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Summary 

A vast number of plant species originating from Latin America bear delicious fruits, which are 

hardly known beyond its regional borders. Mostly, these fruits represent an important source for 

an adequate nutrient supply to the local people and are established as a traditional good in their 

society. An increasing demand in Northern American and European countries for such exotic 

fruits is caused by different reasons. On the one hand, they satisfy not only the search for novel 

flavor experiences but provide also a valuable contribution to a well-balanced diet. Thus, 

epidemiological data have shown that high consumption of fruits and vegetables results in a 

diminished risk of suffering from civilization diseases. On the other hand, foodstuffs containing 

additives like colorants, preservatives, antioxidants and flavors from natural resources attract 

gaining popularity instead of those artificially produced. Therefore, many underutilized fruits 

offer an unknown potential for an intensified commercial use. In case their production is guided 

by aspects of sustainability, the cultivation can contribute to the preservation and diversification 

of the ecosystem. Crop growing of appropriate species would also make available additional 

sources of income to the people from prevalently rural regions.  

The prerequisite for an enhanced perception of underutilized fruits by the consumer or the 

industry is a comprehensive knowledge on their value adding components. Hence, aim of this 

thesis is to shed light on physiologically important constituents of selected fruits and to disclose 

their bioactive potential by investigating their antioxidant capacity. Primarily, the identification of 

antioxidant phenolic compounds from these fruits is emphasized but macro- and micronutrients 

are studied as well. In cases of relevance, further bioactive substances like ascorbic acid or 

betalains are taken into account.  

Studies on Euterpe oleracea (açaí), Anacardium occidentale (cashew apple), and Myrtillocactus schenckii 

(garambullo) revealed a species-specific antioxidant capacity at different maturity stages of the 

fruits. The antioxidant capacity of açaí and garambullo decreased in the course of ripening 

whereas cashew apple showed a reverse trend. Amounts of phenolic compounds of all fruits were 

the highest in unripe condition which may be reflected by the antioxidant behavior of açaí and 

garambullo. However, cashew apple was characterized additionally by a high ascorbic acid 

content that increased during maturity and influenced thereby the radical scavenging activity of 

this fruit.  

A comprehensive chemical characterization was performed on ripe fruits of Clidemia rubra, which 

were scientifically described for the first time in a noteworthy extent. From a physiological point 

of view, a high content of dietary fiber as well as considerable amounts of minerals (Ca, Mn, and 

Zn) were found in comparison to other berry fruits. The identification and quantification of the 
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phenolic components showed high concentrations of anthocyanins and various flavonol 

glycosides.  

As scientific data for Byrsonima crassifolia (muruci), Syzygium cumini (jambolão), Psidium guineense 

(araçá), and Pouteria macrophylla (cutite) could rarely be found, fruits of these species originating 

from the Amazon region were subjected to a qualitative investigation of polyphenolic ingredients. 

Different compounds were detected like gallotannins, ellagitannins, quinic acid gallates, 

flavanonols, flavonols, and proanthocyanidins. Thereof, 18 substances were identified in araçá, 37 

in jambolão, 19 in muruci, and 22 in cutite. The determination of the antioxidant capacity 

resulted in following ranking: cutite > jambolão > araçá > muruci. In regard to its radical 

scavenging properties, cutite fruits could be put in part on a level with the extremely effective 

açaí.  

From an industrial point of view, it can be interesting to develop methods in order to isolate 

phenolic compounds being used as dietary supplements, functional foods or natural additives. 

High speed countercurrent chromatography (HSCCC) provides the opportunity to separate 

phenolic substances in a semi-preparative scale from their complex plant matrix. Thus, cyanidin 

3-O-rutinoside could exemplarily be isolated from Clidemia rubra berries in an appreciable purity 

(98%, measured by HPLC at 280 nm).  

On the basis of an intervention study it was observed to what extend bioactive substances 

potentially exert effects on the antioxidative status and oxidative stress in human. Data about the 

influence of fruit or fruit product consumption in vivo are inconsistent to date and depend often 

on singly measured parameters. In this crossover study, twelve subjects ingested a fruit juice rich 

in vitamin C and polyphenols composed of açaí, Andean blackberries, and camu camu. A 

significant increase was only denoted for plasma levels of ascorbic acid. All other parameters 

(DNA single strand breaks, F2-isoprostanes, TEAC, total phenolic content, triglycerides, 

vitamin E, β-carotene, uric acid, cholesterol) demonstrated no significant alterations. However, 

TOSC results of the intervention group did not show a significant decrease of the antioxidant 

capacity in plasma as it was observed for the control group. Thus, fruit juice consumption might 

have a stabilizing effect on the plasma antioxidant capacity. In addition, reducing substances were 

found in plasma after bolus ingestion of the juice by using HPLC-CEAD which suggests the 

formation of potent antioxidative metabolites. Further, gallic acid and a coumaric acid isomer 

were detected by HPLC-MS analysis after fruit juice consumption. Gallic acid seemed to be 

directly bioavailable from the juice blend whereas the coumaric acid isomer may moreover be 

derived from higher molecular polyphenols or coumaric acid conjugates. 
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Zusammenfassung 

In Lateinamerika sind zahlreiche Pflanzenarten beheimatet, die äußerst wohlschmeckende essbare 

Früchte tragen, deren Bekanntheitsgrad jedoch selten über regionale Grenzen hinausgeht. In 

ihren Verbreitungsgebieten sind diese Früchte eine wichtige Bezugsquelle für eine adäquate 

Nährstoffversorgung und zum Teil sogar als traditionelles Gut in der Gesellschaft fest verankert. 

Verschiedenste Gründe sorgen auch hierzulande für eine gesteigerte Nachfrage nach solchen 

exotischen Früchten. Sie bedienen nicht nur die Suche nach neuen Geschmackserlebnissen, 

sondern liefern auch einen wertvollen Beitrag zu einer ausgewogenen Ernährung. Schließlich ist 

aufgrund epidemiologischer Daten bekannt, dass ein hoher Verzehr von Obst und Gemüse das 

Risiko eindämmt, eine Zivilisationskrankheit zu erleiden. Des Weiteren erfahren Lebensmittel 

vermehrten Zuspruch, denen Zusatzstoffe wie Farbstoffe, Konservierungsstoffe, Antioxidantien 

und Aromen natürlicher Herkunft anstelle von künstlich erzeugten hinzugefügt werden. Viele 

wenig genutzte Früchte beherbergen dabei ein ungeahntes Potential für eine verstärkte 

kommerzielle Nutzung. Eine Kultivierung geeigneter Pflanzen würde den Menschen aus den 

häufig ärmeren ländlichen Regionen eine zusätzliche Einnahmequelle verschaffen und auch zum 

Erhalt und zur Diversifizierung unseres Ökosystems beitragen, sofern die Produktion unter 

Gesichtspunkten der Nachhaltigkeit verläuft.  

Voraussetzung für eine gesteigerte Wahrnehmung wenig genutzter Früchte seitens des 

Verbrauchers oder der Industrie ist ein umfassendes Wissen u.a. über die wertgebenden 

Inhaltsstoffe. Diese Arbeit soll somit der Aufklärung ernährungsphysiologisch wichtiger 

Bestandteile dienen und über Untersuchungen der antioxidativen Kapazität der Früchte deren 

bioaktives Potential aufzeigen. In ausgewählten Früchten werden Makro- und Mikronährstoffe 

untersucht, wobei das Hauptaugenmerk auf der Identifizierung antioxidativ wirkender 

Komponenten aus dem Bereich der phenolischen Verbindungen liegt. Am Rande wurden auch 

weitere bioaktive Substanzen wie Ascorbinsäure oder Betalaine berücksichtigt. 

Untersuchungen unterschiedlicher Reifegrade von Euterpe oleracea (Açaí), Anacardium occidentale 

(Cashewapfel) und Myrtillocactus schenckii (Garambullo) wiesen eine artspezifische antioxidative 

Kapazität auf. Während bei Açaí und Garambullo die antioxidative Kapazität im Verlauf der 

Reife abnahm, zeigte der Cashewapfel einen gegenläufigen Trend. Bei den drei Früchten lag im 

unreifen Zustand der höchste Gehalt phenolischer Verbindungen vor, was sich bei Açaí und 

Garambullo auch in der antioxidativen Kapazität widerspiegelte. Der Cashewapfel ist zusätzlich 

geprägt durch einen hohen Gehalt an Ascorbinsäure, deren Zunahme im Verlauf der Reife 

offensichtlich auch die Radikalfängereigenschaften dieser Frucht maßgeblich beeinflusst. 
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Erstmals wurde eine umfassende chemische Untersuchung an reifen Früchten der Clidemia rubra 

durchgeführt. Aus ernährungsphysiologischer Sicht konnten ein hoher Nahrungsfasergehalt 

sowie, im Vergleich zu anderen Beerenfrüchten, hohe Gehalte an einigen Mineralstoffen (Ca, Mn 

und Zn) festgestellt werden. Eine Identifizierung und Quantifizierung der phenolischen 

Komponenten zeigte eine hohe Konzentration an Anthocyanen sowie diversen 

Flavonolglykosiden.  

Vier Früchte aus dem Amazonasraum wurden einer qualitativen Untersuchung der 

polyphenolischen Inhaltsstoffe unterzogen. Diesbezügliche Daten zu Byrsonima crassifolia (Muruci), 

Syzygium cumini (Jambolão), Psidium guineense (Araçá) und Pouteria macrophylla (Cutite) sind kaum 

vorhanden gewesen. Insgesamt wurden 18 phenolische Verbindungen in Araçá, 37 in Jambolão, 

19 in Muruci und weitere 22 in Cutite identifiziert. Darunter waren unterschiedliche 

Verbindungen wie Gallotannine, Ellagtannine, Chinasäuregallate, Flavanonole, Flavonole, und 

Proanthocyanidine zu finden. Die Bestimmung der antioxidativen Kapazität zeigte folgendes 

Ranking: Cutite > Jambolão > Araçá > Muruci. Früchte der Cutite waren hinsichtlich ihrer 

Radikalfängereigenschaften z. T. der als antioxidativ äußerst wirksamen Açaí gleichzusetzen.  

Da es aus lebensmittelindustrieller Sicht interessant sein kann, sich einzelne phenolische 

Verbindungen für den Einsatz als Nahrungsergänzungsmittel, funktionelles Lebensmittel oder 

natürlichen Zusatzstoff zu Nutze zu machen, müssen Methoden entwickelt werden, mit denen 

diese Stoffe isoliert werden können. Die Gegenstromextraktionschromatographie (HSCCC) 

bietet die Möglichkeit der Abtrennung phenolischer Substanzen aus der komplexen pflanzlichen 

Matrix in semipräparativem Umfang. So konnte das Anthocyan Cyanidin-3-O-Rutinosid in 

nennenswerter Reinheit (98%, gemessen mit HPLC bei 280 nm) aus Clidemia rubra-Beeren isoliert 

werden. 

Inwiefern die in Früchten enthaltenen bioaktiven Substanzen eine Wirkung auf den 

antioxidativen Status bzw. oxidativen Stress beim Menschen ausüben, wurde anhand einer 

Interventionsstudie überprüft. Die Datenlage darüber, welchen Einfluss der Verzehr von 

Früchten oder Fruchtprodukten in vivo hat, ist bis heute widersprüchlich oder von den häufig nur 

einzeln gemessenen Parametern abhängig. In dieser Crossoverstudie bekamen 12 Probanden 

einen vitamin C- und polyphenolreichen Fruchtsaft bestehend aus Camu camu, Açaí und 

Andenbrombeeren zu trinken. Signifikante Veränderungen zeigten sich anhand eines transienten 

Anstieges des Ascorbinsäurespiegels im Verlauf des Messzeitraumes. Alle anderen Parameter 

(DNS-Strangbrüche, F2-Isoprostane, TEAC, Gesamtphenolgehalt, Triglyceride, Vitamin E, β-

Carotin, Harnsäure, Cholesterol) blieben unverändert. Allerdings kam es bei der TOSC-

Untersuchung in der Interventionsgruppe nicht zu einem signifikanten Abfall der antioxidativen 
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Kapazität im Plasma, wie es parallel in der Kontrollgruppe beobachtet wurde. Der Konsum des 

Fruchtsaftes könnte somit einen stabilisierenden Einfluss auf die antioxidative Kapazität im 

Plasma haben. Mithilfe von HPLC-CEAD-Messungen wurden nach Bolusgabe des Saftes 

reduzierend wirkende Substanzen im Plasma gefunden, was auf die Entstehung von antioxidativ 

wirksamen Metaboliten schließen lässt.  

Des Weiteren wurden anhand von LC-MS-Untersuchungen, durch den Fruchtsaft induziert, 

Gallussäure und ein Cumarsäureisomer im Plasma detektiert. Während die Gallussäure wohl 

direkt aus dem Saft bioverfügbar war, könnte das Cumarsäureisomer darüber hinaus aus 

höhermolekularen Polyphenolen oder Cumarsäurekonjugaten entstanden sein.  
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Introduction 

 1 

1 Introduction 

1.1 What does 'underutilized' mean? 

Tropical fruits are divided in different categories according to their economic importance. Firstly, 

the 'major tropical fruits' like banana, pineapple, and mango are cultivated in appropriate regional 

climates throughout the world. These fruits are well-known in both local and export markets. 

They have been subjected to comprehensive scientific data gathering including different aspects 

of agronomic practices, selection, breeding, plant protection and postharvest treatment (Galán-

Saúco, 1996). Secondly, 'minor fruits' are regarded as those species having a small commercial 

value of production and trade compared to major agricultural commodities (Gruère et al., 2006). 

These fruits require much effort to define general conditions on breeding, agronomic and 

postharvest constraints in order to obtain high yields (Galán-Saúco, 1996). According to Galán-

Saúco (1996), there is a third group comprising the wild tropical fruits that need to undergo 

evaluation and collection of genetic material. However, wild fruits may also be categorized as 

minor fruits because both definitions flow smoothly into each other. Consequently, underutilized 

fruits cannot clearly be assigned to one of the two latter categories.  

Even the term 'underutilized' has raised a discussion about a precise definition as it lacks any 

information on geographical, social and economic implications. For instance, species may be 

underutilized in some regions but not in others or they may be an important component of the 

daily diet for indigenous people but their poor marketing conditions make them underutilized in 

economic terms (Padulosi et al., 2002). A definition for underutilized crops is provided by Gruère 

et al. (2006) who keep three characteristics ready. Underutilized plants are those which are rather 

locally than globally abundant. Secondly, the local growers have practical knowledge of the plant 

species but lack of scientific knowledge on plant physiology as well as plants agronomic and 

ecological properties. The third aspect is the limited use of a plant species in relation to its 

economic potential. The growing of these underutilized crops generates a significant local income 

but does not provide a significant share to the national or international trade. An official 

definition of the International Plant Genetic Resources Institute is given by Eyzaguirre et al. 

(1999). Here, underutilized crops are recognized as those that grew once in a broad scale but have 

fallen into disuse because of different agronomic, genetic, economic and cultural reasons. These 

crops are used less as they cannot compete with other species in the same agricultural 

environment. In differentiation to underutilized crops Eyzaguirre et al. (1999) make also use of 

the term ‘neglected crop’, which are those grown for the subsistence of local communities. 

Neglected crops may be globally distributed but occupy niches in the local ecology and in 

production and consumption systems. These crops remain inadequately characterized and 
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neglected by research despite their practical use. In accordance with Padulosi et al. (2002) the 

term ‘underutilized’ will be used in a broad sense in the following in reference to both 

underutilized and neglected species.  

1.2 Socioeconomic importance of underutilized fruits and sustainable 
exploitation 

The worldwide consumption of fresh fruits in 2007 is estimated at 69.9 kg/capita/year and rose 

by 1.7% from 2006 to 2007. Fruit consumption in Germany in 2007 is estimated at 

88.0 kg/capita/year and grew by 2.8% towards 2006 (FAOSTAT, 2011a). Consumption 

saturation worldwide might be attained at 100-120 kg but is far from being reached (Janssens and 

Subramaniam, 2000). The minor tropical fruits, which include also underutilized fruits, were 

produced in an amount of 17.7 mio. t in 2009 representing a growth rate of 3.5 % in comparison 

to 2008 (FAOSTAT, 2011b). The developing countries produce 98% of the tropical fruits. The 

value of international trade for both fresh and processed fruits was estimated at about 4 billion 

US$ in 2004 with an indicated annual growth rate of 2.4% in export values. The bulk of the 

tropical fruits, which are imported into Germany, arrives from Latin America. The minor fruits 

come along with other sea freighted fruits, which are imported in particular with the banana 

shipments from that region. Although 90% of the tropical fruits are consumed in the producing 

countries their importance in trade cannot be over emphasized (FAO, 2011). 

The cultivation of underutilized fruits provides both socioeconomic and environmental benefits 

to ensure the livelihood of farmers from marginal areas. Apart from being a valuable nutritional 

source to the people (Mitra et al., 2010), many underutilized species are well adapted to harsh 

climate conditions (Bowe and Haq, 2010). Due to their natural occurrence, underutilized plants 

show a high degree of tolerance against biotic and abiotic stress (Mitra et al., 2010) and enrich the 

biodiversity in their environment (Bowe and Haq, 2010). The contribution of fruit production 

may be significant to income generation and alleviation of poverty. Local markets offer the most 

realistic potential for an additional cash income for poor people as no large infrastructure, 

processing technology or capital is required to reach them. On the other hand, local markets 

generate only a limited demand, whereas national and global markets show a greater potential. 

However, promotion of underutilized plant species at this level requires a detailed understanding 

of the supply chain (Gündel et al., 2003).  

The production and commercial exploitation of minor tropical fruits should be attended by 

conventions of a sustainable use. Strategic elements need to be developed for the promotion of 

underutilized plant species (Gündel et al., 2003; Vanhove and Van Damme, 2009). Such policy 

guidelines would prevent possible drawbacks like overexploitation and loss of genetic diversity as 



Introduction 

 3 

a consequence of unsustainable monoculture plantations (Gündel et al., 2003; Leakey et al., 2005) 

or the takeover of exploitation and seizing of profits by a rich elite (Van Looy et al., 2008). 

1.3 Why is there demand for underutilized tropical fruits?  

The growing demand for a diversified supply with tropical fruits is the consequence of 

technological advances, demographic changes and alterations in consumer’s perception in the 

Western world. The enhancement in postharvest handling technologies results in ameliorated 

storage conditions, packaging and transportation of perishable products (Ahmad and Chwee, 

2008). Immigration is attended by cultural and ethnic diversification and brings the world’s 

cuisine and foreign cooking traditions to the autochthonous population (Hermann, 2009). All in 

all, changes in the perception of the consumer may be the main cause for an increasing trade 

volume of tropical fruits. Sabbe et al. (2009) emphasized that the introduction of innovative 

tropical fruit juices has substantial potential for a long-term market presence in West European 

countries. The number of implemented novel fruit beverages rose by 60% between 2003 and 

2007 (Sabbe et al. 2009). Marketing aspects may play an important role for this development as 

fierce competition forces the companies to differentiate and add value to their products 

(Hermann, 2009). Furthermore, the consumer end desires not only for new tastes and flavors, 

but also the awareness of the consumer has arisen to attain beneficial effects for their health that 

is claimed to be derived from an increased consumption of fruits and fruit products (Ahmad and 

Chwee, 2008).  

An important issue is also that consumer abandon the purchase of foods containing artificial 

ingredients used by the food industry. The demand tends to products containing additives from 

natural resources optionally attributed with functional or added value (Giusti and Wrolstad, 

2003). Hence, a variety of colorants, antioxidants, preservatives, and flavors can be extracted 

from eligible underutilized fruits.  

1.4 Bioactive compounds 

There is large body of incidence that high consumption of fruits and vegetables can reduce the 

prevalence of degenerative illnesses like different types of cancer (Hertog et al., 1994), 

cardiovascular diseases (Shivashankara et al., 2010), and Alzheimer’s disease (Singh et al., 2008) or 

lifestyle diseases like obesity (Crujeiras et al., 2010; Santos et al., 2010) and its related disorders 

(McDougall et al., 2005). These beneficial health effects may be exerted inter alia by biologically 

active compounds like certain essential dietary constituents such as vitamin C or non-nutritive 

phytochemicals like phenolic compounds (Crozier et al., 2009; Szajdek and Borowska, 2008).  
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Vitamin C acts on the one hand as an important water-soluble antioxidant in biological fluids by 

scavenging physiologically relevant reactive oxygen species. In addition to this direct antiradical 

capacity, vitamin C is able to regenerate other antioxidants like α-tocopherol, glutathione, urate, 

and ß-carotene from their respective radical species (Carr et al. 1999). On the other hand, vitamin 

C exerts also regulatory functions on a cellular level by influencing gene expression and apoptosis 

(Balsano and Alisi, 2009).  

Phenolic compounds occur ubiquitary in plants. They are products of the phenylpropanoid 

biosynthetic pathway (Williamson and Clifford, 2010). The vast number of approximately 8000 

different phenolic compounds can be subdivided into flavonoids and non-flavonoids. 

Anthocyanins, chalcones and dihydrochalcones, flavanols, flavanones, flavones, flavonols, 

isoflavones, and proanthocyanins belong to the flavonoids (Williamson and Clifford, 2010). All 

these compounds show a diphenylpropane moiety (C6-C3-C6-skeleton) as common structural 

feature (Balsano and Alisi, 2009). Benzoic acids, cinnamic acids and its conjugates, and 

hydrolyzable tannins are assigned to the non-flavonoids (Williamson and Clifford, 2010).  

Because of the large number of phenolic compounds, it is difficult to elucidate all effects that 

result in different biological activities (Williamson and Clifford, 2010). Generally, polyphenols are 

attributed to have antimicrobial (Ferrazzano et al., 2011; Martins et al., 2011) and antioxidant 

properties (Holst and Williamson, 2008). They play a significant role in the prevention of 

oxidative stress, which is seen as the main cause in the development of degenerative diseases 

(Balsano and Alisi, 2009; Harfani and Souliman, 2007; Terao, 2009). Degenerative diseases can 

result from an imbalance between physiological free radical generation and insufficient free 

radical scavenging by enzymatic and non-enzymatic defense (Halliwell, 1997). Dietary phenolics 

and their metabolites perform also various physiological actions in vivo on different components 

of the intracellular signaling cascades, which are essential for cellular functions like growth, 

proliferation and apoptosis. They show regulatory effects on signaling pathways like nuclear 

factor-κB, activator protein-1 or mitogen-activated protein kinases (Crozier et al., 2009). By 

modulating these pathways, phenolic compounds may be seen as chemopreventive agents in 

cancerogenesis (Fresco et al., 2006) and exert neuroprotective effects (Singh et al., 2008). Further, 

numerous parameters involved in the pathogenesis of cardiovascular diseases are affected on a 

regulatory level by dietary phenolics as well. There is scientific evidence for effects on lipid 

metabolism disorders by decreasing total cholesterol, triglycerides and LDL-cholesterol, 

protection of platelet aggregation by increasing cAMP levels leading to lower intracellular Ca2+ 

concentrations, and the avoidance of endothelial dysfunctions by preventing hypertension via 

eNOS stimulation (Harfani and Souliman, 2007). 
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1.5 How to measure bioactivity? 

Many degenerative diseases are related to oxidative damages produced by radical species. The 

ability of a substance or a complex mixture to scavenge such radicals can be shown in vitro by 

determining the antioxidant capacity. Thus, the in vitro antioxidant capacity of a fruit may be used 

as a quality indicator demonstrating the content of bioactive compounds. However, it should be 

emphasized that results of these in vitro antioxidant capacity assays cannot replace in vivo studies 

which would be necessary for assessment of a potential physiological impact of a fruit. By 

initiating in vivo studies, for instance, the bioavailability of bioactive compounds or their 

transformation into metabolites can be taken into account (Espín et al., 2007). 

There is a great number of in vitro antioxidant capacity assays. Many of them underlie different 

principles in the radical scavenging process. For example, Trolox equivalent antioxidant capacity 

(TEAC), oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), 

total oxidant scavenging capacity (TOSC), total radical-trapping antioxidant parameter (TRAP) 

belong to the commonly used assays (Schaich, 2006). The TOSC assay was preferably chosen for 

analysis in this thesis as it enables the generation of different radicals that are physiologically 

relevant (Lichtenthäler et al., 2005). The area under the curve technique allows further to take the 

kinetic of antioxidants like phenolic compounds or ascorbic acid into account. Mostly, other 

assays only measure the inhibition rate at a fixed time or the lag phase reaction like the widely 

used ORAC. By observing the time course of ethylene formation different types of antioxidants 

can be distinguished like fast acting antioxidants or retardants (Lichtenthäler et al., 2003). As 

proposed by Schlesier et al. (2002) the use of at least two assays was preferred for most analysis 

due to the obvious differences between the test systems. The TOSC belongs to the hydrogen 

atom transfer (HAT) assays that measure the ability of antioxidants to donate hydrogen which, in 

turn, quenches radicals. In addition, the Folin-Ciocalteu total phenolic assay was chosen which 

generally performs a so called single electron transfer (SET). This assay measures the ability of 

antioxidants to transfer one or more electrons and to reduce the target compounds (Prior et al., 

2005). The Folin-Ciocalteu method is not only specific for phenolics and can be interfered by 

other reducing substances like sugars, amino acids, and ascorbic acid (Georgé et al., 2007). A third 

assay used for analysis on the antioxidant capacity is the TEAC in which both HAT and SET 

systems are combined (Prior et al., 2005).  

1.6 Objective and outline of the study 

The flora of Latin America bears a plethora of underutilized fruits containing compounds that 

have been shown to perform beneficial health effects and may additionally provide useful food 

technological properties. The knowledge on the composition of bioactive compounds and even 
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common nutritive ingredients like macronutrients and minerals in underutilized fruits is scarce. 

Thus, objective of this study was at first to contribute to the elucidation of biologically active and 

nutritive components in selected promising fruits as well as to evaluate their antioxidant capacity. 

Determinations will be performed on fruits of Euterpe oleracea (açaí), Anacardium occidentale (cashew 

apple), Myrtillocactus schenckii (garambullo) in the course of ripening in order to assess, which 

maturity stage provides the highest concentration of the target compounds (chapter 2.1.1). 

Further, ripe fruits of Byrsonima crassifolia (muruci), Syzygium cumini (jambolão), Psidium guineense 

(araçá), and Pouteria macrophylla (cutite) from the Amazon region as well as scientifically little-

noticed berries of Clidemia rubra from the Columbian highland will be subjected to a chemical 

characterization (chapter 2.1.2). Mass spectrometrical analysis was performed for identification of 

phenolic compounds in chapter 2.1.1 and 2.1.2. LC-UV-DAD-MS/MS experiments enable 

partial structure elucidation and unambiguous identification of phenolic compounds when used 

in combination with authentic standards. Fragmentation of the quasi-molecular ion leads to the 

aglycone enabling the mostly clear identification (Papagiannopoulos et al., 2004).   

The isolation of verifiable bioactive substances is the second goal of this thesis. Chapter 2.2 will 

exemplarily show a method how to separate anthocyanins from their plant matrix in a semi-

preparative scale.   

Chapter 2.3 will further contribute to the elucidation of in vivo effects after fruit juice 

consumption. There is striking epidemiological evidence for health benefits from a diet rich in 

fruits and vegetables, but shedding light on causes of these beneficial effects is still challenging. 

Possible changes of important plasma antioxidants and markers indicating oxidative stress as a 

consequence of the ingestion of a tropical fruit juice rich in phenolic compounds and vitamin C 

will be surveyed on the basis of a comprehensive intervention study with human participants. 

Eventually, the question of the bioavailability of individual phenolic compounds will also be 

explored.   
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2 Results and discussion 

2.1 Chemical characterization and antioxidant capacity of underutilized fruits 

2.1.1 Changes of bioactive compounds during ripening  

In general, underutilized fruits have been scientifically insufficiently studied although many of 

them bear a great potential for an intensified commercial use. This can be either as dietary 

supplement or functional food, for example, due to the food technological properties of their 

bioactive compound. Total amounts of the phytochemical constituents and the antioxidant 

capacity of a fruit depend on the degree of ripening. Hence, it might be more useful to harvest 

some species already during ripening since they provide better functional properties in immature 

condition. If a fruit is not only marketed for consumption, its phenolic compounds can be used 

as antioxidants (El-Hela and Abdullah, 2010) or inhibitors of undesirable microbial growth 

(Jalosinska and Wilczak, 2009). Vitamin C, which is known to be an important physiological 

antioxidant, has already been traditionally applied in foods (Bauernfeind and Pinkert, 1970).  

In this study, evaluation of the bioactive potential in the course of ripening was performed on 

açaí (Euterpe oleracea), cashew apple (Anarcadium occidentale) and garambullo (Myrtillocactus 

geometrizans). Açaí and cashew apple have shown a big potential for intensified cultivation as they 

can be used in processed form or as functional food ingredient (Hoffmann-Ribani et al., 2009; 

Messias, 2010; Espirito-Santo et al., 2010). These fruits have already been studied to some extend 

in ripe condition e.g. by Kang et al. (2011) and Hoffmann-Ribani et al. (2009), respectively. 

However, nothing is known on the composition of bioactive substances during maturation. 

Scientific information on garambullos is scarce, in general.  

2.1.1.1 Açaí  

2.1.1.1.1 Bioactive compounds 

The bioactive compounds evaluated in açaí fruits consist of a variety of different phenolic 

substances which were identified and quantified by HPLC-ESI-MS/MS.   

Anthocyanins were found to be responsible for the deep purple color in açaí what is already 

known from previous reports (Lichtenthäler et al., 2005; Schauss et al., 2006). As expected, no 

anthocyanins were present in unripe açaí samples. Medium-ripe fruits contained pelargonidin 3-

O-glucoside, peonidin 3-O-glucoside, peonidin 3-O-rutinoside, cyanidin 3-O-glucoside, and 

cyanidin 3-O-rutinoside. A total of six individual anthocyanins (cyanidin 3-O-sambubioside in 

addition to the four previously mentioned anthocyanins) was found in ripe fruits. Thereof, 

cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside turned out to be the major anthocyanin 
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components, which is in accordance to a report of Schauss et al. (2006). An overview of the 

accumulation of anthocyanins in açaí is given in table A.4.3 (p.42).  

Beside the general increase of the anthocyanin concentration, it was also observed that the 

relation of the individual anthocyanin amounts was different in each ripening stage. The ratio of 

cyanidin 3-O-glucoside to cyanidin 3-O-rutinoside accounted for 1:1 in the intermediate ripening 

stage [cyanidin 3-O-glucoside: 0.29 ± 0.05 mg/100 g dry matter (DM), cyanidin 3-O-rutinoside: 

0.31 ± 0.04 mg/100 g DM]. In ripe fruits, on the contrary, the ratio increased in favor of cyanidin 

3-O-rutinoside to approximately 4:1 (cyanidin 3-O-rutinoside: 17.86 ± 1.59 mg/100 g DM, 

cyanidin 3-O-glucoside: 4.94 ± 0.55 mg/100 g DM). Siriwoharn et al. (2004) reported on changes 

in anthocyanin biosynthesis during ripening in two blackberry cultivars. Cyanidin 3-O-glucoside 

and cyanidin 3-O-rutinoside were determined as main anthocyanin compounds. But unlike in 

açaí, the content of cyanidin 3-O-glucoside increased steadily whereas amounts of cyanidin 3-O-

rutinoside decreased from unripe to ripe fruits. Fernández-López et al. (1998) observed a decline 

of cyanidin 3-O-glucosid concentration in ripening grapes. They noted that in the biosynthesis of 

anthocyanidins in Vitis ssp. cyanidin typically occurs as a precursor molecule of peonidin 

derivatives. Conclusively, according to these results there are no general regularities deducible for 

the formation of individual anthocyanins during ripening in fruits. Only the increase of total 

anthocyanins in general is apparent. 

Regarding the non-anthocyanin phenolic compounds in açaí, a total of eight phenolic acids and 

phenolic acid derivatives, eight flavones, and one flavanonol were identified (table A.4.3, p.42). 

With exception of p-coumaric acid all compounds were present in each of the three ripening 

stages. On the contrary to the anthocyanins, the highest concentrations of individual non-

anthocyanin phenolics were generally found in unripe fruits (with exception of gallic acid). 

Amounts of the main flavones in each ripening stage could be ranked as follows: orientin >> 

homoorientin >> vitexin > isovitexin. Vanillic acid, p-hydroxybenzoic acid, and syringic acid 

were found in noteworthy amounts among the phenolic acids. Whereas amounts of all non-

anthocyanin flavonoids and hydroxycinnamic acids consistently decreased during maturation, 

some exceptions could be observed in regard to the hydroxybenzoic acids. The concentration of 

gallic acid was the highest in intermediate ripe fruits. In case of syringic acid and protocatechuic 

acid, amounts decreased at first from unripe to intermediate ripe fruits and increased 

subsequently with further ripening. 

In accordance with açaí, decreasing amounts of hydroxycinnamic acids in the course of fruit 

ripening were also reported by other authors (Dragovic-Uzelac et al., 2007 and Gruz et al., 2011). 

Interestingly, Xu et al. (2008) found that chlorogenic acid in Citrus cultivars vanished almost 
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completely during ripening which is in agreement with changes of this hydroxycinnamic acid 

derivative in açaí.  

The biosynthesis of hydroxybenzoic acids in açaí during ripening was different to that reported 

by other authors. For instance, Gruz et al. (2011) observed in different ripening stages of medlar 

fruits that contents of free protocatechuic acid and syringic acid consistently decreased whereas 

an accumulation occurred in case of p-hydroxybenzoic acid.   

Changes of individual flavones during ripening have not been reported previously. However, 

Dragovic-Uzelac et al. (2007) found the highest values of flavonols in the initial maturity stage in 

apricot cultivars. 

The findings of phenolic acids and non-anthocyanin flavonoids in ripe açaí are in a great extend 

in common with other reports. On the contrary to findings of Lichtenthäler et al. (2005), Del 

Pozo-Insfran et al. (2004) and Pacheco-Palencia et al. (2009) the presence of ferulic acid and p-

coumaric acid could not be constituted in our samples. On the other hand, chlorogenic acid and 

caffeic acid were mentioned for the first time. The identified flavones were previously constituted 

by Schauss et al. (2006) and Kang et al. (2010) with exception of luteolin 7-O-glucoside, 

chrysoeriol, and taxifolin. 

2.1.1.1.2 Antioxidant capacity 

The antioxidant capacity in açaí was assessed by using Folin-Ciocalteu, TEAC, and TOSC. An 

overview of the results is given in table A.4.4 (p.46). Unripe fruits showed the best antiradical 

behavior in all three assays. Further, a continuous decrease of the antioxidant capacity was 

observed in the course of ripening for TEAC and TOSC (TEAC: 16.99 ± 0.71 µmol 

Trolox/100 g DM in unripe fruits to 2.78 ± 0.10 µmol Trolox/100 g DM in ripe fruits; TOSC 

px: 12.1 mg DM/100 mL in unripe fruits to 24.0 mg DM/100 mL in ripe fruits; TOSC pn: 

46.4 mg DM/100 mL in unripe fruits to 87.2 mg DM/100 mL in ripe fruits; note: TOSC values 

indicate the amount of lyophilized fruit sample that is needed to obtain a 50% inhibition of the 

radical activity). The Folin-Ciocalteu assay showed the lowest value in the intermediate ripening 

stage which was followed by a slight increase in ripe fruits (12316.5 ± 264.2 mg gallic acid 

equivalents/100 g DM in unripe fruits to 3437.0 ± 154.0 gallic acid equivalents/100 g DM in ripe 

fruits).   

The TEAC antioxidant capacity of the ripe açaí fruits is in accordance with values found for 

different commercial açaí pulps. Depending on the water content of the pulps, the TEAC ranges 

approximately between 1.02 and 5.25 µmol Trolox equivalent/100 g DM (Dos Santos et al., 

2008). TOSC values of ripe açaí turned out being at least 1.5-fold higher regarding both radicals 

than those found in pulps of different harvest periods described in Lichtenthäler et al. (2005).  
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The trend of a decreasing antioxidant capacity during ripening was also observed in strawberries 

by Pineli et al. (2011). In opposite to these results, durian fruits showed the lowest antioxidant 

capacity in the immature ripening stage (Haruenkit et al., 2010). Conclusively, there is no 

generalization or a consistent trend derivable for the antioxidant capacity in different ripening 

stages of fruits. 

Furthermore, it was observed that the reduction of the antioxidant capacity in the course of 

ripening is less distinctive for TOSC than for TEAC. In order to elucidate which compounds are 

responsible for the antioxidant capacity, authentic standards of the main individual phenolic 

compounds in açaí, were evaluated by TOSC (table A.4.5, p.47). The results indicated that the 

radical scavenging system of the TOSC assay is more influenced by not identified compounds. 

Most likely is a contribution of condensed polyphenols (Lichtenthäler et al., 2005). 

Results of the antioxidant capacity and quantification of phenolic substances throughout ripening 

show that processing of açaí seems to be useful not only in ripe condition as health promoting 

product. Also extracts from unripe fruits may be interesting for the industry, e.g., as additive due 

to the considerably high content of polyphenols. 

2.1.1.2 Garambullo 

2.1.1.2.1 Bioactive compounds 

In total ten phenolic constituents were identified by LC-ESI-MS/MS in three different ripening 

stages of garambullos. An overview of the phenolic constituents is given in table B.3.1 (p. 55). 

Two phenolic acids were detected, but they were not present throughout the progress of 

ripening. Protocatechuic acid was only found in unripe and medium ripe fruits whereas caffeic 

acid was merely identified in ripe fruits. Furthermore, the occurrence of six different flavonols 

such as kaempferol and quercetin derivatives was constituted. All flavonols were present in each 

maturity stage as well as two different flavone glucosides of luteolin.  

The presence of flavonols and flavones was constituted for the first time in garambullo fruits. 

One report is known on the detection of gallic acid and caffeic acid (Guzmán-Maldonaldo et al., 

2010). The finding of caffeic acid in ripe fruits is in accordance with our results. Gallic acid was 

not found in any of the three maturity stages. Quercetin 3-O-rutinoside, kaempferol 3-O-

rutinoside, and quercetin 3-O-glucoside turned out to be the main compounds of the detected 

phenolic constituents throughout ripening.  

Total amounts of the identified compounds in each maturity stage showed that the highest 

phenolic content occurred in unripe fruits (9.67 ± 0.83 mg/100 g DM). In the medium ripe 

fruits, the phenolic content decreased (6.98 ± 1.05 mg/100 g DM), but rose again in ripen fruits 
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(8.69 ± 0.80 mg/100 g DM). The decrease of the phenolic content from unripe to medium ripe 

fruits was significant for the most of the individually evaluated phenolic compounds. Kaempferol 

3-O-rutinosed was the only compounds that significantly increased from medium ripe fruits to 

ripe fruits.  

By comparing the ratio of the identified phenolic compounds in each ripening stage, it was found 

that percentages of kaempferol 3-O-rutinoside increased considerably (see figure B.3.2, p.57). As 

a consequence, a decline was observed for quercetin 3-O-glucoside and protocatechuic acid. 

Percentages of the quantitatively dominating quercetin 3-O-rutinoside alternated during ripening. 

From unripe to medium ripe fruits, an increase was observed from 38% to 44%. In ripe 

garambullo, quercetin 3-O-glucoside had a part of 40%of the identified phenolic compounds. All 

other phenolic compounds were present in more or less the same percentages in each ripening 

stage. 

With regard to the biosynthesis of individual flavonols in fruits during ripening, the results of 

garambullo were different to that of bush butter fruits. On the contrary to garambullo, amounts 

of individual quercetin glycosides increased between two early ripening stages and showed 

subsequently a decline with progressing maturity (Missang et al., 2003). Results were also different 

in common apples. High flavonol concentrations were found accordingly to garambullo at early 

maturity stage. But flavonols decreased gradually resulting in the lowest amounts in ripe fruits (Li 

et al., 2002). In agreement with garambullo fruits, Awad et al. (2003) constituted some fluctuations 

in the ranking of individual quercetin glycosides. Conclusively, it can be stated that the rate of 

flavonol biosynthesis during ripening seems to depend on the fruit species. 

2.1.1.2.2 Antioxidant capacity 

The antioxidant capacity was determined of two different extracts (aqueous and acetone) of 

garambullo by using TOSC assay (table B.3.2, p. 58). The acetone extract showed a higher 

radical scavenging activity in comparison to the water extract, probably in consequence of a 

better solubility of the phenolic compounds in the organic phase.  

Concerning px, a steady decrease of the antioxidant capacity was observed for both extracts in 

the course of ripening. The same result could already be demonstrated in an aqueous açaí extract. 

In order to compare the radical scavenging properties of ripe garambullo to other betalain 

containing fruits, the antioxidant capacity of prickly pears was determined in this study. Results 

against px were similar for both fruits (2.50 g DM/L for garambullo and 2.41 g DM/L for prickly 

pear). Interestingly, the antioxidant capacity of these betalain containing fruits is rather moderate 

in comparison to those colored by anthocyanins such as Clidemia rubra berries (Gordon et al., 

2011a) or jambolão fruits (Gordon et al., 2011b).  



Results and discussion 

 14 

In regard to pn, a continuous decrease of the antioxidant capacity in the course of ripening was 

only observed for the acetone extract. The water extract of garambullo showed the highest radical 

scavenging activity in unripe fruits and the least in intermediate ripe fruits according to the total 

amount of the identified phenolic compounds.  

Referring to the water extract, ripe garambullo can be attributed a higher antiradical activity 

against pn in comparison to prickly pears (3.33 g DM/L for garambullo and 4.33 g DM/L for 

prickly pear). However, the antioxidant capacity against pn is lower than that of Clidemia rubra 

berries (Gordon et al., 2011a) or açaí fruits (Lichtenthäler et al., 2005).    

Interestingly, the TOSC values resulting from the water extract of ripe garambullo against px and 

pn were characterized by a relatively small difference. Usually, fruit extracts have been shown to 

be considerably more effective against px than against pn (Gordon et al., 2011b).  

HPLC analyses of garambullo fruits let assume an increase of the betalain content during 

ripening. Therefore, the influence of the betalains on the antioxidant capacity was evaluated by 

activity-guided fractionation. Those fractions, in which the betalains were suspected, showed an 

increasing antioxidant capacity from unripe to ripe fruits. Hence, an identifiable influence of 

betalains to the radical scavenging behavior could be constituted. However, the increasing 

antioxidant capacity of these fractions could not compensate the decline in the overall 

antioxidant capacity from unripe to ripe fruits. Decreasing amounts of unknown compounds 

(possibly phenolic acid conjugates and flavonoid glycosides) gave rise to a regressive antioxidant 

activity in the remaining fractions. 

2.1.1.3 Cashew apple 

2.1.1.3.1 Bioactive compounds 

Ascorbic acid was found in all maturity stages of cashew apple. Results indicated a significant 

increase of ascorbic acid in the course of ripening (1038 ± 31 mg/100 g DM in unripe fruits to 

1731 ± 45 mg/100 g DM in ripe fruits). Literature studies on ascorbic acid in different maturity 

stages of cashew apple are not known, but amounts of ascorbic acid in ripe fruits are in 

accordance to those found by Akinwale (2000). However, different cashew apple cultivars 

determined by Assunção and Mercadante (2003) showed approximately 50% lower contents of 

ascorbic acid. The ascorbic acid content in ripe cashew apple is remarkably high in general. 

Amounts are 4-5 times higher compared to those found in kiwi fruits or oranges and can be 

ranked at the same level with guavas (Souci et al., 1989).  

Accumulation of ascorbic acid during the ripening process was also observed in guavas 

(Mercado-Silva et al., 1998). On the contrary, Celik et al. (2008) reported on decreasing 
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concentrations in ripening cranberries. Hence, the biosynthesis of ascorbic acid in the course 

ripening seems to depend on the fruit species. 

In total, 14 phenolic constituents were mass spectrometrically identified during the ripening 

process of cashew apple (see table C.4.1, p. 69). Among these compounds, nine different 

flavonols were unambiguously assigned by using authentic standards and two quercetin 

pentosides were tentatively identified. Furthermore, epigallocatechin, epigallocatechin gallate and 

gallic acid were detected. 

All detected phenolic compounds were present in unripe fruits. Their amounts decreased 

significantly from unripe to medium ripe fruits (p < 0.05). Kaempferol 3-O-glucoside, myricetin, 

and quercetin vanished completely. From medium ripe fruits to ripe fruits, a further decrease was 

observed for flavanols, quercetin pentosides, myricitrin, and quercetin hexosides of which 

quercetin 4’-O-glucoside was no longer detectable in ripe fruits. In contrast to these compounds, 

amounts of gallic acid and quercetin 3-O-rhamnoside increased. All changes from medium ripe 

fruits to ripe fruits were not found to be significant. The decline in the concentration of the 

phenolic compounds from the initial maturity stage to medium ripe fruits suggests that the 

biosynthesis becomes less intensive after stages of cell differentiation and during subsequent 

maturation as observed in bitter oranges (Castillo et al., 1992). In accordance with the results of 

cashew apple, the highest values of flavonols were also found in the initial maturity stage of 

apricots (Dragovic-Uzelac et al., 2007), common apples (Awad et al., 2001), and camu camu 

(Chirinos et al., 2010). Furthermore, the decrease of flavanols is in accordance with a report of 

Almeida et al. (2007) who found a higher activity for enzymes involved in the biosynthesis of 

these flavonoids rather in the early developmental stage of strawberries. In case of 

hydroxybenzoic acids, Gruz et al. (2011) observed in medlar fruits (Mespilus germanica L.) that 

concentrations of free protocatechuic acid and syringic acid decreased during maturation as 

observed for gallic acid in cashew apple from unripe to medium ripe fruits. The decrease of free 

phenolic esters in medlar fruits is explained by their integration into cell walls. 

Interesting results were observed by comparing the ratios of the detected phenolic constituents in 

each ripening stage of cashew apple. Although concentrations of quercetin 3-O-galactoside, 

quercetin 3-O-rhamnoside, and myricitrin decreased during ripening, these flavonols were 

present in similar percentages in each ripening stage. E.g., quercetin 3-O-galactoside showed 

values of 17%, 19%, and 17% as observed from unripe to ripe fruits. The quercetin pentosides 

and gallic acid increased remarkably (e.g. quercetin 3-O-arabinoside from 4% to 8%; gallic acid 

from 11% to 19%) whereas a decrease was found for epigallocatechin (from 8% to 1%), 

epigallocatechin gallate, and quercetin 3-O-glucoside. In regard to the flavonols, Awad et al. 
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(2001) reported that the ratio of the principal quercetin glycosides in different cultivars of 

common apples (3-O-galactoside, 3-O-rhamnoside, 3-O-glucoside) undergo a permanent change 

during ripening which could only be constituted for quercetin 3-O-glucoside in cashew apple. 

Two previously published reports provide information on individual phenolic compound in ripe 

cashew apple. Gallic acid, myricitrin, quercetin 3-O-galactoside, quercetin 3-O-glucoside, 

quercetin 3-O-rhamnosid, kaempferol 3-O-glucoside, myricetin, and quercetin were identified by 

Michodjehoun-Mestres et al. (2009). In accordance to our results, myricitrin, quercetin 3-O-

galactoside, quercetin 3-O-glucoside, and quercetin 3-O-rhamnoside were quantified in similar 

amounts in cashew apple. De Brito et al. (2007) constituted the presence of the compounds 

myricitrin, quercetin 3-O-galactoside, quercetin 3-O-glucoside, quercetin 3-O-rhamnoside, and 

kaempferol 3-O-glucoside as well as three different quercetin pentosides. Epigallocatechin and 

epigallocatechin gallate are mentioned for the first time to be present in cashew apple.  

2.1.1.3.2 Antioxidant capacity 

The antioxidant capacity increased during maturity in cashew apples measured by TOSC. The 

results are presented in table C.4.2 (p. 71). Ripe cashew apples show approximately a twice as 

high radical scavenging activity against both px and pn in ripe condition (0.79 g DM/L and 1.00 g 

DM/L, respectively) when compared to unripe fruits (1.38 g DM/L and 1.88 g DM/L, 

respectively). Cashew apple shows high antioxidant properties against both radicals in 

comparison to other fruits from Latin America. The antioxidant capacity of ripe cashew pseudo 

fruits against px was higher than that of Clidemia rubra berries (Gordon et al., 2011a) and was, in 

contrast, lower than that of cutite fruits (Gordon et al., 2011b) and açaí (Lichtenthäler et al., 2005). 

Further, cashew apple turned out to be a good scavenger of pn. Its antioxidant activity against pn 

is higher than that of açaí (Lichtenthäler et al., 2005), Clidemia rubra berries (Gordon et al., 2011a) 

or muruci, jambolão and araçá fruits from the Amazon region (Gordon et al., 2011b).  

An explanation for the antiradical behavior of cashew apple might be concluded from a report of 

Lichtenthäler et al. (2003). Studies on ascorbic acid showed a 4-5 times lower antioxidant activity 

against px in comparison to those of different phenolic standard compounds. Against pn, the 

difference between the polyphenols and ascorbic acid was less distinctive (only 1-2 times). 

Further, Lichtenthäler et al. (2003) found a nearly identical radical scavenging activity of ascorbic 

acid against px and pn. In consequence of these results, it becomes obvious that ascorbic acid has 

considerable influence on the antioxidant capacity of cashew apple. Firstly, the rising ascorbic 

acid concentration during ripening parallels the course of the antioxidant activity against both 

radicals. Amounts of ascorbic acid in each ripening stage are remarkably higher than those of the 

identified and quantified phenolic compounds (Total amounts - unripe: 20.40 mg/100 g DM, 
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medium ripe: 5.16 mg/100 g DM, ripe: 4.92 mg/100 g DM). Secondly, the high amounts of 

ascorbic acid in cashew apples are an explanation for the good antioxidant activity especially 

against pn.  

2.1.2 Scientifically little-mentioned ripe fruits 

2.1.2.1 Berries of Clidemia rubra (Melastomatacea) 

2.1.2.1.1 Bioactive compounds 

Clidemia rubra berries showed an ascorbic acid content of 8.44 ± 0.02 mg/100 g FW which is low 

compared to other berry fruits. Only grapes indicate lower ascorbic acid contents between 2.0-

7.4 mg/100 g FW (Souci et al., 2008). 

Beside ascorbic acid, phenolic constituents were found to be another group of biologically active 

compounds in Clidemia rubra berries. Anthocyanins were found to be responsible for the bluish to 

black coloring of the berries. Delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, and cyanidin 3-

O-rutinoside could be identified by mass spectrometrical analysis (table D.4.2, p. 84). 

Delphinidin 3-O-rutinoside was at least tentatively assigned. After quantification, the 3-O-

rutinosides of cyanidin and delphinidin (39.45 ± 1.66 mg/100 g fresh weight [FW] and 23.74 ± 

1.18 mg/100 g FW, respectively) turned out to be the main anthocyanins followed by the 

respective 3-O-glucosides (11.68 ± 0.56 mg/100 g FW for cyanidin 3-O-glucoside and 6.08 ± 

0.35 mg/100 g FW for delphinidin 3-O-glucoside).   

Lowry (1975) showed the presence of malvidin glycosides in flowers and mainly delphinidin and 

pelargonidin glycosides in fruits of different Melastomataceae varieties. In this report, an acylated 

delphinidin 3,5-O-diglucoside was found in Clidemia hirta Don.   

The total anthocyanin content of Clidemia rubra berries is about five-fold higher compared to that 

of red currants or different gooseberry cultivars (Wu et al., 2004). However, amounts are 

approximately five times lower than those of black currant cultivars (Wu et al., 2004) and 1.75-

2.75 times lower than those found in different Andean blackberry cultivars (Mertz et al., 2007). 

Non-anthocyanin phenolic constituents are presented in table D.4.3 (p. 86). In total, five 

phenolic acids were identified in Clidemia rubra berries. Quantitatively, vanillic and gallic acid (1.43 

± 0.02 and 0.56 ± 0.01 mg/100 g FW, respectively) were the most dominant phenolic acids. In 

addition, three flavan-3-ols were found of which epigallocatechin gallate was the dominating 

compound (2.99 ± 0.16 mg/100 g FW). Eleven different flavonols that are derived from 

myricetin and quercetin are present in berries of Clidemia rubra. Nine of these compounds could 

be identified by using authentic standards whereas two substances were only tentatively assigned 

as quercetin pentosides. Quercetin 3-O-arabinoside and quercetin 3-O-rhamnoside showed the 
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highest amounts among the non-anthocyanin flavonoids (5.26 ± 0.16 and 5.06 ± 0.08 mg/100g 

FW). Information on flavonoids in fruits of Melastomataceae varieties is not known. Only a few 

reports were found on flavonoids in Melastomataceae flowers or leaves. Mimura et al. (2004) 

identified 17 different flavone and flavonol glycosides in Huberia leaves. The same compound 

classes were found in leaves of Miconia alypifolia (Mancini et al., 2008). One report describes the 

identification of kaempferol glycosides in Melastoma malbathricum L. flowers (Susanti et al., 2007). 

The presence of kaempferol and kaempferol glycosides as well as the presence of flavones like 

apigenin and luteolin could not be approved in Clidemia rubra berries.  

The content of the non-anthocyanin phenolic compounds in Clidemia rubra berries seems to be 

considerably high. The amount of identified flavonols is comparable to that found in Andean 

blackberries (Mertz et al., 2007), cranberries, and bog whortleberries and is four times higher than 

that of bilberries, blueberries, and red gooseberries from Finland (Häkkinen et al., 1999). 

2.1.2.1.2 Antioxidant capacity 

The antioxidant activity measured by TOSC resulted in 0.9 g DM/L and 2.0 g DM/L. This 

amount of lyophilized Clidemia rubra sample was needed to inhibit the ethylene formation of 50% 

against px and pn, respectively (see also figure D.4.3, p.88). According to a report by 

Lichtenthäler and Marx (2005), high values for the antioxidant capacity against px and pn have 

generally been exhibited by anthocyanin-containing fruit juices. Clidemia rubra berries can be 

ranked between elderberry juice and sour cherry nectar. Compared to frequently consumed juices 

like that of oranges or apples, the antioxidant activity against pn is about three times higher. 

The main part of the antioxidant capacity is ascribed to ascorbic acid and polyphenols, especially 

to anthocyanins as assessed by activity-guided fractionation. The fraction containing ascorbic acid 

and two fractions containing the anthocyanins showed the highest antioxidant capacity against px 

(figure D.4.4, p.89) 

2.1.2.1.3 Evaluation of nutritive compounds  

In addition to the determination of bioactive compounds, a proper evaluation of nutritive 

compounds in Clidemia rubra berries is presented in this thesis. Clidemia rubra berries showed a fat 

content of 1.03 ± 0.01 g/100 g FW. This result is comparable to that of other berries like 

blackberries, blueberries or raspberries which generally contain 1% or less of fat (Souci et al., 

2008).  

The nitrogen content was 0.19 ± 0.01 g/100 g FW and protein content accounted for 1.18 ± 

0.03 g/100 g FW. The results of the protein content of berries of Clidemia rubra are in accordance 

with commonly cultivated berries. The highest amount of protein is found in black currants 
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whereas blueberries offer an averaged protein content of only 0.60 g/100 g FW (Souci et al., 

2008).  

The dominant sugars found in Clidemia rubra berries were glucose and fructose. Amounts of 

glucose and fructose were 3.24 ± 0.06 g/100 g FW and 3.75 ± 0.10 g/100 g FW, respectively. The 

sugar content as well as the glucose-fructose ratio is comparable to that of other berries like black 

currant, blueberry or gooseberry (Souci et al., 2008). Saccharose was found to be 

< 0.1 g/100 g FW. 

Clidemia rubra berries are found to be a good source of dietary fibers. The determined content was 

8.85 g±0.02 g/100 g FW which is about twice the amount contained in blueberries and 

raspberries (Souci et al., 2008). An explanation for this high value might be the dry matter content 

that is likewise higher when compared to that of blueberries and raspberries. The dry matter of 

black currants (Souci et al., 2008) and camarinha fruits (Bramorski et al., 2010) is comparable to 

that of Clidemia rubra berries. Hence, the total dietary fiber of black currants (6.8 g/100 g FW) and 

camarinha (6.5 g/100 g FW) is higher than that of blueberries and raspberries but nonetheless 

lower compared to that of Clidemia rubra berries.   

Mineral analysis by AAS showed high concentrations of calcium, zinc, and manganese when 

compared to other common berry fruits (Souci et al., 2008). Table D.4.1 (p. 82) shows in detail 

all determined minerals.  

Clidemia rubra berries indicated a pH value of 3.0. The amount of TTA was determined as 

138.8 mmol/L and 8.9 g/L calculated as citric acid. Compared to results of other berries from 

the literature, the acid concentration in berries of Clidemia rubra is low. For example, Rubinskiene 

et al. (2006) and Zatylny et al. (2005) found almost up to 5 times higher amounts for TTA in black 

currant. Even lower amounts of TTA (up to 0.35 g/100 g FW) were reported for other Vaccinium 

cultivars (Saftner et al., 2008).  

2.1.2.2 Underutilized fruits from the Amazon region 

2.1.2.2.1 Bioactive compounds 

The polyphenolic constituents in the edible part of four underutilized fruits from the Amazon 

region were investigated by HPLC/DAD-ESI-MSn. Only a few studies exist on the phenolic 

composition of jambolão fruits (Syzygium cumini), and no studies have been published on 

individual phenolic substances in fruits of araçá (Psidium guineense), muruci (Byrsonima crassifolia), 

and cutite (Pouteria macrophylla).   

Different compounds like gallotannins, ellagitannins, quinic acid gallates, flavanonols, flavonols, 

and proanthocyanidins were detected in the four fruits. Thereof, 18 substances were identified in 

araçá, 37 in jambolão, 19 in muruci, and 22 in cutite. Interestingly, no flavonoids could be found 
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in araçá but only gallic acid derivatives. Cutite and muruci present different galloylquinic acid 

derivatives, which have rarely been proven in fruits. All (tentatively) identified constituents in 

araçá, jambolão, muruci, and cutite are listed in tables E.4.1 (p. 101), E.4.2 (p. 104), E.4.3 (p. 

106), and E.4.4 (p. 108), respectively. 

Results of the ascorbic acid determination showed that noticeable amounts were only found in 

cutite (247.5 ± 23.5 mg/100 g DM). Jambolão and araçá contained less than half of the 

concentration present in cutite (93.5 ± 12.0 and 101.3 ± 9.8 mg/100 g DM, respectively). 

Ascorbic acid in muruci could not unambiguously be identified. 

2.1.2.2.2 Antioxidant capacity 

In order to evaluate the bioactive potential of the fruits, aqueous extracts were determined on 

their radical scavenging activity against px and pn by TOSC. Additionally, the total phenolic 

content was measured by Folin-Ciocalteu. The results are summarized in table E.4.5 (p. 110).  

The highest antioxidant capacity against both radicals was assessed for cutite followed by 

jambolão, araçá, and muruci. Against px, cutite bore a 9-fold higher antioxidant capacity than 

muruci. Against pn, even the 12-fold amount of muruci sample is needed to obtain an inhibition 

of 50% of the ethylene generation when compared to that of cutite. According to both radicals, 

antioxidant properties between jambolão and araçá were less distinctive. However, both fruits 

showed an approximately 3 times (px) and 4-5 times (pn) lower radical scavenging capacity than 

cutite.  

Results of the TOSC assay were interrelated with those of the total phenolic content. The 

amounts of determined total phenols in the four fruits gave rise to the same ranking as described 

for px and pn. Hence, the antioxidant properties of each fruit can be ascribed to the total 

phenolic content in the meaning of the Folin-Ciocalteu test. The lowest phenolic content was 

found in muruci being roughly comparable to that of banana pulp (Faller and Fialho, 2010). The 

12-fold amount of total phenols was constituted in cutite matching with that of tropical highland 

blackberries (Acosta-Montoya et al., 2010).  

Beside the phenolic content, ascorbic acid may significantly contribute to the antioxidant 

behavior of cutite fruits. As described by Lichtenthäler et al. (2003) a similar concentration of 

ascorbic acid standard is needed to obtain a radical inhibition of 50% against both px and pn. 

This could explain the less pronounced difference of the antioxidant capacity of cutite against the 

two radicals (0.57 g DM/L against px and 0.83 g/L against pn). Jambolão showed a higher 

antioxidant capacity than araçá, although the content of ascorbic acid was slightly lower. Thus, 

antioxidant compounds other than ascorbic acid seem to significantly influence the radical 

scavenging behavior of jambolão. Finally, the comparably weak antioxidant activity of muruci 
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may be explained by the probable absence of ascorbic acid in this fruit in addition to the low total 

phenolic content.  

Up to now only a few studies are known about the antioxidant capacity of the four fruits from 

the Amazon region. Two different articles reported on the free radical scavenging behavior of 

jambolão and muruci. DPPH• assay conditions for the determination of both fruits were 

identical. Jambolão showed a 3-fold higher antioxidant capacity than muruci (Rufino et al., 2009; 

Rufino et al., 2010) which is in accordance to our findings. 

In comparison to other fruits originating from the Amazon basin, the antioxidant properties of 

cutite against pn determined by TOSC assay were higher than those of açaí pulp. Different 

harvest years of açaí (1998, 2000, and 2002) required concentrations between 1.17 and 1.72 g/L 

to obtain an inhibition of 50%. In contrast, the radical scavenging potential of cutite against px is 

less effective than that of açaí (0.39-0.48 g/L) (Lichtenthäler et al., 2005). 

2.2 Separation of bioactive compounds in a semi-preparative scale 

The use of phenolic constituents for medicinal or technological applications demands for a 

possibility to isolate individual compounds from complex matrices. A preparation of preferably 

authentic standards is also indispensable in order to assess possible pharmacological effects of 

particular phenolic substances. High speed countercurrent chromatography (HSCCC) is a state-

of-the-art method for the isolation of polyphenols from plant extracts as it works without any 

adsorption losses. High sample loads and the use of cheap solvents instead of expensive solid 

phase columns are further advantages over e.g. preparative HPLC (Schwarz et al., 2003).  

The following study intends to isolate phenolic compounds in a semi-preparative scale. HSCCC 

procedure is exemplified by berries of Clidemia rubra. These fruits have been shown to be rich in 

anthocyanins (Gordon et al., 2011a) which have gained interest due to their health beneficial 

effects and their technological applicability as food colorant (Coisson et al., 2005; Pazmino-Duran 

et al., 2001). 

The elution of the Clidemia rubra berry extract by HSCCC resulted in three main fractions 

detected at 280 nm (see figure F.3.2, p. 118). A subsequent determination of these fractions by 

HPLC/DAD primarily disclosed the presence of anthocyanins at 520 nm. Main fraction I (92-

104 min) contained cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, delphinidin 3-O-glucoside, 

and delphinidin 3-O-rutinoside which were all previously identified in Clidemia rubra berries 

(Gordon et al., 2011a). Cyanidin 3-O-rutinoside and delphinidin 3-O-rutinoside were 

predominantly present in this fraction in a relation of 1:2, whereas cyanidin 3-O-glucoside and 

delphinidin 3-O-glucoside were found in traces. Delphinidin 3-O-rutinoside was the 
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quantitatively dominating anthocyanin in main fraction II (173-188 min). Further, lower 

concentrations of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were constituted. An 

enrichment of an anthocyanin in high purity occurred in main fraction III (209-224 min). 

Cyanidin 3-O-rutinoside was the only detectable compound at 520 nm as determined by HPLC 

analysis. The more unspecific wave length at 280 nm showed the presence of only one further 

non-anthocyanin constituent (λmax at 367 nm) in fraction III in a low concentration. The peak 

area of the unknown compound, recorded at 280 nm, accounted for less than 2% in comparison 

to that of cyanidin 3-O-rutinoside (see figure F.3.2, p. 118). 

Conclusively, HSCCC experiments have demonstrated that this separation method is an 

implementable instrument for the separation of bioactive compounds. The isolation of cyanidin 

3-O-rutinoside as the quantitatively dominating anthocyanin in Clidemia rubra berries was 

practicable in a high purity grade. It should also be possible to separate other major and minor 

compounds, respectively, by choosing alternative solvents or changes of the relation of individual 

solvents in the solvent system as well as modifying of the flow rate of the mobile phase. Schwarz 

et al. (2003) demonstrated that the purity of fractions containing several anthocyanins can be 

improved by repeated separation by HSCCC with lower flow rates. 

2.3 Effects of tropical fruit juice consumption in vivo 

2.3.1 Bolus consumption of a specifically designed fruit juice rich in anthocyanins 
and ascorbic acid did not influence markers of antioxidative defence in healthy 
humans 

The primary goal of this study was to investigate if bolus consumption of a specifically designed 

fruit juice rich in anthocyanins and ascorbic acid increases the plasma antioxidant capacity and 

reduces markers of oxidative stress in healthy non-smokers. To answer these questions, a 

randomized controlled study with crossover design was performed to avoid between-subjects 

effects. The fruit juice consisted of camu camu, Andean blackberries, and açaí. A sugar solution 

with equimolar amounts of monosaccharides served as control drink to exclude antioxidant 

effects which may result from a fructose-mediated increase of uric acid (see table G.3.1, p. 124). 

This study design should allow a reliable evaluation of fruit juice effects on the pro-/antioxidative 

balance. 

2.3.1.1 Results of the study 

2.3.1.1.1 Antioxidant capacity in plasma 

In total three parameters were chosen to assess the plasma antioxidant capacity of the study 

subjects (table G.4.1, p. 128). Thereof, TEAC and Folin-Ciocalteu total phenolics were not 
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affected by beverage, time and interactions between beverage and time. TOSC values against px 

only decreased significantly over time after ingestion of the sugar solution (P = 0.02), and 

reached lower values after 0.5, 1, 2, 3 and 6 h compared to baseline (all p-values < 0.05). The area 

under curve (AUC) of TOSC was higher after ingestion of the juice compared to control 

beverage (266 ± 16 vs. 250 ± 11 %*h; p = 0.032).  

2.3.1.1.2 Antioxidant status in plasma 

The ascorbic acid concentration of the subjects increased up to 117% (3 h vs. 0 h) and was 

significantly higher anytime after juice intake (p < 0.001) compared to baseline (see also figure 

G.4.1, p. 128). Three hours after ingestion of the sugar solution, ascorbic acid concentration was 

slightly higher (6.5%) compared to the initial value (p = 0.011). As expected, the AUC of the 

ascorbic acid concentration in plasma was higher after consumption of the test juice compared to 

control beverage (607±115 vs. 351±68 µmol*h/L; p < 0.001).   

The concentration of β-carotene and uric acid as well as the α-tocopherol-to-cholesterol-ratio 

were not affected by interactions of time and beverage.  

In order to assess the occurrence of metabolites derived from the juice blend, a HPLC-CEAD 

analysis of the plasma samples was performed. In addition to the known compounds indicating 

the antioxidant status in human plasma, substances with reducing capacity, which were not 

present in the juice blend, were detected after consumption of fruit juice in the plasma of the 

subjects (figure G.4.2, p. 130). These metabolites could not be measured before ingestion of the 

fruit juice or before and after consumption of sugar solution. Interestingly, retention times of 

these substances observed after juice consumption were different from those of known 

metabolites like protocatechuic acid, gallic acid, vanillic acid, ferulic acid, and caffeic acid. As 

these unknown metabolites have reducing capacities, they can be, in turn, assigned to antioxidant 

substances. As these substances induced only very low HPLC-CEAD signals it is questionable 

whether they contribute to the stabilizing effect of the fruit juice on the antioxidant status in 

plasma measured by TOSC.  

2.3.1.1.3 Oxidative stress 

Values regarding measurements on oxidative stress are shown in table G.4.1 (8-iso PGF2α, p. 

128) and table G.4.2 (DNA strand breaks, p. 129). The beverage did neither affect F2-isoprotane 

generation (8-iso PGF2α) nor DNA single strand breaks (SB) in vivo and ex vivo. Time had an 

impact on SB in vivo, but did not modulate 8-iso PGF2α and SB ex vivo. Differences between the 

AUC of 8-iso PGF2α, SB in vivo and ex vivo obtained after consumption of juice and sugar 

solution did not occur (data not shown). 
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2.3.1.2 Discussion 

TEAC and FCR did not increase after juice ingestion despite an obvious increase of ascorbic acid 

and unknown substances with reducing capacity in plasma. This phenomenon can be explained 

by the measurement of electron transfer which is performed by TEAC and FCR (Prior et al., 

2005). Ascorbic acid and, probably, the unknown substances function as hydrogen donators; this 

effect cannot be detected by these assays. Interestingly, TOSC, an assay detecting hydrogen 

transfer, decreased after the consumption of the control beverage. This phenomenon may be due 

to the polyphenol-poor diet at the day before the study (Müller et al., 2010). Maintenance of 

TOSC levels after juice intake may be explained by the enhanced extracellular ascorbic acid levels.  

Before the intervention and after consumption of the control beverage, ascorbic acid levels were 

below the desirable steady-state concentrations in healthy adults (70-85 µmol/L) (Padayatty et al., 

2004), probably due to dietary restrictions. As expected, plasma concentrations of ascorbic acid 

temporarily increased after verum. The extent, however, was relatively low considering the 

supraphysiological dose (> 900 mg/d) ingested. This observation may be explained by a reduced 

bioavailability at supraphysiological doses compared to physiological doses that have been shown 

by Levine et al. (1998). 

The concentration of further exogenous antioxidants in plasma (β-carotene and α-tocopherol), 

which also contribute to plasma antioxidant capacity (Cao and Prior, 1998), did not change 

significantly. β-Carotene is generally ingested with açaí (Schauss et al., 2006), camu camu (Zanatta 

and Mercadante, 2007), and blackberries (Marinova and Ribarova, 2007), but the dose in our 

study was obviously too low to increase the β-carotene level in plasma.  

It is known that anthocyanins consumed as food ingredient can only marginally be detected in 

plasma. One explanation may be the low stability of the flavylium cation under physiological pH 

conditions (McGhie and Walton, 2007). Moreover, anthocyanins are degraded to low-molecular 

phenolic acids by the micro flora of the gut as shown in vitro and in vivo (Williamson and Clifford, 

2010). A study of Vitaglione et al. (2007) confirms that protocatechuic acid detected in human 

plasma accounts for 73% of ingested cyanidin 3 O-glucoside. To evaluate mucosal uptake of 

polyphenolic ingredients of the fruit juice, the plasma appearance of known low-molecular 

anthocyanin metabolites like protocatechuic acid, gallic acid, vanillic acid, caffeic acid, and ferulic 

acid was evaluated by highly sensitive HPLC-CEAD analysis. Most surprisingly, these metabolites 

could not be detected in plasma. Instead, several unknown metabolites with antioxidative 

properties occurred in plasma after juice consumption. As we were not able to isolate these 

metabolites from plasma samples in amounts which are sufficient for identification, the chemical 
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structures are still unknown. Probably, phenolic acids are further degraded already in the gut 

and/or after mucosal uptake.     

Lipid peroxidation in vivo assessed by plasma 8-iso PGF2α did not change in our study. This 

observation is in contrast to results of recent bolus studies: 2 h after ingestion of a cyanidin-rich 

juice blend with açaí as predominant ingredient, lipid peroxidation measured by thiobarbituric 

acid reactive substances (TBARS) decreased in healthy non-smokers (Jensen et al., 2008). 

However, TBARS are less specific for lipid peroxidation than isoprostanes (del Rio et al., 2002) 

analyzed in our study. 

SB in vivo were only affected by time (p < 0.001) and not by beverage. This fits to the results of a 

previous study in which only effects by time occurred after bolus ingestion of white tea, green 

tea, and water (Müller et al., 2010). Time-dependent effects may simply reflect circadian rhythms. 

Contrary to SB in vivo, SB ex vivo were not modulated by time or beverage. Comparable bolus 

studies with juices investigating SB ex vivo are not available, but white and green tea did not show 

any changes by time or beverage either (Müller et al., 2010). In regard to our results it should be 

mentioned that the broad inter-individual variation of SB in vivo and against oxidative challenge ex 

vivo limits the power of the study considering these markers of DNA damage. 

2.3.2 Occurence of phenolic acids in human blood plasma after fruit juice ingestion 

The bioavailability of phenolic acids in human has been shown only in a few reports. The 

occurence of four phenolic acids in vivo after bolus ingestion of a tropical juice blend was 

investigated in this small scale intervention study by UPLC-ESI-MS/MS. Additionally, their 

generation as metabolites from higher molecular flavonoids or conjugates was supposed to be 

proven.  

The juice blend used for bolus consumption by a voluntary male person contains gallic acid (8.19 

mg/serving), p-coumaric acid (0.4 mg/serving) and protocatechuic acid (1.48 mg/serving) in 

quantifiable amounts. Caffeic acid could only be qualitatively identified as its concentration was 

below the limit of quantification. Analysis of blood plasma after a 12 h overnight fast showed 

that the presence of gallic acid and p-coumaric acid could not be constituted in the sample that 

was withdrawn immediately before ingestion of the fruit juice. Surprisingly, caffeic acid and 

protocatechuic acid were detected despite the fasting condition of the participant (see figure 

H.3.3, p. 142). Probably, a longer period than an one-day abstinence from a diet free of phenolic 

compounds is needed to assure a proper total clearance of these phenolics from the blood 

stream. Unfortunately, information on pharmacokinetic studies shedding light on the total 

clearance of phenolic acids is scarce. Caffeic acid was studied in rabbits by Uang et al. (1997). In 
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this study, most of the unchanged caffeic acid was excreted in the urine within 2 h. An 

investigation in human showed that the maximal urinal excretion of cinnamic acid occurred in 

the first 4 h of a 48 h survey (Clifford, 2000). Information on the pharmacokinetic of 

protocatechuic acid and gallic acid was not found. 

Generally, phenolic compounds absorbed from the small intestine usually appear in the plasma in 

maximum concentration within less than 2.5 h (Williamson and Clifford, 2010). Hence, a further 

blood withdrawal was obtained 2 h after juice intake to proof the bioavailability of the 

determined phenolic acids.  

The presence of caffeic acid in the plasma 2 h after ingestion could only be tentatively constituted 

as the retention time in the sample deviates from that of a standard compound (figure H.3.3, 

p. 142). MRM fragmentation experiments are in accordance to that of an authentic caffeic acid 

standard, so that the untimely retention time might be caused by matrix effects of the sample or 

the presence of a caffeic acid isomer. The concentration of caffeic acid before and after fruit juice 

ingestion could not be quantified, but the mass specific ion current of the MS analysis at m/z 179 

suggests a concentration decline after juice intake due to its lower intensity (from 3.00 * 105 to 

2.10 * 105). This may be explained by an ongoing clearance of caffeic acid compared to the 

fasting condition. Simultaneously, a negligible supply with free caffeic acid and its conjugates 

from the study drink as well as caffeic acid as a metabolite derived from higher polyphenols is 

obvious. An appropriate supply would result in higher concentrations of free caffeic acid in the 

blood stream compared to the fasting condition.   

In a report of Simonetti et al. (2001), caffeic acid was not present in plasma prior to the 

intervention with red wine after a diet low in polyphenols for 3 days. Plasma level rose to 

maximum concentration 60 min after wine consumption.  

A quantification of protocatechuic acid from the plasma samples could not be performed as the 

concentration was below the limit of quantification. However, an unchanged concentration of 

protocatechuic acid in plasma before fruit juice ingestion compared to fasting condition can be 

assumed as the mass specific ion current of the MS analysis at m/z 179 shows a similar intensity 

(4.80 * 103 before juice intake and 4.83 * 103 after juice intake). A possible decrease of the 

concentration as it was observed for caffeic acid might be compensated by free protocatechuic 

acid provided by the juice itself. Furthermore, protocatechuic acid can also be derived as 

microbial degradation product of the gut flora from cyanidin-3-O-glucoside (Vitaglione et al., 

2007) which is provided as constituent from all fruits present in the juice (Lichtenthäler et al., 

2005; Mertz et al., 2007; Rodrigues and Marx, 2006). Results from a bioavailability study, in which 

participants obtained a moderate amount of berries over 8 weeks, showed an increase of 
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protocatechuic acid in plasma. The increase accounted for 21% in the berry group in comparison 

to the control group (Koli et al., 2010). 

Gallic acid showed the highest concentration of the target compounds in our study drink 

(20.48 mg/L and 120.36 µmol/L, respectively) and gave rise to intestinal absorption. Gallic acid 

was also unambiguously identified in plasma after fruit juice consumption by LC-MS analysis 

(figure H.3.3, p. 142). The concentration after ingestion of the study drink in plasma was 

5.88 µmol/L. Free gallic acid was previously reported to be well absorbed compared to other 

phenolic compounds which is in agreement with our findings (Manach et al., 2005). As shown in 

a bioavailability study in healthy humans, peak plasma levels of gallic acid were reached after 1.3 h 

and 1.4 h subsequent to administration as tablets and as black tea drink, respectively. An oral 

dose consisting of 50 mg gallic acid gave rise to plasma concentrations of 1.83 µmol/L for the 

tablets and 2.09 µmol/L for the tea (Shahrzad et al., 2001).  

The most interesting aspect of this study is the occurence of a p-coumaric acid isomer in the 

plasma after fruit juice ingestion (figure H.3.3, p. 142). The presence of p-coumaric acid could 

not be constituted as the retention time of the compound found in the plasma was not in 

accordance with that of a p-coumaric acid standard. Thus, matrix effects may have affected the 

detection of p-coumaric acid. Furthermore, the presence of isomers is possible as ion currents 

from SIR and MRM measurements corresponded to that of a p-coumaric acid standard. The 

concentration of the p-coumaric acid isomer in the plasma after fruit juice intake was 

0.13 µmol/L. As this compound is not derived in its free form by the fruit juice, it might be seen 

as a metabolite from other phenolic substances. MS data suggest that p-coumaric acid derivatives 

may be preferably present as conjugates in the fruit juice. As stated by Clifford et al. (2000) 

conjugates of phenolic acids are not absorbed as such, but they are cleaved by esterases of the gut 

flora prior to absorption. A study in rats also constituted the occurrence of p-coumaric acid as a 

metabolite from conjugated derivatives (Gonthier et al., 2003). Furthermore, p-coumaric acid was 

found to be a metabolite of other polyphenolic compounds like rosmarinic acid (Baba et al., 2005) 

and chlorogenic acid (Monteiro et al., 2007) in human. As a consequence of the 

monohydroxylation, p-coumaric acid is reported to be less susceptible to glucuronidation than 

other polyphenols. Thus, the aglycone occurs in relatively high amounts in plasma after intestinal 

absorption (Spencer et al., 1999). 
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3 Outlook 

Studies on cashew apple, açaí, and garambullos have shown that the development of both total 

and individual phenolics as well as their antioxidant potential during the course of ripening is not 

liable to general principles. Thus, all fruits that contain bioactive compounds of interest have to 

be particularly investigated in order to assess the highest concentration of potential target 

substances. The recently increasing number of scientific publications confirms the strong interest 

in this scope of research. 

The phenolic composition of garambullo und Clidemia rubra berries was investigated for the first 

time. However, only those compounds were identified of which authentic standards were 

available. Further research with high resolution and accurate mass spectrometry has to be 

performed for detailed knowledge on the phenolic composition.  

Clidemia rubra berries should be subjected to further investigations of essential ingredients like 

vitamins. Agronomic research in plant physiology, genetics like hybridization can increase yields. 

The commercial potential of these berries can be assessed by subsequent agri-food chain analysis 

in order to market not only fresh but also processed fruits as jams, juices, smoothies or as 

functional ingredient due to its anthocyanin content. 

The isolation of individual phenolic substances succeeds verifiably by countercurrent 

chromatographic methods. HSCCC has been applied to separate a vast number of non-

flavonoids and flavonoids like tea catechins, proanthocyanidins, anthocyanins, and flavonols 

from their plant matrices. Application methods for compounds rarely occurring in fruits like 

galloyl quinic acids (found in muruci and jambolão), HHDP derived ellagitannins (found in 

araçá), galloyl flavonols, and methylated flavonols (found in jambolão) should be developed in 

order to assess their contribution to the overall antioxidant capacity of the fruits and to survey 

their technological (e.g. antimicrobial) properties. 

The health beneficial effects of fruit and vegetable consumption have been proven by 

epidemiological data. However, the question which part of these effects can be attributed to 

phenolic compounds is still challenging. Further research on a biochemical level in vivo should be 

conducted in order to assess the influence of the polyphenols. Also in this case, high resolution 

and accurate mass spectrometry is a useful instrument by what metabolites derived from 

polyphenols can be identified. Additional preferably long-term designed human studies will 

enlighten the contribution of polyphenols to the observed epidemiological phenomenon. 
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A.1 Abstract 

Growing interest in consumption of açaí has arisen as its fruits are linked to positive health 

effects due to the phenolic content and the nutritive value. The objective of this study was to 

characterize açaí fruits chemically and to determine the antioxidant capacity at three different 

maturity stages. With exception of fat, amounts of macronutrients, minerals and titratable acids 

decreased during the ripening process. The same trend was observed for the most of the phenolic 

constituents identified by HPLC-ESI-MS/MS. A consistent decline was shown for flavones and 

hydroxycinnamic acids. The concentration of the anthocyanins increased in the course of 

ripening. In accordance with the total amount of the identified phenolic compounds, the 

antioxidant capacity measured by TEAC and TOSC also decreased. However, the contribution of 

the identified main phenolic compounds to the overall antioxidant capacity evaluated by TOSC 

was estimated to be low. 

A.2 Introduction 

Açaí (Euterpe oleracea Mart.) is a tropical palm tree that naturally occurs in the Amazon region. Its 

spherical grape-sized fruits are green when young and ripen usually to a dark purple (Strudwick 

and Sobel, 1988). An important reloading point for açaí is the city of Belém in Pará State, Brazil, 

where fruits can be collected all over the year. However, a main harvesting period exists during 

the “dry-months” from August to December. Usually, the fruits are used to prepare a liquid of 

creamy texture by macerating the pericarp and mixing it with different amounts of water yielding 

in commercially available açaí pulp (Lichtenthäler et al., 2005). In the production region, açaí is 

integrated in the daily dietary habits of the native people and is normally used in main meals for 

lunch or dinner. In modern Brazilian society, it has gained interest as a nutritionally valuable 

wellness product (Strudwick & Sobel, 1988). Meanwhile, açaí is favored as an ingredient in fruit 

beverages beyond Brazilian borders and is exported mainly to the USA or to Europe (Sabbe et 

al., 2009).   

Attention on açaí has arisen especially due to its high in vitro antioxidant activity explained by the 

considerably high content of phenolic compounds like different anthocyanins, flavones, and 

phenolic acids (Lichtenthäler et al., 2005; Pacheco-Palencia et al., 2009). Phenolic constituents are 

generally associated with health promoting properties and the prevention of several degenerative 

diseases (Xia et al., 2010). Additionally, phenolic compounds become more and more interesting 

for the food industry due to manifold properties. Because of legislators and consumers’ growing 

concern over the use of artificial food additives there is a growing demand for additives from 

natural resources (Giusti and Wrolstad, 2003). For instance, anthocyanins can be used as a food 
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colorant (Pazmino-Duran et al., 2001). Moreover, plant extracts containing a broad range of 

polyphenols may act as antioxidants or antimicrobial agents (El-Hela and Abdullah, 2010). 

Generally, the ripening process of fruits is indicated by intensive metabolism of primary and 

secondary plant compounds. This study gives information on quantitative changes of 

macronutrients, individual phenolic compounds, and the antioxidant activity in açaí fruits during 

ripening. In addition, the influence of individual phenolic main compounds to the overall 

antioxidant capacity was estimated. 

A.3 Materials and methods 

1. Chemicals 

Ultrahigh quality (UHQ) water was prepared with a Direct-Q 3 system (Millipore, Billerica, USA). 

Protocatechuic acid (≥ 97%) and p-hydroxybenzoic acid (≥ 99%) were purchased from Merck 

(Darmstadt, Germany), caffeic acid (purum) from SERVA Feinbiochemica (Heidelberg, 

Germany). Gallic acid (≥ 97.5%), vanillic acid (≥ 97%), syringic acid (≥ 95%), chlorogenic acid 

(5-O-(3,4-dihydroxycinnamoyl)-L-quinic acid) (≥ 97%), taxifolin (≥ 85%), diethylene-

triaminepentaacetic acid (DTPA) (≥ 99 %), α-keto-γ-methiolbutyric acid (KMBA) (≥ 97%), 2,2′-

azobis(2-methylpropionamidine) dichloride (ABAP) (≥ 97%), 3-morpholino-sydnonimine N-

ethylcarbamide (SIN-1), 2,2-azinobis-(3-ehtylbenzothiazoline-6-sulfonic acid)-diammonium salt 

(ABTS), Folin-Ciocalteu reagent, and 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid 

(Trolox®) were obtained from Sigma-Aldrich Chemie GmbH (Steinheim, Germany). Cyanidin 3-

O-glucoside (≥ 96%), cyanidin 3-O-rutinoside (≥ 96%), peonidin 3-O-glucoside (≥ 95%), 

luteolin (≥ 99%), isovitexin (≥ 99%), chrysoeriol (≥ 99%), orientin (≥ 99%), homoorientin 

(≥ 99%) were purchased from Extrasynthèse (Genay, France). Luteolin 7-O-glucoside and 

chrysoeriol 7-O-glucoside standards were a gift of Professor Dr. Galensa (University of Bonn). 

They were self-isolated and had a purity grade of ≥ 84% and ≥ 70%, respectively.  

2. Raw material, sampling, and preparation of the pulp 

Açaí fruits of three different maturity stages (unripe – green fruits, intermediate – reddish-brown 

fruits, ripe – deep purple fruits) were collected at the experimental station of the Federal Rural 

University of Amazon in Castanhal, PA, Brazil. Fruits of each maturity stage were processed 

separately following the specifications that are usually applied by the industry. After reception, 

the fruits were selected, washed, weighted, and sanitized in chlorinated water. The subsequent 

maceration step consisted of steeping the fruits in hot water (50 °C) for 30 minutes to facilitate 

the separation of the exo- and mesocarp from the seeds. This separation was carried out in an 



Appendix A  

 37 

açaí specific extractor by adding water in proportion of 0.6 L/kg fruit. The obtained pulp was 

stored at -30 °C. 

3. Determination of ash, minerals, lipids, proteins, carbohydrates, and titratable acids 

Minerals were quantified by using flame atomic absorption spectrometry according to official 

AOAC methods (2005). Proximal composition of açaí pulp samples at three maturity stages was 

determined according to official AOAC methods (1998). Ash content was measured in a 

gravimetric assay. Lipids were determined by acid hydrolysis and gravimetric measure of the final 

ether solution. Protein content was measured following Kjeldahl method. Total protein was 

calculated by multiplication of the obtained nitrogen content with the fruit-specific conversion 

factor of 6.25. Carbohydrates were calculated as centesimal difference of the previous 

determinations. All results are referred to dry matter (DM) basis. Titratable acids were 

determined by a titration method using an automatic titrator with sodium hydroxide. Results are 

expressed in malic acid equivalent/100 g of DM.  

4. Identification and quantification of phenolic compounds by HPLC-ESI-MS/MS 

Extraction of phenolic compounds 

Açaí pulp was lyophilized and defatted by Soxhlet extraction with petroleum ether. The 

extraction of phenolic compounds was performed using a modified sample preparation according 

to a method described in Pacheco-Palencia et al. (2009). For two times, sample of each maturity 

stage (500 mg) was dissolved in 10 ml of acetone-water-formic acid (70% + 29% + 1%; v/v/v), 

sonicated for 10 min, then centrifuged for 10 min with 10,000 rpm at 10 °C. The residue was 

extracted once more with 10 ml acetone-water-formic acid. Afterwards the supernatants were 

combined. To get rid of the organic solvent, the extract was vaporized using a rotary evaporator 

(Rotavapor R-210, Büchi, Essen, Germany) at 30 °C and the aqueous supernatant was shaken 

with 10 ml ethyl acetate. The received ethyl acetat fraction was vaporized to dryness. The residue 

was solubilized in 1 ml methanol-water-formic acid (50% + 49% + 1%; v/v/v) and filtered 

through a 1.0/0.45 µm syringe filter (Chromafil GF/PET-45/25, Macherey-Nagel, Düren, 

Germany) prior to application to HPLC-ESI-MS/MS. 

Anthocyanins were extracted using a modified method explicitly described in Wu et al. (2004). 

Briefly, freeze-dried sample (250 mg) of each maturity stage was extracted in duplicate with 4 ml 

of methanol-UHQ water-acetic acid (MeOH-H2O-HAc) (50% + 49.5% + 0.5%; v/v/v). After 

vortexing, sonication and centrifugation, the supernatant was removed and the sample once more 

extracted but with 2.5 ml of MeOH-H2O-HAc. Both sample solutions were combined and 
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filtered through a 1.0/0.45 µm syringe filter (Chromafil GF/PET-45/25, Macherey-Nagel, 

Düren, Germany) prior to application to HPLC-ESI-MS/MS. 

Analysis of phenolic compounds 

Quantification of the phenolic compounds was performed following a method described in 

Gordon et al. (2011). HPLC instruments consisted of a pump system and a UV-detector of the 

HP 1050 series (Hewlett Packard, Waldbronn, Germany), a degasser Degasys Populair DP3010 

(Uniflows, Tokyo, Japan) and an analytical column Aqua 3 µm C18, 150 mm, 2 mm i.d., with a 

guard column Security Guard, C18, 4 mm, 2 mm i.d. (both Phenomenex, Aschaffenburg, 

Germany). The solvents were UHQ water with 1% (v/v) formic acid (mobile phase A) and 1% 

(v/v) formic acid in acetonitrile (mobile phase B). The HPLC gradient using a flow rate of 0.2 

ml/min started at 5% B and rose to 35% B after 55 min, 100% B after 65 min and re-equilibrated 

for 15 min at 5% B. Another gradient was used to obtain a better separation for quantification of 

the luteolin derivatives orientin and homoorientin. Starting at 5% B, the gradient rose to 17.5% B 

after 50 min with subsequent washing and re-equilibration procedure. 20 µl of each sample 

extract were injected for analysis. The coupled API 2000 HPLC-ESI-MS/MS system was 

controlled with Analyst 1.5 Software (both Applied Biosystems, Darmstadt, Germany). Mass 

spectra for the determination of anthocyanins were obtained by using positive ionization whereas 

all other phenolic compounds were detected in negative ionization mode.  

Identification of phenolic compounds was performed by comparing fragmentation patterns in 

multiple reaction mode and retention times with those of authentic standard substances. 

Standards were also used to create calibration curves for quantification. Results were recalculated 

to the non-defatted material and expressed in mg/100 g DM. 

5. Antioxidant capacity 

Total oxidant scavenging capacity (TOSC) assay 

Analysis of the TOSC assay was performed as described in Lichtenthäler et al. (2003). Briefly, the 

measurement of the antioxidant capacity is based on an ethylene yielding reaction of KMBA with 

either generated peroxyl radicals or peroxynitrite. Antioxidative compounds present in the sample 

inhibit the ethylene formation. Ethylene is measured gas chromatographically (GC-17A, 

Shimadzu, Tokyo, Japan) over a time course of one hour. Quantification of generated ethylene 

results in a kinetic curve of which the area under the curve (AUC) is calculated. Only those data 

with a variance (standard deviation/arithmetic mean) of the AUC after repeat determination 

below 5% are further processed. Mean data of a sample are compared to those of an uninhibited 

reaction with water, which gives rise to the TOSC values. 
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For TOSC analysis, authentic standard compounds were solubilized in DMSO and subsequently 

diluted with UHD water. Lyophilized sample (1 g) of each maturity stage was suspended in UHQ 

water to obtain a total weight of 10 g (w/w). The suspension was sonicated for 10 min and 

centrifuged for 7 min with 10000 rpm at 10  °C. The supernatant of the water extract was stored 

until further application at -30 °C. Results indicate the sample concentration in mg/100mL which 

is needed to obtain a radical inhibition of 50%. 

Trolox equivalent antioxidant capacity (TEAC) 

The antioxidant activity with ABTS•+ radicals was determined after an extraction of the pulp in a 

methanol/acetone solution described in Rufino et al. (2007). Trolox was used as reference 

compound. Results were expressed in µmol Trolox equivalent/100 g DM.   

Folin-Ciocalteu total phenols 

Total phenolic compounds were determined by the Folin-Ciocalteu assay based on Georgé et al. 

(2005). Results are expressed in mg gallic acid equivalent/100 g DM. 

6. Data analysis 

To prove significant differences between maturity stages, statistical analysis of data was 

accomplished by one-way analysis of variance followed by Tukey test at 95% of probability using 

XLSTAT 7.5 software. Results were significantly different between maturity stages unless 

otherwise indicated. 

A.4 Results and discussion 

1. Nutrients and titratable acidity 

Variations among the samples of different ripeness are as expected because maturation can  

Parameter 
(g/100 g DM) Unripe Intermediate Ripe 

Ash 14 ± 0 8 ± 0 4 ± 0 

Lipids 7 ± 0 31 ± 0 48 ± 4 

Total protein 21 ± 0 13 ± 0 12 ± 0 

Carbohydrates 58 ± 14 48.0 ± 2.6 36 ± 4 

Titratable aciditya 2.8 ± 0.0 1.5 ± 0.0 1.2 ± 0.0 

Table A.4.1. Centesimal specification of nutrients and titratable acids in 
three maturity stages of açaí. Data: mean ± standard deviation referred 
to the dry matter (DM) content of the fruit. aExpressed in malic acid 
equivalents. 

generally be defined as a sequence of changes in color, flavor, and texture of fruits and vegetables 

(Chitarra and Chitarra, 2005). As shown in table A.4.1, the ash content decreases during the 
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ripening process. This development is concordant with the results of the mineral composition 

(table A.4.2). With exception of sodium and zinc, all other values of the determined minerals 

decline with increasing maturity. Amounts of total proteins, carbohydrates as well as titratable 

acids indicate the same regressive trend.  

Parameter  
(mg/100 g DM) Unripe Intermediate Ripe 

Sodium n.d. 51.3 ± 7.2 6.8 ± 0.7 

Magnesium 397.0 ± 0.4 287.1 ± 0.8 172.1 ± 0.3 

Phosphorus 262.1 ± 0.5 232.3 ± 1.8 185.5 ± 1.5 

Potassium 4271.3 ± 21.7 2314.4 ± 11.4 929.9 ± 9.9 

Calcium 962.3 ± 2.3 846.4 ± 1.7 423.2 ± 1.2 

Manganese 30.9 ± 0.1 17.7 ± 0.1 13.3 ± 0.1 

Iron 23.9 ± 0.9 12.8 ± 0.0 7.8 ± 0.2 

Zinc n.d. 1.2 ± 0.2 2.1 ± 0.0 

Table A.4.2. Minerals in three different maturity stages of açaí. Data: mean ± 
standard deviation referred to the dry matter (DM) content. N.d.: not detected. 

Values of total carbohydrates are approximately in the same range as reported previously for açaí 

pulp obtained from fruits harvested in February (31.6 g/100 g DM). However, values are lower 

than those of pulp from fruits harvested in July (48.0 g/100 g DM) (Sanabria and Sangronis, 

2007). In opposite to the aforementioned parameters, the lipid content increased during ripening 

generating partly the expected alterations in flavor and texture. Our findings represent an average 

content of total lipids of 48% in the DM of ripe fruits similar to the value of 42% found by 

Sanabria and Sangronis (2007). 

2. Identification and quantification of phenolic compounds 

Anthocyanins 

Monomeric anthocyanins were mass spectrometrically identified by comparing fragmentation 

patterns and retention times with those of authentic standards. According to figure A.4.1, 

cyanidin 3-O-glucoside (peak 18) and cyanidin 3-O-rutinoside (peak 19) were assigned to the 

main anthocyanins in ripe açaí. Cyanidin 3-O-sambubioside (peak 17), pelargonidin 3-O-

glucoside (peak 20), and peonidin 3-O-glucoside (peak 21) were found in traces. In addition to 

these anthocyanins, the presence of peonidin 3-O-rutinoside (peak 22) was tentatively 

constituted. Peak 22 showed a molecular ion [M+H]+ at m/z 609 and a product ion at m/z 301. 

The mass difference of m/z 308 suggests the loss of a hexosyl-deoxyhexoside. This assignment 

also agrees with regularities in the elution order of anthocyanins. Generally, the 3-O-rutinoside of 

an anthocyanidin is retained after the 3-O-glucoside moiety (Wu and Prior 2005a). Additionally, a 

sugar moiety bound to a certain anthocyanidin will likely be linked to another anthocyanidin 
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distributed in the same fruit (Wu and Prior 2005b). As the presence of cyanidin 3-O-rutinoside 

was already constituted, the linkage of a rutinoside to peonidin is certain. 

The overall findings concerning anthocyanins in açaí are in accordance with other published 

papers. Lichtenthäler et al. (2005) assessed cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside as 

the major anthocyanin components. Peonidin 3-O-rutinoside was found as a minor component 

in their açaí sample. Schauss et al. (2006) also found mainly cyanidin 3-O-glucoside and cyanidin 

3-O-rutinoside. Additionally, cyanidin 3-O-sambubioside, peonidin 3-O-glucoside, and peonidin 

3-O-rutinoside were found as minor anthocyanins. Del Pozo-Insfran et al. (2004) found 

pelargonidin 3-O-glucoside as main anthocyanin component in açaí beside cyanidin 3-O-

glucoside. Further, pelargonidin 3-O-glucoside was present in fruits of Euterpe precatoria 

(Pancheco-Palencia et al., 2009). 

 

Figure A.4.1. HPLC chromatogram of ripe açaí recorded at 520 nm. 

Quantification in the intermediate maturity stage of açaí could only be performed for cyanidin 3-

O-glucoside and 3-O-rutinoside (table A.4.3). Peonidin 3-O-glucoside, peonidin 3-O-rutinoside, 

and pelargonidin 3-O-glucoside were also identified but just achieved the limit of detection 

defined by a peak/noise-ratio of 3:1. Cyanidin 3-O-sambubioside was not detected in the 

intermediate maturity stage. No monomeric anthocyanins were present in unripe açaí. Thus, the 

anthocyanin concentration rises in açaí during maturity as well as in many other plant species 

probably since the anthocyanin biosynthesis proceeds faster than fruit expansion (Bureau et 

al., 2009). 
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Peak Compound 
[M–H]–/ 
product 
ion m/z 

Maturity stage 

   Unripe Intermediate Ripe 

1 Gallic acid 169/125 0.01 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 

2 Protocatechuic acid 153/109 0.75 ± 0.00 0.63 ± 0.06 0.65 ± 0.02 

3 p-Hydroxybenzoic acid 137/93 6.48 ± 0.27 2.56 ± 0.18 1.90 ± 0.07 

4 Vanillic acid 167/152 25.90 ± 0.54 12.30 ± 0.73 6.97 ± 0.30 

5 Chlorogenic acid 353/191 1.64 ± 0.20 0.06 ± 0.02 0.02 ± 0.00 

6 Caffeic acid 179/135 0.56 ± 0.03 0.06 ± 0.01 0.02 ± 0.00 

7 Syringic acid 197/182 4.95 ± 0.38 0.46 ± 0.08 1.10 ± 0.12 

8 Orientin 447/327 108.86 ± 5.01 18.99 ± 0.7 11.16 ± 0.84 

9 Homoorientin 447/327 67.12 ± 1.85 13.96 ± 0.32 3.06 ± 0.26 

- p-Coumaric acid 163/119 Traces n.d. n.d. 

10 Luteolin 7-O-glucosidea 447/285 ≤0.04a,b ≤0.02a,b ≤0.01a,b 

11 Vitexin 431/311 24.65 ± 0.99 11.30 ± 0.18 3.41 ± 0.04 

12 Isovitexin 431/311 28.95 ± 0.69 10.80 ± 0.94 2.66 ± 0.14 

13 Chrysoeriol 7-O-glucoside 461/255 0.44 ± 0.03 0.08 ± 0.01 0.03 ± 0.00 

14 Taxifolin 303/285 0.98 ± 0.05 0.46 ± 0.01 0.20 ± 0.01 

15 Luteolin 285/133 4.98 ± 0.15 1.32 ± 0.09 0.24 ± 0.07 

16 Chrysoeriol 299/285 5.27 ± 0.19 2.53 ± 0.11 0.68 ± 0.04 

  [M+H]+/ 
product 
ion m/z 

   

17 Cyanidin 3-O-sambubioside 581/287 n.d. n.d. 0.02 ± 0.00 

18 Cyanidin 3-O-glucoside 449/287 n.d. 0.29 ± 0.05 4.94 ± 0.55 

19 Cyanidin 3-O-rutinoside 595/287 n.d. 0.31 ± 0.04 17.86 ± 1.59 

20 Pelargonidin 3-O-glucoside 433/271 n.d. Tracesb 0.06 ± 0.01b 

21 Peonidin 3-O-glucoside 463/301 n.d. Tracesb 0.08 ± 0.01b 

22 Peonidin 3-O-rutinosidec 609/301 n.d. Tracesb 0.29 ± 0.00b 

Sum of the identified phenolic compounds 281.54 ± 10.35b 77.15 ± 3.53b 55.37 ± 4.07b 

Table A.4.3. Content of phenolic compounds in three maturity stages of açaí. Data: mean ± standard 
deviation referred to mg/100 g dry matter. aestimated, n.d.: not detected. bSignificance not evaluated between 
mean values in each row. cValues expressed as peonidin 3-O-glucoside equivalents. 

Beside the general increase of the anthocyanin concentration, it was also observed that the 

relation of the individual anthocyanin amounts was different in each ripening stage. The ratio of 

cyanidin 3-O-glucoside to cyanidin 3-O-rutinoside accounted for 1:1 in the intermediate ripening 

stage. In ripe fruits, on the contrary, the ratio increased in favor of cyanidin 3-O-rutinoside to 

approximately 4:1. Siriwoharn et al. (2004) reported on changes in anthocyanin accumulation in 

two blackberry cultivars. Cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were determined as 

main anthocyanin compounds. But unlike in açaí, the content of cyanidin 3-O-glucoside 

increased steadily whereas amounts of cyanidin 3-O-rutinoside decreased from unripe to ripe 
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fruits. Fernández-López et al. (1998) observed a decline of cyanidin 3-O-glucosid concentration in 

ripening grapes. They noted that in the biosynthesis of anthocyanidins in Vitis ssp. cyanidin 

typically occurs as a precursor molecule of peonidin derivatives. Conclusively, according to these 

results there are no general regularities deducible for the formation of individual anthocyanins 

during ripening in fruits. Only the increase of total anthocyanins in general is apparent. 

Phenolic acids 

According to table A.4.3 and figure A.4.2, in total eight phenolic acids and phenolic acid 

derivatives were identified in açaí: gallic acid (peak 1), protocatechuic acid (peak 2), p-

hydroxybenzoic acid (peak 3), vanillic acid (peak 4), p-coumaric acid (peak not present in figure 

2), caffeic acid (peak 6), syringic acid (peak 7), and chlorogenic acid (peak 5). With exception of 

p-coumaric acid, all compounds were present in each of the three different ripening stages. 

During the ripening process, the individual phenolic acids were found in different amounts. The 

highest concentrations of individual phenolic acids were generally found in unripe açaí. Vanillic 

acid, p-hydroxybenzoic acid, syringic acid were quantitatively the most dominating phenolic 

acids. Gallic acid, protocatechuic acid, caffeic acid and chlorogenic acid were found in lower 

amounts. P-coumaric acid was only present in traces. Amounts of hydroxycinnamic acids 

decreased during ripening. Chlorogenic acid and caffeic acid vanished nearly completely. Similar 

findings were reported by Dragovic-Uzelac et al. (2007) and Gruz et al. (2011). Interestingly, Xu et 

al. (2008) found the biggest quantitative loss during ripening in two Citrus varieties for 

chlorogenic acid, which is in agreement with results found in açaí. However, amounts of caffeic 

acid and syringic acid increased during ripening in Citrus fruits.  

In opposite to the hydroxycinnamic acids, there was no clear trend observable for the 

hydroxybenzoic acids in açaí (table A.4.3). Amounts of vanillic acid and p-hydroxybenzoic acid 

decreased from immature fruits to ripe fruits. A decline of 90% and 16% was observed for 

syringic acid and protocatechuic acid, respectively, from unripe fruits to the intermediate ripening 

stage. Subsequently, the concentrations increased with further ripeness. In regard to gallic acid, 

the highest amount was noted in the intermediate ripening stage. Beside gallic acid, the biggest 

losses of the phenolic acids were observed between unripe and intermediate ripe fruits. With 

exception of syringic acid, a further quantitative decrease between the intermediate and ripe 

maturity stage was generally less distinctive. Different amounts of hydroxybenzoic acids during 

the ripening process were also observed in medlar fruits (Mespilus germanica L). Contents of free 

protocatechuic acid and syringic acid became less whereas amounts of p-hydroxybenzoic acid 

increased (Gruz et al., 2011). 
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Concerning the findings of phenolic acids in ripe açaí, our results are in a great extend in 

common with previously published reports. Protocatechuic acid was identified by Lichtenthäler et 

al. (2005). Del Pozo-Insfran et al. (2004) identified and quantified ferulic acid, p-hydroxybenzoic 

acid, gallic acid, protocatechuic acid, vanillic acid, and p-coumaric acid in fresh açaí pulp. 

Furthermore Pacheco-Palencia et al. (2009) found protocatechuic acid, p-hydroxybenzoic acid, 

vanillic acid, syringic acid, and ferulic acid in Euterpe oleracea and Euterpe precatoria fruits. Contrary 

to these reports, the presence of ferulic acid and p-coumaric acid could not be constituted in our 

samples. On the other hand, chlorogenic acid and caffeic acid were detected for the first time in 

açaí fruits.  

Flavones and flavanonols 

In total eight flavones and one flavanonol were detected in açaí. All compounds were present 

throughout the three different maturity stages. According to figure A.4.2 and table A.4.3, peaks 

11 and 12 were assigned to vitexin and isovitexin, respectively, which showed a deprotonated 

molecular ion [M–H]– at m/z 431 and a fragment ion at m/z 311.  

 

Figure A.4.2. HPLC chromatogram of açaí at intermediate maturity stage recorded at 280 nm. 

Four luteolin derivatives were constituted in peaks 8, 9, 10, and 15. Peaks 8 and 9 showed a base 

peak [M-H]- at m/z 447 and a product ion at m/z 327 which is typically found for orientin and 
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homoorientin due to the likely fragmentation of the attached C-glycoside (Pacheco-Palencia et al., 

2009). Peak 10 had a base peak [M–H]– at m/z 447 as well but produced a daughter ion at m/z 

285 indicating the presence of luteolin 7-O-glucoside as consequence of a corresponding 

retention time and fragmentation pattern to that of a standard solution. Luteolin was found in 

peak 15 providing a deprotonated molecular ion [M–H]– at m/z 285 and a product ion at m/z 

133. Chrysoeriol and a chrysoeriol glycoside were found in peaks 16 and 13, respectively. Peak 16 

exhibited a base peak [M–H]– at m/z 299 and a fragment ion at m/z 285 after loss of the methyl 

group indicating the presence of the chrysoeriol. A deprotonated molecular ion [M–H]– at m/z 

461 and a fragment ion at m/z 255 found in peak 13 showed the presence of chrysoeriol 7-O-

glucoside. The flavanonol taxifolin was detected in peak 14 providing a deprotonated molecular 

ion [M–H]– at m/z 303 and a corresponding daughter ion at m/z 285.  

The findings of flavones in açaí were partially consistent with those of previous reports. The 

presence of homoorientin, orientin, and isovitexin were already constituted by Schauss et al. 

(2006). Additionally, Kang et al. (2010) mentioned vitexin, luteolin, and chrysoeriol as 

polyphenolic constituents in açaí pulp. No reports are known about the 7-O-glucosides of 

luteolin and chrysoeriol as constituents of açaí. In addition, the presence of the flavanonol 

taxifolin could be constituted for the first time. Foregone reports were only based on the 

occurrence of taxifolin derivatives (Pacheco-Palencia et al., 2009; Schauss et al., 2006).  

According to table A.4.3, amounts of all flavones and taxifolin constantly decreased throughout 

ripening. C-glycosidic derivatives of luteolin (homoorientin, orientin) and apigenin (isovitexin, 

vitexin) were found to be quantitatively dominating in all three maturity stages followed luteolin 

and chrysoeriol, taxifolin, and the 7-O-glycosides of luteolin and chrysoeriol. Especially in unripe 

açaí, orientin and homoorientin occurred in outstandingly high concentrations of 108.86 and 

67.12 mg/100 g DM showing three- to four-fold amounts when compared to other polyphenolic 

ingredients. Also in another report, homoorientin, orientin, and isovitexin were calculated as the 

highest concentrated non-anthocyanin polyphenols in ripe açaí (Pacheco-Palencia et al., 2009). 

To our knowledge, literature on changing amounts of non-anthocyanin flavonoid compounds in 

the course of fruit ripening is scarce. No reports are available on flavones or flavanonols. 

Flavanols and flavonol glycosides were determined in different maturity stages of apricots. The 

quantities of flavonoids varied between the ripening stages but it was generally not possible to 

establish a correlation between flavonoid content and ripening stages. However, regarding 

flavonols the highest values were mostly found in the initial maturity stage of apricot cultivars 

(Dragovic-Uzelac et al., 2007). Amounts of ellagic acids and total flavonols decreased during 
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ripening in camu camu fruits whereas values of total flavanols, and total flavanones did not 

remarkably change (Chirinos et al., 2010).  

3. Antioxidant capacity (Folin-Ciocalteu, TEAC, TOSC) 

As shown in table A.4.4, a change during ripening was observed for the Folin-Ciocalteu assay. 

The highest value of Folin-Ciocalteu total phenols was found in unripe açaí. Only a fourth of the 

concentration was present in the intermediate ripening stage followed by a slight increase in the 

ripe fruits.  

Parameter 
Maturity stage 

Unripe Intermediate Ripe 

Folin-Ciocalteu total phenols  
(in mg GAEa/100 g DM) 

12316.5 ± 264.2 3038.7 ± 148.5 3437.0 ± 154.0 

TEAC  
(in µmol Trolox/100 g DM) 

16.99 ± 0.71 4.04 ± 0.05 2.78 ± 0.10 

TOSCb  
(mg DM/100 mL) 

px 12.1 15.0 24.0 
pn 46.4 60.3 87.2 

Table A.4.4. Antioxidant capacity of açaí fruits at three different maturity stages. Results are referred to 
the dry matter (DM) content. aGallic acid equivalent, bTOSC values represent the concentration of the 
sample containing the antioxidants which is needed to obtain an inhibition rate of 50% against peroxyl 
radical (px) and peroxynitrite (pn). 

Comparing the results of the Folin-Ciocalteu assay to those of other fruits during ripening is 

difficult. Results are often presented in wet matter by other authors not taking into account likely 

alterations of the water content during the ripening process. A determination of the total 

phenolic content in blackberries at three different maturity stages showed e.g. a continuous 

decrease from unripe to ripe fruits (Tosun et al., 2008). On the contrary, some raspberry cultivars 

behaved like açaí or showed even a reversed trend by offering highest amounts in ripe condition 

(Wang and Lin, 2000).  

The antioxidant capacity for both TEAC and TOSC was the highest in unripe açaí fruits and 

decreased continuously with increasing ripening as shown in table A.4.4. The TEAC antioxidant 

capacity showed four times higher values in unripe fruits than in the intermediate ripening stage. 

A further decline of the TEAC value of around 30% was observed from intermediate to ripe 

fruits. TOSC results indicate the sample concentration that is needed to obtain a radical 

inhibition of 50%. Regarding peroxyl radicals (px) and peroxynitrite (pn), the antioxidant capacity 

bisected from the unripe to the ripe maturity stage. For both radicals, the decline was the most 

distinctive between the intermediate and ripe fruits.  

The TEAC antioxidant capacity of the ripe açaí fruits is in accordance with values found for 

different commercial açaí pulps. Depending on the water content of the pulps, the TEAC ranges 

approximately between 1.02 and 5.25 µmol Trolox equivalent/100 g dry matter (Dos Santos et al., 
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2008). Regarding both radicals, TOSC values of ripe açaí turned out being at least 1.5-fold higher 

than those found in pulps of different harvest periods described in Lichtenthäler et al. (2005).  

The trend of a decreasing antioxidant capacity during ripening was also observed in strawberries 

by referring the data of Pineli et al. (2011) on dry matter basis. In opposite to these results, durian 

fruits showed the lowest antioxidant capacity in the immature ripening stage (Haruenkit et al., 

2010). Corresponding to the discussion of the total phenolic content there is also no 

generalization or a consistent trend derivable for the antioxidant capacity in different ripening 

stages of fruits. 

4. Contribution of the phenolic content to the antioxidant capacity 

The totaled amount of the individual phenolic compounds in unripe fruits is four times higher 

when compared to the intermediate ripening degree (table A.4.3). Amounts decreased further 

during the ripening process of approximately 30%. Interestingly, TEAC values reduced in the 

same relation. 

Compound TOSC (in mg/L) 

Luteolin 4.8 

Cyanidin 3-O-glucoside 5.65 

Orientin 6.52 

Cyanidin 3-O-rutinoside 6.72 

Homoorientin 7.11 

Chrysoeriol 7.49 

Isovitexin 7.87 

Vitexin 9.12 

Vanillic acid 10.8 

Table A.4.5. Antioxidant capacity of standard compounds. 
TOSC values indicate the concentration that is needed to obtain 
an inhibition rate of 50% against peroxyl radicals. 

It was observed that the reduction of the antioxidant capacity in the course of maturity especially 

between unripe and medium ripe fruits is less distinctive for TOSC than for TEAC. In order to 

elucidate which compounds are responsible for the antioxidant capacity, authentic standard 

compounds that occur in relevant amounts in açaí fruits were determined by TOSC against px. 

Results of the determination are given in table A.4.5. It turned out that the antioxidant capacity 

of these standard compounds depended on the extent of hydroxylation, position of glycosylation, 

and the kind of glycosylation: Orientin and homoorientin differ by the presence of one additional 

hydroxyl group in 3’-position (B-ring) from vitexin and isovitexin showing consequently a higher 

antioxidant capacity. Vanillic acid had the weakest antioxidant capacity presenting the fewest 

hydroxyl groups in comparison to all measured standard compounds. Due to the varying position 

of the glucose residue between homoorientin (6-C-glucoside) and orientin (8-C-glucoside) both 
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compounds showed a different radical scavenging behavior. Orientin turned out to be a more 

efficient radical scavenger than homoorientin. Vice versa, vitexin (8-C-glucoside of apigenin) 

exhibited weaker antioxidant properties than isovitexin (6-C-glucoside). In comparison to the 

flavones, anthocyanins tend to be more potent radical scavengers. In agreement with 

Lichtenthäler et al. (2005), cyanidin 3-O-glucoside showed higher TOSC values than cyanidin 3-

O-rutinoside. Our results are in accordance with those of Kang et al. (2010) to a certain extent. In 

this report, flavonoids isolated from açaí were measured with ORAC. Luteolin also showed e.g. 

higher ORAC values than its corresponding C-glycosides. In opposite to our findings, vitexin 

exhibited a 2-10 times higher antioxidant capacity than luteolin, orientin, and homoorientin. 

Despite the determination of the antioxidant capacity of individual phenolic compounds, it is 

difficult to estimate their contribution to the overall antioxidant capacity. The decrease of these 

quantitatively dominating compounds from unripe and to medium ripe fruits is not in relation 

with the decline of the TOSC antioxidant capacity, which is less distinctive. Regarding the 

standard compounds, a bigger reduction of the TOSC values should be expected. Further, the 

TOSC antioxidant capacity decreased of approximately 75% from intermediate ripe fruits to ripe 

fruits whereas the total amount of identified phenolic compounds was reduced only by 30%. The 

reduction of TOSC values was also not compensated by increasing amounts of anthocyanins, 

which are potent radical scavengers. Thus, it is striking that the antioxidant capacity of açaí fruits 

against px during ripening is strongly influenced by unknown compounds. Most likely is a 

contribution of proanthocyanidins (Lichtenthäler et al., 2005). 

A.5 Conclusion 

The chemical characterization of açaí fruits at three different maturity stages passed significant 

alterations in all determined parameters. Concentrations of nutritional relevant compounds like 

minerals, proteins, and carbohydrates as well as acidity decreased in the course of ripening. An 

increase was observed for the fat content. Manifold alterations also occurred regarding the 

phenolic composition. The concentration of anthocyanins increased during ripening whereas 

amounts for hydroxycinnamic acids and other flavonoids steadily decreased. Hydroxybenzoic 

acids did not show a consistent trend. A tremendous high phenolic content was found in unripe 

açaí whereof the flavones orientin and homoorientin were quantitatively dominating. Values of 

the antioxidant capacity determined by TOSC and TEAC decreased consistently with increasing 

maturity. All in all, changes of the determined parameters generate expected alterations in flavor 

and texture of açaí fruits during ripening. Processing of açaí fruits seems to be useful not only in 

ripe condition as health promoting product. Extracts of unripe fruits may also be interesting for 
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the industry as e.g. food additive, dietary supplement or ingredient in cosmetics due to the high 

content of bioactive compounds.  
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B Phenolic constituents and antioxidant capacity of Myrtillocactus 
geometrizans (garambullo) in three different stages of maturity 
(manuscript not intended for publication) 

B.1 Introduction 

Mexico shows a high level of species endemicity as a result of the wide variation of 

physiographic, geological and climatic conditions (Palomino, 2000). Myrtillocactus geometrizans is 

one of in total four identified Myrtillocactus species belonging to the family of Cactaceae 

(Hernández-López et al., 2008). The plant is endemic to Mexico and grows on the slopes of cliffy 

mountain ranges in arid regions of the Mexican states Guanajuato, Jalisco, México, Michoacán, 

Puebla, Oaxaca, Tlaxcala, Hidalgo, Querétaro and San Luis Potosí (Céspedes et al., 2005). 

Myrtillocactus species are also known as blueberry cacti according to size and color of their fruits. 

Myrtillocactus geometrizans yields berry fruits of approximately up to 1.5 cm in diameter which are 

locally known as garambullo. Garambullos show a thin peel and a gel-like endocarp of reddish to 

bluish color due to the presence of betalains. The fruits contain numerous small black seeds 

(< 1 mm) scattered throughout the flesh (Hernández-López et al., 2008).   

Garambullos still grow with poor or even without agronomic management. Fruits are under-

utilized and consumed only locally. Nevertheless, they are offered in all public markets around 

their production site. Garambullos are either eaten fresh, sun-dried or they are processed as ice-

cream and jam. Interest by the industry has been arisen due to the potential as food colorant 

(Hernández-López et al., 2008).   

Coloration of garambullos has been ascribed to betalains (Guzmán-Maldonaldo et al., 2010), 

which are secondary plant compounds belonging to the alkaloids (Brossi, 1990). Betalains have 

been shown to be biologically active with considerable antioxidant activity (Cai et al., 2003) albeit 

it has not been investigated whether they act as antioxidants in plant tissues (Stintzing and Carle, 

2004). Interestingly, the occurrence of betalains is limited to only ten families of the plant order 

Caryophyllales and to the genus Amanita of the Basidiomycetes. E.g. prickly pears (Opuntia ficus-

indica) were found to be a source of both betalain subgroups betacyanins and betaxanthins. 

Research on betalains has also been restricted due to the lack of commercially available standards 

(Stintzing, et al., 2002).   

Scientific information on Myrtillocactus species is scarce. Myrtillocactus geometrizans has shown 

biological activity as some terpenoids from the roots and aerial parts were evaluated as insect 

growth inhibitors (Céspedes et al., 2005). Only one report is known on the nutritional value, 

betalain content, and the phenolic acid composition (Guzmán-Maldonaldo et al., 2010). No 

information is available on further phenolic constituents of garambullos.  
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Aim of this study was to evaluate the antioxidant capacity and phenolic composition at three 

stages of maturity in order to assess the bioactivity of Myrtillocactus geometrizans fruits for potential 

dietary or food technological application. The contribution of betalains to the antioxidant 

capacity was approximated by activity-guided HPLC-fractionation of garambullos.  

B.2 Materials and methods 

1. Chemicals 

Ultrahigh quality (UHQ) water was prepared with a Direct-Q 3 system (Millipore, Billerica, USA). 

Protocatechuic acid (≥ 97%) was purchased from Merck (Darmstadt, Germany). Caffeic acid 

(purum) was purchased from SERVA Feinbiochemica (Heidelberg, Germany). 

Diethylenetriaminepentaacetic acid (DTPA) (≥ 99%), α-keto-γ-methiolbutyric acid (KMBA) 

(≥ 97%), 2,2′-azobis(2-methylpropionamidine) dichloride (ABAP) (≥ 97%), 3-

morpholinosydnonimine N-ethylcarbamide (SIN-1), and quercetin were obtained from Sigma-

Aldrich Chemie GmbH (Steinheim, Germany). Flavonol glycoside standard compounds used for 

identification were a gift of Prof. Dr. Galensa, University of Bonn. They were self-isolated and of 

different purity grade.  

2. Sampling 

Myrtillocactus geometrizans fruits were harvested in 2007 at different sites in Guanajuato and 

Querétaro. Fruits were lyophilized and subsequent thoroughly ground. Freeze-dried samples were 

air-shipped to Germany and stored at -30 °C prior to analysis.    

Opuntia ficus-indica (prickly pears) fruits were bought in a local supermarket. The fruits were 

peeled, de-seeded, lyophilized, and thoroughly ground. The freeze-dried samples were stored at -

30 °C until analysis. 

3. Extraction and analysis of phenolic compounds 

Extraction of phenolic compounds was performed as described in Gordon et al. (2011a). Briefly, 

freeze-dried sample (250 mg) of each ripening stage was extracted in three treatments with 

acetone-water-formic acid (70 + 29 + 1, v/v/v) by using an Accelerated Solvent Extractor (ASE 

200, Dionex, Idstein, Germany). The following solid-phase extraction (SPE) was performed by 

help of a Gilson ASPEC XL system (Automated Sample Preparation with Extraction Cartridges, 

Abimed, Langenfeld, Germany) on polyamide solid phase extraction cartridges (500 mg PA, 

3 mL cartridge, Macherey Nagel, Düren, Germany). The extract was eluted with dimethyl 

sulfoxide-formic acid-trifluoroacetic acid (98.7 + 1 + 0.3; v/v/v).  
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Polyphenol identification and quantification was performed by HPLC-ESI-MS/MS as described 

in Gordon et al. (2011a). Extracts were measured in duplicate. Identification was performed by 

comparing fragmentation patterns and/or retention time of standard substances which were also 

used for creation of calibration curves for quantification of the phenolic compounds. Results are 

presented in mg/100 g dry matter (DM).  

4. Antioxidant capacity by TOSC 

Lyophilized sample of Myrtillocactus geometrizans fruits were reconstituted to the original weight 

with UHQ water (WE) and acetone-water (70 + 30, v/v) (AE) according to the dry matter 

content of 15% (w/w) for each maturity stage. Freeze dried material of prickly pears was taken to 

prepare a WE. Sample was reconstituted to the original weight under consideration of the dry 

matter content of 18.4% (w/w). The suspensions were sonicated for 5 min and centrifuged for 

10 min at 12,000 rpm with a Heraeus Biofuge Stratos (Kendro, Langenselbold, Germany). The 

supernatants of the WE were stored for further analysis at -30 °C. As the organic solvents 

interfere the gas chromatographic procedure of the TOSC assay, supernatants of AE were taken, 

weight and vaporized to dryness using a rotary evaporator (Rotavapor R-210, Büchi, Essen, 

Germany) at 40 °C. Subsequent, the vaporized solvents were replaced by UHQ water (w/w). 

Analysis of the extracts by TOSC was performed as described in Gordon et al. (2011b). 

5. Activity-guided fraction by HPLC  

Fractionation was modified according to a method previously described by Rodrigues et al. 

(2006). The HPLC-DAD system of Pro Star series (Varian, Walnut Creek, USA) was equipped 

with an analytical column Max-RP 4 µm C18, 150 mm, 4.6 mm i.d., combined with a guard 

column Security Guard, C18, 4 mm, 2 mm i.d. (both Phenomenex, Aschaffenburg, Germany). 

The solvents were UHQ water with 2% (v/v) formic acid (mobile phase A) and 2% (v/v) formic 

acid in acetonitrile (mobile phase B). The HPLC gradient using a flow rate of 1.0 mL/min started 

at 0% B and rose to 5% B after 10 min, 25% after 35 min, and 32.5% B after 40 min. The 

column was flushed with 100% B and re-equilibrated for 15 min at 0% B. 20 µL were injected for 

analysis. 

Fractions of the WE were collected in periods of 5 min starting directly after injection for a total 

time of 40 min. All collected samples were freeze-dried, dissolved in 500 µL UHQ water, and 

sonicated prior to analysis with the TOSC assay. The antioxidant capacity of the fractions was 

determined against peroxyl radicals. 
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6. Statistical Analysis 

To prove significant differences between maturity stages, statistical analysis of data from 

measurements on phenolic composition was performed by one-way analysis of variance. Means 

were compared by Bonferroni test at 95% of probability using PASW Statistics 18. 

B.3 Results and discussion 

1. Identification and quantification of phenolic constituents during ripening 

In total, ten phenolic constituents were mass spectrometrically identified in three different 

maturity stages of Myrtillocactus geometrizans (table B.3.1). All compounds were assigned by 

comparison of fragmentation pattern and retention time with those of authentic standards. 

Peak Compound 
[M-H]-/ 
product 
ion m/z 

Maturity stage 

   Unripe Intermediate Ripe 

1 Protocatechuic acid 154/109 0.70 ± 0.19a 0.14 ± 0.03b n.d. 

- Caffeic acid 179/135 n.d. n.d. 0.02 ± 0.00 

2 Quercetin 3-O-rutinoside 609/300 3.69 ± 0.21a 3.08 ± 0.42a 3.47 ± 0.36a 

3 Quercetin 3-O-galactoside 463/300 0.73 ± 0.05a 0.48 ± 0.05b 0.49 ± 0.07b 

4 Luteolin 7-O-glucoside 447/285 0.44 ± 0.02a 0.39 ± 0.03a 0.44 ± 0.04a 

5 Quercetin 3-O-glucoside 463/300 1.83 ± 0.08a 0.99 ± 0.16b 1.01 ± 0.05b 

6 Kaempferol 3-O-rutinoside 593/285 1.93 ± 0.23a 1.65 ± 0.31a 3.02 ± 0.26b 

7 Kaempferol 3-O-glucoside 447/285 0.11 ± 0.02a 0.08 ± 0.03a 0.08 ± 0.00a 

8 Luteolin 4-O-glucoside 447/285 0.11 ± 0.02a 0.07 ± 0.01b 0.08 ± 0.01b 

9 Quercetin 301/151 0.13 ± 0.01a 0.10 ± 0.01b 0.08 ± 0.01b 

Total   9.67 ± 0.86 6.98 ± 1.05 8.69 ± 0.80 

Table B.3.1. Content of phenolic compounds in three maturity stages of garambullo. Values are 
presented as mean ± standard deviation in mg/100 g dry matter. N.d.: not detected. a,bComparison of 
the means was performed by analysis of variance and Bonferroni test. Values with the same letters are 
not significantly different at level of p < 0.05. Means were compared within each row. 

According to table B.3.1, two phenolic acids were detected in garambullos, but they were not 

present throughout ripening. Protocatechuic acid (peak 1) was only found in unripe and medium 

ripe fruits. Caffeic acid (no peak in figure B.3.1) was merely identified in ripe fruits. In addition 

to the phenolic acids, the occurrence of six different flavonols such as kaempferol (peaks 6 and 7) 

and quercetin (peaks 2, 3 5, and 9) derivatives was constituted (figure B.3.1). All flavonols were 

present in each of the three determined maturity stages as well as two different flavone glucosides 

derived from luteolin (peaks 4 and 8). By comparing the amounts of unripe and medium ripe 

fruits, significant changes were only evaluated for quercetin, quercetin 3-O-galactoside, quercetin 
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3-O-glucoside, and luteolin 4-O-glucoside. In addition, amounts of kaempferol 3-O-rutinoside 

increased significantly from medium ripe fruits to ripe fruits.  

 
Figure B.3.1. Chromatogram of an aqueous acetone extract of unripe garambullo fruits at 320 nm. 

According to table B.3.1, quercetin 3-O-rutinoside, kaempferol 3-O-rutinoside, and quercetin 3-

O-glucoside turned out to be quantitatively the most important compounds of the detected 

phenolic constituents throughout ripening. Total amounts of the identified compounds in each 

maturity stage showed that the highest phenolic content occurred in unripe (9.67 mg/100 g DM) 

fruits (see table B.3.1). In the next maturity stage, the phenolic content decreased (6.98 mg/ 100 

g DM), but rose again in ripen fruits (8.69 mg/100 g DM). 

With regard to the biosynthesis of individual flavonols in fruits during ripening, the results of 

garambullo were different to that of bush butter fruits. On the contrary to garambullo, amounts 

of individual quercetin glycosides increased between two early ripening stages and showed 

subsequently a decline with progressing maturity (Missang et al., 2003). Results were also different 

in common apples. High flavonol concentrations were found accordingly to garambullo at early 

maturity stage. But flavonols decreased gradually resulting in the lowest amounts in ripe fruits (Li 

et al., 2002). In agreement with garambullo fruits, Awad et al. (2003) constituted some fluctuations 

in the ranking of individual quercetin glycosides. Conclusively, it can be stated that the rate of 

flavonol biosynthesis during ripening seem to depend on the fruit species. 
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The presence of flavonols and flavones was constituted for the first time in garambullo fruits. 

One report is known on the detection of gallic acid and caffeic acid garambullos (Guzmán-

Maldonaldo et al., 2010). The finding of caffeic acid in ripe fruits is in accordance with our results. 

Gallic acid was not found in any of the three maturity stages.   

By comparing the ratio of the identified phenolic compounds in each ripening stages (Figure 

B.3.2) it was found that percentages of kaempferol 3-O-rutinoside increased considerably. As a 

consequence, a decline was observed for quercetin 3-O-glucoside and protocatechuic acid. 

Percentages of the quantitatively dominating quercetin 3-O-rutinoside alternated during ripening. 

From unripe to medium ripe fruits, an increase was observed from 38% to 44%. In ripe 

garambullo, quercetin 3-O-glucoside had a part of 40% in comparison to other identified 

phenolic compounds. All other phenolic compounds were present in more or less the same 

percentages in each ripening stage. 

 

Figure B.3.2. Relative amounts of detected phenolic compounds in three maturity stages of garambullo fruits. 

2. Antioxidant capacity and activity-guided fractionation 

Results of the antioxidant capacity measurement of both aqueous and acetone extracts from 

garambullo is shown in table B.3.2. Generally, the AE showed a higher radical scavenging 

activity than the WE probably in consequence of a better solubility of the phenolic compounds 

in the organic phase. Concerning px, a steady decrease was observed in course of ripening with 

regard to both extracts.  

The same result could already be demonstrated in water extracts prepared from açaí pulp as 

discussed in manuscript of appendix A.4. On the contrary to garambullo and açaí, results of 

ripening cashew apples have shown a rising antioxidant capacity in the course of ripening 
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(compare Annex C.4). Ripe garambullo had only moderate radical scavenging properties against 

px when compared to fruits from the Amazon region. Only muruci fruits showed lower TOSC 

values (Gordon et al., 2011b). 

 Px Pn 

Maturity stage WE AE WE AE 

Unripe 1.56 0.94 2.88 1.22 

Intermediate 2.03 1.35 3.49 2.08 

Ripe 2.50 1.38 3.33 2.94 

Table B.3.2. Antioxidant capacity of garambullo fruits at three stages 
of maturity. TOSC values are expressed in g/L indicating the 
concentration of antioxidants that is needed to obtain a radical 
inhibition of 50%. WE: water extract, AE: acetone extract, px: peroxyl 
radicals, pn: peroxynitrite. 

Due to lack of information on betalaine containing fruits assessed by TOSC, prickly pears were 

evaluated in this study. Prickly pears have been shown to contain considerable amounts of 

betalains (Stintzing et al., 2002). The antioxidant capacity of prickly pears against px (2.41 g dry 

matter/L) was similar to that of ripe garambullo. Interestingly, results showed only a moderate 

antioxidant capacity for both betalain containing fruits in comparison to those colored by 

anthocyanins like açaí (Lichtenthäler et al., 2005), Clidemia rubra berries (Gordon et al., 2011a) or 

jambolão (Gordon et al., 2011b). 

With regard to pn, a gradual decrease of the antioxidant capacity was only observed for the 

acetone extract. The water extract of garambullo showed the highest radical scavenging activity in 

unripe fruits and the least in the intermediate ripening stage which is in accordance to the total 

amount of the identified phenolic compounds (see table B.3.1)  

Referring to the water extract, ripe garambullo can be attributed a good antiradical behavior 

against pn in comparison to prickly pears (3.33 g DM/L for garambullo and 4.33 g DM/L for 

prickly pear). However, the antioxidant capacity against pn is lower than that of Clidemia rubra 

berries (Gordon et al., 2011a) or açaí fruits (Lichtenthäler et al., 2005). Interestingly, the TOSC 

values resulting from the water extract of ripe garambullo against px and pn were characterized 

by a relatively small gap. Usually, fruit extracts have been shown to be considerably more 

effective against px than against pn (Gordon et al., 2011b).  

The contribution of betalains to the overall antioxidant capacity of garambullo fruits might be 

derived from an activity-guided fractionation, whose result is shown in figure B.3.3. Betalains 

were tentatively assigned by additional HPLC detection at a wavelength of 520 nm. The highest 

antioxidant activity was found in the first fraction (min 0-5) likely influenced by ascorbic acid that 
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was found to be present in garambullos in variety depending concentrations of 22.6 to 49.8 

mg/100 g fresh weight (Guzmán-Maldonaldo et al., 2010). 

 

Figure B.3.3. Activity-guided fractionation of garambullo fruits at two different 
ripening stages. The HPLC chromatogram of a water extract is recorded at 260 nm. 
TOSC values (bars) of the fractions are given in %. The antioxidant capacity was 
measured against peroxyl radicals. 

By comparing the peak intensity of the betalains in fractions 4 (min 15-20) and 5 (min 20-25), it 

can be assumed that their concentration increases in the course of ripening. This would be in 

accordance with the rising antioxidant capacity in these fractions and shows consequently an 

identifiable influence of betalains to the radical scavenging behavior of garambullos. However, 

the increasing antioxidant capacity of fractions 4 and 5 cannot compensate the decline in the 

overall antioxidant capacity from unripe to ripe fruits. The concentration decrease of unknown 

compounds gives rise to a regressive antioxidant activity in the remaining fractions. This becomes 

obvious e.g. in fraction 2 (min 5-10) and 3 (min 10-15) comprising the retention range of possible 

phenolic acid conjugates or fraction 6 (min 25-30) and 7 (min 30-35) being the retention range of 

the flavonoid glycosides. 

B.4 Conclusion 

In conclusion, two phenolic acids and eight different flavonoids were identified throughout three 

different ripening stages of garambullo fruits. The rutinosides of quercetin and kaempferol were 

the quantitatively most dominant of the detected compounds. Unripe fruits showed a slightly 

higher concentration of phenolic compounds in comparison to the other determined ripening 
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stages. The highest antioxidant capacity was also assessed in unripe fruits. Betalains show an 

identifiable contribution to the antioxidant capacity. However, a concentration increase of 

betalains could not compensate the decrease of other antioxidants giving rise to regressive TOSC 

values in the course of ripening. The antioxidant capacity of garambullos in ripe condition was 

similar to that of prickly pears when measured against peroxyl radicals and distinctively higher 

against peroxynitrite. In consequence of these results, garambullo fruits seem to be a reasonable 

alternative to other betalain containing fruits for possible technological and functional 

applications.    
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C.1 Abstract 

Introduction. Cashew apple is a rich source of sugars, vitamin C, and polyphenols. In spite of its 

nutritional value the pseudo fruits have been left unexploited in a large extend on the crop 

growing areas. Some reports on chemical characteristics of cashew apple have been published. 

However, nothing is known on changes of the composition of its bioactive compounds in the 

course of ripening. Material and methods. Cashew apples at three different maturity stages 

were examined with respect to their ascorbic acid content, phenolic compounds and antioxidant 

capacity. Ascorbic acid was quantified by HPLC. Phenolic compounds were identified and 

quantified by using HPLC-ESI-MS/MS by comparison with authentic standard compounds. The 

antioxidant capacity was measured by TOSC assay against peroxyl radicals and peroxynitrite. 

Results. Amounts of identified phenolic compounds were the highest in unripe cashew apple 

and decreased in the course of ripening. Myricetin 3-O-rhamnoside, quercetin 3-O-glactoside and 

quercetin 3-O-rhamnoside turned out to be the main flavonoids in all maturity stages. The 

antioxidant capacity and the concentration of ascorbic acid increased in the course of ripening. 

The antioxidant activity was considerably influenced by ascorbic acid more than by the content of 

phenolic compounds. Conclusion. This study provides for the first time information on changes 

of bioactive compounds and the antioxidant capacity in cashew apple during ripening. A dietary 

or technological exploitation of ascorbic acid is useful in ripe condition. The unripe pseudo fruits 

are a good source for the extraction of polyphenols with regard to possible food technological 

purposes or the preparation of food supplements. 

C.2 Introduction 

Anacardium occidentale L. (Cashew) is an evergreen shrub or tree up to 15 m in height that 

originates from the coastal strip of northern and north-eastern Brazil (FAO, 1986). Recently, 

cashew is distributed across tropical America, the West Indies, India and Africa (Michodjehoun-

Mestres et al., 2009). The cashew tree bears two food products, the ‘cashew nut’ and the ‘cashew 

apple’. The cashew nut is demanded on international markets due to its sweet flavor. Botanically, 

the cashew nut is the embryo of the kidney-shaped drupe which has a length of 3-5 cm. The 

cashew apple is attached as an enlarged peduncle to the drupe. This false fruit shows a yellow to 

red skin and a juicy flesh. It is 6-8 cm long and approximately 4.5 cm in diameter (FAO, 1986). 

Despite its promising economical potential, cashew apples are still underutilized. Only 10% of 

the production is used in either fresh or processed form as ice cream and jellies (Akinwale, 2000). 

The largest part rots on the crop growing areas although cashew apple juice is palatable because 

of its strong exotic flavor. In addition, cashew apples are nutritive due to the high content of 
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vitamin C and sugars (Garruti et al., 2010). A reason for the low attention to cashew apple is the 

astringent taste. Cashew apple juice has to be prepared technologically prior to consumption due 

to the content of tannins (Campos et al., 2002). Both, the clarified product ‘cajuina’ and fresh 

cashew apple juice have been reported to be antimicrobially active because of the bioactive 

constituents such as flavonols, tannins, carotenoids, and ascorbic acid (Melo 

Cavalcante et al., 2003). 

Dietary phenolics have been ascribed to contribute to the prevention of some degenerative 

diseases due to their health promoting properties (Gollucke, 2010; Xia et al., 2010). On the other 

hand, phenolic compounds have also become interesting for food technological purposes as they 

can be applied as antioxidants or antimicrobial agents (El-Hela and Abdullah, 2010; Jalosinska 

and Wilczak, 2009).  

Vitamin C is regarded to be the most important vitamin in human nutrition. Approximately 90% 

of vitamin C in the human diet is supplied by fruits and vegetables (Lee and Kader, 2000). Beside 

a number of important physiological functions it acts inter alia as a dietary antioxidant (Lee and 

Kader, 2000) and is used in a large scale as antioxidant agent in foods and drinks (Beitollahi et al., 

2009). 

Aim of this study was to evaluate the ascorbic acid content, the phenolic composition, and the 

antioxidant capacity in the course of ripening of Anacardium occidentale pseudo fruits in order to 

assess the bioactive potential for either dietary or food technological applications. 

C.3 Material and methods 

1. Chemicals 

Ultrahigh quality (UHQ) water was prepared with a Direct-Q 3 system (Millipore, Billerica, USA). 

Gallic acid (≥ 97.5%), quercetin (≥ 98%), myricetin (≥ 96%), diethylenetriamine-pentaacetic acid 

(DTPA) (≥ 99%), α-keto-γ-methiolbutyric acid (KMBA) (≥ 97%), 2,2′-azobis(2-

methylpropionamidine) dichloride (ABAP) (≥ 97%), 3-morpholino-sydnonimine N-

ethylcarbamide (SIN-1), (–)-epigallocatechin (≥ 95%), (–)-epigallocatechin gallate (≥ 95%), were 

purchased from Sigma-Aldrich Chemie GmbH (Steinheim, Germany). Myricitrin (≥ 95%) was 

obtained by Extrasynthése (Genay, France). Ascorbic acid (≥ 95%) was purchased from Kraemer 

& Martin GmbH (Sankt Augustin, Germany). Standards of quercetin 3-O-galactoside, quercetin 

3-O-glucoside, quercetin 3-O-arabinoside, quercetin 3-O-rhamnoside, quercetin 4’-O-glucoside, 

and kaempferol 3-O-glucoside were a gift of Professor Dr. Galensa, University of Bonn. These 

standards were self-isolated and of different purity grades (≥ 42% in case of quercetin 3-O-
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arabinoside, ≥ 90% for the remaining flavonols). Purity grades were taken into account for the 

quantification.  

2. Sampling 

Cashew apple pseudo fruits of the commercial variety CCP 76 were harvested at three maturity 

stages by visual analysis according to the classification described in Figueiredo (2000). Unripe 

fruits grew 33-36 days, medium ripe fruits 45-50 days, and ripe fruits 52 days. Fruits were 

collected at Embrapa’s experimental station in Pacajus, Ceará, Brazil. The harvested fruits of each 

ripening stage were randomly divided in three sub-sets (each representing an independent 

replicate) of at least five fruits. Fruits were lyophilized immediately after harvest. Freeze-dried 

samples were air-shipped to Germany and ground by ball milling (MM2000, Retsch, Haan, 

Germany) prior to storage at -30 °C.  

3. Polyphenol analysis 

Extraction of phenolic compounds 

Extraction of phenolic compounds was carried out by using a modified pressurized liquid 

extraction (PLE) method previously described in (Papagiannopoulos et al., 2004). Freeze-dried 

sample (250 mg) of each ripening stage was extracted in triplicate with acetone-water-formic acid 

(70 + 29 + 1; v/v/v) in an Accelerated Solvent Extractor (ASE 200, Dionex, Idstein, Germany) 

at room temperature, for 20 min, in two cycles. The subsequent solid-phase extraction (SPE) was 

performed by using a Gilson ASPEC XL system (Automated Sample Preparation with Extraction 

Cartridges, Abimed, Langenfeld, Germany) following a modified method described in 

(Papagiannopoulos et al., 2004). Polyamide (PA) SPE cartridges (500 mg PA, 3 ml cartridge, 

Macherey-Nagel, Düren, Germany) were conditioned with 3 ml of dimethyl sulfoxide-formic 

acid-trifluoroacetic acid (DMSO-FAc-TFA) (98.7 + 1 + 0.3; v/v/v) and washed with 5 ml of 

UHQ water. Prior to loading the cartridge, the sample extract was diluted to contain less than 

15% (v/v) of organic solvent. The cartridge was loaded with sample extract in volumetric steps 

of 20 ml until exhaustion and washed with 10 ml of water after each load. While eluting with 

DMSO-FAc-TFA solvent, the first 0.5 ml were discarded and the next 1.25 ml collected. Prior to 

application to HPLC-MS/MS, the samples were filtered through a 1.0/0.45 µm syringe filter 

(Chromafil GF/PET-45/25, Macherey-Nagel, Düren, Germany). 

Identification and quantification of phenolic compounds 

Quantification of the phenolic compounds was performed following a previously described 

method (Gordon et al., 2011). HPLC instruments consisted of a pump system and a UV-detector 

of the HP 1050 series (Hewlett Packard, Waldbronn, Germany), a degasser Degasys Populair 
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DP3010 (Uniflows, Tokyo, Japan) and an analytical column Aqua 3 µm C18, 150 mm, 2 mm i.d., 

combined with a guard column Security Guard, C18, 4 mm, 2 mm i.d. (both Phenomenex, 

Aschaffenburg, Germany). The solvents were UHQ water with 1% (v/v) formic acid (mobile 

phase A) and 1% (v/v) formic acid in acetonitrile (mobile phase B). The HPLC gradient using a 

flow rate of 0.3 ml/min started at 5% B, was hold isocratic for 10 min, and rose to 40% B after 

60 min. Subsequently, the column was flushed for 10 min at 100% B and re-equilibrated for 

25 min at 5% B. 20 µl were injected for analysis. Each sample extract was analyzed in duplicate 

(n = 6). The coupled API 2000 HPLC-ESI-MS/MS system was controlled with Analyst 1.5 

Software (both Applied Biosystems, Darmstadt, Germany). Mass spectra for the determination of 

phenolic compounds were generated in negative ionization mode.   

Identification was performed by comparing retention times and fragmentation patterns of 

phenolic compounds in multiple reaction mode with those of authentic standard substances. 

Standards were also used to create calibration curves for quantification. Results are presented in 

mg/100 g dry matter (DM). 

4. Antioxidant capacity by TOSC 

For TOSC analysis, freeze-dried sample of each ripening stage was reconstituted with UHQ 

water under consideration of the DM content of 12.9% (w/w). The suspension was sonicated for 

5 min and centrifuged for 10 min at 12,000 rpm with a Heraeus Biofuge Stratos (Kendro, 

Langenselbold, Germany). The aqueous supernatant (WE) was stored for further analysis at -

30 °C. Extraction procedure was performed in duplicate for each ripening stage. 

The TOSC assay was performed as described in Lichtenthäler et al. (2003). Briefly, the TOSC 

assay is based on an ethylene-yielding reaction of KMBA with either peroxyl radicals (px) or 

peroxynitrite (pn). Antioxidant compounds present in the sample can inhibit the ethylene 

formation that is recorded in a time course of 1 h using automatically repeated headspace GC 

analysis (GC-17A, Shimadzu, Tokyo, Japan). Each ripening stage was analyzed in duplicate 

(n = 4). Quantification of generated ethylene results in a kinetic curve of which the area under 

the curve (AUC) is calculated. Mean data of a sample are compared to those of an uninhibited 

reaction with water which gives rise to the TOSC values. Results of this study indicate the 

concentration of the sample in gram per liter that is needed to obtain a radical inhibition of 50%.  

5. Ascorbic Acid 

The ascorbic acid content in the WE of each maturity stage was determined chromatographically. 

The HPLC-DAD system of PRO Star series (Varian, Walnut Creek, USA) was equipped with an 

analytical column Synergi 4 µ Hydro RP, 150 mm, 2 mm i.d., and with a guard column Security 
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Guard, C 18, 4 mm, 2 mm i.d. (both Phenomenex, Aschaffenburg, Germany). Separation was 

performed with acidified UHQ water (2% formic acid, v/v) at isocratic condition using a flow 

rate of 0.8 mL/min. The injection volume was 20 µL. Confirmation of ascorbic acid in the WE 

was arranged by standard, retention time, and doping of standard to the sample. A five-point 

calibration curve (5-100 mg/100 mL, r2 = 0.9996) was created for quantification with authentic 

standard. Ascorbic acid was quantified at a wavelength of 260 nm. Sample runs of each WE were 

performed in duplicate (n = 4). 

6. Statistical Analysis 

To prove significant differences between maturity stages, statistical analysis of the data was 

performed by one-way analysis of variance. Means were compared by Bonferroni test at 95% of 

probability using PASW Statistics 18. 

C.4 Results and discussion 

1. Ascorbic acid 

Ascorbic acid was found in all maturity stages of cashew apple. Unripe fruits contained 1038 ± 

31 mg/100 g DM, medium ripe fruits 1392 ± 52 mg/100 g DM, and ripe fruits 1731 ± 

45 mg/100 g DM. Hence, results indicate an increase of the ascorbic acid content during 

ripening. A comparison of the mean values of each ripening stage demonstrated that the 

maturation process had a significant effect on the ascorbic acid content (p < 0.05). Literature 

studies on ascorbic acid levels at different ripening stages of cashew apple are not known but 

amounts of ascorbic acid in ripe fruits are in accordance with those found by Akinwale (2000). 

Different cashew apple cultivars determined by Assunção and Mercadante (2003) showed 

approximately 50% lower contents of ascorbic acid. The ascorbic acid content in ripe cashew 

apples is remarkably high in general. Amounts are 4-5 times higher in comparison to those of 

kiwi fruits or oranges (Souci et al., 1989) and can be ranked at the same level with guavas 

(Mercado-Silva et al., 1998).  

Ascorbic acid is generally present in plant tissues that undergo active growth and development 

(Lee and Kader, 2000). Increasing amounts of ascorbic acid were also observed in ripening 

guavas (Mercado-Silva et al., 1998). On the contrary, a decrease in the ascorbic acid content was 

reported by Celik et al. (2008) during ripening of cranberries. Hence, the ascorbic acid formation 

during fruit ripening seems to depend in particular on the species. 

2. Phenolic constituents 

A total of 14 phenolic constituents were detected in cashew apples (see table C.4.1 and figure 

C.4.1) by HPLC-MS/MS analysis. With the exception of peaks 7 and 8 all of them could be 
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identified by comparison of their retention times and mass spectrometric data with those of the 

authentic standard compounds. Accordingly, peak 1 consists of a phenolic acid, namely gallic 

acid. Peaks 2 and 3 correspond to flavanols: epigallocatechin and epigallocatechin gallate, 

respectively. Nine different flavonols (peaks 4-6, 9-14) were identified – their identity is described 

in table C.4.1). Peaks 7 and 8 could only be tentatively assigned to quercetin pentosides. These 

compounds showed [M–H]– ions at m/z 433 and product ions at m/z 301 which is in agreement 

with the fragmentation pattern of quercetin 3-O-arabinoside. However, the retention times are 

differing. 

 

Figure C.4.1. Chromatogram of an aqueous acetone extract of unripe cashew apple recorded at 280 nm. 

All detected phenolic compounds were present in unripe fruits. Their amounts decreased 

significantly from unripe to medium ripe fruits (p < 0.05). Kaempferol 3-O-glucoside (peak 12), 

myricetin (peak 13), and quercetin (peak 14) vanished completely. From medium ripe fruits to 

ripe fruits, a further decrease was observed for flavanols, quercetin pentosides, myricitrin, and 

quercetin hexosides of which quercetin 4’-O-glucoside (Peak 11) was no longer detectable in ripe 

fruits. In contrast to these compounds, amounts of gallic acid and quercetin 3-O-rhamnoside 

increased. All changes from medium ripe fruits to ripe fruits were not found to be significant. 

The decline in the concentration of the phenolic compounds from the unripe stage to medium 

ripe fruits suggests that the biosynthesis becomes less during growth and subsequent maturation 

as observed in bitter oranges (Castillo et al., 1992). Changes on flavonols were also determined in 

different maturity stages of apricots (Gruz et al., 2011) and common apples (Awad et al., 2001; Li 



Appendix C  

 69 

et al., 2002). In accordance with the results of cashew apple, the highest values of flavonols were 

mostly found in the initial maturity stage. Decreasing amounts of total flavonols during ripening 

were also found in camu camu fruits. On the contrary to cashew apple, values of total flavanols 

did not remarkably change (Chirinos et al., 2010). The decrease of flavanol amounts in cashew 

apple is in accordance with a report of Almeida et al. who found a higher activity for enzymes 

involved in the biosynthesis of these flavonoids in the early developmental stage of strawberries 

(Almeida et al., 2007). In case of hydroxybenzoic acids, Gruz et al. (2011) observed in medlar 

fruits (Mespilus germanica L.) that concentrations of free protocatechuic acid and syringic acid 

decreased during maturation as observed for gallic acid in cashew apple from unripe to medium 

ripe fruits. The decrease of free phenolic esters in medlar fruits is explained by their integration 

into cell walls. 

Peak Compound 
[M-H]-/ 

product ion 
m/z 

Maturity stage 

   Unripeb Intermediateb Ripe 

1 Gallic acid 169/125 2.22 ± 0.46 0.64 ± 0.06 0.94 ± 0.15 

2 Epigallocatechin 305/125 0.61 ± 0.13 0.11 ± 0.03 0.02 ± 0.01 

3 Epigallocatechin gallate 457/125 1.59 ± 0.31 0.07 ± 0.01 0.04 ± 0.00 

4 Myricitrin 463/316 4.48 ± 0.68 0.91 ± 0.36 0.86 ± 0.14 

5 Quercetin 3-O-galactoside 463/300 3.38 ± 0.53 0.99 ± 0.12 0.83 ± 0.23 

6 Quercetin 3-O-glucoside 463/300 1.95 ± 0.57 0.44 ± 0.07 0.31 ± 0.10 

7 Quercetin pentoside 1 433/301 1.12 ± 0.28a 0.45 ± 0.02a 0.42 ± 0.05a 

8 Quercetin pentoside 2 433/301 0.80 ± 0.12a 0.40 ± 0.03a 0.36 ± 0.08a 

9 Quercetin 3-O-arabinoside 433/301 0.73 ± 0.11 0.37 ± 0.05 0.38 ± 0.06 

10 Quercetin 3-O-rhamnoside 447/301 2.15 ± 0.28 0.65 ± 0.10 0.69 ± 0.18 

11 Quercetin 4-O-glucoside 463/300 0.13 ± 0.04 0.04 ± 0.01 n.d. 

12 Kaempferol 3-O-glucoside 447/285 0.05 ± 0.02 n.d. n.d. 

13 Myricetin 317/151 0.64 ± 0.01 n.d. n.d. 

14 Quercetin 301/151 0.17 ± 0.02 n.d. n.d. 

Total   20.40 ± 3.56 5.16 ± 0.86 4.92 ± 1.00 

Table C.4.1. Phenolic compounds in three maturity stages of cashew apple detected by HPLC-ESI-MS/MS. 
Data: mean ± standard deviation in mg/100 g dry matter. aexpressed as quercetin 3-O-arabinoside 
equivalents. bMeans of the compounds 1-11 differed significantly (p < 0.05) as assessed by analysis of 
variance and Bonferroni test. 

Interesting results were observed by comparing the ratios of the detected phenolic constituents in 

each ripening stage of cashew apple (figure C.4.2). Although concentrations of quercetin 3-O-

galactoside, quercetin 3-O-rhamnoside, and myricitrin decreased during ripening, these flavonols 

were present in similar percentages in each ripening stage. The quercetin pentosides and gallic 

acid increased remarkably whereas a decrease was found for epigallocatechin, epigallocatechin 

gallate, and quercetin 3-O-glucoside. In regard to flavonols, Awad et al. (2001) reported that the 
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ratio of the individually identified main quercetin glycosides in different cultivars of common 

apples (3-O-galactoside, 3-O-rhamnoside, 3-O-glucoside) undergo a permanent change during 

ripening which could in cashew apple only be constituted for quercetin 3-O-glucoside.  

A determination of phenolic compounds during the ripening process of cashew apple is 

performed for the first time. Two previously published reports are known on individual phenolic 

compounds in ripe cashew apple. Compounds 1, 4, 5, 6, 10, 12, 13, 14 and two quercetin 

pentosides were identified by Michodjehoun-Mestres et al. (2009). In accordance to our results, 

myricitrin, quercetin 3-O-galactoside, quercetin 3-O-glucoside, and quercetin 3-O-rhamnoside 

were quantified in similar amounts in the flesh of cashew apple cultivar CCP 76 (De Brito et al,, 

2007).  

 

Figure C.4.2. Ratio of detected phenolic compounds at each stage of maturity in cashew apple. 

De Brito et al. (2007) constituted also the presence of compound 4, 5, 6, 10, and 12 as well as 

three different quercetin pentosides. Epigallocatechin and epigallocatechin gallate are reported 

for the first time to occur in cashew apple total, 14 phenolic constituents were detected in unripe 

cashew apple.  

3. Antioxidant capacity 

The antioxidant capacity of cashew apple increased during maturity as shown in table C.4.2. 

Means were significantly different (p < 0.05) with exception of values between unripe and 

medium ripe fruits regarding px. Ripe cashew apples show approximately a twice as high radical 

scavenging activity against both radicals in ripe condition when compared to unripe fruits. 

Cashew apples show high antioxidant properties against both radicals in comparison to other 
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fruits from Latin America. The radical scavenging activity of ripe cashew pseudo fruits against px 

is higher than that of Clidemia rubra berries (0.9 g/L) (Gordon et al., 2011). However, the 

antioxidant activity was lower when compared to that of açaí fruits from different harvest years 

(0.39-0.48 g/L) (Lichtenthäler et al., 2005). Further, cashew apple turned out to be a good radical 

scavenger against pn as lower concentrations are needed to obtain a radical inhibition of 50% in 

comparison to açaí (1.17-1.72 g/L) (Lichtenthäler et al., 2005) and Clidemia rubra berries (2.0 g/L) 

(Gordon et al., 2011). 

 Maturity stage 

 Unripe Intermediate Ripe 

Peroxyl 1.38 ± 0.19a 1.22 ± 0.16a 0.79 ± 0.08b 

Peroxynitrite 1.88 ± 0.23a 1.37 ± 0.10b 1.00 ± 0.13c 

Table C.4.2. TOSC values of cashew apple at three maturity 
stages in g dry matter/L. TOSC values indicate the concentration 
of cashew apple (in g dry matter/L) that is needed to obtain a 
radical inhibition of 50%. a-cComparison of the means was 
performed by analysis of variance and Bonferroni test. Values 
with the same letters are not significantly different at level of 
p < 0.05. Means were compared within each row. 

A report of Lichtenthäler et al. (2003) might provide an explanation for the antiradical behavior 

of cashew apple in the course of ripening because of the antioxidant capacity which was 

determined of different flavonoid standards and ascorbic acid. Briefly, ascorbic acid showed a 4-5 

times lower antioxidant activity against px in comparison to the phenolic standard compounds. 

Against pn, the difference between the polyphenols and ascorbic acid was less distinctive (only 1-

2 times). Additionally, the radical scavenging activity of ascorbic acid towards px and pn was 

nearly identical. In consequence of these results, it becomes obvious that ascorbic acid has 

considerable influence on the antioxidant capacity of cashew apple. Firstly, the rising ascorbic 

acid concentration during ripening parallels the increase of the antioxidant activity against both 

radicals. Amounts of ascorbic acid in each ripening stage are remarkably higher than those of the 

identified and quantified phenolic compounds (the sum is given in table C.4.1). Secondly, the 

high ascorbic acid content is an explanation for the good antioxidant activity of cashew apple 

especially against pn. 
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D.1 Abstract  

The flora of Latin America attracts gaining interest as it provides a plethora of still unexplored or 

underutilized fruits that can contribute to human well-being due to their nutritional value and 

their content of bioactive compounds. Clidemia rubra (Aubl.) Mart. is a shrub belonging to the 

family of the Melastomataceae that grows preferably in a tropical climate. This paper comprises a 

nutritional characterization of the berries from Clidemia rubra and provides data on the phenolic 

compounds as well as the antioxidant capacity of the fruit. Findings in macronutrients like 

protein, carbohydrates, and fat were comparable to that of common berry fruits. Clidemia rubra 

berries seemed to be a good source for dietary fibers and some minerals (Ca, Mn, and Zn). In 

contrast, contents of titratable acids and ascorbic acid in were low. The polyphenolic profile was 

determined by using HPLC-MS/MS in comparison to standard compounds. Noteworthy 

amounts of cyanidin 3-O-rutinoside (39.43 ± 1.66 mg/100 g fresh weight (FW)), delphinidin 3-

O-rutinoside 23.74 ± 1.18 mg/100 g FW), cyanidin 3-O-glucoside (11.68 ± 0.56 mg/100 g FW), 

and delphinidin 3-O-glucoside (6.08 ± 0.35 mg/100 g FW) were found. Non-anthocyanin 

phenolic constituents were phenolic acids (gallic, protocatechuic, p-hydroxybenzoic, vanillic, and 

caffeic acid), flavan-3-ols (epigallocatechin, epigallocatechin gallate, and epicatechin gallate), and 

11 different myricetin- and quercetin derivatives of which quercetin 3-O-arabinoside (5.26 ± 

0.16 mg/100 g FW) and quercetin 3-O-rhamnoside (5.06 ± 0.08 mg/100 g FW) were dominating. 

Anthocyanins and ascorbic acid were mainly responsible for the antioxidant capacity of Clidemia 

rubra berries assessed with the total oxidant scavenging capacity (TOSC) assay. 

D.2 Introduction 

There is considerable epidemiological evidence that a diet rich in fruits and vegetables reduces the 

risk of developing degenerative diseases like cardiovascular disorders (Wang et al., 2010), 

Alzheimer’s disease (Singh et al., 2008), and cancer (Hertog et al., 1994). Especially berry fruits are 

a rich source of antioxidant compounds like vitamin C and polyphenols that have been 

implicated in promoting these protective effects (Szajdek and Borowska, 2008). Due to the 

significant health benefits of bioactive compounds in berry fruits, there has been gaining interest 

in recent years in exploring new and exotic types of berries (Schreckinger et al., 2010). A large 

number of underutilized exotic fruit species are of special interest to the agroindustry and may 

potentially supplement the income of the local population. However, only limited information is 

available on the nutritional value and polyphenolic content of many exotic species (Contreras-

Calderón et al., 2010).   
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Clidemia rubra is a shrub belonging to the family of Melastomataceae (Krasser, 1893). The bluish 

or black colored berries are of oval shape and 4-5 mm in diameter (Standley and Williams, 1963). 

Like all species of Melastomataceae, Clidemia rubra prefers a warm, tropical climate (Raffauf, 

1996). The growth area extends in Central America from Oaxaca in Mexico to Panama. In South 

America it is mainly scattered in the northern part of the continent like Columbia, Ecuador, 

Venezuela, French-Guiana whereas different varieties can also be found in Bolivia and in the 

south of Brazil (Gleason, 1939; Naudin, 1849). The edible and juicy fruits (Hanelt, 2001; Standley 

and Williams, 1963) of Clidemia rubra are either collected from wild growing plants or cultivated in 

greenhouses (Krasser, 1893) before they are offered at local markets (Ternes et al., 2005). Usually, 

the berries are eaten fresh (Krasser, 1893).   

Literature about the family of Melastomataceae is generally scarce. To our knowledge, there is no 

information available on the distribution of nutrients and phenolic compounds in Clidemia rubra. 

This work will give a first appraisal of the characterization of primary and secondary plant 

compounds as well as the antioxidant activity of its berry fruits. 

D.3 Material and methods 

1. Chemicals 

Ultrahigh quality (UHQ) water was prepared with a Direct-Q 3 system (Millipore, Billerica, USA). 

All mineral Titrisol® standards, D-(–)-fructose (≥ 99%), protocatechuic acid (≥ 97%) and p-

hydroxybenzoic acid (≥ 99%) were purchased from Merck (Darmstadt, Germany). Bile extract, 

pancreatin, Na2HPO4·H2O (≥ 99%), KH2PO4 (≥ 99%), D-(+)-glucose (puriss.), gallic acid 

(≥ 97.5%), vanillic acid (≥ 97%), (–)-epicatechin gallate (≥ 98%), (–)-epigallocatechin (≥ 95%), 

quercetin (≥ 98%), myricetin (≥ 96%), diethylenetriaminepentaacetic acid (DTPA) (≥ 99%), α-

keto-γ-methiolbutyric acid (KMBA) (≥ 97%), 2,2′-Azobis(2-methylpropionamidine) dichloride 

(ABAP) (≥ 97%), and 3-morpholinosydnonimine N-ethylcarbamide (SIN-1), K3O4P·H2O 

(≥ 95%) were obtained from Sigma-Aldrich Chemie GmbH (Steinheim, Germany). Ascorbic acid 

(≥ 95%) was purchased from Kraemer & Martin GmbH (Sankt Augustin, Germany). Cyanidin 3-

O-glucoside (≥ 96%), cyanidin 3-O-rutinoside (≥ 96%), delphinidin 3-O-glucoside (≥ 95%), (–)-

epigallocatechin gallate (≥ 95%) and myricitrin (≥ 95%) were purchased from Extrasynthèse 

(Genay, France). Caffeic acid (purum) was obtained from SERVA Feinbiochemica (Heidelberg, 

Germany). HPLC and HPLC-MS solvents in the necessary purity grade were obtained from J.T. 

Baker (Griesheim, Germany). All flavonol glycoside standards were a gift of Professor Dr. 

Galensa (University of Bonn). They were self-isolated and of different purity grades.  
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2. Sampling 

Berries of Clidemia rubra were collected in Restrepo (Meta) near Bogotá, Columbia. After harvest, 

the fruits were directly homogenized and lyophilized. Until analysis, the freeze-dried samples 

were stored at -30 °C.  

3. Determination of fat, protein, carbohydrates, and dietary fibers 

Fat content was determined using a Soxhlet method described in Carpenter et al. (1993). For 

analysis 1 g of freeze-dried sample was extracted with petroleum ether for 2 h. 

Total nitrogen was measured with an automated combustion method based on that of Dumas 

being in accordance with the official AOAC method 990.03 (AOAC, 1998). 100 mg of the 

lyophilized sample of Clidemia rubra were transferred into a Nitrogen/Protein Analyser FP-328 

(Leco, Mönchengladbach, Germany). Protein concentration was calculated by multiplication of 

obtained nitrogen concentration with the conversion factor of 6.25 (Simonne et al., 1997). 

For determination of carbohydrates, lyophilized fruit sample of Clidemia rubra was dissolved in 

UHQ water according to their original water content of 81.4%, sonicated for 10 min and 

centrifuged for the same time at 15,000 rpm with a Heraeus Biofuge Stratos (Kendro, 

Langenselbold, Germany). The supernatant of the water extract (WE) was filtered through a 

0.45 µm syringe filter (Chromafil PET-45/25, Macherey-Nagel, Düren, Germany). The filtrate 

was stored until further application at -30 °C.   

Glucose, fructose and saccharose were quantified by an enzymatic-photometric method. The 

enzyme kit was purchased from R-Biopharm AG (Darmstadt, Germany). Analysis was 

performed following the instruction manual. The spectroscopical measurement was carried out 

by a Cary 50 UV-Vis Spectrophotometer (Varian, Walnut Creek, USA).   

Dietary fiber was determined using a modified method of Al-Hasani et al. (1993). The dietary 

fiber content is considered as the residue of the dry crucible less ashed crucible and crude 

protein. Therefore, freeze-dried sample (1 g) was accurately weighed in a 250 mL PE-flask and 

suspended in 50 mL phosphate buffer, pH 7.4. After adding of 2.5 mL of bile solution and 5 mL 

of pancreatic enzyme solution, pH was adjusted to 7.8 with 1 N sodium hydroxide. The flask was 

placed in an incubator shaker at 40 °C for 6 h. Following the incubation 100 mL reagent grade 

alcohol was added, the suspension was than centrifuged for 10 min at 4000 rpm and the 

supernatant was rejected. The residue was elutriated with 30 mL alcohol, centrifuged and the 

supernatant rejected again. This procedure was repeated once more with 30 mL alcohol and 

following with 20 mL acetone. The residue was dried in an oven set at 130 °C for 1 h and 

weighed accurately. Ash content of the residue was determined in a muffle furnace set at 525 °C 
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for 6 h. The crude protein content of the residue was determined as described in AOAC method 

981.10 for protein determination (AOAC, 1998).  

Determination of macronutrients and dietary fibers were carried out in a duplicate.  

4. Determination of total titratable acid (TTA) 

Determination of TTA was performed as described in AOAC standard method 942.15 with 

some modifications (AOAC, 1998). 4 mL of WE was filled up to a volume of 10 mL with UHQ 

water. The titration was accomplished with 0.5 M KOH. After addition of several droplets of 

KOH the pH-value was recorded by using an inoLab Level 2 pH-meter (WTW, Weilheim, 

Germany). This procedure was repeated twice. By help of data evaluation software SPSS 

TableCurve 2D v5.1 (SYSTAT, Erkrath, Germany) the stoichiometric point was calculated and 

the results were expressed as citric acid equivalent. 

5. Determination of minerals by atomic absorption spectrometry (AAS) 

Determination of minerals was performed following official European standard methods. 

For the pressure digestion, an acid hydrolysis was conducted in order to separate the anorganic 

minerals from their organic ligands. Five times, lyophilized fruit sample (350 mg) was mixed with 

2 mL hydrogen peroxide (30%) and 3 mL nitric acid (70%), given in cartridges and transferred 

into a microwave digestion system MEGA 1200 (MLS, Leutkirch, Germany) (DIN EN 13805, 

2002). 

As described in DIN EN 1134 (1994) eight elements (Ca, Mg, K, Na, Zn, Mn, Cu, Fe) were 

determined by using flame AAS (acetylene and air). Analyses were operated with an AA240FS 

Atomic Absorption Spectrometer (Varian, Walnut Creek, USA) equipped with mineral specific 

hollow cathode lamps. Quantification was done with aid of specific calibration curves.   

6. Determination of ascorbic acid by HPLC 

Ascorbic acid content of the WE was determined basing on a modified method of Romero-

Rodriguez et al. (1992). The HPLC-DAD system of Pro Star series (Varian, Walnut Creek, USA) 

was equipped with an analytical column Aqua 3 µm C18, 150 mm, 2 mm i.d., and with a guard 

column Security Guard, C18, 4 mm, 2 mm i.d. (both Phenomenex, Aschaffenburg, Germany). 

The solvent for isocratic separation was UHQ water with 1% formic acid (v/v). Measurements 

were accomplished with a flow rate of 0.4 mL/min and a detection wavelength of 260 nm. 

Confirmation of ascorbic acid in the WE was arranged by authentic standard, retention time, and 

doping of standard to the sample. For quantification a calibration curve was created. All sample 

runs were carried out in duplicate. 
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7. Identification and quantification of phenolic compounds by HPLC-MS/MS 

Polyphenol extraction 

Anthocyanins of Clidemia rubra were extracted using a modified method explicitly described in 

Wu et al. (2004). Briefly, freeze-dried sample (250 mg) was extracted with 4 mL of methanol-

UHQ water-acetic acid (MeOH-H2O-HAc) (50 + 49.5 + 0.5; v/v/v). After vortexing, sonication 

and centrifugation the supernatant was removed and the sample once more extracted but with 

2.5 mL of MeOH-H2O-HAc. Both sample solutions were combined and filtered through a 

1.0/0.45 µm syringe filter (Chromafil GF/PET-45/25, Macherey-Nagel, Düren, Germany) prior 

to application into HPLC.  

For determination of phenolic acids and flavanols a modified sample preparation was used as 

described in Pacheco-Palencia et al. (2009). For two times, lyophilized sample (500 mg) was 

dissolved in 10 mL of acetone-water-formic acid (70 + 29 + 1; v/v/v), sonicated for 10 min, 

then centrifuged for 10 min with 10,000 rpm at 10 °C. The sample was extracted once more with 

10 mL acetone-water-formic acid. Afterwards, the supernatants were combined. To get rid of the 

organic solvent, the extract was vaporized using a rotary evaporator (Rotavapor R-210, Büchi, 

Essen, Germany) at 30 °C and the aqueous supernatant was shaken with 10 mL ethyl acetate. 

The received ethyl acetate fraction was vaporized to dryness. The residue was solubilized in 1 mL 

methanol-water-formic acid (50 + 49 + 1; v/v/v) and filtered through a 1.0/0.45 µm syringe 

filter (Chromafil GF/PET-45/25, Macherey-Nagel, Düren, Germany) before application to 

HPLC-MS/MS.  

Due to a low recovery of glycosylated compounds in the ethyl acetate fraction, the preparation 

for flavonol determination was carried out by using a modified pressurized liquid extraction 

(PLE) method previously described in Papagiannopoulos et al. (2004). Freeze-dried sample 

(250 mg) were extracted with acetone-water-formic acid (70 + 29 + 1; v/v/v) in an Accelerated 

Solvent Extractor (ASE 200, Dionex, Idstein, Germany) at room temperature, for 20 min, in two 

cycles. The following solid-phase extraction (SPE) was performed using a modified method 

described in Papagiannopoulos et al. (2004) by help of a Gilson ASPEC XL system (Automated 

Sample Preparation with Extraction Cartridges, Abimed, Langenfeld, Germany). Polyamide (PA) 

SPE cartridges (500 mg PA, 3 mL cartridge, Macherey-Nagel, Düren, Germany) were 

conditioned with 3 mL of dimethyl sulfoxide-formic acid-trifluoroacetic acid (DMSO-FAc-TFA) 

(98.7 + 1 + 0.3; v/v/v) and washed with 5 mL of UHQ water. Prior to loading the cartridge the 

sample extract was diluted to contain less than 15% (v/v) of organic solvent. The cartridge was 

loaded with sample extract in volumetric steps of 20 mL until exhaustion and washed with 10 mL 

of water after each load. While eluting with DMSO-FAc-TFA solvent, the first 0.5 mL were 
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discarded and the next 1.25 mL collected. Before application to HPLC-MS/MS the samples were 

filtered through a 1.0/0.45 µm syringe filter (Chromafil GF/PET-45/25, Macherey-Nagel, 

Düren, Germany). 

Polyphenol analysis 

The determination of the phenolic compounds was performed using a modified method of 

Papagiannopoulos et al. (2004). HPLC instruments consisted of a pump system and an UV-

detector of the HP 1050 series (Hewlett Packard, Waldbronn, Germany), a degasser Degasys 

Populair DP3010 (Uniflows, Tokyo, Japan) and an analytical column Aqua 3 µm C18, 150 mm, 

2 mm i.d., with a guard column Security Guard, C18, 4 mm, 2 mm i.d. (both Phenomenex, 

Aschaffenburg, Germany). The solvents were UHQ water with 1% (v/v) formic acid (mobile 

phase A) and 1% (v/v) formic acid in acetonitrile (mobile phase B). The HPLC gradient using a 

flow rate of 0.2 mL/min started at 5% B and rose up to 35% B after 55 min, 100% B after 

65 min and re-equilibrated for 15 min at 5% B. 20 µL of each sample extract were injected for 

analysis. The coupled API 2000 HPLC-MS/MS system was controlled with Analyst 1.5 Software 

(both Applied Biosystems, Darmstadt, Germany). Mass spectra for the determination of 

anthocyanins were obtained by using positive ionization whereas all other polyphenols were 

detected in negative ionization mode. 

Identification was performed by comparing fragmentation patterns and/or retention time of 

standard substances which also were used for creation of calibration curves for quantification of 

the non-anthocyanin phenolic compounds. 

For quantification of the anthocyanins, a HPLC-DAD system of Pro Star series (Varian, Walnut 

Creek, USA) equipped with an analytical column Aqua 3 µm C18, 150 mm, 2 mm i.d., combined 

with a guard column Security Guard, C18, 4 mm, 2 mm i.d. (both Phenomenex, Aschaffenburg, 

Germany) was used. Calibration curves were created with authentic standards of the individual 

anthocyanins.  

8. Antioxidant activity 

Total oxidant scavenging capacity (TOSC) assay  

Analyses of the TOSC assay were performed as described in Lichtenthäler et al. (2003). Briefly, 

the measurement of the antioxidant capacity is based on an ethylene yielding reaction of KMBA 

with either generated peroxyl radicals or peroxynitrite. Antioxidative compounds present in the 

sample can inhibit the ethylene formation. Samples without antioxidant properties have a TOSC 

value of 0%. A complete suppression of ethylene formation corresponds to a TOSC value of 
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100%. Ethylene is measured gas chromatographically (GC-17A, Shimadzu, Tokyo, Japan) over a 

time course of 1 h. 

Fractionation by HPLC 

Fractionation was performed as described in Rodrigues et al. (2006) with some modifications. The 

HPLC-DAD system of Pro Star series (Varian, Walnut Creek, USA) was equipped with an 

analytical column Max-RP 4 µm C18, 150 mm, 4.6 mm i.d., combined with a guard column 

Security Guard, C18, 4 mm, 2 mm i.d. (both Phenomenex, Aschaffenburg, Germany). The 

solvents were UHQ water with 2% (v/v) formic acid (mobile phase A) and 2% (v/v) formic acid 

in acetonitrile (mobile phase B). The HPLC gradient using a flow rate of 0.8 mL/min started at 

0% B and was hold isocratic for 10 min. After 10 min the gradient rose up to 40% B after 

60 min. The column was flushed with 100% B and re-equilibrated for 15 min at 0% B. 20 µL 

were injected for analysis.   

Fractions of the WE were collected in periods of 4 min starting directly after injection for a total 

time of 44 min. All collected samples were freeze-dried, dissolved in 500 µL UHQ-water, and 

sonicated prior analysis with the TOSC-assay. The antioxidant capacity of the fractions was 

determined against peroxyl radicals.  

D.4 Results and discussion 

1. Macronutrients 

Clidemia rubra berries showed a fat content of 1.03 ± 0.01 g/100 g FW. This result is comparable 

to that of other berries like blackberries, blueberries or raspberries which generally contain 1% or 

less of fat (Souci et al., 2008). 

The nitrogen and protein content denoted as arithmetic mean were 0.19 ± 0.01 g/100 g fresh 

weight (FW) for nitrogen and 1.18 ± 0.03 g/100 g FW for protein, respectively. The results of the 

protein content of berries of Clidemia rubra are in accordance with commonly cultivated berries. 

The highest amount of protein is found in black currants whereas blueberries offer an averaged 

protein content of only 0.60 g/100 g FW (Souci et al., 2008). 

The dominant sugars in berries of Clidemia rubra were glucose and fructose. Glucose was found in 

a concentration of 3.24 ± 0.06 g/100 g FW. The amount of fructose added up to 3.75 ± 

0.10 g/100 g FW. The sugar content as well as the glucose-fructose ratio is comparable to that of 

other berries like black currant, blueberry or gooseberry (Souci et al., 2008). Saccharose was found 

to be < 0.1 g/100 g. Generally, saccharose occurs in berries only in low concentrations which can 

be explained by its transport function inside the plant and the immediate inversion to fructose 
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and glucose at place of use (Talcott, 2007). The amount of saccharose in Clidemia rubra is even 

lower than in black currant, blueberry or gooseberry (Souci et al., 2008). 

2. Dietary fibers 

Clidemia rubra berries are found to be a good source for dietary fibers. The determined content 

was 8.85 ± 0.02 g/100 g FW which is about twice the amount contained in blueberries and 

raspberries (Souci et al., 2008). An explanation for this high value might be the dry matter content 

that is likewise higher when compared to blueberries and raspberries. The dry matter of black 

currants (Souci et al., 2008) and camarinha fruits (Bramorski et al., 2010) is comparable to that of 

Clidemia rubra berries. Hence, the total dietary fiber of black currants (6.8 g/100 g FW) and 

camarinha (6.5 g/100 g FW) is higher than in blueberries and raspberries but nonetheless lower 

than in Clidemia rubra berries. 

3. Minerals 

The results of mineral analysis by AAS are illustrated in table D.4.1. For calcium, zinc and 

manganese the concentrations are high compared to those of other common berry fruits (Souci et 

al., 2008).  

Mineral content in mg/100 g fresh weight 

Na 0.85 ± 0.02 

K 163.42 ± 2.55 

Ca 43.62 ± 2.50 

Mg 9.21 ± 0.21 

Fe 1.73 ± 0.07 

Zn 0.63 ± 0.02 

Cu 0.01 ± 0.00 

Mn 9.61 ± 0.15 

Table D.4.1. Minerals in Clidemia rubra berries. 

4. pH value and TTA 

Clidemia rubra berries indicated a pH value of 3.0. The amount of TTA was determined as 

138.8 mmol/L and 8.9 g/L calculated as citric acid. 

Compared with results of other berries from literature, the acid concentration in berries of 

Clidemia rubra is low. For example, Rubinskiene et al. (2006) and Zatylny et al. (2005) found almost 

up to 5 times higher amounts for TTA in black currant calculated as citric acid. Depending on 

stage of maturity Famiani et al. (2005) found 2.5 fold amounts in red currants. In case of ripe 

blueberries, Giovanelli and Buratti (2009) obtained results comparable to that of Clidemia rubra 

berries. Even lower amounts of TTA up to 0.35 g/100 g FW were reported for other Vaccinium 
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cultivars (Saftner et al., 2008). Beside differences in fruit ripeness and cultivars, the large variation 

in TTA depends on hydrothermal conditions like sun exposure and temperature (Bergqvist et al., 

2001; Famiani et al., 2005). 

5. Ascorbid acid 

Clidemia rubra berries showed an ascorbic acid content of 8.44 ± 0.02 mg/100 g FW which is low 

compared to other berry fruits. Blueberries, gooseberries as well as red currants show more than 

two-fold higher concentrations in ascorbic acid (Pantelidis et al., 2007; Souci et al., 2008). Only 

grapes indicate lower ascorbic acid contents between 2.0-7.4 mg/100 g FW (Souci et al., 2008). 

6. Identification and quantification of phenolic compounds 

Anthocyanins 

A typical chromatogram of the determined anthocyanins at 520 nm is given in figure D.4.1. A 

list of the identified anthocyanins is given in table D.4.2. In total four anthocyanins were 

detected in Clidemia rubra berries. 

 
Figure D.4.1. Anthocyanins in Clidemia rubra berries. HPLC chromatogram at 
520 nm of an aqueous methanol extract. 

Peaks 1, 3, and 4 were mass spectrometrically identified by comparison of fragmentation pattern 

and retention time with authentic standards of delphinidin 3-O-glucoside, cyanidin 3-O-

glucoside, and cyanidin 3-O-rutinoside. Peak 2 was tentatively assigned to delphinidin 3-O-

rutinoside showing a molecular ion [M+H]+ at m/z 611. The positive product ion was at m/z 303 

indicating an agylcone fragment of delphinidin and the loss of m/z 308 is in accordance with the 
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mass of a hexosyl-deoxyhexoside. Further, the presence of rutinoside in Clidemia rubra berries was 

already proven as a sugar moiety of cyanidin. This suggestion agrees with regularities in the 

determination of anthocyanins. At first, the sequence of the elution order depends on the sugar 

moiety. Generally, an anthocyanidin 3-O-rutinoside is retained after an anthocyanidin 3-O-

glucoside (Wu and Prior, 2005a). Secondly, if a certain sugar moiety is linked to an anthocyanidin 

it will also be distributed to other anthocyanidins present in the fruit. Beside this, larger sugar 

moieties tend to link to 3-position of the flavylium ring. For instance, diglucose and rutinose were 

found to be exclusively bond at that position (Wu and Prior, 2005b). After quantification, the 3-

O-rutinosides of cyanidin and delphinidin (calculated as delphinidin 3-O-glucoside equivalents) 

turned out to be the main anthocyanins in Clidemia rubra berries followed by the 3-O-glucosides. 

A report of anthocyanins in different Melastomataceae varieties showed the presence of malvidin 

glycosides in the flowers and mainly delphinidin and pelargonidin glycosides in the fruits. Here, 

an acylated delphinidin 3,5-O-diglucoside was found in Clidemia hirta Don (Lowry, 1975).   

Table D.4.2. Anthocyanins in an aqueous methanol extract of Clidemia rubra berries. Data: mean ± standard 
deviation. aexpressed as delphinidin 3-O-glucoside equivalents. 

The total anthocyanin content of Clidemia rubra berries is about five-fold higher compared to that 

of red currants or different gooseberry cultivars (Wu et al., 2004). However, amounts are 

approximately five times lower than those of black currant cultivars (Wu et al., 2004) and 1.75-

2.75 times lower than those found in different Andean blackberry cultivars (Mertz et al., 2007).

  

Non-anthocyanin phenolic compounds 

Figure D.4.2 shows the HPLC-UV-Vis chromatogram of an extract of Clidemia rubra berries at 

280 nm. Results are presented in table D.4.3. In total five phenolic acids were identified. 

Quantitatively, vanillic (peak 9) and gallic acid (peak 5) were the most dominant phenolic acids, 

followed by lower quantities of protocatechuic, p-hydroxy-benzoic, and caffeic acid (peaks 6, 7, 

and 10). Three different flavan-3-ols were found in Clidemia rubra berries, namely epigallocatechin 

(peak 8), epigallocatechin gallate (peak 11) as dominating flavan-3-ols, and epicatechin gallate 

(peak 13). Berries of Clidemia rubra contain different flavonols that are derived from myricetin and 

quercetin. Peak 22 showed a base peak [M–H]– at m/z 317 and a product ion at m/z 151 which 

Peak 
Retention 

time 

[M+H]+/ 

product ion (m/z) 
Compound 

Content in 
mg/100 g fresh 

weight 

1 29.4 465/303 Delphinidin 3-O-glucoside 6.08 ± 0.35 

2 30.3 611/303 Delphinidin 3-O-rutinoside 23.74 ± 1.18a 

3 31.2 449/287 Cyanidin 3-O-glucoside 11.68 ± 0.56 

4 32.0 595/287 Cyanidin 3-O-rutinoside 39.43 ± 1.66 
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was in agreement with an authentic standard of myricetin. By comparing the fragmentation 

pattern and the conforming retention time this peak can positively be recognized as myricetin. 

 

Figure D.4.2. HPLC chromatogram at 280 nm of an aqueous acetone extract prepared with 
ASE-ASPEC. 

The presence of a myricetin aglycone confirmed the identification of peaks 12 and 14 as 

myricetin 3-O-glucoside and myricetin 3-O-rhamnoside, respectively. Deprotonated molecular 

ions were found [M–H]– at m/z 479 and 463, respectively. Their corresponding deprotonated 

product ion showed a peak at m/z 316. As stated in Hvattum and Ekeberg (2003) both an 

aglycone product ion [M–H]– after heterolytic cleavage of the O-glycosidic bond and a radical 

aglycone fragment ([M–H]−•) are obtained after homolytic cleavage of non-methoxylated 

flavonoids in consequence of negative ion collision-induced dissociation. In this case, 

fragmentation pattern and retention time matched with that of myricetin 3-O-glucoside and 

myricetin 3-O-rhamnoside standards. Quantitatively, myricetin 3-O-rhamnoside turned out to be 

the dominating myricetin compound. 1.04 mg/100 g fresh weight (FW) were found for myricetin 

3-O-rhamnoside and only 0.05 mg/100 g FW for the aglycone. The amount of myricetin 3-O-

glucoside could not be quantified due to an impurity of the standard. Peak 23 was ascribed to 

quercetin indicated by a deprotonated molecular ion [M–H]– at m/z 301 matching with the 

fragmentation pattern and the retention time of an authentic standard. 
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Peak 
Retention 

time 

[M–H]–/ 
product ion 

(m/z) 
Compound 

Content in 
mg/100 g fresh 

weight 

5 5.7 169/125 Gallic acid 0.56 ± 0.01 

6 10.4 153/109 Protocatechuic acid 0.11 ± 0.01 

7 16.2 137/93 p-Hydroxy-benzoic acid 0.06 ± 0.00 

8 16.9 305/125 Epigallocatechin 0.45 ± 0.03 

9 20.0 167/152 Vanillic acid 1.43 ± 0.02 

10 21.9 179/135 Caffeic acid 0.004 ± 0.000 

11 24.9 457/125 Epigallocatechin gallate 2.99 ± 0.16 

12 32.5 479/316 Myricetin 3-O-glucoside Not quantified 

13 33.4 441/169 Epicatechin gallate 0.09 ± 0.01 

14 35.4 463/316 Myricetin 3-O-rhamnoside 1.04 ± 0.04 

15 35.9 609/300 Quercetin 3-O-rutinoside 0.59 ± 0.18 

16 37.0 463/300 Quercetin 3-O-glucoside 1.23 ± 0.14 

17 37.0 477/301 Quercetin 3-O-glucuronide 0.14 ± 0.01 

18 38.4 433/301 Quercetin pentoside 0.47 ± 0.05a 

19 39.3 433/301 Quercetin pentoside 2.42 ± 0.03a 

20 40.2 433/301 Quercetin 3-O-arabinoside 5.26 ± 0.16 

21 40.9 447/300 Quercetin 3-O-rhamnoside 5.06 ± 0.08 

22 42.9 317/151 Myricetin 0.05 ± 0.00 

23 52.7 301/151 Quercetin Trace amounts 

Table D.4.3. Retention times, HPLC/MS/MS data, and amounts of non-anthocyanin polyphenols in 
Clidemia rubra berries identified from an aqueous acetone extract. Data: mean ± standard deviation. 
aexpressed as quercetin 3-O-arabinoside equivalents. 

Several quercetin 3-O-glycosides were found as well as the quercetin aglycone. In regard to 

table D.4.3, peaks 15, 16, and 21 showed a deprotonated molecular ion [M–H]−, a radical 

aglycone fragment and a retention time which was in accordance with standard solutions of 

quercetin 3-O-rutinoside, quercetin 3-O-glucoside, and quercetin 3-O-rhamnoside, respectively. 

Peak 17 co-eluted with peak 16 but indicated a deprotonated molecular ion [M–H]− at m/z 477 

and an aglycone fragment at m/z 301. Fragmentation pattern and elution time of peak 17 

coincided with that of a quercetin 3-O-glucuronide standard solution. Peak 20 showed a 

deprotonated molecular ion [M–H]− at m/z 433 and a product ion at m/z 301, which 

corresponded positively also in regard to the retention time to a quercetin 3-O-arabinoside 

standard. The same fragmentation behavior accounted for peak 18 and 19. Hence, the loss of 

m/z 132 indicated the cleavage of a pentoside of the molecular ion [M–H]− at m/z 433 and the 

product ion at m/z 301 so that these compounds could be assigned to a quercetin pentoside. 

Quantitatively, the quercetin pentosides and quercetin 3-O-rhamnoside showed the highest 

amounts of flavonol glycosides in Clidemia rubra berries. 
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With exception of anthocyanins, no reports have been found on flavonoids in fruits of Clidemia 

and accordingly Melastomataceae varieties, in general. Only few reports are known about 

flavonoids in Melastomataceae flowers or leaves. Mimura et al. (2004) identified 17 different 

flavone and flavonol glycosides in Huberia leaves. The same compound classes were found in 

leaves of Miconia alypifolia (Mancini et al., 2008). One report describes the identification of 

kaempferol glycosides in Melastoma malbathricum L. flowers (Susanti et al., 2007). The presence of 

kaempferol and kaempferol glycosides as well as the presence of flavones like apigenin and 

luteolin could not be approved in Clidemia rubra berries. 

The content of non-anthocyanin phenolic compounds in Clidemia rubra berries seems to be 

considerably high. The amount of the identified flavonols is comparable to that found in Andean 

blackberries (Mertz et al., 2007), cranberries, and bog whortleberries and is four times higher than 

that of bilberries, blueberries and red gooseberries from Finland (Häkkinen et al., 1999). 

7. Antioxidant activity 

The results of the determination of the antioxidant activity of Clidemia rubra berries are 

demonstrated in figure D.4.3. The antioxidant activity was measured with TOSC assay against 

peroxyl radicals (px) and peroxynitrite (pn). To suppress the ethylene formation for 50%, a 

concentration of 0.9 g/L and 2.0 g/L of freeze-dried sample was needed against px and pn, 

respectively. Consequently, the WE of Clidemia rubra showed an about 2-fold higher radical 

scavenging potential towards px than against pn. The varying results between the two reactive 

oxygen species (ROS) can partially be explained by the difference in the reactivity of the two 

radicals (Halliwell et al., 1995; Lichtenthäler and Marx, 2005). Generally, px have shown a half-life 

of several seconds. In regard to this relatively high stability, the radicals can easily be inactivated 

by potent antioxidant compounds even in low concentrations (Lichtenthäler et al., 2003). In 

opposite to px, pn has exhibited a half-life of 10−2 sec. This lower lifetime and the following 

shorter period for a possible reduction require, on the one hand, a higher concentration of 

antioxidants or, on the other hand, antioxidants of a higher radical scavenging potential in order 

to obtain the inhibition rate like against px (Rodrigues et al., 2006).  

Lichtenthäler and Marx (2005) analyzed the antioxidant capacity of various commercially 

available fruit and vegetable juices with the TOSC assay. High values for the antioxidant capacity 

have been exhibited by anthocyanin-containing fruit juices. To achieve a TOSC value of 50% 

against px, lingonberry, blueberry, elderberry and sour cherry nectar correspond to Trolox 

equivalents (TE) in this order between 40.0 and 13.3 mmol/L. Juices of other fruits like oranges, 

grapes, lemons and apples indicate far lower antioxidant activity as they do not exceed a TE of 

2.9 mmol/L. According to these results, the WE of Clidemia rubra can be ranked between the 
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elderberry juice and the sour cherry nectar. Unpublished data of a WE of Ecuadorian 

blackberries showed similar results regarding the antioxidant capacity of Clidemia rubra against px. 

The inhibitory effect of the WE of blackberries was equivalent to that of a Trolox solution of 

15.5 mmol/L.  

 

Figure D.4.3. Antioxidant capacity of Clidemia rubra berries. Values are expressed in 
Trolox equivalents (TE) and corresponding concentration of freeze-dried sample 
that is needed to obtain an inhibition rate of 50% with TOSC assay against peroxyl 
radicals (px) and peroxynitrite (pn). 

Towards pn, a classification of Clidemia rubra berries is similar to px. In this order, blueberry juice, 

elderberry juice, lingonberry juice, sour cherry nectar, orange juice, and apple juice resemble a TE 

between 14.5 and 2.3 mmol/L. Clidemia rubra berries account for 9.0 mmol/L TE by what they 

can be ranked between lingonberry juice and sour cherry nectar. Compared to frequently 

consumed juices like that of oranges or apples, the antioxidant activity against pn is about three 

times higher.  

The main part of the antioxidant capacity is ascribed to ascorbic acid and the polyphenols, 

especially to the anthocyanins. In order to estimate the contribution of the anthocyanins and 

ascorbic acid to the overall antioxidant capacity the WE was fractionated with HPLC. The first 

fraction (0-4 min) containing ascorbic acid and two fractions containing the anthocyanins (28-

32 min and 32-36 min) exhibit the highest antioxidant capacity against px with 41%, 56%, and 

42% TOSC, respectively (see figure D.4.4). 
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Figure D.4.4. Activity-guided fractionation of Clidemia rubra berries. 
HPLC chromatogram of a water extract recorded at 520 nm and TOSC 
values (bars) of the fractions against peroxyl radicals in %. 

D.5 Conclusion 

This is the first report on a chemical characterization of the berries from Clidemia rubra (Aubl.) 

Mart. (Melastomataceae). From a nutritional point of view Clidemia rubra berries turned out be a 

good source for dietary fibers and some minerals (Ca, Mn, Zn) compared to other common 

berries. Ascorbic acid as well as different polyphenols were determined as secondary plant 

compounds with known antioxidant properties. Five phenolic acids, three flavan-3-ols and 11 

different myricetin- and quercetin compounds were identified and quantified. Four different 

anthocyanins turned out to be mainly responsible for the bluish color as well as for the 

antioxidant capacity of the fruit. Due to the considerably high content in anthocyanins and other 

phenolic compounds Clidemia rubra berries are promising fruits that could contribute to the 

prevention of degenerative diseases.  
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E.1 Abstract 

The Amazon region comprises a plethora of fruit-bearing species of which a large number are 

still agriculturally unimportant. Because fruit consumption has been attributed to an enhanced 

physical well-being, interest in the knowledge of the chemical composition of underexplored 

exotic fruits has increased during recent years. This paper provides a comprehensive 

identification of the polyphenolic constituents of four underutilized fruits from the Amazon 

region by HPLC/DAD-ESI-MSn. Araçá (Psidium guineense), jambolão (Syzygium cumini), muruci 

(Byrsonima crassifolia), and cutite (Pouteria macrophylla) turned out to be primarily good sources of 

hydrolyzable tannins and/or flavonols. Additionally, different flavanonols and proanthocyanidins 

were identified in some fruits. The antioxidant capacity was determined by using the total oxidant 

scavenging capacity (TOSC) assay. Cutite showed the highest antioxidant capacity followed by 

jambolão, araçá, and muruci. 

E.2 Introduction 

The Amazon region is the largest tropical forest area in the world, and its flora bears a plenty of 

still unexplored or underutilized fruit species. Due to the postulated contribution to an enhanced 

human well-being and promotion of beneficial health effects against degenerative diseases, 

interest has arisen in exploiting new and exotic types of fruits during recent years (Schreckinger et 

al., 2010). Promising species may also represent an opportunity for local growers to reach niche 

markets to increase their revenues (Alves et al., 2008). However, many edible fruits have not 

attained economic importance as they are insufficiently studied with regard to their possibilities 

of commercialization, crop growing conditions, and chemical composition (Rodrigues et al., 

2006). As well, scientific information is scarce about the bioactive compounds of the locally 

popular Brazilian fruits araçá, jambolão, muruci, and cutite.  

Psidium guineense Sw. (Myrtaceae), known as araçá, is a shrub or small tree between 4 and 6 m in 

height. The berry fruit is of spherical to egg-like shape, usually 1-3 cm in diameter with numerous 

2-3 mm stony seeds. The pulp is sweet acetous in taste and is particularly used for preparing 

jellies, juices, and ice-cream (Lederman et al., 1997). The fruit pericarp of araçá showed 

antimicrobial activity against Staphylococcus aureus and Escherichia coli (Anesini et al., 1993).  

Syzygium cumini (L.) Skeels (Myrtaceae), known as jambolão, is a tree that originates from India 

and Southeast Asia but is also widespread in some states across Brazil (Migliato et al., 2010). The 

edible fruits are of oval shape and 2-3 cm long. The color of the peel is deep purple to black. 

Jambolão pulp has a grayish white color and embeds a big purple seed. Ripe fruits possess an 

aromatic sour astringent taste and are either eaten fresh (Kratochvil, 1995) or processed to 
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preserves, jellies and vine (Zhang and Lin, 2009). Fruits as well as bark, seeds, and leaves are 

traditionally used for diabetes treatment and different gastrointestinal disorders. Additionally, a 

fruit extract showed antimicrobial and cytotoxic activities and may potentially be used in topical 

antimicrobial products (Migliato et al., 2010). In comparison to other nontraditional fruits from 

Brazil, jambolão showed considerably high antioxidant activity (Rufino et al., 2010), which can be 

at least partly ascribed to the phenolic constituents such as anthocyanins (De Brito et al., 2007), 

tannins (Zhang and Lin, 2009) and flavonols (Faria et al., 2011).  

Byrsonima crassifolia (L.) Kunth (Malpighiaceae), known as muruci, as well as a number of related 

species occur in the Amazon basin, suggesting that this may be its center of origin. It is a large 

shrub to a small tree of 2-6 m in height. Drupes are yellow with a diameter of 1.5-2 cm 

containing one or, rarely, two to three seeds (FAO, 1986). The soft pulp develops an exotic, very 

distinctive cheese-like aroma and is preferably consumed as a juice, jelly, confectionary, or liquor 

(Alves and Franco, 2003). Compared to six other exotic fruits including the well-known açaí, 

cashew apple, and acerola, muruci showed a high content of extractable polyphenols, although its 

radical scavenging capacity was reported to be low (Rufino et al., 2009).   

Pouteria macrophylla (Lam.) Eyma (Sapotaceae), known as cutite, is a small to medium forest tree 

up to 20-25 m in height. It develops egg-shaped berry fruits up to 6 cm in diameter with a 

starchy, yellow, soft pulp embedding a long ovoid seed. Cutite is always eaten as a fresh fruit 

characterized by an agreeable and generally sweet taste that is not always immediately appreciated 

by those who do not know it. Because of the starch content cutite supplies a reasonable amount 

of calories (FAO, 1986).  

Only a few studies exist on the phenolic composition of jambolão fruits, and no studies have 

been published about individual phenolic substances in fruits of araçá, muruci, and cutite. 

Therefore, the aim of the study was to provide a comprehensive characterization of the phenolic 

constituents in the edible part of the four Amazonian fruits by HPLC/DAD-ESI-MSn. In 

addition, the antioxidant capacity was assessed to evaluate their biological activity. 

E.3 Materials and methods 

1. Chemicals 

Ultrahigh quality (UHQ) water was prepared with a Direct-Q 3 system (Millipore, Billerica, USA). 

HPLC and extraction solvents were obtained from J.T. Baker (Griesheim, Germany). 

Diethylenetriaminepentaacetic acid (≥ 99%), α-keto-γ-methiolbutyric acid (KMBA) (≥ 97%), 2,2′-

Azobis(2-methylpropionamidine) dichloride (≥ 97%), 3-morpholinosydnonimine N-

ethylcarbamide, gallic acid (≥ 99%), and Folin-Ciocalteu’s phenol reagent were obtained from 
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Sigma-Aldrich Chemie GmbH (Steinheim, Germany). Ascorbic acid (≥ 95%) was purchased 

from Kraemer & Martin GmbH (Sankt Augustin, Germany). 

2. Fruit material and sample preparation 

Fruits were harvested at a particular farm, located in the municipality of São João de Pirabas, 

northeastern Pará, Brazil, in the months of November and December 2009. The fruits were 

identified with authentic samples deposited in the Herbarium of Museu Emilio Goeldi, city of 

Belém, state of Pará, Brazil.   

After deseeding, the edible parts of the fruits (peel and flesh) were deep-frozen and freeze-dried 

immediately subsequent to harvest. Samples were air-shipped to Germany and stored at -30 °C 

prior to analysis. 

3. Identification of phenolic compounds by HPLC/DAD-ESI-MSn 

Polyphenol extraction was carried out by using a modified pressurized liquid extraction method 

according to Papagiannopoulos et al. (2004). Freeze-dried sample (500 mg) was thoroughly 

ground and extracted with acetone-water-formic acid (70 + 29 + 1; v/v/v) in an accelerated 

solvent extractor (ASE 200, Dionex, Idstein, Germany) at room temperature, for 20 min in two 

cycles. The following solid-phase extraction (SPE) was performed by using a Gilson ASPEC XL 

system (Automated Sample Preparation with Extraction Cartridges, Abimed, Langenfeld, 

Germany). Polyamid (PA) SPE cartridges (500 mg PA, 3 mL cartridge, Macherey Nagel, Düren, 

Germany) were conditioned with 3 mL of dimethyl sulfoxide-formic acid-trifluoroacetic acid 

(DMSO-FAc-TFA) (98.7 + 1 + 0.3; v/v/v) and washed with 5 mL of UHQ water. Prior to 

cartridge loading, the sample extract was diluted to contain < 15% (v/v) of organic solvent. The 

cartridge was loaded with sample extract in volumetric steps of 20 mL until exhaustion and 

washed with 10 mL of water after each load. During elution with DMSO-FAc-TFA solvent, the 

first 0.5 mL was discarded and the next 1.25 mL collected. Before application to HPLC/DAD-

ESI-MSn, the samples were filtered through a 1.0/0.45 µm syringe filter (Chromafil GF/PET-

45/25, Macherey-Nagel). 

Analysis of polyphenolic compounds was performed following a HPLC/DAD-ESI-MSn method 

according to Papagiannopoulos et al. (2004). The liquid chromatograph was a Summit system 

(Dionex, Germering, Germany) consisting of a P-580 A HPG pump, an ASI-100 T automated 

sample injector, a STH-585 column oven, and an UVD-340S detector equipped with a capillary 

cell. Chromeleon software package v6.7 SP2 (Dionex) was used for system control and data 

evaluation. Separation was carried out with the help of an analytical column Aqua RP 18, 150 

mm, 2 mm i.d., 3 µm with a guard column Security Guard, C18, 4mm, 2mm i.d. (both 

Phenomenex, Aschaffenburg, Germany) kept at 25 °C. Solvents were UHQ water with 1% acetic 
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acid (v/v) (mobile phase A) and acetonitrile with 1% acetic acid (v/v) (mobile phase B). The 

gradient elution program using a flow rate of 0.2 mL/min started with 0.5% B, rose to 40% B 

after 32 min and to 100% B after 34 min, and was kept at 100% B for 9 min. The column was re-

equilibrated for 15 min with initial conditions. For analysis, 20 µL of each sample was injected. 

An LCQ classic ion trap mass spectrometer (MS) equipped with an electrospray interface was 

coupled to the HPLC and controlled with Xcalibur software v1.2 (all Thermo Fisher Scientific, 

Dreieich, Germany). Settings for the negative ionization with MS were as follows: source voltage 

-4.0 kV, sheath gas flow 90, auxillary gas flow 60, capillary voltage -10 V, capillary temperature 

300 °C, tube lens offset +20 V, first octapole offset +4 V, interoctapole lens +30 V, second 

octapole offset +10 V, and trap DC offset +10 V. 

The identification of phenolic compounds was performed with authentic standards in cases of 

gallic acid, quercetin, and myricetin. All other compounds were tentatively identified by 

combining characteristic data of HPLC elution order of compounds and UV spectra with those 

of mass spectrometrical fragmentation analysis. Additionally, compound assignment was 

supported by comparison with data from the literature when available. 

4. Total oxidant scavenging capacity (TOSC) assay 

The antioxidant capacity of the fruits was determined with the TOSC assay performed as 

described by Lichtenthäler et al. (2003). Briefly, the TOSC assay is based on an ethylene-yielding 

reaction of KMBA with either peroxyl radicals or peroxynitrite. Antioxidant compounds present 

in the sample can inhibit the ethylene formation that is recorded in a time course of 1 h using 

automatically repeated headspace GC analysis (GC-17A, Shimadzu, Tokyo, Japan). Each fruit was 

analyzed in duplicate. Quantification of generated ethylene results in a kinetic curve of which the 

area under the curve (AUC) is calculated. Only those data with a variance (standard 

deviation/arithmetic mean) of the AUC after repeat determination below 5% are further 

processed. Mean data of a sample are compared to those of an uninhibited reaction with water, 

which gives rise to the TOSC values. Results of this study indicate the concentration of 

antioxidants present in the sample in grams per liter that is needed to obtain a radical inhibition 

of 50%.   

For TOSC analysis, freeze-dried sample (1 g) of each fruit was suspended in UHQ water to 

obtain a total weight of 10 g (w/w). The suspension was sonicated for 10 min and centrifuged for 

7 min at 10000 rpm with a Heraeus Biofuge Stratos (Kendro, Langenselbold, Germany). The 

supernatant of the water extract (WE) was stored until further application at -30 °C. 
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5. Total phenolic content 

Total phenolic content was determined by using the Folin-Ciocalteu assay described by Georgé et 

al. (2005). Briefly, 500 µL of water-diluted Folin-Ciocalteu reagent (9 + 1, v/v) and 100 µL of the 

WE were mixed. After incubation for 2 min at room temperature, 400 µL of sodium carbonate 

(7.5 g/100 mL) was added. The mixture was incubated at 50 °C for 15 min and subsequently 

photometrically measured (Cary 50, Varian, Walnut Creek, USA) at 760 nm. In total, two water 

extracts were prepared per fruit and analyzed in duplicate. Seven dilutions (10-100 mg/L) of a 

gallic acid standard were used to create a calibration curve (r2 = 0.9980). Results are expressed as 

gallic acid equivalents in milligrams per 100 gram dry matter. 

6. Determination of ascorbic acid 

Ascorbic acid was determined by HPLC after modification of a method previously described by 

Gordon et al. (2011). The HPLC-DAD system of PRO Star series (Varian) was equipped with an 

analytical column Synergi 4 µ Hydro RP, 150 mm, 2 mm i.d. and with a guard column Security 

Guard, C 18, 4 mm, 2 mm i.d. (both Phenomenex, Aschaffenburg, Germany). The separation 

was performed with acidified UHQ water (1% FAc, v/v) at isocratic condition using a flow rate 

of 0.3 mL/min. The injection volume was 20 µL. Confirmation of ascorbic acid in the fruits was 

arranged by standard, retention time, and doping of standard to the sample. A five-point 

calibration curve (5-100 mg/100 mL, r² = 0.9995) was created for quantification with authentic 

standard. Ascorbic acid was quantified at a wavelength 260 nm. Two sample extracts were 

prepared and measured in duplicate. 

E.4 Results and discussion 

1. HPLC/DAD-ESI-MSn analysis of phenolic compounds 

Most of the detected compounds shown in tables E.4.1-E.4.4 can be classified into hydrolyzable 

tannins (gallotannins, galloylquinic acids, and ellagitannins), condensed tannins 

(proanthocyanidins), flavonols, and flavanonols. At first, spectral data were used for a distinction 

of these different compound groups. According to Cantos et al. (2003) and Boulekbache-

Makhlouf et al. (2010), the obtained UV spectra of the hydrolyzable tannins can generally be 

arranged into two groups. The first group comprises compounds derived from ellagic acid with 

two absorption maxima at λmax ~250 nm and ~365 nm. The second group has only one 

maximum available at λmax ~275 nm, typically found for galloyl and hexahydroxydiphenoyl 

(HHDP) derivatives. A condensed HHDP molecule gives rise to ellagic acid, for which reason 

they are also considered to be ellagitannins (Cantos et al., 2003). Exemplary structures of these 

compounds are shown in figure E.4.1. UV spectra of proanthocyanidins are identical with those 
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of catechins showing two maxima at ~230 nm and ~280 nm. Flavonol and Flavanonol glycosides 

come with two absorption maxima derived from the conjugated system of the aglycones. The 

first maximum of ~260 nm is attributed to the benzoyl system (ring A), the second maximum of 

~350 nm to the cinnamoyl system (ring B) (Engelhardt and Galensa, 1997).  

 

Figure E.4.1. Gallic acid derivatives [according to Hager et al. (2008)] occurring in araçá, cutite, or 
jambolão with corresponding molecular weight (MW). 

In addition to the UV spectra, mass spectrometrical fragmentation experiments enable at least a 

tentative identification of the phenolic compounds. MSn analysis allows the distinction between 

individual flavonols or flavanonols, the elucidation of proanthocyanidins and the composition of 

hydrolyzable tannins (Papagiannopoulos et al., 2004).  

In the following, all mass spectrometrically identified sugar moieties of gallotannins and HHDP 

hexosides of will be tentatively characterized as glucose due to its predominant abundance within 

these compound groups (Hagerman, 2002).  

Araçá (Psidium guineense) 

The HPLC chromatogram of the araçá extract is shown in figure E.4.2. According to table 

E.4.1, a total of 18 polyphenolic compounds could be at least tentatively identified. All of them 

were classified as ellagitannins with exception of peaks 8, 9, and 12, which belong to the 

gallotannins. Identification of gallic acid in peak 1 was assured by using an authentic standard. 

Peaks 8 and 12 were presumably assigned to derivatives of galloyl glucose. Peak 8 provides 

parental [M-H]- ions at m/z 483 and MS2 fragments typically found for digalloylglucose (Sandhu 

and Gu, 2010). As peak 12 shows a [M-H]- ion at m/z 635 and a fragment at m/z 483, the neutral 
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loss of 152 Da gives rise to the presence of an additional esterified galloyl residue conform to a 

trigalloylglucose. Peak 9 provides a [M-H]- ion at m/z 453 and gives two MS2 fragments at m/z 

313 and 169. Due to the mass difference of 30 Da, conforming UV data and the similarity of 

some fragments in comparison to peak 8, this compound is tentatively assigned to 

digalloylpentoside.  

Mass spectrometric data of peaks 4, 7, and 10 correspond to those of galloyl-HHDP glucose 

derivatives in grapes (Sandhu and Gu, 2010) and fruits of Eucalyptus (Boulekbache-Makhlouf et 

al., 2010). Peak 4 shows [M-H]- ions at m/z 633 and produces daughter ions at m/z 421, 275, and 

301 matching with those of HHDP galloylglucose (Boulekbache-Makhlouf et al., 2010; Sandhu 

and Gu, 2010). Peaks 7 and 10 correspond to HHDP digalloylglucose isomers having a parental 

[M-H]- ion at m/z 785 and characteristic product ions at m/z 633, 483, and 301 (23). Peaks 13 and 

14 show [M-H]- ions at m/z 933 and give among others daughter fragments at m/z 451 and 301. 

These compounds were tentatively assigned to castalagin/vescalagin isomers as proposed by 

Hager et al. (2008) due to the according fragmentation pattern. On the basis of UV data, the 

product ion at m/z 301 indicates the presence of a HHDP derivative rather than that of ellagic 

acid. The neutral loss of 482 Da from the parent ion suggests the existence of a HHDP glucose 

unit. The resulting fragment ion after this neutral loss at m/z 451 is consistent with that of a 

trisgalloyl unit (see figure E.4.1) after undergoing lactonization (Hager et al., 2008). In return, the 

neutral loss of 452 Da accounting for a lactonized trisgalloyl unit is indicated by the daughter ion 

at m/z 481 in peak 14. The fragment ion at m/z 631 in peak 13 may result from the loss of two 

galloyl units from the quasi-molecular ion (Hager et al., 2008).   

The occurrence of di-HHDP glucose derivatives was presumably assessed in peaks 2, 3, 5, 6, and 

11. All compounds have a shift in the UV spectrum to λmax ~260 nm in common. In peaks 2 and 

5, a parental [M-H]- ion at m/z 783 is present producing fragment ions at m/z 301, 481, and 275 

in MS2 and additionally two fragment ions at m/z 257 and 229 in MS3. These fragments are 

characteristic for di-HHDP glucose found also in cork of Quercus suber (Fernandes et al., 2011), in 

blackberries (Hager et al., 2008), and strawberries (Seeram et al., 2006). Peaks 3, 6, and 11 show 

[M-H]- ions at m/z 951 that yield fragment ions at m/z 907 and 783. Compounds with the same 

fragmentation pattern were suggested to be trisgalloyl HHDP glucose isomers (Boulekbache-

Makhlouf et al., 2010; Barry et al., 2001). UV data and the fragment ion at m/z 783 indicate the 

occurrence of di-HHDP glucose. The fragment [M-H-168]- accounts for the presence of an 

additional galloyl residue but only with a C-C linkage to one of the HHDP molecules. The loss of 

44 Da (CO2) agrees with the presence of a free, unesterified carboxyl group (Barry et al., 2001).
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UV spectra of peaks 15-18 match with those of ellagic acid (Cantos et al., 2003). Peak 16 shows 

[M-H]- ions at m/z 447 and yields fragment ions at m/z 301 (MS2) and 257 (MS3) that were also 

found for ellagic acid (Sandhu and Gu, 2010). Due to the neutral loss of 146 Da, peaks 15 and 16 

are tentatively assigned to ellagic acid deoxyhexoside isomers. The late retention time is an 

argument for the occurrence of dimethylated ellagic acid hexoside in peak 17. Parental [M-H]- 

ions at m/z 491 and fragmentation pattern (m/z 329, 313) coincide to some extent with that of a 

dimethylated ellagic acid glucoside described by Boulekbache-Makhlouf et al. (2010). Peak 18 

shows [M-H]- ions at m/z 461 and produces MSn fragment ions at m/z 315, 301, and 300 

corresponding to a methylated ellagic acid (Boulekbache-Makhlouf et al., 2010). Due to the mass 

difference of 30 Da from peak 17, this compound is tentatively assigned to dimethylellagic acid 

pentoside. 

Table E.4.1. UV and mass spectrometric data of phenolic constituents extracted from araçá (Psidium guineense) fruits. 
aItalic superscript numbers indicate the literature in which the compounds were previously described: 1Boulekbache-
Maklouf et al., 2010; 2Sandhu and Gu, 2010; 3Hager et al, 2008; 4Fernandes et al., 2011, 5Seeram et al., 2006; 6Barry et 
al., 2001. bGallic acid was identified with authentic standard; all other compounds were tentatively identified.  

Jambolão (Syzygium cumini) 

The HPLC chromatogram of the jambolão extract is shown in figure E.4.2. According to 

table E.4.2, a total of 37 non-anthocyanin polyphenolic compounds could be identified or at 

Peak Retention 
time 

Compounda, b HPLC-
DAD 
λmax [nm] 

[M-H]- 
m/z 

Fragments (m/z) 

1 9.84 Gallic acid 273 169 MS2 [169]: - 
2 13.83 Di-HHDP glucose3, 4, 5 228, 260 783 MS2 [783]: 301, 481, 275 

MS3 [783 → 301]: 257, 229 
3 15.34 Trisgalloyl HHDP glucose isomer1, 6 227, 262 951 MS2 [951]: 907, 783 

MS3 [951 → 907]: 783 
4 15.86 HHDP galloylglucose1, 2 226, 275 633 MS2 [633]: 301, 275, 421 
5 17.54 Di-HHDP glucose3, 4, 5 228, 260 783 MS2 [783]: 301, 481, 275 

MS3 [783 → 301]: 257 
6 18.63 Trisgalloyl HHDP glucose isomer1, 6 232, 263 951 MS2 [951]: 907, 783 

MS3 [951 → 907 ]: 783 
7 19.47 HHDP digalloylglucose isomer1, 2 225, 280 785 MS2 [785]: 301, 633, 275, 483, 615, 419 
8 20.83 Digalloyl glucose2 224, 273 483 MS2 [483]: 439, 313, 271, 331, 169 

MS3 [483 → 439]: 287, 313 
9 21.59 Digalloyl pentose 224, 280 453 MS2 [453]: 391, 313, 169 
10 22.58 HHDP digalloylglucose isomer1, 2 225, 276 785 MS2 [785]: 301, 483, 633, 275 

MS3 [785 → 301]: 257 
11 22.87 Trisgalloyl HHDP glucose isomer1, 6 235, 258 951 MS2 [951]: 907, 783 

MS3 [951 → 907]: 783 
12 24.83 Trigalloyl glucose2 224, 281 635 MS2 [635]: 423, 483, 271, 465, 193 

MS3 [635 → 423]: 271 
13 25.26 Castalagin/vescalagin isomer3 226, 282 933 MS2 [933]: 451, 631, 301 

MS3 [933 → 451]: 351, 433, 285, 407, 311 
14 27.38 Castalagin/vescalagin isomer3 225, 289 933 MS2 [933]: 451, 351, 301, 481 

MS3 [933 → 451]: 351, 285, 433, 407, 335, 379 
15 28.73 Ellagic acid deoxyhexoside 252, 371 447 MS2 [447]: 301 
16 29.13 Ellagic acid deoxyhexoside 256, 362 447 MS2 [447]: 301 

MS3 [ 447 → 301]: 257 
17 30.63 Dimethylellagic acid hexoside 249, 368 491 MS2 [491]: 328, 313, 329, 454, 476 

MS3 [491 → 328]: 313, 285 
18 34.18 Dimethylellagic acid pentoside 252, 363 461 MS2 [461]: 315, 300 

MS3 [ 461 → 315]: 300, 301 
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least tentatively assigned. They were classified as gallotannins, ellagitannins, flavonols, and 

flavanonols. Identification of gallic acid in peak 1 was assured by using an authentic standard. 

As MSn data of peaks 8-10, 12, 13, 15, 16, 18, 20, 24a, 26a, and 29 agree with those of different 

gallotannins described by Sandhu and Gu (2010). Hence, these compounds were tentatively 

assigned to a series of galloylglucose esters starting from isomers of digalloylglucose ([M-H]- at 

m/z 483) to hexagalloylglucose ([M-H]- at m/z 1091). Peak 14 shows to some extent mass 

spectrometric attributes of HHDP galloylglucose previously found in grape seeds (Sandhu and 

Gu, 2010). However, elucidation of this compound could only conditionally be ascertained due 

to unutilizable UV data. Peak 17 gives parental [M-H]- ions at m/z 775 and produces dominating 

MS2 fragment ions at m/z 613 and 451. Both fragments indicate the sequential loss of hexosyl 

units with [M-H-162]- and [M-H-162-162]-. The product ion at m/z 451 suggests the existence of 

a trisgalloyl residue (Hager et al., 2008) which was already discussed for ellagitannins occurring in 

araçá (figure E.4.1). Hence, this compound is tentatively identified as trisgalloyldiglucoside. 

 

Figure E.4.2. HPLC Chromatograms of four different fruits from the Amazon region. The chromatograms of 
araçá, jambolão, muruci, and cutite correspond to tables E.4.1-E.4.4. The numbered peaks are denoted in the 
accordant table.  

A large number of myricetin-derived compounds were presumptively identified on the basis of 

UV and mass spectrometric fragmentation data in peaks 19a, 19b, 22, 28, and 33. Myricetin was 
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identified in peak 30 by comparing fragments with those of an authentic standard. Mass spectra 

obtained from the other myricetin derived constituents indicate at least the presence of the 

aglycone at m/z 317. The occurrence of two coeluting myricetin compounds is supposably 

revealed in peak 19a/b. Peak 19a yields fragments of [M-H-162]- and peak 19b fragments of [M-

H-176]- corresponding to a myricetin hexoside and myricetin glucuronide, respectively. In 

previous studies, glucose was the only identified hexoside in jambolão (Faria et al., 2011). Hence, 

peak 19a may be assigned to myricetin glucoside, which was already described by Faria et al. 

(2011). Peak 22 is ascribed to myricetin deoxyhexoside due to the loss of 146 Da from [M-H]- 

ions at m/z 463. According to Faria et al. (2011), myricetin rhamnoside (myricitrin) likely occurs 

in this peak as rhamnose makes up the only deoxyhexoside commonly found in fruits. The loss 

of 42 Da from [M-H]- ions at m/z 505 in peak 28 indicates the presence of acylated myricetin 

deoxyhexoside that was already constituted in jambolão fruits (Faria et al., 2011) and jambolão 

leaves (Mahmoud et al., 2001). Peak 33 shows parent [M-H]- ions at m/z 657 and produces 

dominating fragment ions at m/z 505. These mass data are in agreement with that of acylated 

galloylmyricetin deoxyhexoside previously found in leaves of jambolão (Mahmoud et al., 2001). 

Peaks 21, 23, 24b, 25, 26b, 32, and 34 were presumably identified as methylmyricetin derivatives. 

Peak 23 indicates the presence of methylmyricetin hexoside as the parent ion at m/z 493 results 

in fragment ions at m/z 331 after neutral loss of 162 Da. The dominating daughter ion at m/z 331 

would account for the aglycone methylmyricetin (Mahmoud et al., 2001). Because the flavonol 

mearnsetin (myricetin 4’-methyl ether) was found in jambolão leaves (Mahmoud et al., 2001), it 

likely occurs also in the fruits. As reported by Faria et al. (2011) glucose is the verisimilar 

occurring hexoside in jambolão. Peak 21 was tentatively identified as galloylmethylmyricetin 

hexoside showing [M-H]- ions at m/z 645 and dominating daughter ions at m/z 493. The neutral 

loss of 132 Da in peaks 24b and 26b as well as the loss of 176 Da in peak 25 would be in 

agreement with the presence of methylmyricetin pentoside isomers and methylmyricetin 

glucuronide, respectively. The sequential neutral loss of 42 Da and 146 Da in peak 32 may 

account for the occurrence of acylated methylmyricetin deoxyhexoside. This compound could be 

more precisely ascribed to acylated mearnsetin rhamnoside, which was identified in jambolão 

leaves (Mahmoud et al., 2001). Finally, peak 34 shows [M-H]- ions at m/z 645 and produces 

fragments at m/z 331 and 505. This corresponds to the loss of a galloyl residue (152 Da) in 

addition to an acylated pentose unit (42 Da + 132 Da) tentatively resulting in acylated galloyl 

ester of methylmyricetin pentoside.  
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Peak Retention 
time 

Compounda, b HPLC-
DAD 
λmax [nm] 

[M-H]- 
m/z 

Fragments (m/z) 

1 9.78 Gallic acid 225, 273 169 MS2 [169]: 125, 151 
2 15.10 Gallic acid derivative 226, 277 285 MS2 [285]: 133, 169,  
3 15.65 Dihydromyricetin dihexoside1 237, 338 643 MS2 [643]: 463, 481, 283, 355 
4 16.68 Methyldihydromyricetin dihexoside1 224, 277 657 MS2 [657]: 495, 477, 315, 355 

MS3 [657 → 495]: 315, 333, 369 
5 17.75 Unknown compound 225, 277 625 MS2 [625]: 419, 257, 463, 581 

MS3 [625 → 419]: 257, 404, 242 
6 18.79 Methyldihydromyricetin dihexoside1 253, 342 657 MS2 [657]: 495, 315, 477, 333, 297, 355 

MS3 [657 → 495]: 315, 333, 369 
7 19.23 Dimethyldihydromyricetin dihexoside1 243, 345 671 MS2 [671]: 509 

MS3 [671 → 509]: 347, 329 
8 19.48 Digalloylglucose2 224, 278 483 MS2 [483]: 271, 331, 211, 169 

MS3 [483 → 271]: 211, 169 
9 20.20 Trigalloylglucose2 227, 291 635 MS2 [635]: 465, 483, 313, 271 

MS3 [635 → 483]: 271 
10 20.47 Digalloylglucose2 224, 271 483 MS2 [483]: 439, 313, 287, 465 

MS3 [483 → 313]: 169 
11 20.87 Dimethyldihydromyricetin dihexoside1 223, 335 671 MS2 [671]: 509 

MS3 [671 → 509]: 347, 371, 329 
12 21.76 Trigalloylglucose2 225, 285 635 MS2 [635]: 465, 483, 313 

MS3 [635 → 483]: 271 
13 22.04 Trigalloylglucose2 224, 284 635 MS2 [635]: 483, 465, 271 

MS3 [635 → 483]: 423 
14 23.13 HHDP galloylglucose2 - 633 MS2 [633]: 615, 463, 505, 283, 571, 301 

MS3 [633 → 615]: 463, 505, 571 
15 23.40 Trigalloylglucose2 - 635 MS2 [635]: 465, 483, 313, 617 

MS3 [635 → 465]: 131, 169 
16 23.10 Trigalloylglucose2 222, 278 635 MS2 [635]: 465, 483, 313, 617 

MS3 [635 → 465]: 313, 169 
17 24.49 Trisgalloyl diglucose 242, 267, 359 775 MS2 [775]: 613, 451, 285  

MS3 [775 → 613]: 451, 407, 285 
18 24.88 Tetragalloyl glucose2 225, 283 787 MS2 [787]: 635, 617, 465, 447 
19a 27.05 Myricetin hexoside1 - 479 MS2 [479]: 317 
19b 27.05 Myricetin glucuronide - 493 MS2 [493]: 317 

MS3 [493 → 317]: 179, 151, 194 
20 28.03 Tetragalloylglucose2 224, 280 787 MS2 [787]: 617, 635, 465, 313 

MS3 [787 → 617]: 465, 573, 447, 403, 
313 

21 28.69 Galloylmethylmyricetin hexoside 224, 262, 360 645 MS2 [645]: 493, 331, 479, 316 
MS3 [645 → 493]: 331 

22 29.14 Myricetin deoxyhexoside1 224, 265, 352 463 MS2 [463]: 317 
MS3 [463 → 317]: 179, 272, 151 

23 29.99 Methylmyricetin hexoside 225, 264, 360 493 MS2 [493]: 331, 301, 315 
MS3 [493 → 331]: 315, 301, 179 

24a 30.47 Pentagalloylglucose2 224, 264 939 MS2 [939]: 769, 787, 617, 599 
MS3 [939 → 769]: 617, 599 

24b 30.47 Methylmyricetin pentoside 224, 264, 360 463 MS2 [463]: 331, 301 
MS3 [463 → 331]: 301 

25 31.10 Methylmyricetin glucuronide 224, 287, 352 507 MS2 [507]: 331, 317 
MS3 [507 → 331]: 301 

26a 31.57 Pentagalloylglucose2 224, 287 939 MS2 [939]: 787, 769, 617 
MS3 [939 → 787]: 617, 635, 465 

26b 31.57 Methylmyricetin pentoside 224, 287, 352 463 MS2 [463]: 331, 301 
MS3 [463 → 331]: 315 

27a 32.41 Dimethylmyricetin hexoside 225, 260, 355 507 MS2 [507]: 345 
MS3 [507 → 345]: 330, 301, 315, 271 

27b 32.41 Dimethylmyricetin pentoside 225, 260, 355 477 MS2 [477]: 331, 315 
MS3 [477 → 331]: 316 

28 33.85 Acylated myricetin deoxyhexoside1, 3 223, 267, 354 505 MS2 [505]: → 316, 463 
MS3 [505 → 316]: 271, 287, 179 

29 34.1 Hexagalloylglucose2 - 1091 MS2 [1091]: 939, 787 
MS3 [1091 → 787]: 617, 635, 465 

30 34.89 Myricetin 260, 376 317 MS2 [317]: 179, 151 
31 35.89 Dimethylmyricetin pentoside 228, 362 477 MS2 [477]: 344, 329 
32 37.07 Acylated methylmyricetin deoxyhexoside3 263, 350 519 MS2 [519]: 315, 331, 477 
33 37.56 Acylated galloylmyricetin deoxyhexoside3 223, 283 657 MS2 [657]: 505, 317, 597 

MS3 [657 → 317]: 179, 271 
34 37.83 Acylated galloyl ester of methylmyricetin 

pentoside 
257, 363 657 MS2 [657]: 517, 331, 505 

MS3 [657 → 331]: 316 

Table E.4.2. UV and mass spectrometric data of phenolic constituents extracted from jambolão (Syzygium cumini) 
fruits. aItalic superscript numbers indicate the literature in which the compounds were previously described: 1Faria et 
al., 2011; 2Sandhu and Gu, 2010; 3Mahmoud et al., 2001. bGallic acid and myricetin were identified with authentic 
standard; all other compounds were tentatively identified.  
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Due to MS2 (m/z 345) and MS3 (m/z 330 and 315) data, a dimethylmyricetin is presumptively 

identified in peak 27a. The loss of 162 Da from [M-H]- ions at m/z 507 indicates the presence of 

dimethylmyricetin hexoside. MSn data of peaks 27b and 31 as well as the mass difference of 30 

Da in comparison to peak 27a give rise to the likely occurrence of two dimethylmyricetin 

pentoside isomers.   

All flavanonols in jambolão fruits occur as dihexosides. Mass spectrometric data of the 

flavanonols are in agreement with those described by Faria et al. (2011). Aglycones of 

methyldihydromyricetin ([M-H-162-162]- at m/z 333) were tentatively identified in peaks 4 and 6 

after neutral loss of two hexose units. Peaks 7 and 11 are presumably assigned to be isomers of 

dimethyldihydromyricetin dihexoside ([M-H-162-162]- at m/z 347). Elution time and parental [M-

H]- ions at m/z 643 indicate the presence of dihydromyricetin dihexoside in peak 3. However, 

peak 3 could only tentatively be denoted as dihydromyricetin dihexoside. Our MS2 data are 

significantly in accordance with those previously found by Faria et al. (2011) but lack the presence 

of the aglycone fragment. 

Muruci (Byrsonima crassifolia) 

The HPLC chromatogram of the muruci extract is shown in figure E.4.2. According to 

table E.4.3, a total of 19 polyphenolic compounds could be at least tentatively identified as 

gallotannins, quinic acid gallates, proanthocyanidins, and quercetin derivatives. Five compounds 

could only be specified as gallic acid derivatives. Identification of gallic acid in peak 1 was assured 

by comparison of the fragments with those of an authentic standard.  

As already discussed in the section on araçá peaks 7 and 8 were tentatively assigned to digalloyl 

glucose and digalloyl pentose, respectively. Both peaks basically coincide in terms of their 

fragmentation pattern with these already described compounds. Peaks 2, 4-6, 10, and 11 were 

presumably found to be a series of quinic acid gallates showing a typical UV spectrum of gallic 

acid. Peak 2 produces [M-H]- ions at m/z 343 that yield fragment ions at m/z 169 and 125. The 

neutral loss of 174 Da corresponds to quinic acid (192 Da – H2O) accounting for galloylquinic 

acid. Peak 11 is supposedly assigned to tetragalloylquinic acid producing [M-H]- ions at m/z 799. 

Yielded [M-H-152]- ions of this peak at m/z 647 are also shown in peaks 5 and 10 as parental [M-

H]- ions suggesting the presence of trigalloylquinic acid. Peaks 4 and 6 suffer from the loss of a 

galloyl residue resulting in [M-H-152]- ions at m/z 343. Hence, these compounds are tentatively 

assigned to digalloylqunic acid. The presence of galloylquinic acid esters in muruci fruits is 

supported by Maldini et al. (2011). In this paper, 5-O-galloylquinic acid, 3-O-galloylquinic acid, 

3,4-di-O-galloylquinic acid, 3,5-O-galloylquinic acid, and 3,4,5-tri-O-galloylquinic acid were 

identified in B. crassifolia bark by NMR and MS, which let assume the occurrence of these 
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compounds also in the fruit. Mass spectrometric data of galloylquinic acids found in this study 

are in accordance with those determined in green tea (Clifford et al., 2007).   

Table E.4.3. UV and mass spectrometric data of phenolic constituents extracted from muruci (Byrsonima crassifolia) 
fruits. aItalic superscript numbers indicate the literature in which the compounds were previously described: 
1Sandhu and Gu, 2010; 2Clifford et al., 2007; 3Friedrich et al., 2000. bGallic acid and quercetin were identified with 
authentic standard; all other compounds were tentatively identified. 

Peak 9 was identified as a proanthocyanidin dimer. The typical UV spectrum and fragmentation 

pattern match with those previously described by Friedrich et al. (2000). Data were produced with 

the same MS instrument. The parent [M-H]- ion at m/z 729 of peak 13 produces fragment ions at 

m/z 577, 451, and 407 corresponding to those of peak 9. Due to the neutral loss of 152 Da, this 

compound was presumably assessed as a galloylproanthocyanidin dimer. Fragments of 

compounds found in peaks 9 and 13 are also in accordance with those reported by Sandhu and 

Gu (2010). Peak 15 suffers from the loss of 152 Da as well. On the basis of peak 13, yielded 

fragment ions at m/z 729 and 577 give rise to the presence of a digalloylproanthocyanidin dimer. 

Peak Retention 
time 

Compounda, b HPLC-
DAD 

λmax [nm] 

[M-H]- 
m/z 

Fragments (m/z) 

1 9.35 Gallic acid 225, 273 169 MS2 [169]: 151, 125 
2 11.21 Galloylquinic acid2 226, 276 343 MS2 [343]: 169, 125 
3 13.41 Gallic acid derivative 225, 277 285 MS2 [285]: 169, 133 
4 13.96 Digalloylquinic acid2 225, 276 495 MS2 [495]: 343, 325, 169 

MS3 [495 → 343]: 169 
5 15.80 Trigalloylquinic acid2 225, 275 647 MS2 [647]: 477, 325 

MS3 [647 → 477]: 325, 169, 307 
6 16.40 Digalloylquinic acid2 226, 279 495 MS2 [495]: 343, 325, 169 

MS3 [495 → 343]: 169 
7 17.27 Digalloyl glucose1 225, 272 483 MS2 [483]: 439, 313, 271 

MS3 [483 → 439]: 313, 287 
8 17.67 Digalloyl pentose 226, 280 453 MS2 [453]: 313, 327, 285, 169 

MS3 [453 → 313]: 169 
9 18.58 Proanthocyanidin dimer3 228, 282 577 MS2 [577]: 425, 407, 451, 289 

MS3 [577 → 425]: 407 
10 19.12 Trigalloylquinic acid2 226, 277 647 MS2 [647]: 495, 477, 343 

MS3 [647 → 495]: 343, 325, 169 
11 19.83 Tetragalloylquinic acid2 227, 277 799 MS2 [799]: 601, 629, 477, 647,  

MS3 [799 → 601]: 431, 449, 261 
12 20.28 Unknown gallic acid derivative 226, 291 617 MS2 [617]: 285, 313, 599, 447 

MS3 [617 → 285]: 241 
13 20.94 Galloylproanthocyanidin dimer1 228, 295 729 MS2 [729]: 407, 559, 577, 451, 603, 289 

MS3 [729 → 407]: 285 
14 22.75 Unknown gallic acid derivative 226, 287 601 MS2 [601]: 583, 269, 313, 439 

MS3 [601 → 583]: 313, 269, 431 
15 23.13 Digalloylproanthocyanidin dimer 227, 295 881 MS2 [881]: 729, 559, 711, 577 

MS3 [881 →729]: 407, 577, 559 
16 23.59 Quercetin deoxyhexosylhexoside 258, 357 609 MS2 [609]: 300, 271, 343 

MS3 [609 → 300]: 271, 255, 179, 151 
17 24.32 Quercetin hexoside 258, 358 463 MS2 [463]: 301 

MS3 [463 → 301]: 271, 255, 179, 151 
18 24.87 Galloylquercetin hexoside 227, 271, 366 615 MS2 [615]: 301, 463, 313 

MS3 [615 → 313]: 169 
19 25.83 Quercetin pentoside 259, 356 433 MS2 [433]: 301 

MS3 [433 → 301]: 271, 255 
20 26.58 Quercetin pentoside 274, 361 433 MS2 [433]: 301 

MS3 [433 → 301]: 271, 255 
21 27.33 Galloylquercetin pentoside 226, 268, 356 585 MS2 [585]: 301 

MS3 [585 → 301]: 179, 151 
22 28.61 Unknown 246, 316 677 MS2 [677]: 645, 617, 585 

MS3 [677 → 645]: 489 
23 30.07 Unknown 248, 316 675 MS2 [675]: 643, 599 

MS3 [677 → 643]: 599, 625 
24 33.33 Quercetin 257, 370 301 MS2 [301]: 179, 151 
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Geiss et al. (1995) reported about different proanthocyanidins with (+)-epicatechin units 

occurring in the bark of B. crassifolia, which argues for the presence of (+)-epicatechin units also 

in the fruits.  

Peaks 16-21 belong to a series of quercetin derivatives. All of these peaks show in part 

characteristic fragment ions of a quercetin aglycone (e.g., MSn data at m/z 301, 300, 271, 255, 179, 

and/or 151) which were generated from fragmentation of an authentic quercetin standard. 

Hence, simply quercetin was identified in peak 24. Data of quercetin are consistent with those 

found by Hvattum and Ekeberg (2003). Peak 16 was tentatively identified as quercetin 

deoxyhexosylhexoside (m/z 609). The yielded product ion at m/z 300 resulted probably from the 

homolytic cleavage of the O-glycosidic bond, which gave rise to the formation of a radical 

aglycone anion (Hvattum and Ekeberg, 2003). Quercetin hexoside was presumably present in 

peak 17 (m/z 463) indicated by the neutral loss of 162 Da. Peaks 19 and 20 were assigned to be 

isomers of quercetin pentoside (m/z 433), which is designated by the neutral loss of 132 Da. Two 

quercetin gallates were found in peaks 18 and 21, resulting in an additional absorption maximum 

(~270 nm) to the distinctive flavonol spectrum. Consequently, peak 18 was tentatively identified 

as galloylquercetin hexoside after sequential loss of 152 Da and 162 Da accounting for a galloyl 

and a hexosyl unit, respectively. The presence of galloylquercetin pentoside is likely in peak 21. 

The loss of 284 Da may be derived from a galloyl and a pentoside unit (152 Da + 132 Da) 

resulting into the aglycone ion of quercetin at m/z 301.  

Peaks 3, 12, and 14, could not clearly be identified. Nevertheless, these peaks embed 

characteristics typically found for gallic acid. Peak 3 shows an UV spectrum similar to that of 

gallic acid. The parent [M-H]- ions at m/z 285 result in MS2 data among other at m/z 169 

accounting for the presence of gallic acid. Peaks 12 and 14 show interesting parallels. Peak 14 

produces [M-H]- ions at m/z 601 and yields fragment ions (m/z 313, 439) that were previously 

found in MS2 data of digalloyl glucoside. MS3 data of peak 14 indicate a neutral loss of a galloyl 

residue (m/z 583 to m/z 431) and a neutral loss of a hexoside (m/z 431 to m/z 269). Peak 12 

might be a derivative of peak 14. Its parent ions [M-H]- at m/z 617 suggest the presence of an 

additional hydroxyl group. MS2 data also account for an additional hydroxyl group as the same 

neutral losses occur like in peak 14 but with an increase of 16 Da. The difference between m/z 

599 and m/z 447 suggests the loss of a galloyl residue. Eventually, the difference between m/z 

447 and m/z 285 assumes the loss of a hexoside. The same substances occur obviously also in 

cutite in the same elution order (compare peaks 21 and 25 of cutite in table E.4.4).   
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Cutite (Pouteria macrophylla) 

The HPLC chromatogram of the cutite extract is shown in figure E.4.2. Regarding table E.4.4, 

Peak Retention 
time 

Compounda, b HPLC-
DAD 

λmax [nm] 

[M-H]- 
m/z 

Fragments (m/z) 

1 9.35 Gallic acid 225, 273 169 MS2 [169]: 151, 125 
2 9.64 Gallic acid derivative 229, 274 483 MS2 [483]: 465, 368, 174, 303, 350, 393, 229 

MS3 [483 →368]: 350 
3 11.48 Galloylquinic acid2 226, 276 343 MS2 [343]: 169, 173 
4 14.45 Digalloylglucose1 226, 278 483 MS2 [483]: 313, 331, 169, 271 

MS3 [483 →313]: 169 
5 15.60 Digalloylglucose1 226, 273 483 MS2 [483]: 331, 271, 169, 241, 423, 313 

MS3 [483 →331]: 169, 271 
6a 16.58 Digalloylglucose1 229, 279 483 MS2 [483]: 331, 169, 271, 313 

MS3 [483 →331]: 169, 271, 241 
6b 16.58 Digalloylquinic acid2 229, 279 495 MS2 [495]: 343, 191 

MS3 [495 →343]: 191, 169 
7 16.81 Galloyl(epi)gallocatechin 

dimer 
228, 284 761 MS2 [761]: 423, 609, 575, 305, 405, 287 

MS3 [761 →423]: 283, 297 
8a 17.10 Digalloylglucose1 226, 277 483 MS2 [483]: 331, 169, 241, 271, 313 

MS3 [483 →331]: 241, 169, 271 
8b 17.10 Digalloylquinic acid2 226, 277 495 MS2 [495]: 343, 325, 169 

MS3 [495 →343]: 169, 191, 125 
9 18.13 HHDP glucose1 233, 296 481 MS2 [481]:301, 355, 463, 151 

MS3 [481 →301]: 257, 215, 283 
10 18.96 HHDP glucose1 231, 295 481 MS2 [481]:301, 355, 463, 151 

MS3 [481 →301]: 257, 215, 283 
11 19.58 Digalloyl(epi)gallocatechin 

dimer 
229, 276 913 MS2 [913]:761, 423, 743, 591, 573, 609 

MS3 [913 →761]: 609, 591 
12 19.86 HHDP galloylglucose1 228, 290 633 MS2 [633]: 507, 301, 481, 271, 331, 615 

MS3 [633 →507]: 271, 175, 355 
13 20.39 Trigalloyl glucose1 228, 277 635 MS2 [635]: 465, 483, 617, 313 

MS3 [635 →465]: 313, 169, 211 
14 21.12 HHDP galloylglucose1 231, 296 633 MS2 [633]: 301, 507, 481, 271, 331 

MS3 [635 →507]: 175, 355, 271, 331 
15 21.65 Unknown compound 233, 295 467 MS2 [467]: 286, 285, 340, 151 
16 22.55 HHDP galloylglucose1 229, 293 633 MS2 [633]: 481, 301, 471, 355, 507, 463 

MS3 [633 →481]: 301, 355, 151, 463 
17 22.88 HHDP galloylglucose1 226, 293 633 MS2 [633]: 331, 301, 481, 507, 271 

MS3 [633 →331]: 271, 169, 211, 193 
18 23.60 HHDP galloylglucose1 231, 296 633 MS2 [633]: 331, 301, 481, 507, 271, 215, 355 

MS3 [633 →331]: 271, 169, 211, 193 
19 24.11 Unknown compound - 449 MS2 [449]: 269, 316 

MS3 [449 → 269]: 225, 151, 197, 183 
20 25.24 Myricetin deoxyhexoside 268, 355 463 MS2 [463]: 316 

MS3 [463 → 316]: 271, 287, 179, 151 
21 26.03 Unknown gallic acid derivative 235, 295 617 MS2 [617]: 331, 285, 465, 491, 507 

MS3 [617 → 285]: 241, 199, 217, 175, 257 
22 26.30 Dihydroquercetin 295, 337 303 MS2 [303]: 285, 177, 125, 179, 241, 276 
23 27.20 Unknown compound 231, 308 263 MS2 [263]: 219, 191 

MS3 [ 263→ 219]: 191 
24 28.05 Quercetin deoxyhexoside 266, 297, 352 447 MS2 [447]: 301 

MS3 [ 447→ 301]: 179, 271, 255, 151 
25 28.41 Unknown gallic acid derivative 228, 294 601 MS2 [601]: 287, 259, 331, 475, 313, 269 

MS3 [ 601→ 287]: 259, 243 
26 28.89 Unknown compound 229, 301 575 MS2 [575]: 395, 449 

MS3 [ 575→ 395]: 367, 243, 449, 269 
27 30.14 Unknown compound 234, 297 287 MS2 [287]: 259, 243, 269, 201 

MS3 [ 287→ 259]: 215, 173, 125, 241, 151 
28 35.42 Quercetin 268, 370 301 MS2 [301]: 179, 151, 273 

Table E.4.4. UV and mass spectrometric data of phenolic constituents extracted from cutite (Pouteria macrophylla) 
fruits. aItalic superscript numbers indicate the literature in which the compounds were previously described: 
1Sandhu and Gu, 2010; 2Clifford et al., 2007. bGallic acid and quercetin were identified with authentic standard; all 
other compounds were tentatively identified. 

a total of 22 polyphenolic compounds could be at least tentatively identified as gallotannins, 

quinic acid gallates, ellagitannins, proanthocyanidins, flavonols, and a flavanonol. Identification of 

gallic acid in peak 1 was assured by using an authentic standard.  
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A galloylquinic acid (peak 3) and two digalloylquinic acid isomers (peaks 6b and 8b) were 

tentatively identified in cutite due to mass spectrometric data that were already discussed for 

galloylquinic acids in muruci. Findings agree with MS data of quinic acid gallates reported by 

Clifford et al. (2007). The same accounts for different digalloyl glucoside isomers (peaks 4-6a, 8a) 

and a trigalloyl glucoside (peak 13). [M-H]- ions at m/z 483 and m/z 635, respectively, produce 

characteristic fragment ions that are present in muruci, araçá, and jambolão, too.   

Peaks 9, 10, 12, 14, and 16-18 show fragmentation patterns distinctive for ellagitannins (Sandhu 

and Gu, 2010). The presence of two HHDP glucose isomers (figure E.4.1) is indicated in peaks 

9 and 10 by the production of [M-H]- ions at m/z 481 and accordant dominating daughter ions at 

m/z 301. Peaks 12, 14, and 16-18 yielded fragment ions at m/z 481 accounting for HHDP 

glucose after loss of a galloyl residue of 152 Da. Hence, these compounds are tentatively ascribed 

to be isomers HHDP galloylglucose. The occurrence of the dominating fragment ion at m/z 301 

for these compounds is in agreement with the report by Sandhu and Gu (2010)   

Different groups of flavonoids are detectable in cutite. Peaks 7 and 11 were recognized as 

proanthocyanidins. Both peaks show typical MSn ions for a (epi)gallocatechin dimer at m/z 609, 

423, and 305. Congruent data obtained under the same instrumental conditions were previously 

published (Friedrich et al., 2000). The parent [M-H]- ions at m/z 761 of peak 7 and [M-H]- ions at 

m/z 913 of peak 11 indicate the likely presence of a galloyl(epi)gallocatechin dimer and a 

digalloyl(epi)gallocatechin dimer, respectively. This assignment is derived from the neutral loss of 

a galloyl unit (152 Da) in peak 7 and the sequential loss of two galloyl units in peak 11. Three 

flavonols were found in peaks 20, 24, and 28. Peak 20 was tentatively identified as myricetin 

deoxyhexoside and peak 24 as quercetin deoxyhexoside. The neutral loss of 146 Da yielded in the 

particular (radical) aglycone ion (m/z 316 and m/z 301, respectively). Simply quercetin was 

specified in peak 28 on the basis of an authentic standard. Due to MS2 data, peak 22 was 

tentatively identified as the flavanonol dihydroquercetin ([M-H]- at m/z 303).. 

2. Antioxidant capacity 

Table E.4.5 shows the results of the antioxidant capacity measurement of the four Amazonian 

fruits. Aqueous extracts were determined on their radical scavenging activity against peroxyl 

radicals (px) and peroxynitrite (pn) by the TOSC assay. TOSC results indicate the concentration 

of antioxidants present in the sample that is needed to attain a radical inhibition of 50% (IC50). 

The total phenolic content was measured by Folin-Ciocalteu. The concentration of ascorbic acid 

was determined in these fruits as ascorbic acid affects results of the total phenolic content 

(Georgé et al., 2005) and shows a perceivable impact on the antioxidant capacity measured by 

TOSC (Lichtenthäler et al., 2003). The results are also given in table E.4.5.  
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The highest antioxidant capacity against both radicals was assessed for cutite followed by 

jambolão, araçá, and muruci. Against px, cutite bore a 9-fold higher antioxidant capacity in 

comparison to muruci. Against pn, even the 12-fold amount of muruci sample is needed to attain 

the IC50 when compared to cutite. According to both radicals, antioxidant properties between 

jambolão and araçá were less distinctive. However, both fruits showed an approximately 3 times 

(px) and 4-5 times (pn) lower radical scavenging capacity than cutite.  

 Peroxyl 
radicalsa 

Peroxynitritea 
Total phenolic 

contentb 
Ascorbic acidc 

Cutite 0.57 0.83 2915.1 ± 0.0 247.5 ± 23.5 

Jambolão 1.49 3.13 786.8 ± 6.9 93.5 ± 12.0 

Araçá 1.58 4.00 754.4 ± 12.5 101.3 ± 9.8 

Muruci 5.26 10.00 254.7 ± 15.2 n.q. 

Table E.4.5. Antioxidant capacity (TOSC) against two different radicals, total 
phenolic content, and ascorbic acid content of four fruits from the Amazon 
region. aConcentration of freeze-dried sample (g/L) that is needed to obtain an 
inhibition rate of 50%. TOSC values imply a variance < 5%. bData expressed as 
mean ± standard deviation (n = 4) in mg gallic acid equivalent/100 g dry matter. 
cData expressed as mean ± standard deviation (n = 4) in mg/100 g dry matter; 
n.q., not quantifiable. 

It becomes obvious that the fruit extracts generally performed higher against px than against pn. 

By comparing the two radicals, the results indicate differences in the effectiveness of the 

antioxidants contained in the fruit extracts. The difference between the antioxidant potential of 

px and pn is less distinctive for cutite in comparison to the other fruits. The 1.5-fold amount of 

cutite sample is required for the IC50 of pn in comparison to px. Double the amount of sample is 

necessary for jambolão and muruci and even a 2.5-fold amount of araçá sample is needed. 

Consequently, the antioxidants present in cutite show the most effective impact against pn, 

whereas the antioxidants in araçá are the least effective against pn when compared to px.

  

Results of the TOSC assay are interrelated with the total phenolic content. The amounts of 

determined total phenols of the four fruits give rise to the same ranking as described for px and 

pn. Hence, the antioxidant properties of each fruit can be ascribed to the total phenolic content 

in the meaning of the Folin-Ciocalteu test. The lowest phenolic content was found in muruci 

being roughly comparable to that of banana pulp (Faller and Fialho, 2010). The 12-fold amount 

of total phenols was constituted in cutite matching that of tropical highland blackberries (Acosta-

Montoya et al., 2010).  

Results of the ascorbic acid determination showed that noticeable amounts were found only in 

cutite. Jambolão and araçá contained less than half of the concentration present in cutite. 

Ascorbic acid in muruci could not unambiguously be identified. Besides the phenolic content, 
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ascorbic acid may significantly contribute to the antioxidant behavior of cutite fruits. As 

described by Lichtenthäler et al. (2003) a similar concentration of ascorbic acid standard is needed 

to obtain a radical inhibition of 50% against both radicals. This could explain the less pronounced 

difference of the antioxidant capacity of cutite against the two radicals. Jambolão shows a higher 

antioxidant capacity than araçá, although the content of ascorbic acid is slightly lower. Thus, 

antioxidant compounds other than ascorbic acid seem to significantly influence the radical 

scavenging behavior of jambolão. Finally, the comparably weak antioxidant activity of muruci 

may be explained by the probable absence of ascorbic acid in this fruit in addition to the low total 

phenolic content.  

Up to now only a few studies are known about the antioxidant capacity of the four fruits from 

the Amazon region. Two different papers reported the free radical scavenging behavior of 

jambolão and muruci. DPPH˙ assay conditions for the determination of both fruits were 

identical. Results showed a 3-fold higher antioxidant capacity for jambolão in comparison to 

muruci, which is accordance with our findings (Rufino et al., 2009; Rufino et al., 2010).  

In comparison to other fruits originating from the Amazon basin, the antioxidant properties 

determined by the TOSC assay of cutite against pn were better than those of açaí pulp. Different 

harvest years of açaí (1998, 2000, and 2002) require concentrations between 1.17 and 1.72 g/L to 

attain an inhibition of 50%. In contrast, the radical scavenging potential of cutite against px is less 

effective than that of açaí (0.39-0.48 g/L) (Lichtenthäler et al., 2005). Cutite also shows a lower 

antioxidant capacity with regard to both radicals than the outstanding fruits of camu camu 

(Rodrigues et al., 2006) but its antioxidant capacity was higher when compared to berries of 

Clidemia rubra from Columbia (Gordon et al., 2011).  

In conclusion, a large number of phenolic constituents were detected in the Amazonian fruits. 

Thereof, 18 compounds were found in araçá, 37 in jambolão, 19 in muruci, and 22 in cutite. The 

compounds can be ascribed to hydrolyzable tannins, proanthocyanidins, flavonols, and 

flavanonols. Interestingly, no flavonoids could be found in araçá but only gallic acid derivatives. 

Cutite and muruci present different galloylquinic acid derivatives, which have rarely been proven 

in fruits. Studies on the antioxidant capacity revealed the best bioactive potential for cutite 

followed by jambolão, araçá, and muruci. 
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F Separation of bioactive compounds in a semi-preparative scale 
(manuscript not intended for publication) 

F.1 Introduction 

On the basis of epidemiological data, an increased consumption of fruits and vegetables has been 

associated with a reduced risk of contracting degenerative and chronic illnesses such as 

cardiovascular diseases (Hertog et al., 1993; Harnafi and Amrani, 2007), Alzheimer’s disease 

(Singh et al., 2008), inflammatory diseases (Holt et al., 2009) or cancer (Hertog et al., 1994). The 

health promoting biological activities have been ascribed to dietary phenolics which show 

antioxidant properties and exert regulatory influence on diverse cellular mechanisms. Attention to 

phenolic compounds has also arisen in regard to existing antimicrobial activities. Phenolic 

compounds may be helpful in the control of the wild spectra of pathogens, in view of recent 

problems associated with antibiotic resistance (Paredes-Lopéz et al., 2010). Apart from the 

medicinal aspects, the bioactive properties render phenolic compounds interesting for food 

technological purposes. There is, for instance, an increasing demand for food additives from 

natural resources because of consumers growing concern over the use of artificial additives 

(Giusti and Wrolstad, 2003). In this context, plant extracts containing a broad range of 

polyphenols can be applied as antioxidants or antimicrobial agents as well (Anastasiadi et al., 2009; 

El-Hela and Abdullah, 2010; Jalosinska and Wilczak, 2009).  

The use of phenolic constituents for medicinal or technological applications demands for a 

possibility to isolate individual compounds from complex matrices. A preparation of preferably 

authentic standards is also indispensable in order to assess possible pharmacological effects of 

particular phenolic substances. A state-of-the-art method for the isolation of phenolic 

compounds from plant extracts is high speed countercurrent chromatography (HSCCC) as it 

works without any adsorption losses. High sample loads and the use of cheap solvents instead of 

expensive solid phase columns are further advantages over e.g. preparative HPLC (Schwarz et al., 

2003).  

The following study intends to isolate phenolic compounds in a semi-preparative scale. HSCCC 

procedure is exemplified by berries of Clidemia rubra as they have been shown to be rich in 

anthocyanins (Gordon et al., 2011). Dietary anthocyanins have gained interest due to their health 

beneficial effects against coronary heart diseases (Wallace, 2011), obesity and hyperglycemia 

(Tsuda et al., 2003; Sasaki et al., 2007). Moreover anthocyanins can be technologically applied as 

food colorant (Coisson et al., 2005; Pazmino-Duran et al., 2001). 
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F.2 Materials and methods 

1. Chemicals 

Following solvents were used to perform the chromatography: 1-Butanol and methyl tert-butyl 

ether (MTBE) were purchased from (Merck, Darmstadt, Germany). Acetonitrile was delivered by 

Th. Geyer GmbH & Co KG (Renningen, Germany). Trifluoroacetic acid (≥ 99%) was purchased 

by Acros Organics (Geel, Belgium).  

2. Sample 

Lyophilized sample of Clidemia rubra berries was taken for analysis. Samples were prepared as 

described in Gordon et al. (2011). 

3.  High speed countercurrent chromatography (HSCCC) 

Theory of HSCCC 

Countercurrent chromatography is a liquid-liquid separation method suitable for complex sample 

matrices. Elution occurs due to repeated partitioning of the analyte between two immiscible 

phases (stationary and mobile phase) by vigorous mixing in separatory funnel. The 

chromatography takes place in a multilayer coil that consists of wrapped PTFE tubing around a 

holder. The tubing can reach a length of 160 m. Multiple coils can be connected in series to 

increase the total volume of the instrument and sample capacity. During separation, the coil is 

rotated in a planetary fashion. It rotates between 800-1000 rpm around its own central axis and 

simultaneously around a parallel coil axis as shown in the instrument setup in figure F.2.1. 

 

Figure F.2.1. Instrumental HSCCC setup (Schwarz et al., 2003). 

The planetary rotation results in two effects. Firstly, the rotation creates a fluctuating acceleration 

field which enables intense mixing of the two phases followed by settling within the coil. The 

force field is weak in areas of the coil which are close to the centre of rotation. Consequently, the 

phases are mixed. At a further point of the orbit, in the opposite to the centre of rotation the 

force field becomes stronger by what the phases are separated. Secondly, the retention of the 
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stationary phase is enabled due to the rotation of the coil. During rotation, it can be observed 

that the two immiscible phases move towards opposite ends of the coil also known as ‘head’ and 

‘tail’. Normally, the less dense layer displaces the heavier phase towards the tail until a 

hydrodynamic equilibrium is reached. When the heavier layer is selected as the mobile phase, the 

proper elution mode is ‘head-to-tail’ and the mobile phase is introduced from the head of the 

system. By choosing the lighter phase as the mobile phase, the elution order of the compounds is 

reversed, the correct elution mode is ‘tail-to-head’. Hence, the mobile phase is pumped into the 

tail of the system (Schwarz et al., 2003). Choosing the correct elution mode depends on the 

partition coefficient of the sample in the mobile and the stationary phase, respectively. Analytes 

with higher affinity to the mobile phase will be moved faster through the coil system as those 

interacting preferably with the stationary phase (McAlpine and Morris, 2006). 

Procedure 

A P.C. Inc. Model HSCCC (Zinsser Analytics, Frankfurt am Main, Germany) was equipped with 

a triple coil with total volume of 325 mL. According to Schwarz et al. (2003), the solvent system 

consisted of 1-butanol-MTBE-acetonitrile-water (2:2:1:5, v/v/v/v) acidified with 0.1% 

trifluoroacetic acid. The less dense layer of this solvent system was used as stationary phase. 

Conditioning of the coil with the heavy dense layer used as mobile phase was performed. 

Solvents were delivered by a Milipore Waters Model 510 (Milipore, Billerica, USA) using a flow 

rate of 1.0 mL/min. Lyophilized Clidemia rubra berries (1 g) were solubilized in 10 mL of mobile 

phase. After filtration through a 1.0/0.45 µm syringe filter (Chromafil GF/PET-45/25, 

Macherey-Nagel, Düren, Germany), the sample was injected into 5 mL sample loop. Elution 

mode was head-to-tail with revolution speed of the central axis set to 850 rpm in reversed 

direction. Separation was monitored by a UV-detector (Knauer, Berlin, Germany) at 280 nm. 

Fractions were collected with a Frac-100 (Pharmacia LKB Biotechnology AB, Uppsala, Sweden) 

in steps of 3 min. Determination of the purity of the fractions was performed using HPLC/DAD 

instruments and conditions described previously in Gordon et al (2011). 

F.3 Results and discussion 

The elution of the Clidemia rubra berry extract by HSCCC resulted in three main fractions 

detected at 280 nm as demonstrated in figure F.3.1. A subsequent determination of these 

fractions by HPLC/DAD primarily disclosed the presence of anthocyanins. Main fraction I (92-

104 min) contained cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, delphinidin 3-O-glucoside, 

and delphinidin 3-O-rutinoside which were all previously identified in Clidemia rubra berries 

(Gordon et al., 2011). Cyanidin 3-O-rutinoside and delphinidin 3-O-rutinoside were 

predominantly present in this fraction in a relation of 1:2 whereas cyanidin 3-O-glucoside and 
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delphinidin 3-O-glucoside were found in traces. Delphinidin 3-O-rutinoside was the 

quantitatively dominating anthocyanin in main fraction II (173-188 min). Further, lower 

concentrations of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were constituted. An 

enrichment of high purity of an anthocyanin occurred in main fraction III (209-224 min). 

Cyanidin 3-O-rutinoside was the only detectable compound at 520 nm. The more unspecific 

wave length at 280 nm showed the presence of only one further non-anthocyanin constituent 

(λmax at 367 nm) in fraction III in a low concentration as shown in figure F.3.2. The peak area of 

the unknown compound, recorded at 280 nm, accounted for less than 2% in comparison to that 

of cyanidin 3-O-rutinoside. 

 

Figure F.3.1. HSCCC chromatogram of a Clidemia rubra berry extract recorded at 280 nm. 

 
Figure F.3.2. Detail of a HPLC chromatogram of main fraction III at 280 nm. 

Conclusively, HSCCC experiments have demonstrated that this separation method is an 

implementable instrument for the separation of bioactive compounds. The isolation of cyanidin 

3-O-rutinoside as the quantitatively dominating anthocyanin in Clidemia rubra berries was 
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practicable in a high purity grade. By choosing alternative solvents or changes of the relation of 

individual solvents in the solvent system as well as modifying of the flow rate of the mobile 

phase, it would also be possible to separate other major and minor compounds, respectively. 

Schwarz et al. (2003) demonstrated that the purity of fractions containing several anthocyanins 

can be improved by repeated separation by HSCCC with lower flow rates. 
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G.1 Abstract 

Exotic fruits like açaí, camu camu, and blackberries rich in natural antioxidants (ascorbic acid, 

anthocyanins) are marketed as “functional” food supporting a pro-/antioxidant balance. 

Confirming data from human studies are lacking. Within a randomized controlled crossover trial, 

12 healthy non-smokers ingested 400 mL of a blended juice of these fruits or a sugar solution 

(control). Blood was drawn before and afterwards to determine antioxidants in plasma, markers 

of antioxidant capacity [Trolox equivalent antioxidant capacity, Folin-Ciocalteu reducing capacity, 

total oxidant scavenging capacity (TOSC)] and oxidative stress [isoprostane, DNA strand breaks 

(SB) in leukocytes in vivo], and their resistance vs. H2O2-induced SB. Compared with sugar 

beverage, juice consumption increased plasma ascorbic acid and maintained TOSC levels 

(p < 0.05). SB in vivo increased after ingestion of both beverages (p < 0.001), probably due to 

postprandial and/or circadian effects. Exotic fruit juices cannot further improve a stable pro-

/antioxidant balance in healthy non-smokers. 

G.2 Introduction 

There is convincing epidemiologic evidence that regular fruit and vegetable consumption 

contributes to decrease the risk of several chronic diseases like coronary heart disease (Nikolic et 

al.) and probably certain kinds of cancer (AICR, 2007). It is hypothesized that antioxidative 

ingredients like polyphenols and water-soluble vitamins are the decisive factors explaining the 

health promoting properties of fruits and vegetables (Liu, 2003). 

This scientific evidence is worldwide translated into public health initiatives like “5 a day” and 

school fruit programs with the goal to increase daily consumption of fruits and vegetables. 

Encouraged by these policy-driven actions, food industry is strongly engaged to launch novel 

fruit (and vegetable) based products on the market. Blended juices, juice concentrates and 

smoothies rich in polyphenols and water-soluble vitamins like ascorbic acid are marketed as 

health supporting food specifically preventing from radical-driven chronic diseases.      

In this respect, economic and scientific interests are focused on fruits frequently consumed in 

South America. Camu camu (Myrciaria dubia) grows in the Amazon region and contains 

anthocyanins [30 – 50 mg/100 g, with cyanidin 3-O-glucoside as major (89% of total) 

anthocyanin], and an extraordinary high content of ascorbic acid (up to 3.0 g/100 g pulp) 

(Rodrigues and Marx). Another popular fruit in Central and South America is açaí (Euterpe 

oleraceae Mart.). It is also rich in anthocyanins, especially in cyanidin 3-O-glucoside (up to 456 

mg/L pulp) and exhibit high antioxidant capacity in vitro (World Cancer Research Fund, 2007; 
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Lichtenthäler et al., 2005). Andean blackberries similarly present a high antioxidant capacity 

because of their high content in ellagtannins (Acosta-Montoya et al., 2010).  

Controlled clinical trials to evaluate the protective effects of these fruits are scarce. Daily intake 

of 70 mL camu camu juice for one week reduced urinary 8-hydroxydesoxyguanosine, a biomarker 

of DNA damage, which did not occur after ingestion of equal amounts of isolated ascorbic acid 

(1050 mg/d) (Inoue et al., 2008). Intervention studies in healthy non-smokers have shown that 

bolus consumption of açaí (pulp or juice) (Mertens-Talcott et al., 2008) or a juice blend with açaí 

as predominant ingredient (Jensen et al., 2008) increased antioxidant capacity in plasma (Mertens-

Talcott et al., 2008) and erythrocytes (Jensen et al., 2008), respectively, and decreased lipid 

peroxidation (Jensen et al., 2008). Even if individual markers on antioxidant capacity and 

oxidative stress improved in these studies, a comprehensive picture concerning antioxidant 

defense is lacking. 

The aim of our study was, thus, to investigate the effects of a bolus consumption of a blended 

juice made of açaí, Andean blackberries and camu camu on the concentrations of plasma 

antioxidants, plasma antioxidant capacity, and markers of oxidative stress in healthy non-

smokers. Secondary goal was to detect and characterize metabolites of anthocyanins in plasma 

using a newly developed HPLC technology. 

G.3 Materials and methods 

1. Subjects and study design 

To reach these study goals, we performed a randomized, controlled trial with crossover design. 

The primary endpoint was the assessment of total antioxidative capacity in blood. Sample size 

calculation was based on data from a preliminary trial with three healthy non-smokers ingesting a 

bolus of 400 mL of the juice blend under standardized conditions. Trolox equivalent antioxidant 

capacity (TEAC) increased from 1.25 mmol/l Trolox equivalents (TE; baseline) to 1.36 mmol/l 

TE (0.5 h; maximal TEAC). Considering a standard deviation of 0.075 mmol/l TE, a difference 

of 0.11 mmol/l TE could be detected with α = 0.05 and a power of 90% if 11 participants were 

recruited. To account for dropouts, 12 participants were included in our study.         

Participants (18 - 50 years, body-mass-index between 18.5 - 24.9 kg/m2, non-smokers for at least 

6 months) were recruited within our staff. Exclusion criteria (questionnaire) were: known 

hepatic/gastrointestinal disorders, pregnancy or breastfeeding, regular use of vitamin or 

flavonoid-rich supplements. Participants were asked on their usual intake of fruit and vegetables 

(portions per day).       
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The randomization into two equal groups was stratified by sex and was done by lots. Group A 

first ingested 400 mL of a fruit juice blend after 12 h overnight fast; after a wash-out period of 2 - 

3 weeks, they received 400 mL of a solution with equal amounts of monosaccharides (13.0 g 

glucose, 7.2 g fructose) as control. Group B consumed the test beverages in reversed order. 

The fruit juice blend consisted of 44% açaí, 12% camu camu and 44% blackberry juice (Rubens 

ssp.). The fruit juice was produced according to the technological standards for the production of 

customary in trade from a commercially available frozen açaí puree (açaí juice pads; Açaí GmbH, 

Berlin, Germany), camu camu pulp [Brazilian Agricultural Research Corporation (Embrapa)] and 

Costa Rican blackberry juice [Centro National de Investigacion en Tecnologia de Alimentos 

(CITA), Costa Rica]. Ingredients of the juice blend are presented in table G.3.1.  

 Juice Control 

Anthocyanins (mg CE) 276 n.d. 

Ascorbic acid (mg) 936 n.d. 

Total phenolic content (mg GAE) 1612 n.d. 

Glucose (g)  13.0 13.0 

Fructose (g) 7.2 7.2 

Table G.3.1. Ingredients of a single portion (400 mL) of the study 
drinks. CE: cyanidin 3-O-glucoside equivalents, GAE: gallic acid 
equivalents, n.d.: not determined. 

Fructose is degraded endogenously to uric acid and can, thus, exhibit antioxidative effects 

(Hallfrisch, 1990, Livesey, 2009). The control beverage, thus, contained amounts of fructose 

equal to the test juice. To avoid artefacts by other foods, subjects were instructed to abstain from 

foods rich in polyphenols (hand-out) starting 24 h before the first study day until completion. On 

the study day, participants received a standardized meal (two bread rolls with butter and cheese) 3 

and 5 hours after consumption of the study beverages. Water was allowed to drink ad libitum. 

Written informed consent was obtained by all participants. The study was conducted according 

to the Declaration of Helsinki and approved by the ethical Committee of the University of Bonn 

(No. 207/08).  

2. Blood sampling 

Blood samples (7.2 mL each) were collected before and 30, 60, 90, 120, 180 and 360 min after 

consumption of the study drink using tubes (S-Monovette, Sarstedt, Nümbrecht, Germany) 

coated with EDTA [analyses of ascorbic acid, fat soluble pro-/vitamins, antioxidant capacity, 8-

isoprostaglandine F2α (8-iso PGF2α) and phenolic acids in plasma], heparin (determination of 
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DNA strand breaks in leukocytes), and tubes without anticoagulant (analysis of cholesterol, 

triglycerides, and uric acid).  

3. Preparation of plasma samples 

After blood withdrawal, EDTA tubes were placed on ice immediately. Then, blood was 

centrifuged at 3,000 × g for 20 min at 4 °C. For the determination of ascorbic acid, 500 µL of a 

cold 6% perchloric acid/2% metaphosphoric acid solution (v/v) was added to 500 µL fresh 

EDTA plasma in order to precipitate proteins and to stabilize ascorbic acid. After centrifugation 

(3,000 × g, 10 min, 4 °C), the supernatant was aliquoted and stored at -80 °C until analysis. To 

avoid oxidation, 10 µL butylhydroxytoluol (0.5% w/v in ethanol) was added to 1000 µL fresh 

EDTA plasma for later analysis of 8-iso PGF2α and fat soluble pro-/vitamins. Ten µL of a 

solution of 0.4 M NaH2PO4 with 20% ascorbic acid and 0.1% EDTA (pH 3.6) were added to 

500 µL plasma in which phenolic acids should be detected. Heparinized blood was used 

immediately for the determination of DNA strand breaks in leukocytes. 

4. Dietary intake of energy and nutrients 

The intake of energy, macronutrients, dietary fiber and antioxidant pro-/vitamins on the day 

before the study was calculated using Ebis Pro 4.0 software (University of Hohenheim, Stuttgart, 

Germany) based on German Nutrient database, version II.3. The flavonoid intake was calculated 

by using the USDA database (USDA, 2007).  

5. Analytical methods 

Plasma antioxidant capacity 

Since no single assay truly reflects overall antioxidant capacity, multiple assays with different 

radicals and mechanisms (hydrogen or electron transfer which reflect radical quenching and 

radical reduction, respectively) should be used (Prior et al., 2005). Thus, TEAC (Miller et al., 1993) 

(CV 1.2%) was measured and expressed as Trolox equivalents. Furthermore, the Folin-Ciocalteu 

reducing capacity (FCR) (Prior et al., 2005), was assessed with the modifications of Arendt et al. 

(2005) to avoid interferences with plasma proteins (CV 2.0%). The FCR of plasma was expressed 

as catechin equivalents. Additionally, total oxidant scavenging capacity (TOSC) in plasma (diluted 

1:20 (v/v) with aqua dest.) was determined against peroxyl radicals (CV 3.6%) according to 

Lichtenthäler et al. (2003).  

Concentrations of antioxidants in plasma/serum 

Ascorbic acid in plasma was measured by HPLC with UV/VIS detection at 243 nm (CV 1.8%) 

according to Steffan (1999).   
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α-Tocopherol and β-carotene were also determined by HPLC. The protocol of Erhardt et al. 

(1999) was modified by using apocarotenal as internal standard, Nucleosil® 100-5 CN (Macherey-

Nagel, Düren, Germany) as column and a solution of 98% hexane and 2% isopropanol as mobile 

phase. α-Tocopherol was detected at 292 nm (CV 4.1%) and β-carotene at 450 nm (CV 3.5%). 

Uric acid in serum was determined photometrically within routine analysis (Urea Flex® reagents 

cassette, Siemens Healthcare Diagnostics, Eschborn, Germany) (CV 1% according to 

manufacturer). 

Phenolic acids in plasma 

A solid phase extraction using Supel® – Select HLB SPE tubes (bed wt., 60 mg, volume 3 mL) 

(Supelco, Steinheim, Germany) was performed to eliminate plasma proteins. After equilibration 

with 0.1% formic acid, the cartridge was loaded with plasma (450 µL). After washing with aqua 

dest., a solution of methanol, acetonitrile and formic acid (50 + 49.9 + 0.1, v/v/v) was used for 

elution. The eluate was evaporated under nitrogen to dryness and reconstituted with a solution 

(50 µL) of methanol, water and trifluoroacetic acid (20 + 79.9 + 0.1, v/v/v). Thereafter, single 

compounds with reducing capacity were determined in the samples by HPLC-CEAD detection at 

100, 200, 300 and 400 mV using the conditions (instrument settings, elution) previously described 

by Ritter et al. (2010). The analytical column was an Aqua 3 µm C18, 150 mm, 4.6 mm i.d. with a 

guard column (Security Guard, Aqua RP-18, 4 mm, 3 mm i.d.) (both from Phenomenex, 

Aschaffenburg, Germany). For analysis, 20 µL of the sample (plasma, standard and juice) were 

injected. Protocatechuic acid (≥ 97%) was obtained from Merck (Darmstadt, Germany), gallic 

acid (≥ 97.5%), vanillic acid (≥ 97%) and ferulic acid (≥ 99%) from Sigma-Aldrich (Steinheim, 

Germany) and caffeic acid (purum) from Serva (Heidelberg, Germany). 

Lipid peroxidation 

Total 8-iso PGF2α concentration was determined as sum of free plus esterified 8-iso-PGF2α in 

EDTA-plasma by an ELISA kit (Cayman Chemical, Ann Arbor, MI, USA, CV 10%) as described 

previously (Roggenbuck et al., 2008).  

DNA strand breaks 

DNA single strand breaks (SB) were measured in leukocytes in vivo and after 20 min incubation at 

4 °C with 300 µM H2O2 ex vivo using the single cell gel electrophoresis assay (also called Comet 

Assay). The protocol of Arendt et al. (2005) was used, however, electrophoresis period was 

extended to 20 min. Fifty nuclei per slide were evaluated for DNA damage by calculating tail 

moment with the Comet Assay III software (Perceptive Instruments, Suffolk, UK). The 
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difference in tail moment between untreated cells (SB in vivo) and cells challenged with H2O2 was 

calculated to determine the resistance of DNA vs. H2O2 ex vivo (CV 22%). 

Triglycerides 

Triglycerides in serum were measured within routine procedures by using Flex® reagent cartridges 

and the Dimension Vista® System (Siemens Healthcare Diagnostics; CV 3% according to 

manufacturer). 

Statistics 

Since data were normally distributed according to Kolmogorov-Smirnow-test, parametrical tests 

were used.   

The effects of beverage, time, interactions of beverage and time (beverage × time) and the order 

of beverage intake on laboratory parameters were investigated with repeated measures ANOVA. 

In case of significant effects, a paired or unpaired t-test was performed subsequently.   

Area under the curve (AUC) was calculated for all parameters by the trapezoidal rule for non-

uniform intervals. AUC obtained after consumption of juice and sugar solution was compared 

with each other by an unpaired t-test. 

Results are shown as mean and standard deviation. Statistical evaluation was performed with 

PASW Statistics, version 17.0 (SPSS Inc., Chicago, IL, USA).  

G.4 Results 

Six males and six females with a mean age of 33 ± 7 years and a body-mass-index of 23.0 ± 3.1 

kg/m2 participated in our study. Their usual intake of fruit plus vegetables was 3.3 ± 0.8 portions 

per day. The intake of energy (8.54 ± 2.27 MJ), protein (86 ± 28 g), fat (95 ± 38 g), carbohydrates 

(205 ± 65 g), dietary fiber (12 ± 5 g), ascorbic acid (18 ± 16 mg), β-carotene (0.4 ± 0.2 mg), 

vitamin E (5 ± 3 mg α-tocopherol equivalents), and flavonoids (0.5 ± 0.7 mg) was not 

significantly different between the days before each study day. This indicates an excellent 

compliance to dietary restrictions. 

TEAC and FCR as parameters of plasma antioxidative capacity were not affected by beverage, 

time and interactions between beverage and time (table G.4.1) and AUC were not different (data 

not shown). TOSC values only decreased significantly over time after ingestion of sugar solution 

(p = 0.02), and reached lower values after 0.5, 1, 2, 3 and 6 h compared to baseline (all p-values 

< 0.05) (table G.4.1). The AUC of TOSC was higher after ingestion of juice compared to control 

beverage (266 ± 16 vs. 250 ± 11 %*h; p = 0.032).  
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TEAC (mM TE) FCR (mg CE/L) TOSCa 8-Iso-PGF2αααα (pg/mL) 

Juice Control Juice Control Juice Control Juice Control 

0 h 1.26 ± 0.13 1.21 ± 0.14 21.4 ± 4.0 22.3 ± 5.3 43.7 ± 3.2 44.2 ± 2.4 17.1 ± 8.2 18.7 ± 8.5 

0.5 h 1.25 ± 0.11 1.21 ± 0.14 21.0 ± 3.6 21.3 ± 4.4 43.6 ± 3.0 41.3 ± 3.5** 17.1 ± 5.3 15.4 ± 7.7 

1.0 h 1.29 ± 0.14 1.23 ± 0.14 20.8 ± 2.6 20.3 ± 3.5 44.9 ± 3.7 41.7 ± 3.1* 16.1 ± 10.0 18.3 ± 10.5 

1.5 h 1.25 ± 0.13 1.23 ± 0.14 21.5 ± 3.9 19.5 ± 2.8 46.0 ± 4.1 41.6 ± 2.6 19.0 ± 14.3 22.2 ± 12.8 

2.0 h 1.25 ± 0.15 1.23 ± 0.16 21.1 ± 2.9 21.3 ± 3.2 44.1 ± 4.7 41.6 ± 2.3* 15.2 ± 6.5 22.5 ± 15.5 

3.0 h 1.24 ± 0.12 1.22 ± 0.15 21.4 ± 3.1 21.8 ± 3.2 43.4 ± 3.0 41.6 ± 2.2** 17.7 ± 8.1 16.8 ± 10.3 

6.0 h 1.24 ± 0.13 1.24 ± 0.14 21.7 ± 3.1 22.1 ± 2.9 46.6 ± 4.2 41.6 ± 3.0** 17.7 ± 7.9 19.0 ± 12.1 

Table G.4.1. Plasma antioxidant capacity and 8-isoprostaglandine F2α before and after consumption of juice or 
control beverage. Data: Means ± SD, based on n = 12, except for TOSC (n = 9). CE, catechin equivalents; FCR, 
Folin-Ciocalteu reducing capacity; 8-Iso-PGF2α , 8-iso-prostaglandine F2α; TE, Trolox equivalents; TEAC, Trolox 
equivalent antioxidant capacity; TOSC: total oxidant scavenging capacity. aRepeated measures ANOVA showed 
significant interactions by time × beverage (p = 0.049) for TOSC. Separate analysis of the changes for juice and sugar 
solution indicated that changes were only significant after ingestion of sugar solution. Significant differences vs. 
baseline were analyzed with a paired t-test with * p < 0.05 and ** p < 0.01.   

 
Figure G.4.1. Concentration of ascorbic acid in plasma before and after 
ingestion of fruit juice and control beverage. Data: Means ± SD, based on n 
= 12. Filled circles: after ingestion of juice, open circles: after ingestion of 
control beverage. Letters indicate significant differences compared to 
baseline (ap < 0.001, bp < 0.011, paired t-test). Symbols indicate significant 
differences between the ingestion of juice and sugar solution (§p < 0.05; 
#p < 0.001, unpaired t-test). 

As shown in figure G.4.1, ascorbic acid concentration in plasma was dependent on interactions 

between beverage and time. Subsequent statistical analysis showed an impact of time on ascorbic 

acid for the ingestion of juice (p < 0.001) and sugar solution (p = 0.008): After juice intake, 

ascorbic acid concentration increased up to 117% (3 h vs. 0 h) and was significantly higher 

anytime (p < 0.001) compared to baseline. Three hours after ingestion of the sugar solution, 

ascorbic acid concentration was slightly (6.5%) higher compared with the initial value (p = 0.011) 

(figure G.4.1). As expected, the AUC of the ascorbic acid concentration in plasma was higher 
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after consumption of the test juice compared to control beverage (607 ± 115 vs. 351 ± 

68 µmol*h/L; p < 0.001).  

 

ββββ-Carotene (µmol/L) 
αααα-Tocopherol: 

cholesterol - ratio 
(µmol/mmol) 

Uric acid (µmol/L) 

      Juice    Control    Juice  Control    Juice    Control 

0 h 0.85 ± 0.52 0.84 ± 0.43 5.8 ± 1.7 5.3 ± 0.8 267 ± 51 265 ± 52 

0.5 h 0.80 ± 0.45 0.82 ± 0.46 5.6 ± 1.3 5.2 ± 0.7 272 ± 56 265 ± 53 

1.0 h 0.81 ± 0.48 0.83 ± 0.47 5.6 ± 0.8 5.3 ± 0.7 271 ± 53 266 ± 52 

1.5 h 0.81 ± 0.48 0.84 ± 0.49 5.4 ± 0.7 5.3 ± 0.8 268 ± 56 267 ± 53 

2.0 h 0.83 ± 0.46 0.82 ± 0.44 5.4 ± 0.9 5.3 ± 0.7 264 ± 57 262 ± 50 

3.0 h 0.82 ± 0.46 0.88 ± 0.48 5.5 ± 0.8 5.5 ± 0.7 265 ± 56 266 ± 56 

6.0 h 0.78 ± 0.46 0.83 ± 0.42 5.7 ± 0.9 5.3 ± 0.5 270 ± 55 258 ± 56 

Table G.4.2. Status of antioxidants in plasma before and after ingestion of juice or control 
beverage. Data: Means ± SD, based on n = 12. Repeated measures ANOVA did not show any 
effects by time and beverage alone, and not by interactions of time and beverage.   

The concentrations of β-carotene and of uric acid as well as the α-tocopherol-to-cholesterol-ratio 

were neither influenced by time and beverage alone nor by interactions with each other 

(table G.4.2).  

In plasma, additional substances with reducing capacity not present in the juice blend were 

detected after consumption of fruit juice (figure G.4.2/b) compared to baseline (figure 

G.4.2/a). These metabolites could not be measured before (figure G.4.2/c) or after 

consumption of sugar solution (figure G.4.2/d). Interestingly, retention times of these 

substances observed after juice consumption were different from those of known metabolites 

like protocatechuic acid, gallic acid, vanillic acid, ferulic acid, and caffeic acid (figure G.4.3).              

The beverage did neither affect 8-iso PGF2α (table G.4.1) nor SB in vivo and ex vivo 

(table G.4.3). Time had an impact on SB in vivo (table G.4.3), but did not modulate 8-iso 

PGF2α (table G.4.1) and SB ex vivo (table G.4.3). Differences between the AUC of 8-iso 

PGF2α, SB in vivo and ex vivo obtained after consumption of juice and sugar solution did not 

occur (data not shown). 
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Figure G.4.2. Representative chromatograms of plasma samples obtained from one participant 
analyzed by HPLC-CEAD. The plasma samples were obtained after an overnight fast, just 
before juice consumption (a), 1 h after juice consumption (b), after an overnight fast, just before 
ingestion of sugar solution (c), and 1 h after consumption of sugar solution (d). 

Retention time (min) 

Retention time (min) 

Retention time (min) 

Retention time (min) 
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Triglycerides concentration in serum increased after both interventions (p < 0.001) with a 

significant increase after 6 h after ingestion of juice (1.30 ± 0.60 vs. 0.86 ± 0.38 mmol/L; 

p = 0.002) and sugar solution (1.56 ± 0.67 vs. 0.94 ± 0.21 mmol/L; p = 0.004) compared to 

baseline. 

The order of the consumed study beverages did not affect any of the parameters investigated. 

 
DNA strand breaks in vivo (TM)a DNA strand breaks ex vivo (TM) 

Juice Control Juice Control 

0 h 14.4 ± 5.0 15.4 ± 5.7 -1.7 ± 4.7 -0.6 ± 3.8 

0.5 h 15.2 ± 5.5 14.4 ± 5.8 -0.3 ± 3.9 -0.6 ± 5.7 

6.0 h 22.4 ± 6.4 18.2 ± 7.3 -0.8 ± 3.5 1.4 ± 5.8 

Table G.4.3. DNA single strand breaks in vivo and ex vivo in peripheral leukocytes 
before and after ingestion of juice or control beverage. Data: Means ± SD, based on 
n = 12. TM: Tail moment. aEffects by time were only observed for DNA strand breaks 
in vivo (p < 0.001, repeated measures ANOVA). Interactions by time and beverage did 
not occur.  

 
Figure G.4.3. Chromatogram of phenolic acid standards analyzed by HPLC-CEAD. Peaks 
represent (1) gallic acid, (2) protocatechuic acid, (3) vanillic acid, (4) caffeic acid, and (5) 
ferulic acid.   

G.5 Discussion 

The primary goal of this study was to investigate if bolus consumption of a specifically designed 

fruit juice rich in anthocyanins and ascorbic acid increases plasma antioxidant capacity and 
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reduces markers of oxidative stress in healthy non-smokers. To answer these questions, a 

randomized controlled study with crossover design was performed to avoid between-subjects 

effects. A sugar solution with equimolar amounts of monosaccharides served as control drink to 

exclude antioxidant effects which may result from a fructose-mediated increase of uric acid. This 

study design should allow a reliable evaluation of fruit juice effects on the pro-/antioxidative 

balance.      

Despite an obvious increase of ascorbic acid (figure G.4.1) and other substances with reducing 

capacity in plasma (figure G.4.2/b), TEAC and FCR did not increase after juice ingestion 

(table G.4.1). TEAC and FCR are based on measurements of electron transfer (Prior et al., 2005). 

Ascorbic acid and, probably, the unknown substances function as hydrogen donators; this effect 

cannot be detected by these assays. Interestingly, TOSC, an assay detecting hydrogen transfer, 

decreased after the consumption of the control beverage (table G.4.1). This phenomenon may be 

due to the polyphenol-poor diet at the day before the study (Müller et al., 2010). Maintenance of 

TOSC levels after juice intake (table G.4.1) may be explained by the enhanced extracellular 

ascorbic acid levels.  

Before the intervention and after consumption of the control beverage, ascorbic acid levels were 

below the desirable steady-state concentrations in healthy adults (70-85 µmol/L) (Padayatty et al., 

2004), probably due to dietary restrictions. As expected, plasma concentrations of ascorbic acid 

temporarily increased after verum (figure G.4.1); the extent, however, was, relatively low 

considering the supraphysiological dose (> 900 mg/d) ingested. Reduced bioavailability at 

supraphysiological compared to physiological doses, but also exceeding the threshold plasma 

concentration for urinary excretion (55-60 µmol/L) (Levine et al. 1998) may explain this 

observation. 

The concentration of further exogenous antioxidants in plasma (β-carotene and α-tocopherol), 

which also contribute to plasma antioxidant capacity (Cao and Prior, 1998), did not change 

significantly (table G.4.3). β-Carotene is generally ingested with açaí (Schauss et al., 2006), camu 

camu (Zanatta and Mercadante, 2007) and blackberries (Marinova and Ribarova, 2007), but the 

dose in our study was obviously too low to increase the β-carotene level in plasma.  

It is known that anthocyanins consumed as food ingredients cannot or only in marginal 

concentrations be detected in plasma. One explanation may be the low stability of the flavylium 

cation under physiological pH conditions (McGhie and Walton, 2007). Moreover, anthocyanins 

are degraded to low-molecular phenolic acids by the micro flora of the gut as shown in vitro and in 

vivo (Williamson and Clifford, 2010). The recent study of Vitaglione et al. (2007) confirms that 
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protocatechuic acid detected in human plasma accounts for 73% of ingested cyanidin 3-O-

glucoside. To evaluate mucosal uptake of fruit juice polyphenol ingredients we, thus, evaluated 

plasma appearance of known low-molecular anthocyanin metabolites like protocatechuic acid, 

gallic acid, vanillic acid, caffeic acid, and ferulic acid with a newly developed highly sensitive 

HPLC technology (figure G.4.3). Most surprisingly, these metabolites could not be detected in 

plasma. Instead, several unknown metabolites with antioxidative properties occurred in plasma 

after juice consumption (figure G.4.2/b). Since we were not able to isolate these metabolites in 

quantitative amounts from plasma samples, the chemical structures are still unknown. Probably, 

phenolic acids are further degraded already in the gut and/or after mucosal uptake.     

Lipid peroxidation in vivo assessed by plasma 8-iso PGF2a did not change in our study. This 

observation is in contrast to results of recent bolus study: 2 h after ingestion of a cyanidin-rich 

juice blend with açaí as predominant ingredient, lipid peroxidation measured by thiobarbituric 

acid reactive substances (TBARS) decreased in healthy non-smokers (Jensen et al., 2008). 

However, TBARS are less specific for lipid peroxidation than isoprostanes (del Rio et al., 2002) 

analysed in our study. 

SB in vivo were only affected by time (p < 0.001) and not by beverage (table G.4.3). This fits to 

the results of an own previous study where only effects by time occurred after bolus ingestion of 

white tea, green tea and water (Müller et al., 2010). Time-dependent effects may simply reflect 

circadian rhythms. Contrary to SB in vivo, SB ex vivo were not modulated by time or beverage 

(table G.4.3). Comparable bolus studies with juices investigating SB ex vivo are not available, but 

white and green tea did not show any changes by time or beverage either (Müller et al., 2010). Cell 

based antioxidant capacity, determined in erythrocytes, increased after bolus consumption of an 

açaí-rich juice, probably due to an intracellular accumulation of antioxidants (Jensen et al., 2008), 

but did not change leukocytes’ resistance against challenge with reactive oxygen species ex vivo 

after single intake of açaí pulp or juice (Mertens-Talcott et al., 2008). Primarily, endogenous 

glutathione determines the protection against oxidative cell injury (Shan et al., 1990). It is to 

assume that the consumption of the exotic fruit juice did not influence glutathione levels. It 

should be, however, mentioned that the broad inter-individual variation of SB in vivo and against 

oxidative challenge ex vivo limits the power of the study considering these markers of DNA 

damage. 

In the present study, the time-dependent increase of triglycerides in serum may reflect 

postprandial changes induced by the standardized meals. Even if postprandial 

hypertriglyceridemia is suggested to trigger the increase in biomarkers of oxidative stress like 

malondialdehyde in healthy subjects (Bloomer et al., 2010), 8-iso PGF2α did not change 
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(table G.4.2). Thus, confounding effects on lipid peroxidation in vivo by triglycerides in the 

present study are unlikely.  

In conclusion, bolus ingestion of a blended juice of açaí, Andean blackberries and camu camu 

rich in ascorbic acid and anthocyanins only increased the concentration of plasma ascorbic acid 

and several unknown substances with reducing properties, but did not further improve the 

already stable pro-/antioxidative balance in healthy non-smokers. Product-specific preventive 

effects by consumption of these novel drinks can, thus, not be expected. It cannot be excluded 

that beneficial effects by this juice blend may rather occur in situations with increased oxidative 

challenge, e.g., smoking and physical activity.     
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H Occurence of phenolic acids in human blood plasma after fruit juice 
ingestion (manuscript not intended for publication) 

H.1 Introduction 

Phenolic compounds are widely distributed in plant-derived food and can be classified into two 

groups, the flavonoids and the non-flavonoids (Crozier et al., 2009). The flavonoid intake in 

Germany was estimated at 56 mg/day in a Bavarian subgroup of the national food consumption 

survey (Lineisen et al., 1997). The same collective was chosen to assess the intake of the non-

flavonoid phenolic acids. The amount was estimated at 222 mg/day of which the more 

abundant part was taken by the hydroxycinnamic acids (211 mg/day) on the contrary to the 

hydroxybenzoic acids (11 mg/day) (Radtke et al., 1997). Phenolic acids also comprised the 

dominant group of polyphenols (75% of the total phenolic intake) in a Finnish study that 

calculated the mean total intake at 863 ± 415 mg/day (Ovaskainen et al., 2008). 

Absorption of phenolic compounds from the small intestine is generally more efficient than 

from the colon and gives rise to higher plasma values (Hollman, 2004). Polyphenols that are 

absorbed from the small intestine, undergo several metabolization steps like deglycosylation, 

glucuronidation, sulfatation, and methylation during passage through the gut wall (Crozier et al., 

2009). Flavonoids that cannot be absorbed from the small intestine go further to the colon and 

will be microbially degraded (Hollman, 2004). Several reports are known on the breakdown of 

anthocyanins into corresponding phenolic acids that are derived from the B-ring of the 

anthocyanin skeleton (Fleschhut et al., 2006; Keppler and Humpf, 2005; Vitaglione et al., 2007).  

Absorption of free phenolic acids takes place in the small intestine. Uptake of hydroxycinnamic 

acids occurs putatively by sodium-glucose cotransporter (Clifford, 2000). In general, 

polyphenols have been attributed to be protective agents against degenerative diseases such as 

cancer, cardiovascular diseases and neurodegenerative disorders (Wang and Ho, 2009). 

Beneficial effects of phenolic acids are based on the inhibition of initiation and promotion 

during cancerogenesis (Watzl and Rechkemmer, 2001).  

The bioavailability of phenolic acids in human has been shown only in a few reports. Aim of 

the study was to prove the uptake of individual phenolic acids after ingestion of a tropical fruit 

juice and to evaluate their generation as metabolites from higher molecular flavonoids or 

conjugates.   
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H.2 Material and methods 

1. Chemicals 

Protocatechuic acid was obtained from Merck (Darmstadt, Germany), gallic acid, from Sigma-

Aldrich (Steinheim, Germany), caffeic acid and p-coumaric acid from Serva (Heidelberg, 

Germany). 

2. Plasma preparation 

A fruit juice blend (400 mL) consisting of açaí, Andean blackberries, and camu camu (in 

reference to manuscript chapter appendix G.3.1) was ingested by a voluntary healthy non-

smoker (30 years, 86 kg, BMI 22.5) after compliance with a 12 h overnight fast and a diet low in 

polyphenols the day before intervention. Blood samples were prepared for further analysis like 

described in manuscript chapters of appendix G.3.3 and G.3.5. Briefly, a solid phase extraction 

was performed to eliminate plasma proteins. The cartridge was loaded with plasma (450 µL) 

washed and eluated with a solution of methanol, acetonitrile and formic acid (50 + 49.9 + 0.1, 

v/v/v). The eluate was evaporated under nitrogen steam to dryness and solubilized with 50 µL 

of methanol, water and trifluoroacetic acid (20 + 79.9 + 0.1, v/v/v). 

3. Phenolic acid analysis 

Identification of phenolic acids was performed following an UPLC/DAD-ESI-MS/MS 

method. Analysis was carried out using a Waters Acquidity UPLC system (Waters, Milford, MA, 

USA) consisting of a SDS pump, an automated sample injector, and a PDA detector type 

UPLC LG 500 nm. Separation was performed by help of an analytical column Acquity HSS-T3 

(100 mm x 2.1 mm, 1.8 µm; Waters) kept at 40 °C. Solvents were UHQ water with 0.1% acetic 

acid (v/v) (mobile phase A) and acetonitrile with 0.1% acetic acid (v/v) (mobile phase B). The 

flow rate was 0.5 mL/min. The gradient started with 4% B and rose up to 25% B after 10 min. 

The column was flushed for 2 min at 98% B and re-equilibrated for 3 min with initial 

conditions. For analysis, 5 µL of each sample were injected. The UPLC was coupled with an 

electrospray ionization interface mass spectrometer model TQD supplied by Waters. Settings 

for the negative ionization with MS were as follows: capillary voltage -1.0 kV, cone voltage 

30 V, extractor voltage 2 V, RF voltage 1.1 V, collision energy 20 V, source temperature 150 °C, 

desolvation temperature 450 °C, cone gas (nitrogen) flow 50 L/hr, desolvation gas (nitrogen) 

flow 800 L/hr, collision gas (argon) flow 0.1 mL/min. Control of the whole system was 

performed by MassLynx 4.1 software.  

Detection was carried out using selected ion recording (SIR) and multiple reaction monitoring 

(MRM). Following mass traces were taken for SIR: caffeic acid m/z 179, p-coumaric acid m/z 
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163, gallic acid m/z 169, protocatechuic acid m/z 153. Measurements in MRM were performed 

by choosing the same mass traces and the corresponding mass trace after neutral loss of CO2 

for the particular compound. Target compounds were quantified by creation of calibration 

curves using authentic standard substances. 

H.3 Results and discussion 

The occurence of four phenolic acids after bolus ingestion of a tropical juice blend was 

investigated in this small scale intervention study by UPLC-ESI-MS/MS.  

 
Figure H.3.1. Retention behavior of four phenolic acids. Gallic acid 
(1), protocatechuic acid (2), caffeic acid (3), and p-coumaric acid (4) are 
detected by UPLC-ESI-MS/MS from a standard mixture according to 
their particular mass traces. 

A chromatogram of a standard mixture containing the target compounds is shown in 

figure H.3.1. According to their particular mass traces, the determined phenolic acids were 

detected in the juice blend (figure H.3.2) but only gallic acid (8.19 mg/serving), p-coumaric 

acid (0.4 mg/serving) and protocatechuic acid (1.48 mg/serving) could be quantified. The 

concentration of caffeic acid was below the level of quantification. Figure H.3.3 shows the 

results of the plasma determination. After a 12 h overnight fast, the presence of gallic acid and 

p-coumaric acid could not be constituted in the plasma sample that was withdrawn immediately 

before ingestion of the fruit juice. Surprisingly, caffeic acid and protocatechuic acid were 

detected despite the fasting condition of the participant. Probably, a longer period than a one-

day abstinence from polyphenol containing diet with subsequent overnight fasting is needed to 

assure a proper total clearance of these phenolics from the blood stream. Unfortunately, 

information on pharmacokinetic studies shedding light on the total clearance of phenolic acids 

is scarce. Caffeic acid was studied in rabbits by Uang et al. (1997). In this study, most of the 

unchanged caffeic acid was excreted in the urine within 2 h. An investigation in human showed 

that the maximal urinal excretion of cinnamic acid occurred in the first 4 h of a 48 h survey 
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(Clifford, 2000). Data about the pharmacokinetic of gallic acid and protocatechuic acid were not 

found. 

 
Figure H.3.2. Phenolic acids in a tropical fruit juice blend. Target compounds were detected by UPLC-ESI-
MS/MS according to their particular mass traces. 

Generally, compounds absorbed from the small intestine usually appear in the plasma in 

maximum concentration within less than 2.5 h (Williamson and Clifford, 2010). Hence, a 

further blood withdrawal was obtained 2 h after juice intake to proof the bioavailability of the 

determined phenolic acids.  

The presence of caffeic acid could only be tentatively constituted as the retention time in the 

plasma samples deviated from that of a standard compound. The untimely retention time might 

be caused by matrix effects of the sample or the presence of a caffeic acid isomer. However, the 

molecular ion [M–H]– at m/z 179 from SIR measurements and fragmentation pattern from 

MRM measurements were in accordance to that of an authentic caffeic acid standard. The 

concentration of caffeic acid before and after fruit juice ingestion could not be quantified, but 

the ion current at m/z 179 suggests a concentration decline after juice intake due to its lower 

intensity (from 3.00 * 105 to 2.10 * 105, figure H.3.2). This may be explained by an ongoing 

clearance of caffeic acid when compared to the fasting condition. Simultaneously, a negligible 

supply with free caffeic acid and its conjugates from the study drink as well as caffeic acid as a 

metabolite derived from higher polyphenols is obvious which would result in higher 

concentrations of free caffeic acid in the blood stream when compared to the fasting condition. 

The qualitative bioavailability of caffeic acid was mentioned in a previous study. This 

compound was not present in plasma prior to the intervention with red wine after a diet low in 
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polyphenols for 3 days. Plasma level rose to maximum concentration 60 min after wine 

consumption (Simonetti et al., 2001). 

A quantification of protocatechuic acid from the plasma samples could not be performed as it 

was below the limit of quantification. However, an unchanged concentration of protocatechuic 

acid in plasma before fruit juice ingestion compared to fasting condition can be assumed as the 

ion current at m/z 153 shows a similar intensity (4.80 * 103 before juice intake and 4.83 * 103 

after juice intake, figure H.3.2). A possible decrease of the concentration as it was observed for 

caffeic acid might be compensated by free protocatechuic acid provided by the juice itself. 

Furthermore, protocatechuic acid can also be derived as microbial degradation product of the 

gut flora from cyanidin-3-O-glucoside (Vitaglione et al., 2007), which is provided as ingredient 

by all fruits present in the juice (Lichtenthäler et al., 2005; Mertz et al., 2007; Rodrigues and 

Marx, 2006). Results from a bioavailability study, in which participants obtained a moderate 

amount of berries over 8 weeks, showed an increase of protocatechuic acid in plasma. The 

increase accounted for 21% in the berry group compared to the control group (Koli et al., 2010). 

Gallic acid showed the highest concentration (120.36 µmol/L) of the target compounds in our 

study drink. The concentration after ingestion of the study drink in plasma was 5.88 µmol/L. 

Free gallic acid was previously reported to be well absorbed compared to other polyphenols 

(Manach et al., 2005), what is in agreement with our findings. As shown in a bioavailability study 

in healthy humans, peak plasma levels of gallic acid were reached after 1.3 h and 1.4 h 

subsequent to administration as tablets and as black tea drink, respectively. An oral dose 

consisting of 50 mg gallic acid gave rise to plasma concentrations of 1.83 µmol/L for the tablets 

and 2.09 µmol/L for the tea (Shahrzad et al., 2001).  

The most interesting aspect of this study is the occurence of a p-coumaric acid isomer in the 

plasma after fruit juice ingestion. The presence of p-coumaric acid could not be constituted as 

the retention time of the compound found in the plasma is not in accordance to that of a p-

coumaric acid standard. Thus, matrix effects may affect the detection of p-coumaric acid or the 

presence of isomers is possible as ion currents from SIR and MRM measurements of the 

compound found in the plasma are in accordance to that of a p-coumaric acid standard. The 

concentration of the p-coumaric acid isomer in the plasma after fruit juice intake is 

0.13 µmol/L. If this compound were not derived in its free form from the fruit juice, it might 

be seen as a metabolite from other polyphenols. The mass trace of p-coumaric acid shown in 

figure H.3.2 suggests that p-coumaric acid and possible isomers may be preferably present as 

conjugates in the fruit juice assuming the formation of a daughter ion at m/z 163 as a fragment 

from its conjugates during ionization. As stated by Clifford et al. (2000) conjugates of phenolic 
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acids are not absorbed as such, but they are cleaved by esterases of the gut flora prior to 

absorption. A study in rats also constituted the occurrence of p-coumaric acid as a metabolite 

from conjugated derivatives (Gonthier et al., 2003). Furthermore, p-coumaric acid was found to 

be a metabolite of other polyphenolic compounds like rosmarinic acid (Baba et al., 2005) and 

chlorogenic acid (Monteiro et al., 2007) in human. As a consequence of the monohydroxylation 

on the B-ring, p-coumaric acid is reported to be less susceptible to glucuronidation than other 

polyphenols. Thus, the aglycone occurs in relatively high amounts in plasma after intestinal 

absorption (Spencer et al., 1999). 

 

Figure H.3.3. Bioavailability of phenolic acids. Mass traces of the four target compounds in plasma are shown 
immediately before (left) and 2 h after ingestion of a tropical fruit juice. 

Conclusively, the bioavailability of in total four phenolic acids after fruit juice ingestion was 

estimated in this study. As the presence of a caffeic acid isomer and protocatechuic acid was 

already constituted in the plasma in fasting condition of the subject, their bioavailability could 

not be assessed. The bioavailability of gallic acid from the fruit juice was calculated. A p-

coumaric acid isomer turned out to be a metabolite of other phenolic compounds from the 

juice drink. 
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