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Introduction

In [16] the authors consider the hypergeometric series

F(w, x) = Fn(w, x) =
∞∑
d=0

xd
∏r=nd
r=1 (nw + r)∏r=d

r=1((w + r)n − wn)
, n ∈ N (1)

which is a deformation of the well-known hypergeometric series

F(x) = Fn(x) =
∞∑
d=0

(nd)!
(d!)n x

d, (2)

coming from a certain family of Calabi-Yau manifolds. In that paper they
define the operator M : P→ P by

MF (w, x) :=
(

1 + x

w

∂

∂x

)
F (w, x)
F (0, x) ,

where P ⊂ 1 + Q(w)[[x]] is the subgroup of elements which are holomorphic
at w = 0. Surprisingly they show that F(w, x) is a fixed point of Mn, i.e.
MnF = F. Moreover they give some identities among Ip = MpF(w, x)|w=0,

in particular the symmetry Ip = In−p−1 (0 ≤ p ≤ n− 1). These Ip’s play an
important role in the formula given by Zinger in [17] to compute the reduced
genus one Gromov-Witten invariant of Calabi-Yau projective hypersurfaces.

The first observation of this thesis is that there is nothing special about
F(w, x). In fact let f(x) be a holomorphic function with f(0) = 1, satisfy-
ing L(D, x)y = 0, a homogeneous linear differential equation with maximal
unipotent monodromy, where D = x d

dx
. Then we take a special deformation

of f(x) given by the unique holomorphic solution of

DwL(Dw, x)f(w, x) = wnf(w, x),
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where Dw := D + w. We call this f(w, x) the Zinger deformation of f(x).

The first theorem in Chapter 1 says that f(w, x) is a fixed point of Mn.
We prove two identities for Ip’s as in [16] and we give a necessary and sufficient
condition for the symmetry (Ip = In−1−p, 0 ≤ p ≤ n− 1). Indeed if

L(D, x) =
r∑
i=0

xiBi(D)

then Ip’s are symmetric if and only if Bi(−D − i) = (−1)n−1Bi(D) for all i.

The next chapter we study the Calabi-Yau (CY) equations of order four.
We study the symmetry of Ip’s. Since n = 4, this symmetry makes only two
statements: I1 = I3 and I0 = I4. We show that I1 is always equal to I3 and
I0/I4 always satisfies a first order linear differential equation. This lets us
divide up the CY equations into three classes:

• Full symmetry: I1 = I3 and I0 = I4.

• Near symmetry: I1 = I3 and (I0/I4)2 is a polynomial.

• Symmetry failure: I1 = I3 and I0/I4 has the form C
∏(1 − αi)ci with

αi and ci algebraic.

Surprisingly, the exceptional looking case (full symmetry) happens most
of the time, and the general looking case (symmetry failure) is rare. We see
experimentally among the non-hypergeometric cases (there are only 14 cases,
#1 − 14 in the table given in [2] which are hypergeometric and all of them
are symmetric) if the leading coefficient of the differential equation reducible
in Q[x] then (I0/I4)2 is a polynomial (near symmetry) and if it is irreducible
then (I0/I4)2 is not a polynomial (symmetry failure). In the continuation we
show that up to a constant the quotient I2/I1 is the Yukawa coupling.

In Chapter 3 we study the behaviour of the Zinger deformation when
w →∞. In [16] the authors show that if F (w, x) ∈ P is a fixed point of Mn

for some n then logF (w, x) has a perturbative expansion. This means that
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the asymptotic expansion of logF (w, x) with respect to ~ = 1
w

has at most
a simple pole. We generalize this result and prove that logF (w, x) has a
perturbative expansion if and only if each coefficient of log(MnF

F
) is Ox(1) for

some n ≥ 1. We compute the residue and under some conditions inductively
we can find each coefficient of this expansion. In the continuation we study
the logarithmic derivative of the Zinger deformation. In particular we prove
the conjecture which is stated in the last section of [16]. We show

1 + x

w

∂

∂x
logF(w, x) = L

∞∑
s=0

Ps(n, Ln)
(nwL)s , (3)

where L = (1− nnx)−1/n and Ps(n, Ln)(s ≥ 0) are polynomials of n and Ln.

The second part of this thesis is devoted to study polynomials Ps(n, Ln)
(s ≥ 0). In the first two chapters of this part we give an exact formula for
the first and the second top coefficient of Ps(n, Ln) with respect to n. Part
of these results was guessed by the authors in [16]. In the final chapter we
give a recursive formula to compute the `th top coefficient of Ps(n, Ln) where
s varies and we show that these coefficients under a map (called the Euler
map which is defined in Chapter 6) belong to the image of the elementary
functions.
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Part I

Structure properties of the
Zinger deformation

1





Chapter 1

Structure of the Zinger
deformation at w = 0

In this chapter first we define the Zinger deformation for a class of functions
and we prove some interesting properties for this class.

1.1 Definitions
Let Wz = W (n−2)

z be a hypersurface in CPn−1 determined in terms of ho-
mogenous coordinates Xi by the equation

Xn
1 + · · ·Xn

n − nzX1 · · ·Xn = 0.

This defines a family of Calabi-Yau manifolds. This can be viewed as a family
W→ A1 with W ⊂ Pn−1×A1 and z a coordinate on A1. We can projectivize
the A1 and consider a family W→ P1 with

W∞ = W∞ = {(X1, · · · , Xn)|X1X2 · · ·Xn = 0}.

The group (Z/nZ)n acts on Pn−1 as follows. Take (a1, · · · , an) ∈ (Z/nZ)n,
then it acts on Pn−1 by

(X1, · · · , Xn) 7→ (ξa1X1, · · · , ξanXn),

where ξ is a fixed nth root of unity. On the other hand the subgroup Z/nZ =
{(a, a, · · · , a)|a ∈ Z} acts as the identity on Pn−1, so in fact we have an action
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of (Z/nZ)n/(Z/nZ) on Pn−1. Now the subgroup G given by

{(a1, · · · , an)|a1 + · · · an = 0},

acts on Wz for each z, so it makes sense to consider

Mz = M (n−2)
z = Wz/G.

This Mz is quite singular. For zn 6= 1,∞ there exists a resolution of singu-
larities M̂z →Mz such that M̂z is also a Calabi-Yau manifold, moreover it is
the mirror of Wz, i.e. h1,1(Wz) = h1,2(M̂z) and h1,2(Wz) = h1,1(M̂z) (cf. [6]).
Its periods satisfy the following Picard-Fuchs equation

L(D, x)y =
(
Dn−1 − nx

n−1∏
j=1

(nD + j)
)
y = 0, (1.1)

where D := x d
dx

and x = (nz)−n. The unique holomorphic solution of this
differential equation with y(0) = 1 is

F(x) =
∞∑
d=0

(nd)!
(d!)n x

d. (1.2)

In [17] Zinger uses

F(w, x) =
∞∑
d=0

xd
∏r=nd
r=1 (nw + r)∏r=d

r=1((w + r)n − wn)
, (1.3)

as a deformation of F(x) to compute the reduced genus one Gromov-Witten
for Calabi-Yau hypersurfaces. Our main task in this section is to generalize
this deformation for the larger class of functions such that they satisfy some
nice properties as in [16]. Since the differential equation (1.1) plays the key
role as in the proofs of the statements for F(w, x) (cf.[16]), it is natural that
our candidate might be in this space. In the following definition and lemma
we introduce our candidate.

Definition 1.1.1. Let L(D, x) ∈ C[x,D] be an operator of degree n− 1 for
some n > 1. Then we say L has maximal unipotent monodromy (MUM) if
L(D, 0) = Dn−1.
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Lemma 1.1.1. The kernel of an operator L with MUM has a unique holo-
morphic element y with y(0) = 1.

Proof. Let y(x) = 1+∑∞
k=1 akx

k be in the kernel of L. Then by assump-
tion we have

Dn−1y = xL′(y),
for some L′ ∈ C[x,D]. Then the coefficient of xk in both side would be

kn−1ak =
k−1∑
i=0

λiai,

for some λi ∈ C. Therefore ak will be uniquely determined and the solution
is unique.�
Remark. From now whenever we talk about f(x), the unique holomorphic
solution of a differential equation with MUM, we mean that f(0) = 1.

Now we want to define a suitable deformation for this unique holomorphic
solution.

Definition 1.1.2. Let L(D, x) be an operator of order n − 1 with MUM
and

L(Dw, x) =
n−1∑
k=0

Ak(x)Dk
w, (1.4)

where Ak(x) ∈ xQ[[x]], (0 ≤ k ≤ n− 2) and Dw = D + w. Then we call

(DwL(Dw, x)− wn)y = 0, (1.5)

a generalized hypergeometric differential equation (GHD) of order n.

Now let P ⊂ 1 + xQ(w)[[x]] be the subgroup of power series in x with
constant term 1 whose coefficients are rational functions in w which are
holomorphic at w = 0.

Lemma 1.1.2. Let L be a GHD of order n. Then L has a unique solution
in P.

Proof. Let f(w, x) = ∑∞
k=0 ak(w)xk be the holomorphic solution of

L = 0. Then from definition 1.1.2 we find a0(w) = 1 and recursively

(
(k + w)n − wn

)
ak(w) =

k−1∑
i=0

λi(w)ai(w)
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where by induction λi(w), ai(w) ∈ Q(w) and holomorphic at w = 0. Hence
ak(w) is so and therefore f(w, x) ∈ P. �

Definition 1.1.3. Let f(w, x) ∈ P be the unique holomorphic solution of
GHD (1.4). Then we call f(w, x) the Zinger deformation of f(x) = f(0, x).

The first observation is that the coefficients of f(w, x) with respect to
w has information about the solution of the original differential equation of
f(x). We see this in the following proposition.

Proposition 1.1.1. Let

f(w, x) =
∞∑
i=0

fi(x)wi,

be the Zinger deformation of f(x) = f0(x). Set

F (w, x) := xwf(w, x).

Then the first n − 1 coefficients of F (w, x) consist a Frobenius basis for the
differential equation L(D, x)y = 0.

Proof. We have

F (w, x) = xw.f(w, x) = (
∞∑
i=0

wi
logi x
i! )(

∞∑
i=0

fi(x)wi)

= f0 + (f0 log x+ f1)w + (f2 + f1 log x+ f0
log2 x

2 )w2 + · · ·+O(wn).

We note that D(F (w, x)) = xwDwf(w, x) , so by definition 1.1.3

DL(D, x)F (w, x) = xwDwL(Dw, x)f(w, x) = xw.wn.f(w, x) = O(wn).

Therefore

DL(D, x)
( k∑
i=0

fi
(log x)k−i
(k − i)!

)
= 0, 0 ≤ k ≤ n− 1.

But by definition we have fi(0) = δi0, hence

L(D, x)
( k∑
i=0

fi
(log x)k−i
(k − i)!

)
= 0, 0 ≤ k ≤ n− 1.

�
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1.2 Periodicity
In this section we prove the main property of the Zinger deformation.

Definition 1.2.1. Let M : P −→ P be the map defined by

MF (w, x) := 1
w
Dw

(F (w, x)
F (0, x)

)
=
(
1 + x

w

∂

∂x

)F (w, x)
F (0, x) .

We set Fp(w, x) := MpF (w, x) and Ip(x) = Fp(0, x).

Definition 1.2.2. We define Mn to be the set of fixed points of Mn, i.e., the
set of all F (w, x) ∈ P such that Fn = F .

Theorem 1.2.1. Let f(w, x) be the Zinger deformation of some f(x). Then
f ∈Mn for some n.

Before giving the proof of Theorem 1.2.1 we look at some examples to
check this theorem.

Example 1. Let f(x) = ∑∞
d=0

(5d)!
(d!)5x

d. As we have seen before in (1.1),
f(x) satisfies in a hypergeometric differential equation. It is the case #1 in
database [2]. Then by computation one can find

I0(x) = I4(x) = I5(x) = f(x) = 1 + 120x+ 113400x2 + 168168000x3 +O(x4),
I1(x) = I3(x) = 1 + 770x+ 1435650x2 + 3225308000x3 +O(x4),
I2(x) = 1 + 1345x+ 3296525x2 + 8940963625x3 +O(x4).

Example 2. Let f(x) = ∑∞
d=0

(3d)!2
(d!)6 x

d. It satisfies the following hypergeo-
metric differential equation(

D4 − 36x(D + 1
3)2(D + 2

3)2
)
y = 0.

It is the Picard -Fuchs equation for the mirror of the complete intersection
of two cubics in P5:

X3
1 +X3

2 +X3
3 = 3zX4X5X6,

X3
4 +X3

5 +X3
6 = 3zX1X2X3.
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It is the case #4 in database [2]. Then by computation one can find

I0(x) = I4(x) = I5(x) = f(x) = 1 + 36x+ 8100x2 + 2822400x3 +O(x4),
I1(x) = I3(x) = 1 + 180x+ 79380x2 + 41920920x3 +O(x4),
I2(x) = 1 + 297x+ 168561x2 + 106224345x3 +O(x4).

Example 3. Let f(x) = ∑
nAnx

n, where

An =
∑
k,l

(
n

k

)2(
n

l

)2(
k + l

n

)(
2n− k
n

)
,

which satisfies in(
9D4 − 3x(173D4 + 340D3 + 272D2 + 102D + 15)
− 2x2(1129D4 + 5032D3 + 7597D2 + 4773D + 1083)
+ 2x3(843D4 + 2628D3 + 2353D2 + 675D + 6)
− x4(295D4 + 608D3 + 478D2 + 174D + 26) + x5(D + 1)4

)
y = 0.

It is the Picard-Fuchs equation for the mirror ofX(1, 1, 1, 1, 1, 1, 1) ⊂Grass(2, 7),
a complete intersection of hyperplanes. It is the case #27 in the database
[2].
Then we have

I0(x) = I5(x) = 1 + 5x+ 109x2 + 3317x3 + 121501x4 +O(x5),
I1(x) = I3(x) = 1 + 14x+ 574x2 + 26222x3 + 1294286x4 +O(x5),

I2(x) = 1 + 56
3 x+ 2828

3 x2 + 149408
3 x3 + 8285228

3 x4 +O(x5),

I4(x) = 1 + 6x+ 344
3 x2 + 92602

27 x3 + 3372103
27 x4 +O(x5).

Now to prove Theorem 1.2.1 we need the following lemma:

Lemma 1.2.1. Suppose f(w, x) ∈ P satisfies the mth order differential equa-
tion

(
m∑
r=0

Cr(x)Dr
w)f(w, x) = A(w, x) (1.6)
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for some power series C0(x), · · · , Cm(x) ∈ Q[[x]] and A(w, x) ∈ Q(w)[[x]]
with A(0, x) ≡ 0. Then the function f̃ = Mf satisfies the (m − 1)st order
differential equation

(
m−1∑
s=0

C̃s(x)Ds
w)f̃(w, x) = 1

w
A(w, x), (1.7)

where
C̃s(x) :=

m∑
r=s+1

(
r

s+ 1

)
Cr(x)Dr−1−sf(0, x). (1.8)

Proof. See [16].�

Now we are ready to prove Theorem 1.2.1.
Proof. The idea is to use several times Lemma 1.2.1. But we need a

suitable function to apply this lemma for it. In order to do this, we construct
a new function F (w, x) from f(w, x) which has the extra property F (0, x) =
1. To do this job we look at the effect of Dw on power series

f(w, x) =
∞∑
i=0

pi(w)xi ∈ Q(w)[[x]].

We see
Dwf(w, x) =

∞∑
i=0

(w + i)pi(w)xi,

so Dw has an inverse operator namely, D−1
w which replaces each pi(w) by

(w + i)−1pi(w). Therefore we can define

F (w, x) := wD−1
w f(w, x).

It follows that F (0, x) = 1 (recall that f(0) = 1). Multiplying both sides of
(1.5) by wD−1

w we find(
n∑
s=1

Ãs(x)Ds
w

)
F (w, x) = wnF (w, x), (1.9)

where Ãs = As−1(x) . Now we apply Lemma 1.2.1 for equation (1.9). We
note that MF (w, x) = f(w, x), hence we have

n−1∑
s=0

C(0)
s (x)Ds

wf(w, x) = wn−1F (w, x), (1.10)

9



where

C(0)
s (x) =

n∑
r=s+1

(
r

s+ 1

)
Ãr(x)Dr−1−sF (0, x) = Ãs+1(x) = As(x).

Applying Lemma 1.2.1 for equation (1.10) repeatedly, we find
n−1−p∑
s=0

C(p)
s (x)Ds

wfp(w, x) = wn−1−pF (w, x), (1.11)

and C(p)
s for p > 0 is given inductively by

C(p)
s (x) =

n−p∑
r=s+1

(
r

s+ 1

)
C(p−1)
r (x)Dr−s−1Ip−1(x). (1.12)

In particular for s = n− 1− p we find that

C
(p)
n−1−p(x) = C

(p−1)
n−p (x)Ip−1(x)

= C
(p−2)
n−p+1(x)Ip−2(w, x)Ip−1(x)

...

= C
(0)
n−1(x)

p−1∏
r=0

Ir(x) = An−1(x)
p−1∏
r=0

Ir(x).

(1.13)

On the other hand from equations (1.11) for p = n− 1 and s = 0 we have

C
(n−1)
0 (x)fn−1(w, x) = F (w, x). (1.14)

This equation with (1.13) for p = n− 1 gives

An−1(x)
n−2∏
r=0

Ir(x).fn−1(w, x) = F (w, x). (1.15)

Setting w = 0 in this relation and using F (0, x) = 1 gives
n−1∏
r=0

Ir(x) = A−1
n−1(x). (1.16)

Then substituting back into (1.15) gives

fn−1/In−1 = F (w, x). (1.17)
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Finally, applying w−1Dw to both sides of (1.17) implies Mnf = fn = f . �

During the proof we found a relationship among Ip’s (equation (1.16)).
We state it in the next theorem and we give another identity for Ip’s.

Theorem 1.2.2. Let f(w, x) ∈Mn be as in Theorem 1.2.1. Then we have

I0(x) · · · In−1(x) = An−1(x)−1, (1.18)
I0(x)n−1I1(x)n−2 · · · In−1(x)0 = eh(x). (1.19)

where h(x) = −
∫ x

0
An−2(u)
uAn−1(u)du.

Proof. We have already seen the first identity in equation (1.16). To
prove the second identity, p = n− 2 in (1.11) with w = 0, implies that

C
(n−2)
0 (x)In−2(x) + C

(n−2)
1 (x)DIn−2(x) = 0. (1.20)

From (1.13) for p = n− 2 we get

C
(n−2)
1 (x) = An−1(x)

n−3∏
r=0

Ir(x).

Substituting this in (1.20) we find

C
(n−2)
0 (x) = −An−1(x)DIn−2(x)

In−2(x)

n−3∏
r=0

Ir(x). (1.21)

On the other hand from (1.12) for s = n− p− 2

C
(p)
n−p−2(x) = C

(p−1)
n−1−p(x)Ip−1(x) + (n− p)C(p−1)

n−p (x)DIp−1(x).

From (1.13) we have C
(p−1)
n−p (x) = An−1(x)∏p−2

r=0 Ir(x), substituting this in
above we obtain

C
(p)
n−p−2(x) = C

(p−1)
n−1−p(x)Ip−1(x) + (n− p)An−1(x)DIp−1(x)

Ip−1(x)

p−1∏
r=0

Ir(x). (1.22)
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Continuing this procedure we get

C
(p)
n−p−2(x) =

(
C

(p−2)
n−p (x)Ip−2(x) + (n− p+ 1)An−1(x)

p−3∏
r=0

Ir(x)DIp−2(x)
)
Ip−1(x)

+ (n− p)An−1(x)DIp−1(x)
Ip−1(x)

p−k∏
r=0

Ir(x),

or
C

(p)
n−p−2(x) = C

(p−2)
n−p (x)Ip(x)Ip−1(x)+(

(n− p)DIp−1(x)
Ip−1(x) + (n− p+ 1)DIp−2(x)

Ip−2(x)

)
An−1(x)

p−1∏
r=0

Ir(x),

and finally

C
(p)
n−2−p(x) =

(
An−2(x) + An−1(x)

p−1∑
r=0

(n− r − 1)DIr(x)
Ir(x)

)p−1∏
r=0

Ir(x). (1.23)

With p = n− 2 we find

C
(n−2)
0 (x) =

(
An−2(x) + An−1(x)

n−3∑
r=0

(n− r − 1)DIr(x)
Ir(x)

)
n−3∏
r=0

Ir(x). (1.24)

Comparing equations (1.21) and (1.24) we find
n−k∑
r=0

(n− r − k)I
′
r(x)
Ir(x) = − An−2(x)

xAn−1(x) . (1.25)

Integrating this and exponentiating proves the second part.�

1.3 Symmetry
If we look at again Examples 1 and 2 in Section 1.2 we see that

I0(x) = I4(x), I1(x) = I3(x).

Or in other words we have (full) symmetry in these cases. But in Example
3, instead of full symmetry we have I1 = I3 and I0 6= I4. Hence it is natural
to ask under which conditions we have symmetry for an f ∈ Mn. The two
identities in Theorem 1.2.2 constrain an obvious necessary condition which
we state in the following lemma.
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Lemma 1.3.1. Let Ai are as in Definition 1.1.2 and f(w, x) ∈Mn satisfy the
conditions of Theorem 1.2.1. Then a necessary condition for the symmetry
of Ip’s is

−n− 1
2 An−2(x) = D(An−1(x)). (1.26)

Proof. If we have symmetry, namely Ip(x) = In−p−1(x) for all 0 ≤ p ≤
n− 1, then by Theorem 1.2.2

An−1(x)1−n = (
n−1∏
r=0

Ir(x))n−1

=
n−1∏
k=0

Ik(x)n−k−1
n−1∏
k=0

Ik(x)k

= (I0(x)n−1I1(x)n−2 · · · In−1(x)0)2 (symmetry)
= e−2h(x), (from(1.16))

where h(x) =
∫ x

0 −
An−2(u)
uAn−1(u)du, hence it is necessary

An−1(x)n−1 = e
2
∫ x

0 −
An−2(u)

uAn−1(u)du, (1.27)

or
n− 1

2 logAn−1(x) =
x∫

0

− An−2(u)
uAn−1(u)du,

so by differentiating both sides, it turns out

n− 1
2

A′n−1(x)
An−1(x) = − An−2(x)

xAn−1(x) , (1.28)

which proves the lemma. �
For example from (1.1) for F(x) we have,

An−1(x) = 1− nnx, An−2(x) = −xn(n− 1)
2 , (1.29)

and satisfies the necessary condition. Indeed Ip’s are symmetric in this case
and we see later in Theorem 2.1.1, for Calabi-Yau equations this necessary
condition is sufficient. But for the moment we consider an arbitrary Zinger

13



deformation and we give a necessary and sufficient condition for symmetry.

Let W = C[x,D] be the Weyl algebra. Then the morphism

∗ : W → W

given on the basis by

(xiDk)∗ = (−D)kxi = xi(−D − i)k, (1.30)

is an anti-involution. In fact we have

(xjD`.xiDk)∗ = (xi+j(D + i)`Dk)∗ = xi+j(−D − j)`(−D − i− j)k

= (−D)kxi+j(−D − j)` = (xiDk)∗(xjD`)∗.

Furthermore

(xiDk)∗∗ = (xi(−D − i)k)∗ = xi
(
−(−D − i)− i

)k
= xiDk.

Definition 1.3.1. For an operator L ∈ W we call

L̂ := (−1)degD(L)L∗

the conjugate of L, where ∗ is the anti-involution as in (1.30)

We note that if L ∈ W such that L(0) = Dn−1 for some n, then L∗

by definition satisfies the same property. Therefore if f(x) is the unique
holomorphic solution of L(y) = 0, then it makes sense to speak about f̂(x)
the unique solution of L̂(y) = 0.

Theorem 1.3.1. Let L be an operator of order n− 1 in the Weyl algebra W
with MUM and L̂ its conjugate. Suppose f(w, x) and f̂(w, x) are the Zinger
deformations of the holomorphic solution of L and L̂ respectively. Then

Ip = În−p−1 0 ≤ p ≤ n− 1. (1.31)

Conversely if for two Zinger deformations, identity (1.31) holds then the
corresponding operators are conjugate.
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Corollary 1.3.1. Let L as in Theorem 1.3.1. We write

L(D, x) =
r∑
i=0

xiBi(D) =
n−1∑
i=0

Ak(x)Dk.

Then the following conditions

• L̂ = L,

• Ip(x) = In−1−p(x), 0 ≤ p ≤ n− 1,

• Bi(D) = (−1)n−1Bi(−D − i), 0 ≤ i ≤ r,

• As(x) = ∑n−1
k=s(−1)n−k+1

(
k
s

)
Dk−sAk, 0 ≤ s ≤ n− 1.

are equivalent.

Proof of Corollary 1.3.1. From Theorem 1.31 immediately it follows
that the first and the second identity are equivalent and by definition we
see that the first and the third one are equivalent as well. Now if we set
Ak(x) = ∑r

j=0 akjx
j, then from the third identity we have

n−1∑
k=0

akiD
k = Bi(D) = (−1)n−1Bi(−D − i)

=
n−1∑
k=0

(−1)n−1aki(−D − i)k =
n−1∑
k=0

k∑
j=0

(−1)n−1+kaki

(
k

j

)
(i)k−jDj.

It follows that

asi =
n−1∑
k=s

(−1)n−1+kaki

(
k

s

)
ik−s,

finally the sum over all asixi when i varies, gives the fourth identity. con-
versely the above equation gives the other side. We note that the fourth
identity for s = n− 2 gives the necessary condition ( cf. Lemma 1.3.1).

Proof of Theorem 1.3.1. We define f̃(w, x) ∈ P as the unique holo-
morphic solution of

L(Dw, x)f̃(w, x) = wn−1. (1.32)
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But on the other hand by assumption we have

DwL(Dw, x)
(
f(w, x)

)
(mod wn) = wn +O(wn+1).

We have seen before the effect of D−1
w on the coefficients of f(w, x). It turns

out that
L(Dw, x)

(
f(w, x)

)
(mod wn) = wn−1 +O(wn).

Therefore the uniqueness implies that f̃(w, x) = f(w, x) (mod wn). Hence
we have f̃p(0, x) = fp(0, x) = Ip(x), (0 ≤ p ≤ n − 1). Now applying Lemma
1.2.1 repeatedly for f̃(w, x) we find

n−p−1∑
s=0

C̃(p)
s (x)Ds

wf̃p(w, x) = wn−p−1, 0 ≤ p ≤ n− 1, (1.33)

where the coefficients C̃(p)
s (x) ∈ Q[[x]] can be computed recursively. The top

one is given by

C̃
(p)
n−1−p(x) = An−1(x)I0(x) · · · Ip−1(x) = (Ip(x) · · · In−1(x))−1.

Specializing to p = n − 1 we find C̃
(n−1)
0 (x) = In−1(x)−1. Plugging this into

(1.33) with p = n− 1 we find

f̃n−1(w, x) = In−1(x).

Now by downwards induction on p, using the equation f̃p = IpwD
−1
w f̃p+1,

we can reconstruct the all power series f̃p(w, x) (0 ≤ p ≤ n− 1), from their
special values Ip(x) = f̃p(0, x) at w = 0. We obtain in particular the formula

w1−nf̃(w, x) = I0D
−1
w I1D

−1
w · · · In−2D

−1
w In−1. (1.34)

To prove the theorem we write

L(Dw, x) =
r∑
i=0

xiBi(Dw)

where Bi’s are polynomials of degree at most n − 1. Then by definition we
have

L∗(Dw, x) =
r∑
i=0

xiB∗i (Dw) =
r∑
i=0

xiBi(−Dw − i).
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Let f̃(w, x) = ∑∞
d=1 bd(w)xd, with b0(w) = 1. By equation (1.32) we have

n−1∑
i=0

Bi((d− i)w)bd−i(w)xd = wn−1 (bd−i(w) = 0 for d− i < 0).

For d = 0 we get B0(w) = wn−1 and by a simple induction for d ≥ 1

bd(w) =
∑

1≤i1,··· ,is≤r
i1+···is=d

(−1)s
∏s
j=1Bij (w + d− i1 − · · · − ij)

(w + d)n−1∏s−1
j=1(w + d− i1 − · · · − ij)n−1 . (1.35)

Claim 1.3.1. (−w − d)1−nbd(−w − d) = (−w)1−nb̂d(w).

Proof. The denominator of each subsum of w1−nbd(w) is

wn−1(w + d)n−1
s−1∏
j=1

(w + d− i1 − · · · − ij)n−1,

and under w → −w − d it is transformed to

(−w − d)n−1(−w)n−1
s−1∏
j=1

(−w − i1 − · · · − ij)n−1

= (−w − d)n−1(−w)n−1
s−1∏
j=1

(−w − d+ ij+1 + · · ·+ is)n−1

= (−1)(n−1)(s+1)(w + d)n−1(w)n−1
s−1∏
j=1

(w + d− ij+1 − · · · − is)n−1. (1.36)

The numerator of each subsum of w1−nbd(w) is

(−1)s
s∏
j=1

Bij (w + d− i1 − · · · − ij),

and under w → −w − d it is transformed to

(−1)s
s∏
j=1

Bij (−w − i1 − · · · − ij)

= (−1)s
s∏
j=1

(−1)(n−1)B̂ij (w + i1 + · · ·+ ij−1)

= (−1)s(n−1)+s
s∏
j=1

B̂ij (w + d− ij − · · · − is). (1.37)

17



Equations (1.36) and (1.37) imply that

(−w − d)1−nbd(−w − d) =

(−1)n−1 ∑
1≤i1,··· ,is≤r
i1+···is=d

(−1)s
∏s
j=1 B̂ij (w + d− ij − · · · − is)

(w + d)n−1(w)n−1∏s−1
j=1(w + d− ij+1 − · · · − is)n−1 .

Substituting ij with is−j+1 we find

(−w − d)1−nbd(−w − d)

= (−1)n−1 ∑
1≤i1,··· ,is≤r
i1+···is=d

(−1)s
∏s
j=1 B̂is−j+1(w + d− i1 − · · · − is−j+1)

(w + d)n−1(w)n−1∏s−1
j=1(w + d− i1 − · · · − is−j)n−1

= (−w)1−nb̂d(w),

which proves the claim.
Now by comparing the coefficients of xd on both sides of (1.34), we find

w1−nbd(w) =
∑

1≤i0,··· ,is≤r
i0+···in−1=d

ai0(0) · · · ain−1(n− 1)
(w + i1 + · · ·+ in−1)(w + i2 + · · ·+ in−1) · · · (w + in−1) ,

for all d ≥ 0, where ai(p) denotes the coefficient of xi in Ip(x). Splitting up the
sum on the right into the subsum over n-tuples (i0, · · · , in−1) with max{ir} ≤
d− 1 and the sum over n-tuples which are permutations of (d, 0, · · · , 0), and
using a0(p) = 1 for all p, we can rewrite this equation as

n−1∑
p=0

ad(p)
wn−p−1(w + d)p = w1−nbd(w)

−
∑

i0,··· ,in−1≥0
i0+···in−1=d

ai0(0) · · · ain−1(n− 1)
(w + i1 + · · ·+ in−1)(w + i2 + · · ·+ in−1) · · · (w + in−1) .

Now suppose by induction that ar(p) = âr(n − p − 1) for all r < d and all
0 ≤ p ≤ n − 1. The right hand side goes to its conjugate under the map
w → −w − d, as one sees for the second term by making the renumbering
ir → in−r−1. It follows that the left-hand side has the same property, so
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ad(p) = âd(n − p − 1) for all 0 ≤ p ≤ n − 1, completing the inductive proof
of În−1−p = Ip.

Now for the other side if we follow the proof of the first part we see that
the identity Ip = În−p−1 and Claim 1.3.1 are equivalent. Now by induction
we show that

(−1)n−1Bi(−w − i) = B̂i(w),

and therefore it implies that L and L̂ are conjugate.
For i = 0 we have (−1)n−1B0(−w) = wn−1 = B̂0(w). Now using equation
(1.35) for i = 1 we find

b1(w) = − B1(w)
(w + 1)n−1

− B̂1(w)
(w + 1)n−1wn−1 = (−1)n−1w1−nb̂1(w)

= (−1− w)1−nb1(−w − 1) = − B1(−w − 1)
(−w)n−1(−w − 1)n−1 .

It follows that (−1)n−1B1(−w − 1) = B̂1(w). Now for d > 1 we split the
equation (1.35) into two parts

Bd(w)
wn−1(w + d)n−1 = −w1−nbd(w)

+
∑

1≤i1,··· ,is<d
i1+···is=d

(−1)s
∏s
j=1Bij (w + d− i1 − · · · − ij)

wn−1(w + d)n−1∏s−1
j=1(w + d− i1 − · · · − ij)n−1 ,

by induction and our assumption the right hand side goes to its conjugate
under w → −w−d, so the left hand side goes to its conjugate too. Therefore
we find (−1)n−1Bd(−w − d) = B̂d(w). �
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Chapter 2

Calabi-Yau equations

This chapter has two sections. In the first section, we define Calabi-Yau
equations which are linear differential equations of order 4 of MUM with
some extra properties. Consequently one can define the Zinger deformation
and Ip’s (0 ≤ p ≤ 4) for these. Then we prove a statement about the
symmetry of Ip’s.
In the next section first we explain how equation (1.2) for n = 3, 4 has a
modular interpretation. For the case n = 5 which is the holomorphic solution
of the Calabi-Yau equation (1.1), such interpretation has not found yet. In
the continuation for Calabi-Yau equations we give a connection among Ip’s
and the Yukawa coupling.

2.1 Calabi-Yau equations and symmetry
In this section we study a special case, namely Calabi-Yau equations. These
are differential equation of order 4 with MUM which satisfy some extra
properties. According to [2] we list these properties in the following definition.

Definition 2.1.1. We call the differential equation

L : y(4) + a3(x)y(3) + a2(x)y′′ + a1(x)y′ + a0(x)y = 0, (2.1)

of Calabi-Yau type or shortly CY -equation, if satisfies the following condi-
tions

21



i) The singular point x = 0 is a point of maximal unipotent monodromy,
i.e. the indicial equation at x = 0 should have 0 as its only solution. Or
equivalently if we write equation (2.1) as

4∑
i=0

Ai(x)Diy = 0, (2.2)

then A4(0) = 1 and A3(0) = A2(0) = A1(0) = A0(0) = 0. We remind
that D = x d

dx
.

ii) The coefficients ai(x) satisfy the following condition

a1 = 1
2a2a3 −

1
8a

3
3 + a′2 −

3
4a3a

′
3 −

1
2a
′′
3.

iii) The solutions r1 ≤ r2 ≤ r3 ≤ r4 of the indicial equation at x = ∞ are
positive rational numbers satisfying r1 + r4 = r2 + r3−s for some s ∈ Q.
We also suppose that the eigenvalues e2πir of the monodromy around
x =∞ are the zeroes of a product of cyclotomic polynomials, which can
be interpreted as the characteristic polynomial of the monodromy around
x =∞.

iv) The power series solution near x = 0 has integral coefficients.

v) The genus zero instanton numbers computed by the standard recipe are
integral (up to multiplication by an overall positive integer).

In [2] the authors have collected more than 300 examples of CY -equations.

Theorem 2.1.1. Let L be a CY -equation defined in (2.2). Then I1 = I3
and I0/I4 satisfies the following first order linear differential equation

(I0/I4)′ = 2xA′4(x)− A3(x)
2xA4(x) (I0/I4).
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Proof. By definition of CY -equations we have

a1 = 1
2a2a3 −

1
8a

3
3 + a′2 −

3
4a3a

′
3 −

1
2a
′′
3,

From Proposition 1 in [1] this is equivalent to
d2

dt2
(y3/y0) = t

d2

dt2
(y2/y0), (2.3)

where y0.y1, y2, y3 are the Frobenius basis of (2.1) with MUM and t = y1/y0.
On the other hand we have

I1 = D(y1/y0), I2 = D
(
D(y2/y0)/I1

)
, I3 = D(Z/I2), (2.4)

where Z := D
(
D(y3/y0)/I1

)
. On can see d

dt
f(x) = D(f)/I1, hence we have

d2

dt2
(y2/y0) = d

dt
(D(y2/y0)/I1) = I2/I1,

and similarly
d2

dt2
(y3/y0) = Z/I1.

We have from (2.4)
I3 = D(Z

I1
) = DZ

I1
− ZDI2

I2
2
. (2.5)

But from (2.3) we have
y1

y0

I2

I1
= Z

I1
,

or
Z = I2

y1

y0
.

By differentiating we find

DZ = I1I2 + y1

y0
DI2 = I1I2 + Z

DI2

I2
.

Plugging this into (2.5) we find I1 = I3. For the second part from Theorem
1.2.2 and using the fact that I1 = I3 we have

x∫
0

− A3(u)
uA4(u)du = log(I4

0I
3
1I

2
2I

3
1I

0
4 )

= 2 log(I0/I4) + 2 log(I0I1I2I3I4)
= 2 log(I0/I4)− 2 logA4(x).
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Differentiating both sides we get the result.�

Thanks to Theorem 2.1.1 we can detect three classes among CY equa-
tions:

1) full symmetry: I1 = I3 and I0 = I4.
From Theorem 2.1.1 it happens when A3 = 2xA′4. Indeed this identity
is the necessary condition for symmetry which have already seen it. It is
interesting because in this case this necessary condition is sufficient.

2) near symmetry: I1 = I3 and (I0/I4)2 is a polynomial.
Experimentally by checking the first 50 CY -equation in the list of CY -
equations given in [2], this case happens when A4(x) is reducible in Q[x].

3) symmetry failure: I1 = I3 and I0/I4 has the form C
∏(1− αix)ci with αi

and ci algebraic.
Experimentally this case happens when A4(x) is irreducible in Q[x], but
we do not have any proof.

Despite of the generality of third case which one can expect this is the often
case, surprisingly this is rare (at least in the list of CY equations given in [2])
Table 2.1 shows the type of the first 50 CY -equations. In Table 2.2 for those
which are of the second type we show the decomposition of A4(x) and the
polynomial (I0/I4)2. Table 2.3 gives the type of those CY-equations which
has been already known their Calabi-Yau manifolds (according to [13] ).

2.2 Modularity and the Yukawa coupling
It is a basic fact that the classic modular forms satisfy linear differential
equations respect to a modular function. More precisely, let f(z) ∈ Mk(Γ)
be a modular form of weight k, where Γ is a subgroup of finite index in
SL2(Z), and t(z) a modular function. Then the many valued function F (t)
defined by F (t(z)) = f(z) satisfies a linear differential equation of order k+1
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Table 2.1: Types of CY -equations
type 1 type 2 type 3

#1-14,15,16 #17,20,21,22 #19
18,24,25,26 23,27,31,32
28,29,30,34 33,35,37,39
36,38,41,42 40,43,44,49
45,46,47,48

with algebraic coefficients. This differential equation is the kth symmetric
power of the following second order differential equation.

∂2G

∂t2
+ [g, t′]1

g t′2
∂G

∂t
− [g, g]2

2g2 t′2
G = 0, (2.6)

where g := f 1/k, G := F 1/k and [ , ]n is the nth Rankin-Cohen bracket,
defined by

[P,Q]n =
∑
r,s≥0
r+s=n

(−1)r
(
k + n− 1

s

)(
`+ n− 1

r

)
P (r)Q(s), (n ≥ 0),

where P and Q are modular forms of weight k and ` respectively and ′ is d
dz

.
The complete solution spanned by {f, zf, · · · , zkf} and the monodromy
group is the image of Γ in symk(Γ) (cf. [15]).
Since having ”integral monodromy” group is a rare phenomena, one hopes
a differential equation with integral monodromy might have modular prop-
erty. One of the interesting question about the holomorphic solution of a
Picard-Fuchs equation (Our interest are CY -equations) is to find a ’modular
property’ for it. We see this in some examples.
First we look at (1.2) for n = 3. In this case we have

f(x) =
∞∑
d=0

(3d)!
(d!)3 x

d,

and it satisfies (
D2 − 3x(3D + 1)(3D + 2)

)
f(x) = 0.

25



Table 2.2: CY -equations of second type
Database A4(x) (I0/I4)2

17 (9x− 5)2(27x− 1)(27x2 + 1) (9x− 5)3

20 (18x− 1)2(27x− 1)2(54x− 1) (18x− 1)6

21 (4x− 1)(4x+ 1)(8x+ 5)(32x− 1) (8x+ 5)6

22 (4x− 7)2(32x− 1)(x2 − 11x− 1) (4x− 7)6

23 (16x− 1)2(32x− 3)2(32x− 1) (32x− 3)6

27 (x− 3)2(x3 − 289x2 − 57x+ 1) (x− 3)6

31 (1024x− 1)2 (1024x− 1)
32 (27x2 + 270x− 1)4 (27x2 + 270x− 1)7

33 (16x− 1)(128x− 1)(1024x− 1) (128x− 1)6

35 (288x− 1)2(432x− 1)2(846x− 1) (288x− 1)6

37 (256x− 1)4(1024x− 1)4 (256x− 1)7(1024x− 1)7

39 (64x− 1)4(256x− 1)4 (64x− 1)7(256x− 1)7

40 (256x− 1)4 (256x− 1)6

43 (1024x− 1)4 (1024x− 1)6

44 (256x2 − 544x+ 1)4 (256x2 − 544x+ 1)7

49 (432x− 1)4 (432x− 1)6

By Proposition 1.1.1 another solution is

g(x) = f(x) + f1(x) log x,

where

f1(x) = ∂f(w, x)
∂w

|w=0.

But

∂f(w, x)
∂w

=
∞∑
d=1

∏3d
r=1(3w + r)∏d

r=1((w + 1)3 − w3)

( 3d∑
r=1

3
3w + r

−
d∑
r=1

3(w + r)2 − w2

(w + r)3 − w3

)
xd,

and therefore

f1(x) =
∞∑
d=1

(
(3d)!
(d!)3

3d∑
i=d+1

3
i

)
xd. (2.7)
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Table 2.3: Geometric Calabi-Yau equations
Database Description Type

13 X(6, 6) ∈ P5(1, 1, 2, 2, 3, 3) 1
2 X(10) ∈ P4(1, 1, 1, 2, 5) 1
9 X(2, 12) ∈ P5(1, 1, 1, 1, 4, 6) 1
12 X(3, 4) ∈ P5(1, 1, 1, 1, 1, 2) 1
7 X(8) ∈ P5(1, 1, 1, 1, 4) 1

8,125 X(6) ∈ P4(1, 1, 1, 1, 2) 1,1
10 X(4, 4) ∈ P5(1, 1, 1, 1, 2, 2) 1

14,85,86 X(2, 6) ∈ P5(1, 1, 1, 1, 1, 3) 1,1,1
1,79,87,128 X(5) ∈ P4 1,1,1,1

11,95 X(4, 6) ∈ P5(1, 1, 1, 2, 2, 3) 1,1
6,75,76,96 X(2, 4) ∈ P6 1,1,1,2

4 X(3, 3) ∈ P5 1
51 Conj:X → B5 1

5,90,91,93 X(2, 2, 3) ∈ P6 1,1,1,1
99 Conj:5× 5-Pfaffian ∈ P6 1
222 7× 7-Pfaffian ∈ P6 2
24 X(1, 1, 3) ∈ Grass(2, 5) 1

3,72,224 X(2, 2, 2, 2) ∈ P7 1,1,3
25 X(1, 2, 2) ∈ Grass(2, 5) 1
29 Conj:X(1, 1, 1, 1, 1, 1, 2) ∈ X10 1
26 X(1, 1, 1, 1, 2) ∈ Grass(2, 6) 1
42 Conj:X(1, 1, 2) ∈ LGrass(3, 6) 1
184 Conj:X(1, 2) ∈ X5 1
27 X(1, 1, 1, 1, 1, 1, 1) ∈Grass(2, 7) 2
28 X(1, 1, 1, 1, 1, 1) ∈Grass(3, 6) 1
247 Tjøtta’s example 2
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We define

q(x) := exp( g(x)
f(x)) = x exp(f1(x)

f(x) )

= x+ 15x2 + 279x3 + 5729x4 + 124554x5 +O(x6),

and the mirror map as the inverse function

x(q) = q − 15 q2 + 171 q3 − 1679 q4 + 15054 q5 +O(q6),

which is convergent for |q| < 1. Let z = 1
2πi log q and η(z) = q1/24∏∞

n=1(1−qn)
the eta- function. Then one can see

X(z) = x(q) = η(z)12

η(z)12 + 27η(3z)12 ,

is a modular function for the congruence subgroup Γ0(3). Let δ = 1
2πi

d
dz

=
q d
dq

. Then the derivative of a modular function is a modular form of weight
2. By definition we have I1(x) = 1 + x(f1(x)

f(x) )′ and

δx(q) = q(x) 1
q(x)′ = x. exp(f1

f
). 1

exp(f1
f

)
(
1 + (f1

f
)′
) = x(q)

I1(x(q)) ,

is a modular form of weight 2 for Γ0(3), or I1(x(q)) = x(q)
δ(x(q)) is a modular

form of weight −2. Thanks to Theorems 1.2.2 and 1.3.1 we have

f 2(x(q)) = 1
I1(x(q)) .

1
1− 27x(q) ,

is also a modular form of weight 2 for Γ0(3). One can show that

f(x(q)) = 1 + 6
∞∑
n=1

(∑
d|n

(d
n

)qn
)
∈M(Γ0(3), (3)).

Example (1.2) for n = 4 also has a modular property. Its differential equation
is the symmetric square of the following one:

(1− 44x)D2 − 128xD − 12x = 0.
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But when n > 4 the story is different. Here we discuss the case n = 5.
First we see that the differential equation in this case is not a symmetric
power, moreover the monodromy group is not a subgroup of SL2(Z), therefore
the holomorphic solution can not be a modular form. But it is not the end
of the story. In this case the monodromy group is still arithmetic, indeed
the monodromy group is a arithmetic subgroup of Sp(4,Z), and therefore
it might there is a modular interpretation of more than one variable, e.g.,
Siegel modular forms (cf.[4]). In this case the Frobenius basis {yi}3

i=0, of the
differential equation

L :
(
D4 − 5x(5D + 1)(5D + 2)(5D + 3)(5D + 4)

)
y = 0, (2.8)

is given by Proposition 1.1.1. The mirror map is

x(q) = q − 770 q2 + 171525 q3 − 81623000 q4 − 35423171250 q5 +O(q6),

and

f(x(q)) = 1 + 120 q + 21000 q2 + 14115000 q3 + 13414125000 q4 +O(q5),

as we see the coefficients are too big for modularity and in fact the convergent
domain of f(x(q)) is not the disk |q| < 1 (cf.[18]). From Theorem 1.3.1, Ip’s
are symmetric, hence from Theorem 1.2.2 we have

I2
0 (x(q)) =

(δx(q)
x(q)

)3
.

1
1− 55x(q) .

I1(x)
I2(x) . (2.9)

We will show that the quotient I2(x(q))
I1(x(q)) up to a constant is K(q) the

Yukawa coupling, defined by

K(q) = N0.δ
2(y2/y0), (2.10)

where y0 = f(x) and y2(x) = f2 + f1 log x + f log2 x
2! and N0 = 5 in this case.

We have by definition

I1 = 1 +D(F1

F
), I2 =

1 +D(
F1
F

+D( F2
F

)
I1

)
I1

.
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On the other hand by chain rule

δ(y2/y0) = q(x)(y2/y0)′
q′(x) = D(y2/y0)

I1(x)

=
D(F2

F
) + log x(D(F1

F
) + 1) + F1

F

I1

= log x+
D(F2

F
) + F1

F

I1
.

Therefore
δ2(y2/y0) = I−1

1 D(log x+
D(F2

F
) + F1

F

I1
) = I2

I1
.

It follows that I2(x(q))
I1(x(q)) = 1

5K(q). We can rewrite (2.9) as

K(q) = I−2
0 (x(q))

(δx(q)
x(q)

)3
.

5
1− 55x(q) . (2.11)

Proposition 2.2.1. For the CY -equation given by (2.2), we have

K(q) = N0.
I2(x(q))
I1(x(q)) ,

where K(q) is the Yukawa coupling and N0 is a constant.

Proof. See above.

Remark 2.2.1. The main property of the Yukawa coupling when the CY -
equation is the Picard-Fuchs of a family of Calabi-Yau threefold, is counting
the number of rational curves of fixed degree on the mirror. For example in
the quintic case, we write

K(q) = 5 +
∞∑
`=1

n3
`q
`

1− q` = 5 + 2875 q + 4876875 q2 +O(q3).

Then n` is the number of rational curves of degree ` on the mirror of a generic
quintic threefold (for example see [9]).
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Chapter 3

Structure of the Zinger
deformation at w =∞

3.1 Introduction
In the previous chapter we have studied the structure of the Zinger deforma-
tion at w = 0. In this chapter we describe some of its structures at w =∞.
In [16] the authors have shown that for every f ∈ P ∩Mn, every coefficient
of the power series log f(w, x) ∈ Q(w)[[x]] is Ox(w) as w → ∞. In the next
theorem we generalize this result.
Theorem 3.1.1. Let F (w, x) ∈ P such that log MnF

F
= Ox(1), for some

n ≥ 1. Then we have
logF (w, x) = Ox(w),

and for every k ≥ 0

log MkF (w, x)
F (w, x) = Ox(1).

Remark 3.1.1. This theorem gives a criteria for the set P∩ M̄, where M̄ =
∪n≥1Mn. Indeed if F ∈ P and log MF (w,x)

F (w,x) 6= Ox(1), then F /∈ M̄.
Corollary 3.1.1. Let f(w, x) ∈ P satisfies in the GHD (1.5). Then every
coefficient of the power series log f(w, x) ∈ Q(w)[[x]] is Ox(w) as w →∞.

Proof of Corollary 3.1.1. In this case Mnf = f and obviously the
condition of theorem 3.1.1 holds.�
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Now we prove the theorem.
Proof. We set

H(w, x) := logF (w, x) =
∞∑
r=1

hr(w)xr,

and we have M(eH(w,x)) = eH
∗(w,x), where

H∗(w, x) = H(w, x)−H(0, x) + log(1 + DH(w, x)−DH(0, x)
w

). (3.1)

We have to show that hr(w) = O(w) for all r ≥ 1. We suppose by induction,
h1, · · · , hs−1 are O(w) and we show that hs(w) = O(w).

DH(w, x)−DH(0, x)
w

=
∞∑
r=1

r
hr(w)− hr(0)

w
xr

=
s−1∑
r=1

O(1)xr + s hs(w)
w

xs +O(xs+1). (3.2)

Hence from (3.1) and (3.2),

H∗(w, x) = H(w, x) +Ox(1) + s hs(w)
w

xs +O(xs+1). (3.3)

Iterating, we find that for every k ≥ 1

log(MkF ) = logF (w, x) +Ox(1) + ks hs(w)
w

xs +O(xs+1), (3.4)

especially when k = n. But by assumption log(MnF
F

) = Ox(1), so it follows
that hs(w) = O(w), which proves the first part. The second part is obvious
from the first part and equation (3.4).�

3.2 Asymptotic expansion of the Zinger de-
formation

Now let f(w, x) be the Zinger deformation of some f(x). Then Theorem
3.1.1 implies that log f(w, x) has an asymptotic expansion ∑∞

j=−1 µj(x)w−j
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with µj(x) ∈ xQ[[x]] for all j ≥ −1 or equivalently,

f(w, x) ∼ eµ(x)w
∞∑
s=0

Φs(x)w−s (w →∞) (3.5)

Thanks to this expansion, in [16], the authors have computed µ(x) and Φ0(x)
for F(w, x). With a slight modification this proof works for the general case.
We give it in the following proposition.

Proposition 3.2.1. In the expansion (3.5)

µ(x) =
x∫

0

L(u)− 1
u

du, (3.6)

where L(x) = An−1(x)−1/n, and An−1(x) defined in (1.4). Moreover if Ip’s
are symmetric, then Φ0(x) = L(x).

Proof. From Theorem 3.1.1, each fp(w, x) = Mpf(w, x) has an asymp-
totic expansion

fp(w, x) ∼ eµ(x)w
∞∑
s=0

Φp,s(x)w−s (w →∞),

with the same µ(x) in the exponent. The equation fp+1 = Mfp gives

Φ0,s = Φs, Φp+1,s = 1 + µ′

Ip
Φp,s +

{
(Φp,s−1/Ip)′ if s ≥ 1,

0 otherwise. (3.7)

The case s = 0 of (3.7) gives by induction

Φp,0 = (1 + µ′)p
I0 · · · Ip−1

Φ0,0. (3.8)

But fn = f or Φn,0 = Φ0,0, hence we obtain from (3.8)

(1 + µ′)n = I0 · · · In−1 = An−1(x)−1,

which proves the first equation in (3.6) because µ(x) is a power series in x

with no constant term.
For the second part, from Theorem 1.2.2 and the symmetry we have

I0(x)nI1(x)n−1 · · · In−1(x) = L(x)
n(n+1)

2 . (3.9)
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Now we define
Hp(x) := L(x)p

I0(x) · · · Ip−1(x) (p ≥ 0),

then we have

H0 = 1, Hp/Hp+1 = Ip/L, H1H2 · · ·Hn = 1, Hp+n = Hp, Hn−p = H−1
p .

(3.10)
In above the first two equations follow from definition and the third one
follows from (3.9). The last two equations follow from Theorem 1.2.1 and
the symmetry. We can rewrite equation (3.8) as

Φp,0(x) = Hp(x)Φ0(x) p ≥ 0.

Now substituting this into the case s = 1 of (3.7) we find inductively

Φp,1(x) = Hp(x)
(
Φ1(x) + p

Φ′o − L′
L

+ Φ0

L

p∑
r=1

H ′r
Hr

)
p ≥ 0.

Setting p = n and using the third and fourth equations (3.10) and fn = f ,
we deduce that Φ0 = L. �

Now by applying (1.5) to equation (3.5) one can compute step by step
each coefficient of expresion (3.5). In [16] the authors have found a recursive
differential equation for the coefficients of F(w, x) (equation (1.3)), and also
they have computed explicitly the first four terms. Here first we do the same
for general case and then we go to the main theorem of this chapter.

Let f(w, x) ∈Mn be the Zinger deformation of f(x) and An−1(x) be the
leading coefficient of its differential equation. We write

An−1(x) =
p∏
i=1

(1− αix),

for some αi ∈ C. Then for L(x) := An−1(x)−1/n we have

DL = L
p∑
i=1

xi − 1
n

, Dxi = xi(xi − 1) (3.11)

where xi = (1−αix)−1 and D = x d
dx

. It turns out that the ring Q[x1, · · · , xp]
is a differential ring with D = x d

dx
. This property helps us to compute
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inductively the higher derivatives of L. For simplicity we denote

X = (x1, · · · , xp), Y =
p∑
i=1

xi − 1
n

. (3.12)

We have Dwe
µw = eµwD̃w where D̃w = D + Lw. By induction on k

D̃k
w =

k∑
m=0

(
k

m

)
D̃m
w (1)Dk−m = Dk + kLwDk−1 + · · · (3.13)

where
D̃m
w (1) =

m∑
k=0

Hm,k(n,X)(Lw)m−k, (3.14)

with Hm,k(n,X) ∈ Q[x1, · · · , xp], inductively given by H0,k = δ0,k and for
m > 1

Hm,k = Hm−1,k +
( p∑
i=1

xi(xi − 1) d

dxi
+ (m− k)Y

)
Hm−1,k−1. (3.15)

For example, for k = 0, 1, 2 we find

Hm,0 = 1, Hm,1 =
(
m

2

)
Y, Hm,2 =

(
m

3

) p∑
i=1

xi(xi − 1)
n

+ 3
(
m+ 1

4

)
Y 2.

(3.16)
In the following lemma in the case p = 1 we give a formula for Hm,k whose
reqursive part is independent of m.

Lemma 3.2.1. Let Hm,k (m, k ≥ 0) be as in (3.15). Then for p = 1, fixed
k ≥ 1 and varying m, we have

Hm,k(n,X) =
k∑
j=1

(
m

j + k

)
Qk,j(n,X), (3.17)

with Qk,j ∈ Z[n−1, X] defined inductively by

Q0,j = δ0,j, Qk,j = (X−1)
(
XQ′k−1,j+

jQk−1,j + (k + j − 1)Qk−1,j−1

n

)
k ≥ 1.

(3.18)
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Proof. For k = 1, from definition we have

Hm,1 = 1
n

(
m

2

)
(X − 1) =

(
m

2

)
Q1,1(n,X).

Now let us assume the identity is true for all k′ < k. By definition we have

∆Hm = Hm,k −Hm−1,k = (X − 1)
(
X

d

dX
+ m− k

n

)
Hm−1,k−1

= (X − 1)
(
X

d

dX
+ m− k

n

)
k−1∑
j=1

(
m− 1

k − 1 + j

)
Qk−1,j(n,X).

Then from (3.18) we have

∆Hm =
k−1∑
j=1

(
m− 1

k − 1 + j

)(
Qk,j −

jQk−1,j + (k + j − 1)Qk−1,j−1

n

)

+ (X − 1)
k−1∑
j=1

m− k
n

(
m− 1

k − 1 + j

)
Qk−1,j.

∆Hm =
k−1∑
j=1

(
m− 1

k − 1 + j

)
Qk,j − (X − 1)

k−1∑
j=1

k + j − 1
n

(
m− 1

k − 1 + j

)
Qk−1,j−1

+ (X − 1)
k−1∑
j=1

m− j − k
n

(
m− 1

k − 1 + j

)
Qk−1,j,

but (m− j − k)
(
m−1
k−1+j

)
= (k + j)

(
m−1
k+j

)
, so we find

∆Hm =
k−1∑
j=1

(
m− 1

k − 1 + j

)
Qk,j + 2k − 1

n

(
m− 1
2k − 1

)
(X − 1)Qk−1,k−1,

but by definition (3.18) we have Qk,k = 2k−1
n

(X − 1)Qk−1,k−1. Therefore

Hm,k −Hm−1,k =
k∑
j=1

(
m− 1

j − 1 + k

)
Qk,j

=
k∑
j=1

((
m

k + j

)
−
(
m− 1
k + j

))
Qk,j(n,X),
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which completes the induction step. �
The function f̃(w, x) = e−µ(x)wf(w, x), satisfies the differential equation
LF̃ = 0, where

L = Ln(D̃wL(D̃w, x)− wn) = D̃n
w + Ln

n−1∑
k=0

(Ak−1 +DAk)D̃k
w,

with A−1 = −wn.
Using (3.13) and (3.14) we can expand L as L = ∑n

k=1(Lw)n−kLk, with

Lk =
k∑
i=0

Ek,i(n,X)
nk−i

Di, (3.19)

where

Ek,i(n, x) =
(
n

i

)
Hn−i,k−i(n,X)nk−i

− Ln
k−i∑
r=1

(
n− r
i

)
Ãn−r(x)Hn−i−r,k−i−r(n,X)nk−i, (3.20)

where Ãk = Ak−1 +DAk (0 ≤ k ≤ n− 1). We have included the factor ni−k
in (3.19), because then in our main example (equation (1.1)), Ek,i(n,X) are
polynomials of n and X. Finally from the differential equation LF̃ = 0 and
the asymptotic expansion of F̃ for large w we obtain the following first order
ODEs for Φs:

L1(Φs) + 1
L
L2(Φs−1) + 1

L2L3(Φs−2) + · · ·+ 1
Ln−1Ln(Φs−n+1) = 0, s ≥ 0,

(3.21)
with the initial condition Φs(0) = δ0,s.

For F(w, x) given by equation (1.3), p = 1 (the number of linear factors
of An−1(x)). In this case we have L = (1 − nnx)−1/n and with the abuse of
notation we set X = x1 = Ln. We obtain from the differential equation (1.1)
and equation (3.20)

Ek,i(n,X) =
(
n

i

)
Hn−i,k−i(n,X)nk−i

− (X − 1)
k−i∑
r=1

(
n− r
i

)
Sr(n)Hn−i−r,k−i−r(n,X)nk−i−r, (3.22)
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where Sr(n) denotes the rth elementary symmetric function of 1, 2, · · · , n.
The table below shows few terms of Ek,i.

k Ek,0 Ek,1 Ek,2
0 1 0 0
1 −n(X − 1) n 0
2 n(n− 1)

(
(n−2)(n−11)

24 X − 1
)
(X − 1) −3

2n
2(n− 1)(X − 1) n(n−1)

2

In this case for s = 1 we have L1(Φ1) + 1
L
L2(Φ0) = 0. From (3.19) and

(3.20) we have

L1 = nD − (X − 1) (3.23)

L2 =
(
n

2

)
D2 − 3(n− 1)

2 (X − 1)D + n− 1
n

((n− 2)(n− 11)
24 X − 1

)
(X − 1),

(3.24)

It turns out
Φ1(x) = (n− 2)(n+ 1)

24n (L(x)− L(x)n).

Similarly

Φ2(x) = (n− 2)2(n+ 1)2

2(24n)2 (L− 2Ln + L2n−1),

and in general one can show that Φs(x) for fixed s and n varying is an element
of Q[n, n−1, L, L−1, X], where X = Ln (See.[16]).

3.3 Logarithmic derivative of the Zinger de-
formation

In this section we study the structure of logarithmic derivative of the Zinger
deformation in special cases. The reason is the following. As we have seen
in the previous section, for the asymptotic expansion of F(w, x), we have
Φs(x) ∈ Q[n, n−1, L, L−1, X] and this polynomial is too complicated. Part
of this difficulty goes back to the recursive equation of Φs which is in fact a
differential equation and it is not useful in practice. But the advantage of the
logarithmic derivative as we will see in the next theorem is that its coefficients
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up to a simple factor just depend on n,X and its recursive equation is not
in the differential equation form.
Let

Ln =
n−1∑
k=0

Ak(n, x)Dk
w, (3.25)

where Ak(n, x) ∈ Q[n, x], (0 ≤ k ≤ n− 1) be a family of MUM differential
operators with parameter n and

Ln : (DwLn − wn)y = 0, (3.26)

be the corresponding GHD differential equations. Then we recall that for
each n, fn(w, x) the holomorphic solutions with fn(0, 0) = 1 is the Zinger
deformation of fn(0, x). When n varies these functions form a family. In the
continuation we would like to study this family.

Theorem 3.3.1. Let Ln be the family of GHD as in (3.26), with

− n− 1
2 An−2(x) = DAn−1(x), (3.27)

An−i(x)
An−1(x) ∈

1
ni
Q[n,X], 1 ≤ i ≤ n. (3.28)

where X as in (3.12).
Suppose f(w, x) = fn(w, x) is the family of Zinger deformations correspond-
ing to Ln and set f̃(w, x) = e−µ(x)wf(w, x), where µ(x) is detremined as in
(3.6). Then there is a power series P(n,X, T ) ∈ Q[n,X][[T ]] such that the
function x ∂

∂x
log f̃(w, x) has the asymptotic expansion

x
∂

∂x
log f̃(w, x) ∼ 1

n
P(n,X, 1

nwL
) w →∞,

where L = An−1(x)−1/n. The power series P is characterized uniquely by the
recursive equation

∞∑
i=0

Ei(n,X, T )
(
P(n,X, T ) + x

∂

∂x
− nY T ∂

∂T

)i
(1) = 1, (3.29)

where
Ei(n,X, T ) =

∞∑
k=0

Ek,i(n,X)T s, (3.30)

with Ek,i(n,X) as in (3.20).
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Remark. If Ip’s are symmetric then only half of Ak’s need satisfy the
condition (3.28). More preciesly if An−2k−1 ∈ 1

n2k+1LnQ[n,X], then by Corol-
lary 1.3.1 it turns out that An−k ∈ 1

nkLnQ[n,X].

Corollary 3.3.1. For F(w, x) as in (1.3) we have

x
∂

∂x
log F̃(w, x) ∼ 1

n

∞∑
s=0

Ps(n,X)
(nwL)s (3.31)

where X = (1− nnx)−1, L = X1/n and each Ps(n,X) ∈ Q[n,X] is a polyno-
mial of degree s+ 1 in X and 2s+ 1 in n.

Before giving the proofs of Theorem 3.3.1 and Corollary 3.3.1, we will
show how the recursive power series uniquely works. If we write P(n,X, T )
as

P(n,X, T ) =
∞∑
s=0

Ps(n,X)T s,

then we will show that each Ps(n,X) ∈ Q[n,X]. We set

Pi(n,X, T ) :=
∞∑
s=0

Ps,i(n,X)T s :=
(
P(n,X, T ) + x

∂

∂x
− nY T ∂

∂T
)
)i

(1).

(3.32)
We note that x ∂

∂x
= ∑p

i=1(xi − 1)xi ∂
∂xi

, and from the above definition we see
that Ps,0(n,X) = δs,0, Ps,1(nX) = Ps(n,X) and

Ps,i+1(n,X) =
(
n

p∑
i=1

(xi − 1)xi
∂

∂xi
− snY

)
Ps,i(n,X)

+
s∑
r=0

Pr,i(n,X)Ps−r(n,X), i = 1, 2, 3, ... (3.33)

Also from (3.29) we have
s∑
r=1

r∑
i=0

Er,i(n,X)Ps−r,i(n,X) = 0, s = 1, 2, 3, ... (3.34)

From the condition (3.28) it follows that Ãn−i(x) ∈ 1
niLnQ[n,X], hence

Ek(n, x) is a polynomial of n and x1, · · · , xp. It means it is an elemnt of
Q[n,X]. Now for each s ≥ 1 with equation (3.34) and given all Ps′,i(n,X)
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with s′ < s − 1 we find Ps−1(n,X). since Es,i(n,X) and Ps′,i(n,X) are
polynomials, therefore Ps−1(n,X) which is uniquely determined in this way
will be a polynomial. With this information and equation (3.33) we find
Ps−1,i(n,X) for all i > 1. We show this procedure in some examples. From
equation (3.34) we have

P0 = −E1,0.

Now with equation (3.33)

P0,2 = n
p∑
i=1

(xi − 1)xi
d

dxi
P0 + P 2

0 , P0,3 =
p∑
i=1

(xi − 1)xi
d

dxi
P0,2 + P0P0,2.

Now equation (3.34) for s = 2 says

P1 = −(E2,0 + E2,1P0 + E2,2P0,2),

so we can find P1. Now using equation (3.33) for s = 1,

P1,2 = n(
p∑
i=1

(xi − 1)xi
d

dxi
− Y )P1 + 2P0P1.

Finally for s = 3:

P2 = −(E3,0 + E3,1P0 + E3,2P0,2 + E3,3P0,3

+E2,1P1 + E2,2P1,2),

and we can find P2. Applying this computation to our main example, i.e.
F(w, x) shows that

P0(n,X) = X − 1,

P1(n,X) = −(n+ 1)(n− 1)(n− 2)
24 (X − 1)X,

P2(n,X) = 0.

Proof of Corollary 3.3.1. To show equation (3.31) we just need to check
the two conditions (3.27) and (3.28). Since in this case we have full symmetry
for Ip’s, the first condition which is in fact the necessary condition for the
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symmetry of Ip’s (cf. Lemma 1.3.1) holds. For the second one we have by
definition

An−r = −xnn−rSr(n) = Sr(n)
nr

(1− 1
Ln

), 1 < r ≤ n.

Hence An−r(x)
An−1(x) = X−1

nr Sr(n) ∈ 1
nrQ[n,X] and (3.31) follows from Theorem

3.3.1.
For the degree of X, we see from the recursive equation of Hm,j by a simple
induction that in this case the degree of X for Hk,j is j, so the degree of
Ek,i(n,X) will be k − i and from the recursive equation (3.33), the result
follows.
For the degree of n from (3.17) and (3.18) one can easily check that the
degree of n in Ek,i(n,X) is 2k − i. From this and the recursive equation
(3.34) we find the result.�
Proof of Theorem 3.3.1. We define

∞∑
s=0

Ψs,i(n, x)T s :=
∑∞
s=0D

i Φs(n, x)T s∑∞
s=0 Φs(n, x)T s , (3.35)

where D = x d
dx

. We notice that
∞∑
s=0

Ψsw
−s :=

∞∑
s=0

Ψs,1w
−s = x

∂

∂x
log F̃(w, x).

By differentiating from equation (3.35) we have
∞∑
s=0

DΨs,iT
s =

∑∞
s=0D

i+1ΦsT
s∑∞

s=0 ΦsT s
−
∑∞
s=0 D

iΦsT
s∑∞

s=0 ΦsT s
.

∑∞
s=0DΦsT

s∑∞
s=0 ΦsT s

,

or ∞∑
s=0

Ψs,i+1T
s =

∞∑
s=0

DΨs,iT
s + (

∞∑
s=0

Ψs,iT
s)(
∞∑
s=0

ΨsT
s). (3.36)

We have
s∑
r=0

r∑
i=0

1
nr−iLr−1Er,iΨs−r,i = 0, s = 1, 2, 3, ... (3.37)

For the moment let us assume this is true and we show by induction on s,that

Ψs,i = Ps,i(n,X)
ns+iLs

, (3.38)
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where Ps,i(n,X) ∈ Q[n,X] given by the recursive equations (3.33),(3.34).
For s = 0, i = 1 we have

Ψ0 = DΦ0

Φ0
= DL

L
= Y =

p∑
i=1

xi − 1
n

= P0

n
.

Now if (3.37) is true for s′ ≤ s and i′ < i+ 1, from equation (3.36) for Ψs,i+1
we have

Ψs,i+1 = DΨs,i +
s∑
r=0

Ψr,iΨs−r,1

= D(Ps,i(n,X)
ns+iLs

) +
s∑
r=0

Pr,i(n,X)
nr+iLr

.
Ps−r,i(n,X)
ns−r+iLs−r

= nDPs,i − s
∑p
k=1(xk − 1)Ps,i

ns+i+1Ls
+

s∑
r=0

Pr,i(n,X)Ps−r,i(n,X)
ns+i+1Ls

.

but D = x d
dx

= ∑p
k=1 xk(xk − 1) d

dxk
, hence it follows from equation (3.33)

Ψs,i+1 = Ps,i+1(n,X)
ns+i+1Ls

.

Now coming back to equation(3.37) we get

Ψs−1 = −1
nsLs−1 (Es,0 +

s∑
r=2

r∑
i=1

Er,iPs−r,i), (3.39)

therefore from (3.34) we find

Ψs−1 = Ps−1(n,X)
nsLs−1 ,

and this completes the induction step. The only thing is to prove the identity
(3.37). We show this identity by induction on s.
For s = 1 we have to check that

1
n
E1,0 + E1,1Ψ0 = 0,

but E1,0 = −nY , E1,1 = n. Therefore we have to show

Ψ0 = Y.
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But by definition (3.35) for i = 1 we have

∞∑
s=0

ΨsT
s =

∑∞
s=0DΦsT

s∑∞
s=0 ΦsT s

= Y +O(T ). (3.40)

Hence the identity is true for s = 1. Now suppose that the identity is
true for all s′ < s, then for s from definition (3.35)

DΦs =
s∑
i=0

ΦiΨs−i = LΨs + Y Φs +
s−1∑
i=1

ΦiΨs−i.

From (3.23) we have

Ψs = 1
L

( 1
n
L1(Φs)−

s−1∑
j=1

ΦjΨs−j). (3.41)

But

L1(Φs) = −
s+1∑
r=2

1
Lr−1Lr(Φs+1−r) = −

s+1∑
r=2

r∑
i=0

Er,i
nr−i−1Lr−1D

i(Φs−r+1).

Plugging this into (3.41) we find

Ψs = −
s+1∑
r=2

r∑
i=0

Er,i
nr−iLr

Di(Φs−r+1)− 1
L

s−1∑
j=1

ΦjΨs−j.

Using the induction step for Ψs−j,1, 1 ≤ j ≤ s − 1, in the last equation we
find

Ψs =−
s+1∑
r=2

r∑
i=0

Er,i
nr−iLr

Di(Φs−r+1)

+
s−1∑
j=1

s−j+1∑
r=2

r∑
i=1

ΦjEr,iΨs−j+1−r,i

nr−iLr
+

s−1∑
j=1

ΦjEs−j+1,0

ns−j+1Ls−j+1 (3.42)

= −
s+1∑
r=2

r∑
i=1

Er,i
nr−iLr

Di(Φs−r+1) − Es+1,0

ns+1Ls
(3.43)

+
s−1∑
j=1

s−j+1∑
r=2

r∑
i=1

ΦjEr,iΨs−j+1−r,i

nr−iLr
. (3.44)
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For fixed 2 ≤ r ≤ s+1 and 1 ≤ i ≤ r, from the definition of Ψs,r (equation
(3.35)) we have

Ψs−r+1,i = 1
L

(Di(Φs−r+1)−
s−r+1∑
j=1

ΦjΨs−j+1−r,i).

It follows
Ψs = − Es+1,0

ns+1Ls
−

s+1∑
r=2

Er,iΨs−r+1,i

nr−iLr−1 ,

which completes the induction step.
�
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Part II

Coefficients of Ps(n,X) with
respect to n

47





In the last chapter we proved that there exist polynomials {Ps(n,X)}s≥0,
such that

x
∂

∂x
log F̃(w, x) ∼ 1

n

∞∑
s=0

Ps(n,X)
(nwL)s w →∞.

We can consider Ps(n,X) as a function of n and we can write

Ps(n,X) = ρs(X)n2s+1 + µs(X)n2s + · · · . (3.45)

This part has four chapters. In the first two chapters we compute the first
and the second top coefficients of Ps(n,X), namely, ρs(X) and µs(X). In
Chapter 6 we give some preliminaries which is necessary for Chapter 7. We
define the Euler multiplication and the Euler map and give some identities for
Stirling numbers. Finally in Chapter 7 we show that the generating function
of the `th top coefficient of Ps(n,X) where s varies belongs to the image of
elementary functions under the Euler map.
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Chapter 4

The leading coefficient of
Ps(n,X)

In this chapter we study the generating function of {ρs(X)}s≥0, the lead-
ing coefficient of Ps(n,X)), and we give a complete description for it. By
experiment we find

ρ0(X) = ρ2(X) = ρ4(X) = 0,

and

ρ1(X) = −1
24 (X2 −X),

ρ3(X) = 7
5760(6X4 − 12X3 + 7X2 −X),

ρ5(X) = − 31
967680(120X6 − 360X5 + 390X4 − 180X3 + 31X2 −X).

These results motivated the authors in [16] to guess that ρs(X) = αs+1es+1(X),
where αk is the coefficient of tk in

∑
k≥0

αkt
k = t/2

sinh t/2 = 1− 1
24t

2 + 7
5760t

4 − 31
967680t

6 + · · · (4.1)

and ek(X) is an Euler polynomial. The Euler polynomials are defined induc-
tively by

e1(X) = X − 1, ek+1(X) = X(X − 1) ∂

∂X
ek(X), k ≥ 1. (4.2)
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For example we have e2(X) = X2−X, e3(X) = 2X3−3X2+X, and generally

ek(X) =
k∑
l=1

(−1)k−l(l − 1)!
{
k

l

}
X l ∈ Z[X], (4.3)

where
{
k
l

}
is a Stirling number of the second kind. For our purpose it is

convenient to set e0(X) = logX which is compatible with inductive definition
(4.2). The main task of this chapter is to prove the above guess.

Remark 4.0.1. Let U := 1− 1
X

, then U ∂
∂U

= X(X − 1) ∂
∂X

. Therefore we
have ek(X) = Ek(U), where

E1(U) = U

1− U , Ek+1(U) = U
∂

∂U
Ek(U) k ≥ 1.

The rational function Ek(U) has the power series expansion

Ek(U) =
∞∑
d=1

dk−1Ud. (4.4)

Here also by extending this definition to k = 0, we have

E0(U) =
∞∑
d=1

Ud

d
= − log(1− U).

One of the interesting properties of Euler polynomials is that Eisenstein
series can be written as a sum of Euler polynomials. Indeed if gk(τ) =∑
n≥1 σk−1(n)qn is the Eisenstein series of weight k up to a constant, then we

have by definition

gk(τ) =
∑
n≥1

σk−1(n)qn =
∑
`,m≥1

mk−1q`m =
∑
`≥1

Ek(q`).

where τ ∈ H in the upper half plane and q = e2πiτ .

4.1 Statement and proof
Theorem 4.1.1. Let

P̂(X,T ) =
∞∑

s=−1
ρs(X)T s,
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be the generating function of polynomials {ρs(X)}s≥0, with an extra term
ρ−1(X) = logX, where ρs(X) for s ≥ 0, is the leading coefficient of Ps(n,X).
Then we have

P̂(X,T ) = −
∞∑
n=1

Uqn−
1
2

1− Uqn− 1
2
,

where q = eT , U = 1− 1
X

. Furthermore for each s ≥ −1

ρs(X) = αs+1es+1(X), (4.5)

with αk as defined in (4.1).

We give the proof in some steps. First we have to find a recursive equa-
tion for ρs,i(X), the leading coefficient of Ps,i(n,X),i.e. the coefficient of
n2s+i. This can be done by using the recursive equations (3.34) and (3.33)
for Ps(n,X) . But we can not use it directly, because the original definition
of Hm,k, i.e. equation (3.15) is not good for our porpouse. We need to free
m from the recursive equation which we have done this in Lemma 3.2.1.
Now let ak,i(X) and ρs,i(X) be the leading coefficients of Ek,i(n,X) and
Ps,i(n,X) respectively. From recursive equations (3.34) and (3.33) we have

s∑
r=1

r∑
i=0

ar,i(X)ρs−r,i(X) = 1, (4.6)

ρs,i+1(X) = Dρs,i(X) +
s∑
r=0

ρr,i(X)ρs−r(X). (4.7)

The next problem is that in the first recursive equation we have a Hadamard
product of two sequences {ar,i(X)}i≥0 and {ρs−r,i(X)}i≥0. In this form we
can not separate them by means of generating function. The following lemma
resolves this problem.

Lemma 4.1.1. Let k ≥ i ≥ 0,

ak,i(X) = lim
n→∞

Ek,i(n, x)
n2k−i , (4.8)

be the leading term of Ek,i(n,X). Then

ak,i(X) = 1
i!ak−i,0(X).
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Proof. Let qk,j(X) and hk(X) be the leading coefficients of Qk,j(n,X)
and Hn,k(n,X) respectively (here k and j are fixed with n→∞).

Qk,j(n,X) = qk,j(X)n−j +O(n−j−1).

The first few terms are

q1,1(X) = X − 1,
q2,1(X) = X(X − 1), q2,2(X) = 3(X − 1)2,

q3,1(X) = X(X − 1)(2X − 1), q3,2(X) = 10X(x− 1)2, q3,3(X) = 15(X − 1)3.

From Lemma 3.2.1 we have

Hn,k(n,X) =
k∑
j=1

(
n

k + j

)
Qk,j(n,X) =

k∑
j=1

nk+j

(k + j)!qk,j(X)n−j +O(nk−1).

Hence
hk(X) =

k∑
j=1

qk,j(X)
(k + j)! . (4.9)

We note that
Sr(n) = 1

2rr! n
2r +O(n2r−1),

Hence from equation (3.20) we find

ak,i(X) = hk−i(X)
i! − (X − 1)

k−i∑
r=1

hk−i−r(X)
2r.r! i!

=
k−i∑
j=1

qk−i,j(X)
i! (k − i+ j)! − (X − 1)

k−i∑
r=1

k−i−r∑
j=1

qk−i−r,j(X)
2r.r! i! (k − i− r + j)!

= 1
i!ak−i,0(X).

�
We set

A0(X,T ) :=
∞∑
k=0

ak,0(X)T k, (4.10)

and
R(X,T, Z) :=

∞∑
i=0

Pi(X,T )Z
i

i! , (4.11)
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where
Pi(X,T ) :=

∞∑
s=0

ρs,i(X)T s (4.12)

(note that P1 = P(X,T ) = ∑
s≥0 ρs(X)T s).

Hence we can rewrite equation (4.6) in the following compact form

A0(X,T )R(X,T, T ) = 1. (4.13)

Also from (4.7) we have

Pi(X,T ) = (D + P)i(1) i ≥ 0, (4.14)

where D = (X − 1)X ∂
∂X

= U ∂
∂U

. Hence from equation (4.14) we have

R(X,T, Z) =
∞∑
i=0

Pi(X,T )Z
i

i! =
∞∑
i=0

(D + P)i(1)Z
i

i!

= exp
( ∞∑
i=1

Di−1P(X,T )Z
i

i!
)

= exp(P̃(UeZ , T )− P̃(U, T )), (4.15)

where P̃(U, T ) =
∫ U
0 P( 1

1−z , T )dz
z

.

The next step is to find a closed form for A0(X,T ) and R(X,T, Z).

Proposition 4.1.1. Let

H(X,T, Z) =
∞∑

j,k=0
qk,j(X)T

j+kZj

(j + k)! . (4.16)

be the generating function of {qk,j(X)}k,j≥0, where qk,j(X) is the leading co-
efficient of Qk,j(n,X).

i) We have
H(X,T, Z) = exp(Zh(X,T )),

where

h(X,T ) =
∞∑
k=1

ek(X) T k+1

(k + 1)! = Li2(U)− Li2(UeT ) + T log(1− U),
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with U = 1− 1
X

and

Li2(z) =
z∫

0

− log(1− u)
u

du =
∞∑
n=1

zn

n2

is the dilogarithm function.

ii) We have

A0(X,T ) = H(X,T, T−1)
(
1− (X − 1)(eT/2 − 1)

)
.

Proof. From (3.18) in Lemma 3.2.1 we find

qk,j(X) = (X − 1)Xq′k−1,j(X) + (X − 1)(j + k − 1)qk−1,j−1(X). (4.17)

Hence we have
∂

∂T
H =

∞∑
j,k=1

qk,j(X)
(j + k − 1)!T

j+k−1Zj

=
∞∑

j,k=1

(X − 1)Xq′k−1,j(X)
(j + k − 1)! T j+k−1Zj

+ (X − 1)
∞∑

j,k=1

qk−1,j−1(X)
(j + k − 2)!T

j+k−1Zj

= X(X − 1) ∂

∂X
H + ZT (X − 1)H.

So H(X,T, Z) satisfies the following homogenous linear differential equation

[ ∂
∂T
−X(X − 1) ∂

∂X
− ZT (X − 1)]H = 0. (4.18)

so H = exp(h0(X,T, Z)) for some h0, which satisfies( ∂
∂T
−X(X − 1) ∂

∂X

)
h0 = ZT (X − 1).

It follows that h0(X,T, Z) = Zh1(X,T ) and h1(X,T ) satisfies( ∂
∂T
−X(X − 1) ∂

∂X

)
h1 = T (X − 1). (4.19)
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Now let h1(X,T ) = ∑∞
k=2 εk(X)Tk

k! , then it follows from (4.19)

ε2(X) = X − 1, εk+1(X) = X(X − 1) ∂

∂X
εk(X) k ≥ 2,

which is exactly the definition of ek(X), and therefore h1(X,T ) = h(X,T ).
The function h(X,T ) is obtained from

g(X,T ) =
∞∑
k=1

ek(X) T k−1

(k − 1)! ,

by two times integrating respect to T . But by Remark 4.0.1

g(X,T ) =
∞∑
k=1

Ek(U) T k−1

(k − 1)!

=
∞∑
k=1

Dk−1E1(U) T k−1

(k − 1)!

= UeT

1− UeT . (4.20)

Therefore

h(X,T ) =
T∫

0

G(X, t)dt,

where

G(X,T ) =
T∫

0

g(X, t)dt =
T∫

0

Uet

1− Uetdt = log(1− U)− log(1− UeT ).

Finally

h(X,T ) =
T∫

0

log(1− Uet)dt+
T∫

0

log(1− U)

= Li2(U)− Li2(UeT ) + T log(1− U). (4.21)
For the second part we have

A0(X,T ) =
∞∑

j,k=0

qk,j(X)
(j + k)!T

j − (X − 1)
k∑
r=1

∞∑
j,k=0

qk−r,j(X)
2r.r! (j + k − r)!T

k

=
∞∑

j,k=0

qk,j(X)
(j + k)!T

k − (X − 1)
∞∑
r=1

T r

2r.r!

∞∑
j,k=0

qk,j(X)
(j + k)!T

j

= H(X,T, T−1)
(
1− (X − 1)(eT/2 − 1)

)
.
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Lemma 4.1.2. Let S(X,T ) ∈ Q[X][[T ]], such that
∞∑
i=1

Di−1S(X,T )T
i

i! = 0, (4.22)

where D = X(X − 1) d
dX

. Then S(X,T ) is identically zero.

Proof. We have D = U d
dU

= d
d log V where U = eV = 1 − 1

X
. We set

S̃(U, T ) = S(X,T ). Differentiating once more from equation (4.22), we get

0 =
∞∑
i=1

DiS(X,T )T
i

i!

=
∞∑
i=1

(U d

dU
)iS̃(U, T )T

i

i! = S̃(UeT , T )− S̃(U, T ).

It follows that S̃(UeT , T ) = S̃(U, T ). Now let S̃(U, T ) = ∑∞
i=0 s̃i(U)T i, and

k be the smallest indice such that s̃k(U) 6= 0. We have

0 = S̃(UeT , T )− S̃(U, T ) = T k[s̃k(UeT )− s̃k(U)] + T k+1O(T ) +O(T k+2)
= T k[s̃′k(U)T +O(T 2)] +O(T k+2) = T k+1s̃′k(U) +O(T k+2).

Hence this implies that s̃k(U) is constant. Substituting this into (4.22) we
get

[s̃k(U)T k +O(T k+1)]T +O(T k+1)T
2

2! + ... = 0

Hence s̃k(U) ≡ 0, and consequently S(X,T ) ≡ 0. �

Now we are ready to proof Theorem 4.1.1.

Proof of Theorem 4.1.1. From (4.13) we have

logA0(X,T ) + logR(X,T, T ) = 0.

Hence by the second part of Proposition 4.1.1

logH(X,T, T−1) + log
(
1− (X − 1)(eT/2 − 1)

)
+ logR(X,T, T ) = 0. (4.23)
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We have

log
(
1− (X − 1)(eT/2 − 1)

)
= log

(
X − (X − 1)eT/2

)
= logX + log

(
1− (X − 1)

X
eT/2

)
= − log(1− U) + log

(
1− UeT/2

)
.

Plugging this in to (4.23) and using the first part of Proposition 4.1.1 and
equation (4.15) we find

P̃(U, T )− P̃(UeT , T ) = log
(
1− UeT/2

)
+ 1
T

(Li2(U)− Li2(UeT )). (4.24)

Let

S(U, T ) = −P̃(U, T ) + 1
T
Li2(U) +

∞∑
k=1

log
(
1− Ue(k− 1

2 )T
)
. (4.25)

It follows from (4.24), S(UeT , T ) = S(U, T ). Hence by Lemma 4.1.2, we have
S(U, T ) = 0, therefore

P̃(U, T ) = 1
T
Li2(U) +

∞∑
k=1

log
(
1− Ue(k− 1

2 )T
)
. (4.26)

But by definition

P̃(U, T ) =
U∫

0

P( 1
1− z , T )dz

z
.

Hence Theorem 4.1.1 follows from (4.26) by derivative with respect to U
and the fact that P̂ = P− 1

T
log(1− U).

The only thing is to show that ρs = αs+1es+1. From the first part we have

P̂(X,T ) = −
∞∑
m=1

(∑
n>0
odd

qnm/2
)
Um

= 1
2

∞∑
m=1

(
1

sinhmT/2

)
Um

=
∞∑
m=1

( ∞∑
k=0

αk(mT )k−1
)
Um =

∞∑
k=0

αkEk(U)T k−1.

�
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4.2 Elliptic property
The interesting point about Theorem 4.1.1 is that up to an elementary func-
tion and a shift z → z + τ/2, P̂(X,T ) is quite similar to ”half” of
ζ(τ, z) = d

dz
log θ(τ, z) + η(1)z where

θ(τ, z) =
∑
n∈Z

(−4
n

)qn2/8yn/2 = q1/8y1/2
∞∏
n=1

(1− qn)(1− qny)(1− qn−1y−1),

is a theta function with q = e2πiτ , y = e2πiz and η : Λτ → C the quasi-period
homomorphism associated to Λτ = Z + τZ.
If w ∈ Λ and w

2 /∈ Λ, then

η(w) = 2 ζ(1
2w; τ). (4.27)

Hence we have

1
2πiζ(τ, z) = 1

2 + 1
2πiη(1)z −

∞∑
n=1

(
qny

1− qny −
qn−1y−1

1− qn−1y−1

)
.

Using the above equation and (4.27) we find

1
(2πi)2η(1) = − 1

12 + 2
∑
n≥1

qn

(1− qn)2 .

Now by extending the recursive equation to s ≥ −1 we can define

R̂(X,T, Z) =
∞∑
i=0

P̂i(X,T )Z
i

i! , (4.28)

where P̂i(X,T ) = ∑∞
s=−1 ρs,i(X)T s. Then using equations (4.15) and (4.26)

we find

R̂(X,T, Z) = exp
(
P̃(UeZ , T )− P̃(U, T )

)
= exp

(∑
n≥1

log(1− UeZe(k− 1
2 )T )−

∑
n≥1

log(1− Ue(k− 1
2 )T )

)

=
∏
n≥1(1− UeZe(k− 1

2 )T )∏
n≥1(1− Ue(k− 1

2 )T )
= (Uq−1

2 eZ ; q)∞
(Uq−1

2 ; q)∞
, (4.29)
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where q = eT and (x; q)∞ = ∏
n≥1(1 − xqn). We notice that by (4.28) and

(4.29)

P̂(X,T ) = ∂R̂

∂Z
|Z=0 = −

∑
k≥1

Uqk−
1
2

1− Uqk− 1
2
.

We have also

U
∂

∂U
(log R̂) = −

∑
k≥1

UeZqk−
1
2

1− UeZqk− 1
2

+
∑
k≥1

Uqk−
1
2

1− Uqk− 1
2
. (4.30)

Hence up to a constant, at Z0 = −2 logU ,

U
∂

∂U
(log R̂)|Z=Z0 = − 1

2πiζ(τ, z − τ

2)− 1
2πiη(1)− 1

2 .

Naturally one could ask whether the remaining coefficients of Ps(n,X)
have a similar property or not. In the next chapter we try to answer this
question by computing the second coefficient.
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Chapter 5

The second top coefficient of
Ps(n,X)

In this chapter we continue our computation. We follow the same idea as
before to compute the second coefficient of Ps(n,X).

5.1 Statement and steps of the proof
Theorem 5.1.1. Let µs(X) be the second top coefficient of Ps(n,X) with
respect to n, i.e.

Ps(n,X) = ρs(X)n2s+1 + µs(X)n2s + · · ·

Then we have the formula

µs(X) =


(1− s

2)αses+1(X) if s is even,∑
j, h≥1

j+h=s+1

βj,h ej(X)eh(X) + αs−1
(
es+1(X)

4 − es(X)
6

)
if s is odd,

(5.1)
where ∑∞s=0 αsT

s = T/2
sinhT/2 =: S(T ) is as in (4.1)and βj,h(j, h ≥ 0) are given

by

∑
j, h≥0

βj,h T
jZh = 1

2S(T )S(Z)S(T + Z) cosh(T − Z2 ) := S2(T, Z), (5.2)
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Before starting the proof of Theorem 5.1.1, we give some examples to
check it. From the recursive equations (3.34),(3.33) we find

µ0(X) = X − 1,

µ1(X) = X(X − 1)
12 ,

µ2(X) = 0,

µ3(X) = − 183
5760 X

4 + 398
5760 X

3 − 267
5760 X

2 + 52
5760 X,

µ4(X) = − 7
5760(24X5 − 60X4 − 50X3 − 15X2 −X). (5.3)

We have α0 = 1, α2 = − 1
24 , α4 = 7

5760 , and
∑
j, h≥1

βj,h T
jZh = −1

6 TZ + 6
1440 TZ

3 + 6
1440 T

3Z + 9
640 T

2Z2 + · · ·

Therefore we find

µ0(X) = e1(X) = X − 1,

µ1(X) = −1
6 e1(X)2 + 1

4 e2(X)− 1
6 e1(X) = X(X − 1)

12 ,

µ2(X) = 0,

µ3(X) = 12
1440 e1(X)e3(X) + 9

640 e2(X)2 − 1
96 e4(X) + 1

144 e3(X)

= − 183
5760 X

4 + 398
5760 X

3 − 267
5760 X

2 + 52
5760 X,

µ4(X) = − 7
5760 e5(X) = − 7

5760(24X5 − 60X4 + 50X3 − 15X2 +X),

which coincide with (5.3).
To prove this theorem we use the same idea as Chapter 4.

Step 1. Let
Mi(X,T ) :=

∞∑
s=0

µs,i(X)T s (5.4)

(for simplicity set M = M1 and µs(X) = µs,1(X)). Set

M(X,T, Z) :=
∞∑
i=1

Mi(X,T )Z
i

i! . (5.5)
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The following proposition determines M(X,T, Z) in terms of P and M, where
P is as in (4.12).

Lemma 5.1.1. We have

M(X,T, Z) = G(X,T, Z)R(X,T, Z)

where

G(X,T, Z) =
∞∑
i=1

Di−1M(X,T )Z
i

i!

−
∞∑
i=1

(
i−1∑
j=1

(
i− 1
j

)
ej(X)Di−j−1P′(X,T )

)
Zi

i! , (5.6)

where R(X,T, Z) is defined as in (4.11).

Step 2. Let rk,j(X) be the second coefficient of Qk,j(n,X), it means

Qk,j(n,X) = qk,j(X)n−j + rk,j(X)n−j−1 +O(n−j−2).

Set also
J(X,T, Z) :=

∞∑
j,k=0

rk,j(X)
(j + k)!T

j+kZj. (5.7)

Lemma 5.1.2. We have

J(X,T, Z) = ZH(X,T, Z)
∞∑
k=1

k−1∑
j=1

(
k − 1
j

)
ej(X)ek−j(X) T k+1

(k + 1)! .

where H is determined as in Proposition 4.1.1

Step 3. We write

Ek,i(n,X) = ak,i(X)n2k−i−1 + bk,i(X)n2k−i−2 +O(n2k−i−3). (5.8)

Lemma 5.1.3. For fixed i ≥ 0, we have

∞∑
k=1

bk,i(X)T k = B0(X,T )T
i

i! + B1(X,T ) T i

(i− 1)! + B2(X,T ) T i

(i− 2)! ,
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where

B0(X,T ) = f1(X,T )J(X,T, T−1)− 1
2f1(X,T )H ′′(X,T, Z)

∣∣∣
Z=T−1

− f2(X,T )H(X,T, T−1) + f3(X,T )H ′(X,T, Z)
∣∣∣
Z=T−1

, (5.9)

B1(X,T ) = −f1(X,T )H ′(X,T, Z)
∣∣∣
Z=T−1

+f3(X,T )H(X,T, T−1), (5.10)

B2(X,T ) = −1
2f1(X,T )H(X,T, T−1), (5.11)

where ′ is ∂
∂T

and f1(X,T ) = X−(X−1)eT/2, f2(X,T ) = (X−1)(T2−
T 2

6 )eT/2,
and f3(X,T ) = (X − 1)T2 e

T/2.

Now we prove these steps.
Proof of Lemma 5.1.1. From the recursive equations (3.33) we have for
i ≥ 1

µs,i+1(X) = (X − 1)X d

dX
µs,i(X)− s(X − 1)ρs,i(X)

+
s∑
r=0

ρr,i(X)µs−r(X) +
s∑
r=0

µr,i(X)ρs−r(X). (5.12)

It is equivalent to

Mi+1(X,T ) = (X − 1)X d

dX
Mi(X,T )− (X − 1)T d

dT
Pi(X,T )

+ Pi(X,T )M(X,T ) + P(X,T )Mi(X,T ), (5.13)

or with (5.5)

∂

∂Z
M(X,T, Z)−M(X,T )

= X(X − 1) ∂

∂X
M(X,T, Z) + M(X,T )(R(X,T, Z)− 1)

+ P(X,T )M(X,T, Z)− (X − 1)T ∂

∂T
R(X,T, Z), (5.14)

or
( ∂
∂Z
− U ∂

∂U
− P)M = (M− (X − 1)T ∂

∂T
)R. (5.15)

We write
M(X,T, Z) = G∗(X,T, Z)R(X,T, Z),
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for some G∗. We would like to show that G = G∗. Plugging this into the
differential equation (5.15) and using the fact that R = exp(∑∞i=1D

iPZi

i! ) we
find

R
∂

∂Z
G∗ +G∗(

∞∑
i=1

Di−1P
Zi−1

(i− 1)!)R

−RDG∗ −G∗(
∞∑
i=1

DiP
Zi

i! )R− P.G∗R

= MR− e1(X)(
∞∑
i=1

Di−1P′
Zi

i! )R.

After cancelling R from both sides we have

∂

∂Z
G∗ +G∗

∞∑
i=1

Di−1P
Zi−1

(i− 1)!

−DG∗ −G∗
∞∑
i=1

DiP
Zi

i! − P.G∗

= M− e1(X)
∞∑
i=1

Di−1P′
Zi

i! .

It turns out
∂

∂Z
G∗ −DG∗ = M− e1(X)(

∞∑
i=1

Di−1P′
Zi

i! ). (5.16)

This equation implies that

G∗(X,T, Z) =
∞∑
i=1

gi(X,T )Z
i

i! +
∞∑
i=1

Di−1M(X,T )Z
i

i! , (5.17)

with g1 = 0 and for i ≥ 1

gi+1 −Dgi = −e1(X)Di−1P′. (5.18)

By a simple induction one can show

gi(X,T ) = −
i−1∑
j=1

(
i− 1
j

)
ej(X)Di−j−1P′. (5.19)

Hence G∗ = G. �
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Proof of Lemma 5.1.2. From (3.18) we have

rk,j(X) = (X−1)X d

dX
rk−1,j(X)+(X−1)

(
(j+k−1)rk−1,j−1(X)+jqk−1,j(X)

)
.

(5.20)
Hence J(X,T, Z) satisfies the following non homogenous linear differential
equation( ∂

∂T
−X(X − 1) ∂

∂X
− ZT (X − 1)

)
J = (X − 1)Z ∂

∂Z
H. (5.21)

Ansatz.
J(X,T, Z) = Zf(X,T )H(X,T, Z),

for some f .
From (5.21) we have

Zf(X,T )
( ∂
∂T
−X(X − 1)T ∂

∂X
− ZT (X − 1)

)
H

+ZH(
( ∂
∂T
−X(X − 1) ∂

∂X

)
f(X,T ) = (X − 1)Zh(X,T )H. (5.22)

But from (4.18)

[ ∂
∂T
−X(X − 1) ∂

∂X
− ZT (X − 1)]H = 0,

after cancelling this identity from equation (5.22) and using the fact that

H(X,T, Z) = exp
(
Z
∞∑
k=1

ek(X) T k+1

(k + 1)!
)
,

we find that
∂

∂T
f = X(X − 1) ∂

∂X
f + (X − 1)

∞∑
k=1

ek(X) T k+1

(k + 1)! . (5.23)

We write
f(X,T ) =

∞∑
k=1

εk(X) T k+1

(k + 1)! .

From (5.23) we have ε2(X) = 0, and

εk+1(X) = X(X − 1) ∂

∂X
εk(X) + e1(X)ek(X), k ≥ 2.
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By a simple induction one can show that for k ≥ 2

εk+1(X) =
k−1∑
j=1

(
k − 1
j

)
ej(X)ek−j(X). (5.24)

This completes the proof.�

Proof of Lemma 5.1.3. First from the definition of Ek,i, we find bk,i.
From equation (3.20), up to the second coefficient we have

Ek,i(n, x) ≡
k−i∑
j=1

nk+j − S1(k + j − 1)nk+j−1

(k − i+ j)! i! (n−jqk−i,j + n−j−1rk−i,j)

− (X − 1)
k−i−r∑
j=1

nk+j−r

(k − i− r + j)! i! (σr n
r + τr n

r−1)(n−jqk−i−r,j + n−j−1rk−i−r,j)

+ (X − 1)
k−i−r∑
j=1

nk+j−1∑k−j+1
p=r p

(k − i− r + j)! i! (σr n
r + τr n

r−1)(n−jqk−i−r,j + n−j−1rk−i−r,j),

where
Sr(n) = σr n

2r + τr n
2r−1 +O(n2r−2), (5.25)

with
σr = 1

2rr! , τr = r(5− 2r)
3.2rr! .

Hence we have

bk,i(X) =
k−i∑
j=1

rk−i,j(X)
i! (k − i+ j)! −

k−i∑
j=1

S1(k + j − 1)
i! (k − i+ j)! qk−i,j(X)

− (X − 1)
(
k−i−r∑
j=1

σr rk−i−r,j(X)
i!(k − i− r + j)! +

k−i−r∑
j=1

τr qk−i−r,j(X)
i!(k − i− r + j)!

−
k−i−r∑
j=1

S1(k + j − 1)− S1(r − 1)
i!(k − i− r + j)! σr qk−i−r,j(X)

)
. (5.26)

Now we write

S1(k + j − 1) = (k + j)(k + j − 1)
2

= (k + j − i)(k − i+ j − 1)
2 + i (i− 1)

2 + i (k − i+ j).
(5.27)
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Similarly

S1(k + j − 1)−S1(r − 1) = (k − i− r + j)(k − i− r + j − 1)
2

+ i (i− 1)
2 + i (k − i− r + j) + r(k − i− r + j) + i r.

(5.28)
The lemma follows by substituting equations (5.27) and (5.28) into (5.26)
and collecting the terms with the factors 1

i! ,
1

(i− 1)! , and 1
(i− 2)! .�

Now we are ready to prove Theorem 5.1.1.

5.2 Proof and further discussion
Proof of Theorem 5.1.1. From equation (3.34) we have

s∑
r=1

r∑
i=1

ar,i(X)µs−r,i(X) +
s∑
r=1

r∑
i=0

br,i(X)ρs−r,i(X) = 0. (5.29)

Applying Lemma 5.1.3 we have

A0(X,T )
∞∑
i=1

Mi(X,T )T
i

i! + B0(X,T )
∞∑
i=0

Pi(X,T )T
i

i!

+ B1(X,T )
∞∑
i=1

Pi(X,T ) T i

(i− 1)! + B2(X,T )
∞∑
i=2

Pi(X,T ) T i

(i− 2)! = 0.

(5.30)
But by definition

∞∑
i=1

Pi(X,T ) T i

(i− 1)! = T
∂R(X,T, Z)

∂Z
|Z=T

= (
∞∑
i=1

Di−1P
T i

(i− 1)!)R(X,T, T ), (5.31)

and
∞∑
i=1

Pi(X,T ) T i

(i− 2)! = T 2∂
2R(X,T, Z)

∂Z2 |Z=T

=
( ∞∑
i=1

Di−1P
T i

(i− 2)! + (
∞∑
i=1

Di−1P
T i

(i− 1)!)
2
)
R(X,T, T ). (5.32)
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Substituting these two in equation (5.30) and using Lemma 5.1.1 we find

A0(X,T )G(X,T, T )R(X,T, T )

= −B0(X,T )R(X,T, T )−B1(X,T )(
∞∑
i=1

Di−1P
T i

(i− 1)!)R(X,T, T )

−B2(X,T )
( ∞∑
i=1

Di−1P
T i

(i− 2)! + (
∞∑
i=1

Di−1P
T i

(i− 1)!)
2
)
R(X,T, T ).

We recall that by the second part of Proposition 4.1.1

A0(X,T ) = f1(X,T )H(X,T, T−1),

using this fact and Lemma 5.1.3 we find

f1(X,T )H(X,T, T−1)G(X,T, T ) =

− f1(X,T )J(X,T, T−1)− 1
2f1(X,T )H ′′(X,T, Z)

∣∣∣
Z=T−1

+ f2(X,T )H(X,T, T−1)− f3(X,T )H ′(X,T, Z)
∣∣∣
Z=T−1(

f1(X,T )H ′(X,T, Z)
∣∣∣
Z=T−1

−f3(X,T )H(X,T, T−1
) ∞∑
i=1

Di−1P
T i

(i− 1)!

+ 1
2f1(X,T )H(X,T, T−1)

( ∞∑
i=1

Di−1P
T i

(i− 2)! + (
∞∑
i=1

Di−1P
T i

(i− 1)!)
2
)
.

(5.33)

Finally applying Lemma 5.1.2 we find
∞∑
i=1

Di−1M
T i

i! =
∞∑
i=1

i−1∑
j=1

(
i− 1
j

)
ej(X)Di−j−1P′

T i

i!

−
∞∑
k=1

k−1∑
j=1

ej(X)ek−j(X)
j!(k − j)!

T k

2(k + 1) + 1
2(
∞∑
k=1

ek(X)T
k

k! )2

+ 1
2

∞∑
k=1

ek(X) T k

(k − 1)! −
f3

f1

∞∑
k=1

ek(X)T
k

k! + f2

f1

+
( ∞∑
k=1

ek(X)T
k

k! −
f3

f1

) ∞∑
i=1

Di−1P
T i

(i− 1)!

+ 1
2

∞∑
i=1

Di−1P
T i

(i− 2)! + 1
2(
∞∑
i=1

Di−1P
T i

(i− 1)!)
2, (5.34)
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and
f3

f1
=

(X − 1)T2 e
T/2

X − (X − 1)eT/2 = T

2
UeT/2

1− UeT/2 =
∞∑
k=1

ek(X) T k

2k(k − 1)! , (5.35)

f2

f1
=

(X − 1)(T2 −
T 2

6 )eT/2

X − (X − 1)eT/2 =
∞∑
k=1

ek(X) T k

2k(k − 1)! −
∞∑
k=1

ek(X) T k+1

3.2k(k − 1)! .

(5.36)

Now by Theorem 4.1.1 we have

P(X,T ) =
∞∑
k=0

αk+1ek+1(X)T k,

hence
∞∑
i=1

Di−1P(X,T ) T i

(i− 1)! =
∞∑
j=1

j−1∑
k=1

αk+1ej(X) T j

(j − k − 1)! . (5.37)

Applying this equation into (5.34), implies that the coefficient of T s in both
sides is

s−1∑
k=0

Ds−k−1µk(X)
(s− k)! =

s−1∑
k=0

s−k−1∑
j=1

k αk+1

(
s− k − 1

j

)
ej(X) es−j(X)

(s− k)!

+ 1
2

s−1∑
k=0

αk+1 es(X)
(s− k − 2)! + 1

2

s−1∑
j=1

j−1∑
k=0

s−j−1∑
i=0

αk+1 αi+1 ej(X) es−j(X)
(j − k − 1)! (s− j − i− 1)!

+
s−1∑
j=1

j−1∑
k=0

αk+1 ej(X) es−j(X)
(j − k − 1)!(s− j)! −

s−1∑
j=1

j−1∑
k=0

αk+1 ej(X) es−j(X)
2s−j(j − k − 1)! (s− j − 1)!

−
s−1∑
j=1

(
s−1
j

)
ej(X) es−j(X)
(s+ 1)! + 1

2

s−1∑
j=1

ej(X) es−j(X)
j! (s− j)! −

s−1∑
j=1

ej(X) es−j(X)
2s−jj! (s− j − 1)!

+ (1
2 + 1

2s ) es(X)
(s− 1)! −

es−1(X)
3 · 2s−1(s− 2)! . (5.38)

Ansatz.

µs(X) =
s∑
j=1

β∗j,s ej(X)es+1−j(X) + γs es+1(X) + δs es(X),
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where β∗j,s,γs and δs are values which have to be determined. For γs and δs
we have from (5.38)

s−1∑
k=0

γk
(s− k)!es(X)−

s−1∑
k=0

δk
(s− k)!es−1(X) = (5.39)

1
2

s−1∑
k=0

αk+1 es(X)
(s− k − 2)! + es(X)

2s(s− 1)! −
es−1(X)

3 · 2s−1(s− 2)! . (5.40)

It turns out
∞∑
k=0

δkT
k
∞∑
i=1

T i

i! = −
∞∑
s=2

T s

3 · 2s−1(s− 1)! ,

hence

∞∑
k=0

δkT
k = −T

2/6 eT/2
(eT − 1) = − T 2/12

sinh(T/2) . (5.41)

We have also
∞∑
k=0

γkT
k
∞∑
i=1

T i

i! = 1
2

∞∑
k=0

αkT
k
∞∑
i=1

T i

(i− 1)! +
∞∑
s=1

T s

2s(s− 1)! ,

hence
∞∑
k=0

γkT
k =

T/2
sinh(T/2)

T
2 e

T + T
2 e

T/2

eT − 1

= T/4
sinh(T/2)

( T/2
sinh(T/2)e

T/2 + 1
)
. (5.42)

For fixed r and s the coefficient of er(X) es−r(X) of both sides is

s−1∑
k=0

r∑
j=1

d∑
i=0

β∗j,k
(
s−k−1

i

)
(s− k)! =

s−r−1∑
k=0

k αk+1

(
s−k−1
r

)
(s− k)! + 1

2

r−1∑
k=0

s−r−1∑
i=0

αk+1 αi+1

(r − k − 1)! (s− r − i− 1)!

+
r−1∑
k=0

αk+1

(r − k − 1)! (s− r)! −
r∑

k=0

αk
2s−r(r − k)! (s− r − 1)!

−

(
s−1
r

)
(s+ 1)! + 1

2
1

r! (s− r)! ,
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where d = min{r − 1, s − k − 1} and i + j = r. For each term we write a
generating function. We start with the simplest one:

∞∑
s=2

s−1∑
r=1

T rZs−r

r! (s− r)! =
∞∑
r=1

T r

r!

∞∑
k=1

Zk

k! = (eT − 1)(eZ − 1). (5.43)

∞∑
s=1

s−1∑
r=1

(
s−1
r

)
(s+ 1)!T

rZs−r = Z
∞∑
s=1

(T + Z)s−1 − Zs−1

(s+ 1)!

= Z

(
eT+Z − (T + Z)− 1

(T + Z)2 − eZ − Z − 1
Z2

)
. (5.44)

∞∑
s=2

s−1∑
r=1

r∑
k=0

αk T
rZs−r

2s−r(r − k)! (s− r − 1)!

= Z

2
( ∞∑
k=0

αk T
k
∞∑
j=0

T j

j! − 1
) ∞∑
i=0

Zi

2ii!

=
( T/2

sinh(T/2)e
T − 1

)Z
2 e

Z/2. (5.45)

Similarly

∞∑
s=2

s−1∑
r=1

r−1∑
k=0

αk+1T
rZs−r

(r − k − 1)! (s− r)!

=
∞∑
k=1

αk T
k
∞∑
j=0

T j

j!

∞∑
i=1

Zi

i!

=
( T/2

sinh(T/2) − 1
)
eT (eZ − 1). (5.46)
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We have

∞∑
s=1

s−1∑
r=1

s−r−1∑
k=0

k αk+1

(
s−k−1
r

)
(s− k)!T

rZs−r

=
∞∑
s=1

s−1∑
k=0

s−k−1∑
r=1

k αk+1

(
s−k−1
r

)
(s− k)!T

rZs−r

=
∞∑
s=1

∑
k=0

k αk+1 Z
k+1 (T + Z)s−k−1 − Zs−k−1

(s− k)!

=
∞∑
k=1

(k − 1)αk Zk
( ∞∑
j=1

(T + Z)j−1

j! −
∞∑
j=1

Zj−1

j!
)
,

but

∞∑
k=1

(k − 1)αk Zk = Z
∂

∂Z

( Z/2
sinh(Z/2)

)
−( Z/2

sinh(Z/2) − 1)

= 1− (Z2 )2 coshZ/2
(sinh(Z/2))2 ,

hence

∞∑
s=1

s−1∑
r=1

s−r−1∑
k=0

k αk+1

(
s−k−1
r

)
(s− k)!T

rZs−r =
(
1−(Z2 )2 coshZ/2

(sinh(Z/2))2

)(eT+Z − 1
T + Z

−e
Z − 1
Z

)
.

(5.47)

∞∑
s=2

s−1∑
r=1

r−1∑
k=0

s−r−1∑
i=0

αk+1 αi+1

(r − k − 1)! (s− r − i− 1)!T
rZs−r

=
∞∑
k=1

αk T
k
∞∑
j=0

T j

j!
∑
k=1

αk Z
k
∞∑
j=0

Zj

j!

=
( T/2

sinh(T/2) − 1
)( Z/2

sinh(Z/2) − 1
)
eT+Z , (5.48)
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and finally with i+ j = r we have

∞∑
s=2

s−1∑
r=1

s−1∑
k=1

r∑
j=1

s−k−1∑
i=0

β∗j,k
(
s−k−1

i

)
(s− k)! T rZs−r =

=
∞∑
s=2

s−1∑
k=1

k∑
j=1

β∗j,k T
jZk+1−j (T + Z)s−k−1

(s− k)!

=
∞∑
j=1

∞∑
k=1

β∗j,k T
jZk+1−j

∞∑
s=1

(T + Z)s−1

s!

= (
∞∑
j=1

∞∑
k=1

β∗j,k T
jZk+1−j)(e

T+Z − 1
T + Z

). (5.49)

We conclude from (5.43)-(5.49)

S∗(T, Z) =
∞∑
j=1

∞∑
k=1

β∗j,k T
jZk+1−j

=
[

1
2(eT − 1)(eZ − 1)− Z

(
eT+Z − (T + Z)− 1

(T + Z)2 − eZ − Z − 1
Z2

)

−
(

T/2
sinh(T/2)e

T − 1
)
Z

2 e
Z/2 +

(
T/2

sinh(T/2) − 1
)
eT (eZ − 1)

+
(

1− (Z2 )2 coshZ/2
(sinh(Z/2))2

)(
eT+Z − 1
T + Z

− eZ − 1
Z

)

+ 1
2

(
T/2

sinh(T/2) − 1
)(

Z/2
sinh(Z/2) − 1

)
eT+Z

]
T + Z

eT+Z − 1 .

One can check directly

S2(T, Z) = 1
2
(
S∗(Z, T ) + S∗(T, Z)

)
−1

2T
2( 1

sinhT/2)′ − 1
2Z

2( 1
sinhZ/2)′.

It means that

µs(X) =
∑
j,h≥1

j+h=s+1

βj,h ej(X)eh(X) + δs es(X) + γs es+1(X)

From (5.41), (5.42) with a direct calculation and the fact that S2(Z, T ) is an
even function one can verify the statement. �
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We conclude this section by relating the function G(X,T, T ) wich is given
in Lemma 5.1.1 to the ”top coefficient”, namely P̂(X,T ) as calculated in
Theorem 4.1.1. Our motivation is to check a similar elliptic property for the
second top coefficient. Unfortunately this attempt is failed .
Let ζk(U) = Uqk+ 1/2

1−Uqk+ 1/2 , (k ≥ 0) and q = eT . Set

Z(q, U) =
∑
k≥0

ζk(U).

Then by Theorem 4.1.1 we have P̂(X,T ) = −Z(q, U). With this notation we
have the following corollary.

Corollary 5.2.1. With U = 1− 1
X

and q = eT as usual we have

G(X,T, T ) = −T
2

4
(
Z(q, U)+ 1

2ζ0
)2

+ 9
16T

2ζ2
0−

T 2

2 U
∂

∂U
Z(q, U)+(T2 + T 2

3 )ζ0.

(5.50)

where G(X,T, Z) = M(X,T, Z)
R(X,T, Z) =

∑∞
i=1 Mi(X,T )Zi

i!∑∞
i=1 Pi(X,T )Zi

i!
as in (5.1.1) .

Proof. From Lemma 5.1.1we have

G(X,T, T ) = −
∞∑
i=1

∞∑
j=1

ej(X)Di−j−1P′(X,T )T
i

i! +
∞∑
i=1

Di−1M(X,T )T
i

i!

= −
∞∑
i=1

Di−1
(
e0 P

′
)T i
i! + e0

∞∑
i=1

Di−1P′
T i

i! +
∞∑
i=1

Di−1M
T i

i!

=
∞∑
i=1

Di−1(M− e0 P
′)T

i

i! + e0

∞∑
i=1

Di−1P′
T i

i! .

We show that

M(X,T )− e0 P
′(X,T ) =

∞∑
s=0

µs(X)T s +
∑
s≥0

β0,s+1 e0(X) es+1(X)T s

By Theorems 4.1.1 and 5.1.1 it is enough to show that

2
∑
s≥0

β0,s+1 (mT )sUm = −P′ =
∑
s≥0

s αs+1 (mT )sUm,

77



equivalently

2
∑
s≥0

β0,s t
s =

∑
s≥0

(s− 1)αs ts,

or

S(t)2 cosh(t/2) = ∂

∂t
S(t)− S(t),

where s(t) = t/2
sinh(t/2) , and one can check easily the above identity.

Now in the continuation first we note that if we have a function like
f(x) = ∑

n≥0 an x
n, then

∑
n≥0

an en(X)T n =
∑
n≥0

∑
d≥1

an d
n−1UdT n =

∑
d≥1

f(dT )U
d

d
.

Hence by

f(X, Y, T ) =
∑
i,j≥0

βi,j ei(X)ej(Y )T i+j−1

= 1
2
mT/2

sinh mT
2

nT/2
sinh nT

2

(m+ n)/2
sinh (m+n)T

2

cosh((m− n)T
2 )U

m

m

V n

n

= T 2

16 (m+ n)coth(mT/2) coth(nT/2)
sinh((m+ n)T/2) UmV n − T 2

8 (m+ n) UmV n

sinh((m+ n)T/2)

= T 2

16 (U ∂

∂U
+ V

∂

∂V
)
∑

m,n≥1

(qm + 1)(qn + 1)qm+n
2

(qm − 1)(qn − 1)(qm+n − 1)U
mV n

− T 2

16 (U ∂

∂U
+ V

∂

∂V
)
∑

m,n≥1

q
m+n

2

qm+n − 1U
mV n, (5.51)

where q = eT , U = 1− 1
X

and V = 1− 1
Y

. The main part which we have to
consider is

φ(U, V, q) =
∑

m,n≥1

(qm + 1)(qn + 1)qm+n
2

(qm − 1)(qn − 1)(qm+n − 1)U
mV n.
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We write this φ as a sum of three terms as follows. Let

φ1 =
∑

m,n≥1

q
m+n

2

qm+n − 1U
mV n,

φ2 =
∑

m,n≥1

q
m+n

2

(qm − 1)(qm+n − 1)U
mV n + (m↔ n),

φ3 =
∑

m,n≥1

q
m+n

2

(qm − 1)(qn − 1)(qm+n − 1)U
mV n,

then φ = φ1 + 2φ2 + 4φ3. Now we have

φ1 =
∑

m,n≥1

∑
k≥0

q
m+n

2 q(m+n)kUmV n

=
∑
k≥0

Uqk+ 1/2

1− Uqk+ 1/2
V qk+ 1/2

1− V qk+ 1/2

=
∑
k≥0

ζk(U)ζk(V ),

Similarly one can check that

φ2 =
∑
k,k′≥0

Uqk
′+k+ 1/2

1− Uqk′+k+ 1/2
V qk+ 1/2

1− V qk+ 1/2 + (U ↔ V )

= Z(q, Uqk)ζk(V ) + Z(q, V qk)ζk(U).

Finally for φ3 we have

φ3 = Z(q, Uqk)Z(q, V qk).

Hence it follows

φ(U, V, q) =
∑
k≥0

(
2Z(q, Uqk) + ζk(U)

)(
2Z(q, V qk) + ζk(V )

)
, (5.52)

and therefore

f(X,X, T ) = T 2

4 U
∂

∂U

∑
k≥0

Z(q, Uqk)
(
Z(q, Uqk) + ζk(U)

)
. (5.53)
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Similarly one can see that

g(X,T ) =
∑
s≥0

[
(1− s

2)αs + 1
4αs−1

]
es+1T

s (5.54)

= T 2

2 U
∂

∂U

∑
m≥1

mq3m/2

(qm − 1)2U
m + T

2 U
∂

∂U

∑
m≥1

qm/2

qm − 1U
m, (5.55)

and

h(X,T ) =
∑
s≥0
−1

6αs−1esT
s = −T

2

6 U
∂

∂U

∑
m≥1

qm/2

qm − 1U
m, (5.56)

Hence we have

G(X,T, T ) = f̃(Uq)− f̃(U) + g̃(Uq)− g̃(U) + h̃(Uq)− h̃(U).

where U ∂
∂U
f̃ = f , etc. Therefore using equations (5.53),(5.55) and (5.56) we

find

G(X,T, T ) = −T
2

4
(
Z2(q, U)+ζ0Z(q, U)

)
−T

2

2 U
∂

∂U

(
Z(q, U)−ζ0

)
+(T2−

T 2

6 )ζ0.

(5.57)
Using the identity U ∂

∂U
ζk = ζ2

k + ζk the result follows immediately.�

80



Chapter 6

The algebra of Euler
polynomials and Stirling
numbers

So far we have computed the first two coefficients of Ps(n,X). The method
which has been used, theoretically can be applied to the rest of the coeffi-
cients, but practically it is impossible because each time the computations
become more and more complicated. But if we look again at the first two
coefficients we see that

∞∑
s=1

αsV
s

1 ,∈ Q(V1, e
V1/2),

∞∑
j,h=1

βj,hV
j

1 V
h

2 ∈ Q(V1, V2, e
V1/2, eV2/2),

which means that they are elementary functions. The aim of the rest of
this thesis is to prove such statement for the `th top coefficient of Ps(n,X),
without giving a closed form for it. This will be done in Chapter 7. In this
chapter we introduce some algebraic formalism concerning Euler polynomials
and Stirling numbers which will be needed later and which seems of interest
in itself.
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6.1 On products of Euler Polynomials
If A is an algebra over Q and x1, x2, · · · is an additive basis of A, then
each product xixj can be written uniquely as a finite linear combination∑
l cijk xk for certain numbers cijk ∈ Q and the algebra structure on A is

completely determined by specifying the ”structure constants” ckij. If we
apply this to the algebra A = Q[X] and the standard basis xi = X i, then
the structure constants are completely trivial, being simply 1 if i + j = k

and 0 otherwise. But the Euler polynomials defined in (4.3) with 1 also
form a basis of Q[X] and we can ask what the structure constants defined
by ei(X)ej(X) = ∑

k cijk ek(X) are. The surprising fact is that, up to an
elementary factor, cijk is equal simply to the rth Bernoulli number.

Proposition 6.1.1. For r, s ≥ 1 we have

er(X).es(X) = (r − 1)!(s− 1)!
(r + s− 1)! er+s(X)

+
r+s−1∑
i=1

Bi

i

[
(−1)r−1

(
s− 1

r + s− i− 1

)
+ (−1)s−1

(
r − 1

r + s− i− 1

)]
er+s−i(X),

where Bi is the i-th Bernoulli number.

Remark We remark that a similar result for the Bernoulli polynomials
and the usual Euler polynomials ( which are slightly different from our defi-
nition) is given by L. Carlitz and N. Nielsen (for example cf.[3]), but I only
learned of this recently and decided to retain my original proofs in this the-
sis. According to this if Bn(x) = Bn(x)

x
, where Bn(x) is the usual Bernoulli

polynomial, then we have

Bi(x)Bj(x) = (−1)i−1 (i− 1)!(j − 1)!
(i+ j)! Bi+j

+
∑

0≤`< i+j
2

[
1
i

(
i

2`

)
+ 1
j

(
j

2`

)]
B2`Bi+j−2`(x).

We give two proofs for this proposition.
First Proof. Without loss of generality we can assume r > 1, because the
statement is correct for r = s = 1 and in this case we have e1(x)2 = e2(X)−
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e1(X). Now by using the alternative definition for the Euler polynomials we
have

Er(u).Es(u) =
∞∑
c=1

cr−1uc.
∞∑
d=1

ds−1ud

=
∞∑
m=2

m−1∑
d=1

dr−1(m− d)s−1um

=
∞∑
m=2

m−1∑
d=1

s−1∑
i=0

(
s− 1
i

)
(−1)idims−1−idr−1um

=
∞∑
m=2

m−1∑
d=1

s−1∑
i=0

(
s− 1
i

)
(−1)idi+r−1ms−1−ium

=
∞∑
m=1

s−1∑
i=0

r+i−1∑
j=0

(−1)i 1
r + i

(
r + i

j

)(
s− 1
i

)
Bjm

r+s−j−1um.

Now if

γ
(r,s)
j =

s−1∑
i=j+1−r

(−1)i 1
r + i

(
r + i

j

)(
s− 1
i

)
,

then we have

Er(u).Es(u) =
r+s−2∑
j=0

γ
(r,s)
j BjEr+s−j(u).

We see from (4.3)

ek(X) = (k − 1)!Xk +O(Xk−1),

therefore γ(r,s)
0 = (r−1)!(s−1)!

(r+s−1)! .
Now for j > 0, γ(r,s)

j = α
(r,s)
j − (−1)j−r

j

(
s−1
j−r

)
, where

α
(r,s)
j =

s−1∑
i=0

(−1)i 1
r + i

(
r + i

j

)(
s− 1
i

)
.

We set

A(x) =
∞∑
j=1

α
(r,s)
j xj =

s−1∑
i=0

(−1)i 1
r + i

(1 + x)r+i
(
s− 1
i

)
,
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differentiating both sides

A′(x) =
s−1∑
i=0

(−1)i(1 + x)r+i−1
(
s− 1
i

)

= (1 + x)r−1
(
1− (1 + x)

)s−1
= (−x)s−1(1 + x)r−1

= (−1)s−1
r−1∑
l=0

(
r − 1
l

)
xl+s−1.

Now by integrate we find

jα
(r,s)
j = (−1)s−1

(
r − 1
j − s

)
,

finally

jγ
(r,s)
j = (−1)s−1

(
r − 1
j − s

)
− (−1)j−r

(
s− 1
j − r

)
.

But r > 1 and Bj = 0 for odd j > 1, so we find

Bjγ
(r,s)
j = Bj

j

[
(−1)s−1

(
r − 1
j − s

)
+ (−1)r−1

(
s− 1
j − r

)]
,

and it completes the proof.
Second Proof. Set ẽr(X) = er(X)

(r − 1)! and

E(T ) =
∞∑
r=1

ẽrT
r−1 = ueT

1− ueT = −B(v + T ), (6.1)

where B(x) = ex

ex − 1 = ∑∞
j=1(−1)jBj

j! x
j−1 and u = ev. Rewriting Proposi-

tion 6.1.1 in a new form we find

ẽr ẽs = ẽr+s+(−1)r−1
r+s−1∑
j=r

Bj ẽr+s−j
j (r − 1)! (j − r)!+(−1)s−1

r+s−1∑
j=s

Bj ẽr+s−j
j (s− 1)! (j − s)! .

(6.2)
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Hence we have

E(T )E(Z) =
∑
r,s≥1

ẽr(X)ẽs(X)T r−1Zs−1 =
∞∑

r,s=1
ẽr+s(X)T r−1Zs−1

+
∑
j≥r≥1

(−1)r−1 BjT
r−1Zj−r

j (r − 1)! (j − r)!

(∑
q≥1

ẽq(X)Zq−1
)

+(T ↔ Z)

=
∞∑
n=1

ẽn(X)T
n−1 − Zn−1

T − Z

+ E(Z)
∑
j≥1

(−1)j−1Bj

j! (T − Z)j−1 + E(T )
∑
j≥1

(−1)j−1Bj

j! (Z − T )j−1

= E(T )− E(Z)
T − Z

+
(
B(T − Z)− 1

Z − T

)
E(Z) +

(
B(Z − T )− 1

T − Z

)
E(T )

= B(T − Z)E(Z) + B(Z − T )E(T ).

But B(x) = 1
2(1 + coth(x/2)), and B(−x) = 1 −B(x). Therefore to prove

the proposition one has to verify the following identity

1
4

(
1 + coth(T + v

2 )
)(

1 + coth(Z + v

2 )
)

=

= −1
4

(
1 + coth(T − Z2 )

)(
1 + coth(Z + v

2 )
)

+(T ↔ Z),

which is straightforward. �

6.2 The Euler multiplication
Theorem 6.2.1. There is a commutative and associative action ∗ on Q[V ],
which is defined by any of the following three properties:

• eαV ∗ eβV = eαV+β − eα+βV

eα − eβ
.

(Here we have to consider eV = ∑∞
i=0

V i

i! and ∗ acts on each monomial
and comparing the coefficient of αiβj in both sides gives the definition
for V i ∗ V j.)

• The map
φ : Q[V ]→ (X − 1)Q[X] = Q[e1, e2, · · · ],
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sending V i → ei+1 (i ≥ 0) is a ring isomorphism.

• The map ∗ is the composite map Moψ, where ψ defines the isomorphism
Q(V )⊗Q(V ) ' Q(V1, V2) and the map

M : Q[V1, V2]→ Q[V ]

is defiend by

M(P (V1, V2)) =

= −2P (0, 0) +
V∫

0

P (t, V − t)dt−
∞∑
k=1

[
P (−k, V + k) + P (V + k,−k)

]
.

(6.3)

Here the infinite summation in (6.3) is in the sense of ’zeta summation’,
i.e.

∞∑
k=1

kn−1 = ζ(1− n) =
{ −Bn

n
n ≥ 2,

−1
2 n = 1.

(6.4)

In the following table we give the value of V i ∗ V j, for 0 ≤ i ≤ j ≤ 3 (the
values for i > j are ommited since ∗ is commutative):

∗ 1 V V 2 V 3

1 V − 1 1
2V

2 − 1
2V

1
3V

3 − 1
2V

2 + 1
6V

1
4V

4 − 1
2V

3 + 1
4V

2

V 1
6V

3 − 1
6V

1
12V

4 − 1
12V

2 1
120V

5 − 1
12V

3 + 1
30V

V 2 1
30V

5 − 1
30V

1
60V

6 − 1
60V

2

V 3 1
140V

7 − 1
60V

3 − 1
42V
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Proof. From the first definition the commutativity turns out from the
fact that the right hand side of (6.2.1) is symmetric respect to α, β, which
proves the commutativity. For asscociativity we have

(eαV ∗ eβV ) ∗ eγV

= eβ

eα − eβ
(eαV ∗ eγV )− eα

eα − eβ
(eβV ∗ eγV )

= eβ

eα − eβ
(eαV+γ − eα+γV

eα − eγ
)
− eα

eα − eβ
(eβV+γ − eβ+γV

eβ − eγ
)

= S(α, β, γ) + S(β, γ, α) + S(γ, α, β)

where
S(α, β, γ) = 1

(eα−β − 1)(eα−γ − 1)e
αV .

This proves the associativity.

Remark. Using the identity
n−1∑
i=1

∏
j 6=i

(eαn − eαj

eαi − eαj

)
= 1, n ≥ 2,

we find in general

eα1V ∗ · · · ∗ eαnV =
n∑
i=1

∏
j 6=i

( 1
eαi−αj − 1

)
eαiV .

Now for equivalency by definition of M , for r + s ≥ 1 we have

M(V r−1
1 V s−1

2 ) =
V∫

0

tr−1(V − t)s−1 dt

+
∞∑
k=1

(−k)r−1(V + k)s−1 +
∞∑
k=1

(−k)s−1(V + k)r−1

= (r − 1)!(s− 1)!
(r + s− 1)! V r+s−1

+
s∑
j=0

(−1)r−1 Bj+r

j + r

(
s

j

)
V s−j−1 + (r ↔ s),
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which exactly by Proposition 6.1.1 equals the inverse image of φ−1(eres).
Finally from the above equation we have

M

(
(αV1)r−1

(r − 1)!
(βV2)s−1

(s− 1)!

)
= αr−1βs−1 V r+s−1

(r + s− 1)!

+
r+s−1∑
j=r

Bj

j!

(
j − 1
r − 1

)
(−α)r−1βj−r

(βV )s+r−j−1

(s+ r − j − 1)! + (α↔ β).

(6.5)

Summing over all r, s ≥ 1 we find

M(eαV1+βV2) = eαV − eβV

α− β
+ eβV

∞∑
j=1

Bj

j! (β − α)j−1 + eαV
∞∑
j=1

Bj

j! (α− β)j−1

= eαV − eβV

α− β
+ eβV ( 1

eβ−α − 1 −
1

β − α
) + eαV ( 1

eα−β − 1 −
1

α− β
)

= eαV+β − eα+βV

eα − eβ
= eαV ∗ eβV .

�

6.3 The Euler map
We define the Euler map

Φd : Q[V1, · · · , Vd]→ Q[X] [T ]

on the basis {V i1
1 · · ·V id

d } by

Φd(V i1
1 · · ·V

id
d ) =

ei1(X) · · · eid(X)T i1+···id if i1, · · · , id ≥ 1,
0 otherwise,

(6.6)

where ei(X)’s are Euler polynomials and this map is extended by linearity.
We notice that Φd is not injective for d > 1. We recall from Chapter 4 that
Euler polynomials have an alternative definition given by

ei(X) = Ei(U) =
∑
m≥1

mi−1Um, U = 1− 1
X
.
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Hence for every h ∈ Q[V1, · · · , Vd] we can represent Φd as follows:

Φd

(
V1 · · ·Vdh(V1, · · · , Vd)

)
=

∑
m1,··· ,md≥1

h(m1T, · · · ,mdT )T dUm1+···md . (6.7)

Proposition 6.3.1. Let Ed = V1 · · ·VdQ[V1, · · · , Vd]. Then there is an as-
sociative and commutative multiplication ? on E1 such that For d > 1, the
map Φd on Ed is the composite of

Ed ' E⊗d1
?−→ E1

Φ1−→ Q[X][T ].

Proof. Since multiplication by V gives an isomorphism VQ[V ] ' Q[V ],
hence we can define ? on VQ[V ] as V i ? V j = V.(V i−1 ∗ V j−1), where ∗ is
already constructed in Theorem 6.2.1. The statement follows.�

Now by linearity one can extend the map Φd to Q[[V1, · · · , Vd]], the com-
pletion of Q[V1, · · · , Vd]. We have the following lemma.

Lemma 6.3.1. Let Ed = V1 · · ·VdQ[[V1, · · · , Vd]]. Then the following two
diagrams are commutative:

Ed
Φd−−−→ Q[X] [[T ]]

(V1+···+Vd).

y yTX(X−1) ∂
∂X

Ed
Φd−−−→ Q[X] [[T ]]

and
Ed

Φd−−−→ Q[X] [[T ]]
V1

∂
∂V1

+···+Vd
∂

∂Vd

y yT ∂
∂T

Ed
Φd−−−→ Q[X] [[T ]]

Proof. We recall that D = X(X − 1) ∂
∂X

and D(ei) = ei+1, so the map
Φ1 : V1Q[[V1]]→ Q[X][[T ]] satisfies

Φ1(V1f(V1)) = TDΦ1(f(V1)),

for any function f(V1) ∈ V1Q[[V1]]. Now by extending to d variables we find
that

Φd

(
(V1 + · · ·+ Vd)f(V)

)
= TDΦd(f(V)),
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for any function f(V) ∈ V1 · · ·VdQ[[V]], where V = (V1, · · · , Vd).
One can also see this from (6.7). We have

TDΦd(V1 · · ·Vdh(V)) =
∑

(m1 + · · ·md)h(m1V1, · · · ,mdVd)Um1+···md

= Φd

(
(V1 + · · ·+ Vd)V1 · · ·Vdh(V)

)
.

The commutativity of the second diagram is obvious by definition. �

6.4 Review of Stirling Numbers
The number of permutations of n symbols which have exactly m cycles is
called a Stirling number of the first kind and equals

[
n
m

]
, where

[
n
m

]
given by

the following generating functions:

x(x− 1) · · · (x− n+ 1) =
n∑

m=0
(−1)n−m

[
n

m

]
xm, (6.8)

log(1 + y)m
m! =

∞∑
n=m

(−1)n−m
[
n

m

]
yn

n! . (6.9)

In the following table we see the values of
[
n
m

]
for 0 ≤ m,n ≤ 5.

n\m 0 1 2 3 4 5
0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 1 1 0 0 0
3 0 2 3 1 0 0
4 0 6 11 6 1 0
5 0 24 50 35 10 1

With special values[
n

1

]
= (n− 1)!,

[
n

2

]
= (n− 1)! (1 + 1

2 + · · ·+ 1
n− 1).[

n

n− 1

]
=
(
n

2

)
,

[
n

n− 2

]
= 3n− 1

4

(
n

3

)
,

[
n

n− 3

]
=
(
n

2

)(
n

4

)
.
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The number of ways of partitioning a set of n elements into m non-empty
subsets is called a Stirling number of the second kind and denoted by

{
n
m

}
.

We have the following generating functions for them:

xn =
n∑

m=0

{
n

m

}
(x)m, (6.10)

(ey − 1)m
m! =

∞∑
n=m

{
n

m

}
yn

n! , (6.11)

zm

(1− z) · · · (1−mz) =
∞∑
n=m

{
n

m

}
zn, (6.12)

where (x)m = x(x − 1) · · · (x − m + 1) is the Pochhammer symbol. In the
following table we see the value of

{
n
m

}
for 0 ≤ m,n ≤ 5.

n\m 0 1 2 3 4 5
0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 1 1 0 0 0
3 0 1 3 1 0 0
4 0 1 7 6 1 0
5 0 1 15 25 10 1

With the special values{
n

1

}
= 1,

{
n

2

}
= 2n−1 − 1,

{
n

3

}
= 1

2(3n−1 + 1)− 2n−1.{
n

n

}
= 1,

{
n

n− 1

}
=
(
n

2

)
,

{
n

n− 2

}
=
(
n

2

)
3n2 − 11n+ 10

12 .

Equations (6.8) and (6.10) say that Stirling numbers are the matrix base
change of the two bases of Q[x], namely, {xn}n≥0 and {(x)n}n≥0. Hence we
find ∑

n≥0
(−1)j−n

{
n

i

}[
j

n

]
= δij. (6.13)
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Remark 6.4.1. Stirling numbers, like binomial coefficients, can be defined
by recursive equations: [

n+ 1
m

]
= n

[
n

m

]
+
[

n

m− 1

]
, (6.14){

n+ 1
m

}
= m

{
n

m

}
+
{

n

m− 1

}
. (6.15)

One of the advantage of these definitions is that they hold for all integers
n,m, and we have the following duality law discovered by D. Knuth{

n

m

}
=
[
−m
−n

]
. (6.16)

6.5 Identities for Stirling numbers
In this section we give some identities which we need later in the proof of the
main theorem of Chapter 7.
Let Sp(r, n) (where r is omitted if it equals 0), be the pth elementary sym-
metric function of r, r + 1, · · · , n. For r = 0, from equation (6.8) we have
Sp(n−1) =

[
n
n−p

]
. The following lemma gives a formula for Sp(r,m) in terms

of Stirling numbers.
Lemma 6.5.1. We have for all p, r ≥ 0,

Sp(r, n− 1) =
p∑
v=0

(−1)v
{
v + r − 1
r − 1

}[
n

n− p+ v

]
. (6.17)

Proof. From (6.8) follows

(x)r−1(x− r) · · · (x− n+ 1) =
n∑

m=0
(−1)n−m

[
n

m

]
xm.

Now by definition of Sp(r, n) and from (6.12) we find
n−1∑
p=0

(−1)pSp(r, n− 1)xn−p−r = (x− r) · · · (x− n+ 1)

= (x)−1
r−1

n∑
m=0

(−1)n−m
[
n

m

]
xm =

∞∑
v=0

{
v + r − 1
r − 1

}
x−v−r

n∑
m=0

(−1)n−m
[
n

m

]
xm

=
n∑

m=0

∞∑
v=0

(−1)n−m
{
v + r − 1
r − 1

}[
n

m

]
xm−v−r.
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Setting m = n − p + v in the right hand side of the above equation we get
the result.
Lemma 6.5.2. We have

i) When m varies, for fixed p,
[
m
m−p

]
is a polynomial of degree 2p of m.

More precisely we have[
m

m− p

]
=

2p∑
k=p

cp,k (m)k, p ≥ 0, (6.18)

for some rational numbers cp,k given by the formula

cp,k =
k∑
j=1

(−1)k−j+p
j! (k − j)!

[
j

j − p

]
(6.19)

ii) when r,m vary, for fixed p, the coefficient of m2r−p in
[
m+1
m+1−r

]
is σp(r)2rr! ,

where σp(r) is a polynomial of degree 2p.

iii) We have for all p, r, i, t, t′, t′′ ≥ 0[
m
m−p

]
i!(m− r − i)! =

2p∑
t=p

t∑
t′=0

t−t′∑
t′′=0

cp,t
(

t
t′,t′′

)
(r)t′

(i− t′′)! (m− i− r − t+ t′ + t′′)! , (6.20)

Proof. We set [
m

m− p

]
=
∑
k≥0

cp,k (m)k,

for unknown cp,k and first we want to show that cp,k is zero for k /∈ {p, · · · , 2p}.
We set C(x, y) = e−y(1 + xy)1/x and we claim that the coefficient of xpyk in
C(x, y) is (−1)pcp,k. To show this From (6.8), (6.9) we have

(1 + xy)1/x =
∑
m≥0

(x−1)m
xmym

m! =
∑

m≥p≥0
(−1)p

[
m

m− p

]
xpym

m!

=
∑

m,p,k≥0
(−1)pk!

(
m

k

)
cp,k x

m−py
m

m!

=
∑
p,k≥0

(−1)pcp,k xp
∑
m≥k

ym

(m− k)!

= ey
∑
p,k≥0

(−1)pcp,k xpyk,

93



hence we get

C(x, y) =
∑
p,k≥0

(−1)pcp,k xpyk = e−
xy2

2 u(xy) =
∞∑
d=0

(
−xy2

2

)d
u(xy)d
d! , (6.21)

where

u(z) = − 2
z2 (log(z + 1)− z) = 1− 2

3z + 2
4z

2 − 2
5z

3 + · · ·

Since the power of y in the right hand side of (6.21) is strictly bigger than
the power of x (except d = 0), hence the left hand side is so and therefore
k ≥ p + 1. Moreover a general term in the right hand side, is of the form
xd+ry2d+r, so we conclude in the left hand side 2p ≥ k.
Now the coefficient of xpyk in C(x, y) in one hand is (−1)pcp,k and on the

other hand by definition is ∑k
j=1

(−1)k−j
j!(k − j)!

[
j
j−p

]
, which gives the formula for

cp,k.
For the second part we write[

m+ 1
m− r + 1

]
= 1

2rr!

2r−1∑
k=0

σk(r)m2r−k,

and we want to show that for fixed p, σp(r) is a polynomial of degree 2`.
Using the recursive equation (6.14)[

m+ 1
m− r + 1

]
−
[

m

m− r

]
= m

[
m

m− r + 1

]
, (6.22)

the coefficient of m2r−p in both sides gives us the following identity

σp(r) =
p∑

k=0
(−1)p−kσk(r)

(
2r − k
p− k

)
+ 2r

p−1∑
k=0

(−1)p−k−1σk(r − 1)
(

2r − 2− k
p− k − 1

)
,

(6.23)
or

2r σp−1(r − 1)− (2r − p+ 1)σp−1(r) =
p−2∑
k=0

(−1)p−kσk(r)
(

2r − k
p− k

)

+ 2r
p−2∑
k=0

(−1)p−k−1σk(r − 1)
(

2r − 2− k
p− k − 1

)
.
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For p = 1 we find σ0(r) = 1 and by induction we find the result.
For the third part using the identity

(1 + x)m = (1 + x)r(1 + x)i(1 + x)m−i−r, (6.24)

the power of xt in both sides gives the following equation(
m

t

)
=

∑
t′,t′′≥0

(
r

t′

)(
i

t′′

)(
m− i− r
t− t′ − t′′

)

This equation, together with the first part gives the result. �
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Chapter 7

The higher coefficients of
Ps(n,X)

In this chapter we prove our main theorem. It says that for each fixed ` ≥ 0
the `th top coefficient of Ps(n,X) with respect to n is a finite sum of the image
of some elementary functions under the Euler map Φd : Q[[V1, · · · , Vd]] −→
Q[X][[T ]] defined in Chapter 6.

7.1 Statement of the main theorem
To state the theorem we introduce some notations. Let Kd be the following
ring

Kd := Q(V1, · · · , Vd, eV1/2, · · · , eVd/2) ∩Q[[V1, · · · , Vd]]. (7.1)
Then we define

Kd := Φd(Kd)⊗Q[T, T−1] ⊂ Q[X][T−1, T ]]

and we set K = ∑
d≥1 Kd.

Lemma 7.1.1. The space K ⊂ Q[X][[T ]] is closed under multiplication and
differentiation.

Proof. The multiplication follows from

Φd

(
F (V1, · · · , Vd)T i

)
.Φd′

(
G(V1, · · · , Vd′)T j

)
=

= Φd+d′
(
F (V1, · · · , Vd)G(Vd+1, · · · , Vd+d′)T i+j

)
.
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The differentiation with respect to T follows from the second diagram of
Lemma 6.3.1 and the fact that Kd is closed under ∑i Vi

∂
∂Vi
. �

Corollary 7.1.1. Suppose a, b ∈ Q[X][[T ]], such that the functions a
b

and
d
dT

(log b) = b′

b
are elements of K. Then a(k)

b
∈ K for all k ≥ 0.

Proof. This follows by induction on k, since

a(k+1)

b
= (a

(k)

b
)′ + a(k)

b
.
b′

b
∈ K.

�

Theorem 7.1.1. Denote by ρ(`)
s (X) the coefficient of n2s+1−` in Ps(n,X)

and
P(`)(X,T ) =

∞∑
s=0

ρ(`)
s (X)T s

the corresponding generating function. Then we have

P(0)(X,T ) ∈ K1, P(`)(X,T ) ∈
2∑̀
d=1

Kd (` ≥ 1).

Remark. The proof is constructive. Indeed we show that there exist
effectively computable functions

Π(`,d)(V1, · · · , Vd, T ) ∈ Kd ⊗Q[T, T−1],

such that
P(`)(X,T ) =

2∑̀
d=1

Φd(Π(`,d)). (7.2)

Examples. The case ` = 0 is essentially the content of Chapter 4.
Indeed,from Theorem 4.1.1 we have

P(0)(X,T ) = P(X,T ) =
∞∑
s=1

αses(X)T s−1 = T−1Φ1
( V/2

sinh(V/2)
)
∈ K1.

Similarly the case ` = 1 (the second top coefficient) follws from what we did
in Chapter 5. Specifically, from Theorem 5.1.1 we have

P(1)(X,T ) =
∑
s≥0

µs(X)T s = Φ2(Π(1,2)) + Φ1(Π(1,1)),
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where

Π(1,2) = T−1S2(V1, V2),

Π(1,1) = T−1
(
V + V 2

4
)
S(V )− T−1V

2

2 S ′(V )− V

6 S(V ).

(Recall that S2(V1, V2) = S(V1)S(V2)S(V1 + V2) cosh(V1−V2
2 ), and S(V ) =

V/2
sinh(V/2)).

7.2 Statements of auxiliary results
To prove Theorem 7.1.1 we will need some propositions and a theorem that
we state in this section. The proofs will be given in the next section. Recall
the definition of Ps,i(n,X) from (3.32). We can write

Ps,i(n,X) =
2s+1∑
`=0

ρ
(`)
s,i (X)n2s+i−`, (s ≥ 0, i ≥ 1).

For i ≥ 1 we set
P

(`)
i (X,T ) :=

∞∑
s=0

ρ
(`)
s,i (X)T s, (7.3)

and P
(`)
0 = δ0`. We define

R`(X,T, Z) :=
∞∑
i=0

P
(`)
i (X,T )Z

i

i! , ` ≥ 0. (7.4)

Then we have the following statements.

Proposition 7.2.1. For ` ≥ 1 we have
∞∑
i=1

Di−1P(`)(X,T )T
i

i! ∈
2∑̀
d=1

Kd.

Proposition 7.2.2. Let

H(X,T, Z,W ) =
∑
j,k≥0

Qk,j(
1
W
,X) T j+k

(j + k)!(Z/W )k,
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where Qk,j(n,X) is defined as in (3.18) and W = 1
n

. Then H = exp(Z~(X,T,W )),
where

~(X,T,W ) = 1
W

T∫
0

[(
1− U

1− Uet

)W
−1
]
dt. (7.5)

Remark 7.2.1. Define coefficients q(`)
k,j(X) by the expansions

Qk,j(n,X) =
j∑
`=0

q
(`)
k,j(X)n−j−`, (n→∞). (7.6)

and let H`(X,T, Z) be the coefficient of W ` in H. Then by definition of H
we have

H`(X,T, Z) =
∑
j,k≥0

q
(`)
k,j(X)T

j+kZj

(j + k)! . (7.7)

We note that in the notation of the previous chapters H0 = H and H1 = J .

Now let

λp,v(T ) =
∞∑
r=1

σp(r)
{
v+r−1
r−1

}
2rr! T r, p, v ≥ 0. (7.8)

where σp(r)2rr! is the coefficient of m2r−p in
[
m+1
m−r+1

]
(see Lemma 6.5.2).

For example we have

λ0,0(T ) =
∑
r≥1

T r

2rr! = eT/2 − 1,

λ0,1(T ) =
∑
r≥2

r(r − 1)
2r+1r! T

r = T 2

8 eT/2,

λ1,0(T ) =
∑
r≥1

r(5− 2r)
3 · 2rr! T r = (T2 −

T 2

6 )eT/2.

We notice that for p+v ≥ 1, e−T/2λp,v(T ) is a polynomial of degree 2(p+v). In
fact for p ≥ 1 σp(r) ∈ rQ[r] of degree 2p and

{
v+r−1
r−1

}
∈ Q[r] is a polynomial

of degree 2v (see Lemma 6.5.2, equation (6.23), Remark 6.4.1 and Knuth
duality formula (6.16)). Therefore we can write

λp,v(T ) =
p+v∑
i=1

aiD
i(eT/2) ∈ eT/2Q[T ], ai ∈ Q.
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Now set

Λ(T,W ) :=
∑
p,v≥0

(−1)vλp,v(T )W v+p = (eT/2 − 1) +
(T

2 −
7
24T

2
)
eT/2W + · · · .

(7.9)
Then we have the following theorem, in which Q is considered as known and
we are trying to find R.

Theorem 7.2.1. Let R(X,T, Z,W ) := ∑∞
`=0R`(X,T, Z)W `, with R` as in

(7.4). Set

Q(X,T, Z,W ) = H(X,T, Z,W )
(
1− (X − 1)Λ(T,W )

)
.

Then

C(W,T ∂

∂T
)
(
R(X,Z1, T,W )Q(X,T, Z2,W )

)∣∣∣∣∣
Z1=T, Z2=T−1

= 1, (7.10)

where

C(x, y) = e−y(1 + xy)1/x = 1− xy
2

2 + x2(y
3

3 + y4

8 ) + · · · ∈ Q[[x, y]]

(see (6.21)).

Remark. In applynig the formula we have to consider (T ∂
∂T

)k as T k ∂k

∂Tk .

From Proposition 7.2.2 and Theorem 7.2.1 one can compute inductively
all R`(X,T, Z) only on the diagonal Z = T . We explain later how from this
we can obtain P(`)(X,T ). In Chapters 4 and 5 we did this for ` = 0, 1. We
illustrate the theorem by verifying these cases again.

Example. For ` = 0 the constant term with respect to W in the left
hand side of (7.10) is R(X,T, T )H(X,T, T−1)(X − (X − 1)eT/2) (recall that
R = R0, H = H0), hence from Theorem 7.2.1 we have

R(X,T, T )H(X,T, T−1)(X − (X − 1)eT/2) = 1,

which is exactly equation (4.23) for computing the leading coefficient.
Now for ` = 1 we need to find the coefficient of W in the left hand side
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of (7.10). Because at the end we want to compare our result with equation
(5.33), it is necessary to write λp,v (0 ≤ p, v,≤ 1), in terms of f1, f2 and f3,
which have been introduced in Lemma 5.1.3. We have

f1(X,T ) = 1− (X − 1)λ0,0(T ), f2(X,T ) = (X − 1)λ1,0(T ).

We set also f0(X,T ) = (X − 1)λ0,1(T ), so by Theorem 7.2.1 we have

(
1−T

2

2 W
∂2

∂T 2

)(
f1HR+

(
f1(HR1+RH1)+(f0−f2)HR

)
W

)∣∣∣∣∣
Z1=T, Z2=T−1

≡ 1,

where ≡ means the equality is valid up to O(W 2).
Therefore it turns out that

f1H(X,T, T−1)R1(X,T, T ) =

=
[
−f1RH1 + (f2 − f0)HR + T 2

2
∂2

∂T 2 (f1HR)
]∣∣∣∣∣
Z=T−1

=
[(
−f1H1 + f2H + T 2

2 f ′′1H − f0H + T 2f ′1H
′ + T 2

2 f1H
′′
)
R

+
(
T 2f1H

′ + T 2f ′1H
)
R′ + T 2

2 f1HR
′′
]∣∣∣∣∣
Z=T−1

,

where ′ denotes d
dT

. Comparing this equation with (5.33) (note that in our
old notation H1 = J and M = R1), and using the fact that

R1 = M = RG, Tf ′1 = −f3, ,
T 2

2 f ′′1 = f0,

we find that the two coincide.

7.3 Proof of the main theorem
In this section we prove the propositions and main theorem of the last sec-
tions. It has been organized as follows. First we assume Proposition 7.2.1
and we prove Theorem 7.1.1. Next we prove Proposition 7.2.1 using Propo-
sition 7.2.2 and Theorem 7.2.1 . Finally we prove Proposition 7.2.2. In the
next section we give a proof for Theorem 7.2.1.
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Proof of Theorem 7.1.1. Proposition 7.2.1 says that

∞∑
i=1

Di−1P(`)T
i

i! =
2∑̀
d=1

Φd(Π̂(`,d)(V1, · · · , Vd, T )), ` ≥ 1

where Π̂(`,d) ∈ Kd ⊗ Q[T, T−1].
Now we set Π(`,d)(V, T ) = T−1Π̂(`,d)(V, T ) V1+···+Vd

exp(V1+···+Vd)−1 , and we claim that

P(`)(X,T ) =
2∑̀
d=1

Φd(Π(`,d)(V1, · · · , Vd, T )) ∈
2∑̀
d=1

Kd.

First of all from Lemma 6.3.1, we have the following comutative diagram:

Kd
Φd−−−→ Q[X] [[T ]]

T
exp(V1+···+Vd)−1

V1+···Vd

y y ∞∑
i=1

T i

i! D
i−1

Kd
Φd−−−→ Q[X] [[T ]]

This diagram implies that for Q(X,T ) := ∑
d≥1

Φd(Π(`,d)), we have

∞∑
i=1

Di−1Q(X,T )T
i

i! =
∞∑
i=1

Di−1P(`)(X,T )T
i

i! .

From Lemma 4.1.2 we conclude P(`)(X,T ) = Q(X,T ) and the proof of the
theorem is complete. �

Proof of Proposition 7.2.1. To prove the statement, we prove (assum-
ing Theorem 7.2.1 and Proposition 7.2.2) the following two statements:

A. We show that R`(X,T, T )
R(X,T, T ) ∈

2∑̀
d=1

Kd.
B. We prove(

R`(X,T, Z)
R(X,T, Z) −

∞∑
i=1

Di−1P(`)(X,T )Z
i

i!

)∣∣∣∣∣
Z=T
∈

2`−1∑
d=1

Kd.

These together imply the statement.
Now we start with Statement A. First we show that the left hand side belongs
to K and then we give the upper bound.
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From Theorem 7.2.1 and by expanding the compact form of equation (7.10),
for ` ≥ 1 and looking for the coefficient of W ` in both sides, we find

(X − (X − 1)eT/2)H(X,T, T−1)R`(X,T, T ) =

= (X − (X − 1)eT/2)
∑

t,p,i,j≥0

∑
i+j=`−p
i<`

cp,t T
t ∂

t

∂T t

(
Ri(X,Z1, T )Hj(X,T, Z2)

)∣∣∣∣∣ Z1=T,
Z2=T−1

− (X − 1)
∑ ∑

i+j+k=`−p
i<`

cp−v,t T
t ∂

t

∂T t

(
Ri(X,Z1, T )Hj(X,T, Z2)λk,v(T )

)∣∣∣∣∣ Z1=T,
Z2=T−1

,

(7.11)

where the first sum runs over t, p, v, i, j, k ≥ 0.
From Lemma 7.1.1, K is a ring, hence from the above equation to show that
R`(X,T, T )
R(X,T, T ) ∈ K, it is enough to prove that for i < ` and j, t, k ≥ 0

R
(t)
i (X,Z, T )
R(X,Z, T )

∣∣∣∣∣
Z=T

,
H

(t)
j (X,T, Z)
H(X,T, Z)

∣∣∣∣∣
Z=T−1

,
(X − 1)λ(t)

k,v(T )
X − (X − 1)eT/2 ∈ K.

(7.12)
To verify (7.12), we see that R′

R
, H
′

H
and (X−1)eT/2

X−(X−1)eT/2 are elements of K1 ⊂ K.
In fact from (4.15) we have

R′(X,Z, T )
R(X,Z, T )

∣∣∣∣∣
Z=T

=
∞∑
i=1

Di−1P
T i−1

(i− 1)! =
∞∑

i,s=1
αs+1 es+i

T s+i−1

(i− 1)!

= T−1Φ1(
∑
i,s≥1

αs+1
V s+i

(i− 1)!) ∈ T
−1Φ1(K1) ⊂ K1.

From the first part of Proposition 4.1.1 we have

H ′(X,T, Z)
H(X,T, Z)

∣∣∣∣∣
Z=T−1

= T−1h′(X,T )

= T−1 ∑
k≥1

ek(X)T
k

k! = T−1Φ1(
∑
k≥1

V k

k! ) ∈ K1,

and finally (X−1)eT/2

X−(X−1)eT/2 = ∑
k≥1 ek(X) Tk−1

2k(k−1)! ∈ K1. Hence from Corollary
7.1.1 it is enough to verify (7.12) only for t = 0. But in that case, the first
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part of (7.12) is true by induction (since i < `) and the last one follows from

the fact that λk,v(T ) ∈ Q[T ]eT/2, hence (X − 1)λk,v(T )
X − (X − 1)eT/2 ∈ K.

For Hj

H
from Proposition 7.2.2 we have

Hj(X,T, Z)
H(X,T, Z) |Z=T−1 =

∂j exp
(
Z~(X,T,W )− Zh(X,T )

)
∂W j

∣∣∣∣∣
W=0, Z=T−1

.

(recall that by Proposition 4.21, H(X,T, Z) = exp(Zh(X,T )), or h(X,T ) =
~(X,T, 0)). But we have

∂j exp(~(W )− h)
∂W j

∣∣∣
W=0
∈ Q[∂~, ∂2~, · · · , ∂j~]

∣∣∣
W=0

,

where ∂ denotes ∂
∂W

. From Theorem 7.2.2

∂j~
∂W j

|W=0 =
T∫

0

logj+1
(

1− U
1− Uet

)
dt =

T∫
0

( ∞∑
k=1

ek(X) t
k

k!

)j+1

dt

=
T∫

0

∑
k1,··· ,kj+1≥1

ek1 · · · ekj+1

tk1+···kj+1

k1! · · · kj+1! dt

= TΦj+1
( ∑
k1,··· ,kj+1≥1

V k1
1 · · ·V

kj+1
j+1

k1! · · · kj+1! (k1 + · · · kj+1 + 1)
)
.

But
∑

k1,··· ,ki+1≥1

V k1
1 · · ·V

kj+1
j+1

k1! · · · kj+1! (k1 + · · · kj+1 + 1)

=
1∫

0

(
eV1T − 1

)
· · ·

(
eVj+1T − 1

)
dT =

∑
s

exp(Vs)− 1
Vs

∈ Kj+1,

where s runs over all subsets of {1, · · · , j + 1} and Vs = ∑
p∈s Vp. As a

consequence Hj(X,T, Z)
H(X,T, Z)

∣∣∣
Z=T−1

∈ K, or more preciesly

Hj(X,T, Z)
H(X,T, Z)

∣∣∣
Z=T−1

∈
j+1∑
d=1

Kd, j ≥ 1. (7.13)
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Denote r` the upper bound for the sum of the right hand side of Claim A.
We look at the equation (7.11). This maximum is obtained in the right hand
side of (7.11), when p = 0 and for j ≥ 1 we find that

r` = max {r`−j + j + 1|j = 1, · · · , `},

which implise that r` = 2` and the proof of the Statement A is complete.
Now we prove Statement B. From the recursive equation (3.33) we have

ρ
(`)
s,i+1(X) = Dρ

(`)
s,i (X)−s(X−1)ρ(`−1)

s,i (X)+
∑̀
k=0

s∑
r=0

ρ
(k)
r,i (X)ρ(`−k)

s−r (X). (7.14)

By (7.3) this is equivalent to

P
(`)
i+1(X,T ) = DP

(`)
i (X,T )− (X − 1)ΘP

(`−1)
i (X,T )

+
∑̀
k=0

P
(k)
i (X,T )P(`−k)(X,T ), . (7.15)

where Θ = T ∂
∂T

. Then by (7.4) we find

d

dZ
R`(X,T, Z) = DR`(X,T, Z)− (X − 1)T d

dT
R`−1(X,T, Z)

+
∑̀
k=0

P(`−k)(X,T )Rk(X,T, Z).

Hence if we set P(X,T,W ) := ∑∞
`=0 P

(`)(X,T )W ` we have

(
d

dZ
−D−(X−1)WΘ

)
R(X,T, Z,W ) = P(X,T,W )R(X,T, Z,W ). (7.16)

Therefore R = exp(F ) for some F which satisfies(
d

dZ
−D − (X − 1)WΘ

)
F (X,T, Z,W ) = P(X,T,W ),

with the right hand side indepent of Z. We write

F (X,T, Z,W ) =
∞∑
k=0

Fk(X,T, Z)W k.
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Then we have

( d
dZ
−D)F0 = P(0) = P, (7.17)

( d
dZ
−D)Fk = P(k) + (X − 1)ΘFk−1 (k ≥ 1). (7.18)

Equation (7.17) can easily be solved. We note that R(X,T, 0, 0) = 1, so
F0(X,T, 0) = 0, and we have

F0(X,T, Z) =
∞∑
i=1

Di−1P(X,T )Z
i

i! , (7.19)

and for (7.18) using the identity(
i

j1, · · · , js

)
=
(

i− 1
j1 − 1, j2, · · · , js

)
+· · ·+

(
i− 1

j1, · · · , js−1, js − 1

)
+
(

i− 1
j1, · · · , js

)
,

one can check directly that the solution of (7.18) is given by

Fk(X,T, Z) =
∞∑
i=1

Di−1P(k)(X,T )Z
i

i!

+
∞∑
i=1

k∑
s=1

∑
j1,··· ,js≥1

1
s!

(
i− 1

j1, · · · , js

)
ej1 · · · ejsDi−j−1ΘsP(k−s)Z

i

i! , (7.20)

where j = j1 + · · ·+ js.
Since k < ` we have by induction

P(k)(X,T, T ) =
2k∑
d=1

Φd(Π(k,d)), Π(k,d) ∈ Kd ⊗Q[T, T−1]. (7.21)

From Lemma 6.3.1 and (7.21) we have
ej1 · · · ejsDi−j−1ΘsP(k−s)(X,T )T i−1 =

=
2(k−s)∑
d=1

k∑
s=1

Φd+s

(
V j1
d+1 · · ·V

js
d+s

(
V1 + · · ·+ Vd

)i−j−1(
V

∂

∂V
+ Θ

)s
Π(k−s,d)

)
,

where V ∂
∂V = V1

∂
∂V1

+ · · ·Vd ∂
∂Vd

. Hence from (7.20) and the definition of Φd

we have

Fk(X,T, T ) =
∞∑
i=1

Di−1P(k)T
i

i!

+ T
k∑
s=1

2(k−s)∑
d=1

Φd+s

(
exp(V1 + · · ·+ Vd+s)− 1

s!
(
V1 + · · ·+ Vd

) (
V

∂

∂V
+ Θ

)s
Π(k−s,d)

)
.
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Hence it follows for k < `, that Fk(X,T, T ) ∈ K and the upper bound is
2k − 1 and consequently by Lemma 7.1.1, Q[F1, · · · , F`−1] ⊂ K.
For k = `, the same argument gives

[F`(X,T, Z)−
∞∑
i=1

Di−1P(`)(X,T )Z
i

i! ]
∣∣∣∣∣
Z=T
∈ K. (7.22)

with the upper bound d = 2`− 1. Hence Claim B is equivalent to
R`(X,T, T )
R(X,T, T ) − F`(X,T, T ) ∈ K

with the upper bound 2`− 1. But we have
R`(X,T, T )
R(X,T, T ) = ∂`R/R

∂W `

∣∣∣∣∣
W=0

= ∂` exp(F − F0)
∂W `

∣∣∣∣∣
W=0

= F` +G,

where G ∈ Q[F1, · · · , F`−1] ⊂ K with upper bound 2` − 1. This completes
the proof of Proposition 7.2.1. �

Proof of Proposition 7.2.2. From equation (3.18), H satisfies the
following homogenous linear differential equation[

∂

∂T
−X(X − 1) ∂

∂X
− ZT (X − 1)−W (X − 1)Z ∂

∂Z

]
H = 0. (7.23)

It follows that H(X,T, Z,W ) = exp(Z~(X,T,W )), for some ~ which satisfies
the following differential equation

∂

∂T
~−X(X − 1) ∂

∂X
~−W (X − 1)~ = T (X − 1).

Then we write ~(X,T,W ) = ∑∞
i=0 hi(X,W )T i

i! . But by definition of H we
have H = 1 + X−1

2 T 2Z + · · · which follows h0 = h1 = 0 and from the above
equation it turns out

h2 = X − 1 = e1, hi+1 = (D +We1)hi−1, i ≥ 2,

or hi = 1
W

(D +We1)i(1), for i ≥ 1. Finally we have

~′ = 1
W

∞∑
i=1

(
D +We1

)i
(1)T

i

i! = 1
W

[
exp

(
W

∞∑
i=1

ei
T i

i!
)
−1
]

= 1
W

[(
1− U

1− UeT

)W
−1
]
. (7.24)
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Therefore (7.5) follows. �

7.4 Proof of Theorem 7.2.1
In this final section we prove Theorem 7.2.1. The recursive equation (3.34),
which we repeat for convenience, says

s∑
k=1

k∑
i=0

Ek,i(n,X)Ps−k,i(n,X) = 0, (7.25)

where Ek,i(n,X) is defined as in (3.22).
We define coefficients a(2k−`)

k,j (X) by the expansion

Ek,i(n,X) =
2k−i−1∑
`=0

a
(2k−`)
k,i (X)n2k−i−`, (n→∞),

The coefficient of n2s−` in the left hand side of (7.25) is

s∑
k=1

∑̀
p=0

k∑
i=0

a
(2k−`+p)
k,i (X)ρ(2s−2k−p)

s−k,i (X). (7.26)

Hence by definiton of P(`)
i we have

∞∑
`=0

∑̀
p=0

∞∑
i=0

( ∞∑
k=i

a
(2k−`+p)
k,i (X)T k

)
P

(p)
i (X,T ) = 1. (7.27)

We show that for fixed i

∞∑
`,k=0

a
(2k−`)
k,i (X)T kW ` = C(W,T ∂

∂T
)
((

1− (X − 1)Λ(T,W )
)
H
T i

i!

)∣∣∣∣∣
Z=T−1

.

(7.28)
Note that one can consider this case as an special case of Theorem 7.2.1 when
all ρ(`)

s,i = 1 (s, i, ` ≥ 0).
To do this we need to write a(2k−p)

k,i as a sum of terms which depend on k− i
and i. The function Ek,i(n,X) in equation (3.22) depends on n through the
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quantities
(
n−r
i

)
, Sr(n) and Hn−i−r,k−i−r(n,X) (0 ≤ r ≤ k − i). We expand

the first of these by

(
n− r
i

)
= 1
i!

i∑
p=0

(−1)pSp(r, r + i− 1)ni−1,

where coefficients can be expresed in terms of Stirling numbers of the first
and second kind by (6.17). Using 3.17 and equation (7.6) we expand Hm,k

in terms of qk,j(X). Finally Sr(n) by the second part of Lemma 6.5.2 have
the following expansion

Sr(n) =
2r−1∑
p=0

σp(r)
2rr! n

2r−p r ≥ 1.

Therefore from (3.22) we have

a
(2k−`)
k,i (X) =

k−i∑
j=1

∑̀
p=0

(−1)p
Sp(k + j − 1)q(`−p)

k−i,j (X)
i! (k − i+ j)!

− (X − 1)
k−i∑
r=1

k−i−r∑
j=1

∑
p+p′+p′′=`

(−1)pσp
′(r)

2rr!
Sp(r, k + j − 1)
i! (k − i− r + j)!q

(p′′)
k−i−r,j(X)

=
k−i∑
j=1

∑̀
p=0

(−1)p
[

k + j

k + j − p

]
q

(`−p)
k−i,j (X)

i! (k − i+ j)!

− (X − 1)
k−i∑
r=1

k−i−r∑
j=1

∑
p+p′+p′′=`

p∑
v=0

(−1)v+pσp′(r)
{
v+r−1
r−1

}
2rr!

[
k+j

k+j−p+v

]
i! (k − i− r + j)!q

(p′′)
k−i−r,j(X).

(7.29)

Expanding
[

k+j
k+j−p+v

]
by (6.20) and forming a generating function we can
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write this as
∞∑
k=0

a
(2k−`)
k,i (X)T k =

∑
k,j,p,t,t′≥0

(−1)p
(
t

t′

)
cp,t q

(`−p)
k−i,j (X)T k

(i− t′)! (k + j − i− t+ t′)!

− (X − 1)
∑

k,j,p,p′,v,t,t′,t′′≥0
(−1)p

(
t

t′, t′′

)
cp−v,t λ

(t′)
p′,v(T ) q(`−p−p′)

k−i,j (X)T k+t′

(i− t′′)! (k + j − i− t+ t′ + t′′)!

=
∑̀
p=0

∑
t,t′≥0

(−1)p
(
t

t′

)
cp,tH

(t−t′)
`−p (X,T, Z) T

i+t−t′

(i− t′)!

∣∣∣∣∣
Z=T−1

− (X − 1)
∑

p+p′=`

∑
v,t,t′,t′′≥0

(−1)p
(

t

t′, t′′

)
cp−v,t λ

(t)
p′,v(T )H(t−t′−t′′)

`−p−p′ (X,T, Z) T
i+t−t′′

(i− t′′)!

∣∣∣∣∣
Z=T−1

,

where λp,v and H` are as in (7.8), (7.7) respectively.
Now multiplying by W ` and summing over ` ≥ 0 and using the Leibniz rule
we find

∞∑
`=0

∞∑
k=0

a
(2k−`)
k,i (X)T kW `

=
∞∑
`=0

∑̀
p=0

2p∑
t=0

(−1)pcp,t
∂t

∂T t

(
H`−p(X,T, Z)T

i

i!
)
W `T t

∣∣∣∣∣
Z=T−1

− (X − 1)
∞∑
`=0

∑̀
p=0

p∑
v=0

2p∑
t=0

(−1)pcp−v,t
∂t

∂T t

(
H`−p−p′(X,T, Z)λp′,v(T )T

i

i!

)
W `T t

∣∣∣∣∣
Z=T−1

.

(7.30)

We note that except the term T i

i! the other terms are independent of i. From
definitions of H and Λ we get

∞∑
`,k=0

a
(2k−`)
k,i (X)T kW ` =

∞∑
`=0

∑̀
p=0

2p∑
t=0

(−1)pcp,tW pT t
∂t

∂T t

(
H
T i

i!
)∣∣∣∣∣
Z=T−1

− (X − 1)
∞∑
`=0

∑̀
p=0

2p∑
t=0

(−1)pcp,tW pT t
∂t

∂T t

(
ΛH

T i

i!

)∣∣∣∣∣
Z=T−1

.
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Hence equation (7.28) follows from the definition of C(x, y).
Now in order to prove the statement of the theorem we multiply equation
(7.27) by W ` and sum over all ` ≥ 0. For fixed i we replace inside the
parentesis of (7.27) with the right hand side of (7.28) . Also replacing T by
Z1 in Pi(X,T ) and passing through the parenthesis and then summing over
all i ≥ 0 the statement of theorem immediatly follows from the definition of
R. �
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