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Summary

We de�ne harmonic Siegel modular forms based on a completely new approach
using vector-valued covariant operators. The Fourier expansions of such forms are
investigated for two distinct slash actions. Two very di�erent reasons are given
why these slash actions are natural. We prove that they are related by ξ-operators
that generalize the ξ-operator for elliptic modular forms. We call them dual slash
actions or dual weights, a name which is suggested by the many properties that
parallel the elliptic case.

Based on Kohnen's limit process for real-analytic Siegel Eisenstein series, we
show that, under mild assumptions, Jacobi forms can be obtained from harmonic
Siegel modular forms, generalizing the classical Fourier-Jacobi expansion. The re-
sulting Fourier-Jacobi coe�cients are harmonic Maaÿ-Jacobi forms, which are de-
�ned in full generality in this work. A compatibility between the various ξ-operators
for Siegel modular forms, Jacobi forms, and elliptic modular forms is deduced, re-
lating all three kinds of modular forms.

Zusammenfassung

Fuÿend auf einem vollständig neuen Ansatz, dem vektorwertige kovariante Ope-
ratoren zu Grunde liegen, de�nieren wir den Begri� der harmonischen Siegelschen
Modulform. Dieser De�nition schlieÿt sich eine Untersuchung der für zwei verschie-
dene Strichoperationen auftretenden Fourier-Entwicklungen an. Die besagten Ope-
rationen sind natürlich in zweierlei Hinsicht, auf die wir beide näher eingehen.
Darüber hinaus besteht eine Verbindung zwischen diesen beide Strichoperatoren,
die durch zwei ξ-Operatoren, die wiederum den elliptischen ξ-Operator verallgemei-
nern, vermittelt wird. Die bemerkenswerte Ähnlichkeit zum Verhalten von ellipti-
schen Modulformen dual Gewichts legt die Verwendung dieses Begri�s auch für die
hier untersuchten Gewichte Siegelscher Modulformen nahe.

Eine Verallgemeinerung der klassischen Fourier-Jacobi-Entwicklung kann auf-
bauend auf Kohnens Grenzwertprozess für reell-analytische Siegelsche Eisenstein-
reihen für eine groÿe Klasse von harmonischen Siegelschen Modulformen hergelei-
tet werden. Die herbei auftretenden Fourier-Jacobi-Entwicklungen stellen sich als
Maaÿ-Jacobiformen heraus, die in voller Allgemeinheit in dieser Arbeit de�niert
werden. Wir zeigen schlieÿlich, dass die verschiedenen ξ-Operatoren für Siegelsche
Modulformen, Jacobiformen und elliptische Modulformen miteinander verträglich
sind und stellen so einen Zusammenhang zwischen diesen drei Arten von Modul-
formen her.
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CHAPTER 1

Introduction

This work aims at extending the concept of dual weights that is de�ned for har-
monic elliptic modular forms to Siegel modular forms of degree 2. We will de�ne
harmonic Siegel modular forms and investigate the properties of two ξ-operators
that relate the associated dual weights. Ultimately, we establish a connection be-
tween harmonic Siegel modular forms and harmonic Maaÿ-Jacobi forms, which we
de�ne for general Jacobi indices.

Siegel modular forms are modular forms for the integral symplectic group
Spn(Z) (see [Sie51] for the de�nition of such modular forms in a more general
context). The latter is the group of all integral matrices in the real symplectic
group, which can be obtained as the stabilizer of the standard symplectic form

J (n) :=

(
In

−In

)
;

Spn(R) :=
{
g ∈ M2n(R) : gTJ (n)g = J (n)

}
,

where M2n(R) is the space of 2n × 2n matrices that have entries in R. We write
MT
n (R) for the space of symmetric n × n matrices with entries in R. A matrix

Y ∈ MT
n (R) is positive de�nite, Y > 0, if all eigenvalues of Y are positive. The

Siegel upper half space

Hn :=
{
Z = X + iY ∈ MT

n (C) : Y > 0
}

is a homogeneous space for Spn(R). Denoting a typical element g of Spn(R) by(
a b
c d

)
with a, b, c, d ∈ Mn(R), the action of Spn(R) on Hn is given by

gZ 7→ (aZ + b)(cZ + d)−1.

Classically, one uses the factor of automorphy

α
(n)
k,0(g, Z) := det(cZ + d)−k (0.1)

to de�ne Siegel modular forms: For n > 1, a (holomorphic) Siegel modular form is
a holomorphic function f : Hn → C such that(

f |(n)
k g

)
(Z) := α

(n)
k,0(g, Z) f(gZ) = f(Z)

for all g ∈ Γ(n) := Spn(Z). We write M (n)
k for the space of such functions. This is

the space of so-called classical or, equivalently, scalar-valued Siegel modular forms.
We use this nomenclature to indicate that there are also vector-valued Siegel modu-
lar forms, treated, e.g., in [Fre83, vdG08]. The corresponding factors of automor-
phy originate in higher dimensional representations of K ' Un(C), the stabilizer of
iIn ∈ Hn in Spn(R). Vector-valued modular forms will show only up indirectly in
Chapter 2, and in no other place

The de�nition of Siegel modular forms in the case of n = 1, which in this case
are the same as elliptic modular forms, involves an extra condition at the cusps.
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Writing e(x) := e2πi x, we require that an elliptic modular form f has a Fourier
expansion of the form

f(τ) =
∑
n≥0

af (n) e(nτ)

with af (n) ∈ C and τ = x + iy = Z ∈ H1. This condition can be rephrased using
a bound on the growth towards in�nity:

|f(τ)| < c ya

for some a, c ∈ R as y → ∞. The analogous condition in the case of n > 1 is
satis�ed automatically due to the Köcher principle.

There is a notion of harmonic elliptic modular forms, studied by Bruinier and
Funke in [BF04]. They consider functions that vanish under the weight k hyper-
bolic Laplacian

∆k := 4y2∂τ∂τ − 2iky∂τ .

Since it factors, more precisely, since we have ∆k = (4y2∂τ − 2iky)∂τ , this notion
includes holomorphic elliptic modular forms as a special case. But it does not allow,
however, for many additional examples as long as the above growth condition is
not relaxed. Weak harmonic Maaÿ forms grow, by de�nition, at most as fast as
c eay for some a, c ∈ R. A multitude of nonholomorphic weak harmonic Maaÿ forms
exists.

The concept of weak harmonic Maaÿ forms turned out to be related to the
notion of mock modular forms. More speci�cally, mock modular forms are the
holomorphic parts of harmonic weak Maaÿ forms. A �rst completely understood
example, predating the discovery of the complete theory, was given by Zagier in
[HZ76]. Zwegers [Zwe02] completed the mock theta functions communicated by
Ramanujan in his 1913's letter to Hardy. Although many tried, only Zwegers
succeeded in providing a framework for the study of these mock theta functions.
He added certain simple, but nonholomorphic terms, restoring modularity, that
is, invariance under so-called congruence subgroups of Γ(1). These completions
later turned out to be examples of harmonic weak Maaÿ forms [Zag07, Ono09],
uniting the researchers in both areas. The shadows of mock theta function are, by
de�nition, unary theta series. To de�ne the shadow of a harmonic Maaÿ form, and
thus of mock modular forms, factor the Laplacian as follows:

∆k = 4ξ2−kξk with ξk := yk−2∂τ · .

The shadow of a mock modular form is the image of its completion under ξk. To
ease the discussion, we will also call the image of a harmonic weak Maaÿ form
under ξk its shadow. Clearly, the kernel of ξ2−k consists of elliptic modular forms
holomorphic on H1, and hence the shadows of weak harmonic Maaÿ forms are
contained in M

(1)!
2−k, the space of weakly holomorphic elliptic modular forms of

weight 2− k. This justi�es to say that k and 2− k are dual weights.

We have seen that in the elliptic case one can equivalently require harmonicity
or impose the condition that the image under ξk is holomorphic on H1. The theory
of harmonicity and the theory of ξ-operators di�er, if n ≥ 2. In Chapter 4, we
will de�ne harmonic Siegel modular forms of degree 2. There are two types of slash
actions |(2)

k and |(2),sk
k := |(2)

1
2 ,k−

1
2

, de�ned in Chapter 2, that are natural in a sense to
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be speci�ed in the last section of Chapter 2. They are de�ned based on the factors
of automorphy

α
(n)
α,β(g, Z) := det(cZ + d)−α det(cZ + d)−β

with α = k, β = 0 or α = 1
2 , β = k − 1

2 . We will de�ne harmonicity based on the
matrix-valued Laplacian attached to those slash actions. We set

Ωk := −4Y (Y ∂Z)T∂Z + 2ikY ∂Z and

Ωsk
k := −4Y (Y ∂Z)T∂Z − i(2k − 1)Y ∂Z + iY ∂Z ,

where

∂Z :=
(
∂τ

1
2∂z

1
2∂z ∂τ′

)
, ∂Z :=

(
∂τ

1
2∂z

1
2∂z ∂τ′

)
, and Z = ( τ z

z τ ′ ) .

The two operators di�er after conjugating the second with det(Y )k−
1
2 by a mul-

tiple of the identity. Thus the notion of natural slash actions is equivalent to the
choice of natural eigenvalues of the trace of one of the two considered matrix-valued
Laplacians. For readers with roots in the theory of automorphic representations,
it is important to note that harmonicity of a function on H2 implies that it is an
eigenfunction of all Casimir operators.

Whereas harmonicity is de�ned based on matrix-valued operators, the dual
slash actions |(2)

k and |(2),sk
3−k , or |(2),sk

k and |(2)
3−k are related by ξ-operators that are

necessarily scalar-valued. In contrast to the elliptic case, they are order 2 operators:

ξ
(2)
k := −det(Y )k−

3
2

(
i
(
y∂τ + v∂z + y′∂τ ′

)
− 4 det(Y ) (∂τ∂τ ′ − 1

4∂
2
z )
)

and

ξ
(2),sk
k := −4 det(Y )k−

1
2 (∂τ∂τ ′ − 1

4∂
2
z ).

In fact, it turns out that there is no scalar-valued lowering or raising operator of
order 1.

The matrix-valued Laplacian and the ξ-operators are only loosely related, a fact
that originates in the more complicated representation theory of U2(C) ↪→ Sp2(R).
Nevertheless, in Chapter 2, we will provide a full explanation of their interaction,
culminating in the statement: If Ωk f = 0 for f ∈ C∞(H2), then Ωsk

3−k ξ
(2)
k f = 0; if

Ωsk
k f = 0, then Ω3−k ξ

(2),sk
k f = 0. In other words, the notions of harmonicity and

dual weights presented in this work are compatible.
For many applications, it is crucial to know the Fourier expansion of Siegel mod-

ular forms. In [BRR11a], possible Fourier coe�cients of harmonic Siegel modular
forms were studied. To obtain satisfactory results a quite technical condition was
imposed. In Chapter 4, we remove this condition and extend the considerations to
holomorphic slash actions. We prove that for rank 2 indices T that are not nega-
tive de�nite and for all but two weights the space of possible Fourier coe�cients is
one-dimensional.

Jacobi forms are an intermediate construction between Siegel modular forms
and elliptic modular forms. They are automorphic forms for the nonreductive,
centrally extended real Jacobi group(

Spn(R) n Mn,N (R)
)
×̃MT

n (R), (0.2)

where Mn,N (R) is the space of n×N matrices and, as before, MT
n (R) ⊆ Mn(R) is

the subspace of symmetric matrices. Our investigation in Chapter 3 will focus on
the case n = 1, that we need to study degree 2 Siegel modular forms.

5



We write M̃T
n ( 1

2Z) ⊆ MT
n ( 1

2Z) for the submodule of matrices with integral
diagonal entries. Every holomorphic Siegel modular form f of degree n+N has a
Fourier-Jacobi expansion

f(Z) =
∑

L∈M̃T
n( 1

2Z)

φL(τ, z) e(tr(Lτ ′)),

where the φL are Jacobi forms. To actually relate harmonic Siegel modular forms
and Jacobi forms we need to de�ne harmonicity for the latter. Following the ap-
proach taken in [Pit09, BR10], we only impose a vanishing condition under the
Jacobi Casimir operator. Since the centrally extended Jacobi group is not reduc-
tive and for reasons that are explained in Chapter 3, this condition is too weak.
Semi-holomorphicity, that is, holomorphicity with respect to the elliptic variable z,
is a suitable further restriction, that can be justi�ed representation theoretically.
Semi-holomorphic Jacobi forms are su�cient to extend the theory of Fourier-Jacobi
expansions to harmonic Siegel modular forms. But such important examples like
Zwegers's µ-function cannot be subsumed. For this reason, we suggest the notion
of higher analytic orders in the Heisenberg part. Like sesquiharmonic Maaÿ forms
de�ned in [BDR11], they are forms satisfying a relaxed vanishing condition, formu-
lated in terms of covariant operators. Zwegers's µ-function is a Maaÿ-Jacobi form
(with singularities) of analytic order 1 in the Heisenberg part. The investigation of
these forms of higher analytic order in the Heisenberg part, as it is not needed to
work with harmonic Siegel modular forms, is not pursued in this work. Certainly,
further e�orts should be made to clarify the role that these forms play in a general
theory of harmonic Jacobi forms.

Kohnen's limit process is a generalization of the usual Fourier-Jacobi expansion
of holomorphic Siegel modular forms to real-analytic Eisenstein series, which has
been suggested in [Koh93]. Until very recently, it was not known whether it can
be applied to any larger set of Siegel modular forms. We �rst extend Kohnen's
work to Fourier-Jacobi expansions of Eisenstein series with n = 1 and arbitrary N .
The result will, in particular, justify the de�nitions made in Chapter 3. Second,
we extend the range of functions it can be applied to if n = N = 1. In [BRR11a],
the author and his collaborators proved that, under mild assumptions, Kohnen's
limit process converges for all harmonic Siegel modular forms of degree 2 that are
associated to the skew slash action. We prove a version that also holds for the holo-
morphic slash action in Chapter 5. This enables us to state a compatibility result
for all major types of modular forms de�ned in this work. The quintessence is that
the Fourier-Jacobi expansion based on Kohnen's limit process and the ξ-operator
for Siegel, Jacobi and elliptic modular forms commute.

The most noteworthy fact about harmonic Siegel modular forms is the fol-
lowing: While in the holomorphic case their Fourier expansions are indexed by
positive de�nite quadratic forms, in the case of skew slash actions they seem to be
mainly indexed by inde�nite quadratic forms. We provide methods to study their
Fourier expansion by means of Fourier-Jacobi expansions. This enables us to carry
out detailed studies in the future, at least for positive weights. The situation is
less satisfactory, however, in the case of negative weights. To obtain results this
work restricted to investigations of harmonic Siegel modular forms with moderate
growth. Since Kohnen's limit process leads to harmonic Maaÿ-Jacobi forms of neg-
ative weight that have moderate growth, we do not expect many examples apart
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from the Eisenstein series, de�ned in Chapter 4. Clearly, Kohnen's limit process
cannot be trivially extended to Siegel modular forms with exponential growth, since
it depends on taking a limit towards in�nity. The author's future e�ort will concen-
trate on investigating this more delicate situation, and he will also aim at providing
constructions for Siegel modular forms of skew weight. Only with these example at
hand one can �nally decide how useful this newly emerging theory is.

Work by the author in the joint publications [CR11] and [BRR11a]

This thesis is partially cumulative. In order to meet the university's require-
ments, we will discuss in detail which parts of this work originate in which preprint,
and which parts had not been written up before this thesis was written. In general,
results and even some formulations were adopted without changes from [CR11] and
[BRR11a]. After this thesis was completed, results given in Section 3 of Chapter 4
were partially added to [BRR11a].

Chapter 2 is solely due to the author, although Section 1, which revisits
known theories, adopts great parts of [BCR07, BCR11], varying the formula-
tions only slightly when appropriate. The representation theoretic interpretation
of the matrix-valued Laplace operator, presented in Section 4 was already given in
a preliminary version of [BRR11a], but all results are due to the author.

Chapter 3 is almost completely based on Section 2 to 4 of [CR11]. The later
work, written jointly with Charles Conley, can be easily divided into three parts.
While Section 5 was written completely by Charles Conley, Section 3 and 4 are the
author's work. Section 2 of [CR11] is the result of truly joint work. The Casimir
operator was investigated by Charles Conley. The generators for the algebra of
all covariant di�erential operators were �rst given by the author, and the actual
statements given in [CR11], including their relations as well, were then proved by
Charles Conley. The de�nition of harmonic Jacobi forms was given by the author
and so was the remark relating them to automorphic representations. We only cite
[CR11, Section 5], whereas we reproduce all other parts of [CR11]. Section 6 of
Chapter 3 is completely new. The Jacobi skew slash action has not been dealt with
in [CR11], either, but a special case was introduced in [BRR11a]. The observation
that made necessary the introduction of skew Maaÿ-Jacobi forms in [BRR11a]
can be attributed to a joint e�ort of Olav Richter and the author during a lively
discussion.

Chapter 4 and 5 are based on [BRR11a], but have been largely extended. In
particular, the holomorphic slash action has not been dealt with before. The results
on the Fourier expansions of harmonic Siegel modular forms were much weaker in
the preliminary version of [BRR11a]. The idea to de�ne a space of harmonic Siegel
modular forms based on the matrix-valued Laplace operator emerged immediately
after the author had provided the representation theoretic interpretation of its co-
variance and after Olav Richter pointed out to the author that Maaÿ had already
obtained results on the Fourier expansion of what we call harmonic functions on
H2. One should mention that already at least two years ago Özlem Imamo§lu spec-
ulated that the matrix-valued Laplace operator �should play some role�. The aim
of [BRR11a] was to prove convergence of Kohnen's limit process for a reasonable
space of real-analytic Siegel modular forms. The strategy to analyze the Fourier
expansion of harmonic Siegel modular forms and to prove that only those that al-
ready occur in the Fourier expansion of Poincaré-Eisenstein series contribute is due
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to the author. So are the investigations of harmonic Fourier expansions and the
Fourier expansions of harmonic Siegel modular forms contained in Section 2 and
Section 3 of Chapter 4. The proof of Theorem 2.5 in Chapter 5 depends on a bril-
liant idea by Olav Richter, who suggested to restrict to functions, that �lie above
holomorphic ones�, that is, ξ(2),sk

k f ∈ M (2)
3−k. A reinterpretation of this restriction

in terms of the support of the Fourier expansion of f that reveals how deeply they
are connected to properties of Fourier indices was given by the author. It led to
the de�nition of M (2),sk

k , which is essential to the generalization of Theorem 2.5 to
holomorphic slash actions. The results in Section 1 and 3 of Chapter 5, unless they
are marked as citations, are completely due to the author.
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CHAPTER 2

Invariant and covariant di�erential operators

In this chapter, we discuss invariant and covariant di�erential operators for the
symplectic group. As is well-known, the Siegel upper half space Hn is isomorphic
to the quotient of Spn(R) by K the stabilizer of iIn, which is a compact subgroup
isomorphic to Un(R), as an Spn(R)-homogeneous space. The isomorphism between
K and Un(R) is given by the map

Un(R) 3 a+ ib 7→
(
a b

−b a

)
. (0.3)

This structure can be used to interpret any Siegel modular form or, more gen-
erally, any function on Hn as a section of an Spn(R)-bundle Spn(R)×K V for some
K-module V . We will use the theory of di�erential operators for such bundles to
compute invariant di�erential operators for Siegel modular forms of genus 2. Hel-
gason's survey [Hel77] is a good reference for the concepts used in this chapter.
It contains a discussion of most topics that play a roll in the studies of classical
aspects of automorphic forms.

We �rst revise the theory well-known to representation theorists. Section 2
and 3 contain computations special to Spn(R) and its Lie-algebra, performed in
preparation for the considerations in the subsequent section. Several types of co-
variant operators, which we will need later, are introduced in Section 4. In the
last section, we will discuss natural slash actions. Based on the degeneration of the
so-called matrix-valued Laplace operator, we relate covariant operators for Sp2(R)

and those for the centrally extended Jacobi group, de�ned in Chapter 3.

1. Di�erential operators for Lie groups

The way we present the general theory of di�erential operators in this section is
largely based on Helgason's work [Hel77] and two articles by Bringmann, Conley
and Richter [BCR07, BCR11]. Since an introduction as clear as in the last two
articles is available nowhere else, we have adopted it with minor modi�cations only.

For the time being, �x a real Lie group G, a closed subgroup K and a complex,
�nite dimensional K-module (σV , V ). We will usually omit σV when referring to
the action of K on V . We write [g, v] = [gk−1, kv] for the elements of the complex
G-vector bundle G ×K V . This bundle can be interpreted as a G-bundle over the
homogeneous space G/K with projection G ×K V → G/K, [g, v] 7→ gK. The
structure as a G-bundle is given by (g′, [g, v]) 7→ [g′g, v].

We denote the space of smooth sections of G ×K V by C∞(G/K, G ×K V ).
With another complex, �nite dimensional K-module (σW ,W ) we want to de-
scribe smooth and covariant di�erential operators from C∞(G/K, G ×K V ) to
C∞(G/K, G×K W ).

9



Definition 1.1. A di�erential operator T from C∞(G/K,G ×K V ) to

C∞(G/K,G×K W ) is called covariant if

T (gf) = gT (f)

for all g ∈ G, where (gf)(h) = f(g−1h).

The space of such operators will be denoted by D(G/K, V,W ).

The space of smooth di�erential operators from C∞(G/K, G ×K V ) to
C∞(G/K, G×KW ) form themselves a space of smooth sections of a vector bundle
over G/K. To de�ne this bundle, we denote the (real) Lie algebra of G by g0 and
its complexi�cation by g. The corresponding Lie algebras for K are denoted by
k0 and k. We write U(g) for the universal enveloping algebra of g. This algebra
is �ltered by the degree of its elements, and we write U(g)d for the corresponding
(�nite dimensional) spaces. The following space will serve as di�erential operators
at id ∈ G:

U(g)⊗k V := (U(g)⊗ V )/
〈
ZY ⊗ v − Z ⊗ Y v : Z ∈ U(g), Y ∈ k, v ∈ V

〉
.

Under left multiplication this space is a g-module. The restriction of this mod-
ule structure to k yields a �ltered k-module, that thus arises from a �ltered K-al-
gebra.

Central to our investigation are the following proposition and its corollary. In
order to state it, let V ∗ denote the dual of a G-module V .

Proposition 1.2 ([BCR11, Proposition 4.1]). For any two complex �nite

dimensional representations V and W of K, there is a G-covariant linear isomor-

phism from the space of sections

C∞(G/K, G×K
(
W ⊗ (U(g)⊗k V

∗)
)
)

to the space of smooth W -valued di�erential operators on G ×K V . It carries the

degree �ltration of U(g) to the order �ltration of the di�erential operators, and it

respects composition up to symbol.

Corollary 1.3 ([BCR11, Corollary 4.2]). There is a linear isomorphism from(
W ⊗ (U(g)⊗k V

∗)
)K

to D(G/K, V,W ). It carries the degree �ltration of U(g) to the order �ltration of

D(G/K, V,W ) and respects composition up to symbol.

For a real Lie group G as above with closed subgroup K the homogeneous
space G/K is called hermitian, if it admits a complex structure such that G acts
by holomorphic maps. This is the case for G = Spn(R) and the corresponding
K = Un(R). We write c for the center of k. An argument by Harish-Chandra
shows that G/K is hermitian if and only if the centralizer Zg(c) equals k. In this
case, we have a decomposition g = k ⊕ p+ ⊕ p− of the complexi�ed Lie algebra.
Since p := p+ ⊕ p− is k-invariant, this provides a k-splitting of g. Further, if K is
connected, the splitting is K-invariant. In the light of this fact, the next corollary
is of outstanding importance to our investigation. We write S(p) for the symmetric
algebra of the k-module p to state it.

Corollary 1.4 ([BCR11, Corollary 4.3]). Suppose that g = k ⊕ p is a

K-splitting. Then there is a linear isomorphism form
(
S(p) ⊗ V ∗ ⊗ W

)K
to

10



D(G/K, V,W ) which carries the degree �ltration of D(p) to the order �ltration of

D(G/K, V,W ) and respects composition up to symbol.

Further, if K is connected, then

(
S(p)⊗ V ∗ ⊗W

)K
=
(
S(p)⊗ V ∗ ⊗W

)k
.

2. Invariants in the case g = sp2

To apply Corollary 1.4, we need only calculate invariant vectors in the k-module
S(p) ⊗ V ∗ ⊗W . We will need the corresponding di�erential operators in the case
G = Sp2(R). Thus we assume that g = sp2 throughout the rest of this chapter.
The precise structure and the decomposition of g is given in the next proposition.

Proposition 2.1. We have sp2 = k⊕ p with

k =
{( A B

−B A

)
: A skew symmetric, B symmetric

}
' C⊕ sl2,

p =
{(A B

B −A

)
: A,B symmetric

}
.

The center c of k is spanned by hc :=
( −I2
I2

)
, and the Lie subalgebra of k which is

isomorphic to sl2 is spanned by

ek :=
1

2


i 1

−i 1

−1 i

−1 −i

 , hk :=


−i

i

i

−i

 and

fk :=
1

2


i −1

−i −1

1 i

1 −i

 .

The commutation relations are [ek, fk] = hk, [hk, ek] = 2ek, and [hk, fk] = −2fk.

Proof. The decomposition of the Lie algebra can be easily veri�ed. To see
that exp(k) generates the subgroup U2(R) ' K ⊂ Sp2(R), it is su�cient to note
that exp(t ek), exp(t hk), and exp(t fk) are elements of K for all t ∈ R, which is
immediate. �

We will write Ll(k) for one �xed (l+ 1)-dimensional, irreducible k-module that
hc acts on by multiplication with −2i k.

Proposition 2.2. The complexi�ed Lie algebra sp2 admits a decomposition

g = k⊕ p+ ⊕ p−.

11



The positive part p+ is isomorphic to L2(1) as a k-module, and it is spanned by

e+
p :=

 1 −i

−i −1

 , h+
p :=


−i −1

−i −1

−1 i

−1 i

 ,

f+
p :=


1 −i

−i −1

 .

The action of sl2 ⊂ k is given by

[ek, e
+
p ] = 0, [ek, h

+
p ] = −2e+

p , [ek, f
+
p ] = h+

p ,

[hk, e
+
p ] = 2e+

p , [hk, e
+
p ] = 0, [hk, f

+
p ] = −2f+

p ,

[fk, e
+
p ] = −h+

p , [fk, h
+
p ] = 2f+

p , [fk, f
+
p ] = 0.

The negative part p−, which is isomorphic to L2(−1), is spanned by

e−p :=


1 i

i −1

 , h−p :=


i −1

i −1

−1 −i
−1 −i

 ,

f−p :=

 1 i

i −1

 .

The action of sl2 ⊂ k on p− is given by the same relations as above, with the

superscript + replaced by −.

Proof. A direct veri�cation gives the generators and their relations. Since
Zg(c) = k, there is a decomposition k⊕ p+ ⊕ p− of g. Because p± are irreducible as
k-modules, this decomposition coincides with the decomposition in the statement
after a suitable choice of real, positive roots. �

Based on Proposition 2.1 and 2.2, we can investigate the k-invariants of
S(p)⊗V ∗⊗W . We will not compute the corresponding di�erential operators using
Corollary 1.4. Instead, we will prove several uniqueness results, postponing the con-
struction of the covariant operators to Section 4. Recall that D(G/K, V,W )d is the
space of order d covariant operators from C∞(G/K,G×KV ) to C∞(G/K,G×KW ).

Proposition 2.3. Suppose that k ∈ Z. The spaces

D(G/K,L0(k), L2(k))2,

D(G/K,L0(k), L2(k ± 1))2,

D(G/K,L2(k), L0(k ± 1))2, and

D(G/K,L0(k), L2(k ± 2))4

are one-dimensional.
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Proof. We denote the dth symmetric power of p by Sd(p) ⊂ S(p). By
Corollary 1.4 it su�ces to prove that (Sd(p) ⊗ V ∗ ⊗ W )k is one-dimensional,
where (d, V,W ) is

(
2, L0(k), L2(k)

)
,
(
2, L0(k), L0(k ± 1)

)
,
(
2, L2(k), L0(k ± 1)

)
,

or
(
4, L0(k), L2(k ± 2)

)
. In each case one can prove along the same line that

(S d̃(p)⊗ V ∗ ⊗W )k is trivial if d̃ < d.
We will use the Clebsch-Gordon formulas [GW09]:

Sn(L2) ' L2n ⊕ L2n−4 ⊕ · · · ⊕ L2res2(n) and (2.1)

Ln ⊗ Lm ' Ln+m ⊕ Ln+m−2 ⊕ · · · ⊕ L|n−m|,

where res2(n) is the residue 0 or 1 of n modulo 2. The �rst isomorphism gives

S2(p) ' S2
(
L2(−1)⊕ L2(1)

)
' L4(2)⊕ L0(2)⊕ L4(0)⊕ L2(0)⊕ L0(0)⊕ L4(−2)⊕ L0(−2).

On the other hand, we have

L0(−k)⊗ L2(k) ' L2(0).

Hence L0(0) has multiplicity one in S2(p) ⊗ L0(−k) ⊗ L2(k), that is, the space of
k-invariants has dimension one.

The computations for second and third case are similar. In the fourth case, the
second and third factor of S4(p)⊗ L0(−k)⊗ L2(k ± 2) simplify to

L0(−k)⊗ L2(k ± 2) ' L2(±2).

Thus it is su�cient to compute the multiplicities of modules Ll(∓2), l ∈ Z≥0 in
S4(p). The corresponding submodule is

S4(L2(1)⊕ L2(−1)) ⊃ S3(L2(±1))⊗ L2(∓1)

'
(
L6(±3)⊕ L2(±3)

)
⊗ L2(∓1).

By (2.1), the tensor product with L2(±2) contains as many copies of L0(0) as
there are copies of L2(∓2) in the above module. Since the sl2-module L6⊗L2 does
not contain L2 and since L2 ⊗ L2 contains exactly one copy of L2, the fourth case
is proved. �

3. Cocycles for Spn(R)

Cocycles of Spn(R) are functions α : Spn(R) × Hn → GLl(R) that satisfy
α(gg′, τ) = α(g, g′τ) · α(g′, τ). Any such cocycle de�nes a representation of
K ⊆ Spn(R), and we will say that two cocycles are equivalent if these represen-
tations are isomorphic. A cocycle de�nes an Spn(R)-vector bundle on any quotient
of Hn by a discrete subgroup of Spn(R).

We will give a family of scalar cocycles for Spn(R), and for Sp2(R) we will give
additional noncommutative cocycles. The former correspond to line bundles over
Spn(R)/K, whereas the latter originate in higher dimensional representations of K.

Recall that the structure of Hn as an Spn(R)-homogeneous space is given by
Möbius transformations

gZ = (aZ + b)(cZ + d)−1,

with g =
(
a b
c d

)
∈ Spn(R).

For α, β ∈ C with α− β ∈ Z and l ∈ Z≥0 set

α
(2)
α,β;l(g, τ) := det(cτ + d)−α det(cτ + d)−β · σl((cτ + d)−T), (3.1)

13



where σl is the natural representation on the symmetric power Sl(C2). We will
write α

(2)
α,β for α

(2)
α,β;0. The next proposition shows that this family exhausts the

cocycles of Sp2(R)/K up to equivalence.

Proposition 3.1. The K-representation α
(2)
α,β;l(·, iI2) corresponds to the

k-module Ll(α− β + 1
2 l) de�ned in Section 2.

Proof. The representation α
(2)
α,β;l(·, iI2) : K → GLl+1(C) is irreducible. Thus

the induced k-module is isomorphic to Ll(k̃) for some k̃. To understand the action
of the center c of k it su�ces to consider the derivative of the action of exp(t hc)

with hc de�ned in Proposition 2.1. For v ∈ Cl+1, we �nd

∂tσl

((eit
eit

))
v
∣∣∣
t=0

= −il v and

∂t det

(
eit

eit

)−α
det

(
e−it

e−it

)−β
v
∣∣∣
t=0

= −2i(α− β) v.

This proves the claim. �

Corollary 3.2. Every irreducible cocycle of Sp2(R)/K is equivalent to α
(2)
k,0;l

for exactly one choice of k ∈ Z and l ∈ Z≥0.

Proof. The center of K ' U2(R) is S1, and hence its irreducible cocycles are
indexed by integers, that correspond to indices k ∈ 1

2Z. The representations with
k 6∈ Z do not extend to cocycles for the whole symplectic group. This can be seen
by considering the image of

(
eit

1

)
at iI2. The vector-valued weights l correspond

to the irreducible representations of SU2(C). �

In analogy to the family α(2)
α,β;l of cocycles, we de�ne a family of slash actions

|(2)
α,β;l for Sp2(R) on functions H → Sl(C2). The indices α and β run through C
with α− β ∈ Z, and l runs through Z≥0 as before.(

f |(2)
α,β;lg)(Z) = det(cZ + d)−α det(cZ + d)−βσl((cZ + d)−T)f(gZ). (3.2)

If β = 0 or l = 0, we suppress the second or third index. The slash actions |(2)
α,β;l

and |(2)
α−β;l are equivalent, and this equivalence is realized by multiplication with

det(Y )β . We will call k the scalar weight of |(2)
k;l and l its vector-valued weight. The

slash action |(2)
1
2 ,k−

1
2

, that will play an important role in Chapter 4, will be denoted

by |(2),sk
k . It is the weight k skew slash action. Care must be taken with this notion,

since the representation theoretic weight of the weight k skew slash action is 1− k.

A family of scalar cocycles for Spn(R) is given by

α
(n)
α,β(g, Z) = det(cZ + d)−α det(cZ + d)−β . (3.3)

Proposition 3.3. Every scalar cocycle of Spn(R)/K is equivalent to α
(n)
k,0 for

exactly one k ∈ Z.

Proof. The center of K ' Un(R) is S1, and thus its representations are
indexed by k ∈ 1

nZ. Only representations with k ∈ Z extend to cocycles for the
whole symplectic group, yielding the claim. �
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Remark 3.4. For general n, the representations of GLn(C) give rise to the

cocycles of Spn(R)/K. The reader is referred to [GW09] for the representation

theory of the general linear group.

The slash actions corresponding to α
(n)
α,β will be denoted by |(n)

α,β . The equiva-

lence of |(n)
α,β and |(n)

α−β,0 is induced by multiplication with det(Y )β .

4. Covariant di�erential operators on H2

We will deduce expressions for covariant operators on H2 with respect to the
slash actions de�ned in the preceding section.

Definition 4.1. A di�erential operator T on Hn is covariant from |(n)
α,β to |(n)

α′,β′

if for all g ∈ Spn(R) and f ∈ C∞(Hn), we have

T
(
f |(n)
α,β g

)
= (Tf)

∣∣(n)

α′,β′
g.

Similarly, a di�erential operator T on H2 is covariant from |(2)
α,β;l to |

(2)
α′,β′;l′ if

for all g ∈ Sp2(R) and f ∈ C∞(H2 → Sl(C2)), we have

T
(
f |(2)
α,β;l g

)
= (Tf)

∣∣(2)

α′,β′;l′
g.

We call a covariant operator invariant, if the slash action of its domain and
codomain coincide.

We will only treat di�erential operators with values in C or S2(C2). As a model
for the second space we choose MT

2 (C) and the action of GL2(C) on this space will
be given by

(g, v) 7→ gvgT.

The next theorem is central to the theory of invariant operators on Hn. A
detailed proof by means of analytic methods can be found in [Maa71, Chapter 8].
In Maaÿ's book, the reader can also �nd an explicit set of generators.

Theorem 4.2. The algebra of Spn(R)-invariant di�erential operators on scalar-

valued functions on Hn is generated by n elements of degrees 2i for 1 ≤ i ≤ n.

We will give the generators of the algebra of invariant di�erential operators in
the case n = 2. De�ne

∂Z :=

(
∂τ

1
2∂z

1
2∂z ∂τ ′

)
and ∂Z :=

(
∂τ

1
2∂z

1
2∂z ∂τ ′

)
.

In what follows, we will multiply these matrices. The corresponding product is the
natural product coming from composition of operators. Maaÿ de�nes

Λβ := −βI2 + 2iY ∂Z , Kα := αI2 + 2iY ∂Z , and A
(1)
α,β = Λ

β− 3
2
Kα.

As a special case of the main theorem in [Maa71, Chapter 8], we formulate

Theorem 4.3. The di�erential operators

H
(α,β)
1 := tr

(
A

(1)
α,β

)
and (4.1)

H
(α,β)
2 := tr

(
A

(1)
α,β A

(1)
α,β

)
− tr

(
Λβ A

(1)
α,β

)
+ 1

2 tr
(
Λβ
)
tr
(
A

(1)
α,β

)
, (4.2)

are invariant for the slash action |(2)
α,β. They generate the algebra of

∣∣(2)

α,β
-invariant

di�erential operators on H2.
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There is a further, covariant operator, which Maaÿ introduced in [Maa53]:

Ωα,β := Λβ− 3
2
Kα + α(β − 3

2 )I2 (4.3)

= −4Y (Y ∂Z)T∂Z − 2iβY ∂Z + 2iαY ∂Z .

Maaÿ called this operator the vector-valued Laplace operator. To avoid confusion
with the covariant operators for vector-valued slash actions, we will call it the
matrix-valued Laplace operator. If β = 0 we will suppress the second index. We
will write Ωsk

k for Ω 1
2 ,k−

1
2
. In order to state the covariance of Ωα,β , we need the

following slash action for functions f : H2 → M2(C):(
f |(M)
α,β g

)
(Z) = det(cZ + d)−α det(cZ + d)−β (cZ + d)−Tf(gZ) (cZ + d)T.

In his book, Maaÿ gave a clear proof of the covariance properties of this operators.

Theorem 4.4 ([Maa71, Chapter 8]). The operator Ωα,β is covariant from |α,β
to |(M)

α,β .

To understand the operator Ωα,β in terms of modern, representation theoretic
language, we need the next proposition.

Proposition 4.5. The cocycle associated to |(M)
α,β is equivalent to the direct sum

αα−β;0 ⊕αα−β−1;2.

Proof. We need to analyze the action of hc and hk de�ned in Proposition 2.1.
For v ∈ M2(C) and Z = iI2, we �nd

∂t v|(M)
α,β exp(t hc)

∣∣∣
t=0

= ∂t det

(
e−it

e−it

)−α
det

(
eit

eit

)−β (
e−it

e−it

)
v

(
eit

eit

)∣∣∣
t=0

= −2i(α− β) v

and

i ∂t v|(M)
α,β exp(−it hk)

∣∣∣
t=0

= i ∂t det

(
eit

e−it

)−α
det

(
e−it

eit

)−β (
e−it

eit

)
v

(
eit

e−it

)∣∣∣
t=0

=

(
2v12

−2v21

)
.

From the second equality, we deduce that the representation at Z = iI2 is the direct
sum of a one-dimensional and a 3-dimensional irreducible representation. Using the
�rst equation, we conclude that the scalar weights are the desired ones. �

The next proposition makes a connection between the matrix-valued Laplace
operator and the invariant operators for |α,β .

Proposition 4.6 ([Maa53]). If f : H2 → C satis�es Ωα,β(f) = 0, then f is

an eigenfunction of all scalar-valued invariant di�erential operators. Furthermore,

f vanishes under the Laplace operator H
(1)
α,β − 2α(β − 3

2 ).
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Proof. We outline a proof based on representation theory, which is di�erent
from Maaÿ's argument in [Maa53].

Note that tr(Ωα,β) is an invariant di�erential operator of order 2. Hence it
su�ces to prove that G is an eigenfunction of an invariant di�erential operator
of order 4 that is not of the form c1

(
H

(α,β)
1

)2
+ c2H

(α,β)
1 for some c1, c2 ∈ C.

Helgason's treatment of covariant di�erential operators in [Hel77, Hel92] shows
that the |(α−1,β;2)-component of Ωα,β composed with an appropriate covariant dif-
ferential operator, the existence of which is clear, yields an invariant di�erential
operator of order 4. Any function vanishing under Ωα,β will also vanish under this
operator. Finally, this composed operator annihilates det(Y )s for any s ∈ C and
H

(α,β)
1 (det(Y )s) = (3− 2β − 2s)(α+ s) det(Y )s, which yields the claim. �

The preceding proposition provides evidence for the importance of the matrix-
valued Laplace operator. We will call a function f : H2 → C that vanishes under
Ωα,β harmonic of type (α, β). Usually, the type of harmonicity will be clear from
the context.

Besides the operators that leave the scalar weight invariant, we will need a
raising operator for functions H2 → C. De�ne

Mα = α(α− 1
2 ) + 2i(α− 1

2 )
(
y∂τ + v∂z + y′∂τ ′

)
(4.4)

− 4 det(Y )(∂τ∂τ ′ − 1
4∂

2
z )

and Nβ = iMβ i with (if)(Z) := f(−Z) for any f : H2 → C. In [Maa71,
Chapter 19], Maaÿ studied the action of these operators on Eisenstein series.

Anticipating the outstanding role of |(2)
k and |(2),sk

k , we de�ne two corresponding
ξ-operators, which establish a connection between these two slash actions. Set

ξ
(2)
k := det(Y )k−

3
2 N0 and ξ

(2),sk
k := det(Y )k−

3
2 M 1

2
.

The �rst ξ-operator is covariant from |(2)
k to |(2),sk

3−k , and the latter is covariant from

|(2),sk
k to |(2)

3−k.

Remark 4.7. From a representation theoretic point of view ξ
(2)
k is a lowering

operator and ξ
(2),sk
k is a raising operator.

Using the results obtained in Section 2 it is easy to show that these ξ-operators
are unique.

Proposition 4.8. The raising and lowering operators ξ
(2)
k and ξ

(2),sk
k are

unique up to scalar multiples.

Proof. This follows from Proposition 2.3 and Corollary 1.4, since there are
no scalar-valued raising and lowering operators of degree less than 2. �

The above ξ-operators connect the dual holomorphic and skew slash actions
|(2)
k and |(2),sk

3−k , and |(2),sk
k and |(2)

3−k. The next proposition shows that they preserve
harmonicity.

Proposition 4.9. Suppose that Ωsk
k f = 0; then Ωk ξ

(2),sk
k f = 0. Vice versa,

suppose that Ωkf = 0; then Ωsk
k ξ

(2)
k f = 0.
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Proof. We prove the �rst case. The second follows along the same lines, using
raising operators instead of lowering operators.

It su�ces to prove that Ωsk
3−kξ

(2)
k equals ξ̌(2)

k Ωk for a suitable order 2 operator

ξ̌
(2)
k that is covariant from |(M)

1
2 ,k−

1
2

to |(M)
3−k,0. Because the trace of Ωk is the usual

Laplace operator, it is clear which operator that the scalar valued ξ-operator must
be chosen for the scalar component. In order to �nd the right operator for the
3-dimensional part, we will apply Proposition 2.3 and Corollary 1.4 several times.
Since there are no lowering operators of degree less than 2, there is, up to mul-
tiplicative scalars, exactly one operator ξ̌(2)

k with the desired covariance. There

is no operator of order less than 4 that is covariant from |(2)
k to the slash action

associated to α
(2)
1
2−1,3−k− 1

2 ;2
, and there is, up to multiplicative scalars, exactly one

such operator of order 4. Consequently, after suitable normalization, Ωsk
3−kξ

(2)
k and

ξ̌
(2)
k Ωk coincide. �

For the initial discussion in Section 2 of Chapter 4, we will need the follow-
ing considerations. Since SO2(R) ⊆ GL2(R) ↪→ Sp2(R) via the block diagonal
embedding, it is natural to consider the following coordinates

Y =

(
t

t′

)[(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)]
, (4.5)

where 0 < t, t′ ∈ R and θ ∈ R. We will express the di�erentials with respect to y,
y′ and v by those with respect to t, t′ and θ.

Lemma 4.10. If t 6= t′, we have∂y∂y′
∂v

 =

 cos2(θ) sin2(θ) sin(2θ)

sin2(θ) cos2(θ) − sin(2θ)

− sin(θ) cos(θ) sin(θ) cos(θ) cos(2θ)

 ∂t
∂t′

(t− t′)−1 ∂θ

 (4.6)

Proof. It is su�cient to express the entries of Y in terms of t, t′ and θ.

Y =

(
t cos2(θ) + t′ sin2(θ) (t− t′) cos(θ) sin(θ)

(t− t′) cos(θ) sin(θ) t sin2(θ) + t′ cos2(θ)

)
.

Computing the Jacobian and taking its inverse yields the result. �

Crucial to this system of coordinates is the following property:

Proposition 4.11. Let a : {Y ∈ MT
2 (R) : Y > 0} → C be a real-analytic

function. For i = 1, 2, write(
H

(i)
α,βa(Y )e(x+ x′)

)
=
∑
m∈Z

b(i)m

(
t, t′,

(
∂rt ∂

r′

t′ ∂
s
θa(t, t′, θ)

))
eimθ,

where the last argument of b
(i)
m means that b

(i)
m depends on arbitrary but �nitely

many derivatives of a. Then b
(i)
m = 0, whenever m 6= 0.

Proof. Set f(Z) = a(Y )e(x+ x′). We abbreviate

rot(θ) :=

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
and lrot(θ) :=

(
rot(θ)

rot(θ)

)
.

Then

f |(2)
α,βlrot(θ̂) = a

(
Y [rot(−θ̂)]

)
.
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Since H(i)
α,β is covariant, we �nd∑

m∈Z
b(i)m

(
t, t′,

(
∂rt ∂

r′

t′ ∂
s
θa(t, t′, θ)

))
eimθ

= H
(i)
α,βf =

(
H

(i)
α,β

(
f |(2)
α,β lrot(θ̂)

))∣∣∣(2)

α,β
lrot(−θ̂)

=
∑
m∈Z

b(i)m

(
t, t′,

(
∂rt ∂

r′

t′ ∂
s
θa(t, t′, θ)

))
eim(θ+θ̂)

for all θ̂ ∈ R. This proves the statement. �

5. Natural weights

In this section, we will argue that the slash actions |(2)
k and |(2),sk

k , up to complex
conjugation, are the only natural slash actions for degree 2 Siegel modular forms.
Note that, representation theoretically, these families of slash actions are equivalent
when k runs through Z. Because we will later restrict to harmonic functions, and
the the matrix-valued Laplace operators for these slash actions di�er by a multiple
of I2, it makes sense to distinguish them. The discussion of natural weights could
be phrased equivalently in terms of eigenvalues of H(1)

k,0.
In [Maa71, Chapter 19], Maaÿ remarked that for given n, there are exactly n

distinct values of α such that the Siegel Eisenstein series

E
(n)
α,β =

∑
g : Γ

(2)
∞ \Γ(2)

1|α,βg.

vanishes under the raising operator Mα de�ned in (4.4) for n = 2 and in [Maa71,
Chapter 19] for general n. These α are 0, 1

2 , . . . ,
n−1

2 . Based on this observation
Imamo§lu and Richter reasoned in [IR10] that there are n distinct natural slash
actions

|(n)
0,k , . . . , |

(n)
n−1
2 ,k−n−1

2

or |(n)
k,0 , . . . , |

(n)

k−n−1
2 ,n−1

2

.

for degree n Siegel modular forms. Complex conjugation relates |(n)
α,β to |(n)

β,α for any
α and β, so that these 2n slash actions should be thought of as n truly distinct
ones.

In the elliptic case, that is, if n = 1, the holomorphic slash action |(1)
k,0 is the

only natural one. In the case of n = 2, which we are mainly concerned with, the
holomorphic slash action and the skew slash action |(2),sk

k = |(2)
1
2 ,k−

1
2

are natural.

The skew slash action has no analog in the elliptic case, and thus promises to lead
to new phenomenons.

When de�ning a space of harmonic modular forms it should be characterized
by covariant operators to guarantee compatibility with the invariance properties
that modular forms satisfy. Further, to promise to be useful for applications, it is
indispensable to include Eisenstein series. That is, the covariant operators should
have vanishing constant coe�cient. We combine this fact with the above observa-
tion to a fundamental conclusion, that cannot possibly be made more precise, but
should be guiding, whenever one considers real-analytic Siegel modular forms.

Conclusion 5.1. A natural de�nition of harmonic Siegel modular forms is

based on covariant di�erential operators that, under the natural slash actions

|(n)
0,k , . . . , |

(n)
n−1
2 ,k−n−1

2

, have vanishing constant coe�cient.
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There is much more to say about how a good de�nition should be motivated,
but we will not go into details. We understand, however, why Ωk and Ωsk

k are
the right operators to use when de�ning a well-behaved space of harmonic Siegel
modular forms of degree 2.

Vice versa, starting with Ωα,β , based on the theory of Jacobi forms, we can

argue why |(2)
k and |(2),sk

k are, indeed, natural slash actions.
We say that a function f ∈ C∞(H2) converges smoothly and C∞ as y′ → ∞,

if all derivatives of f with respect to τ , τ , z and z converge to the derivatives of
the limit and any derivative involving y′ converges to 0.

Theorem 5.2. Fix m ∈ Z and let f(Z) = a(τ, z, y′) e(mx′). Suppose that

f(Z) e2πmy′ converges smoothly and C∞ as y′ →∞. If f(Z) vanishes under Ωα,β
for some α, β ∈ R, then the limit

lim
y′→∞

f(Z)e2πmy′

vanishes under ∂z∂z.

Proof. We will compute the limit (5.1) in two ways. Note that, since
f(Z) e2πmy′ converges C∞, all derivatives are bounded as y′ → ∞. In particu-
lar, after division by y′Y , only the highest order term of Ωα,β f(Z) e2πmy′ does not
tend to zero as y′ →∞. Further, we have

lim
y′→∞

∂τ ′f(Z) e2πmy′ = lim
y′→∞

∂τ ′f(Z) e2πmy′ = πmf(Z) e2πmy′ .

Consequently,

lim
y′→∞

y′
−1
Y −1Ωα,β f(Z) e2πmy′ (5.1)

= −4
((0 0

0 1

)(
∂τ

1
2∂z

1
2∂z πm

))T
(
∂τ

1
2∂z

1
2∂z πm

)
lim
y′→∞

f(Z) e2πmy′ .

The top left entry of this equals −∂z∂z limy′→∞ f(Z) e2πmy′ .
Next, we use the vanishing of Ωα,βf(Z):

lim
y′→∞

y′
−1
Y −1Ωα,β f(Z) e2πmy′

= −4

(((0 0

0 1

)(
0 0

0 πim

))T(
∂zf(Z)

)
e2πmy′

+
((0 0

0 1

)(
∂zf(Z)

))T
(

0 0

0 −πim

)
e2πmy′

+
((0 0

0 1

)(
0 0

0 πim

))T
(

0 0

0 −πim

)
f(Z) e2πmy′

)
.

The top left entry of this matrix is zero, yielding the claim. �

The next corollary can only be proved at the end of Section 3 in Chapter 3.
We also anticipate the notation introduced there.

Corollary 5.3. Fix m ∈ Z and let f(Z) = a(τ, z, y′) e(mx′) be invariant

under either of the slash actions |(2)
k or |(2),sk

k of the full Jacobi group embedded into

20



Sp2(Z). Suppose that f(Z) e2πmy′ converges smoothly and C∞ for y′ → ∞. Then

the limit is holomorphic in z.

Anticipating the results of Chapter 5, one can hope to construct Fourier-Jacobi
coe�cients of a real-analytic Siegel modular form of degree 2 that are independent
of y′, employing the limit in Theorem 5.2. If the convergence is su�ciently good, in
the light of the results of Chapter 3, the resulting Jacobi form has a θ-decomposition,
since it is semi-holomorphic. There are two natural slash actions for Jacobi forms
on H1 × C. The �rst, |Jk,m, corresponds to multiplying θ-series with Maaÿ forms

for |(1)

k− 1
2 ,0

, and the second, |J,skk , corresponds to multiplying θ-series with complex

conjugates of Maaÿ form. Hence for Siegel modular forms of degree 2 the slash
actions |(2)

k and |(2),sk
k are natural.

Remark 5.4. These considerations can be generalized to arbitrary degrees n.

The slash actions |(n)
k,0 and |(n)

n−1
2 ,k−n−1

2

can be obtained by means of Jacobi forms

studied in Chapter 3. To obtain the remaining natural slash actions one needs to

consider Jacobi forms on Hn−1 × Cn−1. The remaining issue, from the point of

view of natural weights, is to �nd the di�erential operators that generalize Ωα,β in

the spirit of Theorem 5.2.
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CHAPTER 3

Harmonic Jacobi forms

In this chapter, we will discuss harmonic Jacobi forms. This discussion is mostly
based on [CR11] and [BRR11a, Section 3]. We summarize the results that we
will obtain. As in the case of degree 2 Siegel modular forms, we will �nd two
natural slash actions |Jk,L and |J,skk,L , which are justi�ed based on the holomorphic
and skew-holomorphic theta decomposition (see [EZ85, Sko90] and Theorem 5.5).

The Casimir operator, of degree 3 or 4, for the centrally extended real Jacobi
group that we will deduce does not su�ce to force the Fourier addends of harmonic
forms into a �nite dimensional space. Instead, we will use an additional, invariant
operator that originates in the Heisenberg part of the real Jacobi group. This is
possible, because neither the Jacobi group nor its central extension are reductive.
In accordance to the result that we will obtain in Chapter 5, we will focus on
semi-holomorphic forms. For �xed Fourier index, the space of possible Fourier
coe�cients of such a form has dimension 2. This su�ces to relate them to harmonic
weak Maaÿ forms, which are known by the work of Bruinier and Funke [BF04].
This face gives rise to a rich but manageable arithmetic structure of harmonic
semi-holomorphic Maaÿ-Jacobi forms. Despite the outstanding importance of semi-
holomorphic Maaÿ-Jacobi forms, we will also discuss an alternative approach, that
subsumes the multivariable Appell sums presented in [Zwe10]. This discussion is
contained in Section 6. A modi�cation of the de�nitions given in Section 4, that
allows for the de�nition of mixed mock Jacobi forms, was presented in [CR11,
Section 3]. Although we will later mostly make use of Jacobi forms with scalar
Jacobi indices, we will present the theory for matrix-valued indices in full generality.
A strong reason for this is the fact that some interesting phenomenons only occur
in this more general setting. It enables us to formulate a striking generalization of
the work contained in [Koh94]. This generalization will be deduced in Section 1
of Chapter 5.

In this chapter we need further notation, which is adopted from [CR11]. Re-
garding elements of Rm as column vectors, we will freely identify Rm ⊗ Rn with
Mm,n(R) via v ⊗ w 7→ vwT. Write εi for the ith standard basis vector of Rm and
εij for the elementary matrix with (i, j)th entry 1 and other entries 0, the sizes of
εi and εij being determined by the context. For any N × N matrix A and any
N -vector w, set

A[w] := wTAw.

Since we will not be concerned with any Siegel modular forms, we drop the notation
Z = X + iY ∈ Hn throughout the whole chapter.
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1. The centrally extended Jacobi group

The real Jacobi group GJN for rank N indices and its subgroup ΓJN , the full
Jacobi group, are

GJN := SL2(R) n (RN ⊗ R2) and ΓJN := SL2(Z) n (ZN ⊗ Z2). (1.1)

The product in GJN arises from the natural right action of SL2(R) on R2. It can be
written most simply using the above identi�cation of RN ⊗ R2 with MN,2(R): for
g, ǧ ∈ SL2(R) and X, X̌ ∈ MN,2(R),

(g,X)(ǧ, X̌) = (gǧ,Xǧ + X̌).

Maintaining the MN,2(R) identi�cation, the centrally extended real Jacobi
group G̃JN for rank N indices and its product are

G̃JN :=
{

(g,X, κ) : (g,X) ∈ GJN , κ ∈ MN (R), κ+ 1
2XJ2X

T ∈ MT
N (R)

}
, (1.2)

(g,X, κ)(ǧ, X̌, κ̌) := (gǧ,Xǧ + X̌, κ+ κ̌−XǧJ2X̌
T). (1.3)

Note that GJN is centerless, and the center of G̃JN is MT
N (R). In [CR11, Section 5],

the fact was used that G̃JN is a subgroup of SpN+1(R). To give a concrete embed-
ding, �x an element g :=

(
a b
c d

)
of SL2(R). The usual embedding is

G̃JN → SpN+1(R),

(
g, (µ, λ), κ

)
7→


IN λ κ µ

a ∗ b

IN
c ∗ d

 .

Henceforth write µ and λ for the columns of any element X of MN,2(R). The
extended Jacobi group acts on the Jacobi upper half plane

H1,N := H1 × CN

by an extension of the usual elliptic slash action: For τ ∈ H1, as a special case of
(3.3), we have

gτ := (aτ + b)(cτ + d)−1, α
(1)
α,β(g, τ) = (cτ + d)−α(cτ + d)−β .

Recall that the associated slash action of SL2(R) on C∞(H1) is written:

f
∣∣
α,β

g(τ) = α
(1)
α,β(g, τ) f(gτ).

For future reference and as a special case of [Maa71, Chapter 6] and Theorem
4.2 of Chapter 2, let us mention that the algebra of di�erential operators on C∞(H1)

invariant with respect to the |α,β-action is the polynomial algebra on one variable
generated by the |α,β-Casimir operator of SL2(R), which, in the case of α = k, β = 0,
di�ers by an additive constant from the weight k hyperbolic Laplacian

∆k := 4y2∂τ∂τ − 2iky∂τ . (1.4)

By Section 3 of Chapter 2, we know that {α(1)
k,0 : k ∈ Z} exhausts the cocycles

of the action under consideration up to equivalence. The action of SL2(R) on H1

generalizes to the following well-known left action of GJN on H1,N :

(g,X)(τ, z) :=
(
gτ,α

(1)
1,0(g, τ)(z + λτ + µ)

)
. (1.5)
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Regard this as an action of G̃JN . As such, the stabilizer of the element (i, 0) of H1,N

is K̃J
N := SO2 × {0} ×MT

N (R), and the equivalence classes of the scalar cocycles of
the action are in bijection with the representations of K̃J

N on C.
In order to describe a complete family of cocycles, de�ne a matrix-valued func-

tion a : G̃JN ×H1,N → MT
N (C) by

a
(
(g,X, κ), (τ, z)

)
:= κ+ µλT +X1z

T + zλT + λλTτ

− cα(1)
1,0(M, τ)(z + λτ + µ)(z + λτ + µ)T.

For L ∈ MT
N (C), de�ne αJ

L : G̃JN ×H1,N → C by

αJ
L

(
(g, (X,κ), (τ, z)

)
:= exp

(
2πi tr

(
La
(
(g,X, κ), (τ, z)

) ))
.

Lemma 1.1 ([CR11, Lemma 2.2]). For all k ∈ Z and L ∈ MT
N (C), α

(1)
k,0 α

J
L is

a scalar cocycle with respect to the action (1.5) on H1,N of the centrally extended

Jacobi group G̃JN . Moreover, any scalar cocycle of this action is equivalent to exactly

one of these cocycles.

Proof. The proof that α
(1)
k,0 is a cocycle of the action of G̃JN on H1,N is the

same as the proof that it is a cocycle of the action of SL2(R) on H. The proof
that αJ

L is a cocycle is standard in the case N = 1 and proceeds along the same
lines in general. One must prove that a(gǧ, x) = a(g, ǧx) +a(ǧ, x). First check that
it su�ces to prove this for both g and ǧ in either the semisimple or the nilpotent
part of G̃JN , and then check each of the resulting four cases directly. The second
sentence follows immediately from the classi�cation of representations of K̃J

N . �

As a consequence of this lemma, we have the following family of slash actions
of G̃JN on C∞(H1,N ): for α, β ∈ Z and L ∈ MT

N (C),

φ
∣∣J
α,β,L

(g,X, κ)(τ, z) := α
(1)
α,β(M, τ)αJ

L

(
(g,X, κ), (τ, z)

)
· φ
(
(g,X, κ)(τ, z)

)
.

Observe that since α
(1)
β,β is positive, |Jα,β,L makes sense for all α, β ∈ C with

α− β ∈ Z. We write |Jk,L for |Jk,0,L and |J,skk,L for |J1
2 ,k−

1
2 ,L

. By Lemma 1.1, any slash

action is equivalent to exactly one of the actions |Jk,L; As we have mentioned, |Jα,β,L
is equivalent to |Jα−β,L. Similarly, any slash action is equivalent to exactly one of

the actions |J,skk,L . The di�erence between both slash actions, as argued in Section 5
of Chapter 2, originates in the fact that we normalize all Casimir operators such
that their constant term vanishes.

In analogy to the Sp2(R)-case, we will say that |Jk,L is the weight k holomorphic

slash action and |J,skk,L is the weight k skew slash action. As in the symplectic case,
the representation theoretic weight of the latter is 1− k.

2. Classical de�nitions of Jacobi forms

The next de�nitions are almost classical. The �rst can be found in [EZ85],
and the second can be found in [Sko90], both with stronger growth conditions.
Weakly skew-holomorphic forms were, in particular, de�ned in [BR10]. Elements
of C∞(H1,N ) holomorphic in CN will be called semi-holomorphic.
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Definition 2.1 (Weakly holomorphic Jacobi forms). A weakly holomorphic

Jacobi form of weight k and index L is a holomorphic function φ : H1,N → C
satisfying the equation φ|Jk,L g = φ for all g ∈ ΓJN and the growth condition

|φ(τ, z)| < eaye2πL[v]/y for some a > 0 as y → ∞. We write Jk,L for the space

of all such forms.

For brevity, write � := 2πiL. For L invertible, de�ne the heat operator

LL := 2∂τ + (2�)−1[∂z]. (2.1)

It plays an important role in the theory of Jacobi forms, since it annihilates theta
series.

Definition 2.2 (Weakly skew-holomorphic Jacobi forms). A skew-holomorphic

Jacobi form of weight k and index L is a semi-holomorphic function φ ∈ C∞(H1,N )

satisfying the following conditions. First, for all g ∈ ΓJN we have φ|J,skk,L g = φ.

Second, φ is in the kernel of the heat operator LL. Third, |φ(τ, z)| < eaye2πL[v]/y

for some a > 0 as y →∞. We write J sk
k,L for the space of all such forms.

Remark 2.3. Skew-holomorphic Jacobi forms were �rst introduced by Skoruppa
in [Sko90]. There are several articles treating a slightly more general notion than

the one we have given. See, in particular, [Hay06].

The Fourier expansion of skew-holomorphic Jacobi forms is also classical. In
order to state it, write

D := DL(n, r) := |L|(4n− L−1[r])

for the negative discriminant of a Fourier index (n, r).

Proposition 2.4. The Fourier expansion of φ ∈ J sk
k,L has the form

φ(τ, z) =
∑

n∈Z,r∈ZN
s.t. D�−∞

c(n, r) exp
(
πD
|L| y

)
qnζr.

Proof. By the semi-holomorphicity of φ a addend in the Fourier expansion
has the form a(y;n, r)e(nx)ζr. Imposing the di�erential equation LLφ = 0 shows
that there is at most one nonzero a(y;n, r) that can occur. Finally, it is easy to
check that, indeed, the above Fourier expansion vanishes under LL. The claim
follows. �

3. Covariant operators

At this point, we state the main results of [CR11, Section 5]. They were given
for the holomorphic slash action, and we generalize them to the skew slash action.
All statements for the skew slash action follow from the ones for the holomorphic
slash action after conjugation by yk−

1
2 .

Definition 3.1. A di�erential operator T on H1,N is covariant from |Jk,L to

|Jk′,L′ if for all g ∈ G̃JN and f ∈ C∞(H1,N ), we have

T
(
f
∣∣J
k,L
g
)

= (Tf)
∣∣J
k′,L′

g.

Let DJ(k, L; k′, L′) be the space of covariant operators from |Jk,L to |Jk′,L′ , and let

DJ,r(k, L; k′, L′) be the space of those of order ≤ r. When k′ = k and L′ = L, we

refer to such operators as |Jk,L-invariant and write simply DJ
k,L and DJ,r

k,L.
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A di�erential operator T on H1,N is covariant from |J,skk,L to |J,skk′,L′ if for all

g ∈ G̃JN and f ∈ C∞(H1,N ), we have

T
(
f
∣∣J,sk
k,L

g
)

= (Tf)
∣∣J,sk
k′,L′

g.

The spaces of di�erential operators DJ,sk(k, L; k′, L′), DJ,sk,r(k, L; k′, L′), DJ,sk
k,L and

DJ,sk,r
k,L are de�ned analogously.

For µ ∈ ZN and L ∈ M̃T
N ( 1

2Z) de�ne

θL,µ(τ, z) :=
∑

r∈ZN , r≡µ(LZN )

q
L−1[r]

4 ζr. (3.1)

Proposition 3.2. For µ ∈ ZN and L ∈ M̃T
N ( 1

2Z) we have

LLθL,µ = 0.

Proof. The proof is standard. The claim follows immediately when applying
LL to the individual terms of the right hand side of (3.1). �

Recall the Laplacian (1.4) and our notation τ := x + iy ∈ C, and set
z := u+ iv ∈ CN . De�ne

CJ
k,L := −2∆k−N/2 + 2y2

(
∂τ�

−1[∂z] + ∂τ�
−1[∂z]

)
− 8y∂τv

T∂z

− 1
2y

2
(
�−1[∂z]�

−1[∂z]− (∂T
z �
−1∂z)

2
)

+ 2y(vT∂z)∂
T
z �
−1∂u (3.2)

− 1
2 (2k −N + 1)iy∂T

z �
−1∂u + 2vT(vT∂z)∂z + (2k −N − 1)ivT∂z

and

CJ,sk
k,L := −2∆k−N2

+ 2y2
(
∂τ�

−1[∂z] + ∂τ�
−1[∂z]

)
− 8y∂τv

T∂z

− 1
2y

2
(
�−1[∂z]�

−1[∂z]− (∂T
z �
−1∂z)

2
)

+ 2y(vT∂z)∂
T
z �
−1∂u (3.3)

− 1
2 iy∂

T
z �
−1∂u + 1

4 (2k −N)iy�−1[∂u] + 2vT(vT∂z)∂z

+ (2k −N − 1)ivT∂z.

Theorem 3.3. For L invertible, the operators CJ
k,L and CJ,sk

k,L are, up to additive

and multiplicative scalars, the Casimir operator of G̃JN with respect to the |Jk,L and

the |J,skk,L -action. They generate the images of the |k,L and the |J,skk,L -action of the

center of the universal enveloping algebra of G̃JN . In particular, they lie in the center

of DJ
k,L and DJ,sk

k,L , respectively. The actions of CJ
k,L and CJ,sk

k,L on semi-holomorphic

functions are

−2∆k−N/2 + 2y2∂τ�
−1[∂z] and (4y2∂τ + i

2y(2k −N))LL. (3.4)

Note that for N > 1, (3.2) and (3.3) are of order 4. For N = 1, they have order
3 and reduce to the operator Ck,m given in [BR10] and the operator Cskk,m given
in [BRR11a] with L = m. (There is a misprint in [BR10]: the term k(z − z)∂z
should be (1 − k)(z − z)∂z. This stems in part from a similar misprint in (8) of
[Pit09], where the term (z − z)∂z coming from (6) of [Pit09] is missing.)
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Definition 3.4. The raising operators, X+, X
sk
+ , Y+ and Y sk

+ , and the lowering

operators, X−, X
sk
− , Y− and Y sk

− , are

Xk,L
+ := 2i

(
∂τ + y−1vT∂z + y−2�[v]

)
+ ky−1, Xk,L

− := −2iy
(
y∂τ + vT∂z

)
,

Y k,L+ := i∂z + 2iy−1�v, Y k,L− := −iy∂z,

Xsk;k,L
+ := 2i

(
y2∂τ + yvT∂z + �[v]

)
+ N

2 y,

Xsk;k,L
− := −2i

(
∂τ + y−1vT∂z

)
+
(
k − N

2

)
y−1,

Y sk;k,L
+ := iy∂z + 2i�v, Y sk;k,L

− := −i∂z.

Remark 3.5. We will call Xsk
− and Y sk

− , and Xsk
+ and Y sk

+ lowering and raising

operators, respectively. They lower and raise the representation theoretic weight,
but on the weight of the skew slash action they act di�erently. E.g., for g ∈ G̃JN
and f ∈ C∞(H1,N )

Xsk;k,L
−

(
f |J,skk,L g

)
=
(
Xsk;k,L
− f)|J,skk+1,L g

)
.

For N = 1 and L = m, the operators for the holomorphic slash action are
the operators given on page 59 of [BS98]. (There is a misprint in their formula
for Y−: the expression 1

2 (τ − τ)fz on the far right should be multiplied by −1.)

Since Y k,L± do not contain derivatives with respect to τ or τ , they stay the same,
up to multiplication by powers of y, for the skew slash actions. Note that Y k,L± are
actually N -vector operators. We write Y k,L±,j for their entries.

Frequently, we will suppress the superscript (k, L). Care must be taken with
this abbreviation, as for example X+Y+ means Xk+1,L

+ Y k,L+ . In contrast, we will
always write the superscript sk, when we refer to the operators Xsk

± .

Proposition 3.6. The spaces DJ,1(k, L; k ± 2, L) are 1-dimensional, and the

spaces DJ,1(k, L; k ± 1, L) are N -dimensional. They have bases given by

DJ,1(k, L; k ± 2, L) = span
{
Xk,L
±
}
,

DJ,1(k, L; k ± 1, L) = span
{
Y k,L±,j : 1 ≤ j ≤ N

}
.

The spaces DJ,1
k,L are equal to DJ,0

k,L = C. All other DJ,1(k, L; k′, L′) are zero.

An analog result holds for the skew-holomorphic slash action: The spaces

DJ,sk,1(k, L; k ± 2, L) are 1-dimensional, and the spaces DJ,sk,1(k, L; k ± 1, L) are

N -dimensional. They have bases given by

DJ,sk,1(k, L; k ± 2, L) = span
{
Xsk,k,L
∓

}
,

DJ,sk,1(k, L; k ± 1, L) = span
{
Y sk,k,L
∓,j : 1 ≤ j ≤ N

}
.

The spaces DJ,sk,1
k,L are equal to DJ,sk,0

k,L = C. All other DJ,sk,1(k, L; k′, L′) are zero.

The raising operators for the holomorphic slash action commute with one an-

other, as do the lowering operators for the holomorphic slash action (but keep in

mind that, for example, X+Y+ = Y+X+ means Xk+1,L
+ Y k,L+ = Y k+2,L

+ Xk,L
+ ). The

same holds for the raising and lowering operators for the skew slash action. The
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commutators between all other operators are

[X−, X+] = −k, [Y−,j , Y+,j′ ] = i�jj′ , [X−, Y+] = −Y−, [Y−, X+] = Y+

[Xsk
− , X

sk
+ ] = −k, [Y sk

−,j , Y
sk
+,j′ ] = i�jj′ , [Xsk

− , Y
sk
+ ] = −Y sk

− , [Y sk
− , X

sk
+ ] = Y sk

+ .

Proposition 3.7. Any covariant di�erential operator of order r may be ex-

pressed as a linear combination of products of up to r raising and lowering opera-

tors. There is a unique such expression in which the raising operators are all to the

left of the lowering operators.

The expression of this form for the holomorphic Casimir operator is

CJ
k,L = −2X+X− + i

(
X+�

−1[Y−]− �−1[Y+]X−
)

− 1
2

(
�−1[Y+]�−1[Y−]− Y T

+ (Y T
+ �−1Y−)�−1Y−

)
− 1

2 (2k −N − 3)iY T
+ �−1Y−.

The corresponding expression for the skew Casimir operator is obtained from

this by adding superscripts sk where applicable and subtracting the constant term

(k − N
2 )(2k −N − 1).

Proposition 3.8. The algebra DJ
k,L is generated by DJ,3

k,L. The spaces D
J,3
k,L and

DJ,2
k,L are of dimensions 2N2 +N + 2 and N2 + 2, respectively. Bases for them are

given by the following equations:

DJ,3
k,L = span

{
X+Y−,iY−,j , Y+,iY+,jX− : 1 ≤ i ≤ j ≤ N

}
⊕ D2

k,L,

DJ,2
k,L = span

{
1, X+X−, Y+,iY−,j : 1 ≤ i, j ≤ N

}
.

The corresponding result for the skew slash action is obtained by adding super-

scripts sk where applicable.

We end this section with a postponed proof, that we can complete with the
help of covariant operators.

Proof of Corollary 5.3 in Chapter 2. The limit limy′→∞ f(Z) e−2πimτ ′

is invariant under the full Jacobi group and has Jacobi index m. More precisely, it
vanishes under |Jk,m (1− g) or |J,skk,m (1− g) for all g ∈ ΓJ1 . We only consider the �rst
case; The second follows from a completely analogous calculation. By Theorem 5.2,
the above limit also vanishes under

∂z∂z = y−1
(
i∂z − 4πmy−1v + 4πmy−1v

)
Y k,m− .

Hence it vanishes under Y k,m+ Y k,m− +4πmy−1vY k,m− . The commutator of this oper-
ator and 1− (I2, (0, 1)) ∈ Z[ΓJ1 ] is a nonzero multiple of Y k,m− , hence the result. �

4. Harmonic Maaÿ-Jacobi forms

The focus of this chapter are the spaces of harmonic Maaÿ-Jacobi forms and
harmonic skew-Maaÿ-Jacobi forms of index L and weight k. In order to de�ne
them, �x k ∈ Z and a positive de�nite integral even lattice L of rank N . We will
identify L with its Gram matrix with respect to a �xed basis divided by 2, a positive
de�nite symmetric matrix with entries in 1

2Z and diagonal entries in Z. Write |L|
for the covolume of the lattice, the determinant of the Gram matrix.
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The full Jacobi group ΓJN de�ned in (1.1) clearly has a central extension by
MT
N (Z) that is a subgroup of G̃JN . It is easy to check that when L is a Gram matrix

of an integral lattice, the cocycle αJ
L is trivial on MT

N (Z). Therefore the |Jk,L and

the |J,skk,L -actions factor through to actions of ΓJN , which we will also denote by |Jk,L
and |J,skk,L .

The next de�nitions are inspired by a direct adoption of the de�nition of au-
tomorphic forms in the case of reductive groups (see [Bor66]). The de�nition for
holomorphic slash actions and N = 1 was suggested in [BR10], the one for the
skew slash action and N = 1 in [BRR11a].

Definition 4.1 (Maaÿ-Jacobi forms [CR11]). A Maaÿ-Jacobi form of weight

k and index L is a real-analytic function φ : H1,N → C satisfying the following

conditions:

(i) For all A ∈ ΓJN , we have φ|Jk,LA = φ.

(ii) φ is an eigenfunction of CJ
k,L.

(iii) For some a > 0, φ(τ, z) = O
(
eaye2π

L[v]
y

)
as y →∞.

If φ is annihilated by the Casimir operator Ck,L, it is said to be a harmonic Maaÿ-

Jacobi form. We denote the space of all harmonic Maaÿ-Jacobi forms of �xed weight

k and index L by Jk,L.

Definition 4.2 (skew Maaÿ-Jacobi forms). A skew Maaÿ-Jacobi form of

weight k and index L is a real-analytic function φ : H1,N → C satisfying the fol-

lowing conditions:

(i) For all A ∈ ΓJN , we have φ|
J,sk
k,L A = φ.

(ii) φ is an eigenfunction of CJ,sk
k,L .

(iii) For some a > 0, φ(τ, z) = O
(
eaye2π

L[v]
y

)
as y →∞.

If φ is annihilated by the Casimir operator CJ,sk
k,L , it is said to be a harmonic skew

Maaÿ-Jacobi form. We denote the space of all harmonic skew Maaÿ-Jacobi forms

of �xed weight k and index L by Jsk
k,L.

In general, the space of functions f(τ, z) = a(y, v;n, r)e(nx)e(rTv) satisfying
either CJ

k,Lf = 0 or CJ,sk
k,L f = 0 is in�nite dimensional. That is, a single di�erential

equation is imposed on an N + 1 variable function. This is no problem from the
representation theoretic point of view, but for applications it is impractical. One
theorem in [BS98] is particularly relevant to the discussion what the right de�nition
of real-analytic Jacobi forms should be. It only concerns automorphic forms for
G̃J1 that satisfy a stronger version of (iii) in De�nition 4.1. Since we do not give
any details and the growth condition that we impose is weaker, we formulate this
theorem and its generalization as a remark.

Remark 4.3. Adapting the proof in [BS98, Section 2.6], which is based on

[LV80, Section 1.3] and [MVW87, Section 2.I.2], we see that any automorphic

representation of G̃JN is a tensor product π̃⊗πLSW. Here π̃ is a genuine representa-

tion of the metaplectic cover of SL2, and π
L
SW is the Schrödinger-Weil representa-

tion of central character L. The latter is the extension to the metaplectic cover of

the Jacobi group of the Schrödinger representation of the Heisenberg group, which

is induced from the character e2πitr(Lκ) of its center. Thus, as in [Pit09], semi-
holomorphic forms play an important role in the representation-theoretic treatment

of harmonic Maaÿ-Jacobi forms and skew Maaÿ-Jacobi forms.
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Using the operators Y± one can de�ne a �ltration of subspaces of all harmonic
Maaÿ-Jacobi forms and skew Maaÿ-Jacobi forms. If we disregard singularities,
these subspaces contain Zwegers's µ-function [Zwe02] and the multivariable Appell
sums [Zwe10], after the de�nition is extended to half-integral weights. Those
�ltrations seem the most promising restriction of De�nition 4.1 and 4.2, that cuts
out spaces of Jacobi forms that are relevant to applications. In [CR11, Section 3]
and [BRR11b], this approach is discussed in greater detail.

Definition 4.4. Let 0 < l ∈ 1
2Z. A real-analytic function φ : H1,N → C

satisfying either CJ
k,Lf = 0 or CJ,sk

k,L f = 0 is said to have analytic order l in the

Heisenberg part, if

(Y+Y−)lf = 0, if l ∈ Z;

Y−(Y+Y−)blcf = 0, if l /∈ Z.

Remarks 4.5.

(i) Semi-holomorphic, harmonic functions form a special case of the above

de�nition. They have analytic order 1
2 in the Heisenberg part.

(ii) We will see that Zwegers's µ-function and the multivariable Appell func-

tion, ignoring singularities and the resulting problems with the growth

condition, have analytic order 1 in the Heisenberg part. This is discussed

in Section 7.

(iii) The conditions in the above de�nition are Hecke equivariant, so that it

makes sense to look for Hecke eigenforms in the space of semi-holomor-

phic forms and space of forms of the kind that Zwegers has considered.

(iv) No example of forms with analytic order greater than 1 is known to the

author. The considerations in [BRR11b] show that such a function must

have truly real-analytic, i.e., nonholomorphic singularities.

The next theorem illustrates how rigid the Fourier expansions of �nite analytic
order in the Heisenberg part are.

Theorem 4.6. The space of functions f(τ, z) = a(y, v;n, r) e(nx + rTu) ∈
C∞(H1,N ) with CJ

k,Lf = 0 or CJ,sk
k,L f = 0 and analytic order l in the Heisenberg part

has dimension less than 4l.

Proof. It su�ces to prove that the intersections of the kernel kerY±
and ker CJ

k,L, and kerY± and ker CJ
k,L on the space of functions f(τ, z) =

a(y, v;n, r)e(nx + rTu) have dimension at most 2. The kernel of Y± on functions
ǎ(v; r)e(rTu) has dimension 1. Indeed,

Y+ ǎ(v; r) e(rTu) = y
(
πrǎ(v; r) + 1

2∂vǎ(v; r)
)
e(rTu)

and

Y− ǎ(v; r) e(rTu) =
(
−πrǎ(v; r) + 1

2∂vǎ(v; r) + 2iy−1�vǎ(v; r)
)
e(rTu).

This leads to an order 1 ordinary di�erential equation for ǎ. We conclude that
for �xed τ there is at most one a(y, v;n, r) such that f(τ, z) lies in the kernel of
Y±. More precisely, any such a splits as a product ã(y;n)ǎ(v; r). Applying CJ

k,L

and CJ,sk
k,L to the corresponding f gives rise to an order 2 di�erential equation for ã.

This proves the claim. �
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5. Semi-holomorphic Maaÿ-Jacobi forms

Recall that elements of C∞(H1,N ) holomorphic in CN are called semi-
holomorphic. We will denote the space of semi-holomorphic harmonic Maaÿ-Jacobi
forms by Jz

k,L, and we will write Jsk,z
k,L for the space of semi-holomorphic harmonic

skew-Maaÿ-Jacobi forms. Semi-holomorphic forms vanish under Y− and Y sk
− .

The theory of semi-holomorphic forms essentially mimics that of harmonic weak
Maaÿ forms. Indeed, in Theorem 5.5 we will see that the θ-decomposition gives
a well-behaved bijection between vector-valued weak harmonic Maaÿ forms and
harmonic semi-holomorphic (skew-)Maaÿ-Jacobi forms.

We �rst discuss semi-holomorphic Fourier expansions of (skew-)Maaÿ-Jacobi
forms. Recall that the negative discriminant of a Fourier index (n, r) is denoted by

D := DL(n, r) := |L|(4n− L−1[r]).

By analogy with [BF04, page 55], de�ne a function

H(y) := e−y
∫ ∞
−2y

e−tt−k+N
2 dt.

Proposition 5.1. Any semi-holomorphic harmonic Maaÿ-Jacobi form has a

Fourier expansion of the form

y
2+N

2 −k
∑

n∈Z,r∈ZN
s.t. D=0

c0(n, r) qnζr +
∑

n∈Z,r∈ZN
s.t. D�−∞

c+(n, r) qnζr

+
∑

n∈Z,r∈ZN
s.t. D�∞

c−(n, r)H(π D
2|L|y) exp

(
πD
2|L|y

)
qnζr.

Any semi-holomorphic harmonic skew-Maaÿ-Jacobi forms has a Fourier expan-

sion of the form

y
2+N

2 −k
∑

n∈Z,r∈ZN
s.t. D=0

c0(n, r) qnζr +
∑

n∈Z,r∈ZN
s.t. D�∞

c+(n, r) e−πy
D
|L| qnζr

+
∑

n∈Z,r∈ZN
s.t. D�−∞

c−(n, r)H(−π D
2|L|y) exp

(
πD
2|L|y

)
qnζr.

Proof. This can be proved as in the case of rank 1 lattices, by solving the
di�erential equation for the coe�cients coming from the Casimir operator and then
imposing the growth condition. �

Our investigation will concentrate on semi-holomorphic harmonic (skew-)Maaÿ-
Jacobi forms, and in particular their relation to (skew-)holomorphic forms. To state
this relation we must de�ne two ξ-operators. Proceeding as in [BR10, Section 4],
we �rst de�ne the lowering operators

D
(L)
− := −2iy

(
y ∂τ + vT∂z − 1

4y�
−1[∂z]

)
= X− − i

2�
−1[Y−], (5.1)

D
sk,(L)
+ := iy2(2∂τ + 1

2�
−1[∂z]) = Xsk

+ − i
2�
−1[Y+] = iy2LL. (5.2)

Using these operator, we de�ne the ξ-operators by

ξJ
k,L := yk−

N
2 −2D

(L)
− and ξJ,sk

k,L := yk−
N
2 −2D

sk,(L)
+ . (5.3)

This is an analog of the ξ-operator in [Maa52], which sends Maaÿ forms to their
holomorphic shadows. In our setting skew-holomorphic forms take the place of
holomorphic ones when ξJ is applied.
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Proposition 5.2. If φ ∈ Jz
k,L, then ξJ

k,Lφ is an element of J sk
2+N−k,L. If

φ ∈ Jsk,z
k,L , then ξ

J,sk
k,L φ is an element of J2+N−k,L.

Proof. By Proposition 3.6, DJ,(L)
− is a covariant operator from |Jk,L to |Jk−2,L.

Applying ξJ
k,L to the Fourier expansion of a Maaÿ-Jacobi form as in Proposition 5.1

shows that the Fourier expansion of ξk,Lφ has the correct form. The analog argu-
ment works for skew-Maaÿ-Jacobi forms, again using Proposition 5.1 to verify that
the Fourier expansion of the image has the correct form. �

The ξ-operator is compatible with the theta decomposition. To state this pre-
cisely, let MΓ be the full elliptic metaplectic group. Denote the spaces of vector-
valued harmonic Maaÿ forms for the Weil representation ρL by [MΓ, k − N

2 , ρL]M.
For weakly holomorphic vector-valued modular forms change the superscript to !.
The ξ-operator ξk−N2 f = yk−

N
2 ∂τf maps the space of harmonic Maaÿ forms to the

space of weakly holomorphic forms.
Recall that θL,µ is the a theta series for L:

θL,µ(τ, z) :=
∑

r∈ZN , r≡µ(LZN )

q
L−1[r]

4 ζr.

It is well-known to be a modular form in [MΓ, k − N
2 , ρL]M.

Definition 5.3 (Theta decomposition). The Maaÿ-Jacobi and the skew-Maaÿ-

Jacobi theta decompositions are the maps

θz
L : Jz

k,L → [MΓ, k − N
2 , ρL]M and

θsk,z
L : Jsk,z

k,L → [MΓ, k − N
2 , ρL]M

de�ned by

f(τ, z) =
∑

µ(ZN/LZN )

θz
L(f)µ(τ) θL,µ(τ, z)

f(τ, z) =
∑

µ(ZN/LZN )

θsk,z
L (f)µ(τ) θL,µ(τ, z).

The holomorphic and the skew-holomorphic theta decomposition maps

θL : Jk,L → [MΓ, k − N
2 , ρL] and

θsk
L : J sk

k,L → [MΓ, k − N
2 , ρL]

are de�ned by

f(τ, z) =
∑

µ(ZN/LZN )

θL(f)µ(τ) θL,µ(τ, z) and

f(τ, z) =
∑

µ(ZN/LZN )

θsk
L (f)µ(τ) θL,µ(τ, z).

Remark 5.4. A harmonic (skew-)Maaÿ form admits a theta decomposition if

and only if it is semi-holomorphic.
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Theorem 5.5. The θ-decomposition of forms in Jz
k,L and Jsk

2+N−k,L commutes

with the ξ-operators ξJ
k,L and ξJ

k−N2
. More precisely, the following diagram is com-

mutative:

Jz
k,L

θzL
��

ξJk,L // Jsk
2+N−k,L

θskL
��

[MΓ, k − N
2 , ρL]M

ξ
k−
N
2 // [MΓ, 2 + N

2 − k, ρL]!

.

The analog diagram for skew-Maaÿ-Jacobi forms is commutative as well:

Jsk,z
k,L

θsk,zL

��

ξJ,skk,L // J2+N−k,L

θL

��
[MΓ, k − N

2 , ρL]M
ξ
k−
N
2 // [MΓ, 2 + N

2 − k, ρL]!

.

Proof. This is a calculation completely analogous to that in [BR10, Sec-
tion 6]. �

6. Higher analytic order in the Heisenberg part

We brie�y treat forms of analytic order greater than 1
2 , which we de�ned in

4.4. The next proposition focuses on Hecke operators. For φ ∈ Jk,L and l ∈ Z≥1

recall the Hecke operators

φ
∣∣J
k,L

Tl := lk−4
∑

g∈ΓJN\M2(Z)

det(M)=l2

gcd(M)=�

∑
X∈lM2,N (Z)\M2,N (Z)

φ
∣∣J
k,L

(g,X),

where gcd(M) = � means that the greatest common divisor of the entries of M is
a square. In the case of N = 1, this operators has been de�ned in [EZ85]. The
natural analog for skew weights is

φ
∣∣J,sk
k,L

Tl := lk−4
∑

g∈ΓJN\M2(Z)

det(M)=l2

gcd(M)=�

∑
X∈lM2,N (Z)\M2,N (Z)

φ
∣∣J,sk
k,L

(g,X).

The former maps Jk,L to Jk,L and the latter maps Jsk
k,L to Jsk

k,L. A (skew-)Maaÿ-
Jacobi forms that is an eigenvector of all the Tl, l ∈ Z≥1 is called a Hecke eigenform.

By Remark 4.3, it follows that for an automorphic form of G̃JN , that is, a
harmonic Maaÿ-Jacobi form with an automorphic representation attached to it,
there is always a semi-holomorphic one that has the same eigenvalues. This is not
necessarily true for all harmonic (skew-)Maaÿ-Jacobi forms, de�ned in 4.1 and 4.2,
since the growth conditions imposed are too weak. The next proposition tells us
that at least for (skew-)Maaÿ-Jacobi forms of �nite analytic order in the Heisenberg
part a similar reduction theorem holds.

Proposition 6.1. Suppose that a nonzero Hecke eigenform φ ∈ Jk,L has

analytic order 0 < l ∈ 1
2Z in the Heisenberg part. Then there is a nonvanishing

Hecke eigenform φ̃ ∈ Jk,L with the same Hecke eigenvalues that has analytic order

0 < l ≤ 1 in the Heisenberg part.

The analog statement holds for skew-Maaÿ-Jacobi forms φ ∈ Jsk
k,L.
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Proof. We may assume that 0 < l ∈ 1
2Z is minimal. By de�nition, the

harmonic Jacobi form φ̃ := (Y+Y−)blc φ is nonzero if l 6∈ Z, and φ̃ := (Y+Y−)l−1 φ

is nonzero if l ∈ Z. In either case, φ̃ has the same eigenvalues like φ, since it is the
image under covariant operators. Thus the theorem is proved. �

Remarks 6.2.

(i) In the next section, we will see that Zweger's µ function has analytic order

1 in the Heisenberg part. Under Y− it is mapped to a meromorphic Jacobi

form. The same holds true for the more general Appell sum divided by a

suitable theta series.

(ii) Assuming that indeed semi-holomorphic forms provide all Hecke eigen-

systems of harmonic (skew-)Maaÿ-Jacobi forms of �nite analytic order in

the Heisenberg part, the theory of such Hecke eigensystems should be gov-

erned by the one corresponding theory for weak harmonic vector-valued

elliptic modular forms. Such a theory was initiated in [BS10], but the
full picture is not yet complete.

(iii) The results obtained in [BRR11b] show that there cannot be any non-

singular Maaÿ-Jacobi form of analytic order 1 in the Heisenberg part.

7. Examples

7.1. Eisenstein series. There are two harmonic Jacobi Eisenstein series. To
de�ne them, denote by ΓJN,∞ the parabolic subgroup of the full Jacobi group ΓJN :

ΓJN,∞ :=
{((

a b
0 d

)
, (µ, 0)

)
∈ ΓJN

}
. (7.1)

De�ne the Jacobi Eisenstein series

EJ
α,β,L :=

∑
g∈ΓJN,∞\ΓJN

1|Jα,β,L g. (7.2)

The right hand side converges locally absolutely uniformly, if α+ β > 2 +N .
The Eisenstein series can be generalized to Poincaré-Eisenstein series for the

holomorphic and skew slash action, which feature an addition y power:

P J
k,s,L :=

∑
g∈ΓJN,∞\ΓJN

ys|Jk,L g = ysEJ
k+s,s,L (7.3)

and

P J,sk
k,s,L :=

∑
g∈ΓJN,∞\ΓJN

ys|J,skk,L g = ysEJ
1
2 +s,k− 1

2 +s,L. (7.4)

Both are harmonic for s = 0, k > 2+N and s = 2+N
2 −k, k < 0. Note that Arakawa

considered various Eisenstein series in [Ara90].
For later use, we give the precise image of the Poincaré-Eisenstein series under

the ξ-operators.

Proposition 7.1. We have

ξJ
k,LP

J
k, 2+N2 −k,L

= ( 2+N
2 − k)P J,sk

2+N−k,0,L and

ξJ,sk
k,L P

J,sk

k, 2+N2 −k,L
= ( 2+N

2 − k)P J
2+N−k,0,L.

Proof. It su�ces to apply ξJ
k,L and ξJ,sk

k,L to y
2+N

2 −k, yielding the result. �
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7.2. Poincaré series. In [BR10, Section 5], the authors de�ne Maaÿ-
Poincaré series for the Jacobi group. They restrict to Jacobi indices of rank one.
Their considerations were generalized in [CR11, Section 4.1] to arbitrary lattice
indices. The results obtained there are easily carried over to skew-Maaÿ-Jacobi
forms.

Throughout this section, n will be an integer and r will be in ZN . Maintain D
as above and set h as follows:

D = DL(n, r) = |L|(4n− L−1[r]), h = hL(r) := |L|L−1[r].

Using the M -Whittaker function Mν,µ (see [WW96]), we de�ne

Ms,κ(t) := |t|−κ2Msgn(t)κ2 , s−1/2(|t|), (7.5)

φ
(n,r)
k,L,s(τ, z) :=Ms,k−N/2(π D

|L|y) e(rTz + iL
−1[r]
4 y + nx), (7.6)

φ
sk,(n,r)
k,L,s (τ, z) :=Ms,k−N/2(π D

|L|y) e(rTz + L−1[r]
4 τ − D

4|L|x). (7.7)

Lemma 7.2. The function φ
(n,r)
k,L,s de�ned in (7.6) is an eigenfunction of the

Casimir operator CJ
k,L in (3.2), with eigenvalue

−2s(1− s)− 1
2

(
k2 − k(N + 2) + 1

4N(N + 4)
)
. (7.8)

The function φ
sk,(n,r)
k,L,s de�ned in (7.7) is an eigenfunction of the Casimir oper-

ator CJ,sk
k,L in (3.3), with eigenvalue

−2s(1− s)− 1
2

(
k2 − k(N + 2) + 1

4N(N + 4)
)
. (7.9)

Proof. Factor φ as follows:

φ
(n,r)
k,L,s(τ, z) = e(rTz + L−1[r]

4 τ) · e( D
4|L|x)Ms,k−N2

(−π D
|L|y). (7.10)

The �rst factor is holomorphic in τ and the second is constant in z. Hence when
applying CJ

k,L the contribution of the �rst factor cancels. We need only consider
−2∆k−N2

, yielding (7.8).
The analog consideration applied to the factorization

φ
sk,(n,r)
k,L,s (τ, z) = e(rTz + L−1[r]

4 τ) · e(− D
4|L|x)Ms,k−N2

(−π D
|L|y)

yields (7.9). �

The Poincaré series

P
(n,r)
k,L,s :=

∑
g∈ΓJN,∞\ΓJN

φ
(n,r)
k,L,s

∣∣∣J
k,L

g (7.11)

for the holomorphic slash action was introduced in [CR11], and it is easily seen to
be semi-holomorphic. We will also consider the skew Poincaré series

P
sk,(n,r)
k,L,s :=

∑
g∈ΓJN,∞\ΓJN

φ
sk,(n,r)
k,L,s

∣∣∣J,sk
k,L

g. (7.12)

The usual estimate

Ms,k−N/2(y)� yRe(s)− 2k−N
4 as y → 0
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ensures absolute and uniform convergence for Re(s) > 1+ N
4 . Of particular interest

is the case s ∈ {k2 −
N
4 , 1 + N

4 −
k
2}, where the Poincaré series is annihilated by the

Casimir operator. In particular, we have proved

Theorem 7.3. For k < 0, the maps

ξJ
k,L : Jz

k,L → J sk
2+N−k,L and

ξJ,sk
k,L : Jsk,z

k,L → J2+N−k,L

are surjective.

Proof. The Poincaré-Eisenstein series P J
k, 2+N2 −k,L

and P J,sk

k, 2+N2 −k,L
are

mapped to the holomorphic and skew-holomorphic Eisenstein series. Hence it is
su�cient to consider cusp forms in J2+N−k,L and J sk

2+N−k,L.
We will use the well-known identity:

M1+N
4 −

k
2 ,k−

N
2

(−y) = (k − N
2 − 1)ey/2

(
Γ(1 + N

2 − k, y)− Γ(1 + N
2 − k)

)
.

The operator ξJ
k,L is covariant. For s = 1 + N

4 −
k
2 the Poincaré series P (n,r)

k,L,s

is locally absolutely convergent, if k < 0. Thus, in this case, we may compute the
images of the Poincaré series under the ξ-operators using (7.10).

ξJ
k,LP

(n,r)
k,L,s =

∑
g∈ΓJN,∞\ΓJN

e(rz + L−1[r]
4 τ)yk−2−N2

·
(
−2iy2∂τ e(

−Dx
4|L| ) (k − N

2 − 1)eπ
D

2|L|y

·
(
Γ(1 + N

2 − k,
πDy
|L| )− Γ(1 + N

2 − k)
))

=
∑

g∈ΓJN,∞\ΓJN

e(rz + L−1[r]
4 τ)

· (−2)ie(−Dτ4|L| ) (k − N
2 − 1)

(
πD
|L|
)1+N

2 −k e−π
D
|L|y.

This shows that up to multiplicative scalars, the image is the skew-holomorphic
Poincaré series

ξJ
k,LP

(n,r)
k,L,s =

∑
g∈ΓJN,∞\ΓJN

e(rz + L−1[r]
4 τ) e(− D

4|L|τ) e−π
D
|L|y.

By a standard argument, that involves the Petersson scalar product, one can show
that these series span the space of cuspforms in J sk

k,L. This proves the surjectivity
of the �rst map.

To prove the second part apply (3.4) to the factorization (7.2) and use the fact
that the heat operator (2.1) annihilates theta series. �

Remark 7.4. A Zagier type duality holds for the coe�cients of the Poincaré

series for the holomorphic slash action as was proved in [BR10, CR11]. It is not
hard to see that the same duality holds for the Poincaré series for the skew slash

action as well; See also Remark (d) on page 15 of [BRR11a].
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7.3. Higher Appell functions. In [Zwe10], Zwegers generalized his investi-
gation of the so called µ-function (see [Zwe02]) to a more general set of functions.
Changing slightly his notation, we write Q be a positive quadratic form on RN with
Gram matrix L. Let B(l, l′) := Q(l + l′) − Q(l) − Q(l′) be the associated bilinear
form and λ ∈ L−1Z. For ṽ ∈ C de�ne

AQ,λ(ṽ, v; τ) :=
∑
l∈ZN

qQ(l)e
(
B(l, v)

)
1− qB(l,λ)e(ṽ)

. (7.13)

Fixing u ∈ C \ Z + τZ and dividing by the theta series

ΘQ(v; τ) :=
∑
l∈ZN

qQ(l)e
(
B(l, v)

)
,

we obtain the holomorphic part of a harmonic Jacobi-Maaÿform with poles of weight
1
2 and index L. The corresponding completion is given in De�nition 1.5 of [Zwe10],
and Theorem 1.7 of [Zwe10] shows that this completion is modular with respect
to a subgroup of ΓJN . From the considerations to be found there, it becomes also
clear that AQ,λ has analytic order 1 in the Heisenberg part. It does not fall under
De�nition 4.1, however, because it has singularities.
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CHAPTER 4

Siegel modular forms

This section contains the de�nition of real-analytic Siegel modular forms and
of harmonic real-analytic Siegel modular forms. The spirit of the former de�nition
dates back to, for example, Borel [Bor66], whose primary motivation originated
in automorphic representations. The representations at in�nity of automorphic
representations over Q are usually described as (g,K)-modules [Wal88]. This
naturally leads to the condition that a real-analytic automorphic form must be an
eigenfunction of all Casimir operators. From the strong approximation theorems
(see [Shi64] for the symplectic group), it follows that real-analytic automorphic
forms generate an automorphic representation.

For arithmetic applications one needs to impose more conditions. In the ellip-
tic case, that is, for the reductive group SL2, harmonicity is usually required. A
function on H1 is harmonic of weight k if it is in the kernel of the Laplace operator
∆k, given in (1.4) of Chapter 3. For �xed n ∈ Z, the space of possible Fourier coef-
�cients a(y, n) of a smooth function

∑
n∈Z a(y, n)e(nx) ∈ ker ∆k is two-dimensional

over C.
In the case of Siegel modular forms the Casimir operators are H [1]

α,β and H [2]
α,β ,

which have been de�ned in (4.1) of Chapter 2. By the results of Section 2, it
is insu�cient to consider functions in the kernel of these operators. A further
analytic condition for harmonic Siegel modular forms that promise to be useful for
applications is needed. Vanishing under the matrix-valued Laplace operators Ωk or
Ωsk
k that are de�ned in (4.3) of Chapter 2, we will show, is the right condition.

1. Harmonic Siegel modular forms

Definition 1.1. A function f ∈ C∞(H2) is a real-analytic Siegel modular

form of degree 2 for the full Siegel modular group of weight (α, β) if the following

conditions are satis�ed:

(i) H [1]
α,βf = d1f and H

[2]
α,βf = d2f for some d1, d2 ∈ C.

(ii) f |α,β g = f for all g ∈ Sp2(Z).

(iii) |f(Z)| < c(tr(Y ))a as tr(Y )→∞ for some a, c ∈ R.

Definition 1.2. A real-analytic Siegel modular form of weight (α, β) is called

harmonic if Ωα,β f = 0.

We will write M(2)
k for the space of harmonic Siegel modular forms of holomor-

phic weight (k, 0), and we will denote the space of harmonic Siegel modular forms
of skew weight ( 1

2 , k −
1
2 ) by M(2),sk

k .
We say that a function f : R→ C grows rapidly towards in�nity if its absolute

value cannot be bounded by any polynomial as the argument tends to in�nity.
An analog de�nition can be made for functions f : C → C. Condition (iii) of
De�nition 1.1 can be rephrased like this: A real-analytic Siegel modular forms
must not grow rapidly towards the boundary of H2.
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Remarks 1.3.

(i) Since H
[1]
α,β is the Laplace-Beltrami operator for H2, it is elliptic. Hence,

by the elliptic regularity theorem, all eigenfunctions and, in particular,

all harmonic Siegel modular forms are real-analytic.

(ii) The growth condition in De�nition 1.1 does not become obsolete by the

Koecher principle. Indeed, the Eisenstein series det(Y )
3
2−kE2−k,1, that

is a harmonic Siegel modular form, grows towards in�nity.

(iii) Since M(2)
k and M(2),sk

k are de�ned using covariant operators, they are

invariant under the usual Hecke action. Details on Hecke operator for

Siegel modular forms can be found in [Fre94] and [Kri90].
(iv) We will show that

E
(2)
k (for k > 3) and detY

3
2−kE

(2)
3
2 ,

3
2−k

(for k < 0)

belong to M(2)
k . In the skew case,

E
(2)
1
2 ,k−

1
2

(for k > 3) and det(Y )
3
2−kE

(2)
2−k,1 (for k < 0)

belong to M(2),sk
k .

(v) By Proposition 4.6 in Chapter 2, we know that vanishing under Ωα,β

implies vanishing under H
[1]
α,β and H

[2]
α,β. Thus it is su�cient to check

harmonicity to ensure condition (i) of De�nition 1.1.

For reference, we mention that the Fourier expansion of a harmonic Siegel
modular form for the full modular group is indexed by matrices T ∈ MT

2 ( 1
2Z) that

have integral diagonal entries. For general n, we denote the set of such matrices by
M̃T
n ( 1

2Z).
It is easily veri�ed that Ωk e(tr(TZ)) = 0 for all T ∈ MT

2 (R). Hence all holo-
morphic modular forms are examples of harmonic Siegel modular forms. Further
examples can be provided by means of nonholomorphic Eisenstein series. To de�ne
them write

Γ(n) := Spn(Z) and Γ(n)
∞ :=

{(
a b
0 d

)
∈ Γ(n)

}
. (1.1)

The degree n Siegel Eisenstein series are

E
(n)
α,β :=

∑
g∈Γ

(n)
∞ \Γ(n)

1|(n)
α,β g. (1.2)

These Eisenstein series converge if α + β > n + 1. They can be generalized to
Poincaré-Eisenstein series, which we only de�ne in the case n = 2:

P
(2)
k,s :=

∑
g∈Γ

(2)
∞ \Γ(2)

det(Y )s
∣∣
k
g = det(Y )sE

(2)
k+s,s (1.3)

and

P
(2),sk
k,s :=

∑
g∈Γ

(2)
∞ \Γ(2)

det(Y )s
∣∣sk
k
g = det(Y )sE

(2)
1
2 +s,k+s− 1

2

. (1.4)

We �nd that P (2)
k,s and P (2),sk

k,s converge absolutely if 2Re(s) + k > 3.

Proposition 1.4. If s = 0 and k > 3 or s = 3
2−k and k < 0, then P

(2)
k,s ∈M(2)

k

and P
(2),sk
k,s ∈Msk,(2)

k .
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Proof. A direct computation shows that

Ωk det(Y )s =
((

3
2I2 + 2iY ∂Z

)(
kI2 + 2iY ∂Z

)
− 3

2k
)

det(Y )s

=
(
( 3

2 − s)(k + s)− 3
2k
)

det(Y )s

= −s(s+ k − 3
2 ) det(Y )s

and

Ωsk
k det(Y )s =

((
−(k − 2)I2 + 2iY ∂Z

)(
1
2I2 + 2iY ∂Z

)
+ k

2 − 1
)

det(Y )s

=
(
(−k + 2− s)( 1

2 + s) + k
2 − 1

)
det(Y )s

= −s(s+ k − 3
2 ) det(Y )s.

The covariance of Ωk and Ωsk
k proves that Ωk P

(2)
k,s = 0 and Ωsk

k P
(2),sk
k,s = 0 for s = 0

and s = 3
2 − k. Finally, (iii) of De�nition 1.1 is satis�ed for the Eisenstein series

E
(2)
α,β , if they converge, and hence also for P (2)

k,s and P (2),sk
k,s . �

For later use, we state the next proposition.

Proposition 1.5. We have

ξ
(2)
k P

(2)

k, 32−k
= ( 3

2 − k)(1− k)P
(2),sk
3−k,0 and

ξ
(2),sk
k P

(2),sk

k, 32−k
= ( 3

2 − k)(2− k)P
(2)
3−k,0.

Proof. It su�ces to apply the ξ-operators to det(Y )
3
2−k. �

2. Real-analytic and harmonic Fourier expansions

We �rst argue that there are too many possible Fourier expansions of general
real-analytic Siegel modular forms. In [Niw91], Niwa calculated eigenfunctions of
H

[1]
0,0 and H̃ [2]

0,0. The operator H̃ [2]
0,0 was given by Nakajima in [Nak82]. He claimed

it was an order 4 invariant operator for O2,3(R) on the usual homogeneous space.
This would immediately lead to an invariant operator for Sp2(R). Unfortunately,
Nakajima considered the action of O2,3(R) on a domain that was not the usual one.
This invalidates his result for any application to our situation. Indeed, using the
Sage script 1, that can be found in Appendix A, one checks that H̃ [2]

0,0 used by Niwa
is not Sp2(R)-invariant. Nevertheless, Proposition 4.11 in Chapter 2 can be used to
prove the next corollary. In order to state it, recall the coordinates (t, t′, θ) de�ned
in (4.5) in Chapter 2.

Corollary 2.1. Let

a(Y, T ) =
∑
m∈Z

bm(t, t′)eimθ. (2.1)

Then a(Y, T ) e(tr(TX)) is an eigenfunction of H
[1]
α,β and H

[2]
α,β with eigenvalues d1

and d2 if and only if all bm(t, t′)eimθ e(tr(TX)) are eigenfunctions with the same

eigenvalues d1 and d2.

Proof. By Proposition 4.11 in Chapter 2, the operators H [1]
α,β and H [2]

α,β can
be expressed in terms of the derivatives ∂t, ∂t′ and ∂θ and the variables t and t′.
Using the uniqueness of Fourier expansions with respect to the variable θ, the claim
follows. �
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When computing possible Fourier expansions of Siegel modular forms, Niwa
used an analog of the above corollary that holds for H [1]

α,β and H̃ [2]
α,β to restrict his

considerations to functions bm(t, t′) de�ned as above. In the case T = I2 he ex-
pressed them as power series in t − t′, and �nally solved the resulting di�erential
equations. Although his calculations do not apply to our operators, we believe the
essence of his results still holds true. In other words, for every m ∈ Z and almost all
pairs of eigenvalues (d1, d2) ∈ C2 there is at least one nonzero common eigenfunc-
tion of the operators H [1]

α,β and H [2]
α,β that has the shape bm(t, t′)eimθ e(tr(TX)).

In principle this conjecture is accessible by computer calculations � Also Niwa
used computer support, as he clari�ed in private correspondence. More precisely, in
a power series expansion bm(t, t′) =

∑∞
l=0 cl(y)xl, where x = t−t′ and y = t+t′, the

�rst nonvanishing coe�cient cl0 will roughly behave like an exponential function.
Then it su�ces to prove that the power series expansion for bm resulting from
the analog of Recursion (1.9.2) in [Niw91] converges. In Niwa's case this follows
directly by estimates for the derivatives of cl0 and the structure of the recursion.

We content ourselves with this very incomplete discussion. Much more can be
said about the Fourier expansions of harmonic Siegel modular forms. A theorem by
Maaÿ [Maa53] shows that harmonicity with respect to Ωα,β is a strong restriction
on Fourier expansions. To state a precise result, we use two systems of coordinates,
both introduced by Maaÿ to facilitate his calculations. De�ne

Y =:
√

detY

(
(x2 + y2)y−1 xy−1

xy−1 y−1

)
and

u := tr(Y T ), v := (tr(Y T ))2 − 4 det(Y T ).

We will write rk(T ) for the rank of a matrix T .

Theorem 2.2 ([Maa53]). Let f(Z) = a(Y, T ) ei tr(TX), where T ∈ MT
2 (R),

and suppose Ωα,β(f) = 0 where α+ β 6= 1, 3
2 , 2. Then a(Y, T ) is given as follows:

(i) If T = 0, then

a(Y, 0) = φ(x, y) detY
1
2 (1−α−β) + c1 detY

3
2−α−β + c2, (2.2)

where c1, c2 ∈ C and φ(x, y) is an arbitrary solution (analytic for y > 0)

of the wave equation

y2(∂2
x
φ+ ∂2

y
φ)− (α+ β − 1)(α+ β − 2)φ = 0.

(ii) If rk(T ) = 1, T ≥ 0, then

a(Y, T ) = φ(u) detY
3
2−α−β + ψ(u), (2.3)

where φ and ψ are con�uent hypergeometric functions that satisfy the

di�erential equations

uφ′′ + (3− α− β)φ′ + (α− β − u)φ = 0 and

uψ′′ + (α+ β)ψ′ + (α− β − u)ψ = 0.

In particular, there are four linear independent solutions a(Y, T ) in this

case.
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(iii) If rk(T ) = 2, T > 0, then

a(Y, T ) =

∞∑
n=0

gn(u) vn (|v| < u2), (2.4)

where the functions gn(u) are recursively de�ned by

4(n+ 1)2u gn+1 + u g′′n + 2(2n+ α+ β) g′n + (2(α− β)− u) gn = 0

and

g0(u) = u1−α−βψ(u), with ψ′(u) = u−1φ(u) and

φ′′ =

(
1 +

2(β − α)

u
+

(α+ β − 1)(α+ β − 2)

u2

)
φ.

In particular, there are three linear independent solutions a(Y, T ) in this

case.

(iv) If rk(T ) = 2, T inde�nite, then

a(Y, T ) =

∞∑
n=0

hn(v) un (u2 < v), (2.5)

where the functions hn(v) are recursively de�ned by

(n+ 2)(n+ 1)hn+2 + 4vh′′n + 4(α+ β + n)h′n − hn = 0

and

(α− β)h1 = 8v2 h′′′0 + 4(2 + 3α+ 3β)vh′′0 (2.6)

+ (4(α+ β)2 + 2(α+ β − 1)− 2v)h′0 − (α+ β)h0,

(β − α)h0 = 2vh′1 + (α+ β)h1. (2.7)

In particular, there are four linear independent solutions a(Y, T ) in this

case.

Finally, any solution a(Y, T )ei tr(TX) to the operator Ωα,β gives rise to a solution

a(Y, T )ei tr(−TX) to the operator Ωβ,α.

Remark 2.3. The theorem says that for m 6= 0, we have bm = 0 for any

expansion (2.1) of a Fourier coe�cient that is annihilated by Ωα,β.

To solve the di�erential equations that show up in Theorem 2.2, we need the
next proposition. The generalized hypergeometric function

pFq(a1, . . . , ap; b1, . . . , bq; v) :=

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

vn

n!
, (2.8)

that will show up, is treated, for example, in [Luk69].

Proposition 2.4. Suppose that h1 satis�es the di�erential equation in (2.5)

for some h0 and h1. Then h1 solves the di�erential equation

0 = 16v3 h
(4)
1 (2.9)

+ (32(α+ β) + 64) v2 h
(3)
1

+
(
(20(α+ β)2 + 60(α+ β) + 28) v− 4 v2

)
h′′1

+
(
4(α+ β)3 + 10(α+ β)2 − 4 + 2(α+ β)− (4(α+ β) + 4) v

)
h′1

+
(
(α− β)2 − (α+ β)2

)
h1.
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Proof. Using (2.7), we can express the derivatives of h0 in terms of those of
h1. For l ∈ Z≥0 we have

(β − α)h0 = 2vh
(l+1)
1 + (α+ β)h

(l)
1 . (2.10)

We insert this into the (α− β)-multiple of (2.6) and obtain

−(α− β)2 h1 = 8v2
(
2vh

(4)
1 + (α+ β + 6)h

(3)
1

)
+ 4
(
2 + 3(α+ β)

)
v
(
2vh

(3)
1 + (α+ β + 4)h′′1

)
+
(
4(α+ β)2 + 2(α+ β − 1)− 2v

)(
2vh′′1 + (α+ β + 2)h′1

)
− (α+ β)

(
2vh′1 + (α+ β)h1

)
,

yielding the claim. �

Lemma 2.5. For α = k ∈ C \ 1
2Z and β = 0 the di�erential equation (2.9) has

the four fundamental solutions

v
−k
2 2F3

(
k
2 ,
−k
2 ; 1

2 ,
k−1

2 , 1− k
2 ; v

4

)
, v

1−k
2 2F3

(
k+1

2 , 1−k
2 ; 3

2 ,
k
2 ,

3−k
2 ; v

4

)
, (2.11)

1, and v
3
2−k2F3

(
3
2 ,

3
2 − k; 2− k

2 ,
5−k

2 , 5
2 − k; v

4

)
.

For α = 1
2 and β = k − 1

2 ∈ C \ 1
2Z the di�erential equation (2.9) has the four

fundamental solutions

1F2

(
1
2 ; 1+k

2 , 1 + k
2 ; v

4

)
, v−

k
2 1F2

(
1−k

2 ; 1
2 , 1−

k
2 ; v

4

)
, (2.12)

v
1−k
2 1F2

(
1− k

2 ; 3
2 ,

3−k
2 ; v

4

)
, and v

3
2−k2F3

(
1, 2− k; 5

2 − k, 2−
k
2 ,

5−k
2 ; v

4

)
.

The proof of this lemma will be computer based. We need the next lemma to
prove the correctness of the according script. Write pFq(a;b; v) for the hypergeo-
metric series with parameters a = a1, . . . , ap and b = b1, . . . , bq. Given t ∈ C, we
write a + t for a1 + t, . . . , ap + t and b + t for b1 + t, . . . , bq + t.

Lemma 2.6. Suppose D is an order D linear di�erential operator on smooth

functions of v. Assume that D has coe�cients in C[v, k], and that these coe�cients

have maximal degree mv in v. If l ∈ Z and none of the bj's are nonpositive integers,

then

D vlpFq(a;b; v) = 0,

if and only if the t-th coe�cients (l−D ≤ t ≤ l+D+mv) of D vlpFq(a;b; v) vanish

as functions of k.

Proof. It su�ces to prove that

D vlpFq(a;b; v) = vl−D
(
p1 pFq(a +D;b +D; v) + p2

)
for some p1, p2 ∈ C(k)[v] of degree at most 2D+mv. Without loss of generality let
D = ∂i

v
with i ∈ {0, . . . , D} and, in particular, mv = 0.

We proceed by mathematical induction on D. The case D = 0 is clear. Suppose
D = c1∂vD̃ + c2 for some constants c1, c2 and an order D − 1 operator D̃. By
induction hypothesis, we have

D̃ vlpFq(a;b; v) = vl−D+1
(
p̃1 pFq(a +D − 1;b +D − 1; v) + p̃2

)
,

where p̃1, p̃2 have maximal degree 2D − 2. The de�nition of the hypergeometric
functions implies the relations

vlpFq(a;b; v) = vl−1
∏
i

ai
∏
j

b−1
j

(
v + v2

pFq(a + 1;b + 1; v)
)
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and

∂v v
l
pFq(a;b; v) = vl−1

(∏
i

ai
∏
j

b−1
j v pFq(a + 1;b + 1; v) + l pFq(a;b; v)

)
,

which yield the claim. �

Proof of Lemma 2.5. It is clear that for all k under consideration the hy-
pergeometric functions in (2.11) and (2.12) are well-de�ned.

We can use Lemma 2.6 to reduce the proof to the computation of �nitely many
coe�cients in a Laurent expansion with respect to v. More precisely, we have
D = 4 and mv = 3. If h̃1 is any of the potential solutions in (2.11) or (2.12)
to the di�erential equation (2.9), it su�ces to check that the �rst D + 2mv = 11

coe�cients of

16v3 h̃
(4)
1 +

(
(8(α+ β) + 48) v2 + (12(α+ β) + 8) v

)
h̃

(3)
1

+
(
(20(α+ β)2 + 60(α+ β) + 28) v− 4 v2

)
h̃′′1

+
(
4(α+ β)3 + 10(α+ β)2 + 2(α+ β)− (4(α+ β) + 4) v

)
h̃′1

+
(
((α− β)2 − (α+ β)2

)
h̃1

vanish as rational functions of k. In principle, this calculation could be carried out
directly, but since it is extremely long, we prefer giving a computer assisted proof.
The according Sage [S+11] script can be found in Section 2 of Appendix A. A
numerical double check is performed using the Sage script in Section 3 of the same
chapter. Both scripts are written in such a way that they can be directly loaded
in Sage (using the command load �filename�). The absence of assertion errors
raised by Sage during the computations then proves the claim. �

In the next lemma, we list regularized solutions to (2.9). We will need the
Pochhammer symbol

(a)n :=

n−1∏
i=0

(a+ i), (2.13)

de�ned for n ∈ Z≥0 and a ∈ C.

Lemma 2.7. Let α = k and β = 0 for some k ∈ Z. The di�erential equation

(2.9) has the fundamental solution

1 (2.14)

and other fundamental solutions depending on the sign and the parity of k.

If k ≥ 4 and k is even, further three fundamental solutions are

( v4 )
1−k
2 2F3

(
k+1

2 , 1−k
2 ; 3

2 ,
k
2 ,

3−k
2 ; v

4

)
(2.15)

and the regularized hypergeometric series, that can be analytically continued to

k̃ = k,

( v4 )
−k
2 2F3

(
k
2 ,
−k̃
2 ; 1

2 ,
k−1

2 , 1− k̃
2 ; v

4

)
−

(−k2 )k
2

(k2 )k
2

( 1
2 )k

2

(k−1
2 )k

2

(k2 )!
Γ(1− k̃

2 ) (2.16)
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and

( v4 )
3
2−k 2F3

(
3
2 ,

3
2 − k; 2− k̃

2 ,
5−k

2 , 5
2 − k; v

4

)
(2.17)

−
( 3

2 )k
2−1

( 3
2 − k)k

2−1
Γ(2− k̃

2 )

(2− k
2 )k

2−1
( 5−k

2 )k
2−1

( 5
2 − k)k

2−1
(k2 − 1)!

( v4 )
1−k
2 2F3

(
k+1

2 , 1−k
2 ; 3

2 ,
k
2 ,

3−k
2 ; v

4

)
.

If k ≥ 3 and k is odd, further three fundamental solutions are

( v4 )
−k
2 2F3

(
k
2 ,
−k
2 ; 1

2 ,
k−1

2 , 1− k
2 ; v

4

)
(2.18)

and the regularized hypergeometric series, that can be analytically continued to

k̃ = k,

( v4 )
1−k
2 2F3

(
k+1

2 , 1−k̃
2 ; 3

2 ,
k
2 ,

3−k̃
2 ; v

4

)
−

(k+1
2 )k−1

2

( 1−k
2 )k−1

2

( 3
2 )k−1

2

(k2 )k−1
2

(k−1
2 )!

Γ
(

3−k̃
2

)
(2.19)

and

( v4 )
3
2−k 2F3

(
3
2 ,

3
2 − k; 2− k

2 ,
5−k̃

2 , 5
2 − k; v

4

)
(2.20)

−
( 3

2 )k−3
2

( 3
2 − k)k−3

2

Γ( 5−k̃
2 )

(2− k
2 )k−3

2

( 5
2 − k)k−3

2

(k−3
2 )!

( v4 )
−k
2 2F3

(
k
2 ,
−k
2 ; 1

2 ,
k−1

2 , 1− k
2 ; v

4

)
.

The last regularization is a sum of two well-de�ned hypergeometric series, if k = 3.

If k < 0, then a further fundamental solution is

( v4 )
3
2−k 2F3

(
3
2 ,

3
2 − k; 2− k

2 ,
5−k

2 , 5
2 − k; v

4

)
. (2.21)

If, in addition, k is even, then two further fundamental solutions are

( v4 )
−k
2 2F3

(
k
2 ,
−k
2 ; 1

2 ,
k−1

2 , 1− k
2 ; v

4

)
(2.22)

and the regularized hypergeometric series, that can be analytically continued to

k̃ = k,

( v4 )
1−k
2 2F3

(
k+1

2 , 1−k
2 ; 3

2 ,
k̃
2 ,

3−k
2 ; v

4

)
(2.23)

−
(k+1

2 )1− k2
( 1−k

2 )1− k2
Γ( k̃2 )

( 3
2 )1− k2

( 3−k
2 )1− k2

(1− k
2 )!

( v4 )
3
2−k 2F3

(
3
2 ,

3
2 − k; 2− k

2 ,
5−k

2 , 5
2 − k; v

4

)
.

If k < 0 is odd, two further fundamental solutions are

( v4 )
1−k
2 2F3

(
k+1

2 , 1−k
2 ; 3

2 ,
k
2 ,

3−k
2 ; v

4

)
(2.24)

and the regularized hypergeometric series, that can be analytically continued to

k̃ = k,

( v4 )
−k
2 2F3

(
k
2 ,
−k
2 ; 1

2 ,
k̃−1

2 , 1− k
2 ; v

4

)
(2.25)

−
(−k2 ) 3−k

2
(k2 ) 3−k

2
Γ( k̃−1

2 )

( 1
2 ) 3−k

2
(1− k

2 ) 3−k
2

( 1−k
2 )!

( v4 )
3
2−k 2F3

(
3
2 ,

3
2 − k; 2− k

2 ,
5−k

2 , 5
2 − k; v

4

)
.

If k = 0, then three fundamental solutions are given by (2.21), (2.23) and the

regularized hypergeometric series, that can be analytically continued to k̃ = k,

Γ( k̃2 ) Γ(−k̃2 ) ( v4 )
−k
2 2F3

(
k̃
2 ,
−k̃
2 ; 1

2 ,
k−1

2 , 1− k
2 ; v

4

)
. (2.26)
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Let α = 1
2 and β = k− 1

2 for some k ∈ Z. If k ≥ 3 then the di�erential equation

(2.9) has the fundamental solution

1F2

(
1
2 ; k+1

2 , 1 + k
2 ; v

4

)
. (2.27)

Depending on the parity of k, for even k further three fundamental solutions are

( v4 )
1−k
2 1F2

(
1− k

2 ; 3
2 ,

3−k
2 ; v

4

)
(2.28)

and the two regularized hypergeometric series, that can be analytically continued to

k̃ = k,

( v4 )
−k
2 1F2

(
1−k

2 ; 1
2 , 1−

k̃
2 ; v

4

)
−

( 1−k
2 ) k

2
Γ(1− k̃

2 )

( 1
2 ) k

2
(k2 )!

1F2

(
1
2 ; k+1

2 , 1 + k
2 ; v

4

)
(2.29)

and

( v4 )
3
2−k 2F3

(
1, 2− k̃; 5

2 − k, 2−
k̃
2 ,

5−k
2 ; v

4

)
(2.30)

−
(2− k) k

2−1 Γ(2− k̃
2 )

( 5
2 − k) k

2−1 ( 5−k
2 ) k

2−1

( v4 )
1−k
2 1F2

(
1− k

2 ; 3
2 ,

3−k
2 ; v

4

)
.

For odd k, further three fundamental solutions are

( v4 )
−k
2 1F2

(
1−k

2 ; 1
2 , 1−

k
2 ; v

4

)
(2.31)

and the two regularized hypergeometric series, that can be analytically continued to

k̃ = k,

( v4 )
1−k
2 1F2

(
1− k

2 ; 3
2 ,

3−k̃
2 ; v

4

)
−

(1− k
2 ) k−1

2
Γ( 3−k̃

2 )

( 3
2 ) k−1

2
(k−1

2 )!
1F2

(
1
2 ; k+1

2 , 1 + k
2 ; v

4

)
. (2.32)

and

( v4 )
3
2−k 2F3

(
1, 2− k̃; 5

2 − k, 2−
k
2 ,

5−k
2 ; v

4

)
(2.33)

−
(2− k) k−3

2
Γ( 5−k̃

2 )

( 5
2 − k) k−3

2
(2− k

2 ) k−3
2

( v4 )−
k
2 1F2

(
1−k

2 ; 1
2 , 1−

k
2 ; v

4

)
.

The last regularization is a linear combination of well-de�ned hypergeometric series,

if k = 3.

If k ≤ 0, then three fundamental solutions to the di�erential equation (2.9) are

( v4 )
3
2−k 2F3

(
1, 2− k; 5

2 − k, 2−
k
2 ,

5−k
2 ; v

4

)
, (2.34)

( v4 )−
k
2 1F2

(
1−k

2 ; 1
2 , 1−

k
2 ; v

4

)
and ( v4 )

1−k
2 1F2

(
1− k

2 ; 3
2 ,

3−k
2 ; v

4

)
.

Depending on the parity of k, for even k, a further fundamental solution is the

linear combination of hypergeometric series, that can be analytically continued to

k̃ = k,

1F2

(
1
2 ; k+1

2 , 1 + k̃
2 ; v

4

)
−

( 1
2 )−k

2
Γ(1 + k̃

2 )

(k+1
2 )−k

2
(−k2 )!

( v4 )
−k
2 1F2

(
1−k

2 ; 1
2 , 1−

k
2 ; v

4

)
. (2.35)

The last regularization is a sum of two well-de�ned hypergeometric series, if k = 0.
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For odd k a, further fundamental solution is the linear combination of hyper-

geometric series, that can be analytically continued to k̃ = k,

1F2

(
1
2 ; k̃+1

2 , 1 + k
2 ; v

4

)
−

( 1
2 ) 1−k

2
Γ( k̃+1

2 )

(1 + k
2 ) 1−k

2
( 1−k

2 )!
( v4 )

1−k
2 1F2

(
1− k

2 ; 3
2 ,

3−k
2 ; v

4

)
. (2.36)

Remark 2.8. The cases k = 1 and k = 2 are not treated in Lemma 2.7, because

they are already excluded by the assumptions of Theorem 2.2.

Remark 2.9. It is possible to express some of the linear combinations of hy-

pergeometric functions as Meijer Gmn
p q -functions, explained in [Luk69]. Examples

are the solutions (2.29) and (2.32), which can be expressed in terms of Meijer G2 1
2 4-

functions. By [Luk69, Section 6.5 (1)], they equal

G2 1
2 4

(
− v

4

∣∣∣ 3
2 − k,

1
2

3
2 − k,

1−k
2 , −k2 , 0

)
and G2 1

2 4

(
− v

4

∣∣∣ 3
2 − k,

1
2

3
2 − k,

−k
2 ,

1−k
2 , 0

)
.

Proof of Lemma 2.7. If we can prove that all functions given in the state-
ment of the lemma are well-de�ned and that they are solutions to the di�erential
equation (2.9), we are left with proving their linear independence. In that case,
linear independence follows from the fact that the initial exponent of Laurent ex-
pansion of the given solutions for �xed k are pairwise distinct.

We suppose that we have already proved that all regularizations of hypergeo-
metric functions that occur in the statement of the lemma are well-de�ned for the
corresponding values of k. Under this assumption, we are left with proving that
they are solutions to the di�erential equation (2.9) for h1. The di�erential operators
attached to equation (2.9) is analytic for α = k, β = 0 and α = 1

2 , β = k − 1
2 . By

Lemma 2.5, the hypergeometric series that occur are solutions for all k ∈ C\ 1
2Z. In

other words, the functions vanish under the said di�erential operators for these k.
Since the functions and the operators are analytic, it follows that they are solutions
for all k that we consider.

It is obvious that all (nonregularized) hypergeometric series that occur in the
statement are well de�ned for the corresponding k. Thus we are left with proving
that the regularized hypergeometric series are also well-de�ned. We will consider
the coe�cients of the Laurent expansion with respect to v. It is su�cient to show
that the poles of each such coe�cient considered as a rational function of k ∈ C
cancel at k̃ = k.

We consider (2.16). Thus we assume that k > 3 and 2 | k, and we will be
concerned with functions of k̃. We claim that the limit k̃ → k of the following
function exists:

Γ(1− k̃
2 )−1 ( v4 )

−k
2 2F3

(
k
2 ,
−k̃
2 ; 1

2 ,
k−1

2 , 1− k
2 ; v

4

)
. (2.37)

To compute the limit, consider the Laurent expansion with respect to v:

Γ(1− k̃
2 )−1 ( v4 )

−k
2

·
∞∑
n=0

Γ(n+ k
2 ) Γ(n+ −k̃

2 ) Γ( 1
2 ) Γ(k−1

2 ) Γ(1− k̃
2 )

Γ(k2 ) Γ(−k̃2 ) Γ(n+ 1
2 ) Γ(n+ k−1

2 ) Γ(n+ 1− k̃
2 ) Γ(n+ 1)

(v
4

)n
.

The gamma factor in front of the above expression cancels the one in the numerator
of each addend, and we can employ the limit k̃ → k. The poles of Γ(n− k̃

2 ), which

occurs in the numerator, and Γ(−k̃2 ), which occurs in the denominator, cancel only

if n < 1 − k
2 . On the other hand, Γ(n + 1 − k̃

2 ), which occurs in the denominator,
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has a pole for all n < k
2 . Consequently, after taking the limit we are left with the

coe�cient for n = k
2 . It equals

(k2 )k
2

(−k2 )k
2

( 1
2 )−1
k
2

(k−1
2 )−1

k
2

(k2 )!−1. (2.38)

We conclude that the limit of (2.37) exits and that the pols in (2.16) cancel.
One can prove that all other linear combinations of hypergeometric series are

well-de�ned by exactly the same method. For completeness we list the Laurent
expansions and the limits that occur.

Consider (2.17), thus k > 3 and 2 | k. The regularization

Γ(2− k̃
2 )−1 ( v4 )

3
2−k 2F3

(
3
2 ,

3
2 − k; 2− k̃

2 ,
5−k

2 , 5
2 − k; v

4

)
has the Laurent expansion

Γ(2− k̃
2 )−1 ( v4 )

3
2−k

·
∞∑
n=0

Γ(n+ 3
2 ) Γ(n+ 3

2 − k) Γ(2− k̃
2 ) Γ( 5−k

2 ) Γ( 5
2 − k)

Γ( 3
2 ) Γ( 3

2 − k) Γ(n+ 2− k̃
2 ) Γ(n+ 5−k

2 ) Γ(n+ 5
2 − k) Γ(n+ 1)

(v
4

)n
.

As k̃ → k the coe�cients with n < k
2 − 1 vanish. Hence we replace n by n+ k

2 − 1.
We conclude that the limit equals

( v4 )
3
2−k

∞∑
n=0

Γ(n+ k+1
2 ) Γ(n+ 1−k

2 ) Γ(2− k
2 ) Γ( 5−k

2) Γ( 5
2 − k)

Γ( 3
2 ) Γ( 3

2 − k) Γ(n+ 1) Γ(n+ 3
2 ) Γ(n+ 3−k

2 ) Γ(n+ k
2 )

(v
4

)n
.

By sorting out the correct gamma factors we obtain

( 3
2 )k

2−1
( 3

2 − k)k
2−1

(2− k
2 )−1
k
2−1

( 5−k
2 )−1

k
2−1

( 5
2 − k)−1

k
2−1

(k2 − 1)!−1

· ( v4 )
1−k
2 2F3

(
k+1

2 , 1−k
2 ; 3

2 ,
k
2 ,

3−k
2 ; v

4

)
.

Consider (2.19), thus k > 3 and 2 - k. The regularization

Γ( 3−k̃
2 )−1 ( v4 )

−k
2 2F3

(
k+1

2 , 1−k̃
2 ; 3

2 ,
k
2 ,

3−k̃
2 ; v

4

)
has the Laurent expansion

Γ( 3−k̃
2 )−1 ( v4 )

−k
2

·
∞∑
n=0

Γ(n+ k+1
2 )Γ(n+ 1−k̃

2 )Γ( 3
2 )Γ(k2 )Γ( 3−k̃

2 )

Γ(k+1
2 )Γ( 1−k̃

2 )Γ(n+ 3
2 )Γ(n+ k

2 )Γ(n+ 3−k̃
2 )Γ(n+ 1)

(v
4

)n
.

In analogy with (2.37), the gamma factor Γ(n+ 1−k̃
2 ) Γ( 1−k̃

2 )−1 vanishes as k̃ → k.

if n > k−1
2 , and Γ(n+ 3−k̃

2 )−1 vanishes, if n < k−1
2 . Consequently, the limit of the

above expansion equals

(k+1
2 )k−1

2

( 1−k
2 )k−1

2

( 3
2 )−1
k−1

2

(k2 )−1
k−1

2

(k−1
2 )!−1.

It follows that the pols in (2.19) cancel.
Consider (2.20), thus k > 3 and 2 - k. The regularization

Γ( 5−k̃
2 )−1 ( v4 )

3
2−k 2F3

(
3
2 ,

3
2 − k; 2− k

2 ,
5−k̃

2 , 5
2 − k; v

4

)
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has the Laurent expansion

Γ( 5−k̃
2 )−1 ( v4 )

3
2−k

·
∞∑
n=0

Γ(n+ 3
2 ) Γ(n+ 3

2 − k) Γ(2− k
2 ) Γ( 5−k̃

2 ) Γ( 5
2 − k)

Γ( 3
2 ) Γ( 3

2 − k) Γ(n+ 2− k
2 ) Γ(n+ 5−k̃

2 ) Γ(n+ 5
2 − k) Γ(n+ 1)

(v
4

)n
.

Since as k̃ → k the coe�cients with n < k−3
2 vanish, we shift the sum accordingly,

and we obtain

( 3
2 )k−3

2

( 3
2 − k)k−3

2

(2− k
2 )−1
k−3

2

(k−3
2 )!−1 ( 5

2 − k)−1
k−3

2

· ( v4 )
−k
2 2F3

(
k
2 ,
−k
2 ; 1

2 ,
k−1

2 , 1− k
2 ; v

4

)
.

We conclude that the poles in (2.20) cancel.
Consider (2.23), thus k < 0 and 2 | k. The regularization

Γ( k̃2 )−1 ( v4 )
1−k
2 2F3

(
k+1

2 , 1−k
2 ; 3

2 ,
k̃
2 ,

3−k
2 ; v

4

)
has the Laurent expansion

Γ( k̃2 )−1 ( v4 )
1−k
2

·
∞∑
n=0

Γ(n+ k+1
2 ) Γ(n+ 1−k

2 ) Γ( 3
2 ) Γ( k̃2 ) Γ( 3−k

2 )

Γ(k+1
2) Γ( 1−k

2 ) Γ(n+ 3
2 ) Γ(n+ k̃

2 ) Γ(n+ 3−k̃
2 ) Γ(n+ 1)

(v
4

)n
.

The coe�cients with n < 1− k
2 vanish as k̃ → k. Hence the limit equals

(k+1
2 )1− k2

( 1−k
2 )1− k2

( 3
2 )−1

1− k2
(1− k

2 )!−1 ( 3−k
2 )−1

1− k2

· ( v4 )
3
2−k 2F3

(
3
2 ,

3
2 − k; 2− k

2 ,
5−k

2 , 5
2 − k; v

4

)
.

Consider (2.25), thus k < 0 and 2 - k. The regularization

Γ( k̃−1
2 ) ( v4 )

−k̃
2 2F3

(
k
2 ,
−k
2 ; 1

2 ,
k̃−1

2 , 1− k
2 ; v

4

)
has the Laurent expansion

Γ( k̃−1
2 )−1 ( v4 )

−k
2

·
∞∑
n=0

Γ(n+ k
2 ) Γ(n+ −k

2 ) Γ( 1
2 ) Γ( k̃−1

2 ) Γ(1− k
2 )

Γ(k2 ) Γ(−k2 ) Γ(n+ 1
2 ) Γ(n+ k̃−1

2 ) Γ(n+ 1− k
2 ) Γ(n+ 1)

(v
4

)n
.

The coe�cients with n < 3−k
2 vanish as k̃ → k. Hence the limit equals

(−k2 ) 3−k
2

(k2 ) 3−k
2

( 1
2 )−1

3−k
2

(1− k
2 )−1

3−k
2

( 1−k
2 )!−1

· ( v4 )
3
2−k 2F3

(
3
2 ,

3
2 − k; 2− k

2 ,
5−k

2 , 5
2 − k; v

4

)
.

We conclude that the poles in (2.25) cancel.
Consider (2.26), thus k = 0. The regularized hypergeometric series in (2.26)

has the Laurent expansion

Γ( k̃2 ) Γ(−k̃2 ) ( v4 )
−k
2

·
∞∑
n=0

Γ(n+ k̃
2 ) Γ(n+ −k̃

2 ) Γ( 1
2 ) Γ(k−1

2 ) Γ(1− k
2 )

Γ( k̃2 ) Γ(−k̃2 ) Γ(n+ 1
2 ) Γ(n+ k−1

2 ) Γ(n+ 1− k
2 )

(v
4

)n
.

The limit k̃ → k is well-de�ned, since the poles of the gamma factors Γ( k̃2 ) and

Γ(−k̃2 ) cancel.
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Consider (2.29), thus k > 3 and 2 | k. The regularization

Γ(1− k̃
2 )−1 ( v4 )

−k
2 1F2

(
1−k

2 ; 1
2 , 1−

k̃
2 ; v

4

)
has the Laurent expansion

Γ(1− k̃
2 )−1 ( v4 )

−k
2

·
∞∑
n=0

Γ(n+ 1−k
2 ) Γ( 1

2 ) Γ(1− k̃
2 )

Γ( 1−k
2 ) Γ(n+ 1

2 ) Γ(n+ 1− k̃
2 ) Γ(n+ 1)

(v
4

)n
.

As k̃ → k the coe�cients vanish, if n < k
2 . Hence employing the limit k̃ → k, we

obtain

( 1−k
2 ) k

2
( 1

2 )−1
k
2

(k2 )!−1
1F2

(
1
2 ; 1+k

2 , 1 + k
2 ; v

4

)
.

It follows that the poles in (2.29) cancel.
Consider (2.30), thus k > 3 and 2 | k. The regularization

Γ(2− k̃
2 )−1 ( v4 )

3
2−k 2F3

(
1, 2− k̃; 5

2 − k, 2−
k̃
2 ,

5−k
2 ; v

4

)
has the Laurent series expansion

Γ(2− k̃
2 )−1 ( v4 )

3
2−k

·
∞∑
n=0

Γ(n+ 2− k̃) Γ( 5
2 − k)Γ(2− k̃

2 ) Γ( 5−k
2 )

Γ(2− k̃) Γ(n+ 5
2 − k) Γ(2− k̃

2 ) Γ(n+ 5−k
2 )

(v
4

)n
.

As before, we conclude that all coe�cients with n < k
2 − 1 vanish as k̃ → k. If

n > 2− k the poles of Γ(2− k̃
2 ) and Γ(2− k̃) cancel. Hence taking the limit k̃ → k,

we get

(2− k) k
2−1 ( 5

2 − k)−1
k
2−1

( 5−k
2 )−1

k
2−1

( v4 )
1−k
2 1F2

(
1− k

2 ; 3
2 ,

3−k
2 ; v

4

)
.

Consequently, the poles in (2.30) cancel.
Consider (2.32), thus k > 3 and 2 - k. The regularization

Γ( 3−k̃
2 )−1( v4 )

1−k
2 1F2

(
1− k

2 ; 3
2 ,

3−k̃
2 ; v

4

)
has the Laurent expansion

Γ( 3−k̃
2 )−1 ( v4 )

1−k
2

∞∑
n=0

Γ(n+ 1− k
2 ) Γ( 3

2 ) Γ( 3−k̃
2 )

Γ(1− k
2 ) Γ(n+ 3

2 ) Γ(n+ 3−k̃
2 )Γ(n+ 1)

(v
4

)n
.

The coe�cients for n < k−1
2 vanish as k̃ → k. Hence taking the limit of the above

expansion, we obtain

(1− k
2 ) k−1

2
( 3

2 )−1
k−1
2

(k−1
2 )!−1

1F2

(
1
2 ; 1+k

2 , 1 + k
2 ; v

4

)
.

Consequently, the poles in (2.32) cancel.
Consider (2.33), thus k > 3 and 2 - k. The regularization

Γ( 5−k̃
2 )−1 ( v4 )

3
2−k 2F3

(
1, 2− k; 5

2 − k, 2−
k
2 ,

5−k̃
2 ; v

4

)
has the Laurent expansion

Γ( 5−k̃
2 )−1 ( v4 )

3
2−k̃

·
∞∑
n=0

Γ(n+ 2− k̃) Γ( 5
2 − k) Γ(2− k

2 ) Γ( 5−k̃
2 )

Γ(2− k̃) Γ(n+ 5
2 − k) Γ(n+ 2− k

2 ) Γ(n+ 5−k̃
2 )

(v
4

)n
.
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The coe�cients with n < k−3
2 vanish as k̃ → k. If n > 2− k, the poles of Γ(2− k̃)

and Γ( 5−k̃
2 ) cancel. Hence the limit of the above series equals

(2− k) k−3
2

( 5
2 − k)−1

k−3
2

(2− k
2 )−1

k−3
2

( v4 )−
k
2 1F2

(
1−k

2 ; 1
2 , 1−

k
2 ; v

4

)
We conclude that the poles in (2.33) cancel.

Consider (2.35), thus k < 0 and 2 | k. The regularization

Γ(1 + k̃
2 )−1

1F2

(
1
2 ; 1+k

2 , 1 + k̃
2 ; v

4

)
has the Laurent expansion

Γ(1 + k̃
2 )−1

∞∑
n=0

Γ(n+ 1
2 ) Γ( 1+k

2 ) Γ(1 + k̃
2 )

Γ( 1
2 ) Γ(n+ 1+k

2 ) Γ(n+ 1 + k̃
2 )

(v
4

)n
.

The coe�cients with n < k
2 vanish as k̃ → k. Hence the limit of the above series

equals

( 1
2 )−k

2
(k+1

2 )−1
−k
2

(−k2 )!−1 ( v4 )
−k
2 1F2

(
1−k

2 ; 1
2 , 1−

k
2 ; v

4

)
.

It follows that the poles in (2.35) cancel.
Consider (2.36), thus k < 0 and 2 - k. The regularization

Γ( k̃+1
2 )−1

1F2

(
1
2 ; k̃+1

2 , 1 + k
2 ; v

4

)
has the Laurent expansion

Γ( k̃+1
2 )−1

∞∑
n=0

Γ(n+ 1
2 ) Γ( 1+k̃

2 ) Γ(1 + k
2 )

Γ( 1
2 ) Γ(n+ 1+k̃

2 ) Γ(n+ 1 + k
2 )

(v
4

)n
.

The coe�cients with n < k−1
2 vanish as k̃ → k. Consequently, the limit equals

( 1
2 ) 1−k

2
(1 + k

2 )−1
1−k
2

( 1−k
2 )!−1 ( v4 )

−k
2 1F2

(
1−k

2 ; 1
2 , 1−

k
2 ; v

4

)
.

We conclude that the poles in (2.36) cancel. �

From this proof we immediately conclude:

Corollary 2.10. The function (2.17), up to addition of a polynomial, is a

multiple of (2.15). The same holds for the pairs of functions (2.20) and (2.18),

(2.23) and (2.21), (2.25) and (2.21), (2.29) and (2.27), (2.30) and (2.28), (2.32)

and (2.27), (2.33) and (2.31), (2.35) and the second function in (2.34), and (2.36)

and the third function in (2.34).

Of cause, we need the solutions to all other di�erential equations in Theo-
rem 2.2, that turn out to be much easier to solve. We need the Whittaker functions
Wκ,µ and Mκ,µ, which, by de�nition, solve the di�erential equation

φ′′ +
(
− 1

4 + κu−1 +
(

1
4 − µ

2
)2
u−2

)
φ = 0. (2.39)

We have Wκ,µ(u)→ 0 as u→ 0, whereas Mκ,µ grows rapidly towards in�nity.

Lemma 2.11. Let α = k and β = 0. The space of functions φ(u) and ψ(u) in

(2.3) is spanned by

u
k−3
2 W k

2 ,1−
k
2
(2u), u

k−3
2 M k

2 ,1−
k
2
(2u), (2.40)

and

u
−k
2 W k

2 ,
1−k
2

(2u), u
−k
2 M k

2 ,
1−k
2

(2u), (2.41)
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respectively.

The space of functions g0(u) in (2.4) is spanned by

u1−k
∫ ∞
u

ũ−1Wk, 32−k
(2ũ) dũ, u1−k

∫ 1

u

ũ−1Wk, 32−k
(2ũ) dũ, and (2.42)

u1−k
∫ 1

u

ũ−1Mk, 32−k
(2ũ) dũ.

Let α = 1
2 and β = k − 1

2 . The space of functions φ(u) and ψ(u) in (2.3) is

spanned by

u
k−3
2 W 1−k

2 ,1− k2
(2u), u

k−3
2 M 1−k

2 ,1− k2
(2u), (2.43)

and

u
−α−β

2 W 1−k
2 , 1−k2

(2u), u
−α−β

2 M 1−k
2 , 1−k2

(2u), (2.44)

respectively.

The space of functions g0(u) in (2.4) is spanned by

u1−k
∫ ∞
u

ũ−1W1−k, 32−k
(2ũ) dũ, u1−k

∫ 1

u

ũ−1W1−k, 32−k
(2ũ) dũ, and (2.45)

u1−k
∫ 1

u

ũ−1M1−k, 32−k
(2ũ) dũ.

Remark 2.12. Some of the Whittaker functions can be expressed in terms of

incomplete gamma functions or exponentials. See [BRR11a] for details in the skew

case.

Proof. We start reformulating the di�erential equations for φ and ψ in (2.3).
Set φ(u) = u

α+β−3
2 φ̃(2u) and ψ(u) = u

−α−β
2 ψ̃(2u). In order to treat φ̃, we abbreviate

l = α+β−3
2 , and deduce from the di�erential equation for φ that

0 = u
(
l(l − 1)ul−2 φ̃(2u) + 2lul−1 φ̃′(2u) + ul φ̃′′(2u)

)
+ (3− α− β)

(
lul−1 φ̃(2u) + ul φ̃′(2u)

)
+ (α− β − u) φ̃(2u).

Since we have u 6= 0, we can deduce that

0 = φ̃′′(2u) +
(
− 1

4 + α−β
2 (2u)−1 +

(
1
4 − (1− α+β

2 )2
)
(2u)−2

)
φ̃(2u). (2.46)

Let now l = −α−β
2 , and consider the di�erential equation for ψ:

0 = u
(
l(l − 1)ul−2 ψ̃(2u) + 2lul−1 ψ̃′(2u) + ul ψ̃′′(2u)

)
+ (α+ β)

(
lul−1ψ̃(2u) + ulψ̃′(2u)

)
+ (α− β − u) ψ̃(2u).

Reordering the terms, we obtain

0 = ψ̃′′(2u) +
(
− 1

4 + α−β
2 (2u)−1 +

(
1
4 − ( 1

2 −
α+β

2 )2
)
(2u)−2

)
ψ̃(2u). (2.47)

The di�erential equation for φ in (2.4) can be easily manipulated to yield

0 = φ̃′′(2u) +
(
− 1

4 + (α− β)(2u)−1
(

1
4 − ( 3

2 − (α+ β))2
)
(2u)−2

)
φ̃(2u). (2.48)

From (2.46), (2.47) and (2.48), we recognize the Whittaker di�erential equa-
tion (2.39). The parameters are κ = α−β

2 , µ = ±(1 − α+β
2 ) in the �rst case,
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κ = α−β
2 , µ = ±( 1

2 −
α+β

2 ) in the second case, and κ = α− β, µ = ±( 3
2 − (α+ β))

in the last case. This proves all claims concerning Whittaker functions.
Finally, one obtains the solution for g0 directly from solutions above, since the

equation ψ′(u) = u−1φ(u) involves only the derivative of ψ. �

3. Fourier expansions of harmonic Siegel modular forms

So far, we have concentrated on arbitrary Fourier expansions that are harmonic
in the sense that they are in the kernel of either Ωk or Ωsk

k . The space of solutions
is still quite large and di�cult to work with. In particular, the case of inde�nite
Fourier indices, that was treated in Lemma 2.7, has turned out to be complicated.
On the other hand, we have only made use of one and a half properties that har-
monic Siegel modular forms have by de�nition. Fourier expansions occur in the
theory of Siegel modular forms as a consequence of invariance under the unipotent
part of Sp2(Z). It is striking that we will need invariance under the full modular
group to exclude the solution to the wave equation that occurred in Maaÿ's theo-
rem (see (2.2)). A third property shared by all harmonic Siegel modular forms is
the growth condition in De�nition 1.1. It is a surprisingly di�cult to determine
the growth of the Fourier coe�cients that the solutions to (2.4) and (2.5) give rise
to. Already Maaÿ [Maa53] asked what the properties of these Fourier coe�cients
were as Z approaches the boundary of the Siegel upper half space. The proof of
Theorem 3.1 gives a satisfying answer to this question.

A weak form of Theorem 3.1 was already proved in [BRR11a]. In that work,
the author and his collaborators not only restricted their attention to the skew slash
action, but they also needed to impose a further, technical condition on ξ

(2),sk
k f .

The version that we present does not depend on this condition anymore.
The next theorem sharpens Theorem 2.2 in the case of harmonic Siegel-Maaÿ

forms. Note that the exponentials of the Fourier series expansions in Theorem 2.2
and 3.1 di�er by 2π.

Theorem 3.1. Suppose that k 6= 1, 2. Let

f(Z) =
∑
T

a(Y, T ) e2πi tr(TX) ∈Mk.

(i) If T = 0, then a(Y, 0) is contained in the two dimensional space spanned

by

detY
3
2−k and 1. (3.1)

(ii) If rk(T ) = 1 and T ≥ 0 then a(Y, T ) is contained in a two dimension

space spanned by

det(Y )
3
2−ku

k−3
2 W k

2 ,1−
k
2
(4πu) and u

−k
2 W k

2 ,
1−k
2

(4πu). (3.2)

(iii) If rk(T ) = 2 and T > 0, then a(Y, T ) is a multiple of

∞∑
n=0

gn(2πu) (4π2v)n,

where gn is de�ned by the recursion in (iii) of Theorem 2.2 and

g0(u) = u1−k
∫ ∞
u

ũ−1Wk, 32−k
(2ũ) dũ.
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(iv) If rk(T ) = 2 and T is inde�nite, then a(Y, T ) is contained in a one-

dimensional space depending on T only. If k < 0 is even, this space is

spanned by the corresponding Fourier coe�cients of P
(2)

k, 32−k
.

Let

f(Z) =
∑
T

a(Y, T ) e2πi tr(TX) ∈Msk
k .

(i) If T = 0, a statement like in the above case (i) holds. That is, a(Y, 0) is

contained in the two dimensional space spanned by

detY
3
2−k and 1. (3.3)

(ii) If rk(T ) = 1 and T ≥ 0 then a(Y, T ) is contained in a two dimension

space spanned by

det(Y )
3
2−ku

k−3
2 W 1−k

2 ,1− k2
(2u) and u

−α−β
2 W 1−k

2 , 1−k2
(2u). (3.4)

(iii) If rk(T ) = 2 and T > 0, then a(Y, T ) is a multiple of

∞∑
n=0

gn(2πu) (4π2v)n,

where gn is de�ned by the recursion in (iii) of Theorem 2.2 and

g0(u) = u1−k
∫ ∞
u

ũ−1W1−k, 32−k
(2ũ) dũ.

(iv) If rk(T ) = 2 and T is inde�nite, then a(Y, T ) is contained in a one-

dimensional space depending on T only. If k 6= 1, 3 is odd, this space is

spanned by the corresponding Fourier coe�cients of P
(2),sk
k,0 (for k > 3)

and P
(2),sk

k, 32−k
(for k < 0).

To prove this theorem, we will need the next lemmas. We write (p)j for the jth

coe�cient of a polynomial p.

Lemma 3.2. Suppose that a sequence of Laurent polynomials ln in u satis�es a

recursion of the form

ln+1 =

D∑
d=0

pn,d l
(d)
n ,

where D ∈ Z≥0 and the pn,d are Laurent polynomials in u. Furthermore, suppose

that deg
u
pn,0 = 0 and deg

u
pn,d < d for d 6= 0. Assume that the valuation of

all pn,d, denoted by valu(pn,d), is uniformly bounded, and let V be a lower bound

on valu(pn,d) − d. Suppose that (n|V |)d · pn,d has uniformly bounded coe�cients

as n → ∞. If the leading coe�cients of l0 and pn,0 are positive, then there is a

constant κ such that the series

∞∑
n=0

ln ·
(u
κ

)n
(3.5)

is well-de�ned as a formal Laurent series and it has bounded coe�cients

55



If, in addition,(
n− i+ #{(d, j) : (pñ,d)j 6= 0 for some ñ} − 1

n− i

)

·
(
|V |+ |deg

u
l0|+ (deg

u
l0 − valul0)

)n−i( n+j∏
n′=j+1

(pn′,0)0

)(
max

(d,j)6=(0,0)
hd,j

)n−i
(3.6)

is bounded for n ≥ 1, j ≥ deg
u
l0, and 0 ≤ i ≤ min{n, deg

u
l0 − valul0}, where the

�rst factor is the usual binomial coe�cient and

hd,j :=

(
n+j∑
n′=0

(n′ + 1)d
∣∣(pn′,d)j∣∣

(pn′,0)0

) 1
d−j

,

then κ can be chosen such that, in addition, all coe�cients of uj with j > deg
u
l0

in (3.5) are positive.

Proof. SetDl := deg
u
l0 and Vl := valul0. By assumption on the degrees of the

pn,d, all ln have degree less than or equal to Dl. We can deduce by induction from
the assumption on the leading coe�cient of pn,0 that the leading coe�cients of the
ln are all positive. Let B1 > 1 be a bound on the absolute values of the coe�cients
of l0 such that B−1

1 < (l0)Dl . Let B2 > 1 be a bound on the absolute value of(
|Vl|+ |Dl|+n|V |

)∑
d,j

∣∣(pn,d)j∣∣ for all n. Note that the valuation of ln is bounded
by Vl +nV . Using mathematical induction, we can prove that the coe�cients of ln
have absolute values bounded by B1B

n
2 . Set κ = 2B2. The absolute value of the

jth coe�cient in (3.5) is given by∣∣∣ ∞∑
n=0

(ln)j−n
κn

∣∣∣ ≤ ∞∑
n=0

B1B
n
2

κn
≤ 2B1.

Hence the series (3.5) is, indeed, well-de�ned, and the absolute values of its coe�-
cients are bounded by 2B1.

To prove the positivity of the coe�cients for uj with su�ciently large j suppose
that (3.6) is bounded. Let B3 > 1 be a bound for (3.6) valid for all n ≥ 1 and
j ≥ Dl.

We �rst bound (ln+j)Dl−n for all n ≥ 1 and j ≥ Dl. Recall that a multiset is
a set, where elements can occur with multiplicity di�erent from 1. In particular,
sums ranging over multisets respect these multiplicities. Set

DJ(ñ) :=
{
multiset S of pairs (d, j) 6= (0, 0) :∑

(d,j)∈S

(d− j) = ñ, ∀(d, j) ∈ S : (pn,d)j 6= 0 for some n
}
.

We �nd that
∣∣(ln+j)Dl−n

∣∣ is bounded by

min{n,Dl−Vl}∑
i=0

(l0)Dl−i

( n+j∏
n′=0

(pn′,0)0

)

·
∑

S∈DJ(n−i)

∏
(d,j)∈S

n+j∑
n′=0

(
|V |(n′ + 1) + i+ |Dl|

)d∣∣(pn′,d)j∣∣
(pn′,0)0

. (3.7)
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We explain how to obtain this estimate. The �rst factor, (l0)Dl−i, is the coe�cient
of l0 that the contribution to (ln+j)Dl−n originates in. The second factor is the
product of the leading coe�cients of pn′,0's. It originates in the fact that the
recursion formula for ln+1 will result in either multiplication of the coe�cients of
ln by (pn′,0)0, or di�erentiation and multiplication by negative power of u. The
last factor captures the latter contribution. The elements of DJ(n − i) re�ect all
possible ways to lower the exponent of u in (l0)Dl−i u

Dl−i to Dl − n, which is the
exponent of u showing up in (ln+j)Dl−n u

Dl−n. The most inner sum re�ects the
fact that operations lowering the power of u can occur in any step of the recursion.

The sum over DJ(n− i) in (3.7) can be estimated as follows: The inner sum is

replaces by its
(
1/(d−j)

)th
power, yielding hd,j , and the product over the (d, j) ∈ S

is replaced by the (n − i)th power of the maximum of all hd,j 's. This gives rise to
the next estimate:

(ln+j)Dl−n ≤
min{n,Dl−Vl}∑

i=0

(l0)Dl−i

( n+j∏
n′=0

(pn′,0)0

)
·
(
|V |+ i+ |Dl|)

)n−i ∑
S∈DJ(n−i)

(
max
d,j

hd,j

)n−i
.

The cardinality of DJ(n− i) is bounded by:(
n− i+ #{(d, j) : (pñ,d)j 6= 0 for some ñ}

n− i

)
.

In other words,
∣∣(ln+j)Dl−n

∣∣ ≤ (Dl − Vl)B1B3

∏j
n′=0(pn′,0)0.

We replace κ by max{κ, 3(Dl − Vl)B2
1B3}, so that

(ln+j)Dl−nκ
−n ≤ 3−n(l0)Dl

j∏
n′=0

(pn′,0)0 = 3−n(lj)Dl

for all n > 0. With this κ, the positivity of all the coe�cients of uj with j ≥ Dj

in (3.5) follows from

(lj−Dl)Dl
κj−Dl

−
∣∣∣ ∞∑
n=j−Dl+1

(ln)j−n
κn

∣∣∣
≥
( 1

κ

)j−Dl (
(lj−Dl)Dl −

∞∑
n=1

|(lj−Dl+n)Dl−n|
κn

)

≥
( 1

κ

)j−Dl
(lj−Dl)Dl

2

3
≥ 0. �

Lemma 3.3. For l0 with deg
u
l0 = 0 and (l0) > 0, the recursions in (iii) and (iv)

of Theorem 2.2 satisfy the assumptions of Lemma 3.2.

Proof. Is su�ces to show that

(n− i)32n(n+ j)
3
2 (n−i)

(j + 1)2
n

≤ n32n(n+ j)
3
2n

(j + 1)2
n

is bounded for n, j ≥ 1. When writing the Pochhammer symbol as a quotient of
factorials, this is immediate from Stirling's formula. �
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Lemma 3.4. Up to multiplicative scalars, almost all coe�cients of the Laurent

expansion of (2.35) and the second function in (2.34), and (2.36) and the third

function in (2.34) are equal.

Proof. The poles of the coe�cients of one series are canceled by another
one, that is multiplied with a suitable gamma factor. The claim follows, since the
Taylor expansions of the gamma factors around k̃ = k have a nonvanishing constant
term. �

Lemma 3.5. If k ≤ 0 is even, the quotient of the coe�cient of vn of the Laurent

expansion of

( v4 )
3
2−k2F3

(
1, 2− k; 5

2 − k, 2−
k
2 ,

5−k
2 ; v

4

)
and the coe�cient of vn of the Laurent expansion of

( v4 )
1−k
2 1F2

(
1− k

2 ; 3
2 ,

3−k
2 ; v

4

)
tends to zero as n→∞ through half-integral numbers.

If k ≤ 0 is odd, the quotient of the coe�cient of vn of the Laurent expansion of

( v4 )
3
2−k2F3

(
1, 2− k; 5

2 − k, 2−
k
2 ,

5−k
2 ; v

4

)
and the coe�cient of vn of the Laurent expansion of

( v4 )−
k
2 1F2

(
1−k

2 ; 1
2 , 1−

k
2 ; v

4

)
tends to zero as n→∞ through half-integral numbers.

In particular, any linear combination of the �rst and the second, or the third

and the fourth hypergeometric series grows rapidly as v→∞.

Proof. Assume that k is even. Up to addition of a polynomial, the second
hypergeometric function equals

( v4 )
3
2−k1F2

(
2− k; 5−k

2 , 5
2 − k; v

4

)
.

Consequently, the quotient of the coe�cient of vñ with ñ = n+ 3
2−k asymptotically

equals

Γ(ñ+ 1) Γ(ñ+ 2− k
2 )−1 = (ñ+ 2− k

2 )−1

1−k2
,

which tends to zero as ñ→∞.
In the case of 2 - k, a similar argument works, since the second hypergeometric

series equals, up to a polynomial,

( v4 )
3
2−k1F2

(
2− k; 2− k

2 ,
5−k

2 ; v

4

)
.

The rapid growth of the linear combinations of the hypergeometric series in the
lemma follows, since the coe�cients of said linear combinations are ultimately all
positive or all negative. �

Proof of Theorem 3.1. The statements (i) are based on a computer as-
sisted proof. The Sage script, which makes use of Singular [DGPS10] and Plu-
ral [LS03], can be found in Section 4 of Appendix A. The script is written in such a
way that it can be loaded directly in Sage (using the command load �filename�).
The absence of assertion errors raised by Sage during the computations proves the
claim.
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To prove the other statements we will analyze the growth of potential Fourier
coe�cients. The Fourier coe�cients of a Siegel modular form f of degree 2 are
given by the integral

a(Y, T ) =

∫
R3

f(Z)e(−tr(TX)) dX.

Thus any a(Y, T ) that occurs in the Fourier expansion of a harmonic Siegel modular
form is bounded from above by a tr(Y )c for some a, c ∈ R for tr(Y ) → ∞, that is,
it does not grow rapidly.

The statements (ii) follow directly from the growth of Whittaker functions.
TheM -Whittaker function grows rapidly as u→∞ as was stated after the de�ning
di�erential equation (2.39). Hence it does not occur in the Fourier expansion of a
harmonic Siegel modular form.

For the same reason, in the cases (iii), the solutions in (2.42) and (2.45) that
include the M -Whittaker function do not occur. Indeed, in the series expansion
(2.4) we may set v = 0. In this special case, the growth condition for harmonic
Siegel modular form reduces to a growth condition for g0.

Suppose that both of the functions in (2.4) that involve theW -Whittaker func-
tion occur as functions g0 for coe�cients a(Y, T ) of a harmonic Siegel modular form.
Then, in particular, their di�erence, which is a nonzero multiple of u1−k, occurs.
For l0 = u1−k and the recursion in (iii) of Theorem 2.2, choose κ according to the
second part of Lemma 3.2 and Lemma 3.3. We may set v = uκ−1 in the series

∞∑
n=0

ln(u)vn,

that still converges locally absolutely by Theorem 2.2. By the choice of κ, all coef-
�cients cj of this series for j su�ciently large are positive. Thus this specialization
grows rapidly for u → ∞. This contradicts the assumption that neither of the
initial functions g0 leads to a rapidly growing Fourier coe�cient. Thus both cases
(iii) are proved.

Consider the cases (iv). We �rst argue that for every k ∈ Z, three fundamental
solutions to (2.9) that are listed in Lemma 2.7 lead to rapidly growing Fourier
coe�cients a(T, Y ). This follows, if the solution is a polynomial using Lemma 3.2
and 3.3. If it is a nonpolynomial hypergeometric series or it di�ers from such a series
by a polynomial only, it follows by setting u = 0 and the fact that nonpolynomial
hypergeometric series grow rapidly towards in�nity.

By Corollary 2.10, in the case β = 0, the following sets span a space of functions,
that either grow rapidly or are polynomials:

• If k ≥ 4 and k is even, the fundamental solutions (2.14), (2.15), and
(2.17) form such a set.

• If k ≥ 3 and k is odd, the fundamental solutions (2.14), (2.18), and (2.20)
form such a set.

• If k = 0, the fundamental solutions (2.14), (2.21), and (2.23) form such
a set.

• If k < 0 and k is even, the fundamental solutions (2.14), (2.21), and
(2.23) form such a set.

• If k < 0 and k is odd, the fundamental solutions (2.14), (2.21), and (2.25)
form such a set.

Using Lemma 3.2 and 3.3 as indicated above, the theorem follows in the case β = 0.
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The same argument works if α = 1
2 in the following cases:

• If k ≥ 4 and k is even, a set as above is formed by the fundamental
solutions (2.27), (2.28), and (2.29).

• If k ≥ 3 and k is odd, a set as above is formed by the fundamental
solutions (2.27), (2.31), and (2.32).

We have to use a di�erent argument if k ≤ 0. Suppose that k is even. By Lemma
3.5, any nonzero linear combination of the �rst and third solution in (2.34) grows
rapidly. Using Corollary 2.10, we �nd that the third solution in (2.34) and (2.35)
di�er by a polynomial. If k is odd, the same argument works with the �rst and
second solution in (2.34) and (2.36).

Thus all cases of the theorem are proved. �
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CHAPTER 5

Fourier-Jacobi expansions

In [Koh94], Kohnen analyzed a family of Jacobi Poincaré series by relating
them to Siegel Eisenstein series. His main motivation was to obtain information
about the former. In [Koh93], he gave a reinterpretation of his results, generalizing
the notion of Fourier-Jacobi expansions of holomorphic Siegel modular forms to
real-analytic Siegel Eisenstein series. A fundamental question that he asked was
whether this provides a possibility to de�ne Fourier-Jacobi expansions for arbitrary
real-analytic Siegel modular forms. Kohnen left open what a real-analytic Siegel
modular form should be. In Chapter 4, we have given a de�nition of harmonic Siegel
modular forms, and we will now prove that under mild assumptions, we can employ
the method suggested by Kohnen to obtain Fourier-Jacobi expansions of harmonic
Siegel modular forms. At the time [Koh94] was published only harmonic elliptic
modular forms were known, and no other type of harmonic modular forms. In
particular, Kohnen could not realize that the Jacobi forms that show up as Fourier-
Jacobi coe�cients of degree 2 Siegel Eisenstein series are harmonic Maaÿ-Jacobi
forms, which we have de�ned in Chapter 3. We will prove that this is the case.
This discovery provides a link between harmonic Siegel modular forms and Jacobi
forms and justi�es the notion of harmonicity that we have introduced.

Furthermore, in Section 1, we will generalize Kohnen's result to Fourier-
Jacobi expansions with matrix indices. The procedure that we suggest gives semi-
holomorphic (skew-)Maaÿ-Jacobi forms, substantiating our claim concerning their
outstanding role in the theory of all harmonic Maaÿ-Jacobi forms.

1. Fourier-Jacobi expansions of Eisenstein series

Given any function f ∈ C∞(Hn) that is invariant under the slash action of the
modular group Γ(n), we can form a nonholomorphic Fourier Jacobi expansion

f(Z) =
∑
m∈Z

e2πimx′ φm(τ, z, y′), (1.1)

where x′ + iy′ = τ ′ ∈ H1, τ ∈ Hn−1 and z ∈ Cn−1 are the entries of Z ∈ Hn. For
later use, we de�ne FJm(f) := φm. In the classical, that is, holomorphic, case the
φm split as products

φm(τ, z, y′) = e−2πmy′ φ̃m(τ, z),

leading to the desirable expansion

f(Z) =
∑
m∈Z

e2πimτ ′ φ̃m(τ, z),

where the φ̃m do not depend on τ ′ and hence can be considered as easier than f .
The quintessence of Kohnen's work, from our perspective, is given in the next

theorem. Recall that EJ
α,β,m denotes the real-analytic Jacobi Eisenstein series de-

�ned in (7.2) of Chapter 3. The following linear combination of these Eisenstein
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series will show up:

ẼJ
α,β,m :=

∑
t2|m
t>0

σα+β−1(mt2 )
∑
e|t
e>0

µ(e) ( et )
2β EJ

α,β,e2t−2m( t
2

e2 τ,
t
ez). (1.2)

Further, we write ζ for the Riemann ζ-function.

Theorem 1.1 ([Koh94]). Let

det(Y )βE
(n)
α,β(Z) =

∑
m∈Z

e2πimx′φm(τ, z, y′)

be the nonholomorphic Fourier-Jacobi expansion of the modi�ed Siegel Eisenstein

series with α+ β > n+ 1, and assume that 2 | α− β. Then

lim
y′→∞

e2πmy′φm(τ, z, y′)

exits. It equals

(−1)
α−β

2 (2π)α+β

Γ(α)
ζ(α+ β)−1 det(y)βẼJ

α,β,m. (1.3)

Proof. This is (18) and Proposition 1 in [Koh94]. �

We will call the process of taking the nonholomorphic Fourier-Jacobi expansion
and then employing the limit given in Theorem 1.1 the Kohnen limit process. In all
cases under consideration it yields a semi-holomorphic (skew-)Maaÿ-Jacobi form.
For this reason, we will call the limit, multiplied by det(Y )−β , the mth Fourier-
Jacobi coe�cient, even though it does not occur in the nonholomorphic Fourier-
Jacobi expansion of the original function. Nevertheless, it can be interpreted as a
Fourier-Jacobi coe�cient in an in�nitesimal neighborhood of the Satake boundary,
and it preserves most of the information about f .

Remark 1.2. In Section 7 of Chapter 3, we have seen that the Poincaré Eisen-

stein series P J
k,s,m = det(y)sEJ

k+s,s,m is a harmonic Maaÿ-Jacobi form and that

P J,sk
k,s,m = det(y)sEJ

1
2 +s,k− 1

2 +s,m
is a harmonic skew-Maaÿ-Jacobi form, if s = 0

or s = 3
2 − k. Thus the above theorem shows that semi-holomorphic harmonic

(skew-)Maaÿ-Jacobi forms occur as Fourier-Jacobi coe�cients of Siegel modular

forms.

To justify the de�nition of harmonic Jacobi forms of arbitrary index, and to
emphasize the signi�cance of semi-holomorphic forms, we will generalize the above
result to Fourier-Jacobi expansions with matrix indices. The essential ingredient
will be the neat analysis of the analytic part of the Fourier coe�cients of Eisenstein
series carried out in [Shi82]. Care must be taken when applying the result. Al-
though we will produce real-analytic Jacobi forms, we will not prove that they are
nonzero. Such a statement would be equivalent to the bounds obtained by Shimura
being asymptotically sharp. This is commonly believed, but no proof is available.

In the rest of this section, we need to vary slightly the notation that we
used in Chapter 4. For n > 1, let Z = ( τ z

zT τ ′ ) with τ ∈ H1, zT ∈ Cn−1 and
x′ + iy′ = τ ′ ∈ Hn−1 be a typical element of Hn. Recall that M̃T

n−1( 1
2Z) denotes

the set of symmetric matrices with entries in 1
2Z that have integral diagonal entries.
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The nonholomorphic Fourier-Jacobi expansion with (n − 1) × (n − 1) indices of a
function f ∈ C∞(Hn) that is invariant under the modular group is

f(Z) =
∑

L∈M̃T
n−1( 1

2Z)

e2πi tr(Lx′) φL(τ, z, y′).

We will provide a formula for φL in the case that f is a real-analytic Siegel
Eisenstein series. It can be proved along the lines of the proof of [Koh94, Theo-
rem 1] and [Böc83]. The Fourier coe�cients cEα,β(L, Y ) of the real-analytic degree
n− 1 Siegel Eisenstein series

E
(n−1)
α,β (τ ′) =

∑
L∈M̃T

n−1( 1
2Z)

cEα,β(L, y′) e2πi tr(Lx′)

occur in that formula.

Theorem 1.3. Fix 0 < L ∈ M̃T
n−1( 1

2Z). The Lth nonholomorphic Fourier-Ja-

cobi coe�cient of the degree n Siegel Eisenstein series Eα,β equals∑
µT∈Zn−1

t:
(

Mn−1(Z)∩GLn−1(Q)
)
/GLn−1

(µt ) primitive

∑
L′∈M̃T

n−1( 1
2Z)

L′[tT]=L

∑
g:Γ

(1)
∞ \Γ(1)

α
(1)
α,β(g, τ)

· e
(
tr
(
L′(Re(gτ · µTµ− cα(1)

1,0(g, τ) (zt)Tzt+ 2α
(1)
1,0(g, τ)µTzt)

))
· cEα,β

(
L′, y′[t] + Im(gτ · µTµ− cα(1)

1,0(g, τ) (zt)Tzt

+ α
(1)
1,0(g, τ) (µTzt+ tTzTµ))

)
.

Proof. From [Koh94], we adopt the notation g↑, h↓, and lu for the images
under the embeddings

Sp1(Z) = SL2(Z) ↪→ Spn(Z),

(
a b

c d

)
7→


a b

In−1

c d

In−1

 ,

Spn−1(Z) ↪→ Spn(Z),

(
a b

c d

)
7→


1

a b

1

c d

 , and

GLn(Z) ↪→ Spn(Z), u 7→
(
u−T

u

)
.

De�ne

Γ
(n)
rkn−1 :=

{(a b

c d

)
∈ Γ(n) : rk (cij)i=2,...,n

j=2,...,n
= n− 1

}
,

which is a set that Γ
(n)
∞ acts on. De�ne

GLn(Z)rkn−1 :=
{
g ∈ GLn(Z) : rk (g−1

ij )i=2,...,n
j=2,...,n

= n− 1
}
.

This set is acted on by

GLn(Z)∞ :=
{
g ∈ GLn(Z) : (g1,j)j=2,...,n = 0

}
.
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Since rkL = n−1, we may restrict our consideration to the Fourier coe�cients
of Eα,β for indices T such that the bottom right (n− 1)× (n− 1) block is invert-
ible. By a standard argument that can be found in [Maa71, Chapter 18], we may
consider the restricted Siegel Eisenstein series

Ẽ
(n)
α,β(Z) :=

∑
g : Γ

(n)
∞ \Γ(n)

rkn−1

1|(n)
α,β g,

that has the same Fourier coe�cients for indices that satisfy

rk(Tij)i=2,...,n
j=2,...,n

= n− 1.

In [Böc83, Proposition 5] it is proved that h↓lug↑ runs through a set of rep-
resentatives of Γ

(n)
∞ \Γ(n)

rkn−1, if g, u, and h run through sets of representatives of

Γ
(1)
∞ \Γ(1), GLn(Z)∞\GLn(Z)rkn−1, and Γ

(n−1)
∞ \Γ(n−1)

rkn−1, respectively. The equality

α
(n)
α,β(h↓lug

↑, Z) = α
(n)
α,β(h↓, lug

↑Z)α
(n)
α,β(g↑, Z) det(u)

follows from the cocycle relation that α(n)
α,β satis�es and from the shape of lu.

Combining the decomposition of Γ
(n)
∞ \Γ(n)

rkn−1 with the formula for the cocycle,

we can compute the Fourier expansion of Ẽα,β(Z).

Ẽα,β(Z) =
∑

u : GLn(Z)∞\GLn(Z)rkn−1

det(u)
∑

g : Γ
(1)
∞ \Γ(1)

α
(n)
α,β(g↑, Z)

·
∑

h : Γ
(n)
∞ \Γ(n)

rkn−1

α
(n)
α,β(h↓, lug

↑Z).

The cocylces that occur can be simpli�ed. We have

α
(n)
α,β(h↓, Z) = α

(n−1)
α,β

(
h, Z

[(0 · · · 0
In−1

)])
and

α
(n)
α,β(g↑, Z) = α

(1)
α,β

(
g, Z

[(
1 0 · · · 0

)T])
.

From the former relation and by the same argument in [Maa71, Chapter 18] that
we have used above, the inner sum equals∑

0<L∈M̃T
n−1( 1

2Z)

cEα,β(L, (lug
↑Z)

[(0 · · · 0
In−1

)]
).

By [Böc83, Lemma 6], a system of representatives of GLn(Z)∞\GLn(Z)rkn−1

is given by a set of matrices u, where the last n− 1 columns of u−1 run through{
( µt ) : µT ∈ Zn−1, t :

(
Mn−1(Z) ∩GLn−1(Q)

)
/GLn−1(Z), ( µt ) primitive

}
.

Combining this and the equality

(lug
↑Z)

[(0 · · · 0
In−1

)]
= τ ′[t] + gτ · µTµ− cα1,0(g, τ)(zt)Tzt+ α1,0(g, τ) (µTzt+ tTzTµ)

yields the result.
�
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Corollary 1.4. Let φL be the Lth nonholomorphic Fourier-Jacobi coe�cient

of det(Y )βE
(n)
α,β. Then

lim sup
δ→∞

e2πi tr(Ly′) φL(τ, z, y′)

with y′ = δIn−1 + 2y−1zTz exists and is a semi-holomorphic Maaÿ-Jacobi form. If

β = 0 or α = 3
2 , it is, up to a power of y, harmonic for |Jk, and if α = 1

2 or β = 1,

it is, up to a power of y, harmonic for |J,skk .

Proof. We can rewrite the addends of the right hand side in Theorem 1.3:

α
(1)
α,β(g, τ)

· e
(
tr
(
L(gτ · (µt−1)T(µt−1)− cα(1)

1,0(g, τ) zTz + 2α
(1)
1,0(g, τ) (µt−1)Tz

))
·
(
e
(
−itr

(
L′ Im(gτ · µTµ− cα(1)

1,0(g, τ) (zt)Tzt+ α
(1)
1,0(g, τ) (µTzt+ tTzTµ))

))
cEα,β

(
L′, y′[t] + Im(gτ · µTµ− cα(1)

1,0(g, τ) (zt)Tzt

+ α
(1)
1,0(g, τ) (µTzt+ tTzTµ))

))
We use the bounds for cEα,β that are given in [Shi82]. The following estimate

can be found in the introduction of Shimura's paper:

|cEα,β(L, y′)| ≤ A det(y′)β e−2π tr(Ly′),

for some A > 0. By the calculations in [Maa71, Chapter 18], cEα(L, Y ) is real.
That is, the function

δ(n−1)βe−2π tr(Ly′)φL(τ, z, y′)

with y′ as above is bounded from above and below as δ → ∞. Consequently, the
limes superior exists and equals up to a multiplicative constant

α
(1)
α,β(g, τ) e

(
tr
(
L(gτ · (µt−1)T(µt−1)− cα(1)

1,0(g, τ) zTz + 2α
(1)
1,0(g, τ) (µt−1)Tz

))
.

We can rewrite this in terms of the Jacobi slash action, yielding

1|Jα,β,L(g, (µt−1, 0)g),

and hence it follows that the limes superior is an eigenfunction of the Jacobi Casimir
operators given in (3.2) and (3.3) of Chapter 3. Since CJ

k,m y
s = 0 and CJ,sk

k,m ys = 0

if and only if s = 0 or s = 3
2 − k, the statement follows. �

2. Harmonic Siegel modular forms of degree 2

In this section, we restrict our attention to degree 2 Siegel modular forms.
From Theorem 1.1 and the results of Section 3 in Chapter 4, we will deduce that
the Kohnen limit process works for all harmonic Siegel modular forms that satisfy
a relatively mild condition.

Given a function φ that occurs as a coe�cient in the nonholomorphic Fourier-
Jacobi expansion of a real-analytic Siegel modular form we de�ne

(Lφ)(τ, z) := lim
y′→∞

φ(τ, z, y′) (2.1)

and

(Lskφ)(τ, z) := y
1
2−k lim

y′→∞
det(Y )k−

1
2φ(τ, z, y′) (2.2)
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if the limits exist.
We reformulate Theorem 1.1 using these operators.

Corollary 2.1. Let φm(τ, z, y′) be the mth coe�cient of the nonholomorphic

Fourier-Jacobi expansion of P
(2)
k,s (Z). If m > 0, then the limit Lφm exists for s = 0,

k > 3 and for s = 3
2 − k, k < 0, and we have:

(i) If s = 0 and k > 3, then Lφm ∈ Jk,m is holomorphic.

(ii) If s = 3
2 − k and k < 0, then Lφm ∈ Jk,m is harmonic.

Let φm(τ, z, y′) be the mth coe�cient of the nonholomorphic Fourier-Jacobi

expansion of P
(2),sk
k,s (Z). If m > 0, then the limit Lskφm exists for s = 0, k > 3 and

for s = 3
2 − k, k < 0, and we have:

(i) If s = 0 and k > 3, then Lskφm ∈ J sk
k,m is skew-holomorphic.

(ii) If s = 3
2 − k and k < 0, then Lskφm ∈ Jsk

k,m is harmonic.

In particular, the Fourier coe�cients for inde�nite indices do not vanish.

Proof. By Theorem 1.1, the functions Lφm, in the �rst case, and Lskφm, in
the second case, exist, and they equal

ysẼJ
k+s,k,m and ysẼJ

1
2 +s,k− 1

2 +s,m.

The rescaling by t
e employed in (1.2) can be expressed in terms of the slash actions

|Jk,e2t−2m g and |J,skk,e2t−2m g with the matrix g =
√
te
−1

( t 0
0 e ) ∈ SL2(R). Thus it

su�ces to show that the Jacobi-Eisenstein series ysEJ
k+s,s,m and ysEJ

1
2 +s,k− 1

2 +s,m

vanish under CJ
k,m and CJ,sk

k,m if s = 0 and s = 3
2 − k. This is a special case of the

Eisenstein series presented in Section 7 of Chapter 3. �

The technical condition that we need to treat the Kohnen limit process for
more general real-analytic Siegel modular forms will be formulated in terms of
the ξ-operators introduced in Section 4 of Chapter 2. The next proposition gives
information about the vanishing of the Fourier expansion of a harmonic Siegel
modular form when either of them is applied.

Proposition 2.2. Consider the Fourier coe�cients given in Theorem 3.1 of

Chapter 4. That is, let

f(Z) =
∑
T

a(Y, T )e2πi tr(TX) ∈M(2)
k ∪M(2),sk

k .

Suppose that k < 0 or k > 3.

(i) If T = 0, then the kernel of ξ
(2)
k ( · e2πitr(TX)) on the space of Fourier

coe�cients a(Y, T ) is spanned by 1.

(ii) If rk(T ) = 1 and T ≥ 0, then the kernel of ξ
(2)
k ( · e2πitr(TX)) on the space

of Fourier coe�cients a(Y, T ) is spanned by the second function in (ii)

of Theorem 3.1.

(iii) Suppose that rk(T ) = 2 and T > 0. If f ∈ M(2)
k , then a(Y, T ) lies in the

kernel of ξ
(2)
k ( · e2πitr(TX)). If f ∈M(2),sk

k , then any nonvanishing a(Y, T )

is not contained in the kernel of ξ
(2)
k ( · e2πitr(TX)).

(iv) Suppose that rk(T ) = 2 and T is inde�nite. If f ∈ M(2)
k , then any

nonvanishing a(Y, T ) is not contained in the kernel of ξ
(2)
k ( · e2πitr(TX)).

If f ∈M(2),sk
k , then a(Y, T ) lies in the kernel of ξ

(2)
k ( · e2πitr(TX)).
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Proof. The statements concerning the ξ-operators in (i) follows from the fact
that ξ(2) and ξ(2),sk are multiples of det(∂Z) and det(∂Z). To prove statement (ii)
we �rst consider the images of the Fourier coe�cients under det(∂Z) and det(∂Z).
We have

det(∂Z) = 1
4

(
∂x∂x′ + i∂x∂y′ + i∂x′∂y − ∂y∂y′ − 1

4∂
2
u − i

2∂u∂v + 1
4∂

2
v

)
.

Since both ξ-operators are Sp2(R)-invariant, it is su�cient to consider the case
T = ( 1

0 ). Then the �rst function in (3.2) equals

(yy′ − v2)
3
2−ky

k−3
2 W k

2 ,1−
k
2
(2y) e2πix.

Applying the above operator and restricting to v = 0, we obtain

1
4 ( 3

2 − k)(−2πy − ∂yy − 1
2∂vv)(yy′ − v2)

1
2−ky

k−3
2 W k

2 ,1−
k
2
(2y) e2πix

∣∣
v=0

= 1
4 ( 3

2 − k)(yy′)
1
2−k(−2πy + 1 + 1 + ∂y − 1

2 )y
k−3
2 W k

2 ,1−
k
2
(2y) e2πix.

Considering the �rst coe�cient of the resulting power series expansion with respect
to y

1
2 , coming from the derivative with respect to y, we see that this function does

not vanish. Up to a nonzero factor, ξ(2),sk
k equals det(∂Z) so that the nonvanishing

under ξ(2),sk
k ( · e2πix) is proved.

Since det(∂Z) equals

1
4

(
∂x∂x′ − i∂x∂y′ − i∂x′∂y − ∂y∂y′ − 1

4∂
2
u + i

2∂u∂v + 1
4∂

2
v

)
,

and the �rst function in (3.4) equals

(yy′ − v2)
3
2−ky

k−3
2 W 1−k

2 ,1− k2
(2y) e2πix,

the very same calculations yields

1
4 ( 3

2 − k)(yy′)
1
2−k(2πy + 1 + 1 + ∂y − 1

2 )y
k−3
2 W 1−k

2 ,1− k2
(2y) e2πix.

We multiply this by det(Z − Z) = −4yy′. The ξ-operator for the holomorphic
slash action features an additional addend 2i(y∂τ + v∂z + y′∂τ ′), which leads to the
contribution (

−2πy + ( 3
2 − k) + y∂y + ( 3

2 − k)
)
.

The �rst coe�cient, which comes from the term ∂y, of the resulting power series
expansion with respect to y

1
2 does not vanish. Since the second function in (3.4)

only depends on x and y, it clearly vanishes under det(∂Z). This completes the
skew case.

In the case of holomorphic weights, recall that the second function in (3.2)
coincides with e−2πiy, that up to multiplicative scalars, occurs in the Fourier ex-
pansion of holomorphic Eisenstein series. Consequently, it is annihilated by the
antiholomorphic derivatives in ξ(2)

k .
Consider the case (iii). For holomorphic weights the coe�cient a(Y, T ) co-

incides, up to scalar multiples, with e−2πtr(TY ). Hence it is annihilated by the
antiholomorphic derivatives in ξ

(2)
k ( · e2πitr(TX)). In the case of skew weights, we

analyze the one-sided Taylor expansion of the image under the ξ-operator. We may
assume that T = I2, and we will use the notation w = y − y′. We �nd∂y∂y′

∂v

 =

1 2w 1

1 −2w −1

0 4
√
v− w2 0

∂u∂v
∂w

 .
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To determine the action of ξ(2),sk
k = −4 det(Y ) det(∂Z) on

f(u, v, X) = a(Y, T ) e2πi tr(TX) =

∞∑
n=0

gn(2πu) (4π2v)ne2πi tr(X),

we use the fact that f is independent of w, proved in [Maa53]. Suppressing the
argument X, we �nd

4 det(∂Z)f(u, v)
∣∣∣
v=0

=
(
∂x∂x′ − i∂x(∂u − 2w∂v − ∂w)− i∂x′(∂u + 2w∂v + ∂w)

− (∂u − 2w∂v − ∂w)(∂u + 2w∂v + ∂w)

− 1
4∂

2
u + i

2∂u4
√
v− w2∂v + 1

44
√
v− w2∂v4

√
v− w2∂v

)
f(u, v)

∣∣∣
v=0

=
(
−4π2 + 2π2∂u − ∂2

u
+ 2∂v + 4w2∂2

v

+ 4
√
v− w2

2
∂2
v

+ 4
√
v− w2 1

2

√
v− w2

−1
∂v
)
f(u, v)

∣∣∣
v=0

=
((
−4π2 + 4π∂u − ∂2

u
+ 4∂v

)
f
)

(u, 0)

= −8π2
(
k−1
u g0(2πu) + (1− k

u )g′0(2πu)− g′′0 (2πu)
)
e2πi tr(X).

Passing to one-sided Taylor expansions of a(Y, T ), it is su�cient to prove that the
last expression has a nonvanishing Laurent expansion with respect to u. We neglect
the factor e2πi tr(X), which does not play a role in our considerations.

We analyze the initial exponent of the candidates for g0, that is,

u1−k
∫ ∞
u

ũ−1W1−k, 32−k
(2ũ) dũ and u1−k

∫ 1

u

ũ−1W1−k, 32−k
(2ũ) dũ,

They di�er by a multiple of u1−k, and the initial term of the Laurent series of
the �rst function is a multiple of u

1
2±( 3

2−k). Consequently, the initial term of the
Taylor expansion of the image under 4 det(∂Z) is the one coming from the second
derivative g′′0 . This proves the case (iii).

Consider statement (iv). In the case of skew weights, we deduce the statement
from Corollary 2.1 and the fact that holomorphic Siegel Eisenstein series have van-
ishing coe�cients for inde�nite Fourier indices. We are reduced to the holomorphic
case. As before we will compute the action of the ξ-operator on one-sided Taylor
expansions. We may assume that T =

(
1
−1

)
, and we write w for y+ y′. As above,

we compute ∂y∂y′
∂v

 =

 1 2w 1

−1 2w 1

0 −4
√
w2 − v 0

∂u∂v
∂w

 .

We will apply ξ(2)
k to

f(u, v, X) =

∞∑
n=0

hn(4π2v) (2πu)n e2πi tr(TX)
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and restrict the image to u = 0. In this situation, suppressing the argument X, we
�nd that the image under ξ(2)

k yields up to the factor det(Y )k−
3
2 :(

2i
2

(
y(∂x + i∂y) + v(∂u + i∂v) + y′(∂x′ + i∂y′)

)
− 4 det(Y )

(
(∂x + i∂y)(∂x′ + i∂y′)− 1

4 (∂u + i∂v)
2
))
f(u, v)

∣∣∣
u=0

=
(
i
(
w

2 (2πi+ i(∂u + 2w∂v + ∂w)) + 1
2

√
w2 − v(i(−4

√
w2 − v∂v))

+ w

2 (−2πi+ i(−∂u + 2w∂v + ∂w))
)

− v

4

(
4π2 − 4π∂u + ∂2

u
− 2∂v − 4w2∂2

v

+ 4
√
w2 − v−1

2

√
w2 − v

−1
∂v + 4(w2 − v)∂2

v

))
f(u, v)

∣∣∣
u=0

=
(

2v∂v − v

4 (4π2 + 4π∂u + ∂2
u
− 4∂v − 4v∂2

v
)
)
f(0, v)

= −v
4

((
4π2 + 4π∂u + ∂2

u
− 12∂v − 4v∂2

v

)
f
)

(0, v).

We use the recurrence in (iv) of Theorem 2.2 to express this in terms of deriva-
tives of h0 and h1. This yields

−v
4

(
4π2h0(4π2v)− 4π2πh1(4π2v)

+ 4π2
(
−2 · 16π4vh′′0(4π2v)− 2k4π2h′0(4π2v) + 1

2h0(4π2v)
)

− 12 · 4π2h′0(4π2v)− 4v16π4h′′0(4π2v)
)
.

Assume that the initial term of the Taylor expansion of h1 is vl for some l. Then
the initial term of the Taylor expansion of the image is

vl
(
−32π6l(l − 1)(2l + k) + 8π4l(k(2l + k) + 2(l − 1)) + 12π2l

)
.

Since k and l are rational, we deduce that this does not vanish except if k = −2

and l = 1. The corresponding solution given in Lemma 2.7 in Chapter 4 is a
polynomial and hence does not occur as the Fourier coe�cient of a Siegel modular
form by Lemma 3.2 in Chapter 4. Hence none of the nonzero Fourier coe�cients for
inde�nite indices that occur in the Fourier expansion of harmonic Siegel modular
form of holomorphic weight vanish under ξ(2)

k . �

Theorem 1.1 and Proposition 2.2 show that the Fourier coe�cients of Eisen-
stein series for the skew slash action and positive weight vanish, if the Fourier index
is positive de�nite. This justi�es the next de�nition, mimicking the space of holo-
morphic Siegel modular forms, the elements of which are supported on positive
semi-de�nite indices.

For k > 0, set

M
(2),sk
k =

{ ∑
T∈M̃T

2 ( 1
2Z)

a(Y, T ) e(tr(TX)) ∈M(2),sk
k : a(Y, T ) = 0 if T > 0

}
, (2.3)

and for k ≤ 0, set

M
(2),sk
k = {0} ⊆M(2),sk

k . (2.4)
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Like in the case of holomorphic weights, we say that f ∈ M(2)
k ∪M(2),sk

k is a
cusp form if a(Y, T ) = 0 for all T with rk(T ) 6= 2.

To prove the convergence of the Kohnen limit process, we need

Corollary 2.3. Suppose that f ∈M(2)
k with Fourier expansion as in Proposi-

tion 2.2 and ξ
(2)
k f = 0. Then a(Y, T ) = 0 for T inde�nite. Similarly, if f ∈M(2),sk

k

and ξ
(2),sk
k f = 0, then a(Y, T ) = 0 for T > 0.

Lemma 2.4. Suppose that f ∈ M(2)
k with Fourier expansion as in Proposi-

tion 2.2 and ξ
(2)
k f = 0. Then La(Y, T ) exits, if rk(T ) = 1 and T ≥ 0. If f ∈M(2),sk

k

and ξ
(2),sk
k f = 0, then Lska(Y, T ) exits, if rk(T ) = 1 and T ≥ 0.

Proof. The asymptotic of the Whittaker functionWκ,µ(u) as u→∞ is uκe−
u

2 .
Consequently, the asymptotic of the functions given in (ii) of Theorem 3.1 in Chap-
ter 4 are e−2πu and u

1
2−k e−2πu in the holomorphic and skew case. This proves the

statement. �

Theorem 2.5. Let k ∈ Z with k < 0 or k > 3. Assume that f ∈M(2)
k ∪M

(2),sk
k

with Fourier-Jacobi expansion as in (1.1). If f ∈Mk, k is even, and ξ
(2)
k f ∈M (2),sk

3−k
then

(i) If k ≥ 4, then L ◦ FJm f ∈ Jk,m exists and is holomorphic.

(ii) If k ≤ −2, then L ◦ FJm f ∈ Jk,m exists and is harmonic.

If f ∈Msk
k , k is odd and ξ

(2),sk
k f ∈M (2)

3−k then

(i) If k ≥ 5, then Lsk ◦ FJm f ∈ J sk
k,m exists and is skew-holomorphic.

(ii) If k ≤ −1, then Lsk ◦ FJm f ∈ Jsk
k,m exists and is harmonic.

Remark 2.6. For k < 0 the condition on the image under ξ
(2)
k and ξ

(2),sk
k is

automatically satis�ed.

Proof. From Corollary 2.3, it follows that only Fourier coe�cients of Eisen-
stein series may occur in the Fourier expansion of f . By Corollary 2.1, the operators
L and Lsk applied to such Fourier coe�cients lead to Fourier coe�cients that are
holomorphic, skew-holomorphic or harmonic, respectively.

We can interchange the limit that occurs in the de�nition of L and Lsk and the
sum in the Fourier expansion of φm, since f is an automorphic form with polynomial
growth. �

3. Siegel modular forms and Jacobi forms

Theorem 3.1. Let 0, 2 6= k ∈ 2Z, and suppose that f ∈M(2)
k is a cusp form or

an Eisenstein series satisfying ξ
(2)
k f ∈M (2),sk

3−k . Then

L
(
FJm

(
ξ

(2)
k f

))
= 3

2 (k − 1) ξJ
k,m

(
Lsk
(
FJmf

) )
.

Similarly, let 1, 3 6= k ∈ 2Z+ 1, and suppose that f ∈M(2),sk
k is a cusp form or

an Eisenstein series satisfying ξ
(2),sk
k f ∈M (2)

3−k. Then

L
(
FJm

(
ξ

(2)sk
k f

))
= − ξJ,sk

k,m

(
Lsk
(
FJmf

) )
Proof. It su�ces to compare the left and the right hand side for Poincaré-

Eisenstein series, since, by Theorem 3.1 in Chapter 4, by Proposition 2.2 and
by Theorem 1.1, all Fourier coe�cients that occur in the Fourier expansion of
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Siegel modular forms that we consider occur in the Fourier expansion of Poincaré-
Eisenstein series.

By Proposition 1.5 in Chapter 3 and Theorem 1.1, we have

L
(
FJm

(
ξ

(2)
k f

))
= ( 3

2 − k)(1− k)
(−1)

k−2
2 (2π)3−k

Γ( 1
2 )

ζ(3− k)−1yk−
3
2 ẼJ

k−1,1,m

in the holomorphic case, and

L
(
FJm

(
ξ

(2)sk
k f

))
= ( 3

2 − k)(2− k)
(−1)

3−k
2 (2π)3−k

Γ(3− k)
ζ(3− k)−1ẼJ

3−k,0,m,

otherwise.
On the other hand, by Proposition 7.1 in Chapter 3, we have

ξJ
k,m

(
Lsk
(
FJmf

) )
= ( 3

2 − k)
(−1)

−k
2 (2π)3−k

Γ( 3
2 )

ζ(3− k)−1yk−
3
2 ẼJ

k−1,1,m

in the holomorphic case, and

ξJ,sk
k,m

(
Lsk
(
FJmf

) )
= ( 3

2 − k)
(−1)

1−k
2 (2π)3−k

Γ(2− k)
ζ(3− k)−1ẼJ

3−k,0,m.

This yields the result. �

We summarize the results of this chapter and Chapter 3 in the next diagram.

Corollary 3.2. The following diagram commutes up to multiplicative scalars

that only depend on k.

M(2)
3−k, M

(2)
k

oo
ξ
(2)
k ξ

(2),sk
k //

L◦FJm

��

M(2),sk
k , M(2),sk

3−k

Lsk◦FJm

��
J3−k,m, Jk,m oo

ξJk ξJ,skk //

θzm

��

Jsk
k,m, Jsk

3−k,m

θsk,zm

��
M 5

2−k
, Mk− 1

2
oo

ξ
(1)

k− 1
2 // Mk− 1

2
, M 5

2−k
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APPENDIX A

Sage scripts

1. Nakajima's order 4 operator

This code is written in Sage [S+11], but it directly calls Plural [LS03] to
perform computations in the algebra of di�erential operators on C∞(H2). Plural
implements algorthims to obtain standard forms of noncommutative polynomials.
We refrain from describing exactly the syntax and basic semantics, but rather refer
the reader to the online manual.

The code can be run as is, except that within the Plural code there are line-
breaks introduced to �t the lines into the page. These must be removed before
running the code.

Great parts of the code are dedicated to sanity tests, computing several sub-
stitutions on basic examples and comparing them with either the obvious result or
a second result obtained by means of alternative methods. To run these tests, run

• test_initialization() or
• test_rewrite().

The absence of assertion error then shows that all tests have passed.

The basic idea behind the script is the following: Any invariant operator T
satis�es

(Tf)(Z) = αα,β(g, Z)−1
(
T αα,β(g, Z)f(g · )

)
(g−1Z).

This induces an automorphism on the algebra of di�erential operators. We compute
the images of the generators. This way, to prove or disprove Spn(R)-invariance it
su�ces to express every di�erential operator in terms of a given set of polynomial
variables and elementary di�erential operators, to apply the automorphism, and to
check for equality with the original term.
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#===============================================================================

#

# Struc tu re :

# −− I n i t i a l i z a t i o n o f S ingu la r

# −− Rewrite and app l i c a t i o n

# −− Tests

# −− Invar iance t e s t s

#

# Usage :

# Run

# sage : t e s t_ t r an s l a t i o n ()

# to t e s t f o r t r a n s l a t i o n invar iance .

# Run

# sage : t e s t_ in vo l u t i on ()

# to t e s t f o r invar iance under the i n v o l u t i o n .

#

#===============================================================================

################################################################################

#### I n i t i a l i z a t i o n o f S ingu la r

################################################################################

7
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#===============================================================================

#

# We w i l l use S ingu la r and more s p e c i f i c a l l y P lu ra l to compute the

# d i f f e r e n t i a l opera tor s .

# −− ' zb ' r e f e r s to \ bar z , the complex con juga te o f z .

# −− The opera tor s A_i are de f ined in Sec t ion 8 o f Maass ' book " S i e g e l ' s

# modular forms and D i r i c h l e t s e r i e s " .

# −− The opera tor s 'M' and 'Mb ' are r a i s i n g and lower ing operators , t h a t

# up to con juga t ion and mu l t i p l i c a t i o n wi th appropr ia t e powers o f

# det Y are the xi−opera tor s de f ined in the paper .

# −− 'Niwa1 ' and 'Niwa2 ' are the opera tor s t ha t Niwa uses when computing

# the Fourier expansion o f S i e g e l wave forms . He ob ta ined the s e d i r e c t l y

# from Nakajimas work .

#

#===============================================================================

s i ng = S ingu la r ( )

i n i t i a l i z a t i o n = \
"""

r ing R = 0 , ( i , pi ,

z11 , z22 , z12 , zde t inv ,

zb11 , zb22 , zb12 , z bde t inv , yde t inv ,

dz11 , dz22 , dz12 ,

dzb11 , dzb22 , dzb12 , alpha , be ta ) ,

rp ;
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de f y11 = −i /2 ∗ ( z11 − zb11 ) ;

de f y22 = −i /2 ∗ ( z22 − zb22 ) ;

de f y12 = −i /2 ∗ ( z12 − zb12 ) ;

matrix D[ 1 9 ] [ 1 9 ] ;

D[6 , 12] = −z d e t i n v ^2 ∗ z22 ;

D[6 , 13] = −z d e t i n v ^2 ∗ z11 ;

D[6 , 14] = −z d e t i n v ^2 ∗ (−2 ∗ z12 ) ;

D[10 , 15] = −z b d e t i n v ^2 ∗ zb22 ;

D[10 , 16] = −z b d e t i n v ^2 ∗ zb11 ;

D[10 , 17] = −z b d e t i n v ^2 ∗ (−2 ∗ zb12 ) ;

D[11 , 12] = −yde t inv^2 ∗ (− i )/2 ∗ y22 ;

D[11 , 13] = −yde t inv^2 ∗ (− i )/2 ∗ y11 ;

D[11 , 14] = −yde t inv^2 ∗ i ∗ y12 ;

D[11 , 15] = −yde t inv^2 ∗ i /2 ∗ y22 ;

D[11 , 16] = −yde t inv^2 ∗ i /2 ∗ y11 ;

D[11 , 17] = −yde t inv^2 ∗ (− i ) ∗ y12 ;

D[3 , 12] = 1;

D[4 , 13] = 1;

D[5 , 14] = 1;

7
6



D[7 , 15] = 1;

D[8 , 16] = 1;

D[9 , 17] = 1;

de f wa = nc_algebra (1 , D) ;

s e t r i n g wa ;

de f x11 = 1/2 ∗ ( z11 + zb11 ) ;

de f x22 = 1/2 ∗ ( z22 + zb22 ) ;

de f x12 = 1/2 ∗ ( z12 + zb12 ) ;

de f y11 = −i /2 ∗ ( z11 − zb11 ) ;

de f y22 = −i /2 ∗ ( z22 − zb22 ) ;

de f y12 = −i /2 ∗ ( z12 − zb12 ) ;

de f z d e t = z11 ∗ z22 − z12 ^2;

de f z bde t = zb11 ∗ zb22 − zb12 ^2;

matrix y inv [ 2 ] [ 2 ] = y22 , −y12 , −y12 , y11 ;

y inv = yinv ∗ yde t inv ;

de f yde t = y11 ∗ y22 − y12^2;

i d e a l r e l s = groebner ( i d e a l ( i ^2 + 1 , z d e t i n v ∗( z11∗ z22 − z12^2) − 1 ,

z b d e t i n v ∗( zb11 ∗ zb22 − zb12 ^2) − 1 ,

yde t inv ∗( y11∗y22 − y12^2) − 1 ) ) ;
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matrix imat [ 2 ] [ 2 ] = i ,0 ,0 , i ;

matrix ymat [ 2 ] [ 2 ] = y11 , y12 , y12 , y22 ;

matrix dz [ 2 ] [ 2 ] = dz11 , 1/2 ∗ dz12 , 1/2 ∗ dz12 , dz22 ;

matrix dzb [ 2 ] [ 2 ] = dzb11 , 1/2 ∗ dzb12 , 1/2 ∗ dzb12 , dzb22 ;

matrix K[ 2 ] [ 2 ] = alpha + 2 ∗ imat ∗ ymat ∗ dz ;

matrix Lambda [ 2 ] [ 2 ] = −be ta + 2 ∗ imat ∗ ymat ∗ dzb ;

matrix A1 [ 2 ] [ 2 ] = Lambda ∗ K + 3/2 ∗ K;

matrix A2 [ 2 ] [ 2 ] = A1 ∗ A1 − 3/2 ∗ Lambda ∗ A1 + 1/2 ∗ Lambda ∗ t r ace (A1)

+ imat ∗ ymat

∗ t ranspose (− 1/2 ∗ imat ∗ yinv ∗ t ranspose ( t ranspose (Lambda) ∗ t ranspose (A1 ) ) ) ;

de f H1 = trace (A1) ;

de f H2 = trace (A2) ;

de f M = alpha ∗ ( a lpha − 1/2) + ( a lpha − 1/2)∗(2∗ i ∗y11∗dz11 + 2∗ i ∗y12∗dz12 + 2∗ i ∗y22∗dz22 )
− 4 ∗ ( y11∗y22 − y12^2) ∗ ( dz11 ∗ dz22 − 1/4 ∗ dz12 ∗ dz12 ) ;

de f Mb = alpha ∗ ( a lpha − 1/2) + ( a lpha − 1/2)∗( − 2∗ i ∗y11∗dzb11 − 2∗ i ∗y12∗dzb12 − 2∗ i ∗y22∗dzb22 )
− 4 ∗ ( y11∗y22 − y12^2) ∗ ( dzb11 ∗ dzb22 − 1/4 ∗ dzb12 ∗ dzb12 ) ;

de f C = 2 ∗ s u b s t (Mb, alpha , beta −1) ∗ s u b s t (M, alpha , a lpha ) ;

l i s t t = l i s t ( y11 , dz11 ) , l i s t ( y22 , dz22 ) , l i s t ( y12 , dz12 ) ;

l i s t t b = l i s t ( y11 , dzb11 ) , l i s t ( y22 , dzb22 ) , l i s t ( y12 , dzb12 ) ;
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de f Niwa1 = − ( y11 ∗ y22 − y12^2) ∗ ( dz11 ∗ dzb22 + dzb11 ∗ dz22 − 1/2 ∗ dz12 ∗ dzb12 ) ;

f o r ( i n t l = 1 ; l <= 3; l = l + 1) {

f o r ( i n t j = 1 ; j <= 3; j = j + 1) {

Niwa1 = Niwa1 + t [ l ] [ 1 ] ∗ t b [ j ] [ 1 ] ∗ t [ l ] [ 2 ] ∗ t b [ j ] [ 2 ] ;

}}

de f Niwa2 = ( y11 ∗ y22 − y12^2)^2 ∗ ( dz11 ∗ dz22 − 1/4 ∗ dz12^2)

∗ ( dzb11 ∗ dzb22 − 1/4 ∗ dzb12 ^2)

+ i ∗ 1/4 ∗ ( y11 ∗ y22 − y12^2) ∗ ( y11 ∗ dz11 + y12 ∗ dz12 + y22 ∗ dz22 )

∗ ( dzb11 ∗ dzb22 − 1/4 ∗ dzb12 ^2)

+ i ∗ 1/4 ∗ ( y11 ∗ y22 − y12^2) ∗ ( y11 ∗ dzb11 + y12 ∗ dzb12 + y22 ∗ dzb22 )

∗ ( dz11 ∗ dz22 − 1/4 ∗ dz12^2)

+ 1/16 ∗ ( y11 ∗ y22 − y12^2) ∗ ( dz11 ∗ dzb22 + dzb11 ∗ dz22 − 1/2 ∗ dz12 ∗ dzb12 ) ;

"""

i n i t i a l i z a t i o n = i n i t i a l i z a t i o n . r ep l a c e ( "\n" , "" )
s ing . eva l ( i n i t i a l i z a t i o n ) ;
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#===============================================================================

#

# We de f i n e s u b s t i t u t i o n s . The f i r s t s e t o f s u b s t i t u t i o n ' s corresponds to

# con juga t ion wi th the s u b s t i t u t i o n $Z \mapsto −Z^{−1}$ . More p r e c i s e l y ,

# i f v i s a v a r i a b l e and sub s t v i s the s u b s t i t i o n de f ined below , we have

# $( v f (−Z^{−1}))(−Z^{−1}) = sub s t v f (Z)$ .

# The second s e t o f s u b s t i t i t i o n s wi th p r e f i x ' s u b s t s l a s h ' corresponds to

# con juga t ion wi th $\ de t Z^{−\a lpha } \ de t \ bar Z^{−\be ta }$ . More p r e c i s e l y , wi th

# the same no ta t i on as above , we have

# $\ de t Z^{\ a lpha } \ de t \ bar Z^{\ be ta } v \ de t Z^{−\a lpha } \ de t \ bar Z^{−\be ta } f

# = su b s t s l a s h v f$ .

#

#===============================================================================

s u b s t i t u t i o n_ i n i t i a l i z a t i o n = \
"""

de f s u b s t z d e t i n v = z11 ∗ z22 − z12 ^2;

de f s u b s t z b d e t i n v = zb11 ∗ zb22 − zb12 ^2;

de f s u b s t y d e t i n v = yde t inv ∗ z de t ∗ z bde t ;

de f s u b s t z d e t = zd e t i n v ;

de f s u b s t z b d e t = z bd e t i n v ;

de f sub s t z11 = zde t i n v ∗ (−z22 ) ;
de f sub s t z22 = zde t i n v ∗ (−z11 ) ;
de f sub s t z12 = zde t i n v ∗ z12 ;
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de f sub s t z b11 = zbd e t i n v ∗ (−zb22 ) ;
de f sub s t z b22 = zbd e t i n v ∗ (−zb11 ) ;
de f sub s t z b12 = zbd e t i n v ∗ zb12 ;

de f sub s td z11 = z11^2 ∗ dz11 + z12^2 ∗ dz22 + z11 ∗ z12 ∗ dz12 ;

de f sub s td z22 = z12^2 ∗ dz11 + z22^2 ∗ dz22 + z22 ∗ z12 ∗ dz12 ;

de f sub s td z12 = 2 ∗ z11 ∗ z12 ∗ dz11 + 2 ∗ z22 ∗ z12 ∗ dz22 + ( z11 ∗ z22 + z12^2) ∗ dz12 ;

de f sub s td zb11 = zb11^2 ∗ dzb11 + zb12^2 ∗ dzb22 + zb11 ∗ zb12 ∗ dzb12 ;

de f sub s td zb22 = zb12^2 ∗ dzb11 + zb22^2 ∗ dzb22 + zb22 ∗ zb12 ∗ dzb12 ;

de f sub s td zb12 = 2 ∗ zb11 ∗ zb12 ∗ dzb11 + 2 ∗ zb22 ∗ zb12 ∗ dzb22 + ( zb11 ∗ zb22 + zb12 ^2) ∗ dzb12 ;

de f s u b s t s l a s h d z 11 = dz11 − a lpha ∗ z d e t i n v ∗ z22 ;

de f s u b s t s l a s h d z 22 = dz22 − a lpha ∗ z d e t i n v ∗ z11 ;

de f s u b s t s l a s h d z 12 = dz12 + alpha ∗ z d e t i n v ∗ 2 ∗ z12 ;

de f s u b s t s l a s h d z b 11 = dzb11 − be ta ∗ z b d e t i n v ∗ zb22 ;

de f s u b s t s l a s h d z b 22 = dzb22 − be ta ∗ z b d e t i n v ∗ zb11 ;

de f s u b s t s l a s h d z b 12 = dzb12 + be ta ∗ z b d e t i n v ∗ 2 ∗ zb12 ;

"""

s u b s t i t u t i o n_ i n i t i a l i z a t i o n = s u b s t i t u t i o n_ i n i t i a l i z a t i o n . r ep l a c e ( "\n" , "" )
s ing . eva l ( s u b s t i t u t i o n_ i n i t i a l i z a t i o n ) ;
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###############################################################################

#### Rewrite and app l i c a t i o n

###############################################################################

#===============================================================================

#

# By rewr i t i n g we mean app l y ing the s u b s t i t i o n s de f ined above to a d i f f e r e n t i a l

# opera tor . This happens w i th in S ingu la r . Ins t ead o f S ingu la r maps we use

# Python s t r i n g proce s s ing .

# By app l i c a t i o n we mean app l y ing an opera tor to an element o f the po lynomia l

# r ing 'P ' de f ined below . In t h i s case we always assume tha t ' a lpha ' and

# ' be ta ' do not occur in the opera tor .

#

#===============================================================================

r ewr i t e_d ic t = { "z11" : " substz11 " , " z22" : " substz22 " , " z12" : " substz12 " ,
"zb11" : " substzb11 " , "zb22" : " substzb22 " , "zb12" : " substzb12 " ,
" ydet inv " : " substydet inv " , " zdet inv " : " subs t zde t inv " ,
" zbdet inv " : " substzbdet inv " , "dz11" : " substdz11 " ,
"dz22" : " substdz22 " , "dz12" : " substdz12 " ,
"dzb11" : " substdzb11 " , "dzb22" : " substdzb22 " ,
"dzb12" : " substdzb12 " }

rewr i t e_s la sh_dic t = { "dz11" : " subs t s l a shdz11 " , "dz22" : " subs t s l a shdz22 " ,
"dz12" : " subs t s l a shdz12 " , "dzb11" : " subs t s l a shdzb11 " ,
"dzb22" : " subs t s l a shdzb22 " , "dzb12" : " subs t s l a shdzb12 " }
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def r ewr i t e (h) :
"""

We f i r s t app ly the s u b s t i t u t i o n corresponding to the

`\ de t Z^{−\a lpha } \ de t \ bar Z^{−\be ta } ` par t o f the s l a s h ac t i on .

Second , we app ly the s u b s t i t u t i o n corresponding to `Z \mapsto −Z^{−1} `.

INPUT:

− ` h ` −− A s t r i n g .

OUTPUT:

A s t r i n g .

"""

mons = map( split_monomial , get_monomials ( s i ng . eva l (h ) ) )
slash_rew = j o i n ( [ " ( " + j o i n (map( rewrite_slash_term , m) , ' ∗ ' ) + " ) " for m in mons ] , '+ ' )
slash_rew = s ing . eva l ( " reduce(%s ,  r e l s ) ; " % ( slash_rew , ) )

mons = map( split_monomial , get_monomials ( slash_rew ) )
r e s = j o i n ( [ " ( " + j o i n (map( rewrite_invol_term , m) , ' ∗ ' ) + " ) " for m in mons ] , '+ ' )

return s i ng . eva l ( " reduce(%s ,  r e l s ) ; " % ( res , ) )
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def rewrite_invol_term ( t ) :
"""

Apply the s u b s t i t u t i o n corresponding to an i n v o l u t i o n to a s i n gu l a r v a r i a b l e .

"""

try :
return r ewr i t e_d ic t [ t ]

except KeyError :
return t

def rewrite_slash_term ( t ) :
"""

Apply the s u b s t i t u t i o n corresponding to the

`\ de t Z^{−\a lpha } \ de t \ bar Z^{−\be ta } ` par t o f the s l a s h ac t i on

to a s i n gu l a r v a r i a b l e .

"""

try :
return r ewr i t e_s la sh_dic t [ t ]

except KeyError :
return t
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def get_monomials ( t ) :
"""

S p l i t a S ingu la r expre s s i on in t o monomials .

"""

t = t . r ep l a c e ( "−" , "+(−1)∗" )
i f t [ 0 ] == "+" :

t = t [ 1 : ]

return t . s p l i t ( "+" )

def split_monomial (m) :
"""

S p l i t a S ingu la r monomial i n t o a l i s t o f v a r i a b l e s and cons tan t s .

"""

m = m. s p l i t ( "∗" )
return f l a t t e n ( [ v

i f v . f i nd ( "^" ) == −1
else [ v [ : v . f i nd ( "^" ) ] for _ in range ( In t eg e r ( v [ v . f i nd ( "^" ) + 1 : ] ) ) ]
for v in m] ,
l i s t )
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### App l i ca t i on o f opera tor s

K.< i> = Quadrat icFie ld (−1)
P.<z11 , z22 , z12 , zb11 , zb22 , zb12> = K[ ]
zdet = ( z11 ∗ z22 − z12^2)
zbdet = ( zb11 ∗ zb22 − zb12^2)

apply_dict = { "dz11" : lambda e : d i f f ( e , z11 ) ,
"dz22" : lambda e : d i f f ( e , z22 ) ,
"dz12" : lambda e : d i f f ( e , z12 ) ,
"dzb11" : lambda e : d i f f ( e , zb11 ) ,
"dzb22" : lambda e : d i f f ( e , zb22 ) ,
"dzb12" : lambda e : d i f f ( e , zb12 ) ,
" z11" : lambda e : z11 ∗ e ,
" z22" : lambda e : z22 ∗ e ,
" z12" : lambda e : z12 ∗ e ,
"zb11" : lambda e : zb11 ∗ e ,
"zb22" : lambda e : zb22 ∗ e ,
"zb12" : lambda e : zb12 ∗ e ,
" zdet inv " : lambda e : e / ( z11 ∗ z22 − z12 ^2) ,
" zbdet inv " : lambda e : e / ( zb11 ∗ zb22 − zb12 ^2) ,
"(−1)" : lambda e : −e ,
" i " : lambda e : i ∗e }
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def apply_term ( t , e ) :
"""

Apply a term to an expre s s i on in `P ` .

INPUT:

− ` t ` −− A s t i n g corresponding to a S ingu la r expre s s i on .

− ` e ` −− An element o f `P ` .

OUTPUT:

An element o f `P ` .

"""

mons = map( split_monomial , get_monomials ( s i ng . eva l ( t ) ) )

return sum( apply_monomial (m, e ) for m in mons)

def apply_monomial (m, e ) :
"""

Apply a monomial to an expre s s i on in `P ` .

"""

for v in r eve r s ed (m) :
try :

e = apply_dict [ v ] ( e )
except KeyError :

e = QQ(v ) ∗ e

return e
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###############################################################################

#### Tests

###############################################################################

#===============================================================================

#

# To ensure t ha t a l l d e f i n i t i o n s above are co r r e c t we run a s e r i e s o f t e s t s ,

# tha t are des igned to f i nd p o t e n t i a l mis takes in the implementat ion .

#

#===============================================================================

def t e s t_ i n i t i a l i z a t i o n ( ) :
"""

Test the i n i t i a l i z a t i o n o f S ingu la r ( wi thou t the s u b s t i t u t i o n par t ) .

"""

### Commutators

# Tests f o r holomorphic v a r i a b l e s . The l e f t hand s i d e i s executed and has to

# y i e l d the r i g h t hand s i d e

print ( "homogeneous commutator t e s t s " )
t e s t s = [
( "dz11 ∗ z11" , " z11∗dz11+1" ) ,
( "dz22 ∗ z22" , " z22∗dz22+1" ) ,
( "dz12 ∗ z12" , " z12∗dz12+1" ) ,
( "dz11 ∗ z12" , " z12∗dz11" ) ,
( "dz11 ∗ z22" , " z22∗dz11" ) ,
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( "dz12 ∗ z11" , " z11∗dz12" ) ,
( "dz12 ∗ z22" , " z22∗dz12" ) ,
( "dz22 ∗ z11" , " z11∗dz22" ) ,
( "dz22 ∗ z12" , " z12∗dz22" ) ,
( " z11 ∗ z12" , " z11∗ z12" ) ,
( " z11 ∗ z22" , " z11∗ z22" ) ,
( " z12 ∗ z22" , " z22∗ z12" ) ]
for ( t , r ) in t e s t s :

t t = t
r r = r
i f s i ng . eva l ( t t + " ; " ) != r r :

raise Asse r t i onError ( t t + " : : " + s ing . eva l ( t t + " ; " ) + " ; ; " + r r )

t t = t . r ep l a c e ( "z" , "zb" )
r r = r . r ep l a c e ( "z" , "zb" )
i f s i ng . eva l ( t t + " ; " ) != r r :

raise Asse r t i onError ( t t + " : : " + s ing . eva l ( t t + " ; " ) + " ; ; " + r r )

# Misc t e s t s

print ( "misc commutator t e s t s " )
t e s t s = [
( " z f11  ∗ zg11" , " z11∗zb11" ) ,
( " z f22  ∗ zg22" , " z22∗zb22" ) ,
( " z f12  ∗ zg12" , " z12∗zb12" ) ,
( " dzf11  ∗ zg11" , " zg11∗dzf11 " ) ,
( " dzf22  ∗ zg22" , " zg22∗dzf22 " ) ,
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( " dzf12  ∗ zg12" , " zg12∗dzf12 " ) ,
( " dzf11  ∗ zg12" , " zg12∗dzf11 " ) ,
( " dzf11  ∗ zg22" , " zg22∗dzf11 " ) ,
( " dzf12  ∗ zg11" , " zg11∗dzf12 " ) ,
( " dzf12  ∗ zg22" , " zg22∗dzf12 " ) ,
( " dzf22  ∗ zg11" , " zg11∗dzf22 " ) ,
( " dzf22  ∗ zg12" , " zg12∗dzf22 " ) ]
for ( t , r ) in t e s t s :

t t = t . r ep l a c e ( " z f " , "z" ) . r ep l a c e ( "zg" , "zb" )
r r = r . r ep l a c e ( " z f " , "z" ) . r ep l a c e ( "zg" , "zb" )
i f s i ng . eva l ( t t + " ; " ) != r r :

raise Asse r t i onError ( t t + " : : " + s ing . eva l ( t t + " ; " ) + " ; ; " + r t )

t t = t . r ep l a c e ( " z f " , "zb" ) . r ep l a c e ( "zg" , "z" )
r r = r . r ep l a c e ( " z f " , "zb" ) . r ep l a c e ( "zg" , "z" )
i f s i ng . eva l ( t t + " ; " ) != r r :

raise Asse r t i onError ( t t + " : : " + s ing . eva l ( t t + " ; " ) + " ; ; " + r t )

### Reductions

print ( "homogenous reduct i on  t e s t s " )
t e s t s = [
( " i  ∗ i " , "−1" ) ,
( " i 2 " , "−1" ) ,
( " zdet inv  ∗ zdet " , "1" ) ,
( " zbdet inv  ∗ zbdet " , "1" ) ,
( " ydet inv  ∗ ydet " , "1" ) ,
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( " (ymat ∗ yinv ) [ 1 , 1 ] " , "1" ) ,
( " (ymat ∗ yinv ) [ 1 , 2 ] " , "0" ) ,
( " (ymat ∗ yinv ) [ 2 , 1 ] " , "0" ) ,
( " (ymat ∗ yinv ) [ 2 , 2 ] " , "1" ) ,
( " ( imat ∗ imat ) [ 1 , 1 ] " , "−1" ) ,
( " ( imat ∗ imat ) [ 2 , 1 ] " , "0" ) ,
( " ( imat ∗ imat ) [ 1 , 2 ] " , "0" ) ,
( " ( imat ∗ imat ) [ 2 , 2 ] " , "−1" ) ,
( "x11 + i ∗y11" , " z11" ) ,
( "x22 + i ∗y22" , " z22" ) ,
( "x12 + i ∗y12" , " z12" ) ,
( "x11 − i ∗y11" , "zb11" ) ,
( "x22 − i ∗y22" , "zb22" ) ,
( "x12 − i ∗y12" , "zb12" )

]
for ( tt , r r ) in t e s t s :

i f s i ng . eva l ( " reduce ( " + t t + " ,  r e l s ) ; " ) != r r :
raise Asse r t i onErro r ( t t + " : : " + s ing . eva l ( " reduce ( " + t t + " ,  r e l s ) ; " ) + " ; ; " + r r )

### Re la t i ons o f C, Niwa1 and H∗
i f s i ng . eva l ( " reduce ( subst (4  ∗ Niwa1 + H1 ,  alpha ,  0 ,  beta ,  0) ,  r e l s ) ; " ) != "0" :

raise Asse r t i onError ( "4 ∗ Niwa1 != −H1" )
i f s i ng . eva l ( " reduce (C − (H1^2 − H2)  + 1/2 ∗ (  1 + alpha  − beta )  ∗ H1 ,  r e l s ) ; " ) != "0" :

raise Asse r t i onError ( "C != (H1^2 − H2)  − 1/2 ∗ (  1 + alpha  − beta )  ∗ H1" )
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### Leading terms o f the opera tor s H∗
i f s i ng . eva l ( " reduce ( subst (H1 ,  alpha ,  0 ,  beta ,  0) ,  r e l s ) ; " ) [ : 2 1 ] != "1/2∗ zb12^2∗dz12∗dzb12" :

raise Asse r t i onErro r ( "Leading term o f  H1 i n c o r r e c t " )
i f s i ng . eva l ( " reduce ( subst (H2 ,  alpha ,  0 ,  beta ,  0) ,  r e l s ) ; " ) [ : 2 5 ] != "1/8∗ zb12^4∗dz12^2∗dzb12^2" :

raise Asse r t i onErro r ( "Leading term o f  H2 i n c o r r e c t " )

def t e s t_rewr i t e ( ) :
"""

Test the s u b s t i t u t i o n par t o f the i n i t i a l i z a t i o n o f S ingu la r and the r ewr i t e .

"""

### get_monomials

print "get_monomials"
t e s t s = [
( "−z22∗ zdet inv " , [ "(−1)∗ z22∗ zdet inv " ] ) ,
( "dz11+z11" , [ "dz11" , " z11" ] ) ,
( " z12^2∗dz11+z11^3" , [ " z12^2∗dz11" , " z11^3" ] ) ,
( "−z12^2∗dz11−z11^3" , [ "(−1)∗ z12^2∗dz11" , "(−1)∗ z11^3" ] )

]
for ( tt , r r ) in t e s t s :

i f get_monomials ( t t ) != r r :
raise Asse r t i onError ( t t + " : : " + repr ( get_monomials ( t t ) ) + " ; ; " + repr ( r r ) )
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### split_monomial

print " split_monomial "
t e s t s = [
( "(−1)∗ z22∗ zdet inv " , [ "(−1)" , " z22" , " zdet inv " ] ) ,
( "dz11" , [ "dz11" ] ) ,
( " z11^3" , [ " z11" , " z11" , " z11" ] ) ,
( " z12^2∗dz11" , [ " z12" , " z12" , "dz11" ] ) ,
( " (−1)∗1/2∗ z12^2∗dz11" , [ "(−1)" , "1/2" , " z12" , " z12" , "dz11" ] )

]
for ( tt , r r ) in t e s t s :

i f split_monomial ( t t ) != r r :
raise Asse r t i onError ( t t + " : : " + repr ( split_monomial ( t t ) ) + " ; ; " + repr ( r r ) )

### apply_monomial

print "apply_monomial"
p = z11^2 + zb12∗ z22^7 + i ∗ z12∗zb22 + 7/23 ∗ zb11^5
t e s t s = [
( " i ∗dz11" , 2∗ i ∗ z11 ) ,
( " z11^3" , z11^3∗p ) ,
( " z12^2∗dzb11" , 35/23∗ z12^2∗zb11 ^4) ,
( " (−1)∗1/2∗ z12^2∗dz22" , −7/2∗z12^2∗ z22^6∗zb12 ) ,
( "4/5∗dz12∗dzb22∗zb22" , i ∗8/5∗ zb22 )

]
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for ( tt , r r ) in t e s t s :
i f apply_monomial ( split_monomial ( t t ) , p ) != r r :

raise Asse r t i onError ( t t + " : : " + repr ( apply_monomial ( split_monomial ( t t ) , p ) )
+ " ; ; " + repr ( r r ) )

### apply_term

print "apply  term"
p = z11^2 + zb12∗ z22^7 + i ∗ z12∗zb22 + 7/23 ∗ zb11^5
t e s t s = [
( "dz11+z11" , d i f f (p , z11 ) + z11∗p ) ,
( "−z12^2∗dz11−z11^3" , −z12^2 ∗ d i f f (p , z11 ) − z11^3 ∗ p ) ,
( "− i ∗zb22^3∗dz11∗ z11^2−2/3∗z11^3" , − i ∗zb22^3 ∗ d i f f ( z11^2 ∗ p , z11 ) − 2/3 ∗ z11^3∗p)

]
for ( tt , r r ) in t e s t s :

i f apply_term ( tt , p ) != r r :
raise Asse r t i onError ( t t + " : : " + repr ( apply_term ( tt , p ) ) + " ; ; " + repr ( r r ) )

### elementary s u b s t i t u t i o n s

print " elementary  s ub s t i t u t i o n s "
t e s t s = [
( " z11" , "−z22∗ zdet inv " ) ,
( " z22" , "−z11∗ zdet inv " ) ,
( " z12" , " z12∗ zdet inv " ) ,

]
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for ( t , r ) in t e s t s :
t t = t
r r = r
i f r ewr i t e ( t t ) != r r :

raise Asse r t i onError ( t t + " : : " + s ing . eva l ( t t + " ; " ) + " ; ; " + r r )

t t = t . r ep l a c e ( "z" , "zb" )
r r = r . r ep l a c e ( "z" , "zb" )
i f r ewr i t e ( t t ) != r r :

raise Asse r t i onError ( t t + " : : " + s ing . eva l ( t t + " ; " ) + " ; ; " + r r )

### product s u b s t i t u t i o n s

print "product  s ub s t i t u t i o n s "
t e s t s = [
( " zdet " , " zdet inv " , "1" ) ,
( " ydet " , " ydet inv " , "1" )

]
for ( t1 , t2 , r ) in t e s t s :

t t1 = t1
t t2 = t2
r r = r
i f s i ng . eva l ( " reduce ( ( " + rewr i t e ( t t1 ) + " )∗ ( " + r ewr i t e ( t t2 ) + " ) ,  r e l s ) ; " ) != r r :

raise Asse r t i onError ( " r ewr i t e : " + tt1 + " , , " + tt2
+ " : : " + s ing . eva l ( " reduce ( ( " + r ewr i t e ( t t1 ) + " )∗ ( " + r ewr i t e ( t t2 ) + " ) ,  r e l s ) ; " )
+ " ; ; " + r r )
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t t1 = t1 . r ep l a c e ( "z" , "zb" )
t t2 = t2 . r ep l a c e ( "z" , "zb" )
r r = r
i f s i ng . eva l ( " reduce ( ( " + rewr i t e ( t t1 ) + " )∗ ( " + r ewr i t e ( t t2 ) + " ) ,  r e l s ) ; " ) != r r :

raise Asse r t i onError ( " r ewr i t e : " + tt1 + " , , " + tt2
+ " : : " + s ing . eva l ( " reduce ( ( " + r ewr i t e ( t t1 ) + " )∗ ( " + r ewr i t e ( t t2 ) + " ) ,  r e l s ) ; " )
+ " ; ; " + r r )

### app l i c a t i o n o f r ew r i t e s

print " app l i c a t i o n  o f  r ew r i t e s "
zdet = z11∗ z22 − z12^2
zbdet = zb11∗zb22 − zb12^2
varsubs_dict = { z11 : −z22 / zdet , z22 : −z11 / zdet , z12 : z12 / zdet ,

zb11 : −zb22 / zbdet , zb22 : −zb11 / zbdet , zb12 : zb12 / zbdet }

p = z11 ∗ z22
t e s t s = [

" z11" ,
" z22" ,
" z12" ,
"zb11" ,
"zb22" ,
"zb12"

]
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for t t in t e s t s :
for alpha , beta in mrange ( [ 3 , 3 ] , tup l e ) :

i f apply_term ( s ing . eva l ( " subst(%s ,  alpha ,  %s ,  beta ,  %s ) "
% ( r ewr i t e ( t t ) , alpha , beta ) ) , p ) \

!= ( zdet ∗∗ alpha ∗ zbdet ∗∗ beta ∗ apply_term ( tt , zdet ∗∗(−alpha ) ∗ zbdet∗∗(−beta )
∗ p . subs ( varsubs_dict ) ) ) . subs ( varsubs_dict ) :

raise Asse r t i onError ( t t + " : : " + repr ( alpha ) + " : : " + repr ( beta ) + " : : "
+ repr ( apply_term ( s ing . eva l ( " subst(%s ,  alpha ,  %s ,  beta ,  %s ) "

% ( r ewr i t e ( t t ) , alpha , beta ) ) , p ) )
+ " ; ; "
+ repr ( ( zdet ∗∗ alpha ∗ zbdet ∗∗ beta ∗ apply_term ( tt , zdet ∗∗(−alpha ) ∗ zbdet∗∗(−beta )

∗ p . subs ( varsubs_dict ) ) ) . subs ( varsubs_dict ) ) )

p = z11^2 + zb12∗ z22^7 + i ∗ z12∗zb22 + 7/23 ∗ zb11^5
t e s t s = [
"dz11" ,
"dz11^2" ,
"dzb12^2" ,
"dz11^2+i ∗dzb22" ,
"1/2∗ z11∗dzb12−i ∗zb22^2∗dz22"
]
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for t t in t e s t s :
for alpha , beta in mrange ( [ 3 , 3 ] , tup l e ) :

i f apply_term ( s ing . eva l ( " subst(%s ,  alpha ,  %s ,  beta ,  %s ) "
% ( r ewr i t e ( t t ) , alpha , beta ) ) , p ) \

!= ( zdet ∗∗ alpha ∗ zbdet ∗∗ beta
∗ apply_term ( tt , zdet ∗∗(−alpha ) ∗ zbdet∗∗(−beta ) ∗ p . subs ( varsubs_dict ) ) ) \\
. subs ( varsubs_dict ) :

raise Asse r t i onError ( t t + " : : " + repr ( alpha ) + " : : " + repr ( beta ) + " : : "
+ repr ( apply_term ( s ing . eva l ( " subst(%s ,  alpha ,  %s ,  beta ,  %s ) "

% ( r ewr i t e ( t t ) , alpha , beta ) ) , p ) )
+ " ; ; "
+ repr ( ( zdet ∗∗ alpha ∗ zbdet ∗∗ beta

∗ apply_term ( tt , zdet ∗∗(−alpha ) ∗ zbdet∗∗(−beta ) ∗ p . subs ( varsubs_dict ) ) ) \\
. subs ( varsubs_dict ) ) )

###############################################################################

#### Invar i an t s t e s t s

###############################################################################

#===============================================================================

#

# We t e s t s e v e r a l opera tor s on invar iance . Note t ha t invar iance under t r a n s l a t i o n

# i s obvious , s ince a l l c o e f f i c i e n t s are t r i v i a l in $X$ . Test ing the i n v o l u t i o n

# $ |_{\ alpha , \ be ta } J$ r e v e a l s t ha t Nakajima ' s second opera tor i s not i n va r i an t .

#

#===============================================================================
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def t e s t_t r an s l a t i on ( ) :
t e s t s = \

[ " subst (Niwa1 ,  z11 ,  z11 + 1 ,  zb11 ,  zb11 + 1)  − Niwa1 ; " ,
" subst (Niwa1 ,  z22 ,  z22 + 1 ,  zb22 ,  zb22 + 1)  − Niwa1 ; " ,
" subst (Niwa1 ,  z12 ,  z12 + 1 ,  zb12 ,  zb12 + 1)  − Niwa1 ; " ,
" subst (Niwa2 ,  z11 ,  z11 + 1 ,  zb11 ,  zb11 + 1)  − Niwa2 ; " ,
" subst (Niwa2 ,  z22 ,  z22 + 1 ,  zb22 ,  zb22 + 1)  − Niwa2 ; " ,
" subst (Niwa2 ,  z12 ,  z12 + 1 ,  zb12 ,  zb12 + 1)  − Niwa2 ; " ,
" subst (H1 ,  z11 ,  z11 + 1 ,  zb11 ,  zb11 + 1)  − H1 ; " ,
" subst (H1 ,  z22 ,  z22 + 1 ,  zb22 ,  zb22 + 1)  − H1 ; " ,
" subst (H1 ,  z12 ,  z12 + 1 ,  zb12 ,  zb12 + 1)  − H1 ; " ,
" subst (H2 ,  z11 ,  z11 + 1 ,  zb11 ,  zb11 + 1)  − H2 ; " ,
" subst (H2 ,  z22 ,  z22 + 1 ,  zb22 ,  zb22 + 1)  − H2 ; " ,
" subst (H2 ,  z12 ,  z12 + 1 ,  zb12 ,  zb12 + 1)  − H2 ; " ]

return map( s ing . eval , t e s t s )

def t e s t_ invo lu t i on ( ) :
t e s t s = [ " reduce ( subst(%s  − %s ,  alpha ,  0 ,  beta ,  0) ,  r e l s ) ; " % ( r ewr i t e ( 'Niwa1 ' ) , 'Niwa1 ' ) ,

" reduce ( subst(%s  − %s ,  alpha ,  0 ,  beta ,  0) ,  r e l s ) ; " % ( r ewr i t e ( 'Niwa2 ' ) , 'Niwa2 ' ) ,
" reduce(%s  − %s ,  r e l s ) ; " % ( r ewr i t e ( 'C ' ) , 'C ' ) ,
" reduce(%s  − %s ,  r e l s ) ; " % ( r ewr i t e ( 'H1 ' ) , 'H1 ' ) ,
" reduce(%s  − %s ,  r e l s ) ; " % ( r ewr i t e ( 'H2 ' ) , 'H2 ' ) ]

return map( s ing . eval , t e s t s )
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2. Lemma 2.5 in Chapter 4

This script is completely written in Sage [S+11], but it makes indirect
use of PyNac [BS+11], a library for symbolic calculations, that is based on
GiNaC [BFK02]. We derive the Laurent expansion of the the potential solutions
given in Lemma 2.5 of Chapter 4, and check whether su�ciently many coe�cients
of the image under the di�erential operators assigned to equation (2.9) in Chapter
4 vanish.
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## A func t i on computing the Pochhammer symbol ( a )_n

pochhammer = lambda a , n : prod ( a + k for k in range (n ) )
## A func t i n computing the power s e r i e s expansion o f the

## gene r a l i z e d hypergeometr ic s e r i e s

## {}_p {\rm F}_q ( ass ; b s s ; v ) up to O( v^ord )

hyperexpansion = lambda ass , bss , ord : \
[ prod (pochhammer (a , n) for a in as s )

/ prod (pochhammer (b , n)
for b in bss ) / f a c t o r i a l (n ) for n in range ( ord ) ]

## The v a r i a b l e s v and k , t h a t we w i l l use be low

var ( ' v k ' )

## To compute the c o e f f i c i e n t s o f the f unc t i on s be low up

## to O( v^11) we need to expand the hypergeometr ic

## s e r i e s up to O( v ^15).

hyperord = 15

## The parameters f o r the s o l u t i o n s in the holomorphic

## and skew case ( e x c l ud ing 1 , t ha t i s an obv ious s o l u t i o n ) .

## The f i r s t e n t r i e i s the exponent o f v t ha t the

## hypergemetr ic f unc t i on i s mu l t i p l i e d wi th .

## The second i s the l i s t o f a l l a ' s and the

## th i r d i s the l i s t o f a l l b ' s .

1
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h1s_hol = [ ( 3/2 − k , [ 3/2 , 3/2 − k ] ,
[ 2 − k/2 , (5 − k )/2 , 5/2 − k ] ) ,

( −k/2 , [ k /2 , −k /2 ] ,
[ 1/2 , ( k − 1)/2 , 1 − k /2 ] ) ,

( (1 − k )/2 , [ ( 1 + k )/2 , (1 − k ) / 2 ] ,
[ 3/2 , k/2 , (3 − k ) / 2 ] ) ]

h1s_skew = [ ( 0 , [ 1 / 2 ] ,
[ ( 1 + k )/2 , 1 + k /2 ] ) ,

( −k/2 , [ ( 1 − k ) / 2 ] ,
[ 1/2 , 1 − k /2 ] ) ,

( (1 − k )/2 , [ 1 − k /2 ] ,
[ 3/2 , (3 − k ) / 2 ] ) ,

( 3/2 − k , [ 1 , 2 − k ] ,
[ 5/2 − k , 2 − k/2 , (5 − k ) / 2 ] ) ]

## the expans ions o f the s o l u t i o n s .

h1exps_hol = \
[ v∗∗ e ∗ sum(map( operator . mul ,

hyperexpansion ( ass , bss , hyperord ) ,
[ ( v/4)∗∗n for n in range ( hyperord ) ] ) )

for ( e , ass , bss ) in h1s_hol ]
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h1exps_skew = \
[ v∗∗ e ∗ sum(map( operator . mul ,

hyperexpansion ( ass , bss , hyperord ) ,
[ ( v/4)∗∗n for n in range ( hyperord ) ] ) )

for ( e , ass , bss ) in h1s_skew ]

## the d i f f e r e n t i a l opera tor t ha t i s a s s o c i a t e d to the

## d i f f e r e n t i a l equat ion f o r h1

d i f f o p = lambda alpha , beta : ( lambda h1 :
16 ∗ v∗∗3 ∗ d i f f ( h1 , v , 4)
+ ( 32 ∗ ( alpha + beta ) + 64 ) ∗ v∗∗2 ∗ d i f f ( h1 , v , 3)
+ ( ( 20 ∗ ( alpha + beta )∗∗2

+ 60 ∗ ( alpha + beta ) + 28) ∗ v
− 4 ∗ v∗∗2 ) ∗ d i f f ( h1 , v , 2)

+ ( − (4 ∗ ( alpha + beta ) + 4) ∗ v
+ 4 ∗ ( alpha + beta )∗∗3 + 10 ∗ ( alpha + beta )∗∗2
+ 2 ∗ ( alpha + beta ) − 4) ∗ d i f f ( h1 , v )

+ ( ( alpha − beta )∗∗2 − ( alpha + beta )∗∗2 ) ∗ h1 )

d i f f op_ho l = d i f f o p (k , 0)
dif fop_skew = d i f f o p (1/2 , k − 1/2)

## The expansion o f the images o f p o t e n t i a l s o l u t i o n under

## the above d i f f e r e n t i a l opera tor s

h1ims_hol = map( di f fop_hol , h1exps_hol )
h1ims_skew = map( diffop_skew , h1exps_skew )

1
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## Sage re turns the c o e f f i c i e n t s o f a power s e r i e s or

## polynomia l in in c r ea s in g order wi th r e s p e c t to the

## exponents . Thus i t i s s u f f i c i e n t to check the

## f i r s t 11 e lements o f h1ims . c o e f f i c i e n t s ( )

a s s e r t a l l ( [ e . s imp l i f y_ra t i ona l ( )
for ( e ,_) in h1im . c o e f f i c i e n t s ( v ) [ : 1 1 ] ]

== 11∗ [ 0 ]
for h1im in h1ims_hol )

a s s e r t a l l ( [ e . s imp l i f y_ra t i ona l ( )
for ( e ,_) in h1im . c o e f f i c i e n t s ( v ) [ : 1 1 ] ]

== 11∗ [ 0 ]
for h1im in h1ims_skew )

1
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3. Numerical double checks for Lemma 2.5 in Chapter 4

This script, though written in Sage [S+11], is largely based on mpmath [J+11],
a libary for arbitrary precision calculations, completely written in Python. We
numerically double check the results obtained in Section 2. The calculations per-
formed, even though they are implemented mostly naively, are challanging, since,
in particular, the di�erential operator applied is badly conditioned for the solutions
in the holomorphic case. We compensate for this by using 500 digits precision. The
reader using the code will notice that this needs to be increased drastically when
evaluating the occurring expressions at larger values.
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import mpmath

mpmath .mp. dps = 500
mpd = mpmath . d i f f

## The d i f f e r e n t i a l opera tor s in the holomorphic or skew case . We

## de f i n e f unc t i on s t ha t f o r each k prov ide a funct ion , t h a t e v a l u a t e s

## the image o f a func t i on f under the d i f f e r e n t i a l opera tor at v .

d i f f op_ho l = lambda k : ( lambda f , v :
4 ∗ k∗∗3 ∗ mpd( f , v ) + 20 ∗ k∗∗2 ∗ v ∗ mpd( f , v , 2)

+ 32 ∗ k ∗ v∗∗2 ∗ mpd( f , v , 3) + 16 ∗ v∗∗3 ∗ mpd( f , v , 4)
+ 10 ∗ k∗∗2 ∗ mpd( f , v ) − 4 ∗ k ∗ v ∗ mpd( f , v )
+ 60 ∗ k ∗ v ∗ mpd( f , v , 2) − 4 ∗ v∗∗2 ∗ mpd( f , v , 2)
+ 64 ∗ v∗∗2 ∗ mpd( f , v , 3)
+ 2 ∗ k ∗ mpd( f , v ) − 4 ∗ v ∗ mpd( f , v )
+ 28 ∗ v ∗ mpd( f , v , 2)
− 4 ∗ mpd( f , v ) )

dif fop_skew = lambda k : ( lambda f , v :
− 4 ∗ k∗∗3 ∗ mpd( f , v ) − 20 ∗ k∗∗2 ∗ v ∗ mpd( f , v , 2)
− 32 ∗ k ∗ v∗∗2 ∗ mpd( f , v , 3) − 16 ∗ v∗∗3 ∗ mpd( f , v , 4)
− 10 ∗ k∗∗2 ∗ mpd( f , v ) + 4 ∗ k ∗ v ∗ mpd( f , v )
− 60 ∗ k ∗ v ∗ mpd( f , v , 2) + 4 ∗ v∗∗2 ∗ mpd( f , v , 2)
− 64 ∗ v∗∗2 ∗ mpd( f , v , 3) + 2 ∗ k ∗ f ( v )
− 2 ∗ k ∗ mpd( f , v ) + 4 ∗ v ∗ mpd( f , v )
− 28 ∗ v ∗ mpd( f , v , 2) − f ( v )
+ 4 ∗ mpd( f , v ) )

1
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## The s o l u t i o n s in the holomorphic case expre s sed as f unc t i on s t ha t use the

## ar i t hme t i c implemented in the mpmath l i b r a r y .

h1s_hol = [ lambda k : ( lambda v : 1 ) ,
lambda k : ( lambda v : v^(3/2 − k )

∗ mpmath . hyper ( [ 3 / 2 , 3/2 − k ] , [ 2 − k/2 , (5 − k )/2 , 5/2 − k ] , v/4) ) ,
lambda k : ( lambda v : v^(−k/2)

∗ mpmath . hyper ( [ k /2 , −k /2 ] , [ 1/2 , ( k − 1)/2 , 1 − k /2 ] , v/4) ) ,
lambda k : ( lambda v : v^((1−k )/2)

∗ mpmath . hyper ( [ ( 1 + k )/2 , (1 − k ) / 2 ] , [ 3/2 , k/2 , (3 − k ) / 2 ] , v/4) ) ]

## The s o l u t i o n in the skew case .

h1s_skew = [ lambda k : (lambda v : mpmath . hyper ( [ 1 / 2 ] , [ ( 1 + k )/2 , 1 + k /2 ] , v /4 ) ) ,
lambda k : (lambda v : v∗∗(−k/2)

∗ mpmath . hyper ( [ ( 1 − k ) / 2 ] , [ 1/2 , 1 − k /2 ] , v /4 ) ) ,
lambda k : (lambda v : v ∗∗ ( (1 − k )/2)

∗ mpmath . hyper ( [ 1 − k /2 ] , [ 3/2 , (3 − k ) / 2 ] , v /4 ) ) ,
lambda k : (lambda v : v∗∗(3/2 − k )

∗ mpmath . hyper ( [ 1 , 2 − k ] , [ 5/2 − k , 2 − k/2 , (5 − k ) / 2 ] , v /4) ) ]

## We need to cut o f f the r e s u l t s . We use one t h i r d o f the i n t e r n a l p r e c i s i on

## to t e s t the van i sh ing o f the r e s u l t s . This i s necessary , because the

## hypergeometr ic f unc t i on s f o r l a r g e va l u e s o f v behave numer ica l l y very

## bad ly .

cut = lambda v : mpmath . absmax (v ) < mpmath . mpf ( ' 1e−%s ' % (mpmath .mp. dps // 2) )
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## We t e s t the van i sh ing o f the s o l u t i o n s under the d i f f e r e n t i a l opera tor s

## fo r a s e t o f four " we i gh t s " k and th r ee va l u e s o f v .

for k in map(mpmath .mpc , [ 4 + i , −2 − 5∗ i , −3 + 7∗ i , 2 − i ] ) :
for v in map(mpmath .mpf , [ 1000 , 10000 , 100000 ] ) :

a s s e r t a l l ( cut ( d i f f op_ho l ( k ) ( h1 (k ) , v ) ) for h1 in h1s_hol )
a s s e r t a l l ( cut ( di f fop_skew (k ) ( h1 (k ) , v ) ) for h1 in h1s_skew )
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4. Theorem 3.1 in Chapter 4

The following script, written in Sage [S+11], makes use of Singular [DGPS10]
and its implementation of (commutative) Gröbner bases. The script, even though
it is short, is somewhat involved. The basic idea is to use the (projective) invariance
under GL2(Z) that any Fourier coe�cient a(Y, 0) of a Siegel modular form must
satisfy. Given a di�erential equation that such a coe�cient satis�es, its pullback
under all GL2(Z)-transforms is satis�ed the same coe�cient. We deduce �ve such
di�erent equations by applying

( −1
1

)
once and ( 1 1

1 ) several times. The resulting
equations for the potential solution, that we call φ, and its derivatives form an
ideal. We compute a Gröbner basis of this ideal, that contains φ. Consequently, φ
must vanish, which was the claim in Theorem 3.1 of Chapter 4.
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#===============================================================================

#

# The symmetry a r i s i n g from GL_2(ZZ) l e ad s to p e r i o d i c i t y and

# another symmetry , t h a t we want to expre s s here . I t l e ad s to a d d i t i o n a l

# d i f f e r e n t i a l e qua t i ons f o r phi .

#

#===============================================================================

# ' x ' and ' y ' w i l l be as in the paper

P.<x , y> = QQ[ ]

## The ba s i c s u b s t i t u t i o n corresponding to [ [ 0 , −1 ] , [ 0 , 1 ] ] \ in \GL{2}(\ZZ)

## lead s to new coord ina t e s \ t i l d e x and \ t i l d e y

x t i l d e = −x ∗ y∗∗−2 ∗ (1 + x∗∗2 ∗ y∗∗−2)∗∗−1
y t i l d e = (y∗( x∗∗2 ∗ y∗∗−2 + 1))∗∗−1

## The func t i on phi s a t i s f i e s a d i f f e r e n t i a l equa t ion

## y^2(phi_xx + phi_yy ) + phi = 0

## Hence the func t i on p s i ( x , y ) = phi ( x t i l d e , y t i l d e ) s a t i s f i e s

## an add i t i o n a l d i f f e r e n t i a l equa t ion . Since we assume tha t phi i s \GL{2}(\ZZ)

## symmetric , we have phi = \pm ps i . In pa r t i c u l a r , the d i f f e r e n t i a l equa t ion f o r

## ps i a l s o ho l d s f o r phi .

1
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## The p r e f i x v r e f e r s to symbo l i c v a r i a b l e s , d i s t i n g u i s h i n g a l l v a r i a b l e s

## de f ined here from polynomia l expres s ions , t h a t we w i l l use be low . The

## s u f f i x e s ' x ' and ' y ' s tand f o r d i f f e r e n t i a l s .

vphi = func t i on ( ' phi ' , x , y )
vps i = phi ( x t i l d e , y t i l d e )

## Later we w i l l use the d i f f e r e n t i a l s o f p s i to

## reduce the d i f f e r e n t i a l equa t ion f o r phi .

vdpsix = d i f f ( vpsi , x )
vdpsixx = d i f f ( vdpsix , x )
vdpsiy = d i f f ( vpsi , y )
vdpsiyy = d i f f ( vdpsiy , y )
vdpsixy = d i f f ( vdpsix , y )

## We in s e r t \ t i l d e x and \ t i l d e y in t o the d i f f e r e n t i a l s o f ph i .

vdphix = d i f f ( vphi , x ) ( x t i l d e , y t i l d e )
vdphixx = d i f f ( vphi , x , x ) ( x t i l d e , y t i l d e )
vdphiy = d i f f ( vphi , y ) ( x t i l d e , y t i l d e )
vdphiyy = d i f f ( vphi , y , y ) ( x t i l d e , y t i l d e )
vdphixy = d i f f ( vphi , x , y ) ( x t i l d e , y t i l d e )

1
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## Rconv i s a formal t r i c k to conver t the symbo l i c e xp r e s s i on s to po lynomia l s .

## The term order t ha t we de f i n e i s not necessary and we carry i t through f o r c l a r i t y .

Rconv = PolynomialRing (QQ, [ ' x ' , ' y ' , ' dphix ' , ' dphixx ' , ' dphixy ' , ' dphiy ' , ' dphiyy ' ,
' dps ixx ' , ' dps ix ' , ' dpsixy ' , ' dps iyy ' , ' dps iy ' , ' p s i ' ] ,

o rder = TermOrder ( ' dp ' , 2) + TermOrder ( ' dp ' , 5) + TermOrder ( ' dp ' , 6 ) )
Rconv . i n j e c t_va r i a b l e s ( )

## We need the f o l l ow i n g s u b s t i t u t i o n s to expre s s the d i f f e r e n t i a l s o f p s i

## in terms o f d i f f e r e n t i a l s o f ph i .

ps i subs = {vphi ( x t i l d e , y t i l d e ) : ps i , vdphix : dphix ,
vdphixx : dphixx , vdphixy : dphixy , vdphiy : dphiy ,
vdphiyy : dphiyy}

## We w i l l Groebner reduce the f o l l ow i n g r e l a t i o n s . Note t ha t mu l t i p l i c a t i o n wi th

## ( x∗∗2 + y ∗∗2)∗∗4 ∗ y∗∗6 i s on ly done to a l l ow convers ion in t o 'Rconv ' .

r e l a t i o n s = map( lambda expr , evar : \
( x∗∗2 + y∗∗2)∗∗−4 ∗ y∗∗−6 \

∗ Rconv ( ( ( x∗∗2 + y∗∗2)∗∗4 ∗ y∗∗6 ∗ expr . subs ( p s i subs ) ) \
. s imp l i f y_ra t i ona l ( ) . f a c t o r ( ) )

− evar ,
[ vdpsix , vdpsixx , vdpsixy , vdpsiy , vdpsiyy ] ,
[ dpsix , dpsixx , dpsixy , dpsiy , dpsiyy ] )
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## We use the f r a c t i o n f i e l d o f QQ[ x , y ] as a base r ing to s imp l i f y the computation o f

## the s u b s t i t u t i o n terms

RR.<x , y> = QQ[ ]
RR = RR. f r a c t i o n_ f i e l d ( )
R = PolynomialRing (RR, [ ' dphix ' , ' dphixx ' , ' dphixy ' , ' dphiy ' , ' dphiyy ' ,

' dps ixx ' , ' dps ix ' , ' dpsixy ' , ' dps iyy ' , ' dps iy ' , ' p s i ' ] ,
o rder = TermOrder ( ' dp ' , 5) + TermOrder ( ' dp ' , 6 ) )

## We have to separa t e the numerator and the denominator to a l l ow convers ion

## in to 'R ' .

r e l a t i o n s = [R( r . numerator ( ) ) / RR( r . denominator ( ) ) for r in r e l a t i o n s ]

## We w i l l reduce the wave equat ion deq to ob ta in a d d i t i o n a l d i f f e r e n t i a l

## equa t ions f o r phi

deq = y∗∗2 ∗ ( dphixx + dphiyy ) + ps i

nI = R. i d e a l ( r e l a t i o n s + [ deq ] )
gI = nI . groebner_bas is ( a lgor i thm = ' toy : buchberger ' )

## Suppose t ha t phi = \pm ps i . The f i r s t d i f f e r e n t i a l equat ion t ha t phi then must

## s a t i s f y i s deq1 . We deduce f u t h e r r e l a t i o n s from the Groebner b a s i s gI

deq1 = y∗∗2 ∗ ( dpsixx + dpsiyy ) + ps i
deq2 = gI [−1]
## The a s s e r t i on checks t ha t we have s u b s t i t u t e d a l l occurences o f phi

a s s e r t s e t ( deq2 . monomials ( ) ) . i n t e r s e c t i o n ( s e t ( [ dphix , dphixx , dphixy , dphiy , dphiyy ] ) ) == se t ( )
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## The d i f f e r e n t i a l equat ion deq2 conta ins x . We assume tha t phi i s 1−p e r i o d i c
## in x , and we need only add s h i f t s o f deq2 to the s e t o f equa t i ons s a t i s f i e d

## by p s i to show tha t t h e r e are no s o l u t i o n s but the t r i v i a l .

deqs = [ deq1 , deq2 ] + [ R( d i c t ( ( e , c . numerator ( ) . subs (x = x + n)/ c . denominator ( ) . subs (x = x + n ) )
for ( e , c ) in deq2 . d i c t ( ) . i t e r i t em s ( ) ) )

for n in range (1 , 5) ]

## We use a new polynomia l r ing to reduce the number o f v a r i a b l e s t h a t we have to

## handle and to impose another term order , t h a t i s f a s t in our s i t u a t i o n .

RR.<x , y> = QQ[ ]
RR = RR. f r a c t i o n_ f i e l d ( )
R.<dpsixx , dpsix , dpsixy , dpsiyy , dpsiy , ps i> = PolynomialRing (RR, order = TermOrder ( ' l e x ' , 6 ) )

deqs = [R( d i c t ( ( e [ 5 : ] , p [ e ] ) for e in p . exponents ( ) ) ) for p in deqs ]

dI = R. i d e a l ( deqs )
gb = dI . groebner_bas is ( a lgor i thm = ' toy : buchberger ' )
## gb conta ins ps i , prov ing t ha t t h e r e i s no s o l u t i o n to the above system of

## d i f f e r e n t i a l e qua t i ons excep t 0 .

a s s e r t p s i in gb

1
1
4
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