

SEMANTICS-AWARE PLANNING

METHODOLOGY FOR AUTOMATIC

WEB SERVICE COMPOSITION

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Yan Leng

aus

Nanjing, China

Bonn, 2012

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelm-Universität Bonn

1. Referent: Prof. Dr. Armin B. Cremers, Universität Bonn

2. Referent: Prof. Dr. Thomas Rose, RWTH Aachen

Tag der Promotion: 29.06.2012

Erscheinungsjahr: 2012

Service-Oriented Computing (SOC) has been a major research topic in the past years. It is
based on the idea of composing distributed applications even in heterogeneous environments
by discovering and invoking network-available Web Services to accomplish some complex
tasks when no existing service can satisfy the user request. Service-Oriented Architecture
(SOA) is a key design principle to facilitate building of these autonomous, platform-
independent Web Services. However, in distributed environments, the use of services
without considering their underlying semantics, either functional semantics or quality
guarantees can negatively affect a composition process by raising intermittent failures or
leading to slow performance.

More recently, Artificial Intelligence (AI) Planning technologies have been exploited to
facilitate the automated composition. But most of the AI planning based algorithms do not
scale well when the number of Web Services increases, and there is no guarantee that a
solution for a composition problem will be found even if it exists. AI Planning Graph tries to
address various limitations in traditional AI planning by providing a unique search space in a
directed layered graph. However, the existing AI Planning Graph algorithm only focuses on
finding complete solutions without taking account of other services which are not achieving
the goals. It will result in the failure of creating such a graph in the case that many services are
available, despite most of them being irrelevant to the goals.

This dissertation puts forward a concept of building a more intelligent planning
mechanism which should be a combination of semantics-aware service selection and a goal-
directed planning algorithm. Based on this concept, a new planning system so-called Semantics
Enhanced web service Mining (SEwsMining) has been developed. Semantic-aware service
selection is achieved by calculating on-demand multi-attributes semantics similarity based on semantic
annotations (QWSMO-Lite). The planning algorithm is a substantial revision of the AI
GraphPlan algorithm. To reduce the size of planning graph, a bi-directional planning strategy has
been developed.

Abstract

A PhD thesis is never the result of a single person’s effort and it would have been impossible
without the support and encouragement of many people. I would like to take this
opportunity to express my deepest gratefulness to all of them.

First and foremost, I would like to acknowledge the contributions of my supervisor, Prof.
Dr. Armin B. Cremers, in making this work possible. I would like to sincerely thank him for
his visionary guidance, understanding and patience. I have benefited the most from his vision
towards my research work. He has been putting my career in his mind and guiding me along
the way. I have learned a lot working with him, from presentation skills, paper writing to
approaches of conducting research. Additionally, I would also like to thank Prof. Dr. Thomas
Rose from RWTH Aachen University for being my second supervisor and giving many
insightful suggestions to this work.

I would also like to thank B-IT research school giving me the chance to do a PhD thesis and
members of my doctoral committee, PD Dr. Volker Steinhage and Prof. Dr. Klaus Greve for
the valuable discussions and accessibility.

My sincere thanks go to many friends and colleagues in the department of computer science
for scientific discussion, advice and continuous support. In this regard, I am particularly
grateful to Mahmoud El-Gayyar, Dr. Serge Shumilov, Dr. Alexandra Reitelmann, Prof. Dr.
Sascha Alda, Dr. Thomas Bode, Dr. Alexander Savinov and Ivan Denisovich for their
collaboration, comments and critiques on my ideas and presentations. I also want to thank
Dr. Dinan Wang, Zhengzheng Ding, Dr. Lihua Li, Dr. Yuan Wang, Yupeng Cun for their
companionship and helps when I need them most.

Last but by no means least, I am and will always be grateful to my parents and family, who
have been believing in my potential and giving me never-ending encouragement and ongoing
support. Very special thanks go to my husband Guang Yang. He has always been there
understanding and supporting me with everything I have ever needed. My daughter, Sonja,
even though you cannot say more than a few “uh ah”, I know that you meant: “I can always
give you a nice smile when you need one”.

1Acknowledgments

CHAPTER 1
INTRODUCTION ...1

1.1 MOTIVATION ... 2
1.2 RESEARCH QUESTIONS .. 3
1.3 CONTRIBUTIONS ... 4
1.4 OUTLINE ... 5

CHAPTER 2
THE SEWSMINING FRAMEWORK FOR DYNAMIC SERVICE-ORIENTED COMPUTING7

2.1 USE CASE OF SEWSMINING .. 8
2.2 SEWSMINING FRAMEWORK .. 10

CHAPTER 3
STATE-OF-THE-ART ...12

3.1 WEB SERVICES SEMANTICS .. 13
3.2 WEB SERVICES ANNOTATION ... 14

3.2.1 OWL-S .. 15
3.2.2 WSMO ... 15
3.2.3 SAWSDL ... 16
3.2.4 WSMO-Lite .. 16

3.3 MATCHMAKING METHODS FOR SERVICE DISCOVERY .. 17
3.3.1 Logic based Matchmaking .. 17
3.3.2 Non-logic based Matchmaking ... 18

3.4 WEB SERVICE COMPOSITION APPROACHES .. 19
3.4.1 Workflow based Composition ... 19
3.4.2 AI Planning based Composition .. 21

CHAPTER 4
QWSMO-LITE: A QOS-AWARE ONTOLOGY FOR WEB SERVICE ANNOTATION..25

4.1 REQUIREMENTS ANALYSIS FOR SERVICE DESCRIPTION ... 26
4.2 QWSMO-LITE FRAMEWORK... 27
4.3 ONTOLOGIES IN QWSMO-LITE ... 28

4.3.1 Modeling QoS Semantics in QWSMO-Lite .. 29
4.3.2 Specification of Domain Semantics .. 30

4.4 FORMALIZATION OF QWSMO-LITE .. 31
4.5 SUMMARY .. 33

CHAPTER 5
SEWSDM: A MULTI-ATTRIBUTE SEMANTIC MATCHMAKING ENGINE ..34

5.1 SEWSDM FRAMEWORK .. 35
5.2 SINGLE-ATTRIBUTE SEMANTIC MATCHMAKING ... 36

5.2.1 Traditional Logical Similarity Measures ... 37
5.2.2 Ontology based Single Attribute Matchmaking Algorithm ... 39

5.3 MULTI-ATTRIBUTE DECISION MAKING ... 43
5.3.1 Scoring Methods for Multi-Attribute Decision Making .. 44
5.3.2 TOPSIS based Algorithm for Multi-Attribute Decision Making .. 47

5.4 IMPLEMENTATION OF SEWSDM ... 53
5.5 SUMMARY .. 56

Table of Contents

CHAPTER 6
WEB SERVICE COMPOSITION AS PLANNING IN SEWSPL ..58

6.1 REQUIREMENTS ANALYSIS FOR AUTOMATIC PLANNING .. 59
6.2 SEWSPL FRAMEWORK .. 60
6.3 WEB SERVICE COMPOSITION FORMALISM .. 62

6.3.1 Traditional Modeling of A Web Service Composition Problem .. 62
6.3.2 PDDL 3 based Planning Model for Web Service Composition .. 64

6.4 GRAPHPLAN ALGORITHM .. 67
6.4.1 Planning Graph .. 68
6.4.2 Graph Expansion ... 69
6.4.3 Solution Extraction .. 70

6.5 ENHANCEMENTS OF GRAPHPLAN IN SEWSPL ... 70
6.5.1 Simplified Ordered Planning Graph .. 71
6.5.2 Goal-Oriented Bi-directional Graph Expansion Algorithm ... 74
6.5.3 Workflow based Planning Extraction ... 78

6.6 SELF-ADAPTIVE COMPOSITION .. 82
6.7 SUMMARY .. 84

CHAPTER 7
EVALUATION OF SEWSMINING ...85

7.1 EVALUATION OF QWSMO-LITE ... 86
7.2 EVALUATION OF SEWSDM .. 87
7.3 EVALUATION OF SEWSPL .. 91

7.3.1 Scalability Analysis .. 91
7.3.2 QoP Analysis .. 94
7.3.3 Dynamicity Analysis .. 96

CHAPTER 8
CONCLUSION AND FUTURE WORK ...98

8.1 SUMMARY .. 99
8.2 OUTLOOK ON FUTURE WORK ... 102

8.2.1 Improvement for the Semantic Enhancement Layer ... 102
8.2.2 Enhancement of the WSD/WSC Layer .. 102
8.2.3 Enrichment of the Adaptation Layer .. 103

REFERENCES .. 105

Figure 1-1 SOC research road map [Papazoglou et al., 2007] ... 3
Figure 2-1 Use case diagram .. 8
Figure 2-2 System framework of SEwsMining ... 11
Figure 3-1 Ontology of QoS model [Yang et al., 2006] .. 14
Figure 3-2 Taxonomy of semantic annotation approaches inspired by [Vladislava, 2006]...... 14
Figure 4-1 QWSMO-Lite framework .. 28
Figure 4-2 Metadata model of QoSParameter ... 29
Figure 4-3 An example of the QoS specification in QWSMO-Lite ... 30
Figure 4-4 Ontology of DomainFunctionalClassificationRoot .. 31
Figure 4-5 An example of data semantic annotation .. 31
Figure 4-6 Description of an annotated function .. 32
Figure 4-7 Description of an annotated Web Service ... 33
Figure 5-1 SEwsDM matchmaking framework .. 36
Figure 5-2 Relationship between annotated services and ontology matchmaking 37
Figure 5-3 Multi-attributes decision making in SEwsDM ... 44
Figure 5-4 MAMatching algorithm ... 47
Figure 5-5 The execution time of normalization methods. ... 50
Figure 5-6 Normalization of data within interval [0,1] ... 51
Figure 5-7 Normalization of data within interval [50, 500] .. 51
Figure 5-8 Activity diagram of SEwsDM ... 55
Figure 5-9 Matchmaking algorithms in SEwsDM .. 56
Figure 6-1 The SEwsPL framework ... 60
Figure 6-2 PDDL description for a meteorology service ... 63
Figure 6-3 QoS description using PDDL 2.1/PDDL 2.2.. 64
Figure 6-4 Simplified class diagram for the PDDL2Model ... 65
Figure 6-5 Mapping from QWSMO-Lite to PDDL2Model ... 66
Figure 6-6 An example of mapping to PDDL2Model ... 67
Figure 6-7 An example of a Planning Graph .. 69
Figure 6-8 Data structure of SOPG ... 72
Figure 6-9 Examples of SOPG: (a) F-SOPG (b) B-SOPG ... 74
Figure 6-10 A pseudo-code description of the bidirectional expansion 75
Figure 6-11 The comparison part of the expansion algorithm ... 76
Figure 6-12 Bidirectional expansion part of the expansion algorithm: (a) forward expansion
(b) backward expansion .. 77
Figure 6-13 An example of bi-directional expansion algorithm ... 77
Figure 6-14 Redundant actions in F-SOPG and B-SOPG .. 79
Figure 6-15 The result of the meteorological scenario: (a) the workflow in SCUFL (b) the
KML file .. 82
Figure 6-16 The original F-SOPG and B-SOPG... 84
Figure 6-17 Updated SOPG Planning Graphs ... 84
Figure 7-1 Logical DoM using different systems ... 90
Figure 7-2 Graph size comparison among SEwsPL, BPGP and SPG/WPG 92
Figure 7-3 Execution time comparison among SEwsPL, BPGP and SPG/WPG 93
Figure 7-4 QoP comparison .. 94
Figure 7-5 QoS comparison between SEwsPL and MOP ... 95
Figure 7-6 Execution comparison between SEwsPL and MOP ... 95
Figure 7-7 The original Planning Graph.. 96

2List of Figures

Figure 7-8 The Planning Graph grown by [Yan et al., 2010 a] ... 96
Figure 7-9 The Planning Graph generated by [Yan et al., 2010 b] ... 97

Table 4-1 A global weather service ... 28
Table 5-1 Comparison of the various measures ... 42
Table 5-2 Normalization methods .. 48
Table 5-3 Operation candidates .. 50
Table 5-4 Weight values of three decision makers .. 52
Table 5-5 Ranking results by different DMs... 53
Table 6-1 A Web Service composition example .. 61
Table 6-2 Mapping between SOPG and SCUFL .. 80
Table 7-1 A comparison of existing approaches to QWSMO-Lite .. 87
Table 7-2 A comparison of SEwsDM with existing approaches ... 88
Table 7-3 Non-Logic DoM of two criteria ... 90
Table 7-4 Test set from WSC 2010 .. 91

3List of Tables

1

1 . C h a p t e r 1

 “The important thing in life is to have a great aim, and the determination to attain it.”

- Johann Wolfgang von Goethe (1749-1832)

Service-Oriented Computing (SOC) has been a major research topic in the past years. One of
the core principles of SOC is the idea of assembling services to form a chain by discovering
and dynamically invoking those multiple existing services which are platform-independent and
self-describing applications to satisfy a single task, rather than building new applications from
scratch. The problem of building such composition chains is known as a Web Service
Composition (WSC) problem. Automation of this process is emerging as one of the most
interesting challenges facing SOC today. On the other hand, a key component of effective
Web Service composition, which has largely been ignored, is the consideration of quality of
planning involving Quality of Service (QoS) of each component service and user preference.
In this dissertation, we propose a means of performing automated Web Service composition
within the so-called SEwsMining framework by specifying and integrating QoS and user
preference. The key idea is that the composition is performed with an extended AI Planning
Graph algorithm where the underlying semantics for the individual component services are
exploited to enable discovering and selecting the most suitable services. A goal directed bi-
directional planning algorithm is developed to chain the services in an automatic and more
efficient way.

Contents

1 INTRODUCTION ... 1

1.1 MOTIVATION ... 2
1.2 RESEARCH QUESTIONS .. 3
1.3 CONTRIBUTIONS .. 4
1.4 OUTLINE ... 5

1Introduction

1.1 Motivation

2

1.1 Motivation

Service-Oriented Computing (SOC) has been attracting tremendous attention from both
industrial and academic communities. It is based on the idea of composing distributed
applications even in heterogeneous environments by discovering and invoking network-
available computational resources which are modeled as services to accomplish some complex
tasks when no existing service can satisfy the user request. The visionary promise of SOC is
that it will be possible to easily assemble application components into a loosely coupled
network of services that can create dynamic business processes and agile applications that span
organizations and computing platforms [Leymann, 2005]. The challenges of SOC can be
illustrated using a research road map shown in Figure 1-1 which separates functionality into
three layers:

- Service Foundation Layer. Applications are abstracted as Web Services to realize the run
time Service-Oriented Architecture (SOA) in this layer. Web Services are described
using Web Services Description Language (WSDL) and published in Universal
Description, Discovery and Integration (UDDI) where the client is capable of
querying and retrieving WSDL descriptions. These will be used to bind to the provider
and invoke the service via Simple Object Access Protocol (SOAP) message. In many
domains, multiple services are able to provide similar functional properties, although
with different level of the quality. Accordingly, the selection of the appropriate service
among these relevant services should consider not only the functional semantics, but
also Quality of Service (QoS), such as response time, throughput, price etc. However,
previous traditional SOC approaches in this layer focused on the lower-level syntactic
service discovery [Hang and Singh, 2010]. Unfortunately, plain syntactical information
is not enough for quality based service selection. Therefore, an understanding of the
underlying semantic concepts is required.

- Service Composition Layer. In this layer, service aggregators assemble multiple component
Web Services which can be executed sequentially or concurrently to form a composite
service to achieve complex behaviors. One major challenge is how to build such
composite services. In SOC, composing services can be done either in a manual or an
automatic way. In the manual approach, the composite service is built by domain
experts. They are required to select Web Services and specify relationships among
them. Such approach is error prone, time consuming and therefore not suitable for
large-scale WSC problems. For an automatic approach, much effort is related to AI
planning technologies. But most of previous AI planning based algorithms do not
scale well when the number of Web Services increases. Furthermore, there is no
guarantee that a solution for a composition problem will be found even if one exists
[Oh and Kumara, 2006]. In addition, although a lot of previous research aim to find
functionally satisfied composition chain, such functional composition is not sufficient
in most cases, since many combinations of component services with different levels of
quality might satisfy a given task. Users must be further assisted in selecting the best or
near best composition chain satisfying their functional and non-functional requests.
Adding QoS awareness to the service composition process will be the solution to this
problem. However, this has been largely ignored by most of the previous work.

Chapter 1: Introduction

3

- Service Management Layer. Web environments are highly dynamic. Services can appear
and disappear around the clock. Such dynamic changes can be monitored and
recognized in the Service Management Layer. In SOC, most of WSC solutions endorse a
static viewpoint of the composition, rather than capturing the dynamic nature, such as
the status of services. Therefore self-adapting management is necessary for the
composition. The system should adapt to changes in dynamic environments. For
instance, at runtime, services with poor performance need to be detected and replaced
with similar but more efficient services dynamically. On the other hand, suitable
adaptations to meet changing end-user’s requirements are also crucial.

Figure 1-1 SOC research road map [Papazoglou et al., 2007]

1.2 Research Questions

Based on the research road map of SOC introduced above, [Papazoglou et al., 2007] classified
and outlined the major research challenges of SOC. This dissertation is dedicated to addressing
some of them to enrich the current SOC with semantic awareness and a more flexible
composition strategy. In this part, those selected research questions of each layer that drive this
dissertation’s endeavors will be outlined.

Q1: What kind of semantics have to be considered to enrich the description of Web
Services and how to integrate them to the Web Service Description Language (WSDL)?

Q2: How could the annotated semantics help in discovering the appropriate services?

The first two questions concerning service discovery are derived from the Service Foundation
Layer. The main challenge of service discovery is how to accurately discover services with
minimal user involvement. To this end, semantic annotation for the functional and QoS
characteristics of services together with the user’s preference needs to be annotated (as stated
in

1.3 Contributions

4

Q1). On the other hand, this also requires the enhancement of the understanding of and
reasoning about these annotated semantics, which is addressed in Q2.

 Q3: How to facilitate the automation of service composition?

Q4: How can the annotated semantics, especially QoS aspects be considered to support
the more flexible and accurate composition?

Apparently, Q3, Q4 address the research perspectives from the Service Composition Layer.
One of the most notable research challenges for service composition is how to minimize user
intervention during the service composition procedure and accelerate the process of creating a
composition schema. A major drawback in most automated service composition techniques is
the lack of scalability. This might be the main reason why in practice the manual composition
techniques are still being widely adopted. Q3 concerns the problem of composing service
efficiently. Moreover, based on the semantics of the underlying services, especially the QoS
aspects will help the system to determine the appropriate composition chains satisfying user’s
request. Unfortunately, this issue has been largely ignored in most of the current automated
service composition techniques. Such research requirement is emphasized in Q4.

Q5: How could the system support to adapt the composition chain to run-time dynamic
changes?

The research question addressed in Q5 is related to the issuers in the Service Management
Layer. Most of the current existing works produce only the static solution for the Web Service
Composition problem without considering the dynamic changes of the distributed
environments. The term “dynamic changes” means the availability and the QoS of the existing
services will change from time to time. To get a more reasonable and flexible composition
result, these changes should be detected and the composition chains should be capable of
tuning themselves to meet the requirements of altered environments.

1.3 Contributions

With regard to the aforementioned research problems, a Semantics Enhance Web Service
Mining (SEwsMining) system is desired to provide an intelligent planning strategy to enable
an automated and flexible Web Service Composition. The contributions of this work can be
summarized as follows:

- Development of QWSMO-Lite ontology. Addressing Q1, QWSMO-Lite is a service
ontology which enhances WSMO-Lite with an ontology for modeling QoS properties.
Both functional and non-functional semantics are allowed to be annotated to the
services. Since QWSMO-Lite is based on WSMO-Lite [Kopecký and Vitvar, 2008], it
simplifies the way to annotate Web Services with predefined annotation rules, which
ensure that the annotations are complete and consistent. Moreover, in QWSMO-Lite,
the QoS characteristics are modeled in a three layered modular framework. Such
modular structure allows QWSMO-Lite to be extended and adapted easily with
additional QoS properties. More details are presented in Chapter 4.

- Realization of the multi-attribute semantic matchmaking engine for service discovery. To address the
research problem presented in Q2, we contribute a Semantics Enhanced Web Service

Chapter 1: Introduction

5

Decision Making (SEwsDM) engine to facilitate the process of service discovery by
calculating multi-attribute similarity. First of all, in SEwsDM, to increase the accuracy in
assigning a matching degree, the semantic distance is calculated with an asymmetric
matching formula, rather than assigning fixed numeric values to various logical filters,
which is widely applied in most current work. Furthermore, other than recognizing the
semantically related services, SEwsDM is also capable of ranking services. A Multi-
Attribute Decision Making (MADM) based technique [Yoon and Hwang, 1995] where
both functional and non-functional semantics of underlying services and the user’s
preference are taken into account to generate the similarity score which is integrated
into SEwsDM. In addition, a flexible bidirectional search strategy is supported in
SEwsDM by allowing both backward and forward service discovery. Technical details
are shown in Chapter 5.

- Enhancement of an AI GraphPlan based Planner for service composition. We contribute a
Semantics Enhanced Web Service PLanner (SEwsPL) which allows a goal-directed
automated service composition [Leng et al., 2010]. This newly developed planner is a
reconstruction of the AI GraphPlan algorithm [Blum and Furst, 1997]. Referring to
Q3, in order to facilitate the automation of service composition, we define a two-step
composition algorithm. In the first step, a Planning Graph storing all related services
and their possible semantic links is created by a bidirectional expansion algorithm
which alternatingly grows the graph from the initial states and from the goal states.
With such strategy, the size of search space for the plans will be efficiently reduced.
Afterwards, the procedure of extracting the plan is simplified by representing the
generated graph as a workflow.

- Specification of a new Planning Graph Model. To a certain extent, Q4 will be solved by
means of a specific Planning Graph which is called Simplified Ordered Planning
Graph (SOPG). Different from the Planning Graph in classic GraphPlan algorithm
where services are randomly listed in the action layer, in the proposed SOPG all
selected services are ordered in terms of their semantic distances which are calculated
using SEwsDM. That means according to different user’s QoS requirements various
combination of services will be generated in the action layer of SOPG even if the
user’s functional requirements remain unchanged.

- Providing a self-adaptive composition mechanism. In addition, the requirement of adaptability
mentioned in Q5 can be met by a Plan Repair approach in SEwsPL. Though in theory
modifying an existing plan is no more efficient than complete re-planning in the worst
case [Nebel and Koehler, 1995], repairing the plan in practice is much better than
planning from scratch, since most of the plan might still remain valid even if some
situation changes as pointed in [Krogt and Weerdt, 2005]. Also, from the end-users’
point of view, the modified plan might more easily be accepted than a complete new
one.

1.4 Outline

The remainder of this dissertation is organized in the following way:

Chapter 2 is concerned with the conceptual approach of SEwsMining. The goal of this
chapter is to give an overview of the system. It begins with the description of the use case

1.4 Outline

6

diagram where the supported functionalities are outlined with the scenario from the
meteorology domain. Afterwards, the basic framework of SEwsMining along with the brief
description of the main components in each layer is illustrated.

Chapter 3 introduces the related work classified into the core areas described earlier as part
of the contributions.

Chapter 4 deals with the QWSMO-Lite ontology. First, the specification of QWSMO-Lite is
presented in detail. It analyses the requirements of Web Service description for service
discovery and composition. The QWSMO-Lite framework and its underlying ontologies are
then discussed in detail. The remainder of this chapter summarizes the characteristics of
QWSMO-Lite.

Chapter 5 comprises the contribution related to multi-attribute semantic matchmaking
engine SEwsDM. This section illustrates the fundamental concept of the SEwsDM which is
later used and integrated into the Web Service composition procedure. Again, after presenting
the details of the matchmaking mechanism, we end this section with the summary of the
features of SEwsDM.

Chapter 6 presents the considerations related to the AI planning based composition
algorithm called SEwsPL. The details of the underlying techniques are introduced with a
running example. Besides, a self-adaptive strategy is also presented. In the last part of this
section, related work concerning the service composition and adaption is compared and
evaluated.

Chapter 7 evaluates and compares the above three main components of the SEwsMining
system with related work.

Chapter 8 summarizes the results of this dissertation and presents perspectives for future
work.

Chapter 2: The SEwsMining Framework for Dynamic Service-Oriented Computing

7

C h a p t e r 2

 “There are two ways of constructing a software design: One way is to make it so simple that
there are obviously no deficiencies, and the other way is to make it so complicated that there are
no obvious deficiencies.”

- Prof. C.A.R. Hoare

According to the current challenges of SOC discussed in Chapter 1, this dissertation puts
forward a concept of building a more intelligent Web Service Composition strategy which
should enhance semantic understanding of functional and non-functional aspects of Web
Services and provide semantic enabled planning algorithm to facilitate the automation of the
service discovery and service composition. For this purpose, a novel Semantics Enhanced
Web Service Mining (SEwsMining) is developed in this dissertation. The goal of this chapter is
to give an overview of the system. It begins with the description of the use case diagram where
the supported functionalities are outlined with the scenarios from a meteorology domain.
Afterwards, the basic framework of the SEwsMining together with the main components in
each layer is illustrated. The related work regarding the system is discussed in Chapter 3.
More specific implementation details of each layer are depicted in Chapter 4, 5, 6 respectively.

Contents

2 THE SEWSMINING FRAMEWORK FOR DYNAMIC SERVICE-ORIENTED COMPUTING 7

2.1 USE CASE OF SEWSMINING .. 8
2.2 SEWSMINING FRAMEWORK .. 10

2The SEwsMining Framework for Dynamic
Service-Oriented Computing

2.1 Use Case of SEwsMining

8

2.1 Use Case of SEwsMining

In this section, we present a motiving scenario in the meteorology domain. Let us assume that
a renewable energy scientist attempts to do an experiment about the wind speed forecast for
selected cities across the United States. Now he only has some local information about the
selected cities, such as city name, IP address. And he expects to find an existing service
containing the wind speed forecast data with high throughput. In order to achieve this goal, he
searches for a Web Service which takes the available local information as inputs and produces
the corresponding wind speed data in the SEwsMining. Finally a composition chain consisting
of several existing services with the high-throughput is generated. And such chain can be later
reused, visualized and executed in a workflow to get the final result. Moreover, in the case
where the system detects that some of services are no longer available, the composition results
will be updated. (See Chapter 6 for more details).

Figure 2-1 Use case diagram

Figure 2-1 depicts a use case diagram for SEwsMining. In general, there are two kinds of
actors participating in this use case, namely service providers and end-users. Service providers

SEwsMining

Update Compos ition

Reuse Composition Represent Services

Validate Services

Discover Services

Com pose Services

<< extend >>

Annotate QoSAnnotate IOPE

Specify Queries

<< extend >>

<< include>>

Annotate Services

Parse Sem antics

<< include>>

<< include>> << extend >>

<< include>>

<< include>>

<< include>>

<< include>>

Dom ain Experts

End Users

Service Providers

ud: Use Case

Chapter 2: The SEwsMining Framework for Dynamic Service-Oriented Computing

9

together with domain experts who are also treated as a kind of service providers are
responsible for providing semantically annotated services for the whole system. In our above
scenario, to use the composition system, available Web Services should be firstly annotated
with semantics for Inputs, Outputs, Preconditions and Effects (IOPE). For instance, a
function called GmlLatLonList returns digital weather Geography Markup Language (GML)1or
Keyhole Markup Language (KML)2 encoded National Digital Forecast Database (NDFD)
data for a list of points at a single valid time in an NDFD XML Web Service. It can be
annotated by meteorologists with the help of computer experts. Specifically, its inputs can be
described by a Geo positioning ontology 3 which represents a sequence of latitude and
longitude pairs for given points, a time ontology4 pointed to the given valid time and a NDFD
ontology linked to a set of feature parameters. Similarly, we annotate its outputs as GML and
KML. Besides, QoS requirements such as high throughput in this scenario and QoS properties
of each service such as cost, availability, and response time can also be added to the semantic
annotations.

End-users in this scenario might be renewable energy scientists who need to observe the
wind power in a certain place by recording wind speeds over different time periods. The main
functionalities provided by the SEwsMining can be listed as follows:

- Web Services Discovery. The renewable energy scientist wants to find the zip code for a given
city. He specifies the city name as the input and the zip code as the output to the system,
and then a Web Service called USZip which is exactly satisfied with the requests will be
retrieved.

- Web Service Composition. If there is no single service that fulfills user’s requests, a
composition chain containing a sequence of related services will be generated. For
instance, the renewable energy scientist wants to get a sequence of wind speed values for a
list of given cities. However, there is no exactly matched service. Instead, a composition
chain consisting of a service called ZipcodeLookupService which is able to get location
information according to a given city and a service called GmlLatLonList which uses the
location information as inputs and returns wind speed values encoded in GML/KML, will
be generated.

- Adaptation. The returned results, for either service discovery or service composition will be
automatically updated when the service environments changes. For example, in this
mentioned scenario, a used Web Service, ZipcodeLookupService becomes unreachable.
SEwsMing will modify the generated chain above by only replacing this unavailable service,
ZipcodeLookupService, with USZip which returns the zip code in terms of the city name and
LocationByZipService which returns the location information according to the Zip code.

- Reuse of Composition. The generated results are allowed to be reused, visualized by some
external workflow management systems. In our scenario, the generated composition
schema based on Simple Conceptual Unified Flow Language (SCUFL)5 can be shared
with other scientists by visualizing it in Taverna which is a domain independent tool for
designing and executing workflow.

1 GML is an Open Geospatial Consortium standard for encoding geospatial data.
2 KML is a file format used to display geographic data in an Earth browser, such as Google Map, Google Earth.
3 Geo positioning ontology is available in http://www.w3.org/2003/01/geo/wgs84_pos#
4 Time ontology is available in http://www.w3.org/TR/owl-time/
5 The SCUFL is a dataflow-centric language, defining a graph of data interactions between different services.

2.2 SEwsMining Framework

10

2.2 SEwsMining Framework

According to use case described below, a Semantics Enhanced Web Service Mining
(SEwsMining) system is developed focusing on the semantic-aware automated service
discovery and composition. The overall architecture of the SEwsMining is presented in Figure
2-2. It consists of the following three layers:

- The Semantics Enhancement Layer. It aims to annotate Web Services with semantics
involving both functional and non-functional characteristics. In this dissertation, a new
specification so-called QoS based WSMO-Lite (QWSMO-Lite) is introduced to
describe the annotated Web Services. Generally speaking, our newly developed
QWSMO-Lite is an extension of WSMO-Lite with QoS awareness. More details about
QWSMO are presented in Chapter 4.

- Web Service Discovery and Composition Layer. Based on the semantics obtained from the
first layer, this layer provides the realization of the service discovery and composition.
To this end, two main components, namely Semantics Enhanced Web Service
Decision Making (SEwsDM) and Semantics Enhanced Web Service PLanner
(SEwsPL) are developed for the service discovery and composition respectively.
Specifically, the SEwsDM is a multi-attribute semantic matchmaking engine which is
capable of discovering the related services against users’ functional requirements and
QoS Requests with bidirectional matching strategy. Moreover those recognized
services are ranked according to their semantic closeness with TOPSIS based ranking
algorithm. If the forward and backward ranked services are equal, it means there are
existing services satisfying user’s requests directly. Otherwise, the service composition
component will be invoked to combine all related service to fulfill the use’s goal. More
details about the SEwsDM are described in Chapter 5. The SEwsPL is a semantic-
aware goal-directed planner for service composition, which is a reconstruction of
GraphPlan algorithm. First, a directed layered graph is created by expanding the graph
forwards and backwards with the help of the ranking algorithm in the SEwsDM.
Afterwards, the plan is extracted from the graph by representing the graph as a
workflow. Such workflow can be reused, visualized and executed in the workflow
management systems. The details of the planning algorithm are illustrated in Chapter
6.

- Plan Validation Layer. In SEwsPL, it provides the support for the plan adaptation as well
as for the dynamic environments. It is achieved by implementing a Plan-Repair based
self-adaptation algorithm which attempts to reuse the most part of the original
composition results. The algorithm details are available in Section 6.6.

Chapter 2: The SEwsMining Framework for Dynamic Service-Oriented Computing

11

Figure 2-2 System framework of SEwsMining

12

2 . C h a p t e r 3

 “Those who cannot remember the past are condemned to repeat it.”
- George Santayana (1863-1952)

This chapter presents a review of the state-of-the-art technologies according to the
contributions of this dissertation. In a nutshell, Web Services composition is a three-stepped
process. Since Web Services standards lacking semantics operate only in the syntactical level,
adding semantics to WSDL to enrich the machine readability is the most fundamental step.
Given those service semantics, how to recognize the semantically related pairs between a
service offer and a request, so called service matching is the second step. Based on the
knowledge from the first two steps, the service composition can be invoked which concerns
about how to make the composition process automatically and efficiently. The organization of
this chapter depends on such three-stepped composition process. It begins with the
introduction and classification of required semantics for automatic composition. And then the
survey of most recent technologies according to each step will be presented.

CONTENTS

3 STATE-OF-THE-ART .. 12

3.1 WEB SERVICES SEMANTICS .. 13
3.2 WEB SERVICES ANNOTATION ... 14

3.2.1 OWL-S .. 15
3.2.2 WSMO ... 15
3.2.3 SAWSDL ... 16
3.2.4 WSMO-Lite .. 16

3.3 MATCHMAKING METHODS FOR SERVICE DISCOVERY.. 17
3.3.1 Logic based Matchmaking .. 17
3.3.2 Non-logic based Matchmaking... 18

3.4 WEB SERVICE COMPOSITION APPROACHES .. 19
3.4.1 Workflow based Composition ... 19
3.4.2 AI Planning based Composition .. 21

3State-of-the-Art

Chapter 3: State-of-the-Art

13

3.1 Web Services Semantics

To enhance the machine readability of traditional Web Services, a variety of approaches have
been developed to support semantic annotation of Web Services.

First of all, we should know which kinds of semantics are required to be annotated. The
semantics can be divided into different types on the base of different indications [Vladislava,
2006].

- Data semantics, formally defining data in inputs and outputs messages of Web
Services;

- Operational semantics, expressing business logics and corresponding to Web Services
capabilities;

- Execution semantics, relating to execution and dynamic service invocation;

- QoS semantics, describing the quality aspect of a Web Service.

All these kinds of semantics play important roles in web process lifecycle. The first three
kinds of semantics are functional semantic which specify the detail semantic information about
the underlying functions supported by a service. To automatic Web Services discovery, data
semantics and operational semantics with explicit meaning of input/output parameters and
operations of Web Services will be useful to find a list of related services. When composing
Web Services, rather than data semantics, operational semantics which are useful to build a
composition chain, execution semantics can be employed to validate the generated chains.

The QoS semantic are non-functional semantics with multiple attributes of quality. It aims
to evaluate and select a Web Service that is the most appropriate satisfied with users’
requirements among Web Services candidates which are all functional similar to the
requirements. Multiple attributes of QoS information, such as performance, accessibility,
security, etc. [Wang et al., 2006][Menasce, 2002], are used to rank candidates according to the
quality degree. However, since the definitions of these attributes are informal, it leads to the
ambiguous interpretation of QoS attributes between services providers and consumers. To
bring such gap, in paper [Yang et al., 2006], a general ontology of QoS attributes is presented
(see Figure 3-1). All these attributes fall into four catalogs, namely performance, dependability,
cost and security. Performance provides semantic about how the service is executed over the
network. From a service provider’s point of view, maximum throughput is mainly concerned
to be able to serve the largest number of customs. On the other side, a service consumer wants
to minimize the observed response time. Dependability integrating several properties deals with
how good the service is. The expanse for a service execution is another important element
associated with the Cost. Service consumers expect to obtain services with required
functionalities and minimum cost, service provides intends to maximize the services’ prices.
Security considers how secure the service is.

3.2 Web Services Annotation

14

Figure 3-1 Ontology of QoS model [Yang et al., 2006]

3.2 Web Services Annotation

How these mentioned semantics are annotated to Web Services is concerned here. Recently,
three main approaches have been developed to bring semantics to Web Service. They are
OWL-S 6 , WSMO 7 and SAWSDL 8 , which have reached the status of proposed
recommendations within W3C. In this section, these three standards with their variant will be
introduced and compared in terms of the taxonomy shown in Figure 3-2. In addition to those
four kinds of semantics, formalism reflects the methodology how the semantics is annotated to
Web Services. It can be annotated either in a top-level ontology which is a domain-
independent and structured formal semantics or with a bottom-level extension.

Figure 3-2 Taxonomy of semantic annotation approaches inspired
by [Vladislava, 2006]

6 See http://www.w3.org/Submission/OWL-S/ for details.
7 See http://www.w3.org/Submission/WSMO/ for details.
8 See http://www.w3.org/2002/ws/sawsdl/ for details.

Semantic
Annotation

Semantics
Excution

Semantics

QoS
Semantics

Formalism

Top-level
Representation

Bottom-Level
Representation

Operational
Semantics

Data
Semantics

http://www.w3.org/Submission/WSMO/
http://www.w3.org/2002/ws/sawsdl/

Chapter 3: State-of-the-Art

15

3.2.1 OWL-S

OWL-S coalition defines a computer interpretable semantic markup language for describing
Web Services, known as OWL-based Web Service Ontology (OWL-S) [Martin et al., 2007]. A
top-level ontology with three essential elements is defined for semantic specification of Web
Services: ServiceProfile presenting what the service does, ServiceModel describing how the service
works and ServiceGrounding supporting how to access the service.

Rather than using a direct annotation of Web Service description itself, OWL-S depends on
its upper ontology to semantically enrich Web Services. Data semantics is expressed in the
ServiceModel. The ServiceGrounding maps the semantic representation to the underlying inputs and
outputs parameters of Web Services. The operational semantics are represented in the
ServcieProfile by giving three basic types of information: what organization provides the service,
which function the service computes, and a host of features that specify characteristics of the
service. The services are modeled as processes in the Process Model of the Service Model where
declares the execution semantics by specifying the interaction of atomic functions in a service.
Unfortunately, QoS semantic provided by OWL-S is without considering about QoS
specification.

OWL-Q is a rich, extensible and modular ontology language that complements the OWL-S
with QoS description [Kritikos and Plexousakis, 2009]. It is a top-level ontology comprising of
several independent facets which are associated with a particular part of QoS specification. In
addition, such modular-based approach makes this ontology more flexible to add new
ontologies from application domain, such as time unit and currency ontologies.

Quality of Service Modeling (QoS-MO) [Tondello and Siqueira, 2008] allowing the
extension of OWL-S description with well-defined QoS constraints is also a top-level
ontology. Compared to OWL-Q, this ontology defines the concept of QoSDimensionMapping to
specify the interdependent requirements of QoS between providers and consumers.

onQoS [Giallonardo and Zimeo, 2007] enhances OWL-S by providing QoS specification
acting as its ServiceParameters in ServiceProfile. A powerful data type system to define quality
properties values are strongly supported in this ontology. However, the main drawback of it is
that the support for QoS constraints is limited.

3.2.2 WSMO

The Web Service Modeling Ontology (WSMO) [Roman et al., 2005] aims to describe various
aspects of Semantic Web Services. Taking the Web Service Modeling Framework (WSMF) as a
starting point, WSMO extends this framework and addresses to solve the Web service
integration problem. To this end, four top level elements are defined to describe a semantic
web service: Ontologies provide a formal domain specific machine-readable semantics of a
shared conceptualization for both service providers and requesters. Goals specify intensions
that need to be fulfilled using web services. Goals in WSMO are formulated by requesters
without realizing the details of the underlying web services. Web services describe various aspects
of a service, including the functionality and data interaction. Mediators resolve interoperability
problems among different elements under data processing and protocol level.

 Similar to OWL-S, WSMO defines a top-level ontology mentioned above to semantically
enhance the WSDL. Data semantics and operational semantics are specified as capability in Web
Services using formally defined terminologies in ontology. Execution semantics is annotated in

3.2 Web Services Annotation

16

interface of Web Services in terms of a service’s choreography indicating how to access the service
from the user’s perspective and orchestration focusing on how to integrate other Web Services to
achieve its capability from the provider’s point of view. QoS semantics is described as a part of
non-functional properties using Dublin core9. However, such definition is not expressive and
flexible enough for QoS characteristics. Therefore, the current support in WSMO to deal with
such QoS description is rather limited.

 WSMO-QoS [Wang et al., 2006][Li and Zhou, 2009] is a QoS upper ontology which
specifies details of quality aspects about services in WSMO framework. A new class called QoS
is created as a subclass of nonfunctionalProperties defined in WSMO. Moreover, this QoS Class
can be attached to Web Services and Goal.

3.2.3 SAWSDL

Semantic Annotations for WSDL and XML Schema (SAWSDL) [Kopecký et al., 2007] intends
to close the gap between Web Services and semantic web by specifying semantics for WSDL
components using two annotation mechanisms: modelReference and schema Mapping. A
modelReference, independent of any semantic technologies, specifies the association between
WSDL components and concepts in semantic models which can be identified via URIs. The
transformation from XML schema to an element of a concept and its reversion transformation
are defined in schemaMapping using liftingSchemaMapping and loweringSchemaMapping respectively.

Different to OWL-S and WSMO which are complex top-down conceptual models for
semantic annotation, SAWSDL defines a simple bottom-up schema extension of WSDL.
SAWSDL itself does not provide specific service ontologies for annotation. It is independent
of any concrete types of semantic models. Data semantics can be attached by WSDL message
along with lifting and lowering schema mapping to enable data exchange between XML
schema and semantic concepts. Operational semantics in SAWSDL has two levels of
granularity, namely categorization and capability. Categorization aims to show which category the
service belongs to, while capability specify preconditions and effects of a service. ModelReference
are used to annotate these two kinds of semantics by referring to a concept in a semantic
model. Execution semantics can be annotated either from WSDL service by explicitly
describing the service’s behaviour or from WSDL operation’s capability. The QoS semantics
can be annotated in WSDL service by pointing to an external QoS model.

3.2.4 WSMO-Lite

The Lightweight Web Service Modeling Ontology (WSMO-Lite) [Kopecký and Vitvar, 2008]
is the next evolutionary step after SAWSDL. In SAWSDL there is no explicit mention of
precondition and effects that are strongly supported in OWL-S and WSMO [Martin and
Domingue, 2007] [Chabeb and Tata, 2008]. The reason behind this problem is because
SAWSDL only provides the groundings for a bottom-up approach allowing adopting various
solutions to semantic annotation. WSMO-Lite intends to fill the SAWSDL annotations with a
subset of WSMO ontology.

 Similar to SAWSDL, data semantics is attached to the message’s part inside the types
section with two types of annotations, namely reference annotations and transformation annotations
corresponded to modelReference and schemaMapping in SAWSDL respectively. Although

9 See http://www.dublincore.org/ for details.

http://www.dublincore.org/

Chapter 3: State-of-the-Art

17

operational semantics can be attached also with annotations of categorization and capability which
is similar to SAWSDL, WSMO-Lite further precisely defines capability by adapting a subset of
WSMO model to specify conditions and effects using WSML. In addition, WSMO-Lite extends
WSMO with a new class, FunctionalClassificationRoot which is functionality taxonomies to
describe categorization semantics. Instead of explicit representation of execution semantic,
WSMO-Lite defines execution semantics through operational semantics, especially the
descriptions of capability. Such descriptions are able to be transformed into a WSMO
chorography. QoS semantics can be annotated to WSDL’s service part with a reference pointed
from a service component to a concrete QoS semantic model predefined using WSMO model.
Due to such adaptation, the limitations of QoS annotations in WSMO are inherited to
WSMO-Lite.

3.3 Matchmaking Methods for Service Discovery

Given the service semantics, how to recognize the semantically related services is one of the
main issues of Web Service Composition (WSC). This issue can be seen as a variant of Web
Service Discovery Problem (WSD). Supposed that we have a set of Web Services S and a

service query where available inputs A and requested outputs R are defined. WSD is to

find a set of matched services , where In the case that if there is no service to be
found, this problem transforms to a WSC problem. The query q is split into two parts:

 . WSC intends to firstly find a set of services

satisfying with . And then is updated with effects of
 The

same procedure will be repeated until the goals are reached. That means a WSC problem can
be transformed to a series of WSD problems with continually changing queries. Therefore the
semantic matchmaking in WSD can be adopted to the matchmaking in WSC. In this chapter, a
series of approaches available for WSD will be illustrated.

3.3.1 Logic based Matchmaking

Logic based matchmaking is intended to automatically understand the semantics between a
service s and a given query q by means of deductive reasoning on annotated ontological
concepts. To determine the degree of matching, computing similarity is used in majority of
current semantic service matchmakers. Similarity can be calculated either in a concept level or
in a service level. In the first case, the similarity is computed for each I/O concepts of a service
individually. Alternatively, as to the similarity in a service level, it considers a service as a whole.

OWLSM [Jaeger et al. 2005] is an example of computing concept-oriented service
similarity. It supports the logic matching of service inputs, service outputs, services category
and user-defined service matching criteria based on OWL-S services. The discovered services
are ranked by aggregating these four matching results with user-defined weights. To classify
semantic relations for the logic matching, it defines four relationships between two concepts:
fail (), unknown (), subsumes () and equivalent ().
To distinguish the degree of matching, four numerical values are assigned to each of them. It is
defined as:

3.3 Matchmaking Methods for Service Discovery

18

 {

 (2-1)

Here, fail means these two concepts have no relation with each other. If the used
categorization is not supported by the matching algorithm, the relationship is unknown. The

relationship of subsumes indicates concept is more general concept than . The relationship
of equivalent shows these two concepts are identical.

 OWLS-MX [Klusch et.al, 2009a], WSMO-MX [Klusch and Kaufer, 2009] and SAWSDL-
MX [Klusch et al., 2009b] adopt the service-level similarity concepts. Specifically, they define
five different matching filters to determine the degree of matching. They are exact match,
plug-in match, subsumes match, subsumed-by match, logic-based fail, nearest-neighbor match
and fail. Supposed a service S and a request R, S exact matches with R (), if the
service I/O signatures fully match with each other. S plug-in matches with R (), if
preconditions of S are more general than that of R, and effects of S are semantically the same
to or belong to the set of least specific concepts (LSC) of the required effects of R. Subsumes
match () relaxes the matching by allowing more specific effects of S than
required in R. As to the subsumed-by match (), it tries to select services whose
effects belong to the set of least generic concepts (LGC) of R which are slightly more general
than requested. If there is no matching filter above to be found, it returns logic-based fail
()

 { | }

 { |
 }

 { | }

 { |
 }

 { | }

These service matching degrees are sorted in terms of the semantic relevance as follows:

3.3.2 Non-logic based Matchmaking

Logic based matchmaking is not sufficient for matching, in the case of some services are not
logically similar but syntactically related to a service query. They are based on the technologies
from information retrieval (IR) domain.

OWLS-iMatcher [Kiefer and Bernstein, 2008] performs non-logic matchmaking of service
inputs and outputs. Rather than defining fixed numerical values to various degree of matching
in OWLSM, OWLS-iMatcher computes similarity scores to determine the degree of matching.
It logically unfolds I/O concepts of two services, transforms them into two vectors. Then IR
based algorithm, such as vector similarity measurements provided by SimPack10 will be used to
calculate similarity score of these two services.

10 SimPack implements a set of similarity between entities (concepts in ontologies, classes in source code, etc.)
SimPack is available at: http://www.ifi.uzh.ch/ddis/simpack.html

http://www.ifi.uzh.ch/ddis/simpack.html

Chapter 3: State-of-the-Art

19

In OWLS-MX, Nearest-neighbor match () is defined for non-logic
matching as below. It checks the degree of syntactic similarity (SynSim) between S and R.

 { | }

Here, syntactic similarity is computed mainly with four text similarity measurement: cosine
similarity, extended jaccard similarity, the intentional loss of information based similarity and
Jensen-Shannon information divergence based similarity [Klusch et.al, 2009a].

 Besides those text similarity based methods, in SAWSDL-MX structured graph matching
can also been applied for non-logic based matching. More concrete, structured graph
algorithm calculates the similarity between two labeled trees which represent WSDL
descriptions of service. The comparison starts with the roots which are operational sets of
Web Services and moves to nodes which refer to the inputs and outputs data of an operation.
Then it traverses to the leaves which are data types of the objects communicated by messages
[Klusch et al., 2009b].

3.4 Web Service Composition Approaches

In most of the real applications, it seems impossible to find a single Web Service to satisfy the
users’ requirement. To this end, combining and coordinating a set of services to provide novel
functionalities that was not directly available from the existing services becomes even more
indispensable. Due to the multitude and diversity of existing research approaches, two groups
of approaches will be examined in this part respectively:

- Web Service composition using Workflow technique: approaches that handle the service
composition with the help of existing workflow knowledge.

- AI Planning based approaches: approaches that model the service composition as an AI
Planning problem.

3.4.1 Workflow based Composition

Workflow organization and management have drawn an enormous amount of attention for
more than twenty years. The definition of a Workflow given by the Workflow Management
Coalition (WfMC)11 is as follows:

“The automation of a business process, in whole or part, during which documents, information or
tasks are passed from one participant to another for action, according to a set of procedural rules”

That means a Workflow describes the order of a sequence of tasks performed by different
organizations to complete the given requirements. In this context, the process of arranging
tasks to form a Workflow is conceptually similar to the composition of Web Services.
Therefore, it is possible to share knowledge from Workflow research domain with the

11 WfMC: is a global organization of adopters, developers, consultants, analysts, as well as university and research
groups engaged in workflow and BPM. See http://www.wfmc.org/

http://www.wfmc.org/

3.4 Web Service Composition Approaches

20

composition of Web Services. The recent work concerning workflow-based composition can
be categorized into two classes:

- Static Workflow Generation: approaches focusing on static and manual composition.

- Dynamic Workflow Generation: approaches aiming to realize automated Web Service
composition.

3.4.1.1 Static Workflow Generation

Most research work focusing on the static Workflow generation. Static composition means
that the abstract process model including a set of abstract tasks, the underlying data
dependency and the control flow is specified manually in graph by domain experts. Then such
abstract process is converted to concrete process in the run-time by selecting and binding the
appropriate real service to each abstract task. Many Workflow management system and tools
are available for this purpose, such as Taverna12, Kepler13, Triana14, Unicore15. A detailed
survey of these existing systems is presented in [Shumilov et al., 2008]. However, those
systems provide the general Workflow management functionalities without taking into account
the real-time QoS constraints. In this part, works enabling QoS awareness will be introduced.

In [Ardagna et al., 2007], a service composition framework called Process with Adaptive
Web Services (PAWS) is presented. It consists of two main components, namely design-time
module and run-time module. In the design-time module, domain experts are allowed to create
the abstract workflow with BPEL specification which is annotated with global and local
constraints involving not only functional requirements but also QoS requirements. The service
candidates are retrieved for each abstract task by verifying both functional and QoS
constraints. In the run-time phase, the concrete workflow which is built by invoking one
candidate service for each task is then executed by the BPEL engine. A framework of a QoS-
aware WfMS from GridCC Project presented in [Guo et al., 2007] shares the similar idea. The
system is allowed by users to produce a BPEL4WS document for the abstract workflow along
with a QoS document containing a set of QoS constraints linked to the corresponded BPEL
activities. Although the ideas are useful, no implementation is introduced in both works.

More recent works in this domain mainly focus on the selection of the most appropriate
service with acceptable quality. Given an abstract workflow, the problem of QoS-Aware
selection of services for each sub-task is modeled as an optimization problem. In [Jafarpour
and Khayyambashi, 2010], the harmony search algorithm which is meta-heuristic evolutionary
optimization algorithm is applied for this purpose. In [Zhang et al., 2010], authors illustrate a
new version of Ant Colony Optimization (ACO) algorithm, so-called MO_ACO to optimize
the service composition. The optimization is realized in two steps. First, an ant system is
generated by decomposing the abstract Workflow into a set of parallel execution paths. Then
MO_ACO is invoked in such ant system where each execution path is modeled as a multiple-
objective vector. In [Syu et al., 2011], the selection of the best service in the design time is with

12Taverna is an open source and domain-independent Workflow Management System created by the my Grid team.
See http://www.taverna.org.uk/
13 Kepler is a java-based open source scientific workflow system. See https://kepler-project.org/
14 Triana is an open source problem solving environment developed at Cardiff University. See
http://www.trianacode.org/
15 Unicore is an OGSA based Grid middleware system supporting Workflow Management. See
http://www.unicore.eu/

http://www.taverna.org.uk/
https://kepler-project.org/
http://www.trianacode.org/
http://www.unicore.eu/

Chapter 3: State-of-the-Art

21

the help of genetic algorithm. Authors point out that the approach guarantees that each
selected service corresponding to user’s requirements is globally fulfilling transactional and
QoS request without asking for pre-defined workflow and possible termination states.

3.4.1.2 Dynamic Workflow Generation

Dynamic workflow generation attempts to create the abstract workflow and select the
appropriate services automatically.

A two layered semantics-based dynamic service composition framework is described in
[Fujii and Suda, 2009]. In the first layer, an approach called Component Service Model with
Semantics (CoSMoS) is developed to model both function and semantics of components and
the user’s requirements. Then the modeled requests are sent to Semantic Graph based Service
Composition (SeGSeC) where an execution path of the requested service is generated by
discovering and interconnecting components based on the request and the components’
semantics. In addition, to ensure that the generated execution path matches the user’s request,
a semantic matching procedure is executed.

In [Chiu et al., 2008], a framework for incorporating QoS in a dynamic workflow system is
presented. A sequence of workflow candidates are created in workflow enumeration procedure
which is essentially a depth-first traversal of all services with intermediate pruning. The
selection of the best workflow is done by evaluating the QoS constraints of each candidate.

Eduardo et al. define in [Eduardo et al., 2009] [Eduardo et al., 2011] a framework called
Dynamic Composition of Service (DynamiCoS) that aims at supporting service composition
on demand and at runtime. Different to the time-consuming search algorithm applied in the
approach presented above, to perform service composition, DynamicCoS provide a backward
search strategy in a Causal Like Matrix (CLM) where all possible semantic connections of
services with the corresponding similarities are stored. Though the use of the CLM helps to
reduce the number of interactions with the service discovery procedure, it might be not
efficient when the number of discovered service increases, since the execution time required to
generate the CLM will be exponentially increases.

3.4.2 AI Planning based Composition

Web Service composition can be built either manually or automatically. In the manual
approaches, each service is chosen and combined by domain experts relying on some GUI-
based software to facilitate the composition process using Workflow techniques introduced
above. However, it is error-prone and time-consuming task. It is not appropriate for large-scale
problems. On the contrary, in automated Web Service composition, intelligent agents are
enabled to select and build the multiple services chain. Referred to the approaches belonging
to dynamic workflow generation, we noted that one of the main deficiencies of the current
solutions for automation of the composition is the way the workflow is composed. Recently,
the Artificial Intelligence (AI) planning techniques have been proposed by the most of efforts
as a good way for the automated composition. In the rest part of this section, the updated
automated composition approaches will be presented.

Inspired by the work in [Ghallab et al., 2004] and [Chan et al., 2006], recent AI techniques
can be classifed into the following four categories:

3.4 Web Service Composition Approaches

22

- Classical planning involves searching a state-space or a plan-space in order to find a
series of actions transferred from an initial state to a goal state.

- Non-classical planning including neoclassical planning extends the classical notion of
planning with some techniques, such as graph-based planning and constraint
satisfaction, etc. Heuristics and control strategies utilize heuristic to manage the searching
process and control rules, etc.

In the following sub-chapters, the related techniques in each category will be introduced in
details.

3.4.2.1 Classical Planning

Classical planning approaches aim to search useful operations to achieve the desired goal
through:

- State-space planning

- Plan-space planning

More formally, a state-space consists of a finite set of states { } , a finite set of

actions { } and a transition function which defines how

actions are transformed from one state to another. The state-space planning algorithms aim to
search through the space of those possible states S for the path that can fulfill the goals. The

solution of a state model is a sequence of actions.

In [Sheshagiri et al., 2003], the authors attempt to present a logic based planner for DAML-
S services which is the predecessor of OWL-S. The ServiceModel description of each DAML-
S service is converted into STRIPS-style Verb-Subject-Object triples with Java Expert Shell
System (JESS)16. These notations corresponding to the services act as actions in the state-
space. Given the goal and those available actions, their composition engine aims to solve a
planning problem by adding the useful services to the plan which satisfy the existing goal.
Goals will be then updated with preconditions and inputs of newly added services. This
process will continue until there is no matched service for goals.

As for a Plan-space, it is composed of a set of actions { }, a set of ordering

constraints { } which define the order of the execution of those available

actions, a set of variable binding constraints on the parameters of actions denoted as
{ } and a set of causal link keeping track the connection information available in
current plan. Different from the state-space planning algorithms, the plan-space planning
search the space of partial plans which are set of unordered actions.

Peer [Peer, 2005] illustrates a plan-space based algorithm which improves the plan search
with feedback gained from plan execution for the automatic Web Service Composition. To
that end, the semantic annotation of service is translated into the Planning Domain Definition
Language (PDDL), an effort to standardize planning domain and problem description
language. The algorithm begins to build the plan through those available partial plans in terms
of initial states. To reduce the searching time, a runtime execution monitoring engine is
embedded during the execution. Once the engine detects that there is no matched causal link
to the goal, the planner will be terminated and move to the other related partial plans.

16 JESS is a rule engine for the Java platform. It is available from at http://www.jessrules.com/jess/.

http://www.jessrules.com/jess/

Chapter 3: State-of-the-Art

23

3.4.2.2 Non-classical Planning

Techniques using in neoclassical planning extend the classical notion of planning. The most
common techniques are Planning-Graph where graph structures has been utilized for the
construction of all possible states and transitions and Constraint Satisfaction where the
planning problem is expressed as a reasoning problem to find a suitable model satisfying all
constraints.

Mathematically, a Planning-Graph is a directed layered graph consisting two types of nodes,

namely action nodes which are available actions and proposition nodes which refer to
existing states. The Planning-Graph is built by arranging these two types of nodes in
alternating layers. It starts with proposition nodes in the initial level followed by layers of
action nodes, and so forth. The solution of this planner is a sequence of sets of actions

denoted as { }. Here, each is a subset of the actions nodes corresponding
to each layer in the graph.

In [Wu et al., 2007], the authors present a Planning-Graph based on SAWSDL services.
Unlike the classic Planning-Graph algorithm where only preconditions and effects of an action
are taken into account, in their work data types of input/output message of actions are
considered as well. That means the action can be added into the graph if and only if both its
preconditions and data type of input message satisfying with current state. A recent planner
WSC-WPG proposed in [Li et al., 2010] adds a weight which is the match degree of two
concepts into the traditional Planning-Graph. The graph expansion can be improved by
considering weight information. The action with smaller value of weight will be replaced by the
action in the same level with the higher weight value.

 The idea behind the Constraint Satisfaction is to find a solution satisfying all stated
constraints. More formally, a Constraint Satisfaction Problem (CSP) is defined as a

tuple , where { } is a set of variables; D is a function that assigns

possible values to each variable according to a specific domain ; { } is a
set of constraints which is a relation over variables specifying the valid combinations of value
assignments to these variables.

 Recently, a CSP based planer called GCSP is presented in [Mayer et al., 2009]. It extends
the traditional CSP model by lifting constraints and variables to generic constraints and
thereby overcoming the disadvantage of the traditional CSP where the number of services
which is normally infeasible in real applications should be pre-specified. The composition
process in GCSP is a two-phase algorithm. The first phase is called specification where service
profiles, process constraints from associated domain knowledge and the composition goals as
well must be translated into generic constraints. In the following composition phases, the
initial constraint problem is extended to incorporate additional services until a consistent
solution has been found that satisfied all generic constraints. The solution is expressed as a
workflow in BPEL.

The planning algorithms belonging to Heuristics and control strategies employ heuristics to
determine where to search next by estimating the usefulness of the alternative actions a
planner can chose from. These algorithms include Hierarchical Task Network (HTN)
planning, where the desired task is decomposed into subtasks and such decomposition will be
recursively applied until all sub-tasks can be directly performed using the planning operators.

3.4 Web Service Composition Approaches

24

HTN planning uses action and state description like the concepts in State-space planning.
However the different definition is defined. In HTN planning, a planning domain is specified

by a tuple . Here d is the task network involving primitive and compound tasks.
Primitive tasks are tasks that can be accomplished by a single operator while compound tasks
need to be decomposed into smaller task using methods. I is initial states listing all
propositions that are true. Op is a set of operations similar to PDDL operations indicating how
to execute a primitive task. Me is a set of methods specifying how to decompose a compound
task into a task network.

OWLS-Xplan introduced in [Klusch et al., 2005] allows for fast and flexible composition of
OWL-S services with HTN planning. It takes three inputs: a set of OWL-S services, domain
ontologies and a description of query and returns a sequence of services that fulfill the goal. To
that end, a two-layered architecture is designed. In the first layer, those inputs mentioned
above need to be converted to PDDL problem and domain descriptions. These PDDL
descriptions are then used in the second layer to create plan that satisfies the goal. In addition,
consider that in some case there is no decomposition method available, OWLS-Xplan
integrates the also the Planning-graph algorithm which guarantees to find a solution if it exists
in the state-space. A more recent work in [Xiao et al., 2010] presents a modified HTN-based
planner for the composition of OWL-S Services, which enhances the traditional HTN planner
with domain knowledge.

Chapter 4: QWSMO-Lite: A QoS-Aware Ontology for Web Service Annotation

25

3 . C h a p t e r 4

“Rather than looking for a clear winner among various SWS approaches, I believe that in the
post-SAWSDL context, significant contributions by each of the major approaches will likely
influence how we incrementally enhance SAWSDL. Incrementally adding features (and hence
complexity) when it makes sense, by borrowing from approaches offered by various researchers,
will raise the chance that SAWSDL can present itself as the primary option for using semantics
for real-world and industry-strength challenges involving Web services.”

- Prof.Dr.Amit.P.Sheth

The use of services without considering their underlying semantics can negatively affect
composition processes by raising intermittent failures or leading to a slow performance.
Recently, a new framework called WSMO-Lite has been defined for semantic Web Service
annotation. WSMO-Lite, in turn is an integration with SAWSDL and WSMO which are two
latest the World Wide Web Consortium (W3C) standards in this paradigm. However, due to
the lack of quality of services descriptions, it is hard to determine the appropriate service
among those functionally similar services. To this end, in this chapter we present QWSMO-
Lite specification which extends WSMO-Lite with ontology for modeling QoS properties.
Such specification is a foundation for the service discovery and ranking presented in Chapter 5
as well as the service composition approach described in Chapter 6.

CONTENTS

4 QWSMO-LITE: A QOS-AWARE ONTOLOGY FOR WEB SERVICE ANNOTATION 25

4.1 REQUIREMENTS ANALYSIS FOR SERVICE DESCRIPTION .. 26
4.2 QWSMO-LITE FRAMEWORK .. 27
4.3 ONTOLOGIES IN QWSMO-LITE ... 28

4.3.1 Modeling QoS Semantics in QWSMO-Lite .. 29
4.3.2 Specification of Domain Semantics .. 30

4.4 FORMALIZATION OF QWSMO-LITE .. 31
4.5 SUMMARY .. 33

4QWSMO-Lite: A QoS-Aware Ontology for Web
Service Annotation

4.1 Requirements Analysis for Service Description

26

4.1 Requirements Analysis for Service Description

In this section, the most important requirements of adding semantics to Web Services
compared to the existing solutions introduced in Section 3.2 are stated.

 As to the semantic model which can be used for annotations, the requirements are analyzed
from four perspectives according to the classifications used to evaluate existing solutions. They
are data semantic, operational semantics, execution semantics and QoS semantics.

From the data semantic perspective it is clear that many challenges for Web Service composition
arise from their lack of understanding of the underlying data that the service exchanges.
Therefore to better understand and reuse a service, the interface of functionalities should be
annotated with the terms from domain ontologies.

Taking into account the operational semantics perspective, the service description should be able
to describe the categorization information of the functionalities. Since for the service
composition, this kind of semantics enables to reduce the searching space by only considering
the services falling into the required category. Moreover, to successfully invoke a service, the
conditions of inputs should also be taken into account. In addition, the effects which define
the state after the service invocation are useful to find succeeding services to build a
composition chain. Consequently, these three kinds of semantics should also be annotated in
service’s operations.

The requirements of execution semantics are concerned about how to externally and internally
consume the Web Service. The semantics of external invocation can be inferred from
operational semantics. The semantics of internal invocation is described as a workflow
indicating how the functionalities from other services are composed. Such static semantics has
some limitations. For instance, it only can be provided by the users who have pre-knowledge
over all underlying services. And such static semantic doesn’t adjust to the dynamic change of
the environments. Therefore, this kind of knowledge is not of interest to the automatic service
composition.

Another important issue that we should consider is to annotate services with QoS
semantics. First of all due to the fact that the requirements of QoS vary with individual
domains, the annotation of QoS model should be able to adapt for different domains.
Secondly, QoS semantics is a multi-dimensional property as depicted in Figure 3-1. The same
quality dimensions are represented using different metric measurements in most cases. To
evaluate and measure all provided qualities, metric should be specified in QoS model.
Moreover, to accurately interpret such metric measurement, additional information about
various types of unit and data type should be described. In additions, the system should also
support the annotation of the QoS priority for each quality detention, since QoS properties
often have different important levels in terms of different service users.

After the comparison and evaluation of a set of existing solutions, we can figure out that
WSMO-Lite is a good candidate for semantic annotation of Web Services. It adopts the idea
from SAWSDL which defines the simple extensions for WSDL and XML Schema by referring
the WSDL components to arbitrary semantic descriptions. Moreover, it tries to enhance
SAWSDL with concrete lightweight service ontology from WSMO. However, due to the lack
of quality of services descriptions, it is hard to determine the most appropriate service among
those functionally similar service candidates. Therefore, we define QWSMO-Lite specification

Chapter 4: QWSMO-Lite: A QoS-Aware Ontology for Web Service Annotation

27

which enhances WSMO-Lite with ontology for modeling QoS properties. These annotated
semantics will be exploited for enhancing the automatic Web Service composition.

4.2 QWSMO-Lite Framework

In this chapter, QWSMO-Lite service ontology is presented in details. We adopt the base
model of WSMO-Lite which fills SAWSDL annotations with concrete lightweight WSMO
ontologies. The usage of WSMO-Lite based description makes users easier for users to
annotate WSDL in SAWSDL framework. The mechanism only requires that the concepts in
the semantic models can be identified by URIs. Semantic models using in WSMO-Lite are
defined using a subset of WSMO which complements SAWSDL with explicit meaning of the
particular service annotations. In WSMO, the quality aspects are part of the non-functional
information of a Web Service description and are simply defined as: Accuracy, Availability,
Financial, Network-related QoS, Performance, Reliability, Robustness, Scalability, Transactional and Trust.
However, such QoS definition is neither expressive nor flexible enough for QoS properties to
distinguish functionally similar services or operations for service discovery and composition
[Wang et al. 2006]. Moreover, annotation methodology provided in WSMO-Lite also needs to
be evolved and refined. For instance, in WSC the annotation of operations plays a more crucial
role than others. Nevertheless, there is no available non-functional description attached to the
operation elements in WSDL. In addition, WSMO-Lite allows services elements to be
annotated with functional capabilities, which makes no sense for those services consisting of
more than one operation with various functionalities. To solve these problems, we develop a
QWSMO-Lite, an extension of WSMO-Lite. The key characteristics of QWSMO-Lite are
summarized in Figure 4-1:

- Extensible QoS ontology. Inspired by the work presented in [Li and Zhou, 2009], a
new ontology depicted in the figure with QoSParameters are extended to the WSMO-
Lite vocabulary consisting of a set of generic and domain specific QoS dimensions for
both service requesters and service offers.

- Domain specific annotations in the operational level. Noted that both functional
semantics and QoS semantics differ from one domain to another, we should
distinguish such domain specific knowledge from general service descriptions.
Considering the nature of a WSC problem which is to find linked operations among
services, the annotations of those domain specific operation elements are viewed as
more important than the others. Therefore we attach operation elements in WSDL
with domain knowledge consisting of DomainFunctionalClassificationRoot which refers to
the category of the underlying operations and QoSParameters which specifies domain
specific QoS criteria.

- Generic annotations at service level. The annotation at service level should provide
general descriptions of functional and non-functional attributes of the underlying
operations. FunctionalClassificationRoot is a function annotation representing an abstract
type of the service. Here, we distinguish the single domain services consisted of
operations belonging to one single domain from the multi-domain services whose
operations belong to multi-domains. Such information will be beneficial to reduce the
search space in the service discovery procedure. The details will be discussed in the

4.3 Ontologies in QWSMO-Lite

28

next chapter. In addition, NonfunctionalParameter with nonfunctional semantic, such as
the service provider’s information can also be linked to the service elements.

Figure 4-1 QWSMO-Lite framework

4.3 Ontologies in QWSMO-Lite

Briefly speaking, QWSMO-Lite extends the WSMO-Lite specification with two ontologies:

- QoSParameter representing QoS semantics

- DomainFunctionalClassificationRoot specifying the underlying domain information.

In this section, these two extensions are presented in details. In order to better illustrate how
to annotate WSDL with QWSMO-Lite we take a real Web Service for global weather17 as a
running example. Table 4-1 shows the general description of the service.

Table 4-1 A global weather service

Function Inputs Outputs

GetWeather CountryName(String) GetWeatherResult(String)

 CityName(String)

GetCitiesByCountry CountryName(String) GetCitiesByCountryResult(Sting)

17 This Web Service is based on WSDL1.1.
It is available from http://www.webservicex.com/globalweather.asmx?WSDL

Chapter 4: QWSMO-Lite: A QoS-Aware Ontology for Web Service Annotation

29

4.3.1 Modeling QoS Semantics in QWSMO-Lite

Inspired by the work shown in [Li and Zhou, 2009], QoS ontology named QoSParameter was
developed as an extension of the WSMO-Lite framework. Unlike Li’s approach which only
deals with some generic qualities of the services, QoSParameter aims to address domain specific
qualities as well. Moreover, in order to facilitate extensibility and reusability, QoSParameters has
been designed to be a modular in nature. Each modular can be easily extended as a normal
ontology. Such ontology falls into three layers shown in Figure 4-2.

Figure 4-2 Metadata model of QoSParameter

QoSProperty is an ontology for modeling service quality dimension in QoSParameter. To make
a clear distinction between the generic QoS semantics and domain specific quality information
QoS Property is split into two parts: GenericQoSProperty containing generic quality criteria, such as
the elements shown in Figure 3-1, which is applicable to all services and
DomainSpecificQoSProperty relating to domain specific quality attributes. In some domains, such
generic attributes are not sufficient. For instance, to get weather information, users are
interested in services with high accessibility and accuracy. And such qualities are domain
specific requirements which can be obtained from DomainSpecificQoSProperty. Adding a new
domain-specific ontology can be easily realized by importing ontologies to the framework.

Considering that there is no standard means to measure quality dimensions, even the same
dimensions are probably evaluated in different ways by different service providers. For
example in global weather service, the response time is recorded using millisecond, while in the
requirements document the response time might be measured by second. Therefore, in
QWSMO-Lite, each QoSProperty has an associated Metric ontology. Such Metric ontology is

4.3 Ontologies in QWSMO-Lite

30

defined to recognize these mismatches by specifying the Unit and DataType the providers used
to measure their qualities. These two ontologies can be easily extended by importing new
ontologies to a framework without changing any existing values. In addition, each QoS
property may has different important level in various use cases. Accordingly, in Metric, it
enables to assign the case-specific weight values to the corresponding QoS qualities. Now four
levels of important are supported, namely:

 { }

Ontologies defined in QWSMO-Lite will be helpful to formulate concrete service
descriptions tailored to annotate Web Services. Taken the global weather service as an
example, Figure 4.3 shows the snippet from its service description ontology which contains
QoS specification with a flavor of WSML. QoS descriptions for the individual domain named
DomainQoS and the generic characteristics denoted as GenericQoS are specified separately. Such
structure facilitates the annotation process on WSDL level. As depicted in Figure 4-1, the
DomainQoS needs to be referred to the operational elements of WSDL while GenericQoS is used
for service level annotation. Both GenericQoS and DomainQoS are instantiated as instances filling
the required attributes with a set of case-specific values in the service descriptions. Note that
such QoS description should be available in both service providers and service consumers. To
advertise a service, the QoS values are collected mainly through active monitoring by service
providers. On the other hand, it also enables the service consumers to customize their specific
QoS values.

Figure 4-3 An example of the QoS specification in QWSMO-Lite

4.3.2 Specification of Domain Semantics

In QWSMO-Lite, it defines a new class called DomainFunctionalClassificationRoot, stating the
taxonomy of a specific domain. As shown in Figure 4-4, in climate domain, a concept of
Climate stands for a class of all climate- related terminology. Concepts can be put in a hierarchy
by means of the subConceptOf construct. For instance, Weather is a subclass of Climate, meaning
that any weather information is part of climate knowledge and it is allowed to have its own

concept DomainQoS subConceptOf QoS
concept GenericQoS subConceptOf QoS

instance ResponseTimeMetricInstance memberOf
{ GenericQoS, qwl#Metric}
 qwl#hasUnit hasValue "milliseconds"
 qwl#hasDataType hasValue "long"
 rdf#hasWeight hasValue "Less Strong"
 qwl#hasValue hasValue "2000"

instance ResponseTimeQoSInstance memberOf { GenericQoS, qwl#GenericQoSProperty}
 hasMetric hasValue ResponseTimeMetricInstance
...

instance DomainMetricInstance memberOf { DomainQoS, qwl#Metric}
 qwl#hasUnit hasValue "percentage"
 qwl#hasDomainQoS hasValue "Accessibility"
 rdf#hasWeight hasValue "Strong"
 qwl#hasDataType hasValue "long"
 qwl#hasValue hasValue "89,65"

instance DomainQoSInstance memberOf { DomainQoS, qwl#DomainSpecificQoSProperty}
 hasMetric hasValue DomainMetricInstance
...

Chapter 4: QWSMO-Lite: A QoS-Aware Ontology for Web Service Annotation

31

attributes. This ontology is used to point to operational elements in WSDL. A list of all
referred domain ontologies can be applied to service components in WSDL.

Figure 4-4 Ontology of DomainFunctionalClassificationRoot

4.4 Formalization of QWSMO-Lite

In this subsection, we discuss how we can annotate WSDL with those mentioned ontologies
in QWSMO-Lite framework. A running example for the annotation is illustrated along with
the definition of each element in an annotated service.

Definition 4-1 (Annotated Function). An annotated function of a Web Service is

described as a tuple with

 {

 }: is a set of concepts referred to input parameters of WSDL,

 {

 }: is a set of concepts referred to output parameters of WSDL,

 is the precondition of the function f,

 is the category of the function f,

 is the effect of the function, f,

 is the sequence of QoS dimensions.

In QWSMO-Lite, data semantics represented as a set of inputs and outputs concepts can

be used to describe XML messages in WSDL. If necessary, the transformation which enables
the match between the schema and the underlying XML data can also be described. Figure 4.5
shows a data semantics annotation example for the global weather service.

Figure 4-5 An example of data semantic annotation

...

concept Climate
 temperature impliesType _float
 cloudiness impliesType _float
 region impliesType _float
 brightness impliesType _float

concept Weather subConceptOf Climate
 visibility impliesType _float
 humidity impliesType _float
...

concept OceanicPhenomenon
 subConceptOf Climate

concept Winds subConceptOf Climate

...

<s:sequence>
 <s:element maxOccurs="1" minOccurs="0" name="CityName" sawsdl:modelReference="http://daml.umbc.edu/
ontologies/ittalks/address#city" type="s:string"/>
 <s:element maxOccurs="1" minOccurs="0" name="CountryName" sawsdl:modelReference="http://daml.umbc.edu/
ontologies/ittalks/address#country" type="s:string"/>

</s:sequence>

4.4 Formalization of QWSMO-Lite

32

Functional and Executional semantics are provided in preconditions, effects and category
information of an operation. Unlike the annotation defined in WSMO-Lite, preconditions and
effects in QWSMO-Lite contain not only the axioms that need to be satisfied to successfully
invocate a Web Service, but also describe the required domain ontologies to invoke a service
and available domain information after the invocation respectively. The reason behind this
mechanism is that when composing services, such information facilitates the automation of
finding preceding and succeeding operations by confiding the search spaces to the domains
described in the annotation file. Figure 4-6 illustrates an example for annotating GetWeather
operation available in the global weather service.

Figure 4-6 Description of an annotated function

Definition 4-2 (Annotated Web Service). An annotated Web Service of a Web Service is

described as a tuple with

 { } is set of annotated functions as defined above,
 { } is a set of generic non-functional descriptions for w,

 is a list of domains that a service contains.

The description of an annotated Web Service is shown in Figure 4-7. Similar to WSMO, the
non-functional properties are represented using Dubin core. Unlike the category information

referred to functional elements, here is a collection of ontologies used to annotate
underlying operations.

concept Precondition subConceptOf wl#Condition
 hasDomain impliesType _"http://daml.umbc.edu/
ontologies/ittalks/address#address"
 isAvailable impliesType _boolean
 nfp dc#relation hasValue {IsAvailable} endnfp

concept Effect subConceptOf wl#Effect
 hasDomain impliesType
_"http://lsdis.cs.uga.edu/proj/iq/demo/
ontologies.htm#weather"

concept category subConceptOf
qwl#DomainFunctionalClassificationRoot
 hasDomain impliesType
_"http://lsdis.cs.uga.edu/proj/iq/demo/
ontologies.htm#weather"

concept DomainQoS subConceptOf QoS
...
axiom isAvailable
 definedBy
 ?country memberOf address#Country
 and ?x[isAlive hasValue _boolean("true")]
:-
 ?country[hasName hasValue "Germany"].

 <wsdl:operation name="GetWeather">
 <sawsdl:attrExtensions
sawsdl:modelReference="template#Precondition"/>

 <sawsdl:attrExtensions
 sawsdl:modelReference="template#Effect"/>

 <sawsdl:attrExtensions
sawsdl:modelReference="template#Category"/>

 <sawsdl:attrExtensions
 sawsdl:modelReference="template#QoS"/>
 ...
 <wsdl:input message="tns:GetWeatherHttpGetIn"/>
 <wsdl:output message="tns:GetWeatherHttpGetOut"/>
 </wsdl:operation>

Service Description Ontology Web Service Description

Chapter 4: QWSMO-Lite: A QoS-Aware Ontology for Web Service Annotation

33

Figure 4-7 Description of an annotated Web Service

4.5 Summary

QWSMO-Lite is an extension of WSMO-Lite devoted to provide expressive representation
of semantics on the one hand, and facilitate the annotation task and the automation of Web
Service composition on the other hand. The technique comparison of related approaches is
presented in Section 7.1. To sum up, the main contributions of QWSMO-Lite are listed as
follows:

- Supports a modular structure of QoS ontology. Unlike the approaches
introduced in Section 3.2, to facilitate reusability and extensibility the QoS ontology
has been designed from the beginning to be modular in nature. QoS related
semantics including domain specific knowledge, general QoS specifications and
measurement semantics for different domains and applications can be easily
described in the ontology. In addition, within this model, users are allowed to
specify units for each QoS dimension. QoS priority can also be customized by
assigning weights. (see Section 4.3.1)

- Simplifies the representation of semantic information. Inspired by the minimal
Web Service Model in WSMO-Lite, a more simplified and specific version of the
Web Service annotation model is defined in QWSMO-Lite. With such model, users
become aware of the underlying referred semantics, rather than only list them using
SWSDL specification. Moreover, it simplifies the annotation work by annotating
services with minimal and most important semantics. (see Section 4.4)

- Facilitates the automation of Web Service Composition. A service is annotated
with category information containing all involved domain specifications. Meanwhile,
each operation is annotated by one specific domain information. The category
semantics at service level helps facilitate the service discovery by narrowing the
range of candidate services. In addition, unlike the specification of operations’
preconditions and effects in WSMO-Lite, in QWSMO-Lite, a set of required and
affected domain ontologies are listed in the operations’ preconditions and effects
parts respectively. This type of semantics indicates the searching ranges of finding
the matched proceeding and succeeding services to build a composition chain. (see
Section 4.3.2 and Section 4.4)

ontology
_"http://cs.uni-bonn.de/annotationTemplate"
 nonFunctionalProperties
 dc#title hasValue
 "QWSMO-Lite Template ontology"
 dc#date hasValue _date(2011,02,01)
 dc#format hasValue "text/html"
 ...
 endNonFunctionalProperties

concept Categories subConceptOf
qwl#DomainFunctionalClassificationRoot
 hasDomain impliesType
{ _"http://lsdis.cs.uga.edu/proj/iq/demo /
ontologies.htm#weather",
 _"http://daml.umbc.edu/ontologies/
ittalks/address#"}

...

<wsdl:service name="GlobalWeather">

<sawsdl:attrExtensions
sawsdl:modelReference="template"/>

<sawsdl:attrExtensions
sawsdl:modelReference="template#Categories"/>

 <wsdl:port binding="tns:GlobalWeatherSoap"
 name="GlobalWeatherSoap">
 <soap:address location=
"http://www.webservicex.com/globalweather.asmx"/>
 </wsdl:port>
 ...
 </wsdl:service>

Service Description Ontology Web Service Description

34

4 . C h a p t e r 5

“The world can be changed by man's endeavor, and that this endeavor can lead to something
new and better. No man can sever the bonds that unite him to his society simply by averting
his eyes. He must ever be receptive and sensitive to the new; and have sufficient courage and
skill to novel facts and to deal with them.”

- Franklin D. Roosevelt (1882-1945)

An important challenge of Web Service composition is that the system needs to locate, find,
select and invoke appropriate services to build a chain. This process is called semantic
matchmaking. Two key issues are required to be addressed in this semantic knowledge
lifecycle: a semantic matchmaking mechanism for computing matching degree between two
single-attribute semantics and a semantic engine for processing multi-attribute semantics. As
noted in Section 2.3, most of the current solutions dealing with semantic matchmaking focus
on measuring single-attribute semantics. However, in real dynamic environments, especially for
the Web Service Composition problem, those individual single-attribute semantics should be
taken into account as a whole. Therefore in SEwsDM we developed a multi-attribute semantic
matchmaking engine including these two engines. Briefly speaking, logic and non-logical
reasoning algorithms are adopted to the singe attribute semantic engine while the Technique
for Order Preference by Similarity to Ideal Solution (TOPSIS) is applied to calculate semantic
score for the multi-attribute semantic matching.

CONTENTS

5 SEWSDM: A MULTI-ATTRIBUTE SEMANTIC MATCHMAKING ENGINE .. 34

5.1 SEWSDM FRAMEWORK .. 35
5.2 SINGLE-ATTRIBUTE SEMANTIC MATCHMAKING ... 36

5.2.1 Traditional Logical Similarity Measures ... 37
5.2.2 Ontology based Single Attribute Matchmaking Algorithm ... 39

5.3 MULTI-ATTRIBUTE DECISION MAKING ... 43
5.3.1 Scoring Methods for Multi-Attribute Decision Making .. 44
5.3.2 TOPSIS based Algorithm for Multi-Attribute Decision Making .. 47

5.4 IMPLEMENTATION OF SEWSDM ... 53
5.5 SUMMARY .. 56

5SEwsDM: A Multi-Attribute Semantic
Matchmaking Engine

Chapter 5: SEwsDM: A Multi-Attribute Semantic Matchmaking Engine

35

5.1 SEwsDM Framework

Matchmaking is the process of comparing the service request against the available service
advertisements by calculating the semantic similarity and finding the most appropriate one.
Different to the Web Service Discovery problem which intends to find a service whose
parameters satisfy with a service query, in Web Service composition problem, it is devoted to
finding a preceding or a succeeding service of the current service using matching mechanism.

A Web Service can be added to the candidate list of succeeding service of the current
service, if and only if all the parameters of its functions are satisfied by the current service. On
the other hand, a service whose affected parameters are available from the current service can
be put into the current service’s preceding candidate list. Note that to find the semantically
related services, calculating the similarity of the Web Service operations plays a crucial role.
That is to say, the services similarity can be measured as an aggregation of the similarity of a
series of operations supported in a service. Consequently, in SEwsDM, the operational level
similarity algorithms rather than a traditional service’s level matchmaking are concentrated on.

The semantics management architecture based on the Web Service operations is depicted in
Figure 5-1. The matchmaking component comprises three phases. The first phase is to filter
the services with Categorization Matching. If the annotated categorization information of a
service semantically relates to the current service, we mark it as usable. Otherwise, that service
remains unusable. All usable services will go to the second phase which is Operational Matching.
Here, two matching mechanisms are developed to check correspondent operation’s
parameters for backward and forward matchmaking respectively. Afterwards, QoS
specifications offered by this checked service together with the results from the first two
phases are aggregated to measure the similarity between these two services in the last so-called
Ranking process. Due to the various criteria for ranking backward and forward matching
services, two ranking algorithms are implemented for these two matching purposes. Those
ranked services will be used at a later stage to compose the composition chain. The underlying
technical details of the matchmaking will be illustrated in the following subchapters.

5.2 Single-Attribute Semantic Matchmaking

36

Figure 5-1 SEwsDM matchmaking framework

5.2 Single-Attribute Semantic Matchmaking

As mentioned in the last chapter, Categorization Matching acts as a preprocessing procedure in
SEwsDM framework. The annotated categorization semantic is the only attribute to be
checked. With regard to the Operation Matching, to find matched succeeding services of current

available service , the annotated outputs of and the inputs of the service candidates need
to be concentrated on to calculate the similarity. Similarly, to determine the matched

proceeding services of , the similarity between the outputs of a service candidate to the

inputs of should be considered. All of these matching methods share one thing in common.
Only a single dimensional attribute needs to be taken into account to measure the similarity.
We call this kind of matchmaking as single attribute semantic matchmaking. Ontology-based
approaches are often adopted for this paradise.

The definition of ontology as a technical term for computer science is provided by Tom
Gruber in [Gruber, 2008].

 “In the context of computer and information sciences, an ontology defines a set of
representational primitives with which to model a domain of knowledge or discourse. The
representational primitives are typically classes (or sets), attributes (or properties), and
relationships (or relations among class members). The definitions of the representational

Chapter 5: SEwsDM: A Multi-Attribute Semantic Matchmaking Engine

37

primitives include information about their meaning and constraints on their logically consistent
application.”

In our system, the underlying semantics of Web Services are expressed as ontologies which
are used to annotate services in a QWSMO-Lite flavor. As shown in Figure 5-2, after
annotating services, the relevant ontologies are referred to the outputs of available services and
the inputs of a service candidate. The degree of match between these two services is calculated
with ontology matchmaking algorithms.

Figure 5-2 Relationship between annotated services and ontology
matchmaking

5.2.1 Traditional Logical Similarity Measures

Similarity denotes how similar the two concepts are. Determining the similarity of the two
concepts is a crucial issue in Web Service Composition where we need to select the most
appropriate service to connect with the current available service. The greater the value of
similarity is, the more similar two sets of concepts are. In this section, several traditional notion
of similarity is introduced. We classified these notions into three categories:

- Bag-of-words based similarity

- Vector-space based similarity

- Hierarchy based similarity

Let us start with the similarity based on bag-of-words (BOW) which is a set of weighted
terms that best describe the entity in Information Retrieval domain [Thiagarajan et al., 2008].
There are many different measures in use, which differ primarily in the way they normalize this
intersection value [Rijsbergen, 1979]. Jaccard’s coefficient [Doan et al., 2002] and Dice’s
coefficient belong to this category.

Available Service Sa

fi

fk

...

a

c

f

b h

e

Output 1

Service Candidate Sc

...

Output 2

Ontology

Matchmaking

fj
Input 1

Input 2

fm
g

i

... ...d

5.2 Single-Attribute Semantic Matchmaking

38

Given two BOW collections and , Jaccard’s coefficient is defined as the size of the
shared information over the size of the union of these two collections as following:

| |

| |

The Jaccard’s coefficient is practically applied to define similarity measure in many systems
such as the GLUE system which employs this formula for machine learning techniques to find
mapping in the ontology model. A methodology of ontology mapping proposed in [Kong et
al., 2004] is based on similarity measurement by Jaccard’s coefficient as well.

Dice’s coefficient is similar to Jaccard’s coefficient which is defined as twice the intersection
divided by total number of terms in both tested sets.

 | |

| | | |

Both of the above mentioned notions of similarity concentrate on the intersection part of
two compared BOW sets. However, the similarity also depends on features that are unique to
each set. To this end, Tverskey’s model [Tversky, 1977] is considered as the most suitable
approach to match such semantics which is defined as:

where the model is specified by the features that is common in both sets, those in X but not in
Y and those in Y but not in X. Here, a, b and c are parameters that provide for differences
focusing on the different components. Such Tverkey’s model based notion also can be adapted
to compute similarity between Web Services. [Cardoso, 2006] introduces the matching
functions for Web Service Discovery based on this model, where not only the concept itself
but also the unique properties associated with two compared concepts are taken into account
to compute the similiarty.

In the BOW based solutions, in the case that , the similarity might be zero
according to the Tverkey’s model based notion. But some concepts which have no intersection
with each other but are siblings should have nonzero similarity.

The other category for expressing similarity is based on vector-space model. Cosine
similarity is often be utilized which defines the similarity between two vectors to be the cosine
of the angle between them. Formally, this similarity is given by the formula:

 ⃗⃗ ⃗⃗

| ⃗⃗ || ⃗⃗ |

where ⃗ and ⃗ is the vector representation of entity X and Y respectively. | ⃗ | is

the Euclidean length and can be computed by | ⃗ | √∑

 . In recent work [Gulla et

al., 2009] [Liu and Shao, 2010], the cosine similarity is adopted to compute similarity on
mapped concepts. However, if the dimension of the vector increases, it will make the
computing of such cosine similarity more problematic.

The approaches in the third category are to make use of a hierarchy to compute similarity.
There have been several research efforts to develop matchmaking algorithms as introduced in
Section 3.3. These approaches share one thing in common: based on the subsumption relation

Chapter 5: SEwsDM: A Multi-Attribute Semantic Matchmaking Engine

39

in a taxonomy tree, four degrees of match are defined as below [Paolucci et al., 2002] [Şenvar
and Bener, 2006]:

- Exact Match: the requests are equivalent to the service’s advertisement.

- Plug-in: the service’s advertisement is more general than the requested service.

- Subsume: the service’s advertisement is more specific than the requested
service.

- Fail: If no subsumption relation is found between service’s advertisement and
the requested service.

Degree of math are organized along a discrete scale where exact matches are of the best
one among others; Plug-in matches are the next best level since the returned output can
probably be used instead of what the requester expects. Subsumes is the third best level
because the requirements of requester are only partially satisfied. Fail is the lowest level and it
indicates an unacceptable result. In real applications, typically, to distinguish these four scales,
four numerical values are assigned to each of them. One major concern with such approach is
that it does not consider the semantic distances of the properties involved.

5.2.2 Ontology based Single Attribute Matchmaking Algorithm

Referring to Figure 5-1, in both Categorization Matching and Operational Matching, ontology
based matchmaking play a critical role to determine matched services. Such matching engine
can be established by calculating path distance between concepts on their shared hierarchical
semantic structure. However, measuring similarity between Web Services differs slightly from
calculating their underlying concept semantic similarity. The Web Service matching is
characterized by the following features:

- An asymmetric match. Most of the current ontology matching algorithm are
for symmetric matching [Algergawy et al., 2010] [He et al., 2008] which means

that the similarity between and should be equal to the similarity between

and denoted as . However, the match between Web

Services is asymmetric. Let us assume that we have two operations and as

depicted in Figure 5-2. In this scenario, mached to , since all the inputs of

 are supclasses of the outputs of . That means can be invoked after .

But, the converse is not necessarily true. There is no evidence indicating that
can be also invoked after . Such asymmetrical property can be expressed as:

 () ().

- Comparing semantics with a common ontology commitment. In
SEwsDM, corresponding operations’ parameters are related to one global

ontology. For instance, in the example shown in Figure 5-2, ’s outputs and

 ’s inputs are referred to one ontology. The degree of match is translated into

the problem of measuring the distance between two concepts in one ontology.

As introduced in the last section, all the discussed similarity notions can precisely determine
the closeness between two compared concepts except those hierarchy based solutions which
are the only asymmetric similarity notions. To increase the accuracy of the measurement of

5.2 Single-Attribute Semantic Matchmaking

40

matching degree, semantic distances should be taken into consideration. The works presented
in [Ganesan et al., 2003] ,[Wen et al., 2006] and [Li et al., 2003] introduce different methods to
compute a so-called matching score to precisely calculate similarity with semantic distances.

In this section we present an ontology based single attribute matchmaking algorithm noted
as SAMatching for an asymmetric match which is inspired by the above three works. To
begin with, instead of defining degree of match at the service level, we define degree of match
for the underlying concepts. It is based on the fact that when building a chain for the
composition, only one type of matching is required to take into account. For instance, to
determine the succeeding services, only services with a Plug-in match against the last service of
the chain can be selected, as more general inputs of a service might be able to be satisfied by
the more detailed outputs of a service. In the same way, to find preceding services, only
services which subsume the last service in the chain should be considered. Compared to the
traditional filters for matchmaking, the matching filter defined in SEwsDM extends it with a
sibling relationship where two concepts share at least one ancestor. Next, matching score is
calculated by aggregating a set of concept similarities involved in a service.

Definition 5-1 (Degree of Match between Concepts). Given two concepts based

on a shared ontology .

 If and are equivalent, then Exactly Matches to (),

 If is a subclass of , then could be Plugged In place of : ,

 If is a superclass of , then Subsumes ,

 If and have intersections and share ancestors, then and are Siblings: (),

 If no subsumption relation exists between and , then Failure occurs: (. ■

 Five degrees of match in the concept level is defined above. Considering that in some cased
two concepts which are siblings can also indicate semantic relations between them, a
relationship of sibling is added to our matching filters. These filters information will be used to
find matched categories and operations. Taken the case shown in Figure 5-2 as an example,

since concept i associated with output1 of is a subclass of h referred by input1 of , output1

plugin matches with input1, . Conversely, it also indicates that input1

subsumes ouput1, .

Definition 5-2 (Similarity between Concepts). Given two concepts based on a

shared ontology .

 ()

{

 ()

 (

) ()

where

 ,

Chapter 5: SEwsDM: A Multi-Attribute Semantic Matchmaking Engine

41

 {

 ()

 (())

 ,

 is the height of the node ,

 is the height of the node ,

 is the shortest path between and ,

 scales the contribution of the shortest path length and height. ■

This definition is a combination of the similarity measures proposed by [Ganesan et al.,
2003] and [Li et al., 2003]. In the first work the measure is based on the assumption that
concepts at upper layers of the hierarchy have more general semantics and less similarity
between them, while concepts at lower layers have more concrete semantics and stronger
similarity. The similarity is computed as following:

However, this method doesn’t take into account of the direct path length between two
compared concepts. In Li’s work, the shortest path length l as well as the depth of the lowest
common ancestor are taken into consideration to compute the similarity:

 ()

It scales down similarity for subsuming concepts at upper layers and scales up the similarity
at upper layers. However, this measure does not scale the similarity, the work presented in
[Wen et al., 2006] intents to combine these above two measures together. The depth of the

lowest common ancestor,
, in (5-2) is placed with the relative depth, d, in (5-1) between

these two computed concepts. Unfortunately, all above measures are more suitable for
evaluating similarity at the leaf level where the depth of the lowest common ancestor in most
cases is greater than 1. In SAMatching, we define a smooth function where the lowest

common ancestor between and can be determined from one of three cases:

- If is the super concept of , we assign the depth of to
,

- If is the super concept of , we assign the depth of to
,

- If there is no relationship between and , we assign the depth of the lowest

common ancestor of and to
.

Unlike those existing solutions which are symmetric, considering the nature of matching
among Web Services, our solution supports asymmetric matchmaking. The information of
degree of match is integrated into the concept-level similarity. It is worth noting that the value
of semantic similarity will be equal to 1 when it belongs to “Exact” match and in range of (0.5,
1.0) if it falls into “Plugin” match and in range of (0, 0.5) if it is classified as “Subsume” match.
If the similarity value is smaller than 0, it means maybe these two concepts are siblings.

5.2 Single-Attribute Semantic Matchmaking

42

Table 5-1 Comparison of the various measures

Similarity Ganesan et al. Li et al. Wen et al. SAMatching

 0,33 0,79 0,29 0,29

 0,33 0,79 0,29 0,79

 0 0 0 0

 0,57 0,15 0,40 0,30

 0 0 0 0,23

 0 0 0 0,73

Table 5-1 shows the comparison of the similarity using various measures. Here, we
compute similarity between four pairs of concepts in terms of the ontology available in Figure
5-2. From the ontology structure, we would expect to find that concepts d e and g are more
similar to each other than concept d and g. From Table 5-1, we see that except for the
measures proposed in [Wen et al., 2006], all the other measures produce this result. As we
mentioned before, since the lowest common ancestor of h and I is the root concept a with
depth value equal to zero, the similarity between concepts h and I becomes to zero in the first
three measures. Our measure can successfully compute the similarity with the smooth function

of
. Moreover, our solution also can be used as an asymmetric measure as mentioned

above. It conveys more information to distinguish different logic relations hiding behind
concepts.

Definition 5-3 (Operational Similarity). Consider that we have two annotated Web

Services operations the similarity between these two functions is defined as

 (),

where

 ■

As defined in Definition 4-1, an operation of a Web Service consists of a set of functional
and non-functional elements. To determine a matched operation to the current available
function, firstly, we need to evaluate the matching between two categories using the degree of
matches defined in Definition 5-1. Next, the matching algorithm will go into the concept level
to find the detailed matching information by calculating concept similarity. At this level, the
referenced concepts for inputs and outputs of the service candidate and the available service
will be compared to each other. The matching degree of each pair of concepts is determined
by the generated similarity value. In the last step, as shown in Definition 5-3 the similarity of
these two functions is assigned by the minimum value of similarity among all compared pairs
over corresponding inputs and outputs.

Chapter 5: SEwsDM: A Multi-Attribute Semantic Matchmaking Engine

43

For instance, again referring to Figure 5-2, to compare the functions and , we skip step

1, since we assume that the categories of these two functions are matched. As calculated in

Table 5-1, the similarity of corresponding concepts are and

 . As declared in Definition 5-3, () . In addition,

this similarity measure is also asymmetric, since the similarity between and

is () () () .

5.3 Multi-Attribute Decision Making

The two main stages of composing Web Services are service discovery and service
selection. In the service discovery process, a set of available Web Services are proposed as
potential candidates mainly by the functional matchmaking algorithm explained in the previous
section. In a succeeding selection, for each task, the most appropriate candidate is chosen to
form the optimal composition due to the selection criteria. A selection may not be properly
made if only considering one single attribute. For example, in the case that we aim to compose
a chain with the maximum execution time, each operation we choose should functionally
match to the available operation. Meanwhile, this chosen operation should also contribute to
obtain the maximum execution time of the whole chain. Generally speaking, to efficiently
compose Web Services all related attributes are classified into three groups depicted in Figure
5-3:

- Functional attribute indicates functional closeness of two operations. The
similarity can be obtained by the formula defined in Definition 5-3.

- Non-Functional attribute, on the one hand, provides non-functional constraints
to select the best service. The chosen service should satisfy with the QoS
requirements of the available service. On the other hand, the aggregation of QoS
elements of all chosen service to build the chain should satisfy the user’s non-
functional requirements of the whole composition task.

- Construction heuristics attribute is the knowledge of efficiently building a
composition chain. When composing operations with backward chaining, if a
service requires many inputs, it seems to be harder to satisfy. In contrast, if a service
can provide lots of data, it will be easier to find successors [Yan et al., 2009] [Bless
et al., 2008].

This section discusses how the selection of these multiple attributes can determine the best
candidates for the composition.

5.3 Multi-Attribute Decision Making

44

Figure 5-3 Multi-attributes decision making in SEwsDM

5.3.1 Scoring Methods for Multi-Attribute Decision Making

Zeleny [Zeleny, 1982] opens his book “Multiple Criteria Decision Making” with a statement:

“It has become more and more difficult to see the world around us in a unidimensional way to
use only a single criterion when judging what we see.”

It was also suitable for the service selection problem. To determine the most appropriate
service, the ranking problem can be mapped to a Multi-Criteria Decision Making (MCDM)
problem. The definition of MCDM is presented [Evangelos, 2002]:

“Multi-Criteria Decision Making (MCDM) has been one of the fastest growing problem areas in
many disciplines. It is assumed that the decision maker is capable of expressing his/her
opinion of the performance of each individual alternative in terms of each one of the decision
criteria. The problem then is how to rank the alternatives when all the decision criteria are
considered simultaneously. ”

According to the different aspect of multiple and conflicting criteria, MCDM can be
classified into two categories:

- Multi-Objective Decision Making (MODM) addresses the continuous
decision spaces, primarily on mathematical programming with several objective
functions.

- Multi-Attribute Decision Making (MADM) concentrates on problems with
discrete decision spaces. It is applied to preferable decisions among available
classified alternative by multiple attributes [Yoon and Hwang, 1995].

In the Web Service Composition paradigm, MADM has been adopted to optimize
decisions under complex environment. They are able to evaluate a series of discrete candidates
with predefined attributes. In a nutshell, there are three steps in applying MADM to evaluate
the operation candidates:

- Step 1: Determine the relevant attributes and operation candidates.

Operation A Operation B

in_c
A1

in_c
A2

...
in_c

An

in_c
B1

in_c
B2

...
in_c

Bn

... ...

out_c
A1

out_c
A2

out_c
An

out_c
B1

out_c
B2

out_c
Bn

Functional

Attribute

qos
A

qos
B

Non-Functional

Attribute

Construction heuristics
Attribute

|CB
in
||CA

out
|

Multi-semantics Decision Making

Chapter 5: SEwsDM: A Multi-Attribute Semantic Matchmaking Engine

45

- Step 2: Assign user-defined importance weights to the attributes.

- Step 3: Attach the numerical values to determine a ranking of each candidate.

Given a set of m candidates denotes as O1, O2,…,Om and their individual attributes denoted
as Aij. Assumed that decision maker has determined the relatedness of attributes denotes as w1,
w2,…,wn. In the end of step 2, the decision matrix has been generated as follows:

 [

]

where, () denotes the normalization procedure to transfer the distinct scales of

attributes to a numerically comparable scale. Moreover, Score techniques are utilized in the
step 3 to determine the affinity of each candidate. Many research efforts have been made for
MADM. Different methods vary in their normalization schemas and in the manner of scoring
candidates. In the rest of this section, some well-known MADM methods will be introduced.

Simple Additive Weighting (SAW) is the best known and most widely used method for
MADM [Jaeger and Rojec-Goldmann, 2005]. In the normalization procedure, it considers
both negative and positive attributes denoted as Apos and Aneg respectively. Negative attributes
mean that the higher the value, the worse off they are. The normalization function for negative
and positive attributes is given by:

 ()

{

According to the generated decision matrix, the candidates are ranked based on the score

method defined as:

 ∑ ()

Weighted Product Model (WPM) processes sound logic and is computationally simple but
has not been widely utilized [Yoon and Hwang, 1995]. Contrary to the SAW method, the
transformation to a numerically comparable scale is not necessary when we use WPM where
attributes are connected by multiplication. The scoring method is defined as:

{

∏

∏ (
)

∏

∏ (
)

5.3 Multi-Attribute Decision Making

46

where
 and

 is the best value among all candidates of the jth attribute for positive and

negative attribute respectively. The weights become exponents associated with each attribute
value. Positive power is for positive attributes, while negative power is for negative attributes.

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) initially proposed
in [Hwang and Yoon, 1981] is also the practical and useful MADM method. It is based on the
idea that the most preferred candidate should be close to its positive ideal solution (PIS) and
far away from the negative ideal solution (NIS). TOPSIS method has been successfully used in
dealing with multiple attributes issues in many domains due to:

- its theoretical rigorousness [Olson, 2004],

- a sound logic that represents the human rationale in selection [Jahanshahloo et al.,
2009]

- the fact that it has been proved in [Zanakis et al., 1998] as one of the most
appropriate methods in solving traversal rank.

Similar to SAW, TOPSIS needs to construct the normalized and weighted decision matrix
in the first two steps. The normalization function can be defined as follows:

 ()

√∑

Considering that the TOPSIS score of each candidate depends on the distance to PIS and
NIS, two more steps are required before calculating the final similarity. The determination of

PIS denoted as and NIS denoted as should be the third step, which can be obtained
from the following formula:

 {(

 () |)

 () | }

 {(

 () |)

 () | }

The fourth step is to measure the distance of each candidate to PIS and NIS respectively.
The distance of each candidate from both ideal solutions are given by the n-dimensional
Euclidean distance:

 √∑ (()

)

 √∑ (()

)

The last step is to calculate the similarity to PIS which is measured by the relative distance
of each candidate to PIS and NIS. The most appropriate candidate is the one that has the

highest value. The score method utilized to compute closeness is finally defined as
below:

Among these three methods, the WMP method yielded results that were too extreme to be
taken into account. The reason behind that is the use of weights as exponents in the
mathematical formulation [Azar, 2000]. In [Simanaviciene and Ustinovichius, 2010], the

Chapter 5: SEwsDM: A Multi-Attribute Semantic Matchmaking Engine

47

performed sensitive analysis in terms of initial data enables the authors to figures out that
TOPSIS method is more sensitive than SAW method, especially when the initial data differ by
10% from the average criterion values. However, one of the drawbacks of classic TOPSIS is
that the normalization formula is complicated [Saghafian and Hejazi, 2006]. Moreover, the use
of Euclidean distance may have the problem associated with weights calculated twice [Lo et al.,
2010]. Accordingly, the modifications and extensions of TOPSIS are highly required for Web
Service Composition. In the following section, our scoring method implemented in SEwsDM
which is inspirited by TOPSIS will be illustrated.

5.3.2 TOPSIS based Algorithm for Multi-Attribute Decision Making

Generally speaking, the proposed matchmaking algorithm called MAMatching is based on
classic TOPSIS including three major steps similar to other MADM algorithms shown in
Figure 5-4. In the first step the related attributes of a compared operation are gathered and
refined to conform to a standard. Then a series of user-predefined importance weights are
assigned to these modified attribute values. A transformation procedure is invoked to
transform the attribute values to a linear scale. After the first two steps, the decision matrix will
be constructed. The scoring method implemented in the third step is then employed in this
normalized matrix to compute similarity of each candidate. As a result, a set of ranked
operations will be obtained. The operation listed in the first place which is the closest to 1
among other candidates will be selected. In the rest of this section, these three steps will be
illustrated in details.

Figure 5-4 MAMatching algorithm

Assumed that we have a set of annotated operations as formulized in Definition 4-1, the
functional attributes concerned the functional semantics, the QoS attributes containing the
QoS specifications and heuristic attribute with semantics to efficiently build a service chain are

extracted from the annotation file of each operation to construct a decision matrix M,
where m and n are the cardinality of a candidate-set and an attribute-set respectively. Each row

of the matrix indicates an operation candidate represented as an attribute

vector. In the original TOPSIS method, the raw data in M are directly normalized using the
formula 5-6. However, it should be noted that there is heterogeneity existing in those attribute

Collect Func. AttributesCollect QoS AttributesCollect Heur. Attributes

Tranform

Define Ideal Solution Measure Distance Rank

Step 1

Step 2

Step 3

5.3 Multi-Attribute Decision Making

48

data of an operation, especially for the QoS attributes. For instance, the units such as second
or millisecond to measure response time of a function maybe selected by different service
providers. To ensure that each column vector uses the same unit, the first step of our multi-
attribute semantic matchmaking is devoted to unit conversion among those operation
candidates. On the other hand, the intervals of the underlying attributes are quite different as
well. In this step, additional transformation will be conducted over the underlying original
attribute values to keep the values in the interval of [0, 10].

The next step is to normalize the generated decision matrix with normalization functions.
The normalization is the process which transforms the attribute values to a linear scale. In the
traditional TOPSIS, the vector normalization method as shown in formula 5-6 has been
utilized. Unfortunately, it makes no difference when normalizing between positive attributes
and negative attributes. Various normalization functions are designed to distinguish the
negative attributes from positive attributes shown in Table 5-2.

Table 5-2 Normalization methods

Norm.
Method

Positive Attributes Negative Attributes Proposed by

Vector based

√∑

√∑

[Brauers et al., 2008]

√∑

[Li et al., 2009]

Sum-based

∑

∑

[Jiang and Li., 2006]

Minimum-
Maximum
based

[Zeng et al., 2004]

[Tong and Zhang, 2006]

Logarithmic
based

 ()

 (∏

)

 ()

 (∏

)

[Zavadskas and Turskis,
2008]

After evaluating these existing methods, we recognize some limitations listed as below:

- Out-of-range problem. These methods share one thing in common that the
normalized values are dependent on some global values, such as the sum or the
maximal and minimal value over a certain dimension of attribute. It would easily
result in so-called out of range value when adding candidates with their
corresponding attribute data. Out of the range values are those newly added values
which beyond out of the limits defined for the original values. The normalized
valued for these out of the range values will probably be outside of the range of [0,

Chapter 5: SEwsDM: A Multi-Attribute Semantic Matchmaking Engine

49

1]. In this context, a re-normalization process needs to be performed to get rid of
these out-of-range values by recalculating those global values.

- Lack of accuracy. Some methods, like logarithmic based normalization function,
might not precisely normalize the values when they are smaller than 1. The main
reason behind is the use of the nature logarithm in the mathematic formulation. If
the attribute value is smaller than 1, its nature logarithm is negative. Therefore,
when applying the logarithmic based function for positive attribute, the larger the
attribute value is, the smaller its normalized value is. Accordingly, when
normalizing the attributes with value smaller than 1, we should use the function
implemented for the negative attributes and vice versa.

In SEwsDM, different to other methods, to avoid such out-of-range in the beginning,
softmax scaling is adopted to build our normalization function. The definition of “softmax
scaling” is introduced in [Pyle, 1999]:

“Softmax scaling is so called because, among other things, it reaches “softly” toward its
maximum value, never quite getting there. It also has a linear transformation part of the range.
The extent of the linear part of the range is variable by setting one parameters. It also reaches
“softly” towards its minimum value. The whole output range covered is 0-1.”

In Pyle’s book, it also indicates that a logistic function can be modified to perform the
softmax scaling as described above. That is to say, those variable’s instance value can be
transformed into the required value though logistic function. In our system the logistic
function can be defined for both positive and negative attributes as below.

 () {

To evaluate these existing methods, we did a small experiment. Assume that we have 6
operational candidates with those annotated attribute values as shown in Table 5-3. To
simplify, we assume that all the corresponded attributes have already been transformed into
the same scale.

5.3 Multi-Attribute Decision Making

50

Table 5-3 Operation candidates

Operation

Functional
Attribute

QoS Attribute Heuristic Attribute

Resp.
Time

Avail. Cost Through-
put

Reputation In. Out.

O1 0,179 350 0,98 90 8 0,91 3 3

O2 0,467 260 0,97 110 10 0,98 10 4

O3 0,462 490 0,99 110 11 0,93 10 4

O4 0,493 300 0,95 130 12 0,86 9 4

O5 0,325 170 0,96 95 4 0,62 10 5

O6 0,472 360 0,97 120 17 0,47 10 4

The bar chart shown in Figure 5-5 illustrates that in terms of the execution time of different
normalization methods, our proposed normalization method and logarithmic based method
require much less execution time than vector based, sum based and max-min based methods.
For instance, in vector based method, ratio obtained by the square root method is more
complicated. Sum-based method aims to reduce the execution time by computing ratio with
the sum of data. However, it is still a time-consuming approach.

 Figure 5-5 The execution time of normalization methods.

Figure 5-6 indicates the normalization results using all mentioned methods. When dealing
with data within the interval [0, 1], it is obvious that all mentioned methods, except logarithmic
based method can be used to normalize data. Because of the nature logarithm used in
logarithmic based method, it shows complete opposite results. Though it is proved that
logarithmic based method yields more stable results in resolving multi criteria decision making
problem in the paper [Zavadskas and Turskis, 2008], we found that when handling attribute data
which are larger than 10, the normalized results will be approximately equal to each other as
shown in Figure 5-7. In this context, because of the preprocessing in the first step, the
normalized values generated by our proposed logistic based method are more segregated.

Chapter 5: SEwsDM: A Multi-Attribute Semantic Matchmaking Engine

51

Figure 5-6 Normalization of data within interval [0,1]

Figure 5-7 Normalization of data within interval [50, 500]

To sum up the above arguments, our proposed logistic appears to be more competitive
than others. To avoid the out-of-range problem, the normalized valued are generated
depending only on the current original values. From the performance perspective, the newly
method requires less execution time than other methods. Moreover, the normalized values
generated by logistic base method can still remain segregated as in the other methods no
matter if the original attribute values are smaller than 1 or larger than 100.

5.3 Multi-Attribute Decision Making

52

From now on, the decision matrix can be constructed by assigning the weight value of each
attribute dimension to the corresponding normalized values of each candidate. Take the
operation candidates listed in Table 5-3 as an example, the weights of attributes, elicited by
three decision makers are shown in Table5-4.

Table 5-4 Weight values of three decision makers

DMs

Functional
Attribute

QoS Attribute Heuristic Attribute

Resp.
Time

Avail. Cost Through-
put

Reputation In. Out.

DM1 0,2 0,4 0,05 0,15 0,05 0,05 0 0,1

DM2 0,2 0,05 0,05 0,15 0,4 0,05 0 0,1

DM3 0,4 0,15 0,05 0,2 0,05 0,05 0,05 0,05

In the end of step 2, the decision matrix M which will be used in the following steps is
obtained as below:

[

]

The last step is to rank the candidates by measuring their distances to PIS and NIS
respectively. Since in the last steps, both positive and negative attributes are normalized in the
same scale, the definition of two solutions in Eq. 5-7 is modified by:

 {

 } { }

 {

 } { }

In traditional TOPSIS algorithm, the Euclidean distance is used to measure the distance
shown in Eq. 5-8. However, the problem may occur when using such distance, as the weight
values have been calculated twice [Lo et.al 2101]. To overcome this problem, in our system
the weighted Minkowski distance [Steuer, 1986] shown in below has been utilized.

 [∑ (

)

]

 [∑ (

)

]

where p=2 which is known as the weighted Euclidean distance. Again referring to the example,
by applying Eq. 5-12, the distance matrix can be obtained as follows:

Chapter 5: SEwsDM: A Multi-Attribute Semantic Matchmaking Engine

53

[

]

Here, the first column represents the distance from Oi to PIS while the second column
indicates the distance to NIS. According to such distance matrix, by applying the Eq.5-9 the
relative closeness coefficient for each candidate can be obtained as follows:

Therefore, based on the coefficients above, these six candidates are arranged in the following

order: .

For each set of weight values, the TOPSIS based ranking algorithms are applied. Table 5-5
shows the ranking result using different criteria.

Table 5-5 Ranking results by different DMs

DMs No.1 No.2 No.3 No.4 No.5 No.6

DM1

DM2

DM3

5.4 Implementation of SEwsDM

In this section, the implementation of semantics enhanced decision making algorithm will be
introduced in details. To be brief, the introduced single attribute matchmaking algorithm aims
to find a set of semantically related functions, and the ranking of those correlated services are
executed by multiple attributes matchmaking algorithm.

Note that in most cases more than one suitable function will be invoked in terms of a set of

available concepts denoted as {

 } . To find the related functions using

operational similarity defined in Definition 5-3 will lead to redundant comparison work
between available functions and those compared functions. Therefore, to simplify the

matching process, we choose a set of current available concepts denoted as) as

the start point of the matchmaking algorithm. Here, is a set of required category
information, and C is a set of expected concepts. How to define such available concepts will
be discussed in the next section. The reason behind this strategy is to consider all the available
functions as a whole. In addition, to speed up the composition in the next phase, in SEwsDM
we distinguish the backward matching from the forward matching. Before going into details,
let us define some kinds of matchmaking algorithms which are utilized in SEwsDM.

Definition 5-5 (Categorization Match). Assumed that) is a set of current

available concepts and the compared function ,

5.4 Implementation of SEwsDM

54

Cat is a boolean function which compares the categorization semantic
between the function and the current available information using similarity function defined in

Definition 5-2. For forward matching, Cat is true if the following conditions
hold:

 ⋀ ()

For backward matching, Cat is true if the following condition is fulfilled:

 ⋀ ()

Definition 5-6 (Forward Matching). Given an annotated current available set of

concepts . Let

 be an annotated function.

Then is a succeeding function of , if the following conditions hold:

i)

ii)
 ()

Forward matching aims at finding succeeding services whose input concepts plugin with the
current available concepts. Therefore according to the Definition 4-2, the similarity between
these two operations should be greater than 0.5.

Definition 5-7 (Backward Matching). Let be a set of available concepts.

Let (

) be an annotated service. Then is a preceding

service of if the following conditions are satisfied:

i)

ii)

 ()]

Backward matching targets to find the preceding services whose output concepts subsume
the input concepts of current operations. Based on the Definition 4-2, the similarity between
these two operations should be distributed between 0 and 0.5.

Chapter 5: SEwsDM: A Multi-Attribute Semantic Matchmaking Engine

55

Figure 5-8 Activity diagram of SEwsDM

Figure 5-8 depicts the activity diagram of SEwsDM. The matchmaking algorithm is split
into two parts: Forward Matching (FMatch) and Backward Matching (BMatch). Figure 5-9
shows the pseudo-code for these two matchmaking algorithms. Each matchmaking algorithm
consists of three matching processes, namely categorization matching, operational matching
and ranking.

More specifically, it starts with the recognition of those category-matched operations.
Those found operations will be sent to the Operational Matching component where based on the
ontology based single attribute matching algorithm (SAMatching) introduced in Section 5.2.2,
the operational level similarity for forward and backward matchmaking is calculated by
applying Definition 5-5 and Definition 5-6 respectively. Note that, in FMatch, a successor is
added to the result set if and only if all its input concepts are satisfied by the existing concepts
while in BMatch, an operation is added to proceeding operation set if at least one of its outputs
concepts plugin the input concepts of current operations.

Because of this slight difference, in the Ranking process, various construction heuristics
attributes will be selected together with functional similarity generated from Operational
Matching and QoS information from the annotation of the operation itself to perform the
multi-attributes semantic matchmaking (MAMatching). Regarding the FMatch, the number of
output concepts can be chosen as the heuristics attribute. It is based on the conjecture that if
an operation provides more output concepts, the probability that the final goal is achieved will
increase. Concerning the BMatch, the effected output concepts and the number of input
concepts might be selected for the heuristic attributes. Note that the BMatch differs from
FMatch. There is no need that all the outputs of the preceding candidates are matched to all

[not matched]

[matched]

SAMatching SAMatching

MAMatching MAMatching

[Forward Matching] [Backward Matching]

Categorization

Matching

Operational

Matching

Ranking

SAMatching SAMatching

[matched]

[not matched]

5.5 Summary

56

inputs of current available operations. That is to say, the preceding candidates must be
combined together to jointly satisfy the inputs concepts of existing operations. In this context,
the more the effected outputs the operation has, the better the operation is for the future
process. On the other hand, if a service requires many inputs, it seems to be harder to satisfy.
Therefore the number of inputs also needs to be taken into account.

Figure 5-9 Matchmaking algorithms in SEwsDM

5.5 Summary

In this chapter, a multi-attribute semantic matchmaking engine called SEwsDM is presented.
The matchmaking engine is a key step for the further Web Service composition process. To
facilitate the automated composition process, the matchmaking algorithm should be able to
retrieve relative services efficiently and to select the most suitable service for each single step as
well. Therefore, our newly developed engine, SEwsDM, consists of two sub-engines called
SAMatching which aims to find matched services including category and operation level
matching. The other engine called MAMatching is focusing on ranking results among the
discovered operations based on multi-attribute semantics of services, such as functional
closeness, QoS semantics and construction heuristics.

Generally speaking, our newly developed semantic matchmaking engine SEwsDM attempts
to improve the traditional matching algorithms in the following aspects:

- Makes the logic-based DoM more precisely. According to the technical survey in
Section 3.3, existing matching efforts determine the logical DoM share one thing in
common that several logical filters in terms of the concepts referred to the ontology
are defined. Typically, to measure the DoM, various numerical values are assigned to
each of those pre-defined logical filters. One major concern of such approach is that it
does not consider the semantic distances of the properties involved. To increase the
accuracy in assigning matching degree, semantic distances should be taken into
consideration. To solve this problem, in SEwsDM, a similarity model which is capable
of providing more precisely DoM by integrating non-logical based similarity into the
logical filters. By doing so, on the one hand, the accuracy of similarity is dramatically

Algorithm 1 Forward Matchmaking: FMatch(C,F,W)

Inputs: a set of existing concepts, C

 a set of available functions, F

 a set of weight vectors, W

Data: degree of functional matching, ssim

 degree of final matching degree, d

Output: a set of successor operations, S

Begin

 foreach function f do

 if (Cat_Match (C, f) == true) then

 ssim = SSim(C, f)

 d = MAMatching(ssim,f.qos, f.outputSize(),W)

 add f to S

 end if

 end for

 rank f in S according to d in descending order

return S

End

Algorithm 2 Backward Matchmaking: BMatch(C,F,W)

Inputs: a set of concepts, C

 a set of available functions, F

 a set of weight vectors, W

Data: degree of functional matching, psim

 degree of final matching degree, d

Output: a set of successor operations, S

Begin

 foreach function f do

 if (Cat_Match (C,f) == true) then

 psim = PSim(C,f)

 d = MAMatching(psim,f.qos,f.OutputSize(),f.inputSize(),W)

 add f to S

 end if

 end for

 rank f in S according to d in descending order

return S

End

Chapter 5: SEwsDM: A Multi-Attribute Semantic Matchmaking Engine

57

improved as shown in Table 7-3. On the other hand, the similarity between services or
operation will still remain asymmetric in SEwsDM, which is not supported by pure
non-logical methods (see Section 5.2).

- Enhances the ranking mechanism with multi-attribute decision making
algorithm. The ranking algorithm in existing system mainly depends only on the non-
logical DoM which examines only the functional aspects such as IOPE information
between service providers and service requirements. However, other semantics for
instance QoS attributes and construction heuristics are also play a crucial role to select
the appropriate services. In SEwsDM, we treat the service selection problem as a multi-
attribute decision making problem where all these mentioned semantics are taken into
account in a TOPSIS based ranking algorithm (see Section 5.3). The comparison with
other existing solutions is shown and discussed in Section 7.2.

58

5 . C h a p t e r 6

“By describing a service as a process in terms of inputs, outputs, preconditions and effects,
using the metaphor of an action, composition can be viewed as a planning problem.”

-Mark Carman

Most research efforts for managing complex distributed resources have been focusing on Web
Services technology. As such, the number of available Web Services increased dramatically
during the recent years. However, in almost all modern applications, especially in those
complicated scientific applications, it is often impossible to find fully satisfied Web Services.
Therefore, composing the most appropriate Web Services from existing services to fulfill the
complex requirements of a scientific task becomes even more indispensable. The major
challenge when composing web services is scalability, as the search space will exponentially
increase if the number of available Web Services increases. Toward this problem, efficient
composition algorithms are highly preferred.

CONTENTS

6 WEB SERVICE COMPOSITION AS PLANNING IN SEWSPL ... 58

6.1 REQUIREMENTS ANALYSIS FOR AUTOMATIC PLANNING .. 59
6.2 SEWSPL FRAMEWORK .. 60
6.3 WEB SERVICE COMPOSITION FORMALISM .. 62

6.3.1 Traditional Modeling of A Web Service Composition Problem .. 62
6.3.2 PDDL 3 based Planning Model for Web Service Composition ... 64

6.4 GRAPHPLAN ALGORITHM .. 67
6.4.1 Planning Graph ... 68
6.4.2 Graph Expansion ... 69
6.4.3 Solution Extraction .. 70

6.5 ENHANCEMENTS OF GRAPHPLAN IN SEWSPL ... 70
6.5.1 Simplified Ordered Planning Graph .. 71
6.5.2 Goal-Oriented Bi-directional Graph Expansion Algorithm ... 74
6.5.3 Workflow based Planning Extraction ... 78

6.6 SELF-ADAPTIVE COMPOSITION.. 82
6.7 SUMMARY .. 84

6Web Service Composition as Planning in
SEwsPL

Chapter 6: Web Service Composition as Planning in SEwsPL

59

6.1 Requirements Analysis for Automatic Planning

This chapter begins with the requirements analysis for the automated Web Service
composition derived from the literature review presented in Section 3.4. To automate the
composition of services, AI approaches were often been exploited. Considering the
characteristics of Web Services, additional requirements for the AI Planning techniques are
identified as follows:

- Enables Quality of Plan (QoP) awareness in the composition (R1). In
some previous work, QoS has been considered to find the most suitable service
for Web Service discovery. However, QoP, which is a logical combination of
QoS has been largely ignored in the most cases of AI planning [Baryannis and
Plexousakis 2010]. Notice that in practice, a number of combinations of
component services might satisfy a given task with different levels of quality.
Some of them probably result in higher cost but quicker response time. Some
may lead to better accuracy with a long response time. Meanwhile, different
users can customize the quality requirements in different ways. Therefore, to
build a chain fulfilling the user’s requirements, a good automated service
composition system should take care of and understand the quality of services.

- Allows the dynamic composition of Web Service (R2). The composition
results generated by most of the research efforts that use AI planning are static
without taking account of the dynamic changes of services. However, in the real
applications, due to the dynamic environment of Web service, such as the
shutdown of the server, service upgrade, etc., the availability of service will
change frequently. Therefore, there is a need to enable dynamic generation of
the composition chains adapting to such dynamic changes, which have not been
adequately explored in traditional AI planning approaches.

- Achieves scalability during the composition process (R3). Due to the
enormous number of existing services and their applicability in many different
processes, scalability problem is raised to new heights for real world problems
[Hennig and Balke, 2010]. Owing to the lack of scalability in most of the AI
planning techniques, this has been one of the reasons behind the fact that
automated composition techniques have not been widely adopted in practice.
Instead, the manual service composition tools have been often applied in this
area. A new mechanism to provide the ability to solve large real world problem
is highly required in an automated composition system.

In the following sections, we present the design and implementation of AI planning based
service composition framework called Semantics Enhanced Web Service Planner (SEwsPL),
which tries to achieve the mentioned requirements.

6.2 SEwsPL Framework

60

6.2 SEwsPL Framework

Our research work addressed the problems mentioned in the previous section by introducing a
novel AI Planning Graph based planner called SEwsPL. Generally speaking, it enables the
automated composition by extending the classic AI GraphPlan algorithm with a goal-directed
bidirectional expansion strategy and representing the final plan as a scientific workflow for the
future reuse.

An abstract framework is presented in Figure 6-1. The SEwsPL system consists of four
functional modules: Problem Modeling, Graph Expansion, Plan Extraction and Plan Repair.

First, required data structures for planning are created and filled in the Problem Modeling
modular. Graph Expansion and Plan Extraction are core modules concerning the creation of a
Planning Graph and the search for the final plan. Different to traditional GraphPlan algorithm
where expansion is performed with a forward-chaining strategy while the extraction of the
final plan is achieved by a backward-chaining algorithm, in SEwsPL, a bidirectional expansion
algorithm is developed for the expansion procedure, which aims to reduce the size of whole
Planning Graph. Rather than invoking the time-consuming backward search, we intend to
represent the final plan directly from the generated Planning Graph to a scientific workflow
which can be easily visualized in the workflow management system. Details will be illustrated
in Section 6.4.

In addition, considering that the vast majority of AI Planning techniques produce only a
static plan without taking into account of the dynamic changes, in SEwsPL, an additional
modular called Plan Repair is developed to support self-adaptation. This modular aims to find
an alternative solution when inconsistencies occur. A plan repair algorithm is proposed by
reusing most of the original plan as possible. All technical details can be found in Section 6.5.

Figure 6-1 The SEwsPL framework

Chapter 6: Web Service Composition as Planning in SEwsPL

61

We use a service composition scenario mentioned in Section 2.1 as a running example to
illustrate our approach.

Let us assume that a renewable energy scientist attempts to do an experiment about the
wind speed forecast for selected cities across the United States. Now he only has some local
information about the selected cities, such as city name, IP address. And he expects to find an
existing service containing the wind speed forecast data with high throughput. To satisfy the
requirements denoted as Wr in the following Table 6-1, five Web Services with six operations
will be involved. Here, we assume that all the Web Services are already annotated with
semantics using QWSMO-Lite (see Chapter 4). The details of semantics including both the
functional and non-functional descriptions are presented in the Table. To simplify the use case,
we consider only two important generic QoS attributes, namely throughput and response time.

Table 6-1 A Web Service composition example

Web Service Operation Input Output

QoS

Thr.
Put

Resp.
Time

Wr: Request - “San Jaun”
“130.14.160.0”
2011-09-
22T23:59:59,
“Wind Speed”

KML-
NDFD

- minimal

W1:USZip GetInfoByCity City name ZipCode 17.5k 0.87s

W2:ZipcodeLookupService CityToLatLong City name Latitude,
Longitude

20k 1.5s

W3: ip2loc GetIPCountry IP-Address Latitude,
Longitude,
Country,
State, City

18k 0.35s

W4:LocationByZipService getLocationByZip ZipCode State,
Latitude,
Longitude

15k 0.25s

W5:ndfdXML LatLonListZipCode ZipCode Latitude,
Longitude

20k 0.24s

 GMLLatLonList Latitude,
Longitude,
RequiredTime,
PropertyName

KML-
NDFD

20k 0.24s

6.3 Web Service Composition Formalism

62

6.3 Web Service Composition Formalism

Before discussing the details of our framework, let us model a Web Service Composition
(WSC) problem to an AI Planning problem. A planning problem has been defined by [Weld,
1994] as requiring the following inputs:

- A description of the world start state, S0

- A goal state, Sg

- A set of actions, A

6.3.1 Traditional Modeling of A Web Service Composition Problem

STanford Research Institute Problem Solver (STRIPS) notation which was used to describe
the planning domain for a robot system called “Shakey” in the 1970ies [Fikes and Nilsson,
1971] are now widely applied to formalize a composition problem. A Web Service

composition problem in STRIPS model [Russell and Norvig, 2002] is represented by
 where S is a set of states, A is a set of available actions which are Web Services

in WSC domain, is a set of initial states and is a set of goal states [Oh and

Kumara, 2006] [Hatzi et al., 2009]. To represent the example in Table 6-1 as a composition
problem:

 { };

 { };

 { };

 { }.

It is noticed that in AI planning domain, STRIPS allows to define the actions by specifying
preconditions, an ADD-list and a DELETE-list, such a schema will be also used to formalize

the behavior of Web Services. The semantics behind it is that the Web Service can only be
applicable if its preconditions which are the service’s inputs concepts are satisfied by the

current states . After the execution of the action, the service’ output concepts will be added
to ADD-list. Considering that services do not generate any negative effects, the DELETE-list

will remain empty. In addition, the successor state will be updated with newly generated

ADD-list: For instance the atomic service

ip2loc: may be defined as follows:

 { }

 { }

Planning Domain Definition Language (PDDL) [Ghallab et al., 1998] is a de-facto standard
planning domain and problem description language. Compared with STRIPS, it provides
support for more expressive action descriptions including the definition of universally
quantified and conditional expression effects. This language is now widely accepted and used
for the representation of planning problems.

Chapter 6: Web Service Composition as Planning in SEwsPL

63

The description of PDDL is separated into two files:

- A domain file: consists of the definition of all language constructs referenced in
the action including types, predicates, function, etc. and the definition of the action
itself.

- A problem file: contains mainly the objects of the problem, the initial states and
the goal.

The PDDL description for the above meteorology service is shown as follows:

Figure 6-2 PDDL description for a meteorology service

PDDL 2.1 [Fox and Long, 2003] and PDDL 2.2 [Edelkamp and Hoffmann, 2004] have
been designed to be backward compatible with the original PDDL. It extends PDDL with
time and resources. It allows for the numeric expressions for the additional properties of an
action. The effects of an action can make use of a selection of assignment operations in order
to update the values of primitive numeric expressions. Moreover, derived predicates are also
supported which enables the handling of domain axioms. In the new version, deterministic
unconditional exogenous events are expressed using timed initial literals. In addition,
considering that the same initial and goal states might yield different plans, another extension
so-called plan metric is specified a particular problem to evaluate the generated plans. These
extensions allow us to express QoS semantics of Web Services and the plan. In [Naseri and
Towhidi, 2007], the additional quality of service processor updates the domain and problem
files with the initial and goal QoS ontology in PDDL 2.1 style. Let‘s refer to the example again.
Assume that users attempt to get KML files with the maximum throughput, Figure 6-3 shows
the descriptions in PDDL 2.1/2.2 version. Different from the original PDDL, in PDDL
2.1/PDDL 2.2, the domain file is extended by defining a function for each of the QoS
dimension and the initial and goal descriptions in problem file are modified with additional
requirements of users’ preferred QoS semantics as well.

(define(problem getKMLfile-Service)

(:domain meteorologyService)

(:init (and

 (Cityname ?a)

 (IP_Address ?p)

 (StartTime ?t_start)

 (EndTime ?t_end)

 (PropertyName ?prop)

)

)

(:goal(KML_NDFD ?k)

)

)

(define (domain meteorologyService)

 (:requirements [:strips])

 (:action ip2loc

 :parameters (?p - IP_Address)

 :precondition (IP_Address ?p)

 :effect (and

 (Latitude ?lat)

 (Longitude ?lon)

 (Contury ?c)

 (State ?s)

 (City ?c)

)

)

 ...

)

6.3 Web Service Composition Formalism

64

Figure 6-3 QoS description using PDDL 2.1/PDDL 2.2

PDDL 3.0 [Gerevini and Long, 2006] and PDDL 3.1[Helmert et al., 2008] extend the
previous versions of the PDDL language by increasing its expressive power about the plan
quality specification. It allows us to distinguish those constraints and goals which must be
achieved from those so-called preferences which may not be satisfied, but are desired. The
quality of a plan is improved by identifying the best plan which satisfies with all the strong
constraints and has the best subset of the preference. In other words, the more preferences a
plan satisfies, the better quality it processes. To this end the optimization of the plan quality is
performed by defining plan metrics with preference marks. As for the WSC domain,
unfortunately, these extended descriptions which should also be possible to apply to augment
the quality of composition chains are ignored by the most of the recent efforts in this field. In
[Lin et al., 2008] and [Sohrabi and Mcilraith, 2009], PDDL 3.0 is only be used to specify the
user preferences rather than encoding the problem domain as a whole. In their systems, to
generate a plan OWL-S based service descriptions and PDDL 3.0-style users’ preferences
should be translated to HTN-based constraints respectively.

6.3.2 PDDL 3 based Planning Model for Web Service Composition

As mentioned in the previous section, PDDL language now becomes the de-facto standard
supported by a range of AI planners. However, the enhanced version PDDL 3.1 with more
expressive power to describe QoP is ignored by most of the recent research work. On the
other side, since pure WSDL which lacks semantics annotations fails in the task of efficiently
and automatically Web Services composition, in Chapter 4, an annotation language called
QWSMO-Lite has been introduced to semantically describe the given services. Inspired by the
works done in [Hatzi et al., 2009] and [Klusch et al., 2005] where OWL-S atomic processes
correspondent to WSDL operations are translated into original PDDL and PDDL 2.1
respectively, in SEwsPL system, the planning data are extracted and collected from the
operational level of the service descriptions along with the users’ requests in QWSMO-Lite to
a PDDL 3 based format.

To simplify the parsing and communication with PDDL descriptions, we define a data
model called PDDL2Model to store the planning data for the service composition in PDDL
style as shown in Figure 6-4. Concretely, a planning class consists of a Domain class and Problem
class. Every Domain class contains many Actions specified by their Parameters, Preconditions,
Effects and QoS Metric. It is worth noting that to enhance the expression of QoS criteria, the
original PDDL 3 model is extended with additional class QoS Metric where the detailed

(define(problem getKMLfile-Service)

(:domain meteorologyService)

(:init (and

 …

 (= (Total-Throughput) 0)

)

)

(:goal(KML_NDFD ?k)

)

(:metric maximize (Total-Throughput))

)

(define (domain meteorologyService)

 ...

 (:functions

 (Response-Time)

 (Total-Throughput))

 (:action ip2loc

 ...

 (assign (Response-Time) 0.35)

 (increase (Total-Throughput) 18000)

)

 ...

)

Chapter 6: Web Service Composition as Planning in SEwsPL

65

information about QoS semantics, such as the unit, the data type, the value, etc. are stored.
Moreover, due to the reason that the involved category data might be used to reduce the
searching space for the service discovery as we mentioned in Section 5.4, in our model, we
present awareness of the current category information of a concept with a special
categoryIsAvailable() predicate. For instance, if a service takes concept A as an input and
generates concept B as an output, categoryIsAvailable(A) will be added to Precondition and
categoryIsAvailable(B) will be added to Effect. Every Problem class contains a collection of initial
states and goal states. We distinguish the soft goals from strong goals using the newly
introduced concepts named preference and constraint in PDDL 3. For example, “we would
like to get a plan with maximum throughput and availability”. In this case, throughput and
availability with a given weight values will be added to Preference class. The final goal should be
the combination of both preferences and constraints.

Figure 6-4 Simplified class diagram for the PDDL2Model

Figure 6-5 presents correlating notions of the conceptual model of QWSMO-Lite and

PDDL2Model. A set of annotated services { | } defined in

Definition 4-2, where an annotated function set { | ()}
is defined in Definition 4-1 as shown on the upper left side. The users’ composition requests
are specified as a simple service also in the flavor of QWSMO-Lite shown on the lower left
side. On the left side is the target PDDL2Model. The dash lines in between represents how to
map between each other. Specifically, each Operation of the QWSMO-Lite corresponds to an
Action in the domain file. The concepts captured from inputs/outputs are converted to PDDL
types. Moreover, QoS semantics either generic specified at the service level or domain specific
available in each operation are transformed as functions in the domain file and are assigned
values in the Action part. Similarly, input concepts along with their categories and output
concepts can be directly transformed to the Initial part and Goal part of the problem file
respectively. Furthermore the users’ QoS requests can be converted to Goal part as well with
Preference referring to soft requirements and Constraints for the strong requirements.

Planning

Domain Problem

Action

1

1 1

1

1..*

1

Precondition Effect

Parameter

1

1..*

1
1

1..* 1..*

QoS Metric

11..*

Generic QoS Domian QoS

Initial state Goal

1 1

1..* 1..*

Preference Constraint

6.3 Web Service Composition Formalism

66

Figure 6-5 Mapping from QWSMO-Lite to PDDL2Model

Based on the model above, the planning problem in our system can be
formally defined as follows:

Definition 6-1 (Planning Action A). Given an annotated service { |

 }, where { | ()}, an action for the Web

Service composition is described as a tuple with

 : is a set of concepts referred to
input parameters of a function f,

 : is the precondition to invoke a function f,

 : is a set of concepts referred
to output parameters of a function f,

 : is the effect after executing f,

 : specify QoS metric.

Definition 6-2 (Planning Initial States). Given an annotated service { |
 }, where { | ()}, the initial states of the planning

requests are described as a tuple with

 : category information is not available from the requirements,

 : is the set of input concepts referred to the input parameters of f.

Operation

Input Concepts

Output Concepts

Preconditions

Effects

Category

QoS

QWSMO-Lite

Service Operation

...

PDDL2ModelDomain

Problem

Action

<precondition>

<effect>

<effect>

<parameters>

<QoS Metric>

QWSMO-Lite

Requests
Opertaion

Category

Input Concepts

Output Concepts

QoS

Initial

Goal

<init>

<init>

<goal>

<preference>/

<constraints>

Categories

Generic QoS

Categories

Generic QoS

<preference>/

<constraints>

<QoS Metric>

Chapter 6: Web Service Composition as Planning in SEwsPL

67

Definition 6-3 (Planning Goal States). Given an annotated service { |
 } , where { | ()} , the goals for Web Service

composition is described as a tuple () with

 : is a set of concepts referred to the output parameters of an

unknown function f,

 : is the QoS requirement of the goal.

Taking the scenarios in Section 6.2 as an example again, Figure 6-6 illustrates how to map
the operations and requests to PDDL2Model. To simplify the problem, only one operation
named “GetIPCountry” of the service “ip2loc” was mapped to PDDL2Model. Here, each
action is identified by a name which is a combination of the service name and its operation’s
name. A list of “set” functions implemented in the Action class, InitialStates class and GoalStated
class is used to instantiate the object.

Figure 6-6 An example of mapping to PDDL2Model

6.4 GraphPlan Algorithm

The GraphPlan algorithm is based on constructing and analyzing a compact structure so-called
Planning Graph. Unlike the state-space graph, where a plan is a path through the graph, in
Planning Graph, a plan is a kind of flow in the network flow sense [Blum and Furst, 1997].
GraphPlan algorithm exploits the information captured in such a Planning Graph by
alternating between two main steps which are graph expansion and solution extraction. Briefly
speaking, in the phase of graph expansion, the Planning Graph is extended until a necessary
condition of plan existence is achieved, where all goals are stratified by the current available
states. Then solution extraction is started to search for a valid plan that solves the problem

<wsdl:operation name="GetIPCountry">
 <sawsdl:attrExtensions
sawsdl:modelReference="template#Precondition"/>
<sawsdl:attrExtensions
sawsdl:modelReference="template#Effect"/>
 <sawsdl:attrExtensions
sawsdl:modelReference="template#Category"/>
 <sawsdl:attrExtensions
sawsdl:modelReference="template#QoS"/>
 <wsdl:input message="tns:GetIPCountrySoapIn"/>
 <wsdl:output message="tns:GetIPCountrySoapOut"
/>
</wsdl:operation>

…

<wsdl:operation name="GetKML">

 <sawsdl:attrExtensions
sawsdl:modelReference="template#Category"/>
 <sawsdl:attrExtensions
sawsdl:modelReference="template#QoS"/>
 <wsdl:input message="tns:GetKMLSoapIn"/>
 <wsdl:output message="tns:GetKMLSoapOut" />
</wsdl:operation>

public Action MappingAction(){
ReadWebService read = new ReadWebService(ip2locwsdl);
Action action = new Action();
action.setName(read.getInputs(read.getName()));
action.setParamter(read.getInputs());
action.setPrecondition(categoryIsAvailable(read.getInputs()
));
action.setEffect(read.getOutputs());
action.setEffect(categoryIsAvailable(read.getOutputs()));
action.setQoSMetric(read.getQoS());
return action;
}

public InitialStates MappingInit(){
 ReadWebService read = new ReadWebService(Requestwsdl);
 InitialStates init = new InitialStates();
 init.setInputs(read.getInputs());
 init.setCates(read.getCates());
 return init;
 }

public GoalStates MappingGoal(){
 ReadWebService read = new ReadWebService(Requestwsdl);
 GoalStates goal = new GoalStates();
 goal.setCons(read.getOutputs());
 goal.setPref(read.getQoS());
 return goal;
 }

6.4 GraphPlan Algorithm

68

with a backward-chaining strategy. If no solution is found, the whole process will be repeated
by further expanding the Planning Graph. It is also worth pointing out that the GraphPlan is
characterized by the features of soundness, completeness, generation of shortest plans and
termination on unsolvable problems. The details of these two steps will be introduced in the
rest of this section.

6.4.1 Planning Graph

Mathematically, a Planning Graph is a directed layered graph containing two types of
nodes, namely proposition nodes and action nodes. The layers alternate between these two
kinds of nodes. Figure 6-7 shows an example of Planning Graph for the scenario above. It

starts with a proposition layer denoted as consisting of one node for each proposition in the

initial states. The second layer is an action layer, containing possible action nodes whose

preconditions are satisfied by the proposition nodes in In our example, W1, W2 W3 W4 W5

are added into , since their preconditions are present in . Similarly, a proposition layer

will be the third layer which comprises the propositions nodes in and the proposition nodes

representing the effects of action nodes in In our use case, is updated with {Country,
Latitude, Longitude, State} which are effects of those newly added actions. According to the

proposition nodes in , the operation “GMLLatLonList” of W5 is available in the new action

layer A1. In the followed proposition layer , the proposition nodes are updated with “KML”.
Since all goal states are now reachable, the construction of the Planning Graph stops in the

current layer .

Moreover, the relations between action nodes and proposition nodes are defined by three

kinds of edges. An action node in is connected by incoming precondition edges to its

preconditions in , is connected by add-edges to its add-effects in and by delete-edges to

its delete-effects in . Take W2 in as an example, the precondition edge shown as a blue
line in Figure 6-7 connects to its precondition “City” in the current available proposition layer

 , while the add-edges show also in a blue line connect to its add-effects, {Latitude, Longitude

}, in the next proposition layer .

Furthermore, mutual exclusion relations are defined in a Planning Graph for action nodes
and proposition nodes in the same layer. That means if two actions or two propositions in a
given action layer and proposition layer respectively cannot be contained in a valid plan, these
two actions and propositions are mutually exclusive. The possible mutual relations between

two action nodes

 in the kth action layer are interference, where
 (or

) deletes a

precondition or an add-effect of
 (or

) and competing needs, where p, a preconditions of

 is mutually exclusive with q, a precondition of

 in Pk. A mutex relation holds between

two propositions

 , if
 (or

) is the negation of
 (or

) or if all ways of achieving

these two propositions are pairwise exclusive.

Chapter 6: Web Service Composition as Planning in SEwsPL

69

Figure 6-7 An example of a Planning Graph

6.4.2 Graph Expansion

Graph Expansion aims to generate a Planning Graph which guilds its search for a plan in the
next phase.

Let be a planning problem as presented in Section 6.3, the Graph
expansion algorithm aims to grow the Planning Graph, until all goal propositions are present.
In the end of this stage, a Planning Graph which is a sequence of layers of nodes and mutex

pairs are obtained: { } . It is worth noting that such

Planning Graph does not depend on the goal states, The same Planning Graph will be used

for different planning problems that have the same set of actions A and initial state .

The expansion starts from the initial state . The procedure includes the generation of a

set of actions , mutex actions , proposition nodes and mutex propositions .

The action layer is generated by adding action nodes a, whose preconditions are present at
current proposition layer and no two of them are exclusive:

 { | } The detected exclusive

actions are added to . Creating a proposition layer is performed by adding both add-

effects and delete-effects of the inserted actions in :

 { | } . Similarly, the exclusive

propositions are added to . The expansion terminates if all goal states appear in the
proposition layer or the graph reaches a fixed-point level where two consecutive layers are
identical.

To keep the matters simple, Figure 6-7 illustrates an example expansion procedure without
taking account of the mutex relations between actions and propositions. It starts with a set of

known concepts listed in , the Web Services whose preconditions are available in are

added to create the action layer , the expansion continues, until is generated where all
goals are present.

W
1

W
2

Preconditionedge

W
3

City

IP

TS

TE

WS

City

IP

TS

TE

WS

Zip

Lat

Long

State

Country W
5
.2

City

IP

TS

TE

WS

Zip

Lat
Long

State

Country

KML

P
0 A

0
P

1
P

2A
1

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Add-effects edges

W
4

W
5
.1

6.5 Enhancements of GraphPlan in SEwsPL

70

6.4.3 Solution Extraction

When the Planning Graph reaches a proposition level where all goal propositions are present
and none are pairwise mutex, the search for a solution plan proceeds with layer-by-layer
backward-chaining approach.

 In particular, given a Planning Graph, , where the

goals for time i, , the solution extraction procedure starts

from the proposition layer at time i and attempts to look for a set of actions at time ,

 that achieve all these goals, as add-effects and are not exclusive with any other

actions already selected. Afterwards, the preconditions of these actions in make up new

goals at the time : { | }. This procedure continues,

until layer 1 is successfully reached. Then a solution plan is obtained { } which is
the corresponding sequence of actions. This strategy is based on the idea that if those newly

formed goals can be achieved at time , then the original goals can be solved at the time .
In the case that the goals in cannot be satisfied, then the algorithm will backtrack over

other combinations of actions of Aj-1 which can achieve the goals at time . If there is no

solution found by time and the PlanningGraph is not leveled off, then the Graphplan’s
algorithm will extends the PlanningGraph with additional actions and a proposition layer, and
then tries to extract the solution again.

To make this more clearly, let us consider the meteorological problem above again.
According to the Planning Graph generated in the first phase shown in Figure 6-6, we notice

that { } is in without mutex. The only action in that achieves is the

operation “GMLLatLonList” denoted as , hence { } . At time 1, the

preconditions of the action in form the new goal: { }. Since

{ } are available in , the possible action set for achieving this goal is { }.
The new goals become: { } which are present in already. Now the layer at time 0
is successfully reached. On the other words, the solution plan for solving this problem is:

 {{ } { }}.

6.5 Enhancements of GraphPlan in SEwsPL

As introduced in the Section 6.4, the GraphPlan’s algorithm is characterized by the features of
soundness, completeness, generation of shortest plans and termination on unsolvable
problems. Furthermore, those Planning Graphs which reveal constraints with polynomial size
can be built in polynomial time. Accordingly, in our SEwsPL planner, GraphPlan’s algorithm is
adopted to find the solution plan efficiently. However, besides the lack of quality which has
been addressed by the semantic annotations mentioned in Chapter 4 and semantics
matchmaking introduced in Chapter 5, the original GraphPlan still has some limitations:

- Irrelevant information in the Planning Graph. Due to the forward-chaining used in
GraphPlan for the expansion of the Planning Graphs, the size of the graph only
depends on the number of initial states and the available actions. Too much irrelevant
information will be contained in the Planning Graphs in the case that the many actions
and their propositions are available, but only a few subsets of those actually
correspond to the goals, which will probably lead to a state-space explosion during the

Chapter 6: Web Service Composition as Planning in SEwsPL

71

graph expansion phase of the planning. [Kambhampati et al., 1997][Parker,
1999][Gupta et al., 2007][Feng and Sun, 2010].

- Redundant search in the solution extraction phase. The original GraphPlan’s
algorithm for the extraction of solution plans is quite time-consuming. The big source
of inefficiency in the search algorithms is the branching factors of the graph
[Kambhampati, 1999] [Ghallab et al., 2004] [Yan and Zheng, 2008], since the backward
search may try a redundant search among actions or propositions that cannot be
reached from the initial states.

This section addresses these problems by providing a so-called SEwsPL planner which is an
enhancement of the original GraphPlan in both graph expansion phase and solution extraction
phase. In the rest of this section, these enhancements will be introduced in details.

6.5.1 Simplified Ordered Planning Graph

Before discussing the details of the algorithm, let us consider the specific features of
Planning Graphs used in Web Service Composition domain first.

As we introduced before, in a classical Planning Graph, each action may have both add and
delete effects. For instance, the add-effect of the action “unstack block A from block B” in the
block world will be “block A is on the table”, while its delete-effect might be “there is no block
on block B”. However, in the Web Service Composition domain, each Web Service only has a
set of add-effects.

Moreover, since there is no action or proposition which is the negation of the other, it is
not necessary to consider the mutual relation between either action nodes or proposition
nodes in the Web Service paradise.

Furthermore, in the original Planning Graphs, since all selected actions are exactly matched
with the given proposition nodes, there is no need to express additional information about the
degree of matching in the graph. However, for automated Web Service Composition such
matching information plays a significant role in recognizing the most reasonable solution
plans.

Various approaches have been proposed to define the Planning Graph in the Web Service
Composition domain. In [Yan and Zheng, 2008], such a Planning Graph is defined as a
Simplified Planning Graph with the definition shown below:

“A simplified planning graph is a planning graph where each pair of actions is independent and
no mutex relations exist between actions or propositions.”

Unfortunately, the Simplified Planning Graph still lacks the matching semantics. In [Li et al.,
2010], a Weighted Planning Graph (WPG) is proposed. The WPG is constructed by adding
the degree of service matching as the weight to the add-effect edges of the original Planning
Graph. As a result, it facilitates the simplification of the graph by avoiding adding the actions
whose effects are already present in the proposition layer, and their weights are less than the
previous added actions. However, as pointed out by the authors, the matching weight is
calculated without considering the non-functional natures of the services. On the other hand,
how to reduce the time to build such a WPG is another issue needed to be taken into account

6.5 Enhancements of GraphPlan in SEwsPL

72

in their future work, since when adding a new action much more time will be spent to
compare the weights of different effects.

In SEwsPL, we define the Planning Graphs as a Simplified Ordered Planning Graph
(SOPG) shown in Figure 6-8. A SOPG grows with a sequence of ordered Action nodes and
Proposition nodes. Unlike the classic Planning Graph, only two kinds of edges are available in
SOPG, namely Precondition edge and Add edge, since there are no delete-effects in Web Services.
Each action node is connected to the current and the next proposition layer with a set of
associated Precondition edges and Add edges. It also should be noted that to facilitate the discovery
of actions, Category information is also available in SOPG.

Figure 6-8 Data structure of SOPG

To facilitate the extension of the planning graph, we distinguish the forward graph from the
backward graph. Their definitions are presented as below:

 Definition 6-4 (A Forward SOPG: F-SOPG). Given a planning problem
 defined by Definition 6-1, 6-2 and 6-3. is a layered graph where the

layers of nodes form an alternating sequence of propositions and actions:
 where

 { | }
 :

 {

 { | }

 { | }

 :

SOPG

Edge

Layer

Proposition

Layer
Action

Layer

Precond.

Edge
Add

Edge

Action

Node

1..*

Proposition

Node
1 1

1..*1..*

1

1

1

1

1

1..*

1..*

Nodes are

ordered based on

Similarity

1..* 1..*

Category

1..*

1

1..*

1

Chapter 6: Web Service Composition as Planning in SEwsPL

73

 {

 { | }

 { | }

Definition 6-5 (A Backward SOPG: B-SOPG). Given a planning problem
 defined by Definition 6-1, 6-2 and 6-3. is a layered graph where the

layers of nodes form an alternating sequence of propositions and actions:
 where :

 {

 { | }

 { | }

 :

 {

 { | }

 { | }

These two kinds of the Planning Graphs, illustrated in Figure 6-9, aim to capture the
information from the initial states and goal states respectively. Unlike an action layer and a
proposition layer in a classic Planning Graph, in a SOPG, the action nodes of an action layer
are arranged according to their degrees of matching with the current proposition nodes.
Meanwhile, a proposition layer consists of not only the proposition nodes obtained from the
previous action layer, but also the information of the associated categories. The advantage of
creating such additional knowledge in the graph is to recognize the related actions among a
large amount of available actions more efficiently. Details of the discovery procedure will be
discussed in the next section.

 Owing to the various ways to build the Planning Graph, discrimination between F-SOPG
and B-SOPG is listed below:

- Starting and end points: Building a F-SOPG starts from the initial situation and stops
when all its goal states are reachable, while creating a B-SOPG begins with the goal
states and terminates when it reaches the initial states.

- The semantics of an operation: Intuitively, the semantics of an operation in F-SOPG is
that an operation is only applicable if its preconditions are satisfied by the current
proposition nodes. However, in B-SOPG, an available action means there is at least
one of its effects presenting in the current proposition layer.

- The construction of a proposition layer: In F-SOPG, the proposition layer is updated
by adding the effects of action nodes in the previous action layer to the previous
proposition layer. Nonetheless, in B-SOPG, the new proposition layer is created by
only the associated preconditions and categories of the actions in the previous action

6.5 Enhancements of GraphPlan in SEwsPL

74

layer. Moreover, a proposition layer in F-SOPG contains a set of categories and
concepts, while in SOPG, a proposition layer consists of a sequence of sets of
categories and concepts. With such structure, the size of the graph can be easily
reduced when applying the expansion algorithm. Details will be given in the next
section.

Figure 6-9 Examples of SOPG: (a) F-SOPG (b) B-SOPG

6.5.2 Goal-Oriented Bi-directional Graph Expansion Algorithm

As we mentioned above, one of the limitations of the traditional GraphPlan is the possible
irrelevant action and proposition nodes generated in the Planning Graph. The main reason
behind it is because of the forward chaining strategy applied in the expansion phase. The goal-
directed planer called Bsr-graphplan [Parker, 1999] expands its graph from the target sets with
backward chaining. Although it is capable of reducing the size of the Planning Graph, it makes
the solution incomplete. Accordingly, to build an efficient Planning Graph, the trade-off
between the forward and the backward chaining needs to be addressed.

A novel bidirectional expansion algorithm based on the Simplified Ordered Planning

Graph is applied in SEwsPL. Let be a planning problem as presented in

Section 6.3 such that are the initial states and the final states respectively and is a set of

available operations. A forward expansion of F-SOPG starting initially from and a
backward expansion of B-SOPG from the goal states are executed alternatively. Such
repeatable process will continue until there is no active proposition node existing in the B-
SOPG or these two graphs are leveled off.

Algorithm 1 shown in Figure 6-10 is the main algorithm for the expansion procedure. First,

 the proposition layers of an F-SOPG and a B-SOPG are initialized with the initial
conditions and goals respectively. A comparison function between these two proposition
layers presented in Figure 6-11, is then proceeded to reduce the number of involved active
proposition nodes in the B-SOPG by removing those proposition nodes already achieved in
the F-SOPG.

FP
0

FA
0

FP
1

Category:

FP. Cat

Concepts:

FP. C

Null

A

B

C

O
1

O
2

Precondition

Edge

Ordered

Action List

A

B

C

D

C
A

C
B

C
C

E

BA
0

Add

Edge

O
8

O
9

O
7

...

BP
0

X

Y

Z

BP
1

Null

Add

Edge

Ordered

Action ListC
n

C
m

A

D

E

H

F

Precondition

Edge

...

Category:

BP. Cat

Concepts:

BP. C

F

(a) (b)

Chapter 6: Web Service Composition as Planning in SEwsPL

75

Second, a forward expansion algorithm, FExpand, and a backward expansion algorithm,
BExpand, are used to expand the F-SOPG and B-SOPG iteratively. It is worth noting that
these two algorithms expand the graph with different paces. Specifically, the backward
expansion is much faster than the forward expansion. An F-SOPG grows dramatically by
adding the effects of the newly added actions to the proposition layer, while the size of a B-
SOPG increases relative slowly by creating a new proposition layer. Hereby, slowing down the
forward expansion and speeding up the backward expansion will help to reduce the size of the
whole search space. In addition, within each loop, to control the size of the B-SOPG, the
current proposition layer of B-SOPG is checked with the comparison function by removing
those redundant propositions.

The expansions of the F-SOPG and the B-SOPG continue until they are subject to the
termination conditions. In our algorithm, three kinds of loop termination conditions are
defined as below:

- Both directions of the expansion terminate, if current proposition layer of the B-

SOPG is empty: . It means that all proposition nodes in the B-SOPG are

available in the F-SOPG.

- The forward expansion, FExpand, terminates, if the current F-SOPG reaches a fixed

point where two consecutive layers are identical: .

- The backward expansion, BExpand, terminates, if the current B-SOPG is leveled off:

 .

Figure 6-10 A pseudo-code description of the bidirectional
expansion

Algorithm Expand(A,S
0,

G)

Inputs: a set of available actions A,

 initial states, S
0

 goal states, G

Data: pace of the backward expansion, beta

Output: a F-SOPG, FG=<FP
0
,FA

0
,…,FP

i
>

 a B-SOPG, BG=<BP
0
,BA

0
,…,BP

j
>

Begin:

 i0, j0, FP
i
 S

0
, BP

j
  G.S

g
, BP

j
  CompareProps(FP

i
,BP

j
)

 F-go true, B-go true,

 while (BP
j
.size()>0 || (F-go && !B-go) || (!F-go && B-go)) do

 if F-go then FG  FExpand(FG)

 if B-go then BG  BExpand(FG,BG,beta)

 update i, j

 BP
j
  CompareProps(FP

i
,BP

j
)

 if (Fixedpoint (FG)) then

 F-go false

 continue

 end if

 if Fixedpoint (BG) then

 B-go false

 continue

 end if

 end while

 return FG, BG

End

6.5 Enhancements of GraphPlan in SEwsPL

76

Figure 6-11 The comparison part of the expansion algorithm

Figure 6-12 shows the forward expansion and backward expansion sections of the
algorithm Expand(A,S0,G). These two expansion procedures correspond to

generate , from the current proposition layer and respectively.

Specifically speaking, and are generated according to the FMatch and BMatch
algorithms which are TOPSIS based matchmaking algorithms illustrated in Chapter 5.4. These
matching functions allow searching the related operations in a large operation repository and
ordering found operations in terms of a multi-attributes similarity calculated by TOPSIS. The
only difference between them is the rule by which they discover the succeeding actions. For
the forward matchmaking, all the inputs of an action should be satisfied by the current
propositions, while in the backward matchmaking, the valid succeeding actions are those
actions whose effects are completely or partly available in the proposition layer.

Adding the new proposition layer involves two steps. In the first step, all the
category information of the newly added actions are inserted into the category set of the

previous proposition layer . Afterwards, the propositions representing the effects of those

new actions are added to the concept set of . Compared to the strategy of generating a
forward proposition layer, rather than updating the previous layers with new elements, the

 is a completely new layer containing only the related concepts and category information

of the action in .

 Furthermore, it is worth noting that as we discussed above, in order to reduce the size of
the graph, these two graphs are allowed to be expended at different paces. Since the size of F-
BOSG increases faster than the size of a B-SOPG, in our expansion algorithm, the forward
expansion is slowed down, while the backward expansion is speeded up. To this end, we
introduce an expansion pace, beta to the BExpand procedure. It is a user-defined parameter to
control the pace of backward expansion.

Algorithm CompareProps(FP
i
,BP

j
)

Inputs: a proposition layer in F-SOPG, FP
i

 a proposition layer in B-SOPG, BP
j

Data: a set of category, Cat

 a set of concept, C

Output: an updated proposition layer of B-SOPG, BP
j

Begin:

 foreach (Cat, C) in BP
j
 do

 if there is no related category between cat and FP
i
.Cat then

 continue

 else foreach concept c in C do

 if c presents in FP
i
.C then

 remove c from BP
j

 end if

 end for

 end if

 end for

 return BP
j

End

Chapter 6: Web Service Composition as Planning in SEwsPL

77

Figure 6-12 Bidirectional expansion part of the expansion algorithm:
(a) forward expansion (b) backward expansion

Again referring to the scenario in Table 6-1, Figure 6-13 shows how an F-SOPG and a B-
SOPG grows based on the bidirectional expansion. First of all, these two graphs initiate with
the initiate states and the goal states respectively. Then the B-SOPG begins to grow at the pace
of 2. That means every time, the B-SOPG expands two layers. Recall that during the expansion,
the comparison function will be invoked to refine the proposition layer by removing those
nodes which are already present in the F-SOPG. Therefore, in this case, we found in BP1, only
{Lat, Long} are available. Afterwards, the F-SOPG expands forwards with an action layer, FA0
and a proposition layer FP1. Since until now, the entire proposition nodes in the B-SOPG are
reached from the F-SOPG, and both expansion processes terminate. Furthermore, it is
important to note that, in the action layer of both graphs, action nodes are arranged according
to the closeness of the current proposition layer and the use’s nonfunctional requirements. In
addition, compared to the classic Planning Graph generated by the traditional expansion
procedure shown in Figure 6-6 which contains totally 26 proposition nodes, 6 action nodes,
the SOPG graphs generated by our bi-directional expansion consists of only 18 proposition
nodes, and 8 action nodes. Thus, it can be proofed that our solution can successfully reduce
the size of the graph in a certain extent.

Figure 6-13 An example of bi-directional expansion algorithm

Algorithm FExpand(FG)

Inputs: Current F-SOPG,FG=<FP
0
,FA

0
,…,FP

i
>

Data: a set of available operations, A

 Goal states, G

Output: a F-SOPG, FG=<FP
0
,FA

0
,…,FP

i
,FA

i
 FP

i+1
>

Begin:

 FA
i
  FMatch(FP

i
,A,G.Gpref)

 for all a in FA
i
 do

 FP
i+1

.Cat  FP
i
.Cat

 FP
i+1

.C FP
i
.C

 end for

 return FG

End

}..{ CatOa out
}..{ COa out

Algorithm BExpand(FG,BG,beta)

Inputs: Current F-SOPG,BG=<BP
0
,BA

0
,…,BP

i
>

 Expansion pace, beta

Data: a set of available operations, A

 Goal states, G

Output: a B-SOPG, BG=<BP
0
,BA

0
,…,BP

i
,BA

i
 BP

i+1
>

Begin:

 BA
i
  BMatch(BP

i
,A,G.Gpref)

 while beta>0 do

 for all a in BA
i
 do

 BP
i+1


 BP
i+1

  CompareProps(FP
j
,BP

i+1
)

 end for

 beta=beta-1

 end while

 return BG

End

}..,..|),{(COaCCatOaCatCCat outout 

(a) (b)

City

RT

WS

RT

WS

Lat

Long

W
5
.2 KML

FP
0 FA

0
BP

1
BP

0BA
0

W
4

W
5
.1

W
3

W
2

Zip

BA
1

BP
2

W
2

W
1

W
3

IP

City

TS

TE

WS

IP

ZIP
Lat

Long

Country
State

FP
1

Forward Expansion Backward Expansion Inactive

nodes

6.5 Enhancements of GraphPlan in SEwsPL

78

6.5.3 Workflow based Planning Extraction

Assuming that the expansions of F-SOPG and B-SOPG have accomplished, the next activity
is to identify a near-optimal plan which involves the following two sub-steps:

- Solutions Extraction: helps find all the candidates that satisfy the requirements from the
Planning Graphs.

- The best solution selection: tries to determine the most optimal solution from all the
candidates. In many situations, multiple composition results can be used to achieve
the same goal. Thus, an additional step to select the best one in terms of both the
functional and QoS requirements is required, which is unfortunately usually ignored
by the classic GraphPlan.

Currently, efforts on the solution extraction part are divided into two groups:

- Improving the extraction strategy: In the traditional GraphPlan algorithm, a backward-
chaining is employed for the solution extraction procedure. However, this backward
style of search tends to be quite time-consuming and inefficient, since due to the
chronological backtracking, it will lead to a large amount of wasted effort on exploring
the same nodes several times during the extraction procedure. Thus, to eliminate this
problem, in [Kambhampati, 1999], authors present some augmentations which add
explanation-based learning and dependency-directed backtracking capacities to
GraphPlan. In Bsr-graphplan [Parker, 1999] and Gdi-graphplan [Feng and Sun, 2010],
instead of a backward-chaining, a forward-chaining with a new data structure called
constrained tree is applied to discover the solutions. Though it can guarantee the
generated plan is goal-directed, it still results in low efficiency, because at each time
step, only a single action is considered using such constrained tree structure.

- Pruning redundant nodes of the Planning Graph: In [Yan and Zheng, 2008] and [Li et al.,
2010], rather than improving the extraction algorithm, they aim at removing redundant
Web Services contained from the graph in terms of a series of pre-defined strategies.

 To select a desired composition plan, several approaches are proposed. In [Pop et al.,
2009], an immune-inspired algorithm is integrated into the AI Planning Graph to find the
most appropriate solution satisfying both user’s functional and QoS requirements. In [Zhang,
et al. 2010], the selection problem is converted to a multi-objective optimization problem. The
Ant Colony Optimization (ACO) algorithm is presented to solve this problem. If there is no
optimal QoS can be found, then the near-optimal QoS solutions will be selected.

Unfortunately, there is no approach available for these two steps. To bridge this gap, our
mechanism is presented aiming at putting these two steps together to identify the most
appropriate solution. Briefly speaking, to make a good use of the SOPGs obtained from the
previous steps, extracting plans is achieved by removing redundant nodes. Afterward, the
workflow perspective will be applied to represent the collaboration among actions. In the rest
of the section, our approach will be illustrated in more details.

Firstly, the redundant nodes in the SOPG graphs obtained from the previous step need to
be identified. The definitions of redundant actions are given in below:

Chapter 6: Web Service Composition as Planning in SEwsPL

79

Definition 6-6 (A redundant action in F-SOPG) Given a Forward SOPG:
 , an action is redundant in F-

SOPG, iff

Definition 6-7 (A redundant action in B-SOPG) Given a Backward SOPG:
 , an action is redundant in B-

SOPG, iff

To better illustrate these two definitions, let’s see the example in Figure 6-14. Here, after

the expansion procedure, an F-SOPG and a B-SOPG graph are ready for the plan extraction.
We figure out that the outputs of O3 marked in yellow is exactly same as the output of O2 and

 , therefore, according to Definition 6-6, we set O3 as a
redundant action of O2. In the meanwhile, this action is stored into a redundant map which
will be used for the self-adaptive composition of the plan in the future. The semantics behind
it is that only the new propositions can make it possible to achieve the goal.

Regarding O11 marked in yellow in the B-SOPG, since its outputs overlap with the outputs
of O9 and O10 which are more related to the goal and have already satisfied all goals, thus, based
on definition 6-7, O11 can be regarded as a redundant action for both O9 and O10. Different to
the definition of the redundant action defined in F-SOPG, in B-SOPG the redundant action is
defined in terms of the associated propositions. Similarly, the redundant information will be
stored in a redundant map for the future. The idea behind this is that in the B-SOPG where
the graph grows backward from the goal state, at each step, actions can be inserted into the
graph, as long as their effects contain at least one goal proposition. Only the preconditions of
these newly added actions are helpful to reach the initial states.

Figure 6-14 Redundant actions in F-SOPG and B-SOPG

Assuming that the SOPG has been refined by marking redundant nodes, the next step is to
extract the most optimal plan from the graph. The main idea is that we transform such
extraction procedure to the process of building a workflow which is conceptually similar to a

BA
0

O
9

O
10

O
11

BP
0

X

Y

Z

BP
1

Null

C
n

C
m

C
c

A

K

C

H

F

BA
1

O
7

O
8

BP
2

C
k

C
b

C
c

A

D

D

E

FP
0

FA
0

FP
1

Null

A

B

C

O
1

O
2

A

B

C

D

C
A

C
B

C
C

E

O
3

O
4

F

Redundant Map:

<O
2
 ,O

3
>

Redundant Map:

<O
9
 ,O

11
>

<O
10

 ,O
11

>

Goals Set for FG:

<A,D,C,E,F>

6.5 Enhancements of GraphPlan in SEwsPL

80

composition chain. The advantages of using such a workflow based mechanism are listed as
follows:

- Reuse of the existing approaches. Workflow organization and management have been a
major research topic for more than twenty years. Accordingly, a lot of techniques are
available to represent a sequence of actions, execute the plan and instead of creating
the work from the scratch, some existing solutions can be easily reused.

- Make the generated plan visible. It allows visualizing the composition chain in some
workflow management systems, such as Taverna18, Kepler19, Unicore20, SWIMS [El-
Gayyar et al., 2009] [El-Gayyar et al., 2010]which makes the plan more readable and
understandable.

In SEwsPL, we transform the SOPG to SCUFL language which is now used in Taverna
and SWIMS. The mapping between them is illustrated in Table 6-2.

Table 6-2 Mapping between SOPG and SCUFL

Element in SOPG SCUFL

Element Representation Diagram

Action processor <s:processor name=" " />

Active action node arbitrarywsdl

<s:arbitrarywsdl>
 <s:wsdl> … </s:wsdl>
 <s:operation > … </s:operation>
</s:arbitrarywsdl>

Redundant/Inactiv
e action node

alternate

<s:alternate>
 <s:arbitrarywsdl>
 <s:wsdl>… </s:wsdl>
 <s:operation>… </s:operation>
 </s:arbitrarywsdl>
 <s:outputmap key=" " value=" " />
 <s:inputmap key=" " value=" " />
</s:alternate>

Proposition node source/sink source=" " / sink=" "

Edge link <s:link source=" " sink=" " />

Initial state source
<s:source name=" " />

Goal state sink <s:sink name=" " />

Let us recall the meteorological scenario in Table 6-1 again, after exploring the bidirectional
expansion algorithm, we got the F-SOPG and B-SOPG graphs as shown in Figure 6-13.
According to the Definition 6.6 and 6.7, we recognize that W1, W2 are redundant actions to

W3, since all the outputs of W1 and W2 can be replaced by W3. Thus,

18 Taverna: http://www.taverna.org.uk
19 Kepler: https://kepler-project.org/
20Unicore: http://www.unicore.eu

Chapter 6: Web Service Composition as Planning in SEwsPL

81

 are stored into the redundant map. Now, the transformation procedure begins from

the B-SOPG and moves backwards until reaching the in the F-SOPG. Specifically, all the

proposition nodes in are converted to “sink” in the SCUFL. For instance, the proposition

“KML” are transformed to <s:sink name="KML" />. Then, it moves to where W5.2 is
present. A new process named “GmlLatLonList” is created as follows:

In the meanwhile, according to the precondition edges and effects edges defined in W5.2 .Pre
and W5.2 .Eff, the data flow are specified as a sequence of links as below:

This process continues until it reaches the last proposition layer . The new goal states for
the followed F-SOPG are created with all inactive nodes of the B-SOPG. In this case {ZIP,
RT, WS} are set as new goals. The transformation process moves to the F-SOPG with the

new goals starting from the last proposition layer . Here, in terms of the proposition
nodes’ effect edge set, RT, WS can be regarded as initial states, since there is no effect edges
associated with them. Therefore two new sources are generated: <s:source name="RT" />,
<s:source name="WS" />. With regard to “ZIP”, we notice that both W3 and W1 have it as an
effect. In this case, the algorithm needs to search for the redundant information from the
redundant map. As a result, we recognize that W3 is an active action, while W1 is a redundant
action of it. Such semantics can be represented as:

Afterwards, the data flow of W3 will be specified. The transformation procedure then
terminates when it reaches FP0.

 <s:processor name="GmlLatLonList">

 <s:description>Returns National Weather Service digital weather forecast data encoded in GML for a

single time</s:description>

 <s:arbitrarywsdl>

 <s:wsdl>http://www.nws.noaa.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl</s:wsdl>

 </s:arbitrarywsdl>

 </s:processor>

<s:link source="RT" sink="GmlLatLonList: RequiredTime " />

<s:link source="WS" sink="GmlLatLonList: PropertyName " />

<s:link source="GmlLatLonList: KML-NDFD " sink="KML" />

<s:processor name="IP2Location">

 <s:arbitrarywsdl>

 <s:wsdl>http://ws.fraudlabs.com/ip2locationwebservice.asmx?wsdl</s:wsdl>

 <s:operation>IP2Location</s:operation>

 </s:arbitrarywsdl>

 <s:alternate>

 <s:arbitrarywsdl>

 <s:wsdl>http://www.webservicex.com/uszip.asmx?WSDL</s:wsdl>

 <s:operation>GetInfoByCity</s:operation>

 </s:arbitrarywsdl>

 <s:outputmap key=" Location " value="attachmentList" />

 <s:inputmap key=" City name " value=" City name " />

</s:alternate>

</s:processor>

6.6 Self-adaptive Composition

82

 (a) (b)

Figure 6-15 The result of the meteorological scenario: (a) the
workflow in SCUFL (b) the KML file

6.6 Self-adaptive Composition

Supporting self-adaptation is becoming more and more important due to the dynamic nature
of the Web Service environment. For instance, used services may become unreachable or their
QoS specifications change frequently. Accordingly, there is a need to enable the Web Service
Composition to deal with changing situations. Unfortunately, this kind of requirement hasn’t
been adequately explored in the most of AI planning techniques which provide only static one-
time solution.

 Basically, adaptation can be achieved in two ways:

- Re-planning: the plan is re-generated from the state where inconsistencies occur. Such
as in OWLS-XPlan presented in [Klusch et al., 2005], during the plan execution, in
the case when an agent detects that an action’s preconditions have not satisfied, the
re-planning component is informed of the position of the error and tries to fix the
problem by searching for an alternative plan in the connectivity graph from the
current position to the goal state.

- Plan Repair: rather than building the plan from the scratch, Plan Repair tries to reuse
most of the original plan as possible.

Though in theory modifying an existing plan is not more efficient than complete re-
planning in the worst case [Nebel and Koehler, 1995], repairing the plan in practice is much
better than planning from scratch, since the most part of the plan might still remain valid even
if some situation changes as pointed in [Krogt and Weerdt, 2005]. On the other hand, from
the end-users’ point of view, the modified plan might more easily be accepted than a complete
new one. Therefore, Plan Repair is adopted in our work to efficiently adapt the plan in a
changing world.

In SEwsPL, the Plan Repair is based on the F-SOPG and B-SOPG graphs which are
generated in the graph expansion phase as presented in Section 6-5. The process starts from

<app:NdfdForecastCollection xsi:schemaLocation="http://www.weather.gov/
forecasts/xml/OGC_services http://www.weather.gov/forecasts/xml/
OGC_services/schema/dwGML_WFS_GMLv212.xsd ">
 <gml:boundedBy>
 <gml:Box srsName="EPSG:4326">
 <gml:coordinates>-66.08,18.48 -66.08,18.48</gml:coordinates>
 </gml:Box>
 </gml:boundedBy>

 <gml:featureMember>
 <app:Forecast_Gml2Point>
 <gml:position>
 <gml:Point srsName="EPSG:4326">
 <gml:coordinates>-66.08,18.48</gml:coordinates>
 </gml:Point>
 </gml:position>
 <app:validTime>2011-09-22T23:59:59</app:validTime>
 <app:maximumTemperature>83.0</app:maximumTemperature>
 <app:windSpeed>12.0</app:windSpeed>
 </app:Forecast_Gml2Point>
 </gml:featureMember>
</app:NdfdForecastCollection>

Chapter 6: Web Service Composition as Planning in SEwsPL

83

the lowest action layer in B-SOPG which contains disabled actions. The B-SOPG is then
divided into two parts:

- The head of the plan consisting of actions that can be executed from the goal state:

 { }

- The tail that contains all inconsistent actions and propositions:

 { }

During the adaptive algorithm, the tail part is repaired for the changing situations, while the
head of the plan will remain unchanged. Specifically, the system tries to find alternative actions
of those disabled ones from the redundant map which is generated from the plan extraction

procedure. The following proposition layer is updated with the preconditions of those

newly added actions. Similarly, the adaptive process begins from the lowest action layer
where disabled actions exist. The F-SOPG is then also divided into two parts as follows:

- { }

- { }

The head part is kept in the new plan, and the tail need to be refined. The refinement is to
remove all associated edges, action nodes and propositions in the next layers. Finally, we get an
updated F-SOPG FG. The last step is to invoke the Expand function as described in the

previous section, which takes the set of propositions in the last proposition layer of F-

SOPG as the new initial states and the propositions in as the new goal states. The
newly generated FG and BG will be the new planning graph adapting to the new situation.

To better illustration our algorithm, we reuse the example shown in [Yan et al., 2010 a] and
[Yan et al., 2010 b]. To simplify, only inputs and outputs parameters are taken into account.

Assume that we have nine available actions:
 The initial
state is a and the goal state is e. Our adaptive algorithm is based on the F-SOPG and B-SOPG
graphs as we mentioned before. Figure 6-16 shows the generated graphs for this example.
Assume that action C2E is not available, then the next action D2E will be invoked and BP1 is
updated with d which is the preconditions of D2E. In the case that both C2E and D2E are
becoming unavailable, a straightforward method is proposed in our system which continues
extending F-SOPG and B-SOPG until the new termination conditions are hold. The new
graphs to the changes are shown in Figure 6-17. As we mentioned above, since the unavailable

action exists in , The B-SOPG is divided into two parts: { } and

 { }, which means that the tail part needs to be repaired for the new change. The
Plan Repair of B-SOPG is achieved by a normal backward extension algorithm (see Figure 6-

11). As shown in here, the extension of the B-SOPG continues, until it reaches where all
the proposition nodes are present in F-SOPG.

6.7 Summary

84

Figure 6-16 The original F-SOPG and B-SOPG

Figure 6-17 Updated SOPG Planning Graphs

6.7 Summary

To sum up, a goal-directed GraphPlanning algorithm called SEwsPL is presented in this
chapter. It enhances the traditional GraphPlanning algorithm with a so-called Simplified
Ordered Planning Graph (SOPG) which stores both the planning information and their multi-
attribute similarity (see Section 6.5.1). Furthermore, in our new system, to reduce the search
space a bidirectional expansion procedure is introduced in the expansion phase (see Section
6.5.2). Moreover, Rather than searching the plan in a separated step, we transform the
generated Planning Graphs to a scientific workflow directly (see Section 6.5.3). In addition, to
facilitate the adaptation of the dynamic changes, a Plan-repair based approach has been
developed (see Section 6.6).

FP
0 FA

0
FP

1

e

d

a

BP
1

BA
0 BP

0

a

b

c

A2BC

A2D

C2E

D2E

G2E

c

F-SOPG B-SOPG

FP
0 FA

0
FP

1

e

d

a

BP
1

BA
0 BP

0

a

b

c

A2BC

A2D

C2E

D2E

G2Eg

F-SOPG B-SOPG

F2G

BA
1

f

BP
2

D2F

BP
3

New Action

d

BA
2

85

6 . C h a p t e r 7

“Too much of the research in computing education ignores the handreds of years of education,
cognitive science, and learning sciences research that have gone before us. If we want our
research to have any value to the researchers that come after us, if we want to grow a
longstanding field that contributes to the improvement of computing education, then we have
to 'stand on the shoulders of giants,' as Newton put it, and stop erecting ant hills that provide
too little thought."

- Mark Guzdzial

Research is too important to rely on subjective judgments. This chapter provides the
evaluation of SEwsMining system. Section 7.1 presents the evaluation of the semantic
annotation language, QWSMO-Lite. The evaluation of SEwsDM is illustrated in Section 7.2.
Finally, Section 7.3 evaluates the performance of SEwsPL.

CONTENTS

7 EVALUATION OF SEWSMINING ... 85

7.1 EVALUATION OF QWSMO-LITE ... 86
7.2 EVALUATION OF SEWSDM .. 87
7.3 EVALUATION OF SEWSPL .. 91

7.3.1 Scalability Analysis .. 91
7.3.2 QoP Analysis .. 94
7.3.3 Dynamicity Analysis .. 96

7Evaluation of SEwsMining

7.1 Evaluation of QWSMO-Lite

86

7.1 Evaluation of QWSMO-Lite

QWSMO-Lite is a complementary ontology that provides detailed semantic specification of
QoS constraints for WSMO-Lite. Based on the survey of the-state-of-the-art approaches
discussing in Section 3.2, we compare these reviewed ontologies with our QWSMO-Lite. The
comparison results are basically categorized into two fundamental questions: how to model
semantics and how to annotate the service with modeled semantics.

Table 7-1 depicts the summary of this comparison. We figured out that WSMO and
SAWSDL support more semantic annotations than original OWL-S which does not provide
explicit semantics for execution and QoS aspects of Web Services. Some OWL-S variants are
the complement of OWL-S with additional QoS models. Among them, OWL-Q is more
flexible and extensible because of its modular based structure where new ontologies are easily
adapted. It also allows various types of units. Concrete QoS can be specified in the flavor of
QoS-MO and onQoS. Only onQoS enables to assign priorities over different QoS
characteristics. Dublin core is used to specify non-functional semantics in WSMO, which is
not expressive for the nature of QoS. WSMO-QoS has been developed to bridge this gab.
However, it still lacks flexibility and priority information of QoS dimensions.

From the annotating point of view, since SAWSDL is a bottom-level extension of WSDL,
its annotation can be directly used for invocation, and discovery of Web Services.
Nevertheless, for those top-level approaches such as WSMO and OWL-S, the additional
efforts for grounding which maps the semantic framework to WSDL are required. On the
other hand, one of the disadvantages of exploiting bottom-level solutions is that users might
unaware of the functionality of those underlying referred semantics, since there is no
predefined structure to specify the detailed annotating rules. WSMO-Lite tries to resolve this
problem by filling SAWSDL with concrete semantic service descriptions in WSMO style
according to the predefined minimal representation of the semantic information. In WSMO-
lite, quality aspects are part of the non-functional information of a Web Service description
and are simply defined as: Accuracy, Availability, Financial, Network-related QoS, Performance,
Reliability, Robustness, Scalability, Transactional and Trust. However, such QoS definition is neither
expressive nor flexible enough for QoS properties to distinguish functionally-similar services
or operations for service discovery and composition [Wang et al., 2006].

QWSMO-Lite, developed in our system, is an extension of WSMO-Lite with devoting to
providing expressive representation of semantics on the one hand, and facilitating the
automation of Web Service discovery and composition on the other hand. Besides dealing
with Web Services functional semantics, QWSMO-Lite enables to annotate QoS semantics
with a predefined QoS ontology where QoS characteristics are modeled in a three layered
modular framework. This modular structure makes the QWSMO-Lite more flexible to extend
and add any concrete QoS models. Moreover, users are allowed to specify units for each QoS
dimension. QoS priority can also be customized by assigning weights. Regarding the
mechanism to annotate semantics, inspired by the minimal Web Service Model in WSMO-Lite,
a simplified version of Web Service annotation model is defined in QWSMO-Lite, which is
also a bottom-level extension of WSDL.

Chapter 7: Evaluation of SEwsMining

87

Table 7-1 A comparison of existing approaches to QWSMO-Lite

Criterion OWL-S SAWSDL WSMO WSMO-
Lite

QWSMO-
Lite

How to model semantics?

Functional
Semantics

Data
Semantics

Process
Model

Ontology WSMO
ontology

WSMO
ontology

WSMO
ontology

Operational
Semantics

Process
Model

Classification
schema

Capability
ontology

WSMO Web
Service

Classification
schema

Capability
ontology

Classification
schema

Capability
ontology

Execution
Semantics

- Ontology
(implicitly)

Choreography

Orchestration

Ontology
(implicitly)

Ontology
(implicitly)

QoS
Semantics

Unit Support -

OWL-Q
(OWL-S
variant)

- -

WSMO-QoS
(WSMO
variant)

- Support

Concrete
QoS

-

QoS-MO
(OWL-S
variant)

onQoS
(OWL-S
variant)

External
ontology

Dublin core

WSMO-QoS

Dublin core

Dublin core

Domain
QoS

QoS Priority -

onQoS

- - - QoS weight

Flexibility -

OWL-Q

- - - Modular

How to annotate a Web Service with semantics?

Semantics Formalism Top
Level

Bottom
Level

Top Level Bottom
Level

Bottom
Level

Semantics Awareness Support - Support Minimal
RDF

Modified
Minimal
RDF

7.2 Evaluation of SEwsDM

In order to evaluate our approach, we compare SEwsDM against those existed Web Service
discovery and ranking methods introduced in Section 2.3. The comparison is shown in Table
7-2.

7.2 Evaluation of SEwsDM

88

Table 7-2 A comparison of SEwsDM with existing approaches

System OWLSM OWLS-
iMatch

OWLS-
MX

WSMO-
MX

SAWSDL-
MX

SEwsDM

How to match relevant operations?

Language OWL-S OWL-S OWL-S WSMO SAWSDL QWSMO-
Lite

Exploited
Information

-Input
-Output
-Category
-Custom
parameter

-Input
-Output

-Input
-Output

-Input
-Output
-Pre.
-Effect

-Input
-Output

-Input
-Output
-Pre.
-Effect

QoS
Semantics

Custom
parameter

- - - - QWSMO-
Lite

Logic-based -Fail
-Unknown
-Subsumes
-Equivalent

- -Exact
-Plug-in
-Subsumes
-Subsumed-
by
-Nearest-
neighbor

-Exact
-Plug-in
-Subsumes
-
Subsumed
-by

-Exact
-Plug-in
-Subsumes
-Subsumed-
by

-Exact
-Plug-in
-Subsumes
- Siblings

Non-logic
based

- Name and
text
similarity

-BOW
similarity -
Vector
similarity

-BOW
similarity
-Vector
similarity

-BOW
similarity
-Vector
similarity
-Structural
WSDL
Matching

TOPSIS
based
multiple
attribute
matching

Logic DoM Fixed
numeric
score

- Fixed
numeric
score

Fixed
numeric
score

Fixed
numeric
score

Concept
similarity

TOPSIS
similarity

Non-logic
DoM

- Non-logic
similarity

Non-logic
similarity

Non-logic
similarity

Non-logic
similarity

QoS Match String
similarity

- - - - TOPSIS
similarity

Asymmetric
Match

No No No No No Yes

How to rank matched operations?

Ranking
Criterion

sum of logic
based and
non-logic
based scores

sorted by
DoM

sorted by
DoM

sorted by
DoM

sorted by
DoM

TOPSIS
similarity

Chapter 7: Evaluation of SEwsMining

89

The comparison falls into two part:

- How to match relevant operations

- How to rank those matched operations.

In most of the algorithms, matching capabilities are described as sets of inputs and outputs.
The category information is only dealt by OWLSM, and preconditions and effects information
are concerned only by WSMO-MX with WSML rules. To enhance the matching capacities,
hybrid matching is supported by almost all approaches. They share one thing in common that
the logic-based Degree of Matching (DOM) is identified by the predefined logic-based filters
with fixed numeric numbers, and the non-logic DoM depends on selected text similarity
measures. As for QoS semantics, none of the existing systems explicitly attempts to handle
them. OWLSM among others tries to manage such semantics with a set of user-defined
parameters. QoS based matching is performed by simple string similarity. Regarding the
ranking mechanism, in real application to obtain the reasonable ranking list multi-attributes
semantics including functional and non-function aspects should take into account. However,
most of the systems rank those matched operations only in terms of the DoM.

Referring to Table 5-3 in Section 5.3, assumed that six candidates of matched operations
with different levels of matching degree are retrieved in terms of the requirements. This
example will be used to evaluate our system.

Existing matching efforts determine the DoM with fixed numeric values of correspondence
logical filters. Logical DoMs of those matched operations are computed in different systems
shown in Figure 7-1. Here, since both category matching and IO matching in OWLSM fall
into subsume matcher which is assigned with the value of 2, the similarity is calculated as

follows: . In OWLS-MX,
SAWSDL-MX and WSMO-MX, IO matching falls also into subsume matcher which is also
assigned with the value of 2. Therefore the similarity equals 2 in these three systems. Different
to the systems mentioned above, SEwsDM computes the similarity more precisely by applying
the similarity model defined in Definition 5-2 at the concept level. By doing so, different
relatedness of each pair of concepts can be recognized even when they fall into the same
logical filters. Furthermore, the predefined logical filters are extended with sibling relationship
which has been ignored by most of existing solutions. In addition, our solution makes an
asymmetric match between every two concepts, which conveys more semantic to distinguish
different logical closeness behind concepts.

Regarding the ranking mechanisms, as we figured out from the comparison in Table 5-3,
they mainly depend only on the non-logical DoM. For instance, based on the three groups of
decision requirements listed in Table 5-4, the DoM is computed in OWLS-iMatch using

simple text similarity. For example,
 . In OWLS-MX, SAWSDL-MX and WSMO-MX, the

intentional loss of information (LOI) is applied to calculate non-logical DoM. Taking as an

example,

 However, due to the reason that QoS information

has not been taken into account in all these systems, there is no difference to rank the related
services in terms of various criteria as shown in Table 7-3. In SEwsDM, the similarity is based
on multi-attribute semantics including concept closeness at the service interface level, user-
defined weighted QoS information and construction heuristic attributes as well. A modified

7.2 Evaluation of SEwsDM

90

TOPSIS algorithm is implemented to calculate the similarity score between two examined
operations. By doing so, the system is capable of obtaining various values of DOM when
applying different decision making criteria as shown in Table 7-3.

Figure 7-1 Logical DoM using different systems

Table 7-3 Non-Logic DoM of two criteria

Oper. OWLS-iMatch OWLS-MX SAWSDL-MX WSMO-MX SEwsDM

DM1 DM2 DM1 DM2 DM1 DM2 DM1 DM2 DM1 DM2

 0,55 0,55 0,26 0,26 0,26 0,26 0,26 0,26 0,130 0,138

 0,62 0,62 0,31 0,31 0,31 0,31 0,31 0,31 0,148 0,153

 0,48 0,48 0,34 0,34 0,34 0,34 0,34 0,34 0,142 0,152

 0,42 0,42 0,35 0,35 0,35 0,35 0,35 0,35 0,146 0,154

 0,52 0,52 0,48 0,48 0,48 0,48 0,48 0,48 0,143 0,141

 0,38 0,38 0,52 0,52 0,52 0,52 0,52 0,52 0,142 0,161

Chapter 7: Evaluation of SEwsMining

91

7.3 Evaluation of SEwsPL

In this section, we will evaluate our modified GraphPlanning algorithm according to those
discussed requirements with the test sets from the Web Service Challenge 201021. The details
of the test set are shown in Table 7-4. To simply the composition, all the services here have
only one single available operation.

Table 7-4 Test set from WSC 2010
 Test 1 Test 2 Test 3 Test 4

Web Service 10 20 30 40

Initial states 10 10 10 10

Goal states 4 4 4 4

7.3.1 Scalability Analysis

First of all, the scalability problem has been improved in our system by reducing the size of the
SOPG graphs with a bidirectional expansion strategy (ref. R3 in Section 6.1). The details of the
expansion algorithm have been presented in Section 6.5.2.

Let be a planning problem, where is a set of available actions, is initial

conditions with p propositions and are a set of expected goals involving q propositions.

Suppose that the planning problem has m actions and {| |} is the maximum

value of the number of effects of any action. Let {| |} be the largest number
of inputs in any action. Since the number of different propositions that can be created by an

action is no more than , the maximum number of nodes in any proposition layer of F-

SOPG is . Considering that any action can be invoked in at most distinct

ways, the maximum number of nodes in any action layer of F-SOPG is . Similarly, in

B-SOPG, the maximum number of nodes in any proposition layer is , since a new
proposition layer is created by only the inputs of newly added actions. Owing to the facts that
an action can be added if any of its effects is available, therefore an action can be invoked in at

most ways. Then the maximum number of nodes in any action layer of B-SOPG is

 . Accordingly, since k is constant, the total size of the F-SOPG and B-SOPG is
polynomial in n,m,p,q,l .

We examine our SOPG graphs with the graphs generated by Bidirectional-Paralleled
GraphPlan Algorithm (BPGP) [Gu et al., 2004], Simplified Planning Graph (SPG) [Yan and
Zheng, 2008] and Weighed Planning Graph (WPG) [Li et al., 2010]. Expansion of the SPG
and WPG is based on the classic GraphPlan algorithm using a forward-chaining strategy.
BPGP, on the other hand, allows the graph to expand backwards from the goal set to the
initial state and forwards from the initial set to the goal states. Specifically, the expansion
begins with the comparison of initial states and goal states. The proposition nodes which exist
in both states will be removed from the goal states. Then, the action layers will be created
forwards and backwards by adding actions whose inputs and outputs are present in the
corresponding proposition layers respectively. Such procedure will continue until the graph is
leveled off.

21 Web Services Challegen‘ 10: http://ws-challenge.georgetown.edu/wsc10/

7.3 Evaluation of SEwsPL

92

The comparison shows in Figure 7-3 and Figure 7-3. Here, we randomly create four groups
of services containing ten, twenty, thirty and forty Web Services respectively for testing. Owing
to this randomness, each group of services might contain its own plans for the composition.
Therefore, it makes no sense to do the lateral comparison among groups. Instead, the vertical
analysis which compares the results generated by different approaches within a certain group is
concentrated in our evaluation.

Let us take a close look at the Figure 7.2. As we pointed out before, since the forward-
chaining expansion applied in SPG/WPG depends only on the initial states, the size of a graph
dramatically grows by adding irrelevant nodes to the existing graph. Thus, in the figure, we can
easily notice that the size of SPG/ WPG is larger than the other two approaches. Moreover, it
also indicates that the SOPG graph generated by SEwsPL is smaller than the graph created by
BPGP. The main reason behind that is in our approach the graph expands forwards and
backwards with different paces. Specifically, the forward expansion is slower than the
backward expansion. With such strategy, the size of a graph will be reduced by reducing the
number of F-SOPG layers. Take the third group which has thirty services as an example. In
SPG and WPG approaches, the graph grows forward from the initial states. The forward
expansion halts on the third proposition layer where all goal conditions are present.
Accordingly, the Planning Graph generated using SPG/WPG contains totally 108 nodes
including four proposition layers and four action layers. BPGP reduces the size of the Planning
Graph with a bi-directional expansion algorithm in the graph expansion phase, the forward
graph generated by BPGP has 56 nodes containing three proposition layers and three action
layers and its backward graph contains 14 nodes including two proposition layers and two
action layers. Totally, the Planning Graph here contains 70 nodes. In our SEwsPL, owing to
the different rates used in the expansion phase, the backward graph grows faster than the
forward graph. In this test, the forward graph contains 26 nodes with two proposition layers
and two action layers, while the backward graph has 32 nodes including three proposition
layers and three action layers. Totally, it has 58 nodes.

Figure 7-2 Graph size comparison among SEwsPL, BPGP and
SPG/WPG

50

70

90

110

130

150

170

190

210

10 20 30 40

Th
e

 S
iz

e
 o

f
G

ra
p

h

(T
h

e
 n

u
m

b
e

r
o

f
n

o
d

e
s)

The Number of Web Services

SEwsPL

BPGP

SPG/WPG

Chapter 7: Evaluation of SEwsMining

93

 The time required to compose a graph can be broken down into:

- Construction of a proposition layer. In SEwsPL, the proposition layer is updated by inserting
associated proposition nodes of the newly added action nodes in the previous action
layer. In F-SOPG, since the maximum number of nodes in any action layer of F-

SOPG is , the time to build a new proposition layer is . Likewise, in B-

SOPG, the time required to create a new proposition layer is .

- Selection of actions for an action layer. In F-SOPG, an action is added to a new action layer
if and only if all its inputs are present in the current proposition layer. Therefore, the

time required for finding all action candidates is . In B-SOPG, the
selection of the action is performed by comparing its effects. The time needed is

- Calculate the similarity of each action node and sort them. Here, the quick sort algorithm is
selected to arrange the action nodes. Due to that the maximum number of nodes in

any action layer of F-SOPG is , the time complexity for this task is
 . Similarity, since the maximum number of nodes in any action layer of B-

SOPG is , the time for arranging nodes is .

Since k is constant, it is clear that the time for building the graph is also polynomial in
n,m,p,q,l. Figure 7-3 shows the time complexity comparison. It indicates that SEwsPL is capable
of composing the graph in the shortest possible time. The reason behind is that the execution
time highly depends on the number of proposition nodes and action nodes in the graph. Since
from the comparison of the space complexity, it shows that our solution can provide the graph
with minimum size, thus it can proof that our solution is better than the other three in building
the smallest Planning Graph in a minimal time.

 Figure 7-3 Execution time comparison among SEwsPL, BPGP
and SPG/WPG

0.00

5.00

10.00

15.00

20.00

25.00

30.00

10 20 30 40

Ex
e

cu
ti

o
n

 T
im

e

(m
s)

The number of Web Services

SEwsPL

SPG/WPG

BPGP

7.3 Evaluation of SEwsPL

94

7.3.2 QoP Analysis

Another concern about the Web Service Composition is quality awareness (ref. R1 in Section
6.1). Recently, a number of researches have been carried out for the service discovery with
QoS- aware matchmaking algorithms. However, such semantics has been largely ignored in the
case of AI Planning. Multiple combination of different Web Services may provide similar
functionalities but with different quality properties. Quality of Plan (QoP) is actually the
aggregation of Quality of Service (QoS). Thus, to find the best or near best solution is
converted into the question how to efficiently aggregate the sequence of services to meet the
user’s requirements.

The evaluation of QoP is also based on the WSC 2010. Assume that two quality
dimensions are defined for each service, namely Response Time (RT) and Throughput (TP).
Users expect to get two kinds of plans with lowest response time and highest invocations per
minute respectively. We compare our system with the other three GraphPlan based methods
mentioned above.

The bar charts in Figure 7-4 reveal that plan generated by SEwsPL is the closest solution to
the optimal one compared with the other three. Regarding BPGP and the composition
algorithm proposed in [Yan and Zheng, 2008] compose the final plan by choosing the action
nodes randomly without taking any QoS aspect into consideration. Accordingly, their results
only satisfy user’s functional requirements. Due to the randomness, the probability that they
get the plan with the best QoS attributes is relative slim. In the WSC-WPG [Li et al., 2010]
method where the weight indicating similarity is introduced to improve the functional quality
of the plan, the non-functional quality is still missing. Therefore, its results shown in the
following figure maybe are the most functionally related solutions but without considering
user’s QoS requirements. In our approach, besides computing functional similarity, we deal
with the QoP by aggregating of QoS of each service component. That means, the QoP is
regarded as a combination of a sequence of local optimal actions to compose the final plan.
However, our solution is not always the optimal one, since the local optimal and the global
optimal results are not equal in certain cases. For instance, in the fourth group which contains
forty services, the optimal response time for the final plan should be 850ms, while the
response time of the plan generated by SEwsPL is 950ms.

Figure 7-4 QoP comparison

On the other hand, after surveying related work concerning the QoS aspect of
composition, we noted most of the work sharing one thing in common. The optimization is

Chapter 7: Evaluation of SEwsMining

95

done by decomposing a Planning Graph into a set of parallel execution paths. And then
different global criterions are used to measure the QoS levels of each execution path. For
instance, in [Zhang et al., 2010], the Multi-Objective Optimization (MOP) model is applied for
this purpose. In [Pop et al., 2009], the immune-inspired algorithm has been adopted to this
end. Different to those approaches, in our SEwsPL, QoP is achieved by integrating the
similarity into the Planning Graph. Specifically, the action nodes in the action layers are
arranged as a sorted list according to their TOPSIS based multi-attribute similarity. Details are
available in Section 5.3. As a result, the most appropriate action which is at the front of the list
will be selected to compose the plan in the first place.

We examine SEwsPL with one of the mentioned methods called MOP based optimization
in [Zhang et al., 2010]. The result depicted in Figure 7-5 shows that both methods can provide
the near-optimal solutions. However, as is shown in Figure 7-6, MOP based method will take
more time to get the result. Because the time complexity of those methods depends on the
number of the parallel execution paths which are related to the number of the action nodes in
each layer. Suppose that the largest number of action nodes is m and the number of action
layers is n. In the worst case, the number of parallel execution paths will be mn. It means mn
paths should be measured using the pre-defined global criterions. In this context, it is clear that
the performance of those methods will dramatically decrease when the size of the graph grows.

Figure 7-5 QoS comparison between SEwsPL and MOP

Figure 7-6 Execution comparison between SEwsPL and MOP

7.3 Evaluation of SEwsPL

96

7.3.3 Dynamicity Analysis

The dynamicity is also a requirement that has not been adequately explored in AI Planning
techniques (ref. R2 in Section 6.1). To enable a dynamic composition, in SEwsPL, a kind of
Plan Repair algorithm is developed. Details are presented in Section 6.6.

To better compare our solution with other Plan Repair approaches; we reuse the example
shown in [Yan et al. 2010 a] and [Yan et al. 2010 b]. The principles of Plan Repair have been
introduced to Web Service Composition domain in the work of [Yan et al., 2010 a], the
Planning Graph based plan repair is achieved by a backward chaining strategy starting from the
unsolved goal states to the available initial states. The original Planning Graph is shown in
Figure 7-7 and the modified Planning Graph generated from this algorithm is presented in
Figure 7-8.

 Figure 7-7 The original Planning Graph

Figure 7-8 The Planning Graph grown by [Yan et al., 2010 a]

To better reuse the original planning graph structure, in Yan et al.’s later work [Yan et al.,
2010 b], authors developed a greedy search process starting from the highest level of the graph
where unsatisfied proposition firstly occurs. Rather than adding actions which can satisfy the
unsolved propositions in the following layers, in their work, a new action layer is created above
the current level. The result plan is shown in Figure 7-9.

A2BC

P
0 A

0
P

1
P

2A
1

A2D

a

a

b

c

d

C2E

D2E

D2F

a

b

c

d

e

f

Disable action

A2BC

P
0 A

0 P
1

P
2A

1

A2D
a

a

b

c

d

D2F

a

b

c

d

e

f

G2E

g

F2G

f

D2F

a

d

A2Da

A
2 P

3
A

3 P
4

New action

Chapter 7: Evaluation of SEwsMining

97

Figure 7-9 The Planning Graph generated by [Yan et al., 2010 b]

After comparing the results generated by our algorithm shown in Figure 6-17 with the
updated plan created by different Plan Repair approaches shown in Figure 7-8 and Figure 7-9,
we can find our SOPG based adaptive algorithm has the following advantages:

- More similar to the original graphs. Since the adaptive algorithm is a kind of re-extension
of the original algorithm, it is similar to the original graphs. However, the new graph
created by the first method is completely separated from its original one. The second
method which aims to improve the reuse of the original graph by inserting new layers
for unsolved proposition nodes with predefined rules. Unfoundedly, this insertion
procedure is time-consuming, owing to their adding rules, once it inserts a new layer,
all the added layers should be updated.

- Easy to get the near-optimal results. Due to the facts that in the SOPG graphs, all action
nodes are arranged according to their similarity, the updated composition results
generated by our algorithm is closer to the optimal one than using other solutions
which choose the action randomly from the related action set.

- Reduce the search space. Again, because the SOPG graphs used in our algorithm, the
newly updated graph is also capable to reduce the search space. For instance, in this
example, the final graph generated by the first algorithm contains sixteen proposition
nodes and 7 action nodes. The updated result created by the second algorithm
involves 21 proposition nodes and 5 action nodes. And the results built by our
system consists of only 9 proposition nodes and 5 actions nodes.

P
0 A

0 P
1

P
2A

1

a a

b

c

d

a

b

c

d

e

f

G2E

g

F2G
fD2F

d

a

A
2 P

3
A

3 P
4

New action

b

c

d

a

b

c

A2BC

A2D

98

C h a p t e r 8

“Today is not yesterday. We ourselves change. How then can our works and thoughts, if they
are always to be fittest, continue always the same?

- Thomas Carlyle (1795-1881)

This chapter summarizes this dissertation and provides potential avenues for future work
based on the contributions in this work. The conclusions about this work will be drawn firstly
in Section 8.1. Finally, discussion and direction of future work extended from this dissertation
is pointed out in Section 8.2.

CONTENTS

8 CONCLUSION AND FUTURE WORK ... 98

8.1 SUMMARY .. 99
8.2 OUTLOOK ON FUTURE WORK... 102

8.2.1 Improvement for the Semantic Enhancement Layer ... 102
8.2.2 Enhancement of the WSD/WSC Layer .. 102
8.2.3 Enrichment of the Adaptation Layer .. 103

8Conclusion and Future Work

Chapter 8: Conclusion and Future Work

99

8.1 Summary

This dissertation is motivated by the requirements to enhance the current Service-Oriented
Computing (SOC) models with semantic awareness. Our work provides a methodology for
the automated Web Service composition system by leveraging semantics involving both
functional semantics and QoS in order to raise the accuracy and assess the quality of the
composition results. Several key concepts of the methodology are summarized in the following
paragraphs.

Definition of service ontology for semantics annotation: The first contribution of this
dissertation is a service ontology called QWSMO-Lite, which is an extension of WSMO-Lite
ontology with QoS attributes. WSMO-Lite [Kopecký and Vitvar, 2008], in turn is an
integration of two recent W3C standards for semantic Web Service, namely, SAWSDL
[Kopecký et al., 2007] and WSMO [Roman et al., 2005]. However, owing to the lack of QoS
characteristics, it fails in the task of efficient service discovery and service composition, when
choosing among functionally similar services. Accordingly, QWSMO-Lite defined in this work
comprises both functional and non-functional required semantics. Specifically, considering that
a service may contain various operations, Web Services are allowed to be annotated at the
operation level with:

- QoS attributes using an extensible QoS model which involves a set of generic and
domain specific QoS dimensions

- Concepts related to the inputs/outputs together with their associated domain
properties.

Moreover, at the service level, generic attributes, such as the author name, create date, etc. can
also be annotated.

In comparison to other existing approaches shown in Table 7-1, it indicates that QWSMO-
Lite is able to annotate Web Services with more expressive functional and non-functional
properties. Regarding functional annotation, besides input/output semantics, categorization
information is also added to both operations and services. This aids in service discovery by
narrowing the range of candidate services. A pre-defined QoS model is used to annotate non-
functional properties. Its modular structure makes it more flexible to extend and add any
concrete QoS models. Moreover, users are allowed specify units and weights for each QoS
dimension. The annotated semantics can be further explored for service discovery, selection
and composition.

Development of a multi-attribute matchmaking algorithm: Alongside the
aforementioned QWSMO-Lite ontology, this dissertation contributes a novel multi-attribute
matchmaking approach called SEwsDM. The first step is to determine functionally similar
services which can be done by measuring semantic distance between two concepts. In
SEwsDM, an ontology based single attribute matchmaking algorithm called SAMatch is
presented (see Section 5.2) for this purpose. The next step is to rank the discovered services
according to their similarity, which is conducted in SEwsDM by a TOPSIS based multi-
attribute services ranking algorithm, namely MAMatch (see Section 5.3). Moreover, to avoid
out of range problem, instead of classic normalization functions adopted in TOPSIS, a logistic
function which performs the “softmax scaling” [Pyle, 1999] is defined in MAMatch.

8.1 Summary

100

According to the caparison shown in Table 7-2, we figure out that our matchmaking
algorithm differs from other similar approaches [Algergawy et al., 2010][He et al., 2008] in the
following aspects:

- Allowing for an asymmetric match between concepts by defining five logical filters,
namely exact match, plugin match, subsume match, siblings match and fail match
regarding the relation between two concepts.

- Making the matching more precisely by means of a semantic score.

- Ranking the candidate operations with a multi-attribute similarity.

Implementation of a bidirectional service discovery approach: The third contribution
of this dissertation is a bidirectional service discovery algorithm (see Section 5.4) which is
based on the matchmaking approach SEwsDM presented above. It supports the service
discovery with either forward matchmaking or backward matchmaking. That means users are
allowed to find a sequence of services in terms of the given inputs and outputs respectively. If
there is at least one service showing in both service sets, it will mean that at least one directly
matched service is available for the given query. Otherwise, the service discovery problem will
be converted into the service composition problem by continuing the matchmaking process
backwards and forwards.

The first three contributions help to develop a semantic-aware bidirectional service
composition approach called SEwsPL which is the main result of this dissertation. The benefits
of this approach can be listed as below:

- PDDL 3 based planning problem model for Web Service Composition. PDDL 3[Gerevini and
Long 2006] extends the previous version of PDDL language with new constructs
increasing the expressive power with respect to the plan quality specification. In
SEwsPL, inspired from it, a PDDL3 based data model has been specified to encode
the Web Service Composition problem as a planning problem (see Section 6.3).
Particularly, PDDL 3 has been enhanced to support the QoS specification. Moreover,
in order to improve the quality of the plan, we distinguish soft goals called preferences
which may not satisfied but are desired, from strong goals called constraints which
must be achieved.

- Simplified Ordered Planning Graph (SOPG). To grasp the information of semantically
connected services, a directed layered graph model called SOPG is defined in SEwsPL
involving F-SOPG and B-SOPG for forward Planning Graphs and backward Planning
Graphs respectively (see Section 6.5.1). Different from the traditional Planning Graph,
besides the service connection information, the SOPG also presents how these
services are related to the current available propositions by ranking discovered action
nodes in terms of the similarity which is calculated in SEwsDM.

- Bi-directional graph expansion algorithm. A bi-directional graph expansion algorithm for
building the SOPG is presented (see Section 6.5.2). We put a particular focus on
reducing the search space by trading off between backward and forward chaining. Due
to the fact that F-SOPG grows much faster than B-SOPG, in our algorithm forward
and backward graphs are allowed to be expanded at different paces, that is, the
forward expansion will be slowed down, while the backward expansion will be speeded
up. Additionally, the above mentioned bidirectional discovery algorithm has been
integrated to enable semantic awareness of the connected services.

Chapter 8: Conclusion and Future Work

101

- Workflow based plan extraction approach. Traditionally, to extract the appropriate plan, a
two-step approach is applied involving the extraction of plan candidates and the
selection of the final plan. The coupling of these two procedures into a single approach
has been addressed in our work by providing a workflow based plan extraction
approach (see Section 6.5.3). The SOPG is represented as a workflow by marking
every redundant action node as an alternative node of the used node. Furthermore, the
quality of the final plan encoded as a workflow is improved by combining the first
available nodes in each action layer, since in SOPG, all action nodes have been ordered
based on their similarity.

- Plan repair approach for the self-adaptive composition. Supporting self-adaptation is becoming
more and more important due to the dynamic nature of a Web Service environment,
which is realized in our work with a plan repair approach (see Section 6.5). Rather than
building the plan from the scratch, our plan repair based solution tries to reuse most of
the original plan as possible.

We examine our algorithm with some related work in this field. The comprehensive
evaluation illustrated in Section 7.3 shows that our SEwsPL has the following advantages:

- Due to the bi-directional expansion mechanism applied in the planner, it is capable of
creating a relative smaller Planning Graph.

- The composition results can be extracted in a short time by representing the graph into
a scientific Workflow.

- The quality of plan can be obtained by aggregating the QoS of each component
service.

- It supports for self-adaptive composition and enables to get the updated result in a
short time.

The applicability of SEwsMining: Our semantics enhanced composition system is
suitable for any applications that need to manage Web Services. Presented here are some
examples of possible applications of SEwsMining:

- Investigations and integration of BioMoby22 based services. As biology becomes an increasingly
computational science, it is critical for the biologists to reuse the vast and complex
data-sets in their experiments. BioMoby based services are developed with the goal of
facilitating greater interoperability between Web-based bioinformatics and biological
resources. It now boasts greater than 50 independent host providers spanning five
continents and offering more than 800 data retrieval and analysis services [Kawas et
al., 2006]. Therefore, our system can be used to aid in building BioMoby workflows to
facilitate the reuse of the existing data for end-users by pipelining BioMoby resources.

- Composition of SoapLab 23 services. SoapLab is a tool for wrapping command-line
executable programs and legacy programs automatically as Web Services. Considering
that, in some cases, especially, scientific experiments, the coordinated use of
computational resources from various institutes is highly needed. A growing number

22 BioMoby is available in: http://biomoby.open-bio.org/index.php/what-is-moby/
23 More information of SoapLab is available in: http://soaplab.sourceforge.net/soaplab2/

8.2 Outlook on Future Work

102

 of these resources are being made available in the form of Web Services with SoapLab API.
Accordingly, the orchestration of these services in workflows can also be made using our
systems.

8.2 Outlook on Future Work

SEwsMining is a prototype for composition of Web Services with semantics awareness. It still
leaves various possibilities for further improvement and enhancement. This section envisions
three directions of future work that could follow, according to the architecture provided in
Section 2.2.

8.2.1 Improvement for the Semantic Enhancement Layer

In SEwsMining , QWSMO-Lite is defined as a service ontology to annotate the semantics
information of Web Services. Future work includes the following aspects:

Modeling more semantics in QoS: QoS properties should comprise multiple layers from
the SOC stack. In this dissertation work, we concentrate on the elementary QoS attributes
only in the service foundation layer, such as performance, dependency, security and cost of a
service. However, to implement a more flexible service-oriented system, the QoS aspects from
the other two layers should also be concerned. For instance, in the service composition layer,
QoS refers to QoS policies which define QoS guarantees for various partners. In the service
management layer, QoS is expressed on a high level in form of Service Level Agreement
(SLAs) between two partners, which is guaranteed by service advertisements.

Adding semantics to other distributed resources: QWSMO-Lite is defined to add
semantics awareness to the Web Services which are emerging as a major technology for
deploying automated interactions between distributed and heterogeneous applications.
Nowadays, use of the “light-weight” approaches to services, especially for Web applications is
increasing [Benslimane et al., 2008]. Therefore, adding semantics to those “light-weight”
approaches will be an exciting prospect in the near future:

- Semantic annotation of RESTful services. In [Sheth et al., 2007], the authors propose a so-
called SA-REST description for the annotation of RESTful services by borrowing the
idea from SAWSDL. As an extension work, we can consider annotating the RESTful
services with our pre-defined service ontology, QWSMO-Lite.

- Semantic annotation of Web APIs. Many Web 2.0 based applications like Facebook,
Google, Flicker, and Twitter offer easy-to-use Web APIs. However, there is no widely
accepted structure language for describing Web APIs. SWEET presented in
[Maleshkova et al., 2010] enables users to create machine-readable descriptions and
semantic annotations. The Authors pointed out that the annotation procedure
provided in SWEET is quite time-consuming including a number of manual tasks for
users to complete. We conjecture that, the annotation of Web APIs can be simplified
by adapting the QWSMO-Lite ontology.

8.2.2 Enhancement of the WSD/WSC Layer

In this dissertation, SEwsPL, an AI-Planning based planner is developed for automated service
composition. To improve the quality of the plan, SEwsDM, a multi-attribute decision making

Chapter 8: Conclusion and Future Work

103

engine is integrated into the planner. In this part, we will discuss the possible items that may
remain on the research agenda of this domain.

Handling structural heterogeneity between services: Traditionally, the heterogeneity is
classified into four types [Nagarajan et al., 2007]:

- Syntactic heterogeneity. difference in the used specification languages.

- Model/Representation heterogeneity: difference in the underlying models or their
representations.

- Structural heterogeneity: difference in types and structures.

- Semantic heterogeneity: difference in semantic interpretations of the same real world entity.

The first two types of heterogeneity have been addressed by using XML. In our research work,
the semantic heterogeneity is reduced by the semantic annotation using QWSMO-Lite.
However, big challenges for structure heterogeneities still remain. In our previous work [Leng
et al., 2009], a framework called Semantically Enriched Integration System (SEIS) is presented.
It provides OGSA-DAI services for the semi-automatic generation of the necessary data
transformations between two sources under different structures. In this context, the further
development could be devoted to integrate SEIS to SEwsPL for the manipulation of such
structural heterogeneity between services.

Adaptation for the generation of services mashups and the cloud service
composition: Recently, with the development of Web 2.0 technologies, one noteworthy trend
over the Web is the rapid growing services mashups which combines existing services, such as
Web APIs, RESTful services into a single integrated service. Most service mashup solutions
are semi-automatic which assume that all available Web resources are known and available on
the Web 24 . User Generated Services (UGS) enable users to build mashups by finding,
combining and reusing Web resources manually. However, to facilitate the creation of service
mashups, an automated composition way is highly needed. Regarding cloud services which are
developed as self-contained component, how to compose services in cloud environments and
achieve high resource utility which is customized for client requests has become an important
research issue. In order to realize such composition, multi-attribute semantics involving
functional and non-functional semantics should be taken into account for the service selection
and planning procedure. To this end, our SEwsPL and SEwsDM can be further developed for
the service mashups and the cloud service composition by parsing the semantics from
annotated Web resources and modifying the problem modeling component for the further
reuse.

8.2.3 Enrichment of the Adaptation Layer

In this dissertation, a plan repair based approach has been developed for the adaptation of the
composition. Some future research is needed to make the adaptation procedure more robust.

Improvement of plan repair based solution: In SEwsPL, we have designed and
implemented a plan repair based approach for the adaptation which aims to reuse most of the
original plan as possible. However, in the case that users change their goals or some new
services are becoming available for the composition, the plan repair solution is converted to a

24 For instance, users can share, find and reuse Web APIs in www.programmableweb.com

http://www.programmableweb.com/

8.2 Outlook on Future Work

104

re-planning procedure. Therefore it remains an open question how to make the modification
more efficiently in such cases.

QoS Monitoring: Our system lacks a mechanism for QoS monitoring. The dynamic
changes are obtained by a user-defined external file. In real applications, it is also important
that QoS attributes can be monitored continuously by using non-intrusive monitoring
mechanism. Some efforts are available in this domain. For instance, QUATSCH which is a
novel client-side QoS monitoring approach for Web Service is presented in [Artaiam and
Senivongse, 2008]. It allows to monitor performance-specific QoS attributes such as response
time, latency or throughput continuously from a client-side perspective without requiring
access to service provider. Such existing monitoring system can be integrated into this layer as
part of future work in this direction.

105

[Algergawy et al., 2010] Algergawy, A., R. Nayak, N. Siegmand, V. Koppen, and G. Saake.

„Combining Schema and Level-Based Matching for Web Service Discovery.“ In:
Proceedings of 10th International Conference of Web Engineering (ICWE 2010). Vienna, Austria,
2010. pp. 114-128.

[Ardagna et al., 2007] Ardagna, D., M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani. „AWS: A

Framework for Executing Adaptive Web-Service Processes.“ IEEE Software, vol.24(6)
(2007): pp. 39-46.

[Artaiam and Senivongse, 2008] Artaiam, N., and T. Senivongse. „Enhancing Service-Side QoS

Monitoring for Web Services.“ In: Proceedings of the 9th International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing
(SNPD2008). Phuket, Thailand, 2008. pp. 765-770.

[Azar, 2000] Azar, F. S. „Multiattribute Decision-Making: Use of Three Scoring Methods to

Compare the Performance of Imaging Techniques for Breast Cancer Detection.“
Technical Reports (CIS), Dept. of Computer Science, University of Pennsylvania, 2000.

[Baryannis and Plexousakis, 2010] Baryannis, G., and D. Plexousakis. „Towards Realizing

Dynamic QoS-aware Web Service Composition.“ In: Proceedings of the 8th IEEE
European Conference on Web Services (ECOWS 2010). Ayia Napa, Cyprus, 2010. pp. 25-28.

[Benslimane et al., 2008] Benslimane, D., S. Dustdar, and A. Sheth. „Services Mashups: The

New Generation of Web Applications.“ Internet Computing, vol.12(5) (2008): pp. 13-15.

[Bless et al., 2008] Bless, P. N., D. Klabjan, and S. Y. Chang. „Heuristics for Automated

Knowledge Source Integration and Service Composition.“ Computers and Operations
Research, vol.35(4) (2008): pp. 1292-1314.

[Blum and Furst, 1997] Blum, A. L., and M. L. Furst. „Fast Planning Through Planning Graph

Analysis.“ Artificial Intelligence, vol.90(1) (1997): pp. 281-300.

[Brauers et al., 2008] Brauers, W. K., E. K. Zavadskas, F. Peldschus, and Z. Turskis. „Multi-

objective Decision-making for Road Design.“ Transport, vol.23(3) (2008): pp. 183-193.

[Cardoso, 2006] Cardoso, J. „Discovering Semantic Web services with and without a Common

Ontology Commitment.“ In: Proceedings of the 3rd International Workshop on Semantic and
Dynamic Web Processes (SDWP 2006). Chicago, USA, 2006. pp. 183-190.

[Chabeb and Tata, 2008] Chabeb, Y., and S. Tata. „Yet Another Semantic Annotation for

WSDL.“ In: Proceedings of IADIS International Conference (WWW/Internet 2008). Freiburg,
Germany, 2008. pp.437-441.

9References

106

[Chan et al., 2006] Chan, M., J. Bishop, and L. Baresi. „Survey and Comparison of Planning
Techniques for Web Services Composition.“ Technical Reports, Pretoria, South Africa:
Department of Computer Science, University of Pretoria, 2006.

[Chen et al., 2011] Chen, Y., K. W. Li, and S. F. Liu. „An OWA-TOPSIS Method for Multiple

Criteria Decision Analysis.“ Expert Systems with Applications, vol.38 (2011): pp. 5205–
5211.

[Chiu et al., 2008] Chiu, D., S. Deshpande, G. Agrawal, and R. Li. „Cost and Accuracy

Sensitive DynamicWorkflow Composition over Grid.“ In: Proceedings of the 9th
IEEE/ACM International Conference on Grid Computing (GRID'08). Tsukuba, Japan, 2008.
pp. 9-16.

[Doan et al., 2002] Doan, A., J. Madhavan, P. Domingos, and A. Halevy. „Learning to Map

between Ontologies on the Semantic Web.“ In: Proceedings of the 11th International
Conference on World Wide Web (WWW'02). Hawaii, USA, 2002. pp. 662-673.

[Edelkamp and Hoffmann, 2004] Edelkamp, S., and J. Hoffmann. „PDDL2.2: The language

for the Classic Part of the 4th International Planning Competition.“ Technical Reports,
Freiburg, Germany: Institut fuer Informatik, Freiburg, Germany, 2004.

[Eduardo et al., 2009] Eduardo, S., F. P. Luis, and S. V. Marten. „Supporting Dynamic Service

Composition at Runtime based on End-user Requirements.“ In: Proceedings of the 1st
International Workshop on User-generated Services (UGS2009). Stockholm, Sweden, 2009.
pp.464–471.

[Eduardo et al., 2011] Eduardo, S., F. P. Luis, and S. V. Marten. „Towards Runtime Discovery,
Selection and Composition of Semantic Services.“ Computer Communications, vol.34(2)
(2011): pp. 159-168.

[El-Gayyar et al., 2009] El-Gayyar, M., Y. Leng, S. Shumilov, and A. B. Cremers. „New

Execution Paradigm for Data-Intensive Scientific Workflows.“ In: Proceedings IEEE
Congress on Services (SERVICE 2009). Los Angeles, USA, 2009. pp. 334-339.

[El-Gayyar et al., 2010] El-Gayyar, M., Y. Leng, and A. B. Cremers. „Distributed Management

of Scientific Workflows in SWIMS .“ In: Proceedings the 9th IEEE Symposium on
Distributed Computing and Applications to Business Engineering and Science (DCABES, 2010) .
Hongkong, China, 2010. pp. 327-331.

[Evangelos, 2002] Evangelos, T. Multi-Criteria Decision Making Methods: A Comparative Study.

Kluwer Academic Publishers, 2002.

[Feng and Sun, 2010] Feng, P., and W. Sun. „Fast Goal-directed Graphplan based on

Interfering Actions.“ In: Proceedings of the 2nd International Workshop on Education Technology
and Computer Science. Wuhan, China, 2010. pp. 522-525.

[Fikes and Nilsson, 1971] Fikes, R. E., and N. J. Nilsson. „STRIPS: A New Approach to the

Application of Theorem Proving to Problem Solving.“ Artificial Intelligence, Vol.2(3)
(1971): pp. 608-620.

107

[Fox and Long, 2003] Fox, M., and D. Long. „pddl2.1 : An Extension to pddl for Expressing
Temporal Planning Domains.“ Journal of Artificial Intelligence Research, 2003: pp. 61-124.

[Fujii and Suda, 2009] Fujii, K., and T. Suda. „Semantics-based Context-aware Dynamic

Service Composition.“ ACM Transactions on Autonomous and Adaptive Systems (TAAS),
vol.4(2) (2009): pp. 1-31.

[Gabrilovich and Markovitch, 2007] Gabrilovich, E., and S. Markovitch. „Computing Semantic

Relatedness using Wikipedia-based Explicit Semantic Analysis.“ In: Proceedings of the 12th
International Joint Conference for Artificial. Hyderabad, India, 2007. pp. 1606-1611.

[Ganesan et al., 2003] Ganesan, P., G. H. Molina, and J. Widom. „Exploiting Hierarchical

Domain Structure to Compute Similarity.“ ACM Transactions on Information System,
vol.21(1) (2003): pp. 64-93.

[Gerevini and Long, 2006] Gerevini, A., and D. Long. „Preferences and Soft Constraints in

PDDL3.“ In: Proceedings of Workshop on Planning with Preferences and Soft Constraints
(ICAPS'06). Glasgow, UK, 2006. pp. 46-54.

[Ghallab et al., 2004] Ghallab, M., D. Nau, and P. Traverso. Automated Planning theory and

practice. Morgan Kaufmann Publisers, 2004.

[Ghallab et al., 1998] Ghallab, M., et al. „PDDL:The Planning Domain Definition Language.“

Technical Reports CVC TR-98-003/DCS TR-1165, Yale Center for Computational
Vision and Control, 1998.

[Giallonardo and Zimeo, 2007] Giallonardo, E., and E. Zimeo. „More Semantics in QoS

Matching.“ In: Proceedings of the IEEE International Conference on Service-Oriented Computing
and Applications. Newport Beach, USA, 2007. pp. 163-171.

[Gruber, 2008] Gruber, T. „Ontology.“ In Entry in the Encyclopedia of Database Systems, Springer-

Verlag, 2008.

[Gu et al., 2004] Gu, W., L. Xu, X. Zhang, X. Li, and F. Ren. „Research and Implementation

based on Bidirectional-paralleled Graphplan Algorithm .“ In: Proceedings of 2004
International Conference on Machine Learning and Cybernetics (ICMLC 2004). Shanghai,
China, 2004. pp. 239-243.

[Gulla et al., 2009] Gulla, J. A., T. Brasethvik, and G. S. Kvarv. „Association Rules and Cosine

Similarities in Ontology Relationship Learning.“ Lecture Notes in Business Information
Processing, vol.19(4) (2009): pp. 201-212.

[Guo et al., 2007] Guo, L., A. S. McGough, A. Akram, D. Colling, J. Martniak, and M.

Krznaric. „Enabling QoS for Service-Oriented Workflow on Grid.“ In: Proceedings of the
7th IEEE International Conference on Computer and Information Technology (CIT 2007).
Fukushima, Japan, 2007. pp. 1077-1082.

108

[Gupta et al., 2007] Gupta, M., J. Fu, F. Bastani, L. R. Khan, and I. L. Yen. „Rapid Goal-
oriented Automated Software Testing Using MEA-graph Planning.“ Software Quality
Control, vol.15(3) (2007): pp. 241-263.

[Hang and Singh, 2010] Hang, W. C., and M. P. Singh. "Trustworthy Service Selection and

Composition." ACM Transactions on Autonomous and Adaptive Systems, vol.5(4) (2010): pp.
1-18.

[Hatzi et al., 2009] Hatzi, O., G. Meditskos, D. Vrakas, N. Bassiliades, D. Anagnostopoulos ,

and I. Vlahavas. „Semantic Web Service Composition Using Planning and Ontology
Concept Relevance.“ In: Proceedings of IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technolog. Milano, Italy, 2009. pp. 418-421.

[He et al., 2008] He, J. L., C. L. Liu, and C. Wu. „Asymmetric Web Service Operation

Matching in Structural-Level Similarity Measure.“ In: Proceeding of the 8th IEEE
International Conference on Computer and Information Technology Workshops
(CITWORKSHOPS '08). Washington, USA, 2008. pp. 688-693.

[Helmert et al., 2008] Helmert, M., M. Do, and I. Refanidis. Changes in PDDL 3.1. 2008.

http://ipc.informatik.uni-freiburg.de/PddlExtension. (Available on 8. 8 2011).

[Hennig and Balke, 2010] Hennig, P., and W. Balke. „Highly Scalable Web Service

Composition Using Binary Tree-Based Parallelization.“ In: Proceedings of IEEE
International Conference on Web Services (ICWS'10). Miami, USA, 2010. pp. 123-130.

[Hwang and Yoon, 1981] Hwang, C. L., and K. P. Yoon. Multiple Attribute Decision Making:

Methods and Applications; a state-of-the-art survey. Berlin: Springer-Verlag, 1981.

[Jaeger and Rojec-Goldmann, 2005] Jaeger, M. C., and G. Rojec-Goldmann. "SENECA-

Simulation of Algorithms for the Selection of Web Services for Compositions." In:
Proceeding of the 6th VLDB Workshop on Technologies for E-Services (TES'05). Trondheim,
Norway, 2005. pp. 84-97.

[Jaeger et al., 2005] Jaeger, M. C., G. Rojecgoldmann, C. Liebetruth, G. Mühl, and K. Geihs.

„Ranked Matching for Service Descriptions using OWL-S.“ Kommunikation in Verteilten
Systemen(KiVS 2005), (2005): pp. 91-102.

[Jafarpour and Khayyambashi, 2010] Jafarpour, N., and R. M. Khayyambashi. „QoS-aware

Selection of Web Service Composition based on Harmony Search Algorithm.“ In:
Proceedings of the 2th International Conference on Advanced Communication Technology (ICACT
10). Gangwon-Do, Korea, 2010. pp. 1345-1350.

[Jahanshahloo et al., 2009] Jahanshahloo, G. R., F. H. Lotfi, and A. R. Davoodi. „Extension of

TOPSIS for Decision-making Problems with Interval Data: Interval Efficiency.“
Mathematical and Computer Modelling, vol.49(5-6) (2009): pp. 1137-1142.

109

[Jiang and Li, 2006] Jiang, Y. P., and B. Li. „An Approach to Determine the Attribute Weights
Based on Different Formats of Evaluation Information.“ International Journal of
Computer Science and Network Security, vol.6(10) (2006): pp. 285-289.

[Kambhampati, 1999] Kambhampati, S. „Improving Graphplan's Search with EBL & DDB

Techniques.“ In: Proceedings of the 16th International Joint Conference on Artificial Intelligence
(IJCAI'99). Stockholm, Sweden, 1999. pp. 982-987.

[Kambhampati et al., 1997] Kambhampati, S., E. Parker, and E. Lambrecht. „Understanding

and Extending Graphplan.“ In: Proceedings of the 4th European Conference on Planning: Recent
Advances in AI Planning (ECP'97) . Toulouse, France, 1997. pp. 260--272.

[Kawas et al., 2006] Kawas, E., M. Senger, and M. D. Wilkinson. „BioMoby extensions to the

Taverna workflow management and enactment software. “ BMC Bioinformatics,
vol.7(523), (2006): pp. 16-29.

[Kiefer and Bernstein, 2008] Kiefer, C., and A. Bernstein. „The Creation and Evaluation of

iSPARQL Strategies for Matchmaking.“ In: Proceedings of the 5th European Semantic Web
Conference (ESWC 2008). Tenerife, Spain, 2008. pp. 463-477.

[Klusch et al., 2005] Klusch, M., A. Gerber, and M. Schmidt. „Semantic Web Service

Composition Planning with OWLS-Xplan.“ In: Proceedings 1st International AAAI Fall
Symposium on Agents and the Semantic Web. Arlington VA,USA, 2005. 52-59.

[Klusch et al., 2009a] Klusch, M., B. Fries, and K. Sycara. „OWLS-MX: A Hybrid Semantic

Web Service Matchmaker for OWL-S Services.“ Web Semantics: Science, Services and
Agents on the World Wide Web, vol.7(2), (2009): pp. 121-133.

[Klusch et al., 2009b] Klusch, M., P. Kapahnke, and L. Zinnikus. „Hybrid Adaptive Web

Service Selection with SAWSDL-MX and WSDL-Analyzer.“ In: Proceedings of the 6th
European Semantic Web Conference (ESWC 2009). Heraklion, Greece, 2009. pp. 550-564.

[Klusch and Kaufer, 2009] Klusch, M., and F. Kaufer. „WSMO-MX: A Hybrid Semantic Web

Service Matchmaker.“ Web Intelligence and Agent Systems, vol.7(1), (2009): pp. 23-42.

[Kong et al., 2004] Kong, Y. C., C. L. Wang, and F.C. M. Lau. „Ontology Mapping in

Pervasive Computing Environment.“ Lecture Notes in Computer Science, vol.3207 (2004):
pp. 1014-1023.

[Kopecký et al., 2007] Kopecký, J., T. Vitvar, and J. Farrell. „SAWSDL: Semantic Annotations

for WSDL and XML Schema.“ Internet Computing, vol.11(6), (2007): pp. 60-67.

[Kopecký and Vitvar, 2008] Kopecký, J., and T. Vitvar. „WSMO-Lite: Lowering the Semantic

Web Services Barrier with Modular and Light-Weight Annotations.“ In: Proceedings of the
2nd IEEE International Conference on Semantic Computing (ICSC 2008). Santa Clara, CA,
2008. pp. 238-244.

110

[Kritikos and Plexousakis, 2009] Kritikos, K., and D. Plexousakis. „Mixed-Integer
Programming for QoS-Based Web Service Matchmaking.“ IEEE Transactions on services
computing, vol.2(2), (2009): pp. 122-139.

[Krogt and Weerdt, 2005] Krogt, R. V., and M. D. Weerdt. „Plan Repair as an Extension of

Planning.“ In: Proceedings of the 15th International Conference on Automated Planning and
Scheduling(ICAPS 05). Monterey, USA, 2005. pp.161-170.

[Leng et al., 2010] Leng, Y., M. El-Gayyar, and A. B. Cremers. „Semantics Enhanced

Composition Planner for Distributed Resources.“ In: Proceedings of the 9th International
Symposium on Distributed Computing and Applications to Business, Engineering and Science
(DCABES 10). Hongkong, China, 2010. pp.61-65.

[Leng et al., 2009] Leng, Y., M. El-gayyar, and S. Shumilov. „Semantically Enriched Integration

System For Heterogeneous Web Services.“ In: Proeedings of IADIS International Conference
on WWW/Internet (WWW/Internet 09). Roma, Italy, 2009. pp.202-213.

[Leymann, 2005] Leymann, F. „Combining Web Services and the Grid: Towards Adaptive

Enterprise Applciaitons.“ In: Proceedings of the 17th International Conference on Advanced
Information Systems Engineering (CAiSE 2005). FEUP, Edicoes, 2005. pp. 9-21.

[Li et al., 2010] Li, W. Q., X. M. Dai, and H. Jiang. „Web Services Composition based on

Weighted Planning Graph.“ In: Processing of the 1st International Conference on Networking
and Distributed Computing (ICNDC 2010) . Hangzhou, China, 2010. pp. 89-93.

[Li et al., 2003] Li, Y., A. Z. Bandar, and D. Mclean. „An Approach for Measuring Semantic

Similarity between Words Using Multiple Information Sources.“ IEEE Transactions on
Knowledge and Data Engineering, vol.15(4) (2003): pp. 871-882.

[Li et al., 2009] Li, Z., F. C. Yang, and S. Su. „Fuzzy Multi-Attribute Decision Making-Based

Algorithm for Semantic Web Service.“ Journal of Software, vol.20(3) (2009): pp. 583-596.

[Li and Zhou, 2009] Li, S. and J. Zhou. „The WSMO-QoS Semantic Web Service Discovery

Framework.“ In: Proceedings of International Conference on Computational Intelligence and
Software Engineering (CiSE 2009) . Wuhan, China, 2009. pp. 1-5.

[Lin et al., 2008] Lin, N., U. Kuter, and E. Sirin. „Web Service Composition with User

Preferences.“ In: Proceedings of the 5th European Semantic Web Conference on the Semantic Web:
Research and Applications (ESWC'08) . Tenerife, Spain, 2008. pp. 629-643.

[Liu and Shao, 2010] Liu, Y., and Q. Z. Shao. „The Similarity Calculation of Concepts from

Different Ontologies Based on Cosine.“ In: Proceedings of the 3rd International Conference on
Information Management, Innovation Management and Industrial Engineering (ICIII 2010).
Kuming, China, 2010. pp. 130-134.

[Lo et al., 2011] Lo, C. C., C. F. Tsai, and K. M. Chao. „Service Selection based on Fuzzy

TOPSIS Method.“ In: Proceedings of IEEE the 24th International Conference on Advanced

111

Information Networking (WAINA '10) and Applications Workshops. Perth, Australia, 2011.
pp. 367-372.

[Maleshkova et al., 2010] Maleshkova, M., C. Pedrinaci, and J. Domingue. „Semantic

Annotation of Web APIs with SWEET.“ In: Proceedings of the 6th Workshop on Scripting
and Development for the Semantic Web. Crete, Greece, 2010. pp. 55-67.

[Martin et al., 2007] Martin, D., et al. „Bringing Semantics to Web Services with OWL-S.“

World Wide Web, vol.10(3) (2007): pp. 243-277.

[Martin and Domingue, 2007] Martin, D., and J. Domingue. „Semantic Web Services: Past,

Present and Possible Futures (Systems Trends and Controversies).“ IEEE Intelligent
Systems, vol.11(6) (2007): pp. 60-67.

[Mayer et al., 2009] Mayer, W., R. Thiagarajan, and M. Stumptner. „Service Composition as
Generative Constraint Satisfaction.“ In Proceedings of the 2009 IEEE International
Conference on Web Services. Los Angeles, USA, 2009. pp. 888-895.

[Menasce, 2002] Menasce, D. A. „QoS Issues in Web Services.“ IEEE Internet Computing,

vol.6(6) (2002): pp. 72-75.

[Nagarajan et al., 2007] Nagarajan, M., K. Verma, A. P. Sheth, and J A. Miller. „Ontology

Driven Data Mediation in Web Services.“ International Journal of Web Services Research,
vol.49(7) (2007): pp. 104-126.

[Naseri and Towhidi, 2007] Naseri, M., and A. Towhidi. „Qos-Aware Automatic Composition

of Web Services Using AI Planners.“ In: Proceedings of the 2nd International Conference on
Internet and Web Applications and Services (ICIW'07). Morne, Mauritius, 2007. pp. 29-35.

[Nebel and Koehler, 1995] Nebel, B., and J. Koehler. „Plan Reuse Versus Plan Generation:a

Theoretical and Empirical Analysis.“ Artificial Intelligence, vol.76(1-2) (1995): pp. 427-
454.

[Oh and Kumara, 2006] Oh, S., and R.S. Kumara. „A Comparative Illustration of AI Planning-

based Web Services Composition.“ ACM SIGecom Exchanges, vol.5(5) (2006): pp. 1-10.

[Olson, 2004] Olson, D. L. „Comparison of Weights in TOPSIS Models.“ Mathematical and

Computer Modelling, vol.40(7-8) (2004): pp. 721-727.

[Paolucci et al., 2002] Paolucci, M., T. Kawamura, T. R. Payne, and K. P. Sycara. „Semantic

Matching of Web Services Capabilities.“ In: Proceedings of the 1st International Semantic Web
Conference on The Semantic Web (ISWC '02). Sardinia, Italy, 2002. pp. 333-347.

[Papazoglou et al., 2007] Papazoglou, P. M, Traverso, P., S. Dustar, and F. Leymann. „Service-

Oriented Computing: State of the Art and Research Challenges.“ Computer 40,
vol.40(11) (2007): pp. 38-45.

112

[Parker, 1999] Parker, E. „Making Graphplan Goal-Directed.“ In: Proceedings of the 5th European
Conference on Planning: Recent Advances in AI Planning (ECP'99). Durham, United
Kingdom, 1999. pp. 333-346.

[Peer, 2005] Peer, J. „A POP-Based Replanning Agent for Automatic Web Service

Composition.“ Lecture Notes in Computer Science, vol.3532 (2005): pp. 189-198.

[Pop et al., 2009] Pop, C. B., V. R. Chifu, I. Salomie, and M. Dinsoreanu. „Optimal Web

Service Composition Method based on an Enhanced Planning Graph and Using an
Immune-inspired Algorithm.“ In: Proceedings of IEEE the 5th International Conference on
Intelligent Computer Communication and Processing (ICCP'09). Cluj-Napoca, Romania, 2009.
pp. 291 - 298.

[Pyle, 1999] Pyle, D. Data preparation for data mining. San Diego, USA: Academic Press, 1999.

[Rijsbergen, 1979] Rijsbergen, C.J. van. Information Retrieval. Butterworth, 1979.

[Roman et al., 2005] Roman, D., et al. „Web Service Modeling Ontology.“ Applied Ontology,

(2005): pp. 77-106.

[Russell and Norvig, 2002] Russell, S., and P. Norvig. Artificial Intelligence: A Modern Approach.

Prentice-Hall, 2002.

[Saghafian and Hejazi, 2006] Saghafian, S., and S. R. Hejazi. „Multi-criteria Group Decision

Making Using a Modified Fuzzy TOPSIS Procedure.“ In: Proceedings of the International
Conference on Computational Intelligence for Modelling, Control and Automation and International
Conference on Intelligent Agents, Web Technologies and Internet Commerce Vol-2 (CIMCA-
IAWTIC'06). Sydney, Australia, 2006. pp. 215-221.

[Şenvar and Bener, 2006] Şenvar, M., and A. Bener. „Matchmaking of Semantic Web Services

Using Semantic-Distance Information.“ In Lecture Notes in Computer Science, pp. 177-
186. Berlin: Springer, 2006.

[Sheshagiri et al., 2003] Sheshagiri, M., M. desJardins, and T. Finin. „A Planner for Composing

Services Described in DAML-S.“ In: Proceedings of the AAMAS Workshop on Web Services
and Agent-based Engineering . Melbourne, Australia, 2003. pp. 45-51.

[Sheth et al., 2007] Sheth, A. P., K. Gomadam, and J. Lathem. „SA-REST: Semantically

Interoperable and Easier-to-Use Servces and Mashups.“ Internet Computing, vol.11(6)
(2007): pp. 91-94.

[Shumilov et al., 2008] Shumilov, S., Y. Leng, M. El-Gayyar, and A. B. Cremers. „Distributed

Scientific Workflow Management for Data-Intensive Applications.“ In: Proceedings of the
12th IEEE International Workshop on Future Trends of Distributed Computing Systems
(FTDCS'08). Kunming, China, 2008. pp. 65-73.

[Simanaviciene and Ustinovichius, 2010] Simanaviciene, R., and L. Ustinovichius. „Sensitivity

Analysis for Multiple Criteria Decision Making Methods: TOPSIS and SAW.“ In:

113

Proceedings of the 6th International Conference on Sensitivity Analysis of Model Output
(SAMO2010). Milano, Italy, 2010. pp. 7743-7744.

[Sohrabi and Mcilraith, 2009] Sohrabi, S., and S. A. Mcilraith. „Optimizing Web Service

Composition While Enforcing Regulations.“ In: Proceedings of the 8th International Semantic
Web Conference (ISWC '09) . Chantilly, USA, 2009. pp. 601-617.

[Steuer, 1986] Steuer, R. E. Multiple Criteria Optimization: Theory, Computation and Application. New

York: John Wiley, 1986.

[Syu et al., 2011] Syu, Y., Y. Fanjiang, J. Kuo, and S. Ma. „Towards a Genetic Algorithm

Approach to Automating Workflow Composition for Web Services with Transactional
and QoS-Awareness .“ In: Proceedings of IEEE World Congress on Service (SERVICE
2011). Washington, USA, 2011. pp. 295-302.

[Thiagarajan et al., 2008] Thiagarajan, R., G. Manjunath, and M. Stumptner. „Computing
Semantic Similarity Using Ontologies.“ HP Laboratories, 2008.

[Tondello and Siqueira, 2008] Tondello, G. F., and F. Siqueira. „The QoS-MO Ontology for

Semantic QoS Modeling.“ In: Proceedings of the 23rd ACM Symposium on Applied Computing
(SAC 2008). Fortaleza, Brazil, 2008. pp. 2336-2340.

[Tong and Zhang, 2006] Tong, X. H., and S. S. Zhang. „A Fuzzy Multi-attribute Decision

Making Algorithm for Web Services Selection Based on QoS.“ In: Proceeding of IEEE
Asia-Pacific Conference on Service Computing (APSCC'06) . Guangzhou, China, 2006. pp.
51-57.

[Tversky, 1977] Tversky, A. „Features of Similarity.“ In Psychological Review, vol.84(2) (1977): pp.

327-352.

[Vladislava, 2006] Vladislava, G. „Semantic Description of Web Services and Possibilities of

BPEL4WS.“ International Journal Information Theories and Applications, vol.13(2) (2006): pp.
183-187.

[Wang et al., 2006] Wang, X., T. Vitvar, M. Kerrigan, and I. Toma. "A QoS-aware Selection

Model for Semantic Web Services." In: Proceedings of the 4th International Conference on
Service-Oriented Computing (ICSOC 2006). Chicago, USA, 2006. pp. 390-401.

[Weld, 1994] Weld, D. „An Introduction to Least Commitment Planning.“ AI Magazine,

vol.15(4) (1994): pp. 27-61.

[Wen et al., 2006] Wen, G., L. Liang, and R. N. Shadbolt. „Ontology-Based Similarity Between

Text Documents on Manifold.“ In: Proceedings of the 1st Asian Semantic Web Conference.
Beijing, China, 2006. pp. 115-125.

[Wu et al., 2007] Wu, X. Z., A. Ranabahu, K. Gomadam, A. P. Sheth, and J. A. Miller.

Automatic Composition of Semantic Web Services using Process and Data Mediation.
Technical Reports, Georgia, USA: LSDIS lab, University of Georgia, 2007.

114

[Xiao et al., 2010] Xiao, Y., X. Zhou, and X. Huang. „Automated Semantic Web Service
Composition Based on Enhanced HTN.“ In: Proceedings of the 5th IEEE International
Symposium on Service Oriented System Engineering (SOSE). Nanjing, China, 2010. pp. 59-63.

[Yan et al., 2009] Yan, Y. X., B. Xu, Z. F. Gu, and S. Luo. „A QoS-Driven Approach for

Semantic Service Composition.“ In: Proceedings of the 12th IEEE Conference on Commerce
and Enterprise Computing (CEC'09). Vienna, Austria, 2009. pp. 523-526.

[Yan et al., 2010a] Yan, Y., P. Poizat, and L. Zhao. „Repairing Service Compositions in a

Changing World.“ Studies in Computational Intelligence, vol. 296 (2010): pp. 17-36.

[Yan et al., 2010b] Yan, Y., P. Poizat, and L. Zhao. „Self-Adaptive Service Composition

Through Graphplan Repair.“ In: Proceedings of IEEE International Conference on Web Service
(ICWS). Miami, USA, 2010. pp. 624-627.

[Yan and Zheng, 2008] Yan, Y., and X. Zheng. „A Planning Graph Based Algorithm for
Semantic Web Service Composition.“ In: Proceedings of E-Commerce Technology and the 5th
IEEE Conference on Enterprise Computing, E-Commerce and E-Services (CECandEEE 08).
Washington, USA, 2008. pp. 339 - 342.

[Yang et al., 2006] Yang, J. H., C. W. Lan, and J. Y. Chung. „Analyses of QoS-Aware Web

Services.“ In: Proceedings of International Computer Symposium (ICS 2006). Taipei, China,
2006. pp. 880-885.

[Yoon and Hwang, 1995] Yoon, K. P., and C. L. Hwang. Multiple Attribute Decision Making: An

Introduction. Sage Publications, 1995.

[Zanakis et al., 1998] Zanakis, H. S., A. Solomon, N. Wishart, and S. Dublish. „Multi-attribute

Decision Making: a Simulation Comparison of Select Methods.“ European Journal of
Operational Research, vol.107(3) (1998): pp. 507-529.

[Zavadskas and Turskis, 2008] Zavadskas, E. K., and Z. Turskis. „A New Logarithmic

Normalization Method in Games Theory.“ INFORMATICA, vol.19(2) (2008): pp.
303-314.

[Zeleny, 1982] Zeleny, M. Multiple Criteria Decision Making. McGraw-Hill, 1982.

[Zeng et al., 2004] Zeng, L. Z., B. Benatallah, A. H.H. Ngu, M. Dumas, J. Kalagnanam, and H.

Chang. „QoS-Aware Middleware for Web Services Composition.“ IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, vol.30(5) (2004): pp. 311-
327.

[Zhang et al., 2010] Zhang, W., C. K. Chang, T. Feng, and H. Y. Jiang. „QoS-Based Dynamic

Web Service Composition with Ant Colony Optimization.“ In: Proceedings of IEEE the
34th Computer Software and Applications Conference (COMPSAC'10). Seoul, Korea, 2010.
pp. 493 - 502 .

