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We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time.

T.S. Eliot, Little Gidding
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Chapter 1

Motivation & Overview

The physical understanding of the Universe has greatly advanaatydhe last century as a
result of joint development of theory and observation. Landmark aehients include the first self-
consistent model of the Universe as a whole (Einstein 1917), the sthwdad models of General
Relativity (Friedman 1922; Lenitae 1927), the discovery of the recession of the nearby galaxies
(Hubble 1929), the derivation of the Robertson-Walker metric (Robet885; Walker 1937), the
measurement of the rotation curves of spiral galaxies (see Rubin et8a) 48d the mass-to-light
ratio of the Coma cluster (Zwicky 1937), the development of the Big Bangyraal nucleosynthe-
sis (Gamow 1946; Alpher et al. 1948; Alpher & Herman 1948, 1950), ibeodery of the Cosmic
Microwave Background (Penzias & Wilson 1965), the discovery of theyé-Scale Structure (e.g.
Davis et al. 1982), the discovery of the accelerating expansion of thetde (Riess et al. 1998),
and many others. All these discoveries point to a consistent paradignxpanding Universe de-
scribed in the framework of General Relativity which is dominated by col@é daatter and dark
energy in terms of energy. This paradigm, summarized as the Lambda-Cddviager (ACDM)
model, has a set of free parameters which can be determined from cosrablugservations. So
far the diferent observations show a remarkable consistency in their determiredeiaer values.

Despite its empirical success, th&DM model is still not complete in the theoretical sense.
The two exotic components it assumes, namely dark matter and dark energpt get explained
by our current knowledge of fundamental physics. The dark matteavestike common baryonic
matter in gravitational interaction, but cannot emit any electromagnetic radidti@nobservational
fact that galaxies form before structures of larger physical scalasiats the dark matter to be
‘cold’, i.e. with a thermal velocity much less than the speed of light. Theoretitaie are massive
elementary particles which are considered candidates of the cold dark,rbattédrey are not yet
detected experimentally. The dark energy, which is required to explainttéin@e acceleration of
the expansion of the Universe, is even less understood. In partichés & negative pressure, which
poses a conceptual problem for our understanding.

One possible explanation for dark energy is Einstein’s cosmologicatamnsMany exotic
forms of matter, e.g. the quintessence, have also been proposed aséayk candidates. In either
case the picture is far from complete. Moreover, the theory of Genetatity, which most of the
current explanations are based on, may fail at cosmic scales. This sitoakes the study of the
nature of dark energy one of the most important problems in cosmologyewvardin all physical
science.

Due to a lack of compelling theoretical clues, observational studies ofedeny are especially
valuable. It is expected that the question if and how dark energy evelithstime will play a
decisive role in judging the possible explanations. To reach this ansmeeneeds to determine the
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CHAPTER 1. MOTIVATION & OVERVIEW

cosmological parameters and their time evolution to percent level accuraggmhigher precision.

The current values of the cosmological parameters are mainly constiairibd observation of
the Cosmic Microwave Background (CMB), aided by the Hubble parametasuned in the local
Universet. Other observations, such as that of the Large-Scale Structure,(Ti§8)la supernovae,
the Lyman-alpha forest, and weak gravitational lensifigats, are needed to improve the precision
of the parameter determination. Particularly, each of these observatitewtseliterent physical
processes and thus is sensitive tfiedient combinations of cosmological parameters. It is therefore
essential to combine them to check the consistency as well as to brealedezies among fferent
parameters.

Concerning the constraint of the time evolution of dark energy, fourreagenal techniques are
considered the most promising. They are the Baryon Acoustic Oscillatioith\ahe observed in
surveys of the spatial distribution of galaxies, galaxy cluster survaygegs of Type la supernovae,
and weak lensing surveys (Albrecht et al. 2006). These obserahtiechniques can all probe the
time evolution of dark energy through the expansion history of the Urévekslditionally, galaxy
cluster surveys and weak lensing surveys also provide informationghritne history of structure
formation.

This thesis is concerned with the weak lensiffig&, which is considered to be potentially the
most powerful one among all dark energy probes. In a weak lensivgysone uses the gravita-
tional shear, which is the coherent shape distortion of galaxies, as $kevable &ect to probe the
statistical properties of the underlying matter density field. The forthcomigg-#eld multicolor
imaging surveys (e.g. DESKIDS®, EUCLID#, etc) will obtain photometric redshift and shape
information of a huge number of galaxies. This will render weak lensing laehigtatistical power
compared to other probes. Such constraining power can be furthenesdhby the use of higher-
order statistics. The higher-order statistics, contrary to the secord-{&nb-point) ones, can probe
non-Gaussian signatures in the matter density field, and thus are ngdes$ato fully exploit the
wealth of information on small, non-linear scales. Our work focuses on teskorder of them —
the third-order (three-point) statistics.

The performance of weak lensing surveys depends critically on theotofisystematic errors.
The major sources of systematics lie in the measurement process, specifiggdhaxy shape mea-
surement and the determination of the galaxy redshifts. In addition to thers, dhesystematics
originating from astrophysical processes, the most worrisome oneroflteeng the intrinsic-shear
alignment é&ect. How much weak lensing surveys afteated by these systematics, and how well
the systematics can be controlled, is still uncertain to a large extent. This siteatjgmasizes the
importance of studying the systematic errors on one hand, and on the atltbmiakes it a necessity
to perform systematics checks on the lensing signal. The latter can beddajlideing an FB-mode
decomposition, namely separating the lensing signal into an electric field-liked& component,
and a magnetic field-like B-mode component. Since the physical lensing $igaainly E-mode
components to the first order while most of the systemdtects do not make this distinction, pos-
sible B-mode components in the data provide a valuable check on the leystefstics.

To compare the three-point (3-pt) statistics estimated from a weak lensimgysiar that pre-
dicted by theory, an unavoidable step is to relate the shear 3-pt statistics td tha underlying
matter density field. The currently available approach uses the relationdsetive Fourier space
3-pt statistics for the matter density field and the configuration space sipeataistics which can

1The Hubble Space Telescope Key Project, jiitpvw.ipac.caltech.egiOkp
2http://www. darkenergysurvey.org/
Shttp://www.astro-wise.org/projects/KIDS/
“http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102
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be directly measured from a survey catalog. This theoretical relatione\ewcontains very os-
cillatory functions and is thus hard to handle numerically. Therefore, itligfiieto relate the two
directly in configuration space, where the corresponding functionexarected to be smooth.

The work in this thesis is committed to these four questions concerning weakgehpt statis-
tics:

e How much information is contained in weak lensing 3-pt statistics?

How to relate the 3-pt shear observables to the configuration space statfgtie underlying
matter density field?

How to perform an [B-mode decomposition for weak lensing 3-pt statistics?

How to deal with the intrinsic-shear alignments for weak lensing 3-pt statistics?

After introducing the theoretical background in Chap. 2 and Chap. 3lesige some fundamental
relations between weak lensing 3-pt statistics, including those relating the @bgervables to the
configuration space statistics of the underlying matter density field in ChafpheseTrelations also
allow us to formulate the condition of/B-mode decomposition at the 3-pt level. In Chap. 5 we use
a more rigorous approach than Hu (2000) to derive an expressidhdaovariance matrix of the
bispectrum, the Fourier counterpart of the 3-pt correlation functiors gitesents a theoretical way
of quantifying the information content in lensing 3-pt statistics. In Chap. §everalize the nulling
technique, a method to control the intrinsic-shear alignment, to the 3-pt lemkthareby provide
the first method to control the corresponding 3-pt systematics. A summéng afork presented in
this thesis together with suggestions for possible future research isigiGrap.7.
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Chapter 2

The cosmological standard model and
the large-scale structure

During the past decades, a physical view of the Cosmos summarized/eSEid model, often
called the “standard model” as well, has been developed and widely ad@ptiee modern picture
of the Cosmos. This model consistently explains the expansion of the Sejvéite formation
and growth of structure in the Universe, the existence and anisotropike €osmic Microwave
Background, as well as the abundances of chemical elements. In tipteckha will explain the
relevant theoretical knowledge in the standard model, on which this theséséslb For a more
detailed view of the model we refer to Peacock (1999), Bernardealu @082b), and Dodelson
(2003).

2.1 The homogeneous and isotropic Universe

2.1.1 Friedmann world model

Considering how the Universe evolves dynamically as a whole, one cérsttorder, simplify
it as a homogeneous and isotropic medium of matter and energy. On the arigethe dominating
source of interaction in the Universe at large scales is gravitation, dueltmgsrange and non-
cancelling property. These together explain the two theoretical pillars afa$mological standard
model: the cosmological principle which assumes that the Universe is hoemgeand isotropic
on large scales, and Einstein's General Relativity (GR) as the theonawaitagion.

The cosmological principle corresponds to a point of view that our @htienal location in the
Universe is in no way unique or special. During the 1920s and 19308 thleetheoretical founda-
tions of the standard cosmological model were developed, observatiomaledge of the Universe
was also exploding: the extragalactic nature of spiral nebulae had btailished (1920s), basic
types of galaxies were classified (Hubble, 1926), and the velocity-distatation for nearby galax-
ies was determined for the first time (Hubble, 1929). These observatippsied the philosophy
of the cosmological principle, however they did not provide direct eviddor large-scale homo-
geneity and isotropy. Nowadays large galaxy redshift surveys (eegSltan Digital Sky Survey
and the 2dF Galaxy Redshift Suré@and the mapping of the Cosmic Microwave Background (e.g.

Ihttpy/www.sdss.org
httpy/www2.aa0.gov.ai2dfgrs
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the Wilkinson Microwave Anisotropy ProBphave probed unprecedentedly large volumes of the
Universe. Their results suggest that the Universe is indeed homaogeaed isotropic on scales
larger than~200 Mpc, and thus strongly support the idea of the cosmological principle.

In General Relativity, gravity is regarded as a geometric property afespad time, ospace-
time, which is mathematically represented by a{3-dimensional Riemannian manifold. The
spacetime gets distorted in the presence of matter according to the Einsteinqdiatibe of General
Relativity, which reads
%Tyv. (2.1)
The left hand side of the equation, wiB), being the Einstein Tensor ardthe cosmological con-
stant, describes the geometry of the spacetime. It is a non-linear functtbe ofetricg,, and its
first and second derivatives. The right-hand side of the equatiarides the matter distribution,
with T,, being the energy-momentum tensor. The high degree of non-linearity is tloe chal-
lenge in solving the Einstein field equation. Simplifying assumptions are oftesireeq e.g. the
cosmological principle in the case of cosmology.

The cosmological principle, i.e. the assumption of homogeneity and isotrofargas scales,
simplifies both sides of the Einstein field equation. Under this assumption, the gaetrie written
in the form of the Robertson-Walker metric,

ds® := g, dx‘dx”
= cdt? - a%(t) [dy® + f2(x) (d6® + sirPe d?)] ,

where the expansion of the Universe has been accounted for by shdccecale factoa(t). The
comoving distancg between comoving objects, i.e. objects whose movements are caused only by
the expansion of the Universe, does not change over time. The conanvgudar diameter distance

fk (v), which is the radial comoving distance corresponding to a solid :{dg@ek sirnfe dgoz), takes

the form

Gy +AQy=-

2.2)

K=1/2sin(KY2y) (K > 0)
fk(x) = { X (K=0) (2.3)
(=K)Y2sinh[(-K)Y/2y] (K < 0).

One can see that when the curvature signafugguals zero, the comoving angular diameter distance
fk () is additive, suggesting that the Universe is Euclidean. WKen 0 (K < 0), fx(y) takes a
trigonometric (hyperbolic) form, corresponding to a closed (open) éiag.

On the other hand, the cosmological principle implies that the matter content imibherte can
be described, to first order, by a uniform ideal fluid whose denpsityd pressur® depends only on
time. Thus the energy-momentum tensor can be reduced to

P
T/lV = (p+ g) UMUV_g,uvP, (24)
whereU, is the four-velocity.
Inserting (2.2) and (2.4) into the Einstein field equation (2.1), one can othtaikriedmann
equations
(é)z_% 0 K, A
al T 3P T 2n "3

a__ 4G 3pM) , A
a 3 (p(t)+ @ )+3’

>

(2.5)

3httpy/map.gsfc.nasa.gov



The homogeneous and isotropic Universe

which gives a description of the average dynamical behavior of theetsgv The next step is to
specify the r.h.s. of (2.5) with the knowledge of the engmggtter content of the Universe.

The cosmological constat was originally added by Einstein to the field equation (2.1) as a
geometric term in order to allow a static universe as well as eliminating the praifl®@oundary
conditions at infinity. As Einstein later put it himself, it is ‘not justified by outusd knowledge
of gravitation’ but merely ‘logically consistent’, and ‘detracts from theriat beauty of the theory’
(Longair 2006).

In the current framework of cosmology, it is more common to consid@s an energy com-
ponent with density, = Ac?/81G and pressur®, = —pac?. This so-calleddark energyis one
of the most important energy contributions to our Universe, along with a n@teponenp,, and
a radiation component;,. The matter component includes the familiar baryonic matter as well as
a dark matter component whose existence is inferred through its gravitdtiteraction with the
visible matter. Sometimes these two components are listed separatglp@dopy. The radiation
component is dominated by photons, but generally speaking it contaimsadiVistic particles.

The evolution of the density of these components as the Universe expamte studied by the
adiabatic equation

d(a%c?) gad
T + PE = O, (26)

which can be derived from (2.5). Characterizing each component byutation of state
P = WeosC?, (2.7)
and making the ansatre a", one obtains from (2.6)
p(@) = po & MeostD) (2.8)

where ‘0’ denotes the value in the present time, and the scale factor fprekent Universe has
been specified to be 1.

The matter component has zero pressure wgs = 0. According to (2.8), its density evolves
aspm o« a~3. The radiation component hagos = 1/3 and thus evolves g§ « a*. The dark
energy, if it is taken to be the cosmological constant withs = —1, then its densityge Stays
constant as the Universe expands. In a wider sense, the name falagy’eis used to denote the
dominant repulsive component at the present time which is required bypHesvation of the recent
accelerated expansion of the spacetime. In this sensethef dark energy is only required to
be smaller thar-1/3 at the present time according to (2.5), and can in principle vary with time. A
frequently adopted parametrization of the dark enevgytis Weos = Wo + (1 — @)w;, (e.9. Esposito-
Farkse & Polarski 2001; Linder 2003; Albrecht et al. 2006). Obviouslyg,cosmological constant
corresponds tay = —1 andw, = 0.

With these we can write the Friedmann equation as

2)2 817G
(5) = H@) = = [pmo @ + pro @ + paeo @ oA _Ka?| . (2.9)

in which we have defined the Hubble parameéfet a/a, which describes the expansion rate of the
Universe.
In order to non-dimensionalize this equation, we define a critical density

3H?(a)
8rG

per(d) = (2.10)
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which is the total density the Universe has in order to be spatially flat, i.e.Kvit0. Then we can
define dimensionless density parameters

Q= Pxo _ 87Gpx0

= = , 2.11
per(@o) 3H§ ( )

wherex could be m (matter), b (baryon), DM (dark matter), r (radiation), delk(@aergy), or total
(matter plus dark energy plus radiation). The curvature term could alaitten in terms of these
density parameters by lettirg= 1 in (2.9), as

Kc? = H3(Qrota — 1) - (2.12)
Substituting (2.10), (2.11), and (2.12) into (2.9), we obtain
H?(a) = H2 [Qma—3 +Qat + (- Quora)a ™ + Qdea-3[Wo+(1—a)Wa+11] . (2.13)

With this equation we have described the expansion of the Universe astefuof a few quantities
(theQ’s andHyp), the values of which can be considered as free parameters in a cograbingdel.

We can also see from (2.13) that the early expansion history of the tdriveas dominated by
radiation. The transition from radiation to matter dominance happens at

Beq = £ L 3x10*, (2.14)
Qm

After that the expansion was matter-dominated. Only very receatlyX) dark energy became the
dominating enery component of the Universe and began to play a major tble é@xpansion of the
Universe.

2.1.2 Cosmological redshift and distances

In a Euclidean space there exists a unique way to specify a ‘distancesdetuwo objects, but
this is not the case for an expanding spacetime as our Universe. Iraguekpanding universe,
the distance between objects with a fixed comoving separation is constantlyifpa \When we
observe a distant object, we look both out in distance and back in time. Thadsiocommon ways
of measuring the distance of a light source, namely comparing the measigiedtaubtends to its
intrinsic size and comparing the measured flux to its intrinsic luminosity, giverdnt results in an
expanding universe. Nevertheless they remain important distance m&aBafore explaining them
in detail we need to introduce the concept of redshift.

Cosmological redshift

The redshiftz of a photon describes the change in its wavelengihith respect to the rest frame

wavelengthp when it was emitted,
-2
Z:= 0 (2.15)
Ao
In our Universe, all photons are subjected to a redshift caused bgxgrension of the spacetime,
called the cosmological redshift. Quantatively, as light travels along nodegics, i.e. & = 0, for

themc?dt? = a?(t)dy?, which gives

dt  dy
Ao (2.16)

8



The homogeneous and isotropic Universe

where the minus sign on the r.h.s. is taken to indicate that the light is travelingdsywarO.

Now consider a comoving light source emitting a photon with rest-frame fregue at timetg
and comoving distancgy, and the photon is observedtatindy; with frequency; by a comoving
observer. Since the comoving distance between the light source andstrwerb

L (2.17)
Xo—x1=C f Y .
to a(t)
is a constant regardless of when the photon was emitted, one reachestite r
dt dt
0 - 1 (2.18)

a(to)  a(ty)
by taking the derivative of (2.17) with respectttowhile keepingt; — tg fixed.

Equation (2.18) can be seen as an expression of the time dilatiaigbetween two comoving
observers afy andty, respectively. The time-dilationffects the wavelength of the photon as well,

dy  a(ty)) A1

dto  alt) o
Thus we obtain the relation between the redshift of photons caused bypheston of the Universe
and the scale factor of the Universe. In the standard model, the Uaikassalways been expanding,
therefore the higher the redshift, the earlier the photon was emitted. Thisahaewse of redshift
itself as an indicator of time and distance of the light source.

=1+2z7. (219)

Horizon

The horizon sizey, is defined to be the comoving size of the observable Universe. Légting
the age of the Universe, and using (2.1@)¢can be expressed as

bedt (a0 cda
rh(to)=f0 @:j; 2hH@ (2.20)

Expectedlyr, depends on the expansion history of the Universe. Since the speebta$lajso the
upper limit of signal transmission speed, the horizon size is also the size mglom with causal
connections.

Angular diameter distance

The angular diameter distanBgngis of great importance for this thesis. Suppose a source with
a redshift ofz has an intrinsic transverse siReand is observed to have an angular diameter (@f
radians), its angular diameter distance is defined to be

Dang?) = = = ) fx (1 (2), (2.21)

wherey(2) is the comoving distance of the sourdg, is the comoving angular diameter distance
whose form is given in (2.3). The second equation in (2.21) follows fileenmetric (2.2). With a
description of the expansion of the Universe (2.13), we can speciffutiaional form ofy(2), or
more generally, the comoving distance between sources at fieoadit redshifts

x(21, ) = £ fa(21) {Qr +aQm + a’ (1 - Qotal) + a—?’[WOJr(1_&1)\,\,—”&1]+49de}_l/2 da
’ Ho Jaw) (2.22)

=x(22) - x(z1).-
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For a spatially flat universeK( = 0), the comoving angular diameter distanigdy) equals the
comoving distancg and is additive. However, this is not true for the angular diameter dis@gge
itself. According to the original definition, the angular diameter distance otiecs at redshift, as
seen by an observerat< z is

Dandzl, 22) = a(Zz) fK [/\/(Zl, 22)] . (223)

Another special property of angular diameter distance is that it doesaretise monotonously
with increasing redshift. In a standand"DM cosmology it turns over at a redshift around unity,
which means more distant objects actually appear larger in angular size.

Luminosity distance

The luminosity distanc®)y, is obtained by relating the bolometric flusgo Of a source ak
observed ar; < 2 to its intrinsic bolometric luminosity.,

L
) Y 2.24
um(z1, 22) AFpoi(za, 22) | )

The surface brightness of the source at; is related to its intrinsic bolometric luminosityas

L

whereR s the transverse size of the source, same as in (2.21). The bolometiig§|wf the source
observed at; is related to the surface brightness of the sourag, ats

1 +2z)* (62, 22)\°
(1 + 22)4 ( 2 ) ’

Fboil(z1,22) = S (2.26)

wheres is the angular diameter (in radians) of the sourca atbserved at;, and we have used the
fact that the surface brightneS=f a receding light source is reduced by a factor g1, Inserting
(2.25) and (2.26) into (2.24), we obtain the relation betwBgm andDang (See e.g. Hogg 1999)

1+ R (1+2)?
1+2)2 6 (L+2z)?

1+2
(1+ z1)?

Dium(z1, 22) = Dandz1, 22) = f [x(z1. 22)] . (2.27)

2.2 Formation of the large scale structure

In contrast to the homogeneity on large scales, the Universe we olisdayehas an abundance
of structures on smaller scales. Fig. 2.1 presents the distribution of abbgalaxies observed in
the local Universe. One can clearly see in it clusters of galaxies, filanaedtyoids, which are
the principal elements of the LSS. According to the standard cosmologiEahiso, the Universe
began in a much more homogeneous state, and these structures we thdayvare formed via
the amplification of primordial quantum fluctuations by gravitational instabilite @g. Peebles
1980). Observational support for this include the temperature fluctsatibthe CMB which are
found to be five orders of magnitude smaller than the mean temperaturessnggehigh degree
of homogeneity at the epoch CMB photons were emitied (1100). Additionally, from various
observations of the Universe at redshift of order unity, e.g. thogalakies, galaxy clusters and the
Lyman-alpha forest, one can see a distinct growth of structures toveavds redshift.

10
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704

2dF Galaxy Redshift Survey ®

Figure 2.1: Projected distribution of galaxies within two surveyed patchdseabbservable Uni-
verse. The distribution of galaxies reflect indirectly the distribution of thi& deatter. The Earth is
at the center of the image. Credit: 2dF team

The process of structure formation is sensitive to the evolution of spacétirie,not considered
to have a substantial back-reaction on it. The latter is instead driven bynitfoern mean field, as
described in the previous chapter. Consequently, the structure fornpatioess can act as a probe
of the uniform mean field which can be parametrized by a couple of cosmalqgicameters.

In this section we consider the formation and evolution of structures undeityy The dark
matter plays a dominant role in this process and is therefore our major odmeer.

2.2.1 Vlasov equation

Two physical scales are of great importance in the theory of cosmic steuciimation. One
is the horizon sizep, which confines the region with possible casual interaction. Fluctuations with
sizer > rp have to be studied in the framework of General Relativity. The other pllysoale
deals with the amplitude of the fluctuations. When the amplitude of the fluctuaticas®edftain
size is much smaller than that of the mean field, perturbative methods candandséhe density
inhomogeneities are well described by linedfatiential equations. However, below a certain scale
called the non-linear scalg,, the linear approximation breaks down. At scales witk ry, no
precise analytical method exists and the growth of fluctuations as well assthbution of matter
are usually studied with simulations.

We will focus first on perturbations that are well in between these twoschiehis case, New-
tonian gravitational interaction and linear perturbation theory hold to be gpptbximations, and
the evolution of dark matter phase-space denfdityu, t) can be described by the Vlasov equation:

df of +u6f v of

a =t Ve T V%%
Here,r andu are the physical position and velocity, ands the Newtonian potential given by the
modified Poisson equation:

=0. (2.28)

11
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V2¢(r,t) = 47rGfd3u mf(r,u,t) — A. (2.29)

The first term in (2.29), witmindicating the mass of the matter particle, is the self-gravitation term.
The second term is the acceleration provided by the cosmological constede form is chosen
to be consistent with the Friedmann equation (2.5). In this form of the Poisgatien we have
assumed the dynamicafect of radiation to be negligible. This is valid after the Universe switched
from radiation-dominated to matter-dominated at redshift= agé -1~ 3300. We will discuss the
situation in the radiation dominated era separately.

The Vlasov equation is also called the collisionless Boltzmann equation, whighBottzmann
equation without the collision term. It conserves the phase-space dehdégkamatter.

2.2.2 Ideal fluid approximation

Due to the complicated non-linear structure and the high dimensionality of thewwéaiation,
it not only hinters analytical solutions but is also hard to analyze numericsdly further simplifi-
cation, we treat the matter as an ideal fluid with zero pressure. This fluidxdpyation is valid for
the scales we are focusing on. However, since dark matter is collisioasdsius allowing multi-
ple streams instead of a well-defined velocity fie(d), this simplification is sure to break down at
non-linear scales with < r, where multiple streams become important.

With the fluid approximation one considers the zeroth and the first momentum rteoiehe
phase space distributidr{r, u, t). The zeroth order moment gives the local mass densitydieddd
the first moment normalized by the zeroth moment yields the velocity of theulow

fd3u mf(r,u,t) =: p(r,1), (2.30)

[ dPumuf(r,u,1) i 5 a1
[devmf(r,ut) u(r.1). (2:31)

Taking the zeroth and first momentum moment of the Vlasov equation (2.28naeading the
definitions (2.30) and (2.31), one obtains

g_ft’ + V(o) =0 Continuity equation (2.32)
ou _ .
a_‘: +(@- V)T = -V Euler equation (2.33)

The Poisson equation now reads
V2p(r,t) = 47Gp — A (2.34)

As one can see, they are just the equations for an ideal fluid of zessysee There exists no general
analytic solution to this set of equations. Nevertheless several perugrbathniques are available
(see e.g. Zel'Dovich 1970; Bernardeau et al. 2002b; Szapudi &&K2i303; Crocce & Scoccimarro
2006) which allow an analytic treatment in the linear and weakly non-linear regirkiere we
introduce the Eularian perturbation technique.

12
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2.2.3 Density contrast and peculiar velocity field

To study the growth of inhomogeneities in the Universe, we subtract the fieéhrand consider
small perturbations to the density and velocity fields. We do so in the comovorginatesx =
r/a(t):

r

p(1.1) =ﬁ(@,t) ) =+ P . (2.35)

u(r, t) = G( ) =U(x,t) = ax + v(x, t), (2.36)

' t
a(t)’
wherep denotes the mean density of the matter component in the Unierse tHe Hubble flow,
andyv is the peculiar velocity. According to the previous chapter, we have

] 3H2Q

-3 0==m
o(a) = pmod™™> = ) 2.37
@ 0 8rGad ( )

We further define two useful quantities, the density contfeestd the comoving gravitational
potential®:

s(x.1) = 20 (2.38)
0

D(x,1) 1= ¢ (ax,t) + %a|x|2. (2.39)

Putting all these into the set of fluid equations (2.32)-(2.34) and making ube éfriedmann
equations (2.5), we obtain the set of dynamical equations which goveavahaion of the density
contrast and the peculiar velocity field:

a5 1
StV [+ oM =0, (2.40)
ov a 1 1
E + 5V+ 5 (V’ Vx)v = _aVX(Da (241)
3H2Q,
V2p = — 2 5, 2.42
2 A (2.42)

The peculiar velocity field is a vector field, which can be fully described jivsrgencevy-v =:
0 and its vorticityV x v =: w. Since the source term of (2.41) is a gradient, one can easily see that
the equation of motion fow does not have a source, and that in the linear regindecays away
as the Universe expands. So we will focus on the evolution of the derwityasts and velocity
divergence.

2.2.4 Eularian perturbation theory

According to the idea of perturbation theory, we wétandod as

601 = ) oP(x.0. ox.0 = Y 60(x.), (2.43)
n=1 n=1
wheres®) andd) are linear in the initial density field® and6® are quadratic, and so on.
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CHAPTER 2. THE COSMOLOGICAL STANDARD MODEL AND THE LARGE-SALE
STRUCTURE

Linear growth

Linearizing (2.40) and (2.41), then combining (2.40)-(2.42) and eliminadingse obtain a
second-order linear flerential equation for the linear density contraf&t:

. 2
%W 2060 3HeOlm ;)

oz T a ot 233

This equation does not contain derivatives with respect to spatial ioabedx, nor doesx appear
explicitly in the equation. Thus one can separate thed x dependence in the solution, and write it
in a general form

0. (2.44)

sM(x,1) = D, ()AL (X) + D_(H)A_(X), (2.45)

with D.(t) being the two linearly independent solutions of

. 2a. 3H2Q

o iy W
a 2a3

One solution of it is found to be the Hubble parametét). In a matter-dominated expanding
universe H(t) decreases with time and thus represents a decreasing solution whicloege ¢b be

D_. Since we are interested in the growth of structure, the growing solDtiaa of greater concern.
It can be constructed with the aid of the form@f, and is found to be

D=0. (2.46)

t ’
D.,(t) & H(t)H2 fo m (2.47)

This functionD, is called thegrowth factor According to (2.45), it describes the linear growth of
the density contrast. It is usually normalizeddo(tg) = 1, i.e. it has value unity at the present time.
An exact scalingd>. (t) = a(t) is found for an Einstein-de-Sitter (EdS) Universiga = Qm =

1). In general, finding the form dd, (t) requires numerical integration.

Transfer function

So far we have dealt only with the growth of subhorizon matter perturbattbes the Universe
is not dominated by radiation. For superhorizon perturbations, the Newtongariggon breaks
down. A generalized treatment (see e.g. Dodelson 2003) shows thagrheyass o« a2 in the
radiation-dominated era, arfdec a in the matter-dominated era. On the other hand, sub-horizon
matter perturbations cease to grow in the radiation-dominated era due to fresgipn by the
radiation-dominated expansion of the Universe.

Generally speaking, perturbations oftdrent comoving sizek grow differently depending on
when they enter the horizon. We denote the scale factor at horizon entss&@ne(L). To put
it more correctly,aqnie(L) is the scale factor when the horizon sizeexpands to the size of the
perturbatiorL

(@ente) = L. (2.48)

The growth of small-scale perturbations which enter the horizon beforemdattgnation are sup-
pressed compared to perturbations of larger scales, as depicted inZ-ig. 2

Besides the diierent horizon-entry time, there exist several otlegats that can break the scale-
independence in the linear growth of the structure. For example, in catiiberse is dominated
by hot dark matter (HDM), the mean free path of structure-building partietadd be significant,
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/ (Cener/ Ceq)?

/ Qg

Figure 2.2: Sketch illustrating the growth of a perturbation which enters thizdmo before
matter domination. The growth is suppressed in the radiation-dominated phasdaltor of

fsup = (aemer/aeq)2 compared to the case without suppression (figure taken from Bartelmann &
Schneider, 2001)

and all perturbations below this size will be erased. Furthermore, sepkadent corrections to the
structure growth can also be introduced by baryons through acoustilatisns (see Eisenstein &
Hu, 1998).

To account for all these scale-dependefaas, one defines thensfer function . It connects
the ratio of perturbation amplitudes at present time (‘0’) to that at an initiatle o)

So) . Bi(K)
Soke)  “Bi(ke)

(2.49)

where the wave vectdt indicates the scale of interest, and it is compared to a $galéich is
chosen to be large enough so that it entered the horizon only at late times.

The transfer function has an asymptotic behaviof,p& 1 for smallk andTy ~ k=2 for largek,
with a turning point at 1k =~ rp(aeg). ThatTy ~ 1 at smalk follows directly from the definition. The
behavior ofTx ~ k2 at largek is because the largemodes correspond to small-scale fluctuations
which entered the horizon at the radiation domination era. At that time, theohosize grows
proportionally to the scale factop(a) « a, which can be derived by inserting (2.9) to (2.20) and
keeping only the radiation contribution in (2.9). Since a fluctuation entersotfieom wherk-r =~ 1,
one hasenierx k1. Therefore the small-scale fluctuations are suppressealglgng,,(,,(aeq)2 o k2.

A fitting formula of Ty has been derived by Bardeen et al. (1986) for a Cold Dark Mattigr-on
universe. Another fitting formula which includes corrections due to bdcyedfects is given in
Eisenstein & Hu (1999).

Eularian non-linear perturbation theory

As the density contrast grows under gravity, at some point the non-lineas e (2.40) and
(2.41) begin to play an non-negligible role. In the Fourier domain this medferatit Fourier
modes no longer grow independently but begin to interact with each otherandrmore strongly.
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We now turn to work in the Fourier domain where theeets of the non-linear terms are eas-
ilier described. Writing the dynamical equations (2.40)-(2.42) in Fouriacspagain assuming the
velocity field to be curl-free, and substituting the Poisson equation (2.42(dntt) we get

35(k) Ak

—a(t ), 49, deCI d®pép(k—a-p) a(g, p) 6(a. 1) 3(p.1) = (2.50)
20(k
6(t) "H(k“ fd3q d*pop(k—a-p Aa. P (g 6(p.t) = (2.51)
whered’indicates the Fourier counterpart of the quangityand the kernels andg are defined as
(p+9)-q (p+a)?p-q

- =2 2.52
a(q, p) 2 B(a, p) e (2.52)

They describe the coupling betweefffeient Fourier modes which arises from the non-linear terms
in (2.40) and (2.41).

To solve (2.50) and (2.51) perturbatively, we consider the Fouriesfivams of5™ and 6™,
General solutions fa¥™ andd™ are hard to find due to the coupling of time and spatial dependence
in the equations. However, in the special case of an EdS Universe, tharrepatial dependence
can be separated thanks to the exact scalip@) = a(t).

For an EdS Universe, making the ansatz

(K, t) = D(t) 6n(K), (2.53)

6O (k,t) = —a DI (t) Bn(K), (2.54)

one can see that the time dependence of (2.50) and (2.51) drops owefiém®l solutions for the
spatial dependence can be written as

n

5"(k) = f d’ay...d%q, 6p (k -2, Qi] Fn(dy. ---s 6) 69(e)--.6Y(an) . (2.55)

i=1

n

6" (k) = f d*ay...d% 6o (k - qi]Gn(ql, s On) 00(ap)..6(ap) - (2.56)

i=1
Here the function$,, andG,, are constructed from the kernelsandg through recursion relations
(see e.g. Gorfb et al. 1986; Jain & Bertschinger 1994):

Cm(qy, -+ qm)
Fn(@e....qy) = Z Zn +l3)(n D [(2n + Dk, k2) Foom(@mets - - -» Gn)

+2B(k1. k2) Gr-m(@mers - - @) (2.57)
A PR
_ m JERII m

+2n3(k1. k2) Grom(@ims1- - - - Gn) |- (2.58)

whereki1=q,+...+qm k2=qm1+---+ 4, k= k1 + ka.
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We haveF; = G; = 1 by construction. Fon = 2, one has (see Bernardeau et al., 2002a and
references therein)

5. 1w %) 2(q )

Fa(q1.G2) = = + 5 G (q2 + ql) + = (2.59)
3 1a1-go(w | B, 4(q1 2)°

Ga(d1.G2) = 5 + 5 % (q2 + ql) + = (2.60)

2.2.5 Two- and three-point statistics of the matter densityield

So far we have considered the evolution of matter density fluctuations. Tia @ondition for
this evolution, currently given by the inflation theory, can be formulated onby statistical way.
For this reason one describes the matter density cortriasthe Universe by aandom field and
studies only its statistical properties.

The density field in our current Universe corresponds to one realizafichis random field.
There is no way to apply an ensemble average to the observational datavétavith the help of
the ergodic hypothesis and the cosmological principle, one can perfepatal average instead.
The comparison of the results with theoretical predictions holds only in the linvialadity of the
cosmological principle.

A general way to study a random field is to study its moments. In the case of tter ghensity
contrasb, its first moments) vanishes. A full description of its statistical properties would require
all higher-order moments.

According to observations of the CMB as well as predictions from the simngplegle-scalar-
field inflation theory, the primordial (i.e. at a very high redshift) matter deriigtsgt is very close to
a Gaussian random field. For a Gaussian random field, all the statisticahmmtion is contained in
its second-order moment. All odd-power higher order moments vanishalbeden-power higher
order moments can be expressed in terms of the second-order moment.

As long as the density perturbations grow linearly, they remain GaussiarasByravitational
clustering is non-linear in nature, non-Gaussianity will be generated ibéyitesulting in non-
trivial higher-order moments. The matter density field of the Universe tbdayalready significant
deviations from a Gaussian field (Kayo et al. 2001; Ostriker et al. 208%pmmon way of mea-
suring non-Gaussianity nowadays is to use the third-order statistics. Isutbsgction, the second-
and third-order statistics (the 2- and 3-pt correlation function and theirié&ocounterparts) of the
matter density field are introduced.

Two-point correlation function and the power spectrum
The 2-pt correlation function (2PCF) of the matter density field at poskiandy is defined as

(6(x)o(y)) =: Css(Ix = W) , (2.61)

where( ) indicates the ensemble average. The 2PCF depends only on the separatipof the
two points due to the assumption®dbeing statistically homogeneous and isotropic.
The configuration spaceis a real quantity, but its Fourier counterpart, defined as

3(Kk) := f d¥x 5(x) XK (2.62)
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is in general complex. Consider the second-order momes(tof

(30057 (k)) = f d¥x eixkK f @Bx XK (5:08(x))
=[x ek [ty dXIK i) (2.69)
- @nfao(k— k) [ dy ¥k o).
the form of this motivates one to define thewer spectrum fof the matter density contrast, as
(35" (K)) = (2m)%6p(k ~ K)Ps(IK) (2.64)

Comparing (2.63) and (2.64) one can easily see that the power spectduthea2PCF are Fourier
transform pairs,

P(Ik) = f Py &K Cosllyl) (2.65)

Generally, since the density contra@sevolves with time, the power spectrum and 2PCF are
also functions of time. Using the knowledge of the linear growth of densityrast) one can readily
express a late time linear power spectriggn (k, a) as a function of the power spectrum at a specified
initial epoch with scale factaas;,

D%(a)

P(S,L (k7 a) = D2 (a|)

TZPs(k, &) . (2.66)

A power law initial power spectrum is usually assumed,
Ps(k, &) o k™, (2.67)

where thespectrum index s observationally found to be close to unity (e.g. Seljak et al. 2005;
Sanchez et al. 2009).

The scale dependence of the linear power spectrum is totally containedtiariséer function
Tk. Takingns = 1, with the asymptotic behavior @f, one has

Ps,L(K) o {E—:s :Or > MhiZeq

or 1/k < rn(aeq) -
The turnover scale at/k ~ rp(aeg) is the only characteristic scale in the linear power spectrum. It
corresponds to the scale of the fluctuation which enters the horizon atreatiation equality. The
growth of perturbations with smaller sizes and which enter the horizon esreippressed in the
radiation-dominated era.

Non-linear growth of the density contrast adds an additional scale depea to the power
spectrum: it &ects the small scales more. Theoretical treatments of non-linear poweluspecin
be found in e.g. Peacock & Dodds (1996) and Smith et al. (2003).

The normalization of the power spectrum is fixed by the parametewhich is defined as the
variance of density fluctuations in spheres of radius'Bipc.
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The bispectrum

The bispectrum of the matter density field is defined as
(8(k)3(k2)d(ka)) =: (2)® Sp(Ka + ka + ka)Bs(ke. ko. ks) (2.68)

The Dirac delta function here guarantees that the bispectrum is defihetvban ki1, ko and k3
form a triangle. This is again related to the statistical homogeneity the Univafsg taking into
account the statistical homogeneity and the isotropy, the bispectrum i<trarad by only three
real quantities, which are chosen to be the three side lengths of the triangldtis also common
to choose two side lengths and the angle between them to parametrize thérbmpec

If one assumes Gaussian initial conditions, then the bispectrum geneyagea/iiational insta-
bility at large scales can be given by second-order perturbation themtyreads (Fry 1984)

Bs (K1, k2, k3) = 2F (K1, k2)Ps(ki)Ps(k2) + cyc, (2.69)

with F; defined by (2.59).

Efforts have been made to modify (2.69) in order to fit the results from N-bodylations better
(Scoccimarro & Frieman 1999), i.e. to interpolate between perturbativehanklighly non-linear
regimes. This is achieved by replacing the kernel (2.59) byfimctve kernel

2 (k1 - k2)?
=" ¢(n,k)c(n ko),
7 k2 2

2 (2.70)

wheren is the spectral index, usually chosen to be the local spectral index othfagme the linear
power spectrum (see Scoccimarro & Couchman 2001). The fundionk;), b(n, k;) andc(n, ki)
are chosen to fit the N-body simulations for small scales and are approxjroaity for large scales.

Currently, the commonly used fitting formula for the non-linear evolutioBsah CDM models
is given by Scoccimarro & Couchman (2001). It fits the measurements iodf-simulations to an
accuracy of 15%.

5
Fgﬁ(kl, kz) = —a(n, kl)a(n, kz) + =
7 ko

1ki ko [k
2 kake

+ Q) b(n, ky)b(n, k2) +
Ky
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Chapter 3

Gravitational lensing

The physical law that governs the traveling of light is Fermat’s principlstaltes that out of all
the possible paths connecting two points in space, the light follows those witmstigy light-travel
time. This means, in an Euclidian space, that light travels along straight lindsna spacetime
described by GR, that light follows null geodesics.

Since spacetime is curved around a massive body in the picture of GR,dightan be bent.
Although the idea of light bent by massive bodies has a very early origgwi{dh 1704), it was
during the Solar eclipse in 1919 that the first observations (Dyson eBa0)were made. The
measured light-deflection angles in these observations provided a styopgysfor GR.

The deflection of light by a gravitational field is analogous to the light deflediyoan optical
lens, thus the name of gravitational lensing. The gravitational lengiagtean act as a direct probe
of the gravitational field, unlike most of the other astronomical probes wigbhon luminous
matter. With this advantage, it has been used to measure the matter distributibsaates, from
planets up to the LSS of the Universe.

According to the degree of distortion to the original light path, gravitationaitey is divided
into strong lensingandweak lensing Strong lensing occurs around high mass concentrations (e.g.
compact objects, galaxies or clusters of galaxies), and is associatedheitbrpena like multiple
images and giant arcs. Weak lensing, on the other hand, deals with mild distoofiche light
bundle. Its observablefects can be caused by numerous objects along the light path, and studies
are mostly done statistically. In this thesis we will concentrate on cosmic shesak-gvavitational
lensing by the LSS.

Cosmic shear is sensitive to all cosmological parameters which have irdloenthe density
perturbations andr the geometry of the Universe, including those concerning propetrtidark
energy, which have been a key concern after the discoveries madesbgvations of supernovae,
the cosmic microwave background, and the large-scale structure @aieawsee e.g. Munshi et al.
2008). Since its first detection in 2000 (Bacon et al. 2000; Kaiser eD8D;2/an Waerbeke et al.
2000; Wittman et al. 2000), cosmic shear has been developed into a conepmigiviological probe.
Its constraining power on cosmological parameters is now comparable tqothes (e.g. Spergel
et al. 2007; Fu et al. 2008). With forthcoming large-field multicolor imagingeys, photometric
redshift and shape information of a huge humber of galaxies will be al@iledndering cosmic
shear even greater statistical power. In particular, cosmic shear islemtto be one of the most
promising dark energy probes (Albrecht et al. 2006; Peacock eb@6)2vhen the results of these
surveys become available.

We introduce the basic theory of cosmic shear in this chapter, where Bantelén&chneider
(2001) and Schneider et al. (1992) have been heavily referenced.
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3.1 The geometry of gravitational lensing

Source plane

Observer

Figure 3.1: Sketch of the geometry of a gravitational lens system (frorrelBaann & Schneider
2001).

Consider a typical situation in gravitational lensing: the deflection of a lighbyaa point mass
as depicted in Fig. 3.1. The lens is located at the intersection of the dashadditige ‘Lens plane’;
the light ray follows the solid line, is deflected at the lens plane by an @ngled is finally observed
by the observer at an angular posit#@nThe distance between the lens plane and the ‘Source plane’
is Dgs, and that between the lens plane and the observBg.isSince these distances here relate
physical transverse separations (g@nd¢) to angles, they are the angular-diameter distances.

3.1.1 The lens equation and the deflection angle

A basic equation to describe this light deflection would be one that relatesuthpdsition of a
sourceg to its observed positiogon the sky. This equation, named the lens equation, can be derived
from the geometrical relations shown in Fig .3.1 using the fact that the angéesmgideration are
small:

Dy

ﬂ:g-i@(g)zo—a(o). (3.1)
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The mechanism of light deflection enters (3.1) in the form of the deflectigle@n Using GR
in the weak-field limit, the deflection angle for a ray with impact paramgisiinked to the point
mass as

. 4GM
a= <y (3.2)

Note that even in the case of strong lensing, one still works in the weaklifidld Light de-
flection in strong field, e.g. near black holes, is not a subject of the gtiavitd lensing theory that
will be introduced in this chapter. The form of the deflection angle (3.2)}l@dorm of the angular
diameter distance (2.23) are the only places GR enters in the whole gravitéitsiag theory.

When the deflecting mass is not point-like but spatially extended, the defleigla can be
calculated as the sum of deflections by its individual mass elements.

£§-¢

N 4Gf 2.
a = d 2 ! T 0 9 3-3
©=7F | ) p (33)
whereX is the matter density projected along the line-of-sight
() = fdfsp(fl,fz, rs). (3.4)

Here the so-called Born approximation has been made. Analogous to theproximation
in atomic and nuclear physics, we have assumed that the distribution of thetmhgfimass is small
(‘thin”) along the line-of-sight compared to the distance traveled by the teghtso that the light ray
can be approximated as a straight line in the neighborhood of the deflectgsgdiséribution. This
approximation holds well for gravitational lensing by common extended astimal objects, e.g.
galaxies and clusters of galaxies.

Based on (3.4), we further find an expressiond(@) in (3.1):

1 6-¢
0) == | &% k(e 3.5
a®) = [ E0xe) (35)
where thedimensionless surface mass densitgonvergence is defined as
3(Dgb) . @ Ds
= — h Z¢gi=— . :
K(H) Zcr wit cr 272G Dd Dds (3 6)

As will be shown, thecritical surface mass densiBy, is also the characteristic value for the surface
mass density which divides the ‘weak’ and ‘strong’ lensing regimes. Hyitlen (3.6), itis distance
dependent.

3.1.2 Jacobi matrix of lens mapping

For two-dimensional quantities like the angles defined ablove, we have thigtiekeV In |6] =
0/10)? andVZIn|g| = V - (0/|0|2) = 276p(0). This motivates one to define the deflection potential
as (e.g. Bartelmann & Schneider 2001)

w(0) = }T f d?0’ k(@) In19 - ¢'|, (3.7)

so that we can expressandk as
a=Vy, (3.8)
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1 1
K= §V2¢/ =5 (W11+¥20) , (3.9)

whereg;; indicates the derivative @ with respect to the basis vectasande;.

As depicted by Fig .3.1, the image of a light source at posfiimould be observed at aftierent
position @ due to the lensingfect. To describe the mapping from the original position to the
observed position, one considers the Jacobi matrix of the mapping

B 0y (6) l1-xk-yv1 -7
= — =dij - = A
AB) = 5 (5” 96,90 -y2  l-k+y )’ (3.10)
where we have introduced the components ofstheary = y1 + iy> = [y|e?¢, with
1
y1= E(‘/’,ll —¥22), Y2=V12. (3.11)

We can see that the matri# is symmetric, with trace il = 2(1- «), and the sheay describing
its trace-less part. The ratioof image size and the size of the source is given by the determinant of
A,
1 1
H=Geta " @—02-pP-

(3.12)

For the special case of a source with circular isophotes, its image wouddetigtical isophotes.
The ratio of the major and the minor axis of the ellipse to the radius of the circl&hvbeul— « + |y|
and 1-« - |y|, respectively, and the major axis of the ellipse would point into the directignwith
2¢ being the phase angle of

The last feature described above is related to the fact that the shegpirs2guantity. Here
the spin of a quantity is based only on the rate its polar angle changes widttréshe rotation
of the coordinate system. For example, if the coordinate systems turnslar@aagpin-2 quantity
would rotate 2 in the opposite direction, i.e. it gets multiplied by a phase factdt’ eWe write the
two components of shear in terms of a complex number because the spintpism®nveniently
expressed in this way.

In the lens mapping, surface brightness is conserved according toillésutheorem. Thug,
the ratio of image size and the size of the source, is also the flux ratio of the andgée source.
In the weak lensing regime we haue~ 1, the case: > 1 occurs by definition only in the strong
lensing regime. In (3.12) one can see thas 1 happens when the convergends close to 1, i.e.
when the surface mass density is clos&4o

The lensing magnification is one of the cosmological tools provided by gravitdtiensing.
We will focus on another tool, the image shape distortion quantified by the ghtathe case of a
circular background source, the axis ratio of the lensed imagis 1 -« —|y|/(1 -« + |y]), which
leads to

ly(@) 1-b/a
1-«() 1+bj/a’

i.e. itis the quantityy(8)/ [1 — «(0)], called the reduced shear, that is determined by the axis ratio of
the lensed image. Generally, a background source is not circular, éllipiscal to the first order.

We denote this intrinsic ellipticity ag. If the intrinsic ellipticities of a population of galaxies are
statistically uncorrelated, then the reduced shear can be estimated statistaallthé observed
ellipticities of these galaxies. In this thesis we take the approximatieng, which holds well in

the limit of weak lensing.

(3.13)
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Since both the convergeneeand the sheay can be written as combinations of second deriva-
tives of the deflection potentigl, see (3.9) and (3.11), they are interrelated. With (3.7) it is straight
forward to find

1
¥(6) = - f d’0’ DO - &) k(@) , (3.14)
where )
05 — 65 — 2i610- -1
9 =21 = . 3.15
Do) TR 1= 1627 (313

We will call this convolution kerne® the Kaiser-Squires (K-S) kernel and (3.14) the K-S relation,
since it was first recognized in Kaiser & Squires (1993) that the invedaéion of (3.14) suggests
one can reconstruct the projected mass distribution from the shear sigmakourier counterpart
of the K-S kernel can be obtained by Fourier transforming (3.9) and ) 3a%

f% - f% + 2i€1f2

D) =nr T

=7 e? for ¢ +0, (3.16)

whereg is the polar angle of. With this, one can express the Fourier counterpart of (3.14) as
5(6) = €Px(e) for £+ 0, (3.17)

i.e. the Fourier counterpart of the convergence and the shear amantlecup to a phase factor.
The Fourier space relation (3.17) further allows one to invert the reladidd). Since one has

%) = e2By(¢) for £ £0, (3.18)

It is straightforward to see that

k(0) — ko = % f d?0’ D*(6 - 6') y(0') . (3.19)

An arbitrary constankg occurs since thé = 0 mode is not determined. This means if the shear
field is known, the convergence field can be determined, but only up tdditive constant. This
arbitrary constant causes a major problem in using the shear signabtestewt the projected mass
distribution, e.g. in the case of inferring the mass profile of a galaxy clusterthe shear signal in
the field. Especially in the inner regions of a galaxy cluster, the approximgatiog does not hold
well any more. In this case the problem of the arbitrary constant transtatbe fact that, if one
scales the convergence field as{X’'(8)] = A[1 — «(0)], the reduced sheay stays invariant. This
so-calledmass-sheet degeneracgn be removed with the aid of additional observables or physical
assumptions. The cosmic shear study, which is based on the statisticattipopéthe shear and
convergence field, is notiected by the mass sheet degeneracy.

3.2 Cosmic Shear

Cosmic shear refers to the coherent shape distortion of distant sbyrttesL SS. This distortion
is usually very mild, typically of the order of a few percent. Thus cosmicrshasa to be detected
and studied in a statistical way, using images of a large number of distaniggalax

For cosmic shear, the thin lens approximation fails, since the ‘lens’ herel@ger a concen-
trated object, but all the intervening matter between the source and thev@bsamazingly, the
formalism of gravitational lensing as presented in the previous section dtl fir cosmic shear
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to the linear order. We will show this by considering the light propagation iD ai8tribution of
matter, as is the case for the LSS of the Universe. Then we will introduceottieept of E- and
B-mode for the shear signal, and show the commonly used statistical meascossnic shear and
some relations between them.

3.2.1 Light propagation in a three-dimensional matter distibution

SIMULATION: GROUPE INC, 5. COLOMBI, IAP.

Figure 3.2: The paths of three light rays travelling through a simulated masibuwtion. The
deflections have been greatly exaggerated. Credit: S. Colombi (IAMTdeam.

In an inhomogeneous universe, light of background galaxies is didtootinuously on its path
by the intervening matter. The equation governing the propagation of thindigtdles through an
arbitrary spacetime is thequation of geodesic deviatiott describes how the comoving separation
vectorx(d, y) between a ray separated by an artid the observer from a fiducial ray evolves:

d?x 2

s - _Z _ 0)

gz K= g [VLe (0020 - V.00 (3.20)
wherey is the comoving radial distanc& is the curvature signature (see Sect. 2.1.1), @nd
the comoving gravitational potential as defined in (2.38);is the 2D comoving gradient operator

acting on the plane perpendicular to the fiducial light ray; ‘0’ denotes theital light ray.
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Equation (3.20) can be solved with the Green’s function method, yielding

K00 = k8- 5 [ ¢ el —x) [0 @) - V100 @21
0

with fx (y) defined by (2.3).

The true angular position of a sourcex@, v) is 8 = X/ fk (x). Thus (3.21) leads to an expression
of the Jacobi matrix of lens mapping as defined in (3.10):

Y S ’
Aij (0, x) = &ij - %f dy’ Tl ~ X)) D (x(8,x").x") Axj(0.x"). (3.22)
c- Jo fK(X)

This equation is exact in the limit of a weakly inhomogeneous universe. Eroecan see that
the source of the image distortion and magnification is the second ordeatilexiof the gravitational
potential along the actual light pa#{#, y). The fact that the Jacobi matrix also enters the r.h.s. of
the equation suggests that the light deflection at one comoving distaiscgependent on that at
comoving distancg’ < y (lens-lens coupling).

Now we apply two approximations. Firstly we repla®g (x(0, x'), x’) by @i (f (x')0,x’) in
(3.22), i.e. we evaluate the potential derivative along the fiducial light ficyis approximation
is again called the Born approximation; it holds well if the second derivativbe gravitational
potential is smooth within the scale of the separation vect@econdly we keep the Jacobi matrix
on the r.h.s. of (3.22) only to the zeroth orderdafi.e. we approximate it by;. In this way we
neglect the lens-lens coupling. Discussion of validity of these two appreéxingacan be found in
Schneider et al. (1998); Cooray & Hu (2002); Shapiro & Coorap@@nd Hilbert et al. (2009). A
general conclusion is that the corrections to them are not important$aricshear surveys which
will be performed in the near future.

The Jacobi matrix after applying these two assumptions is

2 (%, fle—x)
ﬂij(ﬂ,x)=6ij—gfo gy KU f:(&)KCY)

We can match the forifij = 6ij — ¢ jj by redefining the potential

_2 (Y kb= x) )
0o =5 [y <D
Now we see that lensing by the 3D matter distribution, under the two approxireatimoduced,
can be treated in the same way as in the case of a thin lens. The equivadgritilemhas a deflection
potential ofy as defined in (3.24), convergence V2y/2, and sheay = (f.11 — ¥.22)/2 + iy 12.
This convergence can be further related to the density fluctuation in thetdas by making
use of (2.42), yielding

i (fk(x)0.x") - (3.23)

O (fk()0.x") - (3.24)

«(0.y) = 2% fX g KO =X TkG) S (f)ox)
’ 2c2 fk(x) alx’)
Equation (3.25) gives the equivalent convergence for a souraaaiving distance which is
observed at positiol. Again, it receives contributions from all the intervening matter. In cosmic
shear studies, one usually considers the lensing distortion of a large nahgjag¢axies spread along
the line of sight. Denoting the distance probability distribution of a populatmfrsource galaxies
by pg)(/y), one obtains a source-averaged convergence

3H2Qm " .
2 [ st

(3.25)

aly)

«(6) = fo " dy PO 0OK(6.x) = (3.26)
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where we have defined the lensintja@ency

fk(x’ = x)
20

The lensing #iciencyg(y) can be regarded d3y4s/Ds weighted over the source population for a
lens at comoving distange

o) = f dy pl(yy KW —X) (3.27)

3.2.2 E-and B-modes

D
O Q Q O O Figure 3.3: Upper row A

O O @ @ pgint mass (left) or und(_erdensity
(right) produces tangential, curl-

Q ) O O O Q free shear patterns called the E-
mode. Lower row Divergence-
free pattern obtained from rotating

’ B mode ‘

all shears by 45 degrees. These so-
. * *® . called B-mode patterns cannot be

LN Y V 4 ' produced from gravitational lens-

ing (figure from Van Waerbeke &

@ P () 0 \ °® Mellier, 2003).

The shear can be seen as the lensing contribution to galaxy shapescasilca described by a
symmetric and trace-less 2D tensor field, i.e. a polarization field. Such a éieldeedecomposed
into a curl-free and a divergence-free component, in analogy with thengdgosition of the electro-
magnetic field into a electric E-mode and a magnetic B-mode. Therefore thismgesition is also
called the EB-mode decomposition.

Defined as the second-order derivatives of the deflection potgn(ialll), the shear generated
by gravitational lensing is a pure E-mode field as the deflection potential ialardeld. The
measured B-mode comes only from systematics and higher-diéetse Thus performing aryB-
mode decomposition provides a check on the possible systematics in the rdestseae signal
(e.g. Crittenden et al. 2002; Pen et al. 2002). In Chap. 4 we will ptessene results concerning
E/B-mode decompaosition for 3-pt statistics.

3.2.3 Two- and three-point cosmic shear statistics

The two-point correlation functions and the power spectrum

Since the shear field is a polarization field which we describe by a complexearuabkeach
spatial position, the 2-pt correlator of shear corresponds to more tieareal function. Consider the
correlation of shear at two positions separatedby6 €. It is convenient to define the tangential
and cross-component of the shear regarding to this pair-as-Refy € 2¢) andyy = —Im(y e72¥).
Then one can proceed to define three real correlation functions & shesr components,

£0(0) = (n(@ + 0) () + (yx (@ + O)y<(D)) , (3.28)
£_(0) = (n(@ + O)n(d)) — (yx (@ + O)yx(d)) , (3.29)
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Ex(0) = (n(@ + 0)y<()) . (3.30)

Thanks to the simple relation (3.17) between the shear and the conveigermerier space,
one has

(27)%5p(£ — £)P,(0) = (F(O)Y () = (KO (¢)) =: (2n)*6p(¢ ~ £)PL(D). (3.31)

i.e. one does not need to distinguish between convergence powelspectd shear power spec-
trum. Note that, (6) = (yy*) (0), one also hag«x*) () = £, (0).

We have distinguishex(6) and«(0) although the physical convergence field has no imaginary
part. We did so because if one reconstructs the convergence fieldfresn signals using (3.19), the
resulting convergence could have a complex part due to the B-modes inghe which can come
from systematical errors, higher-orddfexts, and noise. Here we have introdugeel kE +ikB, to
let the complex partg account for the convergence corresponding to B-mode shear sijaahall
omit the B-mode in this thesis as a default and deal mainly with the physical E-cosd&c shear
signal.

The power spectrum defined in (3.31) corresponds to the E-modergemoe only, thus we
denoted it byPE. We further define

(RB)RB(¢)) = (2m)%6p(¢ - £)PE(0) , and (3.32)

(RE@RB*(€)) := (2n)6p(t - £)PER(0). (3.33)

Then one can relate the 2-pt functions to the power spectrum. Their ralatieriound to be

£.(6) :2—17r f de ¢ Jo(¢e) [PE(6) + P2 (1))
£_(0) =% f de £ Ja(¢6) [PE(0) - P2(0)] (3.34)

60 =5 [ dt e 30 P,

In general the mix ternPEB should vanish since it has an odd parity (Schneider 2003),&h@%
vanishes as well.

The natural components and the bispectrum

At the 3-pt level there are more combinations of shear correlation fursct®chneider & Lom-
bardi (2003) studied these combinations of them which have simple belhiader general rotations
of the coordinates. They found four combinations which should be sete dundamental 3-pt con-
figuration space cosmic shear statistics, and gave them the name ‘the catapainents’.

Consider three pointX;, i < | < 3. In general they form a triangle with sidggs = X3 — X>,
X2 = X1 — X3, andxz = X, — X;. The directions of the sides are defined so that x> + x3 = 0.
Unlike in the 2-pt case where one can defineand y. with respect to the line linking the two
points, there exists no unique natural choice of a reference point teedefindyy. The reference
point could be chosen as any point inside the triangle. The middle of onglsédeentroid and the
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orthocenter have all been used in practice. For any choice, the nadingbnents are defined as

ro - Vit — Vixx — Vxtx — Vxxt + 1 [Yttx + Yixt T Yxtt — Vxxx] >
rd = Yitt — Vixx + Vxtx + Vxxt + 1 ['}’ttx + Yixt — Yxtt t '}’><><><] s
[Vitx = Yixt + Vxtt + Vxxx]
[

F(S) =Yt T Yixx T Yxtx — VYxxt T [ —Yitx + Yixt + Yxtt + ’)’><><><] .

' = Yitt + Vixx = Vxtx + Vxext + 1

(3.35)

These natural components do not mix under a rotation of the coordinadgscliange only by a
phase factor.
Under cyclic permutation of the arguments, they behave as

TO(xq, X2, X3) = TO(x0, X3, x1) = TO(x3, X1, X0) ,
T (xq, X2, X3) = TO(X0, X3, X1) = T (X, X1, X0) ,
T(x1, %2, X3) = T (2, X, x1) = T (x3, X1, %2) , (3.36)
T (xq, X2, X3) = T@(%o, X3, 1) = T (X, X1, X0) ,

i.e. T© stays invariant, and the other natural components transform into each SHig suggests
that if a permutation of the arguments is allowed, the four complex natural aenpocannot be
considered as independent quantities. The degree of freedorsmons to two complex quantities,
or four real quantities.

The 3-pt shear and convergence statistics are again simply related ierlspace. So here we
introduce only the convergence bispectrum which is defined via

(k(EDK(EK(E3)) = (27)2 6261 + €2 + £3) B(C1, L2, €3) , (3.37)

where the Dirac delta function imposes the condition thatf, + £3 = 0, which we call theriangle
condition Here we have considered the field to be both statistically homogeneoustogiis, thus
the bispectrum can be quantified by three real arguments which we hasercto be the three side-
lengths of the triangle. Another commonly used choice is two side-lengths arahtie between
them.

The relations between the natural components and the convergencieumspave been stud-
ied and given in Schneider et al. (2005). These relations have comglidafendences on their
arguments and have highly oscillatory integration kernels, which largely limigsdpplication. In
Chap 4 we will give the relations between the natural components and theoByergence correla-
tion functions, which provides another way to link the observable shegst&mand the underlying
matter density field.

The aperture mass statistics

Theaperture mass I is one important measure of the shear and the convergence introduced by
Kaiser et al. (1994) and Schneider (1996) to circumvent the mass-ddgeneracy problem. The
aperture mass within an aperture of sfzeentering ory is defined as

Map(6, 60) = fAG d?9 k(@) Ug(19 - 60)), (3.38)
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whereAy is the area of the aperture, abg(9) is a compensated filter function, i.e.

f d?9 Ug(19)) = 27 f dd 9U,(9) = 0. (3.39)
Ay 0

Note thatUy(¢) is a function of both} andé. To ensure that its functional form satisfy the condition
(3.39) for any andg, it has to have the scaling

Ug(9) = g—lzu_ (%) : (3.40)

whereU is a single argument function which needs to satisfy

fl dx xU(X) = 0. (3.41)
0

A valuable property of the aperture mass is that it can also written directlynrstef the shear,
as

Mapl6. 6) = ng 29 Qu(191) (¥ 60) (3.42)

whereyi(; p) denotes the tangential shear at posidorelative to the poindp, and

o
Qu(?) = %L d¥’ 9’ Ue(®) - U(9). (3.43)

The form of theQ filter can be derived from the relation between the shear and the cemeer§see
Squires & Kaiser 1996, Schneider 1996, and Schneider & Bartelm&#if).19

The aperture mas¥l,p is a real quantity and is sensitive only to the tangential shear. One can
expand it to a complex quantity afp(has been put to the origin for simplicity)

M(8) :=Mapl) + M. (6) = f A28 Q1) [1(D) + i7x(®)]
oo (3.44)
. L 9 Qu(19) y(9) 2

with ¢ being the polar angle af. While the real part oM(6) corresponds to the physical con-
vergenceE (3.38), the imaginary part of it corresponds«fy which vanishes in the absence of a
B-mode. This suggests that the aperture mass statistics naturally allg&sadde decomposition.
The lensing signal which has no B-mode component enters onl¥tae). The M, (6), on the
other hand, is a measure of the B-mode which quantifies systematic erdonsiaes.

At the 2-pt level, the dispersions of the aperture measures are relatedgowter spectrum by
(Schneider et al. 1998)

(M240)) =% fo Y. Pe(£) Wap(£6)

e (3.45)
(M2()) =0 fo de € Pa(£) Way(£6),
which follow directly from (3.38) with
0 2
Wap(£6) :(271 f d9 o Ug(ﬂ)Jo(fﬁ))
0 (3.46)

1 B 2
:(277[0 dx xU(x)Jo(€9X)) ,
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where in the second step we have inserted (3.40).
One can see that the dispersion of aperture r(wg§> is sensitive only to the E-mode power

spectrum, andM? ) is sensitive only to the B-mode one, as expected.

The statistics to be applied directly to weak lensing survey data is the sheaation function
since it deals easily with the complex survey geometry a lensing survey u$izaly The other
statistics, e.g. that of the aperture measures, need to be obtained frdradhearrelation functions.
At the 2-pt level, the relations between these two statistics are (Schneale862)

(=3 [, % o (G om= ()]

o o (3.47)
2\ gy =L [ 99 ap(7) _ ap( ¥ '
(M2Y0 =5 [ 2 eom®(3)-com=(3)).

The forms of the filter§ 2° andT?” can be derived by combining (3.34) and (3.45), yielding

TH(x) = f dn 1 Jo(x)Waplr)
(3.48)

7909 = [y Juo W)

For most choices of the filtdd, one cannot obtain an analytical form ﬂ')fp andT2.

Note that the integrals in (3.47) extend in principle from zero to infinity, whaumses a problem
since in practice one cannot measure the shear correlation functiotss\aury small or very large
angular separations. Thefliltulty at small angular separations arises since galaxies are extended
sources, and it is impossible to precisely measure galaxy shapes if the ioh#ggegalaxies overlap.
The dificulty at large angular separations, on the other hand, is due to the finitef sieesurvey.

For the choices of the filtdd made in Kaiser (1995); Schneider (1996); Crittenden et al. (2002), the
T2 and T filters do not extend to infinity and thus remove the problem there (see égeifier

et al. 2002), but they do extend to— 0, which leads to a certain mixing of E- and B-modes
(Kilbinger et al. 2006). We shall give an overview of the solutions to thibjam at the 2-pt
level and the current situation for 3-pt statistics in Chap. 4. The relatietvgden the 3-pt aperture
statistics, the natural components and the bispectrum are given in Sateteatlg2005).
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Chapter 4

Relations between three-point
configuration space shear and
convergence statistics

The convergence and the sheay are two basic quantities considered in gravitational lens the-
ory. Defined as the dimensionless surface mass ders#tyg weighted projection of the 3D matter
density contrasé (3.25). The sheay, on the other hand, is directly accessible from observations
(see Sect. 3.1.2). Therefore, the theoretical framework of gravitdtiemsing should include the
relation between configuration spacandy statistics as well as the one relating configuration space
statistics to their Fourier space counterparts. At the level of 2-pt statistich, relations have al-
ready been established. For 3-pt statistics, the relation between the8ghteawrrelation functions
(y3PCFs) and the convergence bispectrum, which is the Fourier countefrfize 3-pt convergence
correlation function .3PCF), has been derived by Schneider et al. (2005). The othetririzh
relation, the one betweerBPCFs and3PCFs, is still missing. One purpose of the work described
in this chapter is to establish this missing link.

How to perform EB-mode decomposition is also a major concern of the weak lensing commu-
nity. For observational data afflEEmode decomposition provides a necessary check on the possible
systematics (e.g. Crittenden et al. 2002; Pen et al. 2002). In recenst thegie have been several
efforts to construct better statistics which allow for gt8Enode decomposition at the 2-pt level
(Schneider & Kilbinger 2007; Eifler et al. 2010; Fu & Kilbinger 2010; Selder et al. 2010). They
all use weight functions to filter the shear 2-pt correlation functig8 CFs), and the condition for
E/B-mode decomposition transforms to a condition on the weight functions. &ochdition at the
3-pt level is also missing so far. We will see that with the aid of the relation leetleey3PCFs
and thex3PCFs, one can easily formulate this condition.

In the first section of this chapter we show how the relation betweep3REF and the3PCF

is obtained. In Sect. 4.2 we investigate the correspondence betweenitieel delation and already
established results. We then extend our results to otBBCFs in Sect. 4.3, and in Sect. 4.4 we
present an application of the 3-pt relations, deriving the condition fBrrRode separation of 3-
pt shear statistics. How these relations can be numerically evaluated is deatexhin Sect. 4.5,
and we conclude in Sect.4.6. In the first two sections we ignore the B-mutleansider the
convergence to be a real quantity, starting from Sect. 4.3 we extend the consideratiomtods-
and complex. The content of this chapter is based on Shi et al. (2011).
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CHAPTER 4. RELATIONS BETWEEN THREE-POINT CONFIGURATION 8E SHEAR
AND CONVERGENCE STATISTICS

4.1 Relation between three-point and  correlation functions

4.1.1 The form of the relation

At the 2-pt level, the relation between the configuration space shearomwdrgence statistics
is the&, — &£ relation (Crittenden et al. 2002; Schneider et al. 2002)

s (x -
4x2 — 2y2H( 0+ (>)<( y), @.1)

£(X) = f dy y£,()

whereH andé(Dl) are Heaviside function and 1D Dirac delta function, respectively. Thetiionsé,
andé&_ are defined in (3.28) and (3.29). They can also be writtef,. 69 = (kx)(IX]) = (yy*)(IX])
andé_(x) = (yy)(x) e %¢x, with ¢, being the polar angle of the separation veot¢see Sect. 3.2.3).
Note that the sheay is a spin-2 quantity and thusy)(x) has a spin of 4. Being the product of
(yy)(x) and a phase factor of #%x, the quantity¢_(x) no longer depends on the polar anglexof

The relation (4.1) has already taken both the statistical homogeneity ancpisofrthe shear
field into account and is therefore a one-dimensional relation of quantititseoreal domain. The
derivation of thet,. —&_ relation originates from the relation betwegnandé_ and the convergence
power spectruni, (3.34), or equivalently

P.(6) = erjo‘oo dx X&4(X) Jo(€X) = Zﬂfow dx X &_(X) Ja(€X) . (4.2)

Inverting one of the relations in (4.2) one can wigteandé_ in terms of each other, e.g.

£00- [ Grueor©= [ wyen) [ acueone. @3

and the final form of the relation (4.1) can be reached by performingBhBetssel integral whose
result can be obtained from Gradshteyn et al. (2000).

The same procedure, however, fails to work for 3-pt statistics sinceatiesponding Bessel
integral actually consists of three integrals, and they have highly complidaf@ehdencies on the
arguments (see Schneider et al. 2005). A brute force humerical oealad these integrals is also
extremely challenging due to the oscillatory behaviour of the Bessel fuisction

Since the advantage of transforming to the Fourier plane and back nor Ibalgks for 3-pt
statistics, we attempt to stay in configuration space, which at least avoidsalem of oscilla-
tory integrals. One can see from (4.1) that the result of the Bessel ahiegi.3) is actually not
oscillatory, as expected.

The configuration space 3-pt shear correlator can be writtép(&s)y(X2)y(X3)), with X; being
the positions on the two-dimensional (2D) plane where the shear signasamated. Following
the assumed statistical homogeneity of the shear field, the correlator depdndn the separations
of these three positions. We choose= X; — X3 andx, = X, — X3 to be its arguments (see the
leftmost sketch of Fig. 4.1) and write the correlato@gy)(x1, X2). After the same procedure is
applied to the 3-pt convergence correlator, the relation we are interiestéti be shown to be of
the form

1
ryy)(Xa, x2) = 3 f d’ys f d?yz (ki) (Y1, Y2) Go(Xa — Y1, X2 — Y2) , (4.4)
where we have defined the convolution ker@glfor which we need to find an explicit expression.
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Relation between three-poiptandx correlation functions

Writing the relation in the form of a convolution is motivated by the K-S relation4Bhktween
the convergence and the shear (Kaiser & Squires 1993), which yiegdeghlt (4.4) and also allows
us to express the kern@j as

1 1 1
_ 2 _ 2
Go(a, b) = —fd vDWV) DV-a) DV-Db) = fd v 72 V_aP v -Db)" (4.5)
Here, for simplicity, we have used the complex notation for the K-S kern&bj3
D(2) = -1/7?, (4.6)

i.e. we have identified the 2D separation vectors with complex numbers. Jiwatthe text we
will use the vector and complex notations interchangeably, and tsandicate a complex quantity,
x for its absolute value, and for its complex conjugate.

The integral in (4.5) is diicult to perform directly, so we first take a look at the more studied
2-pt case. The relation between 2ynd« correlation functions can be written in the same way as

09 = [ ey ) Flx-y). @.7)
with
F(z):fdsz(v) DV - 2) =fd2vv—f2 ﬁ. (4.8)

Unlike the case of th&, — £_ relation, we have not assumed a statistically isotropic field for (4.4) or
(4.7). Thet, —£_ relation is actually what one should obtain after adding the assumption ofpgotro
to (4.7).

4.1.2 The form of the convolution kernels

Now we aim for obtaining the forms of tHe andGg kernels, which can be seen as the 2- and 3-
pt equivalence of the K-S kernel (4.6). Introducing the symbBatsdy +id, andV? = a§+a§ = 90*,
one can write (3.9) and (3.11) as
1o 1,
= -V, = =0, 4.9

k=YY, y=50% (4.9)
which clearly shows that both the convergercend the sheay are second-order derivatives of
the deflection potential. It is then convenient to us¢ as a link betweemr andy. Using the
identitiesV In|x| = x/|x|? andVZ2In|x| = 27r6(D2)(x) which hold for a 2Dx, one can easily verify the
consistency of (4.9) with the relation (3.7) betwegmand« (e.g. Bartelmann & Schneider 2001)
which we re-write here as

009 = [ By einix- . (@10)

Applying the operatof? on both sides of (4.10) and taking (4.9) into account, one reaches the K-S
relation (3.14), sincé(2) =4%In|2.
The same procedure can be generalized to second-order statisti@&pieguivalence of (4.10)
is
1
WXy (x2)) = 2 fdz)& In{xq -yl deY2 In|x2 = yal (k(y1)x(y2)) - (4.11)
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Using the statistical homogeneity of tlkefield, and re-defining the integration variables, (4.11)
reduces to

1
W) = = f d?y (kK (y) f d?u Injulln|xg — x2 — y — u|

) (4.12)
-5 [y @0 7 -y,
where we have defined
F'(2 = fdzu InjulIn|z—ul . (4.13)

Obviously,F is infinite at everyz, which is related to the fact thatis defined only up to an additive
constant. However, we shall only need the derivatives0fSo we define

F2=F" (-7 ()= fdzu In|u||n(|zl;|u|) , (4.14)

and will useF and ¥ interchangeably. Lep denote the angle betweenand z, (4.14) can be
rewritten as

1 > 27 |22
T(z)_éfo duulnuf0 de In(l—Tcos<p+?). (4.15)
The integral ovep yields zero if|Z < u, and 4rIn(|Z/u) otherwise. Thus
V4
F(@=2r | duulnulin(z/u)= glzlz(ln 12-1). (4.16)
0

We are now ready to applyfiiérential operators to (4.12) to get the relations of 2-pt shear and
convergence statistics. As a consistency check, we first applyeperators to (4.12), one acting
on x; and the other ox,. According to (4.9), this turns the |.h.s. of (4.12) intéxdx1)«(X2)). On
the r.h.s. of (4.12) the operators act exclusivelyron

V2 V2 F (x1— X2 - Y) = V2V2F (2) = V2 (2xn|2) = 4n%62(2), (4.17)

with z = x;—xo—y here. Using (4.17), one easily sees that the r.h.s. of (4.12) after thetiopegives
4 (kk) (X1—X2), which is equivalent to &(x1)«(x2)) under the assumption of statistical homogeneity
of thex field.
Now we apply the operatdi 9%,/4 on (4.12), which turns the L.h.s. of (4.12) intte(x1)y(X2)).
On the r.h.s. the operation again acts onlyfon

1 1
20057 (xa=x2=y) = 20'7 (2. (4.18)
also withz = x; — X — y. Remembering the definition of the kerrie(4.7), this leads to
1 1 1 z
F@Q= | dv= ———— =20 (2 = 2n— . 4.1
(2 fdvv*2 v _2) 4(9 F (2 2772*3 (4.19)

For the 3-pt kerneGg we split the integral in (4.5) into

[ -
vi2 (v —a*)2 (v¢ — b")2

_ 1 f &y 1 [ 1 s 1
(a* - b*)2 vi2 [(v —a’)2 (v - b*)2

2 f P I S
(a* — b*)3 vi2 |[vi—a vi-Db"|’
(4.20)
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Consistency checks

where we have assumedt b. From (4.19) as well as

1 1 1 z
2 — =53 - —r—
fd Veav_z 207 A= #.21)
we obtain
1 1 1 2r a b 2r a b
Go(a,b) = | dv = = I PP _
o(ab) f VR Va2l V-0 (@-b) (a*?’ i b*3) @ op) (a*2 b*z)
22)

The forms of the kernels (4.19) and (4.22) hold rigorously outside thejutanities (atz = 0
for F; ata =0, b = 0, anda = b for Gp). One may wonder if additional delta functions exist at
these singularities. We will show in Sect. 4.2 that this is not the case.

The method we used to derive the forms of the kernels (4.19) and (4.22)&&'s one to derive
the relations between other correlation functions of weak lensing quantigesyistematic way. We
present explicit forms of some of the relations in Appendix 4.9.

4.1.3 The relations

To summarize, we have obtained:

_ E 2 y—-X
) =~ f FY W) e (4.23)
and

1
(yl* _ Xl* _ y2* + XZ*)Z

2
(yyy) (X1, X2) = 3 f d?y; f d?yz (kkK)(Y1, YZ)[

X( yi=X1 . Y2—Xe )+ 1 ( Yi=X1 Ya—X )]
(1 = x1*)% (Yo' = x2")%)  (ya* — Xa* = ¥2* + x2*)3 \(y1* — Xx1*)%  (y2* = x2*)?/ |
(4.24)

In these relations we have applied the statistical homogeneity of the congerfield, but not
the statistical isotropy. Making use of the latter, one can derivg the&_ relation from (4.23), as
will be shown in Sect. 4.2.2.

4.2 Consistency checks

4.2.1 The case of unifornk

There is a physical condition which will directly serve as a test ofxthe vy relations (3.14),
(4.23) and (4.24). At the 1-pt level, for the K-S relation, a uniform @gence field does not result
in any shear. At the 2- and 3-pt level, the physical condition could beathatiform (k) ({(xx«))
field leads to a vanishing shear correlation) ((yyy)).

One can easily see that both theandGg kernel we obtained satisfy this condition. If there are
additional terms at the singularities of the kernels which contribute to the ihtegnan-zeroyy)
(¢yyy)) term would be generated and the condition would not be satisfied anyftaus.we argue
that the expressions (4.23) and (4.24) are already complete.
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4.2.2 Consistency with thet, — £_ relation

Now we consider whether (4.23) is consistent with ¢ghe- £_ relation (4.1), which can be
regarded as the isotropic form of (4.23). That the two relations aréstensis equivalent to

. 2 2 -
[Fan 2= e [F P ey 220, (4.25)

To verify that (4.25) indeed holds, we attempt to solvedfntegral on the I.h.s.,

yed_x
_ live
f ¢y( )3 f ¢(ye_|¢ el (4.26)

where¢ = ¢, — ¢x has been defined. Theintegral can be carried out using the residual theorem,
yielding 27(x? — 3y?)/x* whenx > y and zero whex < y. One can see that this result corresponds
to the Heaviside function on the r.h.s. of (4.25).

At the singularityx = y the ¢-integral is not well defined, which means one cannot rule out
the existence of additional delta function»at= y in the result of thep-integral. This ambiguity
can again be eliminated by using the physical condittoaniform (««) field leads to a null shear
correlation{(yy)’, which translates tta constanté, yields vanishing_’ here. In this case, a delta
function is indeed required to satisfy this condition, and the prefactor afi¢lta function can be
determined to be/2x, in consistency with (4.25).

The Kaiser-Squires relation and its isotropic form

A similar consistency exists between the K-S relation and its isotropic form. #sfoons are
already well-known, they can serve as a further support for owmagegt.

For an axisymmetric distribution of matter, i&x) = «(x), the following relation is established
between the shear and the convergence (see e.g. Schneider eRal. 199

y(X) = [k(x) - K(¥)] €, (4.27)
with « defined as
k(X) = %fo y dy (). (4.28)
This is equivalent to
Y09 == [ yayxo) [2H0x-3) - xoPix-y)]. (4.29)

In the case of a uniform convergence fie{#) = const., one can see that the integral of the Heaviside
function and the delta function parts cancel each other.

The similarity between (4.29) and tlfe — £_ relation (4.1) is remarkable: they both have inte-
grals of a Heaviside function part and a delta function part which caraxi other for constart
and(xk), respectively, and the 2D correspondences of both do not hawiditioaal delta function
at their singularities.
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The other shear three-point functions

4.2.3 Fourier transformations

In the Fourier plane the shear and the convergerfberdinly by a phase factor?é (3.17). This
directly reflects the fact thatis spin-2 whilex is spin-0, and leads to the well-known resRjt= P,
(3.31) as well as ¥ = D/ for £ # 0(3.16).

The Fourier plane correspondences of (4.23) and (4.24) are addyrebtainable from the
identity (3.17), as

G) = € ®x)(e), fore+0, (4.30)

and
GV (e, b2, £3) = CrP2B) (RRiy (61, €2, €3), for £1,02,63 %0, (4.31)

with 8; denoting the polar angle &f. These equations show thate= F(¢)/#2 for ¢ # 0, and that
AiBr+Baths) = _Gy(fy, £,) /73 for €1 # 0 # €» andlz = —1 — £> # 0, sinceF/x2 and—Gg/#3 are the
convolution kernels for the configuration space relations by their defisition

In Appendix 4.8 we show explicitly that the Fourier transform&gt? and—Go/2, with F and
Go given in (4.19) and (4.22), are indeedPeand &!(1+52+53)  respectively. However one cannot
obtain the forms of andGg kernels simply through inverse Fourier transforming the phase factors
e and &1h2+F3) This is due to the fact that the Fourier inversion theorem is valid strictly
only for square-integrable functions, which is not the case for thegolaasors. The same situation
occurs for the K-S kerneD.

4.3 The other shear three-point functions

Until now we have considered only the 3PCF of shear itgdlX1)y(X2)y(X3)), which is one of
the four independent possible combinations considering/tised complex quantity. The other three
are (y"(X1)y(X2)y(Xa)), (y(X1)y"(X2)y(X3)), and {y(X1)y(X2)y*(Xs)), according to the choice
made in Schneider & Lombardi (2003). Following Schneider et al. (2008)denote these four

v3PCFs bwggrt(xl, X2) (i = 0,1,2,3), with ‘cart’ emphasizing that the shear is measured in Carte-

sian coordinatesl”,g;)rt = (yyy), andl"f:';lrt (i = 1,2, 3) corresponding to the3PCF withy* at position
Xj. Since we have considered statistical homogeneity of the shear fielb;gfgedepend only on
the separation vectors of the positigm, X», andXs. The othery3PCFs, i.e. those with two or three
v*’'s, can be obtained by taking the complex conjugate of thg's.

Note thatT()(x1, X2) = (Y yy)(X1, Xa), Ta(x1,X2) = (¥ y)(xa, X2), andTE(x1, Xo) =
(yyy*)(X1, X2) are diferent functions, since; (x») is defined to be the ffierence of the positions of
the first (second) and the thigdn the bracket. Due to the same reason, they can be transformed into
each other through permutations and flips of the vertices of the triangle ddogngheir arguments
(see Fig. 4.1), and thus are not independent if argument permutatidribpgnare allowed. As an

example, one has

(XY (X2)y(Xa)) = T (X1, X2)
= (7" (X)y(Xa)y(X2)) = T (1 — X2, ~x2)
= (Y (Xo)y" (X0)¥(Xa)) = T (%2, X1)
= (y(Xa)y" (X0)¥(X2)) = TD(~X2, X1 — X2)
= (Y(X)¥(Xa)y"(X0)) = T (x2 — x4, —xq)
= (Y(Xa)y(X2)y"(X1)) = T (~x1, X2 = 1) .

(4.32)
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where diferent lines correspond toftkrent ways of labeling the same triangle with side lengihs
X2, and|x1 — Xo|. The same permutations and flips also reveal the inherent symmeﬂ&pf

_ 10

(4.33)
:r((.‘g)l’t(_xz’ X1 — X2) cart(XZ - X1, _Xl) = réoa)rt(_X]_, X2 — Xl) .

X3 X2

Xz

X5 X1

X1-X; Xi

X1 X3

Figure 4.1: Definition of the geometry of a triangle (the leftmost sketch) amdithchanges under
permutations (the first three sketches from the left) and flip (the leftmosthe@ndghtmost sketch)
of the vertices.

In the case that the shear is measured relative to a center of the tri@ﬁigleansforms ta (),
the natural components of th&PCF as defined in Schneider & Lombardi (2003). For a general
triangle configuration, all fouF.4{S are expected to be non-zero, thus all of them should be used to
exploit the full 3-pt information of cosmic shear.

Before relating the othdrcqs to thexk3PCFs, we extendto a complex quantity = k& + ixB.
Although the physical convergence is a real quantity, the converdg@idecorresponding to the
measured shear signals can have an imaginary part due to e.g. systeeraticahnd noise. The
shear component which corresponds to this unphysical imaginary fpr¢ convergence field is
identified as the B-mode, on which we will elaborate more in Sect. 4.5. Whergt#knB-mode
into consideration, the 3-pt correlation functions of the convergenicedam be written as

KO = (k) = (kEkEkEY + i1 (kBkExEY + i(kEkBKE) + i(kFkExB)
— (kERBABY — (kBiERBY — (kBiBiEY — i(kBiBi By,

K® = (ki) = (KEkEREY — i(kBiEkEY + i(kFkBKEY + i (kFxExB)
— (kERBABY + (kBiERBY + (kBiBiEY + i(kBiBiBy,

K@ = (k" iy = (KEkEREY + i(kBiFkEy — i(kFkBKEY + i(kFxExB)
+ (kERBBY — (kBiERBY + (kBiBiEY + i(kBiBiBy,

K® = (kar™y = (kEkE&E) + 1 (kBiEkEY + i(kEkBKEY — i(kFxFxB)

+ (kKERBBY + (kBRERBY — (1 BBAEY + i(kBiBiBy.

(4.34)

Apart from the E-modéxE«E«F)y term, there are still additional B-mode contributions to the real parts
of theK’s, namely(kFxB«B), (kBxF«xB), and(xBxB«F). The imaginary part of th&’s are composed

of the parity violating terms which are expected to vanish due to parity symmetnyné®ier 2003).
The property ofK® under permutations and flips of the vertices of the triangle formed by their
arguments is the same as thar
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Similar to (4.4), the relations betwe&f) . andK® fori = 1, 2,3 can be written as

T (xq,%2) = —= f d?y1 f d?y2 KB(y1, y2) Gi(X1 — Y1, X2 — ¥2), (4.35)

1
r&xe.x2) = = f d’y; f d?y> K@(y1, y2) Ga(x1 - y1. X2 - ¥2) , (4.36)

T

and 1
T x0) = = f d*y1 f d?y2 K®(y1, y2) Ga(x1 - y1. X2 — ¥2), (4.37)

T

where the convolution kernefs;, G,, andGz have been defined. Again with the aid of the K-S
relation, we can write these convolution kernels as

. , ) 2, 1 1
Gi(a, b) = fd VD) D*(v—-a) D(v-b) = fd vZ (V—a2 (v — D)2
R 4 (4.38)
:fdvﬁ (v +a)2 (v +a — b2’
, ) 2, 1 1
G2(a,b) = fd vVOV) D(V-2a) D (v-b) = fd V2 v —a)? (V- b)?
2 ) L (4.39)
=fd"$ V—a +b)2 (v + b2’
and
Ga(a. b) = f d?v D*(v) D(v - @) D(v~b) = f v v R R )

Whena # b, the product of the three terms in the integrand of (4.40) can be split inthupt®
of two, as

i 1 1
V2 (v —a)? (v - b¥)?
B 1 i 1 N 1 ~ 2 i 1 ~ 1 (4.41)
(ar-b)2\v2 | (v —a)2  (v-b")2| (a-b)PB|v-a v-b
These terms are also obtainable from doing derivatives to the k&rnel
1 1 1
2y =t ta20.2 _ 25(2)
fd v W _a) 46 0"“F (a) = n°6'“(a), (4.42)
1 1 1 T
2y — — —95*2 =
f Pyt = @) = (4.43)

This way we obtain the form of the convolution ker@). The forms for the kerngb; andG, can
be obtained likewise. The results are

Giab) = [0 + 600 - 2 -

/—\

|_\

| [
QD

N —

b*3 (4.44)

Gy(a, b) = s [6(2)(a b)+5(2)(b)] ( ! + %) , (4.45)
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71.2
Gs(a, b) = [69(@) + 52(b)| - ———5 (— - —) . (4.46)

(a* — b")? (ar-b)3\a b

The symmetries in th€a's andK’s are also reflected in th@ kernels. One can verify that
Go(a, b) = Gy(b - a,—a), Gz(a, b) = G1(—b, a— b) as results of the symmetry under permutations,
andGz(a, b) = G1(b, a), Gz(a, b) = Gz(b, a) as results of the symmetry under flips, in consistency
with (4.32). Similarly, one ha&g(a, b) = Go(b— a, —a) = Go(—b, a— b) = Gg(b, a), in consistency
with (4.33).

4.4 Inverse relations

So far we have obtained the expressions of the J@RCFs as functions of th6PCFs. Written
in a short form, they are

. 1 :
[0= -G+ KO, (4.47)

cart —

wherei runs from 0 to 3. The forms of th&; kernels are given by (4.22), (4.44), (4.45), and (4.46).
These relations can be inverted. We define the kernels of the inverensto beG;, i.e.

KO =~ LG

i cart*

(4.48)

Using the convolution theorem, it is apparent from (4.47) and (4.48) that
1 - 1 5,
(—;Gi) . (_FG‘) =1. (4.49)

From the corresponding Fourier plane relations of (4.47), we also know
_ @ — (B1+pa+pa) 21 ?i(=P1+B2+P3) _% — AiB1-B2+p3) _% — 2(B1+B2—Pa) (4.50)
71'3 ’ 7'(3 ’ 7T3 ’ 7T3 ’ '
which implies
GG = G1G: = GoG) = GaGy = n°. (4.51)

Comparing (4.49) and (4.51) one has

G =G, (4.52)
and further,
G =Gj, (4.53)

i.e. the convolution kernel for the inverse relation is the complex conjugatesadriginal kernel.

This property of the convolution kernel has its root in the fact fhandx differ only by a phase
factor. This fact also endows the convolution kernels in the 1-pt andr@lgtions between and
x with the same property. As is well known for the 1-pt relation, the inverkgioa of the K-S
relation (3.14) is (3.19), where the convolution kernel is the complex catgugf the K-S kerneD.
The inverse relation of the 2-pt relation (4.7) can also be shown to be

W00 = f Py () F*(x — ). (4.54)
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Condition of three-point B decomposition

4.5 Condition of three-point E/B decomposition

Being mathematically a polarization field, the shear field can be decomposedsfimode and
a B-mode (see Sect. 3.2.2). Performing such a decomposition when treagimiccshear data has
long been recognized as a necessity, since it provides a valuable ahéiok possible systematics
(e.g. Crittenden et al. 2002; Pen et al. 2002).

The EB-mode decomposition can be done either on the shear field itself (e.g. Bahr2@03;
Bunn 2010), or at the level of correlation functions (e.g. Schneid@6R0rhe complex survey ge-
ometry after masking, which is especially characteristic for a lensing s@evgyErben et al. 2009),
renders the first option barely feasible, and singles out the correlattidn as the basic statistic
to be applied directly to the data. Thus the natural way to perform fBentbde decomposition on
cosmic shear data is to derive statistics based on the shear correlatibarfanc

A commonly used statistic for this purpose is the aperture mass statistic (se8.3&)twhich
can be expressed as a linear combinatiah @ndé_ (3.47), where the forms of the weight functions
Tfp andT® are given explicitly in Schneider et al. (2002). The chosen forms of #ghwfunctions
guarantee the(tM§p> responds only to the E-mode a(NIi) only to the B-mode.

The aperture mass statistics has been generalized to 3-pt level by Jaakig2€04) and Kil-
binger & Schneider (2005), and is the only statistics available up to now veltimlis an FB-mode
decomposition at the 3-pt level. However, as found by Kilbinger et aDg20t cannot ensure a
clean EB-mode decomposition when applied to real data. The lack of shealat@nemeasure-
ments on small and large scales, which arises from the inability of shape maeesu for close
projected galaxy pairs and the finite field size, prohibits one from perfarthia integral in (3.47)
from zero to infinity, and thus introduces a mixing of the E- and B-modes.

In recent years, there have been seveff@rts to construct better statistics which alloyBE
mode decomposition (Schneider & Kilbinger 2007; Eifler et al. 2010; Fu &iKgbr 2010; Schnei-
der et al. 2010), all of them focusing on the cosmic shear 2-pt statistlesseTnew statistics are
based on the idea that the weight functid andT®" used in the aperture mass statistics are just
one example out of the many possibilities. In general one can definedsecder statistics in the
form (Schneider & Kilbinger 2007)

EE= f " 9 d9 [£.(NTL() + £ (NT_(9)] ,
0 (4.55)

BB~ [ 0 [£OT.0)-£(OT-0)].
for which the condition that EE responds only to E-mode and BB only to B-nwofieind to be

f 9 dd T, (3)Jo(EF) = f 9 dd T_(3)Ja(¢9), or equivalently
0 0 (4.56)

4 129°
2 o)

T.(9)=T_(9)+ f: 6 do T_(e)(— —

Note that instead of being functions of the separation length as the aperas® statistics, EE
and BB are just numbers. At first sight one seems to have reduced trenatfon quantity by
integrating over the scale dependence in (4.55). In fact, the informatiobecaasily regained by
constructing a set of weight functions satisfying (4.56). As one exar(llg,) () and(M? ) (6) for
any ¢ value can be reconstructed in the framework of (4.55) by specifVirn@) = T (9/6) /62
andT_(9) = T2 (9/6) /62
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Since the condition for B-mode decomposition (4.56) still leaves large freedom for the choice
of the weight functions, one can construct statistics which fulfill additicoaktraints, e.g. a finite
support over the separation length. If one requires that EE and B#mdsonly toé, () and
E_(9) with Inmin < ¥ < Imax Wheredmin anddmnax are the chosen small- and large-scale ffuto
T.(9) and T_() must vanish outside the same range. SihiceandT_ are interrelated by (4.56),
one can specify only one of them to satisfy this constraint. The requiretimginthe other weight
function also vanishes outside the specified range needs to be puttisnadithtegral constraints.

As shown by Schneider & Kilbinger (2007), if one choo3edo vanish for$ < dmin andd > Ymax
then to allow an [B-mode decomposition on a finite intern&hin < 9 < dmax T- has to satisfy
additionally,

Fmax dﬁ Pmax dﬁ
fﬂ — T-(9)=0= f 3 T-). (4.57)

min min

which would guarantee that, vanishes fo} < dmin andd > Imax.

Similar statistics are needed at the 3-pt level as well. The first step regsit@dormulate the
conditions for 3-pt weight functions to allow/B-mode decomposition, in analogy to (4.56). As we
will show in this section, the relations between 8PCFs and3PCFs that we derived provide a
natural way of formulating such conditions.

A pure E-mode shear 3-pt statistics is related only to the E-m@B€F<KEKEKE> but not to other

3PCFs with«® contribution. Therefore we first write the 3PCFsbfand«® as linear combinations
of the real and imaginary parts of tké)’s, using (4.34), and then relate them with fhg.s through
(4.48), as thd'¢5s are the directly measurable statistics from a lensing survey. The resadts r

1
(KExEREy = zRe[ KO+ K® 4+ K@ 4 KO |
1 * 0 * 1 * 2 * 3
- RRG[ G * T+ G * T+ G * [y + G » r((:a)rt] ,
(kExBi®By = %Re[_K(O) - K® 4 K@ 4 K(s)]
cart o+ G * Tl art| >

T 4.3
L 4an (4.58)
(kBkEiBy = ZRe[—K(O) + KW - K@ + KO

1
= - —-Re|-Gy+I - G} «TH) 2 + GO

1 * 0 * 1 * 2 * 3
LR Gy TOe o T,y G3e)

cart
(kBrkBiEy = %Re[—K(O) + KW+ K@ - KO

* (1)
art T Gl * Iﬂcart cart

1 « (0 . 2 « @3
= _RRe[_Go*r(c) +G2*F() Gs*rf:a)rt]’
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and

(kBKEKE)y = %Im[ KO - KO + K@ 1+ KO |

1 * 0
= — le[eo *F((:a)rt

(kBB iEy = %Im[ KO+ KO - K® 4 K@ |

* 1 * 2 % 3
-Gy * 1“<(:a)rt +Gj lﬂf:a)rt + Gy * r((:a)rt] ’

3)

1 « 0 .
:_4_71_3|m[G0*r() t+G3*r((:art >

car

% 1 * 2
t Gl * r<(:a)rt_ GZ * lﬂf:a)r
1 (4.59)
(ExEkB) = ZIm[ KO + KW + K@ - KO |
4
1 # 0 ® 1 * 2 % 3
= - 4_71_3|m[G0*rc(:azrt+Gl*rE:aL)rt+Gz*r( ) Gs*r( )

cart cart] >
(kBkBiB) = %Im[—K(O) + KW+ K@ 4+ KO

+ (1)
cart + Gl * r‘car

1
- - FIm[—GS # T +Gy T
TT

car

i+ Gy Iﬂ(cse;)rt )
which shows how the E- and B-mod8PCFs can be computed when the full information of the
T'carts is available. In the ideal case that there exists no noise or systemdtaakgonly the E-
mode term<3PCF<KEKEKE> is expected to be non-zero, since it corresponds to the correlation in the
physical density field which leads to the correlation in the shear signal.

Following the ideas of Schneider & Kilbinger (2007), we construct a rtetissic

EEE= f d?x, f d?x, <KEKEKE> (X1, X2) U(X1, X2), (4.60)

which by definition responds only to E-mode. With the help of (4.58) we canHBE to the
observabld ¢S, as

1
EEE=- — f d?xq f d’xo U(x1, X2) Re
473

3

f oPyy f s > G (%1 - Y1, X2 - ¥2) Ty, yz)}
i=0
3 .

[ [y 00y [ [ dxe U ) il - yaxe - yz)‘
i=0

3
f 1 f dy» ng;rt(yl, y2) (Gf + U) (y1, ¥2)
i—0

1
—— _—_Re
473

1
=—- —Re
473

’

(4.61)

where in the first equation we have specifigédo be a real function, and in the second equation we
have used the fact th&(—a, —b) = Gj(a, b).
Denoting
G +U=T0, (4.62)

the expression of EEE (4.61) has a similar form as (4.55). We can seefarthithat EEE responds
only to the E-mode if the weight functioR's satisfy

TOxG=U=TWxG; =TP G, = T® x Gs. (4.63)
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with U being a real function. One can easily verify that these conditions araatsssary condi-
tions. Noticing thaff ) « G; is the corresponding weight df), the condition that these functions
being purely real is required to separate the parity-violating and nontivigleerms in (4.34). In
addition, (4.63) is required to cancel the parity non-violating B-mode tékfm&«B), («BxF«B) and
(kBkBKE).

The statistics containing the contribution from only one of the B-mode termsecaartstructed
in the same way. Omitting the arguments for notational simplicity, they can be erpras

cart

1 .
EBB =7Re ffz TO r(') with TQ 4Gy =TV« Gy = - TP« G, = -T® + G,
i=0 ]

cart

BEB :%:R ffz ) 1"(') with TO Gy = -TW 4Gy = TP 4Gy = T 5 Gy, (4.64)
i=0

cart

1 .
BBE =7Re ffZT(') r(') with TO« Gy = -TW 4Gy = -T@ x G, = T® 5 G3,
i=0
and

[ 3
1 .
BEE=7Im ff > T0 rg;n with TQ Gy = -TD x G, = TP+ G, = T® « G,
L i=0 ]

1| |
EBE=7Im ffz TOTO | with TQ 4Gy =TW+ Gy = -T@ Gy = T® +G3,
=0 : (4.65)
1
EEB=ZIm fszm r0 | with TO 4Gy = TW 4+ Gy = T 4 G, = —T® 4 Gg,
i=0 |

1 N
BBB =7Im ffz TOTY | with TO«Gy= -TW 56y = -TP Gy = -T® « G3.

For all of them the condition tha&t©® « Gy is real has been imposed.
The four parity violating statistics (4.65) can be used as a check on parisitimgpsystematical
errors, while the other B-mode statistics (4.64) allows for a further examimatithe B-modes.
With (4.51) one can easily invert the conditions on the weight functions toesgghe weight
function T’s directly in terms of each other. Take the conditions for EEE (4.63) famgte. One
can write the Fourier transforms @fY), T andT® as functions of the Fourier transform f%
as
FO - iﬁf«» GG, T@ = ief@ GGy, TO = i6f<°> oGy (4.66)
In order to simplify these relations, we now attempt to give simple expressum@oG* fori =
1,23 Wlth (4.50) one ha@o((’l,t’z)G (€1, £,) = 78 €*f1, which does not depend da. Noticing
thatF = 72 e*¥ (see Sect. 4.2.3), we actually haSg(¢1, £2)G; (£, £2) = n*F(£1), which yields in
configuration space
(Go *G}) (a. b) = 7*F(a) 62(b). (4.67)

Similarly one can derive that
(Go * Gy) (a. b) = 2*F(b) 62(a). (Go*Gj)(a b) = n*F(a) 6 (b - a). (4.68)
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Inserting (4.67) and (4.68) into (4.66), one obtains

1 2
TO00.0) = = [y T -y () = = [y T%a-yoa) 5. (469

1 2
T, %) = 5 f oy TO(x, x2 - y)F(y) = = f oy TO(x, %2 - y)%, (4.70)

1 2
TO(x1, x2) = = fdzy TOX1 -y, x2 - YF(y) = - fdzy TO(X1 —y, x2 - Y)% . (471)

where we have used the expressiofrq#.19).

To summarize, if one chooses an arbitrary fornTéP which makesT @ « Gg real, constructs
TD, T@ andT® according to (4.69), (4.70) and (4.71), and uses these weight fuattameight
the measureﬂg;rt’s, then the resulting statistic EEE as defined in (4.61) receives contriugidg
from (kExExE) but not the termsféected by the B-mode. The B-mode statistics can be obtained from
the measureﬂf:';rt’s through a similar procedure. Equations (4.69)-(4.71) are the aralufg4.56)
for 3-pt functions.

We note again thdfgla),t, F(C?rt andl“fe")rt are not independent under transformation of their argu-
ments. Thus the statistics EEE (4.61) as well as the B-mode statistics (4.64).@8ddan all be
written in terms of linear combinations %)rt andl"((:la)rt alone. However we shall keep the current
redundancy since it allows for simple analytical expressions of the retatietween the weight
functions.

So far one still has much freedom in choosing the forrTT@P(xl, X2). This freedom can be
exploited to construct statistics which do not respond toytBBCF at smaller or larger angular

separations than can be probed by the survey. We leave this to futute wor

4.6 Numerical evaluation

4.6.1 Design of the sampling grid

We have written configuration space relations between weak lensing statisttes form of
convolutions, e.g. (4.23) and (4.24), where the convolution kernels@amplex, have non-trivial
spin numbers, and feature singularities. The convolutions can be pedarumerically, but special
care must be taken of these properties of the integration kernel.

One can take the K-S kernell/z? as an example of this kind of convolution kernel. The K-S
kernel has an integer spin of 2, so an azimuthal integration of the kemma@hé its singularity at
z = 0 should give zero, i.e. the values of the kernel along the circle canmmistiives due to their
opposite phases. This property renders its singularity harmless, bis é¢h&acondition that the
sampling grid should guarantee the cancellation. Such a requirement etialsgrid design has
already been realized in early lensing mass reconstruction works (@&Skchneider 1996). For
a spin-2 kernel like the K-S kernel, a common square grid alreafiigesi if the singularity is placed
at a center of rotational symmetry, i.e. either onto a grid point or at the ceffiear grid points. In
the case of the former, the grid point at the singularity has to be discafthedatter, as shown by
the left panel in Fig. 4.2, is a better choice considering the sampling homibgene

In general we need to deal with convolution kernels witfiedtent spin numbers. For example,
the kernelF betweeny2PCF and2PCF (4.19), which is proportional &y 23, has a spin of 4. In
this case the square grid cannot guarantee the phase cancellatiod #rewingularity any more
(see Fig. 4.3). With a similar analysis as shown in Fig. 4.3, one can see tlaatgutar grid (middle
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Figure 4.2: Examples of sampling grids applicable for 2D integration ovewukindernels of
different spin values. The cross in the center indicates the position of théesitygin the integration
kernel.

panel, Fig.4.2) can actually guarantee the phase cancellation arounshgotasty of a spin-4
kernel. When using a triangular grid, the singularity can also be put eithargoid point or at the
center of three grid points. The former choice loses the grid point at thalaiity, but is applicable
to spin-3 kernels where the latter fails.

>
T 2
| it : -4
| ! AN
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Figure 4.3: A square grid guarantees phase cancellation around th&asitygpf spin-2 kernels (left
panel), but not that of spin-4 kernels (right panel). The crossésatedthe position of the singularity
of the integration kernel, while the dots are the grid points closest to the siitguldre polar angles
of the kernel at the grid points are indicated by the directions of the arféorsa spin-2 kernel they
cancel each other on a square grid already. For a spin-4 kernetdinegl each other if the square
grid is duplicated, rotated 45 degrees and put on top of the original grid.

To achieve a high numerical accuracy, it is required that the circle int@grand the singularity
is well-sampled. If one uses a square (triangular) grid, the innermota sronly sampled by four
(six) grid points, which is not enough for marymodels. To remedy this, one can duplicate the
sampling grid, rotate it around the singularity, and put it on top of the origjridl We show the
result with the square grid and 45 degrees of rotation in the right pafédot.2. The resulting grid
is also applicable for spin-4 kernels, as shown in the right panel of E3g.This non-standard way
of constructing sampling grids, although not creating the best grids in tedre@mpling dficiency,
deals very well with the singularity of the integration kernel, and can easilgrgée sampling grids
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applicable for kernels of any spin number. We use this kind of grid in oarerical sampling.

Additional complications arise when performing the integration for 3-pt staistithere are
two 2D integrals in (4.4), (4.35), (4.36) and (4.37). The corresponiitegyration kernels (4.22),
(4.44), (4.45) and (4.46) all have three singularities. Luckily we can eplit integration kernel
into four additive terms and perform the integrals over each of them atgbarMoreover, one can
apply translational shifts to the integrands so that in each 2D integral therdyi®ne singularity
in the integration kernel. The singularity can also be shifted to the origin ofrttle fpr numerical
simplicity. After all these procedures, the four relations can be written as

2
F(C?n(xl, Xz) = 7? fdzyl fdzyz { - [(KKK)(yz + X1,Y1+ Y2+ X2) + (KKK)(yl + X1+ VY2, Y2+ Xz)]
1
e yﬁg + [(kki)(Y2 + X1, Y1 + Yo + X2) + (kkk)(Y1 + X1 + Yo, Y2 + X2)] e nyz} ,
(4.72)
F(l) _ 1 2 * * 1
carl(X1, X2) = - dy (kK ke)(X1, Y + X2) + (K*k&)(Y + X1, Y + X2)) P
2 1 (4.73)
+ = fdz)’1 fdz}fz (KKK} (Y2 + X1, Y1 + X2) = (K'kk) (Y1 + Y2 + X1, Y1 + X2)) —3—,
Pis y1*° Y2
1"(2) _ 1 2 * # 1
cart(X1, X2) = - dy (k" k)Y + X1, Y + X2) + (kk“ k)Y + X1, X2)) F
2 (4.74)
- = fdz}ll fdz}lz (& K)(YL + X1, Y1+ Y2 + X2) = (ke K) (Y1 + X1, Y2 + X2)) =35 —
Pis Y1 y2
r® R . . 1
carl(X1, X2) = - d7y ((kka™)(X1, Y + X2) + (kkk™)(Y + X1, X2)) F
2 11
T2 fdz)&fdzyz ((RK™Y(X1 + Y2, Y1 + Y2 + X2) + (kkk™)(Y1 + Y2 + X1, X2 + Y2)) 3y,
(4.75)

We can see that the integration kernels are either spin-2, spin-4, 0B spihsampling grids shown
in Fig. 4.2 are applicable to spin-3 kernels.

4.6.2 Numerical results for two-point functions

We now construct several toy models for 2-pt and 3-pt convergandeshear correlations, and
use them to test the relations derived as well as the numerical sampling method.

In the 2-pt case, we build two models for the convergence correlatiartiéum («x«) (r) = 1/r,
and (kk) (r) = e’ Using the well-established, — £_ relation (4.1) we can obtain the corre-
sponding models for the shear correlation functigpy) (r) = € /r for (k«)(r) = 1/r, and
(yyy (r) = e¥ier [(r4 +ar2+6) e’ +2r2 - 6] /1 for (kk) (r) = e,

Fig. 4.4 shows the comparison between these shear correlation functiaisnaod the shear
correlation functions sampled using (4.23), with the corresponding ogenee correlation function
models as input. The numerically sampled values match the analytical models \er{Figet.4
shows the comparison between these shear correlation function modetiseasitear correlation
functions sampled using (4.23), with the corresponding convergemslaton function models as
input. The numerically sampled values match the analytical models very well.
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Figure 4.4; Left panels:{yy)(r) with fixed ¢, = 7/6 as a function of. Right panels:Polar angle

of (yy)(r) with fixedr = 20 as a function of;. The black curves are the expected values while the
dots are the results from numerical evaluation of 2D integral in (4.23).(d#)eused in the upper
panels igkk)(r) = 1/r and in the lower panekkk)(r) = exp(r?).

4.6.3 Numerical results for three-point functions

We build models for 3pt shear and convergence correlation functiongheidpt correlation
function of the deflection potentigl. Suppose we evaluate the fields at positi¥ng andZ. By
definition we have

0002 = 575) (3%3) (372) woomemu@. (4.76
1 2 1 2 1 2
0 = (57 (3% (%) woouenu@y. @.77)
and
00y @2 = (522 (56) (507) woomemmey. (4.79

Now we assume a model fag(X)yv(Y)y(Z)) as

WMWY = 55 €, (4.79)

with x = X — Z andy = Y — Z. This model is special in the sense that it does not depend on the
angle betweer andy, but is nevertheless simple and rather local. The statistical homogeneity of
the field enables us to write the 3pt correlation function as a function of twsg2ilal coordinates,
which we have chosen here to handy.
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Figure 4.5: Comparison of numerically evaluategy)(x, y) and{yyy*)(Xx, y) with their analytical
toy models described in this section adopting 0.05. ‘Re’ and ‘Im’ indicate the real and imaginary
parts of the shear correlation functioneft panels:The functions are evaluatedat= 0.25k e~'7/3
andy = 0.17k €8 for different values ok; Right panels: The functions are evaluated at=
0.75 e'7/3 andy = 0.45 &? for 50 equally spaced values.

Performing the derivatives, we find the corresponding 3pt sheaicandergence correlation
functions also depend only 06— Z = x andY — Z = y, and read

e—a(X2+y2)
(krK)(X, Y) = Q3
X [ —4+a(60C +y?) +8x - y) - a®((€ + y2)? + 40¢ + YA)X - y + 6% + o xPy? X + ylz] ,
(4.80)
YY) = XV (x + y)? €10, (4.81)
and
YY) x.y) = |25 + 8y + 27 — daxy X + Y + a®XPYP(x" + y)?] e 0+ (4.82)

Using (4.80) as the input model fétkk), we numerically evaluatéy yy)(x, y) and{yyy*)(x, y)
using (4.72) and (4.75). The results are then compared to the analyticalsrfodthe 3pt shear
correlation functions (4.81) and (4.82). As shown in Fig. 4.5, the numegiGduations closely
match the analytical models.

Hence, we have proven numerically that the relations betw8&CFs and3PCFs (4.72) and
(4.75) are correct, no additional delta functions are needed. At the tiawmeve have shown that
these relations can be numerically evaluated with a high accuracy. Treetieése relations provide
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a better way of relating the observable shear signal to the underlying mattsitydfield than the
original way, i.e. using the relations between #3#CFs and the bispectrum, since the latter does
not allow for an easy accurate numerical evaluation.

4.7 Conclusion

We derived the relations between the 3-pt shear and convergeredation functions which
had been an important missing link between weak lensing three-point statisties. intermediate
step, we found the 2-pt analogue of these relations and proved thatet i@thsymmetrized form
of the existingé, — £_ relation. By drawing analogy to the corresponding 1-pt relations, namely
the Kaiser-Squires relation and its isotropic form, we have further reyehid the newly derived
relations and already established results fit into the same theoretical frakndWie consistency of
the configuration space relations with the known Fourier space relatiwesals been shown.

The 3-pt relations derived are simple both analytically and numerically. Thaaybe used as
an alternative way of relating the measurable 3-pt weak lensing statistics wistatistics of the
underlying matter density field. Up to now one has to use the relations betweeBRICFs and
the convergence bispectrum to link theory to the observable 3-pt sheat.sSince the 3PCFs are
very oscillatory and complicated functions of the convergence bispe¢Bahmeider et al. 2005), it
is hard to study the behavior of the 3-pt shear signal for a given cgemee bispectrum model. With
the relations we derived, one can instead study the properties of theh@gutsignal by constructing
models for the«3PCFs.

The method we used to derive these relations is based on the relation béteéept correla-
tion functions of the lensing deflection potential and the convergencesdrme method also allows
one to systematically derive the relations between correlations functiotisesfweak lensing quan-
tities, including the deflection potentigl the sheay, the convergence, and the deflection angle
. We present the forms of some 2- and 3-pt relations in Appendix. 4.9. $bthem are poten-
tially of interest for studies of galaxy-galaxy(-galaxy) lensing and lemsirthe Cosmic Microwave
Background.

Since the relations we obtained have complex kernels with non-trivial spitbeuand singu-
larities, special care is needed when they are used numerically. We deatethfiow the numerical
evaluation can be done, in particular the design of the sampling grid. Exaofpiesnerical eval-
uation were shown for both 2- and 3-pt relations using toy models for theecgence correlation
function. Their results match very well with the analytical expectations.

Separating E- and B-modes from measurements o 8RCFs is particularly important since
the systematicféects at the 3-pt level are less understood. So far the only 3-pt statikbtasng
for an EEB-mode decomposition is the aperture mass statistics (Jarvis et al. 2004id&ahet al.
2005) which is plagued with the same problem as the 2-pt aperture statistitscpout by Kilbinger
et al. (2006). To amend this problem, one needs to construct the 3rpspondence of the newly
developed 2-pt statistics (Schneider & Kilbinger 2007; Eifler et al. 2L0& Kilbinger 2010;
Schneider et al. 2010) which allows for afBEmode decomposition on a finite interval. As a direct
theoretical application of the 3-pt relations derived in this study, we usem tio formulate the
conditions for EB-mode decomposition of lensing 3-pt statistics, in analogy to the 2-pt condition
given by Schneider & Kilbinger (2007). These conditions are the bddisnmulating additional
constraints which lead to/B-mode decomposition over a finite region, therefore they provide a
starting point for future works on constructing better 3-pt shear statistics

Our work was done for the case of weak lensing, but since it has osly i mathematical
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structure of the shear and the convergence, it applies also to otherd&ixation fields such as the
polarization fluctuations of the Cosmic Microwave Background.

4.8 Appendix: Fourier transform of the F and Gg kernels

The F andGg kernels, as defined in (4.7) and (4.4) relate the 2- and 3-pt sheapauergence
correlation functions, respectively. In Sect. 2 we have derived tieiicit forms, see (4.19) and
(4.22). According to the Fourier space relations of the shear and igamee statistics (4.30) and
(4.31), one expects th&/z2 and é¥ are Fourier pairs, as well asGg/73 and &®152+53) Here
we perform the Fourier transforms Bf 7> and-Go/#3, with F andGg given in (4.19) and (4.22).

The Fourier transformation of the kerrfelis a 2D integral of the form

@_ 2, ita F(a)_gf 2. ita &
2 _fdae i dae =l (4.83)

The Fourier transformation of the kerr@p can be greatly simplified by performing translational
shifts to the integration variables. It turns out that the full transformatioarigposed of 2D integrals
similar to that in (4.83),

GO(fl’ £2) fdz fdzb oriltrartyb) (_Go(& b))

3

b 1 a b
d2 —if1-a fdz —|t’2b ( a ) (_ _ )
f b*)2 a*3 b*3 + ( * b*)3 a*Z b*2
d2 —if1ra_< deb —ilo- b deb —ifb Y de It’l a
f © - b*)2 7r2 © b*)2
d2 |t’1a deb —if>-b deb —if>-b de Il’l a
f © b*)3 T © b*)3
fdz I(f1+f2) a_— fdz —I(’z b 1 fdz |(£’1+f2)a fdz —Ifl b l
b*2
fdz I(f1+f2) a_— fdz —Il’z b l fdz |(t’1+t’2)a de —Ifl b 1
b2

(4.84)

Performing the 2D integrals in polar coordinates results in

de eita_ 4 a f daf b € Hida g-itacospa—p) _ o, v[; d_:J4(€a)=g 4i,B’ (4.85)

f drae 2 Zf da f A, €510 e7i(@c0s0ah) = orj 36 f da J(ca) = 21 &
a*2 0 0 o 7
(4.86)
fdza e—maa1.3 _ f‘” da f deba 3ita gritacospa—p) _ o e3|,6'f d_J3(€ )_ it 3|ﬁ
0 0
(4.87)

53



CHAPTER 4. RELATIONS BETWEEN THREE-POINT CONFIGURATION 8E SHEAR
AND CONVERGENCE STATISTICS

an

00 27 00
f dPaer— 1 f da f Ay €72 e7(@00S6ah) = _op P f 9@, (ca) = —n 2.
o a Jo o a

(4.88)
Combining (4.83) and (4.85) yields
F() _2 (E e4iﬁ) _ B (4.89)
2 nw\2

which demonstrates that the Fourier transformatioR/af is indeed the phase factof#in (4.30).
For theGq kernel we still need to take account tifat= ¢3 €2 = —¢1 — £, so that

_c“;o(el,rz) 2 (7r 4,/33)( eZi,Bz) 2 (Zm e353)(|7r€2 3.,3)

3 - x2\2 772 t3 4
2 (5 &) (n ) - 2 £\ (176 iy
m2\2 7r2 53 4
_ dibe2ibe | (2 g3y, pipiaiss , UL gipiesiss

3 3
G Gtz Goa G
20 + 462 t o2 e2¢ + G2
ats(a+ls)  Lli(le+l) | Gbls (1 N l)
60 et 2\ G

(4.90)
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Thus the Fourier transformation efGo/7® equals the phase factor?@+£2+53) in (4.31), as ex-
pected.

4.9 Appendix: Relations between other correlation functions

In Sect. 4.1.2 we have derived the relations between the shear and teegemte 2- and 3-pt
correlation functions. The method we used is based on the relation betwe@npthcorrelation
functions of the convergenceand the deflection potentiad (4.12). Thus the method can easily
be generated to derive relations between the correlation functiemod that of any weak lensing
quantityg which can be expressed as derivativegyofWe denoteg = Dgys, and write these 2-pt
relations in a general form

(90 () = = f Py (ki) (y) H(xa - X2 - ). (4.91)

Listed below are some candidates foand the corresponding operatog,Wheree is the deflection
angle defined as = dy.




Appendix: Relations between other correlation functions

Table 4.1: Forms of the convolution kerrl as defined in (4.91) for éerent weak lensing 2-pt
statistics.

(XX) | H(F) | integration form ofH | H(2)
() F [d>v InMIniz—=v| | (x/2)|Z2*(Inz- 1)
)y | 30°F | - [dv ﬁ In|vi (n/2) 2/ Z
{aar) —%F fdzv %ﬁ -nz/Z*
(kpy | 300°F | m[dPv 6(D2)(z— V) In v ninz
(ay) %839’ f d’v v—t# -nz/ 7
{ak) %620*7: ﬂ'deV ﬁé(D)(V) n/Z*
(a*y) | 36%0°F [ v |z
oy | 30°F S &y 212/ 73
wy) | 3°0°F | -n [Py &HoD(z-V) —n/Z2
(ki) | 28%072F 7726(?2)(2)
Y %626*277 fdzv %ﬁ 772(5Dz)(z)

Let DgDgy act on both sides of the relation betwe@y) and(xx) (4.11), and use the statistical
homogeneity of the field, one can obtain an integration form of the ker#£lin analogy to (4.8).
Let the same operator act on both sides of (4.12), one can exfirasslerivatives of the convolution
kernel# in (4.12), asH (X1 — X2 — Y) = DgDg ¥ (X1 — X2 — y). Further inserting the explicit form of
F (4.19) allows one to obtain the explicit form &f as a function ok = x; — xo — y. We summarize
some of the 2-pt relations in Table. 4.1. Note that the fornH@f~) for (aa) has a minus sign,
which is due to the fact thak, dx, 7 (X1 — X2 — y) = —0°F (2) with z= X1 — xo — V.

We write the relations betweefrkx) and the 3-pt correlation functions of tlggs also in a
uniform convolutional form,

1
(999”) (X1, x2) = = fdz}llfdz)& (ki) (Y1, ¥2) 1(X1 = Y1, X2 = ¥2) . (4.92)

To find the explicit form of the convolution kernklwe first write it into an integral form, in analogy
to (4.5), and then split it into terms which can be expressed also as derssafithe kernef, like
(4.20). Then with the explicit form of one can reach the explicit form of We list the forms of
the convolution kernell for some 3-pt statistics in Table. 4.2.

Some of these relations, e.g. thosedar, (yy«), and(ykk), can find their application in galaxy-
galaxy(-galaxy) lensing which corresponds to the cross-correlatisimear and galaxy number den-
sity. Some other relations, e.g. those o), (ax), and(aax), are potentially of interest for studies
of the lensing &ects on the Cosmic Microwave Background and its cross-correlation wigkyga
weak-lensing maps (Hu 2000).
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Table 4.2: Forms of the convolution keriehs defined in (4.92) for flierent weak lensing 3-pt statistics.

(XXX | integration form ofl \ split form of | \ I(a, b)

ey | oo =

@ | [ gy (¢ - 7) 25 (& )
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Chapter 5

Bispectrum covariance in the flat-sky
limit

As the matter density field evolves to be more and more non-Gaussian umdineer gravi-
tational clustering, information which is originally contained exclusively in the &tatistics leaks
into higher-order statistics. In cosmic shear studies, several authashewn that the lowest order
of them, i.e. the 3-pt statistics, already adds much information to the 2-pt opartioular it can
break the near degeneracy between the density parafhgtnd the power spectrum normalization
og (Bernardeau et al. 1997; Jain & Seljak 1997; van Waerbeke et &, 188 1999). More recent
studies by Takada & Jain (2004), TJO4 afterwards, and@&etal. (2010), showed that including
3-pt statistics can improve parameter constraints significantly, typically bstarfaf three.

In order to quantify the information content in lensing 3-pt statistics theotigtiome needs to
have an expression for the covariance matrix of the 3-pt statistics. Inhthper we aim at deriving
an expression for the bispectrum covariatB1, £», £3)B(¢4, (s, £5)) for cosmic shear.

Previous work done within a flat-sky spherical harmonic formalism (HWO200the context of
the CMB has been frequently referred to for such an expressionetavseveral drawbacks exist
in this approach. For instance, the expression given by Hu (2000ljdsordy for integer arguments
and does not allow a free binning choice, whereas it is desirable to évdhsbispectrum and its
covariance at real-valued angular frequencies and use e.g. a logariiimning. The other draw-
backs are formal ones, e.g. the formula contains the Wigner symbol ywhgsi&al meaning within
a flat-sky consideration remains obscure; the finite survey size is aecbian only by multiplying
a factor, which lacks justification. There is also an unjustified assumption mable coordinate
transformation between the full sky and the 2D plane.

All these drawbacks are associated with the spherical harmonic formalis(2080) adopted.
Thus we attempt a pure 2D Fourier-plane approach. We also work in thek§ldimit since it greatly
simplifies the mathematical form. Furthermore, the flat-sky limit is appropriateréatipally all
applications of weak lensing as the correlation of signals is only measutedseparations of a few
degrees.

The major results of this chapter is published in Joachimi et al. (2009).
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CHAPTER 5. BISPECTRUM COVARIANCE IN THE FLAT-SKY LIMIT

5.1 Bispectrum estimator

5.1.1 Estimator for B(¢y, £2, £3)

The first and the most crucial step of deriving an expression for thpedtigum covariance is
to find a proper expression for the estimator of the bispectB(fy, £, £3), where thel’s are real-
valued angular frequencies in our approach. We will use the conveedaspectrum (3.37) instead
of the shear bispectrum due to formal simplicity. Since the twtedbnly by a phase factor, the
result can easily be applied to the shear bispectrum.

To define an estimator of the bispectrum is to express it in terms of the cemaerg i.e. to
‘invert’ the equation (3.37). There are three points to consider in doingisst, the argument's in
the bispectrum are the absolute values of the vatdpsuggesting that angular averaging is needed.
Second, the bispectrum is defined only when the triangle condition is satidfidluis condition
is satisfied, the value of the Dirac delta function is infinity, nevertheless eadanto ‘invert’ it to
obtain an estimator for the bispectrum. This seemingly unsolvable problentieari®ne considers
a finite survey sizé\. The Dirac Delta function can be expressed as

@y L[y dex
s&() = (2n)2fd x efx, (5.1)

One can easily verify that, when the integral on the r.h.s. of (5.1) is cahfine region with sizé\,
one hasé(Dz)(t’ — 0) — A/(27)? instead of infinity, which means the inversion of the delta function
here should simply give a factorA. Third, one still needs to specify the triangle condition. This
can be done by addingég)(t’l + {7 + £3) to the estimator.

Having taken care of all three points, our estimator of the bispectrum reads

. 1 2 dpe, (P dr, (P Obey ., @
Bt =5 [ 52 [ 2 [ SO M) i+ et (52)

whereg,, is the polar angle of, and we have put in a normalization functibmo keep the estimator

unbiased: F_fzn% fz”%f%%(s@(f + 6+ 63) ®3)
“Jo 2t Jo 2w Jo 2x REETRRTED |

which is the angular average of the 2D delta funcﬁﬁr‘(l’l + lr + £3).
The next step is to expredsin terms of the absolute values of tiiis. This we achieve by
writing the Dirac delta function in its integral form and exchanging the oréldreintegrals,

F=f2” d¢[1 fzn d¢[2 fzﬂ d¢6’3 d’0 ei(l’1+l’2+f3)'9
o 2t Jo 2t Jo 2 J (20?2

— f dgge\]o(fle) Jo(£26) Jo(£36) &4

1
—— A (1,02, €3) .
20 (61, 62, €3)

The last expression in (5.4) was given in Gradshteyn et al. (200@xemhis defined to be

-1
{% \2BG+ 2606 + 20503 - ¢} - €5 - fg} if 61—l < bs< i+l

A (1,02, 63) =
0 else

(5.5)
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Bispectrum estimator

5.1.2 Geometrical interpretation

It is interesting to note that ! is just the area of the triangle constructedfby, andés. This
motivated us to find a geometrical interpretation for the angular averagiﬁg)a’fl + £ + £3) in
(5.3). If one fixes the lengths @f,f> and¢3 and allows their polar angles to vary, in almost all cases
the three of them do not form a triangle. Since the delta function specifiégsahgle condition of
the three vectors, it actually corresponds to the probability of the thredergeforming a triangle
when their polar angles can be any value from OtoRased on this idea, we consider a fixed vector
{1, and allow#, and¢; to vary within annuli with widthsA¢, andAfs, as sketched in Fig. 5.1.

Figure 5.1: Sketch of the annuli and their overlap for fikgdThe region of overlap is approximated
by the shaded parallelograms. Figure from Joachimi et al. (2009).

The probability of the three vectors forming a triangle can be represegtéaebarea of the
overlap regions of the two annu divided by the areas of the annk(¢2) andAr(¢3), in the limit
of Ats, Afz — 0. Thus

o dge, (T dpe, (P doe, (o) 2A
o1+ +63)= Im —m—— . 5.6
j; 21 fo 21 fo on 0 atlerly)= im AR(C2) Ar(L3) (5.6)

With the triangle formed by, £», and 3 being parametrized b¥,, 3, anda, which is the
internal angle opposité (see Fig. 5.1)A as defined in (5.5) can be written As= 2551551/ sina.
Observing that\; = Af>Al3/ sine, and

AR(6) = 2r6iAL; whenAg — Ofori=1,2,3, (5.7)

one reproduces (5.4).

5.1.3 Estimator for bin-averaged bispectrumB({Tl, Co, {73)

In practice, the bispectrum is estimated not at every angular frequemay &ngular frequency
bins. Thus we further average (5.2) over the bin-widths to obtain thevgiraged bispectrum esti-
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CHAPTER 5. BISPECTRUM COVARIANCE IN THE FLAT-SKY LIMIT

mator
g dts f dt, f dts »
B((1, L, 3) = -1 —2 —3 B(ly, b2, ¢
(1, £2. 5) A Al Jae, Ala Jaey Als (b1, £2.3)
212 = — — d?¢ d?e d?e¢
_ @7y 1(51,52,53)f =2 22 [ 93 (5.8)
A re(r) AR(C1) Jaa@) AR(E2) Jan(zz) AR(L3)

X K(b1) K(€2) K(E3) 5G (b1 + b2+ £3),

which takes the average over the angular frequency aﬁﬂ(lﬁ).
We demonstrate that (5.8) is an unbiased estimator by taking the ensemblgeavktize esti-
mator,

N T T 20?17 o d?¢ d?t d?¢
<B(51, o, f3)> = u/\_l (51, 52,53)f ~ ! _ 2 _ 2
A Ar(@) AR(C1) Janin) AR(C2) (i) AR(ER)

x (22 (6261 + £ + £3)) B(E1, €2, 03)
- - = d?¢ d?¢ d?¢
2(27T)2A_1(51752,53)f _ = B 2 B 3
Ar(tr) AR((1) Jar(t2) AR(C2) Jar(ts) AR(C3)
x 6861 + €2 + £3) B(1, 2, 63) .

(5.9)

In the first step the definition of the bispectrum (3.37) was inserted, whénethe second step the
identitycS(Dz)(t’ — 0) - A/(27)? has been used.
Further inserting (5.4) into (5.9), one obtains

e dest f deat; déats
(B(1. 2. b)) = (20)°A7 (1. 0. 0s) j; o PeE) nes ) e AT 6.10)

X A (€1, €2, 3) B({1, {2, (3) .

We take the approximation that the annuli are thin enough suchtftat £,, £3) within the integral
can be taken out of the integration and be replaced (81, £, ¢3). Applying in addition (5.7), one
arrives at

R deyt dtst dest S
(Babm)~ [ [ 222 [ S pe =B bh). 61D
Aty C1AC1 Jae, C2Aly Jaes L3AL3

where in the last step the definition of the bin-averaged bispectrum, which Bamilar form as
(5.8), was used. Hence, (5.8) defines an unbiased estimator of thedvagad bispectrum.
5.2 Bispectrum covariance
The covariance of the bin-averaged bispectrum is defined as
Cov(B(l1. (2. 6s). B(Ca. Cs. L6))

= ((B(t1, €2, ta) - (B(Ca, 2, £3))) (Bllas L5, o) — (Blla, G5, o)) (5.12)
= (B(t1. €2, £3) B(la, s, £6)) — B((1, €2, (3) Bl(a, s, Lo) -
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Comparison with the spherical harmonic approach

With the expression of bispectrum estimator at hand, expanding the r.n(5.18j is a rather

straightforward process, though tedious since it involves expan@(tg, o, t3) B(La, s, {’6)>, a 6-
pt correlator into its connected parts. The total bispectrum covarianobiaaéed reads

Cov(B((1. (2. €3), B(la. Cs. (s))

° Lz P
= ——— AN (€1, €2, 63) Dy 7, 22 m 22 P(€1)P(E2)P(€
A€1€2£3A€1A€2A€3 ( 1,12 3) 01,02,03,64,05,06 ( 1) ( 2) ( 3)

C

+ 5 O fl fz f3 fs fe SO(l1 + b5 + £3) (b3 + b5 + £6) B(l, 62, £3) B((3, s, (5) + (8 perm.)
C

+ & Oy fl fz f3 f4 fs SO(l1 + b+ £3) 6D(€a + b5 — £3) Pa(lr, b2, £a, £5) P(¢3) + (8 perm.)

C
+Zﬁfzﬂﬁﬁﬁég)([l+[2+£3)6(D2)([4+[5+€6) Pe(fl,fz,fg,fmfs,fe),

where the prefactor reads= (2r)° A1 ({71 0o, 5_3) AL ({74 L, Ee) P4 andPg stand for the trispec-
trum and the pentaspectrum respectively, and shorthand notationsfizedd

ﬁm&mwm3ﬁ (5.14)

(5.13)

and

Dflfz,fs,&fs,fe E651'54 (55205 65’356 + 65155 652& 6'5356 + 55154 6[2[6 64’3[5 (5 15)
+ 0165 Otats Otaty + Otits Otaty Otsts + Otits Otats Otaty -

In the linear and slightly non-linear regime, the first term of (5.13) dominatgsto now it
has been a common practice to use the first term of (5.13) to approximate thbisptctrum
covariance. This approximation, dubbed @&ussian approximatiofor the bispectrum covariance,
is actually not well-justified for applying to the actual convergence fieldvéier, the use the full
covariance is heavily constrained by its computational load. Thereforediisssary to investigate
how well the Gaussian approximation holds in the non-Gaussian regime. eAtrstudy (Martin
2011) found that for the matter density field in the local Universe it is maltgijusstified to use the
Gaussian approximation.

5.3 Comparison with the spherical harmonic approach

On the celestial sphere one can decompose the randon figdol spherical harmonics, which
yields a set of co@icients«,m with integer{ andm satisfyingé > 0 and—¢ < m < ¢. Hu (2000)
defined a bispectrum estimator for CMB observables in terms of sphedoaldmics cofficients.
We reproduce it for the convergence fields

~ 01 (o {3
B¢’1,¢’2,53 = Z ( ) Keymy Keomp Kezmg 5 (5-16)
My oM m M Mg

where the symbol with the parenthesis is the Wigner-3j symbol. It obeysi#mglie condition, i.e.
it is non-zero only foilf1 — £5| < €3 < {1 + €2 and permutations thereof. In addition, the Wigner
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symbol WithmAl = mp = mg = 0 vanishes for odd; + ¢, + £3. The Gaussian approximation of the
covariance 0By, ¢, ¢, is given as (Hu 2000)

4
Cov(Br, s Biuinis) = 5 Diiiaiaiaisis PiPiPr - (5.17)
whereP, denotes the full-sky power spectrum. Ad hocfactor of fs‘lé = 4n/A has been added to
account for finite sky coverage of the survey.
Approximate relations between the spherical harmonic and Fourier-plamer gspectra and
bispectra are given in the same paper. They are

61 € ¢ 201+ 1)(26, + 1) (263 + 1
Pr =~ P(¢) ; Bfl,fz,fgz((;- S 8) \/( 1+ 1)( iln UGE )5(51,52,53), (5.18)

where the approximations hold well féy, £, {3 > 1.
With (5.16), (5.17), and (5.18) one can derive a flat-sky spherigahdwaic covariance as (Hu
2000; Takada & Jain 2004)

(B(er, 02, €3) B(la, 15, Co)), ~ QD)@+ ) (@2s D 0 0 0

Sl A e )_2 P(G) P() P(E)
(5.19)

where angular frequencies are required to be integerfand> + £3 even. We have put a subscript
‘sp’ to distinguish it from the covariance matrix obtained through the Foptare approach. As is
true for the Fourier plane approach, (5.19) holdsffes 1 only.

To compare the widely used formula (5.19) to our results, a relation betweafvitmer sym-
bol andA has to be found. We refer to Borodin et al. (1978) and the referethegsin for an
approximation formula for the Wigner 3-j symbol,

2 2 2 2 2
1 b t3 ) _ 2 1 1 1 1
( 0 0 O) ~ﬂ{2(€1+2) (€2+2) +2(€2+2) (€3+2)

1)2 1\? 1\* 1\* 1\ Y2
+2(€3+§) (€1+§) —(€1+§) —(€2+§) —(€3+§)} ,
which is a very good approximation fd, £>, £3 > 1. We further make the approximation that
ti + 1/2 ~ ¢;, which allow us to find from (5.5) and (5.20)

b b6\ A0l 0)
0 0 0 n

Using the Gaussian approximation, i.e. keeping the first term of (5.13)timgp€¢5.21), and
specifying thatA¢; = Af> = Af3 = 1, one can see that the resulting relation is equivalent to (5.19) if
one takes the limit2+ 1 ~ 2¢ for ¢ > 1, except for (5.19) being a factor of 2 smaller.

This factor of 2 discrepancy is simply related to the fact that (5.13) is dkfreall £ values
whereas (5.19) is defined only fér + £, + 3 being even. If one calculates the Fisher information
using both approaches, the number of bispectrum entries in the Founner @tgroach is twice
as large as that in the spherical harmonic approach. Therefore tioe 6 difference in their
covariance matrices is actually required to guarantee the agreement obtapgroaches in terms of
their results on the information content. We calculate the Fisher informatioritaate by lensing
bispectra with 10& ¢; < €2 < €3 < €max @Ndémax ranging from 100 and 150 with both approaches.
The result is shown in Fig. 5.2, which shows good agreement betweendtamtwoaches (for more
details see Joachimi et al. 2009).

(5.20)

(5.21)
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5.4 Conclusion

In this study we derived the form of the bispectrum covariance in the Klagpproximation.
We defined an unbiased bispectrum estimator for 2D Fourier modesgadeiteover angular fre-
guency bins to mimic the measuring process in reality, and computed the coeapicthe averaged
bispectrum estimator. During this process a geometrical interpretation oftéggah

2 dée, o de, 2 dee (2)

which is needed in the averaging step, was found.

We showed the equivalence between the covariance matrix we deridethaingiven in Hu
(2000) in terms of the Fisher information content they lead to. Moreovesheed that our ap-
proach does not s$ier from the drawbacks of the spherical harmonic approach used i2600).
In Hu (2000) the covariance matrix formula contains the Wigner symbol g/pbgsical meaning
within a flat-sky consideration remains obscure; the finite survey size @iated for only by mul-
tiplying a factor; and an unjustified assumption is made in the coordinate traratfon between
full sky and 2D plane. In addition to these formal drawbacks, the cavegianatrix in Hu (2000)
is valid only for integer arguments and does not allow a free binning chaiedalthe limitation
of the spherical harmonic approach, whereas ours can evaluate pleetbisn and its covariance at
real-valued angular frequencies and use e.g. a logarithmic binning.
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Chapter 6

Controlling intrinsic-shear alignment in
three-point weak lensing statistics

3-pt weak lensing statistics provide cosmic information that complements 2-ptisgatidow-
ever, both statistics §lier from systematic errors. The ultimate performance of these future lensing
surveys largely depends on the how well the systematic errors can trellah(e.g. Huterer et al.
2006). In this study we focus on a particularly worrisome systematic erravsmic shear studies:
the intrinsic-shear alignment, and demonstrate a way to control it for sheastatistics. Specif-
ically, we generalize the nulling technique, which is a model-independent melénadoped to
eliminate intrinsic-shear alignment at the 2-pt level, to the 3-pt level, andiheentrolling the
corresponding 3-pt systematics. The content in this chapter is publisisdd &t al. (2010).

6.1 Intrinsic-shear alignment

In the weak lensing limit the observed ellipticity of a galagys can be written as the sum of
the intrinsic ellipticitye of the galaxy, and the shearwhich is caused by gravitational lensing of
the foreground matter distribution,

€obs= € + 7. (6.1)

Hereegps € andy are complex quantities. Intrinsic-shear alignment is defined in 2-pt cosmac she
statistics as the correlation between the intrinsic ellipticity of one galaxy and #a shanother
galaxy (the Gl term, Hirata & Seljak 2004). The 3-pt Sta'[IS(IéO%S €obE Obs), a correlator of ellip-
ticities of three galaxy imagds j andk, can also be expanded into lensing (GGG), intrinsic-shear
(GGl and GlI), and intrinsic (Ill) terms:

(ebpeapsEing) = GGG+ GGl + Gll + 11l , with (6.2)
GGG=(y'y/*) . (6.3)

GGl = (gyly*) + <6|Jyky'> (v (6.4)
Gl = (e y*) + (e efy') + (efely!) (6.5)
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LENSING STATISTICS

= (ele/ef) . (6.6)

Physically, if one assumes that galaxies are randomly oriented on thengkihe desired GGG
term remains on the right-hand side of (6.2). However, when these galasgesubject to the
tidal gravitational force of the same matter structure (e.g. they formed uheenfluence of the
same massive dark matter halo), their shapes can intrinsically align and beooated, giving
rise to a nonvanishing Ill term. Furthermore, GGI and GlI terms can berged when a matter
structure tidally influences close-by galaxies and at the same time contribdtesgioear signal of
background objects, leading to correlations among them.

In 2-pt statistics, the corresponding intrinsic (II) and intrinsic-shedxt@ms have been subject
to detailed studies both theoretically (e.g. Catelan et al. 2001; Croft & Me&2@@d; Heavens et al.
2000; Hui & Zhang 2002; Mackey et al. 2002; Jing 2002; Hirata & Sefjak4; Heymans et al.
2006; Bridle & Abdalla 2007; Schneider & Bridle 2010) and observaligri®rown et al. 2002;
Heymans et al. 2004; Mandelbaum et al. 2006, 2011; Hirata et al. Za0&f al. 2008; Brainerd
et al. 2009; Okumura et al. 2009; Okumura & Jing 2009; Joachimi et all)2@lthough the results
of these studies show large variations, most of them are consistent witBeac@@tamination by
both 1l and GI correlations for future surveys with photometric redshitirimation. Especially,
neglecting these correlations can bias the dark energy equation of gi@tesperw, by as much as
50 % (Bridle & King 2007) for a “shallow” survey as described in Amara &fiegier (2007). For
3-pt shear statistics, there have been few measurements up to nowr(Reaunat al. 2002b; Pen
et al. 2003; Jarvis et al. 2004). However the potential systematics levieése studies is found
to be high. A recent numerical study by Semboloni et al. (2008) shovagdrttrinsic alignments
affect 3-pt weak lensing statistics more strongly than at the 2-pt level forem giurvey depth. In
particular, neglecting GGI and Gll systematics would lead to an underestinudtibe GGG signal
by 5-10% for a moderately deep survey like the CFHTLS Wide. Therefore, tamtiag¢cstatistical
power expected for cosmic shear in the future surveys, it is essentiahtmtthese systematics.

The intrinsic alignment, I (Ill) in the two- (three-) point case, is relativetyaightforward to
eliminate, since it requires that the galaxies in consideration are physicadly taeach other, i.e.
have very similar redshifts and small angular separation (King & Schn2@2, 2003; Heymans
& Heavens 2003; Takada & White 2004). The control of intrinsic-slsgatematics, Gl for the 2-pt
case and GGl in the 3-pt case (Gll also requires that two of the thregigmkre physically close
and thus can be eliminated in the same way as Il and Ill), turns out to be agreater challenge.
However, as already pointed out by HS04, the characteristic depemaengalaxy redshifts is a
valuable piece of information that helps to control the intrinsic-shear aligtemen

Several methods for this have already been constructed in the cont@xitcdtatistics. They
can be roughly classified into three categories: modeling (King 2005; Bricteng§ 2007; Bern-
stein 2009), nulling (Joachimi & Schneider 2008, JS08 hereafterhiroa& Schneider 2009) and
self-calibration (Zhang 2010; Joachimi & Bridle 2010). Modeling sefegraosmic shear from the
intrinsic-shear alignmentfict by constructing template functions for the latter. ets from un-
certainties of the model due to the lack of knowledge of the angular scakedsldift dependence of
the intrinsic-shear signal. The nulling technique employs the characteridshifiedependence of
the intrinsic-shear signal to “null it out”. Itis a purely geometrical methadliamodel-independent,
but sutfers from a significant information loss. Self-calibration intends to solve tbielgm of in-
formation loss by using additional information from the galaxy distribution tditicate” the signal.
The original form of self-calibration, proposed by Zhang (2010), islekindependent but strong
assumptions have been made. Joachimi & Bridle (2010) then develop it intdeimpmethod, by
treating intrinsic alignments and galaxy biasing as free functions of scaleedaift.
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All these methods have the potential of being generalized to 3-pt statistioswedocus on the
nulling technique, and establish it as a method to reduce the 3-pt intringic-aighments GGl and
Gll. Since GllI can be removed by discarding close pairs of galaxiesthg ioase of Il controlling
(e.g. Heymans & Heavens 2003), we focus on the control of GGI sy$itsna

We will work in the context of a spatially flat CDM cosmology with a variable damkrgy whose
equation of state is parameterizedvags = Wy + Wa(1 — &), with a being the cosmic scale factor.
The adopted fiducial values for cosmological parameterare= 0.3, Qp = 0.045,Qqe = 0.7,
wo = -0.95,w, = 0.0,h = 0.7, ng = 1.0, andog = 0.8. Here,h is the dimensionless Hubble
parameter defined biylg = 100hkm/s/Mpc.

6.2 The nulling technique applied to three-point shear tomography

6.2.1 Principle of the nulling technique

The shear on the image of a distant galaxy is a result of gravitational distoftight caused by
the inhomogeneous 3D matter distribution in the foreground of that galaxydtational simplicity,
we will use the dimensionless surface mass density (the convergeimstgad of the shearas a
measure for the lensing signal throughout the chapter, although in reaigighal is based on the
measurement of the shear. This will ndffegt our results sinceandy are linearly related on each
redshift plane while our method is dealing with the redshift dependencesof {the same reason
justifies the turning to the Fourier domain in the next subsection).

When one measures the sheathe direct observable is the galaxy ellipticiyys = € + y. The
sheary is a signal caused by gravitational distortion which is a deterministic proedsse the
intrinsic ellipticity ¢ can be further written as the sum of a deterministic p&?‘twhich is caused
by intrinsic alignment, and a stochastic pgft’ which does not correlate with any other quantity.
There is no correlation betweeft" of different galaxies either.

We definexgpsandk; which are the correspondence&ﬁﬁ‘+y andeldet. We remove the stochastic
part sincex is deterministic. Note that,,s and« are analogs of the dimensionless surface mass
densitykx but do not have any direct physical meaningcadoes. They are complex quantities in
general and can lead to a B-mode signal. To better distinguish the real nalglagufrom them,
we denote it agg in the rest of this chapter since it is the physical quantity which is related to the
gravitational lensing signal. Keeping the dominating linear term, the conveggercan be written
as (details see e.g. Schneider 2006):

6.7)

3QmH2 s —v) 6 (v,
KG(07XS): m Of dXX(XS /\/) (X /\/)

2c? Xs a(y) -’

whereé is the 3D matter density contragts is the comoving distance of the background galaxy
which is acting as a source, aay) is the cosmic scale factor at the comoving distapasf &
which is acting as a lens.

Equation (6.7) clearly shows that the contribution of the matter inhomogefaitycomoving
distancey; to the cosmic shear signal of background galaxies can be consideeetiiastion of
the source distancegs, and this function is proportional to4 yi/xs. The nulling technique takes
advantage of this characteristic dependence on source digtabgeonstructing a weight function
T(xi, xs) such that the product @f(yi, xs) and 1- yi/xs has an average of zero on the range between
i and the comoving distance to the horizan:
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X hor Xi
[ des Tt (1 2) 0. (6.9
Xi /\/S
One then uses this weight function as a weight for integrating over theesdigtance:
R "X hor
ka(xi, 0) = dys T(xi, xs) kc(6, xs) - (6.9)
Xi

The resulting new measure of shear sigagly;, ) is then free of contributions from the matter
inhomogeneity at distangg. Note that although the weight functidnhas two argumentg; and
xs here, we consider it as a function gf for a particulary;.

Consider a correlatc(rk bs/<0bs> with comoving distanceg; < yj. With a similar decomposition

as (6.2), it is straightforward to see that the Gl term in (tm|s<G>. The term</<G/<I > vanishes since
the lensing signal at; is correlated only with matter witly < yi, whereaSKIJ originates solely
from physical processes happeningatlf we |ntegrate</< KG> overy; with a weight function that

eliminates the contributions tki; by the matter inhomogeneity at distange this correlator will

also vanish,
X hor

dij T(ri.x;) (Kk5) = 0. (6.10)

Xi
smce it is just the matter inhomogeneity at distapchat gives rise to the correlation betwe¢|and

&+ Thus, when we integrate ovér‘obg%m) with the same weight function, the Gl contamination in
|t WI|| be “nulled out”. Equation (6.8) is the condition that the weight functibshould satisfy in
order to “null” the intrinsic-shear alignment terms, so we call it “the nullingciton”.

The same applies to 3-pt statistics. Consider a correQagggébSK'ébS) with y; being the smallest
comoving distance of the three. Both Gll and GGI systematics contained iibdtinate from
the matter inhomogeneity at distange Typically, the generation of Gll systematics requires that
Xi ® Xj < xx. While the generation of GGI requirgs < xj andy; < yx. For both cases, the
dependence of Gll or GGI systematics gnis also just 1- yi/xk. SO0 new measures built as
f)()i‘“"’ Ak T (i X ) (Kb kb Ko o) with T satisfying the nulling condition for 3-pt statistics

X hor Xi

doc Tl (1- 2] =0 61
Xi Xk
will be free of both GII and GGI contamination. Agaif(xi,xj,xx) here should be seen as a
function ofyx whose form depends on andy;.

Note that this method only depends on the characteristic redshift depresief the lensing
signal and intrinsic-alignment signals, and is not limited to E-mode fields. This éagsuring
feature since while thegs field is a pure E-mode field to first order, tkefield can have a B-mode
component. However, if parity-invariance is assumed, any correlatioetién which contains an
odd number of B-mode shear components vanishes (Schneider 20@3}hére should be no B-
mode component in the GGI signal.

6.2.2 Nulling formalism for lensing bispectrum tomography

Since the nulling technique relies on the distinct redshift dependence iittimsic-alignment
signal, redshift information is crucial for it. With the help of near-infrabaghds, forthcoming multi-
color imaging surveys can provide rather accurate photometric reddhbiftriation for the galaxies
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(e.g. Abdalla et al. 2008; Bordoloi et al. 2010), allowing tomographicietudf cosmic shear statis-
tics. We base our study on cosmic shear bispectrum tomography, and dhdimerresponding
formalism of the nulling technique in the following.
Given the galaxy redshift probability distribution of redshift biwhich we denote ap(')(z)
(')(/\/s) dXs/dz one can define the average convergence field in redshifthyinntegrating«(6, ys)
in (6.7) overpS (Xs) We turn to angular frequency space now and define

. "X hor .
0(0) = fo dvs P9 () Ra(,xs) (6.12)

wherekg(¢, xs) is the Fourier transform ofs (0, ys). To better show the relation betwe%i(?) and
3D matter inhomogeneity in Fourier spatfk, y), one can combine (6.7) and (6.12) and write

. "X hor ! ~
0= [TaewO s . (6.13)
by defining a lensing weight function®(y) as
. 30 Hz/\/ hor
W (y) := &f D (e 14
) 2800 J, s Ps (Xs) (6.14)

The tomographic lensing bispectrum is defined via
(KR 0Dk (t3)) = (21)°BUS(t1. 2. £5) (b1 + £2 + L) . (6.15)

where the Dirac delta function ensures that the bispectrum is defined belyéy, £», andfs form
a triangle. This fact arises from statistical homogeneity, while that the lirspecan be defined
as a function independent of the directions of the angular frequeratgreearises from statistical
isotropy.

In a survey, the convergence fialghsis determined from the observed galaxy ellipticities, and
the corresponding bispectruBaps sufers from intrinsic-shear alignments. As we did with the 3-pt
correlator in Sect. 6.1, we separate the observed lensing bispectrumdaritutherms:

Bobs = Beca + Beal + Bai + B - (6.16)

Among them,Bgg|, Bgi andBy;; can be linked to the convergence in a similar way as (6.15), for
example

<’~<|(i)([1)’~<g)(€2)’~‘g()(53)> = (271)23218(517 2,03) 6p(f1 + b2 + £3) . (6.17)

Here we assume disjunct redshift bins andi It be the redshift bin with the lowest redshift, so
< (')(fl)Kl(’)(t’z)/?(k)(l’g» and(x(')(l’l)/?g)(fz)kl(k)(f3)> both vanish due to the same reason as explained
in Sect. 6.2.1 for the 2-pt statistics.

The purpose of the nulling technigue is to fil®4,sin such a way that the GGI term is strongly
suppressed in comparison with the GGG term. The Gll and Ill terms camf@vesl by ignoring
the signal coming from blspectruBﬂ’k)(é’l, (>, £3) with two or three equal redshift bins.

To fulfill this purpose, we construct our new measures as

Nz

YO (1, 6, 63) = ) TW(n) B (6, €2, 63) i A, (6.18)
k=i+1
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whereN; is the total number of redshift bing, is the derivative of comoving distance with respect
to redshift, andAz is the width of redshift birk. The weight function is written now a8/ (y\)
sincei and j indicate two redshift bins, i.e. two populations of galaxies, rather than twweimg
distances as in the previous subsection. The wéi§htis required to satisfy the nulling condition
(6.8) in its discretized form,

Nz
o) = §" T () (1_ _) X Az =0, (6.19)

for all j > i. Here,y; andyk should be chosen such that they represent well the distance to redshift
binsi andk. In this study we choose them to be the distances corresponding to the mestiihiit of

the bin. The summation over ind&runs fromi + 1 rather than since we consider only bispectrum
measures witlj > i andk > i to avoid Ill and Gll systematics. In this ca%é';) in (6.18) can be

written as a sum oB(”k 5 and B(G”é)l, andY(®) can be expressed as

YU, 62, 65) = Z T () BUS (1, £2, 63) xf Az + Z TW () BUS (L1, L2, 63) xf Az

k=i+1 k=i+1
(6.20)
Suppose one has infinitely many redshift bins, then the lensing S|gnal |k1 daosed by the
matter inhomogeneity in binis exactly proportional to % yi/xk, which meansB |(€1,€2, {3) can
be written as a product of 4 y; /yk and some function of the parameters other than

BUK) (41, €2, €3) = F (xiv xj. €1, C2. €3) (1 - jﬁ) - (6.21)
Then we have
Ny, B - N, .
> TW0) BEGI(E, €2, 63) xic Az = T (xisxjs €1, €2, 63) ) TV (1) (l_ _) Hedac=0.
. - Xk
k=i+1 k=i+l
(6.22)

This suggests that only the GGG contribution is left in the nulled mea&iitethe GGI contribution
has been “nulled out” due to the nulling condition. If only a limited number of mgdbins is
available, (6.21) holds only approximately, leading to a residual in (6.22).

Since the nulling condition is the only condition that the wei@it) must satisfy in order to
“null”, there is much freedom in choosing the form of it. We would like to furtBpecify its form
such that it preserves as much Fisher informatio¥ih as possible. The method we have adopted
for the nulling weight construction will be detailed in Sect. 6.4.

Note that for eachi{j) combination, one can in principle apply more than one nulling weight to
the original bispectrum, and obtain more nulled measures. If one retainarttigion of maximizing
the Fisher information and demands that all the weight functions built for(ipmecombination
are orthogonal to each other, one arrives at higher-order modebkaba the second-most, third-
most, etc., information content (higher-order weights, see JS08). Thetmtdoer of such linearly
independent nulled measures for a certaji)(equals the possible values bf> i + 1. In this
schematic study we will only use the optimum, i.e. the first-order nulling weightswll/assess
the information loss due to this limitation in Sect. 6.5.4.
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6.3 Modeling

6.3.1 Survey characteristics

We set up a fictitious survey with a survey sizefof 4000 ded which is similar to the survey
size of DES. This can be easily scaled to any survey size using the pooyadity of statistical errors
to A~1/2, We assume a galaxy intrinsic ellipticity dispersion= o (2" = 0.35. As galaxy redshift
probability distribution we adopt the frequently used parameterization (Siredil E994),

(z)oc(z)aex (Z)ﬁ (6.23)

Ps % p %) [ .

and usezg = 0.64,a = 2,8 = 1.5. The distribution is cut atnax = 3 and normalized to 1.
The corresponding median redshift of this fictitious survegds= 0.9, which is compatible to a
survey like EUCLID. We adopt an average galaxy number dengity 40 arcmim? which is again
EUCLID-like.

Disjunct redshift bins without photo-z error are assumed, which meashth galaxy redshift
probability distribution in redshift bin takes the formpg)(z) « ps(2) if and only if the redshift
that corresponds to comoving distangeis within the boundaries of redshift bin A number of
10 redshift bins is used by default. The boundaries of the redshiftaraset such that each bin
contains the same number of galaxies.

We adopt 20 angular frequency bins spaced logarithmically betwiggn= 50 and{max =
3000, and denote the characteristic angular frequency of a bfn &8¢ithin this range the noise
properties of the cosmic shear field are still not too far in the non-Gaussgane, allowing a more
realistic theoretical estimation of the bispectrum and its covariance. Whethauthber of angular
frequency bins can reconstruct the angular frequency depeadadérnbe bispectrum is tested, and
20 bins are found to be flicient for our requirements on precision. This is also expected since the
bispectrum is rather featureless as a function of angular frequency.

6.3.2 Bispectrum and its covariance

We show the modeling dBggg and its covariance in this section. We will only consider the
tomographic bispectrum at redshift bins satisfyiig< z; andz < z, which already ensures an
elimination of B, andBg) systematics in our case.

Applying Limber’s equation, it can be shown that the tomographic conmesgbispectrum can
be written as a projection of the 3D matter bispectiytk, ko, ks; x) (see e.g. TJ04):

e WOOWD W P
Beao(las €2, 63) = f L, 4@) W) B(s(—l,—z,—S;X) . (6.24)
0 X X X X

To computeBs, we employ the fitting formula by Scoccimarro & Couchman (2001). A compar-
ison of this formula with the halo model results can be found in Takada & JADBEDb).

We use the expression (5.13) for the bispectrum covariance and kbeghe first term of it.
This Gaussian approximation is justified in this case since we constrain asdslwsing angular
scales withy < 3000. As argued in TJO04, the first term in (5.13) still dominated featlues in this
range. Keeping only this term and adapt (5.13) to tomographic lensingchigpe the bispectrum
covariance reads
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27)3 T
(27) A 1(51, {2, 53)
NN
x (P (£1)PU™ (£2)P*V (£3) 57,7, 67,7, 0737, + 5 PEIMS),
(6.25)

=
COV(B(CI.;JG)C;(Q, 02, 63), BEY) (4, Cs, fe)) =

in which The termA (¢4, 2, £3) is defined in (5.5), an@()(¢) is the observed tomographic power
spectrum which contains the intrinsic ellipticity noise (e.g. Kaiser 1992; H®;138achimi et al.
2008):

2
P () = PU(e) + Sij 2__ (6.26)
|

wheren; is the galaxy number density in redshift binWe use the Eisenstein & Hu (1998) transfer
function to evaluate the linear 3D matter power spectrum, and the Smith et &) f200g function
for the nonlinear power spectrum.

6.3.3 Toy intrinsic-shear alignment model

In this section we present a toy model for generating GGI systematics. tBmpéysical gener-
ation of intrinsic-shear alignments concerns nonlinear growth of struahgeomplex astrophysical
processes which are not easy to quantify, a realistic model is not yi&ldea Current simulations
involving baryonic matter also have some way to go before they can simulaterleeagion of the
GGl systematics reliably.

Up to now there has not been any attempt to measure GGI and Gll in galxeysuSemboloni
et al. (2008) studied these systematics using ray-tracing simulations. g fits in real space
to projected Gll and GGl signals, but the results are still too crude to leadttioient constraints
on an intrinsic-shear alignment model.

This situation emphasizes the importance of a method intended to control insiresac-align-
ment to be model-independent, especially at the 3-pt level. Since this is tadacase nulling
technique, for this work we only require a simple model Bﬂfé)l which satisfies the characteristic
redshift dependence and leads to a reasonable bias.

Based on the observation that the lensing bispectrum expression (6:24)5 airectly from
(6.13) and the definition of the tomography bispectrum (6.15), weB&@ also to a 3D bispectrum
Bl5|55 via

Xhor O YWD ()WK b1 byt
ngg(fl,fz,&)_f Ps &) (X) (X) .55(—1,—2,—3;)(). (6.27)
X X X
Similar to Bs(ky, ko, k3) which is given by
(8(k1, 1)3(ka, )3(Ks, x)) = (21)° 6p (ke + Kz + ka) Bs(Ka, ko, ks x), (6.28)
Bs,ss IS defined via
(81 (ke x)3(k2. x)3(Ka. x)) = (2m) (ke + ka + ks) Bsas(Ka, ko, ks x). (6.29)

whered; (k) is the 3D density field which is responsible for the intrinsic alignment, and ifiestis
0= [Tae W) (6.30
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Figure 6.1: Distribution of the nulled Fisher information as defined in (6.40}fel>, {3) bin and
per redshift bin combination amongfiirent angular frequency triangle shapes and sizes. Results
for four redshift bin combinations,(j) are presented.eft panel Distribution of the nulled Fisher
information among dferent triangle configurations. We consider triangles with the common short-
est side lengtli; = 171 which corresponds to the 7th angular frequency bin. Due to ounitlogec
binning and the constraint that the three side lengths must be able to formmgldrianly 8 such
triangle configurations exist. Plotted is the nulled Fisher information containgege 8 triangles
againsta, which is the angle opposite to the shortest side length in that triangle. Smallmr
respond to more elongated triangles, and latgeorrespond to almost equilateral triangl&sght
panel Distribution of the nulled Fisher information contributed by eah{>, £3) bin over diterent
triangle sizes. A fixed triangle shape with: ¢, : £3 =1 : 364 : 452 (corresponds to the leftmost

points in the left panel) is chosen. The nulled Fisher information containederfq -, £3) bin is
plotted against the shortest side lengttof each triangle.

The definition of both<f’) ands, originates from the deterministic part of galaxy intrinsic ellipticity
eldet. We have assumed the existence of these underlying smooth fields. Simitditigadhave
been defined in Joachimi & Bridle (2010), see also Hirata & Seljak (2004 )Sxhneider & Bridle
(2010). We would like to point out again that, although we introduce theastiies for the clarity
of our model, we do not need them for the main purpose of this study. Whaeed to model is the

_ _ el
projected GGl bispectrum ;.

Note that in (6.27), the weight for the lowest redshift biis the source redshift distribution
function p) which is zero outside redshift binrather than the lensing weight® which is a much
broader function. Sincel('* depends only on physical processes at redshifti l@nd is inferred
from ellipticity measurements in this bin, amé)"ls linked to the 3D matter density through the
Iensi'r_]? weightV(), this assignment of weight functions will ensure the correct redshiogence
of BUX).

When the redshift bins are not disjunct, however, the intrinsic alignmemékézn no longer be
associated with bim. There will be two permutations in both the left-hand side of (6.17) and the
right-hand side of (6.27), similar to the 2-pt case, e.g. Eq. 11 in Hirata &ISE[204).

The modeling ofB;,5s is then a pure matter of choice. We build a simple 3D GGI bispectrum
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with power-law dependence on both redshifind spatial frequendy:

1+z )r—2

Bs,s5 (K1, k2, K3; x) 1= —A Bs (Kref, Kref, Kref; X (Zmed) (1 T+ Zood

ke 2(s-2) ko 2(s-2) ke )2(&2)
8 {(kref) +(kref) +(kref ’

wherezmneqis the median redshift of the whole survey, afidks, r, sare free parameters. Among
them the parametés,s is designed to be a characteristic wave number, whose value we set to be a
weakly nonlinear scale of 16Mpc™ here. The minus sign ensures that the contamination of GGl
systematics leads to an underestimation of the GGG signal, as found by Senaibalo2008).

Little is known about the redshift and angular scale dependends gf However one can
roughly estimate how it compares to tgss signal. A linear alignment model suggests «
diin p(2/[(1 + 2) D, (2)] (see e.g. Hirata & Seljak 2004), in whiglfz) is the mean density of the
Universe,D, (2) is the growth factor, and, is the linear matter density contrast. Thus we have,
very roughly,d; o« (1 + 2)38ji, which suggest8s,ss « (1 + 2)° Bsss. The linear alignment model
assumes that the intrinsic alignment is linearly related to the local tidal gravitHfiieldge.g. Cate-
lan et al. 2001; Hirata & Seljak 2004). If this holds true, we also exBggh to have a stronger
angular scale dependence thgs since tidal gravitational interaction follows the inverse cube law
rather than the inverse square law which gravity itself follows. FaAC®DM model, in the weakly
nonlinear regime where perturbation theory holds, the dependeigsadn (1+ 2) has a negative
power shallower thar4, and the dependence &rhas a power of around2. In this study we
choose = 0, s = 1 as default. We also study the cases ef —-2,r = 2, ands = 0 whose results
will be shown in Fig. 6.4 below.

As for the amplitudeA of the GGI signal, the only direct study up to now is Semboloni et al.
(2008), which suggests an overall GGGG ratio of 10 % for az,, = 0.7 survey for elliptical
galaxies and few percent for a mixed sample of elliptical and spiral galaxieshis study we
adjustA such that the amplitude of the tomographic GGI bispectrum is limited to be within 10 % of
the amplitude of the lensing GGG signal, i.e. @&BGs 10 % at redshift bin combinations with
Z < zj andz < z where the GGl signal is expected to be most significant. This leads to aegtativ
modest overall GGGGG ratio at percent level. We will show examples of the generated GGI and
GGG signals in Fig. 6.3. As an order-of-magnitude estimate, one can alsotteaGGIGGG ratio
to that of GJGG by expanding 3-pt signals to couples of 2-pt signals using perturbaémry, in
analogy to the Scoccimarro & Couchman (2001) fitting formula. For the dage< z; ~ %, the
leading order terms would give that the GGGG ratio approximates that of @G evaluated at
redshiftsz, andz;. This suggests that our adopted G&EG ratio is also consistent with available
observational studies of the Gl signal (Mandelbaum et al. 2006, 24itdta et al. 2007; Fu et al.
2008; Okumura et al. 2009; Okumura & Jing 2009), although the resutteeé studies vary a lot
according to dierent median redshift, color and luminosity of the selected galaxy sample.

(6.31)

6.4 Construction of nulling weights

As mentioned in Sect.6.2.2, we would like to construct a single first-orderhivéimction
T (y) for each {, j) combination which preserves the maximum of information. This can be seen as
a constrained optimization problem. The constraining condition here is the ncdiimdition and the
quantity to be optimized is the Fisher information after nulling. In JS08, sepeaatical methods
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were developed to solve this optimization problem at the 2-pt level, and wery ggreement was
found among the dierent methods.

We adopt the simplified analytical approach as described in JS08, ardhtgéte it for 3-pt
statistics here. For convenience we introduce the following notations:
the bispectrum covariance mat@ovB, whose elements are

CovB(X, -1 j™ - = Cov(BYGK((1. L2, (3), BIRU(la, b5, o)) ; (6.32)

the covariance matri€ovY of the nulled bispectrd, whose elements are
i Jm_ _y . D(ps £ 22). Y (2, 2= ¢
CoWY( ;- zipaa) = Cov(YWD(£y, €2, £3), Y™ (4, L, L))

N; N
2 N G L . (6.33)
=31 Cov(BYUK(1. £2. £3). Ba(las 5. £6)) T (1) T™ () i i Az Az

avectorB,, whose elements are partial derivatives of the bispectrum with respeet to$mologi-
cal parametep,

y BN (£, 65, €3)
ijk . 9BGgGG\t1, 12, t3)
B,/z(;l,;z,gs = op, ; (6.34)
and a corresponding vectdr, for nulled bispectr&r, whose elements are
i YUy, by, £3)
1) . ) s
YuG o) = o, : (6.35)

Then the Fisher information matrix from the original bispectra can be writtefiolewing
TJO4)

F,=B,CovB'B, , (6.36)

and that from the nulled bispectra can be written as

F, =Y ,.CovyY, . (6.37)

Here the matrix multiplication is a summation of possible angular frequency comsiagtiot,, £3)
and redshift bin combinationsijK) for the original bispectra andj) for the nulled bispectra. In
(6.36) and (6.37)CovB™* and CovY ! indicate the inverse of the covariance matrix. When the
covariance is approximated by triples of power spectra, the covariateeéen two dierent angular
frequency combinationg{, {2, {3) # (€4, s, {g) IS zero, see (6.25), which means that the covariance
matrix is block diagonal. In this case the matrix inversion can be done sdpdmteach block
specified by an angular frequency combinatién 42, £3).

According to the idea of the simplified analytical approach, we consider igheiFinforma-

tion on one cosmological parameter contained in bispectrum meﬁl&@éﬁ, (>, £3) with a single
(¢1, €2, £3) combination and with redshift bin,(j, k) combinations having common ) indices. For
every {, j) combination we build nulling weight¥ () which maximizes the nulled Fisher matrix
using the method of Lagrange multipliers. Since here the nulled Fisher matexesaontribu-
tion only from certain angular frequency and redshift combinations, evet it asFSJ) to avoid
ambiguity. Fg‘) has only one component since only one cosmological parameter is takemimto ¢

sideration. As only a single/{, {2, £3) combination is involved, we will omit thé-dependence in
all variables in the rest of this subsection to keep a compact form.
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Again for notational simplicity, we follow JS08 and introduce a vector notatefobows. For
each {, j) in consideration, let the values of the weighitd) () form a vectorT = Ty, and define
another vectop and a matrixC with elements

pr =B (™) xi Az, (6.38)

Cikn := CovB(*; My yi 1 Az Az, . (6.39)

Thus ng) can be expressed, according to (6.37), as

2
(i) v (] ~1ij i iy _ (T-p)
Fo'/ =Y CovY )Y = —. 6.40
o) =Y., (1) Y ) = i (6.40)
We further define a vectdr with elements
f = (1 - )ﬁ) i Az (6.41)
Xk
to write the nulling condition (6.19) as
oi=T.f=0. (6.42)

The problem of finding nulling weight§ which maximizngj) under the constraint given by
the nulling condition can be solved with the method of Lagrange multipliers byidgfanfunction

. N T-p)?
G:=FW 4+ 00) = (URTOR (6.43)
T°CT

with A being the Lagrange multiplier, and setting the gradiert @fith respect tdr to zero,

T-p = ((T-p))2
V1G=20 ———-2CT |—=—=]| +4f =0. 6.44
TC=% ey T°CT (6.44)
The solution to this equation is (for more details see JS08)
_ ffé—lp _
T=N{ClHp-—=2LcCct}, 6.45
{ Y } (6.45)

with the normalizationV adjusted to givéT|* = 1. L

Apparently the thus constructed nulling weights depend on whHigh'A, £3) combination is
considered and with respect to which cosmological parameter we optimizddhmation content.
In this study the default cosmological parameter to optimiz&4s and we choose for each {)
combination the 4y, £, £3) combination whE:h_mgximizeES’). However one needs to be aware
that this serves only as a clear choice offa {>, {3) combination and is not necessarily the best
in terms of information preservation considering all angular frequency &nd all cosmological
parameters. -

_ To show which triangle shapes and sizes contain more information, WeFf;%against the
(61, €2, £3) triangle shape and size for four typicalj) combinations in Fig. 6.1. In the left panel, the
nulled informationg’) contained in dierent triangles with a common shortest side lerfgth 171
is plotted against, which is the angle opposite 3. Due to our logarithmic binning in angular

frequency, only eighté, £, £3) combinations withY; = 171 can form triangles. One sees that the
more elongated triangles (small contain much more Fisher information than the almost equilateral
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Figure 6.2: Nulling weightd ()) for redshift bins = 1, j = 2 are plotted against the redshift value
of the third redshift indexk. Remarkable consistency is found between nulling weights optimized
on different parameters, shown witHfidirent line styles.

triangles (larger). The small separation between the 3rd and the 4th points from the leftsedau
by the degeneracy of fierent triangle shapes with respectatoe.g. two equal and very long side
lengths can result in the same valuexads two shorter side lengths with a lengtktelience close to
the length of the shortest side length. The right panel shows the distrilmitioe Fisher information
contained in onef, {», £3) bin over the triangle size. When the redshift in consideration is higher,
the peak of the information distribution moves to higher angular frequenties.figure suggests
that most information comes from high redshifts and small angular scales.

To explore the sensitivity of nulling weights on the choice of the cosmologiaedrpeter, we
construct seven sets of weight functions, each optimizing the informatiotembin terms of one
parameter. For alli{j) combinations we find that the nulling weights are not very sensitive to the
choice of parameter. As an example, the weightsifg) & (1, 2) are shown in Fig. 6.2. This result
is rather surprising at first sight, since foffdrent parameters the distribution of information (con-
tained in the bispectrum) over redshift bins is quitdedent. However, such insensitivity suggests
that the shapes of nulling weights are already strongly constrained aadeonstruction scheme.
One constraint is, evidently, the nulling condition. Moreover, considdhirgact that we optimize
the nulling weights for each,(j) combination with respect to the information content they preserve,
we have already required the shapes of these first order nulling weigidsas smooth as possible.

The fact that these two conditions have already imposed strong constriaihis nulling weights
also suggests that nulling weights can be robustly d@hciently constructed, i.e. it is not critical to
construct the “best” nulling weights.

6.5 Performance of the nulling technique

6.5.1 GGJGGG ratio

What the nulling technigue “nulls” is the GGI signBg;, so the GGIGGG ratio is the most
direct quantification of its performance. We plot the modeled GGI and GGéetiisa before and
after nulling in Fig. 6.3. The original GGI signhal is shown in the left panelslaghed lines. For
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Figure 6.3: Tomographic convergence bispectrum (GGG, solid cuanelahtrinsic-shear alignment
(GG, dashed curves) for equilateral triangles are plotted againsjieiaide length. Measures both
before (left panel) and after (right panel) applying the nulling techn{@andY respectively) are
shown for three typical redshift bim, (j) combinations in the three rows.

comparison the GGG signals are shown as solid curves. The resultearefsin equilateral triangle
configurations for the convenience of presenting. One sees that thbenedshift bin numbej
andor k increase, the changes in GGG and GGI signals aferdnt, which shows the expected
different redshift dependence. For all redshift bin combinations the @Balsis modeled to be
subdominant to the GGG signal. In the nulled measures shown in the righs pieeGGIGGG
ratio is suppressed by a factor of 10 over all angular scales, whigttethe success of the nulling
technique.

6.5.2 Information loss and downweighting of systematics

We further evaluate the performance of the nulling technique by looking atdhstraining
power of cosmic shear bispectrum tomography on cosmological parametenell as the biases
caused by the GGI systematics before and after nulling.

The full characterization of the bispectrum involves three angular &meguvectors which form
a triangle. In some works concerning 3-pt statistics, only equilateral teazwnpfigurations i.e.
{1 = t» = €3 = € are used for simplicity reasons (e.g. Pires et al. 2009). But as seugdtairs
have pointed out (e.g. Kilbinger & Schneider 2005; Begg al. 2010), only a low percentage of
information is contained in equilateral triangles. Thus, to calculate the fultrivdtion content,
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we use general triangle configurations but limit our calculation to trianglesttigie diferent side
lengths, again for reasons of simplicity (for details see Sect. 6.7).

We will use the figure of merit (FoM, Albrecht et al. 2006) to quantify thedyress of parameter
constraints. Here the FoM for constraints in the parameter anrey is defined to be proportional
to the inverse of the area of the parameter constraint ellipses:

FOM(P.. D) = ((FYaalF L5 — (FH2,) 2. (6.46)

To compute biases, we adopt a method based on a simple extension of thensieformal-
ism (e.g. Huterer et al. 2006; Amara &Régier 2008). Then one needs to define a bias vé&$5t
which in our case reads:

B! = Boei COvB™'B,, (6.47)
Bor = Yea CovYly , (6.48)
with
Beai(;, ) = BRal(C 2. 63) (6.49)
Yool 7) = Yoai(lr (2. (3) - (6.50)

The bias of the parameter estimafpris given by the dierence between its ensemble average and
the fiducial value of the parametpEd:

b. = (P - bl = ) (F), BYC. (6.51)

v

The information content before and after nulling can be seen in Fig. 6.6heXost of increasing
the error on each parameter to about twice its original value, GGI systeraaticeduced to be
within the original statistical error. The relative information loss in terms of Fav be found in
Table 6.1. The constraints shown in Fig. 6.6 do not represent the besttaiots obtainable from a
cosmic shear bispectrum analysis since we consider only the triangles wittaaacalely # £> #
£3. Also note that the nulling technique can in principle remove the GGI systemaiiapletely.
But as shown in Fig. 6.6, the systematics still cause some residual biaseshoolagical parameters
after nulling, due to the finite number of redshift bins. The GGI systematicsheilleduced to a
lower level when more redshift bins are available. We will discuss this durith the following
subsection.

6.5.3 How many redshift bins are needed?

Analyzing the cosmic shear signal in a tomographic way was originally meantximnize the
information. For this purpose alone, a crude redshift binning wilicel (Hu 1999). However, to
control intrinsic-shear alignment, which is a redshift-dependffate much more detailed redshift
information is required (e.g. King & Schneider 2002; Bridle & King 2007;cloai & Schneider
2008). Thus, for a method intended to eliminate intrinsic-shear alignment, ité&ssary to show its
requirement on the redshift precision. In the case of nulling, detailesthifechformation is not only
needed for the method to be able to eliminate the bias, but also for the ptesenfaa reasonably
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Figure 6.4: Ratio of the nulled and the original biases for cosmologicahpeeQ, as a function
of number of redshift bind\,. Results for diferent GGI models are shown. Parametandr are
the slopes of angular frequency and redshift dependence of wargaw model (6.31).

large amount of information through the nulling process. JS08 examinedithiear of redshift bins
required for the nulling technique in the 2-pt case, and showed thaid$@ifebins already ensure
that parameters are still well-constrained after nulling.

To re-assess this problem at the 3-pt level, we consider t@erdnt situations to address the
requirements coming from control of the intrinsic-shear alignment aneép@son of the informa-
tion content separately. In both cases we split the redshift range beaxve@ andz = 3 into 5, 10,

15, and 20 (only in the first situation) redshift bins, with the redshift bpiis & a way that there is
an equal number of galaxies in each bin.

First we consider a single cosmological paramefgy, to be free and study the biases intro-
duced by the GGl signal o, both before and after nulling. We use only equilateral triangle
configurations to reduce the amount of calculation. The results are shokg. 6.4. Within the
range of consideration, the ratio of the nulled and the original biases duopkly with the increase
of the number of redshift bins for all GGl models. For most of the modelsdShift bins seem to be
not suficient for the nulling technique to control the bias induced by GGI down taeepelevel.
Going from 5 redshift bins to 10 redshift bins is very rewarding in termbia$ reduction. How-
ever, we note that a decregbg/bj| doesn’'t necessarily indicate a better performance of the nulling
method, or generally speaking, of any method intended to control the intshsgr alignment. One
can see the reason for this by noticing that, it is the original unbinned@®&3} signal that is di-
rectly controlled by any of these methods. Betwégnib;| and the original unbinned G@EGG
signal lies the binning process as well as the summation over angular foygoieis and redshift
bins. Since the signs of the biases contributed Iffgdint angular frequencies and redshifts can be
different, there can be bias cancellation during these processes. Inramottigh; /bj| can depend
on binning choices.

We then vary two cosmological parametefk,(andog) and investigate how the original and
the nulled parameter constraints change with respect to the number offtredshavailable. For
this case we use all triangle shapes to enable a comparison with resultgtfeta®istics.

Our result (Fig. 6.5) shows that a further increase of the number shii¢thins beyond 10 is not
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Figure 6.5: Figure of merit (FoM) as defined in (6.46) in fbg - os plane as a function of number
of redshift binsN,. FoM from 2-pt (2p) measures, 3-pt measures (3p) and combinedfJ@are
shown both before nulling (original) and after nulling (nulled).

very rewarding in terms of information preservation as characterizedadydN, in either 2p, 3p, or
2p+3p cases. This suggests, when the possibility of more redshift bins ekistshoice of redshift
bin number should be based mainly on the requirement of bias reductionrease of negligible
photometric errors. When there are non-negligible photometric errorgvaer, the information loss
will probably be more severe, as found by Joachimi & Schneider (2@0%e 2-pt case.

6.5.4 The nulling technique as a conditioned compression oftha

The necessity of carrying out data compression in cosmology has lomgreeegnized (e.qg.
Tegmark et al. 1997) and has been ever increasing due to the increggngf the data sets. In
cosmic shear studies the survey area of next generation multicolor imagimyswill be an order
of magnitude larger than the current ones. The study of 3-pt statisticegities a huge increase
in the amount of data directly entering the Fisher-mdtkiglihood analysis, compared to the 2-pt
case.

The basic principle of data compression is to reduce the amount of data wslerging most
of the information. This is already naturally encoded in the nulling techniqumdfkeeps only the
first-order weights for nulling, as we do in this study, the nulling procededeces the number of
data entries in each angular frequency bin from the number of red#hift, h, k) combinations, to
the number ofi( j) combinations, which means roughly fraxa® to N,2. The nulling transformation
is linear since the resulting nulled entry is a linear combinatiokaiginal entries weighted by the
nulling weight (6.18). In the sense that an “optimum” set of nulling weights stracted, the
nulling technique also intends to preserve as much information as possibltneBelis yet another
additional constraining condition in the nulling procedure: the nulling cond{®d), which largely
confines the shape of the nulling weights by requiring the existence ofshtiea zero-crossing (see
Fig. 6.2). In short, the nulling technique can be seen as a conditioned ¢tinegaression of data.

It is then interesting to know how much of the information loss during the nulliogess actu-
ally comes from the nulling condition, and how much just comes from the facattlata compres-
sion process is naturally involved in nulling. To explore this, we performirmsonditioned linear
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Figure 6.6: Projected 1-sigma (68 % CL) parameter constraints from cosesde bispectrum to-
mography. Hidden parameters are marginalized over. The black solid@nddrsh-dotted ellipses
correspond to the original constraints and those after nulling, resplctiVhe black cross in the
center of each panel represents the fiducial values adopted forrdmagtars, and the distance from
the center of one ellipse to the black cross reflects the bias caused by irtiggiment GGI sys-
tematics on the corresponding parameter. As nulling can be seen as a éiteeaohpression under
the constraint of the nulling condition, we also plot the constraints and badtse®n unconditioned
linear data compression as magenta dashed ellipses for comparisonqsée558.

data compression, by simply ignoring the nulling condition in the whole nullingguhoe i.e. drop-
ping the Lagrange multiplier term in (6.43), but otherwise keeping the simplifitaiitherent to
the analytical approach. The results are shown in Fig. 6.6. A summary Bbtfidrom the original
and the nulled bispectrum measures as well as the compressed measwesimsiable 6.1.

In contrast to nulling, an unconditioned linear compression does not elintimatparameter
bias, but increases or reduces some of them marginally. Regardingrmagiar constraints, al-
though the increase in the size of the ellipses is much less than in the case df,rartiond one
third of the information in terms of FOM is lost through compression, which méeighe amount
of degradation in parameter constraints after compression is not negligiéesuggests that keep-
ing only the first-order terms contributes to non-negligible information lossreain part of this
information, one could add higher-order weights to the nulling procedBte.the diference be-
tween the nulled and the compressed FoM serves as an indication for thehieinformation loss
through the nulling process, which is imposed by the nulling condition.
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Figure 6.7: The thick green (gray) solid, thick blue (black) solid and thiokotished ellipses indi-
cate 1-sigma (68 % CL) parameter constraints from the nulled power spetteasures, bispectrum
measures, and combined. Hidden parameters are marginalized overistemee from the center
of an ellipse to the black cross reflects the nulled bias on the correspquatiagneter. The original
biases from bispectrum measures can be seen in Fig.6.6. The thin blacklbpsids over-plotted
on to the centers of the nulled combined constraint ellipses indicate the stapstioad (68% CL)

of combined constraints before nulling. Note thffelient ranges of parameters compared to Fig.6.6.

6.5.5 Two-point and three-pt constraints combined

Besides constraining cosmological parameters using 3-pt cosmic shear ale investigate
the combined constraints from both 2-pt and 3-pt cosmic shear mea3iregerformance of the
nulling technique on cosmic shear power spectrum tomography alone argbsthtng constraints
on cosmological parameters were presented in JS08. For consistenegehe same setting for the
cosmic shear power spectrum as described for the bispectrum in Sedih fa8ticular, we neglect
photometric redshift errors, use only a limited range and numbéibais, and adopt a power-law
intrinsic-shear alignment model with a form described by (36) in JS08 atmpa of 0.4. We have
confirmed the consistency between our power spectrum and bispeatdas with those used in
Berge et al. (2010). Our power spectrum code agrees also with iCosmae(Rafet al. 2011).

Figure 6.7 shows the resulting constraint ellipses after nulling from the cosimaiar power
spectrum analysis, the bispectrum analysis, and the two combined. Tchsimomuch information
is lost during the nulling process, we overplot the original 2- and 3-ptlined constraints on top
of the nulled constraint ellipses in Fig. 6.7, but center them on the comdsmpnulled constraints
by subtracting the bias fierence before and after nulling. The information content in terms of FOM
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Table 6.1: Change of cosmic shear bispectrum statistical power after n(iilitiy and linear data
compression (compress). Presented are FoM on 2D parameter plamesrbeosmological param-
etersQm, og, Wo andw,. The cosmological parametens Q, andng are marginalized over. The
second column is the FoM from the original bispectrum; the third and fifth codusin@ FoM from
the nulled and the compressed measures, respectively; the fourth ¢sikihyn shows the percent-
age of the third (fifth) column compared to the first column, which reflectsetaive information
loss through the nulling (the unconditioned compression) procedure.
| i | null | nulli | compress compress

Qm-og | 21455| 4609 | 21.5% | 12242 57.1%
QmwWo | 637 | 123 | 19.3% 428 67.2%
Qm-W, | 145 33 | 23.0% 110 75.9%
og-Wo | 434 87 | 20.0% 299 68.9%
og-W, | 101 26 | 25.4% 72 71.3%
Wo-Ws | 114 | 2.3 | 20.2% 8.0 70.2%

Table 6.2: FoM before (*) and after (f’) nulling and their ratio, using the cosmic shear power
spectrum (2pt), bispectrum (3pt), and combined {3pt) analysis.
| 2pt,i | 3pt,i | 2pt+3pt,i | 2pt,f| 2pt, if | 3pt,f| 3pt,if | 2pt+3pt, f | 2pt+3pt, if

Qm-0g | 21774| 21455| 86851 | 3297 | 15.1%| 4609 | 21.5% | 18555 21.4%
Qm-Wo | 1590 | 637 3806 236 | 14.8%| 123 | 19.3% 600 15.8%
Qm-W, | 517 145 872 69 | 13.3%| 33 | 23.0% 121 13.9%
og-Wo | 864 434 3832 132 | 15.2%| 87 | 20.0% 488 17.2%
og-W, | 326 101 709 47 | 144%| 26 | 25.4% 107 15.1%
Wo- Wy 45 11 184 74 | 164%| 23 | 20.2% 27 14.5%

for each parameter pair is presented in Table 6.2.

One sees that the amount of information contained in bispectrum measdnesveer spectrum
measures are indeed comparable. With bispectrum information added]ltyflicee times better
constraints in terms of FoOM are achieved, both before and after nulling.fattor is smaller than
the result in TJO4, although the same angular frequency range andnieesstof 7 cosmological
parameters are chosen for both studies. However a direct comparipoohibited by diferent
fiducial values adopted andft#irent survey specification.

Through the nulling procedure, around 15 % of the original information imseof FOM is
preserved in the 2-pt case, and around 20% in the 3-pt case. It ishighdr in the 3-pt case,
in accordance to the fact that a rougy> — N,? compression is involved in the 3-pt case and
aN;? — N, one in the 2-pt case, while this fact is due to the summation over one redshift b
index during the nulling procedure (the same trend is evident in Fig. 6.5¢ iffbrmation loss
is considerable, but it is a price to pay for a model-independent methodveAsave discussed
in the previous subsection, theffdirence between the information loss through the nulling and the
unconditioned compression procedures represents the inevitable in&mfation through nulling.
However, this diference is less than 50 % in the considered 3-pt case. The other inforretson
is due to the simplifications we adopted in this study, including using only the filst-aveights,
and discarding the measures with two or three equal redshift bins. Aefutthtailed consideration
of these aspects can regain part of the lost information. Another simplificatiohave made in
the 3-pt case is to use only triangles with threedtent angular frequencies. This reduces both the
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original and the nulled information contained in the 3-pt measures. Howbiesimplification can
be easily removed with a careful distinction of all cases.

Also notice that, the dependence of number of possible bispectrum modésangles, on the
maximum angular frequendiax is roughly 3., while that of power spectrum modes is roughly
€} For this studyfmax = 3000 is chosen. If reliable information on smaller angular scales can be
obtained, the 3-pt statistics will possibly give us more information than thesgapstics.

6.6 Conclusion

In this study we developed a method to control the intrinsic-shear alignmenpirc@smic
shear statistics by generalizing the nulling technique. We showed that tleeaization of the
nulling technique to 3-pt statistics is quite natural, providing a model-indepénugthod to reduce
the intrinsic-shear alignment signals (GGI and Gll) in comparison to the lgi&BG signal.

To test the performance of the nulling technique, we assumed a fictitiowsysuith a setup typ-
ical of future multicolor imaging surveys, and applied the nulling technique tmtheeled bispectra
with intrinsic-shear alignment contamination. The lensing bispectra (GGGgevaputed based on
perturbation theory, while the GGI signal was modeled by a simple power-lamdbolel. We fo-
cused on the reduction of the GGI contaminant, since GlI can be removely &iynpot considering
tomographic bispectra with two or three equal redshift bins.

The reduction of the intrinsic-shear alignment contamination at the 3-pt lgvéhe nulling
technique was demonstrated both in terms of the/GGIG ratio, and in terms of biases on cosmo-
logical parameters in the context of an extended Fisher matrix study. In ¢éths GGJGGG ratio,

a factor of 10 suppression is achieved after nulling over all anguléesd@orrespondingly, the bi-
ases on cosmological parameters are reduced to be less than or cdejueattad original statistical
errors. We studied the performance of the nulling technique when 551@y 20 redshift bins are
available, and found that the performance on bias reduction, rathehtivamuch information is

preserved during the nulling procedure, depends more significantlyeamutimber of redshift bins.
In case one requires better control of intrinsic-shear alignment, morgedetedshift information

allowing more redshift bins is the most direct way to go.

When dealing with real data, there is one further source of complicatiorhwigcdid not con-
sider in this study, that is the photometric redshift uncertainty. The photometishift uncertainty
can be characterized by a redshift-dependent photometric redsitiftrsand catastrophic outliers.
Joachimi & Schneider (2009) studied the influence of photometric redsiitrtainty on the per-
formance of the nulling technique at the 2-pt level. They found that théoptetric scatter places
strong bounds on the remaining power to constrain cosmological paramaérsulling. The
existence of catastrophic outliers, on the other hand, can lead to an incemgpieval of the intrin-
sic (11, 1ll) alignments as well as the intrinsic-shear alignments (Gl, GGI\GHowever, methods
to control the photometric redshift uncertainty have been proposedexamnple, recent studies
concerning the problem of catastrophic outliers point to the solutions ofr dithiéing the lensing
analysis ta < 2.5 or by conducting an additional small-scale spectroscopic survey (Sr2€09;
Bernstein & Huterer 2009; Bordoloi et al. 2010).

As already demonstrated by JS08 in the 2-pt case, some information lossisrhlo the
nulling procedure. For the setup of this study we found that, in terms of Hoddita20 % of the
original information is preserved through the nulling procedure in thecag, and 15 % in the 2-pt
case. We further studied the source of such information loss by comphgnilling technique to
an unconditioned linear compression of the data, since the nulling precednibe seen as a linear
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compression of data under the constraint of the nulling condition (6.8).0Wedfthat around one
third of the original information is lost through an unconditioned compressitire data, suggesting
that this situation can be improved by considering higher-order terms in Hiregrand compression
processes.

Results on parameter constraints from the 2- and 3-pt cosmic shear statistiomed are also
presented. The amount of nulled information contained in bispectrum nesaand power spec-
trum measures are comparable. With bispectrum information added, typicadh-times better
constraints are achieved both before and after nulling, in terms of FoM.

Again, due to the large amount of information existing in the 3-pt cosmic sheddy dine would
certainly like to exploit it in the future. The nulling method we developed in thiskvemlves a
potentially severe problem hampering the use of 3-pt information, namelyttivesio-shear align-
ment systematic. Our method works at the cost of a large information losd) wdarchopefully be
avoided by a future method of removing the intrinsic-shear alignment contatairut as the only
completely model-independent method so far, the nulling technique canasea/orking method
now and can provide a valuable cross check even with the availability of ne¢tlods.

6.7 Appendix: Counting of triangles

A triangle is specified by six indices, i.e. three redshift bin indigeg k} and three angular
frequency bin indice$, £, £3. To ensure that we count each triangle configuration only once, we
set the condition thatt; < ¢»> < ¢£3. Moreover, we would like the first index amoffig j, k} in (6.36)
to have the lowest redshift, i.¢ < z; andz < z, for the convenience of performing the nulling
technique. The possiblg j, k} combinations under these constraints in the ca®é ef 4 are listed
in Fig. 6.8.

ijk ijk ijk
122 233 344
U3, 2y 123 234
124 244
132
133

. 134
t2,2 144

glazi

Figure 6.8: List of possible triangles (redshift bin combinations) with conulitio< z; andz < z
when 4 redshift bins are available. An angular frequency combinatitsfysag ¢; < f» < {3
is chosen. Note that the redshift indices and the angular frequeneidsleed in pairs due to
the definition of the tomographic bispectrum (6.15). In this study a defallDakdshift bins is
assumed.

However, setting both conditions is problematic. Inspecting the definition atotnegraphic
bispectrum (6.15), one sees that the redshift indices and the angaaefrcies are linked in pairs,
e.g. convergencein redshift bini has angular frequendy, which is not desirable since the smallest
angular scale does not necessarily correspond to the lowest red&hifiolve this problem, we
perform nulling three times for each general angular frequency coidminaith £1 < o < €3,
swapping the redshift-angular scale correspondence in-betweeanaltbwing each redshift to be
able to correspond to any angular frequency.
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Note that the situation complicates a bit when two of the angular frequeneiegaal, since then
the swapping may lead to exactly the same configuration. To avoid this, we stiicteourselves to
three diferent angular frequencies. This can exclude a high percentagssibgoconfigurations.
In our case, i.e. 20 logarithmically spaced bins betwé&gh = 50 and{max = 3000, 37 % of the
angular frequency combinations which can form a triangle have bedudext However, this is
only a technical complication which can be solved with a careful distinctiofi chaes. Since this
study is intended to be a proof of applicability of the nulling technique to thodetpgtatistics, we
defer the intricacies of accounting for all triangle configurations to fultoe.
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Chapter 7

Summary & Outlook

7.1 Summary

With the remarkable success of tR€DM model in explaining astronomical observations, it is
now well-established as the standard model of cosmology. Accordingl§ptiie of cosmological
studies has shifted to tying up the loose ends of ABDM model- exploring the nature of dark
matter and dark energy which are the two exotic components assumed in it.rAlisép forward is
to observationally constrain their properties, which requires a combinatizarious observational
probes. Weak gravitational lensing has emerged in the last decade agatitive cosmological
probe to this end. Especially, it is considered to be the most powerfukpgrobonstraining the
properties of dark energy when the results of forthcoming large-fieldimgagurveys will become
available.

In this thesis we have investigated weak lensing three-point statistics, a sthtatiavhich will
be applied to future surveys to further enhance the power of weak geasia cosmological probe.
Three aspects of weak lensing three-point statistics have been tonetmeely how the observable
shear can be related to theoretical predictions of the matter density fieldmiugl information
three-point statistics can provide, and how systematical errors cambrelted. We summarize the
work presented in Chaps. 4-6 in the following.

7.1.1 Relations between three-point configuration space shr and convergence statis-
tics

In Chap. 4 we have derived some fundamental relations between wesstkgestatistics, which
make the theoretical framework more complete. In particular, we have rafateohfiguration
space the shear three-point functions to three-point convergeristicgavhich is a line-of-sight
projection of the three-point statistics of the matter density field. Thereby amea@mpare the
shear three-point functions measured from data to those construitgcties matter density field
predicted by cosmological models through configuration space comargeatistics. This way
of confronting observation with theory has an advantage over thentusay which is based on
theoretical predictions of the Fourier space quantity— the convergéspectrum. While it is hard
to precisely estimate the shear three-point functions using convergempaetioum models due to
numerical dificulties, this is not the case if one uses models of configuration spacergenge
statistics, as we have demonstrated using toy models.

Another major achievement of this work is the formulation of the condition fBrfBode sepa-
ration at the three-point level. A polarization field such as the cosmic sledchcéin be decomposed
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into an E-mode and a B-mode which have distinct mathematical structures.akdewsing signals
contribute only to the E-mode while systematical errors usually do not distimgetsveen E-mode
and B-mode, separating E- and B-modes can allow for a check of posg#imatics. This is es-
pecially important for cosmic shear studies where the individual signal i andthe systematic
level is possibly high. The aperture mass statistics have been used tatsepaand B-modes.
However, it was found by Kilbinger & Schneider (2005) that the apertuass statistics cannot
separate them cleanly since they require shear correlation functiomathsgparations as an input.
This motivated recentfiorts in finding better statistics which allow foyEEmode separation using
only shear correlations of galaxy pairs whose separation is within a guefiifite range, and such
statistics have been successfully constructed at the two-point level. firteepoint level, aperture
mass statistics is still the only known method to separate E- and B-modes up tdmowake the
same improvements at the three-point level, the first step is to formulate thti@ofor E/B-mode
separation, which is what we achieved in this study with the help of the relatierderived. The
condition is expressed via constraints on the weight functions of shesa-gwint functions. Con-
structing weight functions satisfying these constraints and using therrean tinee-point functions
can lead to various three-point statistics allowing fgB#node separation, including the aperture
mass statistics. One can then impose additional requirements on their behavior.

We have also obtained a number of by-products in this study. As an intertestép, we have
derived the relation between the two-point correlation function of theaaftepotential and that of
the convergence. This relation has enabled us to systematically derivartd/three-point relations
between the convergence correlation function and the cross corrdiatictions of several lensing
related quantities, including the deflection angle, the shear, the coneergaind the deflection
potential. Some of these relations are applicable to galaxy-galaxy(-gdknsing studies, and
some others are of potential interest to studies of the gravitational lenfiex en the Cosmic
Microwave Background.

Mathematically speaking, the shear field and the convergence field argith2 and spin-0
second-order derivatives of the same scalar field— the deflectiontjpbfézid. How the statistical
properties of these spin-2 and spin-0 fields are related to each othbedaslemonstrated in this
study with the derived relations. Due to the non-trivial spin number, sbeaia is required in nu-
merical evaluating these relations. We have presented a non-standeodl @amstructing sampling
grids which lead to good numerical precision.

7.1.2 Bispectrum covariance in the flat-sky limit

To quantify the information content in lensing 3-pt statistics, one needs @ession for the
covariance matrix of the 3-pt statistics. In Chap. 5 we derived an esiprefor the bispectrum
covariance(B(¢1, {2, £3)B(¢4, {5, {s)) for cosmic shear. Our work has avoided the drawbacks of a
previous work (Hu 2000), e.g. the expression given by Hu (200Q&lid wnly for integer arguments
and does not allow a free binning choice, the formula contains the Wignavaywhose physical
meaning within a flat-sky consideration remains obscure, the finite sunaissizcounted for only
by multiplying a factor, which lacks solid justification, and an unjustified assumggimade in the
coordinate transformation between the full sky and the 2D plane.

Since all these drawbacks are associated with the spherical harmomialiton Hu (2000)
adopted, we avoided them by using a pure two-dimensional Fourier-pgomeach which has posed
different challenges in the analytical derivation process. We defineduiaseanl bispectrum estima-
tor for 2D Fourier modes, averaged it over angular frequency bins to niiraimeasuring process
in reality, and computed the covariance of the averaged bispectrum estimator
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The covariance matrix we derived leads to the same Fisher information tasté¢nat given
in Hu (2000). Moreover, our approach is mathematically rigorous, and/gltme to evaluate the
bispectrum and its covariance at real-valued angular frequenciassaralg. a logarithmic binning.

7.1.3 Controlling intrinsic-shear alignment in three-point weak lensing statistics

In Chap. 6 we dealt with a particularly worrisome systematic error in cosmar stiedies: the
intrinsic-shear alignment. We developed a method to control the intrinsic-ahgament in three-
point cosmic shear statistics by generalizing the nulling technique, a modekimdiept method
developed to eliminate intrinsic-shear alignment at the two-point level. Thergleration was
found to be quite natural, and it resulted in a model-independent methoduoerdége intrinsic-
shear alignment signals (GGI and Gll) in comparison to the lensing GGGIsigha

As a test of the performance of the nulling technique at the three-point l@eeassumed a
fictitious survey with a setup typical of future multicolor imaging surveys, gigied the nulling
technique to the modeled bispectra with intrinsic-shear alignment contaminaitiae. tBe Gl sig-
nal can be removed simply by not considering tomographic bispectra withrtiioe® equal redshift
bins, we focused on the GGl signal, and quantified the intrinsic-sheanadigicontamination with
the GGJGGG ratio. How much the contamination is reduced by the nulling technique wasde
strated both in terms of the G&GG ratio, and in terms of biases on cosmological parameters in the
context of an extended Fisher matrix study. In terms of the/GGI ratio, a factor of 10 suppres-
sion is achieved after nulling over all angular scales. Corresponditngl\hiases on cosmological
parameters are reduced to be less than or comparable to the original staistica By studying
the performance of the nulling technique wheffatient numbers of redshift bins are available, we
found that the performance on bias reduction, rather than how mucimafiam is preserved during
the nulling procedure, depends more significantly on the number of retstsf This suggests the
need of more detailed redshift information if better control of intrinsic-slégnment is required.

One disadvantage of the nulling technique is the unavoidable informationHosthe setup of
our study, only about 20 % of the original information in lensing three-pstatistics is preserved
through the nulling procedure in terms of the Figure of Merit. A similar res&##6) has been found
when applying the nulling technigue to lensing two-point statistics. We furthdresi the source of
such information loss by comparing the nulling technique to an unconditioneat lxenpression
of the data, motivated by the observation that the nulling procedure caegbeded as a linear
compression of data under the constraint of the nulling condition. We fthaiéround one third of
the original information is lost through an unconditioned compression ofdles duggesting that
this situation can be improved by considering higher-order terms in the nulidgcempression
processes.

We have also studied the combination of two- and three-point cosmic shisticta\We found
that the amount of nulled information contained in bispectrum measures aldrEower spectrum
measures alone are comparable. Adding the Fisher information matrix of théypically three-
times better constraints are achieved both before and after nulling in terms Bigihre of Merit,
than those obtained by each probe alone.

7.2 Outlook

The work presented in this thesis are all progresses towards a commoengtaing the usage
of three-point statistics in future lensing surveys to complement two-potigtgta so as to exploit
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more information from them. There are still many studies to be done in this tedfecmnention
some of them in the following.

7.2.1 Comparing observation to theory

When observational data is available, one needs to apply statistics on ielatedthe measured
statistics to quantities predicted by theoretical models in order to obtain cotstainosmological
parameters. Since the direct observables of cosmic shear studies athptiwties of galaxies,
regions around bright stars, satellite tracks, cosmic rays, etc. must dist@rded since precise
shape measurement cannot be performed in these regions. The resoftiplgx survey geometry
singles out the shear correlation functions as the statistics to be directly rm@asuthe data. The
remaining problems include, what is the statistic to be used to link the sheaatomdéunctions to
theoretical models. Precise theoretical models also need to be obtained.

Statistics allowing for a clean EB-mode separation

Concerning the statistic to be used to link the shear correlation functions tetitabmodels, an
important requirement on it is the ability to cleanly separate the E- and B-mAd#® three-point
level, the aperture mass statistics are the only statistics known up to now thé angZB-mode
decomposition. The aperture mass statistics require measurements of aielation functions
down to zero separation length which cannot be achieved in practicefolinsl at the two-point
level that this leads to a mixing of E- and B-modes. The three-point apertass statistics are
expected to be plagued by the samB-Eode mixing, but it is still yet to be shown how severe this
mixing is. If the mixing is found to be of tolerable level compared to the statisticat,ehen the
aperture mass statistics would be a convenient choice of the three-poistictdo be applied to
future surveys. If it is not the case, then better statistics need to be wcteskr

The formulation of the condition for/B-mode separation at the three-point level (see Chap. 4)
marks the first step in constructing bett¢BEnode separating statistics. The next step is to formu-
late the condition for B-mode separation over a finite region, where by “over a finite region” we
mean only the three-point shear correlation functions evaluated at spegjfatial configurations
are used as inputs. When this condition is also found, one can then ai@sset of statistics satis-
fying these two conditions, in analogy to the recent works (Eifler et al02Ba & Kilbinger 2010;
Schneider et al. 2010) done for two-point statistics. The resulting statigilidse the statistics to
be derived both from theory and from observation, i.e. where the twdeidompared.

Theoretical models

The currently available models for lensing three-point statistics are ceotedrirom the matter
density bispectrum. The best analytical approximation of the matter densigchism up to now
is the fitting formula by Scoccimarro & Couchman (2001) which we used in Chajit fits the
measurements in N-body simulations with an error of 15%, which is too high cechpa the sta-
tistical error expected from future surveys. Thtf®ds are required in this direction. Furthermore,
as we have stated in Chap. 4, numericdlidilties exist in using bispectrum models to compare
with observation. As the shear correlation functions are configuratiacesgtatistics while the bis-
pectrum is a Fourier space quantity, highly oscillatory integrals are ureveidvhile linking the
two. This will probably render the comparison particularly time-consumind,raay further &ect
the precision of the final constraints on cosmological parameters.
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In this situation, it may be worthwhile to investigate configuration space modelmadels for
the three-point correlation function of the matter density field or that of tieezgence field. If
precise configuration space models are available, then one can comssainlogical parameters
using observational data with the aid of configuration space statistics dalyin§ in configuration
space has the potential advantage of beffigziency and precision. Direct theoretical predictions
for matter density correlation functions remain at a far less-developed #tag those for their
Fourier space counterparts due to mathematidékdities. Predictions have only been given for
two-point statistics at linear scales (Bashinsky & Bertschinger 2001yveMer, this does not rule
out the possibility of finding precise fitting formulae for matter density corretatimctions using
N-body simulations. Even if configuration space models cannot reachrélesion to be used to
constrain cosmological parameters with future survey data, they can syilaplanportant role in
the pre-study phase. At least for the three-point statistics, the predicifdhe shear signal made
from configuration space models are much easier to numerically compute, lsave found in the
study presented in Chap. 4.

7.2.2 Assessing the information content

The full expression for the covariance matrix given in Chap. 5 involeas-point and six-point
statistics which are dicult to calculate analytically and hard to evaluate numerically. A way around
is to use only the first term or the first two terms of it which are computationadlsiliée. It is then
essential to study what error this causes. An on-going study by Mafiti{dooks at the error one
introduces by keeping only the first term of the full expression. Thelthie error to be marginally
acceptable for the convergence field in the local Universe, but theiltris not conclusive yet.
Finally a balance between precision and computational load has to be found.

Three-point statistics will be used complementary to two-point statistics to ektfaomation
from future surveys. So far it has been assumed that the two statistiosdapendent and their
information content can be directly added. This assumption is expected tovbbblak least at linear
scales, since the covariance of two- and three-point statistics is a finespatistic which vanishes
completely for Gaussian random fields. However, in order to give coc@mbined constraints on
cosmological parameters, and to give correct errors for these aonstrt is necessary to study the
covariance of two- and three-point statistics. The result of such a stilidjetermine the weight to
be put on studies of three-point statistics compared to that on the two-patistiss.

Cluster counts have also been considered as a powerful probe -@aussianity, in addition
to the three-point statistics. How cluster counts compare to three-point stairsficobing non-
Gaussian signals, and how they can be combined, are both questiomsgefyuther study.

7.2.3 Controlling systematical errors

Systematic errors relevant to cosmic shear are usually classified into towgesg errors from
the measurement process, those from theoretical modeling, and those ahraplications of as-
trophysical processes. Errors in measuring the shapes and théteedEgalaxies are the major
sources of measurement errors. The requirements on controlling tleebasic considerations in
the design of lensing surveys. Theoretical modeling errors have biedly discussed in Sect. 7.2.1.
We shall now focus on errors of astrophysical origin, among which thiggic alignments are the
most worrisome.

After the work presented in Chap. 6 was performed, there have bees sew studies on in-
trinsic alignments (Joachimi & Schneider 2010; Joachimi et al. 2011), buare still far from a
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final answer to how severe intrinsic alignments are (especially at the poiatievel), and how
they can be best controlled. Improvements on the understanding of thesicvaiignment &ect

are needed. This requireff@ts in theoretically studying the related astrophysical processes, e.g.
simulating the process of galaxy formation in dark matter halos, and identifyengftysical origins

of the intrinsic-alignment féect. Observational measurements of the intrinsic-alignment signal are
also necessary. Ideally the measurements should be detailed enough guiiktthe dependencies

on galaxy type, luminosity, environment, etc. This also demands high-preckape and redshift
measurements in a survey.

If the interplay between observational and theoretical approachbesrtne to precisely model
the intrinsic alignments, then one can directly subtract the moddledtérom the lensing signal.
However, the origin of the intrinsic-alignmenttect may involve, or even is dominated by, stochastic
processes, in which case precise modelling would be impossible. If thisduris be the case, then
one has to use model-independent methods to control the intrinsic alignmemteniy, the only
completely model-independent method available is the nulling technique (spe@hahich works
at the cost of a large information loss. One possible way to model-indepiyndentrol the intrinsic
alignments without information loss is to ‘calibrate’ the shear signal using tresaorrelation of
shear and galaxy number density (galaxy-galaxy lensing) and galamlgendensity correlations in
addition to shear correlations (Zhang 2010; Joachimi & Bridle 2010). géthexy number density
signal comes for free from a lensing survey, but a bias parameter ivéavmn its relation to the
dark matter density field which gives rise to the shear signal. Thus on&lcpue-condition of
this method being useful is the bias parameter being well-constrained byobibewations andr
theoretical arguments. Hence, which method to be used to control the intfigsimants in future
surveys depends on the development of many related fields. A combinétienideas in the current
methods may be needed.

7.2.4 General remarks

The application of three-point statistics in astronomy is not limited to cosmic shehes. As
a probe for non-Gaussianity, three-point statistics have been studied @otitext of the Cosmic
Microwave Background, the galaxy distribution, primordial curvaturgysbations, etc. A com-
mon dificulty to all these studies is the huge number of configurations (trianglesheledtto be
examined, which poses hard problems in the measurement process, as imelisualization and
interpretation of the results. More studies are also needed for thesgsaspe

With the increasing interest in three-point statistics and tharts put into it, it is promising
that the existing problems related to cosmic shear three-point statistics calvée sr controlled
to a negligible degree for future surveys e.g. the Euclid mission. In that casmic shear three-
point statistics may play an important role in determining the cosmological paranespecially
those related to the dark energy, and putting constraints on cosmologicdkmealkehermore, since
cosmic shear three-point statistics can reflect the non-linear growthuofete under gravity, it can
in principle provide a test on structure formation theory. By comparing theltsefrom cosmic
shear studies to those from other cosmological probes e.g. the BangustcOscillations and
the Cosmic Microwave Background which constrain the geometry of theels®y the theoretical
foundation of modern cosmology— the General Relativity theory, can tie jputest at cosmological
scales.
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