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Abstract
Recent advancements in healthcare practices and the increasing use of information
technology in the medical domain has lead to the rapid generation of free-text data
in forms of scientific articles, e-health records, patents, and document inventories.
Capturing the valuable and novel information from these document sources can have
several benefits such as medical decision support, timely alerts, and reduced medication
errors that in-turn can enhance the effectiveness of clinical care and reduce the treatment
costs. These inherent benefits and the sheer amount of free-text data has urged
the development of sophisticated information retrieval and information extraction
technologies.

A fundamental requirement for the automatic processing of biomedical text is the
identification of information carrying units such as the concepts or named entities.
In this context, this work focuses on the identification of medical disorders (such
as diseases and adverse effects) which denote an important category of concepts in
the medical text. Two methodologies were investigated in this regard and they are
dictionary-based and machine learning-based approaches. Abilities of standard medical
terminologies and the Conditional Random Fields (CRF) to support the recognition of
disorders were examined on a common platform. An outcome of this investigation
showed that a hybrid approach that utilizes the strengths of dictionaries and CRF is
highly suitable for the disorder recognition in free-text. Furthermore, the capabilities of
this hybrid model were customized for the recognition of different categories of medical
concepts (such as medical problems, treatments, and tests) in e-health records. Within
the same framework, a Support Vector Machine (SVM)-based system was implemented
for the classification of assertions made over medical problems (such as negations and
uncertainties). Performances of the adapted systems for concept identification and
assertion classification in e-health records were evaluated as a part of open assess-
ment challenge (i.e. I2B2 2010) where both demonstrated highly competitive results
in comparison to several state-of-the-art medical information extraction technologies.
The developed strategies can be integrated into the semantic information retrieval
and information extraction platforms for improved literature searches in the medical
domain.

A precise semantic platform for searching and retrieval of concise information
from voluminous biomedical document archives can inherently support researchers
and medical professionals to fetch the exquisite knowledge quickly. In this context,
capabilities of the concept recognition techniques were systematically exploited to
build a semantic search platform for the retrieval of e-health records. The system
facilitates conventional text search as well as semantic and ontological searches. Later
on, capabilities of the retrieval platform were scaled for searching and retrieval from



biomedical and chemical patents. Performance of the adapted retrieval platform
for e-health records and patents was evaluated within open assessment challenges
(i.e. TRECMED and TRECCHEM respectively) wherein the system was best rated in
comparison to several other competing information retrieval platforms.

Finally, from the medico-pharma perspective, adverse effects of medications is a
challenging issue that confronts healthcare and pharmaceutical industries. Therefore, a
strategy for the identification of adverse drug events from medical case reports was
developed. Considering the extremely limited availability of the annotated textual data
for training an information extraction system for drug safety research, a sufficiently
large corpus containing double annotated medical case reports was generated. Later
on, the corpus was applied for the development of a Maximum Entropy-based model
for the identification of adverse event assertive sentences. Qualitative evaluation as well
as an expert validation of the system’s performance showed robust results. It allows the
development of alerting systems capable of capturing the drug safety issues published
in different literature sources.

In conclusion, this thesis presents approaches for efficient information retrieval and
information extraction from various biomedical literature sources in the support of
healthcare and pharmacovigilance. The applied strategies have potential to enhance
the literature-searches performed by biomedical, healthcare, and patent professionals.
This can promote the literature-based knowledge discovery, improve the safety and
effectiveness of medical practices, and drive the research and development in medical
and healthcare arena.
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Chapter 1

Introduction

1.1 Overview on Healthcare and Medicine

Medicine is a science and art of healing that encompass various healthcare practices
applied to maintain the health of individuals or population by prevention and treatment
of health disturbances. Contemporary medicine uses healthcare sciences, biomedical
sciences, medical technology, pharmaceutical sciences, and information technology
to diagnose and treat various forms of medical problems [Schlich (2007), Ellner and
Joyner (2012)]. Healthcare is provided by medical practitioners, dentistry, nursing,
pharmacy, allied health professionals as well as solitary care providers. Healthcare is
not only associated with personalized care of patients or population but also accounts
for country’s economy [Arrow et al. (2009)]. In the year 2010, healthcare industry
contributed to over 10% of the Gross Domestic Product (GDP)1 across lot of developed
countries2. Healthcare is therefore regarded as a major determinant in promoting good
health and well being of people around the world. An example is malaria eradication in
1980s that has been declared by World Health Organization (WHO)3 as a first disease in
the human history to be eliminated by deliberate medical interventions [Arita (2011)].

The goal of any medical practice is to promote health tranquility to the public.
Nevertheless, sometimes the medical interventions can result in failure to deliver the
expected results or may cause unexpected deleterious effects [Vincent et al. (2001)].
Adverse effects are unexpected harmful effects resulting from any medical intervention
to the patients [Marken and Pies (2006), Poppenga (2001)]. They are sometimes referred
to as iatrogenic because they are generated by a physician or treatment4. Adverse effects
pose major challenges to the healthcare industry. The problem of adverse effects is
more severe in the pharmaceutical domain associated with pharmaceutical preparations
[Vervloet and Durham (1998)], however, they are not confined to any particular type of
medical treatment. Examples of adverse effects include abdominal pain resulting from
a drug; infection, inflammation, or scarring resulting from a surgery; or perforation of
the intestinal wall resulting from a diagnostic procedure such as colonoscopy.

Pharmacovigilance is a healthcare research that deals with detection, assessment,

1http://en.wikipedia.org/wiki/Gross_domestic_product
2http://www.healthleadersmedia.com/
3http://www.who.int/en/
4http://www.halexandria.org/dward048.htm

http://en.wikipedia.org/wiki/Gross_domestic_product
http://www.healthleadersmedia.com/
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Chapter 1 Introduction

analysis, and prevention of adverse effects of medicinal drugs [Härmark and van
Grootheest (2008)]. The complete adverse effect profile of a drug is not known at
the time of approval because of the small test population size, short duration, and
limited generalizability of pre-approval clinical trials [Ahmad (2003)]. As a result, a lot
of additional adverse effects are observed after the drug is made available to public
over long periods of time. Therefore, the drug manufacturers are ethically committed
and legally obliged to accurately monitor any adverse effects and report them to the
drug regulatory authorities for better communication about drug usage in the market.
Several examples of drug withdrawal exist due to unbalanced risk-benefit ratio of
a drug5. Adverse effects pose major socioeconomic challenges. For instance, in the
year 2008, the National Health System of UK reported an expenditure of £2 billion
for treating patients due to adverse drug reactions6. In the recent years, beyond the
national bodies, international organizations such as the Food and Drug Administration
(FDA)7, the World Health Organization, the European Medicines Agency (EMEA)8, and
the Medicines and Healthcare products Regulatory Agency (MHRA)9 have maintained
postmarketing surveillance systems that enable individuals to spontaneously report
the adverse effects experienced as a result of using drugs or healthcare products. The
reported adverse effects are carefully monitored by drug regulatory experts in order to
ensure drug safety and integrity in the market [Bates et al. (2003)].

1.2 Scientific Problems and Research Motivation

In the medical domain, recent progress in the research and development along with
advancement in patient healthcare technologies has resulted in generation of enormous
amount of data [Zhu et al. (2003), Doukas et al. (2010)]. Medical data include images
from diagnostic procedures (e.g. X-ray), textual information described in research
articles, or laboratory readouts from patient’s experimental samples [Mullins et al.
(2006), Mikut et al. (2006)]. Amongst various kinds of medical data generated, free-text
denote one important data resource due to their abundant existence, rapid rate of
generation, as well as valuable information enclosed. Figure 1.1 shows the amount of
indexed citations collected in the bibliographic database MEDLINE10 during each fiscal
year since 1995.

Although an ample amount of medical information are analyzed and stored in
heterogeneous electronic databases11, a substantial amount of information remain
unexplored in the form of free-text literature [Krallinger et al. (2005), Harmston et al.
(2010)]. Apart from their advantages, databases alone cannot capture the richness

5http://www.fda.gov/Safety/Recalls/default.htm
6http://www.guardian.co.uk/society/2008/apr/03/nhs.drugsandalcohol
7http://www.fda.gov/
8http://emea.europa.eu/
9http://www.mhra.gov.uk/index.htm

10http://www.nlm.nih.gov/bsd/stats/cit_added.html
11http://www.meddb.info/
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Figure 1.1: Amount of indexed citations added to MEDLINE during each fiscal year
since 1995.

of scientific information and argumentation contained in the literature. Complex
assumptions, interpretation of novel findings or contradictions, and hypotheses are
often expressed using a natural language in free-text. Especially in the medical domain,
a major portion of the patient’s clinical observations, including radiology reports,
operative notes, and discharge summaries are recorded as narrative text (dictated and
transcribed, or directly entered into system by care providers) [Demner-Fushman et al.
(2009)]. According to Hale (2005) only a small proportion of information is available in
structured form manageable by database systems, whereas around 80% is unstructured
free-text literature. These include patient health records, electronic medical records,
medical case reports, full text research articles, patents, blogs, forums, and news reports
[Cohen and Hersh (2005), Kamel Boulos et al. (2010), Van De Belt et al. (2010)]. The
study of literature enables the identification of novel facts, hypotheses, new connections
between the events occurring at different levels (i.e. from microscopic to physiological)
and drives the generation of new ideas and clinical decision support.

However, the goal is hard to achieve by reading all the documents since the size of
bibliographic space is extremely huge. The enormous growth of literature resources
has urged the development of domain specific informatics tools in order to support the
analysis of huge amount of unstructured information12. Therefore, two fundamental
aspects that have gained popularity since over a decade include:

• Information Retrieval (IR): Identification of relevant documents from large collec-
tions that satisfy a certain information need.

12http://www.ibm.com/ibm/gio/us/en/clients.mayo.html

3

http://www.ibm.com/ibm/gio/us/en/clients.mayo.html


Chapter 1 Introduction

• Information Extraction (IE): Identification of useful facets of information from
huge volumes of unstructured document sources.

In the context of medical research, the information retrieval includes identifying the
patient records from hospital repositories to find population over which comparative
effectiveness studies can be performed [Khoury et al. (2009)]. Similarly, the informa-
tion extraction includes identifying different classes of medical concepts (e.g. disease,
treatment, etc.), relationship between the concepts, or events associated with them
[Hobbs (2002), Denecke (2008)]. An example of medical information technology is the
MedLEE system [Chiang et al. (2010), Sevenster et al. (2011)] that has found various
applications in the medical scenario. Collaborative research projects such as EU-ADR13,
and IMI-EHR4CR14 have fostered the medical research and development by bringing
together academia and industries. Competitive assessments such as TRECMED15 and
I2B2

16 have provided ground for open development, evaluation, and benchmarking
of medical text mining technologies. In the perspective of healthcare, text mining
technologies can avail several benefits such as:17

• Provide appropriate access to the key information recorded in free-text such
as patient’s diagnoses, lab tests preformed, medications prescribed, and their
outcome that would facilitate the sound clinical decision making in a timely
manner.

• Provide quick access to new and past results (such as patient’s response to a
therapy) that would increase patient safety and effectiveness of care [O’Connor
et al. (2011)].

• Enhance legibility and reduce the redundant experiments or tests performed over
patients that can effectively cut down the cost of treatment.

• Generate timely alerts and computerized decision support systems that would
improve compliance with best clinical practices and accelerate services to the
patients [Haynes et al. (2010)].

• Identify suitable individuals for clinical trails or comparative effectiveness studies
[Embi et al. (2005)].

• Facilitate the enrichment of databases and literature-based knowledgebases [Thorn
et al. (2005)].

• Perform knowledge discovery and association mining in order to find the associa-
tion or linkage between different biomedical events [Campillos et al. (2008)].

13http://www.alert-project.org/, EU-Adverse Drug Reaction
14http://www.ehr4cr.eu/, Electronic Health Records for Clinical Research
15http://trec.nist.gov/tracks.html, Text REtrieval Conference Medical Records Track
16https://www.i2b2.org/, Informatics for Integrating Biology and the Bedside
17http://www.openclinical.org/
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• Likewise, the patent mining can help in updating recent scientific advancements
in the market, policy and investment making, portfolio analysis, and so-forth.

1.3 Goals of the Thesis

With an emphasis on huge bibliographic space and growing amount of literature in the
medical domain, this work aims at development and validation of automated strategies
for efficient information retrieval and information extraction with dedicated focus on
patient health records, scientific abstracts, and patents.

A preliminary step during text mining is the recognition of information carries i.e. de-
nominations of domain specific named entities or concepts. Continuative information
extraction tasks rely on this basic step and essentially depend on their performance.
Since over a decade, variety of named entity recognition, and concept identification
techniques have been proposed. Similarly, different terminological resources are avail-
able that can serve as a backbone for the named entity recognition. In the medical
domain, named entity recognition poses an extraordinary challenge since medical terms
are written in various forms. For example, medical condition of a patient such as a
disease can be mentioned as in accordance to a standard diagnostic code (e.g. ICD-918),
as a complex description, or as an abbreviation. Although significant amount of work
has been done in the biomedical domain for the recognition of entities of biological
interest [Yeh et al. (2005)], less efforts have been invested for the recognition of medical
disorders such as diseases and adverse effects.

Goal-1: A systematic development and evaluation of different strategies
for recognition of medical disorders in scientific articles. The adapted
systems needs to be tested for their generalizability to recognize other
classes of medical entities such as medical treatments, and diagnostic tests.
Performances of applied systems will be studied by their evaluation over
different types of corpora such as scientific articles, and patient health
records.

Information retrieval serves as a baseline rationale for selecting the important docu-
ments that can be subjected to information extraction either manually or automatically.
For a user-defined query, the information retrieval not only focusses on the retrieval
of relevant documents (i.e. documents that best answer the user’s question) but also needs
prioritization of highly relevant documents in comparison to less relevant or irrelevant
ones. In the medical domain, document retrieval using keywords, manual query expan-
sion, or based on MeSH19 indexing have been popularly used [Lu et al. (2009), Shetty
and Dalal (2011), Trieschnigg et al. (2009)]. This elucidates the need for advanced and
sophisticated techniques that can yield improved results in comparison to the existing
methodologies.

18http://www.cdc.gov/nchs/icd/icd9.htm
19http://www.nlm.nih.gov/mesh/
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Goal-2: A systematic development and evaluation of a strategy for infor-
mation retrieval from biomedical document collections. Performance of the
newly implemented retrieval strategy needs to be tested in comparison to
the conventional keyword-based retrieval. Generalizability of the adapted
retrieval technique will be studied over patient health records and patents.

Extraction of information about adverse effects of drugs can greatly support acceler-
ated pharmacovigilance and patient safety. There are sparsely available general purpose
medical information extraction tools that can be apprehensively applied for extraction
of adverse events from text. In addition, there are couple of commercial systems that
provide facility for adverse event extraction (e.g. Luxid20). But, there are no popular
publicly available technologies that are tailored to support adverse event extraction
from text.

Goal-3: Development of strategies for automatic extraction of informa-
tion about drug-related adverse effects from the medical literature. The
developed technique needs to be qualitatively evaluated as well as carefully
studied for its ability to support real world pharmacovigilance studies.

Development of a precise information retrieval or information extraction system
requires manually annotated corpora. A manually annotated corpus serves multi-
ple purposes. First, it provides necessary data for development or optimization of
automatic systems irrespective of the underlying methodologies. It serves as a gold
standard against which the performances of automatic systems can be evaluated and
compared. Finally, the annotated corpora can be used as a curated information source
for construction of literature-based knowledgebases (such as MetaCore21). Unlike the
biological domain, the availability of annotated corpora is restricted in the medical
domain. This is partly due to the proprietary nature of patient health care systems as
well as the safety and legacy issues that health care organizations commit in order to
protect the patient privacy data [Sweeney et al. (2005)].

Goal-4: Aggregation of publicly available medical free-text resources and
construction of corpora that are systematically annotated. Annotation and
corpus development are manual labor intensive tasks that are often prone
to errors. Therefore, strategies to control the quality and minimize errors
during annotation needs to be strongly considered. Different sets of corpora
will be developed for different tasks such as the named entity recognition
(see Chapter 4), and the pharmacovigilance study (see Chapter 10).

20http://www.temis.com/?id=94&selt=16
21http://www.genego.com/metacore.php
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1.4 Outline of the Thesis

1.4 Outline of the Thesis

Chapter 2 provides a brief introduction to how medical information is communicated
through electronic medical resources. It provides an overview on different terminologi-
cal resources, knowledgebases, and bibliographic databases in the medical domain.

Chapter 3 gives a general introduction to fundamental aspects of text mining in-
cluding information retrieval, information extraction, machine learning, evaluation
protocols, and state-of-the-art biomedical text mining technologies.

Chapter 4 describes the methodological aspects of identification of medical disorders
in scientific articles using various domain specific terminological resources.

Chapter 5 discusses the application of machine learning technique for identification
of medical disorders. It also provides a comparative evaluation of different techniques
for disorder recognition.

Chapter 6 describes the techniques implemented for identification of medical concepts
in patient health records. It also presents an approach developed for the classification
of assertions made on medical problems in health records.

Chapters 7, 8, and 9 provide details on adaptation of in-house semantic search plat-
form for retrieval of patient health records and patents. Under both the scenarios, the
system is qualitatively evaluated as a part of public assessment.

Chapter 10 describes systematic corpus generation and methodological approach
developed for the identification of drug-related adverse events in medical text. Finally,
Chapter 11 provides conclusions and outlook onto future perspectives.
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Chapter 2

Medical Information Resources

An advancement in research and development in the medical domain as well as patient
healthcare technologies has led to the generation of huge amount of data. They can be
empirical quantitative observations, short descriptive notes, or full-length documen-
tations (e.g. research articles, patents). Structuring the massive information obtained
from these data can ease their accessibility and provide better understanding of the
underlying knowledge. Therefore, industries and academia have come forward since
past few decades to organize the valuable information by development of databases, the-
sauri, ontologies, and knowledgebases. This chapter presents few medical information
resources as well as the scope of information they cover.

2.1 Terminological Resources

Terminological resources in the medical domain are distributed in the form of thesauri,
ontologies, and hierarchies depending on the purpose of development. The scope of
information they cover vary across different resources. Broad medical resources such
as UMLS1 or SNOMED2 cover wide category of aspects such as demography, anatomy,
clinical, pharmaceutical, and many more. Whereas, the focussed resources such as
MedDRA3 or ICD4 cover specific medical sub-domains. The following subsections
provide an overview on few popular terminological resources.

2.1.1 Medical Subject Headings

Medical Subject Headings (MeSH)5 [Sewell (1964)] is a controlled vocabulary thesaurus
designed and maintained by the National Library of Medicine (NLM)6. MeSH was
developed for the purpose of indexing journal articles and books in life sciences.
Currently, the NLM uses MeSH for indexing articles in the MEDLINE database. MeSH

1http://www.nlm.nih.gov/research/umls/, Unified Medical Language System
2http://www.fmrc.org.au/snomed/, Systematized Nomenclature of Medicine
3http://www.meddramsso.com/, Medical Dictionary for Regulatory Activities
4http://www.who.int/classifications/icd/en/, International Classification of Diseases
5http://www.nlm.nih.gov/mesh/
6http://www.nlm.nih.gov/
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has been extensively used for searching and retrieval of articles in MEDLINE [Lowe
and Barnett (1994)].

Currently, the MeSH contains a total of 26,142 subject headings known as descriptors
that are hierarchically organized. Most of the descriptors have a short free-text descrip-
tion, links to related descriptors, and a list of synonyms (known as entry terms). The
most upper level of the hierarchical structure contains very broad headings such as
Anatomy or Mental Disorders. There are 16 top level descriptors in MeSH. More specific
headings (e.g. such as Brain or Alzheimer disease) are found at lower levels of the hierar-
chy. In addition to descriptors, MeSH contains a small number of qualifiers known as
subheadings. Subheading are added to descriptors to narrow down the scope of a topic.
For example, Measles is a descriptor and epidemiology is a qualifier. Measles/epidemiology
describes the subheading of epidemiological articles about Measles.7. In addition
to descriptors and qualifiers, MeSH contains over 199,000 Supplementary Concept
Records (formerly known as Supplementary Chemical Records) that are present within
a separate thesaurus. Although originally developed in English, MeSH has been trans-
lated into other languages to support indexing and retrieval of non-English documents
[Muench (1971)].

2.1.2 Unified Medical Language System

Unified Medical Language System (UMLS) [Lindberg et al. (1993)] is a metathesaurus
designed and maintained by the NLM. UMLS covers numerous thesauri and controlled
vocabularies in the biomedical domain. The Metathesaurus denotes a very large,
multi-purpose, and multi-lingual vocabulary database that contains information about
biomedical and health-related concepts and the relationships among them.8. Currently,
the metathesaurus contains nearly two million concepts and 10 million synonyms of
the concepts incorporated from over 100 source vocabularies. UMLS preserves names,
meanings, attributes, and relationships of concepts derived from source vocabularies
and integrates them into a common semantic framework.

Semantic Network

The semantic network [Kashyap (2003)] consists of a set of broad subject categories
(known as semantic types) that provide a consistent categorization of all concepts
represented in the UMLS metathesaurus, and a set of useful and important relation-
ships (known as semantic relations) that exist between the semantic types.9 Major
semantic types in UMLS include organisms, anatomical structure, biological function, chem-
icals, events, physical objects, and concepts or ideas. The semantic types are the nodes in
the network and the relationship between them are the links. This network kind of
representation of the semantic types and concepts aids an easy interpretation of the
medical knowledge.

7http://www.diabetesdaily.com/wiki/Medical_Subject_Headings
8http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
9http://www.nlm.nih.gov/pubs/factsheets/umlssemn.html
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2.1.3 Systematized Nomenclature of Medicine

Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT) [Côté and
Robboy (1980)] is a standardized healthcare terminology owned and maintained by
International Health Terminology Standards Development Organization (IHTSDO)10.
SNOMED-CT provides comprehensive coverage of diseases, clinical findings, therapies,
procedures, and outcomes.11 It contains about 357,000 concepts and formal logic-based
definitions that are organized into hierarchies and allows consistent way to index,
store, retrieve, and aggregate clinical data across various healthcare settings. Some
of the computerized applications of SNOMED-CT include electronic health record
systems, Computerized Provider Order Entry (CPOE) such as e-Prescribing, catalogues
of clinical services; e.g. for diagnostic Imaging procedures, knowledge databases used
in clinical decision support systems, remote intensive care unit monitoring, laboratory
reporting, and many more.12

2.1.4 Anatomical Therapeutic Chemical Classification System

The Anatomical Therapeutic Chemical (ATC)13 classification system is maintained by
WHO Collaborating Centre for Drug Statistics Methodology (WHOCC) [Miller and
Britt (1995)]. ATC classifies over 3000 drugs from pharmacopeias of different countries.
The classification system provides a global standard for categorizing medical substances
and serves as a source for drug utilization research. In an application point of view, the
ATC classification system has been adopted by several countries as a national standard
for medical products. In nordic countries, the ATC is used as a national classification
system to identify the marketed medical substances14.

ATC divides drugs into different groups according to the organ system they act on as
well as their therapeutic, pharmacological, and chemical characteristics. In this system,
drugs are classified into groups at five different levels. The first level of the ATC indi-
cates the anatomical main group and there are 14 such main groups (e.g. Cardiovascular
system). The second level indicates the therapeutic group (e.g. Diuretics). The third level
indicates the therapeutic or pharmacological group (e.g. High-ceiling Diuretics). The
forth level indicates the pharmacological or chemical group (e.g. Sulfonamides). The fifth
level indicates the chemical substance. For example, from a top-down view, the drug
Dithranol is classified under Dermatologicals, Antifungals, Antipsoriatic, Antipsoriatics for
tropical use, and Antracen derivatives.

10http://www.ihtsdo.org/
11http://www.fmrc.org.au/snomed/
12SNOMED CT Technical Implementation Guide, 2009 release
13http://www.whocc.no/atc_ddd_index/
14http://www.whocc.no/atc_ddd_methodology/history/
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2.1.5 Medical Dictionary for Regulatory Activities

The Medical Dictionary for Regulatory Activities (MedDRA)15 is a clinically validated
and standardized medical terminology developed by the International Conference
on Harmonization of Technical Requirements for Registration of Pharmaceuticals for
Human Use (ICH)16 to facilitate the sharing of regulatory information internationally
for medical products used by humans [Brown et al. (1999)]. MedDRA is managed by
the Maintenance and Support Services Organization (MSSO)17, an organization that
reports to International Federation of Pharmaceutical Manufacturers and Associations
(IFPMA)18. It is used for registration, documentation, and safety monitoring of medical
products both before and after a product has been authorized for sale19. FDA uses
MedDRA as a standard source for coding adverse effects in the Adverse Event Reporting
System maintained in the USA.

MedDRA hierarchically organizes medical conditions at four different levels. The
first level is called as the System Organ Class (SOC) that contains 26 main groups
(e.g. Endocrine disorders). The groups at second, third, and forth levels are called as
High-Level Group Terms (HLGTs), High-Level Terms (HLTs), and Preferred Terms
(PTs) respectively. Each preferred term is associated with one or more Low-Level
Terms (LLTs) that are synonyms of the respective preferred term. For example, from a
top-down view, the preferred term Breast cancer is classified under Reproductive system
and breast disorders, Breast disorders, and Benign and malignant neoplasms.

2.1.6 WHO Family of International Classifications

The WHO maintains the Family of Classifications (FIC)20 on health that provides a
consensus and meaningful language framework for communication between govern-
ments, providers and consumers. The purpose of WHOFIC to provide a common
framework and language to report, compile, use, and compare health information at
the national and international level [Jakob et al. (2007)]. The WHOFIC is composed
of reference classifications and derived classifications. Reference classifications are
those prepared by the WHO and approved by the organization’s governing bodies
for international use. They include the International Classification of Diseases (ICD),
the International Classification of Functioning, Disability and Health (ICF)21, and the
International Classification of Health Interventions (ICHI)22. Derived classifications are
based on the reference classifications and they include International Classification of
Diseases for Oncology 3rd Edition (ICD-O-3)23, International Classification of Primary

15http://www.meddramsso.com/
16http://www.ich.org/
17http://www.meddramsso.com/
18http://www.ifpma.org/
19http://www.ich.org/products/meddra.html
20http://www.who.int/classifications/en/
21http://www.who.int/classifications/icf/en/index.html
22http://www.who.int/classifications/ichi/en/index.html
23http://www.who.int/classifications/icd/adaptations/oncology/en/index.html
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Care (ICPC-2)24, International Classification for Nursing Practice (ICNP)25, and many
more.

2.2 Knowledgebases

2.2.1 DrugBank

DrugBank is a multipurpose medico-pharmaceutical resource that provides comprehen-
sive information about drugs including their chemical, pharmacological, and medicinal
characteristics [Wishart et al. (2008)]. The 2011 version of database contains 6796 drug
entries including 1437 FDA-approved small molecule drugs, 134 FDA-approved biotech
(protein or peptide) drugs, 83 nutraceuticals and 5174 experimental drugs26. DrugBank
is unique in terms of the depth of knowledge it covers and levels of integration is
provides [Wishart (2007)]. It intends to cover a wide range of knowledge to support
research and development at various levels such as academia, industry, and clinic.

DrugBank covers a broad spectrum of drug-related information including their
nomenclature (such as brand names, systemic and semi-systemic names), chemistry (such
as chemical structure, and formula), physico-chemical properties (such as molecular weight,
and melting point), pharmacology (such as pharmacokinetics, and ADME27 properties),
medico-therapeutic properties (such as disease indications, dosages, and adverse effects),
and cross-references to related databases (e.g. protein database such as UniProt28).
DrugBank is fully searchable and web-enabled resource with built-in tools and features
for visualization, searching, and extracting any drug-related information. The database
also supports text as well as chemical structure and sub-structure searching with a
vision to support drug discovery, pharmacology, and toxicology studies.

2.2.2 PharmaPendium

Pharmapendium is a comprehensive commercial knowledgebase maintained by Else-
vier29 that covers drug-related information. It is the first and only database that enables
efficient search and retrieval of FDA and EMA drug approval documents dating back
to 1938. Some key features and applications of PharmaPendium are as follows:30

• An extensive access to comparative safety, efficacy, and PK data gives potential
insights to prioritize the safest and most promising drug candidates for further
development.

24http://www.who.int/classifications/icd/adaptations/icpc2/en/index.html
25http://www.who.int/classifications/icd/adaptations/icnp/en/index.html
26http://drugbank.ca/about
27Absorption, Distribution, Metabolism, and Elimination
28http://www.uniprot.org/
29http://www.elsevier.com/
30http://www.info.pharmapendium.com/why-use-pharmapendium
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• Carefully extracted adverse event and toxicity data from preclinical and clini-
cal studies, as well as a database of post-market event reports allows careful
longitudinal investigation of benefit-risk profile of drugs.

• Data search function by text or chemical structures or data pathway browsing
by drug, adverse event/toxicity and target can facilitate thorough understand-
ing of pharmacological behavior of drugs and their mechanism of action from
physiological to phenotypic levels.

2.2.3 MedicineNet

MedicineNet is a comprehensive medical knowledgebase that aims to bridge the
health-related knowledge gap between doctors and the public. It provides in-depth
information for consumers through a robust, user-friendly, and interactive website31.
MedicineNet provides detailed information about various aspects of healthcare includ-
ing diseases, medical conditions, procedures, tests, and medications. MedicineNet also
provides a dictionary called MedTerms32 that contains easy-to-understand explanations
to over 16,000 medical terms.

2.2.4 Side Effect Resource

Side Effect Resource (SIDER)33 is a public and machine-readable resource for provides
information about adverse effects of drugs. Currently, the SIDER contains 62,269

drug-adverse effect pairs and covers a total of 888 drugs and 1450 distinct adverse
effects [Kuhn et al. (2010)]. The database incorporates information from drug packet
inserts from several public sources, in particular, from the FDA Structured Product
Labels (SPL). The standardized Coding Symbols for a Thesaurus of Adverse Reactions
Terms (COSTART) is used as the basic lexicon for coding the adverse effects. In order
to facilitate the linkage to related databases and reuse for research, the drug names
are mapped to the PubChem34 database. In addition, the SIDER provides the users
with facility to explore the package inserts through the concept of augmented browsing
[Pafilis et al. (2009)].

2.2.5 MedlinePlus

MedlinePlus is a free web-based resource that provides health-related information to
patients, and healthcare providers35. It incorporates information from the National

31http://www.medicinenet.com/
32http://www.medterms.com/
33http://sideeffects.embl.de/
34http://pubchem.ncbi.nlm.nih.gov/
35http://www.nlm.nih.gov/medlineplus/
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Institute of Health (NIH)36, several U.S. governmental agencies, and healthcare orga-
nizations. Currently, the MedlinePlus contains information about 800 health-related
topics (such as medications, therapies, diseases, and diagnostics) in English and Spanish
languages. It also provides links to relevant health-related information in 22 other
languages. Key features of MedlinePlus include:

• Health information and an encyclopedia covering hundreds of diseases, condi-
tions, and wellness issues.

• Drug-related information including their brand names, dosage forms, and indica-
tions.

• Information about herbal medicines and dietary supplements.

• Health news from reputed press releases (e.g. Reuters37), videos of diagnostic
procedures, and tutorials for understanding medical conditions and procedures.

2.3 Bibliographic Resources

2.3.1 MEDLINE

MEDLINE38 is a premier bibliographic database maintained by the National Library
of Medicine. It includes bibliographic information of articles from academic journals
covering medicine, nursing, pharmacy, dentistry, veterinary medicine, and healthcare.
Currently, the database contains more than 19 million records from approximately 5,000

selected journals in the fields of biomedicine and healthcare from 1950 to present. The
majority of publications covered in MEDLINE are scholarly journals, whereas a small
number of newspapers, magazines, and newsletters considered useful to particular
segments of the NLM broad user community are also included39. Articles in MEDLINE
are indexed using MeSH. This provides a facility for search engines such as PubMed40

to search over free-text part of articles or MeSH-indexed terms.

2.3.2 TOXLINE

TOXLINE41 is a bibliographic database of covering toxicological information since
1972 [Schultheisz (1981)]. TOXLINE records provide information covering biochemical,
pharmacological, physiological, and toxicological effects of various chemicals including
drugs42. Currently, the database contains nearly 4 million citations where most of them

36http://www.nih.gov/
37http://de.reuters.com/
38http://www.nlm.nih.gov/bsd/pmresources.html
39http://www.nlm.nih.gov/pubs/factsheets/medline.html
40http://www.ncbi.nlm.nih.gov/pubmed
41http://toxnet.nlm.nih.gov/
42http://www.nlm.nih.gov/pubs/factsheets/toxlinfs.html

15

http://www.nih.gov/
http://de.reuters.com/
http://www.nlm.nih.gov/bsd/pmresources.html
http://www.nlm.nih.gov/pubs/factsheets/medline.html
http://www.ncbi.nlm.nih.gov/pubmed
http://toxnet.nlm.nih.gov/
http://www.nlm.nih.gov/pubs/factsheets/toxlinfs.html


Chapter 2 Medical Information Resources

are abstracts indexed with MeSH terms and CAS registry numbers. A large portion
of the database covers standard journal literature in the toxicology domain as well as
technical reports and research project reports (such as Toxicology Document and Data
Depository), and archival collections (such as Health Aspects of Pesticides Abstract Bulletin
(HAPAB) and Poisonous Plants Bibliography (PPBIB))

2.3.3 PubMed Central

PubMed Central (PMC)43 is a bibliographic database containing full-text scientific
literature covering the biomedical and life science domain. PMC was developed
by NLM and is currently managed by NLM’s National Centre for Biotechnology
Information (NCBI)44. The database currently contains nearly 2.2 million articles and
serves as an open archive of biomedical journal articles.

2.3.4 ClinicalTrials Database

ClinicalTrials database (popularly known as ClinicalTrials.gov)45 is a registry of clinical
trails. It is maintained by NLM and is the largest database of clinical trials openly
available. ClinicalTrials.gov currently contains nearly 130,000 trials from more than
170 countries across the world. The database provides up-to-date information about
federally and privately conducted clinical trials for a wide range of diseases and
conditions. The primary purpose of the database is to improve public access to drug
efficacy studies resulting from approved Investigational New Drug (IND) applications.
Every clinical trial record in the database provides comprehensive information including
the summary of the clinical study protocol (such as the study design, eligibility criteria,
location of the trial, etc) as well as clinical study results (such as the overall outcome,
summary of adverse effects, etc).

2.3.5 DailyMed

DailyMed46 is a database of drug regulatory reports. The database is maintained
by NLM and contains information about nearly 28,000 drugs including human and
animal drugs. DailyMed aims to provide healthcare providers and the public with
comprehensive and up-to-date information about the regulatory reports submitted to
the FDA by drug manufacturers. A drug regulatory report is also called as drug label,
packet insert, Structured Drug Label (SPL), or Summary of Product Characteristics
(SPC). It provides information about the product (such as generic names, ingredients,
ingredient strengths, dosage forms, routes of administration, appearance, etc) as well
as the packaging (such as package quantities and types).

43http://www.ncbi.nlm.nih.gov/pmc/
44http://www.ncbi.nlm.nih.gov/
45http://clinicaltrials.gov/
46http://dailymed.nlm.nih.gov/dailymed/about.cfm
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2.3.6 Patent Databases

Patents contain valuable information about intellectual and scientific aspects of inven-
tions. In order to maintain the integrity of the intellectual property, patent documents
are made available as images of text documents such as TIFF or PDF provided by their
respective patent offices (e.g. The United States Patent and Trademark Office (USPTO)47

publishes patents in TIFF format). The number and importance of patents and patent
applications are increasing at a rapid rate worldwide. More than 35 million patent
documents have been published so far around the world and the number of inventions
since 1968 have been estimated in excess of 8 million. The USPTO patent database
includes full-text patents from 1790 - present and also provides TIFF images of most
of them. The European Patent Office (EPO)48 maintains a free database of worldwide
patents (including the U.S. patents) called esp@cenet . Here the images of patents are
provided in PDF format. National patent offices of various countries (e.g. Deutsches
Patent und Markenamt (DPMA)49, and the Japan Patent Office (JPO)50) maintain their
in-house patent databases.

47http://www.uspto.gov/
48http://www.epo.org/
49http://www.dpma.de/
50http://www.jpo.go.jp/
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Chapter 3

Foundational Aspects of Biomedical
Text Mining

3.1 Fundamentals of Text Processing

With rapidly expanding bibliographic space in the medical domain, there is no surprise
in the need for techniques that can identify, extract, and manage important information
from this massive amount of data. The primary goal of text mining is to extract
the knowledge that is hidden in text and to present it in a concise form to medical
professionals or researchers. “Text mining applications integrate a broad spectrum
of heterogeneous data resources, providing tools for the analysis, extraction and
visualization of information, with the aim of helping biologists to transform available
data into usable information and knowledge" [Krallinger et al. (2005)]. Text mining
comprises three major activities i.e. the information retrieval, to gather relevant text;
the information extraction, to identify and extract specific information from the text of
interest; and the knowledge discovery, to find associations among pieces of information
extracted from various text sources. Sections 3.2-3.6 provide brief introduction to
techniques employed in the fields of information retrieval and information extraction.

3.2 Information Retrieval

Information Retrieval is an area of study that deals with searching in large document
collections for information within documents or metadata of documents to satisfy
certain user needs [Manning et al. (2009)]. The process of information retrieval begins
with user’s query to the system. The query can be in form of keywords or formal
statements. The system automatically interprets the user’s request and returns a list
of documents that can best answer user’s question. PubMed is a popular example of
biomedical search engine for searching in MEDLINE abstracts. Following subsections
introduce popular aspects of information retrieval including the models for storing,
analyzing, and searching the documents.
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Figure 3.1: Illustration of an example document index. The index contains four docu-
ments (i.e. Doc1–Doc4) and overall four terms (i.e. Term1–Term4). Non-zero
numbers indicate the frequency of term occurrence in the respective docu-
ment.

3.2.1 Vector Space Model

Vector Space Model (VSM) [Salton et al. (1997)] is a model for representation of docu-
ments in a multidimensional space. Documents are stored in the form of vectors whose
dimensions are determined by terms used to build the index. Figure 3.1 shows an
illustration of example document index. Each term occurring in a document forms
a separate dimension. If a term occurs in a document, its value for the respective
document is set to a non-zero value in the index. There are several ways of weighting
the term occurrence in a document. Popular examples include term frequency or term
frequency-inverse document frequency (refer Section 3.2.2). Given a query as a term or
set of terms, the model enables determination of similarity (refer Section 3.2.2) between
the documents and the query, and finally returns a ranked document hit list.

3.2.2 Similarity Scoring

A similarity score is a function that measures the quantitative similarity between a
document and user-defined query [Zobel (1998)]. It provides a rationale to rank the
documents with respect to the relevance to the query. The quality of retrieval is
dependent on the strength and suitability of the scoring function. To date, several
scoring functions have been proposed and applied with varying success. They include
cosine similarity [Garcia (2006)], term frequency-inverse document frequency similarity
[Zobel and Moffat (1998)], and many more.
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TF-IDF Similarity

Term frequency-inverse document frequency (TF-IDF) is a term weighting scheme
often used for document indexing and retrieval purposes [Spärck Jones (1972)]. It is a
statistical measure of how important a term is w.r.t. a document collection. In recent
years, TF-IDF scheme has been applied by search engines to score the relevancy of
documents to a query.

Term frequency (denoted as tf(t, d)) counts the number of times a term (t) occurs
in a document (d). Inverse document frequency1 (denoted as idf(t) = N

df(t) ) measures
the importance of a term (t) in a document collection taking into account the size
of collection (N) and number of documents containing the term (df(t)). Finally, the
term frequency and inverse document frequency are combined to produce a composite
weight for each term in every document as

tf-idf(t, d) = tf(t, d)× idf(t). (3.1)

Each document can be viewed as a vector of terms weighted by their TF-IDFs. For
a given query (q) comprising one or more terms, the similarity score between the
document and query terms is calculated as

Score(q, d) = ∑
t∈q

tf-idf(t, d). (3.2)

Although TF-IDF similarity has several advantages such as computing simplicity
and document ranking capability, its disadvantages include poor scalability to lengthy
documents (such as full-texts) and assumptions of statistical term independence.

Okapi BM25

Okapi BM25 is a scoring function applied by document search engines to measure and
rank the documents according to their relevance to a user-defined query [Robertson
et al. (1994)]. BM25 is based on a probabilistic framework and is known to overcome
several limitations associated with conventional TF-IDF similarity scoring function.

For a given query (q) containing one or more terms, the BM25 score between the
query and document (d) is determined as

BM25(q, d) = ∑
t∈q

idf(t)× tf(t, d)× (k1 + 1)
tf(t, d) + k1(1− b + b× dl

avg(dl))
. (3.3)

In the above equation, tf(t, d) and idf(d) denote term frequency and inverse document
frequency respectively, k1 is a free parameter usually with a value of 2, and b = 0, .., 1
is a document length normalization parameter (usually valued 0.75). Assigning b to 0
indicates no document length normalization and assigning it to 1 will carry out full
length normalization. Parameter dl indicates the length of document (d) and avg(dl) is

1http://nlp.stanford.edu/IR-book/html/htmledition/
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Figure 3.2: Example of named entity recognition performed over a MEDLINE abstract.
The recognized entities are highlighted in different colors indicating their
semantic classes such as diseases (green) and drugs (yellow).

the average length of documents in a collection. BM25F2 is a variant of BM25 in which
documents are considered to be composed of different fields (such as title, abstract,
full-text, etc.) with possibly different levels of importance. BM25F function allows
searching in one or multiple fields of documents.

3.3 Named Entity Recognition

In the biomedical domain, in order to mine the useful knowledge from literature,
the primary requisite is to recognize the named entities such as drugs, diagnostics,
and diseases. Named Entity Recognition (NER) refers to the task of recognizing the
terms which denote biologically or medically important entities in free-text literature
[Hirschman et al. (2005), Cohen and Hersh (2005), Jimeno et al. (2008), Jiang et al.
(2011)]. The goal of NER is to relate each named entity of importance in a free-text
document to an instance in the real world [Cohen and Hunter (2008)]. In practical text
mining applications, the NER is followed by the normalization of recognized entities to
biomedical database or ontology entries. Figure 3.23 illustrates an example of named
entity recognition performed over a MEDLINE abstract.

NER in biomedicine is a non-trivial task despite the availability of many nomencla-
tures of biomedical entities. Several issues need to be addressed when dealing with
biomedical named entities. Some of them are ambiguous names, synonyms, term varia-
tions, newly discovered entities not mentioned in curated nomenclatures, and many
more. Several approaches have been proposed in the past few decades for efficient
NER in biomedical literature. However, the biomedical NER started with recognition
of gene/protein names at the beginning and later found applications for recognition of
several other biomedical entities such as diseases and drugs. Current NER approaches
can be classified as dictionary-based, rule-based, machine learning-based, and their
combinations that are briefly introduced in the following subsections.

2http://nlp.uned.es/~jperezi/Lucene-BM25/
3Adapted from http://www.scaiview.com/
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3.3.1 Dictionary-based Approach

Information about several biomedical entities including their nomenclature are well-
maintained by leading organizations such as the NLM, WHO, and NCBI. Dictionary-
based NER approaches rely on existing domain-specific dictionaries to identify the
names of entities in free-text. Dictionaries are derived either manually or automatically
from the representative terminological resources. Often string matching or string
similarity algorithms are applied as backbone mechanism for identifying the named
entities. Dictionary-based approaches provide several benefits such as ability to link
database entries to free-text snippets, and normalization of entities at semantic and
lexicosyntactic levels. Nevertheless, the performance of dictionary-based approaches
are strongly dependent on the comprehensiveness and clarity of information provided
by the underlying terminological resource.

There are several public and commercial applications that perform dictionary-based
NER in biomedical free-text with varying capabilities and success rates. A publicly
available system EbiMed [Rebholz-Schuhmann et al. (2007)] recognizes drug names
using a drug dictionary compiled from MedlinePlus. However, they do not provide
an evaluation of their system. Applications such as ProMiner [Hanisch et al. (2005),
Gurulingappa et al. (2010)] and Peregrine [Hettne et al. (2009)] have demonstrated
success in identifying several classes of entities under both biological and medical
settings such as genes, drugs, and diseases. Dedicated medical NER system such as
MedLEE (Medical Language Extraction and Encoding System) [Friedman et al. (2004)]
and c-TAKES (clinical Text Analysis and Knowledge Extraction System) [Savova et al.
(2010)] has been successfully applied in clinical settings for identifying and encoding
patient-related information such as diagnostics, diseases, and treatments.

3.3.2 Rule-based Approach

Rule-based NER approaches apply manually generated rules for identifying the named
entities in free-text [Cohen and Hunter (2004)]. Such systems consist of a set of
rules describing term formation patterns using grammatical (e.g. Parts-Of-Speech),
syntactic (e.g. word precedence), lexical, morphological and orthographic features
(e.g. capitalization) as well as domain knowledge in combination with dictionaries.
They rely on a combination of regular expressions, heuristics, and hand-crafted rules.
However, the generation and maintenance of such rules is bound to high costs and
domain expertise. Furthermore, rule-based NER systems lack the adaptability to other
domains and they are often task and language-specific.

Hamon and Grabar (2010) applied a linguistic rule-based system for analyzing narra-
tive clinical documents to extract medication names and medication-related information.
The system attempts to extract medications not covered by the dictionaries. The system
was evaluated as a part of open clinical natural language processing assessment and
it demonstrated noticeable success. An example of commercial rule-based system is
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BioTeKS [Mack et al. (2004)] that is based on UIMA4 framework. BioTeKS can analyze
biomedical text such as MEDLINE abstracts, medical records, and patents; and auto-
matically identify biomedical entities (e.g. genes, proteins, compounds, and drugs) and
concepts or facts related to them.

3.3.3 Machine Learning-based Approach

Machine Learning (ML)-based NER approaches apply different learning algorithms
to train statistical models for performing the task [Zhou et al. (2004)]. The model
can be applied for recognition and extraction of entities in various corpora. The
strength of a ML-based system depends on the quality and discriminative power of
textual features applied as well as the chosen classification algorithm [Krauthammer
and Nenadic (2004)]. ML approaches formulate the NER task as a text classification
and boundary detection problem. These approaches provide advantages of better
adaptability to different domains in comparison to rule-based approaches. However,
training an accurate NER model requires manually annotated corpora that can be labor
and cost-intensive.

ML-based techniques have been successfully applied in the past for recognition of
gene names [Klinger et al. (2007)], and chemical names [Klinger et al. (2008)] including
drugs. Hawizy et al. (2011) have developed a open source software (ChemicalTag-
ger) for identifying chemistry-specific names in text. Amongst several ML-based
approaches that are available for biomedical NER, Conditional Random Fields (CRF,
see Section 3.8.6) have been one of the favorite choice and most commonly applied
technique that has demonstrated substantial success. Leaman and Gonzalez (2008) and
Mahbub Chowdhury and Lavelli (2010) have developed open source re-trainable CRF-
based applications named BANNER and BioEnEx respectively. These applications have
demonstrated successful examples for biological as well as medical entity recognition
(such as diseases).

3.3.4 Hybrid Approach

Hybrid approaches for NER applies combination of techniques derived from dictionary-
based, rule-based, or ML-based systems. Several examples exist where hybrid ap-
proaches have demonstrated success at various levels [Tsai (2006), Tikk and Solt (2010)].

3.4 Context Disambiguation

A successful identification of named entities in free-text may sometimes require addi-
tional processing to communicate the information more precisely. Typical biological ex-
amples of such scenarios include disambiguation of gene and protein names [Schuemie
et al. (2005)]. Whereas in the medical domain, the disambiguation of medical entities is

4http://uima.apache.org/, Unstructured Information Management Architecture
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gaining popularity since last few years. Context disambiguation in medicine can be in
the form of entity disambiguation or assertion classification.

3.4.1 Entity Disambiguation

Entity disambiguation (also popularly known as word sense disambiguation) is a
process of identifying and classifying the sense of an occurrence of a named entity
in text when it can be associated with multiple meanings (polysemy). For example,
nausea, a medical condition may occur as a clinical history of a patient or a side effect
of drug administration. Several approaches have been taken in the past to solve the
entity disambiguation problem.

Stevenson et al. (2011) have proposed an approach that relies on key terms extracted
from UMLS and domain information of target document automatically learned from
text. They developed and evaluated statistical models that apply information extracted
from local context and domain context in order to disambiguate terms in medical
documents. Similarly, Savova et al. (2008) developed a machine learning-based approach
for disambiguating assertions across two domains, i.e. biomedical literature and clinical
notes. The system was evaluated in comparison to manually annotated word senses
that showed convincing results for both domains. Jimeno-Yepes et al. (2011) presented
a method for an automatic development a word sense disambiguation test collection
using the UMLS metathesaurus and the manual MeSH indexing of MEDLINE. The
dataset is named as MSH WSD. The MSH WSD dataset contains altogether 203 entities
and it allows the evaluation of WSD algorithms in the biomedical domain.

3.4.2 Assertion Classification

Named entity recognition in medical documents is often confronted with a requirement
to classify the assertion. Assertions are the often made by physicians on medical prob-
lems such as symptoms or diseases indicting them as present, absent, or hypothetical.
Assertion classification differs from entity disambiguation since it aims at classifying
the author’s opinion made over the entity.

A popular and classical example of assertion classification tool in medical records
is the NegEx program. NegEx was developed by Chapman et al. (2001) and it is
a rule-based system that determines negations made over the medical problems in
clinical notes. It applies hand-crafted patterns as well as terms extracted from UMLS
and identifies negation based on relative distance of occurrence of negation pattern
and a medical condition. In 2009, Harkema et al. (2009) extended the features of
NegEx to cover temporality and experiencer modules. The program was named as
ConText and it classifies assertions made over medical problems as present, absent,
or hypothetical. The temporality module of ConText classifies if the medical problem
occurs as a patient’s history or current event. The experiencer module classifies if the
medical problem was observed in the patient or third person (e.g. father, mother, son,
etc.)
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3.5 Relationship Extraction

The aim of relationship extraction is to identify and extract semantic relations between
different classes of named entities in text [Rink et al. (2011), Bundschus et al. (2008)].
In the biomedical domain, relationship extraction finds several applications includ-
ing knowledge discovery, hypothesis generation, and question-answering (e.g. which
medical conditions can be treated with paracetamol?). A classical relationship extraction
task requires that the named entities are already known in text. In such cases, the
performance of relationship extraction strongly depends on the performance at which
named entities are correctly tagged in text.

Relationship extraction has gained immense popularity since past few years. A lot of
investigations on relationship extraction are focussed on biological relationships such
as protein-protein interactions (PPIs) due to the availability of annotated corpora. A
popular example include BioCreative challenge II.5 that focussed on PPI identification
[Leitner et al. (2010)]. A recent effort on mining medical relationships was addressed by
the I2B2 (Informatics for Integrating Biology and the Bedside)5 challenge 2010 [Uzuner
et al. (2011)]. The relationship extraction task focussed on identifying over 10 different
relationships between three classes of medical concepts (i.e. problem, treatment, and
test). A recent challenge in 2011 focussed on extraction of drug-drug interactions
(DDIs) from sentences [Segura-Bedmar et al. (2011)] obtained from free-text fields of
the DrugBank database.

Relationship extraction frameworks can be broadly categorized into rule-based and
machine learning (ML)-based approaches. Rule-based approaches apply complex
linguistic technologies (such as sentence parsing see Section 3.6) , hand-crafted domain-
specific patterns, or both to capture various types of relationships expressed in text.
Generation of such manual rules can be labor and cost-intensive as well as require
substantial domain expertise. An example of open source relationship extraction pro-
gram is the RelEx [Fundel et al. (2007)]. RelEx parses sentences to generate dependency
parse tree structures that can be interpreted using simple rules and thereby extract
relationships. An investigation was performed by applying RelEx over one million
MEDLINE abstracts dealing with gene and protein relationships. The system extracted
nearly 150,000 relationships with an estimated performance of 80% overall reliability.
Efforts have been invested by various research groups to identify relationships between
several classes of biomedical entities using different rule-based approaches [Verspoora
et al. (2009), Corney et al. (2004), Morante and Daelemans (2009)]. A recent work on rule-
based relationship extraction was performed by Ben Abacha and Zweigenbaum (2011).
They presented a platform named MeTAE (Medical Texts Annotation and Exploration)
that allows extraction and annotation of entities and relationships in medical text. Their
linguistic-rule based approach for extracting relationships between treatments and
problems demonstrated competitive results. Commercial applications such as LUXID
Skill Cartridge6 provide facilities for extracting relations between various classes of

5https://www.i2b2.org/
6http://www.temis.com/
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biomedical entities in life sciences and have exhibited success scenarios7.
As opposed to rule-based approaches, ML-approaches rely on supervised learning al-

gorithms for training and identifying the relationships in text. However, ML-approaches
require consistently annotated training data in order to build a reliable classifier. ML-
approaches for relationship extraction can be broadly classified into feature-based and
kernel-based approaches. Feature-based techniques extract textual features from input
text (e.g. words occurring between entities) based on which supervised algorithms
are trained. Kernel-based methods encode structural representation of text such as
the word sequence and a kernel function is designed to capture and differentiate
between the meaningful structures [Hofmann et al. (2008)]. Giuliano et al. (2007) have
developed an open source kernel-based relationship extraction toolkit called JSRE (Java
Simple Relationship Extraction). The JSRE platform allows classification on binary
relationships using three different kernels. The system showed competitive results
during the DDI-extraction challenge 2011 [Mahbub Chowdhury and Lavelli (2011)].
Yang et al. (2010) have developed a PPI-extraction system BioPPISVMExtractor that is
based on Support Vector Machine (SVM)8. The system extracts sets of features from
text such as surface words, keywords, and distance between the entities to train the
system for relation classification. Bundschus et al. (2008) applied CRF-based technique
for the identification and classification of relationships between treatments and diseases
from PubMed abstracts. They also demonstrated the stability of their approach by
relationship extraction between genes and diseases. In the clinical domain, Roberts et al.
(2008) applied SVM to detect clinically important relationships (such as has finding,
has indication, has location, etc.). The system was trained and tested on a corpus of 77

patient narratives which were manually annotated by two clinically trained annotators.
The system showed overall high reliability.

3.6 Natural Language Processing Techniques

Text processing requires application of Natural Language Processing (NLP) techniques
to transform input textual data into simple structures that can be handled by humans
or machines. Such techniques may involve splitting the documents into sentences or
words, and so forth. Text processing techniques have been extensively applied for
NER, context disambiguation, relationship extraction, etc. Features, rules, or patterns
are generated from textual segments of documents processed by NLP techniques that
serve as a basis for development of systems for information retrieval or information
extraction. Frequently applied text processing techniques are discussed in the following
subsections.

7https://clara.uib.no/files/2010/09/Geissler.pdf
8http://www.support-vector.net/
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3.6.1 Sentence Splitting

Sentence splitting is a task of decomposing a document into constitutive sentences.
Sentences denote important elements in natural language since they are the smallest
units that may express a complete thought or an event. Sentence detection is not a
trivial task since the punctuation “." does not always occur at the end of sentences.
Biomedical text contains named entities and abbreviations having punctuations as a
part of standard nomenclature (e.g E. coli, W.H.O., etc.). Correct recognition of sentence
boundaries is crucial for several IE tasks.

Several approaches have been proposed for sentence splitting based on various
methodologies. Most of them rely on rules and regular expressions for performing
the task (e.g. GeniaSS9). Machine learning-based approaches have been developed and
evaluated with considerable success [Tomanek et al. (2007b)].

3.6.2 Tokenization

Tokenization is a process of segmentation of a stream of text into smallest units called
tokens such as words, punctuations, and separators. Tokenization can be preformed
directly over documents or composite sentences that results in a sequence of tokens.
This process often depends on simple heuristics such as separation of tokens on
whitespace characters such as spaces or line breaks, and punctuations. An overview on
different tokenization techniques is given by Quint (2000) and Jiang and Zhai (2007).

3.6.3 Word Normalization

Word normalization is a process of reducing inflected words to their base forms.
Normalization can be performed through stemming or lemmatization. Stemming
involves reducing words to their stems. Examples include reduction to words increasing,
increased, or increases to increas. Programs that perform stemming are called as stemmers.
Porter stemmer [Porter (1980)] and Snowball stemmer [Porter (2001)] are popular
examples of stemming programs for English language.

Lemmatization is a process of reducing words to their lemmas [Plisson et al. (2004)].
Examples include reduction to words increasing, increased, or increases to increase.
Lemmatization may sometimes require complex tasks such as understanding the
context or parts-of-speech tagging. Lemmatization is closely related to stemming but
differs in a way that it assumes the context of appearance of a word in a sentence.
MorphAdorner [Burns (2006)] and Dilemma-2 [Facult et al. (1992)] are few examples of
lemmatization programs for English language.

9http://www-tsujii.is.s.u-tokyo.ac.jp/~y-matsu/geniass/

28

http://www-tsujii.is.s.u-tokyo.ac.jp/~y-matsu/geniass/


3.6 Natural Language Processing Techniques

Word Base Form Parts-Of-Speech Chunk Named Entity

Antibiotics Antibiotic NNS B-NP O
treat treat VBP B-VP O
bacterial bacterial JJ B-NP O
Antibiotics Antibiotic NNS B-NP O
infections infection NNS I-NP O

Table 3.1: Illustration of a sentence tagged by the Genia tagger. Lemmas, parts-of-
speech tags, chunk tags, and entity tags are assigned to tokens in the input
sentence.

3.6.4 Parts-Of-Speech Tagging

Parts-Of-Speech tagging (POS tagging) is the process of assignment of words in a
sentence to the corresponding parts-of-speech based on their context of occurrence. For
instance, POS tagging may assign a word to a noun or a verb, and so-forth. POS tagging
is not a trivial task since a word can have multiple parts-of-speech depending on the
context of occurrence. For example, antibiotic appears as a noun in the phrase antibiotic
treats bacterial infections, whereas it appears as an adjective in the phrase antibiotic agent.

POS taggers are generally based on machine learning algorithms such as Hidden
Markov Models trained over manually POS-annotated corpora [Marcus et al. (1993)].
Examples exist where rule-based POS-taggers [Brill (1992)] have been developed with
considerable success. This has motivated the implementation of specialized taggers
optimized for the biomedical domain, such as the MedPost tagger [Smith et al. (2004)],
the dTagger [Divita et al. (2006)], and the Genia tagger [Tsuruoka et al. (2005)]. Table 3.1
shows an example of a sentence tagged by the Genia tagger.

3.6.5 Parsing

Parsing involves the application of linguistic knowledge to understand the grammatical
structure of a sentence. Parsing is most often performed over sentences rather than
directly over documents. A sentence parser typically chunks the sentence into tokens,
performs POS tagging, and generates a tree-like data structure with tokens as nodes
and directed edges connecting the inter-related tokens. Two nodes are connected if they
possess a pre-defined grammatical relation between them (e.g. an adjective describing a
noun). An example of a sentence parsing outcome is illustrated in Figure 3.310.

Several parsers are available for processing the general English and non-English
text. Examples of parsers that have been successfully applied in the biomedical
domain include the Stanford parser [Klein and Manning (2003)], the McCloskey parser
[Mcclosky et al. (2006)], and the Carnegie-Mellon Link Grammar parser [Grinberg et al.
(1995)].

10Adapted from http://www.biomedcentral.com/1471-2105/11/101
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Figure 3.3: Example of a parsed tree structure of a sentence.

3.7 Fundamentals of Machine Learning

Machine Learning evolved from the broad field of Artificial Intelligence, which aims to
mimic intelligent abilities of humans by machines [Ratsch (2004)]. The main question
addressed in machine learning is how to make the machines able to “learn". Several
approaches have been developed for processing the biological and medical data with
the help of machine learning techniques. In text mining, an overwhelming amount
of textual data and a need for automated procedures to handle this massive data has
paved a way for machine leaning to be integrated with classical linguistic techniques.
It has been widely used for document classification, information extraction, term
classification, knowledge discovery, and so forth.

Machine Learning can be broadly classified into supervised, unsupervised and rein-
forcement learning. Supervised learning is learning on the labeled data and utilizing
this learned knowledge to determine the label for unlabeled/new data. Classical
examples of classification and regression fall under the category of supervised learning.
Unsupervised learning involves the task of clustering, partitioning or grouping the
data under predefined conditions. Reinforcement learning [Kaelbling et al. (1996)] is
concerned with how an autonomous system learns or adapts by receiving global feed-
backs from an environment. Sections 3.8-3.11 give brief overview on well established
algorithms used for machine learning in the field of text categorization.

3.8 Supervised Classification

Classification, also referred to as class prediction, is a process of determining appropri-
ate class labels for unclassified or novel instances. It mainly involves a machine learning
technique for learning a function from the training data. The problem of classification
and regression has found wide applicability in text categorization stating from term
classification up to document classification and email filtering [Larrañaga et al. (2006)].
Several machine learning algorithms have been proposed for performing classification
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Figure 3.4: Illustration of a nearest neighbor classification.

and each one adopt their own underlying principle of learning. Amongst them are
distance-based classifiers (e.g. k-Nearest Neighbor), probabilistic classifiers (e.g. Naive
Bayes), decision-based classifiers (e.g. Decision Tree), and margin-based classifiers (e.g.
Support Vector Machine). The following subsections provide an introduction to each
of the classifiers that have been used within this thesis and the principles behind their
classification mechanisms.

3.8.1 k-Nearest Neighbor

The Nearest Neighbor (NN) [Cover and Hart (1967)] is a method for classifying objects
based on closest training examples in the feature space. An extension of NN is the
k-NN where a test instance is assigned to the label which is most frequently represented
among the k nearest training instances [Ratsch (2004)]. Figure 3.411 shows an example
for simple nearest neighbor classification of an instance.

In the Figure 3.4, an instance in color green indicates a test instance and it has a
red instance at nearest distance. Therefore, prediction of class for this test instances
according to NN rule is red. A most common way to decide a nearest neighbor of
an instance is based on its distance measurement from its neighbors. The Nearest
Neighbor method is highly intuitive, simple and produces remarkably low classification
errors. The only parameter that controls the performance of the classifier is factor k
i.e. the number of nearest neighbors preferred for classification. If k = 1, it represents a
simple similarity search criterion.

11Adapted from http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
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3.8.2 Decision Tree

The Decision Tree classifier, developed by Breiman in 1984 [Breiman et al. (1984)],
applies a multistage decision making approach for performing the classification. The
basic idea in this multistage approach is to break up a complex problem into a union
of several simpler decisions, with the aim to achieve the final solution that resembles
the intended solution [Safavian and Landgrebe (1991)]. This algorithm solves the
classification problem by repeatedly partitioning the input feature space, so as to
build a tree whose nodes represent features and their edges form the decision making
function [Yang and Liu (1999)]. Several examples exist for building a decision tree12.
Once a tree has been modeled based on the examples from the training data, the
classification of a test instance is achieved by moving from top to bottom along the
branches, starting from the root note until a terminal node is reached. The terminal
node assigns a class label to the test instance being classified. Figure 3.513 shows an
example for a simple Decision Tree where the decision to be made is either Play or
Don’t Play, whereas the decision making parameters are Outlook, Humidity and Windy.

Several parameters influence the performance of the Decision Tree classification
wherein tree pruning is the most important one [Mingers (1989)]. Pre-pruning involves
trying to decide during the tree building process when to stop the subtree development
process and post-pruning involves building a complete tree first and then pruning it
when necessary. However, most of the Decision Tree builders use the post-pruning
strategy. Tree pruning helps to make better decisions by neglecting the unnecessary
nodes and it also reduces the computational time and complexity. The Decision tree is
a simple yet effective classification scheme when the dataset is small. If the dataset is
extremely large, it may result in complicated trees, which in turn require large memory
for storage and the situation becomes computationally demanding (this holds true in
principle for all learning methods).

3.8.3 Naïve Bayes

The Naïve Bayes classifier is a simple probabilistic classifier based on the Bayes rule.
The classifier performs predications based on three important assumptions [John and
Langley (1995)]:

• It assumes that the predictive attributes are conditionally independent given the
class.

• It posits that no hidden or latent attributes influence the classification process.

• A common but not intrinsic to Naïve Bayes approach is that within each class, the
values of numeric attributes are normally distributed.

12http://www.cis.temple.edu/~giorgio/cis587/readings/id3-c45.html#1
13Adapted from http://gautam.lis.illinois.edu/monkmiddleware/public/analytics/

decision_tree.png
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Figure 3.5: Illustration of a Decision Tree classification. Nodes are formed by decision-
making features.

Let c denote the class of an instance and let ~x = (x1, ..., xn) be a vector of random
variables denoting the attribute values of an instance. The Naïve Bayes classifier applies
Bayes rule to compute the probability of each class given the vector of observed values
and then predicts the most probable class as

P(c|~x) = P(c)× P(~x|c)
P(~x)

. (3.4)

Since the attributes are assumed to be conditionally independent, one arrives at the
situation which is simple to compute the class for a test case given the training data
and it is represented as

P(~x|c) =
n

∏
i=1

P(xi|c). (3.5)

Naïve Bayes is a simple classifier that needs less or no optimization. McCallum and
Nigam (1998) proposed that the use of a kernel density estimation function in order to
extrapolate the attribute values into a new higher dimensional space can result in better
performance of the classification. Naïve Bayes classifier is pretty easy to implement
and robust in solving the classification problem. The Naïve Bayes classifiers won the
popularity in recent times for spam mail filtering. In the biomedical text classification
domain, the Naïve Bayes classifiers have reported success and have proved to be
competitive with other sophisticated classifiers like Support Vector Machine [Huang
et al. (2003)].
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Figure 3.6: Example of SVM-based classification for a binary class problem. The sep-
arating hyperplane is indicated by the lines (actual support vectors) that
are diagonal in position. The non-diagonal lines indicate second possible
solution to separating hyperplane problem where support vectors have
lower separation distance when compared to the actual support vectors.

3.8.4 Support Vector Machine

Support Vector Machines (SVM) aim to generate a separating hyperplane that separates
the training instances into different groups according to their class labels [Vapnik (1995)].
SVM reply on a data pre-processing strategy wherein the attribute values of labeled
instances are projected into a higher dimensional feature space. With an appropriate
mapping to a sufficiently high dimension, the data becomes linearly separable by a
hyperplane [Joachims (1998)]. The support vectors are training instances that are closest
to the hyperplane and they define boundaries for the optimal separating hyperplane.
Since the main aim of SVM is to draw a separating hyperplane, larger the margin
distance is from support vectors, better is the generalization of the classifier [Larrañaga
et al. (2006)]. Figure 3.614 shows an example for classification by SVM with a binary
class problem where the classes to be separated are ‘o’ and ‘+’.

“Given a training set of instance-label pairs (xi, yi) where i = 1,...,l, xi ∈ <n and
yi ∈ {−1, 1}l , the SVM require the solution of the following optimization problem

min
w,b,ξ

1
2
‖w‖2 + C

l

∑
i=1

ξi, (3.6)

and subject to

14Adapted from http://www.cs.technion.ac.il/~pechyony/svm.png
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yi(wTφ(xi) + b) ≥ 1− ξi. (3.7)

Here the training vector xi is mapped into a higher dimensional space by a function
φ . ξi is called as a slack variable which measures the degree of misclassification of
the datum xi. The vector w is a normal vector and it is perpendicular to hyperplane
indicated as wT. The parameter b determines the offset of the hyperplane from the
origin along the normal vector w. Then SVM finds a liner separating hyperplane with
a maximal margin in the higher dimensional space". [Hsu et al. (2010)]

The SVMs were developed in 1992 by Vapnik to initially solve binary classification
problems. Now the SVMs have been applied in several areas to solve multi-class
problems [Yang and Liu (1999)]. In such cases, the most appropriate way to implement
SVM is by classifying one class against the rest of the classes performed for every class
individually. SVMs have reported several success stories in the text categorization
problem but they are difficult to implement, computationally expensive, and need
several optimization steps in order to generate a promising classification.

3.8.5 Maximum Entropy

The Maximum Entropy classifier (also known as the MaxEnt) is based on the princi-
ples of multinomial logistic regression [Boehning (1992)]. MaxEnt classifier is used
as an alternatives to Naïve Bayes classifier since it does not assume the statistical
independence of features. The Naïve Bayes classifier utilizes simple counts of occur-
rences of features and classes to build a probabilistic predictive model, whereas the
MaxEnt applies weights to features upon iterative training that are maximized using
maximum-a-posteriori15 estimation.

“Assuming the presence of dependent variable categories 0, 1, .., J with 0 being
the reference category, one regression is run for each category 1, 2, .., J to predict
the probability of yi belonging to the respective category. Then, the probability of
yi belonging to category 0 is determined by adding-up constraint that the sum of
probabilities of yi belonging to other categories equals one. The regression for k =
1, 2, .., J are performed according to

Pr(yi = k) =
exp(Xi × βk)

1 + ∑J
j=1 exp(Xi × βk)

, (3.8)

and add-up constrains according to

Pr(yi = 0) =
1

1 + ∑J
j=1 exp(Xi × βk)

(3.9)

where yi is the observed outcome for the ith observation on the dependent variable,
Xi is a vector of the ith observations of all the explanatory variables, and βk is a vector

15http://www.cs.utah.edu/~suyash/Dissertation_html/node8.html
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of all the regression coefficients in the jth regression".16 The MaxEnt classifier has been
successfully applied in the biomedical domain [Yeo and Burge (2004)] including for
text classification [Nigam et al. (1999)].

3.8.6 Conditional Random Fields

Linear chain Conditional Random Fields (CRF) are statistical modeling methods applied
for sequential data. Klinger and Tomanek (2007) provides a detailed report on the
principles of CRF. CRF is a probabilistic model for computing the conditional probability
P(~y|~x) of a possible label sequence ~y given an input sequence ~x. In CRF, the conditional
probability of a label sequence can depend on arbitrary, non-independent features of
the observation sequence, whereas the model does not need to take the distribution
of those dependencies into account. In contrast, Maximum Entropy Markov Models
(MEMMs) and other Markov models have a theoretical weakness of ‘label bias’ problem.
This makes CRF more powerful modeling technique in comparison to conventional
Markov models.

When applied for text modeling, tokens can be described by several features repre-
senting their characteristic attributes (e.g. string affixes). CRF provides an advantage
over other models such as it exploits arbitrary feature sets along with the dependency
in the labels of neighboring tokens as indicated by f j(yi−n, yi,~x, i) in Equation 3.10. This
results in a feature vector representation of every token in the form

f j(yi−n, yi,~x, i)


1 i f yi−n 6= O and

yi 6= O and
xi has feature mi

0,

(3.10)

where i = 1, ..., n with n ∈ N denotes the label for a token at position i in the
sequence ~x, and j = 1, ..., m with m ∈N is the number of features.

In general, a linear-chain CRF is an undirected probabilistic graphical model

P~λ(~y | ~x) =
1

Z(~x)
·

n

∏
i=1

exp

(
n

∑
i=1

m

∑
j=1

λj f j

(
yi−1, yi,~x, i

))
(3.11)

with the observation-dependent normalization to [0, 1] given by

Z(~x) = ∑
~y∈Y

exp

(
n

∑
i=1

m

∑
j=1

λj f j

(
yi−1, yi,~x, i

))
. (3.12)

Here, Y is the set of all possible label sequences over which is summed up, so that a
feasible probability is obtained. The weighting factors λj ∈ R are model parameters
and define the contribution of single features to the entire model. The goal of model
training is to estimate λj of the weight vector ~λ so that the probability of the output

16Section adapted from http://en.wikipedia.org/wiki/Maximum_entropy_classifier
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label sequence given the training data is maximized. The following likelihood function
is maximized where τ represents the training data.

Ł̄(τ) = ∑
(~x,~y)∈τ

logP~λ(~y|~x) (3.13)

Maximum-a-posteriori training is performed efficiently using hill-climbing methods
such as conjugate gradient or limited memory BFGS (L-BFGS) [Sha and Pereira (2003)].
If a model is given, the task is the determination of the most likely sequence of states
~y for a given observation sequence ~x. This means identifying the label sequence that
maximizes the joint probability. The most likely sequence is calculated using Viterbi’s
algorithm [Forney (1973)], a dynamic programming method.

3.9 Active Learning

Active learning is a strategy applied in the machine learning domain to interactively
assemble training data. Active learning can help to overcome the limitations associated
with human annotation efforts by careful training data selection that can yield a high
performing system. It is based on an assumption that not all elements are equally
informative and easy to label. An informative instance is one whose contribution to the
system leads to significant improvement in its performance. According to Engelson
and Dagan (1996), active learning can avoid redundant annotation of non-informative
elements that do not contribute to the performance of system.

Active learning is an iterative process composed to three main phases namely training,
selective sampling, and human annotation. A learning algorithm examines many
unlabeled elements and selects only those for labeling that are most informative for
the learner at during each stage of training. The stopping criterion can either be the
number of iterations performed or a desired performance measure of the system. The
two most popular active learning methods used in NLP are uncertainty-based sampling
[Cohn et al. (1994)] and query by committee [Freund et al. (1997)]. In uncertainty-based
learning, new instances are selected for annotation based on the system’s classification
uncertainty. The assumption is that instances which are harder to classify are more
useful for training. In case of probabilistic models, the uncertainty of a classifier is
commonly estimated using the entropy. For non-probabilistic models, the classification
margin is used, as in the case of support vector machines. In query by committee,
a body of classifiers is trained on small training data and subsequently applied over
pre-selected unlabeled instances. Instances for which the classifiers yield the highest
disagreement are considered to be the most informative. The strategy of active learning
has been successfully applied to build consistent models for information extraction
[Tomanek et al. (2007a)].

37



Chapter 3 Foundational Aspects of Biomedical Text Mining

3.10 Performance Evaluation Techniques

Performance evaluation provides a platform for systemic assessment of the quality of
statistical models. It helps in understanding the generalizability of models over large
collections of unseen instances. Metrics such as precision, recall, F1 score, and accuracy
(see Section 3.11) are often used for measuring the system’s performance. Nevertheless,
as a preliminary measure or in the absence of an independent test data, strategies such
as cross-validation or bootstrapping are applied for a systematic decomposition and
re-utilization of sample data for the assessment of performance of the system.

3.10.1 Cross-Validation

Cross-Validation [Kohavi (1995)] provides means for assessing the performance of
statistical models. It is often applied to estimate the performance of a system to solve
the class prediction problem. One round of cross-validation involves decomposition of
sample data into complementary subsets where few subsets (known as training data)
are applied for training a model and the remaining subsets (known as validation data)
serve the purpose of performance validation. To reduce variability, multiple rounds
of cross-validation are performed using different subset partitions, and the results are
averaged over different rounds performed.

k-Fold Cross-Validation

During k-fold cross-validation, the original data is partitioned into k equally sized
subsets. Out of k subsets, a single subset is retained as a validation set for testing the
model’s performance, whereas the remaining k− 1 subsets are merged to form one
large training set. The cross-validation is repeated k times with each of the k subsets
used exactly once for validation. The results obtained from k rounds of validation are
averaged to generate a single estimate of the system’s performance. If the value of k is
same as the size of complete dataset, the validation step is called as the leave-one-out
cross-validation.

3.10.2 Bootstrapping

Bootstrapping uses the principle of sampling with replacement on the original dataset
to partition it into training set and a validation set [Efron (1979)]. The number of
drawing equals to number of data points in the dataset, where the drawn samples build
the training set and the remaining sample form a validation set. The probability of a
variable to be drawn k-times is defined as

P(k|n, p) = nCk × pk × (1− p)n−k. (3.14)
In Equation 3.14, n is the number of data points and p the probability of a single

element to be drawn. The probability to be sampled is the same for all data points i.e.
p = 1

n .
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With increasing number of data points, the probability of a variable to be not included
in a training set approximates e−1. The derivation is described as

P(0|n, p) = nC0 ×
(

1
n

)0

×
(

1− 1
n

)n−0

(3.15)

P(0|n, p) lim
n→∞

=

(
1− 1

n

)n
= e−1 ≈ 0.3678. (3.16)

This means that the training data contains about 64% of all the elements of the
original data. The sampling is performed t times leading to t training and t validation
sets. This allows estimating the performance of the system over t sets leading to a
robust estimation. Advantages of bootstrapping is that during each round, the size of
training data is same as the size of original dataset (containing duplicates) representing
about 65% of the total dataset. Whereas, the remaining about 35% forms the validation
set for testing. In this way, it is possible to perform several rounds of bootstrapping
and generate the system’s performance estimate.

3.11 Performance Evaluation Metrics

Performance evaluation metrics provide means to access the quality of any IR or
IE system. It provides a rationale for comparing the outcomes of different systems
against one another. Furthermore, an evaluation measures if any changes made to the
system (such as the parameter optimization) leads to an improvement of the system’s
performance. Performance evaluation requires an availability of gold standard that
is often based on manual judgment against which the quality of system’s output is
compared. For example, an evaluation of NER system would be performed against
manually annotated named entities in text and similarly an IR system would be
compared against the manual judgement of documents. For an evaluation of both IR
and IE systems, several measures have been proposed and applied depending upon
the user-community needs. Popular examples of evaluation measures include the F1
score or the accuracy, and so forth.

3.11.1 F1 score

F1 score (also referred to as F-score) is one the widely applied evaluation measure for
IR as well as IE. It measures the overall completeness and correctness of a system. The
F1 score is calculated by comparing the system’s output against manual judgements.
Elements (such as documents or named entities) that are correctly identified by the
system in comparison to the gold standard are ‘true positives’. Elements that are
identified by the system but not present within the gold standard are ‘false positives’.
Whereas, the elements present within the gold standard that are not identified by the
system are ‘false negatives’. Table 3.2 provides an overview on the basic truth measures.
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Gold Standard
Positive Negative

System Output Positive | True positive (TP) False positive (FP)
Negative | False negative (FN) True negative (TN)

Table 3.2: Overview on the basic truth measures of information retrieval or information
extraction systems.

The basic truth measures are used to determine the system’s precision and recall
which are systematically combined to generate a final F1 score. Precision measures the
correctness of a system by measuring the proportion of correct outputs amongst all the
outputs generated by the system. Precision is calculated as

Precision =
TP

TP + FP
. (3.17)

Recall measures the completeness of a system by measuring the proportion of correct
outputs made by the system in comparison to ground truths within the gold standard.
Recall is calculated as

Recall =
TP

TP + FN
. (3.18)

The F1 score is a harmonic mean of the precision and recall, and is calculated as

F1 score =
2× Precision× Recall

Precision + Recall
. (3.19)

Precision, Recall, and F1 score lies between 0 and 1 where 1 indicates the best and 0

indicates the worst.

3.11.2 Accuracy

The accuracy measures the proportion of correct outputs in comparison to the total
number of cases evaluated by the system. It measures the fraction of correct answers,
i.e. true positives and true negatives, with respect to the total number of cases tested.
Accuracy is calculated as

Accuracy =
TP + TN

TP + TN + FP + FN
. (3.20)

In the machine learning domain, the accuracy measure is sometimes used as favorite
choice to evaluate the system’s predictions [Kotsiantis (2007)]. Nevertheless, considering
the shortcomings of this measure, F1 score has been applied as a standard alternative.
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3.11.3 Mean Average Precision

Mean Average Precision score (MAP score) [Voorhees (2000)] is a performance measure
used for the evaluation of IR systems. IR systems often output a ranked list of
documents for a user-defined query. In such cases, it is desirable to measure the truth
values of returned documents considering the order in which they are presented. For a
given query (q), the average precision (AveP) is computed as

AveP =
∑n

k=1 P(k)× rel(k)
N

(3.21)

where k is the rank in the list of retrieved documents, n is the number of retrieved
documents, N is the total number of relevant documents, P(k) is the precision at
cut-off k in the list, and rel(k) is a binary variable that assumes value 1 if the retrieved
document at rank k is relevant.

MAP for a set of queries (Q) is measured by mean of the average precision scores for
each query (q). MAP score is determined as

MAP =
∑Q

q=1 AveP(q)

Q
. (3.22)

The score ranges between 0 and 1 where 1 indicates the best score whereas 0 indicates
the worst.

3.11.4 Binary Preference Score

Binary preference (bpref) score [Buckley and Voorhees (2004)] is another performance
measure applied for the evaluation of IR systems. Conventional measure such as
precision, recall, and MAP scores are based on an assumption that all the relevant
documents within a test collection are known and present in the collection which is not
always true in real world scenarios. Therefore, the function bpref score measures an
enrichment of relevant documents over irrelevant documents present within a retrieved
set of documents. For a query (q) having N relevant documents within the collection,
bpref score is calculated as

bpre f =
1
N ∑

r
1− |n ranked higher than r|

N
(3.23)

where r is a relevant document and n is a member of the first N judged irrelevant
documents as retrieved by the system.

3.11.5 R-Precision

R-Precision measures the precision of retrieval at Rth position in the ranked result set
for a query that has R relevant documents. This measure is highly correlated to the
Average Precision (see Equation 3.21). In principle, the precision is equal to recall at the
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Rth position. Although there are several performance evaluation measures available,
every measure has its own advantages and shortcomings. Therefore, open assessments
such as the TREC, or I2B2 provide multiple evaluation results based on different scores.
This provides a common showcase for the comparison of performances of different
systems under different test conditions.

3.12 Text Mining Technologies and Scenarios in
Biomedicine

With an overwhelming need for sophisticated search engines and tools for processing
the biomedical literature, there have been several public and commercial tools developed
for addressing this issue. Different tools have their own advantages and have been
developed to facilitate the dedicated user needs. Section 3.13-3.15 provide an overview
on different information retrieval and information extraction tools available to support
biomedical and healthcare information needs. Not all the introduced tools have been
used within this thesis considering their commercial nature or suitability, but the author
focusses on shedding light on technologies that can be applied for the biomedical text
mining application.

3.13 Information Retrieval Technologies

3.13.1 SCAIVIEW

SCAIVIEW [Hofmann-Apitius et al. (2008), Friedrich et al. (2008)] is an advanced seman-
tic search and knowledge discovery environment developed by Fraunhofer SCAI. It was
initially developed within the framework of @neurIST project17 (Integrated Biomedical
Informatics for the Management of Cerebral Aneurysms). SCAIVIEW provides func-
tionalities to search using various biomedical terminologies within MEDLINE abstracts,
full-text, and patents. SCAIVIEW allows retrieval of relevant documents as defined
according to user-needs (by queries) as well as the retrieval of statistically associated
entities. Named entities occurring in the retrieved documents are colorfully highlighted
in order to aid easy document lookup and quick-tracking of interesting information.
Figure 3.718 shows an illustration of the graphical user interface of SCAIVIEW. An
example search scenario in the SCAIVIEW is find all the diseases (d1, d2, .., dn) related to a
drug (D1) and find all the documents where d2 and D1 are closely associated.

The technical functionalities of SCAIVIEW are based on the Apache Lucene19 system.
It allows robust indexing of several gigabytes of documents and meta information in a
reasonable amount of time. SCAIVIEW is implemented as easily scalable system for
processing various corpora including abstracts, full-text, and patents. SCAIVIEW has
17http://www.aneurist.org/
18Adapted from http://www.scaiview.com/scaiview/
19http://lucene.apache.org/java/docs/index.html
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Figure 3.7: Illustration of the user interface of the MEDLINE version of SCAIVIEW.

demonstrated successful scenarios for prior art search in patents [Gurulingappa et al.
(2009)], and the retrieval of medical health records.

3.13.2 FACTA

FACTA (Finding Associated Concepts with Text Analysis) [Tsuruoka et al. (2008)]
is an open-source search engine developed by NaCTeM20. FACTA allows users to
retrieve and browse various biomedical concepts (e.g. proteins, diseases, chemicals,
etc.) appearing in MEDLINE articles in accordance to the user-defined query. The
retrieved concepts are ranked according to the co-occurrence statistics and therefore
allows users to determine the associations between concepts and the query. FACTA
pre-indexes text articles as well as the concepts appearing in them and allows various
search strategies such as keywords, concepts, and their boolean combinations. The
system allows visualization of snippets within articles to aid easy look-up and evidence
tracking. Figure 3.821 shows an illustration of the user interface of FACTA search
engine. Although the system possesses various text analytic functionalities, it lacks
some features such as the search-results export, application programming interface
(API), and searching in full-text or patents.

3.13.3 MedSearch

MedSearch [Luo et al. (2008)] is a specialized medical web search engine. The system
allows users to search using medical keywords as well as long English descriptions of
the information needs. This facilitates several internet users who have limited medical

20The National Centre for Text Mining, www.nactem.ac.uk/
21Adapted from http://text0.mib.man.ac.uk/software/facta/main.html
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Figure 3.8: Illustration of the user interface of FACTA search engine.

knowledge. MedSearch transforms long descriptive queries into a set of important
keywords. An investigation performed over such a query processing indicated im-
provements in an overall processing time as well as the search results. The system
returns diversified web search results that allows users to see various aspects related to
their information requirement. Finally, the system also suggests query-related medical
phrases that are obtained from standard terminologies such as the MeSH. This helps
users to refine the query or easily understand the search results.

3.13.4 Curbside.MD

Curbside.MD22 is a medical search engine that allows searching in professional re-
sources such as MEDLINE, National Guidelines Clearinghouse23, FDA, and many more.
It allows searches using medical concepts as well as descriptive clinical queries. Key
functionalities of the system include differentiation of highly relevant hits across vari-
ous evidence-based content sources, searching in the image captions of peer-reviewed
articles and visualization of informative images, and finally the specialized search
facilities within ClinicalTrials database as well as the articles from ACP Journal Club24,
Cochrane Collaboration25, and many more.

3.13.5 MedicoPort

MedicoPort [Can and Baykal (2007)] is a medical web search engine designed for users
with no medical expertise. The backbone of MedicoPort is enriched with medical con-
cepts from the UMLS metathesaurus. The system has been designed to carefully capture
the medical semantics in webpages as well as the user-defined queries. Therefore, the

22http://www.curbside.md/
23http://www.guideline.gov/
24http://acpjc.acponline.org/
25http://www.cochrane.org/
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Figure 3.9: Illustration of the search results obtained by Relemed.

system is targeted to help user-groups with minimum or no medical knowledge who
seek information about health on web. The system has an ability to mimic the medical
expert’s domain knowledge by transforming general user queries into domain specific
medical concepts that can increase the relevance of query and the retrieved document
hits. An experimental investigation made on the performance of system showed the
retrieval of relevant document sets that can satisfy the user’s request.

3.13.6 Relemed

Relemed26 [Siadaty et al. (2007)] is a biomedical search engine for searching in MED-
LINE. Relemed aims to generate high precision document sets by searching for user-
defined query terms within sentences or adjacent sentences. The principle behind
Relemed is that when users pose multi-term queries to a system, it is necessary that
all terms appear in the articles as well as they are closely associated with one another.
Therefore, Relemed applies the sentence-level criteria to judge the relevancy of docu-
ments to user-defined queries. Experimental results showed that the system can deliver
highly relevant articles at the top of result sets and can outperform the performance
of conventional PubMed search in terms of specificity. Additional observations also
showed that Relemed can fetch relevant articles that are not retrieved by PubMed search
due to ‘automatic term-to-concept mapping’ to the UMLS implemented within the
system. Figure 3.927 shows an illustration of the search results obtained by Relemed.

26http://bmlsearch.com/
27Adapted from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1780044/figure/F1/
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3.13.7 EMERSE

EMERSE (Electronic MEdical Record Search Engine) Hanauer (2006) is a medical
search engine for searching in free-text fields of electronic medical record. It was
developed in order to address the needs for searching in medical records for research
and data abstraction. The system allows using complex boolean queries over a easy-
to-use interface and the search results are context sensitive. Results are displayed
consistently in accordance to the structure of medical records with separate categories
for the problem summary list, patient notes, and pathology reports. The system offers
automatic spelling correction and robust search across multiple patient records at once.

3.14 Information Extraction Technologies

3.14.1 ProMiner

ProMiner is a tool that can be used to identify potential named entity occurrences
in biomedical text and associate database identifiers to the detected terms [Hanisch
et al. (2005)]. The ProMiner system uses a pre-processed synonym dictionary, and it
follows a combined dictionary based and rule based approaches for biomedical named
entity recognition. Its search algorithm is powerful enough to recognize multi-word
terms, synonyms, and their variants in text. During the BioCreative open-assessment
challenges in 2004 and 2006, the ProMiner demonstrated competitive results for the
identification of gene and protein names. Several examples exist where the system
has been successfully applied on patents, medical reports, and various other forms of
free-text literature. ProMiner can address the following problems:

• Recognition of biological, medical, and chemical named entities in scientific text
and their spelling variants depending on the dictionaries used.

• Ability to work with voluminous dictionaries derived from large controlled
vocabularies, thesauri and databases.

• Context-dependent disambiguation of biomedical entities and resolution of
acronyms28.

• Mapping of found entities to reference names in the respective data sources.

3.14.2 MedLEE

MedLEE (Medical Language Extraction and Encoding system) is a medical NLP system
to extract, structure, and encode clinical information in free-text patient reports so

28ProMiner system allows flagging of tokens within a separate list named Questions. If a token appearing
in Questions list is found in a document it is considered as an entity only if atleast one of its synonym
co-occurs in the same document. Another list named AsIsTok contains tokens that have to be found
as-is. These features are helpful for case-sensitive matching and acronym disambiguation.

46



3.14 Information Extraction Technologies

Figure 3.10: Illustration of applications of the MedLEE system.

that the information can be used for subsequent automated processing [Friedman et al.
(1996)]. Initially, the MedLEE was developed by Department of Biomedical Informatics
at Columbia University but later on commercialized by the NLP International Corpora-
tion29. The system has an ability to process various kinds of medical records such as
radiology reports, cardiology reports, discharge summaries, progress notes, and many
more. A qualitative evaluation of the performance of the system indicated superior
results in comparison to the physician’s ability to handle the medical records. The
system has demonstrated various applications in the past including biosurveillance,
syndromic surveillance, adverse drug event detection, clinical decision support, clinical
research, quality assurance, automated encoding, patient management, and data min-
ing i.e. finding trends and associations [Chiang et al. (2010)]. Figure 3.10

30 shows an
illustration of applications of the MedLEE system.

3.14.3 MedEx

MedEx is a system for the extraction of medication information from free-text medical
records [Xu et al. (2010)]. It can identify medication names and signatures such as
the dose, route of administration, frequency, and duration. The medication extraction
approach works similar to MedLEE but with finer granularity of the semantics of ex-
tracted information. The workflow includes first pre-processing the records to generate
the sentences. The sentences are subjected to semantic tagging where dictionary-lookup
and RegEx-based methods are applied for the identification of drug names using
the RxNorm31 lexicon. A rule-based parser links the drug names to their respective

29http://www.nlpapplications.com/
30Adapted from cdc.confex.com/cdc/phin2008/recordingredirect.cgi/id/4165
31http://www.nlm.nih.gov/research/umls/rxnorm/
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Figure 3.11: An overview of the MedEx system.

signatures such as dose, frequency, etc. The system lacks ability to link the drug names
and signatures not occurring within a single sentence. An evaluation of the system
indicated overall F1 score of nearly 92% in comparison of expert annotation for both
drug names and signatures. Figure 3.11

32 illustrates an overview of the MedEx system.

3.14.4 MERKI

MERKI33 (Medication Extraction and Reconciliation Knowledge Instrument) is an open
source medical text parser for the extraction of medication information [Gold et al.
(2008)]. The system recognizes drug names and related information such as the dose,
frequency, strength, and duration. The principle behind working of MERKI parser is
similar to that of MedEx. The program relies on parsing rules written as a set of regular
expressions and an user-configurable lexicon. It has been developed on discharge
summaries from hospitals and an evaluation showed an overall F1 score of nearly 87%.
An evaluation as a part of I2B2 medical extraction challenge showed highly competitive
results (i.e. ranked fifth out of several participating systems).

3.14.5 cTAKES

cTAKES34 (Clinical Text Analysis and Knowledge Extraction System) [Savova et al.
(2010)] is an open source NLP platform for information extraction from electronic
health records. It was developed by Mayo Clinic35 as a part of OHNLP (Open Health
Natural Language Processing)36 consortium. cTAKES builds on existing open source

32Adapted from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995636/figure/fig1/
33http://projects.dbmi.columbia.edu/merki/
34https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/CTAKES_1.2
35http://www.mayoclinic.com/
36https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/OHNLP
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Figure 3.12: Illustration of the output of SNOcat for a user-defined query.

technologies such as the UIMA (Unstructured Information Management Architecture)
and OpenNLP toolkit37. Its components are specifically trained to handle medical text
and create rich linguistic and semantic annotations. The components of the system
include sentence splitter, tokenizer, parts-of-speech tagger, shallow parser, and named
entity recognizer. The named entity recognizer is based on dictionary-lookup from
UMLS and in addition can handle negations and status of named entities. The negation
recognizer implements the NegEx algorithm for finding the negations made over the
named entities. Similarly, the status annotator uses a regular expression-based approach
to determine weather the named entity occurs as a history, current, or a family event.
An evaluation of individual components of cTAKES showed convincing results. The
upcoming improvements to the cTAKES architecture include co-reference annotation,
temporal relationship discovery, and certainty assertion detection.

3.14.6 SNOcat

SNOcat38 (SNOMED Categorizer) [Ruch et al. (2008)] is an open-assess tool for the
identification of SNOMED-CT concepts in biomedical free-text. The system allows
online submission of a textual record (such as an abstract, full-text, or medical report)
and it returns a ranked list of possible matches to the SNOMED terminology. The
system combines pattern-matching based on regular expressions of terms, vector-space
indexing and retrieval engine, and tf-idf weighting schema with a cosine normalization.
An evaluation of the top retrieved concepts showed nearly 80% precision indicating
sufficient means for consistently recognizing the SNOMED concepts in free-text. The
system has an ability to consistently retrieve documents through the SNOMED indexing
that can be better in comparison to the conventional MeSH-based retrieval. Figure 3.12

39

shows an example of the output of SNOcat for a user-defined query.

37http://incubator.apache.org/opennlp/
38http://eagl.unige.ch/SNOCat/
39Adapted from http://eagl.unige.ch/SNOCat/
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Figure 3.13: Example of result of mapping performed by the MetaMap program.

3.14.7 Textractor

Textractor40 [Meystre et al. (2010)] is a medical NLP system for the extraction of medica-
tion information from free-text medical documents. The system can extract drug names,
including their dosage, frequency, and the reasons for their prescription. Textractor is
based on the Unstructured Information Management Architecture (UIMA) framework,
and uses methods that are a hybrid between machine learning and pattern matching.
Two modules in the system are based on machine learning algorithms, while other
modules use regular expressions, rules, and dictionaries, and one module uses the
MetaMap program. An evaluation of the system showed convincing results for the
recognition of drug names, dosage, and route of administration. However, the system
attained poor results for the identification of reasons for drug administration.

3.14.8 MetaMap

MetaMap41 is an open source software that maps biomedical free text to concepts in
the UMLS metathesaurus. It uses a knowledge intensive approach based on symbolic,
natural language processing, and computational linguistic techniques [Aronson (2001)].

There are several options that control the input and output behavior of the program.
Given an arbitrary text, it is parsed into simple noun phrases performed by the
SPECIALIST42 minimal commitment parser which produces a shallow syntactic analysis
of the text. For each phrase, variants are generated using the knowledge in SPECIALIST
lexicon and a supplementary database of synonyms. A variant consists of a phrase
word together with all its synonyms, abbreviations, derivational variants, inflections,
and spelling variants. The candidate set of metathesaurus strings containing at least
one of the variant is retrieved and evaluated against the input text by first computing
a mapping from the phrase words to the candidate’s words and then calculating the

40http://icb.med.cornell.edu/crt/textractor/
41http://metamap.nlm.nih.gov/
42http://lexsrv3.nlm.nih.gov/Specialist/Home/index.html
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Figure 3.14: Illustration of an arbitrary sentence processed by the SemRep program.

strength of mapping by a linguistically principled function. Figure 3.13
43 shows an

example for a result of mapping process performed by the MetaMap program. The
noun phrase “sodium channel inhibitor" is mapped to UMLS concept “Sodium Channel
Inhibitors" with semantic type “Pharmacological Substance".

3.14.9 SemRep

SemRep44 (Semantic Representation) is an open source knowledge extraction and
representation framework developed by the NLM. The SemRep program identifies
UMLS concepts and relationships in any arbitrary text. SemRep utilizes the MetaMap
for first identifying the semantic concepts in input text. Later on, a rule-based approach
determines the relationships between concepts occurring within a sentence.

SemRep can handle any form of free-text data including abstracts, full-texts, and
medical records. SemRep is available in the interactive mode as well as the batch mode.
The interactive mode allows immediate submission and retrieval of results, and is
suitable when the size of data is small. The batch mode is designed for large scale
processing of documents. Using the batch mode, users can submit as many as millions
of documents to the serves in NLM. However, there is no evaluation of the performance
of system available. Figure 3.14

45 shows an example of an arbitrary sentence processed
by the SemRep program.

3.15 Text Mining Scenarios

3.15.1 I2B2 Challenge

I2B2
46 (Informatics for Integrating Biology and the Bedside) is an open-assessment

challenge for the evaluation of state-of-the-art systems for information retrieval and
information extraction in medicine. The competition is primarily organized the National
Centres for Biomedical Computing47 and the event is held annually. The first I2B2

challenge was held in 2007 and was known as the Smoking Challenge [Uzuner et al.

43Adapted from http://skr.nlm.nih.gov/interactive/metamap.shtml
44http://skr.nlm.nih.gov/
45Adapted from http://skr.nlm.nih.gov/
46https://www.i2b2.org/NLP/Coreference/PreviousChallenges.php
47http://www.ncbcs.org/
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(2007)]. This challenge aimed at classification of de-identified patient health records
into five possible categories based on the information contained in records and based
on their medical intuitions. The pre-defined categories were past smoker, current smoker,
smoker, non-smoker, and unknown. The second challenge held in 2008 was known as the
Obesity Challenge [Uzuner (2008)]. The obesity challenge was a multi-class, multi-label
classification task focused on obesity and its co-morbidities. The task was to classify
the obesity information and co-morbidities at a document level as present, absent,
questionable, or unmentioned in the documents. The goal of the challenge was to
evaluate systems on their ability to recognize whether a patient is obese and what
co-morbidities they exhibit. The third competition was held in 2009 and known as the
Medication Extraction Challenge [Uzuner et al. (2010)]. The challenge aimed to encourage
development of natural language processing systems for the extraction of medication-
related information from narrative patient records. Information to be targeted included
medication names, dosages, modes of administration, frequency of administration, and
the reason for administration. The recent challenge in 2010 was known as the Relations
Challenge [Uzuner et al. (2011)]. This challenge aimed at evaluation of systems for
identifying the medical concepts in patient health records. The categories of concepts
include treatments, tests, and problems. Two additional triers aimed as classification of
assertions made over medical problems, and the identification of relationships between
different categories of medical concepts. All the challenges demonstrated various levels
of success with the participants from industries as well as academia. Finally, the I2B2

makes medical corpora, ground truth annotations, and evaluation protocols publicly
available under certain licensing agreements.

3.15.2 TREC

Text Retrieval Conference (TREC)48 aims at open evaluation of state-of-the-art systems
for information retrieval in different domains. Its purpose is to promote and encourage
research within the information retrieval community by providing a workbench neces-
sary for large-scale evaluation of information retrieval techniques as well as to speedup
the transfer of technology from lab-to-product. A common platform allows researchers
coming from different domains to learn about the state-of-the-art problem solving
approaches, reduce redundancy in the research, and promote academia-industry col-
laborations.

TREC began in 1992 and is co-sponsored by the National Institute of Standards and
Technology49. TREC runs several tracks every year including the Genomics tracks
[Hersh and Bhupatiraju (2003)] held from 2003 to 2007. Genomics tracks focussed
on ad-hoc retrieval of genomics full text literature. Another set of challenging tracks
were held under the banner of Chemical track (also referred to as TRECCHEM) from
2009 to 2011 [Lupu et al. (2009)]. The TRECCHEM provides a platform for evaluation
of information retrieval from patents and full-text literature in the biomedical and

48http://trec.nist.gov/
49http://www.nist.gov/index.html
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chemistry domains. In 2009 and 2010, two independent tasks namely Technology Survey
and Prior Art Search were conducted. In the final year 2011, a new task for chemical
image to structure conversion (I2S) was introduced in additional to the earlier tasks
[Lupu et al. (2011)].

In 2011, a new track for retrieval of information from patient health records was
started (known as Medical Records Track) [Voorhees and Tong (2011)]. “The goal of the
Medical Records track is to foster research on providing content-based access to the
free-text fields of electronic medical records. In the initial year, the track focuses on a
task that models the real-world task of finding a population over which comparative
effectiveness studies can be performed"50.

3.15.3 CMC Challenge

The CMC challenge was held in 2007 and co-organized by the Computational Medicine
Centre51 [Pestian et al. (2007), Farkas and Szarvas (2008)]. The goal of the competition
was to create and train computational intelligence algorithms that automate the assign-
ment of ICD-9-CM codes to clinical free text. The task involved over 25 participants
worldwide with participants from industries as well as academia. Similar to the princi-
ples of TREC, the CMC challenge aimed at bringing together academia and industries
to work together on a common platform and promote joint research interests in the
medical arena. Different participants of the CMC challenge competed with a variety of
challenging approaches including statistical, machine learning-based, and rule-based
systems. The final outcome of the CMC challenge demonstrated that expert rule-based
approaches perform competitively or even outperform purely statistical approaches for
the ICD-9-CM coding of radiology reports.

3.15.4 TMMR

In 2008, the Canadian National Research Council52 conducted a research on knowledge
discovery from free-text medical records through a project called Text Mining of Medical
Records (TMMR)53. The project aimed to establish text mining tools that are flexible and
adaptable so that they can be applied by the end-user for processing electronic health
records and other medical text. The text mining tool development was motivated for an
improvement of health and wellness, by increasing the efficiency and effectiveness of
medical researchers and other health professionals. The project addressed two principal
scenarios namely producing alerts and extracting medical facts for processing the text from
medical records.

50http://www-nlpir.nist.gov/projects/trecmed/2011/tm2011.html
51http://computationalmedicine.org/challenge/previous
52http://www.nrc-cnrc.gc.ca/index.html
53http://www.nrc-cnrc.gc.ca/eng/projects/iit/text-medical.html
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Chapter 4

Evaluation of Terminologies for
Medical Disorder Recognition

A disease in the context of human health is an abnormal condition that impairs
the bodily functions and is associated with physiological discomfort or dysfunction.
Similarly, an adverse effect is a health impairment that occurs as a result of intervention
of a drug, treatment or therapy [Ahmad (2003)]. Mentions of both diseases and adverse
effects (constitutively known as medical disorders) in free-text denote special entity
classes for the medical experts, clinical professionals as well as health care companies
[Hauben and Bate (2009), Forster et al. (2005)]. This not only helps in understanding the
underlying hypothetical cause but also provide rationale means to prevent or diagnose
such abnormal medical conditions. Furthermore, from the text mining perspective,
precise identification of medical disorders can promote the development of semantic
medical document search engines to obtain disorder-centric information (see Chapter 7)
which in-turn can support disease surveillance, epidemiological studies and so-forth.
Furthermore, it helps in identifying relationships with other classes of entities such as
treatments or diagnostics that can support knowledge discovery, hypothesis generation
and medical decision-making.

Identification of medical disorders in free-text is a challenging issue due to the
existence of various forms in denoting their mentions as well as the ambiguous na-
ture. Examples include synonyms (e.g. cancer, carcinoma, malignancy, etc.), abbreviations
(e.g. multiple sclerosis abbreviated as MS), ambiguity (MS can mean multiple sclerosis
or mitral stenosis), writing variations (e.g. anemia, and anaemia), and descriptiveness
(e.g. thrombocytopenia written as subnormal levels in blood platelet count). Several termi-
nological resources exist that provide information about diseases and adverse effects
such as the MeSH, UMLS, ICD, and many more. Most of these medical terminological
resources have been developed to serve different purposes. For example, the MeSH
is used for indexing the documents within bibliographic databases such as PubMed,
and NLM’s clinical trials database. Similarly, the ICD is used within clinical settings by
physicians for coding the diseases associated with patients. Although, these resources
serve as a good basis for the dictionary-based named entity recognition in text, not all
of them essentially suit the text mining needs. According to the author’s knowledge,
there are extremely limited noticeable efforts in the past aiming at evaluation of differ-
ent medical terminologies on a common workbench in order to support the natural
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language processing. Therefore, the aim of this work is to provide an overview on
different data sources and evaluate the usability of the contained disease and adverse
effect terminologies for named entity recognition in biomedical free-text.

4.1 Terminological Resources

Dictionary-based named entity recognition approaches rely on comprehensive termi-
nologies containing frequently used synonyms and spelling variants. Such resources
include databases, ontologies, controlled vocabularies and thesauri. This section gives
an overview of the available data sources for diseases and adverse effects. Examples of
synonyms and term variants associated with the MeSH disease concepts are provided
in Table 4.1

Different resources have been designed to meet the needs of different user groups
whereas some of them include certain disease specific information. For example, the
NCI thesaurus serves as a reference terminology and an ontology providing a broad
coverage of cancer domain including cancer related diseases, findings, abnormalities,
gene products, drugs, and chemicals. Similarly, there are databases that include
very specific organ or disease class related information such as the autoimmune
disease database [Karopka et al. (2006)] or the DSM-IV codes1 which is specific to
mental disorders. On the other hand, sources such as the ICD-10, the UMLS and
the MedDRA provide a wider coverage of diseases, signs, symptoms, and abnormal
findings irrespective of any kind of disease or any affected organ system. All these
resources have their own advantages and areas of applicability. Therefore, the survey
made here includes only those resources that encompass information about medical
abnormalities that are associated with the entire human physiology. From all the
resources introduced here, individual dictionaries were generated and evaluated over a
manually annotated corpus. Although, the MeSH, ICD-10, MedDRA, and SNOMED-CT
are already included as source vocabularies within the UMLS, these resources were
separately downloaded from their respective official websites. The main reason is
because when the terms from the source vocabularies are imported into the UMLS,
they undergo a series of term modification steps2. This provides an impression that
the terms present in the UMLS may not be identical to the terms present in the
source vocabularies. Therefore, in order to validate the hypothesis of suitability of the
individual resources for text mining, they were treated as independent terminologies.
The analyzed terminologies are as follows:

MeSH contains concepts that are arranged in a hierarchical order and associated with
synonyms and term variants (see Section 2.1.1). A subset of MeSH that corresponds to
the category Diseases (tree node identifiers starting with ‘C’) was extracted to generate
a dictionary. The MeSH dictionary contains over 4,300 entries.

1Diagnostic and Statistical Manual of Mental Disorders (DSM) 4th Edition, http://www.psych.org/
mainmenu/research/dsmiv/dsmivtr.aspx

2http://www.nlm.nih.gov/research/umls/knowledgesources/metathesaurus/
sourcefaq.html
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4.2 Dictionary Characteristics

ID Concept Synonyms

D000292 Pelvic Inflammatory Disease Adnexitis, Inflammatory Disease; Pelvic, Inflam-
matory Pelvic Disease; Pelvic Disease, Inflamma-
tory

D002534 Brain Hypoxia Anoxia, Brain; Anoxic Brain Damage; Brain
Anoxia; Brain Hypoxia; Cerebral Hypoxia; En-
cephalopathy, Hypoxic; Hypoxic Brain Damage;
Hypoxic Encephalopathy

Table 4.1: Examples of synonyms and term variants associated with concepts in the
MeSH database.

MedDRA provides a hierarchical structure of concepts that include signs, symptoms,
diseases, diagnosis, therapeutic indications, medical procedures, and familial histories
(see Section 2.1.5). The MedDRA dictionary contains over 20,000 entries associated with
synonyms and term variants.

ICD-10 provides concepts that are hierarchically ordered according to the organ
system that is being affected (see Section 2.1.6). Unlike other resources, the ICD
provides a flat list of terms and does not include synonyms or term variants. The
complete ICD-10 was used for generating the dictionary and it contains over 70,000

entries altogether.
SNOMED-CT concepts are organized into hierarchies and the sub-hierarchy that

corresponds to Disorder was used to generate a dictionary (see Section 2.1.3). The
SNOMED-CT dictionary contains over 90,000 concepts associated with synonyms and
term variants.

UMLS concepts are categorized according to semantic groups3 (see Section 2.1.2). The
semantic group Disorders contains semantic subgroups such as Acquired Abnormality,
Disease or Syndrome, Mental or Behavioral Dysfunction, Sign or Symptom, etc. All concepts
in the Disorders semantic group of the UMLS were used to generate a dictionary. This
dictionary contains over 110,000 entries altogether.

4.2 Dictionary Characteristics

The dictionaries generated for the recognition of diseases and adverse effects were
analyzed with regard to the total number of entries, number of synonyms provided,
and availability of mappings to other data sources.

Table 4.2 provides a quantitative estimate of the entities present in the raw dictionaries.
The UMLS has the largest collection of disease and adverse effect data followed by
the SNOMED-CT. Figure 4.1 shows the distribution of synonyms for all the analyzed
dictionaries. Since the ICD-10 does not provide synonyms and term variants, it is

3http://semanticnetwork.nlm.nih.gov/SemGroups/
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MeSH MedDRA ICD-10 SNOMED-CT UMLS

No. of entries 4,350 20,515 74,830 92,376 112,341

No. of synonyms (incl. concepts) 42,631 69,121 74,830 170,561 295,773

Cross mappings no yes no yes yes

Table 4.2: A quantitative analysis of the dictionaries generated for the disease and
adverse effect named entity recognition. Total number of entries, number of
synonyms, and the availability of inter-data source mappings for individual
dictionaries are reported.
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Figure 4.1: Plot of the synonym count distribution for all the analyzed dictionaries.

visible only as a point in Figure 4.1. A large part of all the dictionaries contain less
than 20 synonyms. Few entries in the UMLS, MeSH, and MedDRA are associated with
as much as more than 60 synonyms. Resources with high number of synonyms are
of great value for dictionary-based named entity recognition approaches. They help
to overcome a high false negative rate but may pose a risk of high number of false
positives requiring a dedicated curation.

Since UMLS is the largest resource, a survey was conducted to check the percentage
of synonyms that overlap with synonyms in rest of the resources. The synonym com-
parison between the different resources was performed using a simple case-insensitive
string match (i.e. only complete string matches were accepted). About 96% of the MeSH
and 23% of the MedDRA synonyms are present in UMLS. Only 4% of the ICD-10 and
9% of the SNOMED-CT synonyms are covered by UMLS. Hence, the outcome of this
survey showed that integrating the smaller resources with UMLS would account for an
enhanced terminology coverage.
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4.3 Corpus Characteristics and Annotation

Although, there is an enormous variation in sizes of the dictionaries used, their adapt-
ability for finding terms in the text is questionable. A manual survey was performed
concerning the quality of information contained in each of these dictionaries. The
UMLS and SNOMED-CT contained over 20,000 terms each that had special characters
such as ‘@’, ‘#&’, ‘[X]’, etc. enclosed within the terms. Examples of such ambiguous
terms found in the UMLS are 5-@FLUOROURACIL TOXICITY and Congestive heart
failure #&124. A large subset of terms were too long and descriptive composed of
more than 10 words. Such synonyms are seldom found in the text. An example of
such descriptive term found in ICD-10 is Nondisplaced fracture of lateral condyle of right
femur, initial encounter for closed fracture. ICD-10 has nearly 35,000 long descriptive terms
which constitutes nearly 50% of the entire dictionary. According to the experience
of curators, MeSH and MedDRA were regarded as the specialized resources with
considerably low level of ambiguity. Nevertheless, few vague entries such as Acting
out, Alcohol Consumption, and Childhood were encountered in these dictionaries.

4.3 Corpus Characteristics and Annotation

For evaluating the performance of named entity recognition systems, an annotated
corpus is necessary. Since, there is no freely available corpus that contains annotations
of disease and adverse effect entities, a corpus containing 400 randomly selected
MEDLINE abstracts was generated using ‘Disease OR Adverse effect’ as a PubMed
query. This evaluation corpus was annotated by two individuals who hold a Master’s
degree in life sciences. All the abstracts were annotated with two entity classes,
i.e. disease and adverse effect. In order to obtain a good estimate of the level of agreement
between the annotators, they were insisted to carry out the task independently. First,
one annotator participated in the development of a guideline for annotation. The
corpus was iteratively annotated by this person along with the standardization of
the annotation rules. Later, the second person annotated the whole corpus based
on the annotation guideline generated by the first annotator. This procedure formed
an evaluation corpus of 400 abstracts containing 1428 disease and 813 adverse effect
annotations. Recognizing the boundaries without considering the different classes in
the evaluation corpus, the inter-annotator agreement F1 score and kappa (κ) between the
two annotators are 84% and 89% respectively which indicates a substantial agreement.
The annotation of disease and adverse effect entities were performed very sensitively
taking the context into account. Several instances occurred where the disease names
and adverse effect names were the same. For example, in the sentence Before and after
MS therapy, patients had no early dumping symptoms, while patients after MS therapy clearly
had fewer symptoms such as reflux esophagitis, nausea, and abdominal pain compared with
before MS therapy (PMID: 18613449), the term reflux esophagitis occurs as an adverse
effect associated with MS therapy. In contrary, the sentence A total of 122 patients were
receiving PPI treatment for either peptic ulcer disease or reflux esophagitis and were included
as the study group (PMID: 20123595) contains reflux esophagitis as a disease being treated.
In such cases, the annotators were strictly insisted to use the contextual information
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for annotating the entities. Entities that overlap with semantic classes disease and
adverse effect are difficult to be recognized unless a context-based disambiguation is
performed. Altogether, there were 178 annotated entities that have an overlap with the
classes disease and adverse effect.

4.4 Results of Dictionary Performance

For the identification of named entities in text, the ProMiner system was used along
with different dictionaries. The text searching with ProMiner was performed using the
raw or unprocessed dictionaries as well as with the processed dictionaries. The search
was performed using case-insensitive, word order-sensitive, and the longest string
match as constraints. The performance of the ProMiner runs with different dictionaries
was evaluated using the Precision and Recall (see Section 3.11.1). Evaluations were
performed for the complete match as well as partial match between the annotated
entities and the dictionary-based entity matches. A partial match is a situation where
either the left boundary or the right boundary of the annotated entity and the ProMiner
search result are matched. The results with raw dictionaries and such a simple search
strategy gives a rough estimate of the coverage of different dictionaries and the effort
that has to be invested to curate them. Table 4.4 shows the search results obtained
with every individual dictionary when complete matches and partial matches were
considered. The highest recall for complete matches were achieved by the MedDRA
dictionary (0.62) and the UMLS dictionary (0.58). The recall of ICD-10 was the lowest
of all dictionaries covering only 10% of the entities annotated in the corpus. Unlike
other dictionaries, ICD-10 lacks information about the synonyms and term variants
which hinders it from covering different types of variants mentioned in the text. The
combination of results of all the dictionaries lead to a promising recall of 0.75. Another
important observation is the low recall (0.18) attained by the SNOMED-CT dictionary.
Although, this dictionary contains over 90,000 entries with 170,561 different terms,
its usability for finding entities in the text seems extremely limited. One reason is
because of the descriptive nature of most of the terms present in the SNOMED-CT
vocabulary such as Spastic paraplegia associated with T-cell lymphotropic virus-1 infection.
Although such long descriptive terms provide substantial information about the medical
condition, they are not quite often used in the literature. Additional reasons are the
perception of named entities in annotator’s mind as well as the style adopted by the
annotation guideline. Perhaps, our principle annotators would annotate such a textual
description with Spastic paraplegia and T-cell lymphotropic virus-1 infection as two distinct
entities rather than annotating the entire phrase as one single entity.

Comparison of the results of complete matches and partial matches in Table 4.4
shows the granularity of information covered by different data sources and the textual
explications. The UMLS and MedDRA achieved an overall recall of 0.73 and 0.72

respectively for the partial matches whereas the combined results of all the dictionaries
achieved a highest recall of 0.92. This provides an indication that the terms contained in
these dictionaries cover the head nouns associated with the disease and adverse effect
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MeSH MedDRA ICD-10 SNOMED CT UMLS

No. of entries 4,335 18,273 37,263 84,292 100,871

No. of synonyms (incl. concepts) 42,531 57,017 37,263 146,545 243,602

Table 4.3: A quantitative analysis of the curated dictionaries applied for the disease and
adverse effect named entity recognition. Total number of entries and number
of synonyms present within the individual dictionaries are reported.

entities but does not include different enumerations used in the literature. For example,
in the case of progressive neurodegenerative disorder, only neurodegenerative disorder was
identified whereas the adjective progressive was not covered. Based on the experience of
the curators and the results from Table 4.4, nearly 10% of the mismatches are caused by
the medical adjectives such as chronic, acute, and idiopathic that are frequently used in
text but not provided by the resources. Another source of mismatch is the anatomical
information often attached to the disease entity in text. For example, in the case of
vaginal squamous cell carcinoma, only the squamous cell carcinoma was recognized whereas
the remaining anatomical substring remained unidentified.

The highest precision rates for the complete matches were achieved by the MeSH dic-
tionary (0.54) and the MedDRA dictionary (0.48) hence validating the curator’s opinion
about the quality of these resources. The lowest precision of 0.18 was achieved by the
UMLS dictionary. The precision after combining the results of different dictionaries
was considerably low due to the overlapping false positives generated by different
dictionaries. The low precision is due to the presence of noisy terms such as disease
and response within the dictionaries. Amount of such noisy terms considerably varies
amongst different resources with UMLS having the highest. Therefore, the curation
of dictionaries is necessary in order to achieve better performance. Experiences from
the previously reported dictionary-based named entity recognition approaches let us
assume that the precision could be greatly improved by the dictionary curation.

4.4.1 Dictionary Curation

The dictionaries were processed and filtered based on a subset of pre-defined rules in
order to reduce the level of ambiguity associated with them. Most of the rules were
adapted from Hanisch et al. (2005), Hettne et al. (2009), and Aronson (1999). The rules
that were applied for processing the dictionaries are listed below. All the rules were
used in common to all the analyzed dictionaries.

Remove very short tokens: Single character alphanumericals that appear as indi-
vidual synonyms were removed. For example, 5 was mentioned as a synonym of the
concept Death Related to Adverse Event in the UMLS.

Remove terms containing special characters: Remove all the terms that contain
unusual special characters such as ‘@’, ‘:’ and ‘&#’. An examples of such term in
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Raw Curated Disambiguation

Dictionary Match type All DIS AE All DIS AE All DIS AE

MeSH Complete 0.54/0.43 0.46 0.40 0.61/0.43 0.46 0.40 0.61/0.43 0.46 0.40

Partial 0.73/0.58 0.64 0.51 0.80/0.57 0.62 0.51 0.80/0.57 0.62 0.51

MedDRA Complete 0.48/0.62 0.64 0.59 0.57/0.61 0.63 0.59 0.60/0.61 0.62 0.59

Partial 0.55/0.72 0.76 0.68 0.67/0.72 0.75 0.68 0.69/0.71 0.74 0.68

ICD-10 Complete 0.46/0.10 0.10 0.10 0.57/0.15 0.10 0.19 0.57/0.15 0.10 0.19

Partial 0.59/0.15 0.15 0.14 0.66/0.19 0.14 0.23 0.57/0.19 0.14 0.23

SNOMED Complete 0.38/0.18 0.18 0.18 0.40/0.20 0.22 0.18 0.43/0.18 0.20 0.15

Partial 0.66/0.28 0.33 0.23 0.69/0.34 0.39 0.28 0.71/0.34 0.39 0.28

UMLS Complete 0.18/0.58 0.60 0.55 0.33/0.57 0.60 0.54 0.36/0.57 0.60 0.54

Partial 0.25/0.73 0.74 0.71 0.43/0.72 0.73 0.71 0.46/0.72 0.73 0.71

Combined Complete 0.12/0.75 0.80 0.70 0.18/0.76 0.81 0.71 0.19/0.76 0.80 0.71

Partial 0.14/0.92 0.92 0.91 0.21/0.91 0.92 0.89 0.22/0.91 0.92 0.89

Table 4.4: Comparison of performances of different dictionaries tested over the eval-
uation corpus. The results are reported for the complete matches and partial
matches of annotated classes disease (DIS), adverse effect (AE) and a combi-
nation of both the classes (All). For a combination of both the classes, i.e. All,
the precision and recall values are reported. For the classes DIS and AE,
only the recall values are reported. ‘Combined’ indicates the performance
achieved by combining the results of all the dictionaries.

SNOMED-CT is Heart anomalies: [bulbus/septum] [patent foramen ovale].
Remove under-specifications: Substrings such as NOS, NES, and not elsewhere

classified were removed away from the terms. Such strings were often encountered
at endings of the dictionary terms. An example of such a term from MedDRA is
Congenital limb malformation, NOS

Remove very long terms: Very long and descriptive terms that contains more than
10 words were removed. An example of such a term found in SNOMED-CT is Pancreas
multiple or unspecified site injury without mention of open wound into cavity. Although
such long terms do not appear in the text, filtering them from the dictionary gradually
reduces the run time of the process.

Remove unusual brackets: Unusual substrings that often appear within the brackets
were removed from the terms. Examples of such terms found in SNOMED-CT include
[X]Papulosquamous disorders and [D]Trismus.

Remove noisy terms: ProMiner with different dictionaries was run over an indepen-
dent corpus of 100,000 abstracts that were randomly selected from MEDLINE. The
500 most frequently occurring terms matched with the individual dictionaries were
manually investigated to remove the most frequently occurring false positives. This
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process will improve the precision of entity recognition during the subsequent runs.
In addition to dictionary curation, the configuration of the ProMiner system was

readjusted to match the possessive terms (e.g. Alzheimer’s disease) that contain ’s
substring at the word endings. After the end of the dictionary processing and filtering,
the number of entries and synonyms that remained in the individual dictionaries can
be found in Table 4.3. The MeSH dictionary sustained minimum changes with only
15 entries being removed whereas ICD-10 underwent a large noticeable change. The
size of the ICD-10 dictionary was reduced to nearly half of the previously used raw
dictionary. The search results obtained with every individual curated dictionary can
be found in Table 4.4. As the result of dictionary curation, the performance of all the
dictionaries improved remarkably well. For the complete matches, the precision of
UMLS dictionary raised by 15% with a drop in recall by just 1%. Other dictionaries
that benefited well from the curation process are ICD-10 and MedDRA with raise in
their precision by 11% and 9% respectively.

4.4.2 Acronym Disambiguation

In spite of processing the dictionaries by removing the noisy terms as well as lexical
modification of the synonyms, the acronyms present in the dictionaries turned out to
be another source of frequent false positives. For example, ALL which is an acronym
for Acute Lymphoid Leukemia generated a considerable noise. Therefore, acronyms
present in all the dictionaries that have two to four characters were collected in a
separate acronym list. Whenever there is a match between the term in the acronym
list and the text tokens, a rule was defined in order to accept or neglect the match.
This disambiguation facility is available within the ProMiner system. The acronym
disambiguation rule accepts the match based on two criteria and they are:

• The match should be case sensitive.

• The acronym as well as any one of its synonym in the respective dictionary should
co-occur anywhere within the same document.

For example, the term ALL is associated with 17 synonyms in the MedDRA dictionary.
Any case-sensitive match between the ALL and tokens in the text would be accepted
if any one synonym of the ALL occurs within the same abstract. The search results
obtained with the individual curated dictionaries in addition to the acronym disam-
biguation can be found in Table 4.4. Considering the complete matches, the acronym
disambiguation raised the precision of MedDRA, SNOMED-CT and UMLS dictionaries
by about 3% each. The performance of MeSH and ICD-10 remain unaffected indicating
the presence of less acronyms within them. There was a marginal decline (less than 2%)
in the recall of the dictionaries after applying the disambiguation rule. This indicates
the success of applying the rule-based acronym disambiguation for effective filtering of
noisy acronyms.
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4.5 Discussion

This chapter describes the challenges associated with the identification of diseases
and adverse effects in free-text articles using the standard medical terminologies. A
corpus containing 400 systematically annotated MEDLINE abstracts was generated
that was used within a common workbench to study the performances of different
resources. An outcome of this survey upheld the MedDRA as a compatible resource
for the text mining needs having its recall competitive to the UMLS meta-thesaurus
with considerably fair precision upon processing. The UMLS being the largest resource
does not include all the names that are covered by the smaller resources. Hence, the
combination of the search results from all the terminologies lead to an increase in the
recall. This indicates a need for intelligent ways to integrate and merge the information
spread across different resources. The amount of work that needs to be invested to
curate very large resources such as the SNOMED-CT and UMLS in order to make them
applicable for the text mining is also shown.

In addition to the performance comparison, the effect of dictionary curation and a
limited manual investigation of the noisy terms showed to be very effective with a
significant improvement in the precision of entity recognition with different resources.
A rule-based processing coupled with the dictionary curation can substantially improve
the performance of recognition of diseases and adverse effects.

The applied strategy for the identification of medical disorders can promote the
development of semantic search engine for capturing the disorder-centric knowledge
that has been systematically dealt in Chapter 7. It also supports the pharmacovigilance
studies (see Chapter 10) by spotlighting the zones in documents (e.g. sentences) that
can be further analyzed.

Although, the dictionary-based recognition of medical disorders is a forthright
and comprehensive approach, an ability of the machine learning-based approach to
perform this task needs to be tested. Previous experiments have shown that machine
learning techniques for disorder recognition can perform competitively [Li et al. (2008)].
Therefore, an adaptation and evaluation of the machine learning-based approach is
discussed in the upcoming chapter.
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Chapter 5

Machine Learning Strategy for Medical
Disorder Recognition

Availability of comprehensive and expert-modeled medical terminologies provide an
adequate backbone for the dictionary-based named entity recognition approaches
to support recognition of medical disorders in free-text. But, an inherent drawback
associated with the dictionary-based approach is its dependence on the quality and
coverage of the data source used for generating the dictionary. For example, if a disease
name is not covered within any standard terminologies, its mentioning in text cannot
be detected by dictionary-based techniques. In contrary, the approaches that depend
on rule-based or machine learning strategies benefit from the dictionary independence
and help in covering the different term variants and enumerations that are not covered
by the dictionaries. Therefore, the work reported here presents a Disorder-Recognizer
which uses a machine learning strategy based on Conditional Random Fields (CRF) for
identifying the mentions of medical disorders in free-text. The impact of active learning,
feature selection, and the use of additional information from the domain dictionary on
the learning process is discussed in the following sections.

5.1 Corpus Generation

Any supervised learning problem requires independent training and test sets. For
the purpose of training, a seed corpus (referred to as Disorder-train) containing
300 randomly selected MEDLINE abstracts was used. Disorder-train corpus was
annotated for the mentions of medical disorders with an entity class label DISORDER.
This seed training corpus contains 1,194 annotated entities. For testing the trained
model, previously generated corpus described in Section 4.3 (referred to as Disorder-
test) was employed. This corpus contains the medical disorders annotated with two
different class labels DISEASE and ADVERSE EFFECT. Both these annotated classes
were merged to form one main class (i.e. DISORDER). The test corpus contains 400

MEDLINE abstracts having 2,241 annotated entities. For the purpose of active learning,
an additional corpus of 100,000 randomly selected MEDLINE abstracts (referred to as
Disorder-al) was used.
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Labels: O B-DISORDER I-DISORDER O O
Tokens: The rectal cancer was diagnosed

Table 5.1: Example of observation and label sequence for a text snippet after its tok-
enization.

5.2 Training with Conditional Random Fields

Conditional Random fields (CRF, refer Section 3.8.6) is a machine learning technique
that has been widely applied for modeling the sequential data. In the context of NER,
the input sequence corresponds to the tokenized text where the text is split at white
spaces, punctuation marks, and parenthesis in general. The label sequence is coded
using the label alphabet:

L = {I-DISORDER, O, B-DISORDER}
where yi = B-DISORDER means that xi is the beginning token of the medical disorder,

yi = I-DISORDER means that xi is the continuation token of medical disorder and
yi = O means that xi is a token not of interest. An example of the tokenized and labeled
text snippet is provided in Table 5.1

The technical details of CRF can be found in the report of Roman and Tomanek
Klinger and Tomanek (2007). The implementation of Disorder-Recognizer is based on
MALLET McCallum (2002), a widely used system for liner-chain CRF.

5.2.1 Feature Extraction

The features used for training the CRF can be broadly categorized into morphological,
context-based, and ProMiner-based features. An overview of different features used is
depicted in Table 5.2. Morphological features are concerned with the internal structure of
the tokens. They include static morphological features as well as automatically generated
morphological features. Context-based features use information about the surrounding
elements for every token. ProMiner-based features use information from the named
entities recognized by ProMiner in both training and test sets (e.g. in this case, check for
the matches between prefixes/suffixes of the token and the ProMiner identified terms).
MedDRA was used as a dictionary for the ProMiner-based NER.

5.3 Performance Evaluation Criteria

The evaluation of NER was performed using exact match as a criterion. An exact match
is a situation where both the left and right boundaries of the annotated disorder name
is correctly recognized by the system. The performance of the system was judged based
on the Precision, Recall, and F1 score. Under the preliminary settings (Section 5.4) as
well as during the active learning (Section 5.5), and feature selection (Section 5.6), the
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5.4 Preliminary Evaluation of NER

Name Explanation

Static morphol. features
AllCaps Match regex: [A-Z]+
IsSlash Match regex: [\/]
IsQuote Match regex: [“ ” ‘ ’]
IsDash Match regex: [-]

Autom. generated morphol. features
Affixes Autom. generation of a feature for every token: match that

prefix or suffix (lengths: 2, 3, 4)
WordAsClass Autom. generation of a feature for every token: match that

token
POS Parts-of-speech tag of a token
Lemma Lemmatized form of a token

Context-based features
Spaces Is a token preceded or succeeded by white space
OffsetConjunction Add features of preceding and succeeding tokens for every

token (order: 1, 2, 3)

ProMiner-based features
EntityAffixes Prefixes and suffixes (lengths: 3, 4) of intermediate and last

words of named entities recognized by ProMiner
LexiconMatch Check if a token appears in the lexicon of named entities recog-

nized by ProMiner

Table 5.2: Example of features used for training the CRF for disorder recognition.

performance of the system was evaluated by 10-fold cross validation (see Section 3.10.1).
During the final comparative assessment of different tools (Section 5.7), the evaluations
were performed on the stand-off annotations of the complete test set.

5.4 Preliminary Evaluation of NER

In the first step, the CRF was trained and evaluated by 10-fold cross validation over the
Disorder-train corpus that contains 300 annotated abstracts. Under this preliminary
settings, all the morphological features, Spaces, and order-1 offset conjunction were used
whereas the dictionary-based features were set to idle. The performance of the system is
shown in Figure 5.1. The system attained the F1 score of 0.63 ± 0.04.
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Figure 5.1: Results of the disorder recognition achieved during different rounds of
active learning.

5.5 Training Corpus Extension and Evaluation during
Active Learning

Since the performance of the preliminary model was below expectation, an immediate
step was to extend the training corpus with additional annotated abstracts. For this
purpose, the concept of active learning (see Section 3.9) was employed. The principle
behind active learning is to systematically select the abstracts from Disorder-al corpus
that can be annotated and added to the seed corpus Disorder-train for further training.
Active learning is an iterative process that is carried out repeatedly until a stopping
criterion is reached. The stopping criterion applied here was the convergence of F1
score. The process of active learning is shown in Algorithm 1.

Figure 5.1 shows the performance of the system at different rounds of active learning.
During each round of active learning, the preliminary feature set described in Section 5.4
was used. Altogether, 14 rounds of active learning were performed in order to observe
the convergence in performance of the system. The process of active learning resulted
in an extended training corpus (referred to as Disorder-train-al) containing 860

abstracts and having 15,288 annotated entities. Finally, it turned out that training over
an extended corpus substantially improved the performance of the system with F1
score of 0.76 ± 0.04.
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5.6 Feature Selection

Algorithm 1: The process of active learning
Require: The annotated abstracts in Disorder-train

Require: The unannotated abstracts in Disorder-al

Require: The model M trained on Disorder-train

Repeat
1. Apply the trained model classifier M on Disorder-al

2. Rank the abstracts of Disorder-al according to a performance measure
3. Manually annotate the top ranked 40 abstracts of Disorder-al and add them to
Disorder-al

4. Train the model on the extended Disorder-train and evaluate by 10-fold cross
validation
Until the stopping criterion is reached

Precision Recall F1 score

DISEASE 0.64 0.69 0.66

ADVERSE EFFECT 0.74 0.36 0.48

Overall 0.69 0.53 0.60

Table 5.3: Assessment of system’s performance for the identification of diseases and
adverse effects separately.

Performance Evaluation for Identification of Diseases and Adverse Effects

Documents present in the seed Disorder-train corpus as well as articles gathered
during active learning were in parallel annotated with DISEASE and ADVERSE EF-
FECT. Ability of the system to differentiate between two classes was tested. The
Disorder-train corpus after active learning contains 12,039 DISEASE and 3,249 AD-
VERSE EFFECT annotations. Performance of the system for identification of diseases
and adverse effects separately evaluated by 10-fold cross validation is provided in
Table 5.3. This provides a rationale supporting the fact that diseases and adverse effects
are hard to be differentiated and confronts a challenging scenario for the automatic
identification.

5.6 Feature Selection

The fundamental purpose of feature selection is to study the influence of different
features on the performance of the learning process. Experiments with CRF in the past
have shown that feature selection can improve the performance of the system [Klinger
et al. (2008)]. Omitting the non-informative features can reduce the number of features
used for training as well as the processing time.

The impact of different features on the system’s ability to correctly recognize the
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Precision Recall F1 score

Prel. features 0.75 0.54 0.63

Active learning 0.79 0.74 0.76

Feature selection 0.84 0.76 0.80

Table 5.4: Assessment of system’s performance with preliminary (baseline) features,
active learning, and feature selection.

disorder mentions was tested systematically. This was performed by setting various
features to idle or by adding new features to the preliminary feature set. For every
modified feature set, a separate model was trained and validated by 10-fold cross-
validation. The results of feature selection is shown in Figure 5.2. Most of the features
from class static morphological had negligible impact on the performance of the system.
Therefore, only the features that showed considerable change in the performance
are indicated in Figure 5.2. Leaving out the WordAsClass and Affixes resulted in a
substantial decline in recall of the system. This points out that it is necessary for a
system to learn the prefixes and suffixes of tokens and whether the tokens appear
within the names of medical disorders or not. Increasing the OffsetConjunction to
order-2 or order-3 resulted in a slight increase in precision but noticeably decreased
the recall. An important observation was that including the ProMiner-based features
(i.e. EntityAffixes) substantially improved the performance of the system. Specially,
the EntityAffixes of length 4, and LexiconMatch resulted in an improvement in the
system’s performance with F1 score of 0.79. Furthermore, although the POS tags did
not contribute effectively, applying Lemma features substantially improved the system’s
performance with the highest F1 score of 0.80 ± 0.04. Table 5.4 shows an assessment of
system’s performances during the baseline test, after the active learning, and after the
feature selection.

Therefore, the results of feature selection indicated that employing a combination of
preliminary-feature set and ProMiner-based features is optimum for the identification
of medical disorders. Using lemmas as features can provide an additional gain. This
apparent optimal feature set was applied for tagging the disorders in Disorder-test

corpus later during the comparative assessment.

5.7 Comparative Assessment of Disorder NER

The aim of comparative assessment was to test the performance of the developed
Disorder-recognizer in contrast to state-of-the-art methods on a common platform.
Therefore, the well known tools such as the MetaMap, ProMiner with MedDRA
dictionary, BANNER, and JNET were employed in parallel to the Disorder-recognizer
to identify the names of medical disorders in Disorder-test corpus. Since the MetaMap,
and ProMiner are based on unsupervised techniques, they were applied directly on
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Figure 5.2: Results of feature selection for disorder recognition. The preliminary feature
set, LexiconMatch, POS, and Lemma as features have been indicated as A,
B, C, and D respectively.

the Disorder-test corpus. The BANNER, JNET and Disorder-recognizer were trained
on the Disorder-test-al corpus and applied on the Disorder-test corpus. The
performance achieved by different systems is shown in Table 5.5. An overview of
these results shows that Disorder-recognizer outperformed the remaining tools by a
considerable margin. In general, the machine learning-based techniques performed
better than lexical and dictionary-based techniques in identifying the medical disorders.
Amongst the three machine learning-based tools used, the JNET achieved the best
precision of 0.84 whereas the Disorder-recognizer achieved the best F1 score of 0.79

balancing its consistency in both precision as well as the recall. JNET and BANNER
have been used with best inherent feature sets. However, adding additional features to
these systems could improve their performances but this issue is not addressed here.

An evaluation of the performance of Disorder-Recognizer to identify the DISEASE
and ADVERSE EFFECT annotations in Disorder-test corpus was performed thereafter.
The system resulted in a recall of 0.76 and 0.74 for the identification of diseases and
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MetaMap Dictionary-lookup BANNER JNET Disorder-Recognizer

Precision 0.46 0.60 0.80 0.84 0.83

Recall 0.57 0.61 0.69 0.71 0.75

F1 score 0.51 0.61 0.74 0.77 0.79

Table 5.5: Comparative assessment of disorder named entity recognition.

adverse effects respectively. Currently, the system is not tuned to differentiate between
both classes and it identifies one class in general as DISORDER.

5.8 Error Analysis

The entities tagged by the Disorder-Recognizer were manually investigated to un-
derstand the common errors that a machine learning-based system could experience.
The difficulty in identifying the abbreviations was one noticeable source of error. The
frequently used abbreviations such as AD for alzheimer’s disease were identified correctly.
Whereas, the abbreviations that are in seldom usage such as T2D for Type 2 Diabetes
resulted in observable false negatives. Abbreviations that denote different entity types
such as MCC that designates merkel cell cancer as well as a gene generated inevitable
errors. An implementation of post-processing strategy for acronym disambiguation
may be helpful in overcoming such problems.

Apart from abbreviations, the descriptive enumerations of disorder names caused
substantial problems. The system was successfully able to handle several enumera-
tions such as advanced squamous cell carcinoma of the vagina that were not completely
recognized by rest of the approaches. However, there were few instances such as
metastatic/recurrent squamous cell carcinoma of head and neck that were not completely
recognized by the system. Medical adjectives that are often used to express the severity
of a disorder were also erroneous. The system was able to capture most of the entities
associated with generic medical adjectives such as acute pain, chronic hypothermia, mild
headache, and severe cardiac attack. Such expressions are not often covered by the domain
terminologies and they are difficult to be captured with dictionary based techniques.
However, few instances containing rare adjectives such as idiosyncratic drug toxicity
were encountered that resulted in partial matches. Finally, the perception of annotators
and the resulting annotation errors are also few points that affect the performance of
evaluation.

5.9 Discussion

A survey on the performance of CRF-based approach for the identification of medical
disorders in text was performed which is one the demanding tasks in the field of
biomedical named entity recognition. Training data generation by active learning
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5.9 Discussion

followed by systematic enrichment of the feature space and the feature selection showed
convincing results. Enhancing the strength of CRF with features from dictionary-based
NER showed robust results. The system’s performance was compared to state-of-the-
art named entity recognizers and found that the so developed Disorder-Recognizer
performed superiorly. The system’s ability to recognize diseases and adverse effects
was also evaluated separately that indicated a challenging scenario.

The Disorder-Recognizer is believed to improve the disease-centric information
retrieval as well as the information extraction. The current experiment has demonstrated
its ability to successfully identify disorder mentions in MEDLINE abstracts. In the
medical domain, apart from MEDLINE abstracts, a huge amount of information is
published in the form of e-health records and the ability to identify mentions of medical
disorders and other classes of medical entities is crucial to support the development of
dedicated search engine for medical text (see Chapter 7). This can apparently provide an
environment for quick document lookup and support evidence-based medical practices
and decision-making [Haynes et al. (2010)]. Therefore, the system’s scalability to a new
family of corpora (such as medical health records) and its re-trainability to recognize
new classes of concepts (such as medical treatments) is essential to be examined and
this issue is addressed in the upcoming chapter.
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Chapter 6

Concept Identification and Assertion
Classification in E-Health Records

The electronic patient health records encompass information about medical problems,
diagnosis, and therapeutic interventions associated with the patients. Hence, an
automatic processing of the health records helps in understanding the etiologies of
medical problems, develop preventive rationales, promote evidence-based medicine,
and thereby improve the overall patient’s healthcare, safety and effectiveness. Automatic
processing of patient health records requires the identification of various categories
of medical concepts and the assertions made over them as well as the relationships
between different concepts. For example, identifying both new and hidden relations
between symptoms, treatments, diagnoses, age, gender, and social situation of the
patients can greatly support physicians to take timely decisions, reduce medication
errors, and cut down the overall cost of treatment. However, mining the information
from health records is not a trivial task since the structure of these articles as well
as the writing conventions deviate greatly in comparison to the scientific articles
(see Section 6.2). Medical text are generated by physicians, healthcare providers, or
voice recognition systems that do not strictly adhere to scientific writing standards.
Moreover, the medical language used under different clinical settings vary. For example,
the radiology department and the surgical pathology department stick to different
writing conventions. This poses an additional challenge for the conventional biomedical
information extraction technologies to fetch the useful and informative snippets from
medical text successfully.

Due to the proprietary nature of health records and patient’s private data security
policies, obtaining access to health records in order to promote development of au-
tomated medical text processing systems is often difficult. Therefore, thanks to the
I2B2/VA challenge (see Section 3.15.1) in promoting research and development of medi-
cal IR and IE systems. This chapter provides an overview on the challenges associated
with mining the patient health records through author’s participation in I2B2/VA
challenge 2010. The work reported here presents a hybrid approach for identifying the
medical concepts in patient health records. It utilizes a CRF-based supervised classifier
combined with the strength of ProMiner system. For the classification of medical
assertions, a Support Vector Machines (SVM)-based system was applied. Workflow
details and performance assessments are discussed in the following sections.



Chapter 6 Concept Identification and Assertion Classification in E-Health Records

6.1 The Fourth I2B2/VA challenge 2010

The fourth I2B2/VA challenge was a three tiered challenge that aimed at evaluation of
state-of-the-art technologies for:

• Extraction of medical problems, tests, and treatments.

• Classification of assertions made on medical problems.

• Classification of relations between medical problems, tests, and treatments.

This work addresses only concept identification and assertion classification tasks.
The dataset contains de-identified patient records and is composed of Partners Health-
Care1 medical records, Beth Israel Deaconess Medical Center2 discharge summaries,
University of Pittsburgh Medical Center3 discharge summaries and progress notes.
Records from the Pittsburgh Medical Center are subset of records provided by the
TREC medical records track (see Chapter 7). Medical concepts, assertions, and relations
are annotated by medical professionals. Details of corpus characteristics can be found
in Section 6.2.

6.2 Goals and the Corpus Characteristics

The dataset provided by I2B2 contains a training set of 349 expert-annotated patient
health records (referred to as I2B2-train) and a test set of 477 unannotated records
(referred to as I2B2-test). The I2B2 corpus was annotated for the mentions of medical
problems, treatments, and tests. Descriptions of the annotated concepts according the
guidelines4 are as follows:

Problem: Phrases that contain observations made by patients or clinicians about
the patient’s body or mind that are thought to be abnormal or caused by a disease.
They are loosely based on the UMLS semantic type Disorder but not limited by UMLS
coverage. Examples of sentences annotated with concepts belonging this semantic class
are shown below.

The wound was noted to be clean with mild serous drainage.
An echocardiogram revealed a pericardial effusion and tamponade clinically.

Treatment: Phrases that describe procedures, interventions, and substances given
to a patient in an effort to resolve a medical problem. They are loosely based on the
UMLS semantic subtypes therapeutic or preventive procedure, medical device, steroid,
pharmacologic substance, biomedical or dental material, antibiotic, clinical drug, and

1http://www.partners.org/
2http://www.bidmc.org/
3http://www.upmc.com/Pages/default.aspx
4https://www.i2b2.org/NLP/Relations/Documentation.php
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6.2 Goals and the Corpus Characteristics

Problem Treatment Test

I2B2-train 11,967 8,497 7,367

I2B2-test 18,550 13,560 12,899

Table 6.1: Counts of annotated concepts in the I2B2 corpus.

Assertion Example

Present The patient experienced a drop in hematocrit.
Absent No pneumonia was suspected.
Possible Doctors suspect an infection of the lungs.
Conditional Patient had increasing dyspnia on exertion.
Hypothetical If you experience wheezing or shortness of breath
Not associated with patient Brother has asthma

Table 6.2: Examples of sentences containing assertions on medical problems (marked
in red color).

drug delivery device but not limited to UMLS coverage. Examples of sentences anno-
tated with concepts belonging this semantic class are shown below.

The patient had a bronchoalveolar lavage performed.
After months of physical therapy, the patient gained strength.

Test: Phrases that describe procedures, panels, and measures that are done to a
patient or a body fluid or sample in order to discover, rule out, or find more informa-
tion about a medical problem. They are loosely based on the UMLS semantic types
laboratory procedure, diagnostic procedure, but also include instances not covered by
UMLS. Examples of sentences annotated with concepts belonging this semantic class
are shown below.

An abdominal ultrasound was performed showing no stones.
Cardiac catheterization revealed coronary artery lesions.

The I2B2-train corpus contains 30,673 sentences, 260,573 tokens and 27,831 annotated
entities. The I2B2-test corpus contains 45,053 sentences and 396,173 tokens. A later
supplied gold standard for the I2B2-test contains 45,009 annotated entities. Table 6.1
shows the number of annotated concepts in training and test sets. The aim of concept
identification task is to utilize the information from I2B2-train corpora in order to
automatically tag the mentions of medical problems, treatments and tests in the I2B2-
test corpus. The expert annotations of the I2B2-test (also referred to as gold standard)
were made available at the end for assessing the performance of the applied system.

On the other hand, for assertion classification task, only the mentions of medical
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Assertion Category I2B2-train I2B2-test

Present 8,052 13,025

Absent 2,535 3,609

Possible 535 883

Conditional 103 171

Hypothetical 651 717

Not associated with patient 92 145

Table 6.3: Counts of assertion categories in the I2B2 corpus.

problems in the I2B2 corpus corpus were categorized into six predefined categories.
Table 6.2 shows the categories of assertions made over medical problems and examples
of sentences containing them. Table 6.3 shows the counts of assertion categories in the
I2B2 corpus. The aim of assertion classification task is to utilize the information from
the I2B2-train corpus and automatically classify the mentions of medical problems in
the I2B2-test corpus into pre-defined categories.

Unlike biomedical scientific articles, the structure of e-health records vary drasti-
cally amongst different records. A large portion of e-health records are available in
narrative form as a result of transcription of dictations, direct entry by healthcare
providers, or use of speech recognition applications [Meystre et al. (2008)]. Spelling
errors, and contextual features such as negations and temporality is something that can
be frequently found in medical text in comparison to scientific articles. The shortest
record in the I2B2 dataset contains 5 sentences whereas the longest record contains 358

sentences. Few records are semi-structured whereas others are completely unstructured.
A semi-structured record contains information about patient’s illness, medications, and
diagnoses written in structured manner whereas some other information is described
in free-text natural language expression. A large portion of records have signatures
of physicians, note of thanks, and many more meta-data that does not contribute to
medical semantics of the reports. The varying structure of records and heterogeneously
coded information makes it challenging for information extraction systems for success-
fully processing this form of text. An example of semi-structured part of an anonymous
patient record is shown below.
Allergies :

Patient recorded as having No Known Allergies to Drugs

Chief Complaint :

Shortness of Breath

Major Surgical or Invasive Procedure :

Endotracheal Intubation

Central Venous Catheter and Swan Ganz catheter placement

Medications on Admission :

Levothyroxine 100 mcg PO daily
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Labels: O B-Prob I-Prob O O
Tokens: The rectal cancer was diagnosed

Table 6.4: Example of text snippet and label sequence after tokenization and IOB
conversion.

6.3 Concept Identification with CRF

Considering the previous successful application of CRF for the recognition of medical
disorders in biomedical text, the system was re-trained and applied for the identification
different categories of medical concepts in patient health records. The I2B2 data was
tokenized at whitespaces and converted into IOB sequences before they can be subjected
to training or validation. Table 6.4 shows an example of text snippet in the IOB format.
The labels B-Prob, B-Treat, and B-Test indicate beginning tokens of the problems,
treatments and tests whereas I-Prob, I-Treat, and I-Test correspond to intermediate
tokens of problems, treatments and tests respectively. The label O corresponds to a
token that does not belong to any entity class.

6.3.1 Feature Sets for Concept Identification

The features used for training the CRF can be broadly categorized as morphological,
grammatical, context-based and ProMiner-based features. The applied feature sets are
based on experiences obtained from previous work on disease and adverse effect
identification described in Section 5.2.1. Morphological features are concerned with the
internal structure of the tokens (e.g. suffixes/prefixes, capitalizations, special characters,
WordAsClass, etc). Context-based features use information about the surrounding
elements for every token [e.g. offset conjunction (OC) of order ±1, ±2]. Grammatical
features are Parts-Of-Speech (POS) tags of the tokens. ProMiner-based features include
lists of candidate named entities that occur in the complete I2B2 corpus that were
recognized by the ProMiner. Three separate dictionaries were used for identifying
the candidate names of problems, treatments and tests. For identifying the candidate
medical problems, the MedDRA dictionary was used. A combined dictionary composed
of entries from DrugBank, and KEGG was used for identifying the candidate treatments.
A subset of MeSH representing diagnostic procedures was used for identifying the
names of tests in the I2B2 dataset.

6.4 Assertion Classification

The principle behind this classification task was to use the contextual information
in order to automatically classify the assertions of medical problems. A range of
classifiers that include Naïve Bayes, Nearest Neighbor, Decision Tree, and Support
Vector Machines (SVM) were preliminarily validated on the training data. Based on
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the outcome of this validation, the best suited classifier was subjected to classify the
instances in the test set. Weka 3.65 platform was used for the assertion classification
task.

6.4.1 Feature Sets for Assertion Classification

During the preliminary evaluation over the training data, various feature sets were
tested that include words-in-window, lemmas-in-window, bigrams-in-window, posi-
tions, family history, and nearest verbs.

• Words-in-window of size ‘±n’ includes ‘n’ number of words that precede and
succeed the mentions of medical problems.

• Lemma-in-window of size ‘±n’ includes lemmas of ‘n’ number of words that
precede and succeed the mentions of medical problems.

• Bigrams-in-window of size ‘±n’ includes bigrams (also referred to as word
pairs) of ‘n’ number of words that precede and succeed the mentions of medical
problems.

• Position adds information to every token, lemma or bigram whether it precedes
or succeeds the mention of medical problem.

• Family history adds information to the mention of medical problem whether it
occurs in ‘family history’ subsection of the document or not.

• Nearest verbs include the verbs that precede and succeed the mentions of medical
problems. The lemmatized forms of verbs were used as features. This feature is
independent of the size of the window.

Words-in-window, lemmas-in-window, bigrams-in-window, positions, and family
history were modeled as binary features. For every feature, its value was set to ‘1’ if the
feature was present or set to ‘0’ if the feature was absent. Nearest verbs denoted two
separate features i.e. left nearest verb and right nearest verb with their values set to
the respective lemmatized stings. Table 6.5 shows an illustration of features associated
with an arbitrary problem concept.

6.5 Performance Evaluation Criteria

The evaluation of concept identification was performed using exact match as a criterion.
An exact match is a situation where the system identifies both left as well as the right
boundaries of the annotated concept correctly. Performances of concept identification
and assertion classification were judged based on Precision, Recall and F1 score. During

5http://www.cs.waikato.ac.nz/ml/weka/
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Features Values

Window size ±4

Words-in-window was, noted, to, have, for, which, he,
started

Lemma-in-window be, note, to, have, for, which, he, start
Lemma-in-window + Position PRE=be, PRE=note, PRE=to, PRE=have,

POST=for, POST=which, POST=he,
POST=start

Nearest verbs PREVERB=have, POSTVERB=start

Table 6.5: Features associated with the concept an erythematous perianal rash that will be
subjected to assertion classification and that is present in the sentence: He
was noted to have an erythematous perianal rash for which he started on Nystatin
powder.

the preliminary experiments, the performances of the systems were evaluated by 10-fold
cross validation of the I2B2-train corpus. Finally, the best performing settings were
chosen to tag or classify instances in the I2B2-test corpus.

6.6 Evaluation of Concept Identification

Under the preliminary settings, the CRF was trained and evaluated by 10-fold cross
validation of the I2B2-train corpus. All the morphological features and context-based
features (OC = ±1) were used. The system attained the F1 score of 0.78 ± 0.04 (also
referred to as baseline).

In order to evaluate the impact of different features, a new set of features were added
to the preliminary feature set or the existing ones were set to idle and experimented
in a systematic way. For every modified feature set, a separate model was trained
and evaluated by 10-fold cross validation. The result of feature evaluation is shown in
Table 6.6. Only the features that contributed to an improvement in the performance
of baseline result are shown. Table 6.6 implicitly indicates that the perturbation of
preliminary feature set (i.e. removal of WordAsClass, changing the offset conjunctions)
does not contribute to the improvement of the baseline result. The POS tags improved
the performance by nearly 1% whereas adding the lemmas and ProMiner-based features
contributed substantially to the system’s performance. Finally, the best model that
achieved the F1 score of 0.83 ± 0.03 was applied to tag the I2B2-test corpus.

6.7 Evaluation of Assertion Classification

In the first step, different classifiers were trained and evaluated by 10-fold cross
validation of the I2B2- train corpus. Words-in-window of sizes ±2, ±3, ±4, ±5, ±6
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Features F1 score

Prel. Features 0.78 ± 0.04

Prel. Features + POS 0.79 ± 0.04

Prel. Features + POS + Lemma 0.81 ± 0.05

Prel. Features + POS + Lemma + ProMiner-based 0.83 ± 0.03

Table 6.6: Results of the system’s performance (F1 score) during different stages of
feature evaluation experiments. Prel. features indicate all the morphological
features and OC of ±1.

Window size NB NN DT SVM

±2 0.76±0.04 0.78±0.05 0.82±0.04 0.84±0.05

±3 0.77±0.05 0.79±0.04 0.83±0.05 0.85±0.04

±4 0.78±0.05 0.79±0.05 0.83±0.03 0.86±0.03

±5 0.78±0.03 0.79±0.06 0.83±0.06 0.86±0.04

±6 0.77±0.04 0.79±0.05 0.84±0.04 0.86±0.03

Table 6.7: Performance of assertion classification (F1 score) over the varying window
sizes during 10-fold cross-validation.

were used as features in the preliminary settings. The aim was to choose one best
classifier and a suitable window size for further evaluations. Table 6.7 shows the
performance of different classifiers over the varying window sizes during 10-fold
cross-validation.

Based on the results of classifier and window size selection, the SVM and a window
size of ±4 were chosen to be optimum for further experimentation. In the second step,
different sets of features were used and the performance of SVM was evaluated. For
every modified feature set, a separate model was trained and evaluated by 10-fold
cross validation. The results of feature evaluation for the assertion classification task
are shown in Table 6.8.

The results of feature evaluation indicated that a combination of lemma-in-window,
positions and family history coupled with SVM is best suited for classifying the
assertions of medical problems in the I2B2-test corpus.

6.8 Final Evaluation over the Test Set

For identifying the concepts in I2B2-test corpus, a trained CRF that utilizes the best
feature set observed in Table 6.6 was applied. The results of concept identification over
an independent test set are shown in Table 6.9. The applied system achieved an overall
F1 score of 0.82 for tagging the problems, treatments and tests in the I2B2-test corpus.
For classifying the assertions in I2B2-test corpus, a trained SVM that utilizes the best
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Features F1 score

Words-in-window (baseline) 0.86 ± 0.03

Bigrams-in-window 0.86 ± 0.04

Lemma-in-window 0.87 ± 0.04

Lemma-in-window + Positions 0.89 ± 0.05

Lemma-in-window + Positions + Nearest verbs 0.89 ± 0.04

Lemma-in-window + Positions + Nearest verbs + Family History 0.90 ± 0.04

Lemma-in-window + Positions + Family History 0.90 ± 0.03

Table 6.8: Results of the system’s performance (F1 score) during different stages of
feature evaluation experiments for the assertion classification.

Concept Category Precision Recall F1 score

Problem 0.84 0.80 0.82

Treatment 0.84 0.77 0.81

Test 0.85 0.80 0.82

Overall 0.84 0.80 0.82

Table 6.9: Assessment of performance of the system for identifying the concepts in
I2B2-test corpus.

feature set described in Table 6.8 was applied. The results of assertion classification are
shown in Table 6.10. The applied system achieved an overall F1 score of 0.90.

6.9 Error Analysis

The concepts tagged by the CRF during training as well as in the test set were manually
investigated to understand some common sources of errors. Examples of frequent
sources of errors include abbreviations such as CXR that stands for chest X-ray and
IVP that stands for Intravenous Pyelogram. Apart from abbreviations, the descriptive
enumerations of medical problems caused substantial problems. Long and descriptive
mentions of the medical problems such as subtle decreased flow signal within the sylvian
branches were not recognized completely by the system. Other sources of errors include
nested concepts such as rupture of liver, left renal vein, pancreas, and transverse mesocolon
and anaphors such as the following medications. A manual inspection of the results of
assertion classification indicated several errors. For example, in the sentence It was felt
that his dementing illness and rigidity was most likely due to some type of cortico-basal ganglia
degeneration process, but this was not clarified during this admission, the medical problem
cortico-basal ganglia degeneration process that was originally annotated as possible was
misclassified as present by the system. This is because the four features in the preceding
window could not capture the keyword likely which is a critical feature in this scenario
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Assertion Category Precision Recall F1 score

Present 0.92 0.96 0.94

Absent 0.88 0.85 0.87

Possible 0.71 0.47 0.57

Hypothetical 0.73 0.73 0.73

Conditional 0.70 0.18 0.28

Not associated with patient 0.96 0.66 0.78

Overall 0.90 0.90 0.90

Table 6.10: Assessment of performance of the system for classifying the assertions in
I2B2-test corpus.

for a correct classification. Other examples include mentions of multiple neighboring
problems that render them far from their actual context. For example, in the sentence
She currently denies any fever , chills , night sweats , weight change , blurred vision , headaches
, nausea , vomiting , diarrhea , constipation , abdominal pain , changes in vision , shortness of
breath , chest pain or pressure , or changes in her bowel habits, concepts such as vomiting,
diarrhea, constipation etc. that belong to the class hypothetical were misclassified as
present since their preceding or succeeding features fail to capture the actual context. In
the cases of both concept identification as well as assertion classification, the annotation
errors induced by human annotators also contribute to the decline in performance of
the system.

6.10 Summary on Competing Systems at I2B2 2010

“The performances of competing systems were evaluated on held-out dataset (i.e. I2B2-
test). There were 22 systems competing for concept identification and 21 systems for
assertion classification.

For the concept identification task, most effective systems used Conditional Random
Fields whereas the only exception was Bruijn et al. (2010) who secured the top position
for this task. Bruijn et al. (2010) trained an online Passive-Aggressive algorithm [Cram-
mer et al. (2006)] based on lexicosyntactic textual features that achieved the best results
for the concept identification. Our system that used CRF enriched with features from
ProMiner was ranked fourth. Roberts et al. (2010) broke the concept extraction task into
two steps, so that in the first step they trained CRF on identifying concept boundaries
and in the second step they determined the class of the concept. Some others [Jiang
et al. (2010), Kang et al. (2010)] utilized CRF in an ensemble, either of existing named
entity recognition systems and chunkers, or of different algorithms with input based
on knowledge-rich sources [Denny et al. (2003)]. Jonnalagadda and Gonzalez (2010)
applied a semi-supervised CRF that utilized distributional semantics-based features.

Most effective assertion classification systems used Support Vector Machines either
with contextual information and dictionaries that indicate negation, uncertainty, and
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family history, or with the output of external rule-based systems. Roberts et al. (2010)
and Chang et al. (2010) used both dictionaries and rule-based systems. Chang et al.
(2010) complemented SVM with logistic regression, multi-logistic regression, and
boosting, which they combined using voting. Bruijn et al. (2010) created an ensemble
whose final output was determined by a multi-class SVM. Clark et al. (2010) used CRF
to determine negation and uncertainty with their scope, and added sets of rules to
separate documents into zones, to identify cue phrases, to scope cue phrases, and
to determine phrase status. They combined the results from the found cues and the
phrase status module with a maximum entropy classifier that also used concept and
contextual features" [Uzuner et al. (2011)].

6.11 Discussion

This chapter addresses the challenging tasks of identifying the medical concepts in
e-health records and to classify the assertions made over medical problems. These
are under-addressed challenges due to the proprietary nature of e-health records as
well as the unavailability of well annotated data that can support machine training or
evaluation. Based the success demonstrated by previously applied approaches for the
identification of concepts in scientific text (addressed in previous Chapters 4 and 5),
they have been systematically readapted for the identification of concepts in medical
text.

The applied strategy for medical concept identification with CRF and assertion
classification with SVM achieved competitive results with F1 scores of 0.82 and 0.90

respectively. In case of concept identification, it was shown that the application of
ProMiner enabled features to CRF substantially contributes to the performance of
the system. For classifying the assertions on medical problems, the window-based
contextual features in combination with SVM were shown to be successful. Nevertheless,
several strategies have to be tested in order to improve the performances of the applied
systems. The dictionaries used for identifying the candidate named entities had a
limited coverage. For example, the dictionary used for treatments had a good coverage
of chemical and drug names but did not include names of operative procedures,
therapies, etc. Manual curation and quality assurance of the terminological resources is
a possible solution.

From an application point of view, the developed strategy allows capturing important
categories of medical concepts with high specificity and sensitivity that can support
the development of a semantic platform for searching in e-health records (addressed in
the next chapter). Furthermore, the ability to find medical concepts and their assertions
can also support automatic strategies for finding unsuspected links (between concepts
or associated events) from huge volumes of medical literature. As a use case scenario,
the developed systems are believed to improve medical literature searches, literature-
based knowledge discovery and thus support clinical decision-making for advanced
healthcare in the medical arena.
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Chapter 7

Semantic Platform for Information
Retrieval from E-Health Records

Electronic patient health records encompass valuable information about patient’s medi-
cal problems, diagnoses, and treatments offered including their outcomes. However,
a problem for medical professionals is an ability to efficiently access the information
that are documented in the form of free-text. An example for the potential application
of searching within e-health records is the strategy applied by the Mayo Clinic for
mining the patient health records for identifying suitable subjects for clinical trails1.
Healthcare sector worldwide has been taking strong initiatives for the development of
sophisticated NLP technologies for mining the e-health records2. Another example is
the public-private partnership EU project EHR4CR3 that aims at providing adaptable,
reusable, and scalable solutions for exploring information from e-health records for
clinical research. Therefore, strategies for efficient searching and retrieval of information
from e-health records is highly demanding in clinical settings. However, the goal is
hard to achieve due to the proprietary nature and ethical issues involved in mining the
patient data as well as extremely limited availability of publicly available datasets that
can support the development and validation of medical search engines.

In order to address this issue, the Text Retrieval Conference Medical Records Track
(TRECMED) 2011 provides an experimental platform for open development, evaluation,
and comparison of approaches for efficient information retrieval from e-health records.
Based on the successful scenarios exhibited by the previously applied strategies for
identifying the concepts in scientific and medical literature (Chapters 4-6), they have
been coupled with the strength of foreign NLP tools (such as SemRep, ConText see
Chapter 3.12) for the development of a semantic platform for searching and retrieval of
e-health records. The system offers facilities for keyword searches, semantic searches,
and ontological searches. Workflow details and performance assessments are described
in the following sections.

1http://www.informationweek.com/news/healthcare/EMR/231601559
2http://www.openehr.org/home.html
3http://www.ehr4cr.eu/about.cfm
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Report Type No. in Repository

Radiology Reports 47,555

History and Physical Exam Reports 15,721

Emergency Department Reports 13,424

Progress Notes 8,538

Discharge Summaries 7,931

Operative Reports 5,032

Surgical Pathology Reports 2,877

Cardiology Reports 632

Table 7.1: Types of electronic health reports present in the TRECMED dataset and their
respective counts.

7.1 Task Description

The dataset used for TRECMED 2011 contains approximately 101,711 e-health records
from University of Pittsburgh NLP repository4. The dataset is composed majorly
of radiology reports constituting nearly 50% of the total dataset followed by history
and physical exam reports, emergency department reports, and so forth. Table 7.1
provides the counts of different types of reports contained in the TRECMED dataset.
Altogether, 35 expert-formulated questions (also referred to as topics, see Table A.2)
were provided and the task was to retrieve sets of records from the collection that
can best answer the topic questions. An example of topic question is find patients with
gastroesophageal reflux disease who had an upper endoscopy. Later on, officially submitted
records from different participants were pooled and a group of human evaluators with
strong medical background made judgments over relevancy of the retrieved records
(i.e. records were judged as irrelevant, possibly relevant, or relevant for a given question).

7.2 Data Preprocessing

The TRECMED collection contains 101,711 reports. A notion of “Visit” defines all the
reports corresponding to a patient’s consult to the hospital. In the current dataset,
the smallest visit corresponds to one report and the largest visit corresponds to 418

reports. Mapping between the reports and visits were provided in prior5. An official
evaluation criteria required participants to return sets of visits for different topics. The
pre-processing step combined multiple reports to their representative visits without
changing the semantic structure of visits. For example, if a visit contains two radiology
reports and two discharge summaries, after report-to-visit merging the final visit would
have one radiology report section that is a combination of two constituent radiology
reports and one similarly generated discharge summary section. The report-to-visit

4http://nlp.dbmi.pitt.edu/nlprepository.html
5http://www-nlpir.nist.gov/projects/trecmed/2011/tm2011.html
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7.3 Patient Demography Identification

merging resulted in 17,198 visits that were subjected to further processing. Each
visit contains 9 free-text sections that are formed by constituent reports. The sections
are complaint (COMP), radiology reports (RAD), history and physical exams (HP),
emergency department reports (ER), progress notes (PGN), discharge summaries (DS),
operative reports (OP), surgical pathology reports (SP), and cardiology reports (ECHO).

7.3 Patient Demography Identification

Patient demography identification task identifies patient’s age and gender indicated
within the visit. An age-identifier was developed that is a rule-based and regular-
expression based system for the identification of de-identified age groups mentioned in
visits. The system finally classifies a visit as child, teen, adult, or elder. Identifying the
age within patient visits is not a trivial task since a visit may contain ages of patient’s
relatives such as son, father, mother, etc. Manually crafted rules were applied to filter
out ages of non-patients and an evaluation of the system was internally performed that
indicated superior results. Visits with ambiguous multiple age groups information were
classified into multiple age groups respectively. For example, the visit ge4U9SGxaDRw
defines the patient as teen and adult. As a result of age identification, 9185 visits
were classified as adult, 5747 as elder, 581 as teen, 273 as child, and 3248 had no age
information.

A gender-identifier was developed that is a rule-based and regular-expression based
system for identification of patient’s gender mentioned in visits. The system finally
classifies a visit as male or female. The gender-identifier recognizes gender-specific
nouns and pronouns such as male, female, she, her, etc. and based on the frequency of
gender mentions it classifies a visit. Visits with ambiguous gender information were
classified into both gender categories. As a result of gender identification, 8034 visits
were categorized as male, 6916 as female, and 2248 visits had no gender information.

7.4 Concept and Relation Identification

Different tools were applied for the recognition of concepts and relations in visits.
Concept and relation identification was performed on all free-text sections of visits.

MetaMap was applied for the identification of UMLS concepts in visits. UMLS
contains over 100 semantic classes of concepts such as the anatomy, physiology, disorder,
and many more. All classes of UMLS concepts recognized by the MetaMap were used.

SemRep (Semantic Knowledge Representation)6 is a tool for the identification of
relations in any arbitrary biomedical text. SemRep identifies relationships between
UMLS concepts in text within the sentences. Types of relations that SemRep identifies
is pre-defined by the UMLS. Table 7.2 shows top five types of frequently occurring rela-
tionships. Altogether, 30 different types of relationships were identified in TRECMED
visit collection.

6http://skr.nlm.nih.gov/
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Type of relation No. of occurrences

LOCATION-OF 151,225

PROCESS-OF 58,443

TREATS 26,816

IS-A 20,417

PART-OF 20,228

Table 7.2: Top five frequently occurring types of relationships in TRECMED collection.

ProMiner was used along with pre-processed dictionaries for the identification of
named entities (referred to as concepts) in text. The dictionaries used for concept identi-
fication can be broadly categorized as dictionaries for medical problems, treatments,
and diagnostic tests. Dictionaries used and the information they contain are as follows:

MedDRA provides a comprehensive terminology for medical problems such as
signs, symptoms, diseases, adverse effects, syndromes, and many more. The curated
version of applied MedDRA dictionary contains over 15,000 entries with nearly 55,000

synonyms.

MeSH-Disease provides a comprehensive terminology for medical problems covered
by the “C” sub-hierarchy of MeSH. However, MeSH is hierarchically organized into
14 levels and provides facilities for ontological searches. The curated version of ap-
plied MeSH-Disease dictionary contains over 4,000 entries with nearly 40,000 synonyms.

DrugBank covers names and synonyms of drugs including their brand names, sys-
temic names and registry codes. The curated version of applied DrugBank dictionary
contains over 6,800 entries with nearly 64,500 synonyms.

ATC7 provides a coverage of pharmacological, therapeutic, and chemical class names.
Examples include terms such as adrenergic antagonist, anti-bacterial agent, Prostaglandin,
etc. Synonyms of ATC terms were extracted from the UMLS. Mappings exist between
ATC and DrugBank entries within the DrugBank database. Curated ATC dictionary
over 650 entries with nearly 3,500 synonyms.

MeSH-Diagnostic provides a comprehensive terminology for diagnostic tests cov-
ered by the “E” sub-hierarchy of MeSH. Applied MeSH-Diagnostic dictionary over
2,500 entries with nearly 22,000 synonyms.

A CRF-based system was trained over manually annotated concepts in approximately
800 e-health records provided by the I2B2 challenge 2010 (see Section 6.2). The system
was trained for the recognition of medical problems, treatments, and tests in e-health

7Anatomical Therapeutic Chemical classification system, http://www.whocc.no/atc_ddd_index/

90

http://www.whocc.no/atc_ddd_index/


7.4 Concept and Relation Identification

Concept/Rel. No. of occurrences No. of unique occurrences

UMLS 9,571,099 36,747

Relations 342,712 82,833

MedDRA 1,298,729 4,605

MeSH-Disease 1,144,267 2,239

DrugBank 239,258 902

ATC 38,140 157

MeSH-Diagnostic 406,711 939

CRF-Prob 1,657,912 294,038

CRF-Treat 630,256 76,341

CRF-Test 632,404 47,836

Table 7.3: Counts of different types of concepts and relations occurring in TRECMED
dataset. Total number of occurrences (column 2) and number of unique
occurrences after normalization (column 3) are reported.

records (referred to as CRF-Prob, CRF-Treat, CRF-Test respectively). Concepts recog-
nized by the CRF were morphosyntactically normalized8. Table 7.3 shows counts of
different types of concepts and relations occurring in the TRECMED dataset.

7.4.1 Assertion Classification on Medical Problems

For classification of assertions made over medical problems, the ConText program
[Harkema et al. (2009)] was used. ConText program contains three separate modules for
the identification of negation, temporality, and experiencer information provided over
mentions of medical problems in text. The negation module identifies any negations
made over medical problems. The temporality module classifies a medical problem as
history, recent, or hypothetical. Similarly, the experiencer module identifies if a medical
problems occurs in the patient or patient’s relatives (such as father, mother, son, etc.).
Context program was applied to identify negations, temporalities, and experiencer
information made over mentions of problems that were mapped to MedDRA, MeSH-
Disease, UMLS (Disorder semantic-type), and, CRF-Prob. The negation and experiencer
modules were applied as-is whereas the history and hypothetical rules associated with
temporality module were modified. Examples of such modifications include removal
of patterns such as reported, complains, and presented that asserts a medical problem as
history. Similarly, modifications associated with hypothetical assertions include removal
of patterns such as as needed, come back for, and so forth. Using the experiencer module,
problem mentions were classified as in-patent or not-in-patient. Several instances exist
where a medical problem can attain multiple assertions. For example, in the sentence
His father had no history of hypertension, the medical problem hypertension belongs to
history, negation, and not-in-patient. Table 7.4 shows counts of assertions made over

8http://www.ncbi.nlm.nih.gov/books/NBK9680/
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Negation History Hypothetical Not-in-patient

UMLS 609,193 224,077 833 21,447

MedDRA 460,117 164,413 787 14,572

MeSH-Disease 377,913 149,822 749 13,497

CRF-Prob 563,682 192,375 1,029 15,341

Table 7.4: Counts of assertions made over medical problems.

medical problems identified by different concept identification approaches. Nearly 30%
to 35% of medical problems recognized by different techniques are negated and this
indicates the importance of negation identification in patient health records.

7.5 Indexing

Free-text fields of TRECMED visits including demographies as well as medical con-
cepts, and relationships occurring in different sections of visits were indexed with
SCAIVIEW [Hofmann-Apitius et al. (2008)]. SCAIView is a high performing and scal-
able Information Retrieval (IR) system based on Lucene9. It provides a framework for
indexing several gigabytes of document data and to quickly perform complex searches
over text as well as concepts. Free-text in the form of stemmed tokens appearing in
different sections of patient visits were indexed. Meta-data such as ICD-9CM codes
appearing in the admit-diagnosis and discharge-diagnosis fields of visits were expanded
before indexing. Concepts and relations occurring in different sections of visits were
indexed separately. For example, the current index allows searching for the keyword
diabetes or the MeSH concept Diabetes Mellitus (MeSH-ID:D003920) in discharge summary
(DS) sections of visits. Figure 7.1 illustrates the workflow adapted for indexing the
TRECMED records. The system allows keyword searches, semantic searches, and
ontological searches. For a given query, the system retrieves a ranked list of patient
visits from the index.

7.6 Querying and Retrieval

Various querying strategies such as semantic search in the concept space, ontological
search and text search were performed. Lucene BM25F (see Section 3.2.2) was applied as
a scoring function to measure the similarity between visits and the query. Descriptions
of different runs and the underlying query formulation strategies are discussed in the
following subsections.

9http://lucene.apache.org/java/docs/index.html
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Figure 7.1: Illustration of the workflow adapted for indexing the TRECMED records.

MEDRUN1

MEDRUN1 serves as a baseline run where queries were formed by manual extraction
of key terms from the topic questions. Queries were formulated in a way to reflect
knowledge-based human queries. This run provides a rationale for the comparison
of performances of semantic and ontological searches with knowledge-based human
searches.

MEDRUN2

MEDRUN2 applies semantic search strategy to search for UMLS concepts and relations
in the index. MetaMap and SemRep programs were applied for the identification of
UMLS concepts and relations in topic questions. Automatically identified concepts and
relations in topic questions were used for searching in the concept and relation fields of
the index. Examples of SemRep found relations in the topic-116: Patients who received
methotrexate for cancer treatment while in hospital are:
a. (C0920425) Cancer Treatment USES (C0025677) Methotrexate
b. (C0025677) Methotrexate ADMINISTERED_TO (C0030705) Patients
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Information about demographies and sections to be searched were extracted from
the topic questions. For example, in the topic-110: Patients being discharged from hospital
on hemodialysis, the system would search in discharge summary (DS) sections of visits
with a higher priority in comparison to rest of the sections. A higher priority was
assigned to necessary sections by duplicating them in the query. In visits, the concepts
referring to medical problems that are negated or those that occurs as family status
were omitted during search. No difference was made when searching for problem
concepts occurring as history or recent event. Nevertheless, the system allows searching
for negated concepts, concepts referring to family members, and concepts indicating
history, hypothetical or recent events.

MEDRUN3

MEDRUN3 applies semantic search strategy to search for ProMiner and CRF identified
concepts in the index. ProMiner and pre-trained CRF were applied for the identification
of concepts in topic questions. Automatically recognized concepts in topic questions
were applied for querying in the concept space of the index. Information about
demographies and sections to be searched were extracted from the topic questions.
Problem concepts that are negated, historical, or indicating family status were processed
as described during MEDRUN2.

MEDRUN4

MEDRUN4 applies ontological search strategy to search for ProMiner and CRF iden-
tified concepts in the index. ProMiner and pre-trained CRF were applied for the
identification of concepts in topic questions. Automatically recognized concepts in
topic questions were applied for querying in the concept space of the index. For the
MeSH-Disease and MeSH-Diagnostic concepts, hyponyms (also referred to as child
concepts) of the concepts present in topic questions were also used during querying.
For example, in the topic-113, MeSH concept Adenocarcinoma has several hyponyms
such as Endometrioid Carcinoma, Hepatocellular Carcinoma, and many more. Information
about demographies and sections to be searched were extracted from the topic ques-
tions. Problem concepts that are negated, historical, or indicating family status were
processed as described during MEDRUN2.

Run Combinations

Visits retrieved during two or more runs amongst MEDRUN1, MEDRUN2, MEDRUN3,
and MEDRUN4 were systematically merged. If a Visit occurs in more than one run, its
final score was computed using ∑ BM25F(Visiti)

Rank(Visiti)
where i indicates the run.
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Run-ID bpref R-Prec

MEDRUN1 0.4852 0.3218

MEDRUN2 0.4470 0.2909

MEDRUN3 0.5503 0.3966
MEDRUN4 0.5333 0.3774

Table 7.5: Results of retrieval during the preliminary TRECMED runs.

Run Description bpref R-Prec

MEDRUN1 + MEDRUN3 0.5732 0.3966

MEDRUN2 + MEDRUN3 0.5410 0.3796

MEDRUN3 + MEDRUN4 0.5517 0.3920

MEDRUN1 + MEDRUN2 + MEDRUN3 0.5658 0.3949

MEDRUN2 + MEDRUN3 + MEDRUN4 0.5487 0.3981

MEDRUN1 + MEDRUN3 + MEDRUN4 0.5767 0.4088
MEDRUN1 + MEDRUN2 + MEDRUN3 + MEDRUN4 0.5746 0.4079

Table 7.6: Performance measures of merging the retrieved visits from different runs.

7.7 Results

7.7.1 Performance Evaluation

In information retrieval, along with the relevance of the retrieved documents, the order
in which they are presented is important. For example, a system that returns maximum
relevant documents within top N documents is worthier than the system that returns
maximum relevant documents within middle N documents. Therefore, performances
of the experimented runs were evaluated using the Binary Preference score (bpref) as a
primary metric and R-Precision (R-Prec) as a secondary metric (see Sections 3.11.4 and
3.11.5).

7.7.2 Evaluation Results

The reported results of retrieval are based on the bpref, and R-Prec scores. Table 7.5
shows the results of different individual runs and Table 7.6 shows results of run
combinations. Table 7.7 shows results of the impact of age, gender, assertions, and
relations on the semantic search.

Based on the observations from Table 7.5, semantic search in the concept space
generated by ProMiner and CRF achieved good results with the bpref and R-Prec scores
of 0.5503 and 0.3966 respectively. Results of semantic search with dictionary concepts
and CRF-identified concepts considerably outperformed rest of the preliminary runs
(meaning without any post-processing). Nevertheless, semantic searches strongly depend
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Run Description bpref R-Prec

MEDRUN3 0.5503 0.3966

MEDRUN3 (excl. Age) 0.5505 0.3954

MEDRUN3 (excl. Gender) 0.5499 0.3934

MEDRUN3 (excl. Assertions) 0.5356 0.3793

MEDRUN3 (incl. Relations) 0.5494 0.3969

Table 7.7: Impact of age, gender, assertions, and relations on the semantic search.

on the quality of the semantic space generated. Low quality of the semantic space
may hinder the performance of retrieval. An example for this instance is searching
with MetaMap and SemRep identified UMLS concepts and relations that showed poor
results. This indicates potential false recognitions that these systems may perform
during concept or relation identification. Section 7.8 provides a detailed study on
characteristics of retrieval during text, semantic, and ontological searches. Results of
ontological search (MEDRUN4) performed better than manual searching but poorer
than normal semantic search. One potential reason for shortcomings of ontological
search is that MeSH was used as a primary hierarchy for hyponym extraction. For
several MeSH concepts such as cancer (in topic-116) or colonoscopy (in topic-113), MeSH
provides hundreds of hyponym concepts organized at various levels of hierarchy. It
may be fuzzy for topic evaluators (coming from medical backgrounds) to accept certain
hypernym/hyponym concept relations as described in MeSH.

Post-processing by merging the retrieved visits from different runs showed substantial
improvement in the overall performance (see Table 7.6). Merging the retrieved visits of
runs MEDRUN1, MEDRUN3, and MEDRUN4 which were generated by text search,
semantic search, and ontological search respectively outperformed rest of the runs
in terms of bpref and R-Prec scores. This indicates the successful use of applied
function for merging the retrieval results obtained from different runs. Summarizing
the observations from Table 7.6 indicates that coupling the retrieved visits from semantic
and text searches can help in maximizing the performance of retrieval with an improved
ordering of the relevant documents.

The impact of different factors such as age, gender, assertions, and relations on
the semantic search was experimented (see Table 7.7). Excluding the age and gender
information from the run MEDRUN3 resulted in slight decrease in bpref and R-Prec
scores. A potential reason for the low impact of age on retrieval is that all the topic
question addressing the ages of patients are associated with adults (e.g. Topic-114:
Adult patients discharged home with pallative care/home hospice.) and the corpus contains
over 85% visits belonging to adults (including elders as adults in Section 7.3). There
are only two topic questions addressing the gender of patients (i.e. both focussing
on female) and medical conditions associated with these questions are breast cancer
and osteopenia that are more common in females than in males. Relations contributed
extremely little to the R-Prec score but the bpref declined. The potential reason for
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Run Description Gain No. Diff Loss

MEDRUN3 & MEDRUN1 19 0 15

MEDRUN3 & MEDRUN2 24 1 9

MEDRUN3 & MEDRUN4 11 12 11

Table 7.8: Counts of topics for which no-difference, gain, and loss were observed by
comparison of the run MEDRUN3 with runs MEDRUN1, MEDRUN2, and
MEDRUN4.

decrease in performance of the system with relations is that SemRep generates potential
false positives with concept recognition and therefore the associated relations applied
for searching can hamper the performance of retrieval.
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Figure 7.2: Differences in bpref scores between runs MEDRUN3 and MEDRUN1 for
different topics. Percentage of unique relevant documents retrieved by both
runs have been indicated.

Differences in performance between the run MEDRUN3 and remaining runs without
post-processing (i.e. MEDRUN1, MEDRUN2 and MEDRUN4) were analyzed over
different topic questions. Figure 7.2, Figure 7.3, and Figure 7.4 show analysis of
differences in results between different runs. Table 7.8 shows the counts of topics for
which no-difference, gain, and loss were observed by comparison of the run MEDRUN3

with the rest.
Table 7.8 shows that semantic search in the concept space generated by in-house NER

tools (i.e. ProMiner & CRF) resulted in an improvement in retrieval performance over
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Figure 7.3: Differences in bpref scores between runs MEDRUN3 and MEDRUN2 for
different topics. Percentage of unique relevant documents retrieved by both
runs have been indicated.
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majority of topics in comparison to searching with keywords or in the UMLS space.
Although, an overall quantitative comparison showed that the semantic search can
perform better than ontological search (see Table 7.5), from Figure 7.4 it was clear that
semantic and ontological searches can perform competitively depending on questions
of interest.

Evaluation of the retrieval performance depends on several factors and they include:

• Number of highly-relevant or relevant versus number of irrelevant or unjudged
documents retrieved.

• Relative ranking of relevant and irrelevant documents.

• Relative ranking of highly relevant and relevant documents.

From Figure 7.2, it can be observed that for topics 116, 113, 104 and 134, bpref scores
with semantic search (i.e. MEDRUN3) were better than text search (i.e. MEDRUN1)
but both runs retrieved exactly the same relevant visits with different ranking. On
contrary for topic 107, although MEDRUN1 retrieved nearly 25% more relevant visits in
comparison to MEDRUN3, the bpref score for MEDRUN3 was higher than MEDRUN1.
Similarly for topic 133, although MEDRUN3 retrieved nearly 20% more relevant visits
than MEDRUN1, the bpref score of MEDRUN1 was relatively better than MEDRUN3.
This indicates that performances of retrieval depend on ability of system to fetch the
relevant documents as well as rank the relevant ones with higher priority.

Combining Text-based and Concept-based Searches

According to the observations from Table 7.5, although the overall results of semantic
search (i.e. MEDRUN3) outperformed the results of text search (i.e. MEDRUN1),
Figure 7.2 shows that text-based search can perform better than semantic search and
deliver unique relevant documents that varies amongst different topics. Therefore, it
was essential to understand the performance of retrieval by combining the text search
with semantic search. In this context, two experiments were performed and they are:

• Combining text-based and concept-based queries (i.e. combine MEDRUN1 and
MEDRUN3 queries).

• Combining the results of text-based and concept-based retrieval similar to experi-
ments indicated in Table 7.6.

Table 7.9 shows the performance of retrieval by combining queries as well as retrieval
results of MEDRUN1 and MEDRUN3. Combining the queries from text and semantic
searches did not greatly contribute to the retrieval performance whereas combining the
retrieval results (referred by TXTSEM) showed substantial improvement. A per-topic
analysis was performed as shown in Figure 7.5 in order to check the performance of
run TXTSEM against MEDRUN1 and MEDRUN3. Over majority of topics TXTSEM
performed well in terms of bpref scores in comparison to MEDRUN1 and MEDRUN3.
A paired t-test10 [Efron (1969)] for difference in bpref between TXTSEM, MEDRUN1

10http://www.graphpad.com/quickcalcs/ttest1.cfm
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Run Description bpref R-Prec

MEDRUN1 (A) 0.4852 0.3218

MEDRUN3 (B) 0.5503 0.3966

Combine A & B Queries 0.5531 0.3906

Combine A & B Results (Id: TXTSEM) 0.5732 0.3966

Table 7.9: Performance measure by combining queries and retrieval results of
MEDRUN1 and MEDRUN3.

and MEDRUN3 indicated no significant difference between TXTSEM and MEDRUN3

whereas highly significant difference between TXTSEM and MEDRUN1. Both, combin-
ing the queries as well as combining the retrieval results showed improvement in the
bpref and R-Prec scores. This again emphasizes on the fact that combining semantic
and text searches can deliver improved retrieval when compared to individual searches.
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Figure 7.5: Differences in bpref scores between runs TXTSEM and MEDRUN1 as well
as between TXTSEM and MEDRUN3 for different topics.

Parameter Optimization of BM25F and its Influence on Retrieval

The similarity scoring function BM25F can be tuned with two free parameters i.e. b and
k1 (see Section 3.2.2). Experiments were performed using different runs with different
values of b and k1. It was observed that altering the parameter b did not have noticeable
influence on the performance of retrieval whereas altering k1 showed changes in the
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Figure 7.6: Performance of retrieval (bpref scores) for different values of k1 (for BM25F
scoring) for different TRECMED runs.

behavior of the retrieval. By default, BM25F uses k1=2. Different values of k1 were
chosen between the values 0.005 and 5.0, and its impact on retrieval was measured that
can be observed in Figure 7.6.

Table 7.10 shows the retrieval performance with the best chosen parameter k1 for
different runs. At the end of parameter optimization, the best result was obtained by
MEDRUN3 with k1=0.1 with bpref score of 0.5622 and R-Prec score of 0.4107. The best
value of parameter k1 for MEDRUN3 increased its bpref score from 0.5503 to 0.5622.
A paired t-test for the difference in performance resulted in P-value of 0.5776 which
indicates statistical insignificance of the observed difference. Performances of different
runs varied with changes in the parameter k1. Parameter optimization improved both
bpref and R-Prec scores of all runs. Although it was not possible to establish one global
maximum value of k1 that suits different runs, observations showed that searching in
concept space (MEDRUN2, MEDRUN3, and MEDRUN4) favored lower k1 values such
as 0.1 to 1.0 whereas the text search favored higher values of k1 like 4.0 to 5.0.

Comparison of Lucene Vs BM25F

Experiments in the past have shown that Lucene similarity can perform competitively in
comparison to the BM25 retrieval [Wang and Hauskrecht (2008), Lin (2009)]. Therefore,
a systematic assessment of retrieval performance using different scoring functions
was performed. Queries generated during MEDRUN1 to MEDRUN4 were applied
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Run-ID k1 bpref R-Prec

MEDRUN1 4.5 0.4920 0.3289

MEDRUN2 1.0 0.4468 0.4107

MEDRUN3 0.1 0.5622 0.4107
MEDRUN4 0.5 0.5506 0.4081

Table 7.10: Performance measures with the best chosen parameter k1 (for BM25F scor-
ing) for different TRECMED runs.

BM25F Lucene

Run-ID bpref R-Prec bpref R-Prec

MEDRUN1 0.4852 0.3218 0.4673 0.3237

MEDRUN2 0.4470 0.2909 0.4307 0.2783

MEDRUN3 0.5503 0.3966 0.5521 0.3894

MEDRUN4 0.5333 0.3774 0.5615 0.3953

Table 7.11: Comparison of retrieval performances with Lucene and BM25F scoring.

for retrieval using the Lucene similarity scoring function11. Lucene uses improved
version of Cosine similarity to measure the relevance between the query and documents.
Table 7.11 provides a comparison of performances of retrieval using Lucene and default
BM25F.

During the text search and semantic search with UMLS concepts, the performance
with BM25F was comparatively better than Lucene similarity. However, Lucene exhib-
ited successful results with the ontological search in comparison to BM25F. Systematic
optimization of BM25F with the parameter k1 (Table 7.10) performed better than Lucene
and untuned BM25F scoring for majority of runs. A paired t-test for the results of runs
with Lucene, BM25F and tuned BM25F indicated less significant differences in their
results. Therefore, to summarize the observations from Tables 7.11 and 7.10, Lucene
and BM25F can perform competitively and this varies across different search scenarios
but a systematic tuning of BM25F parameters can further improve the retrieval.

7.8 Error Analysis

Retrieval results of different runs were analyzed in comparison to gold standard
judgements by topic evaluators in order to understand common sources of errors. One
potential reason for shortcomings of retrieval performance during the run MEDRUN2

was false positive concept identification by the MetaMap or SemRep programs. An
example is Topic 107: Patients with ductal carcinoma insitu (DCIS), where MetaMap

11http://lucene.apache.org/java/2_9_0/api/all/org/apache/lucene/search/
Similarity.html
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7.8 Error Analysis

identified several occurrences of DCI in documents (that designates a place) as ductal
carcinoma. MEDRUN3 utilized the concepts identified by ProMiner with acronym
disambiguation strategy that helped in overcoming various false positive concept
recognition that can hamper the performance of retrieval.

The author was able to identify cases where semantic search retrieved documents that
were judged as irrelevant although they contained relevant information. An example is
Topic 117: Patients with Post-traumatic stress disorder. The MEDRUN3 run retrieved the
visit /6RlgeNinbY+ as one amongst the top 10 visits. This visit was judged as irrelevant
but a manual investigation of the visit revealed the evidence that the patient had post-
traumatic stress disorder. This is exemplified by the statements The patient no longer
works. He was trapped in a house fire several years ago and was extensively burned. He has
post-traumatic stress disorder. He has been treated for depression. Another example is Topic
101: Patients with hearing loss. The run MEDRUN3 retrieved the visit D3PsCRkoq+R8 as
one amongst the top 10 visits. This visit was judged as irrelevant by topic evaluators.
Whereas a manual investigation revealed the evidence that the patient had hearing loss.
This is exemplified by statements Extremities: Negative for clubbing or edema. Skin: No
rashes, nodules, or lesions. Neurological: He is awake and alert. His visual fields are intact.
He has severe hearing loss, but is otherwise nonfocal. Such evidences indicate either a
non-expert evaluation, or extreme hard cases of judgement for experts.

From Figure 7.2, it can be observed that semantic search failed in several cases
compared to text search. The best example for this scenario is topic-118 in Figure 7.2. For
topic-118: Adults who received coronary stent during admission, the text search retrieved
nearly 80% relevant visits that were not retrieved by semantic search. The reason was
during MEDRUN3, searching in the concept space was performed using the concept
designating coronary stent, coronary artery stent, and so forth that did not successfully
retrieve many relevant visits. A lot of visits mentioned coronary stents administered to
patients that were explained descriptively. Examples include an evidence within the
visit kwFRW0msN1Ly: Stenting at two sites of the vien graft of the right coronary artery and
mid posterior descending artery with 2.5 mm drug-eluting stent. Another example of this
case was found in visit r3FTkt2ecEdg: stent placed in the first obtuse marginal branch of the
circumflex coronary artery. These are few examples of relevant visits that were retrieved
by MEDRUN1 (text search) and not retrieved by semantic search. This exemplifies some
limitations associated with semantic search when the coverage of semantic concept
space is not very comprehensive.

MEDRUN4 that uses ontological search performed competitively in comparison to
MEDRUN3. Although, the overall results of MEDRUN3 is better than MEDRUN4,
Table 7.8 indicates 11 topics where ontological search performed poorer than semantic
search. As mentioned perviously, MeSH was used as resource for ontology expansion
and this may conflict with topic evaluator’s hypernym-hyponym acceptability for evalua-
tion. An example is Topic 116: Patients who received methotrexate for cancer treatment while
in hospital. MEDRUN4 retrieved PDfRzvZE904q as one amongst the best 10 retrieved
visits. This visit was judged as irrelevant by the respective topic evaluator. Upon
manual investigation, this visit revealed an evidence that the patient suffered from
T-cell lymphoma and the patient was administered high dose methotrexate therapy while in
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the hospital. T-cell lymphoma is a subtype of cancer that was likely to be not addressed
during topic evaluation.

7.9 Summary on Competing systems at TRECMED 2011

TRECMED received a total of 127 runs from 29 participants where 109 were automatic
runs and 18 were manual runs [Voorhees and Tong (2011)]. Amongst them the best
performing systems have been described. King et al. (2011), from both the queries and
the medical reports, extracted limiting attributes, such as age, race, and gender, and
labeled terms appearing in the UMLS. They also used three different techniques of query
expansion i.e. UMLS related terms, terms from a network built from UMLS, and terms
from their in-house medical reference encyclopedias. They applied pseudorelevence
feedback strategy for query enrichment that gave significant improvement in the
system’s performance and one of their run was ranked as best performing automatic
run amongst all submissions. Demner-Fushman et al. (2011) used two search engines
used for retrieval i.e. Essie and Lucene. In addition to the UMLS synonymy-based query
expansion built within Essie and an externally implemented Lucene, they expanded
the terms in the documents with their ancestors and children from the MeSH hierarchy.
They also expanded query terms for recognized drug names using RxNorm and Google
searches. Manual queries submitted to Essie significantly outperformed all the other
manual runs submitted for this task. Mayo clinic [Wu et al. (2011)] used cTakes as well
as Aho-Corasick dictionary lookup for finding UMLS concepts in reports. Similarly,
Aho-Corasick dictionary matching was used to find concepts in query topics. In
addition, they used the semantic structure of UMLS to find hyponym concepts for
query expansion. The results showed that retrieval based on Aho-Corasick dictionary
lookup was better than cTakes based retrieval. Karimi et al. (2011) applied a set
of manually constructed patterns to map query terms into query language. Query
expansion was performed using UMLS and Dbpedia. Best results were achieved
using query transformation i.e. breaking the query into different components and
mapping these to their uniform representation as used in the documents and query
expansion using external resources. The system of Goodwin et al. (2011) builds a query
by extracting keywords from a given topic using a Wikipedia-based approach. They
used regular expressions to extract age, gender, and negation requirements. Each
query was then expanded by relying on UMLS, SNOMED, Wikipedia, and PubMed
co-occurrence data for retrieval. Runs were submitted based on Lucene with varying
scoring methods, and based on a hybrid approach with varying negation detection
techniques.

7.10 Discussion

This chapter reports on the development of a semantic framework for information
retrieval from e-health records which has been one of the most challenging issues in
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the modern medical informatics domain. Indexing the medical concepts and relations
allows semantic searches and ontological searches in the concept space. The system
also provides facilities to search for inter-related medical concepts. In addition, the
performance of system with different search strategies has been systematically evalu-
ated. Semantic search in the concept space indicated superior results in comparison
to the conventional manual text search. During the preliminary experiments, the
results of concept-based search outperformed rest of the runs with best bpref score of
0.5503. A strategic combination of results obtained from text search, semantic search,
and ontological search yielded the highest scoring bpref score of 0.5767. It was also
shown that combining the retrieval results of semantic search and text search can yield
improved results in comparison to individual searches.

In the TRECMED scenario, the performance of retrieval has been tested over 35 topic
questions. In the future, it is necessary to evaluate the system using more questions
with medical expert’s evaluation. This minimizes the deviation of results from standard
average and gives a better estimation of system’s actual performance. The system
with comprehensively indexed medical relationships may substantially enhance the
search performance. Finally, the developed system is believed to help domain experts
and medical professionals to carry out patient record searches more efficiently. This
promotes evidence-based medicine and therefore improves the overall quality of patient
care and safety.

Apart from e-health records, a lot of information about medical practices and their
impact on patient’s health are published in forms of scientific articles, webpages, and
patents. Considering a real world scenario, ability to retrieve information from various
document sources is essential to capture the valuable and novel information that are
distributed discretely in the biomedical bibliome beyond the clinical paradigm. There-
fore, an adaptation of the developed semantic platform for searching and information
retrieval from various forms of free-text data is an interesting issue. An application of
the developed retrieval platform to perform semantic searches in biomedical patents is
addressed in the upcoming chapters.
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Chapter 8

Technology Survey in Patents

Technology survey search deals with querying and retrieval of patents or full-text
documents in order to uncover any knowledge that can answer a scientific question.
In the medical and healthcare arena, technology survey search in patents and full-text
articles helps in understanding the state-of-the-art scientific advancements and uncovers
the knowledge needs required for medical and pharmaceutical decision support as
well as improved public health. Systematic information mining in patents can promote
the understanding of secondary uses of current inventions or the influence of old ideas
on current technological developments. Patent space denote an important source of
scientific information for the applied science and the ability to retrieve relevant patents
(or to automatically mine and extract relevant information from patents) is a challenge
of at least the same dimension as MEDLINE mining. Searching in patents can pose more
challenges in comparison to searching in MEDLINE or e-health records because of (a)
Huge length of patents and sheer amount of information covered within a single patent
(e.g. The patent application US20070224201A for Compositions And Methods For The
Diagnosis And Treatment Of Tumor has 7,154 pages) (b) Information within the patents
are heterogeneously distributed amongst the Description and Claims sections (c) Plenty
of information are embedded as non-free-text (i.e. images, tables, etc.). Challenges
associated with mining in patents and full-text articles are discussed by Müller et al.
(2010).

Technology survey search can be addressed as an information retrieval or information
extraction problem. In the biomedical and chemistry domains, this is not a trivial task
due to an existence of various denominations of biomedical and chemistry concepts
in free-text. Furthermore, the goal to support development or validation of efficient
patent search engine is hard to achieve due to the proprietary nature of patents as well
as extremely limited availability of annotated patent data. Therefore, the TRECCHEM
addresses this challenge in terms of a trier namely Technology Survey (TS) task. The TS
task provides a set of expert-defined natural language questions of information needs
(also known as TS topics) for retrieving sets of documents from a predefined collection
that can best answer those questions. This chapter focusses on the customization of
the previously developed semantic search platform (see Chapter 7) for searching and
information retrieval from biomedical patents using the TRECCHEM patent collection.
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8.1 Task Description

The data used for the Technology Survey task contains approximately 1.3 million
patents from the European, US, and WIPO patent offices. A subset of approx. 130,000

full-text articles that were a part of TRECCHEM TS task were excluded from the current
experimental corpus. 9 topics (see Table A.1) that were formulated by human experts
as a natural language narratives were collected from 2009 and 2010 TRECCHEM TS
topics. The task is to retrieve sets of patents from the collection that can best answer
the topic questions. An example of TS topic is as follows:

Topic: TS-29
Title: Inhibitors for acetylcholinesterase
Narrative:Acetylcholinesterase inhibitor is a potential target for Alzheimer’s disease so identi-
fying potent inhibitors of this human enzyme may lead to new treatments of this devastating
disease.
Chemicals: Acetylcholinesterase inhibitors
Conditions: Alzheimer’s disease

Every TS topic contains a title, a narrative text of the information needed, and a
separate indication of chemicals or conditions that the topic is looking for. For a given
TS topic, a retrieved patent was manually evaluated as highly relevant, relevant, irrelevant,
unjudged, or unsure.

8.2 Data Preprocessing

The TREC collection was provided in the Extensible Markup Language (XML). As
a preliminary step, an analysis of different sections or zones within the patents was
performed. Patent documents contain several fields that are presumably not neces-
sary during retrieval and generate substantial noise while processing the documents.
Examples of such fields are country, legal-status, non-English abstracts, etc. The aim
was to use only those fields that have high text/noise ratio and that encompass rich
information content. Therefore, from a retrieval point of view, the following fields
were chosen to be used for indexing and further assessments: UCID1, Publication date,
Authors, Citations, IPC2 class, Title, Abstract, Description, and Claims.

8.3 Concept Identification in TS Topics

For the identification of concepts in TS topics, the MetaMap program was used.
MetaMap was strictly applied to title, chemical, and condition sections of all TS
topics. Although the UMLS is a comprehensive terminological resource containing

1User Reference Identifier
2International Patent Classification, http://www.wipo.int/classifications/ipc/en/
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over 2 million concepts, it has been shown to lack several biomedical concepts. Ele-
ments in TS topics that could not be mapped to UMLS such as DNA-based asymmetric
catalysis, asymmetric catalysis, hydrophobic amino acid, and endogenous phospholipid were
used as-is and stored for further processing. Constraints were applied on the MetaMap
to restrict the semantic classes of mapped concepts to chemicals and drugs, physiology,
and disorders. A threshold of 950 was applied for the confidence score of mapping
in order to be accepted as a valid concept. During the concept mapping process, the
MetaMap also indicates the source vocabularies from which concepts are derived from.
Therefore, if a concept exists in the MeSH hierarchy, its hyponym concepts (also known
as child concepts) and their synonyms were extracted from MeSH. For example, the
concept Bacterial Infection that appears in TS-28 co-exists in UMLS and MeSH. Since
MeSH is hierarchically organized, it provides different hyponyms of bacterial infections.
Figure 8.1 shows an illustration of hierarchical structure of MeSH from which the
hyponym concepts were extracted.

Figure 8.1: An example of hyponyms of a concept Bacterial Infection in MeSH.

8.4 Concept Tagging in TREC Collection

Concepts obtained from TS topics and their hyponyms and synonyms were used to
generate a dictionary of TS concepts. The dictionary contains 21 concepts obtained
from 9 TS topics where 17 concepts were generated from automatic mapping and the
remaining four concepts were extracted from topic annotations (e.g. the field chemicals
of TS Topics). ProMiner was applied for tagging the TS concepts in the patent collection.
In patents, the title, abstract, description, and claims sections were tagged by ProMiner.

8.5 Document Indexing

SCAIView was used for document indexing and retrieval. Free-text in the form of
stemmed tokens appearing in title, abstract, claims, and description sections of patents
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TA Claims Description Document

No. of concepts 34,999 81,022 898,112 1,014,138

No. of documents 24,477 27,585 198,759 205,772

Table 8.1: Counts of number of concepts occurring in patent sections, and counts of
documents containing at least one TS concept. TA indicates title and abstract
combined.

were indexed. Meta-data such as publication date, assignee, etc. were indexed as-is.
Concepts occurring in title, and abstract of patents were merged and indexed as a
separate field (referred to as concept-ta). Concepts appearing in description, and claims
of patents were separately indexed (referred to as concept-desc and concept-clm

respectively). Concepts appearing in title, abstract, claims, and description were merged
and indexed as concept-doc. Counts of concept occurrences and documents containing
at least one TS concept are shown in Table 8.1.

8.6 Query and Retrieval

Various querying strategies such as semantic search in the concept space, and text
search were performed in different sections of patents. Lucene BM25F (see Section 3.2.2)
was applied as a scoring function to measure the similarity between documents and the
query. Descriptions of different runs and the underlying query formulation strategies
are discussed in the following subsections.

TSRUNS1

TSRUNS1 denote a set of runs where queries were formed by manual extraction of key
terms from the TS topics. Queries were formulated in a way to reflect knowledge-based
human queries. These runs provide a rationale for the comparison of performances of
semantic searches with knowledge-based human searches. Searches were performed in
various sections of patents.

TSRUNS2

TSRUNS2 denote a set of runs where the strategy of semantic search was applied for
searching in the concept space of patents. Concepts extracted from TS topics were
searched against concepts indexed in various sections of patents.

Run Combinations

Documents retrieved during best four runs amongst TSRUNS1 and TSRUNS2 were
systematically merged. If a Document occurs in more than one run, its final score was
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computed using ∑ BM25F(Documenti)
Rank(Documenti)

where i indicates the run.

Co-citation based Ranking

Documents retrieved during best six runs amongst TSRUNS1 and TSRUNS2 were
subjected to co-citation based document ranking (see Section 9.6.1). Based on previous
experiences from TRECCHEM, exploiting the information about patent citations can
drastically improve the retrieval outcome [Gobeill et al. (2009)]. During co-citation anal-
ysis, queries were applied as-is whereas only the retrieved documents were subjected
to post-processing. Therefore, the outcome of searches were systematically enriched
with the patent citation information based on the co-citation ranking scheme defined in
Section 9.6.1.

Impact of IPC Classification

Patent documents are assigned with International Patent Classification (IPC) codes that
classify them into pre-defined categories according to the subject of claims. Previous
experiences have shown that the application of IPC can improve the patent retrieval
[Gurulingappa et al. (2009)] substantially. Therefore, a systematic analysis of the impact
of IPC on the patent retrieval was performed. IPCCAT3, a publicly available tool for
the prediction of IPC classes for any input arbitrary text was applied to determine the
potential IPC classes of all TS topics. Four code IPC classes were predicted using the
IPCCAT tool. Title and Narrative sections of TS topics were used for the IPC prediction.
Since all the chosen topics belong to the medical and pharmaceutical domains, most of
the predicted IPC classes belonged to A61K (PREPARATIONS FOR MEDICAL, DENTAL,
OR TOILET PURPOSES) and A61P (SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL
COMPOUNDS OR MEDICINAL PREPARATIONS).

8.7 Results and Discussion

8.7.1 Performance Evaluation

In information retrieval, along with the relevance of the retrieved documents, the order
in which they are presented is important. For example, a system that returns maximum
relevant documents within top N documents is worthier than the system that returns
maximum relevant documents within middle N documents. Therefore, performances
of the experimented runs were evaluated using the Binary Preference score (bpref) as a
primary metric and R-Precision (R-Prec) as a secondary metric.

3https://www3.wipo.int/ipccat/
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Run ID Section(s) searched bpref R-Prec

TSRUN1-TA Title, Abstract 0.1883 0.0763

TSRUN1-TAC Title, Abstract, Claims 0.2377 0.1087

TSRUN1-CLM Claims 0.2217 0.0867

TSRUN1-DES Description 0.2508 0.1404

TSRUN1-DOC Full-Document 0.2772 0.1449

Table 8.2: Results of text-based searches (TSRUNS1) across various sections of patents.

Run ID Section(s) searched bpref R-Prec

TSRUN2-TA Title, Abstract 0.1328 0.1340

TSRUN2-TAC Title, Abstract, Claims 0.1908 0.1756

TSRUN2-CLM Claims 0.1844 0.1705

TSRUN2-DES Description 0.2700 0.2051

TSRUN2-DOC Full-Document 0.3208 0.2516

Table 8.3: Results of concept-based searches (TSRUNS2) across various sections of
patents.

8.7.2 Results of the TS Task

The reported results of retrieval are based on the bpref, and R-Prec scores. Table 8.2
shows the results of text-based searches (i.e. TSRUNS1) across the different sections of
patents. Similarly, Table 8.3 shows the results of concept-based searches (i.e. TSRUNS2)
across the different sections of patents.

Observations from Table 8.2 and Table 8.3 show that full-document searches in
patents perform better than searching in individual sections. Document searches
showed significantly higher bpref and R-Prec scores during the text search as well as
the semantic search. On comparison of performances of text search with the semantic
search, it was observed that semantic searches are high precision searches (defined
by R-Prec scores). Full-document text search resulted in bpref and R-Prec scores of
0.2772 and 0.1449 respectively whereas the semantic search indicated bpref and R-Prec
scores of 0.3208 and 0.2516 respectively. Figure 8.2 shows per-topic bpref scores for
full-document search with text (TSRUN1-DOC) and semantic concepts (TSRUN2-DOC).
It was observed that bpref scores with semantic search was greater for 5 topics whereas
text search indicated better bpref scores for 3 topics. For topic TS-20, there was no
significant difference in performance observed between text and semantic searches.
Section 8.8 provides a study on behavior of patent retrieval with text and semantic
concepts.

Table 8.4 shows performances as a result of systematic merging of retrieved doc-
uments from various runs (only best four preliminary runs in terms of bpref scores were
chosen). Merging the retrieved documents from the full-document text searches and
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Figure 8.2: Results of full document searches for different TS topics.

Run ID bpref R-Prec

TSRUN1-DOC + TSRUN2-DOC 0.3767 0.2356
TSRUN2-DOC + TSRUN2-DES 0.3181 0.2216

TSRUN2-DOC + TSRUN1-DES 0.3627 0.2155

TSRUN2-DOC + TSRUN1-DOC + TSRUN2-DES 0.3624 0.2127

TSRUN2-DOC + TSRUN1-DOC + TSRUN1-DES 0.3715 0.2346

TSRUN1-DOC + TSRUN2-DOC + TSRUN1-DES + TSRUN2-DES 0.3727 0.2310

Table 8.4: Performance measures of merging retrieved documents from different runs.

semantic searches showed significant improvement in the bpref scores in compari-
son to individual searches. Merging the documents retrieved during full-document
searches with description searches did not contribute to an improvement in the perfor-
mance. Therefore, summarizing the observations from Table 8.4 shows that coupling
full-document text search with semantic search can outperform individual searches or
section-based searches, and therefore can yield higher bpref with an improved ordering
of the relevant documents.

Impact of Co-Citation based Post-Processing on Retrieval

Table 8.5 shows the results of different runs after co-citation based document ranking.
It was observed that systematic enrichment of retrieved documents with citation
information thoroughly hampered the performance of retrieval in terms of bpref as
well as R-Prec scores. Performances of both text searches as well as semantic searches
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Run ID bpref R-Prec

TSRUN1-TAC 0.2133 0.0855

TSRUN1-DES 0.2439 0.1157

TSRUN1-DOC 0.2472 0.1152

TSRUN2-TAC 0.1634 0.1235

TSRUN2-DES 0.2538 0.1544

TSRUN2-DOC 0.2828 0.1672

Table 8.5: Performance measures after co-citation based post-processing of different TS
runs.

Run ID bpref R-Prec

TSRUN1-TAC 0.2377 0.1082

TSRUN1-DES 0.2567 0.1429

TSRUN1-DOC 0.2841 0.1513

TSRUN2-TAC 0.1908 0.1756

TSRUN2-DES 0.2739 0.2141

TSRUN2-DOC 0.3263 0.2584

Table 8.6: Performance measures of the impact of IPC on patent searches. The impact
on text searches (TSRUNS1) and semantic searches (TSRUNS2) has been
shown.

declined with co-citation based post-processing. For instance, during the run TSRUN2-
DOC which indicates sematic searches in full-documents, the bpref of the system
dropped from 0.3208 to 0.2828 due to the co-citation based post-processing.

Impact of IPC Classes on Retrieval

Table 8.6 shows the impact of application of IPC classes during text and semantic
searches in patents. Impact of IPC on full-document as well as section-based searches
was analyzed. Using the IPC during searching improved both bpref and R-Prec scores
(i.e. ordering of the relevant documents). IPC usage proved to improve the retrieval
results during text and semantic searches as well as during full-document and section-
based searches. For instance, during the run TSRUN2-DOC, the bpref score improved
from 0.3208 to 0.3263 with the application of IPC during the semantic search in full
documents. Although this improvement in performance is statistically insignificant,
the application of IPC did not hurt the overall retrieval.
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Figure 8.3: Performance of retrieval (bpref scores) for different values of k1 (for BM25F
scoring) for different TS runs.

Parameter Optimization of BM25F and its Influence on Patent Retrieval

The similarity scoring function BM25F can be tuned with two free parameters i.e. b
and k1 (see Section 3.2.2). Experiments were performed using the four best preliminary
runs (i.e. TSRUN1-DOC, TSRUN2-DOC, TSRUN1-DESC, and TSRUN2-DESC) with
different values of b and k1. It was observed that altering the parameter b did not have
any influence on the performance of retrieval whereas altering k1 showed changes in
the behavior of the retrieval. By default, BM25F uses k1=2. Different values of k1 were
chosen between the values 0.005 and 5.0, and its impact on retrieval was measured that
can be observed in Figure 8.3.

Table 8.7 shows the retrieval performance with the best chosen parameter k1 for
different runs. At the end of parameter optimization, the best result was obtained by
TSRUN2-DOC with k1=0.1 with the bpref score of 0.3332. The best value of parameter k1
for TSRUN2-DOC increased its bpref score from 0.3208 to 0.3332, and similarly for run
TSRUN1-DOC, its bpref score improved from 0.2772 to 0.3085. A paired t-test for the
differences in performances after parameter optimization of runs TSRUN2-DOC and
TSRUN1-DOC resulted in P-values of 0.1945 and 0.0693 respectively both indicating
statistically low significance in observed differences. Performances of different runs
varied with changes in the parameter k1. Parameter optimization improved bpref scores
of all the runs whereas the R-Prec scores declined for semantic searches. Although
it was not possible to establish one global maximum value of k1 that suits different
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Run-ID k1 bpref R-Prec

TSRUN1-DES 0.1 0.2674 0.1533

TSRUN1-DOC 0.5 0.3085 0.1507

TSRUN2-DES 0.1 0.2843 0.1794

TSRUN2-DOC 0.1 0.3332 0.2291

Table 8.7: Performance measures with the best chosen parameter k1 (for BM25F scoring)
for different TS runs.

BM25F Lucene

Run-ID bpref R-Prec bpref R-Prec

RUN1TAC 0.2377 0.1087 0.2033 0.0968

RUN1DES 0.2508 0.1404 0.2928 0.1776

RUN1DOC 0.2772 0.1449 0.2912 0.1769

RUN2TAC 0.1908 0.1756 0.1971 0.1843

RUN2DES 0.2700 0.2051 0.2741 0.1858

RUN2DOC 0.3208 0.2516 0.3131 0.1882

Table 8.8: Comparison of retrieval performances with Lucene and BM25F scoring for
different TS runs.

runs, observations showed that both searching with text and concepts favored lower k1
values such as 0.1 to 0.5. Additional observations from Figure 8.3 show that tuning the
parameter k1 has higher impact on text search than on semantic search.

Comparison of Lucene Vs BM25F for TS Task

A systematic assessment of the retrieval performance using Lucene and BM25F func-
tions was performed. Queries generated during the best 6 preliminary runs were
applied for retrieval using Lucene similarity scoring function4. Lucene uses improved
version of Cosine similarity to measure the relevance between the query and documents.
Table 8.8 shows comparison of performances of retrieval using Lucene and default
BM25F.

Observation from Table 8.8 shows that Lucene and BM25F perform competitively in
different scenarios. Nevertheless, the default BM25F scoring for semantic full-document
search indicated the best result with bpref and R-Prec scores of 0.3208 and 0.2516

respectively. Comparison of results from Tables 8.7 and 8.8 indicates that a systematic
optimization of BM25F parameters can outperform the results with Lucene and untuned
BM25F in terms of bpref scores, however with a marginal drop in R-Prec scores.

4http://lucene.apache.org/java/2_9_0/api/all/org/apache/lucene/search/
Similarity.html
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8.8 Error Analysis

8.8 Error Analysis

Documents retrieved during different runs were analyzed in comparison to gold stan-
dard judgements by topic evaluators in order to understand common sources of errors.
Observation from Tables 8.2 and 8.3 show that both semantic and text searches in title,
abstract, and claims sections of patents performed poorer in comparison to searching in
descriptions or full-documents. Investigation using TS-2: Dipeptidyl peptidase-4 inhibitors
for the treatment of type-2-diabetes showed that in many patents the necessary informa-
tion was distributed across claims and description sections. For example, the patent
US-20050147662 was a relevant patent retrieved during description or full-document
searches but not during the title, abstract, or claims search. The reason was because
the claims of patent US-20050147662 provide only the information that the patented
substance is a Dipeptidyl peptidase-4 inhibitor exemplified by the claim The composition of
claim 7, further comprising a dipeptidyl peptidase IV (DPP-4) inhibitor. Upon investigating
the description section, it revealed the fact that the given substance can be used for the
treatment of type-2 diabetes described as Physiological Effect: Reduction of amyloid deposits
and systemic amyloidoisis often (but not always) in connection with Alzheimer’s disease, Type
II diabetes, and other amyloid-based disease.

From Figure 8.2, it is evident that although semantic full-document search resulted
in higher bpref and R-Prec scores, for few topics the text-based full-document searches
performed better. An investigation on the reasons for shortcomings of the semantic
search revealed the descriptiveness of the relevant information that could not be cov-
ered within the concept space (i.e. TS concept dictionary). For example, the topic
TS-29 required finding the documents related to Acetylcholinesterase inhibitors for the
treatment of alzheimer’s disease. For TS-29, the patent US-6436937 was a relevant doc-
ument retrieved during the text search but not during the semantic search. Upon
investigating the reason for failure of the semantic search to fetch US-6436937 revealed
that this patent addresses the use of desoxypeganine in the treatment of alzheimer’s dementia.
The necessary (relevant) information about pharmacological action of the patented
substance was mentioned descriptively like Deoxypeganine in fact inhibits not only acetyl-
cholinesterase and thus the degradation of acetylcholine, but also monoamine oxidase and thus
the degradation of dopamine. Whereas, the whole document did not contain the relevant
pharmacological information in terms of terminologies that is covered by MeSH or
UMLS (such as acetylcholinesterase inhibitor, or acetylcholinesterase antagonist). This
exemplifies one situation where text searches can be more beneficial.

Investigation of low ranked relevant retrieved documents during various searches
revealed judgement errors performed by topic evaluators. For instance with TS-29, the
patent WO-1999009999 was retrieved with low relevancy whereas it was judged as
relevant by the respective topic evaluator. Careful investigation of the patent revealed
that the subject of the document addressed Saccharide composition for the treatment of
alzheimer’s disease that has a pharmacological action of inhibition of amyloid beta proteins.
The patent was wrongly judged as relevant although it does not address the inhibition
of acetylcholinesterase. Such evidences indicate either a non-expert evaluation, or
extreme hard cases of judgement for experts.
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8.9 Discussion

The semantic framework that has been previously developed (see Chapter 7) has been
customized to the domain of biomedical patent mining, which is one of the most
challenging issues. Indexing with pre-selected concepts, their hyponyms and synonyms
allows semantic search in the concept space. In addition, the performance of system
with different search strategies has been systematically evaluated. It was shown that
full-document patent searches perform better than sub-section searches. Semantic
search in the concept space indicated good results in comparison to the conventional
text search. During preliminary experiments, the result of full-document concept-
based search outperformed rest of the runs with best bpref score of 0.32. Combining
the text search with semantic search can yield improved results when compared to
individual searches. A systematic optimization of retrieval function, and exploiting the
IPC classification information can further improve the performance of retrieval.

Currently, the system is indexed with pre-selected concepts that appear in TS topics.
Indexing the biomedical and chemistry concepts that appear in complete MeSH or
UMLS thesauri makes the system more applicable for general ad-hoc retrieval situations.
However, this is not a trivial task since these thesauri contain substantial noise that may
hinder the performance of retrieval. Currently, the performance of retrieval has been
tested with 9 topics. In the future, it is necessary to evaluate the system using more
questions. This minimizes the deviation of results from the standard average and gives
a better estimation of actual system’s performance. The system with comprehensively
indexed biomedical and chemical terminologies is believed to substantially enhance
the search performance.

From an application point of view, the adapted semantic search strategy can sub-
stantially improve the daunting task of fetching relevant information from patents.
However, the next challenge to be addressed is an ability to efficiently perform semantic
searches over patents from different national patent offices such as the German Patent
Office (DPMA), Canadian Intellectual Patent Office (CIPO), and so forth. The author
believes that the employed strategy will strongly benefit patent searchers in biomedical,
pharmaceutical, and healthcare domains to address the challenges associated with
patent searching as well as drives the idea of faster knowledge-to-innovation.

Alike the importance of technology survey in patents, finding similarity of contents
amongst different patents is an interesting issue and this will be addressed in the
upcoming chapter.
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Chapter 9

Prior Art Search in Patents based on
Semantic Concepts

Prior art search is a task of querying and retrieving patents in order to uncover any
knowledge existing prior to the inventor’s question or invention at hand. In other words,
prior art search can be addressed as a task of finding similarity between different patents.
An example of prior art search can be demonstrated as find all patents that are similar to
the US patent US7985758 entitled Piperidine derivatives for treatment of Alzheimer’s disease.
Prior art search in patents can find potential benefits in biomedical, pharmaceutical, and
healthcare domains by interlinking the related knowledge described in different patents
published over different times. Beyond the information gain, it can help patent search
professionals in industries to carry out patent infringement searches more effectively.
A recent example of patent infringement the one where the Merck1 filed a lawsuit
against the Impax Laboratories2 for selling a copycat version of Vytorin, a controversial
cholesterol-lowering medication.3 Therefore, the prior art search in patents can find
benefits in fostering the research and development as well as support the secure way of
usage of modern technologies.

TRECCHEM addresses this challenge in terms of a trier namely the prior art search
task. This task provides a set of test patents for retrieving sets of patents from the
predefined collection that can potentially invalidate the given set of test patents. Based
on the success demonstrated by the semantic platform for technology survey in patents
(see Chapter 8), this chapter focusses on the application of semantic search strategy for
performing prior art search using the TRECCHEM patent collection.

9.1 Task Description

The data provided for the Prior Art (PA) search task contains approximately 1.3 million
patents from the European Patent Office (EPO), the US Patent and Trademark Office
(USPTO), the World Intellectual Property Organization (WIPO) as well as 1000 test
(query) patent applications. The task is to retrieve sets of documents from the patent

1http://www.merck.com/index.html
2http://www.impaxlabs.com/
3http://www.theheart.org/article/1112923.do

http://www.merck.com/index.html
http://www.impaxlabs.com/
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Chapter 9 Prior Art Search in Patents based on Semantic Concepts

corpus that can invalidate each test patent application. An example of such a task is
“PA-1: Find all patents in the collection that would potentially be able to invalidate
US-6090800-A". For a given test patent application, a retrieved patent was considered
to be relevant if it satisfies one of the following three situations:

• It is directly cited by the test patent.

• It is a family member of a patent directly cited by the test patent.

• It is directly cited by a family member of the test patent.

9.2 Data Preprocessing

The TRECCHEM corpus collection was provided in Extensible Markup Language
(XML). As a preliminary measure, an analysis of different sections within the patents
was performed. Patent documents contain several fields that are presumably not neces-
sary during retrieval and generate substantial noise while processing the documents.
Examples of such fields are country, legal-status, or non-English abstracts. The aim
was to use only those fields that have high text-to-noise ratio and that encompass rich
information content. Therefore, with a retrieval point of view, the following fields
were chosen to be used for indexing and further assessments: UCID, publication date,
priority date(s), patent citation(s), inventor(s), assignee(s), author(s), IPC4 class, title,
abstract, description, and claim(s).

9.3 Recognition of Biomedical and Chemical Entities

A preliminary analysis of the IPC classes showed that a large portion of the corpus
belongs to A61 (Medical and Veterinary Science) and C07 (Organic Chemistry). The
hypothesis is that named entity recognition of chemicals and biomedical terms helps
to overcome the problems associated with synonyms by automatic query expansion.
ProMiner was used for the task of named entity recognition in the title, abstract, claims,
and description sections of all the patents. The following classes of entities were used
for tagging:

Chemical Names: Chemical names including synonyms, formulae, IUPAC, and
brand names of chemical compounds as extracted from DrugBank, KEGG5 Drug and
KEGG Compound databases. Additionally, a machine learning-based system [Klinger
et al. (2008)] was applied for tagging the IUPAC-like names. It performs an internal
normalization to map different variants to one base form.

4International Patent Classification
5http://www.genome.jp/kegg/
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Informative Noun Phrases Non-informative Noun Phrases

curable composition 1 2 3 1 2 m 4 R=H
methoxypropynyl group the claims
biodegradable collagen about 1800 mg/kg

self-adhesive CODAL tape A)1>[M M]/(4 [M M] [M M])
tyrosine kinase inhibitor such difficulties

Table 9.1: Examples of extracted noun phrases classified as either informative or non-
informative.

Genes/Proteins: Human genes and protein names as well as their synonyms that are
extracted from EntrezGene6 and UniProt7.

Diseases: Disease names and their synonyms that are extracted from the Medical
Subject Headings (MeSH).

Pharma Terms: Pharmacological terms that are extracted from the Anatomical Ther-
apeutic Chemical (ATC) drug classification system. Since the ATC does not contain
synonyms and term variants, this information was gathered from UMLS with the help
of the MetaMap program [Aronson (2001)].

Noun Phrases: The OpenNLP-based NP chunker8 was applied for tagging the
noun phrases. Noninformative noun phrases were filtered off in a systematic way
[Gurulingappa et al. (2009)]. Examples of informative and non-informative noun
phrases can be found in Table 9.1. The remaining noun phrases were normalized using
the LVG Norm program [Browne et al. (2003)] provided within the Specialist NLP
package by the National Library of Medicine (NLM).

9.4 Indexing

Following the data preprocessing and name entity recognition, the document texts as
well as the biomedical entities, chemical entities, and noun phrases occurring within
them were indexed with SCAIView. Figure 9.1 shows an overview of the workflow
implemented for the PA task. Unlike a conventional index that contains only tokens,
the used index additionally contains noun phrases, chemicals, and biomedical entities.
Table 9.2 shows the frequency of different entities occurring in the entire corpus as well
as the number of documents that contain at least one entity of interest.

6http://www.ncbi.nlm.nih.gov/gene
7http://www.uniprot.org/
8http://opennlp.sourceforge.net/projects.html
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TRECCHEM '10
DATASET

CONTENT
EXTRACTION

SEMANTIC
TAGGING

IUPAC-LIKE NAMES

DRUGS/CHEMICALSTOKENS

NOUN PHRASES

PHARMA TERMS

GENES/PROTEINS

DISEASES

INDEX

QUERY

Figure 9.1: Overview of the workflow implemented for prior art search task.

9.5 Querying and Retrieval

Altogether, 7 runs were performed for the prior art search task. The queries were
performed using different entity types occurring in the query documents. Based on
the experiences from previous TREC task, only the complete document searches were
performed and the 4-digit IPC information was utilized. The documents were retrieved
and ranked based on the Lucene BM25F function with the default parameters. Different
objects that were used for querying are:

Tokens: Search with all tokens that occur in a query patent

Noun Phrases: Search with all noun phrases that occur in a query patent

Entities: Search with all chemical entities (chemical names and IUPAC-like) and
biomedical entities (pharma terms, genes/proteins and diseases) that occur in a
query patent.

The retrieved documents were filtered based on the following criteria:
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No. of unique entities No. of documents

Entity Class Large Corpus Query Corpus Large Corpus Query Corpus

Chemical Names 12,296 2,467 1,151,477 999

IUPAC-like 2,656,128 18,374 283,677 484

Pharma Terms 479 232 725,325 915

Genes/Proteins 18,641 1,132 883,333 478

Diseases 4,222 833 565,763 336

Noun Phrases 10,158,177 167,851 1,276,229 1000

Table 9.2: Frequencies of dictionary entries occurring within the the large corpus as
well as the query corpus and counts of documents containing at least one
entity of interest.

Priority date: The earliest priority date of the retrieved document must be lesser than
the earliest priority date of the query document.

Family: The retrieved document and the query document must not belong to the same
family.

Assignee: The retrieved document and the query document must not have the same
assignee and title.

9.6 Results

For the PA task, the reported results are based on the Binary Preference (bpref) and
Mean Average Precision (MAP) scores. Table 9.3 shows the results of retrieval using
tokens, noun phrases and entities. The run with noun phrase queries outperformed the
run with token queries with a boost in MAP score by 0.0379. Since the entities does not
occur in all the query documents they were coupled with noun phrases and used for
querying. A run with the combination of noun phrase and entity queries performed
better than the run with the noun phrase queries alone with an improvement in the
MAP score by 0.0114. In order to test the significance of using entities for querying, a
paired t-test was performed using the results of noun phrase queries and combined
noun phrase and entity queries. A p-value of 0.0001 indicated that using the entities in
combination with noun phrases can have a significant impact on the retrieval.

9.6.1 Co-Citation Analysis

The experiences from 2009 TREC task showed that utilizing the citation information for
post-processing can boost the results by a large margin [Gobeill et al. (2009)]. Therefore,
for each query document, the citations in the retrieved documents were systematically
used to generate a ranked document set that can potentially invalidate the respective
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Query Type Run ID MAP bpref

Tokens SCAI10NRMTOK 0.0172 0.1536

NP SCAI10NRMNP 0.0551 0.3702

NP + Ent SCAI10NRMENT 0.0665 0.4171

Table 9.3: Results of baseline runs with tokens, noun phrases (NP), and entities (Ent)
used as queries.

Query Type Run ID MAP bpref

Tokens SCAI10CITTOK 0.0947 0.2804

NP SCAI10CITNP 0.2065 0.5110

NP + Ent SCAI10CITENT 0.2336 0.5468

Table 9.4: Results of runs with tokens, noun phrases (NP) and entities (Ent) used as
queries and co-citation based post-processing.

query document. For a given query document Di, let Dj be the retrieved document and
Dc is cited by Dj. Then, the co-citation score of Dc is computed from the top retrieved j
number of documents as in equation 9.1.

Table 9.4 shows the results of co-citation based document ranking with tokens,
noun phrases and entities used as queries. In comparison to the baseline results,
the performance of the system improved by a factor of nearly 4. When the priority
date filter was turned off, the co-citation based post-processing with noun phrase and
entity queries yielded the MAP score of 0.4121 and Bpref score of 0.7075 (Run ID:
SCAI10CIENTP). Nevertheless, using the patents that have priority date later than the
query patent makes the model unrealistic.

In addition, the co-citation network based document re-ranking strategy proposed
by Gobeill et al. Gobeill et al. (2009) was tested. Querying with noun phrases and
entities coupled with the post-processing as proposed by Gobeill et al. resulted in the
MAP score of 0.1420 and Bpref score of 0.5700. Therefore, the post-processing strategy
implemented within this work resulted in a MAP score better than the proposed
state-of-the-art strategy with a slight decrease in the bpref score.

The best result obtained by the run SCAI10CITENT was analysed based on the
different IPC classes. Figure 9.2 and Figure 9.3 show the average MAP and bpref scores
achieved by the top 20 IPC classes of query patents respectively. Analysis of Figure
9.2 shows that the best MAP scores are achieved by the test patent that belong to the
IPC class A61B (diagnosis; surgery;identification) followed by C25C (processes for

the electrolytic production, recovery or refining of metals; apparatus thereof)
and A23C (dairy products, e.g. milk, butter, cheese; milk or cheese substitutes;
making thereof). Figure 9.3 shows that the best bpref scores are acheieved by the test
patent that belong to the IPC class A61B, C21C (processing of pig-iron, e.g. refining,
manufacture of wrought-iron or steel) and A23C. Figure 9.4 shows the average MAP
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9.6 Results

and bpref scores achieved by the test patents belonging to the different patent offices.
Since the citations are used as a gold standard for evaluation and a major portion of
TREC dataset is formed by the USPTO patents, this may be one potential reason for
achieving the better performance with USPTO patents than EPO or WIPO patents.

co-citation score(Dc) =
1000

∑
j=1

retrieval score(Dj)

rank(Dj)
(9.1)
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Figure 9.2: Average MAP scores achieved by the top 20 IPC classes of test patents.

Figure 9.5 shows the differences in MAP scores between noun phrase-based querying
(Run ID: SCAI10NRMNP) and token-based querying (Run ID: SCAI10NRMTOK). It
can be observed that over 60% of the test patents had an observable gain in the MAP
score with noun phrase queries. For about 35% of the test patents, using the noun
phrases did not show any effect. Whereas for nearly 5% of the test patents, using the
noun phrases resulted in a decrease in MAP scores. The test patents that showed an
improvement with using the noun phrase queries were analyzed with respect to their
IPC classes. It was observed that a large portion of test patents having an improvement
in retrieval belongs to the following IPC classes: A61K (preparations for medical,
dental, or toilet purposes), C07D (heterocyclic compounds) and A61P (specific

therapeutic activity of chemical compounds or medicinal preparations).
Figure 9.6 shows the differences in MAP scores between a combined entity-noun

phrase querying (Run ID: SCAI10NRMENT) and noun phrase-based querying (Run
ID: SCAI10NRMNP). It can be observed that nearly 50% of the test patents had an
observable gain in the MAP score with a combined entity-noun phrase querying. Nearly
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Figure 9.3: Average bpref scores achieved by the top 20 IPC classes of test patents.
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Figure 9.4: Average MAP and bpref scores achieved by the test patents from different
patent offices.
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Figure 9.5: Differences in MAP scores between the runs SCAI10NRMNP and
SCAI10NRMTOK. PA-topics are sorted in the decreasing order of the differ-
ences in MAP scores.
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Figure 9.6: Differences in MAP scores between the runs SCAI10NRMENT and
SCAI10NRMNP. PA-topics are sorted in the decreasing order of the dif-
ferences in MAP scores.
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30% of the test patents had no impact with entities whereas nearly 20% of the test
patents showed decrease in the performance. It was observed that a large portion of
test patents having an improvement with entity-noun phrase querying belongs to the
following IPC classes: A61K, A61P and C08B (polysaccharides; derivatives thereof).

9.7 Discussion

This chapter demonstrates the application of semantic search platform for solving the
challenging task of prior art search in patents. Performance of retrieval using tokens,
noun phrases, and named entities has been demonstrated. It was shown that using
a combination of noun phrases and entities for querying can perform significantly
better than using the tokens or noun phrases alone. The ability of co-citation based
post-processing strategy for boosting the performance has been successfully shown.
In comparison to state-of-the-art, the performance of adopted co-citation based post-
processing has been shown to achieve relatively higher MAP score.

There are several ways to improve the performance of the retrieval. Currently, the
breadth of knowledge sources that has been used is limited. For example, only the
chemicals present in DrugBank and KEGG databases have been used. These databases
are specialized to include the compounds that are of biomedical interest and does not
focus on the chemicals present in ink formulations, cement or fertilizers. Considering
the scope of IPC classes of the documents provided within the TREC data set, less
than 50% of the documents belong to the biomedical domain. Therefore, indexing
the entities using broader resources that cover terminologies beyond the biomedical
domain has to be tested in future. Improving the recognition performance of the entity
recognizers and the noun phrase chunker over patents can also contribute to the better
retrieval.

The applied semantic search strategy has demonstrated success during both technol-
ogy survey search (see Chapter 8) and prior art search in patents. It has a potential
to support biomedical and chemical patent experts and researchers to perform patent
searches more efficiently than ever. This in-turn can positively influence the strategies
of patent mining in next days. Finally, the developed framework is believed to find po-
tential applications in patent infringement analysis, portfolio analysis, R&D investment
policies, literature-based knowledge discovery, and biomedical and pharmaceutical
decision-making that can drive lab-to-product strategies.
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Chapter 10

Adverse Drug Event Detection in
Medical Case Reports

Adverse effects of drugs is a bothersome issue that confronts pharmaceutical and
healthcare domains. Majority of adverse effects appear after drug regulatory approval
and marketing [Hauben and Bate (2009)]. Surveillance of fate of drugs after their
release into the market is a challenging issue since a lot of information about their
adverse effects are discretely reported amongst surveillance systems (such as the FDA’s
MedWatch1), and free-text (such as case reports, blogs, etc.). A recent example include
Shetty and Dalal (2011) who investigated by means of statistical document classification
that nearly 54% of “detected FDA warnings" about particular drugs existed in the
literature before those alerts were officially issued2. Therefore, a strategy for automatic
identification of adverse effects of drugs from free-text resources can accelerate signal
detection and medical decision making with a benefit of limited manual reading
requirement. However, the goal is hard to achieve since there is an extremely limited
availability of annotated textual corpus that can support the development or validation
of literature mining techniques for the adverse effect detection.

This chapter covers a strategy for systematic development of a corpus of medical case
reports that can support the development of adverse effect detection systems from text.
A lot of medical case reports contain information about patient’s treatment, diagnosis,
and their outcomes that are unusual or novel in terms of appearance [Vandenbroucke
(2001)]. Furthermore, the generated corpus is applied for the development of a machine
learning-based system for the automatic identification of adverse drug event assertive
sentences in case reports. In addition, the system also employs dictionary-based named
entity recognition for identifying the co-occurring drugs and conditions. A study
conducted in order to investigate the ability of the system to capture novel or rarely
noticed adverse effects of selected drug in the market showed interesting results. The
following sections provide details of the workflow implementation and results of the
system’s evaluation.

1http://www.fda.gov/Safety/MedWatch/default.htm
2http://www.drugsafetydirections.com/forum
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Chapter 10 Adverse Drug Event Detection in Medical Case Reports

10.1 Corpus Generation

10.1.1 The ADE Corpus Characteristics

During the development of a benchmark corpus, two characteristics have to be con-
sidered. They are the domain suitability of the corpus and the target user group.
Considering the domain suitability, medical case reports were of the first choice since
they provide important and detailed information about symptoms, signs, diagnosis,
treatment, and follow-up of the individual patients. More importantly, case reports can
serve as an early warning signal for the under-reported or unusual adverse effects of
medications [Kidd and Hubbard (2007)]. Since the goal of this work is to generate a
corpus for public usability, MEDLINE articles were used due to their nature of free
public availability. Therefore, the ade corpus constitutes a subset of MEDLINE case
reports.

10.1.2 Document Sampling

Currently, MEDLINE contains more than 1.5 million medical case reports. In order to
restrict the scope of the corpus to drug-related adverse events, a PubMed search with
drug therapy and adverse effect as MeSH terms was performed limiting the language to
English. The text option was chosen to be abstract in order to eliminate the documents
with only title and no abstract text. A precise PubMed query performed on 2010/10/07

is as follows:

"adverse effects"[sh] AND (hasabstract[text] AND Case Reports[ptyp]) AND "drug ther-
apy"[sh] AND English[lang] AND (Case Reports[ptyp] AND ("1" [PDAT] : "2010/10/07"
[PDAT]))

This process retrieved nearly 30,000 documents from PubMed out of which 3,000

documents (referred to as ade corpus) were randomly selected for the annotation
and benchmarking purpose. A corpus of 3,000 systematically annotated documents
is believed to be substantially large to support the development and validation of
information extraction systems. An additional set of 100 non-overlapping documents
(referred to as ade-seed corpus) were selected in order to be used by the annotators for
practicing the annotation task as well as for annotation quality assessment.

10.2 Annotation Guidelines

A critical issue that reflects the quality of an annotated corpus is consistency [Roberts
et al. (2009)]. In order to generate an annotated corpus for information extraction
modeling or performance benchmarking, consistent and uniform annotation across
all the documents is essential. To ensure consistency, a set of draft guidelines were
developed and provided to the annotators. The guidelines provide a set of rules which
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10.2 Annotation Guidelines

Figure 10.1: Example of a sentence in the ade corpus annotated with drug, adverse
effect, and the relationship between them.

annotators should follow when working on a document. The draft guidelines were
periodically revised before beginning the annotation of ade corpus (see Section 10.3.2
for details). Important components of the annotation guidelines are as follows:

Drug: Names of drugs and chemicals that include brand names, trivial names, ab-
breviations and systematic names were annotated. The mentions of drug or chemicals
should strictly be in a therapeutic context. This category does not include the names
of metabolites, reaction byproducts, or hospital chemicals (e.g. surgical equipment
disinfectants).

Adverse effect: The mentions of adverse effects include signs, symptoms, diseases,
disorders, acquired abnormalities, deficiencies, organ damage or death that strictly
occur as a consequence of drug intake.

Dosage: Dosage information that includes the quantitative measurements (e.g. 0.1
mg/kg/day) as well the frequency mentions (e.g. two tablets twice daily) was anno-
tated.

Relationship: The scope of a relationship was defined and restricted to the sentence
level. There should be a clear mention of a drug/chemical resulting in an adverse
effect defined within the context of a sentence. The mentions of drug, disorders or
dosages that do not fit into a relation were not annotated. Relationships were annotated
between the drugs and adverse effects as well as between the drugs and the dosages
in an implicit manner. This means that the interrelated entities were represented in a
systematic way that allows machine adaptation and training but not explicitly marked
using the annotation tool. Figure 10.1 shows an illustration of a sentence annotated
with the entities and relationship between them.
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Figure 10.2: The workflow employed for the annotation task.

10.3 Annotation Methodology

10.3.1 Annotation Participants

Altogether, five individuals participated in the generation and revision of the annotation
guidelines. Amongst them, three individuals were involved in the annotation task.
All the annotators possess a minimum qualification of Master of Science academic
degree with the background related to Biomedicine. Two annotators have substantial
experience working in the biomedical text mining domain whereas the third annotator
has comparatively little practical experience working with text mining-related topics.

10.3.2 Annotation Workflow

The annotation workflow follows the standards established by the CLEF framework
[Roberts et al. (2009)]. Knowtator3 version 1.9 beta 2 was the tool used for annotation.
The CLEF framework provides an easily configurable text annotation environment
plugged into the knowtator toolkit. Figure 10.2 shows the workflow adapted for the
annotation task.

An individually single annotated document can reflect several problems. They in-
clude idiosyncratic errors made by the annotators, missing annotations or the consistent
under-performance of the individuals. In order to overcome these problems, a strategy

3http://knowtator.sourceforge.net/
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of double annotation [Wilbur et al. (2006)] was applied. During the process of double
annotation, each document is independently annotated by at least two annotators and
the sets of annotations are compared thereafter for quality assurance. The annotation
task started with applying the draft guidelines for annotating the ade-seed corpus.
First, the ade-seed corpus of 100 documents was divided into ade-seed-set1 and
ade-seed-set2 comprising 50 non-overlapping documents each. As indicated in the
Figure 10.2, initially the ade-seed-set1 sub-corpus was annotated by all the three
annotators by strictly applying the draft guidelines provided. The agreement between
the annotators was calculated using the Inter-Annotator Agreement (IAA) score (see
Section 10.4.1). The IAA scores were determined for the entities as well as for the
relationships (see Section 10.4.2). The stability of agreement was determined for all the
documents and the under-performing documents were manually reviewed to check
for the disagreeing instances. Depending on the necessity, changes were made to the
annotation guidelines that were used. The process was repeated for the ade-seed-set2.
Counts of the annotated entities and relationships over the ade-seed corpus for two
preliminary rounds of annotation are provided in Table 10.1 and Table 10.2. Before
starting the annotation of the ade corpus, an interactive stabilization of the annotation
guidelines was performed based on the experiences gained during the annotation
of ade-seed corpus. The ade corpus of 3,000 documents was divided into ade-set1,
ade-set2, and ade-set3 subsets with each comprising 1,000 non-overlapping docu-
ments. Each annotator processed two subsets of corpus. With this strategy, every
document was annotated by two annotators and the total number of documents that
each annotator has to read was reduced by one-third. Figure 10.3 shows the distribution
of the subsets of ade corpus among the different annotators. Table 10.3 shows the
counts of the annotated entities and relationships over the ade corpus.

Figure 10.3: Distribution of the subsets of ade corpus among the different annotators.
Each subset contains 1,000 non-overlapping documents.

10.3.3 Annotation Harmonization

During the harmonization process, the double annotated documents were subjected to
a review by the respective annotators in order to resolve the conflicting annotations
and to improve the overall quality of the annotated corpus. The aim of annotation
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Entity Counts Relation Counts

Drug Adverse Effect Dosage Drug-Adverse Effect Drug-Dosage

Annotator-1 116 139 0 166 (90) 0 (0)
Annotator-2 120 159 0 177 (84) 0 (0)
Annotator-3 57 132 0 52 (26) 0 (0)

Table 10.1: Counts of the annotated entities and relations in the ade-seed-set1 corpus.
Numbers within the brackets indicate the unique number of sentences that
contain at least one relation. Enumerations related to dosages are zeroes
since no dosage information was annotated during this round.

Entity Counts Relation Counts

Drug Adverse Effect Dosage Drug-Adverse Effect Drug-Dosage

Annotator-1 91 83 4 110 (68) 4 (4)
Annotator-2 86 77 3 95 (65) 3 (3)
Annotator-3 54 60 0 59 (46) 0 (0)

Table 10.2: Counts of the annotated entities and relations in the ade-seed-set2 corpus.
Numbers within the brackets indicate the unique number of sentences that
contain at least one relation.

harmonization is to focus on the differences in the annotator’s interpretation of the
guidelines and the differences in their interpretation of the documents. However, the
process of harmonization does not attempt to find the actual ground truth mentioned
in the documents. Documents that do not contain any annotation from both the
annotators or the documents where both the annotators agree completely were not
reviewed. Documents that contain at least one conflicting annotation were subjected to
the review process by the respective annotators. The following precautions were taken
during the harmonization process.

Entity Counts Relation Counts

Drug Adverse Effect Dosage Drug-Adverse Effect Drug-Dosage

Annotator-1 2391 3330 129 3995 (2490) 140 (111)
Annotator-2 3097 3464 69 4028 (2681) 71 (60)
Annotator-3 3999 4604 77 5489 (3404) 83 (77)

Table 10.3: Counts of the annotated entities and relations in the ade corpus. Numbers
within the brackets indicate the unique number of sentences that contain
at least one relation. Each annotator handles only 2000 documents that are
distributed according to Figure 10.3.
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Entity Counts Relation Counts

Drug 5063 Drug-Adverse Effect 6821 (4272)
Adverse Effect 5776 Drug-Dosage 279 (213)

Dosage 231

Table 10.4: Counts of the annotated entities and relations in the ade corpus after
harmonization. Numbers within the brackets indicate the unique number
of sentences that contain at least one relation.

1. No entirely new annotations were added if they were not marked earlier by either
of the annotators.

2. No annotations were removed if they were marked earlier by both the annotators.

3. Annotations were added or removed if they were marked by any one of the
annotators and provided they both agree on the decision thereafter.

4. In case of partially overlapping annotations, only the conflicting parts were
resolved. For instance, Annotator-1 marks acute lymphoblastic leukemia whereas
the Annotator-2 marks lymphoblastic leukemia, then the decision will be made to
resolve the annotation of the word acute.

The harmonization was performed over the complete ade corpus in the presence
of annotators for both the entities as well as the relationships. Table 10.4 shows
the counts of the annotated entities and relationships over the ade corpus after the
harmonization procedure. 28 documents were removed from the ade corpus due to
errors induced by the annotation software as well as manual handling errors (such as
missing annotations, annotation offset shifts, etc.). After the end of harmonization, the
ade corpus contains 2,972 documents having 4272 sentences annotated with names
and relationships between drugs, adverse effects and dosages. The sentences with
drug-dosage relationships (i.e. 213 sentences) constitute a subset of 4272 sentences that
contain drug-adverse effect relationships.

10.4 Assessment of Inter-Annotator Agreement

10.4.1 Inter-Annotator Agreement Metrics

Over the ade-seed as well as the ade corpora, the double annotated documents were
used for the determination of Inter-Annotator Agreement (IAA) scores. The IAA scores
were calculated using the F1 score as a criterion. The F1 score measures the harmonic
mean of precision and recall between the annotators using one annotator as a standard
and the other as a reference. The IAA scores were determined for both the entities as
well as for the relationships. GATE [Cunningham et al. (2002)] framework was used
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for the determination of IAA scores. For the entities, IAA scores were determined
using the exact match and partial match as criteria. Exact match is a situation where
both the annotations should completely overlap whereas partial match is a situation
where the annotations may partially or completely overlap. For the relationships, two
types of evaluations were applied. They are the exact entity match with exact relation and
partial entity match with exact relation. The exact entity match with exact relation requires
that the annotations of the entities overlap completely and the relationship is correctly
annotated. In case of partial entity match with exact relation, a relationship that links
two partially or completely matching entity spans is considered to be correct. For
the entities, in addition to F1 score for the IAA calculation, kappa4 values have been
provided in-order to allow cross-group IAA comparisons.

10.4.2 Inter-Annotator Agreement Calculation

The IAA scores between the annotators were determined over the ade-seed corpus
during two preliminary rounds of annotation. Whereas, the IAA scores over the ades
corpus were determined before the final harmonization was performed. The agreement
levels were determined for the entities as well as for the relationships. Table 10.5
and Table 10.7 show the IAA F1 scores over the ade-seed-set1 corpus for entities and
relationships. Table 10.8 and Table 10.10 show the IAA F1 scores over the ade-seed-set2

corpus for entities and relationships respectively. The ade-seed-set1 corpus did not
contain any mentions of dosages that fit into a pre-defined relationship with drugs.
Therefore, the IAA scores for dosages were enumerated as zero for the entity mentions
as well as for the relationships with drugs. During the preliminary annotation rounds,
the level of agreement between Annotator-1 and Annotator-2 remained consistent for
the drug names. A potential reason is that the drug names often occur as one word
entities (e.g. minocycline) and they hardly suffer from boundary mismatch problems.
However, the agreement level for the exact name matches of adverse effects and
dosages was unsatisfactory. The names of adverse effects often occur as descriptive
multi-word terms and deciding the correct term boundaries was a major problem. For
instance, Annotator-1 marked non-metastatic gestational trophoblastic tumor whereas the
Annotator-2 marked the same instance as gestational trophoblastic tumor. Nevertheless,
the partial name matches for adverse effects had substantial level of agreement. Dosage
information faced severe annotation problems. Mentions such as low-dose were often
misinterpreted or overseen by the annotators and were not annotated. Such instances
represent the contemporary errors induced during the annotation process that were
improved later on. Typical examples of the relationship annotation errors include the
distantly related entities. For instance, in the sentence the patient developed monoarthritis
2 weeks after initiation of IFN-beta, which persisted during 14 months of therapy and resolved
with discontinuation of IFN-beta, there exist two relationships between monoarthritis and
two mentions of IFN-beta. The relationship between the nearest co-occurring entities
was correctly annotated whereas the second relationship was overseen by one of

4http://en.wikipedia.org/wiki/Cohen’s_kappa
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the annotators. Such instances were exemplified in the annotation guidelines and
thoroughly discussed before the annotation of main corpus was performed. Annotator-
3 having minimum experience with text annotation exercises often achieved lower
agreement scores with rest of the annotators.

Entity (Exact Match) Entity (Partial Match)

Annotators Drug Adverse Effect Dosage Drug Adverse Effect Dosage

1 & 2 0.76 0.66 0.00 0.82 0.86 0.00

1 & 3 0.28 0.43 0.00 0.38 0.55 0.00

2 & 3 0.29 0.40 0.00 0.38 0.51 0.00

Table 10.5: IAA F1 scores over entities between the annotators on the ade-seed-set1

corpus containing 50 documents. Enumerations related to dosages are
zeroes since no dosage information was annotated during this round.

Annotators Drug Adverse Effect Dosage

1 & 2 0.81 0.74 0.00

1 & 3 0.27 0.36 0.00

2 & 3 0.28 0.32 0.00

Table 10.6: IAA kappa scores over entities between the annotators on the ade-seed-set1

corpus containing 50 documents.

Relation (Exact Entity & Exact Relation) Relation (Patrial Entity & Exact Relation)

Annot. Drug-Adverse Effect Drug-Dosage Drug-Adverse Effect Drug-Dosage

1 & 2 0.64 0.00 0.79 0.00

1 & 3 0.14 0.00 0.37 0.00

2 & 3 0.10 0.00 0.37 0.00

Table 10.7: IAA F1 scores over relations between the annotators on the ade-seed-set1

corpus containing 50 documents.

Table 10.11 and Table 10.13 show the IAA F1 scores between the annotators over
the large ade corpus that contains 3,000 documents. The ade corpus was strategically
divided and annotated by three annotators. Therefore, the IAA scores were determined
over the sets of 1,000 documents that were commonly annotated by two annotators.
Based on the experiences gained during the preliminary annotation rounds, all the
three annotators were able to consistently annotate the drug names. Although, the
names of adverse effects underwent frequent boundary problems, the results of partial
name matches were consistent amongst all the three annotators.
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Entity (Exact Match) Entity (Partial Match)

Annotators Drug Adverse Effect Dosage Drug Adverse Effect Dosage

1 & 2 0.73 0.88 0.29 0.90 0.88 0.86

1 & 3 0.63 0.65 0.00 0.77 0.66 0.00

2 & 3 0.57 0.66 0.00 0.76 0.67 0.00

Table 10.8: IAA F1 scores over entities between the annotators on the ade-seed-set2

corpus containing 50 documents.

Annotators Drug Adverse Effect Dosage

1 & 2 0.87 0.76 0.50

1 & 3 0.63 0.59 0.00

2 & 3 0.65 0.54 0.00

Table 10.9: IAA kappa scores over entities between the annotators on the ade-seed-set2

corpus containing 50 documents.

Relation (Exact Entity & Exact Relation) Relation (Patrial Entity & Exact Relation)

Annot. Drug-Adverse Effect Drug-Dosage Drug-Adverse Effect Drug-Dosage

1 & 2 0.69 0.28 0.87 0.85

1 & 3 0.51 0.00 0.65 0.00

2 & 3 0.46 0.00 0.66 0.00

Table 10.10: IAA F1 scores over relations between the annotators on the ade-seed-set2

corpus containing 50 documents.

Entity (Exact Match) Entity (Partial Match)

Annotators Drug Adverse Effect Dosage Drug Adverse Effect Dosage

1 & 2 0.80 0.72 0.26 0.82 0.80 0.43

1 & 3 0.75 0.68 0.05 0.77 0.77 0.37

2 & 3 0.76 0.63 0.03 0.78 0.77 0.09

Table 10.11: IAA F1 scores over entities between the annotators on the ade corpus
containing 3,000 documents. IAA scores are calculated over the sets of
1,000 documents that are commonly annotated by two annotators.
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Annotators Drug Adverse Effect Dosage

1 & 2 0.87 0.73 0.27

1 & 3 0.83 0.67 0.06

2 & 3 0.82 0.65 0.03

Table 10.12: IAA kappa scores over entities between the annotators on the ade corpus
containing 3,000 documents. IAA scores are calculated over the sets of
1,000 documents that are commonly annotated by two annotators.

Relation (Exact Entity & Exact Relation) Relation (Patrial Entity & Exact Relation)

Annot. Drug-Adverse Effect Drug-Dosage Drug-Adverse Effect Drug-Dosage

1 & 2 0.68 0.17 0.78 0.26

1 & 3 0.63 0.14 0.74 0.18

2 & 3 0.60 0.12 0.75 0.15

Table 10.13: IAA F1 scores over relations between the annotators on the ade corpus
containing 3,000 documents. IAA scores are calculated over the sets of
1,000 documents that are commonly annotated by two annotators.

In spite of two preliminary rounds of annotation, the IAA scores over the dosage did
not improve over the ade corpus. The primary reason is the missing annotations that
confirm with the finding of low IAA scores for partial matches. Since annotators were
highly focussed over drugs and their adverse effects, perhaps a lot of dosage annotations
were overseen by the annotators. The second reason is the low stability of annotation
guidelines for dosages. The dosage annotations of annotator-1 were strictly adhering
to quantitative measures of drug administration, whereas the annotator-2 included
route of administration, duration, and so-forth. For example, in the sentence PMID:
3365032 A patient is presented with typical hyperthyroidism, who developed a severe proximal
muscle weakness and a raised creatine phosphokinase after treatment for hyperthyroidism with
propylthiouracil (100 mg orally, three times a day), annotator-1 tagged 100 mg as the dosage
of propylthiouracil, whereas the annotator-2 tagged the dosage as 100 mg orally, three
times a day. The dosage information being the poorest annotated entity class was strictly
resolved during the harmonization process. All the annotated entities and relationships
were subjected to the harmonization procedure after the complete annotation of ade

corpus in the presence of respective annotators in order to achieve a consistent final
annotation.

10.4.3 Semantic Corpus Analysis

After the harmonization procedure, in order to analyze the semantic distribution of
entities in the ade corpus, the annotated names of drugs and adverse effects were
mapped to standard ontologies using the ProMiner system. The drug names were
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ATC Class % of drugs

Antineoplastic agents 22

Ophthalmologicals 11

Antibacterial agents 11

Immunosuppressants 9

Antiepileptics 8

Table 10.14: Top 5 ATC classes to which the frequently occurring drugs belong.

MedDRA Class % of AE

Cardiac arrhythmias 12

General system disorders 11

Epidermal and dermal conditions 9

Allergic conditions 9

Hepatic and hepatobiliary disorders 8

Table 10.15: Top 5 MedDRA classes to which the frequently occurring adverse effects
(AE) belong.

mapped to the Anatomical Therapeutic Chemical (ATC) classification system using
the DrugBank dictionary. The ATC hierarchically classifies several drugs according to
their pharmacotherapeutic properties. Since ATC is hierarchical, its level two classes
were used for the analysis. The names of adverse effects were mapped to the MedDRA
classification system. MedDRA contains a hierarchically organized medical terminology
and it been widely applied for pharmacovigilance and drug regulatory affairs. Similar
to ATC, the level two MedDRA classes were used for analysis. Out of 5,063 annotated
drug names, 4,205 could be normalized to the ATC (i.e. 82%) whereas for the adverse
effects, 4,356 out of 5776 names (i.e. 73%) could be mapped to the MedDRA. Table 10.14

shows top 5 ATC classes to which frequently occurring drugs belong to. Table 10.15

shows top 5 MedDRA classes to which frequently occurring adverse effects belong to.

10.5 Corpus Preparation for Sentence Classification

Any supervised learning problem requires independent training and test sets. For
the purpose of training and validating the sentence classifier, the ade corpus (see
Section 10.1) was applied.

The ade corpus was randomly split into a training set (referred to as ade-train)
and a test set (referred to as ade-test) containing 2378 and 594 documents respectively
(after removal of duplicate sentence). Later on, sentences in the training and test
sets were extracted and labeled as either POSITIVE or NEGATIVE. A sentence was
labeled as POSITIVE if it contains at least one annotation of drug associated with at
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least one adverse effect. The remaining sentences were labeled as NEGATIVE. Table
10.16 shows the distribution of sentences and named entities occurring in the working
corpora. In addition to ade corpus, an additional set of 27,000 case reports (referred
to as ade-exam) were randomly extracted through a predefined PubMed query5. The
ade-exam serves as a reference corpus in order to study real use-case scenarios of the
drug-related adverse effect sentence classification framework.

Corpus Training set Test set

No. of POSITIVE sentences 3443 829

No. of NEGATIVE sentences 13355 3340

No. of Drug annotations 4085 978

No. of Adverse Effect annotations 4658 1119

Table 10.16: Distribution of sentences and named entities in training and test sets.

10.6 Sentence Classification Framework

The principle behind the adverse effect sentence classification framework is that it
utilizes morphosyntactic textual features derived from sentences to classify them as
either POSITIVE or NEGATIVE. A POSITIVE labeled sentence is one that contains a clear
definition of drug causing or worsening a medical condition. Various sets of features
and different supervised classifiers were tested during the training and validation
phase. Classifiers that were tested include Naive Bayes, Decision Tree, Maximum
Entropy and Support Vector Machines. Finally, the best suited feature set and the
classifier were applied to classify sentences in the ade-exam corpus. The sentence
classification phase is followed by the named entity detection phase where ProMiner
(a dictionary-based named entity recognition system) is employed for identifying the
co-occurring drug and condition names in the POSITIVE labeled sentences. Quality
controlled (referred to as curated) versions of DrugBank and MedDRA dictionaries were
used for the identification of drugs and conditions respectively.

10.6.1 Feature Generation

During the evaluation of sentence classifier over the training and test sets, various
textual feature were employed. Table 10.17 shows an illustration of different feature
sets applied for the classification task. Feature sets generated are as follows:

All-Words: Indicates all the words occurring in a sentence expect special characters.

5"adverse effects"[sh] AND (hasabstract[text] AND Case Reports[ptyp]) AND "drug therapy"[sh] AND
English[lang] AND (Case Reports[ptyp] AND ("1"[PDAT] : "2010/10/07"[PDAT]))
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Lemmatized-Tokens: The sentences were tokenized using the Genia6 tokenizer. All
non-special character tokens were lemmatized to their base forms using Mor-
phAdorner7 English lemmatizer. Lemmatization normalizes lexical token varia-
tion to its base form. For instance, tokens drugs and inducing will be normalized
to drug and induce respectively.

Lexicon-Token-Match: Manually curated single word lexicons generated from Drug-
Bank and MedDRA databases were used as reference sources for drug and
condition names. Lemmatized tokens in a sentence were checked for their pres-
ence in DrugBank and MedDRA lexicons. Two special features were included
that counts the number of drug-match and condition-match tokens in every sentence.

Lemmatized-Token-Bigrams: Indicates all the pairs of adjoining and lemmatized
tokens excluding the special characters strictly occurring in the forward order
as their occurrence in a sentence. Tokens that match drug or condition lexicon
entries were bound with a common arbitrary string (see Table 10.17).

Lemmatized-Token-Trigrams: Indicates all the adjoining and lemmatized three token
tuples excluding the special characters strictly occurring in the forward order as
their occurrence in the sentence. Tokens that match drug or condition lexicon
entries were bound with a common arbitrary string (see Table 10.17).

Noun-Character-Affixes: Raw sentences were subjected to parts-of-speech (POS) tag-
ging by the Genia POS tagger. Two, three, and four character suffixes and prefixes
of all the noun forms occurring in a sentence were extracted.

Lemmatized-Verbs: For all the drug-match and condition-match tokens in the sentence,
their immediate preceding and succeeding lemmatized verbs were extracted.

Lemmatized-Tokens-In-Window: For all drug-match and condition-match tokens in a
sentence, their immediate preceding and succeeding lemmatized non-special
character tokens occurring in a window of size 5 were extracted. Tokens that
match drug or condition lexicon entries were bound with a common arbitrary
string (see Table 10.17).

Stanford-Token-Dependencies: Stanford parser was applied over all the raw sen-
tences and the token dependency pairs generated by the parser were extracted

6http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA
7http://morphadorner.northwestern.edu/
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[Klein and Manning (2003)]. Figure 10.4 shows an example of a sentence parsed
by the Stanford parser. Stanford dependency (collapsed dependency-type) tokens
were lemmatized and strictly used in the order according to the direction of
dependencies between the tokens (see directed edges in Figure 10.4). Tokens that
match drug or condition lexicon entries were bound with a common arbitrary
string (see Table 10.17).

Figure 10.4: Example of Stanford parser token dependencies in a sentence.

Sentence We report a case of Zidovudine induced anaemia and
bone marrow aplasia in a patient infected with HIV.

Label POSITIVE

All-Words we, report, a, case, of, zidovudine, induced, anaemia,
and, bone, etc.

Lemmatized-Tokens we, report, a, case, of, zidovudine, induce, anaemia,
and, bone, etc.

Lexicon-Token-Match drug-match=1 (i.e. zidovudine), condition-match=2 (i.e.
anaemia, aplasia)

Lemmatized-Token-Bigrams we-report, report-a, a-case, case-of, of-drug, drug-
induce, etc.

Lemmatized-Token-Trigrams we-report-a, report-a-case, a-case-of, case-of-drug, of-
drug-induce, etc.

Noun-Character-Affixes affixes of case (ca, cas, case, se, ase, case), affixes of
zidovudine (zi, zid, zido, ne, ine, dine), etc.

Lemmatized-Verbs zidovudine (Pre-verb=report, Post-verb=induce),
anaemia (Pre-verb=induce, Post-verb=infect), etc.

Lemmatized-Tokens-In-Window zidovudine (Pre-words =we, report, a, case, of, Post-
words =induce, condition, and, bone, marrow), etc.

Stanford-Token-Dependencies report-we, report-induce, induce-case, case-of, induce-
condition, etc.

Table 10.17: Example of features generated for a sentence in the working corpus. Tokens
that match the drug or condition lexicon entries were bound with keywords
drug or condition respectively.
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10.7 Results of Sentence Classification

10.7.1 Performance Evaluation Criteria

The performance of sentence classification was evaluated by 10-fold cross-validation
of the training data using different feature sets as well as different classifier. During
cross-validation experiments, the classifier performances were assessed using F-score
over the class POSITIVE. The class POSITIVE is of primary interest because positively
labeled sentences are indicative of presence of adverse drug effects. For the evaluation
of final performance of the classifier over independent test data, various metrics such
as Accuracy, class-specific Precision, class-specific Recall, class-specific F1 score, micro-
averaged F1 score, and macro-averaged F1 score are reported.

10.7.2 Assessment of Sentence Classification

During the initial experiments, performances of four different classifiers i.e. Naive
Bayes (NB), Decision Tree (DT), Maximum Entropy (ME) and Support Vector Machines
(SVM) were evaluated by 10-fold cross-validation of labeled sentences in ade-train

corpus. Class distribution and counts of instances in the training data are available in
Table 10.16. Baseline experiments began with applying simple All-Words as features and
evaluating the performances of different classifiers. Later, different feature sets were
incrementally added to the initial feature set and simultaneously the performances
of different classifiers were monitored. Table 10.18 shows the results of classifier
performances using different feature sets.

All the feature sets extracted from sentences resulted in varying improvement of
the classifier performances expect for the Lemmatized-Token-Trigrams. Token trigram-
based features resulted in a decrease in performances of Naive Bayes and Maximum
Entropy classifiers, and therefore were eliminated during further experiments. The
Maximum Entropy classifier and SVM demonstrated competitive results with different
combinations of feature sets. However, the Maximum Entropy classifier outperformed
rest of the classifiers with the best F1 score of 0.77.

Based on the results obtained during cross-validation experiments, all the feature
sets except Lemmatized-Token-Trigrams were applied for the classification of sentences
in the test set. In addition to an experiment with morphosyntactic features, a baseline
test with simple All-Words was also performed. The test set comprises of labeled
sentences in ade-test corpus. The Maximum Entropy classifier that showed best results
during the cross-validation experiments was chosen for the classification of instances in
the test set. The results of performance of sentence classification with All-Words and
morphosyntactic features are provided in Table 10.19. In comparison to baseline results,
the F1 score over class POSITIVE for the Maximum Entropy classifier improved by 16%
with morphosyntactic textual features. This exemplifies the advantages of applying
complex textual features in comparison to trivial word-like features for the sentence
classification task.
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Feature sets NB DT ME SVM

All-Words 0.68 0.60 0.70 0.69

Lemmatized-Tokens (A) 0.70 0.64 0.72 0.72

A+ Lexicon-Token-Match (B) 0.70 0.65 0.72 0.73

A+B+ Lemmatized-Token-Bigrams (C) 0.72 0.70 0.74 0.74

A+B+C+ Lemmatized-Token-Trigrams (D) 0.71 0.70 0.73 0.74

A+B+C+ Noun-Character-Affixes (E) 0.72 0.70 0.75 0.75

A+B+C+E+ Lemmatized-Verbs (F) 0.73 0.72 0.76 0.76

A+B+C+E+F+ Lemmatized-Tokens-In-Window (G) 0.73 0.73 0.76 0.76

A+B+C+E+F+G+ Stanford-Token-Dependencies (H) 0.74 0.73 0.77 0.76

Table 10.18: Performance evaluation of different classifiers in combination with different
feature sets evaluated by 10-fold cross-validation. F1 scores over the class
POSITIVE are reported.

Performance Measure All-Words Morphosyntactic feat.

Overall Accuracy 0.86 0.91

Precision over class POSITIVE 0.69 0.82
Recall over class POSITIVE 0.53 0.70
F1 score over class POSITIVE 0.60 0.76
Precision over class NEGATIVE 0.94 0.93

Recall over class NEGATIVE 0.89 0.96

F1 score over class NEGATIVE 0.91 0.95

Macro-averaged F1 score 0.76 0.85

Micro-averaged F1 score 0.85 0.91

Table 10.19: Performance evaluation of sentence classification with Maximum Entropy
classifier over the ade-test set.

Sentence Classification with Entity-Binding

Previous experiments with the sentence classification (Tables 10.18 and 10.19) applied
token-binding strategy for identifying the potential occurrences of drug and condition
inferring tokens in the training and test sentences. Experiments were performed by
replacing the system of token-binding with the entity-binding. ProMiner was applied
with the DrugBank and MedDRA dictionaries for tagging the drug and condition
names in the ade-train and ade-test sentences. Features were generated as described
in Section 10.6.1 and the datasets were subjected to the performance evaluation with
the Maximum Entropy classifier by cross validation over the training set and a final
assessment over the test set. Table 10.20 provides a comparison of performances of
evaluation with token-binding and entity-binding.

From Table 10.20 it can be observed that the performance of classification does
not significantly differ between the token-binding and entity-binding. However, the
token-binding strategy offers an advantage of skipping the named entity recognition to
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Token-binding Entity-binding

Dataset Precision Recall F1 score Precision Recall F1 score

ade-train 0.83 0.72 0.77 0.83 0.72 0.77

ade-test 0.82 0.70 0.76 0.82 0.72 0.77

Table 10.20: Comparison of classification performances with token-binding and entity-
binding over the ade-train (cross-validation) and ade-test datasets. Per-
formances over the class POSITIVE are indicated.

be performed before the sentence classification.
Upon examination of POSITIVE sentences classified in the ade-test corpus with the

token-binding strategy, 584 out of 829 sentences were correctly classified. Amongst
the 584 true positive classified sentences, ProMiner was able to identify both classes of
entities (i.e. drugs and conditions) in 502 sentences only. The remaining 82 sentences
(constituting 14% of true positives) were correctly classified where NER failed to capture
both classes of entities. This exemplifies the advantages of sentence classifier and its
independence from the named entity recognition.

Sentence Classification with Ensemble Classifier

Experiences from the past have shown that using an ensemble of classifiers can perform
better than applying a single classifier [Thomas et al. (2011)]. An ensemble classifier
approach uses a voting scheme from the predictions of different classifiers to judge
the final label of an instance. Individual classifiers (i.e. DT, NB, ME, and SVM) trained
over the ade-train sentences were applied over the ade-test sentences and the final
predictions were merged using a voting system. Three types of voting were tested
i.e. AtLeast One, AtLeast Two, AtLeast Three. For instance the AtLeast One voting system
judges a sentence in ade-test as POSITIVE if any one of the applied four classifiers
predicts the given sentence as POSITIVE. Table 10.21 shows the results of performance
of classification over ade-test dataset using an ensemble of classifiers with different
voting schemes. It can be observed that the recall of classification can be improved
with Atleast One voting scheme whereas the precision can be greatly improved with
AtLeast Three voting scheme. Using AtLeast Two voting system generated similar results
to applying the ME classifier alone. Experiments with AtLeast Four voting system
generated zero F1 score since no sentence was classified as POSITIVE by all four
classifiers.

10.7.3 Recall Optimization by Instance Selection

The performance of system indicated good precision of 82% and moderate recall of 70%.
Considering the requirements of final users (such as drug safety experts), experiments
were performed in order to improve the recall of the sentence classification system. Con-
sidering the skewness of the training data, an instance selection approach was applied.
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Voting Precision Recall F1 score

AtLeast One 0.56 0.88 0.68

AtLeast Two 0.80 0.74 0.77

AtLeast Three 0.90 0.49 0.63

Table 10.21: Performance evaluation over the ade-test dataset using an ensemble of
classifiers. Performances over the class POSITIVE are indicated.

Several approaches have been defined in the past to deal with unbalanced datasets such
as the undersampling, oversampling, and many more [Kotsiantis et al. (2006)]. However,
the approach proposed here applies the principles of undersampling and active learning
to eliminate non-informative and noisy majority class instances (i.e. sentences labeled
as NEGATIVE) from the training set. First, a random undersampling was performed to
generate a balanced dataset of POSITIVE and NEGATIVE sentences. Later on, applying
the principles of active learning, additional NEGATIVE sentences were systematically
selected by iterative training and evaluation until a satisfactory criterion is attained.
The process of undersampling and active learning for instance selection is shown in
Algorithm 2. In the ade-train, 3,443 POSITIVE sentences were used as-is and 3,443

NEGATIVE sentences were picked randomly to from a ade-train-seed training set. The
remaining 9,912 unpicked NEGATIVE sentences formed a ade-train-neg set. Applying
Algorithm 2, informative NEGATIVE sentences were systematically selected from the
ade-train-neg and added to the ade-train-seed until a satisfactory performance of
the system was observed.

Algorithm 2: Instance selection by undersampling and active learning
Require: Balanced training set ade-train-seed

Require: A set of NEGATIVE labeled sentences ade-train-neg

Require: The model M trained on ade-train-seed

Repeat
1. Apply the trained model classifier M on ade-train-neg

2. Rank the sentences of ade-train-neg that are misclassified as POSITIVE in
decreasing value of P(POSITIVE)
3. Pick top ranked 100 sentences and add them to ade-train-seed

4. Train the model on the extended ade-train-seed and evaluate on ade-test

Until the stopping criterion is reached

Figure 10.5 shows the performance of the system at different rounds of active
learning. During each round of active learning, the preliminary feature set described
in Section 10.6.1 was used. Altogether, 8 rounds of active learning were performed in
order to observe the convergence in F1 of the system. The process of active learning
resulted in a reformed training corpus (referred to as ade-train-al) containing 7,386

sentences. Finally, it turned out that training over the reformed corpus (with 5 rounds
of active learning) substantially increased the recall of the system upto 80% with an
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Figure 10.5: Results of the performance of the system attained during different rounds
of instance selection by undersampling and active learning.

acceptable decline in the precision.

10.7.4 Error Analysis of Sentence Classification

An analysis was performed to determine the primary sources of errors generated by
the sentence classification system. For this task, a subset of misclassified instances (both
false positives and false negatives) were manually investigated to understand classifica-
tion uncertainties. Few NEGATIVE labeled sentences that were classified as POSITIVE
contained adverse effects in relation to certain classes of drugs. An instance of such
a sentence is PMID:16344532 The authors report two cases of catechol-O-methyltransferse
(COMT) inhibitor-induced asymptomatic hepatic dysfunction in women with Parkinson dis-
ease. Few misclassified sentences had co-reference to the adverse effect related to the
drug without an explicit mentioning of the observed medical problem. An example of
sentence belonging to this error class include PMID:12523465 Until then, clinicians need
to be aware of this possible complication associated with zonisamide. Few sentences contained
adverse effects associated with different forms of medical treatments. Examples include
PMID:16633932 We conclude that immunological dysfunction resulting from the thymectomy
contributed significantly to the subsequent development of PRCA, SLE, IPH in this patient.

Examples of instances misclassified as NEGATIVE include the sentences containing
descriptive adverse effects often not contained in the lexicon. PMID: 14607011 The case
history and toxicological findings of an infant fatality involving pseudoephedrine, brompheni-
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ramine, and dextromethorphan are presented. Long sentences were also one source of
errors. An example of misclassified lengthy sentence is PMID: 7351000 Seven of the eight
cases of acute leukemia occurred in a series of 553 patients treated with Treosulfan for ovarian
cancer in the period from 1970 to 1977 and followed closely for a total of 1159 patient-years
up to February 1978. A couple of misclassified instances had sparsely defined associa-
tion between drug and a medical problem. For instance, the sentence “PMID:8979664
METHODS/RESULTS: This paper presents a new case of rifabutin uveitis and a review of
the various published reports to date” mentions uveitis occurring as a result of rifabutin
administration described within a sparse context.

10.7.5 Retrospective Assessment of NER

ProMiner, a dictionary-based NER system, was employed for identifying the named
entities. Curated DrugBank and MedDRA dictionaries were integrated into ProMiner
and applied for the recognition of drugs and conditions respectively. An experiment
was performed to examine if the co-occurrence of drug and condition would serve as a
basis for adverse effect sentence classification that resulted in precision and recall of
0.60 and 0.62 respectively. Therefore, the sentence classification using co-occurrence
criteria is not sufficient to differentiate between positive and negative sentence.

A recall of 0.82 and 0.73 for the partial recognition of drug and adverse effect entities
respectively over the entire ade corpus has been shown previously (see Section 10.4.3).
Main reason for false negative entities is that several drugs as well as conditions
are missing in the respective dictionaries. Examples of missing drug names include
abbreviations (e.g. 5-FU, ARA-C, etc.) and trivial names (such as Suxamethonium,
sulprostone). Examples of unrecognized condition names include abbreviations and
descriptive enumerations such as decrease in peripheral blood leucocytes, t-AML, etc. With
an acceptable recall, the NER can be used to support automatic assignment of sentences
to drug classes and medical conditions.

Additional experiments were performed to assess the performances of Disorder-
Recognizer (see Chapter 5) and MeSH disease dictionary for the recognition of adverse
effects in the ade corpus. Table 10.22 provides an overview on the recall of different
NER methods for the drug and adverse effect identification with complete match and
partial match criteria. Although the CRF-based Disorder-Recognizer showed good
results for adverse effect entity recognition, MedDRA dictionary-based approach has
been applied for case-studies since MedDRA is used as a global standard for adverse
effect classification and therefore using MedDRA ensures compliance with best practices
applied in the drug safety research.

10.7.6 Use-Case Study of Adverse Effect Classification

The purpose of use-case study is to determine the usefulness of the developed frame-
work for its ability to track undocumented or rare adverse effects. For this purpose,
SIDER and Drug Information Online databases were used as a reference for documented
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Entity Recognizer Class Complete Partial

ProMiner (MedDRA) AE 0.54 0.73

ProMiner (MeSH) AE 0.39 0.60

Disorder-Recognizer AE 0.59 0.80

DrugBank Drug 0.79 0.82

Table 10.22: Results of assessments of different NER methods for drugs and adverse
effects (AE) identification. Only the recall values have been reported.

No. of sentences in ade-exam corpus 199,633

No. of sentences classified as POSITIVE 35,159

No. of sentences containing at least one drug & one condition 24,178

No. of unique drug names recognized (after normalization) 882

No. of unique condition names recognized (after normalization) 2,076

Table 10.23: Results of sentence classification and named entity recognition over the
ade-exam corpus.

drug-related adverse effects. The pre-trained Maximum Entropy-based sentence clas-
sifier (trained over ade corpus) ensembled with morphosyntactic feature generation
machinery was applied for classifying the sentences in ade-exam corpus. The POSITIVE
classified sentences were subjected to named entity detection module for recognizing
the co-occurring drug and condition names. Table 10.23 shows the results of sentence
classification and named entity recognition over the ade-exam corpus.

Amongst the most frequently occurring drugs in the ade-exam corpus, three drugs
were manually selected based on the differences in their pharmacology and therapeutic
application. Table 10.24 shows the analysis of adverse effect profiles of pre-selected
drugs in the ade-exam corpus. For three analyzed drugs, the sentence classification

Drug Occurrences Sentences Conditions Examples of Novel Associations

Methotrexate 837 349 181 PMID:1450620 A malignant teratoma was diag-
nosed in a 65-year-old asthmatic man 16 months
after initiation of methotrexate therapy (15 mg per
week).

Infliximab 362 185 122 PMID:17534091 Coccidioidomycosis pneumonia
in a nonendemic area associated with infliximab.

Clozapine 360 210 102 PMID:16342008 Guillain-Barré syndrome after
septicemia following clozapine-induced agranulo-
cytosis. A case report.

Table 10.24: Adverse effect profile analysis of pre-selected drugs in the ade-exam corpus.
Columns two, three, and four indicate frequency of drug occurrence, no.
of unique sentences containing the drug, and no. of normalized unique
co-occurring conditions respectively.
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framework helped in identifying novel drug-adverse effect associations that are not
documented in standard databases. This indicates a potential application of the
established framework in identifying the drug safety signals from unstructured textual
data to support pharmacovigilance.

10.8 Discussion

This chapter outlines two major accomplishments for supporting automated pharma-
covigilance that has been one of the most challenging issues associated with drug
safety surveillance in the market. First, a systematically annotated and substantially
large corpus of medical case reports was generated that can be used by medical NLP
community for development of literature mining systems to support pharmacovigi-
lance. Secondly, a dual-phased application has been developed and its potential has
been demonstrated for the identification of adverse drug effect assertive sentences in
medical case reports. The system also identifies co-occurring drug and condition names
in positively implicated sentences. An evaluation of the system showed convincing
results. An additional use-case study indicated a potential application of the system in
detecting under-reported and under-documented adverse drug effects.

In future, the author plans to improve various components of the system like ex-
pansion of the medical lexicons and dictionaries used, feature space optimization to
enhance the system’s performance, application of the system over different text sources
including full-text articles, consumer generated media (blogs and forum), e-health
records, and benchmarking the system’s capabilities against commercial adverse effect
detection technologies (e.g. Luxid Skill Cartridges8).

Considering the real world application of sentence classifier, the system would be of
high value when it can identify completely new cases of adverse effects or change the
existing statistics of drug-adverse effect relationships. The system’s ability to detect
adverse effect assertions on drugs does not replace the manual task of drug safety
monitoring but can greatly help in reducing the final reports that a safety expert needs
to investigate. This can revolutionize the way in which the drug safety surveillance is
performed by regulatory authorities such as the FDA, or EMEA.9 The developed system
is believed to accelerate the drug safety monitoring through automated knowledge
extraction from text and therefore facilitate higher adherence to the daunting task of
automated pharmacovigilance, faster response time and better service to the patients
from the viewpoints of both pharmaceutical industries and health regulatory agencies.

8http://www.temis.com/
9http://www.fda.gov/MedicalDevices/ScienceandResearch/ucm243158.htm
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Chapter 11

Conclusion and Perspectives

11.1 Conclusion

Free-text, especially in the medical domain, is a rich and important resource that
encompasses information about novel or unseen scientific findings. They also act on
protection of intellectual property in the form of patents. In general, the study of
literature is inevitable for the generation of new knowledge, hypothesis development,
and to update the most recent scientific developments. From an industrial perspective,
the study of literature fosters the product development strategies whereas in the clinical
settings it helps in quick monitoring of patient profiles and therefore improve the
overall effectiveness of clinical care and safety. However, considering the sheer amount
of free-text data that is available and generated in various forms, automatic strategies
for efficient processing these data have become immensely crucial. Therefore, this work
focuses on the development of efficient strategies for mining the medical and patent
literature with an aim of supporting the healthcare and pharmacovigilance research.

Firstly, this thesis focused on the development of techniques for the recognition of
disease and adverse effect (collectively called as medical disorders) named entities in
free-text and their systematic evaluation. In this context, several state-of-the-art medical
terminologies (such as MeSH, MedDRA, etc.) were tested for their ability to support
dictionary-based named entity recognition of medical disorders in scientific abstracts.
An outcome of this assessment indicated MedDRA to be the best suited resource for
the disorder recognition. Unlike the MeSH, UMLS, or ICD, MedDRA is less frequently
used resource for biomedical named entity recognition and this survey spotlighted
the competencies of MedDRA as a valuable resource. Later on, a machine learning
technique based on CRF was adapted and evaluated for the recognition of medical
disorders that indicated good results. A comparative assessment of performance of
the implemented CRF-based Disorder-Recognizer against several other state-of-the-
art entity recognition systems showed highly competitive results. Furthermore, the
ability of the entity recognition system was expanded to test its adaptability to work
on patient health records. The system was trained for the recognition of medical
disorders, treatments, and tests in e-health records. An open evaluation during the
public assessment (i.e. I2B2 challenge 2010) indicated superior results. The system was
ranked fourth in comparison to various other competing systems [Uzuner et al. (2011)].
This demonstrates the capabilities and competence of the so-developed strategies for the
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recognition of medical entities and concepts in different sources of free-text documents.
Furthermore, the identification of assertions made over medical problems in free-text is
essential for the development of precise medical IR or IE systems. In the context of I2B2

challenge 2010, a SVM-based system was implemented and systematically optimized
for the classification of assertions in e-health records. An evaluation of the system
indicated good performance with the F1 score of 0.90. Comparative evaluation of the
implemented assertion classification approach during the I2B2 2010 showed highly
competitive results.

Based on the successful scenarios demonstrated for the identification of concepts in
various document sources, their capabilities were systematically exploited for devel-
oping a semantic information retrieval platform. Therefore, in the context of TREC
challenges, this thesis focused on implementing a scalable retrieval platform that was
systematically customized for information retrieval from e-health records, and patents.
The named entity or concept recognition techniques were applied for tagging the im-
portant concepts in document collections that were used as a backbone for performing
semantic searches. During the TRECMED, the system was optimized for the retrieval
of e-health records. Medical concepts, relations, and assertions were systematically in-
dexed. An open evaluation of the adapted semantic search strategy showed results that
were highly competitive to state-of-the-art technologies. Evaluations during the TREC-
CHEM 2010 and 2011, showed the superiority of the applied system in efficient patent
retrieval based on semantic concepts. The system achieved top results in comparison
to other competent retrieval systems during both evaluations. This demonstrates that
the integration of so-developed concept recognition techniques, and in-house retrieval
engine SCAIVIEW can deliver highly efficient and precise environment for information
retrieval from patents, and e-health records that can outperform conventional document
search paradigm.

For the identification of adverse effects of medicinal drugs, this thesis focused on
development of a strategy to support automated pharmacovigilance wherein a sentence
classification system was developed. The system is based on the Maximum Entropy
classifier and it utilizes automatically extracted lexico-syntactic features from text for
sentence classification. A quantitative and qualitative evaluation of the system indicated
robust results. Competencies of the concept recognition approaches where applied
for spotting the occurrences of drugs and disorders in sentences asserting an adverse
event. Studies on real use-case scenarios demonstrated its ability to identify novel side
effect associations. An in-house as well as expert evaluation demonstrated the system’s
ability to efficiently promote the pharmacovigilance research.

Finally, the development of any efficient IE or IR system needs systematically anno-
tated corpora. Different sets of corpora for development and evaluation of disorder
recognition techniques and adverse event identification have been generated and made
publicly available. The generated corpora are believed to promote the research in
the direction of disorder recognition and drug safety detection by promoting the
development, optimization, and evaluation of automatic approaches.
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Summarizing the accomplishments within this thesis, following enablements are
desirable:

Ability to identify medical concepts and assertions in different document
sources with high sensitivity and specificity can assist quick document
look-up, spotlight informative snippets (e.g. sentence with drug and disease
co-occurrence). It can apparently support the development of semantic
search engine, relation extraction, and knowledge discovery more efficiently.

Semantic platform that enables searching within medical records, docu-
ment repositories, and patents can support medical information retrieval,
evidence-based practices, clinical decision making, prior art search, and
infringement searches in patents.

Pharmacovigilance supporting system that can identify sentences assert-
ing adverse drug events can promote the development of alerting systems,
and support the generation of drug safety warning and signals (unseen
adverse effects).

Corpora for disorder entity recognition, and adverse effect detection can
drive the research and development of new approaches or optimize the
existing solutions. Ideally, it can promote corpus re-annotation with new
information.

Strategies implemented during this thesis have been evaluated at various stages and
have demonstrated success during open assessments such as TREC and I2B2. This
work is believed to enhance the biomedical and clinical text mining scenarios. This can
ultimately promote effective patient healthcare and safety, and improve compliance
with best clinical practices, and accelerate promising services to the patients.

11.2 Future Perspectives

Apart from various success stories demonstrated during this thesis, several challenging
aspects and issues paves way for the future research. The investigation of the disorder
named entity recognition by ProMiner shows that the existing medical terminologies
are insufficient to cover the entire space of medical disorder mentions in text. Although,
the machine learning-based technique (CRF) demonstrated success in this task, this
technique suffers from entity normalization problems. Although solutions are available
for the normalization of CRF to standard terminological entries, this approach still is
strongly dependent on the dictionary coverage. In the current work, performances of
publicly available disorder-centric terminological resources have been tested. In future,
a systematic evaluation of commercial resources needs to be performed. A strategic
combination of terminologies from different sources such as MedDRA, or MeSH may
also contribute to the betterment of the terminological coverage. However, this is not a
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trivial task since most of the terminologies are hierarchically organized and merging
the knowledge from these resources needs certain degree of medical expert intervention
as well as dedicated techniques such as ontology alignment or hierarchy alignment.

The document indexing and retrieval platform (SCAIVIEW) has been successfully
demonstrated for its ability to efficiently retrieve patents and e-health records. Although,
evaluations have been performed under standard test conditions provided by TREC
conference, it is important to demonstrate few real use-case scenarios to help medical
professionals or patent searchers. This can be made possible by scientific collaboration
with patent user groups or medical professionals who could use the retrieval system
for real use-case question answering. Currently, the document collections over which
SCAIVIEW system works are scientific corpus subsets and it is essential to operate the
retrieval system with larger collections of documents. Evaluation of the performance of
retrieval over different text collections such as abstracts, blogs, or forums is another
interesting issue. From the technical point of view, although standard retrieval functions
have been systematically implemented and successfully applied for the retrieval task,
various parallel approaches such as document clustering, topic modeling, and latent
semantic indexing can be tested.

The author proposes several improvements that can be tested in future for automatic
adverse effect detection. The current implemented system recognizes sentences that
contain information about adverse drug events. In future, it is desirable to extend
the capabilities of the system to detect exact related pairs (drug-adverse effect pairs).
Current system assumes that drugs and adverse effects co-occur in the same sentence
and that is true for majority of cases. Nevertheless, using anaphora resolution to
detect non-sentence level existing drug-adverse events would add improvement to the
overall recall of the system. Evaluating the performance of the developed system in
comparison to commercial tools such as LUXID skill cartridges would improve the
overall applicability of the existing model. Development of an alerting system that can
generate instant and timely alerts about adverse drug events published in different
resources can find direct applications for drug safety monitoring.

Finally, the author believes that the outcome of this work can find potential appli-
cations in the biomedical and clinical settings to support efficient literature searches
across various sources such as scientific articles, medical text, and patents. It has an
ability to revolutionize the literature search strategies followed within the biomedical,
clinical, and pharmaceutical settings. The developed strategies for information retrieval
and information extraction can support evidence-based medical practices that can
lead to an advancement of medical research, improve the quality of healthcare, and
enhance the patient safety. The author desires to bring the applied methodologies
into deliverable solutions that can be applied for daily usage to support biomedical
and clinical professionals. Improving various functionalities of the developed methods
and providing user-friendly literature search environments to support real use cases
scenarios is the future motto.
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Appendix A

TREC Topics

A.1 Topics used for technology survey search in
patents.

Topic Title

TS-2 Dipeptidyl peptidase-IV inhibitors
TS-12 Diazepam or RN: 439-14-5
TS-13 Tetrahydrocannabinol as an anti-tumor agent
TS-15 Betaines for peripheral artery disease
TS-20 Tests for HCG hormones
TS-22 Uses of hormones in detection of menopause
TS-28 D-ala-D-ala ligase inhibitors
TS-29 Inhibitors of acetylcholinesterase
TS-33 Respiratory tract disorders using inhalation of porous particles containing amino

acid and endogenous phospholipid

Table A.1: Topic IDs and their titles used for the TRECCHEM technology survey task.

A.2 Topics used for searching in e-health records.
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Topic Title

101 Patients with hearing loss
102 Patients with complicated GERD who receive endoscopy
103 Hospitalized patients treated for methicillin-resistent staphylococcus aureus (MRSA) endo-

carditis
104 Patients diagnosed with localized prostate cancer and treated with robotic surgery
105 Patients with dementia
106 Patients who has positron emission tomography (pet), magnetic resonance imaging (mri), and

computed tomography (ct) for staging or monitoring of cancer
107 Patients with ductal carcinoma in situ (DCIS)
108 Patients treated for vascular claudication surgically
109 Women with osteopenia
110 Patients being discharged from hospital on hemodialysis
111 Patients with chronic back pain who receive an intraspinal pain-medicine pump
112 Female patients with breast cancer with mastectomies during admission
113 Adult patients who received colonoscopies during admission which revealed adenocarcinoma
114 Adult patients discharged home with pallative care or home hospice
115 Adult patients who are admitted with asthma exacerbation
116 Patients who received methotrexate for cancer treatment while in hospital
117 Patients with Post-traumatic stress disorder
118 Adults who received coronary stent during admission
119 Adult patients who presented to the emergency room with anion gap acidosis secondary to

insulin dependent diabetes
120 Patients admitted for treatment of CHF exacerbation
121 Patients with CAD who presented to the emergency room with anion gap acidosis secondary

to insulin dependent diabetes
122 Patients who received total parenteral nutrition while in hospital
123 Diabetic patients who received diabetic education in the hospital
124 Patients who present to the hospital with episodes of acute loss of vision secondary to

glaucoma
125 Patients co-infected with Hepatitis C and HIV
126 Patients admitted with a diagnosis of multiple sclerosis
127 Patients admitted with morbid obesity and secondary diseases of diabetes and/or hyperten-

sion
128 Patients admitted for hip or knee surgery who were treated with anti-coagulant medication

post-op
129 Patients admitted with chest pain and assessed with CT angiography
130 Children admitted with cerebral palsy who received physical therapy
131 Patients who underwent minimally invasive abdominal surgery
132 Patients admitted for surgery of the cervical spine for fusion or discectomy
133 Patients admitted for care who take herbal products for osteoarthritis
134 Patients admitted with chronic seizure disorder to control seizure activity
135 Cancer patients with liver metastasis treated in the hospital who underwent a procedure

Table A.2: Topic IDs and their titles used for the TRECMED task.
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approach to word lemmatization. In: Proceedings of IS2004 Vol. 3, 2004, pp. 83–86.

[Poppenga 2001] Poppenga, R. H.: Risks associated with the use of herbs and
other dietary supplements. In: Vet Clin North Am Equine Pract 17 (2001), Dec, No. 3,
pp. 455–77, vi–vii.

[Porter 1980] Porter, Martin: An algorithm for suffix stripping. Program. 1980.

[Porter 2001] Porter, Martin: Snowball: A language for stemming algorithms. Published
online. October 2001.

[Qiao et al. 2011] Qiao, Wen-Juan; Cheng, Hai-Yan; Li, Chun-Quan; Jin, Hong; Yang,
Shan-Shan; Li, Xia; Zhang, Yun-Yan: Identification of pathways involved in Paclitaxel
activity in cervical cancer. In: Asian Pac J Cancer Prev 12 (2011), No. 1, pp. 99–102.

[Quint 2000] Quint, Julien: A formalism for universal segmentation of text. In:
Proceeding COLING ’00 Proceedings of the 18th conference on Computational linguistics,
2000.

[Rajkumar et al. 1982] Rajkumar, S.; Worku, M.; Muhammad, N. D.;
Narayanaswamy, G.; Hassan, R.; Laude, T. A.; Cook, C. D.: Prescribing in
pediatric ambulatory care. In: J Ambul Care Manage 5 (1982), Aug, No. 3, pp. 26–30.

[Rao et al. 1982] Rao, T. V.; Narayanaswamy, K. S.; Shankar, S. K.; Deshpande,
D. H.: "Primary" spinal epidural lymphomas. A clinico-pathological study. In: Acta
Neurochir (Wien) 62 (1982), No. 3-4, pp. 307–317.

[Rask-Andersen et al. 2011] Rask-Andersen, Mathias; Almén, Markus S.; Schiöth,
Helgi B.: Trends in the exploitation of novel drug targets. In: Nat Rev Drug Discov 10

(2011), No. 8, pp. 579–590. – URL http://dx.doi.org/10.1038/nrd3478.

[Ratsch 2004] Ratsch, Gunnar: A Brief Introduction into Machine Learning. In: 22nd
Chaos Communication Congress, 2004.

[Rebholz-Schuhmann et al. 2007] Rebholz-Schuhmann, Dietrich; Kirsch, Harald;
Arregui, Miguel; Gaudan, Sylvain; Riethoven, Mark; Stoehr, Peter: EBIMed–text
crunching to gather facts for proteins from Medline. In: Bioinformatics 23 (2007), Jan,

175

http://dx.doi.org/10.1007/s00894-008-0353-5
http://dx.doi.org/10.1007/s00894-008-0353-5
http://dx.doi.org/10.1038/nrd3478


Bibliography

No. 2, pp. e237–e244. – URL http://dx.doi.org/10.1093/bioinformatics/
btl302.

[Reynolds et al. 1981] Reynolds, R. D.; Anson, N.; Narayanaswamy, T. R.; Howells,
L. K.; Hafermann, D. R.; Reeves, J. D.: Chemotherapy of metastatic carcinoma of
the breast. In: Mil Med 146 (1981), Nov, No. 11, pp. 767–770.

[Rink et al. 2011] Rink, Bryan; Harabagiu, Sanda; Roberts, Kirk: Automatic
extraction of relations between medical concepts in clinical texts. In: J Am Med Inform
Assoc 18 (2011), Sep, No. 5, pp. 594–600. – URL http://dx.doi.org/10.1136/
amiajnl-2011-000153.

[Roberts et al. 2009] Roberts, Angus; Gaizauskas, Robert; Hepple, Mark; Demetriou,
George; Guo, Yikun; Roberts, Ian; Setzer, Andrea: Building a semantically anno-
tated corpus of clinical texts. In: J Biomed Inform 42 (2009), Oct, No. 5, pp. 950–966. –
URL http://dx.doi.org/10.1016/j.jbi.2008.12.013.

[Roberts et al. 2008] Roberts, Angus; Gaizauskas, Robert; Hepple, Mark; Guo, Yikun:
Mining clinical relationships from patient narratives. In: BMC Bioinformatics 9 Suppl
11 (2008), pp. S3. – URL http://dx.doi.org/10.1186/1471-2105-9-S11-S3.

[Roberts et al. 2010] Roberts, Kirk; Harabagiu, Sanda; Rink, Bryan: Extraction of
medical concepts, assertions, and relations from discharge summaries for the fourth
i2b2/VA shared task. In: Proceedings of the 2010 i2b2/VA Workshop on Challenges in
Natural Language Processing for Clinical Data., 2010.

[Robertson et al. 1994] Robertson, Stephen; Walker, Steve; Jones, Susan; Hancock-
Beaulieu, Micheline; Gatford, Mike: Okapi at TREC-3. In: Proceedings of the Third
Text REtrieval Conference (TREC 1994), 1994.

[Ruch et al. 2008] Ruch, Patrick; Gobeill, Julien; Lovis, Christian; Geissbühler,
Antoine: Automatic medical encoding with SNOMED categories. In: BMC Med
Inform Decis Mak 8 Suppl 1 (2008), pp. S6. – URL http://dx.doi.org/10.1186/
1472-6947-8-S1-S6.

[Safavian and Landgrebe 1991] Safavian, Rasoul; Landgrebe, David: A Survey of
Decision Tree Classifier Methodology. In: IEEE transactions on systems, man, AND
cybernetics Vol. 3, 1991.

[Salton et al. 1997] Salton, Gerard; Wong, Andrew; Yang, CS: A vector space model
for automatic indexing. In: Readings in information retrieval, Morgan Kaufmann
Publishers Inc., 1997, pp. 273–280.

[Savova et al. 2008] Savova, Guergana K.; Coden, Anni R.; Sominsky, Igor L.;
Johnson, Rie; Ogren, Philip V.; de Groen, Piet C.; Chute, Christopher G.:
Word sense disambiguation across two domains: biomedical literature and clin-
ical notes. In: J Biomed Inform 41 (2008), Dec, No. 6, pp. 1088–1100. – URL
http://dx.doi.org/10.1016/j.jbi.2008.02.003.

176

http://dx.doi.org/10.1093/bioinformatics/btl302
http://dx.doi.org/10.1093/bioinformatics/btl302
http://dx.doi.org/10.1136/amiajnl-2011-000153
http://dx.doi.org/10.1136/amiajnl-2011-000153
http://dx.doi.org/10.1016/j.jbi.2008.12.013
http://dx.doi.org/10.1186/1471-2105-9-S11-S3
http://dx.doi.org/10.1186/1472-6947-8-S1-S6
http://dx.doi.org/10.1186/1472-6947-8-S1-S6
http://dx.doi.org/10.1016/j.jbi.2008.02.003


Bibliography

[Savova et al. 2010] Savova, Guergana K.; Masanz, James J.; Ogren, Philip V.; Zheng,
Jiaping; Sohn, Sunghwan; Kipper-Schuler, Karin C.; Chute, Christopher G.: Mayo
clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture,
component evaluation and applications. In: J Am Med Inform Assoc 17 (2010), No. 5,
pp. 507–513. – URL http://dx.doi.org/10.1136/jamia.2009.001560.

[Schlich 2007] Schlich, Thomas: Contemporary history of medicine: issues and
approaches. In: Medizinhist J 42 (2007), No. 3-4, pp. 269–298.

[Schuemie et al. 2005] Schuemie, Martijn J.; Kors, Jan A.; Mons, Barend: Word sense
disambiguation in the biomedical domain: an overview. In: J Comput Biol 12 (2005),
Jun, No. 5, pp. 554–565. – URL http://dx.doi.org/10.1089/cmb.2005.12.
554.

[Schultheisz 1981] Schultheisz, R. J.: TOXLINE: evolution of an online interactive
bibliographic database. In: J Am Soc Inf Sci 32 (1981), Nov, No. 6, pp. 421–429.

[Segota et al. 2008] Segota, Igor; Bartonicek, Nenad; Vlahovicek, Kristian: MAD-
Net: microarray database network web server. In: Nucleic Acids Res 36 (2008), Jul,
No. Web Server issue, pp. W332–W335. – URL http://dx.doi.org/10.1093/
nar/gkn289.

[Segura-Bedmar et al. 2011] Segura-Bedmar, Isabel; Martinez, Paloma; Sanchez-
Cisneros, Daniel: The 1st DDIExtraction-2011 Challenge Task: Extraction of Drug-
Drug Interactions from Biomedical Texts. In: Proceedings of workshop on First Challenge
Task: Drug-Drug Interaction Extraction, 2011, pp. 1–9.

[Sevenster et al. 2011] Sevenster, Merlijn; van Ommering, Rob; Qian, Yuechen:
Automatically Correlating Clinical Findings and Body Locations in Radiology Reports
Using MedLEE. In: J Digit Imaging (2011), Jul. – URL http://dx.doi.org/10.
1007/s10278-011-9411-0.

[Sewell 1964] Sewell, W.: MEDICAL SUBJECT HEADINGS IN MEDLARS. In: Bull
Med Libr Assoc 52 (1964), Jan, pp. 164–170.

[Sha and Pereira 2003] Sha, Fei; Pereira, Fernando: Shallow parsing with conditional
random fields. In: Proceeding of NAACL ’03 Proceedings of the 2003 Conference of
the North American Chapter of the Association for Computational Linguistics on Human
Language Technology, 2003.

[Shetty and Dalal 2011] Shetty, Kanaka D.; Dalal, Siddhartha R.: Using information
mining of the medical literature to improve drug safety. In: J Am Med Inform
Assoc 18 (2011), Sep, No. 5, pp. 668–674. – URL http://dx.doi.org/10.1136/
amiajnl-2011-000096.

[Siadaty et al. 2007] Siadaty, Mir S.; Shu, Jianfen; Knaus, William A.: Relemed:
sentence-level search engine with relevance score for the MEDLINE database of

177

http://dx.doi.org/10.1136/jamia.2009.001560
http://dx.doi.org/10.1089/cmb.2005.12.554
http://dx.doi.org/10.1089/cmb.2005.12.554
http://dx.doi.org/10.1093/nar/gkn289
http://dx.doi.org/10.1093/nar/gkn289
http://dx.doi.org/10.1007/s10278-011-9411-0
http://dx.doi.org/10.1007/s10278-011-9411-0
http://dx.doi.org/10.1136/amiajnl-2011-000096
http://dx.doi.org/10.1136/amiajnl-2011-000096


Bibliography

biomedical articles. In: BMC Med Inform Decis Mak 7 (2007), pp. 1. – URL http:
//dx.doi.org/10.1186/1472-6947-7-1.

[Smith et al. 2004] Smith, L.; Rindflesch, T.; Wilbur, W. J.: MedPost: a part-of-speech
tagger for bioMedical text. In: Bioinformatics 20 (2004), Sep, No. 14, pp. 2320–2321. –
URL http://dx.doi.org/10.1093/bioinformatics/bth227.

[Southan et al. 2009] Southan, Christopher; Várkonyi, Péter; Muresan, Sorel:
Quantitative assessment of the expanding complementarity between public and
commercial databases of bioactive compounds. In: J Cheminform 1 (2009), No. 1,
pp. 10. – URL http://dx.doi.org/10.1186/1758-2946-1-10.

[Sperandio et al. 2009] Sperandio, O.; Petitjean, M.; Tuffery, P.: wwLigCSRre: a 3D
ligand-based server for hit identification and optimization. In: Nucleic Acids Res 37

(2009), Jul, No. Web Server issue, pp. W504–W509. – URL http://dx.doi.org/
10.1093/nar/gkp324.

[Spärck Jones 1972] Spärck Jones, Karenal: A statistical interpretation of term
specificity and its application in retriev. In: Journal of Documentation 28 (1972),
pp. 11–21.

[Stevenson et al. 2011] Stevenson, Mark; Agirre, Eneko; Soroa, Aitor: Exploit-
ing domain information for Word Sense Disambiguation of medical documents.
In: J Am Med Inform Assoc (2011), Sep. – URL http://dx.doi.org/10.1136/
amiajnl-2011-000415.

[Strömbergsson and Kleywegt 2009] Strömbergsson, Helena; Kleywegt, Gerard J.:
A chemogenomics view on protein-ligand spaces. In: BMC Bioinformatics 10 Suppl 6

(2009), pp. S13. – URL http://dx.doi.org/10.1186/1471-2105-10-S6-S13.

[Sweeney et al. 2005] Sweeney, James P.; Portell, Keith S.; Houck, James A.; Smith,
Reginald D.; Mentel, John J.: Patient note deidentification using a find-and-replace
iterative process. In: J Healthc Inf Manag 19 (2005), No. 3, pp. 65–70.

[Tari et al. 2010] Tari, Luis; Anwar, Saadat; Liang, Shanshan; Cai, James; Baral,
Chitta: Discovering drug-drug interactions: a text-mining and reasoning ap-
proach based on properties of drug metabolism. In: Bioinformatics 26 (2010), Sep,
No. 18, pp. i547–i553. – URL http://dx.doi.org/10.1093/bioinformatics/
btq382.

[Thomas et al. 2011] Thomas, Philippe; Neves, Mariana; Solt, Ill’es; Tikk, Domonkos;
Leser, Ulf: Relation Extraction for Drug-Drug Interactions using Ensemble Learning.
In: Proceedings of the First Challenge Task: Drug-Drug Interaction Extraction, 2011.

[Thorn et al. 2005] Thorn, Caroline F.; Klein, Teri E.; Altman, Russ B.: PharmGKB:
the pharmacogenetics and pharmacogenomics knowledge base. In: Methods Mol Biol
311 (2005), pp. 179–191. – URL http://dx.doi.org/10.1385/1-59259-957-5:
179.

178

http://dx.doi.org/10.1186/1472-6947-7-1
http://dx.doi.org/10.1186/1472-6947-7-1
http://dx.doi.org/10.1093/bioinformatics/bth227
http://dx.doi.org/10.1186/1758-2946-1-10
http://dx.doi.org/10.1093/nar/gkp324
http://dx.doi.org/10.1093/nar/gkp324
http://dx.doi.org/10.1136/amiajnl-2011-000415
http://dx.doi.org/10.1136/amiajnl-2011-000415
http://dx.doi.org/10.1186/1471-2105-10-S6-S13
http://dx.doi.org/10.1093/bioinformatics/btq382
http://dx.doi.org/10.1093/bioinformatics/btq382
http://dx.doi.org/10.1385/1-59259-957-5:179
http://dx.doi.org/10.1385/1-59259-957-5:179


Bibliography

[Tikk and Solt 2010] Tikk, Domonkos; Solt, Illés: Improving textual medication
extraction using combined conditional random fields and rule-based systems. In: J
Am Med Inform Assoc 17 (2010), No. 5, pp. 540–544. – URL http://dx.doi.org/
10.1136/jamia.2010.004119.

[Tomanek et al. 2007a] Tomanek, Katrin; Wermter, Joachim; Hahn, Udo: An
Approach to Text Corpus Construction which Cuts Annotation Costs and Maintains
Reusability of Annotated Data. In: Proceedings of the Joint Meeting of the Conference
on Empirical Methods on Natural Language Processing and the Conference on Natural
Language Learning, 2007.

[Tomanek et al. 2007b] Tomanek, Katrin; Wermter, Joachim; Hahn, Udo: Sentence
and token splitting based on conditional random fields. In: Proceedings of the 10th
Conference of the Pacific Association for Computational Linguistics, 2007, pp. 19–21.

[Torii and Liu 2010] Torii, M; Liu, H: BioTagger-GM for detecting clinical concepts in
electronic medical reports. . In: Proceedings of the 2010 i2b2/VA Workshop on Challenges
in Natural Language Processing for Clinical Data., 2010.

[Trieschnigg et al. 2009] Trieschnigg, Dolf; Pezik, Piotr; Lee, Vivian; de Jong,
Franciska; Kraaij, Wessel; Rebholz-Schuhmann, Dietrich: MeSH Up: effec-
tive MeSH text classification for improved document retrieval. In: Bioinformatics
25 (2009), Jun, No. 11, pp. 1412–1418. – URL http://dx.doi.org/10.1093/
bioinformatics/btp249.

[Tsai 2006] Tsai, Richard Tzong-Han: A Hybrid Approach to Biomedical Named
Entity Recognition and Semantic Role Labeling. In: Proceedings of the Human Language
Technology Conference of the North American Chapter of the ACL, 2006, pp. 243–246.

[Tsuruoka et al. 2005] Tsuruoka, Yoshimasa; Tateishi, Yuka; Kim, Jin-Dong; Ohta,
Tomoko; McNaught, John; Ananiadou, Sophia; Tsujii, Junichi: Developing a
Robust Part-of-Speech Tagger for Biomedical Text. In: Lecture Notes in Computer
Science 3746 (2005), pp. 382–392.

[Tsuruoka et al. 2008] Tsuruoka, Yoshimasa; Tsujii, Jun’ichi; Ananiadou, Sophia:
FACTA: a text search engine for finding associated biomedical concepts. In: Bioin-
formatics 24 (2008), Nov, No. 21, pp. 2559–2560. – URL http://dx.doi.org/10.
1093/bioinformatics/btn469.

[Uzuner 2008] Uzuner, Ozlem: Second i2b2 workshop on natural language process-
ing challenges for clinical records. In: AMIA Annu Symp Proc (2008), pp. 1252–1253.

[Uzuner et al. 2010] Uzuner, Ozlem; Solti, Imre; Cadag, Eithon: Extracting med-
ication information from clinical text. In: J Am Med Inform Assoc 17 (2010), No. 5,
pp. 514–518. – URL http://dx.doi.org/10.1136/jamia.2010.003947.

179

http://dx.doi.org/10.1136/jamia.2010.004119
http://dx.doi.org/10.1136/jamia.2010.004119
http://dx.doi.org/10.1093/bioinformatics/btp249
http://dx.doi.org/10.1093/bioinformatics/btp249
http://dx.doi.org/10.1093/bioinformatics/btn469
http://dx.doi.org/10.1093/bioinformatics/btn469
http://dx.doi.org/10.1136/jamia.2010.003947


Bibliography

[Uzuner et al. 2011] Uzuner, Ozlem; South, Brett R.; Shen, Shuying; Duvall,
Scott L.: 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical
text. In: J Am Med Inform Assoc 18 (2011), Sep, No. 5, pp. 552–556. – URL http:
//dx.doi.org/10.1136/amiajnl-2011-000203.

[Uzuner et al. 2007] Uzuner, Ozlem; Szolovits, Peter; Kohane, Isaac: i2b2 Workshop
on Natural Language Processing Challenges for Clinical Records. 2007.

[Van De Belt et al. 2010] Van De Belt, Tom H.; Engelen, Lucien J L P G.; Berben,
Sivera A A.; Schoonhoven, Lisette: Definition of Health 2.0 and Medicine 2.0:
a systematic review. In: J Med Internet Res 12 (2010), No. 2, pp. e18. – URL
http://dx.doi.org/10.2196/jmir.1350.

[van Rijsbergen 1975] van Rijsbergen, Keith: Information Retrieval. In: Butterworths
(1975).

[Vandenbroucke 2001] Vandenbroucke, J. P.: In defense of case reports and case
series. In: Ann Intern Med 134 (2001), Feb, No. 4, pp. 330–334.

[Vapnik 1995] Vapnik, Vladimir: The Nature of Statistical Learning Theory. In:
Springer (1995).

[Verspoora et al. 2009] Verspoora, K.; Roeder, C.; Johnson, H.; Cohen, K.; Baum-
gartner, W.; Hunter, L.: Information Extraction of Normalized Protein Interaction
Pairs Utilizing Linguistic and Semantic Cues. In: Proceedings of the BioCreative II. 5
Workshop 2009 on Digital Annotations, 2009.

[Vervloet and Durham 1998] Vervloet, D.; Durham, S.: Adverse reactions to drugs.
In: BMJ 316 (1998), May, No. 7143, pp. 1511–1514.

[Vincent et al. 2001] Vincent, C.; Neale, G.; Woloshynowych, M.: Adverse events
in British hospitals: preliminary retrospective record review. In: BMJ 322 (2001), Mar,
No. 7285, pp. 517–519.

[Voorhees 2000] Voorhees, Ellen: Variations in relevance judgments and the measure-
ment of retrieval effectiveness. In: Information Processing and Management 36 (2000),
pp. 697–716.

[Voorhees and Tong 2011] Voorhees, Ellen; Tong, Richard: Overview of the TREC
2011 Medical Records Track. In: Notebook Proceedings of the Tweentieth Text REtrieval
Conference, 2011.

[Wang and Hauskrecht 2008] Wang, Shuguang; Hauskrecht, Milos: Improving
biomedical document retrieval using domain knowledge. In: Proceedings of the 31st
annual international ACM SIGIR conference on Research and development in information
retrieval, 2008.

180

http://dx.doi.org/10.1136/amiajnl-2011-000203
http://dx.doi.org/10.1136/amiajnl-2011-000203
http://dx.doi.org/10.2196/jmir.1350


Bibliography

[Warnekar et al. 2007] Warnekar, Pradnya P.; Bouhaddou, Omar; Parrish, Fola; Do,
Nhan; Kilbourne, John; Brown, Steven H.; Lincoln, Michael J.: Use of RxNorm
to exchange codified drug allergy information between Department of Veterans
Affairs (VA) and Department of Defense (DoD). In: AMIA Annu Symp Proc (2007),
pp. 781–785.

[Wilbur et al. 2006] Wilbur, W J.; Rzhetsky, Andrey; Shatkay, Hagit: New directions
in biomedical text annotation: definitions, guidelines and corpus construction. In:
BMC Bioinformatics 7 (2006), pp. 356. – URL http://dx.doi.org/10.1186/
1471-2105-7-356.

[Wishart 2007] Wishart, David S.: In silico drug exploration and discovery using
DrugBank. In: Curr Protoc Bioinformatics Chapter 14 (2007), Jun, pp. Unit 14.4. – URL
http://dx.doi.org/10.1002/0471250953.bi1404s18.

[Wishart 2008a] Wishart, David S.: DrugBank and its relevance to pharma-
cogenomics. In: Pharmacogenomics 9 (2008), Aug, No. 8, pp. 1155–1162. – URL
http://dx.doi.org/10.2217/14622416.9.8.1155.

[Wishart 2008b] Wishart, David S.: Identifying putative drug targets and po-
tential drug leads: starting points for virtual screening and docking. In: Meth-
ods Mol Biol 443 (2008), pp. 333–351. – URL http://dx.doi.org/10.1007/
978-1-59745-177-2_17.

[Wishart et al. 2008] Wishart, David S.; Knox, Craig; Guo, An C.; Cheng, Dean;
Shrivastava, Savita; Tzur, Dan; Gautam, Bijaya; Hassanali, Murtaza: DrugBank:
a knowledgebase for drugs, drug actions and drug targets. In: Nucleic Acids Res 36

(2008), Jan, No. Database issue, pp. D901–D906. – URL http://dx.doi.org/10.
1093/nar/gkm958.

[Wishart et al. 2006] Wishart, David S.; Knox, Craig; Guo, An C.; Shrivastava,
Savita; Hassanali, Murtaza; Stothard, Paul; Chang, Zhan; Woolsey, Jennifer:
DrugBank: a comprehensive resource for in silico drug discovery and exploration.
In: Nucleic Acids Res 34 (2006), Jan, No. Database issue, pp. D668–D672. – URL
http://dx.doi.org/10.1093/nar/gkj067.

[Wu et al. 2011] Wu, Stephen; Wagholikar, Kavishwar; Sohn, Sunghwan; Kaggal,
Vinod; Liu, Hongfang: Empirical Ontologies for Cohort Identification. In: Notebook
Proceedings of Twenteith Text Retrieval Conference, 2011.

[Xu et al. 2010] Xu, Hua; Stenner, Shane P.; Doan, Son; Johnson, Kevin B.; Waitman,
Lemuel R.; Denny, Joshua C.: MedEx: a medication information extraction system
for clinical narratives. In: J Am Med Inform Assoc 17 (2010), No. 1, pp. 19–24. – URL
http://dx.doi.org/10.1197/jamia.M3378.

181

http://dx.doi.org/10.1186/1471-2105-7-356
http://dx.doi.org/10.1186/1471-2105-7-356
http://dx.doi.org/10.1002/0471250953.bi1404s18
http://dx.doi.org/10.2217/14622416.9.8.1155
http://dx.doi.org/10.1007/978-1-59745-177-2_17
http://dx.doi.org/10.1007/978-1-59745-177-2_17
http://dx.doi.org/10.1093/nar/gkm958
http://dx.doi.org/10.1093/nar/gkm958
http://dx.doi.org/10.1093/nar/gkj067
http://dx.doi.org/10.1197/jamia.M3378


Bibliography

[Yang and Liu 1999] Yang, Yiming; Liu, Xin: A re-examination of text categorization
methods. In: Proceedings of ACM SIGIR Conference on Research and Development in
Information Retrieval, 1999, pp. 42–49.

[Yang et al. 2010] Yang, Zhihao; Lin, Hongfei; Li, Yanpeng: BioPPISVMExtractor:
a protein-protein interaction extractor for biomedical literature using SVM and
rich feature sets. In: J Biomed Inform 43 (2010), Feb, No. 1, pp. 88–96. – URL
http://dx.doi.org/10.1016/j.jbi.2009.08.013.

[Ye et al. 2011] Ye, Hao; Ye, Li; Kang, Hong; Zhang, Duanfeng; Tao, Lin; Tang, Kailin;
Liu, Xueping; Zhu, Ruixin; Liu, Qi; Chen, Y. Z.; Li, Yixue; Cao, Zhiwei: HIT: linking
herbal active ingredients to targets. In: Nucleic Acids Res 39 (2011), Jan, No. Database
issue, pp. D1055–D1059. – URL http://dx.doi.org/10.1093/nar/gkq1165.

[Yeh et al. 2005] Yeh, Alexander; Morgan, Alexander; Colosimo, Marc; Hirschman,
Lynette: BioCreAtIvE task 1A: gene mention finding evaluation. In: BMC Bioin-
formatics 6 Suppl 1 (2005), pp. S2. – URL http://dx.doi.org/10.1186/
1471-2105-6-S1-S2.

[Yeo and Burge 2004] Yeo, Gene; Burge, Christopher B.: Maximum entropy modeling
of short sequence motifs with applications to RNA splicing signals. In: J Comput
Biol 11 (2004), No. 2-3, pp. 377–394. – URL http://dx.doi.org/10.1089/
1066527041410418.

[Zhang et al. 2011] Zhang, Zengming; Li, Yu; Lin, Biaoyang; Schroeder, Michael;
Huang, Bingding: Identification of cavities on protein surface using multiple
computational approaches for drug binding site prediction. In: Bioinformatics
27 (2011), Aug, No. 15, pp. 2083–2088. – URL http://dx.doi.org/10.1093/
bioinformatics/btr331.

[Zheng et al. 2011] Zheng, Nan; Tsai, Hobart N.; Zhang, Xinyuan; Shedden, Kerby;
Rosania, Gus R.: The Subcellular Distribution of Small Molecules: A Meta-Analysis.
In: Mol Pharm (2011), Aug. – URL http://dx.doi.org/10.1021/mp200093z.

[Zhou et al. 2004] Zhou, GuoDong; Zhang, Jie; Su, Jian; Shen, Dan; Tan, ChewLim:
Recognizing names in biomedical texts: a machine learning approach. In: Bioin-
formatics 20 (2004), May, No. 7, pp. 1178–1190. – URL http://dx.doi.org/10.
1093/bioinformatics/bth060.

[Zhu et al. 2003] Zhu, Lingyun; Wu, Baoming; Cao, Changxiu: [Introduction to
medical data mining]. In: Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 20 (2003), Sep,
No. 3, pp. 559–562.

[Zhu et al. 2009a] Zhu, MingZhu; Gao, Lei; Li, Xia; Liu, ZhiCheng: Identifying drug-
target proteins based on network features. In: Sci China C Life Sci 52 (2009), Apr, No. 4,
pp. 398–404. – URL http://dx.doi.org/10.1007/s11427-009-0055-y.

182

http://dx.doi.org/10.1016/j.jbi.2009.08.013
http://dx.doi.org/10.1093/nar/gkq1165
http://dx.doi.org/10.1186/1471-2105-6-S1-S2
http://dx.doi.org/10.1186/1471-2105-6-S1-S2
http://dx.doi.org/10.1089/1066527041410418
http://dx.doi.org/10.1089/1066527041410418
http://dx.doi.org/10.1093/bioinformatics/btr331
http://dx.doi.org/10.1093/bioinformatics/btr331
http://dx.doi.org/10.1021/mp200093z
http://dx.doi.org/10.1093/bioinformatics/bth060
http://dx.doi.org/10.1093/bioinformatics/bth060
http://dx.doi.org/10.1007/s11427-009-0055-y


Bibliography

[Zhu et al. 2009b] Zhu, Mingzhu; Gao, Lei; Li, Xia; Liu, Zhicheng; Xu, Chun; Yan,
Yuqing; Walker, Erin; Jiang, Wei; Su, Bin; Chen, Xiujie; Lin, Hui: The analysis of
the drug-targets based on the topological properties in the human protein-protein
interaction network. In: J Drug Target 17 (2009), Aug, No. 7, pp. 524–532. – URL
http://dx.doi.org/10.1080/10611860903046610.

[Zobel 1998] Zobel, Justin: How reliable are the results of large-scale information
retrieval experiments? In: Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval, 1998.

[Zobel and Moffat 1998] Zobel, Justin; Moffat, Alistair: Exploring the similarity
space. In: SIGIR Forum 32 (1998), pp. 18–34.

183

http://dx.doi.org/10.1080/10611860903046610

	List of Figures
	List of Tables
	Introduction
	Overview on Healthcare and Medicine
	Scientific Problems and Research Motivation
	Goals of the Thesis
	Outline of the Thesis

	Medical Information Resources
	Terminological Resources
	Medical Subject Headings
	Unified Medical Language System
	Systematized Nomenclature of Medicine
	Anatomical Therapeutic Chemical Classification System
	Medical Dictionary for Regulatory Activities
	WHO Family of International Classifications

	Knowledgebases
	DrugBank
	PharmaPendium
	MedicineNet
	Side Effect Resource
	MedlinePlus

	Bibliographic Resources
	MEDLINE
	TOXLINE
	PubMed Central
	ClinicalTrials Database
	DailyMed
	Patent Databases


	Foundational Aspects of Biomedical Text Mining
	Fundamentals of Text Processing
	Information Retrieval
	Vector Space Model
	Similarity Scoring

	Named Entity Recognition
	Dictionary-based Approach
	Rule-based Approach
	Machine Learning-based Approach
	Hybrid Approach

	Context Disambiguation
	Entity Disambiguation
	Assertion Classification

	Relationship Extraction
	Natural Language Processing Techniques
	Sentence Splitting
	Tokenization
	Word Normalization
	Parts-Of-Speech Tagging
	Parsing

	Fundamentals of Machine Learning
	Supervised Classification
	k-Nearest Neighbor
	Decision Tree
	Naïve Bayes
	Support Vector Machine
	Maximum Entropy
	Conditional Random Fields

	Active Learning
	Performance Evaluation Techniques
	Cross-Validation
	Bootstrapping

	Performance Evaluation Metrics
	F1 score
	Accuracy
	Mean Average Precision
	Binary Preference Score
	R-Precision

	Text Mining Technologies and Scenarios in Biomedicine
	Information Retrieval Technologies
	SCAIVIEW
	FACTA
	MedSearch
	Curbside.MD
	MedicoPort
	Relemed
	EMERSE

	Information Extraction Technologies
	ProMiner
	MedLEE
	MedEx
	MERKI
	cTAKES
	SNOcat
	Textractor
	MetaMap
	SemRep

	Text Mining Scenarios
	I2B2 Challenge
	TREC
	CMC Challenge
	TMMR


	Evaluation of Terminologies for Medical Disorder Recognition
	Terminological Resources
	Dictionary Characteristics
	Corpus Characteristics and Annotation
	Results of Dictionary Performance
	Dictionary Curation
	Acronym Disambiguation

	Discussion

	Machine Learning Strategy for Medical Disorder Recognition
	Corpus Generation
	Training with Conditional Random Fields
	Feature Extraction

	Performance Evaluation Criteria
	Preliminary Evaluation of NER
	Training Corpus Extension and Evaluation during Active Learning
	Feature Selection
	Comparative Assessment of Disorder NER
	Error Analysis
	Discussion

	Concept Identification and Assertion Classification in E-Health Records
	The Fourth I2B2/VA challenge 2010
	Goals and the Corpus Characteristics
	Concept Identification with CRF
	Feature Sets for Concept Identification

	Assertion Classification
	Feature Sets for Assertion Classification

	Performance Evaluation Criteria
	Evaluation of Concept Identification
	Evaluation of Assertion Classification
	Final Evaluation over the Test Set
	Error Analysis
	Summary on Competing Systems at I2B2 2010
	Discussion

	Semantic Platform for Information Retrieval from E-Health Records
	Task Description
	Data Preprocessing
	Patient Demography Identification
	Concept and Relation Identification
	Assertion Classification on Medical Problems

	Indexing
	Querying and Retrieval
	Results
	Performance Evaluation
	Evaluation Results

	Error Analysis
	Summary on Competing systems at TRECMED 2011
	Discussion

	Technology Survey in Patents
	Task Description
	Data Preprocessing
	Concept Identification in TS Topics
	Concept Tagging in TREC Collection
	Document Indexing
	Query and Retrieval
	Results and Discussion
	Performance Evaluation
	Results of the TS Task

	Error Analysis
	Discussion

	Prior Art Search in Patents based on Semantic Concepts
	Task Description
	Data Preprocessing
	Recognition of Biomedical and Chemical Entities
	Indexing
	Querying and Retrieval
	Results
	Co-Citation Analysis

	Discussion

	Adverse Drug Event Detection in Medical Case Reports
	Corpus Generation
	The ADE Corpus Characteristics
	Document Sampling

	Annotation Guidelines
	Annotation Methodology
	Annotation Participants
	Annotation Workflow
	Annotation Harmonization

	Assessment of Inter-Annotator Agreement
	Inter-Annotator Agreement Metrics
	Inter-Annotator Agreement Calculation
	Semantic Corpus Analysis

	Corpus Preparation for Sentence Classification
	Sentence Classification Framework
	Feature Generation

	Results of Sentence Classification
	Performance Evaluation Criteria
	Assessment of Sentence Classification
	Recall Optimization by Instance Selection
	Error Analysis of Sentence Classification
	Retrospective Assessment of NER
	Use-Case Study of Adverse Effect Classification

	Discussion

	Conclusion and Perspectives
	Conclusion
	Future Perspectives

	TREC Topics
	Topics used for technology survey search in patents.
	Topics used for searching in e-health records.

	Bibliography

