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1. Introduction

This thesis is a feasibility study on applying galaxy-galaxy lensing to galaxies inside
clusters. This method uses gravitational lensing to estimate the average mass profile of
a sample of galaxies. Galaxy-galaxy lensing requires large cluster samples, which will be
available in the near future.

The main goal of the thesis is to analyze what can be learned about this specific class
of galaxies using future surveys. For our purpose, we use state-of-the-art cosmological
and gravitational lensing simulations. This allows us to make predictions and arrive
to conclusions in a perfectly controlled environment. We will use one of the largest
cosmological simulations by the time this thesis is written, the Millennium Simulation,
and ray-tracing simulations of the gravitational lensing effect within it.

We shall define a precise method to apply galaxy-galaxy lensing to galaxies inside
clusters. Our intention is also to predict the expected signal-to-noise ratios, study how
to optimize the information content and avoid any foreseeable systematic effect or bias.
We also explore different possible analyses that could be compared to our theoretical
predictions and models.

Galaxy clusters are the most massive bound structures known, with estimated masses
of more than 10 solar masses and hundreds of individual galaxies. They are so large
that they are often assumed to be fair tracers of the composition of the whole Universe.

Their dynamics and composition offer a great amount of cosmological information.
Also, the way in which large galaxy concentrations form and evolve is of great interest for
current cosmological models. The method that we analyze in this thesis can shed some
light on all these topics, and combined with galaxy evolution models, it can help as well
to understand how the mass of galaxies affects their observables like luminosity, color etc.

The thesis is organized as follows. The first three chapters are a broad overview of the
basic concepts necessary to develop our work. The rest contain the original work that we
have produced.

e We start in Chapter 2 with an introduction to cosmology. We list the essential
points of the current cosmological concordance model which are indispensable for
any work in cosmology.

e Chapter 3 is a brief overview about structure growth in the Universe. We illustrate
the theory, and we describe the cosmological simulation on which this thesis is based.

e In Chapter 4 we describe gravitational lensing. Gravitational lensing is the tool that
we use to get the mass profiles of galaxies inside clusters. We also describe in here
our gravitational lensing simulations.

e The original work and center of this thesis is presented in Chapter 5. Here we make
a thorough description of the method we are going to test.
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e We use simulations to make predictions. For a deeper understanding of our results,
we study in detail the output of the simulations in Chapter 6. We also define the
limits of our measurements.

e In Chapter 7 we use the concepts and conclusions developed before to compute the
predictions we aim for. Here we analyze what is to be expected in different lensing
surveys concerning weak lensing on galaxies in clusters. We also suggest different
experiments to characterize the mass profiles of satellite galaxies.

Finally we conclude with the summary and conclusions.

1.1 Mathematical notation

To aid the reader and avoid ambiguity on the mathematical expressions, we present the
common notation we maintain throughout the thesis.

e Important constants and units (Particle Data Group et al. 2008).

* Solar Mass: 1 Mg = (1.98842 + 0.00001) x 1030 kg.
* Megaparsec: 1 Mpc = 3.0856776 x 10?2 m.

* The Hubble constant H essential in the definition of cosmological quantities, is
often written like Hy = 100h kms™' Mpc~'. With the constant h we express
the lack of a precise knowledge of its value.

* The speed of light 299792458 ms™! (exact) is always represented with the
letter c.

* The gravitational constant (6.6742867 & 0.000010) x 10~'* m?kg™'s72 is rep-
resented with the letter G.

e Vectorial quantities are noted in bold letters x, both in two or three dimensions,
otherwise the quantity is a scalar.

e Partial derivatives with respect to time, noted with ¢, will be abbreviated using a
dot and double derivatives with a double dot, for instance:

o) 5 U@
SO = fw), S = ). (11)

All other derivatives, including reparametrization of temporal derivatives, will be
explicitly written.

e We use Einstein summation convention:

F(f (@) = f(k). (1.3)



2. Basic concepts of cosmology

The problems treated in cosmology require to redefine the way we measure physical
quantities such as time and distance. The dynamical evolution of the Universe is also
parameterized in a specific way. This chapter is devoted to offer a general perspective on
cosmology. It also summarizes a broad variety of concepts, offering an overview of the
theoretical background. A deeper discussion about what is presented here can be found
in Schneider (2006a), Peacock (1999), Weinberg (1972) and Misner et al. (1973).

Cosmology is the branch of physics that describes the whole Universe as a single entity.
In order to deal with such a titanic task, we proceed in a distinct manner. First we assume
that the physical laws are the same throughout the Universe. Second, in order to work
on cosmological scales, we must use simplified phenomenological models for many small
scale physics. And third, a principle, the cosmological principle is assumed: the Universe
is homogeneous and isotropic; i.e. the Universe looks the same in any direction and from
every point. Although this principle is an idealization, it suits our purposes well. The
assumption of isotropy agrees, at least up to certain extent, with large scale observations
(2dFGRS, Colless et al. 2001).

In cosmology, most of the times we can only observe and analyze. There is no ex-
periment reproducing a studied phenomenon that we can set up. Our investigations are
limited then to quantify the likelihood of the cosmological observables under different
competing models. This fact imprints every idea in cosmology.

2.1 Gravitation

Over large distances, the only known interactions that have a measurable effect are elec-
tromagnetism and gravity, the others are short-ranged. However, on cosmological scales,
the Universe is neutral. Except at early stages of the evolution of Universe, gravita-
tion is the most relevant interaction at large scales and defines many characteristics of
the Universe. The current accepted theory of gravitation is Einstein’s theory of General
Relativity (GR), which describes the gravitational interaction in terms of the space-time
geometry.

We assume that the space-time of the Universe is well represented by a manifold. This
manifold carries a metric which describes how distances and angles are related. The metric
is represented by the tensor g,3, where o and 3 refer to one of the four possible space-time
coordinates. The space-time distance element ds as a function of the coordinates xz® is
therefore:

ds® = gop dz*da’. (2.1)
In GR, the trajectories of particles are a consequence of the metric.

General Relativity links the geometry of the space-time (or metric) with its energy

content, described by the energy-momentum tensor 7i,3. The tensor Tip describes the
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different energy-momentum fluxes o along the four directions . The fundamental equa-
tion in GR relates the Einstein tensor G,z, which is a function of the metric tensor, its
first and second derivatives with T;,5. Einstein’s field equation reads

81
Gag + Agag = —7Ta5. (2.2)

The inclusion of the term Ag,s allows solutions for an Universe with an accelerated
expansion. Our current observations favor such an expansion for the Universe at the
present cosmological time. This last statement will be discussed further in Section 2.2.

2.2 Fundamental concepts

Having outlined the basic concepts of gravity we shall give a brief overview of the set
of fundamental parameters with which we describe the metric and energy-momentum
tensors. These parameters also allow a convenient description of distances and time.

In 1929 E. Hubble found that galaxies are receding from us, the further away the
faster. This conclusion was derived by measuring the redshift of galaxies as a function
of its distance from us. The relative motion between a light emitter and the observer
changes the measured wavelength of the light. This effect is called redshift. If we write it
as a function of the observed wavelength A and the wavelength \g measured in the frame
of reference of the emitter, it reads

A—Xo
Ao

The assumption of the cosmological principle leads to interpret this phenomenon as a
homogeneous isotropic expansion.

The framework of cosmology is therefore a homogeneous, isotropic Universe that ex-
pands with time. Due to this fact, for convenience, we define comoving coordinates x.
The relation between physical coordinates denoted with r, and comoving coordinates is
given by

ya—

(2.3)

r(t) = alt) - x. (2.4)

where the scale factor a(t) explicitly expresses the expansion. By convention, we fix the
value of a(t) at the present cosmological time to, such that a(ty) = 1. The scale factor at
the time the light was emitted and its redshift are related via

1
=—-—1. 2.5
2= (25)

The scale factor and the redshift are indistinctly used. They are needed to compute
distances and times in cosmology. General Relativity predicts that information cannot
travel faster than light. As we observe an emission from a distant point, we are always
looking backwards in time. Therefore, temporal and radial distance are linked. The
redshift or the scale factor estimates the cosmological time at which an event occurred,
and its distance from us. Since they are monotone functions of time, at least in the current
cosmological model, they are often used directly as temporal parameters. The exact
functional dependence of time with respect to the scale factor is presented in Sect. 2.4.
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The evolution of the expansion at a given moment is quantified with the expansion

rate, or Hubble rate
a(t)

H(t) = —+=. 2.6

0= (26)

The Hubble constant Hy = H(ty), is the value of the Hubble rate for the local Universe

at the present time ty. It is one of the fundamental parameters of the currently accepted
cosmological model.

As mentioned previously, the Universe is mainly driven by gravity, and gravity is
defined by the energy-momentum content. Assuming the validity of the cosmological
principle, the energy content of the Universe can be described in the same way as that of
a homogeneous and isotropic fluid, which combines all possible energy components. The
energy-momentum tensor in a static universe of such a fluid is in Cartesian coordinates
at its rest frame

2.7)

oo O
o o o
" O OO

We have denoted the energy density of the fluid with p and the pressure with p. The
general form for the tensor, given the metric tensor gqg is

B P dx” dzH B \/70‘6
Top = <p + g> Jow gﬁ”?? +Dgap Wwhere dr = /gap drda?. (2.8)

The term C%” is the four dimensional velocity and the parameter 7 is called the proper time.
The three components considered in cosmology that contribute to the energy-momentum
tensor are: matter, radiation, and vacuum energy. It is believed that nowadays around
70% of the energy budget of the Universe is vacuum energy, called Dark Enerqgy; 25%
corresponds to pressureless matter of yet unknown nature, not detected before in other
scientific fields; and only 5% corresponds to matter as we know it (atomic nuclei and
electrons). The current contribution of radiation is negligible, although it was important
at early times in the evolution of the Universe.

The temporal dependence of pressure and energy density for each specie can be ob-
tained as follows. We can write the first law of thermodynamics dU = —pdV, in terms

of energy density and pressure, in comoving coordinates

d(pc*a® x°) = —p d(a® x%) (2.9)
and find solutions for p(t) and p(t). For pressureless matter, p,, = 0, we obtain
pn(t) = pmo a5(2). (2.10)

For radiation, out of relativistic considerations we know that p, = p, ¢*/3, and therefore

pe(t) = pro a”*(1). (2.11)

Finally, we consider vacuum energy density to be constant with time. This last assumption
implies

—pa C® = py. (2.12)
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The parameters pyo are the different densities measured at the present epoch. These
are rescaled into the density parameters:

Pro Prmo PA A
Q. = ; Q= ; Qp = = —=; 2.13
Perit Perit A Perit 3Hg ( )
using the so-called critical density
3H?
crit + = . 2.14
Perit = 823 ( )

Due to the different dependence with respect to the scale factor, the relative contribution
of each species to the total energy density changes with time. In the history of the
Universe, the energy density is dominated at different epochs by the different components.

Obtaining the values of the parameters described in this section with precision is
currently a main goal of cosmology. Fixing them shall bring a quantitative description of
the Universe and a much deeper understanding of physics.

2.3 Robertson-Walker metric & Friedmann equations

Once we specified the energy-momentum tensor, we can use GR to obtain dynamical
equations for its evolution. We shall sketch how they are obtained. In principle, Einstein’s
field equation has no general analytical solution. In fact, only in a reduced number of cases
the metric can be found given a energy-momentum tensor. For the case of an expanding
homogeneous and isotropic Universe, however, there is one: the so-called Robertson-
Walker metric. The Robertson-Walker metric reads

ds? = =i+ a*(t) [ + F (0 (d6° + sin?(0) dg?) | (215)

where Yy is the radial comoving distance and # and ¢ are the polar angles. The parameter
K = (Q + Qu + Qx — 1)HZ/c?, the curvature, quantifies the deviation from a spatial
Euclidean geometry (K = 0, flat curvature), and defines the comoving angular diameter
distance

K~Y2sin (ﬁx) for K >0,
fr(x) = X for K =0, (2.16)
(—K)~'/?sinh (x/—K X) for K <0.

If we insert the foregoing metric, and the energy-momentum tensor (Eq. 2.8), into
Einstein’s field equations (Eq. 2.2), we can solve for the relation between the expansion and
the energy components. The result is the first and second Friedmann-Lemaitre equations,
concerning functions of the first and second derivatives of the scale factor a(t) with respect
of time. They read

(9)2:%/)(@ _ K_CQ + A (2.17)

T (o + ) 45 (218)
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With these relations, we link the observed evolution in the Universe with its composi-
tion. They are the dynamical equations that govern the evolution of the Universe. This
equations are present in almost any cosmological problem.

2.4 Time & distances in cosmology

In cosmology one measures quantities like redshift, or angles on the sky. If we want
to convert these into physical distances, or compute the age of the Universe when the
radiation we see was emitted, we need to define our cosmological model (as we already
did) and the values of its parameters.

The time between two epochs in the Universe can be obtained from the foregoing
equations. Integrating Eq. (2.17) one can reach:

ar 871G K A\ V2
t(ai,af)—/ da’ <7TTp(a’)— a; +§> a1, (2.19)

where a; and a; are the scale factors at the initial and final moments respectively. The
relation between scale factor and time, or redshift and time, can be obtained thereafter;
we only need to invert last relation to get a(t).

Due to the inclusion of a non-Euclidean metric, distances in cosmology are no longer
uniquely defined. Moreover in GR they are also model dependent. For these reasons, we
shall redefine the notion of distances. There are two main ways to define distances in
cosmology, the angular diameter distance and the luminosity distance.

The angular diameter distance of an object is defined as the ratio between the sub-
tended observed angle df and its true physical transversal size dr:

Do(z) = T = a(2) i) (2.20)

where y denotes the radial comoving separation between the source at redshift z and the
observer. We have denoted angle and transversal size as differentials, since in cosmology,
the transversal scales we are treating are always very small compared to the distances.
This allows us to work under the small angle approximation, i.e. sin(f) ~ tan(f) ~ 6.
The definition of the angular diameter distance is especially important in gravitational
lensing, and we shall use it frequently.

The luminosity distance is defined in terms of the measured apparent magnitude and
the absolute magnitude an object must have. If we consider the relation between flux
S, the area 4w D? illuminated, and intrinsic luminosity L: 47D?S = L; the luminosity
distance yields

L o fr(X)

D)=\ 15 = " (2.21)

The last equality is obtained from the relation between luminosity and angular distance
and is a result from the reciprocity theorem (Etherington 1933).
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2.5 Brief history of the Universe

Over many years, the cosmological concepts and models have been extensively tested
against observations of all kinds. In this section we want to give an overview of the current
concordance model. The following picture is so far the one that conceals the agreement
of a majority of researchers, and is consistent with past and present cosmological data.

The Universe is believed to have a finite age. Its starting point was a state of extremely
high density and temperature, from which it began to expand and cool down. This
paradigm is known as the Big Bang and it is supported by the following arguments.
The current expansion implies that the Universe was denser in the past. Our knowledge
about the energy content of the Universe (coming for example from dynamics in galaxy
clusters), in combination with curvature constraints, leads to conclude from the Friedmann
equations, that the Universe was once in a state of virtual infinite density at a moment
around 13 Gyr ago.

Since the Universe has a finite age, and according to GR information cannot travel
faster than the speed of light, parts of the Universe should have never been in causal
contact. Light emitted shortly after the Big Bang reaches the earth today from distant
parts of the Universe. Some parts are so apart that they cannot be in causal contact.
However, these regions are still statistically identical, which leads to conclude that shortly
after the Big Bang, the Universe expanded at a very high rate. The expansion was so fast
that regions in tight causal contact back then, are today no longer connected. This period
known as Inflation (see Linde 2005 for a review), also naturally explains the measured
almost zero curvature. No matter what the curvature of the Universe was, due to the
enlargement, we are going to see just a local region, and so it will appear to be flat.
Inflation also gives an origin for the initial perturbations of the matter field which initiated
the current mass structures in the Universe. Initial quantum fluctuations, during inflation
were enlarged to macroscopic scales, seeding the structure growth that eventually formed
galaxies, groups of galaxies and galaxy clusters.

After Inflation ended, the Universe was in a dense and hot state; since then it has
been cooling down. As the temperature dropped, eventually atomic nuclei bound from
free protons and neutrons, defining the primordial chemical composition of the Universe
in a process we call Big Bang Nucleosynthesis. Based on our confirmed nuclear physics
models and spectroscopic observations of the intergalactic medium, we are confident that
the initial chemical composition of baryonic matter was 25% Helium and 75% Hydrogen,
with traces of Lithium and other light elements (Tytler et al. 2000).

During Big Bang Nucleosynthesis, radiation was the dominant component of the en-
ergy density, but slowly matter took over. At a certain point nuclei and electrons formed
atoms, while radiation was set free. This radiation has traveled ever since, from their orig-
inal locations, suffering almost only the effects of the expansion of the Universe. As the
temperature decreased, atomic Hydrogen was favored against free electrons and protons.
The formation of neutral Hydrogen happened in a short period of time. The so-called Cos-
mic Microwave Background (CMB) radiation carries information from that moment. The
most recent analysis of this radiation, has been done with the satellite mission WMAP
(Bennett et al. 2003). This experiment offers us one of the most valuable ways to con-
strain the cosmological parameters. The sole existence of CMB is a proof of the expansion
of the Universe and the Big Bang. From the typical scale of CMB anisotropies the ratio
baryonic-dark matter can be computed. In combination with independent measures of
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Hy (Freedman et al. 2001) it is the best indicator of the curvature of the Universe.

The radiation-matter decoupling phenomenon is also imprinted on the formation of
matter structure. One can detect today into the galaxy spatial distribution, a feature
which is the result of the size of the sound horizon at this moment. This phenomenon is
called Baryonic Acoustic Oscillations (BAOs).

Then a period known as the Dark Age began, where the matter overdensities grew,
while first stars were formed. Their light most likely reionized the intergalactic medium
as we see it today. Matter overdensities have been growing ever since, driving galaxy
formation. First small objects like galaxies formed, then galaxy groups and clusters. The
comparison of the structure we detect to our structure evolution simulations shows that
dark matter is cold, that is, mass is far from a relativistic regime (White et al. 1983, White
et al. 1984). We also know that objects of stellar origin do not account for it (Renault
et al. 1997). The most popular theory is that dark matter is formed by weakly interacting
massive subatomic particles.

Nowadays, we believe that since recent cosmological times expansion is dominated
by the vacuum energy. The existence of vacuum energy was revealed studying Type la
supernovae which have an almost constant luminosity regardless of their environment.
Their luminosity distance as a function of redshift (Riess et al. 1998, Schmidt et al. 1998)
reveals an expansion history which support the existence of vacuum energy.

2.6 Random fields

The Universe is homogeneous when averaged over large scales but obviously there are
small-scale inhomogeneities. Its evolution and origin are treated in depth in the next
chapter. However, in order to be able to characterize them properly we have to talk first
about random fields.

The nature of many cosmological results is statistical. We assume that the observables
that we can measure have an inherent randomness. In order to compare our models with
reality we shall study the underlying probability distribution functions.

A random field is the set of possible realizations of a field plus the likelihood of each
one. In mathematical terms, it is a map from the set of functions p : R" — R to Rj. In
cosmology, we often have a space identified with the R?® manifold, and we can assign to
every point x a value by the mass density function p(x). A given random field defines how
probable each possible p(x) function is. However, for simplicity we shall use the density
contrast 6(x) = (p(x) — p)/p, where p is the spatial average of p(x).

In reality, we only observe one Universe, and we must infer the underlying random
field just from one realization. To overcome this problem we invoke the ergodic principle.
This means that we assume that the expectation values over an ensemble of different small
regions in the Universe is the same as over an ensemble of different possible universes at
a small region.

In order to proceed further we must analyze the properties of a Gaussian random
field. If we use the density contrast as example, a Gaussian field is characterized by the
following conditions:

e all values of the function in Fourier space & (k) are statistically mutually independent;

e the probability density for d(k) is described by a Gaussian distribution.
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The importance of Gaussian random fields can be explained by the Central Limit Theo-
rem. This theorem states that the sum of independent random variables is asymptotically
described by a Gaussian distribution as the number of variables increases. If we accept
that the phenomena in the Universe come from a combination of independent random
processes, the Gaussian field is the best starting point to describe a random field. A
Gaussian random field is fully determined by the variance of each Fourier mode o2 (5 (k).

The probability of a set of {4(k)} is then

() - mmmee (o) o

where the modulus of k appears since we assume an isotropic Universe. The variance of
each mode is the so-called power spectrum P(|k|) o< o%(|k|), which can be easily estimated
from the ensemble average of the product of two modes. In the most general case, where
we have an infinite and continuous set of {0(k)}, we have

(50 3" (K)) = (26 (& — K)P(IK]), (2.23)

where 0p(k — k') is Dirac’s delta. Dirac’s delta appears because we assume statistical
homogeneity in the random field. In configuration space we can specify the random fields
using the Fourier transform of the power spectrum, the correlation function. This can
also be estimated from the two point correlator:

(6(x)0"(x)) = C(lx = xI)). (2.24)

Due to the assumed homogeneity and isotropy, the correlator depends only on |x — x/|.

In the case of non-Gaussian random fields we shall need high order correlators for a
full description. Nonetheless, the power spectrum and the correlation function are always
the first step concerning random fields studies.

2.7 List of cosmological parameters

Finally we present a table with values for the most important cosmological parame-
ters. The source used is the Legacy Archive for Microwave Background Data Analysis
(LAMBDA, http://lambda.gsfc.nasa.gov), from NASA. They are the parameters for the
concordance model ACDM, that is, a model with cosmological constant A and cold dark
matter. The combined data are CMB data from WMAP7 (Komatsu et al. 2010), BAOs
(Percival et al. 2010), and H, measurements (Riess et al. 2009).

From the list of parameters, the only one which has not been defined is og, with which
we parameterize the power spectrum normalization. The og parameter is the dispersion
of the matter density contrast averaged over spheres of radius 8 Mpc/h at z = 0, and its
definition has historical reasons. The power spectrum normalization can be written in
terms of og which is easy to measure.
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Cosmological Parameters for the concordance model.

Hubble constant Hy (kms~! Mpc—1) 70.4713
Baryonic matter )y, 0.0449 + 0.0028
Dark Matter Q. 0.222 + 0.026
Dark Energy Q4 0.734 £ 0.029
Power Spectrum normalization parameter og 0.809 £+ 0.024
Mean redshift of the CMB 1088.2 + 1.1

Age of the Universe (Gyr) 13.75 £ 0.11
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3. Structure formation: theory and
computational techniques

We assume that the Universe is homogeneous, at least on large scales. However inhomo-
geneities exist. The way the inhomogeneities appear has been discussed previously. Initial
quantum fluctuations seeded matter inhomogeneities, and these grew with time due to
self-gravitation.

This chapter lists the most important concepts concerning structure growth, and how
they relate to a model of matter structure formation. For simplicity, most of the times
the equations are presented without a detailed derivation. A more thorough discussion
can be found in Dodelson (2003).

After reviewing the analytical treatment, we give an overview of the computational
methods used to produce the cosmological simulations from which we derive our results.
The technical details of the cosmological simulations will also be necessary in order to
interpret properly our results in the following chapters.

3.1 Boltzmann equations

All assumptions and principles that we stated in the previous chapter, make cosmology
a science where predictions and conclusions can only be expressed in terms of statistical
results. We cannot (and should not aim to) explain the precise characteristics of a certain
part of the Universe, only how likely it is. The best way to proceed therefore is to
work with distribution functions. For each particle type (photons, baryons, etc.) in the
Universe, we consider its distribution function f and how it changes with time ¢. The
distribution function f(x,p,t), describes for a given particle type, the occupation number
for each phase-space volume element defined by the position x and the momentum p. The
total number of particles must not be constant, some species can transform into another,
for instance matter into radiation. This is taken into account by a collision term C(f).
We encode all these considerations in the Boltzmann equation

df _of  ofda'  Ofdp _ Of dpf
dt = ot Oxidt  Opdt Op dt

For convenience, the dependence in p has been divided into the dependence on the mod-
ulus p = |p|, and the components of the unit vector p* = p’/|p|. The Boltzmann equation
describes the evolution of the particle’s distribution in the phase-space. When C(f) = 0,
the phase-space volume is conserved.

In order to proceed further, we need to introduce the metric that defines space-time
and so characterizes dynamics. In the following, for simplicity, we use comoving coordi-
nates and also natural units i.e. we set the speed ¢ of light and Planck’s constant A to

— (). (3.1)
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unity. We consider a homogeneous expanding universe with some small perturbations.
The perturbations to the Friedmann-Robertson metric can be decomposed into scalar,
vectorial, or tensor perturbations (Bertschinger 2001). The different possibilities do not
couple directly, whereas scalar perturbations are connected to the density field. Hence-
forth we only consider scalar perturbations to study structure growth. For the cases we
treat in the following, we can parameterize scalar perturbation in the metric with the
potential ®(x,t), which is considered to be small at any time. As stated in the previous
chapter, we assume a flat space geometry for the Universe. In our particular choice of
coordinates the metric tensor is then approximated by

go(]:—l — 2®(X7t),
gii:az [1 —29(x, t)] ) (3.2)

with all non-diagonal elements being zero. With the metric, we can rewrite dp’/dt, dz*/dt
and 0/0p, as functions of the metric perturbations and the energy E. After some algebraic
manipulations, inserting the metric into Eq. (3.1) yields:

of §pdf _0f (P 0B ipod\  0f dp
ot aE0x* OFE\FEa F Ot a Ox' op* dt

In order to understand better the physics behind the Boltzmann equation, we must
solve the problem piecewise. We subdivide the problem according to the scale of the
perturbation we want to study, and the epoch we want to describe. We define this
subdivision by considering the expansion of the Universe as follows.

Information can only travel at a finite velocity, which means that any point in the
universe is in causal contact only with a finite region. The causal horizon defines how
far information can travel since the Big Bang, and therefore how big this region is. The
horizon grows with time, but at any period it separates between scales where there is
causal contact from those where there is not.

Depending on the point in time we want to treat, the expansion is different; at early
times it was driven by radiation, later by matter, and nowadays by Dark Energy. The
physical conditions such as pressure or temperature that affect perturbations inside the
horizon, are different as well. The transition periods, especially between radiation and
matter dominance, are used as milestones.

= C(f). (3-3)

3.2 Linear Theory

The Boltzmann equation as presented here is not very usable due to its complexity. We
may not find a solution f(x,p,t) for the full equation but for simpler derived quantities.
The aim of this section is to illustrate how analytical solutions can be found at least under
certain conditions. For early times and for large scales at late times, in the so-called linear
regime, the Boltzmann equation is linear in f(x,p,t). Therefore it can be worked out,
producing solvable expressions.

We shall focus on describing the evolution of matter perturbations when the Universe is
matter dominated, on scales much smaller than the horizon. For this case, we can consider
dark matter alone, which is collisionless (C'(f) = 0). The solution of the equation for other
times, scales, or even species is in many ways similar.
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The standard way to proceed is to derive equations for the spatial density field and
the velocity field from Eq. (3.3). The first useful equation arises as we multiply it by
d3p/(27)® and we integrate over momentum. The factor (27)® ((27h)? in reality with
h = 1), is the phase-space volume element. This leads to define the dark matter density
as

pam (X, ) = / (‘;T’;g Fam(X, P, 1), (3.4)

and the first-order correction to homogeneity, the density contrast,
_ Pam (X, ) — Pam(t)

dam (X, 1) = o) such that  pam (%, 1) = pam(t) (1 + dam(x,1)),  (3.5)

with p(t) as the spatial average of p(x,t). We also need to define the velocity of each
volume element. The velocity reads, component-wise like

; 1 d*p pp'
vdm(x7 t) T pdm(X7 t) / (27’(’)3 fdm(xvpvt) f (36>

The remaining task is to distinguish between dominant and higher order correction
terms. We have assumed at zeroth-order an isotropic and homogeneous distribution,
henceforth dependencies on the momentum direction in fq, (X, p,t) are first-order cor-
rections. The temporal variation of the momentum direction is a first-order correction
in momentum. Therefore, the term g—;% in Eq. (3.3), is a product of two first-order
corrections and we can neglect it. From isotropy, as we integrate out momentum, the
term ﬁip%, should give a null contribution at zeroth-order in fq,,. The spatial derivative
of ® is first-order in the metric, so the term with these two last quantities drops out. The

surviving terms at zeroth and first-order are then

Ipam . 10(pamvy,) a 0
- S+ 3 -+ = m = 0. 3.7
ot +a ox? * a+8t pd (3.7)
Now, we can collect the zeroth-order terms into the expression
0Pdm ] d (pam a®
g‘i +3 % B = % — 0, withthe solution pgy o a~°: (3.8)

and the first-order corrections into the equation:

O 1OV, 0D
5ttt 3o =0, (3.9)

The second equation necessary to solve for both dqy, and v}, is obtained by comput-
ing the expectation value of (p'p/FE). To do so, we multiply the Boltzmann equation
by d3pp'p/(27)3/E and we integrate over momentum again. Now we must carefully dis-
tinguish between first-order and second-order correction terms. The critical point is to
remember that we are dealing with non-relativistic particles and therefore p/E < 1.
Leaving aside the details, the resulting expression for the first-order terms is

ap dmvém
ot

a
+ 42 pgd, — Lam 22
a
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If we apply the zeroth-order approximation pqmy =~ pam and the solution from Eq. (3.8) we
obtain: )

Mg | G o1

ot a ™ q0x

The last step is to Fourier transform the equations. In this way we get rid of spatial

partial derivatives as they transform like 9/9z' — i k*. Now we have functions of the wave

vector k instead of position x. The velocity field is assumed to be irrotational, which is

equivalent to say that its Fourier transform v and k are parallel. This leads to a further

simplification; we can replace in our equations v and k by their moduli £ and v.

169
0 _,, (3.10)

X ik 3

St + B + 3 D=0, (3.11)
a

. : ik -

G + g — — =0, (3.12)
a a

The set of equations that describes our problem is completed with the relation between
the potential perturbations and the energy perturbations, which is the relativistic analogy
of the Poisson equation in classical dynamics:

- 3HZ2Q, -~
o =" (3.13)
Note that our choice of the metric convention is responsible for the lack of a minus sign,
which appears in other derivations.

3.3 Transfer function & growth function

For the work in this thesis we only need predictions for structures smaller than the horizon
well after the matter domination started. To study how these structures evolve we have
derived in the previous section the necessary equations, and now we shall give a solution
for them.

From equations (3.11) and (3.12), changing the derivatives in ¢ to derivatives in a for
convenience, we obtain

dé ik dd

a0 %% 14

da+a2H(a) 3da’ (3:14)
do o ikd

daTa @ H(a) (3.15)

Since we only treat sub-horizon scales, which implies that k/[a H(a)] > 1, we can neglect
the second term in the Lh.s. of Eq. (3.14), and do the same with the r.h.s. in Eq. (3.15).
With a little bit of algebra we can combine these last equations with Eq. (3.13) and get:

425 (dln(H) 3>d5 3QmHgS_O (3.16)

da? da 245 H%(a)
A first analysis of the equation shows us that there is no dependence on k, so the solution
can be factorized like

da a

3(k,a) = D (a)T(k) + D_(a)T(k), (3.17)



3.3 Transfer function & growth function 17

where we wrote a growing D, T and a decaying D_T partial solution. It is easy to prove
that in our case, with a constant Dark Energy density, the Hubble rate is one of the two
partial solutions of the equation. As the Hubble rate decreases in the regime that we
describe: D_(a) = H(a). Given one partial solution, the other can be obtained using the
Wronskian theorem. In this way we obtain the growth function, which yields:

D, (a) x H(a) H2 /0 a[ da’ (3.18)

a H(a)]*

We normalize the growth function D, (a) such that it is unity today D, (ag) = 1, the
proportionality constant is then 5 €2, /2. This solution is valid for sub-horizon scales after
matter dominance started.

The whole evolution undergone at earlier times can be condensed into the so-called
transfer function T(k). With the transfer function we describe the distinct evolution
that perturbations of different wavenumber k suffered before. Perturbations of different
scales entered the causal horizon at different moments, and this affected their evolution
differently.

The transfer function parameterizes the growth of a perturbation of a given mode
k with respect to a fiducial one. The fiducial perturbation has a small wavenumber kgq
(large scale), small enough that it entered the horizon today. Let us denote a perturbation
today by do(k) = d(k, ap); and a perturbation at a moment in the past where the growth
function description starts to be valid like d;(k) = 0(k,a;). Then the definition of the
transfer function is:

T(k) := S /onThd) (3.19)

Small perturbations that entered the horizon at radiation dominance era were suppressed.
Large perturbations that entered the horizon recently on the other hand, had a different
evolution. The transfer function reflects this relative change.

Nowadays the optimal way to deal with the Boltzmann equation is to compute a a
solution with numerical methods. The transfer function is normally described by a fitting
formula for the resulting output (e.g. Eisenstein & Hu 1998).

As mentioned in Sect. 2.6, we normally characterize the inhomogeneities distribution
using their power spectrum. The foregoing analysis of the Boltzmann equation allows us
compute in the linear regime, how the power spectrum evolves with time:

P(k,a) = Ak"™ T¢ D% (a). (3.20)

The initial power spectrum is assumed to be the power law A k", so it does not single out
any scale. Moreover, for ng = 1 (known as the Harrison-Zel’dovich spectrum), the power
spectrum is scale invariant. This means that no moment in time is singled out neither.
This power spectrum does not carry any information of its causes. It was postulated as
a sensible ansatz, and measurements today indicate that it is a good approximation.
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3.4 Non-linear evolution

To tackle the problem beyond the linear regime, one can use perturbation theory or
phenomenological models. However, the most successful approach is to rely on numerical
methods.

The full solution of the Boltzmann equation however cannot be obtained by a direct
integration. The high dimensionality of the problem makes a brute force approach im-
possible. The most successful way to overcome this problem are dark matter simulations.
Since we cannot find the full solution for the distribution fqm (X, p,t), we use the Boltz-
mann equation to sample it. The statistics over this sample can be used to reconstruct
fdm (X, p, t) :

In a typical cosmological numerical simulation, we try to simulate a large region of the
universe. In the simulations that we use, for example, the matter distribution is repre-
sented with discrete collisionless mass particles, which mimic the behavior of dark matter.
We compute how they interact due to gravitation with a background expansion, and we
store the position and velocity of the particles at a set of instants for future analysis.
An important feature of this method is that the sampling changes from region to region.
Underdense regions are sparsely sampled and therefore much worse represented than over-
dense regions. How the particles cluster is compared to our cosmological observations.

The inclusion of full hydrodynamics in cosmological simulations is still a computational
challenge today. However, baryons have an impact mainly on small scales as they form
galaxies.

Since we still need galaxies for our study, the simulation used in this thesis is populated
with galaxies using semi-analytical galaxy models. These galaxies are obtained from an
already finished dark matter only cosmological simulation. We describe the method in
Sect. 3.7.

Matter Power Spectrum
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Figure 3.1: Matter power spectrum computed in the linear regime with Eisenstein & Hu (1998)
and in the non-linear regime following Smith et al. (2003). The plot was obtained from the web page
http://www.icosmo.org.



3.5 Millennium Run 19

The combination of the analysis of the linear regime and the simulations on the non-
linear evolution allows us to compute the matter power spectrum for any cosmology. A
formula can be derived thereafter (Smith et al. 2003). We plot in Fig. 3.1 the power
spectrum for a ACDM cosmology with the parameters described in Sect. 2.7.

3.5 Millennium Run

This work is based on the Millennium Simulation (Springel et al. 2005). The Millennium
Simulation currently ranks among the largest cosmological simulations ever made. The
simulation represents a periodic box of 500 ! comoving Mpc on each side, containing
2160° collisionless particles with a mass of 8.6 x 108 My h~!. The output consist of 64
snapshots logarithmically spaced in redshift. Both velocity and position of each particle
are stored. The cosmological parameters that define the simulation are: €, = 0.25,
Qp = 0.75, h = 0.73, consistent with the ACDM model; and og = 0.9 which is slightly
higher than the currently accepted value. The value used for og shall increase the number
density of clusters in comparison to reality. However we estimate that it can only have a
mild effect on our final measurements. The simulation was started at a redshift z = 127.
The initial conditions were created by perturbing a homogeneous quasi-random particle
distribution, with a realization of a Gaussian random field. The Gaussian field had the
ACDM linear power spectrum, computed with the code CMBFAST (Seljak & Zaldarriaga
1996). Finally, periodic boundaries are used which produces homogeneity at large scales.

To illustrate some aspects of the cosmological simulation, we shall describe the main
points of GADGET2 (Springel 2005). This code was used to conduct the Millennium
Run. We remark that velocities and potentials in cosmological simulations are always
small enough so Newtonian approximations can be made. That is, we work with instant
interactions.

In order to avoid point masses, which do not reflect reality and lead to unphysical
strong scattering events between two particles, the mass of a particle is distributed over
a sphere. The size of the sphere is parameterized with the so-called softening length e.
In our case the sphere has a radius of r < 2.8¢, (e = 5h~! kiloparsecs) with a specific
function 6.(x). The simulation has therefore a spatial resolution limited to scales of
2.8¢ = 14 h~! kiloparsecs.

The gravitational potential produced by a particle of mass m at a distance x from its
center follows the Poisson equation

V2p(x) = 4rGm (—% + Z de(x — nL)) , (3.21)

where the sum over n, represents a sum over all periodic replicas of the box, present due
to the periodic boundary conditions. The parameter L is the size of the box. The first
term on the r.h.s. of the equation subtract the mean density, which is not a source for the
potential. We obtain the final gravitational potential at a given location r by summing
over the N simulation particles:

N

V2p(r) = Z Vip(r — 1)), (3.22)

J
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where we denote the location of the jth particle by r;. Dark energy appears in the
background expansion, and not directly in the gravitational potential.

The computation of the potential at any given moment, an essential part of the sim-
ulation, is done combining two methods. The potential is split into a long-range and a
short-range contribution. For long distances, the particles are grided into a coarse mesh
and Fast Fourier Transform methods are used to solve the Poisson equation. FFT is time
efficient but the memory consumption is high, and the grid imposes a geometry that is
not isotropic on small scales. For this reason, the short-range contribution is computed
using a tree code. A tree code avoids computations with an adaptative spatial grid. The
required precision defines the spatial resolution in each case. If at a given location there is
a compact group of particles, for large enough separations from the group center, the tree
code computes the potential contribution of the group’s total mass located at its average
position. In order to compute the interaction between the particles of the group, the tree
code considers them individually. The grid is changed depending on the scales and the
densities. Eventually long-range and short-range contributions are combined to achieve
the gravitational force exerted at each particle.

The integration of the dynamical equations is done in a scheme referred to as leapfrog.
This scheme has been proven to be more efficient that other integration rules. Under this

scheme, the ith particle at its nth integration step, is assigned a time step Atg”), a current
(n) (n) V(n) a(n)

1 1 Y (2 Y (]

The states of the particles are computed following an order. In each moment the

next particle to be advanced in time, the particle k, is that with the minimal 7',5”) =

time t; 7, and with position, velocity and acceleration <r

t,(g") + 0.5 At,in). The scheme computes the position of all particles at an intermediate
position r; from the current state n,

& =1 + v (7 — 1) (3.23)

7

With the intermediate positions, the acceleration for the integration step n + 1 of the k
particle is computed

ay""t = —Vg(¥)| , (3.24)
Ty
and once the acceleration is computed, the velocity and the position are updated:
vyt () (3.25)
r,(cnﬂ):r,(cn) + (V,(:H) + V]gn)) (T — tr). (3.26)
Finally the time is also updated
) — 27 — (™) (3.27)

and the new time step is derived from the position of the particle and the density of the
particle environment.

The time-line is common to all particles, but each one advances along it in steps of
independent size. The particles in higher density regions have shorter time steps, and are
updated more frequently.

In Fig. 3.2 one can see a slice of the simulation with a series of zooms of an overdensity.
The color encodes the density. On the background picture one can see the large-scale
filamentary structure, the so-called cosmic web. One can also notice that the simulation
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is homogeneous on large scales. In the first zoom, it is possible to see how the filaments
cross into a particular overdensity, and the presence of voids. The last zoom also shows
how within the large mass clump, there are small local overdensities. This substructure
or sub-halos is the object of our study.

3.6 Substructure in the Millennium Simulation

Previously we have presented a general way of characterizing inhomogeneities, through
random fields. We can also study the statistics of large matter overdensities, referred to
as halos, which are represented in the simulation by large groups of particles. Moreover,
we find small inhomogeneities embedded into large ones, called sub-halos. The statistics
of individual halos and sub-halos is a complementary analysis to that conducted with a
random field study. In this section we describe how structure and substructure is defined
in the Millennium Simulation.

Independent groups of particles are grouped with the Friends-of-Friends (FOF) al-
gorithm as the simulation runs. All particles which are closer than 0.2 times the mean
particle separation are linked together. These FOF groups are identified as main halos,
and should represent fairly the dark matter component of galaxy clusters, groups or iso-
lated galaxies. This method only studies the spatial relation. Some structure will be
linked although they are not gravitationally bound or even coming apart. Nonetheless,
this caveat is also present on the definition of membership in galaxy groups on real obser-
vations, where we only detect angular positions and redshift. For every FOF group a mass
M, is estimated. The value given is the mass inside a sphere of radius R, centered on
the most bound particle. The radius is computed such that the density inside the sphere
is 200 times the mean density of the simulation.

Substructure is determined, once the simulation is finished, by the SUBFIND algo-
rithm (Springel et al. 2001). Each FOF group is subjected to study and a truly gravi-
tational analysis is performed. In principle a full hierarchy of sub-halos could be found,
that is, sub-halos within sub-halos are possible. However only one degree of substructure
is considered here.

The determination is done as follows. First a local density is estimated considering the
N =~ 10 nearest neighbors at each particle position of the group. Then the particles are
ordered according to the density at their positions. Each time a particle has no neighbor
with higher density, it is considered the most bound particle of a sub-halo candidate.
The sub-halo candidates grow as more particles are assigned going from the most dense
positions to the least dense. Whenever a particle can be place into two sub-halo candidates
the candidates stop to grow and are joined to form a new sub-halo candidate. Then the
candidates are filtered. Each sub-halo candidate is peeled of particles with positive binding
energy until none is left. The position of the sub-halo is the position of its most bound
particle. Every group of at least 20 gravitationally bound particles forms a sub-halo,
and its characteristics are stored. The mass of the sub-halos is not defined as for the
FOF halos. Instead, it is the total mass from the particles which have been assigned
by SUBFIND. The comparison of radial extent between sub-halos and main halos of the
same nominal mass is not well defined as different mass definitions are considered.

It must be noted that the technique used neglects the fact that the host halo helps to
bind the structure. Also there are particles which surround the sub-halo and therefore are
related to it but they are not detected to be gravitationally bound. With all this some
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Figure 3.2: Slice of the Millennium Simulation with a series zooms of an overdensity. From the
Millennium Simulation web page http://www.mpa-garching.mpg.de/galform/presse/
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ambiguity remains, but this does not come from the algorithm; it is an intrinsic problem
to the substructure definition. Other algorithms assign a different amount of particles,
and the mass assigned is also a function of the sub-halo position inside the main halo
(Muldrew et al. 2010). We consider that there are many valid ways to define the mass
of a sub-halo. In order to be coherent, for the rest of the work we use the mass from
SUBFIND Mgygr as the sub-halo mass, which we obtain from the simulation catalogues.

3.7 Semi-analytic catalogues

Since the Millennium Simulation contains only dark matter, in order to include galaxies,
semi-analytic models of galaxy formation are used. The semi-analytic models are crucial
for this thesis. Our method requires to classify galaxies into homogeneous subsets, as we
obtain high signal-to-noise ratios by averaging over a set of them. Within the simulation,
we can classify the sub-halos, with quantities like mass or time spent inside the main halo.
However, in real data one does not have this quantities and one must rely on observables
of the hosted galaxy. The semi-analytical catalogues give us a set of galaxy properties
which we can attach to the halos, and the possibility of comparing our results to real
surveys. The correlation between the quantity we want to infer and the observable may
not be strong enough. As a result from this, we may arrive at a wrong conclusion. With
the help of the semi-analytic catalogues we can study this effect.

Once the dark matter simulation is conducted, these models assign a galaxy to each
dark matter halo based on its history and characteristics. In this section we sketch the
recipes used. However the technical details are outside the scope of this thesis. An
overall description can be found in Croton et al. (2006), and most of the critical issues
are developed in De Lucia et al. (2004) and Springel et al. (2001). In this work we use
the semi-analytic catalogues by De Lucia & Blaizot (2007).

3.7.1 Basic concept

The starting point of the semi-analytical model is to consider, at high redshift, a fraction
of the halo mass as baryonic mass. In the current model, it is 17% of the mass. This value
is reduced for low mass halos, since dwarf galaxies contain a relatively small fraction of all
condensed baryons according to observations (Kravtsov et al. 2004). Initially the baryons
are in the form of a diffuse gas with primordial composition.

Galaxies form through the evolution of the gas. A disk and a bulge shall form under the
appropriate conditions, as well as stars. The gas also changes its chemical composition,
as the metalicity increases. These processes lead to form galaxies with a broad variety of
properties.

Once the baryons are assigned to the halos at high redshift, the halos are followed
through time to determine the evolution of the gas. We shall divide the causes that
drive baryon evolution into two types: passive evolution defined by the past and present
conditions of the halo, and evolution through merging of different halos.

The mergers are crucial in the galaxy evolution and the backbone of the semi-analytic
models. In fact a merger tree is defined, storing for each halo at each redshift what merging
events it suffered. The merging events are divided into minor mergers, where the mass
ratio is smaller than 0.3, and into major mergers otherwise. The different components of
the two galaxies (disk, bulge, stellar mass ...) hosted by the merging halos are added
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into the resulting one, but in a different way in each case. When a small galaxy merges
into a larger one, the stars of the satellite are added to the bulge of the central one.
The masses of both cold gas disks are summed up, and a minor star burst is induced.
When two galaxies of comparable size merge, a significant star burst occurs, both disks
are destroyed, and a bulge is created out of them where all stars are placed.

The recipes used to obtain the baryon evolution have a series of free parameters. These
free parameters are fixed in such a way that the final galaxy catalogues follow the observed
properties of galaxy populations, such as luminosity scaling relations. In the following we
offer a list of the most important recipes for the semi-analytical models.

3.7.2 Gas accretion and cooling

The gas collapses into the potential wells due to gravity, releasing thermal radiation.
Under the appropriate conditions this gas condenses and a galaxy is formed. The rate at
which gas falls into the halo center depends on the halo mass and the redshift.

In most of the cases the gas shocks to the virial temperature and forms a quasi-static
hot atmosphere. The inner part of this atmosphere can collapse into a central object
which is assumed to be a cold gas disk. In order to describe the mass cooling rate Mmoo,
a cooling time is defined for each halo radius. The cooling time is modeled in terms of
the specific thermal energy of the hot gas and a cooling function which depends on the
chemical composition and density. Then for a given halo, the radius at which the cooling
time equals the dynamical time (0.1 H _l(z)) defines the cooling radius reoo1. The cooling
radius encloses the gas that is accreted from the halo atmosphere. The mass cooling rate
is then given by the equation

mcool = 47Tpg (rcool) 702001 /';.Coolj (328)

where pg(reoo1) is the hot gas density at the cooling radius. If the cooling radius is too
small, the galaxy will not accrete much material. In low-mass halos the formal cooling ra-
dius is larger than the halo radius, and basically all infall material is accreted immediately
onto the central object.

Some corrections are made to the initial model of gas accretion. Supermassive black
holes, which we believe to exist at the center of each galaxy, can accrete gas. This gas
accretion produces radiation that will suppress cooling. This is also present in the semi-
analytic models. The accretion of hot gas by the central black hole mpy is described by
a phenomenological model which depends on the black hole mass, the hot gas fraction,
and the virial radius and mass of the dark matter halo. The luminosity produced by this
accretion is then Ly = 0.17py ¢®. The factor 0.1 is the standard efficiency with which
mass is assumed to produce energy near the event horizon. This luminosity produces a
radiation pressure that expels mass at the rate

Mexp = 72 (3.29)
where V,;, is the virial velocity of the halo. The virial velocity can be expressed as a func-
tion of the virial mass and virial radius: Vi, = /G M,/ Ryir. The final modified cooling

rate is the difference between the gas cooled and expelled by the black hole radiation:

2LBHRViI'

G (3.30)

. 2 .
Meool = 47Tpg(rcool) T ool Tcool —
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The black hole mass grows also through mergers. In a merging event the two central
black holes will merge, producing a larger one. At the same time the merging produces
instabilities in the cold gas disk component, and part of this cold gas is accreted onto the
new black hole.

3.7.3 Star formation & feedback

Star formation can happen through mergers that will induce star bursts, and in a quiescent
way in the cold gas disk. In the case of mergers, the fraction of the combined cold gas
from the two galaxies that is turned into stars is:

f*burst = (.56 - (msat/mcentrd)o'?- (331>

We have denoted the mass of the heaviest galaxy as meentra; and the lightest one by mga;
the power law amplitude and index are empirically chosen to match observations.

The quiescent star formation depends on the parameters of the cold gas disk. The
cold gas disk is described by its mass mcqq, and the halo M., Ry and spin parameter
A. The spin parameter is a dimensionless quantity derived from the angular momentum
modulus J of the mass inside R.;,:

J

A= , 3.32
\/§Mvir ‘/vir Rvir ( )
The model defines a critical mass mei¢ for each halo like:
‘/vir 3)\ Rvir
Meriy = 3.8 x 107 (3.33)

200kms—! \/§ 10 kpc

For disks with mass below m;; no stars will be produced. Also a dynamical time for the
disk fayn,qisk is defined. The final star formation rate coming from all these assumptions,
is governed by the equation:

VeirV/2
3N\ Ryir
The efficiency parameter « is set so that 5 to 15 percent of the gas is converted into star
in a disk dynamical time.

The processes that lead to star formation implies also a chemical enrichment of the
medium and an energy release when massive stars end in supernovae. The chemical
enrichment in the gas is computed assuming a constant ratio between stellar mass formed
and heavy elements returned. At the same time, a portion of gas is ejected outside of the
halo, in order to consider the effect of supernovae. This ejected gas may be re-captured
later on. Each one of these processes have a free parameter which is adjusted to produce
realistic galaxy populations.

The way in which the star evolution affects the characteristics of the host galaxy is a
field of research in development. The use of empirical approaches such as the one referred
here, is therefore one of the most efficient ways to simulate galaxies.

(3.34)

m* — Of(mcold - mcrit)/tdyn,disk - CV(Tncold - mcrit)
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4. Gravitational lensing

Light deflection by gravity or gravitational lensing is the cosmological probe we are go-
ing to use for our research. Its analysis allows us to measure the mass of objects at
astronomical and cosmological distances.

Depending on the feature studied it is divided into the following sub-categories or
regimes. With the aid of gravitational lensing we can detect planets and other compact
objects of stellar mass, in what is called microlensing. If such a compact massive object
crosses the line-of-sight to a background star, its mass can focus the light of the star,
changing the observed brightness over time. The detection requires an extremely good
alignment between source, lens and observer, and astronomical separations to maximize
the effect. Nonetheless experiments have been conducted and successfully revealed that
the dark matter of our galaxy cannot be (at least completely) composed of such objects
(Alcock et al. 2000, Tisserand et al. 2007).

The large mass of galaxies or galaxy clusters, and the distance between them, enhance
the probability of a detectable lensing event with respect to the previous case. For good
alignments, these massive objects can distort the image of a background galaxy into giant
arcs, rings, or even produce multiple images. This is referred to as strong lensing.

If the mass is not large enough or the alignment between background galaxies and the
foreground lens is not good enough, the only effect is a small distortion of the background
images. As the image distortion cannot be separated from the intrinsic shape, it is only
measurable statistically. This effect is called weak lensing and has been applied for dif-
ferent purposes. It can be used to infer the mass of galaxy clusters, by correlating the
image distortion to the position of the cluster. In the case of isolated galaxies, where the
effect is smaller, we can stack many galaxies together and measure profiles of a galaxy
type. This type of weak lensing is called galaxy-galaxy lensing.

The large-scale structure also imprints a weak lensing signature on the images of
background galaxies, referred to as cosmic shear. Cosmic shear is one of the few probes
that we can use to characterize the matter density field in the Universe.

This is only a brief list of lensing studies. For a better review about all lensing possibil-
ities we recommend to consult Meylan et al. (2006). Along this chapter we overview basic
concepts in gravitational lensing, and present the measure that we want to use, namely
galaxy-galaxy lensing. We derive the necessary equations, starting from the deflection of
a single light ray. A more detailed discussion over the topics presented in this Chapter
can be found in Schneider (2006b).

We also address the description of the ray-tracing simulation from which we derive all
our results. Ray-tracing simulations describe gravitational lensing inside a cosmological
simulation, which in our case is the Millennium Simulation. The goal of this thesis is
to use this simulated data to forecast the signals that one could measure in upcoming
surveys.
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4.1 Basic theory

4.1.1 Point mass deflection & thin lens approximation

The best starting point to derive the fundamental lensing equations is to consider the
deflection angle & of a point mass. The deflection angle is the difference in the direction
vector between the incoming and outgoing trajectory of a light ray. In terms of the mass
M and the impact vector &, the deflection angle reads

AGM ¢
c2 5_2

& = (4.1)

In Fig. 4.1 we sketch the paradigmatic
situation. The distances separating ob-
server, lens and source, are many orders of —__
magnitude larger than the extension of the Source plane
lensing mass. For that reason an excellent
approximation is to assume that the lens-
ing mass is contained within a lens plane.
Under this approximation the trajectory of
the light ray changes as it crosses the lens
plane. This is called the geometrically-thin
lens approximation.

Now we only need to describe the de-
flection angle at the lens plane at any angu- Lens plane
lar separation £ from the lens. Considering 7
the mass elements dm at a radial distance LH
r; of the observer and at position &’ in the '
plane, the deflection angle reads:

. 4G £-¢ Observer
4G E—¢ Figure 4.1: Paradigmatic situation of a lensing
=5 [ [arpen)

e ¢z’ phenomenon. In this sketch the proportions are not
|€ £ | realistic, as the deflection angles are normally on the

. range of arcminutes. From Bartelmann & Schneider
where in the second step we took the con- (20(%1)_

tinuum limit, and defined a density func-

tion p(&’,r).
The integration along r can be carried out. Using the previous approximations we can
define the surface mass density as

(&) = /drp(ﬁ,r). (4.3)

It is customary at this point to reparameterize the surface mass density. We define the
convergence k(&) with the help of the critical surface mass density Y
crit — 47TG Ddst’

(4.4)
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where the distances Dy, Dgq and Dgs are angular diameter distances to the source, to
the lens and between lens and source. A mass distribution with ¥ > Y, ie. k > 1
somewhere, can produce multiple images of a source. The deflection angle produced by
the convergence on the lens plane reads

1 Dy
7 Dq Dgs

[ e we) ¢ (45)

)= E—¢p

4.1.2 The lens equation

From Fig. 4.1, we can derive the relation between image and source position. The relation
between source position in the source plane n, lens position in the lens plane & and the
deflection angle is

"= ;i;e _ Duale). (4.6)

Note that the typical angles involved are extremely small, and we can use the approxima-
tion sinv ~ tanv ~ . Now we convert the distance vectors to angular positions, which
are more commonly used:

n:DSIBu £:Dd07 (47)

and thereafter we define also the scaled defiection angle:

o Dds
=D
The lens equation relates the apparent angular position @ of the image, and the angular
position 3 that the source would have if there were no lens. The position 3 is unobservable,
but it can be computed in terms of @ and the scaled deflection angle a:

a(6) &(Dy0). (4.8)

B=60—a«al). (4.9)

Analyzing the lens equation, we can study how gravitational lensing distorts images.
Since lensing does not change the number of photons, the source brightness distribution
for a given frequency v, 15 (B) and the observed one, I,(8), are related through the
mapping 6 — 3:

I(8(9)) = 1,(6). (4.10)

v

This work is based on weak lensing, therefore we focus in the following on this regime. To
see what is the effect on a background image we linearize the lens mapping. The linear
term to the mapping is given by the Jacobian matrix:

_ 8_6 s da;(0) (1= k(0) —11(0) —72(0)
A(0) = 20 = 0y 29, = < —(6) 1_H(0)+%(9)>. (4.11)

This matrix can be decomposed into an identity matrix 1, an isotropic magnification
k(0) 1, and an anisotropic deformation or shear v1(6)os 4+ v2(8)o1, (01 and o3 are Pauli
matrices). Note that the isotropic magnification is produced by the convergence k. De-
noting a fixed point on the lens plane with 6, and its corresponding point in the source
plane with B, = 8(60y), we have
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convergence and
shear

) convergence only

€

Figure 4.2: Tlustration of the weak lensing effect on a circular image. Figure from Schneider (2006b).

B=p08,+.A0)-(60—6). (4.12)
From the last relation we can see that from a circular image with radius R, we obtain an
ellipse with semi-axes R/(1 — k %+ |v|), as shown in Fig. 4.2.

The determinant of the Jacobian matrix gives the ratio between the differential solid
angle in source plane and lens plane coordinates. The enlargement or decrease of the solid
angle due to the lens, changes the observed flux at the image plane. For this reason its
inverse is called the magnification factor:

1 1
:u(e) = d ./4 0 = 2 ) 2 N
ct A0)  (1-k(8))" —12(6) —13(0)
In principle, the magnification could be infinite, but that would involve unphysical perfect
point sources, and in such a case, the geometric optics treatment used here would not be
valid.

It is customary to us a complex number representation of the shear to simplify the
algebra:

(4.13)

Y=y +iy = |y (4.14)

4.2 Lensing potential

The solution of many lensing problems can be simplified with a mathematical abstraction,
the lensing potential. With a little bit of algebra one can see that the scaled deflection
angle can be written as the gradient of a potential v,

a=Vi. (4.15)

This potential allows one to describe both convergence and shear as derivatives of a scalar
function. We saw in Eq. (4.11) that

1—1(0) —aq200) \  (1—k(0)—1(0) —7s(6)
( —az1(0) 1-— 042,2(@) B ( —(0)  1—k(0)+ 71(9)) : (4.16)

where we have used the notation for the derivatives: da;/06; = o ;. From last equation
and Eq. (4.15), we find the expressions for convergence and shear in terms of the second
order derivatives of the potential:
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1 1
"= B (V11 —2), =112, and k= B) (V11 + 1 22) - (4.17)

One can see through the lensing potential that convergence and shear are not independent.
We can compute the shear from the convergence using the Kaiser-Squires inversion (Kaiser
& Squires 1993):

N / Q20 DO — 0)s(0)) with D)

T

02 — 62 — 210,0,
6]*

(4.18)

The relation can be easily found by computing the Fourier transform of v, x and the
derivatives of the potential ¢. The relations in Eq. (4.17) in Fourier space, allow us to
express v in terms of k. If we transform this relation back into configuration space, we
obtain the Kaiser-Squires inversion. The simulation of the lensing effect therefore can be
carried out by: defining the projected mass map, transforming it into convergence and
finally computing the shear. This can be done efficiently with Fast Fourier Transform
algorithms.

4.3 Observables

We cannot separate the distortion of the image from its intrinsic shape. The estimation
of lensing for this reason is difficult in the weak lensing regime. Nonetheless, galaxies
are supposed to be randomly oriented, hence the intrinsic ellipticity must average out
when using many galaxies. Therefore, the average correlated ellipticity of a set of images
to a lensing mass is observable. The correlated magnification could in principle also be
studied. For this work however, it is not of importance.

In order to measure such induced ellipticity we proceed as follows. First we define the
center of our coordinates according to the brightness distribution of the lensed image:

5 [ d01(0)6

4.19

[dz01(6)° ( )
and then we compute the second brightness moments:
d?01(0) (0; — 0,)(0; — 0,

[d201(6) ’
From these moments one can construct a complex ellipticity that can be used for our
analysis

Q1 — Q2 +21Q1o
Qi1 + Q2 +2¢/QuQa — QF,

One can show that the relation between the observed ellipticity € and the intrinsic one ¢;
is (Seitz & Schneider 1997):

e=¢€ +ie = (4.21)

if [g] <1,
€ = (422)
if [g] > 1,
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where g is the reduced shear, a combination of convergence and shear:

Tt
11—k 1—r

g (4.23)

This is of especial importance for us as we work with simulated data. In order to produce
realistic shear catalogues we shall introduce an intrinsic ellipticity to our reduced shear
catalogue to account for this source of noise. The expected € for an unlensed images is
zero, whereas one can show that the expectation value for a lensed image is related to the
reduced shear g (Seitz & Schneider 1997):

_ [ g iffgl <1,
E(e) = {1/9* if |g] > 1. (4.24)

If we measure the induced reduced shear, we are able to reconstruct the underlying mass
that causes the lensing.

Most of the times, there is no precise redshift information of the lensed images, or
none at all. In these cases we cannot recover the underlying surface mass density, we can
only infer x(60), and there will be a degeneracy in the mass model. For a given inferred
k(0) model, the new k() is

rA(0) =1+ A\(k(0) — 1), such as A(1—k(6)) =1— r\(0), (4.25)

whereas the shear is v, = A~. Therefore the reduced shear, the observable, does not
change. The only consequence is a change on the source plane, which is physically unob-
servable. This degeneracy is called mass sheet degeneracy, and it is a major issue in many
lensing observations.

If one has redshift information, the degeneracy can be broken. The convergence of the
same lens for different redshifts has a different proportion to the mass model. If 3'(8) is
the underlying projected mass, for two different redshifts z;, zo we have

k1(21,0) = S0 (21) B'(0),  ka(22,0) = S5 (22) X'(0). (4.26)

Since for each redshift the degeneracy is different, we have

K (Zh 0):1 + A (Zc_nlt(zl) Z/(e) - 1)7
Foxg (22, 0)=1 4 X2 (S 1 (22) X'(0) — 1). (4.27)

If we can reconstruct both models for N points, we have a system of 2N equation to
reconstruct ¥'(0) at N positions plus the two degeneracy parameters A\; and A\y. The
degeneracy is in theory broken.

4.4 Galaxy-galaxy lensing
Having presented some very basic concepts about gravitational lensing, we focus on the

probe used for this thesis. We measure the average galaxy-galaxy lensing for a galaxy
sample. We need a set of galaxies to produce a high enough signal-to-noise ratio, which
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in our case are satellite galaxies in clusters. In galaxy-galaxy lensing we measure around
each lens the tangential ellipticity of the background images

€(0) = —€1(0) cos(2¢) — €3(0) sin(2¢), (4.28)

where ¢ is the polar angle, once we take the lens center as center of coordinates, and 0
the angular position of the image (Fig. 4.3). Then we average over the angle ¢ and over
the galaxy sample to improve the quality of the signal.

We want to work in the weak lensing regime. In this case it is common to make the
following approximations

l—k~1l, g=v, €e=¢+7, (4.29)

where we denoted with ¢; the intrinsic ellipticity of a lensed image. Nevertheless we shall

test the validity of this approximation in Chap. 7. From Eq. (4.24), and under the weak

lensing regime we know that the expectation

£=0.03 value of the preceeding quantity is the tangen-

tial shear v4(0) as a function of angular separa-

tion. An isolated axi-symmetric lens produces
only tangential shear.

We measure v;(6) at different angular sepa-
rations # from the center of the galaxy. Then
we rescale the angular separation 6 into phys-
ical distance ¢ and the tangential (&) shear
into excess surface mass density AX(£). One
can show (see Schneider 2006b) that ~;(§) and
AY(€) are related by

AS(E) = £(6) - £(8) = (&) Zers  (4:30)

the correlated ellipticity toward a lensing point. where Z({) denotes the average surface mass

The image with an intrinsic ellipticity of ¢ = density inside a circle of radius { and X(¢) is
0.03, has a different tangential ellipticity to- the average surface mass density at radius &.

wards the lensing center depending on the rel- The estimator we shall use is
ative angle. /\
AY(E) = Berie(2s, za) €(0 D (zq)), (4.31)

where zg, zq are source and lens redshift, and we compute £ from its angular distance
D_(zq). The expectation value of our estimator, over the ensemble of lenses, assuming
that the intrinsic ellipticity noise is not redshift dependent, is the underlying AX(€).

The quantity AY(§) that we measure is insensitive to a constant mass sheet. A
constant mass sheet contributes equally to 3(£) and to X(€), so the final contribution to
AX(€) cancels out. This argument reflects the fact that a constant sheet of mass does
not produce shear. Therefore, we could always add a constant mass sheet to the mass
density profiles derived. In realistic measurements, we can assume that the possible mass
sheet is negligible.

Galaxies near in redshift may be dynamically connected, and as a consequence, the
intrinsic ellipticity may no longer be randomly oriented. Errors in the redshift determi-
nation have also an influence on the final result. However we consider these effects to be
higher order corrections. We leave a more thorough study for future works.

The goals we want to achieve as well as a review of previous results are discussed in
the next chapter.

Figure 4.3: Sketch of the measurement of
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4.5 Ray-tracing

Previously we depicted extremely simple situations. On real data many problems have to
be taken into account: we must consider lensing contributions from large-scale structure;
the signals depend on the redshift distribution of both lenses and images; and we must also
consider the impact of observational limits into the final measurement, such as luminosity
cuts.

In order to compute realistically what is to be expected from gravitational lensing
surveys, numerical simulations must be conducted. With the aid of these simulations,
one can predict the final signal and many systematic effects that may occur. In this thesis
we use ray-tracing simulations. Ray-tracing uses a previously computed cosmological
simulation, which in our case was the Millennium Simulation, to obtain simulated lensing
surveys.

The ray-tracing we use was produced by Hilbert et al. (2009). Many of the choices for
this ray-tracing simulations were due to the characteristics of the Millennium Simulation
(see Hartlap 2005). We focus on the choices made to compute our data. In order to obtain
galaxy observables, ray-tracing must be combined with the semi-analytical catalogues,
which we discussed in Sect. 3.7.

Once the dark matter simulation is
completed, the output boxes at different
redshifts are combined to form an observed

0

S

K ==ﬂ N

universe. In order to improve the amount < QEE N

of information and to avoid seeing the same 8 s=i.l N
. . 1/

structure twice in the same field of view, { gas N

the output boxes are placed in a skewed Egg N

angle with respect to line of sight (see g E!E N

Fig. 4.4). Then the matter distribution is [ !!E N

discretized into lens planes to allow for an E!E N
efficient computation. E %i’i

The separation between these skewed
planes is smaller than the box size. With Figure 4.4: Here we show how the cosmological
this choice we do not need to project a simulation boxes at different redshift are placed with

whole box into a plane, and we avoid respect the line of sight, and how the planes are build
)

a coarse discretization This particular ° the observed sky size is maximized. In this way
’ p we obtain the matter distribution along the line of

choice also allows to preserve the large- gopt. From Hilbert et al. (2009).
scale structure between close planes.

The goal is to compute the lensing quantities (shear and convergence) for any light
ray coming from any given plane to the observer. We shall define henceforth a map of
observed light rays, and compute which angular position B™ in the source plane, for each
plane (k), corresponds to an observed angular position. The angular coordinates at the
first plane ([3(0)) represent the observed angular position 8. The efficient way to do so, is
to define a grid of light rays at the plane 8¥ and follow them backwards as they cross
the different planes in the simulation. The lensing for any position can be computed by
interpolation between the array of light rays. The most efficient way to proceed is to find
the Jacobian Agf) between each of the source planes (k) and the observer.

It is possible to find a recurrence relation between the different Jacobians at different
planes. The first step is to compute the dimensionless surface mass density o®) (,B(k))
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£ f (k-2) g (k=1) £ (1) f(k-l) £ ()

K,L K K,U K
Figure 4.5: Sketch of a ray-tracing situation. The vertical solid blue lines are lens planes where we
have projected the mass corresponding to a slab, illustrated in one case with the shaded blue region. In

red we display the deflection for one light ray. From Hilbert et al. (2009)

map associated with each plane (k). The plane is at a radial comoving distance y*),
defined along the line of sight. For each plane we use the volume slice between the planes
at ng) = x® + Ax® /2 and X(Lk) = x® — Ax® /2. In order to obtain o*) (B(k)) we

project the density contrast ¢ (B(k), X ) of this volume slice into the (k) plane:

dy’ 5(ﬁ(k), X'), (4.32)

We express also o) (B(k)) as a function of the matter density to underline its relation

with the convergence Ii(ﬁ(k)). The quantity o equals the convergence k in the abstract
case of sources at infinite distance (light-rays perpendicular to the lens plane). In fact,
we can use Eq. (4.18) changing  for ¢ and compute the quantity A, which equals the
shear produced by the lensing plane also for sources at infinite distance. With ¢ and A
we define the shear matriz U, at the (k) lens plane

) C0aP(BY) (oW (B®) 4 AP (8" AW (g
08" = Lt - ( Agk))(ﬁ(kl))( )U(k)(ﬁ(kz;)(_ Ag’f)>(g<k>) (433)

J

Now we must define the angular position 8% of a light-ray at the (k) plane, with respect
to its position at the previous planes (k — 1), and (k — 2). From Fig. 4.5 we can extract
the necessary relation:

Y BIBE = (0 gH=2) (k=D ()¢ (1) _ (1)) ok (gD (4.34)
where
X+ (k—1) (k—2)
€= NGy (B -3 ) (4.35)
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This same relation allows us to compute the angular position 8% of the light-ray at the
plane (k) as a function of the observed position 6.

In order to compute the lensing effects for each light-ray along its travel, we solve for
B™ in Eq. (4.34), and we differentiate the whole expression with respect to 8 to obtain
the recursive relation between Jacobians A;;(6):

k—1) _

( (k)
k X X k— - k=
A5 (6)=— (T) U (B 1(0)) AV ()

k— k— k
i =
B &2 (k-1 | i

(k—=2) (k—1) _ (k)
X X X (k—2)
_( By (k=2) _X(k—l)) Ajj (6). (4.36)

This final relation allows us to compute all Jacobians in a sequence and with them the
lensing observables. In order to compute the Jacobian for the first lens plane we assign
the identity matrix to the virtual planes £k =0 and k = —1.

So far we have a total of 512 square degrees up to redshift z = 4. The 128 fields of 4
square degrees in which the simulated survey is divided, are almost completely indepen-
dent. Only in a few occasions the structures observed on different patches correspond to
the same object at a different redshift output. The data available for this thesis was com-
posed by the Jacobians Az(»f)(e) as a function of angular coordinate, between the observed
sky plane (k = 0) and the source planes located at the same radial distances as the lens
planes. With them we can produce a source distribution at will, and analyze the outcome
of different surveys with different specifications.

The final goal of galaxy-galaxy lensing is to infer the underlying projected mass.
Therefore, we also analyze the projected mass map of each lens plane. The slices that the
planes define are large enough, so almost all the objects we want to study are contained in
a single plane. We compare the results from the projected mass maps and from the shear
catalogues to estimate the precision of our measurements and the scope of our conclusions.

Since only the Jacobians are kept, we had to reconstruct the projected mass maps
again. They were obtained inverting the previous process. First, we solved for the shear
matrices for each plane (k), out of the Jacobians from the planes (k), (k+1), and (k—1),
(Eq. 4.36). Then the dimensionless surface mass density is obtained from their trace:

a(80) = 5 (U (8") + U (8%)) . (4.57)
Inverting Eq. (4.32)

k k
X 2 X

(g — ! (B0 0 — o) (gk) (W
2 (ﬂ)—/xm W (BT X)) =P (BY) apaw +/x(k) dx’ p(x™),
U U

we end up with the reconstruction of the mass maps L*)(3).



5. Substructure & galaxy-galaxy
lensing

In previous chapters we reviewed the basic concepts necessary to understand the current
standard cosmological model. We also introduced the cosmological probe that we want
to use in this thesis, namely gravitational lensing, and we described the data used.

This chapter is devoted to a formal description of the cosmological problem on which
this thesis aims to shed light: substructure in galaxy clusters. We propose a particular
galaxy-galaxy lensing method to measure mass profiles of satellite galaxies in clusters.
With this thesis we want to forecast the lensing signal for our method in future surveys.

The chapter is organized as follows. First we discuss what we can learn with lensing
about the mass profiles of sub-halos. We consider previous works and the differences with
respect to our proposal. Then we present our galaxy-galaxy lensing method. We inspect
its limitations and the impact of the redshift distribution of the galaxies involved. At the
end of the previous chapter we have outlined how our lensing simulations are produced,
and the data we use. In this chapter we present examples of the projected mass maps
¥(B) that we reconstructed. Finally, we motivate the necessity of a thorough check of
the proposed method. We also give details of our simulated cluster sample hosting the
sub-halos.

5.1 Substructure in clusters

A paradigm in structure formation is that small mass overdensities, such as galaxy halos,
form first. Large ones, corresponding to galaxy clusters, form later through merging
processes. This is also what one can observe in simulations. In the current structure
formation models, a typical galaxy cluster consists of a massive main halo of dark matter,
in the center of which we found a bright central galaxy (BCG). Within this main halo,
we can find local overdensities, sub-halos, hosting a satellite galaxy in their centers.

One of the most interesting questions is how sub-halos evolve after they become part
of the cluster. This evolution is also essential to understand how hosted galaxies evolve.
In the current model, sub-halos are stripped of the outermost layers by gravitational tidal
forces. This stripping changes the original radial mass profile. This effect is customarily
parameterized by a so-called truncation radius. Detecting the truncation radius is one of
the main targets of this thesis.

In order to measure the dark matter halo, gravitational lensing is one of the most
powerful probes. With lensing we can detect mass at large scales around the galaxy
where there is no luminous matter, and it does not depend on its dynamical state.

The mass profiles of sub-halos have already been studied in observations using gravi-
tational lensing. The works published so far focus on analyzing single clusters. In these
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works, out of all the constraints coming from both strong and weak lensing analyses, two
parameters are estimated for each sub-halo: the already mentioned truncation radius and
the central density of the sub-halo. These parameters fix the mass profile. The most
relevant papers in this context are: Limousin et al. (2007), based on a method discussed
in Limousin et al. (2005) (see also Schneider & Rix 1997); and Natarajan et al. (2007)
which coincides in their methods for strong lensing, but differs in the weak lensing treat-
ment (Natarajan & Kneib 1997). The works by Halkola et al. (2007) and Suyu & Halkola
(2010) based only on strong lensing analyses, seem to agree with the previous ones.

The method in the papers mentioned involves modeling the global lensing signal com-
ing from the cluster, therefore the results depend on the model for the cluster. Except
for Suyu & Halkola (2010), the method also relies on scaling relations between galaxy lu-
minosity and the parameters obtained. These scaling relations are necessary as they are
the only way to reduce the number of parameters and produce robust results. However,
they introduce strong assumptions. The results are derived from an assumed model for
the sub-halo mass profile. There is no direct measurement of the sub-halo profile, but
rather an inference.

The method that we develop in this thesis is meant for large cluster samples. Although
we are also forced to make assumptions and use priors, we derive the mass profiles in a non-
parametric way. Our method is the next step in lensing research on sub-halos. The method
we propose uses galaxy-galaxy lensing and is based on previous works e.g. Hoekstra et al.
2004, Mandelbaum et al. 2006, Parker et al. 2007, Mandelbaum et al. 2008, Tian et al.
20009.

5.2 The method

As we introduced in Sect. 4.4, galaxy-galaxy
lensing measures the mean tangential shear pro-
file (7¢(0)) at different radii 6, of a galaxy sam-
ple in oder to obtain the average mass profile.
If redshift information is available we can con-
vert angular separation 6 to physical distances
¢, and transform the tangential shear ~; into ex-
cess surface mass density AY.. For the lensing
surveys on which we want to apply our method,
we consider that we can always measure AX ().

Galaxy-galaxy lensing however cannot be
applied directly to sub-halos, at least not with- Figure 5.1: Sketch of the situation we want
out understanding that the signal is going to © address with the main halo, a sub-halo and

. . . its calibration point. calibration point.
have a strong contribution coming from the
main halo. We are not measuring an isolated object, and therefore our signal is not
coming only from our target. To illustrate this, we present Fig. 5.1.

Our method estimates the main halo contamination and subtracts it out from the
signal. We measure two signals for each sub-halo: one around the sub-halo center and
another around the calibration point (Fig. 5.1). We assume that the main halo contribution
is the same around both points on average. The calibration point is drawn at the same
distance from the main halo center as the sub-halo is, but in the opposite direction as
seen from the cluster center. In order to recover the sub-halo AX(€) profile, we subtract
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these examples, the distance between the main halo center and the sub-halo center is 0.6 Mpc.
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the signal from the calibration point from the signal measured around the sub-halos. To
use this calibration scheme, we only need to assume that on average the cluster is parity-
symmetric with respect to the halo center. Not considering the contamination of the main
cluster in the analysis leads to misidentify the sub-halo profile.

We illustrate our method in Fig. 5.2 drawing mass profiles in a situation like the
one sketched in Fig. 5.1. We use NFW mass profiles (Navarro et al. 1997) to compute
plausible signals. The definition of the profiles, and how we compute the tangential shear
from a mass around a point different from its center, can be found in the Appendix. We
chose realistic values for the parameters to give an idea of the magnitudes that we can
encounter.

In the top panel in Fig. 5.2, we depict the A (&) profiles that we are going to assign
to the main halo and to the sub-halo, using a solid thick black line and a solid red
line respectively. Since we are dealing with pure theoretical profiles we can quantify
the contamination that the main halo produces in the chosen configuration (dashed and
dotted black). The contamination signal becomes negative (dotted black) when ¥(§) gets
bigger than (£) (see Sect. 4.4), which happens if we measure a profile around a point
which is not the mass center. We show how to compute it in the Appendix.

In the bottom panel of Fig. 5.2 we show the results after applying of our calibration
scheme. One can see how the raw signal measured around the sub-halo (dashed black)
is heavily truncated compared to the original one (dotted purple) due to the main halo
contamination. We can recover the desired sub-halo signal (thick solid blue) ﬁ(f ) by:

AT(€) = ASqun(€) — ASeu(©), (5.1)

where Esubh(ﬁ ) is the signal around the sub-halo (dashed black), and Zical(g ) the signal
around the calibration point (solid red). We can proceed in this way because any lensing
signal is a linear combination of the contribution of every halo in our weak lensing ap-
proximation; and the angular averaging needed to obtain a radial profile is also a linear
process.

In the signal around the calibration point one can see a dip making the line non-
smooth, which appears again in the reconstructed sub-halo as a peak. This results from
the fact that the calibration signal also “sees” the sub-halo. In a realistic measurement,
the averaging over signals coming from sub-halos at slightly different distances from the
main halo washes out this feature.

For distances beyond the separation between sub-halo center and main halo center
dy—g, our calibration is not possible in practice. For twice this separation, the calibration
is already not physically possible, as the calibration includes the sub-halo itself. In this
case we cannot distinguish between sub-halo and main halo without further assumptions.
For distances between dy;_g and 2dy_g, the calibration is theoretically possible but in
practice very difficult. The profiles that we combine are very steep at this physical radius
(note in the lower panel, how both measurements are almost vertical lines around 0.7
Mpc). As a consequence, our ability to obtain the reconstructed sub-halo profile above
the noise decreases.

We obtain the mass profiles by fitting a model to the measured AY(§) profile. A
direct inversion of the relation between mass profile and AX(¢) is only effective for a
fine sampling, which is hard to achieve. In any case, with galaxy-galaxy lensing we can
measure a profile for the sub-halo. The process is therefore more transparent than those
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in previous works.

Since we are combining the signals coming from a set of galaxies, the first thing to
bear in mind is that we are trading a lower knowledge on individual galaxies for a higher
signal-to-noise. One has to classify galaxies and produce sub-samples as homogeneous as
possible. Otherwise we may mix different trends and reach wrong conclusions. We shall
treat this in more detail in Chap. 7.

A cornerstone of our method is how the different measurements coming from different
galaxies are combined into the final result. We address here this issue, as it is common to
all our results presented later on. The signals coming from different galaxies do not offer
the same amount of information. The background population of galaxies we use to probe
the sub-halos has a redshift distribution. Lenses at high redshift therefore are much more
sparsely probed than those at low redshift. Moreover, the lens efficiency depends on the
observer-lens-source configuration. Altogether, this means we should not consider every
measured AY;(€) equally. In order to obtain the best signal-to-noise we compute the final

E(f) through a weighted mean:
AT(E) =Y wi A%i(), (5.2)

where the sum runs over all pairs formed with a background image and a lensing galaxy.
When using shear catalogues the weights for each AY;(&) are
272 (ZS, Zd)

Wi — crit,i
[ _
Zj Et:1ri2‘c,j (Z57 Zd) ’

where Xt i(2s, 2a) is defined in Sect. 4.1. The weights are a simplified versions of those
used by Mandelbaum et al. (2008), since we neglect the error from the ellipticity estima-
tion. We assume a perfect determination of the redshift.

The weighting used makes our estimator more sensitive to lenses in a particular red-
shift range, which depends on the redshift distribution of both lenses and sources. The
weighting also determines the way we obtain the necessary covariance matrices for the
model fitting. In this case, the best approach is to compute the covariance matrices with
a bootstrapping algorithm.

(5.3)

5.3 Analyzing the method and the data

The data we want to use are simulated shear catalogues resembling those of real surveys.
The shear catalogues come from the ray-tracing simulations described in Sect. 4.5. But
prior to that we test the method in several ways.

To begin with, we want to know how much the profile that we measure deviates from
the underlying “true” one. For that purpose we reconstruct from the lensing Jacobians the
projected mass maps X(3) for each lens plane as explained at the end of Sect. 4.5. Having
¥(B) allows us to compute AX(£) with a higher precision than with lensing catalogues.
We also have the advantage to have the highest possible resolution and no contamination
from background or foreground masses, as we consider isolated planes. One can find two
examples of these reconstructed maps in Fig. 5.3. All the reconstructed maps are squares
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with a side length of two degrees. On them one can see overdensities corresponding to
isolated galaxies, galaxy groups and clusters.

Measuring AX(§) directly from Y(3) assures us to get the best signal coming from
the simulation. With this measurement we shall characterize the Millennium Simulation
sub-halos.

As we mentioned in Sect. 3.6 there is not a unique way of separating the main halo
and sub-halos. Nonetheless the validity of our method relies on its ability to distinguish
between them. In order to analyze its performance we need data with a clear definition
of both contributions. In Sect. 6.1 we propose a test for the calibration, which addresses
these problems.

In the tests for our calibration method and in the measurement of AX(§) with pro-
jected mass maps, we have pixel maps instead of shear catalogues with discrete galaxies.
In these cases we still compute the signal through a weighted mean:

AS(E) = wh AR(©), (5.4)

but here ﬁ;(@ is measured considering the projected mass values within the radius &
around a lensing sub-halos. The sum runs over all sub-halos in the sample studied. The

weights in this case for each ﬁ;(f ) are

g

Zjnj7

where ny is the number of pixels used in each measurement. These weights consider the
pixel resolution in each measurement. The covariance matrices that we need in these
cases are changed accordingly.

wy, =

(5.5)

5.3.1 Clusters in the Millennium Simulation

We define as cluster a FOF group whose main halo has a mass according to the SUBFIND
algorithm larger than 10'* M, /h. We use this criterion in order to avoid FOF groups where
a large fraction of the mass is not gravitationally bound and only close in position. Our
simulated survey has 128 patches of 4 square degrees. All clusters we analyze are below
z = 0.9055. We consider 20 lens planes obtained with the last 20 outputs of the Millennium
Simulation. High mass concentrations at high redshifts are likely to have a different
evolution and characteristics to those overdensities at low redshift. Including high-redshift
objects into the sample is likely to produce less homogeneous samples. Moreover, it is more
difficult to probe them with lensing since there are fewer background sources available.
Therefore their inclusion offers no improvement in the detectability of the signal. We
imposed the redshift limit for this reason.

Clusters near the borders of our survey patches cannot be measured properly, hence
we exclude them from the sample. We define a square centered on the main halo using
the sub-halo distribution. The dimensions of the rectangle equal the standard deviation
of the sub-halo position, along each of the two spatial coordinates. We exclude all clusters
whose area, defined in this way, is not fully inside the field of view. The total number of
clusters after this filtering is 2991. All of them are used for the tests of our calibration
and to characterize sub-halos in the Millennium Simulation.
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Figure 5.4: Histograms characterizing the cluster sample obtained from the Millennium Simulation.
Top left panel: redshift distribution of the clusters once we rejected those too close to the border of a
survey patch. Top right panel: cluster histogram according to the number of hosted sub-halos. Bottom
left panel: Mpor mass histogram, this mass (the mass of the FOF group, see Sect. 3.6), combines the
mass of the sub-halos and main halo mass. Bottom left panel: modulus of the ellipticity of the cluster’s
shape, according to the galaxy distribution.

In Fig. 5.4 we present some characteristics of the cluster sample. In a ray-tracing
simulation, the redshift distribution of the lenses is discrete and one can see on the upper-
left panel. The clusters are located in the different planes used for the ray-tracing. We
consider 20 planes, but in the first three there are no clusters detected.

The mean sub-halo number (upper-right panel) is around 100. We also count the total
number of sub-halos of our sample to be 291955. These are however, very different objects
from large sub-halos with a large fraction of the mass of the cluster, to almost unresolved
ones in the simulation.

In the lower-left panel we present the histogram of the FOF mass Mpor of the cluster
(do not confuse with the main halo Msypr) This mass combines the mass of the sub-halos
and main halo mass. As one can see the two lowest mass bins are not heavily populated.
This can be explained by our selection criterion. These bins are populated with clusters
with small mass but still with a main halo large enough to be inside our sample. These
clusters have no or few sub-halos, and as shown in the upper-right panel they are rare.

In the lower-right panel, we present the histogram of the ellipticity modulus of the
cluster’s shape. The ellipticity was computed using Eq. (4.21), except that we use the
galaxy spatial distribution instead of the luminosity function of the cluster. Using the
luminosity function does not change the results qualitatively. Note that the clusters have
some non-negligible ellipticity.



6. Sub-halos in the Millennium
Simulation

In the previous chapter, we investigated how to proceed to apply galaxy-galaxy lensing
on sub-halos in order to obtain their average mass profile. Our intention now is to test
our method, and to characterize the lensing signal of the sub-halos in the Millennium
Simulation. For this purpose we use the projected mass maps %(3) defined in Sect. 4.5.

The value of the results that we present in the following lies in two considerations.
In the first place, the predictions for galaxies we shall present later on, explicitly depend
on the host sub-halos. With the results derived here, we shall be able to avoid most sys-
tematics and bias coming from a realistic shear catalogue. Secondly, these results should
be representative of realistic lensing signals. The size and resolution of the Millennium
Simulation in combination with semi-analytical galaxy catalogues makes our data set
state-of-the-art.

Dark matter simulations with a higher resolution than the Millennium simulation
have been conducted, i.e. the Aquarius Project (Springel et al. 2008) or Millennium IT
(Boylan-Kolchin et al. 2009). These are even focused on sub-halo studies. However, the
Millennium Simulation is still better suited for our ray-tracing simulations and the masses
we want to probe. There are also hydrodynamical simulations available (e.g. Baldi et al.
2010, Keres et al. 2009) but despite their fast evolution they do not match the size and
resolution of the previous ones.

In this chapter we address a number of questions. First we define our calibration tests
and we present their results. Afterwards we characterize properly the mass profiles of the
sub-halos in our sample. We discuss the detection of a truncation radius and which model
describes better the sub-halos. Finally we study how the mass profiles of sub-halos evolve
with time.

6.1 Synthetic clusters

In order to test our calibration scheme, we produce a sample of mock clusters. By using
them, there is a unique true value for the parameters of the mass profile, and we can
quantify how well our method can retrieve them. This mock sample is constructed using
truncated NFW theoretical profiles. NFW profiles have been shown to be a good fit for
relaxed dark matter halos at the resolution of the Millennium Simulation (Navarro et al.
2004).

Since we want to evaluate the method for situations as realistic as possible, we use the
galaxy cluster sample that we have from the Millennium Simulation as a starting point
(see Sect. 5.3.1). For this purpose, we use the projected mass maps. For each cluster in
the sample we produce a mock one. The synthesis of the mock clusters is done in three
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steps:
e characterizing the smooth overall component for each Millennium Simulation cluster
by finding the best fitting profile;

e finding approximate relations between sub-halo mass and the parameters of a NF'W
profile, in order to draw a sub-halo density profile from its mass;

e produce synthetic clusters with the corresponding overall smooth component and
the scaling relations derived from the sub-halos.

In order to speed up the computation, for the re-creation of the mock clusters we only
consider small fields of view around their center. These fields of view are rectangular and
their size is defined by the sub-halo number density distribution.

Synthetic main halo

The main halo is characterized in each case by finding the best fitting profile. We fit
two types of profiles, an elliptical truncated NFW, and a truncated NFW profile with
no parity symmetry, hereafter called non-elliptical. The elliptical profile is achieved by
using elliptical coordinates. Non-elliptical profiles have non-zero higher order moments,
presenting banana or triangular-like shapes.

The non-ellipticity is also extracted from the original Millennium cluster sample. In
order to achieve it, we proceed as follows. First we fit an elliptical truncated NF'W. Then
we divide the original projected mass maps by the fitted profile. If the original map is
denoted by X(3) and the elliptical NFW by Xcnip(8), we obtain the coefficients

= EN —E(BP) cos (n
n= - Eentip(B) (n6(5,)).
= - —Z(Bp) sin (n
bn— Eellip(ﬁp) ( 9(/6p)>’ (61>

where the sum runs over all N pixels p(3) of the field of view, and 6(3) is the polar
angle at each position 8. The profiles are always centered on the main halo position given
by its potential minimum. We compute a Fourier Series from a discrete function up to
order n = 3. The higher the coefficients are, the less robust is their computation due to
pixelization. For our purposes n < 3 is sufficient. The final profile in the non-elliptical
case Lyon_el() is then

n=1

Enonfel(ﬁ) = z]ellip(/B) (1 + Z |:Cln Cos (n e(ﬁ)) + bn sin (n 9<IB))]> : (62)

An example of a non-elliptical truncated NFW profile can be found in Fig. 6.1.

Synthetic sub-halos

The sub-halo characterization is done by a preliminary application of our method. We
classify the sub-halos according to Msugr (see Sect. 3.6). Then we measure the A (&) as
function of the projected physical radius £ and we obtain the best fitting NF'W profile in
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each sub-halo class. Finally we find the best fitting power laws for the NF'W parameters
(rs pr ¢, 75), as a function of the sub-halo mass (Msugr).

We see no advantage in measuring () instead of AY(¢), and we can reuse the code
if we measure AY (). In order to avoid biasing from an imprecise calibration we shall
only use a limited range in £ between 0.03 and 0.2 Mpc. These values were a sensible
guess out of previous analyses. As we shall see, the final results support our choice. The
full measurements are shown in Fig. 6.1, in the middle left panel. The modeling of the
two parameters with respect to AYX (&) are shown in the two bottom panels. The scaling
relations between the parameters and the mass are

,
* —=1.1x107% (M, M,,)0-3%5,
Ve (Msune/Mo)

Ts Pr 5c
(MQ/pCQ)

Once we have characterized the parameters of the sub-halos, we can convert the mass
into a profile. The mass of the NF'W profile without truncation diverges if we integrate
up to an infinite radius. We expect also a truncation of the profile due to tidal stripping
(Hayashi et al. 2003). For these reasons we introduce a truncation radius, obtaining a
truncated NF'W profile. We apply this modification taking care that we do not alter the
scaling relations found.

=1.92 x 10" (Mgygr/Mg )" (6.3)

Table 6.1: Classification according to Mgygr of all sub-halos in clusters for z < 0.9055. Note that the
range is in Mg /h as obtained from the database, and the mean SUBFIND mass Mgypr in Mg. We also
present the number of sub-halos in each bin.

Bin Range [My/h] # SH Msypr [Mg]
1 [1011'33 :101-66) 31831 4.27 x 101
2 [1()11'66 : 1012 ) 16025 9.14 x 10!
3 102 :10'233) 8273 1.98 x 10'2
4 [10'233:10'266) 3834  4.23 x 10"
) (101266 . 1013 ) 1816 9.15 x 10'2
6 [10 :10'333) 810  1.96 x 10%3
7 [10'333 . 1013:66) 385 4.27 x 10'3
8 [1013:66 ;1014 ) 162  8.92 x 10*?
9 (101 . 10'33) 74 1.88 x 101

Final synthetic cluster

Each synthetic cluster is constructed by combining the previously defined main halo and
sub-halo profiles. The profiles are drawn in pixel maps identical to the original projected
mass maps. The center of the main halo and the sub-halos are also conserved. We present
an example of how a synthetic cluster is produced in Fig. 6.1. In the top left panel, we
show the original Millennium Simulation cluster (note that it can also be seen in the
lower right part of the bottom panel in Fig. 5.3). In the top right panel we present the
non-elliptical main halo that best fits the original. Finally, in the middle right panel,
one can see the final total cluster with the presence of the sub-halos. The reconstruction
loses information about the surroundings of the cluster. However, we assume that the
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Figure 6.1: Top left: a cluster from the projected mass maps. Top right: best fitting non-elliptical
truncated NFW to the main halo of the previous cluster. Middle right: final synthetic cluster produced
from the one depicted in the top left panel. Middle left: preliminary measurement of A profiles for
different sub-halo mass Mgupr bins (see Tab. 6.1) with dotted lines; we highlight the range used for the
characterization with solid lines. We show the average signal for the host cluster with a dashed line as
a visual reference. Bottom left: NFW scale radius (r5) as a function of Mgypr, from the measurements
depicted in the middle left panel, and the best fitting power law. Bottom right: amplitude of the NFW
profile (r56. pm) as a function of Mgypr, from the measurements depicted in the middle left panel, and
the best fitting power law.
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surroundings are uncorrelated with the cluster. Therefore, the average surrounding mass
is expected to be a constant mass distribution which cannot produce shear.

The reconstruction fails in the few cases (below 10%), where the main halo is not
round enough (bimodality, unrelaxed main halo ...). Nevertheless we are confident that
the way we proceed is consistent and robust. In this procedure we take into account:

e the spatial distribution of the sub-halos inside the cluster,
e the sub-halo mass function,
e the dependence between the mass of the sub-halo and its position in the cluster,

e and the correlation between the main halo shape and the position of the sub-halos.

With this procedure we can measure how well our calibration works in the presence of
a non-elliptical main halo, or an elliptical one. We can also isolate the impact of the
surrounding sub-halos in our measurement by plotting the sub-halos only. In section 6.2
we present the results for all these possibilities.

6.2 Results for the calibration tests

In the previous section, we defined a procedure to produce synthetic clusters with which
to test our method. Using them, we present the following three tests. First we derive
the radial range where we can measure an unbiased AY () profile. Second, we define a
criterion to filter the sub-halo sample in order to optimize the results. And third, we
discuss the problem of the misidentification of the main halo center. For our calibration
tests we divide our sub-halo sample again according to Mgygr. In Tab. 6.1 we present the
ranges, the mean mass and the number of members for each bin. We have excluded from
the sample the lightest bins of sub-halos. Those are the ones with the smallest number
of particles and therefore the least resolved.

6.2.1 Range for measuring AX

As mentioned in Sect. 5.2, we can only measure properly AX () within a range in radius
&. Here we derive this range using the synthetic cluster sample.

In Fig. 6.2 we present the results of the test for a selection of the nine sub-halo mass
bins. We plot the ratio of the measured AY(£) to the input profile versus physical radius
&. In the top panel we used a spherical NFW profile for the sub-halos with a truncation
radius ri, = 6.66 5. In the bottom panel we used a different truncation radius, ry, = 2.
The first value yields for the least massive sub-halos, with a scale radius of 0.03 Mpc, a
truncation radius of 0.2 Mpc. As we shall show, this truncation is above the largest radius
for which we measured an unbiased AX(¢), for these sub-halos. With it we consider the
case where the truncation is difficult to detect. The second value was an sensible choice
which yields a much smaller truncation radius and therefore easier to detect.

For each mass bin in each panel, we present the results from different situations. With
black dotted-dashed lines, we present the AX () signals coming only from the sub-halos,
i.e. the main halo was not added. With red dashed lines, we present the results for an
elliptical main halo plus the sub-halo population. Finally with solid blue lines, we present
the signals from realistic clusters using the best non-elliptical main halos. The shaded
region encompasses the one sigma error.
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Figure 6.2: Analysis with synthetic clusters, ratio of the measured AY(€) to the one we input, versus the
projected physical radius . Top figure: the truncation radius is ¢, = 6.66 ;. Bottom figure: ry, = 2rs.
We plot only the results for a selection of mass bins; the mass ranges are written in each plot. Black
dotted-dashed lines: measurements done with mock clusters where the main halo was removed. Red
dashed lines: clusters with an elliptical main halo. Blue solid lines: clusters with a non-elliptical main
halo. The shaded regions correspond to the one sigma error. The dotted black line, where the ratio is
one, is a visual reference.
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We assume valid for analysis the range of radii for which the measured value deviates
less than a 10% from the input model. We will only be able to detect a truncation radius
if this scale is well inside the range we can measure. The resolution of our data can
also be seen from this analysis. The pixelization of the data limits the resolution of the
density profile. The consequence is that the measured signal is smaller than the input
one for scales smaller than 0.06 Mpc. We consider that the resolution is good enough to
use scales up to 0.03 Mpc. This resolution limit comes from the ray-tracing simulations
used, therefore we use it in all our results.

The distribution of the sub-halos is not parity-symmetric with respect to the cluster
center. Since the positions of the sub-halos are correlated among themselves, when we
measure around a particular sub-halo, we “see” the surrounding ones. If this were not
the case, the contribution to our measurement would tend to be zero on average and
the black dotted-dashed lines would show no bias. So far we have considered only the
contamination of the main halo to the measurement of AYX(¢). However as it is shown
here, there is a non-negligible contamination coming from the population of sub-halos
surrounding the one we measure.

A completely elliptical halo can always be calibrated properly. The observed effect is
an increased variance that masks the bias introduced by the surrounding sub-halos. The
one sigma region clearly encloses the signal computed only with sub-halos (red regions
around dashed lines). For a non-elliptical halo, the bias is larger as we are not able to
calibrate all of the main halo’s contribution (solid blue).

Our method is unable to distinguish between the contamination due to the main halo
and due to the sub-halo’s spatial distribution. In fact they can be correlated. In any case
the sub-halo lensing signal is not only affected by their host main halo but by the other
sub-halos.

The difference between the two truncation models does not substantially change the
region that we eventually define as suitable to derive the mass profile. Since, as we show
later on, our simulations do not present a clear truncation of the mass density profile, we
focus in the following in the truncation model where 7 = 6.66 7.

6.2.2 Discarding sub-halos

The main halo’s contribution to the bias in AY(¢) is more important for sub-halos near
the cluster center. In fact, for certain projected separations, including the sub-halos may
decrease the quality of the measured AX (). Having this in mind, we consider different
selection criteria concerning the physical projected separation between the main halo
center and the sub-halo center. Note that due to projection effects, on average the true
three-dimensional separation between the sub-halo and the main halo is larger than the
measured one.

The results are shown in Fig. 6.3. Here we present again the ratio of the measured
AX(€) to the input value versus physical radius £. In order to be concise we only
present some mass bins, and only for the case where sub-halos have a truncation ra-
dius 7y = 6.66 1. This time we compare different selections of sub-halos. In each panel
we plot the signal coming from the whole sample in dashed blue; in solid red, the signal
where we discard all sub-halos closer than 0.5 Mpc to the main halo center; and finally
in black dotted-dashed the signal where we discard all sub-halos closer than 1 Mpc to the
main halo center. The shaded regions correspond again to the one sigma error regions.
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Figure 6.3: Analysis with synthetic clusters, ratio of the measured AY(€) to the one we input, versus the
projected physical radius £. Only the results for a selection of mass bins, for the case where 7, = 6.66 7
are presented; the mass ranges are written in each plot. Blue dashed lines: results for the whole sub-halo
sample. Solid red lines: results for the sub-halos with a minimal distance of 0.5 Mpc to the cluster center.
Black dotted lines: results for the sub-halos with a minimal distance of 1 Mpc to the cluster center. The
shaded regions correspond to the one sigma error. Note that, for clarity, we do not plot the dashed blue
line in the top panel, its bias and its variance are nevertheless larger than in the other two cases. Note
that in the bottom panel the red solid line and the blue dashed one overlap.
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The signal improves if we discard sub-halo closer than 0.5 Mpc. Eliminating these
sub-halos decreases both bias and variance. The heaviest sub-halos are more likely to be
recent mergers and lie far away from the cluster center so the criterion has little effect in
this case (lowest panel).

Increasing the minimal separation between cluster center and main halo however,
depletes the sample and limits our result to sub-halos in the outskirts of the cluster.
Imposing a minimum distance of 1 Mpc increases the range where the bias is below 10%
but only at the expense of limiting our sample and increasing the variance (compare the
variance for the black dotted line and for the red solid line at the top panel in Fig. 6.3).
For the heaviest sub-halos, a larger minimal separation improves the results, and seems
to be a better choice. Nevertheless, for simplicity we shall discard sub-halos closer than
0.5 Mpc in projection, regardless of sub-halo type.

6.2.3 Main halo center detection

In the Millennium Simulation, we know where the main halo center is, namely in the
potential minimum. Moreover, within the semi-analytical catalogues there is always a
galaxy placed at the center of the main halo by construction. The definition of the
calibration center is straightforward. However, in real clusters, the correlation between
galaxy and main halo center is supposed to be less tight. The definition of the calibration
point is henceforth more difficult.

The study that we propose in this thesis is directed to large samples of clusters in
lensing catalogues. Nonetheless, it could use additional sources of data, like X-rays sur-
veys, or parallel lensing investigations to determine the center of the clusters. Therefore
it is not unlikely that a well determined main halo center can be used. For the rest of
the thesis we shall assume the center of the main halo can be found accurately. However,
for the sake of completeness we want to consider the possibility of not knowing the main
halo center.

The expected spatial correlation between the galaxy hosted by the main halo and its
center is difficult to determine. In order to quantify the effect of not knowing the main
halo center, we compute the calibration assuming a different cluster center. In Fig. 6.4 we
present again, using the synthetic cluster sample, the ratio between the measured AY (&)
and the input one, for a selection of sub-halo mass bins. The shaded regions are the one
sigma errors.

With blue dashed lines, we plotted the signal previously presented, namely, that ob-
tained as we measure the calibration around a point defined with the help of the main
halo center. Then, with dotted black lines, we present the signal where the calibration
point is chosen differently. Instead of using the main halo to define the calibration point,
we took the average position of all halos in the cluster (main halo and sub-halos). If we
assume that the displacements between galaxies and host halos are uncorrelated within
the cluster, we only need to detect the hosted galaxies to obtain this position. The center
of the cluster defined in this way is independent of the position of the central galaxy with
respect to the main halo.

For clusters formed by two large mass overdensities colliding the separation between
the two different centers can be up to ~ 2 Mpc. The distribution of separations is highly
asymmetric, with a mean of 0.215 4+ 0.004 and a median of 0.137.

The new way to define the cluster center results in a much less smooth signal. The
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Figure 6.4: Analysis with synthetic clusters, ratio of the measured AX(€) to the one we input, versus the
projected physical radius €. Only the results for a selection of mass bins, for the case where 7, = 6.66 rg
are presented; the mass ranges are written in each plot. Dashed blue lines: calibration point defined
using the main halo center. Black dotted-dashed lines: calibration point defined using the average halo
position. Solid red lines: calibration point defined using the average halo position, the clusters were
selected such that the separation between BCG and the average halo position was less than 10 kpc.
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incorrect calibration of the main halo in some extreme cases appears as a sharp peak
in the measurement as seen in the top and in the bottom panel. This identification of
the cluster center seems to produce a better calibration for medium mass halos (middle
panel). For non-virialized clusters, the new cluster center is closer to the main halo as the
sub-halo on average. The main halo contribution measured around the calibration point
is larger that the one around the sub-halo, and the final effect is an apparent smaller bias.
Nevertheless, the main halo is still not properly calibrated. Choosing the main halo as the
cluster center is therefore a more robust method which works consistently on all scales.

Finally, we present a possible improvement to the calibration defined above. We can
always discard the clusters which are particularly problematic. In our case we considered
the distance between the average halo position and the position of the central galaxy, as
filtering criterion. The same criterion can be applied on real observations. We only need
to assume that the separations between BCG and the main halo center, and between
average galaxy position and main halo center, are uncorrelated. This shall be the case for
non-virialized objects, which are responsible for the problem. We plot the result with a
red continuous line. We filter out clusters where main halo and the new cluster center are
more than 10 kpc away. The signal obtained with the alternative method comes to agree
more with the original one once the problematic clusters are discarded. This comes with
a price as the variance increases, in some cases like in the bottom panel, compromising
the detectability.

We also computed the signal using the luminosity distribution to determine the cluster
center. The results reflected the same behavior, and are therefore not shown.

6.3 Sub-halo profiles for different mass bins

Finally, we shall present the analysis of the different sub-halos from the projected mass
maps X(3) coming from the Millennium Simulation. The mass binning and the number of
sub-halos of the samples used are described in Tab. 6.2. In this analysis we fix a minimal
distance between the sub-halo and the main halo of 0.5 Mpc as explained in Sect. 6.2.2.
The purpose is to find the best possible model and a scaling relation between parameters
and mass.

As explained in Sect. 6.2.1, out of all physical radii £ we can measure, only a limited
range can be used. Using the results from Sect. 6.2.1, we present in Fig. 6.5 the data we
can use safely. The upper and lower limits are given by the last point which has a bias
smaller than 10%. The lower limit is a consequence of the resolution of our simulations.
The range grows with the mass bin. First, because a larger sub-halo has a AX(¢) signal
with a higher amplitude and the contaminations from the main halo and the surrounding
sub-halos are relatively less important. Second, because larger sub-halos are on average
further away from the center.

In order to characterize the mass profiles we try to find the best fitting model. We
fit a NF'W profile, a truncated NFW profile and two versions of a PIEMD profile to the
signals (see the Appendix for a full description of the profiles). The first version of PIEMD
corresponds to the choices made in afore-mentioned works by Limousin et al. (2007) and
Natarajan et al. (2007). There, the so-called core radius is fixed a priori to 10~* Mpc and
only the cut radius and the central density are fitted. The second version corresponds to
fitting all three parameters.
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Figure 6.5: The AX(¢) profiles measured from the projected mass maps %(3), for the different mass
bins. We highlight the final range used for the analysis and we plot the corresponding error bars. The
range in £ was defined through the results in Sect. 6.2.1. In dashed blue we show the average signal for
the host cluster as a visual reference.

We conducted a Bayesian analysis to get the best fitting parameters for each model
in each mass bin. We assumed a Gaussian likelihood in each case. The corresponding
covariance matrices were computed from the data using a bootstrap algorithm. As spec-
ified in Sect. 5.3 we use weighted means, and so bootstrapping was the most convenient
way to compute them. We construct each bootstrap realization by randomly drawing N
sub-halos with replacements. We do so for each mass bin, producing 10000 realizations
in each case.

In order to rank the different models, we consider the Bayesian evidence. The com-
putation of the evidence was done using a nested sampling algorithm (Skilling 2004). We
describe this algorithm and the Bayesian evidence in the Appendix. The results are in
Tab. 6.3. The errors presented are the standard error from 10 realizations of the mea-
surement except for the leftmost model where we use a raw estimation coming from the
algorithm. The analysis in this case did not require a better accuracy. We write in bold
the maximum evidence in each case, which belongs to the best model.

The first thing to underline is that the PIEMD model chosen in the afore-mentioned
literature does not fit well sub-halos in the Millennium Simulation. In fact, the model
fails to reproduce the simulations. This is important if we assume that the simulation
describes well the scales and masses we treat. While our result does not discredit their
results, it nevertheless challenges their choices.

The best model, except in two occasions, is a simple NF'W profile. Note that the
second best model is still the NF'W profile. We interpret the two exceptions to the trend
as statistical fluctuations. The large significance of the results can be explained by an
underestimation of the errors. We compute our covariance matrices with a bootstrapping
algorithm. Although bootstrapping is the best method given the characteristics of our
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Table 6.2: Classification of all sub-halos in clusters for z < 0.9055 according to Mgygr. The sub-halos
are at least 0.5 Mpc away from the main halo center. This last criterion changes slightly the samples
with respect to those in Tab. 6.1. Note that the range is in Mg /h as obtained from the database, and
the mean SUBFIND mass Mgypr in Mg. We also present the number of sub-halos in each bin.

Bin  Range [My/h] # SH Mgupr [Mg]

[10T133 . 101166) 23229  4.27 x 1011
11821 9.14 x 10!
6151  1.98 x 10'2
2837  4.25 x 102
1476  9.22 x 10'2
728  1.97 x 1013
363  4.30 x 103
155  8.79 x 1013
73 1.89 x 104
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Table 6.3: Comparison of the logarithm of the evidences for the four models fitted to the AX signals.
In bold we emphasize the best model in each mass bin.

bin NFW NFW tr PIEMD 3 par. PIEMD 2 par.
1 —89.71+0.05  —89.57+0.08 —92.8940.3 —15741
2 —88.31+0.09  —88.54+0.09 —93.38+0.14 —2854+1
3 —88.38+0.09 —89.38+0.12 —95.9940.13 —4724+1
4 —85.90+0.07  —87.724+0.13 —86.3340.15 —710+3
5 —98.3240.07 —101.68+0.12 —96.43+0.06 —876+3
6 —93.38+0.05 —97.04+0.17 —101.0240.09 —576+1
7 —99.20+0.06 —102.6340.21 —105.43+0.06 —809+2
8 —88.09+0.06 —92.80+0.18 —126.5940.03 —528+1
9 —85.62+0.04  —89.42+0.14 —127.0340.07 —445+1

measurements, we have no control over the precision of the covariance matrices.

With the data used it is not possible to detect a truncation radius. The truncation is
beyond the region where our measurement is unbiased. This means that the truncation,
if present at all, happens at least at scales larger than 0.2 Mpc, which is roughly four
times larger than the results in the literature mentioned. In the case of the PIEMD with
no fixed core radius the values for the truncation radius are in some cases consistent with
the published values. Nonetheless, this model is strongly disfavored and it is not the one
used in the literature.

From the nested sampling algorithm one can also obtain the posterior. We take the
mean according to the computed posterior as the best value and the standard deviation
as one sigma error. The best values for the NF'W profile for each bin are presented in
Fig. 6.6. We plot two sets of parameters as function of Mgygr. In the top panels we
plot the scale radius, and the density parameter which is twice the density at the scale
radius. In the bottom panels we plot the concentration and ry99. The concentration is
the ratio between 1909 and rs. The parameter 790 is defined as the radius at which the
density of the best fitting NF'W profile equals 200 times the mean comoving density of
the Universe!. Its definition is thought to enclose the region where the virial mass of the
halo is found. However r509 has no physical meaning in our case, as the sub-halo cannot

'The definition of 7499 is not unique. Other authors use slightly different formulations.
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Figure 6.6: NFW parameters fitted to the sub-halo profiles in Fig. 6.5 as a function of Mgygr. We
show in the top panels the results for r5 and 6. py,, and in the bottom panels for ro9p and concentration.

extend as far as r909. Nevertheless, Fig. 6.6 shows that this parameterization is a good
observable for sub-halo mass.

The correlation of 7909 and ry with Msygr allows us to use either one as a proxy for
the mass. We shall see that the estimation from ry0 however is much more robust. We
discuss this further in Sect. 7.3 and give supporting arguments.

The best fitting power laws for the left panels in Fig. 6.6 are:

Msypr (15) /Mo=10" x (r,/Mpc)?  with A =2884+0.07, B=1629+0.13
Msugr (r200) /Ma=10% X (ry00/Mpc)? with A =3.1840.05, B =13.17+0.06

By looking at the left panels Fig. 6.6, one can see that the errors are so small, that the
deviation from a simple power law fit should be significant. As we already mentioned, we
suspect that the way we computed our covariance matrices makes us to underestimate the
errors. Therefore, we see a clear scaling relation between the sub-halo mass Msygr, and
ro00 Or Ts. Nevertheless, in Sect. 7.3 we shall see that the determination of the sub-halo
mass has further problems.

Regarding the Millennium Simulation, a truncation radius is not detected. This leads
us to conclude that the sub-halos in the Millennium Simulation have a large truncation
radius, above the range in radius ¢ that we measure.

As yet another check to our results, we compare the mass we can infer from our
measurements and Mgsypr. We compute the mass inside the range in radius £ where we
consider that AY is unbiased, assuming an NFW profile. In the first column of Tab. 6.4
we present in percentage, the ratio between the measured mass and Mgygr. The amount
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of mass that we are missing is not large except for the heaviest halos (last row of the
table). Therefore we can assume that with our analysis we are taking into account most
of the sub-halo spatial extent, except for that case. We interpret this as another indication
of a rather sharp truncation for the sub-halos at large radii.

On real lensing surveys we cannot conduct the calibration tests described in Sect. 6.2.1.
However, as seen before, the range in £ where the measured AX(€) is unbiased depends on
the mass bin. We propose the following method: one measures rg or 7999 with a preliminary
radius range, i.e. up to ~ 1 Mpc; then from Tab. 6.4, we interpolate the corresponding
range and we measure again rop. We iterate the process until we our result converges.
The estimation of the range in £ is in this way coarse but effective. For all the results in
the following we proceed as we described here.

Table 6.4: Classification of all sub-halos according to Mgygr in clusters for z < 0.9055. The sub-halos
are at least 0.5 Mpc away from the main halo center. The mass binning can be found in Tab. 6.2. Here
we show the best fitting values for 7y, 209, the corresponding range in radius where our profiles are not
unbiased and the ratio between inferred mass and Msygr.

bin % % rs [Mpc] 200 [Mpc] Unbiased range [Mpc]
1 113416 0.0232+0.0005 0.3147%0.0018 [0.043:0.18]
2 109410 0.0315+0.0005  0.41740.002 [0.043:0.18]
3 81£14 0.0371+0.0016  0.52640.003 [0.043:0.18]
4 11948 0.0550£0.0008  0.699+0.004 [0.043:0.27]
5 95+£7 0.0710+0.0011  0.88740.005 [0.043:0.27]
6 108+9 0.0910+0.0018  1.11640.009 [0.043:0.41]
7 T8+6 0.1200.002 1.359£0.011 [0.043:0.41]
8 76£10 0.178+0.006 1.71£0.03 [0.043:0.5 |
9 45+4 0.184+0.004 1.9440.03 [0.043:0.5 |

6.4 Evolution of sub-halos

In the previous section we analyzed the average mass profile for sub-halos of different
masses from the point of view of a lensing study. We analyzed the detectability of a
truncation in the sub-halo’s profile as an indication of tidal stripping. Our conclusion is
that the values published in the literature are not a good description for the Millennium
Simulation. Nevertheless, we have not yet presented any description about how the time
spent inside the cluster alters the mass profiles of the sub-halos. We address this matter
here.

In order to observe how sub-halos evolve inside the clusters we considered two new
parameters: the infall mass M;,¢ and infall snapshot both computed by L. Wang (Wang
et al. 2006). The first describes what the halo mass was at the last epoch when it was a
central dominant object, i.e. the mass just before it was accreted by a larger structure.
The second is the snapshot at which this accretion was detected and allows us to compute
the time spent inside the cluster, or the age of the sub-halo.

We divide our sample into three classes according to M, and each of these classes
into three sub-classes according to their age. In order to define the classification, we
maximized the signal-to-noise defined as the ratio, between the measured AY (&) and its
sample variance averaged over £&. We also avoided too small sub-halo samples. Another
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Table 6.5: Mi,s-age classification of all sub-halos in clusters for z < 0.9055. The sub-halos are at least
0.5 Mpc away from the main halo center. Here we present the parameters ropgp and rs as estimators of
Msupr. 2nd column: number of sub-halos in each sub-sample. 3rd column: infall mass ([10'° Mg /A]
from the database) ranges L — [20 : 60], M — [60 : 150], H — [150 : oo]. 4th column: age ranges
(Gigayears) I — [0 : 3], IT — [3 : 4.5], IIT — [4.5 : oc]. The mean separation between the main halo center
and the sub-halo center (6th column) is in Mpc. The last two columns (mean SUBFIND mass, and mean
infall mass) are in units of 101° Mg,

bin # SH Mys age age Sep. rs  [Mpc] ro00 [Mpc]  Msupr  Ming

x— 31408 L I 1.797 1.149 0.0252+0.0006 0.2744+0.018 27.68  46.21
+- 14927 L I  3.723 1.132 0.02504+0.0011  0.2540.03 16.75  47.11
° 10482 L I 5.608 1.175 0.0240+0.0009  0.21£0.05 22.9*  47.41
x-- 11487 M I 1.852 1.169 0.0340£0.0007 0.391£0.018 73.8 127.8
+-- 6391 M II  3.720 1.136 0.0276+0.0007  0.34£0.04 42.9 127.9
o- - 4410 M I 5.629 1.143 0.0216+0.0010  0.2940.05 29.0 126.9
x-- 10792 H I 1.798 1.260 0.0671£0.0006  0.75%0.04 810 1280
+-- 0 4782 H II  3.688 1.151 0.0473+0.0010  0.584+0.05 210 682
o.. 2331 H IIT  5.534 1.150 0.0319+0.0010  0.46%0.05 104 488

*The value changes to 12.36 after eliminating two misidentified sub-halos.

issue to consider was the limited time resolution of the snapshots to compute the age of
the sub-halos. The ranges for classes and sub-classes are in Tab. 6.5 and the resulting
measurements are plotted in Fig. 6.7. The color and the line type in the plot relates to the
infall mass range; the symbol of the line to the time spent inside the cluster, as indicated
in the first column of Tab. 6.5.

The first thing to consider is that the cuts performed do not always define homogeneous
samples. For instance, the mean M, for the heaviest sub-halos (last three rows, tenth
column in Tab. 6.5), are not similar. The three sub-halo classes did not have a similar
mass right before they merged into the cluster. The evolution of the different sub-samples
appears to have been different. Therefore, for these cases our classification is not optimal.
This is an intrinsic problem that will become worse when using observables instead of
direct quantities. Nevertheless we detect that the mass decreases as time evolves in all
cases by comparing the ratio Mi,s/Msupr for each age sub-classes within this infall mass
range.

The oldest sub-class for the least massive sub-halos (third row, ninth column in
Tab. 6.5), does not follow the trend where older sub-halos have smaller Mgypr. Nev-
ertheless, we find that the last value decreases from 22.9 x 10 to 12.36 x 10 if we
eliminate two detected outliers. In these cases, a visual inspection of the clusters revealed
that the identity of a large sub-halo and a close-by merging one must have been swapped.
The spatial proximity and a likely matter exchange can produce the misidentifications.

The profiles do not get truncated. Instead they show a change at all radii. This
change is consistent with a mass loss at all scales. Therefore, the sub-halo is stripped in
the outermost layers while the innermost mass is reheated and redistributed. This is in
agreement with the results by Hayashi et al. (2003). The truncation is always at a larger
radius £ than the range that we can safely probe. The measured ranges for the sub-halo
radius were taken using Tab. 6.4 as explained at the end of Sect. 6.3.

Although the plots for sub-halos of the same M;,¢ but with different ages show a clear
variation, it is not clear how the difference can be quantified. In Tab. 6.5 we present the
best fitting values for rg and r999. The values decrease as the age increases for each M,
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Figure 6.7: Profiles for different infall mass and time spent inside the cluster: with error bars the
regions defined as unbiased. The color and the line type denote infall mass range. The symbols denote
age range. See Tab. 6.5 for details. In solid blue we plot the average signal for the host cluster as a visual
reference.

bin. Both parameters show mass loss but the errors for the medium and light sub-halos
are quite large (first six rows, seventh and eighth column).

The quantification of the mass loss with a single parameter like ry or 7909 has large
errors. Therefore it may not be the best approach. A detailed matter evolution model for
sub-halos could improve the significance of the measurements.
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7. Galaxies 1n clusters in the
Millennium Simulation

In previous chapters we defined our method to compute galaxy-galaxy lensing on sub-
halos. We also characterized the simulated data which we use to study its application.
In this chapter, we forecast the signals that one could measure with our method in real
lensing surveys.

The method that we proposed requires a large sample of galaxy clusters. Therefore
large optical imaging surveys are needed. The goal is to use data coming from current
surveys like SDSS (Abazajian et al. 2009), ongoing like DES (The Dark Energy Survey
Collaboration 2005), KIDS' or Pan-STARRS (Kaiser et al. 2010), and future ones like
LSST (Ivezic et al. 2008) or Euclid (Refregier et al. 2010). We should also benefit from
Sunyaev-Zel’dovich effect surveys (e.g. SPT, Carlstrom et al. 2009) or X-rays surveys
(e.g. eRosita, Predehl et al. 2010) to detect clusters. These surveys should also propor-
tionate cluster characteristics such as shape, or help to locate the density maxima, which
would improve the results of our lensing analysis.

For our method it is important to properly classify the sub-halos in the sample. On
real data, the classification of the sub-halos must be done through the characteristics of
the hosted galaxies. The properties of the galaxies in our case are given by the semi-
analytic galaxy models by De Lucia & Blaizot (2007). It is therefore important to discuss
which are the most useful galaxy observables and what is to be expected from them.

Our previous results were computed with the projected mass maps ¥(3), but never
with a true shear catalogue. We shall therefore describe the shear catalogues from which
we compute the measurements. Once we have presented our lensing data set, we ad-
dress the detectability of the signals in different surveys. We also discuss the best way to
estimate the sub-halo mass. Then we check the impact of using the weak lensing approx-
imation on sub-halo profiles. This approximation is based on the condition k < 1 (see
Sect. 4.4), which is often not fulfilled inside clusters.

Finally, we investigate what can be learned by using our method considering surveys
like LSST and DES. First, we consider how well we can estimate a mass-luminosity relation
from our measurements. Then we study how to detect and quantify the time evolution
of the mass profiles.

Throughout the analysis, we eliminate the galaxies without sub-halos that exist in our
catalogues (see next section). We conclude by analyzing what would be the impact of
including these galaxies in our measurements.

thttp://www.astro-wise.org/projects/KIDS/
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7.1 Observables in the semi-analytical models

In the previous chapter, the sub-halos were divided into mass bins to better characterize
the mass profiles. We also classified them according to infall mass and time spent inside
the cluster to optimize the detection of their evolution. We recall that infall mass was
the mass of the sub-halo before merging into a cluster, when it was an isolated halo.
Unfortunately these quantities are not available in real galaxies. The only possibility, in
order to perform similar studies on real data, is to rely on correlated observables.

The use of proxies for the desired physical quantities decreases our ability to produce
homogeneous samples of sub-halos. Understanding how the different observables depend
on the underlying sub-halo characteristics is essential to obtain optimal results with our
method. Investigating these relations is beyond the scope of this thesis, we only make use
of the galaxy catalogues at our reach. Our intention is to describe them properly in order
to interpret our results.

We must make a remark: there are galaxies inside the galaxy catalogues without sub-
halos. Sub-halos, due to tidal forces eventually dissolve into the main halo. As galaxy
catalogues are produced, whenever the sub-halo is no longer detected, the hosted galaxy
is still maintained and placed at the position of the most bound particle of the formerly
detected sub-halo. These galaxies eventually disappear as they merge into the main halo
galaxy, but only after a period of time. We do not use these so-called type-2 galaxies.
Including them in the analysis would only produce noise, and there are several reasons
not to consider them:

e they are hosted by sub-halos below or around the mass resolution limit;

e they exist under the assumption that the stripping of a large part of the sub-halo
does not destroy the hosted galaxy;

e the survival time is heavily influenced by the model.

At the end of this Chapter, we study nevertheless how our results would change by
including them.

For our investigation we have studied proxies for the mass, the infall mass and the age
of the sub-halos (time spent inside the cluster). The results are shown in Fig. 7.1. There,
we have marked those proxies that we use for our analysis with a black frame. In the rest
of the plots we present proxies which show a weak correlation with the desired quantity.
We only used galaxies hosted by sub-halos and imposed an apparent magnitude limit of
22 in the SDSS r band in order not to include too faint galaxies.

Among the quantities we want to infer from the observables, the age of the sub-halos
is the most difficult to obtain. We could not find any observable in the semi-analytical
catalogues with a strong correlation with this quantity. In Fig. 7.1, on the top left panel
we have plotted the projected radial separation versus the age of the sub-halo. Sub-halos
fall gradually into the main halo, and so the distance should be an indicator of the age.
However, we cannot measure the true separation, only the projected one, and this is too
weakly correlated.

In the top right and the middle left panels, we plot the redshift-corrected r — i and
u — r, color indices as a function of sub-halo age. Color indices change with redshift.
However, it is known that red cluster galaxies at a given redshift gather in a thin color
range: the red cluster sequence. We identify for each redshift the red cluster sequence,
and we rescale its mean color to zero. By doing this, we can compare galaxies at different
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Figure 7.1: Distribution contours of different observables studied to classify the galaxies in our samples.
With a black frames, we outline those finally used. We overplot the mean value of the studied sub-halo
quantity for each bin in the galaxy observable. We plot the standard deviation as error. Top left: age
of the sub-halo versus the projected radial separation of the sub-halo from the main halo center. Top
right: age of the sub-halo versus redshift-corrected r — ¢ color. Middle left: age of the sub-halo versus
redshift-corrected u — 7 color. See text for a description of the redshift correction. Middle right: age
of the sub-halo versus our morphology estimator. Bottom left: Mgygr versus absolute observer frame
SDSS 7 band magnitude. Bottom right: M;,s versus stellar mass (this plot reproduces the results from
Wang et al. 2006). Note that the contour levels are not equally spaced except for the bottom left panel.
The contour levels were chosen to show the overall shape of the distribution.
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redshifts. In both cases one can see that this observable is weakly correlated with the
sub-halo age. Note that the contour levels are not equally spaced.

The most sensible proxy for the age of the sub-halos that we found is their morphology.
There is no proper morphology parameter in the catalogues, so we used the ratio between
the luminosities of the bulge and the disk (middle right panel). We must remark that
there is a large amount of galaxies which only have a disk component, or only have a
bulge. In both cases the age of these sub-halos is highly degenerate. These two cases
are filtered as they do not help our analysis and should be easy to avoid on real surveys.
Morphology can be obtained easily in real data even for poorly resolved galaxies for which
we can use color gradients (Park & Choi 2005).

The commonly used proxy for mass is luminosity. We experiment with the r band
absolute observer frame magnitude as a proxy for Msypr (see Sect. 3.6 for a definition
of this mass). One can observe the relation in the bottom left panel. Other luminosity
bands give qualitatively similar results.

Finally we use the stellar mass as a proxy for infall mass M;,;. This last result is
shown in the bottom right panel. The results from Wang et al. (2006) show that there is
a strong correlation between the two quantities.

The accuracy of the semi-analytical catalogues is beyond the scope of our work, and
yet the results we present in the following depend strongly on them. Our aim is to show
the feasibility of extracting information with the method we propose. Corrections to the
relation between sub-halo mass and galaxy properties may change the predictions we offer.
It is unlikely though that these corrections invalidate the studies presented in this thesis.

7.2 Simulated Surveys

Different surveys result in different galaxy catalogues. In any lensing analysis we split the
galaxy catalogue into a foreground sample which contains the lenses, and a background
sample where the galaxy images are lensed. The first determines which type of galaxy we
can study, whereas the second defines how good our measurements can be. Both depend
on the magnitude limits and the solid angle of the survey. The foreground sample has
been previously defined: in Sect. 5.3.1 we considered the host clusters; in Chap. 6 we
described the host sub-halos; and in the last section we described the observables which
we use to characterize the galaxies. Now we discuss the background sample.

For the background galaxy sample, we place points uniformly and randomly across
the survey area. Using true galaxy positions would introduce systematics coming from
the clustering of galaxies. We leave these problems for future analysis. For the redshift
distribution of the galaxy sample we use the well-known formula

B
(z0)' T I’ (HTCX)’

where o = 2, f = 1.5 and z; is a function of the median redshift of the survey. Once
the random redshift distribution is produced, we project the points into the planes of our
ray-tracing simulations, in order to compute the shear and magnification. This process
discretizes our background redshift sample.

We add an intrinsic ellipticity to the shear in order to mimic real galaxy images
(Eq. 4.22). The modulus of the intrinsic ellipticity is drawn from a Gaussian distribution

p(z) = 2% exp (—(z/zo)ﬁ) (7.1)
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with zero mean and standard deviation o}, . This intrinsic ellipticity is the dominant
source of noise in our measurement. The only way to reduce it is by increasing the size of
the sample where galaxy-galaxy lensing is computed. We can safely assume that the final
error in the measurement due to the intrinsic ellipticity € is o,/y/n, where n is the total
number of foreground-background galaxy pairs used to measure the final AX(£). This
error can be reduced by observing fainter galaxies and by considering larger portions of
the sky.

We can change the magnitude limits of our sample, but unfortunately, the size of the
simulated survey that we obtain by ray-tracing is limited. Although the simulated area
is large, it is still below the size for which we want to make predictions.

We consider that reducing oy is equivalent to an increase in the galaxy sample.
Assuming this relation allows us to simulate larger survey areas. From galaxy studies, the
standard deviation of intrinsic ellipticity noise is typically o), = 0.3. Under the previous
arguments, we achieve the results from a 36 times larger survey than the simulated one,
by using a value of o}, = 0.05. This size is approximately the size of Pan-STARRS or
LSST survey (36 x 512 = 18432 square degrees).

In order to examine the expected signal quality, we study surveys with different back-
ground populations (parameterized with the galaxy number density and the median red-
shift), and with different survey areas (parameterized with the effective o). We focus
on DES and LSST, exploring also variations of the main parameters that define them.
The different surveys that we investigate are in Tab. 7.1. For each survey, we compute a
mean signal-to-noise ratio (SN R) for a set of luminosity bins. To do this, for each bin we
average over eight logarithmic bins in projected radius & in the range 0.043 to 0.12 Mpc.
Our signal-to-noise ratio can be expressed as:

svr= {28 (7.2)
o (Et (f )) ¢

Note that doubling the number of bins roughly halves the signal-to-noise. The values
for each luminosity neither take into account correlated noise, nor express how well a
particular feature can be detected. Nonetheless, they are compact estimators and offer a

rule of thumb for the expected SNR.
The LSST survey and the DES survey, are expected to be around 10% larger than the
ones that we consider. We take with it a realistic approach and we consider the possibility

of nuissances that may reduce the usable area. With our mock survey DES-WIDE we
analyze the impact of having a survey like DES but with the solid angle of LSST. With

Table 7.1: Parameters for the different surveys considered in our detectability study. We present the
median redshift, the background galaxy number density, the standard deviation of the intrinsic ellipticity
and its equivalent survey solid angle.

survey Median z gal. 5 O degrees®
arcmin

LSST 1.2 40 0.05 18432

INT 0.9 25 0.1 4608

DES-WIDE 0.68 12 0.05 18432

DES 0.68 12 0.1 4608
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Figure 7.2: Our compact SNR estimator,for the different luminosity bins for each mock survey con-
sidered. For each luminosity bin we plot the mean magnitude. The errors plotted are standard errors
obtained from the sample.

INT we inspect the effect of achieving more depth on the same angular size as DES. These
two cases do not correspond to any real or planned survey.

In Fig. 7.2, we present our SNR estimation for different luminosity bins in r band
absolute magnitude, for the four mock surveys considered. We define 14 bins in luminosity,
with a bin width of 0.33 magnitudes, between the values —19 and —23.66. For the LSST-
like survey, we only considered lens galaxies with an apparent magnitude smaller than 26
in r band. For the other three surveys the magnitude limit was 22 in » band. We impose
in all cases a maximum redshift of z = 0.9055 for the foreground sample as explained
in Sect. 5.3.1. In Fig. 7.2, one can see the average detectability of a profile for a given
luminosity. Bright galaxies have a larger halo with a stronger signal. Faint galaxies are
more numerous and their samples have a smaller statistical error. The signal-to-noise
depends on these two competing effects. Due to this, the maximal signal-to-noise ratios
are around the ninth bin. The least luminous bins are below the two sigma level except
for a LSST-like survey. For those cases we must use broader luminosity bins.

Another point is the fact that, although INT has nominally half the number of galaxies
than DES-WIDE, the SNR values are very similar. Note that DES-WIDE has a smaller
galaxy number density, but more than four times the area of INT. This suggests that the
sensitivity of the survey is more important than its area.

7.3 Optimal sub-halo mass proxy

The study that we propose is designed to measure the mass profile of the cluster sub-halos
hosting satellite galaxies. The accuracy of the measurement depends on the survey char-
acteristics. In the worst case scenario we still want to be able to compress the information
coming from the whole profile into a meaningful quantity. This section is dedicated to
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Figure 7.3: Mass proxies for different binnings. We used projected mass maps %(3). In the top
panels we show the NFW parameter set ry and . pr,, whereas in the bottom ones we present rogg and
concentration. Note the similarity between concentration and d.py, is only coincidental.

explore which quantity is more robust to be useful as mass proxy. We assume Msypr as
the best possible definition of sub-halo mass. Again, in order to get the best estimation
of the parameters we want to study, we use the projected mass maps %(3) defined in
Sect. 4.5.

The following results depend on the underlying profile which in our case we have shown
is well represented by an NFW. If halos of real galaxies differ from the simulated ones,
the conclusions derived have to be revised.

In Sect. 6.3, we identified two possible parameters as proxies for Msypr: 75 and 7.
The first is a parameter of the NF'W profile, the second parameterizes the mass in isolated
halos but a priori does not have any meaning for sub-halos. In Fig. 7.3, we present
Mgygr versus 7y, d.pm, concentration, and r909. We have binned the sub-halos in three
different ways: according to Mgygr as in Fig. 6.6; according to the observer frame absolute
magnitude in the r band; and according to the observer frame absolute magnitude in
the ¢ band. The binning according to mass is different from the luminosity binning.
The consequence is that the mean profile for the same given mean mass changes. The
luminosity ranges are the same as for Fig. 7.2 for both r and ¢ bands, and the mass ranges
are described in Tab. 6.1. The best quantity to infer mass is the measured rygg. The
correlation with Mgypr is stronger than for the rest of parameters that we analyzed. In
Tab. 7.2 we list the values for the best fitting power laws for Mgygr as a function of rygg.
We are not able to estimate Mgygp with high precision through 7509 due to the dependence
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on the galaxy classification, but we may be able to derive useful constraints. We can also
apply the scaling relation here to define a proper mass-luminosity relation later on.

Table 7.2: Best fitting parameters for the relation Msypr(re00)/Me = A X (ra00/Mpc)™ coming from
the data displayed in Fig. 7.3 in the bottom right panel. We present the mean and the standard error of
the posterior of the parameters.

Data n log,o(A)
Mass bin. | 3.18£0.05 13.172+0.013
v band bin. | 3.62+0.15  13.64=£0.07
r band bin. | 3.57+£0.12  13.42£0.05

7.4 Weak lensing approximation

In Sect. 4.4, we assumed that the weak lensing approximation is valid in our measurements.
This means that x < 1, and that the reduced shear effectively equals the shear. This
assumption is motivated by the fact that we only aim to use weakly lensed images where
this should be the case. However, sub-halos are always in high density regions where
the convergence is large, therefore we need to check the assumption. For this purpose,
we compare the signal measured from a shear catalogue and the signal measured from a
reduced shear catalogue. In Fig. 7.4, we plot a selection of luminosity bins for a LSST-like
survey. We used red solid lines for the profiles measured using reduced shear, and blue
dashed lines for the measurements using only shear. In the range in radius where we
consider that our measurement is unbiased, we plotted error bars.

When we compare the measurements done using reduced shear and shear, we see a
systematic difference for the most luminous sub-halos. One can see from the plots that
those coming from a reduced shear catalogue are steeper. The effect is stronger the more
luminous the galaxies are, and occurs at the innermost part of the profile. The position
of the sub-halo inside the cluster plays no role. Smaller halos are closer to the cluster
center, where the density is higher, but for these the effect is not visible.

The difference between reduced shear and shear is small and only important for the
most massive sub-halos (note the two uppermost profiles with error bars in Fig. 7.4).
The shape of the profile is modified. This is a source of uncertainty in the parameter
estimation. If we can no longer assume that we measure shear, the expectation value of
our estimation does not follow Eq. (4.31). Instead we have:

<ﬁ(5)>:<zcrit(zsa Zd) € <€>>
:< Ve (§) Lerit (25, 2a) > + AX
1= %)/ ez, 20) / 7 1= 2(6)/ (Zerie(25, 7))

Note that in the second step we averaged over the distribution of intrinsic ellipticities
and obtained (&) from €,(§). We assumed that the intrinsic ellipticity noise is redshift
independent, and we denoted with z; and zq source and lens redshift respectively. With
the last step of the previous equation we want to stress that the averaging procedure
does not commute with non-linear operations. Therefore, the 1 — k correction cannot be
easily accounted for. The exact modeling of the measured signal includes many non-trivial
contributions.

(7.3)
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Figure 7.4: Comparison between the profiles measured with a shear catalogue (blue dashed-dotted)
and a reduced shear catalogue (solid red line). The errors are the standard error for each radial bin.
We present a selection of luminosity bins for a LSST-like survey. The magnitude limit is 26 in apparent

magnitude in r band. The uppermost profiles, plotted without errors are the profiles for the host cluster,
shown as a visual reference.
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Figure 7.5: Determination of r999 as a function of Msygr. We plot the results coming from different
ways of computing AX(£): from projected mass maps X(03); from a shear catalogue v(3); and from
a reduced shear catalogue g(3). The binning of the galaxies is done according to its r band absolute
magnitude in the observer frame. The magnitude limit is 26 in apparent magnitude in r band.
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However, the use of the weak lensing approximation is justified. We estimate 150
using the projected mass maps 3(3), the shear catalogue v(3) and the reduced shear
catalogue g(3), to quantify its accuracy. The results are presented in Fig. 7.5. The values
for regp are almost insensitive to the initial data set.

The difference between the values from ¥(3), and the other two is not unexpected.
When we use the projected mass maps %(3), there is no contamination from matter struc-
tures in the foreground our background. Moreover, the measurements made with g(3) or
v(B) due to our weighting scheme (see Sect. 5.2) depend on the redshift distribution of
the background sources, which is not the case for the measurements done with ¥(3).

The weak lensing approximation introduces a systematic error in the estimation of
the AY profile, for which it is difficult to account. On the other hand, it affects only the
innermost part of the profile of massive sub-halos. The analysis of a possible truncation
radius or other time evolution features is possible. As shown, it does not affect the esti-
mation of the mass through r509. Therefore, we shall use the weak lensing approximation
in the following.

7.5 Luminosity

One of the essential analyses in galaxy evolution is the relation between mass and lumi-
nosity in different bands. After defining the lensing and the shear catalogues we address
this point.

We want to treat in detail the estimation of a mass-luminosity relation, focusing on
the results coming from a LSST-like and a DES-like survey. We defined the luminosity
bins regarding the detectability of measurements, which we presented in Fig. 7.2. The
SDSS r band is the one used most frequently for weak-lensing analysis. Therefore, it is
the one that we use in our work. A mass-luminosity relation in different bands is left for
future analyses. The magnitude limit in the case of the DES-like survey is 22 in apparent
magnitude, whereas in the case of the LSST-like survey it is 26.

In the right panel in Fig. 7.6, we present our prediction for a LSST-like survey, and
in the left panel for a DES-like survey. The signal-to-noise is lower in a DES-like survey
and we must use fewer luminosity bins in order to achieve a sensible result. The binning
characterization is shown in Tab. 7.3.

In order to get the sub-halo mass Mgygpr, we need to measure 7999, and derive it
using a scaling relation between Msygr and 7909. The mass that we estimate therefore
depends first on the mass definition and second in the scaling between the mass and
the measured r909. In any case, we observe that it is possible to infer constraints for a
mass-luminosity relation. The measurement of such a relation can also help to distinguish
between two competing model in sub-structure formation. With our method, we probe
larger scales than stellar dynamics and we consider large samples of galaxies compared to
strong lensing analysis. Therefore, the data that this analysis provides is difficult to obtain
by other means. The final mass-luminosity relations, for both a LSST and a DES-like
survey, are shown in Fig. 7.7.

In principle, from our analysis we conclude that we can constrain the mass-luminosity
relation over two decades in mass. The different luminosity binning and samples used
in each survey produce differences. The brightest bins are populated with the same
objects and therefore they are similar. At the fainter end, the different magnitude cuts
in combination with the broader bins changes the mass-luminosity relation (Fig. 7.7, top
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Figure 7.6: Measured AY(€) profiles of galaxies binned by absolute magnitude in r band. Left panel:
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for the analysis later on, the range was derive from our results in Tab. 6.4. The solid blue line without
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Table 7.3: Left: binning used for the LSST-like survey, with 7 band absolute observer frame magnitude.
Right: the same for the DES-like survey. We present also the number of sub-halos.

Bin # SH r band range Bin # SH r band range

1 22698 [—19.00:—19.33] 1 11590 [—19.00:—19.75]
2 19684 [—19.33:—19.66] 2 13740  [—19.75:—20.50]
3 16625 [—19.66:—20.00] 3 12824  [—20.50:—21.25]
4 13145 [—20.00:—20.33] 4 5639 [—21.25:—22.00]
5 10472 [—20.33:-20.66] 5 1154 [—22.00:—22.75]
6 7694 [—20.66:—21.00] 6 145 [—22.75:—23.50]
7 5166 [—21.00:—21.33] 7 10 [—23.50:—24.25]
8 3127 [~21.33:—21.66]
9 1598 [—21.66:—22.00]
10 752 [—22.00:—22.33]
11 354 [—22.33:—22.66]
12 128 [—22.66:—23.00]
13 56 [—23.00:—23.33]
14 15 [—23.33:—23.66]

right panel). Nonetheless the relation between ry09 and the mass is the same (within the
errors) in both cases. The smaller number density of faint galaxies in DES compared to
the LSST survey reduces in this case the range and the resolution that we can measure
for the mass-luminosity relation. Note that the faintest luminosity bin for the DES-like
survey may not be usable as the measurement error becomes too large.

7.6 Stellar mass & morphology

At the end of the previous chapter, we saw how the sub-halo mass profiles change with
time. For this purpose, we classified them according to the time spent inside the cluster
and the infall mass. The conclusion was that it is not possible to detect a truncation
in the original sense, and that the mass density decreased at all scales consistent with a
reheating process.

Our goal now is to see whether this behavior can be detected using exclusively galaxy
observables. As stated previously, we can only derive conclusions assuming that the semi-
analytical catalogues are valid. We can estimate infall mass with some accuracy using
stellar mass, but the galaxies in these catalogues have no observable which is strongly
correlated with the age of the sub-halo. We take morphology as the best option.

The predicted signals for both LSST and DES are shown in Fig. 7.8 (top and bottom
panel respectively). We plot with different symbols the different stellar mass bins. We
have also divided each of the former sets according to morphology. The classification
ranges for morphology and stellar mass are described in Tab. 7.4 for the top panel and in
Tab. 7.5 for the bottom panel. The dashed red lines belong to galaxies with a relatively
large bulge, which should belong to old sub-halos. With blue dotted lines we plotted the
signals from galaxies with a large disk, which should belong to younger sub-halos. The
number of bins we can analyze according to mass is small, since we need to split them
into young and old sub-halos. The stellar mass ranges were obtained by experimentation.
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Table 7.4: LSST-like survey data. Morphology-stellar mass classification of all sub-halos in clusters for
z < 0.9055 with a magnitude limit of 26 in r band apparent magnitude. The sub-halos are at least 0.5
Mpc away from the main halo center. Each bin is denoted with the symbol and line type used in the
plots. Mass is in units of 101 M. 2nd column: number of sub-halos. 3rd column: morphology ranges,
Disk — 0 < Lpuige/Ltotar < 0.6, Bulge — 0.6 < Lpyige/Lotal < 0.98. 4th column: mean value of the
previous quantity. 5th column: mean age in Gigayears. 6th column: stellar mass bin, I — [0.14 : 1.4],
IT — [1.4: 4.11], III — [4.11 : 10.96], IV — [10.96 : oo]. 7th column: mean stellar mass. 8th column:
mean infall mass. 9th column: mean SUBFIND mass. 10th column: estimated rog9 in Mpc.

bin # SH Mor. <L—> age M, M, My Msopr o0

L Total

x-- 66703 Disk 0.3212 2362 I 0.5839 1994 11.23 0.216%0.009
x-- 31587 Bulge 0.7526 3.329 I 0.7203 19.91 8.2 0.20£0.02

+-- 20733 Disk 03562 2229 II 2326 761.3 43.2  0.339£0.010
+-- 21952 DBulge 0.7956 3.651 II ~ 2.390 657 23.1  0.284+0.010

* 9101 Disk  0.4157 2.160 III  6.299 2900 162 0.476+0.009
% - 13003 Bulge 0.8008 3.522 III 6.491 2840 119  0.456+0.009
o 762 Disk 0.468 1.91 IV 1345 860 485 0.62£0.02

o - 2063 DBulge 0.799 278 IV 15,60 2070 1280  0.850+£0.014

Table 7.5: DES-like survey. Morphology-stellar mass classification of all sub-halos in clusters for
z < 0.9055 with a magnitude limit of 22 in r band apparent magnitude. Note that we denote each bin
with the symbol an line type that we used in the plots. The sub-halos are at least 0.5 Mpc away from the
main halo center. We use the same notation as in the previous table, except for the stellar mass ranges:
I—[1.1:4.1],II — [4.1:13.7].

bin # SH Mor. <%> age M, M, My Msupr T200

+ - 8378 Disk 0.3494 238 I 2233 69 42.7 0.257+0.013
+- - 8809 Bulge 0.8029 4.30 I 2308 60.9 20.8 0.250+0.015
* - 4577 Disk 0.4186 2.32 II 6.92 302 178 0.446+0.010
*- - 7531 Bulge 0.8066 3.90 11 7.23 244 153 0.467+0.010

In the case of the DES-like survey we focused on a particular stellar mass range where the
effect was strongest. Note that we only plot error bars for the range where we consider
that our measure is unbiased.

The sub-division according to morphology does not always produce the desired results.
One can see from the last two rows in Tab. 7.4, that for the most massive satellite galaxies,
the infall mass (eighth column) of the two morphology bins are very different. Older sub-
halos have a significantly larger mean infall mass, which indicates that they evolved in
a different manner. This difference masks any possible detection of mass loss due to
tidal stripping by the cluster. Since the number of sub-halos used for this bin is much
smaller than for other bins, we cannot exclude that the sample was too small. A deeper
understanding of galaxy evolution is needed in order to fully assert the causes.

Except for the previously referred bin, it is easy to detect from the top plot in Fig. 7.8
that the profile amplitude of bulge-dominated galaxies is smaller respect to those with a
larger disk. This allows us to infer a change of the mass profile as predicted in Sect. 6.4.
For the DES-like survey the detection is unfortunately not so strong.

Again, the main problem is how to quantify the change on the profile. When we used
only sub-halos without involving galaxies we already saw that ry9 (the best estimator
according to Sect. 7.3) cannot quantify the mass loss with precision. Here this is also the



76 Chapter 7. Galaxies in clusters in the Millennium Simulation

2 - =@ -
— 10 ...... 8 o - @ _ ]
~ ® .. ® ®- @-
Q SO *ok "0--o_
2, ek e, e ee % g
\(D ------ ‘i\\*\ * iy Q. * .\\\\
R S Fo, B - T
E h i— —i\?“ F. i\\:": % + ® .
11 + . e = o i
Ky 107} Jf““}\i S Tl
4 = T

0 ‘ ‘ ‘
10 0.05 0.1 0.2 0.5
Physical radius [Mpc]

0 ‘ ‘ ‘
10 0.05 0.1 0.2 0.5
Physical radius [Mpc]

Figure 7.8: Top panel: morphology-stellar mass classification for a LSST-like survey. Bottom panel:
morphology-stellar mass classification for a DES-like survey. Blue dotted lines correspond to galaxies
with a relatively small bulge. Red dashed lines correspond to galaxies with a large bulge which spent
more time inside a cluster. The different symbols distinguish different stellar mass bins. The classification
ranges for morphology and stellar mass are described in Tab. 7.4 for the top panel and in Tab. 7.5 for
the bottom panel. The blue solid line is the measurement for the host cluster shown for visual reference.
We only plot error bars where we consider that the measure is unbiased.
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case. Compare the ryyy values and their errors for galaxies of the same stellar mass in
Tab. 7.4 and Tab. 7.5. The difference between them for old and young sub-halos is within
the errors. In the case of a DES-like survey the quantification of the change from 70
is not possible. Nevertheless, this measurements could help to constrain the mass loss
in combination with other methods like e.g. the analysis of the stellar dynamics of the
galaxy.

7.7 Type-2 galaxies

As previously stated, the semi-analytical catalogues are populated with satellite galaxies
without a host sub-halo (type-2 galaxies). The sub-halo could not be detected in those
cases. The sub-halos are then below the resolution limit of the simulation, or dissolved due
to tidal stripping by the host main halo, or they are sub-halos of sub-halos (as explained in
Sect. 3.6, SUBFIND only considers one level of substructure). The existence in reality of
satellite galaxies with very small dark matter sub-halos, such as type-2 galaxies represent,
is difficult to assert. Moreover, even if we assume that they are plausible, it is impossible
to evaluate how realistic our set of type-2 galaxies is, at least with the data we have
available. Nevertheless, to understand what can be the impact of such galaxies on our
measurements, we analyze how our results are altered once we include them.

For a broad luminosity range, the number of type-2 galaxies is comparable to galaxies
hosted by sub-halos (type-1 galaxies). In Fig. 7.9 we present the luminosity histograms
for both. If we want to study sub-halo mass profiles we must identify type-2 galaxies in
order to avoid uncertainty in our modeling.

In Fig. 7.10, we present the AX({) measurements for type-2 galaxies only. We plot
a selection of luminosity bins from Tab. 7.3 with a solid red line. For comparison, we
plot with dashed-dotted blue lines the previous measurements for type-1 galaxies. We
only plot the region assumed to be unbiased. Note that there are no type-2 galaxies in
the bin with the highest luminosity. As one can see, the AX() profiles for the type-2
are not well described by an NF'W profile. Two of the type-2 profiles show an increase,
whereas the NF'W profile decreases monotonically. For the third profile, the best fitting
scale radius for an NFW profile would be larger than the one of the host main halo, and
the characteristic density would be extremely small.

One possible explanation is that, on average, type-2 galaxies are correlated with the
position of sub-halos. The presence of a nearby sub-halo would make it more difficult to
detect a sub-halo for these galaxies (if there were any at all) and help to explain why none
could be found.

To verify whether type-2 galaxies are correlated with sub-halo positions is a complex
task since we are studying galaxies in clusters. Our galaxies are not uniformly distributed,
but localized in a host cluster, and with a higher density towards the cluster center. If we
try to quantify the afore-mentioned correlation without considering this fact, our results
will only reflect that the galaxies clump towards the center of the cluster.

In order to quantify the correlation between type-a galaxies and type-b galaxies within
a cluster, we proceed as follows. We compute the number density of type-b galaxies as
a function of radial separation from a type-a galaxy, and from the calibration points
of type-a galaxies. If we assume that clusters are parity-symmetric, the inclusion of
measurements around the calibration points allows us to quantify the expectation value
of the background number density. The ratio between the two number densities (from
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Figure 7.9: Luminosity histograms of galaxies with (type-1) and without a host sub-halo (type-2). The

luminosity is in SDSS r band absolute magnitudes. All galaxies have a smaller apparent magnitude than
22 in r band.
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Figure 7.10: Excess surface mass density AX(€) for a few r band luminosity bins for a LSST-like survey
(see Tab. 7.3). Here we used the projected mass maps 3(3) to obtain the measurements. With solid red
lines we plot the results from type-2 galaxies only. With blue dashed lines we plot the previous results, for
galaxies with a sub-halo. The range where we assume the measurement is unbiased was derived from our
results in Tab. 6.4. These are our results for a LSST-like survey. The solid black line is the measurement
for the average cluster, shown as a visual reference.



7.7 Type-2 galaxies 79

2.5 ‘ ‘ ‘
l ~—  typel-typel
~-- type2-typel
20:1 oo type2-type2 |

Ratio n(£)/n..(¢)

0.02 0.05 0.1 0.2
Radial separation [Mpc]

Figure 7.11: Ratio between the galaxy number density around a galaxy and around its corresponding
calibration point, as a function of distance. We also plot as visual reference the line where the ratio
is 1. The dotted-dashed red line corresponds to the excess type-2 number density around type-2. The
solid blue line corresponds to the excess type-1 number density around type-1. The green dashed line
corresponds to the excess type-1 number density around type-2. In all cases we only considered galaxies
0.5 Mpc away from the cluster center.

the type-a position and from the corresponding calibration point), is then an estimate of
the desired correlation. In Fig. 7.11, we show this estimate for the three different possible
cases. The values are given by the mean over all the survey patches (128 patches), and the
errors are the standard errors of the samples. As one can see, the excess number density
for type-1 pairs is small (solid blue line), especially if we compare it to the excess number
density of type-2 pairs (dotted-dashed red line) or even compared to the pairs formed by
a type-2 and a type-1 galaxy. For scales above 0.1 Mpc, the excess number density tends
to be smaller than one, which suggests that the existence of an average clustering scale
for satellite galaxies within themselves inside the cluster.

The signals in Fig. 7.11 show a correlation in the position of type-2 and type-1 as we
previously suggested, that we can actually quantify. However, the source for the signals
measured around type-2 galaxies in Fig. 7.10 is not solely due to nearby sub-halos. A visual
inspection of the projected mass maps reveals a more complex situation. In Fig. 7.12,
we present a zoom of the same cluster that we showed in Fig. 5.3 and in Fig. 6.1. It is
the upper-right fraction of the central part of the mentioned cluster. The center of the
cluster is marked with a large white circle. We overplot to the mass density color code
the position of the type-1 (pluses), and type-2 galaxies (diamonds).

At first sight, type-2 galaxies traces the cluster mass density and do not seem to
have any related sub-halo. Nevertheless, the correlation between sub-halos and type-2
galaxies can be observed in a few spots. We highlight with tailed arrows the cases which
correspond to the correlation between type-1 and type-2 galaxies. In some cases, which we
marked with simple arrows, the type-2 galaxy seems to be located on top of another type-1
galaxy. These could be a projection effect, but also two satellite galaxies merging among
themselves. Finally, with double-tipped arrows we show cases where we can detect a mass
overdensity which appears to host a type-2 galaxy but no type-1 galaxy. These, which
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Figure 7.12: A detailed view of central part of the projected mass map of the cluster shown in Fig. 6.1.
The proportion between physical separation and angular separation is approximately 0.170 Mpc per
arcminute. We show the center of the cluster with a white circle. We overplot the position of type-1
galaxies with pluses and the position of type-2 galaxies with diamonds. We highlight with tailed arrows
the position of type-2 galaxies which are near to a type-1 galaxy; with simple arrows, cases where a type-2
seems to be on top of a type-1 galaxy; and with doubled-tipped arrows, type-2 galaxies which appear on
top of an overdensity without type-1 galaxy.

can be seen in many clusters, show some kind of unexplained behavior of the SUBFIND
algorithm (see Sect. 3.6).

We check our conclusion about the source for the measured AY (&) in type-2 galaxies.
In Fig. 7.13, we present AY (&) for type-2 galaxies, for a selection of luminosity bins. In
both panels we plot the signals for all type-2 galaxies in red with pluses, (the same signals
as in Fig. 7.10). In the left panel, we present with black crosses the signals for type-2
galaxies, but rejecting from the sample those which were nearer than 0.05 Mpc to a type-1
galaxy. In the right panel, we present with green squares the signals for type-2 galaxies
which have no other galaxy nearer than 0.05 Mpc (both type-1 and type-2). The line type
allows to compare the lines for the same luminosity. Note that some values get negative
which corresponds to a mass profile that increases at larger radii (see Sect. 5.2).

As one can observe, filtering out type-2 galaxies which are too close to a type-1 galaxy
reduces the amplitude of the measured AX(€). The amplitude of AX(€) decreases further
by filtering out also type-2 galaxies which are too close among themselves. The measured
A (€) is therefore due to mass overdensities associated with type-2 galaxies, and as shown
in Fig. 7.12, there are several effects responsible for this.

Finally, we present how our measurements would be affected assuming that type-2 are
realistic and that we cannot distinguish between them and type-1 galaxies. In Fig. 7.14,
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Figure 7.13: Excess surface mass density AX(€) for a few r band luminosity for a LSST-like survey (see
Tab. 7.3). Here we used the projected mass maps ¥(0) to obtain the measurements. With red crosses we
plot the results from type-2 galaxies only. In the left panel, with black pluses, we plot the results from
type-2 galaxies which are at least 0.05 Mpc away from a type-1 galaxy. In the right panel, with green
squares, we plot the results from type-2 galaxies which are at least 0.05 Mpc away from a galaxy of any
type. These are our results for an LSST-like. The line type denotes the different luminosity bins, in order
to compare the profiles for all type-2 and for the filtered samples. Note that we plot the negative values
in the lower panels.

we present AX(€) for a selection of luminosity bins for type-1 galaxies (with dashed blue
lines) and the same luminosity bins but for the combination of type-2 and type-1 galaxies
(with solid black lines). As one can see, the inclusion of type-2 galaxies change the
measurement, especially at large radii. The change is larger for fainter galaxies. The new
profiles are flatter, and there is a systematic error in the determination of the mass profile.
This effect can also interfere with our ability to assign any kind of mass estimate.

In Fig. 7.15, we present the same analysis as in the top panel in Fig. 7.8, but with both
type-2 and type-1 galaxies. Recall that the line and color type encodes the morphology
(as a proxy for the sub-halos’ age), and the symbol encodes the stellar mass (as a proxy
for the sub-halo infall mass). The inclusion of type-2 galaxies is more important if we aim
to estimate the mass loss on sub-halos induced by tidal stripping. Our former ability to
measure this effect was small, and the change in the profiles that type-2 galaxies produce,
makes it impossible.

The presence of galaxies with no halos makes our measurements less precise. However,
if such galaxies exists, we could use our analysis to determine the amount of galaxies of
such type, and to distinguish them from galaxies with a host halo. The methods proposed
in this thesis are therefore of scientific interest in any case.
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Figure 7.14: Excess surface mass density AX(€) for a few r band luminosity bins. Here we used the
reduced shear catalogues ¢(0) simulating a LSST-like survey, to obtain the measurements. The blue
dashed lines correspond to the measurements only for type-1 galaxies. The solid black lines correspond
to the combination of both type-1 and type-2 galaxies. The range where we assume the measurement is
unbiased is highlighted, and it was derived using our results in Tab. 6.4 on the type-1 only profiles. The
solid thick red line is the signal for the average cluster, shown for visual reference.
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Figure 7.15: Morphology-stellar mass classification for a LSST-like survey including both type-1 and
type-2 galaxies. Blue dotted lines correspond to galaxies with a relatively small bulge, red dashed to
those with a large bulge. Red lines correspond to galaxies which spent more time inside a cluster. The
different symbols distinguish different stellar mass bins. The range where we assume the measurement
is unbiased is highlighted, and it was derived using our results in Tab. 6.4 from the type-1 only profiles.
The classification ranges for morphology and stellar mass are described in Tab. 7.4 The blue solid line
with the highest amplitude is the measurement for the host cluster shown for visual reference.



8. Summary & conclusions

In order to understand the evolution of galaxy clusters, it is essential to study the matter
profiles of satellite galaxies. Analyzing how these profiles evolve with time can improve
our knowledge on galaxy evolution and on matter structure formation.

In this work we analyzed the use of weak gravitational lensing on satellite galaxies
inside clusters, in particular the use of galaxy-galaxy lensing. With this probe, we can
measure in a non-parametric way the average projected mass profiles of the host matter
halos of galaxies. This cosmological probe correlates the image distortion (shear) of a
background galaxy with the mass of a foreground galaxy.

Galaxy-galaxy lensing needs large galaxy samples, for this reason it has not been up to
now fully exploited on cluster galaxies. In our work, we forecast results for future surveys
using the Millennium Simulation (Springel et al. 2005), ray-tracing simulations (Hilbert
et al. 2009) and the galaxy semi-analytical catalogues by De Lucia & Blaizot (2007).

We presented the details of galaxy-galaxy lensing measurements on satellite galaxies
and we exposed the contamination from the host cluster. In order to overcome the con-
tamination from the host cluster we proposed a calibration method, which can solve the
problem up to a certain range in radius. For each sub-halo, we define a point at the same
distance from the main halo as the sub-halo is, but in the opposite direction as seen from
the cluster center. We can estimate the contribution of the main halo measuring around
this new point, under the assumption that the cluster is parity-symmetric.

We replicated the mass maps of the clusters in our simulations using theoretical pro-
files with known parameters. With this mock cluster sample we were able to test our
calibration method taking into account realistic characteristics for our cluster samples
such as halo spatial distribution or mass function. We estimated the performance of our
measurements at different radii and we defined a minimal separation between the sub-
halo and the main halo center to optimize the signals. Finally, we also discussed how to
proceed if the central galaxy position and the main halo center are weakly correlated.

With the previous tests, we could characterize the sub-halos in the Millennium Simu-
lation using projected mass maps. The weak lensing signal of sub-halos is well described
by a simple NF'W profile, and it was not possible to estimate the spatial extent of the
sub-halos. Our results are consistent with an abrupt truncation of the mass profile at
radii larger than 0.2 Mpc. There are certain discrepancies between our work and the
previously published works from Limousin et al. (2007), Natarajan et al. (2007), Halkola
et al. (2007) and Suyu & Halkola (2010). These authors measured a much smaller extent
of the sub-halos using gravitational lensing on a few observed clusters. The results were
derived using parametric models for the mass profiles of the sub-halos and the main halo.
The models used by these authors are unable to fit sub-halos in the Millennium Simula-
tion. Since the Millennium Simulation only contains dark matter, there is not absolute
certainty that NFW profiles should be the best description for halos of real galaxies.
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Nevertheless, our results challenge the choices made in the afore-mentioned works. The
truncation radii that they measured can be also interpreted as a consequence of the para-
metric method used. Therefore, further analysis and better data are needed in order to
solve the discrepancies.

We also were able to characterize the evolution of the mass profiles. We show that
the lensing profiles decrease in amplitude with time. This is consistent with a mass loss
at all scales. Due to the tidal forces exerted by the host halo, sub-halos are stripped of
the mass at the outermost radii, and at the same time the mass at the inner regions is
redistributed. This is consistent with the work by Hayashi et al. (2003) and also supports
the idea of large truncation radii.

After describing the sub-halo profiles we used simulated galaxy catalogues to forecast
signals for future surveys, focusing on DES (The Dark Energy Survey Collaboration 2005)
and LSST (Ivezic et al. 2008). We analyzed the semi-analytical catalogues in order to
classify the galaxy samples to optimize the measurements. With the result from this
analysis we derived the following results.

We predict the detectability of the signals using a compact estimator of the signal-to-
noise ratio. The cluster sample required is very large, but we can already expect signals
from a DES-like survey roughly above the three sigma level. The data from a LSST-like
survey is optimal for the studies that we proposed.

There is not a unique way of separating between sub-halo and host halo mass. In this
thesis, we considered that the mass of the sub-halo is well estimated in our simulations
by the SUBFIND algorithm (Springel et al. 2001) (Msypr). We modeled the dependence
between the measured NFW profiles and the gravitationally bound mass of the sub-halo
mass Mgugr. We also checked that the weak lensing approximation is valid.

According to the semi-analytical catalogues luminosity in the SDSS 7 band is a good
proxy for mass. We predict that it is possible even for a DES-like survey to constrain the
mass-luminosity relations of sub-halos over two decades in mass, from around 5 x 10 M
to 10 M.

In order to study in real data the time evolution of the profiles, we binned the galaxies
according the mass of the sub-halo prior to falling into the cluster and the time spent
inside the cluster (sub-halo age). Within the semi-analytical catalogues, it is possible to
infer their initial mass, with its stellar mass. On the other hand we could not find any
galaxy observable strongly correlated with the sub-halo age. With these observables, we
could only put weak constraints to the evolution of sub-halo matter profiles. Nevertheless,
our results are subjected to the models of galaxy evolution, which are still in constant
development.

In our analyses we neglected the galaxies without a host sub-halo which one finds in the
semi-analytical catalogues. A priori, these galaxies are not fully reliable as they populate
mass overdensities below the resolution limit of the Millennium Simulation. Nevertheless,
for completeness we considered their influence. These galaxies show a lensing signal with
a high amplitude, which can be explained as being produced by correlated halos. We also
were able to quantify the correlation between the position of type-2 galaxies and other
sub-halos. Finally, we presented how our previous analysis is affected by assuming that
these galaxies are realistic and that we are not able to distinguish them from galaxies
with a host sub-halo. However, we consider that they can be safely neglected. Further
simulations are needed in order to investigate galaxies of such characteristics.



A. Shear Profiles

A.1 NFW profiles

The NFW profile (Navarro et al. 1997) is a model which fits well halos in dark matter
simulations regardless of the mass. It has a radial density of

pr) = oo
(r/rs)(L+r/re)*
where ¢, is a characteristic number, p,, is the mean matter density of the universe at the
halo redshift, and r, is the scale radius.

In order to define the extension of the halos we define a characteristic density, which
is a factor Ay, times the comoving mean density of the Universe p,,. However there are
other definitions based on the critical density or the physical mean density of the Universe.
The factor Ay is derived from the spherical collapse model and it is an approximation
to the density of a virialized object. The radius inside which the average density of an
object equals Ay pp is called the virial radius ry;.. Since the extension so defined is only
an estimation of the virial radius, it is also customary to use the notation ra . instead of
rvir- In this thesis since we assume A,; = 200, we shall use ryq.

The mass within the radius r is given by:

(A1)

_ 3 Ty b
M(<r) =476cpmrs {ln (1 + 7“5) T Ts/r] : (A.2)

A commonly used parameter for NF'W profiles is the ratio between the virial radius and
the scale radius, the concentration:

c="12 (A.3)

Ts
which is related to the characteristic density .
Avir c3
3 m(1+¢)—c/(1+¢)
The projected mass density Xxpw at a projected radius & of an NFW profile has been
derived by Bartelmann (1996). If we define the parameter x = &/r, the expression for

5o = (A.4)
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This expression can be integrated to obtain the mean projected mass density A inside
the radius &, which yields:

(475 0c prm 2 1—
50 P ( arctanh —x—i—ln(a:/Z)) for <1,
T

2 \Vi 2 1+

Snrw(T) = < 475 0c pm [1 + In(1/2)] for x=1, (A.6)

475 0c Pm 2 -1
\ 7’$20 (m arctanwir—x—i—ln(x/Q)) for x> 1.

The excess surface mass density comes straightforward as

A.2 Truncated NFW profiles

The truncated NFW profile we use in this thesis is described by Baltz et al. (2009). It is
a modification of the original and reads

_ dc Pm
) = At r/r P (B (4.8)

In order to define the lensing profiles we shall define again z = £/, and the function

(In (1/m —\/1/x% — 1)
for = <1,
V1—a?
Fz)=(1 for x =1,
arccos(1/x) for 51
\ 2 -1

With this function and defining 7 = r,/rs for convenience, we have
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The mean density within a radius x is
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A.3 PIEMD profiles

The pseudo-isothermal elliptical mass distribution (PIEMD), was derived by Kassiola &
Kovner (1993). The profile we use is however a version of the former, the truncated
PIEMD or the dual pseudo isothermal elliptical mass distribution (dPIE) (Eliasdéttir
et al. 2007). nevertheless for this work we consider only the circular case. Its three
dimensional distribution reads :

_ Po
) = e,y s 22y (A1)

The correspondent surface mass density distribution is

p rgore rzut i 1 1
() = 02 (\/72 ) . (A.12)

— 2 N
Tcut TGore core + 52 \/’rgut + 52
The mean surface mass density distribution is

~ 2 o2 2 2 2 _  /r2 2
E(f) _ P0 Teore Teut 7 1— \/rcut + 5 \/Tcore + f . (A13)
52(Tcut + Tcore) (Tcut - Tcore)

The parameter r.,; changes the profile such as the total mass does not diverges, in the
same way as the truncation radius in the NFW profile. For this reason we shall consider
it also as a truncation scale.




B. Halo shear signal around any
point

We want to describe the shear signal for a circular symmetric halo, seen from a point
different from the halo center. We present a sketch in Fig. B.1.

Non-Centered Halo

Figure B.1: Sketch of the situation we want to treat. The origin of coordinates, (also the point around
which we want to measure shear), is where the dashed lines cross.

Because of the symmetry, the modulus of the shear only depends on the distance r’
to the center. If the modulus is described by the function f(7’), the shear produced at a
position r' = (1, ¢') is:

() = f)exp (21 [¢f + 5] ) = —1(r") exp(2ie). (B.1)

The additional 7/2 phase on the exponential accounts for the fact that the shear aligns
perpendicular to the position vector.

Now we define the tangential shear with respect any origin, taking an offset frame of
reference (r) with respect the one centered on the halo (r'). The tangential shear around
the new origin is

M"(r) = —m (r) cos(2¢) — 72 (r) sin(2¢) (B.2)

In the assumed case where the shear field is only produced by the halo, we can compute
from Eq. (B.1) the Cartesian components of the shear field 7, (r") + iy2(r') , in the old
frame of reference (r’) and express them into the new one (r):
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Y (r)==7(r'(r)) cos(2¢) — 72(x'(x)) sin(2¢)

—f(r(x)) [cos (2¢/(r)) cos(2¢) + sin (2¢/(r)) sin(?gb)} . (B.3)

From Fig. B.1 we can derive the necessary trigonometric relations between both coordinate
frames:

( rcosg —r
/__ o
cos @ =
r’ cos ¢'=r cos ¢ — ry
=< . rsin ¢ B4
P i A : < Slngb,: PR ( )
r’ sin ¢'=rsin ¢ r
r’? =r24rk — 2ror cos ¢.

\

Now we apply these trigonometric equalities and express ' — r, §' — 6:

_ r? cos(2¢) + r2 — 2ror cos(¢)

B.5
r2 + 12 — 2ror cos(9) ’ (B.5)

cos(2¢')=cos?(¢) — sin?(¢)

r?sin(2¢) — 2ror sin(¢)
r2 418 — 2rorcos(¢)

sin(2¢')=2sin(¢’) cos(¢’) = (B.6)

Putting altogether we arrive to the final expression of the tangential shear around any
point:

f (\/7“2 + 12— 2ror cos(¢)>

72+ 12 — 2ror cos(o)

Yi(r)=

X <cos(2q§) [r2 cos(2¢) + g — 2rr cos(<b)}

+ sin(2¢) [7’2 sin(2¢) — 2ror sin(¢)}> ,

7?2 4 12 cos(2¢) — 2ror cos(¢)
r2 + 12 — 2ror cos(¢)

Y

Yo(r)=f <\/r2 +13 - 2r0rcos(¢))

(r)=f <\/r2+rg —2r0rcos(¢)) [1+ roleos(26) — 1 1 . (B.7)

r2 4+ 12 — 2ror cos(9)



C. Bayes’ theorem and model
comparison

The basis of Bayesian analysis is Bayes’ theorem. The theorem relates the conditional
probability of an hypothesis H or model, given a data set D, p(H|D), with the conditional
probability of the data given the hypothesis p(D|H). This allows to discriminate between
hypothesis through a much easier analysis of likelihood of the data. The theorem reads:

p(H|D) p(D) = p(D|H) p(H). (C.1)
where p(D) is the likelihood of the data or evidence and p(H) the likelihood of the hy-
pothesis or prior. The prior encodes our previous knowledge.

From Bayes’ theorem we can derive what model is favored by the data. The ratio
between p(H|D) of two different hypothesis (H; and Hs) yields

p(H1|D) _ p(D|Hy) p(Hy) (C.2)

p(Ha|D)  p(D|Hs) p(Hz2) ‘
The Lh.s. of the equation is the posterior ratio of the probabilities of both hypothesis.
The second term in the r.h.s. of the equation is the prior ratio, and the remaining term is
the Bayes’ factor. The Bayes’ factor relates the prior to the posterior, therefore it carries
the information given by the data, concerning the validity of both hypothesis.

The Bayes’ factor can be compute from the likelihood of the data:

_ p(D|Hy) [ p(D|61, Hy) m(61|Hy) 6,

p(D|H2) fP(D|92,H2)7T(92\H2) dey’
where 6, 6, are the set of parameters for the model given by the hypothesis Hy, Hy and
7(61|Hy), m(0|Hs) are the respective prior densities of the parameters. One can develop

empirically a scale for its interpretation. In Tab. C.1 we present the version by Kass &
Raftery (1995).

Bis (C.3)

Table C.1: Scale for rating a the likelihood of hypothesis H; against Hy according to its evidence Kass
& Raftery (1995).

Bayes Factor By, Evidence against Hy

<1 Disfavored against H;
1:3 Barely significant
3:20 Positive
20:150 Strong

>150 Very strong




D. Nested Sampling

Nested sampling is an algorithm designed to compute the Bayesian evidence. With it, it
is possible to rank the performance of different models. The Bayesian posterior is also
computed as a secondary product. This is only an overview, for a detailed description see
Skilling (2004). The essence of the algorithm is to use Monte-Carlo methods to compute
the integral expression of the evidence. The sampling is design to converge geometrically
towards the point with maximum likelihood, and solve the multidimensional curse.

The evidence is defined as

Z:/L(D|9,H)7r(0|H)d0, (D.1)

where L(D|0, H) is the likelihood of the data D, assuming the hypothesis H. We also
have assumed a particular parameterization of the problem 6. With 7 (0|H) we denote
the prior over the parameters’ space. The first step is to define the prior mass

X(\) = /L _ e, (D.2)

which accounts for the parameters’ space with a likelihood greater than A. Expressing the
likelihood L as a function of the prior mass L(X), and normalizing the total prior mass
such as X (0) = 1 and X (Lyax) = 0, the evidence becomes a one-dimensional integral over
the unit range:

7= /1 L(X)dX. (D.3)

The numerical computation of this integral involves dividing the total prior mass and
sorting the resulting elements according to its likelihood. One complication that may
occur is ties. For practical purposes, we break the degeneracy by adding a very small
random number to each point with the same likelihood.

In order to understand the algorithm, we discuss the first iteration in the central loop.
We start by sampling uniformly the weighted parameters’ space with N points. We denote
the points like ¢;, and we order them according to their likelihood. We can statistically
estimate the prior mass for the smallest likelihood sampled L(ty) from the N points. In a
random sampling of the unit interval, the probability distribution function (PDF) of the
maximum value X follows

PDF(X)=NX""1 in (0,1), (D.4)

where N is the number of random points in the sample. The prior mass defined by the
point with the smallest likelihood X (¢y) follows this PDF. For an elegant derivation of the
final result, we compute the mean and the standard deviation of In(X') of this probability
distribution function:
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L(x) 4

0 1 X

Figure D.1: Tlustration of the algorithm. The square with different contour lines represents our
parameter space with the likelihood coded into the color. The different points form a sample with which
to compute the evidence following the algorithm. Original picture extracted from (Mukherjee et al. 2006).

(In(X)) =—-1/N, o(In(X)) =1/N. (D.5)

The average contribution to the total evidence for the prior space between L = 0 and L(ty)
is L(tn) x [1—exp(—1/N)]. This is a coarse estimate of this particular contribution of the
evidence. On the other hand, the evidence fraction contained in this parameter volume
fraction is small for a sufficient number of sampling points, and the error introduced small.

In the next iteration of the central loop of the algorithm, we repeat the process re-
sampling the weighted parameters’ space between L. and L(tn) with N more points.
Now, we estimate the average contribution to the total evidence between L(tx) and the
next smallest likelihood value.

The sampling has a higher density as we probe regions with a larger likelihood. After j
iterations, which we construct such that they are independent, the prior mass is expected
to shrink to:

In(X;) =~ — (j + \/3> /N such as X, =exp(—j/N). (D.6)

We can therefore assign in each iteration of our loop, the prior mass fraction w;, for the
value with the smallest likelihood L(t;)

w; = Xj—l - Xj. (D7>

Our final estimation of the Bayesian evidence after m iterations is therefore:

2(6) = Y- Lty = Y- L(t) (exp(=3/N) —exp(~[j —1}/N)). (D)
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We denote with L(t;) the lowest likelihood sampled in each iteration. The algorithm can
be terminated when the last iteration does not increases the evidence by more than a
small fraction.

The sample of stored points at each iteration can be used to reconstruct the posterior.
Through Bayes’ theorem, the posterior is:

L(D|9, H)r (0| H)
Z(D)

In order to computed the expectation value of the quantity Q(0, H|D) from the posterior
we only need to compute:

P(0,H|D) =

(D.9)

SO, Q(O, H|D) L(t;(6, H|D))w;

BQ) = ST Lt ),

(D.10)

The idea can be solved implementing the following loop:

1. Sample uniformly the parameters’ space with N points t,, accepting only those
whose likelihood is larger than Ly, which we initialize to 0.

2. Store the point ¢; with the lowest likelihood L(¢;).

3. Estimate the prior mass fraction AX = w; between Ly, and L(¢;), which the former
sampling defines.

4. Compute the contribution to the total evidence of the current iteration, approxi-
mated by L(t;)w,.

5. Update the likelihood acceptance limit to the stored value Ly, = L(t;).

6. Iterate until the integral converges.

There is actually no need to produce N points in each iteration. We can reuse the N — 1
points from the previous step with a larger likelihood than L;, improving the performance
of the algorithm.
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Chapter D. Nested Sampling
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