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Abstract

In the current work we thread the problems of smoothness in non-commutative C∗-
algebras arising form the Baaj-Julg picture of the KK-theory. We introduce the notion
of smoothness based on the pre-C∗-subalgebras of C∗-algebras endowed with the struc-
ture of an operator algebra. We prove that the notion of smoothness introduced in the
paper may then be used for simplification of calculations in classical KK-theory.

The dissertation consists of two main parts, discussed in chapters 1 and 2 respectively.
In the Chapter 1 we first give a brief overview to Baaj-Julg picture of KK-theory and

its relation to the classical KK-theory, as well as an approach to smoothness in Banach
algebras, introduced by Cuntz and Quillen. The rest of the chapter is devoted to opera-
tor spaces, operator algebras and operator modules. We introduce the notion of stuffed
modules, that will be used for the construction of smooth modules, and study their prop-
erties. This part also contains an original research, devoted to characterization of operator
algebras with a completely bounded anti-isomorphism (an analogue of involution).

In Chapter 2 we introduce the notion of smooth system over a not necessarily commu-
tative C∗-algebra and establish the relation of this definition of smoothness to the Baaj-
Julg picture of KK-theory. For that we define the notion of fréchetization as a way of
construction of a smooth system form a given unbounded KK-cycle. For a given smooth
system A on a C∗-algebra A we define the set Ψ(n)

µ (A , B), n ∈ N ∪ {∞} of the un-
bounded (A, B)-KK-cycles that are n smooth with respect to the smooth system A on A
and fréchetization µ. Then we subsequently prove two main results of the dissertation.
The first one shows that for a certain class of fréchetizations it holds that for any set of
C∗-algebras Λ there exists a smooth system A on A such that there is a natural surjective
map Ψ(∞)

µ (A , B) → KK(A, B) for all B ∈ Λ. The other main result is a generalization of
the theorem by Bram Mesland on the product of unbounded KK-cycles. We also present
the prospects for the further development of the theory.
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like to thank Branimir Ćaćić, Yemon Choy, Stefan Geschke, Jens Kaad, Andreas Thom,
Christian Voigt, Da Peng Zhang and the others for productive conversations about the
topics related to the material of the thesis.

It is my pleasure to thank the defense committee members for their agreement to re-
view my thesis. I would also like to thank Dr. Christian Kaiser from Max-Planck Institute
for Mathematics, Bonn, for taking care of me as well as other PhD students during my
studies, and for his support with preparations for the defense.

I owe my best thanks to the Max-Planck-Society, the International Max-Planck Research
School on Moduli Spaces and Rheinisches Friedrich-Wilhelms-Universität at Bonn for the
opportunity to perform this research. I also would like to thank the California Institute of
Technology for their hospitality during my two-month long visit in 2008.

I would also like to offer my special thanks to Adam Skórczynski and Sebastian De-
orowicz, the authors of an extremely comfortable freeware editor LEd for LATEXwhich I
used for typing the present text.

At last, but definitely not at least, I would like to thank my family, especially my father
Petr who has put much effort to let me see and relish the hidden beauty of mathematics,
and my dear wife Nina for her all overwhelming love and patience.



Contents

Abstract ii

Lebenslauf iii

Acknowledgements iv

0 Introduction 1

1 Preliminaries 5
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Hilbert C∗-Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Tensor products on Hilbert C∗-modules . . . . . . . . . . . . . . . . . . 7
1.1.3 Regular Unbounded Operators on Hilbert C∗-modules . . . . . . . . . 8
1.1.4 KK-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.5 Unbounded Picture of KK-theory . . . . . . . . . . . . . . . . . . . . . 12
1.1.6 Holomorphic Stability and Smoothness in Banach Algebras . . . . . . 14

1.2 Operator Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1 Concrete Operator Spaces, Completely Bounded Maps . . . . . . . . . 15
1.2.2 Abstract Characterizations of Operator Spaces . . . . . . . . . . . . . . 16
1.2.3 Characterizations of Operator (Pseudo)Algebras . . . . . . . . . . . . . 16
1.2.4 Operator Algebras and Involution . . . . . . . . . . . . . . . . . . . . . 17
1.2.5 Characterization of Operator Modules . . . . . . . . . . . . . . . . . . 21
1.2.6 Direct Limits of (Abstract) Operator Spaces. . . . . . . . . . . . . . . . 21
1.2.7 Haagerup Tensor Product . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.8 Rigged and Almost Rigged Modules . . . . . . . . . . . . . . . . . . . 25
1.2.9 Haagerup Tensor Product of Almost Rigged Modules . . . . . . . . . 29
1.2.10 Stuffed Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.2.11 Operators on Stuffed Modules . . . . . . . . . . . . . . . . . . . . . . . 36
1.2.12 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Unbounded KK-Theory 43
2.1 Smooth Systems on C∗-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.1 Smooth Systems, First Fréchetization and Ψ(•) Sets . . . . . . . . . . . 43

v



CONTENTS vi

2.1.2 Relation to Classical KK-Theory . . . . . . . . . . . . . . . . . . . . . . 44
2.1.3 A "Doing It Wrong" Example . . . . . . . . . . . . . . . . . . . . . . . . 51
2.1.4 Standard Fréchetizations . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.1.5 Example: Smooth Systems on Noncommutative Tori . . . . . . . . . . 61

2.2 Product of Unbounded KK-cycles . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2.1 Smooth Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2.2 Transverse Unbounded Operators, Second Fréchetization . . . . . . . 65
2.2.3 Transverse Smooth Connections . . . . . . . . . . . . . . . . . . . . . . 66
2.2.4 Product of Unbounded KK-Cycles: Theorem of Mesland and its

Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3 Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.3.1 An Approach to a Category of C∗-Algebras with Smooth Structures . 71
2.3.2 cb-Isomorphism Classes of Operator Spaces . . . . . . . . . . . . . . . 76

Bibliography 78



Chapter 0

Introduction

The main theme of the present paper, as it follows from the title, is concerned with the
smoothness in noncommutative C∗-algebras and the relation of this notion of smoothness
to the unbounded bivariant KK-theory.

Historically, the notion of smooth functions on a smooth manifold is given in a more
or less canonical way. Namely, there is a standard notion of the algebras Cn(Rm) of
n-differentiable functions on m-dimensional Euclidean space. Then the definition of Cn-
smooth manifold is given in terms of smooth functions on Rm: we introduce an atlas on
the topological manifold and demand the transition functions between the local charts to
be smooth. The algebra Ck(X) of Ck-smooth functions on a Cn-smooth manifold X for
k ≤ n is then the algebra of all such functions f ∈ C(X) that are smooth on all the local
charts of the chosen Cn-smooth atlas on X. Here we assume that the closures of the open
sets constituting the atlas are compact.

The definition of C∞ smooth manifold and C∞(X) is given analogously to the Cn case.
The procedure of defining a smooth manifold structure on a topological manifold is

more or less canonical. Of course, it depends on the atlas, but, although there are, for
instance, 28 different "exotic" structures of smooth manifold on a 7-dimensional sphere,
these are all the structures of the smooth manifold (up to a diffeomorphism) that we may
obtain on this particular object. We also recall that the structure of smooth manifold is
unique for topological manifolds of dimension ≤ 3.

In turn, the structure of smooth manifold on a topological space X allows us to intro-
duce a tangent space, a Riemann metric and, finally, a spinor bundle and a Dirac operator
on X in case when X can be endowed with the spin-manifold structure.

When we switch to the noncommutative geometry, this bottom-up paradigm - from Rm

to smooth manifolds to Riemann manifolds to spin-manifolds - fails to work, because in
general there is even no topological space corresponding to a noncommutative C∗-algebra,
left alone the local charts on this space. However, many notions arising in differential
geometry are generalized for noncommutative geometry using the top-down paradigm.

One of the most well-known examples of such kind of generalization are spectral
triples introduced by Alain Connes (the construction outlined, for instance, in [14, IV.4]).
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We recall that in the most general case a spectral triple is a set of data (A,H, D), where A
is a dense subalgebra of a C∗-algebra, faithfully represented on a Hilbert space H, and D
is a densely defined selfadjoint operator on H, satisfying

• (1 + D2)−
1
2 extends to a compact operator on H.

• [D; a] extends to a bounded operator on H

(In the terms of KK-theory, a spectral triple is then an unbounded (A, C)-KK-cycle (H, D)).
Here the Hilbert space H plays a role of a "noncommutative spinor bundle" and D act as
an analogue of a Dirac operator. One then defines an analogue of "smooth sections of
spinor bundle" H∞ =

⋂∞
n=1 DomDn. The subalgebra A plays a role of "smooth" functions

on A: it is demanded that each element a ∈ A restricts to a map a : H∞ → H∞. Alain
Connes introduces the so-called regularity axiom on A: for all a ∈ A both a and [D, a]
belong to the domain of smoothness Dom(δk), where δ(T) = [|D|; T] for T ∈ B(H).
Additional axioms (such as claiming H∞ to be a finitely generated projective A-module)
may be imposed to make a spectral triple resemble a differential manifold with a spin-
structure. It has been proved by Connes in [17] that every so-called real spectral triple (see
for instance [34] for definition) corresponds to a spin-manifold whenever the C∗-algebra
A is commutative.

Thus, while in differential geometry a spinor bundle and the Dirac operator on it are
constructed by means of smooth functions on a smooth manifold, in noncommutative
geometry we may go the opposite way: first we choose a "bundle" and a Dirac-type
operator, and then this data is used for the definition of smooth sections of the bundle
and then smooth subalgebras of a C∗-algebra.

There is an another approach that was proposed by Blackadar and Cuntz in [6]. In this
approach the authors tried to simulate the Fréchet spaces with Fréchet seminorms. Again,
unlike the differential geometry, where the Fréchet seminorms are defined by means of
the supremum norms of partial derivations of smooth functions, the authors applied an
abstract Banach space approach. Given a C∗-algebra A, they introduce a so-called dif-
ferential seminorm, which is a system of seminorms with particular condition, and then
prove that the dense subalgebras of A, complete with respect to these seminorms, have
the properties analogous to the ones of the subalgebras of smooth functions on smooth
manifolds. In particular, they are stable under holomorphic functional calculus on A. We
shall briefly discuss this approach in the Subsection 1.1.6.

The unbounded KK-theory, first proposed by Saad Baaj and Pierre Julg [2], is similar
to noncommutative geometry and has close origins. The main difference is that instead
of Hilbert spaces, as in spectral triples, one deals with Hilbert C∗-modules over some C∗-
algebra B, and the Dirac-type operators are replaced with so-called unbounded regular
operators, which are B-linear (we give the precise definition in Subsection 1.1.5). The
unbounded KK-cycles, with spectral triples being their particular case for B = C, were the
main object of study of Bram Mesland in his PhD thesis and [28], and apparently are the
main object of study of the present paper.

For his studies, Mesland has proposed the approach of smoothness which is similar
to the one adopted by Connes. For a given C∗-algebra, he chooses a decreasing nested
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sequence
(A∞ ⊆) · · · ⊆ An ⊆ An−1 ⊆ · · · ⊆ A1 ⊆ A0 := A

of dense subalgebras of A, stable under holomorphic functional calculus on A. This
sequence was supposed to be previously given, and was actually claimed to come out
of some spectral triple of the form (A∞,H, D). Then, given an unbounded (A, B)-KK-
cycle (E, D), satisfying certain compatibility conditions, Mesland defines a structure of
operator algebra on each An. This operator algebra structure is then used for Mesland’s
generalization of Kasparov product in unbounded bivariant K-theory.

In present paper, we introduce yet another one notion of smoothness. In our definition,
by a smooth system on a C∗-algebra A we shall understand the sequence A of operator
algebras

(. . . ↪→)An ↪→ An−1 ↪→ . . . ↪→ A1 ↪→ A0 := A

such that all the maps are completely bounded essential inclusions, the images of A(n)

in A are dense and stable under holomorphic functional calculus, and the involution
on A induces a completely isometric anti-isomorphism on A(n). We also introduce a
class of operations that we call fréchetizations, which, roughly speaking, are the ways µ to
define a smooth system Aµ,D on a given C∗-algebra A by a specified unbounded (A, B)-
KK-cycle (E, D). The method of endowing the algebras An with an operator algebra
structure proposed in [28] becomes a particular example of fréchetizations, called mes-
fréchetization.

Then, for given fréchetization µ we define the sets Ψ(n)
µ (A , B) of unbounded (A, B)-

KK-cycles that are n-smooth (with n possible infinite) relatively to the smooth system A ,
and prove that for a certain kind of fréchetizations (including mes) we may construct the
smooth system A in such a way that for any given n-set of C∗-algebras Λ there is a well
defined surjective map Ψ(n)

µ (A , B)→ KK(A, B) for all B ∈ Λ.
Alongside with that, show the interesting smooth systems may not necessarily come

out from spectral triples, and, from the other hand, that the systems that are coming
from spectral triples do not necessarily possess the same properties as systems of Fréchet
algebras on Riemann manifolds.

The main purpose of introducing the smooth systems the way we have just described
was the generalization of Kasparov product to the unbounded KK-theory. This task was
considered by Mesland in [28]. There has been presented a way to construct the product
(A, C)-KK-cycle of two unbounded (A, B)- and (B, C)-KK-cycles (E, T) and (Y, D) respec-
tively. However, by the formulation proposed in [28], when dealing with this kind of
product, one had always to impose the conditions on the module E and the operator T,
that were coming out of the properties of the smooth system induced on the algebra B
by the unbounded KK-cycle (Y, D); in the notation we introduce in the current paper this
system is denoted by Bmes,D. In particular, one has to care about the so-called smoothness
of the module E with respect to Bmes,D and transversality of the operator T. We rede-
fine these conditions in terms of the more general smooth systems introduced above, and
prove that if the data (E, T) satisfies these generalized conditions for the system B, then
so it does with respect to the smooth systems of the form Bµ,D for all (Y, D) ∈ Ψ(•)(B, C).
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Thus, we obtain a generalization of the main result of [28], allowing us to calculate the
unbounded version of Kasparov product for sets of unbounded KK-cycles rather than just
single given pairs of them.

The paper contains several examples illustrating the proposed theory. It also contains
an original result threating an analogue of the notion of involution for operator algebras,
which could be interesting on its own.



Chapter 1

Preliminaries

1.1 Preliminaries

1.1.1 Hilbert C∗-Modules

Definition 1.1.1. Let A be a C∗-algebra. A complex vector space E with a right A-module
structure will be called a Hilbert C∗-module if it is equipped with a bilinear pairing

E× E → B

(ξ, η) 7→ 〈ξ, η〉

satisfying

• 〈ξ, η〉 = 〈η, ξ〉∗

• 〈ξ, ηa〉 = 〈ξ, η〉 a

• 〈ξ, ξ〉 ≥ 0 and 〈ξ, ξ〉 = 0⇔ ξ = 0

• E is complete in the norm ‖ξ‖ :=
√
‖ 〈ξ, ξ〉 ‖.

Hilbert C∗-modules serve as natural generalizations of Hilbert spaces, with the pairing
on them being an analogue of scalar product. Hilbert spaces may be regarded as Hilbert
C∗-modules over C.

The theory of Hilbert C∗-modules is a deep and widely-developed subject of mathe-
matics. We refer to [27] and [26] for detailed exposition of the theory. Here we shall only
mention some distinctive features of Hilbert C∗-modules.

A C∗-algebra A is a Hilbert C∗-module over itself with the scalar product given by
〈a, b〉 = a∗b for a, b ∈ A.

The space span{〈ξ, η〉 | ξ, η ∈ E}, where the completion is taken with respect to the
C∗-norm on A forms an ideal in A. If this ideal coincides with A, then the module is
called full.

5
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A direct sum of two Hilbert C∗-modules E1 and E2 is a Hilbert C∗-module, with the
scalar product given by

〈ξ1 ⊕ ξ2, η1 ⊕ η2〉 = 〈ξ1, η1〉+ 〈ξ2, η2〉

for ξ j, ηj ∈ Ej, j = 1, 2.
More generally, for a countable set {Ej}∞

j=1 of Hilbert C∗-A-modules we may form a
direct sum Hilbert C∗-A-module

⊕∞
j=1 Ej given by the closure of algebraic direct sum of

Ej’s with respect to the norm, obtained form the pairing

〈
⊕∞

j=1ξ j,⊕∞
j=1ηj

〉
:=

∞

∑
j=1

〈
ξ j, ηj

〉
This pairing also defines the structure of Hilbert C∗-module on

⊕∞
j=1 Ej.

A submodule F of Hilbert C∗-module E is called orthogonally complementable if there ex-
ists a Hilbert C∗-submodule F⊥ ⊆ E such that F⊕ F⊥ = E. Not all Hilbert C∗-submodules
of a given Hilbert C∗-module are orthogonally complementable.

A standard Hilbert C∗-module over a C∗-algebra A is obtained as a sum of countable
number of copies of algebra A, HA := A⊕ A⊕ A⊕ . . . . A distinctive property of Hilbert
C∗-modules is given by the so-called Kasparov stabilization theorem.

Theorem 1.1.2. Let E be a countably generated Hilbert C∗-A-module. Then there is an isometric
isomorphism of Hilbert C∗-A-modules.

E⊕HA u HA

As a result, every countably generated Hilbert C∗-A-module may be regarded as an
orthogonally complementable Hilbert C∗-A-submodule of HA.

Analogously, one may define the module of the form HE := E⊕ E⊕ . . . . There is a
distinctive characteristic of full Hilbert C∗-modules:

Theorem 1.1.3 ([26]). Let E be Hilbert C∗-A-module, which is full. Then HE = HA ⊕M, where
M is some Hilbert C∗-A-module. If A is unital, then there exists such m ∈N, that Em u A⊕M.
In case when E is countably generated, we also have that HE u HA.

Let E, F be two Hilbert C∗-A-modules. We denote by HomA(E, F) the Banach space of
bounded A-linear maps. If E = F we denote EndA(E) := HomA(E, E).

Unlike the operators on Hilbert space, the A-linear operators on a Hilbert C∗-A-
module need not be adjointable. We say, that the operator T ∈ HomA(E, F) is adjointable
if there exists such an operator T∗ ∈ EndA(F, E) such that

〈Tξ, η〉F = 〈ξ, T∗η〉E

for all ξ ∈ E and η ∈ F. The set of all adjointable operators in EndAE forms an algebra
End∗A(E), which is a C∗-algebra with the conjugation operation given by ∗ : T 7→ T∗.
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A finitely generated Hilbert C∗-A-module E is orthogonally complementable in a
finitely generated free A-module Am, m ∈ N iff it is projective, i.e. there exists an op-
erator p ∈ End∗A(E) such that p = p2 = p∗, and E u pAm as right Hilbert C∗-A-modules.

There is a generalization of compact operators for Hilbert C∗-modules. For given two
elements ξ, η ∈ E we define an elementary operator ξη(·) = ξ 〈η, ·〉. The span of all such
operators forms an algebra which we denote as FinB(E) ⊆ End∗B(E). the completion of
FinB(E) with respect to the C∗-norm on End∗B(E) gives an algebra denoted as KB(E) ⊆
End∗B(E), which is called the algebra of B-compact operators on E.

A C∗-algebra A is called Z/2Z-graded (we shall call it just graded) if there is an element
γ̂ ∈ Aut∗(A) of order 2. If the grading is present, then there is a decomposition of
A = A0 ⊕ A1, where A0 is the algebra of even elements and the closed subspace A1 of
odd elements. It holds that Ai Aj ⊆ Ai+j, for i, j ∈ Z/2Z. A ∗-homomorphism φ : A → B
is called graded if it respects grading, that is φ ◦ γ̂A = γ̂B ◦ φ. For a ∈ Aj we denote by
∂a ∈ Z/2Z the degree of a.

Definition 1.1.4. A Hilbert C∗-A-module E is called graded if it is equipped with an ele-
ment γ ∈ AutC(E) of order 2, such that

• γ(ξa) = γ(ξ)γ̂(a)

• 〈γ(ξ), γ(η)〉 = γ̂ 〈ξ, η〉

In this case E decomposes in two subspaces E0 ⊕ E1, and Ei Aj ⊆ Ei+j. The grading on
E naturally induces the grading on the algebras EndA(E), End∗A(E) and KA(E) by setting
(γ̂T)ξ = γ(Tγ(ξ)).

Throughout the paper we assume both algebras and modules be graded, possibly
trivially, i.e. with γ̂ = IdA and γ = IdE.

1.1.2 Tensor products on Hilbert C∗-modules

Let A and B be two graded C∗-algebras. The algebraic tensor product of these two algebras
A⊗̃B := A⊗C B (we shall always write × for ×C) may be regarded as a graded algebra
subject to the multiplication law given by

(a1 ⊗ b1)(a2 ⊗ b2) := (−1)∂b1∂a2 a1a2 ⊗ b1b2

According to the Gelfand-Naïmark-Segal construction, there is a graded representation
of C∗-algebras A and B on some graded Hilbert spaces H and K respectively. Denote by
A⊗B the closure of A⊗ B with respect to the norm induced by the representation of A⊗ B
in B(H⊗K). We obtain that A⊗B is a graded C∗-algebra with respect to this norm. The
C∗-algebra A⊗B is then called minimal or spatial tensor product of A and B.

Let now E and F be graded C∗-modules over A and B respectively. We may define an
A⊗B-valued inner product on the algebraic tensor product E⊗ F by setting

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 := 〈ξ1, ξ2〉 ⊗ 〈η1, η2〉
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The completion of E⊗ F in the norm induced by this tensor product becomes a Hilbert
C∗-A⊗B-module, which we denote by E⊗B. It also inherits the grading by setting γE⊗F :=
γE ⊗ γF. The module E⊗F is called exterior tensor product of E and F.

If φ ∈ End∗AE and ψ ∈ End∗BF, we may define a graded tensor product of these two maps
by setting

φ⊗ ψ(ξ ⊗ η) := (−1)∂ξ∂ψφ(ξ)⊗ ψ(η)

This tensor product gives a graded inclusion

End∗A(E)⊗End∗B(F)→ End∗A⊗B(E⊗F)

which may be restricted to an isomorphism

KA(E)⊗KB(F)→ KA⊗B(E⊗F)

Alongside with the exterior tensor product, there is a notion of interior tensor product
of Hilbert C∗-modules. It is defined in the following way. We recall that a ∗-homomorphism
A → End∗B(F) is called essential if the set AF := span{aη | a ∈ A, η ∈ F} is dense in F.
Given such an essential graded ∗-homomorphism, we may define a pairing on the alge-
braic tensor product E ⊗̃A F, where E is a Hilbert C∗-A-module, given by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 := 〈η1, 〈ξ1, ξ2〉 η2〉

We denote by E ⊗̃A F the completion of E ⊗̃A F with the norm induced by this pairing.
E ⊗̃ F has a natural structure of Hilbert C∗-B-module.

One may define a ∗-homomorphism

End∗A(E) → End∗B(E ⊗̃A F)

T 7→ T ⊗ 1

This ∗-homomorphism restricts to KA(E) → KB(E ⊗̃A F). The module E ⊗̃A F will also
carry an essential representation of A. We shall also denote this product by E ⊗̃π F to
specify the representation π : A→ End∗B(F).

1.1.3 Regular Unbounded Operators on Hilbert C∗-modules

We follow [28] in exposition of unbounded regular operators

Definition 1.1.5 ([2]). Let E be a C∗-A-module. A densely defined closed operator D : DomD →
E is called regular if

• D∗ is densely defined on E

• 1 + D∗D has a dense range
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It follows from the definition that regular operators are B-linear and DomD is a B-
submodule of E. There are two operations, that are canonically associated with an un-
bounded operator D. The first one is the resolvent,

r(D) := (1 + D∗D)−
1
2

The other one is called bounded transform, also known as z-transform of D.

b(D) := D(1 + D∗D)−
1
2

Both operators are densely defined on E and extend to the elements of End∗A(E).
A regular operator is called symmetric if DomD ⊆ DomD∗ and D = D∗ on DomD. It

is selfadjoint if it is symmetric and DomD = DomD∗

Proposition 1.1.6. If D : DomD → E is regular, then D∗D is selfadjoint and regular. Moreover,
DomD∗D is a core of D and Imr(D) = DomD.

The bounded transform operation may be reversed in a sense that the unbounded reg-
ular operator D may be fully recovered from its bounded transform b(D) by the formula

D = b(D)(1− b(D)∗b(D))−
1
2

By the graph of E we shall understand the closed submodule

G(D) := {(ξ, Dξ) | ξ ∈ Dom(D)} ⊆ E⊕ E

There is a canonical unitary v ∈ End∗A(E ⊕ E), given by v(ξ, η) := (−η, ξ). We note
that the modules G(D) and vG(D∗) are orthogonal submodules of E ⊕ E. Woronowicz
presents in [35] an algebraic characterization of regularity for unbounded operators:

Theorem 1.1.7 ([35]). A densely defined closed operator D : E ⊇ DomD → E with densely
defined adjoint is regular if and only if G(D)⊕ vG(D∗) u E⊕ E

This isomorphism is given by a coordinatewise addition. Moreover, the operator

pD :=
(

r2(D) r(D)b(D)∗

b(D)r(D) b(D)b(D)∗

)
is a projection on E⊕ E, and pD(E⊕ E) = G(D). We shall refer to this projection operator
as Woronowicz projection.

It should also be noted that if D is an odd operator on E, then the grading γ⊕ (−γ)
on E⊕ E respects the decomposition form the Theorem 1.1.7.

Since there is a bijection between G(D) and Dom(D), and the latter is a submodule of
E⊕ E, we may naturally equip G(D) with the structure of Hilbert C∗-A-module.

We observe that when D is felfadjoint, it commutes with both r(D). Abusively denot-
ing by

D := diag2(D) : DomD⊕DomD → E⊕ E
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and
r(D) := r(diag2(D)) = diag2(r(D)) : E ∈ End∗B(E⊕ E)

we obtain that D maps r(D)G(D) to G(D). Denote the restriction of D to G(D) by D2.
We have the following result:

Theorem 1.1.8 ([28]). Let D : DomD → E be a selfadjoint regular operator. Then D2 : r(D)G(D)→
G(D) is also a selgfadjoint regular operator. When D is odd, so is D2

The operation may be proceeded to obtain D3 from D2 the same way as we have
obtained D2 form D, and so on. As a result, we have the following

Corollary 1.1.9 ([28]). A selfadjoint regular operator D : DomD → E induces a morphism of
inverse systems of C∗-modules:

. . . En+1 En En−1 . . . E1 E

. . . En+1 En En−1 . . . E1 E

-
Q
Q
QQs

Dn+1

-

Q
QQs

Dn

-

Q
QQs

Dn−1

-

Q
Q
QQs

Dn−2

-
Q
Q
QQs

D2

-

Q
Q
QQs

D1=D

- - - - - -

Here En = G(Dn), and the maps represented by horizontal and diagonal arrows are projections of
G(Dn) on the first and the second copy of G(Dn−1) respectively.

Following [28], we shall refer to this chain as Sobolev chain of D.

1.1.4 KK-Theory

The KK-theory, also known as bivariant K-theory or Kasparov K-theory was developed by
Gennady Kasparov in early 80’th as a generalization of both K-theory and K-homology
and was supposed to be a tool for finding the answer, whether the so-called Novikov’s
Conjecture holds. Thereafter the theory proved itself to be an important tool for different
theoretical means, including theoretical physics (D-brane theory).

We shall briefly outline the construction of Kasparov KK-groups.

Definition 1.1.10. Let, A and B be C∗-algebras. An (A, B)-KK-cycle is a triple (E, π, F)
where

• E is a countably generated graded Hilbert C∗-B-module.

• π : A→ End∗B(E) is a graded representation of A on E

• F is a Fredholm operator on E, such that (F2 − 1)π(a) ∈ KB(E), [F; π(a)] and (F−
F∗)π(a) all lay in KB(E) for each a ∈ A.

The set of all (A, B)-KK-cycles is denoted by E0(A, B).

The set E0(A, B) has a natural semigroup structure given by the direct sum

(E1, π1, F1)⊕ (E2, π2, F2) := (E1 ⊕ E2,
(

π1 0
0 π2

)
,
(

F1 0
0 F2

)
)

Now we give an equivalence relations on KK-cycles, that will allow us to define the
KK-groups.
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Definition 1.1.11. Two (A, B)-KK-cycles (Ei, πi, Fi), i = 1, 2 are called unitary equivalent if
there is a (grading preserving) unitary in U ∈ B(E1, E2) such that

(E2, π2, F2) = (E2, Uπ1U−1, UF1U−1)

We denote this equivalence relation by ∼u.

Definition 1.1.12. Two unbounded (A, B)-KK-cycles (E1, π1, F1) and (E2, π2, F2) are called
homotopy equivalent if there is an (A, C([0, 1])× B)-KK-cycle (E, π, F) such that

(E ⊗̃ fi
B, fi ◦ π, F ⊗̃ fi

B) ∼u (Fi, πi, Fi)

where fi : C([0, 1])× B i = 1, 2 are evaluation homomorphisms. We denote this equiva-
lence relation by ∼h.

Finally, we are ready to give the definition of the KK-group.

Definition 1.1.13. For two C∗-algebras A and B we set

KK(A, B) := E(A, B)/ ∼h

One then defines higher KK-groups by setting KKj(A, B) := KK(A, B⊗Cj), where Cj
is the j-th Clifford algebra. Fortunately, the variant of Bott periodicity theorem holds for
KK-groups, so in fact KKj(A, B) = KKj+2k(A, B) for k ∈ Z, and we deal only with two
groups: KK0(A, B) and KK1(A, B)

Remark 1.1.14. If the algebras A and B are assumed to be trivially graded, we may give a
more obvious definition of KK1(A, B). Namely, one may define the set (E)1 = {(E, π, F)},
such that E, π and F satisfy the conditions of the definition 1.1.10, but without any as-
sumptions on grading and degree of operator F. In this case KK1 = E1/ ∼h.

The semigroup operatoin on E induces a binary operatoin on KK(A, B), and it may be
directly shown that KKi(A, B) for i = 0, 1 are actually an Abelian group with respect to
this operation.

Remark 1.1.15. We should denote the element of the KK(A, B) given by the∼h-equivalence
class of a KK-cycle (E, π, F) ∈ E(A, B) by [(E, π, F)].

The KK theory incorporates both K-theory and K-homology. Namely, we have that
KKi(C, A) = Ki(A) and KKi(A, C) = Ki(A) for i = 0, 1.

The KK-groups have many important properties such as additivity and functoriality.
However, one of the most important results achieved in the KK-theory is the generalization
of the index theorem, also called as Kasparov product. In its most general form the
theorem reads as

Theorem 1.1.16. Let A1, B1, A2, B2 and C be C∗-algebras. Then there is a well defined product
pairing

KKi(A1, B1⊗C)⊗Z KKj(A2⊗C, B2)
⊗̃C−→ KKi+j(A1⊗B1, A2⊗B2)
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One of the most interesting specifications of this result is obtained when we set B2 =
A1 = C. Then the theorem may be formulated as follows:

Theorem 1.1.17. [[24]] Let A, B and C be C∗-algebras. Then there is a well defined inner product
pairing

KKi(A, B)⊗Z KKj(B, C)
⊗B−→ KKi+j(A, C)

This pairing is called Kasparov product or internal product in KK-theory. It is associative
and, in case when A = C = C and B = C(X) for some topological manifold X, it coincides
with the Atiyah’s index map K0(X)⊗Z K0(X)→ Z = KK0(C, C).

Another specification of the Theorem 1.1.16 is obtained when we set C = C. Namely,
we have the product of the form

KKi(A1, B1)⊗Z KKj(A2, B2)
⊗−→ KKi+j(A1⊗A2, B1⊗B2)

which is also known as external product in KK-theory.
But, although the existence of the product form the Theorem 1.1.16 has been proved,

the calculation of concrete values in this pairing remains a nontrivial task. The main
problem is that for given two unbounded KK-cycles (E1, π1, F1) ∈ E(A1, B1⊗C) and
(E2, π2, F2) ∈ E(A2⊗C, B2) the finding of an element (E, π, F) ∈ E(A1⊗A2, B1⊗B2) such
that

[(E1, π1, F1)]⊗Z [(E2, π2, F2)] = [(E, π, F)]

involves an application of the result known as Kasparov technical lemma [24]. The most
complicated computations are concerned with the calculation of the Fredholm operator F.

There have been proposed several methods to avoid using the Kasparov technical
lemma. One of them is described in the next subsection and plays a central role in a
paper as a whole.

Remark 1.1.18. In literature the notation for the representation π is often suppressed, and
the KK-cycles are denoted just as (E, F) instead of (E, π, F). In the following text we shall
mostly use this shortened notation.

1.1.5 Unbounded Picture of KK-theory

The unbounded approach to KK-theory was proposed by Saad Baaj and Pierre Julg in
[2], published just two years after the Kasparov’s original result. In this paper there have
been proposed an approach to a KK-theory that sufficiently simplified the calculation
of the Kasparov exterior product. The main idea of Baaj and Julg was to replace the
Fredholm operator in the definition of the (A, B)-KK-cycle by an unbounded operator.
More precisely, we have the following definition:

Definition 1.1.19. Let A and B be C∗-algebras. An unbounded (A, B)-KK-cycle is a triple
(E, π, D) with E and π as in the Definition 1.1.10, and D is a selfadjoint regular unbounded
operator on E, satisfying
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• r(D)π(a) ∈ KB(E) for all a ∈ A;

• The set of all such a ∈ A, that [D; π(a)] extends to a bounded operator on E, is dense
in A.

Remark 1.1.20. As in the previous subsection, we shall suppress the notation for the
representation π and write just (E, D) for an unbounded KK-cycle.

Historically, an approach of Baaj and Julg was a step back to the origins of the KK-
theory. The main point of their suggestion was that the conditions on an unbounded
operator in the Definition 1.1.19 are in fact the conditions which hold for a pseudodif-
ferential operator on a Riemann manifold. However, when calculating the index of the
operator, one have encountered difficulties caused by the fact that the degree of the dif-
ferential operator should always be taken into consideration. It was due to Atiyah, who
has proposed in [1] to replace the classical elliptic pseudodifferential operators with the
operators of degree 0 (i.e. just bounded), using the operation that was then generalized
to yield the bounded transform operation. The resulting operator had the properties de-
scribed in the Definition 1.1.10. At that stage, the approach of Atiyah simplified the theory
employed for the definition of the index map.

The motivating result for the introduction of Baaj-Julg picture was the simplification
of the calculations in exterior product in KK-theory. In [2] there has been proved the
following

Theorem 1.1.21 ([2]). Let (Ei, Di) be unbounded (Ai, Bi)-bimodules for i = 1, 2. Then the
operator

D1 ⊗ 1 + 1⊗ D2 : DomD1 ⊗DomD2 → E1⊗E2 (1.1)

extends to a selfadjoint regular operator on E⊗ F. Moreover, we have that

[(E1, b(D1))]× [(E2, b(D2))] = [(E2⊗E2, D1 ⊗ 1 + 1⊗ D2)]

as elements of KKj(A1, B1), KKk(A1, B1) and KKj+k(A1⊗A2, B1⊗B2) respectively.

The simplification here is achieved because now we should just care for the operator
D1 ⊗ 1 + 1⊗ D2 to be selfadjoint and regular; in the bounded picture it is not in general
true that F1 ⊗ 1 + 1⊗ F2 satisfies the requirements of 1.1.10.

In fact, in case when B1 = B2 = C, A1, A2 are the algebras of continuous functions on
a smooth manifolds M and N, and D1, D2 are pseudodifferential operators on (some bun-
dles on) M and N respectively, the equation 1.1 coincides with the formula for calculating
the "product" of two pseudodifferential operators on the cartesian product of M and N.

One could have been expected, that the Baaj-Julg picture may provide analogous "ge-
ometrical" simplifications for the calculation of interior product in KK-theory. However,
there have occurred the problems concerned with the fact that in Baaj-Julg picture one
may only have a dense subset of A ⊆ A for which [D; a] extends to a bounded operator
on E. This dense subspace plays a role on the algebra of C1-smooth functions in the C∗-
algebra A, though in fact this algebra may have only a very distant relation to C1-smooth
algebras on topological manifolds.
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The additional conditions that have to be imposed in order to get through the arising
complications are one the main topics of the present paper, and will be discussed in the
next chapter. For now, however, we need to give some more preliminaries form Banach
and operator algebra theory, that will be then used in the construction.

1.1.6 Holomorphic Stability and Smoothness in Banach Algebras

We recall (cf. [6],[28]), that if A is an algebra with the Banach norm ‖ · ‖α, and Aα be its
closure with respect to this norm, then a Banach norm ‖ · ‖β on A is called analytic with
respect to ‖ · ‖α, if for all a ∈ A such that ‖a‖α < 1 holds

lim sup
n→∞

ln ‖an‖β

n
≤ 0

The main consequence of analyticity of one norm with respect to another is the stability
of Aβ with respect to the holomorphic functional calculus on Aα (cf. [6],[28]). Here Aβ is
the completion of A with respect to ‖ · ‖β.

Observe also, that if ‖ · ‖γ ≤ C‖ · ‖β then it is also analytic with respect to ‖ · ‖α. Indeed,

lim sup
n→∞

ln ‖an‖γ

n
≤ lim sup

n→∞

ln C‖an‖β

n
= lim sup

n→∞

ln C + ln ‖an‖β

n
≤ 0 (1.2)

The notion of the relative analyticity of the norms may be applied to arbitrary algebras.
However, the holomorphic stability of Banach algebras may be obtained in more subtle
ways. One of them comes out from the notion of differential seminorm on a C∗-algebras.

Definition 1.1.22 ([6, 4]). Let A be a C∗-algebra and X be a dense ∗-subalgebra of A.
Denote by ω+ the set of all nonnegative scalar sequences. A differential seminorm on X is a
mapping T : X → ω+, a 7→ T(a) = (T0(a), T1(a), T2(a), . . . ) satisfying the conditions:

1. T0(a) ≤ c‖a‖ for all a ∈ X,

2. T(a + b) ≤ T(a) + T(b), T(λa) = |λ|T(a) for all x, y ∈ X and all λ ∈ C,

3. T(ab) ≤ T(a)T(b) (convolution product),

4. T(a∗) = T(a).

As we have mentioned in the Introduction, the differential seminorms resemble the
Fréchet seminorms, generalizing them for noncommutative setting. One of the properties
manifesting this resemblance is holomorphic stability of smooth subalgebras.

Let pn(a) = ∑n
k=0 Tk(a) for n = 0, 1, 2, . . . . Each pk is a submultiplicative ∗-seminorm.

Define Ak to be the completion of X in A with respect to pk; each Ak is a ∗-Banach algebra.
Finally, let A∞ := proj limAn, which is a Fréchet ∗-algebra.

Theorem 1.1.23 ([3, 4]). An and A∞ are C∗-spectral and spectrally invariant in A via the
inclusion map.
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Remark 1.1.24. Observe that Theorem 1.1.23 remains true if we replace a differential semi-
norm T with system of seminorms T′, such that T′n is equivalent to Tn for all n ∈N.

Remark 1.1.25. It should be noted, that even if the algebra A is commutative, the differen-
tial seminorm may differ sufficiently from the Fréchet seminorms. As a simplest example,
consider a 2-torus T2 := R/(Z⊕Z), with the differential seminorm

T( f (x, y)) :=
(

sup | f (x, y)|, sup
∣∣∣∣∂ f (x, y)

∂x

∣∣∣∣ , sup
∣∣∣∣∂2 f (x, y)

(∂x)2

∣∣∣∣ , . . .
)

The algebras An will then consist of the functions that are Cn in the x-direction, but should
not be more than continuous in the y-direction.

1.2 Operator Spaces

1.2.1 Concrete Operator Spaces, Completely Bounded Maps

Definition 1.2.1 ([9]). A (concrete) operator space is a linear subspace Y of B(H) some
Hilbert space H. A (concrete) operator algebra is a subalgebra B of B(H). A (concrete right)
operator A-module is a subspace Y of B(H) which is right invariant under the multiplication
by elements of A as a subalgebra of B(H).

Definition 1.2.2 ([9]). A linear map T : Y → Z between two operator spaces is completely
bounded if the map T ⊗ IdK : Y⊗K → Z⊗K is bounded with respect to the spatial norm.
For this to hold it is sufficient that the maps Tn = T ⊗ IdMn : Mn(Y) → Mn(Z) be uni-
formly bounded, and in this case the smallest bound which works for all n is the norm
of T ⊗ IdK. We shall denote this norm by ‖T‖cb. The set of all cb-maps from an operator
space E to an operator space E′ will be denoted by CB(E, E′). We say that T is completely
contractive if ‖T‖cb ≤ 1, completely isometric or a complete isometry, if Tn = T ⊗ IdMn is
an isometry for all n, and completely bicontinuous or a cb-isomorphism if it is an algebraic
isomorphism with T and T−1 being completely bounded.

In the algebra (resp. module) case we may of course require the morphisms to be ho-
momorphisms (resp. module maps). One may also define the Z/2Zgrading on operator
algebras and operator modules in a standadrd way that we used in Subsection 1.1.1.

In this article we shall also suppose all the operator spaces to be complete as Banach
spaces, although it should not necessary hold in general.

The definition of an essential action of an operator algebra on an operator module is
analogous to the one in C∗-algebra setting.

Definition 1.2.3. Let A be an operator algebra and E be a (right) operator A-module. The
module action of A is called essential if EA is dense in E. Otherwise, the essential subspace
of E for the action of A is the closure of EA.

Remark 1.2.4. In case when the algebra A has a bounded approximate unit, the essential-
ity of the map is equivalent to the condition that for all ξ ∈ E there are an element ξ ′ ∈ E
and a ∈ A that ξ = ξ ′a ([9]). This also means that in fact EA coincides with E.
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1.2.2 Abstract Characterizations of Operator Spaces

Alongside with the concrete operator spaces, one may consider the "abstract" ones, which,
as we shall see in a moment, characterize concrete operator spaces up to a complete
isometry.

Definition 1.2.5. [33, 12] An L∞-matricially normed space is a pair {Y, { n‖ · ‖}}, where Y
is a vector space over the complex numbers C and n‖ · ‖ are norms on Mn(Y), n ∈ N,
satisfying the conditions:

1. n+k‖x⊕ y‖ = max{ n‖x‖; k‖y‖}

2. ‖αxβ‖ ≤ ‖α‖ n‖x‖‖β‖

for all x ∈ Mn(Y), x ∈ Mk(Y) and α, β ∈ Mn(C)

Throughout the paper we assume that all L∞-matricially normed spaces are norm
complete.

The result of Ruan and Effros give us the characterization of such spaces.

Theorem 1.2.6 ([21]). Every L∞-matricially normed space is completely isometrically isomorphic
to a (concrete) operator space.

This result also allows us to establish the fact that the space CB(X, Y), endowed with
the cb-norm, is completely isometrially isomorphic to an operator space. This is done
via the identification Mn(CB(X, Y)) u CB(X, Mn(Y)), which assigns matrix norms to
CB(X, Y) (see, for ex. [20]).

1.2.3 Characterizations of Operator (Pseudo)Algebras

For the algebras the situation is less clear then for the modules. In general one may estab-
lish the characterization of abstract operator algebras only up to a completely bounded
isomorphism. First of all, we need to give the definition of what we shall understand by
an abstract operator algebra.

Definition 1.2.7. An operator pseudoalgebra is an algebra and assume that A is also an L∞

matricially normed space, such that the multiplication map µ : A × A → A on A is a
completely bounded bilinear map.

This notation is not conventional. Blecher and Le Merdi in [10] use the term operator
K-algebras where K is the cb-norm of the multiplication map. In [33] the term operator
pseudoalgebras was used for spaces with completely contractive multiplication map.

There are several results on operator pseudoalgebras that play the same role for the the-
ory of operator algebras as the Gelfand-Na imark-Segal construction plays for the theory
of C∗-algebras, that is, establish an isomorphism between pseudoalgebras and concrete
operator algebras. The most general result, which we shall use most in the current paper,
is due to Blecher:
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Theorem 1.2.8 ([7, 10]). Let A be an algebra and assume that A is also an L∞ matricially normed
space. Then A may be represented completely boundedly isomorphically as an operator algebra if
and only if it is a pseudoalgebra, i.e. its multiplication map is completely bounded.

As well as for operator algebras, there is a notion of grading for operator pseudoalge-
bras.

There is a useful observation, that according to [7] the cb-isomorphism ρ between the
algebra A and an operator algebra constructed in Theorem 1.2.8 could be defined in such
a way that ‖ρ‖cb ≤ 2K and ‖ρ−1‖cb ≤ K−1, where K is a cb-norm of the multiplication
map in A.

The theorem 1.2.8 will in fact suffice for our needs. However, there are also at least
two results indicating the cases when an operator pseudoalgebra is actually completely
isometrically isomophic to a concrete operator algebra.

Theorem 1.2.9 ([33]). Let A be an algebra which is also L∞-matricially normed space, and the
multiplication on A is completely contractive. Suppose also that there exists a net of elements
{eα} in A such that µ(a − eαa) → 0 and µ(a − aeα) → 0 for all a ∈ A (contractive approxi-
mate identity).Then A is completely isometrically isomorphic to a (concrete) operator algebra with
contractive approximate identity.

The latter theorem is a generalization of the result of Blecher-Ruan-Sinclar, which, in
turn, becomes its obvious corollary.

Theorem 1.2.10 ([12]). In the conditions of previous theorem, suppose that A is unital, that is,
there exists an element e ∈ A such that µ(a, e) = µ(e, a) = a. Then A is completely isometrically
isomorphic to a (concrete) unital operator algebra.

There is an important fact that in absence of a contractive approximate unit the The-
orem 1.2.9 does not work, and we have to retreat to Theorem 1.2.8. Thus, there is not
so much difference between operator 1-algebras and operator K-algebras (in notation of
[10]) for an arbitrary positive K. Therefore it seems justified to use the notation operator
pseudoalgebras for operator K-algebras in general.

1.2.4 Operator Algebras and Involution

The goal of this subsection is to establish the connection between the result 1.2.8 and
the involution. We have to point out, that the involutivity is a characteristic of a Banach
algebra rather then an operator algebra. However, it plays an important role in many
mathematical construction, from which the most relevant to us is smooth Banach algebras
introduced by Balckadar and Cuntz ([6], see also [3]).

Recall that an involution on a Banach algebra A is an isometric anti-isomorphism
∗ : A→ A, ∗ : a 7→ a∗ such that a∗∗ = a.

Thus, if we want to specialize this notion for the case of operator algebras, we should
first give a definition of a cb-anti-isomorphism.
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Definition 1.2.11. Let A be an operator pseudoalgebra. Then an anti-homomorphism
f : A→ B will be called cb-anti-homomorphism if there exists a positive number C such that

n‖( f (aji))ij| ≤ C n‖(aij)ij‖

for all (aij)ij ∈ Mn(A). If f is anti-isomorphic, and its inverse f−1 is also a cb-anti-
homomorphism, then f will be called a cb-anti-isomorphism. Analogously one may define
a completely isometric anti-isomorphism.

Remark 1.2.12. Observe that, unlike the case of homomorphism, we have to add a trans-
position in matrix algebras to the definition of cb-anti-homomorphisms. This makes the
notion of cb-anti-homomorphism much more subtle then the one of cb-homomorphism.
It seems, although the author doesn’t have a concrete example for now, that even for a
general (concrete) operator algebra A there would not be any cb-anti-isomorphisms of
A onto itself. However, algebras having cb-anti-isomorphisms often appear in applica-
tions. For instance, the involution on C∗-algebras satisfies this property. The notion of
cb-anti-isomorphism is also widely used in [28].

Definition 1.2.13. A cb-anti-isomorphism f : A → A such that f 2 = IdA would be called
an (operator algebra) pseudo-involution on A. If, in addition, f is completely isometric then
it will be called (operator algebra) involution. An operator algebra possessing an involution
will be called involutive.

We are going to show that any pseudo-involution may in some sense be "updated" to
become an involution.

Proposition 1.2.14. Let A be an operator K-algebra with a pseudo-involution f . Then there is an
operator pseudoalgebra B and a cb-isomorphism σ : A → B, such that σ f σ−1 is an involution on
B.

Proof. Let B = A as a algebras We define matrix norms on B as

n‖(aij)ij‖B = max{ n‖(aij)ij‖A, n‖( f (aji)ij)‖A}

The space B endowed with this system of norms is an operator pseudoalgebra. Indeed,
we have that

n+m‖(aij ⊕ bkl)‖B =

= max{max{ n‖(aij)ij‖A, n‖( f (aji))ij‖A}, max{ m‖(bkl)lk‖A, m‖( f (bkl))lk‖A}}
= max{max{ n‖(aij)ij‖A, m‖(bkl)lk‖A}, max{ n‖( f (aji))ij‖A, m‖( f (bkl))lk‖A}}
= max{ n+m‖(aij)ij ⊕ (bkl)lk‖A, n+m‖( f (aji))ij ⊕ ( f (bkl))lk‖A}
= max{ n‖(aij)‖B, m‖(bkl)‖B}

and

n‖α(aij)β‖B = max{ n‖α(aij)ijβ‖A, n‖βᵀ( f (aji))ijα
ᵀ‖A}

≤ max{‖α‖ n‖(aij)ij‖A‖β‖, ‖βᵀ‖ n‖( f (aji))ij‖A‖αᵀ‖}
= ‖α‖‖β‖max{ n‖(aij)ij‖A, n‖( f (aji))ij‖A}
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Here we use the fact that α and β are scalar matrices. Thus, B is (completely isometrically
isomorphic to) an operator space. To prove that B is a pseudoalgebra, observe that

n‖(aij)(bkl)‖B = max{ n‖(aij)(bkl)‖A, n‖ fn((aji)(bkl))‖A}
≤ max{ n‖(aij)(bkl)‖A, ‖ f ‖cb n‖(aij)(bkl)‖A}
≤ ‖ f ‖cbK n‖(aij)‖A n‖(bkl)‖A

≤ ‖ f ‖cbK · ‖ f ‖cb max{ n‖(aij)ij‖A, n‖( f (aji))ij‖A}·
· ‖ f ‖cb max{ n‖(bkl)kl‖A, n‖( f (blk))kl‖A}
= ‖ f ‖3

cbK n‖(aij)‖B n‖(bkl)‖B

Here we use the fact that since f 2 = 1 we have that ‖ f ‖cb ≥ 1.
Since f is cb-anti-isomorphism and f 2 = 1, we have that

‖ f ‖−1
cb n‖ · ‖A ≤ n‖ · ‖B ≤ ‖ f ‖cb n‖ · ‖A

so the algebras A and B are cb-isomorphic. Denote this isomorphism by σ. By the con-
struction (σ f σ−1)2 = IdB, and so σ f σ−1 is a pseudo-involution. To prove that it is an
involution, observe that since σ : A → B is a cb-isomorphism, every element of Mn(B)
may represented as (bij)ij = σ(aij)ij for a unique (aij)ij ∈ Mn(A). Therefore, we have that

n‖σ f σ−1(bij)ij‖B = n‖σ f σ−1(σ((aij)ij))‖B

= n‖σ( f (aij))ji‖B

= max{ n‖( f (aij))ji‖A, n‖( f 2(aij))ij‖A}
= max{ n‖( f (aij))ji‖A, n‖(aij)ij‖A}
= n‖σ(aij)ij‖B

= n‖(bij)ij‖B

and so σ f σ−1 is completely isometric. This last observation finishes the proof.

Remark 1.2.15. Observe that since f was an anti-isomorphism, we were not able to define
σ as just σ : a 7→ a⊕ f (a), since in this case σ(ab) = ab⊕ f (ba).

The result 1.2.14 gives us only an operator pseudoalgebra with (completely isometric)
involution. However, a closer look to the Theorem 1.2.8 lets us extend this result, making
B into a (concrete) operator algebra with involution.

In order to do this, we recall the construction from [7]. Let Γ be the set, n : Γ → N,
γ 7→ nγ be a function. Let Λ be a set of formal symbols (variables) xγ

ij, one variable for
each γ ∈ Γ and each 1 ≤ i, j ≤ nγ. Denote by Φ a free associative algebra on Λ. Φ then
consists of polynomials in the non-commuting variables with no constant term. Then one
defines a norm on Mn(Φ) by

‖(uij)‖Λ := sup
π

(‖(π(uij))‖) (1.3)
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where π goes through all the representations of Φ on a separable Hilbert space satisfying
the condition ‖(π(xγ

ij))ij‖ ≤ 1 for all γ, where the latter matrix is indexed on rows by iand
on columns by j for all 1 ≤ i, j ≤ nγ.

It is then shown in [7] that the map defined above is indeed a norm on Mn(Φ) and
that Φ becomes an operator algebra with respect to these operator norms.

In the proof of the characterization theorem the set Γ is taken to be the collection of
n× n matrices γ = (aij) with entries in A such that ‖γ‖ = 1

2K , where K is a cb-norm of
the multiplication in A. Then one takes Λ to be the collection of entries of these matrices
xγ

ij := aij, regarded as formal symbols indexed by γ and i, j, not identifying "equal" entries

for different indexes. After that there is defined a map θ : Φ → A given by θ : xγ
ij 7→ γij

and then extended to general polynomials. It is proved that θ is a completely contractive.
One then let B := Φ/ ker(θ), which is an operator algebra subject to the quotient operator
norm, and is cb-isomorphic to A.

Now let the pseudoalgebra A be involutive. Observe that since the involution on A is
completely isometric, we have that n‖(aij)

∗‖ = n‖(aij)‖, and thus (aij)
∗ ∈ Γ. Hence we

have that a∗ij ∈ Λ. This observation makes us able to define an involution the following
way. On Φ we set

(xγ1
i1 j1

xγ2
i2 j2

. . . xγk
ik jk

)∗ := (xγk
ik jk

)∗(xγk−1
ik−1 jk−1

)∗ . . . (xγ1
i1 j1

)∗

on the monomials, and then extend this to the whole Φ. Analogously, on Mn(Φ) we set
(Pij)

∗ = (P∗ji).
By the construction we have that θ((Pij)

∗) = θ((P∗ji)ij). Consequently, let π : Φ →
B(H) be a representation of Φ satisfying the condition ‖(π(xγ

ij))‖ ≤ 1 for all (xγ
ij)ij. De-

note this set by Ξ. We may define a representation π′ : Φ→ B(H) by setting π′((Pij)
∗) :=

(π(Pij))
∗, where the latter involution is given by the one on the Hnγ . By the construction,

we have that
nγ‖π′(xγ

ij)‖ = nγ‖(π((xγ
ij)
∗))∗‖ = nγ‖π((xγ

ij)
∗)‖ ≤ 1

for all (xγ
ij)ij since (xγ

ij)
∗ ∈ Γ, and so π′ ∈ Ξ. Therefore we have that

‖(Pij)‖Λ = sup
π∈Ξ

(‖(π(Pij))‖)

= sup
π′∈Ξ
‖((π′(Pij)

∗))∗‖

= sup
π′∈Ξ
‖π′(Pij)

∗‖

= ‖(Pij)
∗‖Λ

Hence we obtain that the map θ respects the involution, and thus the anti-isomorphism
induced on B by the involution on Φ preserves the norm.

Combining this observations with Proposition 1.2.14 we have the following

Theorem 1.2.16. Let A be an operator pseudoalgebra and let f be a pseudo-involution on A. Then
there is a cb-isomorphism λ : A→ B, such that the map λ f λ−1 is an (operator algebra) involution
on B.
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Proof. Put λ = θσ.

Remark 1.2.17. We may also estimate the cb-norm of λ. Indeed, the map σ has the cb-
norm ‖ f ‖cb, and gives us a pseudoalgebra B′ with the cb-norm of multiplication bounded
by ‖ f ‖3

cbK. Assuming that the cb-norm of the multiplication map is ≥ 1, we may apply
the estimation from [7], which thus gives us that the map θ has a cb-norm ≤ ‖ f ‖6

cbK2.
Therefore it would hold that ‖λ‖cb ≤ ‖ f ‖7

cbK2.

1.2.5 Characterization of Operator Modules

Similarly to the cases of operator spaces and operator algebras, there exists a characteriza-
tion of abstract operator modules. As it should have been expected, this characterization
is even more subtle than the one for operator algebras.

Definition 1.2.18. Let A and B be two (possibly abstract) operator algebras and let E be
an operator space, which is an A-B-bimodule in algebraic sense. Then E will be called an
abstract cb-A-B-operator bimodule if the module actions are completely bounded.

Analogously to the case of Hilbert C∗-modules, one may introduce a notion of grading
on operator module over a graded operator C∗-algebra.

The following result is due to Blecher:

Theorem 1.2.19 ([9]). Let E be an abstract cb-A-B-operator module. Then there exists a Hilbert
space H and cb-isomorphisms θ, π and φ of A, B and E, respectively, into B(H) such that θ and
π are homomorphisms and

φ(a · ξ · b) = θ(a)φ(ξ)π(b)

for all a ∈ A, b ∈ B and ξ ∈ E. If, in addition, the algebras are concrete and both module actions
are essential, then it is possible to choose a completely isometric θ, π and ψ.

It should be noted, that the second part of the theorem is actually a different result
proved using different techniques by Christensen, Effros and Sinclar in [13]. Of course, if
A = C then we may just call E a right B-operator module and similarly for left modules.

1.2.6 Direct Limits of (Abstract) Operator Spaces.

There is a certain notion of direct limit for operator spaces. Namely, let {Eβ} be a family of
operator spaces indexed by β in a directed set ∆. Let E0 be a fixed vector space. Suppose
that for all β we have linear maps φβ : E0 → Eβ and ψβ : Eβ → E0, satisfying the conditions:

1. There exists a positive number C, such that the cb-norm of the map fβ,γ := φβ ◦
ψγ : Eγ → Eβ is ≤ C for all β, γ.

2. supβ ‖φβ(ξ)‖ < ∞ of all ξ ∈ E0.

3. for each ξ ∈ E0, ψβ(φβ(ξ))→ ξ in the initial uniform topology.
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Here the initial uniform convergence means the following: if {ξβ} is a net of elements in
E0, then it converges to an element ξ ∈ E0 initial uniform if supγ ‖φγ(ξβ − ξ)‖ → 0.

In this way we may assign matrix seminorms to E0, given by

n‖(ξij)‖ = sup
β

‖(φ(ξij))‖

with reassigning E0 to denote the quotient of original E0 by the nullspace of 1‖ · ‖. By
the condition (3) above and the triangle inequality, it follows that this supremum actually
equals to the limit limβ ‖(φβ(ξij))‖.

We have that the metric properties of E0 are transferred from Eβ to E0, including the
local structure on E0. In particular, one may verify that the conditions of the Theorem
1.2.6 hold, so that the space E0 may be endowed with the operator space structure.

Definition 1.2.20. The the structure on the space E0 described above will be called an
inductive limit operator space structure.

We shall also denote by E the completion of E0 with respect to the introduced operator
norm.

The case of operator modules may be threated analogously. However, the results for
abstract operator algebras require additional considerations. We have the following result:

Proposition 1.2.21. Let Aβ be a family of operator pseudoalgebras with multiplication maps
µβ being uniformly completely bounded. Then the direct limit space A is completely boundedly
isomorphic to an operator algebra.

Proof. By Theorem 1.2.6 we already have that A is an operator space. We define the
multiplication on A by setting

µ(a, b) := lim
β

ψβ(µβ(φβ(a), φβ(b)))

where a, b ∈ Mn(A) and µβ are the multiplication maps on Eβ. One may check directly
that this limit exists. Moreover, we have an estimate

‖µa,b‖cb = ‖ lim
β

ψβ(µβ(φβ(a), φβ(b)))‖cb

≤ C‖µβ(φβ(a), φβ(b))‖cb

≤ CK‖φβ(a)‖‖φβ(b)‖
≤ C3K‖a‖‖b‖

and so we may apply the Theorem 1.2.8.

Remark 1.2.22. It should be noted, that even when one considers concrete operator al-
gebras, their direct limit is in general an operator space that is only cb-isomorphic to an
operator algebra. In order to apply the Theorem 1.2.9 one has to use some additional
information to verify the existence of contractive approximate identity.
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An analogous discussion may be found in [9], however there have been imposed many
further assumptions that simplified the explanations, but appear to be too restrictive for
the theory we are going to develop.

In what following we shall write just ab for µ(a, b), when it does not lead to a confusion.
We shall also need the following important property of inductive limits.

Theorem 1.2.23 (cf. [9]). Suppose that for all β the operator space Eβ is an operator A-module,
such that CBA(Eβ) an operator pseudoalgebra, and the multiplication on CBA(Eβ) is uniformly
completely bounded for all β. Then CBA(lim−→ Eβ) is also an operator pseudoalgebra. Moreover,
CBA(Eβ) are actual operator algebras and the maps φβ and ψβ are completely contractive, the
resulting homomorphism will also be completely isometric.

Proof. Let E = lim−→ Eβ. We define maps Φβ : CBA(E) → CBA(Eβ) and Ψβ : CBA(Eβ) →
CBA(E) by

Ψβ(T) := ψβTφβ, Φβ(S) := φβSψβ

These maps are uniformly completely bounded with cb-norm ≤ C2 and ΨβΦβ(T) → T
in point norm topology. Thus, we may check the conditions of Proposition 1.2.21 can be
checked locally, with the calculations transferred to the spaces CBA(Eβ). Let T be n× n
matrix of operators from CBA(E). By triangle inequality we have that

n‖T‖ = lim
β

n‖Φβ(T)‖ = lim
β

n‖ΨβΦβ(T)‖

We also have that

n‖T1T2‖ = lim
β

n‖ψβφβT1T2ψβφβ‖

= lim
β

n‖ψβφβT1ψβφβT2ψβφβ‖

= lim
β

n‖Φβ(T1)Φβ(T2)‖

≤ K lim
β

n‖Φβ(T1)‖ n‖Φβ(T2)‖

≤ K n‖T1‖ n‖T1‖

where K is the upper bound for cb-norms of multiplications on CB(Eβ, Eβ). This lets us
use the Proposition 1.2.21. The proof of the final claim is based on the fact, that with the
additional conditions mentioned it is possible to use Theorem 1.2.9 instead of Proposition
1.2.21.

1.2.7 Haagerup Tensor Product

The notion of Haagerup tensor product has been introduced by Uffe Haagerup in an
unpublished paper and then developed by a number of other mathematicians. It is a
kind of internal product possessing very important properties, that, however, may only
be defined in the case of operator spaces, requiring more information than just a Banach
space structure.
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Definition 1.2.24. Let X, Y be operator spaces. The Haagerup norm on K⊗X⊗Y is defined
by

‖u‖h := inf

{
n

∑
j=1
‖xj‖‖yj‖ | u = m(

n

∑
j=1

xj ⊗ yj), x ∈ K⊗ X, y ∈ K⊗Y

}
where

m : K⊗ X⊗K⊗Y →K⊗ X⊗Y

(a⊗ x)⊗ (b⊗ y) 7→ab⊗ x⊗ y

is the linearization map.

A classical theorem on the Haagerup tensor product reads

Theorem 1.2.25. The norm on X⊗Y induced by the Haagerup tensor product equals to

‖u‖h = inf{‖x‖‖y‖ | x ∈ Xn, y ∈ Yn, u =
n

∑
j=1

xj ⊗ yj}

and the completion of X⊗Y is an operator space.

Definition 1.2.26. The completion of X⊗Y in the Haagerup norm is called Haagerup tensor
product and will be denoted as X ⊗̃Y.

An example of Haagerup tensor product is the internal tensor product of C∗-modules.
In fact, the definitions for operator algebras, pseudoalgebras and (bi)modules may be

given more naturally in terms of the Haagerup tensor product. For instance, the operator
pseudoalgebra is an operator space A which is an algebra, and the multiplication in this
algebra induces a completely bounded map A⊗ A → A. Analogously, a (right) operator
A-module over an operator pseudoalgebra A is an operator space Y, which is a right
module over the algebra A such that the multiplication induces a completely bounded
map Y ⊗̃ A → Y. Theorem 1.2.19 guarantees us that in this case there exist a concrete
operator space X′ and a concrete operator algebra A′, such that they are cb-isomophic to
X and A respectively and the multiplication map is completely contractive.

Now let A be an operator pseudoalgebra, X be a right operator A-module and Y a left
operator A-module. Denote by IA ⊂ X ⊗̃ Y the closure of linear span of the expressions
(xa⊗ y− x⊗ ay).

Definition 1.2.27 ([11]). The module Haagerup tensor product of X and Y over A is a space

X ⊗̃A Y := X ⊗̃Y/IA

equipped with quotient operator norm. It is obviously complete with respect to this norm.

We also have that if X additionally carries a left B1-module structure and Y carries a
right B2-module structure, then X ⊗̃A Y is a B1-B2-operator bimodule.

If the operator algebras and the operator modules are graded, one may define a graded
Hagerup tensor product in the same way that was used in the subsection 1.1.2.

The Haagerup tensor product also has the following connection to the theory of Hilbert
C∗-modules.
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Theorem 1.2.28 ([8]). Let E be a (right) Hilbert C∗-A-module and F be a Hilbert C∗-A,B-
bimodule. Then the inner Haagerup tensor product of E and F over A coincides with the spatial
tensor product E ⊗̃A F.

This result resolves the ambiguity in the notation of spatial and Haagerup tensor prod-
ucts for Hilbert C∗-modules.

Basing on this result, we obtain a description of compact operators on Hilbert C∗-
modules that may then be generalized for further purposes. Namely for a (right) C∗-
module E we define an dual module

E∗ := {ξ∗ | ξ ∈ E}

with the structure of left A-module given by

aξ∗ := (ξa)∗

and a C∗-module structure defined as

(ξ∗1 , ξ∗2) 7→ 〈ξ1, ξ2〉

We have the following result.

Theorem 1.2.29 ([8]). Let E be a Hilbert C∗-A-module and F be Hilbert C∗-B-module, ccrying
an essential representation on A. Then there is a completely isometric isomorphism

KB(E ⊗̃ F) ∼−→ E ⊗̃A KB(F) ⊗̃A E∗

In particular, KB(E) = E ⊗̃ E∗.

1.2.8 Rigged and Almost Rigged Modules

The works of Blecher, particularly [8] and [9] have produced an insightful view of the
Hilbert C∗-modules, providing the way for many possible generalizations. The main ob-
servation was the so called "approximate projectivity" of Hilbert C∗-modules. Namely, for
any Hilbert C∗-A-module E there exists an approximate unit {uα}α∈Λ, uα ∈ FinA(E) for
the algebra KA(E). Replacing, when needed, uα with uαu∗α, we may assume

uα =
kα

∑
j=1

xα
j ⊗ xα

j

For each α one the constructs operators φα ∈ KA(E, Anα), defined by

φα : ξ 7→
kα

∑
j=1

ej〈xα
j , ξ〉 (1.4)

where ej denote the standard basis of Akα . We may also construct the adjoint map

φ∗α : x 7→
kα

∑
j=1

xα
j 〈ej, x〉 (1.5)
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and we have that φ∗α ◦ φα → IdE. It was proved in [8] that this structure defines the Hilbert
C∗-module structure completely. In fact, Blecher have proved a more general statement

Theorem 1.2.30. [9] Let A be a C∗-algebra and let E be a Banach (operator) space, which is also
a right (operator) module over A. Then E is completely isometrically isomorphic to a countably
generated Hilbert C∗-module if and only if there exists a sequence kα of positive integers and
contractive module maps

φα : E→ Akα , ψα : Akα → E

such that ψα ◦ φα converges pointwise to the identity on E. The inner product in this case is given
by

〈ξ, η〉 = lim
α→∞
〈φα(ξ), φα(η)〉

This result gave rise to the following concept, generalizing Hilbert C∗-modules.

Definition 1.2.31 ([9]). Let A be an operator algebra and E be an operator A-module. The
module E will be called rigged, if there exist a net of maps φα : E→ Anα and ψα : Anα → E
such that for all α, β

1. the maps φα and ψα are completely contractive;

2. ψαφα → IdE strongly on E;

3. ‖φαψβφβ − φα‖cb
β−→ 0;

4. The maps ψα are A-essential.

Rigged modules possess many important properties which make them very similar to
the Hilbert C∗-modules. Here we present two theorems indicating this analogy, which
would be used in the subsequent constructions:

Theorem 1.2.32 ([9]). Let A be a C∗-algebra. Then E is a rigged module over A if and only if E
is a Hilbert C∗-modules over A.

Theorem 1.2.33 ([9]). Let A and B be operator algebras, E be a rigged A-module, Y be a rigged B-
module and π : A→ EndB(Y) be a completely contractive essential morphism. Then the Haagerup
tensor product E ⊗̃A Y is a rigged B-module.

However, rigged module do not suffice for the unbounded KK-theory we are going to
develop in Chapter 2. Therefore we are going to apply a more general notion of almost
rigged modules. We postpone an example, illustrating this choice, to the next chapter.

Definition 1.2.34. An operator module will be called almost rigged if it satisfies all the
conditions of 1.2.31, with the exception that the property 1 is replaced by

1’. there is a positive constant C such that ‖φα‖cb ≤ C and ‖ψα‖cb ≤ C for all α.
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Observe that in case when C ≤ 1 an almost rigged module is a genuine rigged module.
The almost rigged modules have been studied by Blecher, but as far as the author

knows the paper devoted to them remains unpublished. Perhaps, these kind of modules
haven’t had the properties, that were needed by Blecher in his own research. However,
they do have the ones that would be utile in the unbounded KK-theory we are going
to study in the Chapter 2. These properties, that, in fact, are the analogues of the ones
found by Blecher, have been studied my Mesland in [28], and we are going to follow his
approach in this part.

We also emphasize here that since in our applications we shall primarily need count-
ably generated modules, all the modules that we are going to consider are supposed to
be countably generated, or, more precisely, the net of the indexes {α} for φα and ψα has a
countable set of elements.

For an almost rigged module E we define the dual almost rigged module E∗ as

E∗ := {η∗ ∈ CBA(E, A) | η∗ ◦ ψα ◦ φα → η∗}

and the space of A-compact operators on E KA(E) as a closure of the set of finite rank
operators Tξ,η∗(ζ) = ξ · η∗(ζ) for ξ, ζ ∈ E and η∗ ∈ E∗. Thus, by the construction we have
that the space KA(E) is cb-isomorphic to E ⊗̃ E∗.

Proposition 1.2.35. For the right almost rigged A-module E the module E∗ indeed has a left
almost rigged A-module structure.

Proof. First of all, E∗ is a left operator A-module, with the module structure given by
(aη∗)ξ = a(η∗ξ). To impose the almost rigged structure, we first let yj

α = ψα(ej) ∈ E,

where ei is a standard basis on Akα , so that ψα(∑kα
j=1 ejaj) = ∑kα

j=1 yj
αaj, and also denote

by f j
α ∈ Homc(E, Akα) the elements with the property that ( f j

α(ξ))l = 0 for l 6= j and
φα(ξ) = ∑kα

j=1 f j
α(ξ). The latter elements exist since the maps φα are linear. Subsequently,

we define the structural maps ψ∗α : E∗ → (Akα)ᵀ and φ∗α : (Akα)ᵀ → E∗ for E∗ by

ψ∗α(η
∗) :=

kα

∑
j=1

η∗(yj
α)e∗j , φ∗α(

kα

∑
j=1

aje∗j ) :=
kα

∑
j=1

aj f j
α

To see that these maps indeed define an almost rigged structure on E, we first observe
that the maps yj

α : yj
α(η
∗) := η∗(yj

α) are have by the construction a cb-norm ≤ C, and thus
so does ψ∗α . As to φ∗α , by the construction of f j

α we have that

‖
kα

∑
j=1

aj f j
α‖cb ≤ max

j=1,...,kα

‖aj f j
α‖cb ≤ C max

j=1,...,kα

‖aj‖

so that we may conclude that the cb-norm of φ∗α is ≤ C as well. The other properties follow
automatically by the definition of E∗.

This characterization of E∗ gives us a notion of adjointable operators on almost rigged
modules.
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Definition 1.2.36. Let E, F be almost rigged modules over an operator A and let T ∈
CB(E, F). Then T will be called adjointable if there exists an operator T∗ : F∗ → E∗ such
that

〈Tξ, η∗〉 = 〈ξ, T∗η∗〉
for all ξ ∈ E and η∗ ∈ F∗. The set of all adjointable operators T : E → F will be then
denoted CB∗(E, F).

Almost rigged modules satisfy the direct limit property mentioned in [9], with the dif-
ference that instead of complete contractiveness of we require the maps to be completely
bounded with uniform upper bound. The transition maps tαβ : Akβ → Akα are given
by tαβ := φαψβ. This endows the almost rigged modules with the following universal
property:

Proposition 1.2.37. Let E be an almost rigged module over an operator algebra A and let gα : Anα →
W be completely bounded module maps with a uniformly bounded cb-norms for some operator
space W, such that gαtαβ → gβ strongly. Then there is a unique completely bounded morphism
g : E→W for which gβ = gφβ.

Proof. Define g(ψγ(x)) = gγ(x) for x ∈ Akγ . We observe that

gγ(x) = lim
β

gβtγβ(x) = lim
β

gβφβψγ(x)

The latter expression is well defined for any x, since the morphisms of gβ, φβ and ψγ are
completely bounded with cb-norm ≤ C for some C ∈ R independent of β, we have that
g is also completely bounded. The uniqueness of this morphism may be checked in the
standard way.

The completely bounded operators on almost rigged modules satisfy the following
properties:

Theorem 1.2.38 (cf. [9]). Let E be a right almost rigged A-module over an operator algebra A.
Then

1. The space CBA(E) is completely isometrically isomorphic to an operator algebra.

2. The algebra KA(E) is a left ideal in CBA(E), with a uniformly bounded approximate unit
given by tββ.

Proof. Indeed, for (1) we have by [9] that CB(An) is completely isometrically isomorphic
to an operator algebra. Therefore we may apply the Theorem 1.2.23. By the construction,
CBA(E) is an operator 1-algebra. It also contains a unit given by IdE. Therefore, by
Theorem 1.2.9 it is isomorphic to an operator algebra completely isometrically.

For (2) we observe that for S ∈ CBA(E) one has STξ,η∗ = TSξ ,η∗ , so KA(E) is indeed
a left ideal in CBA(E). Now for ξ ∈ E and η∗ ∈ E∗ we have that tββTξ,η∗ = Ttββξ,η∗

and Tξ,η∗ tββ = Tξ,t∗ββη∗ . By the definition 1.2.34 and the fact that ‖Tξ,η∗‖cb ≤ C‖ξ‖‖η∗‖cb

for some positive constant C, these both operators converge to Tξ,η∗ . Therefore tββ is a
bounded approximate unit for KA(E).
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There is another aspect that will be useful for our further purposes. It is the question,
whether the rigged module my be stabilized, i.e., whether it is a direct summand of HA.
In general, this is not true even for countably generated almost rigged module. However,
there is an additional condition on rigged modules that settles this problem.

Definition 1.2.39 ([11]). An operator module E over an operator algebra A is said to have
a (P)-quasi-unit if there are completely bounded maps φ : E → HA and ψ : HA → E such
that ψ ◦ φ = IdE and ψ is finitely A essential.

The property of being A-essential means that the restrictions of ψ to A(n) are right
A-essential.

The modules with (P)-quasi-unit are obviously almost rigged (take φn = pnφ an ψn =
ψpn, where pn are standard projections HA → An). These operator modules have the
properties that relate them to countably generated Hilbert C∗-modules.

Theorem 1.2.40 ([9]). The modules with P-quasi units with completely contractive φ and ψ over
C∗-algebras are exactly countably generated Hilbert C∗-modules.

These modules do satisfy the stabilization property.

Theorem 1.2.41 ([11]). Let E be an operator module with (P)-quasi-unit over an operator algebra
A. Then

• There exists a complemented submodule N inHA such that there is a cb-isomorphismHA u
E⊕ N.

• There is a cb-isomorphism E⊕HA u HA

• There is a cb-isomorphism HA ⊕HE u HA

Because of this result, we shall also call the modules with P-quasi unit cb-stabilizable.

1.2.9 Haagerup Tensor Product of Almost Rigged Modules

In this we are going to show that the Haagerup tensor product of two almost rigged
modules is again an almost rigged module.

As well as for C∗-algebras and Hilbert C∗-modules, there is a notion of essential homo-
morphisms for operator algebras. However, since the operator algebra homomorphisms
should not necessarily be contractive as in C∗-algebra case, the definition is somewhat
more involved. Namely, we have:

Definition 1.2.42 ([9]). Let A and B be operator algebras and f : A → M (B) be a com-
pletely bounded homomorphism. Then f is called essential if one of the following equiva-
lent conditions hold:

1. { f (eα)} converges strictly to the identity in M (B) for any bounded approximate
identity {eα} of A;
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2. { f (uα)} converges strictly to the identity in M (B) for some norm-bounded net {uα}
in A;

3. any element of B may be expressed as a product f (a)b and also as b′ f (a′) for some
a, a′ ∈ A and b, b′ ∈ B

4. f has a unique completely bounded extension f ′ : M (A)→M (B), such that, when
restricted to bounded subsets, f ′ is continuous with respect to strict topologies.

It is proved in [9][Thm 6.2] that these four conditions are equivalent. It is also shown
there that the extension f ′ has the same cb-norm as f .

We need the notion of essential homomorphism for the following result:

Lemma 1.2.43. Let A, B be operator algebras and f : A→M (B) be an essential homomorphism.
Then B u A ⊗̃A B completely boundedly.

Proof. Let A1 be an algebra consisting (algebraically) of the same elements as A. We make
it into an operator algebra via a representation

σ : a 7→
(

a 0
0 f (a)

)
Then, by the construction, σ : A→ A1 is a cb-isomorphism, f σ−1 is completely contractive
and A1 → M (B) is essential. It is proved in [9] that the assertion of the lemma holds
for completely contractive essential morphisms. Therefore A1 ⊗̃ f σ−1 B u B. Finally, since
σ is a completely bounded isomorphism, there is cb-isomorphism between A ⊗̃ f B and
A1 ⊗̃ f σ−1 B.

Now we are ready to prove that almost rigged modules remain almost rigged under
the base change.

Theorem 1.2.44 (cf. [9]). Let E be a right almost rigged operator A-module and let A → B be
an essential homomorphism of operator algebras. Then E ⊗̃A B is a right almost rigged B-module.
Moreover, KB(E ⊗̃A B) u E ⊗̃A B ⊗̃A E∗ (completely bounded isomorphism).

Proof. It was indicated in [11] that this result should hold, but there has not been given a
direct proof. The author decided to give a precise proof of this fact. We follow [9, Thm.
6.4]. By Lemma 1.2.43 we have that A ⊗̃A B = B, and hence

An ⊗̃A B u Cn ⊗̃ A ⊗̃A B u Bn

where the isomorphisms are completely bounded.
We choose a bounded approximate unit {εα} for B, and write

Lλ : B → B

b 7→ ελb
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Let φα and ψα define the structure of almost rigged module on E. We denote by φ′α,λ : E ⊗̃A
B→ Bnα and ψ′α,λ : Bnα → E ⊗̃A B the morphisms

φ′α,λ = Lλ ◦ (φα ⊗̃ IdB), ψ′α,λ = Lλ ◦ (ψα ⊗̃ IdB)

Then the requirements (1) and (4) of the Definition 1.2.34 are obviously satisfied. For the
assertions (2) and (3), the only recall that we are dealing with countable nets, therefore
we may re-index the indexes (α, λ) to get a countable indexation ω for φ′ and ψ′. Thus E
becomes an almost rigged module over A.

As for the compact operators, we first observe that by definition of dual rigged module
we have that (E ⊗̃A B)∗ u B ⊗̃A E∗ cb-isomorphically. Therefore we have that

KB(E) u (E ⊗̃A B) ⊗̃ (E ⊗̃A B)∗ u E ⊗̃A (B ⊗̃ B) ⊗̃A E∗ u E ⊗̃A B ⊗̃A E∗

Thus we have shown that the Haagerup tensor product is functorial on almost rigged
modules. Moreover, this result may be generalized to yield the product of almost rigged
modules

Theorem 1.2.45 (cf. [9]). Let E be an almost rigged A-module, F be an almost rigged B-module
and π : A→ B(F) be an essential map. Then E ⊗̃A F is an almost rigged B-module. We also have
that KB(E ⊗̃A F) u F ⊗̃A KA(E) ⊗̃A F.

Proof. Let φα, ψα and φ′λ, ψ′λ be factorization maps for E and F respectively. We construct
the maps Φα,λ : E ⊗̃A F → Bnαmλ and Ψα,λ : Bnαmλ → E ⊗̃A F by setting

Φα,λ := diagmλ
(φ′λ) ◦ (φα ⊗ IdF); Ψα,λ := (ψα ⊗ IdF) ◦ diagmλ

(ψ′λ)

where we use the Theorem 1.2.44 to establish the cb-isomorphism Anα ⊗̃A F u F. The
maps Φα,λ and Ψα,λ then endow the module E ⊗̃A F with the struture of rigged B-module.
Indeed, since φα, ψα and φ′λ, ψ′λ are uniformly completely bounded, so are, by the con-
struction, the maps Φα,λ and Ψα,λ. Therefore the condition (1) of the Definition 1.2.34 is
fulfilled. Since ψ′λ is B-essential, we have that the same holds for diag(ψ′λ). Now, since the
map ψα is A-essential and IdF is obviously B-essential, we obtain that the map ψα ⊗ IdF is
B-essential. Therefore Ψα,λ is B-essential. The conditions (2) and (3) may also be checked
directly if we make a reordering as in Theorem 1.2.44.

Finally, using the same factorization maps we may show that (E ⊗̃A F)∗ u F∗ ⊗̃A E∗,
and so

KB(E ⊗̃A F) = E ⊗̃A F ⊗̃ F∗ ⊗̃A E∗ = E ⊗̃A KB(F) ⊗̃A E∗

Finally we obtain the corollary for the cb-stabilizable modules.

Corollary 1.2.46. Let E and F be cb-stablizable A and B -modules respectively and suppose that
there are essential maps f : A→ BB(E) and g : A→ BB(HB). Then E ⊗̃A F is cb-stabilizable.
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Proof. Indeed, we write down

(E⊕HA) ⊗̃A (F⊕HB) = (E ⊗̃A F)⊕ (E ⊗̃A HB ⊕HA ⊗̃A F⊕HA ⊗̃A HB)

Since there is an essential map g : A → BB(HB) we establish a cb-isomorphism HA ⊗̃A
HB u HB. Analogously, we have that HA ⊗̃A F = HF and E ⊗̃A HB = HE⊗̃AB. Since F is
cb-stabilizable, we have that HF ⊕HA u HA. Now,

E ⊗̃A B⊕HB u E ⊗̃A B⊕HA ⊗̃A HB

u (E⊕HA) ⊗̃A HB

u HA ⊗̃A HB

u HB

Thus we may write
E ⊗̃A F⊕HB u (E⊕HA) ⊗̃A (F⊕HB)

But, again, by definition we have that E⊕HA u HA and F⊕HB u HB, and so

E ⊗̃A F⊕HB u HA ⊗̃A HB u HB

QED.

Remark 1.2.47. The claim for A to have an essential representation on HB is in fact not
too restrictive. For instance, it is enough for A to have an essential representation on
a separable Hilbert space H. We recall that since A is an operator algebra it is already
a subalgebra of B(H) for some Hilbert space H, so that the task is to find a separable
H Hilbert subspace of H, stable under the action on of A. The essential action of A on
HB = H ⊗̃ B will then be given by the map a 7→ a⊗ IdB.

If A is a C∗-algebra, it is enough for A to have an essential representation on any full
countably generated Hilbert C∗-B-module E. Indeed, by Theorem 1.1.3 HE u HA, and
therefore there is an essential cb-representation of E on HA.

1.2.10 Stuffed Modules

Starting from this subsection, all the algebras are supposed to have a bounded approxi-
mate unit, and the morphisms are supposed to be essential.

The notion of stuffed modules is based on the notion of smooth modules introduced
in [28]. In a sense we are giving the Mesland’s notion its own right for existence, not
necessarily binded to the context of Sobolev chains they were introduced in [28]. The
techniques would be very similar to the ones in [28], although there will be a considerable
difference due to the fact that we are working with more general objects.

Definition 1.2.48. Let A be a C∗-algebra, A be a pre-C∗-subalgebra of A and π : A → B(H)
be monomorphism endowing A with an operator algebra structure. Let also the algebras
Mk(A) be complete in the norm ‖ · ‖A = ‖π(·)‖ and the inclusion map A ↪→ A be
completely bounded with respect to the operator structure on A defined by the map π.
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Finally, let E be Hilbert C∗-module over A. The pre-stuffed A-module structure on E is then
given by an approximate unit

uα :=
kα

∑
j=1

xα
j ⊗ xα

j ∈ FinAE

with xα
j being homogeneous elements such that the matrices (〈xα

j , xβ
k 〉) ∈ Mn(A) for each

n and
‖(〈xα

j , xβ
k 〉)‖A ≤ C

For short we shall call the operator algebras mentioned in the above definition as
operator pre-C∗-algebras. Also, in the following we are going to identify the notation for
pre-C∗-algebra A with the operator algebra given by π(A). We shall also write a∗ for the
π(a∗).

Proposition 1.2.49. In the conditions of definition 1.2.48 the module

E := {ξ ∈ E | 〈xα
j , sup

k
‖

kα

∑
i=1

ei〈xα
j , ξ〉‖A < ∞}

is dense in E and is an almost rigged operator module over A .

Proof. We recall the discussion over the introduction of rigged modules. We define set the
maps

ψα : Amα → E , φα : E → Amα

and define matrix norms on E by

‖(ξij)‖E := sup
k
‖(φk(ξij))‖A

It is straightforward to prove that these matrix norms satisfy the conditions of L∞-matricially
normed space, so that E is completely isometrically isomorphic to an operator space. One
may also check directly that by definition the maps φk and ψk endow E with almost rigged
module structure over A. To show that E is dense n E it suffices for us to prove that xβ

j lie
in E , since they for a generating system for E. Indeed,

‖xβ
j ‖

2
E = sup

α
‖φα(xβ

j )‖
2
A

= sup
α
‖

kα

∑
i=1

ei〈xα
i , xβ

j 〉‖
2
A

= sup
α
‖

kα

∑
i=1

π(〈xα
i , xβ

j 〉)
∗π(〈xα

i , xβ
j 〉)‖

≤ ‖(π(〈xα
i , xβ

j 〉))ij‖2

= ‖(〈xα
i , xβ

j 〉)ij‖2
A

≤ C



CHAPTER 1. PRELIMINARIES 34

Therefore we ave indeed proved that xβ
j ∈ E , and hence E is dense in E.

Definition 1.2.50. The pre-stuffed A-module structure will be called stuffedA-module struc-
ture if the module E is cb-stabilizable as an almost rigged module over A.

There is a well defined inner product on stuffed modules, which is inherited form the
inner product on Hilbert C∗-modules. To prove this, we first have to show that the stuffed
modules are self-dual.

First of all, for any right almost rigged A-module E there is a canonically associated
left almost rigged A-module Ẽ defined as

Ẽ := {ξ | ξ ∈ E , aξ := ξa}

The structure of pre-stuffed module on Ẽ is then given by the completely isometric anti-
isomorphism

Akα → (Akα)ᵀ

(aj) 7→ (a∗j )
ᵀ

and the structural maps are given by

φ̃α(ξ) := ((φα(ξ))
∗
j )

ᵀ

ψ̃α((aj)
ᵀ) := ψα((a∗)j)

It is straightforward to check that these maps make Ẽ into an almost rigged module. It
follows from definition that Ẽ is stabilizable whenever E is stabilizable.

Lemma 1.2.51 ((cf. [28])). Let E be a stuffed module over a pre-C∗-algebra A. Then there is a
cb-isomorphism of almost rigged modules E∗ u Ẽ given by the restriction of the inner product
pairing on E.

Proof. Obviously, we have an injection Ẽ → E∗, ξ 7→ ξ∗, defined by the restriction of the
inner product on E. It suffices for us to construct a completely bounded inverse map. We
define

gβ : (Akβ)ᵀ →Ẽ

(aj)
ᵀ 7→

kβ

∑
j=1

ajx
β
j

We would like to apply the direct limit property of the almost rigged modules. By defini-
tion we already have that ‖gβ‖cb ≤ c for some positive c ∈ R. Thus we need to check that
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gβψ∗βφ∗α → g, where ψ∗β, φ∗α defined as in Proposition 1.2.35. Indeed,

gβψ∗βφ∗α(ai)
ᵀ = gβψ∗β(

kα

∑
i=1

aixα∗
i )

= gβ(
kα

∑
i=1

ai〈xα
i , xβ

j 〉)
ᵀ
j

=

kβ

∑
j=1

〈
kα

∑
i=1

xi
αa∗i , xβ

j

〉
xβ

j

= xβ
j

kβ

∑
j=1

〈
kα

∑
i=1

xβ
j , xα

i a∗i

〉

β−→
kα

∑
i=1

xα
i a∗i

=
kα

∑
i=1

aixα
i

= gα(ai)
ᵀ

Therefore, by Proposition 1.2.37 we are able to construct the induced map g : E∗ → Ẽ . By
the construction, we have that g(xα∗

i ) = xα
i , and hence g(ξ∗) = ξ for an arbitrary ξ ∈ E.

Thus g is a left inverse for ξ 7→ ξ∗. Since xα∗
i generate E∗ it is also a right inverse. Thus,

we have established the completely bounded isomorphism E∗ ≈ Ẽ .

In effect, the Lemma 1.2.51 tells us, that there is a nondegenerate A-valued inner
product pairing on E induced by the A-inner product on E. In this sense the stuffed
module E over the pre-C∗-algebra A may be regarded as a pre-C∗-module.

The next proposition will play an important role in the upcoming sections.

Proposition 1.2.52 (cf. [28]). Let A be a C∗-algebra and A1, A2 be two operator pre-C∗-
subalgebras of A, such that there is inclusion A1 ↪→ A2, which is completely bounded. Let E be a
countably generated Hilbert C∗-module over A and {uk} be an approximate unit on KA(E) defin-
ing the structure of stuffed module on E for bothA1 andA2, with E1 and E2 be the operator modules
corresponding to A1 and A2 respectively. Then there is a cb-isomorphism E1 ⊗̃A1 A2 u E2.

Proof. The proposition was contained as a part of a [28, Thm. 4.4.2] with the specific types
of operator algebras.

Indeed, the isomorphism is implemented via the multiplication map

m : E1 ⊗̃A1 A2 → E2

ξ ⊗ a 7→ ξa
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Recall that there is a cb-isomorphism HA1 ⊗̃A1 A2 u HA2 . Therefore there is a well-
defined map

m−1 : HA2 → E1 ⊗A1 A2

(a1, a2, . . . )ᵀ 7→ ∑
j

xα
j ⊗ aj

We have that the map m−1 ⊗ φ inverts m.

Finally, we need to relate the stuffed modules to the Hilbert C∗-modules.

Proposition 1.2.53 ([28]). Let E be stuffed module over an operator pre-C∗-algebra A, Y be a
Hilbert C∗-module over an algebra B and π : A → End∗B(Y) be a completely contractive algebra
homomorphism. Then E ⊗̃A Y is completely isomorphic to a Hilbert C∗-module over B with the
inner product given by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 := lim
α

kα

∑
j=1

〈
〈xα

j , ξ1〉η1, 〈xα
j , ξ2〉η2

〉
(1.6)

Proof. By definition stuffed modules are direct summands of HA. We define another
operator space structure on A by

Id⊕ π : A → A⊕ End∗B(Y)

This map is completely bounded. Since HA remains a rigged module over A with this
structure, by Theorem 1.2.33 we have that HA ⊗̃A Y is a rigged module over B, and so
by Theorem 1.2.32 it is a Hilbert C∗-module. Therefore E ⊗̃A Y is cb-isomorphic to a
submodule of a Hilbert C∗-module. In the latter C∗-module we have that the formula 1.6
converges since its components constitute an approximate identity for KB(E ⊗̃A Y). Thus,
by [22][Thm 4.1] this inner product is equivalent to the product we have on E ⊗̃A Y.

1.2.11 Operators on Stuffed Modules

In this section, we are going to discuss the operators on stuffed modules. We are going to
establish the further similarities between the stuffed modules and Hilbert C∗-modules.

First of all, we would like to study the adjointable operators on stuffed modules. We
have the following theorem:

Theorem 1.2.54 (cf. [28]). Let A be an operator algebra isomorphic to a pre-C∗-algebra of a C∗-
algebra A, and E be a stuffed right A-module with smooth system given by an approximate unit
{uα}. If T, T∗ : E → E are two operators defined on all E and satisfying 〈Tξ, η〉 = 〈ξ, T∗η〉 for
all ξ, η ∈ E , then T,T∗ are completely bounded and A-linear, i.e. T, T∗ ∈ CB∗A(E). Moreover, the
cb-norm and operator norm are equivalent to one another and T 7→ T∗ is a well defined cb-anti-
isomorphism of End∗A(E).
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Proof. The A-linearity of the maps may be checked directly. We would like to prove that T
and T∗ are completely bounded. To do this, we first dhow that they are bounded. Indeed,
we recall that by Lemma 1.2.51 there is a cb-anti-isomorphism between KA(E) and E ,
given by ξ 7→ ξ∗. Let M be the maximum of the cb-norm of this isomorphism and its
inverse.

Now let T, T∗ be as in the conditions of the Theorem, and let ξ ∈ E , ‖ξ‖E ≤ 1. Set
Tξ := (Tξ)∗ ∈ KA(E). Then

‖Tξ(η)‖E = ‖ 〈Tξ, η〉 ‖E = ‖ 〈ξ, T∗η〉 ‖E ≤ C‖T∗η‖E

Thus, using the Banach-Steinhaus theorem, we may conclude that the set

{Tξ | ‖ξ‖E ≤ 1}

is bounded, and so ‖T‖E ≤ ∞. Applying the same considerations to T∗, we obtain that it
is bounded as well, and M−1‖T‖E ≤ ‖T∗‖E ≤ M‖T‖E . To show that they are completely
bounded, observe that

m‖(Tξ jk)jk‖E ≤ C4 lim
α

lim
β

m‖(ψβφβTφαψαξ jk)jk‖E

≤ C4(sup
α,β
‖φβTψα‖cb) sup

α
m‖(ψαξ jk)jk‖E

≤ C5(sup
α,β
‖φβTψα‖) m‖(ξ jk)jk‖E

≤ C7‖T‖ m‖(ξ jk)jk‖E

Here C is the common upper bound for φα and ψα, and we also used the fact that
φβTψα : Akα → Akβ is completely bounded since it comes form the multiplication by a
matrix with entries in A. We have also shown that ‖T‖ ≤ ‖T‖cb ≤ C7‖T‖, so that the
cb-norm is equivalent to the operator norm.

We emphasize that this result follows precisely the same way as a corresponding result
for operators on smooth modules in [28], and here we only make it work in a slightly more
general framework of stuffed modules. As we have also seen, the operation T 7→ T∗ is not
necessarily completely isometric. However, using Theorem 1.2.16 we may endow End∗A(E)
with an equivalent operator algebra structure, such that the involution will be completely
isometric with respect to this new structure.

Having the notion of adjointable morphisms, we may now prove the following lemma.

Lemma 1.2.55. Let E be a right stuffed module over an operator pre-C∗-subalgebra A and let
p ∈ CB∗(E) be a projection on E , i.e. p2 = p = p∗. Then the module pE is a right stuffed module
over A.

Proof. Since E cb-stabilizable, there are two completely bounded maps φ : E → HA and
ψ : HA → E . Define the maps φ′α : pE → HA and ψ′ : HA → pE by setting φ′α := φα ◦ ι,
where ι : pE → E is the inclusion map, p ◦ ι = IdpE , and ψ′ := ψ ◦ p. Then, by definition,
pE has a bounded P-quasi unit, and therefore is cb-stabilizable.
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Remark 1.2.56. We note that the structure of stuffed module on pE is then given by an
approximate unit

vα =
kα

∑
i=1

pxα
j ⊗ pxα

j

Since by the Theorem 1.2.52 there is a completely bounded isomorphism E1 ⊗A1 A2 u
E2 whenever there is a completely bounded inclusion A1 → A2, we have that any com-
pletely bounded adjointable operator T on E1 extends to a completely bounded adjointable
operator on E2. This observation makes us able to define the notion of regular operators
on stuffed modules.

We also define the notion of regular densely defined operators.

Definition 1.2.57. Let E be a stuffed module over a pre-C∗-algebra A. A densely defined
operator D : DomD → E will be called regular if

• D∗ is densely defined on E ,

• r(D) := (1 + D∗D)−
1
2 ∈ KA(E) and b(D) := Dr(D) extends to an operator in

CB∗A(E).

The notion of selfadjoint regular operator is defined analogously to the case of regular
operators on Hilbert C∗-modules.

We shall need the following observation:

Proposition 1.2.58. In the conditions of 1.2.52, let D be a regular operator on E1. Then the
operator D⊗ IdA2 is regular on E2.

Proof. The operator D⊗ IdA2 is obviously densely defined, so we only need to prove that
is resolvent is a compact operator on E2. But this follows from the fact that

r(D⊗ IdA2) = (1 + (D∗ ⊗ IdA2)(D⊗ IdA2))
− 1

2 = (1 + D∗D)⊗ IdA2 = r(D)⊗ IdA2

Now, since we have the completely bounded inclusion E1 ↪→ E2 and there is a cb-
isomorphism Ei u E∗i for i = 1, 2, we obtain that the operator r(D)⊗ IdA2 ∈ KA2E2.

It is still not known for now, whether there could be established a result analogous to
the Woronowicz characterization for the case of stuffed modules in general case. However,
such a result would be needed in the next chapter, where we generalize the notion of
smoothness introduced in [28]. Therefore we are going to give an axiomatic definition of
Sobolev chain on stuffed modules.

Definition 1.2.59. Let A be a C∗-algebra A its operator pre-C∗-subalgebra and E a stuffed
module over A. A regular operator D on E induces a Sobolev chain on E if we may define a
sequence of nested stuffed submodules

· · · → E (j+1)
D → E (j)

D → · · · → E
(0)
D := E

such that E (j+1)
D u G(Dj+1) ⊆ E

(j)
D ⊕ E

(j)
D , where D0 = D and Dj+1 is a restriction of Dj on

DomDj u G(Dj+1).
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This definition may appear to be redundant, because we hypothesize that any regu-
lar unbounded operator on a stuffed module generates a Sobolev chain. However, this
hypothesis is still unproved, therefore we have to keep the definition.

The proposition we would like to prove concerns the problem of "ring-changing".

Proposition 1.2.60. Let A be a C∗-algebra A its operator pre-C∗-subalgebra and E a stuffed
module over A. Suppose that D is an unbounded regular operator on E , inducing a Sobolev
chain on E . Let A1 be another operator pre-C∗-subalgebra of A such that there is a cb-inclusion
A ↪→ A1. Then there is a dense cb-inclusion E (j) ↪→ E (j)

1 .

Proof. First of all, observe that D⊗ IdA1 is densely defined selfadjoint operator on E1 :=
E ⊗̃A A1. Consider the operators r(D) and b(D). We have that r(D)⊗ IdA1 and b(D)⊗
IdA1 are well defined compact resp. completely bounded operators on E1. Therefore the
Woronowicz projection p(D⊗IdA1

) is a well-defined completely bounded operator on E1 ⊕
E1. Moreover, by its construction we have that pD⊗IdA1

= pD ⊗ IdA1 . But, by definition

E (1)1,D u p(D⊗IdA1
)E⊕2

1 u (pD ⊗ IdA1)(E
(1)
D ⊗̃A A1)

⊕2 u (pDE
(1)
D )⊕2 ⊗̃ A1

Thus E (1)1 u E (1) ⊗̃A A1. Since E (1) was cb-stabilizable, so is E (1)1 .

Applying the same reasoning to E (1) we obtain the that E (2)1,D = E (2)D ⊗̃A A1, and so on.

Since A ↪→ A1 was a cb-inclusion, so will by 1.2.52 be the map E (n)D → E (n)1,D.

1.2.12 Connections

In this subsection we assume all the operator algebras to be unital.
Connections is an important geometrical notion, that is carried to noncommutative

geometry and unbounded KK-theory. Connections are inevitable part of the construction
of the product of unbounded operators. Therefore we have to consider them here in detail.

The first step in the construction of the connections is the definition of 1-forms.

Definition 1.2.61. Let A be an operator algebra. The module of universal 1-forms on A is
defined as

Ω1(A) := ker(m : A ⊗̃ A → A)

By this definition, there is an exact sequence of operator modules

0→ Ω1(A)→ A ⊗̃A m−→ A → 0

and Ω1(A) inherits a grading form A whenever A is graded.
There is a natural graded derivation on A given by the map

d : A → Ω1(A)
a → 1⊗ a− (−1)∂aa⊗ 1



CHAPTER 1. PRELIMINARIES 40

and one may observe that every element of Ω1(A) has a form adb. The A-bimodule
structure on Ω1(A) is then given by (adb) · c = ad(bc) + (−1)∂babdc.

The involution on A induces a natural involution on Ω1(A), defined by

(adb)∗ := −(−1)∂b(db∗) · a∗

Lemma 1.2.62 ([28]). The derivation d is universal in the sense that for any completely bounded
graded derivation δ : A → M into an operator A bimodule there is a unique completely bounded
bimodule homomorphism jδ : Ω1(A)→ M such that the diagram

A M

Ω1(A)

-δ

@
@@Rd �

���
jδ

is commutative. If δ is homogeneous, then so is jδ and ∂δ = ∂jδ.

Any derivation δ : A → M has its associated module of 1-forms

Ω1
δ := jδ(Ω1(A)) ⊆ M

Recall that for any stuffed A-module E there is a well defined A-valued inner product
on E . This inner product induces a pairing

E × E ⊗̃A Ω1(A) → Ω1(A)
〈ξ1, ξ2 ⊗ω〉 → 〈ξ1, ξ2〉ω

We shall abusively write 〈ξ1, ξ2 ⊗ω〉 for this pairing. We may also define a pairing

E ⊗̃A Ω1(A)× E → Ω1(A)

by setting 〈ξ1 ⊗ω, ξ2〉 := 〈ξ1, ξ2 ⊗ω〉∗.

Definition 1.2.63 ([28]). Let δ : A → M be a (graded) derivation as above, and let E be a
right operator A-module. A δ-connection on E is a completely bounded (even) linear map

∇δ : E → E ⊗̃A Ω1
δ(A)

satisfying the Leibnitz rule

∇δ(ξa) = ∇(ξ) · a + ξ ⊗ δ(b)

If δ = d, the connection will be denoted just as ∇ and is referred to as a universal
connection. In case when E is stuffed module over an operator pre-C∗-algebra, then the
connection ∇ will be called ∗-connection if there is a connection ∇∗ on E for which

〈ξ1,∇ξ2〉 − 〈∇∗ξ1, ξ2〉 = (−1)∂〈ξ1,ξ2〉d〈ξ1, ξ2〉

If ∇ = ∇∗ the connection will be called Hermitian.
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We note that by the universality property mentioned above any universal connection
∇ on a stuffed module induces a δ-connection E for any completely bounded derivation
δ. This is done by setting ∇δ := IdE ⊗ jδ ◦ ∇. As in [28], we adopt the notation ∇S for the
connection induced by the derivation δ(·) = [S, ·] for S ∈ CBC(X, Y), where X and Y are
operator A-modules.

The existence of a universal connection on a given module is a strong condition. It was
shown by Cuntz and Quillen in [18] that the universal connections characterize algebraic
projectivity of the module.

Theorem 1.2.64 ([18, 28]). A right operator A-module E admits a universal connection if and
only if the multiplication map m : E ⊗̃ A → E is A-split.

Corollary 1.2.65 ([28]). Let A be an operator pre-C∗-algebra and E be a stuffed module over A.
Then E admits a Hermitian connection.

Proof. Since E is a stuffed A-module, it has a stabilization property, i.e. E ⊕ HA u HA.
Therefore there is an operator p ∈ CB∗A(E), p = p2 = p∗, such that E = pHA. Observing
that HA ⊗̃A Ω1(A) u H ⊗̃Ω1(A), we may construct a Grassmannian connection

d : HA → H ⊗̃Ω1(A)
h⊗ a 7→ h⊗ da

which is Hermitian. Since p is a projector, so the connection p∇p : E → E ⊗̃A Ω1(A) will
also be Hermitean.

It is easy to see that the connections are forming an affine space. More precisely, if ∇
and ∇′ are two universal connections on an operator A-module E , then (∇−∇′) : E →
Ω1(A) is a completely bounded A-linear operator. Indeed, the complete boundedness
follows from definition, and as to A-linearity we have that

(∇−∇′)(ξa) = (∇ξ)a + ξ ⊗ da− (∇′ξ)a− ξ ⊗ da = (∇−∇′)(ξ)a

This observation allows us to prove the following

Lemma 1.2.66. Let A1 and A2 be two operator pre C∗-subalgebras of a C∗-algebra A, E be a
Hilbert C∗-module over A and let an approximate unit {uα} define a structure of stuffed module
on E for both A1 and A2. If the inclusion A1 → A2 is completely bounded, then for every
connection ∇1 : E1 → E1 ⊗̃A1 Ω1(A1) there is a canonically associated connection ∇2 : E2 →
E2 ⊗̃A2 Ω1(A2). Moreover, if ∇1 is Hermitian, then so is ∇2.

Proof. Using the identification E2 u E1 ⊗̃A1 A2 form the Proposition 1.2.52, we observe
that there is a canonical cb-isomorphism

A2 ⊗̃Ω1(A1) ⊗̃ A2 → Ω1(A2) (1.7)

a1 ⊗ b1db2 ⊗ a2 7→ (a1b1db2a2 − a1b1b2da2) (1.8)
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which is compatible with d. This allows us to define

∇2(ξ ⊗ a) := ∇1(ξ)⊗ a + ξ ⊗ 1A2 da

The uniqueness of ∇2 follows from the fact that E1 is dense in E2. The fact that ∇2 is
Hermitian when ∇1 is Hermitian may be then shown by the direct calculation.



Chapter 2

Unbounded KK-Theory

2.1 Smooth Systems on C∗-Algebras

We have already briefly discussed different approaches to the definition of the smooth
systems on C∗-algebras in the Introduction. Now it is time to introduce the notion of
the smooth system that we shall use throughout the rest of the paper. In the subsequent
subsections we shall first give the definition of smooth system on a C∗-algebra, and then
establish its connection to the unbounded KK-theory. We shall also present examples,
showing how the notion of smoothness coming out o the unbounded KK-theory may
substantively deviate from the one which is habitual in differential and noncommutative
geometry.

2.1.1 Smooth Systems, First Fréchetization and Ψ(•) Sets

We start with the definition of the smooth systems on C∗-algebras.

Definition 2.1.1. Let A be a C∗-algebra. An n-smooth system (or Cn-system) A on A is an
inverse system of pre-C∗-subalgebras of A

(· · · ⊆)A(n) ⊆ A(n−1) ⊆ · · · ⊆ A(1) ⊆ A(0) := A

such that all A(j), j = 0, . . . , n are isomorphic to operator algebras with completely isomet-
ric involution induced by the invoultion on A. These operator algebras will be abusively
denoted by A(j), and we demand that the operator maps A(k) ↪→ A(k−1) are completely
bounded, essential and involutive for k = 1, . . . , n. The smooth system will be called ∞-
smooth (or C∞-system) if the system of these subalgebras is infinite and the inverse limit
of the system A(∞) is also a pre-C∗-algebra. The number n (including the case n = ∞) will
be called the order of smoothness of the smooth system and will be denoted by ord(A ).

We shall denote by m‖ · ‖n the operator norms on A(n) and for simplicity also demand
that ‖1‖n = 1 for all n ∈N∪ {0} in case when the algebras are unital.

43
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We shall also refer to the smooth system with A(n) = A for all n as trivial smooth system.
Two smooth systems A1 and A2 will be called equivalent if there is a cb-isomorphism

A(n)
1 u A(n)

2 for all n ≤ ord(A1) = ord(A2).
Though in the Definition 2.1.1 we use operator algebras instead of Banach algebras,

this approach is in some sense even more general then the one in [6]. We are now going
to develop the framework that will relate it to the unbounded KK-theory.

Definition 2.1.2. For given two C∗-algebras A and B, an unbounded (A, B)-KK-cycle
(E, D) and a natural number k the first frécetization is a map µ : (A, B, E, D, k) → A(k)

µ,D,

where A(k)
µ,D is an operator algebra isomorphic to a subalgebra of A.

Definition 2.1.3. A smooth system on an algebra A generated by operator D with respect to the
fréchetization µ is the longest sequence of nested subalgebras A(k)

µ,D of A with the starting

point A(0) = A satisfying the conditions of smooth system. We shall denote this system
by Aµ,D. Following [28], in case when A = EndB(E) we shall denote the smooth system

(EndB(E))(n)µ,D =: Sob(n)
µ,D

Definition 2.1.4. Let A be a smooth system on a C∗-algebra A with ordA ≥ n, n ∈ N,
and let B be another C∗-algebra. We shall say that the unbounded (A, B)-KK-cycle (E, D)

is n-smooth (Cn) with respect to A if A(k) ↪→ A(k)
µ,D for all k ≤ n, and the inclusion morphism

induces a completely bounded homomorphism of operator algebras. The set of all such
cycles will be denoted by Ψ(n)

µ (A , B). We say that (E, D) ∈ Ψ(∞)
µ (A , B) if ord(A ) = ∞

and (E, D) ∈ Ψ(n)
µ (A , B) for all n ∈N. Note that in this case A(∞)

µ,D will automatically be a
pre-C∗-algebra.

We may immediately observe that if A1 and A2 are two smooth systems on a C∗-
algebra, A, such that A(k)

1 ⊆ A(k)
2 and the induced map of operator pseudoalgebras com-

pletely bounded for all k ≤ n, then by definition we have that Ψ(n)
µ (A1, B) ⊆ Ψ(n)

µ (A2, B)

for any C∗-algebra B. If the smooth systems are equivalent, then Ψ(n)
µ (A1, B) = Ψ(n)

µ (A2, B).

Remark 2.1.5. It is important to note that in fact the notions of smooth systems and
fréchetizations may be defined in a more general way than we have described. Namely,
the operaotor algebras with involutions may be replaced with operator pseudoalgebras
with pseudo-involutions. However, the results 1.2.8 and 1.2.16 show that we may always
reduce the task to the case of operator algebras with involutions. Therefore we are going
to stick to the concrete algebra approach, since it simplifies the explanations, and put
the remarks to indicate, how would it be possible to generalize the results to the case of
pseudoalgebras with pseudoinvolutions.

2.1.2 Relation to Classical KK-Theory

All the theory we have been developed before, including the previous section, appears to
be very abstract. In this subsection we are finally going to establish the relation between
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the definitions we have given in the previous one to the KK-theory, and several of the next
ones will be devoted to the examples provided by this result. Before formulating it, we
need to outline the type of fréchetizations that naturally arise in the topics related to the
unbounded KK-theory.

We shall use the notation adb(a) := ba− (−1)∂a∂bab for the graded commutator oper-
ation, and adn

b (a) for its n’th power.

Definition 2.1.6. Let µ be a fréchetization. We shall call µ commutator bounded if for all
n ∈N there exists a positive number Cn such that

‖a‖
A(n)

D
≤ Cn max{‖a‖, ‖adD(a)‖, ‖ad2

D(a)‖, . . . , ‖adn
D(a)‖}

Here we include the case when adk
D(π(a)) does not extend to a bounded operator on E,

setting ‖adk
D(a)‖ = ∞.

The fréchetization will be called analytic if for any smooth system Aµ,D we have that
the norm ‖ · ‖µ,n,D is analytic with respect to ‖ · ‖µ,n−1,D for all 1 ≤ n ≤ ord(Aµ,D).

The fréchetization will be called differential if for any smooth system Aµ,D with ord(Aµ,D) =
∞ the ordered set (‖ · ‖, ‖ · ‖1,µ,D, ‖ · ‖2,µ,D, . . . ) is a differential seminorm on Aµ,D.

Now we are ready to formulate the main result of the subsection.

Theorem 2.1.7. Let µ be a fréchetization, which is commutator bounded. Suppose also that it is
either analytic or differential (or both). Then, for any separable unital C∗-algebra A and any set
of isomorphism classes of C∗-alberas Λ there is an ∞-smooth system A on A that for any B ∈ Λ
there is a surjective map Ψ(∞)

µ (A , B)→ KK(A, B), induced by the bounded transform map.

Before we proceed to the proof, we shall discuss some more specific formulations,
allowing us to apply it in concrete situations. First of all it should be noted that the notion
of first fréchetization was introduced by the author because he has encountered different
ways to define the Cn-smooth algebra by means of an unbounded KK-cycle. Further
in the text we shall stick to the fréchetization that is given by the definition of smooth
algebra introduced by Mesland in [28], which satisfy the conditions of the theorem with
the constant Cn = 2n. This particular construction has been widely studied in [28] and
will be playing a crucial role in our further development of the unbounded KK-theory.

As to the set Λ mentioned in the formulation, we may have the following examples.

Example 2.1.8. Let Λ = {C}. Then the unbounded KK-cycles in Ψ(n)
µ (A , B) are un-

bounded K-cycles, that include spectral triples. It should be noted, however, as we shall
see from examples, the smooth system A may be very far from, for instance, the ones
coming from differential geometry, even when the algebra A was an algebra of smooth
functions on a smooth manifold.

Example 2.1.9. It may be shown that the separable metric spaces up to an isomorphism
form a set. Therefore, the same is true for isomorphism classes of separable C∗-algebras.
Thus for any separable C∗-algebra A we may choose a unique smooth system A , that for
any separable C∗-algebra B there will be a surjective map Ψ(n)

µ (A , B)→ KK(A, B)
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In order proceed to the proof of the Theorem 2.1.7 we first need to prove following
lemmas.

Lemma 2.1.10. Let A be a separable C∗-algebra. Then for any C∗-algebra B and any element
[(E, F)] ∈ KK(A, B) there exists an unbounded (A, B)-KK-cycle (E, D), such that [(E, b(D))] =
[(E, F)] and the set of such a ∈ A, that adn

D(a) extends to a bounded operator on E, is dense in A.

Proof. This result is a generalization of the Theorem 17.11.4 form [5]. Fix a total system
{aj} of A. For given F there exists a strictly positive element h ∈ K(E) of degree 0 which
commutes with F [5]. Now, according to [30, 3.12.14] there exists an approximate unit uk
for K(E), contained in C∗(h), quasicentral for A, with the property that uk ≥ 0, uk+1 ≥ uk
and uk+1uk = uk for all k ∈ N. Denote dk = uk+1 − uk. Passing, when needed, to a
subsequence, we may assume that ‖dk[F; aj]‖ < 2−k2

and ‖[dk; aj]‖ < 2−k2
for all k ≥ j + 1.

Set X = Ĉ∗(h) ≈ σ(h) \ {0} and let Xn be the support of uk. Then 〈Xk〉 is an increasing
sequence of compact subsets of X and X =

⋃∞
k=1 Xk. Put

rk =
k

∑
l=1

2ldl

This sequence converges pointwise on X to an unbounded function r. Observe that
r ≥ 2k on X \ Xk, so that R = r−1 defines an element of C∗(h). Note also, that dk defines
a bounded function on the space X and, since ‖dk‖ ≤ 1 and dkdk−l = 0 for all k ≥ 3 and
2 ≤ l ≤ k− 1, we obtain that

‖rk‖ ≤ max
l=2,...,k

{‖2l−1dl−1 + 2ldl‖} ≤ 3 · 2k−1 < 2k+1

Let now D = Fr. Then D = D∗ and (1 + D2)−1 extends to R2(1 + R2)−1 ∈ KA(E). We
would like to prove that adn

D(aj) extends to a bounded operator on E for all n ∈N. To do
this we first observe that, since F, rk and dk commute for all k,

adn
Frk+1

(aj)− adn
Frk

(aj) =adn
F(rk+2k+1dk+1)

(aj)− adn
Frk

(aj)

=
n

∑
l=0

Cl
nadn−l

Frk

(
adl

F·2k+1dk+1
(aj)

)
− adn

Frk
(aj)

=
n

∑
l=1

2l(k+1)Cl
nadn−l

Frk

(
adl

Fdk+1
(aj)

)
=

n

∑
l=1

2l(k+1)Cl
nadn−l

Frk

(
adl−1

Fdk+1
([Fdk+1; aj])

)
=

n

∑
l=1

2l(k+1)Cl
nadn−l

Frk

(
adl−1

Fdk+1
(F[dk+1; aj] + [F; aj]dk+1)

)
where Cl

n are binomial coefficients. Now since ‖F‖ = 1, ‖dk+1‖ ≤ 1 and ‖rk‖ < 2k+1, we
obtain that ‖adFdk+1

(b)‖ ≤ 2‖b‖ and ‖adFrk (b)‖ ≤ 2k+2‖b‖ for any bounded operator b,
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we estimate for k ≥ j + 1:∥∥∥∥∥ n

∑
l=1

2l(k+1)Cl
nadn−l

Frk

(
adl−1

Fdk+1
(F[dk+1; aj] + [F; aj]dk+1)

)∥∥∥∥∥
≤

n

∑
l=1

2l(k+1)Cl
n

∥∥∥adn−l
Frk

(
adl−1

Fdk+1
(F[dk+1; aj] + [F; aj]dk+1)

)∥∥∥
=

n

∑
l=1

2l(k+1)Cl
n · 2(k+2)(n−l)

∥∥∥adl−1
Fdk+1

(F[dk+1; aj] + [F; aj]dk+1)
∥∥∥

≤
n

∑
l=1

2l(k+1)Cl
n · 2(k+2)(n−l) · 2l−1 ∥∥F[dk+1; aj] + [F; aj]dk+1

∥∥
≤

n

∑
l=1

2l(k+1)Cl
n · 2(k+2)(n−l) · 2l−1 · (2−k2

+ 2−k2
)

=
n

∑
l=1

Cl
n2l(k+1)+(k+2)(n−l)+(l−1)+1−k2

=
n

∑
l=1

Cl
n2kn+2n−k2

=2n · 2kn+2n−k2

=2−k2+(k+3)n

Summing up these estimates, we obtain that

‖adn
Frk+1

(aj)− adn
Frk

(aj)‖ ≤ 2−k2+(k+3)n

and so the sequence {adn
Frk

(aj)} is norm convergent in k→ ∞.
Now, by the construction, we may write

adn
D(aj)ξ = lim

k→∞
adFrk (aj)ξ

when the limit exists. We have just proved that the this limit exists for all ξ ∈ E. There-
fore adD(aj) is defined on a dense subspace of E and coincides (in this subspace) with
a bounded operator limk→∞ adFrk (aj). Hence the operator adn

D(aj) extends to a bounded
operator on E. Thus, since {aj} form a total set for A, the set of all a ∈ A such that adn

D(a)
extends to a bounded operator on E is dense in A. Pointing out, that it is true for n = 1
and observing that

D(1 + D2)−1/2 = F(1 + R2)−1/2

and the latter operator is a "compact perturbation" of F, we obtain that (E, D) is an un-
bounded (A, B)-KK-cycle and that [(E, F)] = [(E, b(D))]. QED.

We have actually shown more than we have claimed in the formulation of Lemma
2.1.10. Namely, we proved that for any element (E, F) and any total system {aj} one we
may construct such D that

‖adn
D(aj)‖ ≤ cn,j (2.1)
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where cn,j is a positive number that does not depend neither on the choice of F nor on
{aj}. This observation lets us prove the next lemma.

Lemma 2.1.11. Let µ be some fréchetization, A be a separable C∗-algebra, {aj} - an arbitrary total
system on A and Ω be a set of such unbounded (A, Bω)-KK-cycles (Eω, Dω) that

• ord(Aµ,Dω ) = ∞

• For each n and the operator algebra A(n)
µ,n,Dω

we have that ‖aj‖µ,n,Dω ≤ Kn,j, where Kn,j are
some positive numbers independent of (Eω, Dω) ∈ Ω.

Then there is an infinite nested system of dense subalgebras A(n) in A, satisfying all the properties
of smooth system except, possibly, for holomorphic stability and essentiality of the maps A(n) ↪→
A(n−1), such that A(n) ⊆ A(n)

µ,D and the map induced by this inclusion is completely bounded.

Proof. We iteratively define matrix norms

m‖(aik)‖′n := max{sup
ω∈Ω

m‖(aik)‖µ,n,D; m‖(aik)‖′n−1}

with ‖a‖0 being the C∗-norm on A and set A(n)
1 to be the completion of span({aj}) in the

norm ‖ · ‖′n. By the construction ‖aj‖′n ≤ Kj,n and so A(n)
1 are dense in A. It is also obvious

that the sets A(n)
1 are actually subalgebras of A (one may use the triangle inequality to

check this).
The matrix norms m‖ · ‖′n are finite for all (aik)ik ∈ Mn(A(n)

1 ) since we may estimate

m‖(aik)‖µ,n,D ≤ m2 max
1≤i,k≤m

1‖aik‖µ,n,D

One then may check directly that the collection of matrix norms { m‖ · ‖µ,n,D}∞
m=1 makes

A(n)
1 into an L∞ matricially normed space. It is also easy to check that the multiplication

onA(n)
1 is completely contractive. Indeed, A(0)

1 = A, so the claim holds for n = 0. Suppose
that it is true for n− 1. Then for n we have

‖(a)ik(b)pq‖′n
≤ max{‖(a)ik(b)pq‖′n−1; sup

ω∈Ω
‖(a)ik(b)pq‖µ,n,Dω}

≤ max{‖(a)ik‖′n−1 m‖(b)pq‖′n−1; sup
ω∈Ω
‖(a)ik‖µ,n,Dω sup

ω∈Ω
‖(b)pq‖µ,n,Dω}

≤ max{‖(a)ik‖′n−1; sup
ω∈Ω
‖(a)ik‖µ,n,Dω}max{‖(b)pq‖′n−1; sup

ω∈Ω
‖(b)pq‖µ,n,Dω}

= ‖(a)ik‖′n‖(b)pq‖′n

Observe also that by definition the involution on A(n)
µ,D is a completely isometric anti-

isomorphism. Therefore, the involution of A induces a completely isometric involution on
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A(n)
1 as an operator space. Thus, by Theorem 1.2.16 A(n)

1 is cb-isomorphic to an involutive
operator algebra. We denote this operator algebra by A(n).

By the construction we also have that A(n)
1 ⊆ A(n−1)

1 in the sense of subalgebras of A,
and that

‖(aik)‖′µ,n,D ≤ ‖(aik)‖′n

Hence, the inclusion map A(n)
1 → A(n)

µ,D is completely contractive. Therefore the map

A(n) → A(n)
µ,D induced by the same inclusion is indeed completely bounded.

As in definition, we shall use the notation m‖ · ‖n for the operator norms on the oper-
ator algebra A(n) constructed in the Lemma 2.1.11.

Now we are finally may impose the conditions that will guarantee us that the nested
system of algebras {A(n)} is a smooth system.

Lemma 2.1.12. Let µ be a commutator bounded analytic fréchetization. Then for any unital
separable C∗-algebra A and any set {(Eω, Fω)}ω∈Ω of KK-cycles over (A, Bω) there exists an
∞-smooth system A such that the map Ψ(∞)

µ (A, Bω)→ {[(Eω, Fω)]}ω∈Ω is surjective.

Proof. Without loss of generality we may suppose F2 = 1 and F = F∗. Choose a total
system {aj} on A and construct the unbounded KK-cycles (Eω, Dω) for each (Eω, Fω) by
the method described in Lemma 2.1.10. Since µ is commutator bounded, we have that

‖aj‖µ,n,Dω ≤ Cn max{‖a‖, ‖adDω (a)‖, . . . , ‖adn
Dω

(a)‖} ≤ Cn max
k=0,...,n

(ck,j) =: Kn,j (2.2)

and Kn,j does not depend on ω. Thus we may apply the Lemma 2.1.11. We denote the
resulting sequence of algebras A = {A(n)}. To prove that A is a smooth system, we only
need to prove the holomorphic stability of the algebras A(n).

But since µ is analytic we have that ‖ · ‖µ,n,Dω is analytic with respect to ‖ · ‖µ,n−1,Dω

for all n. Since the fréchetization µ is analytic, we have that for all a ∈ A such that
supω∈Ω ‖a‖µ,n−1,Dω ≤ 1 we have that

lim sup
m→∞

ln(supω∈Ω ‖am‖µ,n,Dω )

m
= lim sup

m→∞

supω∈Ω ln ‖am‖µ,n,Dω

m
≤ 0

Therefore the Banach norm supω∈Ω ‖ · ‖µ,n−1,Dω is analytic with respect to supω∈Ω ‖ · ‖µ,n,Dω .
Since the norm ‖ · ‖n on A(n) is equivalent to the norm supω∈Ω ‖a‖µ,n,Dω for all n, we have
that A(n) are stable under holomorphic functional calculus on A. The holomorphic stabil-
ity of A(∞) follows immediately from its definition.

Also, since A is unital, we have by definition that A(n)
µ,D, and therefore A(n) are also

unital. Therefore the maps A(n) → A(n−1) will be essential.
To finish the proof we only need to observe that by the construction [(Eω, b(Dω))] =

[(E, F)].
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Lemma 2.1.13. In the conditions of Lemma 2.1.12 one may replace analytic fréchetization with
differential one.

Proof. We construct the system of subalgebras in the same way as in Lemma 2.1.12. We
form a system of (semi)norms { 1‖ · ‖, 1‖ · ‖′1, 1‖ · ‖′2, . . . }, where m‖ · ‖′n are as in Lemma
2.1.11. We would like to show that this system is equivalent to a differential seminorm.
All the conditions of differential seminorm are easy to check. We shall verify only the
third one. Indeed

1‖ab‖′n ≤ sup
Ω

1‖ab‖µ,n,Dω

≤ sup
Ω

n

∑
k=0

1‖a‖µ,k,Dω 1‖b‖µ,n−k,Dω

≤
n

∑
k=0

(sup
Ω

1‖a‖µ,k,Dω
)(sup

Ω
1‖b‖µ,n−k,Dω

)

=
n

∑
k=0

1‖a‖′k 1‖b‖′n−k

Thus, by Theorem 1.1.23, the algebras A(n)
1 are pre-C∗-albebras, and we only need to

state that the algebras A(n) coincide with A(n)
1 as subalgebras of A. One may also appeal

to Remark 1.1.24.

The Theorem 2.1.7 then becomes an easy corollary of the Lemmas 2.1.12 or 2.1.13.

Corollary 2.1.14 (Proof of Theorem 2.1.7). Proof. Indeed, let Λ be the set of (isomorphism
classes) of C∗-algebras. For any Bλ ∈ Λ choose a set Ωλ, consisting of the KK-cycles
(Eλω

, Dλω
), such that the map Λ → KK(A, Bλ), given by taking the homotopy class, is

surjective. Then Ω :=
⋃

λ∈Λ Ωλ is a set. Applying the Lemma 2.1.12 or 2.1.13 we obtain
the desired result.

Remark 2.1.15. Observe that in the Lemmas 2.1.10 and 2.1.11 we haven’t imposed the
unitality condition on the algebra A. This condition was imposed in the Theorem 2.1.7 for
a single purpose: namely, we need to show that the maps A(n) → A(n−1) are essential. It
is quite likely that there may be imposed some additional condition on the fréchetization
µ which will guarantee the essentiality of the homomorphism A(n) → A for nonunital
C∗-algebras.

Moreover, we shall need the condition of the essentiality of the map A(n) → A only
for the construction of inner KK-product.

We should also note that if the algebra A is unital, then we may use the Theorem 1.2.9
instead of Theorem 1.2.8. In this case the algebras A(n)

1 will be operator algebras with

involution, and so we may just put A(n) := A(n)
1 .

Remark 2.1.16. As it has been stated in Remark 2.1.5, we may somewhat weaken the
definition of smooth systems fréchetizations, replacing operator algebras with completely
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isometric involutions with operator pseudoalgebras with pseudoinvolutions. The Theo-
rem 2.1.7 will hold also in this framework, if, however, we demand that

• for given µ the algebras A(n)
µ,D are operator pseudoalgebras with uniformly bounded

multiplication map, that is, for all n ∈ N there exist such positive numbers xn,min
and xn,max independent of D, that xn,min ≤ ‖m‖cb ≤ xn,max for any cycle (E, D),
where by m we mean the multiplication map m : A(n)

µ,D ⊗̃ A
(n)
µ,D → A

(n)
µ,D;

• an analogous property of uniform boundedness holds for pseudo-involution maps
∗ : A(n)

µ,D → A
(n)
µ,D.

These two conditions will ensure that the algebra A(n)
1 which we construct in the Lemma

2.1.11 is indeed an operator pseudoalgebra with pseudo-involution. However, since in case
we consider smooth systems consisting of seudoalgebras, we may just put A(n) = A(n)

1 ,
saving on the complications that we have had in Lemma 2.1.12.

2.1.3 A "Doing It Wrong" Example

We would like to illustrate the Theorem 2.1.7 with some more detailed examples that will
show, that it is in principle an "existence" result. The first two are dedicated to showing
that the unbounded operators generated by Lemma 2.1.10 may be very different from the
standard differentiation operators.

Example 2.1.17. We consider the simplest case, namely, the unit circle. More precisely,
we take a Hilbert space `2(Z), where the elements of the basis correspond to the Fourier
functions o the circle ek(x) = exp(ikx) for x ∈ [0, 2π) and k ∈ Z. Respectively, the
Fourier functions {ek(x) := exp(ikx)} themselves act on this space as "shift by k" operators
and the algebra of continuous functions on a circle with supremum norm arises as a
norm completion of the algebra generated by these operators with respect to the norm in
B(`2(Z)). Thus we obtain that `2(Z) becomes a (C(S1), C)-bimodule.

We take the Dirac operator D/ on S1, which coincides in our case with the usual differ-
ential operator −i ∂

∂x . The Fredholm operator

F : (. . . , ξ−2, ξ−1, ξ0, ξ1, ξ2, . . . ) 7→ (. . . ,−ξ−2,−ξ−1, 0︸︷︷︸
0’th place

, ξ1, ξ2, . . . )

is then a compact perturbation of b(D/).
Now, starting with F, we are going to construct an unbounded regular operator on

`2(Z), following precisely the recipe of Lemma 2.1.10.
Let a1 = 1, a2 = e1, a3 = e−1, a4 = e2 and so on. We want construct an approximate

unit {uj} such that dj = uj+1 − uj will satisfy the properties of the one in theorem, i.e.

‖[F; aj]dj‖ ≤ 2−j2 and [aj, dj] ≤ 2−j2 . First observe that since a1 = 1 we automatically have
that

[F; a1]d1 = [F; 1]d1 = 0

[d1, 1] = 0
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because 1 commute with all the other operators.
Then we calculate

[F; exp(ikx)](. . . , ξi, . . . ) = (. . . , 0, ξ−k︸︷︷︸
0’th place

, 2ξ−k+1, 2ξ−k+2, . . . , 2ξ−1, ξ0, 0, . . . )

and analogously

[F; exp(−ikx)](. . . , ξi, . . . ) = (. . . , 0, ξ0, 2ξ1, 2ξ2, . . . , 2ξk−1, ξk︸︷︷︸
0’th place

, 0, . . . )

for k ≥ 1. In particular, it follows that

[F; a2]ξ = (. . . , 0, ξ−1︸︷︷︸
0’th place

, ξ0, 0 . . . )

We may now assume u1 = 0, and in order to fulfill all the conditions for j = 2 we put:

u2 := diag(. . . , 0, 1 · 2−4, 2 · 2−4, . . . , 15 · 2−1, 1 1︸︷︷︸
0’th place

, 1, 15 · 2−4, . . . , 2−4, 0, . . . )

and

u3 = diag(. . . , 0, 2−9, 2 · 2−9, . . . , 511 · 2−9, 511 · 2−9,

1, . . . , 1︸ ︷︷ ︸
35 times

, 511 · 2−9, . . . , 2−9, 0, . . . )

where u3 is symmetric from 0’th position as well as u2. It could be checked directly that
[F; a2]d2 ≡ 0 and ‖[a2; d2]‖ = 1

16 (because the vector [a2; d2]ξ has either 0 or 2−9ξi or 2−4ξi
on i + 1’th place).

The choice of u4 is somewhat more complicated, because we need it for the construc-
tion of both d3 = u4− u3 and d4 = u5− u4. Recall that by our definition a4 = exp(2πi · 2x),
so that a4 acts as "shift by 2" operator. To fulfill the conditions, we put:

u4 := diag(. . . , 0, 2−25, 2−25, 2 · 2−25, 2 · 2−25, . . . , 33554431 · 2−25, 33554431 · 2−25,

1, . . . , 1︸ ︷︷ ︸
1059 times

, 33554431 · 2−25, 33554431 · 2−25, . . . , 2−25, 2−25, 0, . . . )

and one may again check that u3u4 = u3, [F; a3]d3 = 0 and ‖[a3, d3]‖ = 2−9.
Taking into consideration the same observations, for a general index j we write

uj =diag(. . . , 0, 2−(j+1)2
, . . . , 2−(j+1)2︸ ︷︷ ︸

tj times

, 2 · 2−(j+1)2
, . . . , 2 · 2−(j+1)2︸ ︷︷ ︸

tj times

, . . .

. . . , (2(j+1)2 − 1) · 2−(j+1)2
, . . . , (2(j+1)2 − 1) · 2−(j+1)2︸ ︷︷ ︸

tj times

, 1, 1, . . . , 1, 1,︸ ︷︷ ︸
1 on all nonzero places of uj−1

(2(j+1)2 − 1) · 2−(j+1)2
, . . . , (2(j+1)2 − 1) · 2−(j+1)2︸ ︷︷ ︸

tj times

, . . . , 2−(j+1)2
, . . . , 2−(j+1)2︸ ︷︷ ︸

tj times

, 0, . . . )
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where tj equals to j
2 (

j
2 − 1) when j is even and j−1

2 when it is odd.
We may finally notice, that uj constructed this way is an approximate unit, commuting

with F and quasicentral for C(S1).
As in the Theorem 2.1.10, we construct an unbounded function

r =
∞

∑
j=1

2jdj

and put D = Fr. By the construction, b(D) and b(D/) are both compact perturbations of
F. To feel the difference, we look at the spectrum of these operators.

Recall [34] that the classical dimension of a spectral triple (A,H, D) is defined as follows.
For an operator D we take its resolvent r(D) = (1 + D2)−

1
2 which is a compact operator

on H and consider the sequence {µn} of the eigenvalues of r(D), such that µ1 ≥ µ2 ≥
· · · ≥ µn ≥. The classical dimension of the spectral triple is then the minimal positive
number α for which µn ∼ O(n−

1
α ). Thus, for a circle with a standard differential operator

the classical dimension equals to 1.
Now consider the resolvent of the operator D defined above. Since it has a diagonal

form in the basis given by the Fourier functions, one can easily pick up the eigenvalues of
the resolvent of D. Namely, µ0 = 1/

√
2 and

µ2k = µ2k+1 = (1 + λ2
k)
− 1

2

where λk is the value of the entry standing k positions away from the 0’th position. Here
we used the fact that the unbounded operator r has entries that are symmetric from 0’th
position, and so for D = Fr one has λ2

k = λ2
−k.

We are going to estimate the values of λk. Observe first that dj+2ek = 0 for all such k
that djek 6= 0, and this holds for all j ∈N. Thus, for every λk we have that

|λk| ≤ 2j + 2j+1 = 3 · 2j

where j is such a number that djek 6= 0 and dj+1ek 6= 0. Hence, by a very rough estimation
where we, for instance, ignore that the numbers tj are in general sufficiently greater then

1, we obtain that for k ≤ 2j2 one has |λk| ≤ 3 · 2j. Thus we have that

µk ≥ (1 + 6 · 22
√

log2(k/2))−
1
2

and hence may finally conclude that

2(log2 k)−
1
2 = O(µk)

But there is no such α ≥ 0, for which 2(log2 k)−
1
2 could have been an O(n−

1
α ). Hence,

informally speaking, the spectral triple on a circle with D as a differential operator would
have the "dimension" infinity.
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It is important to point out, that the class of the cycle (`2(Z), D) with D constructed
above is a generator of K1(S1), the odd K-homology group of the circle. The generator
of K0(S1) may be obtained by taking the cycle (`2(Z)⊕ `2(Z),

(
0 D
D 0

)
). Denote these two

cycles by x and y, and let −x = (`2(Z),−D) and −y = (−(`2(Z) ⊕ `2(Z)),−
(

0 D
D 0

)
),

where by −(`2(Z)⊕ `2(Z)) we mean the space `2(Z)⊕ `2(Z) with grading given by the
unitary −γ, where γ := diag(Id`2(Z),−Id`2(Z)) was the grading on `2(Z)⊕ `2(Z). Then
the cycles of the form k1x ⊕ k2y where k1, k2 ∈ Z generate the whole group K0(S1) ⊕
K1(S1). Thus, for a commutator bounded analytic fréchetization µ the smooth system
Aµ,D may be taken as the one constructed in Lemma 2.1.11. Hence, the system Aµ,D
supports all the K-homology of the circle, and yet the functions in this system differ
drastically from the C∞.

To make the difference between the smooth system generated by D and by −i ∂
∂x even

more apparent, we include the following example:

Example 2.1.18. Let µ be a commutator bounded fréchetization. Consider the system of
functions {lk(x)} on C(S1), k ∈ Z, where

l0(x) ≡ 1

and, subsequently,

lk
(m

4k

)
= exp

(
πim

2

)
for m = 0, 1, . . . , 4k and are linear between m

4k and m+1
4k for m = 0, 1, . . . , 4k− 1. Informally,

the functions lk(x) could be regarded as a "linearization" of the Fourier functions. The
system {lk(x)} is total for C(S1) (one may check directly, that for every ε > 0 there exist
N = N(ε) ∈N, and the sequence {ck}, ck ∈ C, such that ‖ exp(2πix)−∑N

k=1 cklk(x)‖ < ε).
If we consider the operator F form the previous example and take {lk} as a total system

of C(S1), then, taking a subsequence of the approximate unit uk as we have constructed
it above, by Theorem 2.1.7 we may construct an operator D, such that b(D) = F and
lk ∈ A

(j)
µ,D for all j ∈N. Now, for an arbitrary n ∈N put

sm = ‖l2m + l−2m‖µ,n,D

Then the series

wM(x) =
M

∑
m=1

l2m(x) + l−2m(x)
2msm

converges with respect to the norm ‖ · ‖µ,n,D to a function w(x) ∈ A(n)
µ,D, so that by our

definition the function w is to be considered as n-smooth. However, w(x) is nothing else
then a slightly modified Weierstrass Sew, a function that is not differentiable at any point
(of the unit interval). Thus the algebra of functions, smooth with respect to a chosen
differential operator may be much wider then the classical one.

Remark 2.1.19. The Examples 2.1.17 and 2.1.18 may be generalized to the case of multi-
dimensional tori (including noncommutative ones). However, we have chosen the case of
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circle because it is the simplest, and, therefore, is from one hand easy to grasp and from
the other hand allows us to make the calculations not to be ridiculously complicated.

The consequences of these examples are twofold. From one hand, we see that the
procedure in Lemma 2.1.10 will not give us habitual operators even in the most simple
cases. From the other hand, we see that A(n)

µ,D appears to be sufficiently larger than A(n)
µ,D/,

so that we may expect that the familiar Dirac-type operators yield smooth systems having
interesting KK theory.

2.1.4 Standard Fréchetizations

In this section we are going to describe two fréchetizations that may be regarded as stan-
dard ones. They were chosen this way because they are the most informative at the current
moment. The first one, the commutator fréchetization is more easily defined and so may be
used for pure theoretical means. The second one, which we call the Mesland fréchetiza-
tion, is more elaborated and is suited to deal with the tasks coming out from differential
geometry ant theory of spectral triples.

Commuator Fréchetization

We start with the most basic fréchetization. This one will be called commutator or ad-
fréchetization and the algebras generated by it will be denoted by A(n)

ad,D.
Let

Θ1
D(a) :=

(
a 0

[D; a] γaγ

)
as an operator on E⊕2. Here γ is a grading operator on E. Analogously we set

Θn+1
D (a) :=

(
Θn

D(a) 0
[D; Θn

D(a)] γnΘn−1
D (a)γn

)
on E⊕2n+1

, where we abusively denote by D the operator diag(D, . . . , D︸ ︷︷ ︸
2n−1 times

) on E⊕2n−1
, and

γn is the natural grading on E⊕2n+1
, which is inductively defined as

γm =

(
γn−1 0

0 −γn−1

)
We also denote by Θ0

D the map a 7→ a.
It may be checked directly that

Θn
D(ab) = Θn

D(a)Θn
D(b)

and that there exists a unitary operator un ∈ End∗B(E⊕2n
) such that

un(Θn
D(a))∗u−1

n = Θn
D(a∗) (2.3)
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Now, define an algebra

A(n)
ad,D := {a ∈ A | adk

D(a) extends to bounded on E for all k = 1, . . . , n}

This is an algebra, which is complete with respect to the norm ‖ · ‖ad,n,D := ‖Θn
D(a)‖. By

the construction we have an estimate

‖a‖ad,n,D ≤ 2n max{‖a‖, ‖adD(a)‖, . . . , ‖adn
D(a)‖} (2.4)

We endow A(n)
ad,D with the operator algebra structure given by the representation

Θn
D(a) : a 7→ Θn

D(a)

The invoulution on A induces an operator algebra involution on A(n)
ad,D. Indeed, according

to the equation 2.3, the involution on A(n)
ad,D is isometric. To show that it is completely iso-

metric, we use the following observation, that will be referred to as standard throughout
the section. We point to the fact that for any n ∈ N by the construction of Θn

D(·) for all
m ∈ N there exists a unitary operator υm,n ∈ Mm·2n+1(M(A)) with 0 or IdE such that we
have

(Θn
D(ajk))jk = υm,nΘn

diagm(D)((ajk)jk)υ
−1
m,n

Therefore
m‖(ajk)jk‖′ad,n,D = 1‖(ajk)jk‖ad,n,diagm(D)

and we have established a completely isometric isomorphism

Mm(A(n)
ad,D) u (Mm(A))ad,diagm(D) (2.5)

Now, we see that

‖(Θn
D(a∗kj))jk‖ = ‖Θn

diagmD((a∗kj)jk)‖ = ‖Θn
diagmD((ajk)jk)‖ = ‖(Θn

D(ajk))jk‖

which means that
m‖(ajk)

∗
jk‖ad,n,D = m‖(ajk)jk‖ad,n,D

and so the involution is indeed completely isometric.
The operator algebras A(n)

ad,D are stable under the holomorphic functional calculus on

A. Indeed, in case when A(n)
ad,D is dense in A, for all a ∈ A(n−1)

ad,D such that ‖a‖ad,n−1,D < 1
we have that

lim sup
m→∞

ln ‖am‖ad,n,D

m
= lim sup

m→∞

ln ‖Θn
D(am)‖
m

≤ lim sup
m→∞

ln(‖Θn−1
D (am)‖+ ‖[D, Θn−1

D (am)]‖)
m

≤ lim sup
m→∞

ln(1 + m‖Θn−1
D (a)‖)

m

≤ lim sup
m→∞

(
ln m

m
+

ln(1 + ‖Θn−1
D (a))‖

m

)
= 0

(2.6)
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Thus the norm ‖a‖ad,n,D is analytic with respect to ‖a‖ad,n−1,D, and so A(n)
ad,D are stable

under the holomorpic functional calculus on A.
By the construction we have that there is an inclusion A(n+1)

ad,D ↪→ A(n)
ad,D, which is

completely contractive. Indeed, we have that

‖a‖ad,n+1,D = ‖Θn+1(a)‖

=

∥∥∥∥( Θn
D(a) 0

[D; Θn
D(a)] γnΘn−1

D (a)γn

)∥∥∥∥
≥ ‖Θn

D(a)‖
= ‖a‖ad,n,D

(2.7)

so that the inclusion is contractive. To see that it is completely contractive, we use the
standard agruement about the unitary υm,n. Thus, according to the estimate 2.7 we have
that

‖Θn+1
diagm(D)

((ajk)jk)‖ ≥ ‖Θn
diagm(D)((ajk)jk)‖

and therefore
m‖(ajk)jk‖′ad,n+1,D ≥ m‖(ajk)jk‖ad,n,D

Thus we have shown that the inclusion A(n+1)
ad,D → A(n)

ad,D is completely contractive with
respect to the norms m‖ · ‖ad,n,D.

Putting everything together, we see that

• Since A(n)
ad,D are operator algebras with compleltey isometric involution induced by

the involution on A the commutator fréchetization is indeed a fréchetization.

• According to the inequality 2.4 it is commutator bouded.

• By the equation 2.6 it is analytic.

• It is also obvious that if A is unital, then Θn
D(1) = diag2n 1, so that the fréchetization

preserves constants and ‖1‖ad,n,D = 1.

Therefore the commutator fréchetization satisfies the conditions of the Theorem 2.1.7.
Therefore the apllication of this fréchetiztion with unital separable C∗-algebras will not
lead to loss of information of their KK-theory.

We also see that if a ∈ A(n)
ad,D, then a : DomDn → DomDn. For that it is enough to show

that Dn(ah) for all h ∈ DomDn. But we have that

Dnah =
n

∑
k=0
± ( n

k ) adk
D(a)Dn−kh

where ( n
k ) are binomial coefficients. Since adk

D(a) ∈ End∗A(E) and h ∈ Dom(Dn) all the
summands

± ( n
k ) adk

D(a)Dn−kh
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above are defined. Hence Dnah may be represented as a finite sum of vectors in E, and so
Dnah ∈ E.

The commutator fréchrtization is quite easy to grasp, but the number of cases it may
be applied to is not satisfactory. For instance, if we take the Dirac operator D/ on a torus
of dimension m ≥ 2, then for all nonconstant functions a in the algebra C2(Tm) we may
see that the already the operators ad2

D/(a) are not bounded. The same observation holds
for noncommutative tori with the Dirac operator introduced as in [23, Sect. 12.3],[34].
Therefore the commutator fréchetization may only be used for theoretical means and as
internals steps in calculations (like the ones we have in the next subsection), but not for a
work with geometrical objects.

Mesland Fréchetization

The process that allows us to include the standard Dirac-type operators on (noncom-
mutative) manifolds was developed by Mesland in [28]. We shall outline the process of
construction and the main properties of this fréchetization here.

For an unbounded even (A, B)-KK-bimodule (E, D) we let

π1
D :=

(
a 0

[D; a] γaγ

)
where γ is the grading on E.

There is a representation

A(1)
D → End∗B(G(D))

a 7→ pDπ1
D(a)pD

This is an algebra homomorphism due to the identity pDπ1
D(a)pD = πD

1 pD. Denote
p⊥D = 1− pD. We obtain that

A(1)
D → End∗B(vG(D))

a 7→ (1− pD)π
1
D(a)(1− pD)

is also a homomorphism. We may now define the map

θ1
D : A(1)

D → M2(End∗B(E))

a 7→ pDπ1
D(a)pD + (1− pD)π

1
D(a)(1− pD)

Let A(1)
D , π1

D and θ1
D be as above. For n ≥ 1 we abusively denote by D the operator

diag(D, . . . , D) on
⊕n

j=1 E and by pD its Woronowicz projection. There is a natural grading

on
⊕2n+1

j=1 E, which is defined inductively by

γi+1 :=
(

γi 0
0 −γi

)
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Now, we inductively define the maps

πn+1
D : A ⊇ Domπn+1

D → M2n+1 ∈ End∗B(E)

a 7→
(

θn
D(a) 0

[D; θn
D(a)] γnθn

D(a)γn

)
θn+1

D : A ⊇ Domθn+1
D → M2n+1(End∗B(E))

a 7→ pD,n+1 pD,nπD
n+1(a)pD,n pD,n+1

+p⊥D,n+1 p⊥D,nπD
n+1(a)p⊥D,n p⊥D,n+1

where we abusively write pD,n and p⊥D,n for diag(pD,n, pD,n) and diag(p⊥D,n, p⊥D,n) respec-
tively.

The smooth system is then defined as

A(n+1)
mes,D := {a ∈ A(n)

mes,D | [D, θn
D(a)] extends to a element of End∗BE⊕2n}

This algebra is represented as an operator algebra on
⊕n

k=0
⊕2k

j=1 E by the map a 7→⊕n
k=0 πn

D(a). Clearly, the inherited operator norm on A(n)
mes,D then equals to

‖ · ‖mes,n,D =
n

max
k=0
‖πn

D(·)‖

It has been proved in [28], that in the case when D is selfadjoint A(n)
mes,D are operator

algebras with a completely isometric involution induced by involution on A. It is also
shown that the norm ‖ · ‖mes,n+1,D is analytic with respect to ‖ · ‖mes,n,D. Therefore, the
system Ames,D is indeed a smooth system. By the construction, the order of the system is
at least 1, and the existence of the smooth subalgebras of greater order should be checked
individually.

For each D there is a completely bounded inclusion A(n)
ad,D ↪→ A(n)

mes,D for all n. Indeed,

suppose that the algebra A(n)
ad,D is dense in A, so that the operators adn

D(a) are defined for
a dense subset of A. We observe that by definition π1

D(a) = Θ1
D(a). Next

π2
D(a) =

(
θ1

D(a) 0
[D; θ1

D(a)] γ2θ1
D(a)γ2

)
=

(
p1,DΘ1

D(a)p1,D + p⊥1,DΘ1
D(a)p⊥1,D 0

[D; p1,DΘ1
D(a)p1,D + p⊥1,DΘ1

D(a)p⊥1,D] γ1(p1,DΘ1
D(a)p1,D + p⊥1,DΘ1

D(a)p⊥1,D)γ1

)

= p1,D

(
Θ1

D(a) 0
[D, Θ1

D(a)] γ1Θ1
D(a)γ1

)
pD,1 + p⊥D,1

(
Θ1

D(a) 0
[D, Θ1

D(a)] γ1Θ1
D(a)γ1

)
p⊥D,1

= pD,1Θ2
D(a)pD,1 + p⊥D,1Θ2

D(a)p⊥D,1

since, by definition pD,1, γ1 and D commute. Therefore

θ2
D(a) = pD,2 pD,1πD

2 (a)pD,1 pD,2 + p⊥D,2 p⊥D,1πD
2 (a)p⊥D,1 p⊥D,2

= pD,2 pD,1ΘD
2 (a)pD,1 pD,2 + p⊥D,2 p⊥D,1ΘD

2 (a)p⊥D,1 p⊥D,2
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Continuing this process inductively, we obtain that

πn
D(a) =

n

∏
k=1

pk,DΘn
D(a)

n

∏
k=1

pn−k+1,D +
n

∏
k=1

p⊥k,DΘn
D(a)

n

∏
k=1

p⊥n−k+1,D

Thus, we have that
‖πn

D(a)‖ ≤ ‖Θn
D(a)‖

and so

‖a‖mes,n,D =
n

max
k=0
{‖πn

D(a)‖} ≤ n
max
k=0
{‖Θn

D(a)‖} = ‖Θn
D(a)‖ = ‖a‖ad,n,D

Thus there is a contractive inclusion A(n)
mes,D → A

(n)
ad,D.

As for the complete contractiveness, we may again use the standard arguement. Ob-
serve that for each m ∈ N there is a unitary operator υm,n ∈ Mm·2n+1(M(A)), acting as a
permutation operation (so it actually has only 0 and 1 entries), such that

υm,n(Θn
D(akl))klυ

−1
m,n = Θn

diagmD((akl))

Moreover, we have that υm,ndiagm pn
Dυ−1

m,n = pdiagm(D), and so, applying the same operator
υm,n we obtain that

υm,n(π
n
D(akl))klυ

−1
m,n = πn

diagmD((akl))

Hence

m‖(akl)‖mes,n,D = max
j=0,...,n

‖(π j
D(akl))kl‖

= max
j=0,...,n

‖υm,n(π
j
D(akl))kl(π

j
D(akl))klυ

−1
m,n‖

= max
j=0,...,n

‖π j
diagmD((akl))‖

≤ max
j=0,...,n

‖Θj
diagmD((akl))‖

= max
j=0,...,n

‖υ−1
m,nΘj

diagmD((akl))υm,n‖

= max
j=0,...,n

‖(Θj
D(akl))kl‖

= m‖(akl)‖ad,n,D

and we may use the previous observation.
These estimates show that mes fréchetization is also commutator bounded, and so we

may also apply Theorem 2.1.7 to it.
The Mesland fréchetization may have useful applications in noncommutative geome-

try. It has been shown in [28] that the algebras A(∞)
mes,D satisfy the notion of smoothness,

fomulted via the Regularity condition introduced by Alain Connes. We recall that thereg-
ularity means that for all a ∈ A(∞)

mes,D both a and [D; a] lay in ∩∞
n=1δn, where δ is a derivation
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δ : T 7→ [|D|, T]. It may also be shown that if (H, D) are actually a spinor bundle and a
Dirac operator on a spin-manifold M, then the order of smoothness of the system Ames,D,
induced by operator D on the C∗-algebra A := C(M), is infinite. Therefore Mesland
fréchetization seems to be the best candidate to work with KK-theoretical tasks arising in
differential geometry.

It has also been shown in[28] that for a selfadjoint regular D the following operator
norms are equivalent: m‖ · ‖mes,n,D, m‖ · ‖mes,n,|D|, m‖ · ‖mes,n,cD and m‖ · ‖mes,n,D+b for

c ∈ R and b ∈ Sob(n)
mes,D, b = b∗. Therefore the smooth systems Ames,D and Ames,cD+b are

equivalent.
We recall that in noncommutative geometry the Dirac-type operator is used to define

an analogue of noncommutative metric. Following [16], if M is a spin-manifold, A :=
C∞(M) and D/ is a Dirac-type operator on M, then, given two points p, q ∈ M one may
define a distance between p and q by setting.

dist(p, q) := sup{| p̂(a)− q̂(a)| | a ∈ A, ‖[D/, a]‖ ≤ 1}

where p̂ and q̂ are the characters on the algebra A, corresponding to the points p and q.
It has been proved by Alain Connes in [16] that the distance so defined coincides with the
distance defined by Riemann metric on the manifold M. We should also note that if we
replace D with cD, then the distance between p and q will extend by factor c−1, and if b is
an (odd) operator on a spinor bundle, commuting with the action of a, then D and D + b
define the same distance.

By these consideration, having an unbounded KK-cycle (E, D), we may consider an un-
bounded KK-cycle (E, cD + b) as its "linear rescaling". The properties of Mesland frécheti-
zation then tell us, that if (E, D) ∈ Ψ(n)

mes(A , B) then the same holds for all its "linear
rescaling" KK-cycles, i.e. (E, cD + b) ∈ Ψ(n)

mes(A , B).
It would be interesting to see, what happens when we encounter more complex changes

of operators. For instance, if we have two diffeomorphic structures of Riemann manifold
on the same smooth topological manifold M, which is spin, then these two structures
define two Dirac operators D/1 and D/2. These two Dirac operators may correspond to
the metric of a flat torus and the metric induced by embedding the surface of a mug
into a 3-dimensional Euclidean space. It seems likely that if E then is a spinor bundle
and A is some smooth system on the algebra C(M), then if (E, D/1) ∈ Ψ(n)

mes(A , C) then
(E, D/2) ∈ Ψ(n)

mes(A , C). If this holds, then we shall be able to consider the system A
as defining a kind of smooth noncommutative topology in a sense that the structure of
smooth manifold is identified with all possible smooth Riemann metrics on this manifold.
However, this guess needs additional development, so we would not speculate in this
direction any further.

2.1.5 Example: Smooth Systems on Noncommutative Tori

The noncommutative tori are one of the simplest object in the C∗-algebra theory. In this
subsection we are going to construct a smooth system on noncommutative tori and then
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compare it to the notion of smooth functions defined for spectral triples ([14], [23]) and
the one generated by the construction of Mesland.

By definition [32], the C∗-algebra of an m-dimensional noncommutative torus is a C∗-
completion of the involutive associative algebra, generated by unitaries u1, u2, . . . , um sub-
ject to the relations

uluk = e(2πiσlk)ukul

where e(t) = e2πit and σ := (σkl) ∈ Mm(R) is an antisymmetric matrix. This algebra will
be denoted by Aσ.

We employ the notation uα = uα1
1 uα2

2 . . . uαm
m for α ∈ Zm. We shall also denote |α| :=

∑m
k=1 |αk| and ‖α‖ := (∑m

k=1 α2
k)
− 1

2 .
Let now B be a C∗-algebra and let (E, D) be an unbounded (A, B)-KK-cycle, such that

adn
D(uk) < ∞ for all k = 1, . . . , m. Then, applying the Leibniz rule we obtain that

adD(uα) = ∑
(l1,l2,...l|α|)

adl1
D(u

±1
k(l1)

)adl2
D(u

±1
k(l2)

) . . . ad
l|α|
D (u±1

k(l|α|)
)

Here li ∈ N ∪ {0}, ∑
|α|
i=1 li = |α|, and k(li) = j, j ∈ {1, . . . m} whenever |α1|+ |α2|+

· · · + |αj−1| < i ≤ |α1| + |α2| + · · · + |αj| and the sign over uk is + if αk ≥ 0 and −
otherwise.

We haven’t made any further assumptions on D, and so for the author it is for now
possible only to apply the roughest estimate of the norm. Namely, since ‖uα‖ are unitaries,
we may calculate that

‖adn
D(u

α)‖ ≤ |α|n max
β∈Zm , |β|=n

m

∏
k=1
‖adβk

D (uk)‖ =: |α|nKα,n,D

This estimate gives us, in particular, that D generates an ∞-smooth system for the com-
mutator fréchetization (and hence also for Mesland fréchetization).

By Lemma 2.1.12 for any set of isomorphism classes of C∗-algebras Λ = {Bλ} we can
find a set Ω of unbounded KK-cycles (Eλ,ω, Dλ,ω) that, from one side, the map {(E, D)} →
KK(Aσ, Bλ) is surjective, and from the other side

sup
D∈Ω

Kα,n,Dα,ω = Kα,n < ∞

Thus we are in the conditions of Lemma 2.1.11, and so for any commutator bounded
analytic fréchetization µ we may construct algebras A(n)

σ,µ, forming an ∞-smooth system

Aσ,µ = {A(n)
σ,µ}.

Now for general a ∈ Aσ we have that

‖adn
D(a)‖ ≤ Kα,n,D ∑

α∈Z

|cα||αn| ≤ Kα,n ∑
α∈Z

|cα||αn|

where we write a = ∑α∈Zm cαuα. Therefore, since µ is commutator bounded, sufficient
condition for a to be in A(n)

σ,µ is that the sequence cα|α|n ∈ L1(Zm). Subsequently, the
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sufficient condition for a ∈ A(∞)
σ,µ is that this condition holds for all n ∈ N. Observe that

the set of all such elements is dense in Aσ.
It should also be noted that by the construction of the algebra Aσ the elements a

satisfying the property cα|α|n ∈ L1(Zm) form an algebra. Indeed, let a1, a2 be two such
elements. Then for the product a1a2 we have by definition

a1a2 = ∑
α

( ∑
β+γ=α

c1,βc2,γe2πiσ(β,γ))uα

where c1,β and cc,γ are the coefficients for a1 and a2 respectively, and

σ(β, γ) =
m

∑
j=1

m−j

∑
k=1

βkγjσkj

Thus, if cα is the α’s coefficient of a := a1a2, then

|cα| ≤ ∑
β+γ=α

|c1,β||c2γ |

The latter number is, in turn, the α’s entry of the convolution product of the sequences
{|c1,α|} and {|c2,α|}. If both these sequences satisfy the condition |ci,α||α|n ∈ Ln(Zm),
then so does their convolution product, hence we also have that the sequence {cα|α|n ∈
L(Zm)}.

It should be noted that the sufficient condition for a to be in A(∞)
σ,µ mentioned here

is much more restrictive than the one used in noncommutative geometry. We recall that
the algebra of smooth functions on noncommutative tori used in the definition of spectral
triples on them is declared to be algebra of Schwatrz functions (also known as rapidly
decreasing functions), i.e. the algebra S(Aσ) of elements a ∈ Aσ satisfying the condition

sup
α∈Zm

(1 + ‖α‖2)n|cα|2 < ∞

The algebra S(Aσ) was constructed in such a way that it would be an analogue of
smooth sunctions on the commutative torus (in fact, C∞(T2) ⊇ S(T2)). So it seems very
plausible that for any commutator bounded analytic fréchetization µ there is a system of
operator algebras A(n)

σ,S such that

• Aσ,S := {A(n)
σ,S} is an ∞-smooth system,

• A(n)
σ,S ⊇ {a ∈ Aσ | supα∈Zm(1 + |α|2)n|cα|2 < ∞} as a pre-C∗-algebra.

• Ψ(∞)
µ (Aσ,S, B)→ KK(Aσ, B) for any C∗-algebra B.

The author does not exclude the possibility that the smooth system Aσ we have con-
structed above satisfies these conditions if we take a sufficiently large set Λ of isomor-
phism classes of C∗-algebras in the construction. However, proving this or the contrary
will need further development.
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2.2 Product of Unbounded KK-cycles

2.2.1 Smooth Modules

The notion of smooth modules we are defining in this subsection generalizes the notion
of smooth modules that appear in [28].

Definition 2.2.1. Let A be a C∗-algebra and let A be a smooth system on it. We say that a
Hilbert C∗-B-module E has an n-smooth structure (or is n-smooth) with respect to A if there
is an approximate unit uα := ∑kα

j=1 xα
j ⊗ xα

j in KA(E), such that {uα} defines a structure

of stuffed module on E with respect the algebra A(k) for all k ≤ n. If ordA = ∞ and the
property holds for all n ∈N, the module will be called ∞-smooth. We shall denote

E (n) := {ξ ∈ E | 〈xα
j , sup

k
‖

kα

∑
i=1

ei〈xα
j , ξ〉‖A(n) < ∞}

and call it the n-smooth submodule of E (with respect to A , {uα}).

Proposition 2.2.2. Let A be a smooth system on A, E be a Hilbert C∗-module over A and {uα}
define a smooth system E (of any order). Then

• The inclusion map E (n+1) → E (n) is completely bounded.

• If A1 is another smooth system on A, such that the same approximate unit {uα} defines a
smooth system {E (n)1 } on E with respect to A1, and there is a completely bounded inclusion

A(n)
1 → A(n) for all n ≤ ord(A1), then there are completely bounded inclusions E (n)1 →
E (n).

Proof. Follows immediately from Proposition 1.2.52.

By the properties of Haagerup tensor product we have that there are morphisms
CB∗A(n+1)(E (n+1)) → CB∗A(n)(E (n)) and CB∗

A(n)
1
(E (n)1 ) → CB∗A(n)(E (n)), given simply by set-

ting T 7→ T ⊗ IdA(n) . It also follows immediately form Proposition 1.2.58, that if D is

an unbounded regular operator on E (n+1) or E (n)1 , then the operator D⊗ IdA(n) is an un-
bounded regular operator on A(n). From the Lemma 1.2.66 we also obtain an analogous
result for the connections.

We are now in the position to give an example, clarifying why we stick to the notion
of almost rigged modules rather that just rigged modules.

Example 2.2.3. LetAθ be the C∗-algebra of the noncommutative 2-torus. It is a well-known
fact that the algebra Aθ contains nontrivial projections, called Powers-Rieffel projections.
Let B be another C∗-algebra and (Y, D) be an unbounded (A, B)-KK-cycle. We may, for
example, take B = C and (Y, D) be the Hilbert space and unbounded operator which are
used in the definition of real spectral triple on the noncommutative torus (see, for example
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[23], [34]). Denote A(n)
θ := Aθ ∩ Sob(n)

mes,D, with the operator structure induced by the one

on Sob(n)
mes,D, and set Aθ := A(n)

θ .
It is a well-known fact that the algebra Aθ contains nontrivial projections, called

Powers-Rieffel projections. Since A(n)
θ are by the construction pre-C∗-subalgebras of Aθ ,

there is a Powers-Rieffel projection p ∈ A(∞)
θ ⊆ A(n)

θ . Consider a projector of the form(
1 0
0 p

)
∈ M2(A(∞)). Set E = p(Aθ)

2. The approximate unit

uα =

(
1
0

)
⊗
(

1
0

)
+

(
0
p

)
⊗
(

0
p

)
Let E (n) be the corresponding smooth submodules. But now if we want E (n) to be

rigged over A(n)
θ , we need to have ‖p‖n = 1 for all n ∈N. This will obviously not hold for

an arbitrary p ∈ A(∞).
Moreover, there arises the following condition, that looks very artificial. By the defi-

nition of Mesland fréchetization the maps A(n+1)
θ → A(n)

θ are completely contractive, so
that E (n) will be rigged whenever E (n+1) is rigged. However, if we encounter such N
that ‖p‖N > 1, we would not be able to work with the modules A(n) for n ≥ N. The
existence of such N is most probably the case for the smooth system coming out of the
unbounded KK-cycle defining the spectral triple on the noncommutative torus that we
have mentioned above.

All these problems are avoided when we work with almost rigged modules and com-
pletely bounded inclusions.

2.2.2 Transverse Unbounded Operators, Second Fréchetization

The notion of transversality of unbounded regular operators was given in [28] in the
context of two unbounded KK-cycles, and is one of the key tools in the construction of the
Kasparov product of these cycles. In this subsection we generalize this notion, imposing
the condition of transversality of unbounded KK-cycle with respect to a smooth system
on a C∗-algebra.

Definition 2.2.4. Let A and B be C∗-algebras and (E, T) be an unbounded (A, B)-KK-
cycle. Let B be a smooth system on a C∗-algebra B and an approximate unit {uα} in
KB(E) define a smooth structure on F with respect to B. Then a second fréchetization is a
map µ : (A, B, F, {uα}, T, n) 7→ A(n)

µ,T , where A(n)
µ,T is an operator algebra isomorphic to a

subalgebra of A. The operator T would be called Cn-transverse (with respect to fréchetization
µ) if system {A(k)

µ,T}n
k=0 satisfies the conditions of a smooth system from Definition 2.1.1.

Now, this definition is again way too abstract. We give it because it may become useful
in future. Let us descend to a more practical approaches, that is related to the discussion
we’ve had in the beginning of the Subsection 2.1.4. By µ we shall mean either commutator
of Mesland fréchetizaton.
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First of all, let E be a Hilbert C∗-module over B with an n-smooth structure with
respect to B. We denote the corresponding smooth modules by E (0,n). Let now T be an
unbounded regular operator on E (0,n). We denote E (1,n) := G(T). It is for now not known
in general, whether T induces an analogue of the Sobolev chain of modules over E (0,n),
although there are some particular cases when such a property holds and we hypothesize
that it could be done for every unbounded regular operator on a stuffed module. We are
going to present such kind of operators in the examples to next subsections. Suppose that
T satisfies this property, there is a Sobolev chain

· · · ⊆ E (j,n)
T ⊆ E (j−1,n)

T ⊆ · · · ⊆ E (0,n)

on E (0,n). Then analogously to the case when there were no smooth structure on B, we
may introduce the operators of the form πk

T(·), θk
T(·) or Θk

T(·), but now as operators
acting on E (0,n), and thus define the algebras Sob(k,n). If finally (E, T) was an unbounded
(A, B)-KK-cycle, one may define A(k,n)

µ,T = Sob(k,n)
µ,T ∩ A with the norm induced by the one

on Sob(k,n)
T . Now, T is called Cn-transverse to the smooth structure (E, {uj}) with respect to

fréchetization µ if {A(k,k)
µ,T }n

k=0 forms a smooth system. The definition of C∞-transversality
is given analogously.

Finally, we indicate the corollary of Proposition 1.2.60.

Proposition 2.2.5. Let B and B1 be two smooth systems on B, such that there is a cb-inclusion
B(n) → B(n)1 for all n ≤ N ≤ max{ordB, ordB1}. Let E (0,n), E (0,n)

1 be stuffed modules, defined
by the same approximate unit {uα} on a Hilbert C∗-B-module E. Let (E, T) be an unbounded
(A, B)-KK-cycle, such that T is N-transverse smooth on E with respect to B and {uα}. Then T
is transverse smooth on E with respect to B1, {uα}.

Proof. Since E (n)1 u E (n) ⊗̃B(n) B
(n)
1 , the proof follows straightforward from Proposition

1.2.60. We only need to observe, that since E (j,n)
T → E (j,n)

1,T = E (j,n) ⊗̃B(n) B
(n)
1 is a cb-

inclusion given by, we have that there is a CB-inclusion Sob(j,n)
1 → Sob(j,n)

1,T . Therefore

A ∩ Sob(j,n)
1,T is dense in A, and so T is indeed transverse smooth.

Remark 2.2.6. Originally, the transversality was given in terms of two unbounded op-
erators. In our notation, the operators D and T will be called Cn-transverse if T is Cn-
transverse to the smooth structure (E, {uj}) over the smooth system {B(n)µ,D}.

2.2.3 Transverse Smooth Connections

Definition 2.2.7. Let B be a C∗-algebra with a smooth system B, E be a Hilbert C∗-module
over B with some smooth structure with respect to B and T be an unbounded operator
on E, which is Cn-transverse smooth on E with respect to B. Finally let ∇ be a connection
on E (0,n). Then ∇ is said to be Cn-transverse if the operators

adn
T(∇)(T ± i)−n+1, and (T ± i)−n+1adn

T(∇)
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extend to completely bounded operators E (0,n) → E (0,n) ⊗̃B(n) Ω1(B(n)).

In case when the smooth system on a C∗-algebra B is trivial, we obtain a definition of
n-smooth connection of [28].

Now let B1 be another smooth system on B, such that there is a completely bounded
inclusion B(k) ↪→ B(k)1 for all 0 ≤ k ≤ n. Then, as we have discussed above, there is a com-

pletely contractive inclusion E (0,n) ↪→ E (0,n)
1 , and, as we have seen earlier, the unbounded

regular operators on E (0,n) restrict to the ones on E (0,n)
1 and the same is true for the con-

nections. We would like to show that every element of CB∗B(n)(E
(0,n), E (0,n) ⊗̃B(n) Ω1(B(n)))

extends uniquely to an element in X ∈ CB∗
B(n)1

(E (0,n)
1 , E (0,n)

1 ⊗̃
B(n)1

Ω1(B(n)1 )). Indeed, by

definition E (0,n) ⊕ HB(n) u HB(n) completely boundedly, and the same holds for E (0,n)
1 .

Therefore we may work with the maps HB(n) → HB(n) ⊗̃B(n) Ω1(B(n)) and H
B(n)1

→

H
B(n)1
⊗̃
B(n)1

Ω1(B(n)1 ). But now, as it was observed earlier,

HB(n) ⊗̃B(n) Ω1(B(n)) u H ⊗̃Ω1(B(n))

Now we observe that Ω1(B(n)1 ) = B(n)1 ⊗̃B(n) Ω1(B(n)) ⊗̃B(n) B
(n)
1 so that

H ⊗̃Ω1(B(n)1 ) u B(n)1 ⊗̃B(n) (H ⊗̃Ω1(B(n))) ⊗̃B(n) B
(n)
1

Therefore, we have that every element of CB∗B(n)(HB(n) ,HB(n) ⊗̃B(n) | Ω
1(B(n))) extends to

an element in CB∗
B(n)1

(H
B(n)1

,H
B(n)1
⊗̃
B(n)1

Ω1(B(n)1 )), and since B(n) is dense in B(n)1 this

extension is unique. Because of the stability property of E (0,n) and E (0,n)
1 , this picture may

be restricted to the original case.
The last conclusion tells us that given an unbounded regular operator T on and smooth

connection ∇ on E , which are Cn-transverse smooth with respect to the smooth structure
induced on E by the smooth system {B(n)} and an approximate unit {uj}, then these maps
extend to an unbounded regular operator and connections satisfying the same properties
with respect to {B(n)1 }. Indeed, as we have just seen, if the operators adn

T(∇)(T ± i)−n+1

and (T ± i)−n+1adn
T(∇) belong to CB∗(E (0,n), E (0,n) ⊗̃Ω1(B(n))), then they will extend to

the elements of CB∗B(n)(E
(0,n), E (0,n) ⊗̃B(n) Ω1(B(n))). Denote this extensions by a and b for

short. We only need to observe, that if we take the extensions of T and ∇ to E (0,n)
1 , that is,

the operators T : E (0,n)
1 ⊇ Dom(T)→ E (0,n)

1 and ∇ : E (0,n)
1 → E (0,n)

1 ⊗̃
B(n)1

Ω1(B(n)1 ) then

adn
T(∇)(T ± i)−n+1 : E (0,n)

1 → E (0,n)
1 ⊗̃

B(n)1
Ω1(B(n)1 )

and
(T ± i)−n+1adn

T(∇) : E (0,n)
1 → E (0,n)

1 ⊗̃
B(n)1

Ω1(B(n)1 )
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will coincide with a and b respectively on a dense subspace of E (0,n)
1 . Since a and b are

completely bounded, the latter operators also extend to completely bounded, and so we
prove the claim.

2.2.4 Product of Unbounded KK-Cycles: Theorem of Mesland and its
Generalization

We have finally reached the point where we can establish the connection of all the the-
ory defined before with the construction of an analogue of the Kasparov product for
unbounded KK-cycles. In this subsection we are going to consider only the Mesland
fréchetization, since it gives important results for interesting unbounded operators.

The main result of [28] reads

Theorem 2.2.8. [conf. [28][Thm 6.2.3]] Let A, B and C be C∗-algebras and n ∈ N. Let (E, T)
and (F, D) be unbounded (A, B)- and (B, C)-KK-cycles. Suppose F is endowed with a n-smooth
structure with respect to the smooth system Bmes,D := {B(k)mes,D}n

k=1. Suppose also that T is n-
transverse smooth with respect to the smooth system Bmes,D, and ∇ is n + 1-transverse smooth
with respect to T and Bmes,D. Then we have that the data

(E ⊗̃B F; T ⊗̃ 1 + 1 ⊗̃∇ D)

where
(T ⊗̃ 1 + 1 ⊗̃∇ D)(ξ ⊗ η) := Tξ ⊗ η +∇D(ξ)η + ξ ⊗ Dη

is a regular (unbounded) selfadjoint operator on F ⊗̃B E, and

[(E ⊗̃B F; b(T ⊗̃ 1 + 1 ⊗̃∇ D))] = [(E, b(T))]× [(F, b(D))]

as elements of KK0(A, C), KK0(A, B) and KK0(B, C), with × being the Kasparov product.

Having this result, we may formulate the following corollary.

Theorem 2.2.9. Let B be a C∗-algebra with a smooth system B on it. Let (E, T) be an unbounded
even (A, B)-KK-cycle and there is an approximate unitary on {uα} ∈ KB(E) defining a B-smooth
structure on E, with T selfadjoint and being (at least) Cn-transverse with respect to this smooth
system. Suppose also that there is a Hermitian connection∇ on E which is at least Cn+1-transverse
smooth with respect to the smooth system on E and T. Then for any C∗-algebra C and any element
(Y, D) ∈ Ψ(n)

0 (B, C) the data (E ⊗̃B Y, T ⊗ 1 + 1⊗∇ D) forms a n-smooth unbounded (A, C)-
KK-cycle. Moreover, [(E ⊗̃B Y, b(T ⊗ 1 + 1⊗∇ D))] = [(E, b(T))]× [Y, b(D)] as elements of
KK(A, C), KK(A, B) and KK(B, C) respectively.

Proof. We recall that by definition (Y, D) ∈ Ψ(n)
mes(B, C) means that there is a cb-inclusion

B(k) → B(k)mes,D for all k ≤ n. Therefore, if (E, T) satisfies all the above conditions, then,

• The approximate unit {uα} defines a structure of rigged module E (0,k)
mes,D on E with

respect to the system Bmes,D, and E (0,k)
mes,D u E (n) ⊗̃B(k) B

(k)
mes,D for all k ≤ n.
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• By 2.2.5 since T is n-transverse smooth on E (n), it will be n-transverse smooth on
E (0,n)

mes,D.

• By the discussion in the subsection 2.2.3, the connection ∇ on E (n) will be (n + 1)-
transverse smooth on E (0,n)

mes,D

Thus, we see that the moudle E (0,n)
mes,D, the operator T and the connection ∇ satisfy the con-

ditions of the Theorem 2.2.8, and so the cycle (E ⊗̃B Y, T ⊗ 1 + 1⊗∇ D) is a well defined
unbounded (A, C)-KK-cycle, which is n-smooth and satisfies the conditions of compati-
bility with the KK-groups.

We illustrate this result with an example.

Example 2.2.10. Let θ ∈ [0, 2π) be a real number and consider a noncommutative 2-torus
algebra Aθ . We take a smooth system Aθ := Aθ,mes to be the smooth system on Aθ as
we have defined above in the example devoted to the smooth systems for noncommuative
tori. It is a well-known fact that the algebra of the noncommutative 2-torus contains a
nontrivial projector, also called the Powers-Rieffel projector. Since the algebra A(∞)

θ is by
construction a pre-C∗-algebra, there exists such Powers-Rieffel projector that belongs to
A(∞)

θ . We denote this projector by q. Now, choose κ1, κ2 ∈ N such that κ1 and κ2 are
mutually prime. We form a projector

qκ1,κ2 = diag{1, . . . , 1︸ ︷︷ ︸
κ1

, q, . . . , q︸ ︷︷ ︸
κ2

}

on Aκ1+κ2
θ . We denote

E := (`2(Z) ⊗̃ qκ1,κ2 Aκ1+κ2
θ )⊕ (`2(Z) ⊗̃ qκ1,κ2 Aκ1+κ2

θ )

For simplicity denote the elements of `2(Z) ⊗̃ qκ1,κ2 Aκ1+κ2
θ by ∑+∞

j=−∞ wjξ j where ξ j ∈
qκ1,κ2 Aκ1+κ2

θ and j ∈ Z. According to [15] we have that

KAθ
(qκ1,κ2 Aκ1+κ2

θ ) = Aν

where
ν =

κ1 + κ2θ

a + bθ

and
( κ1 κ2

a b
)
∈ SL2(Z).

Define an antisymmetric matrix

σ =

 0 ν α
−ν 0 β
−α −β 0


with α and β being arbitrary positive real numbers (from the semi-interval [0; 2π) for
uniformity) and form a noncommutative 3-torus Aσ using this matrix. We denote the
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generators of Aσ by u, v and w. Then, according to the previous observation, we may
form an action of Aσ on E by setting

uxvywz · wjξ j = exp((αx + βy)(z + j))wz+j(uxvyξ j)

on each copy of (`2(Z) ⊗̃ qκ1,κ2 Aκ1+κ2
θ ) and then extending this action by linearity.

Now we define a derivation ∂ on `2(Z) ⊗̃ qκ1,κ2 Aκ1+κ2
θ by setting

∂(wjξ j) = jwjξ j

construct an unbounded operator T on E by setting

T =

(
0 ∂
−∂ 0

)
This operator is obviously selfadjoint densely defined, and the compactness of its resolvent
may be checked directly.

Finally, we would like to form a connection on E. First of all, there is a natural universal
Hermitian connection on Aθ given by a 7→ 1⊗ da, which we may extend to Aκ1+κ2

θ . Denote
it by ∇̃′. We define a connection on qκ1,κ2 Aκ1+κ2

θ by setting ∇̃ = qκ1,κ2∇. The fact that this
is a Hermitian connection follows from [18]. Finally, we set a connection ∇ on E by setting

∇(wjξ j) = wj∇̃ξ j

on each copy of `2(Z) ⊗̃ qκ1,κ2 Aκ1+κ2
θ .

By the construction T maps the space

spanj,t∈Z{
(

wjξ j
0

)
,
(

0
wtξt

)
}

where
ξ j, ξt ∈ qκ1,κ2(A

(∞)
θ )κ1+κ2

onto itself. Therefore T may be restricted to an unbounded regular operator E (0,n) for all
n ∈N∪ {0}. Moreover, by the same observation it follows that T defines a Sobolev chain
on each E (0,n). The spaces E (k,n) in this case consist of the elements of the form

∑
j∈Z

(
wjξ j

0

)
+ ∑

t∈Z

(
0

wtξt

)
such that ∑j∈Z |j|k‖ξ j‖k < ∞ and ∑t∈Z |t|k‖ξt‖k < ∞.

the universal connection ∇ obviously restricts to E (n,n). Moreover, we have that

[T,∇]
(

wjξ j
0

)
=

((
0 ∂
∂ 0

)(
∇ 0
0 ∇

)
+

(
∇ 0
0 ∇

)(
0 ∂
−∂ 0

))(
wjξ j

0

)
=

(
0 ∂
−∂ 0

)(
wj∇̃ξ j

0

)
+

(
∇ 0
0 ∇

)(
0

jwjξ j

)
=

(
0

−jwj∇̃ξ j

)
+

(
0

jwj∇̃ξ j

)
= 0



CHAPTER 2. UNBOUNDED KK-THEORY 71

and we have an analogous picture for
(

0
wtξt

)
.

Therefore ∇ is ∞-transverse smooth connection with respect to T and Aθ .
Finally, we observe that the elements of the algebra A of the form uxvywz extend

to bounded operators on E (n,n). therefore we may apply the theorem of Mesland, and
we have that for all (Y, D) ∈ Ψ(n)

0 (Aθ , B) the operator S = T ⊗ 1 + 1⊗∇ D defines an
n-smooth system Aσ,S on the C∗-algebra Aσ for n ∈ N ∪ {∞}. Since the product of
unbounded regular operators accords with the Kasparov product, the construction of this
example actually generalizes the map given by

[(E, b(T))]×KK(Aθ , ·)→ KK(Aσ, ·)

for the smooth case. However, now we may say that

[(E, b(T))]× [Y, b(D)] = [E ⊗̃B Y, b(T ⊗ 1 + 1⊗∇ D)]

for every (Y, D) ∈ Ψ(∞)
mes (Aθ , ·). Since the set {[(Y, b(D))] | (Y, D) ∈ Ψ(∞)

mes (Aθ , C)} con-
tains all the elements of KK(Aθ , C), we have presented the way to compute the concrete
values of of Kasparov product with the particular element [(E, b(T))], avoiding the com-
plications of Kasparov technical lemma. Moreover, since the smoothness of the operators
has been taken into consideration, we have preserved more properties than we could have
preserved using the bounded picture. We suppose that these properties may serve for
finding invariants coming the unbounded KK-cycles, which may be finer than the ones
provided by classical KK-theory.

2.3 Prospects

2.3.1 An Approach to a Category of C∗-Algebras with Smooth Struc-
tures

One of the main directions for the further research arises from the question, whether we
may form a category of C∗-algebras with smooth systems, and what kind of morphisms
should this category have.

To be more concrete, we have seen that if T is, for instance, C1-transverse smooth and∇
is C2-transverse smooth with respect to a smooth system B on B and an approximate unit
{uα} on a Hilbert C∗-B-module E, then (E ⊗̃B Y, T⊗ 1+ 1⊗∇ D) is an unbounded (A, C)-
KK-cycle for all (Y, D) ∈ Ψ(1)

mes(B, C). However, it is still not known, whether in general
there exists a smooth system A on A such that (E ⊗̃B Y, T ⊗ 1 + 1⊗∇ D) ∈ Ψ(1)

mes(A , C)
for all (Y, D) ∈ Ψ(1)

mes(B, C).
For now this picture is obtained in detail only for the case when E is a finitely generated

free module over B. We present this case as an example:

Example 2.3.1. Let B be a C∗-algebra and let B be a smooth system on B. We shall assume
that ordB = ∞. We also add the condition that the norms m‖ · ‖n are analytic with respect
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to m‖ · ‖n−1 on the algebra Mm(B(n)) for all n ∈ N and all m ∈ N. This condition does
not seem to be too obligatory in practice, because it holds for smooth systems obtained
by mes and ad fréchetizations and will also hold for smooth systems constructed in the
Theorem 2.1.7 with µ ∈ {mes, ad}.

We set E = Bm. The module E may be endowed with a smooth structure with respect
to B by setting E (n) := (B(n))m. We take a ∗-subalgebra A ⊆ Mm(B(∞)), such that A
contains the identity of Mm(B) and its closure with respect to the C∗-norm on Mm(B(∞))
is a C∗-algebra. Denote A(n) := A, with the closure taken with respect the norms m‖ · ‖n
on Mm(B(n)) for n = {0} ∪N. We make the algebras A(n) inherit the operator algebra
structure form the ones on Mm(B(n)). Since the maps B(n+1) → B(n) are completely
bounded, so are the inclusion maps Mm(B(n+1)) → Mm(B(n)), and therefore A(n+1) →
A(n) are completely bounded inclusions. We also note that the norms m(B(n+1)) are by
the conditions analytic with respect to m(B(n)), and so we have that the norm on A(n+1)

is analytic with respect to A(n). Hence the algebras A(n) are stable under the holomorphic
functional calculus on A. Finally, since all A(n) contain the unit of Mm(B(n)), the maps
A(n+1) → A(n) as well as A(n) → Mm(B) are essential. We also have that A(∞) is dense in
A and stable under holomorphic functional calculus on A.

Thus, we have shown that the system of nested subalgebras A := {A(n)}∞
n=1 satisfies

the conditions of a smooth system.
Now, since E is finitely generated over B, all regular operators on E are actually

bounded. Let T be such an operator. Then for T to be n-transverse smooth with re-
spect to the smooth system B we should just have T ∈ CB∗B(n)(E

(n)) and be odd with
respect to the grading on E. Therefore, if there is a connection ∇1 on E (∞), then we shall
automatically have that adn

T(∇1) will extend to a completely bounded operator on E (n)
for all n.

We would like to show that for every C∗-algebra C and for any unbounded KK-cycle
(Y, D) ∈ Ψ(n)

mes(B, C) for n ∈N we have that (E ⊗̃B Y, T ⊗ 1 + 1⊗∇1 D) ∈ Ψ(n)
mes(A , C).

Indeed, first of all, we have that T⊗1 ∈ EndC(E ⊗̃B Y) by the construction. Second,
we may present ∇1 := ∇+ b, where ∇ is the Grassmanian connection on E and b : E →
E ⊗̃B Ω1(B) is a completely bounded B-linear map. Therefore, we may regard

(T ⊗ 1 + 1⊗∇1 D)(ξ ⊗ η) = Tξ ⊗ η +∇1(ξ)η + ξ ⊗ Dη

= Tξ ⊗ η +∇(ξ)η + b(ξ)η + ξ ⊗ Dη

= (1⊗∇ D)ξ ⊗ η + (Tξ ⊗ η + b(ξ)η)

Now, we need to verify that 1⊗∇ D ∈ Ψ(∞)(A , C). But since E = Bm we may write
ξ = (b1, . . . , bm)ᵀ, and therefore

(1⊗∇ D)(ξ ⊗ η) = (1⊗ [D; b1], . . . , 1⊗ [D; bm])
ᵀη + (b1, . . . , bm)

ᵀ ⊗ Dη =
m

∑
j=1

ej ⊗ Dbjη

where {ej} is the standard basis of E (n) = (B(n))m. Thus, we actually obtain that 1⊗∇
D = diagm(D). As we have already seen in the part devoted to Mesland fréchetization,
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mk‖(bij)‖mes,n,D = k‖(bij)‖mes,n,diagmD for all k ∈ N and all n ∈ N. Thus, there is a
completely isometric isomorphism

(Mm(B))(n)mes,diagmD u Mm(B(n)mes,D) (2.8)

Now, since (Y, D) ∈ Ψ(∞)
mes (B(n), C) we have by definition that there is a completely

bounded map B(n) → B(n)mes,D, and, following the definition of completely bounded map
means that the maps

Mk(B(n))→ Mk(B
(n)
mes,D)

are uniformly bounded for all k. This in particular means that the maps

Mmk(B(n))→ Mmk(B
(n)
mes,D)

are uniformly bounded. But since A(n) ⊆ Mm(B(n)), we have that the restriction of the
above maps to Mk(A(n)) will also be uniformly bounded for all k, and this property holds
for all n ∈ {0} ∪N. Thus, the map A(n) → Mm(B(n)) is completely bounded. Finally, we
observe that the isomorphism 2.8 gives us a completely bounded isomorphism between
the algebras A(n)

mes,diagmD and A ∩Mn(B(n)mes,D). Therefore (E⊗B Y, 1⊗∇ D) ∈ Ψ(∞)
mes (A , C).

Now, we just have to mark that the map

R : ξ ⊗ η 7→ Tξ ⊗ η + b(ξ)η

is by construction a completely bounded (selfadjoint) operator on E (n). Now, according to
[28, Cor 4.8.5] we have that the smooth system A(n)

mes,diagmD+R is equivalent to A(n)
mes,diagmD

whenever R ∈ Sob(n)
mes,diagmD. The latter condition will hold for all T ∈ A(n) and all such

B-linear operators b that restrict to a completely bounded operator of the form b : E (n) =
(B(n))m → (B(n))m ⊗̃B(n) Ω1(B(n)).

Thus we have shown that, if T ∈ CB∗B(n)E
(n) and ∇1 − ∇ ∈ CB∗(E (n), E (n) ⊗̃B(n)

Ω1(B(n))) for all n ∈N, then the data (B, {uα}, E, T,∇) define a morphism

Ψ(∞)
mes (B, C)→ Ψ(∞)

mes (A , C)

for any C∗-algebra C. Finally, if A1 is some other smooth system on A, such that A(n)
1 ↪→

A(n) are completely bounded, then

Ψ(∞)
mes (B, C)→ Ψ(∞)

mes (A1, C)

Thus, for n ∈ N ∪ {∞} we may construct a category, whose objects are C∗-algebras with
n-smooth systems on them and the morphism are given by the data (E, T,∇) as in the
example.
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An analogous picture should presumably hold for E = pBm where p ∈ Mm(B) is a
projector, such that in fact p ∈ Mm(B(∞)). Unfortunately, even in this case we encounter
additional complications, and for now the picture is more or less clear only for the first
order of smoothness. We discuss this case in the next example:

Example 2.3.2. We take a C∗-algebra B and let B := B(1) be an operator ∗-subalgebra of
B, such that the inclusion B ↪→ B is completely bounded. We may regard B := {B ↪→ B}
as a smooth system of order 1. We take E := pBm, where p is a projector in Mm(B). We
denote E = pBm. The space E becomes a B-operator module, and the algebra CB∗B(E)
inherits an operator algebra structure from Mm(B) by identification CB∗B(E) = pMn(B)p.

We choose a complete subalgebra A ⊆ CB∗B(E) with induced operator norm, and set
A to be a completeion of A with respect to a C∗-norm on End∗B(E). Since B → B is
a completely, so will, by definition, be the inclusion A ↪→ A, so that we may consider
A := {A, A} as smooth system of order 1.

As in the previous example, the regular B-linear operators on E are actually bounded,
and so, in order for such an operator T to be 1-transverse with respect to B, it suffices
that T ∈ Mm(B). The boundedness of ad2

T(∇1) follows immediately from the fact that T
is bounded.

Now, let (Y, D) ∈ Ψ(1)
mes(B, C) for some C∗-algebra C. For a Grassmanian connection

∇ on E we have that

(1⊗∇ D)(ξ ⊗ η) =
m

∑
j=1

pej ⊗ [D; bj]η +
m

∑
j=1

p(ejbj)⊗ Dη

=
m

∑
j=1

pej ⊗ ([D; bj]η + bjDη)

where, again {ej} is the standard basis on Bm and the vectors ξ = (b1, . . . , bm)ᵀ lay in
pBm ⊆ Bm. Therefore, since every element of A ⊆ pMm(B)p, we have that

[1⊗∇ D, a] = p[diagmD, a]

for a ∈ A. Since A ⊆ pMm(B)p, so that pa = a, we have that

π1
1⊗∇D(a) =

((
a 0

p[1⊗∇ D; a] γaγ

))
=

(
p 0
0 p

)(
a 0

[diagmD; a] γaγ

)
From the previous example we already know, that m‖a‖mes,1,D = 1‖a‖mes,1,diagmD.

Therefore, by previous equation, we have that

m‖a‖mes,1,D ≥ 1‖a‖mes,1,1⊗∇D

Thus, we obtain that there is a bounded map A → A(1)
mes,1,1⊗∇D for all D ∈ Ψ(1)

mes(B, C).
Like in the previous example, we may prove that this map is also completely bounded, so
that (E ⊗̃B Y, 1⊗∇ D) ∈ Ψ(1)

mes(A , C).
And, again, as in the previous example, we then may say, we may now say that

(E ⊗̃B Y, T ⊗ 1 + 1⊗∇′ D) ∈ Ψ(1)
mes(A , C) for some other Hermitean connection on E and

selfadjoint B-linear operator T on E .
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Of course, the result provided in the example encourages us to construct a category,
whose object would be 1-smooth systems and the morphisms would be given by the data
of the form (E, T,∇) as above. The difficulty is that by theorem of Mesland, if there are
unbounded (Ai−1, Ai)-KK-cycles (Ei, Di), i = 1, 2, 3, with smooth connections ∇1 and ∇2
on E1 and E2, then we have that there is a canonical unitary equivalence between the
unbounded (A0, A3)-KK-cycles

(E1 ⊗̃A1 E2 ⊗̃A2 E2; (D1 ⊗ 1E2 + 1E1 ⊗∇1 D2)⊗ 1E3 + 1E1⊗̃A1
E2
⊗∇2 D3)

∼u (E1 ⊗̃A1 E2 ⊗̃A2 E2; D1 ⊗ 1E2⊗̃A2 E3
+ 1E1 ⊗∇1 (D2 ⊗ 1E3 + 1E2 ⊗∇2 D3))

Therefore, although the data (E , T,∇) as in 2.3.2 induces a set-theoretical map Ψ(1)
mes(B, ·)→

Ψ(1)
mes(A , ·), such maps do not in general satisfy the associativity property. So, even if we

construct such a category as we described above, the construction of a good functor to the
category of sets will require some additional considerations,

Replacing unbounded operators by their unitary equivalence class will not solve this
problem, because then we obtain an ambiguity, which we show in the following example.

Example 2.3.3. Let A be an operator pre-C∗-algebra of the C∗-algebra A. Let (E, D) ∈
Ψ(1)

mes(A , B) for c=some C∗-algebra B. Consider a smooth system M2(A ) = (M2(A) ↪→
M2(A)). Then, for a ∈ A, we have that

(E⊕ E,
( D 0

0 D+b
)
) ∈ Ψ(1)

mes(M2(A ), B)

for some odd operator b on E. Now, we consider a projector p =
(

1 0
0 0
)

on M2(A), and
construct an unbounded (A, M2(A))-KK-cycle given by (pM2(A), 0,∇), with ∇ being the
Grassmanian connection. Observe that pM2(A) = A2 where A2 is regarded as column
vector, and we define the action of A on A2 in a standard way, i.e a(a1, a2)

ᵀ = (aa1, aa2)
ᵀ.

Now, we observe that pM2(A) ⊗̃A (E ⊕ E) u E, and using this identification ti may be
calculated directly, that

1pM2(A) ⊗∇
( D 0

0 D+b
)
= D

or, in other words
(E⊕ E,

( D 0
0 D+b

)
) 7→ (E, D)

From the other hand, there is a unitary equivalence

(E⊕ E,
( D 0

0 D+b
)
) ∼u (E⊕ E,

( D+b 0
0 D

)
)

given by the unitary U =
(

0 1
1 0

)
on E⊕ E. However

(E⊕ E,
( D+b 0

0 D

)
) 7→ (E, D + b)

But D and D + b should not necessarily be unitary equivalent. So, we may fall into situa-
tion where unitary equivalent operators are mapped to not necessarily unitary equivalent
by map defined by the same data (E, T,∇).
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We are still not in the position to discuss what can happen in the case when we switch
to countably generated modules and genuine unbounded operators on them. This will
most probably impose additional requirements also on the smooth systems. A more de-
tailed study of this question will require further research.

2.3.2 cb-Isomorphism Classes of Operator Spaces

As we have seen in previous subsections, most of the results gave us the characterizations
of operator spaces and operator algebras only up to a cb-isomorphism. From the other
hand, a cb-isomorphisms preserved desirable structures, like almost riggedness of the
modules. Therefore it seems that sometimes regarding the cb-isomorphism classes of
operator space may spare some additional work.

Let X be an operator space. We denote by [X] the class of operator spaces Xω which
are cb-isomorphic to X. Observe that if f : X → Y is a cb-map, then f induces a cb-map
fω1,ω2 : Xω1 → Yω2 for any Xω1 ∈ [X] and Yω2 ∈ [Y]. Thus we may define a cb-map [f]
between the cb-isomorphism classes of operator spaces. Denote

Moreover, for any two such spaces Xω1 and Yω2 there is a cb-isomorphism between
CB(X, Y) and CB(Xω1 , Yω2). Indeed, the space CB(L1,L2) is an operator space [31]. Let
ι1, ι2 be the complete isomprphisms ι1 : Xω1 → X and ι2 : Yω2 → Y. Then we can construct
a map

η : CB(Xω1 , Yω2) → CB(X, Y)

f ′ 7→ ι2 f ′ι−1
1

By the construction, this map is cb. An inverse cb-isomophism is constructed analogously.
Hence we may speak about cb-maps between cb-isomorphism classes of operator spaces.
We have an analogous characterization of cb-isomorphism classes of operator pseu-

doalgebras, with cb-homomorphisms generating maps between the classes. By theorem
1.2.8 for any operator pseudoalgebra A there is also a genuine operator algebra in [A].

Observe that if A has a pseudo-involution f , then

• By Theorem 1.2.16 there is an operator algebra in Aω ∈ [A] such that the pseudo-
involution on A induces a completely isometric involution ιω f ι−1

ω .

• For any Aω ∈ [A] the map ιω f ι−1
ω is a pseudo-involution.

Therefore, if A is an operator pseudoalgebra with a distinguished pseudo-involution f ,
then the cb-isomorphism class [A] may be called involutive.

As for the operator modules, we have observed that a C-linear cb-isomorphism X → Y
induces a cb-isomorphism of CB(X) → CB(Y). Therefore, for an isomorphism class of
operator algebra [A] we may consider an A-module cb-isomorphism class [X] as a set of
all such A-modules X that there is a A-module cb-isomorphism between them, and the
[A]-module cb-isomorphism class [X] is defined analogously.

Now, we observe that most of the notions we have introduced in the paper are defined
up to a cb-isomorphism. Indeed, for instance, if A and B are cb-isomorphic, then any almost
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rigged A-module E may be regarded as an almost rigged module over B and vice versa.
Also, if E is a rigged module over A and E′ is cb-isomorphic to E, then E′ is obviously an
almost rigged A-module. Therefore we lose nothing if we replace almost rigged modules
over operator algebras by cb-isomorphism classes of rigged modules over cb-isomorphism
classes of operator algebras.

An analogous observation holds for stuffed modules and cb-stabilizable modules.
Moreover, using the cb-isomorphism classes of operator algebras and modules may some-
times make a picture even more uniform as in the case when we work with concrete
objects. This approach may be useful by several considerations.

Recall that, as we have indicated in the discussion after the Theorem 1.2.54, the involu-
tion induced on CB∗A(n)(E (n)) by the one on CB∗A(E) should not necessarily be completely
isometric. The switch to cb-siomorphism classes, although does not solve this complica-
tion, may be used to hinder it.

Then, as we have indicated in the Remarks 2.1.5 and 2.1.16, the definition of smooth
systems may be modified to work with pseudoalgebras instead of algebras. Equivalent
smooth systems in this case will be regarded as a same object. In view of the discussion we
have had about the Mesland fréchetization, this may also give rise to a notion of smooth
noncommutative topology for C∗-algebras. However, the notion still remains vague, and
we address a more precise formulation to the further research.
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