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We shall not cease from exploration
And the end of all our exploring
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Chapter 1

Motivation & Overview

The physical understanding of the Universe has greatly advanced during the last century as a
result of joint development of theory and observation. Landmark achievements include the first self-
consistent model of the Universe as a whole (Einstein 1917), the standard world models of General
Relativity (Friedman 1922; Lemaı̂tre 1927), the discovery of the recession of the nearby galaxies
(Hubble 1929), the derivation of the Robertson-Walker metric (Robertson 1935; Walker 1937), the
measurement of the rotation curves of spiral galaxies (see Rubin et al. 1980) and the mass-to-light
ratio of the Coma cluster (Zwicky 1937), the development of the Big Bang theory and nucleosynthe-
sis (Gamow 1946; Alpher et al. 1948; Alpher & Herman 1948, 1950), the discovery of the Cosmic
Microwave Background (Penzias & Wilson 1965), the discovery of the Large-Scale Structure (e.g.
Davis et al. 1982), the discovery of the accelerating expansion of the Universe (Riess et al. 1998),
and many others. All these discoveries point to a consistent paradigm: an expanding Universe de-
scribed in the framework of General Relativity which is dominated by cold dark matter and dark
energy in terms of energy. This paradigm, summarized as the Lambda-Cold Dark Matter (ΛCDM)
model, has a set of free parameters which can be determined from cosmological observations. So
far the different observations show a remarkable consistency in their determined parameter values.

Despite its empirical success, theΛCDM model is still not complete in the theoretical sense.
The two exotic components it assumes, namely dark matter and dark energy, are not yet explained
by our current knowledge of fundamental physics. The dark matter behaves like common baryonic
matter in gravitational interaction, but cannot emit any electromagnetic radiation. The observational
fact that galaxies form before structures of larger physical scales restricts the dark matter to be
‘cold’, i.e. with a thermal velocity much less than the speed of light. Theoreticallythere are massive
elementary particles which are considered candidates of the cold dark matter, but they are not yet
detected experimentally. The dark energy, which is required to explain the late-time acceleration of
the expansion of the Universe, is even less understood. In particular ithas a negative pressure, which
poses a conceptual problem for our understanding.

One possible explanation for dark energy is Einstein’s cosmological constant. Many exotic
forms of matter, e.g. the quintessence, have also been proposed as darkenergy candidates. In either
case the picture is far from complete. Moreover, the theory of General Relativity, which most of the
current explanations are based on, may fail at cosmic scales. This situation makes the study of the
nature of dark energy one of the most important problems in cosmology, andeven in all physical
science.

Due to a lack of compelling theoretical clues, observational studies of darkenergy are especially
valuable. It is expected that the question if and how dark energy evolveswith time will play a
decisive role in judging the possible explanations. To reach this answer, one needs to determine the
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CHAPTER 1. MOTIVATION & OVERVIEW

cosmological parameters and their time evolution to percent level accuracy or even higher precision.
The current values of the cosmological parameters are mainly constrainedby the observation of

the Cosmic Microwave Background (CMB), aided by the Hubble parameter measured in the local
Universe1. Other observations, such as that of the Large-Scale Structure (LSS), Type Ia supernovae,
the Lyman-alpha forest, and weak gravitational lensing effects, are needed to improve the precision
of the parameter determination. Particularly, each of these observations reflects different physical
processes and thus is sensitive to different combinations of cosmological parameters. It is therefore
essential to combine them to check the consistency as well as to break degeneracies among different
parameters.

Concerning the constraint of the time evolution of dark energy, four observational techniques are
considered the most promising. They are the Baryon Acoustic Oscillations which are observed in
surveys of the spatial distribution of galaxies, galaxy cluster surveys, surveys of Type Ia supernovae,
and weak lensing surveys (Albrecht et al. 2006). These observational techniques can all probe the
time evolution of dark energy through the expansion history of the Universe. Additionally, galaxy
cluster surveys and weak lensing surveys also provide information through the history of structure
formation.

This thesis is concerned with the weak lensing effect, which is considered to be potentially the
most powerful one among all dark energy probes. In a weak lensing survey one uses the gravita-
tional shear, which is the coherent shape distortion of galaxies, as the observable effect to probe the
statistical properties of the underlying matter density field. The forthcoming large-field multicolor
imaging surveys (e.g. DES2, KIDS3, EUCLID4, etc) will obtain photometric redshift and shape
information of a huge number of galaxies. This will render weak lensing a higher statistical power
compared to other probes. Such constraining power can be further enhanced by the use of higher-
order statistics. The higher-order statistics, contrary to the second-order (two-point) ones, can probe
non-Gaussian signatures in the matter density field, and thus are necessary tools to fully exploit the
wealth of information on small, non-linear scales. Our work focuses on the lowest order of them –
the third-order (three-point) statistics.

The performance of weak lensing surveys depends critically on the control of systematic errors.
The major sources of systematics lie in the measurement process, specifically, in galaxy shape mea-
surement and the determination of the galaxy redshifts. In addition to them, there are systematics
originating from astrophysical processes, the most worrisome one of them being the intrinsic-shear
alignment effect. How much weak lensing surveys are affected by these systematics, and how well
the systematics can be controlled, is still uncertain to a large extent. This situationemphasizes the
importance of studying the systematic errors on one hand, and on the other hand makes it a necessity
to perform systematics checks on the lensing signal. The latter can be realized by doing an E/B-mode
decomposition, namely separating the lensing signal into an electric field-like E-mode component,
and a magnetic field-like B-mode component. Since the physical lensing signalhas only E-mode
components to the first order while most of the systematic effects do not make this distinction, pos-
sible B-mode components in the data provide a valuable check on the level of systematics.

To compare the three-point (3-pt) statistics estimated from a weak lensing survey to that pre-
dicted by theory, an unavoidable step is to relate the shear 3-pt statistics to that of the underlying
matter density field. The currently available approach uses the relation between the Fourier space
3-pt statistics for the matter density field and the configuration space shear 3-pt statistics which can

1The Hubble Space Telescope Key Project, http://www.ipac.caltech.edu/H0kp
2http://www.darkenergysurvey.org/
3http://www.astro-wise.org/projects/KIDS/
4http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102
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be directly measured from a survey catalog. This theoretical relation, however, contains very os-
cillatory functions and is thus hard to handle numerically. Therefore, it is helpful to relate the two
directly in configuration space, where the corresponding functions areexpected to be smooth.

The work in this thesis is committed to these four questions concerning weak lensing 3-pt statis-
tics:

• How much information is contained in weak lensing 3-pt statistics?

• How to relate the 3-pt shear observables to the configuration space statistics of the underlying
matter density field?

• How to perform an E/B-mode decomposition for weak lensing 3-pt statistics?

• How to deal with the intrinsic-shear alignments for weak lensing 3-pt statistics?

After introducing the theoretical background in Chap. 2 and Chap. 3, wederive some fundamental
relations between weak lensing 3-pt statistics, including those relating the shear observables to the
configuration space statistics of the underlying matter density field in Chap. 4. These relations also
allow us to formulate the condition of E/B-mode decomposition at the 3-pt level. In Chap. 5 we use
a more rigorous approach than Hu (2000) to derive an expression forthe covariance matrix of the
bispectrum, the Fourier counterpart of the 3-pt correlation function. This presents a theoretical way
of quantifying the information content in lensing 3-pt statistics. In Chap. 6 wegeneralize the nulling
technique, a method to control the intrinsic-shear alignment, to the 3-pt level, and thereby provide
the first method to control the corresponding 3-pt systematics. A summary ofthe work presented in
this thesis together with suggestions for possible future research is givenin Chap.7.

3
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Chapter 2

The cosmological standard model and
the large-scale structure

During the past decades, a physical view of the Cosmos summarized as theΛCDM model, often
called the “standard model” as well, has been developed and widely accepted as the modern picture
of the Cosmos. This model consistently explains the expansion of the Universe, the formation
and growth of structure in the Universe, the existence and anisotropies of the Cosmic Microwave
Background, as well as the abundances of chemical elements. In this chapter we will explain the
relevant theoretical knowledge in the standard model, on which this thesis is based. For a more
detailed view of the model we refer to Peacock (1999), Bernardeau et al. (2002b), and Dodelson
(2003).

2.1 The homogeneous and isotropic Universe

2.1.1 Friedmann world model

Considering how the Universe evolves dynamically as a whole, one can, tofirst order, simplify
it as a homogeneous and isotropic medium of matter and energy. On the other hand, the dominating
source of interaction in the Universe at large scales is gravitation, due to itslong-range and non-
cancelling property. These together explain the two theoretical pillars of thecosmological standard
model: the cosmological principle which assumes that the Universe is homogeneous and isotropic
on large scales, and Einstein’s General Relativity (GR) as the theory of gravitation.

The cosmological principle corresponds to a point of view that our observational location in the
Universe is in no way unique or special. During the 1920s and 1930s when the theoretical founda-
tions of the standard cosmological model were developed, observationalknowledge of the Universe
was also exploding: the extragalactic nature of spiral nebulae had been established (1920s), basic
types of galaxies were classified (Hubble, 1926), and the velocity-distance relation for nearby galax-
ies was determined for the first time (Hubble, 1929). These observations supported the philosophy
of the cosmological principle, however they did not provide direct evidence for large-scale homo-
geneity and isotropy. Nowadays large galaxy redshift surveys (e.g. the Sloan Digital Sky Survey1

and the 2dF Galaxy Redshift Survey2) and the mapping of the Cosmic Microwave Background (e.g.

1http://www.sdss.org
2http://www2.aao.gov.au/2dfgrs
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STRUCTURE

the Wilkinson Microwave Anisotropy Probe3) have probed unprecedentedly large volumes of the
Universe. Their results suggest that the Universe is indeed homogeneous and isotropic on scales
larger than∼200 Mpc, and thus strongly support the idea of the cosmological principle.

In General Relativity, gravity is regarded as a geometric property of space and time, orspace-
time, which is mathematically represented by a (3+1)-dimensional Riemannian manifold. The
spacetime gets distorted in the presence of matter according to the Einstein field equation of General
Relativity, which reads

Gµν + Λ gµν = −
8πG
c4

Tµν . (2.1)

The left hand side of the equation, withGµν being the Einstein Tensor andΛ the cosmological con-
stant, describes the geometry of the spacetime. It is a non-linear function ofthe metricgµν and its
first and second derivatives. The right-hand side of the equation describes the matter distribution,
with Tµν being the energy-momentum tensor. The high degree of non-linearity is the major chal-
lenge in solving the Einstein field equation. Simplifying assumptions are often required, e.g. the
cosmological principle in the case of cosmology.

The cosmological principle, i.e. the assumption of homogeneity and isotropy onlarge scales,
simplifies both sides of the Einstein field equation. Under this assumption, the metriccan be written
in the form of the Robertson-Walker metric,

ds2 := gµν dxµdxν

= c2dt2 − a2(t)
[

dχ2 + f 2
K(χ)

(

dθ2 + sin2θ dϕ2
)]

,
(2.2)

where the expansion of the Universe has been accounted for by the cosmic scale factora(t). The
comoving distanceχ between comoving objects, i.e. objects whose movements are caused only by
the expansion of the Universe, does not change over time. The comovingangular diameter distance
fK(χ), which is the radial comoving distance corresponding to a solid angle

(

dθ2 + sin2θ dϕ2
)

, takes
the form

fK(χ) =



















K−1/2 sin(K1/2χ) (K > 0)
χ (K = 0)
(−K)−1/2 sinh[(−K)1/2χ] (K < 0) .

(2.3)

One can see that when the curvature signatureK equals zero, the comoving angular diameter distance
fK(χ) is additive, suggesting that the Universe is Euclidean. WhenK > 0 (K < 0), fK(χ) takes a
trigonometric (hyperbolic) form, corresponding to a closed (open) Universe.

On the other hand, the cosmological principle implies that the matter content in the Universe can
be described, to first order, by a uniform ideal fluid whose densityρ and pressureP depends only on
time. Thus the energy-momentum tensor can be reduced to

Tµν =
(

ρ +
P

c2

)

UµUν − gµνP , (2.4)

whereUµ is the four-velocity.
Inserting (2.2) and (2.4) into the Einstein field equation (2.1), one can obtainthe Friedmann

equations
( ȧ
a

)2

=
8πG

3
ρ(t) −

Kc2

a2(t)
+
Λ

3
,

ä
a
= −

4πG
3

(

ρ(t) +
3p(t)

c2

)

+
Λ

3
,

(2.5)

3http://map.gsfc.nasa.gov
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The homogeneous and isotropic Universe

which gives a description of the average dynamical behavior of the Universe. The next step is to
specify the r.h.s. of (2.5) with the knowledge of the energy/matter content of the Universe.

The cosmological constantΛ was originally added by Einstein to the field equation (2.1) as a
geometric term in order to allow a static universe as well as eliminating the problemof boundary
conditions at infinity. As Einstein later put it himself, it is ‘not justified by our actual knowledge
of gravitation’ but merely ‘logically consistent’, and ‘detracts from the formal beauty of the theory’
(Longair 2006).

In the current framework of cosmology, it is more common to considerΛ as an energy com-
ponent with densityρΛ = Λc2/8πG and pressurePΛ = −ρΛc2. This so-calleddark energyis one
of the most important energy contributions to our Universe, along with a mattercomponentρm and
a radiation componentρr. The matter component includes the familiar baryonic matter as well as
a dark matter component whose existence is inferred through its gravitational interaction with the
visible matter. Sometimes these two components are listed separately asρb andρDM . The radiation
component is dominated by photons, but generally speaking it contains all relativistic particles.

The evolution of the density of these components as the Universe expandscan be studied by the
adiabatic equation

d
(

a3ρc2
)

dt
+ P

da3

dt
= 0 , (2.6)

which can be derived from (2.5). Characterizing each component by itsequation of state

P = weosρc2 , (2.7)

and making the ansatzρ ∝ an, one obtains from (2.6)

ρ(a) = ρ0 a−3(weos+1) (2.8)

where ‘0’ denotes the value in the present time, and the scale factor for thepresent Universe has
been specified to be 1.

The matter component has zero pressure, i.e.weos= 0. According to (2.8), its density evolves
asρm ∝ a−3. The radiation component hasweos = 1/3 and thus evolves asρr ∝ a−4. The dark
energy, if it is taken to be the cosmological constant withweos = −1, then its densityρde stays
constant as the Universe expands. In a wider sense, the name ‘dark energy’ is used to denote the
dominant repulsive component at the present time which is required by the observation of the recent
accelerated expansion of the spacetime. In this sense theweos of dark energy is only required to
be smaller than−1/3 at the present time according to (2.5), and can in principle vary with time. A
frequently adopted parametrization of the dark energyweos is weos= w0 + (1− a)wa (e.g. Esposito-
Far̀ese & Polarski 2001; Linder 2003; Albrecht et al. 2006). Obviously,the cosmological constant
corresponds tow0 = −1 andwa = 0.

With these we can write the Friedmann equation as

( ȧ
a

)2

=: H2(a) =
8πG

3

[

ρm,0 a−3 + ρr,0 a−4 + ρde,0 a−3[w0+(1−a)wa+1] − Kc2a−2
]

, (2.9)

in which we have defined the Hubble parameterH = ȧ/a, which describes the expansion rate of the
Universe.

In order to non-dimensionalize this equation, we define a critical density

ρcr(a) =
3H2(a)

8πG
(2.10)

7
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which is the total density the Universe has in order to be spatially flat, i.e. withK = 0. Then we can
define dimensionless density parameters

Ωx :=
ρx,0

ρcr(a0)
=

8πGρx,0

3H2
0

, (2.11)

wherex could be m (matter), b (baryon), DM (dark matter), r (radiation), de (dark energy), or total
(matter plus dark energy plus radiation). The curvature term could also bewritten in terms of these
density parameters by lettinga = 1 in (2.9), as

Kc2 = H2
0(Ωtotal− 1) . (2.12)

Substituting (2.10), (2.11), and (2.12) into (2.9), we obtain

H2(a) = H2
0

[

Ωma−3 + Ωra
−4 + (1−Ωtotal)a

−2 + Ωdea
−3[w0+(1−a)wa+1]

]

. (2.13)

With this equation we have described the expansion of the Universe as a function of a few quantities
(theΩ’s andH0), the values of which can be considered as free parameters in a cosmological model.

We can also see from (2.13) that the early expansion history of the Universe was dominated by
radiation. The transition from radiation to matter dominance happens at

aeq =
Ωr

Ωm
≃ 3× 10−4 . (2.14)

After that the expansion was matter-dominated. Only very recently (a ≃ 1) dark energy became the
dominating enery component of the Universe and began to play a major role inthe expansion of the
Universe.

2.1.2 Cosmological redshift and distances

In a Euclidean space there exists a unique way to specify a ‘distance’ between two objects, but
this is not the case for an expanding spacetime as our Universe. In suchan expanding universe,
the distance between objects with a fixed comoving separation is constantly changing. When we
observe a distant object, we look both out in distance and back in time. The twomost common ways
of measuring the distance of a light source, namely comparing the measured angle it subtends to its
intrinsic size and comparing the measured flux to its intrinsic luminosity, give different results in an
expanding universe. Nevertheless they remain important distance measures. Before explaining them
in detail we need to introduce the concept of redshift.

Cosmological redshift

The redshiftzof a photon describes the change in its wavelengthλ with respect to the rest frame
wavelengthλ0 when it was emitted,

z :=
λ − λ0

λ0
. (2.15)

In our Universe, all photons are subjected to a redshift caused by theexpansion of the spacetime,
called the cosmological redshift. Quantatively, as light travels along null geodesics, i.e. ds2 = 0, for
themc2dt2 = a2(t)dχ2, which gives

dt
a(t)
= −

dχ
c
, (2.16)

8
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where the minus sign on the r.h.s. is taken to indicate that the light is traveling towardsχ = 0.
Now consider a comoving light source emitting a photon with rest-frame frequencyν0 at timet0

and comoving distanceχ0, and the photon is observed att1 andχ1 with frequencyν1 by a comoving
observer. Since the comoving distance between the light source and the observer

χ0 − χ1 = c
∫ t1

t0

dt
a(t)

(2.17)

is a constant regardless of when the photon was emitted, one reaches the result

dt0
a(t0)

=
dt1

a(t1)
(2.18)

by taking the derivative of (2.17) with respect tot0 while keepingt1 − t0 fixed.
Equation (2.18) can be seen as an expression of the time dilation dt1/dt0 between two comoving

observers att0 andt1, respectively. The time-dilation affects the wavelength of the photon as well,

dt1
dt0
=

a(t1)
a(t0)

=
λ1

λ0
= 1+ z1 . (2.19)

Thus we obtain the relation between the redshift of photons caused by the expansion of the Universe
and the scale factor of the Universe. In the standard model, the Universe has always been expanding,
therefore the higher the redshift, the earlier the photon was emitted. This allows the use of redshift
itself as an indicator of time and distance of the light source.

Horizon

The horizon sizerh is defined to be the comoving size of the observable Universe. Lettingt0 be
the age of the Universe, and using (2.16),rh can be expressed as

rh(t0) =
∫ t0

0

c dt
a(t)
=

∫ a(t0)

0

c da

a2H(a)
. (2.20)

Expectedly,rh depends on the expansion history of the Universe. Since the speed of light is also the
upper limit of signal transmission speed, the horizon size is also the size of theregion with causal
connections.

Angular diameter distance

The angular diameter distanceDang is of great importance for this thesis. Suppose a source with
a redshift ofz has an intrinsic transverse sizeR and is observed to have an angular diameter ofδ (in
radians), its angular diameter distance is defined to be

Dang(z) :=
R
δ
= a(z) fK(χ(z)) , (2.21)

whereχ(z) is the comoving distance of the source,fK is the comoving angular diameter distance
whose form is given in (2.3). The second equation in (2.21) follows fromthe metric (2.2). With a
description of the expansion of the Universe (2.13), we can specify thefunctional form ofχ(z), or
more generally, the comoving distance between sources at two different redshifts

χ(z1, z2) =
c

H0

∫ a(z1)

a(z2)

{

Ωr + aΩm + a2 (1−Ωtotal) + a−3[w0+(1−a)wa+1]+4Ωde

}−1/2
da

= χ(z2) − χ(z1) .

(2.22)

9



CHAPTER 2. THE COSMOLOGICAL STANDARD MODEL AND THE LARGE-SCALE
STRUCTURE

For a spatially flat universe (K = 0), the comoving angular diameter distancefK(χ) equals the
comoving distanceχ and is additive. However, this is not true for the angular diameter distanceDang

itself. According to the original definition, the angular diameter distance of a source at redshiftz2 as
seen by an observer atz1 < z2 is

Dang(z1, z2) = a(z2) fK
[

χ(z1, z2)
]

. (2.23)

Another special property of angular diameter distance is that it does not increase monotonously
with increasing redshift. In a standardΛCDM cosmology it turns over at a redshift around unity,
which means more distant objects actually appear larger in angular size.

Luminosity distance

The luminosity distanceDlum is obtained by relating the bolometric fluxFbol of a source atz2

observed atz1 < z2 to its intrinsic bolometric luminosityL,

Dlum(z1, z2) :=

√

L
4πFbol(z1, z2)

. (2.24)

The surface brightnessS of the source atz2 is related to its intrinsic bolometric luminosityL as

S =
L

4π(R/2)2
, (2.25)

whereR is the transverse size of the source, same as in (2.21). The bolometric fluxFbol of the source
observed atz1 is related to the surface brightness of the source atz2, as

Fbol(z1, z2) = S
(1+ z1)4

(1+ z2)4

(

δ(z1, z2)
2

)2

, (2.26)

whereδ is the angular diameter (in radians) of the source atz2 observed atz1, and we have used the
fact that the surface brightnessS of a receding light source is reduced by a factor (1+z)−4. Inserting
(2.25) and (2.26) into (2.24), we obtain the relation betweenDlum andDang (see e.g. Hogg 1999)

Dlum(z1, z2) =
(1+ z2)2

(1+ z1)2

R
δ
=

(1+ z2)2

(1+ z1)2
Dang(z1, z2) =

1+ z2

(1+ z1)2
fK

[

χ(z1, z2)
]

. (2.27)

2.2 Formation of the large scale structure

In contrast to the homogeneity on large scales, the Universe we observetoday has an abundance
of structures on smaller scales. Fig. 2.1 presents the distribution of about 105 galaxies observed in
the local Universe. One can clearly see in it clusters of galaxies, filamentsand voids, which are
the principal elements of the LSS. According to the standard cosmological scenario, the Universe
began in a much more homogeneous state, and these structures we observetoday are formed via
the amplification of primordial quantum fluctuations by gravitational instability (see e.g. Peebles
1980). Observational support for this include the temperature fluctuations of the CMB which are
found to be five orders of magnitude smaller than the mean temperature, suggesting a high degree
of homogeneity at the epoch CMB photons were emitted (z ≃ 1100). Additionally, from various
observations of the Universe at redshift of order unity, e.g. those ofgalaxies, galaxy clusters and the
Lyman-alpha forest, one can see a distinct growth of structures towardslower redshift.

10
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Figure 2.1: Projected distribution of galaxies within two surveyed patches ofthe observable Uni-
verse. The distribution of galaxies reflect indirectly the distribution of the dark matter. The Earth is
at the center of the image. Credit: 2dF team

The process of structure formation is sensitive to the evolution of spacetime,but is not considered
to have a substantial back-reaction on it. The latter is instead driven by the uniform mean field, as
described in the previous chapter. Consequently, the structure formationprocess can act as a probe
of the uniform mean field which can be parametrized by a couple of cosmological parameters.

In this section we consider the formation and evolution of structures under gravity. The dark
matter plays a dominant role in this process and is therefore our major concern here.

2.2.1 Vlasov equation

Two physical scales are of great importance in the theory of cosmic structure formation. One
is the horizon sizerh, which confines the region with possible casual interaction. Fluctuations with
size r ≥ rh have to be studied in the framework of General Relativity. The other physical scale
deals with the amplitude of the fluctuations. When the amplitude of the fluctuations ofa certain
size is much smaller than that of the mean field, perturbative methods can be used and the density
inhomogeneities are well described by linear differential equations. However, below a certain scale
called the non-linear scalernl, the linear approximation breaks down. At scales withr ≤ rnl, no
precise analytical method exists and the growth of fluctuations as well as the distribution of matter
are usually studied with simulations.

We will focus first on perturbations that are well in between these two scales. In this case, New-
tonian gravitational interaction and linear perturbation theory hold to be goodapproximations, and
the evolution of dark matter phase-space densityf (r,u, t) can be described by the Vlasov equation:

d f
dt
=
∂ f
∂t
+ u

∂ f
∂r
− ∇φ

∂ f
∂u
= 0 . (2.28)

Here,r andu are the physical position and velocity, andφ is the Newtonian potential given by the
modified Poisson equation:
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∇2φ(r, t) = 4πG
∫

d3u m f(r,u, t) − Λ . (2.29)

The first term in (2.29), withm indicating the mass of the matter particle, is the self-gravitation term.
The second term is the acceleration provided by the cosmological constant,whose form is chosen
to be consistent with the Friedmann equation (2.5). In this form of the Poisson equation we have
assumed the dynamical effect of radiation to be negligible. This is valid after the Universe switched
from radiation-dominated to matter-dominated at redshiftzeq = a−1

eq − 1 ≃ 3300. We will discuss the
situation in the radiation dominated era separately.

The Vlasov equation is also called the collisionless Boltzmann equation, which is the Boltzmann
equation without the collision term. It conserves the phase-space density of dark matter.

2.2.2 Ideal fluid approximation

Due to the complicated non-linear structure and the high dimensionality of the Vlasov equation,
it not only hinters analytical solutions but is also hard to analyze numerically.As a further simplifi-
cation, we treat the matter as an ideal fluid with zero pressure. This fluid approximation is valid for
the scales we are focusing on. However, since dark matter is collision-lessand thus allowing multi-
ple streams instead of a well-defined velocity fieldu(r), this simplification is sure to break down at
non-linear scales withr ≤ rnl where multiple streams become important.

With the fluid approximation one considers the zeroth and the first momentum moments of the
phase space distributionf (r,u, t). The zeroth order moment gives the local mass density fieldρ, and
the first moment normalized by the zeroth moment yields the velocity of the flowū:

∫

d3u m f(r,u, t) =: ρ(r, t) , (2.30)

∫

d3u mu f (r,u, t)
∫

d3v m f(r,u, t)
=: ū(r, t) . (2.31)

Taking the zeroth and first momentum moment of the Vlasov equation (2.28) andinserting the
definitions (2.30) and (2.31), one obtains

∂ρ

∂t
+ ∇r · (ρū) = 0 Continuity equation, (2.32)

∂ū
∂t
+ (ū · ∇r )ū = −∇rφ Euler equation. (2.33)

The Poisson equation now reads

∇2φ(r, t) = 4πGρ − Λ . (2.34)

As one can see, they are just the equations for an ideal fluid of zero pressure. There exists no general
analytic solution to this set of equations. Nevertheless several perturbative techniques are available
(see e.g. Zel’Dovich 1970; Bernardeau et al. 2002b; Szapudi & Kaiser 2003; Crocce & Scoccimarro
2006) which allow an analytic treatment in the linear and weakly non-linear regimes. Here we
introduce the Eularian perturbation technique.

12



Formation of the large scale structure

2.2.3 Density contrast and peculiar velocity field

To study the growth of inhomogeneities in the Universe, we subtract the meanfield, and consider
small perturbations to the density and velocity fields. We do so in the comoving coordinatesx =
r/a(t):

ρ(r, t) = ρ̂
(

r
a(t)

, t

)

= ρ̂ (x, t) = ˆ̄ρ + δρ̂ (x, t) , (2.35)

ū(r, t) = ˆ̄u
(

r
a(t)

, t

)

= ˆ̄u (x, t) = ȧx + v(x, t) , (2.36)

where ˆ̄ρ denotes the mean density of the matter component in the Universe, ˙ax is the Hubble flow,
andv is the peculiar velocity. According to the previous chapter, we have

ˆ̄ρ(a) = ρm0a
−3 =

3H2
0Ωm

8πGa3
. (2.37)

We further define two useful quantities, the density contrastδ and the comoving gravitational
potentialΦ:

δ(x, t) :=
δρ̂ (x, t)

ˆ̄ρ
, (2.38)

Φ(x, t) := φ (ax, t) +
aä
2
|x|2 . (2.39)

Putting all these into the set of fluid equations (2.32)-(2.34) and making use ofthe Friedmann
equations (2.5), we obtain the set of dynamical equations which govern theevolution of the density
contrast and the peculiar velocity field:

∂δ

∂t
+

1
a
∇x · [(1+ δ)v] = 0 , (2.40)

∂v
∂t
+

ȧ
a

v +
1
a

(v · ∇x) v = −
1
a
∇xΦ , (2.41)

∇2
xΦ =

3H2
0Ωm

2a
δ . (2.42)

The peculiar velocity field is a vector field, which can be fully described by itsdivergence∇x·v =:
θ and its vorticity∇ × v =: w. Since the source term of (2.41) is a gradient, one can easily see that
the equation of motion forw does not have a source, and that in the linear regimew decays away
as the Universe expands. So we will focus on the evolution of the density contrastδ and velocity
divergenceθ.

2.2.4 Eularian perturbation theory

According to the idea of perturbation theory, we writeδ andθ as

δ(x, t) =
∞
∑

n=1

δ(n)(x, t), θ(x, t) =
∞
∑

n=1

θ(n)(x, t) , (2.43)

whereδ(1) andθ(1) are linear in the initial density field,δ(2) andθ(2) are quadratic, and so on.
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Linear growth

Linearizing (2.40) and (2.41), then combining (2.40)-(2.42) and eliminatingθ, we obtain a
second-order linear differential equation for the linear density contrastδ(1):

∂2δ(1)

∂t2
+

2ȧ
a
∂δ(1)

∂t
−

3H2
0Ωm

2a3
δ(1) = 0 . (2.44)

This equation does not contain derivatives with respect to spatial coordinatesx, nor doesx appear
explicitly in the equation. Thus one can separate thet andx dependence in the solution, and write it
in a general form

δ(1)(x, t) = D+(t)∆+(x) + D−(t)∆−(x) , (2.45)

with D±(t) being the two linearly independent solutions of

D̈ +
2ȧ
a

Ḋ −
3H2

0Ωm

2a3
D = 0 . (2.46)

One solution of it is found to be the Hubble parameterH(t). In a matter-dominated expanding
universe,H(t) decreases with time and thus represents a decreasing solution which we choose to be
D−. Since we are interested in the growth of structure, the growing solutionD+ is of greater concern.
It can be constructed with the aid of the form ofD−, and is found to be

D+(t) ∝ H(t)H2
0

∫ t

0

dt′

a2(t′)H2(t′)
. (2.47)

This functionD+ is called thegrowth factor. According to (2.45), it describes the linear growth of
the density contrast. It is usually normalized toD+(t0) = 1, i.e. it has value unity at the present time.

An exact scalingD+(t) = a(t) is found for an Einstein-de-Sitter (EdS) Universe (Ωtotal = Ωm =

1). In general, finding the form ofD+(t) requires numerical integration.

Transfer function

So far we have dealt only with the growth of subhorizon matter perturbationswhen the Universe
is not dominated by radiation. For superhorizon perturbations, the Newtonian description breaks
down. A generalized treatment (see e.g. Dodelson 2003) shows that theygrow asδ ∝ a2 in the
radiation-dominated era, andδ ∝ a in the matter-dominated era. On the other hand, sub-horizon
matter perturbations cease to grow in the radiation-dominated era due to the suppression by the
radiation-dominated expansion of the Universe.

Generally speaking, perturbations of different comoving sizesL grow differently depending on
when they enter the horizon. We denote the scale factor at horizon entering asaenter(L). To put
it more correctly,aenter(L) is the scale factor when the horizon sizerh expands to the size of the
perturbationL

rh(aenter) = L . (2.48)

The growth of small-scale perturbations which enter the horizon before matter domination are sup-
pressed compared to perturbations of larger scales, as depicted in Fig. 2.2.

Besides the different horizon-entry time, there exist several other effects that can break the scale-
independence in the linear growth of the structure. For example, in case theUniverse is dominated
by hot dark matter (HDM), the mean free path of structure-building particleswould be significant,
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Figure 2.2: Sketch illustrating the growth of a perturbation which enters the horizon before
matter domination. The growth is suppressed in the radiation-dominated phase by a factor of
fsup = (aenter/aeq)2 compared to the case without suppression (figure taken from Bartelmann &
Schneider, 2001)

.

and all perturbations below this size will be erased. Furthermore, scale-dependent corrections to the
structure growth can also be introduced by baryons through acoustic oscillations (see Eisenstein &
Hu, 1998).

To account for all these scale-dependent effects, one defines thetransfer function Tk. It connects
the ratio of perturbation amplitudes at present time (‘0’) to that at an initial epoch (‘i’)

δ̃0(k)

δ̃0(ks)
= Tk

δ̃i(k)

δ̃i(ks)
, (2.49)

where the wave vectork indicates the scale of interest, and it is compared to a scaleks which is
chosen to be large enough so that it entered the horizon only at late times.

The transfer function has an asymptotic behavior ofTk ≃ 1 for smallk andTk ≃ k−2 for largek,
with a turning point at 1/k ≃ rh(aeq). ThatTk ≃ 1 at smallk follows directly from the definition. The
behavior ofTk ≃ k−2 at largek is because the largek modes correspond to small-scale fluctuations
which entered the horizon at the radiation domination era. At that time, the horizon size grows
proportionally to the scale factorrh(a) ∝ a, which can be derived by inserting (2.9) to (2.20) and
keeping only the radiation contribution in (2.9). Since a fluctuation enters the horizon whenk·rh ≃ 1,
one hasaenter∝ k−1. Therefore the small-scale fluctuations are suppressed by (aenter/aeq)2 ∝ k−2.

A fitting formula of Tk has been derived by Bardeen et al. (1986) for a Cold Dark Matter-only
universe. Another fitting formula which includes corrections due to baryonic effects is given in
Eisenstein & Hu (1999).

Eularian non-linear perturbation theory

As the density contrast grows under gravity, at some point the non-linear terms in (2.40) and
(2.41) begin to play an non-negligible role. In the Fourier domain this means different Fourier
modes no longer grow independently but begin to interact with each other more and more strongly.
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We now turn to work in the Fourier domain where the effects of the non-linear terms are eas-
ilier described. Writing the dynamical equations (2.40)-(2.42) in Fourier space, again assuming the
velocity field to be curl-free, and substituting the Poisson equation (2.42) into(2.41) we get

∂δ̃(k)
∂t
+
θ̃(k)

a
+

1
a

∫

d3q d3p δD(k − q − p) α(q, p) θ̃(q, t) δ̃(p, t) = 0 , (2.50)

∂θ̃(k)
∂t
+

ȧ
a
θ̃(k) +

1
a

∫

d3q d3p δD(k − q − p) β(q, p) θ̃(q, t) θ̃(p, t) = 0 , (2.51)

whereg̃ indicates the Fourier counterpart of the quantityg, and the kernelsα andβ are defined as

α(q, p) =
(p+ q) · q

q2
, β(q, p) =

(p+ q)2p · q
2p2q2

. (2.52)

They describe the coupling between different Fourier modes which arises from the non-linear terms
in (2.40) and (2.41).

To solve (2.50) and (2.51) perturbatively, we consider the Fourier transforms ofδ(n) andθ(n).
General solutions for̃δ(n) andθ̃(n) are hard to find due to the coupling of time and spatial dependence
in the equations. However, in the special case of an EdS Universe, the timeand spatial dependence
can be separated thanks to the exact scalingD+(t) = a(t).

For an EdS Universe, making the ansatz

δ̃(n)(k, t) = Dn
+(t) δ̃n(k) , (2.53)

θ̃(n)(k, t) = −ȧ Dn
+(t) θ̃n(k) , (2.54)

one can see that the time dependence of (2.50) and (2.51) drops out. Thegeneral solutions for the
spatial dependence can be written as

δ̃(n)(k) =
∫

d3q1...d
3qn δD















k −
n

∑

i=1

qi















Fn(q1, ..., qn) δ(1)(q1)...δ(1)(qn) , (2.55)

θ̃(n)(k) =
∫

d3q1...d
3qn δD















k −
n

∑

i=1

qi















Gn(q1, ..., qn) δ(1)(q1)...δ(1)(qn) . (2.56)

Here the functionsFn andGn are constructed from the kernelsα andβ through recursion relations
(see e.g. Goroff et al. 1986; Jain & Bertschinger 1994):

Fn(q1, . . . ,qn) =
n−1
∑

m=1

Gm(q1, . . . ,qm)
(2n+ 3)(n− 1)

[

(2n+ 1)α(k1,k2) Fn−m(qm+1, . . . ,qn)

+2β(k1,k2) Gn−m(qm+1, . . . ,qn)
]

, (2.57)

Gn(q1, . . . ,qn) =
n−1
∑

m=1

Gm(q1, . . . ,qm)
(2n+ 3)(n− 1)

[

3α(k1,k2) Fn−m(qm+1, . . . ,qn)

+2nβ(k1,k2) Gn−m(qm+1, . . . ,qn)
]

, (2.58)

wherek1 ≡ q1 + . . . + qm, k2 ≡ qm+1 + . . . + qn, k ≡ k1 + k2.
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We haveF1 = G1 = 1 by construction. Forn = 2, one has (see Bernardeau et al., 2002a and
references therein)

F2(q1,q2) =
5
7
+

1
2
q1 · q2

q1q2

(

q1

q2
+

q2

q1

)

+
2
7

(q1 · q2)2

q2
1q2

2

, (2.59)

G2(q1,q2) =
3
7
+

1
2
q1 · q2

q1q2

(

q1

q2
+

q2

q1

)

+
4
7

(q1 · q2)2

q2
1q2

2

. (2.60)

2.2.5 Two- and three-point statistics of the matter densityfield

So far we have considered the evolution of matter density fluctuations. The initial condition for
this evolution, currently given by the inflation theory, can be formulated onlyin a statistical way.
For this reason one describes the matter density contrastδ in the Universe by arandom field, and
studies only its statistical properties.

The density field in our current Universe corresponds to one realization of this random field.
There is no way to apply an ensemble average to the observational data. However with the help of
the ergodic hypothesis and the cosmological principle, one can perform aspatial average instead.
The comparison of the results with theoretical predictions holds only in the limit ofvalidity of the
cosmological principle.

A general way to study a random field is to study its moments. In the case of the matter density
contrastδ, its first moment〈δ〉 vanishes. A full description of its statistical properties would require
all higher-order moments.

According to observations of the CMB as well as predictions from the simplest single-scalar-
field inflation theory, the primordial (i.e. at a very high redshift) matter densityfield is very close to
a Gaussian random field. For a Gaussian random field, all the statistical information is contained in
its second-order moment. All odd-power higher order moments vanish, andall even-power higher
order moments can be expressed in terms of the second-order moment.

As long as the density perturbations grow linearly, they remain Gaussian. But as gravitational
clustering is non-linear in nature, non-Gaussianity will be generated inevitably, resulting in non-
trivial higher-order moments. The matter density field of the Universe todayhas already significant
deviations from a Gaussian field (Kayo et al. 2001; Ostriker et al. 2003). A common way of mea-
suring non-Gaussianity nowadays is to use the third-order statistics. In thissubsection, the second-
and third-order statistics (the 2- and 3-pt correlation function and their Fourier counterparts) of the
matter density field are introduced.

Two-point correlation function and the power spectrum

The 2-pt correlation function (2PCF) of the matter density field at positionx andy is defined as

〈δ(x)δ(y)〉 =: Cδδ(|x − y|) , (2.61)

where〈 〉 indicates the ensemble average. The 2PCF depends only on the separation|x − y| of the
two points due to the assumption ofδ being statistically homogeneous and isotropic.

The configuration spaceδ is a real quantity, but its Fourier counterpart, defined as

δ̃(k) :=
∫

d3x δ(x) e−ix·k , (2.62)
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is in general complex. Consider the second-order moment ofδ̃(k):

〈

δ̃(k)δ̃∗(k′)
〉

=

∫

d3x e−ix·k
∫

d3x′ eix′·k′ 〈δ(x)δ(x′)〉

=

∫

d3x e−ix·k
∫

d3y ei(x+y)·k′ Cδδ(|y|)

= (2π)3δD(k − k′)
∫

d3y e−iy·k Cδδ(|y|) ,

(2.63)

the form of this motivates one to define thepower spectrum Pδ of the matter density contrast, as

〈

δ̃(k)δ̃∗(k′)
〉

:= (2π)3δD(k − k′)Pδ(|k|) . (2.64)

Comparing (2.63) and (2.64) one can easily see that the power spectrum and the 2PCF are Fourier
transform pairs,

Pδ(|k|) =
∫

d3y e−iy·k Cδδ(|y|) . (2.65)

Generally, since the density contrastδ evolves with time, the power spectrum and 2PCF are
also functions of time. Using the knowledge of the linear growth of density contrast, one can readily
express a late time linear power spectrumPδ,L(k,a) as a function of the power spectrum at a specified
initial epoch with scale factorai ,

Pδ,L(k,a) =
D2
+(a)

D2
+(ai)

T2
k Pδ(k,ai) . (2.66)

A power law initial power spectrum is usually assumed,

Pδ(k,ai) ∝ kns , (2.67)

where thespectrum index ns is observationally found to be close to unity (e.g. Seljak et al. 2005;
Sánchez et al. 2009).

The scale dependence of the linear power spectrum is totally contained in thetransfer function
Tk. Takingns = 1, with the asymptotic behavior ofTk, one has

Pδ,L(k) ∝















k for 1/k≫ rh(aeq)

k−3 for 1/k≪ rh(aeq) .

The turnover scale at 1/k ≃ rh(aeq) is the only characteristic scale in the linear power spectrum. It
corresponds to the scale of the fluctuation which enters the horizon at matter-radiation equality. The
growth of perturbations with smaller sizes and which enter the horizon earlieris suppressed in the
radiation-dominated era.

Non-linear growth of the density contrast adds an additional scale dependence to the power
spectrum: it affects the small scales more. Theoretical treatments of non-linear power spectrum can
be found in e.g. Peacock & Dodds (1996) and Smith et al. (2003).

The normalization of the power spectrum is fixed by the parameterσ8, which is defined as the
variance of density fluctuations in spheres of radius 8h−1Mpc.
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Formation of the large scale structure

The bispectrum

The bispectrum of the matter density field is defined as
〈

δ̃(k1)δ̃(k2)δ̃(k3)
〉

=: (2π)3 δD(k1 + k2 + k3)Bδ(k1, k2, k3) . (2.68)

The Dirac delta function here guarantees that the bispectrum is defined only when k1, k2 and k3

form a triangle. This is again related to the statistical homogeneity the Universe. After taking into
account the statistical homogeneity and the isotropy, the bispectrum is characterized by only three
real quantities, which are chosen to be the three side lengths of the triangle here. It is also common
to choose two side lengths and the angle between them to parametrize the bispectrum.

If one assumes Gaussian initial conditions, then the bispectrum generated by gravitational insta-
bility at large scales can be given by second-order perturbation theory, and reads (Fry 1984)

Bδ(k1, k2, k3) = 2F2(k1, k2)Pδ(k1)Pδ(k2) + cyc., (2.69)

with F2 defined by (2.59).
Efforts have been made to modify (2.69) in order to fit the results from N-body simulations better

(Scoccimarro & Frieman 1999), i.e. to interpolate between perturbative andthe highly non-linear
regimes. This is achieved by replacing the kernel (2.59) by an effective kernel

Feff
2 (k1, k2) =

5
7

a(n, k1)a(n, k2) +
1
2
k1 · k2

k1k2

(

k1

k2
+

k2

k1

)

b(n, k1)b(n, k2) +
2
7

(k1 · k2)2

k2
1k2

2

c(n, k1)c(n, k2) ,

(2.70)
wheren is the spectral index, usually chosen to be the local spectral index obtained from the linear
power spectrum (see Scoccimarro & Couchman 2001). The functionsa(n, k1), b(n, k1) andc(n, k1)
are chosen to fit the N-body simulations for small scales and are approximating unity for large scales.

Currently, the commonly used fitting formula for the non-linear evolution ofBδ in CDM models
is given by Scoccimarro & Couchman (2001). It fits the measurements in N-body simulations to an
accuracy of 15%.
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Chapter 3

Gravitational lensing

The physical law that governs the traveling of light is Fermat’s principle. Itstates that out of all
the possible paths connecting two points in space, the light follows those with stationary light-travel
time. This means, in an Euclidian space, that light travels along straight lines; and in a spacetime
described by GR, that light follows null geodesics.

Since spacetime is curved around a massive body in the picture of GR, light rays can be bent.
Although the idea of light bent by massive bodies has a very early origin (Newton 1704), it was
during the Solar eclipse in 1919 that the first observations (Dyson et al. 1920) were made. The
measured light-deflection angles in these observations provided a strong support for GR.

The deflection of light by a gravitational field is analogous to the light deflection by an optical
lens, thus the name of gravitational lensing. The gravitational lensing effect can act as a direct probe
of the gravitational field, unlike most of the other astronomical probes whichrely on luminous
matter. With this advantage, it has been used to measure the matter distribution on all scales, from
planets up to the LSS of the Universe.

According to the degree of distortion to the original light path, gravitational lensing is divided
into strong lensingandweak lensing. Strong lensing occurs around high mass concentrations (e.g.
compact objects, galaxies or clusters of galaxies), and is associated with phenomena like multiple
images and giant arcs. Weak lensing, on the other hand, deals with mild distortions of the light
bundle. Its observable effects can be caused by numerous objects along the light path, and studies
are mostly done statistically. In this thesis we will concentrate on cosmic shear – weak gravitational
lensing by the LSS.

Cosmic shear is sensitive to all cosmological parameters which have influence on the density
perturbations and/or the geometry of the Universe, including those concerning properties of dark
energy, which have been a key concern after the discoveries made by observations of supernovae,
the cosmic microwave background, and the large-scale structure (for a review see e.g. Munshi et al.
2008). Since its first detection in 2000 (Bacon et al. 2000; Kaiser et al. 2000; Van Waerbeke et al.
2000; Wittman et al. 2000), cosmic shear has been developed into a competitive cosmological probe.
Its constraining power on cosmological parameters is now comparable to other probes (e.g. Spergel
et al. 2007; Fu et al. 2008). With forthcoming large-field multicolor imaging surveys, photometric
redshift and shape information of a huge number of galaxies will be available, rendering cosmic
shear even greater statistical power. In particular, cosmic shear is considered to be one of the most
promising dark energy probes (Albrecht et al. 2006; Peacock et al. 2006) when the results of these
surveys become available.

We introduce the basic theory of cosmic shear in this chapter, where Bartelmann & Schneider
(2001) and Schneider et al. (1992) have been heavily referenced.
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3.1 The geometry of gravitational lensing

Observer

Lens plane

Source plane

θ

β

ξ

α̂

η

Dds

Dd

Ds

Figure 3.1: Sketch of the geometry of a gravitational lens system (from Bartelmann & Schneider
2001).

Consider a typical situation in gravitational lensing: the deflection of a light ray by a point mass
as depicted in Fig. 3.1. The lens is located at the intersection of the dashed lineand the ‘Lens plane’;
the light ray follows the solid line, is deflected at the lens plane by an angleα̂, and is finally observed
by the observer at an angular positionθ. The distance between the lens plane and the ‘Source plane’
is Dds, and that between the lens plane and the observer isDd. Since these distances here relate
physical transverse separations (e.g.η andξ) to angles, they are the angular-diameter distances.

3.1.1 The lens equation and the deflection angle

A basic equation to describe this light deflection would be one that relates the true position of a
sourceβ to its observed positionθ on the sky. This equation, named the lens equation, can be derived
from the geometrical relations shown in Fig .3.1 using the fact that the angles inconsideration are
small:

β = θ −
Dds

Ds
α̂(ξ) ≡ θ − α(θ) . (3.1)
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The geometry of gravitational lensing

The mechanism of light deflection enters (3.1) in the form of the deflection angle α̂. Using GR
in the weak-field limit, the deflection angle for a ray with impact parameterξ is linked to the point
mass as

α̂ =
4GM

c2 ξ
. (3.2)

Note that even in the case of strong lensing, one still works in the weak-fieldlimit. Light de-
flection in strong field, e.g. near black holes, is not a subject of the gravitational lensing theory that
will be introduced in this chapter. The form of the deflection angle (3.2) andthe form of the angular
diameter distance (2.23) are the only places GR enters in the whole gravitational lensing theory.

When the deflecting mass is not point-like but spatially extended, the deflectionangle can be
calculated as the sum of deflections by its individual mass elements.

α̂(ξ) =
4G

c2

∫

d2ξ′ Σ(ξ′)
ξ − ξ′

|ξ − ξ′|2
, (3.3)

whereΣ is the matter density projected along the line-of-sight

Σ(ξ) ≡
∫

dr3 ρ(ξ1, ξ2, r3) . (3.4)

Here the so-called Born approximation has been made. Analogous to the Born approximation
in atomic and nuclear physics, we have assumed that the distribution of the deflecting mass is small
(‘thin’) along the line-of-sight compared to the distance traveled by the lightray, so that the light ray
can be approximated as a straight line in the neighborhood of the deflecting mass distribution. This
approximation holds well for gravitational lensing by common extended astronomical objects, e.g.
galaxies and clusters of galaxies.

Based on (3.4), we further find an expression forα(θ) in (3.1):

α(θ) =
1
π

∫

d2θ′ κ(θ′)
θ − θ′

|θ − θ′|2
, (3.5)

where thedimensionless surface mass densityor convergenceκ is defined as

κ(θ) =
Σ(Ddθ)
Σcr

with Σcr :=
c2

4πG
Ds

Dd Dds
. (3.6)

As will be shown, thecritical surface mass densityΣcr is also the characteristic value for the surface
mass density which divides the ‘weak’ and ‘strong’ lensing regimes. By definition (3.6), it is distance
dependent.

3.1.2 Jacobi matrix of lens mapping

For two-dimensional quantities like the angles defined ablove, we have the identities∇ ln |θ| =
θ/|θ|2 and∇2 ln |θ| = ∇ ·

(

θ/|θ|2
)

= 2πδD(θ). This motivates one to define the deflection potentialψ

as (e.g. Bartelmann & Schneider 2001)

ψ(θ) =
1
π

∫

d2θ′ κ(θ′) ln |θ − θ′| , (3.7)

so that we can expressα andκ as
α = ∇ψ , (3.8)
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κ =
1
2
∇2ψ =

1
2

(

ψ,11+ ψ,22
)

, (3.9)

whereg,i j indicates the derivative ofg with respect to the basis vectorsei ande j .
As depicted by Fig .3.1, the image of a light source at positionβwould be observed at a different

position θ due to the lensing effect. To describe the mapping from the original position to the
observed position, one considers the Jacobi matrix of the mapping

A(θ) :=
∂β

∂θ
=

(

δi j −
∂2ψ(θ)
∂θi∂θ j

)

=

(

1− κ − γ1 −γ2

−γ2 1− κ + γ1

)

, (3.10)

where we have introduced the components of theshearγ ≡ γ1 + iγ2 = |γ|e2iϕ, with

γ1 =
1
2

(ψ,11− ψ,22) , γ2 = ψ,12 . (3.11)

We can see that the matrixA is symmetric, with trace trA = 2(1− κ), and the shearγ describing
its trace-less part. The ratioµ of image size and the size of the source is given by the determinant of
A,

µ =
1

detA
=

1
(1− κ)2 − |γ|2

. (3.12)

For the special case of a source with circular isophotes, its image would have elliptical isophotes.
The ratio of the major and the minor axis of the ellipse to the radius of the circle would be 1− κ+ |γ|
and 1− κ− |γ|, respectively, and the major axis of the ellipse would point into the direction ofφ, with
2φ being the phase angle ofγ.

The last feature described above is related to the fact that the shear is a spin-2 quantity. Here
the spin of a quantity is based only on the rate its polar angle changes with respect to the rotation
of the coordinate system. For example, if the coordinate systems turns an angle θ, a spin-2 quantity
would rotate 2θ in the opposite direction, i.e. it gets multiplied by a phase factor e−2iθ. We write the
two components of shear in terms of a complex number because the spin property is conveniently
expressed in this way.

In the lens mapping, surface brightness is conserved according to Liouville’s theorem. Thusµ,
the ratio of image size and the size of the source, is also the flux ratio of the imageand the source.
In the weak lensing regime we haveµ ≈ 1, the caseµ ≫ 1 occurs by definition only in the strong
lensing regime. In (3.12) one can see thatµ ≫ 1 happens when the convergenceκ is close to 1, i.e.
when the surface mass density is close toΣcr.

The lensing magnification is one of the cosmological tools provided by gravitational lensing.
We will focus on another tool, the image shape distortion quantified by the shear γ. In the case of a
circular background source, the axis ratio of the lensed image isb/a = 1− κ− |γ|/(1− κ+ |γ|), which
leads to

|γ(θ)|
1− κ(θ)

=
1− b/a
1+ b/a

, (3.13)

i.e. it is the quantityγ(θ)/ [1− κ(θ)], called the reduced shear, that is determined by the axis ratio of
the lensed image. Generally, a background source is not circular, but iselliptical to the first order.
We denote this intrinsic ellipticity asǫI . If the intrinsic ellipticities of a population of galaxies are
statistically uncorrelated, then the reduced shear can be estimated statistically from the observed
ellipticities of these galaxies. In this thesis we take the approximationγ ≃ g, which holds well in
the limit of weak lensing.
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Cosmic Shear

Since both the convergenceκ and the shearγ can be written as combinations of second deriva-
tives of the deflection potentialφ, see (3.9) and (3.11), they are interrelated. With (3.7) it is straight
forward to find

γ(θ) =
1
π

∫

d2θ′D(θ − θ′) κ(θ′) , (3.14)

where

D(θ) ≡
θ2

2 − θ
2
1 − 2iθ1θ2

|θ|4
=

−1
(θ1 − iθ2)2

. (3.15)

We will call this convolution kernelD the Kaiser-Squires (K-S) kernel and (3.14) the K-S relation,
since it was first recognized in Kaiser & Squires (1993) that the inverserelation of (3.14) suggests
one can reconstruct the projected mass distribution from the shear signal.The Fourier counterpart
of the K-S kernel can be obtained by Fourier transforming (3.9) and (3.11), as

D̃(ℓ) = π
ℓ2

1 − ℓ
2
2 + 2iℓ1ℓ2

|ℓ|2
= π e2iβ for ℓ , 0 , (3.16)

whereβ is the polar angle ofℓ. With this, one can express the Fourier counterpart of (3.14) as

γ̃(ℓ) = e2iβκ̃(ℓ) for ℓ , 0 , (3.17)

i.e. the Fourier counterpart of the convergence and the shear are the same up to a phase factor.
The Fourier space relation (3.17) further allows one to invert the relation (3.14). Since one has

κ̃(ℓ) = e−2iβγ̃(ℓ) for ℓ , 0 , (3.18)

It is straightforward to see that

κ(θ) − κ0 =
1
π

∫

d2θ′D∗(θ − θ′) γ(θ′) . (3.19)

An arbitrary constantκ0 occurs since theℓ = 0 mode is not determined. This means if the shear
field is known, the convergence field can be determined, but only up to an additive constant. This
arbitrary constant causes a major problem in using the shear signal to reconstruct the projected mass
distribution, e.g. in the case of inferring the mass profile of a galaxy cluster with the shear signal in
the field. Especially in the inner regions of a galaxy cluster, the approximationγ ≃ g does not hold
well any more. In this case the problem of the arbitrary constant translatesto the fact that, if one
scales the convergence field as [1− κ′(θ)] = λ[1 − κ(θ)], the reduced shearg stays invariant. This
so-calledmass-sheet degeneracycan be removed with the aid of additional observables or physical
assumptions. The cosmic shear study, which is based on the statistical properties of the shear and
convergence field, is not affected by the mass sheet degeneracy.

3.2 Cosmic Shear

Cosmic shear refers to the coherent shape distortion of distant sourcesby the LSS. This distortion
is usually very mild, typically of the order of a few percent. Thus cosmic shear has to be detected
and studied in a statistical way, using images of a large number of distant galaxies.

For cosmic shear, the thin lens approximation fails, since the ‘lens’ here is nolonger a concen-
trated object, but all the intervening matter between the source and the observer. Amazingly, the
formalism of gravitational lensing as presented in the previous section still holds for cosmic shear
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to the linear order. We will show this by considering the light propagation in a 3D distribution of
matter, as is the case for the LSS of the Universe. Then we will introduce theconcept of E- and
B-mode for the shear signal, and show the commonly used statistical measuresof cosmic shear and
some relations between them.

3.2.1 Light propagation in a three-dimensional matter distribution

Figure 3.2: The paths of three light rays travelling through a simulated mass distribution. The
deflections have been greatly exaggerated. Credit: S. Colombi (IAP), CFHT Team.

In an inhomogeneous universe, light of background galaxies is distorted continuously on its path
by the intervening matter. The equation governing the propagation of thin lightbundles through an
arbitrary spacetime is theequation of geodesic deviation. It describes how the comoving separation
vectorx(θ, χ) between a ray separated by an angleθ at the observer from a fiducial ray evolves:

d2x
dχ2
+ Kx = −

2
c2

[

∇⊥Φ (x(θ, χ), χ) − ∇⊥Φ
(0)(χ)

]

, (3.20)

whereχ is the comoving radial distance,K is the curvature signature (see Sect. 2.1.1), andΦ is
the comoving gravitational potential as defined in (2.39);∇⊥ is the 2D comoving gradient operator
acting on the plane perpendicular to the fiducial light ray; ‘0’ denotes the fiducial light ray.
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Equation (3.20) can be solved with the Green’s function method, yielding

x(θ, χ) = fK(χ)θ −
2
c2

∫ χ

0
dχ′ fK(χ − χ′)

[

∇⊥Φ
(

x(θ, χ′), χ′
)

− ∇⊥Φ
(0)(χ′)

]

, (3.21)

with fK(χ) defined by (2.3).
The true angular position of a source atx(θ, χ) isβ = x/ fK(χ). Thus (3.21) leads to an expression

of the Jacobi matrix of lens mapping as defined in (3.10):

Ai j (θ, χ) = δi j −
2
c2

∫ χ

0
dχ′

fK(χ − χ′) fK(χ′)
fK(χ)

Φ,ik
(

x(θ, χ′), χ′
)

Ak j(θ, χ
′) . (3.22)

This equation is exact in the limit of a weakly inhomogeneous universe. Fromit we can see that
the source of the image distortion and magnification is the second order derivative of the gravitational
potential along the actual light pathx(θ, χ). The fact that the Jacobi matrix also enters the r.h.s. of
the equation suggests that the light deflection at one comoving distanceχ is dependent on that at
comoving distanceχ′ < χ (lens-lens coupling).

Now we apply two approximations. Firstly we replaceΦ,ik (x(θ, χ′), χ′) by Φ,ik ( fK(χ′)θ, χ′) in
(3.22), i.e. we evaluate the potential derivative along the fiducial light ray. This approximation
is again called the Born approximation; it holds well if the second derivativeof the gravitational
potential is smooth within the scale of the separation vectorx. Secondly we keep the Jacobi matrix
on the r.h.s. of (3.22) only to the zeroth order ofΦ, i.e. we approximate it byδk j. In this way we
neglect the lens-lens coupling. Discussion of validity of these two approximations can be found in
Schneider et al. (1998); Cooray & Hu (2002); Shapiro & Cooray (2006) and Hilbert et al. (2009). A
general conclusion is that the corrections to them are not important for cosmic shear surveys which
will be performed in the near future.

The Jacobi matrix after applying these two assumptions is

Ai j (θ, χ) = δi j −
2
c2

∫ χ

0
dχ′

fK(χ − χ′) fK(χ′)
fK(χ)

Φ,i j
(

fK(χ′)θ, χ′
)

. (3.23)

We can match the formAi j = δi j − ψ,i j by redefining the potential

ψ(θ, χ) :=
2
c2

∫ χ

0
dχ′

fK(χ − χ′) fK(χ′)
fK(χ)

Φ
(

fK(χ′)θ, χ′
)

. (3.24)

Now we see that lensing by the 3D matter distribution, under the two approximations introduced,
can be treated in the same way as in the case of a thin lens. The equivalent lens plane has a deflection
potential ofψ as defined in (3.24), convergenceκ = ∇2ψ/2, and shearγ = (ψ,11− ψ,22)/2+ iψ,12.

This convergence can be further related to the density fluctuation in the Universeδ by making
use of (2.42), yielding

κ(θ, χ) =
3H2

0Ωm

2c2

∫ χ

0
dχ′

fK(χ − χ′) fK(χ′)
fK(χ)

δ ( fK(χ′)θ, χ′)
a(χ′)

. (3.25)

Equation (3.25) gives the equivalent convergence for a source at comoving distanceχ which is
observed at positionθ. Again, it receives contributions from all the intervening matter. In cosmic
shear studies, one usually considers the lensing distortion of a large number of galaxies spread along
the line of sight. Denoting the distance probability distribution of a populationi of source galaxies
by p(i)

s (χ), one obtains a source-averaged convergence

κ(θ) =
∫ rh

0
dχ p(i)

s (χ)κ(θ, χ) =
3H2

0Ωm

2c2

∫ rh

0
dχ g(χ) fK(χ)

δ ( fK(χ)θ, χ)
a(χ)

, (3.26)
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where we have defined the lensing efficiency

g(χ) =
∫ rh

χ

dχ′ p(i)
s (χ′)

fK(χ′ − χ)
fK(χ′)

. (3.27)

The lensing efficiencyg(χ) can be regarded asDds/Ds weighted over the source population for a
lens at comoving distanceχ.

3.2.2 E- and B-modes

E mode

B mode

Figure 3.3: Upper row: A
point mass (left) or underdensity
(right) produces tangential, curl-
free shear patterns called the E-
mode. Lower row: Divergence-
free pattern obtained from rotating
all shears by 45 degrees. These so-
called B-mode patterns cannot be
produced from gravitational lens-
ing (figure from Van Waerbeke &
Mellier, 2003).

The shear can be seen as the lensing contribution to galaxy shapes, whichcan be described by a
symmetric and trace-less 2D tensor field, i.e. a polarization field. Such a field can be decomposed
into a curl-free and a divergence-free component, in analogy with the decomposition of the electro-
magnetic field into a electric E-mode and a magnetic B-mode. Therefore this decomposition is also
called the E/B-mode decomposition.

Defined as the second-order derivatives of the deflection potentialψ (3.11), the shear generated
by gravitational lensing is a pure E-mode field as the deflection potential is a scalar field. The
measured B-mode comes only from systematics and higher-order effects. Thus performing an E/B-
mode decomposition provides a check on the possible systematics in the measured shear signal
(e.g. Crittenden et al. 2002; Pen et al. 2002). In Chap. 4 we will present some results concerning
E/B-mode decomposition for 3-pt statistics.

3.2.3 Two- and three-point cosmic shear statistics

The two-point correlation functions and the power spectrum

Since the shear field is a polarization field which we describe by a complex number at each
spatial position, the 2-pt correlator of shear corresponds to more than one real function. Consider the
correlation of shear at two positions separated byθ = θ eiϕ. It is convenient to define the tangential
and cross-component of the shear regarding to this pair asγt = −Re(γ e−2iϕ) andγ× = −Im(γ e−2iϕ).
Then one can proceed to define three real correlation functions of these shear components,

ξ+(θ) = 〈γt(ϑ + θ)γt(ϑ)〉 + 〈γ×(ϑ + θ)γ×(ϑ)〉 , (3.28)

ξ−(θ) = 〈γt(ϑ + θ)γt(ϑ)〉 − 〈γ×(ϑ + θ)γ×(ϑ)〉 , (3.29)
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ξ×(θ) = 〈γt(ϑ + θ)γ×(ϑ)〉 . (3.30)

Thanks to the simple relation (3.17) between the shear and the convergencein Fourier space,
one has

(2π)2δD(ℓ − ℓ′)Pγ(ℓ) :=
〈

γ̃(ℓ)γ̃∗(ℓ′)
〉

=
〈

κ̃(ℓ)κ̃∗(ℓ′)
〉

=: (2π)2δD(ℓ − ℓ′)PE
κ (ℓ) , (3.31)

i.e. one does not need to distinguish between convergence power spectrum and shear power spec-
trum. Note thatξ+(θ) = 〈γγ∗〉 (θ), one also has〈κκ∗〉 (θ) = ξ+(θ).

We have distinguishedκ∗(θ) andκ(θ) although the physical convergence field has no imaginary
part. We did so because if one reconstructs the convergence field fromshear signals using (3.19), the
resulting convergence could have a complex part due to the B-modes in the shear, which can come
from systematical errors, higher-order effects, and noise. Here we have introducedκ = κE + iκB, to
let the complex partκB account for the convergence corresponding to B-mode shear signal.We shall
omit the B-mode in this thesis as a default and deal mainly with the physical E-modecosmic shear
signal.

The power spectrum defined in (3.31) corresponds to the E-mode convergence only, thus we
denoted it byPE

κ . We further define

〈

κ̃B(ℓ)κ̃B∗(ℓ′)
〉

:= (2π)2δD(ℓ − ℓ′)PB
κ (ℓ) , and (3.32)

〈

κ̃E(ℓ)κ̃B∗(ℓ′)
〉

:= (2π)2δD(ℓ − ℓ′)PEB
κ (ℓ) . (3.33)

Then one can relate the 2-pt functions to the power spectrum. Their relations are found to be

ξ+(θ) =
1
2π

∫

dℓ ℓ J0(ℓθ)
[

PE
κ (ℓ) + PB

κ (ℓ)
]

ξ−(θ) =
1
2π

∫

dℓ ℓ J4(ℓθ)
[

PE
κ (ℓ) − PB

κ (ℓ)
]

ξ×(θ) =
1
2π

∫

dℓ ℓ J4(ℓθ) PEB
κ (ℓ) .

(3.34)

In general the mix termPEB
κ should vanish since it has an odd parity (Schneider 2003), thusξ×(θ)

vanishes as well.

The natural components and the bispectrum

At the 3-pt level there are more combinations of shear correlation functions. Schneider & Lom-
bardi (2003) studied these combinations of them which have simple behaviorunder general rotations
of the coordinates. They found four combinations which should be seen as the fundamental 3-pt con-
figuration space cosmic shear statistics, and gave them the name ‘the naturalcomponents’.

Consider three pointsXi , i ≤ l ≤ 3. In general they form a triangle with sidesx1 = X3 − X2,
x2 = X1 − X3, andx3 = X2 − X1. The directions of the sides are defined so thatx1 + x2 + x3 = 0.
Unlike in the 2-pt case where one can defineγt andγ× with respect to the line linking the two
points, there exists no unique natural choice of a reference point to defineγt andγ×. The reference
point could be chosen as any point inside the triangle. The middle of one side, the centroid and the
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orthocenter have all been used in practice. For any choice, the naturalcomponents are defined as

Γ(0) = γttt − γt×× − γ×t× − γ××t + i
[

γtt× + γt×t + γ×tt − γ×××
]

,

Γ(1) = γttt − γt×× + γ×t× + γ××t + i
[

γtt× + γt×t − γ×tt + γ×××
]

,

Γ(2) = γttt + γt×× − γ×t× + γ××t + i
[

γtt× − γt×t + γ×tt + γ×××
]

,

Γ(3) = γttt + γt×× + γ×t× − γ××t + i
[

−γtt× + γt×t + γ×tt + γ×××
]

.

(3.35)

These natural components do not mix under a rotation of the coordinates, they change only by a
phase factor.

Under cyclic permutation of the arguments, they behave as

Γ(0)(x1, x2, x3) = Γ(0)(x2, x3, x1) = Γ(0)(x3, x1, x2) ,

Γ(1)(x1, x2, x3) = Γ(3)(x2, x3, x1) = Γ(2)(x3, x1, x2) ,

Γ(2)(x1, x2, x3) = Γ(1)(x2, x3, x1) = Γ(3)(x3, x1, x2) , (3.36)

Γ(3)(x1, x2, x3) = Γ(2)(x2, x3, x1) = Γ(1)(x3, x1, x2) ,

i.e. Γ(0) stays invariant, and the other natural components transform into each other. This suggests
that if a permutation of the arguments is allowed, the four complex natural components cannot be
considered as independent quantities. The degree of freedom corresponds to two complex quantities,
or four real quantities.

The 3-pt shear and convergence statistics are again simply related in Fourier space. So here we
introduce only the convergence bispectrum which is defined via

〈κ(ℓ1)κ(ℓ2)κ(ℓ3)〉 =: (2π)2 δ
(2)
D (ℓ1 + ℓ2 + ℓ3) B(ℓ1, ℓ2, ℓ3) , (3.37)

where the Dirac delta function imposes the condition thatℓ1+ℓ2+ℓ3 = 0, which we call thetriangle
condition. Here we have considered the field to be both statistically homogeneous and isotropic, thus
the bispectrum can be quantified by three real arguments which we have chosen to be the three side-
lengths of the triangle. Another commonly used choice is two side-lengths and the angle between
them.

The relations between the natural components and the convergence bispctrum have been stud-
ied and given in Schneider et al. (2005). These relations have complicated dependences on their
arguments and have highly oscillatory integration kernels, which largely limits their application. In
Chap 4 we will give the relations between the natural components and the 3-pt convergence correla-
tion functions, which provides another way to link the observable shear statistics and the underlying
matter density field.

The aperture mass statistics

Theaperture mass Map is one important measure of the shear and the convergence introduced by
Kaiser et al. (1994) and Schneider (1996) to circumvent the mass-sheet degeneracy problem. The
aperture mass within an aperture of sizeθ centering onθ0 is defined as

Map(θ, θ0) =
∫

Aθ
d2ϑ κ(ϑ) Uθ(|ϑ − θ0|) , (3.38)
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whereAθ is the area of the aperture, andUθ(ϑ) is a compensated filter function, i.e.
∫

Aθ
d2ϑ Uθ(|ϑ|) = 2π

∫ θ

0
dϑ ϑUθ(ϑ) = 0 . (3.39)

Note thatUθ(ϑ) is a function of bothϑ andθ. To ensure that its functional form satisfy the condition
(3.39) for anyϑ andθ, it has to have the scaling

Uθ(ϑ) =
1
θ2

Ū

(

ϑ

θ

)

, (3.40)

whereŪ is a single argument function which needs to satisfy
∫ 1

0
dx xŪ(x) = 0 . (3.41)

A valuable property of the aperture mass is that it can also written directly in terms of the shear,
as

Map(θ, θ0) =
∫

Aθ
d2ϑ Qθ(|ϑ|) γt(ϑ; θ0) , (3.42)

whereγt(ϑ; θ0) denotes the tangential shear at positionϑ relative to the pointθ0, and

Qθ(ϑ) =
2
ϑ2

∫ ϑ

0
dϑ′ ϑ′Uθ(ϑ

′) − U(ϑ) . (3.43)

The form of theQ filter can be derived from the relation between the shear and the convergence (see
Squires & Kaiser 1996, Schneider 1996, and Schneider & Bartelmann 1997).

The aperture massMap is a real quantity and is sensitive only to the tangential shear. One can
expand it to a complex quantity as (θ0 has been put to the origin for simplicity)

M(θ) :=Map(θ) + iM⊥(θ) =
∫

Aθ
d2ϑ Qθ(|ϑ|)

[

γt(ϑ) + iγ×(ϑ)
]

= −

∫

Aθ
d2ϑ Qθ(|ϑ|) γ(ϑ) e−2iφ ,

(3.44)

with φ being the polar angle ofϑ. While the real part ofM(θ) corresponds to the physical con-
vergenceκE (3.38), the imaginary part of it corresponds toκB, which vanishes in the absence of a
B-mode. This suggests that the aperture mass statistics naturally allows a E/B-mode decomposition.
The lensing signal which has no B-mode component enters only theMap(θ). The M⊥(θ), on the
other hand, is a measure of the B-mode which quantifies systematic errors and noises.

At the 2-pt level, the dispersions of the aperture measures are related to the power spectrum by
(Schneider et al. 1998)

〈

M2
ap(θ)

〉

=
1
2π

∫ ∞

0
dℓ ℓ PE(ℓ) Wap(ℓθ)

〈

M2
⊥(θ)

〉

=
1
2π

∫ ∞

0
dℓ ℓ PB(ℓ) Wap(ℓθ) ,

(3.45)

which follow directly from (3.38) with

Wap(ℓθ) =

(

2π
∫ θ

0
dϑ ϑ Uθ(ϑ)J0(ℓϑ)

)2

=

(

2π
∫ 1

0
dx x Ū(x)J0(ℓθx)

)2

,

(3.46)
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where in the second step we have inserted (3.40).
One can see that the dispersion of aperture mass

〈

M2
ap

〉

is sensitive only to the E-mode power

spectrum, and
〈

M2
⊥

〉

is sensitive only to the B-mode one, as expected.
The statistics to be applied directly to weak lensing survey data is the shear correlation function

since it deals easily with the complex survey geometry a lensing survey usuallyhas. The other
statistics, e.g. that of the aperture measures, need to be obtained from the shear correlation functions.
At the 2-pt level, the relations between these two statistics are (Schneider etal. 2002)

〈

M2
ap

〉

(θ) =
1
2

∫ ∞

0

dϑ ϑ
θ2

[

ξ+(ϑ)Tap
+

(

ϑ

θ

)

+ ξ−(ϑ)Tap
−

(

ϑ

θ

)]

,

〈

M2
⊥

〉

(θ) =
1
2

∫ ∞

0

dϑ ϑ
θ2

[

ξ+(ϑ)Tap
+

(

ϑ

θ

)

− ξ−(ϑ)Tap
−

(

ϑ

θ

)]

.

(3.47)

The forms of the filtersTap
+ andTap

− can be derived by combining (3.34) and (3.45), yielding

Tap
+ (x) =

∫

dη η J0(xη)Wap(η) ,

Tap
− (x) =

∫

dη η J4(xη)Wap(η) .
(3.48)

For most choices of the filterU, one cannot obtain an analytical form forTap
+ andTap

− .
Note that the integrals in (3.47) extend in principle from zero to infinity, which causes a problem

since in practice one cannot measure the shear correlation functions outto very small or very large
angular separations. The difficulty at small angular separations arises since galaxies are extended
sources, and it is impossible to precisely measure galaxy shapes if the imagesof the galaxies overlap.
The difficulty at large angular separations, on the other hand, is due to the finite sizeof the survey.
For the choices of the filterU made in Kaiser (1995); Schneider (1996); Crittenden et al. (2002), the
Tap
+ andTap

− filters do not extend to infinity and thus remove the problem there (see e.g. Schneider
et al. 2002), but they do extend tox → 0, which leads to a certain mixing of E- and B-modes
(Kilbinger et al. 2006). We shall give an overview of the solutions to this problem at the 2-pt
level and the current situation for 3-pt statistics in Chap. 4. The relations between the 3-pt aperture
statistics, the natural components and the bispectrum are given in Schneider et al. (2005).
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Chapter 4

Relations between three-point
configuration space shear and
convergence statistics

The convergenceκ and the shearγ are two basic quantities considered in gravitational lens the-
ory. Defined as the dimensionless surface mass density,κ is a weighted projection of the 3D matter
density contrastδ (3.25). The shearγ, on the other hand, is directly accessible from observations
(see Sect. 3.1.2). Therefore, the theoretical framework of gravitational lensing should include the
relation between configuration spaceκ andγ statistics as well as the one relating configuration space
statistics to their Fourier space counterparts. At the level of 2-pt statistics,such relations have al-
ready been established. For 3-pt statistics, the relation between the shear3-pt correlation functions
(γ3PCFs) and the convergence bispectrum, which is the Fourier counterpart of the 3-pt convergence
correlation function (κ3PCF), has been derived by Schneider et al. (2005). The other non-trivial
relation, the one betweenγ3PCFs andκ3PCFs, is still missing. One purpose of the work described
in this chapter is to establish this missing link.

How to perform E/B-mode decomposition is also a major concern of the weak lensing commu-
nity. For observational data an E/B-mode decomposition provides a necessary check on the possible
systematics (e.g. Crittenden et al. 2002; Pen et al. 2002). In recent years there have been several
efforts to construct better statistics which allow for an E/B-mode decomposition at the 2-pt level
(Schneider & Kilbinger 2007; Eifler et al. 2010; Fu & Kilbinger 2010; Schneider et al. 2010). They
all use weight functions to filter the shear 2-pt correlation functions (γ2PCFs), and the condition for
E/B-mode decomposition transforms to a condition on the weight functions. Sucha condition at the
3-pt level is also missing so far. We will see that with the aid of the relation between theγ3PCFs
and theκ3PCFs, one can easily formulate this condition.

In the first section of this chapter we show how the relation between theγ3PCF and theκ3PCF
is obtained. In Sect. 4.2 we investigate the correspondence between the derived relation and already
established results. We then extend our results to otherγ3PCFs in Sect. 4.3, and in Sect. 4.4 we
present an application of the 3-pt relations, deriving the condition for E/B-mode separation of 3-
pt shear statistics. How these relations can be numerically evaluated is demonstrated in Sect. 4.5,
and we conclude in Sect. 4.6. In the first two sections we ignore the B-mode and consider the
convergenceκ to be a real quantity, starting from Sect. 4.3 we extend the consideration to B-mode
and complexκ. The content of this chapter is based on Shi et al. (2011).
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CHAPTER 4. RELATIONS BETWEEN THREE-POINT CONFIGURATION SPACE SHEAR
AND CONVERGENCE STATISTICS

4.1 Relation between three-pointγ and κ correlation functions

4.1.1 The form of the relation

At the 2-pt level, the relation between the configuration space shear and convergence statistics
is theξ+ − ξ− relation (Crittenden et al. 2002; Schneider et al. 2002)

ξ−(x) =
∫

dy y ξ+(y)















4x2 − 12y2

x4
H(x− y) +

δ
(1)
D (x− y)

x















, (4.1)

whereH andδ(1)
D are Heaviside function and 1D Dirac delta function, respectively. The functionsξ+

andξ− are defined in (3.28) and (3.29). They can also be written asξ+(x) = 〈κκ〉(|x|) = 〈γγ∗〉(|x|)
andξ−(x) = 〈γγ〉(x) e−4iφx, with φx being the polar angle of the separation vectorx (see Sect. 3.2.3).
Note that the shearγ is a spin-2 quantity and thus〈γγ〉(x) has a spin of 4. Being the product of
〈γγ〉(x) and a phase factor of e−4iφx, the quantityξ−(x) no longer depends on the polar angle ofx.

The relation (4.1) has already taken both the statistical homogeneity and isotropy of the shear
field into account and is therefore a one-dimensional relation of quantities on the real domain. The
derivation of theξ+−ξ− relation originates from the relation betweenξ+ andξ− and the convergence
power spectrumPκ (3.34), or equivalently

Pκ(ℓ) = 2π
∫ ∞

0
dx x ξ+(x) J0(ℓx) = 2π

∫ ∞

0
dx x ξ−(x) J4(ℓx) . (4.2)

Inverting one of the relations in (4.2) one can writeξ+ andξ− in terms of each other, e.g.

ξ−(x) =
∫ ∞

0

dℓ ℓ
2π

J4(ℓx) Pκ(ℓ) =
∫ ∞

0
dy y ξ+(y)

∫ ∞

0
dℓ ℓ J4(ℓx) J0(ℓy) , (4.3)

and the final form of the relation (4.1) can be reached by performing the 1D Bessel integral whose
result can be obtained from Gradshteyn et al. (2000).

The same procedure, however, fails to work for 3-pt statistics since the corresponding Bessel
integral actually consists of three integrals, and they have highly complicateddependencies on the
arguments (see Schneider et al. 2005). A brute force numerical evaluation of these integrals is also
extremely challenging due to the oscillatory behaviour of the Bessel functions.

Since the advantage of transforming to the Fourier plane and back no longer holds for 3-pt
statistics, we attempt to stay in configuration space, which at least avoids the problem of oscilla-
tory integrals. One can see from (4.1) that the result of the Bessel integral in (4.3) is actually not
oscillatory, as expected.

The configuration space 3-pt shear correlator can be written as〈γ(X1)γ(X2)γ(X3)〉, with Xi being
the positions on the two-dimensional (2D) plane where the shear signals areevaluated. Following
the assumed statistical homogeneity of the shear field, the correlator depends only on the separations
of these three positions. We choosex1 ≡ X1 − X3 andx2 ≡ X2 − X3 to be its arguments (see the
leftmost sketch of Fig. 4.1) and write the correlator as〈γγγ〉(x1, x2). After the same procedure is
applied to the 3-pt convergence correlator, the relation we are interestedin will be shown to be of
the form

〈γγγ〉(x1, x2) = −
1
π3

∫

d2y1

∫

d2y2 〈κκκ〉(y1, y2) G0(x1 − y1, x2 − y2) , (4.4)

where we have defined the convolution kernelG0 for which we need to find an explicit expression.
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Writing the relation in the form of a convolution is motivated by the K-S relation (3.14) between
the convergence and the shear (Kaiser & Squires 1993), which yields the result (4.4) and also allows
us to express the kernelG0 as

G0(a, b) = −
∫

d2vD(v) D(v − a) D(v − b) =
∫

d2v
1

v∗2
1

(v∗ − a∗)2

1
(v∗ − b∗)2

. (4.5)

Here, for simplicity, we have used the complex notation for the K-S kernel (3.15)

D(z) = −1/z∗2 , (4.6)

i.e. we have identified the 2D separation vectors with complex numbers. Throughout the text we
will use the vector and complex notations interchangeably, and usex to indicate a complex quantity,
x for its absolute value, andx∗ for its complex conjugate.

The integral in (4.5) is difficult to perform directly, so we first take a look at the more studied
2-pt case. The relation between 2-ptγ andκ correlation functions can be written in the same way as

〈γγ〉(x) =
1
π2

∫

d2y 〈κκ〉(y) F(x − y) , (4.7)

with

F(z) =
∫

d2vD(v) D(v − z) =
∫

d2v
1

v∗2
1

(v∗ − z∗)2
. (4.8)

Unlike the case of theξ+ − ξ− relation, we have not assumed a statistically isotropic field for (4.4) or
(4.7). Theξ+−ξ− relation is actually what one should obtain after adding the assumption of isotropy
to (4.7).

4.1.2 The form of the convolution kernels

Now we aim for obtaining the forms of theF andG0 kernels, which can be seen as the 2- and 3-
pt equivalence of the K-S kernel (4.6). Introducing the symbols∂ ≡ ∂1+ i∂2 and∇2 ≡ ∂2

1+∂
2
2 = ∂∂

∗,
one can write (3.9) and (3.11) as

κ =
1
2
∇2ψ , γ =

1
2
∂2ψ , (4.9)

which clearly shows that both the convergenceκ and the shearγ are second-order derivatives of
the deflection potentialψ. It is then convenient to useψ as a link betweenκ andγ. Using the
identities∇ ln |x| = x/|x|2 and∇2 ln |x| = 2πδ(2)

D (x) which hold for a 2Dx, one can easily verify the
consistency of (4.9) with the relation (3.7) betweenψ andκ (e.g. Bartelmann & Schneider 2001)
which we re-write here as

ψ(x) =
1
π

∫

d2y κ(y) ln |x − y| . (4.10)

Applying the operator∂2 on both sides of (4.10) and taking (4.9) into account, one reaches the K-S
relation (3.14), sinceD(z) =∂2 ln |z|.

The same procedure can be generalized to second-order statistics. The2-pt equivalence of (4.10)
is

〈ψ(x1)ψ(x2)〉 =
1
π2

∫

d2y1 ln |x1 − y1|

∫

d2y2 ln |x2 − y2| 〈κ(y1)κ(y2)〉 . (4.11)
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Using the statistical homogeneity of theκ field, and re-defining the integration variables, (4.11)
reduces to

〈ψ(x1)ψ(x2)〉 =
1
π2

∫

d2y 〈κκ〉 (y)
∫

d2u ln |u| ln |x1 − x2 − y − u|

=
1
π2

∫

d2y 〈κκ〉 (y) F ′ (x1 − x2 − y) ,
(4.12)

where we have defined

F ′ (z) =
∫

d2u ln |u| ln |z − u| . (4.13)

Obviously,F ′ is infinite at everyz, which is related to the fact thatψ is defined only up to an additive
constant. However, we shall only need the derivatives ofF ′. So we define

F (z) = F ′ (z) − F ′ (0) =
∫

d2u ln |u| ln
(

|z − u|
|u|

)

, (4.14)

and will useF andF ′ interchangeably. Letϕ denote the angle betweenu and z, (4.14) can be
rewritten as

F (z) =
1
2

∫ ∞

0
du u ln u

∫ 2π

0
dϕ ln

(

1−
2|z|
u

cosϕ +
|z|2

u2

)

. (4.15)

The integral overϕ yields zero if|z| < u, and 4π ln(|z|/u) otherwise. Thus

F (z) = 2π
∫ |z|

0
du u ln u ln(|z|/u) =

π

2
|z|2 (ln |z| − 1) . (4.16)

We are now ready to apply differential operators to (4.12) to get the relations of 2-pt shear and
convergence statistics. As a consistency check, we first apply two∇2 operators to (4.12), one acting
on x1 and the other onx2. According to (4.9), this turns the l.h.s. of (4.12) into 4〈κ(x1)κ(x2)〉. On
the r.h.s. of (4.12) the operators act exclusively onF ,

∇2
x1
∇2

x2
F (x1 − x2 − y) = ∇2∇2F (z) = ∇2 (2π ln |z|) = 4π2δ

(2)
D (z) , (4.17)

with z = x1−x2−y here. Using (4.17), one easily sees that the r.h.s. of (4.12) after the operation gives
4 〈κκ〉 (x1−x2), which is equivalent to 4〈κ(x1)κ(x2)〉 under the assumption of statistical homogeneity
of theκ field.

Now we apply the operator∂2
x1
∂2

x2
/4 on (4.12), which turns the l.h.s. of (4.12) into〈γ(x1)γ(x2)〉.

On the r.h.s. the operation again acts only onF ,

1
4
∂2

x1
∂2

x2
F (x1 − x2 − y) =

1
4
∂4F (z) , (4.18)

also withz = x1 − x2 − y. Remembering the definition of the kernelF (4.7), this leads to

F(z) =
∫

d2v
1

v∗2
1

(v∗ − z∗)2
=

1
4
∂4F (z) = 2π

z
z∗3

. (4.19)

For the 3-pt kernelG0 we split the integral in (4.5) into
∫

d2v
1

v∗2
1

(v∗ − a∗)2

1
(v∗ − b∗)2

=
1

(a∗ − b∗)2

∫

d2v
1

v∗2

[

1
(v∗ − a∗)2

+
1

(v∗ − b∗)2

]

−
2

(a∗ − b∗)3

∫

d2v
1

v∗2

[

1
v∗ − a∗

−
1

v∗ − b∗

]

,

(4.20)
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where we have assumeda , b. From (4.19) as well as

∫

d2v
1

v∗2
1

v∗ − z∗
=

1
2
∂3F (z) = −π

z
z∗2

, (4.21)

we obtain

G0(a, b) =
∫

d2v
1

v∗2
1

(v∗ − a∗)2

1
(v∗ − b∗)2

=
2π

(a∗ − b∗)2

(

a
a∗3
+

b

b∗3

)

+
2π

(a∗ − b∗)3

(

a
a∗2
−

b

b∗2

)

.

(4.22)
The forms of the kernels (4.19) and (4.22) hold rigorously outside their singularities (atz = 0

for F; at a = 0, b = 0, anda = b for G0). One may wonder if additional delta functions exist at
these singularities. We will show in Sect. 4.2 that this is not the case.

The method we used to derive the forms of the kernels (4.19) and (4.22) also allows one to derive
the relations between other correlation functions of weak lensing quantities ina systematic way. We
present explicit forms of some of the relations in Appendix 4.9.

4.1.3 The relations

To summarize, we have obtained:

〈γγ〉(x) =
2
π

∫

d2y 〈κκ〉(y)
y − x

(y∗ − x∗)3
, (4.23)

and

〈γγγ〉(x1, x2) = −
2
π2

∫

d2y1

∫

d2y2 〈κκκ〉(y1, y2)

[

1
(y1
∗ − x1

∗ − y2
∗ + x2

∗)2

×

(

y1 − x1

(y1
∗ − x1

∗)3
+

y2 − x2

(y2
∗ − x2

∗)3

)

+
1

(y1
∗ − x1

∗ − y2
∗ + x2

∗)3

(

y1 − x1

(y1
∗ − x1

∗)2
−

y2 − x2

(y2
∗ − x2

∗)2

) ]

.

(4.24)

In these relations we have applied the statistical homogeneity of the convergence field, but not
the statistical isotropy. Making use of the latter, one can derive theξ+ − ξ− relation from (4.23), as
will be shown in Sect. 4.2.2.

4.2 Consistency checks

4.2.1 The case of uniformκ

There is a physical condition which will directly serve as a test of theκ − γ relations (3.14),
(4.23) and (4.24). At the 1-pt level, for the K-S relation, a uniform convergence field does not result
in any shear. At the 2- and 3-pt level, the physical condition could be thata uniform〈κκ〉 (〈κκκ〉)
field leads to a vanishing shear correlation〈γγ〉 (〈γγγ〉).

One can easily see that both theF andG0 kernel we obtained satisfy this condition. If there are
additional terms at the singularities of the kernels which contribute to the integral, a non-zero〈γγ〉
(〈γγγ〉) term would be generated and the condition would not be satisfied anymore.Thus we argue
that the expressions (4.23) and (4.24) are already complete.
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4.2.2 Consistency with theξ+ − ξ− relation

Now we consider whether (4.23) is consistent with theξ+ − ξ− relation (4.1), which can be
regarded as the isotropic form of (4.23). That the two relations are consistent is equivalent to

∫ 2π

0
dφy

y − x
(y∗ − x∗)3

=
π

2
e4iφx

[

4x2 − 12y2

x4
H(x− y) +

δ(x− y)
x

]

. (4.25)

To verify that (4.25) indeed holds, we attempt to solve theφy-integral on the l.h.s.,

∫ 2π

0
dφy

y − x
(y∗ − x∗)3

= e4iφx

∫ 2π

0
dφ

y eiφ − x

(y e−iφ − x)3
, (4.26)

whereφ = φy − φx has been defined. Theφ-integral can be carried out using the residual theorem,
yielding 2π(x2 − 3y2)/x4 whenx > y and zero whenx < y. One can see that this result corresponds
to the Heaviside function on the r.h.s. of (4.25).

At the singularityx = y the φ-integral is not well defined, which means one cannot rule out
the existence of additional delta function atx = y in the result of theφ-integral. This ambiguity
can again be eliminated by using the physical condition‘a uniform 〈κκ〉 field leads to a null shear
correlation 〈γγ〉’ , which translates to‘a constantξ+ yields vanishingξ−’ here. In this case, a delta
function is indeed required to satisfy this condition, and the prefactor of thedelta function can be
determined to beπ/2x, in consistency with (4.25).

The Kaiser-Squires relation and its isotropic form

A similar consistency exists between the K-S relation and its isotropic form. As both forms are
already well-known, they can serve as a further support for our argument.

For an axisymmetric distribution of matter, i.e.κ(x) = κ(x), the following relation is established
between the shear and the convergence (see e.g. Schneider et al. 1992)

γ(x) = [κ(x) − κ̄(x)] e2iφx , (4.27)

with κ̄ defined as

κ̄(x) :=
2
x2

∫ x

0
y dy κ(y) . (4.28)

This is equivalent to

γ(x) = −
1

x∗2

∫

y dy κ(y)
[

2H(x− y) − x δ(1)
D (x− y)

]

. (4.29)

In the case of a uniform convergence fieldκ(x) = const., one can see that the integral of the Heaviside
function and the delta function parts cancel each other.

The similarity between (4.29) and theξ+ − ξ− relation (4.1) is remarkable: they both have inte-
grals of a Heaviside function part and a delta function part which canceleach other for constantκ
and〈κκ〉, respectively, and the 2D correspondences of both do not have an additional delta function
at their singularities.
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4.2.3 Fourier transformations

In the Fourier plane the shear and the convergence differ only by a phase factor e2iβ (3.17). This
directly reflects the fact thatγ is spin-2 whileκ is spin-0, and leads to the well-known resultPγ = Pκ
(3.31) as well as e2iβ = D̃/π for ℓ , 0 (3.16).

The Fourier plane correspondences of (4.23) and (4.24) are also readily obtainable from the
identity (3.17), as

〈γ̃γ̃〉(ℓ) = e4iβ 〈κ̃κ̃〉(ℓ) , for ℓ , 0 , (4.30)

and
〈γ̃γ̃γ̃〉(ℓ1, ℓ2, ℓ3) = e2i(β1+β2+β3) 〈κ̃κ̃κ̃〉(ℓ1, ℓ2, ℓ3) , for ℓ1, ℓ2, ℓ3 , 0 , (4.31)

with βi denoting the polar angle ofℓi. These equations show that e4iβ = F̃(ℓ)/π2 for ℓ , 0, and that
e2i(β1+β2+β3) = −G̃0(ℓ1, ℓ2)/π3 for ℓ1 , 0 , ℓ2 andℓ3 = −ℓ1 − ℓ2 , 0, sinceF/π2 and−G0/π

3 are the
convolution kernels for the configuration space relations by their definitions.

In Appendix 4.8 we show explicitly that the Fourier transforms ofF/π2 and−G0/π
3, with F and

G0 given in (4.19) and (4.22), are indeed e4iβ and e2i(β1+β2+β3), respectively. However one cannot
obtain the forms ofF andG0 kernels simply through inverse Fourier transforming the phase factors
e4iβ and e2i(β1+β2+β3). This is due to the fact that the Fourier inversion theorem is valid strictly
only for square-integrable functions, which is not the case for the phase factors. The same situation
occurs for the K-S kernelD.

4.3 The other shear three-point functions

Until now we have considered only the 3PCF of shear itself〈γ(X1)γ(X2)γ(X3)〉, which is one of
the four independent possible combinations considering thatγ is a complex quantity. The other three
are 〈γ∗(X1)γ(X2)γ(X3)〉, 〈γ(X1)γ∗(X2)γ(X3)〉, and 〈γ(X1)γ(X2)γ∗(X3)〉, according to the choice
made in Schneider & Lombardi (2003). Following Schneider et al. (2005),we denote these four
γ3PCFs byΓ(i)

cart(x1, x2) (i = 0,1,2,3), with ‘cart’ emphasizing that the shear is measured in Carte-
sian coordinates,Γ(0)

cart ≡ 〈γγγ〉, andΓ(i)
cart (i = 1,2,3) corresponding to theγ3PCF withγ∗ at position

Xi. Since we have considered statistical homogeneity of the shear field, theΓcart’s depend only on
the separation vectors of the positionX1, X2, andX3. The otherγ3PCFs, i.e. those with two or three
γ∗’s, can be obtained by taking the complex conjugate of theΓcart’s.

Note thatΓ(1)
cart(x1, x2) ≡ 〈γ∗γγ〉(x1, x2), Γ(2)

cart(x1, x2) ≡ 〈γγ∗γ〉(x1, x2), and Γ(3)
cart(x1, x2) ≡

〈γγγ∗〉(x1, x2) are different functions, sincex1 (x2) is defined to be the difference of the positions of
the first (second) and the thirdγ in the bracket. Due to the same reason, they can be transformed into
each other through permutations and flips of the vertices of the triangle formed by their arguments
(see Fig. 4.1), and thus are not independent if argument permutations and flips are allowed. As an
example, one has

〈

γ∗(X1)γ(X2)γ(X3)
〉

≡ Γ
(1)
cart(x1, x2)

=
〈

γ∗(X1)γ(X3)γ(X2)
〉

≡ Γ
(1)
cart(x1 − x2,−x2)

=
〈

γ(X2)γ∗(X1)γ(X3)
〉

≡ Γ
(2)
cart(x2, x1)

=
〈

γ(X3)γ∗(X1)γ(X2)
〉

≡ Γ
(2)
cart(−x2, x1 − x2)

=
〈

γ(X2)γ(X3)γ∗(X1)
〉

≡ Γ
(3)
cart(x2 − x1,−x1)

=
〈

γ(X3)γ(X2)γ∗(X1)
〉

≡ Γ
(3)
cart(−x1, x2 − x1) ,

(4.32)
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where different lines correspond to different ways of labeling the same triangle with side lengthsx1,
x2, and|x1 − x2|. The same permutations and flips also reveal the inherent symmetry ofΓ

(0)
cart,

Γ
(0)
cart(x1, x2) = Γ(0)

cart(x1 − x2,−x2) = Γ(0)
cart(x2, x1)

=Γ
(0)
cart(−x2, x1 − x2) = Γ(0)

cart(x2 − x1,−x1) = Γ(0)
cart(−x1, x2 − x1) .

(4.33)

Figure 4.1: Definition of the geometry of a triangle (the leftmost sketch) and how it changes under
permutations (the first three sketches from the left) and flip (the leftmost andthe rightmost sketch)
of the vertices.

In the case that the shear is measured relative to a center of the triangle,Γ
(i)
cart transforms toΓ(i),

the natural components of theγ3PCF as defined in Schneider & Lombardi (2003). For a general
triangle configuration, all fourΓcart’s are expected to be non-zero, thus all of them should be used to
exploit the full 3-pt information of cosmic shear.

Before relating the otherΓcart’s to theκ3PCFs, we extendκ to a complex quantityκ = κE + iκB.
Although the physical convergence is a real quantity, the convergencefield corresponding to the
measured shear signals can have an imaginary part due to e.g. systematicalerrors and noise. The
shear component which corresponds to this unphysical imaginary part of the convergence field is
identified as the B-mode, on which we will elaborate more in Sect. 4.5. When taking the B-mode
into consideration, the 3-pt correlation functions of the convergence field can be written as

K(0) ≡ 〈κκκ〉 = 〈κEκEκE〉 + i〈κBκEκE〉 + i〈κEκBκE〉 + i〈κEκEκB〉

− 〈κEκBκB〉 − 〈κBκEκB〉 − 〈κBκBκE〉 − i〈κBκBκB〉 ,

K(1) ≡ 〈κ∗κκ〉 = 〈κEκEκE〉 − i〈κBκEκE〉 + i〈κEκBκE〉 + i〈κEκEκB〉

− 〈κEκBκB〉 + 〈κBκEκB〉 + 〈κBκBκE〉 + i〈κBκBκB〉 ,

K(2) ≡ 〈κκ∗κ〉 = 〈κEκEκE〉 + i〈κBκEκE〉 − i〈κEκBκE〉 + i〈κEκEκB〉

+ 〈κEκBκB〉 − 〈κBκEκB〉 + 〈κBκBκE〉 + i〈κBκBκB〉 ,

K(3) ≡ 〈κκκ∗〉 = 〈κEκEκE〉 + i〈κBκEκE〉 + i〈κEκBκE〉 − i〈κEκEκB〉

+ 〈κEκBκB〉 + 〈κBκEκB〉 − 〈κBκBκE〉 + i〈κBκBκB〉 .

(4.34)

Apart from the E-mode〈κEκEκE〉 term, there are still additional B-mode contributions to the real parts
of theK’s, namely〈κEκBκB〉, 〈κBκEκB〉, and〈κBκBκE〉. The imaginary part of theK’s are composed
of the parity violating terms which are expected to vanish due to parity symmetry (Schneider 2003).
The property ofK(i) under permutations and flips of the vertices of the triangle formed by their
arguments is the same as that ofΓ(i)

cart.
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Similar to (4.4), the relations betweenΓ(i)
cart andK(i) for i = 1,2,3 can be written as

Γ
(1)
cart(x1, x2) = −

1
π3

∫

d2y1

∫

d2y2 K(1)(y1, y2) G1(x1 − y1, x2 − y2) , (4.35)

Γ
(2)
cart(x1, x2) = −

1
π3

∫

d2y1

∫

d2y2 K(2)(y1, y2) G2(x1 − y1, x2 − y2) , (4.36)

and

Γ
(3)
cart(x1, x2) = −

1
π3

∫

d2y1

∫

d2y2 K(3)(y1, y2) G3(x1 − y1, x2 − y2) , (4.37)

where the convolution kernelsG1, G2, andG3 have been defined. Again with the aid of the K-S
relation, we can write these convolution kernels as

G1(a, b) = −
∫

d2vD(v) D∗(v − a) D(v − b) =
∫

d2v
1

v∗2
1

(v − a)2

1
(v∗ − b∗)2

=

∫

d2v
1
v2

1
(v∗ + a∗)2

1
(v∗ + a∗ − b∗)2

,

(4.38)

G2(a, b) = −
∫

d2vD(v) D(v − a) D∗(v − b) =
∫

d2v
1

v∗2
1

(v∗ − a∗)2

1
(v − b)2

=

∫

d2v
1
v2

1
(v∗ − a∗ + b∗)2

1
(v∗ + b∗)2

,

(4.39)

and

G3(a, b) = −
∫

d2vD∗(v) D(v − a) D(v − b) =
∫

d2v
1
v2

1
(v∗ − a∗)2

1
(v∗ − b∗)2

. (4.40)

Whena , b, the product of the three terms in the integrand of (4.40) can be split into products
of two, as

1
v2

1
(v∗ − a∗)2

1
(v∗ − b∗)2

=
1

(a∗ − b∗)2

1
v2

[

1
(v∗ − a∗)2

+
1

(v∗ − b∗)2

]

−
2

(a∗ − b∗)3

1
v2

[

1
v∗ − a∗

−
1

v∗ − b∗

]

.

(4.41)

These terms are also obtainable from doing derivatives to the kernelF ,
∫

d2v
1
v2

1
(v∗ − a∗)2

=
1
4
∂2∂∗2F (a) = π2δ(2)(a) , (4.42)

∫

d2v
1
v2

1
v∗ − a∗

=
1
2
∂∂∗2F (a) =

π

a
. (4.43)

This way we obtain the form of the convolution kernelG3. The forms for the kernelG1 andG2 can
be obtained likewise. The results are

G1(a, b) =
π2

b∗2
[

δ
(2)
D (a) + δ(2)

D (b − a)
]

−
2π

b∗3

(

1
a
+

1
b − a

)

, (4.44)

G2(a, b) =
π2

a∗2
[

δ
(2)
D (a − b) + δ(2)

D (b)
]

−
2π
a∗3

(

1
a − b

+
1
b

)

, (4.45)
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G3(a, b) =
π2

(a∗ − b∗)2

[

δ
(2)
D (a) + δ(2)

D (b)
]

−
2π

(a∗ − b∗)3

(

1
a
−

1
b

)

. (4.46)

The symmetries in theΓcart’s andK’s are also reflected in theG kernels. One can verify that
G2(a, b) = G1(b − a,−a), G3(a, b) = G1(−b, a − b) as results of the symmetry under permutations,
andG2(a, b) = G1(b, a), G3(a, b) = G3(b, a) as results of the symmetry under flips, in consistency
with (4.32). Similarly, one hasG0(a, b) = G0(b− a,−a) = G0(−b, a− b) = G0(b, a), in consistency
with (4.33).

4.4 Inverse relations

So far we have obtained the expressions of the fourγ3PCFs as functions of theκ3PCFs. Written
in a short form, they are

Γ
(i)
cart = −

1
π3

Gi ∗ K(i) , (4.47)

wherei runs from 0 to 3. The forms of theGi kernels are given by (4.22), (4.44), (4.45), and (4.46).
These relations can be inverted. We define the kernels of the inverse relations to beG′i , i.e.

K(i) = −
1
π3

G′i ∗ Γ
(i)
cart . (4.48)

Using the convolution theorem, it is apparent from (4.47) and (4.48) that

(

−
1
π3

G̃i

)

·

(

−
1
π3

G̃′i

)

= 1 . (4.49)

From the corresponding Fourier plane relations of (4.47), we also know

−
G̃0

π3
= e2i(β1+β2+β3) , −

G̃1

π3
= e2i(−β1+β2+β3) , −

G̃2

π3
= e2i(β1−β2+β3) , −

G̃3

π3
= e2i(β1+β2−β3) , (4.50)

which implies
G̃0G̃

∗
0 = G̃1G̃

∗
1 = G̃2G̃

∗
2 = G̃3G̃

∗
3 = π

6 . (4.51)

Comparing (4.49) and (4.51) one has

G̃′i = G̃∗i , (4.52)

and further,
G′i = G∗i , (4.53)

i.e. the convolution kernel for the inverse relation is the complex conjugate ofthe original kernel.
This property of the convolution kernel has its root in the fact that ˜γ andκ̃ differ only by a phase

factor. This fact also endows the convolution kernels in the 1-pt and 2-pt relations betweenγ and
κ with the same property. As is well known for the 1-pt relation, the inverse relation of the K-S
relation (3.14) is (3.19), where the convolution kernel is the complex conjugate of the K-S kernelD.
The inverse relation of the 2-pt relation (4.7) can also be shown to be

〈κκ〉(x) =
1
π2

∫

d2y 〈γγ〉(y) F∗(x − y) . (4.54)
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4.5 Condition of three-point E/B decomposition

Being mathematically a polarization field, the shear field can be decomposed into aE-mode and
a B-mode (see Sect. 3.2.2). Performing such a decomposition when treating cosmic shear data has
long been recognized as a necessity, since it provides a valuable checkon the possible systematics
(e.g. Crittenden et al. 2002; Pen et al. 2002).

The E/B-mode decomposition can be done either on the shear field itself (e.g. Bunn et al. 2003;
Bunn 2010), or at the level of correlation functions (e.g. Schneider 2006). The complex survey ge-
ometry after masking, which is especially characteristic for a lensing survey(e.g. Erben et al. 2009),
renders the first option barely feasible, and singles out the correlation function as the basic statistic
to be applied directly to the data. Thus the natural way to perform the E/B-mode decomposition on
cosmic shear data is to derive statistics based on the shear correlation functions.

A commonly used statistic for this purpose is the aperture mass statistic (see Sect.3.2.3) which
can be expressed as a linear combination ofξ+ andξ− (3.47), where the forms of the weight functions
Tap
+ andTap

− are given explicitly in Schneider et al. (2002). The chosen forms of the weight functions
guarantee that

〈

M2
ap

〉

responds only to the E-mode and
〈

M2
⊥

〉

only to the B-mode.
The aperture mass statistics has been generalized to 3-pt level by Jarvis et al. (2004) and Kil-

binger & Schneider (2005), and is the only statistics available up to now whichallows an E/B-mode
decomposition at the 3-pt level. However, as found by Kilbinger et al. (2006), it cannot ensure a
clean E/B-mode decomposition when applied to real data. The lack of shear-correlation measure-
ments on small and large scales, which arises from the inability of shape measurement for close
projected galaxy pairs and the finite field size, prohibits one from performing the integral in (3.47)
from zero to infinity, and thus introduces a mixing of the E- and B-modes.

In recent years, there have been several efforts to construct better statistics which allow E/B-
mode decomposition (Schneider & Kilbinger 2007; Eifler et al. 2010; Fu & Kilbinger 2010; Schnei-
der et al. 2010), all of them focusing on the cosmic shear 2-pt statistics. These new statistics are
based on the idea that the weight functionsTap

+ andTap
− used in the aperture mass statistics are just

one example out of the many possibilities. In general one can define second-order statistics in the
form (Schneider & Kilbinger 2007)

EE=
∫ ∞

0
ϑ dϑ

[

ξ+(ϑ)T+(ϑ) + ξ−(ϑ)T−(ϑ)
]

,

BB =
∫ ∞

0
ϑ dϑ

[

ξ+(ϑ)T+(ϑ) − ξ−(ϑ)T−(ϑ)
]

,

(4.55)

for which the condition that EE responds only to E-mode and BB only to B-modeis found to be
∫ ∞

0
ϑ dϑ T+(ϑ)J0(ℓϑ) =

∫ ∞

0
ϑ dϑ T−(ϑ)J4(ℓϑ) , or equivalently

T+(ϑ) = T−(ϑ) +
∫ ∞

ϑ

θ dθ T−(θ)

(

4
θ2
−

12ϑ2

θ4

)

.

(4.56)

Note that instead of being functions of the separation length as the aperturemass statistics, EE
and BB are just numbers. At first sight one seems to have reduced the information quantity by
integrating over the scale dependence in (4.55). In fact, the information can be easily regained by
constructing a set of weight functions satisfying (4.56). As one example,

〈

M2
ap

〉

(θ) and
〈

M2
⊥

〉

(θ) for

any θ value can be reconstructed in the framework of (4.55) by specifyingT+(ϑ) = Tap
+ (ϑ/θ) /θ2

andT−(ϑ) = Tap
− (ϑ/θ) /θ2.
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Since the condition for E/B-mode decomposition (4.56) still leaves large freedom for the choice
of the weight functions, one can construct statistics which fulfill additionalconstraints, e.g. a finite
support over the separation length. If one requires that EE and BB respond only toξ+(ϑ) and
ξ−(ϑ) with ϑmin < ϑ < ϑmax, whereϑmin andϑmax are the chosen small- and large-scale cutoff,
T+(ϑ) andT−(ϑ) must vanish outside the same range. SinceT+ andT− are interrelated by (4.56),
one can specify only one of them to satisfy this constraint. The requirementthat the other weight
function also vanishes outside the specified range needs to be put as additional integral constraints.
As shown by Schneider & Kilbinger (2007), if one choosesT− to vanish forϑ < ϑmin andϑ > ϑmax,
then to allow an E/B-mode decomposition on a finite intervalϑmin < ϑ < ϑmax, T− has to satisfy
additionally,

∫ ϑmax

ϑmin

dϑ
ϑ

T−(ϑ) = 0 =
∫ ϑmax

ϑmin

dϑ
ϑ3

T−(ϑ) , (4.57)

which would guarantee thatT+ vanishes forϑ < ϑmin andϑ > ϑmax.

Similar statistics are needed at the 3-pt level as well. The first step requiredis to formulate the
conditions for 3-pt weight functions to allow E/B-mode decomposition, in analogy to (4.56). As we
will show in this section, the relations between theγ3PCFs andκ3PCFs that we derived provide a
natural way of formulating such conditions.

A pure E-mode shear 3-pt statistics is related only to the E-modeκ3PCF
〈

κEκEκE
〉

but not to other

3PCFs withκB contribution. Therefore we first write the 3PCFs ofκE andκB as linear combinations
of the real and imaginary parts of theK(i)’s, using (4.34), and then relate them with theΓcart’s through
(4.48), as theΓcart’s are the directly measurable statistics from a lensing survey. The results read

〈κEκEκE〉 =
1
4

Re
[

K(0) + K(1) + K(2) + K(3)
]

= −
1

4π3
Re

[

G∗0 ∗ Γ
(0)
cart+G∗1 ∗ Γ

(1)
cart+G∗2 ∗ Γ

(2)
cart+G∗3 ∗ Γ

(3)
cart

]

,

〈κEκBκB〉 =
1
4

Re
[

−K(0) − K(1) + K(2) + K(3)
]

= −
1

4π3
Re

[

−G∗0 ∗ Γ
(0)
cart−G∗1 ∗ Γ

(1)
cart+G∗2 ∗ Γ

(2)
cart+G∗3 ∗ Γ

(3)
cart

]

,

〈κBκEκB〉 =
1
4

Re
[

−K(0) + K(1) − K(2) + K(3)
]

= −
1

4π3
Re

[

−G∗0 ∗ Γ
(0)
cart+G∗1 ∗ Γ

(1)
cart−G∗2 ∗ Γ

(2)
cart+G∗3 ∗ Γ

(3)
cart

]

,

〈κBκBκE〉 =
1
4

Re
[

−K(0) + K(1) + K(2) − K(3)
]

= −
1

4π3
Re

[

−G∗0 ∗ Γ
(0)
cart+G∗1 ∗ Γ

(1)
cart+G∗2 ∗ Γ

(2)
cart−G∗3 ∗ Γ

(3)
cart

]

,

(4.58)

44



Condition of three-point E/B decomposition

and

〈κBκEκE〉 =
1
4

Im
[

K(0) − K(1) + K(2) + K(3)
]

= −
1

4π3
Im

[

G∗0 ∗ Γ
(0)
cart−G∗1 ∗ Γ

(1)
cart+G∗2 ∗ Γ

(2)
cart+G∗3 ∗ Γ

(3)
cart

]

,

〈κEκBκE〉 =
1
4

Im
[

K(0) + K(1) − K(2) + K(3)
]

= −
1

4π3
Im

[

G∗0 ∗ Γ
(0)
cart+G∗1 ∗ Γ

(1)
cart−G∗2 ∗ Γ

(2)
cart+G∗3 ∗ Γ

(3)
cart

]

,

〈κEκEκB〉 =
1
4

Im
[

K(0) + K(1) + K(2) − K(3)
]

= −
1

4π3
Im

[

G∗0 ∗ Γ
(0)
cart+G∗1 ∗ Γ

(1)
cart+G∗2 ∗ Γ

(2)
cart−G∗3 ∗ Γ

(3)
cart

]

,

〈κBκBκB〉 =
1
4

Im
[

−K(0) + K(1) + K(2) + K(3)
]

= −
1

4π3
Im

[

−G∗0 ∗ Γ
(0)
cart+G∗1 ∗ Γ

(1)
cart+G∗2 ∗ Γ

(2)
cart+G∗3 ∗ Γ

(3)
cart

]

,

(4.59)

which shows how the E- and B-modeκ3PCFs can be computed when the full information of the
Γcart’s is available. In the ideal case that there exists no noise or systematical effects, only the E-
mode termκ3PCF

〈

κEκEκE
〉

is expected to be non-zero, since it corresponds to the correlation in the
physical density field which leads to the correlation in the shear signal.

Following the ideas of Schneider & Kilbinger (2007), we construct a new statistic

EEE=
∫

d2x1

∫

d2x2

〈

κEκEκE
〉

(x1, x2) U(x1, x2) , (4.60)

which by definition responds only to E-mode. With the help of (4.58) we can linkEEE to the
observableΓcart’s, as

EEE= −
1

4π3

∫

d2x1

∫

d2x2 U(x1, x2) Re

















∫

d2y1

∫

d2y2

3
∑

i=0

G∗i (x1 − y1, x2 − y2) Γ(i)
cart(y1, y2)

















= −
1

4π3
Re

















∫

d2y1

∫

d2y2

3
∑
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Γ
(i)
cart(y1, y2)

∫

d2x1

∫

d2x2 U(x1, x2) G∗i (x1 − y1, x2 − y2)

















= −
1

4π3
Re

















∫

d2y1

∫

d2y2

3
∑

i=0

Γ
(i)
cart(y1, y2)

(

G∗i ∗ U
)

(y1, y2)

















,

(4.61)

where in the first equation we have specifiedU to be a real function, and in the second equation we
have used the fact thatGi(−a,−b) = Gi(a, b).

Denoting
G∗i ∗ U =: T(i) , (4.62)

the expression of EEE (4.61) has a similar form as (4.55). We can see in thisform that EEE responds
only to the E-mode if the weight functionT’s satisfy

T(0) ∗G0 = U = T(1) ∗G1 = T(2) ∗G2 = T(3) ∗G3 . (4.63)
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with U being a real function. One can easily verify that these conditions are alsonecessary condi-
tions. Noticing thatT(i) ∗Gi is the corresponding weight onK(i), the condition that these functions
being purely real is required to separate the parity-violating and non-violating terms in (4.34). In
addition, (4.63) is required to cancel the parity non-violating B-mode terms〈κEκBκB〉, 〈κBκEκB〉 and
〈κBκBκE〉.

The statistics containing the contribution from only one of the B-mode terms can be constructed
in the same way. Omitting the arguments for notational simplicity, they can be expressed as

EBB =
1
4

Re

















" 3
∑

i=0

T(i) Γ
(i)
cart

















with T(0) ∗G0 = T(1) ∗G1 = −T(2) ∗G2 = −T(3) ∗G3 ,
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with T(0) ∗G0 = −T(1) ∗G1 = T(2) ∗G2 = −T(3) ∗G3 ,
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1
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" 3
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T(i) Γ
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cart

















with T(0) ∗G0 = −T(1) ∗G1 = −T(2) ∗G2 = T(3) ∗G3 ,

(4.64)

and

BEE=
1
4

Im
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with T(0) ∗G0 = −T(1) ∗G1 = T(2) ∗G2 = T(3) ∗G3 ,
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with T(0) ∗G0 = T(1) ∗G1 = T(2) ∗G2 = −T(3) ∗G3 ,

BBB =
1
4

Im

















" 3
∑

i=0

T(i) Γ
(i)
cart

















with T(0) ∗G0 = −T(1) ∗G1 = −T(2) ∗G2 = −T(3) ∗G3 .

(4.65)

For all of them the condition thatT(0) ∗G0 is real has been imposed.
The four parity violating statistics (4.65) can be used as a check on parity violating systematical

errors, while the other B-mode statistics (4.64) allows for a further examination of the B-modes.
With (4.51) one can easily invert the conditions on the weight functions to express the weight

functionT’s directly in terms of each other. Take the conditions for EEE (4.63) for example. One
can write the Fourier transforms ofT(1), T(2) andT(3) as functions of the Fourier transform ofT(0)

as

T̃(1) =
1

π6
T̃(0) G̃0G̃

∗
1 , T̃(2) =

1

π6
T̃(0) G̃0G̃

∗
2 , T̃(3) =

1

π6
T̃(0) G̃0G̃

∗
3 . (4.66)

In order to simplify these relations, we now attempt to give simple expressions for G̃0G̃∗i for i =
1,2,3. With (4.50) one has̃G0(ℓ1, ℓ2)G̃∗1(ℓ1, ℓ2) = π6 e4iβ1, which does not depend onℓ2. Noticing
that F̃ = π2 e4iβ (see Sect. 4.2.3), we actually haveG̃0(ℓ1, ℓ2)G̃∗1(ℓ1, ℓ2) = π4F̃(ℓ1), which yields in
configuration space

(

G0 ∗G∗1
)

(a, b) = π4F(a) δ(2)
D (b) . (4.67)

Similarly one can derive that
(

G0 ∗G∗2
)

(a, b) = π4F(b) δ(2)
D (a) ,

(

G0 ∗G∗3
)

(a, b) = π4F(a) δ(2)
D (b − a) . (4.68)
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Inserting (4.67) and (4.68) into (4.66), one obtains

T(1)(x1, x2) =
1
π2

∫

d2y T(0)(x1 − y, x2)F(y) =
2
π

∫

d2y T(0)(x1 − y, x2)
y

y∗3
, (4.69)

T(2)(x1, x2) =
1
π2

∫

d2y T(0)(x1, x2 − y)F(y) =
2
π

∫

d2y T(0)(x1, x2 − y)
y

y∗3
, (4.70)

T(3)(x1, x2) =
1
π2

∫

d2y T(0)(x1 − y, x2 − y)F(y) =
2
π

∫

d2y T(0)(x1 − y, x2 − y)
y

y∗3
, (4.71)

where we have used the expression ofF (4.19).
To summarize, if one chooses an arbitrary form ofT(0) which makesT(0) ∗G0 real, constructs

T(1), T(2) andT(3) according to (4.69), (4.70) and (4.71), and uses these weight functions to weight
the measuredΓ(i)

cart’s, then the resulting statistic EEE as defined in (4.61) receives contributions only
from 〈κEκEκE〉 but not the terms affected by the B-mode. The B-mode statistics can be obtained from
the measuredΓ(i)

cart’s through a similar procedure. Equations (4.69)-(4.71) are the analogue of (4.56)
for 3-pt functions.

We note again thatΓ(1)
cart, Γ

(2)
cart andΓ(3)

cart are not independent under transformation of their argu-
ments. Thus the statistics EEE (4.61) as well as the B-mode statistics (4.64) and (4.65) can all be
written in terms of linear combinations ofΓ(0)

cart andΓ(1)
cart alone. However we shall keep the current

redundancy since it allows for simple analytical expressions of the relations between the weight
functions.

So far one still has much freedom in choosing the form ofT(0)(x1, x2). This freedom can be
exploited to construct statistics which do not respond to theγ3PCF at smaller or larger angular
separations than can be probed by the survey. We leave this to future work.

4.6 Numerical evaluation

4.6.1 Design of the sampling grid

We have written configuration space relations between weak lensing statisticsin the form of
convolutions, e.g. (4.23) and (4.24), where the convolution kernels arecomplex, have non-trivial
spin numbers, and feature singularities. The convolutions can be performed numerically, but special
care must be taken of these properties of the integration kernel.

One can take the K-S kernel−1/z∗2 as an example of this kind of convolution kernel. The K-S
kernel has an integer spin of 2, so an azimuthal integration of the kernel around its singularity at
z = 0 should give zero, i.e. the values of the kernel along the circle cancel themselves due to their
opposite phases. This property renders its singularity harmless, but entails the condition that the
sampling grid should guarantee the cancellation. Such a requirement of a special grid design has
already been realized in early lensing mass reconstruction works (e.g. Seitz & Schneider 1996). For
a spin-2 kernel like the K-S kernel, a common square grid already suffices if the singularity is placed
at a center of rotational symmetry, i.e. either onto a grid point or at the centerof four grid points. In
the case of the former, the grid point at the singularity has to be discarded.The latter, as shown by
the left panel in Fig. 4.2, is a better choice considering the sampling homogeneity.

In general we need to deal with convolution kernels with different spin numbers. For example,
the kernelF betweenγ2PCF andκ2PCF (4.19), which is proportional toz/z∗3, has a spin of 4. In
this case the square grid cannot guarantee the phase cancellation around the singularity any more
(see Fig. 4.3). With a similar analysis as shown in Fig. 4.3, one can see that a triangular grid (middle
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spin 2, 3 spin 2, 3, 4 spin 2, 3, 4

Figure 4.2: Examples of sampling grids applicable for 2D integration over singular kernels of
different spin values. The cross in the center indicates the position of the singularity in the integration
kernel.

panel, Fig. 4.2) can actually guarantee the phase cancellation around the singularity of a spin-4
kernel. When using a triangular grid, the singularity can also be put either on a grid point or at the
center of three grid points. The former choice loses the grid point at the singularity, but is applicable
to spin-3 kernels where the latter fails.

spin 2 spin 4

Figure 4.3: A square grid guarantees phase cancellation around the singularity of spin-2 kernels (left
panel), but not that of spin-4 kernels (right panel). The crosses indicate the position of the singularity
of the integration kernel, while the dots are the grid points closest to the singularity. The polar angles
of the kernel at the grid points are indicated by the directions of the arrows. For a spin-2 kernel they
cancel each other on a square grid already. For a spin-4 kernel theycancel each other if the square
grid is duplicated, rotated 45 degrees and put on top of the original grid.

To achieve a high numerical accuracy, it is required that the circle integral around the singularity
is well-sampled. If one uses a square (triangular) grid, the innermost circle is only sampled by four
(six) grid points, which is not enough for manyκ-models. To remedy this, one can duplicate the
sampling grid, rotate it around the singularity, and put it on top of the originalgrid. We show the
result with the square grid and 45 degrees of rotation in the right panel ofFig. 4.2. The resulting grid
is also applicable for spin-4 kernels, as shown in the right panel of Fig. 4.3. This non-standard way
of constructing sampling grids, although not creating the best grids in terms of sampling efficiency,
deals very well with the singularity of the integration kernel, and can easily generate sampling grids
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applicable for kernels of any spin number. We use this kind of grid in our numerical sampling.
Additional complications arise when performing the integration for 3-pt statistics. There are

two 2D integrals in (4.4), (4.35), (4.36) and (4.37). The correspondingintegration kernels (4.22),
(4.44), (4.45) and (4.46) all have three singularities. Luckily we can spliteach integration kernel
into four additive terms and perform the integrals over each of them separately. Moreover, one can
apply translational shifts to the integrands so that in each 2D integral there isonly one singularity
in the integration kernel. The singularity can also be shifted to the origin of the grids for numerical
simplicity. After all these procedures, the four relations can be written as

Γ
(0)
cart(x1, x2) =

2
π2

∫

d2y1

∫

d2y2

{

−
[

〈κκκ〉(y2 + x1, y1 + y2 + x2) + 〈κκκ〉(y1 + x1 + y2, y2 + x2)
]

×
1

y1
∗2

y2

y2
∗3
+

[

〈κκκ〉(y2 + x1, y1 + y2 + x2) + 〈κκκ〉(y1 + x1 + y2, y2 + x2)
] 1

y1
∗3

y2

y2
∗2

}

,

(4.72)

Γ
(1)
cart(x1, x2) = −

1
π

∫

d2y
(

〈κ∗κκ〉(x1, y + x2) + 〈κ∗κκ〉(y + x1, y + x2)
) 1

y∗2

+
2
π2

∫

d2y1

∫

d2y2
(

〈κ∗κκ〉(y2 + x1, y1 + x2) − 〈κ∗κκ〉(y1 + y2 + x1, y1 + x2)
) 1

y1
∗3

1
y2
,

(4.73)

Γ
(2)
cart(x1, x2) = −

1
π

∫

d2y
(

〈κκ∗κ〉(y + x1, y + x2) + 〈κκ∗κ〉(y + x1, x2)
) 1

y∗2

−
2
π2

∫

d2y1

∫

d2y2
(

〈κκ∗κ〉(y1 + x1, y1 + y2 + x2) − 〈κκ∗κ〉(y1 + x1, y2 + x2)
) 1

y1
∗3

1
y2
,

(4.74)

Γ
(3)
cart(x1, x2) = −

1
π

∫

d2y
(

〈κκκ∗〉(x1, y + x2) + 〈κκκ∗〉(y + x1, x2)
) 1

y∗2

−
2
π2

∫

d2y1

∫

d2y2
(

〈κκκ∗〉(x1 + y2, y1 + y2 + x2) + 〈κκκ∗〉(y1 + y2 + x1, x2 + y2)
) 1

y1
∗3

1
y2
.

(4.75)

We can see that the integration kernels are either spin-2, spin-4, or spin-3. All sampling grids shown
in Fig. 4.2 are applicable to spin-3 kernels.

4.6.2 Numerical results for two-point functions

We now construct several toy models for 2-pt and 3-pt convergenceand shear correlations, and
use them to test the relations derived as well as the numerical sampling method.

In the 2-pt case, we build two models for the convergence correlation function: 〈κκ〉 (r) = 1/r,
and 〈κκ〉 (r) = e−r2

. Using the well-establishedξ+ − ξ− relation (4.1) we can obtain the corre-
sponding models for the shear correlation function:〈γγ〉 (r) = e4iφr /r for 〈κκ〉 (r) = 1/r, and
〈γγ〉 (r) = e4iφr

[

(r4 + 4r2 + 6) e−r2
+ 2r2 − 6

]

/r4 for 〈κκ〉 (r) = e−r2
.

Fig. 4.4 shows the comparison between these shear correlation function models and the shear
correlation functions sampled using (4.23), with the corresponding convergence correlation function
models as input. The numerically sampled values match the analytical models very well. Fig. 4.4
shows the comparison between these shear correlation function models andthe shear correlation
functions sampled using (4.23), with the corresponding convergence correlation function models as
input. The numerically sampled values match the analytical models very well.
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Figure 4.4: Left panels:〈γγ〉(r) with fixed φr = π/6 as a function ofr. Right panels:Polar angle
of 〈γγ〉(r) with fixed r = 20 as a function ofφr . The black curves are the expected values while the
dots are the results from numerical evaluation of 2D integral in (4.23). The〈κκ〉 used in the upper
panels is〈κκ〉(r) = 1/r and in the lower panels〈κκ〉(r) = exp(−r2).

4.6.3 Numerical results for three-point functions

We build models for 3pt shear and convergence correlation functions viathe 3pt correlation
function of the deflection potentialψ. Suppose we evaluate the fields at positionsX, Y andZ. By
definition we have

〈κ(X)κ(Y)κ(Z)〉 =

(

1
2
∇2

X

) (

1
2
∇2

Y

) (

1
2
∇2

Z

)

〈ψ(X)ψ(Y)ψ(Z)〉 , (4.76)

〈γ(X)γ(Y)γ(Z)〉 =

(

1
2
∂2

X

) (

1
2
∂2

Y

) (

1
2
∂2

Z

)

〈ψ(X)ψ(Y)ψ(Z)〉 , (4.77)

and

〈γ(X)γ(Y)γ∗(Z)〉 =

(

1
2
∂2

X

) (

1
2
∂2

Y

) (

1
2
∂∗2Z

)

〈ψ(X)ψ(Y)ψ(Z)〉 . (4.78)

Now we assume a model for〈ψ(X)ψ(Y)ψ(Z)〉 as

〈ψ(X)ψ(Y)ψ(Z)〉 =
1

8α6
e−α(x2+y2) , (4.79)

with x = X − Z andy = Y − Z. This model is special in the sense that it does not depend on the
angle betweenx andy, but is nevertheless simple and rather local. The statistical homogeneity of
the field enables us to write the 3pt correlation function as a function of two 2Dspatial coordinates,
which we have chosen here to bex andy.
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Figure 4.5: Comparison of numerically evaluated〈γγγ〉(x, y) and〈γγγ∗〉(x, y) with their analytical
toy models described in this section adoptingα = 0.05. ‘Re’ and ‘Im’ indicate the real and imaginary
parts of the shear correlation functions.Left panels:The functions are evaluated atx = 0.25k e−iπ/3

and y = 0.17k eiπ/8 for different values ofk; Right panels:The functions are evaluated atx =
0.75 e−iπ/3 andy = 0.45 eiφ for 50 equally spacedφ values.

Performing the derivatives, we find the corresponding 3pt shear andconvergence correlation
functions also depend only onX − Z = x andY − Z = y, and read

〈κκκ〉(x, y) =
e−α(x2+y2)

α3

×
[

− 4+ α
(

6(x2 + y2) + 8x · y
)

− α2
(

(x2 + y2)2 + 4(x2 + y2)x · y + 6x2y2
)

+ α3x2y2|x + y|2
]

,

(4.80)

〈γγγ〉(x, y) = x2y2(x + y)2 e−α(x2+y2) , (4.81)

and

〈γγγ∗〉(x, y) =
[

2x2 + 8xy + 2y2 − 4αxy |x + y|2 + α2x2y2(x∗ + y∗)2
]

e−α(x2+y2) . (4.82)

Using (4.80) as the input model for〈κκκ〉, we numerically evaluate〈γγγ〉(x, y) and〈γγγ∗〉(x, y)
using (4.72) and (4.75). The results are then compared to the analytical models for the 3pt shear
correlation functions (4.81) and (4.82). As shown in Fig. 4.5, the numerical evaluations closely
match the analytical models.

Hence, we have proven numerically that the relations betweenγ3PCFs andκ3PCFs (4.72) and
(4.75) are correct, no additional delta functions are needed. At the sametime we have shown that
these relations can be numerically evaluated with a high accuracy. Therefore these relations provide
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a better way of relating the observable shear signal to the underlying matter density field than the
original way, i.e. using the relations between theγ3PCFs and theκ bispectrum, since the latter does
not allow for an easy accurate numerical evaluation.

4.7 Conclusion

We derived the relations between the 3-pt shear and convergence correlation functions which
had been an important missing link between weak lensing three-point statistics.As an intermediate
step, we found the 2-pt analogue of these relations and proved that it is the non-symmetrized form
of the existingξ+ − ξ− relation. By drawing analogy to the corresponding 1-pt relations, namely
the Kaiser-Squires relation and its isotropic form, we have further revealed that the newly derived
relations and already established results fit into the same theoretical framework. The consistency of
the configuration space relations with the known Fourier space relations have also been shown.

The 3-pt relations derived are simple both analytically and numerically. Theycan be used as
an alternative way of relating the measurable 3-pt weak lensing statistics with the statistics of the
underlying matter density field. Up to now one has to use the relations between the γ3PCFs and
the convergence bispectrum to link theory to the observable 3-pt shear signal. Since theγ3PCFs are
very oscillatory and complicated functions of the convergence bispectrum(Schneider et al. 2005), it
is hard to study the behavior of the 3-pt shear signal for a given convergence bispectrum model. With
the relations we derived, one can instead study the properties of the 3-ptshear signal by constructing
models for theκ3PCFs.

The method we used to derive these relations is based on the relation betweenthe 2-pt correla-
tion functions of the lensing deflection potential and the convergence. Thesame method also allows
one to systematically derive the relations between correlations functions of other weak lensing quan-
tities, including the deflection potentialψ, the shearγ, the convergenceκ, and the deflection angle
α. We present the forms of some 2- and 3-pt relations in Appendix. 4.9. Someof them are poten-
tially of interest for studies of galaxy-galaxy(-galaxy) lensing and lensing of the Cosmic Microwave
Background.

Since the relations we obtained have complex kernels with non-trivial spin number and singu-
larities, special care is needed when they are used numerically. We demonstrated how the numerical
evaluation can be done, in particular the design of the sampling grid. Examplesof numerical eval-
uation were shown for both 2- and 3-pt relations using toy models for the convergence correlation
function. Their results match very well with the analytical expectations.

Separating E- and B-modes from measurements of theγ3PCFs is particularly important since
the systematic effects at the 3-pt level are less understood. So far the only 3-pt statistics allowing
for an E/B-mode decomposition is the aperture mass statistics (Jarvis et al. 2004; Schneider et al.
2005) which is plagued with the same problem as the 2-pt aperture statistics pointed out by Kilbinger
et al. (2006). To amend this problem, one needs to construct the 3-pt correspondence of the newly
developed 2-pt statistics (Schneider & Kilbinger 2007; Eifler et al. 2010;Fu & Kilbinger 2010;
Schneider et al. 2010) which allows for an E/B-mode decomposition on a finite interval. As a direct
theoretical application of the 3-pt relations derived in this study, we used them to formulate the
conditions for E/B-mode decomposition of lensing 3-pt statistics, in analogy to the 2-pt condition
given by Schneider & Kilbinger (2007). These conditions are the basis of formulating additional
constraints which lead to E/B-mode decomposition over a finite region, therefore they provide a
starting point for future works on constructing better 3-pt shear statistics.

Our work was done for the case of weak lensing, but since it has only used the mathematical
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structure of the shear and the convergence, it applies also to other 2D polarization fields such as the
polarization fluctuations of the Cosmic Microwave Background.

4.8 Appendix: Fourier transform of the F and G0 kernels

TheF andG0 kernels, as defined in (4.7) and (4.4) relate the 2- and 3-pt shear and convergence
correlation functions, respectively. In Sect. 2 we have derived their explicit forms, see (4.19) and
(4.22). According to the Fourier space relations of the shear and convergence statistics (4.30) and
(4.31), one expects thatF/π2 and e4iβ are Fourier pairs, as well as−G0/π

3 and e2i(β1+β2+β3). Here
we perform the Fourier transforms ofF/π2 and−G0/π

3, with F andG0 given in (4.19) and (4.22).
The Fourier transformation of the kernelF is a 2D integral of the form

F̃(ℓ)
π2
=

∫

d2a e−iℓ·a F(a)
π2
=

2
π

∫

d2a e−iℓ·a a
a∗3

. (4.83)

The Fourier transformation of the kernelG0 can be greatly simplified by performing translational
shifts to the integration variables. It turns out that the full transformation is composed of 2D integrals
similar to that in (4.83),

−
G̃0(ℓ1, ℓ2)

π3
=

∫

d2a
∫

d2b e−i(ℓ1·a+ℓ2·b)
(

−
G0(a, b)
π3

)

= −
2
π2

∫

d2a e−iℓ1·a
∫

d2b e−iℓ2·b
[

1
(a∗ − b∗)2

(

a
a∗3
+

b

b∗3

)

+
1

(a∗ − b∗)3

(

a
a∗2
−

b

b∗2

)]

= −
2
π2

∫

d2a e−iℓ1·a a
a∗3

∫

d2b e−iℓ2·b 1
(a∗ − b∗)2

−
2
π2

∫

d2b e−iℓ2·b b

b∗3

∫

d2a e−iℓ1·a 1
(a∗ − b∗)2

−
2
π2

∫

d2a e−iℓ1·a a
a∗2

∫

d2b e−iℓ2·b 1
(a∗ − b∗)3

+
2
π2

∫

d2b e−iℓ2·b b

b∗2

∫

d2a e−iℓ1·a 1
(a∗ − b∗)3

= −
2
π2

∫

d2a e−i(ℓ1+ℓ2)·a a
a∗3

∫

d2b e−iℓ2·b 1

b∗2
−

2
π2

∫

d2a e−i(ℓ1+ℓ2)·a a
a∗3

∫

d2b e−iℓ1·b 1

b∗2

+
2
π2

∫

d2a e−i(ℓ1+ℓ2)·a a
a∗2

∫

d2b e−iℓ2·b 1

b∗3
+

2
π2

∫

d2a e−i(ℓ1+ℓ2)·a a
a∗2

∫

d2b e−iℓ1·b 1

b∗3
.

(4.84)

Performing the 2D integrals in polar coordinates results in

∫

d2a e−iℓ·a a
a∗3
=

∫ ∞

0

da
a

∫ 2π

0
dφa e4iφa e−iℓacos(φa−β) = 2π e4iβ

∫ ∞

0

da
a

J4(ℓa) =
π

2
e4iβ , (4.85)

∫

d2a e−iℓ·a a
a∗2
=

∫ ∞

0
da

∫ 2π

0
dφa e3iφa e−iℓacos(φa−β) = 2πi e3iβ

∫ ∞

0
da J3(ℓa) = 2πi

e3iβ

ℓ
,

(4.86)

∫

d2a e−iℓ·a 1
a∗3
=

∫ ∞

0

da

a2

∫ 2π

0
dφa e3iφa e−iℓacos(φa−β) = 2πi e3iβ

∫ ∞

0

da

a2
J3(ℓa) =

iπℓ
4

e3iβ ,

(4.87)
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and

∫

d2a e−iℓ·a 1
a∗2
=

∫ ∞

0

da
a

∫ 2π

0
dφa e2iφa e−iℓacos(φa−β) = −2π e2iβ

∫ ∞

0

da
a

J2(ℓa) = −π e2iβ .

(4.88)
Combining (4.83) and (4.85) yields

F̃(ℓ)
π2
=

2
π

(

π

2
e4iβ

)

= e4iβ , (4.89)

which demonstrates that the Fourier transformation ofF/π2 is indeed the phase factor e4iβ in (4.30).
For theG0 kernel we still need to take account thatℓ3 = ℓ3 eiβ3 ≡ −ℓ1 − ℓ2, so that

−
G̃0(ℓ1, ℓ2)

π3
= −

2
π2

(

π

2
e4iβ3

)

(

−π e2iβ2
)

−
2
π2

(

2πi
e3iβ3

ℓ3

) (

iπℓ2

4
e3iβ2

)

−
2
π2

(

π

2
e4iβ3

)

(

−π e2iβ1
)

−
2
π2

(

2πi
e3iβ3

ℓ3

) (

iπℓ1

4
e3iβ1

)

= e4iβ3+2iβ2 +
ℓ2

ℓ3
e3iβ3+3iβ2 + e2iβ1+4iβ3 +

ℓ1

ℓ3
e3iβ1+3iβ3

=
ℓ2

3

ℓ∗23

ℓ2

ℓ∗2
+
ℓ2

2

ℓ∗2

ℓ3

ℓ∗23

+
ℓ2

3

ℓ∗23

ℓ1

ℓ∗1
+
ℓ2

1

ℓ∗1

ℓ3

ℓ∗23

=
ℓ1ℓ3 (ℓ1 + ℓ3)

ℓ∗1ℓ
∗
3

+
ℓ2ℓ3 (ℓ2 + ℓ3)

ℓ∗2ℓ
∗
3

= −
ℓ1ℓ2ℓ3

ℓ∗23

(

1
ℓ∗1
+

1
ℓ∗2

)

=
ℓ1ℓ2ℓ3

ℓ∗1ℓ
∗
2ℓ
∗
3

= e2i(β1+β2+β3) .

(4.90)

Thus the Fourier transformation of−G0/π
3 equals the phase factor e2i(β1+β2+β3) in (4.31), as ex-

pected.

4.9 Appendix: Relations between other correlation functions

In Sect. 4.1.2 we have derived the relations between the shear and the convergence 2- and 3-pt
correlation functions. The method we used is based on the relation between the 2-pt correlation
functions of the convergenceκ and the deflection potentialψ (4.12). Thus the method can easily
be generated to derive relations between the correlation function ofκ and that of any weak lensing
quantityg which can be expressed as derivatives ofψ. We denoteg = Dgψ, and write these 2-pt
relations in a general form

〈

g(x1)g′(x2)
〉

=
1
π2

∫

d2y 〈κκ〉 (y) H(x1 − x2 − y) . (4.91)

Listed below are some candidates forg and the corresponding operator Dg, whereα is the deflection
angle defined asα = ∂ψ.

g ψ κ γ α

Dg 1 ∇2/2 ∂2/2 ∂
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Table 4.1: Forms of the convolution kernelH as defined in (4.91) for different weak lensing 2-pt
statistics.

〈XX〉 H(F ) integration form ofH H(z)

〈ψψ〉 F
∫

d2v ln |v| ln |z − v| (π/2) |z|2 (ln z − 1)
〈γψ〉 1

2∂
2F −

∫

d2v 1
(v∗−z∗)2 ln |v| (π/2) z/z∗

〈αα〉 −∂2F
∫

d2v 1
v∗

1
v∗−z∗ −πz/z∗

〈κψ〉 1
2∂∂

∗F π
∫

d2v δ(2)
D (z − v) ln |v| π ln z

〈αγ〉 1
2∂

3F
∫

d2v 1
v∗2

1
v∗−z∗ −πz/z∗2

〈ακ〉 1
2∂

2∂∗F π
∫

d2v 1
z∗−v∗ δ

(2)
D (v) π/z∗

〈α∗γ〉 1
2∂

2∂∗F
∫

d2v 1
v∗2

1
v−z π/z∗

〈γγ〉 1
4∂

4F
∫

d2v 1
v∗2

1
(v∗−z∗)2 2πz/z∗3

〈κγ〉 1
4∂

3∂∗F −π
∫

d2v 1
v∗2δ

(2)
D (z − v) −π/z∗2

〈κκ〉 1
4∂

2∂∗2F π2δ
(2)
D (z)

〈γγ∗〉 1
4∂

2∂∗2F
∫

d2v 1
v2

1
(v∗−z∗)2 π2δ

(2)
D (z)

Let DgDg′ act on both sides of the relation between〈ψψ〉 and〈κκ〉 (4.11), and use the statistical
homogeneity of theκ field, one can obtain an integration form of the kernelH , in analogy to (4.8).
Let the same operator act on both sides of (4.12), one can expressH as derivatives of the convolution
kernelF in (4.12), asH(x1 − x2 − y) = DgDg′F (x1 − x2 − y). Further inserting the explicit form of
F (4.19) allows one to obtain the explicit form ofH as a function ofz = x1− x2− y. We summarize
some of the 2-pt relations in Table. 4.1. Note that the form ofH(F ) for 〈αα〉 has a minus sign,
which is due to the fact that∂x1∂x2F (x1 − x2 − y) = −∂2F (z) with z = x1 − x2 − y.

We write the relations between〈κκκ〉 and the 3-pt correlation functions of theg’s also in a
uniform convolutional form,

〈

gg′g′′
〉

(x1, x2) =
1
π3

∫

d2y1

∫

d2y2 〈κκκ〉 (y1, y2) I (x1 − y1, x2 − y2) . (4.92)

To find the explicit form of the convolution kernelI , we first write it into an integral form, in analogy
to (4.5), and then split it into terms which can be expressed also as derivatives of the kernelF , like
(4.20). Then with the explicit form ofF one can reach the explicit form ofI . We list the forms of
the convolution kernelI for some 3-pt statistics in Table. 4.2.

Some of these relations, e.g. those for〈κγ〉, 〈γγκ〉, and〈γκκ〉, can find their application in galaxy-
galaxy(-galaxy) lensing which corresponds to the cross-correlation of shear and galaxy number den-
sity. Some other relations, e.g. those for〈αα〉, 〈ακ〉, and〈αακ〉, are potentially of interest for studies
of the lensing effects on the Cosmic Microwave Background and its cross-correlation with galaxy
weak-lensing maps (Hu 2000).
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Table 4.2: Forms of the convolution kernelI as defined in (4.92) for different weak lensing 3-pt statistics.
〈XXX〉 integration form ofI split form of I I (a, b)

〈ααα〉 −
∫

d2v 1
v∗

1
v∗−a∗

1
v∗−b∗ − 1

a∗−b∗
∫

d2v 1
v∗

(

1
v∗−a∗ −

1
v∗−b∗

)

π

a∗−b∗
(

a
a∗ −

b
b∗

)

〈ααγ〉 −
∫

d2v 1
v∗2

1
v∗−a∗

1
v∗−b∗ − 1

a∗−b∗
∫

d2v 1
v∗2

(

1
v∗−a∗ −

1
v∗−b∗

)

π

a∗−b∗
(

a
a∗2 −

b
b∗2

)

〈γγα〉 −
∫

d2v 1
v∗

1
(v∗−a∗)2

1
(v∗−b∗)2

− 1
(a∗−b∗)2

∫

d2v 1
v∗

(

1
(v∗−a∗)2 +

1
(v∗−b∗)2

)

− π

(a∗−b∗)2

(

a
a∗2 +

b
b∗2

)

− 2π
(a∗−b∗)3

(

a
a∗ −

b
b∗

)

+ 2
(a∗−b∗)3

∫

d2v 1
v∗

(

1
v∗−a∗ −

1
v∗−b∗

)

〈γγκ〉 π
∫

d2v δ(2)
D (v) 1

(v∗−a∗)2
1

(v∗−b∗)2
π/

(

a∗2b∗2
)

〈γκκ〉 π2
∫

d2v δ(2)
D (v) δ(2)

D (v − b) 1
(v∗−a∗)2 π2δ

(2)
D (b)/a∗2

〈αακ〉 π
∫

d2v δ(2)
D (v) 1

v∗−a∗
1

v∗−b∗ π/
(

a∗b∗
)
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Chapter 5

Bispectrum covariance in the flat-sky
limit

As the matter density field evolves to be more and more non-Gaussian under non-linear gravi-
tational clustering, information which is originally contained exclusively in the 2-pt statistics leaks
into higher-order statistics. In cosmic shear studies, several authors have shown that the lowest order
of them, i.e. the 3-pt statistics, already adds much information to the 2-pt one; inparticular it can
break the near degeneracy between the density parameterΩm and the power spectrum normalization
σ8 (Bernardeau et al. 1997; Jain & Seljak 1997; van Waerbeke et al. 1999; Hui 1999). More recent
studies by Takada & Jain (2004), TJ04 afterwards, and Bergé et al. (2010), showed that including
3-pt statistics can improve parameter constraints significantly, typically by a factor of three.

In order to quantify the information content in lensing 3-pt statistics theoretically, one needs to
have an expression for the covariance matrix of the 3-pt statistics. In this chapter we aim at deriving
an expression for the bispectrum covariance〈B(ℓ1, ℓ2, ℓ3)B(ℓ4, ℓ5, ℓ6)〉 for cosmic shear.

Previous work done within a flat-sky spherical harmonic formalism (Hu 2000) in the context of
the CMB has been frequently referred to for such an expression. However several drawbacks exist
in this approach. For instance, the expression given by Hu (2000) is valid only for integer arguments
and does not allow a free binning choice, whereas it is desirable to evaluate the bispectrum and its
covariance at real-valued angular frequencies and use e.g. a logarithmic binning. The other draw-
backs are formal ones, e.g. the formula contains the Wigner symbol whosephysical meaning within
a flat-sky consideration remains obscure; the finite survey size is accounted for only by multiplying
a factor, which lacks justification. There is also an unjustified assumption madein the coordinate
transformation between the full sky and the 2D plane.

All these drawbacks are associated with the spherical harmonic formalism Hu (2000) adopted.
Thus we attempt a pure 2D Fourier-plane approach. We also work in the flat-sky limit since it greatly
simplifies the mathematical form. Furthermore, the flat-sky limit is appropriate for practically all
applications of weak lensing as the correlation of signals is only measured upto separations of a few
degrees.

The major results of this chapter is published in Joachimi et al. (2009).
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5.1 Bispectrum estimator

5.1.1 Estimator for B(ℓ1, ℓ2, ℓ3)

The first and the most crucial step of deriving an expression for the bispectrum covariance is
to find a proper expression for the estimator of the bispectrumB(ℓ1, ℓ2, ℓ3), where theℓ’s are real-
valued angular frequencies in our approach. We will use the convergence bispectrum (3.37) instead
of the shear bispectrum due to formal simplicity. Since the two differ only by a phase factor, the
result can easily be applied to the shear bispectrum.

To define an estimator of the bispectrum is to express it in terms of the convergenceκ, i.e. to
‘invert’ the equation (3.37). There are three points to consider in doing so. First, the argumentℓ’s in
the bispectrum are the absolute values of the vectorℓ’s, suggesting that angular averaging is needed.
Second, the bispectrum is defined only when the triangle condition is satisfied. If this condition
is satisfied, the value of the Dirac delta function is infinity, nevertheless one needs to ‘invert’ it to
obtain an estimator for the bispectrum. This seemingly unsolvable problem vanishes if one considers
a finite survey sizeA. The Dirac Delta function can be expressed as

δ
(2)
D (ℓ) =

1
(2π)2

∫

d2x eiℓ·x . (5.1)

One can easily verify that, when the integral on the r.h.s. of (5.1) is confined to a region with sizeA,
one hasδ(2)

D (ℓ → 0) → A/(2π)2 instead of infinity, which means the inversion of the delta function
here should simply give a factor 1/A. Third, one still needs to specify the triangle condition. This
can be done by adding aδ(2)

D (ℓ1 + ℓ2 + ℓ3) to the estimator.
Having taken care of all three points, our estimator of the bispectrum reads

B̂(ℓ1, ℓ2, ℓ3) =
1
Γ · A

∫ 2π

0

dφℓ1

2π

∫ 2π

0

dφℓ2

2π

∫ 2π

0

dφℓ3

2π
κ̃(ℓ1) κ̃(ℓ2) κ̃(ℓ3) δ(2)

D (ℓ1 + ℓ2 + ℓ3) , (5.2)

whereφℓi is the polar angle ofℓ, and we have put in a normalization functionΓ to keep the estimator
unbiased:

Γ =

∫ 2π

0

dφℓ1

2π

∫ 2π

0

dφℓ2

2π

∫ 2π

0

dφℓ3

2π
δ

(2)
D (ℓ1 + ℓ2 + ℓ3) , (5.3)

which is the angular average of the 2D delta functionδ
(2)
D (ℓ1 + ℓ2 + ℓ3).

The next step is to expressΓ in terms of the absolute values of theℓ’s. This we achieve by
writing the Dirac delta function in its integral form and exchanging the order of the integrals,

Γ =

∫ 2π

0

dφℓ1

2π

∫ 2π

0

dφℓ2

2π

∫ 2π

0

dφℓ3

2π

∫

d2θ

(2π)2
ei(ℓ1+ℓ2+ℓ3)·θ

=

∫

dθ θ
2π

J0(ℓ1θ) J0(ℓ2θ) J0(ℓ3θ)

=
1

(2π)2
Λ (ℓ1, ℓ2, ℓ3) .

(5.4)

The last expression in (5.4) was given in Gradshteyn et al. (2000), whereΛ is defined to be

Λ (ℓ1, ℓ2, ℓ3) ≡



















{

1
4

√

2ℓ2
1ℓ

2
2 + 2ℓ2

1ℓ
2
3 + 2ℓ2

2ℓ
2
3 − ℓ

4
1 − ℓ

4
2 − ℓ

4
3

}−1
if |ℓ1 − ℓ2| < ℓ3 < ℓ1 + ℓ2

0 else
.

(5.5)
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5.1.2 Geometrical interpretation

It is interesting to note thatΛ−1 is just the area of the triangle constructed byℓ1,ℓ2 andℓ3. This
motivated us to find a geometrical interpretation for the angular averaging ofδ

(2)
D (ℓ1 + ℓ2 + ℓ3) in

(5.3). If one fixes the lengths ofℓ1,ℓ2 andℓ3 and allows their polar angles to vary, in almost all cases
the three of them do not form a triangle. Since the delta function specifies thetriangle condition of
the three vectors, it actually corresponds to the probability of the three vectors forming a triangle
when their polar angles can be any value from 0 to 2π. Based on this idea, we consider a fixed vector
ℓ1, and allowℓ2 andℓ3 to vary within annuli with widths∆ℓ2 and∆ℓ3, as sketched in Fig. 5.1.

Figure 5.1: Sketch of the annuli and their overlap for fixedℓ1. The region of overlap is approximated
by the shaded parallelograms. Figure from Joachimi et al. (2009).

The probability of the three vectors forming a triangle can be represented by the area of the
overlap regions of the two annuliA‖ divided by the areas of the annuliAR(ℓ2) andAR(ℓ3), in the limit
of ∆ℓ2,∆ℓ3→ 0. Thus

∫ 2π

0

dφℓ1

2π

∫ 2π

0

dφℓ2

2π

∫ 2π

0

dφℓ3

2π
δ

(2)
D (ℓ1 + ℓ2 + ℓ3) = lim

∆ℓ2,∆ℓ3→0

2A‖
AR(ℓ2) AR(ℓ3)

. (5.6)

With the triangle formed byℓ1, ℓ2, andℓ3 being parametrized byℓ2, ℓ3, andα, which is the
internal angle oppositeℓ1 (see Fig. 5.1),Λ as defined in (5.5) can be written asΛ = 2ℓ−1

2 ℓ−1
3 / sinα.

Observing thatA‖ = ∆ℓ2∆ℓ3/ sinα, and

AR(ℓ̄i) = 2πℓ̄i∆ℓi when∆ℓi → 0 for i = 1,2,3 , (5.7)

one reproduces (5.4).

5.1.3 Estimator for bin-averaged bispectrumB(ℓ̄1, ℓ̄2, ℓ̄3)

In practice, the bispectrum is estimated not at every angular frequency but in angular frequency
bins. Thus we further average (5.2) over the bin-widths to obtain the bin-averaged bispectrum esti-
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mator

B̂(ℓ̄1, ℓ̄2, ℓ̄3) =
∫

∆ℓ1

dℓ1

∆ℓ1

∫

∆ℓ2

dℓ2

∆ℓ2

∫

∆ℓ3

dℓ3

∆ℓ3
B̂(ℓ1, ℓ2, ℓ3)

=
(2π)2

A
Λ−1

(

ℓ̄1, ℓ̄2, ℓ̄3

)

∫

AR(ℓ̄1)

d2ℓ1

AR(ℓ̄1)

∫

AR(ℓ̄2)

d2ℓ2

AR(ℓ̄2)

∫

AR(ℓ̄3)

d2ℓ3

AR(ℓ̄3)

× κ(ℓ1) κ(ℓ2) κ(ℓ3) δ(2)
D (ℓ1 + ℓ2 + ℓ3) ,

(5.8)

which takes the average over the angular frequency annuliAR(ℓ̄i).
We demonstrate that (5.8) is an unbiased estimator by taking the ensemble average of the esti-

mator,

〈

B̂(ℓ̄1, ℓ̄2, ℓ̄3)
〉

=
(2π)2

A
Λ−1

(

ℓ̄1, ℓ̄2, ℓ̄3

)

∫

AR(ℓ̄1)

d2ℓ1

AR(ℓ̄1)

∫

AR(ℓ̄2)

d2ℓ2

AR(ℓ̄2)

∫

AR(ℓ̄3)

d2ℓ3

AR(ℓ̄3)

× (2π)2
(

δ
(2)
D (ℓ1 + ℓ2 + ℓ3)

)2
B(ℓ1, ℓ2, ℓ3)

= (2π)2Λ−1
(

ℓ̄1, ℓ̄2, ℓ̄3

)

∫

AR(ℓ̄1)

d2ℓ1

AR(ℓ̄1)

∫

AR(ℓ̄2)

d2ℓ2

AR(ℓ̄2)

∫

AR(ℓ̄3)

d2ℓ3

AR(ℓ̄3)

× δ
(2)
D (ℓ1 + ℓ2 + ℓ3) B(ℓ1, ℓ2, ℓ3) .

(5.9)

In the first step the definition of the bispectrum (3.37) was inserted, whereas in the second step the
identityδ(2)

D (ℓ→ 0)→ A/(2π)2 has been used.
Further inserting (5.4) into (5.9), one obtains

〈

B̂(ℓ̄1, ℓ̄2, ℓ̄3)
〉

= (2π)3Λ−1
(

ℓ̄1, ℓ̄2, ℓ̄3

)

∫

∆ℓ1

dℓ1ℓ1

AR(ℓ̄1)

∫

∆ℓ2

dℓ2ℓ2

AR(ℓ̄2)

∫

∆ℓ3

dℓ3ℓ3

AR(ℓ̄3)

× Λ (ℓ1, ℓ2, ℓ3) B(ℓ1, ℓ2, ℓ3) .
(5.10)

We take the approximation that the annuli are thin enough such thatΛ (ℓ1, ℓ2, ℓ3) within the integral
can be taken out of the integration and be replaced byΛ

(

ℓ̄1, ℓ̄2, ℓ̄3

)

. Applying in addition (5.7), one
arrives at

〈

B̂(ℓ̄1, ℓ̄2, ℓ̄3)
〉

≈

∫

∆ℓ1

dℓ1ℓ1

ℓ̄1∆ℓ1

∫

∆ℓ2

dℓ2ℓ2

ℓ̄2∆ℓ2

∫

∆ℓ3

dℓ3ℓ3

ℓ̄3∆ℓ3
B(ℓ1, ℓ2, ℓ3) ≡ B(ℓ̄1, ℓ̄2, ℓ̄3) , (5.11)

where in the last step the definition of the bin-averaged bispectrum, which has a similar form as
(5.8), was used. Hence, (5.8) defines an unbiased estimator of the bin-averaged bispectrum.

5.2 Bispectrum covariance

The covariance of the bin-averaged bispectrum is defined as

Cov
(

B̂(ℓ̄1, ℓ̄2, ℓ̄3), B̂(ℓ̄4, ℓ̄5, ℓ̄6)
)

≡
〈(

B̂(ℓ̄1, ℓ̄2, ℓ̄3) −
〈

B̂(ℓ̄1, ℓ̄2, ℓ̄3)
〉) (

B̂(ℓ̄4, ℓ̄5, ℓ̄6) −
〈

B̂(ℓ̄4, ℓ̄5, ℓ̄6)
〉)〉

=
〈

B̂(ℓ̄1, ℓ̄2, ℓ̄3) B̂(ℓ̄4, ℓ̄5, ℓ̄6)
〉

− B(ℓ̄1, ℓ̄2, ℓ̄3) B(ℓ̄4, ℓ̄5, ℓ̄6) .

(5.12)
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Comparison with the spherical harmonic approach

With the expression of bispectrum estimator at hand, expanding the r.h.s. of(5.12) is a rather
straightforward process, though tedious since it involves expanding

〈

B̂(ℓ̄1, ℓ̄2, ℓ̄3) B̂(ℓ̄4, ℓ̄5, ℓ̄6)
〉

, a 6-
pt correlator into its connected parts. The total bispectrum covariance weobtained reads

Cov
(

B(ℓ̄1, ℓ̄2, ℓ̄3), B(ℓ̄4, ℓ̄5, ℓ̄6)
)

=
(2π)3

A ℓ̄1ℓ̄2ℓ̄3∆ℓ1∆ℓ2∆ℓ3
Λ−1

(

ℓ̄1, ℓ̄2, ℓ̄3

)

Dℓ̄1,ℓ̄2,ℓ̄3,ℓ̄4,ℓ̄5,ℓ̄6
P(ℓ̄1)P(ℓ̄2)P(ℓ̄3)

+
C

A
δℓ̄3ℓ̄4

∫

1

∫

2

∫

3

∫

5

∫

6
δ

(2)
D (ℓ1 + ℓ2 + ℓ3) δ(2)

D (ℓ3 + ℓ5 + ℓ6) B(ℓ1, ℓ2, ℓ3) B(ℓ3, ℓ5, ℓ6) + (8 perm.)

+
C

A
δℓ̄3ℓ̄6

∫

1

∫

2

∫

3

∫

4

∫

5
δ

(2)
D (ℓ1 + ℓ2 + ℓ3) δ(2)

D (ℓ4 + ℓ5 − ℓ3) P4(ℓ1, ℓ2, ℓ4, ℓ5) P(ℓ3) + (8 perm.)

+
C

A

∫

1

∫

2

∫

3

∫

4

∫

5

∫

6
δ

(2)
D (ℓ1 + ℓ2 + ℓ3) δ(2)

D (ℓ4 + ℓ5 + ℓ6) P6(ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6) ,

(5.13)

where the prefactor readsC ≡ (2π)6 Λ−1
(

ℓ̄1, ℓ̄2, ℓ̄3

)

Λ−1
(

ℓ̄4, ℓ̄5, ℓ̄6

)

, P4 andP6 stand for the trispec-
trum and the pentaspectrum respectively, and shorthand notations are defined:

∫

AR(ℓ̄i )
d2ℓi/AR(ℓ̄i) ≡

∫

i
, (5.14)

and

Dℓ1,ℓ2,ℓ3,ℓ4,ℓ5,ℓ6 ≡δℓ1ℓ4 δℓ2ℓ5 δℓ3ℓ6 + δℓ1ℓ5 δℓ2ℓ4 δℓ3ℓ6 + δℓ1ℓ4 δℓ2ℓ6 δℓ3ℓ5

+ δℓ1ℓ5 δℓ2ℓ6 δℓ3ℓ4 + δℓ1ℓ6 δℓ2ℓ4 δℓ3ℓ5 + δℓ1ℓ6 δℓ2ℓ5 δℓ3ℓ4 .
(5.15)

In the linear and slightly non-linear regime, the first term of (5.13) dominates.Up to now it
has been a common practice to use the first term of (5.13) to approximate the total bispectrum
covariance. This approximation, dubbed theGaussian approximationfor the bispectrum covariance,
is actually not well-justified for applying to the actual convergence field. However, the use the full
covariance is heavily constrained by its computational load. Therefore it isnecessary to investigate
how well the Gaussian approximation holds in the non-Gaussian regime. A recent study (Martin
2011) found that for the matter density field in the local Universe it is marginally justified to use the
Gaussian approximation.

5.3 Comparison with the spherical harmonic approach

On the celestial sphere one can decompose the random fieldκ into spherical harmonics, which
yields a set of coefficientsκℓm with integerℓ andm satisfyingℓ > 0 and−ℓ ≤ m ≤ ℓ. Hu (2000)
defined a bispectrum estimator for CMB observables in terms of spherical harmonics coefficients.
We reproduce it for the convergence fieldκ as

B̂ℓ1,ℓ2,ℓ3 =
∑

m1,m2,m3

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

κℓ1m1 κℓ2m2 κℓ3m3 , (5.16)

where the symbol with the parenthesis is the Wigner-3j symbol. It obeys the triangle condition, i.e.
it is non-zero only for|ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2 and permutations thereof. In addition, the Wigner
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symbol withm1 = m2 = m3 = 0 vanishes for oddℓ1 + ℓ2 + ℓ3. The Gaussian approximation of the
covariance of̂Bℓ1,ℓ2,ℓ3 is given as (Hu 2000)

Cov
(

Bℓ̄1,ℓ̄2,ℓ̄3
, Bℓ̄4,ℓ̄5,ℓ̄6

)

=
4π
A

Dℓ̄1,ℓ̄2,ℓ̄3,ℓ̄4,ℓ̄5,ℓ̄6
Pℓ̄1

Pℓ̄2
Pℓ̄3

, (5.17)

wherePℓ denotes the full-sky power spectrum. Anad hocfactor of f −1
sky = 4π/A has been added to

account for finite sky coverage of the survey.
Approximate relations between the spherical harmonic and Fourier-plane power spectra and

bispectra are given in the same paper. They are

Pℓ ≈ P(ℓ) ; Bℓ1,ℓ2,ℓ3 ≈

(

ℓ1 ℓ2 ℓ3

0 0 0

)

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)
4π

B(ℓ1, ℓ2, ℓ3) , (5.18)

where the approximations hold well forℓ1, ℓ2, ℓ3 ≫ 1.
With (5.16), (5.17), and (5.18) one can derive a flat-sky spherical harmonic covariance as (Hu

2000; Takada & Jain 2004)

〈

B̂(ℓ̄1, ℓ̄2, ℓ̄3) B̂(ℓ̄4, ℓ̄5, ℓ̄6)
〉

sp
≈

(4π)2 Dℓ̄1,ℓ̄2,ℓ̄3,ℓ̄4,ℓ̄5,ℓ̄6

A (2ℓ̄1 + 1) (2ℓ̄2 + 1) (2ℓ̄3 + 1)

(

ℓ̄1 ℓ̄2 ℓ̄3

0 0 0

)−2

P(ℓ̄1) P(ℓ̄2) P(ℓ̄3) ,

(5.19)
where angular frequencies are required to be integer, andℓ1 + ℓ2 + ℓ3 even. We have put a subscript
‘sp’ to distinguish it from the covariance matrix obtained through the Fourierplane approach. As is
true for the Fourier plane approach, (5.19) holds forℓ ≫ 1 only.

To compare the widely used formula (5.19) to our results, a relation between the Wigner sym-
bol andΛ has to be found. We refer to Borodin et al. (1978) and the referencestherein for an
approximation formula for the Wigner 3-j symbol,

(

ℓ1 ℓ2 ℓ3

0 0 0

)2

≈
2
π

{

2

(

ℓ1 +
1
2

)2 (

ℓ2 +
1
2

)2

+ 2

(

ℓ2 +
1
2

)2 (

ℓ3 +
1
2

)2

+ 2

(

ℓ3 +
1
2

)2 (

ℓ1 +
1
2

)2

−

(

ℓ1 +
1
2

)4

−

(

ℓ2 +
1
2

)4

−

(

ℓ3 +
1
2

)4}−1/2

,

(5.20)

which is a very good approximation forℓ1, ℓ2, ℓ3 ≫ 1. We further make the approximation that
ℓi + 1/2 ≈ ℓi , which allow us to find from (5.5) and (5.20)

(

ℓ1 ℓ2 ℓ3

0 0 0

)2

≈
Λ (ℓ1, ℓ2, ℓ3)

2π
. (5.21)

Using the Gaussian approximation, i.e. keeping the first term of (5.13), inserting (5.21), and
specifying that∆ℓ1 = ∆ℓ2 = ∆ℓ3 = 1, one can see that the resulting relation is equivalent to (5.19) if
one takes the limit 2ℓ + 1 ≈ 2ℓ for ℓ ≫ 1, except for (5.19) being a factor of 2 smaller.

This factor of 2 discrepancy is simply related to the fact that (5.13) is defined for all ℓ values
whereas (5.19) is defined only forℓ1 + ℓ2 + ℓ3 being even. If one calculates the Fisher information
using both approaches, the number of bispectrum entries in the Fourier plane approach is twice
as large as that in the spherical harmonic approach. Therefore the factor of 2 difference in their
covariance matrices is actually required to guarantee the agreement of the two approaches in terms of
their results on the information content. We calculate the Fisher information contributed by lensing
bispectra with 100≤ ℓ1 ≤ ℓ2 ≤ ℓ3 ≤ ℓmax andℓmax ranging from 100 and 150 with both approaches.
The result is shown in Fig. 5.2, which shows good agreement between the two approaches (for more
details see Joachimi et al. 2009).
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Conclusion

Figure 5.2: Comparison of the
Fisher information as obtained by
spherical harmonics and Fourier-
plane approach. Given is the rela-
tive deviationr as a function of the
maximum angular frequencyℓmax.
Figure taken from Joachimi et al.
(2009).

5.4 Conclusion

In this study we derived the form of the bispectrum covariance in the flat-sky approximation.
We defined an unbiased bispectrum estimator for 2D Fourier modes, averaged it over angular fre-
quency bins to mimic the measuring process in reality, and computed the covariance of the averaged
bispectrum estimator. During this process a geometrical interpretation of the integral

∫ 2π

0

dφℓ1

2π

∫ 2π

0

dφℓ2

2π

∫ 2π

0

dφℓ3

2π
δ

(2)
D (ℓ1 + ℓ2 + ℓ3) ,

which is needed in the averaging step, was found.
We showed the equivalence between the covariance matrix we derived and that given in Hu

(2000) in terms of the Fisher information content they lead to. Moreover, weshowed that our ap-
proach does not suffer from the drawbacks of the spherical harmonic approach used in Hu (2000).
In Hu (2000) the covariance matrix formula contains the Wigner symbol whose physical meaning
within a flat-sky consideration remains obscure; the finite survey size is accounted for only by mul-
tiplying a factor; and an unjustified assumption is made in the coordinate transformation between
full sky and 2D plane. In addition to these formal drawbacks, the covariance matrix in Hu (2000)
is valid only for integer arguments and does not allow a free binning choice due to the limitation
of the spherical harmonic approach, whereas ours can evaluate the bispectrum and its covariance at
real-valued angular frequencies and use e.g. a logarithmic binning.
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Chapter 6

Controlling intrinsic-shear alignment in
three-point weak lensing statistics

3-pt weak lensing statistics provide cosmic information that complements 2-pt statistics. How-
ever, both statistics suffer from systematic errors. The ultimate performance of these future lensing
surveys largely depends on the how well the systematic errors can be controlled (e.g. Huterer et al.
2006). In this study we focus on a particularly worrisome systematic error incosmic shear studies:
the intrinsic-shear alignment, and demonstrate a way to control it for shear 3-pt statistics. Specif-
ically, we generalize the nulling technique, which is a model-independent methoddeveloped to
eliminate intrinsic-shear alignment at the 2-pt level, to the 3-pt level, and thereby controlling the
corresponding 3-pt systematics. The content in this chapter is published inShi et al. (2010).

6.1 Intrinsic-shear alignment

In the weak lensing limit the observed ellipticity of a galaxyǫobs can be written as the sum of
the intrinsic ellipticityǫI of the galaxy, and the shearγ which is caused by gravitational lensing of
the foreground matter distribution,

ǫobs= ǫI + γ . (6.1)

Hereǫobs, ǫI andγ are complex quantities. Intrinsic-shear alignment is defined in 2-pt cosmic shear
statistics as the correlation between the intrinsic ellipticity of one galaxy and the shear of another
galaxy (the GI term, Hirata & Seljak 2004). The 3-pt statistics

〈

ǫ i
obsǫ

j
obsǫ

k
obs

〉

, a correlator of ellip-
ticities of three galaxy imagesi, j andk, can also be expanded into lensing (GGG), intrinsic-shear
(GGI and GII), and intrinsic (III) terms:

〈

ǫ i
obsǫ

j
obsǫ

k
obs

〉

= GGG+GGI+GII + III ,with (6.2)

GGG=
〈

γiγ jγk
〉

, (6.3)

GGI =
〈

ǫ i
Iγ

jγk
〉

+
〈

ǫ
j
I γ

kγi
〉

+
〈

ǫk
I γ

iγ j
〉

, (6.4)

GII =
〈

ǫ i
Iǫ

j
I γ

k
〉

+
〈

ǫ
j
I ǫ

k
I γ

i
〉

+
〈

ǫk
I ǫ

i
Iγ

j
〉

, (6.5)
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III =
〈

ǫ i
Iǫ

j
I ǫ

k
I

〉

. (6.6)

Physically, if one assumes that galaxies are randomly oriented on the sky, only the desired GGG
term remains on the right-hand side of (6.2). However, when these galaxies are subject to the
tidal gravitational force of the same matter structure (e.g. they formed underthe influence of the
same massive dark matter halo), their shapes can intrinsically align and becomecorrelated, giving
rise to a nonvanishing III term. Furthermore, GGI and GII terms can be generated when a matter
structure tidally influences close-by galaxies and at the same time contributes tothe shear signal of
background objects, leading to correlations among them.

In 2-pt statistics, the corresponding intrinsic (II) and intrinsic-shear (GI) terms have been subject
to detailed studies both theoretically (e.g. Catelan et al. 2001; Croft & Metzler2000; Heavens et al.
2000; Hui & Zhang 2002; Mackey et al. 2002; Jing 2002; Hirata & Seljak2004; Heymans et al.
2006; Bridle & Abdalla 2007; Schneider & Bridle 2010) and observationally (Brown et al. 2002;
Heymans et al. 2004; Mandelbaum et al. 2006, 2011; Hirata et al. 2007;Fu et al. 2008; Brainerd
et al. 2009; Okumura et al. 2009; Okumura & Jing 2009; Joachimi et al. 2011). Although the results
of these studies show large variations, most of them are consistent with a 10% contamination by
both II and GI correlations for future surveys with photometric redshift information. Especially,
neglecting these correlations can bias the dark energy equation of state parameterw0 by as much as
50 % (Bridle & King 2007) for a “shallow” survey as described in Amara & Réfrégier (2007). For
3-pt shear statistics, there have been few measurements up to now (Bernardeau et al. 2002b; Pen
et al. 2003; Jarvis et al. 2004). However the potential systematics level inthese studies is found
to be high. A recent numerical study by Semboloni et al. (2008) showed that intrinsic alignments
affect 3-pt weak lensing statistics more strongly than at the 2-pt level for a given survey depth. In
particular, neglecting GGI and GII systematics would lead to an underestimationof the GGG signal
by 5−10 % for a moderately deep survey like the CFHTLS Wide. Therefore, to match the statistical
power expected for cosmic shear in the future surveys, it is essential to control these systematics.

The intrinsic alignment, II (III) in the two- (three-) point case, is relativelystraightforward to
eliminate, since it requires that the galaxies in consideration are physically close to each other, i.e.
have very similar redshifts and small angular separation (King & Schneider2002, 2003; Heymans
& Heavens 2003; Takada & White 2004). The control of intrinsic-shearsystematics, GI for the 2-pt
case and GGI in the 3-pt case (GII also requires that two of the three galaxies are physically close
and thus can be eliminated in the same way as II and III), turns out to be a muchgreater challenge.
However, as already pointed out by HS04, the characteristic dependence on galaxy redshifts is a
valuable piece of information that helps to control the intrinsic-shear alignments.

Several methods for this have already been constructed in the context of2-pt statistics. They
can be roughly classified into three categories: modeling (King 2005; Bridle &King 2007; Bern-
stein 2009), nulling (Joachimi & Schneider 2008, JS08 hereafter; Joachimi & Schneider 2009) and
self-calibration (Zhang 2010; Joachimi & Bridle 2010). Modeling separates cosmic shear from the
intrinsic-shear alignment effect by constructing template functions for the latter. It suffers from un-
certainties of the model due to the lack of knowledge of the angular scale andredshift dependence of
the intrinsic-shear signal. The nulling technique employs the characteristic redshift dependence of
the intrinsic-shear signal to “null it out”. It is a purely geometrical method and is model-independent,
but suffers from a significant information loss. Self-calibration intends to solve the problem of in-
formation loss by using additional information from the galaxy distribution to “calibrate” the signal.
The original form of self-calibration, proposed by Zhang (2010), is model-independent but strong
assumptions have been made. Joachimi & Bridle (2010) then develop it into a modeling method, by
treating intrinsic alignments and galaxy biasing as free functions of scale andredshift.
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All these methods have the potential of being generalized to 3-pt statistics. Here we focus on the
nulling technique, and establish it as a method to reduce the 3-pt intrinsic-shear alignments GGI and
GII. Since GII can be removed by discarding close pairs of galaxies as inthe case of II controlling
(e.g. Heymans & Heavens 2003), we focus on the control of GGI systematics.

We will work in the context of a spatially flat CDM cosmology with a variable darkenergy whose
equation of state is parameterized asweos = w0 + wa(1 − a), with a being the cosmic scale factor.
The adopted fiducial values for cosmological parameters areΩm = 0.3, Ωb = 0.045,Ωde = 0.7,
w0 = −0.95, wa = 0.0, h = 0.7, ns = 1.0, andσ8 = 0.8. Here,h is the dimensionless Hubble
parameter defined byH0 = 100hkm/s/Mpc.

6.2 The nulling technique applied to three-point shear tomography

6.2.1 Principle of the nulling technique

The shear on the image of a distant galaxy is a result of gravitational distortion of light caused by
the inhomogeneous 3D matter distribution in the foreground of that galaxy. For notational simplicity,
we will use the dimensionless surface mass density (the convergence)κ instead of the shearγ as a
measure for the lensing signal throughout the chapter, although in reality the signal is based on the
measurement of the shear. This will not affect our results sinceκ andγ are linearly related on each
redshift plane while our method is dealing with the redshift dependence of them (the same reason
justifies the turning to the Fourier domain in the next subsection).

When one measures the shearγ, the direct observable is the galaxy ellipticityǫobs= ǫI + γ. The
shearγ is a signal caused by gravitational distortion which is a deterministic process,where the
intrinsic ellipticity ǫI can be further written as the sum of a deterministic partǫdet

I which is caused
by intrinsic alignment, and a stochastic partǫran

I which does not correlate with any other quantity.
There is no correlation betweenǫran

I of different galaxies either.
We defineκobsandκI which are the correspondences ofǫdet

I +γ andǫdet
I . We remove the stochastic

part sinceκ is deterministic. Note thatκobs andκI are analogs of the dimensionless surface mass
densityκ but do not have any direct physical meaning asκ does. They are complex quantities in
general and can lead to a B-mode signal. To better distinguish the real measurableκ from them,
we denote it asκG in the rest of this chapter since it is the physical quantity which is related to the
gravitational lensing signal. Keeping the dominating linear term, the convergenceκG can be written
as (details see e.g. Schneider 2006):

κG(θ, χs) =
3ΩmH2

0

2c2

∫ χs

0
dχ

χ(χs− χ)
χs

δ (χθ, χ)
a(χ)

, (6.7)

whereδ is the 3D matter density contrast,χs is the comoving distance of the background galaxy
which is acting as a source, anda(χ) is the cosmic scale factor at the comoving distanceχ of δ
which is acting as a lens.

Equation (6.7) clearly shows that the contribution of the matter inhomogeneityδ at comoving
distanceχi to the cosmic shear signal of background galaxies can be considered asa function of
the source distanceχs, and this function is proportional to 1− χi/χs. The nulling technique takes
advantage of this characteristic dependence on source distanceχs by constructing a weight function
T(χi , χs) such that the product ofT(χi , χs) and 1−χi/χs has an average of zero on the range between
χi and the comoving distance to the horizonχhor:
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∫ χhor

χi

dχs T(χi , χs)

(

1−
χi

χs

)

= 0 . (6.8)

One then uses this weight function as a weight for integrating over the source distance:

κ̂G(χi , θ) :=
∫ χhor

χi

dχs T(χi , χs) κG(θ, χs) . (6.9)

The resulting new measure of shear signal ˆκG(χi , θ) is then free of contributions from the matter
inhomogeneity at distanceχi . Note that although the weight functionT has two argumentsχi and
χs here, we consider it as a function ofχs for a particularχi .

Consider a correlator
〈

κi
obsκ

j
obs

〉

with comoving distancesχi < χ j . With a similar decomposition

as (6.2), it is straightforward to see that the GI term in it is
〈

κi
Iκ

j
G

〉

. The term
〈

κi
Gκ

j
I

〉

vanishes since

the lensing signal atχi is correlated only with matter withχ ≤ χi , whereasκ j
I originates solely

from physical processes happening atχ j . If we integrate
〈

κi
Iκ

j
G

〉

overχ j with a weight function that

eliminates the contributions toκ j
G by the matter inhomogeneity at distanceχi , this correlator will

also vanish,
∫ χhor

χi

dχ j T(χi , χ j)
〈

κi
Iκ

j
G

〉

= 0, (6.10)

since it is just the matter inhomogeneity at distanceχi that gives rise to the correlation betweenκi
I and

κ
j
G. Thus, when we integrate over

〈

κi
obsκ

j
obs

〉

with the same weight function, the GI contamination in
it will be “nulled out”. Equation (6.8) is the condition that the weight functionT should satisfy in
order to “null” the intrinsic-shear alignment terms, so we call it “the nulling condition”.

The same applies to 3-pt statistics. Consider a correlator
〈

κi
obsκ

j
obsκ

k
obs

〉

with χi being the smallest
comoving distance of the three. Both GII and GGI systematics contained in it also originate from
the matter inhomogeneity at distanceχi . Typically, the generation of GII systematics requires that
χi ≈ χ j < χk, while the generation of GGI requiresχi < χ j andχi < χk. For both cases, the
dependence of GII or GGI systematics onχk is also just 1− χi/χk. So new measures built as
∫ χhor

χi
dχk T(χi , χ j , χk)

〈

κi
obsκ

j
obsκ

k
obs

〉

with T satisfying the nulling condition for 3-pt statistics

∫ χhor

χi

dχk T(χi , χ j , χk)

(

1−
χi

χk

)

= 0 (6.11)

will be free of both GII and GGI contamination. Again,T(χi , χ j , χk) here should be seen as a
function ofχk whose form depends onχi andχ j .

Note that this method only depends on the characteristic redshift dependencies of the lensing
signal and intrinsic-alignment signals, and is not limited to E-mode fields. This is a reassuring
feature since while theκG field is a pure E-mode field to first order, theκI field can have a B-mode
component. However, if parity-invariance is assumed, any correlation function which contains an
odd number of B-mode shear components vanishes (Schneider 2003), thus there should be no B-
mode component in the GGI signal.

6.2.2 Nulling formalism for lensing bispectrum tomography

Since the nulling technique relies on the distinct redshift dependence of theintrinsic-alignment
signal, redshift information is crucial for it. With the help of near-infraredbands, forthcoming multi-
color imaging surveys can provide rather accurate photometric redshift information for the galaxies
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(e.g. Abdalla et al. 2008; Bordoloi et al. 2010), allowing tomographic studies of cosmic shear statis-
tics. We base our study on cosmic shear bispectrum tomography, and outlinethe corresponding
formalism of the nulling technique in the following.

Given the galaxy redshift probability distribution of redshift bini which we denote asp(i)
s (z) =

p(i)
s (χs) dχs/dz, one can define the average convergence field in redshift bini by integratingκ(θ, χs)

in (6.7) overp(i)
s (χs). We turn to angular frequency space now and define

κ̃
(i)
G (ℓ) :=

∫ χhor

0
dχs p(i)

s (χs) κ̃G(ℓ, χs) , (6.12)

whereκ̃G(ℓ, χs) is the Fourier transform ofκG(θ, χs). To better show the relation between ˜κ
(i)
G (ℓ) and

3D matter inhomogeneity in Fourier spaceδ̃ (k, χ), one can combine (6.7) and (6.12) and write

κ̃
(i)
G (ℓ) =

∫ χhor

0
dχ W(i)(χ) δ̃ (ℓ/χ, χ) , (6.13)

by defining a lensing weight functionW(i)(χ) as

W(i)(χ) :=
3ΩmH2

0 χ

2a(χ) c2

∫ χhor

χ

dχs p(i)
s (χs)

χs− χ

χs
. (6.14)

The tomographic lensing bispectrum is defined via
〈

κ̃
(i)
G (ℓ1)κ̃( j)

G (ℓ2)κ̃(k)
G (ℓ3)

〉

= (2π)2B(i jk)
GGG(ℓ1, ℓ2, ℓ3) δD(ℓ1 + ℓ2 + ℓ3) , (6.15)

where the Dirac delta function ensures that the bispectrum is defined only whenℓ1, ℓ2, andℓ3 form
a triangle. This fact arises from statistical homogeneity, while that the bispectrum can be defined
as a function independent of the directions of the angular frequency vectors arises from statistical
isotropy.

In a survey, the convergence field ˜κobs is determined from the observed galaxy ellipticities, and
the corresponding bispectrumBobs suffers from intrinsic-shear alignments. As we did with the 3-pt
correlator in Sect. 6.1, we separate the observed lensing bispectrum into the four terms:

Bobs= BGGG+ BGGI + BGII + BIII . (6.16)

Among them,BGGI, BGII andBIII can be linked to the convergence in a similar way as (6.15), for
example

〈

κ̃
(i)
I (ℓ1)κ̃( j)

G (ℓ2)κ̃(k)
G (ℓ3)

〉

= (2π)2B(i jk)
GGI(ℓ1, ℓ2, ℓ3) δD(ℓ1 + ℓ2 + ℓ3) . (6.17)

Here we assume disjunct redshift bins and leti to be the redshift bin with the lowest redshift, so
〈

κ̃
(i)
G (ℓ1)κ̃( j)

I (ℓ2)κ̃(k)
G (ℓ3)

〉

and
〈

κ̃
(i)
G (ℓ1)κ̃( j)

G (ℓ2)κ̃(k)
I (ℓ3)

〉

both vanish due to the same reason as explained
in Sect. 6.2.1 for the 2-pt statistics.

The purpose of the nulling technique is to filterBobs in such a way that the GGI term is strongly
suppressed in comparison with the GGG term. The GII and III terms can be removed by ignoring
the signal coming from bispectrumB(i jk)

obs (ℓ1, ℓ2, ℓ3) with two or three equal redshift bins.
To fulfill this purpose, we construct our new measures as

Y(i j )(ℓ1, ℓ2, ℓ3) :=
Nz
∑

k=i+1

T(i j )(χk) B(i jk)
obs (ℓ1, ℓ2, ℓ3) χ′k ∆zk , (6.18)
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whereNz is the total number of redshift bins,χ′k is the derivative of comoving distance with respect
to redshift, and∆zk is the width of redshift bink. The weight function is written now asT(i j )(χk)
sincei and j indicate two redshift bins, i.e. two populations of galaxies, rather than two comoving
distances as in the previous subsection. The weightT(i j ) is required to satisfy the nulling condition
(6.8) in its discretized form,

O(i j ) :=
Nz
∑

k=i+1

T(i j )(χk)

(

1−
χi

χk

)

χ′k ∆zk = 0 , (6.19)

for all j > i. Here,χi andχk should be chosen such that they represent well the distance to redshift
binsi andk. In this study we choose them to be the distances corresponding to the medianredshift of
the bin. The summation over indexk runs fromi +1 rather thani since we consider only bispectrum
measures withj > i andk > i to avoid III and GII systematics. In this caseB(i jk)

obs in (6.18) can be

written as a sum ofB(i jk)
GGG andB(i jk)

GGI, andY(i j ) can be expressed as

Y(i j )(ℓ1, ℓ2, ℓ3) =
Nz
∑

k=i+1

T(i j )(χk) B(i jk)
GGG(ℓ1, ℓ2, ℓ3) χ′k ∆zk +

Nz
∑

k=i+1

T(i j )(χk) B(i jk)
GGI(ℓ1, ℓ2, ℓ3) χ′k ∆zk .

(6.20)
Suppose one has infinitely many redshift bins, then the lensing signal in bink caused by the

matter inhomogeneity in bini is exactly proportional to 1− χi/χk, which meansB(i jk)
GGI(ℓ1, ℓ2, ℓ3) can

be written as a product of 1− χi/χk and some function of the parameters other thanχk:

B(i jk)
GGI(ℓ1, ℓ2, ℓ3) = F (χi , χ j , ℓ1, ℓ2, ℓ3)

(

1−
χi

χk

)

. (6.21)

Then we have

Nz
∑

k=i+1

T(i j )(χk) B(i jk)
GGI(ℓ1, ℓ2, ℓ3) χ′k ∆zk = F (χi , χ j , ℓ1, ℓ2, ℓ3)

Nz
∑

k=i+1

T(i j )(χk)

(

1−
χi

χk

)

χ′k ∆zk = 0 .

(6.22)
This suggests that only the GGG contribution is left in the nulled measureY(i j ), the GGI contribution
has been “nulled out” due to the nulling condition. If only a limited number of redshift bins is
available, (6.21) holds only approximately, leading to a residual in (6.22).

Since the nulling condition is the only condition that the weightT(i j ) must satisfy in order to
“null”, there is much freedom in choosing the form of it. We would like to further specify its form
such that it preserves as much Fisher information inY(i j ) as possible. The method we have adopted
for the nulling weight construction will be detailed in Sect. 6.4.

Note that for each (i, j) combination, one can in principle apply more than one nulling weight to
the original bispectrum, and obtain more nulled measures. If one retains the condition of maximizing
the Fisher information and demands that all the weight functions built for one(i, j) combination
are orthogonal to each other, one arrives at higher-order modes that have the second-most, third-
most, etc., information content (higher-order weights, see JS08). The total number of such linearly
independent nulled measures for a certain (i, j) equals the possible values ofk ≥ i + 1. In this
schematic study we will only use the optimum, i.e. the first-order nulling weights. Wewill assess
the information loss due to this limitation in Sect. 6.5.4.
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6.3 Modeling

6.3.1 Survey characteristics

We set up a fictitious survey with a survey size ofA = 4000 deg2 which is similar to the survey
size of DES. This can be easily scaled to any survey size using the proportionality of statistical errors
to A−1/2. We assume a galaxy intrinsic ellipticity dispersionσǫ = σ(ǫran

I ) = 0.35. As galaxy redshift
probability distribution we adopt the frequently used parameterization (Smail et al. 1994),

ps(z) ∝

(

z
z0

)α

exp















−

(

z
z0

)β














, (6.23)

and usez0 = 0.64, α = 2, β = 1.5. The distribution is cut atzmax = 3 and normalized to 1.
The corresponding median redshift of this fictitious survey iszm = 0.9, which is compatible to a
survey like EUCLID. We adopt an average galaxy number density ¯ng = 40 arcmin−2 which is again
EUCLID-like.

Disjunct redshift bins without photo-z error are assumed, which means that the galaxy redshift
probability distribution in redshift bini takes the formp(i)

s (z) ∝ ps(z) if and only if the redshift
that corresponds to comoving distanceχs is within the boundaries of redshift bini. A number of
10 redshift bins is used by default. The boundaries of the redshift binsare set such that each bin
contains the same number of galaxies.

We adopt 20 angular frequency bins spaced logarithmically betweenℓmin = 50 andℓmax =

3000, and denote the characteristic angular frequency of a bin asℓ̄. Within this range the noise
properties of the cosmic shear field are still not too far in the non-Gaussianregime, allowing a more
realistic theoretical estimation of the bispectrum and its covariance. Whether this number of angular
frequency bins can reconstruct the angular frequency dependence of the bispectrum is tested, and
20 bins are found to be sufficient for our requirements on precision. This is also expected since the
bispectrum is rather featureless as a function of angular frequency.

6.3.2 Bispectrum and its covariance

We show the modeling ofBGGG and its covariance in this section. We will only consider the
tomographic bispectrum at redshift bins satisfyingzi < zj andzi < zk, which already ensures an
elimination ofBIII andBGII systematics in our case.

Applying Limber’s equation, it can be shown that the tomographic convergence bispectrum can
be written as a projection of the 3D matter bispectrumBδ(k1, k2, k3; χ) (see e.g. TJ04):

B(i jk)
GGG(ℓ̄1, ℓ̄2, ℓ̄3) =

∫ χhor

0
dχ

W(i)(χ)W( j)(χ)W(k)(χ)
χ4

Bδ

(

ℓ̄1

χ
,
ℓ̄2

χ
,
ℓ̄3

χ
; χ

)

. (6.24)

To computeBδ, we employ the fitting formula by Scoccimarro & Couchman (2001). A compar-
ison of this formula with the halo model results can be found in Takada & Jain (2003a,b).

We use the expression (5.13) for the bispectrum covariance and keep only the first term of it.
This Gaussian approximation is justified in this case since we constrain ourselves by using angular
scales withℓ ≤ 3000. As argued in TJ04, the first term in (5.13) still dominates forℓ values in this
range. Keeping only this term and adapt (5.13) to tomographic lensing bispectrum, the bispectrum
covariance reads
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Cov
(

B(i jk)
GGG(ℓ̄1, ℓ̄2, ℓ̄3), B(lmn)

GGG(ℓ̄4, ℓ̄5, ℓ̄6)
)

=
(2π)3

A ℓ̄1ℓ̄2ℓ̄3 ∆ℓ̄1∆ℓ̄2∆ℓ̄3
Λ−1

(

ℓ̄1, ℓ̄2, ℓ̄3

)

×
(

P̄(il )(ℓ̄1)P̄( jm)(ℓ̄2)P̄(kn)(ℓ̄3) δℓ̄1ℓ̄4
δℓ̄2ℓ̄5

δℓ̄3ℓ̄6
+ 5 perms.

)

,

(6.25)

in which The termΛ (ℓ1, ℓ2, ℓ3) is defined in (5.5), and̄P(i j )(ℓ̄) is the observed tomographic power
spectrum which contains the intrinsic ellipticity noise (e.g. Kaiser 1992; Hu 1999; Joachimi et al.
2008):

P̄(i j )(ℓ̄) = P(i j )(ℓ̄) + δi j
σ2
ǫ

2n̄i
, (6.26)

wheren̄i is the galaxy number density in redshift bini. We use the Eisenstein & Hu (1998) transfer
function to evaluate the linear 3D matter power spectrum, and the Smith et al. (2003) fitting function
for the nonlinear power spectrum.

6.3.3 Toy intrinsic-shear alignment model

In this section we present a toy model for generating GGI systematics. Sincethe physical gener-
ation of intrinsic-shear alignments concerns nonlinear growth of structureand complex astrophysical
processes which are not easy to quantify, a realistic model is not yet available. Current simulations
involving baryonic matter also have some way to go before they can simulate the generation of the
GGI systematics reliably.

Up to now there has not been any attempt to measure GGI and GII in galaxy surveys. Semboloni
et al. (2008) studied these systematics using ray-tracing simulations. They provided fits in real space
to projected GII and GGI signals, but the results are still too crude to lead to sufficient constraints
on an intrinsic-shear alignment model.

This situation emphasizes the importance of a method intended to control intrinsic-shear align-
ment to be model-independent, especially at the 3-pt level. Since this is the case for the nulling
technique, for this work we only require a simple model forB(i jk)

GGI which satisfies the characteristic
redshift dependence and leads to a reasonable bias.

Based on the observation that the lensing bispectrum expression (6.24) comes directly from
(6.13) and the definition of the tomography bispectrum (6.15), we linkB(i jk)

GGI also to a 3D bispectrum
BδI δδ via

B(i jk)
GGI(ℓ̄1, ℓ̄2, ℓ̄3) =

∫ χhor

0
dχ

p(i)
s (χ)W( j)(χ)W(k)(χ)

χ4
BδI δδ

(

ℓ̄1

χ
,
ℓ̄2

χ
,
ℓ̄3

χ
; χ

)

. (6.27)

Similar toBδ(k1, k2, k3) which is given by
〈

δ̃(k1, χ)δ̃(k2, χ)δ̃(k3, χ)
〉

= (2π)3 δD(k1 + k2 + k3) Bδ(k1, k2, k3; χ), (6.28)

BδI δδ is defined via
〈

δ̃I (k1, χ)δ̃(k2, χ)δ̃(k3, χ)
〉

= (2π)3 δD(k1 + k2 + k3) BδI δδ(k1, k2, k3; χ), (6.29)

whereδ̃I(k) is the 3D density field which is responsible for the intrinsic alignment, and it satisfies

κ̃
(i)
I (ℓ) =

∫ χhor

0
dχ p(i)

s (χ) δ̃I

(

ℓ

χ
, χ

)

, (6.30)
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Figure 6.1: Distribution of the nulled Fisher information as defined in (6.40) per (ℓ̄1, ℓ̄2, ℓ̄3) bin and
per redshift bin combination among different angular frequency triangle shapes and sizes. Results
for four redshift bin combinations (i, j) are presented.Left panel: Distribution of the nulled Fisher
information among different triangle configurations. We consider triangles with the common short-
est side length̄ℓ1 = 171 which corresponds to the 7th angular frequency bin. Due to our logarithmic
binning and the constraint that the three side lengths must be able to form a triangle, only 8 such
triangle configurations exist. Plotted is the nulled Fisher information contained inthese 8 triangles
againstα, which is the angle opposite to the shortest side length in that triangle. Smallerα cor-
respond to more elongated triangles, and largerα correspond to almost equilateral triangles.Right
panel: Distribution of the nulled Fisher information contributed by each (ℓ̄1, ℓ̄2, ℓ̄3) bin over different
triangle sizes. A fixed triangle shape with̄ℓ1 : ℓ̄2 : ℓ̄3 = 1 : 3.64 : 4.52 (corresponds to the leftmost
points in the left panel) is chosen. The nulled Fisher information contained in one (̄ℓ1, ℓ̄2, ℓ̄3) bin is
plotted against the shortest side lengthℓ̄1 of each triangle.

The definition of both ˜κ(i)
I andδ̃I originates from the deterministic part of galaxy intrinsic ellipticity

ǫdet
I . We have assumed the existence of these underlying smooth fields. Similar quantities have

been defined in Joachimi & Bridle (2010), see also Hirata & Seljak (2004) and Schneider & Bridle
(2010). We would like to point out again that, although we introduce these quantities for the clarity
of our model, we do not need them for the main purpose of this study. What we need to model is the
projected GGI bispectrumB(i jk)

GGI.

Note that in (6.27), the weight for the lowest redshift bini is the source redshift distribution
function p(i)

s which is zero outside redshift bini, rather than the lensing weightW(i) which is a much
broader function. Since ˜κ

(i)
I depends only on physical processes at redshift bini and is inferred

from ellipticity measurements in this bin, and ˜κ
( j)
G is linked to the 3D matter density through the

lensing weightW( j), this assignment of weight functions will ensure the correct redshift dependence
of B(i jk)

GGI.

When the redshift bins are not disjunct, however, the intrinsic alignment signal can no longer be
associated with bini. There will be two permutations in both the left-hand side of (6.17) and the
right-hand side of (6.27), similar to the 2-pt case, e.g. Eq. 11 in Hirata & Seljak (2004).

The modeling ofBδI δδ is then a pure matter of choice. We build a simple 3D GGI bispectrum
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with power-law dependence on both redshiftz and spatial frequencyk:

BδI δδ (k1, k2, k3; χ) := −A Bδ (kref, kref, kref; χ(zmed))

(

1+ z
1+ zmed

)r−2

×















(

k1

kref

)2(s−2)

+

(

k2

kref

)2(s−2)

+

(

k3

kref

)2(s−2)














,

(6.31)

wherezmed is the median redshift of the whole survey, andA, kref, r, s are free parameters. Among
them the parameterkref is designed to be a characteristic wave number, whose value we set to be a
weakly nonlinear scale of 10hMpc−1 here. The minus sign ensures that the contamination of GGI
systematics leads to an underestimation of the GGG signal, as found by Semboloni et al. (2008).

Little is known about the redshift and angular scale dependence ofBδI δδ. However one can
roughly estimate how it compares to theBδδδ signal. A linear alignment model suggestsδI ∝

δlin ρ̄(z)/ [(1+ z) D+(z)] (see e.g. Hirata & Seljak 2004), in which ¯ρ(z) is the mean density of the
Universe,D+(z) is the growth factor, andδlin is the linear matter density contrast. Thus we have,
very roughly,δI ∝ (1 + z)3 δlin which suggestsBδI δδ ∝ (1 + z)3 Bδδδ. The linear alignment model
assumes that the intrinsic alignment is linearly related to the local tidal gravitational field (e.g. Cate-
lan et al. 2001; Hirata & Seljak 2004). If this holds true, we also expectBδI δδ to have a stronger
angular scale dependence thanBδδδ since tidal gravitational interaction follows the inverse cube law
rather than the inverse square law which gravity itself follows. For aΛCDM model, in the weakly
nonlinear regime where perturbation theory holds, the dependence ofBδδδ on (1+ z) has a negative
power shallower than−4, and the dependence onk has a power of around−2. In this study we
chooser = 0, s = 1 as default. We also study the cases ofr = −2, r = 2, ands = 0 whose results
will be shown in Fig. 6.4 below.

As for the amplitudeA of the GGI signal, the only direct study up to now is Semboloni et al.
(2008), which suggests an overall GGI/GGG ratio of 10 % for azm = 0.7 survey for elliptical
galaxies and few percent for a mixed sample of elliptical and spiral galaxies. In this study we
adjustA such that the amplitude of the tomographic GGI bispectrum is limited to be within 10 % of
the amplitude of the lensing GGG signal, i.e. GGI/GGG. 10 % at redshift bin combinations with
zi ≪ zj andzi ≪ zk where the GGI signal is expected to be most significant. This leads to a relatively
modest overall GGI/GGG ratio at percent level. We will show examples of the generated GGI and
GGG signals in Fig. 6.3. As an order-of-magnitude estimate, one can also relate the GGI/GGG ratio
to that of GI/GG by expanding 3-pt signals to couples of 2-pt signals using perturbation theory, in
analogy to the Scoccimarro & Couchman (2001) fitting formula. For the case of zi ≪ zj ≈ zk, the
leading order terms would give that the GGI/GGG ratio approximates that of GI/GG evaluated at
redshiftszi andzj . This suggests that our adopted GGI/GGG ratio is also consistent with available
observational studies of the GI signal (Mandelbaum et al. 2006, 2011;Hirata et al. 2007; Fu et al.
2008; Okumura et al. 2009; Okumura & Jing 2009), although the results ofthese studies vary a lot
according to different median redshift, color and luminosity of the selected galaxy sample.

6.4 Construction of nulling weights

As mentioned in Sect. 6.2.2, we would like to construct a single first-order weight function
T(i j )(χ) for each (i, j) combination which preserves the maximum of information. This can be seen as
a constrained optimization problem. The constraining condition here is the nullingcondition and the
quantity to be optimized is the Fisher information after nulling. In JS08, severalpractical methods
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were developed to solve this optimization problem at the 2-pt level, and very good agreement was
found among the different methods.

We adopt the simplified analytical approach as described in JS08, and reformulate it for 3-pt
statistics here. For convenience we introduce the following notations:
the bispectrum covariance matrixCovB, whose elements are

CovB(i jk
ℓ̄1,ℓ̄2,ℓ̄3

; lmn
ℓ̄4,ℓ̄5,ℓ̄6

) := Cov
(

B(i jk)
GGG(ℓ̄1, ℓ̄2, ℓ̄3), B(lmn)

GGG(ℓ̄4, ℓ̄5, ℓ̄6)
)

; (6.32)

the covariance matrixCovY of the nulled bispectraY, whose elements are

CovY(i j
ℓ̄1,ℓ̄2,ℓ̄3

; lm
ℓ̄4,ℓ̄5,ℓ̄6

) := Cov
(

Y(i j )(ℓ̄1, ℓ̄2, ℓ̄3),Y(lm)(ℓ̄4, ℓ̄5, ℓ̄6)
)

=

Nz
∑

k=
i+1

Nz
∑

n=
l+1

Cov
(

B(i jk)
GGG(ℓ̄1, ℓ̄2, ℓ̄3), B(lmn)

GGG(ℓ̄4, ℓ̄5, ℓ̄6)
)

T(i j ) (χk) T(lm) (χn) χ′k χ
′
n ∆zk ∆zn ;

(6.33)

a vectorB,µ whose elements are partial derivatives of the bispectrum with respect to the cosmologi-
cal parameterpµ

B, µ(
i jk
ℓ̄1,ℓ̄2,ℓ̄3

) :=
∂B(i jk)

GGG(ℓ̄1, ℓ̄2, ℓ̄3)

∂pµ
; (6.34)

and a corresponding vectorY,µ for nulled bispectraY, whose elements are

Y, µ(
i j
ℓ̄1,ℓ̄2,ℓ̄3

) :=
∂Y(i j )(ℓ̄1, ℓ̄2, ℓ̄3)

∂pµ
. (6.35)

Then the Fisher information matrix from the original bispectra can be written as(following
TJ04)

Fi
µν = B,µ CovB−1 B, ν , (6.36)

and that from the nulled bispectra can be written as

Ff
µν = Y,µ CovY−1 Y, ν . (6.37)

Here the matrix multiplication is a summation of possible angular frequency combinations (̄ℓ1, ℓ̄2, ℓ̄3)
and redshift bin combinations, (i jk) for the original bispectra and (i j ) for the nulled bispectra. In
(6.36) and (6.37),CovB−1 andCovY−1 indicate the inverse of the covariance matrix. When the
covariance is approximated by triples of power spectra, the covariance between two different angular
frequency combinations (̄ℓ1, ℓ̄2, ℓ̄3) , (ℓ̄4, ℓ̄5, ℓ̄6) is zero, see (6.25), which means that the covariance
matrix is block diagonal. In this case the matrix inversion can be done separately for each block
specified by an angular frequency combination (ℓ̄1, ℓ̄2, ℓ̄3).

According to the idea of the simplified analytical approach, we consider the Fisher informa-
tion on one cosmological parameter contained in bispectrum measuresB(i jk)

GGG(ℓ̄1, ℓ̄2, ℓ̄3) with a single
(ℓ̄1, ℓ̄2, ℓ̄3) combination and with redshift bin (i, j, k) combinations having common (i, j) indices. For
every (i, j) combination we build nulling weightsT(i j ) which maximizes the nulled Fisher matrix
using the method of Lagrange multipliers. Since here the nulled Fisher matrix receives contribu-
tion only from certain angular frequency and redshift combinations, we denote it asF(i j )

o to avoid
ambiguity. F(i j )

o has only one component since only one cosmological parameter is taken into con-
sideration. As only a single (̄ℓ1, ℓ̄2, ℓ̄3) combination is involved, we will omit thēℓ-dependence in
all variables in the rest of this subsection to keep a compact form.
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Again for notational simplicity, we follow JS08 and introduce a vector notation as follows. For
each (i, j) in consideration, let the values of the weightsT(i j )(χk) form a vectorT = Tk, and define
another vectorρ and a matrixC̄ with elements

ρk := B, µ(
i jk) χ′k ∆zk , (6.38)

C̄kn := CovB(i jk ; i jn) χ′k χ
′
n ∆zk ∆zn . (6.39)

ThusF(i j )
o can be expressed, according to (6.37), as

F(i j )
o := Y,µ(

i j ) CovY−1(i j ; i j ) Y,µ(
i j ) =

(T · ρ)2

TτC̄T
. (6.40)

We further define a vectorf with elements

fk =

(

1−
χi

χk

)

χ′k ∆zk (6.41)

to write the nulling condition (6.19) as

O(i j ) = T · f = 0 . (6.42)

The problem of finding nulling weightsT which maximizeF(i j )
o under the constraint given by

the nulling condition can be solved with the method of Lagrange multipliers by defining a function

G := F(i j )
o + λO(i j ) =

(T · ρ)2

TτC̄T
+ λT · f (6.43)

with λ being the Lagrange multiplier, and setting the gradient ofG with respect toT to zero,

∇T G = 2ρ
(T · ρ)

TτC̄T
− 2 C̄T

(

(T · ρ)

TτC̄T

)2

+ λ f = 0 . (6.44)

The solution to this equation is (for more details see JS08)

T = N
{

C̄−1ρ −
f τC̄−1ρ

f τC̄−1 f
C̄−1 f

}

, (6.45)

with the normalizationN adjusted to give|T |2 = 1.
Apparently the thus constructed nulling weights depend on which (ℓ̄1, ℓ̄2, ℓ̄3) combination is

considered and with respect to which cosmological parameter we optimize the information content.
In this study the default cosmological parameter to optimize isΩm, and we choose for each (i, j)
combination the (̄ℓ1, ℓ̄2, ℓ̄3) combination which maximizesF(i j )

o . However one needs to be aware
that this serves only as a clear choice of a (ℓ̄1, ℓ̄2, ℓ̄3) combination and is not necessarily the best
in terms of information preservation considering all angular frequency bins and all cosmological
parameters.

To show which triangle shapes and sizes contain more information, we plotF(i j )
o against the

(ℓ̄1, ℓ̄2, ℓ̄3) triangle shape and size for four typical (i, j) combinations in Fig. 6.1. In the left panel, the
nulled informationF(i j )

o contained in different triangles with a common shortest side lengthℓ̄1 = 171
is plotted againstα, which is the angle opposite tōℓ1. Due to our logarithmic binning in angular
frequency, only eight (̄ℓ1, ℓ̄2, ℓ̄3) combinations with̄ℓ1 = 171 can form triangles. One sees that the
more elongated triangles (smallα) contain much more Fisher information than the almost equilateral
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Figure 6.2: Nulling weightsT(i j ) for redshift binsi = 1, j = 2 are plotted against the redshift value
of the third redshift indexk. Remarkable consistency is found between nulling weights optimized
on different parameters, shown with different line styles.

triangles (largeα). The small separation between the 3rd and the 4th points from the left is caused
by the degeneracy of different triangle shapes with respect toα, e.g. two equal and very long side
lengths can result in the same value ofα as two shorter side lengths with a length difference close to
the length of the shortest side length. The right panel shows the distributionof the Fisher information
contained in one (̄ℓ1, ℓ̄2, ℓ̄3) bin over the triangle size. When the redshift in consideration is higher,
the peak of the information distribution moves to higher angular frequencies.The figure suggests
that most information comes from high redshifts and small angular scales.

To explore the sensitivity of nulling weights on the choice of the cosmological parameter, we
construct seven sets of weight functions, each optimizing the information content in terms of one
parameter. For all (i, j) combinations we find that the nulling weights are not very sensitive to the
choice of parameter. As an example, the weights for (i, j) = (1,2) are shown in Fig. 6.2. This result
is rather surprising at first sight, since for different parameters the distribution of information (con-
tained in the bispectrum) over redshift bins is quite different. However, such insensitivity suggests
that the shapes of nulling weights are already strongly constrained underour construction scheme.
One constraint is, evidently, the nulling condition. Moreover, consideringthe fact that we optimize
the nulling weights for each (i, j) combination with respect to the information content they preserve,
we have already required the shapes of these first order nulling weightsto be as smooth as possible.

The fact that these two conditions have already imposed strong constraintson the nulling weights
also suggests that nulling weights can be robustly and efficiently constructed, i.e. it is not critical to
construct the “best” nulling weights.

6.5 Performance of the nulling technique

6.5.1 GGI/GGG ratio

What the nulling technique “nulls” is the GGI signalBGGI, so the GGI/GGG ratio is the most
direct quantification of its performance. We plot the modeled GGI and GGG bispectra before and
after nulling in Fig. 6.3. The original GGI signal is shown in the left panels bydashed lines. For
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Figure 6.3: Tomographic convergence bispectrum (GGG, solid curves)and intrinsic-shear alignment
(GGI, dashed curves) for equilateral triangles are plotted against triangle side length. Measures both
before (left panel) and after (right panel) applying the nulling technique(B andY respectively) are
shown for three typical redshift bin (i, j) combinations in the three rows.

comparison the GGG signals are shown as solid curves. The results are shown for equilateral triangle
configurations for the convenience of presenting. One sees that whenthe redshift bin numberj
and/or k increase, the changes in GGG and GGI signals are different, which shows the expected
different redshift dependence. For all redshift bin combinations the GGI signal is modeled to be
subdominant to the GGG signal. In the nulled measures shown in the right panels, the GGI/GGG
ratio is suppressed by a factor of 10 over all angular scales, which reflects the success of the nulling
technique.

6.5.2 Information loss and downweighting of systematics

We further evaluate the performance of the nulling technique by looking at theconstraining
power of cosmic shear bispectrum tomography on cosmological parameters, as well as the biases
caused by the GGI systematics before and after nulling.

The full characterization of the bispectrum involves three angular frequency vectors which form
a triangle. In some works concerning 3-pt statistics, only equilateral triangle configurations i.e.
ℓ1 = ℓ2 = ℓ3 = ℓ are used for simplicity reasons (e.g. Pires et al. 2009). But as severalauthors
have pointed out (e.g. Kilbinger & Schneider 2005; Bergé et al. 2010), only a low percentage of
information is contained in equilateral triangles. Thus, to calculate the full information content,
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we use general triangle configurations but limit our calculation to triangles withthree different side
lengths, again for reasons of simplicity (for details see Sect. 6.7).

We will use the figure of merit (FoM, Albrecht et al. 2006) to quantify the goodness of parameter
constraints. Here the FoM for constraints in the parameter planepα−pβ is defined to be proportional
to the inverse of the area of the parameter constraint ellipses:

FoM(pα,pβ) ≡
(

(F−1)αα(F−1)ββ − (F−1)2
αβ

)− 1
2
. (6.46)

To compute biases, we adopt a method based on a simple extension of the Fisher matrix formal-
ism (e.g. Huterer et al. 2006; Amara & Réfrégier 2008). Then one needs to define a bias vectorB

GGI

which in our case reads:

B
GGI
ν,i = BGGI CovB−1 B, ν , (6.47)

B
GGI
ν,f = YGGI CovY−1 Y, ν , (6.48)

with

BGGI(
i jk
ℓ̄1,ℓ̄2,ℓ̄3

) := B(i jk)
GGI(ℓ̄1, ℓ̄2, ℓ̄3) , (6.49)

YGGI(
i j
ℓ̄1,ℓ̄2,ℓ̄3

) := Y(i j )
GGI(ℓ̄1, ℓ̄2, ℓ̄3) . (6.50)

The bias of the parameter estimator ˆpµ is given by the difference between its ensemble average and
the fiducial value of the parameterpfid

µ :

bµ = 〈p̂µ〉 − pfid
µ =

∑

ν

(

F−1
)

µν
B

GGI
ν . (6.51)

The information content before and after nulling can be seen in Fig. 6.6. Onthe cost of increasing
the error on each parameter to about twice its original value, GGI systematicsare reduced to be
within the original statistical error. The relative information loss in terms of FoMcan be found in
Table 6.1. The constraints shown in Fig. 6.6 do not represent the best constraints obtainable from a
cosmic shear bispectrum analysis since we consider only the triangles with angular scalēℓ1 , ℓ̄2 ,

ℓ̄3. Also note that the nulling technique can in principle remove the GGI systematics completely.
But as shown in Fig. 6.6, the systematics still cause some residual biases on cosmological parameters
after nulling, due to the finite number of redshift bins. The GGI systematics willbe reduced to a
lower level when more redshift bins are available. We will discuss this further in the following
subsection.

6.5.3 How many redshift bins are needed?

Analyzing the cosmic shear signal in a tomographic way was originally meant to maximize the
information. For this purpose alone, a crude redshift binning will suffice (Hu 1999). However, to
control intrinsic-shear alignment, which is a redshift-dependent effect, much more detailed redshift
information is required (e.g. King & Schneider 2002; Bridle & King 2007; Joachimi & Schneider
2008). Thus, for a method intended to eliminate intrinsic-shear alignment, it is necessary to show its
requirement on the redshift precision. In the case of nulling, detailed redshift information is not only
needed for the method to be able to eliminate the bias, but also for the preservation of a reasonably
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Figure 6.4: Ratio of the nulled and the original biases for cosmological parameterΩm as a function
of number of redshift binsNz. Results for different GGI models are shown. Parameters andr are
the slopes of angular frequency and redshift dependence of our power-law model (6.31).

large amount of information through the nulling process. JS08 examined the number of redshift bins
required for the nulling technique in the 2-pt case, and showed that 10 redshift bins already ensure
that parameters are still well-constrained after nulling.

To re-assess this problem at the 3-pt level, we consider two different situations to address the
requirements coming from control of the intrinsic-shear alignment and preservation of the informa-
tion content separately. In both cases we split the redshift range between z= 0 andz= 3 into 5, 10,
15, and 20 (only in the first situation) redshift bins, with the redshift bins split in a way that there is
an equal number of galaxies in each bin.

First we consider a single cosmological parameter,Ωm, to be free and study the biases intro-
duced by the GGI signal onΩm both before and after nulling. We use only equilateral triangle
configurations to reduce the amount of calculation. The results are shownin Fig. 6.4. Within the
range of consideration, the ratio of the nulled and the original biases drops quickly with the increase
of the number of redshift bins for all GGI models. For most of the models, 5 redshift bins seem to be
not sufficient for the nulling technique to control the bias induced by GGI down to a percent level.
Going from 5 redshift bins to 10 redshift bins is very rewarding in terms ofbias reduction. How-
ever, we note that a decrease|bf/bi | doesn’t necessarily indicate a better performance of the nulling
method, or generally speaking, of any method intended to control the intrinsic-shear alignment. One
can see the reason for this by noticing that, it is the original unbinned GGI/GGG signal that is di-
rectly controlled by any of these methods. Between|bf/bi | and the original unbinned GGI/GGG
signal lies the binning process as well as the summation over angular frequency bins and redshift
bins. Since the signs of the biases contributed by different angular frequencies and redshifts can be
different, there can be bias cancellation during these processes. In another word, |bf/bi | can depend
on binning choices.

We then vary two cosmological parameters (Ωm andσ8) and investigate how the original and
the nulled parameter constraints change with respect to the number of redshift bins available. For
this case we use all triangle shapes to enable a comparison with results for 2-pt statistics.

Our result (Fig. 6.5) shows that a further increase of the number of redshift bins beyond 10 is not
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Figure 6.5: Figure of merit (FoM) as defined in (6.46) in theΩm - σ8 plane as a function of number
of redshift binsNz. FoM from 2-pt (2p) measures, 3-pt measures (3p) and combined (2p+3p) are
shown both before nulling (original) and after nulling (nulled).

very rewarding in terms of information preservation as characterized by the FoM, in either 2p, 3p, or
2p+3p cases. This suggests, when the possibility of more redshift bins exists,the choice of redshift
bin number should be based mainly on the requirement of bias reduction levelin case of negligible
photometric errors. When there are non-negligible photometric errors, however, the information loss
will probably be more severe, as found by Joachimi & Schneider (2009)for the 2-pt case.

6.5.4 The nulling technique as a conditioned compression of data

The necessity of carrying out data compression in cosmology has long been recognized (e.g.
Tegmark et al. 1997) and has been ever increasing due to the increasingsize of the data sets. In
cosmic shear studies the survey area of next generation multicolor imaging surveys will be an order
of magnitude larger than the current ones. The study of 3-pt statistics alsoimplies a huge increase
in the amount of data directly entering the Fisher-matrix/likelihood analysis, compared to the 2-pt
case.

The basic principle of data compression is to reduce the amount of data while preserving most
of the information. This is already naturally encoded in the nulling technique. Ifone keeps only the
first-order weights for nulling, as we do in this study, the nulling procedurereduces the number of
data entries in each angular frequency bin from the number of redshift bin (i, j, k) combinations, to
the number of (i, j) combinations, which means roughly fromNz

3 to Nz
2. The nulling transformation

is linear since the resulting nulled entry is a linear combination ofk original entries weighted by the
nulling weight (6.18). In the sense that an “optimum” set of nulling weights is constructed, the
nulling technique also intends to preserve as much information as possible. But there is yet another
additional constraining condition in the nulling procedure: the nulling condition(6.8), which largely
confines the shape of the nulling weights by requiring the existence of at least one zero-crossing (see
Fig. 6.2). In short, the nulling technique can be seen as a conditioned linearcompression of data.

It is then interesting to know how much of the information loss during the nulling process actu-
ally comes from the nulling condition, and how much just comes from the fact that a data compres-
sion process is naturally involved in nulling. To explore this, we perform anunconditioned linear
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Figure 6.6: Projected 1-sigma (68 % CL) parameter constraints from cosmic shear bispectrum to-
mography. Hidden parameters are marginalized over. The black solid and blue dash-dotted ellipses
correspond to the original constraints and those after nulling, respectively. The black cross in the
center of each panel represents the fiducial values adopted for the parameters, and the distance from
the center of one ellipse to the black cross reflects the bias caused by intrinsic-alignment GGI sys-
tematics on the corresponding parameter. As nulling can be seen as a linear data compression under
the constraint of the nulling condition, we also plot the constraints and biasesafter an unconditioned
linear data compression as magenta dashed ellipses for comparison (see Sect. 6.5.4).

data compression, by simply ignoring the nulling condition in the whole nulling procedure i.e. drop-
ping the Lagrange multiplier term in (6.43), but otherwise keeping the simplifications inherent to
the analytical approach. The results are shown in Fig. 6.6. A summary of theFoM from the original
and the nulled bispectrum measures as well as the compressed measures is shown in Table 6.1.

In contrast to nulling, an unconditioned linear compression does not eliminatethe parameter
bias, but increases or reduces some of them marginally. Regarding the parameter constraints, al-
though the increase in the size of the ellipses is much less than in the case of nulling, around one
third of the information in terms of FoM is lost through compression, which meansthat the amount
of degradation in parameter constraints after compression is not negligible.This suggests that keep-
ing only the first-order terms contributes to non-negligible information loss. Toregain part of this
information, one could add higher-order weights to the nulling procedure.But the difference be-
tween the nulled and the compressed FoM serves as an indication for the inevitable information loss
through the nulling process, which is imposed by the nulling condition.

82



Performance of the nulling technique

A = 4000 deg2

ng = 40 arcmin�2

�� = 0.35

powerspectrum, nulled
bispectrum, nulled
combined, nulled
combined, original

0.78

0.80

0.82

�

8

�1.15

�0.95

�0.75

w
0

0.28 0.30 0.32
�m

�0.6

0.0

0.6

w
a

0.78 0.80 0.82
�8

�1.15 �0.95 �0.75
w0

Figure 6.7: The thick green (gray) solid, thick blue (black) solid and thin black dashed ellipses indi-
cate 1-sigma (68 % CL) parameter constraints from the nulled power spectrum measures, bispectrum
measures, and combined. Hidden parameters are marginalized over. The distance from the center
of an ellipse to the black cross reflects the nulled bias on the correspondingparameter. The original
biases from bispectrum measures can be seen in Fig.6.6. The thin black solidellipses over-plotted
on to the centers of the nulled combined constraint ellipses indicate the statisticalpower (68% CL)
of combined constraints before nulling. Note the different ranges of parameters compared to Fig.6.6.

6.5.5 Two-point and three-pt constraints combined

Besides constraining cosmological parameters using 3-pt cosmic shear alone, we investigate
the combined constraints from both 2-pt and 3-pt cosmic shear measures.The performance of the
nulling technique on cosmic shear power spectrum tomography alone and theresulting constraints
on cosmological parameters were presented in JS08. For consistency, we use the same setting for the
cosmic shear power spectrum as described for the bispectrum in Sect. 6.3. In particular, we neglect
photometric redshift errors, use only a limited range and number ofℓ-bins, and adopt a power-law
intrinsic-shear alignment model with a form described by (36) in JS08 and aslope of 0.4. We have
confirmed the consistency between our power spectrum and bispectrum codes with those used in
Berǵe et al. (2010). Our power spectrum code agrees also with iCosmo (Refregier et al. 2011).

Figure 6.7 shows the resulting constraint ellipses after nulling from the cosmicshear power
spectrum analysis, the bispectrum analysis, and the two combined. To showhow much information
is lost during the nulling process, we overplot the original 2- and 3-pt combined constraints on top
of the nulled constraint ellipses in Fig. 6.7, but center them on the corresponding nulled constraints
by subtracting the bias difference before and after nulling. The information content in terms of FoM
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Table 6.1: Change of cosmic shear bispectrum statistical power after nulling(null) and linear data
compression (compress). Presented are FoM on 2D parameter planes between cosmological param-
etersΩm, σ8, w0 andwa. The cosmological parametersh, Ωb andns are marginalized over. The
second column is the FoM from the original bispectrum; the third and fifth columns are FoM from
the nulled and the compressed measures, respectively; the fourth (sixth)column shows the percent-
age of the third (fifth) column compared to the first column, which reflects the relative information
loss through the nulling (the unconditioned compression) procedure.

i null null/i compress compress/i

Ωm-σ8 21455 4609 21.5 % 12242 57.1 %
Ωm-w0 637 123 19.3 % 428 67.2 %
Ωm-wa 145 33 23.0 % 110 75.9 %
σ8- w0 434 87 20.0 % 299 68.9 %
σ8- wa 101 26 25.4 % 72 71.3 %
w0- wa 11.4 2.3 20.2 % 8.0 70.2 %

Table 6.2: FoM before (‘i′) and after (‘f ′) nulling and their ratio, using the cosmic shear power
spectrum (2pt), bispectrum (3pt), and combined (2pt+3pt) analysis.

2pt, i 3pt, i 2pt+3pt, i 2pt, f 2pt, i/f 3pt, f 3pt, i/f 2pt+3pt, f 2pt+3pt, i/f

Ωm-σ8 21774 21455 86851 3297 15.1 % 4609 21.5 % 18555 21.4 %
Ωm-w0 1590 637 3806 236 14.8 % 123 19.3 % 600 15.8 %
Ωm-wa 517 145 872 69 13.3 % 33 23.0 % 121 13.9 %
σ8- w0 864 434 3832 132 15.2 % 87 20.0 % 488 17.2 %
σ8- wa 326 101 709 47 14.4 % 26 25.4 % 107 15.1 %
w0- wa 45 11 184 7.4 16.4 % 2.3 20.2 % 27 14.5 %

for each parameter pair is presented in Table 6.2.
One sees that the amount of information contained in bispectrum measures and power spectrum

measures are indeed comparable. With bispectrum information added, typically three times better
constraints in terms of FoM are achieved, both before and after nulling. This factor is smaller than
the result in TJ04, although the same angular frequency range and the same set of 7 cosmological
parameters are chosen for both studies. However a direct comparison isprohibited by different
fiducial values adopted and different survey specification.

Through the nulling procedure, around 15 % of the original information in terms of FoM is
preserved in the 2-pt case, and around 20 % in the 3-pt case. It is a bithigher in the 3-pt case,
in accordance to the fact that a roughlyNz

3 → Nz
2 compression is involved in the 3-pt case and

a Nz
2 → Nz

1 one in the 2-pt case, while this fact is due to the summation over one redshift bin
index during the nulling procedure (the same trend is evident in Fig. 6.5). The information loss
is considerable, but it is a price to pay for a model-independent method. Aswe have discussed
in the previous subsection, the difference between the information loss through the nulling and the
unconditioned compression procedures represents the inevitable loss ofinformation through nulling.
However, this difference is less than 50 % in the considered 3-pt case. The other informationloss
is due to the simplifications we adopted in this study, including using only the first-order weights,
and discarding the measures with two or three equal redshift bins. A further detailed consideration
of these aspects can regain part of the lost information. Another simplification we have made in
the 3-pt case is to use only triangles with three different angular frequencies. This reduces both the
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original and the nulled information contained in the 3-pt measures. However, this simplification can
be easily removed with a careful distinction of all cases.

Also notice that, the dependence of number of possible bispectrum modes, i.e.triangles, on the
maximum angular frequencyℓmax is roughlyℓ3

max, while that of power spectrum modes is roughly
ℓ1

max. For this studyℓmax = 3000 is chosen. If reliable information on smaller angular scales can be
obtained, the 3-pt statistics will possibly give us more information than the 2-ptstatistics.

6.6 Conclusion

In this study we developed a method to control the intrinsic-shear alignment in 3-pt cosmic
shear statistics by generalizing the nulling technique. We showed that the generalization of the
nulling technique to 3-pt statistics is quite natural, providing a model-independent method to reduce
the intrinsic-shear alignment signals (GGI and GII) in comparison to the lensing GGG signal.

To test the performance of the nulling technique, we assumed a fictitious survey with a setup typ-
ical of future multicolor imaging surveys, and applied the nulling technique to themodeled bispectra
with intrinsic-shear alignment contamination. The lensing bispectra (GGG) wascomputed based on
perturbation theory, while the GGI signal was modeled by a simple power-law toy model. We fo-
cused on the reduction of the GGI contaminant, since GII can be removed simply by not considering
tomographic bispectra with two or three equal redshift bins.

The reduction of the intrinsic-shear alignment contamination at the 3-pt levelby the nulling
technique was demonstrated both in terms of the GGI/GGG ratio, and in terms of biases on cosmo-
logical parameters in the context of an extended Fisher matrix study. In termsof the GGI/GGG ratio,
a factor of 10 suppression is achieved after nulling over all angular scales. Correspondingly, the bi-
ases on cosmological parameters are reduced to be less than or comparable to the original statistical
errors. We studied the performance of the nulling technique when 5, 10, 15, or 20 redshift bins are
available, and found that the performance on bias reduction, rather thanhow much information is
preserved during the nulling procedure, depends more significantly on the number of redshift bins.
In case one requires better control of intrinsic-shear alignment, more detailed redshift information
allowing more redshift bins is the most direct way to go.

When dealing with real data, there is one further source of complication which we did not con-
sider in this study, that is the photometric redshift uncertainty. The photometricredshift uncertainty
can be characterized by a redshift-dependent photometric redshift scatter and catastrophic outliers.
Joachimi & Schneider (2009) studied the influence of photometric redshiftuncertainty on the per-
formance of the nulling technique at the 2-pt level. They found that the photometric scatter places
strong bounds on the remaining power to constrain cosmological parametersafter nulling. The
existence of catastrophic outliers, on the other hand, can lead to an incomplete removal of the intrin-
sic (II, III) alignments as well as the intrinsic-shear alignments (GI, GII, GGI). However, methods
to control the photometric redshift uncertainty have been proposed. Forexample, recent studies
concerning the problem of catastrophic outliers point to the solutions of either limiting the lensing
analysis toz< 2.5 or by conducting an additional small-scale spectroscopic survey (Sun et al. 2009;
Bernstein & Huterer 2009; Bordoloi et al. 2010).

As already demonstrated by JS08 in the 2-pt case, some information loss is inherent to the
nulling procedure. For the setup of this study we found that, in terms of FoM about 20 % of the
original information is preserved through the nulling procedure in the 3-ptcase, and 15 % in the 2-pt
case. We further studied the source of such information loss by comparingthe nulling technique to
an unconditioned linear compression of the data, since the nulling procedure can be seen as a linear
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compression of data under the constraint of the nulling condition (6.8). We found that around one
third of the original information is lost through an unconditioned compressionof the data, suggesting
that this situation can be improved by considering higher-order terms in the nulling and compression
processes.

Results on parameter constraints from the 2- and 3-pt cosmic shear statisticscombined are also
presented. The amount of nulled information contained in bispectrum measures and power spec-
trum measures are comparable. With bispectrum information added, typically three-times better
constraints are achieved both before and after nulling, in terms of FoM.

Again, due to the large amount of information existing in the 3-pt cosmic shear field, one would
certainly like to exploit it in the future. The nulling method we developed in this work solves a
potentially severe problem hampering the use of 3-pt information, namely the intrinsic-shear align-
ment systematic. Our method works at the cost of a large information loss, which can hopefully be
avoided by a future method of removing the intrinsic-shear alignment contaminants. But as the only
completely model-independent method so far, the nulling technique can serveas a working method
now and can provide a valuable cross check even with the availability of better methods.

6.7 Appendix: Counting of triangles

A triangle is specified by six indices, i.e. three redshift bin indices{i, j, k} and three angular
frequency bin indicesℓ1, ℓ2, ℓ3. To ensure that we count each triangle configuration only once, we
set the condition thatℓ1 ≤ ℓ2 ≤ ℓ3. Moreover, we would like the first index among{i, j, k} in (6.36)
to have the lowest redshift, i.e.zi < zj andzi < zk, for the convenience of performing the nulling
technique. The possible{i, j, k} combinations under these constraints in the case ofNz = 4 are listed
in Fig. 6.8.

Figure 6.8: List of possible triangles (redshift bin combinations) with condition zi < zj andzi < zk

when 4 redshift bins are available. An angular frequency combination satisfying ℓ1 ≤ ℓ2 ≤ ℓ3

is chosen. Note that the redshift indices and the angular frequencies are linked in pairs due to
the definition of the tomographic bispectrum (6.15). In this study a default of10 redshift bins is
assumed.

However, setting both conditions is problematic. Inspecting the definition of thetomographic
bispectrum (6.15), one sees that the redshift indices and the angular frequencies are linked in pairs,
e.g. convergenceκ in redshift bini has angular frequencyℓ1, which is not desirable since the smallest
angular scale does not necessarily correspond to the lowest redshift.To solve this problem, we
perform nulling three times for each general angular frequency combination with ℓ1 < ℓ2 < ℓ3,
swapping the redshift-angular scale correspondence in-between, thus allowing each redshift to be
able to correspond to any angular frequency.
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Note that the situation complicates a bit when two of the angular frequencies are equal, since then
the swapping may lead to exactly the same configuration. To avoid this, we will restrict ourselves to
three different angular frequencies. This can exclude a high percentage of possible configurations.
In our case, i.e. 20 logarithmically spaced bins betweenℓmin = 50 andℓmax = 3000, 37 % of the
angular frequency combinations which can form a triangle have been excluded. However, this is
only a technical complication which can be solved with a careful distinction of all cases. Since this
study is intended to be a proof of applicability of the nulling technique to three-point statistics, we
defer the intricacies of accounting for all triangle configurations to futurework.
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Chapter 7

Summary & Outlook

7.1 Summary

With the remarkable success of theΛCDM model in explaining astronomical observations, it is
now well-established as the standard model of cosmology. Accordingly, thefocus of cosmological
studies has shifted to tying up the loose ends of theΛCDM model– exploring the nature of dark
matter and dark energy which are the two exotic components assumed in it. A natural step forward is
to observationally constrain their properties, which requires a combination of various observational
probes. Weak gravitational lensing has emerged in the last decade as a competitive cosmological
probe to this end. Especially, it is considered to be the most powerful probe in constraining the
properties of dark energy when the results of forthcoming large-field imaging surveys will become
available.

In this thesis we have investigated weak lensing three-point statistics, a statistical tool which will
be applied to future surveys to further enhance the power of weak lensing as a cosmological probe.
Three aspects of weak lensing three-point statistics have been touched,namely how the observable
shear can be related to theoretical predictions of the matter density field, howmuch information
three-point statistics can provide, and how systematical errors can be controlled. We summarize the
work presented in Chaps. 4-6 in the following.

7.1.1 Relations between three-point configuration space shear and convergence statis-
tics

In Chap. 4 we have derived some fundamental relations between weak lensing statistics, which
make the theoretical framework more complete. In particular, we have relatedin configuration
space the shear three-point functions to three-point convergence statistics which is a line-of-sight
projection of the three-point statistics of the matter density field. Thereby one can compare the
shear three-point functions measured from data to those constructed using the matter density field
predicted by cosmological models through configuration space convergence statistics. This way
of confronting observation with theory has an advantage over the current way which is based on
theoretical predictions of the Fourier space quantity– the convergence bispectrum. While it is hard
to precisely estimate the shear three-point functions using convergence bispectrum models due to
numerical difficulties, this is not the case if one uses models of configuration space convergence
statistics, as we have demonstrated using toy models.

Another major achievement of this work is the formulation of the condition for E/B-mode sepa-
ration at the three-point level. A polarization field such as the cosmic shear field can be decomposed
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into an E-mode and a B-mode which have distinct mathematical structures. As weak lensing signals
contribute only to the E-mode while systematical errors usually do not distinguish between E-mode
and B-mode, separating E- and B-modes can allow for a check of possiblesystematics. This is es-
pecially important for cosmic shear studies where the individual signal is small and the systematic
level is possibly high. The aperture mass statistics have been used to separate E- and B-modes.
However, it was found by Kilbinger & Schneider (2005) that the aperture mass statistics cannot
separate them cleanly since they require shear correlation functions at small separations as an input.
This motivated recent efforts in finding better statistics which allow for E/B-mode separation using
only shear correlations of galaxy pairs whose separation is within a specified finite range, and such
statistics have been successfully constructed at the two-point level. At thethree-point level, aperture
mass statistics is still the only known method to separate E- and B-modes up to now.To make the
same improvements at the three-point level, the first step is to formulate the condition for E/B-mode
separation, which is what we achieved in this study with the help of the relationswe derived. The
condition is expressed via constraints on the weight functions of shear three-point functions. Con-
structing weight functions satisfying these constraints and using them on shear three-point functions
can lead to various three-point statistics allowing for E/B-mode separation, including the aperture
mass statistics. One can then impose additional requirements on their behavior.

We have also obtained a number of by-products in this study. As an intermediate step, we have
derived the relation between the two-point correlation function of the deflection potential and that of
the convergence. This relation has enabled us to systematically derive two-and three-point relations
between the convergence correlation function and the cross correlationfunctions of several lensing
related quantities, including the deflection angle, the shear, the convergence, and the deflection
potential. Some of these relations are applicable to galaxy-galaxy(-galaxy)lensing studies, and
some others are of potential interest to studies of the gravitational lensing effect on the Cosmic
Microwave Background.

Mathematically speaking, the shear field and the convergence field are the spin-2 and spin-0
second-order derivatives of the same scalar field– the deflection potential field. How the statistical
properties of these spin-2 and spin-0 fields are related to each other hasbeen demonstrated in this
study with the derived relations. Due to the non-trivial spin number, special care is required in nu-
merical evaluating these relations. We have presented a non-standard way of constructing sampling
grids which lead to good numerical precision.

7.1.2 Bispectrum covariance in the flat-sky limit

To quantify the information content in lensing 3-pt statistics, one needs an expression for the
covariance matrix of the 3-pt statistics. In Chap. 5 we derived an expression for the bispectrum
covariance〈B(ℓ1, ℓ2, ℓ3)B(ℓ4, ℓ5, ℓ6)〉 for cosmic shear. Our work has avoided the drawbacks of a
previous work (Hu 2000), e.g. the expression given by Hu (2000) is valid only for integer arguments
and does not allow a free binning choice, the formula contains the Wigner symbol whose physical
meaning within a flat-sky consideration remains obscure, the finite survey size is accounted for only
by multiplying a factor, which lacks solid justification, and an unjustified assumption is made in the
coordinate transformation between the full sky and the 2D plane.

Since all these drawbacks are associated with the spherical harmonic formalism Hu (2000)
adopted, we avoided them by using a pure two-dimensional Fourier-planeapproach which has posed
different challenges in the analytical derivation process. We defined an unbiased bispectrum estima-
tor for 2D Fourier modes, averaged it over angular frequency bins to mimicthe measuring process
in reality, and computed the covariance of the averaged bispectrum estimator.
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The covariance matrix we derived leads to the same Fisher information content as that given
in Hu (2000). Moreover, our approach is mathematically rigorous, and allows one to evaluate the
bispectrum and its covariance at real-valued angular frequencies anduse e.g. a logarithmic binning.

7.1.3 Controlling intrinsic-shear alignment in three-point weak lensing statistics

In Chap. 6 we dealt with a particularly worrisome systematic error in cosmic shear studies: the
intrinsic-shear alignment. We developed a method to control the intrinsic-shear alignment in three-
point cosmic shear statistics by generalizing the nulling technique, a model-independent method
developed to eliminate intrinsic-shear alignment at the two-point level. The generalization was
found to be quite natural, and it resulted in a model-independent method to reduce the intrinsic-
shear alignment signals (GGI and GII) in comparison to the lensing GGG signal.

As a test of the performance of the nulling technique at the three-point level, we assumed a
fictitious survey with a setup typical of future multicolor imaging surveys, and applied the nulling
technique to the modeled bispectra with intrinsic-shear alignment contamination. Since the GII sig-
nal can be removed simply by not considering tomographic bispectra with two or three equal redshift
bins, we focused on the GGI signal, and quantified the intrinsic-shear alignment contamination with
the GGI/GGG ratio. How much the contamination is reduced by the nulling technique was demon-
strated both in terms of the GGI/GGG ratio, and in terms of biases on cosmological parameters in the
context of an extended Fisher matrix study. In terms of the GGI/GGG ratio, a factor of 10 suppres-
sion is achieved after nulling over all angular scales. Correspondingly,the biases on cosmological
parameters are reduced to be less than or comparable to the original statistical errors. By studying
the performance of the nulling technique when different numbers of redshift bins are available, we
found that the performance on bias reduction, rather than how much information is preserved during
the nulling procedure, depends more significantly on the number of redshift bins. This suggests the
need of more detailed redshift information if better control of intrinsic-shear alignment is required.

One disadvantage of the nulling technique is the unavoidable information loss.For the setup of
our study, only about 20 % of the original information in lensing three-pointstatistics is preserved
through the nulling procedure in terms of the Figure of Merit. A similar result (15 %) has been found
when applying the nulling technique to lensing two-point statistics. We further studied the source of
such information loss by comparing the nulling technique to an unconditioned linear compression
of the data, motivated by the observation that the nulling procedure can be regarded as a linear
compression of data under the constraint of the nulling condition. We foundthat around one third of
the original information is lost through an unconditioned compression of the data, suggesting that
this situation can be improved by considering higher-order terms in the nulling and compression
processes.

We have also studied the combination of two- and three-point cosmic shear statistics. We found
that the amount of nulled information contained in bispectrum measures alone and power spectrum
measures alone are comparable. Adding the Fisher information matrix of the two, typically three-
times better constraints are achieved both before and after nulling in terms of the Figure of Merit,
than those obtained by each probe alone.

7.2 Outlook

The work presented in this thesis are all progresses towards a common goal: enabling the usage
of three-point statistics in future lensing surveys to complement two-point statistics so as to exploit
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more information from them. There are still many studies to be done in this respect. We mention
some of them in the following.

7.2.1 Comparing observation to theory

When observational data is available, one needs to apply statistics on it, and relate the measured
statistics to quantities predicted by theoretical models in order to obtain constraints on cosmological
parameters. Since the direct observables of cosmic shear studies are theellipticities of galaxies,
regions around bright stars, satellite tracks, cosmic rays, etc. must all bediscarded since precise
shape measurement cannot be performed in these regions. The resultingcomplex survey geometry
singles out the shear correlation functions as the statistics to be directly measured on the data. The
remaining problems include, what is the statistic to be used to link the shear correlation functions to
theoretical models. Precise theoretical models also need to be obtained.

Statistics allowing for a clean E/B-mode separation

Concerning the statistic to be used to link the shear correlation functions to theoretical models, an
important requirement on it is the ability to cleanly separate the E- and B-modes.At the three-point
level, the aperture mass statistics are the only statistics known up to now that enable an E/B-mode
decomposition. The aperture mass statistics require measurements of shear correlation functions
down to zero separation length which cannot be achieved in practice. It isfound at the two-point
level that this leads to a mixing of E- and B-modes. The three-point aperturemass statistics are
expected to be plagued by the same E/B-mode mixing, but it is still yet to be shown how severe this
mixing is. If the mixing is found to be of tolerable level compared to the statistical error, then the
aperture mass statistics would be a convenient choice of the three-point statistics to be applied to
future surveys. If it is not the case, then better statistics need to be constructed.

The formulation of the condition for E/B-mode separation at the three-point level (see Chap. 4)
marks the first step in constructing better E/B-mode separating statistics. The next step is to formu-
late the condition for E/B-mode separation over a finite region, where by “over a finite region” we
mean only the three-point shear correlation functions evaluated at specified spatial configurations
are used as inputs. When this condition is also found, one can then construct a set of statistics satis-
fying these two conditions, in analogy to the recent works (Eifler et al. 2010; Fu & Kilbinger 2010;
Schneider et al. 2010) done for two-point statistics. The resulting statisticswill be the statistics to
be derived both from theory and from observation, i.e. where the two willbe compared.

Theoretical models

The currently available models for lensing three-point statistics are constructed from the matter
density bispectrum. The best analytical approximation of the matter density bispectrum up to now
is the fitting formula by Scoccimarro & Couchman (2001) which we used in Chap. 6. It fits the
measurements in N-body simulations with an error of 15%, which is too high compared to the sta-
tistical error expected from future surveys. Thus efforts are required in this direction. Furthermore,
as we have stated in Chap. 4, numerical difficulties exist in using bispectrum models to compare
with observation. As the shear correlation functions are configuration space statistics while the bis-
pectrum is a Fourier space quantity, highly oscillatory integrals are unavoidable while linking the
two. This will probably render the comparison particularly time-consuming, and may further affect
the precision of the final constraints on cosmological parameters.
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In this situation, it may be worthwhile to investigate configuration space models, i.e. models for
the three-point correlation function of the matter density field or that of the convergence field. If
precise configuration space models are available, then one can constraincosmological parameters
using observational data with the aid of configuration space statistics only. Staying in configuration
space has the potential advantage of better efficiency and precision. Direct theoretical predictions
for matter density correlation functions remain at a far less-developed stage than those for their
Fourier space counterparts due to mathematical difficulties. Predictions have only been given for
two-point statistics at linear scales (Bashinsky & Bertschinger 2001). However, this does not rule
out the possibility of finding precise fitting formulae for matter density correlation functions using
N-body simulations. Even if configuration space models cannot reach the precision to be used to
constrain cosmological parameters with future survey data, they can still play an important role in
the pre-study phase. At least for the three-point statistics, the predictions of the shear signal made
from configuration space models are much easier to numerically compute, as we have found in the
study presented in Chap. 4.

7.2.2 Assessing the information content

The full expression for the covariance matrix given in Chap. 5 involves four-point and six-point
statistics which are difficult to calculate analytically and hard to evaluate numerically. A way around
is to use only the first term or the first two terms of it which are computationally feasible. It is then
essential to study what error this causes. An on-going study by Martin (2011) looks at the error one
introduces by keeping only the first term of the full expression. They find the error to be marginally
acceptable for the convergence field in the local Universe, but their result is not conclusive yet.
Finally a balance between precision and computational load has to be found.

Three-point statistics will be used complementary to two-point statistics to extract information
from future surveys. So far it has been assumed that the two statistics areindependent and their
information content can be directly added. This assumption is expected to holdwell at least at linear
scales, since the covariance of two- and three-point statistics is a five-point statistic which vanishes
completely for Gaussian random fields. However, in order to give correct combined constraints on
cosmological parameters, and to give correct errors for these constraints, it is necessary to study the
covariance of two- and three-point statistics. The result of such a studywill determine the weight to
be put on studies of three-point statistics compared to that on the two-point statistics.

Cluster counts have also been considered as a powerful probe of non-Gaussianity, in addition
to the three-point statistics. How cluster counts compare to three-point statistics in probing non-
Gaussian signals, and how they can be combined, are both questions requiring further study.

7.2.3 Controlling systematical errors

Systematic errors relevant to cosmic shear are usually classified into three groups: errors from
the measurement process, those from theoretical modeling, and those dueto complications of as-
trophysical processes. Errors in measuring the shapes and the redshifts of galaxies are the major
sources of measurement errors. The requirements on controlling them are basic considerations in
the design of lensing surveys. Theoretical modeling errors have been briefly discussed in Sect. 7.2.1.
We shall now focus on errors of astrophysical origin, among which the intrinsic alignments are the
most worrisome.

After the work presented in Chap. 6 was performed, there have been some new studies on in-
trinsic alignments (Joachimi & Schneider 2010; Joachimi et al. 2011), but we are still far from a
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final answer to how severe intrinsic alignments are (especially at the three-point level), and how
they can be best controlled. Improvements on the understanding of the intrinsic-alignment effect
are needed. This requires efforts in theoretically studying the related astrophysical processes, e.g.
simulating the process of galaxy formation in dark matter halos, and identifying the physical origins
of the intrinsic-alignment effect. Observational measurements of the intrinsic-alignment signal are
also necessary. Ideally the measurements should be detailed enough to distinguish the dependencies
on galaxy type, luminosity, environment, etc. This also demands high-precision shape and redshift
measurements in a survey.

If the interplay between observational and theoretical approaches enables one to precisely model
the intrinsic alignments, then one can directly subtract the modeled effect from the lensing signal.
However, the origin of the intrinsic-alignment effect may involve, or even is dominated by, stochastic
processes, in which case precise modelling would be impossible. If this turnsout to be the case, then
one has to use model-independent methods to control the intrinsic alignments. Currently, the only
completely model-independent method available is the nulling technique (see Chap. 6), which works
at the cost of a large information loss. One possible way to model-independently control the intrinsic
alignments without information loss is to ‘calibrate’ the shear signal using the cross-correlation of
shear and galaxy number density (galaxy-galaxy lensing) and galaxy number density correlations in
addition to shear correlations (Zhang 2010; Joachimi & Bridle 2010). Thegalaxy number density
signal comes for free from a lensing survey, but a bias parameter is involved in its relation to the
dark matter density field which gives rise to the shear signal. Thus one crucial pre-condition of
this method being useful is the bias parameter being well-constrained by otherobservations and/or
theoretical arguments. Hence, which method to be used to control the intrinsic alignments in future
surveys depends on the development of many related fields. A combination of the ideas in the current
methods may be needed.

7.2.4 General remarks

The application of three-point statistics in astronomy is not limited to cosmic shear studies. As
a probe for non-Gaussianity, three-point statistics have been studied in the context of the Cosmic
Microwave Background, the galaxy distribution, primordial curvature perturbations, etc. A com-
mon difficulty to all these studies is the huge number of configurations (triangles) thatneed to be
examined, which poses hard problems in the measurement process, as wellas in visualization and
interpretation of the results. More studies are also needed for these aspects.

With the increasing interest in three-point statistics and the efforts put into it, it is promising
that the existing problems related to cosmic shear three-point statistics can be solved or controlled
to a negligible degree for future surveys e.g. the Euclid mission. In that case, cosmic shear three-
point statistics may play an important role in determining the cosmological parameters, especially
those related to the dark energy, and putting constraints on cosmological models. Furthermore, since
cosmic shear three-point statistics can reflect the non-linear growth of structure under gravity, it can
in principle provide a test on structure formation theory. By comparing the results from cosmic
shear studies to those from other cosmological probes e.g. the Baryon Acoustic Oscillations and
the Cosmic Microwave Background which constrain the geometry of the Universe, the theoretical
foundation of modern cosmology– the General Relativity theory, can be put to a test at cosmological
scales.
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