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ABSTRACT

Shape deformation models have been used in computer graphics primarily to de-
scribe the dynamics of physical deformations like cloth draping, collisions of
elastic bodies, fracture, or animation of hair. Less frequent is their application
to problems not directly related to a physical process. In this thesis we apply
deformations to three problems in computer graphics that do not correspond to
physical deformations. To this end, we generalize the physical model by modify-
ing the energy potential. Originally, the energy potential amounts to the physical
work needed to deform a body from its rest state into a given configuration and
relates material strain to internal restoring forces that act to restore the original
shape. For each of the three problems considered, this potential is adapted to
reflect an application specific notion of shape. Under the influence of further con-
straints, our generalized deformation results in shapes that balance preservation
of certain shape properties and application specific objectives similar to physical
equilibrium states.

The applications discussed in this thesis are surface parameterization, interac-
tive shape editing and automatic design of panorama maps. For surface parameter-
ization, we interpret parameterizations over a planar domain as deformations from
a flat initial configuration onto a given surface. In this setting, we review existing
parameterization methods by analyzing properties of their potential functions and
derive potentials accounting for distortion of geometric properties.

Interactive shape editing allows an untrained user to modify complex surfaces,
be simply grabbing and moving parts of interest. A deformation model interac-
tively extrapolates the transformation from those parts to the rest of the surface.
This thesis proposes a differential shape representation for triangle meshes leading
to a potential that can be optimized interactively with a simple, tailored algorithm.
Although the potential is not physically accurate, it results in intuitive deformation
behavior and can be parameterized to account for different material properties.

Panorama maps are blends between landscape illustrations and geographic
maps that are traditionally painted by an artist to convey geographic survey knowl-
edge on public places like ski resorts or national parks. While panorama maps are
not drawn to scale, the shown landscape remains recognizable and the observer
can easily recover details necessary for self location and orientation. At the same

xi



ABSTRACT

time, important features as trails or ski slopes appear not occluded and well vis-
ible. This thesis proposes the first automatic panorama generation method. Its
basis is again a surface deformation, that establishes the necessary compromise
between shape preservation and feature visibility.
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ZUSAMMENFASSUNG

Deformationsmodelle werden in der Computergrafik bislang hauptsächlich ein-
gesetzt, um die Dynamik physikalischer Deformationsprozesse zu modellieren.
Gängige Beispiele sind Bekleidungssimulationen, Kollisionen elastischer Körper
oder Animation von Haaren und Frisuren. Deutlich seltener ist ihre Anwendung
auf Probleme, die nicht direkt physikalischen Prozessen entsprechen. In der vor-
liegenden Arbeit werden Deformationsmodelle auf drei Probleme der Compu-
tergrafik angewandt, die nicht unmittelbar einem physikalischen Deformations-
prozess entsprechen. Zu diesem Zweck wird das physikalische Modell durch ei-
ne passende Änderung der potentiellen Energie verallgemeinert. Die potentiel-
le Energie entspricht normalerweise der physikalischen Arbeit, die aufgewendet
werden muss, um einen Körper aus dem Ruhezustand in eine bestimmte Konfi-
guration zu verformen. Darüber hinaus setzt sie die aktuelle Verformung in Be-
ziehung zu internen Spannungskräften, die wirken um die ursprüngliche Form
wiederherzustellen.

In dieser Arbeit passen wir für jedes der drei betrachteten Problemfelder die
potentielle Energie jeweils so an, dass sie eine anwendungspezifische Definition
von Form widerspiegelt. Unter dem Einfluss weiterer Randbedingungen führt die
so verallgemeinerte Deformation zu einer Fläche, die eine Balance zwischen der
Erhaltung gewisser Formeigenschaften und Zielvorgaben der Anwendung findet.
Diese Balance entspricht dem Equilibrium einer physikalischen Deformation.

Die drei in dieser Arbeit diskutierten Anwendungen sind Oberflächenpara-
meterisierung, interaktives Bearbeiten von Flächen und das vollautomatische Er-
zeugen von Panoramakarten im Stile von Heinrich Berann. Zur Oberflächenpa-
rameterisierung interpretieren wir Parameterisierungen über einem flachen Para-
metergebiet als Deformationen, die ein ursprünglich ebenes Flächenstück in eine
gegebene Oberfläche verformen. Innerhalb dieses Szenarios vergleichen wir dann
existierende Methoden zur planaren Parameterisierung, indem wir die resultieren-
den potentiellen Energien analysieren, und leiten weitere Potentiale her, die die
Störung geometrischer Eigenschaften wie Fläche und Winkel erfassen.

Verfahren zur interaktiven Flächenbearbeitung ermöglichen schnelle und in-
tuitive Änderungen an einer komplexen Oberfläche. Dazu wählt der Benutzer Tei-
le der Fläche und bewegt diese durch den Raum. Ein Deformationsmodell extra-
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ZUSAMMENFASSUNG

poliert interaktiv die Transformation der gewählten Teile auf die restliche Fläche.
Diese Arbeit stellt eine neue differentielle Flächenrepräsentation für diskrete Flä-
chen vor, die zu einem einfach und interaktiv zu optimierendem Potential führt.
Obwohl das vorgeschlagene Potential nicht physikalisch korrekt ist, sind die resul-
tierenden Deformationen intuitiv. Mittels eines Parameters lassen sich außerdem
bestimmte Materialeigenschaften einstellen.

Panoramakarten im Stile von Heinrich Berann sind eine Verschmelzung von
Landschaftsillustration und geographischer Karte. Traditionell werden sie so von
Hand gezeichnet, dass bestimmt Merkmale wie beispielsweise Skipisten oder Wan-
derwege in einem Gebiet unverdeckt und gut sichtbar bleiben, was große Kunst-
fertigkeit verlangt. Obwohl diese Art der Darstellung nicht maßstabsgetreu ist,
sind Abweichungen auf den ersten Blick meistens nicht zu erkennen. Dadurch
kann der Betrachter markante Details schnell wiederfinden und sich so innerhalb
des Gebietes orientieren. Diese Arbeit stellt das erste, vollautomatische Verfahren
zur Erzeugung von Panoramakarten vor. Grundlage ist wiederum eine verallge-
meinerte Oberflächendeformation, die sowohl auf Formerhaltung als auch auf die
Sichtbarkeit vorgegebener geographischer Merkmale abzielt.
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CHAPTER 1

INTRODUCTION

Since the beginnings of mankind, humans have deformed objects found in their
environment to put them into a shape more suitable for a particular function. Early
examples can be found in bows or wicker made from tree branches, bamboo or
willow switches. But the principle of “constructive deformation” that increases
fitness of a shape for a certain purpose has been applied throughout the ages e.g.
to form tools and weapons from iron, to shape ship planks, or in upholstery. Long
since it has found its way into industrial production processes of all kinds of metals
and plastics, car bodies, cans or carton boxes.

Physically speaking, to trigger a deformation external forces have to be applied
to a body. At the same time, internal material forces act to preserve the original
shape configuration. In the interplay of these forces, the actual deformation is
found in an equilibrium configuration that minimizes an energy potential. While
this happens almost instantaneously in the real world, the physical laws have to
be carefully modeled and simulated in the virtual word. This is tedious and poses
high computational demands that easily overstrain the powers even of supercom-
puters. But it also has a significant advantage: In the virtual setting we are no more
limited by the actual laws of physics. In fact, we can vary forces and potential to
find shapes with properties desired by certain applications. In the simulation, the
constructive deformation approach becomes even more powerful.

This thesis follows the basic idea of such generalized deformations and applies
it to three problems in computer graphics. Although inspired by physical defor-
mation, each of these generalized deformations is tuned to a specific application
in computer graphics. In all cases we concentrate on the final result of the defor-
mation process, i.e. the static equilibrium configuration and neglect the dynamics.
It is thus the potential that determines the properties of this final shape and that
lies at the center of our interest. For each problem, an energy potential is chosen
that aims at restoring the original shape similar to the internal restoring forces in
a deformed solid body. From application to application, the actual choice of the
potential, however, varies reflecting an application specific notions of shape and
further optimality criteria.
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CHAPTER 1. INTRODUCTION

Figure 1.1: A surface parameterization example: A surface shown on the left is
mapped by a parameterization to a planar uv-domain.

In contrast to physical deformation of solids, in computer graphics shapes are
rather represented by their surface only, as the surface largely dominates their
appearance. Consequently, we focuses on deformation of surfaces. Natural ex-
amples of surface deformations can be found in thin-walled structures as leaves,
paper sheets, egg shells or tin cans. In physics, their deformation behavior is
mathematically described by thin shell models that already have been applied to
computer graphics in the context of animation of cloth and other thin walled struc-
tures. The potentials proposed in this thesis borrow from thin shell models but
abandon the strict physical accuracy in favor of application specific requirements.
Nevertheless, the potentials remain similar to the thin shell model’s potential in
that they preserve some notion of shape.

The first problem approached in Part II is surface parameterization, which
refers to the task of unfolding a curved surface in three space into a planar pa-
rameter space (see Figure 1.1). Mapping from surfaces to the familiar plane,
parameterization help to cope with the inherent complexity of surfaces and are
one of the most essential tools in computer graphics, used for texture mapping,
remeshing, filtering, compression and much more. But even long before their use
in computer graphics, parameterizations have found applications in mathematics
or geography. The most familiar incarnations of parameterizations are geographic
maps, that map a sphere onto the plane. In this thesis, we interpret parameteriza-
tions as surface deformations that deform a planar patch into a curved surface. Just
as with geographic maps, parameterizations are best if they faithfully reproduce

4



Figure 1.2: Original shape and result of an interactive editing session. The result
was obtained by fixing parts of the dragons back feet (shown in green) and pulling
parts of its nose (shown in orange) upward. The surface deformation interpolates
the transformation of the nose over the surface but preserves shape details as much
as possible.

important geometric relations like distances or areas. For surface parameteriza-
tion, the potential governing the deformation should thus aim at restoring these
geometric properties during flattening. In Part II we interpret existing parameteri-
zation methods in context of surface deformation, analyze their energy potentials
and, based on our observations, derive a set of novel potentials.

The second application approached in Part III is interactive shape editing that
allows a user to interactively edit surfaces represented as large triangle meshes as
they are typically obtained from acquisition devices like laser range scanners. The
user can grab and move parts of the surface while remaining unconstrained surface
parts deform interactively according to a deformation model that preserves shape
detail as much as possible. An example result of an interactive editing session
is shown in Figure 1.2. Such editing approaches are highly intuitive giving the
user the impression of pushing or pulling a thin object made of an elastic material
like rubber. For interactive shape editing, potentials must meet two requirements:
First, they must support an efficient optimization to enable interactive frame rates
on large models and, second, they must be well-defined for triangle meshes as this
is the predominant representation for scanned objects. In Part III we propose a

5



CHAPTER 1. INTRODUCTION

Figure 1.3: Automatic generation of panorama maps: On the left a traditional
perspective image of a ski resort is shown. Slopes and lifts are highlighted but
hardly visible due to occlusion and size. A panorama map of the same area as
shown on the right avoids the occlusion of these features and also scales them to
improve visibility.

potential for interactive shape editing which is physically plausible and can imi-
tates the behavior of different materials. Yet, it can efficiently be optimized by a
simple optimization algorithm.

In the third application tackled in this thesis, the deformation not only aims at
restoring the original shape, but also at enhancing the visibility of important fea-
tures. We call these kind of deformation visibility driven and put it to work in the
design of panorama maps. Panorama maps are blends between landscape painting
and geographic map that show an area of interest (e.g. a ski resort) from a familiar,
earth bound perspective. These maps are traditionally drawn by an experienced
and skillful artist, who ensures that important features (like ski slopes) are visible
and not occluded in the final image. In Part IV, we show how such maps can be
generated automatically by surface deformation with a suitable chosen potential.
For this application, the potential must again regulate shape deviation to ensure
that the panorama resembles the actual landscape. But at the same time, it also
has to enforce the visibility of important features.

1.1 Generalized Surface Deformations in Computer
Graphics

Besides applications in the three above mentioned areas, we would like to point to
some other problems in computer graphics that have been approached with similar
ideas. We exclude from this discussion physical simulations for animations, that
do not generalize the physical deformations but aim at most accurate reproduction

6



1.1. GENERALIZED SURFACE DEFORMATIONS IN COMPUTER GRAPHICS

of the physical process. For a survey of those methods we refer to [NMK+06].
Surface matching refers to the task of finding a map between two similar sur-

faces, that maps corresponding features onto each other. A popular approach to
surface matching consists in searching a deformation that aligns both surfaces.
Besides space deformations, there are a number of methods [KS04, SAPH04,
LDRS05] that employ surface deformations in this context. These methods try to
establish suitable maps by minimizing potentials that measure both feature align-
ment and intrinsic shape deformation. While feature alignment is specific to shape
matching, potentials for intrinsic shape deformation have long been searched after
for surface parameterization. While in this thesis, the surface matching problem
is not explicitly discussed, the above approaches reuse potentials originally devel-
oped for surface parameterizations that are discussed in Part II. Surface deforma-
tions have also been used to find features correspondences (a preprocessing step
of surface matching) as e.g. recently in [ZSC+08].

One of the hardest problems in geometry processing is surface reconstruction
from point measurements. Here, the surface of a shape must be reconstructed
from a set of partial, noisy and possibly incomplete point clouds. Each of these
clouds originate e.g. from a laser range scan taken from a different position. Sur-
face reconstruction is one of the most important problems in computer graph-
ics and many different approaches exist. Closely related to surface deformations
are methods based on deformable models like snakes or balloning methods (see
[MM98, MT00, Dua01, SLS+06] and references herein). Methods in this class
evolve an initial approximating surface to fit the measured points. At the same
time, the deformation of the evolving surface is restricted by a deformable model
to prevent overfitting and to give reasonable completions in regions where mea-
surements are missing.

While classical surface reconstruction assumes a fixed, unarticulated shape,
the problem becomes even harder if the scanned object is allowed to move or
change over time. Surface reconstruction then consists in reassembling partial
scans taken at different positions and points in time into a consistent, articulated
shape. Without further assumptions this problem is ill-posed, as the shape po-
tentially can change arbitrarily between each pair of measurements. 4D surface
reconstruction methods (see [LRS+09] for a survey) thus need a shape regular-
izations that limits the allowed deformation between two time frames. This reg-
ularization is usually realized by a solid or surface deformation model. A recent
example is the approach of Wand et al. [WAO+09] who use a physically motivated
potential to limit the deformation while fitting a gradually constructed urshape to
point measurements. Fitting the urshape to point measurements does not neces-
sarily correspond to a physical deformation process and can thus be understood as
a generalized surface deformation.

Symmetry detection on large surfaces has recently gained much interest in
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computer graphics [PSG+06, LE06, MGP07, PMW+08]. It allows to identify
identical or similar parts within a given surface, such as window sills on the facade
of a large building. The identification of such symmetries and repetitions allows
very efficient compression, shape analysis and easy editing. While existing meth-
ods are limited to detection of features coupled by rigid or simple transformations,
in recent work of Berner et al. [BBW+09] use a space deformation model based
on the well-known thin plate potential to match features on a deformed surface.
Even though a space and not a surface deformation is used, their approach can be
regarded as an application of generalized deformations.

We also like to point to relations of the generalized deformation concept with
shape morphing and, more general, shape spaces [DM97] as they have become
an increasingly active field of research over the last years. In shape spaces shapes
are arranged such that their geodesic distance with respect to an appropriate shape
metric reflects similarity or dissimilarity e.g. as perceived by humans. The struc-
ture of shape spaces then allows to interpolate shapes, to compute mean shapes or
even to perform statistical analysis of shape sets. Given a shape space and a met-
ric, minimizing shape distance has a similar effect than minimizing a generalized
deformation potential in the sense that it tends to restore a reference shape and,
vice versa, distance in shape space can be defined via a deformation potential.
In contrast to shape spaces, we focus in this thesis on more application specific
requirements on the potentials as e.g. support for efficient minimization while the
implied distance metric is of minor concern.

In addition to computer graphics problems, the above sketched idea of gener-
alized deformations is also related to shape optimization[HM03], an engineering
field concerned with shapes that are optimal for a certain purpose. Typical exam-
ples are mechanical parts with minimal weight that sustain given loads or airplane
wings that minimize air flow turbulence. In shape optimization, the deformation
is driven by a general objective function that, in contrast to physical deformation
and the potentials developed here, does not aim at restoring an original configu-
ration. Traditionally, it targets on design problems in mechanics while this thesis
focuses on computer graphics applications.

1.2 Main Contributions and Structure
This thesis follows the main idea of generalized surface deformation and applies
it to the three problems sketched in the introduction. It summarizes and extends
work that has been already published at several international computer graph-
ics conferences [DMK03, DK07, PDK07, SDK09, DK09] (a further publication
[DTK] is currently in preparation) and which is also listed in Section V . The Parts
II-IV each correspond to one of these applications while the remainder of this
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first part gives the necessary background on surfaces, deformations and elasticity.
Within the three application areas we make the following main contributions:

• Part II starts with an analysis of planar surface parameterization methods
and the derivation of a novel method accounting for both angle and area dis-
tortion. These contributions have been published previously as parts of the
Diploma thesis [Deg03], but have been updated and reinterpreted in con-
text of surface deformations for this thesis. The parameterization method
has moreover been complemented by an projection approach, that allows to
compute texture maps for surfaces with triangulation artifacts and topologi-
cal inconsistencies as they frequently occur in day to day modeling practice
and for surfaces given as point sets. For surfaces covered with fabrics as e.g.
upholstery, we suggest material specific texture maps that are obtained by
optimizing a potential from elasticity theory. In contrast to standard texture
maps, these maps do not aim at minimal shape deformation, but rather on
a plausible and realistic deformation specific to a given fabric material. As
an application, we show how parameterization methods can be used to infer
sewing patterns for upholstery in industrial design.

• In Part III, the thesis contributes a novel differential representation for dis-
crete surfaces targeted at interactive shape editing. Residuals in this rep-
resentation give rise to a potential that can be very efficiently minimized.
We describe an efficient optimization algorithm that allows editing of large
models at interactive frame rates. We show how the method can be param-
eterized to reflect material properties and, finally, we extend it to rapidly
visualize the shape of upholstered furniture in industrial design.

• In context of panorama maps, Part IV derives an appropriate potential mea-
suring visibility and appearance compliance. Based on this potential, we
propose the first, fully automatic panorama generation method. The user
must only specify an rough initial viewpoint and a set of features. The
panorama map is then computed automatically by a surface deformation.
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CHAPTER 2

BASICS ON SURFACES AND MESHES

2.1 Surfaces
The predominant representation of surfaces in computer graphics is the polygonal
mesh (that will be defined in Section 2.2) and all algorithms developed in this the-
sis were designed to work on this representation. Nevertheless, it will sometimes
be convenient for the discussion to consider the case of a smooth surfaces. In this
section we therefore summarize the most important concepts from differential ge-
ometry. A more detailed introduction to differential geometry can be found in
[Bär01].

We define a two dimensional regular surface as a set S ⊂ R3 that satisfies the
following property: For each p ∈ S there exists an open neighborhood V ⊂ R3

and a map x : ω → V ∩ S from an open subset ω ⊂ R2 with the following
properties:

• x is differentiable.

• x is a homeomorphism. As it is continuous this means that it has an con-
tinuous inverse x−1. More precisely, there exists a continuous function
X : V → R2 such that x−1 = X|V ∩S .

• the Jacobian∇x is of full rank at each point u ∈ ω.

The function x is called a parameterization of the neighborhood V ∩ S.
We denote coordinates of ω by θ1, θ2. Here and in the following, we precede

a lower index α by a colon to indicate partial derivatives with respect to θα, e.g.
we write x,α to denote the partial derivative ∂x/∂θα. Moreover, we use Einstein
summation conventions which means that we implicitly sum over all possible val-
ues if an index appears repeatedly in a term. For example, the dot product of two
points p,q ∈ R3 is written as

p · q = piqi

11
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To indicate the range of possible values, sub- and superscript Greek indices will
always take values 1, 2 while latin indices take values 1, 2, 3. ( An exception are
indices v and w into a set of vertex indices V of a triangle mesh to be defined in
the next section. These will take values in V ).

Taking derivatives of the parameterization x in coordinate directions θα at each
point x(θ1, θ2) of S yields two vectors

aα := x,α

for α = 1, 2, that are tangent to S. As the Jacobian ∇x is of full rank, these
two tangent vectors are linearly independent and span a plane TpS at each point
p = x(θ1, θ2). This plane runs tangential to the surface S at p is thus called
tangent plane.

We can extend the system (a1, a2) to a basis frame by adding a third vector

a3 := n :=
a1 × a2

‖a1 × a2‖
which is normal and orthogonal to TpS and thus to the surface S in p. Every
vector that is orthogonal to TpS is called a surface normal at p.

While the above definition of regular surfaces requires only existence of pa-
rameterizations for local neighborhoods V ∩S, we will often assume that a single
parameterization x : ω → S covers the entire surface S. The existence of such
a parameterization implies the existence of a smooth normal field a3 on S. Sur-
faces for which a smooth normal field can be found are called orientable. S must
thus be orientable to support a single parameterization. Besides orientability, the
spaces S and ω must have a compatible topology and in particular the genus, the
number of boundaries and connected components must match. As ω is planar,
the surface S must have genus zero to support a single parameterization, which
informally means that there are no tunnels in the surface.

2.1.1 Metric Tensors
Using a parameterization x, shapes in ω can be mapped onto S and vice versa.
In general, the shapes undergo a deformation in this mapping. This inherent de-
formation is captured in the (covariant) metric tensor (which is also called first
fundamental form) defined as

gαβ := aα · aβ = xi,αxi,β

To see this, we consider two smooth curves

c : [0, 1]→ ω , t 7→ c(t)

d : [0, 1]→ ω , t 7→ d(t)

12
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Figure 2.1: Deformation of shape angles by the parameterization. We consider the
intersection angle α between two curves c and d and relate it to the intersection
angle of the images e = x ◦ c and f = x ◦ d of the two curves on the surface.

in ω. Mapping these curves using x we obtain two curves e = x ◦ c and f = x ◦d
that take values on the surface S (see Figure 2.1). If c and d intersect in a point
u := c(t0) = d(t1) then e and f intersect in x(u). At each point c(t) of a curve,
a tangent vector is given by the derivative with respect to t which we denote by a
dot, i.e. ċ = ∂c/∂t. The intersection angle α between c and d is easily computed
from the dot product ċγ ḋγ of the tangents ċ and ḋ to these curves as

α = acos(
ċγ ḋγ

‖ċ‖‖ḋ‖
)

After mapping both curves to the surface, the intersection angle α′ of the images
e and f at x(u) is computed analogously as

α′ = acos(
ėkḟk

‖ė‖‖ḟ‖
)

Now, the dot product and norms in this expression evaluate to

ė · ḟ = ėkḟk = xk,αċαxk,βḋβ = gαβ ċαḋβ = ċtgḋ (2.1)
‖ė‖2 = ėkėk = xk,αċαxk,β ċβ = gαβ ċαċβ = ċtgċ (2.2)

The intersection angle α′ of the images can thus be computed from the original
planar curves and the metric tensor only. The metric tensor thus describes angular
shape deformation imposed by the parameterization x.

But also changes in length are described by the metric tensor: In general, the
length of a smooth curve e is given as

l(e) =

∫ 1

0

‖ė‖ dt
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Figure 2.2: Deformation of shape area by the parameterization. This time we
consider the area of a small area element spanned ċ and ḋ and relate it to the
surface area element spanned by images ė and ḟ .

Applying Equation 2.2 we get

l(e) =

∫ 1

0

(ėkėk)
1
2 dt =

∫ 1

0

(gαβ ċαċβ)
1
2 dt

and again the length of the image curve e can be computed from the original
planar curve and the metric tensor. Finally, we would like find the change in area
that the parameterization imposes on a planar shape. To this extent, we consider
the parallelogram spanned by the scaled tangent vectors εċ and εḋ at u (see Figure
2.2). Its area is given by

Aω = ε2 det B

where B = (ċ ḋ) denotes the matrix whose columns equal the tangents of the two
curves. The corresponding area of the parallelogram spanned by εċ and εḋ can be
computed using the cross product as

AS = ‖εė× εḟ‖ = ε2(‖ė‖2‖ḟ‖2 − (ė · ḟ)2)
1
2

and by Equations 2.1-2.2

AS = ε2(ċtgċ ḋtgḋ− (ċtgḋ)2)
1
2 = ε2 det(BtgB)

1
2

The change in area is thus given as

AS/Aω = (det g)
1
2

This relation is independent of the scaling factor ε and thus also holds in the limit
ε → 0 for an infinitesimal area element dω at point u and its image dS on the
surface. The local change in area imposed by the parameterization can thus be
again described in terms of the metric tensor as

dS = (det g)
1
2dω (2.3)
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For later reference we also define the contravariant metric tensor as the inverse of
covariant tensor g. Its components are denoted by gαβ and are uniquely defined
by

gαβg
βγ = δγα

where δαβ = δβα = δαβ is the Kronecker delta that evaluates to one for α = β and
is zero otherwise.

To conclude this section, we look at two important types of parameterizations.
In many cases a parameterization is desired that perfectly preserves shapes. Such
a parameterization is called isometric and from Equations 2.1-2.2 we easily see
that it must satisfy

gαβ = δαβ

in every point u ∈ ω. If an isometric parameterization exists for a surface S,
it cannot be distinguished from a planar domain by measuring angles, distances,
areas or any property that can be expressed in terms of these. Such properties
that are invariant under isometric parameterizations (or more generally isomet-
ric maps between surfaces) are called intrinsic. Intrinsic properties depend on
the surface metric only and not on the position or configuration of the surface in
the surrounding space. Intuitively, a property is intrinsic if it can be measured
by small, shortsighted inhabitants of the surface. Geodesics length, angles and
surface area are certainly intrinsic properties while mean curvature or minimal
curvature direction (defined in the next section) are not.

Interestingly, the ‘Theorema egregium” by Gauss states that Gaussian curva-
ture (defined in the next section) is also an intrinsic property and thus preserved
by isometric parameterizations. As the parameter domain ω is flat, Gaussian cur-
vature vanishes everywhere. Isometric parameterizations exist therefore only if
the Gaussian curvature in each point of S also equals zero. This is only the case
for a few special surfaces, as e.g. cylinder or plane.

While isometric parameterization do not exist for general surfaces, the Uni-
formization Theorem [Wei] guarantees (under the topological assumptions of the
last section) the existence of a conformal parameterization x : ω → S that covers
the whole surface S. A parameterization is said to be conformal if in every point
u ∈ ω the metric tensor equals the scaled identity, i.e.

gαβ(u) = λ(u)δαβ

with a smooth real valued function λ(u) that is called conformal factor. Con-
formal parameterizations have the important property that they perfectly preserve
angles. This follows from Equations 2.1-2.2 that simplify for a conformal map to

ėkḟk = λδαβ ċαḋβ = λċγ ḋγ and ‖ė‖2 = λδαβ ċαċβ = λ‖ċ‖2

and we have α = α′ by the above definitions of the intersection angles.

15



CHAPTER 2. BASICS ON SURFACES AND MESHES

2.1.2 The Shape Operator
The metric tensor only gives access to intrinsic shape properties. To compute non-
intrinsic properties like curvatures, it needs to be complemented by the second
fundamental form. If n : ω → S is the smooth unit surface normal field, it is
given as

hαβ = −n · aα,β = −n · x,α,β = −nkxk,α,β
As the normal is orthogonal to x,α we have

0 =
∂

∂θβ
(nkxk,α) = nk,βxk,α + nkxk,α,β

and thus
hαβ = n,β · x,α = n,β · aα (2.4)

Written in this form, it becomes apparent that second fundamental form captures
changes in the normal field projected to the tangent plane TpS. In fact, it is suffi-
cient to consider only this projection: Because of ‖n‖ = 1 we have

0 =
∂

∂θβ
(nknk) = 2nknk,β = 2n,β · a3

i.e. the normal component of n,β vanishes. For two arbitrary directions s, t ∈ R2

at a point u ∈ ω the expression sαhαβtβ evaluates to the normal change in direc-
tion aαs

α projected onto aαt
α. While changes in the surface normal intuitively

correspond to surface curvature, the second fundamental form is “contaminated”
by the shape deformation caused by the parameterization. To subtract the influ-
ence of the parameterization, we divide by the metric tensor which yields the
shape operator as

wβα := hαγg
γβ

The difference between shape operator and second fundamental form becomes ob-
vious when one considers a spherical surface S. One verifies, that on a sphere the
shape operator equals identity in each point which correspond to our intuition of
constant curvature in all directions, while the second fundamental form evaluates
to the metric tensor in this case and thus varies across the surface.

For a smooth parameterization the second order derivatives x,α,β and x,β,α
are equal and so the second fundamental form as well as the shape operator are
symmetric. The shape operator can therefore be diagonalized and its eigenvectors
correspond to the principal curvature directions, i.e. the directions of minimal
and maximal curvature on the surface while the associated eigenvalues give the
curvatures in these directions. For a unit sphere, the shape operator equals identity
and thus the curvature is constant over all directions.
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Finally, the eigenvalues κ1 and κ2 associated with the principal curvature di-
rections are called principal curvatures. They can be averaged in two different
ways: The mean curvature is simply defined as the mean κmean = 1

2
(κ1 + κ2).

In contrast, the Gaussian curvature is defined as the product of the principle cur-
vature κ = κ1κ2. While the shape operator itself, principle curvatures and mean
curvature are non-intrinsic properties, the famous ‘Theorema egregium” by Gauss
states that Gaussian curvature is surprisingly an intrinsic property, i.e. it does not
change under isometries and can be expressed in terms of the metric tensor alone.

2.1.3 Functions on Surfaces
At some point it will be necessary to consider functions defined on a regular sur-
face S. Just like functions defined on the Euclidean space Rn, we can take deriva-
tives or integrate these functions. The concept of smoothness, differential and
integral can be easily generalized using parameterizations. We consider a func-
tion F : S → Rn. We say F is smooth in a point p ∈ S, if there exists a open
neighborhood V ⊂ S around p and parameterization x : ω → V such that F ◦ x
is smooth. It can be shown, that this definition is independent of the choice of x.
We call F smooth, if it is smooth in every point p ∈ S.

Slightly more general is the case of a function x̃ : S̄ → S that maps between
two surfaces S̄ and S as shown in Figure 3.2. However, as S ⊂ R3 it can be
considered as functions taking values in R3 and the above definition of smoothness
applies as well. The differential Dx̃ of such functions at a point p̄ = x̄(θ1, θ2) is
defined as the linear map

Dp̄x̃ : Tp̄S̄ → Tx̃(p̄)S

between the tangent spaces specified as follows: For a tangent vector v ∈ Tp̄S̄ we
consider an arbitrary curve c : (−1, 1)→ S̄ with c(0) = p̄ and ċ = v and map it
to the curve e := x̃ ◦ c on S. The differential is then set to the tangent at x̃ ◦ c, i.e.

Dp̄x̃(v) := ė|t=0

It can be shown, that the differential Dp̄x̃ is well defined in this way and that it is
in fact a linear map.

We now turn back to the case of a smooth real valued function F : S → R on
the surface S. In this case the differential becomes a linear function

DpF : TpS → R

as TF(p)R and R are isomorphic. According to the Riesz representation theorem
there exists a uniquely determined tangent vector∇SF ∈ TpS, such that

∇SF · v = DpF(v)
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for all v ∈ TpS. This tangent vector ∇SF is called the surface gradient of F.
Just as the gradient of functions defined on Euclidean spaces, it points into the
direction in which the function F increases most.

To integrate a function F : S → R over the surface S, we make again use of
the parameterization x : ω → S and set∫

S

F dS :=

∫
ω

F ◦ x (det g)
1
2 dω

where the factor (det g)
1
2 accounts for the change in area imposed by the parame-

terization x as given by Equation 2.3. This definition can be shown to be invariant
under changes of the parameterization. While for the sake of simplicity this def-
inition uses a single parameterization of the entire surface S, the surface integral
can be defined in a similar way using local parameterizations (see e.g. [dC76]).

We finally state a generalized integral transformation theorem for surfaces that
directly follows from this definition. Again, we consider a map x̃ between surface
S̄ and S as well as a real valued function F : S → R on S. Both surfaces are
parameterized over ω by x̄ and x respectively such that x̃ = x ◦ x̄−1 (see Figure
3.2) and we set F̄ = F ◦ x̃. In this situation we have∫

S

F dS =

∫
ω

F ◦ x (det g)
1
2 dω

=

∫
ω

F̄ ◦ x̄ (det g)
1
2 dω =

∫
S̄

F̄ (det gḡ−1)
1
2 dS̄

i.e. the area elements are related by

dS = (det gḡ−1)
1
2 dS̄ (2.5)

2.2 Triangle Meshes

While large parts of the theory in this thesis are illustrated and valid in the smooth
setting of a regular surface, for computer graphics applications it is primarily the
discrete case of a piecewise affine surface S that is of importance. In computer
graphics, piecewise affine surfaces occur almost naturally as the output of many
different geometry acquisition devices and techniques. Moreover, most rendering
algorithms also expect surfaces in this representation. As an alternative to smooth
regular surfaces, we thus consider the case of a surface S given as a triangle mesh.
To formalize this, we define an abstract mesh connectivity as a tupleM = (V, T )
where V is a set of vertex indices and T ⊂ V 3 is a set of triangular faces.

18



2.2. TRIANGLE MESHES

With each vertex v ∈ V we associate a vertex coordinate xv ∈ R3. Using
these vertex coordinates, each abstract face T ∈ T with T = (v1, v2, v3) defines a
triangle TS ⊂ R3 in the Euclidean space as

TS := {λ1x
v1 + λ2x

v2 + λ3x
v3|λ1 + λ2 + λ3 = 1, λi > 0} .

i.e. TS is obtained by barycentric interpolation of the positions xv of the triangle’s
vertices. We will write |TS| to denote the area of the triangle TS . The fact that S
is represented by the triangle meshM and vertex positions (xv)v∈V can now be
formalized as

S =
⋃
T∈T

TS .

An illustration is given in Figure 2.3.
Often a second surface S̄ is considered that is also given as a triangle mesh,

with the same connectivityM but different vertex coordinates. Its vertex coordi-
nates are denoted by (x̄v)v∈V so that

S̄ =
⋃
T∈T

TS̄ .

where TS̄ is defined analogous to TS .
Some shorthand notation will be handy to describe the mesh connectivity. A

vertex v ∈ V appearing in a tuple T ∈ T is said to be incident with T and we write
v ∈ T . If two vertices v, w ∈ V appear in consecutive order in some tuple T ∈ T
we write (v, w) ∈M to denote this fact. If either (v, w) ∈M or (w, v) ∈M the
vertices are said to be adjacent. The adjacency pattern of vertices in the mesh is
compactly represented in the adjacency matrix denoted byMvw that is defined as

Mvw =

{
1 if (v, w) ∈M
0 otherwise

For any subset H ⊂ V of the vertices, a symbol Hv is defined as

Hv =

{
1 if v ∈ H
0 otherwise

Regular surfaces are a special case of so called two dimensional manifolds.
In particular, their definition requires the existence of a homeomorphism around
each point p ∈ S that maps the surface to the plane. Intuitively this means,
that the surface locally resembles a bended plane. In analogy, a meshM is said
to be manifold if at each edge (v, w) at most two faces meet. In this case, the
two triangles can be unfolded into the plane. This becomes impossible if more
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than two faces are adjacent. Throughout this thesis we assume that meshes are
manifold if not stated otherwise.

The notion of orientability of regular surfaces can also be generalized to the
discrete case: A mesh is called oriented, if for any two triangles T 1, T 2 ∈ T
sharing a common edge {v, w}, the two vertices v and w appear in opposite order
in the ordered 3-tuples T 1 and T 2. It is thus called orientable if it can be oriented
only by permutation of tuples T ∈ T . This discrete notion of oriented meshes
does in fact relate to smooth normal fields on regular surfaces: For each triangle
T = (v1, v2, v3) a normal for TS can be defined by taking the cross product of two
edges, i.e.

nT = (xv2 − xv1)× (xv3 − xv1)/‖(xv2 − xv1)× (xv3 − xv1)‖

The resulting normal field is consistently oriented if and only ifM is oriented.

2.2.1 Functions on Triangle Meshes

Section 2.1.3 introduced differential and integral for real valued functions F de-
fined on regular surfaces S. In the discrete case, where the surface is represented
by a triangle mesh, it is common in computer graphics to require F |TS to be affine
within each triangle TS . This is advantageous as such functions allow for compact
storage and efficient evaluation. In particular, if F is continuous in addition, it is
uniquely determined by its values (F (xv))v∈V on the vertices ofM.

We apply the same restriction to functions x̃ : S̄ → S between surfaces. If
x̃ continuous, it is then uniquely determined by its values xv := x̃(x̄v) on the
vertices x̄v ∈ S̄. In this situation S = x̃(S̄) is again represented by the same
mesh but with vertex coordinates (xv)v∈V and we have TS = x̃(TS̄). The discrete
setup for a map between surfaces is illustrated in Figure 2.3. In contrast to regular
surfaces, representing the surface S by a triangular mesh does not require the
existence of a parameterization x : ω → S. Nevertheless, when generalizing
potentials defined on regular surfaces to triangle meshes, it will be handy to have
a discrete counterpart for the parameterization. In the case of a triangular mesh,
we also assume that the inverse parameterization x−1 : S → ω is piecewise
affine on the triangles TS and set uv := x−1(xv). Having a piecewise affine
parameterization for a triangle mesh is in fact very helpful for many geometry
related tasks in computer graphics and Part II will describe computational methods
to find these.

As the image of S under the piecewise affine function x−1, the domain ω =
x−1(S) is again given as triangle mesh with connectivity M and vertex coordi-
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Figure 2.3: Notation for a map x̃ between two surfaces in the discrete case . Both
surfaces are given as triangle meshes with the same connectivity M but with
different vertex coordinates. On S the vertex coordinates are denoted by (xv)v∈V
and on S̄ by (x̄v)v∈V .

nates (uv)v∈V (see Figure 2.3). In particular

ω =
⋃
T∈T

Tω

where the triangle Tω is defined analogously to TS .

2.2.2 Discrete Parameterizations
With the piecewise affine parameterization x for a surface S given as triangle
mesh, the discrete setup described so far parallels the smooth case of a regular
surface. It is therefore possible to take over concepts discussed in context of
regular surfaces like the metric tensor to the discrete case. In fact, as x|Tω is
smooth in the interior of Tω, the gradient, metric tensors, and the area element as
defined in Section 2.1 exist. Moreover, as these quantities are expressed in terms
of the first order derivatives of x, they become constant within each triangle.

To find expressions for these quantities, it is convenient to define a set of piece-
wise affine, continuous basis functions Ψv : ω → R within each triangle Tω,
uniquely determined by

Ψv(u
w) = δvw .

In fact, one easily verifies that the family (Ψv)v∈V is a basis for the space of
continuous piecewise affine functions on the triangulationM of ω. In this basis,
the parameterization x is given as

x = Ψvx
v (2.6)
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and analogous expressions hold for x̄. Partial derivatives x,α are immediately
found as

x,α = Ψv,αx
v (2.7)

and by definition the metric tensor g is then given as

gαβ = Ψv,αΨw,βx
v
kx

w
k .

It remains to find an expression for the partial derivatives Ψv,α of the basis func-
tions. To this extent we consider a single triangle T = (v1, v2, v3). The restriction
of the basis function Ψvi |Tω is found as the affine map

Ψvi |Tω(u) =
(uv

i+2 − uv
i+1

)Rπ/2(u− uv
i+1

)

(uvi+2 − uvi+1)Rπ/2(uvi − uvi+1)
(i not summed)

where Rπ/2 denotes rotation by π/2 in the plane and superindices i are understood
modulo 3. Its partial derivatives are given by

Ψvi,α|Tω =
(uv

i+2

β − uvi+1

β )R
π/2
βα

ATω
(i not summed)

with
ATω := (uv

i+2

β − uvi+1

β )R
π/2
βγ (uv

i

γ − uv
i+1

γ ) (i not summed)

Within the triangle Tω all but three basis functions Ψvi for i = 1, 2, 3 vanish and
so do their partial derivatives. The restriction of the metric tensor to Tω is thus
given as

gαβ|Tω =
(uv

i+2

γ − uvi+1

γ )(uv
j+2

δ − uvj+1

δ )R
π/2
γα R

π/2
δβ x

vi

k x
vj

k

(ATω)2
(i,j summed)

Finally, we turn to integrals of functions on surfaces given as triangle meshes.
Throughout this thesis we consider potentials on surfaces that take the form

E =

∫
S

e(g) dS

where e : S → R is a real valued density function defined on the surface and that
can be expressed in terms of g or at least in terms of Ψvi,α. In both cases, the
density e(g)|TS is constant on each triangle and we can write

E =

∫
ω

e(g)(det g)
1
2 dω =

∑
T∈T

e(g|Tω)(det g|Tω)
1
2 |Tω| =

∑
T∈T

e(g|Tω)|TS|

In the discrete case such potential therefore become a simple area weighted sum
over all triangles.
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CHAPTER 3

BASICS ON DEFORMATIONS AND ELASTICITY

While this thesis considers generalizations of surface deformations, the starting
point and initial motivation are certainly physical deformation processes as they
surround us in everyday life when we come in touch with soft objects as rubber
bands, seats, pillows, cloth, clay or skin. As a motivation and to understand, how
such deformations can be modeled mathematically, this chapter not only gives
essential basics on mathematical deformations but also looks at how these are
described in physics, where deformations have been studied since the early exper-
iments of Robert Hooke in the 17th century. While physics describes materials of
all kinds and flavors, we pick the rather simple linear elastic model for illustration.
Primarily interested in static equilibrium configurations rather than dynamics, we
focus on the elastic potential that characterizes such states. This chapter starts
with the theory for elastic solids and then turns to deformation of surfaces.

3.1 Solid Body Deformations
We review here some fundamental concepts from the theory of elasticity and intro-
duce the linearized elastic model. It is based on three fundamental assumptions:
the continuum hypothesis, the assumptions that local displacements are small and
the assumption of a linear stress/strain relation (Hooke’s law). The discussion
concentrates on aspects most relevant for this thesis and we refer the interested
reader to [GZ02] for more details.

Consider an elastic solid body B̄ ⊂ R3 which is deformed under the influence
of external forces into a shape B ⊂ R3. We assume that both shapes are param-
eterized over a common domain Ω ⊂ R3 by smooth maps r̄ and r respectively in
terms of a system θ1, θ2, θ3 as illustrated in Figure 3.1. The deformation is then
given as the map r̃ = r ◦ r̄−1. At each point r̄(θ1, θ2, θ3) of B̄ taking derivatives
in coordinate directions θi yields a local frame given by

āi = r̄,i .

The analogous expression holds for the deformed body B. To ensure that the
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CHAPTER 3. BASICS ON DEFORMATIONS AND ELASTICITY

Figure 3.1: Geometry of a solid body in undeformed and deformed configura-
tions.

system āi is a well-defined coordinate frame, we require that the maps r̄ and r are
regular, i.e. their Jacobians are of full rank. The just defined frame vectors āi are
also called covariant base vectors. For later, we define a dual coordinate frame of
contravariant base vectors āi as the uniquely defined set of vectors satisfying

āi · āj = δji

where δji = δij = δij denotes the Kronecker’s delta function.
Considering B̄ and B as three dimensional regular surfaces, we can now gen-

eralize the covariant metric tensor for both parameterizations as

Ḡij = āi · āj and Gij = ai · aj .

and likewise the contravariant metric tensor Ḡij andGij respectively as the matrix
uniquely determined by

ḠikḠ
kj = GikG

kj = δji

Similar to the metric tensor g on surfaces defined in Section 2.1.1, the tensor
G can be used to find local shape deformation (in area, angle, lenght, and volume)
caused by the parameterizations.

3.1.1 Stress, Strain and Hooke’s law
Relative displacements between infinitesimal particles in the body are represented
by strain, a local deformation measure that captures how much the deformation
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3.1. SOLID BODY DEFORMATIONS

r̃ differs from a rigid body transformation. Mathematically, it is defined as the
difference in squared length of a differential line element d̄r inside the body B̄ and
the corresponding line segment dr insideB. As the elongation of the line element
d̄r can vary with its direction, strains in all directions are compactly represented
by a tensor — the Green-Lagrange strain tensor — which is given as

γij =
1

2
(Gij − Ḡij) . (3.1)

Denoting the preimage of the differential line element dr under r in parameter
space by dθ we have

d̄r
i

= r̄i,jdθ
j and dri = ri,jdθ

j .

The strain in direction dθ can now be conveniently expressed using the Green-
Lagrange strain tensor:

2γijdθ
idθj = (Gij − Ḡij)dθ

idθj (3.2)

= Gijdθ
idθj − Ḡijdθ

idθj (3.3)

= rk,irk,jdθ
idθj − r̄k,ir̄k,jdθidθj (3.4)

= drkdrk − d̄rkd̄rk (3.5)
= ‖dr‖2 − ‖d̄r‖2 (3.6)

If an elastic solid body is deformed, restoring forces act in each point of the body
to restore its original undeformed configuration. A simple example is the one
dimensional case of a spring. In this case the restoring force is given by Hooke’s
law

F = −k · x (3.7)

which relates the restoring force F and the current strain (i.e. elongation or com-
pression) of the spring x, where k is the elastic constant of the spring. We see
from the above expression, that the magnitude of the restoring force F is propor-
tional to the strain x. Moreover, it points in the opposite direction of the strain
thus seeking to restore the system to its equilibrium.

In order to compress or extend a spring by a certain length x it is necessary
to apply an external force of equal magnitude as the restoring force F but oppo-
site direction over the distance x. The expression for the corresponding work is
obtained by integrating this force along the direction of x which yields

E =
1

2
kx2 .

This work is stored in the spring as the elastic potential energy and the restoring
force F coincides with its negative gradient, i.e. at each time it aims to minimize
the elastic potential energy.
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In the three dimensional case, there are besides compression and elongation
along an axis several other ways to deform a solid, like bending, shearing or twist-
ing. Each of these ways contributes its own amount of elastic potential energy. In
general, the elastic potential energy is thus a function of the three dimensional
strain tensor γij . For elastic materials, the elastic energy’s density function is
given by

e =
1

2
Eijklγijγlk

where Eijkl denotes the elasticity tensor that characterizes the material. The elas-
tic energy itself is then obtained by integrating this density function over the unde-
formed body B̄. Even though, as a tensor of order four Eijkl has 81 components,
it can be shown, that it must satisfy the following symmetry condition

Eijkl = Eklij = Ejikl = Eijlk

which leaves only 36 degrees of freedom. It turns out, that for energetic reasons
the number of independent entries is further reduced to 21. In analogy to the one
dimensional case, the restoring forces can be obtained from the potential elastic
energy by taking the derivatives with respect to the strains γij which yields

τ ij :=
∂e

∂γij
= Eijklγlk . (3.8)

The above equation is the tensor expression of Hooke’s law. The expression τ ij

is called stress tensor from which the restoring forces in all directions can be
derived. To see this, consider an arbitrary surface S inside the deformed body
B that separates it into two disjunct parts B− and B+. On the surface we fix an
infinitesimal surface element dS around some point O with unit normal n. We
can think of the elastic body B+ exerting forces on the elastic body B− across the
surface S. The forces acting on dS are equivalent to a resulting force vector t at
O. Denoting the components of n with respect to the local frame ai by ni and
those of t with respect to ai by ti respectively, it can be shown, that this resulting
force is then given by

ti = τ ijnj . (3.9)

3.1.2 Isotropic Materials
Mathematically, the most simple materials are isotropic elastic materials. For
such materials the elasticity tensor has no preferred direction, i.e. a force will
give the same displacement (relative to its direction) independent of the direction
in which the force is applied. Many materials, for example metallic alloys like
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3.2. DEFORMATIONS OF SURFACES

steel or aluminum, exhibit such behavior when strained within certain limits. For
isotropic materials the elasticity tensor can be written in a particular simple form

Eijkl =
E

1 + ν

(
ν

1− 2ν
ḠijḠkl +

1

2

(
ḠikḠjl + ḠilḠjk

))
with now only two independent material parameters E and ν. The first parameter
E is called Young’s modulus and describes the material’s unidirectional stiffness.
It is closely related to the elastic spring constant k in Equation 3.7: In fact, a
bar made from an isotropic elastic material can be considered as a spring whose
elastic constant k is proportional to Young’s modulus E. The second parameter
ν is called Poisson’s ratio. Intuitively, it describes the strain (i.e. extension or
contraction) of a piece of material relative to a unconstrained direction, if a force
acts on it in an orthogonal direction. As illustrated in Figure 11.3, materials with
high Poisson’s ratio like rubber but also steel shrink in orthogonal unconstrained
direction when a uniaxial force is applied. In contrast, materials with a Poisson’s
ratio near zero (e.g. cork) do not change in size along unconstrained direction.
Finally, there exists a class of so called auxetic materials with a negative Poisson’s
ratio that stretch perpendicularly to the applied force.

3.2 Deformations of Surfaces

The general deformation setup considered in this thesis is shown in Figure 3.2. It
parallels the setup for elastic solids as described in the last section, but essentially
replaces solids by surfaces. The deformation itself is given as a map x̃ defined
on the undeformed surface S̄ that maps each point to its corresponding point on
the deformed surface S. Similar to elastic solids, we are looking for an elastic
potential for surfaces.

While elastic surfaces of infinitesimal thickness do not exist in the real world,
specialized deformation models have been developed for shells, flexible thin walled
structures with a high ratio of width to thickness. In general shells assume a
curved, undeformed initial configuration, into which they relax in the absence
of external forces. Examples can be found in structures that are either naturally
curved like leaves, egg shells, and fingernails or put into that shape by plastic de-
formation like cans, carton boxes, car bodies, etc. For completeness we mention
two special cases of shells: Membranes are shells that resist only material stretch
and shear but not bending. A membrane deformed by pure bending will not re-
lax to its initial configuration in the absence of other forces. Natural counterparts
for membranes can be found in most textiles so that in computer graphics mem-
brane models are typically used for cloth simulation (see e.g. [HB00, VCM05]).
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Figure 3.2: The surface deformation scenario: The original surface S̄ is deformed
by a map x̃ into a surface S. Both surfaces are parameterized over a common
domain ω by two parameterizations x̄ and x.

Another popular special case of shells are thin plates which relax to a flat rest
configuration as e.g. steel plates or leaves of paper.

3.2.1 Elastic Shells
In contrast to the solid body model described in the last section, shell models
represent shells by their middle surface S only. In these models the shell’s defor-
mation is completely determined by the deformation of its middle surface which
is a valid approximation if the shell’s thickness is constant and small. One way to
obtain a shell model is to embed S into an appropriate sequence of elastic 3D bod-
ies whose thickness vanishes in the limit. Applying given forces to these bodies
results in deformations that can be derived by solving the constitutive equations
of continuum mechanics. The deformation of the shell’s middle surface is then
obtained by taking the limit of solid body deformations.

As real shells always have a finite thickness, physical shell models have no
natural counterpart in the strict sense, but only approximate the behaviour of real
shells. Nevertheless, they prove very useful in the numerical treatment of thin
shells, as the high ratio of width to thickness complicates meshing and hinders
the application of finite element methods for solid bodies [GHDS03]. One of the
simpler physical shell models is the Kirchoff Love model for thin shells which we
summarize below. Our description of the Kirchoff Love theory roughly follows
[COS00] but additional details can also be found in [GZ02].

Again, we consider the shell as a thin body B̄ and B that extends around
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3.2. DEFORMATIONS OF SURFACES

its middle surface S̄ and S. In fact, we assume that the shell’s body in both
configurations is thin enough to be represented by its middle surface only. As
explained in Section 2.1 at each point of the surfaces coordinate systems can be
defined by taking derivatives of the parameterizations. In context of shells, the
normal vectors ā3 and a3 are also referred to as shell director.

Assuming a sufficiently small shell thickness, the shell B̄ can be parameterized
in the following way

r̄(θ1, θ2, θ3) := x̄(θ1, θ2) + θ3ā3(θ1, θ2) with − h

2
≤ θ3 ≤ h

2

where h denotes the thickness of the shell. Now, the fundamental assumptions of
the Kirchoff Love model are, that the deformation does not change the thickness of
the shell and that directions orthogonal to the middle surface S̄ remain orthogonal
to the deformed middle surface S. In particular, this assumption holds for the
shell director ā3. As the shell thickness is small, the deformed shell B is therefore
given by a parameterization similar to the above

r(θ1, θ2, θ3) := x(θ1, θ2) + θ3a3(θ1, θ2) with − h

2
≤ θ3 ≤ h

2
.

As the deformation r̃ of the shell B̄ is equivalent to the composition of the pa-
rameterizations r ◦ r̄−1, it is thus completely determined by the deformation of its
middle surface S̄.

For the shell case, the first fundamental form Gij of r (and analogously Ḡij

for r̄) now takes the following form:

Gαβ = r,α · r,β
=
(
x,α + θ3a3,α

)
·
(
x,β + θ3a3,β

)
= gαβ + θ3x,α · a3,β + θ3x,β · a3,α + (θ3)2a3,α · a3,β

and by Equation 2.4 this can be further simplified using the second fundamental
form hαβ to

Gαβ = gαβ − 2θ3hαβ + (θ3)2a3,α · a3,β

For the five remaining entries of the Gij we obtain:

G33 = r,3 · r,3 = a3 · a3 = 1

Gα3 = G3α = r,α · r,3
=
(
x,α + θ3a3,α

)
· a3

= x,α · a3 + θ3a3,α · a3 = 0
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In the last equality the term x,α · a3 vanishes by definition of a3. The second term
vanishes because of a3 · a3 = 1 and thus:

0 =
∂

∂θα
(a3 · a3) = 2a3,α · a3

Plugging these expressions for the first fundamental forms Ḡ and G into Equation
3.1 we find the Green-Lagrange strain tensor as

γαβ =
1

2
(gαβ − ḡαβ) + θ3

(
hαβ − h̄αβ

)
γα3 = γ3α = γ33 = 0

to first order in the shell thickness h which is a reasonable approximation un-
der our assumption that h is small. For later reference, we further introduce the
following two abbreviations for the first and second terms in the strain tensor:

ααβ :=
1

2
(gαβ − ḡαβ) (3.10)

βαβ := hαβ − h̄αβ (3.11)

The tensor ααβ is also referred to as membrane strain as it captures the strain
components within or tangential to the surface S̄. In contrast, the difference of the
second fundamental forms βαβ is called bending strain since it measures bending,
i.e. changes in the curvature of the shell. From these expression it also follows,
that under the above stated assumptions of the Kirchoff-Love model all relevant
strain measures within the shell can be deduced from the deformation of the mid-
dle surface S̄, more specifically from the first and second fundamental forms only.

Using the above strain tensor and the general stress/strain relation given Equa-
tion 3.8 it is possible derive an expression for the stress tensor τ ij in terms of
gij , hij , and θ3. However, instead of considering the actual stress at each point
of B, the classical shell model introduces another simplification by considering
only an equivalent system of forces and moments resulting on the shell’s middle
surface. Under the assumption of an isotropic material, corresponding tensors nαβ

and mαβ are found (see [GZ02] Chapter 12) by integrating the actual stresses in
the direction of the shell director through B as

nαβ =
Eh

(1− ν2)
Hαβγδαγδ (3.12)

mαβ =
Eh3

12(1− ν2)
Hαβγδβγδ

with Hαβγδ = νḡαβ ḡγδ +
1

2
(1− ν)

(
ḡαγ ḡβδ + ḡαδḡβγ

)
.
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As the tensor nαβ depends only on the first fundamental form, it is also referred
to as membrane stress tensor while mαβ is called the bending stress tensor. In
analogy to the general case, the elastic potential energy for a shell is now obtained
by taking the integral with respect to membrane and bending stresses. Its density
function is therefore given as

e = emembrane + ebending where (3.13)

emembrane :=
1

2

Eh

(1− ν2)
Hαβγδααβαγδ (3.14)

ebending :=
1

2

Eh3

12(1− ν2)
Hαβγδβαββγδ (3.15)

We like to point out some simple observations that follow directly from the above
expression of a shell’s elastic potential. First, we remark that e falls into two sep-
arate terms that capture tangential deformations, i.e. membrane strain and surface
bending, i.e. bending strain respectively. It therefore makes sense to refer to these
terms as membrane potential and bending potential. While membrane potential
is a function of differences in the metric tensor of the middle surface, the bend-
ing potential is expressed in terms of differences in the second fundamental form.
Moreover, it can be observed that the bending potential is of third order in the
shell thickness h while membrane potential is only of first order. With decreasing
shell thickness, a shell’s deformation behavior is thus dominated by membrane
stresses. For this reason, many discrete models for cloth simulation omit bending
stresses completely.

3.2.2 Membrane Potential and Parameterization

In Part II we will discuss potentials for surface parameterization. As will be ex-
plained there, surface parameterization can be interpreted in context of deforma-
tions with a planar undeformed configuration S̄ ⊂ R2. To show similarities with
these potentials, we further rewrite the membrane potential for this special case.
While in the above form the membrane potential emembrane is given as a function
of the difference gij − ḡij and ḡij , it turns out, that it actually solely depends on
quotient of the metric tensors:

emembrane =
1

8

Eh

(1− ν2)
Hαβγδ (gαβ − ḡαβ) (gγδ − ḡγδ)

=
Eh

8(1− ν2)
Hαβγδ (gαβgγδ − gαβ ḡγδ − ḡαβgγδ + ḡαβ ḡγδ) .
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Defining the quotient of the metric tensors as kαβ = ḡαγgγβ and using the symmetry
of the metric tensors forms, we find the following simple relations:

ḡαβgαβ = ḡαβgβα = kαα

gαβgαβ = gαβgβα = δαα = 2

ḡαγgαβ = ḡαγgβα = ḡγαgαβ = kγβ

and thus

Hαβγδgαβgγδ = νḡαβ ḡγδgαβgγδ +
1

2
(1− ν)

(
ḡαγ ḡβδgαβgγδ + ḡαδḡβγgαβgγδ

)
= ν(kαα)2 + (1− ν)kγβk

β
γ

Hαβγδgαβ ḡγδ = Hαβγδḡαβgγδ

= νḡαβ ḡγδgαβ ḡγδ +
1

2
(1− ν)

(
ḡαγ ḡβδgαβ ḡγδ + ḡαδḡβγgαβ ḡγδ

)
= 2νkαα + (1− ν)kαα = (ν + 1)kαα

Hαβγδḡαβ ḡγδ = νḡαβ ḡγδḡαβ ḡγδ +
1

2
(1− ν)

(
ḡαγ ḡβδḡαβ ḡγδ + ḡαδḡβγ ḡαβ ḡγδ

)
= 4ν + 2(1− ν) = 2ν + 2 .

Assembling these expression, the membrane energy for an isotropic material is
found as

emembrane =

Eh

8(1− ν2)

(
ν(kαα)2 + (1− ν)kγβk

β
γ − 2(ν + 1)kαα + 2ν + 2

)
. (3.16)

If k denotes the matrix with entries kαβ , we have kαα = tr(k) and further kγβk
β
γ =

tr(k2). It then becomes obvious, that the membrane potential is only a function
of the singular values of the quotient k and of the squared quotient k2.

In Part II we consider mappings from a flat domain onto a surface and derived
parametric deformation measures. The above described elastic shell model can
also be applied to this special case. For a flat undeformed configuration, x̃ maps
from a planar domain and we can define the metric tensor g̃ of x̃ analogously to g
as

g̃αβ := x̃i,αx̃i,β = xi,γx̄
−1
γ,αxi,δx̄

−1
δ,β = gγδx̄

−1
γ,αx̄

−1
δ,β =

(
(∇x̄−1)tg∇x̄−1

)
αβ

and we have

tr(k) = tr(g̃) = λmax + λmin and tr(k2) = tr(g̃2) = λ2
max + λ2

min (3.17)
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where λi denotes the eigenvalues of g̃. The elastic energy thus depends only on the
eigenvalues of the metric tensor g̃. This property is characteristic for potentials
used for surface parameterization. To allow for better comparison, all of these
potentials as they are discussed in Part II will be given in this form.
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Part II

Deformation Potentials for Surface
Parameterization
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The visual perception of shapes is to a large part dominated by their surface.
Consequently, as a science concerned with the appearance of objects, computer
graphics has a great need for techniques that help to describe, store, compress,
manipulate, and visualize surfaces. One of the most fundamental and oldest tech-
niques in this context are surface parameterizations. Mapping from complicated
surfaces in three (or higher) dimensional space into the familiar Euclidean space,
parameterizations help to cope with the inherent complexity of surfaces.

Long before their use in computer graphics, parameterizations therefore have
found widespread applications in many other fields as e.g. mathematics or geogra-
phy. The most commonplace incarnation of a parameterization is the geographic
map, that allows to treat a complex shaped three dimensional terrain as a flat, two
dimensional object.

In computer graphics, while originally used primarily for texture mapping,
parameterizations are today one of the most powerful tools in the geometry pro-
cessing toolchain. Applications range from remeshing (the task of finding a trian-
gulation with certain properties for a given surface), surface reconstruction, and
surface painting [LPRM02b] to surface editing [BMBZ02], shape analysis, shape
matching and geometry images [GGH02].

Formally, the parameterization problem can be put as follows: Given an ori-
entable genus zero surface patch S find a homeomorphism x̃ that maps from a
planar set S̄ ⊂ R2 to S (see Figure 3.3). (In case of a regular surface S, x̃ is
also required to by differentiable with full rank Jacobian in accordance with the
definition of regular surfaces given in Section 2.1.)

Solutions to the parameterization problem as stated above are certainly not
unique: Concatenating an arbitrary parameterization x̃ e.g. with a bijective map of
the plane onto itself yields again a parameterization. However, in most computer
graphics applications, parameterizations with certain shape preserving properties
are desired. If a flat shape in S̄ is mapped to S via the parameterization, its geom-
etry, i.e. angles, its area or length should be preserved as much as possible. Maps
that perfectly preserve all these shape properties are also called isometric. The
requirement of a shape preserving parameterization is in perfect analogy to geo-
graphic projections like e.g. the Mercator projection that is designed to preserve
angles. A map that renders shape arbitrarily deformed gives a false impression of
the depicted terrain and cannot be used for navigation.

Finding a shape preserving parameterization can also be regarded as a spe-
cial case of the general surface deformation problem described in Section 3.2 (see
Figure 3.3). For parameterization, we simply restrict our attention to planar un-
deformed surfaces S̄. Moreover, in contrast to the classical surface deformation
problem, where the surface S̄ is fixed and a deformed surface S is searched for, we
solve for parameterization the following inverse problem: Find a flat “ursurface”
S̄ and associated deformation x̃ such that the shape deformation is minimal. The
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Figure 3.3: Definition of a parameterization as a (smooth) function that maps
from a set S̄ ⊂ R2 to the surface S. In gray: Surface parameterization can be
regarded as a special case of the general surface deformation setup described in
Section 3.2 where the undeformed surface S̄ is flat.

notion of shape deformation in this context is defined via the potential.
Using this interpretation, it is in fact possible to find parameterizations using

the elastic shell model (or more precisely the elastic potential) as introduced in
Section 3.2.1. However, parameterizations obtained in this way are not well suited
for most graphics applications as we will see in Chapter 4. After revising a list of
desirable properties, that chapter will therefore derive a novel potential that leads
to parameterizations more apt to applications in computer graphics.

In Chapter 7 we will then turn to a special class of objects: Fabric covered
surfaces as e.g. seats are either made from or covered with a fabric that is initially
supplied in a planar form. This fabric is then put into a desired shape during the
production process. The resulting fabric deformation depends not only on the final
shape but also on the fabrics materials. We argue that for objects of this class tex-
ture maps are desirable which imitate the physical, material specific deformation
pattern rather than minimizing geometric shape deformation. To compute such
material specific texture maps, we revisit the elastic shell model and derive a pa-
rameterization algorithm. The resulting potentials and techniques are also put to
work in an alternative application: We will see how they can be used to compute
sewing patterns for upholstery in industrial design.

The parameterization problem as stated above is only well posed if S is mani-
fold and of genus zero. While the genus can be reduced by cutting the surface into
charts in a preprocessing step, manifoldness is more difficult to fix. Moreover,
in practice surfaces are often corrupted by triangulation artifacts. Chapter 8 pro-
poses an approach that circumvents these problems and allows to apply standard
parameterization methods to triangulations with inconsistencies.
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CHAPTER 4

POTENTIALS FOR SURFACE PARAMETERIZATIONS

4.1 Introduction

When using a geographic map to navigate through a foreign territory we rely
on its property to respect the form and extent of shapes in some sense, i.e. the
distances, areas or angles. The more a map respects such metric properties the
easier it is to use it for navigation purposes. As argued in the introduction to this
part of the thesis, many tasks in computer graphics benefit from parameterizations
that respect shapes. By mapping a texture image onto a surface for instance we
usually want the image to appear on the surface without any visible deformation
or distortions like stretch, shear or shrink. An isometric parameterization is thus
highly desirable.

Unfortunately, it follows by Gauss’s “Theorema egregium” that a perfect shape
preserving parameterization does only exist for surfaces with vanishing Gauss cur-
vature, so called developable surfaces like plane or cylinder. In general, surfaces
do not have this property. This is in particular true for a sphere implying that there
is no geographic map of the earth that perfectly preserves all shapes. While the
Mercator projection for instance respects all angles, it does not respect areas and
distances. Although a perfect shape preserving map does not exist in general, ge-
ographic maps and parameterizations should respect shapes as much as possible.
The exact meaning of “as much as possible” in this context is clearly subject to
the underlying deformation potential. Its choice is critical for every parameteriza-
tion algorithm as it directly determines the quality and properties of the resulting
parameterization.

Due to the significance of the parameterization problem, many different po-
tentials have been proposed over the last years. In Section 4.2 we give a survey of
potentials that measure metric deformations. We also analyze there the impact of
metric properties like angle, area and length deformation on these potentials and
show up relations. In Chapter 5 then a novel potential for surface parameterization
is proposed, that measures metric deformations in terms of two geometric prop-
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erties, namely angle and area deformation. The relative importance of angle and
area preservation can be specified via a parameter. On surfaces for which no iso-
metric parameterization exists, the inherent trade off between angle and area can
thus be controlled by the user. Besides its clear relation to geometric properties,
our potential has two important desirable properties: First, it can be optimized in
a way that guarantees the admissibility of the parameterization, i.e. its bijectivity.
We propose to this extent a customized optimization algorithm whose details are
described in Chapter 6. Second, in contrast to many other potentials, our potential
can be optimized in the absence of further boundary constraints. The shape of the
domain S̄ is thus obtained naturally from the optimization of the potential and its
boundaries evolve freely to minimize the overall shape deformation. Finally, we
also present results of an evaluation of our method using a number of different
data sets and compare them to results obtained by prior methods in Chapter 6.

4.1.1 Parameterization of Triangle Meshes
In the smooth case, the surface S is regular and it must be orientable to support a
single parameterization covering the entire surface as outlined in Section 2.1. In
the discrete case, we make analogous assumptions on the triangle mesh M, i.e.
we assume a manifold and oriented mesh. Moreover, we assume the existence of
a fixed auxiliary parameterizations x : ω → S. This auxiliary parameterization
is convenient to simplify the following discussion of parameterization potentials
and algorithms. However, it serves only in the theoretical discussion and the final
parameterization method described in Chapter 6 does not rely on its existence.

According to the triangle mesh structure of S and we assume that both the
inverse of the auxiliary parameterization x and the sought-after parameterization
x̃ are affine maps within each triangle TS . In computer graphics parameterizations
x̃ were originally used for texture mapping. The coordinates x̄v ∈ S̄ are thus
often referred to as texture coordinates. It will sometimes be useful to consider
the inverse parameterization x̃−1 that maps the surface S into the domain S̄.

As outlined in Section 2.1 a surface S supports a single parameterization cov-
ering the whole surface only if S is orientable and of genus zero with at least one
boundary loop. Some parameterization methods work only for surfaces with a
single connected boundary loop. However, this is a purely technical limitation of
these methods and not necessary for the existence of a parameterization. Thus we
do not assume the surface S to have a single boundary loop. In general a surface S
might not fulfill these topological requirements, either because its non orientable
or has a higher genus. To parameterize such surfaces, automatic cutting and chart-
ing algorithms have been developed that can be applied in a preprocessing step.
These methods output several connected patches of genus zero that can then be
parameterized separately. Cutting down the surface into several patches (or charts)
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also reduces the Gaussian curvature and increases boundary length, which in turn
can in some cases drastically reduce shape deformation. On the other hand, a cut
is a discontinuity in the parameterization. Depending on the application, this can
also cause problems as e.g. visible cracks in texture mapping. In general, an appli-
cation specific tradeoff has to be made between the number of cuts and the quality
of the parameterization of the patches. However, cutting and charting algorithms
are in general beyond the scope of this thesis ( although we will come back to
them in Chapter 8). For simplicity, we assume in the following that the surface S
is connected and of genus zero.

4.2 Previous and Related Work on Parameteriza-
tion

As one of the most important tools in the geometry processing tool box, param-
eterization has been intensively studied in the last decades. While the number of
approaches is vast, recently excellent surveys have been compiled by Floater and
Hormann [FH05] and Hormann et al. [HLS07]. Instead of discussing each method
in detail, we will introduce in this section the fundamental approaches and refer
for details to these surveys. After giving an overview of approaches in this sec-
tion, the discussion in Section 4.2.2 will lie special emphasis on the employed
potentials.

In computer graphics, the parameterization problem was first addressed by
Bennis et al. [BVI91] who flatten a given surface by progressively laying out sur-
face geodesics in the plane. This concept of progressive surface unfolding was
subsequently used in many other approach like e.g. [SCOGL02], but also in com-
puter aided design for reverse engineering (see [AS04] and [YZS07] for a survey).
Progressive unfolding works well for nearly developable surfaces. However, on
general surfaces, the number and structure of patches or cracks is hard to control.

Based on earlier work by Tutte [Tut63, Tut60], the approach of Floater [Flo97]
was the first to guarantee a admissible parameterization, i.e. bijectivity of the map.
The texture coordinate for each vertex is chosen as a strictly convex combination
of the texture coordinates of its neighbors. It can be shown that these maps are
bijective if the boundary of the texture mesh is fixed on a convex shape. As shown
in [Hor01], the method of Floater fits into the so called edge-spring model. In this
model, parameterizations are computed as configurations of minimal energy of a
mass-spring model, where each vertex is associated with a mass and (half)edge
with springs of zero rest length. By choosing spring constants appropriately sev-
eral potentials can be minimized in this framework, among them the important
Dirichlet energy that is discussed in Section 4.2.2. All potentials that can be de-

41



CHAPTER 4. POTENTIALS FOR SURFACE PARAMETERIZATIONS

scribed by the edge-spring model require that texture coordinates at boundary
vertices have to be fixed, since otherwise the spring-mass system would simply
collapse into a single point.

After the seminal work of Floater, a large body of work concentrated on pa-
rameterizations that are not only admissible, but also minimize some kind of shape
deformation. Besides geometric properties, there exists also a class of approaches
[SGSH02, BTB02, SWB98, HC00] that optimize the parameterization for optimal
sampling of a given surface signal. Approaches of both kinds vary most of all in
the choice of the potential and the techniques for its minimization. The method
proposed in this part of the thesis also falls into the first category. We will have a
closer look on these approaches and the employed potentials in Section 4.2.2.

Much research has also been done on automatic cutting or charting algorithms
[SSGH01a, SH02, LPRM02a, JKs05], that cut surfaces of higher genus into charts
that are topologically equivalent to a disk. The charts can then be parameterized
in an independent second step. As the structure of cuts has a high influence on the
resulting deformation, separating cutting and parameterization is clearly subopti-
mal.

As an alternative, two fundamental approaches have been proposed: Meth-
ods following the first approach try to parameterize the surface not over a disk
but over a domain of matching topology. This approach is consequently called
non-planar parameterization. For closed genus zero surfaces such a domain is
the unit sphere and specialized methods have been developed (see [GGS03]). For
higher genus surfaces a domain with matching topology has to be found e.g. as
a simplified version of the original surface [EDD+95, LSS+98, KLP03] or as an
enclosing combination of several unit cubes ( so called polycube ) [THCM04].
The second principle approach is called global parameterization. Methods of this
class [GY03, SSP08] solve for an optimal parameterization and an abstract base
domain at the same time placing discontinuities or singular points where they
most effectively reduce shape deformation. Targeted at remeshing, some meth-
ods [RLL+06, TACSD06, KNP07, BZK09] also enforce placements that coincide
with certain surface characteristics as features, curvature lines or umbilical points.
We would like to note, that even though both non-planar and global parameter-
ization overcomes the restriction of planar parameterization, such methods are
limited to certain application where the higher complexity of the base domain is
not a problem. While, for example, it is easy to pattern a surface with regular
tiles using a planar parameterization, this task is not trivial for topologically more
complex domains.

Similarly to non-planar parameterization, cross parameterization methods (see
[SPR06] for a survey) also try to find a parameterization over a non-planar domain.
In contrast to non planar parameterization, this domain is not derived from the
surface itself, but given as an additional input. By establishing a homeomorphism
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between two given surfaces, cross parameterizations allow to transfer surface sig-
nals like high frequency detail, color, normal maps etc. from one surface onto
another. Other applications are morphing or shape matching.

Finally, efforts have recently been made to increase the speed and robustness
of parameterization algorithms. Based on the parameterization potentials pro-
posed in [SS01], Sheffer et al. proposed several improvements to the non-linear
optimization which yields drastic speedups. Similar approaches in this line of
work are the iterative method by Dong and Garland [DG07] and the alternating
global/local optimization by Liu et al. [LZX+08] which both can be used to opti-
mize a variety of parameterization potentials.

More recent than our work is the approach of Clarenz et al. [CLR04a]. They
identified three basic desirable properties of parameterization potentials and de-
rived from these a class of potentials that can be regarded as a generalization of
the combined potential Ecombined proposed in Section 5.4. For this class of poten-
tials they were able to proof the existence of a minimizing parameterization even
in the smooth case. We will relate our work to their results in Section 6.3.

4.2.1 Important Properties of Parameterization Potentials

The primary distinguishing feature of planar parameterization methods is certainly
their underlying potential and most characteristics of the parameterizations com-
puted by a particular method can be directly deduced from it. While the following
section gives an overview of the most important potentials used for parameteriza-
tion, we want to describe in this section some important properties of potentials
and their implications for the resulting parameterization.

Bijectivity and Flips

As explained in section 4.1.1 in the discrete case a continuous piecewise affine
parameterization is uniquely determined by its set of texture coordinates (x̄v)v∈V .

However, not each such set determines an admissible parameterization x̃. In
fact, it is not difficult to find texture coordinates (x̄v)v∈V , for which the inverse
parameterization x̃−1 is not bijective. For example, if the texture coordinates of
the vertices of a triangle T ∈ T are colinear, the texture triangle TS̄ = x̃−1(TS)
degenerates to a line or a point. But even if no triangle is degenerated, two trian-
gles T 1

S̄
and T 2

S̄
can intersect each other and thus violate the bijectivity as depicted

in Figure 4.1. There exist two types of bijectivity violations:

1. The boundary of the texture mesh ((x̄v)v∈V , T ) intersects itself. This rarely
happens in practice and can be handled by cutting the surface patch along
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(a) (b)

Figure 4.1: Invalid texture coordinates cause the texture mesh to fold over and
thus do not define bijective parameterizations. There are two possible causes: (a)
boundary intersections or (b) triangle flips

the borders of the intersection in a post-processing step as described in
[SdS01].

2. A triangle flip denotes two adjacent triangles T 1
S̄

and T 2
S̄

that have opposite
orientations, i.e. running through the vertices of each triangle in the order
specified in T (Remember that we assume the mesh M to be oriented),
one triangle is clockwise oriented and the other counterclockwise . While a
single, isolated flip is usually easy to resolve, triangle flips in general cannot
easily be handled in a post-processing step.

It is therefore reasonable, to require that a parameterization potential should only
attain its minimum for texture coordinates (x̄v)v∈V that consistently orient all the
triangles TS̄ in the parameterization domain S̄, i.e. either clockwise or counter-
clockwise. While this does not single out boundary intersections (which are easy
to handle), it prevents triangle flips.

Quadratic Potentials

Some of the potentials discussed in the following are quadratic in the texture coor-
dinates while others are of higher order. Minimizing a quadratic potentials leads
to a simple linear equation system in the texture coordinates (x̄v)v∈V . Hence, we
refer to parameterization methods based on quadratic potentials as linear methods.

As the Hessian of quadratic parameterization potentials is usually sparse (with
a sparsity pattern that coincides with the vertex adjacency matrix of the mesh),
sparse direct solvers like sparse LU or Cholesky decomposition can be applied
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which have shown to be very efficient for such matrices [BBK05]. Furthermore,
it is often easy to show the existence and the uniqueness of a solution or to provide
space and time complexity bounds for these methods.

On the other hand the expressiveness of quadratic potentials is clearly limited.
For example, as triangle area by itself is a quadratic expression in the texture
coordinates, preservation of area cannot be enforced using a quadratic function (a
formal proof was given in [Deg03]). Unfortunately, the question for the existence
and uniqueness of a minimum becomes more difficult for functionals of higher
order. In addition, nonlinear potentials are likely non convex and optimizers are
prone to be stuck in local minima. For a successful optimization a reasonable
initialization is therefore crucial. To this extent, solutions computed by a linear
methods or hierarchical minimization can be used.

Boundary Conditions

For some potentials appropriate conditions must be imposed on vertices at the
boundary of the mesh, in order for the optimization to converge to an admissible
parameterization. For example, the Dirichlet energy, that will be described in
Section 4.2.2 favors parameterizations over a domain S̄ with small area. In the
absence of boundary constraints, minimization of this energy tends to collapse all
texture coordinates into a single point. In order to prevent this collapse, the texture
coordinates of boundary vertices must be fixed prior to the minimization.

As the optimal shape for the boundary is not known in advance, one common
approach is to map boundary vertices to a circle or some regular n-gon in S̄.
The distances of adjacent vertices are chosen to be proportional to the distances
along the boundary curve of the surface. Certainly this choice of the boundary
is somewhat arbitrary, and fixed boundary vertices restrict the minimization to
solutions that may not be optimal. Potentials, that do not need such boundary
conditions are therefore in general preferable.

However, fixing boundary conditions often enables other advantages as a quadratic
formulation or guaranteed admissibility. Moreover, in some applications a fixed
boundary shape is even desired. The generation of geometry images [GGH02],
for example, requires the texture mesh to be rectangular.

4.2.2 Potentials based on Metric Deformation
In this section we review the most important potentials used for planar parameter-
ization and describe their properties. Common to all potentials is their “intrinsic”
formulation, i.e. they are expressed in terms of the metric tensor. As explained
in the introduction to this chapter, an isometric parameterization that preserves all
intrinsic properties is desirable for many applications. While this only exists for
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a few surfaces, it is nevertheless desirable to have a parameterization that is as
close to an isometry as possible. All parameterization potentials discussed below
are therefore functions of the metric tensor g̃, that quantify, how much the metric
tensor deviates from identity.

Conformality (Angles)

While isometric parameterizations do not exist for general surfaces, conformal
maps as discussed in Section 2.1.1 still have many desirable properties like an-
gle preservation and the uniformization theorem guarantees their existence in the
smooth case. They are sometimes even said to be locally shape preserving be-
cause the conformal factor λ varies smoothly over the surface. If we restrict our
attention to a sufficiently small neighborhood around a point on the surface, the
conformal factor is approximately constant and the parameterization within this
neighborhood nearly isometric (up to a constant scaling factor).

However, the uniformization theorem requires a smooth regular surface to
guarantee the existence of a conformal parameterization. It is easy to see, that
conformal parameterizations do not, in general exist for triangulated surfaces: In
the plane S̄, the tip angles of triangles meeting at each vertex sum to 2π. As con-
formal maps preserve angles they can only exist for triangulated surfaces S that
show the same property. This, however, holds only for flat triangulations.

To generalize conformal parameterizations to the discrete case of a triangle
surface, many different notions of a discrete conformal parameterization have
been suggested, based on one (or more) of the various properties of smooth con-
formal maps.

Dirichlet Energy: One of the first attempts in computer graphics to generalize
conformal maps was proposed by Eck et al. [EDD+95] and based on the concept
of harmonic maps. Harmonic maps (see [EL88, EL78] for details on harmonic
maps and [Hor01] for harmonic maps in the context of parameterization) mini-
mize the so called Dirichlet Energy. For a map y : U ⊂ R2 → R2 it is defined
as

EDirichlet(y) :=
1

2

∫
U

‖∇y‖2dU

where ‖ ·‖ denotes the Hilbert-Schmidt matrix norm. Pinkall and Polthier [PP93],
who used harmonic maps to compute discrete minimal surfaces, pointed out that
the Dirichlet energy can be split into two parts:

EDirichlet = Econformal +

∫
y(U)

dA (4.1)
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with

Econformal :=

∫
U

|Rπ/2y,1 − y,2|2 (4.2)

=

∫
U

((y1,1 − y2,2)2 + (y1,2 + y2,1)2) (4.3)

where Rπ/2 denotes a counterclockwise rotation in the plane by π/2. If the map
y is conformal, we have for the angle ∠y,1y,2 = π/2 and the energy Econformal
vanishes (which legitimates its name). By fixing the area

∫
y(U)

dA (e.g. by fixing
its boundary), minimizing the Dirichlet energy is equivalent to a minimization of
Econformal.

To generalize the Dirichlet energy to discrete surfaces S represented as trian-
gle mesh, one identifies the plane defined by each triangle TS with R2 by fixing
an arbitrary orthonormal basis (t1, t2) in each triangle plane. We can then com-
pute the Dirichlet energy for a parameterization x̃ by substituting x̃−1 for y and
summing over all triangles.

As the partial derivatives of x̃−1 are linear in the texture coordinates, the
Dirichlet energy is a quadratic energy and can be efficiently minimized using lin-
ear solvers. Hormann showed in [Hor01], that harmonic maps fit into the edge-
spring model and derived appropriate spring constants. However, in the discrete
case, a parameterization minimizing the Dirichlet energy may contain flips. More-
over, the second term in Equation 4.1 favours parameterizations with a small do-
main area. To avoid the trivial solution that maps S onto a point, boundary con-
ditions have to be imposed, e.g. by fixing boundary vertices, although Desbrun et
al. [DMA02] propose a boundary condition that alleviates this problem.

In view of the area deformation potential that we will introduce in Section 5.1,
we would like to point out, that Desbrun et al. also complemented the conformal
energy with a discrete authalic energy to reduce area deformation. However, as
shown in [Deg03] area deformation is a non linear expression in the texture co-
ordinates, whereas the discrete authalic energy is quadratic. It thus measures not
area deformation directly, but only local variations in the area element. While this
local variations can be small, the overall global area deformation might still be
high.

Cauchy-Riemann equations: For a function y : U ⊂ R2 → R2 mapping
between two planar domains, another way to characterize conformality are the
Cauchy-Riemann equations:

y1,1 = y2,2

y1,2 = −y2,1 .

These inspired Levy et al. [LPRM02c] to another definition of discrete conformal-
ity. Fixing an orthogonal basis in each triangle and setting y = x̃−1 as described
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above, they applied these equations to surface parameterization x̃. As, in contrast
to the smooth case, no exact solution exists, they minimized the squared residual
error and called the resulting parameterizations Least Squares Conformal Maps
(LSCM). The squared residual coincides with the energy Econformal as defined in
Equation 4.3. As with the Dirichlet energy, the conformal energy is quadratic in
the texture coordinates and can be minimized by solving a sparse linear system.
In contrast to the former, the conformal energy is invariant with respect to uniform
scaling and thus has no preference for parameterizations with a small domain S̄
(see Equation 4.1 ) and thus needs not fixed boundary values. However, as the
energy is invariant with respect to rigid transformations, at least two vertices have
to be fixed to determine position, orientation and scale of the preimage x̃−1(S).
While theoretically any two vertices can be fixed, the choice of constraints sig-
nificantly influences the robustness of the method (see [SLMB04]). Moreover,
minimizing parameterizations may contain flips.

MIPS Energy The MIPS energy proposed by Hormann and Greiner [HG00]
is based on the following observation: For a piecewise affine parameterization
x̃, the metric deformation within each triangle TS̄ is described by the linear map
A = ∇x̃|TS̄ which can be decomposed using its singular value decomposition as

A = U

σmax 0
0 σmin
0 0

Vt

with two orthogonal matrices U and V. As orthogonal matrices, U and V do
not cause any shape deformation (only rotation or reflection) the deformation of
intrinsic shape is thus captured by the two remaining parameters σmax and σmin.
(Please note, that since

g̃|TS = AtA = V

(
σ2
max 0
0 σ2

min

)
Vt

the singular values σmax and σmin are the square roots of the eigenvalues of g̃.)
Hormann and Greiner observed, that x̃ is conformal if and only if

σmax = σmin

(this follows easily from the above relation to the eigenvalues of g̃). To quantize
conformality, they proposed the following potential

Emips =
σmax
σmin

+
σmin
σmax

The acronym MIPS is a bit misleading since it stands for Mostly Isometric Param-
eterizations. In fact, the MIPS energy attains its minimum for σmax = σmin and
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thus for any conformal parameterization rather than only for isometries, which are
characterized by σmax = σmin = 1. Similar to the LSCM energy Econformal, the
MIPS energy is invariant with respect to uniform scaling of texture coordinates
and thus allows free boundary optimization. In contrast to the former, the MIPS
energy is nonlinear energy and it optimizations is more involved. However, if the
optimization is initialized with a admissible set of texture coordinates, it provably
converges to a minimum containing no flips.

Angle Based Flattening: Introduced by Sheffer and de Sturler in [SS01], An-
gle Based Flattening is directly formulated in the angles of triangles TS̄ . The
employed potential is the summed squared difference of corresponding angles in
TS̄ and TS . While this potential is quadratic in the angles, non linear constraints
have to be imposed on the minimization, to ensure that the solution in fact cor-
responds to a planar triangle mesh. These constraints also guarantee the absence
of flips. Once a solution is found, triangles are laid out in the plane progressively
using the computed angles. The original ABF method is prone to numerical errors
in the constrained optimizations which influence the robustness of the progressive
triangle layout. This issue was addressed by Sheffer et al. in [SLMB04]. There
a customized non-linear solver is proposed that not only enhances robustness but
also gives significant speed up. The resulting algorithm coined ABF++ seems to
be the fastest conformal parameterization method that guarantees the absence of
flips.

Circle Packing: Another characterization of conformal maps is based on cir-
cles and goes back to a conjecture of Thurston [Thu85]: As conformal maps are
locally isometric, they map infinitesimal circles on circles. Parameterization ap-
proaches based on circle packing generalize this property to the discrete setting
by replacing the infinitesimal circles by finite circles. To compute a discrete con-
formal parameterization, the surface S is first approximated with a circle packing,
a set of circles with a prescribed tangency pattern. Once this packing is defined,
a circle packing of the plane S̄ with the same tangency pattern is searched for.
The approach of Hurdal et al. [HBS+99] place circles at vertices in such a way,
that two circles are tangent if they are adjacent inM. Results from the theory of
circle packing then guarantee the existence of a unique circle packing in the plane
for any set of radii specified at the boundary vertices. However, their method
introduces unnecessary deformation, as planar triangulations are not necessarily
mapped onto themselves. Therefore, other notions of adjacency have been sug-
gested (e.g. [BH03, KSS06, YKL+08]). Common to all these approaches is a
non-linear optimization.

Metric Scaling and Curvature Flow For a smooth Riemannian manifold,
the Gaussian curvatures κ and κ̄ associated with two Riemannian metrics g and
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ḡ = e2ug are related by the following equation

κ̄ = e−2u(κ−∆gu)

for which the uniformization theorem guarantees the existence of a solution. The
function u is a smooth metric scaling function defined on the surface and is related
to the conformal factor λ by λ = e2u. For the case of flat metric ḡ with κ̄ = 0, the
equation simplifies to

κ = ∆gu

where ∆g denotes the surface Laplacian.
Recently, another class of conformal parameterization methods has evolved,

that solve for a discrete notion of this metric scaling function u rather than solv-
ing for texture coordinates directly. To this extent, Ben-Chen et al. [BCGB08]
discretize the above Poisson problem using the popular cotangent discretization
of the Laplacian and interpolate the scaling function u to the edges. However,
scaling edges using these values gives only a rough approximation. Ben-Chen et
al. use this approximation to optimize the placement of singularities. The actual
parameterization is then done using the method from [SLMB04]. Springborn et
al. [SSP08] define a discrete notion of Riemannian metric and replace the above
Poisson’s equation by the Euler-Lagrange equations of an appropriately defined
convex energy. A different but related approach is taken by Jin et al. [JKG08],
who compute the scaled metric κ̄ as stationary point of a discrete version of the
Ricci flow. The Ricci flow evolves the metric tensor to a state of constant Gaus-
sian curvature. Concerning planar parameterization, approaches based on metric
scaling are, similar to circle packing, rather interesting from a theoretical point
of view than having practical advantages for the actual computation. However,
they can be used to obtain a quick estimate of the conformal factor which can be
valuable for placing singularities or cuts as e.g. done in [BCGB08].

Geodesic Distances

In Euclidean spaces all geometric quantities as angles and areas can be expressed
in terms of distances between points. This observation motivated another class of
approaches, that express parametric shape deformation by measuring the changes
in distance caused by a parameterization x̃. More precisely, these approaches
relate Euclidean distances in S̄ to geodesic distances on the surface S.

In [ZKK01], Zigelman et al. built up a distance matrix by measuring the
geodesic distances between all pairs of vertices on the surface. They then search
for a configuration of texture coordinates in S̄, that exhibit the same pairwise
Euclidean distances. As perfect distance preservation is only possible for devel-
opable surfaces, the squared difference in distance is summed over all pairs and
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minimized using Multi Dimensional Scaling (MDS) a statistical method closely
related to principal component analysis. The method successfully extrapolates
boundary texture coordinates but unfortunately MDS does not allow to specify
further constraints as e.g. face orientation. In fact, flips are highly likely to occur
if the surface is not developable.

Sheffer and de Sturler propose in [SdS02] a post processing for e.g. confor-
mal parameterization, that reduces length deformation. Their method iteratively
smoothes an overlay grid in S̄ to minimized length distortion on edges of the tri-
angle mesh. The original texture coordinates are then warped according to the
deformation of the grid. Sheffer and de Sturler proved that the their method does
not introduce any flips. However, it is not clear how the smoothing influences
metric properties of the parameterization, as e.g. conformality.

One of the earliest approaches to parameterization in computer graphics was
proposed by Maillot et al. [MYV93]. They suggest to sum squared differences in
lengths of edges in S̄ and S as one part of their potential:

Eedge−length :=
∑

edges (v,w)∈M

(‖xv − xw‖2 − ‖x̄v − x̄w‖2)2

‖xv − xw‖2
(4.4)

The resulting potential is non-linear and does not guarantee the absence of flips.
Nevertheless, similar potentials have been used afterwards in several approaches
in computer aided design to unfold nearly developable surface (see Section 7.2.1).

Surface Sampling

While not directly expressed in terms of geometric properties, surface sampling
potentials also capture certain properties of the metric. These potentials aim at
parameterizations that provide an optimal sampling of the surface. While in the
Euclidean space S̄ a uniform grid represents a natural sampling, there is no natural
sampling on surfaces. To store signals on the surface as e.g. colors, normals, etc.
these are therefore usually mapped into S̄ using the inverse parameterization x̃−1

and sampled on a uniform grid. The parameterization thus determines the way
surface signals are sampled.

The question whether a parameterization provides a good sampling is appli-
cation specific. If the signal is known and fixed, “good” means that the sample
density adapts the signal frequency. Potential for this case are not discussed here
(see overview in the introduction to this section), since this quality is rather inde-
pendent of the surface metric. If, in contrast, the signal is not known in advance,
high-frequency content is equally likely to appear anywhere on the surface and it
is reasonable to assume a constant distribution of signal frequency over the whole
surface and in all directions.
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In an attempt to reduce the probability of under sampling, Sander et al. [SSGH01b]
considered in this situation the stretch imposed on a small line segment in the do-
main by the parameterization x̃. If its length in the domain is much smaller than
the length of its image on the surface, undersampling becomes very likely. Obvi-
ously the probability for under sampling increases with stretch and therefore, to
reduce undersampling, the stretch should be as small as possible.

Locally, the largest and smallest stretch imposed by the parameterization are
captured by the singular values σmax and σmin of the derivative∇x̃. As discussed
in Section 4.2.2, these values correspond to the roots of the eigenvalues λmax
and λmin of the metric tensor. This observation led Sander et al. to define two
geometric stretch energies as follows:

Estretch−inf [x̃] = max
T∈M

(λmax[x̃|TS̄ ]) (4.5)

and
Estretch−2[x̃] =

1

2

∑
T∈M

(λmin[x̃|TS̄ ] + λmax[x̃|TS̄ ])|TS|

While the first energy measures the maximal stretch imposed on a line segment
in the domain, the second energy is an area weighted average stretch on the mesh
and has the important advantage that it is smooth in the texture coordinates and
hence much easier to minimize. Both energies are nonlinear but can be optimized
in a way that ensures the absence of flips. Sander et al. proposed in [SGSH02]
a simple modification that allows natural boundary conditions. Surprisingly, min-
imizing the geometric stretch energies does not necessarily result in an even dis-
tribution of samples on the surface. In figure 4.2, a parameterization is shown for
a non-developable surface that was obtained using the method from [SGSH02].
The geometric stretch in the gap marked in blue is much smaller than the average
stretch and thus the image of the gap on the surface is heavily oversampled, which
is not penalized by the energy Estretch−2 but, on the contrary, honored.

Samplings as provided by the method of Sander et al. are well suited for the
above sketched application of storing an unspecified surface signal. Other appli-
cations, as e.g. remeshing, surface fitting or 3d painting systems, however, require,
besides an adequate sampling rate, a mostly uniform and isotropic sampling pat-
tern (see e.g. [KL96, Hor01]). Sorkine et al. [SCOGL02] proposed a modification
of the Estretch−inf that penalizes both over- and under sampling

Euniform := max(σmax,
1

σmin
) . (4.6)

Since we have σmax ≥ σmin ≥ 0 this potential attains its minimum for σmax =
σmin, which corresponds to an isometric parameterization. The problem of this
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Figure 4.2: Minimizing Estretch−2 does not necessarily result in a uniform sam-
pling: Left: Original surface S textured with a checker texture to visualize shape
deformation. Right: The domain S̄ = x̃−1(S). The stretch in the blue gap is much
smaller than the average stretch.

energy is, that it is not differentiable which prevents an efficient minimization.
The combined energy that we will propose in Section 5.4 takes for a special choice
of parameters a similar form, but is smooth in the texture coordinates.

Elastic Potential

In the introduction to this chapter we interpreted the parameterization problem
as a special case of the general surface deformations. It therefore suggests itself
to minimize the elastic potential to compute optimal parameterizations. As for
parameterization, we assume in this context a flat original surface S̄ and thus we
cannot expect the surface deformation to preserve curvature (except for the special
case that the surface S is also flat). Consequently, it is sufficient to concentrate on
the membrane potential and to omit the bending term in Equation 3.13.

The idea of using the elastic shell model for parameterization goes back to
Maillot et al. [MYV93]. While in their article Maillot et al. sketched the above
idea, they refrained from actually minimizing the elastic potential, which they
claimed to be too costly and instead suggested the discrete edge length potential
(Equation 4.4).

Unfortunately, the edge-length potential has not much in common with the
elastic energy. If a triangle TS̄ collapses, the edge length potential increases but
remains bounded. However, it can be shown, that the the membrane potential
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tends to infinity. 1 This property of the actual membrane potential is very valuable,
as we will see in Section 5.5 that it helps to prevent flips in the optimization.

Using the actual membrane potential for parameterizations seems to be a natu-
ral and promising approach at first sight. However, there are some disadvantages:
First, for most applications the parameterization should preserve geometric prop-
erties as angles, areas and length. The elastic potential has primarily a physical
interpretation. It describes the physical work that is necessary to deform a planar
domain S̄ into S. It is not clear how it is affected by distortion of geometric shape
properties. It is also not obvious, how the material tensor should be chosen and
how its choice affects the preservation of geometric properties.

Another problem are gap artifacts in the parameterization similar to the over-
sampling artifacts for the method of Sander et al. described in the previous section.
Figure 4.3 shows these artifacts on a results obtained by minimizing the membrane
potential. For this result, we chose an isotropic material with a Poisson’s ratio of
zero as suggested by Maillot et al. which resembles a material like cork. (Please
note, that at least the choice of the Poisson’s ratio is somewhat arbitrary.) For this
choice, the membrane potential’s density in Equation 3.16 takes the form:

emembrane =
Eh

8

(
kγβk

β
γ − 2kαα + 2

)
=
Eh

8

(
λ2
max + λ2

min − 2(λmax + λmin) + 2
)

=
Eh

8

(
(λmax − 1)2 + (λmin − 1)2

)
.

Remember, that in the shell model this density is integrated over the undeformed
surface S̄. For parameterization, S̄ is subject to the optimization while we con-
sider S as fixed. It is therefore convenient to consider the density of the elas-
tic energy with respect to S which is obtained by dividing by the area element
dS̄ =

√
det(g̃−1)dS = 1/

√
λmaxλmindS as

êmembrane =
Eh

8

(
(λmax − 1)2 + (λmin − 1)2

)
/
√
λmaxλmin .

While the artifacts shown in 4.3 resemble those observed for the sampling energy
of Sander et al., it becomes apparent by writing the membrane potential in this
form, that the elastic membrane potential penalized both over- and undersampling
as it tends to infinity for vanishing eigenvalues as well as for large eigenvalues. In
[Deg03] we show, that such gap artifacts are related to missing convexity of the

1As the area |TS̄ | collapses, the maximal eigenvalue of g̃ grows at least linear with 1/|TS̄ |.
From Equations 3.17 and 3.16 it then follows that the density emembrane grows with 1/|TS̄ |2. The
integral of emembrane over TS̄ thus tends to infinity.
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(a) (b)

(c)

(d)

Figure 4.3: Results obtained by minimizing the elastic membrane potential: (a)
the back of the cat head model (b) a cylindrical shape (c) a closeup of a gap in
cat head (left) and the corresponding texture mesh (right) (d) a closeup of a gap in
cylindrical shape (left) and the corresponding texture mesh (right)
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potential density in the eigenvalues of g̃−1. This is in particular true for the elastic
membrane potential.

We would like to remark, that despite these artifacts and the missing relation
to geometric properties, we still see potential for parameterizations based on the
shell model in certain application. One of these applications are material aware
texture maps as will be discussed in Chapter 7.
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CHAPTER 5

GEOMETRIC DEFORMATIONS POTENTIALS

Based on a profound mathematical theory, methods for conformal parameteriza-
tions have reached today a relatively advanced level. On the contrary only few
methods take geometric properties other than angles into account, all of which
come with certain drawbacks as was detailed in the previous chapter. The goal of
this chapter is to find a potential for parameterizations with the following proper-
ties:

• It should relate directly to distortions of geometric shape properties. Besides
angle deformation, it should also account for area and length distortion.

• It should not attain its minimum for discrete parameterizations containing
flips.

• It should support natural boundary conditions, i.e. its optimization should
result in parameterizations with minimal shape deformation in the absence
of further constraints on the domain boundary.

For general surfaces, an isometric parameterization does not exist and a com-
promise between preservation of angles, areas and length must be made. To con-
trol this compromise, our approach is to search first for individual measures for
distortion of each of these properties. These measures are then combined into a
potential. A weighting parameter allows the user to specify the relative impor-
tance of angle, area and length preservation.

We start by noting, that the preservation of length, angles and areas are not
independent from each other. As the eigenvalues λ{max,min} correspond to max-
imal stretch and shrink, we must have λmax = λmin = 1 for a parameterization
that preserves length. It is thus already isometric and preserves also area and an-
gles. Length preservation is thus the strongest property equivalent to isometry and
implies angle and area preservation.

On the other hand, conformal maps preserve angles but not necessarily areas
nor length. Likewise, a map that preserves area must not necessarily preserve
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angles and length (a simple example is shearing). Area and angle are thus inde-
pendent of each other in the sense, that a parameterization can preserve one of
these properties without preserving the other. However, we will see in the Section
5.3 that taken together, angle and area preservation imply isometry and thus length
preservation. We sum up these relations between the three metric properties as the
following pseudo-formula:

Length Preservation = Angle Preservation u Area Preservation

where u denotes a sum of independent components. Therefore, it seems reason-
able to find measures for angle and area distortion (Sections 5.1 and 5.2) and then
to express length deformation in terms of these (Section 5.3). Section 5.4 com-
bines both measures in a parameterization potential using a relative angle/area
importance weighting parameter. Finally, we show in Section 5.5 that the com-
bined potential has in fact the desired properties.

5.1 Area
To support an efficient optimization, it would be highly desirable to find an area
distortion measure that is a quadratic function in the texture coordinates. To-
gether with the conformal energy used by Levy et al. in [LPRM02c] it would then
be possible to derive a linear method that captures angle and area deformations.
Unfortunately, it was shown in [Deg03] that such a quadratic area deformation
measure does not exist.

To find the change in area of shapes caused by the parameterization x̃ we
consider an infinitesimal area element dS̄ that is mapped by x̃ onto an area element
dS on the surface S. According to Equation 2.5, the relation between the area of
these infinitesimal shapes is then given as

dS =
√

det(ḡ−1g)dS̄ =
√

det(g̃)dS̄ . (5.1)

The factor
√

det(g̃) thus gives the infinitesimal increase in each point and the
parameterization is area preserving if and only if for every point p̄ ∈ S̄√

det(g̃(p̄)) = 1

holds. To find an appropriate area deformation potential, we now search for its
density function earea : S → R and integrate it over S:

Earea[x̃] :=

∫
S

earea dS
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The density earea itself is chosen as a function of the area increase, i.e.

earea = f ◦
√

det g̃ ◦ x̃−1

where f : R→ R is an objective function that will be defined now: Obviously, the
objective function f = f(t) should be minimal for t = 1. Furthermore, we require
that it has no other local extrema, which could complicate the optimization. As
we will see in section 5.5.2 triangle flips can be prevented in the optimization if
the potential tends to infinity whenever a texture triangle TS̄ degenerates, that is if
its area |TS̄| tends to zero. For the affine map x̃|TS̄ partial derivatives and metric
tensor are constant and thus

|TS| =
∫
TS

dS (5.2)

=

∫
TS̄

√
det(g̃) dS̄ (5.3)

=
√

det(g̃)

∫
TS̄

dS̄ (5.4)

=
√

det(g̃)|TS̄| (5.5)

If TS̄ tends to zero,
√

det(g̃) = |TS|/|TS̄| tends to infinity. The objective function
f(t) should thus tend to infinity as t→∞.

In order to prevent gap artifacts in the texture mesh similar considerations as
for the elastic energy (Section 4.2.2) hint, that the objective function f should be
convex in the eigenvalues of g̃−1. In fact, it was shown in [Deg03] that convexity
of f(1/t) is necessary to prevent gap artifacts.

A simple choice for the objective function f that satisfies all three require-
ments is f(t) = t+ 1/t and our sought-after density function becomes

earea =
√

det(g̃) +
1√

det(g̃)
(5.6)

Later, it will be convenient to express earea in terms of the singular values σmax
and σmin of∇x̃. As these are the roots of the eigenvalues λ{max,min} of the metric
tensor, we have

√
det(g̃) =

√
λmaxλmin = σmaxσmin and thus

earea = σmaxσmin +
1

σmaxσmin
(5.7)
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5.2 Angle

As shown in section 4.2.2, the conformality of a parameterization is characterized
by

σmax(p̄) = σmin(p̄) ⇔ σmax(p̄)

σmin(p̄)
= 1

in each point p̄ ∈ S̄. Taking the same approach as for the area potential, we first
define a density function eangle : S → R, which measures the angle deformation
of the parameterization in each point on the surface and integrate over S to find
the angle deformation measure:

Eangle[x̃] :=

∫
S

eangle dS

Similarly to the derivation of the area deformation function, we choose the angle
deformation function as

eangle = f(
σmax
σmin

)

with an objective function f = f(t) that has a unique minimum for t = 1.
In fact, using the same objective function f(t) = t+ 1/t as in the last section

yields

eangle(x) =
σmax
σmin

+
σmin
σmax

(5.8)

which is nothing but the MIPS energy. 1

Certainly other conformal potentials can be used to measure angle deforma-
tion. However, the MIPS energy can handle boundaries and prevents flips and
although there are faster linear methods like LSCM, a quadratic angle potential is
not useful in our context. As we are going to combine the angle and area poten-
tials, a nonlinear optimization has to be used in any way.

For later reference we rewrite the density eangle in terms of determinant det g̃
and trace tr g̃ of the metric tensor:

eangle(x) =
σmax
σmin

+
σmin
σmax

=
σ2
max + σ2

min

σmaxσmin
=

tr g̃√
det g̃

1Actually, integrating eangle over the triangle surface S leads to an area weighted sum of the
MIPS energy on each triangle. In contrast, the original MIPS energy sums the constant values
of the above density on each triangle and omits area weighting. However, the additional area
weighting occurs naturally and seems justified, as angle distortion on large surface triangle is
visually more noticeable in e.g. texture mapping.
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5.3 Length
In the introduction to this chapter we stated that a parameterization x̃ that is both
conformal and area preserving is already an isometry. In fact, we have for such a
parameterization

σmax
σmin

= 1 and
√

det g̃ = σmaxσmin = 1 ⇔ (5.9)

λmax
λmin

= 1 and λmaxλmin = 1 ⇔ (5.10)

λmax = λmin = 1 ⇔ (5.11)
g̃ = id (5.12)

that is x̃ is an isometry. From this observation, we conjectured in the introduction
that deformation imposed by a parameterization can be expressed in terms of angle
and area deformation. Multiplying the deformation functions for angle and area,
derived in the last sections we get

elength : = eangle · earea (5.13)

= f(
σmax
σmin

) · f(σmaxσmin) (5.14)

It should be explained now, that this density function does indeed measure the
length distortion. First, as f(t) has only a single minimum for t = 1, elength
assumes its global minimum if and only if σmax

σmin
= 1 and σmaxσmin = 1 hold

simultaneously, i.e. for an isometric parameterization. While we certainly expect
a length deformation measure to be minimal for isometric maps, it is far more
interesting, how the deformation function generally captures length distortion and
especially on non-developable surfaces. To this extent we rewrite the function as

elength = f(
σmax
σmin

) · f(σmaxσmin) (5.15)

= (
σmax
σmin

+
σmin
σmax

)(σmaxσmin +
1

σmaxσmin
) (5.16)

= σ2
max +

1

σ2
max

+ σ2
min +

1

σ2
min

(5.17)

= f(λmax) + f(λmin) . (5.18)

In this form, it can be seen that elength measures how much the eigenvalues λmax
and λmin differ from one by the very objective function f that was used in the
definition of earea and eangle. As the eigenvalues correspond to largest and smallest
change in the length elength does indeed capture length distortion.
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Figure 5.1: The area deformation potential eangle is invariant with respect to shear-
ing. Moving e.g. all vertices on the orange line along the direction of the line does
not alter triangle areas and thus does not change eangle.

From this density function we define again a length potential by integration
over the surface:

Elength :=

∫
S

elength dS

Again, in view of the following discretization, we also give an expression for
elength in terms of determinant det g̃ and trace tr g̃ of the metric tensor :

elength = eangle · earea (5.19)

=
tr g̃

(det g̃)
1
2

((det g̃)
1
2 +

1

(det g̃)
1
2

) (5.20)

= tr g̃(1 +
1

det g̃
) (5.21)

5.4 An adaptable Potential
In the last section we multiplied the area and angle deformation functions and ob-
tained a length deformation measure. It seems to be straightforward to generalize
this approach by introducing an additional weighting

ecombined := eαareaarea · e
αangle
angle

with two factors α{area,angle} ∈ [0, 1]. These factors determine the relative impor-
tance of angle and area preservation, giving the used the opportunity to influence
the unavoidable tradeoff between angle and area preservation on non-developable
surfaces. By using this density function we are able define a family of distor-
tion measures, that range from pure angle distortion over length distortion to area
distortion.
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Unfortunately, minimizing the area deformation alone causes problems, which
are due to the invariance of the area under shearing. An example is shown in
Figure 5.1: Moving all vertices on one of the lines shown in orange only shears
adjacent triangles and thus does not alter triangle areas. Due to this invariance, the
potential Eangle has no unique minimum and optimizing the area distortion alone
does not make much sense in the absence of further constraints. Another practical
problem arises, as by shearing a triangle its angles can become arbitrary small.
This causes numerical problems in the optimization.

Likewise, Eangle is invariant to rigid transformations of the texture coordinates
as well as uniform scaling as these do not alter angles. Therefore, it assumes it
minimum not only for a unique parameterization but for an affine subspace. How-
ever, minimizing angle distortion alone does not cause problems. It is sufficient to
fix the texture coordinates of only two arbitrary vertices to remove the additional
degrees of freedom. Unfortunately, this is not true for the area distortion as can be
seen in Figure 5.1 where fixing any two vertices does not solve the problem.

Scaling both α{area,angle} only changes the values of the combined energy, but
not the optimal parameterization. This leaves in fact only one degree of freedom.
As a pure area optimization is not desirable whereas optimization of eangle makes
sense, we actually set

αarea =
α

α + 1
and αangle =

1

α + 1

where α is a single trade off parameter that takes values in [0,∞[. The angle
potential is hence obtained for α = 0, the length potential for α = 1 and the area
potential is only attained in the limit for α =∞.

In Figure 5.2 some plots of the combined potential’s density as a function of
the singular values σmin and σmax are shown: Since we always have σmax > σmin,
only the values below the diagonal are actually attained. In (a) the pure angle
deformation function is plotted. The minimum stretches out along the diagonal
σmax
σmin

= 1, which represents conformality. As eangle increases with the ratio σmax
σmin

the contour lines take the shape of lines with different steepness. In (b) the pure
area deformation is plotted. The contour lines are given by σmin = c

σmax
and thus

take the shape of hyperbolic functions. The remaining plots show the combined
deformation functions for increasing values of α. Note that for α ∈]0,∞[ the
density function always has a unique global minimum in (1, 1) as in this point
both eangle and earea assume their (unique) minimum.
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Figure 5.2: Plots of the combined density as a function of the singular values σmax
and σmin. (a) pure angle deformation (α = 0) (b) pure area deformation (α =∞)
(c-f) plots are shown for α = 0.25, 1, 4, 16 respectively.
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5.5 Properties
In the last section, we already mentioned that Earea is not quadratic in the texture
coordinates and so is neither Elength and Ecombined. We also remarked that all po-
tentials are minimized by an isometric parameterization if such a parameterization
exists. In this section we would like to show a few other basic properties of the
potentials Eangle and Earea derived in the last section. The length deformation po-
tential and the combined potential expressed in terms of Eangle and Earea inherit
all of these properties.

5.5.1 Invariance with Respect to Rigid Transformation
All potentials derived in the last section are invariant under a rigid transformation
ψ : R2 → R2 of the texture coordinates x̄v. By rigid transformation we denote
affine maps of the form ψ(p̄) = Rp̄ + t, where t ∈ R2 is a translation vector and
R is an orthogonal matrix. To see this, we set x̃′ = x̃◦ψ and compute its Jacobian

∇x̃′(ψ−1(p̄)) = ∇x̃(p̄)∇ψ(ψ−1(p̄)) = ∇x̃(p̄)R .

If∇x̃ = UΣVt is a singular value decomposition for∇x̃, then∇x̃′ = UΣ(VtR)
is a singular value decomposition for ∇x̃′ as R is orthogonal. Thus, the singular
values of ∇x̃′(ψ−1(p̄)) are those of ∇x̃(p̄). Since the density earea is defined
solely in terms of the singular values, we have

earea[x̃
′](p) = earea[x̃](p)

for p = x̃(p̄) = x̃′(φ−1(p̄))) and thus Earea[x̃′] = Earea[x̃]. The same argument
holds for the angle, length and combined potentials which are all expressed in
terms of the singular values.

As metric potentials, these are also invariant with respect to rigid transforma-
tions φ(p) = R′p+t′ of the surface S itself. This is due to the fact that the metric
tensor does not change under such deformations. Denoting the metric tensor of
φ ◦ x̃ by g̃′ we have

g′αβ = φi,jx̃j,αφi,kx̃k,β = RijRikx̃j,αx̃k,β = δjkx̃j,αx̃k,β = gαβ

The density functions e{angle,area,length,combined} are therefore invariant under such
transformations. As the area element dS =

√
det g̃dS̄ is also defined in terms of

the metric tensor, the potentials E{angle,area,length,combined} are also invariant.
As a consequence of the invariance of the potentials with respect to rigid trans-

formations ψ of the domain S̄, additional constraints have to be imposed in order
to have a unique minimum. Similar to the LSCM method discussed in Section
4.2.2, it is sufficient to constrain e.g. the texture coordinates of two vertices. The
optimization described in the next chapter, however, does not necessarily need
such constraints. In absence of constraints it converges to an arbitrary minimum.
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5.5.2 Infinity on the Domain Boundary
To prevent flips in the optimization, we follow a similar approach that was previ-
ously also taken by Hormann [Hor01] and Sander et al. [SSGH01b]. For a mesh
M = (V, T ) , we restrict the optimization to the set

Uvalid = {(x̄v)v∈V ∈ R|V |×2|∀T ∈ T : TS̄ is counterclockwise oriented and |TS̄| 6= 0}

of valid texture coordinates, i.e. texture coordinates, that contain no face flips
and degenerated triangles. We now require that the potentials tend to infinity as
the set of texture coordinated (x̄v)v∈V ∈ Uvalid approaches the boundary δUvalid.
Given this property, a gradient descent optimization starting from a configuration
in Uvalid will not leave this set and thus again result in a valid parameterization.

To show that all the potentials defined in the last Section fulfill this require-
ment, we first remark that the deformation measures tend to infinity as the set of
texture coordinates tends to a configuration that contains a degenerated triangle
TS̄ , i.e. a triangle with |TS̄| = 0. From Equation 5.5 we get

|TS|
|TS̄|

=
√

det(g̃) = σmaxσmin .

As the left hand side tends to infinity as |TS̄| vanishes, so must at least one of the
singular values. From the definitions of earea (Eq. 5.7) and eangle (Eq. 5.8) it then
follows that both density functions tend to infinity on the triangle TS and so must
the corresponding potentials.

Denoting the set of all texture coordinate sets that contain a degenerated trian-
gle by Udegenerated, it was shown in [Deg03] that

δUvalid ⊂ Udegenerated

and thus the potential tends to infinity as (x̄v)v∈V ∈ Uvalid approaches the bound-
ary δUvalid as required.

5.5.3 Smoothness and Derivatives
The existence of partial derivatives of the potentials with respect to texture coor-
dinates is crucial for an efficient minimization. To show that our potentials are
smooth functions of the texture coordinates, we consider a piecewise affine con-
tinuous map

ȳ = Ψvȳ
v

defined via coordinates ȳv ∈ R2 at each vertex v ∈ V . Because of x̃ = x ◦ x̄−1

(see Figure 3.3) a change of the parameterization x̄ gives rise to change of x̃ and
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vice versa. We can therefore understand the potential Ecombined as functions of
x̄ and write in a slight abuse on notation Ecombined = Ecombined[x̄]. We will now
show, that the variation of the potential

∂x̄Ecombined[x̄](ȳ) =
∂

∂ε
Ecombined[x ◦ (x̄ + εȳ)−1]

∣∣∣∣
ε=0

in direction of ȳ exists and give explicit expression for the derivatives. The gra-
dient of the potential with respect to coordinate j of vertex w is then obtained by
choosing

ȳvi = δvwδij

By Equations 5.6 and 5.9 the density functions eangle and earea are expressed
as smooth function in terms of tr g̃ and det g̃. As products of powers of those, the
combined and length density are also smooth in these terms. Now we have

g̃αβ = x̃i,αx̃i,β = xi,γx̄
−1
γ,αxi,δx̄

−1
δ,β = gγδx̄

−1
γ,αx̄

−1
δ,β

and thus

tr g̃ = gγδx̄
−1
γ,αx̄

−1
δ,α = gγδḡ

γδ = tr(gḡ−1) (5.22)

det g̃ = det∇x̄−1 det g det∇x̄−1 = det g det ḡ−1 (5.23)

The variation of the metric tensor ḡ with respect to x̄ is found as

∂x̄ḡαβ[x̄](ȳ) =
∂

∂ε
((x̄ + εȳ)i,α(x̄ + εȳ)i,β)

∣∣∣∣
ε=0

= ȳi,αx̄i,β + x̄i,αȳi,β .

From Equations 5.22-5.23 we then find the variations of tr g̃ and det g̃ as

∂x̄ tr g̃[x̄](ȳ) = − tr(gḡ−1(∂x̄ḡ)ḡ−1) (5.24)
∂x̄ det g̃[x̄](ȳ) = − det g det ḡ−1 tr((∂x̄ḡ)ḡ−1) (5.25)

where we have used the following identities for derivatives with respect to a matrix
A ∈ R2 in direction of a matrix C ∈ R2 :

∂A tr A(C) = tr C

∂A det A(C) = tr(A−tC) det(A)

∂AA−1(C) = −A−1CA−1
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The variation of the density functions are now found as

∂x̄earea =
1

2

(
1− 1

det g̃

)
∂x̄ det g̃√

det g̃

∂x̄eangle =
1

2
√

det g̃

(
2∂x̄ tr g̃ − tr g̃

det g̃
∂x̄ det g̃

)
∂x̄elength =

(
1 +

1

det g̃

)
∂x̄ tr g̃ − tr g̃

det g̃2
∂x̄ det g̃

∂x̄ecombined = e
−1
α+1
areae

1
α+1

angle∂x̄earea + e
α
α+1
areae

−α
α+1

angle∂x̄eangle

From these the variations of the potential are computed by integration over the
surface S as described in Section 2.2.2.
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COMPUTING PARAMETERIZATIONS

In this chapter we will describe the implementation of a simple optimization al-
gorithm for the proposed potentials. It features an easy implementation, ensures
the absence of flips in the final parameterization and is yet efficient. Besides the
potentials proposed in the last chapter, it can also be easily adapted to optimize
most of the potentials reviewed in Chapter 5. We give a short description of the
optimization algorithm in Section 6.1.1

Using a framework based on this minimization algorithm, we compute param-
eterizations for a set of surfaces as they typically appear in computer graphics
applications. Section 6.2 presents a qualitative comparison of results obtained
by optimizing different potentials. Moreover, we perform a quantitative evalua-
tion that gives an assessment on geometric shape deformation and run times. This
chapter concludes with a discussion of the experimental evaluation and relates our
approach to more recent work in surface parameterization.

6.1 Optimization

All potential measuring metric deformation reviewed in Section 4.2.2 integrate
potential density functions e that can be expressed in terms of the metric g̃ that
is constant within each triangle. They thus can be discretized as described in
Section 2.2.2. There we also gave an explicit expression for the metric tensor
g on a triangle. An analogous expression for g̃ can be obtained by substituting
the coordinates x̄v for uv. The gradient of the discrete potential with respect to
texture coordinates x̄v has been derived in Section 5.5.3 and can be discretized in
the same way.

Two exceptions are the Estretch−inf potential (Equation 4.5) and the uniform
sampling potential Euniform (Equation 4.6) that evaluate to the maximal value of
the density instead of the surface integral. Although these can be optimized using
a similar algorithm we do not discuss this case and refer to [Deg03] for details.
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6.1.1 Simple Relaxation Optimization

Possible the most simple optimization algorithm for potentials of the above form
is called vertex relaxation. It was already used in [SSGH01a] and [Hor01] to min-
imize the the Estretch−inf and the MIPS potential. Vertex relaxation starts from a
valid (i.e. one without flips) set of texture coordinates as for example computed
by the Floater method [Flo01]. It iteratively picks a single vertex v ∈ V and op-
timizes the potential with respect to its texture coordinate x̄v only. As its texture
coordinate only influences the parameterization x̃ on adjacent triangles, it is suf-
ficient to compute the densities eT only for triangles T with v ∈ T . It is thus also
possible to optimize vertices v, w ∈ V in parallel as long as they are not incident
by an edge inM.

The convergence rate of vertex relaxation is poor compared to a simultane-
ous optimization of all vertices and it is more prone to get stuck in local minima.
On the other hand its simplicity allows for an easy implementation. But more
important, the vertex relaxation gives more control over vertex flips. As shown
in Section 5.5.2 an optimization of the combined potential Ecombined and its spe-
cial cases does not converge to a flipped or degenerated configuration of texture
coordinates. However, we found in our experiments, that numerically a triangle
TS̄ can degenerate in cases when the corresponding surface triangle TS is very
narrow or also nearly degenerated. While such numerical problems can easily be
intercepted in vertex relaxation, it is very difficult to avoid them in a simultaneous
optimization of all vertices.

When detecting a degenerated triangle or flip, our implementation simply re-
sets this vertex to a flipless position and proceeds with the optimization of other
vertices until eventually the vertex becomes again selected for relaxation. Our
current implementation uses a simple non-linear conjugate gradient optimization
but restricts line searches to the kernel of the polygon spanned by edges between
neighboring vertices. In this way line searches are initialized with reasonable
bracketing intervals and become more robust with respect to flips. The property
proven in Section 5.5.2 ensures that these bracketing intervals are valid and thus
the restriction does not interfere with the optimization. As every relaxation re-
duces the overall potential and as the potential is positive (and thus bounded from
below) the iterative relaxation terminates eventually.

The formulation of the potentials proposed in the last chapter and in particular
its variation given in Section 5.5.3 relies on the existence of an auxiliary parame-
terization x. On the other hand, vertex relaxation also needs a proper initialization.
In the implementation of the relaxation step we set x to the externally provided
initialization and initialize x̄ to identity. The optimization will then optimize the
parameterization x̃ = x ◦ x̄−1 by varying the texture coordinates (x̄v)v∈V .
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Figure 6.1: An overview over the hierachical optimization method

6.1.2 Hierarchical Optimization

While vertex relaxation is simple, it has a poor convergence rate. Moreover, it
must be initialized with a flipless set of texture coordinates. It is therefore usually
combined with a hierarchical optimization, that is similar to multigrid methods on
linear systems. Figure 6.1 gives an overview over the hierarchical optimization.

The hierarchical optimization proceeds in two phases: in the first phase a series
of levels of detail (LOD) is generated from the input mesh. To this extent, a
progressive mesh sequence [Hop96] is computed using half edge collapses. After
each half edge collapse the vertices in the one ring of the remaining vertex are
locked. Subsequent collapses are prohibited whenever the edge is incident with
a locked vertex. If no more half edge collapses are possible, the splits are stored
in a set, all vertices are unlocked and the decimation proceeds. In this manner,
sets of independent splits are generated. This split independence will facilitate the
placement of new vertices in the second phase. Since we assume a surface patch
of disk-like topology, the last level of detail consists of a single triangle only. For
more details on the LOD generation see e.g. [HGC99].

The second phase starts from the lowest level of detail — the so called base
mesh — which is in our case a single triangle. The texture coordinates x̄v of its
vertices are initialized to a congruent triangle in the plane centered in the origin.

In the following, the set of splits corresponding to the next level of detail is
applied to the mesh and texture coordinates for new vertices are initialized to save
positions, i.e. positions that do not cause flips. To this extent, the texture coordi-
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nate x̄v of a newly inserted vertex v ∈ V can be positioned anywhere within the
kernel of the polygon spanned by edges between neighboring vertices. It can be
shown, that the kernel is non empty if the texture mesh was flipless before apply-
ing the split (see [Deg03]) and our implementation simply chooses its centroid.
The independent set property ensures that no two newly inserted vertices are inci-
dent in the mesh. The shape deformation caused by the simple initial placement
of these vertices can therefore not accumulate over several splits in the same set.

Once all splits in the set are applied, a valid initial parameterization has been
established and the vertex relaxation described in the last section can be applied.
Once it has converged, the hierarchical optimization proceeds with the next level
of detail. As the surfaces of two subsequent levels of detail are similar, the solu-
tion of the coarser level provides a good initialization for the finer level and the
relaxation converges after a few iteration. In our experiments we have found that
the hierarchical method is usually much faster than pure vertex relaxation start-
ing from a parameterization computed by non-metric methods such as the Floater
method.

Since collapses may also appear at the boundary, the energy must be able
to position boundary vertices in texture space during the optimization. There-
fore, energies that require fixed boundary vertices like the sampling based poten-
tial Estretch−inf cannot directly be used with the above hierarchical optimization
method.

6.2 Experimental Evaluation

Using the optimization described in the last section we computed parameteriza-
tions for several surfaces as they typically appear in computer graphics applica-
tion. The surfaces where digitized by laser scanning devices and postprocessed
to remove noise and to reconstruct a manifold surface. In contrast to modeled
surfaces that sometimes come with (user designed) texture coordinates, surfaces
obtained by range scans come without any parameterization.

To pronounce differences between the parameterization potentials, the objects
were chosen to be non-developable, having large areas of non zero Gaussian cur-
vature. Moreover, they show a high surface area to boundary length ratio. Such
surfaces are very challenging for potentials that aim at minimal metric deforma-
tion as in the planar domain S̄ a certain boundary length supports only a lim-
ited area. For these surfaces it is thus not possible to preserve both length of the
boundary and surface area at the same time. Figure 6.2 shows parameterizations
found as the minimum of the combined potential for α = 1 which coincides with
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Figure 6.3: Parameterization for a chart cut from Max Planck model. The ratio
of surface area to boundary length is far lower than for the whole model. This
reduces shape deformation. The parameterization is also computed as minimum
of Elength. Shape deformation is hardy noticeable.

Elength. To visualize shape deformation, we texture mapped a regular texture con-
sisting of straight lines that cross at angles of π/2. As the shown surfaces are non
developable the optimization has to make a trade off between the preservation of
intersection angles and area deformation.

In practice, surfaces as shown in this figure are not parameterized as whole but
cut into charts to decrease the surface area to boundary length ratio and thus to re-
duce the unavoidable shape deformation. While, this preprocessing was skipped
to reveal the type of shape deformation in Figure 6.2, the parameterization cer-
tainly improves a lot by using a charting or seaming algorithm, as demonstrated
in Figure 6.3.

Figure 6.4 compares several potentials on the cat model. Both the LSCM
energy and MIPS energy measure angle deformation only. As the combined po-
tential coincides with the MIPS energy for α = 0, the result is similar to that of
the LSCM energy in that the angles at cross sections are nicely preserved. While
the variation in the conformal factor seams to be a bit higher for the MIPS energy,
both maps show significant area deformation. In contrast, the parameterization for
α = 1 trades some of the angle preservation to reduce the area deformation. The
results for the Estretch−2 does also preserve shapes on large parts of the surface
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(a)

(c)

(b)

(d)

Figure 6.4: Parameterizations of the cat model using different potentials: (a) the
combined potential with α = 1 (Elength), (b) the LSCM energy, (c) the combined
potential with α = 0 (Eangle/MIPS) and (d) the Estretch−2 energy.
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Figure 6.5: Influence of the parameter α: The horse head model parameterized
using different angle/area preservation tradeoffs. The texture mapped model is
shown for (from left to right) α = 0.3, α = 1.0 and α = 3.0.

but exhibits regions of high anisotropy (see gap in the close up of the paw).
The influence of the α parameter of the combined potential is shown in Figure

6.5. As expected, the intersection angles are well preserved for low values of
α while the parameterization exhibits a great amount of area deformation. As
the importance of the area term is increased, the parameterizations show lower
area deformations. Since the surface is not developable the angle deformation
increases at the same time. For very high values of α, the angles are greatly
distorted but at the same time the images of the squares on the surface nearly have
the same area.

This observation can also be verified in the angle and area distortion his-
tograms shown in Figure 6.6. These histograms were created from the param-
eterizations by measuring the per triangle angle and area deformation. The angle
deformation was computed as the angle between the directional derivatives and
the area deformation as the 2D area/3D area ratio. For low values of α the an-
gle deformations are concentrated in a narrow peak around the optimal value of
90 degree. At the same time the area deformation histogram show a very high
variance. For high α values this relation is reversed.

In Figure 6.7, the run times for the hierarchical optimization of the combined
energy (with α = 1) are listed for different models. The direct comparison with
the quadratic LSCM potential stresses the advantages of a quadratic energy func-
tional. Although our optimization algorithm is rather simple and recently, im-
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Figure 6.6: Per triangle distortions in area and angle for the horse head data set
for (from top to bottom) α = 0.3, α = 1.0 and α = 3.0, as shown in figure 6.5.
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Figure 6.7: Run times for the hierarchical optimization. For comparison, also the
run times of the linear LSCM method are shown.

proved optimization methods for the combined potential have been proposed (we
will comment on these in Section 6.3), it still seems that a significantly higher op-
timization time is the price to pay for parameterizations with balanced angle / area
distortion. We also point out, that the run time does not increase monotonously
with the number of vertices. Other properties like for example the curvature, the
size of the boundary loops or the quality of the triangulation also influence the
convergence of the optimization.

6.3 Discussion
In the last chapters, potentials for surface parameterization over a planar domain
were analyzed with a focus on the preservation of the surface metric. While ad-
vanced methods exist for conformal parameterization, only few potentials capture
both angle and area distortion. Moreover, these potentials suffer from certain
drawbacks.

Therefore, a novel potential method was derived that captures both angle and
area deformations. The importance weighting parameter α allows the user to spec-
ify the relative importance of angle and area preservation. For α = 1 the potential
takes a particular simple form and can be interpreted as a measure of length defor-
mation. The combined potential tends to infinity as triangles degenerate and this
property can be used to ensure flipless parameterizations. Moreover, it does not
need special boundary conditions and thus enables a natural optimization of the
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boundary of the texture domain S̄.
A simple method to minimize this deformation measure was proposed, that

ensures the bijectivity of the resulting mapping. We evaluated the resulting pa-
rameterization method on a number of surfaces as commonly found in computer
graphics applications. The resulting parameterizations show the desired compro-
mise between angle and area deformation on surfaces that are far from devel-
opable. On nearly developable surfaces as they result after cutting or seaming the
shape deformation is hardly noticeable.

From the theoretical point of view, a still open question is the uniqueness (up
to rigid transformation) of the minimum. While our experiments suggest that the
minimum is unique as long as triangles are constrained to consistent orientation,
a proof is still missing. An even more fundamental question is whether a min-
imizing parameterization exists at all. Clarenz et al. [CLR04a] derived a class
of parameterization potentials from a set of fundamental properties. Potentials
of this class are very similar to the combined potential proposed here. They can
also be expressed in terms of the angle and area potential but combine those po-
tentials linearily in contrast to the multiplication of powers proposed here. In
addition, Clarenz et al. add a length potential that is similar to the sampling en-
ergy Estretch−2. Similar to our combined energy, the influence of angle, area and
length deformation can be specified using linear importance weights. For poten-
tials of this class, Clarenz et al. were able to prove the existence of a minimizing
parameterization not only on triangulated surfaces but also in the smooth case.

While the optimization algorithm proposed here is easy to implement and
guarantees the absence of flips, it is rather slow compared to linear methods. Re-
cent work therefore also targets at more efficient optimization algorithm. A simul-
taneous optimization of the texture coordinates of all vertices is likely faster than
the vertex relaxation currently used in our implementation. This approach was
also taken by Clarenz et al. [CLR04a] who use a Newton method with adaptive
line search. However, the authors give no timings for comparison. The iterative
method by Dong and Garland [DG07] alternates between two steps. In the first
step optimal positions for each vertex within its one ring are computed similar
to the relaxation optimization. In contrast to relaxation, vertex positions are not
immediately updated. To update positions, the optimal position of each vertex is
expressed in terms of the position of neighboring vertices by mean value coor-
dinates [Flo03]. This gives rise to a linear system which is solved to update all
positions simultaneously. The reported run times are orders of magnitude faster
than our hierarchical optimization but their method needs fixed boundary values.
As similar idea was also pursued by Liu et al. [LZX+08]. Instead of locally opti-
mal texture coordinates for each vertex, they compute a locally optimal shape for
each triangle. These shapes are then integrated in a second phase using a fast lin-
ear system. Similar to the approach of Dong and Garland, both steps are repeated
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until the method converges to a fix point. Their optimization is very efficient,
but cannot guarantee the absence of flips. While the global/local approaches are
promising, the question, how the proposed potential (or similar metric potentials)
can be optimized efficiently with natural boundary conditions and guaranteed bi-
jectivity is therefore still open.
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MATERIAL SPECIFIC TEXTURE MAPS AND

PATTERNS FOR FABRIC COVERED SURFACES

A large range of industrial products are either made from or covered with an elastic
fabric that is initially supplied in a two dimensional form such as steel, woven
textiles or rubber. Important examples include cloth and garments, sails, seats and
other upholstery, ship hulls and shoes. The production of such objects usually
starts from planar pieces ( the pattern ) which are stitched together or bend to
follow a 3D surface. If the surface itself is not developable, which is in general
not the case, the fabric undergoes a deformation in the production process. This
in turn causes distortions in the material distribution of the surface that are in
particular visible, if the fabric shows some kind of pattern, as e.g. weaving patterns
or imprints. An example of such an object is shown in Figure 7.1.

With modern acquisition technology at hand, it is easy to obtain the geometry
of the covered or strained surface. However, the underlying fabric pattern and the
material deformation cannot be acquired in that way. While this information is
not needed to reproduce the exact appearance of the acquired object, changes of
material, texture or patterns, as required to evaluate different options e.g. in the
design of cloth, automotive seats or shoes are not possible.

Certainly the parameterization methods described in the last chapters can be
used to generate a texture map of the acquired geometry. The resulting deforma-
tion will, however, vary depending on the chosen potential and will most likely
not correspond to the actual material deformation as those potentials (with the no-
table exception of the elastic membrane potential) do not reflect physical material
properties and, second, are of isotropic nature, while most existing materials are
anisotropic.

In computer graphics much effort has been put in measurement and reproduc-
tion of realistic material reflectance properties over the last years [LGM07]. In
contrast, texture maps with realistic material deformation have not been consid-
ered so far. In this chapter we compute texture maps that show realistic defor-

81



CHAPTER 7. MATERIAL SPECIFIC TEXTURE MAPS AND PATTERNS FOR FABRIC COVERED

SURFACES

Figure 7.1: Visible fabric deformation on a part of an automotive seat. On top
different texture maps are shown while texture and geometry does not change.
Texture maps are created using the conformal potential and the membrane poten-
tial for various materials. In the bottom closeups are shown. “Isotropic” refers
to an isotropic material and “anisotropic 1:10” to a material with a ratio of direc-
tional anisotropy of 1 : 10. “Cotton” refers to measured material parameters with
anisotropy ratio of 1 : 2.2.
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mations coherent with a given material. In contrast to parameterization methods
discussed in the last chapters, that aim at mostly isometric mappings, the inten-
tion of this chapter is to produce texture maps that show shape distortion reflect-
ing the physical material strain in the production process, including effects due
to anisotropic materials. To this extent, we will revisit the physical elastic mem-
brane potential for parameterization. We see the applications for such material
specific texture maps primarily in connection with high quality material rendering
methods.

To compute material specific texture maps, we will assume that the original
pattern is known. This is usually the case once the object in question has reached
production stage as the pattern is essential for production. However, while pro-
duction of objects as characterized above starts from planar patterns, their design
often proceeds in the opposite direction. For example in the design of automotive
seating first a three dimensional shape is sketched. Appropriate flat patterns are
then generated in a second step which is also referred to as flattening. In practice,
even today, flattening is usually done in manual trial and error process. As manual
flattening proceeds in several iterations, even a rough approximation can signifi-
cantly reduce the number of iterations and thus the required effort. The approach
suggested in this chapter is based on surface parameterization with natural bound-
ary conditions. As the outline of the preimage S̄ = x̃−1(S) evolves freely from
the optimization we expect it to at least approximate the actual, unknown patterns.

If both pattern and geometry of underlying shapes are known, the final surface
and material deformation can be inferred by physical cloth or draping simulation
[NMK+06]. The work presented here is complementary to such simulations: It
assumes the shape of the covered or strained surface as fixed and solves for pat-
terns or material deformations for a given material. We thus consider only intrinsic
deformations and neglect extrinsic shape deformation due to pattern or material
changes. While the extrinsic shape can in general vary strongly, our assumption of
a static shape is nevertheless justified in many applications where external forces
enforce a certain, desired shape as e.g. tight fitting cloth, upholstered furniture,
automotive seats or shoes.

7.1 Material Specific Texture Maps

As shown in Figure 7.2 we consider in this section an initial planar pattern bound-
ary S̄ and a target shape S as given and solve for deformation x̃ : S̄ → S. As
the map x̃ should approximate the actual material deformation of the fabric, we
will also need some information about the elastic properties of the material which
will be detailed in a moment. While the shape S is potentially influenced by the
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(a) (b)

Figure 7.2: This data is assumed as given in this section: (a) A planar pattern.
(Small annotations give additional sewing instructions). (b) the acquired surface
of the final upholstered seat. One connected component of the pattern is high-
lighted.

choice of the covering fabric as well as the elastic properties of the cushioning, we
neglect these effects and assume the shape of the target shape S as fixed. Albeit
it seems strong, this assumption is justified in many applications. For example, in
the production of automotive seating shape changes due to varying cover materials
are usually neglected.

To find the resulting deformation x̃ we follow the plaster cast metaphor intro-
duced by Litke et al. [LDRS05] for surface matching that is illustrated in Figure
7.3 but adapt it to respect additional sewing information: First, we imagine the
boundary of the planar pattern sewn to the boundary of S. This sewing is guided
by additional sewing instruction annotated in the pattern as shown in Figure 7.2a
that give rise to a mapping

b : δS̄ → δS

between the boundaries δS̄ and δS of the pattern and the surface. Sewing bound-
aries together might already result in a significant membrane strain but the stretched
pattern still need not follow the given shape. It is therefore in a second step,
pressed between two plaster casts taken from the surface S. Neglecting friction,
the fabric will now float between the two casts according to material restoring
forces to relax but at the same time it cannot leave the given shape. The final de-
formation is then obtained as equilibrium configuration, i.e. as a minimum of the
elastic potential.
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Figure 7.3: We use the plaster cast metaphor from [LDRS05] to find material
deformation: (a) A plaster cast is extracted from the original surface S shown in
blue. (b) The boundary of the pattern shown in red is sewn to the boundary of
S. (c) To enforce adherence to the given shape S, the casts are pressed from both
sides to the deformed pattern.

In addition, to the constant shape assumption we consider fabrics with negli-
gible bending resistance like textiles or sufficiently thin shells. Consequently, the
bending term of the elastic potential in Equation 3.13 can be omitted. The defor-
mation x̃ is thus found as minimizer of the elastic membrane potential emembrane
alone. Using the general deformation setup from Figure 3.2 as in the previous
chapters relaxing the fabric between the two casts can be mathematically modeled
by considering variations of the membrane potential with respect to the parame-
terization x. To respect sewing instructions, these variations must be restricted so
that

x̃|S̄ = b . (7.1)

In addition, it must be ensured that the given shape S is not altered, and thus vari-
ations have to be restricted further to work only tangential. However, this latter
restriction poses technical problems for triangulated surfaces. We therefore take
a different approach here: In the smooth case, tangential variations of the param-
eterization x can be mapped back to variations of the parameterization x̄. As x̄
maps into a planar space the restrictions to tangential variations can be omitted
and no other constraint other than Equation 7.1 has to be imposed. Computing
material specific texture maps thus amounts to minimizing the elastic membrane
potentialEmembrane(x̃) = Emembrane(x◦x̄−1) with respect to the parameterization
x̄ subject to condition 7.1.

For an isotropic material the membrane potential’s density was given in Equa-
tion 3.13. For a general anisotropic elastic material the density takes a similar
form:

emembrane =
h

2
Cαβγδ(gαβ − ḡαβ)(gγδ − ḡγδ) (7.2)

where h is the constant shell thickness and Cαβγδ is a material specific elastic-
ity tensor (for the choice of Cαβγδ = E

(1−ν2)
Hαβγδ we obtain the density for an
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isotropic material as given in Equation 3.13). In the above equation, the tensor
Cαβγδ specifies material properties in coordinates θα of ω and thus changes un-
der variations of the parameterization x̄. In our setting it is more convenient to
consider the same tensor in coordinates x̄α of S̄ which is constant with respect to
variations of x̄. Now, Cαβγδ is a so called contravariant tensor, which means that
it transforms from coordinates θα to coordinates x̄α according to

cαβγδ = Cα′β′γ′δ′ ∂x̄
α

∂θα′
∂x̄β

∂θβ′
∂x̄γ

∂θγ′
∂x̄δ

∂θδ′
(7.3)

where cαβγδ denotes the same tensor in coordinates x̄α. Substituting this in Equa-
tion 7.2 and using the following simple identities

∂θα
′

∂x̄α
∂θβ

′

∂x̄β
gα′β′ =

∂θα
′

∂x̄α
∂θβ

′

∂x̄β
∂xγ

∂θα′
∂xγ

∂θβ′
=
∂xγ

∂x̄α
∂xγ

∂x̄β
= g̃αβ (7.4)

∂θα
′

∂x̄α
∂θβ

′

∂x̄β
ḡα′β′ =

∂θα
′

∂x̄α
∂θβ

′

∂x̄β
∂x̄γ

∂θα′
∂x̄γ

∂θβ′
=
∂x̄γ

∂x̄α
∂x̄γ

∂x̄β
= δαβ (7.5)

we get

emembrane =
h

2
cαβγδ

∂θα
′

∂x̄α
∂θβ

′

∂x̄β
(gα′β′ − ḡα′β′)

∂θγ
′

∂x̄γ
∂θδ

′

∂x̄δ
(gγ′δ′ − ḡγ′δ′)

=
h

2
cαβγδ(g̃αβ − δαβ)(g̃γδ − δγδ)

The elastic membrane potential for an anisotropic material is then obtained by
integration over the undeformed configuration surface S̄ as

Emembrane =

∫
S̄

emembrane dS̄ =

∫
ω

emembrane (det ḡ)
1
2 dω

Computing material dependent texture maps for an isotropic material is thus
nearly equivalent to planar parameterization using the elastic energy as discussed
in Section 4.2.2. The only difference is the constraint 7.1 that fixes the boundaries
to the outlines of pattern patches. In context of parameterization, we observed gap
artifacts that were due to the missing convexity of the membrane potential. The
same problem can be observed for other materials and fixed boundaries and thus
also applies to material dependent texture maps.

The above given physical metaphor allows for a different perspective on these
problems: The linear elastic model as introduced in Section 3.1 that is the basis
for Equation 7.2 assumes a linear stress/strain relation. In case of an isotropic
material this relation was given in Equation 3.12 and it is easily generalized for
anisotropic materials as

nαβ = hCαβγδ(gγδ − ḡγδ) (7.6)
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Figure 7.4: The stress strain curve for felt under compressive strain. While for
small strain, the relation is nearly linear, it quickly becomes non-linear for larger
compression.

where nαβ is the stress tensor in coordinates θα. While this is a reasonable ap-
proximation for many fabrics under small strain, it no longer holds for larger de-
formations. The stress strain relation of real materials becomes non symmetric
for compression and stretch. In particular for compression, many fabrics show a
non-linear stress strain relation under strong compression as shown in Figure 7.4.

Figure 7.5 again shows a closeup on the parameterization of the cat head model
as it was shown in Figure 4.3. Looking at the gap artifacts, we notice that the
highlighted cross section in S̄ is mapped to a small line segment on the surface S.
It therefore undergoes a large compressive strain when it is mapped by x̃. Clearly,
the linear stress/strain assumption no longer holds in this case.

In context of parameterizations surfaces are often far from developable and
large strain cannot be avoided as in the case of the cat head model. Surfaces con-
sidered in this chapter are obtained by putting a fabric into shape in a physical
production process. To ease production, care is usually taken in the design of
patterns to keep strain small as large strain hinders upholstering. (In particular,
for automotive seating and upholstery very low compressive strain can be safely
assumed: This is because compressive strain in the fabric leads to folds and wrin-
kles which are highly undesired.) For simplicity we therefore stick to the linear
model in this chapter. However, it certainly depends on the application, whether
the assumption of a linear stress strain relation is justified. We will come back to
this issue in Section 7.3.
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Figure 7.5: The parameterization of the cat head model (see 4.3) using the elastic
membrane potential. The large highlighted cross section in the gap in the texture
domain S̄ (right) is mapped onto a small line segment on the surface S (right).
This corresponds to a large compressive strain in this area.

7.1.1 Discretization and Numerical Optimization

Material specific texture maps are computed by optimizing the elastic potential
subject to the constraint 7.1. For discretization we again assume piecewise affine
maps x and x̄. First order derivatives and all derived properties like metric tensors
are then constant within each triangle and discretization proceeds as described in
Section 2.2.2.

In the discrete case, the constraint 7.1 prescribed values for boundary vertices.
Consequently, we simply exclude these vertices from the optimization and keep
their values fixed. While the simple relaxation algorithm outlined in Section 6.1.1
can be applied with almost no changes (relaxation is only performed on interior
vertices), adapting the more efficient hierarchical optimization in Section 6.1.2 to
respect fix boundary conditions poses problems. The initial placement of split ver-
tices ensuring an admissible parameterization might conflict with the prescribed
boundary values so that absence of flips can no longer be guaranteed. 1 Although
admissibility in general cannot be guaranteed, we encountered no such problems
in our experiments if actual pattern curves were used to fix boundaries.

Having stripped the guaranteed fliplessness requirement, we can also employ
standard Newton trust region optimization instead of vertex relaxation to further
speed up the optimization. Applying the discretization scheme detailed in Section
2.2.2 for an implementation only first and second order variations of the elastic
potential are missing, that we will state in the following. As for the variations of
the combined potential in Section 5.5.3, we consider a small change x̄ + εȳ of x̄

1In fact e.g. for a self intersecting boundary no admissible parameterization is possible. But
flips can also result for intersection free boundary shapes.
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in the direction of map ȳ and write

∂x̄F [x̄](ȳ) =
∂

∂ε
F [x ◦ (x̄ + εȳ)−1]

∣∣∣∣
ε=0

to denote the variation of a functional F with respect to x̄. (By considering only
maps ȳ that vanish on the boundary δω we can easily account for the boundary
constraint.) The expressions summarized in the following can be obtained apply-
ing basic rules of calculus and the equalities given in Section 5.5.3.

∂x̄Emembrane[x̄](ȳ) =

∫
ω

(∂x̄emembrane[x̄](ȳ))(det ḡ)
1
2 + emembrane

∂x̄ det ḡ

2(det ḡ)
1
2

dω

∂x̄x̄Emembrane[x̄](ȳ, z̄) =

∫
ω

(∂x̄x̄emembrane[x̄](ȳ, z̄))(det ḡ)
1
2 +

+ ∂x̄emembrane[x̄](ȳ)
∂x̄ det ḡ[x̄](z̄)

2(det ḡ)
1
2

+

+ ∂x̄emembrane[x̄](z̄)
∂x̄ det ḡ[x̄](ȳ)

2(det ḡ)
1
2

+

+ emembrane

(
∂x̄x̄ det ḡ[x̄](ȳ, z̄)

2(det ḡ)
1
2

−

− ∂x̄ det ḡ[x̄](ȳ)∂x̄ det ḡ[x̄](z̄)

4(det ḡ)
3
2

)
dω

∂x̄emembrane[x̄](ȳ) = hcαβγδ(g̃αβ − δαβ)(∂x̄g̃[x̄](ȳ))γδ

∂x̄x̄emembrane[x̄](ȳ, z̄) = hcαβγδ ((∂x̄g̃[x̄](ȳ))αβ(∂x̄g̃[x̄](z̄))γδ +

+ (g̃γδ − δγδ)(∂x̄g̃[x̄](ȳ, z̄))αβ)

∂x̄ det ḡ[x̄](ȳ) = tr
(
ḡ−1∂x̄ḡ[x̄](ȳ)

)
det ḡ
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ḡ−1∂x̄x̄ḡ

)
− tr
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det ḡ

(∂x̄ḡ[x̄](ȳ))αβ = ȳi,αx̄i,β + x̄i,αȳi,β

(∂x̄x̄ḡ[x̄](ȳ, z̄))αβ = ȳi,αz̄i,β + z̄i,αȳi,β
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δ,β
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−1(ȳ))δ,β + x̄−1

γ,α∂x̄x̄x̄
−1
δ,β

)
∂x̄(x̄−1[x̄](ȳ))α,β = −x̄−1
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7.2 Application: Pattern Generation for Upholstery
As sketched in the introduction, the production of fabric covered surfaces starts
from a planar pattern, that is cut, sewn and bent into its final shape. The design of
fabric covered surfaces usually proceeds in the opposite direction: For example
the shape of automotive seats is typically prototyped using a clay model or a digi-
tal surface model. For upholstering, first the position and routes of seams have to
be specified on the surface. As placement of seams is subject to aesthetic consid-
erations it is to large parts left to the designer although an upholsterer has to check
the desired seam placement for technical feasibility. The second step then consists
in finding a planar pattern and associated sewing instructions. This happens in a
manual trial and error process in which the pattern is iteratively updated, sewn and
upholstered to check for a tight fit. The ultimate goal can vary with applications
but often the tightest possible fit and absence of wrinkles are desirable.

To reduce the number of iterations in pattern design, automatic methods have
already been proposed. However, upholstering is an inherently complex task in-
fluenced by many different factors as material properties of upholstery frame, sur-
face fabric but also friction, temperature and humidity. Computing a perfectly
fitting pattern thus requires knowledge of many physical parameters whose mea-
surement is not practical or too costly. Automatic approaches as the one proposed
here therefore target only at a reduction of the necessary manual iterations.

By optimizing the elastic potential as described in Section 7.1 we cannot only
compute material specific texture maps, but also find an initial guess for pattern
design. To this extent we cut the surface S along seam paths given by the designer
resulting in a set of k connected surface components (Sm)m=1...k. For many ap-
plications a pattern is desired that can be mapped to the given surface with low
stress (or equivalently with little physical work). Neglecting friction and bending
forces, such patterns can again be found by optimizing the elastic membrane po-
tential. We can thus run the same optimization as in the previous section for each
component but without the boundary constraint in Equation 7.1 so that the pattern
shapes δS̄m evolve freely. After convergence we simply extract these boundary
curves to find outlines of pattern pieces. The basic assumption of this approach,
that the sought after pattern minimizes the elastic potential is in general desir-
able even though in certain applications other properties as e.g. a prescribed stress
pattern are required.

7.2.1 Relations to Other Approaches To Pattern Generation
Due to its importance in industrial design, flattening has been studied in computer
aided design for nearly thirty years. Except for early approaches, all recent method
use strain energies to quantize the unavoidable shape deformation. We concentrate
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this discussion on energy based approaches and refer to [AS04] and [YZS07] for
earlier approaches.

Interestingly, the edge length potential as proposed by Maillot et al. [MYV93]
for parameterization ( see Equation 4.4) has become a popular strain measure for
flattening in computer aided design. An optimization of this potential is com-
mon to several methods that differ only in the way the initial mapping is found.
Azariadis et al. [ANA02] lay out developable strips of triangles in the plane and
subsequently close gaps between these strips in the optimizations. McCartney et
al. [MHS99] and Wang et al. [WSY02] progressively lay out triangles in a breadth
first traversal. Wang et al. [WTY05] trace geodesics on the surface to form a uni-
form quadrilateral mesh. In contrast to our approach, none of these methods can
guarantee a valid initial layout without flips. Zhong and Xu [ZX06] circumvent
this problem. They use the physical model of [BW98] and apply bending forces to
unfold winged edges before colliding them with a plane. As discussed in Section
4.2.2, the edge length potential is not physically plausible. Moreover, it measures
strain only in the direction of edges and thus provides only a rough approximation
of the actual deformation behavior, in particular for anisotropic materials.

Only few alternatives for the edge length potential have been proposed in con-
text of pattern generation. The Wirewarp method [Wan08] generates patterns by
laying out feature curves on the surface directly. In contrast to the edge length
potential, their energy also accounts for differences in geodesic curvature of fea-
ture curves on the surface and in the planar domain. McCartney et al. [MHC05]
propose a strain energy for woven orthotropic materials. For flattening, triangles
are progressively laid out in the planar domain starting from a single seed trian-
gle and new vertices are positioned by locally minimizing the strain energy of
adjacent triangles. In contrast to these energies, our strain potential is physically
accurate (at least within the material’s elastic range) and is directly derived from
elasticity theory. It allows for general anisotropic materials specified by physical
parameters that can be determined directly from measurements.

7.2.2 Seams
So far the pattern generation method considers each of the connected components
(Sm)m=1...k separately and individual patterns (S̄m)m=1...k for these parts do not
influence each other. For assembly, these patches are sewn together along shared
boundary segments. As with the current method strain on individual patches can
vary, the boundary segments of two patches connected by a seam can also vary
significantly in length. This is, however, undesired as it complicates sewing and
can lead to wrinkling. We therefore like to impose an additional constraint on the
optimization, that enforces equal strain along the seam direction for each pair of
adjacent patches. We refer to this constraint as seam strain constraint.
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Figure 7.6: Fixed and floating seams on an seat model: Fixed seams (shown in
red) are seams between two pattern patches, that are additionally sewn to the up-
holstery frame. In contrast, a floating seam (in blue) is a seam between patches
that is not fixed on the frame and can thus float on the surface. To ensure that
floating seams stay in place, we require that membrane forces at each side of the
seam cancel exactly.

Besides equal strain along seamed boundaries, it is in some cases also neces-
sary to constrain stress forces at seams. In the absence of such constraints, the
stress across a seam between two patches Sm and Sn does in general not vanish.
During upholstering, the seam will in the absence of other forces thus float on
the surface. However, there are ample reasons for the upholsterer to keep them
at a well defined position. E.g. for automotive seating the position of seams con-
tributes to the visual and tactile appearance of the seat and is thus specified by the
seat designer. To ensure that the position of seams is maintained after upholster-
ing, we introduce a seam stress constraint, that requires vanishing stress across
seams.

In contrast to the seam strain constraint that is applied to all seams, the seam
stress constraint is only applied to a certain type of seam. In general, we distin-
guish two types of seams which are illustrated in Figure 7.6: Fixed seams connect
not only two patches of fabric, but are also fixed to the upholstery frame. As the
fixation already enforces the designer intended position during upholstering stress
constraints are not necessary for this type of seam. In contrast, floating seams are
not fixed on the frame and can thus float over the surface during upholstering. To
maintain their position, we add stress constraints.

To formalize both types of seam constraints we need to extend our notation
slightly to represent seams as illustrated in Figure 7.7. We consider two patches
Sm, Sn of the surface S that share a common boundary represented by a regular
curve d : I ⊂ R → S. For simplicity we assume that d is parameterized by
arc length. Moreover, we continue to assume that S is parameterized by a single,
auxiliary parameterization x. Again, this assumption is only made to simplify
the discussion and not actually necessary for the optimization algorithm. The
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Figure 7.7: Notation for pattern inference in the presence of seams: A seam be-
tween two patches Sm and Sn is represented by a parametric curve d on the sur-
face whose preimage is denoted by c. The two patches are mapped individually
by x̃(m) and x̃(n) to allow for a discontinuity at the seam d. Consequently, we
have for each patch a parameterization (x̄(m) and x̄(n)).

preimage of the seam curve d under x is denoted by c.
To allow discontinuous texture coordinates x̃−1 at the seam, we replace the

parameterization x̃ and accordingly x by two continuous maps x̃(m), x̃(n) and
x̄(m), x̄(n) respectively (see Figure 7.7). These give rise to two curves c̄(m) =
x̄(m) ◦ c and c̄(n) = x̄(n) ◦ c that represent those parts of the patch boundaries
δS̄m, δS̄n that are to be stitched together to form the seam.

Seam Strain Constraint

Using the notation of Figure 7.7, the condition that strain on both sides of the
seam matches can be expressed as

‖ ∂
∂t

c̄(m)‖2 = ‖ ∂
∂t

c̄(n)‖2 (7.7)

i.e. the length of derivatives of the two preimages of d under x̃ must match for
all t ∈ I . For later use, we also define a strain constraint potential as squared
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residual of condition 7.7

Estrainconstr. =

∫
I

(
‖ ∂
∂t

c̄(m)‖2 − ‖ ∂
∂t

c̄(n)‖2

)
dt

=

∫
I

ċα(ḡ
(m)
αβ − ḡ

(n)
αβ )ċβ dt

where ċα denotes the components of the derivative ∂
∂t

c in coordinates θα and ḡ(m)

is the metric tensor of x̄.

Seam Stress Constraint

For the boundary stress constrained we first neglect seams for a moment and con-
sider the general, continuous deformation setup described in Chapter 3. We recall
Equation 3.9 that gives the stress force t acting on an imaginary surface element
with unit normal ν inside an elastic solid as

ti = τ ijνj .

For the shell case, we substitute the general stress tensor τ ij by the membrane
stress tensor nαβ given in 7.6 which yields

tα = nαβνβ

= hCαβγδ(gγδ − ḡγδ)

and by Equations 7.3-7.5

tα = hcα
′β′γ′δ′(g̃γ′δ′ − δγ′δ′)

∂θα

∂x̄α′
∂θβ

∂x̄β′
νβ

In the above equation, the stress vector t is given by contravariant coordinates tα,
that refer to the coordinate frame ai, i.e. t = tαaα. In contrast, the coordinates νβ
of ν are covariant, i.e. understood with respect to the system ai. It can be easily
verified, that co- and contravariant coordinates are related by the metric tensor,
more precisely

να = ḡαβν
β

and using this relation the above expression for the stress force can be rewritten as

tα = hcα
′β′γ′δ′(g̃γ′δ′ − δγ′δ′)

∂θα

∂x̄α′
∂θβ

∂x̄β′
ḡκβν

κ (7.8)

= hcα
′β′γ′δ′(g̃γ′δ′ − δγ′δ′)

∂θα

∂x̄α′
∂x̄β

′

∂θκ
νκ (7.9)
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In the presence of multiple patches Sm and seams, we obtain a similar expres-
sion for the stress forces in each patch:

(t(m))α = hcα
′β′γ′δ′(g̃

(m)
γ′δ′ − δγ′δ′)

∂θα

∂(x̄(m))α′
∂(x̄(m))β

′

∂θκ
νκ (7.10)

To find stress forces at the seam, we choose ν = ν(t) as a normal vector field to
the curve c. More precisely, as we are interested in the stress in the final deformed
configuration S, the vector field is chosen to be normal to the curve in the metric
g. I.e. in each point c(t), the coordinates να(t) are chosen such that

ναgαβ ċ
β = 0 and ναgαβνβ = 1

(mapping the thus obtained vector field using ∇x in fact yields a normal vector
field to the curve d on S). Using the above relation, we then find a field of stress
forces t(t) along the seam curve c. At each point on the curve, the force vector
t(m) can be split into a force acting tangential to the seam and an orthogonal force
acting across the seam, i.e. along the normal direction ν. For the position of the
seam on the surface only the latter component is important — the so called normal
stress — whose magnitude is the dot product t(m) · ν. Using the metric ḡ(m) and
Equation 7.10 we get

t(m) · ν = (t(m))αḡ
(m)
αλ ν

λ

= hcαβγδ(g̃
(m)
γδ − δγδ)

∂(x̄(m))α

∂θλ
∂(x̄(m))β

∂θκ
νκνλ

Requiring, that a seam between patches Sm and Sn stays in place after upholster-
ing is equivalent to demand canceling normal stress in each point along the seam,
i.e.

t(m) · ν = −t(n) · ν (7.11)

so that after sewing, the sum of both stresses vanishes. Similar to the strain
boundary constraint, we also define a stress constraint potential as the squared
residual

Estressconstr. =

∫
I

(
t(m) · ν + t(n) · ν

)2
dt

Optimizing Patterns

As argued in the introduction, in the absence of seam constraints patterns can
be computed simply by a minimization of the elastic potential. In this case, for
example the hierarchical optimization method of Section 6.1.2 can be used to infer
pattern shapes.
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However, in the presence of seams the optimization problem becomes more
complicated. Here also pattern shapes are sought that can be mapped with mini-
mal elastic potential. But in addition, the seam constrains must be satisfied in the
equilibrium configuration, after upholstering when the fabric has “settled”. For
a given patterns δS̄m, the equilibrium is characterized by a vanishing potential
gradient in the patch interior. More precisely,

∂x̄(m)Emembrane[x̄
(m)](ȳ(m)) = 0 (7.12)

for all patches S̄m and variations ȳ(m) that vanish on the boundary, i.e.

ȳ(m)|δωm = 0

The pattern inference problem with seams can thus be put as the following con-
strained optimization: Find rest state configurations (x̄(m))m=1...k that minimize
Emembrane subject to the equilibrium condition 7.12 as well as the seam condi-
tions 7.7 and 7.11. Please note, that the additional equilibrium condition is in fact
necessary to ensure, that strain and stress values in the formulation of the seam
constrains actually correspond to the physical equilibrium configuration that is as-
sumed after sewing and upholstering the pattern. If it is omitted, for any vertex v
we have by the Lagrange multiplier rule

∂Emembrane
∂x̄v

= −λv
∂Econstr
∂x̄v

(7.13)

where λv denotes the Lagrange multiplier and Econstr some function that vanishes
iff the seam constraints are met. In particular, the gradient does in general not
vanish for inner vertices. In this case, the optimizing configuration will thus not
reflect the physical equilibrium.

Unfortunately, the above constrained optimization problem is rather complex
and even the search for an admissible initialization is computationally involved.
We thus suggest here a simple approximation scheme that is based on the op-
timization algorithm developed for surface parameterization. To this extent, we
first replace the seam constraints in the above problem statement by so called soft
constraints, which amounts to minimizing

E := Emembrane + αEstrainconstr. + βEstressconstr.

subject to the equilibrium condition 7.12 only. As the seam constraint potentials
are defined as the sums of squared residuals, the optimization will strive to satisfy
both constraints of both types in least squares sense. The parameters α and β
must be chosen relatively large to penalize deviation from the seam constrain.
Using soft constrains an admissible initialization must only satisfy the equilibrium
constraint and can thus be found using the pattern inference that ignores seams.
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Second, we approximate the constraint optimization by alternating an uncon-
strained optimization of patch boundaries δS̄m and a separate optimization of in-
ner points S̄m\δS̄m. The complete optimization algorithm is sketched in Algo-
rithm 1. While the first step optimizes patch boundaries to conform with the con-
straints and to reduce the elastic potential, the second step only reestablishes the
equilibrium configuration in each iteration. The suggested simple approximation

Algorithm 1 The pattern inference algorithm for patterns with seams.
Initialization:
find x̄(m) as minimum of Emembrane[x̄(m)] for all patches m = 1 . . . k
repeat

step 1 (optimize boundary): optimize E with respect to patch boundaries
x̄(m)|δωm for all patches.
step 2 (reestablish equilibrium): optimize Emembrane with respect to inner
points x̄(m)|ωm\δωm for all patches.

until convergence of x̄(m)

is easy to implement and in our experiments we always observed convergence to
an admissible configuration satisfying both seam and equilibrium constraint even
though we do not give a theoretical guarantee here.

7.3 Results
To analyze the visual impact of material parameters on the texture map, we first
considered an artificial example surface shown in Figure 7.8. A rectangular tex-
ture image with several concentric arcs was mapped on the surface using various
parameter sets: Two parameter sets were obtained from measurements of woven
cotton fabrics and were extracted from [WAY03]. Isotropic refers to a perfectly
isotropic fabric. We also added three artificial materials with different levels of
anisotropy in Young’s modulus for comparison. Although, for knitted textiles,
levels of anisotropy of 1 : 5 and higher have been reported, a relative difference of
1 : 100 or higher is up to our knowledge not realistic for materials commonly used
on fabric covered surfaces. These materials were added to visualize the effect of
anisotropy.

As shown in the figure, differences become noticeable even for the two cotton
fabrics whose elastic behavior is relatively similar. It is most of all the level of
anisotropy that influences the shape of the concentric arcs. While the relative
difference in Young’s modulus is about 1 : 1.2 for cotton 1, the second cotton
material is slightly more anisotropic with a relative difference of 1 : 2.2. As
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Figure 7.8: Material specific texture maps for an artificial surface. Cotton 1
and Cotton 2 refer to measured woven fabrics. Anisotropic refers to an artifi-
cial anisotropic fabric with different levels of anisotropy in the Young’s modulus.

a result arcs appear more roundish for cotton 1. For the isotropic material the
circles are perfectly preserved. The observed effects become more pronounced
with increasing anisotropy. In contrast, differences in the texture maps that are
due to changes of the Poisson’s ratio were hardly noticeable.

Figure 7.9 shows texture maps computed for a human torso generated by a
statistical model based on a database of body scans [HSS+09]. The shown surface
covers only front facing part of the torso. We first computed an optimal pattern
for the database average shown in Figure 7.9a using our pattern inference method
(with isotropic material settings). For this, the boundary of the model was used
as a single seam. Due to the nature of our pattern inference the resulting strain
on the mean model is very low. As shown in the figure, differences in the texture
map caused by material changes are hardly visible. However, when using the
same pattern on other models (Figure 7.9b-d) differences are clearly noticeable in
regions of high strain like hip, chest and belly.

In case of the larger masculine model (Fig. 7.9d), there are visible artifacts
around the shoulders. In fact, the compressive strain on this model is very high.
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For high strains as in this case, our linear stress/strain approximation is no longer
valid as discussed in Section 7.1 and the optimization results in gap artifacts. The
limitation of our model to moderate strain is also demonstrated in Figure 7.10.
Here a non-developable surface with high surface area to boundary length ratio
was chosen to provoke gap artifacts. As shown in the figure, gaps appear more
often and more pronounced in the anisotropic case. In the isotropic case, the fat-
tened surface S̄ resembles the result obtained by minimizing the length potential
Elength discussed in Section 5.3.

To examine the practicability of the suggested pattern generation we put it to
work on an automotive seat model. For comparison a car seat was upholstered and
digitized using a range scanner. The resulting surface (shown in Figures 7.6 and
7.2 ) was cut along seams and we first applied our method to infer patterns for each
connected components separately ignoring seams. Figure 7.11 shows the result-
ing patterns for different materials and a comparison with the actual pattern (see
Figure 7.2) used in the upholstering. Please note, that in contrast to our results, the
reference pattern includes an extra seam margin at the boundary (By the time of
writing the exact size of the margin for the reference data set was, unfortunately,
unknown. The dotted line shown in Figure 7.11 is based on a hypothetical value
and was added for illustration.). Except for an isotropic material, the orientation
of the planar pattern S̄ is not arbitrary. As we impose no orientation constraint,
it is rather rotated by the optimization so that strain is mostly concentrated along
the axis of smallest stiffness. For comparison, each pattern piece was manually
aligned with the reference by rotation and translation.

The comparison shows a high compliance for the patch in the middle (shown
in red). Only the pattern for the anisotropic material differs which is slightly
compressed along the diagonal (that coincides with the direction of minimal stiff-
ness). The remaining pieces involve higher strain and patterns differ considerably.
Although, unfortunately, the material parameters of the original fabric were not
available for our comparison, but at least the results for the isotropic and cotton
materials are very similar (In fact, the difference between cotton 1 and cotton
2 is not noticeable and only the cotton 1 is shown). Again, differences become
more pronounced with increasing anisotropy. However, in case of the green patch,
all patterns generated with the elastic potential clearly deviate from the reference
pattern.

The effect of seam constraints is demonstrated in Figure 7.12. At the time of
writing a complete specification of seam types was unfortunately not available.
The seam types assumed for the presented results are indicated in Figure 7.6. For
this result we run 3000 iterations of the approximation algorithm which effectively
enforces both types of seam conditions as visible in the figure. The effect of seam
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(a) (b)

(c) (d)

Figure 7.9: Material specific texture maps on a human torso: (a) Results for the
mean torso for different materials. A pattern for an optimal fitting shirt was com-
puted for this model. Consequently strain is very low on this model and differ-
ences due to material changes are hardly visible. (b) Using the same pattern on
a feminine torso results in more strain and differences become noticeable (e.g.
for the cotton materials on the hip). The same is true for the pregnant torso
model shown in (c) were effects are apparent at the belly. (d) A larger mascu-
line body model. Strain on this model is very extreme and artifacts due to the
linear stress/strain relation become visible at the shoulders.
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(a) (b)

Figure 7.10: Limitations of the linear elastic model: Flattening this artificial
surface results in very high strain. In this situation the linear stress/strain assump-
tion no longer holds. As a result our method produces gap artifacts that become
more pronounced with increasing material anisotropy. In (a) the texture mapped
surfaces S are shown while (b) shows the corresponding flattened surfaces S̄.
Minimizers of the conformal potential and Elength are shown for comparison.
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Figure 7.11: Comparison of generated patterns for the seat model with the actual
reference pattern (shown in (a) and in gray in the table). Patch colors correspond to
those in Figure 7.6. The table shows results obtained by optimizing the respective
potentials without boundary constraint. Cotton 1 and cotton 2 result in nearly
identical patterns. Anisotropic refers to the artificial anisotropic material with
relative Young’s modulus difference of 1 : 10. For comparison, the result using
Elength is also shown. (b) Optimization results in a specific orientation of the patch
in warp and weft directions. In the table, all patches were aligned manually by a
rigid transformation.

constraints on the pattern shape is rather subtle and local as shown in the Figure
7.12c. However, the compliance with the reference pattern slightly improves.

7.4 Discussion
Both the results on the artificial surface and on the torso model demonstrate, that
material parameters can have significant influence on the visual appearance. This
influence increases with material anisotropy and larger strain. While material spe-
cific effects might not be noticeable for some textures, they become apparent for
textures dominated by strong regular patterns. In the latter case, the impact of the
texture map on the appearance is drastic as shown in Figure 7.1. We therefore
advocate the use of material specific texture maps for such materials in partic-
ular in applications where visual realism is crucial. We also like to point out,
that material specific texture maps complement generalized texture functions as
e.g. bidirectional texture functions which have recently become commonplace in
computer graphics. While bidirectional texture functions capture photometric ma-
terial properties, our material specific texture maps account for elastic properties.
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(a)

(b)

(c)

Figure 7.12: Effect of seam constrains on the pattern. (a) pattern inferred for an
isotropic material without seam constrains. The dotted line indicates an additional
(hypothetical) seam margin of the reference pattern. (b) pattern inferred with seam
constrains. The original reference pattern is underlying in gray. Corresponding
seam segments are colored with identical colors to visualize strain along the seam
and normal stresses are shown on seam segments assumed as floating. From these
visualizations it becomes clear that our pattern inference with seams succeeded in
matching boundary strain and normal stresses. Changes in the pattern shape are
visualized in (c) where the result without seams is underlying in gray.
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Ideally photometric and elastic material parameters should be chosen consistently
to achieve high degrees of realism.

Albeit our results are promising, we see several possible improvements. Even
on the torso model strain becomes large enough to violate the linear stress/strain
assumption. A natural extension is therefore an elastic potential based on a non-
linear model (like the neo-hookean or Mooney-Rivlin model [Cia88]) that would
render the proposed method more accurate and robust in the presence of high
strain. Moreover, a comparison of our texture maps with strain measurements is
pending.

Concerning the proposed pattern generations, preparations for an evaluation in
automotive seating design are currently underway. Even if the preliminary com-
parison given in the last section reveals considerable deviations from the reference
pattern, our results might serve as a good starting point for the iterative manual de-
sign and save some of the necessary iterations. Apart from that, we conjecture that
pattern compliance improves with a more accurate non-linear stress/strain model.
We also like to explore the use of additional potentials for pattern inference. While
it is reasonable to require small strain on patterns, there are ample reasons to con-
sider further optimizations targets. E.g. for upholstery the absence of wrinkles is
often crucial. As wrinkles appear under the influence of compressive strain but not
with tensile strain, it is worth considering an asymmetric potential that penalized
compressive strain more rigorously than tensile strain.
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CHAPTER 8

COMPUTING PARAMETERIZATIONS FOR

INCONSISTENT MESHES AND POINT CLOUDS

Parameterizations obtained by minimizing the potentials discussed in Chapter 5
are of high quality and in particular show low shape deformation as required in
most computer graphics applications. However, as explained in Section 4.1.1 a
surface triangulation must have certain consistency properties to support parame-
terization over a planar domain. In particular, it must be 2-manifold, consistently
oriented and topologically equivalent to a disk.

Moreover, small gaps in the surface (see Figure 8.2a ) can pose a problem.
Often such gaps are artifacts of triangulation algorithms and do not correspond
to actual geometric holes in the surface but exist only in the triangulation. While
a parameterization using the discussed algorithms is technically possible, the re-
sulting map is not continuous across the gap. For texture mapping this results in

Figure 8.1: A CAD model with non-manifold edges and gaps (marked yellow).
Our method can create texture maps for such inconsistent triangulations that are
smooth at gaps and boundaries.
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(a) (b) (c)

Figure 8.2: Three types of triangulation artifacts that hinder parameterization:
(a) small gaps in the triangulation can cause visible discontinuities in the texture.
(b) non-manifold edges with more than two adjacent faces. (c) inconsistent face
orientation.

a visible discontinuity in the texture which might be undesirable. Therefore, sur-
face triangulation should ideally be “watertight” meaning that border edges in the
triangulation exist only at geometric surface boundaries.

In day-to-day practice models of different quality and origin have to be pro-
cessed that often fail to meet these triangulation consistency requirements. For
example computer aided design models converted from NURBS representations
for downstream applications like simulation or visualization frequently consist of
unconnected patches and are thus not watertight. But also non-manifold edges
and inconsistent face orientations (see Figure 8.2) are frequently encountered tri-
angulation artifacts.

To deal with inconsistent surface representations surface modelers have to re-
sort to semi-interactive texture mapping tools based on classical two-part mapping
as introduced by Bier and Sloan [BS86]. In two part mapping the surface is em-
bedded into a box, sphere or cylinder and texture coordinates are assigned by
certain simple projections. Though no constraints are posed on the representa-
tion a tedious choice and placement of proxy objects is required to produce good
results.

In this chapter we propose a texture mapping method for inconsistent meshes
inspired by classical two-part mapping that proceeds in three steps (see Figure
8.3): First, a proxy surface with the above mentioned consistency properties is
created automatically as an iso-surface of the distance function. Second, a param-
eterization is generated for this proxy using state-of-the-art charting tools and the
parameterization method proposed in the last chapter. Finally, a novel projection
method is applied to map the texture signal of the proxy to the original geometry.
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Figure 8.3: Our method proceeds in three steps: 1. Create a proxy surface for a
given mesh by offsetting. 2. Parameterize the proxy surface. 3. Project original
surface onto proxy. A texture map is then obtained by concatenating the proxy
parameterization and the projection.

To circumvent manifoldness and orientation problems, our projection actually
maps onto a double cover of the original surface, i.e. it creates texture coordinates
for both sides of each triangle. While parameterizations of the double cover have
a slightly more limited applicability than parameterizations of the surface itself,
they are well suited for texture mapping which is one of the most important ap-
plications of parameterizations. An example of a texture map created with our
approach is shown in Figure 8.1.

Our method requires no user interaction for neither proxy placement nor map-
ping and handles triangulation degenerations of all three types. Moreover, it leaves
the original geometry untouched and thus all geometric features are perfectly pre-
served. Our approach can also be applied to point sets which enables the applica-
tion of standard texture atlas generation tools to point sampled geometry.

While we use the combined parameterization potential discussed in chapter 5,
our approach is in principle not restricted to a particular parameterization poten-
tial. In the remainder of this chapter we summarize the most important aspects of
our method and refer to [DK07] for more details.

8.1 Related Work

For inconsistent meshes repairing methods have been designed that either fix or
completely substitute the flawed triangulation. Surface completion methods go
even further by closing larger holes or missing parts of a surface. Both kinds
of approaches are clearly related to our concern and we will briefly comment on
them here.
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Mesh repairing For triangle meshes, an alternative to our approach is to apply
mesh repairing methods to the input mesh to fix the aforementioned inconsisten-
cies. These methods can be roughly divided into two categories: Local approaches
like [BK05, BNK02, Lie03, GTLH98] try to fix inconsistencies by local remesh-
ing operations and preserve as much of the original triangulation as possible. The
triangle quality is, however, not significantly improved. Subsequent parameteri-
zation can thus be slow or might encounter numerical difficulties. In contrast vol-
umetric approaches as [HK06, BPK05, SOS04, NT03, Ju04, GPRJ00] convert the
mesh into a volumetric representation and extract a new surface from that. How-
ever, for models showing several types of inconsistency the reconstruction often
fails to reproduce sharp features and boundaries or heavily oversamples the sur-
face. Although it also extracts a proxy surface from a volumetric representation,
our approach preserves the original geometry and thus circumvents reconstruction
problems. While most volumetric approaches try to build a signed implicit repre-
sentation, there are some methods like e.g. [HK06], that use unsigned functions.
The latter is advantageous if surface orientation is inconsistent or unreliable. Sim-
ilarly, we construct our proxy as a double cover of the original surface to avoid
orientation problems.
Surface completion Our method builds on a novel projection method that is used
to map a texture signal from a proxy surface onto an inconsistent mesh. Concep-
tually similar, many surface completion methods [ASK+05, KS05, ACP03, SP04,
KHYS02, HSC02] establish a map between an incomplete mesh and a template
surface to fill holes or missing parts in a surface. Except for [HSC02], all these
methods need a set of correspondences between feature points on both surfaces.
In particular, if the inconsistent mesh consists of many disconnected components
(as it can be often observed in meshes triangulated from NURBS) the number
of required correspondences and thus the amount of necessary user interaction is
very high. In [HSC02], Hilton et al. fit a template mesh to a point set and use
normal-volume mapping to define a map between the two surfaces. In Section 8.4
we will see that projecting along normals does not lead to a well-defined mapping
for our choice of a proxy surface.
Point sets Only few methods exist that create texture maps for point sets. Floater
and Reimers proposed in [FR01] a meshless parameterization which assumes that
points are sampled from single surface patch. Their method has been generalized
to spherical objects [ZG04] and to genus one surfaces [TGG05]. Furthermore,
methods from reverse engineering for point set parameterization exist [WK95,
Aza04, PT01] which also assume that points are sampled from a B-spline patch.
Zwicker et al. [ZPKG02] developed a parameterization for point sets that can
extrapolate texture boundaries. It requires manual charts layout and specification
of at least two constraints per chart.
Other related approaches To texture implicit surfaces, Zonenschein et al. pro-
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posed in [ZGVdF97] to trace particles through the implicit function’s gradient
field. While we use a similar idea to establish a map between surface and proxy,
we define a smooth guidance field that is independent of the proxy’s implicit rep-
resentation and respects the geometry of both proxy and original surface.

In [JSW05] Ju et al. generalize mean value coordinates [Flo03] to 3D tetra-
hedral meshes. They use these coordinates to interpolate 2D texture coordinates
of a solid surrounding tetrahedral meshes to a 2D surface. Though the surround-
ing solid mesh is somewhat similar to our proxy, it has to be designed manually
and projection properties heavily depend on its layout. To avoid interpolation ar-
tifacts at texture boundaries, Tarini et al. [THCM04] wrap the surface into a poly
cube and define a mapping from the poly-cube onto the surface. The poly-cube is
designed manually and further user interaction is required to specify 3D texture
coordinates within it. Nevertheless, the poly-cube is conceptually similar to our
proxy.

8.2 General Setup

The notation for this chapter is summarized in Figure 8.4. We denote the original
surface by Ŝ and assume it is given by a triangulation M̂ = (V̂ , T̂ ) which is
not necessarily manifold, oriented or connected. Alternatively, it can be given as
a discrete set of points with associated normals. In the first case we associate a
vertex position pv̂ ∈ R3 with each vertex. We also use (pv̂)v̂∈V̂ to denote the
point set in the latter case and associated normals are denoted by (nv̂)v̂∈V̂ . The
proxy surface will be denoted by S and is given by an oriented and manifold
triangulationM = (V, T ) with vertex positions (xv)v∈V . As defined in Section
4.1.1, we will denote its parameterization over the planar domain S̄ ⊂ R2 by x̃.

For texture mapping we are interested in a texture map x̂−1 : Ŝ → S̄ for
Ŝ. After defining an appropriate projection π : Ŝ → S it can be computed as
x̂−1 = x̃−1 ◦ π, where x̃ is computed by applying the parameterization algorithm
described in Chapter 6 to a suitable consistent proxy surface S. The projection π
computed in this chapter is not necessarily bijective and thus the texture map x̂−1

cannot be inverted to give a valid parameterization x̂. However, we focus in this
chapter primarily on texture mapping applications which rely only on x̂−1. Our
method produces texture maps of high visual quality even if it does not guarantee
bijectivity.

To deal with non-manifold edges and inconsistent face orientations we con-
sider the surface Ŝ as double sided. For each triangle T ∈ T we add an oppositely
oriented triangle to the triangulation (For point sets, we add for each point a point
with the opposite normal). We then map each triangle separately to the texture
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Figure 8.4: Notation for this chapter: For the inconsistent triangle mesh Ŝ a
consistent proxy surface S is computed. The latter is parameterized by x̃ over
S̄ ⊂ R2. Using an appropriate projection π a texture map x̂−1 for Ŝ can be
computed as x̂−1 = x̃−1 ◦ π.

domain (by assigning texture coordinates to pairs of vertices and faces instead to
vertices directly. Such coordinates are called per face texture coordinates). During
rendering, the back facing triangles will be culled automatically. Our projection
ensures that the correct texture map for each orientation of a triangle is chosen
and that the texture map is smooth across gaps and edges.

8.3 Generating the Proxy Surface
The shape deformation induced by the projection π depends on the distance and
similarity between surface and proxy geometry. Ideal results are obtained if both
surfaces are identical. On the other hand, the proxy surface should have all proper-
ties that enable and facilitate parameterization, i.e. manifoldness, watertightness,
consistent orientation, and nicely shaped triangles.

We define our proxy surface as an iso-surface of the unsigned distance func-
tion. This has several advantages: It is easy and fast to compute via standard
contouring methods and is naturally manifold and oriented. Furthermore, it can
be extracted at arbitrary small distances of the original surface. Its extraction does
not require a signed distance field, whose computation is often problematic espe-
cially in the presence of inconsistent orientations, holes and non-manifold edges.
Moreover, iso-surfaces of the unsigned distance function wrap the geometry from
both sides and thus actually provides an approximation for a double cover of the
surface Ŝ. The creation of the proxy surface is shown in Figure 8.5.

For a user-specified distance d we extract the iso-surface using a marching
cubes implementation that enforces the correct manifold topology. The resulting

110



8.4. MAPPING BETWEEN PROXY AND SURFACE

(a) (b) (c)

Figure 8.5: Construction of the proxy surface: (a) original surface Ŝ. (b) proxy
surface S computed as iso-surface of the (unsigned) distance function. (c) a cut
through both surfaces. The proxy S wraps the original surface Ŝ from both sides.

triangulated surface is then cut into chart of disk topology using the method in
[LPRM02b]. To speed up parameterization and to enhance robustness we deci-
mate and smooth the resulting triangulation prior to computing the parameteriza-
tion x̃ for each chart.

8.4 Mapping between Proxy and Surface

In context of two-part mapping, three simple choices for the projection π have
been proposed: a) projection towards the proxy object center, b) along the normals
of the proxy and c) along the normals of the original surface. Unfortunately, all
three choices have certain drawbacks:

• Projection towards the center is only suitable for very simple objects. A
straight forward generalization is to project each point on the surface onto
its closest point on the proxy.( This yields the same mapping for sphere
proxies). In the general case, however, there are ambiguities which cannot
easily be resolved (see Fig.8.6a).

• The same is true for projection along the normals of the proxy surface (see
Figure 8.6c ).

• Projecting along normals of the original surface can result in an undesired
mapping (see Figure 8.6b ).
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(a) (b)

(c) (d)

Figure 8.6: Choices for the projection operator π: (a) mapping onto closest
points. (b) Projection along the normals of S and c) along normals of Ŝ. d)
mapping along electric field lines
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Because of these problems, we propose a slightly more elaborate projection op-
erator: We assume for a moment that for each point p̂ ∈ Ŝ the a surface normal
is given. To define the projection of p̂, we emit a particle in the direction of the
normal and trace its way through a guidance field until it hits the proxy S in a
point p ∈ S. We then set π(p̂) = p. A simple choice for the guidance field is
the gradient field of the distance function. However, the distance function is not
smooth and its gradient field is discontinuous which complicates stream line trac-
ing. Furthermore, stream lines of the distance function’s gradient field can meet in
the space between original and proxy surface and the map π degenerates at these
points.

To define a smooth field between source and proxy surface we therefore use
the following approach which is physically motivated: We apply electric charges
of the same magnitude with opposite signs to Ŝ and S. If Ŝ has a positive charge,
we trace for each p̂ ∈ Ŝ the path of a positively charged zero-mass particle
through the electric field until it hits the negatively charged proxy surface. Paths of
particles then correspond to electric field lines. In contrast to the distance function
the electric field is smooth everywhere between Ŝ and S. The projection defined
in this way leads to a correct mapping even in the special case shown in Figure
8.6.

Since the electric field is only defined in the space between Ŝ and S and not
on the surfaces itself, we cannot emit particles in a point p̂ ∈ Ŝ itself but have to
offset it in the direction of its normal ( we choose p̂ + ε ∗ n̂ as a start point, where
the offset ε can be chosen arbitrary small). Choosing starting points in this way
introduces a dependency on the surface normals of Ŝ and can lead to high shape
deformation in the projection π if the provided normals are incorrect or noisy. For
our method we suggest a simple normal reestimation procedure for inconsistent
meshes that is detailed in [DK07].

8.4.1 Electric Field of Points and Triangles

In order to trace the field lines that define π we must be able to evaluate the electric
field at any point in the space between Ŝ and S. The electric field at a point p ∈ R3

is given as

E(p) =

∫
ρ(p′)

p− p′

‖p− p′‖3
dp′ (8.1)

where ρ(p′) denotes the density of the charge in the point p′. If charge density
functions ρT̂ and ρT are given for triangles T̂ ∈ T̂ and T ∈ T we can write

E =
∑
T̂∈T̂

ET̂ +
∑
T∈T

ET
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where ET̂ and ET are the fields resulting from a single triangle T̂ or T . In case
of a point set, we will define charge density function ρv̂ for each point p̂v̂ and
Equation 8.1 becomes:

E =
∑
v̂∈V̂

Ev̂ +
∑
T∈T

ET

In case of a point sampled surface Ŝ we put a point charge in each point p̂v̂

and thus choose ρv̂ as
ρv̂(p) = δ(‖p− p̂v̂‖)

where δ denotes the Dirac delta distribution. This simple choice gives good results
if the sample density is roughly uniform on the surface S. This is a common
assumption for point sampled geometry in computer graphics and holds e.g. for
surfaces acquired by laser range scanning. 1 Substituting this simple density in
Equation 8.1 yields the radial field

Ev̂(p) = (p− p̂v̂)/‖p− p̂v̂‖3 .

Unlike in the case of point sets, the vertices of M̂ sample the surface Ŝ only
sparsely and irregularly. Placing point charges in the vertices does not lead to a
good approximation of a field induced by a uniform charge density on Ŝ. For
meshes, we thus refrain from an approximation and set

ρT̂ (p) = −δT̂Ŝ(p) (8.2)

where δT̂Ŝ is a generalized delta distribution satisfying∫
R3

δT̂Ŝ
(p)f(p)dx =

∫
T̂Ŝ

f(p)dŜ (8.3)

for real valued integrable functions f . A closed form of the resulting field ET̂ is
given in the next section.

Closed Form for the Potential of a Triangle

While the evaluation of the electric field of a triangle is computationally more
expensive than a simple radial field, we were able to derive an analytic expression.
We briefly sketch the derivation in the following: We consider a general triangle

1Alternatively, it is possible to scale the charge density by some local density estimate or even
to distribute the charge over a small disc centered in p̂v̂ . However, the additional computational
effort is usually not justified.
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∆ = (p1p2p3) spanned by points pi ∈ R3. Instead of its electric field we will
derive a closed form expression for its electric potential:

P∆(p) =

∫
δ∆(p′)‖p− p′‖−1dp′

The electric field can then be obtained as its gradient field E∆ = −∂P∆/∂p.
Using Equation 8.3 we can write this as a surface integral

P∆(p) =

∫
∆

‖p− p′‖−1d∆

As the area element dS is invariant with respect to a rotation R and translation t
of S, we have

P∆(p) = PR∆+t(Rp + t)

By choosing R and t appropriately, ∆ can be rotated into the plane θ3 = 0. It is
therefore sufficient to consider the only special case p1 = p2 = 0 and pi3 = 0 for
i = 1 . . . 3. The general case is then obtained by choosing R and t appropriately.
For the special case, the potential evaluates to

P∆(p) =

∫
∆

‖(θ1, θ2, 0)t − (0, 0, p3)t‖−1dθ1dθ2

To apply Gauss’s theorem, we define a planar vector field f as

fα :=

√
(θ1)2 + (θ2)2 + (p3)2

(θ1)2 + (θ2)2
.

whose divergence equals the integrant and write

P∆(p) =

∫
∆

div f dθ1dθ2 =
3∑
i=0

∫
pipi+1

f · (ni)t ds (8.4)

where ni denotes the outward normal on the edge pipi+1. Finally, the line integral
in Eq. 8.4 is found (using computer algebra tools) as∫

pipi+1

f · (ni)t ds =

[
p3 tan−1

(
p3t

ui
√

(p3)2 + u2
i + t2

)
+

ui log

(
t+
√

(p3)2 + u2
i + t2

)]t=vi+1

t=vi
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with

ui = ni · (p− pi)t vi =
pi+1 − pi

‖pi+1 − pi‖
· (pi − p)t.

A small complication arises if 0 ∈ ∆ as the field f has a singularity in 0. In
this case, we have to exclude the singularity from the integration in order to apply
Gauss’s theorem for the second equality in Equation 8.4. To this extend we remove
a small ball Bε(0) of radius ε around the origin from the integration domain ∆.
However, it can be easily verified that

lim
ε→0

∫
∂Bε

f · nt∂Bε ds = 2π
√

(p3)2

If 0 ∈ ∆ Equation 8.4 therefore becomes

P∆(p) =
3∑
i=0

∫
pipi+1

f · (ni)t ds− 2π
√

(p3)2

8.4.2 Projection for Point Sets
To compute the projection π in case the surface Ŝ is given as a point set is now
straightforward. With an evaluation scheme of the electric field at hand, we can
apply numerical integration to trace a field line for each point p̂v̂ and find its
intersection with the proxy S.

Evaluating the electric field is, however, very costly since we must sum the
contributions of all primitives which becomes infeasible even on small sized mod-
els. Fortunately, while the influence of an electric charge is not compactly sup-
ported, it drops rapidly with the square of the distance and it is sufficient to con-
sider only primitives in a neighborhood of the actual tracing position. Moreover,
for densely sampled point sets field lines of neighboring points often happen to
run nearly parallel to each other to the proxy surface. This fact can be exploited
to further reduce the cost by selectively omitting the field line tracing. For details
on the accelerated field line tracing we refer to [DK07].

Guided by the electric field particles nearly always find their way to the proxy
geometry. As long as the distance of the iso surface is chosen properly, exceptions
only occur on hardly visible parts of the surface Ŝ. Such a case is shown in Figure
8.7. We will comment on the choice of the iso-surface distance in Section 8.5.

8.4.3 Projection for Triangulations
To compute the projection π for a inconsistent triangulation field lines can then be
traced to find texture coordinates for every vertex. For efficient rendering, texture
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S

S

Figure 8.7: A problematic case where field lines do not find their way to the
proxy. Here an internal connected component of Ŝ is cut off from the proxy S.
If the distance of the iso surface is properly chosen, such problems occur only in
hardly visible regions of Ŝ.

S

S

Figure 8.8: A discontinuity in the map π due to a tunnel in the surface Ŝ. As the
tunnel is smaller than the isosurface distance, the S does not cover Ŝ from both
sides around the tunnel.

maps on triangle meshes are usually required to be affine on each triangle. Thus,
it has to be ensured that the final texture map x̂−1 is adequately approximated
by an affine interpolation of the vertex texture coordinates across triangles of M̂.
This is certainly only possible, if the final texture map π is nearly affine on the
triangles of S. While both the parameterization x̃ and the projection π are smooth
on large parts of the surface, problems might occur on large triangles of Ŝ and
at exceptional points as chart boundaries of x̃ or holes or tunnels in Ŝ smaller
than the isosurface distance (see Figure 8.8). In both cases the resulting combined
map x̂−1 is discontinuous. Since a piecewise affine map on the triangulation of
Ŝ can only be discontinuous at edges, such discontinuities must be detected and
triangles must be split to ensure that x̂−1 is continuous inside each triangle. We
found that the following heuristic works well in practice: After tracing field lines
at vertices, we compute for each edge in Ŝ the ratio

d̂vw := ‖x̂−1(p̂v̂)− x̂−1(p̂ŵ)‖/‖p̂v̂ − p̂ŵ‖
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which is the directional stretch of the linear interpolation on the edge (v̂, ŵ). We
compare this value with the average directional derivative of the inverse parame-
terization x̃−1 in the points π(p̂v̂) and π(p̂ŵ) in the direction of the edge denoted
by dvw. Now, if x̂−1 is continuous on the edge the derivative of the projection π is
around one and d̂vw should roughly equal dvw.

In contrast, if x̂−1 is not continuous along the edge (v, w) there are two cases:
In the first case p̂v̂ and p̂ŵ map to different sides of a texture seam and the distance
‖x̂−1(p̂v̂) − x̂−1(p̂ŵ)‖ is large. In the second case, π maps the two points to
different “sides” on the proxy (see Figure 8.8). In this case the geodesic distance
of their images π(p̂v̂) and π(p̂ŵ) on S is very large and ‖x̂−1(p̂v̂)− x̂−1(p̂ŵ)‖ is
large as well (assuming an roughly isometric x̃). In both cases we have d̂vw �
dvw. Therefore, we consider x̂−1 as continuous on an edge if |d̂vw − dvw| < ε.
As the increase of d̂vw is rather drastic for a discontinuous edge the choice of the
threshold ε is uncritical.

If a discontinuity is detected the edge and adjacent triangles are subdivided
and the test is repeated for the resulting fragments. For details on the subdivision
procedure we again refer to [DK07]. We note, however, that the algorithm only
uses planar subdivision of faces, i.e. the geometry and features of Ŝ are perfectly
preserved. As already mentioned, it happens that a field line does not reach the
proxy surface so that π is undefined for some vertices. These cases are also han-
dled by the algorithm which assigns invalid texture coordinates after a number of
subdivisions.

8.5 Evaluation and Results

The shape deformation of the parameterization depends heavily on a suitable
choice of the proxy distance. Clearly, smaller distances result in a better approxi-
mation of Ŝ and less shape deformation. On the other hand, smaller distances also
increase the complexity of the triangulation of S (number of faces and vertices)
and consequently increases processing time (most notably the time for optimizing
x̃). We propose to initially choose a large distance and then to gradually decrease
it if necessary. Usually a quick visual inspection of the unparameterized proxy S
is sufficient to decide if a proxy covers all important features. By interactively vi-
sualizing iso-surfaces we were able to determine a suitable value in a few minutes
for all tested models. We applied our method to both point sets and inconsistent
triangle meshes to demonstrate its practicability and the quality of resulting tex-
ture maps. The results obtained for point sets are shown in Figure 8.10. By far the
largest part of the preprocessing time is spent on the parameterization of the proxy
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Figure 8.9: Texture maps for the car door model. Middel left: boundary edges
are marked yellow (underlying model courtesy of Daimler Chrysler AG)
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Timings(seconds)
model # vert. # vert. proxy preprocessing projection

(% param.)
Point sets
face (not shown) 41k 135k 143(69%) 44
ball joint 137k 281k 663(85%) 122
rocker arm 186k 84k 494(90%) 348
Meshes
handle (not shown) 0.9k 1.6k 75(90%) 7
car door 8k 243k 2208(96%) 365

Table 8.1: Processing times for the models shown obtained on a dual Xeon 2.4
Ghz CPU.

surface as shown in Table 8.1 so that the projection takes less than 20 percent of
the processing time on average. For consistently oriented point or triangle sets it
is possible to select and remove interior components of the proxy manually which
roughly halves the processing time. However, for the timings listed in table 8.1
the automatically generated proxy was not modified.

We also applied our method to real world data sets extracted from an industrial
CAD model of a car. The seat model and the car door model shown in figure 8.1
and Figure 8.9 were triangulated from their original NURBS representation. Dur-
ing the triangulation individual NURBS patches were not or only partially stitched
which leads to a high number of gaps in the surface (these gaps are marked yellow
in the figures). Additionally, they contain a high amount of narrow or degenerated
triangles as well as non-manifold edges. As demonstrated in the figures, the re-
sulting texture maps are of high visual quality and the texture signal is smooth
even across gaps and narrow triangles. Texture seams are handled by the subdivi-
sion algorithm and the corresponding discontinuity is very well represented in the
adaptively subdivided meshes (see top of Figure 8.11).

Depending on the type of the model a specific texture seam layout might be
more or less important. E.g. for the seat model a designer usually wants to enforce
a particular seam layout which automatic charting methods cannot produce. The
user has certainly the option to alter the seam layout if it is unsatisfactory. In case
of the seat texture seams were manually specified on the proxy for the four con-
nected components and each component was processed individually. On the other
hand, the complex car door model was processed as a whole without any manual
modification. We think that the ability to process surfaces with inconsistencies
automatically is an important advantage of our method in day to day modeling
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Figure 8.10: Texture maps for point sets (texture seams are marked yellow)

121



CHAPTER 8. COMPUTING PARAMETERIZATIONS FOR INCONSISTENT MESHES AND POINT

CLOUDS

Figure 8.11: From left to right: projected texture near seam, triangles near seam,
texture and wire frame near discontinuity

practice.

8.5.1 Conclusion
In this chapter an approach was proposed that allows the application of parame-
terization and charting tools developed for consistent triangle meshes to surface
triangulations showing several types of inconsistencies as gaps, degenerated tri-
angles or non-manifold edges. In contrast to mesh repairing methods, the original
geometry is not altered and thus features are perfectly preserved. The same ap-
proach can also be applied to point sets. Although a suitable proxy distance error
must be manually specified, no further manual intervention is necessary. Com-
pared to that, a manual repair or texture atlas creation takes considerably more
time for industrial CAD models. We therefore believe, that our method is of high
practical relevance.

It would be nice to eliminate necessary user interaction completely by replac-
ing the manual proxy distance choice with an automatic method that takes geo-
metric properties like local feature size and visibility into account. Such a method
could adaptively choose smaller distances near features while keeping the overall
complexity of the proxy low.
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Interactive Deformation Potentials
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CHAPTER 9

INTRODUCTION

In Part II we have seen how optimal surface parameterizations can be computed
by minimizing a deformation potential. The potential was designed to measure
membrane strain of a parameterization that maps from flat parametric domain S̄
onto a surface S. In this chapter, we consider the more general case of maps x̃
between two curved surfaces S̄ and S in three space (see Figure 3.2). Analogous
to the flat case, we search for measures that quantify the deformation imposed by
a given map x̃.

In this more general setting it is, of course, possible to apply the potentials
derived in Part I to the deformation x̃ (more specifically to its metric tensor). As
outlined there, these potentials bear some similarity with the elastic membrane po-
tential. While these quantify membrane strain i.e. tangential deformation, changes
in curvature between the two surfaces are not fully captured: for example, a plane
can be mapped onto a cylinder by an isometry, i.e. with g̃ = id. A deformation
potential solely expressed in terms of the metric tensor is thus invariant with re-
spect to the above described isometric deformation as it induces no membrane
strain, even though it clearly alters shape and curvature of the surface. If we are
interested in the extent to which shape is deformed, a bending potential is there-
fore necessary to consider changes in curvatures. Mathematically, such potentials
are functions of the second fundamental form.

While deformation potentials on surfaces are relevant to many computer graph-
ics applications we focus our attention on interactive shape editing applications
which have gained much attention in recent years [BS08, SB09]. In these appli-
cations, the user can interactively edit large high resolution meshes as obtained
from scanning real-word objects. To this extent, individual parts of the surface
can be grabbed and moved while remaining unconstrained surface parts deform
interactively according to a deformation model (see Figure 1.2).

Contrary to other editing methods, surface deformation based approaches are
highly intuitive giving the user the impression of pushing or pulling a thin object
made of an elastic material as e.g. rubber. Therefore, they allow even inexperi-
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enced users to apply complex edits to large scanned models which is one of the
reasons for their success.

In order to handle such large meshes interactively, in these approaches rather
simple deformation potentials are used that support very fast minimization. Dis-
cretizing the elastic shell potential described in Section 3.2.1, in contrast, leads to
a complex non-linear optimization problem, severely limiting mesh resolutions.
But also the discretization as such is a problem on unstructured triangle meshes.
The elastic bending potential involves second order derivatives which are not di-
rectly available on linear finite elements. Numerical problems can also result
from often poor triangle quality of meshes as they are typically obtained from
range scanning. But apart from these technical problems a physical deformation
potential also restricts shape modeling to physically possible operations. Simple
desirable operations as scaling surface parts are beyond these limits and thus not
realizable. For interactive editing, strict physical accuracy is therefore abandoned
in favor of higher frame rates and greater modeling freedom even though some
methods [BPGK06a] aim at an deformation behaviour that is still at least physi-
cally plausible.

Summing up, for shape editing deformation potentials must meet two impor-
tant requirements: First, they must support an efficient optimization to enable
interactive frame rates on large models and, second, they must be well-defined for
triangle meshes as the predominant representation for scanned objects.

In this part of the thesis we concentrate on deformation potentials that satisfy
these properties. We will give an account on the discrete deformation potentials
on meshes in this subclass and will then propose a novel deformation potential
suitable for mesh editing applications which is physically plausible and can im-
itate the behaviour of different materials. The proposed potential is non-linear,
but we demonstrate how it can efficiently be optimized on graphics hardware by a
simple tailored optimization algorithm. Finally, we describe a further application
of interactive deformation potentials in the visualization of upholstery in industrial
design. In this context we introduce force field constraints that can be effectively
used to simulate cushioning and fit a deformable mesh to point samples.
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PREVIOUS WORK ON DEFORMABLE MODELS FOR

SHAPE EDITING

10.1 General Approaches to Shape Editing

Shape editing has been an extremely active field ever since the early beginnings
of computer graphics and accordingly a variety of approaches exist reaching from
classical splines to multiresolution techniques and space deformations. We will
give only a brief overview over the principal approaches here and refer for a more
general review of shape editing to [BPR+06] and [SB09].

Tensor product splines are nowadays the prevailing representation for sur-
faces in computer aided design. In many applications surfaces are created from
scratch in this representation. Spline basis functions have a number of desirable
properties, e.g. local support and positive partition of unity that give linear coeffi-
cients — the control points — an intuitive interpretation and thus simplify subse-
quent editing. Conversion of large unstructured point clouds or triangle meshes as
acquired by scanning devices or photometric stereo into a spline based represen-
tation is, however, difficult and still an active topic of research. Large or complex
surfaces usually require tensor product spline patches with several hundreds of
degrees of freedom. Except for changes to small details, editing of such surfaces
thus involves modifications of many control points and is therefore often tedious
and troublesome.

To overcome restrictions of tensor product spline surfaces, a second class of
approaches [BKS03, PKKG03, ZRKS05] is based on what is called transfor-
mation propagation. The user initializes editing by selecting a subset of the
surface as region-of-interest R. Within this region, she then selects two further
subset: a fixed subset F and a handle subset H . The points in the handle subset H
are then transformed interactively by some user specified transformation (usually
translation, rotation and scaling). The deformable model interactively computes
positions for the remaining surface points in the region-of-interest. This general
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editing metaphor introduced in [BKS03] and [BK04] is also used in shape editing
based on deformation potentials that will be discussed below. In transformation
propagation approaches, the handle transformation is propagated through the re-
gions of interest until it reaches the fixed subset F . Each point within R is trans-
formed with an interpolation of the handle transformation and the original fixed
transformation at F according to some function of its distance to these regions.
As demonstrated in [SB09] transformation propagation does not necessarily lead
to intuitive deformations.

Multiresolution deformation techniques decompose the original surface into
a low-pass filtered coarse approximation and high-frequency details. The actual
parameters of the filter can be configured by the user to select the level-of-detail of
her interest. Modifications are then applied to the coarse version of the surface e.g.
by transformation propagation or an arbitrary other editing technique. Finally, the
stored high-frequency details are added on top of the edited version of the coarse
approximation. Approaches differ first of all in the way, high frequency detail is
represented and fused with the edited coarse mesh.

In all surface-based deformation techniques the quality of deformations is in-
herently linked to mesh quality. Problems in the triangulation like cracks or de-
generate triangles inevitable lead to deformation artifacts. Furthermore, the speed
of such methods decreases with the mesh resolution so that very high mesh res-
olutions result in non-interactive frame rates. Space deformation methods avoid
these problems by deforming the space surrounding the object. The embedded
surface is deformed by applying this space deformation to every point. Space
deformations can for example be defined by tensor product splines, radial basis
functions or specially designed cages around the surface in question. The com-
plexity of the deformation then only depends on the complexity of the control
structure, e.g. the number of control points or cage cells. As the actual surface
mesh is not involved in the computations, space deformation approaches handle
meshing problems gracefully and can equally be applied to point sets. On the
downside, special care must be taken to ensure sufficient resolution and correct
topology of control structures.

Finally, another class of approaches minimizes surface-based deformation
potentials for shape editing. For user interaction the same general editing metaphor
is used as with transformation propagation based editing. In contrast to transfor-
mation propagation, the unconstrained surface within the region-of-interest is up-
dated by minimizing a potential functional on the surface. Possible choices of the
potential functional include linear approximations of the elastic energy discussed
in Section 3.2.1. Apart from these, mesh editing methods based on differential
representations as they have become very popular in the last years also naturally
lead to deformation potentials and can therefore be subsumed into this class of ap-
proaches. Deformation potentials will be discussed in more detail in the following
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section.

10.2 Shape Editing with Deformation Potentials
Deformation potentials have first been introduced to computer graphics by Ter-
zopoulos et al. [TPBF87] to compute animations of elastic surfaces and bodies.
Even though their method does not aim at interactivity, they use a simplified elas-
tic potential to keep computations feasible with the following density function

e = kαβs α2
αβ + kαβb β2

αβ .

α and β denote differences in the first and second fundamental forms as defined
in Equation 3.11 in Section 3.2.1. The elasticity tensor H ijkl is replaced by two
matrix norms weighted by some material constants kijs and kijb . Moreover, in
their method, the second term in this elastic potential is linearized to simplify
computations further.

For interactive freeform design, Welch and Witkin [WW92] as well as Cel-
niker and Gossard [CG91] simplified this potential even more by approximating
the first and second fundamental forms by norms of partial derivatives of the pa-
rameterization:

e = ks

2∑
α=1

‖x,α‖2 + kb

2∑
α,β=1

‖x,αβ‖2 .

This potential was also used in the context of interactive surface modeling by
Kobbelt et al. [KCVS98] within a multi resolution framework. However, in the
above form, it is not invariant with respect to changes in the parameterization
x and also captures distortions induced by the parameterization. To avoid this,
Botsch and Kobbelt [BK04] considered the parameterization of S over S̄, i.e. they
substituted x̃ for x in the above potential. The first term in the potential is then
the Dirichlet energy of the surface and thus coincides in case of a conformal pa-
rameterization with the surface area. Minimizing this energy for relatively small
deformations thus gives surfaces of minimal area. The second term coincides with
the so called thin spline energy [Duc77] that captures surface bending so that its
minimization leads to C1 continuous surface deformations [BK04]. In interac-
tive editing, optimizing potentials of the above form therefore replace the original
surface within the user-specified region-of-interest with a surface of minimal area
and bending. However, this means that surface detail is in general lost during edit-
ing and must be added back by some other method, e.g. by adding high frequency
displacements in a multi resolution framework.

Alternatively, details can be preserved to some extent by applying the above
simplified potential to local displacements d = x − x̄ instead of the deformation
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x̃ itself as pointed out by Sorkine and Botsch in [SB09]. In this case, the potential
enforces only smoothness of the displacements field d instead of the surface itself.
It is easy to see, that this potential is not invariant with respect rigid transforma-
tions of the surface. More precisely, a rotation xi = Rijx̄j of the surface results
in non-vanishing displacement derivatives and thus in a positive potential energy.
This leads to contra-intuitive deformation behaviour especially for rotations.

The reason for this lies in our conception of 3D shape as a property, that does
not change with the orientation or position of objects. If a 3D object undergoes
a purely rigid transformation, we would still recognize its shape as unchanged.
In differential geometry, this understanding of shape has led to a rotation and
translation invariant shape description by first and second fundamental forms. For
shape editing, deformation potential are used to quantize the difference in shape
between original and deformed object. It is therefore reasonable to require that
deformation potentials should also not change under rigid transformations. The
elastic potential (and its simplified version as used by Terzopoulos) defined in
terms of the fundamental forms clearly show this invariance, whereas the Dirichlet
energy of the displacements is not rotation invariant.

10.2.1 Differential Representations
Recently, a new class of shape editing approaches has become popular whose
common feature is a differential representation of the surface to which some au-
thors also refer as “coordinates”. For editing, the original coordinates x̄ of the
surface are first transformed into this differential representation or coordinates by
applying a generalized coordinate transformation:

c̄ = T (x̄)

The user can then interactively move and constrain positions of selected ver-
tices and the mesh is reconstructed from its differential representation subject to
these constraints. Mathematically, this reconstruction is an over-constrained least
squares problem and thus corresponds to minimizing a potential energy, whose
density is given as the squared residual:

e = (c̄− T (x))2 (10.1)

For efficiency reasons, a linear coordinate transformation T in the coordinates x
is very desirable as this leads to a quadratic potential energy. The minimization of
such a potential corresponds to solving a linear system.

Differential coordinates or differential representation for interactive mesh edit-
ing have been introduced by the work of Alexa [Ale03], Lipman et al. [LSCO+04]
and Yu et al. [YZX+04]. Alexa and Lipman et al. encode local shape as surface
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Laplacians, i.e. they use the coordinate transformation T (x) = ∆′
S̄
x where ∆′

S̄
is

some discrete approximation of the Laplace-Beltrami operator on the surface S̄.
The resulting coordinates are therefore also called Laplacian coordinates. They
can be given an interpretation as mean curvature normals. 1 Yu et al. use the gra-
dient of the coordinate function as differential representation, i.e. T (x) = ∇Sx
where ∇S is the surface gradient (in this case, we understand x as the coordinate
function defined on S itself). Minimizing the corresponding potential leads to a
Poisson equation [SB09] so that Yu et al. call their method Poisson mesh editing.

Unfortunately, minimizing the potentials corresponding to Laplacian or gradient-
based coordinates directly yields not the desired results, especially in the presence
of handle rotations. The common problem is, again, related to rigid transforma-
tions: In order to arrive at a potential that is invariant with respect to rigid motions,
the coordinate transformation T must already have this property. This, however, is
not possible with linear transformation. In particular, both Laplacian or gradient
based coordinates are not invariant with respect to rotations.

To achieve rotation-invariance, both types of coordinates are therefore ex-
pressed with respect to local frames defined by the surfaces normals and tangents.
The coordinate transformation T is thus replaced with Tlocal(x) = R̄t

x̄T (x) where
R̄x̄ denotes the orthogonal matrix whose columns are the surface normal and two
orthogonal tangents of the undeformed surface S̄ at x̄. For reconstruction, the dif-
ferential coordinates c̄ are transformed back to world space coordinates, i.e. the
potential’s density is given by

e = (Rxc̄− T (x))2

where in this case Rx is defined by normal and tangents of the deformed surface
S.

Linear Approaches

Reconstruction using the above rotation invariant potential, unfortunately, leads
to a chicken and egg problem as local frames of the deformed surface have to
be known to reconstruct it from its differential coordinates. To circumvent this
problem, several methods have been proposed:

In [YZX+04] Yu et al. estimate local frames Rx of the deformed surface
by interpolating the handle rotations over the region of interest. Zayer et al.
[ZRKS05] achieve more intuitive deformations by using harmonic functions for
interpolation. Their approach was further generalized by Popa et al. [PJS06] to
non-homogeneous materials. All three methods share a common problem called

1It is well known in differential geometry, that in the continuous case ∆Sx = −hn where h
denotes the surface’s mean curvature and n its normal at point x (see [dC92]).
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translation-insensitivity: As local frames are estimated from handle rotations only,
a translation of the handle does not affect the frames. In contrast, handle trans-
lations clearly lead to a deformation of the surface, so that frames and surface
geometry become inconsistent. This inconsistency results in contra-intuitive de-
formations as shown in Figure 10.1.

In the original work of Lipman et al. [LSCO+04] frames are estimated from
an underlying smooth base surface. This works well as long as the surface is
relatively smooth but produces undesired deformations if it cannot be described as
a height field over its base surface. Similarly, Botsch et al. extracted in [BSPG06]
a base surface that is deformed using a variational minimization approach and
estimated local frames from it. Their method can also handle cases where the
original surface is no longer a height field over the base surface but still yields
contra-intuitive results for large deformations.

Another approach is to solve for both local frames Rx and deformed surface
coordinates x simultaneously as Sorkine et al. proposed in [SLCO+04]. In this
case, however, the above given potential is no longer quadratic in the unknowns
(Rx,x) and its minimization becomes a non-linear problem. For an efficient
reconstruction attempts have been made to avoid the complexity of non-linear
optimization by approximating the problem linearly. Sorkine et al. proposed in
[SLCO+04] to linearize rotations which causes artifacts for larger rotations as
shown in [BS08]. Following the same basic idea Fu et al. [FAT07] also solve for
local transformations but without any rigidity constraint. In a second step, they
factor out rotations from these transformations to estimate local frames. While
their method better copes with rotations their results seems to be not as good as
those obtained by transformation interpolation [ZRKS05]. Furthermore, vertices
in flattish areas need special treatment which complicates their algorithm.

In [LSLCO05] Lipman et al. proposed another approach to estimate local
frames: Borrowing from differential geometry they encode local frame changes
by discretizing first and second fundamental forms. This leads to a represen-
tation invariant to rigid transformations that they term rotation-invariant coordi-
nates. Reconstruction is done in two stages: First local frames are reconstructed
using the discretized forms and then geometry is obtained by solving the Pois-
son equation. Their method yields good results for large rotations. However, it
also shows the problem of translation-insensitivity described above. Moreover, in
their linear framework local frames Rx cannot be constrained to be orthogonal as
this implies a non-linear constraint. So frames deform in a non-rigid way or even
degenerate which causes further artifacts. Their approach has been recently im-
proved in [LCOGL07] to handle rotations larger than 2π and to improve volume
preservation.
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Figure 10.1: A pure translation is applied to the handle. Top: If local frames are
not consistent with the actual geometry, features on the surface are reconstructed
in a contra-intuitive and undesired way. Bottom: Enforcing consistent frames
leads to a correct reconstruction (The shown result was obtained with our method).

10.2.2 Non-Linear Approaches
While linear methods are undoubtedly fast, a survey by Botsch and Sorkine [BS08]
reveals that all methods result in contra-intuitive deformations in particular under
large deformations and pure handle translations. The reasons that were already
briefly sketched in the last section can be summarized as follows:

• In the linear framework, local frames cannot be constrained to be orthogonal
(this is a non-linear constraint). So they can deform in a non-rigid way or
even degenerate which causes contra-intuitive surface deformation.

• Local frames cannot be constrained to be consistent with the geometry, i.e.
the frames normal vector can deviate from the actual normal of the de-
formed surface. Inconsistent frames also result in contra-intuitive defor-
mation (Figure 10.1).
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As a consequence, attempts have been made to solve the inherent non-linear
reconstruction problem directly by applying non-linear optimizations: Pyramid
coordinates [SK04] encode local one ring structures by a set of angles and edge
lengths at each vertex. These quantities are invariant under rotations and so is the
resulting coordinate transformation. Consequently, these coordinates do not have
to be transformed to local coordinate frames and the simpler potential in Equation
10.1 can be minimized for reconstruction. The corresponding minimization prob-
lem is, however, non-linear and solved using an iterative optimization. At the price
of a rather slow reconstruction the method is robust even for large deformations
and translation-sensitive.

The approach of Botsch et al. [BPGK06b] aims at physical plausible deforma-
tions albeit it does not derive from the elastic shell model. The idea is to extrude
surface triangles to rigid prisms, that are connected by elastic joints. The prisms
itself are not allowed to deform. In this way Botsch et al. circumvent problems
with degenerate elements as typically encountered in finite element discretizations
of thin structures. Although their potential joint-based energy is not of the form in
Equation 10.1, its minimization preserves angles between adjacent triangle which
corresponds to an implicit preservation of mean curvature as shown in [GHDS03].
In this regard it is related to the approaches here although it does not explicitly ex-
tract a differential representation. For mesh editing at interactive frame rates a
high dimensional non-linear optimization problem is solved using a sophisticated
hierarchical solver. The method yields physically plausible deformations for all
kinds of handle transformations. The authors also extended their method to space
deformations [BPWG07].

Huang et al. [HSL+06] use the fact, that the cotangent discretization of the sur-
face Laplacian [DMSB99] can be characterized as linear combination of adjacent
triangle normals to obtain a rotation-invariant non-linear transformation T . For
reconstruction, the resulting non-linear optimization problem is solved by Gauss-
Newton iterations on a subspace domain. The deformation of the subspace is ex-
trapolated to the full domain using mean value coordinates. Similar to the method
of Botsch et al. [BPGK06b] their optimization procedure is rather complex and
involves construction of a suitable subspace domain.

In [ATLF06] Au et al. suggest a coordinate transformation T that extracts the
norm of the surface Laplacian as well as its cotangent weights. They also propose
a simple and fast iterative reconstruction. However, their method cannot handle
surfaces with free boundaries and does not allow for handle scaling.
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CHAPTER 11

A NON-LINEAR POTENTIAL FOR INTERACTIVE

EDITING

A lesson learned from the vast previous work on interactive deformation poten-
tials is that quadratic potentials, while efficient to minimize, result in deformation
artifacts for all but a small subclass of handle movements. In contrast, existing
non-linear potentials yield very plausible and intuitive deformations even for large
handle transformations and pure translations. However, this comes at the price of
comparatively slow reconstruction. Moreover, the specialized optimization algo-
rithms are highly sophisticated and their implementation burdensome.

In this chapter we propose an interactive mesh deformation model that ad-
dresses these issues. We propose a novel differential representation that can be
regarded as a discretization of metric tensor and second fundamental form. Our
coordinate transformation is invariant with respect to rigid transformations and
implicitly enforces orthogonal frames. At the same time, the coordinate trans-
formation is carefully chosen to allow an efficient optimization of the resulting
potential.

Apt to this representation we formulate a non-linear reconstruction problem
that includes a frame consistency constraint and thereby avoids a common short-
coming of linear approaches. We will argue that this formulation enforces confor-
mal deformations that preserve the shape of texture features locally.

We propose a fast iterative optimization tailored to our formulation of the re-
construction problem. The key to this is to avoid iterated matrix factorizations as
required by standard non-linear solvers. In addition, it does not require sophisti-
cated hierarchical optimization and naturally exhibits frame-to-frame coherence.

Finally, we describe a simple and efficient implementation of our algorithm,
that allows large parts of the computation to run parallel on graphics hardware.
This allows editing of large models at interactive frame rates.
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Setup and Notation

In this chapter, we assume the discrete setup described in Section 2.2 , i.e. that
both undeformed surface S̄ and deformed surface S are given as discrete triangle
meshes with the same connectivityM. In particular, the corresponding parame-
terizations x̄ and x are piecewise affine mappings.

Our differential coordinates are based on quaternions either associated with
vertices or directed edges. These quaternions will always be denoted by qv with
some vertex index u, v, w as subscript or by qwv for a directed edge (v, w). If not
otherwise stated, a product of the form qvqw is understood as a multiplication in
the quaternion ring H. The conjugated quaternion is denoted by q∗. There is a
canonical embedding of quaternions into R4 and we denote the components of
quaternions qv, qwv embedded into this vector space by qvi and qwvi respectively for
i = 1 . . . 4. With these components, the quaternion product qu = qvqw can be
written as:

qu1 = qv1qw1 − qv1qw2 − qv1qw3 − qv1qw4

qu2 = qv2qw2 + qv2qw1 + qv2qw4 − qv2qw3

qu3 = qv3qw3 − qv3qw4 + qv3qw1 + qv3qw2

qu4 = qv4qw4 + qv4qw3 − qv4qw2 + qv4qw1

To be able to compactly write quaternion products in index notation, we define a
symbol ρijk from the signs of the terms in the above equations. Using this oper-
ator, the same product can be compactly written using Einstein sum conventions
as

qui = ρijkqvjqwk

In accordance with the popular handle/region-of-interest mesh editing metaphor
described earlier, we expect that a subset R ⊂ V corresponding to the region-of-
influence (ROI) is given. Moreover, a further subset H ⊂ V contains vertices for
which either a specific rigid transformation has been specified by the user or that
have been constrained to stay fixed. The latter can be regarded as a special case
of the former so that we can keep both kinds in a single set. For mesh editing, the
problem consists then in finding a deformed mesh whose handle regions are trans-
formed as specified while the shape of the unconstrained mesh area is preserved
as much as possible.
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11.1 Quaternion-based Coordinates

11.1.1 From Fundamental Forms to Local Frames
The characterization of local shape and its preservation is at the heart of every
differential representation. The basic question that has to be answered is the fol-
lowing: What comprises the shape of a surface? While many different definitions
of shape have been proposed for triangle meshes over the last years, differential
geometry provides us with a simple answer to the question in case of smooth
surfaces. In this case, the shape of a surface is locally described by the first and
second fundamental form as introduced in Chapter 2. But given these entities over
the hole surface, its global shape is also uniquely determined up to rigid transfor-
mation. This is asserted by the fundamental theorem on surface theory (see e.g.
[Cia05], chapter 2).

Let us consider for a moment the continuous case. We recall that for each
point on the surface S̄ a local frame (ā1, ā2, n̄) is given via āα = x̄,α and the
surface normal n̄ = ā3 = (ā1 × ā2)/‖ā1 × ā2‖. In particular, both fundamental
forms can be expressed in terms of these frames as

ḡαβ = āα · āβ h̄αβ = āα,β · n̄ (11.1)

If, for a rotation R and an arbitrary t ∈ R3, the rigid transformation Rp + t is
applied to S̄, local frames transform to (Rā1, Rā2, Rn̄) and we have

Rāα ·Rāβ = āα · āβ Rāα,β ·Rn̄ = āα,β · n̄ (11.2)

and thus both forms are invariant with respect to rigid transformations. As already
mentioned earlier, this corresponds to our conception of shape as a position and
orientation independent property. Because of these properties, first and second
fundamental forms are ideal differential coordinates.

To transfer the concept of fundamental forms to the discrete case, we make
the following observation, that links local frames and fundamental forms: The
first fundamental form gαβ encodes the length and angle of the frame’s tangen-
tial components while the second fundamental form encodes frame differences
between neighboring frames. Based on this observation is the differential repre-
sentation of Lipman et al. [LSLCO05] who present a discretization of the second
fundamental form that encodes differences of adjacent local frames. Inspired by
their approach we propose here a novel discrete differential mesh representation
that avoids the above mentioned typical problems of linear approaches. It implic-
itly preserves the first fundamental form by enforcing orthogonal local frames.
Similar to the second fundamental form this representation encodes differences of
neighboring frames in a way that is invariant to rigid transformations.
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11.1.2 Encoding Local Frames
To derive our mesh-based differential representation, we begin by fixing for all
vertices in the region of interest v ∈ R an arbitrary orthonormal local frame
F̄v = (āv1, ā

v
2, n̄

v) with right hand orientation where n̄v denotes the normal at
vertex v e.g. obtained by averaging adjacent triangle normals. In the following
we understand F̄v as a matrix whose columns equal tangent vectors and normal.
To find a discrete analog for the second fundamental form, we strive to capture
differences of adjacent frames. We achieve this by expressing neighboring frames
in coordinates of the frame F̄v, i.e. for a pair of vertices v, w adjacent inM we
compute the matrix

F̄w
v := F̄−1

v · F̄w. (11.3)

Now, if a rigid transformation Rx + t with a rotation matrix R and t ∈ R3 is
applied to the mesh local frames F̄v will rotate to R · F̄v and we have

(R · F̄v)−1 ·R · F̄w = F̄−1
v · F̄v = F̄w

v .

Therefore, the definition of F̄w
v is invariant with respect to rigid transformations

as required.
Since all frames F̄v are orthonormal with right handed orientation so are the

differences F̄w
v and both kind of matrices correspond to rotations. We can there-

fore rewrite Equation (11.3) using unit quaternions and the quaternion multiplica-
tion as

q̄wv = q̄−1
v · q̄w (11.4)

where q̄v, q̄w and q̄wv correspond to the rotations F̄v, F̄w and F̄w
v respectively.

The chosen representation of frames as unit quaternions implicitly enforces
orthonormal frames. This property ensures that frames do not degenerate even
if we add handle constraints to incorporate the user specified transformations in
the reconstruction. By keeping all frames orthonormal mesh editing is essentially
restricted to isometric deformations, i.e. deformations that preserve the metric
tensor and thus angle, length and area of the parameterization. Even if in our
least squares reconstruction (that we will discuss in a minute) deformations might
violate this constrained to some extent, enforcing orthonormal frames is usually
too restrictive for mesh editing applications. For example the user might want
to scale certain parts of a surface which certainly scales length and area of the
parameterization. To enable such deformations it is common practice to allow a
local isotropic scaling [SLCO+04, ZRKS05].

In our case, this means that we only restrict frames to be orthogonal not or-
thonormal. In terms of the parameterization, this allows for deformations that
are no longer isometric but conformal. If the mesh is textured, local features in
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Figure 11.1: By enforcing conformal deformations local shapes in the texture are
preserved even under extreme deformations.

the texture will therefore also keep their shape during editing as demonstrated in
Figure 11.1.

Fortunately, rotations with isotropic scales can be represented by non-unit
quaternions. More precisely, if the rotationR is represented by the unit-quaternion
q, the combined isotropic scale and rotation sR is given by the quaternion

√
sq.

This follows immediately from the quaternion-based representation of rotations.
To incorporate isotropic scales in the above described frame reconstruction it is
therefore sufficient, to drop the unit length requirement. This is advantageous
since constraining local frames to unit-length quaternions would result in a non-
linear optimization constraint.

11.1.3 Encoding Local Geometry
By now our representation is only based on local frames and does not include the
actual geometry. However, as mentioned above frames should be consistent to the
geometry to avoid the problem shown in Figure 10.1, e.g. the normal vector n of
each frame should be perpendicular to the reconstructed surface, and the relative
position of frame vectors with respect to the 1-ring edges should not change.

To formalize this constraint we require that the coordinates of 1-ring edges in
the local frames F̄v should not change in the reconstruction. For each directed
edge (v, w) between vertices inM these local coordinates are given by

c̄wv := F̄−1
v (x̄w − x̄v),

which we compute from the original undeformed mesh. Using quaternions, this
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relation between edge vectors (x̄w − x̄v) and local frames F̄v can be written as

(1, c̄wv )t = q̄∗v(1, x̄w − x̄v)
tq̄v (11.5)

where (1, c)t denotes the quaternion q with

q1 = 1 and qi = ci−1 for i = 2 . . . 4 .

We are now able to define our quaternion-based differential coordinates: For an
undeformed surface S̄ given as triangle meshM, we first fix orthogonal frames
q̄v at each vertex. Then we compute at each directed edge between vertices (v, w)
adjacent inM the quaternion q̄wv (as detailed in the last section) and the directed
edge vector in local frame coordinates c̄wv . These entities comprise our differen-
tial representation. Please note, that this representation is specifically derived for
triangle meshes. The corresponding coordinate transformation therefore takes the
mesh connectivityM, the vertex positions (x̄v)v∈R, and a set of frames (q̄v)v∈R
as arguments instead of a continuous parameterization x̄. For the just defined
coordinates it has the following form:

TM((x̄v)v∈R, (q̄v)v∈R) := (q̄wv , c̄
w
v )(v,w)∈M

The discrete coordinate transformation thus takes a mesh as input and returns a
tuple (q̄wv , c̄

w
v ) for each directed edge inM.

11.2 Reconstruction Potentials

11.2.1 Reconstructing from Quaternion-based Coordinates
Our differential representation should contain enough information about the sur-
face to reconstruct its shape. Let us assume that a coordinate representation
c̄ := (q̄wv , c̄

w
v )(v,w)∈M = TM((x̄v)v∈R, (q̄v)v∈R) is given. The reconstruction prob-

lem can then be formulated as follows: Find a set of vertex positions (xv)v∈R and
frames (qv)v∈R that satisfy

c̄ = TM((xv)v∈R,(qv)v∈R) (11.6)

With (qwv , c
w
v )(v,w)∈M := T ((xv)v∈R,M) and using the defining Equations 11.5

and 11.4 of the coordinate transformation T we can equivalently rewrite this as:

(q̄wv , c̄
w
v )(v,w)∈M = (qwv , c

w
v )(v,w)∈M ⇔ (11.7)

q̄wv = qwv ∧ c̄wv = cwv ∀(v, w) ∈M⇔ (11.8)
q̄wv = q−1

v qw ∧ (1, c̄wv )t = q∗v(1,xw − xv)
tqv ∀(v, w) ∈M (11.9)
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Reconstruction from coordinates c̄ thus amounts to solving the equation system
11.9 for both vertex positions xv and frames qv. The question, whether this equa-
tion system possesses a solution is answered trivially, by choosing xv = x̄v and
qv = q̄v for all vertices v ∈ R. Equations 11.10 and 11.11 are then satisfies by
definition. (We defer a discussion on the uniqueness of this solution to the next
section.) However, for interactive mesh editing we are not interested in a perfect
reconstruction. We rather seek for a surface, that is locally similar in shape to
the original surface, but that also satisfies user specified transformations at handle
vertices. In our framework, we allow for two kinds of constraints: Positional con-
straints specify a desired position xconstv for a handle vertex v ∈ H . Orientation
constraints specify a local coordinate system qconstv at a handle vertex. They can
be used e.g. to fix surface normal and directional derivatives at a vertex while al-
lowing it to translate freely. Instead of solving Equation 11.9 we therefore seek a
solution to the following system:

q̄wv = q−1
v qw ∀(v, w) ∈M (11.10)

(1, c̄wv )t = q∗v(1,xw − xv)
tqv ∀(v, w) ∈M (11.11)

qv = qconstv ∀v ∈ H (11.12)
xv = xconstv ∀v ∈ H (11.13)

In the presence of more than one position and orientation constraint, the system
is overconstraint and no perfect solution exists. We therefore loosen requirements
by resorting to solution that minimizes least squares of residuals. While a least
squares solution is no longer a perfect reconstruction of the original surface, it
keeps deviations in quaternion-based coordinates small at each vertex and thus
results in preservation of local shape. In the next section, we derive a least-squares
potential for Equations 11.10-11.13.

11.2.2 Deformation Potentials for Quaternion-based Coordi-
nates

In analogy to Equation 10.1, a potential based on least-squares residuals for equa-
tions 11.10-11.13 is given by

E ′ = αq
∑

(v,w)∈M

‖q̄wv − q−1
v · qw‖2 (11.14)

+ αx
∑

(v,w)∈M

‖(1, c̄wv )t − q∗v(1,xw − xv)
tqv‖2

+ αcEconst

141



CHAPTER 11. A NON-LINEAR POTENTIAL FOR INTERACTIVE EDITING

where we introduced scalar parameters αq, αx, αc that control the relative im-
portance of the residual errors. Their choice will be discussed in Section 11.3.5.
Please note, that in the first term a least squares norm on the difference of quater-
nions is used to measure the distance between quaternions. Although this choice
arises naturally in this context, there are some important implications for the re-
construction algorithm. We defer a discussion of this choice to Section 11.3.4.

Econst ensures that user specified handle transformations are respected. This
can be done by the method of Lagrange multipliers but requires additional vari-
ables that increases dimensionality. Alternatively, handle transformation can be
implemented as soft constraints by choosing:

Econst =
∑
v∈H

‖qv − qconstv ‖2 +
∑
v∈H

‖xv − xconstv ‖2 (11.15)

Please note, that is easily possible to constraint position and local frames of a
vertex v independently. We refer to vertices with constrained position as position
constraints and to those with constrained local frame to orientation constraints.
For implementation, it is sufficient to replace the set H by two sets Hx and Hq of
position-constraint and orientation-constraint vertices in the above equation, i.e.

Econst =
∑
v∈Hq

‖qv − qconstv ‖2 +
∑
v∈Hx

‖xv − xconstv ‖2 (11.16)

While the potential E ′ is a straightforward choice, it poses some difficulties
in the optimization. In the next section we will describe an interactive optimiza-
tion algorithm based on alternating optimization (AO) [Zan69]: In this approach
the set of all unknowns is divided into multiple subsets, that correspond to local
frames qv and vertex positions xv. In each step of the algorithm, the potential is
minimized only with respect to one subset of all unkowns while keeping all other
variables fixed. The set of active variables is alternated in each iteration.

Our basic idea for an efficient optimization is to keep each of these optimiza-
tion steps as simple as possible. Preferably, optimizing the potential with respect
to each of the variable subsets should either amount to solving a linear system or
to solving a low dimensional non-linear problem. For the linear system, we also
aim at a system matrix, that does not change between iterations. In this way, it
is possible to precompute a matrix factorization. The actual solution of the linear
system then becomes highly efficient.

In view of this optimization strategy, the above potential has two problems:
First, it is not a quadratic function in the local frames qv (in particular, it is ex-
pressed in terms of the inverse q−1

v ). Thus, minimization with respect to this
variable subset results into a non-linear system. Second, while the potential is
quadratic in the vertex positions xv, the product of frames and positions in the
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second term leads to a system matrix, that depends on the actual values of qv and
is thus not constant.

To address these problems, we turn back to the equation system 11.10-11.13.
We equivalently rewrite the system by multiplying qv from the left of the first
equations. For the second we multiply by (q∗v)

−1 and q−1
v from left and right

respectively which results in:

qvq̄
w
v = qw ∀(v, w) ∈M (11.17)

1

‖qv‖2
qv(1, c̄

w
v )tq−1

v = (1,xw − xv)
t ∀(v, w) ∈M (11.18)

qv = qconstv ∀v ∈ H (11.19)
xv = xconstv ∀v ∈ H (11.20)

Based on least-squares residuals, we again derive a potential E ′′ from these
equations:

E ′′ = αq
∑

(v,w)∈M

‖qvq̄wv − qw‖2+ (11.21)

+ αx
∑

(v,w)∈M

‖qv(1, c̄
w
v )tq−1

v

‖qv‖2
− (1,xw − xv)

t‖2

+ αcEconst

As the equation systems 11.10-11.13 and 11.17-11.20 are equivalent, a perfect
reconstruction is a solution to both systems and thus a minimizer for both poten-
tials. The modified potential E ′′ is also quadratic in the vertex positions xv but in
contrast to E ′, the product of frames and positions in the second term is avoided.
As described in the next section, minimizing E ′′ with respect to positions xv thus
amounts to solving a linear system with constant system matrix.

More precisely, the system matrix is a uniformly weighted Laplacian matrix.
Assuming local frames are known, solving for the coordinates xv thus comes
down to reconstruction from Laplacian coordinates. In this respect there is a con-
nection of our approach to linear methods like [LSCO+04, YZX+04, ZRKS05,
LSLCO05]. In contrast to those methods that estimate local frames independent
of the geometry, our approach solves for frames and geometry simultaneously.
Therefore, the frames qv are forced to be consistent with the actual geometry xv.
A translation of handle vertices specified as constraint to positions will indirectly
influence the frame field. Therefore, our approach is sensitive to translations as
shown in Figure 10.1.

Concerning optimization with respect to local frames, the first term in the
modified potential E ′′ and the constraint energy Econst are both quadratic in the
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frames qv. Unfortunately, the second term is not. An optimization of E ′′ with
respect to qv is therefore still a high dimensional non-linear problem. As the
second term ensures consistency of frames, it is exactly the coupling of frames
and geometry that turns the reconstruction into a non-linear problem. Therefore,
we cannot expect a quadratic residual potential.

According to the above described optimization strategy, we would like to sep-
arate high-dimensional linear and low-dimensional non-linear problems in the op-
timization. Our idea is to loosen the above mentioned coupling of frames and ge-
ometry during reconstruction allowing them to become temporarily inconsistent.
To allow for this deviation in a controlled manner we introduce a set of auxiliary
variables: For each vertex in the region of interest we add a quaternion qconsistv of
which we think as a frame that is consistent with the actual geometry. We then
substitute qconsistv for qv in the second term. To ensure, that both frame sets do not
deviate too much, we add an additional term to the potential. Our final potential
then takes the following form:

E = αq
∑

(v,w)∈M

‖qvq̄wv − qw‖2+ (11.22)

+ αx
∑

(v,w)∈M

‖q
consist
v (1, c̄wv )t(qconsistv )−1

‖qconsistv ‖2
− (1,xw − xv)

t‖2+

+ αqc
∑
v∈R

‖qv − qconsistv ‖2

+ αcE
const

The above potential is a quadratic function in both vertex positions xv and
local frames qv. As will be shown in the next section, optimizing with respect to
the geometry consistent frames qconsistv amounts to a low-dimensional problem,
that can be solved for all vertices in parallel.

11.2.3 Derivatives

For the optimization algorithm described in the next section, we need to take
derivatives with respect to vertex positions xv and quaternions qv. These are
derived in this section. We begin by rewriting the potential to separate the terms
that only depend on xv, qv and qconsistv , respectively. To this extent, we first define
three symbols that correspond to right hand side multiplication with the quater-
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nions q̄wv , (1, c̄wv )t and (1,xw − xv)
t as follows:

Q̄vwij :=Mvwρijkq̄
w
vk

C̄vwij :=Mvw

(
ρij1 +

4∑
k=2

ρijkc̄
w
v(k−1)

)

Xvwij :=Mvw

(
ρij1 +

4∑
k=2

ρijk
(
xw(k−1) − xv(k−1)

))

Assuming that indices u, v, w take values in R and extending Einstein sum con-
ventions accordingly, we can then rewrite the terms of the potential:∑
(v,w)∈M

‖qvq̄wv − qw‖2 =
∑

(v,w)∈M

(
‖qvq̄wv ‖

2 − 2 〈qvq̄wv ,qw〉+ ‖qw‖2)
= Q̄vwkiQ̄vwkjqviqvj − 2Q̄vwjiqviqwj +MvwMvwqwjqwj

∑
v∈R

‖qv − qconsistv ‖2 = qviqvi − 2qviq
consist
vi + qconsistvi qconsistvi∑

v∈H

‖qv − qconstv ‖2 = Hvqviqvi − 2Hvqviq
const
vi +Hvq

const
vi qconstvi∑

v∈H

‖xv − xconstv ‖2 = Hvxvixvi − 2Hvxvix
const
vi +Hvx

const
vi xconstvi

For the remaining consistency term we get∑
(v,w)∈M

‖q
consist
v (1, c̄wv )t(qconsistv )−1

‖qconsistv ‖2
− (1,xw − xv)

t‖2

=
∑

(v,w)∈M

‖qconsistv (1, c̄wv )t(qconsistv )−1‖2

‖qconsistv ‖4

− 2
∑

(v,w)∈M

〈
(1,xw − xv)

t,
qconsistv (1, c̄wv )t(qconsistv )−1

‖qconsistv ‖2

〉
+

∑
(v,w)∈M

‖(1,xw − xv)
t‖2

To further simplify these expressions, we remark that for quaternions p,q, and
r the following basic relations between dot product, vector norm and quaternion
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product hold (see e.g. [Hor87]):

‖pq‖ = ‖p‖‖q‖ (11.23)
〈pq, r〉 = 〈p, rq∗〉 (11.24)

Using these relations we find

‖qconsistv (1, c̄wv )t(qconsistv )−1‖2 = ‖c̄wv ‖2 + 1

and 〈
(1,xw − xv)

t,qconsistv (1, c̄wv )t(qconsistv )−1
〉

=

=
1

‖qconsistv ‖2

〈
qconsistv (1, c̄wv )t, (1,xw − xv)

tqconsistv

〉
The consistency term can then be written as∑

(v,w)∈M

‖qconsistv (1, c̄wv )t(qconsistv )−1 − (1,xw − xv)
t‖2

=
1
4
C̄vwijC̄vwij +MvwMvw − 2qconsistvj XvwjkC̄vwkiq

consist
vi

(qconsistvl qconsistvl )2

+ 2 (MvwMvwxwjxwj −Mvwxvixwi) +MvwMvw

Finally, we define

A1
vwij = αq

(
δvwQ̄vukiQ̄vukj − 2Q̄vwji + δvwδijMuwMuw

)
+ αqcδvwδij + αcHvδvwδij (v,w,i,j not summed)

A2
vwij = αqcδvwδij (v,w,i,j not summed)

A3
vwij = 2αx (δvwδijMuwMuw − δijMvw)

+ αcHvδvwδij (v,w,i,j not summed)

A4
vwij = −2αqcδvwδij (v,i not summed)

b1
vi = −2Hvαcq

const
vi (v,i not summed)

b2
vi = −2Hvαcx

const
vi (v,i not summed)
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and obtain the potential E as

E =
1
4
C̄vwijC̄vwij +MvwMvw − 2qconsistvj XvwjkC̄vwkiq

consist
vi

(qconsistvl qconsistvl )2

+ A1
vwijqviqwj + A2

vwijq
consist
vi qconsistwj + A3

vwijxvixwj + A4
vwijqviq

consist
wj

+ b1
viqvi + b2

vixvi + const

where A1-A4, b1,b2 and const are derived from the quaternion based coordinates
only and thus constant with respect to the unknowns (qv,q

consist
v ,xv). In this form

it becomes immediately clear that E is a quadratic function in the local frames qv
and the vertex positions xv.

Derivatives with respect to all unknowns are now easily found as:

∂E

∂qvi
= (A1

vwij + A1
wvji)qwj + A4

vwijq
consist
wj + b1

vi

∂E

∂xvi
= (A3

vwij + A3
wvji)xwj − 2

qconsistuj (Muv −Mvw)ρjk(i+1)C̄uwkmq
consist
um

(qconsistul qconsistul )2
+ b2

vi

∂E

∂qconstvi

= −2
XvwikC̄vwkj +XvwjkC̄vwkiq

consist
vj

(qconsistvl qconsistvl )2

− 4

(
1
4
C̄uwkjC̄uwkj +MuwMuw − 2XvwjkC̄vwkmq

consist
vj qconsistvm

)
qconsistvi

(qconsistvl qconsistvl )
3

+ (A2
vwij + A2

wvji)q
consist
wj + A4

wvjiqwj

11.2.4 Properties
In this section, we show some basic properties of the derived potential E. As
quaternion-based coordinates have been designed to be rotation invariant, the fol-
lowing lemma comes as no surprise:

Lemma 11.1. In the absence of constraints, the potential E defined in Equation
11.21 is invariant under rigid transformations, i.e. if q ∈ H denotes an arbitrary
rotation represented as unit quaternion and t ∈ R3 a translation, we have

E(qv,q
consist
v ,xv) = E(q′v,q

consist′

v ,x′v)

for

q′v := qqv

qconsist
′

v := qqconsistv

(1,x′v)
t := q(1,xv + t)tq−1
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Proof. We simply verify the claim by plugging the rotated and translated quateri-
ons and positions into E. For the first three terms in Equation 11.21 we obtain

‖q′vq̄wv − q′w‖2 = ‖q(qvq̄
w
v − qw)‖2

= ‖qvq̄wv − qw‖2

where we used property 11.23 and ‖q‖ = 1. Using the same properties we obtain
analogously

‖qconsist′v (1, c̄wv )t(qconsist
′

v )−1 − (1,x′w − x′v)
t‖2

= ‖qqconsistv (1, c̄wv )t(qconsistv )−1q−1 − q−1(1,xw + t− xv + t)tq−1‖2

= ‖qconsistv (1, c̄wv )t(qconsistv )−1 − (1,xw − xv)
t‖2

and

‖q′v − qconsist
′

v ‖2 = ‖q(qv − qconsist
′

v )‖2

= ‖qv − qconsistv ‖2 .

As no constraints are given, the last term of the potential vanishes and thus the
claim of the Lemma follows.

Besides rotation and translation invariance, it is crucial that quaternion-based
coordinates do in fact encode the complete shape information of a mesh. We
therefore expect that the original surface can be reconstructed from the informa-
tion encoded in our coordinates. As we reconstruct the surface by minimizing the
potential E, the original mesh configuration should correspond to a unique global
minimum. However, since we assume shape as invariant with respect to rigid
transformations, we can only expect uniqueness up to a rotation and translation.
This property of quaternion-based coordinates is asserted by the following

Lemma 11.2. If any existing vertex constraints constrain vertices to their original
position or orientation, the potential E vanishes for

qv = qconsistv = q̄v and xv = x̄v

This configuration is a global minimum of E. Moreover, if the mesh M is con-
nected, the constants αq, αqc, αx, αc > 0 and at least one vertex position as well
as one local frame orientation are constrained to their original value, this global
minimum is unique.

Proof. As the potential E is defined as residual of the Equations 11.17-11.20 and
as the above choice of xv and qv satisfies these equations by definition the first
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claim follows trivially. From the definition of the potential, also immediately
follows E ≥ 0 so that this configuration is a global minimizer.

For uniqueness, we first remark, that any configuration that results in a van-
ishing potential E has to satisfy equations 11.17-11.20 as well as

qv = qconsistv

Otherwise, a positive residual in one of the terms in Equation 11.21 will remain
and because of αq, αqc, αx, αc > 0 will result in E > 0. By assumption, at least
one vertex v0 ∈ H exists that is constrained to its original local frame. From
Equation 11.19 follows

qv0 = q̄v0 .

For all vertices v with (v0, v) ∈Mwe then obtain from Equations 11.17 and 11.4:

qv = q̄v0q̄
v
v0

= q̄v0q̄
−1
v0

q̄v = q̄v

By induction over the edges of the connected mesh M we get qv = q̄v for all
vertices v ∈ R. From the local frames q̄v and the local coordinates c̄wv , we obtain
from Equations 11.18 and 11.5:

(1,xw − xv)
t =

1

‖q̄v‖2
q̄v(1, c̄

w
v )tq̄−1

v = (1, x̄w − x̄v)
t (11.25)

Again by assumption, at least one vertex v1 ∈ H exists that is constrained to its
original position, i.e. xv1 = x̄v1 . From the relation 11.25 it now follows again by
induction over the mesh edges, that all vertex positions are uniquely determined
as

xv = x̄v

which concludes the proof.

Finally, we proof a property of the Hessian of the potential that will be needed
in the optimization algorithm given in the following section.

Lemma 11.3. The Hessians of the potential with respect to local frames qv and
vertex positions xv are given by

∂2E

∂qvi∂qwj
= A1

vwij + A1
wvji

and
∂2E

∂xvi∂xwj
= A3

vwij + A3
wvji .

If the mesh M is connected, αq, αqc, αx, αc > 0 and at least one orientation
constraint as well as one position constraint exists, both Hessians are positive
definite.
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Proof. The equations for both Hessians follow easily from the derivatives ∂E
∂qvi

and ∂E
∂xvi

given in the last section. Both Hessians are constant in the unknowns
(qv,q

consists
v ,xv). Moreover, they depend only on the number of position and

orientation constraints but not on their actual constraint value. We can thus assume
without loss of generality, that the conditions of Lemma 11.2 are met. Positive
definiteness then follows from the uniqueness of the global minimum.

11.3 Efficient Non-linear Optimization

Algorithm 2 The iterative reconstruction algorithm
Inputs:
- quaternion-based coordinates (q̄wv , c̄wv )(v,w)∈M
- initial values q0

v, x0
v for v ∈ R

- user specified constraints qconstv , xconstv for v ∈ H

qv ← q0
v

xv ← x0
v

repeat
step 1 (non-linear): qconsistv ← arg minqconsistv

E(qconsistv ,qv,xv)
step 2 (linear): qv ← arg minqv E(qconsistv ,qv,xv)
step 3 (linear): xv ← arg minxv E(qconsistv ,qv,xv)

until convergence

The potential E derived in the last section falls into the category of non-linear
least squares problems. Such problems are usually solved by Gauss-Newton
or Levenberg-Marquardt methods that proceed in an iterative manner solving a
sparse linear system in each step. To solve these systems fast sparse direct solvers
are commonly applied since they benefit from the fact, that the sparsity pattern of
system matrices (in this case the Hessian) does not change. However, although
the sparsity pattern is constant, the values of the Hessian do change, requiring a
numerical refactorization in each step. In context of mesh editing, these iterated
refactorizations becomes too costly to allow for interactive editing of medium-
sized meshes.

As already lined out in the last section, we therefore take another approach
to the minimization of the potential E that is based on alternating optimization.
There, the deformation potential was already carefully chosen, to ensure that op-
timization with respect to each of the three sets of variables, namely the positions
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xv, frames qv and consistent frames qconsistv is computationally feasible. In partic-
ular, we will see that all large matrices involved in the optimization are constant
over the iteration, which is in stark contrast to standard Newton or non-linear least
squares solvers.

An overview of our reconstruction method is given in Algorithm 2. It al-
ternates between three steps that correspond to the three above stated subsets of
unknowns. Each step minimizes the potential energy E with respect to one of the
variable subsets. The three optimization steps are iterated until eventually conver-
gence is detected.

While the above given algorithm is conceptually very simple, it has two other
important advantages: First it is guaranteed to converge, as each of the three steps
lowers the overall energy E and the energy is bounded below by zero. Second,
in a typical mesh editing scenario handle transformations usually change only
little between two consecutive frames provided that the system runs at interactive
frame rates. The simple iterative nature of our algorithm allows it to fully exploit
this frame-to-frame coherence by reusing local frames and geometry of the last
frame as initial values for the next. This is in contrast to multigrid methods like
[BPGK06b] that need to optimize over a mesh hierarchy in each frame. In the
following we will comment on the individual steps.

11.3.1 Linear Steps

We begin our discussion with steps two and three. In the second step we assume
that for each vertex v both position xv and geometry consistent frame qconsistv

are given and fixed and optimize the potential E for frames qv. Minimizing the
potential with respect to local frames amounts to solving the linear system ∂E

∂qvi
=

0 which is equivalent to:

(A1
vwij + A1

wvji)qvj = −A4
vwijq

consist
wj − b1

vi

Using an arbitrary one-to-one mapping ρ from vertex/coordinate index pairs to
natural numbers 1, 2, . . . , 4|R| the above linear system can be written as a matrix
equation Ax = b with a 4|R|×4|R|matrix A and vector whose entries are given
by

Aρ(v,i)ρ(w,j) = A1
vwij + A1

wvji bρ(v,i) = −A4
vwijq

consist
wj − b1

vi

From the definition of A1
vwij we see, that the matrix A is sparse. The number of

non-zero entries per row is at most 4val(v) + 1 where val(v) denotes the number
of edges at vertex v. As shown in Lemma 11.2.4, it corresponds to Hessian of the
potential with respect to local frames qv and is symmetric positive definite which
guarantees, that the above linear system thus has a unique solution.
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Moreover, the matrix is constant with respect to all unknowns qv, qconsistv and
xv. This important property allows a factorization into two sparse triangular fac-
tors in a precomputation step using sparse LU or Cholesky factorizations methods.
In our case we use the freely available SuperLU package [DGL97] for this fac-
torization, which we found to perform slightly faster than the sparse Cholesky
solver TAUCS [Tol03]. Once factored, the above linear system can be efficiently
solved for varying right hand side vectors b by a very fast triangular solver, which
namely amounts to two simply back- and forward substitutions.

The third step of the algorithm is very similar two the second step. This time,
we keep local frames qv and qconsistv fixed and minimize the potential with respect
to optimal vertex positions. Again, Lemma 11.2.4 asserts that the potential is
quadratic in these positions with a unique minimum (constant positive definite
Hessian). It is obtained by solving ∂E

∂xvi
= 0 which amounts to:

(A3
vwij + A3

wvji)xvj = 2
qconsistuj (Muv +Mvw)ρjk(i+1)C̄uwkmq

consist
um

(qconsistul qconsistul )2

In analogy two the second step, this linear system can be written in matrix form
using the mapping ρ which results in a sparse square matrix of dimension 3|R|
with exactly val(v)+1 entries in each row and column. We also factor this matrix
into two triangular matrix factors in the precomputation. In each iteration, only
the right hand side vector has to be updated and the system is solved by a fast
triangular solver.

11.3.2 Non-linear Step
As already pointed out, the potential E is not quadratic in the consistent frames
qconsistv which is due to the second term in Equation 11.21. However, a closer
observation of this term reveals, that the consistent local frame of each vertex v
contributes to only one addend (This is in contrast to e.g. the frames qv which
are coupled in the energy by the first term). As the same observation holds for
the third term in Equation 11.21, the minimization of E with respect to qconsistv

can be carried out for each vertex individually. This has two important conse-
quences: First, the dimensionality of the optimization problem at each vertex is
low. Namely, at each vertex v only the four components qconsistvi have to be opti-
mized. Second, we can make use of parallelization, i.e. solve for consistent frames
at all vertices in parallel.

To actually solve for optimal consistent frames, a standard Levenberg-Marquardt
based non-linear least squares solver can be used. Alternatively, an even more ef-
ficient and conceptually simpler solution to the problem is available if we neglect
for a moment the third term in Equation 11.21, i.e. the coupling of qv and qconsistv
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within the non-linear step. Computing qconsistv then amounts to the optimal solu-
tion of the equation

1

‖qconsistv ‖2
qconsistv (1, c̄wv )t(qconsistv )−1 = (1,xw − xv)

t (11.26)

in least squares sense for a fixed positions xv. An efficient solution to this prob-
lem was given by Horn in [Hor87] that essentially only requires to extract the
eigenvector to the largest eigenvalue from a four by four matrix.

To account, at least approximately, for the third term of the potential, the re-
sult obtained by Horn’s algorithm has to be averaged in some sense with the local
frames qv. However, the second step in our algorithm does in fact correctly ac-
count for the third term and thus performs the desired averaging. A simple approx-
imate solution is therefore, to set qconsistv to the result of the second step (namely
qv) after the second step. The simplified algorithm is summarized in Algorithm 3

Algorithm 3 The simplified reconstruction algorithm
Inputs: same as in the exact Algorithm 2.
repeat

step 1 (non-linear): compute qconsistv from xv using Horn’s method
step 2a (linear): qv ← arg minqv E(qconsistv ,qv,xv)
step 2b: qconsistv ← qv
step 3 (linear): xv ← arg minxv E(qconsistv ,qv,xv)

until convergence

The simple convergence argument given above does not hold for the simplified
algorithm, as theoretically, the overall potential energy E can increase in the first
step. Even though it is difficult to formally proof convergence of the simplified
algorithm, we observed in our experiments that the reconstruction converges af-
ter only a few iterations even for large handle transformations. Besides its higher
performance and conceptual simplicity, the simplified algorithm can also be fur-
ther modified, to simulate the deformation behaviour of different materials as ex-
plained in the following section.

11.3.3 Parameterizing Deformation
By construction the above described framework produces conformal deformation.
In Figure 11.2 the two handles on both sides of the plate were pushed apart by a
translation along the x-axis. Interestingly, the mesh also stretches in the perpen-
dicular direction to preserve the local shape of each 1-ring and thus produces a
conformal deformation.
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Figure 11.2: On top a undeformed surface strip is shown. The bottom shows the
resulting deformation, if both handles (shown in green and red) are pushed apart
along the horizontal direction.

In reality only few materials (so called auxetic materials) show a behavior as
depicted in the figure. As explained in Section 3.1.2, linear elasticity character-
izes these materials by a negative Poisson’s ratio which means that these mate-
rials when stretched in one direction also stretch in perpendicular directions. In
contrast, most existing materials like metals, rubber or textiles have a positive
Possion’s ration and correspondingly shrink along unconstrained directions when
anisotropically stretched (see Figure 11.3a).

With a small modification, the simplified algorithm described in the last sec-
tion can be extended to yield mesh deformations similar to those observed for
these materials. To this extent we reconsider the update of qconsistv in step 1 of Al-
gorithm 3: As described in the last section, Horn’s method is used to compute at
each vertex a quaternion qconsistv that solves Equation 11.26 in least squares sense.
This quaternion represents a rotation Rv as well as a isotropic scaling by factor
sv = ‖qconsistv ‖2. Horn shows in [Hor87] that these two components can be deter-
mined independently, so that the rotated and scaled original 1-ring edges (repre-
sents by c̄wv ) fit to the deformed 1-ring edges (given by xw − xv) in least squares
sense. Pushing the handles apart as shown in Figure 11.2 causes an anisotropic
stretch along the x-axis in each 1-ring. Therefore the optimal isotropic scale sv
computed in step 1 of the algorithm will be larger than 1. As a consequence, all
quaternions tend to have norm larger than one in step 2a and step 2b. This in
turn causes a stretch in the unconstrained directions in step 3 and thus leads to the
above described behavior resembling auxetic materials shown in the figure.

Since in the example of Figure 11.2 stretch along the x-axis is fixed by the han-
dle constraints on both sides, the isotropic scale of qconsistv determines the stretch
along the unconstrained y- and z-axis. To obtain a deformation behavior similar
to those of materials with positive Poisson’s ratio we therefore replace the actual
scale sv of qconsistv by sαv in step 1 of the simplified algorithm. For negative α we
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(a)

(b)

(c)

Figure 11.3: By varying the parameter α the behaviour of materials with different
Poisson’s ratio can be simulated: For α = −1 the mesh deforms similar to materi-
als with high Poisson’s ratio like e.g. rubber. For α = 0 the deformation resembles
materials like cork, whose Poisson’s ratio is near zero. Choosing α = 1 yields the
behaviour of auxetics which are characterized by negative Poisson’s ratios.
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Figure 11.4: Deformations obtained for pure scaling by 0.5. From left to right: a)
Primo, b) our method with α = 0 and c) our method in free-scale mode

then obtain the desired shrinking in unconstrained directions as shown in Figure
11.3a while α = 1 results in the original conformal behavior. Figure 11.3b shows
the result for the special case of α = 0 that keeps qconsistv normalized so that
stretching along the x-axis does not influence the other directions. Such behav-
ior can e.g. be observed for cork which has a Possion’s ration of nearly zero. As
shown in the figure the parameter α in our method has therefore a similar inter-
pretation as the Possion’s ratio. Although our method is not physically motivated,
with the above extension the resulting deformations appear physically plausible
for different materials. Therefore, its deformation behavior is very intuitive as
long as handle transformation does not include scaling.

For scaling, however, there exists no physical counterpart: While real materi-
als can be pulled or bend they cannot be scaled. As demonstrated in Figure 11.4a
physically plausible methods like Primo [BPGK06b] react to scaling in a way that
is intuitive but might yet be undesired. In the figure the case of a pure scaling
of the handle by 0.5 is shown. Both Primo and our approach result in a creasing
near the scaled handle while the bumps approximately keep their height. In some
cases, however, the user might desire that features as the bumps near the handle
also scale down.

We therefore added a further editing mode that handles scaling differently. In
this mode we give up scale consistency between frames and geometry to some
extent. More precisely, we allow frames qv to scale independently of the actual
geometry while still enforcing consistent orientation. However, we only break
scale coupling in one direction: we suppress feedback from geometry scale to
handle scale, while still encouraging the actual edges xw − xv to adapt the scale
of the frames qv. This can easily be achieved by rescaling qconsistv after step 1 in
Algorithm 3 so that it has the same length as qv. As shown in 11.4c this free-
scale mode distributes changes in scale over the mesh evenly. Therefore, features
near the scaled handle scale down as intended. By keeping frame orientations
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consistent the algorithm still preserves curvature and tangential derivatives in this
mode. This can be seen from the slight S-shape of the boundaries in the top of
11.4c.

Please note that, both the parameter α and the editing mode do not affect
the system matrices in the reconstruction algorithm and can therefore be changed
interactively during editing without compromising the performance.

11.3.4 Quaternion Distance Measures
In the definition of our potential energy E in Equation 11.21 the first, third and
the constraint term involve a distance measure on quaternions. In all three cases,
the Euclidean norm in R4 is used on the difference of quaternions to measure
distances between quaternions, i.e.

d(q1,q2) := ‖q1 − q2‖

for two quaternions q1 and q2. While this distance measure enables an efficient
least squares formulation, it is in general not suitable to measure differences in ori-
entation [BB06]. In contrast, in case of pure rotations represented by unit quater-
nions the distance measure

drot := arccos 〈q1 |q2〉, (11.27)

measuring the angle between the two quaternions in 4D-space, is well established
in computer graphics[Sho85].

A subtle complication arises due to the fact, that unit quaternions represent
a double cover of the rotation group SO(3), i.e. q and −q describe the same
rotation. Thus, the comparison of the rotations has to consider all possible combi-
nations of negated and not negated quaternions. The according distance measure
has the following form:

drot := min{arccos 〈q1 |q2〉, arccos 〈q1 | − q2〉,
arccos 〈−q1 |q2〉, arccos 〈−q1 | − q2〉} (11.28)

For symmetry reasons, this can be reduced to

drot = min {arccos 〈q1 |q2〉, arccos 〈q1 | − q2〉}. (11.29)

In our case, we are concerned with combinations of rotations and isotropic
scaling as represented by non-unit quaternions. An appropriate metric should
certainly consider the angle of the rotation as well as the scaling factor of each
transformation. The distance drot is not a good metric in this case, because the
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Figure 11.5: In case of small rotation angles, the simple Euclidean distance of
quaternions provides a sufficient approximation of drot.

scaling factors of the transformations are not properly compared to each other. In
contrast, the much simpler distance measure

dmin(q1,q2) := min {‖q1 − q2‖ , ‖q1 − (−q2)‖}
= min {‖q1 − q2‖ , ‖q1 + q2‖} (11.30)

considers rotation as well as scaling. As illustrated in Figure 11.5, dmin is an
approximation of drot for unit quaternions if angles between q1 and q2 are small.

However, using dmin instead of d in the definition of the potential E is not
advisable as it breaks the linearity of the second and third step in the optimization
algorithm. The following two Lemmas, which are taken from [Par07], examine
under which conditions d and dmin are equivalent. We then propose a few modifi-
cations to the reconstruction algorithm that enforce these conditions.

Lemma 11.4. If the angle α/2 := ∠(q1,q2) between the non-unit quaternions q1

and q2 is less than π/2, the metrics dmin and d coincide.

Proof. As shown in Figure 11.6, the law of cosines allows to rewrite the distances
‖q1 − q2‖ and ‖q1 + q2‖ in the following way:

‖q1 − q2‖2 = ‖q1‖2 + ‖q2‖2 − 2 ‖q1‖ ‖q2‖ cos
α

2

‖q1 + q2‖2 = ‖q1‖2 + ‖q2‖2 − 2 ‖q1‖ ‖q2‖ cos
(
π − α

2

)
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Figure 11.6: Notation for Lemma 11.4: The space of unit quaternions forms a
unit sphere S3 in R4. A 2D-plane is defined by q1, q2, and −q2 that contains the
origin. Cutting the sphere S3 with this plane, we get a two-dimensional slice of
the sphere, which is illustrated above.
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then we have:

|α| < π

⇒ cos
α

2
> cos

(
π − α

2

)
⇔ −2 ‖q1‖ ‖q2‖ cos

α

2
< −2 ‖q1‖ ‖q2‖ cos

(
π − α

2

)
⇔ ‖q1 − q2‖2 < ‖q1 + q2‖2

⇒ min {‖q1 − q2‖ , ‖q1 + q2‖} = ‖q1 − q2‖
⇔ dmin(q1,q2) = d(q1,q2)

Lemma 11.4 shows that d = dmin, if the angle of between the quaternions q1,
q2 is less than π/2. In the following Lemma, we will establish a connection to the
rotation between the orientations described by q1 and q2:

Lemma 11.5. Let q1, q2 be quaternions describing two orientations (with isotropic
scale). We consider the transformation q−1

1 q2 that rotates and scales q1 into q2.
If the angle of the rotation of this transformation (around some axis v) is denoted
by α, then

arccos
〈q1 |q2〉
‖q1‖ ‖q2‖

= α/2, (11.31)

i.e. the angle between the quaternions q1, q2 is half the rotation angle between
the according orientations.

Proof. The angle of the rotation between the orientations is not changed by nor-
malizing the two quaternions:

q′1 := q1/ ‖q1‖
q′2 := q2/ ‖q2‖

The rotation q3 between the orientations of the unit quaternions q′1 = (q1
0, q

1
x, q

1
y, q

1
z)
t

and q′2 = (q2
0, q

2
x, q

2
y, q

2
z)
t is given as q3 := (q′1)−1 · q′2. This is again a unit

quaternion and corresponds to a rotation of angle α = 2 arccos(q31) around the
axis v = (q32, q33, q34)t. One easily verifies that

q31 = 〈q′1,q′2〉

and thus

α/2 = arccos
〈q1 |q2〉
‖q1‖ ‖q2‖
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In summary, we conclude that the distances d(q1,q2) and dmin(q1,q2) coin-
cide, as long as the angle α of the rotation, that rotates the orientation represented
by q1 onto the orientation represented by q2 is smaller than π. Note, that this
corresponds to a very drastic difference in the orientation.

Consequences for the mesh editing algorithm

As elaborated in the previous section, the approximation of dmin(q1,q2) by d(q1,q2)
is only reasonable if the angle enclosed by the quaternions q1 and q2 in R4 is
smaller than π/2. If this condition is not met, it can be enforced by simply negat-
ing one of the two quaternions. We refer to this negations in the following as a
flip.

We therefore suggest the following modifications to Algorithm 3: When set-
ting up the system matrices for step 2a and 3 in the precomputation, care must
be taken to select q̄wv from the two quaternions representing F̄w

v so that the angle
between q̄w and q̄v ∗ q̄wv is minimal. In theory, it may become necessary in the
iterations to apply further flips to q̄wv at some edges to ensure this condition for
the optimal frames qv. This would require a refactorization of the matrix. Fortu-
nately, according to Lemma 11.5 such a flip is only necessary if the rotation angle
of the transformation that rotates qw onto qv ∗ q̄wv is greater than π. As this rota-
tion angle is zero in the undeformed state for all edges, a violation of the above
condition is an extraordinary event. Please note that sharp features or vertices
with high curvature do not increase the probability of such a flip as the relevant
distance is measured between qw and qv ∗ q̄wv and not directly between qw and
qv. Therefore, a flip becomes in practice only necessary for extreme deformations
in conjunction with unreasonable low mesh resolution, that would anyway require
mesh subdivision in order to adequately represent the deformed surface. Although
our implementation detects the necessity of q̄wv flips, we never encountered this
case in our experiments.

Similarly we flip qconsistv and qconstv in step 2a and 3 of each iteration so that
the angular distance to qv is minimal. These flips are not problematic since both
variables appear only in the right hand side vectors and not in the system matrices.

11.3.5 Implementation

In this section we give some noteworthy details on our GPU-based implementa-
tion of the simplified algorithm for constrained reconstruction and comment on
some technical details. As described in Section 11.3 the estimation of consistent
frames qconsistv amounts to the solution of a set of independent low-dimensional
problems and thus naturally lends itself to a parallel implementation. The method
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of [Hor87] essentially requires to setup covariance matrices for vertex neighbor-
hoods and to compute the eigenvector to the largest eigenvalue of a four by four
matrix. For an easy implementation on graphics hardware we chose the NVIDIA
CUDA Framework and adapted an off-the-shelf eigenvalue decomposition which
required only minor modifications. Although we did not optimize this code for
parallelism or memory access it is fast enough for our purpose and only amounts
for less than 8 percent of the overall reconstruction time. Our parallel implemen-
tation of the eigenvalue and the right hand side vector calculation runs about 80
times faster compared to an equivalent CPU implementation.

With a fast parallel estimation of consistent frames at hand, we strove for an
efficient linear solver that is easy to implement on graphics hardware. To this
extent we tried a conjugate gradient method that naturally lends itself to sparse
matrices and parallel execution. However, to our knowledge by now only simple
diagonal preconditioners have been implemented on graphics hardware [BFGS03]
that result in a high number of iterations for our matrices.

In contrast, sparse direct solvers are particularly suited for our method as they
exploit the fact, that our system matrices are constant. The mayor computational
effort is spent in a precomputation step. During interactive editing they only solve
two triangular systems by backsubstitution, which is far more efficient that itera-
tive methods. Although backsubstitution on a single CPU is very fast, an efficient
parallel implementation is challenging and we are currently not aware of an im-
plementation on graphics hardware. Our implementation therefore uses a CPU
based backsubstitution from the SuperLU package [DGL97] to solve the linear
systems in step 2 and 3 of the reconstruction algorithm. Taken together the back-
substitutions for the two linear systems currently make up nearly 90 percent of the
reconstruction time.

Due to its iterative nature, our algorithm naturally benefits from frame-to-
frame coherence during interactive mesh editing. To exploit frame-to-frame co-
herence to its full extend, our actual implementation differs slightly from Algo-
rithm 3. Instead of fixing the handle transformation in the iterative optimization,
our implementation uses an updated handle transformation in each step. In addi-
tion, the mesh is also rendered in each step to provide an immediate feedback. In
this way the responsiveness of the interactive reconstruction is further increased.
The user can change or correct handle transformation in each step and does not
have to wait until the iteration fully converges.
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RESULTS AND DISCUSSION

12.1 Experimental Results

To demonstrate the quality of the deformations obtained with our method we ap-
plied it to the test cases from [BS08]. The examples in that survey were chosen
to reveal limitations of linear approaches, i.e. existing linear methods show gross
artifacts on at least one of these examples. Our results are shown in Figure 12.1 in
direct comparison to the results of the non-linear Primo method [BPGK06b]. As
it can be seen the deformations are physically plausible and comparable in quality
to those of Primo. For these test cases we set α = 0.

On the cylinder example the two methods show slightly different bending.
While for our method the bending is more smooth the Primo result seems to pre-
serve the boundary frames better. As described in Section 11.2.2, we used soft
constraints to express the orientation and positional constraints in our potential
energy. Increasing or decreasing the influence αc in Equation 11.21 yields an ad-
ditional intuitive way to change deformation behavior. If desired, our method can
adapt a similar behavior to Primo by either increasing the constraint weighting or
by using hard constraints.

Even though our interactive reconstruction algorithm is relatively simple com-
pared to the considerably more complex GPU based multi resolution optimiza-
tions of Primo [BPGK06a] or subspace domain methods like [HSL+06], it is fast
enough to enable interactive editing of large models: Figure 12.2 shows the re-
sult of two single step editings of the crouching dragon model that each took only
about 2 minutes of user time. Please note, that in this editing the region of interest
included the whole mesh with more than 100k triangles.

Figure 12.3 shows a step-by-step deformation of an even larger model with
more than 300k triangles. First, the leg is bent by moving and rotating the handle,
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Figure 12.1: Our results (left) compared to results of Primo[BPGK06b] (right) for
pure translation, a 120◦ bend, a 135◦ twist and a 70◦ bend of different objects
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Figure 12.2: Two mesh editing operations on the crouching dragon model. The
original model is shown on the top in gray.

which is located at one of the Armadillo’s toes, drawn in red. This is repeated with
his left claw, and finally the tip of his nose is used to rotate his head. In every step,
a small handle consisting of only a few vertices is sufficient to achieve intuitive
results. The user time for such a stepwise modeling operation is certainly higher
because the user has to select the region of interest and handles anew after each
step. On the other hand, there are two advantages of such a procedure: First, by se-
lecting only a part of the mesh in each step, the region of interest is comparatively
small allowing for interactive mesh editing of huge models. Second, the modeler
has more control over the deformation as parts outside the region of interest do
not change. On both the Dragon as well as the Armadillo model our method runs
at interactive frame rates as demonstrated in the accompanying video.

The dinosaur model shown in Figure 12.4 is not as complex as the crouching
dragon or the Armadillo. Nevertheless, it is a good example for showing how
details on the surface of the model are preserved. The example on the lower right
demonstrates this rather clearly; the ripples of the dinosaur are preserved even
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Figure 12.3: An editing of the Armadillo model in 3 steps: moving and rotating
one toe, one claw and the tip of his nose.
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Figure 12.4: Various deformations of the dinosaur model. The original model is
the one on the upper left.
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Figure 12.5: A simple deformation obtained by scaling the head of the dinosaur.

under extreme deformations. In addition, unconstrained parts of the model, such
as the tail and the arms, behave in a plausible way. Figure 12.5 shows the result
of a mesh editing operation involving only the scaling of the handle.

As lined out in Section 11.3.5, the computation time for a single iteration is
largely dominated by the triangular solver, i.e. the forward- and backsubstitution
algorithms. The complexity of these algorithms is linear in the number of non-
zero entries in the triangular factors. This in turn seems to be roughly proportional
to the number of vertices in the region of interest. The total number of iterations
needed for convergence is hard to derive analytically. While this number theoret-
ically depends on the shape of the region of interest, mesh connectivity as well as
on the shape of handles, in our experiments convergence was detected after three
to at most seven iterations.

12.2 Discussion

In this part we presented a simple and fast mesh editing algorithm based on a
novel differential representation and associated reconstruction potential. The po-
tential was carefully chosen to enforce consistent and non-degenerated frames
and yet allow for an efficient optimization. Although our potential is non-linear,
we described an efficient reconstruction algorithm that breaks down the high-
dimensional non-linear optimization problem into a sequence of two linear sys-
tems with constant system matrices and a set of independent low-dimensional
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eigenvector computations.
The resulting algorithm is considerably simpler than previous non-linear meth-

ods and yields physically plausible deformations. Moreover, it can be parameter-
ized to emulate physical deformation behavior of different materials. In particu-
lar, it can be tuned to enforce conformal deformations that locally preserve texture
shapes. An additional extra editing mode allows to handle scaling correctly, which
is not possible with physically-plausible methods.

The here proposed method also has some limitations that point to directions
for future work. First, our formulation is completely surface based. It therefore
has no notion of the enclosed volume (if case the surface is closed) and no check
is done for volume preservation or self-intersections. Experimental results show
that the algorithm tends to avoid gross volume changes and self-intersections for
reasonable handle deformations. However, self-intersections can certainly occur
for large or drastic handle transformations. Additional residual terms enforcing
volume preservation and absence of self-intersections can in principle be added
to our potential. However, an efficient optimization of such extended potentials is
challenging. A possible solution are force field constraints as will be described in
Section 13.2.

Like most editing approaches, our method is currently restricted to handle ro-
tations of less than π. This is due to the representation of rotations by quaternions
that do not allow to represent larger rotations. To obtain larger rotations, the de-
formation has therfore to be split into multiple smaller parts. However, rotations
larger than π are rarely necessary in typical editing sessions. Currently, rotations
larger than 2π are only supported by the method of Lipman et al.[LCOGL07].

As demonstrated in the previous section, interactive editing of large models is
possible with our method. Nevertheless, the efficiency could be improved vastly,
if the involved systems of equations were solved completely on graphics hard-
ware in parallel. As described in Section 11.3.5, about 90 percent of the overall
computation time is currently spent for sequential backsubstitution. As the tri-
angular factors are usually very sparse with only a few non-zero entries per row,
parallelization can only give limited speedup. A more promising alternative are
parallel iterative solvers in conjunction with a suitable preconditioning in the pre-
computation phase. However, preliminary experiments with incomplete Cholesky
factorizations did not show noteworthy speedups.

From the theoretical point of view, a more concise statement about the con-
vergence of the simplified algorithm would be desirable. Another open question
is whether and under what conditions the potential E has a unique global mini-
mum: While some terms of the potential are clearly convex, others are definitely
not (most of all the second term, as it is invariant under quaternion flips). Nev-
ertheless, we conjecture that the potential is convex if quaternion constraints are
specified.
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12.3 More recent work
In parallel with our work, an energy for interactive mesh editing was published by
Sorkine and Alexa in [SA07] that bears similarities with the here proposed poten-
tial. In fact, their energy can be regarded a special case of ours, obtained when set-
ting αq = 0 and αqc = 0. In contrast to our coordinates, that explicitly capture the
original surface’s curvatures, their approach only enforces rigid transformations
of the original one ring geometry c̄wv and thus only implicitly encodes surface
curvatures. They also use alternating optimization to decompose the non-linear
optimization problem into a linear and a low-dimensional non-linear part and the
resulting algorithm is similar to our simplified reconstruction. However, the itera-
tion must be initialized e.g. by the Laplacian editing method [SCL+04]. Orienta-
tion constraints and parameterizable material as proposed here are not originally
supported but it should be possible to adapt their algorithm accordingly.

Also in parallel with our work Xu et al. proposed a mesh editing algorithm
in [XZY+07] that is based on the very same potential as that of Sorkine and
Alexa. Similarly, they also used alternating optimization for an efficient mini-
mization. For initialization, they use the subspace gradient method of Huang et
al.[HSL+06]. Xu et al. extended the algorithm to sequences of deforming meshes.

Shi et al.[SZT+07] proposed an interactive mesh deformations technique that
they term “mesh puppetry”. The principle idea of their approach is to combine
traditional skeleton-based editing with recent mesh deformation methods. They
start with the potential of Huang et al. [HSL+06] but add soft constraints, that
e.g. ensure consistency with the skeleton. While they also apply alternating op-
timization, the resulting system matrices after linearization are not constant. To
efficiently optimize this potential, Shi et al. use a complex cascading optimization
algorithm that exploits the relatively small dimensionality of the mesh skeleton.
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In this chapter we present three extensions to the original interactive reconstruc-
tion algorithm. The first extension allows to specify an arbitrary changing “force”
vector at any vertex during editing. We therefore term this new kind of constraint
force field constraint. (The term “force” is slightly incorrect since our approach
is not physically correct. However, the deformation resulting in presence of force
field constraints are again physically plausible. This motivated the name.) We
will see that force field constraints are very versatile. In Section 13.3 we show
how they can be used to fit a template mesh to a point cloud. The third exten-
sion allows to define continuity constraints between two geometrically adjacent
but topologically disconnected patches during mesh editing.
These extensions might be interesting in context of mesh editing but were origi-
nally motivated by another application, namely the rapid visualization of uphol-
stery for early marketing. Before going into the details of the extensions, we first
briefly describe how they can be put to work in this application to give a motiva-
tion.

13.1 Application: Modeling Upholstery for Early Prod-
uct Visualization

As a motivating application for the proposed extensions we consider again indus-
trial upholstery production. In Chapter 7 we assumed that the surface shape of the
upholstered product is known and computed sewing patterns. This assumption is
usually justified for pattern inference where the desired surface has been specified
by the designer. In this chapter we take a different view and consider the visual-
ization of upholstery for which only pattern and upholstery frame are known, but
not the shape of the upholstered product. In fact, this situation occurs rather often
for seats in automotive visualization, e.g. if the shape of the original design proto-
type is property of the designing company. In addition, for early visualization the
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Figure 13.1: A visualization of a seat model retrieved with our method.

design prototype is still subject to frequent changes and might be unavailable by
the time required.

In either case, the modeler is left with the task to visualize the upholstered
product from preliminary pattern shapes, frame and point measurement data or
sketches. The goal of such visualizations is timely product marketing but also
to reveal errors and to support decisions during the design phase. To this extent,
visualization tools must be fast and flexible so that designers can quickly evaluate
different options or modifications.

In this chapter we describe an interactive modeling tool for upholstery, that
allows to incorporate partial or incomplete construction data but yet gives the
modeler enough freedom for rapid modifications. Starting from an approximate
sewing pattern it estimates an initial surface that can be interactively edited. Using
the proposed extensions, this inital estimate can be further refined to comply with
a given upholstery frame or (partial) point measurements, if such data is avail-
able. Figure 13.1 shows the result of an interactive modeling session. A detailed
description of the upholstery editing tool can be found in [SDK09].

As lined out in Chapter 7, the actual shape of the upholstered product is de-
termined in the interaction of frame, cushioning and fabric. An alternative to our
approach is thus a physical simulation of the deformation to infer the final shape.
In fact, the simulation of textiles or cloth has a long tradition in computer graphics.
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(a) (b) (c)

Figure 13.2: (a) sewing pattern with sewing instructions (b) upholstery frame (c)
fixations curves on the upholstery frame.

However, for the above described visualization application an accurate simulation
is less suited for two reasons: First, a simulation of the interaction is involved and
requires precise knowledge of patters, frame, and material parameters. Second,
small design modifications like adding a fancy seam must be actually modelled
and implemented in a physically correct manner. This is far more complex than
directly editing the surface. For our interactive modeling tool we do not strive
for physical accuracy. Nevertheless the results of the reconstruction should be
plausible and mimic natural effects like folds or wrinkles.

13.1.1 Basic Reconstruction and Editing
We assume that for a piece of upholstered furniture the pattern (or at least an ap-
proximation) and (optionally) an upholstery frame are given (see Figure 13.2).
The pattern is given as a set of closed planar curves that define the outlines of
patches. Individual patches are further annotated with sewing instructions or
seams illustrated in Figure 13.2a. For fixed seams, we assume that corresponding
fixation curves on the upholstery frame are provided. Figure 13.2c shows an ex-
ample of a set of fixation curves on a frame. Given this data the problem consists
in finding a visibly plausible approximation of the fabric’s surface.

For simplicity, we neglect cushioning effects of the upholstery frame as well
as continuity at seams for a moment. Our idea to derive a first approximation of
the shape is to simulate an elastic sheet cut from the sewing pattern that adheres to
the sewing and fixations. Thinking of this sheet as an elastic shell, a first approxi-
mation of the fabrics surface is obtained as the configuration of minimal potential
energy subject to the constraints defined by sewing and fixation curves. To allow
interactive modifications, we resort to the potential proposed in the last chapter.

By using the shell metaphor, the sewing pattern and fixation curves can be
regarded as an editable representation for the upholstered shape. In our system, the
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Figure 13.3: The user interface of the interactive upholstery modeling tool.

user can also interactively define additional curves within the pattern. These are
automatically mapped onto the reconstructed surface and become fixation curves.
Manipulating the control points of these fixations constitutes an intuitive way to
make additional interactive changes to the shape of the upholstery.

To reconstruct upholstery with the mesh reconstruction algorithm, we first tri-
angulate the interior of each sewing pattern curve using a fast Delaunay triangu-
lator [She96]. Care is taken, that curve segments associated by seams are trian-
gulated consistently. Associated boundary vertex pairs are stored in a map. A
further map keeps track of vertices associated with fixation curves. From the pla-
nar triangulations of all patches the quaternion-based coordinates are computed.
The mesh reconstruction algorithm will thus minimize bending in the surface as
much as possible. In the absence of further constraints the patches will therefore
remain flat.

Fixation curves can now be realized in a straight forward manner by adding
according vertices to the set of position constrained vertices Hx and setting their
position to the corresponding point on the fixation curve. Sewing constraints be-
tween patches, however, require a slight extension of the reconstruction potential:
For each pair of vertices (v, w) associated by a seam, we add the quadratic term

‖xv − xw‖2

to the original constraint energy Econst. In the reconstruction algorithm, this mod-
ification results in a few additional constant non-zero entries in the linear system
solved in step 3 of the simplified algorithm.

In our implementation the user interface is divided into two windows (see
Figure 13.3). The pattern window shows patterns laid-out in the plane with seams

174



13.1. APPLICATION: MODELING UPHOLSTERY FOR EARLY PRODUCT VISUALIZATION

Figure 13.4: Adding fancy seams. Left: additional handle curves in the pattern.
Right: corresponding surface handle curves.

indicated by lines. Pattern curves can be modified and rearranged. Moreover,
seams between patches can be defined. In the 3D window the reconstructed model
and the fixation curves C are shown. In both windows, the user interacts with the
reconstructed model only by adding or changing curves represented as B-splines.
As a guidance when adding fixation curves, it is possible to display a polygon
model of the upholstery frame. The user interface and its functions are exemplified
in the accompanying video.

Modifying a fixation curve in the 3D window only affects the position con-
straints of the associated vertices. As a result, the shape of the reconstructed
surface updates interactively at about 10 − 15 fps. Modifications on a pattern
curve in the pattern window results in instant re-triangulation of the patches and
re-initialization of the mesh optimizations. Although this is computationally more
expensive than changes of fixation curves, patch boundaries can be edited at in-
teractive frame rates for moderate mesh resolutions.

Although results of the basic reconstruction algorithm are plausible, the infor-
mation encoded by fixation curves are rather sparse and there might be the need
to add surface details in some parts of the upholstered object. To provide addi-
tional flexibility, we therefore allow the user to draw addition handle curves into
the interior of the planar pattern patches after a surface has been reconstructed. In
contrast to patch boundaries these handle curves can be open.

Handle curves are triangulated into the respective patches and the correspond-
ing edges in the reconstructed surface are collected into a polygon. We then add
an additional fixation seam mapping the handle curve on the corresponding sur-
face polygon. The user can then manipulate both curves interactively. In most
cases it is convenient to approximate the surface polygon by a spline for editing.

Figure 13.4 shows an important application of handle curves. Fancy seams are
not actually seams between patches, but are of purely decorative nature. Nonethe-
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less these seams have a great impact on the object’s appearance. Using handle
curves, a fancy seam can be easily realized by adding triples of parallel curves as
shown in the figure and translating the 3D handle curve in the middle.

13.2 Force Field Constraints
The basic reconstruction algorithm relies only on the sewing pattern and fixation
curves. The actual shape of the upholstery frame has not been considered so far.
However, frame and cushioning certainly have significant influence on the actual
shape of upholstered furniture. A physically accurate simulation of the cushion-
ing not only requires an accurate shell model but also a solid body simulation
of the frame deformation. Moreover, collision and friction between fabric and
frame have to be respected. Such a simulation is clearly not feasible in interactive
applications and assumes precise knowledge of material parameters.

As argued in the introduction, physical accuracy is of minor concern in the
envisaged application. We therefore propose a far simpler approach based on a
force field: From the upholstery frame geometry a force field f : R3 → R3 is
computed, that assign each point on the inside of the frame an outward pointing
force vector. For details on the construction of the force field we refer to [SDK09].
For cushioning simulation we first construct an initial surface using the basic re-
construction algorithm. Then a force to each vertex is applied that is equivalent
to the value of f at its location. In this way vertices inside the cushion are pushed
outwards, while no force is applied to vertices on the outside.

To integrate the force field f into the mesh optimization without compromising
efficiency, we propose a simple extension that seamlessly integrates with the sim-
plified reconstruction algorithm. In analogy to the physical elastic shell model,
we interpret the derivative of the reconstruction energy in Equation 11.21 with
respect to coordinates x as internal restoring forces. In the presence of external
forces, at each point of the surface internal and external forces must sum to zero
in the equilibrium configuration, i.e.

∂E

∂x
= −f(x)

If Eforcefield denotes a potential energy with

∂Eforcefield
∂x

= f(x) (13.1)

an equilibrium configuration is equivalent to a local extremum of the sum of these
potentials E + Eforcefield.

176



13.3. FITTING TEMPLATE SURFACES TO POINT MEASUREMENTS

For simplicity, we strive for a potential satisfying Equation 13.1 that can be
efficiently minimized with minor modifications of the reconstruction algorithm.
To this extent, we first assume that forces act only at vertices. If a force fv = f(xv)
should be imposed to a vertex v located at xv, we compute in each iteration a ghost
position

x′v = xv +
1

2
fv .

We then add a force field energy to the potential that is very similar to the position
constraints term of the constraint energy 11.16.

Eforcefield =
∑
v∈R

‖xv − x′v‖2

. In the optimization, we then assume in step 3 of Algorithm 3 that the derivative
of the force field ∂f/∂xv is small and treat fv as constant. The gradient of the
force field energy is then given as

∂Eforcefield
∂xv

= 2(xv − x′v) = fv

, i.e. it satisfies Equation 13.1. With these simplifying assumptions, it is possible
to handle force field constraints exactly like positional constraints in the algo-
rithm. The only difference is that ghost positions x′v have to be updated in each
iteration. The system matrix of the linear systems remains constant and thus no
refactorization is required.

Using the above described force field constraints, the force field f can be triv-
ially integrated with the reconstruction by evaluating the field at all vertex posi-
tions in each iteration. Concerning the cushioning simulation, it turns out, that
results can be improved by applying only the fraction of the force f that is or-
thogonal to the surface. Furthermore, we want the cushioning to pull the surface
only outwards, i.e. in the direction of its normal. We thus use the following force
assignment

fv = max (0, 〈nv|f(xv)〉) nv

where nv denotes the vertex normal at v obtained by averaging adjacent face nor-
mals. The effect of the cushioning simulation based on force field constraints is
shown in Figure 13.5.

13.3 Fitting Template Surfaces to Point Measure-
ments

Using force field constraints proposed in the last section, it is also possible to
fit a given surface template to an unstructured point cloud. This is a problem
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Figure 13.5: Left: result of the basic reconstruction without cushioning simula-
tion. Right: same object with cushioning simulation.

Figure 13.6: Point cloud fitting: Left: initialized mesh with closest pairs. Right:
results after fitting.

that arises in numerous applications. Typical examples are consistent meshing of
human body scans [ACP03] or registration of time-varying point sampled surfaces
[dAST+08]. In the context of upholstery reconstruction, this technique will allow
us to further refine an initial reconstruction based on sewing pattern and fixation
curves by fitting it to 3D point measurements of the actual seat (if available). Such
measurements can be obtained e.g. from range scans. However, they are usually
incomplete due to scanning restrictions (some parts might not be accessible to
the scanner) or show holes. Fitting a template mesh is beneficial in this situation
as it fills holes and missing parts by extrapolating the template’s shape into these
regions. Moreover, the reconstructed surface can inherit desirable mesh properties
from the template such as triangle quality or texture coordinates.

Figure 13.6a shows the output of the basic reconstruction. To fit this initial
surface to a sparse point set Ŝ ⊂ R3 we use an ICP-like approach. The original
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Figure 13.7: Left: results with cushioning simulation but no seam continuity.
Right: result after selecting G1 smoothness for two seams at the top of the side
parts.

iterative closest point (ICP) algorithm [BM92] searches a single rigid transforma-
tion that aligns two point sets so that their distance is minimized. It iterates be-
tween finding pairs of closest points in the two point sets and minimizing the dis-
tances between these point pairs until it eventually converges. Generalizations of
the ICP algorithm to non-rigid deformations have been used earlier by Marschner
et al. [MGR00], Allen et al. [ACP03], Amberg et al. [ARV07] and Stoll et al.
[SZR+06] which mostly differ in the employed deformation model. We will now
show, how the generalized ICP approach can be combined with our non-linear
deformation model without compromising its performance.

Similarly to the ICP algorithm, we start by computing for every vertex v po-
sitioned at xv its nearest neighbor pv ∈ Ŝ using a fast kd-tree indexing structure.
The distance ‖xv−pv‖ is evaluated and all vertices whose values are below a cer-
tain threshold are marked. This is illustrated in Figure 13.6 where pairs of marked
vertices and closest point samples are connected by red lines.

To minimize the distance between vertices and selected samples sv we use the
force field constraint mechanism: To each marked vertex v we apply the force

fv = pv − xv

pointing towards the point sample pv. For all unmarked vertices we set fv = 0.
Finally, a mesh optimization step is computed. Closest point search and mesh
optimization are iterated until the surface converges.

Alternatively, it is possible to use positional constraints to minimize the dis-
tance between closest point pairs. However, as the set of vertices associated with
some closest point pv can change significantly in the iteration, this would require
a refactorization of the matrix in step 3 of the reconstruction algorithm.
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Contrary to the original ICP our method does not solve for a single rigid body
transformation but a non-rigid deformation of the surface. The resulting mesh
approximates the point cloud while still minimizing shape distortion. The results
of the fitting algorithm is shown in Figure 13.6b.

13.4 Geometric Continuity
So far, inter patch seams constrain only the positions of adjacent patches, i.e. the
resulting surface is C0 continuous at such seams. In some cases, however, higher
orders of smoothness are desirable. In our systems, the user can therefore choose
C1 or G1 smoothness for individual seams between patches.

C1 continuity at a seam can be imposed analogously to C0 continuity: For
each pair of vertices (v, w) connected by a seam, we add the quadratic term

‖qv − qw‖2

to the original constraint energy Econst. Again, only minor modification of step 2
of the reconstruction algorithm are necessary. These result only in a few additional
constant non-zero entries in the matrix.

Let us consider a pair of vertices (v, w) associated by a seam with C1 conti-
nuity. As a seam connects two otherwise disconnected mesh components, there is
originally no edge between these vertices. The above described construction can
now be interpreted as inserting a virtual edge (v, w) with zero length (i.e. c̄wv = 0)
and identical frame transformation (q̄wv = (1, 0, 0, 0)t).

In upholstery seams are often placed to reduce stretch of the fabric. This is
most effective if discontinuities in the texture or fabric pattern are allowed at the
seam, i.e. discontinuous tangent vectors at the seam. Nevertheless, the surface
shape should be smooth. In other words, the surface should be G1 continuous at
the seam. To allow this weaker form of continuity, we have to enforce identical
normal vectors at corresponding vertices along the seam. More precisely, for
corresponding vertices v and w with frames qv,qw and original vertex normals
n̄v, n̄w we require

qv(1, n̄v)
tq−1
v = qw(1, n̄w)tq−1

w (13.2)

i.e. we ensure that the original normals coincide after the deformation has been
applied.

Unfortunately, equation 13.2 is nonlinear in the quaternion components. We
therefore resort to an approximation to allow an efficient optimization. Similar
to C1 continuous seams, virtual edges are added with zero edge length. For ge-
ometric continuity, however, the frame transformation q̄wv is not set to identity.
Instead, we introduce it as a new auxiliary variable. Consequently we drop the
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bar and write q̂wv instead of q̄wv to distinguish it from frame transformation of or-
dinary edges. Nevertheless, in the optimization we treat the virtual edge just like
ordinary edges. In particular, the virtual (half)edge (v, w) will add

‖qvq̂wv − qw‖2

to the first term of the potential 11.21. We chose q̂wv in such a way that the condi-
tion 13.2 is satisfied, when qw is replaced by qvq̂

w
v . In general, there is more than

one valid choice. We use quaternion slerps [Sho85] to find the minimal rotation
that aligns the frame normals while minimally perturbing tangential vectors.

Although this choice makes q̂wv a function of qv and qw, we can again use
alternating optimizing to minimize the potential with respect to q̂wv for all edges
separately from the remaining unknowns. In fact, the optimal slerps can be deter-
mined for all virtual edges in parallel after step 2b of the simplified reconstruction
algorithm 3. By treating virtual edges just like ordinary edges, no further changes
to the algorithm are required. Figure 13.7 shows a results of the reconstruction
with G1 continuous seams.
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Part IV

Visibility Driven Deformation for
Panorama Maps
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CHAPTER 14

INTRODUCTION

Besides their various and wide spread uses in modeling and geometry processing,
deformation of solids and surfaces have also put to work in visualization for illus-
trative purposes. In fact, deformation techniques are a well-known and frequently
used technique in the toolbox of visualization. Introduced to visualization by Barr
[Bar84a], space deformation have subsequently been applied to various visualiza-
tion problems. Examples include survey images showing objects from multiple
sides in a single continuous view [Sin02], visualization of relativistic effects or
charged particle movements [Grö95], cartograms [GN04] or illustrative volume
visualization [CSC07].

In this part of the thesis we concentrate on a further visualization problem: the
automatic generation of panorama maps. Panorama maps sometimes also called
panoramic, pictorial or illustrated maps are a fascinating blend between tradi-
tional landscape painting and geographic map (see Figure 14.1). Like landscape
paintings they contain depictions of details shown from a familiar, earth bound
perspective. At the same time, prominent geographic features are visible and not
occluded. Panorama’s therefore convey spatial survey knowledge much like geo-
graphic maps.

We will see, that in the generation of panorama maps, deformation techniques
based on suitable potentials can be put to work: Starting from the original ge-
ometry of the terrain as well as a user specified viewpoint, we apply a carefully
chosen deformation that ensures visibility of all important features from the given
viewpoint. The deformation itself is again found by minimizing an appropriate
potential. In contrast to potentials considered so far in this thesis, this potential
not only measures shape deformation but also visibility of features. We therefore
call the resulting deformation visibility driven deformation.

Moreover, for panoramic map design, we will also revisit the way, shape de-
formation is quantified. While the deformation potential developed in Part III is
in principle applicable, for panoramic map design it is beneficial to use potentials
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14.1. PANORAMA MAPS

that given the designer or cartographer explicit access to differential properties of
the surface such as mean curvature, angles or surface area while an interactive
optimization is of minor importance.

After giving a short introduction to the art of panorama drawing and review-
ing related work in visualization in the remainder of this chapter, Chapter 15
will present suitable potentials for visibility and shape preservation for panoramic
maps design. An automatic design method for panoramas based on these poten-
tials is then described in Chapter 16. That chapter will also give experimental
results and a discussion.

14.1 Panorama Maps

Traditionally, panorama maps are manually and artfully painted to ensure that all
important features are well visible at the same time. As this is in general not
possible with a correct perspective projection, the artist has to rearrange the land-
scape or, equivalently, modify the projection, e.g. by seamlessly blending between
several perspectives as demonstrated in Figure 14.2. However, at the same time,
the artist takes care that the depicted landscape still remains recognizable to the
beholder. Heinrich Berann, an Austrian cartographer who is deemed the father
of the modern panorama map archived a particular high perfection in his art: In
his panoramas blending of perspectives or modifications of the original landscape,
which are is some cases quite drastic, are hardly noticeable even under close in-
spection.

Panorama maps combine the advantages of two types of depictions: Like ge-
ographic maps, they provide a good overview and avoid occlusion in regions of
interest. For example in ski maps, such regions of interest are ski slopes, lifts or
restaurants which are drawn at a multitude of their actual scale. If a feature is oc-
cluded, the artist carefully rearranges terrain to disclose it. At the same time they
inherit the familiar perspective of landscape images draw from earth bound view
point. In ski maps, the observer usually assumes the perspective of a person within
the resort. Because of this property panoramas are thought to be less abstract and
easier to visualize than ordinary maps [Pat00] and the visitor can easily orient
a panorama by matching prominent landmarks as for example mountain vistas.
This assumption is also supported by recent results in the field of human computer
interaction: In a user study conducted by Chittaro and Burigat [CB05] compar-
ing traditional 2D map depiction to maps augmented by photographs taken from
a pedestrian perspective it was found that the latter representation clearly helps
people to orient themselves.

Due to these properties, panoramas have many popular applications ranging
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Figure 14.2: a) A panorama of the Zugspitze ski resort drawn by H. Berann. (un-
der copyright by Panorama Studio Vielkind) b) A perspective image of the same
region. While the foreground matches quite well, differences become apparent
in the background (see closeups in c and d). e) the panorama perspective for the
enlarged region rather matches a perspective image taken from a far higher view
point.
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from city and topographic visualizations to navigation aids in national parks and
ski resorts, where they are handed out to visitors. An impression of the versatility
of panoramic maps can be obtained by considering the extensive work of Heinrich
Berann [wwwa] who alone has drawn over 500 panoramas or the archives of the
popular panorama studio Vielkind [wwwc].

14.2 Contributions

As lined out in the previous section, the design of panoramic maps is up to today
still a manual process. Combining the often contradictory view points into a single
image requires not only great skill and art, but also tedious and painstaking work.
In this process the designer must move, enlarge and rearrange features to ensure
their visibility while keeping the landscape recognizable.

This part of the thesis proposes an automatized design method for panoramic
maps. It starts from conventional elevation data and aerial images and computes
images from arbitrary viewpoints that maximize the visibility of a user specified
set of features while minimizing deformation of shapes. Compared to traditional
panorama design, our method greatly simplifies creation of panorama maps: The
user only provides an initial view point as well as regions of interest. Occlusions
of features are then resolved automatically and regions of interest are scaled to
enhance visibility (see Figure 14.3).

At the heart of the method is a set of novel potentials measuring visibility and
occlusion of features. Both potentials are smooth by design and can be minimized
by standard optimization methods. While evaluation of the visibility potential is
linear in surface complexity, the occlusion potential is quadratic as in theory an
occlusion relation can persist between any two points on the surface. To speed up
evaluation of occlusions and to make optimization feasible, we propose a custom
tailored acceleration scheme.

To control shape deformation, we also generalize the metric deformation po-
tential from Part II to maps between two surfaces. This potential is complemented
with an established curvature potential to quantify shape deformation. While the
proposed method is automatic, the user can tune the influence of individual poten-
tials to influence the final result. This tuning is very intuitive as all potentials are
directly related to geometric quantities as angle, lengths or curvature.

Besides applications as touristic or ski maps, we also see potential application
for our algorithm in mobile navigation systems: Since our method is fully auto-
matic it is possible to provide drivers or hikers with panoramic maps customized
to their current location, route, and personal preference, showing features that
would be occluded in an ordinary perspective image. Last but not least, together
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Figure 14.3: A ski map of the glacier area in the Sölden ski resort (Austria) com-
puted with our method (slopes in blue and red, lifts in black). On the left an aerial
image and an ordinary rendering are shown for comparison. Please note, that
slopes on the Rettenbach glacier (marked in yellow) are completely occluded on
the undeformed surface shown in the middle.

with the growing amount and higher availability of digital terrain and city data
we recognize an increasing request for consumer cartographic tools. Even today,
most GPS systems come with a desktop software, that allows to visualize e.g. bike
or ski trips. With the here proposed automatic design method the user will be able
to create a personalized panorama based on his own data with a few mouse clicks.

Apart from the projection there are many more aspects that make a panoramic
map different from an ordinary photo as e.g. draw style, lighting or labeling. In
this work, we concentrate on panoramic projections and leave other aspect to fu-
ture research. Our method therefore results in maps that are photo realistic except
for the projection.

14.3 Previous Work
As an alternative to the standard perspective pinhole camera numerous non-standard
projection models have been proposed in the past. Although many of these are in
principle suitable to model the effects observed in panoramas, their original inten-
tion was to give an artist a maximum of control over the projection. The problem
of proper feature arrangement and minimal occlusion is still left to the designer.
In contrast, our goal lies in a panorama design that automates these tasks. In the
following we will briefly discuss the most important approaches to non-standard
perspectives:

For artistic and overview renderings composition or blending of multiple views
was proposed by Agrawala et al. [AZM00] and Singh [Sin02]. In the latter ap-
proach the matrices of several exploratory cameras are combined into a single
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camera transformation, which can also be regarded as a deformation of the sur-
rounding space. A general model for such space deformation was introduced by
[Bar84b] and [SP86] and later applied in the context of non-linear cameras by
[SGS05] and [CBGS05]. This approach was also recently pursued by Brosz et al.
in [BSSS07] where a space deformation is defined via a set of control surfaces.
While space deformations can be evaluated interactively [BNG06], defining a de-
formation that maximizes feature visibility requires tedious manual work.

Other generalizations of the standard pinhole camera model include projec-
tions onto non-planar surfaces as e.g. proposed by Löffelmann [LG96], Levene
[Lev98] or Inakage [Ina91]. Yonggao et al. [YCB05] extended this approach with
3D lenses that are manually placed in the scene. The generalized linear cameras
model by Yu and McMillan [YM04] unifies many of the above mentioned camera
models by allowing for arbitrary projection surfaces and directions. Even more
general is the concept of non-linear ray tracing as introduced by Gröller [Grö95]
where lines of sight are traced through a predefined force field by numeric inte-
gration. In the same spirit the occlusion camera model [MPS05] bends rays of
sight at silhouettes to reduce disocclusion errors in image based rendering. Again,
these approaches can in principle be applied to produce a panorama but they de-
mand significant user intervention. The modification of the projection plane or the
specification of force field that maximizes visibility is clearly counter intuitive and
requires lengthy and painstaking manual adjustments. The same is certainly true
for 3D lenses: The choice, placement and orientation of a system of lenses that
optimizes feature visibility and occlusion is clearly not trivial and also requires
lengthy manual intervention.

Apart from these general non-standard camera models, only a few approaches
address the problem of computer assisted panoramic map design: In [Pre02] Pre-
moze proposes a interactive height field editor to perform vertical scaling and
rotations in the parameter plane. A similar approach is taken by Takahasi et al.
[TON+02] who suggest an automatic segmentation algorithm. The user can then
manually rotate or move the extracted segments. The manipulated segments are
subsequently merged using a mesh smoothing algorithm. In [FSWE07] Falk et
al. use non-linear ray tracing to render panoramic maps. They define a force field
that bends rays towards the terrain to reduce the overall degree of occlusion. How-
ever, the algorithm does not account for features and the user must manually edit
the 3D force field to rearrange or disclose occluded features. Recently and paral-
lel to our work, Grabler et al. [GASP08] developed an approach to generate city
tourist maps, that automatically infers buildings and features of interest using web
queries. Buildings are individually deformed and rearranged on a street map. The
underlying terrain is assumed to be planar and is not altered.

The art of selecting the relevant information and its appropriate representa-
tion in a map drawn for a certain purpose and at a certain scale is referred to
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by cartographers as “generalization” [Mac95, HGM02]. The generalization tech-
niques used in the manual design are numerous and up to today no comprehensive
classification exists. Nevertheless, efforts have been made to automatize certain
well-established techniques that adapt level of detail or improve readability of au-
tomatically generated maps. E.g. in [Ses00], Sester proposes a least-squares ap-
proach to simplification of polygonal 2D building outlines. Simplification is one
of the most common generalization techniques, which reduces visual clutter by
omitting unnecessary details. The approach is also extended to displacement, an-
other well-known generalization technique, that rearranges map entities to widen
important streets so that they appear more clearly and well visible. Agrawala and
Stolte develop in [AS01] a set of generalization techniques specifically targeted
to 2D route map design. Their approach simplifies routes to sets of straight line
segments that intersect at turning points. Furthermore, long route segments are
scaled in length to provide a better overview. Closer related to our work is the
generalization technique described by Takahasi et al. [TYSN06] as it operates on
a 3D panorama. In their approach the height of hills and mountains is adjusted to
reduce occlusion of upcoming parts of the route in car navigation systems. In con-
trast to their method, the approach presented here allows for more general surface
deformations than vertical terrain scaling.
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CHAPTER 15

POTENTIALS FOR PANORAMA MAPS

15.1 Variational Approach

15.1.1 Why Surface Deformation ? — Techniques in Manual
Design

Comparing a panoramic map to an ordinary photo, the most striking difference
is definitely the non-standard projection: Depending on his intention the artist
changes size, orientation and visibility of certain terrain features at will. The
techniques of Heinrich Berann concerning the projection have been studied by the
American cartographer Tom Patterson, who identified three principle techniques
[Pat00]:

Airplane Perspective Starting from a flat, earth bound perspective, Berann
tilted terrain in the foreground towards the observer so that the surface nor-
mal points towards the observer (see Figure 15.1). In this way objects in the
front are drawn from a steep angle almost like in an ordinary map, while
far away objects are still shown from a flat angle and appear at the horizon
which results in an airplane-like perspective. The map like perspective in
the foreground usually already resolves some occlusions.

Vertical exaggeration A vertical exaggeration and resizing is applied se-
lectively to features as e.g. certain mountain peaks to make them appear
larger or more impressive.

Rearrangement While airplane perspective and exaggeration can resolve
some occlusion issues, they are by far not sufficient to ensure the visibil-
ity of all features. Berann therefore rearranged whole parts of the terrain
e.g. moving or rotating geographic features as like mountain peaks or even
whole mountain ranges.
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Figure 15.1: An airplane-like perspective can be obtained by tilting the terrain in
the foreground towards the observer.

To model non-standard projection several concepts have been proposed in the
past, ranging from non-linear ray tracing and special camera models to space
and surface deformation. While in theory any of the above techniques is flexible
enough to render images in the style of Berann we decided to base our approach
on surface deformation as the above described techniques suggest that in manual
design the cartographer mentally changes the terrain itself rather than changing
his perspective. While all of the techniques map easily to deformations, it is less
obvious how to reproduce their effects using other projection models. For exam-
ple, a geographic rearrangement can be easily described as surface deformation.
In contrast, the specification of an appropriate force field to guide rays of sight
in non-linear ray tracing or the design of a 3D lens system is not straightfor-
ward. We therefore think that surface deformation correspond most closely to
the way panoramas are created and perceived. This conceptual proximity of sur-
face deformation and manual mapping techniques will facilitate the formulation
of appropriate deformation measures in the next section.

15.1.2 Problem Statement

Beside the depicted landscape the most discriminating aspects of a panoramic map
are the observer’s position and orientation. Usually these parameters are carefully
chosen by the artist to achieve a particular effect. Ski maps, for example, are usu-
ally drawn from the valley looking into the opposite direction of the slopes, while
for a tourist maps we might want to have some important or noteworthy building
in the center. Furthermore, panoramic maps uncover and emphasize certain fea-
tures in the depicted area. In ski maps, for example, slopes and lifts appear larger
and clearly visible to facilitate navigation.

As the choice of the observer’s position as well as the set of features is clearly
subjective, we leave their specification to the user and assume that both are given
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Figure 15.2: Overview of our approach: Starting from an initial terrain geometry
S̄ and user specified features and viewpoint, our method computes a deformed
surface geometry S. When rendering this deformed geometry from the specified
viewpoint features become visible. For the final panorama we use a high resolu-
tion aerial image as texture.

as inputs to our algorithm. To assist the user during the specification process
and to avoid a tiring selection of features, we offer the possibility to create an
appropriate feature set from a query to a geographic database that stores semantic
entities like roads, buildings, ski slopes, or lifts.

The problem that we tackle in this chapter is illustrated in Figure 15.2 and
can be informally put as follows: Starting with some terrain surface S̄ and given a
point of view, line of sight, as well as a set of features on the surface, we search for
a deformed surface S so that all features are unobstructed and well visible, while S
still resembles S̄. To generate the final panorama, we render the deformed surface
S using a high resolution aerial image as texture from the specified viewpoint.

15.1.3 Variational Formulation
We start with a formalization of the above informal problem statement: In the
following we make our usual assumption that the undeformed surface S̄ is param-
eterized by a map x̄ over a parameter domain ω ⊂ R2. Since terrain data is usually
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Figure 15.3: The notation used in the following: The original surface S̄ is de-
formed by a map x̃ into a surface S that is mapped onto the screen σ using the
projection π. Both original and deformed surface are moreover parameterized
over a common planar domain ω.

given as a 2.5D height field, the domain ω and a corresponding parameterization
x̄ can be obtained e.g. by simple projection. (If the surface is textured the texture
map is another possible choice for x̄.)

We further assume that features are specified as a map f : S̄ → [0, 1] that
assigns each point on the undeformed surface a feature value, where a value of
one corresponds to most important feature points and zero to non-feature points.
Feature values in between these two extremes correspond to the relative impor-
tance of the feature. The given observer parameters define a standard camera
projection π that maps world coordinates onto the screen σ. In this chapter, we
will use an orthographic camera for the sake of simplicity but a generalization
to perspective projections is not difficult. Figure 15.3 gives an overview of our
notation. As shown in the figure, the deformed surface S is again defined via a
surface deformation x̃. By simple concatenation of x̄ and x̃ we further obtain a
parameterization x for S that will be handy in the following.

With the above, the problem of panoramic map design is reduced to the choice
of a suitable deformation x̃. To find such a deformation we take a variational
approach: In the next section we first define appropriate measures that formalize
the notions of “resemblance” and “visibility” in the informal problem statement
given in the last section. The deformation x̃ can then be determined as extremal
function of these measures.

Panoramic maps as drawn by Heinrich Berann are doubtlessly pieces of art.
As such their quality is purely subjective and impossible to quantify. However, as
with ordinary maps, panoramas are also designed to provide information on the
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existence and location of certain features. In contrast to ordinary maps, that are
naturally free of occlusion, silhouettes and occlusions are – just like in landscape
images — desirable stylistic elements in panoramic maps. However, while occlu-
sion is desired to some extent, features should obviously be not occluded and well
visible. One reasonable measure of a panorama’s quality is therefore the visibility
of important features.

A second quality of panoramas is shape preservation: Although not drawn
to scale, panoramic maps do not exhibit more terrain deformation than neces-
sary. When looking at Berann’s panoramas shape deformation is hardly notice-
able. This is due to the fact, that shapes appear locally intact everywhere. Only
when comparing local shapes across the panorama relative differences in size,
position and orientation are noticeable. By preservation of local shape the map
designer ensures that the deformed terrain remains recognizable to the user. A
second measure of panorama quality is therefore the extent to which local shapes
are preserved. In the following sections we will derive formal measures for shape
preservation and for feature visibility.

15.2 Deformation Potential

As argued above, in panorama maps it is primarily local shape that is to be pre-
served. According to the elastic shell model (see Chapter 3.2.1) on surfaces there
are two types of local shape deformation: membrane strain and bending strain.
For geographic maps in general and panorama maps in particular, small membrane
strain, i.e. tangential shape deformation is of special importance as it directly in-
fluence the extent to which areas, angles or length are distorted in the map and
thus the usability of the map. While bending strain is no issue in tradition geo-
graphic maps, it can deteriorate the recognizability of panoramas as demonstrated
in Figure 15.4.

To measure both types of deformation two different potentials have been dis-
cussed so far in this thesis: The physical elastic shell model (Chapter 3.1) and the
potential for reconstruction from quaternion-based coordinates (Chapter 11.2.2)
account for both membrane and bending strain. They can thus be directly ap-
plied to the setting of panorama maps. However, there are disadvantages: The
elastic shell potential, while physically correct, requires the specification of an
elasticity tensor and it is not obvious, how to choose these parameters in context
of panorama maps: For a cartographer, it makes no sense to create a map with
e.g. rubber or textile like deformation behaviour. He rather likes to know and
control how much geometric quantities like length, area or angles are distorted.
The elastic shell model does not give direct access to these properties. The same
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(a) Original (b) Reference

(c) High membrane strain (d) High bending strain

Figure 15.4: The effect of membrane and bending strain in a panorama: a) the
original view from the user specified view point. Many features (slopes and lifts)
lie in a occluded valley and are invisible b) a reference panorama computed with
our method. Note, how slopes in the neighbouring valley become visible. c) The
result of our method if more membrane strain is allowed in favor of better slope
visibility. While features increase in size, they appear highly distorted so that their
are hard to recognize. d) A result with bending strain increased in favor for better
feature visibility. In particular silhouettes become unrecognizable. (Note: For this
result our method did not succeed in resolving all occlusions. See discussion in
Section 16.5.2)
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holds, albeit in an alleviated sense, for the quaternion-based reconstruction poten-
tial which is designed to give access to frame orientations and vertex positions.
While for panorama design access to these properties would enable easy manual
intervention, our emphasis lies on a mostly automatized design, where the user
interacts at most by allowing or penalizing deformation of geographic structures.
At the same time, the interactivity of the quaternion-based potential is of minor
importance in context of panorama design.

For these reasons we devise a new shape potential for panoramic maps that
gives direct access to angle, length, area and curvature deformation. It is com-
posed of two sub potentials one of which is based on the surface parameterization
potential from Part II. The choice of both sub potentials is discussed in the fol-
lowing sections.

The shape potential derived in the following can be regarded as a special case
of the shape matching energy proposed by Litke et al. [LDRS05]. But in contrast
to Litke et al. who optimize the potential to find a matching between the planar
parameter domains of two fixed surfaces, we vary the potential with respect to the
deformed surface S. Moreover, our approach bears great similarity with the re-
cently proposed constrained-based shape deformation approach of Eigensatz and
Pauly [EP09, ESP08]. They present a variational framework that, similar to our
method, gives the user direct access to curvature and metric properties for shape
editing. While in our application the deformation is driven by feature visibility,
their user interface allows to specify those properties manually either point wise or
as quantities integrated along curves or over surfaces. Their metric energy can be
regarded as a special case of the membrane potential described in Section 15.2.1.

15.2.1 Membrane Strain Potential
Just as with ordinary maps, deformation of geographic entities depicted in the
panorama map should be as small as possible to give the observer a realistic im-
pression of the shown area. Put aside the unavoidable deformation caused by
the perspective, shape deformation is to a large extent due to deformation of the
texture, i.e. membrane strain. It is therefore very important to control tangential
shape deformations in addition to curvature changes. If for example two roads on
the surface meet at a right angle in the original surface, we would like to preserve
that angle to keep the crossroad easily recognizable. Moreover, other geometric
quantities as lengths and areas of shapes in the texture should also be preserved
whenever possible.

A potential that captures distortion of such geometric quantities has been de-
rived in Section 5.4 for surface parameterizations. However, intended to measure
deformations between a surface and a planar texture domain, that potential is con-
veniently expressed in terms of the metric tensor g̃. In order to apply it to our
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setting, we need to generalize the metric tensor g̃ to maps between two curved
surfaces S̄ and S. We can then substitute this generalization in the definition of
the potential from Section 5.4 to obtain a suitable membrane potential.

To find this generalization we first turn back to the case of a parameterization
x over a planar domain ω ⊂ R2. From its metric tensor g, we define in each point
u ∈ ω an inner product on the tangent space Tuω (which is isomorphic to ω) in
the following way: For points v,w ∈ Tuω we set

〈v,w〉x := 〈∇xv,∇xw〉 = xi,αvαxi,βwβ = vαgαβwβ (15.1)

The last expression appeared already in Equation 2.1 from Section 2.1.1 where
it was used to compute length, angles and areas of shapes on the surface S via
the parameterization x. Measuring length, angle and area using the inner product
〈.|.〉x is thus equivalent to measuring these properties after mapping the shapes
onto the surface S. The metric tensor can now also be characterized as the unique
positive definite symmetric matrix g associated with the inner product 〈.|.〉x that
satisfies Equation 15.1 for any v,w ∈ Tuω.

Let us now come back to the more general case of a mapping x̃ that maps
between two curved surfaces S̄, S ⊂ R3: Analogous to the planar case, we define
in each point p̄ ∈ S̄ an inner product on Tp̄S̄ as

〈v,w〉x̃ := 〈Dp̄x̃(v), Dp̄x̃(w)〉 (15.2)

where Dp̄x̃ is the derivative of x̃ introduced in Section 2.1.3. As in the definition
of the metric tensor, 〈.|.〉 on the right hand side in the above equation denotes
the Euclidean dot product in R3. The considerations for curves made in Section
2.1.1 easily carry over to the case of a map between surfaces. Length, area, and
angles of shapes on the surface S̄ can be measured using the metric 〈v,w〉x̃ and,
similar to the planar case, these measurements are equivalent to the corresponding
measures on the image of the shape under x̃. Therefore, the inner product 〈v,w〉x̃
is said to be a pull back of the Euclidean dot product on S via the map x̃.

Now, a natural generalization of the metric tensor can be defined as the pos-
itive definite symmetric matrix associated with the metric tensor 〈v,w〉x̃ analo-
gous to Equation 15.1. However, this definition is dependent on the choice of the
coordinate frame for the tangent plane at each point p̄ ∈ S̄.

Fortunately, the potentials from Part II are functions of the eigenvalues of the
metric tensor only and thus is invariant with respect to similarity transformations
of the metric tensor. As an orthonormal change of coordinates in the tangent plane
corresponds to a similarity transformation of the matrix associated with 〈v,w〉x̃
it is sufficient for our needs to choose an arbitrary orthonormal coordinate frame
for the tangent space. Using the fact that Dx̃ = Dx ◦Dx̄−1 it can be shown that
independent of the chosen frame the resulting symmetric matrix is similar to

Gx̃ := gḡ−1 (15.3)
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From this definition it is clear that Gx̃ is a natural generalization of the met-
ric tensor. Whereas the metric tensor describes how lengths, angles and areas of
shapes are affected by a parametrization, i.e. a mapping from a flat domain onto
a surface in three-space, the matrix Gx̃ similarly characterizes deformations of
shapes on the surface S̄ when mapped by x̃. The potential developed for param-
eterizations in Section 5.4 can now be applied to the surface to surface map x̃ by
simply replacing g̃ by Gx̃.

As an alternative to the potential from Section 5.4 it is also possible to use
several other energies originally developed for surface parameterization for our
purpose as long as these are formulated in terms of the metric tensor. In fact,
in our implementation we use the slightly more general energy of Clarenz et al.
[CLR04b] as it allows to control deformation in length in addition to angle and
area. Citing from [CLR04b], the resulting measure of tangential shape deforma-
tion for a map x̃ is then given as:

Etangential[x̃] =

∫
S̄

αlt+ αad+
αl + αa

d
+ αc(

t2

d
− 4)dS̄ (15.4)

where the real valued constants αl, αa, αc control the relative importance of length,
area and angle preservation respectively. The functions t = tr(Gx̃) and d =
det(Gx̃) denote the trace and determinant of the substituted matrix Gx̃.

15.2.2 Bending Potential
The membrane potential derived in the previous section captures differences in
the metric tensor, i.e. the first fundamental form. The bending potential should
complement the membrane potential in that it measures differences in the second
fundamental form, i.e. in the shape operators of surfaces S̄ and S. While in theory,
both principal curvatures and associated directions are necessary to completely
describe the shape operator, we adopt the bending energy proposed by Grinspun et
al. [GHDS03] that measures only differences in mean curvature which is sufficient
for our needs. For a given deformation x̃ the deformation of curvatures is given
as:

Ebending[x̃] =

∫
S̄

(κ̄mean − κmean(x̃))2dS̄ (15.5)

where κ̄mean, κmean denote the mean curvature of S̄ and S, respectively.

15.3 Visibility Potentials
The visibility of surface features in a panorama can be impaired by two different
factors (see Figure 15.5): First, the feature might appear too small on the screen
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to be clearly visible, i.e. their projected screen size is too small or they might even
lie on a back facing part of the surface. But even if the projected screen size is
large enough, a feature might still be not visible because it is occluded by other
parts of the terrain. Corresponding to these two sources of impaired visibility,
we will derive two potentials measuring visibility: A screen size potential and an
occlusion potential. Both will be discussed in the upcoming sections.

15.3.1 Screen Size Potential
To quantify the screen size of a feature we consider the concatenation of surface
deformation x̃ and camera projection π which maps from the original surface S̄ to
the screen σ (see Figure 15.3). Again, we can put the pull back metric to work to
find the increase in screen size caused by the deformation x̃. From the pull back
metric Gπ◦x̃ of the combined map we can derive changes in the length, angle and
area of infinitesimal shapes on the original surface S̄ that are mapped by π ◦ x̃
onto the screen. In particular, applying the generalized integral substitution rule
we obtain the change in area as the area element

dσ =
√

det(Gπ◦x̃)dS̄ =

√
det(∇(π ◦ x))2

det(ḡ)
dS̄

As the fundamental form ḡ is positive, the area element is also always greater
than zero and evaluates to zero only for points on the silhouette whose normal
is perpendicular to the viewing direction. Moreover, it does not distinguish front
facing from back facing points on the surface. However, a reasonable measure of
visibility should clearly reward front facing, and penalize back facing feature. We
therefore formulate our screen size measure in terms of slightly modified signed
version of the area element

dσ′ =
det(∇(π ◦ x))√

det(ḡ)
dS̄

While its absolute value equals that of the original area element, it has the same
sign as det(∇(π◦x)). Thus, it is positive if the map π◦x is orientation preserving
and negative otherwise. Making the usual assumption of regularity on the param-
eterization x, changes in the orientation of the combined map π ◦ x can only be
due to back facing areas, i.e. points where the surface normal points away from
the observer.

To obtain a zero bounded measure for screen size of features, we compute the
signed increase in screen size as dσ′/dS̄ and plug it into the simple hull function
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Figure 15.5: Causes of impaired feature visibility. First row: Original unde-
formed perspective. Features (ski slopes and lifts) are both small and to some
extent occluded. Second row: The projected screen size of features has been in-
creased by scaling features and turning their surface normal towards the observer.
Still features can be invisible due to occlusion. Third row: Occlusion of features
has been resolved be rearranging both occluders and occluded features.
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0

0

Figure 15.6: The hull function hscreen used in the definition of the screen size
potential.

hscreen defined as

hscreen(t) =
arctan (−st)

s
with s =

11− 9 sign(t)

2
(15.6)

which is shown in Figure 15.6. The exact choice of this function hscreen is of
minor importance. It was primarily chosen to be smooth, bounded and mono-
tonically decreasing as large increases in screen size should result in low energy
values. Furthermore, its gradient nearly vanishes for negative values of dσ′, i.e.
for points in back facing areas. In this way, minimizing the resulting potential will
primarily influence front facing features while clearly back facing points are not
affected. This is important to ensure that silhouettes, i.e. the curves on the sur-
face where the orientation changes are mostly preserved. While it is theoretically
possible to optimize both front and back facing features, we found that silhou-
ettes are salient features of the landscape and thus have to be preserved to keep
the panorama recognizable. The correct handling of back facing features will be
further discussed in Section 16.5.2. By weighting with the feature map f and
integrating over S̄ we obtain our screen size potential as:

Escreen[x̃] =

∫
S̄

f · hscreen(
dσ′

dS̄
)dS̄ (15.7)

15.3.2 Occlusion Potential
To derive a measure of occlusion we start with the simple two-dimensional sce-
nario and an orthographic projection as shown in top of Figure 15.7. For a feature
point p on S we find two direct occluding points q′ and q′′ by following the pro-
jection ray from p back to the camera. However, apart from those two, we can
also consider each point q on the surface between them as an occluder of p, since
it clearly has to be moved to make p visible (middle of Figure 15.7). In this way
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we define the set of points on the surface marked in dark blue the figure as oc-
cluders of p. Denoting normalized up vector and viewing direction by s and t and
setting

ds := st(q− p) and dt := tt(q− p)

(see bottom of Figure 15.7) we find this set as

{q ∈ S|ds > 0 ∧ dt < 0} (15.8)

To quantify the degree to which q occludes p it is natural to choose either
ds or some function hocc(ds) that is monotonically increasing in ds. As with the
hull function hscreen defined in the last section, we require hocc to be smooth and
bounded from below in order to obtain a bounded occlusion measure. Further-
more, it should converge quickly to zero if q lies below the dotted line ( i.e. for
ds < 0 ) since in this case q is not an occluder for p anymore. However, there are
ample reasons to extent the above set of occluders and to also penalize an occluder
q′ that coincides with the dotted line or even if it lies below the line but not far
from it. While such a point is not an occluder in the strict sense, we usually want
features to lie clearly apart from silhouettes in the final image so that they are
more noticeable. Technically, this is achieved by requiring hocc(ds) to be positive
for ds = 0 and dropping the condition ds > 0 from the definition of the occluder
set in Eq. 15.8.

Choosing hocc as integral over a Gaussian

hocc(t) =

∫ t

−∞
g(s)ds with g(s) =

1√
2πσ

e−
s2

2σ2

(see Figure 15.8) satisfies all the above requirements and facilitates the imple-
mentation as will become obvious in Section 16.3. Integrating over all occluders
we find a measure for the occlusion of p in the 2d case as

eocc2d (p) =

∫
{q|dt(q)<0}

hocc(ds)dS (15.9)

When looking at Figure 15.7, it might occur to the reader that eocc2d (p) can
be chosen in a much simpler way as the area shown in light blue. While this
choice is tempting, it is not advisable since minimizing this area will “narrow”
the occluding hills and thus lead to unnecessary deformation. In the optimization
hills therefore tend to get thinner or even collapse which is clearly not desirable.
By formulating occlusion as a surface integral we avoid this problem: While a
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Figure 15.7: Simple 2d occlusion scenario. An orthographic camera is assumed
to be on the left. Top: Projecting point p on the screen we find only two direct
occluders q′ and q′′. Middle: However, point q can also be considered an occluder
since it has to be moved to make p visible. Bottom: Definition of the signed
distances ds and dt.
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0
0

Figure 15.8: The hull function hocc used in the definition of the occlusion poten-
tial.

compression of the occluding peak in Figure 15.7 decreases the area marked light
blue, it does not alter the arc length of the occluding segment marked in dark blue
and thus the surface integral in Equation 15.9 does not change.

To generalize the above measure to three dimensions, we first cut a slice from
the surface S by intersecting it with the plane through p spanned by s and t (see
Figure 15.9a). We observe that within this slice we get the same situation as in the
2d case. For points q within this plane we can therefore use eocc2d as defined above
to measure their occlusion of p.

However, by a similar argument as for the extension of the occluder set in the
2d case, it is reasonable to consider not only points within this plane as occluders
but to extent it to points in neighbouring slices. Again, this is necessary to ensure
that features will lie clear off silhouettes and are thus noticeable. We therefore
further broaden the set of occluders by adding close points from both sides of the
plane (see Figure 15.9b). For each of these additional points q we compute the
occlusion imposed on p by evaluating eocc2d in the corresponding slice. Finally, we
integrate over all slices weighting the contribution of each slice with the distance
to the plane containing p. To formalize this, we set

r = s× t and dr := rt(q− p)

and write eocc2d (dr) = eocc2d (p,q) to denote the 2d occlusion measure evaluated in
the slice at distance dr. The extended occlusion measure can then be defined as

eocc3d (p) :=

∫ ∞
−∞

eocc2d (dr)g(dr)dr

=

∫
{q|dt(q)<0}

hocc(ds)g(dr)dS

where the Gaussian g weights contributions of occluders outside the plane.
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(a) (b)

(c)

Figure 15.9: Generalization of the occlusion measure to 3d surfaces in three steps:
(a) intersecting the surface with a plane spanned by s and t yields a similar situa-
tion as in the 2d example above. For points within this slice occlusion can thus be
evaluated using eocc2d . (b) To have features lying clear off silhouettes, points q in
neighbouring slices have also be considered as occluders. In each of these slices
occlusion can be evaluated using eocc2d . The overall occlusion is then obtained by
integrating over all slices and weighting with a Gaussian. (c) In the 3d case occlu-
sion can be resolved along multiple directions s. To account for this we evaluate
eocc3d for a discrete set of directions s and sum all contributions.
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So far, the above measure considers only occlusion relations along the up di-
rection s. However, in three space occlusion can be resolved along any direction
s in the image plane. Theoretically, the occlusion measure eocc3d must be mini-
mized over all these directions s that are orthogonal on t (see Figure 15.9c). This
is clearly prohibitive in practice as, first, taking a minimum yields a non-smooth
function and thus severely complicates optimization and second requires exten-
sive computation effort for each evaluation. As an approximation, we suggest to
sum the above measure over a discrete set of directions D:

eocc3d (p) =
∑
s∈D

∫
{q|dt(q)<0}

hocc(ds) · g(dr)dS (15.10)

Fortunately, we found that for typical terrain geometry the direction of minimal
occlusion is usually close to the up direction and thus a small set of directions
distributed along the up direction is sufficient. This is because even in alpine
terrain normals vary only little around the upward direction with only a very small
percentage of surface area exhibiting slopes of more than 45 degrees.

Finally, we need to integrate the above defined occlusion measure over all
feature points p to obtain the occlusion potential as

Eocc[x̃] =

∫
S̄

f · eocc3d (x̃)dS̄ (15.11)

where f is again the feature map introduced in Section 15.1.3.
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CHAPTER 16

GENERATING PANORAMIC MAPS AUTOMATICALLY

At the heart of the automatic panorama generation is the optimization of the sur-
face deformation x̃ which takes care of visible features and low shape deforma-
tion. Once this surface deformation is found, the final panorama is obtained by
standard rendering and texture mapping methods. In this chapter we describe
details of the optimization and implementation details of our method. In partic-
ular the optimization of the occlusion potential is computationally expensive as
its evaluation involves a double integral over all surface points. To make opti-
mization feasible, we present an approximation scheme that avoids the expensive
evaluation of this integral in each optimization step. We also discuss the choice of
parameters and finally present an experimental evaluation of our method on three
different data sets.

16.1 Combining Shape and Visibility Potentials
The goal of the optimization is to find an at least locally optimal surface deforma-
tion x̃∗ that minimizes the four above defined shape and visibility potentials. As
perfect shape preservation and optimal feature visibility are contradictory goals
there is necessarily some trade off to be made. Consequently, we require x̃∗ to
minimize a weighted average E of shape and visibility potentials defined as

E[x̃] = (Ebending[x̃] Etangential[x̃] Escreen[x̃] Eocc[x̃]) ∗ β (16.1)

where β is the constant four dimensional vector

β = (βbending βtangential βscreen βocc)
t (16.2)

that controls the relative importance of the individual energies in this trade off. As
we are only interested in the optimizing deformation x̃∗ and not in the actual value
of E[x̃∗] the vector β can be normalized which leaves three degrees of freedom.
The actual choice of these parameters is a matter of personal preference and we
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leave their choice to the user. As Section 16.5.2 will demonstrate the effect of
these parameters on the panorama is very intuitive as they directly correspond to
the four potentials measuring clearly defined properties of the panorama.

16.2 Discretization and Optimization
For numerical optimization we triangulate the parameter domain ω using a regular
triangular mesh M = (V, T ). We discretize all involved maps by piecewise
affine functions on this triangulation as described in Section 2.2. In particular, the
piecewise affine parameterization x and x̄ are given as linear combinations

xi =
∑
v∈V

xviΨv

x̄i =
∑
v∈V

x̄viΨv

for vertex coordinates xv, x̄v ∈ R3. Both surfaces S̄ and S are then again tri-
angular meshes with the same connectivity M. The surface deformation x̃ is
then also a piecewise affine map uniquely determined by the sets of coefficients
xv, x̄v ∈ R3. As the surface S̄ and x̄ are assumed to be fixed, optimizing the
surface deformation x̃ comes down to finding optimal vertex coefficients xv.

For the combined energy E we derive the analytic gradient with respect to x̃
and use the non-linear conjugate gradient optimization from the MATLAB opti-
mization toolbox to find the (local) minimum x̃∗. To speed up the optimization
and to circumvent local minima we use a multi-grid approach: From the initial
input surface we first compute a hierarchy of levels of detail with each level hav-
ing half the resolution of its preceding level. As a coarsening operator, rather than
simple sub sampling, spline patches on the coarse grid are fitted to the fine data to
suppress aliasing. Starting from the coarsest level, the optimization is then run on
a each level of detail until convergence of the conjugate gradient solver and the
resolution is subsequently doubled. The resulting solution is then used to initialize
the optimization on the next level.

Both the membrane and screen size potentials are expressed in terms of met-
ric tensors and thus involve only first order derivatives. As we assume piecewise
affine maps, the metric tensors are constant within each triangle T ∈ T . Expres-
sions for the discrete metric tensor are given in Section 2.2.2.

In contrast, the bending potential is formulated in terms of mean curvatures
and thus depends on second order derivatives of x̄ and x which are not available
in our linear element based discretization. Resorting to higher order elements
certainly solves this problem but the discretization is more involved. For simplic-
ity, we therefore use the discretization of [GHDS03] which is based on a discrete
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differential geometry approach. However, Grinspun et al. did not derive analytic
derivatives for their energy but used comparatively slow automatic differentiation.
More details on the discretization and analytic derivatives for individual potentials
including Ebending are given in Section 16.4.

16.3 Approximation Scheme for the Occlusion Po-
tential

The occlusion potential as defined above involves a double integral over the sur-
face: one integral over all occluders q and one over all occludees p. A straight-
forward discretization would therefore require to sum over all triangle pairs of
the discrete surface and thus has a complexity O(|T |2) in the number of trian-
gles |T |. Since minimization involves several thousand evaluations, this is clearly
prohibitive. We therefore propose here an approximation with linear complexity.

To this extent, we first slightly rewrite the occlusion potential in coordinates
of ω. With p′,q′ ∈ ω such that

p = x(p′) and q = x(q′)

and using the notation 1dt<0 to denote the indicator function that evaluates to 1 if
dt < 0 and vanishes elsewhere we can write

Eocc =

∫
S̄

f · eocc3d (x̃)dS̄ (16.3)

=
∑
s∈D

∫
S̄

∫
{q∈S|dt<0}

fhocc(ds)g(dr)dSdS̄

=
∑
s∈D

∫
S̄

∫
S

1dt<0fhocc(ds)g(dr)dSdS̄

=
∑
s∈D

∫
ω

∫
ω

1dt(p,q)<0f(x̄(p′))hocc(ds(p,q))·

· g(dr((p,q)))(det g(q′))
1
2 (det ḡ(p′))

1
2dq′dp′ (16.4)

where in the last equality we made all dependencies on the integration variables
p′ and q′ explicit. Now, for a fixed point o ∈ R3 we define two auxiliary functions

socc(o) =
∑
s∈S

∫
ω

1dt(o,q)<0g(dr(o,q))(det g(q′))
1
2dq′

socd(o) =
∑
s∈S

∫
ω

f(x̄(p′))1dt(p,o)<0hocc(ds(p,o))g(dr(p,o))(det ḡ(p′))
1
2dp′
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These two functions are actually derived from the right hand side of Equation
16.4 by omitting the integral over occluders q and occludees p respectively and
substituting o for the omitted integration variable. The first function socc is in fact
very similar to the per-point occlusion measure eocc3d defined in Section 15.3.2. The
only difference is that socc is defined for arbitrary points o in three-space while eocc3d

is restricted to points p on the surface S. Analogously to eocc3d , it thus quantifies
how much a point o in space is occluded by the surface S. Using the function socc,
Equation 16.4 can thus be equivalently written as:

Eocc =

∫
ω

f(x̄(p′))socc(p)(det ḡ(p′))
1
2dp′ (16.5)

Likewise, in the definition of the function socd the occluding surface point q is
replaced by an arbitrary point o in three space. It complements socc in the sense
that it measures how much a point o occludes important feature points on the
surface S. Yet another way to write the occlusion potential is:

Eocc =

∫
ω

socd(q)(det g(q′))
1
2dq′ (16.6)

which can be easily verified by substituting the definition of socc and comparing
with Equation 16.4.

For discretization, we replace the two functions s{occ,ocd} by by two approxi-
mations ŝ{occ,ocd} sampled on a discrete space grid as will be explained below. By
Equations 16.5 and 16.6 we then in turn find two approximations of Eocc substi-
tuting ŝ{occ,ocd} for s{occ,ocd}. Defining Eocc in terms of the approximation ŝocc by
Eq. 16.5 accounts well for the case that a surface point p is occluded by surface
parts lying before it but only indirectly accounts for the occlusion imposed by p
onto subjacent regions. Likewise, an approximation based on Eq. 16.6 accounts
for the occlusion imposed by q onto other parts but neglects the occlusion of
point q itself. To obtain a better approximation we therefore combine both these
approximations

Êocc =
1

2

∫
ω

f(x̄(p′))ŝocc(p)(det ḡ(p′))
1
2dp′ +

1

2

∫
ω

ŝocd(q)(det g(q′))
1
2dq′

The approximations ŝocc and ŝocd themselves are computed by sampling the
functions s{occ,ocd} on a discrete regular voxel grid in screen space and trilinear
interpolation of these samples. In practice, the two grids can be computed quite
efficiently: First, the surface S is rasterized into a 3d voxel grid. On modern
graphics hardware this operation is supported in hardware which makes it very
fast. For ŝocd the surface is textured with the function f · dS̄

dS
to account for the

feature map and the area element of S̄. For ŝocc, as it is defined as integral over S
no such correction is necessary and we set the texture to 1.
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Now, for an efficient computation of ŝ{occ,ocd} it is important to observe, that
the three remaining factors 1dt(p,q)<0, hocc(ds(p,q)) and g(dr(p,q)) in the defini-
tion of s{occ,ocd} depend only on one of the distances ds, dt and dr of p and q along
the orthogonal directions r, s and t respectively. The integral is therefore equiva-
lent to three one dimensional convolutions of the rasterized surface: convolution
with the Gaussian g along r, convolution with hocc along s, and convolution with
1.<0 along t.

On a discrete grid aligned with the direction r, s, t, the latter simplifies to
a cumulative sum along the t direction. Moreover, convolving with hocc is by
its definition also equivalent to a convolution with the Gaussian followed by a
convolution with 1.<0. After rasterizing the textured surfaces, computing ŝ{occ,ocd}
thus comes down to two convolutions with the Gaussian along s and r directions
followed by two cumulative sums in t and s direction. In our implementation we
use an efficient one dimensional convolution operator that exploits the sparsity of
the rasterized surface.

Even with the above described improvements a computation of ŝ{occ,ocd} for
every evaluation of Êocc is still too costly to be practicable. However, since socd
and socc integrate over the set of all occludees and occluders, they usually change
quite slowly. We found it therefore sufficient to defer the update of the grids
ŝ{occ,ocd} over several evaluations. In our implementation grids are only updated
when the deformed surface S has moved significantly, but at least once per level
of detail.

More details on the computation of Êocc and its derivative can be found in
Section 16.4.

16.4 Details on Discretizations and Derivatives

16.4.1 Discretization of Etangential

The membrane potential is nearly identical to the parameterization potential de-
scribed in Section 5.4. As the only difference lies in the generalized metric tensor,
the discretization and derivatives from Part II can be used and the generalized
metric tensor Gx̃ = gḡ−1 substituted for the metric tensor g̃.

For the alternative potential by Clarenz et al. used in our implementation, a
detailed description of its discretization as well as derivatives can be found in the
original paper [CLR04b].
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16.4.2 Derivatives of Ebending

As derived in [GHDS03], the discrete curvature energy is given for a pair of adja-
cent triangles by:

ebending = (α− ᾱ)2‖e‖ (16.7)

where α and ᾱ denote the signed dihedral angle in S and S̄, respectively and e the
edge vector of the common edge in S. A complication in the derivation arises if
the dihedral angle is computed using the dot product due to missing smoothness
of arccos at α = 0. To circumvent this issue, we compute α as

α = 2 arcsin((e/‖e‖)t(H×N1)) (16.8)

where H denotes the normalized halfway vector between N1 and N2 (see figure).

Using the notation from the above figure and ê := e/‖e‖, the derivative of α with
respect to a variation yv of a vertex xv incident with T1 or T2 is now given by

∂α

∂xv
[yv] = (‖N1 + N2‖)−1(1− (ê)t(H×N1)2)

1
2 ·(〈

∂N2

∂xv
×N1

∣∣∣∣ê〉+

〈
N2 ×

∂N1

∂xv

∣∣∣∣ê〉+

〈
N2 ×N1

∣∣∣∣ ∂ê

∂xv

〉
−

−〈N2 ×N1|ê〉
‖N1 + N2‖2

〈
N1 + N2

∣∣∣∣∂N1

∂xv
+
∂N2

∂xv

〉)
.

In this expression, the derivatives of the normals Ni for i = 1, 2 evaluate to
∂Ni

∂xv
[yv] =

1

2|Ti|
(id−NiN

t
i)(y

v × ev)

if v is incident to the triangle Ti and zero otherwise, with ev denoting the edge
opposite to v in Ti. If the vertex v is incident to both triangles, the derivative of
the normalized shared edge ê is also non-zero and evaluates to

∂ê

∂xv
[yv] =

1

‖e‖
(id− êêt)yv

Finally, we can write down the derivative of ebending with respect to a variation yv

of a vertex v as
∂ebending
∂xv

[yv] = 2(α− ᾱ)‖e‖ ∂α
∂xv

[yv]− (α− ᾱ)2 〈ê|yv〉
.
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16.4.3 Discretization of Escreen

Using rules of the calculus of variation the derivative of Escreen with respect to x
in the direction y is found as

∂xEscreen[x](y) = −
∫
ω

f ◦ x̄

1 + (sdσ′)2
∂xdσ

′dθ

with the function s defined as in Equation 15.6 and

∂xdσ
′[x](y) = rt(y,1 × x,2 + x,1 × y,2)

where r is the view direction of the orthographic projection π. For discretization,
we remark that the area element dσ′ as defined in Equation 15.3.1 is a function of
the first order derivatives of x and the affine map π only. It is therefore constant
within each triangle T ∈ T and evaluates to

dσ′T = rt(x,1 × x,2)|Tω|/|TS̄|

Setting FT :=
∫
TS̄
fdS̄ the discrete screen size energy can be written as

Escreen[x] =
∑
T∈T

FT · h(dσ′T )

The derivative with respect to a variation yv of the coefficients xv can easily be
obtained by evaluating the above given derivative for the special choice of y =
yvΨv (where v is not summed). This gives

∂xEscreen[x](yvΨv) =∑
T adjacent v

FT
1 + (sdσ′T )2

∑
w∈T r× yv∇ΨwR

π
2∇Ψv (v not summed)

where R
π
2 is clockwise rotation in ω by π

2
degree.

16.4.4 Discretization of Eocc

The evaluation of Êocc requires the integration of ŝ{occ,ocd} over the surface S. For
a piecewise affine map x this is equivalent to integrating the functions over each
triangle TS of S and summing over all triangles.

As in our implementation the functions ŝ{occ,ocd} are discretized on a regular
grid, we have to perform some kind of numerical integration. For efficiency, we
suggest the following simple scheme: For each triangle, we fit a linear function to
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the values of ŝ{occ,ocd} at the vertices of TS such that its gradient equals the average
of∇ŝ{occ,ocd} at the three vertices. This gives the simple approximations:∫

TS

ŝ{occ,ocd}dS = (1/3)|TS|
∑
v∈T

ŝ{occ,ocd}(x
v)∫

TS

∇ŝ{occ,ocd}dS = (1/3)|TS|
∑
v∈T

∇ŝ{occ,ocd}(xv)

where we use finite difference approximations for the gradients ∇ŝ{occ,ocd}. Set-
ting

ŝT{occ,ocd} := (1/3)
∑
v∈T

ŝ{occ,ocd}(x
v) and

∇ŝT{occ,ocd} := (1/3)
∑
v∈T

∇ŝ{occ,ocd}(xv)

the discrete occlusion potential is then given as

Êocc[x] =
1

2

∑
T∈T

FT ŝ
T
occ + |TS|ŝTocd

for a piecewise affine x and its derivative in direction yv is given by

∂xÊocc[x](yvΨv) =
1

6

∑
T∈T

FT∇ŝTocc

+
1

6

∑
T∈T

|TS|∇ŝTocd +
1

2

∑
T∈T

ŝTocd
∑
w∈T

(ew)tev

4|TS|
xw (v not summed)

where ev denotes the edge lying opposite of vertex v in T .

16.5 Results and Discussion

16.5.1 Experimental Results
To evaluate our method we applied it to three different datasets with varying reso-
lution, geometric complexity and feature richness. The feature sets and geograph-
ical regions were chosen according to different applications of our method. They
are summarized in Figure 16.1.

For all the examples shown we used a regular triangular mesh with resolutions
between 1024 to 16k vertices on the finest level of detail. The resolution of the
voxel grids ŝ{occ,ocd} was chosen four times higher than the mesh resolution on
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Figure 16.1: A summary of the three data sets and application scenarios.

each level of detail. Although our current Matlab-based implementation is not
optimized for speed, the optimization took only about 5 minutes for the lower
resolution and about 33 minutes on the high resolution data set. Compared to the
weeks and months needed for manual design, these times are acceptable.

The first scenario is a tourist map, one of the classical applications of panorama
maps. The data set consists of elevation data and aerial images of the Zugspitze
area, a famous mountain in the south of Germany. As typical for this application,
hiking trails in this area were chosen as features which were imported from an a
database of GPS tracks.

As described in the introduction, panoramas are usually drawn using an air-
plane perspective (see Figure 15.1), i.e. the view direction is nearly orthogonal
to the ground in the foreground and parallel to it in the back. Such an effect can
easily be incorporated in our method by mapping the valley in the foreground to a
cylindrical surface prior to the optimization. Besides resolving some of the occlu-
sions in the foreground, the airplane perspective also has to advantage of closing
the bottom of the panorama image. A comparison of original and airplane per-
spective as well as the final panorama for the Zugspitze area are shown in 16.2.
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Figure 16.2: A tourist map of the Zugspitze showing hiking tracks. Top: View
from on top and user specified original view. Middle: The result after applying
a cylinder mapping to the foreground. Bottom: Final result after visibility opti-
mization. 220
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As shown in the figure, the airplane perspective already enhances visibility of fea-
tures in the foreground. However, trails running in the background to the peak and
a trail around a lake in the right become visible only after the optimization.

To visualize membrane strain, i.e. deformation of texture shapes we also mapped
a checker board texture onto both the original and the deformed surface (see Fig-
ure 16.3). As visible in these renderings membrane strain is distributed nearly
evenly over the whole surface and only slightly noticeable in the vicinity of fea-
tures.

The second application scenario is a new kind of map which we have coined
“personal panorama”. It is a visualization of a single path, e.g. an intended hiking
trip or a personal GPS trace, which was recorded during a biking tour. While
traditional design is to laborious to allow for the visualization of such data in a
panorama, it becomes feasible with our method. For this example we used the
GPS trace of a hiking trip in the Siebengebirge, a mountainous area in western
Germany. The resulting panorama is shown in Figure 16.4. As the mountains in
this area are only a hundred meters high, we vertically scaled the input data by a
factor of 2 to increase impressiveness.

As a third application we applied our method to data from the Austrian ski
resort Sölden to create a ski map. In the original data set that consists of a high
resolution aerial color image and a 2.5D height field, an additional layer describes
ski slopes, lifts and the outline of buildings as vector data for all areas in the resort
including two areas located on the glacier — Tiefenbach and Rettenbach. From
this layer we created the feature map f by rasterization.

Figure 14.3 shows the Tiefenbach and Rettenbach areas as seen from the Ven-
ter valley. As demonstrated in the Figure the optimized surface shown on the right
allocates far more screen space to features (slopes, lifts and buildings) and avoids
occlusion completely. In particular, slopes on the Rettenbach glacier (marked in
yellow) are disclosed in the optimized rendering.

Figure 16.5 demonstrates that our method is by no means limited by the num-
ber of features and can even handle complex feature arrangements. The figure
shows the full ski resort with all slopes and lifts as seen from the Ötz valley. This
viewpoint is similar to the one of the hand drawn panorama shown in Figure 16.6
with the Gaislachkogel in the front.

The importance of the screen size measure was slightly reduced in this exam-
ple in favor of a better shape preservation. To ensure that all slopes are neverthe-
less visible the influence of the occlusion terms was increased accordingly. De-
spite we made these simple manual interventions, the required user interaction is
negligible considering the weeks and months of work needed to draw a panorama
manually. At the same time, the results of our method is very convincing and
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Figure 16.3: The Zugspitze panorama shown with a checker board texture to visu-
alize membrane strain. The cylinder mapped surface is shown on top. Membrane
strain on the deformed surface S (bottom) is nearly evenly distributed over the
whole surface and locally hardly noticeable (The pattern is very well preserved
and the checkers vary only little in size and shape.)
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Figure 16.4: A personal panorama generated for a GPS trace of a hicking trail
in the Siebengebirge, a mountainous area in western Germany. The top shows
the original data after cylinder mapping and vertical scaling. The result of the
optimization is shown in the bottom.
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the geographic arrangement resembles that of the hand-drawn map in Figure 16.6
even though the latter naturally shows are far more artful labeling and illustration
of details. Please note, that in our current visualizations features are simply ren-
dered into a texture and mapped onto the surface together with the aerial image.
Adding and rendering 3D labels instead would clearly improve readability further.

16.5.2 Discussion

Similar to manual panorama design, the choice of a suitable view point has a large
impact on the quality of the resulting panorama. It should be chosen so that only
few features lie on back facing parts of the surface, since to make such features
visible large shape deformations are necessary. This is demonstrated in Figure
16.7 where a bad viewpoint was chosen intentionally. Whereas back facing fea-
tures close to silhouettes are handled gracefully by our method, the high shape
deformation is unavoidable in this example as approximately half of the features
are back facing and in particular silhouettes become less recognizable. One sim-
ple solution is therefore to detect and remove back facing features that are far
from the silhouette. The resulting panorama is shown in the bottom of Figure
16.7. However, in our experiments we found that in such cases a better, but still
earth bound view point can often be found that shows significantly less back fac-
ing features. As problematic situations are easily detected, an ideal extension to
our method would be a semi interactive view point selection, that automatically
suggest feasible view points to the user.

To illustrate the effect of the individual potentials and the influence of the β
parameters on the optimizations, Figure 16.8 shows the result of our method for
some parameter variations. The first row shows the undeformed original and a ref-
erence panorama of the surface. The results in the following rows were obtained
by either setting the respective β parameter to zero (first column) or by scaling
the parameter value of the reference deformation by five (second column). From
the first column it becomes obvious that indeed all four potentials are necessary
to obtain a reasonable result. While Ebending and Etangential are vital for the shape
preservation, a lack of the screen size component results in unoccluded but hardly
visible features and without the occlusion component approximately half of the
features in the Rettenbach area remain occluded. On the other hand, an increase
in the β parameters that correspond to occlusion and screen size yields highly
visible features but also induces significantly higher shape deformation.

Please note also the occlusion in the absence of the bending potential (in both
Figure 16.8 and 15.4): In this particular case the surface folds into multiple flat
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Figure 16.5: The complete Sölden ski resort seen from the valley of Ötz. The
top image shows the original view after cylinder mapping, the deformed view is
shown at the bottom. Note, how slopes in the glacier area in the left background
and along the valley running in the middle become uncovered by the optimization.

225



CHAPTER 16. GENERATING PANORAMIC MAPS AUTOMATICALLY

Figure 16.6: A hand drawn ski map for the ski resort Sölden taken from [wwwb]
(Copyright by Bergbahnen Sölden). For comparison a cutout was chosen that cor-
responds to the computed panorama shown in Figure 16.5. While the hand drawn
map shows far more artful labeling and illustration of details, the geographic ar-
rangement resembles that in the computed panorama.
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Figure 16.7: The glacier ski areas shown from the east. Top: original view (Ret-
tenbach is back facing). Middle: deformation with back facing features enabled.
Bottom: the same panorama if back facing features lying far from silhouettes are
disabled.
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layers. While the shape of individual triangles is preserved due to the tangential
term, the original curvatures at the edges are lost. Without any curvature preser-
vation, there are many local energy minima which correspond to different fold
configurations. In the shown example the optimization is stuck in such a local
minimum where the occlusion energy is to weak to push the occluding layer fur-
ther down.

A limitation of our method is demonstrated in Figure 16.9 where a virtual
road running all around the base of Mount Rainier was painted manually into
the feature map. The shown viewpoint and feature combination is very challeng-
ing for our method as large parts of the road lie on back facing parts of the sur-
face. Clearly, the chosen viewpoint is very far from being optimal. The panorama
therefore exhibits a strong deformation of the original silhouette. A more suitable
choice for this feature would rather be to look down on it from a higher view-
point. Interestingly, as demonstrated in the figure, our method assumes exactly
this viewpoint by tilting the mountain towards the viewer and scaling its peak.
Although this behaviour is in principle not wrong, the visibility of the road can
also be achieved by anisotropically scaling the height of the mountain peak (see
Figure 16.9 bottom). An artist or cartographer would possibly opt for this latter
approach in this particular example to reduce the overall shape deformation in-
duced by tilting. As our initial intention was to devise a mostly automatic design
method, the here proposed formulation currently provides no means to enforce
such an alternative behaviour. However, we believe that our approach could be
customized to implement a similar effect by adding further constraints or addi-
tional energy terms. The choice and derivation of appropriate constraints is an
interesting avenue for future research.

16.5.3 Conclusion

In this part of the thesis we took a variational approach to panoramic map design.
We selected appropriate potentials to quantify shape deformation and derived po-
tentials for screen size and occlusion. Combining these measures we obtain a
well-defined energy which is minimized to find a deformation that preserves the
original local shape while enhancing the visibility of features.

In contrast to previous approaches, our method arranges and modifies geo-
graphic features automatically to optimize the visibility of features. It is thus
suitable e.g. for fully automatic location dependent map generation on mobile de-
vices. Although the proposed method requires the specification of the relative
importance of shape preservation and visibility, these parameters directly corre-
spond to four well-motivated potentials and have therefore an intuitive meaning.
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Figure 16.8: Influence of β parameters: the top row shows the original unde-
formed surface and a reference deformation. The following rows show the result
when the respective energy is not used at all or five times increased w.r.t. the ref-
erence
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Figure 16.9: A fictive road running around the base of Mount Rainier. The view-
point and feature combination is very challenging as large parts of the road are
back facing. The original is shown on the top. Our method ensures the visibility
of the road by tilting the mountain towards the observer (middle). Alternatively,
in this particular example it is also possible to scale the height of the mountain
peak in order to disclose the road (bottom).
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As lined out in the last section, for some applications it might be desirable to
gain more control over the kind of deformation. Even if our primary goal was to
devise a method that automates the design of panoramic maps, we think that the
proposed formulation can easily be extended to incorporate constraints specified
by an artist in an interactive design session. In contrast to standard surface edit-
ing methods, such a panorama editor would ideally allow an artist to manipulate
details of the projection, while relieving her from the burden of an occlusion-free
feature arrangement. We would like to explore this possibility in future work. An-
other direction of future work is the choice of a suitable viewpoint: Although this
choice is clearly subjective, selecting a good viewpoint can significantly reduce
the necessary shape deformation and thus improve recognizability. An assisted
selection that suggests possible viewpoints not only based on the resulting defor-
mation but also on well known principles of image organisation is thinkable and
an highly desirable extension to our method.
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Part V

Conclusion and Closure
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The concept of deformation is powerful in itself and has been used by humans
for ages to shape their environment according to their needs. In this thesis we
followed a generalized idea of deformation to shape surfaces for applications in
computer graphics. Concentrating on the final, static equilibrium state of defor-
mations, we focused on the potential energy that characterizes these states and
proposed generalized potentials that account for application specific requirements
and notions of shape preservation.

In summary, this approach was applied to three mayor applications fields: For
surface parameterization, the parameterization was understood as a deformation,
that unfolds the given, curved surface into the plane. This allowed to compare
a large number of existing parameterization methods in a common framework
by looking at their corresponding energy potential. Potentials were derived that
directly correspond to distortions of geometric shape properties like angles, length
or area. In addition, we proposed a projection approach to texture map discrete
surface representations with inconsistencies. For a special class of objects —
which we termed “fabric covered surfaces” — we introduced material specific
texture maps that instead of minimizing geometric shape deformation, reproduce
fabric deformation for a given material. Consequently, material specific texture
maps are found as extremal points of the anisotropic membrane potential. As an
alternative application, the proposed parameterization methods were also applied
in the design of sewing patterns for industrial upholstery production.

For interactive shape editing, we introduced a novel differential shape repre-
sentation for discrete surfaces and gave an algorithm to minimize residuals in this
representation at interactive frame rates. Using a handle metaphor this optimiza-
tion can be used for interactive shape editing with intuitive surface deformations
even under large handle transformations. We also showed, that by using a novel
kind of constraints, it can also be used in the rapid visualization of upholstered
furniture in industrial design.

Panorama map design is not a classical computer graphics application but is
up to now still a tedious and artistic manual process. Generalized surface defor-
mation naturally lend themselves to automate this task. By selecting appropriate
potentials for shape preservation and by deriving novel visibility potentials, we
developed the first automatic panorama generation algorithm. Beyond a substan-
tial reduction of manual effort in the traditional panorama design, we envisage
new applications of automatically generated panoramas for personal use and on
mobile navigation devices.

While implications of the proposed algorithms and potential for future work
has already been discussed in context of the individual applications, we would like
to draw some conclusions on the general surface deformation approach here. First,
generalized surface deformation can obviously only be applied in situations where
a certain “urshape” is present, that has to be preserved. E.g. in case of surface
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parameterization the urshape is given by the input surface or more precisely by its
intrinsic shape while for shape editing it is the local shape of the original, unedited
surface. Certainly, the general variational principle of finding shapes as extrema
of certain energies can be applied without the notion of an urshape, but it is the
existence of an urshape that distinguishes our surface deformation approach from
other variational approaches like shape optimization.

As a consequence, potential applications of generalized surface deformations
are problems that require a balance between shape preservation and further ap-
plication dependent constraints. As demonstrated in this thesis, applications can
vary vastly in the specific notion of shape that is to be preserved. A popular way to
characterize different notions of shape is to consider their invariance with respect
to transformations: In general, most people will agree that shape is something that
is invariant with respect to translation and rotation. This notion of shape under-
lies the potentials used for panorama design. For interactive shape editing, we
considered conformal shape, that is additionally invariant with respect to uniform
scaling. And in context of parameterization we considered the intrinsic shape of a
surface, that is characterized by its invariance with respect to isometries. Notions
of shape can easily be more diverse by considering different invariance proper-
ties for preimage S̄ and image S. For example, the elastic membrane potential
of the deformation x̃ depends only on the metric tensor and is thus invariant with
respect to rotations R ◦ x̃ of the surface S. However, as long as the material is
not isotropic, the elastic potential is not invariant with respect to a rotation x̃ ◦R
of the urshape S̄. The choice of the appropriate notion of shape is thus highly
application specific.

To find an appropriate shape potential, it is tempting to resort to physical mod-
els like the thin shell model. As people are accustomed to deformations of elastic
shells like leaves or cloth, deformations resulting from physical models are highly
intuitive and seem natural. In fact, the elastic potential can be a good starting point
and has been suggested both in context of surface parameterization and for interac-
tive shape editing. However, as argued in this thesis, the applicability of physical
models is limited: For surface parameterizations the elastic potential leads to gap
artifacts as demonstrated in Section 4.2.2 and in context of shape editing it can-
not handle transformations like scaling that are physically impossible. Moreover,
physical material parameters as the elastic tensor have a physical interpretation.
They are therefore easily specified if the deformation corresponds to an actual
physical process but their choice can be far less obvious in the case of generalized
deformations as considered in this thesis. Summing up, we conclude that physical
models can be beneficial if an intuitive behavior is desired, closely corresponding
to an actual physical deformation. In case of generalized deformation, the limi-
tations inherited from physical deformations and the choice of parameters often
renders them less suitable.
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We would also like to remark, that the correct choice of a shape potential
becomes more important if larger deformations are expected. Certainly a shape
potential should attain its minimum for x̃ = id and many potentials are nearly
identical if the deformation is small. It can thus make sense to choose the shape
potential depending on the expected amount of deformation. For example, for
surfaces that are nearly developable, minimizing quadratic conformal potential
yields approximately the same result than an optimization of the non-linear com-
bined potential proposed in Section 5.4, but at the same time can be optimized
much faster. The difference between the two potentials becomes noticeable only
on surfaces that are more “difficult” to flatten.

Apart from shape preservation, further constraints are obviously also applica-
tion specific and can be specified as hard constraints to the optimization, e.g. the
handle positions in interactive shape editing or in surface parameterization where
the preimage of the parameterization must be planar by construction. Alterna-
tively, they can be specified as soft constraints by adding further potentials as e.g.
the visibility potentials for panorama design. In this latter case, the generalized
deformation approach becomes very similar to a shape optimization where the
shape preservation acts as a regularization.

We concentrated in this thesis on surfaces represented by triangle meshes as
this is the predominant surface representation in computer graphics. While some
of the developed methods as e.g. the quaternion based representation are explicitly
tailored to this representation other concepts can be easily generalized to smooth
regular surfaces and other surface representations. In this way it is e.g. easily
possible to generalize the surface parameterization potentials and algorithms to
spline or subdivision surfaces. The same is true for the potentials discussed in
context of panorama design with the notable exception of the bending energy
whose discretization is based on a discrete differential geometry approach.

Beyond the three discussed applications, generalized surface deformation have
already been applied to a number of other problems in computer graphics as mor-
phing, shape matching, surface reconstruction or symmetry detection (see Section
1.1). We realize that with a growing understanding of shape potentials and their
properties, their use becomes more and more popular. We think that, still, the full
potential of the generalized deformation approach has not been harvested.

Furthermore, we see much potential in the concept of visibility driven defor-
mations introduced in Part IV. To demonstrate the applicability of visibility driven
deformations we would like to point to some follow up work: In [DSSK08] we
proposed a novel path visualization based on this very concept. Given a geometric
scene description and a path, this visualization conveys the whole path in a sin-
gle static image as shown in Figure 16.10. Occlusions are suppressed by a space
deformation so that the path remains visible even if it takes several turns. At the
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(a)

(b)

(c)

Figure 16.10: A result of the path visualization presented in [DSSK08]: (a) the
static image showing the hole path from its start to the destination marked by a
green arrow. Signs indicate turns. (b) a traditional street map of the same path.
In contrast to the visualization (a), features are abstract and orientation and self
location requires considerable mental effort. (c) a screen shot of the interactive
route visualization system presented by Möser et al. [MDWK08].

238



same time the visualization shows realistic depictions of features that can be easily
mapped to the observer’s environment. Self location and orientation thus become
much easier compared to a traditional street map. In [MDWK08], we present an
interactive route visualization that targets at mobile navigation devices. Surface
deformations are used to increase the visibility of the upcoming route, facades of
buildings and to enlarge areas of interest on the screen. An example screen shot
of the system is shown in Figure 16.10(c). We envisage a range of novel visual-
izations in the same spirit that actively enhance visibility and suppress occlusion
while hiding unavoidable shape deformation. With the increasing availability of
geographic data, we see many potential applications for such visualizations in
consumer geographic information system like Google Earth. But even beyond ge-
ography one easily finds application for such visualizations in augmented reality
systems or for mechanical or medical illustrations.
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