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ZUSAMMENFASSUNG

Zusammenfassung

Eine exakte Schätzung von genetischen Parametern ist entscheidend für

ein leistungsfähiges genetisches Evaluierungssystem. Normalerweise werden

REML- und Bayes-Verfahren für die Schätzung von genetischen Einflussfak-

toren angewendet. Bei der Bayes-Methode werden die Informationen, die über

einen Parameter durch A-priori-Wahrscheinlichkeitseinschätzung bekannt sind

mit den Daten und Erfahrungen aus aktuellen Studien kombiniert und in eine

A-posteriori-Verteilung überführt. In der vorliegenden Arbeit wird ein neuer,

schnell anpassungsfähiger Markov Chain Monte Carlo (MCMC) sampling

Algorithmus vorgestellt, welcher die Vorteile des Hybrid-Gibbs sampler mit

denen des Metropolis-Hastings Algorithmus zur Einschätzung von genetischen

Einflussfaktoren in linear mixed models mit mehreren Zufallsvariablen in

sich vereinigt. Dieser neue MCMC Algorithmus arbeitet in 2 Stufen: im

ersten Schritt wird der Hybrid Gibbs sampler genutzt, um eine effiziente

vorgeschlagene Kovarianzstruktur für die Varianzkomponenten zu erlernen,

während im zweiten Schritt der M-H Algorithmus zur Aufstellung neuer

Werte basierend auf der erlernten Kovarianzstruktur aus Schritt 1 zur An-

wendung kommt. Normalerweise verzögern die Abhängigkeiten unter den

Zufallsvariablen die Annäherung der Markov-Kette an einen stationären Zu-

stand. Also wurden diese Zufallsvariablen in einem weiteren Schritt von

der Wahrscheinlichkeitsschätzung ausgeschlossen, um das Gemisch der Kette

zu verbessern. Der neue Algorithmus zeigte gute Mischeigenschaften und

war zweimal schneller als der Hybrid-Gibbs sampler, um eine a-posteriori-

Verteilung von Varianzkomponenten zu erstellen, außerdem können bei dieser

Methode auch mehrere Modes festgestellt werden. Mit der vorgeschlage-

nen exponentiellen Vorbewertung für Varianzkomponenten ist es weiterhin

möglich solche Maximalwerte bei der posterior Verteilung auf den Wert Null

9



ZUSAMMENFASSUNG

zu schätzen im Falle, dass keine Dominanz besteht. Die Durchführung der

Methode wurde mit realen und simulierten Datensätzen veranschaulicht.
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ABSTRACT

Abstract

Accurate estimation of genetic parameters is crucial for an efficient genetic

evaluation system. REML and Bayesian methods are commonly used for

the estimation of genetic parameters. In Bayesian approach, the idea is to

combine what is known about the parameter which is represented in terms of

a prior probability distribution together with the information coming from

the data, to obtain a posterior distribution of the parameter of interest. Here

a new fast adaptive Markov Chain Monte Carlo (MCMC) sampling algorithm

is proposed. It combines both hybrid Gibbs sampler and Metropolis-Hastings

(M-H) algorithm, for the estimation of genetic parameters in the linear mixed

models with several random effects. The new adaptive MCMC algorithm has

two steps: in step 1 the hybrid Gibbs sampler is used to learn an efficient

proposal covariance structure for the variance components, and in step 2 the

M-H algorithm is used to propose new values based on the learned covariance

structure from step 1. Normally the dependencies among the random effects

slow down the convergence of the MCMC chain. So in the second step of

the algorithm those random effects were marginalized from the likelihood to

improve the mixing of the chain. The new algorithm showed good mixing

properties and was about twice time faster than the hybrid Gibbs sampling

to produce posterior for variance components. Also the new algorithm was

able to detect different modes in the posterior distribution. Moreover, the

new proposed exponential prior for variance components was able to provide

estimated mode of the posterior dominance variance to be zero in case of no

dominance. The performance of the method was illustrated with field data

and simulated data sets.
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Introduction

1 Introduction

The main goal of plant breeding is to change the genetics of the plants

to develop new variates with desirable characteristics. To achieve these

objectives, plant breeders cross thousands of plants each year and selecting

the plants with desired characteristics are always difficult. The science of plant

breeding has been changing rapidly with the new development in molecular

biology techniques and statistical methods. Molecular biology techniques and

statistical methods can remarkably improve the selection process, and since

1920s, statistical methods were applied to analyze gene action and distinguish

heritable variation from variation caused by environment.

1.1 Phenotype and Genotype

Phenotype is the observable physical characteristic of a plant, which is

determined by both genotype and environmental influences. The genotype

of a plant is a function of effects of the genes and hence cannot be observed.

Many genes are involved in the inheritance and the environment often plays

a crucial role in the expression of the phenotype. Thus, the phenotypic value

Pijk of a plant k in a population depends on genotypic gi and environmental

ej effects:

Pijk = µ+ gi + ej + εijk (1)

where µ is the population mean and εijk residual effect.

1.1.1 Phenotypic variation

Phenotypic variation is the degree to which plant varies and it is the funda-

mental for evolution by natural selection. Both genetic and environmental

factors as well as interactions between them contribute to phenotypic variation

12



Introduction

in plants. The genetic variation can be further subdivided into three compo-

nents called additive, dominance and epistatic variances (Lynch and Walsh

1998). Additive genetic variance measures the genetic variation associated

with the average effects of substituting one allele for another at a given locus.

Dominance variance is due to the interaction between alleles in the same locus

whereas epistatic variance is due to the interaction between alleles in different

loci. The genetic properties of a population are often expressed in terms

of gene frequencies and genotype frequencies. Phenotypic variance within a

population is the result of genetic variance and environmental sources. So

the total phenotypic variance VP can be expressed as:

VP = VA + VD + VI + VE + Vε (2)

where VA is the additive genetic variance, VD is the dominance genetic variance,

VI is the epistatic variance, VE is the variance due to environmental effects and

Vε is the residual variance. The presence of non-additive effects complicates

many formulations in quantitative genetic, but unfortunately it cannot be

ignored. Ignoring the dominance effect can lead to biased estimates of additive

genetic variance, also the dominance effect is difficult to separate from common

environmental effects. The epistasis describes the non-additivity of effect

between the loci and is often difficult to compute. The additive variance,

which is the variance of breeding values can be expressed as:

VA = 2pq[a+ d(p− q)]2 (3)

Similarly the dominance variation can be expressed as:

VD = (2pqd)2 (4)

13
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The total genetic variance, VG arising from one locus can be expressed as:

VG = VA + VD + VI

= 2pq[a+ d(q − p)]2 + [2pqd]2 + ..... (5)

Here p is the dominant allele frequency and q is the recessive allele frequency in

the population. And a and d are the additive and domiance effect respectiely.

1.2 Breeding Value (BV)

Breeding value estimate the ability of a plant to produce superior offspring

based on the measurement of performance. Breeding values describe the ge-

netic merit of an individual and hence its ability to produce superior offspring.

So considerable effort has been devoted to develop new statistical methods

to estimate the breeding values. It is important to consider the performance

of the relatives while estimating the breeding values, because all offspring

receive a one-half of alleles from each parent. With the help of statistical

methods information from the performance of relatives can be considered

while predicting the breeding values. This is often done with the use of

additive and dominance relationship matrices calculated from the pedigree

information. The relationship matrices are commonly calculated based on

coefficient of coancestry: it is the probability, that two genes are identical by

descent in two individuals. Calculation of coefficient of coancestry is based

on several assumptions: 1) pedigree information of parents is accurate, 2) the

base population of ancestors are unrelated, 3) effects of selection, whereas

mutation and genetic drift are negligible. Piepho et al. (2008) has suggested

that the additive variance and BV are often biased without the complete

pedigree records. Panter and Allen (1995), De Souza et al. (2000), Pattee et

14
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al. (2001), Bauer et al. (2006), Crossa et al. (2006) and Oakey et al. (2006)

have shown that selection based on parental breeding value was superior to

normal selection strategies in self-pollinating crops. Hence the estimation of

breeding values can improve the selection among parental inbred lines of self

pollinating crops. The practical objective of quantitative genetics is to find

out how one can use the observations, made on the population as it stands to

predict the outcome of any particular breeding method. Best Linear Unbiased

Prediction (Henderson 1963, Henderson 1975) methods are commonly used

for the prediction of breeding values.

Defined in terms of average effects, the breeding value of an individual is

equal to the sum of average effects of the gene it carries. For a single locus

with two alleles, the breeding values of the genotypes are:

Genotype Breeding Value

A1A1 2α1 = 2qα

A1A2 α1 + α2 = (q − p)α

A2A2 2α2 = −2qα

where α is the average effect of gene substitution, α1 is the average effect

of the gene A1, α2 is the average effect of the gene A2, p and q are the gene

frequencies of A1 and A2, respectively.

Generally breeding values are calculated either based on the own perfor-

mance of a line or based on the breeding values of its parents. Most of the

traits are controlled by multiple gene and it is often difficult to get exact

measure of gene frequencies p and q with out the help of molecular data.

So it is more practical to use the performance of the relatives to estimate

the breeding values, because all offspring receive a one-half of alleles from

each parent. In a random mating population the additive genetic variance is

equivalent to the variance of breeding values of individuals (Lynch and Walsh

15
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1998). Wall et al. 2005 showed that nonadditive effect play a crucial role

on the ranking of breeding values. So it is important to consider dominance

effects while estimating the breeding values.

1.3 Inbreeding

Inbreeding is the mating of individuals that are closely related through

common ancestry. For breeders, it is a useful way of fixing traits in a

breeding population. However, inbreeding holds potential problems, the gene-

pool caused by continued inbreeding leads the deleterious genes to become

widespread. Inbreeding will lead to the reduction of the mean phenotypic value

of a population, called inbreeding depression (Falconer 1989). The response

of a population to inbreeding depends primarily on the level of dominance

genetic variance. In a study carried out by De Boer and Hoeschele (1993)

it was shown that the presence of inbreeding induces nonzero covariances

between additive and dominance effects. However, (Bauer et al. 2006; Oakey

et al. 2006; Bauer and Léon 2008) predicted the breeding values (assuming no

dominance) for the self-pollinating crops by accounting for inbreeding among

the lines. When nonzero covariance exists due to inbreeding, computational

procedures for estimation of the variance components are further complicated.

However in the current study I considered datasets with inbreeding and

without inbreeding.

1.4 Heritability

Quantitative traits are often polygenic (Lynch and Walsh 1998) and they are

significantly influenced by environmental effects. The accurate estimation

of allele frequencies in a population is often difficult, so it is easy to express

genetic influences in terms of heritability. Hence the accurate estimation of

16
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heritability plays a crucial role in selection process. Heritability measures

the relative influence of environment on the development of a specific quan-

titative trait. Estimation of heritability (proportion of phenotypic variance

attributable to genetic factors) and breeding values are of primary interest,

in order to plan an efficient breeding program for the trait of interest. Heri-

tability is often considered as the first step in unraveling the genetic basis

of a trait. Heritability (in the broad sense) is often expressed as the ratio of

genetic variance to phenotypic variance:

h2 =
VG
VP

(6)

The ratio VA/VP is called the heritability in the narrow sense and it expresses

the extend to which phenotypes are determined by the genes transmitted

from the parents. Accurate heritability estimates are important to identify

the genetic variation present in the population. Hsu et al. (2005) have shown

that pedigree information of reasonable size is one of the important factors

affecting the heritability estimates.

1.5 Statistical Modeling

Statistical inference is drawing conclusion about unknown quantities from

the observed data. To make inference it is necessary to fit the data with

help of a statistical model. A statistical model is a set of mathematical

equations which describe the behavior of a system under study. The model

can depend on a set of model parameters and the inference of the model

parameters, we are interested is called parameter estimation. There are two

set of variables associated with a model, response and explanatory variables.

Response variables are the outcome of a study and the response variable

17
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are used for the prediction. Response variables are often called dependent

variables or predicted variables. Explanatory variables are any variables that

explains the response variables and often called independent variables or

predictor variables. Explanatory variables can be continuous or categorical,

a categorical variables are factors with two or more levels. The objective of

statistical modeling is to fit the data to the model and the best model is the

model that produces the least unexplained variation (the minimal residual

deviance), subjected to the constraint that all the parameters of the model

should be statistical significant. The structure of the model is:

response variable ∼ explanatory variable(s)

Ideally one should include all relevant information in a statistical model.

Selecting the important explanatory variable is always demanding in practice.

In Bayesian inference statistical conclusions about the unknown quantities

are made in terms of probability statements. And the probability statements

are conditional on the observed data. In Bayesian concept a statistical

model is usually represented as a pair (D,P), where D is the set of possible

observations(data) and P the set of possible probability distributions on D.

1.6 Restricted Maximum Likelihood (REML) method

The Maximum Likelihood (ML) estimator of the variance components in a

linear model can be biased. Restricted maximum likelihood (REML) accounts

this problem by using the likelihood of a set of residual and is generally

considered superior to ML. Patterson and Thompson (1971) introduced

restricted maximum likelihood estimation (REML) as a method of estimating

variance components for unbalanced incomplete block designs. The REML

18
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approach keeps the estimator within the parameter space (0,+∞), and

therefore, REML is a biased procedure. REML is often preferred to maximum

likelihood estimation because it takes into account the loss of degrees of

freedom in estimating the mean and gives unbiased estimates for the variance

parameters. REML estimates are often less biased than the Maximum

Likelihood Estimates. The drawback of REML is that the distribution

properties of the estimators are not known, except asymptotically.

1.7 Bayesian Methods

Genetic data, that produce the observed data are often the results of com-

plex and stochastic processes, therefore they cannot be studied without the

use of probabilistic models. Bayesian inference, based on probability is a

convenient way to deal with these sorts of problem. The main difficulty

with likelihood methods are optimization problems such as multiple modes,

solution of likelihood equations etc, whereas integration problem is more

often associate with Bayesian approach. ML methods can be very sensitive

to small data perturbations if the model includes two or more explanatory

variables, that are hard to disentangle from each other. In Bayesian methods

the posterior distribution summarizes uncertainty around the point estimate

in a probabilistic form. In Bayesian approach, the idea is to combine what

is known about the parameter (this knowledge is represented in terms of a

prior probability distribution) with the information coming from the data

(likelihood function), to obtain a posterior distribution of the parameter of

interest. Bayes theorem, which provide the basis for the Bayesian inference is:

P (θ|D) =
P (D|θ)P (θ)

P (D)
(7)
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where P (θ) is the prior probability of the parameter θ, P (D|θ) is the likelihood

of θ, and P (θ|D) is the posterior of θ given D.

Steps in the Bayesian approach include:

1. Specify distribution for each random variable in the model.

2. Combine the distribution into the joint posterior distributions.

3. Find the conditional marginal distributions from the joint posterior

distribution.

4. Implement Markov Chain Monte Carlo(MCMC) method to maximize

the joint posterior distribution.

Wang et al. (1993) and Sorensen and Gianola (2002) applied Bayesian methods

for the prediction of breeding values. In Bayesian methods the standard com-

putational approach is to use Markov chain Monte Carlo (MCMC) methods

to draw samples from posterior distributions. Gibbs sampler and Metropo-

lis–Hastings algorithm are the two commonly used Markov chain Monte Carlo

(MCMC) methods. M-H algorithm is mainly used for models that are not con-

ditionally conjugate. Gibbs sampler is a special case of Metropolis-Hastings

sampling, wherein the random value is always accepted. In Gibbs sampling,

the updater samples from the fully conditional posterior distribution, which

is proportional to the likelihood function and the prior distribution through

Bayes theorem. The Gibbs sampler is very widely applicable to broad class of

Bayesian problems, where the direct simulation from the posterior distribution

is not possible.
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1.8 Prior Distributions

In the Bayesian framework there is no distinction between fixed and random

effects, and fixed effect is a random variable for which the prior knowledge is

vague. The choice of the prior is often considered as one of the important step

in Bayesian analysis. One can use informative and non informative priors

based on the amount of information available. If the data is very informative

about the quantity being estimated, then an uninformative prior is an easy

choice. But if the data are poor, then the posterior will be heavily influenced

by the prior. In Bayesian analysis the prior information is combined with the

information from the data to generate the posterior distribution.

1.8.1 Non informative priors

The application of Bayesian methodology often uses non informative priors.

Non informative priors are used when there is little or no prior information is

available. Uniform (Laplace, 1812) prior is one of the most widely used non

informative priors. The inverse-gamma (ε, ε) is also used as a non informative

prior in Bayesian analysis. But the resulting inference will be sensitive to ε,

in case where σ is estimated to be near zero (Gelman, 2006).

1.8.2 Informative priors

An alternative approach is to use an informative prior. The selection of

informative priors are based on the careful examination of expert knowledge.

1.9 Markov Chain

A Markov chain is a collection of random variables Xi with the property that

the next state depends only on the current state. It is expected that the
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Markov chain will converge to some equilibrium distribution, independently

of the initial distribution after a number of transitions. This is one of most

important property of a Markov chain. The initial probability distribution of

the states of the chain and the matrix of transition probabilities are the two

components of a Markov chain. These two components together guide the

evolution of the Markov chain. The Markov property states that the future

state of the system, given its current state depends only on the current state

of the system. Thus:

P (Xn+1|X1, X2, .., Xn) = P (Xn+1|Xn)

1.10 Markov Chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for

sampling from probability distributions based on constructing a Markov chain.

MCMC algorithms are based on Markov chains, which evolves in discrete

time. MCMC methods have become an important computational tool in

Bayesian statistics, because it allows samples to be drawn from complex

posterior distribution. With MCMC one can draw simulations from a wide

range of distributions. The general MCMC algorithm is as follows:

1. Set initial value x1 and set counter i=1.

2. Generate next value, conditionally on the previous: xi+1 ∼ f(x|xi), set

counter i = i+ 1.

3. Go to step 2, until required sample size is generated.

The Markov chains used in MCMC methods are homogeneous, the conditional

distribution of x(i+1)/x(i) does not depend on the index i. Convergence is

22



Introduction

the one of the important property associated with a MCMC sampler and it

measures whether the chain reached its stationary distributions. Generally the

initial 1000 to 5000 (this is called the burn-in period) elements are discarded

and then one of the various convergence tests are used to assess whether

stationary distribution has been reached. There are many different versions

of MCMC algorithms such as, slice sampling, Gibbs sampling, Metropolis

algorithm and Metropolis-Hastings algorithm. Metropolis-Hastings algorithm

and Gibbs sampler are the commonly used MCMC methods. Generally a

poor starting value can greatly increase the burn-in period.

1.11 Mixing

Mixing is another important property of MCMC, chain is said to be poorly

mixing if it stays in small regions of the parameter space for long period

of time. Mixing refers to the dependence of Xi and Xi+t. If the chain has

good mixing then the dependence between Xi and Xi+t decays rapidly as a

function of t. If the target distribution is multi-modal then poor mixing can

arise and the value can traps near one of the modes.

1.12 Identifiability Problem

General Markov chain Monte Carlo (MCMC) methods are facing a wide range

of practical and theoretical issues and parameter identifiability is the one of

the main problem faced by MCMC. In linear mixed models the random effects

are generally susceptible to identifiability problem. Also identifiability occurs

when the posterior have multiple modes and the conventional MCMC samplers

will fail to movie between different modes in the posterior. When the random

effects or variance components fitted to the model have multiple solutions

among their parameter spaces given the observed data, such parameters
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are said to be unidentifiable. Recently Wall et al. (2005) has shown that

non-additive random genetic effects (epistatic interaction and dominance

deviation) are important in the estimation of breeding values. Unfortunately,

in practice identifiability problems complicate the estimation of non-additive

random genetic effects (Misztal 1997; Waldmann et al. 2008).

Since the 1980’s, the use of Markov Chain Monte Carlo (MCMC) methods

have revolutionized the Bayesian analysis of complex statistical models (Robert

and Casella 2004). REML and Bayesian methods are widely used in animal

breeding programs. Bayesian analysis via Gibbs sampling has some advantages

over REML methods. Gibbs sampling can provided the whole posterior

distribution for the variance components whereas REML provides the point

estimates. But Bayesian methods are computationally demanding and still

much focus is given to improve the total computational time. Recently (Bauer

et al 2009; Waldmann et al. 2008) applied Bayesian Gibbs sampling for

quantitative genetics research studies in plants and the latter developed a fast

hybrid Gibbs sampler, which accounted for additive and dominance variances

in the mixed model. Still accounting inbreeding while estimating breeding

values is one of the major concern in self-pollinating crops. Inbreeding

induces non-zero covariance between the additive and dominance effects and

which complicates the calculation. Also much focus is given to improving

the efficiency and convergence of MCMC samplers. Moreover parameter

identifiability due to multi-modality is another major problem arises when

the non-additive random genetic effects are included in the model. The

efficiency of a MCMC algorithm depends critically on the transition kernel

of the Markov chain (Hastings 1970; Roberts and Rosenthal 2001), but the

choice of an efficient kernel, which produces a rapidly mixing chain, is often

difficult.
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1.13 Objectives

Accurate and fast estimation of genetic parameters underlying quantitative

traits using mixed linear models with additive and dominance effects is of

great importance in both natural and breeding populations. REML and

Bayesian methods are commonly used for the estimation of the genetic pa-

rameters. However Bayesian methods using MCMC algorithms are usually

needs computationally demanding sampling techniques so their use is limited.

Moreover conventional MCMC algorithms may suffer from poor mixing and

slow convergence rate. In addition poor parameter identifiability is another

main problem faced by MCMC methods due to the existence of multiple

modes in linear mixed models. So adaptive MCMC algorithms have been

proposed which can use the previous history of the chain to “learn” the pro-

posal distribution parameters, which are efficient for exploring the posterior

distribution of the model using the data at hand. The adaptive MCMC algo-

rithm provides better convergence rate and mixing properties compared to the

conventional MCMC algorithms. Also the learned the proposal distribution

parameters will help the algorithm to find different modes in the posterior

distribution. The main objectives of the study are

1. To know the impact of adaptation on estimation accuracy of the genetic

parameters.

2. To determine the effect of adaptation process on total computational

time.

3. To identify how different prior distributions affect the mixing of the

MCMC chains.

4. Find the impact of adaptation on the mixing and convergence rate of

the MCMC chains.
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5. Address the parameter identifiability problem.
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2 Models and Methods

Genetic covariances between individuals are an important factor for the

prediction of breeding values. These genetic covariances can be calculated

from the pedigree informations. The genetic covariance is composed of three

components: the additive genetic variance, the dominance variance and the

epistatic variance. In the current study I considered additive and dominance

relationship matrices for the calculation of breeding values. The additive

and dominance relationship matrices were used in the linear mixed model to

estimate the breeding values and the variance components. Algorithms to

calculate these matrices are explained below.

2.1 Additive Relationship Matrix

The additive relationship matrix, which describes the genetic relationship

between individuals, can be calculated from the pedigree informations. Hen-

derson (1976) developed a fast recursive method for the calculation of additive

relationship matrix A, from the pedigree information. The matrix is symmet-

ric and its diagonal elements (aii) is equal to 1+Fi where Fi is the inbreeding

coefficient of the ith line. Let the pedigree be coded from 1 to n and ordered

in a way that parents precede their progenies. Then the following algorithm

is used to compute A. Here aij is the element of the matrix A in the ith row

and jth column. If both parents sir (s) and dam (d) of a line i are known

aij = aji = 0.5(ajs + ajd) where j = 1 to (i− 1)

aii = 1 + 0.5(asd)

If only one parent(s) is known and unrelated

aij = aji = 0.5(ajs) where j = 1 to (i− 1)

aii = 1
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If both parents are unknown and unrelated

aij = aji = 0 where j = 1 to (i− 1)

aii = 1

2.2 Dominance Relationship Matrix

The dominance genetic effect results from the interaction of alleles at a

locus. If two animals have the same set of parents or grandparents, then it

is possible that they posses the pair of alleles in common. The dominance

genetic relationship between an individual x with parents s and d and an

individual y with parents f and m can be calculated as follows:

dxy = 0.25(usfudm + usmudf )

where uij is the additive genetic relationship between i and j. Thus the domi-

nance relationship matrix (D), which describes the dominance relationship

among individuals can be calculated from the additive relationship matrix.

2.3 The Mixed Linear Model

Association models and Mixed models are the two proposed methods for

the estimation of genomic breeding values. In the current research genetic

parameters were estimated using mixed models. Linear mixed models provide

a powerful mean of estimating genetic parameters. The linear mixed model

assumes that the relationship between the mean of the dependent variable

and the fixed and random effects can be modeled as a linear function. The

mixed linear model can include both fixed and random effects. Henderson
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(1985a,b) has shown that linear mixed models can be used for the estimation

of additive and dominance genetic variances. Consider the mixed linear model

(Henderson 1985):

y = Xβ + Z1a + Z2d + e, (8)

where y is an n×1 vector of phenotypic observations, β is a k×1 vector of fixed

(environmental) effects, a is a q × 1 vector of random additive genetic effects,

d is a q× 1 vector of random dominance genetic effects, e is a n× 1 vector of

error terms, which are independently normally distributed with mean zero and

variance σ2
e . Moreover, X,Z1 and Z2 are known incidence matrices, where X

associates β to the phenotypic observations y. For the simulated datasets Z1

and Z2 associates genetic effects a and d respectively to the observation vector

y. Whereas for the field data Z1 and Z2 associates random genetic effects a

and genotype-by-environment interaction (GxE) to y. The additive genetic

relationship matrix A (assumed to be nonsingular), which describes additive

genetic relationships among lines, was calculated using the available pedigree

information. And dominance relationship matrix D (also assumed to be

nonsingular) is the dominance matrix , which describes dominance variances

and covariance among lines. Here the total phenotypic variation coming from

the observation vector y can be explained by the summation of variation due

to the additive random effects (a), random dominance effects (d) and the

error variance (e). In a Bayesian framework, all the unknown parameters

are sampled from probability distributions using sampling algorithms. In the

current study Gibbs sampler was used to sample the random parameters like

additive and dominance effects from their corresponding distributions. In the

new approach Gibbs sampler was used in the first step called the learning

phase and in the second step, called the adapted phase a metropolis-Hastings

(MH) algorithm was used to estimated the variance components. These two
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algorithms combined to from the adaptive MCMC method. The hybrid Gibbs

sampler and the normal M-H algorithm are explained below.

2.4 Gibbs sampling

Gibbs Sampler (Casella and George, 1992) is a Markov chain Monte Carlo

(MCMC) method for generating draws from joint posterior by using draws

of the conditional posteriors, and is a special case of Metropolis-Hastings

sampling (Chib and Greenberg, 1995). The Gibbs sampling algorithm is

one of the commonly used Markov chain Monte Carlo algorithms. Gibbs

sampler is useful when the direct simulation from the posterior distribution

is not possible. Gibbs sampling is also known as alternating conditional

sampling. In the current study a hybrid Gibbs sampler was used to sample

the random effects. The hybrid Gibbs sampler is a combination of both

single-site Gibbs sampling algorithm (eg, Sorensen and Gianola 2002) and

blocked Gibbs sampling algorithm (Garcia-Cortes and Sorensen 1996). The

blocked Gibbs sampling has a faster convergence rate and better mixing when

the parameters in the data are correlated (Waldmann et al. 2008). But in

blocked Gibbs sampling the inverse of the coefficient matrix C is needed,

which is computationally challenging. The hybrid Gibbs sampler which uses

block updates every 50th iteration is much faster than plain blocked Gibbs

sampling and it holds better mixing properties than the single-site Gibbs

sampler. In Bayesian analysis, it is needed to assign prior distributions for

the hyperparameters. In the current study Gamma prior distribution was

assigned for the hyperparameters with parameters ki and λi and mean ki/λi.

It was decided to use ki = 1 and λi = 0.001 (i.e., the exponential distribution

with mean 1/λi) in order to obtain flat priors.

The algorithm of hybrid Gibbs sampling as follows:
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1. Initialize ψa, ψd and ψe with some reasonable positive values. Set

k∗a = ka + q/2, k∗d = kd + q/2, and k∗e = ke + n/2. Here q and n are the

number of lines and the number of records respectively.

2. Single-site Gibbs sampling:

(a) Sample θi from N(θ̂, 1/(Ci,iψe)), where θ̂=(W′y − Ci,−iθ−i)/Ci,i.

Here θ−i is θ without its ith component, Ci,−i is the ith row of C

without its ith component, and finally Ci,i is ith diagonal element of

C.

(b) Calculate λ∗a = λa + (aTA−1a)/2, λ∗d = λd + (dTD−1d)/2, and

λ∗e = λe + 1/2||y −Xβ − Z1a− Z2d||2.

(c) Sample the precision parameters ψi from Gamma(k∗i , λ
∗
i ) for i =

a, d, e.

(d) Calculate αa = ψa/ψe, αd = ψd/ψe and update the coefficient

matrix C.

3. Block Gibbs sampling (every 50th iteration):

(a) Generate a∗ from MVN(0,A/ψa) and d∗ from MVN(0,D/ψa).

(b) Generate z∗ from MVN(Z1a
∗ + Z2d

∗, I/ψe).

(c) Calculate W′(y − z∗).

(d) Calculate θ as [0′, a∗′,d∗′]′ + C−1W′(y−z∗), where 0 is zero vector

of the size of the fixed effects vector β.

(e) Calculate λ∗a = λa + (aTA−1a)/2, λ∗d = λd + (dTD−1d)/2, and

λ∗e = λe + 1/2||y −Xβ − Z1a− Z2d||2.

(f) Sample the precision parameters ψi from Gamma(k∗i , λ
∗
i ), for i =

a, d, e.
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(g) Calculate αa = ψa/ψe, αd = ψd/ψe and update the coefficient

matrix C.

(h) go to 2a, repeat the steps until the MCMC chain is converged.

2.5 The Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm is commonly used for MCMC

simulation. M-H algorithm requires a proposal generating distribution and

the performance is greatly depend on the covariance structure of the kernel.

An adaptive M-H algorithm can find the optimal covariance structure for the

proposal distribution from the previous history of the MCMC chain. The

basic idea depends on the fact that, instead of computing the values for the

target distribution p(x), only needed to compute the ratio of the target at

two distinct parameter values p(x)/p(x∗), the integral in the Bayes formula

cancels out. Unlike Gibbs sampling M-H weighs all draws equally but not all

the draws are accepted (this is like accept-reject method).

Let xt be the current state then the M-H algorithm generates a Markov

chain in which each state xt+1 is depends only on the previous state xt. The

algorithm uses a proposal density q(x′; xt), which depends on the current

state xt, to generate a new proposed sample x′. This proposal is accepted as

the next value (xt+1 = x′), if α drawn from U(0,1) satisfies

α < {p(x′)q(xt; x′)

p(xt)q(x′; xt)
,1} (9)

If the proposal is accepted then xt+1 = x′, otherwise the current value is

retained. Choosing a good proposal distribution is very important, otherwise

most of the proposed values will be rejected. In the current study a Gaus-

sian distribution centered on the current state xt was used as the proposal
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distribution.

2.6 Adaptive MCMC

Recent theoretical developments (Haario et al. 2001; Roberts and Rosenthal

2007) have renewed the interest of adaptive MCMC methods in research

studies. The adaptive MCMC methods can be used to determine suitable and

efficient ”proposal distribution” for M-H sampler by looking the data. These

methods usually differ in how the learning phase of the MCMC sample is

utilized in the final posterior estimates. Here simply omit (through away) part

of the MCMC sample used to learn the proposal distribution (i.e. learning

phase).

Convergence of the general Bayesian Gibbs sampling algorithms, which use

single-site updates for the variance components, can be slow due to posterior

dependencies. More efficient sampler is obtained by updating all variance

components jointly and removing dependencies within the sample, thus the

random walk M-H algorithm was considered. In the current study a fast

adaptive MCMC algorithm was developed, combining both hybrid Gibbs

sampling and M-H algorithm, for the estimation of variance components. In

the new approach the adaptive MCMC runs in two stages. First, run the

algorithm to obtain empiric estimate for the posterior covariance structure of

log transformed variance components (this part of the MCMC is called learning

period). In the second phase of the algorithm, use this covariance structure

to formulate an effective proposal distribution for a Metropolis–Hastings

algorithm, which uses a likelihood function where the random effects have

been integrated out. In the learning phase of the algorithm the hybrid Gibbs

sampler was used to sample random (additive genetic and dominance) effects.
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2.6.1 Marginalization

The likelihood function is function of all parameters of a statistical model,

which is used to fit the observational data. If someone is interested in a partic-

ular parameter, it is possible to average over the effect of nuisance parameters

from the model, this process is known as marginalization. This process

will help to remove the correlations between parameters. The dependencies

among breeding values and dominance effects slow down the convergence of

the MCMC chain. So the effect of breeding values and dominance effects were

marginalized away before computing the posterior probability in the adapted

phase. Here the adaptive MCMC was divided into two classes: first class

where the effect of breeding values and dominance effects were marginalized

away before computing the posterior probability in the adapted phase, and

second class those effects were included to calculate the posterior probability

in the adapted phase.

In the current study, two different hierarchical models was used, former

to be used in the learning phase and the latter in the adapted phase of the

estimation algorithm. If all the priors are chosen to be the same, then these

two hierarchical models are identical except that most parameters have been

integrated out analytically from the latter.

2.6.2 Hierarchical model 1

Let the precision parameters ψa, ψd and ψe be the inverses of the variances

σ2
a, σ

2
d and σ2

e respectively. Here σ2
a, σ

2
d and σ2

e are the additive, dominance and

error variances respectively. Then by model (8), the phenotypic observation

for a given trait is modeled as a linear combination of explanatory variables.
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For given β, a, d, and ψe, vector y follows a multivariate normal distribution

y|β, a,d, ψe ∼ MVN(Xβ + Z1a + Z2d, I/ψe), (10)

where 1/ψe is the residual variance of the model. Let θ = (β, a,d) be

the unknown location parameters and ψ = (ψa, ψd, ψe) be the precision

parameters. By Bayes theorem, the joint posterior density of unknown

parameters is proportional to

p(θ,ψ|y) ∝ p(ψ)p(θ|ψ)p(y|θ,ψ), (11)

where p(ψ) = p(ψa)p(ψd)p(ψe) and p(θ|ψ) = p(β)p(a|ψa)p(d|ψd) are the

prior distributions and p(y|θ,ψ) is the likelihood from (10). For the Bayesian

analysis, one must assign a prior distribution for the unknown model parame-

ters. So β was assigned an improper uniform prior distribution.

p(β) ∝ constant. (12)

Conditionally on the precision parameters, the genetic effects were assigned

multivariate normal prior distributions with zero mean vector 0 (of size q),

a|ψa ∼ MVN(0,A/ψa), d|ψd ∼ MVN(0,D/ψd) (13)

Before assigning a prior distribution for the precision parameters, the pheno-

typic observation vector y was standardized in order to use the same prior

for different data sets (which may originally have very different phenotypic

scales). After the standardization, the precision parameters ψa, ψd and ψe

were assumed to follow a Gamma prior distribution with parameters ki and
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λi and mean ki/λi,

ψi ∼ Gamma(ki, λi), i = a, d, e (14)

In the current study ki = 1 and λi = 0.001 (i.e., the exponential distribution

with mean 1/λi) was used, in order to obtain flat priors. This choice allows the

variance components to be shrunken very nearly to zero, if this is warranted

by the data. This follows since the prior (14) implies an inverse gamma prior

with parameters (ki, λi) for the variance component σ2
i . The inverse gamma

density raises from value zero to its maximum at the mode λi/(ki + 1) and

then decays slowly. Shrinkage-type priors have been used before, e.g., in

variable selection (O’Hara and Sillanpää 2009) and in haplotype estimation

(Gasbarra et al. 2011) as well as in penalized likelihood estimation of genetic

covariance matrices (Meyer and Kirkpatrick 2010).

2.6.3 Hierarchical model 2:

In the adapted phase of the algorithm a model was used, where all the

unknown location parameters θ are integrated out from model (Eq. 8). The

joint posterior density of parameters ψ is

p(ψ|y) ∝ p(ψ)p(y|ψ). (15)

To mimic the improper uniform prior (12), the fixed effects β were assigned

a normal prior distribution with zero mean vector 0 and large covariance

matrix Bσ2
β, where σ2

β=106,

β ∼ MVN(0,Bσ2
β).
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Here B is the unscaled prior covariance matrix between fixed effects. The

genetic effects a and d were assigned the multivariate normal priors (13),

and variance components the Gamma priors (14). After these choices it is a

simple matter to integrate out the location parameters from the model (cf.

pp. 313–314 in Sorensen and Gianola, 2002), namely

y|ψ ∼ MVN(0,Σ), (16)

where Σ = XBX′σ2
β + Z1AZ′1/ψa + Z2DZ′2/ψd + I/ψe.

2.6.4 Estimation in the learning phase:

To implement the Gibbs sampler, one needs the fully conditional posterior

distributions of all unknown parameters (θ and ψ) of hierarchical model 1.

These can be found, e.g., from Waldmann et al. (2008). To update θ, samples

can be drawn either element-wise or block-wise from the fully conditional

posterior distribution

θ|ψ,y ∼ MVN(θ̂,C−1/ψe), (17)

where θ̂ is the solution to the linear system Cθ = W′y. Here

C = W′W + V, W = [X,Z1,Z2], V =


0 0 0

0 A−1αa 0

0 0 D−1αd

 (18)

with αa = ψa/ψe, αd = ψd/ψe. The precision parameters are sampled from

their fully conditional posterior distributions,

ψi|θ,y ∼ Gamma(k∗i , λ
∗
i ), i = a, d, e
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where k∗a = ka + q/2, λ∗a = λa + (aTA−1a)/2, k∗d = kd + q/2, λ∗d = λd +

(dTD−1d)/2, k∗e = ke + n/2, and λ∗e = λe + 1/2||y − Xβ − Z1a − Z2d||2.

During the learning phase of the algorithm the hybrid Gibbs sampler with

block update every 50th iteration was used to sample the random additive and

dominance effects. Section 1.9 describes the details of the sampling algorithm.

2.6.5 Estimation in the adapted phase (class 1)

The history of the chain during the learning phase was used, in order to form

the proposal distribution for the parameters of hierarchical model 2. In the

second, adapted phase of the algorithm, a M-H algorithm was used to update

log-variance components block-wise using putative samples generated from

the learned proposal distribution. M-H algorithm uses random-walk proposals:

the proposed parameter vector is generated by adding to the current parameter

vector an increment from a multivariate normal distribution with zero mean

and covariance matrix Sp. The selection of the proposal covariance matrix

was based on the theoretical results of Roberts et al. (1997) and Roberts and

Rosenthal (2001). These authors show that if the posterior distribution is

approximately multivariate normal with covariance matrix S, then the optimal

choice for the proposal covariance matrix Sp is approximately (2.38)2/dS,

where d is the number of unknown parameters in the posterior distribution.

In order to better be able to use this result, the new algorithm works on

the logarithmic scale, i.e., the vector τ = (τa, τd, τe) was used as the new

parameter vector, where the τ ’s are the logarithms of the variance components,

τi = log(σ2
i ) = − log(ψi), i = a, d, e. This reparametrization eliminates the

positivity constraints which are present for the variance components or their

inverses. At the same time, it makes the posterior distribution resemble more

closely a multivariate normal distribution. Since the posterior covariance
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matrix S of vector τ is unknown, it was estimated with the sample covariance

matrix Ŝ, which is calculated from the log-transformed variance components

simulated during the learning phase.

After the proposed parameter vector τ ∗ has been generated by adding

a noise vector to the current parameter vector τ , the proposed τ ∗ is either

accepted or rejected as the new state of the Markov chain based on the value

of the Metropolis–Hastings acceptance ratio r, which is now given by

r =
p(τ ∗)

p(τ )

p(y|τ ∗)
p(y|τ )

(19)

Here the likelihood ratio can be evaluated based on Eq. (16), after the log-

transformed variance components τ = (τa, τd, τe) and τ ∗ = (τ ∗a , τ
∗
d , τ

∗
e ) have

been transformed to precision parameters, using the formulas

ψi = e−τi , ψ∗i = e−τ
∗
i , i = a, d, e.

For τ , the likelihood is

p(y|τ ) = (2π)−n/2
1√

det(Σ)
exp{−1

2
y′Σ−1y}, (20)

where Σ is the covariance matrix of y conditionally on the current values of

the parameters,

Σ = XBX′σ2
β + Z1AZ′1/ψa + Z2DZ′2/ψd + I/ψe.

For τ ∗, the likelihood p(y|τ ∗) is obtained from a similar formula where Σ is

replaced by the covariance matrix of y conditionally on the proposed values
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of the parameters,

Σ∗ = XBX′σ2
β + Z1AZ′1/ψ

∗
a + Z2DZ′2/ψ

∗
d + I/ψ∗e ,

In order to evaluate the prior ratio p(τ ∗)/p(τ ) in Eq. (19), it is necessary to

take into account the prior formulated for the vector of precision parameters

ψ. Using the change-of-variables formula for probability densities, the prior

ratio can be calculated as

p(τ ∗)

p(τ )
=
p(ψ∗)

p(ψ)

|J∗|
|J |

. (21)

Here p(ψ) = p(ψa|ka, λa)p(ψd|kd, λd)p(ψe|ke, λe) is the product of the three

gamma densities (14), and similarly p(ψ∗) is the product of the same gamma

densities evaluated at the proposed precision parameters. Further, J =

− exp(−τa− τd− τe) is the Jacobian (determinant) arising from expressing ψ

in terms of τ , and J∗ = − exp(−τ ∗a − τ ∗d − τ ∗e ) is the Jacobian from expressing

ψ∗ in terms of τ ∗. In the actual M–H algorithm, first calculated the logarithm

of the M–H ratio r, and then calculated the logarithm of the ratio of the

absolute Jacobians,

log
|J∗|
|J |

= −(τ ∗a − τa + τ ∗d − τd + τ ∗e − τe). (22)

The sampling algorithm during the adapted phase is as follows. First

estimated the posterior covariance matrix S of the log-transformed variance

components from the output of the learning phase, and calculate the proposal

covariance matrix as Sp = (2.38)2Ŝ/d. Then iterated the following steps.

1. Let τ be the current values in logarithmic scale. Generate new values

τ ∗ = τ + w, where w is simulated from MVN(0,Sp). Transform τ and
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τ ∗ to precision parameter vectors ψ and ψ∗.

2. Calculate the logarithm of the M–H acceptance ratio log(r) using Equa-

tions (19)–(22).

3. Accept the proposed value τ ∗, if a random number drawn from the

uniform distribution over [0, 1] is less than r. If the proposal is accepted

then the proposed parameter vector is taken as the current vector τ=τ ∗,

otherwise the current value is retained.

Since the breeding values and the dominance effects have been integrated

out from the likelihood, this sampling algorithm reduces the problems of the

Gibbs sampler which arise due to posterior dependences between the random

effects and the variance components.

The whole adaptive algorithm consisting of the learning phase and the

adapted phase is described more fully in section 2.9. It has been implemented

in the Matlab (2007) environment where most of the analyses have been

performed.

When the target distribution is multimodal, a random walk may rarely

move between modes and this will lead to poor parameter identifiability.

Adaptive MCMC methods are useful for such multimodal problems, where

the adaptive MCMC methods adapt the transition kernel of the chain, using

information obtained from previous iterations. Such adaptation enables the

movement of the chain between different modes.

2.7 Adaptive MCMC (Class 2)

Normally posterior dependences between the random effects will affect the

convergence rate and mixing properties of the MCMC chain. In order to

check the effect of posterior dependences on the convergence rate and mixing
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properties of the chain, a model was tested without integrating out those

random effects in the adapted phase(class 2) of the algorithm.

The algorithm(adaptive MCMC, class 2) for the proposed sampling is as

follows.

1. Calculate the proposal covariance matrix S from the learned MCMC

samples in logarithmic scale.

2. Let τ be the current values in logarithmic scale. Generate new values

τ ∗ = τ + w, where w is simulated from MVN(0,Sp) where Sp =

(2.38)2Ŝ/d.

3. Calculate the MH acceptance ratio r as the product of Gamma densities

for the proposed and current values, r =
∏

i=a,d,e

Gamma(ψ∗
i |ki,λi)

Gamma(ψi|ki,λi) , where

ψi = e−2τi , ψ∗i = e−2τ
∗
i , i=a,d,e.

4. Accept the proposed value ψ∗ with probability min (1, r∗), where

r = r∗ + J and J is Jacobian term. If the proposal is accepted then

τ=τ ∗, otherwise the current value is retained.

2.8 Calculation of the likelihood ratio

Calculating the determinants of high-dimensional matrices is challenging, since

numerical problems arise as the dimension increases. In order to calculate the

likelihood ratio p(y|ψ∗)/p(y|ψ), it was needed to compute the determinants

of the covariance matrices of y conditionally on the proposed and current

point. These matrices were scaled to mitigate numerical problems. Scaling

was based on the identity det(sΣ) = sn det(Σ) (valid whenever s is a scalar

and Σ is an n×n matrix) and the identity (sΣ)−1 = Σ−1/s (valid whenever s

is a scalar and Σ is an invertible matrix). Then set s = 1/ψe, s
∗ = 1/ψ∗e as the
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scaling factors for the current (Σ) and proposed (Σ∗) values, respectively. Let

ψ∗ = (ψ∗a, ψ
∗
d, ψ

∗
e) be the proposed values of (inverses of) variance components

and ψ = (ψa, ψd, ψe) be their current values. The logarithm of the likelihood

ratio was calculated as

log
p(y|ψ∗)
p(y|ψ)

= −n
2

(log(s∗)− log(s))− 1

2
(log(det(Σ∗/s∗))− log(det(Σ/s)))

− 1

2s∗
(y′(Σ∗/s∗)−1y) +

1

2s
(y′(Σ/s)−1y).

(23)

Here the determinants and quadratic forms were calculated using Cholesky

decomposition. If M = Σ/s is a n × n positively definite symmetric ma-

trix, then its Cholesky decomposition is M = LL′, where L is the lower

triangular Cholesky factor. The determinant is calculated as log(det(M)) =

2
∑n

i log(Li,i), where Li,i is the ith diagonal element of L. The quadratic

form y′(Σ/s)−1y = y′M−1y is calculated using the identity y′M−1y =

(L−1y)′(L−1y), where L−1y is calculated by solving z from the equation

Lz = y.

2.9 Adaptive MCMC algorithm

The complete adaptive MCMC algorithm is as follows:

1. Initialize ψa, ψd and ψe with some reasonable positive values. Set

k∗a = ka + q/2, k∗d = kd + q/2, and k∗e = ke + n/2.

2. Single-site Gibbs sampling:

(a) Sample θi from N(θ̂, 1/(Ci,iψe)), where θ̂=(W′y − Ci,−iθ−i)/Ci,i.

Here θ−i is θ without its ith component, Ci,−i is the ith row of C
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without its ith component, and finally Ci,i is ith diagonal element of

C.

(b) Calculate λ∗a = λa + (aTA−1a)/2, λ∗d = λd + (dTD−1d)/2, and

λ∗e = λe + 1/2||y −Xβ − Z1a− Z2d||2.

(c) Sample the precision parameters ψi from Gamma(k∗i , λ
∗
i ) for i =

a, d, e.

(d) Calculate αa = ψa/ψe, αd = ψd/ψe and update the coefficient

matrix C.

3. Block Gibbs sampling (every 50th iteration):

(a) Generate a∗ from MVN(0,A/ψa) and d∗ from MVN(0,D/ψa).

(b) Generate z∗ from MVN(Z1a
∗ + Z2d

∗, I/ψe).

(c) Calculate W′(y − z∗).

(d) Calculate θ as [0′, a∗′,d∗′]′ + C−1W′(y−z∗), where 0 is zero vector

of the size of the fixed effects vector β.

(e) Calculate λ∗a = λa + (aTA−1a)/2, λ∗d = λd + (dTD−1d)/2, and

λ∗e = λe + 1/2||y −Xβ − Z1a− Z2d||2.

(f) Sample the precision parameters ψi from Gamma(k∗i , λ
∗
i ), for i =

a, d, e.

(g) Calculate αa = ψa/ψe, αd = ψd/ψe and update the coefficient

matrix C.

4. Setting up the adapted MCMC (after the learning period):

(a) Transform the samples from the learning period into logarithmic

scale with the formula τi=− log(ψi), for i = a, d, e.
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(b) Calculate the sample covariance matrix Ŝ from the transformed vari-

ables τi. Calculate the proposal covariance matrix Sp = (2.38)2/d Ŝ

where d = 3. Initialize the current state τ from the last state visited

during the learning phase.

5. The iterations during the adapted phase:

a) Generate proposed values τ ∗ from the Gaussian distribution MVN(τ ,Sp).

Calculate the ψ values and ψ∗ values corresponding to the current

and the proposed vectors.

b) Calculate logarithm of the M–H acceptance ratio r by calculating

the logarithm of the prior ratio p(τ ∗)/p(τ ) where the Jacobian ratio

was taken into account, and also the logarithm of the likelihood

ratio.

c) Draw u from the uniform distribution over [0, 1] and accept the

proposed value τ ∗, if u < r. If the proposal is accepted then assign

τ=τ ∗, otherwise the current value is retained.

In a random-walk M–H algorithm that used in the adapted phase, the ac-

ceptance rate (the ratio between the number of times the proposed value is

accepted to the total number of iteration after the learning period) should be

between 10% and 50%, but the optimal rate is around 23% (see Roberts and

Rosenthal, 2001).

2.10 Chi-square prior:

The scaled inverse chi-square distribution was used as the prior distribution to

see the impact of prior on MCMC properties like mixing and effective sample

size (ESS). Scaled inverse chi-square distribution used as a prior distribution
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for hyperparameters.

p(σ2
i |vi, S2

i ) ∝ (σ2
i )
−(vi/2+1)exp(−viS

2
i

2σ2
i

), i = a, d, e (24)

Here vi is the degree of belief and S2
i is the prior value for the hyperparame-

ters(Sorensen and Gianola 2002). It was decided to use vi as -2 and S2
i as 0

to obtain flat priors.

2.11 MCMC convergence diagnostics

For Markov Chain Monte Carlo (MCMC) methods in applications it is

important how to determine when it is safe to stop sampling and use the

samples to estimate characteristics of the distribution of interest. One of the

main problem with MCMC is to check whether the simulation has converged.

Convergence can be assessed by starting the simulation from several different

initial conditions, and by monitoring when the different simulation chains

become sufficiently mixed together. Various MCMC convergence diagnostics

tools have been developed over the years. Trace plots of the sampled MCMC

values versus iteration number is one of commonly used tool for diagnostics.

Trace plots are useful to estimate the degree of mixing in a simulation.

2.12 Effective Sample Size (ESS)

Effective sample size (Waagepetersen et al., 2008; Geyer, 1992) is the ap-

proximate number of independent samples which would deliver the same

estimation accuracy as the dependent MCMC samples. ESS is based on the

central limit theorem (CLT) for Markov chains. Let x0, x1, . . . be the Markov

chain (MC) and consider a scalar valued function h defined on the state space.
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If the MC satisfies a CLT for this function, then as the sample size increases

√
n

(
1

n

n∑
i=0

h(xi)− Eπh(x)

)
d−→ N(0, τh varπ h(x)), (25)

where π is the stationary density of the MC, Eπh(x) is the expected value

of h(x) under π, varπ h(x) is the variance of h(x) under π, and τh is the

integrated autocorrelation time for estimating Eπh(x) for the given MC,

defined as

τh = 1 + 2
∞∑
i=0

corrπ(h(xi), h(xi+k)), (26)

Here corrπ is the correlation between the values when the chain is started

from the stationary distribution (x0 ∼ π). On the other hand, if y0, y1, ..., yn

are i.i.d samples from the stationary distribution π, then by the central limit

theorem for i.i.d. sequences

√
n

(
1

n

n∑
i=0

h(yi)− Eπh(x)

)
d−→ N(0, varπ h(x)). (27)

Comparing Eq. (25) and Eq. (27) gives ESS = n/τh as the effective sample

size, when the expectation Eπh(x) was estimated using the arithmetic mean

of a large number of values h(x1), . . . , h(xn) based on the history of the MC.

There are different methods available for estimating τh and ESS, but in the

current study the R package coda was used.

2.13 Algorithm to calculate breeding value

During the adapted phase of the algorithm, the sampler generates values

only from the marginal posterior of the variance components. Even if the

new method is primarily intended for the estimation of the genetic variances,
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it is possible to generate MCMC samples for the additive and dominance

genetic values afterwards, by sampling them block-wise from their fully

conditional posterior distribution conditionally on each of the values of the

variance components in the MCMC sample, generated by the adaptive MCMC

sampler.

Algorithm to calculate the breeding values using blocked Gibbs sampler:

1. Let σ2
a, σ

2
d and σ2

e be the variance components generated in the adapted

phase.

2. Calculate αa = σ2
e/σ

2
a, αd = σ2

e/σ
2
d and update the coefficient matrix C

using Equation [12].

3. Generate a∗ from MVN(0,Aσ2
a) and d∗ from MVN(0,Dσ2

d).

4. Generate z∗ from MVN(Z1a
∗ + Z2d

∗, Iσ2
e).

5. Calculate W′(y − z∗).

6. Calculate θ as [0′, a∗′,d∗′]′ + C−1W′(y− z∗), where 0 is zero vector of

the size of the fixed effects vector β.

7. Calculate the genetic parameters (ge) of n individuals corresponding

to the current variance components as ge = a + d.

Repeat steps 1 to 7 until genetic parameters are sampled using all the

variance components from the adapted phase.

2.14 Restricted Maximum Likelihood (REML)

Restricted Maximum Likelihood (REML) is one the commonly used method

for the estimation of the genetic parameters in animal breeding programs. To
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compare the estimation accuracy of the new method with REML method, a

REML analysis was performed using the software package ASreml (Gilmour

et al. 2006). Both REML and Bayesian analysis were carried out for the

same datasets. In general ASreml provided the point estimates for the genetic

parameters. REML differs from ML in that the likelihood of the data is

maximized only for the random effects, thus REML is a restricted solution.

The REML procedure requires that the observation vector y has a multivariate

normal distribution. The corresponding linear model for the REML analysis

is:

y = Xβ + Z1a + Z2d + e, (28)

where y is an n× 1 vector of phenotypic observations, β is a k × 1 vector of

fixed (environmental) effects, a is a q × 1 vector of random additive genetic

effects, d is a q × 1 vector of random dominance genetic effects, e is a n× 1

vector of error terms, which are independently normally distributed with

mean zero and variance σ2
e . Moreover, X,Z1 and Z2 are known incidence

matrices, where X associates β to the phenotypic observations y. For the

simulated datasets Z1 and Z2 associates genetic effects a and d respectively

to the observation vector y. Whereas for the field data Z1 and Z2 associates

random genetic effects a and genotype-by-environment interaction (GxE) to

y. The additive genetic relationship matrix A (assumed to be nonsingular),

which describes additive genetic relationships among lines, was calculated

using the available pedigree information. And dominance relationship matrix

D (also assumed to be nonsingular) is the dominance matrix , which describes

dominance variances and covariance among lines.

The corresponding Mixed Model Equation(MME) for the REML analysis
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is: 
X′X X′Z1 X′Z2

Z′1X Z′1Z1 + A−1αa Z′1Z2

Z′2X Z′2Z1 Z′2Z2 + D−1αd

 ∗

β

a

d

 =


X′y

Z′1y

Z′2y

 (29)

with αa = σ2
a/σ

2
e , αd = σ2

d/σ
2
e . Where σ2

a is the additive variance, σ2
d is the

dominance variance and σ2
e is the residual effect.

2.15 QTLMAS XII workshop data

This is the simulated data set obtained from the QTLMAS XII workshop

web page,

http://www.computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html.

The dataset was generated following an animal breeding protocol, consisting of

5,865 individuals from seven generations. For the first four generations (total

4665 individuals) both pedigree and phenotype information are available, and

this subset of data was considered for the analysis. Additive relationship

matrix A and dominance relationship matrix D were calculated from the

pedigree information. The main motivation to analyze the QTLMAS dataset

was to test how the new method will behave in the absence of dominance

effect.

2.16 Simulated data

A C program was developed, which simulates ’virtual’ populations for the

variance component estimation. Because of the identifiability problems faced

during the analysis, two different datasets were considered, one of which

resulted in a unimodal posterior distribution of dominance variance and

another in a bimodal posterior. To develop the bimodal dataset, a base

population of 50 unrelated lines were considered, where each of the 25 females
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were mated with 25 males and each crossing resulted in 5 offspring (in total

3175 individuals, including the base population). For the unimodal dataset

a base population of 40 lines were considered, 20 females and 20 males and

each crossing resulted in 9 offspring (in total 3640 individuals, including the

base population).

Additive relationship matrix A and dominance relationship matrix D were

calculated from the pedigree information as described in the model section.

To simulate a quantitative trait y three factors were generated, additive effect

a, dominance effect d and noise e, and the vector of phenotypic observations

was calculated as their sum,

y = a + d + e.

Here vectors a, d and e were drawn from MVN(0,Aσ2
a), MVN(0,Dσ2

d) and

MVN(0, Iσ2
e) respectively. The Cholesky decomposition of the covariance

matrices Aσ2
a and Dσ2

d was used to draw samples from these distributions.

Hence the random genetic effects a and d were calculated as a = Pza

and d = Tzd, where zi ∼ N(0, I) and P and T are the Cholesky factors

PP′ = Aσ2
a and TT′ = Dσ2

d. To validate the new estimation methods, two

data sets was generated, one dataset with single mode and another dataset

with two mode, using heritability 0.31 (σ2
a=800, σ2

d=600, σ2
e=3025).

2.17 Simulated dataset with finite number of loci

The above mentioned datasets were based on infinite number of loci so it

was decided to considered a dataset with finite number of loci. To create the

population I considered a base population of 20 lines, which assumed to be

unrelated and homozygous with an in breeding coefficient of 0.99. In the first
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crossing cycle, 5 lines of the base population were randomly chosen and crossed

with another 5 randomly chosen lines, each cross produced 5, F1 progeny

lines. In the second crossing cycle each F1 lines were selfed to produce 5,

F2 progeny lines and the crossings were carried out in same manner till the

F4 generation. The base population was assigned an inbreeding coefficient

of 0.99 whereas F1, F2, F3 and F4 were assigned an inbreeding coefficient

of 0.00, 0.50, 0.75 and 0.87 respectively.The simulated trait was controlled

by 1000 unlinked loci having two alleles and the dominance was complete.

The genotypic value at each locus of the a line was normally distributed with

mean 0 and standard deviation 1. The phenotypic value for each line was

simulated by adding genotypic effect location effect and residual error. The

relationship matrix A describes the genetic relationships between individuals

of a population and the algorithm as outlined by Henderson to compute the

relationship matrix from the pedigree information. In contrast to Henderson

(1976) inbreeding was considered for this dataset and the diagonal elements

of the matrix A was of the form 1+Fi (where Fi is the inbreeding coefficient).

Following Jacquard(1974), in an inbred population the dominance relationship

between an individual x with parents c and d and an individual y with parents

e and f can be calculated as follows:

Dxy = 1/3 ∗ (1/2 ∗ Axy + 1/4 ∗ Ace ∗ Adf + 1/4 ∗ Acf ∗ Ade) (30)

Hence the elements of the dominance relationship matrix D can be cal-

culated from the additive relationship matrix A. Horner and Charles 1956

provided the theoretical framework to calculate the sample variance com-

ponents for the populations generated from crossing between homozygous

lines and subsequent self-fertilization. In their study they showed that in the

F2-generation, the relation of additive genetic and dominance variances is
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equal. However, due to self-pollination, in the following filial generations the

coefficient of additive genetic and dominance variance started to be different.

In the current study, these differences were not accounted for the estimation

of the variance components. Moreover it is difficult to calculate the variance

components for different filial generations separately.

2.18 Field data:

Real data from 82 spring barley (H. vulgare L.) lines originating from German

North Rhine Westphalia (Bauer et al., 2006, 2008, 2009) core collection were

analyzed. These lines were cultivated in randomized complete-block design

with three replications in three different years (2001, 2002, and 2003) at the

Research Station ’Dikopshof’ of University of Bonn, Germany. For the real

data, few replications were missing and the missing values were imputed by the

average value for non missing replications for the corresponding year. There

are a number of alternative ways of dealing with missing data, however as the

number of missing values were very few we expect that those methods will not

make much differences. Pedigree information was available for all the lines

and the phenotypic observations of trait ’thousand kernel mass’ was measured

for all the lines. For the field data, we considered genotype-by-environment

interaction instead of the dominance relationship in the linear mixed model

(1) and accounted for the inbreeding among lines. Following Bauer et al.

(2009), two different covariance structures were applied to the model the

genotype-by-environment interaction. In the first approach called Bayes ID,

genotype-by-environment interaction was assumed to be independently and

identically normally distributed. Whereas in the second approach (Bayes Aext)

an extended relationship matrix Aext = A ⊗ I ( here ’⊗’ is the Kronecker

product of two matrices) was used to model the genotype-by-environment
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interaction. Moreover the fixed year effect was considered in the X matrix

along with the overall mean for the analysis.
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Figure 1: Schematic representation of the crossing of simulated dataset with
finite number of loci till F4 generations.
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3 Results

To validate the new algorithm I used both simulated data sets, QTLMAS XII

workshop data and field data. It was decided to use large datasets for the

analysis because of the identifiability problem with the dominance variance

detected in test runs. Also I want to ensure that differences in the analysis

results are not due to reasons other than real differences in the sampling

efficiencies between two algorithms.

3.1 Class 1 adaptive MCMC

In the class 1 algorithm where the effect of breeding values and dominance

effects were marginalized away before computing the posterior probability

in the adapted phase. The variance components were estimated for both

simulated data sets, QTLMAS XII workshop data and the field data using

the class 1 adaptive MCMC algorithm.

3.1.1 simulated data

To validate the new algorithm, the analysis was done with two simulated

datasets, the unimodal dataset with 3640 individuals and the bimodal dataset

with 3175 individuals. The estimates for variance components based on all the

individuals of the simulated datasets were calculated using the new adaptive

MCMC method and the REML method (Table 1). The REML estimates of

the variance components were calculated using the ASReml software (Gilmour

et al. 2006). True values given in Table 1 are the values used in the simulations.

The implemented MCMC had a total chain length of 50000, consisting of

a burn-in period of 2000 iterations, a learning phase from iteration number

2000 to 5000, and finishing with the adapted phase from iterations 5000
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Table 1: The estimates of variance components and broad-sense heritabilities
for the learning and adapted phases from the MCMC analyses of the two
simulated datasets. REML estimates and true simulated values are also
shown. The names ’unimodal data’ and ’bimodal data’ are based on the
characteristics that these data sets showed during the MCMC analysis.

Variance components
estimated from the
learning phase

Variance components
estimated from the
adapted phase

REML True

Mean Median Mode Mean Median Mode
Bimodal data
σ2
a 672.57 607.73 573.67 721.49 695.87 679.37 752.99 800
σ2
d 545.93 510.21 453.20 493.10 522.30 675.40 716.00 600
σ2
e 3107.70 3143.70 3013.70 3132.10 3105.00 3020.20 2882.60 3025
h2 0.28 0.26 0.25 0.27 0.28 0.30 0.33 0.31
Unimodal data
σ2
a 873.36 820.90 879.80 751.20 744.53 779.80 781.28 800
σ2
d 619.36 642.23 658.70 591.50 585.77 579.80 571.68 600
σ2
e 2845.40 2865.00 2894.70 2965.00 2971.90 2960.90 2928.79 3025
h2 0.34 0.33 0.34 0.33 0.31 0.31 0.31 0.31

to 50000. Acceptance ratios for the bimodal and unimodal data sets were

28% and 26%, respectively. The point estimates, mean and median of the

posterior distribution of the variance components, were calculated from the

MCMC samples. The point estimates can give an indication that whether

the posterior distributions is close to normality or not. To calculate the mode

of the posterior distribution a kernel smoothing approach following (Hoti et

al. 2002), was used.

A properly implemented MCMC sampler should be able to cover all the areas

supported by the target distribution, but the existence of multiple modes

makes this difficult. A conventional MCMC algorithm usually fail to jump

between the different modes and therefore may visit only a single mode.

Although running the chain for a very long time is a solution for this problem,
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Figure 2: The logarithm of the variance components for the bimodal dataset
plotted against MCMC iteration number. The trace plots show 45000 iter-
ations from the adapted phase. From the figure after 12000 iterations the
chain moves to a different mode in the posterior distribution. The same mode
is again visited after a certain number of iterations.
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Figure 3: The logarithm of the variance components for the unimodal dataset
plotted against MCMC iteration number. The trace plots show 45000 itera-
tions from the adapted phase.

59



Results

but this is computationally highly demanding. In the new approach, the

posterior covariance structure estimated from the learning phase helps the

sampler to move freely between the different modes of the target distribution.

The new MCMC algorithm was able to detect two different modes in the

posterior for dominance and additive variances in the bimodal dataset, whereas

REML always returns a single mode (and the identified mode may depend on

its starting values). Figure 2, shows that adaptive MCMC algorithm is able

to move between the different modes of the posterior of the bimodal dataset.

In Figure 2 the X-axis represent the number of iterations and Y-axis represent

the the variance components in logarithmic scale. From the trace plots for

the dominance and error variance components from Figure 2 it can seen that

around 12000th iterations both dominance and error variance components

move to a different region in the parameter space. The same region is again

visited by the algorithm after certain number of iterations. So it can be

concluded that there are different modes in the posterior distribution. From

Figures 2 and 4 that the new adaptive MCMC algorithm was able to detect

different modes in the distribution with a relatively low number of iterations,

whereas the conventional MCMC method like hybrid Gibbs sampler had

problems visiting different modes in the test runs (results are not shown).

Table 2 summarizes the rough estimates for the two different modes. To

estimate the modes, the kernel smoothing approach (Hoti et al. 2002) was

applied. The mode 1 values are close to the true simulated values. In order to

visualize the different modes in the posterior, a histogram with hexagonal bins

was drawn for the log-transformed dominance and error variance components

(Figure 4) with the aid of the hexbin package of R.
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Figure 4: Histogram of the log-transformed dominance and error variance
components using hexagonal bins. The plotting plane is divided into a number
hexagons and darker the hexagon, the more points it represents.
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Table 2: The two different modes of the variance components from the adapted
period for the simulated bimodal dataset. The posterior mode estimates are
obtained from the adapted phase of the MCMC analysis. REML estimates
and true simulated values are also shown.

Mode 1 Mode 2 REML True
σ2
d 675.40 2.67 716.00 600
σ2
e 3020.20 3505.2 2882.60 3025

3.1.2 QTLMAS XII workshop data

I considered a subset of 4665 individuals (first four generations) from the

QTLMAS XII workshop data for the analysis. The pedigree information for

the first four generations was available, and hence A and D matrices were

calculated from the pedigree. For further details of data, see Lund et al.

(2009). The heritability of the QTLMAS XII workshop data was around 0.30

with zero dominance effect. The main motivation to analyze the QTLMAS

dataset was to test how the new method behaves in the absence of a dominance

effect. The variance components were estimated using the adaptive MCMC

and the REML methods (Table 3). The implemented MCMC had a total

chain length of 50000 with a burn-in period of 2000 iterations, a learning phase

from iteration number 2000 to 5000, and the adapted phase from iterations

5000 to 50000. The acceptance ratio for the data set was 35%. The point

estimates were calculated as before. In the analysis I obtained heritability

around 0.30. Hallander et al. (2010) used a different prior and obtained

a heritability point-estimate of 0.34 from a smaller subset of data, using a

Bayesian model containing additive polygenic effects only. They used uniform

distributions as non-informative choice of priors to the standard deviations.
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Table 3: The estimates of the variance components and broad-sense heritabil-
ities for the learning and adapted phases from the MCMC analysis of the
QTLMAS XII dataset. REML estimates and true simulated values for entire
pedigree are also shown. The true value for the additive variance was calcu-
lated as the variance of true genomic breeding values omitting relationships
between individuals and the residual variance was calculated accordingly to
obtain a heritability around 0.30.

Variance components
estimated from the
learning phase

Variance components
estimated from the
adapted phase

REML True

Mean Median Mode Mean Median Mode
σ2
a 1.33 1.32 1.10 1.34 1.33 1.31 1.35 1.36
σ2
d 0.09 0.10 0.10 0.01 0.00 0.00 0.00 0.00
σ2
e 3.06 3.06 2.84 3.13 3.13 3.15 3.12 3.20
h2 0.46 0.46 0.29 0.30 0.29 0.29 0.30 0.30

3.1.3 Effective Sample Size

Effective Sample Size (ESS) (Waagepetersen et al. 2008; Geyer 1992) is a

popular diagnostic tool for MCMC methods. A high value of ESS implies

that the autocorrelation is low and which is an indication that the mixing

of the MCMC chain is good. ESS determines the approximate number of

independent samples which would provide the same estimation accuracy as

the dependent MCMC samples. The ESS values were calculated with the R

package coda (Plummer et al. 2006).

Adequate mixing of MCMC sampler over different parts of the parameter

space is essential for the convergence of MCMC algorithms, but conventional

MCMC algorithms may suffer from slow mixing. From the trace plots (Figure

5) for the learning phase and adapted phase, it shows that the adapted MCMC

is mixing well compared to the general hybrid Gibbs sampler (used in the

learning phase). Thus the adaptation has significantly improved the mixing
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Figure 5: Trace plot of the log-transformed additive variance component
for the unimodal simulated dataset. First 3000 samples are taken from the
learning phase and the remaining samples are from the adapted phase.

property of the algorithm, by learning an appropriate covariance structure

for the proposal distribution. This visual impression is confirmed by Table 4,

which summarizes the ESS for the unimodal, bimodal and QTLMAS datasets.

To calculate the ESS, an MCMC chain with a length of 3000 from the learning

phase and a chain of same length from the beginning of the adapted phase

were considered after a burn-in period of 2000 iterations. The ESS values

from Table 4 clearly support better mixing properties of variance components

in the adapted phase for all the datasets. The new proposed prior allows the

chain to mix well, and at the same time it allows a realistic estimate of the

dominance variance also in the case of no dominance, because in such a case

the prior shrinks the posterior towards zero.

When the target distribution is bimodal, the conventional MCMC algo-

rithm may have difficulties moving between modes. Also the REML method

fails to identify different modes of the distribution. The new adaptive MCMC

algorithm was able to visit the different modes even after a low number of
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iterations and showed good mixing properties.

Table 4: Effective Sample size (ESS) for 3000 iterations of the two MCMC
algorithms with the unimodal, bimodal and QTLMAS datasets.

ESS for the variance
components from the
learning phase

ESS for the variance
components from the
adapted phase

σ2
a σ2

d σ2
e σ2

a σ2
d σ2

e

Unimodal dataset
ESS 10.36 8.76 29.56 176.71 318.15 191.81
Bimodal dataset
ESS 12.82 12.10 11.27 240.56 159.68 176.44
QTLMAS dataset
ESS 41.24 3.58 116.98 242.90 93.37 204.64

3.2 Class 2 adaptive MCMC

Marginalizing the nuisance parameters from the likelihood is generally benefi-

cial to the MCMC mixing. To know the impact of marginalization on the

mixing properties a model was considered without marginalizing the random

effects in the adapted phase of the algorithm. In the class 2 algorithm where

the effect of breeding values and dominance effects were included to compute

the posterior probability in the adapted phase. ESS (Table 5) in the adapted

phase of the class 2 MCMC algorithm was near to the true values than the

learning phase, however the variance components estimates (Table 6) for

the class 2 adaptive MCMC in the adapted phase were nowhere near the

true values. The acceptance ratio of the dataset was around 67%. Here

the additive and dominance variance were summed to the error variance.

Posterior correlation between the parameters restricts the free movement of

the chain and the chain remains at specific points for longer time. But it is
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crucial that the Markov chain has good mixing (fully explore the likelihood

surface) properties. By comparing the results for the class 1 and class 2

algorithm one can conclude that marginalization play a crucial role in the

mixing properties of the chain.

Table 5: Effective Sample Size (ESS) for 3000 iterations from the learning
phase and 3000 iterations from the adapted phase for the class 2 MCMC with
the unimodal, bimodal and QTLMAS datasets.

ESS for the variance
components from the
learning phase

ESS for the variance
components from the
adapted phase

σ2
a σ2

d σ2
e σ2

a σ2
d σ2

e

ESS
Unimodal data 10.36 8.76 29.56 92.76 239.67 19.93
Bimodal data 12.82 12.10 11.27 51.16 160.35 9.25
Workshop data 41.24 3.58 116.98 12.08 656.36 9.38

Table 6: The estimates of the variance components and broad-sense heritabil-
ities for the learning and adapted phases from the class 2 algorithm of the
QTLMAS XII dataset. REML estimates and true simulated values for entire
pedigree are also shown.

Variance components
estimated from the
learning phase

Variance components
estimated from the
adapted phase

REML True

Mean Median Mode Mean Median Mode
Workshop data
σ2
a 1.32 1.32 1.10 0.12 0.02 0.01 1.35 1.36
σ2
d 0.09 0.10 0.10 0.03 0.06 0.02 0.00 0.00
σ2
e 3.06 3.06 2.84 5.59 5.01 4.81 3.12 3.20
h2 0.46 0.46 0.29 0.02 0.00 0.00 0.30 0.30
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Figure 6: The logarithm of the variance components for the workshop dataset
with scaled inverse chi-square prior plotted against MCMC iteration number.
The trace plots show 48000 iterations from the normal hybrid Gibbs sampler.
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Figure 7: The logarithm of the variance components for the workshop dataset
plotted against MCMC iteration number. The trace plots show 3000 iterations
from the learning phase and 45000 iterations from the adapted phase.
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3.3 Sensitivity analysis

In the current study I was also interested to know the impact of prior

distributions on the ESS and estimation accuracy. So the analysis was done

with two different prior distribution: 1) Gamma prior distribution 2) Scaled

inverse chi-square distribution. For the Gamma prior distribution k = 1

and λ = 0.001, was assigned to obtain flat prior. For the Scaled inverse

chi-square vi = -2 and S2
i = 0, was assigned to obtain flat prior. ESS were

calculated for two different priors using normal hybrid Gibbs sampler. To

calculate the ESS a MCMC chain of length 48000 iterations was considered

after a burning period of 2000 iterations and Table 7 summarizes the results.

For the Gamma prior distribution the phenotypic observation vector y, was

standardized to use same prior for different dataset. Table 7 shows that there

is no significant difference between ESS for the two different prior distributions.

However I decided to use Gamma prior distribution in the learning phase of

the algorithm, because I wanted to use the same prior in both the learning

and adapted phase of the algorithm.

Table 7: Effective Sample size (ESS) for the Scaled inverse chi-square prior
and Gamma prior distribution for the workshop data. A MCMC chain of
length 48000 iterations from the normal Gibbs sampler was considered to
calculate the ESS.

σ2
a σ2

d σ2
e

Gamma prior(ESS)
Workshop data 623.12 16.98 592.14
Bimodal data 258.45 21.29 35.86
Unimodal data 176.92 128.90 169.90
Scaled inverse chi-square prior(ESS)
Workshop data 601.66 15.02 166.00
Bimodal data 256.6 67.61 99.10
Unimodal data 173.19 147.34 190.62
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Figure 8: The logarithm of the variance components for the bimodal dataset
with scaled inverse chi-square prior plotted against MCMC iteration number.
The trace plots show 48000 iterations from the normal hybrid Gibbs sampler.
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Figure 9: The logarithm of the variance components for the bimodal dataset
with Gamma prior plotted against MCMC iteration number. The trace plots
show 48000 iterations from the normal hybrid Gibbs sampler.
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By comparing the trace plots of the variance components for the bimodal

data using Gamma prior (Figure 8) and the scaled inverse chi-square distri-

bution (Figure 9) with the hybrid Gibbs sampler, scaled inverse chi-square

prior was able to move rapidly between two different modes. Whereas the

movement of the Gamma prior between different modes were slow. The

variance components were also calculated for the simulated data sets (Table

8) and the workshop data set (Table 9) for the two different prior distribu-

tions using hybrid Gibbs sampler. From Figure 6 and 6 for the workshop

dataset the adaptive MCMC algorithm shows better mixing properties than

the hybrid Gibbs sampler and it was supported by ESS values, also there was

much improvement in the mixing of dominance variance in the adapted phase.

From the Figures (6 and 7) one can conclude that the marginalization of the

random effects reduces the autocorrelation between the parameters, which

eventually improved the mixing of the chain. From Table 8 the estimates

for the unimodal dataset using scaled inverse chi-square prior gave better

estimates compared to the Gamma prior distribution, because the Gamma

prior was stayed in one mode for a long period of time. But in both case

the chain is not converged and more number of iterations are needed for the

convergence of the MCMC chains. Generally the prior has little influence on

the estimated parameters when the analysis is done with large size of pedigree

data. But in the case of workshop data (Table 9) with zero dominance the

Gamma prior was able to provide values near to the true values with the

hybrid Gibbs sampler whereas the chi-square prior failed to do so. Indicating

that the new Gamma prior is working well for datasets with zero dominance.

Also the ESS values was higher for the workshop data with Gamma prior

distribution.
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Table 8: The variance components and broad-sense heritability for different
prior distributions for the bimodal, unimodal and workshop datasets. A
MCMC chain of length 48000 iterations from the hybrid Gibbs sampler was
considered to calculate the variance components.

Variance Compo-
nents estimated
using Gamma
prior

Variance Compo-
nents estimated
using scaled in-
verse chi-square
prior

REML True

Mean Median Mode Mean Median Mode
Bimodal
σ2
a 725.80 699.68 580.90 757.32 730.10 670.12 752.99 800
σ2
d 317.94 207.87 13.45 605.39 626.68 579.15 716.00 600
σ2
e 3304.00 3359.00 3608.00 3009.10 2989.00 2059.03 2882.60 3025
h2 0.24 0.21 0.14 0.31 0.31 0.37 0.33 0.31
Unimodal
σ2
a 747.06 743.69 720.90 786.13 781.20 750.15 752.99 800
σ2
d 578.66 554.43 540.45 620.10 593.20 570.85 716.00 600
σ2
e 2976.80 2975.70 2965.00 2924.20 2925.60 2920.00 2882.60 3025
h2 0.30 0.30 0.30 0.32 0.32 0.31 0.33 0.31

Table 9: The variance components and broad-sense heritability for different
prior distributions for the workshop data. A MCMC chain of length 48000
iterations from the normal Gibbs sampler was considered to calculate the
variance components.

Variance Compo-
nents estimated using
Gamma prior

Variance Components
estimated using scaled
inverse chi-square
prior

REML True

Mean Median Mode Mean Median Mode
σ2
a 1.33 1.32 0.98 1.34 1.33 1.10 1.35 1.36
σ2
d 0.02 0.00 0.00 0.09 0.02 0.10 0.00 0.00
σ2
e 3.12 3.12 2.90 3.06 3.08 3.10 3.12 3.20
h2 0.30 0.30 0.25 0.32 0.30 0.27 0.30 0.30

73



Results

In the current study I also used the empirical variance of the phenotypic

observation vector y, as the starting value for λ with Gamma prior distribution.

But this prior provided non-zero estimate for the dominance variance with

workshop data. So it was decided to use flat prior for the analysis, which was

able to provide better estimate in the case of zero dominance.

3.4 Estimation using scaled inverse chi-square prior

distribution in the learning phase

In the current study I also calculated the variance components and ESS using

scaled inverse chi-square prior in the learning phase and Gamma prior in the

adapted phase using the class 1 adaptive MCMC algorithm. The acceptance

rate was around 20%. Table 10 compare the variance components estimates

for the scaled inverse chi-square prior in the learning phase and Gamma

prior in the adapted phase (Chi-Gamma) with Gamma prior in both phases

(Gamma-Gamma) for the workshop dataset. And Table 11 summarizes the

ESS calculated for those two cases (Gamma-Gamma and Chi-Gamma). In

the learning phase of the algorithm Gamma prior was able to provide better

estimates than the chi-square prior. But in the adapted phase there was

no significance difference between the estimated variance components. Both

priors used in the learning period were able to provide the optimal covariance

matrix for the proposal distribution. However the values of ESS was high

for the Gamma prior in both learning phase and adapted phase, so it is

recommended to use Gamma prior distribution in the learning period of the

algorithm.

Both priors was able to give zero estimate for the dominance variance in

the adapted phase of the algorithm. Also the posterior distributions for the

variance components were close to normality. The idea to use Gamma (1,
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Table 10: The estimates of the variance components and broad-sense heri-
tabilities for the learning and adapted phases from the MCMC analysis of the
QTLMAS XII dataset using two different prior distributions in the learning
phase. REML estimates and true simulated values for entire pedigree are also
shown. The true value for the additive variance was calculated as the variance
of true genomic breeding values omitting relationships between individuals
and the residual variance was calculated accordingly to obtain a heritability
around 0.30.

Variance compo-
nents estimated
from the learning
phase

Variance compo-
nents estimated
from the adapted
phase

REML True

Mean Median Mode Mean Median Mode
Gamma-Gamma
σ2
a 1.33 1.32 1.10 1.34 1.33 1.31 1.35 1.36
σ2
d 0.09 0.10 0.10 0.01 0.00 0.00 0.00 0.00
σ2
e 3.06 3.06 2.84 3.13 3.13 3.15 3.12 3.20
h2 0.46 0.46 0.29 0.30 0.29 0.29 0.30 0.30
Chi-Gamma
σ2
a 1.32 1.33 1.18 1.35 1.34 1.30 1.35 1.36
σ2
d 0.31 0.34 0.05 0.00 0.00 0.00 0.00 0.00
σ2
e 2.86 2.86 2.72 3.14 3.14 3.12 3.12 3.20
h2 0.36 0.36 0.31 0.30 0.30 0.29 0.30 0.30
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Table 11: Effective Sample size (ESS) for 3000 iterations from the learning
phase and 45000 iterations from the adapted phase of the MCMC algorithm
using different priors in the learning phase with QTLMAS dataset.

ESS for the variance
components from the
learning phase

ESS for the variance
components from the
adapted phase

σ2
a σ2

d σ2
e σ2

a σ2
d σ2

e

Gamma-Gamma
ESS 41.24 3.58 116.98 4000.07 2750.97 3858.53
Chi-Gamma
ESS 38.58 3.42 23.09 2704.53 3046.28 3335.62

0.001) prior for precision was that variances are shrinked towards zero. This

will help model selection automatically meaning that if there is no dominance

in the data, this prior will shrink the variance component value towards zero

and resulting posterior estimate should also be near zero. Model selection is

one of the main problem associated with variance component estimation and

the new prior was able to do model selection in the analysis.

3.5 Simulated dataset with finite number of loci

In contrast to the other datasets, for the current study it was decided to

simulate a dataset with finite number of loci. The data was simulated in

a more piratical frame work considering progenies till F4 generations. In

order to know the impact of inbreeding on the performance of the proposed

new algorithm I decided to account inbreeding in the estimation of genetic

parameters. Generally in the infinitesimal frame work each trait is assumed to

be influenced by an infinite number of additive genes having small effect. To

bring the simulated dataset into close proximity with the infinitesimal frame

work, I considered around 1000 normally distributed loci for the simulation.
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Figure 10: Trace plot of the log-transformed variance component for the
simulated dataset with finite number of loci from the adapted phase of the
class 1 adaptive MCMC algorithm.
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The variance components and the effective sample size were calculated for

the simulated dataset with finite number of loci and Table 12 and Table

13 summarizes those results. The variance components estimates from the

learning phase were close to the REML estimates, however the variance

components estimates from the adapted phase were biased because of the

multiple modes (Figure 10) present in the posterior distributions. Moreover

it was difficult to get the true variance components for the dataset because of

inbreeding and the number of generations (F4) used for the analysis.

Table 12: The estimates of the variance components and broad-sense heri-
tabilities for the learning and adapted phases from the MCMC analysis of
the simulated dataset with finite number of loci. REML estimates for entire
pedigree is also shown.

Variance components
estimated from the
learning phase

Variance components
estimated from the
adapted phase

REML True

Mean Median Mode Mean Median
σ2
a 350.14 350.08 238.46 430.24 433.89 460.39 369.38
σ2
d 215.75 214.4 113.27 38.53 2.47 1.85 184.13
σ2
e 402.01 401.77 347.47 442.92 446.37 446.99 407.49
h2 0.58 0.58 0.43 0.51 0.50 0.51 0.58

Table 13: Effective Sample size (ESS) for 3000 iterations from the learning
phase and adapted phase for the simulated dataset with finite number of loci.

ESS for the variance
components from the
learning phase

ESS for the variance
components from the
adapted phase

σ2
a σ2

d σ2
e σ2

a σ2
d σ2

e

ESS 30.31 13.34 66.87 328.73 12.07 117.22
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3.6 Estimation of breeding values

During the adapted phase of the algorithm, the sampler generates values

only from the marginal posterior of the variance components. Primary

focus of the method is the estimation of the genetic variances, however it is

possible to generate MCMC samples for the additive and dominance genetic

values afterwards. In the current study breeding values were estimated by

sampling them block-wise from their fully conditional posterior distribution

conditionally on each of the values of the variance components in the MCMC

sample generated by the adaptive MCMC sampler. In contrast, in the normal

hybrid Gibbs sampler, the genetic values are sampled conditionally on each

of the values of the variance components. This procedure was tested by

calculating the genetic values for the QTLMAS workshop data by using

the blocked Gibbs sampler conditionally on every 10th realization (of three

variance components) out of 45000 samples from the adapted phase. The

linear correlation between the true genetic values (i.e., sum of additive and

dominance values) and the estimated genetic values was around 0.71 for the

QTLMAS workshop data. Also the REML genetic values showed a correlation

around 0.71 with the true genetic values for the same dataset. The adaptive

MCMC genetic values showed a strong correlation of around 0.99 with the

REML estimates, showing that the adaptive MCMC posterior mean estimates

were near to the REML estimates. Also I calculated the correlation for the

additive posterior mean estimates as well the dominance estimates from the

adapted phase with corresponding REML estimates and both correlations

were very high (0.99). Breeding values for the simulated dataset with finite

number of loci were also calculated and the correlations were calculated with

the corresponding REML breeding values. Breeding values calculated using

the adaptive MCMC method showed a strong correlation around 0.83 with
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the true simulated genetic values. REML estimates also showed a strong

correlation around 0.90 with the true genetic values. Moreover the correlation

between the REML estimates and the adaptive MCMC method was around

0.91. For estimation of the breeding values I considered the infinitesimal

model. However, Hoeschele et al. (1993 ) proposed a finite locus model

for dataset with finite number of loci but in the current research I did not

consider the finite locus model.

Table 14: Correlation coefficient (r) calculated between the estimated breeding
value and the true genetic value using REML and adaptive MCMC method.

REML
estimated
genetic
values

Adaptive
MCMC
estimated
genetic
values

QTLMAS workshop data
True genetic values 0.71 0.71
Dataset with finite number of loci
True genetic values 0.90 0.83

3.7 Field data

The trait ’thousand kernel mass’ for 82 spring barley lines from three different

years with three replications were considered for analysis with our Calss

1 adaptive MCMC method as well as REML using ASReml software (by

assuming same covariance structure for genotype-by-environment interaction

as in Bayes ID). The implemented MCMC had a total chain length of 50000,

consisting of a burn-in period of 2000 iterations, a learning phase from iteration

number 2000 to 5000, and finishing with the adapted phase from iterations

5000 to 50000. For analysis each year was considered as different location. So
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Table 15: The estimates of variance components, heritabilities and the 95%
HPD intervals for the field data from the adapted phases of the algorithm
using Bayes ID and Bayes Aext covariances. REML estimates are also shown.

Bayes ID Bayes Aext

Mean Median Mode 2.5 97.5 Mean Median Mode 2.5 97.5 REML
σ2
a 9.27 9.13 9.08 5.15 13.54 9.10 9.15 9.05 5.20 13.69 9.21
σ2
h 2.45 2.49 2.60 0.00 4.61 2.98 2.70 2.84 0.00 4.77 3.18
σ2
e 17.67 17.58 17.50 15.33 20.30 17.18 17.23 17.29 15.36 20.25 17.08
h2 0.76 0.76 0.76 0.76 0.76 0.76 0.75

in order to account the number of locations, heritability was calculated using

the formula (Hanson 1963)

h2 =
σ2
a

σ2
a + (σ2

g×e/j) + (σ2
e/j ∗ k)

where σ2
a is the additive genetic variance, σ2

g×e is the variance due to genotype-

by-environment interactions, σ2
e is the error variance, j is the number of

years and k = 3 is the number of replications. We also calculated the

point estimates and 95% highest posterior density intervals for the posterior

distribution from the adapted phase of the algorithm using Bayes ID and

Bayes Aext methods (Table 15). Bauer et al. (2009) considered data from

two different years (2002 and 2003) for the analysis and in our current study

we considered data from three different years (2001, 2002 and 2003). Hence

our analysis provided higher heritabilities than in Bauer et al. (2009). Both

studies showed that the Bayes Aext estimates were more close to the REML

estimates. Moreover, results from both studies indicated that it is important

to consider the relationship information between lines while estimating the

genotype-by-environment interactions.

81



Discussion

4 Discussion

In this study a new adaptive MCMC algorithm was proposed with superior

mixing properties compared to the conventional MCMC algorithms. Also the

performance of the new algorithm was compared with some of the existing

methods. The results obtained from those analysis are discussed below.

4.1 Computational cost (Adaptive MCMC vs hybrid

Gibbs sampler)

One of the main problems associated with Bayesian analysis of mixed models

with several random effects is that the analysis is computationally demanding.

Still much focus is given to improve the computational efficiency of the MCMC

algorithms. The single site Gibbs sampling algorithm is faster but suffer

with poor mixing of the chain. However the Blocked Gibbs sampler has

good mixing properties but computationally demanding. Waldmann et al.

(2008) proposed a new hybrid Gibbs sampler which was a combination of

both single site Gibbs sampler and blocked Gibbs sampling algorithm. The

hybrid Gibbs sampler is much faster than the normal blocked Gibbs sampler

for estimating additive and dominance genetic variances in the traditional

infinitesimal model. In the current study the performance of the hybrid Gibbs

sampler was compared with the adaptive MCMC method using simulated

pedigree datasets with non-zero additive and dominance genetic variances but

no inbreeding, showing that the new adaptive MCMC algorithm was almost

two times faster than the hybrid Gibbs sampler. To compare the running

times, an adaptive MCMC chain of total length 50000 (burn-in period of 2000

iterations, 3000 iterations in the learning phase and 45000 iterations in the

adapted phase) was compared with a hybrid Gibbs sampling chain of same
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total length (burn-in period of 2000 iteration and 48000 iterations from the

normal hybrid Gibbs sampling). What is more, the adaptive algorithm has

superior mixing properties, as shown by the effective sample sizes in Table 4.

The speed up is partly due to the fact that, unlike the algorithm of Waldmann

et al. (2008), the adaptive MCMC does not sample additive and dominance

genetic values for individuals at all. In the adaptive MCMC algorithm, the

determinants and quadratic forms associated with the covariance matrices

at the proposed and current points are needed to calculate the likelihood

ratio. Once the proposed value is accepted the determinant and quadratic

form at the current point can be replaced by the determinant and quadratic

form corresponding to the accepted variance components. This makes the

calculation of the likelihood ratio computationally less demanding than the

block update of the Gibbs sampler.

4.2 Estimation of breeding values

The initial objective of the study was to develop an efficient MCMC algorithm

for the estimation of breeding values for the self pollinating crops. However,

because of the practical and theoretical problem faced during the study more

focus was given to the accurate estimation of the variance components. More-

over the estimation of true variance component and broad-sense heritability

of a trait is important for the calculation of breeding values. In conventional

MCMC methods the breeding values and variance components are sampled

simultaneously. But the dependences among the breeding values may lead to

biased estimates of variance components also one has to run the algorithm for

a long period to get proper convergence for the MCMC chain, this is computa-

tionally challenging. In the new approach it is possible to take samples from

a converged MCMC chain for the variance components in order to calculates
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the breeding values. This new approach can provide better estimates for the

breeding values with less computational cost. Additionally breeding values

estimated using the new approach was supported with a strong correlation

of around 0.99 with the REML estimates. Belonsky and Kennedy (1988)

has already shown the advantage of using pedigree information during the

selection process in animal breeding programs. Piepho et al. (2008) shown

that in BLUP analysis, without considering the complete pedigree information

can lead to biased estimates. So it is important to consider the full pedigree

information while estimating the breeding values. In the current study breed-

ing values are estimated from the pedigree and the phenotypic information,

but in reality the pedigree information is often incomplete in such case the

genetic similarities calculated based on the molecular data can be used for

the estimation of breeding values (Bauer et al. 2006). It is possible to modify

the new adaptive MCMC algorithm to account such information in order to

estimate the breeding values.

4.3 Inbreeding and the genetic complexity

From De Boer and Hoeschele (1993) it is known that inbreeding and non

additive genetic actions complicates the genetic covariance structure of a

population. If someone wants to include inbreeding while estimating breeding

values it is necessary to account the covariance between the additive and

dominance effect in a inbred population into the model. However I considered

a simulated data set with inbreeding to estimated the breeding values using

the new adaptive MCMC method without accounting the covariance between

the additive and dominance effect. So there is a possibility that the REML and

adaptive MCMC methods may provide biased estimates for such datasets with

inbreeding. Another type of a model that would suit well to the new estimation
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framework is a random effect like genotype-by-environment interaction (Bauer

et al. 2009) or a Gaussian process model (Crossa et al. 2010) instead of

dominance effects. Then the dominance relationship matrix would be replaced

by the genotype-by-environment interaction covariance matrix or by the

covariance function proportional to the evaluations of a reproducing kernel

evaluated in marker genotypes. However studies should be done how to

include the covariance between the additive and dominance effect in the

adaptive MCMC framework for the Bayesian analysis.

4.4 Estimation of Variance components

Finding the best estimation method for the variance components is a primary

concern for animal breeders (Lee, 2000). Mixed linear model using REML

is widely used in animal breeding During the test runs the scatter plot for

the variance components from the hybrid Gibbs sampler showed correlation

between dominance and error variance components. This correlation was the

main reason to think about using block update for the variance components

and adaptive MCMC methods was an effective solution for such problems.

Adaptive MCMC methods can learn the optimal covariance structure for

the block update of the variance components from the history of the chain

(Haario et al. 2001; Roberts and Rosenthal 2007). Malve et al. (2007)

applied adaptive MCMC methods for the Bayesian modeling of algal mass

occurrences in the northern hemisphere. In their study they showed that when

the parameters are highly correlated the problem can dealt with adaptive

schemes. Results from the current study showed that the block update of the

variance components improved the mixing properties of the MCMC chain.

Also the new method was able to provide better estimates for the variance

components than the existing methods like hybrid Gibbs sampler and REML.
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Du and Hoeschele (2000) showed that accurate estimation of dominance is

important for efficient section strategies. Also Wall et al (2005) showed that

non-additive genetic effects play an important role on the ranking of breeding

values. Normally large data set is needed for the accurate estimation of

non-additive dominance variance (Misztal 1997). In the current study when

I did test runs with small datasets there was over estimation of additive

variance so I decided to use large data sets for the study. Waldmann et al.

(2008) showed that the hybrid Gibb sampler with uninformative prior for the

dataset with low dominance resulted in considerable over estimation of the

dominance variance. But the adaptive MCMC method using non-informative

prior was able to return zero dominance with datasets with no dominance.

This shows that the adaptive MCMC approach is able to modal selection.

For the simulated data set with finite number of loci the estimated variance

components were depended on the number of loci simulated.

4.5 Identifiability problem

Identifiability problems arise especially when the dominance relationship

matrix D is nearly a multiple of the identity matrix. Then certain features of

the phenotypic observations can almost as well be attributed to dominance

effects as to noise. In such a case the joint marginal posterior of the dominance

variance and the error variance should be bimodal. In such a case conventional

MCMC samplers may have difficulties moving between the modes. Especially

Gibbs samplers can have difficulties to escape from one such mode, but

Metropolis-Hastings sampling schemes may behave better. Adding more

full-sibs to the pedigree file can improve the multimodality problem to some

extent. When only few fulls-sibs are considered the dominance relationship

matrix is nearly a multiple of identity matrix. Moreover the error variance
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matrix is also an identity matrix. Gelfand and Sahu (1999) and Sorensen

and Gianola (2002) suggested that using informative priors can alleviate the

identifiability problem. However when I used different informative priors in

the analysis there was over estimation of dominance variance for the dataset

with zero dominance (QTLMAS dataset).

Conventional MCMC algorithms normal fails to sample from multi-modal

target distributions because they only propose small moves, hence the move

between different modes become rare and convergence of the chain will slow

down. Marinari & Parisi (1992) and Geyer & Thompson (1995) proposed

simulated tempering to deal with multi-modal distributions. However in the

adaptive MCMC method the algorithm automatically “learn” the proposal

covariance matrix from the history of the chain, this helps the algorithm to

sample efficiently from multimodal target distributions. The main reason for

the identifiability in the current study was the presence of multiple modes in

the posterior distribution of the dominance and the error variance components.

But in the simulation experiments, the adaptive MCMC algorithm was able

to explore the entire parameter space with good mixing properties, and

therefore was able to detect different modes in the posterior distribution. In

practice non-additive effects are susceptible to identifiability problem. Du

and Hoeschele (2000) proposed a finite-locus approximation to infinite-locus

modal for the estimation of non-additive parameters, but the estimates are

depend on the number of loci used.

4.6 Importance of the optimal proposal covariance struc-

ture

From the study it was clear that the proposal covariance matrix play a crucial

role in the mixing properties and the acceptance ration of the algorithm.
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The proposal covariance matrix (2.38)2/dS from Roberts et al. (1997) and

Roberts and Rosenthal (2001) is optimal in a large-dimensional context when

the posterior is approximately Gaussian (Roberts and Rosenthal, 2007). In

the present study I used different scalings of the posterior covariance matrix,

in some cases the acceptance ratio was high and the estimates were bad and

in some other cases the acceptance ratio was too low. This scaling factor

(2.38)2/d was also employed in the MCMC sampler of Fang et al. (2011),

who introduced a new method for QTL mapping. In their sampling scheme

they utilized REML estimates in construction of the proposal covariance

matrix. If the target distribution is multimodal this approach may fail to

move between different modes. In contrast our new adaptive MCMC method

use the previous history of the chain to learn the optimal proposal covariance

matrix, which enables the algorithm to move between different modes. The

theoretical formula turned out to work well enough for my applications with

optimal acceptance ratio between 20 % and 50%. The success of adaptive

MCMC methods generally depends on how well the proposal covariance

structure is learned from the previous history of the chain. Therefore it

is important to use a sufficient number of samples in the learning period.

In the present study I tried different length of burn-in period and learning

period to get an optimal covariance structure. The required sample depends

firstly on the dimensionality and on the other characteristics of the posterior

distribution and secondly on the mixing properties of the MCMC sampler.

Therefore it is impossible to give general prescriptions for it.

4.7 Effects of marginalization and Mixing

In spite of increasing computing power, poor mixing is still one of the main

problems with MCMC methods. Poor mixing arises usually due to the high
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posterior correlations between parameters. By reducing the autocorrelation

between the parameters the mixing can be improved. In the present study

it was also tested adaptation in a version of a model where the random

effects were not marginalized away (class 2 adaptive MCMC). However,

this formulation suffered from poor mixing and slow convergence because of

posterior dependencies among the random effects and the variance components.

The marginalized model (i.e., hierarchical model 2) which was used in the

current study was able to explore the entire parameter space with good mixing

properties. The Effective Sample Size (ESS) of a parameter is the number

of independent samples from the posterior distribution which the correlated

MCMC sample is worth. The ESS of a parameter is one of the commonly

used method to assess MCMC mixing (e.g., Carlin & Louis 2000, Chen et al.

2000). If the ESSs are low, then the autocorrelations will be high, and that

may be an indication of poor mixing of the chain. The adaptive scheme was

able to decrease the autocorrelation of the chain to yield much larger effective

sample sizes. From the ESSs for the class 1 and class 2 adaptive MCMC

algorithms, class 1 showed better mixing properties. Also class 1 adaptive

MCMC was able to provided better estimates for the variance components.

So marginalization plays a crucial role on the overall performance of the

algorithm. Whereas REML can be characterized so that one assumes a

uniform distribution for the fixed effects, then integrates the fixed effects and

random effects out, and finally maximizes with respect unknown parameters.

Moreover convergence of the general Bayesian Gibbs sampling algorithms,

which use single-site updates for the variance components can be slow due to

posterior dependencies. However in the new proposed method which use the

block update of the variance components will help Markov chains to converge

reasonably fast to its equilibrium distribution.
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4.8 Impact of Prior Distributions and sensitivity anal-

ysis

The choice of the prior is one of the important steps in any Bayesian analysis.

Generally, the influence of the prior distribution on the posterior is related

to the sample size of the data. Zeller et al. (1971) gave the framework for

two different classes of prior information one based on the data and the other

one non-data based. In the first class the prior incorporate information from

the previous studies whereas, in the second class the prior information is

the result of theoretical consideration. In the present study informative and

non-informative priors was use to see the impact of prior distribution on

variance component estimation. A sensitivity analysis was carried out using

different priors with different degree of belief and most of them seemed to lead

to non-zero estimates of dominance variance for the QTLMAS data. However,

Gamma(1, 0.001) prior for the precision parameters was able to provide good

mixing, while still leading to a realistic estimate of dominance variance in

the case of no dominance. The flat prior (Gamma(1, 0.001)) was able to give

values close to REML estimates. This follows because the prior can then

shrink the posterior towards zero. Morita et al. (2007) has suggested while

fitting a Bayesian model to a data set of 10 observations, an a priori ESS of

1 is reasonable, whereas a prior ESS of 20 implies that the prior dominates

posterior inferences.
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5 Summary and Conclusion

Breeding value describes the genetic merit of an individual and it is calculated

as the deviations from the mean values of the population. The estimated

breeding value can improve the selection of favorable parental line. However

to ensure the accurate estimation of breeding values it is of great importance

to calculate the true genetic variance parameters in the population. But the

accurate estimation of them is often difficult because of the complexity in the

underlying covariance structure.

REML and Bayesian methods are commonly used for the prediction

of breeding values. In the present study I proposed a new fast adaptive

MCMC algorithm for the estimation of variance components. The Adaptive

MCMC algorithm combines both hybrid Gibbs sampling and M-H algorithm

to calculate the breeding values and variance components. In this new

approach, the adaptive MCMC runs in two stages. First, the algorithm runs

to obtain the empiric estimate for the posterior covariance structure of variance

components ,this part of the MCMC is called learning period. Then utilize this

estimated covariance structure in the second stage to generate multivariate

correlated proposals for variance components in random walk M-H algorithm,

in order to improve the mixing properties of the chain. In the second phase

of the algorithm the random effects were marginalized from the likelihood.

The new proposed algorithm was able to provide better estimates than the

existing methods like REML and Gibbs sampling. Moreover the new proposed

algorithm was able to detect different modes in the posterior distribution.

Additionally, the new proposed exponential prior for variance components

was able to provide the estimated mode of the posterior dominance variance

to be zero in case of no dominance.

In the current study breeding values are estimated from the pedigree and
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the phenotypic information, but in reality the pedigree information is often

incomplete. In such a case the genetic similarities calculated, based on the

molecular data, can be used for the estimation of breeding values. However

it is possible to modify the new adaptive MCMC algorithm to account such

information in order to estimate the breeding values. Also it is important to

study how to account the covariance between the additive and dominance

effect in an inbred population while estimating genetic parameters.
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