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Abstract 

Soil heterogeneity at the field-scale not only affects crop growth and yield, but also spatial patterns of 

soil-borne pests and weeds. Therefore, site-specific management in due consideration of soil 

variability is required within the scope of precision crop protection. The focus of this study was the 

use of minimal- and non-invasive sensor technologies at the field-scale to improve (i) the assessment 

of soil organic carbon (SOC), (ii) management strategies for the beet cyst nematode Heterodera 

schachtii and (iii) the appreciation for complex interrelations of soil properties and weeds.  

A detailed knowledge on high-resolution SOC heterogeneity in agricultural soils is required, because 

SOC affects other soil properties such as aggregate stability or soil respiration. The small-scale spatial 

variability of SOC was determined using imaging spectroscopy in the visible and near-infrared region 

on long-term uniformly cultivated test fields with varying soil surface conditions (roughness, 

vegetation). Soil reflectance was recorded by the aircraft-mounted hyperspectral sensor HyMap  

(450 – 2500 nm). Site-specific characteristics affected the calibration models; highest prediction 

accuracy was performed over a bare, fine soil (R2 = 0.80). A generated pixel-wise map (8 × 8 m) on 

the basis of hyperspectral data visualise the SOC heterogeneity more realistic than an interpolated map 

based on conventional soil sampling.  

Soil texture is often referred to be the dominant soil property affecting the population density of the 

beet cyst nematode H. schachtii. The apparent electrical conductivity (ECa), which is known to be 

strongly related to soil texture and porosity, was measured with the non-invasive EM38 sensor. On 

fields heterogeneous in texture and porosity, moderate (R2 = 0.47) and strong (R2 = 0.74) correlations 

were observed between ECa and nematode population density. ECa values and soil taxation maps 

reveal that H. schachtii prefers deep soils with medium to light texture, a high proportion of wide 

pores and non-stagnic water conditions. Management maps on the basis of ECa and soil taxation maps 

indicate areas with different soil-related living conditions for H. schachtii.  

The spatial distribution and density of four weed species was observed within a long-term survey over 

nine years on an arable field and related to soil properties. The dominance of the weed species varied 

between the years, but the spatial patterns remained stable during the whole study period. Soil 

properties were analysed conventionally in the laboratory and via mid-infrared spectroscopy-partial 

least squares regression (MIRS-PLSR) or EM38 measurements. Multivariate statistics were used to 

describe the effect of soil properties, indicating that soil texture, available water capacity and SOC 

explained 28.2% of the weed species variability. The spatial distribution of soil properties can be used 

to create maps for site-specific weed management.  

The study provide evidence that minimal- and non-invasive sensor technologies such as MIRS-PLSR, 

airborne hyperspectral imaging or EM38 measurements are practical methods to detect soil 

heterogeneity at the field-scale. SOC and soil texture, both important parameters for the occurrence of 

soil-borne pests and weeds, can be characterised with high spatial resolution. Management maps on 

the basis of soil properties permit several benefits for precision crop protection, such as improved site-

specific management strategies of pests and weeds.  
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Kurzfassung 

Die räumlich heterogene Verteilung von Bodeneigenschaften auf der Feldskala beeinflusst nicht nur 
das Wachstum und den Ertrag von Feldfrüchten, sondern auch das nesterweise Auftreten von 
bodenbürtigen Krankheiten und Unkräutern. Die Bodenheterogenität auf der Feldskala ist daher ein 
bedeutender Parameter für teilschlagspezifische Bewirtschaftungsmaßnahmen, wie sie im 
Präzisionspflanzenschutz gefordert sind. Im Rahmen dieser Arbeit wurden minimal- und nicht-
invasive Sensoren eingesetzt, um (i) die Erfassung des organischen Kohlenstoffgehaltes (Corg) im 
Boden, (ii) Bewirtschaftungsstrategien bei Auftreten des Rübenzystennematoden Heterodera schachtii 
sowie (iii) das Verständnis von komplexen Beziehungen zwischen Bodeneigenschaften und 
Unkräutern zu verbessern und zu automatisieren.  

Die hoch aufgelöste, detaillierte Erfassung des Corg-Gehaltes in landwirtschaftlich genutzten Böden ist 
von großer Bedeutung, da der Corg-Gehalt des Bodens andere Bodenparameter wie Aggregatstabilität 
oder Bodenatmung beeinflusst. Die kleinräumige Variabilität von Corg wurde auf langjährig einheitlich 
bewirtschafteten Ackerschlägen mit unterschiedlicher Oberflächenbeschaffenheit (Rauhigkeit, 
Vegetation) mittels bildgebender spektroskopischer Verfahren im sichtbaren und nahen 
Infrarotbereich gemessen. Dabei wurde die Reflektion des Bodens mit einem flugzeuggetragenen 
Hyperspektralsensor (HyMap, 450 – 2500 nm) erfasst. Die Vorhersagegenauigkeit von Corg variierte je 
nach Oberflächenbeschaffenheit und war bei unbewachsenem, feinkörnigem Boden am höchsten  
(R2 = 0,80). Die Verteilung des Corg-Gehaltes konnte mit einer pixelweisen Karte (8 × 8 m), basierend 
auf hyperspektralen Daten, mit einer höheren Genauigkeit dargestellt werden als mittels einer 
interpolierten Karte auf der Basis einer konventionellen Bodenprobenahme.  

Die Populationsdichte des Rübenzystennematoden H. schachtii wird häufig mit der Bodentextur in 
Verbindung gebracht. Der nicht-invasive Sensor EM38 wurde zur Messung der scheinbaren 
elektrischen Leitfähigkeit (ECa) eingesetzt, die wiederum von der Bodentextur und der Porosität des 
Bodens beeinflusst wird. Auf texturell heterogenen Flächen wurden moderate (R2 = 0,47) bis enge  
(R2 = 0,74) Beziehungen zwischen der ECa und der Populationsdichte des Nematoden beobachtet. Die 
Verteilung der ECa sowie Bodenschätzungskarten verdeutlichen, dass H. schachtii tiefgründige Böden 
von sandig-schluffiger Textur mit einem hohen Anteil an Grobporen ohne wasserstauende 
Bedingungen bevorzugt. Bewirtschaftungskarten auf Grundlage von ECa- und Bodenschätzungskarten 
kennzeichnen Teilflächen mit variablen bodenbezogenen Lebensbedingungen für H. schachtii.  

Die räumliche Verteilung und Dichte von vier Unkrautarten wurde im Rahmen einer Langzeitstudie 
von neun Jahren auf einer Ackerfläche erfasst und mit der vorliegenden Bodenheterogenität 
verglichen. Während der gesamten Studie konnte eine starke Ortsgebundenheit der Unkräuter 
beobachtet werden, auch wenn der Deckungsgrad zwischen den Jahren variierte. Die 
Bodeneigenschaften wurden entweder konventionell im Labor analysiert und / oder anhand mittlerer 
Infrarot-Spektroskopie (MIRS) und EM38-Messungen erfasst. Mittels multivariater Statistik wurde 
der Einfluss des Bodens auf die Unkrautvariabilität bestimmt. Diese wurde zu 28,2% durch die 
Bodentextur, die nutzbare Feldkapazität und den Gehalt an Corg beeinflusst. Die heterogene Verteilung 
von Bodeneigenschaften kann genutzt werden, um Karten für eine teilflächenspezifische 
Unkrautbewirtschaftung zu erstellen.  

Die Ergebnisse dieser Arbeit zeigen, dass minimal- und nicht-invasive Sensoren zur Erfassung der 
Bodenheterogenität (Corg, Bodentextur) auf der Feldskala geeignet sind. Die Untersuchungen und 
dargestellten Karten basierend auf der Bodenheterogenität zur räumlich heterogenen Verteilung von 
Nematoden und Unkräutern belegen, dass auf dieser Grundlage teilschlagspezifische 
Bewirtschaftungsmaßnahmen im Rahmen des Präzisionspflanzenschutzes möglich sind. 
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1   RATIONALE  

Today´s agricultural production faces major challenges: the rapid growth of the human 

world population, accompanied consumption of food and thus an increasing use of 

agricultural land and resources as well as the rising costs of agricultural production 

(FAO, 2001; Brown, 2006). It is almost impossible to solve these challenges with 

conventional farming practices. One possible approach is precision farming (Stafford, 

2000; Gebbers and Adamchuk, 2010). Precision farming, or precision agriculture, aims 

to match both agricultural input and practices to the variation of soils, crops, pests and 

weeds within a field, instead of the uniform and suboptimal management of an entire 

field. Thereby, precision agriculture implements the accurate, rapid and economical 

acquisition of the spatial and temporal variability with a high spatial resolution 

(Viscarra Rossel and McBratney, 1998).  

Precision crop protection can be considered as a significant part of precision 

agriculture. One main objective of precision crop protection is site-specific 

management of pests and weeds to achieve ecological and economic benefits from the 

saving of pesticides (Timmermann et al., 2003; Maxwell and Luschei, 2005; Patzold et 

al., 2008). Thereby, crop protection due to pesticide applications can become more 

precise in crop production, leading to reduced costs and less environmental burdens 

(Stafford, 2000). As reviewed by Stafford (2000), the first real application of precision 

agriculture was a site-specific fertilisation system implemented in 1988. Atkinson and 

McKinlay (1997) stated that it is important to find alternative technologies to control 

plant diseases and weeds without impairing the environment, but with increasing yield 

and product quality. Therefore, precision agriculture, including precision crop 

protection, was in the focus of many studies concerning new techniques for herbicide 

application (Gerhards and Christensen, 2003), digital soil mapping (Triantafilis et al., 

2009) or detection of diseases (Rumpf et al., 2010) at the field-scale.  

An important aspect within precision crop protection is the spatial heterogeneity of soil 

properties at the field-scale. The spatial variability of soil properties affects crop 

growth and thus yield (Stafford, 2000), the occurrence of soil-borne pests and weeds 

(Patzold et al., 2008), plant parasitic diseases (Dordas, 2008) as well as the leaching 
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and efficacy of pesticides in soil (Wauchope et al., 2002; Mertens, 2008). The 

acquisition and mapping of soil heterogeneity can help to develop and to improve site-

specific management strategies within precision farming practices (Gebbers and 

Adamchuk, 2010).  

Within the scope of precision farming, new technologies are needed to reduce costs 

and time for soil sampling and analysis, including the simultaneous improvement of 

the accuracy of the results (Viscarra Rossel and McBratney, 1998). Thus, real-time 

sensing and online applications with high spatial resolution are required (Gebbers and 

Adamchuk, 2010). In the past decade, several sensors for the determination of soil 

chemical and physical properties have been developed and tested. Soil chemical 

properties, such as soil organic carbon (SOC), can be detected with spectral sensors 

operating in the visible (VIS), near-infrared (NIR) and mid-infrared (MIR) region 

(Viscarra Rossel et al., 2006; Bornemann et al., 2008; Patzold et al., 2008; Stevens et 

al., 2010). Further soil properties including physical parameters are measurable by 

non-invasive sensors such as the EM38 (Geonics, Canada) or the Veris 3100 (Veris 

Technologies, USA). These sensors can be directly used in the field to measure the 

(apparent) electrical conductivity (ECa) as an indicator for soil salinity, clay content 

and soil moisture (Sudduth et al., 2005; Mertens et al., 2008). Based on results from 

sensor technologies, highly resolved management maps can be created to support 

agronomists and farmers to manage land in a sustainable, environment-friendly and 

site-specific way (Oliver and Webster, 1991). The use of sensor technologies to assess 

chemical and physical soil properties such as SOC and soil texture at the field-scale, 

their effects on the patchy occurrence of pests and weeds and the creation of related 

site-specific management maps were the aims of this PhD-thesis.  
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2   STATE OF THE ART 

2.1   Heterogeneity of soil properties at the field-scale 

Arable fields are often characterised by considerable spatial soil heterogeneity, even 

though land management for a given field has been uniform over recent decades. The 

spatial and temporal variability of soils depends on the main factors parent material, 

climate, topography, organisms (including vegetation) and time (Jenny, 1941). 

Consequently, physical, chemical and biological soil characteristics are spatiotemporal 

heterogeneously distributed within arable fields; variation in soil properties occur in 

both horizontal and vertical directions (Viscarra Rossel and McBratney, 1998; Patzold 

et al., 2008). Furthermore, agricultural practices such as cultivation, liming or 

fertilisation affect the variability of soil properties like plant available nutrients, which, 

in turn, affect crop yield (Viscarra Rossel and McBratney, 1998).  

Human-induced factors like soil tillage as well as geological reasons like land surface 

relief and topography affect soil heterogeneity. Soil erosion and deposition of SOC 

and plant available nutrients are known to be strongly correlated and further affected 

by the type of soil tillage (De Gryze et al., 2008). Stevens et al. (2010) related SOC 

variability at the field-scale to differences in land-management or land use history, 

such as the former use of land for grassland instead of arable land. Variation in soil 

texture is mainly affected by soil forming processes. The different horizons of a soil 

depend on the parent material and can be mixed due to erosion, cryoturbation or 

solifluction (Mertens et al., 2008).  

Soil texture, SOC, nutrients and pH are reported to be highly relevant to precision 

farming, because their spatial distribution directly or indirectly affects crop growth and 

thus crop yields (Viscarra Rossel and McBratney, 1998; Dordas, 2008; Mertens et al., 

2008). Due to regular fertilisation and liming, leading to a high nutrient supply and an 

equalised soil pH, the effect of nutrients and soil pH can be regarded as negligible in 

many agricultural fields. In contrast, soil texture and SOC are particularly important 

soil properties affecting other soil parameters such as soil porosity, aggregate stability 

or soil respiration.  
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The spatial variation of soil properties within fields offers various conditions for a 

diverse development of crops as well as for many soil-borne pests and weeds (Patzold 

et al., 2008). Also sorption and desorption processes of pesticides are affected by the 

amount and quality of SOC, texture, pH and soil moisture content (Wauchope et al., 

2002; Mertens, 2008). Thus, a detailed knowledge about the spatial variability of soil 

properties is essential for implementing precision crop protection into the concept of 

precision farming (Patzold et al., 2008). 

The spatial distribution of SOC and soil texture within a field affects various crop 

stand parameters such as crop nutrient status or crop yield and the related amount and 

distribution of fertiliser needed. In addition, SOC and soil texture are closely related to 

soil quality, as they perform as indicators of soil erosion and degradation (Selige et al., 

2006; De Gryze et al., 2008). Depending on land-use and management, agricultural 

soils can be a major source or sink for carbon (Sleutel et al., 2007; Lal, 2010). In 

consequence, high-resolution SOC determination is of high interest beyond the needs 

of precision farming. It is also required for a contemporary environmental monitoring. 

Due to their diverse significance, SOC and soil texture heterogeneity at the field-scale 

were the main soil properties focused in this study.  

2.2   High-resolution qualitative and quantitative assessment of soil organic 

carbon and soil texture 

A high sampling density is required within precision agriculture to improve accuracy 

for site-specific management decisions and for the creation of management maps, also 

with respect to geostatistical needs (Viscarra Rossel and McBratney, 1998; Chang et 

al., 2001; Stevens et al., 2006). However, manual soil sampling and laboratory 

analyses are laborious and expensive (Stafford, 2000). The use of sensor technologies 

and comprehensive sampling strategies needs less time effort and less manpower than 

conventional techniques. Thus, innovative sensor technologies for the determination of 

soil heterogeneity are required and already partially used (Milton et al., 2009; 

Adamchuk et al., 2010). For the detection of SOC and soil texture, the related 

techniques are introduced in the following sections 2.2.1 and 2.2.2, respectively. 

Additionally, sampling strategies such as nested sampling can improve sampling 
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efforts and optimise sampling strategies with economic benefits (Oliver and Webster, 

1986; Viscarra Rossel and McBratney, 1998). They are the basis of advanced 

geostatistical procedures (see section 2.2.3).  

2.2.1   Determination of soil organic carbon via spectral sensors 

Various soil properties can be quantitatively measured with spectral sensors due to 

their specific reflectance properties (Baumgardner et al., 1985). Soil reflectance in the 

wavelength range between 400 and 25,000 nm derives from the spectral behaviour of 

the heterogeneous combination of organic matter, minerals, water and other 

chromophores (Udelhoven et al., 2003). A chromophore is part of a molecule that 

causes it to be coloured and that significantly affects the shape and nature of a soil 

spectrum (Hill et al., 2010). Reflectance spectra of soil can be transformed to 

quantitative estimates of soil constituents using infrared (IR) spectroscopy, as 

reviewed by Ben-Dor et al. (2009). 

Spectroscopy in the VIS, NIR and MIR region is an efficient and rapid technology 

which can provide soil data at a high spatial and temporal resolution (Viscarra Rossel 

et al., 2006; Gomez et al., 2008; Stevens et al., 2010). VIS, NIR and MIR techniques 

are reported to be highly sensitive, namely to the organic components of a soil. 

Spectral signatures related to various components of soil organic matter (SOM) 

generally occur in the MIR range (2500 – 25,000 nm), but their overtones can also be 

found in the VIS/NIR (400 – 1200 nm) and the shortwave-infrared (SWIR;  

1200 – 2500 nm) ranges (Shepherd and Walsh, 2002). Several studies reveal that on 

average MIR outperforms VIS/NIR, because MIR spectra consist of more defined 

peaks and thus are often described as performing better in estimating the SOC content 

(Chang et al., 2001; Stevens et al., 2006; Viscarra Rossel et al., 2006; Patzold et al., 

2008; Ladoni et al., 2010; Reeves, 2010). Due to its increasing use and wide 

acceptance, MIR spectroscopy (MIRS) may be considered as a reference method, even 

if it’s not yet an established laboratory standard. However, due to the fact that no 

transportable MIR sensor exist, MIRS is to be used preferentially under laboratory 

conditions, while NIR spectroscopy (NIRS) can be easily applied in the field as 

portable or as airborne sensors (Christy, 2008).  
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NIRS has been used for several years for the assessment of SOC (Dalal and Henry, 

1986; Henderson et al., 1992). Ladoni et al. (2010) reviewed the satisfying ability to 

predict SOC via NIRS under laboratory conditions. However, the choice of 

spectroscopic techniques used in field studies depends mainly on the accuracy of 

prediction, the cost of the technology and the amount of sample preparation required 

(Viscarra Rossel et al., 2006). To enhance the efficacy of spectroscopic techniques for 

soil mapping and monitoring, airborne sensor applications are becoming more popular, 

though they remain in the testing phase (Selige et al., 2006; Patzold et al., 2008; 

Stevens et al., 2008, 2010). According to DeTar et al. (2008), soil properties can be 

accurately detected using airborne hyperspectral imaging due to its high spatial 

resolution and supplying a complete spectrum of data for every pixel location. 

Multivariate calibrations, such as partial least squares regression (PLSR), allow for a 

quantitative determination of several soil characteristics from spectral signatures (VIS, 

NIR, SWIR and MIR) and are a common tool to derive soil properties from spectral 

data (Selige et al., 2006; Viscarra Rossel et al., 2006; Stevens et al., 2010). However, 

airborne hyperspectral imaging still has several limitations, as reviewed by Ben-Dor et 

al. (2009) and Cécillon et al. (2009). These limitations can be atmospheric absorptions 

or sensor-based characteristics such as a low signal-to-noise ratio and a limiting spatial 

resolution, or can occur due to spatial and temporal soil surface conditions, such as 

variable moisture content, soil surface roughness, or green manure or crop residue 

covers. In consequence, local calibration outperforms regional calibration (Stevens et 

al., 2010). The airborne HyMap sensor has shown itself to be an appropriate tool to 

monitor SOC at a regional scale (Selige et al., 2006).  

2.2.2   Determination of soil heterogeneity via electromagnetic induction 

The non-invasive sensor EM38 uses electromagnetic induction for mapping the ECa. 

The principle of electromagnetic induction is as follows: A transmitter coil at one end 

of the sensor induces an electromagnetic field in the soil, which is directly proportional 

to the electrical conductivity (EC). Each current loop generates a secondary 

electromagnetic field which is intercepted by a receiver coil at the other end of the 

sensor and summed up to the ECa. The ECa measures conductance through the soil 
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solution as well as through solid soil particles and exchangeable cations at soil-liquid 

interfaces of clay minerals (Corwin and Lesch, 2003).  

Thus, several soil properties, predominantly soil salinity, clay content and actual soil 

moisture are directly or indirectly correlated with the ECa (Friedman, 2005; Sudduth et 

al., 2005). Soil salinity can be regarded as negligible in Western Europe, where soils 

are usually free of soluble salts and the salt concentration of the soil solution is  

< 2 cmol L-1 (Rhoades et al., 1989). Hence, at comparable soil moisture conditions, the 

ECa can serve as an alternative indicator for soil texture. Mertens et al. (2008) 

suggested to perform repeated measurements several times at days with almost 

constant temperatures during the winter, when soil moisture content is close to field 

capacity. Thereby, disturbances by variable water content and soil temperature should 

be minimised and, in turn, achieved mostly stable patterns of the clay content.  

The ECa signal is an integral over the soil depth up to 1.5 m and thus covers the 

complete root zone (Domsch and Giebel, 2004). The precision of the results from 

EM38 measurements can be improved by additional local calibration with ground truth 

data to compensate the missing depth resolution (Mertens et al., 2008). High numbers 

of measurement points can easily be recorded. Thus, ECa maps with a very high spatial 

resolution can be created. During the last decade, the sensor EM38 has proven to be an 

useful, efficient and inexpensive mapping technique of soil texture and further soil 

heterogeneity at the field-scale (Sudduth et al., 2001; Domsch and Giebel, 2004; 

Mertens et al., 2008). 

2.2.3   Geostatistical treatment of ground truth and sensor data  

Management maps including within-field spatial variation of different parameters 

relevant for precision crop protection (e.g. soil properties, disease detection, weed 

species abundance) are needed by agronomists and farmers to improve site-specific 

management strategies (Oliver and Webster, 1991; Viscarra Rossel and McBratney, 

1998). An area-wide sampling is required for creating maps, expressing spatial 

patterns of entire fields. The use of geostatistics, including semivariogram analysis is 

frequently accepted and performed for visualising spatial variation (Kuzyakova and 

Richter, 2003; Bilgili et al., 2010). Therefore, at least 100 point data are necessary to 
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create a semivariogram and thus to state about the spatial correlation of a parameter 

(Oliver and Webster, 1991).  

Conventional assessment of ground truth data is laborious and expensive and often 

results in too large or too small sampling densities and thus to large estimation 

uncertainties (Stafford, 2000; Nutter et al., 2002). E.g., only averaged SOC contents 

within arable fields are determined in the current agricultural practise (Preger et al., 

2006), whereby spatial SOC heterogeneity cannot be detected adequately. Grid 

sampling is a widespread method to detect the intensity of nematodes or weeds within 

fields, as reviewed by Webster (2010). However, even a small-scale grid size can miss 

spatial heterogeneity, if the patchy distribution of a given parameter occurs between 

the intersection points of the sampling grid. High-resolution sensor data from soil 

sensors as well as from sensor techniques for the determination of pests and weeds are 

therefore needed to detect small-scale spatial variability.  

The concept of ‘digital soil mapping’ contains the use of sensor technologies to create 

soil maps with a high spatial resolution for a further integration of soil properties into 

precision crop protection (McBratney et al., 2003). Thereby, conventional soil 

sampling and laboratory analysis are combined with sensor data and geostatistical 

methods (Behrens and Scholten, 2006). Furthermore, pedotransfer functions should be 

used to evaluate soil properties on the basis of soil characteristics detected by sensor 

data (Mertens et al., 2008). Digital soil mapping is a part of many recent studies 

(Behrens et al., 2010; Grimm and Behrens, 2010; Malone et al., 2011). However, 

sensor data are not available for the detection of all required parameters within 

precision crop protection. Thus, the focus of this study was not on digital soil 

mapping, but on the quantitative detection of spatial soil heterogeneity and related 

soil-borne pests and weeds.  

The spatial distribution of a parameter at various short- and long-range distances can 

be adequately predicted using the nested sampling design and geostatistics for data 

analysis instead of conventional or grid sampling (Webster and Boag, 1992; Avendaño 

et al., 2003). The nested sampling scheme provides a range of intervals to ensure that 

spatial variation within a given field would be resolved. The original nested sampling 
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design to analyse spatial scale was proposed by Youden and Mehlich (1937). This was 

a balanced scheme in which the sampling was fully replicated at each level. Oliver and 

Webster (1986) introduced an unbalanced design for economy, which was adopted in 

this study. The design economises the sampling strategy to allow more main centres 

and stages. The basis of the design is that a population can be sampled with a multi-

level or nested scheme that enables the variance to be estimated for each level. The 

total variance is the sum of the contributions from each level in the hierarchy. The 

theory of nested sampling is described in detail by Oliver and Webster (1986). 

Additional variogram analyses using geostatistics can improve sampling strategies and 

estimation accuracy, because the experimental variogram implicates information about 

the spatial variation of a parameter which can be displayed with interpolation methods 

(Oliver and Webster, 1991; Viscarra Rossel and McBratney, 1998). In comparison 

with conventional grid sampling, small-scale variability (< grid size) can be detected 

and visualised on maps with a simultaneous decrease of the amount of samples 

needed.  

2.3   Patchy occurrence of pests within arable fields 

The spatial variability of soil properties affects the site-specific distribution of pests 

within arable fields, as reviewed by Patzold et al. (2008). Dordas (2008) further 

attributed these interactions to the amount of SOC in soils, influencing plant 

availability of nutrients, plant growth and plant tolerance against diseases. Kiss and 

Potyondi (2000) observed positive relationships between the nutrient supply of soils 

and the tolerance of sugar beets against fungal plant pathogens. Beside foliar diseases, 

especially the patchy occurrence of soil-borne pathogens can be related to soil 

heterogeneity. E.g., the soil-borne fungus Rhizoctonia solani, causing Rhizoctonia 

crown and root rot at sugar beets could be associated with the heterogeneously 

distributed amount and quality of SOC within arable fields (Kühn et al., 2009b).  

Furthermore, several studies have shown that population densities of soil nematodes 

are related to environmental conditions, in particular to the variation in soil properties. 

Soil texture is often considered to be the main soil property influencing the population 

densities of cyst nematodes (e.g. Cooke, 1984; Nombela et al., 1994; Wyse-Pester et 
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al., 2002). Soil texture and the related properties soil structure and soil moisture vary 

spatially within fields (see section 2.1) and have a considerable effect on nematode 

population dynamics (Hassink et al., 1993; Workneh et al., 1999; Avendaño et al., 

2004). Nombela et al. (1994) observed within large districts that various nematode 

species favour different textural zones. Avendaño et al. (2004) found higher 

population densities of the soybean cyst nematode Heterodera glycines at sandy sites 

than at adjacent loamy or clayey sites within agricultural fields.  

SOC content and soil texture are reported to affect the occurrence of soil-borne pests. 

Furthermore, SOC and soil texture are strongly interrelated and further affect other soil 

properties such as aggregate stability or nutrient supply, indicating the complex 

interaction within soils. Therefore, one focus of this study was on relationships 

between soil properties and the occurrence of the beet cyst nematode (BCN), 

Heterodera schachtii (Schmidt), within agricultural fields. H. schachtii is a plant 

parasitic sedentary endoparasite causing severe damage to sugar beet with yield losses 

up to 50% and is considered one of the most significant pests in sugar beet production 

in Europe and worldwide (Schlang, 1991; Müller, 1999).  

2.3.1   Population dynamics of Heterodera schachtii as affected by soil properties 

The natural spread of cyst nematodes, and thus the inter- and intra-field distribution, is 

limited due to their restricted mobility (Freckman and Caswell, 1985). Therefore, the 

spatial distribution of symptoms caused by H. schachtii can appear to be nested within 

sugar beet fields (Petherbridge and Jones, 1944; Cooke, 1987). Second stage juveniles 

of H. schachtii (J2) penetrate the lateral root tips of sugar beet plants. After 

penetration, J2 initiate the formation of giant cells (syncytia) in the vascular system. 

As a consequence, the nutrient and water uptake by the infested root is disrupted, 

resulting in reduced growth and a decrease in yield of the affected plant. Branched tap 

roots are developed due to compensatory secondary root growth (Cooke, 1987). 

Infested plants often wilt late in the growing season, especially if exposed to stress 

from heat and water conditions (Schmitz et al., 2006; Hillnhütter et al., 2011a).  

Soil texture, moisture and temperature have been identified as the most important 

properties that affect plant parasitic nematodes (Wallace, 1959, 1968; Cooke and 
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Thomason, 1979; Caswell et al., 1986; Schmidt et al., 1993; Avendaño et al., 2004). 

The effect of soil texture on nematode populations can be explained by various simple, 

as well as by more complex, effects. Soil texture has an indirect effect on the living 

conditions of nematodes, because it affects the diameter and distribution of soil pores, 

and – in a more complex way – SOC content and soil aggregation, both in determining 

the size and the accessibility of the nematodes’ living space. Raski (1950) found that 

the plant penetrating mobile J2 stage of H. schachtii reached 22 µm in diameter. 

Consequently, soil pores with a diameter > 22 µm are necessary for the development 

of BCN. Such pore sizes refer to wide pores and occur mainly in soils dominated by 

sand (coarse silt and fine sand fraction: 20 – 200 µm). In support of this, Wallace 

(1968) found the fastest movement of H. schachtii in soil with particle sizes of  

150 – 250 µm in diameter. Soil with a large fine sand content frequently has soil pores 

with larger diameters, leading to favourable environmental conditions for BCN 

development and movement. Therefore, the population density of H. schachtii is 

expected to be highest in this type of soils.  

The nematodes’ development is not based solely on the geometric properties of the 

living space, but also on actual environmental conditions, i.e. presence and amount of 

pore water. Thus, soil water dynamics have to be considered as well. Nematodes need 

adsorbed water on soil particles for their survival and mobility (Wallace, 1968). 

According to Wallace (1956, 1959, 1968), the activity and hatching of H. schachtii is 

greatest at field capacity, i.e. when fine (< 0.2 µm), medium (0.2 – 10 µm) and large 

slow draining (10 – 50 µm) pores are saturated with water. If a soil becomes dry, the 

lack of water becomes the limiting factor for the hatching, movement and overall 

persistence of the nematodes (Wallace, 1959; Decker, 1969).  

Soil temperature also affects the nematode population dynamics. Many temperature 

studies of the population dynamics of H. schachtii were done under laboratory or 

greenhouse conditions. They all indicated a clear direct temperature effect, i.e. the 

higher was the soil temperature the greater was the nematode population activity 

(Santo and Bolander, 1979; Griffin, 1981b, 1988). However, soil temperatures above 

32°C markedly limit nematode activity (Cooke and Thomason, 1979). After the 

penetration of roots by J2, soil that warms rapidly increases the reproduction of  
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H. schachtii. Soil temperature and soil texture are directly linked, because the warming 

of soil in spring and after periods of rain is more rapid in sandy than in loamy or 

clayey soil; the latter, however, dry out more slowly. Thus, soil texture affects 

nematodes in a complex way. 

Furthermore, soil texture and also SOC content affect the development of the host 

plant through the supply of nutrients and water. Optimal growth conditions for host 

plants may lead to a large root biomass, which provide more feeding sites and thus 

optimal population growth conditions for the nematodes (Avendaño et al., 2003; Evans 

et al., 2003). On the contrary, circumstances such as water logging or drought stress in 

shallow or dense soils reduce the development of the host plant, and are also 

disadvantageous to the development of BCN. 

2.4   Patchy occurrence of weeds within arable fields 

Beside foliar and soil-borne diseases, weeds are another factor affecting yields of field 

crops. Weeds cause the most important damages to crops at arable fields across the 

world with yield losses of 10 to 80% (Cousens and Mortimer, 1995; Oerke and Dehne, 

2004). Weed control is demanding, because weed communities react very flexible to 

new management and control strategies (Sosnoskie et al., 2006). Field crops respond 

directly to high weed densities by yield reductions, because weeds and field crops 

compete for growth factors such as light, water and nutrients (Cousens and Mortimer, 

1995; Kobusch, 2003; Ritter et al., 2008). Thereby, competition within and between 

crop and weed species is very complex; individual competitiveness are crop and weed 

specific and site- and year-dependent (Kobusch, 2003). Field crops with slow juvenile 

development (e.g. maize, sugar beet) are very susceptible to weed competition at early 

development stages, whereas field crops with rapid juvenile development (e.g. cereal, 

rape) are more compressive to weeds (Cousens and Mortimer, 1995; Bräutigam, 

1998). Year-dependent weed density can be affected by soil tillage and climatic 

conditions such as temperature and rainfall (Cousens and Mortimer, 1995; Cardina et 

al., 2002; Sosnoskie et al., 2006; Long et al., 2011).  

Weeds are very adaptable to their environment and usually of general occurrence 

(Marshall et al., 2003). However, a site-specific species composition and patchiness of 
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weeds with a distinct composition and with different plant densities often occur within 

arable fields; this is an accepted fact as reviewed by Rew and Cousens (2001) and has 

been the objective of many studies (e.g. Christensen et al., 2003; Gerhards and Oebel, 

2006; Dicke et al., 2007; Ritter et al., 2008; Weis et al., 2008).  

The spatial pattern of weeds depends on various environmental and human-induced 

factors. Minimum and no tillage increase weed density, which, in turn, can be reduced 

by ploughing (Bàrberi and Lo Cascio, 2001; Cardina et al., 2002). Furthermore, the 

crop rotation affects weed occurrence (Cardina et al., 2002). Differences in weed 

species composition were especially found between row crops sown in spring and 

winter cereals (Andreasen et al., 1991), whereas differences in weed density were 

observed between summer annual crops and winter annual crops (Hald, 1999). The 

spatial distribution of weeds can also be affected by herbicide application, whereas 

weed density can increase if herbicide use is reduced (Squire et al., 2000). Dieleman et 

al. (1999) stated that the aggregation of weeds may be enhanced by uniform herbicide 

application, because a greater number of plants may survive in the patch centres and 

produce new seeds. Dicke et al. (2007) found that the adaption of herbicide active 

ingredient and dosage to weed species and density does not affect the weed pattern and 

abundance in a 4-year field crop rotation.  

Several authors observed relationships between the patchy distribution of various weed 

species and spatial soil heterogeneity. SOC, soil texture and nutrient status of the soil 

can affect weed occurrence (Gaston et al., 2001; Walter et al., 2002; Nordmeyer and 

Häusler, 2004; Long et al., 2009). Various soil properties are closely interrelated, so 

that a given parameter such as SOC can be an indicator for other soil conditions, such 

as water holding capacity. Thus, effects of the soil on weed growth are not monocausal 

but complex and have to take various interrelations into account (Andreasen et al., 

1991). 

Weed patches have been observed to be stationary at least for several years (Gerhards 

and Christensen, 2003). This is an important factor for weed management within the 

scope of precision crop protection. Therefore, several innovative technologies have 

been developed to optimise site-specific weed control, as reviewed by Gerhards and 
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Christensen (2003). Current studies mainly focus on an on-the-go detection of weeds 

and the use of patch sprayers to reduce herbicide use (Gerhards et al., 2005; Gutjahr et 

al., 2008). Vehicle-based (Gerhards and Oebel, 2006; Weis et al., 2008), airborne 

(Gray et al., 2008) or satellite-based (Jacobi et al., 2006) image analysis as well as 

computerised decision algorithms and modelling (Dunker et al., 2002; Christensen et 

al., 2003; Ritter et al., 2008) were used for weed detection and species identification. 

Also geostatistical analyses with varying interpolation techniques are increasingly 

applied in weed research (Webster, 2010). Kroulik et al. (2008) already combined 

some of these new approaches and included soil information on the basis of ECa 

measurements, resulting in a satisfying prediction accuracy of Cirsium arvense. The 

number and diversity of studies regarding spatial weed distribution highlights the 

importance of this topic for future precision crop protection strategies.  

 

3   OBJECTIVES 

Soil heterogeneity at the field scale is an increasingly recognised fact in crop and soil 

science. As shown above, spatial soil variability affects many factors of crop growth as 

well as pest and weed incidence. This study aims at the evaluation of the interrelation 

between soil heterogeneity and important aspects of crop protection including 

conditions for crop growth. The aspects examined were SOC, H. schachtii and weed 

distribution.  

Relevant soil properties and their spatial distribution within agricultural fields can be 

detected with innovative non-invasive or minimal-invasive sensor technologies. In this 

context, a detailed knowledge of the small-scale variability of SOC within individual 

agricultural fields is an essential requirement for an effective site-specific management 

within precision crop protection. Furthermore, the patchy occurrence of the plant 

parasitic cyst nematode H. schachtii as well as of weeds has not been studied 

satisfactorily with respect to underlying soil properties. Management maps were 

exemplarily developed to improve prospective site-specific management strategies of 

pests and weeds.  
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In detail, the following objectives were in the focus of this study: 

(i) The prediction of the spatial heterogeneity of SOC at the field-scale was tested 

using high-resolution airborne hyperspectral imaging (HyMap sensor). Thereby, 

different soil surface conditions (roughness, vegetation) were investigated. 

Possibilities and limitations regarding the temporal stability of spatial SOC 

distribution were evaluated. SOC maps on a pixel-wise basis as required for precision 

agriculture and for SOC monitoring were generated. 

(ii) The development of management maps for H. schachtii-infested fields with the 

use of non-invasive soil sensors was investigated. These maps are based upon soil 

texture information from ECa data from the EM38 sensor and additional information 

from traditional soil taxation maps. The management maps were validated against the 

observed spatial distribution of H. schachtii. Such management maps will enable 

farmers to use suitable site-specific management strategies and target sampling 

effectively within fields. 

(iii) The relevance of soil properties for weed prediction and detection was 

evaluated. Modern sensor technologies and multivariate statistical methods are proved 

to estimate the effect of soil on weed distribution and abundance with higher accuracy 

than in the past. The occurrence and patchiness of weeds was observed within a long-

term survey over nine years on an arable field with respect to spatial soil 

heterogeneity. Weed management maps on the basis of sensor data and soil maps were 

created in order to improve the knowledge base for site-specific weed management.  

The three different aspects investigated shall contribute to clarify the complex 

interrelation between soil, crops and pests as well as weeds. The large number of 

observations due to sensor application potentially opens new perspectives in the field 

of precision crop protection.  
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1   MID-INFRARED SPECTROSCOPY 

The reflectance properties of the soil were measured in the MIR range and regarded as 

a laboratory standard. All soil samples were air-dried, sieved (< 2 mm) and further 

milled. For the implementation of MIRS, ~20 mg aliquots per sample were transferred 

to microtiter plates and compacted with a plunger to leave a plain and dense surface. 

Spectra measurements were performed using a Bruker Tensor 27 (Bruker Optik, 

Ettlingen, Germany) equipped with an automated high throughput device (Bruker 

HTS-XT), operating with a liquid N2-cooled mercury-cadmium telluride (MCT) 

detector. Spectra were recorded from 1250 to 16,700 nm at a resolution of 4 cm-1, thus 

covering not only the MIR range but also partially including the NIR spectrum. Five 

measurements, each comprising of 120 scans, were conducted per sample. 

 

2   MULTIVARIATE CALIBRATIONS  

A partial least squares regression (PLSR) was used to calibrate the MIRS data with the 

reference soil data, which were measured with laboratory standards. PLSR for data 

analyses was performed using OPUS QUANT software (Bruker Optik, Ettlingen, 

Germany), utilising the PLS 1 algorithm (Martens and Naes, 1996). The removal of 

certain spectral ranges as well as adequate data treatment of the spectroscopic 

information are important measures used to enhance the quality of a prediction model 

(Bornemann et al., 2008). The OPUS QUANT software supplies a routine that 

automatically tests both measures to ensure the optimum prediction power of the 

model.  

For each sample set a leave-one-out cross validation was conducted, where each 

sample, comprising of five repetitions, is successively removed once and its value is 

predicted by the remaining samples. Repetitions that obviously did not fit the 

prediction model were treated as outliers and removed from the sample sets, upon 

which cross validation was repeated. The software presents several alternatives which 

can be used as a calibration model. A robust calibration model is then selected 

manually to ensure the optimum prediction power of the model. The stability of the 
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prediction models was verified by test-set validation with a ratio of calibration and 

validation samples of 50%. Thereby the first sample group is applied to derive the 

model parameters, and the second one is used to validate the applicability of the 

model, and vice versa.  

The predictive power of spectroscopic measurements can be described by the 

coefficient of determination (R2) between measured and predicted values, the root 

mean square error of cross validation (RMSECV) and the root mean square error of 

prediction (RMSEP) for cross validation and test-set validation procedures, 

respectively. These latter parameters describe the standard errors of the calibration 

procedures. Furthermore, the ratio of performance to deviation (RPD), the ratio of 

performance to interquartile distance (RPIQ) and the modelling efficiency (EF) were 

calculated as dimensionless quality parameters. The RPD represents the quotient of 

standard deviation of the reference data and standard error of the calibration 

procedures. According to Chang et al. (2001), calibration models with an RDP > 2 are 

considered to accurately predict a soil parameter, whereas an RPD < 1.4 indicates no 

prediction ability. RPD values between 1.4 and 2 belong to an intermediate class. The 

RPIQ correctly represents the spread of a population and is a useful index for soil 

samples (Bellon-Maurel et al., 2010). The EF is calculated as the relative deviation of 

the predicted data compared to the variation in the lab data. It is used to evaluate the 

model performance and should be as close to 1 as possible (Loague and Green, 1991). 

Lastly, the bias, which is a measure of the difference between reference and predicted 

means, was calculated (Bellon-Maurel et al., 2010).  

 

3   MEASUREMENT OF APPARENT ELECTRICAL 

CONDUCTIVITY  

The apparent electrical conductivity (ECa) was measured with the non-invasive 

electromagnetic EM38 sensor from the bare soil surface. The vertical-dipole mode, 

leading to a measurement depth of 1.5 m, was used to cover the complete root zone. 

The EM38 and a GPS were mounted on a plastic sledge that was pulled over the fields 
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and provided measurements every 2.8 m. The ECa data were measured on transects 

separated by about 8 – 10 m. This corresponds to about 430 data points per hectare. 

Mertens et al. (2008) suggested that ECa should be recorded on several different days 

during the winter when temperatures are almost constant and soil moisture content is 

close to field capacity to minimise any effects from variable water content and soil 

temperature. Thus, ECa was measured two to three times during the winter season at 

each field and averaged.  

 

4   GEOSTATISTICAL DATA ANALYSIS 

The geostatistical data processing and the creation of maps were performed using 

ArcGIS 9.3 (ESRI, Redlands, California, USA). Ordinary kriging was the method of 

choice to state the spatial prediction of soil properties of the investigated fields. 

Preceding variogram analyses were performed using VESPER (Minasny et al., 2005) 

following the standard formula described by Webster and Oliver (2007). Due to 

partially small sample sets it was not possible to predict a robust variogram and to use 

kriging at every test site (at least 100 samples are required; Oliver and Webster, 1991). 

In such cases, soil point data were interpolated by Inverse Distance Weighting (IDW) 

to a raster file.  
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1   INTRODUCTION  

Soil organic carbon (SOC) is a particularly important soil property affecting other soil 

parameters as well as crop growth. The spatial distribution of the SOC content is often 

heterogeneous within agricultural fields. A detailed knowledge of the SOC content at 

the field-scale is required to support applications such as precision agriculture. 

Imaging spectroscopy in the visible (VIS) and near-infrared (NIR) region has proven 

to be highly sensitive to SOC and can efficiently provide data with high spatial 

resolution (Gomez et al., 2008; Stevens et al., 2010). As recently reported by Ben-Dor 

et al. (2009), Cécillon et al. (2009) and Ladoni et al. (2010), more experience is 

required to accurately predict SOC via airborne hyperspectral imaging, as only few 

studies dealt with this topic by now. Former research focused primarily on the 

detection of SOC at large regional scales for entire landscapes (Selige et al., 2006; 

Stevens et al., 2006, 2008, 2010). However, SOC can considerably vary within few 

meters. The objectives of this study were (i) to test the suitability of hyperspectral 

imaging (HyMap sensor) for the characterisation of the spatial heterogeneity of the 

SOC content at the field-scale including (ii) investigations concerning different soil 

surface conditions (roughness, vegetation) and (iii) to produce SOC maps for arable 

fields on a pixel-wise basis as required for precision agriculture. 

 

2   MATERIAL AND METHODS 

2.1   Study sites  

The spatial variation of the SOC content was investigated at four agricultural fields in 

the Lower Rhine Basin in North Rhine-Westphalia, Germany. This region is 

characterised by a mean annual precipitation of 700 – 800 mm and a mean annual 

temperature of approximately 10°C. All test sites are covered by a loess layer (> 2 m) 

and have been under intensive and uniform cultivation for the last several decades. The 

distribution of SOC within the plough layer (0 – 30 cm) may be regarded as 

homogeneous due to annual ploughing, but ranges of SOC differed between the test 

sites (Tab. III.1). Due to different soil cultivation at the time of sampling, all test sites 



23 
�

varied in surface roughness, soil structure and coverage with volunteered green crops 

and straw residues. Volunteer crops are crops which emerge from lost grains after 

harvest due to new germination. A fresh seed-bed was prepared a few days before 

sampling on Sinsteden BF (bare soil, fine seed-bed; 2.5 ha) test site, while the test site 

Sinsteden VC (volunteer crops; 9 ha) was harvested three weeks before sampling 

without subsequent cultivation. At Sinsteden VC, approximately 10% of the soil 

surface was covered by field bean residues and volunteers. Both other test sites at 

Oberhoicht belong to one arable field, where winter wheat was harvested three weeks 

before sampling. One part of the field was ploughed two weeks before sampling and 

thus not covered with straw residues (Oberhoicht PB: ploughed, bare soil; 3.5 ha), 

while the other part of the field was grubbed and covered to approximately 30% with 

straw residues (Oberhoicht GS: grubbed, straw residues; 3.5 ha). Dominant soil types 

of the two neighbouring test sites at Sinsteden (51°02'58'' N, 6°38'38'' E) are, 

according to the World Reference Base for Soil Resources (WRB; FAO, 2006), 

Cambisols, Regosols and Luvisols. The other two test sites, at Oberhoicht (50°36'57'' 

N, 6°59'09'' E), are dominated by Cambisols and Luvisols. While the within-field 

difference in altitude is similar on all test sites (Sinsteden BF, VC: 5.4 m; Oberhoicht 

PB, GS: 5.1 m), the sites at Sinsteden are indicated by a squared shape and a rather 

hilly relief with a slope of 3.5°, whereas the narrow, elongated test sites at Oberhoicht 

are plain (slope: < 1°). The test sites of 2.5 – 9 ha in size are in the typical range for 

agricultural fields in the study region and comparable to other small-scaled agricultural 

areas in Western Europe (e.g., 15 ha on average in Belgium; Sleutel et al., 2007). 

Soil sampling took place on the 6th of August 2008, on the same day as the HyMap 

flight and aerial imaging campaign was performed. 500 g of soil were sampled from 

the upper 3 cm of the plough horizon in a radius of 2 m around randomly chosen 

sampling points at all test sites (n = 204). The spatial coordinates were recorded using 

differential GPS. The effects of varying soil moisture may be excluded in this study 

because the flight campaign was conducted after a period of dry weather which 

ensured uniformly dried soil surfaces. 44 soil samples were collected from Sinsteden 

BF test site, and 100 samples were taken from Sinsteden VC test site. Each 30 soil 
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samples were collected from both Oberhoicht PB as well as from Oberhoicht GS test 

sites.  

2.2   Conventional soil analyses 

All soil samples were air-dried, passed through a 2 mm sieve and milled prior to 

analysis. Total C was analysed after dry combustion with an elemental analyser 

(Fisons NA 2000; ISO 10694, 1995). SOC was determined as total C minus inorganic 

C (Scheibler method). 

2.3   Hyperspectral imaging in the VIS/NIR range 

The reflectance properties varied between the test sites, as fields with different ranges 

of SOC and surface conditions were chosen for this study (Tab. III.1, III.2). The 

reflectance of the soil in the VIS/NIR range at the field-scale was recorded by the 

aircraft-mounted hyperspectral sensor HyMap (Integrated Spectronics, Sydney, 

Australia). The HyMap flight campaign was conducted by the German Aerospace 

Centre (DLR, Oberpfaffenhofen, Germany) on the 6th of August, 2008. HyMap uses a 

whisk-broom scanner with 512 pixels per line. It provides 126 spectral bands between 

450 and 2500 nm. The bandwidths are dependent on the full width at half maximum 

(FWHM) of the spectral band, which is as follows: (i) 15 nm in the VIS  

(450 – 890 nm) and NIR (890 – 1350 nm), (ii) 13 nm in the SWIR1 (1400 – 1800 nm) 

and (iii) 17 nm in the SWIR2 (1950 – 2480 nm) ranges. A nominal spatial resolution 

of 4 m was achieved for each pixel at a flight level of 2000 m, which provides  

625 pixels ha-1. The data sets were radiometric calibrated and an atmospheric 

correction was carried out by the DLR using ATCOR4 to derive nadirnormalised 

ground reflectance.  

For image processing of the HyMap spectra, the software package ENVI 4.7 (ITT 

Visual Information Solutions, Boulder, USA) was used. Spectra of four pixels  

(4 m by 4 m each) were consolidated and averaged to compensate for spatial offset in 

the HyMap data. Hence, the evaluated spectra evolve from an area of 8 m by 8 m  

(64 m2).  
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2.4   Data treatment and statistical analyses 

2.4.1   Partial least squares regression (PLSR) 

Multivariate calibration using PLSR was conducted as outlined in section II.2 to 

calibrate the HyMap VIS/NIRS data with the reference SOC data from elemental 

analysis.  

2.4.2   Image processing 

A pixel-wise SOC map was prepared for one part of the Sinsteden VC test site to 

compare this form of data processing with geostatistical data processing, which is 

commonly used to reveal the spatial variation of a parameter. During image 

processing, spectra were calculated for each image pixel. Thereby, spectra from four 

pixel were selected using ENVI software and averaged. The prediction of the SOC 

content was performed using OPUS as described in section II.2. 

2.4.3   Geostatistical data processing  

Geostatistical data processing and the creation of maps were performed as described in 

section II.4.  

 

3   RESULTS AND DISCUSSION 

3.1   Prediction of SOC via airborne hyperspectral imaging 

For the complete sample set, the SOC content ranged from 8.3 to 18.5 g SOC kg-1 

(Tab. III.1), which is typical for arable fields in the study region (Preger et al., 2006). 

If data of all four test sites (n = 204) are combined, SOC can be predicted from the 

hyperspectral data with high accuracy. The coefficient of determination (R2 = 0.83) as 

well as RMSEP (1.10 g SOC kg-1), corresponding RPD (2.32) and RPIQ (4.41) 

corroborate the high quality of the calibration model (Fig. III.1). The modelling 

efficiency (EF) of 0.84 was high, indicating that the relative deviation of the predicted 

SOC values is almost as small as the variation in the lab data. The four test sites in this 

study are all derived from loess and reveal similar soil types. Stevens et al. (2010) 
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stated that calibrations based on soil types perform slightly better than those based on 

regions. In contrast to other studies, the SOC range of the present dataset was rather 

narrow. Stevens et al. (2006), e.g., partly included former grassland in their evaluation 

and thus reached a considerably higher SOC variability (8 – 58 g SOC kg-1). 

Comparable SOC ranges can be found in several other studies (Selige et al., 2006; 

Gomez et al., 2008; Stevens et al., 2008, Wetterlind et al., 2008; Stevens et al., 2010). 

While in the present study only four test sites of relatively small size (2.5 – 9 ha) were 

investigated, most of the cited studies analysed regions comprising of several km2.  

Based on a wide SOC range (7 – 38 g SOC kg-1) and large test sites (45 ha on 

average), Selige et al. (2006) achieved even better results (R2 = 0.90,  

RMSECV = 0.29 g SOC kg-1) with the HyMap sensor, while Patzold et al. (2008) 

obtained an R2 of 0.74 and an RMSECV of 1.6 g SOC kg-1 with a very limited set of 

composite soil samples. Analysis with other hyperspectral airborne sensors in the 

VIS/NIR range and using PLSR calibration also achieved satisfactory results for the 

prediction of SOC  (R2 = 0.83 – 0.89; Ben-Dor et al., 2002; Stevens et al., 2006, 2010).  

 

Fig. III.1: Regression of predicted versus observed SOC (g kg-1) using the VIS/NIR 

spectral range for the complete sample set, depending on SOC values 

measured via elemental analysis (n = 204). 
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However, the presented results reveal the potential to predict SOC even at a 

comparatively small concentration range on long-term uniformly cultivated fields with 

a high accuracy using HyMap airborne spectroscopy.  

3.2   Effects of soil surface conditions  

Beside the influence of data range and field size, a further focus of this study was to 

demonstrate the effects of various surface conditions on airborne IR spectroscopy. 

Since the complete sample set involved different test sites and various surface 

conditions, the test sites were distinguished further to achieve this goal. While the 

effect of moisture content was negligible on the test sites due to dry soil surface 

conditions, the other mentioned factors potentially impacted the results. Both 

Sinsteden sites (BF, VC) revealed a rather even surface, but at Sinsteden VC no 

cultivation was performed after harvest and thus approximately 10% of the soil was 

covered by volunteer crops (field beans). Thus, the effect of plant coverage was 

studied in detail at Sinsteden test sites BF and VC with SOC concentration ranges 

from 8.9 – 15.4 g SOC kg-1 and 10.2 – 18.5 g SOC kg-1, respectively, while the effect 

of tillage (i.e., roughness) was examined at Oberhoicht test sites PB and GS with 

comparatively narrow SOC concentration ranges (8.3 – 12.7 g SOC kg-1 and  

9.1 – 11.9 g SOC kg-1, respectively, Tab. III.1). Due to ploughing two weeks before 

sampling, no straw residues were present at Oberhoicht PB, while Oberhoicht GS test 

site was only grubbed and thus covered with approx. 30% of straw residues. In 

consequence, the effect of surface roughness could be examined at both Sinsteden BF 

and Oberhoicht PB test sites, while the effect of surface covering due to green 

vegetation and straw residues could be examined at both Sinsteden VC and Oberhoicht 

GS test sites. 

At Sinsteden BF test site, a fresh seed-bed was prepared a few days before sampling, 

leading to almost optimal conditions for airborne reflectance spectroscopy due to low 

surface roughness and the absence of vegetation or straw residues. Thus, the accuracy 

of prediction based on site-specific calibrations performed best at this site with  

R2 = 0.73, RMSEP = 0.76 g SOC kg-1, RPD = 2.08 and RPIQ = 2.53 (Tab. III.1). 

Comparing Sinsteden VC, the lower prediction accuracy (R2 = 0.61,  
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RMSEP = 1.13 g SOC kg-1, RPD = 1.63; RPIQ = 2.30; Tab. III.1) can be ascribed to 

the existence of volunteer crops affecting the spectral reflectance. At the ploughed 

Oberhoicht PB test site the prerequisites for IR measurements are still acceptable  

(R2 = 0.53, RMSEP = 0.78 g SOC kg-1, RPD < 1.41; RPIQ = 1.41; Tab. III.1). In 

contrast, the Oberhoicht GS test site represents the most unfavourable conditions: the 

surface was rough due to grubbing and, additionally, this cultivation left a cover with 

approximately 30% of straw residues. In consequence, this resulted in a prediction 

accuracy that did not match the above mentioned thresholds (e.g. EF = 0.30, RMSEP 

was not even predictable; Tab. III.1).  

Compared to Sinsteden BF, ploughing at Oberhoicht PB produced a rougher surface, 

but this was consistent on the whole field. In addition, Oberhoicht PB site is 

characterised by a SOC range (9.7 – 12.7 g SOC kg-1) which is significantly smaller 

than at Sinsteden BF site (8.9 – 15.4 g SOC kg-1). It can be concluded that the slightly 

lower prediction accuracy at Oberhoicht PB can be ascribed to a low variation in the 

SOC range and at least partly to an increased roughness (Tab. III.1). Also Gomez et al. 

(2008) stated that a low variation of SOC contents can be a limiting factor for SOC 

prediction accuracy.  

Besides the effect of SOC concentration ranges on calibration accuracy, the results 

indicate that prediction accuracy increases when only samples from fields without 

vegetation or crop residue cover are taken into account. A sparse vegetation residue of 

10% from volunteer crops (Sinsteden VC) without subsequent tillage leaves 90% of 

the soil bare and available for reflectance. The precision was affected even more 

strongly by grubbing after the harvest of cereals which leaves a coverage of 30% of 

straw residues (Oberhoicht GS). Additionally, emerged green plants have a spectral 

reflectance rather different from SOC, while straw residues reveal reflectance 

properties similar to SOC and thus severely affect the calibration model. This 

assumption was already reported by Serbin et al. (2009) and is confirmed by the 

presented results. However, reports in the literature regarding the effect of vegetation 

cover on the evaluation of (hyper-) spectral data are inconsistent. Bartholomeus et al. 

(2007, 2010) showed that even a vegetation cover of 5% leads to large variations in the 

estimation  of  soil  properties  such  as iron  content and  SOC,  while  Chabrillat et al. 
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Tab. III.1: Model parameters and prediction quality of airborne VIS/NIR spectroscopy for SOC 

 

 

SOC (g kg-1) 
Calibration set 

Mean Min Max SDa 
R2 RMSECVb 

(g kg-1) 
RPDc 

(cross val) 
RMSEPd 
(g kg-1) 

RPDe  
(test-set val) 

RPIQf 
(test-set val) 

BIAS        
(g kg-1) EFg LVh 

complete data set  
(n = 204) 13.0 8.3 18.5 2.6 0.83 1.05 2.45 1.10 2.32 4.41 0.02 0.84 7 

site-specific subsets 
Sinsteden BF        
(n = 44) 13.0 8.9 15.4 1.5 0.73 0.76 1.91 0.76 2.08 2.53 0.01 0.73 5 

Sinsteden VC         
(n = 100) 14.9 10.2 18.5 1.8 0.61 1.09 1.59 1.13 1.63 2.30 2.24 0.60 6 

Oberhoicht PB    
(n = 30) 9.7 8.3 12.7 0.9 0.53 0.62 1.46 0.78 1.14 1.41 2.72 0.53 3 

Oberhoicht GS   
(n = 30) 

10.1 9.1 11.9 0.6 0.34 0.51 1.19 n.p.i n.p.i n.p.i 0.30 0.30 2 

a standard deviation. 
b Root mean square error of cross validation. 
c Ratio of performance to deviation for cross validation. 
d Root mean square error of prediction for test-set validation (30%). 
e Ratio of performance to deviation for test-set validation. 
f Ratio of performance to interquartile distance for test-set validation. 
g Modeling efficiency. 
h Number of latent variables used for prediction. 
i Test-set validation was not predictable. 
 

�

22 99   
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(2002) reported that clay minerals can still be satisfactorily detected with a dry 

vegetation cover of 20 – 30% and a green vegetation cover of 40 – 50%. 

Several studies revealed that mainly surface roughness, moisture content of the soil 

surface as well as vegetation or crop residues may affect the prediction accuracy of 

hyperspectral images (Ben-Dor et al., 2002; Stevens et al., 2006, 2008; Cécillon et al., 

2009). The prediction accuracy of spectroscopic measurements in the field is often less 

precise than under laboratory conditions (Chang et al., 2001). However, under specific 

conditions (flat surface, homogeneous texture, low variability in moisture content, 

absence of vegetation) portable or airborne spectroscopy can be equivalent to 

laboratory conditions (Stevens et al., 2008).  

The effects of various surface covers became also visible in the spectral ranges that 

were selected for prediction models on different test sites. Data processing and spectral 

ranges used in the prediction models as selected by OPUS software are displayed in 

Table III.2. While the complete data set involves almost the whole spectral range from 

539 to 2477 nm (including interruptions based on the PLSR procedure via OPUS,  

cf. 2.4.1), the spectral ranges clearly differed between the individual test sites. At 

Sinsteden BF test site, the OPUS software incorporated mainly VIS (400 – 700 nm) 

and SWIR1 (1200 – 1900 nm) in the prediction model, while wavelengths from all 

spectral ranges mainly formed the prediction models at Sinsteden VC and Oberhoicht 

PB. Particularly at Sinsteden VC, where approximately 10% of the soil surface was 

covered by volunteer field beans, parts of the VIS range were selected by OPUS to 

achieve an optimum SOC model. Thus, it seems that chlorophyll absorption bands 

(between 430 and 660 nm) contributed to the SOC calibration model at this test site. 

As recently revealed by Bartholomeus et al. (2010), vegetation cover strongly affects 

the prediction accuracy of SOC based on PLSR. Therefore, model parameters at 

Sinsteden VC indicate a slightly worse SOC prediction compared to Sinsteden BF 

(Tab. III.1).  

However, various authors found different spectral ranges as crucial for the prediction 

of SOC via VIS/NIRS. Henderson et al. (1992) considered the whole range between 

405 and 1055 nm (VIS, NIR) when analysing soil properties which are dominated by 
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SOC content. They also considered several wavelengths between 1065 and 1165 nm 

(NIR) as well as between 1955 and 2495 nm (SWIR2) as significant for SOC. 

According to the review of Bellon-Maurel and McBratney (2011), the spectral range 

between 1650 and 2500 nm is crucial for SOC prediction. Viscarra Rossel and Behrens 

(2010) noted that most organic soil constituents are characterised by CH, CO and OH 

stretching combinations in the NIR, SWIR1 and SWIR2. According to Serbin et al. 

(2009), the spectral reflectance of soil is very similar to that of dead straw residues in 

the VIS, NIR and SWIR1. In contrast, at Oberhoicht GS test site (30% straw residues), 

only the upper part of SWIR1 and the entire SWIR2 had an effect on the prediction 

model, whereas the VIS region, containing the chlorophyll bands, was not included in 

the model (Tab. III.2). Thus, it is difficult to distinguish between straw residues and 

SOC via reflectance spectroscopy in the VIS/NIR. This may explain the low prediction 

accuracy of SOC at Oberhoicht GS. Linear spectral unmixing (Yang et al., 2007; 

Martínez et al., 2010)  or residual spectral unmixing  (Bartholomeus et al., 2010)  seem  

 

Tab. III.2: Data processing and spectral ranges used in PLSR prediction models for the     
                   complete data set and subsets for each individual site 

Calibration set Surface conditions Data processing Spectral range (nm)  

complete data set   No data processing 539-2477  

(n = 204)     

     

site-specific subsets 
Sinsteden BF        bare soil, fine seed- No data processing 592-694  

(n = 44) bed  760-902  

   1287-1755  
     
Sinsteden VC        10% of volunteer  No data processing 539-607  

(n = 100) crops (field beans)  675-784  

   869-2477  
     
Oberhoicht PB     ploughed, bare soil Multiplicative scatter 675-902  

(n = 30)  Correction 784-1755  

   2055-2477  
     
Oberhoicht GS   grubbed, 30% of  First derivative 1636-2477  

(n = 30) straw residues    
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to be useful tools to solve the problem of mixed pixels which occurred at Sinsteden 

VC and Oberhoicht GS. However, related data processing procedures were not the 

focus of this study, but they will be pursued and addressed in future research. 

Relevant spectral information can be discovered from the latent variables of the PLSR 

model (Janik and Skjemstad, 1995). Especially the loading weights of the first latent 

variable allow for chemical and structural interpretation of spectral features. For the 

complete data set in this study, the loading weights of the first latent variable reveal 

several chemical characteristics belonging to different SOC constituents (Fig. III.2). 

These findings mostly conform to results found in the literature, where various authors 

found different wavelengths responsible for SOC in the reflectance spectra of soils 

(Henderson, 1992; Brown et al., 2006; Viscarra Rossel et al., 2006; Viscarra Rossel 

and Behrens, 2010). 

According to Haaland and Thomas (1988), positive peaks generally correspond to the 

component of interest and negative peaks relate to interfering components. Thus, the 

positive peaks in the first loading weight can mainly be addressed to major signals of 

organic soil components (Fig. III.2). Brown et al. (2006) stated the small peak at  

540 nm as a reflection of SOC. Additionally, the adjacent shoulder between 530 and 

570 nm is an important region for the prediction of SOC in general (Viscarra Rossel et 

al., 2006). Also amines (751 nm) and alkyl compounds (1754 nm) contribute to the 

prediction of the SOC content (Viscarra Rossel and Behrens, 2010). The high peak of 

the first loading weight at 1358 nm can be addressed to a C-H bond of methyl and 

belongs to aliphatic carbon (Workman and Weyer, 2008). Henderson et al. (1992) 

found the region between 1125 and 1165 nm as responsible for SOC, and Viscarra 

Rossel and Behrens (2010) detected alkyl compounds at 1170 nm. In the presented 

data model, only a small shoulder around 1162 nm was observable beside other 

dominating signals. Henderson et al. (1992) observed soil properties that mask SOC 

effects between 2225 and 2255 nm. Thus, the peak at 2245 nm cannot be ascribed to 

SOC and may be a contribution of volunteer crops and straw residues affecting the 

prediction model of the complete data set (Serbin et al., 2009).  
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Fig. III.2: Loading weights of the first latent variable of the PLSR prediction model for 

SOC content (g kg-1) in the complete data set (n = 204). Positive peaks 

marked with stars (*) reveal chemical characteristics belonging to distinct 

SOC constituents conformed to results found in literature. 

Published data pointed out that different wavelengths can contribute to the SOC 

prediction. Besides parent material and texture, complex molecular structures of SOM 

result in diverse NIR reflectance spectra. Moreover, different soils, sensors and 

measuring conditions create widely varying reflectance results. Thus, not all loading 

weights presented in Figure III.2 can be distinctly nor positively identified. In contrast, 

loading weights were successfully used for the interpretation of MIR spectra (Janik 

and Skjemstad, 1995; Bornemann et al., 2008), while it currently seems uncommon to 

present loading weights in the case of VIS/NIRS analyses. This may be due to many 

overlapping combinations and overtones which are caused by NH, CH and OH 

vibrations (Chang et al., 2001; Chang and Laird, 2002; Viscarra Rossel et al., 2006; 

Reeves, 2010).  

For the site-specific subsets, consistent wavelengths as well as wavelengths whose 

attributions were not possible were observed (data not shown). As already shown in 
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Table III.2, specific spectral ranges can be responsible for the prediction of the SOC 

content. However, modulated by the varying surface conditions, overall satisfactory 

results were achieved to estimate the SOC content at the field-scale via hyperspectral 

imaging. Accordingly, Stevens et al. (2006, 2010) stated that calibration modelling has 

to be performed before each field campaign when soil texture varies widely, because 

the reflectance of the soil varies with local circumstances of the soil. In a next step, the 

presented results were used to produce SOC maps with high accuracy at the field-

scale. 

3.3   Enhancing spatial resolution of soil mapping  

One prerequisite for precision agriculture is the exact knowledge of soil properties at 

the field-scale. Thus, well-defined management zones are required for a site-specific 

management. Maps containing management zones can help farmers to optimise site-

specific management decisions, such as the adaption of the applied amount of 

fertilisers, herbicides or pesticides to site-specific conditions. The SOC content is an 

important parameter for this purpose, because SOC affects the behaviour of fertilisers, 

herbicides and pesticides in soil (Wauchope et al., 2002; Patzold et al., 2008; Ladoni et 

al., 2010). Due to its spatial resolution and editing of pixels with a definite size, 

hyperspectral imaging should be a novel basis to create SOC maps for site-specific 

management. 

Field maps of different soil properties are often based on a limited number of point 

measurements and are mostly generated via GIS interpolation techniques like IDW or 

kriging (Ben-Dor et al., 2002; Odlare et al., 2005; Bilgili et al,. 2010). Such 

interpolations can lead to a smoothing of the given heterogeneity. To test this, a 

reference SOC map via ordinary kriging was generated on the basis of 100 sample 

points at Sinsteden VC test site (Fig. III.3a). Then, a SOC map without interpolation, 

but on a pixel-wise basis for one part of the field was produced, marked in Figure 

III.3a. All pixels of the part under study (each 64 m2) were selected, based on 4 raw-

data-pixels each, and a prediction model via PLSR on the basis of the site-specific 

calibration model was created, resulting in a very detailed and specific map of the 

SOC content  (Fig. III.3b).  The pixel-based map  allows for  detecting the  small-scale 
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Fig. III.3: SOC maps of Sinsteden VC test site: a) kriged SOC map of the whole test site 

based on data from elemental analysis (n = 100); b) detailed view from a part 

of the test site with pixel-wise prediction of SOC, based on the most robust 

prediction model using the VIS/NIR spectral range (n = 264). 

variability of SOC contents more realistically than the interpolated map. The 

interpolation actually smoothes the spatial variability of SOC contents and neglects 

several small-scale variations. 

A pixel-wise map as generated for the SOC content in this study should be practicable 

for the use within the scope of precision agriculture. The working width of agricultural 

equipment such as sprayers is often between 16 and 24 m, including the use of part 

width sections. Thus, a too detailed SOC map reflecting each pixel is not as useful for 

practical farming as a SOC map containing management zones of at least 8 m. With a 

map as presented in this study, site-specific herbicide application is possible with a 

multiple sprayer as presented by Dicke et al. (2007). 

Other authors noted that such pixel-wise maps can also help to verify the effects of 

land-use changes on the SOC content of agricultural areas (Selige et al., 2006; Stevens 

et al., 2006, 2010). Ben-Dor et al. (2009) stated that the high quality of imaging 

spectroscopy is important for the quantitative assessment of SOC and soil C 

monitoring. The HyMap sensor enables a satisfactory pixel-by-pixel resolution. Hence, 

the presented method may improve geostatistical data processing in conducting 

precision agriculture. 
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In agricultural soils, a significant spatial heterogeneity of SOC occurs at the field-

scale, although land management has been uniform over several decades (Odlare et al., 

2005; Patzold et al., 2008). On agricultural fields with a uniform parent material the 

spatial variability of SOC can mainly depend on the land surface relief and topography 

as well as on former land management systems or hedges. This relation is displayed 

exemplarily for two test sites in Figure III.4. The within-field difference in elevation 

was higher at Sinsteden VC test site (Fig. III.4a) than at Oberhoicht PB (Fig. III.4b). 

This is probably related to soil erosion and colluviation and, in consequence, one 

reason for variances in the SOC content. The effect of the relief on the spatial 

distribution of SOC became clearly visible at Sinsteden VC, where the highest SOC 

contents occur in the lower, depressed areas and vice versa. However, even the 

generally low slope at Oberhoicht PB affected the distribution of SOC in the same 

way. De Gryze et al. (2008) and Stevens et al. (2010) found similar relations between 

relief and spatial distribution of SOC. De Gryze et al. (2008) stated a strong 

relationship between  SOC content  and transport  of  sediments  by  erosive  processes 

  

 

Fig. III.4: Maps of a) Sinsteden VC test site and b) Oberhoicht PB test site, showing 

interpolated SOC contents (g kg-1) related to topography (slope at Sinsteden 

VC: 3.5°, slope at Oberhoicht PB: < 1°). 
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under conventional tillage. They concluded that topographic aspects of agricultural 

fields and their interactions with management should be taken into account when 

calculating soil nutrient demand or organic carbon content. Ben-Dor et al. (2009) 

stated that hyperspectral imaging and resulting soil maps have great potential for 

monitoring soil erosion and degradation processes. 

Precise SOC maps including topographic and management information may be useful 

to determine whether agricultural land is a source or sink for carbon. In this context, 

Smith (2004) addressed that a new elaborate sampling scheme is essential to measure 

changes in SOC over a period of 5 years as required in the Kyoto Protocol. A five-to 

ten-year sampling interval is also required by soil monitoring programs for an early 

detection of changes in soil quality over space and time (Cécillon et al., 2009). 

Shepherd and Walsh (2002) suggested spectral libraries for the prediction of soil 

properties. They successfully predicted SOC using a library containing over thousand 

soils from Africa, while Brown et al. (2006) could not predict SOC with an acceptable 

accuracy for most applications using a diverse library of soil samples for spectral 

analyses from all over the world. Stevens et al. (2008) concluded that such global 

spectral libraries can be used to classify measured spectra and only a part of the library 

may be used for prediction. Very recently O´Rourke and Holden (2011) stated that the 

use of imaging spectroscopy and chemometric methods can be an alternative to 

conventional laboratory analysis due to lower costs, a greater number of samples and a 

higher spatial resolution. Based on the presented results it is suggested that periodical 

hyperspectral airborne measurements could be conducted on representative 

agricultural fields under the same surface conditions, which are typical for specific 

landscapes. Subsequent regional spectral libraries should be generated in consideration 

of varying soil types and texture. Furthermore, spectral libraries, which take varying 

soil surface conditions into account, might help to further improve high-resolution 

SOC predictions. The combination of these methods may become a new approach in 

soil C monitoring and for precision agriculture purposes.  
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4   CONCLUSIONS AND PERSPECTIVES 

The results reveal that airborne hyperspectral imaging is a promising tool used to 

detect the variability of SOC content even at a comparatively small concentration 

range on long-term uniformly cultivated fields at a small spatial scale with high 

accuracy. After the necessary local calibrations are made, more precise results can be 

achieved than with regional calibrations, especially with varying surface conditions. 

The pixel-wise prediction of SOC in field maps without the need of geostatistical 

treatment seems especially reasonable for precision agriculture practices and soil C 

monitoring. It can be further concluded that site-specific SOC maps based on 

hyperspectral imaging may be provided for precision agriculture purposes when SOC 

information is needed at a resolution that meets the working widths of agricultural 

machinery. At the present levels of technology and state of the art equipment, airborne 

hypersectral imaging provides SOC information with an accuracy comparable to 

conventional sampling and subsequent analysis, but at an improved scale of several 

m2.  

Future research should focus on the reduction of the effect of green vegetation and 

straw residue covers using methods such as linear spectral unmixing. The prediction 

accuracy on neighboured fields in consideration of soil texture and surface conditions 

should also be further improved. With respect to soil C monitoring it could be useful to 

focus on building spectral libraries for different regions, soil types, textures and 

surface conditions.  
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1   INTRODUCTION 

The beet cyst nematode (BCN), H. schachtii, causes severe yield losses in sugar beet 

production worldwide (D’Addabbo et al., 2005). Frequently, infested fields are 

characterised by an uneven, patchy distribution of the nematode (Cooke, 1987). Soil 

texture is often regarded as the dominant soil property affecting the variable 

population density of H. schachtii (Wallace, 1968; Schmidt et al., 1993). However, 

there are few detailed studies about the spatial distribution of H. schachtii within fields 

(Hillnhütter et al., 2011a). Mainly greenhouse experiments have shown that soil 

temperature and moisture, which are both closely related to texture, have a major 

effect on the development of the BCN population and also on the sugar beet yields 

(Raski and Johnson, 1959; Santo and Bolander, 1979; Griffin, 1988). Therefore, it 

seems reasonable to study the relationship between soil texture and the spatial 

variability of H. schachtii population density at the field-scale.  

Conventional soil sampling to determine texture and nematode populations is 

laborious and expensive (Nutter et al., 2002; Avendaño et al., 2003). Measures to 

control BCN do not usually account for soil heterogeneity or for the patchy occurrence 

of BCN. Moreover, usual management strategies treat arable fields uniformly by 

applying one or more of the following methods: application of nematicides (depending 

on national regulations), cultivation of tolerant and / or resistant sugar beet cultivars, 

intercropping and crop rotation with catch crops such as resistant mustard or oil radish 

(Schlang, 1991; Heinicke and Warnecke, 2006). 

Precision agriculture aims at a site-specific management of different zones within 

entire fields. Targeted BCN control needs high-resolution soil information as a 

prerequisite to such management because of BCN’s patchy occurrence (Sommer et al., 

2003; Hillnhütter and Mahlein, 2008). Against this background, the apparent electrical 

conductivity (ECa), which is known to be strongly related to soil texture, was 

measured in four agricultural fields using the non-invasive EM38 sensor; two textural 

homogeneous and two textural heterogeneous fields were studied. The aim of this 

study was to demonstrate that maps of soil texture based on ECa measurements – when 
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used in combination with additional soil data – might provide a solid basis for site-

specific BCN management.  

 

2   MATERIAL AND METHODS 

2.1   Research fields 

The spatial variation in soil texture and population density of H. schachtii was 

investigated in four agricultural fields of a traditional sugar beet production area in the 

Lower Rhine Basin (North Rhine-Westphalia, Germany). All fields were chosen 

because they were known to be infested with H. schachtii and traditional soil 

information as well as previously measured ECa data were available. The fields belong 

to private farmers who selected the cultivars to be sown. The field size varies between 

3 and 10 ha. Within these fields, test plots of 0.5 – 1.2 ha were selected and analysed. 

Before soil sampling took place, the ECa was recorded to obtain an overview of the 

textural heterogeneity of the fields. Detailed information about the research fields are 

given in Table IV.1.  

2.2   Measurement of the apparent electrical conductivity (ECa)  

ECa of the research fields was measured as described in section II.3. 

 

Tab. IV.1: Description of the research fields 

Research 
fields Northing Easting 

Mean annual 
precipitation 

(mm) 

Mean annual 
temperature 

(°C) 
Soil typea Cultivar 

Altendorf 50°37  ̀ 6°59  ̀ 600 9.2 Haplic Luvisols Berettab 

Billig 50°38  ̀ 6°46  ̀ 600 9.2 Haplic Cambisols Berettab 

Elmpt 51°12  ̀ 6°09  ̀ 770 9.6 Plaggic Cambisols Berettab 

Palmersheim 50°37  ̀ 6°52  ̀ 600 9.2 Stagnic Luvisols, 
Haplic Stagnosols Paulettac 

a soil types according to the World Reference Base for Soil Resources (WRB, FAO, 2006). 
b susceptible to BCN. 
c tolerant to BCN. 
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2.3   Soil sampling 

Sampling on a regular grid with a narrow vertical spacing is an appropriate method to 

determine nematode population densities (Been and Schomaker, 1996; Nutter et al., 

2002). Conventional sampling designs are expensive and time-consuming; therefore, 

other sampling schemes were chosen to study the correlation between soil texture and 

spatial variation of the H. schachtii population density in the four fields. Sampling at 

Elmpt, Billig and Altendorf fields was along transects, whereas a nested sampling 

scheme was adapted for Palmersheim field. Elmpt and Billig fields were sampled a 

few days before the sugar beet harvest in October 2008, and Altendorf field was 

sampled a few days after the sugar beet harvest in October 2009. Sampling along 

selected transects covered, if present, the heterogeneity of the ECa values. About  

40 – 50 sampling points were chosen in each of the fields.  

To create maps of the spatial variation in fields requires sampling of the soil at a scale 

that reflects the scale of that variation. As little prior information about the scale of 

variation was available, the nested sampling design of Avendaño et al. (2003), which 

was adapted from that of Webster and Boag (1992), was performed. The sampling was 

done one month after the sugar beet harvest in November 2008 at the Palmersheim 

field. The field was divided into 14 plots of 30 × 30 m; this formed the first level of the 

hierarchy. Ten samples were taken in each plot (n = 140) following Avendaño et al. 

(2003). Within the plots, at the second level, there were two sampling points 16.7 m 

apart and on random orientations from each other. From each of these two samples, 

sampling followed an almost 3-fold progression to 5.6, 2.7, 0.6 and 0.2 m (Fig. IV.1) 

and all locations were selected along random orientations from the previous sampling 

point. The spatial coordinates of the sampling points were recorded using differential 

GPS.  

Background information from soil maps based on soil taxation with the largest scale is 

available (‘Bodenkarte auf der Grundlage der Bodenschätzung’ 1:5000; 

Mückenhausen and Mertens, 1960) and the ECa data were taken into consideration to 

select the soil sampling points. Blum et al. (2005) describe in full the origin of soil 

taxation maps for Austria,  which conforms  to the  German soil  survey taxation  map. 
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Fig. IV.1: Nested sampling design used for soil sampling in each sampling plot  

(30 ×××× 30 m each) at Palmersheim field, adapted from Webster and Boag 

(1992) and Avendaño et al. (2003). 

 

These maps were originally created to estimate the earning potential from agricultural 

land and include information about soil texture, parent material and the so-called soil 

quality index. The soil quality index from soil taxation maps is an indicator of crop 

productivity for German soils with a maximum value of 100 for most productive soils. 

The accuracy of the traditional soil taxation maps was verified by own surveys. 

Therefore, based on the soil taxation maps, ‘deep’ (> 80 cm), ‘shallow’ (50 – 80 cm) 

and ‘very shallow’ (20 – 50 cm) soils were classified according to the parent material.  

At each sampling point three sub-samples were taken from an area of a few dm  

(< 0.3 dm) in the root zone using an auger (0 – 25 cm) and bulked to obtain  

1.5 – 2.0 kg soil, which is the amount needed to determine the nematode population 

density (Been and Schomaker, 1996). Soil samples were stored at 4°C until the cysts 

were extracted. Soil texture was determined on air-dried subsamples. 
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2.4   Determination of soil texture 

Soil texture of the air-dried, sieved (< 2 mm) and milled samples was evaluated using 

MIRS-PLSR. Subsamples of 20 mg were taken for the calibration procedure, which is 

described in detail in section II.2. The model used for calibration was based on 150 

soil samples from a regional study of arable fields in North Rhine-Westphalia, which 

covered the dominant substrates and texture classes of the region (unpublished project 

report). The texture of these 150 samples was determined by a combination of wet 

sieving (sand fractions) and sedimentation (silt and clay fraction) after Köhn (ISO 

11277, 2002) on subsamples of 20 g.  

2.5   Evaluation of Heterodera schachtii 

Cysts of H. schachtii were extracted from 300 ml of soil for each sample by the wet-

screen decantation technique on a sieve combination of 500 and 100 µm mesh. The 

cysts were separated from soil organic matter using the density centrifugation method 

with a 9.97 M magnesium sulphate solution (Müller, 1980, 1988). The number of cysts 

per sample were counted under a stereoscope and transferred to 15 ml homogenisation 

tubes (B. Braun, Melsungen, Germany), where the cyst walls were crushed to free the 

eggs and J2. The number of eggs and J2 per sample was counted under a microscope 

with a 2 ml RAS-counting slide (Hooper et al., 2005). The number of cysts and 

number of eggs and J2 were referred to 100 g of soil to describe the H. schachtii 

population density in relation to the soil mass. 

2.6   Geostatistical data analysis 

The intensive sampling enabled the performance of the variogram of geostatistics 

(Webster and Oliver, 2007). The variogram summarises the way that a property varies 

spatially. The experimental variogram was modelled in GenStat (Payne, 2008) to 

obtain the parameters required for geostatistical prediction, kriging. Ordinary kriging 

was done in ArcGIS Editor 9.3 (ESRI, Redlands, California, USA) to predict the 

nematode density and ECa on a fine grid of 5 × 5 m for mapping their distribution in 

the fields investigated. 



45 
�

3   RESULTS AND DISCUSSION 

Relationships between soil texture and related soil properties and the population 

density of H. schachtii were determined with ECa measurements. First, the spatial 

variation in soil texture as predicted by ECa was analysed, and thereafter the effect of 

soil texture on the population density of H. schachtii was assessed. Management maps 

based on these results for potential site-specific management of BCN were created. 

3.1   Spatial variation of soil texture as predicted by ECa 

The repeated measurements by EM38 revealed that apparent electrical conductivity 

(ECa) values differed only slightly over time. The general spatial pattern in ECa within 

the test fields remained quite stable, which conforms to other results (Sudduth et al., 

2001; Mertens et al., 2008). Therefore, the effect of variable soil moisture and 

temperature can be regarded as negligible in this case.  

The level and range of ECa values vary considerably between fields (Tab. IV.2). The 

smallest ECa was measured at Elmpt field (average 3.8 mS m-1). The average ECa 

values for each of the other three fields were much larger, but quite similar to one 

another (17.2 – 19.2 mS m-1). The range of ECa values within these fields, as well as 

the standard deviation, differ markedly, increasing in the order Altendorf < Billig < 

Palmersheim (Tab. IV.2).  

 

 

Tab. IV.2: Apparent electrical conductivity  (ECa, mS m-1)  and predicted  mean textural  
                   classes of the varying test sites 

ECa (mS m-1)  Clay (g kg-1) Silt (g kg-1) Sand (g kg-1) Research 
fields Min Max Mean SDa  Mean SDa Mean SDa Mean SDa 
Elmpt   1.5     6.0     3.8 0.7    39 15.0 435   58.6 561 43.5 
Altendorf 14.2  19.2 17.2 1.2  152 17.2 767   51.4   81 47.1 
Billig 11.3  26.0  19.2 4.0  140 14.4 682   44.2 184 53.5 
Palmersheim   8.0 36.0 17.8 6.1  156 22.0 694 107.6 118 44.4 
a SD = standard deviation. 
Note: Sum of percentage of soil texture fractions can deviate from 100, because each fraction was 
separately predicted by MIRS-PLSR on the basis of individual calibration models for clay, silt and sand. 
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The measured ECa values of the different fields correspond to the arithmetic average 

of the texture data as predicted by MIRS-PLSR (Tab. IV.2). Nevertheless, it should be 

noted that ECa integrates information on soil texture over the whole rooting depth  

(1.5 m), whereas soil sampling to determine the texture was done only in the plough 

horizon. Thus, the two approaches provide different informations concerning soil 

texture and depth; both are of significant interest for the development of BCN as 

discussed below. The small ECa values in Elmpt field coincide with the largest sand 

(561 g kg-1) and smallest clay contents (39 g kg-1) in the sampled topsoil. The other 

fields are dominated by silt and have a mean clay content of about 150 g kg-1. Thus, 

ECa data can be associated with differences in soil texture, which has also been 

observed by several other studies (e.g. Domsch and Giebel, 2004; Sudduth et al., 

2005).  

Carroll and Oliver (2005) and Mertens et al. (2008) indicated that the benefit of ECa 

values might be that they accord with the general pattern of textural heterogeneity 

within a field rather than providing an absolute measure for a particular soil property. 

Therefore, if maps of ECa indicate spatial variation in the soil, they can be used to 

identify management zones for crop protection (Patzold et al, 2008) and to target site-

specific soil sampling (Carroll and Oliver, 2005). As suggested by Kühn et al. (2009a), 

the interpretation of ECa data can be improved by using additional geological or 

geomorphological information. Mertens et al. (2008) recommended a combination of 

ECa and traditional soil taxation maps to improve the accuracy and validity of soil 

information and to compensate for the missing depth resolution of ECa data. 

Therefore, information from soil taxation maps (1:5000) was taken into consideration 

and adapted to the WRB classification system. According to these maps, Elmpt field is 

characterised by deep soil (Plaggic Cambisol) with light texture (sandy loam) and 

Altendorf field also has a deep soil (Haplic Luvisol) with medium texture (silt loam). 

The ECa data for these fields have the narrowest ranges and smallest standard 

deviations (0.7 and 1.2 mS m-1, respectively, Tab. IV.2), which indicate little spatial 

variation in soil texture.  

The other two fields are more heterogeneous. Billig field has partly shallow and deep 

soil (Haplic Cambisol) with medium texture (silt loam). Palmersheim field is 
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characterised by the deep Stagnic Luvisol and the shallow Haplic Stagnosol, both a 

moderately clayey silt (medium texture) according to the German Soil Classification 

(Ad-hoc-AG Boden, 2005), and the shallow to very shallow Haplic Stagnosol, a strong 

clayey silt (heavy texture). In both these fields the spatial heterogeneity revealed by 

the soil taxation maps conforms to the spatial distribution of ECa data with the largest 

standard deviations (Billig 4.0 and Palmersheim 6.1 mS m-1, Tab. IV.2). The 

additional information from soil taxation maps also supported the interpretation of 

BCN results (see below). 

3.2   Effect of soil texture (ECa) on the population density of Heterodera schachtii 

In early studies dealing with the population density of H. schachtii, both the number of 

cysts and the number of eggs and J2 were counted (Wallace, 1956; Thomason and 

Fife, 1962). The number of eggs and J2 per mass unit of soil is the property 

recommended in studies dealing with the determination of economic threshold levels 

for H. schachtii (Müller, 1980; Griffin, 1981a). Thus, recent studies mostly refer to the 

number of eggs and J2 when dealing with the population dynamics of plant parasitic 

cyst nematodes (Westphal and Becker, 2001; Nutter et al., 2002; Hillnhütter et al., 

2011b). In contrast, Todd and Pearson (1988), Francl (1993) and Avendaño et al. 

(2003, 2004) achieved reliable results in their studies by observing the effect of soil 

properties on the population density of Heterodera glycines when counting cysts as 

well as eggs and J2. It seems that the property of interest depends on the focus of the 

research.  

In the current study both the number of cysts and the number of eggs and J2 were 

counted to observe the population dynamics of H. schachtii. The results of both 

properties differed from each other. Also, statistical relationships between the number 

of cysts and number of eggs and J2 varied considerably between fields  

(R2 = 0.12 – 0.65, data not shown). Consequently, the number of eggs per cyst was 

also very variable and thus not a useful property to determine the spatial heterogeneity 

of BCN, which corresponds with the results of Griffin (1981a) and Avendaño et al. 

(2003). Therefore, the focus of this study was applied on the number of eggs and J2 as 

well as on the number of cysts of H. schachtii. 
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3.2.1   Relation between ECa and the number of eggs and J2 

The relationships between ECa data and the number of eggs and J2 are shown in 

Figures IV.2a – d. If they are considered separately, none of the four fields shows a 

relation between ECa and the number of eggs and J2 of H. schachtii. At Palmersheim 

field (Fig. IV.2d) there is a slight trend with more eggs and J2 at the smaller ECa 

values, but the relation is not statistically significant. However, a relationship can be 

recognised regarding all data; the largest number of eggs and J2 per 100 g soil, up to 

25,000, occurs in Elmpt field (Fig. IV.2a), where the light texture (sandy loam) 

corresponds with small ECa values (Tab. IV.2). The other fields with medium to large 

ECa are characterised by much smaller nematode numbers (up to 

 

 

Fig. IV.2: Relationship between the ECa values (mS m-1) and the number of eggs and J2 

of H. schachtii per 100 g soil at fields a) Elmpt (n = 50), b) Altendorf (n = 46), 

c) Billig (n = 40) and d) Palmersheim (n = 140). Note the different scaling of 

the y axes. 
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6345 eggs and J2 per 100 g soil). This differentiation hints at a preferential occurrence 

of greater egg and J2 counts in light and sandier soil. These results accord with 

previous studies in which the nematode numbers were mainly studied under 

greenhouse conditions or in field trials (Santo and Bolander, 1979; Todd and Pearson, 

1988; Francl, 1993). Nevertheless, the results suggest that the ECa data would not 

enable the calculation of within-field variation on the number of eggs and J2 of  

H. schachtii to be calculated directly. 

The number of eggs and J2 is assumed to be a rather variable parameter that is affected 

by a variety of soil properties and other environmental conditions (Wallace, 1956, 

1959; Griffin 1981b; Francl, 1993). The variability of eggs and J2 at a given position 

within the field is affected by several biotic and abiotic factors such as soil moisture, 

nutrient status, weather conditions or host plant vitality. A high degree of spatial 

heterogeneity within the field will lead to a greater and highly dynamic differentiation 

of eggs and J2 over time due to variable conditions for the BCN growth. 

Consequently, it is assumed that more reliable results might be obtained by comparing 

the number of cysts per unit of soil and ECa. Cysts remain in soil for longer periods of 

time and thus reflect and integrate the average living conditions over several years 

(Cooke, 1987). In the light of this, a rather stable property such as ECa might become 

more relevant. 

3.2.2   Relation between ECa and the number of cysts 

At Elmpt and Altendorf fields, both of which have a quite homogeneous texture, there 

was no significant correlation between the number of cysts of H. schachtii per 100 g 

soil and the ECa data (data not shown). In contrast, there was a correlation between 

these properties at Billig and Palmersheim, both of which have a heterogeneous 

texture. At Billig field, there is a strong linear negative relation between the ECa 

values and the number of cysts (R2 = 0.74, Fig. IV.3).  

At Palmersheim field, the relation is also negative, but in this case it is non-linear (Fig. 

IV.4). For ECa values > 18 mS m-1, the number of cysts is more or less constant, 

whereas below 18 mS m-1 the cyst count increases exponentially. The distribution of 

the observations can be fitted with an exponential function, which indicates a moderate 
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Fig. IV.3: Relationship between the ECa values (mS m-1) and the cysts of H. schachtii per  

100 g soil at Billig field (n = 40). 

relation (R2 = 0.47). In Figure IV.4, the data points are allocated to the soil types in 

different parts of the field. At ECa values < 18 mS m-1, the Stagnic Luvisol with 

medium texture prevail. With regard to the number of cysts, the medium textured 

variant of the Haplic Stagnosol forms a transition between the deep Stagnic Luvisol 

and very large cyst counts, whereas the Haplic Stagnosol sites with heavy texture have 

smaller cyst counts. In the Stagnosols, stagnic properties such as water logging and 

pore water low in oxygen are more pronounced than in the Luvisol. 

Field studies with a non-invasive soil sensor to determine the spatial distribution of the 

population densities of H. schachtii in relation to soil texture are not yet available. The 

results reveal that ECa has the potential to indicate the level of BCN cysts within 

arable fields as long as they have a spatially heterogeneous texture. The smaller are the 

ECa values, indicating a light to medium textured soil, the greater is the cyst density of 

H. schachtii. Several studies dealing with soil texture and plant parasitic nematodes 

evinced similar results (e.g. Todd and Pearson, 1988; Avendaño et al. 2003, 2004). In 

these studies the authors observed consistently greater cyst population densities of the 

soybean  cyst nematode  H. glycines  in sandy soil.  Todd and Pearson  (1988)  worked 
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under greenhouse conditions, whereas Avendaño et al. (2003, 2004) focussed on the 

spatial distribution of the nematodes within fields using geostatistics. 

The highly dynamic interrelations between soil properties and nematode populations 

became clearly visible at both heterogeneous fields, Billig (Fig. IV.3) and 

Palmersheim (Fig. IV.4). The greatest cyst densities were observed at deeper and light 

to medium textured soils within both fields, which provide favourable environmental 

conditions for the development of H. schachtii, such as adequate pore size, soil 

moisture conditions at field capacity and rapid warming of the soil in the spring. In 

contrast, the soil hydrological dynamics in Stagnosols with temporal alternation of 

water logging, i.e. anaerobic conditions with oxygen deficiency on the one hand and 

drought stress on the other hand, is a limiting factor for nematode development. Soil 

aeration and the thickness of the water films are both affected by soil moisture, in 

which water saturation or drought soil conditions are inappropriate environmental 

conditions for H. schachtii (Wallace, 1956, 1959). In addition, water and nutrient 

Fig. IV.4: Relationship between the ECa values (mS m-1) and the cysts of H. schachtii per    

100 g soil at Palmersheim field (n = 140). Soil types (according to WRB) at the 

sampling points are marked differently.�
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uptake, and thus growth of the host plant, are limited by shallow and dense soil in parts 

of Palmersheim field. These conditions restrict root growth and thus available feeding-

sites for nematodes.  

Differences in soil texture are more evident at Palmersheim field and so too are the 

differences in the number of H. schachtii cysts. However, the empirically chosen 

exponential model for the Palmersheim data does not describe the relationship 

between ECa and number of cysts per 100 g soil as well as at Billig (Palmersheim:  

R2 = 0.47; Billig: R2 = 0.74). As reported by Mertens et al. (2008) and Kühn et al. 

(2009a), the effects of soil horizons and related soil water dynamics can obscure pure 

texture effects on the ECa values, which seems to have happened at the stagnic parts of 

Palmersheim field. Large ECa values reflect the presence of a clayey layer in the 

subsoil, leading to a shallow rooting zone and to temporal water logging (stagnic 

conditions). 

The results reveal that for heterogeneous fields the relations between soil texture and, 

if present, stagnic properties measured by ECa and H. schachtii population densities 

can be successfully observed. Measuring ECa is a fast and convenient method to detect 

the spatial heterogeneity of soil and thus a useful tool for developing management 

maps for nematode management. 

3.3   Spatial distribution of Heterodera schachtii and the potential for creating  

management maps 

The components of variance estimated by residual maximum likelihood from the 

nested data of Palmersheim field were accumulated and plotted against distance on a 

logarithmic scale to give an approximation to the variogram (Fig. IV.5). This graph 

shows that the residual variance at the shortest sampling distance is a small proportion 

of the total variance; it indicates that this sampling interval has resolved the small scale 

variation reasonable well. The largest proportion of variation occurs over distances 

between 16.7 and 30 m.  

The experimental variogram of geostatistics (symbols) computed from the number of 

cysts of H. schachtii at Palmersheim field was fitted by an exponential model (solid 

line, Fig. IV.5). The model parameters are given on the figure. The nugget variance, 
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c0, is similar to that of the residual variance of the nested analysis; this variance 

includes the variation that occurs over distances shorter than the smallest sampling 

interval and also measurement error. The spatially dependent component, c, describes 

the structured variation and it indicates that the sampling intervals of the nested 

scheme have resolved the variation in cyst density well. The exponential function 

reaches an upper bound asymptotically and an approximate range of spatial variation is 

obtained from the distance parameter of the model, r, as 3r (Webster and Oliver, 

2007). The approximate range of spatial dependence is about 21 m (Fig. IV.5), which 

confirms the results from the nested analysis. This indicates that the number of cysts 

within the distance is spatially dependent or correlated. Samples separated by > 21 m 

in this field are spatially uncorrelated.  

The standard sampling density for BCN detection is 5 m (Müller, 1983), and for this 

field it would provide spatially correlated data that would be suitable for interpolation 

by kriging or any other method. However, the spatial scale from the nested survey and 

variogram analysis of BCN in this field suggests that some economy in sampling  

 

 

Fig. IV.5: Experimental variogram (symbols) and fitted exponential model (solid line) 

for H. schachtii cyst density at Palmersheim field. 
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density would be feasible with an interval of 10 m. Nevertheless, for heterogeneous 

variables such as cyst nematodes additional samples at shorter distances are 

recommended to ensure that the spatial variation is resolved adequately. 

Other research on nematode density has resulted in variogram ranges of between  

12 and 60 m (Webster and Boag, 1992; Evans et al., 2002; Avendaño et al., 2003; 

Dinardo-Miranda and Fracasso, 2009). These diverse results illustrate the difficulties 

of suggesting a definite sampling density for site-specific management of nematodes. 

Webster and Boag (1992) and Evans et al. (2002) stated that spatial patterns of 

nematodes are unique in each field and that there is no common range of spatial 

dependence or sampling interval. However, as a result of the cost and time taken to 

survey fields infested with H. schachtii, it is not feasible to obtain sufficient data for 

variogram analysis of each field. Management maps including management zones 

based on ECa data should provide a basis to target sampling for BCN.  

For heterogeneous sugar beet fields with a known BCN infestation, information on the 

spatial distribution of the risk of damage from BCN may be useful not only for 

sampling, but also for future cropping strategies and measures. Thus, the possibility of 

deriving management maps based on ECa data and on additional information from soil 

taxation maps was tested for the heterogeneous fields, Billig (Fig. IV.6) and 

Palmersheim (Fig. IV.7). These maps were compared with spatial patterns of 

nematode population densities. At Billig, the smallest ECa values are in the south-west 

corner and they gradually increase towards the north-east and decrease again in the 

north. The ECa values of the western central area have a patchy distribution with 

small, medium and large ECa values. Based on information from the soil taxation map, 

the smallest ECa values indicate deep soil with a rather low soil quality index  

(�: 48 – 54) and the largest ECa values indicate shallow soil with a higher soil quality 

index (�: 68; Fig. IV.6). The results of the own soil surveys compare with the spatial 

distribution of ECa and soil quality index described above, indicating medium (�) and 

more heavy (�) textured soils at Billig field. Figure IV.6 also illustrates that the 

number of cysts of H. schachtii is closely related to the values of ECa: H. schachtii 

prefers the deeper, light textured soil in the south-western part of the field where ECa 

values are small and cyst counts are large.  
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Fig. IV.6: ECa map including information from a soil taxation map (���� deep Haplic 

Cambisol, soil quality index = 48 – 54; ���� shallow Haplic Cambisol, soil 

quality index = 68) and related numbers of H. schachtii cysts per 100 g soil at 

Billig field (n = 40). 

Palmersheim field is characterised by a trend in ECa values with small values in the 

north-western part and the largest values in the south-east. This distribution again 

relates to the boundaries of the soil taxation map (Fig. IV.7a). The smallest ECa values 

correspond to a deep (�) Stagnic Luvisol and partly shallow (�) Haplic Stagnosol 

with a soil quality index of 56 – 62 in the northern part of the field, whereas the largest 

ECa values correspond to a shallow (�) and very shallow (�) Haplic Stagnosol with a 

soil quality index of 42 – 44 and clayey subsoil in the southern part of the field. The 

spatial distribution of cysts of H. schachtii confirms the relation between soil texture 

with large cyst numbers in the north-west and small numbers in the south-east. It also 

confirms that BCN prefer deep, medium textured soils and non-stagnic conditions 

(Fig. IV.7b).  
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Fig. IV.7: Palmersheim field: a) ECa map including information from a soil taxation 

map (���� deep Stagnic Luvisol, soil quality index = 62; ���� shallow Haplic 

Stagnosol, soil quality index = 56; ���� shallow Haplic Stagnosol, soil quality 

index = 44; ���� very shallow Haplic Stagnosol; soil quality index = 42) in 

comparison with b) nematode population densities of H. schachtii in terms of 

cysts per 100 g soil (n = 140). 

The combination of soil taxation and ECa maps is reasonable because of the lack of 

depth information from the EM38 signal. Without local calibration, i.e. without 

additional information from soil cores or from soil maps, the ECa values cannot be 

used reliably to derive soil properties beyond depth-averaged texture. However, when 

such additional information from soil taxation or other soil maps is available, then soil 

horizons can be detected and can explain the reason for stagnic properties (e. g., 

Mertens et al., 2008). Nevertheless, soil maps seldom indicate gradual variation, but 

show sharp boundaries, and although they are available the scale does not enable 

subplot-specific interpretation. Therefore, the ECa measurements often provide the 

only possibility of obtaining high-resolution soil information at reasonable effort and 
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costs. Furthermore, the combination of the vertical and the horizontal dipole mode of 

the EM38 can provide further insight into deeper soil layers (Sudduth et al., 2001), but 

this was not part of this study.  

The results show that if an arable field with textural heterogeneity is infested with  

H. schachtii, ECa measurements can be used to create management maps (Fig. IV.8). 

Based on information from these management maps, an agricultural field can be 

separated into different zones that can be used for management. The management 

zones in Figure IV.8a reflect ECa values, which, in turn, reflect the soil taxation map at 

Billig field. In parallel, the zones correspond with the spatial distribution of BCN  

(Fig. IV.6). The same relations are evident at Palmersheim field, when Figure IV.8b is 

compared with  Figure IV.7b.  Dicke et al.  (2007)  and Patzold et al.  (2008) discussed  

 

 

 

 

 

 

Fig. IV.8: Management maps established on the basis of ECa maps including 

information from soil taxation maps showing soil related living conditions 

for H. schachtii and thus management zones at a) Billig field and  

b) Palmersheim field. Management zones are relative graduations within 

each field. 
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the creation of management zones for crop protection purposes. Site-specific 

management strategies concerning the distribution of BCN can be oriented to a 

threshold of the observed damage. Cultivars that are tolerant or resistant to  

H. schachtii are required by farmers if the use of nematicides is not authorised, even if 

resistant cultivars often have smaller yields, are of poorer quality and cost more 

compared to tolerant or susceptible species (Heinicke and Warnecke, 2006). However, 

site-specific management decisions such as sowing of cultivars with different degrees 

of susceptibility at the field scale can be made before the growing season starts. This is 

a clear advantage of management maps based on ECa data and information on soil 

texture compared with other methods that are used for the detection of variable 

nematode densities within fields, such as hyperspectral data imaging (Hillnhütter et al., 

2011b). Furthermore, individual parts of a field can be sampled separately to 

determine the population density of H. schachtii and so reduce the overall number of 

samples required. 

An interpolated management map based on geostatistical analysis is required by 

agronomists and farmers to manage land in a reasonable and site-specific way (Oliver 

and Webster, 1991). The results reveal a convenient way for producing maps of 

nematode management zones. The close relationship between soil texture and ECa and 

its effect on nematode population density offers new approaches for site-specific 

nematode management. The viability and feasibility of this method for other crops and 

plant parasitic nematodes needs to be investigated. Mueller et al. (2010) recently 

developed a site-specific nematicide application system. It is based on studies in the 

USA on the root-knot nematode Meloidogyne incognita in cotton to minimise 

nematode damage while reducing nematicide contamination of the environment. They 

created accurate and effective maps of nematode management zones based on the ECa 

values combined with elevation, slope and vegetation indices from leaf reflectance. 

Avendaño et al. (2004) also mentioned that soil survey maps can serve as useful tools 

to predict H. glycines in infested fields. They suggested a comparison between soil 

texture and areas with expected high cyst density. Hence, their findings and hypothesis 

are in line with the presented results, even though they did not create management 

maps and were dealing with different cyst nematode species. Management maps based 
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on the ECa values that indicate soil textural zones in heterogeneous fields are 

appropriate for site-specific management of H. schachtii-infested sugar beet fields.  

 

4   CONCLUSIONS AND PERSPECTIVES 

The results indicate that arable fields that are infested with H. schachtii and 

heterogeneous in texture reveal a strong to moderate relationship between spatial 

patterns of H. schachtii cysts and ECa. Based on this observation, the ECa can be used 

to create management maps. Additional information from high-resolution soil maps 

helps to refine the interpretation of ECa values. The ECa-based management maps 

enable farmers to decide on suitable site-specific management strategies for nematode-

infested fields and to realise ecological and economic benefits. Also soil sampling and 

nematode counting can be modulated in a site-specific way. The procedure described 

could also be transferred to other crops and plant parasitic nematodes such as 

Ditylenchus dipsaci on sugar beet or Pratylenchus penetrans on maize, and as well on 

plant pathogens such as Rhizoctonia solani, if a relationship to soil texture is proved. A 

combination of innovative techniques (ECa measurements, hyperspectral data imaging) 

should be taken into consideration in future studies. Nevertheless, further 

investigations should also focus on the optimisation of sampling strategies and 

densities. Therefore, more fields need to be investigated for a better understanding of 

the spatial interrelations between nematodes and soil properties. 

The spatial patterns of H. schachtii at the field scale have not been investigated before 

using soil heterogeneity evaluated by ECa. The results indicate the possibilities and 

limitations of non-invasive sensor technologies to improve management strategies for 

plant parasitic nematodes. Under given circumstances (BCN infestation, 

heterogeneous soil texture), management zones can be implemented with existing 

knowledge. It is recommended that the results and the new approaches from this 

research find their way into applied precision agriculture. 
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Spatiotemporal weed dynamics as affected 

by soil properties – a case study 
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1   INTRODUCTION  

Weeds compete with crops for water, nutrients and light and, thus, cause severe yield 

losses at arable fields across the world (Marshall et al., 2003). Site-specific species 

compositions and weed patches with different plant densities often occur within arable 

fields, depending on many environmental and human-induced factors (Rew and 

Cousens, 2001). According to Gerhards and Christensen (2003), further investigations 

about temporal and spatial stability of weed patches and the effect of soil properties is 

necessitate for site-specific weed management. Maps including management zones 

could be built on the basis of soil maps to improve weed density and distribution 

estimates (Rew et al., 2001; Walter et al., 2002). Furthermore, long-term data sets are 

required for high prediction accuracy (Rew and Cousens, 2001). Within this study, 

spatial weed species distribution and density (weed variability) in relation to soil 

properties was observed within a long-term survey over nine years on one arable field. 

Using non- and minimal-invasive sensor technologies, site-specific weed management 

ought to be improved and weed management maps on the basis of soil maps ought to 

be created. 

 

2   MATERIAL AND METHODS 

2.1   Test field 

The long-term weed survey was conducted on an arable field with a subplot of 5.8 ha 

size at Dikopshof Research Station near Bonn, Germany (6°57´17´´ E, 50°48´17´´ N). 

The mean annual temperature is 9.7°C and the mean annual precipitation amounts to 

630 mm. Grain maize, sugar beet and winter cereals (winter wheat and winter barley) 

built up the crop rotation on the test field. This uniform 4-years crop rotation was 

consistently realised with plough tillage and equalised fertilisation since several 

decades.  

The test site is characterised by considerable soil heterogeneity. The soil developed 

from loess and sandy and gravelly alluvial sediments over the sandy-stony, highly 

permeable Pleistocene middle terrace of the river Rhine. Depending on the thickness 
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of the loess cover (0.27 to > 1.50 m), the parent material consists of unweathered loess 

or Pleistocene terrace sediments. Thus, soil texture and porosity vary in a wide range. 

Soil types alternate, according to the WRB (FAO, 2006), between Haplic Cambisols, 

Luvic Cambisols, Haplic Luvisols and Colluvic Regosols. 

2.2   Experimental design for weed determination  

Weed seedlings were determined every year in spring prior to herbicide application 

from 1998 – 2008 with an interruption in 2004 and 2005. Site-specific weed control 

was conducted within an experiment regarding the spatial dynamics of Chenopodium 

album (L.) from 1997 – 2003 on the test field (Dicke et al., 2007). The same regular 

grid (15 × 7.5 m) was established in the test field throughout the study years. Weed 

seedlings were counted in a 0.4 m2 frame placed at all intersection points (n = 429, 

Fig. V.1a). The number of individual weed species was multiplied with the factor 2.5 

to get the number of plants m-2. While broadleaved weeds (dicots) were separated in 

each occurring species, varying species of grass weeds (monocots) were summarised, 

because the grass weeds were clearly dominated by Alopecurus myosuroides (Huds.). 

2.3   Soil sampling and analyses 

Soil samples were taken from 0 to 30 cm depth (plough horizon) with an auger at the 

end of the long-term survey at the intersection points of the weed grid. The spatial 

coordinates were recorded using differential GPS. Due to the high number of samples 

(n = 429), just a part of them (n = 127) was analysed with conventional laboratory 

methods. In addition, all soil samples were air-dried, sieved (< 2 mm) and milled for 

further evaluation using MIRS-PLSR (see section II.1 and II.2). If this technique did 

not reveal satisfying results, the tool ‘Buffer’ in ArcGIS Editor 9.3 was performed to 

evaluate the non-measured samples. Averaged values within the buffer zones were 

readout to calculate the missing values using the option ‘Zonal Statistics’ within the 

additive tool ‘Hawth Tools’.  

2.3.1   Physical soil properties 

Soil texture was determined by a combination of wet sieving (sand fractions) and 

sedimentation (silt and clay fraction) after Köhn (ISO 11277, 2002). Additionally, the 
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apparent electrical conductivity (ECa) was measured directly in the field with the non-

invasive EM38 sensor (see section II.3). Two geological layers (loess, sandy and 

gravelly alluvial sediments) at the test site markedly differed in soil texture and thus 

affected ECa values. Mertens et al (2008), who observed the same test field as in this 

study, suggested that ECa data can be used to predict further soil properties via 

pedotransfer functions. Due to the geological situation (homogeneous loess of varying 

thickness over sand and gravel) and the related physical soil properties of the test field 

under study, the calculation of the available water capacity (AWC) from ECa values 

was possible. Thus, in this special case, AWC in mm was calculated for 1.5 m soil 

depth (i.e., the main root zone) on the basis of the ECa data with supplementary local 

calibrations. The AWC can be considered as an indicator for the duration of water 

supply to crops and weeds during dry periods. 

2.3.2   Chemical soil properties 

Total carbon and nitrogen (Ct, Nt) were analysed after dry combustion with an 

elemental analyser (Fisons NA 2000; ISO 10694, 1995). The plough horizon of the 

entire field is free of carbonate; in consequence, Ct corresponds to SOC. Particulate 

organic matter (POM) was fractionated by ultrasonic dispersion and sieving, 

separating coarse (POM1, 2000 – 250 µm), intermediate (POM2, 250 – 53 µm) and 

fine (POM3, 53 – 20 µm) fractions (Amelung and Zech, 1999; Kölbl et al., 2005). 

Plant available P and K were determined using calcium-acetate-lactate (CAL) 

extraction, while Mg was extracted with 0.01 M CaCl2 solution. Soil pH was measured 

potentiometrically in a 0.01 M CaCl2 suspension. 

2.4   Data analyses 

Multidimensional data such as population or environmental properties can be 

successfully analysed using multivariate ordination techniques (Lepš and Šmilauer, 

2003). While this method is widespread in plant research (Hejcman et al., 2010; Šrek 

et al., 2010) it can also be adapted to weed science (Pinke et al., 2009, Hyvönen et al., 

2010). Redundancy analysis (RDA) was performed with the CANOCO 4.5 program 

(ter Braak and Šmilauer, 2002) to evaluate the effect of various and interfering 

physical and chemical soil properties and other environmental parameters on the 
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spatial variation of weed species density. A pre-test in the form of a detrended 

correspondence analysis (DCA, with detrending by segments) was used to decide 

about the right ordination method according to the data set. Hence, RDA was the 

method of choice because the length of the gradient in DCA was 1.4. Furthermore, the 

environmental variables were in the form of categorical predictors (cf. Lepš and 

Šmilauer, 2003). Data were logarithmically transformed due to positively skewed 

distribution and large standard deviations. Possible significant effects of the 

explanatory variables (environmental variables in the CANOCO terminology) on the 

weed species were tested using a Monte Carlo test with 999 permutations. Bi-plot 

ordination diagrams were created with CanoDraw software to visualise the results of 

the multivariate analysis. The percentage of the weed species data variability explained 

by soil properties or other environmental parameters was used as a measure of 

explanatory power. 

The RDA examines how a set of explanatory variables (environmental variables such 

as years, field crops and soil properties in this study) affect another set of variables 

(weed data variability). According to Lepš and Šmilauer (2003), the relative 

importance of the canonical axes decreases from the first up to the last canonical axis. 

Therefore, they suggest that the focus within the results and the displayed ordination 

diagram should be on the first canonical axis, which implies most of the explanatory 

power to express data variability. The statistical evaluation of the performed Monte 

Carlo Permutation test is given with the F- and P-values for the first canonical axis 

and for all canonical axes in this study. The highest statistical significance is given 

with a P-value of 0.001 with 999 permutation tests. The F- and P-values of the Monte 

Carlo Permutation test can be used with analogous meanings as in ANOVA regression 

analysis. Further details are given by Lepš and Šmilauer (2003). 

The spatial heterogeneity of weed patches for all years under study were analysed with 

the exploratory tool ‘Geographically Weigthed Regression’ (GWR) in ArcGIS Editor 

9.3 following the instructions by Charlton and Fotheringham (2009). GWR is a type of 

local statistics that includes the weighting of all observations around a sampling point, 

whereas observations closer to the sampling point have higher effects on the 

calibration model (Tu and Xia, 2008; Perry et al., 2010). The weighting function 
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depends on a kernel bandwidth. A fixed kernel was used for the weed data, because 

the sampling points were regularly positioned within a grid. The bandwidth with the 

best prediction accuracy was determined with the corrected Akaike Information 

Criterion (AICc). GWR models generate a local linear regression including statistical 

parameters, such as the coefficient of determination, R2. 

Global Moran´s I was calculated for the residuals of the GWR models. Moran´s I is an 

index to describe the spatial autocorrelation of data and thus the stability of weed 

patches for all years under study (Tu and Xia, 2008; Perry et al., 2010). In general, a 

Moran´s I value near +1.0 indicates clustering, whereas a value near -1.0 indicates 

dispersion. Z- and p-values provide statistical significance. Large Z values (> 1.96) 

reject the assumed null hypothesis and p values < 0.05 indicate statistical significance 

when using a 95% confidence level. 

Univariate analyses were performed via IBM SPSS statistics 19 software (IBM 

Corporation 2010, New York, USA). One-way ANOVA followed by post-hoc 

comparison using Tukey´s test was applied to identify significant effects of various 

field crops on the distribution of weed species.  

2.5   Geostatistical data processing  

Geostatistical data processing and the creation of maps were performed as described in 

section II.4.  

 

3   RESULTS AND DISCUSSION  

3.1   Variability of weed distribution within the long-term survey 

The weed distribution in the test field revealed a considerable spatial heterogeneity 

concerning the local patterns of the different species as well as their density. Dominant 

weed species were C. album, Polygonum aviculare (L.), Viola arvensis (Murray) and 

grass weeds, the latter dominated with about 80% by A. myosuroides (Fig. V.1). 

Hence, these four species were chosen for data analyses due to their frequently and 

consistent occurrence. All weed species revealed a positively skewed distribution in 
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each year of observation. On average, the highest weed density within the whole study 

period was observed for V. arvensis with 14 plants m-2, while the mean weed density 

of the other three species was about 11 plants m-2 (Fig. V.1). Weed patches with a 

density up to about 280 plants m-2 were found in single years for each species except 

for C. album with a maximum weed density of 155 plants m-2.  

The dominance of the weed species varied between the years, but the spatial patterns 

remained stable for observations over one decade, as evaluated by GWR and Global  

Moran´s I (Tab. V.1). The high coefficients of determination (R2 = 0.96 – 0.98) 

indicate a high spatial heterogeneity of weed patches. Significant positive 

autocorrelations (p < 0.001) were found for all observed GWR models of the four 

weed species. Positive Moran´s I values (0.11 – 0.22) and large positive Z values  

(6.09 – 16.53) indicate that weed species abundance between 1998 and 2008 is 

spatially correlated.  

Stable weed patterns over two to four years were observed at various agricultural 

fields (Nordmeyer and Niemann, 1992; Johnson et al., 1996; Gerhards and 

Christensen, 2003; Mehrtens, 2005). Dicke et al. (2007) observed stable spatial 

patterns of C. album from 1997 – 2003 on the same test field without significant 

effects of site-specific herbicide application, which can be explained by the limited 

period of time in their study. Weed species abundance is, amongst others, affected by 

the current field crop. Thus, it is possible that effects of site-specific weed control on 

weed species variability become primary visible if several cycles of crop rotation are 

observed. However, this was not the focus of the present study. 

Tab. V.1: Coefficient of determination  (R2)  of results from  Geographically Weighted 
                 Regression (GWR)  of weed species abundance between various years within 
                 the  long-term  survey  and  Global Moran´s I  of  the  residuals  from  GWR 
                 models 
 

Statistical test 
results 

Chenopodium 
album 

Polygonum 
aviculare Viola arvensis grass weeds 

R2 0.98 0.98  0.97  0.96 

Moran´s I 0.12 0.11  0.22  0.15 

Z 6.70 6.09           16.53           11.06 

p           < 0.001           < 0.001          < 0.001          < 0.001 
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Long-term surveys over one decade regarding spatial weed patterns as conducted in 

this study are not known yet. Site-specific preferences of the individual species at the 

test site are displayed as the mean abundance of the whole study period in  

Figures V.1c – f. Obviously, C. album and V. arvensis prefer opposed site conditions 

(Fig. V.1c, e). The highest densities of C. album were observed in the north of the test 

field, while the highest densities of V. arvensis were found in the southern part. The 

opposite gradients of both weed species do not depend on different field crops or 

tillage systems as it looks like, but are partially correlated with the AWC (Fig. V.1b). 

P. aviculare and grass weeds evidently revealed opposite gradients, but with clear 

similar patterns as the AWC (Fig. V.1b, d, f). While P. aviculare seems to prefer areas 

with low to medium AWC (< 140 mm), grass weeds favour sites with extremely high 

AWC (> 250 mm). A visual comparison between weed species distribution and AWC 

map suggest a certain relation between spatial weed distribution and AWC. 

Furthermore, the spatial variation of AWC obviously coincides with spatial patterns of 

the aerial image from August 1998, showing differences in biomass of grain maize 

(Fig. V.1a, b). Timmermann et al. (2003) and Mertens et al. (2008) studied the same 

test field. Both found a similar pattern between soil fertility (soil texture and related 

water holding capacity) and growth of maize and grain yield, respectively. Hence, the 

soil water supply affects the competitiveness of weeds and crops.  

3.2   Physical and chemical soil properties 

Soil texture, Nt and SOC could be predicted with high accuracy via MIRS-PLSR. The 

coefficient of determination (R2 = 0.92 – 0.99) as well as RMSECV  

(2.30 to 17.50 g kg-1 for texture parameters and 0.21 g kg-1 for SOC), the RPD  

(3.53 to 8.31) and the RMSEP for 30% test-set validation (2.70 to 21.10 g kg-1 for 

texture parameters and 0.20 g kg-1 for SOC) corroborate the excellent quality of the 

calibration models (Tab. V.2). 

The spatial distribution of the investigated soil properties was heterogeneous within 

the test field; Table V.3 presents related statistical parameters. While soil texture in the 
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Fig. V.1: Spatial patterns in the test field: a) Aerial image (orthophoto) from August 

2008 including intersection points of the sampling grid; crop: maize;  

b) available water capacity (AWC) including intersection points of the 

sampling grid; mean abundance (plants m-2) of the whole study period  

(1998 – 2008) for c) Chenopodium album, d) Polygonum aviculare, e) Viola 

arvensis and f) grass weeds. 
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plough horizon was relatively stable, AWC of 1.5 m soil depth ranged from  

57 to 426 mm, indicating a considerable variation due to the geological situation of the 

field (cf. 2.1, 2.3.1). It should be noted that AWC was calculated to a depth of 1.5 m, 

whereas soil texture was determined only in the plough horizon (0.3 m). Due to the 

spatially changing of the pronounced layering of the test field soil, the AWC as 

determined via EM38 measurements is only little affected by soil texture conditions in 

the uppermost 0.3 m, but dominated by the texture in soil horizons to 1.5 m depth. 

Mertens et al. (2008) observed a strong positive correlation between ECa and clay 

content and a strong negative correlation between ECa and sand content to 1.5 m soil 

depth at the test field. Due to this layering and the different measurement depths, 

AWC as derived from ECa for 1.5 m soil depth and soil texture in the plough horizon 

have to be examined separately. 

Nt and SOC were closely correlated, but did not show a high spatial variation within 

the test field. The spatial patterns of the different fractions of POM1, POM2 and 

POM3 as well as of soil pH were rather homogeneous, while the plant available 

amounts of P, K and Mg were heterogeneously distributed within the test field (Tab. 

V.3). Ritter et al. (2008) discussed the variability in weed distribution, soil quality and 

herbicide application as affecting grain yield. These parameters should be taken into 

consideration for site-specific weed management decisions. Thus, the further focus 

was on the effect of different environmental parameters on weed variability. 

Tab. V.2: Statistical  parameters  of  mid-infrared  spectroscopy-partial  least  squares  
                 regression  (MIRS-PLSR).  Predictions were conducted for mean contents of 
                 clay, silt, sand, soil organic carbon (SOC) and total nitrogen (Nt) in the topsoil  

Full cross-validation  Test-set validation (30%) Soil 
constituent R2 RMSECVa RPDb  R2 RMSEPc RPDb 

clay (g kg-1) 0.98  2.30 6.64  0.97 2.70 5.65 

silt (g kg-1) 0.94     17.50 3.99  0.93    21.10 3.81 

sand (g kg-1) 0.99  9.51 8.31  0.98    11.50 7.25 

Nt (g kg-1) 0.79  0.04 2.18  0.78 0.04 2.14 

SOC (g kg-1) 0.92  0.21 3.53  0.93 0.20 3.66 

a Root mean square error of cross validation. 
b Ratio of performance to deviation. 
c Root mean square error of prediction.  



70�
�

 

3.3   Variability of weed distribution as affected by environmental parameters  

The density of the individual weed species clearly differs between field crops. The 

dynamic relations of weed species at the test site within and between individual field 

crops are displayed in Figure V.2. All weed species revealed significantly highest 

densities in the summer annual row crops (grain maize and sugar beet), with the 

exception of V. arvensis, whose density does not differ between sugar beet and winter 

cereals. Weed populations in grain maize were significantly dominated by C. album, 

while grass weeds significantly dominated weed species composition in sugar beet. In 

winter cereals, V. arvensis was the most frequent species (Fig. V.2). 

Gardarin et al. (2010) stated that C. album and P. aviculare only emerge in spring and 

also Roberts and Potter (1980) observed the highest number of P. aviculare seedlings 

after cultivation in spring. Cousens and Mortimer (1995) described the effect of winter 

and summer crops on weed emergence, whereat in general weeds develop more poorly 

in winter crops due to a general germination of many weeds in spring into an 

established  crop canopy.  As a  thermophile weed,  C. album  needs high  germination 

Tab. V.3: Statistical parameters of the observed soil properties. Data refer to the plough  
                 layer except AWC 

Soil properties Min Max Mean Median SDa 
clay (g kg-1) 120.1 185.9 156.1 156.6   9.2 
silt (g kg-1) 501.4 713.5 653.2 661.7 31.0 
sand (g kg-1) 132.6 330.6 194.0 183.3 36.5 
AWC (mm)b         57        426        207        206         74 
Nt (g kg-1)       0.85       1.31       1.03       1.03     0.08 
SOC (g kg-1)       9.78     15.19     11.69     11.66     0.75 
POM1 (g C kg-1)c       0.25       2.08       0.72       0.69     0.17 
POM2 (g C kg-1)c       0.24       1.25       0.54       0.52     0.12 
POM3 (g C kg-1)c       0.71       2.25       1.26       1.25     0.16 
P-CAL (mg kg-1)       0.47       1.29       0.74       0.74     0.10 
K-CAL (mg kg-1)       0.79       2.52       1.15       1.16     0.19 
Mg-CaCl2 (mg kg-1)       0.13       0.62       0.47       0.48     0.11 
pH-CaCl2       6.36       7.22       6.82       6.84     0.12 
a SD = standard deviation. 
b AWC = available water capacity, summarised about 1.5 m soil depth. 
c POM = particulate organic matter of the coarse (POM1, 2000-250 µm), intermediate (POM2,  
  250-53 µm) and fine (POM3, 53-20 µm) fraction. 
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Fig. V.2: Averaged weed density of individual species in relation to varying field crops. 

Different small letters indicate significant differences (p < 0.05) of individual 

weed species between field crops; different capital letters indicate significant 

differences (p < 0.05) between weed species within individual field crops. Bars 

indicate standard error. 

temperatures and thus prefers summer annual field crops (Mehrtens, 2005). Also 

Andreasen et al. (1991) observed a higher abundance of C. album in summer annual 

crops than in winter annual crops. V. arvensis and A. myosuroides are characteristic 

weeds in winter cereals (Gerhards et al., 1997). It can be concluded that the presented 

findings of high C. album and P. aviculare abundance in summer annual row crops 

and high V. arvensis abundance in winter cereals are in line with reports from 

literature. 

During the long-term survey, significant differences in weed density were also found 

between particular years (data not shown). Such year-depended differences in weed 

density and composition can be caused by many parameters. Beside field crop rotation, 

particularly soil tillage affects weed emergence (Cardina et al., 2002; Sosnoskie et al., 

2006). This effect can be certainly regarded as negligible in the present study due to 

consistent plough tillage during the whole experimental period. However, climatic 
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conditions, especially temperature and rainfall, affect weed population dynamics 

(Cousens and Mortimer, 1995; Kobusch, 2003). Furthermore, weed density, 

competition pressure and thus interrelations between weeds and crops additionally 

modify species composition (Cousens and Mortimer, 1995; Ritter and Gerhards, 

2008). Thus, multivariate analyses (RDA) were performed for the explanatory 

variables years, field crops and soil properties to analyse the effect of these factors on 

weed variability.  

According to RDA, the environmental variables had significant effects on the weed 

data variability (Tab. V.4). The effect of years, field crops and soil properties together 

explained 47% (analysis a1, all canonical axes) of variability in weed species for all 

years of the long-term survey separated, while the first canonical axis explained just 

20.8% of weed data variability (analysis a1, ax 1). Considering all canonical axes for 

each explanatory variable separately, the factor years explained the highest proportion 

of weed species variability (36.9%, analysis a2), while various field crops revealed the 

lowest explanatory power (11.2%, analysis a3, Tab. V.4). For year-dependent analysis, 

weed data of all years of the long-term survey were separated, while for field crop-

dependent analysis only weed data of the years with different field crops were 

separated. Averaged weed data of all years were used for soil-dependent analysis, 

because soil data were just collected once. The different soil properties together 

explained 26.4% of the variability in weed species (analysis a4). Taking the first 

canonical axis into account, which implies most of the explanatory power, the factor 

soil still explained almost one fourth (23.7%) of weed data variability, while the 

explanatory power of the years decreased to 18.3% (Tab. V.4).  

Tab. V.4: Results  and  statistical  evaluation  of  redundancy  analysis  (RDA)  of  weed 
                 species abundance for all years separated in relation to years, field crops and 
                 soil properties 
 

First canonical axis  All canonical axis 
No. Explanatory Variable 

% F P  % F P 

a1 years, field crops, soil 20.8 1005.6 0.001  47.0 161.9 0.001 

a2 Years 18.3   863.3 0.001  36.9 281.6 0.001 

a3 field crops   9.6   410.7 0.001  11.2 243.0 0.001 

a4 Soil 23.7   129.2 0.001  26.4   11.5 0.001 
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Interpreting year-dependent and field crop-dependent changes in weed abundance is 

complex due to different sowing dates and corresponding weather conditions as well 

as to inter- and intra-species competitions. Andreasen et al. (1991) observed varying 

climatic conditions during a 13-year study, which affected just 11 out of 37 weed 

species significantly. However, field crop- and year-dependent changes can explain 

some temporal variation in weed species abundance in the present data set. Neither 

differences of years nor the effect of different field crops can solely explain the spatial 

variability of weed species. Thus, the further focus was on the effect of various soil 

properties, which explain weed data variability with almost 25% (Tab. V.4).  

3.4   Variability of weed distribution as affected by soil properties 

Various soil properties were analysed to explain weed species abundance. Soil 

properties such as soil texture and related AWC as derived from electromagnetic 

measurements as well as SOC can be regarded as stable over time under consistent 

tillage (Paustian et al., 1997; Mertens et al., 2008). Due to consistent liming and 

fertilisation also soil pH and plant available nutrients are more or less stable soil 

properties in the long-term survey. For multivariate analyses of various soil properties 

averaged weed data from all studied years were used.  

The first canonical axis of RDA represents the majority of weed variability among the 

soil properties (Tab. V.5). Hence, these percentages were considered as adequate to the 

explanatory power. All measured soil properties together significantly explained 34% 

of the variability in weed species data (analysis a5), visualised in an ordination 

diagram (Fig. V.3). Weed species are clustered together with affecting soil properties, 

while soil properties with less or no effect on weed species are more widely separated. 

Weed species are more or less clearly positively or negatively correlated to different 

texture parameters, AWC and soil pH. Large arrows of Nt and SOC indicate also a 

high, but more non-directional effect on weed species abundance (Fig. V.3). The 

available nutrients as well as the amount of POM fractions show only a weak and non-

directional effect on specific weed species.  
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Fig. V.3: Ordination diagram visualising the results of the redundancy analysis (RDA) 

with all measured soil physical and chemical properties used as environmental 

(explanatory) variables (AWC = available water capacity; POM = particulate 

organic matter; SOC = soil organic carbon). Species abbreviations: Che alb – 

Chenopodium album, Pol avi – Polygonum aviculare, Vio arv – Viola arvensis.  

Due to the high number of measured soil properties, automatic forward selection of 

environmental variables was used to reduce the total number of 13 soil properties to 

seven (clay, silt, sand, AWC, SOC, pH and Mg), which together explained 30.7% of 

the weed variability (analysis a6, Tab. V.5). Further division of the selected 

explanatory variables indicate the explanatory power of the individual soil properties. 

The most decisive soil property affecting weed species composition was AWC 

(calculated for 1.5 m depth), which explained 17.4% of weed data variability (analysis 

a12), followed by clay (13.2%, analysis a9) and sand (12.4%, analysis a11) contents in 

the plough horizon. Additionally, SOC (8.4%, analysis a13) and silt (5.3%, analysis 

a10) contents also revealed a considerable explanatory power. The combination of 

these five soil properties with the highest individual explanatory power explained 

remarkable 28.2% of weed species variability (analysis a16). Considering all canonical 

axes, 30.9% of weed species composition can be explained by soil texture and SOC 

content in the plough horizon and AWC of the soil profile (analysis a16, Tab. V.5).  
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Tab. V.5: Results and statistical evaluation of redundancy analysis (RDA) of mean weed  
                 species abundance in relation to various soil properties of the plough horizon 
                 (except available water capacity, AWC: calculated for 1.5 m depth) 

First canonical axis  All canonical axes 
No. Explanatory Variable 

%  F  P   % F  P 

a5 SOC, Nt, clay, silt, sand, AWC, pH, 
P, K, Mg, POM1, POM2, POM3 34.0  217.1  0.001   39.7 21.0 0.001 

a6 clay, silt, sand, AWC, SOC, pH, Mg 30.7  186.9  0.001   34.6 31.9 0.001 

a7 Clay 13.2   64.9 0.001  - - - 

a8 Silt   5.3   23.9 0.001  - - - 

a9 Sand 12.4   60.3 0.001  - - - 

a10 AWC 17.4   89.8 0.001  - - - 

a11 SOC   8.4   39.1 0.001  - - - 

a12 pH   3.6   16.1 0.001  - - - 

a13 Mg   3.6   15.7 0.001  - - - 

a14 clay, silt, sand, AWC, SOC 28.2  166.3  0.001   30.9 37.8 0.001 
 

Figure V.4 visualises the result of analysis a16 (Tab. V.5) in the form of an ordination 

diagram. The abundance of C. album is positively affected by sand content and AWC, 

but negatively affected by clay content. In contrast, P. aviculare is positively 

correlated with the clay content and negatively correlated to AWC. Clay and silt 

content positively affected V. arvensis, which, in turn, is negatively correlated with the 

sand content. Grass weeds are particularly affected by silt content and AWC. Again, 

SOC indicates a high but non- directional effect on all observed weed species  

(Fig. V.4). This non-directional effect indicates the high complexity of soil properties, 

their interrelation and their complex effects on weed growth conditions.  

Considering the ordination diagram, it seems remarkable that AWC and sand content 

positively affected each other and certain weed species, while AWC and clay content 

negatively affected each other and thus certain weed species (Fig. V.4). This apparent 

contradiction can be explained with the geological situation of the soil in the test field, 

as stated in section 3.2. Due to the different layering in soil and the different 

measurement depths, AWC as derived from ECa for 1.5 m soil depth and soil texture 

in the plough horizon have to be interpreted separately for explaining weed species 

distribution. 
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Fig. V.4: Ordination diagram visualising the results of the redundancy analysis (RDA) 

in which soil texture (clay, silt, sand), available water capacity (AWC) and soil 

organic carbon (SOC) were used as environmental (explanatory) variables. 

Species abbreviations: Che alb – Chenopodium album, Pol avi – Polygonum 

aviculare, Vio arv – Viola arvensis.  

Weed species variability, especially for C. album and grass weeds – mainly  

A. myosuroides – was strongly affected by AWC, which describes soil water supply 

during periods with non-sufficient rainfall (Fig. V.1b, d, f; Fig. V.4). Roberts and 

Potter (1980) report that the absence of soil moisture restricts weed emergence. 

Mehrtens (2005) observed weed species preferring moist soil conditions and areas 

with deep moist horizons. Also wet-dry cycles affect weed emergence and longevity 

(Long et al., 2011). Even if weed estimation took place at the beginning of the 

vegetation period, some weeds usually emerge after herbicide application (Dicke et al., 

2004; Gerhards et al., 2005). Furthermore, adult weed plants are able to reach the 

subsoil due to their often distinct root system. These weed plants produce new seeds 

and therefore stabilise spatial weed patterns at areas with favourable competitiveness 

for the individual species, such as high AWC during the growing season. Thus, the 
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AWC to 1.5 m soil depth potentially yields information on weed emergence, growth 

and competitiveness, finally resulting in a given weed abundance and density.  

Besides, soil texture and SOC in the topsoil affected weed species variability  

(Fig. V.4). Soil texture and SOC are key parameters with complex interrelations that 

affect other soil properties such as soil porosity, aggregate stability, soil respiration or 

nutrient status, which, in turn, affect weed and crop growth. Higher sand contents 

mostly improve rooting, enhance porosity and related soil respiration as well as water 

conductivity. Less available soil water at higher sand contents can retard weed and 

crop growth at the beginning of the vegetation period. 

Concerning the weeds under study, C. album as a thermophile weed is relative 

resistant to drought stress (Bruckner-Pertl et al., 2001) and therefore may benefit from 

a rather high competitiveness at sandy texture. Andreasen et al. (1991) observed a 

negative correlation between C. album and the clay content. These findings are in line 

with the presented results. The abundance of P. aviculare and V. arvensis was 

positively affected by topsoil clay and silt content in this study, respectively (Fig. V.4). 

In contrast, Andreasen et al. (1991), Walter et al. (2002) and Mehrtens (2005) related 

P. aviculare and V. arvensis abundance with lower clay or higher sand contents. Also 

A. myosuroides, the main grass weed in the test field of the present study, was 

associated to high clay contents (Nordmeyer and Niemann, 1992), which was also not 

in line with the presented results. These different results indicate once more the 

considerable complexity between weed species abundance and related soil properties. 

However, the soil is an important parameter for spatial weed distribution due to its 

function of modifying root zone, microclimate, water- and nutrient-supply (Nordmeyer 

and Häusler, 2004).  

Apart from physical soil properties, the chemical soil property SOC affected weed 

species variability (Fig. V.4). Walter et al. (2002) confirm this effect on spatial weed 

distribution. The SOC content of the test field in the present study was rather 

homogeneous. The SOC content did not affect certain weed species at given positions 

within the field, but had a significant and uniform effect on all observed weed species. 

However, even the low SOC range implies a high effect on weed variability, which 
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emphasises the importance of SOC. SOC indirectly affect weed distribution and 

density due to its effect on other soil constituents, such as the water holding capacity 

or the nutrient status of the soil (Andreasen et al., 1991; Nordmeyer and Häusler, 

2004). More research seems necessary to evaluate the effect of SOC on spatiotemporal 

weed species variability.  

Multivariate analysis such as RDA can be adequately used to improve the complex 

relations of various fields of research such as weed and soil science. Relationships 

between soil properties and weed species can be determined within the multi-

dimensional space of RDA. It further takes the complexity of soil properties among 

each other and this effect on different weed species into account, which is not possible 

with one-dimensional data analysis. It is therefore suggested that multivariate analysis 

such as RDA should be more frequently used when interdisciplinary questions are 

observed. Based on the results from RDA weed management maps were further 

created to improve site-specific weed management. 

3.5   Weed management maps for site-specific weed management 

Weed management maps aim at a site-specific management of weeds in order to save 

herbicides for ecological and economical benefits and are required within the scope of 

precision crop protection. Weed maps displaying the spatial weed distribution and 

density for subsequent patch spraying of herbicides can be frequently found in 

literature (e.g. Dicke et al., 2004; Gutjahr et al., 2008; Kroulik et al., 2008). Gerhards 

and Oebel (2006) and Weis et al. (2008) already demonstrated weed maps for decision 

algorithms for site-specific weed management and patch spraying. Nevertheless, the 

effect of soil heterogeneity have not been taken into account, even if its effect on weed 

variability has been proven in this study and also partially in other studies before 

(Andreasen et al., 1991; Walter et al., 2002; Nordmeyer and Häusler, 2004). However, 

non-invasive and minimal-invasive soil sensors are meanwhile available to detect soil 

properties in a fast and convenient way. Thus, weed management maps on the basis of 

soil maps with regard to spatial weed distribution based on the results of RDA  

(Fig. V.4) were created in order to elaborate a novel basis for site-specific weed 

management.  
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The sand content of the topsoil affected the variation in C. album and V. arvensis – as 

shown above. The higher was the sand content, the higher was the density of C. album 

and the lower was the density of V. arvensis, respectively. P. aviculare and grass 

weeds were primarily affected by AWC. The lower was the AWC, the higher was the 

abundance of P. aviculare and the lower was the abundance of grass weeds, 

respectively. Thus, two soil maps were generated displaying the sand content in the 

plough horizon and the AWC in the main root zone of the test field. The displayed 

sand content was divided into two areas with low (< 18%, area 1) and high (> 18%, 

area 2) sand content (Fig. V.5a). The visualised AWC was divided in three areas with 

low to medium (< 140 mm, area 1), high (140 – 200 mm, area 2) and extremely high 

(> 200 mm, area 3) AWC (Fig. V.5b).  

The averaged abundance of the observed weed species within the different areas and 

with respect to the economic weed thresholds are shown in Figures V.5c and V.5d. For 

the determination of an appropriate economic weed threshold, the description of Dicke 

et al. (2004) was taken into account, who suggested 10 plants m-2 for dicots and  

6 plants m-2 for monocots as reasonable economic thresholds. While V. arvensis 

exceed the economic weed threshold in area 1 of the sand content map (low sand 

content), C. album does not reach it, which was vice versa in area 2 (high sand content, 

Fig. V.5c). P. aviculare exceed the economic weed threshold in areas 1 and 2 (low to 

medium and high AWC), while the grass weeds do not reach the economic threshold 

in any of the areas (Fig. V.5d).  

Economic weed thresholds are target values which help farmers to decide if herbicide 

application is necessary or not. Soil maps as displayed in this study can serve as weed 

management maps. Depending on the field crop and on site-specific knowledge of the 

farmer, the indicator weed can be determined and the appropriate soil map can be 

taken into account.  

On the basis of such soil maps, full, reduced or no herbicide dosages can be applied on 

different areas of the field. Thus, weed management maps on the basis of soil 

information may help calculating the site-specific usage and dosage of herbicides. 

Site-specific application of herbicides with respect to soil texture zones and SOC 
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contents reduce environmental burden, due to their effect on herbicide efficacy and 

leaching (Walter et al., 2002; Patzold et al., 2008). Site-specific weed management 

performed with patch-spraying after automated weed counting (e.g. by image 

analyses) can also reduce the amount of herbicides used (Gerhards et al., 2005; Weis et 

al., 2008), but without considering the effect of soil heterogeneity on herbicide 

behaviour.  

 

 

Fig. V.5: Weed management maps on the basis of soil maps for site-specific weed 

management and related mean abundance of weed species: a) map of the sand 

content in the plough horizon, b) map of the available water capacity (AWC) 

in the main root zone, c) mean abundance of Chenopodium album and Viola 

arvensis within the different areas of the sand content map with respect to the 

economic weed threshold d) mean abundance of Polygonum aviculare and 

grass weeds within the different areas of the AWC map with respect to the 

economic weed thresholds. The economic weed thresholds were adapted from 

Dicke et al. (2004).  
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Weed management maps as shown exemplarily for the test site under study can be 

created for other arable fields with patchy weed distribution. Weed patches are stable 

over time, which was successfully demonstrated in a long-term survey over a period of 

nine years, and is known from some previous projects (Gerhards and Christensen, 

2003; Mehrtens, 2005; Dicke et al., 2007). Soil texture, AWC and SOC can be 

regarded as stable over time as well. The soil maps can be combined with the 

determination of weeds using image analyses to improve prospective site-specific 

weed management. However, beside soil properties, weed species abundance is 

affected by other parameters such as field crops or climatic conditions. Due to the 

ability of weeds to adapt to a wide range of ecological conditions (Andreasen et al., 

1991), further analysis are necessary to obtain relationships between weed species and 

soil properties. It should be examined if the presented results can be verified under 

consistent climatic conditions in identical field crops. Relationships between soil 

properties and weed species variability may be validated for certain regions.  

Furthermore, the results of RDA and the displayed maps contribute to a better 

understanding of site-specific interrelations between weeds and soil properties and 

thus the patchy occurrence of weeds. The dominant soil properties affecting weed 

species distribution, namely AWC, soil texture and SOC, can be detected fast and 

convenient via new sensor technologies such as EM38 and MIRS-PLSR. While the 

EM38 is a non-invasive technique to detect texture related spatial soil heterogeneity in 

the field, soil samples still need to be taken for analyses via MIRS-PLSR. It is further 

assumed that other non-invasive technologies, such as site-specific SOC determination 

via airborne hyperspectral imaging (cf. section III) will displace soil sampling in the 

future. 

 

4   CONCLUSIONS AND PERSPECTIVES 

Within a nine-year survey it could be supported that weed patches and their relations 

to soil properties within arable fields are stable over time. Beside environmental 

factors such as certain field crops, soil tillage or climatic conditions, soil heterogeneity 

affects weed species distribution and abundance. The combination of soil sensing 
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technologies and multivariate statistics revealed an unexpected strong effect of soil 

properties on weed variability that was only scarcely documented in literature before.  

With regard to the complex interrelations of soil properties, multivariate analyses 

revealed that mainly soil texture, AWC and SOC, which affect plant available water 

and nutrient contents, affect weed species variability. Those soil properties in the 

required data density can be detected fast and convenient with non- or minimal-

invasive technologies such as EM38 or MIRS-PLSR. Other non-invasive technologies 

such as hyperspectral imaging should be applied for further investigations on the 

determination of soil properties with a high spatial resolution.  

Several benefits are expected from soil-based weed management maps for site-specific 

weed management: 

(i) Site-specific interrelations between soil properties and the patchy occurrence of 

weeds become more comprehensible, which improves site-specific weed control in 

general and contributes to the further development of precision crop protection.  

(ii) Sampling strategies can be improved. Weed counting as well as soil sampling can 

be reduced due to the stability of weed patches and soil properties over time.  

(iii) Site-specific herbicide application can be reduced. Due to the effect of soil 

properties on herbicide efficacy and leaching, herbicide dosages can be optimised with 

knowledge about soil textural zones and SOC distribution. 
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1   RELEVANCE OF SOIL FOR PRECISION CROP PROTECTION 

One major challenge for applied precision crop protection, which is a significant part 

of precision agriculture, is the quantification of soil heterogeneity at the field-scale. 

Heterogeneity at the field-scale affects crop growth, but is also important for the 

development of pests and diseases (Mahlein et al., 2010; Hillnhütter et al., 2011b) as 

well as weeds (Dicke et al., 2004; Gerhards and Oebel, 2006). If the heterogeneous 

occurrence of pests or weeds can be traced back to soil parameters, pesticide 

applications can be adjusted to the variability of soil properties (Patzold et al., 2008). 

The spatial heterogeneity of soil properties is of particular importance for site-specific 

crop protection, as it interacts in a multiple and complex way with various crop-

protection aspects. SOC and soil texture are particularly important key soil properties 

influencing other soil parameters as well as crop and pest development and the 

environmental behaviour of pesticides. Thus, the exact determination of soil variability 

at the field-scale can improve site-specific management decisions. Management maps 

are required by agronomists and farmers to manage land in a sustainable and site-

specific way, which is optimal adapted to environmental and agricultural needs (Oliver 

and Webster, 1991; Viscarra Rossel and McBratney, 1998). However, such maps on 

the basis of heterogeneously distributed soil properties are not available yet for 

practical use, even if soil sensors become more and more available.  

The aim of this PhD-thesis was to clarify the multiple effects of soil properties and 

their heterogeneous distribution within fields to crop protection problems. 

Furthermore, the aim was to contribute to the improvement of precision crop 

protection in each of the major fields, namely general crop and pest development, soil-

borne pests and weeds. Therefore, the foci of this study were (i) the improvement of 

SOC detection via hyperspectral airborne imaging, (ii) the survey of relationships 

between soil texture measured via electrical conductivity and the occurrence of the 

plant parasitic cyst nematode H. schachtii and (iii) the temporal stability of weed 

patches and their relation to heterogeneity of soil properties within a long-term survey 

using innovative technologies. One further focus was the creation of management 
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maps on the basis of soil heterogeneity to improve site-specific management within 

precision crop protection. 

 

 

2   SOIL ORGANIC CARBON HETEROGENEITY DETECTED 

WITH AIRBORNE HYPERSPECTRAL IMAGING 

The results reveal an overall high prediction accuracy of topsoil SOC at the field-scale 

using airborne hyperspectral imaging with the HyMap sensor and MIRS-PLSR. Site-

specific differences were observed concerning prediction accuracy with respect to 

various soil surface conditions. Rough soil surfaces and vegetation or straw residues 

decrease the prediction accuracy, whereas low surface roughness and the absence of 

vegetation and straw residues increase the prediction accuracy. Thus, freshly prepared 

seed-beds or ploughed soils lead to almost optimal conditions for airborne reflectance 

spectroscopy. Due to the high spatial resolution of the HyMap sensor, a pixel-based 

map (8 × 8 m � mean of four pixels, each 4 × 4 m) was generated visualising the 

small-scale variability of SOC contents more realistically than interpolated maps.  

Airborne hyperspectral imaging is a new approach for precision crop protection as 

well as for soil C monitoring. The SOC variability of arable fields could be detected at 

a small spatial scale. The preciseness of airborne hyperspectral imaging was adequate 

to that of a conventional sampling and laboratory analysis (RMSECV =  

± 1.05 g SOC kg-1). It is expected that local calibrations with respect to local 

circumstances of the soil (e.g. various texture) and to varying surface conditions 

further enhance the accuracy of the results. However, the accurate pixel-wise 

prediction of SOC displayed in management maps without the need of geostatistical 

treatment seems especially reasonable for precision agriculture practices and soil C 

monitoring. 

Hyperspectral imaging for the measurement of SOC was conducted on more or less 

bare soil surfaces because of the highest prediction accuracy under these 

circumstances. However, bare soil surfaces are seldom available on many fields at the 
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same time and also rarely during summer, when there are optimal weather conditions 

for flight campaigns. Thus, specific analytical methods such as linear spectral 

unmixing should be used in future to reduce the effect of vegetation and straw residue 

covers with simultaneous improvement of the prediction accuracy (Bartholomeus et 

al., 2011). The prediction accuracy can further be improved by the use of different 

sensors such as ROSIS or AISA sensor systems, which offer a higher spatial resolution 

than the HyMap sensor (Bartholomeus et al., 2007; Késmárki-Galli et al., 2009). 

Another alternative is the use of an unmanned aerial vehicle (drone) instead of an 

aircraft for hyperspectral measurements, which cause only low costs and can be driven 

individually at desired dates, fields and weather conditions (Johnson et al., 2004). 

Adequate low-weight sensors are already under development. 

With respect to the multiple effects of SOC, high-resolution SOC maps can improve 

digital soil mapping. Related soil properties should be estimated via pedotransfer 

functions on the basis of SOC contents. In addition, digital elevation models and 

geostatistical methods such as co-kriging can be used to improve digital soil mapping 

(McBratney et al., 2003; Behrens et al., 2010). López-Lozano et al. (2010) recently 

presented how spatial soil and plant data from remote sensing techniques can be 

integrated to site-specific management within precision agriculture. 

SOC maps based on airborne hyperspectral imaging are characterised by a high spatial 

resolution of a few m2. Site-specific management decisions within precision crop 

protection can be improved due to the effect of SOC on other soil constituents, crop 

stand parameters, preferences of pests and weeds as well as on the behaviour of 

pesticides in soil. E.g., fertiliser and pesticide applications can be optimised in a site-

specific way. Additionally, the survey of SOC contents and SOC pattern stability 

benefits soil C monitoring with regard to the detection of agricultural soils as sources 

or sinks for carbon.  
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3   DETECTION OF NEMATODE PATCHES WITH A NON-

INVASIVE SOIL SENSOR 

The study ought to test the hypothesis that (i) the patchy distribution of the plant 

parasitic beet cyst nematode (BCN) H. schachtii within sugar beet fields is linked to 

the spatial variability of soil conditions and that (ii) this variation can be detected by a 

non-invasive soil sensor. Areas with homogeneous or heterogeneous soil texture can 

be indicated by measurements of the apparent electrical conductivity (ECa) with the 

non-invasive EM38 sensor within agricultural fields. Due to the missing depth 

information of ECa measurements, additional information from soil taxation maps 

improved the knowledge on the vertical variability in soil. The results indicate that 

arable fields, infested with H. schachtii and heterogeneous in soil texture, reveal a 

close relationship between spatial patterns of H. schachtii cysts and ECa. Highest cyst 

densities were observed at low ECa values and thus at deeper and / or light to medium 

textured (i.e. sandy) soils. Favourable environmental conditions for BCN 

development, such as adequate pore size, soil moisture conditions at field capacity and 

rapid warming of the soil in the spring, are provided in these soils. However, the 

layering of soil cannot be detected by EM38 in all cases, but can determine BCN-

relevant soil properties, e.g. stagnic properties. Thus, additional information from soil 

maps (as reveal with soil taxation maps in this study) or a local calibration can 

improve the assessment of BCN living conditions. Management maps were created on 

the basis of ECa data and information from soil taxation maps and were compared with 

the observed spatial nematode distribution.  

Measuring ECa is a fast and convenient method to detect the spatial heterogeneity of 

soil texture and soil porosity and it can be concluded that it is a useful tool to develop 

maps for nematode management in terms of a risk assessment. Such maps on the basis 

of ECa data enable farmers to apply suitable management strategies with ecological 

and economic benefits, such as site-specific sowing of resistant cultivars or site-

specific nematicide application, if nematicides are authorised. Furthermore, 

management decisions and preventive measures on the basis of these maps can be 

conducted before the growing season starts. Thus, management maps based on the ECa 
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values indicating zones of varying nematode risks on heterogeneous fields are highly 

appropriate for site-specific management of H. schachtii-infested sugar beet fields and 

offer new advantages to farmers. 

Innovative techniques such as ECa measurements and hyperspectral data imaging 

should be combined in future studies to further improve site-specific nematode 

management. Hillnhütter et al. (2011b) successfully detected BCN patches on the basis 

of above-ground symptoms at sugar beet plants during the growing season using 

airborne hyperspectral imaging. The use of additional non-invasive data can thus 

improve the spatial resolution of management maps. The small-scale variability of 

nematode patches can be determined with a higher accuracy using high-resolution data 

from multiple non-invasive sensors.  

It is further assumed that management maps generated with the described procedure 

may also be transferred to other crops and plant parasitic nematodes such as D. dipsaci 

on sugar beet or P. penetrans on maize, and as well on fungal plant pathogens such as 

R. solani, if a proven relationship to soil texture is observed. However, this assumption 

needs to be proven on different agricultural fields in additional consideration of other 

soil properties than ECa, due to possible preferences of other pests to other soil 

parameters.  

 

 

4   THE USE OF MINIMAL- AND NON-INVASIVE SENSOR 

TECHNOLOGIES TO DETECT SPATIOTEMPORAL WEED 

DYNAMICS AS AFFECTED BY SOIL PROPERTIES 

The heterogeneous distribution patterns of four weed species within an agricultural 

field turned out to be very stable over a period of one decade. Based on this 

observation it was hypothesised that soil conditions, being spatial heterogeneous as 

well, have a significant effect on the (non-)appearance of weeds. EM38 measurements 

and MIRS-PLSR were used to determine soil properties within the long-term weed 

survey, namely Nt, SOC, POM1, POM2, POM3, pH, clay, silt and sand as well as the 
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plant-available nutrients P, K and Mg. Due to the specific conditions of the test field, 

not only depth-averaged soil texture but also available water capacity (AWC) could be 

derived from ECa data. Multivariate statistics in the form of redundancy analysis 

(RDA) was used to explain the effect of environmental variables (years, field crops 

and soil properties in this study) on weed data variability. Results of the RDA reveal 

that the temporal stable weed species distribution was significantly affected by the 

environmental parameters soil properties, field crops and various years. However, 

spatial heterogeneous weed patches and thus weed data variability could be adequately 

explained by various soil properties. On closer examination, almost one third of weed 

species composition could be explained by the soil properties texture, AWC and SOC. 

In the light of the various parameters affecting weed abundance, this was an 

unexpected strong result. Preferences of single weed species for specific soil properties 

became visible in an ordination diagram. Based on these results, weed management 

maps for site-specific weed management were created on the basis of soil maps.  

The most popular site-specific weed management approaches are by now weed 

management maps in combination with patch spraying (Dicke et al., 2004), weed 

detection with image analyses (Gerhards and Oebel, 2006) or computerised decision 

algorithms (Ritter et al., 2008). The strong effect of soil properties was not considered 

accurately in the past due to the time- and cost-intensive determination of soil 

properties. Here, the sensor application allows for new, innovative approaches which 

take soil into account. Furthermore, the dominant soil properties affecting weed 

patches, namely AWC, soil texture and SOC, can be detected fast and convenient via 

ambitious technologies such as EM38 and MIRS-PLSR. These soil properties not only 

affect weed variability, they also affect the sorption, efficacy, degradation and leaching 

of pesticides. Therefore, weed management maps including soil information can 

further improve site-specific herbicide applications. Adapted herbicide applications 

can be performed before the growing season starts to prevent the emergence of weed 

seedlings. It is further assumed that other non-invasive technologies, such as site-

specific SOC determination via airborne hyperspectral imaging, can be used to 

determine soil heterogeneity in the future. 
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Due to the high adaptability of weeds to environmental conditions, it should be 

examined if the presented results can be verified under consistent climatic conditions 

in identical field crops. Relationships between soil properties and weed species 

variability may be validated for certain regions. Furthermore, it should be tested if the 

observed local relationships can be transferred to totally different environmental 

conditions.  

 

 

5   GENERAL CONCLUSIONS 

The presented results reveal that soil properties and their heterogeneity at the field-

scale affect precision crop protection, which was not considered in the past due to 

methodological limitations. As examples, the SOC content, the occurrence of the plant 

parasitic cyst nematode H. schachtii and weed species distribution and densities were 

examined in this study. Spatial soil variability can easily be detected by various sensor 

techniques and should be taken into consideration for prospective precision crop 

protection. Management maps on the basis of soil constituents, detected with minimal- 

or non-invasive sensors, will help agronomists and farmers to manage an entire field in 

a site-specific, effective way. Hence, ecological and economic benefits for famers are 

offered, even if a cost-benefit calculation is almost impossible for precision crop 

protection at the current state of research.  

Further improvements will be achieved by the combination of different sensor 

techniques when examining on distinct soil properties as well as on related (soil-borne) 

pests or weeds. Therefore, existing sensors techniques should be improved, as shown 

exemplarily for the use of a pedotransfer function to derive the available water 

capacity from ECa values under specific site conditions as explained in this study. In 

addition, new technologies should be further examined. One promising technique to 

determine SOC content in the topsoil is the non-invasive gamma-ray spectroscopy 

(Wielopolski et al., 2008). Nevertheless, future approaches should focus on the 

development of on-the-go sensors, e.g. for the direct measurement of SOC within 
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fields with the use of VIS/NIR spectroscopy. Schirrmann et al. (2011) recently 

introduced an on-the-go sensor for high-resolution mapping of soil pH at the field-

scale. However, even if these new technologies are promising for future soil mapping, 

information about soil heterogeneity in deeper soil horizons are still limited. As shown 

in this study, soil properties in the subsoil such as soil texture and porosity or available 

water capacity are important parameters affecting the spatial distribution of  

H. schachtii and weed variability. Therefore, another important aspect regarding new 

sensor technologies to detect spatial soil variation should focus on the depth-

resolution.  

However, important soil properties such as soil texture and SOC are stable parameters 

over time, as shown for SOC in this study. This fact as well as the fast and convenient 

use of sensors indicates the possibility of measuring soil properties in regular intervals 

under consistent conditions, improving the cost efficiency of these measurements. 

Precision crop protection can be improved and innovative soil monitoring processes 

can be initiated. As shown, this is even possible without using geostatistics, but on a 

simple pixel-wise basis. The presented results contribute to precision crop protection 

as well as to soil monitoring, facing the major challenges of agricultural production 

today and in future.  
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