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Abstract

Sequential MCMC methods are a class of stochastic numerical integration meth-
ods for target measures µ which cannot feasibly be attacked directly with standard
MCMC methods due to the presence of multiple well-separated modes. The ba-
sic idea is to approximate the target distribution µ with a sequence of distributions
µ0, . . . , µn such that µn = µ is the actual target distribution and such that µ0 is easy
to sample from. The algorithm constructs a system of N particles which sequentially
approximates the measures µ0 to µn. The algorithm is initialized with N indepen-
dent samples from µ0 and then alternates two types of steps, Importance Sampling
Resampling and MCMC: In the Importance Sampling Resampling steps, a cloud of
particles approximating µk is transformed into a cloud of particles approximating
µk+1 by randomly duplicating and eliminating particles in a suitable way depending
on the relative density between µk+1 and µk. In the MCMC steps, particles move
independently according to an MCMC dynamics for the current target distribution
in order to adjust better to the changed environment.

Our main question is the following: How well does the mean ηNn (f) of an integrand
f with respect to the empirical measure ηNn of the particle system approximate the
integral of interest µn(f)? We address this question by proving non-asymptotic error
bounds of the type

E[(µn(f)− ηNn (f))2] ≤ Cn(f)

N
,

where E is the expectation with respect to the randomness in the particle system
and Cn(f) is a moderately-sized constant depending on the model parameters and
on the function f in an explicit way. More specifically, our results center around
two main questions: 1) Under which conditions can the smoothing effect of the
MCMC steps balance the additional variance introduced into the system through
the resampling step? 2) Under which conditions does the particle dynamics work
well in multimodal settings where conventional MCMC methods are trapped in local
modes? We address both questions by proving suitable non-asymptotic error bounds
which depend on a) an upper bound on relative densities, b) constants associated
with global or local mixing properties of the MCMC dynamics, and c) the amount
of probability mass shifted between effectively disconnected components of the state
space as we move from µ0 to µn.
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1 Introduction

1.1 Overview

Since the 1950s, Markov Chain Monte Carlo (MCMC) methods have become an
increasingly popular tool for challenging numerical integration problems in a wide
variety of fields ranging from chemical physics to financial econometrics. The basic
idea is to approximate the integral of a function f with respect to a measure µ by
simulating a Markov chain with ergodic measure µ and to calculate the ergodic av-
erage of f evaluated at the positions visited by the Markov chain. By construction,
MCMC methods only work well if the simulated Markov chain reaches equilibrium
sufficiently quickly. Roughly speaking, this is the case when µ is essentially uni-
modal and it is not the case when µ is severely multimodal in the sense of being
characterized by several well-separated modes. In the latter case, MCMC methods
tend to get stuck in local modes for very long times and therefore approach their
equilibrium µ only on time-scales well beyond those that can feasibly be simulated.
This metastability phenomenon is a serious drawback of standard MCMC methods
in many applications.

Sequential MCMC methods are a class of algorithms which try to overcome this
problem. The basic idea is to approximate the target distribution µ with a sequence
of distributions µ0, . . . , µn such that µn = µ is the actual target distribution and
such that µ0 is easy to sample from. The algorithm constructs a system of N
particles which sequentially approximates the measures µ0 to µn. The algorithm is
initialized with N independent samples from µ0 and then alternates two types of
steps, Importance Sampling Resampling and MCMC: In the Importance Sampling
Resampling steps, a cloud of particles approximating µk is transformed into a cloud
of particles approximating µk+1 by randomly duplicating and eliminating particles
in a suitable way depending on the relative density between µk+1 and µk. This step
is similar to the selection step in models of population genetics where particles form
the population and where the relative density takes the role of a fitness function
guiding the number of off-spring a particle has. In the MCMC steps, particles move
independently according to an MCMC dynamics for the current target distribution
in order to adjust better to the changed environment. This step resembles the
mutation step in models of population genetics.

The main question studied in this thesis is the following: How well does the mean
ηNn (f) of f with respect to the empirical measure ηNn of the particle system ap-
proximate the integral of interest µn(f)? We address this question by proving non-
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asymptotic error bounds of the type

E[(µn(f)− ηNn (f))2] ≤ Cn(f)

N
,

where E is the expectation with respect to the randomness in the particle system
and Cn(f) is a moderately-sized constant depending on the model parameters and
on the function f in an explicit way. More specifically, our results center around
two main questions: 1) Under which conditions can the smoothing effect of the
MCMC steps balance the additional variance introduced into the system through
the resampling step? 2) Under which conditions does the particle dynamics work
well in multimodal settings where conventional MCMC methods are trapped in local
modes? We address both questions by proving suitable non-asymptotic error bounds
which depend on a) an upper bound on relative densities, b) constants associated
with global or local mixing properties of the MCMC dynamics, and c) the amount
of probability mass shifted between effectively disconnected components of the state
space as we move from µ0 to µn.

Outline

The remainder of the introduction is structured as follows: To fix ideas and nota-
tion, Section 1.2 introduces the Sequential MCMC algorithm analyzed subsequently.
Section 1.3 sets the algorithm into perspective by discussing its relation to other
Multilevel MCMC algorithms such as Tempering algorithms. Section 1.4 gives an
overview of our main results, relates them to known results and discusses the un-
derlying assumptions. Notably, while the later chapters of the text contain more
complete statements of our results as well as their proofs, most of the discussion is
found already in Section 1.4. The only major exception are two extended examples
in Sections 3.5 and 4.4. Sections 1.3 and 1.4 can be read independently.

The relation between Section 1.4 and the later chapters is as follows: Section 1.4.1
introduces our basic error bounds proved in Chapter 2. Section 1.4.2 presents our
results on stability of the algorithm under global mixing conditions found in Chapter
3. Section 1.4.3 discusses our results on the algorithm’s performance on multimodal
state spaces which are found in Chapters 4 and 5. Chapters 2 to 5 can be read in-
dependently with basically two exceptions: Some elementary notation is introduced
only at the beginning of Chapter 2; and suitable corollaries of the error bounds of
Chapter 2 are restated in the later chapters but not proved again.

1.2 Sequential MCMC

We now briefly introduce the Sequential MCMC algorithm studied subsequently.
The more technical details of the framework are postponed to Section 2.1.

Let µn be a probability distribution on a state space E, e.g. E = Rd, and let f :
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E → R be a bounded, measurable function. Our aim is to numerically approximate

µn(f) =

∫
E

f(x)µn(dx).

For this purpose we construct a system of N particles (ξin)Ni=1, ξ
i
n ∈ E, which are

each approximately distributed according to µn and estimate µn(f) by ηNn (f) which
is defined as the empirical mean

ηNn (f) =
1

N

N∑
i=1

f(ξin).

We are interested in settings where it is not tractable to generate samples from µn
directly or through a standard MCMC algorithm. For instance, this is typical of sit-
uations where µn possesses multiple well-separated modes. Instead we assume there
is a distribution µ0 on E which can easily be sampled and a sequence of probability
distributions (µk)

n−1
k=1 which interpolate between µ0 and µn in the following sense:

For k = 0, . . . , n − 1, µk and µk+1 are mutually absolutely-continuous and gk,k+1 is
the relative density of µk+1 with respect to µk, i.e.

µk+1(f) = µk(gk,k+1f)

for any bounded, measurable function f : E → R. To capture the idea of inter-
polation, we assume that there exists a constant γ > 1 such that gk,k+1(x) < γ
for all x ∈ E. Thus, the weight assigned to a point in E by µk+1 can be bounded
by γ times the weight assigned by µk. To formulate our algorithm we also need a
sequence Kk(x, dy) of transition kernels on E where Kk has stationary distribution
µk.

To fix ideas, Kk can be thought of as many steps of a local Metropolis dynamics
with respect to µk. Typical values of the parameters could be N = 1000, γ = 2 and
n = 10 so that µ0 and µn can differ locally by a factor of 210.

The algorithm proceeds by constructing a sequence of particle approximations to
the measures µk moving from the tractable µ0 to our target µn. The algorithm
alternates between two steps: 1) an Importance Sampling Resampling step which
moves from µk−1 to µk and 2) MCMC steps with respect to µk.

We start with N particles (ξi0)
N
i=1 drawn independently from µ0. Then, for k =

1, . . . , n we generate particles (ξ̂ik)
N
i=1 approximately distributed according to µk

through an Importance Sampling step with Multinomial Resampling: The parti-
cles ξ̂ik are drawn conditionally independently from the empirical distribution of the
particles (ξik−1)

N
i=1 weighted with the relative density gk−1,k,

P[ξ̂ik = ξjk−1|ξ
1
k−1, . . . , ξ

N
k−1] =

gk−1,k(ξ
j
k−1)∑N

l=1 gk−1,k(ξ
l
k−1)

.
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Next, the particles ξ̂ik are each moved conditionally independently with the MCMC
kernel Kk to generate new particle positions ξik, i.e.,

P[ξik ∈ dx|ξ̂1k, . . . , ξ̂Nk ] = Kk(ξ̂
i
k, dx).

This procedure is iterated until we obtain the particles (ξin)Ni=1. Note that in order
to run this algorithm it is sufficient to know the densities up to a normalizing factor.
Therefore, we denote in the following by gk−1,k an unnormalized version of gk−1,k
and state the algorithms in terms of gk−1,k.

To close this section, a few words on the name of the algorithm are in order. We
refer to it as the “Sequential MCMC algorithm” since it addresses the same problem
as MCMC with similar methods and since – unlike some related algorithms such
as Parallel Tempering – it moves sequentially from one distribution to the next.
We refer to it as “our” algorithm to distinguish it from other algorithms. This
should not obscure the fact that the algorithm is not our invention but rather an
algorithm which has been invented and generalized under several names in multiple
applications. For instance, the algorithm is a) an adaption of the Bootstrap Filter
of Gordon, Salmond and Smith (1993) to the problem of numerical integration, b) a
simple special case of the Sequential Importance Sampling with Resampling (SISR)
algorithm discussed in Cappé, Moulines and Rydén (2005), and c) a simple special
case of the the Sequential Monte Carlo Samplers of Del Moral, Doucet and Jasra
(2006).

1.3 Multilevel MCMC Methods

Section 1.3.1 introduces MCMC algorithms and their limitations concerning inte-
gration with respect to multimodal target distributions. Sections 1.3.2 to 1.3.5 are
concerned with multilevel MCMC methods which aim at overcoming these limita-
tions, namely Tempering algorithms (Section 1.3.3) and Sequential MCMC methods
(Section 1.3.5). These algorithms are conceptually and historically linked to algo-
rithms which address different problems, namely, the Simulated Annealing algorithm
for optimization and particle MCMC methods for filtering. These algorithms are
presented, respectively, in Sections 1.3.2 and 1.3.4. While there is no separate discus-
sion of Importance Sampling which is another important ingredient of our Sequential
MCMC algorithm, the idea is introduced in the context of Umbrella Sampling at
the end of Section 1.3.3.

1.3.1 MCMC and Multimodality

Consider the problem of approximating numerically the integral

µ(f) =

∫
E

f(x)µ(dx)

4



of the function f : E → R over a state space E with respect to some probability
measure µ. In many applications of interest, no feasible deterministic methods are
available for this problem. Notably, this is the case when E is in some sense large,
being, e.g., a complicated graph or a subset of Rd where d is large. For instance,
when E ⊂ Rd, the computational cost of approximating µ(f) to a fixed precision
using numerical integration methods based on regular grids increases exponentially
in the dimension d.

Monte Carlo methods are a class of widely-used solutions to this dilemma. The sim-
plest Monte Carlo algorithm consists in drawing N independent samples ξ1, . . . , ξN
from the distribution µ and to estimate µ(f) by

ηN(f) =
1

N

N∑
i=1

f(ξi).

Then we have E[ηN(f)] = µn(f) and, under weak additional conditions, by the
weak law of large numbers ηN(f) will converge stochastically to µ(f). Moreover,

by Chebyshev’s inequality the approximation error is of order O(N−
1
2 ) regardless of

the dimension of E.

The applicability of this simple Monte Carlo method is severely limited by the fact
that drawing samples from µ is not feasible in many applications. Notably, this is
the case when the distribution µ is only known up to a normalizing factor: Calculat-
ing the normalizing constant involves an integration over E and is thus typically not
easier than the original integration problem. Markov Chain Monte Carlo (MCMC)
Methods, first developed by Metropolis et al. (1953), offer a possibility to approxi-
mately sample a distribution which is known only up to a normalizing constant. The
basic idea is to run a Markov chain with ergodic distribution µ and to use its values
after sufficiently many steps as approximate samples from µ. Roughly speaking, this
is an easier problem than calculating a normalizing constant, since deciding whether
the chain should jump from its present location to a new one is a much more local
problem than integration over the whole state space. Basically, there are two main
ideas for constructing MCMC chains in practice: Updating the current state of the
chain only on a suitable lower dimensional sub-space of E (Gibbs-Sampling, Geman
and Geman (1984)) or slowing down an a priori unrelated Markov chain in an ap-
propriate way (Metropolis-Sampling, Metropolis et al. (1953), Hastings (1970)) See
Diaconis (2009) for a brief recent introduction to MCMC.

For future reference and for the sake of concreteness, we take a closer look at how
to construct a Metropolis chain with stationary distribution µ. Let r(x, dy) be
a Markov transition kernel on E. Then the transition kernel of the associated
Metropolis chain is defined by

p(x, dy) = r(x, dy) min

(
1,
µ(dy)r(y, dx)

µ(dx)r(x, dy)

)
.

This means that the proposals of the kernel r are sometimes rejected with probabil-
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ities chosen in a way such that p fulfills the detailed balance condition

µ(dx)p(x, dy) = min(µ(dy)r(y, dx), µ(dx)r(x, dy)) = µ(dy)p(y, dx)

with respect to µ. Note that in order to construct p it is sufficient to know µ up to a
constant factor. Under suitable regularity conditions, see, e.g, Chapter 6 of Robert
and Casella (2004) the states of a chain with transition kernel p will eventually be
distributed approximately according to µ.

While it is fairly easy to guarantee that a Markov chain with transition kernel p will
eventually converge, it is typically much harder to assess the speed of convergence
and thus the required running time of the associated MCMC algorithm. Even worse,
in many examples of interest, this convergence happens on a time-scale which is
much larger than any reasonable running time of the algorithm. Roughly, this
occurs when the target distribution µ is strongly multimodal in the sense that it
assigns large weights to regions of the state space which are separated by areas of
little weight. Then a Metropolis chain which proposes small changes to the current
state in each step will typically get trapped near one mode for a long time and
will only move to another mode after making many transitions which have a low
acceptance probability.

This leads to the question why the proposal kernels r are usually chosen as kernels
which propose comparatively small changes to the current state, e.g., as local random
walk kernels. The reason for this is the following: In high dimensions, distributions
tend to be concentrated in relatively small areas. When the chain is within one mode,
we typically only have a substantial probability of proposing again a reasonably
likely state if the proposal is not too far from the current state. If proposals are
not local enough, the chain will thus be stuck in the same state for long periods
of time. Obviously, this is only one side of a trade-off: If proposals are too local
then the chain will accept most moves but it will move too slowly to explore the
state space well enough. There has been quite a lot of work on how to optimally
scale the proposal in the literature. For instance, the rule of thumb that an average
acceptance probability of 0.234 is optimal for random walk Metropolis chains has
been derived in several ways by now, see, e.g., Roberts and Rosenthal (2001) and
Sherlock and Roberts (2009).

To see how multimodality enters in a natural Bayesian estimation problem, consider
the problem of estimating a Gaussian mixture distribution1

ρ = 0.5N (µ1, 0.3) + 0.5N (µ2, 0.6)

on R where N (µ, σ2) denotes the Gaussian distribution with mean µ and variance
σ2. Assume that there are observed data X in the form of k draws from ρ and we
would like to estimate µ1 and µ2. Assume that the true values of µ1 and µ2 are

1A similar example is discussed in much more detail in Marin, Mengersen and Robert (2005).
See also Frühwirth-Schnatter (2007) which gives an extensive introduction to Bayesian mixture
estimation.
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given by (µ1, µ2) = (−1, 1). A standard Bayesian approach to this problem is to
assume a prior on µ1 and µ2, e.g., µ1 ∼ N (0, 1) and µ2 ∼ N (0, 1). Then, a posterior
distribution π(µ1, µ2|X) of (µ1, µ2) is calculated from the data by updating the
prior accordingly. To explore this distribution, an MCMC chain on R2 with target
distribution π(µ1, µ2|X) is simulated. If there are sufficiently many data points,
the largest mode of π(µ1, µ2|X) is near the true values (−1, 1). However, there will
be a second mode near (1,−1) since combining the “right” means with the wrong
variances still yields a better fit to the data than most of the other configurations:
If a local MCMC dynamics is trapped in (1,−1) it will take very long for it to get
near the true values (−1, 1).

While this two-dimensional example may look rather harmless, the problem gets
much difficult quickly if we increase the number of mixture components: The di-
mension grows linearly in the number of mixture components and the number of local
modes grows exponentially. This behavior is typical for MCMC problems in Gaus-
sian mixture estimation. Multimodal problems are prevalent in many other fields as
well including spin-systems below the critical temperature in statistical physics, or
molecular simulations in chemical physics, see Liu (2001) for short introductions to
various applications.

Note also that “convergence diagnostics” such as auto-correlation times derived from
the observed dynamics will typically fail to detect slow mixing in examples such as
this one since the part of the state space which is visited at all by the dynamics is
explored rather well. Moreover, there is by now a sizeable mathematical literature
on proving fast or slow mixing of MCMC chains, see, e.g., the overviews in Diaconis
and Saloff-Coste (1998) and Levin, Peres and Wilmer (2009). Yet such results can,
of course, only detect slow mixing but they cannot prevent it.

Some authors have suggested to combine a local Metropolis dynamics with occa-
sional long range proposals (see, e.g., Guan and Krone (2007) and Bassetti and
Leisen (2007)). This leads to a dynamics which explores the state space well locally
despite the presence of long range proposals. However, unless the problem is good-
natured (e.g. low-dimensional, or symmetric in a way that can be exploited), there
seems to be little hope that these random long range proposals will discover distant
modes in a high-dimensional state space with non-negligible probability. The fol-
lowing sections present a number of algorithms which try to bridge distinct modes
of the target distribution in a more systematic fashion.

1.3.2 Simulated Annealing

Simulated Annealing (Kirkpatrick, Gelatt, and Vecchi (1983)) is possibly the most
widely used MCMC algorithm. Unlike the MCMC algorithms discussed in the pre-
vious section, it is intended as an optimization algorithm and not as a method
for numerical integration. We discuss it here since it can be seen as an important
precursor of both, the Tempering algorithms introduced in Section 1.3.3 and the
Sequential MCMC algorithm of Section 1.2.
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Figure 1.1: The effect of varying β

Assume we would like to find the global minima of a function H : E → R which is
bounded from below. Consider the family of probability distributions (µβ)β≥0 given
by

µβ(dx) =
1

Zβ
e−βH(x)π(dx)

where π is a reference measure such that the support of H is contained in the
support of π and Zβ is a normalizing constant. In analogy with statistical physics,
the parameter β is called the inverse temperature. Assume that π is such that µβ
is easy to sample from either directly or through MCMC for small values of β. The
larger β is, the more do small changes in H influence the distribution µβ. In the
limit β →∞, µβ converges to the uniform distribution on the global minima of H.

Since an MCMC dynamics with target µβ can be expected to be stuck in local modes
for large β, the idea behind Simulated Annealing is to start with small values of β
where the chain can move freely and to increase β only gradually. Specifically, the
Simulated Annealing algorithm consists in running an MCMC chain for the target
µβ and while gradually “cooling down” the system by increasing the value of β.

For an illustration of how a higher temperature can bridge components of the state
space which are effectively disconnected at lower temperatures consider Figure 1.1.
Depicted are distributions µβ for β ∈ {0.1, 0.3, 1} where the reference measure π is
the Lesbesgue measure on R and where H is chosen such that µ1 is the following
Gaussian mixture distribution,

µ1 = 0.05N (2, 0.2) + 0.15N (−2, 0.1) + 0.3N (−4, 0.2) + 0.5N (−8, 0.1).

To see why Simulated Annealing is generally not suitable for approximating inte-
grals with respect to µβ, i.e., to see why the distribution of the chain at inverse
temperature β is generally not close to µβ, consider a situation where H has two
local minima. Assume that there is a β∗ such that for β < β∗ a local Metropolis dy-
namics with respect to µβ mixes well while for β > β∗ the state space is divided into
two areas E1 and E2 around the respective modes which are essentially unconnected
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by the MCMC dynamics with respect to µβ. Such behavior is typical e.g. for spin
systems exhibiting a first order phase transition such as the mean field Ising model,
see, e.g. Madras and Piccioni (1999). In this case, for β > β∗ the probability that
the chain is in the region E1 will approximately equal µβ∗(E1), the probability of
the chain entering the region before it is separated, instead of the equilibrium value
µβ(E1). For similar reasons, convergence of the algorithm to a global minimum
can generally only be guaranteed when the process of cooling down is much slower
than any schedule that it feasible to implement (see Holley, Kusuoka and Stroock
(1989)). Nevertheless, Simulated Annealing is a widely used heuristic method for
solving challenging optimization problems.

Note that if we run multiple parallel copies of Simulated Annealing we almost arrive
at the Sequential MCMC method of Section 1.2 (with a less general but common
choice of the interpolating distributions µk). The crucial difference between the
algorithms lies in the Importance Sampling Resampling step employed in Sequential
MCMC. The purpose of this step can be seen in balancing the numbers of particles
between effectively disconnected components of the state space to avoid the problem
just described. See Section 1.3.5 for more discussion along these lines.

1.3.3 Simulated Tempering and Parallel Tempering

As discussed at the end of the preceding section, Sequential MCMC can be seen
as a modification of Simulated Annealing which adds a reweighting step to make it
an algorithm suitable for numerical integration. Another class of algorithms which
modify Simulated Annealing in order to change it in this direction are Tempering
algorithms, namely, Simulated Tempering and Parallel Tempering. The idea behind
these algorithms is to substitute the deterministic movements between temperature
levels from Simulated Annealing by an MCMC dynamics. As will become clear
below, both algorithms can be interpreted as Metropolis chains on an augmented
state space.

Simulated Tempering (Marinari and Parisi (1992), Geyer and Thompson (1995))
and Parallel Tempering (Geyer (1991), Hukushima and Nemoto (1996)) were both
developed independently in the statistics and statistical physics literatures. Interest-
ingly however, Simulated Tempering was introduced as an improvement over Parallel
Tempering in the statistics literature, while the opposite was the case in statistical
physics. As discussed below, there are sound arguments in support of both views.

Like in Section 1.2 we consider a probability distribution µn we would like to sam-
ple from, a probability distribution µ0 on E which can easily be sampled and a
sequence of probability distributions (µk)

n−1
k=1 which interpolate between µ0 and µn

in the following sense: For k = 0, . . . , n− 1, assume that µk and µk+1 are mutually
absolutely-continuous. Denote by gk,k+1 the relative density of µk+1 with respect to
µk. Most of the literature on Tempering algorithms has considered the case where
µk(dx) ∼ exp(−βkH(x))µ0(dx) for a suitable increasing sequence (βk)k of inverse
temperatures – thus the name Tempering – but as already pointed out in Geyer
(1991) this is not a necessity.
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Simulated Tempering

The Simulated Tempering algorithm consists in running an MCMC dynamics on
the augmented state space E × I where I = {0, . . . , n}. At each point in time the
state (x, k) of the chain consists of a position x in E and a label k which denotes
the current “temperature level”. From position (x, k), the Simulated Tempering
chain makes two types of moves: Level moves which vary x and keep k fixed and
temperature moves which change k to k+1 or k−1 and keep x fixed. There are many
possibilities for choosing between these two types of moves, for instance, one can flip
a coin in each step to decide whether to make a level move or a temperature move.
Level moves are steps of a standard MCMC dynamics with target distribution µk
as introduced in Section 1.3.1. Temperature moves are essentially Metropolis moves
on I with a random walk proposal: When making a level move from position (x, k),
0 < k < n, the chain moves to (x, k + 1) with probability

1

2
min(1, gk,k+1(x))

and to (x, k − 1) with probability

1

2
min(1, gk,k−1(x))

where gk,k−1 = 1/gk−1,k is the relative density of µk−1 with respect to µk. With the
remaining probability, the chain stays in (x, k). The transitions from (x, 0) to (x, 1)
and from (x, n) to (x, n− 1) are defined accordingly.

It is straightforward to check that the reversible distribution π of this dynamics is
given by

π(dx, k) =
1

n+ 1
πk(dx),

so that in equilibrium the chain spends equal amounts of time at each temperature
level. Moreover, conditional on being currently at level k, the position x of the
chain is approximately a µk distributed random variable. The main idea behind the
algorithm is that the chain can move between well-separated modes of µn by moving
from level n to level 0 where the chain mixes quickly and then back to level n.

There are many non-trivial design choices in implementing this algorithm, for exam-
ple: 1) How to choose the proportions of level moves and temperature moves is an
intricate question governed by the following trade-off: With too many temperature
moves the chain spends too little time at each level to equilibrate locally. With too
few temperature moves, the chain moves too slowly between temperature levels and
thus it takes too long to move from n to 0 and then back to n. Accordingly, one
should aim at an intermediate choice. See 2) There are virtually endless possibilities
in choosing µ0 and the interpolating distributions (µk)

n−1
k=1 , see the discussion in Sec-

tion 1.4.3.4. For more discussion of the practical design of Tempering algorithms,
see, e.g., Predescu, Predescu and Ciobanu (2004), Nadler and Hansmann (2007) and
Atchadé, Rosenthal and Roberts (2011).
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A major disadvantage of Simulated Tempering lies in the fact that in order to run
the algorithm the relative densities gk,k+1 need to be known explicitly – and not only
up to a normalizing constant. The reason is that the normalized relative densities
appear in the transition probabilities for the temperature moves stated above. It
should however be noted that there are efficient methods for estimating these nor-
malizing constants while the algorithm is running, see e.g. Liang (2005) and Park
and Pande (2007). Thus, Simulated Tempering is indeed utilized in applications. In
consequence, a practical application of Simulated Tempering will typically involve
acceptance probabilities which change over time so that it is a special case of an
Adaptive MCMC algorithm.2 Since the Simulated Tempering chain with adaptive
estimation of normalizing constants is not a time-homogeneous Markov chain – it is
not even a Markov chain – its convergence behavior is not easy to analyze rigorously.
In fact, this seems to be an open problem.

Parallel Tempering

The Parallel Tempering algorithm, also known, e.g., as Swapping, as Exchange
Monte Carlo and as Replica Exchange, overcomes the problem of requiring nor-
malized densities in the transition probabilities. The Parallel Tempering chain is a
Metropolis chain on En+1 with target distribution

π(dx) =
n∏
k=0

µk(dxk).

Therefore, in equilibrium the component xk of the state x = (x0, . . . , xn) ∈ En+1 of
the chain is approximately distributed according to µk for all k. Accordingly, the
Parallel Tempering chain can be used as an MCMC chain for calculating integrals
with respect to all µk and, in particular, with respect to our distribution of interest
µn. Like the Simulated Tempering chain, the Parallel Tempering chain alternates
level moves and temperature moves. In a level move, each component xk of the
current state (x0, . . . , xn) is updated conditionally independently with an MCMC
dynamics with target µk. In a temperature move, the chain uniformly picks a pair of
adjacent levels (k, k+ 1), k ∈ {0, . . . , n− 1} and proposes to move from the current
state x = (x0, . . . , xk, xk+1, . . . , xn) to x̃ = (x0, . . . , xk+1, xk, . . . , xn). This proposal
is accepted with probability

min

(
1,
π(dx̃)

π(dx)

)
= min(1, gk,k+1(xk)gk+1,k(xk+1)) = min

(
1,

gk,k+1(xk)

gk,k+1(xk+1)

)
.

An intuitive, slightly different way of describing the algorithm is to say that we
run an MCMC chain at each level πk and swap the states of adjacent chains with
suitably chosen probabilities.

In order to calculate the acceptance probabilities of Parallel Tempering it is sufficient
to know the relative densities gk,k+1 up to a normalizing constant. This comparative

2For an introduction to Adaptive MCMC algorithms see, e.g., Andrieu and Thoms (2008) or
Atchadé, Fort, Moulines, Priouret (2011).
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advantage over Simulated Tempering comes at the following cost: In a temperature
move, Parallel Tempering always proposes two changes at once, i.e. moving xk from
level k to level k + 1 and moving xk+1 in the opposite direction. If we assume that
xk lies in a location which is typical for the distribution µk (and not for µk+1), and
that xk+1 lies in a location which is typical for µk+1 (and not for µk), it is intuitive
to expect that Simulated Tempering moves more easily between temperature levels
than Parallel Tempering since only one temperature move has to be accepted in each
step. See Liang (2005) for an extensive discussion of this intuition and a number of
numerical examples in its support.

Since the Parallel Tempering chain is a time-homogeneous Markov chain, it can be
analyzed with the same techniques used for studying mixing properties of single-level
MCMC chains. This is done in a small literature starting with Madras and Zheng
(2002), Zheng (2003) and Bhatnagar and Randall (2004). The question of whether a
certain Tempering algorithm yields an improvement over single-level MCMC is not
trivial. For instance, Madras and Zheng (2002) showed that Tempering algorithms
mix rapidly (i.e., in polynomial time with respect to the system size) for the Mean-
Field Ising model at any target temperature. Single-level MCMC chains mix torpidly
(i.e., in exponential time) in this case. In contrast, Bhatnagar and Randall (2004)
showed for the Mean-Field Potts model that Tempering algorithms mix torpidly
under a natural choice of interpolating distributions. See Section 1.4.3.3 for more
discussion.

Comparison with Sequential MCMC

Zuckerman and Lyman (2006) point out that Parallel Tempering can only yield an
improvement over single-level MCMC if the mixing time of the dynamics at “high
temperature” levels is at least a factor n + 1 shorter than the mixing time of the
dynamics at the “low temperature” level n. It seems safe to assert that the same
intuition also holds for Simulated Tempering and that it also holds with a factor of
(n + 1)2. The main argument behind this is that a nearest-neighbor random walk
on {0, . . . , n} mixes in O(n2) steps. There seems to be no reason to expect the
two Tempering chains to exhibit a better dependence on n since both incorporate a
stochastic nearest neighbor dynamics between levels which assigns the same weight
to all levels, see also Liu (2001, p. 211). This is unfortunate since we are actually
not interested in movements of the dynamics from level n to level 0: All we want
is a chain which mixes well at level 0 and then carries this good mixing down to
level n. While the movements in the opposite direction only serve the purpose of
“balancing” the algorithm, they can be expected to lead to a considerable slowing
down of the chain. The Sequential MCMC method of Section 1.2 can be seen as
overcoming this problem since it proceeds deterministically from level 0 to level n.

The fact that unlike Sequential MCMC the Tempering algorithms move between
levels without taking into account our preferred direction of moving from level 0 to
level n also has an advantage: It is fairly easy to extend these algorithms to more
complicated systems of probability distributions than sequences (µ0, . . . , µn). This
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is done in the so-called Hyper-Parallel Tempering algorithms applied in chemical
physics, see Section 2.4 in the survey of Earl and Deem (2005) for an introduction
and references. In these algorithms, swapping moves are proposed not only with
respect to temperature but also with respect to other model parameters. Accord-
ingly, there is a system (µα)α of probability distributions where α ∈ {0, . . . , n}k
is a k-dimensional multi-index for some k ∈ N. For each value of α, an MCMC
dynamics with target µα is simulated and additionally there are swapping moves
which exchange the chain positions between “levels” α and α′ where α and α′ differ
by 1 in one component and are identical otherwise. Thus, k denotes the number of
directions in which swapping moves are proposed and the choice k = 1 corresponds
to the simple Parallel Tempering algorithm. Simulated Tempering can be extended
in a similar way. This is not the case for Sequential MCMC.

Another potential advantage of Tempering algorithms lies in the fact that they have
smaller requirements on computer memory than Sequential MCMC. This may be an
issue when the state space is, e.g., very high-dimensional so that the cost of storing
an element of the state space is nonnegligible: For Simulated Tempering, only one
state at a time has to be stored while for Parallel Tempering we need one state at
each “temperature” level. In contrast, in Sequential MCMC we need one state for
each particle in the particle system. Since typical applications work with several
thousands of particles while the number of levels will usually be somewhere between
4 and 100, this may be a good argument in favor of Tempering algorithms in some
cases.

Further Discussion

One advantage which Tempering algorithms and Sequential MCMC have in common
is that they do not only sample µn but all the distributions (µ0, . . . , µn). This may be
of interest, e.g., in physical applications where a model is to be studied at different
temperatures. Multilevel MCMC methods offer a solution to this problem which
may have the added advantage of overcoming slow mixing at low temperatures.

A similar idea was already discovered by Torrie and Valleau (1977) who proposed
the Umbrella Sampling algorithm. In Umbrella Sampling, one runs a single MCMC
chain whose target ν is, e.g., a symmetric mixture of the distributions of interest
(µ0, . . . , µn). ν is called the Umbrella distribution since all the µi are absolutely
continuous with respect to ν with a density which is bounded by n + 1. The ap-
proximate samples from ν obtained through MCMC are then used as proposals in
an Importance Sampling step that samples from the µk: Assume we would like to
approximate µk(f) for some f : E → R. Denote by gν,k the relative density of µk
with respect to ν and by ξ1, . . . , ξN our approximate samples from ν. Then the
Umbrella Sampling estimator of µk(f) is given by

µk(f) = ν(f gν,k) ≈
1

N

N∑
i=1

f(ξi)gν,k(ξi).
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As in Simulated Tempering, some modifications of this method will typically be
necessary to take into account that the relative densities gν,k are not known explicitly.
Usually, if this is the case the normalizing constant is approximated by

ν(gν,k) ≈
1

N

N∑
i=1

gν,k(ξi)

where gν,k denotes an unnormalized version of gν,k, and µk(f) is approximated by
the quotient

µk(f) ≈
∑N

i=1 f(ξi)gν,k(ξi)∑N
i=1 gν,k(ξi)

(1.1)

Umbrella Sampling can be seen as a special case of Importance Sampling with a
particular recipe for choosing the proposal distribution ν. See Madras and Piccioni
(1999) for a more detailed discussion of Umbrella Sampling. A similar Importance
Sampling idea can also be applied within a Tempering or Sequential MCMC algo-
rithm for calculating expectations with respect to a distribution µ̃ which lies between
the steps µk and µk+1 of our sequence of distributions, using, e.g, approximate sam-
ples from µk. It has also been suggested to use particle positions from levels other
than the target level as Importance Sampling proposals to improve the number
of available samples, see Gramacy, Samworth, and King (2010) and the references
therein.

The Sequential MCMC algorithm of Section 1.2 can be seen as a modification of
a Tempering algorithm where the stochastic dynamics on “temperature levels” is
substituted by a sequence of Importance Sampling steps. Finally, note that the
inevitable “self-normalization” with the sum of weights as in (1.1) makes algorithms
considerably harder to analyze, since there is no longer a sum of independent random
variables on the right hand side.

1.3.4 Particle Filters

In this section we briefly discuss particle methods for the filtering problem. As will
become clear below, Sequential MCMC methods and Particle Filters are in fact
virtually identical methods with the main distinction being which parameters are
choice parameters in the algorithm and which parameters are part of the problem.
For instance, our Sequential MCMC algorithm essentially corresponds to the Boot-
strap Filter of Gordon, Salmond and Smith (1993) which was one of the first filtering
algorithms to combine MCMC dynamics with an Importance Sampling Resampling
step. For introductions to particle methods and filtering, see, e.g., Doucet, De Fre-
itas, Gordon (2001) and Bain and Crisan (2009). In the following we will mainly
discuss what it means to interpret the setting of Section 1.2 as a filtering setting. A
discussion of algorithm design (such as the choice of the resampling method) is post-
poned to Section 1.3.5 where we return to the problem of approximating integrals
with respect to a fixed target distribution.

Filtering is the problem of extracting information about the current state of some
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unobservable variable, the so-called signal, from noisy or partially revealing observa-
tions. Practical examples of this problem include determining the current position
of an airplane from radar data, or estimating the volatility in a stochastic volatility
model from stock market data. In this interpretation, the state space E is the set of
possible values of the signal and the distribution µk is the distribution of the signal
at time k conditional on all information available at time k. A common feature of
many filtering problems is that the evolution of the measures µk is driven not only
by the incoming information but also by assumptions on the evolution of the sig-
nal. For instance, even in the absence of new information coming in between times
k− 1 and k we would not expect an airplane to remain in the same position during
the time interval but rather to follow a trajectory extrapolated from its previous
movements.

This informal exposition is sufficient to point out a number of important differences
between filtering and our Sequential MCMC setting: In Sequential MCMC only the
distribution µn is given while the sequence (µk)

n−1
k=0 is a choice parameter which can

in principle be chosen in such a way that the algorithm works best. In contrast, in
a filtering problem the entire sequence (µk)

n
k=0 is given. Notably, while the distri-

butions µk can be thought of as smoothed versions of µn in the Sequential MCMC
context, the same is not true in most filtering settings. Furthermore, in filtering the
sequence (µk)

n
k=0 only becomes available over time. In typical applications integrals

with respect to µk need to be approximated at time k before µk+1 is known.

For the last reason, it is a desirable feature of a filtering algorithm that it exploits
the fact that good approximations of µk are already available when it derives an
approximation of µk+1. Indeed, the algorithm of Section 1.2 has this property: If
we have already run the algorithm for the sequence (µ0, . . . , µk), it is sufficient to
just add one more step once the distribution µk+1 becomes available. In contrast, a
“Tempering” algorithm stochastically moves forwards and backwards in “time” in
this interpretation: In order to apply, e.g., Parallel Tempering in a filtering problem,
we would need to run the algorithm for the sequence of levels (µ0, . . . , µk) at time k
and would need to run it again with one additional level at time k + 1.

Thus, in filtering settings there is a second major disadvantage of the fact that
Simulated Tempering and Parallel Tempering move forwards and backwards between
levels beyond the one already discussed in Section 1.3.3. In this light, it is not
surprising that Sequential MCMC methods were initially developed for the filtering
problem and were applied to the problem of integration with respect to a fixed
distribution only later on.

1.3.5 Sequential MCMC

We are now prepared to give a proper motivation and discussion of the Sequential
MCMC algorithm of Section 1.2. Some motivations for the design of the algorithm
already follow from the discussion of the previous sections: We saw in Section 1.3.1
that multimodality of the target distribution is a serious problem of simple MCMC
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algorithms. In Section 1.3.2 we saw that approximating the target with a sequence
of smoother distributions is a promising recipe for keeping MCMC dynamics from
being trapped in local modes. The idea was to transport the good mixing properties
of some initial distribution µ0 step-wise over to the distribution of interest µn. In
Section 1.3.3 we saw the Tempering algorithms which, figuratively speaking, solve
this transportation task by relying on the services of a random walker. Now obvi-
ously, a random walker is not the ideal person to rely on when facing a well-defined
transportation task. This consideration suggested looking for an alternative method
which moves from µ0 in µn in a quicker and more predictable fashion. Finally, in
Section 1.3.4 we saw that, for a variety of reasons, developing such methods was
a highly natural problem in the filtering literature. This problem was solved to a
remarkable extent by the bootstrap filter of Gordon, Salmond and Smith (1993) and
the subsequent literature.

In this light, there are arguably two main issues about the algorithm which need fur-
ther discussion: the resampling step and the choice of the approximating sequence
of distributions. At this point, the majority of the related work has analyzed the
algorithm in the filtering context and not as an MCMC algorithm. Notable excep-
tions include Del Moral, Doucet and Jasra (2006) and a number of precursors and
followers, see the references therein and the discussion below. For this reason, the
question of resampling has been discussed much more extensively than the question
of choosing the distributions µk which basically does not arise in filtering. Accord-
ingly, we will focus on resampling in the following. The second issue will be discussed
in the light of our results and of related results for Tempering algorithms in Section
1.4.3.

Resampling

To gain more intuition for the resampling steps, note first that these are essentially
equivalent to selection steps found in models from mathematical biology: All par-
ticles (individuals) are weighted with the relative density (the fitness function) and
the number of new particles (offspring) replacing a given particle depends on how
large the relative density is at that particle (how fit the individual is). Similarly, the
MCMC steps can be interpreted as mutation steps. Therefore, it is not surprising
that the first remotely similar algorithms came up in the literature on genetic algo-
rithms (Fogel, Owens and Walsh (1996), Rechenberg (1973), Holland (1975)) which,
roughly speaking, develops algorithms based on biological ideas, see Man, Tang and
Kwong (1999) for an introduction.

Before we start discussing the benefits of the resampling step in the algorithm, we
give the following example which shows that it has to be applied with some caution.
Consider the following simple Monte Carlo setting: We have samples ξ10 , . . . , ξ

N
0

from a distribution µ. Thus, we can approximate integrals with respect to µ by
integrals with respect to the empirical distribution of the ξi0. Now assume we resam-
ple, i.e., we generate a new sample ξ11 , . . . , ξ

N
1 by drawing N times independently

and uniformly from {ξ10 , . . . , ξN0 }. The empirical distribution of the new sample still
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approximates µ but the quality of the sample is worse since some values from the
original sample are lost while others are duplicated. This effect gets stronger when
the procedure is iterated until at some point all ξik have the same value. Therefore,
taken by itself resampling leads to a degeneration of the sample. These observations
show that the MCMC steps serve at least two purposes in our algorithm: Besides
helping to explore the target distributions better, they also decrease the dependence
between the particles by moving apart particles which duplicate the same prede-
cessor. Studying how the degeneration introduced through resampling is balanced
through the MCMC steps will be one of the main topics of subsequent chapters.

Resampling or Weighting?

To understand the benefits of the resampling step it is worthwhile to consider the
most common alternative: Instead of duplicating particles with a high “fitness” we
can consider a suitably weighted particle approximation. Algorithms of this type are
called (among others) Sequential Importance Sampling methods and are – like their
counterparts with resampling – found under a variety of names in many applications
(see, e.g., the introduction in Cappé, Moulines, and Rydén (2005)). For discussions
of these methods as MCMC algorithms, see Jarzynski (1997a, 1997b), Neal (2001)
and the more general framework of Del Moral, Doucet and Jasra (2006).

Consider the following basic Sequential Importance Sampling algorithm which corre-
sponds to the Annealed Importance Sampling of Neal (2001). We start with generat-
ing N independent runs of Simulated Annealing: First, we generate for i = 1, . . . , N
a particle ξ̃i0 distributed according to µ0. These particles are the starting points of
our runs of Simulated Annealing. Then we generate for all i and for k = 0, . . . , n−1
a particle ξ̃ik+1 from ξ̃ik using the transitional kernel Kk+1. As discussed in Section

1.3.2, the particles ξ̃in do not approximate our target distribution µn. This dis-

crepancy is taken into account by assigning each particle ξ̃in a weight win as follows:
Define the unnormalized weight of particle i by the product of unnormalized relative
densities along the trajectory (ξ̃i0, . . . , ξ̃

i
n)

win =
n−1∏
k=0

gk,k+1

(
ξ̃ik

)
,

and normalize the weights by their sum

win =
win∑N
j=0w

j
n

.

Then, we can approximate µn(f) by

µn(f) ≈
n∑
i=1

winf
(
ξ̃in

)
,

see, e.g., Neal (2001) for a heuristic justification.
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If we wanted to add one more level n + 1 to the algorithm, it would be sufficient
to multiply the weights win by gn,n+1(ξ̃

i
n) and to normalize again. For this reason,

the algorithm is often written in a way where weights are calculated recursively.
However this distracts from the following crucial observation: The movements of the
particles are not influenced by the weights. Thus, Annealed Importance Sampling
is a standard Importance Sampling algorithm where the proposal distribution is
constructed using Simulated Annealing.

To see the advantage of the resampling step over weighting, it is instructive to con-
sider the bimodal example from Neal (2001) where Annealed Importance Sampling
is tested on an asymmetric mixture of two Gaussian distributions in R6. While the
algorithm gives a fairly good approximation to the integral of interest, one of the
two modes which carries two thirds of the probability mass contains only 27 out
of the 1000 particles. This shows clearly that a particle approximation based on
unweighted Simulated Annealing would have lead to a disastrous approximation.
However it also unveils a fundamental problem of Annealed Importance Sampling:
Since one of the two modes is explored by only 27 particles, the quality of the Monte
Carlo approximation is much worse than the total number of 1000 particles would
suggest: Exploring the other mode with 977 particles is essentially a waste of com-
putational effort since this cannot make up for the error made by the 27 particles
in the other mode. Put differently, while Annealed Importance Sampling allocates
probability mass largely correctly over the two modes, it makes no effort to adjust
the amounts of MCMC computations in the two modes accordingly. In this light,
the resampling step in our Sequential MCMC algorithm can be seen as a method
of allocating the MCMC computations proportionally to probability mass in every
step of the algorithm.

The behavior observed in this example is a serious drawback of Sequential Impor-
tance Sampling methods for at least two reasons: First, this type of weight de-
generation, i.e., the concentration of most probability mass in few particles, is a
well-documented property of the algorithm, see, e.g. Cappé, Moulines and Rydén
(2005, p. 231). Basically, it arises from the fact that in many natural models a
particle which gains a lot of mass in one step has a high probability of gaining a
lot of mass again in future steps. To obtain some intuition for this, note that if we
choose the distributions µk as µk(dx) ∼ exp(−βkH(x))µ0(dx), then unnormalized
relative densities gk,k+1 are given by

gk,k+1 = exp(−(βk+1 − βk)H(x)).

For all k, these functions gk,k+1 have their local maxima in the same points, namely,
in the local minima of H. Thus, if we think of our particles as moving only locally,
we see that there is a substantial probability that most weight is concentrated in
only few particles in promising locations after a modest number of weighting steps.
Second, a main reason for the fairly good performance of the Annealed Importance
Sampling algorithm in Neal’s example lies in the fact that the particles responsible
for discovering each of the two modes face a relatively simple MCMC problem which
is essentially equivalent to MCMC for a single Gaussian distribution. With a more
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complicated target distribution, Annealed Importance Sampling may easily miss
important parts of the state space. For instance, if a mode with only 27 particles
was split into two well-separated modes again as the algorithm proceeds, there is
a substantial probability that the particle approximation cannot keep track of this
since one of the modes is missed. The latter argument may be the main reason for
including a resampling step in the algorithm. A more rigorous study of this intuition
will be one of the main subjects of subsequent chapters, see Section 1.4.3.

How to Resample

We have thus seen that the resampling step is an important ingredient in the algo-
rithm, but we have also seen that it may lead to a degeneration of the sample. For
this reason, a number of alternative resampling procedures have been proposed which
introduce less variance into the system than the so-called Multinomial Resampling
step found in the algorithm of Section 1.2. For instance, in Residual Resampling,
each particle ξ̂ik−1 is replaced with at least M i

k particles where

M i
k =

⌊
N

gk−1,k(ξ̂
i
k−1)∑N

l=1 gk−1,k(ξ̂
l
k−1)

⌋
,

is the largest integer number smaller than the expected number of successors in
Multinomial Resampling. The remaining N −

∑
iM

i
k particles are assigned using a

Multinomial Resampling procedure with appropriately chosen weights. This choice
of resampling procedure eliminates some unnecessary resamplings. In the above ex-
ample, where the relative density gk−1,k is constant, each particle is deterministically
replaced by exactly one successor. The situation is however less clear in general: If
M i

k > 1 for all particles but one, N − 1 particles are assigned deterministically. In
contrast, if M i

k < 1 for all but one particle and M i
k < 2 for all particles, Residual

Resampling hardly differs from Multinomial Resampling. For such reasons, it is
difficult to rigorously quantify the advantage of Residual Resampling over Multi-
nomial Resampling in more general settings. Cappé, Douc and Moulines (2005)
and Hol, Schön and Gustafsson (2006) have compared several resampling schemes
heuristically and numerically. From these studies, it seems reasonable to assert that
switching from Multinomial Resampling to, e.g., Residual Resampling is strongly
advised but does not lead to a dramatic improvement. Other resampling schemes
such as Systematic Resampling can lead to small further improvements. Neverthe-
less we will consider Multinomial Resampling in the following since it is by far the
easiest to analyze and since we are mostly interested in upper bounds on the error.

Further Discussion

There are various other generalizations of Sequential MCMC. For instance, in prac-
tice it is rather common to consider an adaptive variant of the algorithm which
calculates weights like in Annealed Importance Sampling and employs the resam-
pling step only when the effective sample size (for a definition, see Cappé, Moulines
and Rydén (2005) p. 235) falls below some threshold. Yet this adaptivity may be
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more important, e.g., in the context of filtering – where information comes in small
portions barely influencing the distribution – than in Sequential MCMC where the
sequence of distributions can be chosen as needed. Adaptive MCMC algorithms are
naturally harder to analyze, see Del Moral, Doucet and Jasra (2011) and Atchadé,
Fort, Moulines, Priouret (2011). Another adaptive variant of Sequential MCMC is
the Equi-Energy-Sampler of Kou, Zhou and Wong (2006) which constructs proposal
distributions for the MCMC steps by keeping track of previously visited states. Del
Moral, Doucet and Jasra (2006) introduce our Sequential MCMC algorithm within
a wide class of algorithms, the so-called Sequential Monte Carlo Samplers, which
replace the MCMC steps with respect to the target by more general transition ker-
nels. Finally, the number of particles can be varied at each resampling step, and
the resampling step can be replaced by a branching step which leads to a random
number of particles. For instance, in minimal variance branching (see, e.g., Crisan,
Gaines and Lyons (1998)), each particle is replaced by either M i

k or M i
k+1 successors

with probabilities chosen such that the expected number of successors is the same
as in Multinomial Resampling.

1.3.6 Notes

In the previous sections we introduced the Sequential MCMC method which will be
studied in the following, introduced the problem of integrating with respect to multi-
modal target distributions and introduced and discussed a number of alternative
algorithms addressing this problem. Since this discussion was far from exhaustive,
we close with a number of references to more detailed introductions: Liu (2001) gives
an introduction to MCMC with many applications and also covers the Tempering
algorithms of Section 1.3.3. Cappé, Moulines and Rydén (2005) give a detailed
introduction to Sequential Monte Carlo methods, covering both theory and many
applications. An introduction to MCMC on a general state space and an extensive
treatment of MCMC in Bayesian statistics are found in Robert and Casella (2004).

1.4 Main Results

We now give an overview of our main results. Our aim is to prove explicit, non-
asymptotic error bounds for the Sequential MCMC algorithm of Section 1.2. When
analyzing the algorithm we assume suitable mixing conditions for the MCMC dy-
namics we employ. For this reason, our results do not depend explicitly on the un-
derlying MCMC dynamics and the state space. For instance, they apply both to a
discrete and to a continuous state space. Nevertheless, our motivation lies in proving
bounds that can handle settings with the following three properties: multimodal-
ity, high dimensions and non-compact state space. Multimodality is important in
practice since its presence is the main motivation for relying on a multilevel MCMC
algorithm like ours instead of, e.g., a standard MCMC algorithm. Similarly, high
dimensions are important since in low-dimensional integration problems determin-
istic algorithms can be expected to yield better results than Monte Carlo methods.
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Finally, it is desirable to have results which can handle non-compact state spaces
such as Rd since otherwise we cannot address many important examples such as
Gaussian distributions and Gaussian mixture distributions.

Our results fall into three basic categories: We first prove a relatively general error
bound and then apply it to the study of two questions, stability and multimodality.
Stability refers to the algorithm’s ability to reduce the variance introduced in the
resampling steps through the smoothing MCMC steps. Multimodality refers to the
algorithm’s ability to handle multimodal target distributions.

Obviously, an exhaustive answer to the question of multimodality must implicitly
contain an answer to the question of stability. Thus, some clarification is in order.
Stability has been studied comparatively much in the previous literature, see Section
1.4.2.2 below. Research has mostly focused on studying the error under assumptions
of global mixing of the MCMC dynamics at all levels k, thus abstracting from the
problem of multimodality. There are basically two justifications for this: First,
multimodality is not quite as important in other applications of Sequential Monte
Carlo, such as filtering, as it is in MCMC integration. Second, a good understanding
of the algorithm’s performance in the more interesting multimodal case cannot be
achieved without a good understanding of the case with good global mixing. Our
stability results follow this line of research and provide error bounds under global
mixing conditions.

In contrast, multimodality has been studied curiously little in the literature and our
results can be seen as first steps in this direction. While a number of convincing
heuristics about the algorithm’s ability to cope with multimodal target distributions
can be derived from our results, the assumptions are still too restrictive to actually
apply to most models of interest. In short: Our stability results are non-asymptotic
error bounds under global mixing conditions. Our results on multimodality are
non-asymptotic error bounds under local mixing conditions and under somewhat
restrictive technical assumptions otherwise.

Sections 1.4.1.1, 1.4.2.1 and 1.4.3.2 present our results on, respectively, general error
bounds, stability and multimodality. Each section is followed by a discussion of the
results and of their relation to the literature. For convenience, the results of Section
1.4.1.1 are presented in the framework introduced in Section 1.2 although the actual
results in Chapter 2 are proved in a more general setting allowing for, e.g., a sequence
Ek of state spaces instead of a fixed state space E.

1.4.1 Basic Error Bounds

1.4.1.1 Results

In order to present the basic error bounds for the algorithm, which are the subject
of Chapter 2, we need some more notation in addition to that of Section 1.2. Denote
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by B(E) the bounded, measurable functions from E to R and define for f ∈ B(E)

Kk(f)(x) =

∫
E

f(z)Kk(x, dz),

i.e., Kk(f) is the transition kernel Kk applied to f . Moreover, define the mapping
qk−1,k : B(E)→ B(E) by

qk−1,k(f) =
gk−1,kKk(f)

µk−1(gk−1,k)

and define for 0 ≤ j < k ≤ n the mapping qj,k : B(E)→ B(E) by

qj,k(f) = qj,j+1(qj+1,j+2(. . . qk−1,k(f)))

and qk,k(f) = f . By these definitions we have for all f ∈ B(E) the relation

µj(qj,k(f)) = µk(f) for 0 ≤ j ≤ k ≤ n.

So to say, the operator qj,k shifts the flow of probability mass from µj to µk, including
the MCMC steps, from the measures to the integrand f . Basically, the error bounds
stated below relate the integration error

E[(ηNn (f)− µn(f))2]

to stability properties of the semigroup qj,k. As before, ηNk (f) denotes the empirical
distribution of the N particles (ξik)

N
i=1.

Weighting the particle system

Denote by E the expectation with respect to the particle dynamics of the algorithm
and denote by Fk the sigma algebra generated by the particle systems’ dynamics up
to step k. Then we have

E[ηNk (f)|Fk−1] =
ηNk−1(qk−1,k(f))

ηNk−1(gk−1,k)
.

Since ηNk−1 appears both in the numerator and in the denominator on the right hand
side, we see that the non-linearity in the resampling step would lead to fairly com-
plicated expressions when iterating these expectations over a number of steps. To
avoid this difficulty, our analysis focuses on the approximation error of the weighted
empirical measures

νNk (f) = ϕk η
N
k (f), where ϕk =

k−1∏
j=0

ηNj (gj,j+1).
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The idea behind the measures νNk is to introduce in every step a factor correcting the
distortion caused by normalizing with the sum of current particle weights.3 These
correction factors have expectation 1, E[ϕk] = 1, and it holds that

E[νNk (f)|Fk−1] = νNk−1(qk−1,k(f)).

This demonstrates that the measures νNk are considerably easier to handle than the
unweighted particle measures ηNk . Moreover, we prove the inequality

E[(ηNn (f)− µn(f))2] ≤ 2 Var(νNn (f)) + 2 ‖f − µn(f)‖2supVar(νNn (1)) (1.2)

where ‖ · ‖sup denotes the supremum norm on B(E). This inequality shows that for
bounded functions f it is sufficient to control the approximation errors

Var(νNn (f)) = E[(νNn (f)− µn(f))2]

of νNn in order to control the errors with respect to the algorithm’s output ηNn .

The error bound

Our first main step consists in using martingale techniques to obtain an explicit
expression for this error. We show that

E[|νNn (f)− µn(f)|2] =
1

N
Varµn(f) +

1

N
E

[
n−1∑
j=0

V N
j,n(f)

]
(1.3)

where

V N
j,n(f) = νNj (1)νNj (qj,n(f)2)− νNj (qj,n(f))2 + νNj (qj,j+1(1)− 1)νNj (qj,n(f 2)). (1.4)

The basic idea behind our error bounds now lies in the following observation: On
the left hand side of (1.3) we have νNn (f)2 as the most problematic term, since
E[νNn (f)] = µn(f). On the right hand side we have terms of the form 1

N
νNj (g)νNj (h)

where the functions g and h depend on f and on the operators qj,k. Roughly, our
strategy is to bound 1

N
νNj (g)νNj (h) by 1

N
νNn (f)2 times a constant depending on the

semigroup. Then we apply a fixed-point type argument, using the 1
N

on the right
hand side to show that the error must be small. Going through the details of this
idea leads to the following error bound:4

Theorem 1.1. For 0 ≤ j ≤ n, let ‖ · ‖j be a norm on the function space B(E) with
‖f‖j <∞ for all f ∈ B(E). For 0 ≤ j < k ≤ n, let cj,k be a constant such that for
all f ∈ B(E), the following inequality is satisfied

max(‖1‖j‖qj,k(f)2‖j, ‖qj,k(f)‖2j , ‖qj,k(f 2)‖j) ≤ cj,k‖f‖2k. (1.5)

3Notably, “weighted” refers to the pre-factor ϕk and not to individual weights for each particle
as in, e.g., the Annealed Importance Sampling algorithm presented in Section 1.3.5.

4This error bound is a special case of the one in Theorem 2.1
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Define

ck = max
l≤k

l−1∑
j=0

cj,l

(
2 + ‖qj,j+1(1)− 1‖j

)
and

vk = max
l≤k

sup

{
l∑

j=0

Vj,l(f)

∣∣∣∣∣ ‖f‖l ≤ 1

}
.

where
Vj,l(f) = Varµj(qj,l(f)).

Then for N ≥ 2cn and for all f ∈ B(E) we have

E[|νNn (f)− µn(f)|2] ≤
∑n

j=0 Vj,n(f)

N
+

2vncn‖f‖2n
N2

. (1.6)

The first order term on the right hand side of (1.6) is exact in the sense that the
coefficient

∑n
j=0 Vj,n(f) corresponds to the asymptotic variance in the central limit

theorem for νNn found in Del Moral and Miclo (2000, p. 45). The theorem thus
reduces the problem of bounding the approximation error to the problem of choosing
suitable norms and then proving the inequality (1.5).5

1.4.1.2 Related Work

The results and techniques up to the formula (1.4) for the expected approximation
error of the weighted empirical measure νNn are known in the literature, see, e.g.,
Del Moral and Miclo (2000, Section 2). They are stated here (and proved below) for
the sake of completeness and to present exactly what we need in a coherent way and
in the form in which we need it. The basic strategy of proof for the non-asymptotic
error bound is adapted from Eberle and Marinelli (2011). Eberle and Marinelli
consider a continuous time dynamics on a finite state space where – instead of our
resampling step – particles replace particles with a lower “fitness” at suitably chosen
rates. Notably, in our algorithm there is there is a freely chosen number of MCMC
steps between two resampling steps. This is not the case in the setting of Eberle and
Marinelli where a short time interval before the endpoint is controlled with different
techniques that do not rely on mixing properties of the MCMC dynamics. The case
of a discrete time and a general state space treated here is closer to the algorithmic
applications of interest.

Most of the non-asymptotic error bounds in the literature, see Whiteley (2011) for a
recent example and Section 1.4.3.3 for more references, rely on additive corrections
in place of the multiplicative correcting factors ϕk. Cérou, Del Moral and Guyader
(2011) consider tree-based expansions of νNn : They explicitly study the particle
system’s genealogy, considering, e.g., how many particles were resampled from the
same “ancestor” how many steps back. While this approach has great potential

5In principle, one also needs bounds on vk and ck. In the settings we consider later on such
bounds can also be derived from (1.5).
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for yielding a good understanding of the particle system, it does not seem to give
the opportunity to separate the properties of the semigroup qj,k from the particle
dynamics as cleanly as in our approach.

1.4.1.3 Discussion

The advantages of our error bound should become clear from its applications pre-
sented in the following sections. Thus we focus on a brief discussion of its disadvan-
tages here: Our overall approach relies on studying the weighted empirical measure
νNn and then transferring the results to the algorithm’s output ηNn using the inequal-
ity (1.2). Since (1.2) depends on the supremum of the integrand f , we are limited
to considering bounded integrands. Note however that our results on the weighted
particle system νNn do not rely on this boundedness. There is some intrinsic interest
in such results as well, see the discussion in Cérou, Del Moral and Guyader (2011).

Another disadvantage of the approach is introduced through the fixed-point-type
argument outlined in the discussion below (1.4): We rely on the fact that we can ex-
press the quadratic error of νNn (f) in terms of the measures (νNk )k again. This works
out nicely for the algorithm we have here but seems to get lost easily when consid-
ering resampling schemes6 other than Multinomial Resampling. For instance, in the
case of Residual Resampling some particles are replaced directly while others are
replaced with Multinomial Resampling using residual weights. Thus the expected
error is constituted by two rather different terms which do not seem straightforward
to reassemble in terms of νNk as in the case of Multinomial Resampling. However, our
present results can also be seen as upper bounds for the error of more sophisticated
resampling schemes.

1.4.2 Stability

1.4.2.1 Results

Our stability results for the algorithm, found in Chapter 3, are derived from Theorem
1.1 by choosing ‖ · ‖j = ‖ · ‖Lp(µj) for some p > 2 where the Lp-norm ‖ · ‖Lp(µj) is
defined by

‖f‖Lp(µj) = µj(|f |p)
1
p .

With this choice of norms, the crucial inequality (1.5) in Theorem 1.1 is fulfilled for
all j < k with constant

c(p) = max
(
c̃
(
p,
p

2

)
, c̃ (2p, p)2

)
,

where we define c̃(p, q) as a constant in an Lp-Lq inequality for the semigroup qj,k,
i.e., a constant such that

‖qj,k(f)‖Lp(µj) ≤ c̃(p, q)‖f‖Lq(µk)
6See Section 1.3.5 for more discussion of different resampling schemes.
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is satisfied for all f ∈ B(E) and all j < k. Given such constants c̃(p, q) we imme-
diately obtain an error bound from Theorem 1.1. Therefore, the main work lies in
deriving these constants.

It is fairly easy to derive Lp-bounds based on the observation that

|qj,k(f)(x)| ≤ γk−j|f(x)|

for all x ∈ E where γ is our uniform upper bound on gl,l+1. Lp-bounds for the
semigroup qj,k relying entirely on this bound would degenerate exponentially fast in
the length of the time interval k − j. We aim at bounds with constants which are
stable over time. To achieve this, we need to assume and exploit suitable mixing
conditions for the kernels Kk.

To this end, we assume the following: There are constants α > 0 and β ∈ [0, 1] such
that for all f ∈ B(E) and all k we have the following L2-bound,

‖Kk(gk,k+1f)‖2L2(µk)
≤ α‖f‖2L2(µk+1)

+ βµk+1(f)2. (1.7)

If Kk is reversible, the inequality (1.7) with constants α = (1 − ρ)γ and β = ρ
follows, e.g., from a Poincaré-like inequality

Varµk(Kk(f)) ≤ (1− ρ)Varµk(f)

with constant ρ ∈ (0, 1). Recall that the kernels Kk each represent many steps of
MCMC and that thus the constant α can be controlled by varying the number of
MCMC steps.

Our main result states that if (1.7) holds with a sufficiently small α, i.e., if the dy-
namicsKk all mix sufficiently well, we obtain an Lp-Lp-bound with time-independent
constant:7

Proposition 1.1. For r ∈ N, consider p ∈ [2r, 2r+1] and assume that (1.7) holds
with an α for which αγ2

r−2 < 1. Then we have for 0 ≤ j < k ≤ n and f ∈ B(E)
the inequality

‖qj,k(f)‖Lp(µj) ≤ c̃(p, p)‖f‖Lp(µk)
with

c̃(p, p) =
γr+1

1− αγ2r−2

This shows that Lp-norms remain stable under sufficiently good mixing. However in
order to verify (1.5), we also need to bound, respectively, the L2p and Lp norms of
qj,k(f) against the Lp and Lp/2 norms of f . To achieve this, we need an additional
assumption of hyperboundedness:8

7The following result corresponds to Proposition 3.1 below.
8The following result is found as Corollary 3.4 below.
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Theorem 1.2. For r ∈ N, consider p ∈ [2r, 2r+1] and assume that (1.7) holds with
an α for which αγ2

r−2 < 1. Assume furthermore that for a fixed q ≤ p there is a
θ(p, q) > 0 such that for all f ∈ B(E) and all 1 ≤ k ≤ n,

‖Kk(f)‖Lp(µk) < θ(p, q)‖f‖Lq(µk). (1.8)

Then we have for 0 ≤ j < k ≤ n and f ∈ B(E) the inequality

‖qj,k(f)‖Lp(µj) ≤ c̃(p, q)‖f‖Lq(µk)

with

c̃(p, q) = θ(p, q)
γr+2

1− αγ2r−2

Note that in (1.8) we do not require θ(p, q) < 1 so that we only require hyperbound-
edness but not hypercontractivity. Since we can also bound the other constants in
Theorem 1.1 by

ck ≤ k c(p) (3 ∨ (1 + γ)) and vk ≤ k c̃(2, 2)2,

we thus obtain a non-asymptotic error bound which is explicit and polynomial in
n, in γ and in α. Finally, note that the latter bound on the asymptotic variance vn
follows already from Proposition 1.1 and thus does not rely on hyperboundedness:
It can be derived using, e.g., a Poincaré inequality and an upper bound on relative
densities.

1.4.2.2 Related Work and Discussion

As seen in the previous sections, our stability results depend basically on three
conditions: two mixing conditions, namely, an L2-mixing condition (1.7) and hyper-
boundedness (1.8), and a uniform upper bound on relative densities. Both mixing
conditions are implied by Logarithmic Sobolev inequalities for the MCMC dynamics,
since the latter implies hypercontractivity, i.e., hyperboundedness with a constant
smaller than 1, and a Poincaré inequality. See Ané et al. (2000) for background
and the example in Section 3.5 for concreteness. Our approach to proving stability
of the Feynman-Kac semigroups qj,k is an adaption to the discrete-time case of the
results derived by Eberle and Marinelli (2010) for the case of continuous time.

Most of the previous literature on stability of Sequential MCMC (see, e.g., Del
Moral and Miclo (2000), Theorem 7.4.4 of Del Moral (2005), Cérou, Del Moral and
Guyader (2011)) has instead relied on conditions which, in our setting, correspond
to the mixing condition

Kk(x, ·) ≤ λKk(y, ·) (1.9)

for all k, for all x and y in E and for some λ > 1 and the boundedness condition

gk,k+1(x) < κgk,k+1(y) (1.10)

for all k, for all x and y in E and for some κ > 1. As will be pointed out in
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the following, neither of these conditions is well-suited for the study of MCMC on
high-dimensional non-compact state spaces. We begin with discussions of conditions
(1.9) and (1.10) and their counterparts in our analysis. We close with a remark on
the dimension-dependence of our error bounds.

Before we start, it should be pointed out that, beginning with the central limit
theorems in Del Moral (1996), Chopin (2004) and Künsch (2005), there is also by
now a rich literature on asymptotic error bounds for the limit N → ∞. See Del
Moral (2005) for an overview and many results, and Douc and Moulines (2008) for
a recent contribution.

Mixing Conditions

The mixing condition (1.9) is fairly restrictive with regards to the applications we
have in mind. For instance, it is never satisfied for dynamics which remain in their
initial position with a positive probability and which are continuously distributed
otherwise. This is the case, e.g., for Metropolis dynamics on Rd. Moreover, (1.9)
is typically not fulfilled for local dynamics on an infinite state space over a finite
time horizon: Consider for instance the case where Kk corresponds to t steps of an
MCMC dynamics on R which moves to a new state within a ball of radius r around
the current state x in each step. Then Kk(x, ·) and Kk(y, ·) only have an overlap in
their supports if |x − y| < r t

2
. This shows that such a kernel Kk will never satisfy

(1.9). Qualitatively, this type of problem persists if we substitute these bounded
jumps by other local dynamics: Typically, (1.9) will either be violated or fulfilled
with a huge constant.

Unfortunately, so far the literature on discrete-time Markov chains on Rd does not
provide readily available techniques for proving our mixing conditions (1.7) and,
especially, (1.8). Exceptions come from the literature on estimating the volume
of a convex body, see, e.g., Lovász, Kannan and Simonovits (1997) and – for an
exposition of related results which aim at integration instead of volume computation
– Rudolf (2009). This literature has largely focused on deriving Poincaré inequalities
using conductance techniques and has mainly worked with continuous but compact
state spaces. Our mixing conditions can however be verified for continuous-time
processes such as Ornstein-Uhlenbeck processes and Langevin diffusions, both of
which generally do not satisfy (1.9). Results on these processes can be seen as
indicators of the performance we can expect from actual MCMC dynamics, see the
example of Section 3.5. Moreover, there is some hope that future research may close
this gap.

Recently, Whiteley (2011) proved non-asymptotic error bounds which – unlike those
based on (1.9) and (1.10) – can be expected to be applicable to non-trivial models
with non-compact state spaces. In Whiteley’s setting, the mixing condition (1.9) is
replaced by conditions of minorization on a small set and drift conditions outside
the small set, applying results of Douc, Moulines and Rosenthal (2004). Minoriza-
tion and drift conditions are a popular technique for deriving mixing conditions for
Markov chains on a general state space, see Roberts and Rosenthal (2004) for an
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introduction, and Jasra and Doucet (2008) for an earlier application in a Sequential
Monte Carlo setting. Additionally, the relative densities gk,k+1 are assumed to be
uniformly bounded from above as in our setting. Finally, there is an assumption
which, roughly speaking, bounds the values of qk,n(1) from below outside the tails.
Due to the latter condition and due to the fact that Whiteley’s proofs switch within
an abstract family of minorization and drift conditions, the error bounds are not
explicit enough to quantitatively assess the dependence on the model’s parameters
such as dimension, see the discussion below.

Whiteley’s error analysis does however incorporate two problems left open by ours:
It includes the case of unbounded integrands f and it treats the case of an initial
error, i.e., the case where an error is made when sampling from µ0, showing that
the contribution from the initial error decreases exponentially.

Conditions on relative densities

We now turn to the boundedness condition (1.10). This condition is violated al-
ready in simple cases such as the following: Assume that µk and µk+1 are Gaussian
distributions on R with means 0 and variances σ2

k = 1 and σ2
k+1 = δ < 1. Then the

relative density is given by

gk,k+1(x) =
1√
δ

exp

(
−
(

1

δ
− 1

)
x2

2

)
(1.11)

so that gk,k+1(0)/gk,k+1(x) is unbounded as |x| gets large. Thus (1.10) is violated.

In contrast, our condition of an upper bound γ on gk,k+1 is fulfilled with γ = 1/
√
δ.

Despite the fact that our assumption of bounded relative densities is weaker than
what is usually found in the literature, namely, (1.10), it is still fairly restrictive in a
general Sequential Monte Carlo setting: Assume that we wish to track the position
of a flying object on R. The initial position is distributed according to µk = N (0, 1)
and the position at the next step is distributed according to µk+1 = N (ε, 1) where
ε 6= 0 is extracted from some incoming data. In this case, the relative density is
given by

gk,k+1(x) ∼ exp(εx) (1.12)

which is unbounded in one of the tails. This example is only the most elementary
manifestation of a rather general problem when dealing with “moving” probability
distributions on Rd.

In Section 3.5 we apply our bounds to a sequence µk of d-dimensional Gaussian
distributions restricted to a compact box in Rd where this restriction is necessary to
keep relative densities bounded. One crucial observation there is that the one case
where the restriction is not necessary is the case where the variance of the distri-
bution is decreased. This can be seen already from comparing examples (1.11) and
(1.12). The good news is now that when dealing with Sequential MCMC applications
where we freely choose the sequence µk to gradually move to a more concentrated
distribution µn, the case exemplified in (1.11) is indeed the most relevant one: If we
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choose µk(dx) ∼ exp(−βkH(x))µ0(dx) for some increasing sequence βk, the relative
densities gk,k+1 are given by

gk,k+1 ∼ exp(−(βk+1 − βk)H(x)).

These expressions are bounded from above whenever H is bounded from below.
Moreover, the upper bound can be controlled by the choice of βk+1 − βk.

Finally, note that while typically only the unnormalized relative densities gk,k+1 are
available a priori, the normalized relative densities can be estimated by

gk,k+1(x) ≈ gk,k+1(x)

ηNk (gk,k+1)

before the resampling step with respect to gk,k+1 takes place in the algorithm.

While our overall approach is similar to that of Eberle and Marinelli (2010, 2011)
where a continuous-time dynamics on a finite state space is considered, their ap-
proach does rely on an assumption similar to (1.10) and thus on both upper and
lower bounds on relative densities. Unlike previous results, e.g. those in Del Moral
and Miclo (2000), the error bounds in these works are however logarithmic and not
polynomial in the constant κ in (1.10). This difference between our results and those
in Eberle and Marinelli (2010, 2011) comes from the different resampling schemes:
In our algorithm, there is a fixed amount of resampling at fixed times separated by
MCMC steps of the dynamics. In Eberle and Marinelli’s continuous time particle
system, resampling takes the form of particles copying each others’ locations at rates
which depend on the (log) ratio of relative densities. An upper bound on the ratio of
relative densities is used to control the particle system in a short final time interval
where only a small number of MCMC steps occurs. This is not necessary in our
discrete-time framework.

Dimension Dependence

A particular advantage of our error bounds is that they allow for deriving the algo-
rithm’s dimension dependence fairly explicitly for the case where the measures µk
are product measures on Rd. This can be seen as a first step to understanding the
algorithm’s overall dimension dependence.

We demonstrate that if we have a one-dimensional setting where our bounds apply,
then we can obtain bounds of the same order for the d-dimensional product of
the one-dimensional target distribution by increasing the computational effort by
a factor of order O(d3) and thus by a factor which is polynomial in d. Consider a
sequence of distributions µ0,. . ., µn on R such that relative densities are bounded by
γ and such that we can obtain sufficiently good mixing properties for the dynamics
Kk from Logarithmic Sobolev inequalities.9 It is well-known that the constants in

9The Logarithmic Sobolev constant does not only yield hypercontractivity. It can also be used
to bound the Poincaré constant in the right direction, see Ané et al. (2000).
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Logarithmic Sobolev inequalities are not dimension-dependent for product measures,
see Ané et al. (2000) and the example in Section 3.5. Thus, we obtain the same

constants in the mixing conditions for the d-dimensional product dynamics K
(d)
k

with target µ⊗dk as for the one-dimensional dynamics Kk. Since the d-dimensional

relative densities g
(d)
k,k+1 are d-fold products of the one-dimensional densities gk,k+1,

we need to increase the number of interpolating distributions by a factor d when
switching from R to Rd. This can be done by inserting d−1 additional distributions
µ⊗dk,1 to µ⊗dk,d−1 between µ⊗dk and µ⊗dk+1 where, for 1 ≤ j < d, µ⊗dk,j is given by

µ⊗dk,j(dx1, . . . , dxd) =

(
d∏
l=1

gk,k+1(xl)

)j d−1

µ⊗dk (dx1, . . . , dxd).

Note that µ⊗dk,0 = µ⊗dk and µ⊗dk,d = µ⊗dk+1. Moreover, the relative densities between µ⊗dk,j
and µ⊗dk,j+1 are bounded by γ. Assume furthermore, that the Logarithmic Sobolev
constant for the d − 1 interpolating measures “inserted” between µk and µk+1 lies

in between the Logarithmic Sobolev constants for µ
(d)
k and µ

(d)
k+1 so that MCMC

with respect to the inserted distributions is not more difficult than MCMC with
respect to the original distributions. Now re-index our sequence of n(d) = n · d + 1
product measures on Rd to µ

(d)
0 , . . . µ

(d)
nd and denote the associated transition kernels

and relative densities by K
(d)
k and g

(d)
k,k+1. Then, we obtain dimension-independent

constants cj,k(p) in the inequalities (1.5) for the semigroup q
(d)
j,k derived from K

(d)
k

and g
(d)
k,k+1.

10 Notably, these constants coincide with those derived for the original

one-dimensional sequence µ0, . . . , µn and we have µ⊗dn = µ
(d)
nd .

Overall, we then find that the algorithm’s error depends on the dimension like O(d3)
in this example: We need one factor d since each step of the product dynamics is
more costly to simulate, one factor d due to the fact that we increase the number
of levels by a factor d, and one factor d because we have to adjust the number
of particles N by the same factor as the number of levels n as can be seen from
Theorem 1.1. It is an open question whether similar results can be derived from
minorization and drift conditions as in Whiteley (2011).

1.4.3 Multimodality

1.4.3.1 A Motivating Example

We now present our results about the algorithm’s ability to cope with multimodality.
Since we have already discussed the problem and the algorithm extensively in Section
1.3, this brief motivating section is mainly dedicated to motivating our approach to
the problem. Our results and a discussion are provided afterwards.

Figure 1.2 depicts the particle positions before the resampling step in a run of
the algorithm where the target µn is the Gaussian mixture distribution in Figure

10Recall that our bounds on the constants cj,k(p) were independent of j and k.
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Figure 1.2: Particle Movements

1.1 on page 8 above.11 Each picture corresponds to a level µk, k = 0, . . . , 8. On
the horizontal axis are the particles ordered by the position. On the vertical axis
are the particle positions. Several features of the algorithm can be seen from the
picture: All four modes are covered by the algorithm and in the final picture the
numbers of particles in the four modes roughly correspond to the target proportions
(0.5, 0.3, 0.15, 0.05) in the modes at (−8,−4,−2, 2). We can see that the target
distribution’s four modes become visible successively: Until µ3, all particles seem
to move in one big cloud. At µ5, the particles in the mode at 2 are separated by
a gap from the rest. At µ/, the same happens for the particles at the mode in −8.
While the particles rarely move between modes through the MCMC steps, there is
still a substantial exchange of probability mass between modes. For instance, there
are about 400 particles in the mode in −8 when the mode is disconnected from the
rest. At the end, there is approximately the right number of 600 particles in that
mode.

Comparing with different specifications of the algorithm not reported here, one
thing becomes quite apparent: The particles within one mode usually give a fairly
accurate picture of that mode, even with much fewer particles and MCMC steps.
The critical question is whether each mode has the correct weight, i.e. whether

11We chose n = 9. The nine values of β were (0.02, 0.05, 0.1, 0.18, 0.3, 0.4, 0.64, 0.8, 1). There were
1200 particles. At each level, each particle took 400 steps of Metropolis with proposals from a
Gaussian distribution with variance 0.2.
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it contains approximately the right number of particles. This seems to be the first
thing to go wrong, and it is a serious problem because, generally, there is little use to
calculating the correct integral within each mode but then to assemble these “local”
integrals to a “global” integral with the wrong weights.

1.4.3.2 Results

Motivated by observations such as the example just presented, our first error bound
for the multimodal case focuses on a simplified model where we project each compo-
nent of the state space in which the MCMC dynamics moves freely to a single point
and only consider the algorithm on this projection. These are the results of Chapter
4. A second error bound which takes into account local mixing is presented in the
second part of this section. Since the results here may need more context than the
previous ones, part of the discussion is provided directly in this section while the
rest is in Sections 1.4.3.3 and 1.4.3.4 below.

Taking into account that the state space will typically separate into more and more
effectively disconnected components as we move from µ0 to µn, we consider our Se-
quential MCMC algorithm on trees: At each level k the (projected) state space we
consider now consists of a number of points. Each point at level k has at least one
successor at level k+1. Each successor stands for one disjoint component of the orig-
inal state space which can only be reached from its predecessor component at level
k.12 The role of the transition kernels Kk+1 is limited to allocating particles from
one point at level k to its successors at the next level k+1. We assume that particles
cannot move between points at the same level. The latter assumption is in accor-
dance with the fact that transitions between effectively disconnected components of
the original unprojected state are only very rarely observed in practical examples.
We do not use any mixing properties of the MCMC dynamics since such properties
can only be expected to have an effect within each disconnected component – they
will not help to correct errors made in allocating particles to modes.

To make this concrete, denote by (µ0, . . . , µn) a sequence of probability measures
on a sequence of finite state spaces (I0, . . . , In). Consider a successor relation sk :⋃
l<k Il :→ P(Ik) which maps x ∈ Il, l < k, to its set of successors sk(x) ⊆ Ik

at level k. sk has the following properties: For l < k and x 6= y ∈ Il we have
sk(x) ∩ sk(y) = ∅, i.e., each point in Ik is a successor of at most one point in Il.
Moreover for each u ∈ Ik there exists a z ∈ Il with u ∈ sk(z), i.e., each point in Ik
has a predecessor in Il. Additionally, we make the transitivity assumption that, for
j < k < l and x ∈ Ij, y ∈ sk(x) implies sl(y) ⊆ sl(x). Thus we have indeed a tree
structure (or, more accurately, a forest structure since we do not assume |I0| = 1).
Finally, we assume that no branch of the tree dies out, sn(x) 6= ∅ for all x ∈ Ij and
all 0 ≤ j < n.

12This should make clear that the trees we consider here are only very loosely related to the
genealogical trees of the particle system studied in Cérou, Del Moral and Guyader (2011).
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For instance, to capture what happens in the example of Figure 1.2 we could choose
I0 = . . . = I3 = {0}, I4 = {1, 2} and I5 = . . . = I8 = {1, 3, 4} where each state
stands for one (effectively) disconnected region. The measures µk on these reduced
state spaces associate with each state the mass of the respective region at level k
under the original target distribution on R. Moreover, the kernels Kk take into
account that in the transition from µ4 to µ5, when the number of states increases
from two to three, two of the states in I5 can be reached only from one of the states
in I4 and are thus its successors. 1 and 2 are successors of 0, and 3 and 4 are
successors of 2 (and of 0).

Denote by B(Ik) the bounded functions from Ik to R. Let Kk+1 be a transition
kernel from Ik to Ik+1 with the property that for x ∈ Ik, Kk+1(x, ·) is a probabil-
ity distribution on sk+1 ⊆ Ik+1, i.e., transitions only go to successors of a state.
Moreover, let the unnormalized relative density gk,k+1 ∈ B(Ik) be such that

µk+1(f) =
µk(gk,k+1Kk+1(f))

µk(gk,k+1)
for all f ∈ B(Ik+1).

Define qk,k+1 : B(Ik+1)→ B(Ik) by

qk,k+1(f) =
gk,k+1Kk+1(f)

µk(gk,k+1)
.

Moreover for j < k let qj,k : B(Ik)→ B(Ij) be given by

qj,k(f) = qj,j+1(qj+1,j+2(. . . qk−1,k(f))) and qk,k(f) = f.

Define the weighted particle measures νNj as in Section 1.4.1.1. We study again
the approximation error of νNj and use it to bound the approximation error of the
particle measure ηNj from the algorithm using (1.2).13

Our main result shows that in this reduced setting the algorithm’s approximation
error can be controlled in terms of a constant which captures how strongly the
components gain probability mass over time. Roughly speaking, we show that the
algorithm works well if for all j < k no disconnected component under µj carries
much less weight than its successors under µk. The intuition for this is straightfor-
ward: If a component x ∈ Ij is much less important than its successors in Ik, there
is a substantial probability that there are no particles in x. If µj(x) is small, we
may then still have a reasonable particle approximation of µj. But if we miss x we
also miss its successors in Ik and if these are important we obtain a bad approxima-
tion of µk: Transition states with small weight create a bottleneck for the particle
dynamics.

The error bound is based on a variation of Theorem 1.1 where we choose as the
sequence of norms ‖ · ‖j the supremum norms on the spaces B(Ij). Let M be the

13We cannot directly apply these results, since in the present setting the µk do not live on the
same state space and since Kk is not stationary with respect to µk. The more general results
proved in Chapter 2 are however completely analogous and cover this case.
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largest gain in weight of a state in comparison with its successors:

M = max
0≤j<k≤n

max
x∈Ij

µk(sk(x))

µj(x)
.

M has the property that for all f ∈ B(Ik)

‖qj,k(f)2‖j = ‖qj,k(f)‖2j ≤M ‖f‖2k.

Thus M can be used as a constant in condition (1.5) of Theorem 1.1 and we obtain
the following result:14

Theorem 1.3. Let N ≥ 2M (n+ 1). Then for f ∈ B(In) we have

E[|νNn (f)− µn(f)|2] ≤
∑n

j=0 Varµj(qj,n(f))

N
+

2M3(n+ 1)2‖f‖2n
N2

.

Moreover, we have the bound

n∑
j=0

Varµj(qj,n(f)) ≤M (n+ 1) ‖f‖2n.

Thus we can indeed control the error in terms of M , n and the maximum of f . While
this theorem is not designed for proving good performance of Sequential MCMC in
concrete examples, it allows to draw a number of heuristic conclusions: Sequential
MCMC can only work well if no component of the state space becomes important
after it has been essentially separated from the rest of the state space. Moreover, in
Section 4.4 we provide a detailed analysis of a tree model in which Sequential MCMC
with Resampling works well while the error of Sequential Importance Sampling
increases exponentially over time. This shows that resampling with a finite number
of particles can indeed overcome difficulties associated with multimodality in settings
where Sequential Importance Sampling fails.

Our second error bound for the case without global mixing aims at combining the
ideas behind Theorem 1.3 with the Lp-stability analysis outlined in Section 1.4.2.1.
These are the results of Chapter 5. We return to a sequence of mutually absolutely
continuous measures (µk)k on a common state space E with unnormalized relative
densities gk,k+1 ∈ B(E) and transition kernels Kk : B(E) → B(E) which are sta-
tionary with respect to µk. The main difference to the analysis of Section 1.4.2.1
is that we rely on a different set of norms under which stability of the semigroup
qj,k can be derived from local mixing properties. Instead of the tree structure in
Theorem 1.3 we now consider a sequence of increasingly finer partitions of E.

To this end, denote by (Fi)i∈I a collection of subsets of E where I is a finite index
set and µ0(Fi) > 0 for all i ∈ I. Consider a sequence (Ik)

n
k=0 of index sets with

14The theorem corresponds to Corollary 4.1 below. It relies on a variation of Theorem 1.1, namely,
Theorem 2.2.
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Ik ⊆ I and with the property that (Fi)i∈Ik is a disjoint partition of E for all k.
Assume that partitions become increasingly finer in the sense that for j < k and for
all i ∈ Ij there exists a subset sk(i) ⊂ Ik such that (Fl)l∈sk(i) is a disjoint partition
of Fi. This is basically the tree structure of Theorem 1.3 again. Yet this time it
appears only as a sequence of index sets and not as the algorithm’s state space.

We want to apply Theorem 1.1 to a setting where the MCMC kernels Kk mix well
locally on each set Fi, i ∈ Ik but not globally. To formulate this we need some
additional notation. For i ∈ I and 0 ≤ k ≤ n denote by µk,i the restriction of µk to
Fi, i.e., the measure on E given by

µk,i(f) =
µk(f1Fi)

µk(Fi)

for all f ∈ B(E). We choose the following sequence of norms on E:

‖f‖k,p = max
i∈Ik
‖f‖Lp(µk,i) for f ∈ B(E), p ≥ 1, 0 ≤ k ≤ n.

The norms ‖ · ‖k,p thus combine local Lp norms with a maximum norm over compo-
nents.

With this choice of norms, proving the crucial inequality (1.5) in Theorem 1.1 and
thus a non-asymptotic error bound is reduced to finding constants

cj,k(p) = max
(
c̃j,k

(
p,
p

2

)
, c̃j,k (2p, p)2

)
,

where for p ≥ q ≥ 1 we define c̃(p, q) as a constant in an Lp-Lq inequality for the
semigroup qj,k, i.e., a constant such that

‖qj,k(f)‖j,p ≤ c̃j,k(p, q)‖f‖k,q

is satisfied for all f ∈ B(E) and all j < k.

We make the following assumptions: Denote by gk,k+1,i ∈ B(E) the normalization
of gk,k+1 which makes it a relative density between the restricted measures µk,i and
µk+1,i, i.e.,

gk,k+1,i(x) =
µk(Fi)

µk+1(Fi)
gk,k+1(x)1Fi(x) for all x ∈ E.

We assume the following uniform upper bound on (local) relative densities: There
exists a γ such that for all 0 ≤ k < n and for all i ∈ Ik

gk,k+1,i(x) ≤ γ for all x ∈ Fi.

We assume that the MCMC dynamics Kk does not move between the components
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(Fi)i∈Ik of the state space at level k: For all 0 ≤ k ≤ n and for all j ∈ Ik

Kk(1Fj)(x) = 0 for all x ∈ E \ Fj.

This assumption considerably simplifies the analysis, since it implies that if f ∈
B(E) has support only in Fj, j ∈ Ik, then Kk(f) also has support only in Fj.
Moreover, while it will not be satisfied in most applications, it is very much in
line with the idea that the sets Fj are separated by barriers which preclude good
global mixing of the Kk: We make the technical assumption that transitions between
separated local modes – which are possible but very rare – never occur. This leads to
the following stability result for the semigroup qj,k which can be used to determine
cj,k(p) and thus to deduce a non-asymptotic error bound from Theorem 1.1:15

Theorem 1.4. Assume there are constants α > 0 and β ∈ [0, 1] such that for all
f ∈ B(E) for all 0 ≤ k ≤ n and all i ∈ Ik we have the following L2-bound,

‖Kk(gk,k+1,if)‖2L2(µk,i)
≤ α‖f‖2L2(µk+1,i)

+ βµk+1,i(f)2. (1.13)

For r ∈ N, consider p ∈ [2r, 2r+1] and assume that (1.13) holds with an α for which
αγ2

r−2 < 1. Assume furthermore that for q > p there is a θ(q, p) > 0 such that for
all f ∈ B(E) and for all i ∈ Ij

‖Kj(f)‖Lq(µj,i) < θ(q, p)‖f‖Lp(µj,i). (1.14)

Then we have for 0 ≤ j < k ≤ n and f ∈ B(E) the inequality

‖qj,k(f)‖j,q ≤ c̃j,k(q, p)‖f‖k,p

with

c̃j,k(q, p) = Aj,k θ(q, p)
γr+2

1− αγ2r−2

where

Aj,k = max
i∈Ik

k−1∏
l=j

µl+1(Fpl(i))

µl(Fpl(i))
. (1.15)

Here, for l < k, pl(i) ∈ Il denotes the predecessor of i ∈ Ik in Il, i.e., the unique
element pl(i) ∈ Il for which i ∈ sk(pl(i)).

Comparing with the result under global mixing in Theorem 1.2, the present result
differs in the following ways: We have replaced the global mixing conditions (1.7)
and (1.8) by analogous local conditions (1.13) and (1.14) which, so to say, require
good mixing only around each mode. Specifically, we require L2-mixing and hyper-
boundedness of the Kk with respect to the restricted measures µk,i for all i ∈ Ik.
Both conditions can be derived from local Logarithmic Sobolev inequalities. Sim-
ilarly to the constant M in Theorem 1.3 we get an additional factor Aj,k in our

15The result is an immediate consequence of Corollary 3.4 below.
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bound which takes into account how probability mass is shifted between the sepa-
rated components of the state space. Aj,k is the maximal product of relative mass
changes one has to go through when moving from some component Fi, i ∈ Ij to one
of its successors Fl, l ∈ sk(j). maxj<k Aj,k is generally larger than M since, roughly
speaking, we compare Fi to its worst successor and not to its set of successors. This
is the price we pay for taking into account local mixing and local variations in rela-
tive densities from which we abstracted in Theorem 1.3. Note also that in the case
with only one component at each level, |Ik| = 1 for all k, we have Aj,k = 1 and the
norms reduce to Lp-norms on E. Theorem 1.2 is thus a special case of Theorem 1.4.

1.4.3.3 Related Work

The idea of reducing complicated multimodal distributions to trees, also known as
disconnectivity graphs, has been studied extensively in the chemical physics litera-
ture, see Chapter 5 of Wales (2003) for an introduction. In the Sequential Monte
Carlo literature, the only precursors of our results appear to be in Eberle and
Marinelli (2010, 2011) who consider the continuous time case and restrict atten-
tion to the case of forests where each disconnected component under µ0 has exactly
one successor component at each level. This corresponds to the case of I0 = . . . = In
in the setting of our Theorem 1.4. The constant Aj,k in Theorem 1.4 reduces to the
constant they find in this case, cf. Theorem 2.10 in Eberle and Marinelli (2011).

A number of related results for the Parallel Tempering algorithm16 have been proved,
in increasing generality, by Madras and Zheng (2002), Bhatnagar and Randall (2004)
and Woodard, Schmidler and Huber (2009a, 2009b). Technically, these results rely
on decomposition results for bounding spectral gaps of Markov chains, namely on
an unpublished result of Caracciollo, Pelissetto and Sokal (1992) which was first
published and extended in Madras and Randall (2002), see also Jerrum, Son, Tetali
and Vigoda (2004). These decomposition results have the advantage that they
do not rely on the assumption that the MCMC dynamics does not move between
effectively disconnected components which we made. Therefore, these results can
be applied directly to some simple of interest such as the mean field Ising model.

All these results on Tempering are restricted to simple trees with one node at the
origin and a number of branches which do not branch further at later levels. This
corresponds to the case of I0 = 1 and I1 = . . . = In in the setting of Theorem
1.4. Figure 1.2 above demonstrates that our more general trees arise naturally in
applications, see also Wales (2003) for many examples from chemical physics.

1.4.3.4 Discussion

As pointed out previously, a drawback of Theorems 1.3 and 1.4 is that we assume
that the MCMC dynamics never moves between components of the state space

16See Section 1.3.3 for a discussion of Tempering algorithms and their relation to Sequential
MCMC.
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which are separated by regions of low probability. This technical assumptions has
the consequence that we cannot hope to actually apply the results even to the usual
toy models. Thus, some words of defense seem in order.

First, in the majority of practical applications and even for simple MCMC algorithms
there is no way to just check a number of mixing assumptions and then deduce a
computationally feasible required running time of the algorithms. Two reasons for
this are that most available error bounds are not sharp enough and that in many
applications the target distribution is essentially a “black box” for which quantities
such as a spectral gap are difficult to obtain. One might argue that most existing
research on error bounds for MCMC aims at deriving abstract characterizations of
settings in which the algorithms work well or not so well. This is also the spirit
behind Theorem 1.3 and Theorem 1.4.

Second, there seems to be little reason to expect that we improve the error by,
essentially, setting some (small) transition probabilities of the MCMC dynamics
to zero: While the assumption of no transitions between disconnected components
makes the error easier to bound, it should rather make the error itself larger than
smaller. Basically, we can derive a model fulfilling our assumptions from another
model by setting, e.g., all probabilities below a certain threshold to zero. With very
high probability, this change would not even affect our simulations. Rigorous results
along these lines would be an important next step.

Since Theorem 1.3 abstracts from most of the local structure – and thus from some
possible problems – it should be seen as a rough but intuitive criterion for identifying
settings where the algorithm works or does not work. Consider for instance the mean
field Potts model for which slow mixing of the Tempering algorithms was proved
by Bhatnagar and Randall (2004), see their paper also for more details about the
model. Basically, in this model there is a distribution µ0 which is unimodal and a
distribution µn which has four modes of roughly equal weight. Along the transition
from µ0 to µn, three additional modes arise which are immediately well-separated
from the initial one and have a tiny initial mass, say ε. Thus, we obtain a huge
constant M of order O(ε−1) in our error bound.17

For the mean field Ising model, Madras and Zheng (2002) proved rapid mixing
of Tempering algorithms. Theorem 1.3 suggests that the same should be true for
Sequential MCMC: In the mean field Ising model there is basically one mode which
is split into two modes of equal weight at some point as we move from µ0 to µn.
In this case, each mode has exactly the same weight as its successors. Thus we can
expect a good performance of the algorithm.

Another example, where a similar behavior can be expected, is the problem of
estimating the parameters of mixture distributions described in Celeux, Hurn and
Robert (2000). There, the target distribution µn is a distribution on the parameter

17Recall that the leading coefficient in the error bound corresponds to the asymptotic variance
so that we have indeed more than just an upper bound. For more discussion, see the end of
Section 4.2.2 beginning with Proposition 4.1.
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space Rl×k with the symmetry property that all permutations of the rows of a given
θ ∈ Rl×k have the same probability under µn. Without going into further detail
here, the source of the multimodality problem is that, e.g., the Gaussian mixture
distributions

0.25N (5, 1) + 0.75N (0, 1) and 0.75N (0, 1) + 0.25N (5, 1)

are identical, i.e., that some permutations of the parameters correspond to the
same mixture distribution. The target distribution µn of MCMC is a posterior
distribution on the parameter space and thus assigns the same weight to θ1 =
(0.25, 5, 1; 0.75, 0, 1) ∈ R2×3 and θ2 = (0.75, 0, 1; 0.25, 5, 1) ∈ R2×3. See also the
related example in Section 1.3.1. Theorem 1.3 suggests that if this type of per-
mutation symmetry is the sole source of multimodality, Sequential MCMC should
work well, since the symmetry is retained when tempering the target distribution.
Thus, the areas around each local mode have the same weight at all “temperatures”.
This intuition is confirmed by simulations of Celeux, Hurn and Robert (2000) who
study an example along these lines and demonstrate that Simulated Tempering can
move between local modes while simple MCMC cannot. Permutation symmetries
are also one source of multimodality in models from chemical physics, see Wales
(2003). Another message of Theorem 1.3 is however that multimodality caused by
permutation symmetries is one of the easiest to deal with cases of multimodality.
Thus, examples of this type are rather limited toy examples for testing a multilevel
MCMC algorithm’s ability to move between disconnected modes.

Theorem 1.4 conveys basically the same intuition as Theorem 1.3 but it explicitly
takes into account the aspects left out in Theorem 1.3, notably, local mixing and
sufficient similarity of µk and µk+1 within disconnected components. Both aspects
are important to keep in mind: Assume we choose n = 1, let µ0 be a distribution for
which we have excellent global mixing and let µ1 be an arbitrary other distribution
which is strongly multimodal. This setting can be projected to a tree where a
number of leafs branch from a single root. Then Theorem 1.3 seems to suggest, that
Sequential MCMC with only these two distributions should work very well, since the
root of the tree has mass 1 under µ0 and its successors have mass 1 under µ1. This
– obviously false – conclusion can be drawn from Theorem 1.3 since the theorem
does not take into account local variations in relative densities which may lead to
huge errors in the resampling step. Basically, Theorem 1.3 makes the – implicit
– assumption that relative densities are constant within each component. Similar
“wrong intuitions” can be derived from Theorem 1.3 by disregarding the fact that
local mixing has to be guaranteed within each component.

On a related note, Theorem 1.4 also shows that problems of the algorithm which
stem from disconnected components gaining mass can generally not be alleviated by
increasing the number of interpolating distributions: Adding additional steps in the
sequence µ0, . . . , µn can only increase the constant M . This separates this type of
problem from problems associated with large local variations in relative densities in
the presence of good global mixing, see the discussion at the end of Section 1.4.2.2.
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The only way to control the constants M and Aj,k seems to be to choose an entirely
different sequence µ0, . . . , µn−1.

To conclude, an important message of Theorems 1.3 and 1.4 is that, generally, a bad
performance of Sequential MCMC is not a property of the target distribution µn
but a property of the approximating sequence µ0, . . . , µn−1 which is a parameter in
the algorithm, not in the problem of interest. So far, the mathematical literature on
multilevel MCMC algorithms has largely focused on flattening a target distribution
by tempering. In the applied literature, there are many more, sometimes model-
specific, proposals for choosing a sequence of distributions such as cutting off the
Hamiltonian at chosen minimum levels in addition to tempering, varying the system
size or spatial coarse graining, see, e.g. Kou, Zhou and Wong (2006), Liu and
Sabatti (1998) or Lyman, Ytreberg and Zuckerman (2006). A more systematic
study of methods for approximating target distributions seems to be an important
and highly challenging task for future research.
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2 The Quadratic Error of
Sequential MCMC

In this chapter we introduce the Sequential MCMC setting we are interested in
and derive general versions of our non-asymptotic error bounds in terms of stabil-
ity properties of the Feynman-Kac semigroup qj,k associated with the algorithm’s
particle dynamics. Basically, the analysis of the later chapters is dedicated to veri-
fying these stability properties in more concrete settings and to then apply the error
bounds proved below. Section 2.1 introduces the notation, the model and the inter-
acting particle system simulated in the algorithm. Section 2.2 introduces a suitably
weighted version of the particles’ occupation measure. We show how to control
the approximation error with respect to the original particle measures in terms of
the error of these weighted particle measures and give an explicit formula for the
quadratic error of the weighted measures. Section 2.3 proves our main error bound.
Section 2.4 gives an alternative error bound which yields slightly better constants
in the setting of Chapter 4 and provides some discussion.

The setting we introduce here is slightly more general than the one discussed in the
introduction: We consider a sequence of distributions (µk)k which live on a sequence
of state spaces instead of a common state space. Moreover, we do not assume that
the transition kernels Kk are stationary with respect to the measures µk. Instead, we
only assume that the combination of applying the weight function gk−1,k and then
the kernel Kk leads from µk−1 to µk, see Section 2.1.2 for details. This more general
framework has the advantage that it covers both the Sequential MCMC algorithm
of Section 1.2, which is studied in Chapters 3 and 5, and the stylized version of the
algorithm studied in Chapter 4. In addition, the more general framework here may
be of interest in some further problems besides the study of our algorithm, see, e.g.,
Section 1.4 of Del Moral (2005) for a short overview of other applications.

Throughout, we assume the integrands f to be bounded. This assumption becomes
necessary at a crucial place in this chapter, namely when transferring results from
the weighted particle measure to the original one in Lemma 2.2. For this reason, we
restrict attention to bounded integrands, avoiding to introduce systems of integra-
bility conditions (as is done, e.g., in Chapter 9.2 of Cappé, Moulines and Rydén).
However, the results on the weighted particle measures νNn do not rely on this bound-
edness and could be generalized along such lines.
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2.1 Preliminaries

2.1.1 Notation

Let (E, r) be a Polish space and let B(E) be the σ-algebra of Borel subsets of E.
Denote by M(E) the space of finite signed Borel measures on E. Let M1(E) ⊂M(E)
be the subset of all probability measures. Let B(E) be the space of bounded,
measurable, real-valued functions on E.

For µ ∈M(E) and f ∈ B(E) define µ(f) by

µ(f) =

∫
E

f(x)µ(dx)

and Varµ(f) by
Varµ(f) = µ(f 2)− µ(f)2.

Let (Ẽ, r̃) be another Polish space. Consider an integral operator K(x,A) with

K(x, ·) ∈ M(Ẽ) for x ∈ E and K(·, A) ∈ B(E) for A ∈ B(Ẽ). We define for

µ ∈M(E) the measure µK ∈M(Ẽ) by

µK(A) =

∫
E

K(x,A)µ(dx) ∀A ∈ B(Ẽ).

For f ∈ B(Ẽ) we denote by K(f) ∈ B(E) the function given by

K(f)(x) = K(x, f) =

∫
E

f(z)K(x, dz) ∀x ∈ E.

2.1.2 The Measure-Valued Model

Consider a sequence of Polish spaces (Ek, rk) and a sequence of probability measures
(µk)

n
k=0, µk ∈ M1(Ek). This is the sequence of measures we wish to approximate

with the algorithm introduced in Section 2.1.3. The measures µk are related through

µk(f) =
µk−1(gk−1,kKk(f))

µk−1(gk−1,k)
∀f ∈ B(Ek)

for positive functions gk−1,k ∈ B(Ek−1) and transition kernels Kk with Kk(x, ·) ∈
M1(Ek) for x ∈ Ek−1 and Kk(·, A) ∈ B(Ek−1) for A ∈ B(Ek). We define the
probability distribution µ̂k ∈M1(Ek−1) by

µ̂k(f) =
µk−1(gk−1,kf)

µk−1(gk−1,k)
∀f ∈ B(Ek−1).

This implies µ̂k(Kk(f)) = µk(f) for f ∈ B(Ek).

Next we introduce the Feynman-Kac semigroup qj,k which will be the central object
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of our error analysis. Define the mapping qk−1,k : B(Ek)→ B(Ek−1) by

qk−1,k(f) =
gk−1,kKk(f)

µk−1(gk−1,k)

Observe that this implies
µk(f) = µk−1(qk−1,k(f))

Furthermore define for 0 ≤ j < k ≤ n the mapping qj,k : B(Ek)→ B(Ej) by

qj,k(f) = qj,j+1(qj+1,j+2(. . . qk−1,k(f)))

and qk,k(f) = f . Note that for f ∈ B(Ek) we have the relation

µj(qj,k(f)) = µk(f) for 0 ≤ j ≤ k ≤ n

and the semigroup property

qj,l(ql,k(f)) = qj,k(f) for 0 ≤ j < l < k ≤ n.

2.1.3 The Interacting Particle System

In the Sequential MCMC algorithm, we approximate the measures (µk)k by simu-
lating the interacting particle system introduced in the following. We start with N
independent samples ξ0 = (ξ10 , . . . , ξ

N
0 ) from µ0. The particle dynamics alternates

two steps: Importance Sampling Resampling and Mutation: A vector of particles
ξk−1 approximating µk−1 is transformed into a vector ξ̂k approximating µ̂k by draw-
ing N conditionally independent samples from the empirical distribution of ξk−1
weighted with the functions gk−1,k. Afterwards, ξ̂k is transformed into a vector

ξk approximating µk by moving the particles ξ̂ik independently with the transition
kernel Kk.

We thus have two arrays of random variables (ξjk)0≤k≤n,1≤j≤N and (ξ̂jk)1≤k≤n,1≤j≤N
where ξjk and ξ̂jk+1 take values in Ek. Denote respectively by P[·] and E[·] probabilities
and expectations taken with respect to the randomness in the particle system, i.e.,
with respect to the random variables (ξjk)k,j and (ξ̂jk)k,j. The random variables
ξ10 , . . . , ξ

N
0 are independent and distributed according to µ0. The distributions of

the remaining ξ̂jk and ξjk are pinned down by the transition probabilities

P[ξ̂k ∈ dx|ξk−1 = z] =
N∏
j=1

N∑
i=1

gk−1,k(z
i)∑N

l=1 gk−1,k(z
l)
δzi(dx

j)

and

P[ξk ∈ dx|ξ̂k = z] =
N∏
j=1

Kk(z
j, dxj).

Denote by Fk the σ-algebra generated by ξ0, . . . ξk and ξ̂1, . . . ξ̂k and denote by ηNk
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the empirical measure of ξk, i.e.

ηNk =
1

N

N∑
i=1

δξik .

In the following we will study, how well ηNk approximates µn. We end the preliminary
observations with the following lemma:

Lemma 2.1. We have for f ∈ B(Ek) and 1 ≤ k ≤ n

E[ηNk (f)|Fk−1] =
ηNk−1(qk−1,k(f))

ηNk−1(qk−1,k(1))

and for 1 ≤ j ≤ N

E[f(ξjk)|Fk−1] =
ηNk−1(qk−1,k(f))

ηNk−1(qk−1,k(1))

Proof. Denote by F̂k the σ-algebra generated by ξ0, . . . ξk−1 and ξ̂1, . . . ξ̂k. Note that
Fk−1 ⊆ F̂k ⊆ Fk. We can thus write

E[f(ξjk)|Fk−1] = E[E[f(ξjk)|F̂k]|Fk−1]
= E[Kk(ξ̂

j
k, f)|Fk−1]

=

∑N
i=1 gk−1,k(ξ

i
k−1)Kk(ξ

i
k−1, f)∑N

l=1 gk−1,k(ξ
l
k−1)

=
ηNk−1(gk−1,kKk(f))

ηNk−1(gk−1,k)

=
ηNk−1(qk−1,k(f))

ηNk−1(qk−1,k(1))
.

This proves the claim for E[f(ξjk)|Fk−1] and immediately implies the claim for
E[ηNk (f)|Fk−1].

2.2 Variances of Weighted Empirical Averages

We are interested in finding efficient upper bounds for the quantities

E[|ηNn (f)− µn(f)|2]

and
E[|ηNn (f)− µn(f)|].

As is shown in Lemma 2.2 below, these quantities can be controlled in terms of
the approximation error of a weighted empirical measure νNn (f) which is easier to
handle. In this section, we introduce the measure νNn (f) and establish an explicit
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formula for its quadratic error

E[|νNn (f)− µn(f)|2].

Define for 0 ≤ k ≤ n
νNk (f) = ϕk η

N
k (f)

where ϕk is given by

ϕk =
k−1∏
j=0

ηNj (qj,j+1(1))

for 1 ≤ k ≤ n and ϕ0 = 1. Note that typically νNk is not a probability distribution
and that ϕk is Fk−1-measurable. The factor ϕk is chosen in a way that from Lemma
2.1 we have

E[νNk (f)|Fk−1] = νNk−1(qk−1,k(f)). (2.1)

By the unbiasedness proved in Proposition 2.1 below it also holds that

E[ϕk] = E[νNk (1)] = E[µk(1)] = 1.

Furthermore, the following relation will prove useful:

νNk+1(1) = ϕk+1 = ϕkη
N
k (qk,k+1(1)) = νNk (qk,k+1(1)). (2.2)

The connection between the approximation errors of ηNn (f) and νNn (f) is established
in the following lemma:

Lemma 2.2. For f ∈ B(En) we have the bounds

E[(ηNn (f)− µn(f))2] ≤ 2 Var(νNn (f)) + 2 ‖f − µn(f)‖2sup,nVar(νNn (1)) (2.3)

and

E[|ηNn (f)− µn(f)|] (2.4)

≤ Var(νNn (f))
1
2 +
√

2‖f − µn(f)‖sup,nVar(νNn (1)) +
√

2Var(νNn (f))
1
2 Var(νNn (1))

1
2 ,

where ‖ · ‖sup,n denotes the supremum norm on B(En).

Proof of Lemma 2.2. Define fn = f − µn(f) and observe that for a, b ∈ R the fact
that (a− 2b)2 ≥ 0 implies

a2 ≤ 2(a− b)2 + 2b2.

We can thus prove (2.3) as follows:

E[ηNn (fn)2] ≤ 2E[(ηNn (fn)− νNn (fn))2] + 2E[νNn (fn)2]

≤ 2‖fn‖2sup,nVar(νNn (1)) + 2Var(νNn (f))

where the last step uses the unbiasedness of νNn proved in Proposition 2.1 below. To
show (2.4), observe that by the triangle inequality, by the definition of νNn and by
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the Cauchy-Schwarz inequality we have

E[|ηNn (fn)|] ≤ E[|ηNn (fn)− νNn (1)ηNn (fn)|] + E[|νNn (fn)|]
≤ E[ηNn (fn)2]

1
2E[(νNn (1)− 1)2]

1
2 + E[νNn (fn)2]

1
2 .

Inserting (2.3) completes the proof.

Thus we can indeed control the approximation error of ηNn in terms of the approxi-
mation error of νNn .

The main result of this section shows that νNk (f) is an unbiased estimator for µk(f)
and gives an explicit expression for its variance which is well-suited for deriving our
later error bounds:

Proposition 2.1. For all f ∈ B(En),

E[νNn (f)] = µn(f)

and

E[|νNn (f)− µn(f)|2] =
1

N
Varµn(f) +

1

N
E

[
n−1∑
j=0

V N
j,n(f)

]
where

V N
j,n(f) = νNj (1)νNj (qj,n(f)2)− νNj (qj,n(f))2 + νNj (qj,j+1(1)− 1)νNj (qj,n(f 2)). (2.5)

The proof of the proposition is based on martingale methods and proceeds in a
number of lemmas which make up the remainder of this section. The actual proof
of the proposition follows at the end. Note first that for any fixed f ∈ B(En) the
process (Aj)

n
j=0 defined by

Aj = νNj (qj,n(f))

is an (Fn)-martingale by (2.1) and by the semigroup property of the mappings qj,n.
Recall that by the Doob-Meyer decomposition the process Hj given by

Hj = A2
j − A2

0 −
j−1∑
k=0

E[A2
k+1 − A2

k|Fk] (2.6)

is a martingale. We next derive a more explicit expression for Hj.

Lemma 2.3. We have

Hj = A2
j − A2

0 −
1

N

j−1∑
k=0

νNk (qk,k+1(1))νNk (qk,k+1(qk+1,n(f)2))− νNk (qk,n(f))2.
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Proof. By the definitions ofAk, ν
N
k and ηNk and since the random variables ξ1k+1, . . . , ξ

N
k+1

are conditionally (on Fk) independent we can write

E[A2
k+1|Fk] =

ϕ2
k+1

N2
E

 N∑
j=1

qk+1,n(f)(ξjk+1)

)2
∣∣∣∣∣∣Fk


=

ϕ2
k+1

N2

[
N∑
j=1

E[qk+1,n(f)(ξjk+1)
2|Fk]−

N∑
j=1

E[qk+1,n(f)(ξjk+1)|Fk]
2

+

(
N∑
j=1

E[qk+1,n(f)(ξjk+1)|Fk]

)2


=
ϕ2
k+1

N2

(
NE[qk+1,n(f)(ξ1k+1)

2|Fk]−NE[qk+1,n(f)(ξ1k+1)|Fk]2

+ N2 E[qk+1,n(f)(ξ1k+1)|Fk]2
)

Thus by Lemma 2.1 and the semigroup property of the qj,k we have

E[A2
k+1|Fk] =

ϕ2
k+1

N2

[
N
ηNk (qk,k+1(qk+1,n(f)2))

ηNk (qk,k+1(1))
−N ηNk (qk,n(f))2

ηNk (qk,k+1(1))2
+N2 η

N
k (qk,n(f))2

ηNk (qk,k+1(1))2

]
=

1

N
[νNk (qk,k+1(1))νNk (qk,k+1(qk+1,n(f)2))− νNk (qk,n(f))2] + A2

k

where in the last step we used (2.2). Inserting the resulting expression for E[A2
k+1−

A2
k|Fk] into (2.6) concludes the proof.

We can use Lemma 2.3 to derive an explicit expression for E[|νNn (f)− µn(f)|2]. In
order to make this expression more tractable, concretely, in order to remove the
terms qk,k+1(qk+1,n(f)2), we use the following lemma:

Lemma 2.4. For all f ∈ B(En) the processes

Lk = νNk (1)νNk (qk,n(f)2)− νN0 (1)νN0 (q0,n(f)2)

−
k−1∑
j=0

νNj (qj,j+1(1))νNj (qj,j+1(qj+1,n(f)2)) +
k−1∑
j=0

νNj (1)νNj (qj,n(f)2) (2.7)

and

Mk = νNk (1)νNk (qk,n(f 2))− νN0 (1)νN0 (q0,n(f 2))−
k−1∑
j=0

νNj (qj,j+1(1)− 1)νNj (qj,n(f 2))

(2.8)
are (Fk)-martingales.

49



Proof. By the Doob-Meyer decomposition, for Bk = νNk (1)νNk (qk,n(f)2) the process

Lk = Bk −B0 −
k−1∑
j=0

E[Bj+1|Fj] +
k−1∑
j=0

Bj

is a martingale. To obtain the expression in (2.7) it is sufficient to note that by
Lemma 2.1 and by (2.2)

E[Bj+1|Fj] = ϕ2
j+1E[ηNj+1(qj+1,n(f)2)|Fj] = ϕ2

j+1

ηNj (qj,j+1(qj+1,n(f)2))

ηNj (qj,j+1(1))

= νNj (qj,j+1(1))νNj (qj,j+1(qj+1,n(f)2)).

Likewise for B̃k = νNk (1)νNk (qk,n(f 2)) the process

Mk = B̃k − B̃0 −
k−1∑
j=0

E[B̃j+1 − B̃j|Fj]

is a martingale. To obtain the expression in (2.8) note that by (2.1) and by (2.2)

E[B̃j+1 − B̃j|Fj] = νNj+1(1)E[νNj+1(qj+1,n(f 2))|Fj]− νNj (1)νNj (qj,n(f 2))

= (νNj+1(1)− νNj (1))νNj (qj,n(f 2)) = νNj (qj,j+1(1)− 1)νNj (qj,n(f 2)).

With these lemmas, we have established the tools needed to prove Proposition 2.1:

Proof of Proposition 2.1. For the unbiasedness, note that

νNn (f)− µn(f) = νNn (qn,n(f))− νN0 (q0,n(f)) + νN0 (q0,n(f))− µ0(q0,n(f))

= An − A0 + νN0 (q0,n(f))− µ0(q0,n(f)).

This implies
E[νNn (f)] = E[µn(f)]

since the martingale property of An implies E[An − A0] = 0, and since we have

E[νN0 (q0,n(f))] = E[µ0(q0,n(f))]

because of νN0 = ηN0 and because the particles ξj0 are independent samples from µ0.

Now note that by conditional independence

E[|νNn (f)− µn(f)|2] = E[|(An − A0) + (νN0 (q0,n(f))− µ0(q0,n(f)))|2]
= E[A2

n − A2
0] + E[(νN0 (q0,n(f))− µ0(q0,n(f)))2]. (2.9)

Note that the second summand equals 1
N

Varµ0(q0,n(f)). Using Lemma 2.3 and, in
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the second step, (2.7) we can thus write

E[|νNn (f)− µn(f)|2] =
1

N

(
Varµ0(q0,n(f))

+ E
[ n−1∑
k=0

νNk (qk,k+1(1))νNk (qk,k+1(qk+1,n(f)2))− νNk (qk,n(f))2
])

=
1

N

(
Varµ0(q0,n(f)) + E

[
νNn (1)νNn (qn,n(f)2)− νN0 (1)νN0 (q0,n(f)2)

+
n−1∑
k=0

νNk (1)νNk (qk,n(f)2)− νNk (qk,n(f))2
])
. (2.10)

Now observe that

Varµ0(q0,n(f))− E[νN0 (1)νN0 (q0,n(f)2)] = Varµ0(q0,n(f))− µ0(q0,n(f)2)

= −µ0(q0,n(f))2 = −µn(f)2. (2.11)

Moreover, by (2.8) we have

E[νNn (1)νNn (f 2)]− µn(f)2 = E[νN0 (1)νN0 (q0,n(f 2))]− µn(f)2

+
n−1∑
j=0

E[νNj (qj,j+1(1)− 1)νNj (qj,n(f 2))]

= Varµn(f) +
n−1∑
j=0

E[νNj (qj,j+1(1)− 1)νNj (qj,n(f 2))]

(2.12)

Inserting (2.11) and then (2.12) into (2.10) yields

E[|νNn (f)− µn(f)|2] =
1

N

(
Varµn(f) + E

[
n−1∑
j=0

V N
j,n(f)

])

with

V N
j,n(f) = νNj (1)νNj (qj,n(f)2)− νNj (qj,n(f))2 + νNj (qj,j+1(1)− 1)νNj (qj,n(f 2))

so we are done.

2.3 Non-asymptotic Error Bounds

In this section we derive non-asymptotic error bounds from our expression for the
variance of νNn (f) derived in the previous section. For 0 ≤ j ≤ n, let ‖ · ‖j be a
norm on the function space B(Ej) such that ‖f‖j < ∞ for all f ∈ B(Ej). For
0 ≤ j < k ≤ n, let cj,k be a constant such that for all f ∈ B(Ek), the following
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stability inequality for the semigroup qj,k is satisfied:

max(‖1‖j‖qj,k(f)2‖j, ‖qj,k(f)‖2j , ‖qj,k(f 2)‖j) ≤ cj,k‖f‖2k. (2.13)

In the following we show that the quadratic approximation error of νNn can essentially
be controlled through the constants cj,k.

Recall that the approximation error was given by the expected sum over j of the
expressions V N

j,n defined in the previous sections. We first show how V N
j,n can be

bounded through Vj,n defined by

Vj,n(f) = Varµj(qj,n(f)).

and an error term. Note that Vj,n is what we obtain when substituting νNj by µj in
our expression for V N

j,n. Define

εNj = sup
{
E[|νNj (f)− µj(f)|2]

∣∣∣‖f‖j ≤ 1
}
.

Then we have the following result:

Proposition 2.2. For 0 ≤ j < n we have

E[V N
j,n(f)] ≤ Vj,n(f) + cj,n‖f‖2n

(
2 + ‖qj,j+1(1)− 1‖j

)
εNj .

Proof. Note first that by the Cauchy-Schwarz inequality and since νNj (·) is an unbi-
ased estimator for µj(·), we have for any g, h ∈ B(Ej)

|E[νNj (g)νNj (h)− µj(g)µj(h)]|
≤ |µj(g)E[νNj (h)− µj(h)] + µj(h)E[νNj (g)− µj(g)]|+ E[|νNj (g)− µj(g)||νNj (h)− µj(h)|]
≤ ‖g‖j‖h‖j εNj . (2.14)

Adding ±Vj,n(f) to the definition (2.5) of V N
j,n(f) and applying (2.14) three times

yields
E[V N

j,n(f)] ≤ Vj,n(f) +Rj,n(f) εNj

with

Rj,n(f) = ‖1‖j‖qj,n(f)2‖j + ‖qj,n(f)‖2j + ‖qj,n(f 2)‖j‖qj,j+1(1)− 1‖j.

Applying (2.13) yields

Rj,n(f) ≤ cj,n‖f‖2n(2 + ‖qj,j+1(1)− 1‖j)

and thus the desired inequality.

In order to state the main result of this section, we need a few more definitions.
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Define ĉk and v̂k by

ĉk =
k−1∑
j=0

cj,k

(
2 + ‖qj,j+1(1)− 1‖j

)
and

v̂k = sup

{
k∑
j=0

Varµj(qj,k(f))

∣∣∣∣∣ ‖f‖k ≤ 1

}
.

Furthermore define

ck = max
j≤k

ĉj, vk = max
j≤k

v̂j and εNk = max
j≤k

εNj .

Then we have the following bound on the approximation error:

Theorem 2.1. Let N ≥ 2cn. Then for f ∈ B(En) we have

NE[|νNn (f)− µn(f)|2] ≤
n∑
j=0

Varµj(qj,n(f)) + ‖f‖2nĉn εNn (2.15)

and

εNn ≤ 2
vn
N

(2.16)

Proof of Theorem 2.1. Note that by Propositions 2.1 and 2.2 and by the definition
of Vj,n(f) we get

NE[|νNn (f)− µn(f)|2]

≤
n∑
j=0

Varµj(qj,n(f)) + ‖f‖2n
n−1∑
j=0

cj,n(2 + ‖qj,j+1(1)− 1‖j) εNj .

Bounding εNj by εNn and inserting the definition of ĉn shows (2.15). Optimizing
(2.15) over f with ‖f‖n ≤ 1 and over n yields

NεNn ≤ vn + cn ε
N
n .

Choosing N ≥ 2 cn and thus N − cn ≥ N
2

gives (2.16).

2.4 Another Non-asymptotic Error Bound

In this section, we prove an alternative to Theorem 2.1. Basically, we obtain this
result by stopping the proof of Proposition 2.1 at formula (2.11), thus getting a
different expression for the variance of νNn (f), and then continuing the remaining
steps as in the proof of Theorem 2.1. This leads to an error bound where the crucial
inequality (2.13) is replaced by

max(‖1‖j‖qj,k(f)2‖j, ‖qj,k(f)‖2j) ≤ dj,k‖f‖2k (2.17)
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for 0 ≤ j ≤ k ≤ n. The main difference between this condition and (2.13) is that
(2.17) includes the case j = k. This implies that we need a constant which allows to
bound ‖f 2‖k against ‖f‖2k. This is generally difficult since unlike in the cases j < k
there are no transition kernels Kl on the left hand side whose smoothing properties
may be exploited. An important exception is the case where ‖ · ‖k is a supremum
norm. In that case we have ‖f 2‖k = ‖f‖2k. The analysis of this section thus serves
two purposes: For one thing, it makes clearer why it was necessary to rewrite the
variance further in Proposition 2.1. For another, it yields an alternative error bound
which has better constants in the setting of Sequential MCMC on trees analyzed in
Chapter 4 where we rely on supremum norms.

The variance of νNn (f) can be written as follows:

Lemma 2.5. For all f ∈ B(En)

E[|νNn (f)− µn(f)|2] =
1

N
E[νNn (1)νNn (f 2)− µn(f)2] +

1

N
E

[
n−1∑
j=0

UN
j,n(f)

]

where
UN
j,n(f) = νNj (1)νNj (qj,n(f)2)− νNj (qj,n(f))2 (2.18)

Proof of Lemma 2.5. The result follows immediately by inserting (2.11) into (2.10)
in the Proof of Proposition 2.1.

Define εNj , εNj and vj as in the previous section. Analogously to Proposition 2.2 we
can then prove the following:

Lemma 2.6. For 0 ≤ j < n we have

E[UN
j,n(f)] ≤ Vj,n(f) + 2 dj,n‖f‖2nεNj .

Moreover
E[νNn (1)νNn (f 2)− µn(f)2] ≤ Vn,n(f) + dn,n‖f‖2nεNj .

Proof of Lemma 2.6. Arguing as in the proof of Proposition 2.2, we obtain for j < n

E[UN
j,n(f)] ≤ Vj,n(f) + Sj,n(f)εNj

where
Sj,n(f) = ‖1‖j‖qj,k(f)2‖j + ‖qj,k(f)‖2j .

The same argument also yields

E[νNn (1)νNn (f 2)− µn(f)2] ≤ Vn,n(f) + S̃n,n(f)εNj .

where S̃n,n(f) = ‖1‖n‖f 2‖n. Applying (2.17) completes the proof.
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Now define constants

d̂k = 2
k∑
j=0

dj,k

and dk = maxj≤k d̂k. Then we obtain the following alternative bound on the ap-
proximation error:

Theorem 2.2. Let N ≥ 2dn. Then for f ∈ B(En) we have

NE[|νNn (f)− µn(f)|2] ≤
n∑
j=0

Varµj(qj,n(f)) + ‖f‖2nd̂n εNn (2.19)

and

εNn ≤ 2
vn
N

(2.20)

Proof of Theorem 2.2. The proof is parallel to the one of Theorem 2.1: By Lemmas
2.5 and 2.6 and by the definition of Vj,n(f) we obtain

NE[|νNn (f)− µn(f)|2]

≤
n∑
j=0

Varµj(qj,n(f)) + 2 ‖f‖2n
n∑
j=0

dj,n ε
N
j .

Bounding εNj by εNn and inserting the definition of d̂n shows (2.19). Optimizing
(2.19) over f with ‖f‖n ≤ 1 and over n yields

NεNn ≤ vn + dn ε
N
n .

Choosing N ≥ 2 dn and thus N − dn ≥ N
2

gives (2.20).

Comparing Theorems 2.1 and 2.2, we thus see that the additional steps in rewriting
the variance in the proof of Proposition 2.1 have the following two effects: We lose
by getting the additional summand ‖qj,j+1(1)− 1‖j in our error bound and we gain
by obtaining condition (2.13) instead of (2.17). The latter is generally an advantage
since, unlike for (2.17), smoothing properties of the kernels Kk can be used to prove
(2.17). Finally, note that in both theorems the coefficient of the leading term in the
error bound corresponds to the asymptotic variance in the central limit theorem for
νNn found in Del Moral and Miclo (2000, p. 45).

55





3 Lp-Bounds under Global Mixing

In this chapter, we show how Lp-stability of the Feynman-Kac semigroups qj,k can
be derived from global mixing properties of the MCMC kernels Kk. We apply these
results to derive non-asymptotic error bounds for Sequential MCMC using the results
of the previous chapter. We now consider a more restricted setting which covers the
algorithm introduced in Section 1.2. Concretely, we assume that the measures µk
live on a common state space and that the transition kernels Kk are stationary
with respect to the measures µk. From Section 3.4 on, we add the assumption of
reversibility of the kernels Kk.

Sections 3.1 and 3.2 introduce the special case of the model of Chapter 2 studied sub-
sequently and reformulate the main results of that chapter into the present setting.
The central part of this chapter is Section 3.3 which studies how Lp-bounds with
time-independent constants can be derived from mixing properties of the MCMC
dynamics. Section 3.4 shows how the stability results of Section 3.3 can be derived
from global Poincaré and Logarithmic Sobolev inequalities and gives explicit expres-
sions for the resulting error bounds. Finally, Section 3.5 studies an example where
the measures µk are Gaussian measures restricted to a ball in Rd and where the
transition kernels Kk are those associated with reflected Langevin diffusions with
the appropriate target distributions.

3.1 The Model

Let (E, r) be a Polish space and let B(E) be the σ-algebra of Borel subsets of E.
Denote by M(E) the space of finite signed Borel measures on E. Let M1(E) ⊂M(E)
be the subset of all probability measures. Let B(E) be the space of bounded,
measurable, real-valued functions on E.

Consider the sequence of probability measures (µk)
n
k=0, µk ∈ M1(E). The µk are

related through

µk(f) =
µk−1(gk−1,kf)

µk−1(gk−1,k)

for strictly positive (unnormalized) relative densities gk−1,k ∈ B(E). In the notation
of Section 2.1.2 this implies µ̂k = µk for all k.

For 1 ≤ k ≤ n, let Kk(x,A) be an integral operator with Kk(·, f) ∈ B(E) for all
f ∈ B(E), with Kk(x, ·) ∈M1(E) for all x ∈ E and with stationary distribution µk,
i.e.,

µkKk(A) = µk(A) for all A ∈ B(E).
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Kk can be thought of, e.g., as many steps of a Metropolis chain with respect target
µk. Define the mapping qk−1,k : B(E)→ B(E) by

qk−1,k(f) =
gk−1,kKk(f)

µk−1(gk−1,k)

Observe that this choice implies

µk(f) = µk−1(qk−1,k(f))

Furthermore define for 0 ≤ j < k ≤ n the mapping qj,k : B(E)→ B(E) by

qj,k(f) = qj,j+1(qj+1,j+2(. . . qk−1,k(f)))

and qk,k(f) = f . We have the relation

µj(qj,k(f)) = µk(f) for 0 ≤ j ≤ k ≤ n

and the semigroup property

qj,l(ql,k(f)) = qj,k(f) for 0 ≤ j < l < k ≤ n.

3.2 Sequential MCMC

We now introduce the interacting particle system simulated in the Sequential MCMC
algorithm for this model and state our non-asymptotic bounds on the approximation
error in this case.

3.2.1 The Interacting Particle System

We want to approximate the sequence of measures µk by an interacting particle
system. We start with N independent samples ξ0 = (ξ10 , . . . , ξ

N
0 ) from µ0. The

particle dynamics alternates two steps: Importance Sampling Resampling and Mu-
tation: A vector of particles ξk−1 approximating µk−1 is transformed into a vector
ξ̂k approximating µk by drawing N conditionally independent samples from the em-
pirical distribution of ξk−1 weighted with the functions gk−1,k. Afterwards, in order

to reduce the variance introduced through resampling, ξ̂k is transformed into a vec-
tor ξk (still approximating µk) by moving the particles ξ̂ik independently with the
transition kernel Kk.

Accordingly, we have two arrays of E-valued random variables (ξjk)0≤k≤n,1≤j≤N and

(ξ̂jk)1≤k≤n,1≤j≤N . The random variables ξ10 , . . . , ξ
N
0 are independent and distributed

according to µ0. The distributions of the remaining ξ̂jk and ξjk are pinned down by
the transition probabilities

P[ξ̂k ∈ dx|ξk−1 = z] =
N∏
j=1

N∑
i=1

gk−1,k(z
i)∑N

l=1 gk−1,k(z
l)
δzi(dx

j)
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and

P[ξk ∈ dx|ξ̂k = z] =
N∏
j=1

Kk(z
j, dxj).

3.2.2 Error Bounds in Lp

Denote by Fk the σ-algebra generated by ξ0, . . . ξk and ξ̂1, . . . ξ̂k and denote the
empirical measure of ξk by ηNk , i.e.

ηNk =
1

N

N∑
i=1

δξik .

We are interested in the question how well ηNk approximates µk.

Recall that by Lemma 2.1 we have for f ∈ B(E) and 1 ≤ k ≤ n that

E[ηNk (f)|Fk−1] =
ηNk−1(qk−1,k(f))

ηNk−1(qk−1,k(1))
,

which implies that ηNk (f) is a biased estimator for ηNk−1(qk−1,k(f)). It thus proves
to be useful to remove this bias following the analysis of Section 2.2: Define for
0 ≤ k ≤ n the sequence of (unnormalized) measures

νNk (f) = ϕk η
N
k (f)

on E where ϕk is given by

ϕk =
k−1∏
j=0

ηNj (qj,j+1(1)).

Then we have for f ∈ B(E)

E[νNk (f)|Fk−1] = νNk−1(qk−1,k(f)).

By Proposition 2.1, νNk (f) is an unbiased estimator for µk(f) with quadratic error
given in that proposition. Moreover, we can control the approximation error of ηNk
through the approximation error of νNk by Lemma 2.2.

We now want to apply the error bound of Theorem 2.1. We thus need to define a
series of norms ‖ · ‖j on B(E) and find constants cj,k such that the inequality

max
(
‖qj,k(f)‖2j , ‖qj,k(f)2‖j, ‖qj,k(f 2)‖j

)
≤ cj,k ‖f‖2k. (3.1)

is satisfied for all f ∈ B(E).
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We fix p > 2 and choose ‖ · ‖j = ‖ · ‖Lp(µj), i.e.,

‖f‖j = ‖f‖Lp(µj) = µj(|f |p)
1
p .

Note that all bounded measurable functions are in Lp(µj) and that for f ∈ B(E) we
have qj,k(f) ∈ B(E) since we assumed the relative densities gk−1,k to be bounded.
Now define c̃j,k(p, q) to be the constant in an Lp-Lq bound for the semigroup qj,k:
For p > q > 1 and 0 ≤ j < k ≤ n we have

‖qj,k(f)‖Lp(µj) ≤ c̃j,k(p, q)‖f‖Lq(µk) for all f ∈ B(E)

Such constants will be studied in Section 3.3 below. Furthermore define

cj,k(p) = max
(
c̃j,k

(
p,
p

2

)
, c̃j,k(2p, p)

2
)
.

This choice of cj,k(p) satisfies (3.1):

Lemma 3.1. For p > 2, 0 ≤ j < k ≤ n and f ∈ B(E) we have

max
(
‖1‖Lp(µj)‖qj,k(f)2‖Lp(µj), ‖qj,k(f)‖2Lp(µj), ‖qj,k(f

2)‖Lp(µj)
)
≤ cj,k(p) ‖f‖2Lp(µk).

Proof. Observe first that we have

‖qj,k(f 2)‖Lp(µj) ≤ c̃j,k

(
p,
p

2

)
‖f 2‖L p

2
(µk) = c̃j,k

(
p,
p

2

)
‖f‖2Lp(µk).

Furthermore we have ‖1‖Lp(µj) = 1 and

‖qj,k(f)2‖Lp(µj) = ‖qj,k(f)‖2L2p(µj)
≤ c̃j,k(2p, p)

2‖f‖2Lp(µk).

Finally, observing that

‖qj,k(f)‖2Lp(µj) ≤ ‖qj,k(f)‖2L2p(µj)

concludes the proof.

In order to state our error bound we define another series of constants following the
definitions of Section 2.3: Define

ĉk(p) =
k−1∑
j=0

cj,k(p)
(
2 + ‖qj,j+1(1)− 1‖Lp(µj)

)
and

v̂k(p) = sup

{
k∑
j=0

Varµj(qj,k(f))

∣∣∣∣∣ f ∈ B(E), ‖f‖Lp(µk) ≤ 1

}
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and
εNk (p) = sup

{
E[|νNk (f)− µk(f)|2]

∣∣∣f ∈ B(E), ‖f‖Lp(µk) ≤ 1
}
.

Moreover define

ck(p) = max
j≤k

ĉj(p), vk(p) = max
j≤k

v̂j(p) and εNk (p) = max
j≤k

εNj (p).

Then the following error bound is an immediate consequence of Theorem 2.1.

Corollary 3.1. Let p > 2 and N ≥ 2cn(p). Then for f ∈ B(E) we have

NE[|νNn (f)− µn(f)|2] ≤
n∑
j=0

Varµj(qj,n(f)) + ‖f‖2Lp(µn)ĉn(p) εNn (p)

and

εNn (p) ≤ 2
vn(p)

N

3.3 Stability of Feynman-Kac Semigroups under

Global Mixing

In this section we show how to derive inequalities of the type

‖qj,k(f)‖Lp(µj) ≤ c̃j,k(p, q)‖f‖Lq(µk) p ≤ q, j < k (3.2)

from suitable mixing conditions on the kernels Kj, . . . , Kk. These are exactly the
inequalities we need in order to make the error bounds of the previous section
explicit. The constants c̃j,k we derive are independent of the length of the time
interval k − j. The central intermediate step is Proposition 3.1 which derives (3.2)
for the case p = q = 2r, r ∈ N, and for a modified semigroup q̂j,k from an L2-mixing
condition for the kernels Kj, . . . , Kk. The proof of Proposition 3.1 proceeds in a
number of lemmas starting with only one step, k − j = 1, and p = 2 and then
gradually generalizing the result by showing how to proceed from Lp-stability to
L2p-stability and to more than one step, k − j > 1. Proposition 3.1 is followed by a
number of corollaries, showing how to transfer the result to the original semigroup
qj,k, and, using an additional assumption of hyperboundedness, to the case p > q.
Corollary 3.4 collects these observations and states the resulting version of inequality
(3.2) which is applied later on. We close the chapter with an additional result,
Proposition 3.2, which shows that for functions f with µk(f) = 0 we can obtain a
version of inequality (3.2) where the constants c̃j,k(p, q) decay exponentially in the
length of the time-interval k − j.

In principle, all results of this section except for Proposition 3.2 are corollaries of
the results for the case of local mixing proved in Section 5.3 below. The proofs in
the present setting are however considerably easier.
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A central quantity in our analysis is a uniform upper bound γ on gk−1,k: Assume
γ > 1 is such that

gk−1,k(x) ≤ γ (3.3)

for all x ∈ E and all k with 1 ≤ k ≤ n. γ is a rough measure of how strongly the
measures µk differ from each other.

For the analysis of this section it proves to be convenient not to work with qj,k
directly but to work with the semigroup q̂j,k defined as follows: For 1 ≤ k ≤ n
define q̂k−1,k : B(E)→ B(E) by

q̂k−1,k(f) = Kk−1
(
gk−1,kf

)
where gk−1,k is the normalized density given by

gk−1,k =
gk−1,k

µk−1(gk−1,k)
.

Furthermore, define for 1 ≤ j < k ≤ n the mapping q̂j,k : B(E)→ B(E) by

q̂j,k(f) = q̂j,j+1(q̂j+1,j+2(. . . q̂k−1,k(f))) and q̂k,k(f) = f.

By definition q̂j,k is a semigroup. qj,k and q̂j+1,k are related through

qj,k(f) = gj,j+1q̂j+1,k(Kk(f)).

Results for the semigroup q̂j,k can be transfered to qj,k using Lemma 3.5 which is
proved later in this section.

L1-stability of q̂j,k simply follows from

‖q̂j,k(f)‖L1(µj) = µj(|q̂j,k(f)|) ≤ µj(q̂j,k(|f |)) = µk(|f |) = ‖f‖L1(µk). (3.4)

From (3.3) and from the fact that Kk is stationary with respect to µk it is easy to
conclude bounds such as

‖q̂j,k(f)‖2L2(µj)
≤ γk−j‖f‖2L2(µk)

.

This bound has the strong disadvantage that it degenerates exponentially in k − j
since γ > 1. In the following, we assume and exploit mixing properties of the kernels
Kk in order to obtain Lp-bounds for p > 1 which do not degenerate in k − j.

We assume the following mixing condition: We have constants α > 0 and β ∈ [0, 1]
such that for all f ∈ B(E) we have the following L2-bound for q̂k−1,k:

‖q̂k−1,k(f)‖2L2(µk−1)
≤ α‖f‖2L2(µk)

+ βµk(f)2. (3.5)

Additionally, our results will impose conditions that α is sufficiently small. In Section
3.4.1 below it is shown that one way to ensure that (3.5) holds with a sufficiently
small α is to assume that the kernels Kk satisfy Poincaré inequalities associated

62



with a sufficiently large spectral gap. Note that (3.5) is a global mixing condition
which can only be hoped to hold with reasonable constants for a standard MCMC
dynamics Kk if the distributions µk are essentially unimodal. In Chapter 5 below we
extend the present analysis to cases where only local mixing conditions are fulfilled.

Our first step is to iterate the bound (3.5) in order to obtain L2-bounds for q̂j,k:

Lemma 3.2. Assume α < 1. Then for 1 ≤ j < k ≤ n and f ∈ B(E) we have the
bounds

‖q̂j,k(f)‖2L2(µj)
≤ αk−j ‖f‖2L2(µk)

+
β

1− α
µk(f)2 (3.6)

and

‖q̂j,k(f)‖L2(µj) ≤
1

(1− α)
1
2

‖f‖L2(µk) (3.7)

Proof. Iterating the bound (3.5) and utilizing that µj(q̂j,k(f)) = µk(f) we get

‖q̂j,k(f)‖2L2(µj)
≤ αk−j‖f‖2L2(µk)

+

k−j−1∑
i=0

βαiµk(f)2.

Applying to this the geometric series inequality immediately implies (3.6). Further-
more, since we assumed β ≤ 1 and µk(f)2 ≤ ‖f‖2L2(µk)

we have

‖q̂j,k(f)‖2L2(µj)
≤

k−j∑
i=0

αi‖f‖2L2(µk)
.

Applying again the geometric series inequality yields (3.7).

We now turn to Lp-bounds for the case of p = 2r with r ∈ N. We proceed inductively,
deducing the bound for p = 2r from the bound for p = 2r−1. We begin by deriving
an L2p-bound for q̂k−1,k from (3.5).

Lemma 3.3. For 1 ≤ k ≤ n, f ∈ B(E) and p ≥ 1 we have

‖q̂k−1,k(f)‖2pL2p(µk−1)
≤ α γ2p−2‖f‖2pL2p(µk)

+ β γ2p−2‖f‖2pLp(µk).

Proof. Note that we have

‖q̂k−1,k(f)‖2pL2p(µk−1)
= µk−1(|Kk−1(gk−1,kf)|2p) ≤ µk−1(Kk−1(g

p
k−1,k|f |

p)2)

= ‖q̂k−1,k(gp−1k−1,k|f |
p)‖2L2(µk−1)

Applying now the bound (3.5) yields

‖q̂k−1,k(f)‖2pL2p(µk−1)
≤ α‖gp−1k−1,k|f |

p‖2L2(µk)
+ β‖gp−1k−1,k|f |

p‖2L1(µk)

≤ αγ2p−2‖f‖2pL2p(µk)
+ βγ2p−2‖f‖2pLp(µk). (3.8)
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Our next step is to show how by applying Lemma 3.3 we get an L2p-bound for q̂j,k
from an Lp-bound.

Lemma 3.4. Assume that αγ2p−2 < 1 and that for δ(p) ≥ 1 we have for 1 ≤ j <
k ≤ n and f ∈ B(E) the inequality

‖q̂j,k(f)‖Lp(µj) ≤ δ(p)‖f‖Lp(µk).

Then we have
‖q̂j,k(f)‖L2p(µj) ≤ δ(2p)‖f‖L2p(µk)

with

δ(2p) = δ(p)
γ1−

1
p

(1− αγ2p−2)
1
2p

.

Proof. Define θ = αγ2p−2. Iterating the inequality of Lemma 3.3 and utilizing that
β ≤ 1, we get

‖q̂j,k(f)‖2pL2p(µj)
≤ θk−j‖f‖2pL2p(µk)

+ γ2p−2
k∑

i=j+1

θi−1−j‖q̂i,k(f)‖2pLp(µi) (3.9)

Using our assumption on ‖q̂j,k‖Lp(µj) and the facts that γ ≥ 1, δ(p) ≥ 1 and
‖f‖Lp(µk) ≤ ‖f‖L2p(µk), we get that

‖q̂j,k(f)‖2pL2p(µj)
≤ ‖f‖2pL2p(µk)

γ2p−2δ(p)2p
k−j∑
i=0

θi.

Thus, since we assumed θ < 1, by the geometric series inequality we have

‖q̂j,k(f)‖L2p(µj) ≤ δ(2p)‖f‖L2p(µk)

with

δ(2p) = δ(p)
γ1−

1
p

(1− αγ2p−2)
1
2p

.

Combining Lemmas 3.2 and 3.4 we can state the key result of this section as follows:

Proposition 3.1. For r ∈ N, consider p = 2r and assume that αγp−2 < 1. Then
we have for 1 ≤ j < k ≤ n and f ∈ B(E) the inequality

‖q̂j,k(f)‖Lp(µj) ≤ δ(p)‖f‖Lp(µk)
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with

δ(p) =
r∏
i=1

γ1−2
−(i−1)

(1− αγ2i−2)2−i
<
γr−2+2−(r−1)

1− αγ2r−2

Proof. The case r = 0 follows from (3.4). In the case r = 1, the inequality coincides
with (3.7). The inequalities for r > 1 follow because Lemma 3.4 implies that we can
choose

δ(2r) = δ(2)
r∏
i=2

γ1−2
−(i−1)

(1− αγ2i−2)2−i
.

We can apply Lemma 3.4 iteratively, since αγp−2 < 1 implies αγq−2 < 1 for all
q ≤ p. For the upper bound on δ(p), we apply the geometric series equality in the
nominator, bound the term in brackets under the exponent in the denominator by
1− αγp−2 and apply the geometric series inequality to the product.

Since the constants δ(2r) are monotonically increasing in r, we can immediately
extend the bounds of Proposition 3.1 to general p ≥ 1 using the Riesz-Thorin inter-
polation theorem (see Davies (1990), §1.1.5):

Corollary 3.2. Consider p ∈ [2r, 2r+1] for r ∈ N and assume αγ2
r+1−2 < 1. Then

for 1 ≤ j < k ≤ n and f ∈ B(E) we have

‖q̂j,k(f)‖Lp(µj) ≤ δ(p)‖f‖Lp(µk)

with δ(p) given by
δ(p) = δ(2r+1)

where δ(2r+1) is defined as in Proposition 3.1.

Since we need L2p-Lp-bounds in the error bounds of Section 3.2.2 we now show
that given that we have an Lp-Lq-bound for Kk, we can immediately conclude from
Corollary 3.2 an Lp-Lq-bound for q̂j,k:

Corollary 3.3. Consider p ≥ 1 and q ≥ 1. Let q ∈ [2r, 2r+1] for r ∈ N and assume
αγ2

r+1−2 < 1. Assume that for 1 ≤ j < n we have a constant θj(p, q) ≥ 0 such that

‖Kj(f)‖Lp(µj) ≤ θj(p, q)‖f‖Lq(µj) (3.10)

Then for j < k ≤ n and f ∈ B(E) we have

‖q̂j,k(f)‖Lp(µj) ≤ θj(p, q)γ
q−1
q δ(q)‖f‖Lq(µk)

with δ(q) as defined in Corollary 3.2.

Proof. By (3.10) we have

‖q̂j,k(f)‖Lp(µj) ≤ θj(p, q)‖gj,j+1q̂j+1,k(f)‖Lq(µj)
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and thus by Corollary 3.2

‖q̂j,k(f)‖Lp(µj) ≤ θj(p, q)γ
q−1
q δ(q)‖f‖Lq(µk).

The following lemma shows, that Lp-Lq-bounds for q̂j,k can be used to obtain Lp-
Lq-bounds for the original semigroup qj,k.

Lemma 3.5. Assume that for some p ≥ 1 and q ≥ 1 we have a δ ≥ 0 such that for
all f ∈ B(E) and for all 1 ≤ j < k ≤ n

‖q̂j,k(f)‖Lp(µj) ≤ δ ‖f‖Lq(µk).

Then we have
‖qj,k(f)‖Lp(µj) ≤ δ γ

p−1
p ‖f‖Lq(µk).

Proof. Note that we have

‖qj,k(f)‖Lp(µj) = µj
(
|gj,j+1q̂j+1,k(Kk(f))|p

) 1
p

≤ γ
p−1
p µj+1 (|q̂j+1,k(Kk(f))|p)

1
p

≤ γ
p−1
p δ ‖Kk(f)‖Lq(µk)

≤ γ
p−1
p δ ‖f‖Lq(µk)

where in the last step we used that by Jensen’s inequality |Kk(f)|q ≤ Kk(|f |q) and
that Kk is stationary with respect to µk.

Combining Proposition 3.1 with Corollary 3.3 and Lemma 3.5 we immediately obtain
the type of bound needed in the error bounds of Section 3.2.2.

Corollary 3.4. Consider p ≥ 1 and q ≥ 1. Let q ∈ [2r, 2r+1] for r ∈ N and assume
αγ2

r+1−2 < 1. Assume that for all 1 ≤ j ≤ n we have a constant θ(p, q) ≥ 0 such
that

‖Kj(f)‖Lp(µj) ≤ θ(p, q)‖f‖Lq(µj)
Then for all 1 ≤ j < k ≤ n and f ∈ B(E) we have

‖qj,k(f)‖Lp(µj) ≤ c̃j,k(p, q)‖f‖Lq(µk)

with
c̃j,k(p, q) = θ(p, q)γ

p−1
p γ

q−1
q δ(q)

where δ(q) as defined in Corollary 3.2.

To round out the analysis of this section, we show that for functions f with µk(f) = 0
we can moreover show the following result of exponential decay of ‖qj,k(f)‖Lp(µj):
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Proposition 3.2. Let p ≥ 2 with p = 2r for r ∈ N. Assume that θp = αγ2p−2 < 1.
Then for 1 ≤ j < k ≤ n and f ∈ B(E) with µk(f) = 0 we have

‖q̂j,k(f)‖pLp(µj) ≤ λp θ
k−j
p ‖f‖

p
Lp(µk)

where the constants λp can be calculated recursively from λ2 = 1 and

λ2p = 1 + λ2p

(
α

(
1− α

γ2

))−1
.

Moreover,

λp ≤

[
2

(
α

(
1− α

γ2

))−1] p2−1

Proof. From (3.6) and µk(f) = 0 we immediately get the result for p = 2. Now we
proceed inductively concluding from a bound for p a bound for 2p. Assume thus
θ2p < 1 and that we have

‖q̂j,k(f)‖pLp(µj) ≤ λpθ
k−j
p ‖f‖

p
Lp(µk)

. (3.11)

for θp as defined above and for some λp ≥ 1. Observe that θ2p < 1 implies imme-
diately θp < 1. From (3.9) and (3.11) and since we assumed λp ≥ 1 we have the
inequality

‖q̂j,k(f)‖2pL2p(µj)
≤ θk−j2p ‖f‖

2p
L2p(µk)

+ γ2p−2
k∑

i=j+1

θi−1−j2p λ2pθ
2(k−i)
p ‖f‖2pLp(µk).

Thus we have
‖q̂j,k(f)‖2pL2p(µj)

≤ λ2p θ
k−j
2p ‖f‖

2p
L2p(µk)

with

λ̃2p = 1 + λ2pγ
2p−2θ−12p

k∑
i=j+1

(
θ2p
θ2p

)k−i
= 1 + λ2pγ

2p−2θ−12p

k−j−1∑
i=0

(
θ2p
θ2p

)i
Observing that

γ2p−2 θ−12p =
1

α

and
θ2p
θ2p

=
α

γ2
< 1,

and applying the geometric series inequality thus yields

λ̃2p ≤ 1 + λ2p

(
α

(
1− α

γ2

))−1
.
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Choosing

λ2p = 1 + λ2p

(
α

(
1− α

γ2

))−1
we have thus shown the desired decay inequality. Moreover, observe that, since
γ > 1 and α < 1, λp ≥ 1 implies that λ2p ≥ 1 and thus we have λp ≥ 1 for all
p = 2r. To show the upper bound on the coefficients λp, define

κ = 2

(
α

(
1− α

γ2

))−1
.

Since κ > 2 and λp ≥ 1, we have λ2p ≤ κλ2p. Since λ2 = 1, this implies

λ2p ≤ κp−1.

By the Riesz-Thorin interpolation theorem, Proposition 3.2 immediately generalizes
to the case p 6= 2r. Corollary 3.3 and Lemma 3.5 can be used to extend Proposition
3.2 to Lp-Lq-bounds and to the semigroup qj,k.

3.4 Error Bounds from Poincaré and Logarithmic

Sobolev Inequalities

In Section 3.4.1 we show that assuming (global) Poincaré inequalities associated with
a sufficiently large spectral gaps for the kernels Kk is sufficient for guaranteeing that
the results on Lp-Stability of the Feynman-Kac semigroup qj,k from Section 3.3 can
be applied. In Section 3.4.2 we then give a more explicit version of our error bound
for Sequential MCMC in terms of the constants in Poincaré and Logarithmic Sobolev
Inequalities.

We add one additional assumption for the remainder of Chapter 3: Assume that Kk

is reversible with respect to µk, i.e., for all f, g ∈ B(E)

µk(gKk(f)) = µk(fKk(g)).

Reversibility is, for instance, fulfilled by construction for Metropolis chains.

3.4.1 Poincaré Inequalities and Stability of Feynman-Kac
Semigroups

Our stability results of Section 3.3 relied on the assumption (3.5), namely,

‖q̂k−1,k(f)‖2L2(µk−1)
≤ α‖f‖2L2(µk)

+ βµk(f)2.
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for coefficients α > 0 and β ∈ [0, 1] where

q̂k−1,k(f) = Kk−1
(
gk−1,kf

)
∀f ∈ B(E)

and on the assumption (3.3) of an upper bound γ on the normalized relative densities
gk−1,k. Additionally, we needed conditions assuming that α is sufficiently small.

In the following we relate condition (3.5) to Poincaré inequalities for the transi-
tion kernels Kk. We first show that (3.5) holds, provided that the following L2-
inequalities for the kernels Kk are satisfied: For 1 ≤ k ≤ n, and some ρ ∈ (0, 1)
assume that for all f ∈ B(E),

µk(Kk(f − µk(f))2) ≤ (1− ρ)Varµk(f). (3.12)

Then we observe the following:

Lemma 3.6. Assume that (3.12) is satisfied for some ρ ∈ (0, 1). Then (3.5) holds
with

α = (1− ρ)γ and β = ρ

Proof. Note that we can write

‖q̂k−1,k(f)‖2L2(µk−1)
= µk−1(Kk−1(gk−1,kf)2)

= µk−1(Kk−1(gk−1,kf − µk−1(gk−1,kf))2) + µk−1(gk−1,kf)2.

Thus by (3.12) we have

‖q̂k−1,k(f)‖2L2(µk−1)
≤ (1− ρ)

(
µk−1((gk−1,kf)2)− µk−1(gk−1,kf)2

)
+ µk−1(gk−1,kf)2

≤ (1− ρ)γµk(f
2) + ρµk(f)2,

which proves the claim.

We next show how the constant ρ from (3.12) can be controlled in terms of lower
bounds on the spectral gaps of the kernels Kk.

Lemma 3.7. Assume that for all 1 ≤ k ≤ n we have a λk ∈ (0, 1) such that Kk

fulfills a Poincaré inequality with constant λk:

λk µk(f
2) ≤ µk(f (I −Kk)(f)) (3.13)

for all f ∈ B(E) with µ(f) = 0 where I denotes the identity mapping on E. Then
we have

µk(Kk(f − µk(f))2) ≤ (1− λk)2Varµk(f)

for all f ∈ B(E). In particular, (3.12) holds with

ρ = min
k

(1− λk)2
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Proof. By (3.13) we have for f ∈ B(E) with µ(f) = 0 and f 6≡ 0,

µk(f Kk(f))

µk(f 2)
≤ 1− λk,

and thus the second largest eigenvalue of Kk is bounded from above by 1−λk. Thus
the second largest eigenvalue of K2

k is bounded from above by (1− λk)2, i.e.,

µk(f K
2
k(f))

µk(f 2)
≤ (1− λk)2.

By the reversibility of Kk, this is equivalent to

µk(Kk(f)2) ≤ (1− λk)2µk(f 2).

To conclude the proof observe that thus for f ∈ B(E)

µk(Kk(f − µ(f))2) ≤ (1− λk)2µk((f − µk(f))2).

Thus, assuming (3.12) is essentially equivalent to assuming a Poincaré inequality.
In the algorithm, ρ can be controlled by varying the number of MCMC steps: A
sufficiently large number of MCMC steps makes ρ large and accordingly it makes
α small. For future reference, we also give a version of Proposition 3.1 under the
stronger assumption that (3.12) holds for some sufficiently large ρ ∈ (0, 1). This
follows immediately from the Proposition by inserting the values of α and β from
Lemma 3.6.

Corollary 3.5. Assume that (3.12) holds for some ρ with (1−ρ)γp−1 < 1. Consider
p = 2r for r ∈ N. Then we have for 1 ≤ j < k ≤ n and f ∈ B(E) the inequality

‖q̂j,k(f)‖Lp(µj) ≤ δ(p)‖f‖Lp(µk)

with

δ(p) =
r∏
j=1

γ1−2
−(j−1)

(1− (1− ρ)γ2j−1)2−j
<

γr−2+2−(r−1)

1− (1− ρ)γ2r−1

3.4.2 Explicit Error Bounds

In this section we introduce a further parameter tk for our transition operators Kk

which is thought to be the running time or number of MCMC steps contained in
Kk. We write Ktk

k in the following to make this dependence clear. We assume the
following two inequalities: the hypercontractivity inequality

‖Ktk
k (f)‖Lq(p,tk)(µk) ≤ ‖f‖Lp(µk) (3.14)
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for f ∈ B(E) and q(p, tk) = 1 + (p− 1) exp(2a∗ktk) and the L2-L2 inequality

‖Ktk
k (f)− µk(f)‖2L2(µk)

≤ exp(−2b∗ktk) ‖f − µk(f)‖2L2(µk)
. (3.15)

for f ∈ B(E) and for positive constants a∗k and b∗k. These two inequalities follow,
respectively, from a Logarithmic Sobolev inequality and a Poincaré inequality for
the underlying MCMC dynamics, see e.g. Deuschel and Stroock (1990) or Ané et al
(2000) and the example of Section 3.5.2.

Furthermore we assume as before that the µk are chosen in a way that γ > 1 is a
uniform upper bound on the relative densities, i.e., for 0 ≤ k < n and for all x ∈ E
we assume

gk,k+1(x) =
gk,k+1(x)

µk(gk,k+1)
≤ γ. (3.16)

We then have the following bounds for qj,k provided that the running times tj, . . . , tk
are chosen sufficiently large.

Proposition 3.3. Fix 0 ≤ j < k ≤ n, γ > 1 and τ ∈ (0, 1), 1 ≤ s ∈ N and
p = 2s. Assume that (3.16) holds for all x ∈ E and for all j ≤ l ≤ k − 1 and that
the contraction inequalities (3.14) and (3.15) are satisfied for j ≤ l ≤ k. Assume
furthermore that for j ≤ l ≤ k,

tl ≥
1

2b∗l
[(p− 1) log(γ)− log(1− τ)] . (3.17)

Then we have for f ∈ Lp(µk)

‖qj,k(f)‖Lp(µj) ≤ c̃j,k(p, p)‖f‖Lp(µk)

with

c̃j,k(p, p) =
γs−1+1/p

τ
.

If in addition we have for p′ > p and j ≤ l ≤ k,

tj ≥
1

2a∗j
[log(p′ − 1)− log(p− 1)] , (3.18)

then we have for f ∈ Lp(µk)

‖qj,k(f)‖Lp′ (µj) ≤ c̃j,k(p
′, p)‖f‖Lp(µk)

with

c̃j,k(p
′, p) =

γs−1+1/p

τ
γ
p′−1
p′ .

Here and in the following, it is straightforward to relax the requirement of p = 2s,
see Corollary 3.2. The constant τ controls the contractivity in L2 of the MCMC
steps in the following sense: In order to apply our error bounds of Section 3.4.1,
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namely, Corollary 3.5, we need to ensure that

0 < 1− γp−1(1− ρl)
(3.15)
= 1− γp−1e−a∗l tl .

τ is a uniform measure of by how much this inequality is satisfied, i.e., τ is assumed
to be a constant with

τ < 1− γp−1(1− e−a∗l tl) for all j ≤ l ≤ k

Our next step is to utilize the constants c̃j,k(p
′, p) in order to bound the constants

that arise in the error bound of Corollary 3.1.

Corollary 3.6. Fix 0 ≤ j < k ≤ n, γ > 1 and τ ∈ (0, 1), 2 ≤ s ∈ N and
p = 2s. Assume that (3.16) holds for all x ∈ E and for all 0 ≤ l ≤ n − 1 and that
the contraction inequalities (3.14) and (3.15) are satisfied for 1 ≤ l ≤ n. Assume
furthermore that for 1 ≤ l ≤ n,

tl ≥
1

2b∗l
[(2p− 1) log(γ)− log(1− τ)] , (3.19)

and

tl ≥
1

2a∗j

[
log(p− 1)− log

(p
2
− 1
)]
. (3.20)

Define

h(p) =
γ2s+

1
p

τ 2
.

Then we have
cj,k(p) ≤ h(p).

Furthermore

ĉk(p) ≤ ck(p) ≤ ((1 + γ) ∨ 3) k h(p), and v̂k(p) ≤ vk(p) ≤ (k + 1)
γ

τ 2
.

Adding the final observations that for f ∈ Lp(µn) and 0 ≤ j < n,

Varµj(qj,n(f)) ≤ bj,n(2, 2)2‖f‖2Lp(µn),

and
Varµn(qn,n(f)) ≤ ‖f‖2Lp(µn),

we are now in the position to bound all the terms in the error bound of Corollary 3.1
through γ, τ , p, N and n. Thus we arrive at the following version of the corollary:

Corollary 3.7. Fix 0 < n ∈ N, γ > 1, τ ∈ (0, 1), 2 ≤ s ∈ N and p = 2s. Assume
that (3.16) holds for all x ∈ E and for all 0 ≤ l ≤ n − 1 and that the contraction
inequalities (3.14) and (3.15) are satisfied for 1 ≤ l ≤ n. Assume furthermore that
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for 1 ≤ l ≤ n,

tl ≥
1

2b∗l
[(2p− 1) log(γ)− log(1− τ)]

and

tl ≥
1

2a∗l

[
log(p− 1)− log

(p
2
− 1
)]
.

Finally assume that
N ≥ 2((1 + γ) ∨ 3)nγ2s+p

−1

τ−2. (3.21)

Then for f ∈ Lp(µn) we have

NE[|νNn (f)− µn(f)|2]

≤ ‖f‖2Lp(µn)
[
1 + nγτ−2 + n((1 + γ) ∨ 3)γ2s+p

−1

τ−2εN,pn

]
and

εN,pn ≤ 2
1 + nγτ−2

N

Finally, for the sake of illustration we also state these bounds for a concrete choice
of parameters, namely γ = 2, τ = 0.8, p = 4 and thus s = 2. After rounding
the coefficients to improve readability (in a way that makes the inequality slightly
worse) and inserting the bound on εN,pn , this yields the bound

E[|νNn (f)− µn(f)|2] ≤ ‖f‖2L4(µn)

[
1 + 4n

N
+

180n+ 560n2

N2

]
The required lower bound (3.21) on N is given by

N ≥ 180

in this case.

Proof of Proposition 3.3. Comparing inequalities (3.12) and (3.15) shows that the
terms exp(−2b∗l t) play the role of (1 − ρ) in the setting of Section 3.4.1. Thus
assuming for all j ≤ l ≤ k

1− e−2b∗l tlγp−1 > τ

or, equivalently, (3.17), ensures that we can apply Corollary 3.5 to obtain the bound

‖q̂j,k(f)‖Lp(µj) ≤ δ(p)‖f‖Lp(µk) (3.22)

with

δ(p) =
γs−2+2/p

τ
.

Now applying Lemma 3.5 allows to conclude from this bound for q̂j,k the desired
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Lp-Lp-bound for qj,k with

c̃(p, p) =
γs−2+2/p

τ
γ
p−1
p =

γs−1+1/p

τ
.

We next turn to the Lp′-Lp-bound. By (3.14), ensuring

p′ ≤ 1 + (p− 1)e2a
∗
j t

or, equivalently, (3.18) is a sufficient condition for

‖Ktj
j (f)‖Lp′ (µj) ≤ ‖f‖Lp(µj).

Thus we conclude from applying first Corollary 3.3 and then Lemma 3.5 to (3.22)
the desired Lp′-Lp-bound for qj,k with

c̃j,k(p
′, p) =

γs−1+1/p

τ
γ
p−1
p γ

p′−1
p′ =

γs−1+1/p

τ
γ
p′−1
p′ .

Proof of Corollary 3.6. Choose c̃j,k(p
′, p) as in Proposition 3.3. Since

cj,k(p) = max
(

1, c̃j,k

(
p,
p

2

)
, c̃j,k(2, p)

2
)
,

we need to apply Proposition 3.3 for (p, p/2) and (2p, p). Note that if inequality
(3.17) holds for 2p it also holds for p. Conversely, if (3.18) holds for (p, p/2) it also
holds for (2p, p) since

2x− 1

x− 1
= 2 +

1

x− 1

is decreasing in x. This motivates our assumption of (3.19) and (3.20). Now observe
that

1 ≤ c̃j,k

(
p,
p

2

)
≤ c̃j,k(2p, p)

2 =
γ2s+

1
p

τ 2
= h(p)

and thus we have
cj,k(p) ≤ h(p).

Now observe that for all x ∈ E we have

−1 ≤ qj,j+1(1)(x)− 1 = gj,j+1(x)− 1 ≤ γ − 1

and thus we have
‖qj,j+1(1)− 1‖Lp(µj) ≤ ((1 + γ) ∨ 3)

and can bound ĉk(p) as follows:

ĉk(p) =
k−1∑
j=0

cj,k(p)(2 + ‖qj,j+1(1)(x)− 1‖Lp(µj)) ≤ ((1 + γ) ∨ 3)h(p) k.
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Since this upper bound is monotonically increasing in k, it also applies to ck(p). We
now turn to v̂k(p). Observe that we have

v̂k(p) = sup

{
k∑
j=0

Varµj(qj,k(f))

∣∣∣∣∣ f ∈ B(E), ‖f‖Lp(µk) ≤ 1

}

= sup

{
k∑
j=0

µj(qj,k(f)2)

∣∣∣∣∣ f ∈ B(E), ‖f‖L2(µk) ≤ 1

}

≤
k∑
j=0

c̃j,k(2, 2)2.

As we have

c̃j,k(2, 2) =

√
γ

τ
,

we get the desired upper bound on v̂k(p). Since this upper bound is increasing in k,
it also applies to vk(p).

3.5 Example: Moving Gaussians

In this section we apply our quantitative convergence bounds to an example where
the distributions µk are Gaussian distributions moving in Rd. For technical rea-
sons, namely to guarantee bounded relative densities, we consider only Gaussians
restricted to a bounded set. In Section 3.5.1, we prove uniform bounds on the
relative density of µk+1 with respect to µk in the case where µk and µk+1 do not
differ too much. In Section 3.5.2, we specify concrete operators Kk, namely, the
transition kernels associated with Langevin diffusions, and recall their contraction
properties. Together, these results allow to ensure that the bound on relative den-
sities (3.16) and the contraction inequalities (3.14) and (3.15) are satisfied in this
class of examples so that the error bound of Corollary 3.7 can be applied.

3.5.1 Bounds on Relative Densities

We begin with a number of definitions. Fix a dimension d. Denote by D the set of
diagonal matrices in Rd×d with strictly positive diagonal entries. Denote by R the
rotation matrices in Rd×d, i.e., the orthogonal matrices with determinant +1.

For x,m ∈ Rd, A ∈ D and Q ∈ R, denote by h(x,m,A,Q) the density of the
Gaussian distribution with mean m, and inverse covariance matrix QTAQ, i.e.,

h(x,m,A,Q) =

√
detA

(2π)
d
2

exp

(
−1

2
(x−m)TQTAQ(x−m)

)
.

Note that any Gaussian density in Rd can be written in this form.

Since our previous results require absolute bounds on the relative densities between
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the µk and since the quotient between, e.g., h(x,m,A,Q) and h(x,m′, A,Q) is un-
bounded for m 6= m′, we resort in the following to Gaussian distributions restricted
to a ball around zero. In order to control the normalizing constants arising from
restricting the distribution it proves to be helpful to assume a lower bound on the
diagonal entries of A.

Denote by ‖ · ‖ the Euclidean norm in Rd. Denote by Br(x) the d-dimensional
Euclidean ball around x with radius r > 0. For a > 0 define by Da ⊂ D the
diagonal matrices with diagonal entries weakly greater than a, i.e.,

Da = {(aij)1≤i,j≤d ∈ Rd×d|aii ≥ a, aij = 0 for i 6= j}.

Define Z(r,m,A,Q) as the mass put by h(·,m,A,Q) in B2r(0), i.e.,

Z(r,m,A,Q) =

∫
B2r(0)

h(x,m,A,Q)dx.

Recall that h(x,m,A,Q) is a normalized density on Rd and thus Z(r,m,A,Q) only
takes into account the change in mass due to restricting the state space to B2r(0).

We will in the following consider movements within the following class Ga,r of prob-
ability measures on E = B2r(0) ⊂ Rd,

Ga,r =
{
µ ∈M1(E)

∣∣∣ µ(dx) =
1

Z(r,m,A,Q)
h(x,m,A,Q) 1{x∈E} dx

where A ∈ Da, Q ∈ R,m ∈ Br(0)
}

where a > 0 and r > 0. This the class on Gaussian distributions restricted to B2r(0)
with center m ∈ Br(0) and with, roughly speaking, the variance in each (rotated)
coordinate direction bounded from above by a−1. Observe however that due to the
restriction on B2r(0), m and QTAQ are not identical to the mean and the inverse
covariance matrix of µ.

Since the elements of the matrices A are bounded from below and since we assumed
m to be bounded away from the boundary, we can control the variation of Z by
choosing r sufficiently large: For sufficiently large r, most mass is contained in
Br(m) ⊂ E and thus restricting does not change the normalizing constant much.
This is made precise in the following lemma:

Lemma 3.8. Fix real-valued constants θ1 > 1, r > 0 and a > 0. Assume the
following inequality

ν

([
− ra√

d
,
ra√
d

])d
>

1

θ1
(3.23)

where ν denotes the standard Gaussian distribution on R with mean 0 and variance
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1. Then for all m ∈ Br(0), A ∈ Da and Q ∈ R

1

θ1
≤ Z(r,m,A,Q) ≤ 1.

All proofs are at the end of the section. Note that for fixed d and a inequality (3.23)
is always fulfilled for sufficiently large r.

We now fix a finite sequence (µk)
n
k=0 in Ga,r and define Ak, Qk and mk as the diagonal

matrix, rotation matrix and offset vector associated with µk. By fk we denote the
density of µk with respect to the Lebesgue measure on Rd, i.e.,

fk(x) =
1

Z(r,mk, Ak, Qk)
h(x,mk, Ak, Qk)1{x∈E}

We denote the diagonal elements of Ak by a1k,..., a
d
k.

We are interested in uniform upper bounds on gk,k+1 = fk+1/fk for the case where
µk and µk+1 do not differ too much in a sense that is made precise now. We restrict
attention to three types of movements: (i) Shifts of mk by a vector, (ii) changing
one diagonal entry of Ak, and (iii) applying a rotation in the (i, j)-plane to Qk.
Note that we can interpolate between any two elements of Ga,r using a sequence of
these three types of movements.

In order to state our result we need one more definition: For 1 ≤ i, j ≤ d and
ϕ ∈ R, denote by Rij(ϕ) ∈ R the rotation by the angle ϕ in the (i, j)-plane:
Rii
ij = Rjj

ij = cos(ϕ), Rij
ij = − sin(ϕ), Rji

ij = sin(ϕ), Rkk
ij = 1 for k /∈ {i, j} and

Rkl
ij = 0 for k 6= l with {k, l} 6= {i, j} where Rkl

ij denotes the (k, l)th entry of Rij.

Proposition 3.4. Fix real-valued constants θ1 > 1, θ2 > 1, r > 0 and a > 0.
Assume that θ1, r and a fulfill (3.23) and that µk ∈ Ga,r and µk+1 ∈ Ga,r stand in
one of the following relationships:

(i) Ak+1 = Ak, Qk+1 = Qk and mk+1 = mk + v with

‖v‖ ≤ log θ2
3rmaxi aik

, (3.24)

(iia) Qk+1 = Qk, mk+1 = mk, ajk+1 = ajk for j 6= i and aik+1 = αaik with

1 < α < (θ1θ2)
2, (3.25)

(iib) Qk+1 = Qk, mk+1 = mk, ajk+1 = ajk for j 6= i and aik+1 = αaik with

max

(
1− 2 log θ2

9r2aik
, 0

)
< α < 1, or (3.26)
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(iii) Ak+1 = Ak, mk+1 = mk and Qk+1 = Rij(ϕ)Qk with

| sin(ϕ)| ≤ 2 log(θ2)

9r2|ajk − aik|
(3.27)

for some for 1 ≤ i 6= j ≤ d,

Then for all x ∈ E,
fk+1(x)

fk(x)
≤ θ1θ2. (3.28)

Recall that we have further restricted the admissible movements by requiring aik ≥ a
and mk ∈ Br(0) for all k.

The larger r gets, the smaller are the changes we can make to the distribution while
retaining our bound on the relative density. An exception are movements of type
(iia) which decrease the variance by increasing a diagonal element of Ak. In that
case, the unnormalized density decreases everywhere and only the (global) change
in normalizing constants has to be bounded. Notably, for considering this type
of movement the restriction to a bounded domain is not necessary. As argued in
Section 1.4.2.2, this case is luckily the most relevant one for the MCMC applications
of the algorithm we have in mind.

For case (iii) of a rotation by an angle ϕ in the (i, j)-plane, note that we have
to choose ϕ smaller when aik and ajk differ more strongly. When aik and ajk are
sufficiently similar, the upper bound is large enough to make no restriction.

Together, Lemma 3.8 and Proposition 3.4 give a guideline on how to choose the
distributions µk in order to ensure that

gk,k+1 ≤ θ1θ2

for 0 ≤ k ≤ n − 1 and thus to ensure that inequality (3.16) in the prerequisites of
Corollary 3.7 is fulfilled.

Proof of Lemma 3.8. Since h(·,m,A,Q) is a probability density on Rd,

Z(r,m,A,Q) ≤ 1

follows immediately. Denote by Cs(m) the d-dimensional cube with side-length s
and center m. Observe that for any rotation matrix Q ∈ R and m ∈ Br(0) we have

Q C 2r√
d
(m) ⊆ Br(m) ⊆ B2r(0) = E.

Therefore we have

Z(r,m,A,Q) ≥
∫

C 2r√
d

(0)

h(x, 0, A, I) dx
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where I denotes the d-dimensional identity matrix. We can thus conclude the lower
bound

Z(r,m,A,Q) >
d∏
i=1

ν

([
−r
√
ai√
d
,
r
√
ai√
d

])
≥ ν

([
−
r
√
a

√
d
,
r
√
a

√
d

])d
where ai denotes the ith diagonal entry of A.

Proof of Proposition 3.4. We first consider case (i). In that case we have for x ∈ E

fk+1(x)

fk(x)
=

Z(r,mk, Ak, Qk)

Z(r,mk+v,Ak, Qk)
e

1
2
(Qk(x−mk))TAk(Qk(x−mk))− 1

2
(Qk(x−mk−v))TAk(Qk(x−mk−v)).

(3.29)

By Lemma 3.8 we have
Z(r,mk, Ak, Qk)

Z(r,mk + v,Ak, Qk)
≤ θ1.

Now define z = Qk(x −mk) and w = −Qkv. Note that by the triangle inequality
and since Qk is a rotation matrix,

‖z‖ = ‖x−mk‖ ≤ ‖x‖+ ‖mk‖ ≤ 3r.

Moreover ‖v‖ = ‖w‖. We can now rewrite and bound the term in the exponent in
(3.29) as follows:

1

2
zTAkz −

1

2
(z + w)TAk(z + w) = −wTAkz −

1

2
wTAkw ≤ −wTAkz

≤
√
wTAkw

√
zTAkz ≤ max

i
aik‖z‖‖w‖

≤ max
i
aik3r‖v‖,

where the first inequality is Cauchy-Schwarz. Thus assuming

max
i
aik 3r‖v‖ ≤ log(θ2)

which is equivalent to (3.24) implies that from (3.29) we can conclude (3.28).

We now turn to cases (iia) and (iib). Defining again z = Qk(x−mk) and observing
that √

detAk+1√
detAk

=
√
α
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we get

fk+1(x)

fk(x)
=

Z(r,mk, Ak, Qk)

Z(r,mk, Ak+1, Qk)

√
α e

1
2
zTAkz− 1

2
zTAk+1z

=
Z(r,mk, Ak, Qk)

Z(r,mk, Ak+1, Qk)

√
α e

1
2
(1−α)aikz

2
i . (3.30)

Consider first the case α > 1, i.e., decreasing the variance in one direction. Then,
the exponential term in (3.30) can be bounded by 1. Furthermore, in that case

Z(r,mk, Ak, Qk) < Z(r,mk, Ak+1, Qk)

since µk+1 is more concentrated than µk and thus closer to the unrestricted Gaussian
distribution. Thus we have

fk+1(x)

fk(x)
≤
√
α

so that assuming α ≤ θ21θ
2
2 ensures (3.28) to hold as desired. In the case α < 1, we

bound the quotient of normalizing constants by θ1 using Lemma 3.8 and bound
√
α

by 1. Since z ∈ B3r(0) we have z2i ≤ 9r2. Thus assuming

9

2
(1− α) ai r

2 ≤ log(θ2)

or, equivalently, (3.26) ensures that (3.30) implies (3.28).

We now turn to case (iii). Again we introduce some short-hand notation: z =
Qk(x−mk), R = Rij(ϕ), c = cos(ϕ) and s = sin(ϕ). Applying Lemma 3.8 to bound
the normalizing constants yields

fk+1(x)

fk(x)
≤ θ1e

1
2
zTAkz− 1

2
(Rz)TAkRz.

An elementary calculation yields that, using the relation c2 + s2 = 1, the exponent
can be rewritten as follows:

1

2
zTAkz −

1

2
(Rz)TAkRz

=
1

2
aikz

2
i +

1

2
ajkz

2
j −

1

2
(aik(czi + szj)

2 + ajk(czj + szi)
2)

=
1

2
(ajk − a

i
k)s(2czizj + sz2j − sz2i ) ≤

1

2
|ajk − a

i
k| |s| |ẑT Q̂ẑ|,

where ẑ ∈ R2 is defined as ẑ = (zi, zj) and Q̂ ∈ R2×2 is given by Q̂11 = −s,Q̂22 = s,

Q̂12 = c and Q̂21 = c. Since Q̂ is an orthogonal matrix and since ẑT ẑ ≤ 9r2 we get
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from applying the Cauchy-Schwarz inequality that

|ẑT Q̂ẑ| ≤
√
ẑT ẑ

√
(Q̂ẑ)T Q̂ẑ ≤ 9r2.

We thus have

1

2
zTAkz −

1

2
(Rz)TAkz ≤

1

2
|ajk − a

i
k|| sin(ϕ)|9r2.

Therefore (3.27) is a sufficient condition for (3.28) in case (iii).

3.5.2 Reflected Langevin Diffusions

In order to apply our explicit error bounds, we need L2p-Lp and L2-L2 bounds on
the semigroup qj,k. In Section 3.4.1 we showed how to derive such bounds from a
uniform upper bound γ on relative densities and from L2p-Lp and L2-L2 bounds
on the MCMC kernels Kk. In this subsection we thus introduce concrete kernels
Kk for our example of Gaussian distributions restricted to a ball and recall their
contraction properties.

Instead of a discrete-time MCMC dynamics, we choose to move the particles with
Langevin dynamics reflected at the boundary of E = B2r(0) since for this type of
dynamics the required mixing properties can be verified in a straightforward way.
We thus choose

(Kk f)(x) = E[f(Xx,k
tk

)]

where the d-dimensional diffusion process Xx,k
t is the Langevin diffusion with start

in x ∈ E, target measure µk and with reflection at the boundary of E. tk > 0
is the running time of the diffusion process. tk thus corresponds to the number
of MCMC steps we make. For the corresponding non-reflected diffusion process,
i.e., r = ∞, it is well-known (see e.g. Ané et al. (2000, Chapter 5) or Deuschel
and Stroock (1990)) that by the Bakry-Éméry criterion the semigroup associated
with Xx,k

t fulfills a Logarithmic Sobolev inequality with constant c provided that
the Hamiltonian H associated with the stationary measure is C2 and fulfills the
inequality

xT (Hess H)(x) x ≥ c xTx (3.31)

for all x ∈ E. Corollary 3.2 of Wang (1997) extends this result to diffusions reflected
at the boundary of a manifold with convex boundary such as our Langevin diffusion
on B2r(0). For our families of measures µk we have

(Hess H)(x) = QT
kAkQk

for all x ∈ E and thus (3.31) holds with

c = min
i
aik =: a∗k.

We thus have (see e.g. Deuschel and Stroock (1990) or Ané et al (2000)) the hyper-
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contractivity inequality

‖Kk(f)‖Lq(p,tk)(µk) ≤ ‖f‖Lp(µk) (3.32)

for f ∈ B(E) and q(p, tk) = 1 + (p − 1) exp(2a∗ktk). Since the spectral gap can be
bounded from below by the Logarithmic Sobolev constant (see Deuschel and Stroock
(1990) or Chen and Wang (1997)) we furthermore have the L2-L2 inequality

‖Kk(f)− µk(f)‖2L2(µk)
≤ exp(−2a∗ktk) ‖f − µk(f)‖2L2(µk)

. (3.33)

These are the contractivity inequalities (3.14) and (3.15) needed for our error bounds
of Corollary 3.7. Combining these observations with the bound on relative densities
from Proposition 3.4 we have thus shown how Corollary 3.7 can be applied to moving
Gaussian distributions restricted to the ball B2r(0).
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4 Sequential MCMC on Trees

In this section we study the ability of our Sequential MCMC algorithm to explore
a multimodal state space by abstracting from the problem of mixing within modes:
We consider the algorithm on a simple tree structure. We assume that our sequence
of probability distributions (µk)k lives on a sequence of state spaces (Ik)k where the
states in Ik+1 have unique predecessors in Ik. Particle movements in the MCMC
steps are restricted to moving from a state in Ik to one of its successors in Ik+1.

Section 4.1 introduces the model including the notation for the tree structure. Sec-
tion 4.2 states the algorithm and the error bounds for this setting. While the
algorithm considered here should be viewed as a stylized version of the one intro-
duced in Section 1.2, it nevertheless fits into the framework of Section 2. Section
4.3 introduces an alternative algorithm, Sequential Importance Sampling, which is
based on weighting particles instead of resampling them. In Section 4.4 we provide
an extensive discussion of an elementary example where the error of our Sequential
MCMC algorithm grows polynomially in the number of levels n while the error of
Sequential Importance Sampling increases exponentially fast.

4.1 The Model

Consider a sequence of probability distributions µ0, . . . , µn on a sequence of finite
state spaces I0, . . . , In. Assume that each µk gives positive mass to each point in
its state space Ik. Denote by B(Ik) the bounded measurable functions from Ik to
R. We define a tree structure on the sequence of state spaces by introducing for
k ∈ {0, . . . , n − 1} the predecessor function pk : Ik+1 ∪ . . . ∪ In → Ik which maps
x ∈ Il to its predecessor in Ik for l > k. We assume transitivity of the functions pk,
i.e., for j < k < l and x ∈ Il we assume that

pj(pk(x)) = pj(x).

Denote by P(Ik) the collection of subsets of Ik. Conversely to pk, we define the
successor function sk : I0 ∪ . . . ∪ Ik−1 → P(Ik) as follows: For x ∈ Il with 0 ≤ l <
k ≤ n the successors in Ik of x are given by

sk(x) = {y ∈ Ik|pl(y) = x}.

We assume that no branches die out, i.e., for all x ∈ I0 ∪ . . . ∪ In−1

sn(x) 6= ∅.
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In order to obtain a genuine tree structure we could additionally assume that |I0| = 1
but this assumption is not needed in the following (and is thus not made). Addition-
ally, for 0 ≤ k < l ≤ n, define for a probability distribution µ on Il the probability
distribution µ�k on Ik as the projection of µ to Ik: For x ∈ Ik,

µ�k(x) = µ(sl(x)).

For 0 ≤ k < n, denote by gk, k+1 ∈ B(Ik) an unnormalized relative density between
µk and µ�k

k+1: For all f ∈ B(Ik)

µ�k
k+1(f) =

µk(fgk, k+1)

µk(gk, k+1)
.

Denote by Kk+1 : Ik × Ik+1 → [0, 1] a Markov transition kernel for which

µk+1(f) = µ�k
k+1(Kk+1(f))

for all f ∈ B(Ik+1). Any pair of probability distributions µk and µk+1 with full sup-
port on, respectively, Ik and Ik+1 can be related through such a pair (gk,k+1, Kk+1).
Moreover Kk+1 is unique and gk,k+1 is unique up to a normalizing constant. For
x ∈ Ik and y ∈ Ik+1, Kk+1 is given explicitly by

Kk+1(x, y) =


µk+1(y)

µk+1(sk+1(x))
if y ∈ sk+1(x)

0 otherwise.

The tree structure, concretely, the fact that the states in Ik are not connected by
Kk, is a simple model of a multimodal state space: The elements of Ik stand for
components of a continuous state space which are separated by regions of very low
probability. For the particle dynamics we consider subsequently, the consequence
is that particles can move between different branches only through the resampling
step but not through the mutation step: This is consistent with our aim of studying,
how helpful the resampling step is in overcoming problems associated with multi-
modality. Accordingly, µn is not necessarily thought to be a severely multimodal
distribution on In – the problems associated with multimodality are captured by
the tree structure.

Now define qk,k+1 : B(Ik+1)→ B(Ik) by

qk, k+1(f) =
gk, k+1Kk+1(f)

µk(gk, k+1)

for all f ∈ B(Ik+1). Furthermore, define for 0 ≤ j ≤ k ≤ n the mapping qj,k :
B(Ik)→ B(Ij) by

qj,k(f) = qj,j+1(qj+1,j+2(. . . qk−1,k(f))) for j < k
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and qk,k(f) = f . We then have the relation

µj(qj,k(f)) = µk(f) for 0 ≤ j ≤ k ≤ n and f ∈ B(Ik)

and the semigroup property

qj,l(ql,k(f)) = qj,k(f) for 0 ≤ j ≤ l ≤ k ≤ n.

This model is a special case of the framework of Section 2.1.2. The following lemma
gives an explicit expression for qj,k(f):

Lemma 4.1. For 0 ≤ j < k ≤ n, f ∈ B(Ik) and x ∈ Ij we have

qj,k(f)(x) =
µk(f 1{sk(x)})

µj(x)
. (4.1)

In particular,

|qj,k(f)(x)| ≤
(

max
y∈Ik
|f(y)|

)
qj,k(1)(x) (4.2)

≤
(

max
y∈Ik
|f(y)|

)(
max
z∈Ij

µ�j
k (z)

µj(z)

)
.

Proof of Lemma 4.1. Observe that for x ∈ Ij and f ∈ B(Ik) we have

qj,k(f 1{sk(y)})(x) = 0

for x 6= y ∈ Ij. Thus we can write

qj,k(f)(x) =
∑
y∈Ij

qj,k(f1{sk(y)})(x) = qj,k(f 1{sk(x)})(x).

since qj,k(f) is linear in f . Therefore we have

µk(f1{sk(x)}) = µj(qj,k(f1{sk(x)}))

= µj(x)qj,k(f1{sk(x)})(x) = µj(x)qj,k(f)(x)

which can be rearranged into (4.1). (4.2) follows from

|qj,k(f 1{sk(x)})(x)| ≤
(

max
y∈Ik
|f(y)|

)
qj,k(1{sk(x)})(x) =

(
max
y∈Ik
|f(y)|

)
µk(sk(x))

µj(x)

and the definition of µ�j
k
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4.2 Sequential MCMC

We now introduce the interacting particle system associated with the Sequential
MCMC algorithm for the tree model and derive non-asymptotic bounds on the
approximation error. This algorithm corresponds to the particle system of Section
2.1.3 in the special case of our tree model.

4.2.1 The Interacting Particle System

We construct an interacting particle system approximating the sequence of measures
µk. We start with N independent samples ξ0 = (ξ10 , . . . , ξ

N
0 ) from µ0. The particle

dynamics alternates two steps: Importance Sampling Resampling and Mutation: A
vector of particles ξk approximating µk is transformed into a vector ξ̂k+1 approxi-
mating µ�k

k+1 by drawing N conditionally independent samples from the empirical

distribution of ξk weighted with the functions gk,k+1. Afterwards, ξ̂k+1 is transformed

into a vector ξk+1 approximating µk+1 by moving the particles ξ̂ik+1 independently

with the transition kernel Kk+1: A particle ξ̂ik+1 ∈ Ik is moved to a position in

sk+1(ξ̂
i
k+1) ⊆ Ik+1 with probabilities proportional to µk+1(·|sk+1(ξ̂

i
k+1)).

We thus have two arrays of random variables (ξjk)0≤k≤n,1≤j≤N and (ξ̂jk)1≤k≤n,1≤j≤N
where ξjk and ξ̂jk+1 take values in Ik. The random variables ξ10 , . . . , ξ

N
0 are independent

and distributed according to µ0. The distributions of the remaining ξ̂jk and ξjk are
pinned down by the transition probabilities

P[ξ̂k+1 ∈ dx|ξk = z] =
N∏
j=1

N∑
i=1

gk,k+1(z
i)∑N

l=1 gk,k+1(zl)
δzi(dx

j)

and

P[ξk+1 ∈ dx|ξ̂k+1 = z] =
N∏
j=1

Kk+1(z
j, dxj).

4.2.2 Error Bounds

Denote by Fk the σ-algebra generated by ξ0, . . . ξk and ξ̂1, . . . ξ̂k and denote the
empirical measure of ξk by ηNk , i.e.

ηNk =
1

N

N∑
i=1

δξik .

Recall that by Lemma 2.1 we have for f ∈ B(E) and 1 ≤ k ≤ n that

E[ηNk (f)|Fk−1] =
ηNk−1(qk−1,k(f))

ηNk−1(qk−1,k(1))
.

We are interested in the question how well ηNk approximates µk.
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Following the analysis of Section 2.2 we define for 0 ≤ k ≤ n the sequence of
measures

νNk (f) = ϕk η
N
k (f)

on Ik where ϕk is given by

ϕk =
k−1∏
j=0

ηNj (qj,j+1(1)).

Recall that we have for f ∈ B(Ik)

E[νNk (f)|Fk−1] = νNk−1(qk−1,k(f)),

and that, by Proposition 2.1, νNk (f) is an unbiased estimator for µk(f) with quadratic
error given in that proposition. Moreover we can control the approximation error of
ηNk through the approximation error of νNk by Lemma 2.2.

We next apply to our model the error bounds of Theorem 2.2. To achieve this we
need to define a series of norms ‖ · ‖j on B(Ij) and find constants dj,k such that the
inequality

max
(
‖1‖j‖qj,k(f)2‖j, ‖qj,k(f)‖2j

)
≤ dj,k ‖f‖2k. (4.3)

is satisfied. We choose ‖ · ‖j to be the maximum-norm on B(Ij), i.e. for f ∈ B(Ij)

‖f‖j = max
x∈Ij
|f(x)|.

Next we derive constants dj,k which guarantee that (4.3) is satisfied. Observe that
we have ‖f 2‖j = ‖f‖2j , ‖1‖j = 1 and by Lemma 4.1

‖qj,k(f)‖j ≤ ‖qj,k(1)‖j‖f‖n.

Moreover by the same lemma we have

‖qj,k(1)‖j = max
x∈Ij

µ�j
k (x)

µj(x)
≥ 1 (4.4)

Thus we can choose

dj,k =

(
max
x∈Ij

µ�j
k (x)

µj(x)

)2

dj,k is large when a node in the tree which is unimportant at level j has offspring
which carries considerably more probability mass at level k. Notably, the constant
dj,k does not take into account any further branching of the state space which occurs
at levels j + 1, . . . , n. In order to state our error bound we define another series of
constants following the definitions of Section 2.4: Define

d̂k = 2
k∑
j=0

dj,k,

87



and

v̂k = sup

{
k∑
j=0

Varµj(qj,k(f))

∣∣∣∣∣ f ∈ B(Ik), ‖f‖k ≤ 1

}
.

and
εNk = sup

{
E[|νNk (f)− µk(f)|2]

∣∣∣f ∈ B(Ik), |f |k ≤ 1
}
.

Moreover define

dk = max
j≤k

d̂j, vk = max
j≤k

v̂j and εNk = max
j≤k

εNj .

Then the following error bound is an immediate consequence of Theorem 2.2:

Corollary 4.1. Let N ≥ 2dn. Then for f ∈ B(In) we have

NE[|νNn (f)− µn(f)|2] ≤
n∑
j=0

Varµj(qj,n(f)) + ‖f‖2nd̂n εNn

and

εNn ≤ 2
vn
N

Finally, observe that we can bound Varµj(qj,n(f)) through dj,n by

Varµj(qj,n(f)) ≤ µj(qj,n(f)2) ≤ ‖f‖2n ‖qj,n(1)‖j µj(qj,n(1)) ≤
√
dj,n ‖f‖2n. (4.5)

This also implies

v̂k ≤
k∑
j=0

√
dj,k.

Thus our error bounds depend on the measures µj through the maxima of the relative
densities between µj and µ�j

k . This is the maximal importance gain of a component
of the partition at level j between levels j and k. We next set these bounds into
perspective by deriving a lower bound on v̂k by calculating the asymptotic variance

Varassk (f) =
k∑
j=0

Varµj(qj,k(f))

for the test function f ≡ 1 ∈ B(Ik):

Proposition 4.1.

Varassk (1) =
k∑
j=0

∑
x∈Ij

µ�j
k (x)

(
µ�j
k (x)

µj(x)
− 1

)
=

k∑
j=0

µ�j
k (qj,k(1)− 1)
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Proof of Proposition 4.1. Observe that

Varµj(qj,k(1)) =

∑
x∈Ij

µj(x) (qj,k(1)(x))2

− µj(qj,k(1))2

By Lemma 4.1 we have

(qj,k(1)(x))2 =

(
µ�j
k (x)

µj(x)

)2

.

By the fact that

µj(qj,k(1))2 = µk(1)2 = 1 =
∑
x∈Ij

µ�j
k (x)

we can thus write

Varµj(qj,k(1)) =
∑
x∈Ij

µ�j
k (x)

(
µ�j
k (x)

µj(x)
− 1

)
= µ�j

k (qj,k(1)− 1).

Summing over j completes the proof.

Denote the expression for Varµj(qj,k(1)) from the proposition by vj,k, i.e.,

vj,k =
∑
x∈Ij

µ�j
k (x)

(
µ�j
k (x)

µj(x)
− 1

)
.

dj,k may be large even when vj,k is small: dj,k is large if the successors at level k
of x ∈ Ij are – relatively – much more important under µk than x is under µj. In
this case vj,k may still be small if the absolute importance of the successors of x is
small under µk. In short, vj,k may be much smaller than dj,k if the largest (relative)
gains in importance are made by regions of the state space that remain (absolutely)
unimportant.

As a by-product, note that from the proof of Proposition 4.1 we immediately get an
upper bound on Varµj(qj,k(f)) which is sharper than (4.5):

Varµj(qj,k(f)) ≤ µj(qj,k(1)2) ‖f‖2k = d̃j,k‖f‖2k

where d̃j,k is defined as

d̃j,k =
∑
x∈Ij

µ�j
k (x)2

µj(x)
= µ�j

k (qj,k(1)).

We obtain corresponding sharper upper bounds on v̂k and vk. This allows to bound
the leading term in the error bounds of Corollary 4.1 by d̃j,k instead of

√
dj,k.
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4.3 Sequential Importance Sampling

For the purpose of comparison, we also introduce the Sequential Importance Sam-
pling algorithm for the tree model and give an explicit expression for the approxi-
mation error for a class of test functions.

In Sequential Importance Sampling, particles are moved independently according to
the kernels Kk. Afterwards, importance weights ω are calculated for the particles
which allow to obtain an estimator for µn through a weighted empirical measure of
the particles, see Section 1.3.5 for further discussion. In the present framework, Se-
quential Importance Sampling is equivalent to simple Importance Sampling between
the probability distribution πn on In given by

πn = µ0K1 . . . Kn

and µn. For simplicity, we consider only unnormalized Importance Sampling, i.e., we
assume that we can calculate the weights exactly (and not only up to a normalizing
constant). This has the advantage that we do not have to consider a bias introduced
by normalizing the particle weights through their sum.

Instead of a system of particles, it is thus sufficient to consider only the vector of
particles (ξ̃in)1≤i≤N which are distributed independently according to πn. We define
the importance weight function ωn ∈ B(In) by

ωn(x) =
µn(x)

πn(x)

for all x ∈ In. Then for f ∈ B(In) our Sequential Importance Sampling estimator
η̃n(f) is given by

η̃n(f) =
1

N

N∑
i=1

f
(
ξ̃in

)
ωn

(
ξ̃in

)
.

η̃n(f) is an unbiased estimator for µn(f), i.e.,

E[η̃n(f)] = µn(f).

We next calculate a formula for the quadratic approximation error for test functions
of the form f = 1{x} where x ∈ In:

Lemma 4.2. For x ∈ In and f = 1{x} we have

E[|η̃n(f)− µn(f)|2] =
µn(x)2

N

(
1

πn(x)
− 1

)
Proof of Lemma 4.2. To prove the lemma we only need the following calculation
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based on the unbiasedness of η̃n(f):

E[|η̃n(f)− µn(f)|2] = E

(( 1

N

N∑
i=1

µn(x)

πn(x)
1{x}

(
ξ̃in

))
− µn(x)

)2


=
1

N2

N∑
i=1

E

[(
µn(x)

πn(x)
1{x}

(
ξ̃in

)
− µn(x)

)2
]

=
1

N

(
πn(x)

(
µn(x)

πn(x)
− µn(x)

)2

+ (1− πn(x))µn(x)2

)

=
µn(x)2

N

(
1

πn(x)
− 1

)

We thus see that Sequential Importance Sampling can only perform well if the distri-
bution πn is sufficiently close to µn, more precisely, if no state which is unimportant
under πn is important under µn.

4.4 Example: Weighting or Resampling?

We now apply the error bounds we just developed to a concrete example depicted
in Figure 4.1. Our aim is to show that in this case Sequential MCMC, notably,
its Resampling step, succeeds in a multimodal setting in which Sequential Impor-
tance Sampling severely suffers from weight degeneracy. Section 4.4.1 introduces
the setting of the example. Section 4.4.2 derives upper bounds on qj,k(1). Sections
4.4.3 and 4.4.4 contain the error analysis for, respectively, Sequential MCMC and
Sequential Importance Sampling. Section 4.4.5 closes our comparison of Sequential
MCMC and Sequential Importance Sampling by discussing some further examples.

4.4.1 The Model

We consider the sequence of state spaces I0, . . . , In given by

Ik = {0k, . . . , kk}.

Thus the elements of Ik are the natural numbers from 0 to k, indexed by k in order
to keep the notation clearer.

For l > k, the predecessor in Ik of jl ∈ Il is given by jk if j ≤ k, otherwise it is kk:

pk(jl) =

{
jk if j ≤ k
kk if j > k.

We thus have a simple tree structure where from level k to level k+ 1 the “largest”
node kk has two successors, kk+1 and (k + 1)k+1, while all other nodes jk have only
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Figure 4.1: Weighting or Resampling?

one successor jk+1. Accordingly, for l > k and jk ∈ Ik, the successor function is
given by

sl(jk) =

{
{jl} if j < k
{kl, . . . , ll} if j = k.

We define the sequence µ0, . . . , µn implicitly through gk,k+1 and Kk+1. We choose
the unnormalized density gk,k+1 ∈ B(Ik) such that only the mass of kk is modified
while the relative masses of the other nodes remain the same:

gk,k+1(jk) =

{
1 if j < k
2θ with θ > 0 if j = k.

The transition kernel Kk+1 : Ik × Ik+1 → [0, 1] is chosen such that Kk+1(jk, ·) is the
uniform distribution on the successors of jk:

Kk+1(jk, ik+1) =


1 if i = j < k
1
2

if j = k and i ∈ {k, k + 1}
0 otherwise.

Observe that for θ > 1
2

we have two countervailing effects, one from the kernels Kk

and one from the functions gk,k+1 : On the one hand, the kernels Kk favor that mass
is concentrated on jk with small j. If we had a constant function gk,k+1 (i.e. θ = 1

2
),

µk would be a geometric distribution with parameter 1
2

and maximum in 0k . On
the other hand, the weight functions gk,k+1 move mass to the largest node kk. As
becomes clear from the explicit formula for µk calculated next, the case of θ > 1
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which we mainly consider is the case where the second effect is sufficiently strong in
the sense that µk(kk) > µk(jk) for j < k−1. As θ approaches 1, µk converges to the
uniform distribution on Ik. The cases where θ < 1 are largely omitted in our error
bounds, not because they are more difficult, but because they are less interesting
and would need a largely separate analysis.

Corollary 4.2. For jk ∈ Ik we have

µk(jk) =


θj+1

Zk
if j < k

θk

Zk
if j = k

where the normalizing constant Zk is given by

Zk = θk +
k−1∑
j=0

θj+1. (4.6)

Moreover for θ 6= 1,

Zk = θk +
θ

θ − 1
(θk − 1). (4.7)

The corollary is an immediate consequence of our choices of gk,k+1 and Kk+1. Thus
for θ > 1, µk can be characterized as follows: It is a geometric distribution with
maximum in (k−1)k on 0k, . . . , (k−1)k. Additionally we have µk((k−1)k) = µk(kk).

4.4.2 Controlling the Semigroup

From here on we mostly focus on the case θ ≥ 1. In order to apply the error bounds
of Section 4.2.2 we have to study the expressions qj,k(1) for this example. This is
begun in the following lemma:

Lemma 4.3. For 0 ≤ k < l ≤ n, we have

qk,l(1)(jk) =


Zk
Zl

if j < k

ZkZl−k
Zl

if j = k.

Furthermore for θ ≥ 1,

max
jk∈Ik

qk,l(1)(jk) =
ZkZl−k
Zl

.

Proof of Lemma 4.3. Recall from Lemma 4.1 that

qk,l(1)(jk) =
µl(sl(jk))

µk(jk)
.
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Thus for jk 6= kk Corollary 4.2 immediately implies

qk,l(1)(jk) =
µl(jl)

µk(jk)
=
Zk
Zl
.

For jk = kk we have

qk,l(1)(kk) =
µl({kl, . . . , ll})

µk(kk)

=
Zk
Zl

(
θl +

∑l−1
i=k θ

i+1

θk

)

=
Zk
Zl

(
θl−k +

l−k−1∑
i=0

θi+1

)
=

ZkZl−k
Zl

.

Observe from (4.6) that Zk < Zl and thus for jk 6= kk

qk,l(1)(jk) < 1.

Since both µk and µl are probability measures and since

µk(qk,l(1)) = µl(1) = 1

this implies
max
jk∈Ik

qk,l(1)(jk) = qk,l(1)(kk) > 1.

Thus in order to control qk,l(1) we need bounds on the constants Zk. The follow-
ing lemma gives two pairs of bounds on Zk. The bounds in (4.8) get sharp as θ
approaches 1 while the bounds in (4.9) get sharp as θ gets large.

Lemma 4.4. We have for θ ≥ 1

(k + 1)θ ≤ Zk ≤ (k + 1)θk (4.8)

and
2θk ≤ Zk and, if θ > 1, Zk ≤ ρ(θ)θk (4.9)

where we define

ρ(θ) = 2 +
1

θ − 1
. (4.10)

Proof of Lemma 4.4. The bounds in (4.8) and the lower bound in (4.9) follow im-
mediately from (4.6) and from the fact that for k > i we have θk > θi. The upper
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bound in (4.9) follows from (4.7) since

Zk = θk +
θ

θ − 1
(θk − 1) <

(
1 +

θ

θ − 1

)
θk =

(
2 +

1

θ − 1

)
θk.

We thus arrive at the following upper bound on ‖qk,l(1)‖k (where as before ‖ · ‖k
denotes the maximum norm on B(Ik)):

Corollary 4.3. For k < l and θ > 1 we have

‖qk,l(1)‖k ≤ min

(
ρ(θ)2

2
,
ρ(θ)2

l + 1
θl−1,

(l + 2)2

8
,
l + 2

2
θl−1

)
Proof of Corollary 4.3. By combining each time one lower bound and one upper
bound from Lemma 4.4 we obtain four upper bounds on

‖qk,l(1)‖k =
ZkZl−k
Zl

.

Applying the inequalities (k + 1)(l − k + 1) ≤ 1
4
(l + 2)2 and

(k + 1)(l − k + 1)

l + 1
≤ l + 2

2

completes the proof.

For θ sufficiently close to 1 the upper bound

‖qk,l(1)‖k ≤
l + 2

2
θl−1 (4.11)

which is obtained from using both directions of (4.8) is the sharpest one. For suffi-
ciently large θ the bound

‖qk,l(1)‖k ≤
ρ(θ)2

2
(4.12)

obtained from (4.9) is best. Depending on the values of k and l, one of the two other
bounds may be even better for intermediate values of θ. Finally, note that the third
and fourth bounds also apply to θ = 1 since they do not rely on the upper bound
from (4.9).

It is quite intuitive, that for θ ≈ 1 our bounds on qj,k(1) depend more sensitively
on k. With a large value of θ mass is concentrated quickly in the highest branch of
the tree such that the sequence ak = µk(kk) varies relatively little in k. For θ ≈ 1,
mass is accumulated only slowly in kk as k increases such that the same sequence
ak is increasing substantially in k at least for small values of k. This increase is
reflected in the fact that our upper bound on qj,k(1) is increasing with k in that
case. Put differently, for θ close to 1 and k not large, the distributions µk are not
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very concentrated (i.e. close to the uniform distribution) and thus more costly to
approximate. As we will see, the approximation error of our algorithm is indeed of
worse order in n at θ = 1 than for θ > 1 (or θ < 1). This can also be seen as an
elementary manifestation of the critical slowing down phenomenon.

4.4.3 Error Bounds for Sequential MCMC

In the following we give two error bounds, both based on Corollary 4.1: one which
degenerates as θ approaches 1, and one which does not degenerate but which is
worse for θ sufficiently greater than 1. Before we begin, note that a dependence
on the parameter n enters the error bound from two sources: While the two terms
of the error bound of Corollary 4.1 are, respectively, linear and quadratic in n, we
obtain a stronger dependence on n in Proposition 4.3 below since n is also the size
of the state space In and a parameter of the distribution µn. To confirm that this
difference between the results is not an artefact of our upper bounds, we calculate
the asymptotic variance in the case θ = 1 explicitly in Lemma 4.5 at the end of this
section.

The first result, for θ sufficiently greater than 1, is based on the bound (4.12), i.e.
we choose

‖qk,l(1)‖2k ≤ dk,l =
ρ(θ)4

4
.

with ρ(θ) as defined in (4.10)

Proposition 4.2. Consider θ > 1, N > ρ(θ)4 n and f ∈ B(In). Then we have

E[|νNn (f)− µn(f)|2] ≤ ‖f‖2n
(
ρ(θ)2

2

n+ 1

N
+ ρ(θ)6

(n+ 1)2

N2

)
.

Proof of Proposition 4.2. In order to apply Corollary 4.1 we have to control the
constants introduced in Section 4.2.2. By our choice of dj,k, we get

d̂k ≤
ρ(θ)4(k + 1)

2

Since this bound is increasing in k we also have

dk ≤
(

1

2
ρ(θ)4 +

1

4
ρ(θ)5

)
k.

Furthermore by (4.5) we have

n∑
j=0

Varµj(qj,n(f)) ≤ ρ(θ)2

2
(n+ 1) ‖f‖2n,

and

v̂k ≤
ρ(θ)2

2
(k + 1).
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Inserting these definitions into the bound of Corollary 4.1 gives the desired bound.

These bounds degenerate quickly as θ approaches 1 since ρ(θ) gets arbitrarily large
then. To demonstrate that we obtain reasonable constants in our bounds for suffi-
ciently large θ, we give the following result derived from the special case θ = 2 (and
thus ρ(2) = 3):

Corollary 4.4. Consider θ ≥ 2, N > 81n and f ∈ B(In). Then we have

E[|νNn (f)− µn(f)|2] ≤ ‖f‖2n
(

9

2

n+ 1

N
+ 729

(n+ 1)2

N2

)
We now turn to a bound which does not degenerate at θ = 1. For the sake of
simplicity we rely on the bound

‖qk,l(1)‖2k ≤ dk,l =
(l + 2)4

64
(4.13)

from Corollary 4.3 instead of the bound (4.11) which, for small θ, is sharper and
has a better order in k but which degenerates quickly as θ increases.

Proposition 4.3. Consider θ ≥ 1, N > 1
16

(n+ 2)5 and f ∈ B(In). Then we have

E[|νNn (f)− µn(f)|2] ≤ ‖f‖2n
(

1

8

(n+ 2)3

N
+

1

128

(n+ 2)8

N2

)
Proof of Proposition 4.3. By our choice of dj,k, we get

d̂k ≤
(k + 2)5

32

Since this bound is increasing in k we also have

ck ≤
1 + θ

32
(k + 2)5.

Furthermore by (4.5) we have

n∑
j=0

Varµj(qj,n(f)) ≤ (n+ 2)3

8
‖f‖2n,

and

v̂k ≤
(k + 2)3

8
.

Inserting these definitions into the bound of Corollary 4.1 gives the desired bound.
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As noted above we used in Proposition 4.3 a bound of order n4 on ‖qk,n(1)‖2k instead
of relying on (4.11) which may have led to a better order at least for θ close to 1.
Thus we expect that the error bound of Proposition 4.3 can be improved concerning
the order in n. In Section 4.4.4, we show however that the approximation error
of Sequential Importance Sampling is growing exponentially in n in this example.
Thus Proposition 4.3 is strong enough to make our point that the resampling step
in our Sequential MCMC algorithm overcomes the problem of weight degeneracy.

To close our analysis of the error bound for θ close to 1, we explicitly calculate
the asymptotic variance – and thus the leading coefficient in the error bound of
Corollary 4.1 – for the case θ = 1 and f ≡ 1 ∈ B(In). This asymptotic variance is
quadratic in n which proves that it is no artifact of our upper bounds, that we do
not achieve as good an order in n in Proposition 4.3 as in Proposition 4.2.

Lemma 4.5. For θ = 1 we have

Varassn (1) =
n∑
j=0

Varµj(qj,n(1)) =
n2(n− 1)

12(n+ 1)

Proof of Lemma 4.5. By Proposition 4.1 we have

Varassn (1) =
n∑
j=0

wj

where

wj =
∑
x∈Ij

µ�j
n (x)

(
µ�j
n (x)

µj(x)
− 1

)
.

Now observe that for θ = 1 we have

µj(x) =
1

j + 1

for all x ∈ Ij and

µ�j
n (x) =


n−j+1
n+1

for x = jj

1
n+1

otherwise.

Thus we have

wj =
∑
x∈Ij

µ�j
n (x)((j + 1)µ�j

n (x)− 1)

= −1 + (j + 1)
∑
x∈Ij

µ�j
n (x)2

= −1 +
j + 1

(n+ 1)2
(
j + (n− j + 1)2

)
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It is then straightforward to calculate that

Varassn (1) =
n∑
j=0

wj =
n2(n− 1)

12(n+ 1)

which completes the proof.

4.4.4 Weight Degeneracy of Sequential Importance
Sampling

We now turn to the analysis of Sequential Importance Sampling as introduced in
Section 4.3 for our example. In the present setting, the distribution πn is given by

πn(jn) =

{
2−j+1 for j < n
2−n for j = n

To prove that depending on the value of θ the approximation error of η̃n(f) may
grow exponentially in n, we consider the approximation error for the test function
f = 1{nn}. We have the following explicit formula for the approximation error:

Corollary 4.5. For f = 1{nn} and θ > 0 we have

E[|η̃n(f)− µn(f)|2] =


2n−1

N(1+ θ
θ−1

(1−θ−n))
2 for θ 6= 1

2n−1
N(n+1)2

for θ = 1

Moreover, E[|η̃n(f)− µn(f)|2] grows exponentially in n whenever θ > 2−
1
2 .

Proof of Corollary 4.5. The explicit formula for the error is a direct consequence
of Lemma 4.2, the fact that πn(nn) = 2−n, and the representation of µn given in
Corollary 4.2 which yields

µn(nn) =
1

1 + θ
θ−1(1− θ−n)

for θ 6= 1 and

µn(nn) =
1

n+ 1

for θ = 1. The error grows exponentially in n whenever

2n

θ−2n

tends to infinity in n which is the case for θ > 2−
1
2 .

Notably, we see that Sequential Importance Sampling suffers from weight degeneracy
when approximating f = 1{nn} even in some cases (i.e. 2−

1
2 < θ < 1) where µn(nn)

is decreasing exponentially itself.
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4.4.5 Further Examples

The poor performance of Sequential Importance Sampling in the previous exam-
ple stems from the fact that the particles’ movements only depend on the kernels
Kk and do not take into account the reweighting through the functions gk,k+1. It
is easy to construct a (somewhat artificial) example where this turns out to be
an advantage and where accordingly Sequential Importance Sampling outperforms
Sequential MCMC.1 This is done in the following. The notation of the previous
example is retained unless otherwise noted.

Consider the sequence of state spaces I0 = {00} and Ik = {0k, 1k} for 1 ≤ k ≤ 3.
Define a sequence of probability measures µk on Ik through µ0(00) = 1,

µ1(01) = µ1(11) = µ3(03) = µ3(13) =
1

2

and µ2(02) = α, µ2(12) = 1− α where 0 < α < 1.

The tree structure is given by pk(0k+1) = 0k, p0(11) = 00 and, for k > 0, pk(1k+1) =
1k. This implies that

K1(00, 01) = K1(00, 11) =
1

2

while all other transition kernel are trivial, i.e., for k > 1 and j ∈ {0, 1}

Kk(jk, jk+1) = 1.

We first consider the approximation error of Sequential Importance Sampling as
defined in the previous section: In this example the Importance Sampling proposal
distribution π3 coincides with µ3. Thus from Lemma 4.2, we obtain the following:
For f = 1{03}

E[|η̃3(f)− µ3(f)|2] =
µ3(03)

2

N

(
1

π3(03)
− 1

)
=

1

4N
(4.14)

Observe that this error is independent of α: When moving from µ1 to µ2, the weights
are changed, but this change is removed when moving (back) to µ3 and throughout
the particles’ movements are unaffected. So to say, the particles “accidentally” do
the right thing when moving from µ0 to µ1. To see this, we replace µ1 by µ′1 which
is essentially the same as µ2, µ

′
1(01) = α and µ′1(11) = 1− α. Intuitively, this might

make the problem easier, because it leads to a “smoother” sequence µk. The opposite
is the case however: The proposal distribution π′3 is now given by π′3(03) = α and

1Neal (1996) discusses numerical results for a more natural example that follows a similar logic.
Instead of Sequential MCMC and Sequential Importance Sampling, he considers the Simulated
Tempering and Tempered Transitions algorithms whose respective ways of discovering the state
space are intuitively similar to our two algorithms.
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π′3(13) = 1− α. Accordingly we get the error bound

E[|η̃3(f)− µ3(f)|2] =
1

4N

(
1

α
− 1

)
which gets arbitrarily large for small α.

Now we consider the asymptotic variance of Sequential MCMC for the same example,
again with the original µ1 and with the test function f = 1{03}. We thus have to
evaluate

Varass3 (f) =
3∑
j=0

Varµj(qj,3(f)).

Using the formula (4.1) for qj,k(f) it is straightforward to calculate that

q0,3(1{03}) =
1

2
, q1,3(1{03}) = 1{01},

q2,3(1{03}) =
1

2α
1{02} and q3,3(1{03}) = 1{03}.

Accordingly we have Varµ0(q0,3(f)) = 0,

Varµ1(q1,3(f)) = Varµ3(q3,3(f)) =
1

4

and

Varµ2(q2,3(f)) =
1

4

(
1

α
− 1

)
.

Thus the asymptotic variance is given by

Varass3 (f) =
1

4

(
1

α
+ 1

)
.

Recall that the asymptotic variance also coincides with the coefficient of the leading
term in our error bound of Corollary 4.1. Thus we observe that the approximation
error gets arbitrarily large for small values of α. This is in contrast to the error (4.14)
of Sequential Importance Sampling for the same example which is independent of
α.

Changing µ1 to µ′1 with µ′1(01) = α and µ′1(11) = 1−α does not lead to a qualitative
change of the error bound: We then get

q′1,3(1{03}) =
1

2α
1{01} and Varµ′1(q

′
1,3(f)) =

1

4

(
1

α
+ 1

)
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which leads to an asymptotic variance of

Varass3
′(f) =

1

4

(
2

α
− 1

)
.

Observe that again – despite the fact that the sequence µ0, µ1, µ2, µ3 varies more
strongly than µ0, µ

′
1, µ2, µ3 – the asymptotic variance for small values of α is larger

under the second sequence than under the first sequence. The reason for this lies in
the fact µ1 is a better approximation of µ�1

3 than µ′1.

For α > 1
2
, the asymptotic variance under µ′1 is smaller than the one under µ1

and both are well-behaved. But in this case the asymptotic variance for f ′ = 1{13}
increases more quickly under µ′1 than under µ1 as α approaches 1. In this sense, the
asymptotic variance is more stable under µ1 than under µ′1.

We thus close our comparison of Sequential Importance Sampling and Sequential
MCMC on trees with the following conclusion: Sequential Importance Sampling
works well if the proposal distribution πn constructed from µ0 and the transition
kernels Kk is sufficiently close to the target distribution µn. Sequential MCMC works
well if the distributions µj are sufficiently close to the projected distributions µ�j

n .
While there is no obvious relationship between these two properties, it seems clear
that Sequential MCMC is more suited to applications where the relative densities
gk,k+1 play a significant role. Furthermore for both algorithms it is easy to construct
examples where they perform arbitrarily bad. Finally note that for the last example
we only considered the asymptotic variance of Sequential MCMC. In order to obtain
good constants in our error bounds, we also need that µj is sufficiently close to µ�j

k

for j < k < n.
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5 Lp-bounds under Local Mixing

This chapter brings together the perspectives of Chapters 3 and 4. We return to the
basic framework of Chapter 3 and thus to the algorithm as introduced in Section 1.2.
However, instead of deriving stability from global mixing properties of the MCMC
dynamics, we assume that the MCMC dynamics mixes well only within the elements
of increasingly finer partitions of the state space. The latter assumption takes the
role of the tree structure of Chapter 4. Sections 5.1 and 5.2 introduce the setting
and restate our error bounds in it. Section 5.3, the main part of this chapter, derives
stability of the Feynman-Kac semigroup qj,k from local mixing properties, concretely,
from good mixing within each disconnected component of the state space and from
a condition that disconnected components do not gain too much weight. The latter
condition is similar to the one that appeared in Chapter 4, see the discussion at the
end of Section 5.3.

5.1 The Model

Recall the measure-valued model and interacting particle system introduced in Sec-
tions 3.1 and 3.2.1: Let (E, r) be a Polish space and let B(E) be the σ-algebra of
Borel subsets of E. Denote by M(E) the space of finite signed Borel measures on
E. Let M1(E) ⊂M(E) be the subset of all probability measures. Let B(E) be the
space of bounded, measurable real-valued functions on E. Consider the sequence of
probability distributions (µk)

n
k=0, µk ∈M1(E). The µk are related through

µk(f) =
µk−1(gk−1,kf)

µk−1(gk−1,k)

for strictly positive (unnormalized) relative densities gk−1,k ∈ B(E). For 1 ≤ k ≤ n,
let Kk(x,A) be an integral operator with Kk(·, f) ∈ B(E) for all f ∈ B(E) and
with Kk(x, ·) ∈M1(E) for all x ∈ E. Assume that Kk is stationary with respect to
µk. Define the mapping qk−1,k : B(E)→ B(E) by

qk−1,k(f) =
gk−1,kKk(f)

µk−1(gk−1,k)

Furthermore, let the semigroup qk,l, the interacting particle system (ξjk)0≤k≤n,1≤j≤N
and (ξ̂jk)1≤k≤n,1≤j≤N , the empirical distribution ηNk and the weighted empirical dis-
tribution νk be defined as in Chapter 3.

In place of the tree structure of Chapter 4 we now introduce a sequence of partitions
of E: Let I0,...,In be a collection of finite index sets. Define I = I0 ∪ . . . ∪ In and
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for 0 ≤ k ≤ n
I>k = Ik+1 ∪ . . . ∪ In and I<k = I0 ∪ . . . ∪ Ik−1.

For all j ∈ I there is a set Fj ∈ B(E) with µ0(Fj) > 0. Moreover, we assume that
for all 0 ≤ k ≤ n the collection (Fj)j∈Ik is a disjoint partition of E. We assume that
partitions successively get finer: For 1 ≤ k ≤ n, assume that for all j ∈ Ik there
exists an i ∈ Ik−1 with Fj ⊆ Fi. Thus for 0 ≤ k ≤ n− 1, a well-defined predecessor
function pk : I>k → Ik is characterized as follows: For 1 ≤ k < l ≤ n, j ∈ Ik and
i ∈ Il define

pk(i) = j if Fi ⊆ Fj.

Conversely, define a successor function sk : I<k → P(Ik) via

sk(i) = {j ∈ Ik|pl(j) = i} for i ∈ Il with 0 ≤ l < k.

Thus, for l < k and i ∈ Il the collection (Ij)j∈sk(i) is a disjoint partition of Fi.

We make the simplifying assumption that particles move between partition elements
only through the resampling step: For 1 ≤ k ≤ n and j ∈ Ik assume

Kk(1Fj)(x) = 0 for all x ∈ E \ Fj. (5.1)

This assumption ensures that if f has support only in Fj, j ∈ Ik, then Kk(f) has
support only in Fj as well. While this technical assumption will not be literally
fulfilled in most applications of interest, it can be seen as an approximation of the
fact that particles will move between different modes only rarely through the MCMC
dynamics.

5.2 Error Bounds for Sequential MCMC

In order to apply the error bounds of Section 2.3 we need to introduce a sequence of
norms on E. Unlike in Chapter 3 we want to rely only on local mixing properties.
Thus we replace the Lp-norms of Chapter 3 by stronger norms which are composed
of local Lp-norms. To introduce these norms we need a few additional definitions.
For 0 ≤ k ≤ n and j ∈ I, denote by µk,j ∈ M1(E) the restriction of µk to Fj: For
f ∈ B(E),

µk,j(f) =
µk(f1Fj)

µk(Fj)
.

It will prove to be convenient to view µk,j as a probability distribution on E (and not
on Fj). Note that we define µk,j for all j ∈ I (and not only for j ∈ Ik). Furthermore,
by assumption (5.1), Kk is stationary with respect to µk,j for all j ∈ Ik. Now for
0 ≤ k ≤ n, j ∈ I and p ≥ 1 denote by ‖ · ‖k,j,p the Lp-norm with respect to µk,j: For
f ∈ B(E),

‖f‖k,j,p = µk,j(|f |p)
1
p .
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Next define the norm ‖ · ‖k,p to be the maximum over the Lp-norms with respect to
µk,j with j ∈ Ik: For f ∈ B(E) and 0 ≤ k ≤ n,

‖f‖k,p = max
j∈Ik
‖f‖k,j,p.

With this choice of norm we have

‖f‖Lp(µk) ≤ ‖f‖k,p.

Now define c̃j,k(p, q) to be the constant in an Lp-Lq bound for the semigroup qj,k:
For p > q > 1 and 0 ≤ j < k ≤ n we have

‖qj,k(f)‖j,p ≤ c̃j,k(p, q)‖f‖k,q for all f ∈ B(E)

Such constants will be studied in Section 5.3 below. Fix p > 2 and define

cj,k(p) = max
(
c̃j,k

(
p,
p

2

)
, c̃j,k(2p, p)

2
)
.

This choice of cj,k satisfies (3.1), i.e., for p > 2, 0 ≤ j < k ≤ n and f ∈ B(E) we
have

max
(
‖1‖j,p‖qj,k(f)2‖j,p, ‖qj,k(f)‖2j,p, ‖qj,k(f 2)‖j,p

)
≤ cj,k(p) ‖f‖2k,p.

This follows with the same reasoning as in the proof of Lemma 3.1.

Now define another series of constants following the definitions of Section 2.3: Define

ĉk(p) =
k−1∑
j=0

cj,k(p) (2 + ‖qj,j+1(1)− 1‖j,p)

and

v̂k(p) = sup

{
k∑
j=0

Varµj(qj,k(f))

∣∣∣∣∣ f ∈ B(E), ‖f‖k,p ≤ 1

}
and

εNk (p) = sup
{
E[|νNk (f)− µk(f)|2]

∣∣∣f ∈ B(E), ‖f‖k,p ≤ 1
}
.

Moreover define

ck(p) = max
j≤k

ĉj(p), vk(p) = max
j≤k

v̂j(p) and εNk (p) = max
j≤k

εNj (p).

Then the following error bound is an immediate consequence of Theorem 2.1:

Corollary 5.1. Let p > 2 and N ≥ 2cn(p). Then for f ∈ B(E) we have

NE[|νNn (f)− µn(f)|2] ≤
n∑
j=0

Varµj(qj,n(f)) + ‖f‖2n,pĉn(p) εNn (p)
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and

εNn (p) ≤ 2
vn(p)

N

5.3 Stability of Feynman-Kac Semigroups under

Local Mixing

In this section, we generalize the analysis of Section 3.3 to the present setting,
weakening the global mixing assumptions to local ones. We begin with a few more
definitions. For j ∈ I let mk,k+1(j) be the relative change in the mass of Fj between
µk and µk+1,

mk,k+1(j) =
µk+1(Fj)

µk(Fj)
.

Furthermore for 0 ≤ k ≤ n − 1, denote by gk,k+1 the normalized relative density
between µk and µk+1,

gk,k+1(x) =
gk,k+1(x)

µk(gk,k+1)
for x ∈ E.

Next we define restricted relative densities: For 0 ≤ k ≤ n− 1, j ∈ I and x ∈ E,

gk,k+1,j(x) =
1

mk,k+1(j)
gk,k+1(x) 1Fj(x).

Observe that with this choice of gk,k+1,j we have for f ∈ B(E), 0 ≤ k ≤ n − 1 and
j ∈ I that

µk+1,j(f) =
µk+1(f1Fj)

µk+1(Fj)
=

1

mk,k+1(j)

µk(fgk,k+11Fj)

µk(Fj)
= µk,j(gk,k+1,jf),

i.e., gk,k+1,j is a relative density between µk,j and µk+1,j.

Like in Section 3.3 we postulate a uniform upper bound on relative densities, this
time on restricted relative densities: We assume that for some γ > 1 we have for
every 0 ≤ k ≤ n− 1, every j ∈ Ik and every x ∈ Fj

gk,k+1,j(x) =
µk(Fj)

µk+1(Fj)
gk,k+1(x) ≤ γ.

This assumption is neither stronger nor weaker than the corresponding bound on
gk,k+1 assumed in Section 3.3. In many cases it will however be weaker in the sense of
being fulfilled with a smaller constant γ. Roughly, this is the case when the largest
values of gk,k+1 occur in components Fj which gain importance. For instance, in
the extreme case where gk,k+1 is constant on each component Fj with j ∈ Ik we can
choose γ = 1.

Again, it proves to be convenient not to work with qj,k directly but to work with the
semigroup q̂j,k defined as follows: For 1 ≤ k ≤ n − 1 define q̂k,k+1 : B(E) → B(E)
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by
q̂k,k+1(f) = Kk

(
gk,k+1f

)
Furthermore, for 1 ≤ j < k ≤ n the mapping q̂j,k : B(E)→ B(E) is given by

q̂j,k(f) = q̂j,j+1(q̂j+1,j+2(. . . q̂k−1,k(f))) and q̂k,k(f) = f,

so that q̂j,k is a semigroup. qj,k and q̂j+1,k are related through

qj,k(f) = gj,j+1q̂j+1,k(Kk(f)).

In Lemma 5.5 below, we show how Lp-Lq-bounds for q̂j,k can be used to obtain
Lp-Lq-bounds for qj,k.

Like in Section 3.3, we proceed by considering first L2-bounds for one time-step and
then iterated L2-bounds. From these we conclude one-step Lp-bounds and then, in
Proposition 5.1, iterated Lp-bounds for q̂j,k. Afterwards, we show how to extend this
result to Lp-Lq-bounds, using local hyperboundedness, and to the semigroup qj,k.
Corollary 5.5 concludes the bound for qj,k needed in order to make the constants in
the error bound for Sequential MCMC in Corollary 5.1 explicit.

It proves to be useful, to consider mostly inequalities which bound, for i ∈ Ij,
‖q̂j,k(f)‖j,i,p against maxl∈sk(i) ‖f‖k,l,p. The inequalities which bound ‖q̂j,k(f)‖j,p
against ‖f‖k,p can then be concluded by taking the maximum over i ∈ Ij. So to say,
the latter inequalities are the final results while the former are more useful tools in
proving further results.

In order to keep track of how mass is shifted between different components, two
more definitions are needed: For 0 ≤ j < k ≤ n and i ∈ Ij define by Mj,k(i) the
following iterated version of mj,j+1(i):

Mj,k(i) = max
l∈sk(i)

k−1∏
r=j

mr,r+1(pr(l)).

This is the maximal product of relative mass changes one has to go through when
moving from Fi, i ∈ Ij to one of its successors Fl, l ∈ sk(i) ⊆ Ik. For the transition
from r to r + 1 the relative mass change of the predecessor of Fl at level r is taken
into account. Observe that for i ∈ Ij we have the relation

Mj,k(i) = mj,j+1(i) max
l∈sj+1(i)

Mj+1,k(l). (5.2)

Furthermore, we define for 0 ≤ j < k ≤ n the constant Aj,k by

Aj,k = max
i∈Ij

Mj,k(i).

Before we come to local mixing properties and Lp-bounds, we briefly look at the
L1-case:
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Lemma 5.1. For 0 ≤ j < k ≤ n, f ∈ B(E) and i ∈ Ij we have

‖q̂j,k(f)‖j,i,1 ≤Mj,k(i) max
l∈sk(i)

‖f‖k,l,1. (5.3)

Moreover,
‖q̂j,k(f)‖j,1 ≤ Aj,k‖f‖k,1. (5.4)

Proof. We can write

‖q̂j,k(f)‖j,i,1 = µj,i(|Kj(gj,j+1q̂j+1,k(f))|)
≤ mj,j+1(i)µj,i(gj,j+1,i|q̂j+1,k(f)|)
≤ mj,j+1(i) max

l∈sj+1(i)
µj+1,l(|q̂j+1,k(f)|)

≤ mj,j+1(i) max
l∈sj+1(i)

‖q̂j+1,k(f)‖j+1,l,1. (5.5)

Iterating this bound yields

‖q̂j,k(f)‖j,i,1 ≤ mj,j+1(i) max
lj+1∈sj+1(i)

mj+1,j+2(lj+1) . . . max
lk−1∈sk−1(lk−2)

mk−1,k(lk−1)‖f‖k,lk−1,1.

Note that by iterating (5.2) we obtain

Mj,k(i) = mj,j+1(i) max
lj+1∈sj+1(i)

mj+1,j+2(lj+1) . . . max
lk−1∈sk−1(lk−2)

mk−1,k(lk−1).

Thus applying
‖f‖k,lk−1,1 ≤ max

l∈sk(i)
‖f‖k,l,1

in (5.5) yields (5.3). Taking the maximum over i ∈ Ij gives (5.4).

The proof illustrates how the constants Mj,k(i) and Aj,k come into play in our
bounds. The same arguments appear – in less detail and alongside further compli-
cations – in our proofs for p > 1. In fact, this didactic purpose is the main motivation
behind Lemma 5.1: The argument (3.4) from Section 3.3 still goes through, showing
that

‖q̂j,k(f)‖L1(µj) ≤ ‖f‖L1(µk).

Moreover, in a similar fashion one can show that for all i ∈ I

‖q̂j,k(f)‖j,i,1 ≤
µk(Fi)

µj(Fi)
‖f‖k,i,1.

This implies

‖q̂j,k(f)‖j,1 ≤
(

max
i∈Ij

µk(Fi)

µj(Fi)

)
‖f‖k,1 (5.6)

which is generally an improvement over Lemma 5.1.

We now state the local mixing conditions behind our Lp-bounds for the case p ≥ 2:
We assume that we have uniform constants α > 0 and β ∈ [0, 1] such that for all
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1 ≤ k < n, for all f ∈ B(E) and for all i ∈ Ik

‖q̂k,k+1(f)‖2k,i,2 ≤ mk,k+1(i)
2
(
α‖f‖2k+1,i,2 + βµk+1,i(f)2

)
. (5.7)

One way to ensure that (5.7) holds is to assume that the kernels Kk possess the
following contraction property: There exists ρ ∈ (0, 1) such that for all 1 ≤ k < n
for all f ∈ B(E) and for all i ∈ Ik

µk,i(Kk(f − µk,i(f))2) ≤ (1− ρ)Varµk,i(f). (5.8)

Then it can be shown with the same reasoning as in Lemma 3.6 that (5.7) holds
with α = (1 − ρ)γ and β = ρ. Moreover, with the same arguments as in Lemma
3.7 it follows that (5.8) holding with a sufficiently large ρ is equivalent to a local
Poincaré inequality with a sufficiently large spectral gap being satisfied.

We now turn to proving an L2 inequality for q̂j,k. Note first that (5.7) immediately
implies the following one-step L2-bounds:

Corollary 5.2. For 1 ≤ k < n, for all f ∈ B(E) and for all i ∈ Ik we have

‖q̂k,k+1(f)‖2k,i,2 ≤ mk,k+1(i)
2

(
α

(
max

l∈sk+1(i)
‖f‖2k+1,l,2

)
+ β

(
max

l∈sk+1(i)
µk+1,l(f)2

))
.

(5.9)

and

‖q̂k,k+1(f)‖2k,2 ≤ A2
k,k+1

(
α‖f‖2k+1,2 + max

l∈Ik+1

βµk+1,l(f)2
)

≤ A2
k,k+1(α + β)‖f‖2k+1,2.

Next we iterate (5.9) to obtain an L2-bound for more than one step:

Lemma 5.2. Assume α < 1. Then for 1 ≤ j < k ≤ n and f ∈ B(E) and for i ∈ Ij
we have the bounds

‖q̂j,k(f)‖2j,i,2 ≤Mj,k(i)
2

(
αk−j

(
max
l∈sk(i)

‖f‖2k,l,2
)

+
β

1− α

(
max
l∈sk(i)

µk,l(f)2
))

, (5.10)

and

‖q̂j,k(f)‖j,i,2 ≤Mj,k(i)
1

(1− α)
1
2

max
l∈sk(i)

‖f‖k,l,2, (5.11)

and

‖q̂j,k(f)‖j,2 ≤ Aj,k
1

(1− α)
1
2

‖f‖k,2. (5.12)
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Proof. Applying (5.9) yields

‖q̂j,k(f)‖2j,i,2 ≤ mj,j+1(i)
2(

α max
l∈sj+1(i)

‖q̂j+1,k(f)‖2j+1,l,2 + β max
l∈sj+1(i)

µj+1,l(q̂j+1,k(f))2
)
.

(5.13)

Arguing as in the proof of Lemma 5.1 yields the inequality

max
l∈sj+1(i)

µj+1,l(q̂j+1,k(f))2 ≤Mj+1,k(i)
2 max
l∈sk(i)

µk,l(f)2 (5.14)

which can be used to bound the second term on the right hand side of (5.13). To
the first term in (5.13) we can apply again (5.9) which yields again two terms, one
which can be bounded through (5.9) and one which can be bounded through (5.14).
Iterating this reasoning and collecting the factors mr,r+1 into terms Mj,k gives us

‖q̂j,k(f)‖2j,i,2 ≤Mj,k(i)
2

(
αk−j

(
max
l∈sk(i)

‖f‖2k,l,2
)

+ β

k−j−1∑
r=0

αr max
l∈sk(i)

µk,l(f)2

)
. (5.15)

Applying to this the geometric series inequality yields (5.10). Since we have

max
l∈sk(i)

µk,l(f)2 ≤ max
l∈sk(i)

‖f‖2k,l,2

and since we assumed β ≤ 1 we can conclude from (5.15) that

‖q̂j,k(f)‖2j,i,2 ≤Mj,k(i)
2

k−j∑
r=0

αr max
l∈sk(i)

‖f‖2k,l,2

which implies (5.11) by the geometric series inequality. Taking the maximum over
i ∈ Ij in (5.11) gives (5.12).

Our next step is the following one-step Lp-bound:

Lemma 5.3. For 1 ≤ k < n, for all f ∈ B(E), for all i ∈ Ik and for all p ≥ 1 we
have

‖q̂k,k+1(f)‖2pk,i,2p

≤ mk,k+1(i)
2pγ2p−2

(
α

(
max

l∈sk+1(i)
‖f‖2pk+1,l,2p

)
+ β

(
max

l∈sk+1(i)
‖f‖2pk+1,l,p

))
(5.16)

and

‖q̂k,k+1(f)‖2pk,2p ≤ A2p
k,k+1γ

2p−2 (α‖f‖2pk+1,2p + β‖f‖2pk+1,p

)
≤ A2p

k,k+1γ
2p−2(α + β)‖f‖2pk+1,2p. (5.17)
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Proof. We can write

‖q̂k,k+1(f)‖2pk,i,2p = µk,i(|Kk(gk,k+1f)|2p)
≤ µk,i(Kk(g

p
k,k+1|f |

p)2)

= ‖q̂k,k+1(g
p−1
k,k+1|f |

p)‖2k,i,2.

This expression we can bound using (5.7) to obtain

‖q̂k,k+1(f)‖2pk,i,2p ≤ mk,k+1(i)
2
(
α‖gp−1k,k+1|f |

p‖2k+1,i,2 + β‖gp−1k,k+1|f |
p‖2k+1,i,1

)
≤ mk,k+1(i)

2pγ2p−2
(
α‖|f |p‖2k+1,i,2 + β‖|f |p‖2k+1,i,1

)
≤ mk,k+1(i)

2pγ2p−2
(
α‖f‖2pk+1,i,2p + β‖f‖2pk+1,i,p

)
which immediately implies (5.16). (5.17) follows by taking the maximum over i ∈
Ik.

Next we iterate the bound of Lemma 5.3 to show how an Lp-bound for q̂j,k implies
an L2p-bound:

Lemma 5.4. Assume that αγ2p−2 < 1 and that for some δ(p) ≥ 1 we have for all
1 ≤ j < k ≤ n, i ∈ Ij and f ∈ B(E) the inequality

‖q̂j,k(f)‖j,i,p ≤Mj,k(i)δ(p) max
l∈sk(i)

‖f‖k,l,p (5.18)

is fulfilled. Then we have

‖q̂j,k(f)‖j,i,2p ≤Mj,k(i)δ(2p) max
l∈sk(i)

‖f‖k,l,2p (5.19)

with

δ(2p) = δ(p)
γ1−

1
p

(1− αγ2p−2)
1
2p

.

Moreover, we have
‖q̂j,k(f)‖j,2p ≤ Aj,kδ(2p)‖f‖k,2p. (5.20)

Proof. Define θ = αγ2p−2. Iterating the inequality of Lemma 5.3 and utilizing that
β ≤ 1, we get

‖q̂j,k(f)‖2pj,i,2p ≤ Mj,k(i)
2pθk−j

(
max
l∈sk(i)

‖f‖2pk,l,2p
)

+ γ2p−2
k∑

r=j+1

θr−1−j max
l∈sr(i)

Rj,r(l)
2p‖q̂r,k(f)‖2pr,l,p, (5.21)

where for l ∈ Ir, Rj,r(l) is defined by

Rj,r(l) =
r−1∏
t=j

mt,t+1(pt(l)).
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Observe that for i ∈ Ij we have

Mj,k(i) = max
l∈sk(i)

Rj,k(l)

and moreover for j < r < k and i ∈ Ij

Mj,k(i) = max
l∈sr(i)

Rj,r(l)Mr,k(l) (5.22)

Thus applying (5.18) and then (5.22) to bound the factors ‖q̂r,k(f)‖r,l,p, we obtain
from (5.21) the inequality

‖q̂j,k(f)‖2pj,i,2p ≤ Mj,k(i)
2pθk−j

(
max
l∈sk(i)

‖f‖2pk,l,2p
)

+ γ2p−2Mj,k(i)
2pδ(p)2p

k∑
r=j+1

θr−1−j max
l∈sk(i)

‖f‖2pk,l,p.

Since we assumed γ ≥ 1 and δ(p) ≥ 1 and since we have

max
l∈sk(i)

‖f‖2pk,l,p ≤ max
l∈sk(i)

‖f‖2pk,l,2p

we thus have

‖q̂j,k(f)‖2pj,i,2p ≤ γ2p−2Mj,k(i)
2pδ(p)2p

(
max
l∈sk(i)

‖f‖2pk,l,p
) k∑
r=j+1

θr−1−j.

By the geometric series inequality and our assumption of θ < 1, we thus get

‖q̂j,k(f)‖j,i,2p ≤Mj,k(i)
2pδ(2p) max

l∈sk(i)
‖f‖k,l,p,

with

δ(2p) = δ(p)
γ1−

1
p

(1− θ)
1
2p

.

This shows (5.19). (5.20) follows by taking the maximum over i ∈ Ij.

Combining Lemmas 5.2 and 5.4 we can now state the key result of this section as
follows:

Proposition 5.1. For r ∈ N, consider p = 2r and assume that αγp−2 < 1. Then
we have for 1 ≤ j < k ≤ n, for i ∈ Ij and f ∈ B(E) the inequality

‖q̂j,k(f)‖j,i,p ≤Mj,k(i)δ(p) max
l∈sk(i)

‖f‖k,l,p (5.23)
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with

δ(p) =
r∏
j=1

γ1−2
−(j−1)

(1− αγ2j−2)2−j
<
γr−2+2−(r−1)

1− αγ2r−2
.

Moreover,
‖q̂j,k(f)‖j,p ≤ Aj,kδ(p)‖f‖k,p (5.24)

Proof. We proceed by induction over r. The cases r = 0 and r = 1 follow from
Lemmas 5.1 and 5.2, respectively. The inequalities for r > 1 follow because Lemma
5.4 implies that we can choose

δ(2r) = δ(2)
r∏
j=2

γ1−2
−(j−1)

(1− αγ2j−2)2−j
.

We can apply Lemma 5.4 iteratively, since αγp−2 < 1 implies αγq−2 < 1 for all
q ≤ p. For the upper bound on δ(p), we apply the geometric series equality in the
nominator, bound the term in brackets under the exponent in the denominator by
1 − αγp−2 and apply the geometric series inequality to the product. This shows
(5.23). (5.24) follows by taking the maximum over i ∈ Ij.

Since the constants δ(2r) are monotonically increasing in r, we can immediately
extend the bounds of Proposition 5.1 to general p ≥ 1 using the Riesz-Thorin inter-
polation theorem (see Davies (1990), §1.1.5):

Corollary 5.3. Consider p ∈ [2r, 2r+1] for r ∈ N and assume αγ2
r+1−2 < 1. Then

for 1 ≤ j < k ≤ n and f ∈ B(E) and i ∈ Ij we have

‖q̂j,k(f)‖j,i,p ≤Mj,k(i)δ(p) max
l∈sk(i)

‖f‖k,l,p

and
‖q̂j,k(f)‖j,p ≤ Aj,kδ(p)‖f‖k,p

with δ(p) given by
δ(p) = δ(2r+1)

where δ(2r+1) is defined as in Proposition 5.1.

We still need two more results: one which shows how to translate Lp-stability into
Lp-Lq-stability using local hyper-boundedness, and one which relates our bounds for
q̂j+1,k to corresponding bounds for qj,k. We first show how Lp-Lq-inequalities follow
from our Lp-inequalities and a local hypercontractivity assumption on the kernels
Kj.

Corollary 5.4. Consider p ≥ 1 and q ≥ 1. Let q ∈ [2r, 2r+1] for r ∈ N and assume
αγ2

r+1−2 < 1. Assume that for 1 ≤ j < n we have a constant θj(p, q) ≥ 0 such that
for all i ∈ Ij and all f ∈ B(E) we have

‖Kj(f)‖j,i,p ≤ θj(p, q)‖f‖j,i,q. (5.25)
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Then for j < k ≤ n we have

‖q̂j,k(f)‖j,i,p ≤Mj,k(i)θj(p, q)γ
q−1
q δ(q) max

l∈sk(i)
‖f‖k,l,q (5.26)

and
‖q̂j,k(f)‖j,p ≤ Aj,kθj(p, q)γ

q−1
q δ(q)‖f‖k,q (5.27)

with δ(q) as defined in Corollary 5.3.

Proof. By (3.10) we have

‖q̂j,k(f)‖j,i,p ≤ θj(p, q)mj,j+1(i) max
l∈sj+1(i)

‖gj,j+1,iq̂j+1,k(f)‖j,l,q

and thus by Corollary 5.3

‖q̂j,k(f)‖j,i,p ≤ θj(p, q)Mj,k(i)γ
q−1
q δ(q) max

l∈sk(i)
‖f‖k,l,q.

This shows (5.26). Taking the maximum over i ∈ Ij proves (5.27).

Next, we show how to obtain bounds for qj,k from our bounds for q̂j+1,k:

Lemma 5.5. Assume that for some p ≥ 1 and q ≥ 1 and for fixed 1 ≤ j+1 < k ≤ n
we have a δ ≥ 0 such that for all l ∈ Ij+1 and for all f ∈ B(E)

‖q̂j+1,k(f)‖j+1,l,p ≤ δMj+1,k(l) max
r∈sk(l)

‖f‖k,r,q. (5.28)

Then we have for all i ∈ Ij

‖qj,k(f)‖j,i,p ≤ γ
p−1
p δMj,k(i) max

r∈sk(i)
‖f‖k,r,q.

and
‖qj,k(f)‖j,p ≤ γ

p−1
p δ Aj,k ‖f‖k,q.

Proof. Note that we have for i ∈ Ij

‖qj,k(f)‖j,i,p = µj,i(|gj,j+1q̂j+1,k(Kk(f))|p)
1
p

= mj,j+1(i)µj,i(|gj,j+1,iq̂j+1,k(Kk(f))|p)
1
p

≤ γ
p−1
p mj,j+1(i)µj+1,i(|q̂j+1,k(Kk(f))|p)

1
p

≤ γ
p−1
p mj,j+1(i) max

l∈sj+1(i)
µj+1,l(|q̂j+1,k(Kk(f))|p)

1
p

= γ
p−1
p mj,j+1(i) max

l∈sj+1(i)
‖q̂j+1,k(Kk(f))‖j,l,p

114



and thus by (5.28)

‖qj,k(f)‖j,i,p ≤ γ
p−1
p mj,j+1(i) δ max

l∈sj+1(i)
Mj+1,k(l) max

r∈sk(l)
‖Kk(f)‖k,r,q

(5.2)

≤ γ
p−1
p Mj,k(i) δ max

r∈sk(i)
‖Kk(f)‖k,r,q

≤ γ
p−1
p Mj,k(i) δ max

r∈sk(i)
‖f‖k,r,q

where in the last step we used that by Jensen’s inequality |Kk(f)|q ≤ Kk(|f |q) and
that Kk is stationary with respect to µk,l for all l ∈ I. This shows the first inequality.
The second inequality follows by taking the maximum over i ∈ Ij on both sides.

Combining Lemma 5.5 and Corollary 5.4 we can conclude the types of inequalities
needed in the error bound for Sequential MCMC stated in Corollary 5.1 in the
previous section:

Corollary 5.5. Consider p ≥ 1 and q ≥ 1. Let q ∈ [2r, 2r+1] for r ∈ N and assume
αγ2

r+1−2 < 1. Assume that for all 1 ≤ j < n we have a constant θj(p, q) ≥ 0 such
that for all i ∈ Ij and all f ∈ B(E) we have

‖Kj(f)‖j,i,p ≤ θ(p, q)‖f‖j,i,q.

Then for 1 ≤ j < k ≤ n we have

‖qj,k(f)‖j,p ≤ c̃j,k(p)‖f‖k,q (5.29)

with
c̃j,k(p) = Aj,kθ(p, q)γ

p−1
p γ

q−1
q δ(q)

where δ(q) is as defined in Corollary 5.3.

The stability inequalities in this section thus differ from those of Section 3.3 by
containing the factor Aj,k on the right-hand side. For the case treated in Section
3.3, i.e., |Ij| = 1 for 0 ≤ j ≤ n and Fi = E for all i ∈ I, we obtain Aj,k = 1. Thus
the results of the present section contain those of Section 3.3 as special cases. For
the case of invariant partitions treated in Eberle and Marinelli (2010), i.e., |Ij| = |Ik|
for 0 ≤ j < k ≤ n, we obtain

Aj,k = max
i∈Ij

µk(Fi)

µj(Fi)
(5.30)

which is a discrete-time analogue of their constant.

All the results of this section can be proved much more easily with Ãj,k defined by

Ãj,k =
k−1∏
r=j

max
i∈Ir

mr,r+1(i)
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in place of Aj,k. This constant is typically larger however. For instance, in the case
of invariant partitions we obtain

Ãj,k =
k−1∏
r=j

max
i∈Ir

µr+1(Fi)

µr(Fi)

which is typically greater than Aj,k which is given by (5.30) in this case. In con-
trast, in the setting of trees in Chapter 4 we had (not only for invariant partitions)

constants corresponding to Âj,k given by

Âj,k = max
i∈Ij

µk(Fi)

µj(Fi)
(5.31)

which are typically smaller than these constants Aj,k. As was shown in (5.6), we

can achieve the constants Âj,k in the L1 case. For p > 1, in order to apply the local
mixing conditions we have to analyze components more separately. This leads to
the worse constants Aj,k.

Compared to the setting of Chapter 4 the present setting is more general in two
respects: We take into account local mixing and local variations in relative densities.
To disentangle these two factors to some extent, consider the case where we take
into account local mixing but assume that the relative densities gk,k+1 are constant
on each of the sets Fj with j ∈ Ik. In that case, we have γ = 1 and the inequality
(5.29) in Corollary 5.5 becomes

‖qj,k(f)‖j,p ≤ Aj,kθ(p, q)
1

1− α
‖f‖k,q.

Thus, compared to the results of Chapter 4 we obtain different norms, we obtain
the constants Aj,k which are similar but worse than the corresponding constants in
Chapter 4 and we obtain an additional factor taking into account hyperboundedness
and local mixing.
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Séminaire de Probabilités XXXIV, Lecture Notes in Mathematics, vol. 1729,
Springer, Berlin, 2000, pp. 1-145.

[21] J.-D. Deuschel and D. W. Stroock, Hypercontractivity and spectral gap of sym-
metric diffusions with applications to the stochastic Ising models, Journal of
Functional Analysis, 92, 30-48, 1990.

[22] P. Diaconis, The MCMC Revolution, Bulletin of the American Mathematical
Society, 46, 179-205, 2009.

[23] P. Diaconis and L. Saloff-Coste, What do we know about the Metropolis algo-
rithm?, Journal of Computer and System Sciences, 57, 20-36, 1998.

[24] R. Douc and E. Moulines, Limit theorems for weighted samples with applications
to Sequential Monte Carlo Methods, Annals of Statistics, 36, 2344-2376, 2008.

[25] R. Douc, E. Moulines and J. S. Rosenthal, Quantitative bounds on convergence
of time-inhomogeneous Markov chains, Annals of Applied Probability, 14, 1643-
1665, 2004.

[26] A. Doucet, N. de Freitas and N. Gordon (eds.), Sequential Monte Carlo Methods
in Practice, Springer, New York, 2001.

[27] D. J. Earl and M. W. Deem, Parallel Tempering: Theory, Applications, and
New Perspectives, Physical Chemistry Chemical Physics, 7, 3910-3916, 2005.

118



[28] A. Eberle and C. Marinelli, Lp estimates for Feynman-Kac propagators with
time-dependent reference measures, Journal of Mathematical Analysis and Ap-
plications, 365, 120-134, 2010.

[29] A. Eberle and C. Marinelli, Quantitative approximations of evolving probability
measures and sequential Markov Chain Monte Carlo methods, Working Paper,
University of Bonn, 2011.

[30] L. J. Fogel, A. J. Owens and M. J. Walsh, Artificial Intelligence through Sim-
ulated Evolution, Wiley Publishing, New York, 1996.
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