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auch an Vivian Easson, Piotr Przytycki and Samuel Tapie für ihre arbeit bei
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Abstract

Suppose S is an oriented, compact surface with genus at least two. This thesis
investigates the “homology curve complex” of S; a modification of the curve
complex first studied by Harvey in which the verticies are required to be ho-
mologous multicurves. The relationship between arcs in the homology curve
graph and surfaces with boundary in S×R is used to devise an algorithm for
constructing efficient arcs in the homology curve graph. Alternatively, these
arcs can be used to study oriented surfaces with boundary in S × R. The
intersection number of curves in S × R is defined by projecting curves into
S. It is proven that the best possible bound on the distance between two
curves c0 and c1 in the homology curve complex depends linearly on their
intersection number, in contrast to the logarithmic bound obtained in the
curve complex. The difference in these two results is shown to be partly due
to the existence of what Masur and Minsky [19] refer to as large subsurface
projections of c0 and c1 to annuli, and partly due to the small amount of
ambiguity in defining this concept. A bound proportional to the square root
of the intersection number is proven in the absence of a certain type of large
subsurface projections of c0 and c1 to annuli.
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Chapter 1

Introduction

Suppose that S is an oriented, compact, connected surface with genus g at
least two. The complex of curves is an abstract, finite dimensional, locally
infinite complex associated with a surface, originally introduced by Harvey
in [13].

Definition 1 (Curve Complex)
The complex of curves is the simplicial complex whose vertex set C(S) is
the set of all nontrivial free homotopy classes of simple closed curves on S.
A collection c1, ...ck ⊂ C(S) spans a simplex if and only if c1, ...ck can be
realized disjointly. The curve graph is the one skeleton of the curve complex.
Distance is defined by assigning each edge length one.

The curve graph has since proven to be a useful tool in studying
Teichmüller Spaces, the mapping class group and the structure of 3-
manifolds, for example [9], [12], [22] and [15]. In particular, it played an
important role in the proof of Thurston’s ending lamination conjecture. This
thesis investigates the “homology multicurve complex” of S; a modification
of the curve complex in which the verticies are required to be oriented mul-
ticurves in a fixed homology class.

Definition 2 (Mapping class group)
The mapping class group, Modg, is the group of homotopy classes of orien-
tation preserving homeomorphisms of a closed, oriented surface S of genus g
onto itself.
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CHAPTER 1. INTRODUCTION 2

Definition 3 (Torelli group)
The Torelli group is the subgroup of the mapping class group that acts triv-
ially on homology.

An element of the mapping class group therefore induces an isometry
of the curve graph onto itself. It is well known, e.g. [9], Theorems 4.2
and 4.10, that for any two nonseparating curves in S, there is an element
of Modg that maps one curve to the other. Similarly, if c is a separating
curve in S such that one component of S \ c has Euler characteristic χ1 and
the other component of S \ c has Euler characteristic χ2, there exists an
element of the mapping class group that maps c into any other separating
curve that separates S into two components, one with Euler characteristic
χ1 and the other with Euler characteristic χ2. In other words, although the
isometry group of the curve graph does not act transitively, there are only
finitely many orbits. Similarly, the Torelli group induces an isometry of the
homology multicurve complex onto itself. The action of the Torelli group
preserves the number of connected components of a multicurve, and verticies
in the homology multicurve graph can have arbitrarily many components, i.e.
the homology multicurve complex is infinite dimensional. It follows that there
are infinitely many orbits of verticies of the homology multicurve complex. In
chapter three it is shown that there exist multicurves with arbitrarily many
connected components that do not contain null homologous submulticurves
and that are homologous to a fixed, oriented curve c0. Infinite dimensionality
of the homology multicurve complex is therefore not a property that can
be made to disappear by requiring that the verticies do not contain null
homologous submulticurves.

The main difficulty involved in working with the curve graph and its
relatives is that it is not locally compact. In order to address this problem,
the concept of a “tight geodesic” was introduced in [18] and modified slightly
by Bowditch in [5]. Bowditch’s definition of “tightness” can also be applied
in the context of the homology multicurve graph, and all arcs constructed in
this thesis will also be tight. It was shown in [19] that there are only finitely
many tight geodesic arcs connecting any two verticies in the curve graph,
and [17] and [26] independantly showed that distance in the curve graph is
computable and developed an algorithm for calculating the distance between
two verticies.

Two oriented curves c0 and c1 in a 3-manifold are homologous iff there
exists an embedded surface H in S×R with ∂H = c1−c0. (Lemma 1 of [27]).
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It will be shown that surfaces in S×R with boundary c1−c0 give considerable
information about arcs in the homology curve complex with endpoints c0 and
c1, and in reverse, the homology curve complex sheds light on the surfaces
themselves. This makes the problem of calculating distances and construct-
ing geodesic arcs much simpler in the homology multicurve complex than in
the curve complex. The homological invariance of the intersection form on
curves is used to define a locally constant function f on S \ (c0 ∪ c1), and
this is shown to be related to the projection to S × 0 of a surface in S × R
with boundary curves c1− c0. In particular, an algorithm is devised for con-
structing efficient arcs in the homology multicurve graph. Whenever c0 and
c1 are homologous, simple curves in S×0, it is shown that the smallest genus
surfaces in S × R with boundary curves freely homotopic to c1 − c0 can be
constructed from an arc in the homology curve graph with endpoints c0 and
c1, of the type constructed by the given algorithm. Alternatively, the Euler
integral of f is related to the Euler characteristic of a smallest genus surface
in S×R with boundary curves freely homotopic to c1− c0. This is analogous
to the situation in Euclidian three space, in which a projection of a link into
a plane is used to construct an oriented surface (the “Seifert surface”) with
the given link as boundary.

The intersection number of curves in S×R is defined by projecting curves
into S, and a family of examples is given to show that the best possible
bound on the distance between two curves c0 and c1 in the homology curve
graph depends linearly on their intersection number. This differs from the
curve complex, in which an upper bound on the distance proportional to the
logarithm of the intersection number is shown in [5]. The difference in these
two results is shown to be partly due to the existence of what Masur and
Minsky [19] refer to as large subsurface projections of c0 and c1 to annuli
(“twisting”), and partly due to the small amount of ambiguity in defining
this concept. Suppose two multicurves m1 and m2 both intersect an annulus
A. Distance between two curves in the subsurface projection to A is related
to the number of times a component of m1 ∩ A is Dehn twisted in relation
to a component of m2 ∩ A. In order to make this concept well defined,
it is necessary to make use of properties of covering spaces of hyperbolic
surfaces. A major source of difficulties is that most quantities dealt with here
are only defined up to free homotopy, but without a metric on S, distance
between two multicurves in the subsurface projection to an annulus is only
defined up to plus or minus one. In the absence of a certain type of large
subsurface projections of c0 and c1 to annuli, a bound on the distance between
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c0 and c1 in the homology multicurve graph proportional to the square root
of the intersection number of c0 and c1 is proven. This is done by using the
concept of an interval exchange map to relate the function f , the absence of
large subsurface projections to annuli and the Euler characteristic of S. The
ambiguity in the definition of distance in the subsurface projection is used
to construct an example of an interval exchange map that is self-similar on
arbitrarily small subintervals. This interval exchange map is obtained from
a limit of homologous curves without large subsurface projections to annuli,
and shows that it is not possible to obtain better than a bound depending
on the square root of the intersection number.

In [18] it was shown that the curve complex is δ-hyperbolic. It is known
that the mapping class group is not hyperbolic, since it contains abelian
subgroups generated by Dehn twists around disjoint curves, however it was
shown in [18] that the mapping class group is relatively hyperbolic with
respect to left cosets of a finite collection of stabilizers of loops. The discrep-
ancy between distances in the homology multicurve graph and distances in
the curve graph would seem to reflect the fact that there are abelian sub-
groups of the mapping class group that leave distances unchanged in the
curve graph but not in the homology multicurve graph. As a result, the
homology multicurve graph is not hyperbolic. A similar results along these
lines is given in Theorem 1.1 of [8], in which it was shown that for a surface
of genus at least 3, the distortion of the Torelli group as a subgroup of the
mapping class group with respect to the word norm is exponential.



Chapter 2

Surfaces and the Curve
Complex

2.1 The Function

Suppose M ∼= S × R, where S is a closed oriented connected surface with
genus g ≥ 2, and π is a choice of first factor projection function of M onto
S × 0. To simplify the notation, the submanifold “S × 0” will often be
referred to as S, not to be confused with the circle S1. All curves, surfaces,
and manifolds will be assumed to be piecewise smooth, except in section 2.2.

Definition 4 (Curve)
A curve c in M is a free homotopy class of piecewise linear maps of S1 into
M such that

1. c has a representative that is embedded in S

2. c is not contractible

A curve in S is defined similarly. In practice, whenever it is clear from
the context what is meant, the term “curve” will also refer to the image in
M or S of a particular representative of the homotopy class of maps.

Definition 5 (Multicurve)
A multicurve on S is a union of curves in S with representatives whose images
can all be realised disjointly. In general, some of these curves might be freely

5



CHAPTER 2. SURFACES AND THE CURVE COMPLEX 6

homotopic. A multicurve in M is a union of curves that projects onto a
multicurve in S.

Definition 6 (Intersection Number)
If a and b are two multicurves in M , their intersection number i(a, b) is the
smallest possible number of points of intersection between a projection to
S of a representative of the homotopy class a and a projection to S of a
representative of the homotopy class b.

Definition 7 (Essential intersections)
Supose a and b are multicurves in S in general position. An essential point
of intersection of a with b is a common boundary point of two arcs a1 and
a2 of a∩ (S \ b), such that neither a1 nor a2 is homotopic in S relative to its
endpoints to an arc of b ∩ (S \ a).

The techniques for constructing “surfaces” in this thesis are quite gen-
eral, and as a result, the “surfaces” constructed are not always embedded.
In the definition of “surface in M” it is therefore convenient to allow self-
intersections. If embeddedness is an issue, it will be shown that it is always
possible to obtain an embedded surface with minimal genus.

Definition 8 (Surface (with boundary) in M)
A surface in M is a piecewise linear map φ from an orientable surface F into
M whose image is locally embedded, and such that φ(∂F ) is embedded. In
section 2.2, it is convenient to work in the smooth category, so surfaces will
be assumed to be smooth.

Since surfaces are allowed to have boundaries, it is necessary to define
what a homotopy is allowed to do to the boundary of a surface.

Definition 9 (Homotopy of Surfaces)
Let φ1 : F → M and φ2 : F → M be surfaces in M with images F1 and
F2 respectively. F1 will be said to be homotopic to F2 if a homotopy H(s, t)
between φ1 and φ2 can be found such that H(s, t∗) : F → M is locally
embedded for any fixed 0 ≤ t∗ ≤ 1. H(s, t∗) : F → M is not required to
have embedded boundary for 0 < t∗ < 1.

The definition of general position given in definition 1.11 of [14] will be
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used throughout this thesis. This definition assumes that all objects are
in the piecewise linear category, which will also make sense in the smooth
category used in section 2.2, since this is a special case of the piecewise
linear category. In this work, the representative of the homotopy class of
a surface is not usually important, so it is possible to assume without loss
of generality that a surface is in general position, because every homotopy
class contains representatives in general position. If a surface is in general
position, it was shown in [14] that its self-intersections are all transverse and
can consist only of arcs with endpoints on the boundary, closed curves and
isolated triple points.

It will sometimes be convenient to work with representatives of homotopy
classes of curves that are not in general position. Since intersection numbers
are defined to be properties of homotopy classes, intersection numbers are
still well defined in this case.

In this chapter, a sequence of homologous multicurves will be used to
construct a surface H in M with oriented boundary curves c1 and −c0. In
order to do this a choice of representatives of the homotopy classes c0 and
c1 is used to define a function f on a subset of S. If these representatives
of the homotopy classes only have essential points of intersection, the result-
ing function determines the minimum number of multicurves in a sequence
needed to construct a surface with oriented boundary curves c1−c0. f is then
used to give an explicit construction of H, similar to a handle decomposition
given by a Morse function.

Definition 10 (Homology Intersection Number)
The homology intersection number of two elements α and β of H1(S) is equal
to the intersection product α • β defined, for example, on page 367 of [7]. If
a is an oriented curve in M whose projection into S belongs to the homology
class α and b is an oriented curve in M whose projection into S belongs to the
homology class β then the homology intersection number, ih(a, b), is defined
to be equal to α • β.

For the arguments given here, it is more convenient to treat the homology
intersection number of two curves as the signed intersection number. Suppose
c and d are oriented, embedded representatives of a homotopy class of curves
in S. Suppose also that a and b are in general position and intersect in at least
one point p. By assumption, all curves are piecewise smooth, so it follows
from the orientability of S that c has an annular neighbourhood N(c), where
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N(c)\c consists of two connected components. N(c) can also be chosen such
that any component of d∩N(c) is an arc with endpoints on the two distinct
components of ∂N(c). The orientations of S and c are sufficient to determine
which component of N(c) \ c is to the right of c and which component is to
the left. The orientation of d provides an ordering of the points in each of
the components of d ∩N(c). d will be said to cross over c from left to right
at p if the component of d ∩ N(c) passing through p enters the component
of N(c) \ c to the left of c before it enters the component of N(c) \ c to the
right of c. Right to left is defined analogously. If d(t) is an oriented arc with
starting point p = d(0) on c, it will be said to leave c from the right if there
is a t∗ such that for t < t∗, d(t) is contained in the component of N(c) \ c
to the right of c. d approaches c from the right if there is a t∗ such that
for t∗ < t, d(t) is contained in the component of N(c) \ c to the right of c.
Leaving and approaching c from the left is defined similarly.

The boundary of an oriented surface will be given the usual boundary ori-
entation. In particular, all arcs in the surface with endpoints on the boundary
leave or approach the boundary from the left.

Definition 11 (Homology Intersection Number (Alternative definition))
If a and b are oriented multicurves in S, choose embedded representatives
a′ and b′ of the free homotopy classes in S, [a] and [b], that are in general
position. ih(a, b) is equal to the number of points of intersection at which b′

crosses over a′ from right to left minus the number of points of intersection
at which b′ crosses over a′ from left to right. If a and b are multicurves in
M , define the homology intersection number by projecting them onto S.

In chapter 17 of [10], it was shown that the first definition is the same as
the second definition for curves on a closed oriented surface. In particular,
the second definition is independent of the representative of the homology
class.

It is easy to check that at any point at which a crosses over b from right
to left, b crosses over a from left to right, so ih(a, b) = −ih(b, a).

It follows that any multicurve has zero homology intersection number
with itself, and therefore with any multicurve homologous to itself. Also, a
null homologous multicurve has zero homology intersection number with any
other curve.

Definition 12 (Homology Multicurve Complex)
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The homology multicurve complex is defined analogously to the curve com-
plex. It is a simplicial complex whose verticies are oriented multicurves in a
given homology class on S. A set of verticies bounds a simplex if each pair
of curves has pairwise zero intersection number.

It has not yet been shown that the homology multicurve complex is con-
nected. An algorithm for connecting any two homologous curves by an arc in
the homology multicurve graph will be developed. It will become clear that
this algorithm can be modified slightly to apply to multicurves, from which
connectivity of the homology multicurve complex follows.

Definition 13 (Homology Multicurve Graph)
The homology multicurve graph is the one skeleton of the homology mul-
ticurve complex. Distance is defined by giving adjacent verticies distance
one.

The reason for introducing the homology multicurve graph is that an
arc with endpoints c0 and c1 in the homology multicurve graph of S will
be used to construct a surface in M . A purpose of the next few lemmas is
to outline an algorithm for constructing an arc in the homology multicurve
graph, c0, γ1, γ2, ...γj, c1. It will be shown that an arc constructed in this way
is the most efficient arc with the desired properties.

Definition 14 (Boundary of a subset)
Given an oriented null homologous multicurve n, the surface S \n consists of
two or more connected components. The boundary of each of the components
of S \ n is given the standard boundary orientation of a subset of S. If the
boundary orientation of each component either agrees with the orientation
of n or the orientation of −n, n will be said to bound a subset of S. The
union of the components of S \n whose boundary orientation coincides with
the orientation of n will be called the “subset of S bounded by n”.

The figure 2.1 shows a null homologous multicurve that does not bound
a subset of S.

Lemma 15
If a null homologous multicurve does not contain a nontrivial null homologous
submulticurve, it has to bound a subset of S.
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Figure 2.1: A null homologous multicurve that does not bound a subset of S

Proof. Suppose that a null homologous multicurve n does not contain any
null homologous submulticurves. Since n is null homologous, \n is not con-
nected. Since n does not contain null submulticurves, for any curve d ∈ n,
S \ (n \ d) is connected. It follows that S \n has two connected components.
If n does not bound a subset of S, there are curves a and b in n such that
one of the components of S \n is to the right of a and to the left b. Let x be
a point on a and y be a point on b. Using connectivity, there is an oriented
arc axy in one component of S \ n with starting point x and endpoint y, and
an oriented arc ayx in the other component of S \ n with starting point y
and endpoint x. The curve obtained from connecting axy to ayx has nonzero
homology intersection number with n, which contradicts the assumption that
n is null homologous.

If a null homologous multicurve n that bounds a subset of S doesn’t
contain null homologous submulticurves, it can’t contain freely homotopic
curves with opposite orientations (unless, of course, it only contains these
two curves). It also can’t contain freely homotopic curves with the same
orientation, because then it wouldn’t bound a subset of S. Therefore the
number of curves in n is bounded above by −3χ(S)

2
.

Definition 16 (Surface Producing Sequence)
An arc {γi} in the homology multicurve graph of S is “surface producing” if

1. for each i, γi+1 − γi bound a subset of S,

2. none of the γi contain freely homotopic curves with opposite orienta-
tion.
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To see where the name “surface producing” comes from, suppose
c0, γ1, γ2, ...γj, c1 is surface producing. Let Γ1 be the subset of S × 1 that
projects onto the subset of the surface S × 0 bounded by γ1 − c0. γi was
defined to be a multicurve in S, but a multicurve in S determines a free
homotopy class in M , which can be projected into S × k for any k. Fixing
a choice of projection function, there is a multicurve in S × k that projects
onto γi in S, and to keep the notation simple, this multicurve will also be
called γi. Similarly, let Γi be the subset of S× i that projects onto the subset
of S × 0 bounded by γi − γi−1. Let A2

1 be the annulus in S × R given by
π−1(γ1)∩S× [1, 2] and let ∆2 be the surface with boundary γ2−c0 consisting
of Γ1 ∪ A2

1 ∪ Γ2. ∆2 is clearly embedded. This process can be repeated to
obtain ∆j+1 with boundary curves c1 − c0.

Without any further restrictions on the sequence γi, for 2 < j + 1, ∆j+1

obtained in this way is not necessarily embedded and it is necessary to show
that it is a surface. This has to do with the problem that there could exist
a curve c such that several consecutive multicurves contain a curve freely
homotopic to c. Suppose for example that c is contained in γi, γi+1...γi+n but
c is not a subset of γi−1 or γi+n+1. There are two possibilities; either each
of the multicurves γi+1...γi+n contain only one curve freely homotopic to c,
or there could be multicurves that contain several curves freely homotopic
to c. In the first case, ∆j+1 contains a cylinder of the form c× [i, i+ n+ 1],
i.e. there is a cylinder that climbs up many levels at once. This cylinder
could transversely intersect one or several of Γj for i < j < i + n + 1.
The second case is a bit more complicated because ∆j+1 contains several
long cylinders of the form c × I, where I is a closed interval in R. These
cylinders do not intersect transversely. The construction of ∆j+1 can be
altered slightly to remove this problem. For any curve c that gives rise to
nontransversal self-intersections of ∆j+1 as described above it is possible to
find n+ 1 representatives of the free homotopy class [c] that are all pairwise
disjoint, call them c0, c1, c2...cn. Then let γ

′
i be the multicurve γi with c

replaced by c0. If γi+1 contains two curves freely homotopic to c, let γ
′
i+1

be the multicurve γi+1 with one curve freely homotopic to c replaced by c0

and the other curve freely homotopic to c replaced by c1. If γi+1 has only
one curve freely homotopic to c then γ

′
i+1 is obtained by replacing this curve

by c0. Continuing in this way, the multicurves c0, γ1, ...γ
′
i, γ

′
i+1...c1 can be

used to construct the image in M of a representative of a homotopy class of
∆j+1 representing a surface with self-intersections. In chapter three it will
be shown that the sequence c0, γ1, γ2, ...γj, c1 can always be constructed so
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that this second problem doesn’t occur.
Suppose φ is a parametrisation of ∆j+1, i.e. φ : F →M has image ∆j+1.

It can be assumed without loss of generality that ∆j+1 is in general position,
and in this case it was seen that the self-intersections of ∆j+1 consists of
a union of closed curves whose preimages in F each have two connected
components. For each closed curve in ∆j+1 along which ∆j+1 intersects itself,
it is possible to perform surgeries to remove the self-intersection. (To be more
specific: suppose c is a curve in M along which ∆j+1 itersects itself, and let
N be a neighbourhood of c in M such that N ∩∆j+1 consists of two annuli,
each with boundary curves freely homotopic to c. ∂N ∩∆j+1 consists of four
curves, each freely homotopic to c. These four curves bound a pair of disjoint
oriented annuli, A1 and A2, in N , such that ∂A1 and ∂A2 have the opposite
orientations of the corresponding curves on the boundary of ∆j+1\N . Gluing
A1 and A2 to ∆j+1 \N along the common boundary curves, an oriented cell
complex without self-intersection along c is obtained.) After performing all
such surgeries, a set of cell complexes is obtained, where each of these cell
complexes can be embedded in M . Neither c1 nor c0 is null homologous, and
∆j+1 did not have any points of self-intersection on the boundary. Therefore,
one of the cell complexes obtained after performing the surgeries has to have
boundary c1 − c0. In this way, an embedded surface with boundary curves
c1− c0 and genus no larger than that of ∆j+1 is obtained. In the next section
it will be shown that all surfaces with boundary c1− c0 and smallest possible
genus can be constructed from a surface producing sequence, and so there
always exists a surface producing sequence that can be used to construct an
embedded surface.

Definition 17
Denote the surface obtained as described in the previous paragraphs from a
surface producing sequence γ as Hγ and call Hγ the surface passing through
γ.

The second part of the definition of “surface producing” is not necessary
to construct a surface, but it will be useful later to have this condition in
order to obtain a bound on the number of curves in each multicurve.

Definition 18 (Horizontal and Vertical Arcs)
Given two multicurves a and b on an oriented surface S, a horizontal arc of
a is a component of a ∩ (S \ b) that leaves and approaches b from the same
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Figure 2.2: Horizontal and vertical arcs

side. A vertical arc of a∩ (S \ b) leaves and approaches b from opposite sides.

If a horizontal arc of a ∩ (S \ b) leaves and approaches b from the right,
then this arc is “to the right of b” and vice versa.

Definition 19 (Homotopic Arcs)
Suppose a and b are multicurves in S in general position. Two arcs of a∩(S\b)
will be called homotopic if they are homotopic relative to b. Two oriented
arcs will be said to be homotopic and oriented in the same way if one can be
homotoped into the other in such a way that the orientations coincide.

Definition 20 (Adding a handle to the multicurve b corresponding to a
horizontal arc ai of a ∩ (S \ b))
Let R be an oriented embedded rectangle in S whose interior is contained in
S \ (a∪ b). Suppose that one side of R lies along the arc ai, the opposite side
is homotopic to ai with opposite orientation, and the two remaining sides are
subarcs b1 and b2 of b. Since ai is a horizontal arc, it is possible to choose R
such that the orientation of R induces an orientation on the arcs b1 and b2 on
its boundary opposite to the orientation of b1 and b2 as subsets of b. Adding
a handle to the oriented multicurve b corresponding to a horizontal arc ai of
a ∩ (S \ b) involves adding ∂R to b as a chain. The arcs b1 and b2 on the
boundary of R cancel out subarcs of b and are replaced by the arcs ai and
−ai. Since ∂R is null homologous, the resulting multicurve is homologous to
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Figure 2.3: Adding a handle corresponding to a horizontal arc.

b.

Lemma 21
“verticalness” and “horizontalness” are properties of homotopy classes of
arcs. Also, if a and b only have essential intersections, a horizontal arc of
a∩(S \b) to the right of b can’t be homotopic to a horizontal arc of a∩(S \b)
to the left of b.

Proof. Suppose v is a vertical arc of a ∩ (S \ b) whose endpoints are both
on the same component of the multicurve b. Let cv be a curve formed by
connecting up the endpoints of v on b. If v were homotopic to a horizontal
arc, the homology intersection number of cv with b could be changed by a
homotopy, which is a contradiction. For the same reason, a horizontal arc
with both endpoints on the same curve of b can’t be homotopic to a vertical
arc.

Now suppose that v is a vertical arc of a ∩ (S \ b) with endpoints on two
distinct curves, b1 and b2 of b. If v is homotopic to a horizontal arc h, let
d be the oriented curve homologous to b1 ∪ b2 formed by adding a handle
to b1 ∪ b2 corresponding to h, and let cv be the curve formed by connecting
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up the endpoints of v on d. The homotopy that takes v to h changes the
homology intersection number of cv with d, which is a contradiction. For the
same reason, a horizontal arc of a ∩ (S \ b) with endpoints on two different
curves in b can’t be homotopic to a vertical arc.

Let h be a horizontal arc of a∩(S\b) to the right of b. If h were homotopic
to a horizontal arc of a∩(S \b) to the left of b, this homotopy would decrease
the intersection number of a with b, contradicting the assuption that a and b
only have essential points of intersection. For the same reason, a horizontal
arc of a∩ (S \ b) to the left of b can’t be homotopic to a horizontal arc to the
right of b.

Lemma 22
Let a and b be oriented multicurves in general position that only have essen-
tial points of intersection. An oriented arc of a ∩ (S \ b) is not homotopic to
itself with the opposite orientation.

Proof. If an oriented arc a1 of a ∩ (S \ b) has its endpoints on two different
curves in the multicurve b, a1 can’t be homotopic to−a1, because a homotopy
of a1 to −a1 would change the component of b on which the arc has its
starting point. Let v be a vertical arc of a ∩ (S \ b) with both endpoints
on the component b1 of b, and let cv be the curve formed by connecting the
endpoints of v by a subarc of b. v can’t be homotopic to −v because such
a homotopy would change the homology intersection number of cv with b1.
The only other possibility is that there could be a horizontal arc h with both
endpoints on the curve b1 in b. Since h is not homotopic with fixed endpoints
to a subset of c (this follows from the assumption that a and b only have
essential points of intersection), the tubular neighbourhod of b1 ∪ h is a pant
P with incompressible boundary. Any arc homotopic to h is homotopic to an
arc contained inside P , so it is possible to assume without loss of generality
that a homotopy that takes h to −h only passes through arcs contained
within P . P has a boundary curve freely homotopic to b1, call the other
two boundary curves of P p1 and p2. Let d be an oriented arc with starting
point on p1 and endpoint on p2. P can be embedded inside a surface S

′
such

that d is the intersection with P of an oriented curve d
′

in S
′

and h is the
intersection of an oriented curve h

′
in S

′
, where d

′
and h

′
only intersect at a

single point inside P . h can’t be homotopic to −h in S
′
, because this would

change the homology intersection number of d
′

with h
′
. It follows that h

can’t be homotopic to −h within P .
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Figure 2.4: Existence of horizontal arcs

Since the homological intersection number of c0 and c1 is zero, there has
to be as many points of intersection of c0 with c1 where c0 crosses over c1
from right to left as points of intersection where c0 crosses over c1 from left
to right. This guarantees the existence of at least two horizontal arcs of
c1 ∩ (S − c0), as shown in figure 2.4. It is being assumed here that c0 and
c1 are representatives of their free homotopy classes that only have essential
points of intersection, so whenever c1 passes through an arc of c1 ∩ (S − c0)
that leaves c0 from the right and approaches c0 from the left, it has to pass
through a horizontal arc to the right of c0 before passing through an arc that
leaves c0 from the left and approaches c0 from the right. Therefore, if c1
intersects c0, there has to be a horizontal arc of c1 ∩ (S − c0) to the right of
c0. A symmetric argument shows that there also has to be a horizontal arc
of c1 ∩ (S − c0) to the left of c0.

For each horizontal arc of c1∩(S\c0) to the right of c0 add a corresponding
handle to c0 as shown in figure 2.3, to obtain a multicurve disjoint from c0
and with smaller intersection number with c1. Discard all null homologous
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(multi)curves and denote the remaining multicurve as α1. In particular, α1

does not contain two freely homotopic curves with opposite orientation.
By the same argument as before, there is at least one horizontal arc, b1,

in c1 ∩ (S \ α1) to the right of α1. The only difference is that b1 or another
horizontal arc might have endpoints on two different curves. This process
can therefore be repeated to obtain a multicurve α2, etc, until a multicurve
αj is found that does not intersect c1. Given the arc c0, α1, ...αj, c1 in the ho-
mology multicurve graph, if this sequence is not surface producing, a surface
producing sequence is obtained as follows. If c0, α1, ...αj, c1 is not surface
producing, then for some i, αi+1 − αi is a null homologous submulticurve
that does not bound a subset of S. In lemma 15 it was shown that any null
homologous multicurve can be decomposed into a union of null homologous
multicurves, each of which bounds a subset of S. Let n be a submulticurve
of αi+1 − αi that bounds a subset of S, δ

′
1 := αi ∪ n, and δ1 be the multic-

urve obtained from discarding all pairs of freely homotopic curves in δ
′
1 with

opposite orientation. δ1−αi bounds a subset of S consisting of the subset of
S bounded by n plus a union of annuli. If αi+1− δ1 does not bound a subset
of S, δ2 is constructed in the same way as δ1 only with δ1 in place of αi, etc.
This process terminates after a finite number of steps, when a δj is obtained
such that αi+1 − δj bounds a subset of S.

At each step of the construction of the sequence c0, α1, ...αj, c1, it is pos-
sible to decrease the intersection number further by adding handles to αi
corresponding to horizontal arcs of c1 ∩ (S \αi) to the left of αi as well as to
the right, however, the resulting multicurve α

′
i+1 will often intersect αi. The

multicurve α
′
i+1 − αi will not bound a subset of S, because the handles are

not all to the left of −αi.
A locally constant function f can be defined on S \ (c0 ∪ c1) as follows:

suppose x and y are points on S not on either of the curves c0 or c1. Then
let f(x)− f(y) equal the homological intersection number of an oriented arc
ayx going from y to x with the oriented multicurve c1 − c0. Recall that the
homological intersection number is defined such that if ayx crosses c1 − c0
from right to left, this is counted as +1 and vice versa. This definition is
independent of the choice of ayx because the homological intersection num-
ber of any closed curve with c1 − c0 is 0 since c1 − c0 is null homologous.
f is then defined by letting its minimum value equal 0. If different repre-
sentatives of the free homotopy classes of c0 and c1 are chosen, the function
obtained will be different. For the moment, it is enough to assume that
the curves c0 and c1 have the least possible number of intersections, since
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Figure 2.5: Calculating f for general multicurves

these functions will be used to obtain a surface producing sequence, and all
the different functions obtained under these conditions will give the same
arc in the homology multicurve graph. If the curves c0 and c1 are replaced
by multicurves m1 and m2, the function f can be defined in the same way,
but with the additional assumption that whenever m1 −m2 contains freely
homotopic curves, the representatives of any free homotopy class are chosen
to minimise f , as shown in figure 2.5. This is equivalent to the assumption
that the freely homotopic curves are embedded in S in such a way that they
bound a subset of S wherever possible. Without this assumption, f might
have a maximum inside an annulus A that can be removed by choosing dif-
ferent representatives of the homotopy classes of m1 and m2. Whenever the
maximum inside A is the only component of the maximum of f , attaching
a handle to m1 corresponding to fmax will only change m1 up to homotopy,
and the algorithm won’t give the shortest surface producing sequence.

Definition 23 (The function obtained from m1 −m2)
Let m1 and m2 be homologous multicurves. The function f obtained from
m1 − m2 is the locally constant function defined on S \ (m1 ∪ m2) with
minimum value zero and such that, for any two points x and y in S \ (m1 ∪
m2), f(x) − f(y) is the homology intersection number of m1 −m2 with an
oriented arc with starting point y and endpoint x. If m1 −m2 contains any
freely homotopic curves, it is assumed in addition that these freely homotopic
curves are embedded in S in such a way as to minimise the maximum value
of the function.

The function f can be thought of as a height function on S \ (c0 ∪ c1).
Horizontal arcs of c0 and c1 are horizontal and vertical arcs of c0 and c1 are
vertical with respect to this height function, as shown in figure 2.2.

Given c0 and c1, f is a bounded function on S \ (c0 ∪ c1) and has a
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Figure 2.6: Examples of fmax.

maximum. Call the subset of S on which f takes on its maximum fmax.
fmax has at least one connected component. The boundary of fmax consists
of arcs of c0 and c1 such that fmax is to the right of any arc of c0 on its
boundary and to the left of any arc of c1 on its boundary. In other words,
the boundary of fmax is a null homologous multicurve made up of horizontal
arcs of c0 to the left of c1 and horizontal arcs of c1 to the right of c0. This
observation will be used to construct a shortest possible surface producing
sequence c0, γ1, ...γj, c1 with convenient properties.

Similarly, the subset of S, fmin, on which f takes on its minimal value is
disjoint from fmax and is on the left of any arc of c0 on its boundary and to
the right of any arc of c1 on its boundary.

Recall that the boundary of fmax is oriented in such a way that fmax is
on its left, and let a1, a2... be the arcs of c1 on ∂fmax, b1, b2, ... be the arcs
of c0 on ∂fmax. Then ∂fmax =

∑
i ai −

∑
j bj (arcs are chains, and so they

can be added and subtracted). Up to free homotopy on the boundary, fmax
can be thought of as “that piece of S that is bounded by c0 and γ1”. To
make this more precise, consider the one dimensional CW complex c0∪ c1 on
S. Subtract the oriented arcs bi from the oriented subcomplex c0 and add
the oriented arcs aj. If this multicurve contains freely homotopic curves c
and −c, cancel them out. This defines γ1. Subtracting the arcs bi from c0,
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Figure 2.7: How to construct γ1.

adding the arcs aj and discarding the null homologous multicurve −∂fmax
will be called “adding a handle” or “adding handles” corresponding to fmax,
depending on the number of connected components of fmax.

∂fmax is disjoint from c0 and each connected component of fmax intersects
an annular neighbourhood of c0 on the right side of c0 (i.e. every component
of fmax is “on the same side” of c0). Therefore i(γ1, c0) = 0. The choice to use
fmax instead of fmin was arbitrary, but it is not possible to simultaneously
reduce the intersection number further by requiring that the subset of S
bounded by γ1 and c0 be fmax∪fmin because fmin is to the left of c0 and fmax
is to the right of c0, so this would not give a surface producing sequence.

The decision to cancel out freely homotopic curves with opposite orien-
tation in γ1 is arbitrary. If γ1 contains some other null homologous submul-
ticurve n, this could have been cancelled out also, however if the subset of S
bounded by n is not disjoint from fmax, c0− (γ1 \ n) will not bound a subset
of S, and so an extra multicurve would be needed in between c0 and γ1.

The multicurve γ2 is constructed in the same way as γ1 only with the curve
c0 replaced by γ1. It is not difficult to see that the function f1 obtained from
γ1 and c1 has maximum one less than the maximum of f . Cutting out the
arcs bi make it possible to connect the subset of S, f1min, on which f1 takes
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Figure 2.8: A point of intersection forces f to be at least two.

on its minimum, to f1max (defined similarly), by an arc that crosses c1 − γ1

from right to left once less than any arc connecting fmin with fmax.
This process ends with the multicurve γj when the function fj obtained

from γj and c1 has maximum value 1. The maximum of fj can only be one
if γj and c1 don’t intersect, because as shown in figure 2.8, an intersection
forces the maximum of fj to be at least two.

If the maximum of fj is one, then the subset of S on which fj = 1 is the
subset bounded by c1 − γj. This sequence of multicurves, c0, γ1, ...γj, c1, is
surface producing, so it is possible to construct a surface Hf with boundary
c1 − c0 as described. The number of multicurves j in the sequence is equal
to one less than the maximum of f .

With this algorithm for constructing surface producing sequences, it is
convenient to work with multicurves in S that are not in general position.
In this context, it is convenient to define a “point of intersection” as follows.

Definition 24 (Point of intersection for curves not in general position)
The left and right side of an oriented curve in S has been defined. Suppose a
is a multicurve in S and b is a second multicurve in S such that a and b are
not in general position. If a and b coincide along some subarc or point, this
subarc or point will be counted as a single point of intersection iff b crosses
from one side of a to the other.

At each step of the algorithm, the intersection number with c1 is de-
creased. Recall that the arcs of c1 ∩ (S \ c0) on ∂fmax were denoted a1...an.
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Figure 2.9: Calculating the reduction in intersection number.

Let kai be the number of arcs of c1 ∩ (S \ c0) in the same homotopy class as
ai for 1 ≤ i ≤ n. Then, as shown in figure 2.9, the intersection number of γ1

with c1 is at least 2
∑

i kai less than the intersection number of c0 with c1.

Lemma 25
Suppose [m1] and [m2] are homologous multicurves and that m1 and m2 only
have essential points of intersection. Let m3 be obtained from m1 by adding
a handle corresponding to a horizontal arc a1 of m2 ∩ (S \ m1). If ka1 is
equal to the number of arcs in the homotopy class a1, then i(m1,m2) =
i(m3,m2) + 2ka1 .

Proof. By the way “points of intersection” were defined in definition 24, it
is clear that a homotopy can only remove points of intersection pairwise,
otherwise the homotopy would change the homology intersection number,
which is impossible. It is also clear that the intersection number can be
decreased by as much as 2ka1 by adding the handle corresponding to a1 to
m1; this is a consequence of the definition of homotopy class. It remains to
show that there is no homotopy that decreases the intersection number by
more than 2ka1 . Let Ra1 be the rectangle in S consisting of the closure of
the union of rectangles in S \ (m1 ∪ m2), each of which have two opposite
sides made up of arcs of m2 ∩ (S \ m1) in the homotopy class a1. Let m

′
3

be the representative of the free homotopy class [m3] that coincides with the
subcomplex m1 of the CW complex m1 ∪ m2 outside of Ra1 and with arcs
of m2 in the homotopy class a1 on the boundary of Ra1 . Suppose also that
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m
′
3 does not enter the interior of Ra1 . According to the definition 24, m

′
3 has

intersection number i(m1,m2)−2ka1 with m2. Suppose that the intersection
number of m

′
3 with m2 could be further decreased. For this to happen, there

has to be an arc of m
′
3 with endpoints p1 and p2 on m2 that is homotopic

with fixed endpoints to an arc of m2. Since m1 and m2 only have essential
points of intersection, this arc could not be an arc disjoint from the closure
of Ra1 , so p1 and p2 have to be the endpoints of an arc of the form l1 ◦a1 ◦ l2,
where l1 and l2 are arcs of m1 ∩ (S \m2). However, this is a contradiction,
because l1 ◦ a1 ◦ l2 is homotopic to a1 relative to m1.

Corollary 26
Whenever a1, a2, ...an are homotopy classes of horizontal arcs of c1∩ (S \γk),
i(γk, c1) ≥ i(γk+1, c1) + 2

∑
i kai .

Given a surface producing sequence c0, γ1, ...γj, c1 and a choice of projec-
tion function π, in the discussion after the construction of ∆j+1 it was shown
that it is possible to construct Hγ, where Hγ is a surface with boundary
c1− c0 in M . Hγ is constructed in a particular way that will be made use of
in the next definition. In particular, Hγ is a finite union of subsets of S × i,
for i = 1, 2, 3...j + 1, each of which project one to one onto a subset of S,
with a union of annuli, each of which projects onto a simple curve in S. ∂Hγ

has boundary consisting of two simple curves c0 and c1. Since c0 is on the
boundary of a component of S × 1 that projects one to one onto a subset of
S and c1 is on the boundary of a subset of S × j + 1 that projects one to
one onto a subset of S, each component of ∂H also projects one to one into
S. Therefore, whenever Hγ is embedded, it is possible to define a function
fγ (or alternatively fH) on S \ π(c0 ∪ c1) as follows:

fγ : s ∈ S → number of connected components of π−1(s) ∩Hγ (2.1)

From the way Hγ was constructed, it is clear that fγ ≤ j + 1, where
j+2 is equal to the number of multicurves in the surface producing sequence
c0, γ1, γ2, ...γj, c1, including c0 and c1. If Hγ is not embedded, fγ is defined
in the same way as in the previous equation, only any point of π−1(s) ∩Hγ

that is a point of self-intersection of Hγ is counted twice, or three times if it
is a triple point.
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Lemma 27
Given any two surface producing sequences {c0, β1, ...βj, c1} and
{c0, δ1, ...δk, c1}, fβ and fδ differ by at most a universal additive con-
stant.

Proof. For any surface producing sequence {βi}, fβ has to have the property
that it increases by one when crossing over an arc of c1− c0 from right to left
and decreases when crossing from left to right. Suppose also that fβ changes
when crossing over an oriented curve α in S that is not a subset of c1 − c0.
Given a surface producing sequence {c0, β1, ...βj, c1}, recall that the surface
Hβ was constructed by attaching surfaces Γi in M , where Γi projects one to
one onto the subset of S with boundary βi − βi−1. In addition, each Γi is
oriented as a subset of S. Choose an arc α′ of α ∩ (S \ c0 ∪ c1). If a given
component of π−1(α′)∩Hβ is contained in Γi for some i, then this component,
α1 of π−1(α′) ∩Hβ has a neighbourhood in Γi diffeomorphic to α1 × (−ε, ε).
Since α′ is oriented so is α1. In this neighbourhood it therefore makes sense
to talk about the left and right side of α1. Since it is contained in Γi, this
neighbourhood is projected one to one onto S. Alternatively, α1 could be
a subarc of ∂Γi for some i. Each of the Γi are oriented in the same way as
subsets of S, so each oriented curve c in ∂Γi has a neighbourhood N(c) in
Hβ such that N(c) \ c has two components - one to the left and one to the
right of c - and such that π (N(c)) is also of this form. π does not identify a
point of N(c) to the right of c with a point of N(c) to the left of c. Similarly
if the component α1 of π−1(α′)∩Hβ intersects ∂Γi for some i. Therefore if p
and q are two points in S contained in the intersection of the projection of
the neighbourhoods of each component of π−1(α′) ∩ Hβ, then f(p) = f(q),
which contradicts the assumption that f changes when crossing over α. If f
could change by more than one when crossing over an arc of c1− c0 then the
same argument applied to every component of π−1(α′) ∩ Hβ that is not on
∂Hβ would also give a contradiction.

Lemma 28
Given the surface Hγ, the function f obtained from the projections of the
boundary curves c1− c0 of Hγ coincides with the function fγ, where γ here is
the arc in the homology multicurve graph constructed by successively adding
handles corresponding to the extrema of the functions f, f1, ....
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Figure 2.10: Points of intersection that could be removed by a homotopy.

Proof. The reason this is not immediately clear is that the multicurve γi+1,
obtained from γi and c1 by attaching a handle corresponding to fimax, might
have points of intersection with c1 that can be removed by a homotopy for
any i. The function fi+1 depends on the representative of the free homotopy
class [γi+1]. In order to define the maximum value of fi+1, it was assumed
that the multicurves used to define the function have the smallest possible
number of points of intersection.

Let Rai be the rectangle in S consisting of the closure of the union of
rectangles in S\(c1∪c2), each of which have two opposite sides made up of arcs
of c2∩(S\c1) in the homotopy class ai, where each of the a1...an are homotopy
classes of arcs with representatives on ∂fmax. Let R := Ra1 ∪ Ra2 ∪ ...Ran ,
and γ

′
1 be the multicurve homotopic to γ1 constructed similarly to m

′
3 in

lemma 25 i.e. γ
′
1 coincides with c0 outside of R and is a representative of the

homotopy class with the smallest possible number of points of intersection
with c1, according to definition 24. γ

′
1 − c0 therefore bounds the subset

fmax ∪R of S.
Let f1 be the function obtained from γ1 and c1, and let f

′
1 be the function

obtained from γ
′
1 and c1. γ1 and −γ′

1 bound the subset R of S. For a point
s ∈ S for which both f1 and f

′
1 are defined,

f1(s) =

{
f

′
1(s) + 1 if s ∈ R,
f

′
1(s) otherwise.

(2.2)

In other words, the homotopy that takes γ1 to γ
′
1 reduces the function by

one on the subset R and enlarges the subset of S bounded by γ1−c0 to obtain
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Figure 2.11: γ1, γ
′
1, R and r.

the subset of S bounded by γ
′
1−c0, fmax∪R. Any components of S \(c0∪c1)

with one edge along fmax are contained in f1max, and since these components
aren’t all contained in R, it follows that f1 has the same maximum value as
f

′
1. f1max is the union of f

′
1max with a union r of rectangles of S\(c1∪c0) in R,

as shown in figure 2.11. Attaching handles to γ1 corresponding to rectangles
in r reduces the number of points of intersection with c1, and homotoping γ1

to γ
′
1 has the same effect as attaching a handle to γ1 corresponding to each

rectangle in R and discarding contractible curves. If r is not the whole of R,
when passing from γ2 to γ3, handles corresponding to further rectangles in
R are attached. This is continued until for large enough i, fimax contains all
of R and γi+1 has no points of intersection with c1 on ∂R. If γ1 is used in
place of γ

′
1 to construct γ2, the same multicurve will therefore be obtained

up to free homotopy, despite the fact that γ1 might have nonessential points
of intersection with c1. The same argument applies for all γi in place of γ1,
from which the lemma follows.

Lemma 29
The shortest surface producing sequence from c0 to c1 consists of j multic-
urves (not counting c0 and c1), where j is equal to one less than the maximum
value of f .

Proof. The function f was defined for homologous multicurves m1 and m2,
where it is assumed that m1 and m2 only have essential points of intersection
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and that if m1 and m2 contain freely homotopic curves, these curves are
embedded in S in such a way that they bound a subset of S whenever possible.
These assumptions are necessary here, because the properties that a sequence
has to fulfil in order to be surface producing are independent of free homotopy
of the multicurves in the sequence, but the maximum of the function is not.
The assumptions on the multicurves involved ensure that the maximum of f
is as small as possible.

The previous arguments have shown that every surface producing se-
quence defines a function on S \ (c0 ∪ c1). The maximum of the function is
equal to the maximum number m of connected components of π−1(s) ∩Hγ,
for s ∈ S. The number of multicurves in the sequence {γi} can’t be less than
m− 1, because if it were, Hγ could have been constructed by connecting up
m−1 or fewer pieces, each of which projects one to one onto S, which would
contradict the fact that π−1(s) ∩Hγ has m connected components for some
s ∈ S \(c0∪c1). The previous arguments have also shown that this minimum
number of multicurves can always be achieved. For every sequence {γi}, the
function fγ is everywhere positive or zero. It follows from lemma 27 that f
has the smallest possible maximum because its minimum is zero.

The function fH might have been defined in a more general way, by taking
orientation into account. If the surface Hγ had been constructed by attaching
surfaces homotopic to subsets of S, where these surfaces are not all oriented
as subsets of S, fH could have been defined as

fH : s ∈ S \ π(∂Hf )→ x− y, where

x := the number of connected components of the set π−1(s) ∩ Hf for
which π−1(s) intersects the surface Hf in a connected set contained in
a neighbourhood in Hf that projects onto an open subset of S with the
orientation induced by S, and

y := the number of connected components of the set π−1(s) ∩ Hf for
which π−1(s) intersects the surface Hf in a connected set contained in
a neighbourhood in Hf that projects onto an open subset of S with the
opposite orientation to that induced by S.

A connected component of π−1(s) ∩Hf that does not have a neighbour-
hood in Hf that projects onto an open set of S is not counted.
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With this definition, it is no longer necessary to require that the surfaces
homotopic to subsets of S used to construct Hf are all oriented in the same
way, however, for surfaces constructed from surface producing sequences,
this doesn’t really provide any new information. Instead of using a surface
Γi homotopic to fimax in the construction of H, a surface homotopic to
S \ fimax with the opposite orientation could be used instead. The surface
with boundary curves c1 − c0 constructed in this way would give rise to
a new function everywhere equal to fH − 1. The difference between the
maximum and minimum values, which is what determines the number of
multicurves needed, remains unchanged. The advantage of definition 16 over
the original definition is that it gives reasonable results for surfaces that are
not constructed from surface producing sequences. For example, suppose
c1 − c0 is a multicurve and H is any orientable surface in M with boundary
c1 − c0. The same argument as in lemma 27 shows that fH , as defined in
definition 16, has to be constant on any component of S \ (c1 − c0). From
this it follows that if H has smallest possible genus, it has to be homotopic
to a subset of S.

Corollary 30 (Corollary of lemma 27)
Suppose that c1− c0 is a multicurve, where c0 and c1 are simple, homologous
curves in S. Then any orientable surface in M with smallest possible genus
whose boundary is freely homotopic to c1−c0 has to be homotopic to a subset
of S.

A notational complication that has become apparent in the previous two
lemmas is due to the fact that, when talking about a sequence in the homol-
ogy multicurve graph, it is only of interest to know the multicurve γi up to
free homotopy. To keep the notation as simple as possible, the same notation
will sometimes be used when referring to a curve or the free homotopy class
containing the curve. If it is necessary to choose the representative of the
free homotopy class in a particular way, this will be explicitly stated. It will
often be useful to choose the representatives of the homotopy classes to make
the intuitive picture of fmax clearer. Let c0 and c1 be representatives of their
homotopy classes that only have essential points of intersection, according
to definition 24. Fix these representatives, and choose the representatives
of the homotopy classes such that γi+1 − γi is the boundary of the subset
of f on which f is no less than its maximum value minus i, i.e. fimax. (c0
is understood to be γ0 and c1 γj+1). That this choice makes sense, despite
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the fact that this choice of the representatives of the homotopy classes [γi]
might have nonessential points of intersection with c1, has been discussed
in lemma 28. The boundary of fimax is an embedded subcomplex of the
one dimensional CW complex c0 ∪ c1 for every i, and has zero intersection
number with γi and γi+1. γi+1 is obtained from γi by subtracting the arcs of
γi ∩ (S \ c1) on ∂fimax and adding the arcs of c1 ∩ (S \ γi) on ∂fimax. Also,
no arc of c1 ∩ c0 will be on the boundary of fimax for more than one value
of i, so each arc can only be added or subtracted at most once. Each of the
multicurves γi is therefore a subcomplex of c0∪c1, and is oriented as a subset
of c0 ∪ c1. From figure 2.8, it is easy to verify that fimax can not meet itself
at a vertex, because if four components of S \ (γi ∪ γk) come together at a
point and the function is equal on two of them, it must be larger on a third
component and smaller on the fourth. Therefore, if γi doesn’t meet or cross
over itself at a vertex, neither will γi+1. It follows that the γi chosen in this
way are embedded, oriented subcomplexes of c0 ∪ c1. The main advantage
of doing this is that the functions f, f1, f2... are related in an obvious way.
The disadvantage of this choice is that, as already mentioned, these choices
of representatives of the multicurves γi might have nonessential points of
intersection with c1, and that as subcomplexes, these representatives aren’t
all pairwise in general position. Confusion can arise because the homotopy
class of a boundary does not determine the topology of the surface that it
bounds. For example, if fimax is a rectangle, as shown in figure 2.12. The
representative of the homotopy class of [γi+1] can also be chosen such that
γi+1 − γi bounds a pair of pants.

Lemma 31
If c0 and c1 had been interchanged in the algorithm for construct-
ing the surface producing sequence c0, γ1, γ2...γj−1, γj, c1, the sequence
c1, γj, γj−1, ...γ2, γ1, c0 would have been obtained.

Proof. Suppose the representatives of the multicurves c0, γ1, ...γj, c1 are cho-
sen as outlined in the previous paragraph, in particular, each of the γi are
oriented subcomplexes of the CW complex c0 ∪ c1 such that γi+1 − γi is the
boundary of the subset of f on which f is no less than its maximum value
minus i. Let h be the function on S \ (c0 ∪ c1) obtained from c0 − c1. It is
easy to check that h has its maximum where the function f obtained from
c1 − c0 has its minimum, and vice versa. By definition, γj is the multicurve
chosen such that c1 − γj bounds the subset of S given by S \ fmin. In other
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Figure 2.12: The topology of the subset of S bounded by γi+1 − γi depends
on the choice of representatives of the free homotopy classes.

words, γj − c1 is the boundary of fmin or hmax, i.e. γj satisfies the definition
of the first multicurve in the sequence c1, ...c0. Similarly for γj−1, γj−2, etc.

The genus of the subset Γi of S is bounded from above by the genus g of
S, so lemma 29 shows that it is always possible to construct a surface with
boundary c1 − c0 with genus less than or equal to gm. If the subsets of S
being connected up to form the surface are not all required to be oriented in
the same way, at each step it is possible to choose between Γi and S \ Γi, so
a bound of gm

2
is obtained.
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2.2 Minimal Genus Surfaces

In this section it is convenient to work in the smooth category. All maps will
also be assumed to be smooth. Let c0 and c1 be simple, homologous curves
as defined in the previous section.

It is shown that every surface in M with boundary curves c1 − c0 with
smallest possible genus can be constructed by the algorithm outlined in sec-
tion 2.1. In particular, the following theorem will be proven:

Theorem 32
Recall the definitions of surface and homotopy of surfaces given in definitions
8 and 9. In particular, suppose H is a smooth, oriented surface locally
embedded in M with boundary curves c1 − c0 and smallest possible genus.
Then there exists a surface producing sequence γ such that H is homotopic
to Hγ.

M is given a product metric ds2
M = ds2

S+dR2 where dsS is a choice of met-
ric on S×0, and R is, as usual, the coordinate obtained by projecting onto the
second component of S×R. Similarly, H and all surfaces in M homotopic to
H are assumed to be covered by coordinate charts (U1, s1, R), ..., (Uk, sk, R),
where the si are coordinates obtained by projecting onto S × 0. Theorem
32 is proven by treating the restriction to H of the R coordinate as a Morse
function, which is shown to be possible in lemma 38. The reason for requiring
this function to be Morse is that, when H is embedded, the level sets of R
have controlled intersection properties, which will be used for constructing a
surface producing sequence.

The fact that H has nonempty boundary makes it necessary to give a
definition of critical point that could include boundary points of H.

Definition 33 (Critical Point of R)
In the interior of H, a critical point of the restriction to H of the R coordinate
of M is a point x of H at which the derivative of the restriction of R to H
vanishes. The boundary of H is a union of embedded, one dimensional
submanifolds of M , so a critical point on the boundary of H is a point where
the restriction of H to the boundary has zero derivative.

Definition 34 (Degenerate Critical Point)
A degenerate critical point on the interior of the surface is a critical point at
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which the Hessian matrix has zero determinant. A degenerate critical point
on the boundary is any critical point that is not an isolated local extremum.

Definition 35 (Morse function)
A Morse function on a surface H is a C∞ function from H into < for which
all critical points are nondegenerate.

Definition 36 (Hausdorff Topology (From [20]))
Given the topology on M induced by the product metric, a sequence of
closed sets {Λn} in M is said to converge to Λ in the Hausdorff topology if
the following two conditions are satisfied:

1. Any accumulation point of a sequence {xn ∈ Λn} belongs to Λ

2. Every x ∈ Λ is the limit point of a sequence {xn ∈ Λn}

Definition 37 (C2 topology)
Fix a set of coordinate charts, (U1, s1, R), ..., (Uk, sk, R) on H, where the si
are coordinates obtained by projecting into S × 0. Let C2(H) be the set
of all C2 maps of H into the real line. The C2 topology on C2(H) is the
topology with the neighbourhood basis given by sets of the form N 2(f, ε),
where N 2(f, ε) consists of all functions g in C2(H) such that, within every
coordinate chart

|f(x)− g(x)| < ε , |Df(x)−Dg(x)| < ε and
∣∣D2f(x)−D2g(x)

∣∣ < ε

for all x ∈ H.

Lemma 38
Suppose H is a compact embedded surface in M with boundary curves c1 and
c0. Then there is an embedded surface in M , call it H

′
, with the following

properties:

1. H
′

is homotopic to H according to definition 9

2. The restriction of the R coordinate to H
′

is a Morse function

3. No two critical points of the Morse function from 2 have the same value
of the R coordinate.
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Proof. It is a standard result, e.g. [21] Theorem 2.7, that on a compact
manifold without boundary, the Morse functions form an open, dense (in the
C2 topology) subset of the set of all smooth functions of the manifold into <.
This and similar standard results in Morse theory are proven by altering a
given function by adding arbitrarily small functions with small derivatives.
Similar arguments are used here; the main difference is that the function R
is treated as fixed while the subset of M to which R is restricted is altered
by a homotopy. To start off with, the existence of an embedded surface H1

homotopic to H to which the restriction of R to a neighbourhood of the
boundary is a Morse function will be shown. The standard Morse theory
arguments that assume empty boundary will then be shown to apply to H1.

Let N be a collar of the boundary of H; the existence of which is guar-
anteed by theorem 6.1, chapter 4 of [16]. ∂H is a compact manifold without
boundary, so by theorem 2.7 of [21], if the restriction of R to ∂H is not a
Morse function, there is a Morse function Rm on ∂H arbitrarily close to R in
the C2 topology. N is diffeomorphic to two copies of S1× [0, ι], which defines
coordinates (t, r) on each component ofN , where t is the parameter on S1 and
r is defined on the interval [o, ι] and is equal to zero on the boundary curves c0
and c1. Let φ(t, r) be a smooth function on N , 0 ≤ φ ≤ 1, φ |∂H = 1, and let
η(t) be the function Rm(t)−R on ∂H. The function R+φ(t, r)η(t) is there-
fore a Morse function when restricted to ∂H. To construct a function without
degenerate critical points on a neighbourhood of the boundary, it is enough
to show that φ(t, r) can be chosen such that d(R+φ(t,r)η(t))

dr
and d(R+φ(t,r)η(t))

dt

are not simultaneously zero on a neighbourhood N1 of ∂H contained in N .

As a consequence of smoothness, d(R+φ(t,r)η(t))
dt

∣∣∣r=κ − d(R+φ(t,r)η(t))
dt

|r=0 can be

made arbitrarily small by choosing κ sufficiently small. Since R+ φ(t, r)η(t)

is a Morse function on ∂H, when restricted to ∂H, d(R+φ(t,r)η(t))
dt

is only zero
at (isolated) critical points p1 = (t1, 0), p2 = (t2, 0)...pn = (tn, 0). There-

fore, N1 ⊂ N can be chosen such that in N1,
d(R+φ(r,t)η(t))

dt
can only pass

through zero in a neighbourhood of the form Pi := (pi− ε, pi + ε)× (0, ε), for

i = 1, 2, ...n. Inside each of the Pi, φ can be chosen such that d(R+φ(r,t)η(t))
dr

is
nonzero. This is possible because ε can be chosen such that R, η and their
derivatives do not vary much in the ε neighbourhoods. It follows that N1

and φ can be chosen such that R + φ(r, t)η(t) is a Morse function on N1.
Let H1 be the subset of M that coincides with H outside of N and is

given by the graph (s, R+φ(r, t)η(t)) in any coordinate chart (Ui, si, R) over
N . Since H is smoothly embedded in M as a submanifold with boundary,
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it follows from theorems 6.1 and 6.3 of [16] that H has an embedded neigh-
bourhood E(H) in M . As Rm approaches R in the C2 topology on ∂H,
R+φ(r, t)η(t) also approaches R in the C2 topology on N . If Rm was chosen
to be sufficiently close to R in the C2 topology, it follows that H1 is con-
tained in E(H) and is also embedded. By construction, the restriction of the
R coordinate to H1 is a Morse function on a neighbourhood of the boundary.

Lemma 39 (Lemma B of [21])
Let K be a compact subset of an open set U in <3. If g : U → < is smooth
and has only nondegenerate critical points in K, then there is a number δ > 0
such that if h : U → < is smooth and at all points of K satisfies

(1)

∣∣∣∣ ∂g∂xi − ∂h

∂xi

∣∣∣∣ < δ, (2)

∣∣∣∣ ∂2g

∂xixj
− ∂2h

∂xixj

∣∣∣∣ < δ

for i, j = 1, ..., n, then h also only has nondegenerate critical points in K.

Let F be the set of all smooth functions f from H1 into < such that
f |N1 = R |N1 . By the definition of F and H1, no element of F will have
degenerate critical points in N1. Recall that on the interior of H1, degener-
ate critical points of f are points at which both the gradient of f and the
determinant of the Hessian matrix are zero. Both the gradient of f and
the determinant of the Hessian matrix are continuous quantities in the C2

topology, from which it follows that the set of Morse functions is open in F .
To show denseness, let (U ′1, s1, R), ..., (U ′k, sk, R) be a finite covering of

H1 by coordinate neighbourhoods {U ′i} with coordinates (si, R), where
si and R are coordinates obtained by projecting U ′i onto S × 0 and R
respectively. Suppose also that (U ′1, s1, R), ..., (U ′k, sk, R) are chosen such
that (U1, s1, R), ..., (Uk, sk, R) is a finite covering of H1 \ N1, where Ui :=
U ′i ∩ (H1 \ N1). It is possible to find compact sets Ci ⊂ Ui such that
C1, C2, ...Ck cover H1 \N1. Let N be a neighbourhood of a function f in F .
Degenerate critical points are removed in stages. Let η be a smooth function
from H1 into [0, 1] such that 0 < η in a neighbourhood of C1 and η = 0 in
a neighbourhood of H1 \ U1. The function f1 := f + εη : H1 → < belongs
to F . By lemma A, page 11 of [21] (this is a corollary of Sard’s Theorem) it
follows that for almost all choices of εη, f1 has no degenerate critical points
on C1. If ε is chosen small enough, f1 will be contained in the neighbourhood
N of f .

Now that a function f1 has been obtained that does not have degenerate
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critical points in C1, by Lemma B it is possible to find a neighbourhood N1

of f1, where N1 ⊂ N , so that any function in N1 also has the property that
is does not have degenerate critical points in N1.

The next part of the proof involves repeating this process with f1 and N1,
to obtain a function f2 in N1 that does not have degenerate critical points
in C2, and a neighbourhood N2 of f2, N2 ⊂ N1, such that no function in
N2 has degenerate critical points in C2. It is automatically the case that f2

does not contain degenerate critical points in C1, since it is in N1. Finally,
a function fk ∈ Nk ⊂ Nk−1 ⊂ ... ⊂ N1 ⊂ N is obtained, where fk does not
have degenerate critical points anywhere on C1 ∪ ... ∪ Ck := H1 \N1.

Now it is known that there is a Morse function, call it Rm, arbitrarily
close to R on H1 in the C2 topology, let η(x) := Rm(x) − R(x). Let H2 be
the surface given by the graph (s, R(s) + η(s)) over each coordinate patch
(Ui, si, R). As before, if η and its first derivatives are small enough, H2 is
embedded.

It is a direct consequence of the definitions that as η approaches zero in
the C2 topology, H2 approaches H in the Hausdorff topology.

The proof that the surface can be chosen such that all critical points
occur at different values of R is exactly the same as the standard result in
the literature, for example, lemma 2.8 of [21], only once again, instead of
altering the function by adding arbitrarily small correction functions to it,
a correction function η is interpreted as a recipe for moving the surface H2

up or down in the R direction by an amount determined by the value of η
at that point, to obtain a surface H

′
homotopic to H2. By the denseness

result just proven, η can also be chosen to be close enough to zero in the C2

topology to ensure that H
′

is embedded.

The next lemma will be useful in the proof of theorem 32. Let Ha
b :=

H ∩ (S × [b, a]), Hb := H ∩ (S × [b,∞)), Ha := H ∩ ((−∞, a]) and H(a) :=
H ∩ (S × a).

Lemma 40
Suppose H is embedded. Then there is an embedded representative H

′
of

the homotopy class of H such that H
′
0 does not have a component consisting

of an annulus with core curve c0 or a bordered sphere whose boundary curves
are either contractible or freely homotopic to c0. If a representative H” of
the homotopy class of H is sufficiently close to H

′
in the Hausdorff topology,
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H”
0 does not have a component consisting of an annulus with core curve c0

or a bordered sphere whose boundary curves are either contractible or freely
homotopic to c0, either.

Proof. If H0 contains a component consisting of an annulus A with core
curve c0 or a bordered sphere whose boundary curves are either contractible
or freely homotopic to c0, there is a homotopy of H that takes the interior
of A into a subset A

′
of S × [0,−∞) and fixes H \ A. The image, H1,

of this homotopy might not be embedded, but can be assumed to be in
general position. Since H1 is in general position, as discussed in [14], its
self-intersections can only consist of a union of curve, arcs with endpoints on
the boundary and a discrete union of triple points. Since H is embedded,
and the homotopy only moved annuli or certain types of bordered spheres,
it follows that the self-intersections of H1 consist of a union of:

1. curves homotopic to c0

2. curves contractible in H1

3. arcs with endpoints on the boundary of H1 that are homotopic relative
to their endpoints to arcs on ∂H1

4. isolated triple points

The lemma will be proven by showing that all of the self-intersections of
H1 can be removed by a homotopy without creating new points of intersection
with S.

If H1 contains a self-intersection along a curve c0 that is freely homotopic
in H1 to the boundary curve c0, this self-intersection can be removed by
cutting an annulus off the boundary of H1 to obtain a new surface, homotopic
to H1, without this self-intersection. Similarly if H1 intersects itself along an
arc homotopic relative to its endpoints to a sub arc of the boundary of H1. It
might be the case that there is more than one free homotopy class of curves in
H that is freely homotopic to c0 in M i.e. there will be more than one distinct
annulus in H with core curve freely homotopic to c0 in M . If H0 contains a
component consisting of an annulus with core curve c0 or a bordered sphere
whose boundary curves are either contractible or freely homotopic to c0,
as shown in figure 2.13, each distinct annulus in H with core curve freely
homotopic to c0 in M has to intersect S × [0,∞), otherwise H couldn’t be
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embedded. For sufficiently small ε, the intersection of S×−ε with H is freely
homotopic in H to the intersection of S× 0 with H. Every component A0 of
H0 that is either an annulus with core curve c0 or a bordered sphere whose
boundary curves are either contractible or freely homotopic to c0 is a subset
of a component A−ε of H−ε that is either an annulus with core curve c0 or
a bordered sphere whose boundary curves are either contractible or freely
homotopic to c0. Consider the homotopy that fixes H \ A−ε and maps the
R coordinate of each component Aε to R′, where R′ = k(R + ε) − ε, and k
is a constant chosen to be small enough such that every component of Aε is
mapped into S× [−ε, 0). Call the image of H under this homotopy H2. This
homotopy might create self-intersections along curves that are contractible in
the surface, but by construction it can’t create self-intersections along curves
freely homotopic to c0.

It remains to show that the intersections of H2 along curves that are
contractible in H2 can be removed by a homotopy. Let φ : F → H be a
parametrisation of H2, where F is a surface with boundary, and let c be a
curve in H2 along which H2 has a self-intersection. Since H2 is orientable,
φ−1(c) consists of two curves, c1 and c2. φ(c1) and φ(c2) are compressible in
H2, so they each bound a disc in H2. The disc d1 in H2 bounded by c1 could
contain further contractible curves along which H2 intersects itself, similarly
for the disc d2 in H2 bounded by c2. By the Jordan curve theorem, it makes
sense to talk of the “innermost” curves, in d1 and d2 freely homotopic to c.
Suppose c was chosen to be this innermost, contractible curve in d1. The
union of the two discs in H2 bounded by φ(c1) and φ(c2) is an embedded
2-sphere in M . Since any 2-sphere in M bounds a ball, (Proposition D.3.17
of [2]), the points of intersection along c can be removed by a homotopy
without creating new points of intersection. This can be repeated until an
embedded surface is obtained, which can be smoothed off to obtain H

′
.

It follows from compactness of S×0 and H
′
that if a surface H” homotopic

to H
′

has a component of H”
0 consisting of an annulus with core curve c0

or a bordered sphere whose boundary curves are either contractible or freely
homotopic to c0, H

” can’t be arbitrarily close to H
′
in the Hausdorff topology.

Proof of Theorem 32. It can be assumed without loss of generality that H is
in general position. To start off with, suppose also that H is embedded.

If c1 − c0 is a multicurve, by lemma 15 it has to bound a subset of S. In
this case, H has to be homotopic to a subset of S, as shown in corollary 30.
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Figure 2.13: Homotopy that rescales the R coordinate of some components
of H−ε.
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Morse theory can be used to give handle decompositions of surfaces, which
is what will be done here. In this proof, intersection properties of the pro-
jections of boundary curves and arcs to S are important. This makes it
necessary to distinguish between two distinct methods of attaching handles,
depending on the way the handle projects into S. Fix an orientation of S and
a choice of projection π of M onto S. Suppose Ha contains two components,
F1 and F2, that are subsets of a connected component F of Ha+δ for small δ.
In other words, there is a component of Ha+δ obtained by attaching a handle
to F1 ∪ F2. A handle can be thought of as an oriented rectangle Q in M ,
whose boundary is a union of four arcs, each given an orientation as a subset
of the boundary of Q. A pair of opposite sides of Q, q1 and q2, are glued
along arcs on the boundary components of F1 and F2 respectively, in such a
way that pairs of arcs with opposite orientation are glued together. In this
way, an oriented surface F is obtained, such that F1 and F2 are oriented as
subsets of F . Whenever F1 and F2 project onto subsets of S with opposite
orientations, i.e. π(F1) is oriented as a subset of S, and π(F2) is oriented as a
subset of −S, or vice versa, the handle Q has to be embedded in M with an
odd number of half twists, otherwise the orientations of F1 and F2 can’t be
made to match up. The aim is to make a definition to distinguish between
“ordinary” handles and those that contain twists, which will be called “bow
tie” handles. There are two complications to doing this. A rectangle Q as
in the previous example contains a subset without twists; the representative
of the homotopy class of Ha+δ might be chosen such that this subset of Q
could be viewed as an “ordinary” handle connecting two components of Ha.
An “ordinary” handle, when given a half twist in one direction and a half
twist in the other direction to cancel it out, could be viewed as two handles
with twists. In order to avoid these problems, when determining whether or
not a handle contains twists, a representative of the homotopy class of Ha

is chosen that avoids all nonessential points of intersection of its boundary
when projected into S. With this choice of representative of the homotopy
class of Ha, a handle Q has twists if and only if there is no homotopy of
Q in M relative to its boundary arcs q1 and q2 in H(a) such that ∂π(Q) is
embedded in S.

Definition 41 (Bow tie handle)
Suppose that for arbitrarily small δ, Ha+δ is obtained from Ha by adding a
handle Q as described above. Suppose also that the projection of ∂Ha to
S × 0 only contains essential intersections. Let h(t) be a homotopy of Ha+δ
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Figure 2.14: Examples of the two different types of handles.

Figure 2.15: Cell decomposition of a bow tie handle. One side of the handle
is shown in green.

in M that fixes Ha. If for arbitrarily small δ there does not exist a h(t) such
that the image of Q under the homotopy h(1)(Ha+δ) has a boundary that
projects one to one into S, Q will be called a bow tie handle.

The Morse function obtained by restricting the R coordinate to a suitable
choice of representative of the homotopy class of a surface will not give a
handle decomposition that contains a bow tie handle. A bow tie handle is a
union of 2-handles of the handle composition obtained from R, as shown in
figure 2.15.

There are arbitrarily many pant decompositions of H, and unless H is
homotopic to a subset of S, it isn’t the case that every pant decomposition
of H gives rise to a surface producing sequence. It therefore doesn’t make
sense to prove results that are independent of the choice of Morse function,
because most Morse functions on H give rise to handle decompositions that
don’t give any control over intersection numbers of curves projected into S.
For the next results it is assumed that all Morse functions are obtained by
restricting R to some embedded representative of the homotopy class of the
surface H, as described.
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Figure 2.16: Intersection of the I bundle of H with S × a

Since H is embedded, whenever a is not a critical value, H(a) := H ∩
(S × a) is a union of curves and arcs that project one to one into S. If a is
a critical value and Ha+δ

0 is obtained from Ha−δ
0 by adding a handle, H(a) is

a one dimensional cell complex. The representative of the homotopy class of
H was chosen such that there can be at most one critical point for any value
of R, so δ can be chosen small enough to ensure that Ha+δ is obtained from
Ha−δ by attaching a single handle. Either this handle is a 2-disc attached
along a boundary component of Ha−δ or there is a point p in Ha

a−δ such that
Ha
a−δ has a component consisting of two 2-cells attached at a vertex p. If the

handle is an ordinary handle, these two cells project onto two subsets of S,
both of which are either oriented as a subset of S or as a subset of −S. If
the handle is a bow tie handle with an odd number of twists, the two cells
will have opposite orientations when projected onto subsets of S.

By theorems 6.1 and 6.3 of [16], it is possible to find a smooth injective
map φ from the normal bundle of Ha+δ

a−δ into M whose image, N , is embedded.

Whenever the handle is an ordinary handle, Ha+δ
a−δ is separating in N . In this

case, the point p is a point at which two arcs in H(a) touch but do not cross
over. This is because if H(a) were to consist of two arcs crossing over at p,
one component of φ(Ha+δ

a−δ × (I \0)) would be connected up to the component
on the other side, which is a contradiction to the assumption that the handle
has a neighbourhood that could be projected one to one onto a subset of S.
Therefore, the point p does not represent an essential point of intersection
for the boundary component of Ha+δ

a−δ containing H(a). If the handle is a bow
tie handle with an odd number of half twists, N is the image of a twisted I
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bundle over Ha+δ
a−δ , and Ha+δ

a−δ is not separating in N . Similarly, if the handle
is a twisted handle, H(a) has to have a point of intersection when projected
into S. If the handle has more than one half twist, there will be more than
one point of intersection, but not all of these points of intersection will be
essential.

It can be assumed without loss of generality that 0 is not a critical value
of the Morse function. H ∩ (S × 0) therefore consists of a multicurve m0

containing c0 and a union of arcs, so the boundary curves of H0 consist of m0

and curves consisting of arcs ofH∩(S×0) connected to arcs of c1∩(S×[0,∞)).
The curves ∂H0 \m0 don’t have any more points of intersection with c0 than
does c1, but unlike c1, there could arise essential points of (self)intersection
when projected into S. If there are any arcs in the intersection of H0 with
S × a, the boundary curves of Ha

0 include curves consisting of arcs on the
boundary of H0 connected up to arcs of H0 ∩ (S × a).

The theorem will now be proven under the assumption that there are no
bow tie handles. The assumption that H has smallest possible genus will
then be used to rule out the necessity of bow tie handles for the given Morse
function.

c0 is a simple curve, so the surface S×0 could have been chosen to contain
the boundary curve c0 of H. This choice of the zero of the R coordinate
results in a boundary curve c0 consisting of degenerate critical points. First
of all it is convenient to show that there exists an embedded representative
of the homotopy class of H such that, by mapping R to −R if necessary, the
boundary curve c0 has a collar in H, c0× [0, ε), contained in S× [0,∞). Once
the existence of this collar has been established, it will be shown that there
exists an embedded surface H

′
homotopic to H with the following properties:

1. H
′

is arbitrarily close to H in the Hausdorff topology

2. the restriction of R to H
′

is a Morse function, and

3. there exists a noncritical value r of R such that S × r intersects H
′

along the union of curves and arcs H
′(r), where H

′(r) contains a curve
freely homotopic to c0.

Suppose S × 0 was chosen to contain the boundary curve c0 of H. The
existence of an embedded representative of the homotopy class of H whose
boundary curve c0 contains a collar in S× [0,∞) follows from the assumption
that there are no bow tie handles in H. Let T (ε) be a toroidal neighbourhood
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in M of the boundary curve c0 of H, where T (ε) consists of all points within
a distance 2ε of a point on the boundary corve c0 of H, and let T ( ε

2
) be the

set of all points within distance ε of a point on the boundary curve c0 of
H. By theorem 6.3 of [16], ε can be chosen to be so small that T (ε) ∩H is

connected. Let c
′
0 be the curve in T ( ε)

2
homotopic to c0 with R coordinate ε

such that π(c
′
0) = c0, and let c”0 be the intersection of H with ∂T (ε). Since, by

assumption, H does not have any bow tie handles, the intersection of H with
∂T ( ε

2
) is homotopic on ∂T ( ε

2
) to c

′
0. Also because of the assumption that H

does not have bow tie handles, c” is homotopic in the closure of T (ε) \ T ( ε
2
)

to c
′
. It follows that H ∩ T (ε) is homotopic in T (ε) to an embedded surface

c0× [0, ε]∪A, where A is an embedded annulus in T (ε)\T ( ε
2
) with boundary

curves c
′
0 and c”0. A surface chosen to coincide with H outside of T (ε) and

with c0 × [0, ε] ∪ A inside T (ε) can be smoothed off to give an embedded
representative, Hc, of the homotopy class of H whose boundary curve c0 has
the desired collar.

It follows from the previous lemma that there is a surface H
′

homotopic
to H arbitrarily close to Hc in the Hausdorff topology to which the restriction
of the R coordinate is a Morse function. Whenever H

′
is sufficiently close

to Hc in the Hausdorff topology, the boundary curve c0 has a collar in H
′

such that the intersection of S × r with this collar contains a curve freely
homotopic in H

′
to the boundary curve c0, for some small, noncritical value

r of R. Hc can be made arbitrarily close to H by choosing ε arbitrarily small,
so H

′
can also be made arbitrarily close to H in the Hausdorff topology.

It can therefore be assumed without loss of generality that the zero of
the R coordinate and the embedded representative of the homotopy class
of H are chosen such that the restriction of R to H is a Morse function,
H(0) contains a curve freely homotopic to the boundary curve c0 and no two
critical points occur at the same value of R. With this choice of the zero
of the R coordinate, the other boundary curve c1 might intersect S × 0 in a
complicated way.

If a is so small that there are no critical points of R in the interval [0, a],
then Ha

0 is a union of annuli whose core curves project onto a multicurve in
S and perhaps some contractible components. Suppose now that a is large
enough to ensure that there is only one critical value, b, in the interval [0, a].
If Ha

0 contains a simply connected component that intersects some S×(a−δ)
along an arc or a contractible curve, and if this component wasn’t in Hx

0 for
x < b, then the critical point has not changed the topology of the component
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Figure 2.17: A local minimum on the boundary at R = b for b < a.

of Ha
0 with c0 on its boundary. Similarly, if one of the boundary components

of Ha
0 has a local minimum at R = b, this can only change the representatives

of the free homotopy classes of the curves on the boundary of Hx
0 as x passes

through b, as shown in figure 2.17.
If a is large enough for there to be a saddle point p in the interior of

Ha
0 , this saddle point could cancel out a local minimum as shown in figure

2.18. A critical point of this type also only changes the representatives of the
homotopy classes of the curves on the boundary of Ha

0 and/or the number
of contractible components.

If a is now chosen such that in the interval (0, a] there is either:

1. a local maximum (either in the interior or on the boundary) or

2. a saddle point that does not cancel out a local minimum,

then the topology of Hx
0 changes as x moves through the critical value b. In

particular, Ha
0 is obtained from Hb

0 (a disjoint union of contractible compo-
nents and annuli whose core curves project onto a multicurve in S) by adding
a handle. If this handle has one endpoint on a contractible component of Hb

0,
again, the topology of the component to which the handle was added doesn’t
change when passing through the critical value. Otherwise, the endpoints of
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Figure 2.18: A saddle point cancelling out a local minimum.
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the handle are either both on the same annulus or on two different annuli.
Whenever both of the endpoints of the handle are on the boundary of the
annulus with core curve c0, H

a
0 contains a pair of pants with boundary curves

c0 and the multicurve α∪β. (There is a second alternative here, namely that
the handle has one endpoint on each boundary component of the annulus
with core curve c0. However, this doesn’t happen here, because the handle
is attached to the boundary component H(b) which only contains one curve
freely homotopic to c0.) α ∪ β is homotopic to a multicurve because it is a
subset of the intersection of the embedded surface H with S × b, where the
assumption that the handle is not a bow tie handle is being used here.

c0 ∪ α ∪ β is also a multicurve, because α ∪ β is constructed by adding
a single handle to c0, where the handle is a subset of S × a without self
intersections that meets the projection of c0 onto S× a only at its endpoints
(The assumption that the handle is not a bow tie handle is being used here
also). Therefore the pair of pants projects onto a pair of pants in S and γ1

can be taken to be α ∪ β, unless one of α or β is contractible. If one of α or
β is contractible, β for example, then H contains an annulus with boundary
curves c0 in S × 0 and α in S × a that intersects S × i for some values of i
in a disconnected set.

Similarly if one of the endpoints of the handle is on the boundary of
the annulus with core curve c0 and the other is on the boundary of another
annulus whose core curve α is a subset of the multicurve m0. β is then
the curve obtained by connecting the annuli with core curves c0 and α by a
handle, and c0 ∪α∪ β is a multicurve for the same reason as in the previous
case. Again, γ1 can be taken to be α∪ β unless one of α or β is contractible.

If the handle doesn’t have an endpoint on the annulus with core curve
c0, then the intersection of H0 with S × a will be a union of arcs plus a
new multicurve, m1, containing c0. That m1 is a multicurve follows from the
assumption that there are no bow tie handles as before. As a result of lemma
40, it is possible to make an additional assumption on the representative of
the homotopy class of H that simplifies the natation at this point. It will be
assumed that there is no component of H0 consisting of an annulus with core
curve c0 or a punctured sphere whose boundary curves are either contractible
or homotopic to c0. Therefore, whenever the component of Ha

0 with c0 on
its boundary consists of an annulus with core curve c0 or a bordered sphere
whose boundary curves are either contractible or freely homotopic to c0, if a
is increased enough, there will either be a pair of pants in H with c0 on its
boundary or there will be another critical point of R on the component of Ha

0
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Figure 2.19: An annulus in H that intersects S × a in a disconnected set.
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with c0 on its boundary. Since there are only finitely many critical points,
eventually the desired pair of pants is obtained, and γ1 can be defined.

To construct γ2, cut the pair of pants with boundary c0∪γ1 off H to obtain
an embedded surface H1 with boundary c1−γ1. Since γ1 is a multicurve, the
previous argument can be applied with γ1 in place of c0 and H1 in place of H.
If γ1 is not in the intersection of H with a level set of R, this involves using a
modified Morse function, R1, to obtain the second pair of pants. γ3, γ4... are
constructed similarly. For a surface Hγ constructed via a surface producing
sequence, it is then clear that a representative of the homotopy class of Hγ

in M can be found so that there is a choice of R coordinate that gives the
same handle decomposition as the Morse function R when restricted to the
subsurface of H bounded by γ1− c0, R1 when restricted to the subsurface of
H bounded by γ2−γ1, etc, so it is still valid to refer to “the” Morse function
when different Morse functions were used on different subsets of H.

If H is not embedded, let D be the set of all double and triple points
of H. By assumption, H is in general position, so, as discussed in chapter
one of [14], D is a union of arcs with endpoints on the boundary, closed
curves and triple points, such that D does not accumulate anywhere. It is
possible to assume without loss of generality that there are no curves that
are homotopic to c1 or c0, or arcs homotopic (relative to their endpoints) to
a subarc of the boundary of H in D, because all such intersections can be
removed by a homotopy.

Let d1 be an arc or curve in D, and let a be a curve in the cell complex
H ∪D that isn’t homotopic to a curve in H and whose intersection with H
is connected. By theorem 3.3 of [25], there is a normal subgroup of π1(S)
of finite index that contains curves homotopic to c0 and c1 but not a. The
CW complex H ∪D is compact, so π1(H ∪D) is finitely generated, and it is
possible to choose a finite generating set consisting of curves in H and curves
a1, a2, ...an freely homotopic to curves in H ∪ D whose intersection with H
is a connected arc. If H ∪ D is incompressible, for each of the ai there is
a normal subgroup of π1(S) of finite index containing c0 and c1 but not ai.
The intersection of all these subgroups is a normal subgroup N of finite index
containing c0 and c1 but none of the ai. Let S̃ be the covering space of S
with π1(S̃) = N . Then S̃ × R is a covering space of M such that the lift
H̃ of H to S̃ × R is embedded. If it is not possible to choose all of the ai
such that they are not contractible in M , construct a covering space whose
fundamental group contains c0 and c1 but none of the elements of ai that are
not contractible in M , and let D′ be the set of all double and triple points
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of the lift of H, H ′, to this covering space. In this covering space, any curve
in H ′ ∪ D′ whose intersection with H ′ is a connected arc is contractible in
the lift, M ′ of M . Since any 2-sphere in M ′ is also contractible, (Proposition
D.3.17 of [2]), it follows that the points of intersection in D′ are not essential.

It is being assumed that there are no bow tie handles in the handle
decomposition of H given by the Morse function R. The definition of bow tie
handle uses only local properties of the projection function that are preserved
under the covering transformation, so it follows that there are no bow tie
handles in the handle decomposition of H̃ in the handle decomposition given
by the R coordinate of S̃ × R. The previous argument applies just as well
to S̃ as to S, so H̃ is homotopic to a surface constructed from a surface
producing sequence in the homology multicurve graph of S̃. In other words,
H̃ is constructed by attaching surfaces with boundary that are homotopic
to subsets of S̃. S̃ can be covered by a finite number of neighbourhoods
that project one to one onto S, and so therefore can H̃. Since the boundary
curves c0 and c1 of H̃ project one to one into S, these neighbourhoods can be
used to construct a surface producing sequence γ in the homology multicurve
graph of S, where H is homotopic to Hγ.

It remains to show that if H has smallest possible genus the surface can be
constructed without bow tie handles. To do this, some properties of bow tie
handles will be shown. Since the previous argument also applies to surfaces
that are not embedded, it can be assumed (and will be assumed from now
on) without loss of generality that all bow tie handles have a single half twist.

Definition 42 (Twisted skirt)
A twisted skirt is homotopic to an annulus with a bow tie handle attached.
The bow tie handle is also required to have both endpoints on the same
boundary component of the annulus. Since it is being assumed that all twisted
handles only have a single half twist, a twisted skirt has only two boundary
components, hence the name. Alternatively, a twisted skirt is a one holed
Möbius band.

The handle decomposition of H by the Morse function R gives a pants
decomposition of H, which is not allowed to contain any twisted skirts, be-
cause H is assumed to be oriented. As a consequence, a bow tie handle can’t
have both endpoints on the same boundary component of Ha

0 . Suppose that
the boundary of Ha

0 consists of a union of (not necessarily simple) curves ca.
(Note that ca is the boundary of Ha

0 which is not the same as the intersection
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Figure 2.20: The order in which the handles are added does not depend only
on the R coordinate of the corresponding critical point.

of H with S × a ∪ S × 0 ). If Ha+δ
0 is constructed from Ha

0 by adding a bow
tie handle with a half twist, then the boundary of Ha+δ

0 , ca+δ, could only
have smaller intersection number with c1 than ca if the bow tie handle has
both endpoints on the same boundary component of Ha

0 . This is because, if
the bow tie handle has endpoints on two different boundary components of
Ha

0 , ca+δ, when projected onto S, is a one dimensional cell complex with a
subcomplex freely homotopic in M to ca. It follows that the handle decom-
position of H can’t consist of bow tie handles only, otherwise c1 would have
to have nonzero intersection number with itself.

A handle decomposition of H defines a set of handles and an order in
which they are attached to the component with boundary curve c0. This
ordering of the handles is not quite the same thing as the R coordinate of
the corresponding critical points, since H0 could have many components.

By changing the order in which handles are added, a union of (not nec-
essarily simple) curves βj on H can be constructed, where H \ βj has two
components, and βj is contructed from c0 by attaching ordinary handles only.
βj is also chosen such that the component of H \ βj with boundary curves
c1−βj has a handle decomposition consisting only of bow tie handles with a
half twist. To see that a βj with these properties exists, suppose i is as large
as possible such that that the first i handles are all ordinary handles. The R
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coordinate is chosen such that there is a multicurve freely homotopic to γi in
the intersection of H with S × 0, where γi is understood to be c0 whenever
i = 0. Let Ha

0 (γi) be the component of Ha
0 with γi on its boundary, and let

a1 be the smallest value of R such that, for arbitrarily small δ, Ha1+δ
0 (γi) is

obtained from Ha1
0 (γi) by adding an ordinary handle. It might also be the

case that there is no value of a1 for which Ha1+δ
0 (γi) is obtained from the

Ha1
0 (γi) by adding an ordinary handle, because the corresponding critical

values of R are less than zero. In this case it is necessary to work with the
component of Ha1 with γi on its boundary, Ha1(γi), where a1 is the largest
negative number such that Ha1−δ(γi) is obtained from Ha1(γi) by adding an
ordinary handle. The argument is however exactly the same in this second
case.

The multicurve γi can be homotoped inside Ha1
0 (γi) to γ

′
i, where the

subset of Ha1
0 (γi) with the multicurve γ

′
i on its boundary instead of γi has

zero area i.e. the union of annuli with boundary curves γ
′
i − γi “fill up” the

surface Ha1
0 (γi). The ordinary handle at R = a1 can be attached to the union

of annuli with boundary curves γ
′
i − γi to obtain a surface with boundary

βi+1 − γi, where it does not follow from the previous argument that βi+1 is
a multicurve, because the boundary curves and the handles added are not
all embedded in M at the same R coordinate. βi+2, βi+3... are constructed
similarly, until βj is obtained, after which there are no ordinary handles left.
Since the handle decomposition of the subset of H with boundary c1 − βj
consists of bow tie handles only, βj can’t intersect c1. c1 is a simple curve, so
βj can’t have self intersections, because the only way to reduce the number
of self intersections of the boundary of a surface by adding a bow tie handle
is to attach a handle with both endpoints on the same boundary component.
c1 − βj is therefore a multicurve. βj can’t contain more than one curve that
is not contractible because it has to be possible to obtain the connected
curve c1 by adding bow tie handles only. If a bow tie handle with endpoints
on two distinct, noncontractible simple curves is attached, the number of
curves on the boundary is reduced by one, but the new boundary curve has
a point of self intersection that can’t be removed by attaching bow tie handles
only. Therefore, βj consists of a curve freely homotopic to c1 and perhaps
some contractible curves. The order in which the handles are attached can
therefore be chosen such that the bow tie handles all have to have at least
one endpoint on a contractible curve. Since c1−βj is a multicurve, the subset
of H bounded by c1 − βj has to be homotopic to a union of subsets of S,
otherwise it would be possible to construct a surface with boundary c1 − c0
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with smaller genus than H. A subset of H homotopic to a union of subsets of
S can be embedded in M in such a way that R gives a handle decomposition
of this set without bow tie handles. The theorem then follows from the proof
of the result under the assumption that there are no bow tie handles.



Chapter 3

Freely Homotopic Curves

In the previous chapter, sequences of oriented multicurves were used to con-
struct surfaces. However, not very much was shown about the multicurves
themselves. In practice, it is often very helpful to have a bound on the num-
ber of curves in each multicurve. The number of free homotopy classes of
curves in a given multicurve is bounded from above by 3g− 3, where g is the
genus of S, and the multicurves are also constructed in such a way that they
do not contain freely homotopic curves with opposite orientations. One ad-
vantage of the algorithm outlined in chapter one is that the number of curves
in each of the multicurves is automatically kept bounded, as the next theo-
rem shows. An example will be given to show that this is not true in general,
even when a multicurve does not contain null homologous submulticurves.

Theorem 43
Let the curves co, c1 be defined as usual, and {c0, γ1, γ2, ...γj, c1} a surface
producing sequence constructed with a sequence of functions f, f1, f2...fj as
described in the previous chapter. Then none of the multicurves γk contain
curves that are freely homotopic.

Proof. To shorten the terminology, if a multicurve contains freely homotopic
curves with the same orientation, will say that the multicurve has “doubled
curves”. Recall that, by definition, no multicurve in a surface producing
sequence contains two freely homotopic curves with opposite orientation.
Suppose that i is the largest number such that, for l ≤ i, γl does not contain
doubled curves. i is at least one, because if γ1 were to contain doubled curves,
c0 − γ1 would not bound a subset of S, which would contradict the assump-

53
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tion that {c0, γ1, γ2, ...γj, c1} is surface producing. For the same reason, the
number of curves in any free homotopy class can only increase or decrease by
one when going from γn to γn+1 for any n. Suppose there is a curve c in γi
such that γi+1 contains two curves freely homotopic to c and with the same
orientation. Then γi+2 has to contain at least one copy of c, so c has to be
disjoint from γi+3. Therefore c is disjoint from γi−1, γi, γi+1, γi+2 and γi+3.

Call hn the function obtained from γn+2−γn. 0 ≤ hn ≤ 2, whenever γn+2

and γn are chosen to be representatives of their free homotopy classes that
only have essential points of intersection. A specific choice of representatives
of the free homotopy classes is necessary for the rest of this proof. Suppose
that γi−1 and c1 are in general position and only have essential points of
intersection. γi, γi+1, ...γj are representatives of their free homotopy classes
that are subcomplexes of the CW complex γi−1 ∪ c1 such that the subset of
S bounded by γk+1 − γk coincides with fkmax for i − 1 ≤ k, where γj+1 is
understood to be c1. With this choice of representatives of the free homotopy
classes, hi−1max is the same subset of S as fi−1max and the subset of S on
which hi−1 is greater than or equal to one is the same as the subset of S on
which fi−1 is equal to a least one less than its maximum. Warning: these
representatives of the free homotopy classes will not be in general position.

Also as discussed in the previous chapter, the subcomplexes γi and γi+1

chosen in this way could have points of transversal intersection with c1 that
could be removed by choosing another subcomplex in the same free homotopy
class on S. This is because there could be arcs of c1 ∩ (S \ γi−1) that are not
on the boundary of fi−1max but are freely homotopic to an arc of c1∩(S\γi−1)
that is.

Definition 44 (Point of intersection for curves not in general position)
The left and right side of an oriented curve in S was defined in chapter two.
Suppose a is an oriented curve and b is a second curve such that a and b are
not in general position. If a and b coincide along some subarc, these points
will only be counted as a point of intersection if b crosses from one side of a
to the other.

γi−1 and γi+1 intersect in horizontal arcs only since the existence of a
vertical arc would force the maximum of hi−1 to be at least 3, as can be
easily verified in the diagram below.

It follows that adjacent arcs in a homotopy class of γi+1 ∩ (S \ γi−1)
have opposite orientation. Since the maximum of hi−1 is two, any arc of
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Figure 3.1: The existence of a vertical arc forces the maximum of f to be at
least three.
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Figure 3.2: Components of S \ (γi−1 ∪ γi+1).

γi+1∩(S\γi−1) is either on the boundary of hi−1max or hi−1min. An arc of γi+1∩
(S \γi−1) on the boundary of hi−1max is to the right of γi−1 whereas an arc of
γi+1∩(S\γi−1) on the boundary of hi−1min is to the left of γi−1, so by lemma 21
of chapter two, if ak is an arc of γi+1 on ∂hi−1max, it can only be homotopic
to other arcs on ∂hi−1max. Therefore, this choice of representatives of the
homotopy classes γk can be made without any two of the multicurves γi−1, γi
or γi+1 having points of intersection that can be removed by a free homotopy.
In particular, this choice of the representatives of the free homotopy classes
γi+1 and γi−1 won’t have points of intersection, essential or otherwise, with
the curve c in γi.

The curves on ∂fi−1max or ∂hi−1max are mostly constructed by alternately
connecting arcs of c1∩(S\γi−1) to arcs of γi−1∩(S\c1), however it might also
happen that a component of ∂fi−1max is an entire curve contained in γi−1∪c1.
This curve has to be a curve in γi−1, since c1 is connected and therefore can’t
be on the boundary of fi−1max unless i − 1 = j. Since ∂fi−1max does not
intersect c1, this curve can’t either.

Since γi−1 and γi+1 can intersect in horizontal arcs only, it follows that S\
(γi−1∪γi+1) consists only of extrema or saddle points of hi−1. The boundary
of a component of S \ (γi−1 ∪ γi+1) therefore looks like one of the examples
in the diagram below, in the sense that the arcs of γi−1 ∩ (S \ γi+1) on its
boundary are all oriented in such a way that the component of S\(γi−1∪γi+1)
is either to their left or to their right, similarly for the arcs of γi+1∩(S \γi−1).

If γinti−1 is the subset of curves in γi−1 that intersects γi+1 and γinti+1 is the
subset of curves in γi+1 that intersects γi−1, then γinti+1∪γinti−1 cuts S into pieces
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Figure 3.3: The null homologous curve −∂hi−1max.

that are extrema or saddle points of hi−1. A curve such as c that is not in
γinti+1∪γinti−1 has to be contained in one of these pieces. γinti+1∪γinti−1 can’t contain
any curves freely homotopic to c, so there can be at most one component of
S \ (γinti+1 ∪ γinti−1) in which the curves freely homotopic to c can be found.

Let a1, a2, ...am be the arcs of γi+1∩(S \γi−1) on the boundary of hi−1max.
By assumption there are two curves in γi+1 freely homotopic to c. Suppose
γi−1 does not have a curve freely homotopic to c. Then a curve freely ho-
motopic to c has to be created by the surgery in which γi is obtained from
γi−1. The only points of intersection of γi+1 with γi−1 are on the boundary
of hi−1max. This is because the maximum of hi−1 would otherwise have to
be larger than two, since, as already discussed, γi+1 ∩ (S \ γi−1) consists of
horizontal arcs only, and each arc of γi+1∩(S\γi−1) to the right of γi is on the
boundary of hi−1max. A curve freely homotopic to c is therefore constructed
by alternately connecting arcs of γi−1 ∩ (S \ γi+1) to some subset of {ak} or
by alternately connecting arcs of γi−1 ∩ (S \ γi+1) to some subset of {−ak}.
In the second case, c is part of the null homologous multicurve −∂hi−1max,
in which case it will be cancelled out, i.e. it will not be seen in γi. This
has to do with the fact that the arcs of γi−1 ∩ (S \ γi+1) on the boundary of
hi−1max are oriented in the opposite way to arcs of γi+1 ∩ (S \ γi−1) on the
boundary of hi−1max. As a result, the null homologous curve −∂hi−1max can
only be constructed by alternately connecting arcs of γi−1 ∩ (S \ γi+1) on the
boundary of hi−1max to the arcs {−ak}.

c is therefore constructed by alternately connecting arcs of γi−1∩(S\γi+1)
that are not homotopic to arcs on the boundary of hi−1max to some subset
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Figure 3.4: If there is no curve in γi−1 freely homotopic to c, hi−1 has to to
have a maximum greater than two or minimum less than zero.

of {ak}, so c has to sit inside a component of S \ (γinti+1 ∪ γinti−1) that is a
saddle point. This contradicts the assumption that there is no curve in γi−1

freely homotopic to c because otherwise, two curves in γi+1 with the same
orientation freely homotopic to c inside a saddle point of S\(γinti+1∪γinti−1) would
force hi−1 to have a maximum greater than two, as shown in the diagram. It
follows that γi−1 has to contain a curve freely homotopic to c.

There remain three possibilities to consider; the curves in γi−1 ∪ γi+1

freely homotopic to c could be inside a component of S \ (γinti+1 ∪ γinti−1) that
is a maximum, minimum, or saddle. To start off with, consider the case in
which the curves freely homotopic to c are contained in a minimum.

Inside this component of S \ (γinti+1 ∪ γinti−1), take a point p1 at which hi−1

is equal to zero. Let p2 be another point at which hi−1 is defined inside the
same component of S \ (γinti+1∪γinti−1) as p1 such that an arc connecting p1 and
p2 crosses over one (and only one) of the curves in γi+1 freely homotopic to c.
It is also being assumed that all arcs are contained inside the one component
of S \ (γinti+1 ∪ γinti−1). h(p2) is necessarily equal to one. Let p3 be a point at
which hi−1 is defined inside the same component of S \ (γinti+1 ∪ γinti−1) as p1

such that an arc connecting p1 and p3 crosses over one (and only one) of the
curves in γi+1 freely homotopic to c and the curve in γi−1 freely homotopic
to c. h(p3) is equal to zero. Let p4 be a point at which hi−1 is defined inside
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Figure 3.5: p1, p2, p3 and p4.

the same component of S \ (γinti+1 ∪ γinti−1) as p1 such that an arc connecting p1

and p4 crosses over every curve in γi+1 ∪ γi−1 freely homotopic to c. h(p4) is
equal to one.

The subset of S on which hi−1 is at least equal to one therefore contains an
annulus whose boundary curves are curves in γi+1 and γi−1 freely homotopic
to c. The representatives of the free homotopy classes were chosen in such
a way that the subset of S on which hi−1 is greater than or equal to one
is the same as the subset of S on which fi−1 is equal to a least one less
than its maximum. The subset on which fi−1 is at least one less than its
maximum is the same as fimax. It follows that fimax contains a component
consisting of an annulus with core curve c, as well as a component with an
entire curve freely homotopic to c on its boundary. This is not possible,
because γi is a multicurve and only contains one curve freely homotopic to
c. It could happen that one of the curves freely homotopic to c on ∂fimax is
made up of a union of arcs of c1 ∩ (S \ γi) and γi ∩ (S \ c1), but then the
third curve on fimax freely homotopic to c could not be of this form unless γi
had self intersections. In the diagram, the subset of the CW complex freely
homotopic to c to the left can only have some arcs on the boundary of fimax;
the entire curve can’t be on the boundary of the maximum.

If the curves in γi−1 ∪ γi+1 freely homotopic to c are inside a component
of S \ (γinti+1 ∪ γinti−1) that is a maximum, it follows that fi−1max contains a
component consisting of an annulus with core curve c, as well as a component
with an entire curve freely homotopic to c on its boundary. This is impossible
for the same reason as in the previous case.

The only other alternative is that the curves in γi−1∪γi+1 freely homotopic
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Figure 3.6: fimax can’t contain an annulus with core curve c in addition to a
component with a curve freely homotopic to c on its boundary.

to c are inside a component of S \ (γinti+1 ∪ γinti−1) that is a saddle. Choosing
the points p1, p2, p3 and p4 as before, hi−1 might increase or decrease when
passing from p1 to p2, depending on the orientation of c. If hi+1 increases
when passing from p1 to p2, fi−1max contains a component consisting of an
annulus with core curve c, as well as a component with an entire curve freely
homotopic to c on its boundary. Otherwise, hi+1 decreases when passing
from p1 to p2, in which case fimax contains a component consisting of an
annulus with core curve c, as well as a component with an entire curve freely
homotopic to c on its boundary. As already discussed, neither of these two
outcomes are possible. It follows that if γi doesn’t have doubled curves,
neither can γi+1.

If m is a multicurve homologous to and disjoint from c1, lemma 15 requires
that m contains a submulticurve homologous to c1 that does not contain
freely homotopic curves. However, if m intersects c1, this is no longer true,
as the next example shows. The problem seems to be that there could be a
free homotopy class α with lots of elements in it that are all cancelled out by
Dehn twists inside annuli with core curves whose union is homologous to −α.
If a sequence of homologous multicurves is constructed in some way other
than that described in chapter one, it is not always possible to bound the
number of curves in each of the multicurves by discarding null homologous
submulticurves.

Example 45 (A multicurve m homologous to c1 containing freely homotopic
curves and no null homologous submulticurves)
In the diagram, c1 is the curve drawn in blue, and m is the red curve. m
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Figure 3.7: A multicurve m homologous to c1 containing freely homotopic
curves and no null homologous submulticurves.

is homologous to c1 because the many curves in m freely homotopic to the
curve t1(shown in green) cancel out the Dehn twists inside the annuli with
core curves t2 and t3(also shown in green).



Chapter 4

Twisting

4.1 Definition

The distance between two curves in the curve complex is bounded from above
depending on the logarithm of the intersection number, as shown in [12], for
example. The next example shows that the best possible bound on the dis-
tance in the homology multicurve graph depends linearly on the intersection
number. In chapter two, an algorithm was devised to construct a sequence
c0, γ1, γ2, ...γj, c1, where i(γi+1, c1) + 2 ≤ i(γi, c1), so it follows that the dis-
tance between c0 and c1 in the homology multicurve graph is no more than
i(c0,c1)

2
+ 1.

Example 46
Let c0 and c1 be the curves shown in figure 4.1. A simple calculation shows
that the maximum of the function obtained from c1−c0 is equal to i(c0,c1)

2
+1.

In this case, it is also clear that the maximum of the function corresponds to
the distance between c1 and c0 in the homology curve graph, because inside
any annulus, it is only possible to perform one Dehn twist at a time when
passing from γi to γi+1.

Example 47
c1 and c0 are the curves shown in figure 4.2. In this example, the distance
in the curve graph is less than the maximum of the function obtained from
c1 − c0. It is possible to construct a sequence c0, α1, α2, ...c1, where αi+1 is
obtained from αi by unwinding one twist in each of the four annuli shown,
thereby decreasing the maximum of the function by two at each step. The

62
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Figure 4.1: Example demonstrating that the best possible upper bound on
the distance between c0 and c1 in the homology curve graph is given by
i(c0,c1)

2
+ 1.

sequence c0, α1, α2, ...c1 is not surface producing, however, because the null
homologous multicurve consisting of the union of t1, t2, t3 and t4 does not
bound a subset of S.

As shown in chapter two, the maximum of the function determines the
number of multicurves in a surface producing sequence with endpoints c0 and
c1 in the homology multicurve graph. Since not every sequence is surface
producing, the distance between c0 and c1 in the homology multicurve graph
can be smaller than this, as demonstrated in the previous example. However,
the two concepts are not unrelated, as theorem 63 shows. When c0 and c1
are replaced by multicurves with freely homotopic curves, a further difference
between the distance in the homology multicurve graph and the maximum
of the function becomes apparent. Let nm1 and nm2 be the multicurves
consisting of n copies of the homologous multicurves m1 and m2 respectively.
The distance between nm1 and nm2 in the curve graph is the same as for m1

and m2, whereas the maximum of the function obtained from nm1 and nm2

is n times as large as the maximum of the function obtained from m1 and
m2. This is related to the observation that the smallest genus surface with
boundary curves nm1 − nm2 consists of n copies of a surface with boundary
curves m1 − m2. A phenomenon called “twisting” will be defined. If m1

is twisted with respect to m2, then loosely speaking, in order to get to m2

from m1, many copies of a null homologous multicurve had to be added to
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Figure 4.2: Example to show that the shortest arc in the homology curve
graph with endpoints c0 and c1 is not always surface producing.

m1. The distance between m1 and m2 in the curve complex does not depend
on how many copies of the null homologous multicurve were added, but the
distance in the homology multicurve graph can. If m1 is twisted with respect
to m2 inside an annulus A with core curve α, when constructing a sequence
m1, γ1, ...γj,m2 in the curve graph it is possible to choose γ1 such that γ1 does
not enter A, however this is not possible in the homology multicurve graph
whenever m1 has nonzero homology intersection number with α. In the next
sections it will be shown that in the absence of twisting, a stronger bound on
the distance in the homology multicurve graph in terms of the intersection
number can be proven.

Remark 48
Unlike the curve graph, which is known to be hyperbolic ([18] and [4]), Ex-
ample 47 can also be used to provide an example to show that the homology
multicurve graph is not hyperbolic. Let v1 be the curve c0 from example 47,
v2 be c0 Dehn twisted around t1 and t2 n times, and let v3 be the curve c0
Dehn twisted around t3 and t4 n times. v1, v2 and v3 are the verticies of a
triangle in the homology multicurve graph. For any fixed δ, n can be chosen
large enough so that this triangle is not δ thin.

Suppose m1 and m2 are homologous multicurves without freely homotopic
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curves. In order to define twisting, it is necessary to make rigorous what is
meant by the observation that a subarc of m1 is obtained from a subarc of m2

by Dehn twisting. In their paper [19] Masur and Minsky define a restriction
C(Y ) of the complex of curves, C(S), to a subset Y of S. A special case of
this is when Y is an annulus A in S with incompressible boundary and core
curve α. Let Ã be the annular cover of S to which A lifts homeomorphically.
There is a compactification of Ã to a closed annulus Â obtained in the same
way as the usual compactification Ŝ of the universal cover S̃ of S. The
vertices C0(A) of C(A) are defined to be paths connecting the two boundary
components of Â, modulo homotopies that fix the endpoints. Put an edge
between any two elements of C0(A) that have representatives with disjoint
interiors. Distances dA in C(A) are defined in the usual way by letting each
edge have length one.

Let c̃ be the lift of a multicurve c on S to the covering space Ã, and let
ĉ be its lift to the compactification Â of Ã. The reason for introducing Â is
that the lifts of curves have endpoints in Â, the existence of which follows
from the fact that m1 and m2 are compact subsets of a hyperbolic surface.

Definition 49 (Nontrivial arcs)
The components of m̂1 and m̂2 that pass from one boundary component of
Â to the other, and the corresponding components of m̃1 and m̃2, will be
called nontrivial arcs.

The Masur and Minsky definition of distance in a subsurface projection
depends on a choice of free homotopy class of m1 and m2. In practice m1

and m2 are geodesics with respect to some hyperbolic metric on S. In this
work, only the free homotopy class is important, so a small modification of
the previous definition will be used that does not depend on the choice of
representative of a free homotopy class.

Definition 50 (Distance dA in the subsurface projection to an annulus A)
Suppose that m̃1 and m̃2 both have nontrivial arcs in Ã. Â has two oriented
boundary components, call them A1 and A2. Choose a point p1 on A1 and
a point p2 on A2. Let m̂

′
1 be the image of m̂1 under a homotopy that slides

the endpoints of m̂1 as far as possible along ∂A \ (p1 ∪ p2) in the direction
given by the orientation of ∂Â, i.e. each component of m̂

′
1 has endpoints on

p1 and/or p2. m̂
′
2 is defined analogously.

If there are nontrivial arcs of m̂
′
1 and m̂

′
2, the number of points of in-
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Figure 4.3: Construction of m̂
′
1 and m̂

′
2.

tersection between the nontrivial arcs (p1 and p2 are not counted as points
of intersection), call it iA(m1,m2), depends on the choice of p1 and p2. As
can be seen in the diagram, different choices of p1 and p2 could lead to a
difference of at most two in the calculation of distance.

Choose p1 and p2 in such a way that iA(m1,m2) is minimised. With
this choice of p1 and p2, let dA(m1,m2) be defined as dÂ(m̂

′
1, m̂

′
2), where

dÂ(m̂
′
1, m̂

′
2) is the minimum distance in the subsurface projection, as defined

by Masur and Minsky, between a component of m̂
′
1\(p1∪p2) and a component

of m̂
′
2 \ (p1 ∪ p2).

Definition 51 (κ-twisted)
m1 is κ-twisted with respect to m2 if there exists an annulus A in S with core
curve α such that dA(m1,m2) ≥ κ. Alternatively, m1 is said to be κ-twisted
with respect to m2 in A. Note that m1 can’t be twisted with respect to
m2 inside A if one or both of m1 or m2 does not intersect α, because then
dA(m1,m2) is not defined.

It would be nice to be able to generalise the homology intersection num-
ber on S to an intersection number on m̃1 and m̃2. However, if the non-
trivial components of m̃1 and m̃2 are considered separately from the other
components, this intersection number is not homology invariant. If DS is a
fundamental domain of S in Ã, then (assuming each point of intersection on
the boundary of DS is counted once only) the number of points of intersec-



CHAPTER 4. TWISTING 67

Figure 4.4: Different choices of p1 and p2
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tion counted with orientation of m̃1 ∩DS with m̃2 ∩DS will be zero, because
m1 is homologous to m2. The homology intersection number on S can be
calculated by counting points of intersection with orientation, and given a
metric on S or a choice of p1 and p2, this can be generalised to the nontrivial
components of m̃1 and m̃2 in Ã.

Definition 52 (ih,A(m1,m2))
ih,A(m1,m2) is the intersection number of the nontrivial components of m̃

′
1

and m̃
′
2 counted with orientation. Only the absolute value of ih,A(m1,m2)

will be needed here.

Given m1 and m2, in chapter two it was shown that it is possible to
construct a multicurve homologus to m1 that intersects m2 less than m1 by
adding handles to m1 corresponding to horizontal arcs of m2∩(S\m1). Since
any multicurve homologous tom2 will always have zero homology intersection
number with m2, this can be repeated until a multicurve homologous to and
disjoint from m2 is obtained.

Definition 53 (Twisting that cancels out in an annulus A)
Suppose that m1 is twisted with respect to m2 inside an annulus A. If the
nontrivial arcs of m̃2 are not all oriented in the same way, there exist hori-
zontal arcs of m̃1 ∩ (Ã \ m̃2) with both endpoints on nontrivial arcs of m̃2.
Similarly, if the nontrivial arcs of m̃1 are not all oriented in the same way,
there exist horizontal arcs of m̃2∩ (Ã\m̃1) with both endpoints on nontrivial
arcs of m̃1. By adding handles to m1 and m2 corresponding to these horizon-
tal arcs it is possible to construct multicurves m1− and m2− homologous to
m1 and m2 whose nontrivial arcs have fewer points of intersection. This can
be repeated until eventually the multicurves m1−− and m2−− are obtained,
where m1−− and m2−− have the property that the nontrivial arcs of m̃1−−
and m̃2−− are all oriented in the same way. If dA(m1−−,m2−−) ≤ 3, the
twisting inside A is of the type that cancels out in an annulus or it will be
said to cancel out in A.

Definition 54 (κ-twisting that does not cancel out in A)
m1 will be said to be κ-twisted with respect to m2 of the type that does not
cancel out in an annulus if m1−− is κ-twisted with respect to m2−− in A.
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Figure 4.5: Construction of m1−− and m2−−.

Remark 55 (Convention regarding the orientation of α)
If α is the core curve of an annulus A in which m1 is twisted with respect to
m2, whenever the twisting doesn’t cancel out in A, α has nonzero homology
intersection number with m1 and m2. This defines a “preferred orientation”
on a nontrivial arc. Given a nontrivial arc a of m̃1 oriented in the same way as
the majority of the nontrivial arcs of m̃1, the orientation of α determines the
direction in which a has to be Dehn twisted in order to reduce the intersection
number with m2. For example, if m1 is twisted with respect to m2 inside an
annulus with (oriented) core curve α, then m2 is twisted with respect to m1

in an annulus with core curve −α.

To construct an example of twisting that cancels out inside an annulus
with core curve α, let c be a curve that intersects α once, and α

′
a curve

homologous to α that intersects α. Let m1 be the curve c Dehn twisted
around α κ times, and let m2 be the curve c Dehn twisted around α

′
κ times.

Since α is homologous to α
′
, α

′
has zero homology intersection number with

α, and in particular, ih,A(m1,m2) = 0, (where A is, as usual, the annulus
with core curve α). If α

′
had been chosen so that it does not intersect α,

then m1 would still be twisted with respect to m2, but this twisting would
not be of the type that cancels out inside an annulus.

In this example, m1 is twisted with respect to m2 in A, where A is the
annulus with core curve α, shown in green in the diagram. For simplicty,
m1 is only 2-twisted with respect to m2 in A, but the number of twists can
be clearly chosen to be arbitrarily large. m1 and m2 both have homology
intersection number ±1 with α. Inside Ã there are many horizontal arcs of
m̃1∩(S \m̃2), one of which is marked in gray in figure 4.6. Adding handles to
m2 corresponding to these arcs reduces the intersection number of m2 with
α, and in the process the twists inside the annuli with core curves t1 and t2
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Figure 4.6: Example of twisting that cancels out in an annulus.

(the curves drawn in orange) are undone. Once the intersection number with
α has been reduced in this way as much as possible, the resulting multicurve
contains a curve freely homotopic to m1 plus a union of null homologous
curves.

When constructing a surface with boundary m1 − m2, it will be shown
that the type of twisting that does not cancel out in an annulus is the main
problem, so from now on, “twisting” will be taken to mean “twisting of the
type that does not cancel out inside an annulus” unless otherwise stated.
Twisting defines a marking on S, as the next lemma shows.

Lemma 56
If m1 is twisted with respect to m2 inside an annulus A with core curve α,
whenever m1 is also twisted with respect to m2 inside an annulus B with core
curve β and i(β, α) 6= 0, it is not possible that m1 is κ-twisted with respect
to m2 of the type that does not cancel out in an annulus in both A and B.

Proof. m1 − m2 is null homologous, but in general it is not a multicurve
because m1 and m2 intersect. It will be assumed that m1 and m2 are in
general position, and are representatives of the free homotopy classes [m1]
and [m2] that only have essential points of intersection, so a null homologous
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Figure 4.7: Resolving points of intersection.

Figure 4.8: A curve in m1−2 freely homotopic to χ

multicurve n can be formed by cutting out the points of intersection and
reconnecting the resulting arcs in such a way that the orientations match
up. (This resolving of points of intersection is an example of attaching “bow
tie” handles as defined in chapter two) Remove all contractible curves from
n and call the resulting multicurve m1−2. The various intersection numbers
of m1, m2 or subarcs of m1 or m2 with m1−2 are defined by treating m1,
m2, m1−2 and all subarcs of these multicurves as subcomplexes of the one
dimensional cell complex m1 −m2 and counting the points of intersection of
the subcomplexes according to definition 44.

m1−2 depends on the representatives of the free homotopy classes [m1]
and [m2]. The only assumptions being made is that these representatives
are in general position and have the smallest possible intersection number.
This choice of representatives therefore might not coincide with the choice of
representatives used to calculate distances in subsurface projections.

What curves could be contained in m1−2 for any allowed choice of rep-
resentatives of the free homotopy classes [m1] and [m2]? If C is an annulus
in S with core curve χ that has nonzero homology intersection number with
m1, all components of m1 ∩C and m2 ∩C are oriented in the same way (i.e.
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Figure 4.9: β is κ-twisted with respect to m1 in A.

i(m1, χ) = ih(m1, χ) and i(m2, χ) = ih(m2, χ)), there will be curves in m1−2

homologous to χ whenever dC(m1,m2) is large enough. In this case there will
be a curve in m1−2 freely homotopic to χ as long as there is a nontrivial arc
in m̃2 that intersects a nontrivial arc of m̃1 twice. If the intersection number
of one or both of m1 and m2 with χ is much larger than its homology inter-
section number with χ, there might not be a curve freely homotopic to χ in
m1−2, even if the distance between m1 and m2 in the subsurface projection
to C is large.

Suppose m1 is κ-twisted with respect to m2 inside A and B and that this
twisting does not cancel out in either A or B. If α ∩ (S \m1), α ∩ (S \m2),
β ∩ (S \m1) and β ∩ (S \m2) only consist of vertical arcs, it follows from the
previous argument that this is a contradiction, because then the multicurve
m1−2 would have to contain curves freely homotopic to both α and β, which
it can’t, since they intersect. Otherwise, to start off with, choose a metric
that makes m2 look “twisted” in A and B, while m1 looks “straight”. It is
possible to assume w.l.o.g. that β is κ-twisted with respect to m1 in A (the
other alternative is that α could be κ-twisted in B with respect to m1).

If the non-trivial components of m2 ∩ B aren’t all oriented in the same
way construct m2−− as in the definition of “twisting that cancels out inside
an annulus”. m2−− will be at least κ-twisted with respect to m1 in B by
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Figure 4.10: The arc drawn in purple is a horizontal arc of m2 ∩ (S \ m1)
with both endpoints on nontrivial arcs of m̃1. This arc is homotopic to the
horizontal arcs of m2∩ (S \m1) with both endpoints on nontrivial arcs of m1

in A drawn in green.

assumption. Also, given two adjacent, nontrivial arcs of m̃2 with opposite
orientation (the tilde here refers to the lift to the annular covering space B̃ of
S corresponding to B), a horizontal arc of m̃1 ∩ (B̃ \ m̃2) with endpoints on
these two arcs is homotopic to a horizontal arc of m1∩(S\m2) with endpoints
of two nontrivial arcs of m2 ∩A. Therefore m2−− will also be κ-twisted with
respect to m1 in A. It does not follow that ih(m2−−, α) = i(m2−−, α), because
in the lift to Ã there could be horizontal arcs of m1∩ (S \m2) with endpoints
on nontrivial arcs of m2 in the lift to Ã that are not homotopic to horizontal
arcs of m̃1 ∩ (B̃ \ m̃2).

Since twisting is a property that is symmetric in the two multicurves, the
same argument with m1 in place of m2 and m2−− in place of m1 shows that it
is possible to construct m1−− such that all the nontrivial components of m̃1−−
are oriented in the same way and such that m1−− is κ-twisted with respect
to m2−− in A and B. It follows that ih(m1−−, α) = i(m1−−, α), because if an
arc of m1−− intersects α, it also intersects β.

Now choose a metric that makes m1−− look “twisted” in A and B, while
m2−− looks “straight”. Since all nontrivial components of m̃2−− are oriented
in the same way, it also follows that ih(m2−−, α) = i(m2−−, α). This is a
contradiction, because by construction, it is also true that ih(m1−−, β) =
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i(m1−−, β) and ih(m2−−, β) = i(m2−−, β), i.e. the null homologous multic-
urve constructed fromm1−−−m2−− would have to contain curves homologous
to both α and β.
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4.2 Interval Exchange Maps

It has already been suggested that if the distance between m1 and m2 in
the homology curve graph is large in comparison with i(m1,m2), then m1

is twisted with respect to m2. Another way of looking at this is that if the
maximum of f is large in comparison with i(m1,m2), the reduction in the
intersection number can’t be large at each step. Given a surface producing
sequence m1, γ1, γ2...γj,m2 constructed as in chapter two (only with the mul-
ticurves m1 and m2 in place of c0 and c1), the maximum possible reduction in
intersection number with m2 when passing from γi to γi+1 is bounded above
by twice the number of horizontal arcs of m2 ∩ (S \ γi). Interval exchange
maps will be used to investigate the connection between twisting and the
proportion of horizontal arcs.

If each homotopy class of arcs of m1 ∩ (S \m2) is represented by a letter,
choosing a point in m1 ∩m2 as a starting point, any component of m1 can
be represented by a word. If m1 is twisted with respect to m2, a word
representing a component of m1 will have “syllables” that are repeated more
than κ times. For example, m1 might be represented by a word that looks like
abcbcbcbcbcbcbcbcbcbefggg. However, repeated syllables is not a sufficient
condition to ensure twisting, because two arcs that are homotopic might not
be homotopic inside the annulus in question. The next definition will be used
to make the concept “locally homotopic” precise.

Definition 57 (a-ladder)
From lemma 22 of chapter two it is clear that an arc in the oriented homotopy
class a can’t be homotopic to an arc in the oriented homotopy class −a. An
“a-ladder” is a union of arcs of m1 ∩ (S \m2) (or arcs of m2 ∩ (S \m1)) in
the oriented homotopy class a that can be homotoped into each other with
without crossing over an element of the homotopy class −a, and the subarcs
of m2 (or m1) along which the endpoints of an arc have to be moved through
by any such homotopy. A “long” ladder is a ladder with many steps.

An a-ladder looks like a ladder unless it is degenerate, see figure 4.11.
If m1 and m2 are assumed to be homologous, since the elements in a are

all oriented in the same way, f is monotone on the ladder and increases by
one for each step. If an a-ladder is degenerate, m1 is automatically twisted
with respect to m2 if it is long enough. Whenever a is a homotopy class of
arcs of m1, the sides of an a-ladder consist of vertical arcs of m2 ∩ (S \m1).
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Figure 4.11: Examples of ladders.
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If this a-ladder has n “steps”, there has to be at least 2n− 2 vertical arcs of
m2 ∩ (S \m1) on its sides. If there don’t exist long ladders, then either there
aren’t many representatives of any of the homotopy classes of arcs i.e. the
intersection number is small, or there are many horizontal arcs ensuring that
many arcs are adjacent to a homotopic arc with the opposite orientation.
Since the converse is not true, the assumption that “all a-ladders are short”
is a stronger condition than the assumption that the proportion of horizontal
arcs is large.

Definition 58 (Interval Exchange Map, from [3])
Consider a compact interval I in R that is decomposed into a finite union
I = I1 ∪ I2 ∪ ... ∪ In of intervals Ii with disjoint interiors. Choose another
decomposition of I = J1 ∪J2 ∪ ...∪Jn into intervals Jj with disjoint interiors
such that, for every i, there is an isometry φi : Ii → Ji. The collection of the
φi defines a ‘map’ φ : I → I. This map is in general 1-to-2 at the endpoints
of the Ii, but is well-defined everywhere else. Such a φ is an interval exchange
map.

m1 and m2 give rise to an interval exchange map, where I is a connected
subarc of m2 consisting of a union of vertical arcs of m2 ∩ (S \ m1). In
other words, m1 can only cross over I from left to right or right to left,
but not both. I could be one side of an a-ladder, for example. For a fixed
surface S, there is at most a bounded number of homotopy classes of arcs
of m1 ∩ (S \ I) relative to I. Along I, between any two oriented arcs in
a particular homotopy class there can only be arcs from the same oriented
homotopy class. An interval Ii is determined by the starting points of a
homotopy class ai of m1 ∩ (S \ I). The homotopy class of m1 can be chosen
such that the length of an interval is proportional to the number of points of
intersection of m1 with the interval. Since the the function f obtained from
m1−m2 is single valued, the distance along I between the starting point and
the endpoint of an arc ai is proportional to its homology intersction number
with m2. φ maps the interval Ii to the interval Ji. The requirement that
m1 can’t cross over I from both left to right and right to left is used here to
ensure that all arcs of m1 ∩ (S \ I) leave I from the one side and return to I
on the other. If this were not so, the intervals Ii might not all have disjoint
interiors. Similarly for the intervals Ji.

Before interval exchange maps can be used to prove a connection between
long ladders and twisting, it is necessary to bound the number of homotopy
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Figure 4.12: A homotopy class of arcs of m1 determines how the subinterval
Ii is mapped to Ji.

classes of arcs. This is done by showing that each homotopy class of arcs
has a representative on the boundary of a component of S \ (m1 ∪m2) that
makes a nonzero contribution to χ(S).

Definition 59 (Nontrivial Component of S \ (m1 ∪m2))
A nontrivial component of S \ (m1−m2) is any component of S \ (m1−m2)
that is not a contractible rectangle, for example, a hexagon, annulus or pair
of pants.

Lemma 60
The number of homotopy classes of arcs of m1 ∩ (S \m2) is bounded above
by −3χ(S), the number of homotopy classes of vertical arcs of m1 ∩ (S \m2)
is bounded above by −2χ(S).

Proof. To calculate the contribution of each component of S \ (m1 − m2)
to χ(S), m1 ∪ m2 is treated as a subcomplex of a larger CW complex T
consisting of a union of curves without triple points such that S \ T consists
only of contractible pieces. The contribution of a component of S \T is then
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Figure 4.13: Ends of a homotopy class of arcs.

taken to be equal to

1− E

2
+
V

4
(4.1)

where E is the number of edges and V the number of verticies. Each
annulus has to contribute at least −1

2
to χ(S) because m1 ∪ m2 does not

contain freely homotopic curves, so no annulus can be a union of rectangles.
It is also possible to check that any other nontrivial component of S \ (m1 ∪
m2) contributes at least −1

2
to χ(S), and that a trivial component does not

contribute to χ(S).
A homotopy class of arcs of m1∩(S \m2) can be thought of as a rectangle

on S; the two “short” sides are homotopic arcs of m1 ∩ (S \ m2), and the
two “long” sides are arcs of m2 along which the endpoints of an arc in the
homotopy class has to be moved by homotopies that take it to all other
representatives of the homotopy class. The two short sides of the rectangle
will be called the “ends” of the homotopy class.

The ends of a homotopy class are arcs on the boundary of a nontrivial
component of S\(m1∪m2), for example a hexagon. A contractible component
of S \ (m1 ∪m2) with n sides contributes −n−4

4
to χ(S); a non-contractible

component of S \ (m1 ∪m2) with n arcs of m1 ∩ (S \m2) and m2 ∩ (S \m1)
on its boundary contributes even more than −n−4

4
to χ(S). The maximum

number of homotopy classes of arcs of m1 ∩ (S \ m2) is achieved when the
connected components of S \ (m1 ∪ m2) are all rectangles and hexagons,
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Figure 4.14: The two arcs shown in black are oriented in such a way that the
blue arc between them is vertical. However the third black arc is oriented,
one of the blue arcs has to be horizontal.

since there has to be some component that is not a rectangle, and apart
from rectangles, hexagons have the largest number of edges for the smallest
contribution to χ(S). In this case there are −2χ(S) hexagons amongst the
components of S \ (m1 ∪m2). Each hexagon has three arcs of m1 ∩ (S \m2)
on its boundary, and since each rectangle that represents a homotopy class
of arcs of m1 ∩ (S \m2) has two short sides, the given bound on the number
of homotopy classes of arcs follows.

The boundary of a hexagon can’t be made up of vertical arcs only; this has
to do with the fact that the number of arcs of m1 ∩ (S \m2) on its boundary
is odd, as can easily be verified in figure 4.14. Therefore, if the connected
components of S \ (m1 ∪m2) are all either rectangles or hexagons, for every
homotopy class of horizontal arcs there can be at most two homotopy classes
of vertical arcs. If there is a connected component of S \(m1∪m2) that is not
a rectangle or hexagon, then there might be more than two homotopy classes
of vertical arcs for every homotopy class of horizontal arcs, but the number
of homotopy classes of vertical arcs is still no more than −2χ(S) because the
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Figure 4.15: A nontrivial component P of S \ (m1 ∪m2) sends two arcs of
m1 ∩ (S \ I) off in different directions.

total number of homotopy classes of arcs is correspondingly smaller.

Lemma 61
Let v be equal to the number of homotopy classes of vertical arcs of m2 ∩
(S \m1). Given an interval exchange map arising from a subinterval I of m2,
the number of homotopy classes of m1 ∩ (S \ I), i.e. the number of intervals
being exchanged by the interval exchange map, is less than or equal to v+ 1.

Proof. Let a1 and a2 be two arcs of m1∩ (S \I) with adjacent starting points
on I. If a1 and a2 are not homotopic, there has to be a non-rectangular
component P of S\(m1∪m2) that sends the two arcs off in different directions.

The arcs a1 and a2 are oriented as subsets of m1, and it follows from the
definition of I that the sub-arcs of a1 and a2 that connect the starting points
of a1 and a2 on I to the boundary of P are oriented in the same way. Using
the terminology from lemma 60, there is a homotopy class of vertical arcs of
m2∩(S\m1) that has an end on the boundary of P . Similarly, if a1 and a2 are
arcs with adjacent endpoints on I that are not homotopic, a homotopy class
of vertical arcs has an end on the boundary of the non-rectanglar component
of S \ (m2 ∪m1) at which the two arcs come together. Therefore, two ends
of homotopy classes of vertical arcs of m2 ∩ (S \ m1) are needed to split a
homotopy class of arcs of m1 ∩ (S \ I) into two homotopy classes of arcs.
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Since each homotopy class of vertical arcs of m2∩ (S \m1) has two ends, the
number of homotopy classes of m1 ∩ (S \ I) is less than or equal to v + 1.

Definition 62 (c ◦ d)
For oriented arcs c and d, with endpoint d = starting point of c, c ◦ d is
defined to be the arc formed by connecting the two arcs c and d at the
endpoint of d.

Theorem 63
Let c0, δ1, δ2, ...δk, c1 be an arc in the homology multicurve graph such that
none of the δi contain freely homotopic curves. The shortest surface produc-
ing sequence, c0, γ1, γ2, ...γj, c1 has length no more than −3χ(S) times the
length of c0, δ1, δ2, ...δk, c1.

Proof. Let fi be the function obtained from c1 − γi. Recall that γi+1 is ob-
tained from γi by attaching handles to γi corresponding to fimax. In chapter
two it was also shown that there are horizontal arcs a1, a2... with endpoints on
γi such that “attaching a handle corresponding to fimax” results in the same
multicurve as attaching handles to γi corresponding to the arcs a1, a2... and
discarding a null homologous multicurve freely homotopic to −∂fimax. In the
case of δi, δi+1−δi bounds a union of, possibly overlapping, subsets of S. δi+1

can therefore also be constructed from δi by attaching handles corresponding
to horizontal arcs and discarding null homologous submulticurves.

Let I be an oriented arc in S that intersects δi for some i. There are
a certain number of homotopy classes of arcs of δi ∩ (S \ I) relative to I.
The orientations on I and δi makes it possible to define an ordering of the
starting points of the arcs of δi ∩ (S \ I) along I. Let h be a homotopy of δi
that changes this ordering without moving any arcs over ∂I. Since δi does
not contain freely homotopic curves, h has to introduce self intersections of
δi. Similarly, if m also intersects I and is a representative of a multicurve
chosen such that it only has essential points of intersection with δi, then any
homotopy of δi and/or m that changes the ordering of the starting points of
δi∪m along I without moving any arcs over ∂I has to either create points of
intersection or move one curve past another curve in the same free homotopy
class.

Suppose δ
′
i+1 is obtained from δi by attaching handles corresponding to

the horizontal arcs a1, a2...ak...an and at least one arc of the form v1 ◦ ak ◦ v2
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Figure 4.16: If δi could contain freely homotopic curves, the points of in-
tersection of δi with the horizontal arc shown in pink can be removed by a
homotopy that changes the ordering of the points of intersection of δi with
the interval I, without creating points of self-intersection of δi.
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for vertical arcs v1 and v2, where δi+1 is obtained from δ
′
i+1 by discarding

null homologous submulticurves. As usual, an arc with endpoints on δi is
assumed not to be homotopic with fixed endpoints to a subarc of δi. Since the
sequence c0, δ1, ...δk, c1 is not required to be surface producing, it is possible to
assume without loss of generality that none of the δi contain null homologous
submulticurves, since otherwise it is possible to discard these submulticurves
without increasing the number of multicurves in the sequence. In δ

′
i+1 there

are one or two curves that were created by the surgery in which a handle
corresponding to v1 ◦ ak ◦ v2 was attached. δi+1 has to contain at least one of
these curves, otherwise there was no need to attach the handle corresponding
to v1◦ak◦v2 at all, because the multicurve formed by attaching all the handles
other than the handle corresponding to v1◦ak◦v2 would have to contain a null
homologous submulticurve that could simply have been discarded without
attaching a handle to it.

Call a curve in δi+1 “new” if it was created by one of the surgeries in
which δi+1 is obtained from δi. Either

1. all new curves in δi+1 are freely homotopic to other curves in δi+1 i.e.
δi+1 contains doubled curves,

2. all new curves are homotopic to curves in δi, i.e. δi+1 is a submulticurve
of δi, or

3. neither 1 nor 2.

Let I be a compact arc in S chosen to pass through an arc in the homo-
topy class v1 or v2. In this third case, if the order of the arcs along I is
altered to remove the points of intersection with δi of the attached handle
corresponding to v1 ◦ak ◦v2, it has to induce points of intersection elsewhere.
In other words, δi+1 has essential points of intersection with δi. Since δi+1

is not a submulticurve of δi, and is not allowed to intersect δi or contain
doubled curves, in order to obtain δi+1 from δi it is only possible to attach
handles corresponding to pairwise disjoint horizontal arcs with endpoints on
δi contained in S \ δi.

Attaching more than one handle to δi corresponding to arcs in the same
homotopy class does not change the resulting multicurve up to homotopy.
From lemma60, there are no more than −3χ(S) pairwise disjoint homotopy
classes of horizontal arcs in S \ δi with endpoints on δi. Adding a handle to
δi corresponding to each of these handles gives a multicurve with at most the
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number of curves in δi plus −3χ(S). Let δ̃i+1 be the multicurve obtained from
δi by adding handles, such that δi+1 is obtained from δ̃i+1 by discarding null
homologous submulticurves. On average it therefore possible to discard no
more than −3χ(S) curves when passing from δ̃i+1 to δi+1, i.e. on average, the
maximum of the function obtained from c1 − δi can’t be more than −3χ(S)
larger than the function obtained from c1 − δi+1.



CHAPTER 4. TWISTING 86

4.3 Existence of Twisting

In this section, interval exchange maps are used to show the existence of
twisting whenever the proportion of horizontal arcs is sufficiently small. The
small amount of ambiguity in the definition of twisting will be used to con-
struct examples to show that a stronger result is not possible.

Theorem 64
If the proportion of horizontal arcs is less than 1√

−3χ(S)(1−2χ(S))κi(m1,m2)
, m2

has to be κ-twisted with respect to m1. Also, the κ-twisting guaranteed by
this theorem is of the type that does not cancel out in an annulus.

Proof. It follows from lemma 60 that there is at least one homotopy class of
arcs of m1 ∩ (S \m2) with at least

−i(m1,m2)

3χ(S)
(4.2)

elements in it, and therefore there has to be a ladder L with length greater

than
√

κi(m1,m2)(1−2χ(S))
−3χ(S)

i.e.

−i(m1,m2)

3χ(S)
(4.3)

divided by the number of horizontal arcs, which is by assumption less than√
i(m1,m2)

−3χ(S)(1− 2χ(S))κ
(4.4)

Let I be one of the sides of the ladder L. By lemma 61, it follows that the
number of intervals in the interval exchange map is less than or equal to
1 − 2χ(S). Whenever the number of horizontal arcs is less than 1

κ(1−2χ(S))

multiplied by the number of steps in L, m1 has to pass through each of
the homotopy classes of m1 ∩ (S \ I) on average more than κ times before
passing through a horizontal arc. Therefore there is a subarc b of m1 without
horizontal arcs that passes through a homotopy class h1 of m1 ∩ (S \ I)
more than κ times. Because b doesn’t pass through any horizontal arcs, f is
monotone on b, so once it has passed through an element of the homotopy
class h1 it can’t pass through other homotopy classes and then come back to
h1 because the other homotopy classes are either above or below h1 on the



CHAPTER 4. TWISTING 87

ladder. It follows that b has to pass through h1 more than κ times in a row,
i.e. m1 is κ-twisted with respect to m2.

Suppose that L has more than
√

κi(m1,m2)(1−2χ(S))
−3χ(S)

steps. It remains to

show that the twisting that has just been shown to exist can’t cancel out in
an annulus. Let α be freely homotopic to the curve obtained by connecting
up the endpoints of h1 by a subarc of I. None of the arcs α∩ (S \m1) can be
horizontal, or, since I is a subarc of m2, the ladder can not be very long. To
be more specific, if one or more of the arcs of α ∩ (S \m1) were horizontal,
then L would have to have fewer than

√
i(m1,m2) steps, because in this case

the intersection number of each arc of m1 ∩ (S \ I) is larger than the number
of steps in the ladder.

None of the arcs of α ∩ (S \m2) can be horizontal either, because then
the homotopy class h1 couldn’t consist of vertical arcs only. Since all the
nontrivial arcs of m1 ∩A are oriented in the same way and all the nontrivial
arcs of m2 ∩A are oriented in the same way, the twisting can’t cancel out in
A.

From now on, “twisting” will be used to mean “twisting of the type that
does not cancel out in an annulus”.

In general, it is not possible to obtain a bound better than the square
root in the previous theorem, as the next example shows.

Example 65
Let a1 and a2 be two homologous curves on S that intersect, and b1 and b2 be
two homologous curves on S such that b1 intersects a1 once and b2 intersects
a2 once. m1 is the curve constructed as follows: Dehn twist b1 inside the
annulus with core curve a1 n times, and call the resulting curve c1. d1 is the
curve b1 Dehn twisted around a1 n + 1 times. c1 intersects d1 once, so let
e1 be the curve d1 Dehn twisted around c1 n times, and let f1 be the curve
d1 Dehn twisted around c1 n+ 1 times. f1 intersects e1 once, so this can be
repeated arbitrarily often. Let m2 be the multicurve constructed in the same
way as m1 only with a2 instead of a1 and b2 instead of b1. m1 is homologous
to m2 since a1 is homologous to a2 and b1 is homologous to b2. If n is chosen
to be small, one for example, then m1 is not twisted with respect to m2.

In Example 65, the proportion of horizontal arcs and the length of ladders
depends somehow on the square root of the intersection number. m1 is
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homologous to nbb1 + naa1, where nb and na are large, relatively prime, and
nb < na. The number of horizontal arcs of m1 ∩ (S \m2) increases linearly
with na and nb, whereas the total number of arcs depends on the square
of na and nb. To illustrate this point, consider the special case in which b1
is freely homotopic to b2. If there are h horizontal arcs and v vertical arcs
amongst a2 ∩ (S \ a1), the number of horizontal arcs amongst m2 ∩ (S \m1)
is approximately hna, whereas the total number of arcs is approximately
(h+ v)n2

a, as demonstrated in figure 4.17.
Another, more quantitative, way of describing what is happening in Ex-

ample 2 is that there exists a ladder over an interval I with an associated
interval exchange map φ and a sequence I2 ⊃ I3 ⊃ I4... of subintervals of
I such that when φ is restricted to any of the intervals Ii the same (up to
rescaling of the interval) interval exchange map is obtained. For example,
suppose I is a subinterval of m1 that makes up one side of a ladder, for which
there are two homotopy classes of arcs of m2 ∩ (S \ I), a1 and b1. Take Na1

to be the number of arcs in the homotopy class a1 and Nb1 to be the number

of arcs in the homotopy class b1, and let na1 =
Na1

Na1+Nb1
and nb1 = 1 − na1 .

Suppose for example that after m2 has passed through an arc in the homo-
topy class b1, it passes through at least two arcs in the homotopy class a1

before returning to the homotopy class b1.
If an arc in the homotopy class a1 has its endpoint on I to the right of its

starting point as in figure 4.18, then the first Na1 − 2Nb1 arcs of m2∩ (S \ I),
counting from left to right, pass through three arcs in the homotopy class
a1 before passing through an arc in the homotopy class b1, all others pass
through two arcs in the homotopy class a1. Let I1 be the subarc of I whose
intersection number with m2 is Nb1 and such that m2 ∩ (S \ I1) is an arc
that either passes through two arcs in the homotopy class a1 before passing
through an arc in the homotopy class b1 (call this homotopy class c1) or it
passes through three arcs in the homotopy class a1 before passing through
an arc in the homotopy class b1 (call this homotopy class d1). The condition
that the interval exchange map associated with I1, c1 and d1 is the same as
the interval exchange map associated with I, a1 and b1 is therefore

Na1 − 2Nb1

Nb1

=
Na1

Na1 +Nb1

(4.5)

and since na1 + nb1 = 1, it follows that na1 = −1 +
√

3. I2 and the
homotopy classes e1 and f1 of arcs of m2 ∩ (S \ I2) are constructed from
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Figure 4.17: In this diagram, it can be seen that as the number of curves
in a given free homotopy class is increased, the number of horizontal arcs
increases linearly while the number of vertical arcs increases quadratically
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Figure 4.18: Interval exchange map with two intervals.

I1 in the same way as I1 from I, and the associated interval exchange map
has to be the same as the interval exchange map associated with I1, c1 and
d2 for the same reason. Similarly for I3, I4 etc. The curves a1, b1... in
Example 65 are related to the arcs a1, b1... by using subarcs of I to connect
up the endpoints of the arcs a1, b1... It is easy to check that the curve b1
constructed by connecting up the endpoints on I of the arc b1 intersects the
curve a1 constructed by connecting up the endpoints of the arc a1 once, as
claimed. Similarly for c1 and d1, e1 and f1, etc.

As discussed at the beginning of this chapter, there is a small amount
of ambiguity in defining distance in the subsurface projection to an annulus.
This ambiguity was used in the previous example to construct a curve m2

that is “almost twisted” with respect to m1 and has a small proportion of
horizontal arcs.



Chapter 5

Counting Horizontal Arcs

Suppose that c0, γ1, ...γj, c1 is a geodesic in the homology curve graph con-
structed as in chapter two. Call hi the function obtained from γi− c0 and fi
the function obtained from c1 − γi. It follows from theorems 43 and 64 that
in the absence of twisting there exists a lower bound on the proportion of
horizontal arcs of c1 ∩ (S \ γi). However, i(c1, γi) = i(c1, γi+1) + 2m where m
is equal to the number of horizontal arcs of c1 ∩ (S \ γi) homotopic to an arc
on the boundary of the maximum of fi. In general, not all horizontal arcs
are homotopic to a horizontal arc on the boundary of the maximum or min-
imum of the function. The next theorem shows that it is possible to divide
c0, γ1, ...γj, c1 up into a uniformly bounded number of subarcs to which the
theorems 43 and 64 can be applied to each subarc to directly obtain a bound
on the reduction in the intersection number at each step.

Theorem 66
c0, γ1, ...γj, c1 can be broken up into n subarcs such that for each subarc,
γl, γl+1..., γm−1, γm, a horizontal arc of γk ∩ (S \ γl) to the right of γl is either
homotopic to an arc on the boundary of the maximum of the function flk
obtained from γk − γl for all l < k ≤ m, or its two endpoints are points of
intersection that can be removed by a homotopy of γl. Also, n is bounded
from above by −11χ(S)

2
− 1.

Proof. Once the representatives of the free homotopy classes of c0 and c1 in
S have been fixed, recall that it was shown in chapter two that the algorithm
for constructing the sequence c0, γ1, γ2, ...γj, c1 uniquely determines a choice
of representative of the free homotopy class of the multicurve γi for each i.

91
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Figure 5.1: The rectangle representing a homotopy class of arcs.

This choice is made such that for each i, fimax is the subset of S bounded by
γi+1−γi. It was shown that this choice of representatives of the free homotopy
classes are embedded, oriented subcomplexes of the one dimensional CW
complex c0 ∪ c1. The disadvantage of this choice is that as shown in diagram
2.10, the multicurves γi might have nonessential points of intersection with
c1 and that as subcomplexes, they aren’t all pairwise in general position.

It is automatically true that every horizontal arc of γ2 ∩ (S \ c0) is ho-
motopic to an arc on the boundary of either h2max or h2min. This is because
0 ≤ h2 ≤ 2, so a horizontal arc is either part of the boundary of a compo-
nent of S \ (c0 ∪ γ2) on which h2 equals one and part of the boundary of a
component of S \ (c0 ∪ γ2) on which h2 equals zero (hmin) or it is part of the
boundary of a component of S \ (c0 ∪ γ2) on which h2 equals two (hmax) and
part of the boundary of a component of S \ (c0 ∪ γ2) on which h2 equals one.

This proof involves defining “patches” consisting of unions of components
of S \ (c0 ∪ c1). If every horizontal arc of γi ∩ (S \ c0) to the right of c0 is
homotopic to an arc on the boundary of himax but not every horizontal arc
of γi+1 ∩ (S \ c0) to the right of c0 is homotopic to an arc on the boundary
of hi+1max, then it will be shown that the patch pi has to be altered in some
nontrivial way to obtain the patch pi+1, and that this can’t happen arbitrarily
often.

In section 4.2, a nontrivial component of S\(c1−c0) was defined to be any
component of S \ (c1− c0) that is not a contractible rectangle, for example, a
hexagon, annulus or pair of pants. A homotopy class of arcs of c1∩(S\c0) was
treated as a rectangle with one pair of sides (the “short” sides) consisting of
arcs of c1∩ (S \c0) on the boundary of a nontrivial component of S \ (c0∪c1),
and the other pair of sides, (the “long” sides) subarcs of c0 along which the
endpoints of one short side of the rectangle have to be moved by a homotopy
that takes it to the other side of the rectangle.
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Let R1
1, R1

2...R1
a be the rectangles representing the homotopy classes of

horizontal arcs r1, r2...ra of c1 ∩ (S \ c0) with at least one representative on
∂fmax. The first patch, p1, is defined to be fmax ∪ R1

1 ∪ R1
2 ∪ ...R1

a. c0 is
altered inside p1 to obtain the multicurve γ1. By construction, γ1 is the same
subcomplex of c0 ∪ c1 as c0 outside of p1, in other words γ1 ∩ (S \ p1) ⊆
c0 ∩ (S \ p1) ⊆ γ1 ∩ (S \ p1). γ1 is taken to be the representative of its
homotopy class chosen such that fmax is the subset of S bounded by the
multicurve γ1 − c0. The points of intersection of γ1 with c1 in or on the
boundary of p1 can all be removed by a homotopy. With this choice of the
representative of the free homotopy class of γi, let fi be the function obtained
from c1 − γi. γ2 is constructed from γ1 in the same way as γ1 from c0, and
is also chosen to be the representative of its free homotopy class such that
f1max is the subset of S bounded by γ2 − γ1. Similarly for γ3, γ4 etc.

p2 := f1max∪R2
1 ∪R2

2 ∪ ...∪ p1, where each of the R2
i are rectangles repre-

senting homotopy classes of horizontal arcs of c1 ∩ (S \ γ1) on the boundary
of f1max. p2 is a union of components of S \ (c0 ∪ c1) chosen such that all the
points of intersection of γ2 with c1 inside or on the boundary of p2 can be
removed by a homotopy.

p3 := f2max∪R3
1 ∪R3

2 ∪ ...∪ p2, where each of the R3
i are rectangles repre-

senting homotopy classes of horizontal arcs of c1 ∩ (S \ γ2) on the boundary
of f2max. Similarly for p4, p5, etc. Each multicurve γi is a subcomplex of
c0 ∪ c1, and so each patch is a union of components of S \ (c0 ∪ c1). Since
the boundaries of the patches are fixed within their free homotopy classes, it
makes sense to claim for example that a given patch contains another, even
when the boundaries are freely homotopic.

An example is helpful at this point to clarify the purpose of the next part
of the argument.

Example 67
Suppose c0 and c1 intersect on a subset of S as shown in the diagram.

Recall that, due to the choice of representatives of the free homotopy
classes γ1, hmax is the subset of S bounded by γ1 − c0, and so it is the same
subset of S as fmax. himax is also the subset of S bounded by γ1−c0. Similarly,
the subset of S bounded by γ2 − c0 is the subset of S on which hi is no less
than its maximum value minus one, and coincides with the subset of S on
which f is no less than its maximum value minus one, etc. The sequence
c0, γ1, γ2...γj, c1 depends on the curves c0 and c1, however, it follows from the
previous observation that if γi had been used instead of c1 to construct the
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Figure 5.2: Various patches.



CHAPTER 5. COUNTING HORIZONTAL ARCS 95

sequence, the same multicurves γ1, γ2...γi−1 would have been obtained. Let
flm be the function obtained from γm − γl. flmmax is the same subset of S
as flmax, so if the multicurves γl and γm are used in place of c0 and c1, the
same multicurves γl+1, γl+2...γm−1 are obtained.

himax also has the property that, if a component of S \ (c0 ∪ c1) has a
boundary arc in common with himax, this component will be contained in
hi+1max. Also, if hi+1max contains a component of S \ (c0 ∪ c1) that is not in
or adjacent to himax, then this component has to be a local maximum of f .
Considering all arcs shown in the diagram, every horizontal arc of γ4∩(S\c0)
to the right of c0 is homotopic to an arc on the boundary of h4max (or fmax).
The same is true for γ3. This is necessarily the case because p4 \ fmax does
not contain any nontrivial components of S \ (c0− c1), all local extrema of f
inside p4 other than fmax are rectangles with boundary arcs of c1 ∩ (S \ c0)
that are homotopic to arcs on the boundary of fmax, and the boundary of p4

is freely homotopic (both in S and in p4) to the boundary of fmax.

It will be said that “the patch pi has to be altered in a nontrivial way to
obtain the patch pi+1” if at least one of the following four possibilities occurs:

1) fi+1 has a maximum on a subset of S disjoint from pi.

One advantage of using these patches instead of the sets fimax for all
possible values of i is that fimax could have arbitrarily many components,
but a patch can’t. If fimax has many components, then all but a uniformly
bounded number of them will be contractible rectangles. It is only necessary
to add a finite number of handles to γi to obtain γi+1. The number of
components of pi is equal to the number of handles that have to be added
to γi to obtain a multicurve freely homotopic to γi+1, because it is only
necessary to add at most one handle for each homotopy class of arcs with a
representative on ∂fimax.

2) pi+1 contains a nontrivial component of S \ (c0 ∪ c1) that pi doesn’t,
as shown in figure 5.3, for example.

3) pi+1 “loops back on itself”. pi+1 will be said to “loop back on itself”
whenever pi+1 is obtained from pi by attaching a handle to a component of
pi, as long as this handle does not come about from a nontrivial component
of S \ (c0 ∪ c1) contained in pi+1 but not in pi. In other words, when passing
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Figure 5.3: The arc marked in green is a horizontal arc of γ4 ∩ (S \ c0) to the
right of c0 that is not homotopic to an arc on the boundary of h4max.
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from pi to pi+1, the boundary of a component of pi develops a new point of
contact with itself.

If pi+1 loops back on itself there is a component of ∂pi+1 that is not
homotopic in pi+1 to a component of ∂pi. Suppose pi+1 loops back on itself
and that b is a boundary component that is not freely homotopic in pi+1 to
any boundary component of pi. If b is contractible in S, it might happen that
patches can loop back on themselves for arbitrarily many values of i, so it is
necessary to investigate this possibility. Suppose b is contractible in S but
not in pi+1, and let d be the disk in S \ pi+1 with boundary −b. Let γ

′
i+1 be

a multicurve freely homotopic to γi+1 that intersects c1 as little as possible
and does not contain any contractible curves. Then γ

′
i+1 can be chosen such

that it does not enter the set pi+1. Since it was chosen not to contain any
contractible curves, it does not enter pi+1 ∪ d either. The same is true for
γ

′
i+2, γ

′
i+3...c1. If c0 or γk for k < i intersects γi+1 inside or on the boundary

of d, then these points of intersection can be removed by a homotopy.
If any of the multicurves γ

′
i+2, γ

′
i+3... had been used in place of γi+2, γi+3...

to construct pi+1, pi+1 would contain the disk d. The claims made in the state-
ment of the theorem don’t break down on the geodesic segment c0, γ1...γi+1

for this reason. If this is all that happens, any horizontal arc of γi+1∩ (S \c0)
to the right of c0 that is not homotopic to an arc of the boundary of hmax
can therefore be removed by a homotopy.

If b is not contractible in S, there is a pants decomposition of S containing
the boundary curves of pi+1. Whenever a patch loops back on itself and the
new boundary curves are not homotopic in S to the boundary curves of the
previous patch, the number of pants in the pants decomposition of the patch
increases by one, so it is only possible for this to happen for at most −3χ(S)

2

different values of i.
4)Two components of pi come together when passing from pi to pi+1.

If none of these four possibilities occur for l ≤ m then by construction, the
subarc has the properties claimed in the theorem. To calculate the bound,
n, on the number of subarcs, it remains to count the number of times each
of the four different possibilities could happen.

If a new component of fi+1max appears it is either a nontrivial component
of S \ (c0 ∪ c1) or it is a rectangle with a pair of sides consisting of horizontal
arcs of c1 ∩ (S \ c0) to the right of c0 that are not homotopic to arcs in an
other component of pi, i.e. there is at least one new nontrivial component of
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S \ (c0 ∪ c1) on the boundary of the patch. There can be at most −2χ(S)
nontrivial components of S \ (c0∪ c1). If neither 3) nor 4) happens, 1) and 2)
together can occur at most −2χ(S)− 1 times. 4) can only happen if a patch
has more than one component, so the worst case scenario is that p1 has one
component, 2) happens as often as possible (namely −2χ(S)− 1 times) and
the last patch has only one component. As already discussed, 3) effectively

only happens at most −3χ(S)
2

times. The number n of subarcs is at most one
more than the number of times one of the four possibilities could happen, so
adding everything up gives the bound −11χ(S)

2
− 1 for n.

An example 47 was given to show that the shortest possible surface pro-
ducing sequence with endpoints c0 and c1 is not always surface producing.
The arguments given in the previous proof and in Theorem 63 make it seem
plausible that the arc c0, γ1, γ2, ...γj, c1 might be piecewise geodesic in the ho-
mology curve graph, with each of the n subarcs γl, γl+1, ...γm being a geodesic
arc. The reason that this is not entirely clear is that γi might not contain
a curve that passes through an arc on the boundary of fimax and on the
boundary of fimin. In this case, it is possible to construct a shorter sequence
by attaching handles to γi corresponding to fimax and fimin. This shorter
sequence will not be surface producing, as discussed in chapter two.



Chapter 6

Calculating Bounds on Genus

In this chapter, the results of the previous sections will be combined to prove
an upper bound on the genus of the surfaces constructed in chapter two.
Recall that all twisting will be assumed to be of the type that does not
cancel out in an annulus. From example 46, it is clear that if c0 is twisted
with respect to c1, the existing bound of i(c0,c1)

2
on the number of multicurves

in a surface producing sequence connecting c0 and c1 can’t be improved upon.
In chapter two it was shown that the smallest genus surface with boundary
curves c1 − c0 is constructed via a surface producing surface. Without any
restrictions on c0 and c1, the best possible bound on the genus of the surface
with boundary c1− c0 is therefore i(c0,c1)g

4
+ g

2
, where g is the genus of S. The

main result of this section is the following:

Theorem 68
Let c0, c1 and M be as defined. If c0 is not κ-twisted with respect to c1, there
is a surface in M with boundary c1 − c0 with genus less than or equal to

gc

2k

(√
i(c0, c1)

c
− 1

)
+
g(c+ 1)

2
(6.1)

where c = −11χ(S)
2
− 1 and k = 1√

−3χ(S)(1−2χ(S))(κ+3)

In order to prove theorem 68, it is necessary to show that the twisting
restriction on c0 and c1 excludes the possibilty that γi could be twisted with
respect to c0 or c1. This is the purpose of the next two lemmas.

99
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Lemma 69
Let m1, m2 and m3 be homologous multicurves. If m1 is not κ-twisted with
respect to m2 and m3 is λ-twisted with respect to m2 in A, then m3 is at
least (λ− κ)-twisted with respect to m1 in A.

Proof. If m2 is λ-twisted with respect to m3 inside an annulus A with oriented
core curve α, since it is being assumed that the twisting is of the type that
does not cancel out in A, it follows from the definition that m2 has to have
nonzero homology intersection number with α. The homology intersection
number of m1 with α is therefore also nonzero. The worst case scenario is
when m2 is (κ−1)-twisted with respect to m1 in the annulus with core curve
α, i.e. taking the non trivial arcs of m̃2 as a reference, m1 is twisted with
respect to m2 in the same direction as m3 is twisted with respect to m2.
Recall that the points p1 and p2 used in the definition of twisting are chosen
in such a way as to give the smallest possible distance in the subsurface
projection. The only difficulty in this lemma is that the choice of the points
p1 and p2 used to define distance could be different when defining the distance
between m1 and m2 and m2 and m3. Suppose p1 and p2 are the points chosen
to define the distance between m1 and m2 in the subsurface projection to A.
Homotope the endpoints of the nontrivial components of m̃1, m̃2 and m̃3

onto p1 and p2 as described in the definition of distance in the subsurface
projection, and call these arcs with fixed endpoints m̃p

1, m̃
p
2 and m̃p

3. Then
dA(m1,m2) is equal to the smallest possible number of Dehn twists needed
to be performed on a nontrivial arc of m̃p

1 to obtain a nontrivial arc of m̃p
2.

It was also seen that a different convention for the choice of points p1 and p2

could affect the distance calculation by at most two. However, in this worst
case scenario, the points p1 and p2 are already chosen such that m̃p

1 is as close
to m̃p

2, and therefore m̃p
3, as possible. Where p1 and p2 lie on the boundary of

Â in relation to the endpoints of m̂3 could only affect the distance between
m̃p

1 and m̃p
3 by one. Therefore at least λ − κ Dehn twists are needed to get

from a component of m̃p
3 to m̃p

1, from which the lemma follows.

Lemma 70
If c0 is not κ-twisted with respect to c1, the γi constructed as in chapter two
can’t be κ+ 3-twisted with respect to c0 or c1.

Proof. The difficulty here is that even when c0 is not twisted with respect
to c1, there can exist subcomplexes of c0 ∪ c1 that are. It can happen that
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Figure 6.1: Distances in subsurface projections to annuli do not always de-
crease monotonically with intersection number.

attaching a handle to γk gives a multicurve whose intersection number with c1
is less and whose distance from c1 in the subsurface projection to an annulus
with core curve α is larger than that of γk, as shown in the diagram.

In this proof, the representatives of the free homotopy classes will be
chosen as in the previous chapter. Let fk be the function obtained from
c1 − γk.

Suppose γi is (κ+3)-twisted with respect to c0 in an annulus A with core
curve α. Suppose also that i(c0, α) = i(c1, α) = |ih(c0, α)|, in other words,
in the lift to the covering space Ã, all the nontrivial arcs of c̃0 and c̃1 are
oriented in the same way. In this case, the nontrivial arcs of each of the γ̃k
are also all oriented in the same way. This is because otherwise fk would
have to have some local extremum along α that f does not have. This is
not possible, because fk is equal to f outside of fkmax and is constant inside
fkmax.
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Figure 6.2: The arc a1.

For this proof it is important that for any k, γk+1 restricted to the closure
of fkmax consists of a union of subarcs of c1, and coincides with c0 elsewhere.
This follows from the choice of the representatives of the free homotopy
classes.

As discussed elsewhere, for g1 < i, if γi is used in place of c1 to construct
γg1 from γg1−1, the same multicurve would have been obtained. Let f ik be
the function obtained from γi − γk. For some g1 < i, the distance between
γg1 and γi in the subsurface projection to A has to become one less than
the distance between c0 and γi in the subsurface projection to A. For this
to happen, fg1−1max (or, equivalently f ig1−1max) has to “enter” the annulus

A. To be more precise, the lift to Ã of fg1−1max has to have an arc a1 of
γ̃g1−1 ∩ (S \ c̃1) as part of its boundary, where a1 is an arc contained in a
nontrivial component of γ̃g1−1.

Recall that γg1−1 is a subcomplex of c0 ∪ c1, and since all arcs of
γg1−1 ∩ (S \ c1) on the boundary of fg1−1max are subarcs of c0, a1 is also
a subarc of c̃0. If the distance between γg1 and γi in the subsurface pro-
jection to A is to be decreased further, it is necessary to Dehn twist each
of the nontrivial components of γ̃g1 once before coming back to “the same”
nontrivial component and twisting it a second time. Let g1 < g2 < i be
as small as possible such that γg2 is one unit closer than γg1 to γi in the
subsurface projection to A. Then the lift of fg2−1max has to have an arc a2

of γ̃g2−1 on its boundary, where a2 is also a subarc of the same nontrivial
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Figure 6.3: The arc a2.

component of γ̃g1−1 as a1. (This claim makes sense, because the arcs of γ̃g1−1

on the boundary of f̃g2−1max coincide with the arcs of γ̃g2−1 on the boundary
of f̃g2−1max, which also coincide with arcs of c̃0 on the boundary of f̃g2−1max.)

The closure of the lift to Ã of fg2max therefore contains a1 and a2. Let
p1 be one endpoint of a1 and p2 be an endpoint of a2 connected to p1 by a
component of γ̃i. p1 and p2 lie on the same component of c̃0, since both a1 and
a2 are both subarcs of the same nontrivial component of c̃0. The assumption
that all the nontrivial arcs of c̃0 and c̃1 are oriented in the same way is used
here to ensure that f is monotone along any subarc of γ̃k connecting p1 and
p2. Since the closure of fg2max contains p1 and p2, it will also have to contain
any arcs of c̃0, γ̃n and c̃1 connecting p1 and p2. By construction, fg2−1max

has to contain an arc of γg2 that is obtained from the intersection of an arc
of c0 with fg2−1max by Dehn twisting twice around α. This argument can
be continued until a gκ ≤ i is obtained. All components of the intersection
of c̃0 with the lift of fgκmax are κ-twisted with respect to all components of
the intersection of γ̃gκ+3 with the lift of fgκ+3max. Since the intersection of
γgκ with the interior of fgκmax coincides with the intersection of c1 with the
interior of fgκmax, this contradicts the assumption that c1 is not κ-twisted
with respect to c0.

If the nontrivial arcs of c̃0 and c̃1 are not all oriented in the same way, the
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Figure 6.4: Local extrema of f inside A.

existence of a subarc γn, γn+1...γi, ...γm−1, γm of the sequence c0, γ1, ...γj, c1 is
shown, where γn and γm are chosen such that all nontrivial arcs of γ̃n and
γ̃m are oriented in the same way and dA(c0, γn) < 2 and dA(c1, γm) < 2.
That this is possible follows from the observation that if the distance in the
subsurface projection to A between c0 and some γn−1 is no more than one,
and the distance between c0 and γn in the subsurface projection to A is two,
then the nontrivial arcs of γ̃n−1 all have to be oriented in the same way. This
remains true for γn+1, γn+2...γm, whenever the distance between γm−1 and c1
in the subsurface projection to A is at least two. A proof of this makes use
of the fact that if the nontrivial arcs of γ̃n−1 are not all oriented in the same
way, there are local extrema of f “inside A”, as shown in figure 6.4.

To put this more precisely, whenever the nontrivial arcs are not all ori-
ented in the same way, the lift, f̃ , of f to Ã is not monotone along the
nontrivial arcs of c̃0 and c̃1. It therefore has to have local extrema whose
boundary contains horizontal arcs of c̃1 ∩ (Ã \ c̃0) with both endpoints on
nontrivial arcs of c̃0. Adding a handle corresponding to one of these local
extrema to γk for some k transforms two nontrivial arcs of γ̃k into two trivial
arcs of γ̃k+1, thereby reducing the intersection number with α. Recall the
definition of the patch pi from the previous chapter. pn−1 has to contain all
the local maxima in Ã. This is because any arc in the CW complex c̃0 ∪ c̃1 is
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homotopic to an arc in f̃n−1max, by the choice of n. Therefore the intersec-
tion number of γn with α has been reduced as much as possible, i.e. every
nontrivial arc is oriented in the same way. By lemma 31, the same argument
applies to γm and c1.

To see where the “+3” in the statement of the lemma comes from, recall
that the distance in the subsurface projection was defined to be the minimum
distance between two nontrivial arcs. It might be the case that the nontrivial
arcs of c̃0 that are “least twisted” with respect to the nontrivial arcs of c̃1 are
all oriented in the opposite direction to the majority of the nontrivial arcs,
and therefore do not appear in γn. Similarly for γm. If c1 is not κ-twisted
with respect to c0, it might be the case that γm is κ+ 1-twisted with respect
to γn, but not κ + 2-twisted. From lemma 69, it follows that if γi is κ + 3-
twisted with repect to c0, it has to be at least κ+ 2-twisted with respect to
γn. The lemma then follows in this case by replacing c0 and c1 by γn and γm
in the original argument.

If γi is κ + 3-twisted with respect to c1 instead of c0, by lemma 31 the
argument is the same, only with c1 and c0 interchanged.

Proof of theorem 68. Suppose c0, γ1, ...γj, c1 is a surface producing sequence
constructed as in chapter two. Since c0 is not κ-twisted with respect to c1, by
lemma 70, γi can’t be κ+ 3-twisted with respect to c1 for any i. By theorem
43, γi can’t have freely homotopic curves with the same orientation for any
i, so theorem 64 gives a bound of

1√
−3χ(S)(1− 2χ(S))(κ+ 3)i(m1,m2)

(6.2)

on the proportion of horizontal arcs of c1 ∩ (S \ γi). If for each i every
horizontal arc of c1∩(S \γi) is homotopic to an arc on the boundary of fimax,
then equation 6.2 provides a lower bound on the proportional decrease in the
intersection number with c1 at each step. Let t0 = i(c0, c1), and let tn be the
recurrence relation

tn+1 := tn −
2

k

√
tn , where k =

1√
−3χ(S)(1− 2χ(S))(κ+ 3)

. (6.3)

From the previous arguments it is clear that tn is an upper bound for i(γn, c1).
j−1 is bounded from above by the smallest value of n such that tn ≤ 2. This
recurrence relation is not easy to solve exactly, however, since the decrease in
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intersection number at each step is an even number and is at least tn+1− tn,
the bound on j − 1 is simpler than the solution to this recurrence relation.
Assuming that the decrease in intersection number is as small as possible at
each step, this decrease has to remain constant until√

i(γm, c1)

k2

decreases by one. Therefore, the square root of the intersection number
decreases by one after at most 1

k
steps, from which it follows that

j ≤ 1

k

(√
i(c0, c1)− 2

)
+ 1 (6.4)

If there are horizontal arcs of c1∩(S\γi) that are not homotopic to an arc
on the boundary of fimax, by theorem 66, it is possible to break the sequence
c0, γ1, ...γj, c1 up into at most −11χ(S)

2
−1 subsequences of the form γl, γl, ...γm

such that for any l ≤ i ≤ m, a horizontal arc of γm ∩ (S \ γi) is either
homotopic to an arc on the boundary of fimax or the points of intersection
on its boundary can be removed by a homotopy. From the proof of theorem
66, it is clear that if the sequence is broken up into the subsequences c0, ...γs1 ,
γs1 , ...γs2 , γs2 , ...γs3 , etc. then the sum of the intersection numbers i(c0, γs1),
i(γs1 , γs2), i(γs2 , γs3), etc. is no more than i(c0, c1), so the worst case scenario

is when the sequence has to be broken into −11χ(S)
2
− 1 subarcs, where

i(γsi , γsi+1
) = i(c0, γs1) = i(γsn , c1) =

i(c0, c1)
−11χ(S)

2
− 1

In this case, the bound on j is obtained by replacing i(c0, c1) by

i(c0, c1)
−11χ(S)

2
− 1

in equation 6.4, and multiplying everything by −11χ(S)
2
− 1. The theorem

follows from the bound on j by adding one to obtain the number of subsets
of S that are attached in the construction of the surface, and multiplying the
result by g

2
to obtain a bound on the genus of the surface.
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[13] Harvey, W. (1981), ‘Boundary structure of the modular group’ Riemann
Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Con-
ference (I. Kra and B. Maskit, eds), Ann. of Math. Stud. 97, Princeton

[14] Hempel, J. (1976) 3-Manifolds Princeton University Press.

[15] Hempel, J. (2001), ‘3-manifolds as viewed from the curve complex’
Topology 40(3), pp. 631-657.

[16] Hirsch, M. (1997) Differential Topology Springer.

[17] Leasure, J. (2002), ‘Geodesics in the complex of curves of a surface’ PhD
Thesis. Available at http://hdl.handle.net/2152/1700

[18] Masur, H., Minsky, Y.(1999), ‘Geometry of the complex of curves I:
Hyperbolicity’ Invent. Math.138, 103-149.

[19] Masur, H., Minsky, Y. (2000), ‘Geometry of the complex of curves II:
Hierarchical Structure’ Geometric and Functional Analysis10(4)

[20] Matsuzaki, K. and Taniguchi, M. (1998)Hyperbolic Manifolds and
Kleinian GroupsClarendon Press, Oxford.

[21] Milnor, J. (1965), Lectures on the h-cobordism Theorem, Princeton Uni-
versity Press.

[22] Minsky, Y. (2006), ‘Curve complexes, surfaces and 3-manifolds’ Proceed-
ings of the International Congress of Mathematicians, Madrid, Spain.

[23] Penner, R. (1988) ‘A Construction of Pseudo-Anosov Homeomor-
phisms’, Transactions of the American Mathematical Society, Volume 310
Number 1

[24] Rafi, K. (2005) ‘A characterization of short curves of a Teichmller
geodesic’, Geometry and Topology, Volume 9, 179-202

[25] Scott, P. (1978), ‘Subgroups of surface groups are almost geometric’J.
London Math. Soc.17, 555-565.



BIBLIOGRAPHY 109

[26] Shackelton, J. ‘Tightness and computing distances in the curve complex’
arXiv:math/0412078v3 14 Apr 2005

[27] Thurston, W. (1986), ‘A norm for the homology of 3-Manifolds’, Mem.
Amer. Math.Soc.339.




