = 0.2428. For

larger r values, firm i does not want to draw in the first period if firm j takes a draw. �

Proof of Proposition 1.5

Both firms take a draw in the first period. At least one additional draw is taken in case

no innovation has a value above x∗:

P (x1
i ≤ x∗)P (x1

j ≤ x∗) = (1− r)2.

A second additional draw is taken in case both values are below x̄:

P (x1
i ≤ x̄)P (x1

j ≤ x̄) = (1− s)2.

This gives us a total number of

dR(r) = 2 + (1− r)2 + (1− s)2 = 4 + r2 − 2s

concluding the proof. �
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Proof of Lemma 1.6 First, we show that the right-hand side of (1.4) is decreasing in

F (z). Using F (z) < 1 and the substitution y = F (z) we can write the first derivative as

follows:
d

dy

(
(1 + y)(1− y)2 − 2r

)
= 3y2 − 2y − 1 < 0. (1.12)

To get x∗ > z, we plug (1.1) into the right-hand side of (1.4), yielding

(1 + F (x∗))(1− F (x∗))2 − 2r = (2− r) r2 − 2r = 2r (r − 1)− r3 < 0,

which holds as r < 1
2
. We thus can conclude that

(1 + F (x∗))(1− F (x∗))2 − 2r < 0 = (1 + F (z))(1− F (z))2 − 2r

and consequently F (x∗) > F (z) by (1.12). As F is increasing, this shows x∗ > z.

Similarly, for x̄ < z we use (1.2):

(1 + F (x̄))(1− F (x̄))2 − 2r = (2− s) 2r − 2r = 2r (1− s) > 0,

which holds as s =
√

2r < 1 by r < 1
2
. Consequently, x̄ < z follows as above. �

Proof of Proposition 1.7

First note that

dNR(r) > dR(r) ⇐⇒ 2(1 + F (z)) > 4− 2
√

2r + r2 ⇐⇒ F (z) > 1−
√

2r +
1

2
r2,

where F (z) depends on r. To show the proposition, it is thus sufficient to prove F (z) >

1 −
√

2r + 1
2
r2. In the proof of Lemma 1.6 we showed that the right-hand side of (1.4)

is decreasing in F (z). Hence, it is sufficient to plug 1 −
√

2r + 1
2
r2 into the right-hand

side of (1.4) and show that the resulting expression is greater than 0. As a consequence,

F (z) > 1 −
√

2r + 1
2
r2 directly follows as F (z) solves (1.4) (and thus yields a lower

right-hand side than 1−
√

2r + 1
2
r2).

Plugging 1−
√

2r + 1
2
r2 into the right-hand side of (1.4) we get(

1 +

(
1−
√

2r +
1

2
r2

))(
1−

(
1−
√

2r +
1

2
r2

))2

− 2r

=2r − 2
√

2r
3
2 − 2

√
2r

5
2 + 3r3 +

1

2
r4 − 3

4

√
2r

9
2 +

1

8
r6

>2r − 2 · 3

4
r − 2 · 3

4
r2 + 3r3 +

1

2
r4 −

(
3

4

)2

r4 +
1

8
r6

=
1

2
r − 3

2
r2 + 3r3 − 1

16
r4 +

1

8
r6

>
1

2
r − 3

8
r + 3r3 − 1

64
r3 +

1

8
r6

>0.

The third line follows by r < v∗ < 0.25 and thus −
√

2r > −3
4
. Similarly, the fifth line

follows by −r > −1
4

and the last line by r > 0. �



1.A Appendix: Proofs 31

Proof of Theorem 1.9

We derive a condition on r making
∫ b

0
Φ2(x) − Ψ(x)dx < 0 in a rather coarse way by

looking for a non-positive integrand on the whole interval [0, b]. We proceed in several

steps, cutting the interval into different parts:

i) [0, x̄]

In this case, it is easy to see that
∫ x̄

0
Φ2(x)−Ψ(x)dx =

∫ x̄
0

0dx = 0 holds.

ii) (x̄, z]

Here, we get∫ z

x̄

Φ2(x)−Ψ(x)dx =

∫ z

x̄

(
F (x)2 − F (x)

)︸ ︷︷ ︸
<0

(
F (x)2 − F (x̄)2

)︸ ︷︷ ︸
>0

dx < 0.

iii) (z, x∗]

First, we rewrite∫ x∗

z

Φ2(x)−Ψ(x)dx =

∫ x∗

z

F (z)2 + F (x)
(
F (x̄)2 − 2F (z)− 2F (z)2

)
+F (x)2

(
1 + 2F (z) + F (z)2 − F (x̄)2

)
− F (x)3︸ ︷︷ ︸

=:h(x)

dx

We now show that the integrand h(x) is negative by analyzing its first derivative,

which is given as follows:

h′(x) = F (x̄)2 − 2F (z)− 2F (z)2 + 2F (x)
(
1 + 2F (z) + F (z)2 − F (x̄)2

)
− 3F (x)2

At z, h′ is positive:

h′(z) =
(
F (z)2 − F (x̄)2

)︸ ︷︷ ︸
>0

(2F (z)− 1)︸ ︷︷ ︸
>0 for F (z)> 1

2

As F (z) is implicitly given by (1.4) we get

F (z) >
1

2
⇐⇒ r <

1

2
· 3

2
·
(

1

2

)2

= 0.1875

and consequently h′(z) is positive in this case. Additionally, a numerical check shows

that h′(x∗) is positive as well (for all z ∈ [0, b]). Furthermore, h′ is a quadratic

function which has a maximum (this follows from h′′′(x) = −6). Taking these facts

together, we get that h′ is positive on [z, x∗] given r < 0.1875. Hence, h is increasing

on [z, x∗]. A numerical check shows that h(x∗) < 0 for r < 0.1647 – thus, for these

r-values h is negative on the whole interval (as it is largest at x∗).
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iv) (x∗, b]

In this case, we get the following:∫ b

x∗
Φ2(x)−Ψ(x)dx

=

∫ b

x∗
F (z)2 + F (x∗)2 + F (x)

(
F (x̄)2 − 2F (z)− 2F (z)2 − F (x∗)2

)
+F (x)2

(
2F (z) + F (z)2 − F (x̄)2

)︸ ︷︷ ︸
=:l(x)

dx

As l(x∗) = h(x∗), we know that l(x∗) is negative for r < 0.1647. Furthermore, l is a

quadratic function having a minimum (as l′′(x) = 2 (2F (z) + F (z)2 − F (x̄)2) > 0).

Hence, as l(b) = 0, l is negative on (x∗, b].

Thus, we can conclude that the integrand (and thus the whole integral) is negative if

r < 0.1647 = v′ holds. �

Proof of Proposition 1.10

First, we know from Proposition 1.1 that no firm will draw again in case she knows that

an innovation larger than x∗ has been drawn. The conclusion of this proposition applies

to asymmetric information release as well: in the situation of Proposition 1.1 a firm does

not want to draw again even if she knows that she is behind. If a firm with such a high

draw does not know the opponent’s draw, incentives for drawing again are even lower.

Additionally, Proposition 1.1 implies that firm N will not draw again if x1
N > x̄ and

x1
N > x1

R. We first consider the following case: both firms have taken a draw in the first

round. Firm R has a draw x̄ < x1
R < x∗ and faces the decision whether to draw again or

not. For the moment we assume that firm N behaves according to Proposition 1.1 and

thus draws again if she is behind (the case of equality of draws can be ignored from firm

R’s perspective as it is a zero probability event). It is beneficial for firm R to draw again

if the following condition holds:[
P
(
x1
N < x1

R

)(
P
(
x2
N < x1

R

)
+

1

2
P
(
x2
N > x1

R

)
P
(
x2
R > x1

R

))
+

1

2
P
(
x1
N > x1

R

)
P
(
x2
R > x1

R

)]
p− c ≥ P

(
x1
N < x1

R

)
P
(
x2
N < x1

R

)
p

This yields the following probabilities:[
F
(
x1
R

)(
F
(
x1
R

)
+

1

2

(
1− F

(
x1
R

))2
)

+
1

2

(
1− F

(
x1
R

))2
]
p− c ≥ F

(
x1
R

)2
p

⇐⇒
(
1 + F

(
x1
R

)) (
1− F

(
x1
R

))2 − 2
c

p
≥ 0 (1.13)

Note that (1.13) has the same structure as (1.4). Hence, firm R will draw again exactly

in case her first draw is smaller than z, which solves both (1.4) and (1.13). We denote

F (z) =: w in the following.
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For the calculation above, we assumed that firm N follows the strategy described in

Proposition 1.1, but it is not clear that this strategy is a best reply. Obviously, it is a best

reply in case firm N is leading, as x1
R > x̄. Not drawing is then profitable even against

an opponent who draws. However, it could be profitable for firm N to stop drawing in

case she is behind and firm R has a draw x̄ < x1
R < z with x1

R > x1
N . In this case, firm

R will draw again as well – she would not do so if she knew that she is in front, as it is

the case in the situation of Proposition 1.1. We check whether it is anyway profitable to

draw again for firm N :

P
(
x2
N > x1

R

)(
P
(
x2
R < x1

R

)
+

1

2
P
(
x2
R > x1

R

))
p− c

=
(
1− F

(
x1
R

))(
F
(
x1
R

)
+

1

2

(
1− F

(
x1
R

)))
p− c

>
1

2

(
1 + F

(
x1
R

)) (
1− F

(
x1
R

))2
p− c

≥0

The strict inequality holds by direct comparison (and 0 < F (x1
R) < 1). The last inequality

holds as x1
R < z in this case and (1.13) applies. Hence, it is in fact a best reply for firm

N to follow the strategy derived in Proposition 1.1.

If the draw of firm R fulfills x1
R < x̄, the incentives to draw again are the same for firm N

as in Proposition 1.1. Hence, firm N behaves similarly here. For firm R, we consider an

estimate of her profit from drawing again, looking only at the largest terms:[
P
(
x1
N < x1

R

)(
P
(
x2
N < x1

R

)
+

1

2
P
(
x2
N > x1

R

)
P
(
x2
R > x1

R

))
+

1

2
P
(
x1
N > x̄ > x1

R

)
P
(
x2
R > x̄ > x1

R

)]
p− c

=

[
F
(
x1
R

)(
F
(
x1
R

)
+

1

2

(
1− F

(
x1
R

))2
)

+
1

2
(1− F (x̄))2

]
p− c

>

[
F
(
x1
R

)
F
(
x1
R

)
+

1

2

(
1−

(
1−

√
2
c

p

))2
]
p− c

= F
(
x1
R

)
F
(
x1
R

)
p

The latter is the expected profit of firm R without a second draw. Hence, drawing again

is beneficial for firm R.

What happens if one of the firms plays a strategy where she does not take a draw in

the first period? If firm N faces a firm R taking no draw, the second period behavior is

similar to playing against a firm with a draw of zero. For firm R, things change: if she

faces a firm not drawing in the first period, her best reply is similar as in the situation

of full information release. Thus, if she believes with probability one that she faces a

not-drawing firm, she plays the same strategy as firm N in that case: she will only draw

again if x1
R < x̄. �
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Proof of Proposition 1.11

In the first period, both firms have to compare the expected profits of taking a draw with

the expected profits of waiting one period. Consider first the case of firm R not drawing

in the first round. What is the best reply of firm N? This is basically the same exercise

as deriving inequality (1.9), with one slight difference: firm N is not able to discourage

firm R from taking a draw in case x1
N > x∗. This slightly reduces the probability of

winning the prize for firm N compared to the setting of full revelation: it is now possible

that firm R beats firm N with a draw x2
R > x1

N > x∗. This is the case with probability
1
2

(1− F (x∗))2 = 1
2
r2. We can include this probability change into (1.9) by subtracting

1
2
r2, which gives us the following condition for a profitable draw in the first round:

1

6
− r +

2

3

√
2r

3
2 ≥ 0 (1.14)

The analysis of the first order condition shows that the left side of (1.14) has a minimum

at r = 1
2
. For r = 1

2
, equality holds in (1.14). Hence, taking a draw is profitable for firm

N in the first period in this case.

What is the best reply for firm R against this strategy of firm N? We first calculate the

probability for firm R to win the prize if she is taking a draw in the first period (and

following the equilibrium strategy of the second period afterwards).

P
(
x1
R > x∗

) [
P
(
x1
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)
+

1

2
P
(
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)]
+P

(
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2
P
(
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)(2

3
P
(
z < x2
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)

+ P
(
x2
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))
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(
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)(
P
(
x2
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)
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1

2
P
(
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) [1

2
P
(
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N > x∗

)
P
(
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)
+ P

(
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N < x∗
)(

P
(
x2
R > x∗

)
+

1

2
P
(
z < x2

R < x∗
))

+ P
(
x̄ < x1

N < z
)(1

2

(
P
(
x2
R > z

)
+

1

3
P
(
x̄ < x2

R < z
))

+
1

2

[
P
(
x2
R > z

)(1

2
P
(
x2
N > z

)
+ P

(
x2
N < z

))
+ P

(
x̄ < x2

R < z
)(

P
(
x2
N < x̄

)
+

3

4
P
(
x̄ < x2

N < z
))

+ P
(
x2
R < x̄

)(
P
(
x2
N < x̄

)
+

2

3
P
(
x̄ < x2

N < z
))])

+ P
(
x1
N < x̄

)(
P
(
x2
R > z

)(
P
(
x2
N < z

)
+

1

2
P
(
x2
N > z

))
+ P

(
x̄ < x2

R < z
)(

P
(
x2
N < x̄

)
+

2

3
P
(
x̄ < x2

N < z
))
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+ P
(
x2
R < x̄

)(
P
(
x2
N < x̄

)
+

1

2
P
(
x̄ < x2

N < z
)))]

+P
(
x1
R < x̄

) [1

2
P
(
x1
N > x̄

)
P
(
x2
R > x̄

)
+ P

(
x1
N < x̄

)(
P
(
x2
R > x̄

)(
P
(
x2
N < x̄

)
+

1

2
P
(
x2
N > x̄

))
+

1

2
P
(
x2
R < x̄

)
P
(
x2
N < x̄

))]

Using the short notations P (x > x̄) = s, P (x < z) = w and P (x > x∗) = r, simplifying

and subtracting the costs, this reduces to the following expected profit:

(
7

24
− 1

3
r3 +

1

6
s3 +

1

2
w − 1

4
w2 − 1

6
w3 +

1

8
w4

)
p− (1 + w) c (1.15)

Furthermore, we have to calculate the expected profit of firm R when she is waiting for

the second period without taking a draw (and faces a drawing firm N):

[
1

2
P
(
x1
N > x̄

)
P
(
x2
R > x̄

)
+ P

(
x1
N < x̄

)(1

3
P
(
x2
R < x̄

)
P
(
x2
N < x̄

)
+P

(
x2
R > x̄

)(
P
(
x2
N < x̄

)
+

1

2
P
(
x2
N > x̄

)))]
p− c

=

[
1

3
+

1

6
s3

]
p− c. (1.16)

Drawing in the first period is thus profitable if the value of (1.15) is larger than the value

of (1.16). Comparing these two terms, we get

(
7

24
− 1

3
r3 +

1

6
s3 +

1

2
w − 1

4
w2 − 1

6
w3 +

1

8
w4

)
p− (1 + w) c ≥

[
1

3
+

1

6
s3

]
p− c

⇐⇒
(
− 1

24
− 1

3
r3 +

1

2
w − 1

4
w2 − 1

6
w3 +

1

8
w4

)
p− wc ≥ 0

⇐⇒ − 1

24
− 1

3
r3 +

1

2
w − 1

4
w2 − 1

6
w3 +

1

8
w4 − wr ≥ 0.

A numerical analysis shows that the left-hand side equals zero for r ≈ 0.2623 – we call

this critical value v̂. For larger r values firm R prefers to wait for the second period to

take her draw. In this case, we showed that there is an asymmetric equilibrium with firm

N drawing in the first and firm R drawing in the second period. Firm N then follows her

second-period equilibrium strategy.

For smaller r values, firm R takes a draw in the first period as well. To confirm that this

constellation is consistent with an equilibrium behavior, we have to check the incentives



36 1 Information Disclosure in Innovation Contests

of firm N to take a draw in this case. If she does not take a draw, her expected profit is

[
P
(
z < x1

R < x∗
)(

P
(
x2
N > x∗

)
+

1

2
P
(
z < x2

N < x∗
))

+P
(
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)(1

3
P
(
x2
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)
P
(
x2
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)
+ P

(
x2
N > z

)(
P
(
x2
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)
+

1

2
P
(
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R > z

)))]
p− P

(
x1
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)
c

=

[
1

2
− 1

2
w +

1

2
w2 − 1

6
w3 − 1

2
r2

]
p− (1− r)c. (1.17)

We compare this with the expected profit of taking a draw. As part of (1.15), we already

calculated the probability that firm R wins the contest in case both firms take a draw

in the first round. Consequently, this number and the probability that firm N wins this

contest add up to one. Hence, firm N makes an expected profit according to the following

expression:

[
17

24
+

1

3
r3 − 1

6
s3 − 1

2
w +

1

4
w2 +

1

6
w3 − 1

8
w4

]
p−

(
2− s+

1

2
r2

)
c. (1.18)

Comparing (1.18) with (1.17), we get the following condition for a profitable draw in the

first period:

[
17

24
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1

3
r3 − 1

6
s3 − 1

2
w +

1

4
w2 +

1

6
w3 − 1

8
w4

]
p− (2− s+

1

2
r2)c

≥
[

1

2
− 1

2
w +

1

2
w2 − 1

6
w3 − 1

2
r2

]
p− (1− r)c

⇐⇒ 5

24
− 1

6
r3 +

1

3
w3 − 1

4
w2 − 1

8
w4 − 1

6
s3 − 1

2
r2 − r + rs ≥ 0.

Again, a numerical analysis shows that the left hand side equals zero for r ≈ 0.2939. For

smaller r values, the inequality is fulfilled and drawing in the first period is profitable for

firm N – we found an equilibrium in that case. For larger r values, firm N ’s best reply is

not to draw in the first round. We thus have to check how firm R’s best reply against a

waiting firm N looks like (with respect to correct beliefs). Note that firm R will only draw

again in the second-period equilibrium if x1
R < x̄. Hence, incentives to draw are similar

to the case of full information release and result in condition (1.9). The analysis of that

condition showed that it is thus profitable for firm R to draw against a waiting firm N .

Finally, we have to analyze the incentives of the waiting firm N – is it profitable to draw

against a drawing firm R who believes to face a firm N that does not draw? The expected
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profit of drawing can be calculated as follows:[
1

2
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p
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)
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[
1
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2

3
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1
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2
r2s

]
p−

(
2− s+

1

2
r2

)
c.

If firm N does not draw in the first period, she is in the same situation as in the right

hand side of (1.10). We compare the expected profits of drawing and not drawing:[
1

2
− 1

2
s2 +

2

3
s3 +

1

3
r3 − 1

2
r2s

]
p−

(
2− s+

1

2
r2

)
c ≥

[
1

3
+

1

3
rs− 1

2
r2

]
p− (1− r) c.

Simplifying and using s =
√

2r, we get that drawing is profitable in case

1

6
− 2r − 1

2
r2 − 1

6
r3 + 2sr − 1

2
sr2 ≥ 0.

This condition holds for r < 0.1722, as a numerical analysis shows. We call this critical

value ṽ. Given this condition, we are back in the situation where both want to draw (and

our previous analysis showed that this is an equilibrium for this range of r-values). For

r > 0.1722, firm N does not want to draw and we are hence in an equilibrium as well –

the best reply for firm R against a firm N that does not draw is to draw. �

Proof of Theorem 1.12 We focus our analysis on the first equilibrium identified in

Proposition 1.11. In this equilibrium, both firms take a draw in the first period and it is

unique for r < ṽ. In the initial stage zero, where firms choose whether to reveal or not,

we now have to identify the best responses of the two firms. What is the best response

of a firm, if the other firm chooses to play R? If she plays R as well, they share the prize

in expectation and 2 − s + 1
2
r2 research draws are taken by each of the firms. If a firm

deviates to play N , the expected costs of drawing do not change (as she still gets the

same information and plays the same strategy). However, it may happen that she receives

in expectation less than half of the prize after the deviation, as given by the following

condition (w = F (z)):[
17

24
+

1

3
r3 − 1

6
s3 − 1

2
w +

1

4
w2 +

1

6
w3 − 1

8
w4

]
p−

(
2− s+

1

2
r2

)
c =

1

2
p, (1.19)

The left-hand side of (1.19) states the profit for the firm deviating to N , as derived in

(1.18). A r-value of v̄ ≈ 0.2325 solves (1.19) (which is equivalent to (1.6)), and for r < v̄
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a firm playing N against R receives in expectation less than half the share of the total

prize. Combined with the fact that research costs do not change, it is the best response

against a firm playing R to play R as well for these values.

What is the best response against a firm playing N? Playing N as well gives in expectation

half of the prize while taking 1 +w draws. As we have just seen, a firm playing R receives

in expectation more than half the prize against a firm playing N for r < v̄. Additionally,

she has to take the same number of draws in expectation. Hence, it is profitable to play

R against a firm playing N .

A firm will thus always play reveal in the initial stage, no matter whether the other firm

plays reveal as well or not. �

Proof of Theorem 1.13 We first show that it is in fact an equilibrium. Note that the

point of revealing (or not revealing) is to make the other firm stop researching in as many

cases as possible. Suppose firm i deviates and does not reveal her value. This deviation

cannot be beneficial: if firm j has a value xj > x∗, the reaction of this firm does not

change – she always stops researching in this case. Additionally, if xj < x∗, firm j will

continue to do research, and thus goes on in the maximum number of cases. Revealing a

value xi < x∗ would have made a firm with value xj ∈ (xi, x
∗) stop researching, increasing

the chances of firm i to win.

To show the uniqueness, suppose there is another equilibrium in which at least one firm

hides a value different from x∗. Consider the strategy of firm i, and first assume that

this firm always keeps the information secret in case xi ∈ X1 ⊂ (x∗, b] (and reveals her

value for xi /∈ X1). Thus, in equilibrium, if firm j observes that firm i does not reveal any

information, she correctly believes that xi > x∗. Consequently, firm j stops innovating, no

matter what value her first-period innovation has. This provides firm i with an incentive to

always keep her information secret, as this will make firm j stop. Hence, in any equilibrium

where information is kept secret for values in X1, this has to be done also for some values

xi ∈ X2 ⊂ [0, x∗]. Furthermore, X2 has to be large enough such that firm j continues

to innovate for some values xj when receiving no information by firm i (and believing

correctly that xi ∈ X1 ∪ X2). However, if xi ∈ X1, firm i has a profitable deviation by

simply revealing her value and making firm j stop innovating in any case. Thus, there

cannot be an equilibrium in which firm i with value xi ∈ (x∗, b] keeps this value secret.

A similar reasoning applies in case we assume that information is kept secret only for

values xi ∈ X3 ⊂ [0, x̄] – firm j with any xj ∈ (x̄, x∗) would stop innovating, and firm i

with xi ∈ (x̄, x∗) had an incentive to keep her information secret and make firm j stop for

these xj. Additionally, consider the case of a set X4 ⊂ (x̄, x∗) for which values are kept

secret on top of X3 (making some xj ∈ (x̄, x∗) continue to innovate): then, it is profitable

for xi ∈ X3 to reveal and make firm j stop innovating for all xj ∈ (x̄, x∗). Thus, there

cannot be an equilibrium in which firm i with value xi ∈ [0, x̄] keeps this value secret.
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Finally, consider the case where information is kept secret by firm i for values xi ∈ X5 ⊂
(x̄, x∗). Then, firm j will continue to innovate for all xj < inf X5 if she does not observe

any information by firm i. As a firm i with a value xi ∈ X5 decides to keep her information

secret, firm i in equilibrium cannot be better off by revealing (and making firm j continue

for all xj < xi). Thus, there can be no set X6 with xj ∈ X6 continuing to innovate in

equilibrium and X6∩ (inf X5, x
∗) having a positive mass. Otherwise, there would be some

x′j ∈ X6 ∩ (inf X5, x
∗) dividing this set in two parts with a positive mass. Consequently,

some xi ∈ X5 ∩ (inf X5, x
′
j) would exist for which firm i had a profitable deviation by

revealing her type (and making firm j stop innovating in the part above x′j). This shows

that in equilibrium firm j does not continue to innovate for all xj ∈ (inf X5, x
∗), if she

does not observe information by firm i. Keeping this in mind, we can conclude that X5

is in fact an interval of the form (inf X5, x
∗) (possibly including the end points, which

we ignore for notational purpose). Suppose this were not the case. Then, there is some

xi ∈ (inf X5, x
∗) for which firm i would reveal her value. However, she could do strictly

better for that value by keeping the information secret and making firm j stop innovating

for all xj ∈ (inf X5, xi).

So suppose firm i keeps the information secret for such an interval, (x′i, x
∗) 6= ∅. Then, as

we just showed, firm j does not continue to innovate for values xj ∈ (x′i, x
∗) if she does not

observe any information. Consider some x′′i ∈ (x′i, x
∗). From the equilibrium derivation in

case of full information revelation we know that any xj ∈ (x′i, x
′′
i ) makes a positive profit

against x′′i by continuing to innovate. We denote the average expected profit of drawing

for firm j against values in (x′′i , x
∗) by δ (it is independent of the size of xj, as long as

xj < x′′i ). Against all values in (xj, x
′′
i ), the expected profit is even larger than δ. Now

consider some fixed xj < x′′i for which the probability that firm j is in the lead if she

does not receive any information is less or equal to ε. If firm j would deviate for xj and

continue to innovate, this would have two effects: on the one hand, she would make an

expected profit of at least δ against firm i having a higher valuation (up to x∗). On the

other hand, she could maximally waste the cost of drawing c if she faces a firm i with

a value in (x′i, xj), as the one-sided deviation of an additional draw cannot make firm j

loose more often. This only happens with probability ε. Thus, innovating is profitable for

firm j with value xj ∈ (x′i, x
′′
i ), if the following condition holds:

(1− ε)δ − εc > 0

As this condition is fulfilled for ε small enough, firm j has the profitable deviation to

continue innovating. Thus our initial assumption is not true and we cannot have an

equilibrium where any firm keeps the information secret for values other than x∗. In case

their first-period value is x∗, firms are indifferent between revealing or not – but this event

has zero probability. �
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Proof of Proposition 1.14

Suppose first the leading firm H does not innovate in the second period. Then, it is

(weakly) beneficial for firm L to innovate again iff

P
(
x2
L > x1

H

)
p− c ≥ 0 ⇐⇒

(
1− FL

(
x1
H |x1

L

))
p− c ≥ 0 ⇐⇒ FL

(
x1
H |x1

L

)
≤ 1− c

p

⇐⇒ x1
H ≤ 1− (1− x1

L)r

For firm H, there is only a possible need of continuing to innovate if the other firm is also

innovating (otherwise, firm H would win for sure anyway). Thus, firm H will do so iff

[
P
(
x2
H > x2

L > x1
H

)
+ P

(
x1
H > x2

L

)]
p− c ≥ P

(
x1
H > x2

L

)
p

⇐⇒ 1

2

(
1− FL

(
x1
H |x1

L

))
p− c ≥ 0

⇐⇒ FL
(
x1
H |x1

L

)
≤ 1− 2

c

p

⇐⇒ x1
H ≤ 1− (1− x1

L)2r

The second line follows as firm H will always improve her first period innovation and beats

a firm L that also improves upon x1
H in exactly half of the cases because we assumed a

uniform distribution.

Finally, we have to check that firm L has no incentives to refrain from innovating in the

second period in the range of values where firm H innovates as well:

P
(
x2
L > x2

H

)
p− c ≥ 0 ⇐⇒ 1

2

(
1− FL

(
x1
H |x1

L

))
p− c ≥ 0

which is the same condition as for firm H – both firms continuing to innovate is thus an

equilibrium if this condition is fulfilled. �

Proof of Theorem 1.15

We check whether firm i has an incentive to deviate for a value x1
i . Suppose first that x1

i <

x∗ = 1− r. Then, hiding the value makes firm j continue to innovate for a strictly larger

set of first-period values: Proposition 1.14 shows that firm j makes a second innovation

for x1
j ∈ [0, 1− (1− x∗)2r], which is a superset of the set of values for which firm j would

draw if she knew x1
i , [0, 1− (1− x1

i )2r]. Firm i has thus no incentive to hide the value.

The more interesting case is given by x1
i > x∗. We first pin down the expected profit of

firm i with given value x1
i when both firms reveal their true value. Applying Proposition

1.14 to determine the ranges for which the two firms continue to innovate and the resulting
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winning probabilities, the expected profit amounts to[
P

(
x1
j < 1− 1− x1

i

r

)
+ P

(
1− 1− x1

i

r
< x1

j < 1− 1− x1
i

2r
∧ x2

j < x1
i

)
+ P

(
1− 1− x1

i

2r
< x1

j < x1
i ∧
(
x2
j < x1

i ∨ x1
i < x2

j < x2
i

))
+ P

(
x1
i < x1

j < 1− (1− x1
i )2r ∧ x2

i > x2
j

)
+ P

(
1− (1− x1

i )2r < x1
j < 1− (1− x1

i )r ∧ x2
i > x1

j

)]
p

− P
(

1− 1− x1
i

2r
< x1

j < 1− (1− x1
i )r

)
c

=

F (1− 1− x1
i

r

)
+

∫ 1− 1−x1
i

2r

1−
1−x1

i
r

Fj
(
x1
i |x1

j

)
f
(
x1
j

)
dx1

j

+

∫ x1
i

1−
1−x1

i
2r

(
Fj
(
x1
i |x1

j

)
+

1

2

(
1− Fj

(
x1
i |x1

j

)))
f
(
x1
j

)
dx1

j

+

∫ 1−(1−x1
i )2r

x1
i

1

2

(
1− Fi

(
x1
j |x1

i

))
f
(
x1
j

)
dx1

j

+

∫ 1−(1−x1
i )r

1−(1−x1
i )2r

(
1− Fi

(
x1
j |x1

i

))
f
(
x1
j

)
dx1

j

]
p

−
[
F
(
1− (1− x1

i )r
)
− F

(
1− 1− x1

i

2r

)]
c

If firm i hides her own value, firm j believes that firm i has value x∗ and acts accordingly.

However, as we want to look at the one-sided deviation of firm i, firm j still reveals her

value. Depending on the size of x1
i , the decision whether to innovate in the second period

or not changes. To write down the expected profit of firm i when hiding her value, we

thus have to make a case distinction.

First case. We start with the case x1
i < 1 − (1 − x∗)2r = 1 − 2r2, such that firm i will

make the following expected profit:[
P

(
0 < x1

j < 1− 1− x1
i

2r
∧ x2

j < x1
i

)
+ P

(
1− 1− x1

i

2r
< x1

j < x1
i ∧
(
x2
j < x1

i ∨ x1
i < x2

j < x2
i

))
+ P

(
x1
i < x1

j < 1− (1− x∗)2r ∧ x2
i > x2

j

)
+ P

(
1− (1− x∗)2r < x1

j < 1− (1− x1
i )r ∧ x2

i > x1
j

)]
p

− P
(

1− 1− x1
i

2r
< x1

j < 1− (1− x1
i )r

)
c

=

∫ 1− 1−x1
i

2r

0

Fj
(
x1
i |x1

j

)
f
(
x1
j

)
dx1

j +

∫ x1
i

1−
1−x1

i
2r

(
Fj
(
x1
i |x1

j

)
+

1

2

(
1− Fj

(
x1
i |x1

j

)))
f
(
x1
j

)
dx1

j
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+

∫ 1−2r2

x1
i

1

2

(
1− Fi

(
x1
j |x1

i

))
f
(
x1
j

)
dx1

j +

∫ 1−(1−x1
i )r

1−2r2

(
1− Fi

(
x1
j |x1

i

))
f
(
x1
j

)
dx1

j

]
p

−
[
F
(
1− (1− x1

i )r
)
− F

(
1− 1− x1

i

2r

)]
c

It is thus not profitable to hide the own value, iff[
F

(
1− 1− x1

i

r

)
+

∫ 1−(1−x1
i )2r

1−2r2

1

2

(
1− Fi

(
x1
j |x1

i

))
f
(
x1
j

)
dx1

j

−
∫ 1− 1−x1

i
r

0

Fj
(
x1
i |x1

j

)
f
(
x1
j

)
dx1

j −
∫ 1−(1−x1

i )2r

1−2r2

(
1− Fi

(
x1
j |x1

i

))
f
(
x1
j

)
dx1

j

 p ≥ 0

⇐⇒ 1− 1− x1
i

r
−
∫ 1−(1−x1

i )2r

1−2r2

1

2

(
1−

x1
j − x1

i

1− x1
i

)
dx1

j −
∫ 1− 1−x1

i
r

0

x1
i − x1

j

1− x1
j

dx1
j ≥ 0

(1.20)

First note that x1
j ≥ x1

i on [1− 2r2, 1− (1− x1
i )2r]. Hence, we can estimate∫ 1−(1−x1

i )2r

1−2r2

1

2

(
1−

x1
j − x1

i

1− x1
i

)
dx1

j <

∫ 1−(1−x1
i )2r

1−2r2

1

2
dx1

j = r(r − (1− x1
i ))

Furthermore,
x1
i−x1

j

1−x1
j

is decreasing in x1
j , thus

∫ 1− 1−x1
i

r

0

x1
i − x1

j

1− x1
j

dx1
j <

∫ 1− 1−x1
i

r

0

x1
i dx1

j =
x1
i

r
(r − (1− x1

i ))

As x1
i > 1− r, the condition (1.20) is thus fulfilled if(

1

r
− r − x1

i

r

)
(r − (1− x1

i )) > 0 ⇐⇒ x1
i < 1− r2.

This is true, as by assumption x1
i < 1 − 2r2 < 1 − r2. We can conclude that firm i does

not want to deviate and hide her value for x1
i < 1− 2r2.

Second case. The next case is 1− 4r3 > x1
i > 1− 2r2. The condition stems from requiring

1− 1−x1
i

2r
< 1− 2r2. Furthermore, the relationship 1− 4r3 > 1− 2r2 is always fulfilled as

r < 1
2
. If firm i hides her value, she makes the following expected profit:[

P

(
0 < x1

j < 1− 1− x1
i

2r
∧ x2

j < x1
i

)
+ P

(
1− 1− x1

i

2r
< x1

j < 1− 2r2 ∧
(
x2
j < x1

i ∨ x1
i < x2

j < x2
i

))
+ P

(
1− 2r2 < x1

j < x1
i

)
+ P

(
x1
i < x1

j < 1− (1− x1
i )r ∧ x2

i > x1
j

)]
p

−
[
P

(
1− 1− x1

i

2r
< x1

j < 1− 2r2

)
+ P

(
x1
i < x1

j < 1− (1− x1
i )r
)]
c
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=

∫ 1− 1−x1
i

2r

0

Fj
(
x1
i |x1

j

)
f
(
x1
j

)
dx1

j +

∫ 1−2r2

1−
1−x1

i
2r

(
Fj
(
x1
i |x1

j

)
+

1

2

(
1− Fj

(
x1
i |x1

j

)))
f
(
x1
j

)
dx1

j

+ F (x1
i )− F (1− 2r2) +

∫ 1−(1−x1
i )r

x1
i

(
1− Fi

(
x1
j |x1

i

))
f
(
x1
j

)
dx1

j

]
p

−
[
F
(
1− (1− x1

i )r
)
− F (x1

i ) + F (1− 2r2)− F
(

1− 1− x1
i

2r

)]
c

Thus, hiding is not profitable iff1− 1− x1
i

r
−
∫ 1− 1−x1

i
r

0

x1
i − x1

j

1− x1
j

dx1
j +

∫ x1
i

1−2r2

(
x1
i − x1

j

1− x1
j

+
1

2
· 1− x1

i

1− x1
j

)
dx1

j

− x1
i + 1− 2r2 −

∫ 1−(1−x1
i )2r

x1
i

1

2
·

1− x1
j

1− x1
i

dx1
j

]
p−

[
x1
i − 1 + 2r2

]
c

≥0

By calculating the integrals and simplifying, the condition boils down to

2r − 1

2
− 1

2
ln(2(1− x1

i )) +
1

4
(1− 2r)2 − 2r3

1− x1
i

≥ 0

Thus, by using 1− 2r2 < x1
i < 1− 4r3 we can get a lower bound of the left hand side and

formulate the following sufficient condition for hiding to be non-profitable:

2r − 1

2
− 1

2
ln(2 · 2r2) +

1

4
(1− 2r)2 − 2r3

4r3
≥ 0

⇐⇒ 2r − ln(2r) +
1

4
(1− 2r)2 ≥ 1

It remains to show that this condition is fulfilled. For r = 1
2
, it is obviously fulfilled with

equality. We show that the left hand side is decreasing on (0, 1
2
) by looking at its first

derivative with respect to r:

2− 1

r
− (1− 2r) ≤ 0 ⇐⇒ 1− r − 2r2 ≥ 0,

which is true for 0 < r < 1
2
.

Third case. The remaining case is x1
i > 1− 4r3. The expected profit of firm i from hiding

the value amounts to[
P
(
0 < x1

j < 1− 2r2 ∧ x2
j < x1

i

)
+ P

(
1− 2r2 < x1

j < x1
i

)
+ P

(
x1
i < x1

j < 1− (1− x1
i )r ∧ x2

i > x1
j

)]
p− P

(
x1
i < x1

j < 1− (1− x1
i )r
)
c

=

[∫ 1−2r2

0

Fj
(
x1
i |x1

j

)
f
(
x1
j

)
dx1

j + F
(
x1
i

)
− F (1− 2r2)

+

∫ 1−(1−x1
i )r

x1
i

(
1− Fi

(
x1
j |x1

i

))
f
(
x1
j

)
dx1

j

]
p−

[
F
(
1− (1− x1

i )r
)
− F

(
x1
i

)]
c



44 1 Information Disclosure in Innovation Contests

It is not profitable to hide the value iff[
1− 1− x1

i

r
+

∫ x1
i

1−
1−x1

i
r

x1
i − x1

j

1− x1
j

dx1
j +

∫ x1
i

1−
1−x1

i
2r

1

2
· 1− x1

i

1− x1
j

dx1
j −

∫ 1−2r2

0

x1
i − x1

j

1− x1
j

dx1
j

−
∫ 1−(1−x1

i )2r

x1
i

1

2
·

1− x1
j

1− x1
i

dx1
j − F

(
x1
i

)
+ F (1− 2r2)

]
p−

[
F
(
x1
i

)
− F

(
1− 1− x1

i

2r

)]
c

≥0

Again, we calculate the integrals and simplify, to finally get the condition

3

2
ln(2r) + (1− 2r)

(
3

4
+

1

2
r

)
≤ 0.

It is fulfilled for r = 1
2

and increasing on (0, 1
2
), as we can confirm by looking at the first

derivative:

3

2r
− 1− 2r ≥ 0 ⇐⇒ 3

2
− r − 2r2 ≥ 0,

which is true for 0 < r < 1
2
. The proof is thus complete – it is never profitable for one of

the firms to deviate and hide the own value. �

Proof of Theorem 1.17

We show that firm i with value x1
i has no incentive to hide her value if all other firms

reveal. This is easy to see in case x1
i > x∗: revealing the value will make all opponents stop

innovating. In case x1
i < x̂, there is no point in hiding – no other firm will be discouraged

from drawing if her beliefs of firm i increase to x̂ compared to x1
i . Quite the contrary,

for some values it could make a leading firm j with x̂ > x1
j > x1

i continue to innovate

although she would have stopped if she knew the true value of firm i.

Let us now suppose x̂ ≤ x1
i ≤ x∗, the remaining case to show. If firm i is not leading, it

does not make a difference whether she reveals or not as her value has no influence on the

innovation behavior of the other firms. We thus have to check what happens if firm i is

in the lead. First note that by Proposition 1.16 she will not continue to innovate then. If

she does not hide her value, she thus wins the contest in case no other firm draws or all

drawing firms have a lower value. Hence, her winning probability π can be written as

π = P

(
max
j 6=i

x2
j < x1

i

)
=

n−1∑
l=0

(
n− 1

l

)(
1− q

(
x1
i

))n−1−l · q
(
x1
i

)l · F (x1
i

)l
.

If the leading firm i hides her value, the other firms believe she has value x̂. If the second

highest first-period innovation value is lower than x̂, and firm i is thus still believed to

be the leading firm, all other firms continue to innovate for sure. If it is higher, drawing
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behavior depends on its exact value. The winning probability of a hiding firm i, πh, is

given by

πh = P

(
max
j 6=i

x2
j < x1

i

)
= F (x̂)n−1 F

(
x1
i

)n−1

+ P

(
x̂ < max

j 6=i
x1
j < x1

i

) n−2∑
l=0

(
n− 2

l

)(
1− q

(
max
j 6=i

x1
j

))n−2−l

q

(
max
j 6=i

x1
j

)l
F
(
x1
i

)l
.

We need to show that π > πh. To do this, first note that

P

(
x̂ < max

j 6=i
x1
j < x1

i

)
< P

(
x̂ < max

j 6=i
x1
j < x∗

)
= F (x∗)n−1 − F (x̂)n−1

= (1− r)n−1 − (1− (n− 1)r).

Furthermore, we have q
(
maxj 6=i x

1
j

)
≥ q (x1

i ). If the same number of firms draws more

often (with higher probability), this reduces the winning probability of the leading firm.

Hence,

n−2∑
l=0

(
n− 2

l

)(
1− q

(
max
j 6=i

x1
j

))n−2−l

q

(
max
j 6=i

x1
j

)l
F
(
x1
i

)l
≤

n−2∑
l=0

(
n− 2

l

)(
1− q

(
x1
i

))n−2−l
q
(
x1
i

)l
F
(
x1
i

)l
and we can conclude that

πh ≤ (1− (n− 1)r)F
(
x1
i

)n−1

+
(
(1− r)n−1 − (1− (n− 1)r)

) n−2∑
l=0

(
n− 2

l

)(
1− q

(
x1
i

))n−2−l
q
(
x1
i

)l
F
(
x1
i

)l
.

Hence, to get π > πh it is sufficient to show

n−1∑
l=0

(
n− 1

l

)(
1− q

(
x1
i

))n−1−l · q
(
x1
i

)l · F (x1
i

)l − [(1− (n− 1)r)F
(
x1
i

)n−1

+
(
(1− r)n−1 − (1− (n− 1)r)

) n−2∑
l=0

(
n− 2

l

)(
1− q

(
x1
i

))n−2−l
q
(
x1
i

)l
F
(
x1
i

)l]
> 0.

(1.21)

We prove this statement by an induction argument, where we keep F (x1
i ) fixed and take

q = q (x1
i ) ∈ [0, 1] as variable. This approach does not use all available information, as it

ignores the dependence of q (x1
i ) and F (x1

i ), but it is sufficient for our purposes.
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We start with the basis, n = 3. For q = 1 the left-hand side of (1.21) boils down to

2rF
(
x1
i

)2 − r2F
(
x1
i

)
> 0 ⇐⇒ 2F

(
x1
i

)
> r. (1.22)

Note that the range of possible x1
i values in [x̂, x∗] depends on n and r. We thus need to

make sure that the basis holds for all these combinations: (1.22) is true for r < 1
n

and

F
(
x1
i

)
>

n−1

√
1− (n− 1)

1

n
=

n−1

√
1

n
>

1

n
> r.

For q ∈ [0, 1), we show that the left-hand side of (1.21) is monotone in q by looking at its

first derivative with respect to q, which is given by

− 2(1− q) + r2 + F
(
x1
i

)
(2− 4q − r2) + 2qF

(
x1
i

)2

=
(
2− r2 − 2q

(
1− F

(
x1
i

))) (
F
(
x1
i

)
− 1
)

< 0.

The last step holds as 2 − r2 − 2q (1− F (x1
i )) > 2F (x1

i ) − r2 > 0, which we already

showed above. Hence, the left-hand side of (1.21) is decreasing in q, and as it is positive

for q = 1, it is positive on the whole range.

We now get to the inductive step. Suppose we know that (1.21) is true for n firms. By

multiplying with 1−q+qF (x1
i ) (this is the change in π when adding another firm), (1.21)

is equivalent to{
n−1∑
l=0

(
n− 1

l

)(
1− q

(
x1
i

))n−1−l · q
(
x1
i

)l · F (x1
i

)l − [(1− (n− 1)r)F
(
x1
i

)n−1

+
(
(1− r)n−1 − (1− (n− 1)r)

) n−2∑
l=0

(
n− 2

l

)(
1− q

(
x1
i

))n−2−l
q
(
x1
i

)l
F
(
x1
i

)l]}
·
(
1− q + qF

(
x1
i

))
> 0

⇐⇒

{
n∑
l=0

(
n

l

)(
1− q

(
x1
i

))n−l · q (x1
i

)l · F (x1
i

)l
−
[
(1− (n− 1)r)F

(
x1
i

)n−1 ·
(
1− q + qF

(
x1
i

))
+
(
(1− r)n−1 − (1− (n− 1)r)

) n−1∑
l=0

(
n− 1

l

)(
1− q

(
x1
i

))n−1−l
q
(
x1
i

)l
F
(
x1
i

)l]}
> 0

Next, we subtract the left-hand side of this equation from the left-hand side of (1.21) with
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n+ 1 firms, which amounts to

(1− (n− 1)r)F
(
x1
i

)n−1 ·
(
1− q + qF

(
x1
i

))
− (1− nr)F

(
x1
i

)n
−
(
(1− r)n − (1− nr)− (1− r)n−1 + (1− (n− 1)r)

)
·
n−1∑
l=0

(
n− 1

l

)(
1− q

(
x1
i

))n−1−l
q
(
x1
i

)l
F
(
x1
i

)l
= (1− (n− 1)r)F

(
x1
i

)n−1 (
1− q + qF

(
x1
i

)
− F

(
x1
i

))
+ rF

(
x1
i

)n
−
(
(1− r)n−1 (1− r − 1)− r

)
·
n−1∑
l=0

(
n− 1

l

)(
1− q

(
x1
i

))n−1−l
q
(
x1
i

)l
F
(
x1
i

)l
= (1− (n− 1)r)F

(
x1
i

)n−1 (
(1− q)

(
1− F

(
x1
i

)))
+ rF

(
x1
i

)n
+
(
(1− r)n−1r + r

)
·
n−1∑
l=0

(
n− 1

l

)(
1− q

(
x1
i

))n−1−l
q
(
x1
i

)l
F
(
x1
i

)l
> 0

As the difference is positive, we showed that (1.21) is fulfilled for n + 1 as well. This

completes the inductive step and the proof. �





Chapter 2

Ascending Combinatorial Scoring

Auctions

2.1 Introduction

In a procurement auction, the buyer is usually not only interested in getting an object

as cheap as possible, but also cares about its quality. Scoring auctions provide the op-

portunity to submit bids that specify prices and quality attribute levels. These bids are

evaluated with the help of a scoring rule (a function of quality attributes and price) and

ranked according to the resulting scores. If the bidders know the scoring rule, this proce-

dure resembles a classical auction with bids being scores. This simple relationship can get

lost if the buyer wants to acquire multiple objects: his perception of an object’s quality

may heavily depend on the quality attributes of the other objects. In this chapter, the

scoring rule can be an arbitrary increasing function of all quality attributes (but quasilin-

ear in price). Especially, the overall quality may depend on the attribute levels of all items

in a non-trivial way. Consequently, the score that a supplier is able to generate with his bid

may depend on the bids of the other suppliers. Such an interdependency of bids does not

appear in price-only auctions1. Suyama and Yokoo (2004) have shown that the presence

of such quality interdependencies in the scoring rule is not innocuous: the Vickrey-Clarke-

Groves mechanism may fail to guarantee a nonnegative payoff to the buyer. We analyze

the properties of a different mechanism in the presence of an interdependent scoring rule:

the Ausubel-Milgrom ascending proxy auction. In standard auctions, this mechanism does

not suffer from certain weaknesses of the Vickrey-Clarke-Groves mechanism, e.g. regard-

ing collusion. It is thus a suitable candidate to work well with an interdependent scoring

1Particularly, this model cannot be embedded in the standard package auction setting by treating

each specific attribute configuration of an item as a distinct object and imposing additional restrictions

on possible combinations of objects the buyer is allowed to acquire: it is necessary to have some kind of

scoring rule to account for the differing quality of the objects.
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rule.

To illustrate the role of the interdependency, think of a quality attribute like delivery time:

the buyer may need several objects simultaneously. He thus only values a fast delivery

time of one object if the other objects are delivered quickly as well – otherwise, the speed

advantage of one supplier is worthless. If these preferences of the buyer are reflected in

the scoring rule, it is difficult for the suppliers to estimate the impact of their bid on

the overall quality in advance – it depends crucially on the bids of the other suppliers.

Hence, a single bidder can be very influential, e.g. if he is the only one who can deliver a

particular item very quickly.

Other problems arise if the buyer does not want to give out information on its scoring rule

to the sellers, e.g. because he tries to avoid information spillovers to his competitors. This

could be information about his preferences toward different suppliers which are reflected in

the scoring rule, or information about the quality of an object he is able to produce out of

the items he wants to buy in this scoring auction. Due to such reasons, the auctioneer may

want to keep his scoring rule secret. In particular, we have an example like the following

setting in mind: a manufacturing firm is facing two procurement situations. On the one

hand, it wants to be the seller of a specific product, and has a competitor who is able

to deliver a similar product. Revealing information about the firm’s production abilities

to the competitor would have a negative impact on the firm’s revenue, because the other

firm can profitably use this information in its pricing process. On the other hand, the firm

wants to acquire the components to manufacture the product by means of an auction.

Using a public scoring rule in this auction provides the competitor with an informative

signal about the firm’s production abilities. If the firm wants to avoid these signals, is it

possible to adapt the Ausubel-Milgrom proxy auction to deal with secret scoring rules as

well?

Our version of the Ausubel-Milgrom proxy auction works as follows: for each possible

quality configuration for each package, a seller submits a minimum price at which he is

willing to deliver. This can be interpreted as the seller’s cost structure. With the help of

this cost structure, the proxy bidder submits bids automatically on behalf of the seller.

The proxy follows a simple bidding strategy: it bids on all possible quality configurations

yielding the highest potential profits (with respect to the reported cost structure). Bidding

is stopped in case this potential profit gets negative.

We show with direct proofs that main theorems for the Ausubel-Milgrom proxy auction

extend to this mechanism. This includes, with respect to the reported preferences, surplus

maximization and the core property for the final winning allocation, as well as existence

of equilibria in profit-target strategies. The scoring rule can be kept secret without influ-

encing the outcome. Particularly, for a specific class of scoring rules truthful bidding is an

equilibrium strategy, making bidding behavior easy in case bidders know that the scoring

rule is in this class.
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Furthermore, we consider the special case of an additive scoring rule. A scoring rule is

called additive if a score can be calculated for each item separately, and these scores

are added up to generate the score for a package. Here, the auction procedure can stay

essentially the same compared to the original price-only proxy auction, in case the scoring

rule is public: each bidder calculates the maximum score he is able to generate for each

single item and submits these scores (not necessarily truthfully) to the proxy. Similar

to the price-only proxy auction, the proxy then bids myopically on packages of items.

Consequently, results stay the same compared to the price-only proxy auction. We extend

the bidding procedure to secret scoring rules by using price-quality bids. Although the

scoring rule is not known, the outcome of the auction with public scoring rule is replicable

with this bidding procedure. Particularly, this enables us to directly carry over some theory

on the Ausubel-Milgrom proxy auction to secret scoring rules.

The literature on scoring auctions is surprisingly scarce2, if one thinks of the variety of

procurement settings where price and quality matter. There is a first strand of literature

looking at optimal scoring auctions by adapting the scoring rule (Che 1993; Branco 1997;

David et al. 2002a). Contrary to this approach, the scoring rule is fixed in our environment

– we assume that the decision on the scoring rule has already been made.

Mueller et al. (2007) generalize Asker and Cantillon (2008) to combinatorial auctions:

they show that the set of equilibria can be transferred from multi-dimensional price-only

auctions to the corresponding scoring auctions. Mueller et al. (2007) use scoring rules

for every possible package, which are not necessarily the sum of the scoring rules for the

single items. The winning allocation is then determined by an allocation rule over scores.

The additive scoring rule we use in part of this chapter is a special case of their setting.

Our general scoring rule differs from their approach, as it allows for interdependencies

of quality attributes for different items across bidders – there is just one single scoring

rule for all objects. Such an interdependent scoring rule can also be found in Suyama and

Yokoo (2004) and (2005) in the context of Vickrey-Clarke-Groves mechanisms. Which

type of scoring rule one wants to use is a question of the context. Furthermore, mixed

forms are possible as well.

It is well known that in some settings Vickrey-Clarke-Groves mechanisms do not achieve

budget balancedness. In the context of general scoring rules, Suyama and Yokoo (2004)

point out that a Vickrey-Clarke-Groves mechanism does not guarantee a nonnegative

payoff for the buyer. They give a more detailed characterization in Suyama and Yokoo

(2005). Even if the rule is publicly known, a score for bids on packages cannot be calculated

– it depends on the bids submitted by the other bidders. Imagine a scoring rule that

treats two quality attributes of different items as perfect complements. The score thus

only increases if a bid raise is made on the attribute levels for both items. Hence, if this

2A good survey can be found in Strecker (2004).
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raise is due to two different suppliers in the winning allocation, both suppliers have to be

paid for it in the VCG mechanism – the buyer has to pay the raise twice. This may make

the outcome too expensive for him, generating a negative final score – he would have

preferred not to conduct the auction at all. We thus have to be careful when transferring

results to scoring auctions with general scoring rules.

Secret scoring rules in the context of single-unit English auctions go back to David et al.

(2002b). In their setting only monotonicity properties of the scoring rule with respect to

the attribute values are announced to the sellers. Bids consist of price-quality combina-

tions. As bidders do not know the scoring rule, submitted bids may be rejected if the score

they generate is lower than the standing high bid. The auction ends when no sufficiently

high bids are submitted in a prespecified period of time or all bidders stop their bidding

activity. The set of possible attribute levels is assumed to be finite.

David et al. (2002b) show that in this setting, it is a dominant strategy for the suppliers

to follow a bid list strategy : each bidder ranks the possible bids (there are only finitely

many due to the finite attribute space) according to his own preferences (potential profit).

Then, he submits his bids in order of decreasing profit. In case he is standing high bidder

he suspends the submittance of bids. Otherwise, he submits bids until all bids on his list

were submitted. We extend their approach to the multi-object case: a proxy bidder takes

the role of submitting the multi-object counterpart of the bid list, a ranking of possible

bids according to their potential profit. This is the extension of the Ausubel-Milgrom

proxy auction to secret scoring rules.

Finally, Rezende (2009) makes use of bias functions instead of scoring rules to account

for quality differences. In his setting, the release of information is always optimal. The

ascending proxy auction that we use is introduced and discussed by Ausubel and Milgrom

(2002). A final discount stage is added by Lamy (2007), ensuring that truthful bidding

leads to a bidder-optimal point in the core. Ranger (2005) extends the proxy auction to

a setting with externalities.

The chapter is organized as follows: first, we introduce the general framework in Section

2.2. The results on the proxy auction with a general scoring rule are developed in Section

2.3. Finally, we discuss the properties of secret scoring rules in the general context and in

the presence of an additive scoring rule in Section 2.4, before we conclude in Section 2.5.

Proofs can be found in Appendix 2.A.

2.2 The Model

We consider the set N of n suppliers in a procurement auction. They bid to provide all or

some of the m indivisible goods in the set G. Each good j ∈ G is specified by rj quality

attributes. The attributes may take different real-valued attribute levels. For a realization
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of these levels of good j, we denote the attribute vector by qj ∈ Qj ⊂ Rrj . Let r =
∑m

j=1 rj

be the total number of attributes of all goods in G and q = (q1, q2, . . . , qm) ∈×m

j=1
Qj ⊂ Rr

the total attribute vector. Additionally, each bid on a good j specifies a price pj ∈ R+.

Let p =
∑m

j=1 pj be the total price of all goods. The set P of all possible prices and Qj

are assumed to be discrete and finite3. For a subset Gj ⊂ G, we denote the vector of

attributes of the goods in Gj by qGj . rGj and pGj are defined analogously. The buyer has a

valuation function v for the set G of goods with a quality vector q. We assume quasilinear

utility for the buyer: if the set G is bought for a price p, the buyer has a total utility of

v(q)− p.
In a multi-object scoring auction, the sellers submit bids (pGj , qGj) for sets Gj of goods.

The evaluation of the bids is done on the basis of scores which are calculated by a scoring

rule that does not necessarily need to match the buyers true valuation v.

We consider a quasilinear scoring rule S : Rr+1 → R , which takes the form

S (p, (q1, . . . , qm)) = Φ(q1, . . . , qm)− p, (2.1)

with an overall price of p =
∑m

i=1 pi and increasing in the vector of quality attributes

(q1, . . . , qm). Φ(q) represents the quality level that is achieved by the attribute vector q.

It is also the maximum payment the buyer is willing to make for q.

We denote the set of all possible allocations by H. A (winning) allocation qH ∈ H specifies

a tuple H = (H1, . . . , Hn) where every bidder i gets assigned a subset Hi ⊆ G such that⋃n
i=1Hi ⊆ G and Hi ∩ Hj = ∅ for all i 6= j. These are the items each supplier has to

deliver. The set Hi may be empty. Additionally, qH fixes the attribute levels for the items

that each supplier got assigned. Our model covers the case
⋃n
i=1 Hi ( G where some items

may remain unassigned. Then, when calculating the quality level, the attribute levels of

the absent items take default attribute values, which can be specified by the buyer4. The

winning allocation is the one that maximizes the overall score according to S with respect

to the submitted bids. Note that we do not select a specific tie breaking rule; any rule

will do for our purposes.

In our model, the suppliers differ with respect to their cost structure, which are private

values. In general, cost functions are specified for each package. Thus, bidder i has a cost

function ci
(
Gj, qGj

)
to produce quality qGj for a package Gj. We write in short ci

(
qGj
)

3This assumption is not very restrictive, as we will use an ascending auction procedure in the following,

where it is common to use discrete bid increments. Furthermore, there are usually technical restrictions

on possible attribute levels, and the auctioneer has a maximum price he is willing to pay. All in all, the

attribute space is allowed to become very large, such that any realistic bid can be included.
4For example, if one item is optional from the buyer’s perspective and bidders are offering this item

only for very high prices, the buyer prefers to go without the item. This can e.g. be reflected by using

attribute levels of zero (depending on the functional form of the scoring rule). Similarly, if one item is

essential for the buyer, default attribute levels for the item in case of not getting it will lead to low or

zero quality levels.



54 2 Ascending Combinatorial Scoring Auctions

for this. The costs are assumed to be strictly increasing in each quality attribute, and

each qGj may be delivered for some finite price. Furthermore, let ci(q∅) ≡ 0.

The social surplus with respect to the scoring rule W (qH) that an allocation qH achieves

can thus be denoted as follows:

W (qH) := Φ (qH)−
∑
i∈N

ci (qHi) .

We illustrate this model by the following example:

Example 2.1 Consider three bidders (1, 2 and 3) and two objects (A and B). There is

one quality attribute for each object, the negative5 delivery time, represented by qA and

qB, respectively. The buyer uses the scoring rule

S (pA, pB, qA, qB) := 15 + min{qA, qB}︸ ︷︷ ︸
=Φ(qA,qB)

−pA − pB

We assume that bidders are able to produce the objects in either one or five days or not

at all, according to the costs given in Table 2.1.

Object A Object B Objects A and B

Quality −1 −5 −1 −5 (−1,−1) (−1,−5) (−5,−1) (−5,−5)

Costs bidder 1 5 4 10 9 20 16 16 12

Costs bidder 2 10 9 4 3 19 15 15 13

Costs bidder 3 11 5 11 5 30 20 20 14

Table 2.1: Costs of the bidders.

The underlined costs mark the efficient allocation: bidder 1 delivers item A and bidder 2

delivers item B, both in time 1. We now look at a Vickrey-Clarke-Groves mechanism to

determine the payments. Denote the winning allocation by q∗H (maximizing W (qH)) and

the winning allocation if bidder i were not present by q∗H−i . Bidder i gets paid pi according

to the VCG payment rule:

pi := W (q∗H)−W
(
q∗H−i

)
+ ci

(
q∗Hi
)

Thus, each winning bidder gets paid for the surplus that he generates by his presence plus

his costs. Bidder 1 has costs of 5 and generates a score of ((15 − 1) − (4 + 5)) − ((15 −
5)− (3 + 5)) = 3 (if bidder 1 were not present, bidder 3 would deliver item A instead and

delivery time would go up to 5). Hence, he gets paid p1 = 8. Similarly, bidder 2 gets paid

8. With these payments we get a total score of (15−1)− (8 + 8) = −2 < 0. Consequently,

5We take the negative time to make the score increasing in quality.
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the buyer would prefer not to buy the items at these payments – the VCG mechanism

does not guarantee a nonnegative payoff for the buyer.6

2.3 Ascending Proxy Scoring Auctions

The auction format we use in this chapter is a generalization of the Ausubel-Milgrom

ascending (proxy) package auction. We first describe how the ascending package auction

extends to the scoring auction environment and then introduce the proxy bidder.

The auctioneer (buyer) publicly announces the items he wants to buy and the items’

corresponding possible attributes and their levels. He decides on a scoring rule7 S to

evaluate the bids. In each round, a seller i bids according to the following general structure:

first, he selects the packages of items he wants to bid on and decides for each package Gj

which quality attribute levels qGj he wants to offer – he may offer different combinations

of attribute levels for each package. For each of these offers, the bidder specifies a price

bid βi
(
qGj
)

at which he is willing to sell. Then, he submits all of these bids
(
βi
(
qGj
)
, qGj

)
simultaneously. Bids are treated as mutually exclusive – for each bidder, at most one bid

will be selected by the auctioneer for the standing high bids, the winning allocation of

each round. The auctioneer may also include bids of previous rounds in the standing high

bids (e.g. of bidders that already stopped bidding).

For the first bidding round, the auctioneer specifies a maximum price p̄ the sellers may ask

for. For the following rounds, sellers have to lower their previous price offer according to

the finite set of possible prices P on a particular package and attribute level configuration.

We denote the corresponding maximum bid price by mi

(
qGj
)
. A single bid is rejected if

the maximum bid rule is not met, all bids are rejected if the resulting standing high bids

would yield a negative score. Rejected bids are treated as a zero bid. Bidding ends if no

new bids are submitted or all submitted bids violate the maximum bid rule.

In the proxy auction, the bidding process is automated with the help of a proxy bidder. It

uses the following strategy, where asking for a price of ∞ corresponds to submitting no

bid on this attribute level configuration:

Definition 2.2 The bidding strategy

∀qGj : βi
(
qGj
)

:=

mi(qGj) if qGj ∈ arg maxq′Gj

[
mi

(
q′Gj

)
− ci

(
q′Gj

)]
∞ if qGj /∈ arg maxq′Gj

[
mi

(
q′Gj

)
− ci

(
q′Gj

)]
is called straightforward bidding strategy. New bids are only submitted in case bidder i is

not one of the standing high bidders.

6See Suyama and Yokoo (2005) for a more detailed discussion.
7The analysis of the decision process is not part of this chapter – any decision process is fine for our

purposes.
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Bidding stops in case arg maxq′Gj

[
mi

(
q′Gj

)
− ci

(
q′Gj

)]
< 0.

According to this strategy, the bidder places the maximum bid on all attribute level con-

figurations that yield the highest potential profit. Note that the straightforward bidding

strategy does not depend on the scoring rule used by the auctioneer, but only on the cost

structure of each bidder. Thus, using the straightforward bidding strategy is similar to

sorting all bids according to their potential profit into a bid list and submitting one after

the other (and all bids with the same profit at the same time).

In the proxy auction, each seller reports a cost structure ci (not necessarily truthfully)

to the proxy bidder. Then, the proxy submits bids on behalf of the seller following the

straightforward bidding strategy with respect to the reported cost structure.

Example 2.3 We use the setting of Example 2.1 and apply the proxy scoring auction.

Bidders costs are given by Table 2.1. The maximum starting price has to be chosen high

enough – a price of 15 will do for our purposes. Bidders start by bidding myopically on the

attribute level configuration with the lowest production cost, yielding the highest possible

profit. Table 2.2 shows the first set of bids submitted by the proxy bidders. We assume

that the bidders reported their costs truthfully to the proxy bidder.

Object A Object B Objects A and B

Quality −1 −5 −1 −5 (−1,−1) (−1,−5) (−5,−1) (−5,−5)

Bids bidder 1 – 15 – – – – – –

Bids bidder 2 – – – 15 – – – –

Bids bidder 3 – 15 – 15 – – – –

Table 2.2: First round bids.

As no combination of these bids generates a positive payoff, all bids are rejected by the

buyer. The proxies submit a new set of bids, uniformly lowering the potential profit – we

assume a bid increment of 1 here. Table 2.3 shows the second set of bids.

Object A Object B Objects A and B

Quality −1 −5 −1 −5 (−1,−1) (−1,−5) (−5,−1) (−5,−5)

Bids bidder 1 15 14 – – – – – –

Bids bidder 2 – – 15 14 – – – –

Bids bidder 3 – 14 – 14 – – – –

Table 2.3: Second round bids.

Again, bids are rejected because no positive score is generated by the submitted bids.

In the following rounds, the proxies will continue to lower the potential profit until a
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nonnegative score is generated by the submitted bids. This is the case for the bids in

Table 2.4.

Object A Object B Objects A and B

Quality −1 −5 −1 −5 (−1,−1) (−1,−5) (−5,−1) (−5,−5)

Bids bidder 1 7 6 12 11 – – – 14

Bids bidder 2 13 12 7 6 – – – –

Bids bidder 3 12 6 12 6 – – – 15

Table 2.4: Bids leading to a nonnegative score.

The winning bids are the underlined bids in Table 2.4 – bidder 3 will submit one more

set of bids with a potential profit of zero, but these bids are not high enough to outbid

the other two. The winning allocation is the same as in Example 2.1, but prices are lower

– the buyer gets a nonnegative payoff.

For the following analysis, similar to Ausubel and Milgrom (2002), we assume that bid

increments are negligibly small, such that we have a continuous price range. We think of

bidding rounds as taking place at times t ≥ 0.

To derive our main results, we need to make sure that all allocations that may theoretically

win the auction are included in the bidding process. Particularly, bidding does not stop

before e.g. bidder i starts submitting a bid on an attribute level configuration that is

complementary to the others and would yield a higher score. This is established in the

following lemma.

Lemma 2.4 Consider any possible set of cost structures and any allocation qH that pos-

sibly generates a positive score. Then, a sufficiently high starting price p̄ exists, fulfilling

the following: in each bidding round that yields a nonnegative score, every bidder who

delivers one or more items in this allocation qH submits a bid on his respective attribute

level configuration.

Proof See Appendix 2.A. �

In other words, the proxy starts bidding with a very high price, such that bids get rejected

in the beginning of the auction. As soon as the score gets positive, and bids are not rejected

any more, all allocations that are theoretically able to win the auction may be chosen by

the auctioneer.

To analyze the properties of the proxy scoring auction, we take a look at the corresponding

game in coalitional form. In particular, we want to show that the proxy auction leads to

a core outcome of this game.



58 2 Ascending Combinatorial Scoring Auctions

First, we denote the set of all participants in the auction by Ns = N ∪ {0}. The buyer is

player 0. A coalition is any subset Nc ⊂ Ns. The set of allocations for a coalition Nc is

the set where all items get assigned to sellers in Nc \{0}, denoted by Hc := {qH ∈ H|∀i /∈
Nc \ {0} : Hi = ∅}. The coalitional value function w represents the profit a coalition Nc

can achieve by producing and trading all items only within its members. Note that only

coalitions including the buyer can achieve positive profits as he is paying the bill for the

delivered items. For such a coalition, an allocation in Hc is chosen and and w takes the

following form:

∀Nc ⊂ Ns : w(Nc) :=

maxqH∈Hc

[
Φ(qH)−

∑
i∈Nc\{0} ci(qHi)

]
if 0 ∈ Nc

0 if 0 /∈ Nc

A payoff vector π = (π0, . . . , πn) is called feasible if its aggregate payoff does not exceed

the value achievable by the coalition of everyone. It is called unblocked if no coalition is

able to improve the payoff of its members on its own. The core is the set of feasible and

unblocked payoff vectors:

Core(Ns, w) :=

{
π

∣∣∣∣∣∑
i∈Ns

πi = w(Ns) ∧ ∀Nc ⊂ Ns :
∑
i∈Nc

πi ≥ w(Nc)

}

Let π̃t denote the intermediate payoff vector in the auction at time t. We can now derive

the following connection between core and proxy scoring auction:

Theorem 2.5 The surplus with respect to the scoring rule and the reported cost structures

Φ(q∗H) −
∑
ci(q

∗
H) = w(Ns) is maximized in the final winning allocation q∗H of a proxy

scoring auction. The final payoff vector at time t̄ is in the core, π̃t̄ ∈ Core(Ns, w).

Proof See Appendix 2.A. �

The strategies of the sellers in the proxy scoring auction describe what kind of cost

structures they submit to the proxy. One particular type of strategy is the πi-profit-target

or semi-sincere strategy. Such a strategy guarantees bidder i a profit of πi in case he is

one winner of the auction. The strategy can be realized by submitting a cost structure

c̃i = ci+πi. Let Πi (c̃i, c̃−i) denote the profit bidder i makes in the proxy scoring auction if

he reports c̃i and the others report c̃−i. Generalizing the results of Ausubel and Milgrom

(2002), we first show that there is always a best reply which is a profit-target strategy.

Theorem 2.6 For any bidder i and any reports c̃−i to the proxy by the other bidders, let

π̄i = maxc̃i Πi (c̃i, c̃−i). Then the π̄i-profit-target strategy is a best reply for bidder i in the

proxy scoring auction.

Proof See Appendix 2.A. �
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To characterize a set of equilibria of the proxy scoring auction, we need the following

definition.

Definition 2.7 A payoff vector π is called bidder-optimal if π ∈ Core(Ns, w) and there

exists no π′ ∈ Core(Ns, w) with π′−0 ≥ π−0 and π′−0 6= π−0.

Bidder-optimal points in the core are associated with Nash equilibria of the proxy scoring

auction:

Theorem 2.8 Suppose that π is bidder-optimal. Then the corresponding πi-profit-target-

strategies constitute a Nash equilibrium of the proxy scoring auction. Conversely, the pay-

off vector in any Nash equilibrium in profit-target strategies at which losing bidders bid

sincerely is bidder-optimal.

Given Theorem 2.6, the proof of Theorem 2.8 is now identical to the proof of the corre-

sponding theorem in Ausubel and Milgrom (2002) (Theorem 4).

In general, there may be several bidder-optimal points in the core, yielding several equi-

libria. A condition guaranteeing a unique bidder-optimal point in the core is bidder-

submodularity of the coalitional value function:

Definition 2.9 A coalitional value function w is called bidder-submodular, if for any

bidder i and all coalitions N1, N2 that include the seller, N1 ⊂ N2,

w(N1 ∪ {i})− w(N1) ≥ w(N2 ∪ {i})− w(N2)

holds.

Bidder-submodularity of w also relates the outcome of the proxy scoring auction to the

outcome of the VCG mechanism, πV :

Theorem 2.10 Suppose w is bidder-submodular. Then, the strategy profile where every

bidder i reports ci truthfully to the proxy bidder is an equilibrium of the proxy scoring

auction. Its payoff vector π is the unique bidder-optimal point in Core(Ns, w), and πi =

πVi = w(Ns)− w(Ns \ {i}) = max{πi|π ∈ Core(Ns, w)}.

Given Theorem 2.5, the proofs of the corresponding theorems in Ausubel and Milgrom

(2002) (Theorem 8) or Milgrom (2004) (Theorem 8.11) apply.

The theorem provides a sufficient condition for the proxy scoring to work well: with

bidder-submodularity of the coalitional value function, truthtelling is an equilibrium and

it is thus easy for the sellers to follow this strategy. Additionally, the unique bidder-optimal

core point with respect to the true valuations is reached. Under these circumstances, the

proxy scoring auction works as well as the VCG mechanism, as it reaches the same payoff

vector. Note, however, that the proxy scoring auction additionally always guarantees a

nonnegative payoff for the buyer, which the VCG mechanism does not.
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2.4 Secret Scoring Rules

We now turn to the question of how far the auctioneer is able to keep the scoring rule

secret. First, we discuss whether the analysis of the general model in Section 2.3 can

be extended to secret scoring rules. Then, we consider a specific type of scoring rules:

additive scoring rules, where the total score can be calculated as the sum of the scores

of the individual items. For this type of scoring rules, a general result connecting the

Ausubel-Milgrom proxy auction and the proxy scoring auction can be derived.

2.4.1 General Scoring Rules

How does the proxy scoring auction work with a secret scoring rule? Note that the auction

procedure did not specifically rely on the scoring rule being public. Without knowledge of

the scoring rule, sellers submit a cost structure to the proxy. Its bidding behavior stays the

same: the proxy submits the bids myopically in order of the respective seller’s preferences

– it does not need the scoring information to do so, but only the submitted cost structure.

Then, bids get evaluated according to the scoring rule – this can be done by a proxy

as well to ensure that the auctioneer sticks to the scoring rule and does not change it

during the auction process. The submitted bids do not need to be publicly announced.

The minimum information that is necessary to make the procedure work is to let every

bidder know when he is standing high bidder. Announcing this publicly has no impact

on the outcome of the auction. However, any information the auctioneer reveals contains

information about his scoring rule. Consequently, the more concerned he is with keeping

it secret, the less information on bids and their evaluation should be given out.

We start the theoretical analysis with the observation that Theorem 2.5 holds even with

a secret scoring rule, as the bidding behavior of the proxy does not change.

Corollary 2.11 The proxy scoring auction with a secret scoring rule reaches the same

outcome as the proxy scoring auction with a public scoring rule. Particularly, the final

winning allocation maximizes the surplus with respect to the scoring rule and the reported

cost structures. The final payoff vector is in the corresponding core.

What is the impact of a secret scoring rule on the equilibrium analysis in Section 2.3?

Let us assume the scoring rule to be secret, but fixed: the sellers take the rule as given

without knowing anything about it. Then, the equilibrium analysis in Theorem 2.6 and

Theorem 2.8 is in principle still valid: as the outcome stays the same, best replies are still

best replies, no matter whether the scoring rule is secret or not. However, the assumption

of a secret, but fixed scoring rule is problematic in the sense that, in contrast to the case

of a public scoring rule, sellers are in general not able to calculate best replies themselves.

Even if a seller knows the reported cost structure of his opponents, he cannot conclude
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his best reply without some knowledge of the scoring rule – although the best replies and

equilibria we characterized in Theorem 2.6 and Theorem 2.8 still exist.

Theorem 2.10 shows a way out of these problems for some particular scoring rules. If

the auctioneer is able to credibly announce that his scoring rule is such that the coali-

tional value function is bidder-submodular, bidders have the simple equilibrium strategy

of reporting their cost structure truthfully. Such an announcements corresponds to chang-

ing the scoring rule from being secret, but fixed to being secret, but fixed from a menu

where each possible scoring rule makes the coalitional value function bidder-submodular.

Particularly, in the latter case there is the universal best reply of reporting the true cost

structure, making the above mentioned problems with a secret scoring rule vanish.

Corollary 2.12 If the scoring rule is secret in a proxy scoring auction, but bidders know

that the corresponding coalitional value function is bidder-submodular, all bidders reporting

their true cost structure is an equilibrium of the auction.

However, an announcement of bidder-submodularity by the buyer may be difficult to

make: the coalitional value function depends on the bidders’ cost structures. If the auction-

eer does not know these cost structures, a general characterization for bidder-submodularity

would be needed, enabling the auctioneer to deduce bidder-submodularity using only the

scoring rule and, if necessary, some regularity conditions on the cost structures.

2.4.2 Additive Scoring Rules

We now analyze the special case of an additive scoring rule. Then, the score for each item

j can be calculated individually by

Sj(pj, qj) := φj(qj)− ci(qj).

The total score for a set Gj is then given according to

SGj(pGj , qGj) =
∑
l∈Gj

Sl.

Suppose in a first step that the scoring rule is publicly known. Note that, in contrast to

our previous analysis, an additive scoring rule enables the bidders to calculate the value of

their bids in terms of the score they generate. The bidding procedure can be substantially

simplified in this setting: bidders need to submit only one score for each package they bid

on. To show this, think of a bidder i who is one of the winners of the auction. He has to

deliver the package Gj, and the auctioneer expects to get a score of tij on this package.

We suppose that bidder i has the freedom to provide a score of tij in any way he likes.

Analogously to statements in Asker and Cantillon (2008) and Mueller et al. (2007) we

can formulate the following lemma:
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Lemma 2.13 The optimal level of quality q∗Gj ∈ QGj that a supplier i with cost function

cGj produces for a package Gj is independent of the score tij he has to fulfill.

Proof See Appendix 2.A. �

In our general setting, bidders needed to differentiate their bids by submitting different

attribute levels and configurations for each package. Lemma 2.13 shows that, with an

additive scoring rule, the suppliers are not interested in submitting different attribute

level configurations for the same package – they produce the same configuration in any

case. This leads us to the following corollary:

Corollary 2.14 Consider a multi-object scoring auction with a publicly known additive

scoring rule. Bidders have no restriction on how to deliver the requested score. Then, there

is no difference between bidders submitting bids of price-quality combinations or bids of

scores: both mechanisms lead to the same outcome – the same quality is delivered and the

same price is paid.

Hence, it is sufficient to let bidders submit a single score for each package instead of a

price-quality combination as long as they know the scoring rule. For this setting with an

additive and public scoring rule we thus assume for the sequel that bids consist of scores.

Furthermore, Lemma 2.13 shows that each bidder has a maximum of social surplus he

can generate with respect to the scoring rule. This leads to the following definition.

Definition 2.15 Suppose that bidder i has a cost function cGj for each Gj ⊂ G. Then

kGj := max
qGj

[
φGj(qGj)− cGj(qGj)

]
(2.2)

is the pseudotype of bidder i for the package Gj.

Alternatively, the pseudotype can be interpreted as the maximum score a seller is able to

deliver without losing any money. Regarding this interpretation, the pseudotype is similar

to the valuation in price-only auctions – there, the valuation is the maximum amount of

money a buyer can pay without obtaining an object at a loss.

In this context, the proxy scoring auction works as follows: the sellers submit a pseu-

dotype vector (the pseudotype for each package) to the proxy. Then, the proxy submits

mutually exclusive bids of scores according to the straightforward bidding strategy – he

bids myopically on all packages promising the highest profit. The auctioneer selects the

standing high bidder by selecting the allocation that maximizes the sum of submitted

scores. We can compare this bidding procedure with the original Ausubel-Milgrom proxy

auction:
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Remark 2.16 The proxy scoring auction with a public additive scoring rule can be in-

terpreted as the original Ausubel-Milgrom proxy auction with bidders submitting pseu-

dotypes as valuation vectors and proxies submitting scores as bids. Particularly, if bidders

types in the scoring auction are their pseudotypes and distributed as the types in the

original scoring auction, all theorems that hold for the original proxy auction hold for the

additive proxy scoring auction as well (in their corresponding reformulations).

Note that this is a general statement on the transferability of results to the scoring auction

environment. Not only Theorems 2.5, 2.6, 2.8 and 2.10 hold, but all other statements that

are true for the original proxy auction have their counterpart for the additive proxy scoring

auction. For a general scoring rule we do not have this kind of general transferability –

each theorem has to be proven in the new environment, as we did in Section 2.3.

However, transferring results for the additive scoring auction can be a bit more compli-

cated in an independent private values model with incomplete information: if bidders have

multidimensional types that do not represent the pseudotypes (but can be reduced to get

them), it is not directly obvious that the strategic bidding behavior of each participant

is the same as in the price-only auction. Nevertheless, Mueller et al. (2007) show that

under mild regularity assumptions the set of equilibria of a price-only auction and the

corresponding scoring auction is basically the same.

We now turn to the analysis of secret scoring rules in the context of the additive proxy

scoring auction. In this auction, bids are submitted as scores generated out of the pseu-

dotypes vectors of the bidders. As bidders need to know the scoring rule to calculate their

pseudotype, reducing bids to scores is not possible. Consequently, the bidding procedure

needs to be transformed in the presence of a secret scoring rule. A suitable bidding pro-

cedure is the one used in Section 2.3: each bidder submits a cost structure to the proxy,

which generates bids on all possible attribute level configurations. The additive scoring

rule imposes enough structure to connect the two different bidding procedures:

Theorem 2.17 Consider a winning bidder and the associated winning package in any

round of a proxy scoring auction with a secret additive scoring rule. Then, among the

bids on the different attribute levels of that package by the bidder, the buyer chooses the

bid using the optimal quality attribute level from the seller’s perspective (if he knew the

scoring rule).

Proof See Appendix 2.A. �

What does this theorem tell us? Consider a seller i who decides to bid according to a

cost structure c′i. Suppose he submits this cost structure to the proxy bidder, it bids

accordingly and the seller is a standing high bidder in one of the bidding rounds. Then,

the auctioneer will select the optimal attribute level in this standing high bid – the one the

seller would have chosen (according to his submitted cost structure) in case he would have
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only been forced to deliver a particular package and score, and not a particular attribute

level configuration. Thus, the outcome of the auction is the same in case the scoring rule

is public and each seller i uses similarly c′i to calculate his pseudotype and decide on the

attribute levels he will deliver.

Note one particular difference: if seller i decides to choose c′i such that the relative costs

of attribute levels for a specific package are changed, his true optimal quality might differ

from the optimal quality implied by c′i. In case of a public scoring rule, he would have an

ex post incentive to supply his true optimal attribute levels after being told the package

and score he has to deliver. With a secret scoring rule, he is forced to deliver the attribute

levels chosen by the auctioneer. However, this distortion cannot appear when for each

possible package Gj there is a πGj such that c′i(qGj) = ci(qGj) +πGj – each bidder uses his

true relative costs for a package. This kind of bidding behavior is a best reply: suppose a

seller would distort his costs for a specific package and win the auction on that package

with a profit π′. Then, he always makes at least the same profit by not distorting and

uniformly asking for a profit-target of π′ on that package. In fact, he could possibly even

raise the profit-target and still win the auction, as he is able to generate a (weakly) higher

score on the same package if he does not distort. Consequently, we can conclude:

Corollary 2.18 The outcome of the proxy scoring auction with a public additive scoring

rule can be reproduced using a secret scoring rule.

This is particularly interesting as bidding with public additive scoring rule relied on

the bidders’ knowledge of the scoring rule. Thus, we showed a way to transfer theory

regarding the original Ausubel-Milgrom proxy auction to scoring auctions with secret

additive scoring rule, using the public additive scoring rule as an intermediate step. Of

course, the restrictions on the use of secret scoring rules as mentioned in Section 2.4.1

still apply.

2.5 Conclusion

We showed that the Ausubel-Milgrom proxy auction can be extended to a combinatorial

scoring auction setting. It is able to replicate the desirable outcome of the Vickrey-Clarke-

Groves mechanism in case the coalitional value function is bidder-submodular, but does

not suffer of the problems with negative payoff for the buyer that may appear in the

context of a general scoring rule when the VCG mechanism is used. Thus, the Ausubel-

Milgrom proxy scoring auction is suitable for auctioneers who care about interdependen-

cies of quality attributes.

Furthermore, we discussed the possibility of keeping the scoring rule secret: the outcome

stays the same, best replies are still best replies, and if it is publicly known that the

coalitional value function is bidder-submodular, sellers are sure to have the universal
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truthful equilibrium bid without further knowledge of the scoring rule. For an additive

scoring rule we derived a close connection to the original Ausubel-Milgrom proxy auction.

2.A Appendix: Proofs

Proof of Lemma 2.4

Let

p̄ := 2 ·max
q
S(0, q),

which is twice the maximum possible score (if all sellers would give away their items

for free). Hence, bids get rejected at least until the first submitted prices reach p̄
2
. Now

suppose we are in any bidding round after this point and consider any allocation qH

that generates a positive score with respect to the reported cost structures (these are the

allocations that may theoretically win the auction). In particular, this means that the

individual costs ci (qHi) of each seller in this allocation are below p̄
2
. As this seller has

already submitted at least one bid (on some attribute level configuration) with a price

lower than p̄
2
, the maximum profit he may obtain in this round is lower than p̄

2
. He can

make at least the same profit by asking for a price of p̄ on qHi , because p̄−ci (qHi) ≥ p̄− p̄
2
.

Hence, according to the straightforward bidding strategy, the proxy places a bid on qHi

in this round. �

Proof of Theorem 2.5

We first show that at any time t the provisional payoff vector is unblocked by any coalition.

Among all submitted bids at8 time t, the auctioneer selects the allocation qtH ∈ H that

maximizes the score9:

qtH ∈ arg max
qH∈H

S ((β1(t, qH1), qH1), . . . , (βn(t, qHn), qHn))

Now, we can rearrange this score:

π̃t0 = max
qH∈H

S
(
(c1(qH1) + π̃t1, qH1), . . . , (cn(qHn) + π̃tn, qHn)

)
= max

Nc⊂Ns
max
qH∈Hc

Φ (qH)−
∑

i∈Nc\{0}

(
ci(qHi) + π̃ti

)
= max

Nc⊂Ns

max
qH∈Hc

Φ (qH)−
∑

i∈Nc\{0}

ci(qHi)

− ∑
i∈Nc\{0}

π̃ti


8Similar to the original Ausubel-Milgrom proxy auction, all bids up to time t can be included in the

optimization problem of the auctioneer. However, as the proxy simultaneously lowers the price on all

possible quality levels, the auctioneer will always prefer the latest bid submitted.
9Note that the auctioneer pays an amount of zero to every not winning bidder although the notation

suggests something different. For the ease of a simple notation we stick to it.
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= max
Nc⊂Ns

w(Nc)−
∑

i∈Nc\{0}

π̃ti

 (2.3)

The second equality holds as bidders not in coalition Nc receive a payment of 0 and do

not deliver an item. Using equation (2.3) we can directly see that the payoff vector is

unblocked:
∀Nc ⊂ Ns : π̃t0 ≥ w(Nc)−

∑
i∈Nc\{0}

π̃ti

⇐⇒ ∀Nc ⊂ Ns :
∑
i∈Nc

π̃ti ≥ w(Nc)
(2.4)

We still need to show that the final payoff vector is indeed feasible. Denote the set of

bidders in the final winning coalition at time t̄ by W . Then, we get as final payoff vector

π̃t̄:

π̃t̄i =


βi(t̄, q

∗
Hi

)− ci(q∗Hi) if i ∈ W

Φ(q∗H)−
∑

j∈W βj(t̄, q
∗
Hj

) if i = 0

0 if i /∈ W ∪ {0}

This payoff vector yields

w(Ns)
(2.4)

≤
∑
i∈Ns

π̃t̄i = Φ(q∗H)−
∑
i∈W

ci(q
∗
H) ≤ max

qH∈Hc

Φ (qH)−
∑

i∈Ns\{0}

ci(qHi)

 = w(Ns).

Hence, feasibility and maximization of surplus with respect to the scoring rule and the

reported cost structures are established. �

Proof of Theorem 2.6

Suppose c′i is a cost structure that yields a profit of π̄i for bidder i if the others report

c̃−i. Denote the associated quality attribute allocation by q′. Then, bidder i sells q′i for a

price of ci(q
′
i)+ π̄i, as π̄i is the profit that he makes with respect to his true cost structure.

We can then slightly change this strategy without altering the outcome of the auction:

let c′′i (qi) = c′i(qi) − c′i(q′i) + ci(q
′
i) + π̄i. The report c′′i shifts the report c′i such that the

winning quality allocation q′ makes a profit of zero with respect to the new cost structure

c′′i . Especially, bidding behavior by the proxy is not changed with this alteration of the

reported cost structure: the cost minimal quality allocation q̂ stays the same, p̂ stays

the same and relative reported costs stay the same as well. The shift can only affect the

potential profit, which is not visible for the auctioneer. Thus, decisions by the auctioneer

stay the same in every round, and the final decision q′ will stay the final decision with a

report of c′′i as well – only that the internal profit in the calculations of the proxy for this

allocation is reduced to 0.

Theorem 2.5 showed that q′ is surplus maximizing with respect to the scoring rule and

cost structures (c′′i , c̃−i). Hence, surplus cannot be increased by choosing an allocation
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excluding i. Thus, keeping the reports of the others fixed, with any cost structure c̃i that

specifies c̃i(q
′
i) = c′′i (q

′
i) a quality allocation of q′ is feasible and bidder i will be included

in the winning allocation (either q′ or some other allocation including i).

Now note that the π̄i-profit-target-strategy specifies a bid of ci(q
′
i) + π̄i = c′′i (q

′
i) for q′.

So from our considerations above we know that bidder i will be included in the winning

allocation using this strategy. Furthermore, as the π̄i-profit-target-strategy guarantees a

profit of π̄i in case i is in the winning allocation, the maximum possible profit of π̄i is

realized with this strategy. It is thus a best reply. �

Proof of Lemma 2.13

The bidder chooses to supply the price-quality combination (p∗Gj , q
∗
Gj

) that maximizes his

profit. Thus, his objective is

max
(pGj ,qGj )

[
pGj − c(qGj)

]
s.t. φGj(qGj)− pGj = tij.

This can be rewritten as

max
qGj

[
φGj(qGj)− tij − c(qGj)

]
= max

qGj

[
φGj(qGj)− c(qGj)

]
− tij. (2.5)

Note that the maximum exists and is unique. Furthermore, in (2.5) we can see that the

optimal quality does not depend on the score to fulfill. �

Proof of Theorem 2.17

Consider the bids of a bidder i. For each possible attribute level configuration qGj for each

possible package, a price exists such that a potential profit value πi is realized. As the proxy

continuously decreases the profit value during the auction process, for every quality level

and package the proxy will simply set the bid price βi(qGj) such that βi(qGj) := ci(qGj)+πi.

Hence, in each round the buyer receives a set of bids by each seller including every attribute

configuration and the corresponding prices, all leading to the same profit for the seller.

Every level qGj thus generates a score φGj(qGj) − βi(qGj). As the buyer is rational, for

every πi he will prefer the bid (βi(qGj), qGj) out of the bids of seller i that maximizes his

score for a certain package. This is the bid that maximizes φGj(qGj)− βi(qGj) + βi(qGj)−
ci(qGj) = φGj(qGj) − ci(qGj), as βi(qGj) − ci(qGj) = πi is a constant. But the maximum

of φGj(qGj) − ci(qGj) for a certain package is the bidder’s pseudotype for this package.

Hence, the optimal quality is chosen by the buyer. �





Chapter 3

Signaling in First-Price Auctions

3.1 Introduction

Can it be beneficial to reveal some information about one’s own valuation to another

bidder in a first-price auction with private values? On the first glance, the answer seems

to be an obvious no: one bidder receives additional information while the revealing bidder’s

information level stays the same. In principle, the informed bidder should be able to use

this information to his own advantage and take away part of the profit of the revealing

bidder. On the second glance however, things are not so clear: a bidder wants to appear

weak in the eyes of his opponent, such that the opponent tries to profit from this weakness

by reducing his bid. This increases the chances of winning for the bidder who reveals to be

weak. Of course, there is also an opposing effect if a bidder appears strong. It is the goal of

this chapter to characterize circumstances under which it is profitable (or not profitable)

to release an informative public signal while learning one’s valuation.

A typical situation where an informative signal could emerge can be found in the context

of procurement auctions. Consider a manufacturer who wants to compete in a first-price

procurement auction1 to sell a new product. Before he takes part in the auction he has to

acquire information about his production costs and about the quality of the new product.

Costs and quality depend on the production technology and the costs for buying the neces-

sary components. If the competitors in the auction are able to observe which components

the manufacturer buys for which price, they update their beliefs about quality and price

of the manufacturer’s product. Nevertheless, the manufacturer is the only one who knows

his production technology, while the competitors observe only an informative signal. How

a signal is perceived by the competitors and how their updating works depends very much

on the context, the possible production technologies and the competitor’s beliefs about

1We think of a multi-attribute auction where bids are price-quality combinations evaluated by a scoring

rule. This auction is essentially strategically equivalent to a standard first-price auction (see Asker and

Cantillon (2008)). It is thus safe to transfer the results of this chapter, which are obtained for standard

first-price auctions, to procurement auctions.
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these things. If the manufacturer buys the components secretly, no signal is released. Usu-

ally, the manufacturer has the power to decide whether he uses a secret buying process

or whether he makes its results public. For example, if he uses a request for quotation to

acquire the components, the manufacturer provides public information about the specifi-

cations of the components he intends to use. Alternatively, he would be free to secretly

approach possible suppliers and get their offers without revealing any public information.

In our model, two bidders take part in a first-price auction with private values. One of the

two bidders has the option to release a signal about his valuation while he learns it. Thus,

he has to commit to releasing the signal before he knows his valuation. In case a signal

is released, the receiving bidder updates his beliefs about the valuation of the sending

bidder. As a consequence, the two bidders bid as in an asymmetric auction. Furthermore,

for each signal realization the resulting beliefs differ and thus do the distributions of

the players’ valuations in the auction. This is the major difficulty of this chapter: to

derive the expected profit of using these signals, an expectation over the bidders’ payoffs

of different asymmetric auctions has to be calculated. A closed-form solution for the

bidders’ equilibrium strategies is necessary to do this explicitly. Unfortunately, a general

closed-form solution for asymmetric first-price auctions is not known.

A crucial element for the success of signaling is the structure of the signals. The results

of this chapter show that a very precise signal is not favorable from the sender’s point

of view. Nevertheless, we provide a signaling structure for which signaling is favorable:

such a structure contains some information about the valuation, but is not too precise.

However, in general a signaling precision guaranteeing the success of signaling does not

need to exist: for a different structure, we show that signaling is never favorable for the

sender, no matter what the precision is. In particular, one setting where signaling may

be favorable is a simple discrete first-price auction setting. Each bidder’s valuation and

the signal may be either high, medium, or low. The signal is informative in the sense

that it will take the true value with a larger probability than the other two values, and

the remaining two values are taken with equal probability. We show that releasing such

a signal is beneficial for a bidder, as long as the signal is not too precise (the probability

of revealing the true valuation is not close to one). Additionally, we derive the optimal

probability of revealing the true valuation from the sending bidder’s perspective.

Our other results are obtained in a continuous environment: the valuations of the two

bidders are drawn from the same interval. Signals may realize in an interval around the

true valuation. This interval is shifted for different realizations. The signal precision is

given by the length of this interval – the shorter the interval, the more precise the signal.

Using only mild assumptions on the signal distributions we give an explicit length of the

interval such that signaling is not beneficial if the signals stem from an interval at most as

long as this length. In our final setting, we assume all distributions to be uniform. This is

the only continuous environment where a general explicit solution is known (Kaplan and
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Zamir (2007)) – in particular, a solution is needed that allows for different supports of the

distributions of the bidders’ valuations. With this signaling structure it is not beneficial

for a bidder to release a signal about his realized valuation, irrespective of the signal

precision.

This problem has not been addressed in the literature so far. The most related paper is

Hoerner and Sahuguet (2007). They explain bluffing and jump bidding in a model with two

bidders and an initial stage. In this initial stage, one of the two bidders makes an opening

bid and the other bidder has to match it to start the actual auction following this stage.

A similar feature to our model is the fact that the beliefs of the bidders change depending

on the opening bid and thus an asymmetric auction is played afterward. However, the

opening bid has to be paid in any case. Thus, the signaling happening in the initial stage

has a direct influence on the payoff. Hoerner and Sahuguet (2007) concentrate mostly

on an all-pay auction for the second stage, but also briefly discuss a discrete first-price

auction related to the one we look at in parts of this chapter. In a similar framework, Ye

(2007) looks at the concept of indicative bidding. Potential bidders submit non-binding

bids in a stage before the actual auction starts, which is related to the signals in our

model. However, these bids are used to select the participants for the auction and thus

have a direct influence on the payoffs. Furthermore, bidders only learn the highest rejected

non-binding bid, such that the following auction is a symmetric one – and not asymmetric,

as in our case.

Another related line of research is dealing with information acquisition in auctions. Berge-

mann and Valimaki (2002) study efficiency in a general mechanism design problem where

agents do not know their type but may acquire a signal about it. More precise signals

are more expensive. In contrast to our model, agents do not learn anything about the

other agents, but only about themselves. Persico (2000) shows that agents acquire more

information about their types in a first-price auction compared to a second-price auction.

Compte and Jehiel (2007) compare sealed-bid and dynamic formats, where some bidders

are informed and others are uninformed. In their model, more information is acquired in

the dynamic format, which goes along with a higher revenue for the seller.

Furthermore, our chapter is connected to the literature on information disclosure by the

seller. Milgrom and Weber (1982) show that a seller wants to disclose public information

which is affiliated with the buyers’ types. Eso and Szentes (2007) give a similar result

when information is given to the bidders privately by the seller. Board (2009) studies the

English auction where the seller may be worse off in some cases when releasing information.

Looking for the optimal auction, in Bergemann and Pesendorfer (2007) the seller has full

control how the buyers learn their types. Finally, Kaplan and Zamir (2000) explore the

role of commitment.

The main difficulty of this chapter lies in solving an asymmetric auction. We use the

explicit solution for two bidders with uniform distributions and a general support by
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Kaplan and Zamir (2007). Plum (1992) provides the differential equations characterizing

a general solution when the support of both bidders’ distributions has the same lower

bound. He also provides an explicit solution for power distributions. Numerical solutions

are provided by Gayle and Richard (2008) and the general questions of uniqueness and

existence are examined by Maskin and Riley (2000a, 2000b, 2003) and Lebrun (1999,

2006).

This chapter is organized as follows: in Section 3.2 we introduce signaling in a discrete

first-price auction. The general model with continuous typespaces is studied in Section

3.3 and a special case of this model with uniform distributions is given in Section 3.4. We

conclude in Section 3.5. We derive the equilibrium for a discrete asymmetric auction in

Appendix 3.A and proofs are given in Appendix 3.B.

3.2 Signaling in a Discrete Environment

We consider a first-price auction with two bidders, i = 1, 2, and discrete valuations vi ∈
V := {0, 1, 2}. The valuations are independently distributed and private information of

the bidders. fi(vi) is the probability that valuation vi is realized for bidder i. Bidder 1 may

send a signal s ∈ S := {0, 1, 2} = V about his realized valuation. The signal is common

knowledge to both agents. The decision whether to send a signal or not is made before

he knows his valuation. For a given v1 ∈ V , we denote the probability of sending a signal

value of s by h(s|v1). As the signaling should reveal some information about the true

realization, we assume that h(v1|v1) > f1(v1) and for s 6= v1 we assume h(s|v1) < f1(v1).

Consequently, bidder 2 updates his beliefs about bidder 1’s true valuation to the posteriors

g(v1|s) according to

g(v1|s) =
h(s|v1) · f1(v1)∑2
j=0 h(s|j) · f1(j)

. (3.1)

As a result, an asymmetric auction is played. To be able to study the consequences of

signaling in a first-price auction, we need to know some properties of the equilibrium

in this asymmetric auction. By Proposition 2 in Maskin and Riley (2000b) we know

that a monotonic equilibrium exists in this setting if a Vickrey tie-breaking rule is used.

According to this rule, ties are broken by performing a Vickrey auction among the bidders

with the same bid. The resulting payment of the Vickrey tie-breaking auction has to be

paid on top of the winning bid of the actual first-price auction. Ties in the Vickrey auction

are broken by randomizing with equal probability. This kind of tie-breaking rule ensures

that in equilibrium a bidder with a higher valuation may submit the same bid as another

bidder with a lower valuation and still win the auction with probability one (while two

bidders with the same valuation and the same bid win with equal probability). We assume

a Vickrey tie-breaking rule in the following and concentrate on monotonic equilibria. The



3.2 Signaling in a Discrete Environment 73

detailed derivation of the equilibrium, which is in mixed strategies, is given in Appendix

3.A.

For concreteness, when studying signaling we assume that the a priori-distribution of

both bidders’ valuations is uniform, fi(vi) = 1
3

for i = 1, 2 and vi ∈ V . Furthermore, we

assume that signaling is of the following form: both signal realizations not meeting the true

valuation are equally likely, h(s|v1) = h(s′|v1) < h(v1|v1) for s 6= s′ 6= v1 6= s. Additionally,

the probability of sending a signal containing the true valuation, the signal precision r, is

assumed to be the same irrespective of the valuation. Hence, for all v1, v
′
1 ∈ V it holds that

r := h(v1|v1) = h(v′1|v′1). Consequently, the posterior in (3.1) becomes g(v1|s) = h(s|v1),

as
∑2

j=0 h(s|j) = 1.

With the help of Proposition 3.16 in Appendix 3.A we are able to calculate the expected

revenue of using signals with precision r, πs1(r). For each possible signal realization, differ-

ent posteriors arise, and hence essentially a different asymmetric auction is played. The

detailed profit of the bidders is derived in Appendix 3.B, the overall profit is summarized

in the following lemma.

Lemma 3.1 Bidder 1’s expected profit in this auction setting when he uses signals with

precision r is given by

πs1(r) =
7

36
+

1

6
r+

1

18
r
√

13− 12r− 1

12
r2 +

1− r
12
· 3 + 32r − 3r2 + (1 + r)

√
9 + 78r + 9r2

3− 3r +
√

9 + 78r + 9r2
.

Next, we derive the optimal signal precision r from bidder 1’s perspective. This is done by

maximizing bidder 1’s expected profit as given in Lemma 3.1. We use the short notation

a :=
√

9 + 78r + 9r2 and b :=
√

13− 12r. Then, the first order condition amounts to

(54 + 18b)r4 + (375− 6ab+ 105b− 18a)r3 − (9ab+ 47a+ 713 + 519b)r2

ab(−3 + 3r − a)2

+
(76

3
a+ 107b− 12ab+ 245)r + 13a+ 11ab+ 33b+ 39

ab(−3 + 3r − a)2
= 0 (3.2)

and we can state the following theorem:

Theorem 3.2 The optimal signaling precision r∗ in the discrete auction model is given by

the solution to (3.2), with r∗ ≈ 0.5462. Signaling is beneficial for all r fulfilling 1
3
< r < r′

with r′ being the larger solution of πs1(r′)− 4
9

= 0. This yields r′ ≈ 0.7572.

Proof r∗ ≈ 0.5462 is the unique solution to the first order condition (3.2). We furthermore

need to show that it is in fact associated with a maximum: by continuity of the left hand

side of (3.2) the uniqueness of the solution yields that a local maximum is a global

maximum as well. Furthermore, a numerical calculation as in Figure 3.1 shows that there

are r-values above and below r∗ leading to a lower profit than r∗. Because of the continuity

this is sufficient to show that r∗ is a local maximum, and hence a global maximum.
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To show the second part of the theorem, we note that the profit of using no signals (or

signaling with a precision of r = 1
3
) yields an expected profit of 4

9
for bidder 1. By our

analysis of the first order condition we have essentially seen that πs1(r) is monotonically

increasing on
(

1
3
, r∗
)

and monotonically decreasing on (r∗, 1). Hence, the zeros of πs1(r)− 4
9

describe the boundaries of the interval for which signaling is beneficial. πs1(r)− 4
9

has two

zeros, the lower one being 1
3

and the larger one being r′ ≈ 0.7572. �

Figure 3.1: Expected profit of bidder 1 depending on the signaling precision.

As illustrated by Figure 3.1, the expected revenue of the signaling bidder is increasing as

soon as informative signaling is introduced. There is a unique optimal signaling precision

given the signaling structure we use. Furthermore, a general pattern of signaling is already

visible here: if signaling gets too precise, it is not beneficial any more. Particularly, if

the precision is very high, the revenue decrease is substantial. Nevertheless, as shown in

Theorem 3.2, signaling is beneficial for quite a wide range of parameters.

If we increase the number of possible valuations in the set V , this basic insight does not

change. In principle, the same analysis can be repeated for any number of valuations.

In the natural extension of our example, the ex ante distribution of types is uniform,

the average value stays the same and the signaling structure does not change: the signal

takes the true value with a high probability and the remaining values with a smaller

probability, which is equal across all remaining types. However, a general statement is

difficult to make, as we do not have an explicit general characterization of the equilibrium

with n discrete types. We thus limit the explicit analysis to this small example and omit

the detailed characterization of signaling with other numbers of types. Qualitatively, a

basic analysis shows that the revenue without signaling is decreasing in the number of

types, and it suggests that the interval of precisions for which signaling is profitable gets

shorter in absolute and relative terms. The same is true for the maximum gain of signaling,

which is achieved by using the optimal signaling precision. However, it is not clear how the

profitability of signaling will develop in the limit for a large number of discrete types. Note
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that the shape of the signaling distribution becomes flatter with an increasing number

of types – it is likely that a more peak-shaped form of the signals, like in the original

three-type example, keeps up the profitability of signaling. Nevertheless, for the reasons

mentioned above, we cannot prove this type of general statements for larger numbers of

types.

3.3 Signaling in a Continuous Environment

We now introduce signaling when the agents have continuous type spaces. Valuations

vi are independently drawn from an interval V = [v, v̄] and are private information of

the bidders. Fi(vi) is the cumulative distribution function of bidder i’s valuation with

associated strictly positive density fi(vi). Bidder 1 may send a signal s ∈ S = [v1−d, v1+d]

about his realized valuation, with d ∈ R+. The signal is common knowledge to both agents.

We call d the precision of the signal. As in the discrete case, the decision whether to send

a signal or not is made before the bidder learns his valuation. Given that a valuation

v1 is realized, the conditional distribution of the signal s with precision d is denoted by

Hd(s|v1) and the corresponding density by hd(s|v1). Note that the signals may be up to

d higher (respectively lower) than the actual maximal (minimal) possible valuation.

After receiving s, bidder 2 correctly updates his beliefs that bidder 1’s valuation is dis-

tributed on [max{v, s − d},min{v̄, s + d}] =: [s(s, d), s̄(s, d)] according to a cumulative

posterior distribution function Gd(v1|s) with strictly positive density gd(v1|s). We write s

and s̄ in short for s(s, d) and s̄(s, d) where the reference to s and d is clear. The overall

expected profit of using signals is denoted by πs, if no signals are used the expected profit

is π. The expected profit of bidder 1, when he has valuation v1 and a signal s has realized,

is denoted by πd(v1|s). As lower signal realizations lead to lower beliefs of bidder 2 and

thus lower equilibrium bids with a higher profit of bidder 1, we concentrate on signaling

structures fulfilling the following assumption, which is true for example for the uniform

signaling presented in Section 3.4 (see Proposition 3.11).

Assumption 3.1 Lower signal realizations increase the profit: πd(v1|s) is weakly decreas-

ing in s given fixed values of v1 and d.

Note that in the current section we do not further restrict the signal to take a specific form.

Its informativeness comes from the fact that the true valuation of bidder 1 is determined

by the signal with a precision of d.

Maskin and Riley (2000b) showed that in such a setting a pure-strategy equilibrium of

the first-price auction with monotonic bid functions exists. We denote the monotonic

equilibrium bidding strategy of agent i in case no signal is revealed by βi(vi). In case

the signal realization is s and the signal precision is d, we denote the strategy of agent i
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by βi(vi|s, d). We focus on undominated equilibrium strategies and thus make use of the

following assumption, similar to Maskin and Riley (2003):

Assumption 3.2 Bidder i never bids more than his type vi in equilibrium.

Adapting a lemma of Maskin and Riley (2003) to our context, we can characterize the

bid of the lowest possible type of bidder 1. Note that this lowest possible type depends

on the signal realization.

Lemma 3.3 If Assumption 3.2 holds, for any d ∈ R and any possible signal realization

s, the lowest possible type s(s, d) of bidder 1 has an equilibrium bid of

b∗(s(s, d)) = β1(s(s, d)|s, d) = max arg max
b
F2(b)(s(s, d)− b).

Note that in case s(s, d) = v, b∗(s(s, d)) = v holds. The following simple lemma shows

that the highest possible type of bidder 1 always wins the auction:

Lemma 3.4 The highest type s̄ wins the auction with probability 1 in equilibrium.

We now come to our main result of this section:

Theorem 3.5 Assume

d ≤ 1

2
·
∫ v̄

v

[
F2

(
β−1

2 (b∗(v1))
)
− F2 (b∗(v1))

]
· (v1 − b∗(v1)) f1(v1) d v1,

then it is more profitable for bidder 1 not to reveal additional information about his valu-

ation than revealing a signal s with precision d.

Proof Consider the lowest possible valuation of bidder 1, s, with an equilibrium profit of

πd(s|s). Furthermore, recall from Lemma 3.4 that the highest type wins the auction with

probability 1. In equilibrium, it is not profitable for s to imitate the bidding behavior of

the highest type. Hence, it holds that

πd(s|s) ≥ s− β1(s̄|s, d).

We now compare the profit of the lowest and the highest type:

πd(s̄|s)− πd(s|s) ≤ (s+ d− β1(s̄|s, d))− (s− d− β1(s̄|s, d))

= 2d. (3.3)

For a signal s, any type v1 ∈ [s, s̄] makes a profit

πd(v1|s) ≤ πd(v1|v1 − d) (3.4)

≤ πd(s(v1 − d, d)|v1 − d) + 2d (3.5)

≤ πd(v1|v1 + d) + 2d. (3.6)
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Here, (3.4) holds by Assumption 3.1 and (3.5) holds by using (3.3) as v1 = s̄(v1 − d, d).

Finally, (3.6) follows directly from Lemma 3.3: the profit of the lowest type given there is

obviously increasing in the value of the lowest type. Clearly, this increase in profit applies

here as v1 = s(v1 + d, d) ≥ s(v1 − d, d).

As a consequence, we can derive a bound on the expected profit bidder 1 makes in case

the signal is sent. We can write the expected profit in case bidder 1 uses signals in the

following way:

πs =

∫ v̄

v

∫ v̄+d

v−d
πd(v1|s)hd(s|v1)f1(v1) ds dv1

=

∫ v̄

v

f1(v1)

∫ v̄+d

v−d
πd(v1|s)hd(s|v1) ds dv1

≤
∫ v̄

v

f1(v1)

∫ v̄+d

v−d
(πd(v1|v1 + d) + 2d)hd(s|v1) ds dv1

=

∫ v̄

v

f1(v1) (πd(v1|v1 + d) + 2d)

∫ v̄+d

v−d
hd(s|v1) ds dv1

=

∫ v̄

v

f1(v1) (πd(v1|v1 + d) + 2d) · 1 dv1

=

∫ v̄

v

f1(v1)πd(v1|v1 + d) dv1 + 2d

=

∫ v̄

v

f1(v1)F2(b∗(v1))(v1 − b∗(v1)) dv1 + 2d. (3.7)

The last line holds by Lemma 3.3, as v1 is the lowest possible type given a signal v1 + d

and wins exactly against all opponent’s types that are lower than his bid.

Now suppose to the contrary that revealing a signal s with precision d is more profitable

than not revealing such a signal. Given that no signal is revealed, consider the following

strategy β+
1 of bidder 1: if his type realization is v1 ∈ [v, v̄], he plays as if a signal v1 + d

was realized such that v1 is the lowest possible type given this signal. By Lemma 3.3 we

therefore get β+
1 (v1) = b∗(v1). Our proof now proceeds as follows: we show that β+

1 would

be a profitable deviation for bidder 1 in comparison to his equilibrium strategy without

signal realization, β1.

We first calculate the profit π+ of deviating to β+
1 :

π+ =

∫ v̄

v

F2

(
β−1

2

(
β+

1 (v1)
)) (

v1 − β+
1 (v1)

)
f1(v1) dv1

=

∫ v̄

v

[
F2

(
β−1

2

(
β+

1 (v1)
))
− F2

(
β+

1 (v1)
)] (

v1 − β+
1 (v1)

)
f1(v1) dv1

+

∫ v̄

v

f1(v1)F2

(
β+

1 (v1)
)

(v1 − β+
1 (v1)) dv1

(3.7)

≥
∫ v̄

v

[
F2

(
β−1

2

(
β+

1 (v1)
))
− F2

(
β+

1 (v1)
)] (

v1 − β+
1 (v1)

)
f1(v1) dv1 + πs − 2d
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≥
∫ v̄

v

[
F2

(
β−1

2

(
β+

1 (v1)
))
− F2

(
β+

1 (v1)
)] (

v1 − β+
1 (v1)

)
f1(v1) dv1 + π − 2d. (3.8)

The last line holds because by assumption, the expected profit given no signaling takes

place, π, is smaller than the expected profit with signaling, πs ≥ π. If we rearrange (3.8)

we get the following:

π+ − π ≥
∫ v̄

v

[
F2

(
β−1

2

(
β+

1 (v1)
))
− F2

(
β+

1 (v1)
)] (

v1 − β+
1 (v1)

)
f1(v1) dv1 − 2d.

Here, as β+
1 (v1) = b∗(v1), we can see that the deviation to β+

1 is profitable if∫ v̄

v

[
F2

(
β−1

2 (b∗(v1))
)
− F2 (b∗(v1))

]
(v1 − b∗(v1)) f1(v1) dv1 ≥ 2d, (3.9)

leading to π+ − π ≥ 0. In these cases, we get a contradiction to the fact that β1 is an

equilibrium strategy. Thus, our initial assumption that revealing a signal with a precision

d as in (3.9) must have been false and bidder 1 prefers not to reveal a signal. �

The theorem shows that a bidder never likes to use a signal that is too precise in the

sense of d being very small. This bound on d we derived is independent of the precise

distribution used for signaling (as long as Assumption 3.1 is fulfilled). However, it depends

on the original distributions of the bidder’s valuations. Note that the result does not say

whether signaling is profitable or not for higher values of d. In the following example, we

calculate the size of the bound for a uniform distribution.

Example 3.6 Suppose valuations are drawn from a uniform distribution on [v, v̄] = [0, 1],

hence Fi(vi) = vi and fi(vi) = 1. It is commonly known that equilibrium bids in a

first-price auction are then given by βi(vi) = vi
2

. Furthermore, by Lemma 3.3 we know

b∗(v1) = max arg maxb F2(b)(v1−b) = b(v1−b) = v1

2
. This fixes the bound on the precision

d according to Theorem 3.5:

d ≤ 1

2
·
∫ 1

0

[
2 · v1

2
− v1

2

]
·
(
v1 −

v1

2

)
· 1 dv1 =

1

2
·
∫ 1

0

v2
1

4
=

1

24
.

Thus, for a signaling interval length smaller than 2d = 1
12

it is not profitable to make use

of the signals.

3.4 Signaling via Uniform Distributions

We now consider the only class of distributions for which a complete characterization of

equilibrium strategies in the asymmetric auction exists: the uniform distribution. This is a

special case of the general continuous environment in Section 3.3. The aim of this section

is to analyze the profitability of signaling for all possible signal precisions d. Ex ante, the
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valuations for both bidders are identically and independently distributed according to a

uniform distribution on [v, v̄]. Accordingly, the cumulative distribution function F is given

by F (v) = v−v
v̄−v and its density by f(v) = 1

v̄−v . Bidder 1 has the option to ex ante commit

to sending a signal s with a precision d after his valuation v1 is realized. Specifically,

the signal s is distributed uniformly on [v1 − d, v1 + d]. The corresponding cumulative

distribution function is given by Hd(s|v1) = s−(v1−d)
2d

and its density by hd(s|v1) = 1
2d

.

Hence, from an ex ante-perspective, we can derive the density hd(s) for a realization of

signal s by the law of total probability:

hd(s) =

∫ s̄(s,d)

s(s,d)

f(v1)hd(s|v1) dv1 =

∫ s̄(s,d)

s(s,d)

1

v̄ − v
· 1

2d
dv1 =

s̄(s, d)− s(s, d)

(v̄ − v)2d
(3.10)

After observing a signal s, bidder 2 updates his belief to the posterior probability dis-

tribution Gd(v1|s) with density gd(v1|s), which can be derived as follows, using Bayes’

law:

gd(v1|s) =
hd(s|v1)f(v1)

hd(s)
=

1
2d
· 1
v̄−v

s̄(s,d)−s(s,d)
(v̄−v)2d

=
1

s̄(s, d)− s(s, d)
.

Thus, the posterior is distributed uniformly on [s(s, d), s̄(s, d)]. Given a signal realization

s, the two bidders face the situation of an asymmetric auction with uniform distributions.

The two bidders play as if bidder 1’s value had been drawn uniformly from [s(s, d), s̄(s, d)]

and bidder 2’s value from [v, v̄]. We denote the expected profit of bidder 1 in this auction

by π1(s, d). The general inverse bidding strategies for this asymmetric auction have been

derived by Kaplan and Zamir (2007) and can be found in Appendix 3.B. Again, we denote

the bidding strategy of bidder i by βi(vi|s, d) as the bid depends on the realized valuation

vi, the realized signal s and the precision of the signal d. For notational simplicity, we

write βi(vi) whenever s and d are fixed. The expected profit is given as follows, using the

substitution (β1)−1 (b) = v1 with boundaries b(s, d) = β1(s(s, d)) and b̄(s, d) = β1(s̄(s, d)):

π1(s, d) =

∫ s̄(s,d)

s(s,d)

(v1 − β1(v1)) · F
(
β−1

2 (β1(v1))
)
gd(v1|s) dv1

=

∫ b̄(s,d)

b(s,d)

(β−1
1 (b)− b) · F

(
β−1

2 (b)
) (
β−1

1

)′
(b)

1

s̄(s, d)− s(s, d)
db

=

∫ b̄(s,d)

b(s,d)

(β−1
1 (b)− b) · β

−1
2 (b)− v
v̄ − v

·
(
β−1

1

)′
(b)

s̄(s, d)− s(s, d)
db. (3.11)

The ex ante expected profit of bidder 1 from using signals with a precision d, πs1, can be

expressed as

πs1(v, v̄, d) =

∫ v̄+d

v−d
hd(s)π1(s, d) ds. (3.12)

Our main goal is to analyze whether signaling is profitable. To simplify the analysis, we

first formulate a series of lemmas enabling us to restrict attention on F being uniform on
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[0, 1]. We formulate these lemmas in the general framework with bidders having valuations

distributed on [vi, v̄i]. The proofs for all lemmas are given in Appendix 3.B.

Lemma 3.7 Suppose the supports of the valuations [vi, v̄i] are transformed to [v+
i , v̄

+
i ] =

[αvi + k, αv̄i + k] with α, k ∈ R+. Then, the inverse bidding strategies are transformed

accordingly: b+ = αb + k, b̄+ = αb̄ + k and for all αb + k =: b+ ∈ [b+, b̄+] it holds that(
β+
i

)−1
(b+) = αβ−1

i (b) + k.

Making use of this result, we can make a statement about a bidder’s payoffs depending

on the distribution parameters. Denote bidder i’s payoff by πi(v1, v̄1, v2, v̄2).

Lemma 3.8 Given the situation of Lemma 3.7, the expected profit changes according to

πi(v
+
1 , v̄

+
1 , v

+
2 , v̄

+
2 ) = πi(αv1 + k, αv̄1 + k, αv2 + k, αv̄2 + k) = απi(v1, v̄1, v2, v̄2).

Transforming [v, v̄] to [v+, v̄+] := [αv+k, αv̄+k] and the signal precision d to d+ := αd, it

is immediate to see that the bounds for valuations possibly generating a signal s+ = αs+k

change according to s+(s+, d+) = αs(s, d) + k and s̄+(s+, d+) = αs̄ + k. We can apply

this to get the last lemma:

Lemma 3.9 The expected profit from using signals changes according to

πs1(v+, v̄+, d+) = πs1(αv + k, αv̄ + k, αd) = απs1(v, v̄, d).

We can summarize our findings to state the following proposition:

Proposition 3.10 Signaling is not profitable for valuations drawn from [v, v̄] if and only

if it is not profitable for valuations drawn from [0, 1],

πs1(v, v̄, (v̄ − v)d) < π1(v, v̄, v, v̄) ⇐⇒ πs1(0, 1, d) < π1(0, 1, 0, 1).

Proof We use Lemmas 3.8 and 3.9 with α = v̄ − v and k = v to conclude

πs1(0, 1, d) < π1(0, 1, 0, 1)

⇐⇒ (v̄ − v)πs1(0, 1, d) < (v̄ − v)π1(0, 1, 0, 1)

⇐⇒ πs1(v, v̄, (v̄ − v)d) < π1(v, v̄, v, v̄). �

The following proposition shows that a better (lower) signal realization leads to higher

profits and thus Assumption 3.1 made in Section 3.3 holds in this signaling structure.
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Proposition 3.11 Suppose bidder 1 has a valuation v1 drawn from a uniform distribution

on the support [v1, v̄1] with v1 ≥ 0 and bidder 2’s valuation is drawn uniformly from [0, 1].

Then, the profit of bidder 1 with valuation v1 is weakly lower if v1 is a realization from a

uniform distribution on [v+
1 , v̄

+
1 ] with v+

1 ≥ v1 and v̄+
1 ≥ v̄1 with one of the two inequalities

being strict.

The following theorem leads to the main result of this section.

Theorem 3.12 For d ≥ v̄−v
2

, the expected profit πs1(v, v̄, d) is monotonically increasing in

d with

lim
d→∞

πs1(v, v̄, d) = π1(v, v̄, v, v̄).

Proof By Proposition 3.10 it is sufficient to show the results for [v, v̄] = [0, 1]. The

expected profit of signaling for d ≥ 0.5 is given as follows:

πs1(0, 1, d)
(3.12)
=

∫ 1+d

−d
hd(s)π1(s, d) ds

(3.10)
=

∫ 1+d

−d

s̄(s, d)− s(s, d)

2d
π1(s(s, d), s̄(s, d), 0, 1) ds

=

∫ 1−d

−d

s+ d

2d
π1(0, s+ d, 0, 1) ds+

∫ d

1−d

1

2d
π1(0, 1, 0, 1) ds

+

∫ 1+d

d

1− (s− d)

2d
π1(s− d, 1, 0, 1) ds

=
1

2d

(∫ 1

0

tπ1(0, t, 0, 1) dt+ (d− (1− d))π1(0, 1, 0, 1) +

∫ 1

0

(1− t)π1(t, 1, 0, 1) dt

)
= π1(0, 1, 0, 1) +

1

2d

(∫ 1

0

tπ1(0, t, 0, 1) dt− π1(0, 1, 0, 1) +

∫ 1

0

(1− t)π1(t, 1, 0, 1) dt

)
︸ ︷︷ ︸

=:c̃

c̃ is constant, and thus limd→∞ π
s
1(v, v̄, d) = π1(v, v̄, v, v̄). A calculation of c̃ shows c̃ ≈

−0.03 < 0. Hence, πs1(0, 1, d) is increasing. �

This theorem already proofs part of our main result:

Result 3.13 For any precision of signals d > 0, signaling is less profitable:

πs1(v, v̄, d) < π1(v, v̄, v, v̄).

This result is a generalization of Theorem 3.12 (for the case d ≥ v̄−v
2

) and Example 3.6

as an application of Theorem 3.5 (for the case d ≤ v̄−v
24

). For the remaining parameter

values, we give a proof in Appendix 3.B. The proof uses the assertion that an increase in

the upper or lower end point of the support of bidder 1’s uniform distribution also increases

his expected profit. We do not provide a formal proof of this assertion. Nevertheless, a

numerical calculation shows directly that the profit is increasing in d for all values in d

and the result thus holds.
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3.5 Conclusion

We showed that a bidder in a first-price auction might voluntarily commit to revealing an

informative signal about his valuation. However, whether he does so or not depends on

several parameters, particularly the distribution and precision of the signals. As a general

pattern, bidders have no incentive to reveal an informative signal if it is very precise. In a

setting with only three possible valuations – high, medium or low – we derived the optimal

signal and the range of precision for which signaling is beneficial. The analysis relies on a

closed-form solution of the equilibrium strategies. Such an analysis is in principle feasible

for other discrete sets of valuations and other shapes of signaling distributions as well.

However, general statements for higher numbers of valuations are difficult to make without

an explicit general characterization of discrete asymmetric equilibria. Nevertheless, the

key insight can already be gleaned from the small example with three valuations: the

voluntary release of an informative signal about one’s own valuation can be beneficial.

It is likely that a similar shaped distribution of signals as in the discrete case would also

make signaling profitable in the continuous setting. The distributions in such a family

should be single-peaked on the same interval, differing in the position of the peak. Un-

fortunately, the explicit equilibrium strategies for a family of signals having that peaked

shape is not known so far – and without knowledge of the explicit strategies it is difficult

to estimate the expected revenue, as the auctions played differ with each signal realiza-

tion. Hence, we chose to introduce informativeness of the signals by altering the support

of the possible signals depending on the realized valuation. This enables us to get both,

a result for a general class of distributions on a restricted set of signal precisions and a

result for all signal precisions using uniform distributions. In these settings, signaling is

not profitable for a bidder.

3.A Appendix: Equilibrium of a Discrete Asymmet-

ric Auction

We derive the necessary equilibrium properties of the asymmetric auction used in Section

3.2: a first-price auction with two bidders, i = 1, 2, with private values v1, v2 ∈ V =

{0, 1, 2}, independently drawn according to the probabilities pv1 and qv2 respectively, using

a Vickrey tie-breaking rule. Note that compared to Section 3.2, we change the notation

of the probabilities. This is to avoid confusion: depending on the specific probabilities in

the asymmetric auction, bidder 1 in Section 3.2 may take the role of either bidder 1 or

bidder 2 in this appendix and a different notation minimizes the risk of mixing them up.

To start with the equilibrium analysis, first note that the equilibrium is in mixed strategies:
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Lemma 3.14 In this discrete first-price auction with Vickrey tie-breaking rule no pure-

strategy equilibrium exists.

Proof Consider two bidders with valuation 2 and suppose there is a (monotonic) pure-

strategy equilibrium in which they bid differently. Then, the bidder submitting the strictly

higher bid has an incentive to undercut his own bid such that he decreases his payment

but still wins for sure. This cannot happen in equilibrium. In the same way, if both bidders

submit the same highest bid, both of them have an incentive to slightly overcut the other

bidder – the additional payment can be made arbitrary low, while the winning probability

will make a fixed jump upwards (with the new bid, the bidder will always win the auction

while he lost with positive probability before). �

A mixed equilibrium has the following structure:

Lemma 3.15 In a mixed equilibrium of this discrete first-price auction with Vickrey tie-

breaking rule

1. both bidders submit the same maximum bid b∗;

2. there cannot be an interval (b′, b′′) with 0 < b′ < b′′ < b∗ in which any of the two

bidders does not submit a bid;

3. bidders do not use atoms in (0, b∗].

Proof To prove the first part, we use the fact that for a given valuation bidders have to

be indifferent between all bids they possibly submit. Hence, the maximum bid b∗ has to

be the same for both bidders – otherwise, the bidder with the higher one could profitably

deviate from his maximum bid by slightly undercutting. For the second part, suppose

that such an interval (b′, b′′) in which bidder i does not submit a bid would exist. Then,

bidder j would not submit bids on this interval either and hence no bids at all would be

submitted on this interval. Suppose bidder j does not place an atom on b′′. Then, bidder

i had a profitable deviation from his bid b′′ by deviating to a bid in the interval (b′, b′′),

lowering the price to pay in case of winning without losing any winning probability. If

bidder j has an atom on b′′, then either bidder i has no atom, and the argument above

applies for bidder j – or bidder i has an atom as well. In this case, both bidders necessarily

have a positive winning probability with their bid b′′ and make profit using it2 (otherwise,

they would have a profitable deviation in the interval (b′, b′′)). However, as a consequence

they have a profitable deviation by slightly increasing their bid, making a jump upwards

in the winning probability on the expense of an arbitrarily low increase in payment. This

cannot be the case in equilibrium. Finally, we note that bidders do not use atoms in (0, b∗]:

as already shown above, it is not possible that both bidders place an atom on the same

2Note that there is a positive mass of bidders with valuation 0 who always submit a bid of 0.



84 3 Signaling in First-Price Auctions

bid in equilibrium. Similarly, if only bidder i places an atom on some b′ ∈ (0, b∗], bidder

j has an incentive to bid slightly above b′ instead of bidding in an interval (b′ − ε, b′) for

ε small enough. This increases the winning probability by at least the mass of the atom,

while the payment is only increased by at most ε. Consequently, this atom cannot be part

of an equilibrium in case vj > b′. However, vj = b′ cannot be part of an equilibrium as

well, as bidder j would earn a profit arbitrarily close to 0 with the bid b′ − ε, while he

could get a fixed positive amount by simply bidding 0. We can thus conclude that bidders

possibly only use atoms when bidding 0. �

Hence, we look for equilibria with bids on the whole interval [0, b∗]. Additionally, we

assume w.l.o.g. that bidder 1 has a higher probability of having valuation 2, p2 ≥ q2.

The lowest possible equilibrium bid of bidder i with valuation vi is denoted by bi(vi), and

bidder 1’s winning probability with his bid b1(2) is q′. Similarly, his winning probability

with a bid b1(1) = 0 is given by q′′ ≥ q0. p′′ ≥ p0 is the respective probability for bidder 2.

We are now ready to derive some necessary equilibrium conditions. A bidder with val-

uation 2 has the opportunity to win against all others for sure by submitting a bid of

b∗. Then, he makes a profit of 2 − b∗. All other bids submitted with valuation 2 have to

generate the same profit. Consequently, in equilibrium both bidders mix symmetrically

on [max{b1(2), b2(2)}, b∗]. Hence, as we assumed that p2 ≥ q2, it holds that b1(2) ≤ b2(2)

and the first equilibrium condition is given by

2− b∗ = (1− q2)(2− b2(2)), (3.13)

as bidder 1 wins the auction with a bid of b2(2) exactly against all bidder 2 types with a

valuation of 1 or 0. If p2 is strictly larger than q2, bidder 1’s lowest bid fulfills b1(2) < b2(2),

and bidder 1 with valuation 2 sometimes loses against bidder 2 who has valuation 1. We

get a second condition involving bidder 1’s winning probability with his bid b1(2), q′:

2− b∗ = q′(2− b1(2)). (3.14)

Similarly, bidder 2 with valuation 1 has to be indifferent between submitting a bid of b2(2)

and b1(2) according to

(1− q2)(1− b2(2)) = (1− p2)(1− b1(2)). (3.15)

Additionally, he gets the same profit by submitting a bid of b2(1) = 0, having a winning

probability of p′′ ≥ p0:

(1− p2)(1− b1(2)) = p′′(1− 0). (3.16)

Bidder 1 with valuation 1 is indifferent between submitting a bid of b1(2) or b1(1) = 0,

winning with probability q′′ ≥ q0 in the latter case:

q′(1− b1(2)) = q′′(1− 0). (3.17)
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Note that due to the Vickrey tie-breaking rule, a bidder with valuation 1 wins against

all opponents with valuation 0 in case he submits a bid of 0. Furthermore, at least one

of p′′ = p0 and q′′ = q0 is always true: it cannot be the case that both bidders bid 0

with a positive probability when having valuation 1 – facing a bidder with the same

valuation, tie-breaking will let them win only in half of the cases. Increasing the bid

slightly would hence be a profitable deviation. Given these additional conditions, we have

a linear equation system with five equations and five unknowns, pinning down the bidding

intervals for the different valuations as stated in the following proposition:

Proposition 3.16 In this discrete asymmetric auction setting with p2 ≥ q2, bidder i’s

equilibrium bids have the following properties:

1. With valuation 2, bidder i mixes his bids on [bi(2), b∗];

2. with valuation 1, bidder i mixes his bids on [0, bi(2)], with possibly a mass point on

0;

3. with valuation 0, bidder i bids 0.

The boundaries of the bidding intervals and the probability of bidding 0 are given as follows:

1. In case p′′ = p0

b∗ = 1− p0 + q2

b1(2) = 1− p0

1− p2

b2(2) = 1− p0

1− q2

q′′ = p0 · 1 + p0 − q2

1− p2 + p0
.

2. In case q′′ = q0

b∗ = 2− q0 − q′

b1(2) = 1− q0

q′

b2(2) = 2− q0 + q′

1− q2

p′′ = (1− p2) · q
0

q′

with q′ = q1

2
+

√(
q1

2

)2

+ (1− p2)q0.
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Proof We start with the case p′′ = p0. It follows directly from (3.16) that

b1(2) = 1− p0

1− p2
.

Plugging this into (3.15), we get

b2(2) = 1− p0

1− q2
.

Then, (3.13) yields

b∗ = 2− (1− q2)

(
1 +

p0

1− q2

)
= 1− p0 + q2.

The winning probabilities follow from (3.14) (for q′) and (3.17) (for q′′):

q′ =
1 + p0 − q2

1 + p0

1−p2

=
(1 + p0 − q2)(1− p2)

1− p2 + p0

q′′ = p0 · 1 + p0 − q2

1− p2 + p0
.

Next, we focus on the case q′′ = q0. Starting with (3.17), we get

b1(2) = 1− q0

q′
. (3.18)

Combining (3.13) and (3.14) we can write

b2(2) = 2− q′

1− q2
·
(

1 +
q0

q′

)
= 2− q′ + q0

1− q2
. (3.19)

The probability q′ can be calculated by plugging (3.18) and (3.19) into (3.15):

(1− q2)

(
q′ + q0

1− q2
− 1

)
= (1− p2) · q

0

q′

⇐⇒ (q′)2 − q1 · q′ − (1− p2)q0 = 0

=⇒ q′ =
q1

2
+

√(
q1

2

)2

+ (1− p2)q0.

Plugging q′ in (3.18) and (3.19) yields the expressions stated in the proposition. (3.13)

fixes b∗ according to

b∗ = 2− (1− q2) · q
′ + q0

1− q2
= 2− q0 − q′.

Finally, according to (3.16) we get

p′′ = (1− p2) · q
0

q′
. �
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Particularly, the proposition allows us to pin down the equilibrium profit of the bidders,

which is all we need for calculating the profit of signaling. Hence, there is no need for a

full characterization of equilibrium strategies in this place.

Finally, we give a characterization which of the cases p′′ = p0 or q′′ = q0 in Proposition

3.16 is the relevant one for some specific probability distributions. This lemma will be

useful in the next section.

Lemma 3.17 In Proposition 3.16, the case p′′ = p0 is relevant if p0 > q0. Furthermore,

the case q′′ = q0 is relevant if either p2 > 1/3, p1 = p0 = 1−p2

2
, q2 = q1 = q0 = 1

3
or if

p2 = p1 = p0 = 1
3
, q0 > 1

3
, q1 = q2 = 1−q0

2
.

Proof First note that 1 − p2 ≤ q′: substituting the left-hand side of (3.14) with the

right-hand side of (3.13) and dividing (3.15) by the resulting equation yields

1− p2

q′
· 1− b1(2)

2− b1(2)
=

1− b2(2)

2− b2(2)
⇐⇒ 1− p2

q′
=

2− b1(2)− 2b2(2) + b1(2)b2(2)

2− 2b1(2)− b2(2) + b1(2)b2(2)
.

As

2− b1(2)− 2b2(2) + b1(2)b2(2) ≤ 2− 2b1(2)− b2(2) + b1(2)b2(2) ⇐⇒ b1(2) ≤ b2(2),

we know that 1 − p2 ≤ q′ ⇐⇒ b1(2) ≤ b2(2), while the latter is true by our initial

assumption p2 ≥ q2. Consequently, by comparing (3.16) and (3.17) we get the general

condition p′′ ≤ q′′. Hence, if p0 > q0 is fulfilled, it can never be the case that q′′ = q0

because it would yield the contradiction q′′ = q0 < p0 ≤ p′′.

In the case p2 > 1/3, p1 = p0 = 1−p2

2
, q2 = q1 = q0 = 1

3
the above argumentation cannot

be applied as q0 > p0. We thus take a different approach and show that if p′′ = p0 were

true, q′′ ≥ q0 = 1
3

would be violated. According to Proposition 3.16, q′′ is given by

q′′ =
1− p2

2
·

1 + 1−p2

2
− 1

3

1− p2 + 1−p2

2

=
1

3
·
(

3

2
− p2

2
− 1

3

)
.

We get the contradiction q′′ < q0 = 1
3

in case

1

3
·
(

3

2
− p2

2
− 1

3

)
<

1

3
⇐⇒ 1

3
< p2,

which is true by our assumption.

Similarly, the case p2 = p1 = p0 = 1
3
, q0 > 1

3
, q1 = q2 = 1−q0

2
can be analyzed. Here, we

have

q′′ =
1

3
·

1 + 1
3
− 1−q0

2

1− 1
3

+ 1
3

=
5

18
+
q0

6
.
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Again, the contradiction q′′ < q0 is given iff

5

18
+
q0

6
< q0 ⇐⇒ 1

3
< q0,

which is true in the case we are analyzing. �

3.B Appendix: Proofs

Proof of Lemma 3.1

First note that each signal realizes with probability 1
3
. We will thus proceed by calculating

the expected profit given a signal realization s ∈ S, denoted by π1(s, r), and then take the

average of these profits. Suppose that a signal s = 2 is received. Then, g(2|2) = r > 1
3

=

f2(2) and bidder 1 is associated with the p-probabilities in Proposition 3.16, while bidder

2 is associated with the q’s. Hence, the two bidders are playing an asymmetric auction

with posterior probabilities p2 = r, p1 = p0 = 1−r
2

and q0 = q1 = q2 = 1
3
. As we assumed

r > 1
3
, Lemma 3.17 tells us that q′′ = q0 has to hold in Proposition 3.16. The expected

profit can be calculated according to

π1(2, r) = p2 (2− b∗) + p1q0 (1− 0) = r

1

3
+

1

6
+

√(
1

6

)2

+
1

3
(1− r)

+
1− r

2
· 1

3

=
1

3
r +

1

6
r
√

13− 12r +
1

6
.

If the signal realizes to s = 1, posteriors are given by g(2|1) = g(0|1) = 1−r
2

, g(1|1) = r

and f2(0) = f2(1) = f2(2) = 1
3
. Hence, g(2|1) < f2(2) and in the language of Proposition

3.16 bidder 1 and bidder 2 switch roles. Consequently, to get π1(1, r) we have to calculate

the profit of the bidder 2-role in Proposition 3.16 in an asymmetric auction with p0 =

p1 = p2 = 1
3

and q2 = q0 = 1−r
2

, q1 = r. As q0 = 1−r
2
< 1

3
= p0, by Lemma 3.17 p′′ = p0

holds in Proposition 3.16. Thus, we get

π1(1, r) = q2 (2− b∗) + q1p0 =
1− r

2

(
1 +

1

3
− 1− r

2

)
+

1

3
r

=
1

6
r +

5

12
− 1

4
r2.

The last possible signal realization is s = 0. Then, posteriors are g(2|0) = g(1|0) = 1−r
2

,

g(0|0) = r and f2(0) = f2(1) = f2(2) = 1
3
. Again, g(2|0) < f2(2) and bidder 1 takes

the role of bidder 2 when we apply Proposition 3.16. The according probabilities in the

asymmetric auction are thus given by p0 = p1 = p2 = 1
3

and q2 = q1 = 1−r
2

, q0 = r. Hence,
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q′′ = q0 holds and the expected profit in this case amounts to

π1(0, r) = q2 (2− b∗) + q1p′′

=
1− r

2

r +
1− r

4
+

√(
1− r

4

)2

+
2

3
r

+
1− r

2
· 2

3
· r

1−r
4

+
√(

1−r
4

)2
+ 2

3
r

=
1− r

4
· 3 + 32r − 3r2 + (1 + r)

√
9 + 78r + 9r2

3− 3r +
√

9 + 78r + 9r2
.

Calculating

πs1(r) =
1

3
(π1(0, r) + π1(1, r) + π1(2, r))

and simplifying yields the result. �

Proof of Lemma 3.4

Suppose s̄ wins with a probability less than 1 in equilibrium. Then, a set of types of the

opponent with a positive mass must submit the same bid as s̄ – their bid cannot be higher,

as they had a profitable deviation to a lower bid in this continuous setting otherwise. As s̄

makes positive profits (this e.g. follows from Lemma 3.3), he than would have a profitable

deviation by slightly increasing his bid and win with probability 1. This deviation will

increase his profit if the bid increase is chosen small enough, such that the gain in winning

probability makes up for the loss coming from a higher bid. As this profitable deviation

cannot exist in equilibrium, s̄ must win with probability 1. �

Inverse bidding strategies according to Kaplan and Zamir (2007), Proposition 1. We

assume that bidder i’s valuation is uniformly distributed on [vi, v̄i] with v2 < v1 and v1 <

2v̄2 − v2.3 Without the latter regularity assumption, bidder 2 always loses in equilibrium

and the analysis is trivial. Hence, in equilibrium, both bidders have a positive chance of

winning on the same interval, [b, b̄]. These boundaries are given according to

b =
v1 + v2

2
and b̄ =

v̄1 · v̄2 −
(v1+v2

2
.
)2

v̄1 − v1 + v̄2 − v2

(3.20)

If bidder 2 has a value v2 < b we assume that he bids truthfully. For all b ∈ [b, b̄], the

inverse bid functions β−1
i (b) are given by

β−1
1 (b) = v1 +

(v2 − v1)2

(v1 + v2 − 2b)c1e
v2−v1

v1+v2−2b + 4(v2 − b)
(3.21)

β−1
2 (b) = v2 +

(v2 − v1)2

(v1 + v2 − 2b)c2e
v1−v2

v1+v2−2b + 4(v1 − b)
(3.22)

3Note that the roles of bidder 1 and 2 are exchanged compared to Kaplan and Zamir (2007) for

consistency reasons with the rest of this chapter.
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with constants

c1 =

(v2−v1)2

v̄1−v1
+ 4(b̄− v2)

−2(b̄− b)
e
v2−v1
2(b̄−b) and c2 =

(v2−v1)2

v̄2−v2
+ 4(b̄− v1)

−2(b̄− b)
e
v1−v2
2(b̄−b) . (3.23)

This solution does not cover the case v1 = v2 = v, which was already solved by Griesmer

et al. (1967) in the context of reverse auctions. A generalization is given by Plum (1992)

for the class of power distributions. The inverse bid functions can be written as follows,

for b ∈ [b, b̄] as in (3.20):

β−1
1 (b) = v +

2(b− v)

1 + b2c− 2bcv + cv2
(3.24)

β−1
2 (b) = v +

2(b− v)

1− b2c+ 2bcv − cv2
. (3.25)

The constant c is defined by

c =
1

(v̄1 − v)2
− 1

(v̄2 − v)2
. (3.26)

Proof of Lemma 3.7

We first calculate b+ and b̄+ using (3.20):

b+ =
αv1 + k + αv2 + k

2
= α

v1 + v2

2
+ k = αb+ k

b̄+ =
(αv̄1 + k) · (αv̄2 + k)−

(
αv1+k+αv2+k

2

)
αv̄1 + k − αv1 − k + αv̄2 + k − αv2 − k

= α
v̄1 · v̄2 −

(v1+v2

2

)
v̄1 − v1 + v̄2 − v2

+ k = αb̄+ k.

Now consider the case v1 < v2. First note, using (3.23), that the constants c1 and c2 are

invariant with respect to the transformation:

c+
1 =

(αv2+k−αv1−k)2

αv̄1+k−αv1−k
+ 4(αb̄+ k − αv2 − k)

−2(αb̄+ k − αb− k)
e
αv2+k−αv1−k
2(αb̄+k−αb−k) =

(v2−v1)2

v̄1−v1
+ 4(b̄− v2)

−2(b̄− b)
e
v2−v1
2(b̄−b) = c1.

A similar calculation is true for c2. Hence, we can calculate the inverse bidding function

for bidder 1 according to (3.21):(
β+

1

)−1
(b+)

= αv1 + k +
(αv2 + k − αv1 − k)2

(αv1 + k + αv2 + k − 2(αb+ k))c1e
αv2+k−αv1−k

αv1+k+αv2+k−2(αb+k) + 4(αv2 + k − αb− k)

= α

(
v1 +

(v2 − v1)2

(v1 + v2 − 2b)c1e
v2−v1

v1+v2−2b + 4(v2 − b)

)
+ k

= αβ−1
1 (b) + k.

Again, the calculation for bidder 2, using (3.22), is similar.
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Finally, consider the case v1 = v2 = v. We first calculate the constant c+ according to

(3.26):

c+ =
1

(αv̄1 + k − αv − k)2
− 1

(αv̄2 + k − αv − k)2
=

1

α2

(
1

(v̄1 − v)2
− 1

(v̄2 − v)2

)
=

c

α2
.

Hence, with (3.24) the inverse bidding strategy for bidder 1 can be written as

(
β+

1

)−1
(b+) = αv + k +

2(αb+ k − αv − k)

1 + (αb+ k)2 c
α2 − 2(αb+ k) c

α2 (αv + k) + c
α2 (αv + k)2

= α

(
v +

2(b− v)

1 + b2c− 2bcv + cv2

)
+ k

= αβ−1
1 (b) + k.

The inverse bidding strategy for bidder 2 can be derived in the same way using (3.25). �

Proof of Lemma 3.8

Using (3.11), the profit of bidder 1 for the transformed support can be written as

π1(v+
1 , v̄

+
1 , v

+
2 , v̄

+
2 ) =

∫ b̄+

b+

((
β+

1

)−1
(b+)− b+

)
·
(
β+

2

)−1
(b+)− v+

2

v̄+
2 − v+

2

·

((
β+

1

)−1
)′

(b+)

v̄+
1 − v+

1

db+

=

∫ b̄

b

((
β+

1

)−1
(αb+ k)− αb− k

)
·
(
β+

2

)−1
(αb+ k)− αv2 − k

αv̄2 + k − αv2 − k
·

((
β+

1

)−1
)′

(αb+ k)

αv̄1 + k − αv1 − k
· α db

(3.27)

=

∫ b̄

b

(αβ−1
1 (b)− αb) · αβ

−1
2 (b)− αv2

αv̄2 − αv2

·

(
β−1

1

)′ ( (αb+k)−k
α

)
αv̄1 − αv1

· α db (3.28)

= α

∫ b̄

b

(β−1
1 (b)− b) · β

−1
2 (b)− v2

v̄2 − v2

·
(
β−1

1

)′
(b)

v̄1 − v1

db

= απ1(v1, v̄1, v2, v̄2).

(3.27) holds by using the substitution b+ = αb+ k. (3.28) follows from Lemma 3.7 and((
β+

1

)−1
)′

(b+) =
d
(
αβ−1

1 (b) + k
)

db+
= α

dβ−1
1 (b)

db

db

db+
= α·

(
β−1

1

)′
(b)· 1

α
=
(
β−1

1

)′(b+ − k
α

)
applied to b+ = αb + k. A similar calculation with changed indices gives the result for

bidder 2. �
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Proof of Lemma 3.9

Using (3.12) and (3.10), the expected profit after the transformation can be written as

πs1(v+, v̄+, d+) =

∫ v̄++d+

v+−d+

s̄+(s+, d+)− s+(s+, d+)

(v̄+ − v+)2d+
π1(s+(s+, d+), s̄+(s+, d+), v+, v̄+) ds+

=

∫ v̄+d

v−d

s̄+(αs+ k, αd)− s+(αs+ k, αd)

(αv̄ + k − αv − k)2αd
π1(s+(αs+ k, αd), s̄+(αs+ k, αd), αv + k, αv̄ + k) · α ds

(3.29)

=

∫ v̄+d

v−d

αs̄(s, d)− αs(s, d)

α(v̄ − v)2αd
π1(αs(s, d) + k, αs̄(s, d) + k, αv + k, αv̄ + k) · α ds

= α

∫ v̄+d

v−d

s̄(s, d)− s(s, d)

(v̄ − v)2d
π1(s(s, d), s̄(s, d), v, v̄) ds (3.30)

= απs1(v, v̄, d).

(3.29) follows from the substitution s+ = αs+ k, (3.30) from Lemma 3.8. �

Proof of Proposition 3.11

The proof proceeds in several steps.

First step: the maximum bid increases, b̄+ > b̄.

We use (3.20) to calculate the difference b̄+ − b̄:

b̄+ − b̄ =
v̄+

1 · 1−
(
v+

1 +0

2

)2

v̄+
1 − v+

1 + 1− 0
−
v̄1 · 1−

(
v1+0

2

)2

v̄1 − v1 + 1− 0

=

(v̄1 − v1 + 1)

(
v̄+

1 −
(
v+

1

2

)2
)
−
(
v̄+

1 − v+
1 + 1

) (
v̄1 −

(v1

2

)2
)

(
v̄+

1 − v+
1 + 1

)︸ ︷︷ ︸
>0

(v̄1 − v1 + 1)︸ ︷︷ ︸
>0

.

As the denominator is positive, we only need to calculate the sign of the numerator to see

whether b̄+ > b̄ or not:

(v̄1 − v1 + 1)

(
v̄+

1 −
(
v+

1

2

)2
)
−
(
v̄+

1 − v+
1 + 1

)(
v̄1 −

(v1

2

)2
)

= v̄+
1

(
1− 1

2
v1

)2

+
(
v+

1 − v1

) v+
1 v1

4
− 1

4

(
(v+

1 )2 − v2
1

)
− v̄1

(
1− 1

2
v+

1

)2

≥ v̄1

(
1− 1

2
v1

)2

+
(
v+

1 − v1

) v+
1 v1

4
− 1

4

(
(v+

1 )2 − v2
1

)
− v̄1

(
1− 1

2
v+

1

)2

=
(
v+

1 − v1

)(
v̄1 +

v+
1 v1

4
− 1

4

(
v+

1 + v1

)
(1 + v̄1)

)
≥
(
v+

1 − v1

)(
v̄1 −

1

2
v̄1 (1 + v̄1)

)
=
(
v+

1 − v1

)(1

2
v̄1 (1− v̄1)

)
≥ 0.
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The first inequality is strict if v̄+
1 > v̄1, the second inequality is strict if v+

1 > v1. As at

least one of these two statements is true by assumption, we get b̄+ − b̄ > 0.

Second step: the bids of bidder 2 increase: for all b ∈ [b+, b̄] it holds that
(
β+

2

)−1
(b) ≤

β−1
2 (b).

First note that β−1
2 (b̄) = 1 and

(
β+

2

)−1
(b) < 1 as b̄ < b̄+ by the first step. Hence, the

assertion is true at the top. Now assume that the assertion fails for some lower b. Then,

by continuity of the bid functions, there is a largest b∗ in the interior of the interval where

the two inverse bid functions cross,

b∗ := max
b∈(b+,b̄)

{b|
(
β+

2

)−1
(b) = β−1

2 (b)}.

To come to a contradiction, we look at two different cases regarding the inverse bid

function of bidder 1. The first case is
(
β+

1

)−1
(b∗) < β−1

1 (b∗).

By the first-order conditions of the maximization problems of the two bidders, we get

directly the following differential equations4:(
β−1

1

)′
(b)
(
β−1

2 (b)− b
)

= β−1
1 (b)− v1(

β−1
2

)′
(b)
(
β−1

1 (b)− b
)

= β−1
2 (b)− v2.

Applying this to our setting, as v2 = 0 the following equation holds at b∗:((
β+

2

)−1
)′

(b∗)
((
β+

1

)−1
(b∗)− b∗

)
=
(
β+

2

)−1
(b∗) = β−1

2 (b∗) =
(
β−1

2

)′
(b∗)

(
β−1

1 (b∗)− b∗
)
.

(3.31)

By assumption, we have
(
β+

1

)−1
(b∗) < β−1

1 (b∗). For (3.31) to hold, it is thus necessary

that
((
β+

2

)−1
)′

(b∗) >
(
β−1

2

)′
(b∗). This leads to a contradiction: by construction of b∗

we know that for all b̃ > b∗ the inequality
(
β+

2

)−1
(
b̃
)
< β−1

2

(
b̃
)

is true. Thus, at b∗,

with
(
β+

2

)−1
(b∗) = β−1

2 (b∗), we get that β−1
2 is at least as steep as

(
β+

2

)−1
. Consequently,((

β+
2

)−1
)′

(b∗) ≤
(
β−1

2

)′
(b∗) holds, which contradicts the conclusion from above.

Thus, only the remaining case
(
β+

1

)−1
(b∗) ≥ β−1

1 (b∗) is possible. However, we will come

to a contradiction in this case as well. We make use of an equilibrium condition derived

by Kaplan and Zamir (2007) from the differential equations. This is equation (6) in their

paper:

β−1
1 (b) =

bβ−1
2 (b)− (v1 + v2)b+

(v1+v2)2

4

β−1
2 (b)− b

. (3.32)

We apply this equation to our setting and conclude that at b∗

b∗β−1
2 (b∗)− v1b

∗ +
v2

1

4

β−1
2 (b∗)− b∗

= β−1
1 (b∗) ≤

(
β+

1

)−1
(b∗) =

b∗
(
β+

2

)−1
(b∗)− v+

1 b
∗ +

(v+
1 )

2

4(
β+

2

)−1
(b∗)− b∗

.

4see e.g. Kaplan and Zamir (2007), equation (2)
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As by assumption
(
β+

2

)−1
(b∗) = β−1

2 (b∗), this reduces to

−v1b
∗ +

v2
1

4
≤ −v+

1 b
∗ +

(
v+

1

)2

4
⇐⇒ b∗

(
v+

1 − v1

)
≤ 1

4

(
v+

1 − v1

) (
v+

1 + v1

)
.

In case the lower end of the interval strictly increases, v+
1 > v1, we conclude

b∗ ≤ 1

4

(
v+

1 + v1

)
<
v+

1

2
.

This is a contradiction to the fact that b∗ > b+ =
v+

1

2
. In case the lower end of the interval

stays the same, v+
1 = v1, by (3.32) we can directly see that

(
β+

1

)−1
(b∗) = β−1

1 (b∗) needs to

hold. We look at the explicit solution of the equilibrium bid functions, (3.21) and (3.22)

or, in case v+
1 = v1 = 0, (3.24) and (3.25). Using the fact that b∗ > b+, it follows from(

β+
1

)−1
(b∗) = β−1

1 (b∗) that respectively c1 = c+
1 and c2 = c+

2 or c = c+ need to hold. But

this is not consistent with the true values of these constants – it would e.g. follow that

the bid functions are the same for both intervals. We thus arrived at a contradiction and

finished the proof of the second step.

Third step: the profit of bidder 1 with valuation v1 is weakly decreasing.

Suppose to the contrary that the expected profit of bidder 1 with valuation v1 is higher

after the shift of the interval. Furthermore, assume b and b+ are such that β−1
1 (b) = v1 =(

β+
1

)−1
(b+). By the second step5, we know that

(
β+

2

)−1
(b+) ≤ β−1

2 (b+). Hence, as bidder

2’s valuation is distributed uniformly on [0, 1], we conclude that

(v1 − b)β−1
2 (b) < (v1 − b+)

(
β+

2

)−1
(b+) ≤ (v1 − b+)β−1

2 (b+).

This would be a profitable deviation for bidder 1 to b+ in the case with the unshifted inter-

val, a contradiction, as bidding b is equilibrium behavior by assumption. This concludes

the proof. �

Proof of Result 3.13

For the second case, d < 0.5, we rewrite the expected profit with signaling as follows:

πs1(0, 1, d)
(3.12)
=

∫ 1+d

−d
hd(s)π1(s, d) ds

(3.10)
=

∫ 1+d

−d

s̄(s, d)− s(s, d)

2d
π1(s(s, d), s̄(s, d), 0, 1) ds

=

∫ d

−d

s+ d

2d
π1(0, s+ d, 0, 1) ds+

∫ 1−d

d

1 · π1(s− d, s+ d, 0, 1) ds

+

∫ 1+d

1−d

1− (s− d)

2d
π1(s− d, 1, 0, 1) ds

5Technically, we did not show b+ ≤ b̄, and in case b+ > b̄ the inverse β−1
2 (b+) is not well defined – no

type of bidder 2 will bid so high. However, a bid of b+ will win with probability 1, and it is thus sufficient

to identify β−1
2 (b+) with the highest possible valuation of bidder 2, which is 1. The inequality is thus

trivially fulfilled in this case.
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=
1

2d

∫ 2d

0

tπ1(0, t, 0, 1) dt+

∫ 1−2d

0

π1(t, t+ 2d, 0, 1) dt+
1

2d

∫ 1

1−2d

(1− t)π1(t, 1, 0, 1) dt.

We now check for all three summands whether they are increasing or decreasing in d by

using Leibniz’ rule and the assertion that an increase in the upper or lower end point of

the support of bidder 1’s uniform distribution also increases his expected profit. We start

with the first one:

d

dd

1

2d

∫ 2d

0

tπ1(0, t, 0, 1) dt =
−1

2d2

∫ 2d

0

tπ1(0, t, 0, 1) dt+
1

2d
· d

dd

∫ 2d

0

tπ1(0, t, 0, 1) dt

≥ −1

2d2
π1(0, 2d, 0, 1)

∫ 2d

0

t dt+
1

2d
·
(∫ 2d

0

d

dd
tπ1(0, t, 0, 1) dt+ 2dπ1(0, 2d, 0, 1) · 2

)
= π1(0, 2d, 0, 1)

> 0.

The first summand is thus increasing. The second summand is decreasing:

d

dd

∫ 1−2d

0

π1(t, t+ 2d, 0, 1) dt =
d

dd

∫ 1−2d

0

π1(1− 2d− t, 1− t, 0, 1) dt

=

∫ 1−2d

0

d

dd
π1(1− 2d− t, 1− t, 0, 1)︸ ︷︷ ︸

<0

dt+ π1(0, 2d, 0, 1) · (−2)

< 0.

The third summand is increasing:

d

dd

1

2d

∫ 1

1−2d

(1− t)π1(t, 1, 0, 1) dt =
−1

2d2

∫ 1

1−2d

(1− t)π1(t, 1, 0, 1) dt

+
1

2d

(∫ 1

1−2d

d

dd
(1− t)π1(t, 1, 0, 1) dt− 2dπ1(1− 2d, 1, 0, 1) · (−2)

)
≥ −1

2d2
π1(1, 1, 0, 1)

∫ 1

1−2d

(1− t) dt+ 2π1(1− 2d, 1, 0, 1)

≥ −π1(1, 1, 0, 1) + 2π1(0, 1, 0, 1) = −0.25 +
1

3

> 0.

To show that πs1(0, 1, d) < π1(0, 1, 0, 1) = 1
6
, we calculate the summands for different d

values and use the results from above for the values in between. The following table gives

simple (rounded) upper bounds for the values of the summands.

d summand 1 summand 2 summand 3

0.00 0 0.09 0

0.26 0.01 0.06 0.06

0.36 0.02 0.04 0.075

0.44 0.035 0.02 0.09

0.5 0.05 0 0.095
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Given the fact that summands one and three are increasing, and summand 2 is decreasing,

we can thus estimate:

• For d ≤ 0.26: πs1(0, 1, d) < 0.01 + 0.09 + 0.06 < 1
6

• For 0.26 ≤ d ≤ 0.36: πs1(0, 1, d) < 0.02 + 0.06 + 0.075 < 1
6

• For 0.36 ≤ d ≤ 0.44: πs1(0, 1, d) < 0.035 + 0.04 + 0.09 < 1
6

• For 0.44 ≤ d ≤ 0.50: πs1(0, 1, d) < 0.05 + 0.02 + 0.095 < 1
6
. �
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