
Grained integers and applications to cryptography

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Willhelms-Universität Bonn

vorgelegt von

Daniel Loebenberger
aus

Nürnberg

Bonn, Januar 2012

ii

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Joachim von zur Gathen

2. Gutachter: Prof. Dr. Andreas Stein

Tag der Promotion: 16.05.2012

Erscheinungsjahr: 2012

iii

Οἱ πρω̃τοι ἀριθμοὶ πλείους εἰσὶ παντὸς του̃
προτένθος πλήθους πρώτων ἀριθμω̃ν.1

(Euclid)

Problema, numeros primos a compositis dignoscendi,
hosque in factores suos primos resolvendi, ad gravissima

ac ultissima totius arithmeticae pertinere [...] tam notum est,
ut de hac re copiose loqui superfluum foret. [...] Praetereaque

scientiae dignitas requirere videtur, ut omnia subsidia ad solutionem
problematis tam elegantis ac celibris sedulo excolantur.2

(C. F. Gauß)

L’algèbre est généreuse, elle donne souvent plus qu’on lui demande.3
(J. D’Alembert)

1Die Menge der Primzahlen ist größer als jede vorgelegte Menge von Primzahlen.
2Dass die Aufgabe, die Primzahlen von den zusammengesetzten zu unterscheiden und

letztere in ihre Primfactoren zu zerlegen, zu den wichtigsten und nützlichsten der gesamten
Arithmetik gehört und die Bemühungen und den Scharfsinn sowohl der alten wie auch der
neueren Geometer in Anspruch genommen hat, ist so bekannt, dass es überflüssig wäre,
hierüber viele Worte zu verlieren. [...] Weiter dürfte es die Würde der Wissenschaft
erheischen, alle Hilfsmittel zur Lösung jenes so eleganten und berühmten Problems fleissig
zu vervollkommnen.

3Die Algebra ist großzügig, sie gibt häufig mehr als man von ihr verlangt.

iv

Selbständigkeitserklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung
anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in
gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgele-
gen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde.
Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind
als solche gekennzeichnet.

Daniel Loebenberger
Bonn, den 07.01.2012

v

vi

Zusammenfassung

Um den Ansprüchen der modernen Kommunikationsgesellschaft gerecht zu
werden, ist es notwendig, kryptographische Techniken gezielt einzusetzen.
Dabei sind insbesondere solche Techniken von Vorteil, deren Sicherheit sich
auf die Lösung bekannter zahlentheoretischer Probleme reduzieren lässt, für
die bis heute keine effizienten algorithmischen Verfahren bekannt sind. Dem-
nach führt jeglicher Einblick in die Natur eben dieser Probleme indirekt zu
Fortschritten in der Analyse verschiedener, in der Praxis eingesetzten kryp-
tographischen Verfahren.

In dieser Arbeit soll genau dieser Aspekt detaillierter untersucht werden:
Wie können die teils sehr anwendungsfernen Resultate aus der reinen Mathe-
matik dazu genutzt werden, völlig praktische Fragestellungen bezüglich der
Sicherheit kryptographischer Verfahren zu beantworten und konkrete Im-
plementierungen zu optimieren und zu bewerten? Dabei sind zwei Aspekte
besonders hervorzuheben: Solche, die Sicherheit gewährleisten, und solche,
die von rein kryptanalytischem Interesse sind.

Nachdem wir — mit besonderem Augenmerk auf die historische Ent-
wicklung der Resultate — zunächst die benötigten analytischen und algo-
rithmischen Grundlagen der Zahlentheorie zusammengefasst haben, beschäf-
tigt sich die Arbeit zunächst mit der Fragestellung, wie die Punktaddition
auf elliptischen Kurven spezieller Form besonders effizient realisiert werden
kann. Die daraus resultierenden Formeln sind beispielsweise für die Krypt-
analyse solcher Verfahren von Interesse, für deren Sicherheit es notwendig
ist, dass die Zerlegung großer Zahlen einen hohen Berechnungsaufwand er-
fordert. Der Rest der Arbeit ist solchen Zahlen gewidmet, deren Primfak-
toren nicht zu klein, aber auch nicht zu groß sind. Inwiefern solche Zahlen
in natürlicher Art und Weise in kryptographischen und kryptanalytischen
Verfahren auftreten und wie deren Eigenschaften für die Beantwortung sehr
konkreter, praktischer Fragestellungen eingesetzt werden können, wird an-
schließend anhand von zwei Anwendungen diskutiert: Der Optimierung ei-
ner Hardware-Realisierung des Kofaktorisierungsschrittes des allgemeinen
Zahlkörpersiebs, sowie der Analyse verschiedener, standardisierter Schlüssel-
erzeugungsverfahren. vii

viii

Synopsis

To meet the requirements of the modern communication society, crypto-
graphic techniques are of central importance. In modern cryptography, we
try to build cryptographic primitives whose security can be reduced to sol-
ving a particular number theoretic problem for which no fast algorithmic
method is known by now. Thus, any advance in the understanding of the
nature of such problems indirectly gives insight in the analysis of some of
the most practical cryptographic techniques.

In this work we analyze exactly this aspect much more deeply: How can
we use some of the purely theoretical results in number theory to answer
very practical questions on the security of widely used cryptographic algo-
rithms and how can we use such results in concrete implementations? While
trying to answer these kinds of security-related questions, we always think
two-fold: From a cryptographic, security-ensuring perspective and from a
cryptanalytic one.

After we outlined — with a special focus on the historical development
of these results — the necessary analytic and algorithmic foundations of
number theory, we first delve into the question how point addition on cer-
tain elliptic curves can be done efficiently. The resulting formulas have their
application in the cryptanalysis of crypto systems that are insecure if fac-
toring integers can be done efficiently. The rest of the thesis is devoted to
the study of integers, all of whose prime factors are neither too small nor
too large. We show with the help of two applications how one can use the
properties of such kinds of integers to answer very practical questions in the
design and the analysis of cryptographic primitives: The optimization of a
hardware-realization of the cofactorization step of the General Number Field
Sieve and the analysis of different standardized key-generation algorithms.

ix

x

Acknowledgments

The results in this thesis would not be the same without the long discussions
I had with my friends and colleagues of the working group cosec at the Bonn-
Aachen International Center for Information Technology. In particular, I
want to thank Dr. Michael Nüsken for guiding me through some of the
imponderabilities when working on the results presented in this thesis and
for adding his invaluable experience to the work I was doing. Additionally,
I would like to thank my supervisor, Prof. Dr. Joachim von zur Gathen, for
giving me the opportunity to work on the topic presented here, by pointing
me to interesting projects related to this work, and for selecting the right
people that lead to the good working climate at cosec.

Special thanks go to Konstantin Ziegler, who introduced me to the com-
puter algebra system sage, a tool I really learned to appreciate, and to Yona
Raekow and Cláudia Oliveira Coelho for always being there for me when I
needed someone to talk to. I would also like to thank Dr. Jérémie Detrey
for the long fruitful discussions we had while he was working at cosec and for
his invaluable comments on various topics. I also want to thank my former
supervisor Dr. Helmut Meyn for his support.

Last but not least I would like to thank Martin Hielscher and the rest
of my family for supporting me all the time. I dedicate this thesis to Dr.
Herta Bergmann, to Liselotte Ammon and in particular to Dr. Fotini Pfab.

Daniel Loebenberger
07.01.2012

xi

xii

Contents
1 Introduction 1

1.1 Development of the results . 1
1.2 Structure of the thesis . 3

2 Prime numbers 5
2.1 The distribution of primes . 5
2.2 More on analytic number theory 12
2.3 Counting other classes of integers 22

3 Algorithmic number theory 27
3.1 Basic algorithms . 27
3.2 Newton: Recognizing perfect powers 37
3.3 Primality testing . 39
3.4 Factoring algorithms by sieving 51
3.5 Factoring algorithms using elliptic curves 57

4 Differential addition in Edwards form 69
4.1 State of the art . 69
4.2 Edwards form . 72
4.3 Representing points in Edwards form 72
4.4 A tripling formula . 75
4.5 Recovering the x-coordinate 76
4.6 A parametrization using squares only 78

5 Public key cryptography 81
5.1 Diffie and Hellman: New directions in cryptography 81
5.2 Doing it: RSA . 82
5.3 The ubiquity of grained integers 83

6 Coarse-grained integers 85
6.1 The recursion . 88
6.2 Using estimates . 90

xiii

xiv CONTENTS

6.3 Approximations . 93
6.4 Solving the recursion for λ̃k 96
6.5 Estimating the estimate λ̂k 110
6.6 Reestimating λ̂k without Riemann 114
6.7 Improvements . 116
6.8 Non-squarefree numbers are negligible 120
6.9 Results on coarse-grained integers 122
6.10 Numeric evaluation . 125

7 Hardware for the GNFS 129
7.1 Framework . 129
7.2 Modelling the cluster system 130
7.3 Concrete statistical analyses 134
7.4 Generalizations to an arbitrary number of clusters 137
7.5 Connection to the theoretical results 139

8 RSA integers 141
8.1 Framework . 141
8.2 RSA integers in general . 143
8.3 Toolbox . 146
8.4 Some common definitions for RSA integers 156
8.5 Arbitrary notions . 162
8.6 Complexity theoretic considerations 166

9 Generalized RSA integers 171
9.1 Framework and toolbox . 172
9.2 Some results . 173

10 Standards for RSA integers 177
10.1 Generating RSA integers properly 177
10.2 Output entropy . 182
10.3 Information-theoretical efficiency 185
10.4 Impact on standards and implementations 186

11 Future work and open problems 195

Bibliography 197

Players 213

Index 221

Chapter 1

Introduction

1.1. Development of the results

The results in this thesis originated from a project the working group cosec
jointly ran between 2006 and 2008 together with the University of Bochum,
the University of Duisburg-Essen and the Siemens AG Munich on the fac-
torization of large integers, funded by the Bundesamt für Sicherheit in der
Informationstechnik (BSI). The goal was to analyze whether highly spe-
cialized hardware clusters like the COPACOBANA could be used for more
efficient realizations of several parts of the General Number Field Sieve such
as the cofactorization step or the linear algebra step.

Since the working group in Bochum realized together with the Univer-
sity of Kiel the specific implementation aspects of the hardware cluster (later
published in Güneysu et al. 2008), our obligation was to find a way to op-
timize their implementation without seeing and without touching it. We
asked Thorsten Kleinjung, who held the factoring record at that time to-
gether with Jens Franke (see Franke & Kleinjung 2005), to send us a list
of sample inputs to the cofactorization step. Since these samples were to
be fed into an elliptic curve factorization algorithm that we were supposed
to optimize, we were hoping that some experiments with the data would
point us to the right direction. To our surprise the inputs followed a certain
highly non-uniform distribution, which enabled us to reduce the runtime of
the hardware implementation by roughly 20%, given only the premise that
the modules used are scalable (see Chapter 7).

After the successful optimization, we continued the work on the inter-
mediate step of the General Number Field Sieve and figured out that the
structure of the distribution was closely related to the count of integers that
have prime factors from a certain interval only. The lower and upper bounds

1

2 CHAPTER 1. INTRODUCTION

on the size of the prime factors were specified by the concrete implementa-
tion of the General Number Field Sieve and the choice of the sieving method,
see Franke & Kleinjung (2006). As it turned out, these parameter choices
did not only imply bounds on the size of the prime factors but also on the
number of prime factors.

There are many results in analytic number theory on smooth integers,
i.e. integers with small prime factors only. The article Granville (2008) sum-
marizes the state of the art on the analysis of such integers nicely. The dual
problem on the count of rough integers, that are integers with large prime
factors only, was shortly mentioned there, but it seemed that this problem
did draw to it much less attention. Also it seemed that no one had ever con-
sidered the combined problem – counting integers that are simultaneously
smooth and rough — we called such kind of integers grained, in analogy to
the existing notions of smooth and rough. This motivated further studies in
this direction.

It turned out that we were able to solve the counting problem in a
satisfactory way (see Chapter 6). However, we observed that a very special
case of our results were proper definitions for RSA integers which one could
also find in some textbooks. About the same time Decker & Moree (2008)
published an article on the count of RSA integers but following a completely
different definition for those kind of integers. Puzzled by this discrepancy of
our results and their results, we started analyzing in 2010 how all possible
definitions for RSA integers compare to each other, peaking in the proof
of a conjecture Benne de Weger stated in 2009, saying that the count of
such integers is closely related to the area of the region the prime factors are
taken from. A further interesting aspect of our work was to actually find out
which kinds of standards and implementations use which of the definitions
for RSA integers. Since our theoretical results were able to give precise
estimates on the count of such integers, it turned out that the same results
together with some very general observations on the algorithmic aspects
enabled us to estimate the output entropy of all possible kinds of RSA key-
generators. We knew that such kind of estimates have already been known
for various types of prime number generators, see for example Brandt &
Damgård (1993) or Joye & Paillier (2006), but it seemed we had been the
first ones that successfully adapted the techniques to RSA key-generators
(see Chapter 8 to Chapter 10).

While we were working on the project on factoring large integers, Harold
M. Edwards published a groundbreaking article in 2007 by introducing a
new normal form for elliptic curves. Since in our project the Elliptic Curve
Method was employed for factoring moderately large integers in the cofac-

1.2. STRUCTURE OF THE THESIS 3

torization step of the General Number Field Sieve, a natural question was
how one could use Edwards’s ideas to obtain further speed-up. Montgomery
(1987) showed how to employ certain representations of points on ordinary
elliptic curves to obtain highly efficient arithmetic, but for elliptic curves
in Edwards form there were little results in this direction. Thus, naturally,
it occurred to us that a similar approach could lead to nice results in this
direction for the new kind of elliptic curves. Unfortunately, we were not the
first ones with this idea: Castryck et al. (2008) showed that the so-called
differential addition on elliptic curves in Edwards form could be realized ef-
ficiently when a particular curve parameter equalled one. Actually, we were
able to extend the results, but it turned out that using very heavy machinery
Gaudry & Lubicz (2009) were able to obtain similar results using Riemann
ϑ functions – a branch of number theory quite inaccessible to us. Due to
the different kind of framework, our findings gave a much more elementary
derivation for differential addition on elliptic curves in generalized Edwards
form (see Chapter 4).

1.2. Structure of the thesis

In Chapter 2 and Chapter 3 we lay the needed mathematical and algorithmic
foundations of number theory. Here, we focus in particular on the historical
development of the different techniques, to be able to understand better how
the important concepts around nowadays evolved over the past centuries.
In Chapter 4 we analyze more deeply differential addition on elliptic curves
in (generalized) Edwards form.

Afterwards, we give a short overview of the cryptographic concepts in
Chapter 5. Chapter 6 is devoted to the number-theoretic study of coarse-
grained integers: By employing explicit results on the number of primes
not exceeding a given bound, we will obtain estimates of this type on the
count of coarse-grained integers. Clearly, while doing so, we need to analyze
carefully the error we make in our approximations.

In the subsequent Chapters 7 to 10, we study some example applications
in which coarse-grained integers occur naturally and answer some very prac-
tical questions in the design and the analysis of cryptographic primitives.
More specifically, we first study in Chapter 7 how we can use the specific
distribution of the inputs to the cofactorization step in the General Number
Field Sieve to obtain a considerable speed-up when realizing this step using
resizable hardware modules.

Another application of some of the results on coarse-grained integers
is the comparative study of all (reasonable) definitions for RSA integers in

4 CHAPTER 1. INTRODUCTION

Chapter 8. We propose a model that is able to capture the number-theoretic
properties that we will later need for the analysis of concrete standards and
implementations.

A slight generalization of the results from Chapter 8 will shortly be
discussed in Chapter 9: Instead of ordinary RSA integers (that are the
product of two different primes), we sketch how one can use our techniques to
tackle integers that have exactly two distinct prime factors (one might want
to call them generalized RSA integers). Such integers have their application
in some fast variants of RSA or the Okamoto-Uchiyama cryptosystem.

In Chapter 10 we employ our results from Chapter 8 to analyze several
concrete RSA key-generators (as specified in relevant standards and imple-
mentations) to obtain estimates on the entropy of the output distribution
and the (information-theoretical) efficiency. We finish the chapter with a
thorough comparison of the obtained results.

After discussing some open problems and future work in Chapter 11, we
finish with a bibliography, a list of historically relevant people and an index.

Chapter 2

Prime numbers

2.1. The distribution of primes

Prime numbers are the basis of all arithmetic. Even though the concept
of primality was already known in the ancient world, there are still many
unsolved problems concerning them. The Riemann hypothesis (see Sec-
tion 2.2.2) as part of problem 8 of Hilbert’s list of 23 unsolved problems,
stated in 1900, and one of the seven millennium problems of the Clay Math-
ematics Institute (2000), is just the tip of the iceberg. On the other side —
especially from an algorithmic aspect — there was also considerable progress
during the 20th century. We will describe now the most important results
on prime numbers, starting from results from the ancient world up to some
explicit estimates concerning primes in arithmetic progressions. We follow in
the exposition of this chapter mainly Crandall & Pomerance (2005). Most of
the historical facts are taken from the amazing little book Edwards (1974).

2.1.1. Euclid and Eratosthenes: Results from the ancient world.
Prime numbers were already studied in the ancient world. In fact, one of
the most important theorems in arithmetic — the fundamental theorem of
arithmetic — has its roots also in these times: it says that every natural
number has a unique prime factorization. The proof of this theorem natu-
rally comes in two steps: First, the existence has to be proven. Yet, this is
simple to show: take the smallest number n that does not have a prime fac-
torization. Since the number 1 and any prime do have a prime factorization,
n can be written as a product of smaller numbers that by assumption do
have a prime factorization. But then, also n has one by combining the prime
factorizations of the two factors found. For uniqueness a theorem already

5

6 CHAPTER 2. PRIME NUMBERS

known to Εὐκλείδης ὁ Ἀλεξάνδρεια (365–300 BC)4 can be employed:

Theorem 2.1.1 (Euclid Elements, book VII, proposition 31). Let m, n be
two integers. If a prime p divides m · n, then p divides either m or n (or
both).

Proof. Suppose p divides m ·n but does not divide m. We need to show
that then p divides n. As p does not divide m and p is prime, there are
integers s, t ∈ Z such that sp + tm = 1, see Bézout’s Identity 3.1.7. By
multiplying this by n we get spn + tmn = n. Since p divides m · n, it also
divides tmn and thus also n. �

From this we can deduce the

Fundamental Theorem of Arithmetic 2.1.2. Let n be a natural num-
ber. Then there is a unique prime factorization

n = p1p2 · · · pk,

where p1 ≤ p2 ≤ · · · ≤ pk are (not necessarily distinct) prime numbers.

Proof. We have shown the existence of a prime factorization above. For
uniqueness, consider the smallest counterexample, i.e. the smallest number
n that does have at least two different prime factorizations n = p1p2 · · · pk =
q1q2 · · · q�. Both q1 and q2 · · · q� must have unique prime factorizations due to
the minimality of n. By Theorem 2.1.1, p1 divides q1 or p1 divides q2 · · · q�.
Therefore p1 = qi for some 1 ≤ i ≤ �. Removing p1 and qi from the two
prime factorizations gives now a smaller natural number n′ = n/p1 with at
least two different prime factorizations, contradicting the minimality of n. �

The Fundamental Theorem of Arithmetic 2.1.2 has an algorithmic analog
(one could call it the fundamental problem of arithmetic), namely the

Factorization Problem 2.1.3. Given a natural number n ∈ N≥2, find
its prime factorization.

Algorithms that solve the problem are called factorization algorithms. Note
that it is not known up to date whether the problem can be solved in (prob-
abilistic) polynomial time. For a more thorough discussion, see Section 3.4
and Section 3.5.

Euclid was also able to answer the question concerning the number of
primes. He proved essentially

4Euclid of Alexandria

2.1. THE DISTRIBUTION OF PRIMES 7

Theorem 2.1.4 (Euclid Elements, book IX, proposition 20). There are in-
finitely many primes.

Proof. Assume there are only finitely many primes p1, . . . , pk. Then the
number n = 1 + p1p2 · · · pk is not divisible by any of the primes p1, . . . , pk.
Thus, by the Fundamental Theorem of Arithmetic 2.1.2, the integer n has
a prime factor that is different from pi for all 1 ≤ i ≤ k. �

The theorem gives raise to the following algorithmic problem:

Problem 2.1.5. Given an integer n ∈ N≥2, decide whether n is prime.

An algorithmic method that decides this problem is called a primality test.
A very simple algorithm, going back to ΄Ερατοσθένης ὁ Κυρηνα̃ιος (276–
194 BC)5, is to perform trial division for all primes up to

√
n. This is, of

course, highly inefficient, as the number of necessary arithmetic operations
is exponential in the size of n. More practical methods are to be discussed
in Section 3.3.

The first person that seemed to be aware of the fact that the Factoriza-
tion Problem 2.1.3 and Problem 2.1.5 are indeed two fundamentally different
problems was François Édouard Anatole Lucas (1842–1891), who remarked
in 1878 that

“Cette méthode de vérification des grands nombres premiers,
qui repose sur le principe que nous venons de démontrer, est
la seule méthode directe et pratique, connue actuellement, pour
résoudre le problème en question; elle est opposée, pour ainsi
dire, à la méthode de vérification d’Euler.”6

The principle Lucas was referring to is the following: Consider an easily
checkable condition that holds for all prime numbers and only few compo-
sites. Then given some integer n, one can simply check if the condition
holds for n. If it does not, we can be sure that n is composite, otherwise
we might think (even though it is not proven) that n is prime. Indeed,
this is the approach that all practical primality tests employ nowadays, see
Section 3.3. It also gives an efficient method for finding a large prime of a
given length by selecting repeatedly an integer of that length until our test
finds a number that looks like a prime. For this procedure to be efficient

5Eratosthenes of Cyrene
6This method of verification of large prime numbers, based on the principle that we

have just demonstrated, is the only direct and practical method currently known to solve
the problem in question and it is opposed, so to speak, to Euler’s verification method.

8 CHAPTER 2. PRIME NUMBERS

k π(10k) Li(10k)
1 4 5.1204
2 25 29.081
3 168 176.5645
4 1229 1245.0921
5 9592 9628.7638
6 78498 78626.504
7 664579 664917.3599
8 5761455 5762208.3303
9 50847534 50849233.9118
10 455052511 455055613.541

Figure 2.1.1: The left-hand picture shows the values of the logarithmic
integral (blue) in comparison to the prime counting function (red). The
right-hand table the first few values of the prine counting function and the
logarithmic integral at powers of ten.

it is required that the prime numbers lie somewhat dense in the set of all
integers. What can we say about that?

2.1.2. Gauß and the prime number theorem. For a long time there
was little known about the number of primes up to a real bound x, tradi-
tionally denoted by π(x). In 1737, Leonhard Paul Euler (1707–1783) gave
a groundbreaking proof that there are infinitely many primes, by showing
that the sum of reciprocals of primes diverges (see Section 2.2). This was
the corner stone of rigorous analytic number theory.

Around 1792, Johann Carl Friedrich Gauß (1777–1855) conjectured, while
being still a teenager, that the asymptotic behavior of the prime counting
function is asymptotically equal to

π(x) ≈ x

ln x

or more precisely
π(x) ≈ Li(x) :=

∫ x

2

1
ln t

dt ,

where Li(x) is called the logarithmic integral, see Figure 2.1.1. This conjec-
ture is now known as the famous prime number theorem (PNT).

It was, however, not published until 1849, when Gauß wrote the result
in a letter to Johann Franz Encke (1791–1865). Independently, a similar
conjecture, namely π(x) ≈ x

ln x−A , for a constant A close to one, was given

2.1. THE DISTRIBUTION OF PRIMES 9

in 1830 by Adrien-Marie Legendre (1752–1833). It is striking to observe that
Gauß’ conjecture is by far the better one. Indeed, it subsumes Legendre’s
formula, since by Taylor expansion we have Li(x) = x

ln x + x
ln2 x + O

(
x

ln3 x

)
and x

ln x ≈ x
ln x−A for all real constants A.

Roughly twenty years later, (1821–1894)7

proved a theorem that was already a big step in the direction of the prime
number theorem:

Theorem 2.1.6 (1852). There exist real constants B and C such
that for all x ≥ 3 we have

Bx

ln x
< π(x) <

Cx

ln x
.

The question was finally resolved in 1896 independently by Jacques Salomon
Hadamard (1865–1963) and Charles-Jean Étienne Gustave Nicolas, Baron
de la Vallée Poussin (1866–1962), more than one century after Gauß’ con-
jecture:

Theorem 2.1.7 (Hadamard 1896, de la Vallée Poussin 1896). We have for
x tending to infinity

π(x) ≈ x

ln x
.

More precisely, we have

π(x) ∈ Li(x) + O
(
xe−C

√
ln x
)

. �

The prime counting function was successively refined and comes nowa-
days in many different variants (see Figure 2.1.2), which we sum up in the

Prime Number Theorem 2.1.8. There are the following results on the
distribution of primes.

(i) Hadamard (1896), de la Vallée Poussin (1896) and Walfisz (1963),
conjectured by Gauß (1849):

π(x) ∈ Li(x) + O
(

x exp
(
− A(ln x)3/5

(ln ln x)1/5

))
⊂ Li(x) + O

(
x

lnk x

)
for any k. The presently best known value for A is A = 0.2098 (Ford
2002a, p. 566). Here, the logarithmic integral Li is given by Li(x) :=∫ x

2
dt
ln t .

7Pafnuty Lvovich Chebyshev

10 CHAPTER 2. PRIME NUMBERS

Figure 2.1.2: Various results on the distribution of primes. The red line
shows a normalized variant of the prime counting function π(2k). The blue
dotted line shows the same normalization of Gauß’ approximation using the
logarithmic integral (Prime Number Theorem 2.1.8(i)). The unconditional
Dusart bound (Prime Number Theorem 2.1.8(ii)) is shown by the dotted
green line. It was proven by Littlewood (1914) that the red line crosses the
blue one infinitely often.

2.1. THE DISTRIBUTION OF PRIMES 11

(ii) Dusart (1998, Théorème 1.10, p. 36): For x > 355 991 we have

x

ln x
+

x

ln2 x
< π(x) <

x

ln x
+

x

ln2 x
+ 2.51

x

ln3 x
.

(iii) Von Koch (1901), Schoenfeld (1976): If (and only if) the Riemann
hypothesis holds then for x ≥ 1451 we have

|π(x) − Li(x)| <
1

8π

√
x ln x.

�

2.1.3. Dirichlet’s theorem for arithmetic progressions. Once there
where results on the density of primes, a reasonable step was to consider
questions on the density of primes with certain properties. In fact, even
today there are still many open problems in this direction. One particular
problem of historical relevance was the question how primes that lie in a
particular residue class a modulo a natural number m ∈ N≥2 are distributed.
Clearly, if a and m have a common prime factor, then this prime number
divides every element of the residue class, and the class can contain at most
this single prime. The proof that all other classes contain infinitely many
primes was given by Johann Peter Gustav Lejeune Dirichlet (1805–1859):

Theorem 2.1.9 (Dirichlet 1837). If a and m are integers without common
prime factor, then there are infinitely many primes in the arithmetic pro-
gression {a, a + m, a + 2m, . . .}. �

In modern days there were many more results on primes in arithmetic pro-
gressions, like the following famous theorem Arnold Walfisz (1892–1962)
proved in 1936, based on previous work of Carl Ludwig Siegel (1896–1981).
The statement involves an important number-theoretic function dating back
to Euler:

Definition 2.1.10 (Euler ϕ-function). For an integer m ≥ 2 we write ϕ(m)
to denote the number of integers in the set {0, . . . , m− 1} that are coprime
to m.

We are ready to state:

Theorem 2.1.11 (Siegel-Walfisz). Write πa+mZ(x) for the number of primes
up to a real bound x that are in the residue class a modulo m. Then, for

12 CHAPTER 2. PRIME NUMBERS

any real η > 0 there exists a positive real C(η), such that for all coprime
natural numbers a, m with m < lnη x we have

πa+mZ(x) ∈ 1
ϕ(m)

Li(x) + O
(
x exp(−C(η)

√
ln x)

)
.

In this expression, ϕ(m) denotes the Euler ϕ-function (see Definition 2.1.10)
and the constant hidden in the big-O notation is absolute. �

2.2. More on analytic number theory

As mentioned at the beginning of Section 2.1.2, Euler proved the infinitude
of the number of primes, by establishing what is nowadays know as the Euler
product formula. It relates the function

(2.2.1) ζ(s) :=
∞∑

n=1

1
ns

to a product over prime numbers only (Euler, of course, took the value of
the variable s to be real):

Euler Product Formula 2.2.2 (Euler 1737). For �(s) > 1 we have

(2.2.3) ζ(s) =
∏

p prime

1
1− p−s

.

Proof. By expanding each factor of the right-hand side of the formula
above into a geometric series, we have

1
1− p−s

= 1 + p−s + p−2s + · · · .

For �(s) > 1, we have |p−s| < 1, and the series converges absolutely. Multi-
plying all those factors gives terms of the form

∏
p prime p−e(p)s, where each

e(p) is either zero or a positive integer, and all but finitely many e(p) are
non-zero. Thus, by the Fundamental Theorem of Arithmetic 2.1.2, each
term is of the form n−s for some natural number n, and each n occurs ex-
actly once in the expanded product. �

Euler then took the argument further, showing (by using the product for-
mula above) that the sum of the reciprocals of primes up to a bound x
diverges like ln ln x. Inspired by Euler’s theorem, Georg Friedrich Bernhard

2.2. MORE ON ANALYTIC NUMBER THEORY 13

Figure 2.2.1: The complex coloring of the complex plots, i.e. the complex
plot of the identity function. The absolute value of the output is indicated
by the brightness (with zero being black and infinity being white), while the
argument is represented by the hue.

Riemann (1826–1866) managed in the mid 19th century to introduce com-
plex analysis to number theory, laying the foundations for analytic number
theory: His brilliant idea was to allow the zeta function (2.2.1) to attain
complex values. This allows to understand properties of the (by nature dis-
crete) set of primes, by employing methods from an area that studies purely
continuous objects. For example, he related in his seminal work from 1859
the zeros of the zeta function to the distribution of primes, leading to the
famous, and still unproven, Riemann hypothesis, see Section 2.2.2.

2.2.1. Riemann’s zeta function. As mentioned above, Riemann (as one
of the founders of complex analysis) naturally considered the zeta function
as a function in a complex variable s. Clearly, in the half-plane �(s) > 1,
both sides of the Euler Product Formula 2.2.2 converge. One of Riemann’s
great achievements was to realize that the function they define is meaningful
for all s (even though both sides of (2.2.3) diverge for �(s) > 1), except for a
pole at s = 1 (then the left hand side in (2.2.1) is nothing but the harmonic
series). To be able to extend the range for s, we first need some basic facts
about another famous function Euler introduced in 1730. It is an extension
of the factorial function n! = 1 · 2 · · · (n − 1) · n, defined for non-negative
integers n, to all real numbers greater than −1 via the equality

n! =
∫ ∞

0
e−xxn dx .

It holds for all non-negative integers n, and can be proven by integration
by parts. Euler observed that the integral converges also for real values n,

14 CHAPTER 2. PRIME NUMBERS

Figure 2.2.2: Plots of the gamma function. The left-hand picture shows the
values of the gamma function on the real axis, the right-hand one a complex
plot of the function with complex coloring defined in Figure 2.2.1.

provided n > −1. This leads to the definition of the function

(2.2.4) Γ(s + 1) =
∫ ∞

0
e−xxs dx

whose analytic continuation to all complex numbers is called the gamma
function. Some plots of the gamma function can be found in Figure 2.2.2.
We state

Lemma 2.2.5 (Properties of the Gamma function). We have for s > −1

(i) Γ(s) = lim
n→∞

1·2···n
s·(s+1)···(s+n)ns.

(ii) Γ(1 + s) = sΓ(s),

(iii) πs
Γ(1+s)Γ(1−s) = sin(πs). �

For proofs of these facts, see for example Königsberger (2001, chapter 17).
We are now ready to extend (2.2.1) to a formula that is, as Riemann

states, “valid for all s”, and proceed as follows: First, substitute nx for x in
(2.2.4), giving ∫ ∞

0
e−nxxs−1 dx =

1
ns

Γ(s)

for s > 0 and n ∈ N. Now, sum over all n using the formula for the geometric
series, obtaining

(2.2.6)
∫ ∞

0

xs−1

ex − 1
dx = Γ(s)

∞∑
n=1

1
ns

.

2.2. MORE ON ANALYTIC NUMBER THEORY 15

Figure 2.2.3: Plots of the zeta function. The left-hand picture shows the
values of the zeta function on the real axis (note the the trivial zeros at the
negative even integers), the right-hand one a complex plot with complex
coloring defined in Figure 2.2.1.

Here, one needs to check the convergence of the integral on the left and the
validity of the exchange of integration and summation. Consider now the
contour integral ∫

P

(−x)s−1

ex − 1
,

where the path P starts at +∞, travels down the positive real axis, circles
the origin in counterclockwise direction, and travels back to the positive real
axis to +∞. One can show that this integral equals (eiπs−e−iπs)

∫∞
0

xs−1

ex−1 dx
(see for example Edwards 1974, section 1.4). Combining with (2.2.6) yields∫

P

(−x)s−1

ex − 1
= 2i sin(πs)Γ(s)

∞∑
n=1

1
ns

,

which reads (after applying Lemma 2.2.5) as

(2.2.7) ζ(s) =
Γ(1 − s)

2πi

∫
P

(−x)s−1

ex − 1
,

now valid for all s
= 1 (see Edwards 1974). This function is known as the
famous Riemann zeta function. Some plots of this function can be found in
Figure 2.2.3 and Figure 2.2.5.

It is relatively easy to give expressions for the value of ζ(s) for even
integers s = 2n and non-positive integers s = −n (for n ∈ N≥0) in terms of
so called Bernoulli numbers, named after Jacob Bernoulli (1654–1705), who
described them first in his book “Ars Conjectandi”, posthumously published

16 CHAPTER 2. PRIME NUMBERS

n 0 1 2 4 6 8 10 12 14
Bn 1 −1

2
1
6 − 1

30
1
42 − 1

30
5
66 − 691

2730
7
6

Table 2.2.1: The first non-zero Bernoulli numbers.

in 1713. They are defined as follows: We start from the function x
ex−1 and

perform power-series expansion around x = 0 (this is valid, since the function
is analytic near 0), obtaining an expression of the form

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
,

valid for |x| < 2π. The coefficients Bn are called Bernoulli numbers. The
odd Bernoulli numbers are always zero (except B1 = −1

2), since for all x we
have

x

ex − 1
+

x

2
=

−x

e−x − 1
+
−x

2
.

The first few non-zero values are listed in Table 2.2.1. The Bernoulli numbers
can be used to give explicit formulas for the values of the zeta function at
negative and at even integers. We have

(2.2.8) ζ(−n) = (−1)n Bn+1

n + 1

and

(2.2.9) ζ(2n) = (−1)n+1 (2π)2nB2n

2 · (2n)!
.

For details on how to obtain the first expressions from (2.2.7), see Edwards
(1974, section 1.5). The second expression is due to Euler (1755). Note that
there is no simple closed form known for positive odd integer arguments.
From (2.2.8) follows directly from the properties of the Bernoulli numbers
that the zeta function vanishes at the even negative integers. These are
called the trivial zeros of the zeta function.

The values of the Riemann zeta function at integer arguments are called
zeta constants. These constants occur frequently in many different areas,
such as probability theory or physics. We list a few zeta constants in Ta-
ble 2.2.2.
Riemann also deduced in 1859 the functional equation

ζ(s) = 2sπs−1 sin
(

s · π

2

)
Γ(1 − s)ζ(1− s)

2.2. MORE ON ANALYTIC NUMBER THEORY 17

n -4 -3 -2 -1 0 1 2 3 4
ζ(n) 0 1

120 0 − 1
12 −1

2
1
6 π2 1

90 π4 1
945 π6 1

9450 π8

Table 2.2.2: The first zeta constants.

for the zeta function, or by defining

(2.2.10) ξ(s) =
1
2

s(s − 1)π−s/2Γ(s/2)ζ(s)

the much simpler functional equation

(2.2.11) ξ(s) = ξ(1 − s).

For a proof of these facts, see Edwards (1974, section 1.6–1.8). Since
ξ(s)/ζ(s) has only a single zero at s = 1, it follows that the remaining
zeros of ξ coincide with the zeros of zeta. By employing the Euler Product
Formula 2.2.2, the zeta function does not have any zero
 with �(
) > 1
(since otherwise a convergent infinite product of non-zero factors would be
zero). Due to the functional equation just described, (2.2.11), this imme-
diately implies that there are also no zeros
 with �(
) < 0. Thus, we
can immediately conclude that all non-trivial zeros lie in the critical strip
0 ≤ �(
) ≤ 1.

It turns out that the exact distribution of these zeros in the critical strip
is closely related to the prime counting function π(x): For that, let μ(n) be
the so called Möbius function, systematically investigated by August Ferdi-
nand Möbius (1790–1868) in 1832. It is defined by
(2.2.12)

μ(n) =

⎧⎪⎪⎨⎪⎪⎩
1, if n is squarefree with an even number of prime factors,
0, if n is not squarefree,
−1, if n is squarefree with an odd number of prime factors.

Riemann showed that

(2.2.13) π(x) =
∞∑

n=1

μ(n)
n

J(x1/n)

with

J(x) = Li(x)−
∑

�(�)>0
(Li(x�) + Li(x1−�)) − ln 2 +

∫ ∞

x

1
t(t2 − 1) ln t

dt

18 CHAPTER 2. PRIME NUMBERS

k (R − π)(10k) (Li− π)(10k)
1 0.54 2.17
2 0.64 5.13
3 0.34 9.61
4 -2.09 17.14
5 -4.58 37.81
6 29.38 129.55
7 88.43 339.41
8 96.85 754.38
9 -78.59 1700.96
10 -1827.71 3103.59

Figure 2.2.4: The left-hand picture shows the values of the Riemann function
R(x) (blue) in comparison to the prime counting function (red), the right-
hand a table of errors at powers of ten.

and the sum in the second term runs over the nontrivial roots of zeta while
summing in order of increasing imaginary part �(
).

By plugging the definition of J(x) into (2.2.13) and taking just the terms
into account that grow as x does, we arrive at Riemann’s famous prime count
approximation

π(x) ≈ R(x) :=
∑
n≥1

μ(n)
n

Li(x1/n).

Note that the first term of Riemann’s approximation equals Gauß’ ap-
proximation π(x) ≈ Li(x), but the resulting estimate is (empirically) much
better, see Figure 2.2.4. For details on how one deduces this estimate, see
(Edwards 1974, section 1.11–1.17).

2.2.2. The Riemann hypothesis. Several properties of the Riemann
zeta function (2.2.7) are still unproven. The following conjecture, already
posed by Riemann in 1859, became one of the most important questions in
number theory:

Riemann Hypothesis 2.2.14. For all zeros
 of the Riemann zeta function
(2.2.7) with 0 < �(
) < 1 we have �(
) = 1

2 .

In other words the hypothesis says that all zeros of the Riemann zeta func-
tion in the critical strip already lie on the critical line. The hypothesis has
been numerically verified for the first 1013 zeros (see Saouter et al. 2011).
Figure 2.2.5 shows two plots of zeta on the critical line.

2.2. MORE ON ANALYTIC NUMBER THEORY 19

Figure 2.2.5: The left-hand picture shows the imaginary and real part, the
right-hand a parametric plot of zeta along the critical line.

There are many conjectures in number theory that are equivalent to the
Riemann Hypothesis 2.2.14. One of them is based on properties of a function
Franz Mertens (1840–1927) introduced in 1897, namely the function

M(x) =
∑
n≤x

μ(n),

where μ(n) is the Möbius function (2.2.12). By employing the Euler Product
Formula 2.2.2 for 1

ζ(s) on the one hand and the so called Mellin-transform

(Mf)(s) =
∫ ∞

0
xs−1f(x) ds

of 1
ζ(s) , named after Robert Hjalmar Mellin (1854–1933), on the other hand,

one obtains the following relation between the Mertens function M(x) and
the Riemann zeta function ζ(s):

1
ζ(s)

=
∞∑

n=1

μ(n)
ns

= s

∫ ∞

1

M(x)
xs+1 dx

valid (at least) for �(s) > 1. We have

Theorem 2.2.15 (Littlewood 1912). The Prime Number Theorem 2.1.8 is
equivalent to

M(x) ∈ o (x) ,

while the Riemann Hypothesis 2.2.14 is equivalent to

M(x) ∈ O
(
x

1
2 +ε
)

for any fixed ε > 0. �

20 CHAPTER 2. PRIME NUMBERS

Indeed, Niels Fabian Helge von Koch (1870–1924) showed in 1901 that for
any fixed ε > 0 one has

(2.2.16) π(x) ∈ Li(x) + O
(
x

1
2 +ε
)

if and only if the Riemann Hypothesis 2.2.14 holds. The assertion (2.2.16)
was later slightly strengthened and made much more explicit by Lowell
Schoenfeld (1920–2002) in 1976, yielding the famous explicit version Prime
Number Theorem 2.1.8(iii) that states that we have for x ≥ 1451 the in-
equality

|π(x) − Li(x)| ≤ 1
8π

√
x ln x

if and only if the Riemann Hypothesis 2.2.14 holds. The beauty of such a
statement lies in the fact that it is completely explicit, in contrast to many
theorems in number theory, where the main term is explicitly given, but the
error term depends on some (often unknown) constant. To get rid of those
hidden constants, one has to go through the analytic proofs and handle quite
complicated error terms (see also Chapter 6). The benefit of such an ap-
proach is, however, twofold: First, one can make statements like “sufficiently
large” precise and tell exactly when such an inequality starts to hold. Sec-
ond, such explicit inequalities allow computer-aided verification of unproven
conjectures like the Riemann Hypothesis 2.2.14: If the inequality fails to
hold for a certain value of x ≥ 1451, then also the Riemann hypothesis must
be false.

One might ask now if there are also explicit versions for the number of
primes in arithmetic progressions, discussed in Section 2.1.3. Indeed, we are
not aware of any unconditional explicit version of Theorem 2.1.11. What we
actually do have is an explicit version that is true if the so called extended
Riemann hypothesis holds. We will state the theorem first, and afterwards
give a short discussion of the hypothesis:

Theorem 2.2.17 (Oesterlé 1979). Write πa+mZ(x) for the number of primes
up to a real bound x ≥ 2 that are in the residue class a modulo m ≥ 2 with
gcd(a, m) = 1. Then, if the Extended Riemann Hypothesis 2.2.20 is true,
we have ∣∣∣∣πa+mZ(x) − 1

ϕ(m)
Li(x)

∣∣∣∣ ≤ √
x(ln x + 2 ln m),

where ϕ(m) is the Euler ϕ-function (see Definition 2.1.10). �

The extended Riemann hypothesis is a conjectured property of so called
Dirichlet L-functions, which are the analogues of the zeta function for primes
in arithmetic progressions. Their definition depends on

2.2. MORE ON ANALYTIC NUMBER THEORY 21

Definition 2.2.18 (Dirichlet character). Let M be a positive integer and
χ be a function from the integers to the complex numbers. We call χ a
Dirichlet character modulo M if it is multiplicative, periodic modulo M and
χ(n)
= 0 if and only if n is coprime to M .

One example of a Dirichlet character for an odd positive integer M is the
Jacobi-symbol

(·
M

)
(see Section 3.1.4). It turns out that if χ1 is a Dirichlet

character modulo M1 and χ2 is a Dirichlet character modulo M2, then χ1χ2
is a Dirichlet character modulo lcm(M1, M2), where we define χ1χ2(n) :=
χ1(n)χ2(n). This in turn implies that Dirichlet characters modulo M are
closed under multiplication and, in fact, form a multiplicative group: The
identity is the character χ0 for which χ0(n) = 1 if and only if n and M are
coprime and χ0(n) = 0 otherwise. The multiplicative inverse of a character
χ is its complex conjugate χ, defined as χ(n) := χ(n). We are now ready
for

Definition 2.2.19 (Dirichlet L-function). Let χ be a Dirichlet character
modulo M . Then the function

L(s, χ) =
∞∑

n=1

χ(n)
ns

is called a Dirichlet L-function.

The sum converges in the region �(s) > 1 and if χ is non-principal then
the domain of convergence is �(s) > 0. Analogous to the Euler Product
Formula 2.2.2, we have

L(s, χ) =
∏

p prime

1
1 − χ(p)p−s

.

Now, if χ = χ0 is principal modulo M then L(s, χ) = ζ(s) ·∏p|M(1 − p−s),
which directly shows the connection to the zeta function. Clearly, if χ is
the unique character modulo 1, the L-series is exactly the Riemann zeta
function. We arrive at the

Extended Riemann Hypothesis 2.2.20. Let χ be any Dirichlet charac-
ter modulo M . Then for all zeros
 of L(s, χ) with �(
) > 0 we have
�(
) = 1

2 .

The conjecture is also of central importance in algorithmic number theory.
One beautiful example is the strong primality test, a test for compositeness

22 CHAPTER 2. PRIME NUMBERS

which might (with small probability) give a wrong answer. It was shown
in Miller (1976) that if the Extended Riemann Hypothesis 2.2.20 is true,
then the test will always answer correctly, implying that the set of primes
can be decided in deterministic polynomial time (see Section 3.3.3). It is
interesting to note that it took almost 30 years to remove the dependence
on the Extended Riemann Hypothesis 2.2.20. For more information of this
fact, see Section 3.3.4.

2.3. Counting other classes of integers

Besides counting primes with various properties in the spirit of Dirichlet,
it was natural to look for (asymptotic) results on other types of integers.
Examples that we will present in this section are integers that are a product
of exactly two (not necessarily distinct) primes, integers with very small
prime factors only and integers that have large prime factors only. Such kind
of results are of central importance in the study of the complexity of various
flavors of factorization algorithms (see also Section 3.4 and Section 3.5).

2.3.1. Landau: Counting semi-primes. Consider the problem of count-
ing integers that are a product of exactly two distinct primes. The problem
seems to have been first solved by Edmund Georg Hermann Landau (1877–
1938) in 1909. To be more precise, consider the function

π2(x) = # {n = pq ≤ x p
= q prime} .

By definition, π2(x) equals half of the number of solutions for pq ≤ x. Thus

(2.3.1) π2(x) =
∑
p≤x

π

(
x

p

)
− π(

√
x),

since the first summand counts the number of solutions for pq ≤ x, where
p, q are not necessarily distinct primes and π(

√
x) counts exactly the number

of prime-squares up to x. The main tool in tackling the sum in (2.3.1) is
Lemma 6.2.1, to be explained later, from which we just need a very special
case here, namely

Corollary 2.3.2 (Special prime sum approximation). We have

∑
p≤x

π(x/p) =
∑
p≤ x

2

π(x/p) ≈
∫ x

2

2

x

p ln p ln x/p
dp . �

2.3. COUNTING OTHER CLASSES OF INTEGERS 23

Figure 2.3.1: Landau’s approximation (blue) in comparison to the exact
count (red).

It remains to compute the integral on the right-hand side:

∫ x
2

2

x

p ln p ln x/p
dp =

∫ ln x−ln 2

ln 2

x

(ln x −
)
d

=
x

ln x

∫ ln x−ln 2

ln 2

1

− 1

ln x−

d

=
x

ln x
(ln(ln x− ln 2) − ln ln 2− ln ln 2 + ln(ln x− ln 2))

≈ 2x ln ln x

ln x
.

Since π(
√

x) ∈ O
(√

x
ln x

)
in (2.3.1), it follows

Theorem 2.3.3 (Landau 1909). For x tending to infinity, we have

π2(x) ≈ 2x ln ln x

ln x
.

In Figure 2.3.1 two plots of the Landau approximation can be found.

2.3.2. Dickman and the count of smooth numbers. We are now
going to present several classical results on integers that have only very
small prime factors. We follow in our exposition Crandall & Pomerance
(2005), Granville (2008), and Hildebrand & Tenenbaum (1993).

Definition 2.3.4 (smooth integer). Let n be a positive integer. Then n is
called y-smooth if every prime factor of n does not exceed y.

24 CHAPTER 2. PRIME NUMBERS

Figure 2.3.2: The left-hand picture shows the Dickman rho function (blue)
in comparison to the Ramaswami-approximation (red), the right-hand one
a plot of the function x ·
(u) with u = ln(x)/ ln(y) and y = 103 (blue) in
comparison to the precise count Ψ(x, y).

Smooth integers occur in many parts of algorithmic number theory and cryp-
tography as the success of many factoring algorithms depends on questions
concerning smooth integers (see Section 3.4 or Section 3.5).

To be more precise, we will consider the function

Ψ(x, y) := # {n ≤ x n is y-smooth} .

A remarkable result on the order of magnitude of Ψ(x, y) was proven by
Karl Dickman (ca. 1862–1940). He proved

Theorem 2.3.5 (Dickman 1930). Let u > 0 be a constant. Then there is
a real number
(u) > 0 with

Ψ(x, x
1
u) ≈
(u)x.

More precisely, this holds for

(u) =
{

1, if 0 < u ≤ 1,
1
u ·
∫ u

u−1
(t) dt , if u > 1.
�

It is (moderately) easy to compute
(u) numerically (see Figure 2.3.2) using,
for example, the trapezoid method. For 1 < u ≤ 2, we have the explicit
expression
(u) = 1 − ln u, but there is no closed form known for u > 2
(using elementary functions only). Dickman himself did not give a rigorous
(quantitative) proof of Theorem 2.3.5. The first quantitative results were
given by Ramaswami (1949), who showed that

(2.3.6) ln
(u) ∈ −(1 + o (1))u ln u.

2.3. COUNTING OTHER CLASSES OF INTEGERS 25

Dickman’s Theorem 2.3.5 can be employed as an estimate for Ψ(x, y) as
long as u = ln x/ ln y is fixed (or at least bounded). However, in many
applications that will pop up later, it is necessary to have estimates for
wider ranges of u. The first step in this direction was done by de Bruijn
(1951). There, it was shown that for any ε > 0 the estimate

Ψ(x, y) ∈
(

1 + O
(ln(u + 1)

ln y

))

(u)x

holds uniformly in the interval 1 ≤ u ≤ (ln y)
3
5 −ε. This was substantially

improved by Hildebrand (1986), who showed that the statement even holds
uniformly in the range

1 ≤ u ≤ exp
(
(ln y)

3
5 −ε
)

.

Due to our inability to find closed forms for
(u) there were also inves-
tigations how far estimates in the spirit of (2.3.6) hold. Canfield, Erdős
& Pomerance proved in 1983 an estimate which is extremely useful for al-
gorithmic number theory. We have (as x tends to infinity) uniformly for
u < (1 − ε) ln x

ln ln x that
Ψ(x, x

1
u) ∈ u−u+o(u)x.

It is interesting to note that finding an estimate Ψ(x, x
1
u) ≈
(u)x in such a

wide range, would readily imply the Riemann Hypothesis 2.2.14, see Hilde-
brand (1985).

2.3.3. Buhštab: Results on rough integers. In contrast to smooth
integers, which we described in the previous section, the dual problem did,
by far, not attract that much attention.

Definition 2.3.7 (rough integer). Let n be a positive integer. Then n is
called y-rough if every prime factor of n exceeds y.

Note that there are integers that are neither y-smooth nor y-rough.

Example 2.3.8. The integer 6 = 2 · 3 it neither 2-smooth nor 2-rough. ♦

The corresponding counting function for those integers is

Φ(x, y) = # {n ≤ x n is y-rough} .

(1905–1990)8 showed in 1937
8Aleksandr Adolfovich Buhštab

26 CHAPTER 2. PRIME NUMBERS

Figure 2.3.3: The left-hand picture shows the omega function
together with its asymptote exp(−γ), the right-hand one plot of the function
ω(u) x

ln y with u = ln(x)/ ln(y) and y = 103 (blue) in comparison to the
precise count Φ(x, y).

Theorem 2.3.9 (1937). Let u > 1 be a constant. Then there is
a real number ω(u) > 0 with

Ψ(x, x
1
u) ≈ ω(u)u

x

ln x
.

More precisely,

ω(u) =

⎧⎨⎩
1
u , if 1 < u ≤ 2,
1
u ·
(
1 +

∫ u−1
1 ω(t) dt

)
, if u > 2.

�

In Figure 2.3.3 the omega function is depicted. Rough numbers
occur in many parts of algorithmic number theory and cryptography, inter-
estingly often in the same context as smooth numbers do. Questions on how
numbers that are simultaneously C-smooth and B-rough (you might want
to call them grained) behave are to be discussed in Chapter 6.

Chapter 3

Algorithmic number theory

3.1. Basic algorithms

After having explored various results in analytic number theory, we will now
delve into the computational aspects of number theory. The methods pre-
sented in the sequel have (unsurprisingly) their roots in ancient times, but
starting with the emergence of computers, the field experienced a rapid de-
velopment, leading for example to sub-exponential factorization algorithms
(tackling the Factorization Problem 2.1.3) and a deterministic polynomial-
time algorithms for primality testing (tackling Problem 2.1.5). As alluded
in the introduction to Section 2.3, one needs a thorough understanding of
several analytic aspects of number theory, in order to really understand
the issues of algorithmic number theory. These include, in particular, the
complexity of primality tests and factorization algorithms.

3.1.1. Euclid and the greatest common divisor. Computing the great-
est common divisor of two numbers is one of the oldest problem in compu-
tational number theory. We have the following basic theorem, dating back
to Euclid:

Theorem 3.1.1 (Euclid Elements, book VII, proposition 2). Let a, b be two
integers, where b is non-zero. Then have gcd(a, b) = gcd(b, a) = gcd(b, a mod b).
For b = 0 we have gcd(a, b) = a. �

This is the basis of one of the oldest computational methods, the Euclidean
algorithm, which efficiently computes the greatest common divisor of two
integers. The idea behind it is to successively apply the above theorem until
the second parameter equals zero:

27

28 CHAPTER 3. ALGORITHMIC NUMBER THEORY

Figure 3.1.1: On the left one finds a plot of the greatest common divisor
for 1 ≤ a, b ≤ 50, where the size of the result is indicated by the darkness
of the pixel. The right-hand picture shows the runtime of the Euclidean
Algorithm 3.1.2 on input (a, b), for 1 ≤ a, b ≤ 100. The large black area
(maximal number of steps) lies around the line b = ϕa, where ϕ = 1+

√
5

2 is
the golden ratio.

Euclidean Algorithm 3.1.2.

Input: Two positive integers a, b.
Output: gcd(a, b).
1. While b > 0 do
2. Set (a, b) = gcd(b, a mod b).
3. Return a.

Even though the algorithm is as simple as it can possibly be, its runtime
analysis is a little bit delicate. We will prove an upper bound on the number
of steps of the Euclidean Algorithm 3.1.2. Interestingly, the analysis will
involve a linearly recurrent sequence studied by Leonardo Fibonacci (ca.
1170–1250) in his “Liber abbaci” (1202), which are nowadays known as the
Fibonacci numbers Fn. These are defined by setting F0 = 0, F1 = 1 and

Fn = Fn−1 + Fn−2.

The Fibonacci numbers are closely related to the golden ratio ϕ = 1+
√

5
2 =

1.6180 by a formula already discovered by Abraham de Moivre (1667–1754)
in 1730.9 It is nowadays named after Jacques Philippe Marie Binet (1786–
1856) and known as

9To indicate how a real number was rounded we append a special symbol. Examples:
π = 3.14 = 3.142 = 3.1416 = 3.14159 . The height of the platform shows the size of
the left-out part and the direction of the antenna indicates whether actual value is larger
or smaller than displayed. We write, say, e = 2.72 as if the shorthand were exact.

3.1. BASIC ALGORITHMS 29

Binet’s Formula 3.1.3 (Binet 1843). Let ϕ = 1+
√

5
2 and ϕ = 1−√

5
2 . Then

we have for all n ≥ 0 that

Fn =
ϕn − ϕn

√
5

.

Proof. Consider the polynomial f = x2 − x− 1 ∈ R[x]. Any root α of f
fulfills α2 = α + 1 or equivalently for any n ≥ 1

αn = Fn · α + Fn−1.

Now, since ϕ and ϕ are both roots of f , we have ϕn = Fn · ϕ + Fn−1 and
ϕn = Fn · ϕ + Fn−1. Subtracting gives the claim for n > 0, and direct
inspection shows the claim for n = 0. �

There are many more connections of Fibonacci numbers and the golden
ratio: An example is that the quotient of two successive Fibonacci numbers
converges to the golden ratio. This can be seen by observing that by the
definition of the Fibonacci numbers we have

Fn+1

Fn
= 1 +

(
Fn

Fn−1

)−1
.

If now the quotients converge to a positive value ϕ, then we would have
ϕ = 1 + 1

ϕ , which is exactly the defining equation for the golden ratio. For
an illustration of this fact, see Figure 3.1.2. The connection of Fibonacci
numbers and the runtime of the Euclidean Algorithm 3.1.2 gets clear by

Lemma 3.1.4. Let a, b be positive integers with a > b. If the Euclidean
Algorithm 3.1.2 on input a, b performs exactly n recurrent calls, then a ≥
Fn+2 and b ≥ Fn+1. �

One can prove the lemma by induction on n. Indeed, we can also show that
the Euclidean Algorithm 3.1.2 runs longest when the input are two successive
Fibonacci numbers. For that let us say that a pair (a, b) is lexicographically
less than (a′, b′) if a < a′ or a = a′ and b < b′. Using this, we have

Theorem 3.1.5 (Lamé 1844). Let a, b be positive integers with a > b. If
the Euclidean Algorithm 3.1.2 on input a, b performs exactly n recurrent
calls, and (a, b) is lexicographically the smallest such input, then (a, b) =
(Fn+2, Fn+1). �

The proof of the theorem follows directly from Lemma 3.1.4 and elementary
properties of the Fibonacci numbers. We arrive at the worst-case runtime
estimate of the Euclidean Algorithm 3.1.2, which is

30 CHAPTER 3. ALGORITHMIC NUMBER THEORY

n Fn+1/Fn

1 1.0
2 2.0
3 1.5
4 1.66666667
5 1.6
6 1.625
7 1.61538462
8 1.61904762
9 1.61764706
10 1.61818182

Figure 3.1.2: On the left one finds a red spiral that grows proportional to the
quotient of two successive Fibonacci numbers, compared to a true golden
spiral that grows always proportional to the golden ratio ϕ = 1+

√
5

2 . The
right-hand table shows the convergence of quotients of successive Fibonacci
numbers to the golden ratio.

Corollary 3.1.6. The Euclidean Algorithm 3.1.2 on integers a, b with b ≤
N runs in at most logϕ(3 − ϕ)N ∈ O (log N) steps.

Proof. After one iteration of the Euclidean Algorithm 3.1.2, we have
b > a mod b, thus Theorem 3.1.5 applies, and the maximum number of steps
n occurs for b = Fn+1 and a mod b = Fn. Since b = Fn+1 < N , it follows by
Binet’s Formula 3.1.3 and the fact that

∣∣∣ϕn√
5

∣∣∣ < 0.5 the inequality ϕn+1√
5 < N .

Thus n < logϕ

√
5

ϕ N = logϕ(3 − ϕ)N . �

This shows that the Euclidean Algorithm 3.1.2 always needs a logarithmic
number of steps in the size of the second argument. Indeed, one can show
that when a, b are both uniformly chosen from [1, N], then heuristically the
algorithm runs on average with

12 ln 2
π2 ln N + 0.06

iterations. For details, see Knuth 1998, section 4.5.3.
The problem of computing the greatest common divisor is closely related

to the problem of computing the inverse of an integer. This can be easily
seen by a theorem proven for polynomials by Étienne Bézout (1730–1783)
in 1766, earlier proven for coprime integers by Claude Gaspar Bachet de
Méziriac (1581–1638) in 1612. It is nowadays known as

3.1. BASIC ALGORITHMS 31

Bézout’s Identity 3.1.7. Let a, b be integers, not both zero. Then there
are integers s, t such that

as + bt = gcd(a, b).

Proof. Let g be the smallest positive value of as+bt (where s, t range over
all integers). We claim that g = gcd(a, b). Clearly, since gcd(a, b) divides
both a and b, we have that gcd(a, b) divides g. We now show that also g
divides gcd(a, b). Assume g does not divide a. Then there are integers q and
r and 0 < r < g with a = qg +r. But then r = a(1− qs)+ bqt, contradicting
the choice of g. Similarly, one shows that g divides b, implying that g divides
gcd(a, b) and thus g = gcd(a, b). �

Consider now the case gcd(a, b) = 1. Then it is easy to give the inverse of a
modulo b by simply taking Bézout’s identity and reducing both sides of the
equation modulo b, giving

as + bt = as = gcd(a, b) = 1 (in Zb).

Thus s is the inverse of a modulo b. Indeed, it is possible to adapt the
Euclidean Algorithm 3.1.2 to also find on the way the Bézout coefficients s
and t, giving the

Extended Euclidean Algorithm 3.1.8.

Input: Two positive integers a, b.
Output: Integers s, t, g with g = gcd(a, b) and as + bt = g.

1. Set (s, t, g, u, v, h) = (1, 0, a, 0, 1, b).
2. While w > 0 do 3–4
3. Set q = g div h.
4. Set (s, t, g, u, v, h) = (u, v, h, s − qu, t − qv, g − qh).
5. Return (s,t,g).

The runtime analysis of the algorithm is very similar to the analysis of the
traditional Euclidean Algorithm 3.1.2.

3.1.2. Euler and the exponentiation. Another fundamental operation
in algorithmic number theory is to take an element g in a finite (multiplica-
tive) group G and compute ge for an integer e. The central result is due to
Joseph Louis de Lagrange (1736–1813) who proved the following

32 CHAPTER 3. ALGORITHMIC NUMBER THEORY

Theorem 3.1.9 (Lagrange 1770/71). Let G be a finite multiplicative group
and H be a subgroup of G. Then the number of elements in H divides the
number of elements in G.

Proof. This directly follows from the fact that the relation on G, by
defining g1 ∼ g2 if and only if there is h ∈ H, such that g1 = g2 · h, is an
equivalence relation. �

From this theorem we can deduce that the order of an element g in G divides
the group order of G. In other words: it shows that for any integer e we
have ge = ge mod #G. In the special case that G is the group of unities of the
ring Zm for m ∈ Z≥2, we obtain a result which Euler proved, namely

Theorem 3.1.10 (Euler 1760/61). For a ∈ Zm, we have

aϕ(m) = 1 in Zm,

where ϕ(m) is the function given in Definition 2.1.10. �

Note that this theorem directly gives an alternative way of computing the
inverse a−1 of an element a in Zm, by computing

a−1 = aϕ(m)−1 in Zm.

In order to compute it, it is of course necessary to find a better way for
computing ae than multiplying e copies of a. The following recursive algo-
rithm works for arbitrary elements of semigroups, that is a set with a binary,
associative operation. Examples for semigroups are the integers modulo m,
elements of a finite field and also points on an elliptic curve. For an example
of the latter see Chapter 4. We obtain the

3.1. BASIC ALGORITHMS 33

Fast Exponentiation Algorithm 3.1.11.

Input: An element g of a semigroup G, a non-negative integer e.
Output: ge ∈ G.

1. If e = 0 then
2. Return 1.
3. If e mod 2 = 0 then
4. Let h be the output of the algorithm on input g and e div 2.
5. Return h2.
6. Else
7. Let h be the output of the algorithm on input g and (e − 1) div 2.
8. Return g · h2.

The runtime of the algorithm (at least the number of recursive steps)
is much simpler to analyze than the Euclidean Algorithm 3.1.2: Since in
every step the number of bits of e decreases by exactly one bit and the
algorithm terminates when e equals zero, the algorithm terminates after
exactly
log2(e)� recursive steps. In each step we have to compute one square
in G and in the case e mod 2 = 1 additionally one multiplication in G. This
leads to a worst case runtime of 2(
log2(e)� + 1) ∈ O (log e) multiplications
in G, noting that a square h2 can be computed in any semigroup G by
simply multiplying h with itself. The above estimate gets very crude while
working in a domain where squaring can be done very efficiently comparing
to multiplication (like a field extension of F2 represented by a normal basis).

3.1.3. Sun Tzǔ: The chinese remainder theorem. To prove proper-
ties of the integers modulo m, it is often very helpful to employ the

Chinese Remainder Theorem 3.1.12. Let m1, . . . , m� be positive, pair-
wise relatively prime integers and let m = m1 · · ·m�. Then for all integers
a1, . . . , a� there is exactly one integer 0 ≤ a < m, such that

a = a1, in Zm1

...
...

a = a�, in Zm�
.

Proof. We provide a constructive proof for finding a. The quantity
Mi =

(
m
mi

)ϕ(mi)
satisfies Mi = 1 in Zmi and Mk = 0 in Zmk

for k
= i

34 CHAPTER 3. ALGORITHMIC NUMBER THEORY

Figure 3.1.3: Front cover of Jiushao’s “Mathematical Treatise in Nine Sec-
tions”, published in 1247.

by Theorem 3.1.10. Thus

a = a1M1 + · · · + a�M�

satisfies all conditions modulo m. �

Following Knuth (1998) the roots of the theorem date back to ancient China,
in the work of Sun Zi (ca. 400–460), published very roughly in the fifth
century A.D.. It seems that the Chinese Remainder Theorem 3.1.12 was
proven the first time seems to be in work of Qin Jiushao (1202–1261) in
1247.

3.1.4. Legendre and Jacobi: Quadratic (non)residues.

Definition 3.1.13 (Quadratic (non)residue). Let m be a positive integer
and a ∈ Z×

m. Then a is a quadratic residue modulo m, if there is an element
b ∈ Z×

m such that a = b2. If such b does not exist, we call a a quadratic
nonresidue modulo m.

A special symbol – fashionable for that time – was introduced by Legendre in
1798, An VI, that denotes some kind of characteristic function of quadratic
residuosity modulo odd primes. It is given by

3.1. BASIC ALGORITHMS 35

Definition 3.1.14 (Legendre symbol). Let p be an odd prime, and a ∈ Z.
Then we define the Legendre symbol

(a
p

)
by

(
a

p

)
=

⎧⎪⎪⎨⎪⎪⎩
1, if a is a quadratic residue modulo p,
0, if p divides a,
−1, if a is a quadratic nonresidue modulo p.

To see how we can compute the symbol easily, we can employ a special case
of Euler’s Theorem 3.1.10 for prime moduli. The theorem was first stated
by Pierre de Fermat (1601/1607/1608–1665) in a letter to Bernard Frénicle
de Bessy (ca. 1605–1675) in 1640 (as usual, without a proof):

Et cette proposition est généralement vraie en toutes pro-
gressions et en tous nombres premiers; de quoi je vous envoierois
la démonstration, si je n’appréhendois d’être trop long.10

The first proof was given by Euler. The theorem is now known as

Fermat’s Little Theorem 3.1.15 (Euler 1741). Let p be a prime and
let a ∈ Z. Then ap = a in Zp. �

From the theorem we obtain directly

Euler’s Criterion 3.1.16 (Euler 1761). Let p be an odd prime and a ∈
Z. Then (

a

p

)
= a

p−1
2 modulo p.

Proof. If p divides a, the claim is true by definition. Now let a be a
quadratic residue modulo p. Then there is b ∈ Z such that b2 = a modulo p.
But then a

p−1
2 = bp−1 = 1 by Fermat’s Little Theorem 3.1.15. By the same

theorem we will always have a
p−1

2 = ±1, which shows the result also for
quadratic nonresidues modulo p. �

A generalization to composite moduli was introduced by Carl Gustav Jacob
Jacobi (1804–1851) in 1837:

10And this proposition is generally true for all progressions and for all prime numbers;
the proof of which I would send to you, if I were not afraid to be too long.

36 CHAPTER 3. ALGORITHMIC NUMBER THEORY

Definition 3.1.17 (Jacobi symbol). Let n be an odd integer with unique
prime factorization n =

∏
i pei

i . Then the Jacobi symbol
(a

n

)
is defined as(

a

n

)
=
∏

i

(
a

pi

)ei

.

The computation of the Jacobi symbol is not as simple as the computation of
the Legendre symbol, since a repeated application of Euler’s Criterion 3.1.16
would require the factorization of n, which is in general difficult to obtain.
To avoid this obstacle, one typically employs a theorem Gauß proved the
first time in his “Disquisitiones Arithmeticae”, articles 107-150. It is known
as the

Law of Quadratic Reciprocity 3.1.18 (Gauß 1801). Let m, n be two
coprime positive integers. Then(

m

n

)
·
(

n

m

)
= (−1)

(m−1)(n−1)
4 . �

Note that for the proper definition of the symbols used in the theorem one
needs to consider the case of even moduli separately. The computation of
the Jacobi symbol is now essentially a multi-application of this theorem:

Algorithm 3.1.19. Computing the Jacobi symbol.
Input: A positive integer m and a positive odd integer n.
Output: The Jacobi symbol

(m
n

)
.

1. Set m = m mod n.
2. Set t = 1.
3. While m
= 0 do 4–11
4. While m mod 2 = 0 do 5–7
5. Set m = m/2.
6. If n mod 8 ∈ {3, 5} then
7. Set t = −t.
8. Set (m, n) = (n, m).
9. If m = n = 3 modulo 4 then

10. Set t = −t.
11. Set m = m mod n.
12. If m = 1 then
13. Return t.
14. Return 0.

3.2. NEWTON: RECOGNIZING PERFECT POWERS 37

Figure 3.1.4: The different cases of quadratic reciprocity, as described by
Gauß in his “Disquisitiones Arithmeticae”, in 1801.

One important property used for applications in algorithmic number the-
ory and cryptography is that the Jacobi symbol can be efficiently com-
puted (without knowing the prime factorization of the modulus n), al-
though the known methods to compute it do not help in deciding quadratic
(non)residuosity modulo n. This can be seen by observing that a quadratic
nonresidue a modulo p1 and p2 is also a quadratic nonresidue modulo p1p2,
but for the corresponding Jacobi symbol we have

(
a

p1p2

)
=
(

a
p1

)(
a
p2

)
= 1.

3.2. Newton: Recognizing perfect powers

Some primality tests and factoring algorithms require that the input number
n should not be a perfect power. Sir Isaac Newton (1643–1727 (greg.))
described in his famous book “The Method of Fluxions and Infinite Series
with its Application to the Geometry of Curve-Lines”, published in 1671,
a new method for finding a root of a polynomial equation. He essentially
proposed to find a zero of a given polynomial f(x) ∈ R[x] by choosing an

38 CHAPTER 3. ALGORITHMIC NUMBER THEORY

Figure 3.2.1: Illustration of the convergence of the Newton iteration for the
polynomial f(x) = x3 − 1 for different starting values x0 ∈ C. The colors
red, green, and blue indicate a convergence to the first, second, and third
root of the polynomial, respectively. The brightness visualizes the number
of iteration necessary for convergence, i.e. in the white areas there is no
convergence.

arbitrary starting value x0, and to perform the iteration

(3.2.1) xn+1 = xn −
f(xn)
f ′(xn)

.

Questions on the runtime, the convergence, and the numerical stability of
this procedure go far beyond the scope of this thesis, especially when one
allows the polynomial to attain complex values. A beautiful illustration of
the dynamic of the convergence is given in Figure 3.2.1. Using the Newton
iteration (3.2.1) it is now simple to extract the integer part of a k-th root
of a given positive integer n, since the problem of extracting it is equivalent
to finding a root of the polynomial f(x) = xk − n. For these polynomials
(3.2.1) simplifies to

xn+1 =
1
k

(
(k − 1)xn +

n

xk−1
n

)
,

giving the following

3.3. PRIMALITY TESTING 39

Algorithm 3.2.2. Integer part of a k-th root.
Input: An integer n ≥ 0 and a positive integer k ≥ 2.
Output: The integer m =
 k

√
n�.

1. If n = 0 then
2. Return 0.
3. Set y = 2	(
log2 n�+1)/k�.
4. Repeat 5–6
5. Set x = y.
6. Set y =

⌊(
(k − 1)x +

⌊
n

xk−1

⌋)
/k
⌋
.

7. Until y ≥ x
8. Return x.

As indicated above, we are not going to analyze correctness and runtime
of this algorithm. Crandall & Pomerance (2005, section 9.2.2) say that it
is possible to show that the algorithm uses O (log log n) iterations. We are
now ready to state the

Perfect Power Test 3.2.3.

Input: An integer n ≥ 0.
Output: Either “perfect power” or “not a perfect power”.

1. For k from 2 to
log2 n� do 2–5
2. Compute m =
 k

√
n� using Algorithm 3.2.2.

3. Compute n′ = mk using the Fast Exponentiation Algorithm 3.1.11.
4. If n′ = n then
5. Return “perfect power”.
6. Return “not a perfect power”.

The correctness of the algorithm is easy to show, since the largest inte-
ger k for which n = mk can possibly hold is clearly
log2 n�. The run-
time of the algorithm are O (log n) calls of Algorithm 3.2.2. In every call
of Algorithm 3.2.2 we need to compute O (log log n) k-th powers. Thus,
we can estimate the overall runtime of the Perfect Power Test 3.2.3 as
O
(
log2 log n · log n

)
multiplications of integers not larger than n.

3.3. Primality testing

We are now going to explore various algorithmic methods for tackling Prob-
lem 2.1.5, the problem of deciding whether an integer is prime. All the fol-
lowing tests have in common that they employ an easily checkable condition

40 CHAPTER 3. ALGORITHMIC NUMBER THEORY

C that holds for all prime numbers. Then, as explained at the end of Sec-
tion 2.1.1, given some integer n, one can simply check if the condition holds
for it. If it does not, we can be sure that n is composite, otherwise n might
be prime or might be composite and we call n a C probable prime. Any
composite integer that fulfills the condition C is called a C-pseudoprime.
The quality (that is success probability) of this method clearly depends on
the proportion of C probable primes to genuine primes. Optimally there
are no C-pseudoprimes and the test would run in deterministic polynomial
time. Since all tests below follow the above approach, it would be better to
call them compositeness tests instead of primality tests. We will, however,
most of the time use the latter term in abuse of language.

3.3.1. Fermat’s test. A very simple test that comes into mind relies on
Fermat’s Little Theorem 3.1.15. Recall that it says that for a prime p and
any integer a we have

(3.3.1) ap = a modulo p.

When a is coprime to p we can divide the above expression by a to obtain
ap−1 = 1 in Zp, for all primes p and integers a coprime to p. Any integer
n that satisfies an = a modulo n is called a (Fermat) probable prime to the
base a. If n is composite, we call n a (Fermat) pseudoprime to the base a.
We exclude the base a = 1 and consider in the following just the case a ≥ 2.

Example 3.3.2. The number 15 = 3 · 5 is a Fermat pseudoprime to the
base 4 since 415 = 4 in Z15. Similarly, 4 is a pseudoprime to the base 5.
Table 3.3.1 lists the first pseudoprimes for several choices of a. ♦

Indeed, it is possible to show that pseudoprimes are rare compared to gen-
uine primes as stated by the following

Theorem 3.3.3 (Erdős 1950, Li 1997). For each fixed integer a ≥ 2 the
number of Fermat pseudoprimes to the base a up to a bound x is o(π(x))
for x tending to infinity. �

The famous algorithm reads as the

Fermat Test 3.3.4.

Input: An integer n > 3 and an integer 1 < a < n− 1.
Output: Either “probable prime to the base a” or “composite”.

3.3. PRIMALITY TESTING 41

k π(10k) Li(10k)
1 4 5.1204
2 25 29.081
3 168 176.5645
4 1229 1245.0921
5 9592 9628.7638
6 78498 78626.504
7 664579 664917.3599
8 5761455 5762208.3303
9 50847534 50849233.9118
10 455052511 455055613.541

Table 3.3.1: The first ten pseudoprimes to the bases a = 2 . . . 7.

1. Compute b = an−1 in Zn using the Fast Exponentiation Algorithm 3.1.11.
2. If b = 1 then
3. Return “probable prime to the base a”.
4. Else
5. “composite”.

The asymptotic runtime of the algorithm is clearly the same as the runtime
of the Fast Exponentiation Algorithm 3.1.11, namely O (log n) arithmetic
operations modulo n. But what about the error probability of the algorithm?
We have seen in Theorem 3.3.3 that the number of Fermat pseudoprimes to
the base a are rare when compared to the number of primes. If there were
only finitely many such pseudoprimes (for any fixed a) our algorithm would
work well! However, we have

Theorem 3.3.5. For every integer a ≥ 2 there are infinitely many Fermat
pseudoprimes to the base a. �

For a proof of the theorem see for example Crandall & Pomerance (2005,
section 3.4.1).

So, what can we do? We could try to run the Fermat Test 3.3.4 for
several choices of a and hope that there are few (if not no) numbers that
are simultaneously pseudoprime to these different bases.

Example 3.3.6. We have seen that the number 15 = 3 · 5 is a Fermat
pseudoprime to the base 4. But it is not a pseudoprime to the base 5.
Similarly 4 is a pseudoprime to the base 5 but not to the base 4. ♦

42 CHAPTER 3. ALGORITHMIC NUMBER THEORY

Indeed, all the reasoning above works when we are not especially unlucky and
get as an input a so called Carmichael number, named after Robert Daniel
Carmichael (1879–1967), who first studied them in 1909/10. These numbers
have the interesting property that they are pseudoprime to any basis a,
motivating

Definition 3.3.7 (Carmichael number). A (composite) number for which
an = a modulo n for all integers a is called a Carmichael number.

Example 3.3.8. The integer n = 561 = 3 ·11 ·17 is the smallest Carmichael
number. Also the numbers

1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341

are Carmichael numbers. ♦

Given the prime factorization of n it is simple to tell whether n is a
Carmichael number. The criterion was found by Alwin Reinhold Korselt
(1864–1947), in 1899, more than a decade before Carmichael gave the first
example. It reads as the

Korselt Criterion 3.3.9. An integer n is a Carmichael number if and
only if n is positive, composite, squarefree, and for each prime p dividing n
the number p − 1 divides n − 1.

For a proof of the theorem see, for example, Crandall & Pomerance (2005,
section 3.4.2). By the above discussion there are numbers for which the
Fermat Test 3.3.4 completely fails. This would be not that bad if there were
only finitely many Carmichael numbers, or if all Carmichael numbers would
have at least one small prime factor. The latter was disproven in Alford
et al. (1994a) under a certain number theoretic conjecture, and the former
was disproven unconditionally and is summed up in

Theorem 3.3.10 (Alford et al. 1994b). There are infinitely many Carmi-
chael numbers. More precisely, for a sufficiently large x the number C(x) of
Carmichael numbers up to x satisfies C(x) > x2/7. �

So this somewhat destroys all hope to use the Fermat Test 3.3.4 for testing
primality. How can we fix that? We could try to find a stronger condition
than the Fermat condition that holds for all primes and hope that then there
are not infinitely many composites on which the test always fails.

3.3. PRIMALITY TESTING 43

a pseudoprimes to the base a

2 341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701
3 91, 121, 286, 671, 703, 949, 1105, 1541, 1729, 1891
4 15, 85, 91, 341, 435, 451, 561, 645, 703, 1105
5 4, 124, 217, 561, 781, 1541, 1729, 1891, 2821, 4123
6 35, 185, 217, 301, 481, 1105, 1111, 1261, 1333, 1729
7 6, 25, 325, 561, 703, 817, 1105, 1825, 2101, 2353

Table 3.3.2: The first ten Euler pseudoprimes to the bases a = 2 . . . 7.

3.3.2. The Solovay-Strassen test. Consider again the Fermat equation
(3.3.1). From it we have deduced Euler’s Criterion 3.1.16 that says that for
any prime p we have

(a
p

)
= a

p−1
2 modulo p. Can we use this for a primality

test? Similarly to our definitions above, let us call an odd integer n an
Euler-Jacobi probable prime to the base a, or short an Euler probable prime
to the base a, if

(3.3.11)
(

a

n

)
= a

n−1
2 modulo n.

Accordingly, we call a composite integer n that satisfies (3.3.11) an Euler
pseudoprime to the base a. Also here we exclude the base a = 1 and consider
just the case a ≥ 2. Additionally, we now need to require that a and n are
coprime. We do not need to explicitly compute a greatest common divisor
here, since the computation is already subsumed by checking whether the
value of the Jacobi symbol equals zero. From the definitions it becomes
directly clear that the notion of an Euler probable prime is stronger than
the notion of a Fermat probable prime: Indeed, by squaring both sides of
(3.3.11) we see that any Euler probable prime to the base a is also a Fermat
probable prime to the base a. The converse is, however, not true. Also the
statement becomes false if we drop the coprimality condition on a. This
is due to the fact that when both sides of (3.3.11) are zero (making the
equation true), then squaring will not yield the Fermat equation (3.3.1).

Example 3.3.12. As shown in Example 3.3.2 the number n = 15 is a
Fermat pseudoprime to the base a = 4. It is, however, not an Euler pseudo-
prime to the base 4 since 4

15−1
2 = 4
= 1 =

(4
15
)

modulo 15. In Table 3.3.2
one finds the first Euler pseudoprimes for several choices of a. ♦

44 CHAPTER 3. ALGORITHMIC NUMBER THEORY

Solovay-Strassen Test 3.3.13.

Input: An odd integer n > 3 and an integer 1 < a < n− 1.
Output: Either “Euler probable prime to the base a” or “composite”.

1. Compute b =
(

a
n

)
using Algorithm 3.1.19.

2. If b = 0 then
3. Return “composite”.
4. Compute c = a

n−1
2 in Zn using the Fast Exponentiation Algorithm 3.1.11.

5. If b = c then
6. Return “Euler probable prime to the base a”.
7. Else
8. “composite”.

The asymptotic runtime of the algorithm is the same as the asymptotic
runtime of the Fermat Test 3.3.4, namely O (log n) arithmetic operations
modulo n. What can we say about the error probability of the algorithm?

Theorem 3.3.14. For all integers n, define the set

E(n) =
{

a ∈ Z×
n

(
a

n

)
= a

n−1
2 modulo n

}
.

Then E(n) = Z×
n if and only if n is prime. For composite n, we have

#E(n) ≤ 1
2ϕ(n), where ϕ(m) is the Euler ϕ-function (see Definition 2.1.10).

Proof. Assume n is an odd prime. Then
(a

n

)
= a

n−1
2 modulo n by

(3.3.11). On the other hand, assume that n is composite but E(n) = Z×
n .

Then n is a Carmichael number since for all a ∈ Z×
n , we have an−1 =(

a
n

)2 = 1. Thus by the Korselt Criterion 3.3.9 the integer n is composite
and squarefree and we can write n = p·m for a prime p and an integer m > 1
coprime to p. Take some quadratic non-residue b ∈ Z×

p , i.e.
(

b
p

)
= −1. Then

there is an integer a such that a = b in Zp and a = 1 in Zm. By the definition
of the Jacobi symbol, we have(

a

n

)
=
(

a

p

)
·
(

a

m

)
=
(

b

p

)
·
(1

m

)
= −1.

Thus by assumption a
n−1

2 = −1 modulo m, contradicting a = 1 modulo m.
This implies that a ∈ Z×

n \ E(n) and since E(n) is a subgroup of Z×
n the

theorem is proven. �

3.3. PRIMALITY TESTING 45

The theorem implies that the Solovay-Strassen Test 3.3.13 will answer cor-
rectly “composite” on a composite input n in at least half of the choices of
a. Thus we can decide compositeness of an integer n in random polynomial
time (by calling the Solovay-Strassen Test 3.3.13 repeatedly with randomly
selected parameter a coprime to n), obtaining

Theorem 3.3.15 (Solovay & Strassen 1977). The set of composites can be
decided in randomized polynomial time. �

The drawback of this approach is that if one analyzes closely the running
time of the algorithm one notes that the algorithm is only roughly half as fast
as the Fermat Test 3.3.4, since besides a power one also needs to compute
the Jacobi symbol. Can we get rid of this tiny last obstacle?

3.3.3. Miller and Rabin: The strong primality test. Let us take
another closer look at the Fermat equation (3.3.1). Assuming our parameter
a is coprime to the odd number we wish to test for primality, then the
exponent n − 1 to which we take a is even and we will have to perform
several squarings on the way of computing b = an−1. Now if the number we
are testing is indeed prime, then the square roots of 1 are ±1. This leads to

Theorem 3.3.16. Let p be a prime and a ∈ Z such that a is not divisible
by p. Write p − 1 = 2s · t, with t odd. Then{

at = 1 in Zp, or
a2it = −1 in Zp for some 0 ≤ i < s− 1.

�

This fact was first used for a primality test by 11 in 1966/67.
A decade later the test was rediscovered by Brillhart, Lehmer & Selfridge
(1975). Crandall & Pomerance attribute the rediscovery to John Lewis
Selfridge (1927–2010). At about the same time the test was published again
in Miller (1975) as a deterministic primality test (see below) and made
probabilistic in Rabin (1980).

As before, we call an integer n with n − 1 = 2s · t for an odd t a strong
probable prime to the base a, if

(3.3.17)
{

at = 1 in Zn, or
a2it = −1 in Zn, for some 0 ≤ i < s− 1,

11M. M. Artjuhov

46 CHAPTER 3. ALGORITHMIC NUMBER THEORY

a Euler pseudoprimes to the base a

2 561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 6601
3 121, 703, 1729, 1891, 2821, 3281, 7381, 8401, 8911, 10585
4 341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701
5 781, 1541, 1729, 5461, 5611, 6601, 7449, 7813, 11041, 12801
6 217, 481, 1111, 1261, 1729, 2701, 3589, 3913, 5713, 6533
7 25, 325, 703, 2101, 2353, 2465, 3277, 4525, 11041, 13665

Table 3.3.3: The first ten strong pseudoprimes to the bases a = 2 . . . 7.

where we exclude the base a = 1 and consider just the case a ≥ 2. If
the strong probable prime n is composite, we call n a strong pseudoprime
to the base a. One can see that each strong pseudoprime is also an Euler
pseudoprime from

Theorem 3.3.18 (Pomerance et al. 1980). Any strong pseudoprime n to
the base a is also Euler pseudoprime to the base a. �

Example 3.3.19. As shown in Example 3.3.12 the Carmichael number n =
561 = 1+24 ·35 is a Euler pseudoprime to the base a = 2. It is, however, not
a strong pseudoprime to the base 2 since 235
= ±1 and 270
= 2140
= −1 but
2280 = 1 modulo 561. In Table 3.3.3 one finds the first strong pseudoprimes
for several choices of a. ♦

Strong Test 3.3.20.

Input: An odd integer n > 3, written as n − 1 = 2s · t, and an integer
1 < a < n− 1.

Output: Either “Strong probable prime to the base a” or “composite”.

1. Compute b = at in Zn using the Fast Exponentiation Algorithm 3.1.11.
2. If b = ±1 then
3. Return “Strong probable prime to the base a”.
4. For i from 2 to s − 1 do 5–7
5. Set b = b2 in Zn.
6. If b = −1 then
7. Return “Strong probable prime to the base a”.
8. Return “composite”.

3.3. PRIMALITY TESTING 47

The asymptotic runtime of the algorithm is clearly the same as the asymp-
totic runtime of the Fermat Test 3.3.4, namely O (log n) arithmetic opera-
tions modulo n. By Theorem 3.3.18, the error probability is bounded by 1

2 .
One can show a bit more, which we state as

Theorem 3.3.21 (Monier 1980, Rabin 1980). For all integers n, define the
set

S(n) =
{
a ∈ Z×

n n is a strong probable prime to the base a
}

.

Then S(n) = Z×
n if and only if n is prime. For composite n we have

#S(n) ≤ 1
4ϕ(n). �

We call any element from Z×
n \S(n) a strong witness (for the compositeness)

of n. As already indicated at the end of Section 2.2.2 the Strong Test 3.3.20
can be made deterministic under the Extended Riemann Hypothesis 2.2.20,
thus conditionally deciding primality in deterministic polynomial time:

Miller Primality Test 3.3.22.

Input: An odd integer n > 3.
Output: Either “prime” or “composite”.

1. Set W = min(
2 ln2 n�, n − 1).
2. For a from 2 to W do 3–5
3. Call the Strong Test 3.3.20 on input n and a.
4. If n is “composite” then
5. Return “composite”.
6. Return “prime”.

The asymptotic runtime of the algorithm is O
(
log3 n

)
arithmetic operations

modulo n, since for n > 17 we will always have 2 ln2 n ≤ n − 1. For the
correctness of the algorithm we state

Theorem 3.3.23 (Miller 1975). If we assume the Extended Riemann Hy-
pothesis 2.2.20 then the least witness for an odd composite integer n is
smaller than 2 ln2 n. �

We can also construct a random compositeness test by calling the Strong
Test 3.3.20 on a randomly selected parameter a, obtaining the

48 CHAPTER 3. ALGORITHMIC NUMBER THEORY

Random Compositeness Test 3.3.24.

Input: An integer n > 3.
Output: Either “Strong probable prime to the base a” or “composite with

witness a”.

1. Select a uniformly at random from the interval [2, n − 2].
2. Call the Strong Test 3.3.20 on input n and a.
3. If n is “Strong probable prime to the base a” then
4. Return “Strong probable prime to the base a”.
5. Return “Composite with witness a”.

To understand the runtime of the algorithm, it is necessary to first analyze
how long it will take to generate an integer a uniformly at random from the
interval [2, n − 2]. A straightforward approach is to repeatedly generate an
integer with k =
log2 n�+ 1 bits, until the result is in the desired interval.
How often will we have to iterate? Potentially an unbound number of times!
But the expected number of iterations can be estimated as follows: If we are
running a while loop that exits independently with probability p, then it
is not difficult to show that the expected number of iterations is 1

p : Write
q = 1 − p and denote by X the number of iterations until the loop exits.
Then for any positive integer i we have

prob(X = i) = qi−1 · p.

By the definition of the expected value EX we obtain

EX = p ·
∑
i≥0

i · qi−1 = p ·
∑
i≥0

∂

∂q
· qi = p · ∂

∂q

1
1 − q

=
1
p

.

Thus, in the above selection process we have an expected runtime of at most
2 iterations, which gives for the runtime of the Random Compositeness
Test 3.3.24 an expected runtime of O (log n) arithmetic operations modulo
n. The error probability of the algorithm is by Theorem 3.3.21 at most 1

4 .
To decrease this probability as much as we wish, we can call the Random
Compositeness Test 3.3.24 repeatedly, giving after t calls of the test an error
probability of at most 4−t. We can therefore use the

3.3. PRIMALITY TESTING 49

Practical Prime Generator 3.3.25.

Input: A bound x and an error probability ε.
Output: A randomly selected number n ≤ x that is prime with probability

at least 1 − ε.

1. Set t = ln ln x−ln ε
ln 4 .

2. Repeat
3. Choose an odd integer n at random from the interval [3, x].
4. Until the Strong Test 3.3.20 returns on input n “Strong probable prime

to the base a”, a number of t times in succession.

5. Return n.

It can be shown that the algorithm’s output is indeed prime with probability
at least 1− ε (where the probability is taken over the random choices of the
algorithm, since, of course, any fixed number is prime with probability 1 or
0, depending on whether it actually is prime or not). The algorithm uses
an expected number of O (k) calls to the Strong Test 3.3.20, where k is the
bitlength of x. For details, see for example Bach & Shallit (1996, section
9.7).

3.3.4. The AKS test. We finish the section on primality testing with a
short description of the famous AKS test (Agrawal, Kayal & Saxena 2004),
which is a deterministic polynomial time algorithm for testing primality. It
is based on the following simple

Lemma 3.3.26. Let n ≥ 2 be a positive integer and a ∈ Z coprime to n.
Then n is prime if and only if

(3.3.27) (x + a)n = xn + a in Zn[x]

Proof. Consider the expansion of (x + a)n. For 0 ≤ j ≤ n the coefficient
of xj is

(n
j

)
an−j. If n is prime then

(n
j

)
= 0 in Zn for 1 < j < n and(n

0
)

=
(n

n

)
= 1. Consider now a composite n, let q be a prime and k ∈ N>0

maximal, such that qk divides n. Then qk does not divide
(n

q

)
and is coprime

to an−q and thus nonzero in Zn. This proves the lemma. �

Note that equation (3.3.27) holds if and only if n is prime. The problem is,
however, that the expansion of (x + a)n in Z[x] has far too many terms to
be evaluated quickly. Agrawal, Kayal & Saxena’s idea was now to consider
equation (3.3.27) modulo small degree polynomials f ∈ Zn[x], i.e. we check

(3.3.28) (x + a)n = xn + a in Zn[x]/(f(x))

50 CHAPTER 3. ALGORITHMIC NUMBER THEORY

This has the huge benefit that it enables us to actually evaluate the condi-
tion quickly, but it might destroy the equivalence of the statement and the
primality of n. Consider, for example, the case a = 1 and the polynomial
f = x + 1. Then equation (3.3.28) reads as

2n = 2 in Zn

which is nothing but the Fermat condition (3.3.1) to the base 2. The brilliant
idea was now to consider equation (3.3.28) using a polynomial of the form
xr − 1 and check the condition for several choices of a giving the

AKS Test 3.3.29.

Input: An integer n ≥ 2.
Output: Either “prime” or “composite”.

1. Decide whether n is a perfect power using the Perfect Power Test 3.2.3.
2. If n is a perfect power then
3. Return “composite”.
4. Find the smallest r, such that the order of n in Z×

r exceeds log2
2 n.

5. If n has a proper factor in [2,
√

ϕ(r) log n] then
6. Return “composite”.
7. For a from 1 to

√
ϕ(r) log n] do 8–9

8. If (x + a)n
= xn + a in Zn[x]/(xr − 1) then
9. Return “composite”.

10. Return “prime”.

Following Crandall & Pomerance (2005, section 4.5.2), the runtime of the
algorithm can be estimated as O

(
ln16.5 n

)
bit operations. The correctness

follows from

Theorem 3.3.30 (Agrawal et al. 2004). Let n ≥ 2 and r be integers such
that the order of n modulo r exceeds log2

2 n. If the congruence (x + a)n =
xn + a holds in Zn[x]/(xr − 1) for all integers a with 0 ≤ a ≤

√
ϕ(r) log2 n

and n and has a prime factor exceeding
√

ϕ(r) log2 n, then n is a perfect
power. In other words, if n is not a perfect power and has only prime factors
in the interval [2,

√
ϕ(r) log2 n], then n must be prime. �

Corollary 3.3.31 (Agrawal et al. 2004). The set of primes can be decided
in deterministic polynomial time. �

3.4. FACTORING ALGORITHMS BY SIEVING 51

3.4. Factoring algorithms by sieving

We now focus on computational aspects of the Factorization Problem 2.1.3.
There are two fundamentally different approaches for factoring: sieving al-
gorithms, in which one ultimately wishes to find a non-trivial congruence
of squares, and group based approaches, where one tries to exploit special
properties of the size of certain groups like elliptic curves. We start with
a discussion of the former kind of algorithms following in our exposition
Pomerance (1996).

Suppose you wish to factor a given integer n ≥ 2. A very old approach
was described first by Fermat in a letter to Marin Mersenne (1588–1648) in
1647: After being asked by Mersenne whether the number n = 100895598169
was prime, he responded in this letter that it was indeed not prime and ex-
plained how he factored it. He noticed that x2 = 32·n+1 is a perfect square,
i.e. x2−1 = 32·n. He then deduced that 32·n = (x−1)(x+1) and also from
it one easily obtains n = 898423 ·112303. The key step in his argumentation
was to express a multiple of n as a difference of two squares, which is the
basis for all sieving algorithms, explained in the following sections.

3.4.1. Pomerance and the Quadratic Sieve. The basic problem we
have with Fermat’s method for factoring n is to find a way to construct
integers x and y such that x2 − y2 is a multiple of n or, in other words, how
to find a nontrivial congruence x2 = y2 modulo n. We can safely assume
here that n is neither even nor a perfect power, since deciding either property
can be done efficiently (by computing division with remainder by 2 and by
using Algorithm 3.2.2, respectively). The basic idea in Pomerance (1985)
was to try many congruences of the form x2

i = ai such that
∏

i ai = y2 is a
square and to factor n by computing gcd(x − y, n).

Example 3.4.1. Suppose we wish to factor n = 5029. We have

712 = 5041 = 12 modulo n,

722 = 5184 = 155 modulo n,

732 = 5329 = 300 modulo n.

Note that 12 · 300 = 3600 = 602, so we have (71 · 73)2 = 602 modulo n.
Note that 71 · 73 = 154
= 60 modulo n, so we can factor n by computing
gcd(154 − 60, n) = 47, giving the factorization n = 47 · 107. ♦

The question that remains is now to compute a subset of the xi, such that the
product of the corresponding ai is a square, when given lots of congruences

52 CHAPTER 3. ALGORITHMIC NUMBER THEORY

of the form x2
i = ai modulo n. Reconsider the values of Example 3.4.1: We

took two of the three congruences to create a square. When considering the
factorizations of the right hand sides of the congruences, it is striking to
observe that we actually kept those that are composed of very small prime
factors only (12 = 22 · 3 and 300 = 22 · 3 · 52), and threw away the one with
a relatively large prime factor (155 = 5 · 31). Making this idea systematic,
let us restrict the set of xi we keep for searching our subset to those xi for
which x2

i = ai has small prime factors only, i.e. we keep only those ai that
are B-smooth for some fixed bound B (see Definition 2.3.4).

How many B-smooth numbers do we have to collect until we can be sure
that a product of one subset of them is a perfect square? The answer to this
question was first given in Morrison & Brillhart (1975): Let us associate to
each B-smooth number m =

∏
1≤i≤π(B) pei

i , with all ei ≥ 0, an exponent
vector �e(m) = (e1, e2, . . . , eπ(B)). If m1, . . . , mk are all B-smooth, then∏

1≤j≤k mj is a square if and only if
∑

1≤j≤k �e(mj) has even coordinates
only. Thus, it makes sense to consider only the exponent vector modulo 2,
and the search for a subset of B-smooth integers, whose product is a square
boils down to finding a linear combination of vectors, whose sum is zero
(modulo 2). The amazing advantage of this point of view is that we can
readily say how many vectors we need to collect until we can be sure that
one subset sums up to zero: Namely, we need to collect more vectors then
the dimension of the vector-space, i.e. π(B) + 1 of them. Also the task of
finding a linear dependent combination of vectors can be easily accomplished
by a row-reduction of the matrix formed by these vectors.

There is still a tradeoff we can make: the choice of B. If we select B to
be very small, then the number of B-smooth numbers we have to search for
is very small, but it is also very difficult to find a single B-smooth number
(since extracting square roots modulo n is difficult). If on the other hand
B is selected too large, then we need to collect many relations, even though
finding a single relation is comparatively easy to find. It was heuristically
shown in Canfield et al. (1983) that for an optimal choice of B the heuristic
runtime of the sketched Quadratic Sieve algorithm is

(3.4.2) L(n) = exp
(√

ln n ln ln n
)

,

and the optimal choice of B is L(n)
1
2 .

3.4.2. Pollard’s idea. A considerable speedup of the Quadratic Sieve
was given in Pollard (1988). He noticed that if n is very close to a power,
it is easy to find a polynomial f that is irreducible over the integers and an
integer m, such that f(m) = 0 modulo n.

3.4. FACTORING ALGORITHMS BY SIEVING 53

Example 3.4.3. Let n = 229 + 1. We have 8n = 2515 + 8, so m = 2103 and
f(x) = x5 + 8 will do the job. ♦

Consider a complex root α of the polynomial f . The ring Z[α] contains all
polynomial expressions in α with integer coefficients. Furthermore, since
f(α) = f(m) = 0 modulo n, the map

ϕ : Z[α] −→ Zn,
α �−→ m

is a ring homomorphism. Also, by construction, this map is well defined! If
we have now a finite set S of coprime integer pairs (a, b) with the properties
that

1. the product of the algebraic integers a− bα ∈ Z[α] is a square, say γ2,

2. the product of all integers a− bm ∈ Z is a square, say v2,

then if we replace each occurrence in α in γ by m, calling the resulting
integer u, we have

u2 = ϕ(γ)2 = ϕ(γ2) = ϕ

⎛⎝ ∏
(a,b)∈S

(a − bα)

⎞⎠
=

∏
(a,b)∈S

ϕ(a − bα) =
∏

(a,b)∈S

(a − bm) = v2 modulo n

obtaining a (hopefully) nontrivial congruence of squares. How can we obtain
such a set of pairs S? The second property is somewhat simple to achieve by
using exponent vectors and a sieve by, for example, fixing b and running for
a through some given interval, changing b and start our search for a all over
again. But how can we possibly simultaneously assure the first property?
It was Pollard’s idea that when Z[α] is the full ring of algebraic integers in
Q[α], and if Z[α] admits unique factorization and we know a basis for the
units, then we could also create exponent vectors for the algebraic integers
a − bα. Thus, in order to ensure both properties simultaneously, we just
need longer exponent vectors: for the small primes numbers, for the sign of
the algebraic integer and for the small primes in Z[α] (whatever these are,
for now).

The procedure, called the Special Number Field Sieve, seams neat and
to be working, but relies heavily on assumptions on the structure of the ring
Z[α] that do not hold in general! So, what can we do?

54 CHAPTER 3. ALGORITHMIC NUMBER THEORY

3.4.3. Towards the General Number Field Sieve. Let us review the
sieving process in the Special Number Field Sieve: There we were looking
for pairs (a, b) such that the product of the a − bm is a square in Z and,
additionally, that the product of the a− bα is a square in Z[α]. The former
can be rephrased as follows: Write G(a, b) = a − bm. This is a degree one
homogeneous polynomial and we sieve this polynomial for smooth values
(e.g. by letting b run up to some large bound M for each choice of a up to
M). In this procedure, the so called cofactorization step, we throw away all
pairs (a, b) with gcd(a, b) > 1 to avoid trivial redundancies. But what can
we do on the algebraic side?

Let us look again at the second condition to have the product of the
a − bα being a square in Z[α]. Write α1, . . . , αd for the complex roots of
the chosen polynomial f with α = α1. Then the norm N(β) of any element
β =

∑
0≤i<d siα

i ∈ Q[α] is the product of all conjugates of β, i.e.

N(β) =
∏

0≤j<d

⎛⎝ ∑
0≤i<d

siα
i
j

⎞⎠ .

An important property of the norm is that it is always a rational number and
indeed an integer if the coefficients si are integers. Additionally it is easy to
show that the norm is a multiplicative function, i.e. N(ββ′) = N(β)N(β′)
for all β, β′ ∈ Q[α]. This implies that if β is a square in the number field,
then N(β) is the square of an integer. Thus, we have found a necessary
condition for β being a square in the number field! We can rephrase this
condition in the following way: Let us reconsider the definition of the norm
of a field element a − bα. We have

N(a− bα) =
∏

0≤i<d

(a− bαi) = bdf(a/b).

The right hand expression is nothing but the homogeneous form F (a, b) of
the polynomial f . Thus, we can explicitly represent the norm of an element
by the evaluation of a given bivariate polynomial F . Correspondingly, we
call a− bα a B-smooth element, if F (a, b) is B-smooth. We have

Lemma 3.4.4 (Buhler et al. 1993). Let S be a set of pairs of coprime inte-
gers a, b such that a − bα is B-smooth, and

∏
(a,b)∈S(a − bα) is a square in

the ring of algebraic integers in Q[α]. Then∑
(a,b)∈S

�e(a − bα) = 0 modulo 2,

3.4. FACTORING ALGORITHMS BY SIEVING 55

where the vector �e is defined component-wise for entries (p, r) as �e[(p, r)] = 0
if a
= br modulo p and the exponent of p in the prime factorization of F (a, b)
otherwise. �

There are still several technical problems to overcome. One of them is that
the ring Z[α] will in general be a subset of the set of algebraic integers in
Q[α]. This in turn could lead to the problem that even if we have β = γ2 it
could still be that γ is not an element of Z[α], which we need for Pollard’s
idea (see Section 3.4.2). To overcome this issue, we state

Lemma 3.4.5. If f(x) is a monic irreducible polynomial in Z[x] with com-
plex root α, then for any algebraic integer β of the number field Q(α) the
element f ′(α)β is in Z[α]. �

For a proof, see Crandall & Pomerance (2005, section 6.2.4). We will use
Lemma 3.4.4 as follows: Instead of looking for coprime integers a, b for
which

∏
(a,b)∈S(a− bα) is a square in Z[α], we search in the same way for an

element γ that is a square in the algebraic integers of Q(α). Then we apply
Lemma 3.4.5 to find out that the element f ′(α)2∏

(a,b)∈S(a− bα) is a square
in Z[α].

The last issue we briefly discuss here is to extend our techniques to have
a sufficient condition for finding a square, since Lemma 3.4.4 only supplies
us with a necessary one. The trick is to employ the following heuristic
method: Suppose you wish to decide whether an integer m is a square. Then
(heuristically) it is sufficient to check whether the integer is a square modulo
several primes which in turn can be easily done by evaluating repeatedly a
Legendre symbol (see Definition 3.1.14). A suitable extension of the idea
that also works for algebraic integers can be found in Crandall & Pomerance
(2005, section 6.2.4).

Using the methods we just sketched, we are able to adapt Pollard’s idea
to work for arbitrary integers. Using the notation (3.4.2), heuristically the
algorithm runs with

L(n)
√

(2+2ε)/d+o(1)

operations, where d is the degree of the selected polynomial f and all co-
efficients of f are bounded by nε/d. This runtime is (heuristically) much
better than the one of the Quadratic Sieve in Section 3.4.1 if the polynomial
f is selected suitably (see Kleinjung 2006). For more details on the General
Number Field Sieve, see Lenstra & Lenstra (1993) and in particular the
article of Buhler et al. (1993).

56 CHAPTER 3. ALGORITHMIC NUMBER THEORY

3.4.4. Excursus: Index calculus for discrete logarithms. It is in-
teresting to observe that any advance in the complexity of the Factorization
Problem 2.1.3, also lead to a corresponding advance in computing discrete
logarithms in the multiplicative group of finite fields. It boils down to the

Discrete Logarithm Problem 3.4.6. Let G = 〈g〉 be a cyclic group.
Given an element a ∈ G, find an integer α ≥ 0, such that a = gα.

It was proven by Shoup (1997) that this problem is hard, by showing that
any generic algorithm computing the discrete logarithm in the group G must
run Ω(p

1
2) group operations, where p is the largest prime dividing the order

of the group. Indeed, there are many such generic algorithms around, like
the Baby-step-giant-step algorithm (Shanks 1969) or the
-method (Pollard
1978).

In practice, however, we will typically use either the multiplicative group
of a finite field Fq or the group of points on an elliptic curve (see Sec-
tion 3.5.1). In all of these specific choices of the group we have much more
information about the group law in hand than merely a black box. In the
case of elliptic curves, this fact did so far not give any faster algorithms for
the Discrete Logarithm Problem 3.4.6, but in the case of the multiplicative
group of a finite field there are better algorithms known. For such fields the
best algorithm known to solve this problem is the index-calculus method.
The origin of the method dates back of the beginning to the 20th century
(Kraïtchik 1922), but the algorithm as we know it today was published by
Adleman (1979). For simplicity of exposition, we will sketch the algorithm
for prime fields only.

The idea for computing the discrete logarithm of a = gα (to the base g) is
very similar to the Quadratic Sieve described in Section 3.4.1, but instead of
searching for a non-trivial congruence of squares, we search for congruences
of the form

gβ = pβ1
1 · · · pβk

k modulo p,

where p1, . . . , pk are small primes. These congruences give in turn raise to
congruences for the exponents via

β = β1 logg(p1) · · · βk logg(pk) modulo p − 1,

and we can solve this system using linear algebra for the unknown values
logg(p1), . . . , logg(pk). Once we know them, we look for a relation of the
form agγ = pγ1

1 · · · pγk
k giving

α = logg a = −γ + γ1 logg p1 + · · · + γk logg pk,

3.5. FACTORING ALGORITHMS USING ELLIPTIC CURVES 57

which is the desired discrete logarithm of a to the base g. One can show
that the resulting algorithm has a runtime of L(p)2+o(1) using the notation
(3.4.2). For details on the analysis, see Crandall & Pomerance (2005, section
6.4.1).

3.5. Factoring algorithms using elliptic curves

We now describe a method for factoring integers that is best suited for
“medium-sized” integers n, first proposed in Lenstra (1987). The concepts
behind the algorithm are substantially different from the ones used in the
sieving algorithms described above: Instead of searching for a nontrivial
congruence of squares modulo n, we will use certain smoothness properties
of the size of an underlying group we are woking in. Let us illustrate this
by recalling Pollard’s (p − 1)-method, invented in 1974: For simplicity of
exposition assume you are given an integer n = pq, where p and q are large
primes (for a detailed discussion of these kinds of integers, see Chapter 8).
Select randomly an element a ∈ Z×

n and a sufficiently large bound B and
compute

b = aB! in Zn.

The algorithm then returns g = gcd(b − 1, n) hoping that it will give a
non-trivial factor of n. When does this procedure work? Assume we have
selected B such that #Zp = p − 1 is B-smooth. Then it is very likely that
B! is a multiple of p − 1 and in Zp we would have by Theorem 3.1.9 that
b = aB! = 1 modulo p. If additionally q − 1 is not B-smooth, say a prime
� > B divides it, it would on the other hand be very likely that the order of a
in Z×

q is a multiple of � from which we could readily deduce that b = aB!
= 1
modulo q. In other words, b − 1 is a multiple of p but not a multiple of q,
implying that g = gcd(b − 1, n) = p is a non-trivial factor of n.

The problem with this procedure is, of course, to find an appropriate
bound B. Also, if p− 1 and q − 1 both have a large prime factor (these are
then called strong primes), the p−1 method would not succeed in efficiently
finding a non-trivial factor. Additionally, the structure of the groups Z×

p

and Z×
q are inherent to the input of the algorithm, which we cannot control.

Fortunately, Lenstra’s elliptic curve factorization method provides a way out
of this problem (see Section 3.5.4).

3.5.1. Arithmetic in Weierstraß form. In algebraic geometry, an el-
liptic curve is a smooth, projective, algebraic curve of genus one. We will,
indeed, need that later when we consider elliptic curves in Edwards form
(see Chapter 4). Such curves were already studied in the ancient world,

58 CHAPTER 3. ALGORITHMIC NUMBER THEORY

Figure 3.5.1: Left: The page of the 1621 edition of Diophant’s “Arithmetica”
with the famous margin on it. Right: The 1670 edition of the same page
including Fermat’s comment.

notably by Διόφαντος ὁ ΄Αλεξανδρεύς (ca. 200–284)12 in his multi-volume
epos called “Arithmetica” (most of which is lost nowadays). Indeed, this
work was the inspiration for Fermat’s last theorem on non-trivial integer
solutions of the equation xn + yn = zn for n ≥ 3. He noted on the margin
in his own copy of the “Arithmetica” that he would have a marvelous proof
that no such non-trivial integer-triples exist (Figure 3.5.1 shows the famous
margin as well as an annotated reprint of this particular page of Fermat’s
copy). The proof of Fermat’s last theorem was finally given in Wiles (1995).

More than two centuries after Fermat, Karl Theodor Wilhelm Weier-
straß (1815–1897) studied elliptic curves in much more detail (see Weistraß
(1895a) and Weistraß (1895b)), even though his research focused more on
the complex analytic aspects of these objects. Elliptic curves were finally
introduced to public key cryptography, independently, in Koblitz (1987) and
Miller (1986). When one consults the main textbooks on the topic, like Sil-
verman (1986), an elliptic curve in the above sense (smooth, projective, and
of genus one) is introduced as a nonsingular cubic defined over a field F ,

12Diophantus of Alexandria

3.5. FACTORING ALGORITHMS USING ELLIPTIC CURVES 59

Figure 3.5.2: Real plots of the curves y2 = x3 − 5x + 3 (left) and
y2 = x3 − 3x + 5 (right).

where we typically require that the characteristic of F is neither 2 or 3. It
turns out that we can in this case write any such cubic in (short) Weierstraß
form

y2 = x3 + ax + b,

where a, b ∈ F and 4a3 + 27b2
= 0. In Figure 3.5.2 one finds two real plots
of elliptic curves in Weierstraß form. Actually, there is another point on
the curve hidden in the real picture which lies far along the y-axis: a single
point O at infinity. This point serves a special purpose:

Elliptic Curve Addition Law 3.5.1. Let F be a field, a, b ∈ F and let
E be an elliptic curve defined over F by the equation y2 = x3 + ax + b. Let
P = (x1, y1) and Q = (x2, y2) be two points on the curve and let O be the
point at infinity on the curve. Define the following operation on E:

(i) −O = O.

(ii) −P = (x1,−y1).

(iii) P + O = P .

(iv) If P = −Q then P + Q = O.

(v) If P
= −Q then P + Q = R = (x3, y3), with

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1,

where the slope m is defined as

m =

⎧⎨⎩
3x2

1+a
2y1

, if x2 = x1
y2−y1
x2−x1

, if x2
= x1.

60 CHAPTER 3. ALGORITHMIC NUMBER THEORY

Figure 3.5.3: The addition law on elliptic curves in Weierstraß form.

The intuitive view of the operation just defined is the following: Suppose
the two points P and Q are on the curve E. Then, since the curve has
degree three, drawing a line through those two points will yield one further
point −R on the curve (if P equals Q, we take the tangent at P). Reflecting
along the x-axis gives the sum R of the points P and Q. If the line between
P and Q is vertical then we end up at the point at infinity, whose negative
is defined to be itself. An illustration of this operation can be found in
Figure 3.5.3. It turns out that the points on the curve with this operation
form a commutative group. More precisely we have

Theorem 3.5.2 (Cassels 1966). Let E be an elliptic curve over a field F .
Then E forms with the operation given in the Elliptic Curve Addition
Law 3.5.1 a commutative group. If F = Fq is a finite field with q = pe

for a prime p and e ≥ 1, then the group is either cyclic or isomorphic to a
direct product

E � Zm1 × Zm2

with m1 | m2 and m1 | q − 1. �

3.5.2. Hasse’s theorem and point counting. If F = Fq is a finite field
then the number of points on E is also finite and it makes sense to talk about
the group order #E of the curve (it makes sometimes also sense to talk about
the group order of E for some infinite fields, like the rational numbers Q,
but this shall not be of any concern to us). For many cryptographic and
cryptanalytic applications it is necessary to be able to compute the order of
a given curve E over a finite field Fq. If q = pe is small enough this can be
easily done by evaluating manually a sum of the form

(3.5.3) #E = q + 1 +
∑

x∈Fq

χ(x3 + ax + b),

3.5. FACTORING ALGORITHMS USING ELLIPTIC CURVES 61

Figure 3.5.4: The number of elliptic curves E over F1009 with exactly m
points for all admissible Weierstraß parameters a, b ∈ F1009. For each m in
the Hasse interval [947, 1073] there is at least one elliptic curve with orderm.

where χ is the quadratic character of Fq, similar to the Legendre symbol for
prime q (see Definition 3.1.14). One can show that when one knows #E over
any finite field Fq then we can also compute #E over any field extension of
Fq efficiently (see for example Washington 2003, section 4.3.1).

How large should we expect #E to be? If we evaluate χ for a randomly
chosen value x, we can expect heuristically that for roughly half of the
choices x we have χ(x3 + ax + b) = 1 while for the other half we have
χ(x3 + ax + b) = −1. This implies that the sum in (3.5.3) is heuristically
roughly 0 and thus #E ≈ q+1. That this is indeed the case was first proven
by Helmut Hasse (1898–1979) and reads as

Theorem 3.5.4 (Hasse 1933). For any elliptic curve E over a finite field
Fq, we have

|#E − (q + 1)| ≤ 2
√

q. �

Indeed, we have

Theorem 3.5.5 (Deuring 1941). For m ∈
]
q + 1− 2√q, q + 1 + 2√q

[
there

is at least one elliptic curve over Fq with #E = m. �

An illustration of this fact is shown in Figure 3.5.4. But how can we actually
compute the size of a given elliptic curve efficiently? We can restrict our
attention to primes p since, by the above remark, this directly gives us the
result for arbitrary finite fields Fq. Even though we have formula (3.5.3), it
cannot be evaluated for large q = p since the number of summands in there
grows exponentially in the size of p. An observation of Schoof (1995) was
that we can actually compute #E modulo � for small primes � and deduce

62 CHAPTER 3. ALGORITHMIC NUMBER THEORY

from it the correct order #E via the Chinese Remainder Theorem 3.1.12:
One can show that if #E = q + 1 − t, then we have for the Frobenius
endomorphism ϕ : (x, y) → (xp, yp), named after Ferdinand Georg Frobenius
(1849–1917), the equation

ϕ2 − tϕ + p = 0,

in the endomorphism ring of E. Schoof’s observation was now that for any
point P on the curve E with coordinates in the algebraic closure of Fp and
with order dividing � we have

ϕ2(P) − (t rem �)ϕ(P) + (p rem �) = O.

Using this we can, essentially by trial and error, deduce the group order
modulo � via this equation and can recombine the correct order #E with
the Chinese Remainder Theorem 3.1.12. For details, one can consult for
example Crandall & Pomerance (2005, section 7.5.2).

3.5.3. Speeding up the arithmetic. For efficient arithmetic on elliptic
curves in the spirit of the Elliptic Curve Addition Law 3.5.1, it is important
to think about the representation of the points on an elliptic curve E. So
far, we have only encountered one representation: Affine coordinates (x, y)
of points on E, where both x and y are elements from the field we are
considering the curve over. The advantage of this representation is that
it is very intuitive, but the point at infinity O does not fit very well into
this framework. To find a representation that can also express the point at
infinity, we switch in this section to projective coordinates. To do so, let us
reconsider the curve equation y2 = x3 + ax + b of E. We can homogenize
this equation to obtain

(3.5.6) Y 2Z = X3 + aXZ2 + bZ3.

Now, for any point (X, Y, Z) on this curve, we will also have that (λX, λY, λZ)
lies on the curve for any non-zero constant λ in the field. Thus, we can re-
gard all such points as equivalent and we write (X : Y : Z) to indicate this
fact. It is also easy to identify an affine point (x, y) with the corresponding
projective point (x : y : 1). The other way round, we identify a projective
point (X : Y : Z) as either the affine point (X/Z, Y/Z), if Z
= 0 or the point
at infinity O, if Z = 0. Interestingly, it turns out that there is indeed just a
single projective point on the curve with Z = 0, i.e. a single point at infin-
ity: Suppose we have such a point O = (X : Y : 0) on the curve. Then from
(3.5.6) it immediately follows X = 0 and thus O = (0 : Y : 0) = (0 : 1 : 0).

3.5. FACTORING ALGORITHMS USING ELLIPTIC CURVES 63

How can this point of view help us to speed up the elliptic curve arith-
metic? If one considers the Elliptic Curve Addition Law 3.5.1, then the
most expensive operations involved are field inversions. It turns out that by
switching to projective coordinates, we get completely rid of inversions and
can perform the arithmetic with multiplications, squarings, additions and
negations only!

Definition 3.5.7 (Elliptic curve addition law: projective coordinates). Let
F be a field, a, b ∈ F , and let E be an elliptic curve defined over F by
the equation Y 2Z = X3 + aXZ2 + bZ3. Let P = (X1 : Y1 : Z1) and
Q = (X2 : Y2 : Z2) be two points on the curve and let O = (0 : 1 : 0) be the
point at infinity on the curve. Define the following operation on E:

(i) −(X1 : Y1 : Z1) = (X1 : −Y1 : Z1).

(ii) If P = −Q then P + Q = (0 : 1 : 0).

(iii) If P
= Q then P + Q = R = (X3 : Y3 : Z3), with

X3 = BC, Y3 = A(B2X1Z2 − C)− B3Y1Z2, Z3 = B3Z1Z2,

where

A = Y2Z1−Y1Z2, B = X2Z1−X1Z2, C = A2Z1Z2−B3−2B2X1Z2.

(iv) If P = Q then P + Q = R = (X3 : Y3 : Z3), with

X3 = 2BD Y3 = A(4C − D)− 8B2Y 2
1 , Z3 = 8B3,

where

A = aZ2
1 + 3X2

1 , B = Y1Z1, C = BX1Y1, D = A2 − 8C.

Denote by M and S the cost of a multiplication and a squaring in the field,
respectively. Then an addition can be done with 12M + 2S and a doubling
with 7M + 5S. In fact, we can obtain even more efficient arithmetic, if we
allow slightly different curves: Montgomery (1987) considered curves of the
form

(3.5.8) by2 = x3 + ax2 + x

and found out that on such kinds of curves scalar multiplication of points
on the curve can be done extremely efficiently. In Figure 3.5.5 a plot of such

64 CHAPTER 3. ALGORITHMIC NUMBER THEORY

Figure 3.5.5: Real plot of the curve 1
43y2 = x3 − 41

43x2 + x. The reason why
we selected this particular curve will be explained in Chapter 4.

a Montgomery curve can be found. Consider a point P = (x1, y2) on the
curve (3.5.8). In projective coordinates, write P = (X1 : Y1 : Z1) and let
mP = (Xm : Ym : Zm) and nP = (Xn : Yn : Zn) with m ≥ n. Then the sum
(m + n)P is given by

Xm+n = Zm−n((Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn))2,

Zm+n = Xm−n((Xm − Zm)(Xn + Zn) − (Xm + Zm)(Xn − Zn))2,

when m
= n and in the case m = n by

X2n = (Xn + Zn)2 · (Xn − Zn)2,

Z2n = 4XnZn(Xn − Zn)2 +
a + 2

4
· (4XnZn),

where 4XnZn = (Xn + Zn)2 − (Xn −Zn)2. Here an addition takes 4M + 2S
and a doubling costs 3M + 2S. Note that the Y -coordinate is completely
absent, but it can be reconstructed if necessary (see for example Cohen &
Frey 2006, section 13.2.3).

For a thorough list of possible efficient representations of points on ellip-
tic curves, one can consult the Explicit-Formulas Database (see Bernstein
& Lange 2011).

3.5.4. Lenstra’s Elliptic Curve Method. We are now ready to de-
scribe the elliptic curve method, as proposed in Lenstra (1987), for factor-
ing integers n. Similar to Pollard’s (p − 1)-method (see Pollard 1974). In
the algorithm one computes a multiple Q = kP for some reasonably large
integer k and a point P on a curve E. Contrasting our definitions before we
consider the curve E over Zn, an object that is not an elliptic curve when

3.5. FACTORING ALGORITHMS USING ELLIPTIC CURVES 65

n is composite (since there are points P and Q on E for which the addition
P + Q is not defined). You might call such a curve an elliptic pseudocurve.
The idea of the algorithm is very simple: We choose randomly a curve with
a point on it and compute Q = kP using some addition chain. If we end up
on the way of computing Q at a point where we have an undefined addition,
this step will yield in many cases a non-trivial factor of n. We describe now
the algorithm and give afterwards an analysis of it.

Elliptic Curve Method 3.5.9.

Input: An integer n ≥ 2 with gcd(n, 6) = 1 and n not a perfect power.
Output: A proper factor of n.

1. Choose a bound B, e.g. B = 10000.
2. Repeat 3–5
3. Choose randomly x, y, a ∈ Zn.
4. Set b = (y2 − x3 − ax) modulo n.
5. Compute g = gcd(4a3 + 27b2, n).
6. While g = n.
7. If g > 1 then
8. Return g.
9. Set P = (x, y).

10. Try to compute Q = (B!)P .
11. If the computation failed then
12. Return a proper factor of n or start from the beginning.
13. Increment B and start from the beginning.

It is striking to observe that this algorithms works differently than any
other algorithm we have encountered so far: It runs until we end up with
an invalid computation. With this we have hopefully achieved our goal of
finding a non-trivial factor of n. Let us have a closer look at step 10: When
computing Q = (B!)P , we need to employ some addition chain. While
going through the chain, we have to compute several slopes m following
the Elliptic Curve Addition Law 3.5.1. In each slope computation we have
to invert some d modulo n. If d is not coprime to n then the Extended
Euclidean Algorithm 3.1.8 (which we employ for computing the inverse)
will instead produce a hopefully non-trivial factor of n.

Example 3.5.10 (From Washington 2003). Suppose we wish to factor n =
4453. Let E be defined by y2 = x3 + 10x − 2 and let P = (1, 3). Let us try
to compute (3!)P = 6P . To do so, we compute 2P , 3P = P + 2P and then

66 CHAPTER 3. ALGORITHMIC NUMBER THEORY

6P = 2 · (3P). The slope of the tangent at P is

3x3 + 10
2y

=
13
6

= 3713 modulo 4453.

Thus, 2P = (4432, 3230) by the Elliptic Curve Addition Law 3.5.1. The
next step is to obtain 3P = P + 2P . To compute it, we need to evaluate the
slope

m =
3230 − 3
4332 − 1

=
3227
4331

modulo 4453.

But gcd(4331, 4453) = 61, so when trying to compute 4331−1 modulo 4453,
we end up with a non-trivial factor of n. ♦

Let us try to understand when the Elliptic Curve Method 3.5.9 gives us a
proper factor of n. For simplicity of exposition, suppose n = p · q, where p
and q are prime numbers. In this case we can view an elliptic pseudocurve
over Zn as two elliptic curves: one modulo p and one modulo q, respectively.
By Theorem 3.5.4, we know that over Fp we have

p + 1 − 2
√

p < #E < p + 1 + 2
√

p,

while over Fq we have

q + 1 − 2
√

q < #E < q + 1 + 2
√

q.

Furthermore, we also know by Theorem 3.5.5 that each group order occurs at
least once for some elliptic curve. Heuristically, we expect that the density of
B-smooth numbers in the Hasse interval modulo p is high enough, and that
the distribution of group orders #E in this interval is sufficiently uniform.
Thus, when running the algorithm, we can expect that — for a lucky choice
of the curve parameters — the group order of E modulo p is B-smooth,
in which case it is very likely that (B!)P = O modulo p. On the other
hand it is very unlikely that this group order is also B-smooth modulo q,
in which case often Q = (B!)P
= O modulo q. Therefore, when we try to
compute (B!)P modulo n, we will with high probability find a slope whose
denominator is a multiple of p but not a multiple of q, and we will find p
using the Extended Euclidean Algorithm 3.1.8.

Example 3.5.11 (From Washington 2003). Consider again Example 3.5.10.
There for n = 4453 the computation of 3P for P = (1, 3) yielded the non-
trivial factorization n = 61 · 73. Let us look at the situation modulo p = 61
and q = 73 separately:

P = (1, 3), 2P = (1, 58), 3P = O, 4P = (1, 3), . . . (modulo 61)

3.5. FACTORING ALGORITHMS USING ELLIPTIC CURVES 67

and

P = (1, 3), 2P = (25, 18), 3P = (28, 44), . . . , 64P = O (modulo 73).

This shows nicely why the computation of the slope m for computing P +2P
was infinite modulo p and finite modulo q, giving the non-trivial factor
p = 61. ♦

The benefit of the Elliptic Curve Method 3.5.9 is, when compared to Pol-
lard’s (p− 1)-method, that we have now access to a large number of groups
we can work in (for each valid parameter choice one group). While in the
p − 1 method, the groups where given by the input, we can now discard
elliptic curves that do not help us in achieving our goal of factoring.

What about the runtime of the Elliptic Curve Method 3.5.9? One can
show that it depends mainly in the size of the smallest prime factor p of n.
More precisely, using the notation of (3.4.2), the heuristic expected runtime
of the algorithm is

(3.5.12) L(p)1+o(1) = exp((1 + o(1))
√

ln p · ln ln p),

(see Crandall & Pomerance 2005, section 7.4.1). In the worst case, when
n is the product of two roughly equally sized primes, this boils down to a
runtime of L(n)1+o(1).
There are many practical tweaks of this algorithm:

1. Use special curves with representations of the points that allow fast
arithmetic (see Section 3.5.3 or Chapter 4).

2. Use good (differential) addition chains to compute scalar multiples of
point on the curve.

3. Modify the algorithm such that it will also find a nontrivial factor of
n when the group order has exactly one prime factor exceeding B (see
for example Crandall & Pomerance 2005, section 7.4.2).

68 CHAPTER 3. ALGORITHMIC NUMBER THEORY

Chapter 4

Differential addition on
elliptic curves in generalized
Edwards form

In this chapter we describe two new parametrizations of points in the spirit
of Montgomery (see Section 3.5.3). They allow fast arithmetic on special
types of curves, namely elliptic curves in Edwards form, proposed in Ed-
wards (2007). The results in this chapter were presented at IWSEC 2010 in
Kobe, Japan (see Justus & Loebenberger 2010). Our coauthor found on our
suggestion some less efficient differential addition formulas and the formula
for recovering the X coordinate. All of the differential formulas presented
here as well as the discovery of the second parametrization using squares
only are our own findings.

4.1. State of the art

In Table 4.1.1 one finds a selection of the most efficient representations
of points on elliptic curves. As in Section 3.5.3, the notation M and S
refer to a multiplication or a squaring in the field, respectively. We ignore
multiplications by a small constant and the additions in the field, since their
cost is negligible when compared to the cost of multiplication or squaring.

With the advent of Edwards coordinates in Edwards (2007), extensive
work like Bernstein et al. (2008a), Bernstein et al. (2008b), Bernstein &
Lange (2007a), or Bernstein & Lange (2007b), has provided formulas for
addition on elliptic curves in Edwards form that are more efficient (by a
constant factor) than what is known for other representations. This makes
the Edwards form particularly interesting for cryptographic applications.

69

70 CHAPTER 4. DIFFERENTIAL ADDITION IN EDWARDS FORM

Forms Coordinates Addition Doubling
Short Weierstraß (X : Y : Z) = (X/Z2, Y/Z3) 12M + 4S 4M + 5S
Montgomery form (X : Z) 4M + 1S 2M + 3S
Edwards form (X : Y : Z) 10M + 1S 3M + 4S
Inverted Edwards (X : Y : Z) = (Z/X, Z/Y) 9M + 1S 3M + 4S
Differential Edwards (Y : Z) 4M + 4S 4S
(c = 1 and d square)

(Y 2 : Z2) 4M + 2S 4S

Table 4.1.1: Some coordinate choices with fast arithmetic

Castryck et al. (2008) present doubling formulas for elliptic curves in
Edwards form with c = 1, like the one given in Corollary 4.3.5. They do not
consider the case c
= 1 and do not provide a general (differential) addition
formula.

Gaudry & Lubicz (2009) present general efficient algorithms for a much
broader class of curves. In order to adapt their ideas to the context of elliptic
curves in generalized Edwards form, one needs to explicitly express the group
law in terms of Riemann’s ϑ functions. Due to our inability to do so, we
derive in this work formulas for elliptic curves in generalized Edwards form
directly. We are in good company here; Castryck, Galbraith and Farashahi
write: “This is an euphemistic rephrasing of our ignorance about Gaudry
and Lubicz’ result, which is somewhat hidden in a different framework.”

Special cases of our result can also be found on the Explicit-Formulas
Database (see Bernstein & Lange (2011)): There are several formulas given
for c = 1 under the assumption that the curve parameter d is a square in
the field. The formulas on the Explicit-Formulas Database are on one hand
consequences of Gaudry & Lubicz (2009) but can also be deduced from our
general formulas in Theorem 4.3.1 and Corollary 4.3.5, as explained at the
end of Section 4.3.

In the following, we will give differential addition and doubling formulas
for elliptic curves in Edwards curves having arbitrary curve parameters c
and d. The restriction c = 1 is of less importance in practice, since every
curve in generalized Edwards form can be transformed into an isomorphic
curve with c = 1 via the map (x, y) �→ (cx, cy). The curve parameter d, on
the other hand, is of greater importance: If d is a square in the ground field,
the group law, as described in Section 4.2, will not be complete anymore, i.e.
the formulas defining the addition on the curve are not valid for all possible
input points anymore due to a division by zero.

We will use two parametrizations for elliptic curves in generalized Ed-
wards form to obtain efficient arithmetic: In the first parametrization the

4.1. STATE OF THE ART 71

(u, v) �→
(

2c u
v

, c u−1
u+1

)

(
c+y
c−y

, 2c
x

c+y
c−y

)
← � (x, y)

Figure 4.1.1: Transformation of the elliptic curve in Montgomery form
1

1−c4dv2 = u3 + 21+c4d
1−c4du + u to the Edwards form x2 + y2 = c2(1 + dx2y2).

projective coordinate (Y : Z) represents a point on the curve. Notice that
the X-coordinate is absent, so we cannot distinguish P from −P . This is
indeed similar to Montgomery’s approach in Montgomery (1987), where he
represents a point in Weierstraß-coordinates by omitting the Y -coordinate
(see Section 3.5.3). The parametrization used here leads to a differential ad-
dition formula, a doubling formula, and a tripling formula on elliptic curves
in generalized Edwards form. The addition formula can be computed using
6M + 4S (5M + 4S in the case c = 1), the doubling formula using 1M + 4S
(5S when c = 1), and the tripling formula using 4M + 7S. We also provide
methods for recovering the missing X-coordinate. Compared to earlier work
like Castryck et al. (2008), Gaudry & Lubicz (2009), or the formulas on the
Explicit-Formulas Database, we explicitly consider all formulas also for the
case c
= 1, even though one would typically use in applications curves with
c = 1.

The second parametrization also omits the X-coordinate. Additionally
it uses the squares of the coordinates of the points only. On elliptic curves
in generalized Edwards form, addition can be done with 5M + 2S and point
doubling with 5S. We also provide a tripling formula for this second repre-
sentation. For point doubling we get completely rid of multiplications and
employ squarings in the ground field only. This is desirable since squarings
can be done slightly faster than generic multiplications (see for example
Avanzi et al. (2006)). This second representation is best suited when em-
ployed in a scalar multiplication. Again, we explicitly consider all formulas
also for the case c
= 1. Several formulas for this parametrization can be
found on the Explicit-Formulas Database, but only for the special case c = 1
and d being a square in the ground field. The idea of this representation
can already be found in Gaudry & Lubicz (2009), section 6.2.

We will first describe the basics of Edwards coordinates in the following

72 CHAPTER 4. DIFFERENTIAL ADDITION IN EDWARDS FORM

section and describe the addition and the doubling formula in Section 4.3.
The tripling formulas are deduced in Section 4.4. A formula for recovering
the X-coordinate is given in Section 4.5. The parametrization of the points
that uses the squares of the coordinates only is analyzed in Section 4.6.

4.2. Edwards form

We describe now the basics of elliptic curves in generalized Edwards form.
More details can be found, for example, in Bernstein & Lange (2007a) and
Bernstein & Lange (2007b). Such curves are given by equations of the form

Ec,d : x2 + y2 = c2(1 + dx2y2),

where c, d are curve parameters in a field k of characteristic different from
2. These kind of equations indeed define an elliptic curve in the algebraic-
geometric sense (see Section 3.5.1). When c, d
= 0 and dc4
= 1, the addition
law is defined by

(x1, y1), (x2, y2) �→
(

x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1 − dx1x2y1y2)

)
.(4.2.1)

For this addition law, the point (0, c) is the neutral element. The inverse of
a point P = (x, y) is −P = (−x, y). In particular, (0,−c) has order 2; (c, 0)
and (−c, 0) are the points of order 4. When the curve parameter d is not
a square in k, then the addition law (4.2.1) is complete (i.e. defined for all
inputs). As noted earlier, every curve in generalized Edwards form can be
transformed into a curve with c = 1 via the map (x, y) �→ (cx, cy). For an
illustration of the addition law, see Figure 4.2.1.

4.3. Representing points in Edwards form

As explained in the introduction, we represent a point P on the curve Ec,d

using projective coordinates P = (Y1 : Z1). Write nP = (Yn : Zn). Then we
have

Theorem 4.3.1 (Justus & Loebenberger 2010). Let Ec,d be an elliptic curve
in generalized Edwards form defined over a field k, such that char(k)
= 2
and c, d
= 0, dc4
= 1 and d is not a square in k. Then for m > n we have

Ym+n = Zm−n

(
Y 2

m(Z2
n − c2dY 2

n) + Z2
m(Y 2

n − c2Z2
n)
)

,

Zm+n = Ym−n

(
dY 2

m(Y 2
n − c2Z2

n) + Z2
m(Z2

n − c2dY 2
n)
)

.

4.3. REPRESENTING POINTS IN EDWARDS FORM 73

Figure 4.2.1: Real plot of the addition law on the elliptic curve in Edwards
form x2 + y2 = c2(1 + dx2y2). The addition law is given by hyperbolas, not
by simple lines, as in the case of elliptic curves in Weierstraß form.

It can be computed using 6M + 4S. When n = m, the doubling formula is
given by

Y2n = −c2dY 4
n + 2Y 2

n Z2
n − c2Z4

n,

Z2n = dY 4
n − 2c2dY 2

n Z2
n + Z4

n,

which can be computed using 1M + 4S.

On the Explicit-Formulas Database one finds related formulas for c = 1 and
d being a square in k. We defer a detailed study of the relationship between
the formulas given there and ours at the end of this section.

Proof. Let P1 = (x1, y1), P2 = (x2, y2) be two different points on the
curve Ec,d. Since the curve parameter d is not a square in k, the addition law
(4.2.1) is defined for all inputs. Let P1 +P2 = (x3, y3) and P1−P2 = (x4, y4).
Then the addition law (4.2.1) gives

y3c(1 − dx1x2y1y2) = y1y2 − x1x2,

y4c(1 + dx1x2y1y2) = y1y2 + x1x2.

After multiplying the two equations above, we obtain

y3y4c2(1 − d2x2
1x2

2y2
1y2

2) = y2
1y2

2 − x2
1x2

2.(4.3.2)

Next, we substitute x2
1 = c2−y2

1
1−c2dy2

1
and x2

2 = c2−y2
2

1−c2dy2
2

(obtained from the curve
equation) in (4.3.2), yielding

y3y4(−dy2
1y2

2 + c2dy2
1 + c2dy2

2 − 1) = c2dy2
1y2

2 − y2
1 − y2

2 + c2.(4.3.3)

74 CHAPTER 4. DIFFERENTIAL ADDITION IN EDWARDS FORM

After switching to projective coordinates, we see that for m > n the formula
for adding mP = (Ym, Zm) and nP = (Yn, Zn) becomes

Ym+n

Zm+n

Ym−n

Zm−n
=

Y 2
m(Z2

n − c2dY 2
n) + Z2

m(Y 2
n − c2Z2

n)
dY 2

m(Y 2
n − c2Z2

n) + Z2
m(Z2

n − c2dY 2
n)

.(4.3.4)

This proves the addition formula. If P1 = P2, we obtain by the addition law
(4.2.1)

y3c(1 − dx2
1y2

1) = y2
1 − x2

1.

Similarly, if we substitute x2
1 = c2−y2

1
1−c2dy2

1
into the equation above, we obtain

y3(cdy4
1 − 2c3dy2

1 + c) = −c2dy4
1 + 2y2

1 − c2.

This proves the doubling formula in Theorem 4.3.1 after switching to pro-
jective coordinates. �

We obtain additional savings in the case c = 1:

Corollary 4.3.5. Assume the same as in Theorem 4.3.1. If c = 1, we
have for m > n

Ym+n = Zm−n

(
(Y 2

m − Z2
m)(Z2

n − dY 2
n) − (d − 1)Y 2

n Z2
m

)
,

Zm+n = −Ym−n

(
(Y 2

m − Z2
m)(Z2

n − dY 2
n) + (d − 1)Y 2

mZ2
n

)
,

which can be computed using 5M + 4S. For doubling we obtain

Y2n = −(Y 2
n − Z2

n)2 − (d − 1)Y 4
n ,

Z2n = (dY 2
n − Z2

n)2 − d(d − 1)Y 4
n ,

which can be computed using 5S. �

Remark 4.3.6. A simple induction argument shows that the computation
of the 2j-fold of a point can be computed using 5jS.

A slight variant of the doubling formula in this Corollary is given by Cas-
tryck et al. (2008) in their section 3. Similar doubling formulas can be found
on the Explicit-Formulas Database, but only for the special case of d being
a square in the ground field. For general c the formulas of Theorem 4.3.1
do not seem to be found in the literature.

4.4. A TRIPLING FORMULA 75

In the remainder of this section we will explore this relationship in more
detail. We focus here in particular on Corollary 4.3.5 since the Explicit-
Formulas Database covers the case c = 1 only. As on the Explicit-Formulas
Database we assume now that d = r2 for some r ∈ k. Then we can write

y2n =
−r2Y 4

2n + 2Y 2
2nZ2

2n − Z4
2n

r2Y 4
2n − 2r2Y 2

2nZ2
2n + Z4

2n

,

where y2n denotes the corresponding affine y-coordinate of the point. Thus
we have

ry2n =
2r/(r − 1) ·

(
r2Y 4

2n − 2Y 2
2nZ2

2n + Z4
2n

)
−2/(r − 1) ·

(
r2Y 4

2n − 2r2Y 2
2nZ2

2n + Z4
2n

) .
If we set A := 1+r

1−r (rY 2
2n−Z2

2n)2 and B := (rY 2
2n +Z2

2n)2 we can write the nu-
merator of the last expression as B−A and the denominator as B+A, yield-
ing the formulas dbl-2006-g and dbl-2006-g-2 from the Explicit-Formulas
Database. This can be computed with 4S, but only for those restricted curve
parameters. The addition formulas dadd-2006-g and dadd-2006-g-2 from
the Explicit-Formulas Database can be deduced in a similar way from our
differential addition formula in Corollary 4.3.5.

4.4. A tripling formula

One also obtains a tripling formula that can be computed using 4M + 7S.
This is cheaper than by doing first a doubling and afterwards an addition,
which costs 7M + 8S (5M + 9S when c = 1).

Theorem 4.4.1 (Justus & Loebenberger 2010). Assume the same as in The-
orem 4.3.1. Furthermore, let char(k)
= 3. Then we have

Y3n = Yn(c2(3Z4
n − dY 4

n)2 − Z4
n(8c2Z4

n + (Y 2
n (c3d + c−1) − 2cZ2

n)2

− c−2(c4d + 1)2Y 4
n)),

Z3n = Zn(c2(Z4
n − 3dY 4

n)2 + dY 4
n (4c2Z4

n − (Y 2
n (c3d + c−1)− 2cZ2

n)2

+ c−2((c4d + 1)2 − 12c4d)Y 4
n)),

which can be computed using 4M + 7S.

Proof. Let (x3, y3) = 3(x, y) = 2(x, y) + (x, y). Using the addition law
(4.2.1), we obtain an expression for y3. Inside the expression, make the

76 CHAPTER 4. DIFFERENTIAL ADDITION IN EDWARDS FORM

substitution x2 = c2−y2

1−c2dy2 and simplify to obtain an expression in y only.
Then we have

y3 =
y(c2d2y8 − 6c2dy4 + 4(c4d + 1)y2 − 3c2)
−3c2d2y8 + 4d(c4d + 1)y6 − 6c2dy4 + c2 .

Switch to projective coordinates y = Y/Z and rearrange terms. The formula
follows. �

Corollary 4.4.2. Assume the same as in Theorem 4.3.1. Furthermore,
let char(k)
= 3 and assume c = 1. Then we have

Y3n = Yn((dY 4
n − 3Z4

n)2 − Z4
n((2Z2

n − (1 + d)Y 2
n)2 + 8Z4

n − (1 + d)2Y 4
n)),

Z3n = Zn((Z4
n − 3dY 4

n)2 − dY 4
n ((2Z2

n − (1 + d)Y 2
n)2 − 4Z4

n + (12d− (1 + d)2)Y 4
n)),

which can be computed using 4M + 7S. �

4.5. Recovering the x-coordinate

In some cryptographic applications it is important to have at some point
both coordinates, x- and y. Theorem 4.5.4 shows how to obtain them.
There have been results Okeya & Sakurai (2001) and Brier & Joye (2002)
in this direction for other forms of elliptic curves. To recover the (affine)
x-coordinate, we need the following

Lemma 4.5.1. Fix an elliptic curve Ec,d in generalized Edwards form, such
that char(k)
= 2 and c, d
= 0, dc4
= 1 and d is not a square in k. Let
Q = (x, y), P1 = (x1, y1) be two points on Ec,d. Define P2 = (x2, y2) and
P3 = (x3, y3) by P2 = P1 + Q and P3 = P1 − Q. Then we have

x1 =
2yy1 − cy2 − cy3

cdxyy1(y3 − y2)
,(4.5.2)

provided the denominator does not vanish.

Proof. By the addition law (4.2.1), we have

c(1 − dxx1yy1)y2 = yy1 − xx1,

c(1 + dxx1yy1)y3 = yy1 + xx1.

Adding the two equations and solving them for x1 gives the claim. �

The following lemma provides a simple criterion, which tells us when the
denominator in formula (4.5.2) does not vanish.

4.5. RECOVERING THE X-COORDINATE 77

Lemma 4.5.3. Assume the same as in Lemma 4.5.1. Furthermore, let P1, Q
be points whose order does not divide 4. Then the formula (4.5.2) holds.

Proof. The points P1 and Q have orders that are not 1, 2, 4, so x, x1, y, y1
=
0. Suppose now, y2 = y3 (i.e. y-coordinates of P1 + Q and P1 − Q are the
same). By the addition law (4.2.1), this implies

yy1 − xx1

c(1 − dxx1yy1)
=

yy1 + xx1

c(1 + dxx1yy1)
.

By solving for d it follows that dy2y2
1 = 1, which is a contradiction since d

is not a square in k. �

We are now ready to prove

Theorem 4.5.4 (Justus & Loebenberger 2010). Let Ec,d be an elliptic curve
in generalized Edwards form defined over a field k such that char(k)
= 2,
c, d
= 0, dc4
= 1, and d is not a square in k. Let P = (x, y) be a point,
whose order does not divide 4. Let yn, yn+1 be the affine y-coordinates of
the points nP, (n + 1)P respectively. Then we have

xn =
2yynyn+1 − cCn − cy2

n+1
cdxyyn

(
Cn − y2

n+1
) ,

where

A = 1 − c2dy2,

B = y2 − c2,

Cn =
Ay2

n + B

dBy2
n + A

.

Proof. Let nP = (xn, yn), where P is not a 4-torsion point on Ec,d. Our
task is to recover xn. By Lemma 4.5.1 with P1 = nP and Q = (x, y), we
may write

xn =
2yyn − cyn−1 − cyn+1

cdxyyn(yn−1 − yn+1)
,(4.5.5)

where yn−1,yn+1 are the y-coordinates of the points (n− 1)P and (n + 1)P
respectively. Now the variable yn−1 can be eliminated because of (4.3.4).
Indeed, using (4.3.4) we may write in affine coordinates

78 CHAPTER 4. DIFFERENTIAL ADDITION IN EDWARDS FORM

yn−1yn+1 =
Ay2

n + B

dBy2
n + A

,(4.5.6)

where
A = 1 − c2dy2, B = y2 − c2.

Now from (4.5.6), yn−1 can be isolated and put back in (4.5.5). This gives

xn =
2yynyn+1(dBy2

n + A) − c(Ay2
n + B)− cy2

n+1(dBy2
n + A)

cdxyyn
(
Ay2

n + B − y2
n+1(dBy2

n + A)
) .

The claim follows. �

4.6. A parametrization using squares only

The formulas in Theorem 4.3.1 show that for the computation of Y 2
m+n, and

Z2
m+n it is sufficient to know the squares of the coordinates of the points

(Ym : Zm), (Yn : Zn) and (Ym−n : Zn−m) only. This gives

Theorem 4.6.1 (Justus & Loebenberger 2010). Assume the same as in The-
orem 4.3.1. Then, for m > n we have

Y 2
m+n = Z2

m−n ((A + B)/2)2 ,

Z2
m+n = Y 2

m−n

(
(A −B)/2 + (d − 1)Y 2

m(Y 2
n − c2Z2

n)
)2

,

with

A := (Y 2
m + Z2

m)((1 − dc2)Y 2
n + (1 − c2)Z2

n),
B := (Y 2

m − Z2
m)((1 + c2)Z2

n − (1 + dc2)Y 2
n).

This addition can be computed using 5M + 2S, if one stores the squares of
the coordinates only. When n = m, we obtain

Y 2
2n =

(
(1 − c2d)Y 4

n + (1 − c2)Z4
n − (Y 2

n − Z2
n)2
)2

,

Z2
2n =

(
dc2(Y 2

n − Z2
n)2 − d(c2 − 1)Y 4

n + (c2d− 1)Z4
n

)2
,

which can be computed using 5S, if one stores the squares of the coordinates
only.

4.6. A PARAMETRIZATION USING SQUARES ONLY 79

Proof. This follows directly from Theorem 4.3.1 and elementary calculus.
�

A direct adaptation of Corollary 4.3.5 does not give any speedup. Again on
the Explicit-Formulas Database one finds related formulas for c = 1 and d
being a square in k.

We will now sketch the computation of a scalar multiple sP in this
parametrization. Assume P has affine coordinates (x : y). Then one would
proceed as follows: After changing to projective coordinates (X : Y : Z),
two squares (one for each of the coordinates Y and Z) have to be computed.
Now, a differential addition chain is employed to compute the multiple sP .
During all but the last step of the computation we store the squares of the
coordinates of the intermediate points only. The last step plays a special
role now, since at the end we wish to obtain the coordinates of the point
sP and not the square of the coordinates. To do so, we run the last step
using the first parametrization. If we construct from the beginning the dif-
ferential addition chain, such that for each computation of Pm+n we have
that m − n = 1, we obtain an efficient algorithm for computing the scalar
multiple sP on an elliptic curve in generalized Edwards form using the sec-
ond parametrization. In order to recover the x-coordinate, one would have
to compute also the scalar multiple (s + 1)P and use the recovering formula
from Theorem 4.5.4.

Also the tripling formula given in Theorem 4.4.1 can be adapted to this
second parametrization. Namely, we have

Corollary 4.6.2. Assume the same as in Theorem 4.3.1. Furthermore,
we assume char(k)
= 3. Then we have

Y 2
3n = Y 2

n (c2(3Z4
n − dY 4

n)2 − Z4
n(8c2Z4

n + (Y 2
n (c3d + c−1) − 2cZ2

n)2

− c−2(c4d + 1)2Y 4
n))2,

Z2
3n = Z2

n(c2(Z4
n − 3dY 4

n)2 + dY 4
n (4c2Z4

n − (Y 2
n (c3d + c−1)− 2cZ2

n)2

+ c−2((c4d + 1)2 − 12c4d)Y 4
n))2,

which can be computed using 4M + 7S, if one stores the squares of the
coordinates only. �

80 CHAPTER 4. DIFFERENTIAL ADDITION IN EDWARDS FORM

Chapter 5

Public key cryptography

We will now turn our attention to some of the cryptographic applications of
the concepts described in the previous chapters. Naturally, these concepts
help on one hand to build cryptographic systems and on the other hand have
wide applications in cryptanalysis. After having described the most basic
crypto systems in the following section, we will show that in almost all of
them naturally integers turn up, whose prime factors are not too small and
not too large – we will call such integers grained.

5.1. Diffie and Hellman: New directions in cryptography

In Diffie & Hellman (1976), a groundbreaking article on a new concept for
cryptography was published: Instead of requiring that the two communica-
ting parties have to agree on a common secret in advance (as was common
practice at that point in time), they proposed to have two keys: a public
key for encryption, made available on, say, a key-server and a private key for
decryption, only known to the recipient of the encrypted message. In this
setting, it should be infeasible to compute the private key from the publicly
available information. The advantage of this approach is obvious: We get
completely rid of a secure channel that allows transmission of a pre-shared
secret! The same technique also allows to create a digital analog to written
signatures: The signature on a document is created using the private key,
while the validity of the signature is checked using the corresponding public
key.

Diffie & Hellman did not describe an actual realization of their idea, but
they proposed a key exchange protocol, known as the Diffie-Hellman key
exchange. If two users, Alice and Bob, wish to agree on a common secret,
they first decide on a cyclic group to work in (say the multiplicative group

81

82 CHAPTER 5. PUBLIC KEY CRYPTOGRAPHY

of a finite field Fq with a generator g). Alice selects randomly an element
a from F×

q and transmits A = ga to Bob. Bob himself selects randomly an
element b from F×

q and transmits B = gb to Alice. After having exchanged
these values, Alice computes Ba = gab, while Bob computes Ab = gab,
the common secret. Why is this secure? Diffie & Hellman realized that
in a finite field Fq it is easy to compute the value b = ae (for example
using the Fast Exponentiation Algorithm 3.1.11) for a given element a ∈ Fq

and an integer exponent e. On the other hand, it seems difficult to solve
the Discrete Logarithm Problem 3.4.6, i.e. to find e when given just a
and b. The best algorithm known nowadays is the index-calculus method
(see Section 3.4.4), which has sub-exponential complexity in the size of the
inputs. The problem we still face is that we cannot prove that discrete
logarithms cannot be computed efficiently. Indeed, it would directly imply
P
= NP , another millennium problem of the Clay Mathematics Institute
(2000). There is, however, yet another issue: One does not necessarily need
to compute discrete logarithms to destroy the security of the Diffie-Hellman
key exchange! If one manages to compute gab from the knowledge of g, ga

and gb only (this is the so-called computational Diffie-Hellman problem), an
attacker could deduce the common secret by observing public information
only! For more details on the relation of these different problems, see for
example Galbraith (2011, chapter 21).

5.2. Doing it: RSA

The just described ideas were for the first time realized in Rivest, Shamir &
Adleman (1978). Contrasting the Diffie & Hellman (1976) article, the secu-
rity of this system did not depend on the difficulty of the Discrete Logarithm
Problem 3.4.6, but on the Factorization Problem 2.1.3. The RSA system can
be described as follows: A public key consists of an integer n = pq, where
p and q are prime and a public encryption exponent e ∈ Z×

ϕ(n), where ϕ(n)
is the Euler ϕ-function (see Definition 2.1.10). The corresponding private
key contains the integer n and a private decryption exponent d ∈ Z×

ϕ(n) with
the property that d = e−1 modulo ϕ(n). A message m ∈ Zn can now be
encrypted by computing c = me modulo n, and the receiver can recover the
message cd = med = m modulo n.

There are many interesting questions related to this system: First of all,
the security is only given if it is infeasible to recover the private key (n, d)
from the public information (that includes the public key (n, e)). This, in
turn, boils down to the problem of computing d = e−1 modulo ϕ(n), a task
that is very simple to achieve using the Extended Euclidean Algorithm 3.1.8,

5.3. THE UBIQUITY OF GRAINED INTEGERS 83

if we know ϕ(n) = (p − 1)(q − 1). Since computing this quantity is poly-
nomial time equivalent to factoring n, it is necessary for security of RSA
to assume that factoring a product of two primes is hard. It is clear that
this assumption is not sufficient for the security of RSA. Indeed, it might
be possible to recover the message m from the public key (n, e) and the
encrypted message c = me only (this is the so called RSA problem). For
more details on the relation of these different problems see Galbraith (2011,
chapter 24).

A completely different aspect of the security of the system is the concrete
choice of how to generate the public as well as the private key. Indeed, just
the selection of an appropriate integer n = pq motivates several questions
on the security of RSA (see for example Chapter 8).

5.3. The ubiquity of grained integers

We have seen that in the RSA crypto system, described in the last section,
one constructs a modulus n that is a product of two roughly equally sized
primes. This already implies that the integer n cannot be factored efficiently
using trial division, i.e. the prime factors p and q are larger than some poly-
logarithmic bound B. But this requirement gives also an upper bound on
the size of p and q, since both p and q are by construction also smaller than
C = n/B. Thus any integer n = pq used in the RSA crypto system has
prime factors within interval [B, C], i.e. they are simultaneously B-rough
and C-smooth. In real-world implementations of RSA the bound B is not
only poly-logarithmic in n, but actually very close to

√
n. This has, by the

same reasoning as above, the consequence that also the bound C is very
close to

√
n.

Integers with prime factors from a certain interval [B, C] also pop up
in factorization algorithms: If we consider the Quadratic Sieve (see Sec-
tion 3.4.1) or the General Number Field Sieve (see Section 3.4.3) and use
the Elliptic Curve Method 3.5.9 (ECM) for the factorization of the interme-
diate sieving results, we will typically first try to factor those sieving results
via trial division up to some bound B. If this does not succeed, i.e. the
number we are currently trying to factor is B-rough, then we start the El-
liptic Curve Method 3.5.9 on this integers and run it until we think that
we may not succeed (that is after, say, one second of computation time,
we abort and discard the number). Now, since the runtime of the ECM
basically relies on the size of the smallest prime factor of the input only (cf.
the runtime estimate (3.5.12)), such a procedure would naturally be able
to factor such numbers that are C-smooth, where the bound C depends

84 CHAPTER 5. PUBLIC KEY CRYPTOGRAPHY

on the runtime-bound we are imposing on our algorithm. Thus, also there
the surviving numbers (i.e. those which actually can be factored using the
trial-division/ECM approach) will with high probability be simultaneously
B-rough and C-smooth.

These two examples show that such grained integers often occur natu-
rally in the design and the analysis of cryptographic algorithms (especially
those whose security depends on Factorization Problem 2.1.3), and it turns
out that we can use this additional property to say something more about
the behavior of the algorithms using them and answer some very practical
questions concerning them (see Chapter 7 and Chapter 10).

Chapter 6

Coarse-grained integers

The results in this section arose from a fruitful collaboration with Michael
Nüsken between 2007 and 2011. A preprint of the results was published
on the math arXiv, see Loebenberger & Nüsken (2010). It is a bit difficult
to actually tell which results are the coauthors’ work only. We were often
working together on certain aspects of the analysis. The results that were
mainly our coauthor’s work are marked with the citation “Nüsken (2006-
2011)”.

Let us call an integer A-grained if and only if all its prime factors are
in the set A. If A is an interval [B, C], we call the integer [B, C]-grained.
Then an integer is C-smooth if and only if it is]0, C]-grained, and B-rough
if and only if it is]B,∞[-grained. You may want to call an integer family
coarse-grained if it is]B, C]-grained and the number of factors is bounded
(alternatively, we then call such an integer [B, C]-grained). We consider the
number of integers up to a real positive bound x that are]B, C]-grained and
have a given number k of factors, in formulae:

(6.0.1) πk
B,C (x) := #

{
n ≤ x ∃p1, . . . , pk ∈ P ∩]B, C] : n = p1 · · · pk

}
.

We always assume that C > B, since otherwise the set under consideration
is empty.

Such numbers occur for example in an intermediate step in the general
number field sieve when trying to factor large numbers. During the sieving
integers are constructed as random values of carefully chosen small-degree
polynomials and made B-rough by dividing out all smaller factors. The re-
maining number is fed into the Elliptic Curve Method 3.5.9 with a time limit
that should allow to find factors up to C. To tune the overall algorithm it is
vital to know the probability that the remaining number is C-smooth. As-

85

86 CHAPTER 6. COARSE-GRAINED INTEGERS

suming heuristically that the polynomials output truly random numbers on
random inputs the counting task we deal with is the missing link, since esti-
mates for counting B-smooth numbers are known, see Section 2.3.2. There
is plenty of work on smooth integers. A brilliant overview article on the
state of the art in this area is Granville (2008). Rough numbers on the
other hand have drawn much less attention. The only result we are aware
of is the very old artice (1937). The combined question of consid-
ering [B, C]-grained integers seems not have been studied anywhere in the
literature. This might be due to the fact that the counting problem is trivial
for fixed bounds on B, C since the number of coarse-grained integers is in
this case finite, see below.

To avoid difficulties with non-squarefree numbers, instead of numbers we
count lists of primes

(6.0.2) κk
B,C (x) := #

{
(p1, . . . , pk) ∈ (P ∩]B, C])k p1 · · · pk ≤ x

}
.

It turns out that there are anyways only a few non-squarefree numbers
counted by πk

B,C , namely k! · πk
B,C (x) ≈ κk

B,C (x). This would actually be
an equality if there were no non-squarefree numbers in the count. We defer
a precise treatment until Section 6.8.

We head for determining precise bounds κk
B,C (x) or πk

B,C (x) that can
be used in practical situations. However, to understand these bounds we
additionally consider the asymptotical behaviors. This is tricky since we
have to deal with the three parameters B, C and x simultaneously. To guide
us in considering different asymptotics, we usually write B = xβ, C = xγ

and γ = β(1 + α). In particular, C = B1+α. So we replace (B, C, x) with
(x, β, γ) or (x, α, β), similar to the considerations when counting smooth or
rough numbers in the literature. Alternatively, it seems also natural to fix
x somehow in the interval]Bk, Ck] by introducing a parameter ξ by

x = Bk−ξCξ = Bk+ξα.

Now the parameters are (B, C, ξ) or (B, α, ξ).
As a first observation, note that κk

B,C (x) is constantly 0 for x < Bk

and constantly (π(C) − π(B))k for x ≥ Ck and grows monotonically when
x goes through [Bk, Ck]. Here π denotes the prime counting function, see
Chapter 2. For ‘middle’ x-values the asymptotics can be derived from our
main result:

87

Corollary 6.0.3. Fix k ∈ N≥2, α > 0 and ε > 0. Then for large B = xβ

and C = B1+α we have uniformly for x ∈ [Bk(1 + ε), Ck(1 − ε)] that

κk
B,C (x) ∈ Θ

(
x

ln B

)
= Θ

(
x

β ln x

)
,

where the error between the approximation and the function is of order
O
(

x√
B

)
and the hidden constants depend on ε, k and α only. �

This is in contrast to the asymptotics at x = Ck:

κk
B,C

(
Ck
)
≈ Ck

lnk C
=

Bk(1+α)

(1 + α)k lnk B
∈ Θ

(
x

βk lnk x

)
.

This observation is explained as follows: Note that roughly half of the num-
bers up to x are in the interval [1

2x, x] and similarly for primes. Thus the
behavior of those candidates largely rule κk

B,C (x)/x. For an x = Bk−ξCξ

with a fixed ξ ∈]0, k[, it is mostly determined by the requirement that the
counted numbers are B-rough, and we thus observe a comparatively large
fraction of]B, C]-grained numbers. In the extreme case x = Ck, most can-
didates are ruled out by the requirement to be C-smooth and thus we see a
much smaller fraction of]B, C]-grained numbers.

The case that the intervals]Bk, Ck] are disjoint for considered values k
is especially nice, as then the number of prime factors of a B-rough and
C-smooth number n can be derived from the number n. So we assume in
the entire paper that C < Bs for some fixed s > 1. (Clearly, we cannot have
any fixed s that grants disjointness for all intervals. But for the first few we
can.) In the inspiring number field sieve application we have C < B1.232 .
This ensures that the intervals

]
Bk, Ck

]
for k ≤ 5 are disjoint.

A further application is related to RSA. Decker & Moree (2008) give
estimates for the number of RSA-integers. However, there are many possible
ways of constructing RSA-integers. A discussion and further calculations to
adapt our results to the different shape are needed. We treat these issues in
Chapter 8.

As our basic field of interest is cryptography and there the largest occur-
ring numbers are actually small in the number theorist’s view, we assume
the Riemann Hypothesis 2.2.14 throughout the entire paper. We will always
use the Prime Number Theorem 2.1.8(iii), namely the explicit

88 CHAPTER 6. COARSE-GRAINED INTEGERS

Prime number theorem (Von Koch 1901, Schoenfeld 1976). If (and
only if) the Riemann Hypothesis 2.2.14 holds then for x ≥ 1451

|π(x) − Li(x)| <
1

8π

√
x ln x,

where Li(x) =
∫ x

2
1

ln t dt.

We have numerically verified this inequality for x ≤ 240 ≈ 1.1 · 1012 based
on Kulsha’s tables (Kulsha 2008) and extensions built using the segmented
siever implemented by Oliveira e Silva (2003). We are confident that we can
extend this verification much further. In the inspiring application we have
x < 237 and so for those x we can take this theorem for granted even if the
Riemann Hypothesis 2.2.14 should not hold.
We arrive at the following description of the desired count:

Theorem. Let B < C = B1+α with α ≥ ln B√
B

and fix k ≥ 2. Then for any

(small) ε > 0 and B tending to infinity we have for x ∈
[
Bk(1 + ε), Ck(1 − ε)

]
a value c̃ ∈

[
αk−1δk

k!(1+α)k , 1
k!

]
with δk = min

(
2−4 εk

k! , 2−k εk−1

(k−1)!

)
such that∣∣∣∣πk

B,C (x)− c̃
x

ln B

∣∣∣∣ ≤ (2k − 1)αk−2(1 + α) · x√
B

+ 2k−1 x

B
.

Also without assuming the Riemann Hypothesis 2.2.14 we can achieve mean-
ingful results provided we use a good unconditional version of the prime num-
ber theorem whose error estimate is at least in O

(
x

ln3 x

)
. The famous work

by Rosser & Schoenfeld (1962); Rosser & Schoenfeld (1975) is not sufficient.
Yet, Dusart (1998) provides an explicit error bound of order O

(
x

ln3 x

)
, and

Ford (2002a) provides explicit error bounds of order O
(
x exp

(
− A(ln x)3/5

(ln ln x)1/5

))
though this only applies for x beyond 10171 or even much later depending
on A and the O-constant, see Fact 6.6.1.

6.1. The recursion

The essential basis for the analysis of the counting functions κk
B,C is the

following simple description.

Lemma 6.1.1. For all k ∈ N>0 we have the recursion

κk
B,C (x) =

∑
pk∈P∩]B,C]

κk−1
B,C (x/pk)

6.1. THE RECURSION 89

based on

κ0
B,C (x) =

{
0 if x ∈ [0, 1[,
1 if x ∈ [1,∞[.

Proof. In case k > 0 we have

κk
B,C (x) = #

{
(p1, . . . , pk) ∈ (P ∩]B, C])k p1 · · · pk ≤ x

}
= #

⊎
p∈P∩]B,C]

{
(p1, . . . , pk) ∈ (P ∩]B, C])k p1 · · · pk−1 ≤ x/pk,

pk = p

}

=
∑

pk∈P∩]B,C]
κk−1

B,C (x/pk) .

The case k = 0 is immediate from the definition. �

From the definition (6.0.2) or from Lemma 6.1.1, it is clear that

κ1
B,C (x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ [0, B[,
π(x) − π(B) if x ∈ [B, C[,
π(C)− π(B) if x ∈ [C,∞[.

This reveals that the case distinction in κ0
B,C leaves its traces on higher

κk
B,C . For further calculations it is vital that we make this precise. This will

enable us later to do our estimates. For k ∈ N we distinguish k + 2 cases:

x is in case (k,−1) :⇐⇒ x ∈
[
0, Bk

[
,

x is in case (k, j) :⇐⇒ x ∈
[
Bk−jCj, Bk−1−jCj+1

[
,

x is in case (k, k) :⇐⇒ x ∈
[
Ck,∞

[
,

where j ∈ N<k. Note that most cases are characterized by the exponent of
C at the left end of the interval.

Lemma 6.1.2. For k, j ∈ N, 0 ≤ j < k and x in case (k, j), we have

κk
B,C (x) =

∑
pk∈P∩

]
x

Bk−1−j Cj ,C
]κk−1

B,C (x/pk) +
∑

pk∈P∩
]
B, x

Bk−1−j Cj

]κk−1
B,C (x/pk)

where in the first sum x/pk is in case (k− 1, j− 1) and in the second in case
(k − 1, j). For j = −1, and j = k we do not split the sum, as then all x/pk

are in one case anyways. For j = 0 the left part is zero, so that the splitting
there is less visible.

90 CHAPTER 6. COARSE-GRAINED INTEGERS

Proof. We only have to verify that x/pk ∈
[
Bk−1−jCj, Bk−j−2Cj+1

[
for

pk ∈ P ∩]B, x/Bk−1−jCj] and x ∈
[
Bk−jCj, Bk−1−jCj+1

[
. Similarly, the

statement for the second sum is established. �

For example, we obtain

κ2
B,C (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ∈
[
0, B2[,∑

p2∈P∩]B, x
B]
∑

p1∈P∩
]

B, x
p2

] 1 if x ∈
[
B2, BC

[
,∑

p2∈P∩] x
C

,C]
∑

p1∈P∩
]

B, x
p2

] 1

+
∑

p2∈P∩]B, x
C]
∑

p1∈P∩]B,C] 1
if x ∈

[
BC, C2[,

∑
p2∈P∩]B,C]

∑
p1∈P∩]B,C] 1 if x ∈

[
C2,∞

[
.

(6.1.3)

So for κ2
B,C (x) we have four cases with four 2-fold sums. In general κk

B,C (x)
has k + 2 cases with 2k k-fold sums. Well, we better stop unfolding here.

Based on the intuition that a randomly selected integer n is prime with
probability 1

ln n we can replace
∑

p∈P∩]B,C] f(p) with
∫ C

B
f(p)
ln p dp. This directly

leads to the approximation function. We prefer however to follow a better
founded way to them which will also give information about the error term.

6.2. Using estimates

From the recursion for κk
B,C (x) it is clear that we have to compute terms

like ∑
p∈P∩]B,C]

f(p) or
∑

p∈P∩]B,C]
f(x/p).

To get good estimates for such a sum we follow the classic path, as Rosser &
Schoenfeld (1962): we rewrite the sum as a Lebesque-Stieltjes-integral over
the prime counting function π(p). Then we substitute π(t) = Li(t) + E(t),
keeping in mind that we know good bounds on the error term E(t) by the
Prime Number Theorem 2.1.8(iii). Finally, we integrate by parts, estimate

6.2. USING ESTIMATES 91

and integrate by parts back:∑
p∈P∩]B,C]

f(p)

=
∫ C

B
f(t) dπ(t)

=
∫ C

B
f(t) d Li(t) +

∫ C

B
f(t) dE(t)

=
∫ C

B

f(t)
ln t

dt +f(C)E(C)− f(B)E(B)−
∫ C

B
E(t) df(t) .

The existence of all integrals follow from the existence of the first. If the sum
kernel f is differentiable with respect to t we can rewrite

∫ C
B E(t) df(t) =∫ C

B f ′(t)E(t) dt. Now we can use the estimate on the error term E(t):∣∣∣∣∣∣
∑

p∈P∩]B,C]
f(p)−

∫ C

B

f(t)
ln t

dt

∣∣∣∣∣∣
≤ |f(C)|Ê(C) + |f(B)|Ê(B) +

∫ C

B
|f ′(t)|Ê(t) dt.

What remains is, given the concrete f , to determine the occurring integrals.
For the counting functions κk

B,C — as one would guess — this task is more
and more complicated the larger k is. Clearly, smoothness properties of f
must be considered carefully.

During all this we make sure that the involved functions stay sufficiently
smooth:

Lemma 6.2.1 (Prime sum approximation). Let f , f̃ , f̂ be functions R>0 →
R≥0 such that f̃ and f̂ are piece-wise continuous, f̃ + f̂ is increasing, and∣∣∣f(x)− f̃(x)

∣∣∣ ≤ f̂(x)

for x ∈ R>0. Further, let Ê(p) be a positive valued, increasing, smooth
function of p bounding |π(p) − Li(p)| on [B, C]. (For example, under the
Riemann Hypothesis 2.2.14 we can take Ê(p) = 1

8π

√
p ln p provided p ≥

1451.) Then for x ∈ R>0∣∣∣∣∣ ∑
p∈P∩]B,C]

f(x/p) − g̃(x)
∣∣∣∣∣ ≤ ĝ(x)

92 CHAPTER 6. COARSE-GRAINED INTEGERS

where

g̃(x) =
∫ C

B

f̃(x/p)
ln p

dp ,

ĝ(x) =
∫ C

B

f̂(x/p)
ln p

dp +2(f̃ + f̂)(x/B)Ê(B) +
∫ C

B

(
f̃ + f̂

)
(x/p)Ê′(p) dp .

Moreover, g̃ and ĝ are piece-wise continuous, and g̃ + ĝ is increasing.

Proof. The assumption immediately implies∣∣∣∣∣∣
∑

p∈P∩]B,C]
f(x/p)−

∑
p∈P∩]B,C]

f̃(x/p)

∣∣∣∣∣∣ ≤
∑

p∈P∩]B,C]
f̂(x/p).

Using the techniques just sketched we obtain
∑

p∈P∩]B,C] f̃(x/p) =
∫ C

B
f̃(x/p)

ln p dp +∫ C
B f̃(x/p) dE(p) with E(p) = π(p)− Li(p). Shifting the second term to the

correspondingly transformed error bound, we now have∣∣∣∣∣∣∣∣∣∣
∑

p∈P∩]B,C]
f(x/p)−

∫ C

B

f̃(x/p)
ln p

dp︸ ︷︷ ︸
=g̃(x)

∣∣∣∣∣∣∣∣∣∣
≤
∫ C

B

f̂(x/p)
ln p

dp +
∫ C

B
(f̂ + f̃)(x/p) dE(p) .

This bound always holds, yet we still have to estimate E(p) in it. Abbrevi-
ating h(p) = (f̃ + f̂)(x/p) we estimate the last integral:∫ C

B
h(p) dE(p) = h(C)E(C) − h(B)E(B) −

∫ C

B
E(p) dh(p)

≤ h(C)Ê(C) + h(B)Ê(B) −
∫ C

B
Ê(p) dh(p)

= + h(C)Ê(C) + h(B)Ê(B)

− h(C)Ê(C) + h(B)Ê(B)

+
∫ C

B
h(p) dÊ(p) .

For the inequality we use that h(p) is decreasing in p. Collecting gives the
claim.

Finally, g̃ and ĝ being obviously piece-wise continuous it remains to show
that g̃ + ĝ is increasing. By the (defining) equation

(g̃ + ĝ)(x) =
∫ C

B
(f̃ + f̂)(x/p)

(1
ln p

+ Ê′(p)
)

dp +2(f̃ + f̂)(x/B)Ê(B)

6.3. APPROXIMATIONS 93

this follows from f̃ + f̂ and Ê being increasing. �

6.3. Approximations

Based on Lemma 6.2.1 we recursively define approximation functions κ̃k
B,C

and error bounding functions κ̂k
B,C . Recursive application of Lemma 6.2.1

will lead to a good estimate in Theorem 6.3.2. For the understanding we
further need to determine the asymptotic order of the functions defined here,
which we start in the remainder of this section. Theorem 6.3.5 relates the
functions κ̃k

B,C and κ̂k
B,C to some easier manageable functions. These in turn

are computed or estimated, respectively, in Section 6.4 and Section 6.5.

Definition 6.3.1. For x ≥ 0 we define

κ̃0
B,C (x) := κ0

B,C (x) , κ̂0
B,C (x) := 0

and recursively for k > 0

κ̃k
B,C (x) :=

∫ C

B

κ̃k−1
B,C (x/pk)

ln pk
dpk ,

κ̂k
B,C (x) :=

∫ C

B

κ̂k−1
B,C (x/pk)

ln pk
dpk

+ 2
(
κ̃k−1

B,C + κ̂k−1
B,C

)
(x/B)Ê(B)

+
∫ C

B

(
κ̃k−1

B,C + κ̂k−1
B,C

)
(x/pk)Ê′(pk) dpk .

These functions now describe the behavior of κk
B,C nicely:

Theorem 6.3.2. Given x ∈ R>0 and k ∈ N. Then the inequality∣∣∣κk
B,C (x)− κ̃k

B,C (x)
∣∣∣ ≤ κ̂k

B,C (x)

holds.

Proof. Using Lemma 6.2.1 the claim together with the fact that κ̃k
B,C +

κ̂k
B,C is increasing follow simultaneously by induction on k based on κ̃0

B,C =
κ0

B,C and κ̂0
B,C = 0. �

94 CHAPTER 6. COARSE-GRAINED INTEGERS

In order to give a first impression we calculate κ̃1
B,C and κ̂1

B,C . Analogous
to Lemma 6.1.2, we split the integration at x/Bk−1−jCj so that the parts
fall entirely into case (k − 1, j − 1) or into case (k − 1, j):

κ̃k
B,C (x) =

∫ C

x/Bk−1−jCj

κ̃k−1
B,C (x/pk) dpk +

∫ x/Bk−1−j Cj

B
κ̃k−1

B,C (x/pk) dpk .

Also for κ̂k
B,C this can be done, simply split the occurring integrals at

x/Bk−1−jCj. Now unfolding the recursive definition of κ̃1
B,C gives:

κ̃1
B,C (x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ [0, B[,∫ x

B
1

ln p1
dp1 if x ∈ [B, C[,∫ C

B
1

ln p1
dp1 if x ∈ [C,∞[,

κ̂1
B,C (x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ [0, B[,
Ê(x) + Ê(B) if x ∈ [B, C[,
Ê(C) + Ê(B) if x ∈ [C,∞[,

which corresponds exactly to the approximation of the prime counting func-
tion by the logarithmic integral Li. In case k = 2 we obtain

κ̃2
B,C (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ∈
[
0, B2[,∫ x

B
B

∫ x
p2

B
1

ln p1 ln p2
dp1 dp2 if x ∈

[
B2, BC

[
,∫ C

x
C

∫ x
p2

B
1

ln p1 ln p2
dp1 dp2

+
∫ x

C
B

∫ C
B

1
ln p1 ln p2

dp1 dp2

if x ∈
[
BC, C2[,

∫ C
B

∫ C
B

1
ln p1 ln p2

dp1 dp2 if x ∈
[
C2,∞

[
.

(6.3.3)

This is now exactly the transformed version of (6.1.3), as announced there.
You may ask where we can find a display of the error term corresponding
to (6.3.3). Well, we have computed it. But the resulting terms are so
complex that we didn’t really learn much from it. Here is an expression for
x ∈

[
B2, BC

[
:

κ̂2
B,C (x) =

∫ x
B

B

∫ x
p

B

(
Ê′(q)
ln p

+
Ê′(p)
ln q

+ Ê′(p)Ê′(q)
)

dq dp

+ 4Ê(B)
∫ x

B

B

1
ln p

dp + 4Ê(B)Ê(x/B).

Though this term can still be handled, it becomes apparent that things get
more and more complicated with increasing k. We escape from this issue by

6.3. APPROXIMATIONS 95

loosening the bonds and weakening our bounds slightly. The first aim will
be to obtain easily computable terms while retaining the asymptotic orders,
the second aim will be to still retain meaningful bounds for the fixed values
B = 1100 · 106, C = 237 − 1, k ∈ {2, 3, 4} from our inspiring application.

Our next task is to describe the orders of κ̃k
B,C and κ̂k

B,C . The main prob-
lem in an exact calculation is that most of the time we cannot elementary
integrate a function with a logarithm occurring in the denominator. But
using B ≤ p ≤ C we can obtain a suitably good approximation instead by
replacing 1

ln p with 1
ln B in the integrals. At this point we start using C ≤ Bs

and rewrite C = B1+α where α is a new parameter (bounded by s− 1). For
the time being we can consider α as a constant, but actually we make no
assumption on it. This leads to the following

Definition 6.3.4. For x ≥ 0 we let

λ̃0 (x) := κ0
B,C (x) , λ̂0 (x) := 0,

and recursively for k > 0

λ̃k (x) :=
∫ C

B

λ̃k−1 (x/pk)
ln B

dpk ,

λ̂k (x) :=
∫ C

B

λ̂k−1 (x/pk)
ln B

dpk

+ 2
(

λ̃k−1 + λ̂k−1
)

(x/B) Ê(B)

+
∫ C

B

(
λ̃k−1 + λ̂k−1

)
(x/pk) Ê′(pk) dpk .

We observe that ln B ≤ ln pk ≤ ln C = (1 + α) ln B. Thus we obtain∫ C
B

f(p)
ln p dp∈

[
1

1+α , 1
] ∫ C

B
f(p)
ln B dp for any positive integrable function f . By

induction on k we obtain

Theorem 6.3.5. Write C = B1+α and fix k ∈ N>0. Then for x ∈ R>0 we
have

κ̃k
B,C (x) ∈

[1
(1 + α)k

, 1
]

λ̃k (x) ,

κ̂k
B,C (x) ∈

[1
(1 + α)k

, 1
]

λ̂k (x) . �

In order to determine at least the asymptotic orders of κ̃k
B,C and κ̂k

B,C (along
with precise estimates) it remains to solve the recursions for λ̃k and λ̂k, or
at least to estimate these functions. As a first step, we rewrite all integrals
in Definition 6.3.4 in terms of
 defined by pk = B1+�α.

96 CHAPTER 6. COARSE-GRAINED INTEGERS

Definition 6.3.4 continued. Rewrite x = Bk+ξα with a new parameter
ξ and let λ̃k 〈ξ〉 := λ̃k

(
Bk+ξα

)
and λ̂k 〈ξ〉 := λ̂k

(
Bk+ξα

)
. (Actually, you

may think of fk 〈ξ〉 := fk(Bk+ξα) for any family of functions fk.)

Lemma 6.3.6. For k > 0 we now have the recursion

λ̃k 〈ξ〉 = α

∫ 1

0
λ̃k−1 〈ξ −
〉B1+�α d
 ,

λ̂k 〈ξ〉 = α

∫ 1

0
λ̂k−1 〈ξ −
〉B1+�α d

+ 2
(
λ̃k−1 + λ̂k−1

)
〈ξ〉 Ê(B)

+ α ln B

∫ 1

0

(
λ̃k−1 + λ̂k−1

)
〈ξ −
〉 Ê′(B1+�α)B1+�α d
 .

�

6.4. Solving the recursion for λ̃k

To construct a useful description of the function λ̃k we make a small excur-
sion and consider the following family of piece-wise polynomial functions.

Definition 6.4.1 (Polynomial hills). Initially, define the integral operator
M by

(Mf)(ξ) =
∫ 1

0
f(ξ −
) d
 =

∫ ξ

ξ−1
f(
) d

for any integrable function f : R → R. Now for k ∈ N>1 let the k-th
polynomial hill be

m̃k := Mm̃k−1

based on the rectangular function m̃1 given by m̃1(ξ) = 1 for ξ ∈ [0, 1[and
m̃1(ξ) = 0 otherwise.

Actually, m̃1 = Mm̃0 if we let m̃0 = δ be the ‘left lopsided’ Dirac delta
distribution defined by its integral

∫ ξ
−∞ δ(t) dt being 0 for ξ < 0 and 1 for

ξ ≥ 0. Contrastingly, the standard Dirac delta function is balanced and has∫ 0
−∞ δ(t) dt = 1

2 . However, we will stick to the lopsided variant throughout
the entire paper. By Dξ we denote the differential operator with respect to
ξ .

6.4. SOLVING THE RECURSION FOR λ̃K 97

Lemma 6.4.2 (Polynomial hills). (i) m̃k(ξ) = 0 for ξ < 0 or ξ ≥ k.

(ii) m̃k(ξ) = 1
(k−1)!ξ

k−1 for ξ ∈ [0, 1[and m̃k(ξ) = 1
(k−1)!(k − ξ)k−1 for

ξ ∈ [k − 1, k[.

(iii) m̃k restricted to [j, j + 1[is a polynomial function of degree k − 1 for
j ∈ {0, . . . , k − 1}. In particular, m̃k is smooth for ξ ∈ R \ {0, . . . , k}.

(iv) m̃k is (k − 2)-fold continuously differentiable.

(v) Conversely, the conditions (i) through (iv) uniquely determine m̃k.

(vi) Di
ξm̃k = MDi

ξm̃k−1 as long as i ≤ k − 2 and even for i = k − 1 when
read for distributions.

(vii) The function m̃k is symmetric to k
2 : m̃k(ξ) = m̃k(k − ξ).

(viii) For ξ ∈ [j, j + 1[(corresponding to case (k, j)) we have

Dk−1
ξ m̃k(ξ) = (−1)j ·

(
k − 1

j

)
.

(ix) The next observation can only be correctly described as a linear com-
bination of Dirac delta distributions:

Dk
ξ m̃k(ξ) =

∑
0≤j≤k

(−1)j

(
k

j

)
· δ(ξ − j).

(x) For any 0 ≤ � < k we obtain the following explicit description:

D�
ξm̃k(ξ) =

1
(k − 1 − �)!

∑
0≤i≤
ξ�

(
k

i

)
(−1)i(ξ − i)k−1−�.

(xi) Further, m̃k(ξ) = ξ
k−1m̃k−1(ξ) + k−ξ

k−1m̃k−1(ξ − 1) holds.

Curiosity: The function m̃k can also be described as the volume of a slice
through a (k−1)-dimensional unit hypercube of thickness 1√

k
orthogonal to

a main diagonal. That’s the same as saying it is the (k − 1)-volume of the
cut between a k-dimensional hypercube and the hyperplane

∑
1≤i≤k
i = ξ.

This last interpretation makes it obvious that∫ k

0
m̃k(ξ) dξ = 1,

since this is the volume of the k- hypercube.

98 CHAPTER 6. COARSE-GRAINED INTEGERS

m̃1

1

−1
1

1

m̃2

1

−1
1 2

ξ

2 − ξ

1

−1
1 2

1

−1

m̃3

1

−1
1 2 3

1
2 ξ2

−ξ2 + 3ξ − 3
2

1
2 (3 − ξ)2

1

−1
1 2 3

ξ

−2ξ + 3

−(3 − ξ)

1

−1

−2

1 2 3

1

−2

1

m̃4

1

−1
1 2 3 4

1
6 ξ3

− 1
2 ξ3 + 2ξ2 − 2ξ + 2

3

1

−1
1 2 3 4

1
2 ξ2

− 3
2 ξ2 + 4ξ − 2

1

−1

−2

1 2 3 4
ξ

−3ξ + 4

−3(4 − ξ) + 4

4 − ξ

1

2

3

−1

−2

−3

1 2 3 4

1

−3

3

−1

m̃5

1

−1
1 2 3 4 5

1
24 ξ4

−4ξ4+20ξ3−30ξ2+20ξ−3
24

6ξ4−60ξ3+210ξ2−300ξ+155
24

1

−1
1 2 3 4 5

1
6 ξ3

− 2
3 ξ3 + 5

2 ξ2 − 5
2 ξ + 5

6

ξ3 − 15
2 ξ2 + 35

2 ξ − 25
2

1

−1

−2

1 2 3 4 5
1
2 ξ2

−2ξ2 + 5ξ − 5
2

3ξ2 − 15ξ + 35
2

1

2

3

−1

−2

−3

1 2 3 4 5
ξ

−4ξ + 5

6ξ − 15

4(5 − ξ) − 5

−(5 − ξ)

M

Dξ

Figure 6.4.1: Graphs of the polynomial hills m̃k for k ≤ 5 and their deriva-
tives

Proof. From the definition (i) through (vii) follow directly. Further,
note that (MDξf) (ξ) = f(ξ) − f(ξ − 1). This is obvious from (Mf)(ξ) =∫ ξ

ξ−1 f(
) d
.
We prove (viii) by induction on k. For k = 1 this is true by definition.

So consider k > 1. The recursion for m̃ differentiated k − 1 times yields for
ξ ∈ [j, j + 1[

Dk−1
ξ m̃k(ξ) = DξMDk−2

ξ m̃k−1(ξ)

= Dk−2
ξ m̃k−1(ξ) −Dk−2

ξ m̃k−1(ξ − 1)

= (−1)j

(
k − 2

j

)
− (−1)j−1

(
k − 2
j − 1

)
= (−1)j

(
k − 1

j

)
.

(ix) follows similarly.

6.4. SOLVING THE RECURSION FOR λ̃K 99

To prove (x) consider h(ξ) = 1
(k−1)!

∑
0≤i≤
ξ�

(k
i

)
(−1)i(ξ − i)k−1. Then

Dk−1
ξ h = Dk−1

ξ m̃k using (viii). And obviously D�
ξh(0) = 0 = D�

ξm̃k(0) for
0 ≤ � < k − 1, so that inductively (with falling �) we get D�

ξh = D�
ξm̃k.

As we do not need (v) and (xi), we leave these proofs to the interested
reader. �

Most of the following is easier if we first renormalize λ̃k. So we let

λ̃k
norm 〈ξ〉 :=

1
αkBk+ξα

λ̃k 〈ξ〉 .(6.4.3)

The recursion for λ̃k now turns into

λ̃k
norm = Mλ̃k−1

norm.

Theorem 6.4.4 (Approximation order, Nüsken 2006-2011). For any ξ ∈ R

we have

λ̃k
norm 〈ξ〉 =

∫ ξ

0
B−�αm̃k(ξ −
) d
 = B−ξα

∫ ξ

0
B�αm̃k(
) d
 ,

λ̃k
norm 〈ξ〉 =

1
(−α ln B)k

⎛⎝ ∑
0≤i≤
ξ�

(
k

i

)
(−1)iB−(ξ−i)α

−
∑

0≤�≤k−1
(−α ln B)� · Dk−�−1

ξ m̃k(ξ)

⎞⎠ ,

λ̃k
norm 〈ξ〉 =

∑
0≤i≤
ξ�

(
k

i

)
(−1)i cutexpk (−(ξ − i)α ln B)

(−α ln B)k
,

where cutexpk(ζ) = exp(ζ) −∑0≤�≤k−1
ζ�

�! =
∑

�≥k
ζ�

�! . We can also express
cutexpk using the incomplete Gamma function Γ(k, ζ) =

∫∞
ζ e−�
k−1 d
 by

cutexpk(ζ) = exp(ζ)− Γ(k,ζ)
exp(−ζ)Γ(k,0) .

Proof. The definition for λ̃0 turns into

λ̃0
norm 〈ξ〉 =

∫ ∞

0
B−�αδ(ξ −
) d
 .

Now, since M commutes with this integration this immediately implies that

λ̃k
norm 〈ξ〉 =

∫ ∞

0
B−�αm̃k(ξ −
) d

100 CHAPTER 6. COARSE-GRAINED INTEGERS

which is the first stated equality noting that m̃k is zero outside [0, k]. By
partial integration we obtain

λ̃k
norm 〈ξ〉 =

1
α ln B

m̃k(ξ) − 1
α ln B

∫ ∞

0
B−�αDξm̃k(ξ −
) d

=
∑

1≤i≤k

(−1)i−1

(α ln B)iD
i−1
ξ m̃k(ξ) +

(−1)k

(α ln B)k

∫ ∞

0
B−�αDk

ξ m̃k(ξ −
) d
 .

Using the description of Dk
ξ m̃k from Lemma 6.4.2(ix) the last integral turns

into the claimed sum of the second stated equality. ExpressingDk−�−1
ξ m̃k(ξ−

) using Lemma 6.4.2(x) and rearranging slightly yields the third equality. �

We are going to estimate the estimation of the error in the next section.
To that aim we first need to estimate λ̃k

norm. If k > 0 then, based on
Theorem 6.4.4 and m̃k(ξ) ≤ 1, we obtain the upper bound

λ̃k
norm 〈ξ〉 =

∫ ∞

0
B−�αm̃k(ξ −
) d
≤ 1

α ln B
.

For k = 0 we have λ̃0
norm 〈ξ〉 = B−ξα for ξ ≥ 0 and so λ̃0

norm 〈ξ〉 ≤ 1 will do
for all ξ ∈ R.

We first describe the qualitative behaviour of λ̃k
norm. Actually its graph

looks like a slightly biased hill.

Lemma 6.4.5 (Nüsken 2006-2011). The function λ̃k
norm 〈ξ〉 = B−ξα

∫ ξ
0 B�αm̃k(
) d

is zero at ξ = 0, positive at ξ = k, more precisely

λ̃k
norm 〈k〉 =

(
1 − B−α

α ln B

)k

,

and there is a position ξk
1
2
∈]0, k] such that it is increasing on]0, ξk

1
2
[and

decreasing on]ξk
1
2
, ξ[. Further, ξk

1
2
≥ k

2 .

Proof. First, inspecting

λ̃1
norm 〈ξ〉 =

∫ ξ

0
B−�αm̃1(ξ −
) d

=

⎧⎪⎪⎨⎪⎪⎩
0 if ξ < 0,
1−B−ξα

α ln B if ξ ∈ [0, 1],
1−B−α

α ln B B−(ξ−1)α if ξ > 1.
0 1

1−B−γ

γ ln B

6.4. SOLVING THE RECURSION FOR λ̃K 101

shows that for k = 1 all claims hold with ξk
1
2

= 1. So in the remainder of
this proof we assume k > 1.

Next, compute λ̃k
norm 〈k〉 inductively:

λ̃k
norm 〈k〉 = B−kα

∫ k

0
B�α

∫ 1

0
m̃k−1(
−
k) d
k d

= B−α
∫ 1

0
B�kα d
k︸ ︷︷ ︸

= 1−B−α

α ln B

·B−(k−1)α
∫ k−1

0
Bταm̃k−1(τ) dτ︸ ︷︷ ︸

=λ̃k−1
norm〈k−1〉

=
(

1 − B−α

α ln B

)k

.

Here we have substituted τ =
 −
k and collapsed the new integration
interval [−
k, k−
k] for τ to [0, k− 1] since m̃k−1 vanishes on the difference
Moreover, based on λ̃k

norm 〈ξ〉 = B−ξα
∫ ξ

0 B�αm̃k(
) d
 we obtain

Dξλ̃k
norm 〈ξ〉 = −α ln B · λ̃k

norm 〈ξ〉+ m̃k(ξ),(6.4.6)

and infer that Dξλ̃k
norm 〈k〉 = −α ln B

(
1−B−α

α ln B

)k
is negative.

Finally, compute the derivate of λ̃k
norm differently

Dξλ̃k
norm 〈ξ〉 = Dξ

(∫ ξ

0
B−�αm̃k(ξ −
) d

)
= B−ξα

∫ ξ

0
B�αDξm̃k(
) d
 .

The integral kernel B�αDξm̃k(
) is positive on]0, k
2 [and negative on]k

2 , k[.
Thus

∫ ξ
0 B�αDξm̃k(
) d
 increases on]0, k

2 [and decreases on]k
2 , k[. Since

this term starts at zero, it is positive for some time, begins to decrease at
k
2 , traverses zero at some point ξk

1
2

recalling that at k the value is negative,
and stays negative until ξ = k since it continues to decrease. Thus the sign
of Dξλ̃k

norm 〈ξ〉 is positive on]0, ξk
1
2
[and negative on]ξk

1
2
, k[, and so λ̃k

norm 〈ξ〉
is increasing till ξk

1
2

and decreasing afterwards. �

Lemma 6.4.7 (Nüsken 2006-2011). Assume k ≥ 2, α ln B ≥ ln 16
k , and ξ ∈

[0, 1]. Then we have

λ̃k
norm 〈ξ〉 ≥

exp
(
− ln2 4

α ln B

)
α ln B

· ξk

k!
.

The assumptions are already true for C = 2B when k ≥ 4. Note that this
is rather sharp as for ξ ∈ [0, 1] we have λ̃k

norm 〈ξ〉 ≤ ξk

k! .

102 CHAPTER 6. COARSE-GRAINED INTEGERS

0 1 2 3 4 5 6 7

1−B−γ

γ ln B

ξ

Figure 6.4.2: λ̃k
norm 〈ξ〉 for ξ ∈

[
−1

2 , k + 1
2

]
and k = 1, 2, 3, 4, 5, 6, 7

Proof. We use the integral representation from Theorem 6.4.4 and esti-
mate the polynomial hill part m̃k(ξ −
) of its kernel by a simple piece-wise
constant function as indicated in the picture. We obtain

λ̃k
norm 〈ξ〉 =

∫ ξ

0
B−�αm̃k(ξ −
) d

≥
∫ ε

0
B−�α d
 ·m̃k(ξ − ε)

=
1

α ln B

(
1− exp (−εα ln B)

)
m̃k(ξ − ε).

B−�α

m̃k(ξ − �)
0

1

0 1 2
�

ξε

This holds for any ε ∈ [0, ξ] since 0 ≤ ξ ≤ k
2 ensures that m̃k is increasing.

So we can optimize ε depending on ξ. We obtain a suitable value when
setting ε by

1 − exp (−εα ln B) =
ξ

k
.(6.4.8)

To make sure that now ε ≤ ξ we use the following simple fact.

Fact 6.4.9. For any ϑ > 0 and τ = 1−exp(−ϑ)
ϑ the map

[0, ϑ] −→ [0, τϑ],
z �−→ 1 − exp(−z),

ϑ

τϑ 1 − e−z

τz

z

is bijective and increasing and for z ∈ [0, ϑ] we have τz ≤ 1−exp(−z) ≤ z.�

Let ϑ1 > 0 be such that 1−exp(−ϑ1) = 1
k . Namely, ϑ1 = − ln

(
1 − 1

k

)
. With

τ1 = 1−exp(−ϑ1)
ϑ1

then 1 = τ1ϑ1k and ξ
k ≤ τ1ϑ1. Thus we have εα ln B ∈ [0, ϑ1]

so that

τ1εα ln B ≤ 1− exp(−εα ln B) =
ξ

k
≤ εα ln B.(6.4.10)

6.4. SOLVING THE RECURSION FOR λ̃K 103

In particular, ε ≤ ξ follows from kτ1α ln B = 1
ϑ1

α ln B ≥ 1. By Fact 6.4.9

with ϑ = ln 2 we obtain τ = 1
2 ln 2 and

(
1− 1

k

)k
≥ exp(− 1

τ) = exp(− ln 4)

for all k ≥ 2. Thus kϑ1 = −k ln
(
1 − 1

k

)
≤ ln 4. Further, α ln B ≥ ln 16

k >
ln 4
k ≥ ϑ1. This now implies ε ≤ ξ.

Since ξ ∈ [0, 1] we have the explicit expression m̃k(ξ − ε) = (ξ−ε)k−1

(k−1)! and
so

λ̃k
norm 〈ξ〉 ≥ ξ

kα ln B
m̃k(ξ − ε) =

(1 − ε/ξ)k−1

α ln B
· ξk

k!
.

Since ϑ1 < α ln B we can define ϑ2 by 1−exp(−ϑ2) = ϑ1
α ln B , and according to

Fact 6.4.9 let τ2 = 1−exp(−ϑ2)
ϑ2

. Combining with (6.4.10) gives us
(
1 − ε

ξ

)k
≥(

1 − 1
kτ1α ln B

)k
= exp

(
− 1

τ2τ1α ln B

)
and thus simplifies our above inequality

to

λ̃k
norm 〈ξ〉 ≥

exp
(
− 1

τ2τ1α ln B

)
α ln B

· ξk

k!
.(6.4.11)

By our choices

1
τ1τ2α ln B

= kϑ2 ≥
kϑ1

α ln B
≥ 1

α ln B
.

Though these inequalities get equalities with k → ∞, we need a precise
estimate. Substituting k in −k ln

(
1 − 1

k

)
≤ ln 4 with kα ln B

ln 4 yields

1
τ2τ1

= kα ln B · ϑ2 = −kα ln B ln
(

1 − kϑ1

kα ln B

)
≤ −kα ln B

ln 4
ln
(

1 − ln 4
kα ln B

)
ln 4 ≤ ln2 4

provided α ln B ≥ ln 16
k . �

Though we know the value of λ̃k
norm 〈k〉, it is orders smaller than the

above left lower bound. Thus let us consider λ̃k
norm on [k − 1, k].

Lemma 6.4.12 (Nüsken 2006-2011). If k ≥ 3 then for ξ ∈ [k − 1, k] we have

λ̃k
norm 〈ξ〉 ≥ (1 − B−α)k

α ln B
· (k − ξ)k−1

(k − 1)!
.

104 CHAPTER 6. COARSE-GRAINED INTEGERS

Proof. By definition we have λ̃k
norm 〈ξ〉 = λ̃k〈ξ〉

αkBk+ξα . Theorem 6.4.4’s third
description expresses λ̃k

norm on [k − 1, k] as a sum of k terms. Adding the
missing term i = k we obtain λ̃k〈k〉

αkBk+ξα , noting that λ̃k is constant for ξ > k:

λ̃k
norm 〈ξ〉 =

(
1 − B−α

α ln B

)k

B(k−ξ)α − cutexpk ((k − ξ)α ln B)
(α ln B)k

.

To check the claimed inequality we substitute τ = (k− ξ)α ln B ∈ [0, α ln B]
(eliminating ξ):

λ̃k
norm 〈ξ〉 =

∑
0≤�≤k−1

τ�

�! −
(
1− (1− B−α)k

)
eτ

(α ln B)k
.

We have to show that this is at least (1−B−α)k

(α ln B)k
τk−1

(k−1)! which we rewrite to

∑
0≤�≤k−2

τ �

�!
≥
(
1 − (1 − B−α)k

)(
eτ − τk−1

(k − 1)!

)
.

Obviously (1 − B−α)k ≥ (1 − e−τ)k in our situation, with equality for τ =
α ln B or ξ = k − 1. Thus it suffices to show for any τ > 0∑

0≤�≤k−2

τ �

�!
≥ (1 − (1 − e−τ)k)

(
eτ − τk−1

(k − 1)!

)
.(6.4.13)

The remaining proof proceeds in four steps:

◦ High case:
∑

0≤�≤k−2
τ�

�! ≥ k.

◦ Low case: 1−e−τ

τ ≥ k

√
1+σ

k! , where 1
σ + 1 ≤ ek−1(k−1)!

(k−1)k−1 .

◦ Covering: Fixing σ := 1√
2π(k−1)−1

these cases cover all τ > 0 if k ≥ 4.

◦ Brute-force: Prove (6.4.13) for k = 3. (Actually, for k ∈ {3, 4, 5, 6, 7, 8, 9}.)

High case: Since eτ ≥ ∑0≤�≤k−2
τ�

�! ≥ k in this case we have τ ≥ ln k. Em-
ploying Bernoulli’s inequality (1− T)k ≥ 1− kT for T = e−τ ≤ 1 we obtain

(1 − (1 − e−τ)k)
(

eτ − τk−1

(k − 1)!

)
≤ ke−τ

(
eτ − τk−1

(k − 1)!

)

= k

(
1− τk−1

(k − 1)!
e−τ

)
≤ k ≤

∑
0≤�≤k−2

τ �

�!
.

As Bernoulli’s inequality is good for T close to 0 only, it is not surprising
that this only gives a sufficient result for τ large enough.

6.4. SOLVING THE RECURSION FOR λ̃K 105

Low case: Assume 1−e−τ

τ ≥ k

√
1+σ

k! where σ is chosen such that 1
σ + 1 <

ek−1(k−1)!
(k−1)k−1 . (Since 1−e−τ

τ is decreasing, this is always true on some interval
[0, τ0].)

The condition on σ implies that eτ −
(

1
σ + 1

)
τk−1

(k−1)! is non-negative for

all τ > 0: Consider f0(τ) = eτ (k−1)!
τk−1 −

(
1
σ + 1

)
. Then f ′

0 vanishes at τ =
k − 1 only and thus f0 is minimal there. The assumption on σ is precisely
f0(k − 1) ≥ 0.

Further, note that τk−2

(k−2)! + τk−1

(k−1)! ≤ eτ ≤ ∑0≤�≤k−1
τ�

�! + eτ τk

k! . We use
this to obtain:(

1 − (1 − e−τ)k︸ ︷︷ ︸
≥ (1+σ)τk

k!

)(
eτ − τk−1

(k − 1)!

)
︸ ︷︷ ︸

≥0

≤ eτ − τk−1

(k − 1)!
− (1 + σ)

τk

k!
eτ + (1 + σ)

τk

k!
τk−1

(k − 1)!

≤
∑

0≤�≤k−2

τ �

�!
− στk

k!
eτ + (1 + σ)

τk

k!
τk−1

(k − 1)!

=
∑

0≤�≤k−2

τ �

�!
− σ

τk

k!

(
eτ −

(1
σ

+ 1
)

τk−1

(k − 1)!

)
︸ ︷︷ ︸

≥0

≤
∑

0≤�≤k−2

τ �

�!
.

Notice that the value of σ only influences the set of values of τ that fall in
this case.

Covering: We choose σ := 1√
2π(k−1)−1

. Recall Stirling’s formula: For any

n > 0 there is a ϑ ∈]0, 1[such that n! =
(n

e
)n √2πne

1
12n+ϑ , see Robbins

(1955). We thus have 1
σ +1 =

√
2π(k − 1) < ek−1(k−1)!

(k−1)k−1 as required. Further,
we define the value τsplit where we split between the low and the high case:

τsplit :=

⎧⎪⎪⎨⎪⎪⎩
2 ln k

e if k ≥ 8,

2 if 5 ≤ k ≤ 7,√
7 − 1 if k = 4.

We start with the treatment of the cases k ≥ 8.
We claim that for τ ≤ τsplit we are in the low case, i.e.

1− e−τ

τ
≥ k

√
1 + σ

k!
=: ϑ.(6.4.14)

106 CHAPTER 6. COARSE-GRAINED INTEGERS

0

1

2

3

4

0 5 10 15 20

τ

τsplit

low
ca

se
bo

un
da

ry

high case boundary

k

Figure 6.4.3: Case coverage and τsplit

Consider f2(τ) = 1 − e−τ − ϑτ . It obviously vanishes at τ = 0. The
derivative of f2 shows that there is exactly one maximum at τ = − ln(ϑ),
which is roughly ln k. To prove (6.4.14) for τ ∈]0, τsplit] it is thus sufficient
to prove that f2 is at least 0 at the right boundary. First, note that by
Stirling’s formula we have k! ≥

(
k
e

)k √
2π and so we can estimate ϑ by e

k :

ϑ = k

√
1 + σ

k!
≤ e

k
k

√
2√
2π︸ ︷︷ ︸

≤1

≤ e
k

.

Well, now we have

k · f2 (τsplit) = k − e2

k
− kϑτsplit

≥ k − e2

k
− 2e ln

k

e
=: f3(k).

Checking that f3(e) = 0 and the derivative f ′
3(k) = (1 − e

k)2 is positive for
k > e shows that f3(k) > 0 for all k ≥ 3. Thus for τ ≤ τsplit we are in the
low case with the above choice of σ.

It remains to check that for τ ≥ τsplit we are in the high case. We use the
Lagrange remainder estimate of the power series of the exponential function
and again Stirling’s formula to obtain

∑
0≤�≤k−2

τ �

�!
≥ eτ

(
1 − τk−1

(k − 1)!

)
≥ eτ

(
1 −

(eτ

k − 1

)k−1
)

=: f5(k, τ).

As the left hand side is increasing in τ > 0 we consider the smallest τ in

6.4. SOLVING THE RECURSION FOR λ̃K 107

question: let f6(k) := f5(k, τsplit)/k. Therein,(eτsplit

k − 1

)k−1
= exp

(
−(k − 1)︸ ︷︷ ︸

(I)

(
− ln 2 − 1 − ln ln

k

e
+ ln(k − 1)

)
︸ ︷︷ ︸

(II)

)
.

Observe that the term (I) is obviously positive and increasing for k ≥ 8. The
same is true for the term (II): its derivative 1

k−1 −
1

k(ln k−1) is positive for
k ≥ e2 ≈ 7.39 and the value of term (II) at e2 is positive. Using this we infer
that f6 is increasing and positive. Checking f6(10) > 1 (f6(10) ∈]1.19, 1.20[)

now proves
∑

0≤�≤k−2
(2 ln k

e)�

�! ≥ k for k ≥ 10. For k = 8 and k = 9 we just
verify this inequality directly.

It remains to consider 4 ≤ k ≤ 7. Here we use individual separation
positions as defined above:

k 4 5 6 7 (8) (9)
τsplit

√
7− 1 2 2 2 2 ln 8

e 2 ln 9
e

1−e−τsplit
τsplit

0.49 0.43 0.43 0.43 0.40 0.37
∨ for low case

k

√
1+σ
k! 0.48 0.40 0.35 0.31 0.28 0.25

∑
0≤�≤k−2

τ�
split
�! 4 6.33 7.00 7.27 8.60 10.93 ≥ k for high case

Just check that for this τsplit the low and the high case conditions are both
fulfilled. Summing up: the claim is proved for k ≥ 4.

k < 10: For k = 3 we need an explicit check as the estimates done in the
low and the high case are too sloppy. As the following actually is a general
computational way to verify the inequality (6.4.13) we describe it in general,
show computational results for 3 ≤ k ≤ 10 and make the critical case k = 3
hand-checkable at the end. For the verification we use a small trick and
brute force: First, we substitute occurrences of e−τ with a new variable T .
The task turns into showing that the bivariate polynomial

Fk(τ, T) :=
∑

0≤�≤k−2

τ �

�!
− (1 − (1 − T)k)

T

(
1 − τk−1

(k − 1)!
T

)

is non-negative at τ = − ln T for T ∈]0, 1]. Now, observe that Fk is in-
creasing in τ > 0 for fixed T ∈ [0, 1]. If we thus replace − ln T with a lower
bound and we can show that the resulting term is still non-negative then

108 CHAPTER 6. COARSE-GRAINED INTEGERS

we are done. For T ∈]0, 1] we have − ln T ≥ ∑
1≤�≤s

(1−T)�

� . This lower
bound even converges to − ln T , which actually ensures that we can always
find some s that allows the following reduction. We consider the univariate
polynomial

gk,s(T) := Fk

⎛⎝ ∑
1≤�≤s

(1 − T)�

�
, T

⎞⎠ .

By our reasoning, the claim follows if ∀T ∈]0, 1] : gk,s(T) ≥ 0 for some s.
This in turn is implied by

gk,s(0) > 0 ∧ gk,s(T) has no zero for 0 < T < 1.(6.4.15)

The second statement can be checked using Sturm’s theorem (Sturm 1835)
by only evaluating certain rational polynomials at T = 0 and T = 1. How-
ever, this only works if s is chosen large enough. We have determined the
smallest s that make (6.4.15) true:

k 3 4 5 6 7 (8) (9)
s 4 3 4 5 6 7 8

deg gk,s 11 13 21 31 43 57 73
time (sec) 0.19 0.29 0.60 2.8 24 235 1704

Though we can always divide out (1 − T)k from gk,s the degrees are in all
cases quite high and the computations better done by a computer. The
timings refer to our own (non-optimized) MuPad-program used to assert
(6.4.15). As k = 3 is the only case that we do not cover otherwise we give
g3,4 here:

g3,4(T)/(1 − T)3 =
1
12

(1 − T) +
5
6

T + T (1− T)
(

481
96

(1 − T)2 +
35
24

T 2 + T (1 − T)
(

245
96

(1 − T) +
103
24

T + T (1 − T)
(

119
144

(1 − T)2 +
89
144

T 2 + T (1 − T) · 407
288

)))
With this description we can easily see that it is positive on [0, 1[. �

Finally, we put together the upper bound on λ̃k
norm, Lemma 6.4.5, Lemma 6.4.7,

and Lemma 6.4.12 in the following theorem.

6.4. SOLVING THE RECURSION FOR λ̃K 109

Theorem 6.4.16. For any k ≥ 1 and C = B1+α we have

λ̃k
norm 〈ξ〉 ≤ c̃k :=

{
1

α ln B if k > 0,

1 if k = 0.

Assume α ln B ≥ max
(
ln 2, ln 16

k

)
. Then for any ε ∈]0, 1] with ε ≤ k − ξk

1
2

or k < 3 there is a δ
λ̃k > 0 such that for ξ ∈ [ε, k − ε]

λ̃k
norm 〈ξ〉 ≥

δ
λ̃k

α ln B
.

Here we can choose

δ
λ̃k = min

(
2−4 · εk

k!
, 2−k · εk−1

(k − 1)!

)
.

Note that ξk
1
2

is the maximum of λ̃k
norm which in our experiments is always

less then k − 1 for k ≥ 3. However, proving that would result in a stronger
version of Lemma 6.4.12, which even in the given form required quite some
effort. However, we just want that to work for some small ε and that is
always granted.

Proof. The upper bound being proven, we consider the lower bound.
First, keeping in mind that α ln B ≥ ln 2 and α ln B ≥ ln 16

k , we consider the
cases k ≥ 3. We know by Lemma 6.4.5 that λ̃k

norm on [ε, k − ε] attains its
minimal value at one of the boundaries since ξk

1
2
∈ [ε, k−ε] (by assumption).

We thus only need to consider its values at ξ = ε and at ξ = k − ε.
On the left hand side Lemma 6.4.7 gives

α ln B · λ̃k
norm 〈ε〉 ≥ exp

(
− ln2 4

α ln B

)
εk

k!
≥ exp

(
− ln2 4

ln 2

)
εk

k!
= 2−4 · εk

k!

using the conditions on α ln B.
On the right hand side by Lemma 6.4.12 we find

α ln B · λ̃k
norm 〈k − ε〉 ≥ (1 − exp (−α ln B))k εk−1

(k − 1)!
≥ 2−k εk−1

(k − 1)!

using again α ln B ≥ ln 2. This completes the proof for the cases k ≥ 3.
We will now show corresponding lower bounds for the cases k = 1, 2. For

k = 1 we have for ε ∈]0, 1] using α ln B ≥ ln 2:

α ln B · λ̃1
norm 〈ε〉 = 1− exp (−εα ln B) ≥ 1 − exp (−ε ln 2) .

110 CHAPTER 6. COARSE-GRAINED INTEGERS

Using Fact 6.4.9 and ε ≤ 1, we have

1 − exp(−ε ln 2) ≥ 1− exp(− ln 2)
ln 2

ε =
1

2 ln 2
ε ≥ 1

2
ε.

For k = 2 we again apply Lemma 6.4.7 for the left hand side as in the
general case. For the right hand side we show that

α2 ln2 B · λ̃2
norm 〈2− ε〉 ≥

(
1 − 1

2 ln 2

)
εα ln B

for 0 ≤ εα ln B ≤ α ln B, ln 2 ≤ α ln B. Since
(
1− 1

2 ln 2

)
≥ 2−2 this proves

the claim. Now, using Theorem 6.4.4 we write the left hand side minus the
right hand side as f5(εα ln B, α ln B) with f5(τ, ϑ) = exp(τ −2ϑ)−2 exp(τ −
ϑ) + 1

2 ln 2τ + 1. We have to show that f5 is non-negative if 0 ≤ τ ≤ ϑ and
ϑ ≥ ln 2. The ϑ-derivative of f5,

∂f5

∂ϑ
(τ, ϑ) = 2 exp(−ϑ) (1 − exp(−ϑ)) exp(τ),

is positive for ϑ > 0. Thus it suffices to show that f5(τ, ϑ) ≥ 0 for the
smallest allowed ϑ, which is the larger of τ and ln 2. If τ ≥ ln 2 then we
consider f5(τ, τ) = exp(−τ) + 1

2 ln 2τ − 1. This expression is increasing in
this case (even for τ ≥ ln 2 + ln ln 2) and so it is greater than or equal to
f5(ln 2, ln 2) = 0. If otherwise 0 ≤ τ ≤ ln 2 then we consider f5(τ, ln 2) =
−3

4 exp(τ)+ 1
2 ln 2τ + 1 which is decreasing even for τ ≥ 0 and so it is greater

than or equal to f5(ln 2, ln 2) = 0. �

Summing up we obtain:

Corollary 6.4.17. For any ε ∈]0, 1] and any k ≥ 1 we have uniformly for
ξ ∈ [ε, k − ε]

λ̃k
norm 〈ξ〉 ∈ Θ

(1
α ln B

)
. �

6.5. Estimating the estimate λ̂k

The recurrence Lemma 6.3.6 for λ̂k is more complex than the one for λ̃k,
so instead of solving it we estimate it. We consider also here the normed
version λ̂k

norm 〈ξ〉 := λ̂k〈ξ〉
αkBk+ξα . To better understand how the error behaves

we compute it for k = 1:

λ̂1
norm 〈ξ〉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if ξ ∈]−∞, 0[,
1+ξα
8πα

ln B

B
1
2 + ξα

2
+ 1

8πα
ln B

B
1
2 +ξα

if ξ ∈ [0, 1[,
1+α
8πα

ln B

B
1
2 − α

2 +ξα
+ 1

8πα
ln B

B
1
2 +ξα

if ξ ∈ [1,∞[.

6.5. ESTIMATING THE ESTIMATE λ̂K 111

From this we estimate λ̂1
norm directly:

λ̂1
norm 〈ξ〉 ≤

⎧⎪⎪⎨⎪⎪⎩
0 if ξ ∈]−∞, 0[,
(2+α) ln B

8πα B− 1+ξα
2 if ξ ∈ [0, 1[,

(1+α) ln B
8πα B− 1

2 + α
2 −ξα + ln B

8πα ·B− 1
2 −ξα if ξ ∈ [1,∞[.

We have also looked at precise expressions for larger k, yet they are huge
and do not give rise to better bounds.

Theorem 6.5.1. Define values ĉk recursively by

ĉk := ĉk−1 +
4 + 3 ln B

8πα
√

B
(c̃k−1 + ĉk−1)

for k ≥ 3 based on ĉ0 := 0, ĉ1 := (2+α) ln B

8πα
√

B
, and

ĉ2 :=
6 + 3α

8πα2
1√
B

+
4 + 3 ln B

8πα
√

B
(c̃1 + ĉ1)

=
9 + 3α

8πα2
1√
B

+
1

2πα2
√

B ln B
+

(2 + α)(4 + 3 ln B) ln B

64π2α2B
.

Then for any k and ξ ∈ R we have

λ̂k
norm 〈ξ〉 ≤ ĉk.

If α ≥ ln B√
B

we have for k ≥ 2 and large B the inequality

ĉk ≤
(2k − 1)(1 + α)

α2
√

B
.

For k = 1 the order of ĉ1 is necessarily slightly larger. More precisely, we
have for large B that

ĉ1 ≤
(1 + α) ln B

α
√

B
.

Instead of defining ĉ2 and ĉ1 we could have left that to the recursion. But
the given values are smaller than the ones derived from the recursion based
on ĉ0 only. For k = 1 the recursion would give 4+3 ln B

8πα
√

B
. For k ≥ 2 however

the improvement due to these explicit settings is a factor of order ln B.

Proof. We first show that the value ĉk is bounded as claimed. For k = 1
the claim follows directly from the definition, since we have for B > exp(1)

112 CHAPTER 6. COARSE-GRAINED INTEGERS

that (2 + α) ln B ≤ 2(1 + α) ln B as α is positive. For k = 2 we have for
ln2 B ≤

√
B the inequality

ĉ2 =
6 + 3α

8πα2
1√
B

+
4 + 3 ln B

8πα
√

B
(c̃1 + ĉ1)

≤ 1 + α

α2
√

B
+

1
α2
√

B
+

(1 + α) ln2 B

α2B

≤ 3(1 + α)
α2
√

B
.

For k ≥ 2 we proceed inductively. We have

ĉk = ĉk−1 +
4 + 3 ln B

8πα
√

B
(c̃k−1 + ĉk−1)

≤ (2k−1 − 1)(1 + α)
α2
√

B
+

ln B

α
√

B

(
1

α ln B
+

(2k−1 − 1)(1 + α)
α ln B

)

=
(2k − 1)(1 + α)

α2
√

B
.

Now we prove the remaining estimate by induction on k. The case k = 0
is true by definition of λ̂0 (with equality). For k = 1 the inspection above
proves the claim. The explicit calculation of λ̂1 also shows that a bound of
order O

(
x/
√

B
)

is impossible. We defer the case k = 2 to the end of the
proof as most of it will be as in the general case. So assume k ≥ 3. Using
the definition of λ̂k from Lemma 6.3.6 we split λ̂k into three summands:

λ̂k
norm 〈ξ〉 =

∫ 1

0
λ̂k−1

norm 〈ξ −
〉 d

+
2Ê(B)

αB
· (λ̃k−1

norm + λ̂k−1
norm) 〈ξ〉

+
∫ 1

0
(λ̃k−1

norm + λ̂k−1
norm) 〈ξ −
〉 Ê′(B1+�α) ln B d
 .

For Ê(x) = 1
8π

√
x ln x we calculate as a preparative

2Ê(B)
αB

=
ln B

4πα
√

B
,(6.5.2) ∫ 1

0
Ê′(B1+�α) ln B d
 =

4 + ln B

8πα
√

B
− 4 + ln C

8πα
√

C
.(6.5.3)

6.5. ESTIMATING THE ESTIMATE λ̂K 113

The first summand of λ̂k
norm is at most ĉk−1 by induction hypothesis. The

second summand we estimate using (6.5.2) by

ln B

4πα
√

B
(c̃k−1 + ĉk−1) .

The third summand is bounded by

(c̃k−1 + ĉk−1)
∫ 1

0
Ê′(B1+�α) ln B d
 .

By (6.5.3) the third summand is at most

4 + ln B

8πα
√

B
(c̃k−1 + ĉk−1) .

This completes the proof of the case k ≥ 3:

λ̂k
norm 〈ξ〉 ≤ ĉk−1 +

ln B

4πα
√

B
(c̃k−1 + ĉk−1) +

4 + ln B

8πα
√

B
(c̃k−1 + ĉk−1)

= ĉk.

For k = 2 we have to improve the estimate of the first summand only,
since the other terms anyways are of order at most O

(1/
√

B
)
. For ξ < 0

there is nothing to prove. For ξ ∈ [0, 1[we find for this first summand

∫ ξ

0
λ̂1

norm 〈ξ −
〉 d
 ≤
∫ ξ

0

(2 + α) ln B

8πα
B− 1

2 − (ξ−�)α
2 d

=
(2 + α) ln B

8πα
B− 1

2 B− ξα
2

∫ ξ

0
B

�α
2 d
︸ ︷︷ ︸

= 2
α ln B

(
1−B− ξα

2
)

≤ 2 + α

4πα2
√

B
.

For ξ ∈ [1, 2] we find∫ 1

0
λ̂1

norm 〈ξ −
〉 d
 ≤
∫ 1

ξ−1

(2 + α) ln B

8πα
B− 1

2 − (ξ−�)α
2 d

+
∫ ξ−1

0
λ̂1

norm 〈1〉B1+αB−(1+(ξ−�)α) d

114 CHAPTER 6. COARSE-GRAINED INTEGERS

=
(2 + α) ln B

8πα
B− 1

2 − (ξ−1)α
2 B− α

2

∫ 1

ξ−1
B

�α
2 d
︸ ︷︷ ︸

= 2
α ln B

(
1−B− (2−ξ)α

2
)

+ λ̂1
norm 〈1〉B−(ξ−1)α

∫ ξ−1

0
B�α d
︸ ︷︷ ︸

= 1
α ln B (1−B−(ξ−1)α)

≤ 2 + α

4πα2 B− 1
2 − (ξ−1)α

2 +
1 + α

8πα2 B− 1
2 − α

2 +
1

8πα2 B− 1
2 −α

≤ 6 + 3α

8πα2
√

B
.

As λ̂1
norm decreases for ξ ≥ 1 this bound also holds for ξ ≥ 2. Putting

everything together the above defined value ĉ2 bounds λ̂2
norm 〈ξ〉 as claimed.

�

It is tempting to guess that we can save more ln B factors for larger
k. However, inspecting λ̂2

norm shows that, say, λ̂3
norm

〈
1
2

〉
∈ Ω

(
1√
B

)
. (For

ξ ∈ [0, 1[we find λ̂2
norm 〈ξ〉 = 3

4πα
√

B
+ O

(
1√

B ln B

)
.)

6.6. Reestimating λ̂k without Riemann

If you do not want to assume the Riemann Hypothesis 2.2.14 then only
weaker bounds Ê(x) on |π(x)−Li(x)| can be used. In Ford (2002a) and Ford
(2002b) we found the following explicit bounds, the first one he attributes
to a paper by Y. Cheng which we could not find.

Fact 6.6.1.

◦ For x > 10 we have

|π(x) − Li(x)| ≤ 11.88 x(ln x)
3
5 exp

(
− 1

57
(ln x)

3
5 (ln ln x)− 1

5

)
.

◦ There is a constant C and a frontier x0 such that for x > x0 we have

|π(x)− Li(x)| ≤ C x exp
(
−0.2098(ln x)

3
5 (ln ln x)− 1

5
)

.

Admittedly, these bounds only start to be meaningful at large values of x
(eg. the first statement around 10159 299). All those bounds are of the form:

6.6. REESTIMATING λ̂K WITHOUT RIEMANN 115

For all x > x0

|π(x) − Li(x)| ≤ C x (ln x)c0 exp
(
−A (ln x)c1(ln ln x)−c2

)︸ ︷︷ ︸
=:Ê(x)

holds. Here, C > 0, x0 > 0, c0 ∈ R, c1 > 0, c2 > 0 and A > 0 are given
parameters (which are not always known). Note that we have that

Ê(x)/x

is decreasing for large x. Actually, with the parameter sets from Fact 6.6.1
this is already true for x ≥ 5. Moreover, the quotient of the relative errors
at x1+α and at x

Ê(x1+α) ln x1+α

x1+α

Ê(x) ln x
x

=
(1 + α)Ê(x1+α)

xαÊ(x)

is bounded (or even tends to zero) with x →∞ for any α > 0. This follows
from Ê(x)/x decreasing when α is constant, but you may also consider values
for α that increase when x grows.

Revisiting the proof of Theorem 6.5.1 shows that only (6.5.2), (6.5.3),
and the initial values ĉ1 and ĉ2 depend on the specific bound Ê. We now
use the following recursion for the bounds:

ĉk := ĉk−1 +
(

2Ê(B)
αB

+
∫ 1

0
Ê′(B1+�α) ln B d

)
︸ ︷︷ ︸

=:u

(c̃k−1 + ĉk−1)

for k ≥ 1 based on ĉ0 = 0, and possibly values for ĉ1 and ĉ2.
To bound u tightly the trickiest step is bounding the integral. As our

interests lie elsewhere we take the easy way out. We integrate by parts and
use that Ê(x)/x is decreasing for the following rough estimate∫ 1

0
Ê′(B1+�α) ln B d
 =

Ê(B1+α)
αB1+α

− Ê(B)
αB

+ ln B

∫ 1

0

Ê(B1+�α)
B1+�α

d
︸ ︷︷ ︸
≤ Ê(B)

B

.

Thus u is bounded by

u ≤
(

1 +
1

α ln B

(
1 +

Ê(B1+α)
BαÊ(B)︸ ︷︷ ︸
bounded

))
Ê(B) ln B

B
.

116 CHAPTER 6. COARSE-GRAINED INTEGERS

In the following we neglect the bounded term, as we can compensate its
effect for example by a small additional factor. Since u is small for large
B, we expect ĉk to be dominated by ĉ1 = u. Precisely, for k > 1 we have
ĉk = (1 + u)ĉk−1 + u

α ln B , thus

ĉk = (1 + u)k−1u +
(1 + u)k−1 − 1

α ln B
∼
(

1 +
k − 1
α ln B

)
u.

Theorem 6.6.2 (Nüsken 2006-2011). Assume that Ê(x) bounds |π(x) − Li(x)|
and Ê(x)/x is decreasing for x > x0 and the relative error decreases fast,
i.e.

Ê(x1+α) ln x1+α

x1+α

Ê(x) ln x
x

=
(1 + α)Ê(x1+α)

xαÊ(x)
is bounded under the chosen behavior of α. Then for any k ≥ 2 and B large
we have

λ̂k
norm 〈ξ〉 ∈ O

((
1 +

k − 1
α ln B

)(
1 +

1
α ln B

)
Ê(B) ln B

B

)
for k ≥ 2. �

This is close to optimal, we only loose a factor of order ln B in the relative
error compared to the used error bound in the prime number theorem:

λ̂k
norm 〈ξ〉

λ̃k
norm 〈ξ〉

≤

(
1 + k−1

α ln B

)(
1 + 1

α ln B

)
Ê(B) ln B

B

δ
λ̃k

α ln B

∼ α

δ
λ̃k

ln B · Ê(B) ln B

B
.

The assumptions on Ê also hold for explicit error bounds with Ê(x) ∈
O
(

x
ln� x

)
. Due to the lost ln B the result is only meaningful if � ≥ 3, so

Rosser & Schoenfeld (1962) does not suffice. From Dusart (1998) we can
use Ê(x) = 2.3854 x

ln3 x
for x > 355 991, and obtain

λ̂k
norm 〈ξ〉 ∈ O

(1
ln B

)
.

6.7. Improvements

We have a look at the quality of Theorem 6.3.5 when applied to our inspiring
application. There B = 1100 · 106, C = 237 − 1, α = ln(C)/ ln(B) − 1 ≈
0.232 , and the largest k of interest is k = 4. For these parameters we find[1

(1 + α)k
, 1
]
⊂ [0.434, 1] .

6.7. IMPROVEMENTS 117

That is a great loss when we try to enclose the function of interest in a small
interval. Actually, we can improve the theorem for the price of a slightly
more complicated recursion. The present result was based on approximating
κ̊(
) = 1

ln p for p = B1+�α ∈]B, C] by λ̊(
) = 1
ln B in the recursion of

Definition 6.3.1:

κ̃k
B,C 〈ξ〉 = α ln B

∫ C

B
κ̃k−1

B,C 〈ξ −
〉 · κ̊(
)B1+�α d
 .

We get a better bound by using

ν̊(
) =
1 −

ln B
+

ln C

with p = B1+�α instead.

Definition 6.7.1. For x ≥ 0 we let ν̃0 := κ0
B,C , and recursively for k > 0

ν̃k 〈ξ〉 := α ln B

∫ 1

0
ν̃k−1 〈ξ −
〉

(1 −

ln B
+

ln C

)
B1+�α d
 .

Theorem 6.7.2 (Nüsken 2006-2011). Write C = B1+α and fix k ∈ N>0.
Then for x ∈ R>0 we have

κ̃k
B,C (x) ∈

⎡⎣(1 + α

(1 + α
2)2

)k

, 1

⎤⎦ ν̃k (x) . �

In the light of the inspiring application we now find⎡⎣(1 + α

(1 + α
2)2

)k

, 1

⎤⎦ ⊂ [0.957, 1].

When we started to think about solving the recursion in Definition 6.7.1 our
first trial was to reuse the polynomial hills m̃k. Yet, that didn’t want to fit
nicely. Instead we learned from our calculations that an exponential density
instead of a linear one would be easier to connect to the polynomial hills.
So we tried to approximate like this and got

κ̊(
) =
1

ln p
=

1
(1 −
) ln B +
 ln C

≈ e− ln ln B−� ln(1+α) =: η̊(
).

The exponent in η̊ is chosen such that for
 = 0 and
 = 1 we have equality.
It turns out that this approximation is even better than the one before and
at the same time easier to handle. Thus we replace the functions ν̃k with
another family η̃k:

118 CHAPTER 6. COARSE-GRAINED INTEGERS

Definition 6.7.3. For ξ ∈ R we let η̃0 := κ0
B,C , and recursively for k > 0

η̃k 〈ξ〉 := α ln B

∫ 1

0
η̃k−1 〈ξ −
〉 (1 + α)−�

ln B︸ ︷︷ ︸
=η̊(�)

B1+�α d
 .

Theorem 6.7.4 (Nüsken 2006-2011). Write C = B1+α and fix k ∈ N>0.
Then for x ∈ R>0 we have

κ̃k
B,C (x) ∈

[(ln(1 + α)
α

(1 + α)
1

ln(1+α) − 1
α

)k

, 1
]

η̃k (x) .

Proof. To prove this we have to relate the function κ̊ : [0, 1] → R>0,
 �→
1/ ln

(
B1+�α

)
occurring in the definition of κ̃k

B,C to the function η̊ : [0, 1] →
R>0,
 �→ η̊(
) replacing it in the definition of η̃k. Routine calculus shows
that the function κ̊/η̊ is at most 1, namely at
 = 0 and
 = 1, and assumes
its minimum value ln(1+α)

α (1 + α)
1

ln(1+α) − 1
α at
 = α−ln(1+α)

α+ln(1+α) . �

Testing this with the parameters α ≈ 0.232 and k = 4 from our inspiring
application we obtain[(ln(1 + α)

α
(1 + α)

1
ln(1+α) − 1

α

)k

, 1
]
⊂ [0.978, 1].

To get a better impression we have plotted the lower interval boundary as a
function of α for all three cases in Figure 6.7.1. We see that for small values
of α we obtain good approximations of κ̃B,C and all our attempts give only
weak results for large α, but the one with η̊ is always best.

If we now rewrite the recursion to one for

η̃k
norm 〈ξ〉 =

η̃k 〈ξ〉
αkBk+ξα(1 + α)−ξ

=
η̃k 〈ξ〉

αkBk+ξ
(
α− ln(1+α)

ln B

)
we find that η̃k

norm = Mη̃k−1
norm. So we’ll obtain the solution from the polyno-

mial hills as in Theorem 6.4.4 for λ̃k:

η̃k
norm 〈ξ〉 =

∫ ∞

0
e−�(α ln B−ln(1+α)) m̃k(ξ −
) d
 .

The only difference is that instead of α we have α − ln(1+α)
ln B . With this

replacement Theorem 6.4.4 becomes:

6.7. IMPROVEMENTS 119

0 1

1
ln B

�
γ = 3

κ̊

λ̊
ν̊
η̊

1

0 1

�

γ = 3

κ̊/̊λ

κ̊/ν̊
κ̊/η̊

0

1

0 1 2 3 10 20 30
γ

ln(1+γ)
γ

(1 + γ)
1

ln(1+γ) − 1
γ

1+γ

(1+ γ
2)2 = min κ̊/ν̊

1
1+γ

= min κ̊/̊λ

Figure 6.7.1: Comparing the quality of λ̃, ν̃ , η̃: the top pictures show the
integral kernels and their ratios for a specific α, the lower pictures show the
minimum of the ratios as a function of α

Theorem 6.7.5 (Nüsken 2006-2011). For any ξ ∈ R we have

η̃k
norm 〈ξ〉 =

∫ ξ

0
B−�

(
α− ln(1+α)

ln B

)
m̃k(ξ −
) d

= B−ξ
(
α− ln(1+α)

ln B

) ∫ ξ

0
B�
(
α− ln(1+α)

ln B

)
m̃k(
) d
 ,

=
∫ ξ

0

(
Bα

1 + α

)−�

m̃k(ξ −
) d

= B−ξ
(
α− ln(1+α)

ln B

) ∫ ξ

0

(
Bα

1 + α︸ ︷︷ ︸
= C/ ln C

B/ ln B

)�

m̃k(
) d
 ,

120 CHAPTER 6. COARSE-GRAINED INTEGERS

η̃k
norm 〈ξ〉 =

1
(−α ln B + ln(1 + α))k⎛⎝ ∑

0≤i≤
ξ�

(
k

i

)
(−1)iB−(ξ−i)

(
α− ln(1+α)

ln B

)

−
∑

0≤�≤k−1
(−α ln B + ln(1 + α))� · Dk−�−1

ξ m̃k(ξ)

⎞⎠ ,

η̃k
norm 〈ξ〉 =

∑
0≤i≤
ξ�

(
k

i

)
(−1)i cutexpk (−(ξ − i) (α ln B − ln(1 + α)))

(−α ln B + ln(1 + α))k
,

where cutexpk(ζ) = exp(ζ) −∑0≤�≤k−1
ζ�

�! =
∑

�≥k
ζ�

�! .

6.8. Non-squarefree numbers are negligible

Considering κk
B,C (x) we immediately observe that the ordering of the counted

prime lists are not important and we can group together many such elements.
To get a precise picture, we define the sorting of a tuple P = (p1, . . . , pk) in
the following way:

S(P) :=
(
{j ≤ k rankj P = i}

)
i≤k

,

where rankj P = # {p� � ≤ k ∧ p� ≤ pj}. Now the count κk
B,C (x) can be

partitioned using the sets

AS(x) :=
{

P = (p1, . . . , pk) ∈ (P ∩]B, C])k n = p1 . . . pk ≤ x,
S(P) = S

}
,

namely κk
B,C (x) =

∑
S #AS(x) where S runs over all possible sortings. The

above intuition would imply that many of these sets are essentially equal.
We group them by their type

T (S) := (#Si)i≤k .

Given any type T = (T1, . . . , Tr), there are exactly
(k

T

)
= k!

T1!···Tr! different
sortings S of type T . This corresponds to possible reorderings of a specific
vector P ∈ AS(x) for a sorting S of type T . The type of such a vector
P is defined to be T (S). It is clear that the type of P is invariant under
permutations, yet not its sorting.

6.8. NON-SQUAREFREE NUMBERS ARE NEGLIGIBLE 121

Lemma 6.8.1. Let T be a type for k elements.

(i) There exists a sorting S(T) of type T such that all vectors in AS(T)(x)
are increasing.

(ii) If T (S) = T then there is a permutation σ of k elements such that for
all x we have AS(x) = AS(T)(x)σ.

(iii) More precisely, for any sorting S of k elements the following are equiv-
alent:

(a) T (S) = T .
(b) ∃σ : S = S(T)σ.
(c) ∃σ : ∀x : AS(x) = AS(T)(x)σ . �

Noting that # {S T (S) = T} =
(k

T

)
we have

κk
B,C (x) =

∑
T

∑
S : T (S)=T

#AS(x) =
∑
T

(
k

T

)
#AS(T)(x).

On the other hand we have πk
B,C (x) =

∑
T 1 · #AS(T)(x). In particular, we

can deduce
πk

B,C (x) < κk
B,C (x) ≤ k! · πk

B,C (x) .

Actually, for large B (and C and x) we have πk
B,C (x) ∼ 1

k!κ
k
B,C (x). This

stems from the following fact that #AS(x) is asymptotically much smaller
than #AS(1,...,1)(x) for any sorting S of k elements of type different from
(1, . . . , 1).

Lemma 6.8.2. For any sorting S of k elements of type different from (1, . . . , 1)
for some sorting S′ of k − 1 elements we have #AS(x) ≤ #AS′(x/B) ≤ x

B .

Proof. Take S as specified. Let t be a position which does not occur
as a singleton in S. Further, say t ∈ Sτ , and let r = #Sτ ≥ 2. Let
S− be the sorting with Sτ removed, and S′ the sorting with t removed.
(Retaining the old indexing is easier, yet then indices run over {1, . . . , k}\Sτ ,
or {1, . . . , k} \ {t}, respectively.) Then

#AS(x) =
∑

pt∈P∩]B,C]
#AS−(x/pr

t) ≤
∑

pt∈P∩]B,C]
#AS−(x/ptB) = #AS′(x/B).

For the inequality note that S− = (S′)−. Since obviously #AS(z) ≤ z we
are done. �

122 CHAPTER 6. COARSE-GRAINED INTEGERS

Combining this with
∑

S #AS(x) = κk
B,C (x) ∼ κ̃k

B,C (x) ∈ Θ
(x

ln B

)
, shows

that there must be a large summand, which can be only #AS(1,...,1)(x).
The number s(k) =

∑
T

(k
T

)
of sortings of k elements is called ordered

Bell number. We can also recursively define them: s(0) = 1, s(k) =∑
0≤r≤k−1

(k
r

)
s(r). According to Wilf (1994), page 175f, we have s(k) =

k!
2 lnk+1 2 +O

(
(0.16)kk!

)
. In particular, s(k) is small in comparison to 2k−1k!.

Using Lemma 6.8.2 for a comparison yields the — now immediate — fol-
lowing

Lemma 6.8.3. We have∣∣∣∣πk
B,C (x) − 1

k!
κk

B,C (x)
∣∣∣∣ ≤ (2k−1 − s(k)

k!

)
x

B
< 2k−1 x

B
.

Proof.

∣∣∣k! · πk
B,C (x) − κk

B,C (x)
∣∣∣ ≤∑T

(
k! −

(k
T

))
x
B =

(
k!2k−1 − s(k)

)
x
B .
�

Compared to the error bound in
∣∣∣κk

B,C (x) − κ̃k
B,C (x)

∣∣∣ ≤ κ̂k
B,C (x) ∈ O(x√

B
)

this is negligible. Here we assume k ≥ 2 since the present observations are
irrelevant for k = 1, namely π1

B,C = κ1
B,C . Now let π̃k

B,C (x) := 1
k! κ̃

k
B,C (x),

π̂k
B,C (x) := 1

k! κ̂
k
B,C (x) + 2k−1 x

B . Combining with Theorem 6.4.16 and The-
orem 6.5.1 we finally arrive at Theorem 6.9.4, the overall summary of our
results.

6.9. Results on coarse-grained integers

We are going to combine the results of the last section with Theorem 6.4.16
and Theorem 6.5.1 to finally arrive at our main theorem.

Analogously to Definition 6.3.1, we define an approximation function for
the function πk

B,C (x).

Definition 6.9.1. For x ≥ 0 and k ≥ 0 we define

π̃k
B,C (x) :=

1
k!

κ̃k
B,C (x)

and
π̂k

B,C (x) :=
1
k!

κ̂k
B,C (x) + 2k−1 x

B
.

Similarly to Definition 6.3.1 we can also recursively define π̃k
B,C (x) by

π̃0
B,C (x) =

{
0 if x < 1,

1 if 1 ≤ x,
π̃k

B,C (x) =
1
k

∫ C

B

π̃k−1
B,C (x/pk)

ln pk
dpk .

6.9. RESULTS ON COARSE-GRAINED INTEGERS 123

It is also possible to define π̂k
B,C (x) similarly based on Definition 6.3.1. We

can now describe the behavior of πk
B,C nicely and give our main result.

Theorem 6.9.2. Given x ∈ R>0 and k ∈ N. Then the inequality∣∣∣πk
B,C (x) − π̃k

B,C (x)
∣∣∣ ≤ π̂k

B,C (x)

holds.

Proof. By Lemma 6.8.3 we have∣∣∣∣πk
B,C (x) − 1

k!
κk

B,C (x)
∣∣∣∣ < 2k−1 x

B
.

Thus using the triangle inequality and Theorem 6.3.2, we obtain∣∣∣∣πk
B,C (x) − 1

k!
κ̃k

B,C (x)
∣∣∣∣ <

1
k!

κ̂k
B,C (x) + 2k−1 x

B
,

which proves the claim. �

Theorem 6.9.3. Fix k ≥ 2. Then for any ε > 0 and B tending to infinity,
there are for x ∈

[
Bk(1 + ε), Ck(1 − ε)

]
values s̃, ŝ ∈

[
1

(1+α)k , 1
]

such that

π̃k
B,C (x) =

s̃

k!
λ̃k (x) , π̂k

B,C (x) =
ŝ

k!
λ̂k (x) + 2k−1 x

B
.

Proof. By Definition 6.9.1 we have

π̃k
B,C (x) =

1
k!

κ̃k
B,C (x) .

Theorem 6.3.5 tells us that there is a value s̃ ∈
[

1
(1+α)k , 1

]
such that

κ̃k
B,C (x) = s̃λ̃k (x) ,

implying that for the same value s̃ we have

π̃k
B,C (x) =

s̃

k!
λ̃k (x) .

Considering π̂k
B,C (x) we have by Definition 6.9.1 that

π̂k
B,C (x) =

1
k!

κ̂k
B,C (x) + 2k−1 x

B
.

124 CHAPTER 6. COARSE-GRAINED INTEGERS

Applying Theorem 6.3.5 gives a value ŝ ∈
[

1
(1+α)k , 1

]
such that

κ̂k
B,C (x) = ŝλ̂k (x) ,

which directly gives

π̂k
B,C (x) =

ŝ

k!
λ̂k (x) + 2k−1 x

B
.

This proves the theorem. �

Unrolling our results on λ̃k (x) and λ̂k (x), namely Theorem 6.4.16 and The-
orem 6.5.1, gives a slightly weaker result.

Theorem 6.9.4. Let B < C = B1+α with α ≥ ln B√
B

and fix k ≥ 2.
Then for any (small) ε > 0 and B tending to infinity we have for x ∈[
Bk(1 + ε), Ck(1 − ε)

]
a value c̃ ∈

[
αk−1δ

λ̃k

k!(1+α)k , 1
k!

]
with δ

λ̃k = min
(
2−4 εk

k! , 2−k εk−1

(k−1)!

)
such that∣∣∣∣πk

B,C (x)− c̃
x

ln B

∣∣∣∣ ≤ (2k − 1)αk−2(1 + α) · x√
B

+ 2k−1 x

B
.

Proof. By Theorem 6.9.3 we have values s̃, ŝ ∈
[

1
(1+α)k , 1

]
such that

π̃k
B,C (x) =

s̃

k!
λ̃k (x) , π̂k

B,C (x) =
ŝ

k!
λ̂k (x) + 2k−1 x

B
.

By Theorem 6.4.16 we have for ε small enough that

λ̃k (x) ∈
[
δ

λ̃k , 1
] αk−1x

ln B

and by Theorem 6.5.1 that

λ̂k (x) ≤ (2k − 1)αk−2(1 + α) · x√
B

.

This gives the claim. �

6.10. NUMERIC EVALUATION 125

6.10. Numeric evaluation

To discuss the quality of our results we consider again the example parame-
ters B = 1100 · 106, C = 237 − 1, α = ln(C)/ ln(B)− 1 = 0.232 , k = 4 from
our inspiring application. For k = 2, k = 3 we can give similar pictures; of
course, the errors are even smaller in these cases. At present we do not have
efficient algorithms for computing κk

B,C itself. However, based on our esti-
mates we can compute values for encapsulating intervals in three variants,
listed in increasing quality:

◦ λ estimate (Theorem 6.3.5):[1
(1 + α)k

λ̃k (x)− ĉkαkx, λ̃k (x) + ĉkαkx

]
.

◦ η estimate (Theorem 6.7.2):[(ln(1 + α)
α

(1 + α)
1

ln(1+α) − 1
α

)k

η̃k (x)− ĉkαkx, η̃k (x) + ĉkαkx

]
.

◦ κ estimate (Theorem 6.3.2):[
κ̃k

B,C (x) − κ̂k
B,C (x) , κ̃k

B,C (x) + κ̂k
B,C (x)

]
.

The κ estimate was easiest to obtain and is of course the most accurate one,
however, it is difficult to evaluate. The λ estimate was easy to obtain and
compute. But it is of course the least accurate of the three. The η estimate
was slightly more difficult to find, is as easy to evaluate as the prior one,
and it is much more accurate. As usual we write x = Bk+ξα and use ξ as a
running parameter.

Figure 6.10.1 shows the absolute behavior of all estimates. We observe
that the absolute errors at the right margin are huge. This is expected
as also the error estimates in the prime number theorem only bound the
relative error. However, the picture completely conceals information about
the middle and the left part of the interval [0, k].

To see more we divide by x = Bk+ξα and therefore obtain estimates
for the ratio of]B, C]-grained integers x in Figure 6.10.2. This reveals a
lot about the quality of our estimates. The black area indicates the best
that we could hope for, namely the estimate based merely on Prime Num-
ber Theorem 2.1.8(iii). However, as this is difficult to evaluate we have to
approximate once more. The λ estimate, shown in light gray, is clearly only
of use to get a rough idea. The η estimate, however, is rather close to the
actual behavior and may well serve as a basis for stochastic fine tuning of
algorithms like the General Number Field Sieve.

126 CHAPTER 6. COARSE-GRAINED INTEGERS

0 · 1040

0.1 · 1040

0.2 · 1040

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 ξ

Figure 6.10.1: Absolute behavior of the estimates for κk
B,C 〈ξ〉 . The light

gray area shows the λ estimate, the dark gray area the η estimate, and
the black area (well, yes) shows the κ estimate. The parameters are B =
1100 · 106, C = 237 − 1, α = ln(C)/ ln(B)− 1 = 0.232 , k = 4.

0 · 10−3

0.1 · 10−3

0.2 · 10−3

0.3 · 10−3

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 ξ

Figure 6.10.2: Behavior of the estimates relative to x = Bk+ξα. Colors and
parameters are as in Figure 6.10.1.

Last, Figure 6.10.3 illustrates the size of the various errors terms relative
to κ̃k:

λ̃ error:
(
1 − 1

(1+α)k

)
λ̃k (x).

6.10. NUMERIC EVALUATION 127

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 ξ

0

1

0 1 2 3 4

Figure 6.10.3: Errors of the various estimates relative to κ̃k
B,C . Parameters

are as in Figure 6.10.1.

η̃ error:
(

1 −
(

ln(1+α)
α (1 + α)

1
ln(1+α) − 1

α

)k
)

η̃k (x).

λ̂ error bound: ĉkαkx. Unconditional λ̂ error bound: ĉkαkx.

λ̂ error: λ̂k (x). Unconditional λ̂ error: λ̂k (x).
κ̂ error: κ̂k

B,C (x). Unconditional κ̂ error: κ̂k
B,C (x).

Non-squarefree error bound:
(
2k−1k! − s(k)

)
x
B .

Non-squarefree error:
(
2k−1k! − s(k)

)
x
B .

For the unconditional errors we use Dusart’s unconditional bound on |π(x) − Li(x)|
which is given by Ê(x) = 2.3854 x

ln3 x
for x ≥ 355 991.

The figure shows that all the error terms but the λ̃ error are sufficiently
small. Our best choice is the η̃ estimate which is ruled by the η̂ error and the
λ̂ error. Both are fairly less than 3% of the target value at least in the middle
of the interval. The estimations are more difficult close to the boundaries. It
is also positive that, at the parameters of our interest, most error terms are
still comparative in size to the contributions of the κ̂ error, which is induced
by the Prime Number Theorem 2.1.8. Definitely, the η estimate, combining
the η̂ error and the λ̂ error, is good enough for practical purposes, as for
example the fine tuning of the general number field sieve.

128 CHAPTER 6. COARSE-GRAINED INTEGERS

Chapter 7

Hardware for the General
Number Field Sieve

We will now explore how to optimize hardware realizations of the cofactor-
ization step of the General Number Field Sieve (see Section 3.4.3). The
results in this chapter were published at SAC 2009 in Calgary, Canada
(see Loebenberger & Putzka 2009). Our coauthor suggested to analyze the
bitlength-structure of the cofactorization inputs and wrote a short section
on the number field sieve (which is in this version omitted). Both, the frame-
work for analyzing the cluster as well as the actual optimization results are
our own discovery.

7.1. Framework

In recent implementations of the General Number Field Sieve (GNFS), de-
scribed in Section 3.4.3, the Elliptic Curve Method 3.5.9 (ECM) is used to
factor intermediate sieving results. For example in the record factorization of
Franke & Kleinjung (2005) the sieving step produced intermediate numbers
of length up to 128 bits. Adapting this to the factorization problem of the
number RSA-768 (RSA Laboratories 2007) results in the task of factoring
roughly 2 · 1012 numbers of length up to 140 bit using the ECM.

Since cofactorization is a costly part of the GNFS, it is natural to think
about highly specialized hardware realizations of this step, to improve the
performance of the GNFS considerably. In particular, since the task consists
of many very similar steps, a realization as a hardware cluster is suitable.
On such a cluster one has many computational units running in parallel that
are able to process inputs up to a certain bitlength. The question remains
how many of those bitlength-specific modules should be implemented, re-

129

130 CHAPTER 7. HARDWARE FOR THE GNFS

gardless of the concrete implementation of the corresponding ECM modules.
A straightforward approach would be to construct only modules capable of
factoring inputs of any size from the GNFS. It is clear, however, that this
approach is a great waste of logical resources and that a detailed study of the
bitlength-structure of the inputs to the cofactorization step results in much
better performance than the naïve approach. Furthermore we quantify the
gain we achieve using our optimized construction and generalize our result
to arbitrary clusters.

7.2. Modelling the cluster system

Our goal is a model of a hardware cluster (e.g. a COPACOBANA, see
Kumar et al. (2006) and Güneysu et al. (2008), using Virtex4 XC4VSX35
FPGAs). In our specific example the cluster has 16 slots, each contain-
ing 8 FPGAs (in the following called chips). Each chip can run several
ECM-processes in parallel depending on the size of the corresponding ECM-
module. We assume that each chip can only be filled with ECM modules of
a particular size. This requirement is from a theoretical point of view unnec-
essary, but for the concrete realization we have in mind we actually have to
require this, since the device controlling all the chips is in our case not able
to perform otherwise. Of course modules constructed for a given bitlength
can also factor shorter integers. If one wants to factor a number using the
cluster, the number is forwarded to a module suitable for its bitlength. The
corresponding module then attempts to find a nontrivial factor of the in-
put number. If this succeeds after a certain number of trials (each being a
separate run of the ECM with a different elliptic curve), the factor is sent
back to the controlling host computer, otherwise the number is discarded.
If the factor that is sent back or the remaining cofactor is still composite,
another factoring attempt is made. We assume for our estimates that the
effort for these additional factorizations is negligible when compared to the
first factorization attempt.

The first question we have to answer is the following: From an engineer-
ing point of view it is unrealistic to build arbitrary sized ECM modules.
What is the smallest bitlength g ∈ N for which such a construction is prac-
tical? We call this g the granularity of the implementation. Of course one
cannot give a general answer to this question. The answer heavily depends
on the type of the chips one is using and the concrete implementation one
has in mind. In our example, we will have g = 17 due to the design of the
Virtex4 XC4VSX35 FPGAs.

Another question is: How can we get rid of modules for which the num-

7.2. MODELLING THE CLUSTER SYSTEM 131

bers of integers having that bitlength is very small? In other words, if for
a particular bitlength there are only very few numbers to factor, it would
be better to factor such numbers using modules capable of factoring larger
integers. This would ensure that we would not waste any resources on the
cluster, resulting in a better runtime of the cofactorization step.

We describe now the model of the cluster: Let N denote the number of
chips on the cluster, e.g. N = 128 in our concrete example, and let D denote
the set of inputs to the cofactorization step with M := #D. For d ∈ D let
len(d) denote the bitlength of the number d, i.e. len(d) :=
log2(d)� + 1.
Each of the input numbers can be handled by specific modules suitable for
their bitlength. The size for which the modules are designed is always a
multiple of g. We denote by ni the number of parallel ECM modules for an
integer having i · g bits and by ci the average runtime of such an integer on
the corresponding chips. We are now going to model the classes the numbers
may fall into. In general, if we are given an interval I := [x, y] with x, y ∈ N

and x ≤ y, a partition of I is a sequence C := (C0, C1, . . . , Ck) ∈ Nk for
some k ∈ N, with x = C0 < C1 < · · · < Ck = y. We call k the size of the
partition C. The interval (Ci−1, Ci] is called the i-th subinterval of C. If now
C1 and C2 are partitions of I, we say that C2 is a refinement of C1 if for any
0 ≤ i ≤ k there is some j, such that C1

i = C2
j . In other words that means

that we have subdivided the subintervals of C1 into smaller pieces without
changing already existing cuts and we write C1 � C2. Conversely, C1 is called
a coarsening of C2. For our purposes we only consider partitions C of the
interval I = [x, y] where x :=
min(len(d) | d ∈ D)�g and y := �max(len(d) |
d ∈ D)�g, where the notation
.�g (�.�g) means that the rounding is done
down to (up to) the next multiple of g. Additionally we require that for any
0 ≤ i < #C the number Ci is a multiple of g. We will call such partitions
g-partitions of the interval induced by D. In particular the finest partition
we will consider is the g-partition Cf := (x, x + g, x + 2g, . . . , y) and the
possible partitions we may have at the end are always coarsenings of Cf .

For the following, fix a data set D and define K := #Cf − 1 = (y−x)/g.
Now given any C � Cf of size k, let ai(C) ∈ N be the number of occurrences
in the i-th subinterval of C, i.e. ai(C) := # {d ∈ D | len(d) ∈ (Ci−1, Ci]}. For
later use we define the input distribution

α(C) :=
(

a1(C)
M

, . . . ,
ak(C)

M

)
∈ Rk.

If we consider the ith subinterval of C the average cost of factoring such a
number is cCi/g. The space used for such a module is roughly 1/nCi/g. Thus

132 CHAPTER 7. HARDWARE FOR THE GNFS

the area-time product for class i is given by

ϑi(C) :=
cCi/g

nCi/g
.

A layout of the cluster is given by an ordered partition � k N of the N
chips into k summands, one for each class. Thus we have

� k N :⇐⇒ � = (�1, . . . , �k) ∈ {1, . . . , N}k ∧
∑

1≤i≤k

�i = N,

with �i > 0, implying N ≥ k. That means we assume that the number of
chips is always greater than the number of classes, which is also reasonable.
Note that we have indeed two different notions of partitions here: First a
partition of an interval and second an additive ordered partition of a natural
number. This could of course be unified, but for our work it is preferable to
have these two different notions, since for the former notion we emphasize
on the variable number of subintervals while for the latter we assume a fixed
number of summands.
Write C|j for the restriction of C on its first j subintervals. The minimal
runtime for C|j is given by

(7.2.1) μC(N, j) := min
� �jN

max
1≤i≤j

ϑi(C|j) · ai(C|j)
�i

.

The value μC(N, j) is indeed a time measurement, since ci is given in sec-
onds, ni has unit 1/ chip and �i has unit chip. We will use the following
convention: If we write μC(N) we actually mean μC(N, #C − 1). Further we
define

(7.2.2) τ(N) := min
C�Cf

μC(N).

Equations (7.2.1) and (7.2.2) actually depend on the data set D and we
write μD,C(N, j) and τD(N), respectively, if there is more than one data set
under consideration. In the following we will show how one can compute
μCf (N) efficiently, namely with O(N · K) arithmetic operations. Note that
the imprecision of considering arithmetic operations only is in our case not a
problem, since the size of the numbers is bounded from above by a constant.

We can compute equation (7.2.1) easily using Bellman’s dynamic pro-
gramming. To do so, we need to handle two things:

1. The solutions for the boundaries have to be computed (i.e. for the
case j = 1):

(7.2.3) μC(N, 1) =
ϑ1(C|1) · a1(C|1)

N
.

7.2. MODELLING THE CLUSTER SYSTEM 133

2. We need a recursion formula for μC(N, j). Assume we know μC(N ′, j−
1) for all N ′ < N . Then we have

(7.2.4) μC(N, j) = min
N ′<N

max
(

μC(N ′, j − 1),
ϑj(C|j) · aj(C|j)

N − N ′

)
.

The function μC(N, j) can thus be computed with O(N · j) arithmetic op-
erations.

Let us now compute the function τ(N). The total number of classes
C � Cf is 2K/4. Since K will be small in all our examples of the GNFS,
a straightforward algorithm would just compute μC(N) for all C � Cf and
select the classes with minimal runtime. Employing such an algorithm for
the computation of τ(N) will use O(NK2K) arithmetic operations.

We will now describe a greedy approach which will find in many cases
the optimal classes using only O(K) evaluations of the function μC(N) for
various C � Cf , i.e. compute τ(N) with O(N · K2) arithmetic operations:
Let C := [C0, C1, . . . , Ck] be any partition of the interval I = [x, y].

For p ∈ [1, K − 1] denote by C(p) the refinement of C at position g · p.
Our algorithm will work as follows: Starting from the partition (x, y), we
successively refine (x, y) until the optimal partition is found. In particular
if we are given in step r a partition C, we compute μC(p)(N) for all p and
take in the next round the partition C(p) with the smallest runtime μC(p)(N).
If there are two positions p1, p2 with the same minimal runtime, we select
one of the partitions randomly for the next step. This approach is indeed
greedy, since we take in every round the best subdivision. The algorithm
terminates if for all p the value μC(p)(N) is not strictly smaller than μC(N).
In this case the partition C is returned. Observe that this algorithm will
in general not find the optimal classes, since we cannot guarantee that the
algorithms terminates in a local minimum. In our experiments, however,
this heuristic indeed computed τ(N) in all our examples.

In order to measure the advantage of our optimization, we compare the
estimated runtime of the cluster using our construction with the runtime of
a naïvely constructed cluster, i.e. a cluster only containing bitlength-specific
modules for numbers having y bits. On such a cluster the runtime for a data
set D of M numbers is bounded from below by the following expression:

(7.2.5) σ−
D(N) :=

1
N · nK

∑
1≤i≤K

ciai

134 CHAPTER 7. HARDWARE FOR THE GNFS

and bounded from above by

(7.2.6) σ+
D(N) :=

McK

NnK

with K := #Cf − 1 as above. The first estimate is a bit optimistic since
the runtime of a module does not only depend on the input but also on
the arithmetic built into the module. Further the second estimate is too
pessimistic, since a module running on smaller input numbers will also run
faster on average.
We use the functions

γ−
D(N) :=

σ−
D(N) − τD(N)

σ−
D(N)

and
γ+

D(N) :=
σ+

D(N) − τD(N)
σ+

D(N)
as lower and upper bounds, respectively, to measure the runtime gain we
achieve with our optimized cluster. This expression is exactly the runtime
gain achieved by the optimization (having runtime τD(N)) in contrast to the
naïvely constructed cluster (having runtime between σ−

D(N) and σ+
D(N)).

7.3. Concrete statistical analyses

We will now perform a rigorous statistical analysis of six concrete runs of the
GNFS up to the cofactorizations step for the number RSA-768 and study
the function τ(N) for these particular inputs: Each data set D consists of
many (2 · 108)-rough composite numbers of bitlength between 58 and 160,
each D being a specific output of the sieving step of the GNFS for different
choices of a polynomial pair and the sieving region of the lattice siever.
Following von zur Gathen et al. (2007), we estimate the number of parallel
ECM modules and the runtime on the Virtex4 XC4VSX35 FPGAs according
to Table 7.3.1 and Table 7.3.2, respectively. In the implementation that was
used only modules for 17i bit integers were build. Note that such a module
will also be capable of factoring smaller integers.
Let us have a look at the distribution α(Cf) of the input data for the

various data sets (see Table 7.3.3). Note the low standard deviation of the
corresponding entries. In Figure 7.3.1 a histogram as well as the distribution
on the classes Cf is given for data set D1.

We now employ our model to find an optimal layout for the cluster
and compute the runtime gain we achieved with our optimization. Let the

7.3. CONCRETE STATISTICAL ANALYSES 135

Bitlength 17i 17 34 51 68 85 102 119 136 153 170
Processes ni 32 26 22 18 15 12 10 9 8 7

Table 7.3.1: Number of parallel ECM-modules per chip depending on the
bitlength

Bitlength 17i 17 34 51 68 85
Cost ci (in μs) 491.49125 673.9225 856.35375 1038.785 1221.21625

Bitlength 17i 102 119 136 153 170
Cost ci (in μs) 1403.6475 1586.07875 1768.51 1950.94125 2133.3725

Table 7.3.2: Average runtime of the ECM on a Virtex4 XC4VSX35 FPGA

Bitlength 0− 68 69 − 85 86 − 102 103 − 119 120 − 136 137 − 153
D1 0.0015 0.0553 0.4540 0.0886 0.2826 0.1181
D2 0.0007 0.0547 0.4493 0.0889 0.2823 0.1241
D3 0.0008 0.0540 0.4533 0.0881 0.2836 0.1203
D4 0.0009 0.0567 0.4440 0.0874 0.2902 0.1209
D5 0.0011 0.0518 0.4306 0.0875 0.2992 0.1299
D6 0.0009 0.0461 0.4340 0.0834 0.3031 0.1326
Mean 0.0010 0.0531 0.4442 0.0873 0.2902 0.1243
Stdev. 0.0003 0.0038 0.0099 0.0020 0.0091 0.0058

Table 7.3.3: Relative frequencies of the input data

50 60 70 80 90 100 110 120 130 140 150
0

1000

2000

3000

4000

bit
50 60 70 80 90 100 110 120 130 140 150

0

10000

20000

30000

40000

bit

Figure 7.3.1: Left: Histogram of data set D1. Right: Distribution onto
specific modules.

136 CHAPTER 7. HARDWARE FOR THE GNFS

notation be as in Section 7.2. In the case of the COPACOBANA we will
have N = 8 · 16 = 128. There are 351306039 ordered partitions of the
number 128 in not more than 6 parts. The total number of layouts of the
cluster, including the choice of the classes is in our example 402858941.

After having computed the function τD(128) for all data sets D we obtain
for every set an optimal layout (consisting of the interval partition C and the
distribution of chips �). If we take the result of the optimization for data set
D1, for example, we will have 47 modules for integers of up to 102 bit, 58
for integers up to 136 bit and 23 for the remaining integers (up to 153 bit).
The size of the first class is in this case 102 bit, the size of the second one 34
bit and of the third class 17 bit. The results are summarized in Table 7.3.4
and 7.3.5.

D1 D2 D3

50 60 70 80 90 100 110 120 130 140 150
0

10000

20000

30000

40000

50000

bit
50 60 70 80 90 100 110 120 130 140 150

0

10000

20000

30000

bit
50 60 70 80 90 100 110 120 130 140 150

0

10000

20000

30000

40000

50000

bit

(Ci+1 − Ci)/g (3,2,1) (1,2,2,1) (3,1,1,1)
� (47, 58, 23) (1, 46, 57, 24) (48, 11, 45, 24)
τD (μs) 124966.936 96137.13955 126309.5441
#D 98322 75013 99488
τD/#D 1.271 1.2816 1.2696

Table 7.3.4: Optimal partitions for the data sets D1, D2 and D3

D4 D5 D6

50 60 70 80 90 100 110 120 130 140 150
0

10000

20000

30000

40000

bit
50 60 70 80 90 100 110 120 130 140 150

0

2000

4000

6000

8000

10000

12000

14000

bit
50 60 70 80 90 100 110 120 130 140 150

0

5000

10000

15000

20000

bit

(Ci+1 − Ci)/g (3,1,1,1) (3,1,1,1) (3,2,1)
� (47, 11, 46, 24) (45, 11, 47, 25) (44, 59, 25)
τD (μs) 113592.0763 37653.16612 65015.11716
#D 90141 29719 50273
τD/#D 1.2602 1.267 1.2932

Table 7.3.5: Optimal partitions for the data sets D4, D5 and D6

In order to measure the advantage of our optimization, we use the es-
timates from Section 7.2. We have here at maximum 153 bit numbers and
use the values in the tables above. The result of our optimization is shown

7.4. GENERALIZATIONS TO AN ARBITRARY NUMBER OF CLUSTERS137

in Table 7.3.6.

D1 D2 D3 D4 D5 D6

γ−
D 17.47 16.97 17.66 18.38 18.4 16.88

γ+
D 33.29 32.73 33.36 33.86 33.5 32.12

Table 7.3.6: Performance gain for the different data sets (in percent) of the
optimized cluster

7.4. Generalizations to an arbitrary number of clusters

Fix one data set D. In this section we analyze the behavior of the function
γ−(N) for N →∞.

In practice a growing N would mean that we employ not only one CO-
PACOBANA, but a whole collection of these, running simultaneously, and
optimize over the whole set of chips. We will now show that the runtime
gain achieved by this collection of clusters converges to roughly 21% when
compared to a collection of naïvely constructed clusters. It is clear that the
actual gain however will strongly depend on the input data D.

Now let’s say we are going to build m clusters and we wish to optimize
the number of bitlength specific ECM modules as above. The formulae in
Section 7.2 are still valid, except that we will have N = 128m chips in a
collection of m clusters instead of N = 128 as above.

We wish to compute limN→∞ γ±(N). To do so, we first need to compute
τ(N) for N →∞. Unfortunately, the dynamic programming approach used
above is only useful if we consider fixed N , but does not tell us anything
about the limit. In Figure 7.4.1 the value of γ−(N) is plotted for the case
of m ∈ {1, . . . , 100} clusters using data set D1. Note that this observation
follows our intuition, since with an increasing number of clusters one cannot
expect more runtime gain.

Assume we are given classes C � Cf . Set k := #C − 1. In order to be
able to compute the limit, we look at the problem of computing μC(N) over
the reals, i.e. we will have � ∈ Rk. With this simplifications it is clear that
the expression

max
1≤i≤k

ϑi(C) · ai(C)
�i

is minimal if and only if

ϑi(C) · ai(C)
�i

=
ϑj(C) · aj(C)

�j
for all i, j ∈ {1, . . . , k}.

138 CHAPTER 7. HARDWARE FOR THE GNFS

0 10 20 30 40 50 60 70 80 90 100
17

18

19

20

m

Figure 7.4.1: Lower bound on the runtime gain for an increasing number m
of clusters

Write ϑ′
i(C) := ϑi(C) · ai(C). We end up in solving the following system of

equations:

�1 + · · · + �k = N,

ϑ′
1(C) · �2 = ϑ′

2(C) · �1,

...
...

ϑ′
1(C) · �k = ϑ′

k(C) · �1,

This system of k equations is linear in the k unknowns �1, . . . , �k, having the
solution

�i =
ϑ′

i(C)N
ϑ′

1(C) + · · · + ϑ′
k(C)

.

We could have used this approach also for our computation of μC(n) in Sec-
tion 7.2. There we would have computed the approximate partition of N
(being a vector of reals) and would then have rounded the results appropri-
ately. To find the minimum we would have then to round 2k times resulting
in an algorithm that would have used O(k ·2k) arithmetic operations, which
is of course preferable if k is small compared to N . Back to our question of
computing the limit we have

lim
N→∞

μC(N) = lim
N→∞

1
N

∑
1≤i<#C

ϑ′
i(C) and lim

n→∞ τ(N) = min
C�Cf

lim
N→∞

μC(N).

Furthermore

lim
N→∞

σ−(N) = lim
N→∞

1
N · nK

∑
1≤i≤K

ai · ci and lim
N→∞

σ+(N) = lim
N→∞

McK

NnK

7.5. CONNECTION TO THE THEORETICAL RESULTS 139

D1 D2 D3 D4 D5 D6

limN→∞ γ−
D 20.81 20.58 20.70 20.56 20.00 19.81

limN→∞ γ+
D 35.99 35.66 35.82 35.63 34.80 34.51

Table 7.4.1: Bounds on the limit of the runtime gain (in percent) for the
various data sets

Together

lim
N→∞

γ−(N) = min
C�Cf

1 −
nK
∑

1≤i<#C ϑ′
i(C)∑

1≤i≤K ci · ai

and

lim
N→∞

γ+(N) = min
C�Cf

1 −
nK
∑

1≤i<#C ϑ′
i(C)

McK
.

Table 7.4.1 shows the results for our six test sets. We observe again that
the corresponding values for the different data sets are very similar. Thus
it seems that only the distribution of the inputs is crucial for the outcome
of the optimization.

7.5. Connection to the theoretical results

It is striking to observe that the distribution in the statistical analyses from
Section 7.3 directly resemble the results we obtained in Chapter 6. Indeed
the whole work we were doing there was motivated by the statistical analyses
from this chapter. Unfortunately, there is still a gap between the results
presented in Chapter 6 and the results presented here.

The reason is that the data sets we considered in Section 7.3 are gene-
rated by evaluating homogeneous polynomials in a lattice sieving fashion and
dividing out all the small primes, see Section 3.4.3. Afterwards, a procedure
is applied that in advance tries to filter out those candidates for which the
probability for the Elliptic Curve Method 3.5.9 to factor the candidate was
too low. The distribution that is obtained in such a way differs from the
one studied in Chapter 6 in the sense that it resembles the inputs to the
cofactorization step, while our results from the previous chapter describe
those integers that really help in the factorization effort. Working out the
details is still to be done and could be a starting point for future work, see
Chapter 11.

140 CHAPTER 7. HARDWARE FOR THE GNFS

Chapter 8

RSA integers

In this chapter we describe a theoretical framework that is capable of
analyzing rigorously various definitions for integers used in the RSA crypto
system (see Section 5.2). The results were first published in a conference
version at AfricaCrypt 2011 in Dakar, Senegal (see Loebenberger & Nüsken
2011a). The results presented here were clearly influenced by our coauthor,
but most of the details in this section (including the proof of the central
prime sum approximation lemma) are our own findings, even though they
would not be in the same shape without our coauthor.

8.1. Framework

An RSA integer is an integer that is suitable as a modulus for the RSA
crypto system as proposed by Rivest, Shamir & Adleman (1978) and de-
scribed in Section 5.2. On their page 6 they write:

“You first compute n as the product of two primes p and q:

n = p · q.

These primes are very large, ’random’ primes. Although you will
make n public, the factors p and q will be effectively hidden from
everyone else due to the enormous difficulty of factoring n.”

Also in earlier literature such as Ellis (1970) or Cocks (1973) one does not
find any further restrictions. In subsequent literature people define RSA
integers similarly to Rivest, Shamir & Adleman: Crandall & Pomerance
(2005) note that it is “fashionable to select approximately equal primes but
sometimes one runs some further safety tests”. In more applied works such

141

142 CHAPTER 8. RSA INTEGERS

as Schneier (1996) or Menezes et al. (1997) one can read that for maximum
security one chooses two (distinct) primes of equal length. Also von zur
Gathen & Gerhard (1999) follow a similar approach. Decker & Moree
(2008) define an RSA integer to be a product of two primes p and q such
that p < q < rp for some parameter r ∈ R>1. Real world implementations,
however, require concrete algorithms that specify in detail how to generate
RSA integers. This has led to a variety of standards, notably the stan-
dards PKCS#1 (Jonsson & Kaliski 2003), ISO 18033-2 (International Orga-
nization for Standards 2006), IEEE 1363-2000 (IEEE working group 2000),
ANSI X9.44 (Accredited Standards Committee X9 2007), FIPS 186-3 (NIST
2009), the standard of the RSA foundation (RSA Laboratories 2000), the
standard set by the German Bundesnetzagentur (Wohlmacher 2009), and
the standard resulting from the European NESSIE project (NESSIE work-
ing group 2003). All of those standards define more or less precisely how to
generate RSA integers and all of them have substantially different require-
ments. This reflects the intuition that it does not really matter how one
selects the prime factors in detail, the resulting RSA modulus will do its
job. But what is needed to show that this is really the case?

Following Brandt & Damgård (1993) a quality measure of a generator is
the entropy of its output distribution. In abuse of language we will most of
the time talk about the output entropy of an algorithm. To compute it, we
need estimates of the probability that a certain outcome is produced. This
in turn needs a thorough analysis of how one generates RSA integers of a
specific form. If we can show that the outcome of the algorithm is roughly
uniformly distributed, the output entropy is closely related to the count of
RSA integers it can produce. It will turn out that in all reasonable setups
this count is essentially determined by the desired length of the output, see
Section 8.5. For primality tests there are several results in this direction (see
for example Joye & Paillier 2006) but we are not aware of any related work
analyzing the output entropy of algorithms for generating RSA integers.

Another requirement for the algorithm is that the output should be ‘hard
to factor’. Since this statement does not even make sense for a single integer,
this means that one has to show that the restrictions on the shape of the
integers the algorithm produces do not introduce any further possibilities
for an attacker. To prove this, a reduction has to be given that reduces the
problem of factoring the output to the problem of factoring a product of
two primes of similar size, see Section 8.6. Also there it is necessary to have
results on the count of RSA integers of a specific form to make the reduction
work. As for the entropy estimations, we do not know any related work on
this.

8.2. RSA INTEGERS IN GENERAL 143

In the following section we will develop a formal framework that can
handle all possible definitions for RSA integers. After discussing the neces-
sary number theoretic tools in Section 8.3, we give explicit formulas for the
count of such integers which will be used later for entropy estimations of the
various standards for RSA integers. In Section 8.4 we show how our general
framework can be instantiated, yielding natural definitions for several types
of RSA integers (as used later in the standards). Section 10.1 gives a short
overview on generic constructions for fast algorithms that generate such in-
tegers almost uniformly. At this point we will have described all necessary
techniques to compute the output entropy, which we discuss in Section 10.2.
The following section resolves the second question described above by giv-
ing a reduction from factoring special types of RSA integers to factoring a
product of two primes of similar size. We finish by applying our results to
various standards for RSA integers in Section 10.4.

8.2. RSA integers in general

If one generates an RSA integer it is necessary to select for each choice of
the security parameter the prime factors from a certain region. This security
parameter is typically an integer k that specifies (roughly) the size of the
output. We use a more general definition by asking for integers from the
interval]x/r, x], given a real bound x and a parameter r (possibly depending
on x). Clearly, this can also be used to model the former selection process
by setting x = 2k − 1 and r = 2. Let us in general introduce a notion of
RSA integers with tolerance r as a family

A := 〈Ax〉x∈R>1

of subsets of the positive quadrant R2
>1, where for every x ∈ R>1

Ax ⊆
{

(y, z) ∈ R2
>1

x

r
< yz ≤ x

}
.

The tolerance r shall always be larger than 1. We allow here that r varies
(slightly) with x, which of course includes the case that r is a constant.
Typical values used for RSA are r = 2 or r = 4 which fix the bit-length
of the modulus more or less. Now an A-integer n of size x — for use as a
modulus in RSA — is a product n = pq of a prime pair (p, q) ∈ Ax∩ (P×P),
where P denotes the set of primes. They are counted by the associated
prime pair counting function #A for the notion A:

#A : R>1 −→ N,
x �−→ # {(p, q) ∈ P× P (p, q) ∈ Ax} .

144 CHAPTER 8. RSA INTEGERS

υ

ζ

ln
x

ln
x

ln
x

r

ln
x

r

(ln A)
x

Figure 8.2.1: A generic notion of RSA integers with tolerance r. The gray
area shows the parts of the (ln y, ln z)-plane which is counted. It lies between
the tolerance bounds ln x and ln x

r . The dashed lines show boundaries as
imposed by [c1, c2]-balanced. The dotted diagonal marks the criterion for
symmetry.

Thus every A-integer n = pq is counted once or twice in #A (x) depending
on whether only (p, q) ∈ Ax or also (q, p) ∈ Ax, respectively. We call a
notion symmetric if for all choices of the parameters the corresponding area
in the (y, z)-plane is symmetric with respect to the main diagonal, i.e. that
(y, z) ∈ Ax implies also (z, y) ∈ Ax. If to the contrary (y, z) ∈ Ax implies
(z, y) /∈ Ax we call the notion antisymmetric. If we are only interested in
RSA integers we can always require symmetry or antisymmetry, yet many
algorithms proceed in an asymmetric way.

Certainly, we will also need restrictions on the shape of the area we
are analyzing: If one considers any notion of RSA integers and throws out
exactly the prime pairs one would be left with a prime-pair-free region and
any approximation for the count of such a notion based on the area would
necessarily have a tremendously large error term. However, for practical
applications it turns out that it is enough to consider regions of a very specific
form. Actually, we will most of the time have regions whose boundary can
be described by graphs of certain smooth functions.

For RSA, people usually prefer two prime factors of roughly the same
size, where size is understood as bit length. Accordingly, we call a notion of

8.2. RSA INTEGERS IN GENERAL 145

RSA integers [c1, c2]-balanced iff additionally for every x ∈ R>1

Ax ⊆
{

(y, z) ∈ R2
>1 y, z ∈ [xc1, xc2]

}
,

where 0 < c1 ≤ c2 can be thought of as constants or — more generally —
as smooth functions in x defining the amount of allowed divergence subject
to the side condition that xc1 tends to infinity when x grows. If c1 > 1

2
then Ax is empty, so we will usually assume c1 ≤ 1

2 . In order to prevent
trial division from being a successful attacker it would be sufficient to re-
quire y, z ∈ Ω

(
lnk x

)
for every k ∈ N. Our stronger requirement still seems

reasonable and indeed equals the condition Maurer (1995) required for se-
cure RSA moduli, as the supposedly most difficult factoring challenges stay
within the range of our attention. As a side-effect this greatly simplifies our
approximations later. The German Bundesnetzagentur (see Wohlmacher
2009) uses a very similar restriction in their algorithm catalog. There it is
additionally required that the primes p and q are not too close to each other.
We ignore this issue here, since the probability that two primes are very close
to each other would be tiny if the notion from which (p, q) was selected is
sufficiently large. If necessary, we are able to modify our notions such that
also this requirement is met. We can — for a fixed choice of parameters —
easily visualize any notion of RSA integers by the corresponding region Ax

in the (y, z)-plane. It is favorable to look at these regions in logarithmic
scale, i.e. if we write y = eυ and z = eζ and denote by (lnA)x the region
in the (υ, ζ)-plane corresponding to the region Ax in the (y, z)-plane, i.e.
(υ, ζ) ∈ (lnA)x :⇔ (y, z) ∈ Ax, we obtain a picture like in Figure 8.2.1.

Often the considered integers n = pq are also subject to further side
conditions, like gcd((p−1)(q−1), e) = 1 for some fixed public RSA exponent
e. Most of the number theoretic work below can easily be adapted, but
for simplicity of exposition we will often present our results without those
further restrictions and just point out when necessary how to incorporate
such additional properties.

In order to count the number of A-integers we have to evaluate

#A (x) =
∑

(p,q)∈Ax

p,q∈P

1.

If we follow the intuitive view that a randomly generated number n is prime
with probability 1

ln n , we expect that we have to evaluate integrals like
�
Ax

1
ln y ln z

dz dy,

146 CHAPTER 8. RSA INTEGERS

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 υ

ζ

Figure 8.2.2: Levels ek of the function eυ+ζ

υζ for k ∈ {2 + ε, 3, . . . , 8}. The
darker the line the higher is the value of k.

while carefully considering the error between those integrals and the above
sums. In logarithmic scale we obtain expressions of the form

�
(ln A)x

eυ+ζ

υζ
dζ dυ.

To get an understanding of these functions, in Figure 8.2.2 the contour lines
of the inner function is depicted. From the figure we observe that pairs
(υ, ζ), where υ + ζ is large has a higher weight in the overall count.

As we usually deal with balanced notions the considered regions are
somewhat centered around the main diagonal. We will show in Section 8.6
that if factoring products of two primes is hard then it is also hard to factor
integers generated from such notions.

8.3. Toolbox

We will now develop the necessary number theoretic concepts to obtain
formulas for the count of RSA integers that will later help us to estimate the
output entropy of the various standards for RSA integers, see Chapter 10.
In related articles, like Decker & Moree (2008) one finds counts for one
particular definition of RSA integers. We believe that in the work presented

8.3. TOOLBOX 147

here for the first time a sufficiently general theorem is established that allows
to compute the number of RSA integers for all reasonable definitions.

We assume the Riemann Hypothesis 2.2.14 throughout the entire chap-
ter. The main terms are the same without this assumption, but the error
bounds one obtains are then much weaker. We first state a quite technical
lemma, very similar to Lemma 6.2.1, that enables us to do our approxima-
tions:

Lemma 8.3.1 (Prime sum approximation). Let f , f̃ , f̂ be functions [B, C] →
R>1, where B, C ∈ R>1 such that f̃ and f̂ are piece-wise continuous, f̃ + f̂ is
either weakly decreasing, weakly increasing, or constant, and for p ∈ [B, C]
we have the estimate ∣∣∣f(p)− f̃(p)

∣∣∣ ≤ f̂(p).

Further, let Ê(p) be a positive valued, continuously differentiable function
of p bounding |π(p) − li(p)| on [B, C]. (For example, under the Riemann
Hypothesis 2.2.14 we can take Ê(p) = 1

8π

√
p ln p provided B ≥ 1451.) Then∣∣∣∣∣ ∑

p∈P∩]B,C]
f(p)− g̃

∣∣∣∣∣ ≤ ĝ

with

g̃ =
∫ C

B

f̃(p)
ln p

dp ,

ĝ =
∫ C

B

f̂(p)
ln p

dp +2(f̃ + f̂)(B)Ê(B) + 2(f̃ + f̂)(C)Ê(C) +
∫ C

B

(
f̃ + f̂

)
(p)Ê′(p) dp .

In the special case that f̃ + f̂ is constant we have the better bound

ĝ =
∫ C

B

f̂(p)
ln p

dp +(f̃ + f̂)(B)(Ê(B) + Ê(C)).

Proof. The proof can be done analogously to the proof of Lemma 6.2.1.
�

Next we formulate a lemma specialized to handle RSA notions. We
cannot expect to obtain an approximation of the number of prime pairs by
the area of the region unless we make certain restrictions.

The following definition describes the restrictions that we use. As the
reader will notice, it essentially enforces a certain monotonicity that allows
the error estimation.

148 CHAPTER 8. RSA INTEGERS

Definition 8.3.2. Let A be a notion of RSA integers with tolerance r.

(i) The notion A is graph-bounded if and only if there are (at least)
integrable boundary functions B1, C1 : R>1 → R>1 and B2, C2 : R2

>1 →
R>1 such that we can write

Ax =
{

(y, z) ∈ R2
>1

B1(x) < y ≤ C1(x)
B2(y, x) < z ≤ C2(y, x)

}
,

where for all x ∈ R>1 and all y ∈]B1(x), C1(x)[we have 1 < B1(x) ≤
C1(x) ≤ x and 1 < B2(y, x) < C2(y, x) ≤ x.

(ii) The notion A is monotone at x (relative to the error bound Ê) for
some x ∈ R>1 if and only if it is graph-bounded and the function∫ C2(p,x)

B2(p,x)

1
ln q

dq +Ê(B2(p, x)) + Ê(C2(p, x))

is either weakly increasing, weakly decreasing, or constant as a func-
tion in p restricted to the interval [B1(x), C1(x)]. If not mentioned
otherwise we refer to the error bound given by Ê(p) = 1

8π

√
p ln p.

We call the notion A monotone if and only if it is monotone at each
x ∈ R>1 where Ax
= ∅.

(iii) The notion A is piece-wise monotone iff there is a parameter m ∈ N

such that

Ax :=
m⊎

j=1
Aj,x,

where Aj,. are all monotone notions of RSA integers of tolerance r.
Note that we may also allow m depending on x. In the light of
a multi-application of Lemma 8.3.5 we would be on the safe side if
we require m ∈ lnO(1) x. At the extreme m ∈ o

(
c1x

1−c
4 ln x

)
with

c = max (2c2 − 1, 1 − 2c1) is necessary for any meaningful result gen-
eralizing Lemma 8.3.5.

For (i) note that B1(x) = C1(x) allows to describe an empty set Ax, and oth-
erwise the inequality B2(y, x)
= C2(y, x) makes sure that all four bounding
functions are determined by Ax as long as y ∈]B1(x), C1(x)[. This condi-
tion enforces that Ax is (path) connected. We do not need that but also it
does no harm. As in particular (ii) is rather weird to verify we provide an
easily checkable, sufficient condition for monotonicity of a notion.

8.3. TOOLBOX 149

Lemma 8.3.3. Assume A is a graph-bounded notion of RSA integers with
tolerance r given by continuously differentiable functions B1, C1 : R>1 →
R>1 and B2, C2 : R2

>1 → R>1. Finally, let x ∈ R>1 be such that

◦ the function B2(p, x) is weakly decreasing in p and

◦ the function C2(p, x) is weakly increasing in p

for p ∈]B1(x), C1(x)], or vice versa. As usual let Ê(p) be the function given
by Ê(p) = 1

8π

√
p ln p. Then the notion A is monotone at x (relative to Ê).

Proof. The goal is to show that the function

h(p) :=
∫ C2(p,x)

B2(p,x)

1
ln q

dq +Ê(B2(p, x)) + Ê(C2(p, x))

is weakly increasing or weakly decreasing in p. We write B′
2(p, x) and

C ′
2(p, x), respectively, for the derivative with respect to p. Note that

h′(p) :=
(

1
ln C2(p, x)

+
2 + ln C2(p, x)
16π
√

C2(p, x)

)
︸ ︷︷ ︸

>0

C ′
2(p, x)

−
(

1
ln B2(p, x)

− 2 + ln B2(p, x)
16π
√

B2(p, x)

)
︸ ︷︷ ︸

>0

B′
2(p, x).

Some calculus shows that the second underbraced term is always positive
since B2(p, x) > 1. Thus if B2(p, x) is weakly decreasing we have by as-
sumption that C2(p, x) is weakly increasing and h(p) is weakly increasing.
If on the other hand B2(p, x) is weakly increasing, it follows that C2(p, x) is
weakly decreasing and h(p) is weakly decreasing. �

Clearly, the conditions of the lemma are not necessary. We can easily
extended it, for example, as follows:

Lemma 8.3.4. Assume A is a graph-bounded notion of RSA integers with
tolerance r given by continuously differentiable functions B1, C1 : R>1 →
R>1 and B2, C2 : R2

>1 → R>1. Further, individually for each x ∈ R>1,
the functions B2(p, x) and C2(p, x) are both weakly increasing in p for
p ∈]B1(x), C1(x)]. Then there are two monotone notions A1 and A2 with
tolerance r, both having Ai

x ⊆ R≥B1(x) × R≥B2(B1(x),x) for all x, such that
A = A1 \ A2.

150 CHAPTER 8. RSA INTEGERS

Proof. Let A(x) := B2(B1(x), x). We define two [c1, c2]-balanced graph-
bounded notions A1, A2 of RSA integers by the following: the first notion
A1 is defined by the functions B1

1 := B1, C1
1 := C1, B1

2(p, x) := A(x) and
C1

2 := C2. The second notion A2 is defined by the functions B1
1 := B1, C1

1 :=
C1, B2

2(p, x) := A(x) and C2
2 := B2. Since x/r < B1(x)B2(B1(x), x) =

B1(x)A(x) both new notions have tolerance r as well. Then A1, A2 are by
Lemma 8.3.3 both monotone and A = A1 \ A2. �

A similar result with B2 and C2 both weakly decreasing is more diffi-
cult to obtain while simultaneously retaining the tolerance. A particularly
difficult example is the maximal notion M given by

Mx =
{

(y, z) ∈ R2
>1

x

r
< yz ≤ x and y, z ≥ xc1

}
.

The following lemma covers all the estimation work.

Lemma 8.3.5 (Prime sum approximation for monotone notions). Assume
that we have a monotone [c1, c2]-balanced notion A of RSA integers with
tolerance r, where 0 < c1 ≤ c2. (The values r, c1, c2 are allowed to vary
with x.) Then under the Riemann Hypothesis 2.2.14 there is a value ã(x) ∈[

1
4c2

2
, 1

4c2
1

]
such that

#A (x) ∈ ã(x) · 4 area(Ax)
ln2 x

+ O
(
c−1

1 x
3+c

4
)

,

where c = max (2c2 − 1, 1 − 2c1).

Note that the following proof gives a precise expression for ã(x), namely

ã(x) =

�
Ax

1
ln p ln q dp dq

4
�

Ax

1
ln2 x

dp dq
.

It turns out that we can only evaluate ã(x) numerically in our case and
so we tend to estimate also this term. Then we often obtain ã(x) ∈ 1 +
o(1). Admittedly, this mostly eats up the advantage obtained by using the
Riemann Hypothesis 2.2.14. However, we accept this because it still leaves
the option of going through that difficult evaluation and obtain a much more
precise answer. If we do not use the Riemann Hypothesis 2.2.14 we need to
replace O

(
c−1

1 x
3+c

4
)

with O
(

x
lnk x

)
for any k > 2 of your choice.

Proof. Fix any x ∈ R>1. In case area(Ax) = 0 the claim holds with any
desired ã(x) and zero big-Oh term. We can thus assume that the area is

8.3. TOOLBOX 151

positive. As the statement is asymptotic and xc1 tends to ∞ with x we can
further assume that xc1 ≥ 1451. Abbreviating h̃(x) = 4 area(Ax)

ln2 x
, we prove

that there exists a value ã(x) ∈
[

1
4c2

2
, 1

4c2
1

]
such that

∣∣∣#A (x) − ã(x) · h̃(x)
∣∣∣ ≤ ĥ(x)

with

ĥ(x) =
1

4πc1

(
7− 6c2 +

12
ln x

)
x

1+c2
2 +

1
8π2 · x

1
2 + 2 ln ln x

ln x +
1

4πc1

(
1 +

4
ln x

)
x1− c1

2 .

This is slightly more precise and implies the claim.
Since the given notion is [c1, c2]-balanced with tolerance r for any (y, z) ∈

Ax we have x
r ≤ yz ≤ x and y, z ∈ [xc1 , xc2] which implies ln y, ln z ∈

[c1, c2] ln x. Equivalently, we have

xc1 ≤ B1(x) ≤ C1(x) ≤ xc2(8.3.6)

and for y ∈]B1(x), C1(x)[we have

x

ry
≤ B2(y, x) < C2(y, x) ≤ x

y
(8.3.7)

and

xc1 ≤ B2(y, x) < C2(y, x) ≤ xc2.(8.3.8)

From (8.3.7) we infer that for all y ∈]B1(x), C1(x)[we have

x

r
≤ yB2(y, x) ≤ x and

x

r
≤ yC2(y, x) ≤ x.(8.3.9)

In order to estimate

#A (x) =
∑

p∈P∩]B1(x),C1(x)]

∑
q∈P∩]B2(p,x),C2(p,x)]

1,

we apply Lemma 8.3.1 twice. Since xc1 ≥ 1451 and so B2(p, x) ≥ 1451 for
the considered p we obtain for the inner sum∣∣∣∣∣ ∑

q∈P∩]B2(p,x),C2(p,x)]
1 − g̃1(p, x)

∣∣∣∣∣ ≤ ĝ1(p, x),

152 CHAPTER 8. RSA INTEGERS

where

g̃1(p, x) =
∫ C2(p,x)

B2(p,x)

1
ln q

dq ,

ĝ1(p, x) = Ê(B2(p, x)) + Ê(C2(p, x)),

since we can use the special case of constant functions in Lemma 8.3.1.
Because we are working under the restriction that the notion is monotone,
i.e. g̃1(p, x) + ĝ1(p, x) is monotone, we are able to apply the lemma a second
time. Since xc1 ≥ 1451 and so B1(x) ≥ 1451 we obtain

∣∣∣∣∣ ∑
p∈P∩]B1(x),C1(x)]

∑
q∈P∩]B2(p,x),C2(p,x)]

1 − g̃2(x)
∣∣∣∣∣ ≤ ĝ2(x),

where

g̃2(x) =
∫ C1(x)

B1(x)

∫ C2(p,x)

B2(p,x)

1
ln p ln q

dq dp ,

ĝ2(x) = 1
8π

∫ C1(x)

B1(x)

(√
B2(p, x) ln B2(p, x) +

√
C2(p, x) ln C2(p, x)

)
·
(

1
ln p

+ ln p + 2
2√

p

)
dp

+ 1
4π

√
B1(x) ln B1(x)

∫ C2(B1(x),x)

B2(B1(x),x)

1
ln q

dq

+ 1
4π

√
C1(x) ln C1(x)

∫ C2(C1(x),x)

B2(C1(x),x)

1
ln q

dq

+ 1
32π2

√
B1(x) ln B1(x)

(√
B2(B1(x), x) ln (B2(B1(x), x)) +

√
C2(B1(x), x) ln (C2(B1(x), x))

)
+ 1

32π2

√
C1(x) ln C1(x)

(√
B2(C1(x), x) ln (B2(C1(x), x)) +

√
C2(C1(x), x) ln (C2(C1(x), x))

)
+ 1

8π

∫ C1(x)

B1(x)

∫ C2(p,x)

B2(p,x)

ln p + 2
2√

p ln q
dq dp .

It remains to estimate g̃2(x) and ĝ2(x) suitably sharp.
For (p, q) ∈ Ax we frequently use the estimate ln p, ln q ∈ [c1, c2] ln x. For

the main term we obtain

g̃2(x) ∈
[1

4c2
2
,

1
4c2

1

] 4 area(Ax)
ln2 x

.

We also read off the exact expression ã(x) = ln2 x
4 area(Ax) g̃2(x).

8.3. TOOLBOX 153

We treat the error term ĝ2(x) part by part. For the first term we obtain

1
8π

∫ C1(x)

B1(x)

(√
B2(p, x) ln B2(p, x) +

√
C2(p, x) ln C2(p, x)

)
·
(

1
ln p

+
ln p + 2

2√p

)
dp

≤ 1
4π

∫ xc2

xc1

√
x

p
ln
(

x

p

)
· 3

ln p
dp

≤ 3
4π

1
c1 ln x

∫ xc2

xc1

√
x

p
ln
(

x

p

)
dp

≤ 3
2π

1
c1

(
1− c2 +

2
ln x

)
x

1+c2
2 ∈ O

(
c−1

1 x
1+c2

2

)
,

where we used in the second line that ln p+2
2√

p ≤ 2
ln p for all p ≥ 2. Basic

calculus shows that ln p(ln p+2)
2√

p is maximal at p = exp(
√

5 + 1), where it is
less than 1.68. For the fourth line note that∫ √

x

p
ln
(

x

p

)
dp = 2p

√
x

p

(
ln
(

x

p

)
+ 2
)

.

The definite integral is not greater than this function evaluated at p = xc2

since c1 ≤ 1
2 . Using c2 ≥ 0 gives the claim.

The second term yields

1
8π

√
B1(x) ln B1(x)

∫ C2(B1(x),x)

B2(B1(x),x)

1
ln q

dq

≤ 1
8πc1 ln x

√
B1(x)C2(B1(x), x) ln B1(x)

≤ 1
8πc1

x
1+c2

2 ∈ O
(

c−1
1 x

1+c2
2

)
,

since we have
√

B1(x)C2(B1(x), x)
√

C2(B1(x), x) ≤ x
1+c2

2 and ln B1(x) ≤
ln x.
Similarly we obtain for the third term

1
8π

√
C1(x) ln C1(x)

∫ C2(C1(x),x)

B2(C1(x),x)

1
ln q

dq

≤ 1
8πc1

x
1+c2

2 ∈ O
(

c−1
1 x

1+c2
2

)
,

using
√

C1(x)C2(C1(x), x)
√

C2(C1(x), x) ≤ x
1+c2

2 and ln C1(x) ≤ ln x.

154 CHAPTER 8. RSA INTEGERS

The fourth term yields

1
32π2

√
B1(x) ln B1(x)

(√
B2(B1(x), x) ln B2(B1(x), x) +

√
C2(B1(x), x) ln C2(B1(x), x)

)
≤ 1

16π2
√

x ln2 x ∈ O
(

c−1
1 x

1+c2
2

)
,

where we used (8.3.9) and the (very weak) bound ln B1(x), ln C2(p, x) ≤ ln x.
The fifth term can be treated similarly. We finish by observing for the sixth
term

1
8π

∫ C1(x)

B1(x)

∫ C2(p,x)

B2(p,x)

ln p + 2
2√p ln q

dq dp

≤ 1
8π

1
c1 ln x

∫ C1(x)

B1(x)

∫ C2(p,x)

B2(p,x)

ln p
√

p
dq dp

≤ 1
8π

1
c1 ln x

∫ xc2

xc1

ln p
√

p

∫ x
p

0
dq dp

≤ 1
8π

1
c1 ln x

· x ·
∫ xc2

xc1

ln p

p3/2 dp

≤ 1
4π

1
c1

(
1 +

4
ln x

)
x1− c1

2

∈ O
(
c−1

1 x1− c1
2
)

,

using B1(x) ≥ xc1 , c1 ≤ 1
2 , and

∫ ln p

p3/2 dp =
−2(ln p + 2)

√
p

.

This completes the proof. �

In specific situations one may obtain better estimates. In particular, when
we substitute C2(p, x) by x/p in the estimation of the sixth summand of the
error we may loose much.

Of course we can generalize this lemma to notions composed of few
monotone ones. We leave the details to the reader. As mentioned before,
in many standards the selection of the primes p and q is additionally subject
to the side condition that gcd((p − 1)(q − 1), e) = 1 for some fixed public
exponent e of the RSA crypto system. To handle these restrictions, we prove

8.3. TOOLBOX 155

Theorem 8.3.10 (Loebenberger & Nüsken 2011a). Let e ∈ N>2 be a pub-
lic RSA exponent. Then we have for the number πe(x) of primes p ≤ x with
gcd(p − 1, e) = 1 that for x tending to infinity

πe(x) ∈ ϕ1(e)
ϕ(e)

· Li(x) + O
(√

x ln x
)

,

where Li(x) =
∫ x

2
1

ln t dt is the integral logarithm, ϕ(e) is Euler’s totient
function and

(8.3.11)
ϕ1(e)
ϕ(e)

=
∏
�|e

� prime

(
1 − 1

�− 1

)
.

Proof. We first show that the number of elements in Z×
e ∩ (1 + Z×

e)
is exactly ϕ1(e). Write e =

∏
�|e

� prime
�f(�). Observe that by the Chinese

Remainder Theorem 3.1.12 we have

Z×
e ∩ (1 + Z×

e) =
⊕
�|e

� prime

(
Z×

�f(�) ∩ (1 + Z×
�f(�))

)

and each factor in this expression has size (�− 2)�f(�)−1. Multiplying up all
factors gives

#(Z×
e ∩ (1 + Z×

e)) =
∏
�|e

� prime

(
1 − 1

�− 1

)(
1− 1

�

)
�f(�) = ϕ1(e).

To show the result for πe(x) note that by Theorem 2.2.17, a quantitative
version of Dirichlet’s Theorem 2.1.9 on the number πa+eZ(x) of primes p ≤ x
with p ≡ a ∈ Ze when gcd(a, e) = 1, we have

πa+eZ(x) ∈ 1
ϕ(e)

· Li(x) + O
(√

x ln x
)

and we have to count ϕ1(e) residue classes. Summing up everything, we
obtain

πe(x) ∈ ϕ1(e)
ϕ(e)

· Li(x) + O
(
ϕ1(e)

√
x ln x

)
,

which proves the claim. �

This theorem shows that the prime pair approximation in Lemma 8.3.5 can
be easily adapted to RSA integers whose prime factors satisfy the conditions
of Theorem 8.3.10, since the density of such primes differs for every fixed e
just by a constant.

156 CHAPTER 8. RSA INTEGERS

8.4. Some common definitions for RSA integers

We will now give formal definitions of three specific notions of RSA inte-
gers. In particular, we consider the following example definitions within our
framework:

◦ The number theoretically inspired notion following Decker & Moree.
Note that this occurs in no standard and no implementation.

◦ The simple construction given by just choosing two primes in given
intervals. This construction occurs in several standards, like the stan-
dard of the RSA foundation (RSA Laboratories 2000), the standard
resulting from the European NESSIE project (NESSIE working group
2003) and the FIPS 186-3 standard (NIST 2009). Also open source im-
plementations of OpenSSL (Cox et al. 2009), GnuPG (Skala et al. 2009)
and the GNU crypto library GNU Crypto (Free Software Foundation
2009) use some variant of this construction.

◦ An algorithmically inspired construction which allows one prime being
chosen arbitrarily and the second is chosen such that the product is
in the desired interval. This was for example specified as the IEEE
standard 1363 (IEEE working group 2000), Annex A.16.11. However,
we could not find any implementations following this standard.

8.4.1. A number theoretically inspired notion. In Decker & Moree
(2008) on suggestion of Benne de Weger, the number Cr (x) of RSA integers
up to x was defined as the count of numbers whose two prime factors differ
by at most a factor r, in formulas

Cr (x) := #
{

n ∈ N
∃p, q ∈ P :
n = pq ∧ p < q < rp ∧ n ≤ x

}
.

There is also work of Hashimoto (2009), who pursued generalizations of such
integers, by allowing the factors to differ by an arbitrary function instead of
a factor.

Formulated as a notion of RSA integers in the sense above, we analyze

(8.4.1) ADM(r) :=
〈{

(y, z) ∈ R2 y

r
< z < ry ∧ x

r
< yz ≤ x

}〉
x∈R>1

.

Note that the prime pair counting function of this notion is closely related
to the function Cr (x): Namely we have

#ADM(r) (x) = 2
(
Cr (x)− Cr

(
x

r

))
+
(

π
(√

x
)
− π

(√
x

r

))
,

8.4. SOME COMMON DEFINITIONS FOR RSA INTEGERS 157

where the last part is comparatively small. We now analyze the behavior of
the function #ADM(r) (x) under the Riemann Hypothesis 2.2.14. Following
Decker & Moree (2008), we rewrite
(8.4.2)

1
2
· #ADM(r) (x) =

∑
p∈P∩

]√
x

r
,
√

x
r

] ∑
q∈P∩

]
x

rp
,rp
] 1

+
∑

p∈P∩]
√

x
r

,
√

x]

∑
q∈P∩

]
p, x

p

] 1 +
π (
√

x)− π
(√

x
r

)
2

.

With these bounds we obtain using Lemma 8.3.5:

Theorem 8.4.3 (Loebenberger & Nüsken 2011a). We have for ln r ∈ o(ln x)
under the Riemann Hypothesis 2.2.14 for x tending to infinity

#ADM(r) (x) ∈ ã(x)
4x

ln2 x

(
ln r − ln r

r

)
+ O

(
x

3
4 r

1
2
)

with ã(x) ∈
[(

1 − ln r
ln x+ln r

)2
,
(
1 + 2 ln r

ln x−2 ln r

)2
]
⊆ 1 + o(1).

You may want to sum this up as #ADM(r) (x) ∈ (1 + o(1)) 4x
ln2 x

(
ln r − ln r

r

)
.

However, one then forgoes the option of actually calculating ã(x).

Proof. Consider x large enough such that all sum boundaries are beyond
1451, i.e.

√
x

r ≥ 1451. By definition ADM(r) is a notion of tolerance r. Further
it is [c1, c2]-balanced with c1 = logx

(√
x

r

)
= 1

2 −
ln r
ln x and c2 = logx (

√
rx) =

1
2 + ln r

2 ln x . As depicted next to (8.4.1), we treat the upper half of the notion
as the union of those two notions matching the two double sums in (8.4.2),
which both inherit being [c1, c2]-balanced of tolerance r. Considering the
inner bounds x

rp to rp and p to x
p , respectively, as a function of the outer

variable p, we observe that the lower and upper bound in each case have
opposite monotonicity behavior and thus by Lemma 8.3.3 each part is a
monotone notion. We can thus apply Lemma 8.3.5. Since ln r ∈ o(ln x) we
have c1, c2 ∈ 1

2 +o(1), which implies that 1
c2

i
∈ 4 (1 + o(1)) for both i ∈ {1, 2}.

Computing the area of the two parts yields

∫ √x
r

√
x

r

∫ rp

x
rp

1 dq dp =
1
2
· x

(
1 − ln r

r
− 1

r

)

158 CHAPTER 8. RSA INTEGERS

and ∫ √
x

√
x
r

∫ x
p

p
1 dq dp =

1
2
· x

(
ln r − 1 +

1
r

)
.

For the error term we obtain O(x
3
4 r

1
2) noting that the number π (

√
x) of

prime squares up to x is at most
√

x. �

Actually, we can proof that the error term is even in O
(
x

3
4 r

1
4
)
. We lost this

in the last steps of the proof of Lemma 8.3.5 when we replaced C2(p, x) = rp
by x/p.

8.4.2. A fixed bound notion. A second possible definition for RSA in-
tegers can be stated as follows: We consider the number of integers smaller
than a real positive bound x that have exactly two prime factors p and q,
both lying in a fixed interval]B, C], in formulas:

π2
B,C (x) := #

{
n ∈ N

∃p, q ∈ P ∩]B, C] :
n = pq ∧ n ≤ x

}
.

To avoid problems with rare prime squares, which are also not interesting
when talking about RSA integers, we instead count

κ2
B,C (x) := #

{
(p, q) ∈ (P ∩]B, C])2 pq ≤ x

}
.

We discussed such functions in Chapter 6.
In the context of RSA integers we consider the notion
(8.4.4)

AFB(r,σ) :=
〈{

(y, z) ∈ R2
>1

√
x

r
< y, z ≤

√
rσx ∧ yz ≤ x

}〉
x∈R>1

.

with σ ∈ [0, 1]. The parameter σ describes the (relative) distance of the
restriction yz ≤ x to the center of the rectangle in which y and z are allowed.
We split the corresponding counting function into two double sums:

(8.4.5) #AFB(r,σ) (x) =
∑

p∈P∩]
√

x
r

,
√

x
rσ]

∑
q∈P∩]

√
x
r

,
√

rσx]
1

+
∑

p∈P∩]
√

x
rσ ,

√
rσx]

∑
q∈P∩

]√
x
r

, x
p

] 1.

The next theorem follows directly from Loebenberger & Nüsken (2010) but
we can also derive it from Lemma 8.3.5 similar to Theorem 8.4.3.

8.4. SOME COMMON DEFINITIONS FOR RSA INTEGERS 159

Theorem 8.4.6 (Loebenberger & Nüsken 2011a). We have for ln r ∈ o(ln x)
under the Riemann Hypothesis 2.2.14 for x tending to infinity

#AFB(r,σ) (x) ∈ ã(x)
4x

ln2 x

(
σ ln r + 1− 2

r
1−σ

2
+

1
r

)
+O

(
x

3
4 r

1
4
)

with ã(x) ∈
[(

1 − σ ln r
ln x+σ ln r

)2
,
(
1 + ln r

ln x−ln r

)2
]
⊆ 1 + o(1).

If we drop the condition ln r ∈ o(ln x), we still obtain the same result,
but the asymptotics of the function ã(x) changes.

Proof. Let x be such that all sum boundaries are beyond 1451. By
definition AFB(r,σ) is a notion of tolerance r. Further it is for all σ ∈ [0, 1]
clearly [c1, c2]-balanced with c1 = logx

√
x
r = 1

2 −
ln

√
r

ln x and c2 = logx

√
rσx =

1
2 + ln rσ/2

ln x . As depicted next to (8.4.4), we treat the notion as the union
of two notions corresponding to the two double sums in (8.4.5), which are
both [c1, c2]-balanced of tolerance r.

Consider the inner bounds
√

x
r to

√
rσx and

√
x
r to x

p respectively, as
a function of the outer variable p (while σ is fixed): We observe that the
lower and upper bound in the first case are constant and in the second case
consist of a constant lower bound and an antitone upper bound. Thus by
Lemma 8.3.3 each part is a monotone notion and we can apply Lemma 8.3.5.
As for the number theoretically inspired notion we have 1

c2
i
∈ 4 (1 + o(1)) for

both i ∈ {1, 2}. Computing the area of the two parts yields∫ √
rσx

√
x

rσ

∫ x
p

√
x
r

1 dq dp = x

(
σ ln r +

1
r(1+σ)/2 −

1
r(1−σ)/2

)
and ∫ √ x

rσ

√
x
r

∫ √
rσx

√
x
r

1 dq dp = x

(
1 − 1

r(1−σ)/2 −
1

r(1+σ)/2 +
1
r

)
.

For the error term we obtain O
(
x

3
4 r

1
4
)
. �

Note that in Justus (2009) one finds a similar estimate for such kinds of inte-
gers. Justus attended a talk of mine on 28 May 2009 at the cosec Obersem-
inar, where I presented our findings. It seems that he then decided to work
on his own on the topic and published it in the Albanian Journal of Math-
ematics. Pieter Moree made us aware of this fact in late 2011. We will now
discuss how far our findings differ from Justus’ ones: First of all in the work
of Justus only two particular notions are discussed. A number theoretically

160 CHAPTER 8. RSA INTEGERS

inspired one in the sense of Decker & Moree and the fixed-bound notion,
presented in this section. He does neither provide a result like Lemma 8.3.5
for arbitrary notions nor provides explicit estimates for the error term. Ad-
ditionally, his findings do not allow to easily modify his estimates in presence
of different versions of the Prime Number Theorem 2.1.8. Furthermore, his
chapter on RSA generators are mere estimates on the density of RSA in-
tegers and not put into any context of specific algorithms. In our work we
have a much broader framework in which special cases give the results from
Justus (2009).

8.4.3. An algorithmically inspired notion. A third option to define
RSA integers is the following notion: Assume you wish to generate an RSA
integer between x

r and x, which has two prime factors of roughly equal size.
Then algorithmically we might first generate the prime p and afterward
select the prime q such that the product is in the correct interval. As we
will see later, this procedure does — however — not produce every number
with the same probability, see Section 10.1. Formally, we consider the notion

(8.4.7) AALG(r) :=
〈⎧⎪⎨⎪⎩(y, z) ∈ R2

>1

√
x

r < y ≤ √
x,

x
ry < z ≤ x

y ,
x
r < yz ≤ x

⎫⎪⎬⎪⎭
〉

x∈R>1.

We proceed with this notion similar to the previous one. By observing

(8.4.8) #AALG(r) (x) =
∑

p∈P∩
]√

x
r

,
√

x

] ∑
q∈P∩

]√
x, x

p

] 1

+
∑

p∈P∩
]√

x
r

,
√

x

] ∑
q∈P∩

]
x

rp
,
√

x
] 1,

and again applying Lemma 8.3.5 and Lemma 8.3.3 we obtain

Theorem 8.4.9 (Loebenberger & Nüsken 2011a). We have for ln r ∈ o(ln x)
under the Riemann Hypothesis 2.2.14 for x tending to infinity:

#AALG(r) (x) ∈ ã(x)
4x

ln2 x

(
ln r − ln r

r

)
+ O

(
x

3
4 r

1
2
)

with ã(x) ∈
[(

1 − 2 ln r
ln x+2 ln r

)2
,
(
1 + 2 ln r

ln x−2 ln r

)2
]
⊆ 1 + o(1).

8.4. SOME COMMON DEFINITIONS FOR RSA INTEGERS 161

υ

ζ

ADM(r)
υ

ζ

AALG(r)

υ

ζ

AFB(r,0)
υ

ζ

AFB(r, 1
2)

υ

ζ

AFB(r,1)

Figure 8.4.1: Three notions of RSA integers.

Proof. Again let x be such that all sum boundaries are beyond 1451. By
definition AALG(r) is a notion of tolerance r. Further it is clearly [c1, c2]-
balanced with c1 = logx

√
x

r = 1
2 −

ln r
ln x and c2 = logx r

√
x = 1

2 + ln r
ln x . As

depicted next to (8.4.7), we treat the notion as the union of two notions
corresponding to the two double sums in (8.4.8), which are both [c1, c2]-
balanced of tolerance r.

If we consider the inner bounds
√

x to x
p and x

rp to
√

x, respectively, as a
function of the outer variable p, we observe that one of them is all the time
constant and by Lemma 8.3.3 each part is a monotone notion. We can thus
apply Lemma 8.3.5.

As for the previous notions we have 1
c2

i
∈ 4 (1 + o(1)) for both i ∈ {1, 2}.

Computing the area of the two parts yields∫ √
x

√
x

r

∫ x
p

√
x

1 dq dp = x

(
1− ln r

r
− 1

r

)
and ∫ √

x

√
x

r

∫ √
x

x
rp

1 dq dp = x

(
ln r − 1 +

1
r

)
.

For the error term we obtain O
(
x

3
4 r

1
2
)
. �

162 CHAPTER 8. RSA INTEGERS

Note that we also could have employed Lemma 8.3.4, but in this particular
case we decided to use another split of the notion.

The IEEE 1363-2000 standard suggest a slight variant, both generalize
to
(8.4.10)

AALG2(r,σ)(x) :=
〈⎧⎪⎨⎪⎩(y, z) ∈ R2

>1

rσ−1√x < y ≤ rσ√x,
x
ry < z ≤ x

y ,
x
r < yz ≤ x

⎫⎪⎬⎪⎭
〉

x∈R>1

,

with σ ∈ [0, 1]. Now, our notion above is AALG2(r,0), and the IEEE variant
is AALG2(r, 1

2). By similar reasoning as above we obtain

Theorem 8.4.11 (Loebenberger & Nüsken 2011a). Assuming ln r ∈ o(ln x)
we have under the Riemann Hypothesis 2.2.14 for x tending to infinity

#AALG2(r,σ) (x) ∈ ã(x)
4x

ln2 x

(
ln r − ln r

r

)
+ O

(
x

3
4 r

1
4
)

,

with ã(x) ∈
[(

1 − 2σ′ ln r
ln x+2σ′ ln r

)2
,
(
1 + 2(1+σ) ln r

ln x−2(1+σ) ln r

)2
]
⊆ 1 + o(1). �

8.4.4. Summary. As we see all notions, depicted again in Figure 8.4.1,
open a slightly different view. However the outcome is not that different, at
least the numbers of described RSA integers are quite close to each other.

Current standards and implementations of various crypto packages mostly
use the notions AFB(4,0), AFB(4,1), AFB(2,0) or AALG2(2,1/2). For details see
Section 10.4.

8.5. Arbitrary notions

The preceding examinations show that the order of the analyzed functions
differ by a factor that only depends on the notion parameters, i.e. on r and
σ, summarizing:

Theorem. Assuming ln r ∈ o(ln x) and r > 1 and σ ∈ [0, 1] we have for x
tending to infinity

(i) #ADM(r) (x) ∈ (1 + o(1)) 4x
ln2 x

(
ln r − ln r

r

)
,

(ii) #AFB(r,σ) (x) ∈ (1 + o(1)) 4x
ln2 x

(
σ ln r + 1 − 2

r
1−σ

2
+ 1

r

)
,

8.5. ARBITRARY NOTIONS 163

(iii) #AALG(r) (x) ∈ (1 + o(1)) 4x
ln2 x

(
ln r − ln r

r

)
. �

It is obvious that the three considered notions with many parameter choices
cover about the same number of integers.

To obtain a much more general result, we consider the following maximal
notion

υ

ζ

(8.5.1) M :=
〈⎧⎪⎨⎪⎩(y, z) ∈ R2

>1

xc1 < y ≤ x1−c1,
xc1 < z ≤ x1−c1,

x
r < yz ≤ x

⎫⎪⎬⎪⎭
〉

x∈R>1.

All of the notions discussed in Section 8.4 are subsets of this notion. Using
the same techniques as above, we obtain:

Theorem 8.5.2 (Loebenberger & Nüsken 2011a). We have under the Rie-
mann Hypothesis 2.2.14 for x tending to infinity

(i) For c1 ≤ 1
2 −

ln r
2 ln x

#M (x) ∈ ã(x)
4x

ln2 x

(
(1− 2c1)

(
1 − 1

r

)
ln x − 1 +

ln r + 1
r

)
+O

(
c−1x1− c1

2

)
,

(ii) otherwise we have in the case ln r ∈ Ω
(

1−2c1
ln� x

)
for some � that

ã(x)
4x

ln2 x

(
(1− 2c1) ln x +

1
x1−2c1

− 1
)

+O
(

c−1
1 · x1− c1

2 ln�+1 x
)

with ã(x) ∈
[

1
4(1−c1)2 , 1

4c2
1

]
. In particular for c1 ∈ 1

2 + o(1) we have ã(x) ∈
1 + o(1).

Proof. As usual let x be such that all sum boundaries are beyond 1451.
By definition M is a notion of tolerance r. Further it is clearly [c1, 1 − c1]-
balanced. For c1 > 1

2 −
ln r

2 ln x the result follows directly from Theorem 8.4.6,
since M is simply the fixed bound notion AFB(x1−2c1 ,1).

For c1 ≤ 1
2 −

ln r
2 ln x we treat the notion as the sum of several monotone,

[c1, 1 − c1]-balanced notions of tolerance r by triangulating the maximal
notion as indicated in the picture above. The number of cuts m we have to
make is m = (1 − 2c1) ln x

ln r ∈ O
(
ln�+1 x

)
. This gives the claim. �

164 CHAPTER 8. RSA INTEGERS

We obtain

Theorem 8.5.3 (Loebenberger & Nüsken 2011a). Let c1, c2 ∈ 1
2 +o(1), r >

1 with ln r ∈ Ω
(

1−2c1
ln� x

)
∩ o(ln x) be possibly x-dependent values, and a ∈

]0, 1[. Consider a piece-wise monotone notion A of RSA integers with tol-
erance r such that for large x ∈ R>1 we have areaAx ≥ ax. Then for x
tending to infinity

#A (x) =
4x

ln2 x
· ã(x)

where ã(x) ∈ o(ln x) and ã(x) ≥ a− ε(x) for some ε(x) ∈ o(1).
In particular, the prime pair counts of two such notations can differ by

at most a factor of order o(ln x).

Proof. Let A be as specified. Assume x to be large enough to grant that
areaAx ≥ ax and xc1 > 1451. Without loss of generality we assume c1+c2 ≤
1. Otherwise we replace c2 = 1− c1. Denote c := max(2c2 − 1, 1− 2c1), this
now is always in [0, 1]. By Lemma 8.3.5 we obtain

#A (x) ≥ a
4x

ln2 x
− â(x), â(x) ∈ O(x

3+c
4).

To provide an upper bound, we consider the [c1, 1 − c1]-balanced notion
maximal notion (8.5.1). As mentioned above we have for all x ∈ R>1 that
Ax ⊆ Mx, and so #A (x) ≤ #M (x). Note that c1 ≤ 1

2 , as otherwise Ax

would be empty rather than having area at least ax. By assumption we
have c1 ∈ 1

2 + o(1) and thus 0 ≤ 1− 2c1 ∈ o(1). Now the claim follows from
Theorem 8.5.2 and the assumption ln r ∈ o(ln x). �

In the following we will analyze the relation between the proposed notions
in more detail. Namely, we carefully check how each of the notions can be
enclosed in terms of the others. Clearly the fixed bound notions AFB(r,σ)

enclose each other:

Lemma 8.5.4. For r ∈ R>1, x ∈ R>1 and σ, σ′ ∈ [0, 1] with σ ≤ σ′ we have

#AFB(
√

r,1) (x/
√

r
)
≤ #AFB(r,σ) (x) ≤ #AFB(r,σ′) (x) ≤ #AFB(r,1) (x) .

Proof. For the first inequality simply observe that x/
√

r ≤ x. The
remaining inequalities follow from the fact that

√
rσx ≤

√
rσ′

x whenever
σ ≤ σ′. �

We can also enclose different notions by each other:

8.5. ARBITRARY NOTIONS 165

υ

ζ

ln
x

ln
x

ln
x

r

ln
x

r

υ

ζ

υ

ζ

Figure 8.5.1: Enclosing notions of RSA integers using others.

Lemma 8.5.5. For r ∈ R>1 and x ∈ R>1 we have
1
2

#AFB(r,1) (x) ≤ 1
2

#ADM(r) (x) ≤ #AALG(r) (x) ≤ #AFB(r2,1) (x) .

Proof. We prove every inequality separately. For an easier understanding
of the proof a look at Figure 8.5.1 is advised:
1
2#AFB(r,1) (x) ≤ 1

2#ADM(r) (x): Consider the double sum (8.4.5)

1
2

#AFB(r,1) (x) =
1
2

∑
p∈P∩]

√
x
r

,
√

rx]

∑
q∈P∩

]√
x
r

, x
p

] 1 =
∑

p∈P∩]
√

x
r

,
√

x]

∑
q∈P∩

]
p, x

p

] 1

due to the restriction p < q. This is exactly the second summand in
(8.4.2).

1
2#ADM(r) (x) ≤ #AALG(r) (x): Consider again the double sum (8.4.2).

We expand the summation area for q (thus increasing the number
of prime pairs we count) in order to obtain the sum (8.4.8) for the
algorithmic notion: For the first summand we obtain from p ≤

√
x
r

that rp ≤ x
p and for the second summand from the same argument

that x
rp ≤ p. The third summand disappears while doing this, since the

squares (which are counted by the third summand) are now counted
by the second summand. Thus we can bound the whole sum from
above by changing the summation area for q in this way.

#AALG(r) (x) ≤ #AFB(r2,1) (x): We proceed as in the previous step, by
replacing in the sum (8.4.8) the summation area for q: Since p ≤ √

x,
we obtain x

rp ≥
√

x
r . Now since

√
x ≤ r

√
x the claim follows. �

We actually can enclose the Decker & Moree notion even tighter by the fixed
bound notion:

166 CHAPTER 8. RSA INTEGERS

Lemma 8.5.6. For r ∈ R>1 and x ∈ R>1 we have

#AFB(r,1) (x) ≤ #ADM(r) (x) ≤ #AFB(r2, 1
2) (x) .

Proof. Assume
√

x
r < p < q ≤ √

rx and pq ≤ x. Then x
r < pq ≤ x

and q ≤ rp. If on the other hand x
r < pq ≤ x and p < q < rp, then

x
r2 < 1

r pq < p2 < q2 < rpq ≤ rx and the claim follows. �

8.6. Complexity theoretic considerations

We are about to reduce factoring products of two comparatively equally sized
primes to the problem of factoring integers generated from a sufficiently large
notion. As far as we know there are no similar reductions in the literature.

We consider finite sets M ⊂ N × N, in our situation we actually have
only prime pairs. The multiplication map μM is defined on M and merely
multiplies, that is, μM : M → N, (y, z) �→ y · z. The random variable UM

outputs uniformly distributed values from M . An attacking algorithm F
gets a natural number μM(UM) and attempts to find factors inside M . Its
success probability

succF (M) = prob
(

F (μM (UM)) ∈ μ−1
M (μM (UM))

)
(8.6.1)

measures its quality in any fixed-size scenario. We call a countably infinite
family C of finite sets of pairs of natural numbers hard to factor if and
only if for any probabilistic polynomial time algorithm F and any exponent
s for all but finitely many M ∈ C the success probability succF (M) ≤
ln−s x where x = max μM (M). In other words: The success probability of
any probabilistic polynomial time factoring algorithm on a number chosen
uniformly from M ∈ C is negligible. That is equivalent to saying that the
function family (μM)M∈C is one-way.

Integers generated from a notion A are hard to factor iff for any sequence
(xi)i∈N tending to infinity the family (Axi ∩ (P × P))i∈N is hard to factor.
This definition is equivalent to the requirement that for all probabilistic
polynomial time machines F , all s ∈ N, there exists a value x0 ∈ R>1 such
that for any x > x0 we have succF (Ax) ≤ ln−s x. Since R is first-countable,
both definitions are actually equal. This can be easily shown by considering
the functions gs,F : R>1 → R, x �→ succF (Ax)·lns x. The first definition says
that each function gs,F is sequentially continuous (after swapping the initial
universal quantifiers). The second definition says that each function gs,F is
continuous. In first-countable spaces sequentially continuous is equivalent
to continuous.

8.6. COMPLEXITY THEORETIC CONSIDERATIONS 167

For any polynomial f we define the set

Rf = {(m, n) ∈ N m ≤ f(n) ∧ n ≤ f(m)}

of f -related positive integer pairs. Denote by P(m) the set of m-bit primes.
We can now formulate the basic assumption that makes the Factorization
Problem 2.1.3 more precise:

Assumption 8.6.2 (Intractability of factoring). For any unbounded posi-
tive polynomial f integers from the f -related prime pair family (P(m) ×
P(n))(m,n)∈Rf

are hard to factor.

This is exactly the definition given by Goldreich (2001). Note that this
assumption implies that factoring in general is hard, and it covers the sup-
posedly hardest factoring instances. Now we are ready to state that integers
from all relevant notions are hard to factor.

Theorem 8.6.3 (Loebenberger & Nüsken 2011a). Let ln r ∈ Ω
(

1−2c1
ln� x

)
and

A be a piece-wise monotone, [c1, c2]-balanced notion for RSA integers of tol-
erance r with large area, namely, for some k and large x we have areaAx ≥

x
lnk x

. Assume that factoring is difficult in the sense of Assumption 8.6.2 (or
if only integers from the family of linearly related prime pairs are hard to
factor). Then integers from the notion A are hard to factor.

Proof. Assume that we have an algorithm F that factors integers gener-
ated uniformly from the notion A. Our goal is to prove that this algorithm
also factors polynomially related prime pairs successfully. In other words:
Its existence contradicts the assumption that factoring in the form of As-
sumption 8.6.2 is difficult.

By assumption, there is an exponent s so that for any x0 there is x > x0
such that the assumed algorithm F has success probability succF (Ax) ≥
ln−s x on inputs from Ax. We are going to prove that for each such x
there exists a pair (m0, n0), both in the interval [c1 ln x− ln 2, c2 ln x + ln 2],
such that F executed with an input from image μPm0 ,Pn0 still has success
probability at least ln−(s+k) x. By the interval restriction, m0 and n0 are
polynomially (even linearly) related, namely m0 < 2c2

c1
n0 and n0 < 2c2

c1
m0

for large x. So that contradicts Assumption 8.6.2.
First, we cover the set Ax with small rectangles. Let Sm,n := P(m)×P(n)

and Ix :=
{
(m, n) ∈ N2 Sm,n ∩ Ax
= ∅

}
then

Ax ∩ P2 ⊆
⊎

(m,n)∈Ix

Sm,n =: Sx.(8.6.4)

168 CHAPTER 8. RSA INTEGERS

Next we give an upper bound on the number #Sx of prime pairs in
the set Sx in terms of the number #A (x) of prime pairs in the original
notion: First, since each rectangle Sm,n extends by a factor 2 along each
axis we overshoot by at most that factor in each direction, that is, we have
for c′

1 = c1 − (1 + 2c1) ln 2
ln x and all x ∈ R>1

Sx ⊂M[16r, c′
1]4x =

{
(y, z) ∈ R2 y, z ≥ 1

2
xc1 ∧ x

4r
< yz ≤ 4x

}
.

Provided x is large enough we can guarantee by Theorem 8.5.2 that

#Sx ≤ #M[16r, c′
1](4x) ≤ 8x

c′2
1 ln x

.

On the other hand side we apply Lemma 8.3.5 for the notion Ax and use
that Ax is large by assumption. Let c = max (2c2 − 1, 1 − 2c1). Then we
obtain for large x with some eA(x) ∈ O

(
x

3+c
4
)

the inequality

#A (x) ≥ area(Ax)
c2

2 ln2 x
− eA(x) ≥ x

2c2
2 lnk+2 x

.

Together we obtain

#A (x)
#Sx

≥ c′2
1

16c2
2 lnk+1 x

≥ ln−(k+2) x(8.6.5)

By assumption we have succF (Ax) ≥ ln−s x for infinitely many values x.
Thus F on an input from Sx still has large success even if we ignore that F
might be successful for elements on Sx \ Ax,

succF (Sx) ≥ succF (Ax)
#A (x)

#Sx
≥ ln−(k+s+2) x.

Finally choose (m0, n0) ∈ Ix for which the success of F on Sm0,n0 is max-
imal. Then succF (Sm0,n0) ≥ succF (Sx). Combining with the previous we
obtain that for infinitely many x there is a pair (m0, n0) where the suc-
cess succF (Sm0,n0) of F on inputs from Sm0,n0 is still larger than inverse
polynomial: succF (Sm0,n0) ≥ ln−(k+s+2) x.

For these infinitely many pairs (m0, n0) the success probability of the
algorithm F on Sm0,n0 is at least ln−(k+s+2) x contradicting the hypothesis.

�

8.6. COMPLEXITY THEORETIC CONSIDERATIONS 169

All the specific notions that we have found in the literature fulfill the
criterion of Theorem 8.6.3. Thus if factoring is difficult in the stated sense
then each of them is invulnerable to factoring attacks. Note that the above
reduction still works if the primes p, q are due to the side condition gcd((p−
1)(q − 1), e) = 1 for a fixed integer e (see Theorem 8.3.10). We suspect that
this is also the case if p and q are strong primes. Yet, this needs further
investigation.

170 CHAPTER 8. RSA INTEGERS

Chapter 9

Generalized RSA integers

We can easily extend the concepts described in Chapter 8 to answer a slightly
more general problem of understanding the various definitions for generalized
RSA integers n, i.e. integers of the form n = piqj with i, j ∈ N≥1. Gener-
alized RSA integers are used for example in fast variants of RSA (Takagi
1998). This system is typically used with integers of the form p2q, even
though it was introduced using integers of the form piq. Another example is
the Okamoto-Uchiyama crypto system (Okamoto & Uchiyama 1998), which
uses integers of the form p2q.

In order to generate generalized RSA integers one might consult one of
the various standards for traditional RSA integers and adapt it to gener-
alized ones by changing the routine for prime generation to a routine for
prime power generation. By doing so, however, one needs to be careful with
the selection of the security parameter, which in some standards is given by
the length of the resulting product n = piqj, in others by the length of the
primes p, q.

We will now sketch an extension of the results from Chapter 8 to gen-
eralized RSA integers and show that also for generalized RSA integers the
intuition is true that it does not really matter how one generates the inte-
gers in detail, the result will do its job: On the number theoretic side we
give several counting formulas for generalized RSA integers and show that
all reasonable notions contain about the same number of integers. On the
algorithmic side we note that generating such integers takes always almost
the same amount of time and show that factoring integers of a specific form
is hard provided factoring prime power products in general is hard. Since
all of the aforementioned systems are broken if the underlying integer can
be factored efficiently, we thus need to assume that factoring integers of the

171

172 CHAPTER 9. GENERALIZED RSA INTEGERS

form piqj is hard for a specific selection of the parameters i and j in some
suitable sense. This, however, is not reasonable in general since for exam-
ple work of Boneh, Durfee & Howgrave-Graham shows that integers of the
form piq with very large i ≈

√
ln p can be factored efficiently using a lattice

reduction algorithm. In our framework we do not allow that i and j grow
with piqj which makes this attack not directly applicable to the integers
we are considering. In chapter 6 of their paper we read that for i = 2 and
j = 1 it is sufficient to know one third of the bits of q in order to factor the
integer efficiently. However, though partial exposure of secrets is of course a
realistic assumption in practice (see for example Blömer & May 2003), this
is a different issue. This still implies that not all variants of generalized RSA
integers are of practical importance in cryptography. We will formulate all
of the relevant results for arbitrary fixed (i, j) and just point out required
restrictions on i and j where necessary.

Though we only deal with asymptotic results here, our intention includes
explicit estimations for realistic finite sizes. Experiments show that our
estimates start working if the target size for piqj exceeds about 40 bits when
(i, j) = (1, 1), 70 bits when (i, j) = (2, 1), 100 bits when (i, j) = (3, 1) or
125 bits when (i, j) = (3, 2). Even this is only achievable using the Riemann
Hypothesis 2.2.14.

9.1. Framework and toolbox

We formalize a notion of generalized RSA integers with tolerance r as a
family

A := 〈Ax〉x∈R>1

of subsets of the positive quadrant R2
>1, where for every x ∈ R>1

Ax ⊆
{

(y, z) ∈ R2
>1

x

r
< yizj ≤ x

}
for some i, j ∈ N≥1. For the sake of a simpler presentation we frequently
use the negative slope s := i

j and the exponent sum t := i + j = j(s + 1).
The tolerance r shall always be larger than 1. We allow here that r varies
(slightly) with x, which of course includes the case that r is a constant.
Typical values used for RSA are r = 2 or r = 4 which fix the bitlength
of the modulus more or less. Now a generalized A-integer n of size x is
a product n = piqj of a prime pair (p, q) in Ax, i.e., n = piqj for some
(p, q) ∈ Ax ∩ (P × P), where P denotes the set of primes.

9.2. SOME RESULTS 173

As before they are counted by the associated prime pair counting func-
tion #A for the notion A:

#A : R>1 −→ N,
x �−→ # {(p, q) ∈ P× P (p, q) ∈ Ax} .

The following central technical lemma covers all the estimation work. For
the lemma to apply the considered notions must be monotone. Moreover
it is convenient if the notion is suitably large, that is, for some k and large
x we have areaAx ≥ area Mc1

x

lnk x
, where the maximal [c1,∞]-balanced notion

Mc1 (with tolerance x) is given by
We obtain the following

Lemma 9.1.1 (Generalized prime sum approximation). Assume that we
have a large, monotone [c1, c2]-balanced notion A of generalized RSA inte-
gers with tolerance r, where 0 < c1 ≤ c2. (The values r, c1, c2 are allowed
to vary with x as long as c−1

1 x− c1
2 ∈ o (1).) Then under the Riemann Hy-

pothesis 2.2.14 there is a value ã(x) ∈
[

1
t2c2

2
, 1

t2c2
1

]
such that we have

#A (x) ∈
(
1 + O

(
c−1

1 x− c1
2
))

ã(x) · t2 area(Ax)
ln2 x

. �

The proof can be done analogously to the proof of Lemma 9.1.1. Using this
lemma, we can easily compute the area of some of the notions similar to
those discussed in Chapter 8:

9.2. Some results

The notion ADM(r) is given by the sets

ADM(r)
x :=

{
(y, z) ∈ R2 y < z < ry ∧ x

r
< yizj ≤ x

}
.

Recall that we abbreviate the slope s = i
j and the exponent sum t = i + j.

By first rewriting the count into sums, we observe that

#ADM(r) (x) =
∑

p∈P∩
]

x
1
t r− j+1

t ,x
1
t r− j

t

] ∑
q∈P∩

]
x

1
j p−sr

− 1
j ,rp

] 1 +

∑
p∈P∩

]
x

1
t r− j

t ,x
1
t r− 1

t

] ∑
q∈P∩

]
x

1
j p−sr

− 1
j ,x

1
j p−s

] 1 +

∑
p∈P∩

]
x

1
t r− 1

t ,x
1
t

] ∑
q∈P∩

]
p,x

1
j p−s

] 1.

174 CHAPTER 9. GENERALIZED RSA INTEGERS

We obtain using Lemma 9.1.1:

Theorem 9.2.1. Assuming r ∈ lnO(1) x, we have under the Riemann Hy-
pothesis 2.2.14 for x tending to infinity

(i) If s = 1:

#ADM(r) (x) ∈ (1 + o(1))
t2x

2
t

2 ln2 x

(
1− r− 2

t

)
ln r.

(ii) If s
= 1:

#ADM(r) (x) ∈ (1 + o(1))
t2x

2
t

2 ln2 x

s + 1
s − 1

(
r

s−1
s+1 − 1

)(
1 − r− 2

t

)
.

�

Consider now the notion

AFB(r,σ) :=
〈{

(y, z) ∈ R2
>1

(
x

r

) 1
i+j

< y, z ≤ (rσx)
1

i+j ∧ yizj ≤ x

}〉
x∈R>1

.

with σ ∈ R≥0. We obtain:

#AFB(r,σ) (x) =
∑

p∈P∩
]

x
1
t r− 1

t ,x
1
t r− 1

st min(σ,s)
] ∑

q∈P∩
]

x
1
t r− 1

t ,x
1
t r

1
t min(σ,s)

] 1 +

∑
p∈P∩

]
x

1
t r− 1

st min(σ,s),x
1
t r

1
t min(σ,s−1)

] ∑
q∈P∩

]
x

1
t r− 1

t ,x
s+1

t y−s

] 1.

The following theorem follows directly from Loebenberger & Nüsken (2010)
but we can also derive it from Lemma 9.1.1 similar to Theorem 9.2.1.

Theorem 9.2.2. Assuming r ∈ lnO(1) x, we have under the Riemann Hy-
pothesis 2.2.14 for x tending to infinity

(i) If s = 1:

#AFB(r,σ) (x) ∈ (1 + o(1))
t2x

2
t

ln2 x

(2σ ln r

t
+ 1 − 2r

σ−1
t + r

2
t

)
.

9.2. SOME RESULTS 175

(ii) If s
= 1:

#AFB(r,σ) (x) ∈ (1 + o(1))
t2x

2
t

ln2 x

(
fs + fs−1 + r− 2

t

)
,

where fz := s
s−1r

min(σ,z)(s−1)
st − r

min(σ,z)−1
t . �

Consider the family of notions AALG2(r,σ) given by the sets

AALG2(r,σ)
x :=

⎧⎪⎪⎨⎪⎪⎩(y, z) ∈ R2
>1

rσ−1x
1

i+j < y ≤ rσx
1

i+j(
x

ryi

) 1
j < z ≤

(
x
yi

) 1
j ,

x
r < yizj ≤ x

⎫⎪⎪⎬⎪⎪⎭
with σ ∈ [0, 1]. We proceed with this notion similar to the previous one. By
observing

#AALG2(r,σ) (x) =
∑

p∈P∩
]

rσ−1x
1
t ,rσx

1
t

] ∑
q∈P∩

](
x

rpsj

) 1
j

,

(
x

psj

) 1
j

] 1,

and again applying Lemma 9.1.1 and Lemma 8.3.3, we obtain after splitting
as depicted next to Section 9.2 the notion AALG2(r,σ) into 2i large, monotone
notions.

Theorem 9.2.3. Assuming r ∈ lnO(1) x, we have under the Riemann Hy-
pothesis 2.2.14 for x tending to infinity

(i) If s = 1:

#AALG2(r,σ) (x) ∈ (1 + o(1))
t2x

2
t

ln2 x

(
1 − r− 2

t

)
ln r

(ii) If s
= 1:

#AALG2(r,σ) (x) ∈ (1+o(1))
t2x

2
t

ln2 x

(
1 − r

s+1
t

−1
) (

1 − r
s+1

t

)
r(1−s)σ− s+1

t .

�

176 CHAPTER 9. GENERALIZED RSA INTEGERS

Chapter 10

Analyzing standards for RSA
integers

We will now apply our results from Chapter 8 to analyze concrete standards
and implementation around. Also these results were first published in a
conference version at AfricaCrypt 2011 in Dakar, Senegal (see Loebenberger
& Nüsken 2011a). The full version is submitted to the Journal of Cryptology
for publication (see Loebenberger & Nüsken 2011b). Our coauthor suggested
to analyze different standards and implementations, but most of the details
in this section are our own findings.

10.1. Generating RSA integers properly

We first analyze how to generate RSA integers properly. It completes the
picture and we found several implementations overlooking this kind of ar-
guments.
We wish that all the algorithms generate integers with the following prop-
erties:

◦ If we fix x we should with overwhelming probability generate integers
that are a product of a prime pair in Ax.

◦ These integers (not the pairs) should be selected roughly uniformly at
random.

◦ The algorithm should be efficient. In particular, it should need only
few primality tests.

For the first point note that we usually use probabilistic primality tests with
a very low error probability, for example the Solovay-Strassen Test 3.3.13

177

178 CHAPTER 10. STANDARDS FOR RSA INTEGERS

or the Strong Test 3.3.20. Deterministic primality tests (like the Miller
Primality Test 3.3.22 or the AKS Test 3.3.29) are also available but are at
present for these purposes by far too slow.

10.1.1. Rejection sampling. Assume that A is a [c1, c2]-balanced notion
of RSA integers with tolerance r. The easiest approach for generating a pair
from A is based on von Neumann’s rejection sampling method. For this the
following definition comes in handy:

Definition 10.1.1 (Banner). A banner is a graph-bounded no-
tion of RSA integers such that for all x ∈ R>1 and for every
prime p ∈ [B1(x), C1(x)] the number fx(p) of primes in the inter-
val [B2(p, x), C2(p, x)] is almost independent of p in the following
sense: max{fx(p) p∈[B1(x),C1(x)]∩P}

min{fx(p) p∈[B1(x),C1(x)]∩P} ∈ 1 + o (1) .

For example, a rectangular notion, where B2(p, x) and C2(p, x) do not
depend on p, is a banner. Now given any notion A of RSA integers we
select a banner B of (almost) minimal area enclosing Ax. Note that there
may be many choices for B. We can easily generate elements in Bx ∩ N2:
Select first an appropriate y ∈ [B1(x), C1(x)] ∩ N, second an appropriate
z ∈ [B2(p, x), C2(p, x)]∩N. By the banner property this chooses (y, z) almost
uniformly. We obtain the following straightforward Las Vegas algorithm:

Algorithm 10.1.2. Generating an RSA integer (Las Vegas version).
Input: A notion A, a bound x ∈ R>1.
Output: An integer n = pq with (p, q) ∈ Ax.
1. Repeat 2–4
2. Repeat
3. Select (y, z) at random from Bx ∩N2as just described.
4. Until (y, z) ∈ Ax.
5. Until y prime and z prime.
6. p ← y, q ← z.
7. Return pq.

The expected repetition count of the inner loop is roughly area(Bx)
area(Ax) . The

expected number of primality tests is about area(Ax)
#A(x) . By Theorem 8.5.3 this

is for many notions in O
(
ln2 x

)
. We have seen implementations (for example

the one of GnuPG) where the inner and outer loop have been exchanged. This
increases the number of primality tests by the repetition count of the inner
loop. For AFB(r,1) this is a factor of about

10.1. GENERATING RSA INTEGERS PROPERLY 179

υ

ζ

#AFB(r2,0) (rx)
#AFB(r,1) (x)

∼
1
r − 2 + r

ln r + 1
r − 1

=
(r − 1)2

r(ln r − 1) + 1
,

which for r = 2 is equal to 2.58 and even worse for larger r. Also easily
checkable additional conditions, like gcd((p − 1)(q − 1), e) = 1, should be
checked before the primality tests to improve the efficiency.

10.1.2. Inverse transform sampling. Actually, we would like to avoid
generating out-of-bound pairs completely. Then a straightforward attempt
to construct such an algorithm would look the following way:

Algorithm 10.1.3. Generating an RSA integer (non-uniform version).
Input: A notion A, a bound x ∈ R>1.
Output: An integer n = pq with (p, q) ∈ Ax.

1. Repeat
2. Select y uniformly at random from {y ∈ R ∃z ∈ N : (y, z) ∈ Ax}∩N.

3. Until y prime.
4. p ← y.
5. Repeat
6. Select z uniformly at random from {z ∈ R (p, z) ∈ Ax} ∩ N.
7. Until z prime.
8. q ← z.
9. Return pq.

The main problem with Algorithm 10.1.3 is that the produced output typi-
cally is not uniform since the sets {z ∈ R (p, z) ∈ Ax}∩N do not necessarily
have the same cardinality when changing p. To retain uniform selection, we
need to select the primes p non-uniformly with the following distribution:

Definition 10.1.4. Let A be a notion of RSA integers with tolerance r.
For every x ∈ R>1 the associated cumulative distribution function of Ax is
defined as

FAx :
R −→ [0, 1],
y �−→ area(Ax∩([1,y]×R))

area(Ax) .

In fact we should use the function GAx : R→ [0, 1], y �→ #(Ax∩(([1,y]∩P)×P))
#Ax

,
in order to compute the density but computing GAx (or its inverse) is
tremendously expensive. Fortunately, by virtue of Lemma 8.3.5 we know

180 CHAPTER 10. STANDARDS FOR RSA INTEGERS

that FAx approximates GAx for monotone, [c1, c2]-balanced notions A quite
well. So we use the function FAx to capture the distribution properties of a
given notion of RSA integers. As can be seen by inspection, in practically
relevant examples this function is sufficiently easy to handle. Using this we
modify Algorithm 10.1.3 such that each element from Ax is selected almost
uniformly at random:

Algorithm 10.1.5. Generating an RSA integer.
Input: A notion A, a bound x ∈ R>1.
Output: An integer n = pq with (p, q) ∈ Ax.

1. Repeat
2. Select y with distribution FAx from {y ∈ R ∃z : (y, z) ∈ Ax} ∩ N.
3. Until y prime.
4. p ← y.
5. Repeat
6. Select z uniformly at random from {z ∈ R (p, z) ∈ Ax} ∩ N.
7. Until z prime.
8. q ← z.
9. Return pq.

As desired, this algorithm generates any pair (p, q) ∈ Ax ∩ (P× P) with
almost the same probability. In order to generate y with distribution FAx

one can use inverse transform sampling, see for example Knuth (1998):

Theorem 10.1.6 (Inverse transform sampling). Let F be a continuous cu-
mulative distribution function with inverse F −1 for u ∈ [0, 1] defined by

F −1(u) := inf {x ∈ R F (x) = u} .

If U is uniformly distributed on [0, 1], then F −1(U) follows the distribution
F ′.

Proof. We have prob(F −1(U) ≤ x) = prob(U ≤ F (x)) = F (x). �

The expected number of primality tests now is in O (ln x).

Proof. If A is [c1, 1]-balanced then FAx(y) = 0 as long as y ≤ xc1 . The
exit probability of the first loop is prob(y prime) where y is chosen according
to the distribution F ′

Ax
:

prob(y prime) ∼
∫ x

1

F ′
Ax

(y)
ln y

dy ∈
[1

ln x
,

1
c1 ln x

]
.

10.1. GENERATING RSA INTEGERS PROPERLY 181

Thus we expect O (ln x) ∩Ω (c1 ln x) repetitions of the upper loop until y is
prime. �

Of course we have to take into account that for each trial y the inverse
F −1

Ax
(y) has to be computed — at least approximately —, yet this cost is

usually negligible compared to a primality test.

10.1.3. Other constructions. There are variants around, where we se-
lect the prime numbers differently: Take an integer randomly from a suitable
interval and increase the result until the first prime is found. This has the
advantage that the amount of randomness needed is considerably lower and
by optimizing the resulting algorithm can also be made much faster. The
price one has to pay is that the produced primes will not be selected uni-
formly at random: Primes p for which p − 2 is also prime will be selected
with a much lower probability than randomly selected primes of a given
length. As shown in Brandt & Damgård (1993) the output entropy of such
algorithms is still almost maximal and also generators based on these kind
of prime-generators might be used in practice.

10.1.4. Summary. We have seen that Algorithm 10.1.2 and 10.1.5 are
practical uniform generators for any symmetric or antisymmetric notion.

Note that Algorithm 10.1.2 and 10.1.5 may, however, still produce num-
bers in a non-uniform fashion: In the last step of both algorithms a product
is computed that corresponds to either one pair or two pairs in Ax. To solve
this problem we have two choices: Either we replace A by its symmetric ver-
sion S which we define as Sx :=

{
(y, z) ∈ R2

>1 (y, z) ∈ Ax ∨ (z, y) ∈ Ax
}

,
or by its, say, top half T given by Tx := {(y, z) ∈ Sx z ≥ y} before anything
else.

It is now relatively simple to instantiate the above algorithms using the
notions proposed in Section 8.4: Namely for an algorithm following the Las
Vegas approach, one simply needs to find a suitable banner that encloses the
desired notion. In order to instantiate Algorithm 10.1.5 we need to deter-
mine the inverse of the corresponding cumulative distribution function for
the respective notion (see Table 10.1.1 and 10.1.2). Still Algorithm 10.1.2
and 10.1.5 are practically uniform generators for any symmetric or antisym-
metric notion.

Considering runtimes we observe that Algorithm 10.1.5 is much faster,
but we have to use inverse transform sampling to generate the first prime.
However, despite the simplicity of the approaches some of the most common
implementations use corrupted versions of Algorithm 10.1.2 or 10.1.5 as
explained below.

182 CHAPTER 10. STANDARDS FOR RSA INTEGERS

Notion A FAx

ADM(r)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if y ≤

√
x

r
,

r2y2+x(ln x−2 ln r−2 ln y−1)
x(r−1) ln r

if
√

x
r

< y ≤√x
r

,
r(x−y2)+x(r(1+ln r+2 ln y−ln x)−ln r)

x(r−1) ln r
if
√

x
r

< y ≤ √
x,

1 if
√

x < y.

AFB(r,σ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y ≤√x
r

,
√

r

(
r

1+σ
2 −1

)
√

x

(
σr ln r+r−2r

1+σ
2 +1

) if
√

x
r

< y ≤√ x
rσ ,

r
√

x(σ ln r+2 ln y−ln x+2)−2
√

ry+
√

x

(
2r

1+σ
2 +2

)
2

√
x

(
σr ln r+r−2r

1+σ
2 +1

) if
√

x
rσ < y ≤ √

rσx,

1 if
√

rσx < y.

AALG(r)

⎧⎨⎩
0 if y ≤

√
x

r
,

2 ln r+2 ln y−ln x
2 ln r

if
√

x
r

< y ≤ √
x,

1 if
√

x < y.

Table 10.1.1: Some cumulative density functions.

Notion A F ′
Ax

ADM(r)

⎧⎪⎨⎪⎩
2(r2y2−x)

xy(r−1) ln r
if

√
x

r
< y ≤√x

r
,

2r(x−y2)
xy(r−1) ln r

if
√

x
r

< y ≤ √
x,

0 otherwise.

AFB(r,σ)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
r

(
r

1+σ
2 −1

)
√

x

(
σr ln r+r−2r

1+σ
2 +1

) if
√

x
r

< y ≤√ x
rσ ,

r
√

x−√
ry

√
xy

(
σr ln r+r−2r

1+σ
2 +1

) if
√

x
rσ < y ≤ √

rσx,

0 otherwise.

AALG(r)
{

1
y ln r

if
√

x
r

< y ≤ √
x,

0 otherwise.

Table 10.1.2: Derivatives of the density functions in Table 10.1.1 with respect
to y.

10.2. Output entropy

The entropy of the output distribution is one important quality measure
of all kinds of generators: For example the quality of a physical random
generator is typically measured by the amount of entropy it produces, see
Schindler (2008a) and Schindler (2008b). There are specific constructions

10.2. OUTPUT ENTROPY 183

for such generators for which good stochastic models exist, see for example
Killmann & Schindler (2008). For arbitrary construction the development
of reasonable models remains a challenging task. Also for primality tests
several analyses where performed, see for example Brandt & Damgård (1993)
or Joye & Paillier (2006). For generators of RSA integers we are not aware
of any work in this direction.

Let A be any monotone notion. Consider a generator G that produces a
pair of primes (p, q) ∈ Ax with distribution Gout. Seen as random variables,
Gout induces two random variables P and Q by its first and the second
coordinate, respectively. The entropy of the generator G is given by

H(Gout) = H(P × Q) = H(P) + H (Q P) ,

where H denotes the entropy and the conditional entropy is given by

(10.2.1) H (Q P) = −
∑

p∈im(P)
prob(P = p)·

∑
q∈im(Q|P)

prob(Q = q | P = p) log2(prob(Q = q | P = p)).

If Gout is the uniform distribution U we obtain by Lemma 8.3.5 maximal
entropy

(10.2.2) H(U) = log2(#A (x)) ≈ log2(area(Ax)) − log2(ln x) + 1,

with an error of very small order. The algorithms from Section 10.1, how-
ever, return the product P ·Q. The entropy of this random variable can be
estimated as

H(P ·Q) = −
∑

n=pq∈N
(p,q)∈Ax

prob(P · Q = n) log2(prob(P ·Q = n))

≥ −
∑

(p,q)∈Ax

prob(P × Q = (p, q)) log2(2 prob(P × Q = (p, q)))

= H(P × Q)− 1.

Some of the standards and implementations in Section 10.4 (like the
standard IEEE 1363-2000 or the implementation of GNU Crypto) do not
generate every possible outcome with the same probability. All of them have
in common that the prime p is selected uniformly at random and afterwards
the prime q is selected uniformly at random from an appropriate interval.

184 CHAPTER 10. STANDARDS FOR RSA INTEGERS

This is a non-uniform selection process since for some choices of p there
might be less choices for q.

If the probability distribution Gout is close to the uniform distribution,
say Gout(p, q) ∈ [2−ε, 2ε] 1

#A(x) for some fixed ε ∈ R>0, then the entropy of
the resulting generator can be estimated as follows:

H(Gout) = −
∑

(p,q)∈Ax

Gout(p, q) log2(Gout(p, q))

∈
∑

(p,q)∈Ax

Gout(p, q)[log2(#A (x))− ε, log2(#A (x)) + ε]

= [H(U) − ε, H(U) + ε]

and since the entropy of the uniform distribution is maximal, this implies
that

H(Gout) ≥ H(U)− ε.

A measure for the quality of a generator G is the entropy loss with respect
to an optimal one. It is defined as

δ(G) =
H(U)− H(Gout)

H(U)
.

In the next section we will explore yet another measure of quality, which
compares the output entropy of a generator to the needed entropy for gen-
erating the results.

We will now estimate the output entropy for the three generators from
Section 10.1. Since Algorithm 10.1.2 and Algorithm 10.1.5 first produce
pairs of primes (p, q) ∈ Ax uniformly at random and return the product pq,
their output entropy is by (10.2.2) at least

log2(#A (x))− 1 ≈ log2(area(Ax)) − log2(ln x).

For Algorithm 10.1.3 we use (10.2.1) to obtain an estimate. Since the prime
p is selected uniformly at random, we have H(P) = 1

im(P) . For the condi-
tional entropy we obtain

H(Q|P) =
∑

p∈im(P)

1
im(P)

∑
q∈im(Q|P)

1
im(Q|P)

log2 # im(Q|P)

=
1

im(P)
·
∑

p∈im(P)
log2 # im(Q|P).

10.3. INFORMATION-THEORETICAL EFFICIENCY 185

In case the notion A is graph-bounded with boundary functions B1(x),
C2(y, x), B2(y, x) and C2(y, x) we can for large x estimate the conditional
entropy by

H(Q|P) ≈ 1
f(C1(x)) − f(B1(x))

·
∫ C1(x)

B1(x)

log2 (f(C2(y, x)) − f(B2(y, x)))
ln y

dy ,

where we abbreviated f(x) = x
ln x .

10.3. Information-theoretical efficiency

Consider a generator G that produces outputs with distribution Gout. To
compute the output, the generator has access to several oracles O1, . . . ,Ot

which might perform random choices. All other operations in G should be
deterministic. Denote by Gin the random variable carrying the results of
the calls to the different oracles during a run of G. In abuse of language we
will frequently call the entropy of Gin the input entropy of G.

With these definitions, the (information-theoretic) efficiency of G is
given by

η(G) =
H(Gout)
H(Gin)

.

Obviously, for all generators the efficiency has values in the unit interval,
i.e. η(G) ∈ [0, 1].

Assume we have any generator G that produces elements from some set
A by sampling uniformly from a set B ⊇ A until the result lies in A. Such a
generator has output entropy H(Gout) = log2 #A since the output of G will
be uniformly selected from A. Let us consider the index entropy: Per sample
G uses log2 #B bits of entropy. Since the expected number of samples is
#B
#A , we obtain input entropy #B

#A · log2 #B bits and thus the efficiency of G
is

(10.3.1) η(G) =
#A log2 #A

#B log2 #B
.

We can directly apply this result to Algorithm 10.1.2 for any [c1, c2]-balanced
notion A of RSA integers with tolerance r: There, we sample uniformly
from the banner Bx until we end up with a pair of primes in Ax ⊆ Bx. By
Lemma 8.3.5 the number of prime pairs in Ax is for large x lower bounded
by area(Ax)

c2
2 ln2 x

. Thus, we obtain by (10.3.1) that Algorithm 10.1.2 has for large
x an efficiency of at least

area(Ax)(log2 area(Ax) − log2 ln2 x − 2 log2 c2 + 2)
c2

2 ln2 x area(Bx) log2 area(Bx)
≥ 2 area(Ax) log2 area(Ax)

area(Bx) log2 area(Bx)
· 1

ln2 x
.

186 CHAPTER 10. STANDARDS FOR RSA INTEGERS

Consider now Algorithm 10.1.3. There we select a prime p first via rejection
sampling and afterwards q such that the result is in the desired interval.
Even though it is difficult to explicitly estimate in general the input and the
output entropy of this generator, we can easily evaluate its efficiency. This
is possible, since for large x the efficiency of both prime number generators
used in the algorithm is 1

ln x , implying that the algorithm itself has for large
x efficiency

1
ln2 x

.

Also Algorithm 10.1.5 can be treated similarly: The only difference to Algo-
rithm 10.1.3 is that the selection of the first prime is not done uniformly at
random but following some distribution FAx , see Section 10.1. We will not
go into more details on these kinds of algorithms, since we will not need them
for the analysis of the standards and implementations in the next section.

10.4. Impact on standards and implementations

In order to get an understanding of the common implementations, it is ne-
cessary to consult the main standard on RSA integers, namely the standard
PKCS#1 (Jonsson & Kaliski 2003). However, one cannot find any require-
ments on the shape of RSA integers. Interestingly, they even allow more than
two factors for an RSA modulus. Also the standard ISO 18033-2 (Interna-
tional Organization for Standards 2006) does not give any details besides the
fact that it requires the RSA integer to be a product of two different primes
of similar length. A more precise standard is set by the German Bundesnet-
zagentur (Wohlmacher 2009). They do not give a specific algorithm, but
at least require that the prime factors are not too small and not too close
to each other. We will now analyze several standards which give a con-
crete algorithm for generating an RSA integer. In particular, we consider
the standard of the RSA foundation (RSA Laboratories 2000), the IEEE
standard 1363 (IEEE working group 2000), the NIST standard FIPS 186-3
(NIST 2009) and the standard ANSI X9.44 (Accredited Standards Commit-
tee X9 2007) and the standard resulting from the European NESSIE project
(NESSIE working group 2003).

10.4.1. RSA-OAEP. The RSA Laboratories (2000) describe the follow-
ing variant:

Algorithm 10.4.1. Generating an RSA integer for RSA-OAEP and vari-
ants.

10.4. IMPACT ON STANDARDS AND IMPLEMENTATIONS 187

Input: A number of bits k, the public exponent e.
Output: An integer n = pq.

1. Pick p from
[⌊

2(k−1)/2
⌋

+ 1,
⌈
2k/2

⌉
− 1
]
∩ P such that gcd(e, p− 1) = 1.

2. Pick q from
[⌊

2(k−1)/2
⌋

+ 1,
⌈
2k/2

⌉
− 1
]
∩ P such that gcd(e, q − 1) = 1.

3. Return pq.

This will produce uniformly at random an integer from the interval [2k−1 +
1, 2k − 1] and no cutting off. The output entropy is thus maximal. So
this corresponds to the notion AFB(2,0) generated by Algorithm 10.1.5. The
standard requires an expected number of k ln 2 primality tests if the gcd
condition is checked first. Otherwise the expected number of primality tests
increases to ϕ(e)

ϕ1(e) · k ln 2 (see (8.3.11)). We will in the following always
mean by the above notation that the second condition is checked first and
afterwards the number is tested for primality. For the security Theorem 8.6.3
applies.

10.4.2. IEEE. IEEE standard 1363-2000, Annex A.16.11 (IEEE working
group 2000) introduces our algorithmic proposal:

Algorithm 10.4.2. Generating an RSA integer, IEEE 1363-2000.
Input: A number of bits k, the odd public exponent e.
Output: An integer n = pq.

1. Pick p from
[
2

k−1
2 �, 2

k+1
2 � − 1

]
∩ P such that gcd(e, p − 1) = 1.

2. Pick q from
[⌊

2k−1

p + 1
⌋

,
⌊

2k

p

⌋]
∩ P such that gcd(e, q − 1) = 1.

3. Return pq.

Since the resulting integers are in the interval [2k−1, 2k − 1] this standard
follows AALG2(2,1/2) generated by a corrupted variant of Algorithm 10.1.5
using an expected number of k ln 2 primality tests like the RSA-OAEP stan-
dard. The notion it implements is neither symmetric nor antisymmetric.
The selection of the integers is not done in a uniform way, since the number
of possible q for the largest possible p is roughly half of the corresponding
number for the smallest possible p. Since the distribution of the outputs is
close to uniform, we can use the techniques from Section 10.2 to estimate the
output entropy to find that the entropy-loss is less than 0.69 bit. The (nu-
merically approximated) values in Table 10.4.1 gave an actual entropy-loss
of approximately 0.03 bit.

188 CHAPTER 10. STANDARDS FOR RSA INTEGERS

10.4.3. NIST. We will now analyze the standard FIPS 186-3 (NIST 2009).
In Appendix B.3.1 of the standard one finds the following algorithm:

Algorithm 10.4.3. Generating an RSA integer, FIPS186-3.
Input: A number of bits k, a number of bits � < k, the odd public exponent

216 < e < 2256.
Output: An integer n = pq.

1. Pick p from
[√

22k/2−1, 2k/2 − 1
]
∩ P such that gcd(e, p − 1) = 1 and

p ± 1 has a prime factor with at least � bits.
2. Pick q from

[√
22k/2−1, 2k/2 − 1

]
∩ P such that gcd(e, p − 1) = 1 and

q ± 1 has a prime factor with at least � bits and |p − q| > 2k/2−100.
3. Return pq.

In the standard it is required that the primes p and q shall be either provable
prime or at least probable primes. The (at least �-bit) prime factors of
p ± 1 and q ± 1 have to be provable primes. We observe that also in this
standard a variant of the notion AFB(2,0) generated by Algorithm 10.1.5 is
used. The output entropy is thus maximal. However, we do not have any
restriction on the parity of k, such that the value k/2 is not necessarily an
integer. Another interesting point is the restriction on the prime factors
of p ± 1, q ± 1. Our notions cannot directly handle such requirements, but
we are confident that this can be achieved by appropriately modifying the
densities in Lemma 8.3.5.

The standard requires an expected number of slightly more than k ln 2
primality tests. It is thus slightly less efficient than the RSA-OAEP stan-
dard. For the security the remarks from the end of Section 8.6 apply.

10.4.4. ANSI. The ANSI X9.44 standard (Accredited Standards Com-
mittee X9 2007), formerly part of ANSI X9.31, requires strong primes for
an RSA modulus. Unfortunately, we could not access ANSI X9.44 directly
and are therefore referring to ANSI X9.31-1998. Section 4.1.2 of the stan-
dard requires that

◦ p − 1, p + 1, q − 1, q + 1 each should have prime factors p1, p2, q1, q2
that are randomly selected primes in the range 2100 to 2120,

◦ p and q shall be the first primes that meet the above, found in an
appropriate interval, starting from a random point,

◦ p and q shall be different in at least one of their first 100 bits.

10.4. IMPACT ON STANDARDS AND IMPLEMENTATIONS 189

The additional restrictions are similar to the ones required by NIST. This
procedure will have an output entropy that is close to maximal (see Sec-
tion 10.2).

10.4.5. NESSIE. The European NESSIE project gives in its security re-
port (NESSIE working group 2003) a very similar algorithm:

Algorithm 10.4.4. Generating an RSA integer, NESSIE standard.
Input: A number of bits k, the odd public exponent e.
Output: An integer n = pq.

1. Pick p from
[
2k−1, 2k − 1

]
∩ P such that gcd(e, p − 1) = 1.

2. Pick q from
[
2k−1, 2k − 1

]
∩ P such that gcd(e, q − 1) = 1.

3. Return pq.

The resulting integer n is selected uniformly at random from the interval
[22k−2, 22k − 1] and thus corresponds to the fixed bound notion AFB(4,0)

generated by Algorithm 10.1.5. The output entropy is thus maximal. Note
the difference to the standard of the RSA foundation: Besides the fact, that
in the standard of the RSA laboratories some sort of rounding is done, the
security parameter k is treated differently: While for the RSA foundation
the security parameter describes the (rough) length of the output, in the
NESSIE proposal it denotes the size of the two prime factors. The standards
requires an expected number of 2k ln 2 primality tests. It is thus as efficient
as the RSA-OAEP standard. For the security Theorem 8.6.3 applies.

10.4.6. OpenSSL. We now turn to implementations: For OpenSSL (Cox
et al. 2009), we refer to the file rsa_gen.c. Note that in the configuration the
routine used for RSA integer generation can be changed, while the algorithm
given below is the standard one. OpenSSH (de Raadt et al. 2009) uses the
same library. Refer to the file rsa.c. We have the following algorithm:

Algorithm 10.4.5. Generating an RSA integer in OpenSSL.
Input: A number of bits k.
Output: An integer n = pq.

1. Pick p from
[
2

k−1
2 �, 2

k+1
2 � − 1

]
∩ P.

2. Pick q from
[
2

k−3
2 �, 2

k−1
2 � − 1

]
∩ P.

3. Return pq.

190 CHAPTER 10. STANDARDS FOR RSA INTEGERS

This is nothing but a rejection-sampling method of a notion similar to the
fixed bound notion AFB(4,0) generated by Algorithm 10.1.2. The output
entropy is thus maximal. The result the algorithm produces is always in
[2k−2, 2k − 1]. It is clear that this notion is antisymmetric and the factors
are on average a factor 2 apart of each other. The implementation runs
in an expected number of k ln 2 primality tests. The public exponent e is
afterwards selected such that gcd((p − 1)(q − 1), e) = 1. It is thus slightly
more efficient than the RSA-OAEP standard. For the security Theorem 8.6.3
applies.

10.4.7. Openswan. In the open source implementation Openswan of the
IPsec protocol (Richardson et al. 2009) one finds a rejection-sampling method
that is actually implementing the notion AFB(4,0) generated by a variant of
Algorithm 10.1.2. We refer to the function rsasigkey in the file rsasigkey.c:

Algorithm 10.4.6. Generating an RSA integer in Openswan.
Input: A number of bits k.
Output: An integer n = pq.

1. Pick p from
[
2

k−2
2 �, 2

k
2� − 1

]
∩ P.

2. Pick q from
[
2

k−2
2 �, 2

k
2� − 1

]
∩ P.

3. Return pq.

Note that here the notion is actually symmetric. However, still the uni-
formly at random selected integer pq will not always have the same length.
The implementation runs in an expected number of k ln 2 primality tests
and output entropy is maximal. Again the public exponent e is selected
afterwards such that gcd((p − 1)(q − 1), e) = 1. It is thus as efficient as the
RSA-OAEP standard. For the security Theorem 8.6.3 applies.

10.4.8. GnuPG. Also GnuPG (Skala et al. 2009) uses rejection-sampling
of the fixed bound notion AFB(2,1) generated by a variant of Algorithm 10.1.2,
implying that the entropy of its output distribution is maximal.

Algorithm 10.4.7. Generating an RSA integer in GnuPG.
Input: A number of bits k.
Output: An integer n = pq.

1. Repeat 2–3

10.4. IMPACT ON STANDARDS AND IMPLEMENTATIONS 191

2. Pick p from
[
2

k−1
2 �, 2

k+1
2 � − 1

]
∩ P.

3. Pick q from
[
2

k−1
2 �, 2

k+1
2 � − 1

]
∩ P.

4. Until len(pq) = 2 �k/2�
5. Return pq.

We refer here to the file rsa.c. The algorithm is given in the function
generate_std and produces always integers with either k or k + 1 bits
depending on the parity of k. Note that the generation procedure indeed
first selects primes before checking the validity of the range. This is of course
a waste of resources, see Section 10.1.

The implementation runs in an expected number of roughly 2.589 · (k +
1) ln 2 primality tests. It is thus less efficient than the RSA OAEP standards.
Like in the other, so far considered implementations, the public exponent e
is afterwards selected such that gcd((p − 1)(q − 1), e) = 1. For the security
Theorem 8.6.3 applies.

10.4.9. GNU Crypto. The GNU Crypto library (Free Software Founda-
tion 2009) generates RSA integers the following way. Refer here in the file
RSAKeyPairGenerator.java to the function generate.

Algorithm 10.4.8. Generating an RSA integer in GNU Crypto.
Input: A number of bits k.
Output: An integer n = pq.

1. Pick p from
[
2

k−1
2 �, 2

k+1
2 � − 1

]
∩ P.

2. Repeat
3. Pick q from

[
2

k−1
2 �, 2

k+1
2 � − 1

]
.

4. Until len(pq) = k and q ∈ P.
5. Return pq.

Also here the notion AFB(2,1) is used, but the generated integers will not
be uniformly distributed, since for a larger p we have much less choices
for q. Since the distribution of the outputs is not close to uniform, we
could only compute the entropy for real-world parameter choices numerically
(see Table 10.4.1). For all choices the loss was less than 0.63 bit. The
implementation is as efficient as the RSA-OAEP standard.

The Free Software Foundation provides Gnu Classpath, which generates
RSA integers exactly like the Gnu Crypto library, i.e. following AFB(2,1).
We refer to the file RSAKeyPairGenerator.java. As in the other, so far

192 CHAPTER 10. STANDARDS FOR RSA INTEGERS

considered implementations, the public exponent e is afterwards randomly
selected such that gcd((p − 1)(q − 1), e) = 1. Like in the IEEE 1363-2000
and the ANSI X9.44 standard this does not impose practical security risks,
but it does not meet the requirement of uniform selection of the generated
integers.

10.4.10. Summary. It is striking to observe that not a single analyzed
implementation follows one of the standards described above. The only
standards all implementations are compliant to are the standards PKCS#1
and ISO 18033-2, which themselves does not specify anything related to the
integer generation routine. We found that also the requirements from the
algorithm catalog of the German Bundesnetzagentur (Wohlmacher 2009)
are not met in a single considered implementation, since it is never checked
whether the selected primes are too close to each other. The implementa-
tion that almost meets the requirements is the implementation of OpenSSL.
Interestingly there are standards and implementations around that generate
integers non-uniformly. Prominent examples are the IEEE and the ANSI
standards and the implementation of the Gnu Crypto library. This does
not impose practical security issues, but it violates the condition of uniform
selection.

10.4. IMPACT ON STANDARDS AND IMPLEMENTATIONS 193

Standard Entropy (entropy loss/norm. efficiency)
Implementation k = 768 k = 1024 k = 2048 Notion
uniform n = pq 762.59 1018.24 2041.39 —

PKCS#1
Undefined — — —ISO 18033-2

ANSI X9.44
FIPS 186-3 � 747.34 � 1002.51 � 2024.51

(� 0�/1) (� 0�/1) (� 0�/1)

RSA-OAEP 747.34 1002.51 2024.51
(0�/1) (0�/1) (0�/1)

IEEE 1363-2000 749.33 1004.50 2026.50
(0.04�/1) (0.03�/1) (0.01�/1)

NESSIE 749.89 1005.06 2027.06
(0�/1) (0�/1) (0�/1)

GNU Crypto 747.89 1003.06 2025.06
(0.84�/1) (0.62�/1) (0.31�/1)

GnuPG 748.52 1003.69 2025.69 ✖

(0�/0.771) (0�/0.772) (0�/0.772)

OpenSSL/OpenSwan 749.89 1005.06 2027.06
(0�/1) (0�/1) (0�/1)

Table 10.4.1: Overview of various standards and implementations. As ex-
plained in the text, the entropy of the standards is slightly smaller than
the values given due to the fixed public exponent e. Additionally there is
a small entropy loss for the standard FIPS 186-3 due to the fact that it
requires strong primes. In the table we have multiplied the efficiency of the
implementations by the factor ln2 x and the efficiency of the standards by
the factor ϕ1(e)

ϕ(e) · ln2 x (due to the preselected public exponent e) to obtain
a normalized efficiency.

194 CHAPTER 10. STANDARDS FOR RSA INTEGERS

Chapter 11

Future work and open
problems

There are still many open problems on various aspects of the topics presented
in the thesis. Further research could focus either on the more number the-
oretic work or the applied implementation issues. We describe here a few
ideas.

First of all one should be able to tighten the number theoretic part in
Chapter 6: It would be nice to have asymptotic formulas for the count of
[B, C]-grained integers that specify the constant in the main term explicitly.
The same improvement should be possible for the count of RSA integers in
Chapter 8 and generalized RSA integers in Chapter 9. More specifically the
technique that could lead to deeper insight in these issues is to think again
about the evaluation of integrals of the form

� 1
ln p ln q

dq dp.

Though there is no hope for an elementary solution to such kind of integrals
(since it would readily lead to elementary expressions defining the logarith-
mic integral) it should be possible to tackle these integrals in such a way
that the desired constant pops out.

Also, additional requirements on the prime factors (like being strong
primes) need further investigation. To advance in this direction one would
either have to know some explicit counting results of such kind of prime
numbers (which seem out of reach at the moment) or somehow circumvent
the necessity of such counts.

195

196 CHAPTER 11. FUTURE WORK AND OPEN PROBLEMS

Another possible field of research is to obtain even deeper insight in the
intermediate steps of the General Number Field Sieve:

One could try to use the observation that the numbers entering the co-
factorization step that correspond to promising candidates are exactly those
numbers that are [B, C]-grained and simultaneously of a certain length.
This in turn could be used to specify the runtime bound of the Elliptic
Curve Method 3.5.9 such that there is as little waste of runtime as possible.
Also, if one would manage to explicitly describe the input distribution of
cofactorization step in the General Number Field Sieve (studied experimen-
tally in Chapter 7) one might heuristically obtain better runtime bound of
the General Number Field Sieve for a given input.

Related to this issue are further improvements in the search of efficient
formulas for differential addition on special elliptic curves. This would also
lead to faster implementations of the General Number Field Sieve.

A completely different topic for further work is the study of the different
standards on various topics in cryptography. It should be possible to define
appropriate “notions” for many cryptographic objects that might lead to
very general insight about the properties of these objects. Yet, it is not
obvious at all which kind of results such an approach could yield.

Bibliography

The numbers in brackets at the end of a reference are the pages on which it is cited.
Names of authors and titles are usually given in the same form as on the article or book.

Accredited Standards Committee X9 (2007). ANSI X9.44-2007: Public Key
Cryptography Using Reversible Algorithms for the Financial Services Industry:
Transport of Symmetric Algorithm Keys Using RSA. Technical report, American
National Standards Institute, American Bankers Association. [142, 186–188]

Leonard Max Adleman (1979). A Subexponential Algorithm for the Discrete
Logarithm Problem with Applications. In Proceedings of the 20th Annual IEEE
Symposium on Foundations of Computer Science, San Juan PR, 55–60. [56]

Manindra Agrawal, Neeraj Kayal & Nitin Saxena (2004). PRIMES is in P.
Annals of Mathematics 160(2), 781–793. URL http://annals.math.princeton.
edu/issues/2004/Sept2004/Agrawal.pdf. [49–50]

William Robert Alford, Andrew Granville & Carl Pomerance (1994a).
On the difficulty of finding reliable witnesses. In Algorithmic Number Theory, First
International Symposium, ANTS-I, Ithaca, NY, USA, Leonard Max Adleman

& Ming-Deh Huang, editors, number 877 in Lecture Notes in Computer Science,
1–16. Springer-Verlag, Berlin, Heidelberg. ISBN 978-3-540-58691-3. ISSN 0302-
9743. URL http://dx.doi.org/10.1007/3-540-58691-1. [42]

William Robert Alford, Andrew Granville & Carl Pomerance (1994b).
There are infinitely many Carmichael numbers. Annals of Mathematics 140, 703–
722. [42]

Roberto M. Avanzi, Henri Cohen, Christophe Doche, Gerhard Frey,
Tanja Lange, Kim Nguyen & Frederik Vercauteren (2006). Handbook
of Elliptic and Hyperelliptic Curve Cryptography. Discrete Mathematics and its
Applications. Chapman & Hall/CRC. ISBN 1-58488-518-1. [71]

Eric Bach & Jeffrey Shallit (1996). Algorithmic Number Theory, Vol.1: Ef-
ficient Algorithms. MIT Press, Cambridge MA. [49]

Claude Gaspar Bachet de Méziriac (1612). Problèmes plaisans et délectables,
qui se font par les nombres. Pierre Rigaud, Lyon.

197

198 Bibliography

Richard Bellman (1957). Dynamic Programming. Princeton University Text.
[132]

Jacob Bernoulli (1713). Ars conjectandi, opus posthumum, Accedit Tractatus
de seriebus infinitis, et epistola gallicé scripta de ludo pilae reticularis. Basileae,
impensis Thurnisiorum, Basel.

Daniel Julius Bernstein, Peter Birkner, Marc Joye, Tanja Lange &
Christiane Peters (2008a). Twisted Edwards Curves. In Progress in Cryptology:
Proceedings of AFRICACRYPT 2008, Casablanca, Morocco, Serge Vaudenay,
editor, volume 5023 of Lecture Notes in Computer Science, 389–405. URL http:
//dx.doi.org/10.1007/978-3-540-68164-9_26. [69]

Daniel Julius Bernstein, Peter Birkner, Tanja Lange & Chris-

tiane Peters (2008b). ECM using Edwards curves URL http://cr.yp.to/
factorization/eecm-20080120.pdf. [69]

Daniel Julius Bernstein & Tanja Lange (2007a). Faster addition and dou-
bling on elliptic curves. In Advances in Cryptology: Proceedings of ASIACRYPT
2007, Kuching, Sarawak, Malaysia, Kaoru Kurosawa, editor, volume 4833 of
Lecture Notes in Computer Science, 29–50. URL http://dx.doi.org/10.1007/
978-3-540-76900-2. [69, 72]

Daniel Julius Bernstein & Tanja Lange (2007b). Inverted Edwards Coor-
dinates. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,
17th International Symposium, AAECC-17, Bangalore, India, December 16-20,
2007, Proceedings, Serdar Boztas & Hsiao-Feng Lu, editors, volume 4851 of
Lecture Notes in Computer Science, 20–27. URL http://dx.doi.org/10.1007/
978-3-540-77224-8. [69, 72]

Daniel Julius Bernstein & Tanja Lange (2011). Explicit Fomulas Database
(EFD). URL http://www.hyperelliptic.org/EFD/. [64, 70]

Étienne Bézout (1766). Cours de Mathèmatiques á l’usage des Gardes du Pavil-
lon et de la Marine. J . B . G . Musier, Paris.

Jacques Philippe Marie Binet (1730). Miscellanea Analytica. J. Tonson and
J. Watts, London.

Jacques Philippe Marie Binet (1843). Mémoire sur l’intégration des équa-
tions linéaires aux différences finies d’un ordre quelconque, à coefficients variables.
Comptes Rendus de l’Académie des Sciences Paris 17, 559–567. [29]

Johannes Blömer & Alexander May (2003). New Partial Key Exposure At-
tacks on RSA. In Advances in Cryptology - CRYPTO 2003, Dan Boneh, edi-
tor, volume 2729 of Lecture Notes in Computer Science, 27–43. Springer-Verlag,
Berlin, Heidelberg. ISBN 978-3-540-40674-7. URL http://dx.doi.org/10.1007/
b1181710.1007/b11817. [172]

Bibliography 199

Dan Boneh, Glenn Durfee & Nick Howgrave-Graham (1999). Factoring
N = prq for Large r. In Advances in Cryptology: Proceedings of CRYPTO ’99,
Santa Barbara, CA, Matthew Wiener, editor, number 1666 in Lecture Notes
in Computer Science, 326–237. Springer-Verlag, Berlin, Heidelberg. ISBN 3-540-
66347-9. ISSN 0302-9743. URL http://dx.doi.org/10.1007/3-540-48405-1_
21. [172]

Jørgen Brandt & Ivan Damgård (1993). On Generation of Probable Primes
by Incremental Search. In Advances in Cryptology: Proceedings of CRYPTO ’92,
Santa Barbara, CA, E. F. Brickell, editor, number 740 in Lecture Notes in
Computer Science, 358–370. Springer-Verlag, Berlin. ISSN 0302-9743. URL http:
//dx.doi.org/10.1007/3-540-48071-4_26. [2, 142, 181–183]

Éric Brier & Marc Joye (2002). Weierstraß Elliptic Curves and Side-Channel
Attacks. In Public Key Cryptography, David Naccache & Pascal Paillier,
editors, number 2274 in Lecture Notes in Computer Science, 183–194. Springer-
Verlag, Berlin, Heidelberg. ISBN 3-540-43168-3. ISSN 0302-9743. URL http:
//dx.doi.org/10.1007/3-540-45664-3_24. [76]

John Brillhart, Derrick Henry Lehmer & John Lewis Selfridge (1975).
New Primality Criteria and Factorizations of 2m ± 1. Mathematics of Computation
29(130), 620–647. [45]

Nicolaas Govert de Bruijn (1951). The asymptotic behaviour of a function
occurring in the theory of primes. Journal of the Indian Mathematical Society n.s.
15, 25–32. [25]

Joseph P. Buhler, Hendrik Willem Lenstra, Jr. & Carl Pomerance

(1993). Factoring integers with the number field sieve. In Lenstra & Lenstra
(1993), 50–94. [54–55]

. (1937).
. 2 (44)(6), 1239?1246.

URL http://mi.mathnet.ru/msb5649. [26, 86]

Earl Rodney Canfield, Paul Erdős & Carl Pomerance (1983). On a
problem of Oppenheim concerning ‘Factorisatio Numerorum’. Journal of Number
Theory 17, 1–28. [25, 52]

Robert Daniel Carmichael (1909/10). Note on a new number theory function.
Bulletin of the American Mathematical Society 16, 232–238.

John William Scott Cassels (1966). Diophantine equations with special ref-
erence to elliptic curves. Journal of the London Mathematical Society 41, 193–291.
[60]

Wouter Castryck, Steven D. Galbraith & Reza Rezaeian Farashahi

(2008). Efficient arithmetic on elliptic curves using a mixed Edwards-Montgomery
representation. Cryptology ePrint Archive, Report 2008/218. URL http://
eprint.iacr.org/2008/218.pdf. [3, 70–71, 74]

200 Bibliography

(1852). Mémoire sur les nombres premiers. Journal
de Mathématiques Pures et Appliquées, I série 17, 366–390. Mémoires présentées à
l’Académie Impériale des sciences de St.-Pétersbourg par divers savants 6 (1854),
17–33. Œuvres I, eds. A. Markoff and N. Sonin, 1899, reprint by Chelsea Pub-
lishing Co., New York, 49–70. [9]

Clay Mathematics Institute (2000). WWW. URL http://www.claymath.
org/prize_problems/p_vs_np.htm. [5, 82]

Clifford C. Cocks (1973). A note on ’non-secret encryption’. CESG Memo.
URL http://www.cesg.gov.uk/publications/media/notense.pdf. Last down-
load 12 May 2009. [141]

Henri Cohen & Gerhard Frey (2006). Handbook of Elliptic and Hyperellip-
tic Curve Cryptography. Discrete Mathematics and its Applications. Chapman &
Hall/CRC. ISBN 1-58488-518-1. With the help of Roberto M. Avanzi, Christophe
Doche, Tanja Lange, Kim Nguyen, and Frederik Vercauteren. [64]

Mark J. Cox, Ralf Engelschall, Stephen Henson & Ben Laurie (2009).
OpenSSL 0.9.8j. Open source implementation. URL http://www.openssl.org/.
Refer to openssl-0.9.8j.tar.gz. Last download 21 April 2009. [156, 189]

Richard Crandall & Carl Pomerance (2005). Prime numbers – A computa-
tional perspective. Springer-Verlag, 2nd edition. ISBN 0-387-25282-7. [5, 23, 39–42,
45, 50, 55–57, 62, 67, 141]

Andreas Decker & Pieter Moree (2008). Counting RSA-integers. Results in
Mathematics 52, 35–39. URL http://dx.doi.org/10.1007/s00025-008-0285-5.
[2, 87, 142, 146, 156–157, 160, 165]

Max Deuring (1941). Die Typen der Multiplikatorenringe elliptischer Funktio-
nenkörper. Abhandlungen aus dem Mathematischen Seminar der Hamburgischen
Universität 14, 197–272. [61]

Karl Dickman (1930). On the frequency of numbers containing prime factors of
a certain relative magnitude. Arkiv für Matematik, Astronomi och Fysik 22A(10),
1–14. [24]

Whitfield Diffie & Martin Edward Hellman (1976). New directions in
cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654. [81–
82]

Johann Peter Gustav Lejeune Dirichlet (1837). Beweis des Satzes, dass
jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze
Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält.
Abhandlungen der Königlich Preussischen Akademie der Wissenschaften 45–81.
Werke, Erster Band, ed. L. Kronecker, 1889, 315–342. Reprint by Chelsea Pub-
lishing Co., 1969. [11, 155]

Bibliography 201

Pierre Dusart (1998). Autour de la fonction qui compte le nombre de nombres
premiers. Thèse de doctorat, Université de Limoges. URL http://www.unilim.
fr/laco/theses/1998/T1998_01.html. [10–11, 88, 116, 127]

Harold Mortimer Edwards, Jr. (1974). Riemann’s Zeta Function. Pure and
applied mathematics. Academic Press, New York. Republished 2001 by Dover
Publications, Inc., ISBN 978-0-486-41740-0. [5, 15–18]

Harold Mortimer Edwards, Jr. (2007). A Normal Form for Elliptic Curves.
Bulletin of the American Mathematical Society 44(3), 393–422. [3, 57, 69–73, 76–79]

James Henry Ellis (1970). The possibility of secure non-secret digital encryp-
tion. URL http://cryptocellar.web.cern.ch/cryptocellar/cesg/possnse.
pdf. Last download 12 May 2009. [141]

Paul Erdős (1950). On almost primes. The American Mathematical Monthly 57,
404–407. [40]

Leonhard Paul Euler (1730). De progressionibus transcendentibus seu quarum
termini generales algebraice dari nequeunt. Commentarii academiae scientiarum
Petropolitanae 5, 36–57. Eneström 19. Opera Omnia, series 1, volume 14, 1-24.

Leonhard Paul Euler (1737). Variae observationes circa series infinitas. Com-
mentarii academiae scientiarum Petropolitanae 9, 160–188. Eneström 72. Opera
Omnia, series 1, volume 14, 217-244. [12]

Leonhard Paul Euler (1741). Theorematum Quorundam ad Numeros Primos
Spectantium Demonstratio. Novi commentarii academiae scientiarum imperalis
Petropolitanae 8, 141–146. Eneström 54. Opera Omnia, series 1, volume 2, B. G.
Teubner, Leipzig, 1915, 33–37. [35]

Leonhard Paul Euler (1755). Institutiones calculi integralis, volume 2.
Academiae scientiarum Petropolitanae, St. Petersburg, chapter 5 and 6. Eneström
212. Opera Omnia, series 1, volume 10, 1-24. [16]

Leonhard Paul Euler (1760/61). Theoremata arithmetica nova methodo
demonstrata. Novi commentarii academiae scientiarum imperalis Petropolitanae
8, 74–104. Summarium ibidem 15–18. Eneström 271. Opera Omnia, series 1, vol-
ume 2, B. G. Teubner, Leipzig, 1915, 531–555. [32]

Leonhard Paul Euler (1761). Theoremata circa residua ex divisione potestatum
relicta. Novi commentarii academiae scientiarum imperalis Petropolitanae 7, 49–
82. Eneström 262. Opera Omnia, series 1, volume 2, B. G. Teubner, Leipzig, 1915,
493–518. [35]

Pierre de Fermat (1640). Letter to Bessy. In Œuvres de Fermat, Paul Tannery

& Charles Henry, editors, volume 2, Correspondance, 206–212. Gauthier-Villars,
Paris, 1894.

Pierre de Fermat (1647). Letter to Mersenne. In Œuvres de Fermat, Paul Tan-

nery & Charles Henry, editors, volume 2, Correspondance, 253–256. Gauthier-
Villars, Paris, 1894.

202 Bibliography

(1966/67).
(Certain criteria for the primality of numbers connected

with Fermat’s little theorem). Acta Arithmetica 12, 355–364. [45]

Kevin Ford (2002a). Vinogradov’s integral and bounds for the Riemann zeta
function. Proceedings of the London Mathematical Society (3) 85, 565–633. URL
http://dx.doi.org/10.1112/S0024611502013655. [9, 88, 114]

Kevin Ford (2002b). Zero-free regions for the Riemann zeta function. In Num-
ber Theory for the Millenium (Urbana, IL, 2000), M. A. Bennett, Bruce C.

Berndt, N. Boston, H. G. Diamond, Adolf J. Hildebrand & W. Philipp,
editors, volume II, 25–56. A. K. Peters. ISBN 978-1568811468. URL http:
//www.math.uiuc.edu/~ford/wwwpapers/zeros.pdf. [114]

Jens Franke & Thorsten Kleinjung (2005). RSA 640. URL http://www.
crypto-world.com/announcements/rsa640.txt. [1, 129]

Jens Franke & Thorsten Kleinjung (2006). Continued Fractions and Lat-
tice Sieving. unpublished URL http://www.math.uni-bonn.de/people/thor/
confrac.ps. [2]

Free Software Foundation (2009). GNU Crypto. Open source implementation.
URL http://www.gnu.org/software/gnu-crypto/. Refer to gnu-crypto-2.0.
1.tar.bz2. Last download 21 April 2009. [156, 191]

Steven D. Galbraith (2011). Mathematics of Public Key Cryptography. Cam-
bridge University Press. [82–83]

Joachim von zur Gathen & Jürgen Gerhard (1999). Modern Computer
Algebra. Cambridge University Press, Cambridge, UK, First edition. ISBN 0-521-
64176-4. URL http://cosec.bit.uni-bonn.de/science/mca/. Other available
editions: Second edition 2003, Chinese edition, Japanese translation. [142]

Joachim von zur Gathen, Tim Güneysu, Anton Kargl, Daniel Loeben-

berger, Christof Paar & Jens Putzka (2007). Faktorisierung großer Zahlen:
Hardware für Elliptische Kurven Faktorisierung. Technical report, HGI Bochum,
b-it Bonn & Siemens AG München. [134]

Pierrick Gaudry & David Lubicz (2009). The arithmetic of characteristic 2
Kummer surfaces and of elliptic Kummer lines. Finite Fields and Their Applications
15(2), 246–260. ISSN 1071-5797. [3, 70–71]

Johann Carl Friedrich Gauß (1801). Disquisitiones Arithmeticae. Gerh.
Fleischer Iun., Leipzig. English translation by Arthur A. Clarke, Springer-
Verlag, New York, 1986. [36]

Johann Carl Friedrich Gauß (1849). Brief an Encke, 24. Dezember 1849.
In Werke II, Handschriftlicher Nachlass, 444–447. Königliche Gesellschaft der Wis-
senschaften, Göttingen, 1863. Reprinted by Georg Olms Verlag, Hildesheim New
York, 1973. [9]

Bibliography 203

Oded Goldreich (2001). Foundations of Cryptography, volume I: Basic Tools.
Cambridge University Press, Cambridge. ISBN 0-521-79172-3. [167]

Louis Goubin & Mitsuru Matsui (editors) (2006). Cryptographic Hardware
and Embedded Systems, Workshop, CHES’06, Yokohama, Japan, volume 4249 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg. ISBN 978-
3-540-46559-1. ISSN 0302-9743. URL http://dx.doi.org/10.1007/11894063.

Andrew Granville (2008). Smooth numbers: computational number theory
and beyond. In Algorithmic Number Theory: Lattices, Number Fields, Curves
and Cryptography, Joseph P. Buhler & Peter Stevenhagen, editors, num-
ber 44 in Mathematical Sciences Research Institute Publications, 69–82. Cambridge
University Press, New York. ISBN 978-0-521-80854-5. URL http://www.math.
leidenuniv.nl/~psh/ANTproc/09andrew.pdf. [2, 23, 86]

Tim Güneysu, Christof Paar, Gerd Pfeiffer & Manfred Schimmler

(2008). Enhancing COPACOBANA for Advanced Applications in Cryptography
and Cryptanalysis. In International Conference on Field Programmable Logic and
Applications, 2008 (FPL 2008), 675–678. IEEE Computer Society Press, Heidel-
berg, Germany. URL http://dx.doi.org/10.1109/FPL.2008.4630037. [1, 130]

Jacques Salomon Hadamard (1896). Sur la distribution des zéros de la fonction
ζ(s) et ses conséquences arithmétiques. Bulletin de la Société mathématique de
France 24, 199–220. [9]

Yasufumi Hashimoto (2009). On asymptotic behavior of composite integers
n = pq. Journal of Math-for-industry 1(2009A-6), 45–49. [156]

Helmut Hasse (1933). Beweis des Analogons der Riemannschen Vermutung für
die Artinschen und F. K. Schmidtschen Kongruenzzetafunktionen in gewissen ellip-
tischen Fällen. Vorläufige Mitteilung. Nachrichten von der Gesellschaft der Wis-
senschaften zu Göttingen, Mathematisch-Physikalische Klasse 42, 253–262. [61]

David Hilbert (1900). Mathematische Probleme. Nachrichten von der
Königlichen Gesellschaft der Wissenschaften zu Göttingen 253–297. URL http://
www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN252457811_1900.
Archiv für Mathematik und Physik, 3. Reihe 1 (1901), 44–63 and 213–237. English
translation: Mathematical Problems, Bulletin of the American Mathematical
Society 8 (1902), 437–479.

Adolf J. Hildebrand (1985). Integers free of large prime factors and the Riemann
hypothesis. Mathematika 31(2), 258–271. [25]

Adolf J. Hildebrand (1986). On the Number of positive integers ≤ x and free
of Prime factors > y. Journal of Number Theory 22(3), 289–307. ISSN 0022-314X.
URL http://dx.doi.org/10.1016/0022-314X(86)90013-2. [25]

Adolf J. Hildebrand & Gérald Tenenbaum (1993). Integers without large
prime factors. Journal de Théorie des Nombres de Bordeaux 5(2), 411–484. [23]

204 Bibliography

IEEE working group (2000). IEEE 1363-2000: Standard Specifications For
Public Key Cryptography. IEEE standard, IEEE, New York, NY 10017, USa.
URL http://grouper.ieee.org/groups/1363/P1363/. [142, 156, 186–187]

International Organization for Standards (2006). ISO/IEC 18033-2, En-
cryption algorithms — Part 2: Asymmetric ciphers. Technical report, International
Organization for Standards. [142, 186]

Carl Gustav Jacob Jacobi (1837). Über die Kreisteilung und ihre Anwendung
auf die Zahlentheorie. Monatsberichte der Königlich Preussischen Akademie der
Wissenschaften, Berlin 127–136.

Qin Jiushao (1247). Shushu Chiuchang (Mathematical Treatise in Nine Sections).

Jakob Jonsson & Burt Kaliski (2003). Public-Key Cryptography Standards
(PKCS) #1: RSA Cryptography Specifications Version 2.1. URL http://tools.
ietf.org/html/rfc3447. RFC 3447. [142, 186]

Marc Joye & Pascal Paillier (2006). Fast Generation of Prime Numbers
on Portable Devices: An Update. In Goubin & Matsui (2006), 160–173. URL
http://dx.doi.org/10.1007/11894063_13. [2, 142, 183]

Benjamin Justus (2009). On integers with two prime factors. Albanian Journal
of Mathematics 3(4), 189–197. [159–160]

Benjamin Justus & Daniel Loebenberger (2010). Differential Addition in
Generalized Edwards Coordinates. In Proceedings of the 5th International Workshop
on Security, Kobe, Japan, November 2010, Isao Echizen, Noboru Kunihiro &
Ryoichi Sasaki, editors, volume 6434 of Lecture Notes in Computer Science, 316–
325. Springer-Verlag, Berlin, Heidelberg. ISBN 978-3-642-16824-6. ISSN 0302-9743.
URL http://dx.doi.org/10.1007/978-3-642-16825-3_21. [69, 72, 75–78]

Wolfgang Killmann & Werner Schindler (2008). A Design for a Physical
RNG with Robust Entropy Estimators. In CHES 2008, Elisabeth Oswald &
Pankaj Rohatgi, editors, number 5154 in LNCS, 146–163. ISBN 978-3-540-85052-
6. URL http://dx.doi.org/10.1007/978-3-540-85053-3_10. [183]

Thorsten Kleinjung (2006). On Polynomial Selection for the General Number
Field Sieve. Mathematics of Computation 75(256), 2037–2047. URL http://dx.
doi.org/10.1090/S0025-5718-06-01870-9. [55]

Donald Ervin Knuth (1998). The Art of Computer Programming, vol. 2,
Seminumerical Algorithms. Addison-Wesley, Reading MA, 3rd edition. ISBN 0-
201-89684-2. First edition 1969. [30, 34, 180]

Neal Koblitz (1987). Elliptic Curve Cryptosystems. Mathematics of Computa-
tion 48(177), 203–209. [58]

Niels Fabian Helge von Koch (1901). Sur la distribution des nombres pre-
miers. Acta Mathematica 24(1), 159–182. URL http://dx.doi.org/10.1007/
BF02403071. [11, 88]

Bibliography 205

Konrad Königsberger (2001). Analysis I. Springer, Berlin, Heidelberg, 5th
edition. ISBN 3-540-41282-4. [14]

Alwin Reinhold Korselt (1899). Problème chinois. L’Intermédiaire des Math-
ématiciens 6, 143.

Maurice Kraïtchik (1922). Théorie des Nombres. Gauthier-Villars et Cie., Paris.
[56]

Andrey V. Kulsha (2008). Values of π(x) and Δ(x) for different x’s. Web-
page. URL http://www.primefan.ru/stuff/primes/table.html. Last visited 2
February 2009. [88]

Sandeep Kumar, Christof Paar, Jan Pelzl, Gerd Pfeiffer & Manfred

Schimmler (2006). Breaking Ciphers with COPACOBANA - A Cost-Optimized
Parallel Code Breaker. In Goubin & Matsui (2006), 101–118. URL http://dx.
doi.org/10.1007/11894063_9. [130]

Joseph Louis de Lagrange (1770/71). Réflexions sur la résolution elgébrique
des équations. Œuvres complètes 3, 205–421. Nouveaux mémoires de l’Académie
royale des sciences et belles-lettres de Berlin. [32]

Gabriel Lamé (1844). Note sur la limite du nombre des divisions dans la recherche
du plus grand commun diviseur entre deux nombres entiers. Comptes Rendus de
l’Académie des Sciences Paris 19, 867–870. [29]

Edmund Georg Hermann Landau (1909). Handbuch der Lehre von der
Verteilung der Primzahlen, volume 1. B.G. Teubner, Leipzig, 1st edition. [23]

Adrien Marie Legendre (1798, An VI). Essai sur la théorie des nombres.
Duprat, Paris.

Adrien-Marie Legendre (1830). Théorie des Nombres, volume 2. Firmin Didot
frères, Paris, 4th edition.

Arjen Klaas Lenstra & Hendrik Willem Lenstra, Jr. (editors) (1993). The
development of the number field sieve, number 1554 in Lecture Notes in Mathemat-
ics. Springer-Verlag, Berlin. [55]

Hendrik Willem Lenstra, Jr. (1987). Factoring integers with elliptic curves.
Annals of Mathematics 126, 649–673. [57, 64]

Xian-Jin Li (1997). The positivity of a sequence of numbers and the Riemann
hyposthesis. Journal of Number Theory 65, 325–333. [40]

John Edensor Littlewood (1912). Quelques conséquences de l’hypothèse que
la fonction ζ(s) n’a pas de zéros dans le demi-plan �(s) > 1

2 . Comptes Rendus des
Séances de l’Académie des Sciences 154, 263–266. [19]

John Edensor Littlewood (1914). Sur la distribution des nombres premiers.
Comptes Rendus des Séances de l’Académie des Sciences 158, 1869–1872. [10]

206 Bibliography

Daniel Loebenberger & Michael Nüsken (2010). Coarse-grained integers. e-
print arXiv:1003.2165v1 URL http://arxiv.org/abs/1003.2165. [85, 158, 174]

Daniel Loebenberger & Michael Nüsken (2011a). Analyzing standards
for RSA integers. In Africacrypt 2011, Abderrahmane Nitaj & David

Pointcheval, editors, volume 6737 of Lecture Notes in Computer Science, 260–
277. Springer. ISBN 978-3-642-21968-9. ISSN 0302-9743. URL http://dx.doi.
org/10.1007/978-3-642-21969-6_16. [141, 155–164, 167, 177]

Daniel Loebenberger & Michael Nüsken (2011b). Analyzing standards for
RSA integers — full version. Submitted to Journal of Cryptology URL http://
arxiv.org/abs/1104.4356. [177]

Daniel Loebenberger & Jens Putzka (2009). Optimization strategies for
hardware-based cofactorization. In Selected Areas in Cryptography, Michael J.

Jacobson, Vincent Rijmen & Rei Safavi-Naini, editors, volume 5867 of
Lecture Notes in Computer Science, 170–181. Berlin, Heidelberg. URL http:
//dx.doi.org/10.1007/978-3-642-05445-7_11. [129]

François Édouard Anatole Lucas (1878). Théorie des fonctions numériques
simplement périodiques. American Journal of Mathematics 1, I: 184–240, II: 289–
321.

Ueli M. Maurer (1995). Fast Generation of Prime Numbers and Secure Public-
Key Cryptographic Parameters. Journal of Cryptology 8(3), 123–155. URL http:
//dx.doi.org/10.1007/BF00202269. [145]

Alfred J. Menezes, Paul C. van Oorschot & Scott A. Vanstone (1997).
Handbook of Applied Cryptography. CRC Press, Boca Raton FL. ISBN 0-8493-
8523-7. URL http://www.cacr.math.uwaterloo.ca/hac/. [142]

Franz Mertens (1897). Über eine zahlentheoretische Function. Sitzungsberichte
der Akademie der Wissenschaften, Wien, Mathematisch-Naturwissenschaftliche
Classe 106, 761–830.

Gary Lee Miller (1975). Riemann’s Hypothesis and Tests for Primality. In
Proceedings of the Seventh Annual ACM Symposium on Theory of Computing, Al-
buquerque NM, 234–239. ACM Press. [45–47]

Gary Lee Miller (1976). Riemann’s Hypothesis and Tests for Primality. Journal
of Computer and System Sciences 13, 300–317. [22]

Victor Saul Miller (1986). Use of Elliptic Curves in Cryptography. In Ad-
vances in Cryptology: Proceedings of CRYPTO ’85, Santa Barbara, CA, Hugh C.

Williams, editor, number 218 in Lecture Notes in Computer Science, 417–426.
Springer-Verlag, Berlin. ISSN 0302-9743. [58]

August Ferdinand Möbius (1832). Über eine besondere Art von Umkehrung
der Reihen. Journal für die reine und angewandte Mathematik 9, 105–123.

Louis Monier (1980). Evaluation and comparison of two efficient probabilistic
primality testing algorithms. Theoretical Computer Science 12, 97–108. [47]

Bibliography 207

Peter Lawrence Montgomery (1987). Speeding the Pollard and Elliptic Curve
Methods of Factorization. Mathematics of Computation 48(177), 243–264. [3, 63–
64, 69–71]

Michael A. Morrison & John Brillhart (1975). A Method of Factoring and
the Factorization of F7. Mathematics of Computation 29(129), 183–205. [52]

NESSIE working group (2003). NESSIE D20 - NESSIE security report. Tech-
nical report, NESSIE. [142, 156, 186, 189]

John von Neumann (1951). Various techniques used in connection with random
digits. Monte Carlo methods. National Bureau of Standards, Applied Mathematics
Series 12, 36–38. [178]

Sir Isaac Newton (1671). The Method of Fluxions and Infinite Series with its
Application to the Geometry of Curve-Lines. Henry Woodfall, London.

NIST (2009). FIPS 186-3: Digital Signature Standard (DSS). Technical report, In-
formation Technology Laboratory, National Institute of Standards and Technology.
[142, 156, 186–188]

Michael Nüsken (2006-2011). Private communication. [85, 99–103, 116–119]

Joseph Oesterlé (1979). Versions effectives du théorème de Chebotarev sous
l’hypothèse de Riemann généralisée. Société Mathématique de France, Astérisque
61, 165–167. [20]

Tatsuaki Okamoto & Shigenori Uchiyama (1998). A new public-key cryp-
tosystem as secure as factoring. In Advances in Cryptology: Proceedings of EURO-
CRYPT 1998, Helsinki, Finland, Kaisa Tellervo Nyberg, editor, number 1403
in Lecture Notes in Computer Science, 308–318. Springer-Verlag, Berlin, Heidel-
berg. ISBN 3-540-64518-7. ISSN 0302-9743. URL http://dx.doi.org/10.1007/
BFb0054135. [171]

Katsuyuki Okeya & Kouichi Sakurai (2001). Efficient elliptic curve cryp-
tosystem from a scalar multiplication algorithm with recovery of the y-coordinate
on a Montgomery-form elliptic curve. In Cryptographic Hardware and Embedded
Systems, Workshop, CHES’01, Paris, France, Çemal K. Koç, David Naccache

& Christof Paar, editors, number 2162 in Lecture Notes in Computer Science,
126–141. Springer-Verlag, Berlin, Heidelberg. ISBN 3-540-42521-7. ISSN 0302-9743.
URL http://dx.doi.org/. [76]

János Pintz (1984). On the remainder term of the prime number formula and
the zeros of Riemann’s zeta-function. In Number Theory Noordwijkerhout 1983,
Hendrik Jager, editor, number 1068 in Lecture Notes in Mathematics. Springer-
Verlag, Berlin, Heidelberg. ISBN 978-3-540-13356-8. ISSN 0075-8434 (Print) 1617-
9692 (Online). URL http://dx.doi.org/10.1007/BFb0099452.

Leonardo Pisano (1202). Liber Abaci.
John Michael Pollard (1974). Theorems on factorization and primality testing.
Proceedings of the Cambridge Philosophical Society 76, 521–528. [57, 64, 67]

208 Bibliography

John Michael Pollard (1978). Monte Carlo Methods for Index Computation
(mod p). Mathematics of Computation 32(143), 918–924. [56]

John Michael Pollard (1988). Factoring with cubic integers. In Lenstra &
Lenstra (1993), 4–10. URL http://dx.doi.org/10.1007/BFb0091536. [52–55]

Carl Pomerance (1985). The quadratic sieve factoring algorithm. In Advances in
Cryptology: Proceedings of EUROCRYPT 1984, Paris, France, T. Beth, N. Cot

& I. Ingemarsson, editors, number 209 in Lecture Notes in Computer Science,
169–182. Springer-Verlag, Berlin. ISSN 0302-9743. [51]

Carl Pomerance (1996). A tale of two sieves. Notices of the American Mathe-
matical Society 43(12), 1437–1485. [51]

Carl Pomerance, John Lewis Selfridge & Samuel Standfield Wagstaff,

Jr. (1980). The pseudoprimes to 25 · 109. Mathematics of Computation 35, 1003–
1025. [46]

Theo de Raadt, Niels Provos, Markus Friedl, Bob Beck, Aaron Camp-

bell & Dug Song (2009). OpenSSH 2.1.1. Open source implementation. URL
http://www.openssh.org/. Refer to openssh-2.1.1p4.tar.gz. Last download
21 April 2009. [189]

Michael Oser Rabin (1980). Probabilistic Algorithms for Testing Primality.
Journal of Number Theory 12, 128–138. [45–47]

V. Ramaswami (1949). The number of positive integers ≤ x and free of prime
divisors > xc, and a problem of S. S. Pillai. Duke Mathematical Journal 16, 99–109.
[24]

Michael Richardson, Paul Wouters, Antony Antony, Ken Bantoft,
Bart Trojanowski, Herbert Xu, David McCullough, D. Hugh Re-

delmeier, Andreas Steffen, Dr{Who} on Freenode, Jacco de Leeuw,
Mathieu Lafon, Nate Carlson, Stephen Bevan, Tuomo Soini, Matthew

Galgoci, Miloslav Trmac, Avesh Agarwal, Hiren Joshi Cyberoam,
Shingo Yamawaki & willy at w.ods.org (2009). Openswan 2.6.20. Open
source implementation. URL http://www.openswan.org/. Refer to openswan-2.
6.20.tar.gz. Last download 21 April 2009. [190]

Georg Friedrich Bernhard Riemann (1859). Ueber die Anzahl der Primzahlen
unter einer gegebenen Grösse. Monatsberichte der Berliner Akademie 145–
153. Gesammelte Mathematische Werke, ed. Heinrich Weber, Teubner Verlag,
Leipzig, 1892, 177-185.

Ronald Linn Rivest, Adi Shamir & Leonard Max Adleman (1977). A
Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Technical
Report MIT/LCS/TM-82, Massachusetts Institute of Technology, Laboratory for
Computer Science, Cambridge, Massachusetts. [141]

Bibliography 209

Ronald Linn Rivest, Adi Shamir & Leonard Max Adleman (1978). A
Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Commu-
nications of the ACM 21(2), 120–126. [82, 141]

Herbert Robbins (1955). A Remark on Stirling’s Formula. The American Math-
ematical Monthly 62(1), 26–29. URL http://www.jstor.org/stable/2308012.
[105]

John Barkley Rosser & Lowell Schoenfeld (1962). Approximate formulas
for some functions of prime numbers. Illinois Journal of Mathematics 6, 64–94.
[88–90, 116]

John Barkley Rosser & Lowell Schoenfeld (1975). Sharper Bounds for
the Chebyshev Functions ϑ(x) and ψ(x). Mathematics of Computation 29(129),
243–269. URL http://www.jstor.org/stable/2005479. [88]

RSA Laboratories (2000). RSAES-OAEP Encryption Scheme. Algorithm
specification and supporting documentation, RSA Security Inc., Bedford, MA
01730 USA. URL ftp://ftp.rsasecurity.com/pub/rsalabs/rsa_algorithm/
rsa-oaep_spec.pdf. [142, 156, 186]

RSA Laboratories (2007). The RSA Challenge Numbers. [129]

Yannick Saouter, Xavier Gourdon & Patrick Demichel (2011). An im-
proved lower bound for the de Bruijn-Newman constant. Mathematics of Compu-
tation 80, 2281–2287. [18]

Werner Schindler (2008a). Evaluation Criteria for Physical Random Number
Generators. Technical report, Bundesamt für Sicherheit in der Informationstechnik
(BSI), Bonn. [182]

Werner Schindler (2008b). Random Number Generators for Cryptographic Ap-
plications. Technical report, Bundesamt für Sicherheit in der Informationstechnik
(BSI), Bonn. [182]

Bruce Schneier (1996). Applied cryptography: protocols, algorithms, and source
code in C. John Wiley & Sons, New York, 2nd edition. ISBN 0-471-12845-7,
0-471-11709-9, XXIII, 758. [142]

Lowell Schoenfeld (1976). Sharper bounds for the Chebyshev functions ϑ(x)
and ψ(x). II. Mathematics of Computation 30(134), 337–360. [11, 88]

René Schoof (1995). Counting points on elliptic curves over finite fields. Journal
de Théorie des Nombres de Bordeaux 7, 219–254. [61–62]

Daniel Shanks (1969). Class number, a theory of factorization, and genera. In
Number Theory Institute 1969, number 20 in Proceedings of Symposia in Pure
Mathematics, 415–440. American Mathematical Society. [56]

Victor Shoup (1997). Lower Bounds for Discrete Logarithms and Related
Problems. In Advances in Cryptology: Proceedings of EUROCRYPT 1997, Kon-
stanz, Germany, Springer-Verlag, editor, number 1233 in Lecture Notes in

210 Bibliography

Computer Science, 256–266. Rüschlikon, Switzerland. ISSN 0302-9743. URL
http://www.shoup.net/papers/. [56]

Tomás Oliveira e Silva (2003). Fast implementation of the segmented sieve
of Eratosthenes. WWW. URL http://www.ieeta.pt/~tos/software/prime_
sieve.html. Simple implementation of the segmented sieve of Eratosthenes, re-
leased under the version 2 (or any later version) of the GNU general public license.
Last visited 4 February 2009. [88]

Joseph Hillel Silverman (1986). The Arithmetic of Elliptic Curves, volume 106
of Graduate Texts in Mathematics. Springer-Verlag, New York, 2nd edition. [58]

Matthew Skala, Michael Roth, Niklas Hernaeus, Rémi Guyomarch &
Werner Koch (2009). GnuPG. Open source implementation. URL http://www.
gnupg.org/. Refer to gnupg-2.0.9.tar.bz2. Last download 21 April 2009. [156,
190]

Robert Martin Solovay & Volker Strassen (1977). A fast Monte-Carlo test
for primality. SIAM Journal on Computing 6(1), 84–85. Erratum in 7 (1978),
p. 118. [45]

Jacques Charles François Sturm (1835). Mémoire sur la résolution des équa-
tions numériques. Mémoires présentés par divers savants à l’Acadèmie des Sciences
de l’Institut de France 6, 273–318. [108]

Tsuyoshi Takagi (1998). Fast RSA-type cryptosystem modulo pkq. In Advances
in Cryptology: Proceedings of CRYPTO ’98, Santa Barbara, CA, H. Krawczyk,
editor, number 1462 in Lecture Notes in Computer Science, 318–326. Springer-
Verlag, Berlin, Heidelberg. ISBN 3-540-64892-5. ISSN 0302-9743. URL http:
//dx.doi.org/10.1007/BFb0055715. [171]

Charles-Jean Étienne Gustave Nicolas, Baron de la Vallée Poussin

(1896). Recherches analytiques sur la théorie des nombres premiers. Annales de la
Société Scientifique de Bruxelles 20, 183–256 and 281–397. [9]

Arnold Walfisz (1936). Zur additiven Zahlentheorie. II. Mathematische
Zeitschriften 40(1), 592–608. URL http://dx.doi.org/10.1007/BF01218882.

Arnold Walfisz (1963). Weylsche Exponentialsummen in der neueren Zahlen-
theorie. Number XV in Mathematische Forschungsberichte. VEB Deutscher Verlag
der Wissenschaften, Berlin, 231 pages. [9]

Lawrence Clinton Washington (2003). Elliptic Curves — Number Theory and
Cryptography. Discrete Mathematics and its Applications. CRC Press, Boca Raton,
FL, USA. ISBN 1-58488-365-0. [61, 65–66]

Benne M. M. de Weger (2007–2011). Private communication. [2, 156]

Karl Weistraß (1895a). Mathematische Werke – Erster Band. Mayer & Müller.
[58]

Bibliography 211

Karl Weistraß (1895b). Mathematische Werke – Zweiter Band. Mayer &
Müller. [58]

Andrew Wiles (1995). Modular elliptic curves and Fermat’s Last Theorem. An-
nals of Mathematics 142, 443–551. [58]

Herbert Saul Wilf (1994). generatingfunctionology. Academic Press, 2nd edi-
tion. URL http://www.math.upenn.edu/~wilf/DownldGF.html. First edition
1990. [122]

Petra Wohlmacher (2009). Bekanntmachung zur elektronischen Signatur nach
dem Signaturgesetz und der Signaturverordnung (Übersicht über geeignete Al-
gorithmen). Bundesanzeiger 2009(13), 346–350. ISSN 0344-7634. Preprint at
http://www.bundesnetzagentur.de/media/archive/14953.pdf. [142, 145, 186,
192]

Sun Zi (ca 473 A.D.). Sunzi suanjing (Sun Zi’s Mathematical Manual).

212 Bibliography

Players

The numbers in brackets at the end of a person entry point to the pages on which they are
cited. For all of the images a thorough copyright research was performed. If you feel that
in one of the pictures we missed corresponding author information, please do not hesitate
to contact us.

Claude Gaspar Bachet de Méziriac (1581–1638). *9 October
1581, Bourg-en-Bresse. †26 February 1638. URL http://de.
wikipedia.org/wiki/Claude_Gaspard_Bachet_de_Méziriac.
[30]

Jacob Bernoulli, also James Bernoulli or Jacques

Bernoulli (1654–1705). *27 December 1654, Basel, Switzer-
land. †16 August 1705, Basel, Switzerland. URL http://en.
wikipedia.org/wiki/Jacob_Bernoulli. [15–16]

Bernard Frénicle de Bessy (ca. 1605–1675). *?//?, Paris,
France. †?//?. URL http://en.wikipedia.org/wiki/Bernard_
Frénicle_de_Bessy. [35]

Étienne Bézout (1730–1783). *31 March 1730, Nemours,
Seine-et-Marne. †27 September 1783, Basses-Loges (close to
Fontainebleau). URL http://en.wikipedia.org/wiki/Etienne_
Bezout. [6, 30–31]

213

214 Players

Jacques Philippe Marie Binet (1786–1856). *2 February
16786, Rennes, France. †12 May 1856, Paris, France. URL http://
en.wikipedia.org/wiki/Jacques_Philippe_Marie_Binet. [28–
30]

, also Aleksandr Adolfovich

Buhštab (1905–1990). *4 October 1905, Stavropol, Russia.
†27 February 1990. URL http://genealogy.math.ndsu.nodak.
edu/id.php?id=29696. Image from URL http://mi.mathnet.
ru/umn4571. [25–26]

Robert Daniel Carmichael (1879–1967). *1 March 1879,
Goodwater, Alabama, USA. †2 May 1967. URL http://en.
wikipedia.org/wiki/Robert_Daniel_Carmichael. Image from
URL http://m1.ikiwq.com/img/xl/HpiUAWHZWhRdwPAqgAdmAa.
jpg. [42–46]

, also Pafnuty Lvovich Cheby-

shev (1821–1894). *16 May 1821, Borovsk, Kaluga, Russian Em-
pire. †8 December 1894, Saint Petersburg, Russian Empire. URL
http://en.wikipedia.org/wiki/Pafnuty_Chebyshev. [9]

Karl Dickman (ca. 1862–1940). *?//?. †?//?. URL http://
www.math.kth.se/matstat/fofu/reports/PoiDir.pdf. [24–25]

Διόφαντος ὁ ΄Αλεξανδρεύς, also Diophantus of Alexandria (ca.
200–284). *?//?. †?//?. URL http://en.wikipedia.org/wiki/
Diophantus. [58]

Johann Peter Gustav Lejeune Dirichlet (1805–1859).
*13 February 1805, Düren, French Empire. †5 May 1859, Göttin-
gen, Hanover. URL http://en.wikipedia.org/wiki/Dirichlet.
[11, 20–22]

Players 215

Johann Franz Encke (1791–1865). *23 September 1791, Ham-
burg, Germany. †26 August 1865, Spandau, Germany. URL
http://en.wikipedia.org/wiki/Johann_Franz_Encke. [8]

΄Ερατοσθένης ὁ Κυρηνα̃ιος, also Eratosthenes of Cyrene (276–
194 BC). *?//?, Cyrene, Greece. †?//?, Alexandria, Egypt. URL
http://en.wikipedia.org/wiki/Eratosthenes. [7]

Εὐκλείδης ὁ Ἀλεξάνδρεια, also Euclid of Alexandria (365–300
BC). *?//?, presumably Alexandria or Athens. †?//?. URL
http://en.wikipedia.org/wiki/Euclid. Image: The School of
Athens, Fresco, Stanza della Segnatura, Palazzi Pontifici, Vatican.
[6–7, 27–33, 65–66, 82]

Leonhard Paul Euler (1707–1783). *15 April 1707, Basel,
Switzerland. †18 September 1783, St. Petersburg. URL http:
//en.wikipedia.org/wiki/Leonhard_Paul_Euler. Portrait by
Johann Georg Brucker, 1756. [7–8, 11–13, 17–21, 32, 35–36, 43–46,
82]

Pierre de Fermat (1601/1607/1608–1665). *17 August 1601,
Beaumont-de-Lomagne, France. †12 February 1665, Beaumont-
de-Lomagne, France. URL http://en.wikipedia.org/wiki/
Pierre_de_Fermat. Portrait by an unknown artist. [35, 40–47,
50–51, 58]

Leonardo Fibonacci, also Leonardo of Pisa,
Leonardo Pisano Bigollo, Leonardo Bonacci or Fi-

bonacci (ca. 1170–1250). *?//?, Pisa, Italy. †?//?, Pisa, Italy.
URL http://en.wikipedia.org/wiki/Fibonacci. Portrait by
an unknown artist. [28–30]

216 Players

Ferdinand Georg Frobenius (1849–1917). *26 October
1849, Berlin. †3 August 1917, Charlottenburg, heute ein
Ortsteil von Berlin. URL http://en.wikipedia.org/wiki/
Ferdinand_Georg_Frobenius. Image from URL http://owpdb.
mfo.de/detail?photo_id=10587. Bildarchiv des Mathematischen
Forschungsinstituts Oberwolfach. [62]

Johann Carl Friedrich Gauß, also Carolus Fridericus

Gauss (1777–1855). *30 April 1777, Braunschweig, Electorate of
Brunswick-Lüneburg, Holy Roman Empire. †23 February 1855,
Göttingen, Kingdom of Hanover. URL http://en.wikipedia.
org/wiki/Gauss. Portrait by Gottlieb Biermann, 1887, copied
from a painting of Christian Albrecht Jensen, 1840. [8–10, 18, 36–
37]

Jacques Salomon Hadamard (1865–1963). *8 December 1865,
Versailles, France. †17 October 1963, Paris, France. URL http:
//en.wikipedia.org/wiki/Hadamard. [9]

Helmut Hasse (1898–1979). *25 August 1898, Kassel. †26 De-
cember 1979, Ahrensburg bei Hamburg. URL http://en.
wikipedia.org/wiki/Helmut_Hasse. Bildarchiv des Mathema-
tischen Forschungsinstituts Oberwolfach. [61, 66]

David Hilbert (1862–1943). *23 January 1862, Königsberg
or Wehlau (today Znamensk, Kaliningrad Oblast), Province of
Prussia. †14 February 1943, Göttingen, Germany. URL http:
//en.wikipedia.org/wiki/David_hilbert. [5]

Carl Gustav Jacob Jacobi (1804–1851). *10 December 1804,
Potsdam, Kingdom of Prussia. †18 February 1851, Berlin, King-
dom of Prussia. URL http://en.wikipedia.org/wiki/Carl_
Gustav_Jakob_Jacobi. [35–37, 43–45]

Players 217

Qin Jiushao (1202–1261). *?//?, Puzhou (Anyue), Szech-
wan province, China. †?//?, Meizhou (now Meixian),
Guangtong province, China. URL http://www-history.
mcs.st-andrews.ac.uk/Biographies/Qin_Jiushao.html. Im-
age from URL http://www.confuciusonline.com/wp-content/
uploads/auto_save_image/2010/10/073110E16.jpg. [34]

Niels Fabian Helge von Koch (1870–1924). *15 January 1870,
Stockholm, Sweden. †11 March 1924, Stockholm, Sweden. URL
http://en.wikipedia.org/wiki/Helge_von_Koch. [20]

Alwin Reinhold Korselt (1864–1947). *17 March 1864,
Mittelherwigsdorf, Germany. †4 February 1947, Plauen, Ger-
many. URL http://de.wikipedia.org/wiki/Alwin_Reinhold_
Korselt. [42–44]

Joseph Louis de Lagrange (1736–1813). *25 January 1736,
Turin, Sardinia. †10 April 1813, Paris, France. URL http://en.
wikipedia.org/wiki/Lagrange. [31]

Edmund Georg Hermann Landau (1877–1938). *14 February
1877, Berlin, Germany. †19 February 1938, Berlin, Germany. URL
http://en.wikipedia.org/wiki/Edmund_Landau. [22–23]

Adrien-Marie Legendre (1752–1833). *18 September 1752,
Paris, France. †10 January 1833, Paris, France. URL http://en.
wikipedia.org/wiki/Adrien-Marie_Legendre. Watercolor cari-
cature by Julien-Leopold Boilly, 1820. [9, 34–36, 55, 61]

218 Players

François Édouard Anatole Lucas (1842–1891). *4 April
1842, Amiens, France. †3 October 1891, Paris, France. URL
http://en.wikipedia.org/wiki/Édouard_Lucas. [7]

Robert Hjalmar Mellin (1854–1933). *19 June 1854, Liminka,
Finnland. †5 April 1933, Helsinki, Finnland. URL http://en.
wikipedia.org/wiki/Hjalmar_Mellin. [19]

Marin Mersenne, also Marin Mersennus or
le Père Mersenne (1588–1648). *8 September 1588, Oizé,
Maine (present day Sarthe), France. †1 September 1648, Paris,
France. URL http://en.wikipedia.org/wiki/Marin_Mersenne.
Portrait by Philippe de Champaigne. [51]

Franz Mertens (1840–1927). *20 March 1840, Środa,
Prussia. †5 March 1927, Vienna, Austria. URL
http://en.wikipedia.org/wiki/Franz_Mertens. Image
from URL http://www-history.mcs.st-andrews.ac.uk/
PictDisplay/Mertens.html. [19]

August Ferdinand Möbius (1790–1868). *17 November
1790, Schulpforta, Saxony-Anhalt, Germany. †16 August
1868, Leipzig, Germany. URL http://en.wikipedia.org/wiki/
August_Ferdinand_Möbius. Portrait by Adolf Neumann. [17–19]

Abraham de Moivre (1667–1754). *26 May 1667, Vitry-le-
François, Champagne, France. †27 November 1754, London,
England. URL http://en.wikipedia.org/wiki/Abraham_de_
Moivre. Potrait by an unknown artist. [28]

Players 219

Sir Isaac Newton (1643–1727 (greg.)). *4 January 1643,
Woolsthorpe-by-Colsterworth in Lincolnshire, England. †31 March
1727, Kensington, England. URL http://de.wikipedia.org/
wiki/Isaac_Newton. Portrait by Godfrey Kneller, 1689. [37–38]

Georg Friedrich Bernhard Riemann (1826–1866).
*17 September 1826, Breselenz, Kingdom of Hanover.
†20 July 1866, Selasca, Kingdom of Italy. URL http:
//en.wikipedia.org/wiki/Bernhard_Riemann. [5, 11–22,
25, 47, 70, 87–88, 91, 114, 147, 150, 157–163, 172–175]

Lowell Schoenfeld (1920–2002). *1 April 1920. †6 Febru-
ary 2002. URL http://en.wikipedia.org/wiki/Lowell_
Schoenfeld. Image from URL http://owpdb.mfo.de/detail?
photo_id=5935. Bildarchiv des Mathematischen Forschungsinsti-
tuts Oberwolfach. [20]

John Lewis Selfridge (1927–2010). *17 February 1927,
Ketchikan, Alaska, USA. †31 October 2010, DeKalb, Illinois, USA.
URL http://en.wikipedia.org/wiki/John_Selfridge. [45]

Carl Ludwig Siegel (1896–1981). *31 December 1896, Berlin,
Germany. †4 April 1981, Göttingen, Germany. URL http:
//en.wikipedia.org/wiki/Carl_Ludwig_Siegel. Image from
URL http://owpdb.mfo.de/detail?photo_id=3840. Bildarchiv
des Mathematischen Forschungsinstituts Oberwolfach. [11]

Charles-Jean Étienne Gustave Nicolas, Baron de la

Vallée Poussin (1866–1962). *14 August 1866, Leuven,
Belgium. †2 March 1962, Watermael-Boitsfort, Brussels,
Bergium. URL http://en.wikipedia.org/wiki/Charles_Jean_
de_la_Vallée-Poussin. Portrait by Charles Levieux. [9]

Arnold Walfisz (1892–1962). *2 June 1892, Warsaw, Congress
Poland, Russian Empire. †29 May 1962, Tbilisi, Georgia, Soviet
Union. URL http://en.wikipedia.org/wiki/Arnold_Walfisz.
[11]

220 Players

Karl Theodor Wilhelm Weierstraß (1815–1897). *31 Oc-
tober 1815, Ostenfelde, Westphalia, Germany. †19 February 1897,
Berlin, Germany. URL http://en.wikipedia.org/wiki/Karl_
Weierstrass. Portrait by an unknown artist. [58–61, 70–73]

Sun Zi (ca. 400–460). *?//?, China. †?//?, China.
URL http://www-groups.dcs.st-and.ac.uk/~history/
Biographies/Sun_Zi.html. [34]

Index

A page number is underlined (for example: 123) when it represents the definition or the main
source of information about the index entry. For several key words that appear frequently only
ranges of pages or the most important occurrences are indexed.

Accredited Standards Committee X9 142,
186, 188, 197

addition chain . 65, 67, 79
Adleman, Leonard Max 56, 82, 141, 197,

208, 209
AfricaCrypt . 141, 177
Agarwal, Avesh . 190, 208
Agrawal, Manindra 49, 50, 197
AKS test see primality test, AKS
Alford, William Robert 42, 197
algebraic integer . 53–55
algorithmic number theory 24–67
Alice .81, 82
Ammon, Liselotte . xi
analytic number theory 8, 12–22, 27
ancient world . 5, 57
ANSI

X9.31 . 188
X9.44 142, 186, 188–189, 192, 193

Antony, Antony . 190, 208
asymptote . 26
at w.ods.org, willysee w.ods.org
Avanzi, Roberto M. 71, 197

Baby-step-giant-step .56
Bach, Eric . 49, 197
Bachet de Méziriac, Claude Gaspar . . . 30, 197,

213
balanced

function . 96
notion see notion, balanced

banner . 178, 178, 181, 185
Bantoft, Ken . 190, 208
Beck, Bob . 189, 208
Bellman, Richard . 132, 198
Bennett, M. A. .202
Bergmann, Herta . xi
Berndt, Bruce C. .202
Bernoulli, Jacob (1654–1705). . .15, 16, 198, 213

numbers . 15, 16
Bernstein, Daniel Julius 64, 69, 70, 72, 198
de Bessy, Bernard Frénicle (ca. 1605–1675)

. 35, 213

Beth, T. 208
Bevan, Stephen. .190, 208
Bézout, Étienne (1730–1783) 6, 30, 31, 198,

213
identity . 6, 31

Binet, Jacques Philippe Marie (1786–1856)
. 28–30, 198, 214

formula . 29, 30
Birkner, Peter . 69, 198
Blömer, Johannes . 172, 198
Bob .81, 82
Bochum . 1
Boneh, Dan. .172, 198, 199
Boston, N. 202
Boztas, Serdar . 198
Brandt, Jørgen 2, 142, 181, 183, 199
Brickell, E. F. 199
Brier, Éric . 76, 199
Brillhart, John 45, 52, 199, 207
de Bruijn, Nicolaas Govert 25, 199
BSIsee Bundesamt für Sicherheit in der

Informationstechnik
Buhler, Joseph P. 54, 55, 199, 203

, (1905–1990)
. 25, 26, 86, 199, 214

Bundesamt für Sicherheit in der
Informationstechnik . 1

Bundesnetzagentur 142, 145, 186, 192

Calgary . 129
Campbell, Aaron . 189, 208
Canada . 129
Canfield, Earl Rodney.25, 52, 199
Carlson, Nate . 190, 208
Carmichael, Robert Daniel (1879–1967) 42,

44, 46, 199, 214
number . 42, 42, 44, 46

Cassels, John William Scott 60, 199
Castryck, Wouter 3, 70, 71, 74, 199

, (1821–1894)
. 9, 200, 214

Cheng, Y. 114
China . 34

221

222 Index

chinese remainder theorem 33, 33–34, 62,
155

chip . 130–132, 135–137
Clay Mathematics Institute 5, 82, 200
cluster . 129–134, 136–138
coarse-grained integer 3, 85, 85–127
Cocks, Clifford C. 141, 200
cofactorization . . .ix, 1, 3, 54, 129–131, 134, 196
Cohen, Henri 64, 71, 197, 200
complex

analysis . 13
coloring . 13, 14, 15
number . 14, 21
plot . 13, 14, 15
root . 53–55
value . 13, 38
variable . 13

complexity . 27, 56
compositeness test see primality test
COPACOBANA 1, 130, 136, 137
cosec .xi
Cot, N. 208
Cox, Mark J. 156, 189, 200
Crandall, Richard 5, 23, 39, 41, 42, 45, 50,

55, 57, 62, 67, 141, 200
critical

line . 18, 18, 19
strip . 17, 17, 18

cryptanalysis . ix, 60, 81
crypto system

Okamoto-Uchiyama4, 171
RSA . 82–83, 87, 141, 154

cryptography . . . ix, 24, 37, 60, 81–84, 172, 196
Cyberoam, Hiren Joshi 190, 208

Dakar . 141, 177
Damgård, Ivan 2, 142, 181, 183, 199
de Bessy, Bernard Frénicle (ca. 1605–1675)

. see Bessy
de Bruijn, Nicolaas Govert see Bruijn
de Fermat, Pierre (1601/1607/1608–1665)

. see Fermat
de Lagrange, Joseph Louis (1736–1813)

. see Lagrange
de Leeuw, Jacco . see Leeuw
de Moivre, Abraham (1667–1754)

. see Moivre
de Raadt, Theo . see Raadt
de Weger, Benne M. M..see Weger
Decker, Andreas 2, 87, 142, 146, 156, 157,

160, 165, 200
decryption . 81, 82
Demichel, Patrick. .18, 209
density see distribution, cumulative

derivative see distribution
Detrey, Jérémie . xi
Deuring, Max . 61, 200
Diamond, H. G. 202

Dickman, Karl (ca. 1862–1940) 24, 25, 200,
214

�-function . 24, 24, 25
rho function .24

Diffie-Hellman problem see problem,
Diffie-Hellman

Diffie, Whitfield . 81, 82, 200
Διόφαντος ὁ ΄Αλεξανδρεύς (ca. 200–284) 58,

214
Arithmetica . 58

Dirac delta . 96, 96, 97
Dirichlet, Johann Peter Gustav Lejeune

(1805–1859) 11, 20–22, 155, 200, 214
L-function . 20, 21, 21
character . 20, 21
theorem . 11, 155

discrete logarithm 56, 57, 82
problem . 56, 56, 82

Disquisitiones Arithmeticae 36, 37
distribution 179, 180, 182–186

close to uniform 184, 187
cumulative . 179–182
output . 182, 190
uniform . 183, 184

division with remainder .51
Doche, Christophe . 71, 197
Duisburg . 1
Durfee, Glenn . 172, 199
Dusart, Pierre10, 11, 88, 116, 127, 201
dynamic programming 132, 137

Echizen, Isao . 204
Edwards, Harold Mortimer, Jr. 2, 3, 5,

15–18, 57, 69–73, 76, 77, 79, 201
form see elliptic curve, Edwards form

efficiency . 4, 185–186
elementary function . 24
elliptic curve 2, 3, 32, 51, 56, 57, 57, 58–67

addition formula59, 63, 70, 71, 74, 75
addition law59, 59, 60, 62, 63, 65, 66,

72–77
affine coordinates . 77, 79
affine point . 62, 62
arithmetic 57–60, 62–64, 69–79
doubling formula 59, 63, 70–74
Edwards form . . . 3, 69–72, 72, 73, 76, 77, 79
endomorphism ring .62
methodsee factorization algorithm,

Elliptic Curve Method
order . 60–62
parametrization 69–72, 79
point at infinity 59, 59, 60, 62, 63
point counting . 60–62
projective coordinates 62, 63, 64, 72, 74,

76, 79
projective point . 62
scalar multiplication 63, 71, 79
tripling formula71, 72, 75, 79
Weierstraß form . 60, 73

Index 223

Weierstraß form 59, 59, 70
elliptic pseudocurve . 65, 66
Ellis, James Henry 141, 201
Encke, Johann Franz (1791–1865) 8, 215
encryption . 81, 82
Engelschall, Ralf 156, 189, 200
entropy 4, 142, 143, 146, 181–186

input . 185, 185
output . 4, 182, 184–190

΄Ερατοσθένης ὁ Κυρηνα̃ιος 7, 215
Erdős, Paul 25, 40, 52, 199, 201
Essen .1
Euclid of Alexandria see Εὐκλείδης ὁ

Ἀλεξάνδρεια (365–300 BC)
Εὐκλείδης ὁ Ἀλεξάνδρεια (365–300 BC) 6, 7,

27–31, 33, 65, 66, 82, 215
algorithm . 27, 28–31, 33
Elements . 6, 7, 27
extended algorithm 31, 31, 65, 66, 82

Euler, Leonhard Paul (1707–1783) 7, 8,
11–13, 16, 17, 19–21, 32, 35, 36, 43, 44, 46,

82, 201, 215
ϕ-function 11, 12, 20, 44, 82
criterion . 35, 35, 36, 43
probable prime . . . see probable prime, Euler
product formula 12, 12, 13, 17, 19, 21
pseudoprime see pseudoprime, Euler

expected
runtime see runtime, expected
value . 48

Explicit-Formulas Database 64, 70, 71,
73–75, 79

exponent vector . 52, 52, 53
exponentiation . 31–33

fast algorithm32, 33, 39, 41, 44, 46, 82

factorial function . 13
approximation see Stirling’s formula

factorization algorithm 6, 22, 27, 51–67
Elliptic Curve Method . . .1, 2, 57, 65, 64–67,

83, 85, 129–131, 134, 135, 137, 139, 196
General Number Field Sieve ix, 1, 3,

54–55, 83, 85, 87, 125, 127, 129, 130, 133,
134, 196

Quadratic Sieve 51–52, 55, 56, 83
Special Number Field Sieve 52–54
trial division . 7, 83

factorization problem ix, 6, 6, 7, 27, 51, 56,
82, 84, 167

Farashahi, Reza Rezaeian 3, 70, 71, 74, 199
de Fermat, Pierre (1601/1607/1608–1665)

. 35, 40–45, 47, 50, 51, 58, 201, 215
little theorem . 35, 35, 40
probable prime see probable prime,

Fermat
pseudoprime see pseudoprime, Fermat
test see primality test, Fermat

Fibonacci, Leonardo (ca. 1170–1250) . . . 28–30,
215

number . 28, 28, 29, 30
field extension . 33, 61
finite field 32, 56, 60, 61, 82
FIPS 186-3 142, 156, 186, 188, 193

. 45, 202
Ford, Kevin . 9, 88, 114, 202
FPGA . 130, 134, 135
Franke, Jens . 1, 2, 129, 202
Free Software Foundation 191
Free Software Foundation 156, 191, 202
on Freenode, Dr{Who} 190, 208
Frey, Gerhard 64, 71, 197, 200
Friedl, Markus. .189, 208
Frobenius, Ferdinand Georg (1849–1917) . . .62,

216
endomorphism . 62

fundamental problem of arithmetic
. see factorization problem

fundamental theorem of arithmetic 5, 6, 7,
12

Galbraith, Steven D. 3, 70, 71, 74, 82, 83,
199, 202

Galgoci, Matthew . 190, 208
gamma function . 14, 14
von zur Gathen, Joachim xi, 134, 142, 202
Gaudry, Pierrick 3, 70, 71, 202
Gauß, Johann Carl Friedrich (1777–1855)

. 8–10, 18, 36, 37, 202, 216
General Number Field Sieve

. see factorization algorithm, General
Number Field Sieve

generalized RSA integer 171–175, 195
generator . 181–186
Gerhard, Jürgen . 142, 202
Gnu Classpath . 191
Gnu Crypto 156, 183, 191–193
GnuPG 156, 178, 190–191, 193
golden

ratio .28, 28, 29, 30
spiral . 30

Goldreich, Oded . 167, 203
Goubin, Louis . 203–205
Gourdon, Xavier .18, 209
Goy, Denise . xi
grained

integer 2, 26, 81, 85, 84–127, 139,
141–169, 171–175

grained integer . 195
Granville, Andrew 2, 23, 42, 86, 197, 203
greatest common divisor 27, 27–31, 43
greedy . 133
Güneysu, Tim 1, 130, 134, 202, 203
Guyomarch, Rémi 156, 190, 210

Hadamard, Jacques Salomon (1865–1963) . . . 9,
203, 216

Hashimoto, Yasufumi 156, 203
Hasse, Helmut (1898–1979) 61, 66, 203, 216

224 Index

Hellman, Martin Edward 81, 82, 200
Henry, Charles . 201
Henson, Stephen 156, 189, 200
Hernaeus, Niklas 156, 190, 210
Hielscher, Martin . xi
Hilbert, David (1862–1943).5, 203, 216
Hildebrand, Adolf J.23, 25, 202, 203
homogeneous

form of an elliptic curve 62
polynomial . 54

Howgrave-Graham, Nick 172, 199
Huang, Ming-Deh . 197
hypercube . 97
hyperplane . 97

IEEE 1363-2000 142, 156, 162, 183,
186–187, 192, 193

IEEE working group. . . .142, 156, 186, 187, 204
index calculus . 56–57, 82
Ingemarsson, I. .208
input entropy see entropy, input
integer

coarse-grained see coarse-grained integer
generalized RSA see generalized RSA

integer
grained see grained, integer
rough . see rough, integer
RSA . see RSA, integer
smooth see smooth, integer

International Organization for Standards
. 142, 186, 204

inverse transform sampling180, 181
IPsec . 190
ISO 18033-2 142, 186, 192, 193
IWSEC .69

Jacobi, Carl Gustav Jacob (1804–1851)
. 35–37, 43–45, 204, 216

symbol . 35–37, 43–45
Jacobson, Michael J. 206
Jager, Hendrik . 207
Japan . 69
Jiushao, Qin (1202–1261) 34, 204, 217
Jonsson, Jakob 142, 186, 204
Joye, Marc. . . .2, 69, 76, 142, 183, 198, 199, 204
Justus, Benjamin. . .69, 72, 75, 77, 78, 159, 160,

204

Kaliski, Burt . 142, 186, 204
Kargl, Anton . 134, 202
Kayal, Neeraj . 49, 50, 197
key

private .81–83
public . 81–83
server . 81

key exchange .81, 82
Kiel . 1
Killmann, Wolfgang 183, 204
Kleinjung, Thorsten 1, 2, 55, 129, 202, 204

Knuth, Donald Ervin 30, 34, 180, 204
Kobe . 69
Koblitz, Neal . 58, 204
Koç, Çemal K. 207
von Koch, Niels Fabian Helge 11, 20, 88,

204, 217
Koch, Werner . 156, 190, 210
Königsberger, Konrad 14, 205
Korselt, Alwin Reinhold (1864–1947) . . . 42, 44,

205, 217
criterion . 42, 42, 44

Kraïtchik, Maurice . 56, 205
Krawczyk, H. 210
Kulsha, Andrey V. 88, 205
Kumar, Sandeep. .130, 205
Kunihiro, Noboru . 204
Kurosawa, Kaoru . 198

Lafon, Mathieu . 190, 208
de Lagrange, Joseph Louis (1736–1813) 31,

32, 205, 217
theorem . 31

Lamé, Gabriel . 29, 205
Landau, Edmund Georg Hermann (1877–1938)

. .22, 23, 205, 217
Lange, Tanja.64, 69–72, 197, 198
Laurie, Ben . 156, 189, 200
law of quadratic reciprocity see quadratic,

reciprocity
de Leeuw, Jacco . 190, 208
Legendre, Adrien-Marie (1752–1833) 9,

34–36, 55, 61, 205, 217
symbol . 34, 36, 55, 61

Lehmer, Derrick Henry 45, 199
Lenstra, Arjen Klaas 55, 199, 205, 208
Lenstra, Hendrik Willem, Jr. 54, 55, 57, 64,

199, 205, 208
Elliptic Curve Methodsee factorization

algorithm, Elliptic Curve Method
lexicographically less . 29
Li, Xian-Jin . 40, 205
Liber abbaci .28
linear algebra .56
Littlewood, John Edensor 10, 19, 205
Loebenberger, Daniel 69, 72, 75, 77, 78, 85,

129, 134, 141, 155, 157–160, 162–164, 167,
174, 177, 202, 204, 206

logarithmic integral 8, 8, 9, 10, 94
Lu, Hsiao-Feng . 198
Lubicz, David 3, 70, 71, 202
Lucas, François Édouard Anatole (1842–1891)

. 7, 206, 218

Matsui, Mitsuru . 203–205
Maurer, Ueli M. 145, 206
May, Alexander . 172, 198
McCullough, David 190, 208
Mellin, Robert Hjalmar (1854–1933) . . . 19, 218
Menezes, Alfred J. 142, 206

Index 225

Mersenne, Marin . 51, 218
Mertens, Franz (1840–1927) 19, 206, 218
Meyn, Helmut . xi
millenium problem . . .see problem, millennium
Miller test see primality test, Miller
Miller, Gary Lee. 22, 45, 47, 206
Miller-Rabin

primality test see primality test,
Miller-Rabin

Miller, Victor Saul . 58, 206
Möbius, August Ferdinand (1790–1868) 17,

19, 206, 218
function . 17, 19

de Moivre, Abraham (1667–1754) 28, 218
Monier, Louis . 47, 206
Montgomery, Peter Lawrence 3, 63, 64,

69–71, 207
Moree, Pieter 2, 87, 142, 146, 156, 157, 159,

160, 165, 200
Morrison, Michael A. 52, 207
multiplication 33, 39, 63, 69–71, 73–76, 78,

79

Naccache, David. .199, 207
NESSIE . 142, 156, 189, 193
NESSIE working group 142, 156, 186, 189,

207
von Neumann, John 178, 207
Newton, Sir Isaac (1643–1727 (greg.))37,

38, 207, 219
Nguyen, Kim . 71, 197
NIST.142, 156, 186, 188, 207
Nitaj, Abderrahmane . 206
notion 143, 143, 144–152, 154, 156–169,

178–181, 183, 185, 187–191, 196
algorithmically inspired 160–162
antisymmetric144, 181, 187, 190
balanced . . .144, 145, 146, 150, 151, 157, 159,

161, 163, 164, 167, 173, 178, 180
fixed bound 158–160, 163–165, 189, 190
generalized . 171–175
graph-bounded 148, 148, 149, 150, 178,

185
monotone 148, 148, 149, 150, 152, 154,

157, 159, 161, 163, 164, 167, 180, 183
number theoretically inspired 156–158
pice-wise monotone 164, 167
piece-wise monotone 148
symmetric 144, 181, 187, 190

number theory . ix, 3, 5–26
Nüsken, Michael xi, 85, 99–101, 103,

116–119, 141, 155, 157–160, 162–164, 167,
174, 177, 206, 207

Nyberg, Kaisa Tellervo . 207

Oesterlé, Joseph . 20, 207
Okamoto, Tatsuaki 171, 207
Okeya, Katsuyuki . 76, 207
Oliveira Coelho, Cláudia xi

Oliveira e Silva, Tomás see Silva
on Freenode, Dr{Who} see Freenode
van Oorschot, Paul C. 142, 206
OpenSSH . 189
OpenSSL 156, 189–190, 192, 193
Openswan . 190, 193
optimization 133, 134, 136, 139
oracle . 185
order

element . 32, 50, 57
elliptic curvesee elliptic curve, order
group 32, 56, 60, 62, 66, 67

Oswald, Elisabeth . 204
output distribution . 142
output entropy see entropy, output

Paar, Christof . . . 1, 130, 134, 202, 203, 205, 207
Paillier, Pascal2, 142, 183, 199, 204
partition 131, 131, 132, 133, 136, 138

coarsening .131, 131
refinement .131, 133

Pelzl, Jan . 130, 205
perfect power37–39, 50, 51, 65
perfect power test 39, 39, 50
permutation . 120, 121
Peters, Christiane . 69, 198
Pfab, Fotini . xi
Pfeiffer, Gerd.1, 130, 203, 205
Philipp, W. 202
Pintz, János . 207
Pisano, Leonardo. .207
PKCS#1 142, 186, 192, 193
Pointcheval, David . 206
Pollard, John Michael 52, 53, 55–57, 64, 67,

207, 208
(p − 1)-method 57, 64, 67
�-method . 56
Special Number Field Sieve

. see factorization algorithm, Special
Number Field Sieve

polynomial
homogeneous see homogeneous,

polynomial
Pomerance, Carl . . . 5, 23, 25, 39, 41, 42, 45, 46,

50–52, 54, 55, 57, 62, 67, 141, 197, 199, 200,
208

primality test 7, 7, 21, 27, 37, 39–50
AKS . 50, 49–51, 178
Fermat 40, 40–42, 44, 45, 47
Miller . 47, 47, 178
Miller-Rabin46, 45–49, 178
randomized . 47, 48
Solovay-Strassen 44, 43–45, 177
strong see primality test, Miller-Rabin

prime . 5–26
counting function 8, 10, 17, 18
distribution . 5–12
factorization 5, 6, 36, 37, 42, 55
generator . 48, 49

226 Index

number theorem . . .8, 9, 9, 10, 19, 20, 87, 90,
125, 127, 160

sum approximation 147, 150
test . see primality test

private key see key, private
probable prime .40, 40

Euler . 43, 43, 44
Fermat . 40, 43
strong . 45, 46–49

problem
Diffie-Hellman .82
discrete logarithm . . . see discrete logarithm,

problem
factorization see factorization problem
millennium . 5, 82
RSA . 83

Provos, Niels . 189, 208
pseudoprime .40

Euler . 43, 43, 46
Fermat . 40, 40, 41–43
strong . 46, 46

public key . see key, public
Putzka, Jens 129, 134, 202, 206

quadratic
reciprocity . 36, 36, 37
residue . 34, 34–40
sieve see factorization algorithm,

Quadratic Sieve, 52

de Raadt, Theo. .189, 208
Rabin, Michael Oser 45, 47, 208
Raekow, Yona . xi
Ramaswami, V.. .24, 208
random compositeness test see primality

test, randomized
Redelmeier, D. Hugh 190, 208
Richardson, Michael 190, 208
Riemann, Georg Friedrich Bernhard

(1826–1866) 5, 11, 13–22, 25, 47, 70, 87,
88, 91, 114, 147, 150, 157, 159, 160, 162,

163, 172–175, 208, 219
ϑ-function . 3, 70
extended hypothesis20, 21, 21, 22, 47
hypothesis . . . 5, 11, 13, 18, 18–22, 25, 87, 88,

91, 114, 147, 150, 157, 159, 160, 162, 163,
172–175

prime count approximation 18
Rijmen, Vincent. .206
ring homomorphism . 53
Rivest, Ronald Linn 82, 141, 208, 209
Robbins, Herbert . 105, 209
Rohatgi, Pankaj .204
Rosser, John Barkley 88, 90, 116, 209
Roth, Michael 156, 190, 210
rough

integer 2, 25, 25–26, 83–87
RSA

crypto system see crypto system, RSA

fast variants . 4, 171
foundation 142, 156, 186, 189
integer . . . 2, 87, 141–169, 171, 177–180, 183,

185, 186, 189, 191, 195
notion . see notion
OAEP 186–187, 191, 193
problem see problem, RSA

RSA Laboratories 129, 142, 156, 186, 209
runtime 1, 28, 29, 31, 33, 38, 39, 41, 44, 47,

48, 50, 57, 67, 131–135, 137–139
average . 30
expected . 48
heuristic . 52, 55, 67

SAC . 129
Safavi-Naini, Rei . 206
sage . xi
Sakurai, Kouichi . 76, 207
Saouter, Yannick . 18, 209
Sasaki, Ryoichi . 204
Saxena, Nitin . 49, 50, 197
Schimmler, Manfred 1, 130, 203, 205
Schindler, Werner 182, 183, 204, 209
Schneier, Bruce. .142, 209
Schoenfeld, Lowell (1920–2002) 11, 20, 88,

90, 116, 209, 219
Schoof, René . 61, 62, 209
secret . 81, 82

common . 81, 82
pre-shared . 81

security . ix, 82–84
Selfridge, John Lewis (1927–2010) 45, 46,

199, 208, 219
semi-prime . 22–23
Senegal . 141, 177
Shallit, Jeffrey . 49, 197
Shamir, Adi 82, 141, 208, 209
Shanks, Daniel . 56, 209
Shoup, Victor . 56, 209
Siegel, Carl Ludwig (1896–1981) 11, 219
Siemens AG . 1
sieve

general number field see factorization
algorithm, General Number Field Sieve

quadraticsee factorization algorithm,
Quadratic Sieve

segmented .88
signature . 81
Oliveira e Silva, Tomás 88, 210
Silverman, Joseph Hillel 58, 210
Skala, Matthew 156, 190, 210
slope . 59, 65–67
smooth

curve . 57, 58
element of a number field54
function . 91, 97
group order . 57, 66
integer2, 23, 23–25, 52, 54, 57, 66, 83–87
value of a polynomial .54

Index 227

Soini, Tuomo . 190, 208
Solovay, Robert Martin 45, 210
Solovay-Strassen test see primality test,

Solovay-Strassen
Song, Dug . 189, 208
sorting . 120, 120, 121, 122
Springer-Verlag . 209
squaring 63, 69–71, 73–76, 78, 79
standard . 4, 186–192, 196
statistical analysis . 134
Steffen, Andreas . 190, 208
Stevenhagen, Peter . 203
Stirling’s formula . 105, 106
Strassen, Volker . 45, 210
strong

primality test see primality test,
Miller-Rabin

prime . 57, 169, 195
probable prime see probable prime,

strong
pseudoprime see pseudoprime, strong

Sturm, Jacques Charles François108, 210
subgroup . 32, 44

Takagi, Tsuyoshi . 171, 210
Tannery, Paul . 201
Tenenbaum, Gérald.23, 203
trial division see factorization algorithm,

trial division
Trmac, Miloslav . 190, 208
Trojanowski, Bart . 190, 208
type . 120, 121

Uchiyama, Shigenori171, 207

de la Vallée Poussin, Charles-Jean Étienne
Gustave Nicolas, Baron (1866–1962) 9,

210, 219
van Oorschot, Paul C. see Oorschot
Vanstone, Scott A. 142, 206
Vaudenay, Serge. .198
Vercauteren, Frederik 71, 197
Virtex4 XC4VSX35 130, 134, 135
von Koch, Niels Fabian Helge see Koch
von Neumann, John see Neumann

Wagstaff, Samuel Standfield, Jr. 46, 208
Walfisz, Arnold (1892–1962) 9, 11, 210, 219
Washington, Lawrence Clinton.61, 65, 66,

210
de Weger, Benne M. M. 2, 156, 210
Weierstraß, Karl Theodor Wilhelm

(1815–1897) 58–61, 70, 71, 73, 220
form see elliptic curve, Weierstraß form
parameters . 61

Weistraß, Karl . 58, 210, 211
Wiener, Matthew . 199
Wiles, Andrew. .58, 211
Wilf, Herbert Saul . 122, 211

Williams, Hugh C. 206
witness . 47, 47, 48
at w.ods.org, willy . 190, 208
Wohlmacher, Petra 142, 145, 186, 192, 211
Wouters, Paul . 190, 208

Xu, Herbert . 190, 208

Yamawaki, Shingo . 190, 208

zeta constants . 16, 16, 17
zeta function . 12, 15, 13–21

trivial zeros . 15, 16, 17
Zi, Sun . 34, 211, 220
Ziegler, Konstantin . xi

