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Zusammenfassung

Diese Arbeit ist im Bereich der kombinatorische Gruppen- bzw. Monoidtheorie einzuord-
nen. Für Monoide X, die mit einer sogenannten Faktorabilitätsstruktur versehen sind,
konstruieren wir freie Auflösungen von Z über dem Monoidring ZX, die deutlich kleiner
sind als die Barauflösung. Damit erweitern wir Resultate aus [Vis11] und [Wan11].
Wir geben außerdem einige Berechnungsbeispiele. Unser Hauptwerkzeug ist die diskrete
Morsetheorie nach Forman [For98].

Faktorabilität hat ihren Ursprung in der Berechnung von Homologiegruppen von Mo-
dulräumen Riemannscher Flächen. Diese Modulräume lassen eine rein kombinatorische
Beschreibung durch symmetrische Gruppen zu, siehe [Böd90], [Böd], [Ebe], [ABE08].
Dadurch ist es möglich, Homologiegruppen mit Hilfe von Computerprogrammen zu be-
stimmen, so geschehen bspw. in [ABE08], [Wan11], [Meh11].

Bei diesen Berechnungen tritt ein interessantes Phänomen zu Tage, nämlich kollabiert
der Barkomplex der symmetrischen Gruppen zu einem deutlich kleineren Kettenkom-
plex. Um diese Beobachtung zu erklären, führt [Vis11] den Begriff der faktorablen
Gruppe ein.

Eine faktorable Gruppe ist ein Tripel bestehend aus einer GruppeG, einem Erzeugenden-
system S sowie einer Faktorisierungsabbildung η : G→ G×S. Das Bild das man hierbei
vor Augen haben sollte ist, dass η von einem Gruppenelement einen Erzeuger abspaltet.
In [Wan11] wird eine Verallgemeinerung dieses Begriffs auf Monoide vorgeschlagen. Dort
werden, aufbauend auf [Vis11], kleine Kettenkomplexe zur Berechnung der Homologie
rechtskürzbarer, faktorabler Monoide mit endlichem Erzeugendensystem konstruiert.

Der von uns gewählte Zugang zu Faktorabilität ist konzeptioneller. Dies erlaubt einer-
seits, die Faktorisierungsabbildung η als diskrete Morsefunktion auf der Barauflösung zu
interpretieren. Daraus werden unter anderem geometrische und homologische Endlich-
keitsaussagen gewonnen. Andererseits ermöglicht unsere Herangehensweise, faktorable
Monoide in den Kontext von Termersetzungssystemen (siehe z.B. [Coh97]) einzuordnen.

Der Aufbau dieser Arbeit ist wie folgt. In Kapitel 1 rekapitulieren wir ausführlich
diskrete Morsetheorie und einige ihrer Varianten. In Kapitel 2 geben wir unsere Defi-
nition von faktorablem Monoid. Kapitel 3 zeigt, wie man aus Faktorabilitätsstrukturen
“kleine” Auflösungen gewinnt und wie dieses Resultat die Konstruktionen in [Vis11]
und [Wan11] vereinheitlicht und verallgemeinert. In Kapitel 4 präsentieren wir eine
Anwendung und berechnen Homologiegruppen von sogenannten Thompsonmonoiden.
Dies beinhaltet insbesondere eine Neuberechnung der Homologie der Thompsongruppe
F selbst (vgl. [CFP96], [BG84]) sowie verwandter Gruppen Fn,∞ (vgl. [Bro92], [Ste92]).
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Introduction

Group homology is an important invariant in many algebraically flavoured branches of
mathematics. The homology of a group G with coefficients in a ZG-moduleM is defined
as

H∗(G;M) := TorZG∗ (Z;M),

where Z has the trivial ZG-module structure. To compute these Tor-groups, we need to
find a projective resolution of Z over ZG.

The normalized inhomogeneous bar resolution E∗G, for short bar resolution of G, serves
as such. Tensoring with Z, we obtain a well-known model for the homology of G, the
bar complex B∗G := E∗G⊗ZGZ. As a Z-module, each BnG is freely generated by tuples
[gn| . . . |g1] with gi 6= 1 for all i.

In practice, the bar complex is too huge to do homology computations straight away. It
is therefore convenient to take into account potential extra structure on G. For example,
the existence of a finite complete rewriting system for G gives rise to a free resolution of
Z of finite type, see e.g. [Ani86], [Squ87], [Gro90], [Bro92] and the survey articles [NR93],
[Coh97]. More specifically, in [CMW04] Garside structures are used to construct finite
free resolutions.

The notion of factorability should be considered as lying somewhere between Garside
structures and complete rewriting systems. This will be made precise later. The upshot
is that if G is equipped with a reasonable factorability structure, then one can explicitly
write down a free resolution which is considerably smaller than the bar resolution and
thus more amenable to computation.

Before going into details, we briefly discuss a collapsing phenomenon that has first been
observed for symmetric groups and that motivated the notion of factorability.

Denote by Sk the k-th symmetric group. Let T ⊂ Sk be the generating set of all trans-
positions. The word length ℓ with respect to T gives rise to a filtration by subcomplexes
of the bar complex B∗Sk. More precisely, define FhBnSk to be the Z-module freely
generated by all tuples [σn| . . . |σ1] with σi 6= id and ℓ(σn) + . . . + ℓ(σ1) ≤ h. Since ℓ is
subadditive, the filtration levels FhB∗Sk are indeed subcomplexes of B∗Sk. Note that
FhB∗Sk = 0 for ∗ < 0 or ∗ > h.

The following observation is due to Visy [Vis11]. It marks the starting point of the study
of factorability.
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Introduction

Proposition (Visy) The complex of filtration quotients FhB∗Sk/Fh−1B∗Sk,

0 // FhBhSk/Fh−1BhSk // . . . // FhB0Sk/Fh−1B0Sk // 0 (∗)

has homology concentrated in top-degree ∗ = h.

Let us reformulate this observation in terms of spectral sequences. F•B∗Sk is an increas-
ing filtration by chain complexes, and hence there is an associated homology spectral se-
quence, cf. Weibel [Wei94, §5.4]. More precisely, we have E0

p,q = FpBp+qSk/Fp−1Bp+qSk.
Note that our spectral sequence lives in the fourth quadrant.

The chain complexes of filtration quotients FhB∗Sk/Fh−1B∗Sk in (∗) occur as (shifted)
columns (E0

h,∗−h, d
0
h,∗−h) of this spectral sequence. Visy’s observation is therefore equiva-

lent to saying that the homology of each column is concentrated in degree 0. In particu-
lar, the E1-page consists of a single chain complex (E1

∗,0, d
1
∗,0), and our spectral sequence

collapses on the E2-page.

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · ∗ ∗ ∗ ∗ ∗

· · · · · · ∗ ∗ ∗

· · · · · · · ∗ ∗

· · · · · · · · ∗

· · · · · · · · ·

Shifted complex of the
h-th filtration quotients

The E
0-page.

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · ∗ ∗ ∗ ∗ ∗

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

The E
1-page.

Clearly, the complex (E1
∗,0, d

1
∗,0) is a model for the homology of G, cf. Weibel [Wei94,

§5.5], and it is considerably smaller than the bar complex.

The notion of factorability has been introduced to explain this collapsing phenomenon
and to give a description of the complex (E1

∗,0, d
1
∗,0). We now outline the original definition

by Visy [Vis11].

A factorable group consists of the following data. A discrete group G, a generating set
S ⊂ G which is closed under taking inverses, and a splitting map η : G → G × G,
g 7→ (g, g′). The element g′ is called the prefix of g and g is called the remainder of g.
Denote by ℓ the word length with respect to S. We say that η is a factorization map for
the pair (G,S) if it satisfies the following axioms:

(F1) g = g · g′.

(F2) ℓ(g) = ℓ(g) + ℓ(g′).

(F3) If g 6= 1 then g′ ∈ S.
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We remark that if η is a factorization map, then iteratively applying η to the remainder
we obtain a normal form, i.e. a section G → S∗ of the canonical projection S∗ → G,
where S∗ denotes the free group over S.

The triple (G,S, η) is called a factorable group if the factorization map η satisfies (gt)′ =
(g′t)′ for all pairs (g, t) ∈ G× S with ℓ(gt) = ℓ(g) + ℓ(t). This latter property should be
regarded as a compatibility condition about prefixes of products. The intuition behind it
is that factorability assures the existence of particularly nice normal forms. For example,
if (G,S, η) is factorable, then the image of the induced normal form G → S∗ is closed
under taking subwords. To get an idea of what this has to do with the spectral sequence
situation, we remark that the factorization map η can be thought of as encoding a
collapsing chain homotopy on each vertical complex (E0

p,∗, d
0
p,∗).

Our prototypical example (Sk, T ), the k-th symmetric group together with the generating
set of all transpositions, can be endowed with a factorability structure as follows. By
(F2) we must have η(id) = (id, id). Let σ ∈ Sk be a non-trivial permutation and denote
bym its largest non-fixed point. As prefix σ′ we take the transposition τ = (m σ−1(m)).
The remainder is then given by σ = σ ◦ τ . For example, in cycle notation, (1 2 4) ∈ S4
is mapped to ((1 2), (2 4)). Visy [Vis11] showed that (Sk, T, η) is a factorable group.

Further interesting examples including alternating groups, dihedral groups and certain
Coxeter groups can be found in the works of Ozornova [Ozo], Rodenhausen [Rod],
[Rod11] and Visy [Vis11]. Also, free and direct products (or, more generally, graph
products) as well as semidirect products of factorable groups are again factorable, cf.
[Rod] and [Vis11].

We now briefly survey the results of Visy [Vis11] and Wang [Wan11] in finding small ho-
mology models for factorable groups. Recall from page 8 the spectral sequence associated
to the generating set S for the group G.

Theorem (Visy) If (G,S, η) is a factorable group then the homology of each vertical
complex (E0

p,∗, d
0
p,∗) is concentrated in degree 0.

In other words, the E1-page of the spectral sequence consists of a single chain complex
(E1
∗,0, d

1
∗,0). To describe this complex, Visy introduces the complex (V∗, ∂

V
∗ ) together

with an embedding of chain complexes

κ : (V∗, ∂
V
∗ ) −→ (E1

∗,0, d
1
∗,0).

He also proves that κ is surjective for symmetric groups with the above factorability
structure. Wang [Wan11] uses a clever counting argument to conclude the following:

Theorem (Wang) Let (G,S, η) be a factorable group. If S is finite then κ is an
isomophism.

There is an obvious generalization of the notion of factorability to monoids, and Wang
in loc. cit. points out that her Theorem still holds when the group G is replaced by a
right-cancellative monoid.
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Introduction

The works of Visy and Wang investigate the homological behavior mentioned above
from the perspective of factorability of groups or monoids. One aim of this thesis is to
study factorability in a far broader context and to provide a conceptual treatment for it,
putting it in perspective with rewriting systems and discrete Morse theory. To this end,
we first equivalently reformulate factorability of groups in terms of actions of monoids
Pn and Qn. This point of view suggests a notion of factorability for monoids which is
slightly stronger than the one used by Wang.

The advantage of our approach is that now a factorability structure on a monoid gives
rise to a discrete Morse function on its bar complex.

A discrete Morse function f on a cell complex K assigns to every (open) cell of K a
natural number, providing a partition of the cells of K into regular and critical ones.
As in classical Morse theory, a discrete Morse function induces a discrete gradient flow,
and along this flow we can collapse K onto a complex that is built up from the critical
cells. This latter complex is called the discrete Morse complex associated to f .

Here we are mostly interested in an algebraic version of discrete Morse theory, where
the objects of study are based chain complexes.

Large parts of this thesis are devoted to studying the Morse complex associated to the bar
resolution and the bar complex of a factorable monoid. For example, as an immediate
consequence, we obtain geometric and homological finiteness properties of factorable
monoids.

A more detailed analysis will reveal that our discrete Morse complex coincides with
Visy’s complex (V∗, ∂

V
∗ ) and furthermore that, with our stronger notion of factorable

monoid, the map κ is always an isomorphism. Moreover, we will find that κ has an
interpretation in the world of discrete Morse theory.

Note that here we are only concerned with one factorable group at a time. Another
interesting direction in the study of factorability takes into account families of factorable
groups. This has applications in the computation of the homology of moduli spaces of
Riemann surfaces. Before discussing the organization of this thesis, let us briefly report
on this connection.

Let Fm
g,1 be a Riemann surface of genus g with one boundary curve and m marked

points (“punctures”). Bödigheimer’s Hilbert Uniformization provides a finite double
complex Q•,• that computes the homology of the moduli space Mm

g,1 of F
m
g,1. This double

complex has a description in terms of the family of symmetric groups equipped with the
aforementioned factorability structure. For further reading see [ABE08], [Böd90], [Böd],
[Ebe], [Vis11], [Wan11].

Let (G(k), S(k), η(k)) be a factorable group for every k ≥ 0. Recall that for each of these
factorable groups we have an associated spectral sequence, and we are now aiming for
obtaining connecting homomorphisms between the respective E0-pages. To this end, we
arrange the sets underlying the groups G(k) in a semisimplicial set. That is, for every

10



k ≥ 1 and all i = 0, . . . , n we are given face maps (not necessarily homomorphisms!)

D
(k)
i : G(k) → G(k−1),

satisfying the simplicial identities DiDj = Dj−1Di for i < j. (For simplicity of notation
we suppress the upper index k.) In order to make these face maps compatible with the
respective generating sets S, we need to impose further conditions, namely that

• Di(1) = 1 for all i, and

• ℓ(Di(gh) · (Di(h))
−1) ≤ ℓ(g) for all g, h ∈ G, where the word length ℓ is taken with

respect to the respective generating set.

Our standard example is the family of symmetric groups G(k) = Sk+1. As generating set
S(k) we take all transpositions, and the factorization map is as defined on page 9. We
now describe the face maps Di. Let σ ∈ G

(k) = Sk+1. Then, in the cycle notation of σ,
Di removes the entry i+1 and renormalizes all larger entries, meaning that every entry
j > i + 1 is replaced by j − 1. For example, consider σ = (1 2 4) (3 6) (5) ∈ G(5) = S6.
The Di(σ) then are as follows:

D0(σ) = (1 3) (2 5) (4) D2(σ) = (1 2 3) (4) (5) D4(σ) = (1 2 4) (3 5)

D1(σ) = (1 3) (2 5) (4) D3(σ) = (1 2) (3 5) (4) D5(σ) = (1 2 4) (3) (5)

We remark that the maps Di : Sk+1 → Sk arise quite naturally in the study of flow lines
of harmonic functions on Riemann surfaces. For details see [ABE08], [Böd90], [Böd],
[Ebe].

Now, given a family of factorable groups arranged in a semisimplicial set, with the face

maps satisfying the above compatibility conditions, we obtain maps δ
(k)
n : BnG

(k) →
BnG

(k−1) by assigning to a cell in homogeneous notation [gn : . . . : g1] ∈ BnG
(k) the

alternating sum
∑k

i=0(−1)
i[Di(gn) : . . . : Di(g1)] and extending linearly. Observe that

the δ
(k)
n commute with the face maps of the bar complex, which in homogeneous notation

are given by deletion of entries.

Our assumptions guarantee that the δ
(k)
n ’s respect the filtration F•BnG

(k) induced by
S(k), hence descend to filtration quotients, and in this way yield the desired connecting
homomorphisms between the respective E0-pages,

δ(k)p,q : E0
p,qG

(k) −→ E
0
p,qG

(k−1).

Fix h ≥ 0 and simultaneously look at the h-th column of the E0-pages of all groups G(k).

We obtain a double complex E0
h,∗G

(∗). The horizontal differential is δ
(∗)
h,∗ and the vertical

differential is just the differential of the respective E0-page, see the figure below. Note
that the k-th column of this double complex is the h-th column of the E0-page of the
factorable group G(k), and thus the homology of each column of this double complex is
concentrated in top-degree.

11
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The double complex E
0
h,∗G

(∗).

Taking G(k) = Sk+1 as above, this double complex computes the homology of a wedge
sum of moduli spaces. More precisely, fix h ≥ 0 and define the truncated double complex
T•,• by

Ti,j =

{
E0
h,jSi+1 if 0 ≤ i ≤ 2h and 0 ≤ j ≤ h,

0 else.

One version of Bödigheimer’s result reads as follows, cf. [ABE08], [Böd].

Theorem (Bödigheimer). H∗(T•,•) ∼=
⊕

2g+m=h

H∗(M
m
g,1).

In [ABE08], a double complex Q•,• is introduced for every choice of parameters g,m ≥ 0,
and the direct sum of all Q•,•’s with parameters 2g +m = h is isomorphic to T•,•. The
main result of [Böd] is the following.

Theorem (Bödigheimer). H∗(Q•,•) ∼= H∗(M
m
g,1).

The complexes Q•,• allow a purely combinatorial description. Furthermore, all the re-
spective vertical complexes have homology concentrated in top-degree, and the associ-
ated top-degree chain complexes can be described in terms of the factorability structure
on symmetric groups. This combinatorial model has been used in the works of Mehner
[Meh11] and Wang [Wan11] to do homology computations for moduli spaces with pa-
rameters 2g +m ≤ 7.

Considering families of factorable groupoids, [Wan11] is able to do similar calculations
for moduli spaces of Kleinian surfaces.
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We now discuss the organization of this thesis.

In Chapter 0 we collect prerequisites on monoids and recall the definitions of geometric
and homological finiteness properties.

Chapter 1 is concerned with various kinds and applications of discrete Morse theory.
The chapter is separated into three parts. In the first part, we give a self-contained
exposition of Morse theory for chain complexes. The second part starts with a reminder
on several types of bar constructions on monoids. We then introduce rewriting systems
and give a brief survey on Brown’s proof of the Anick–Groves–Squier Theorem, stating
that a complete rewriting system on a monoid X gives rise to small resolutions of X.
This proof is based on discrete Morse theory. Section 1.3 is joint work with Ozornova.
We give an alternative proof of a Theorem by Charney, Meier and Whittlesey on the
existence of finite resolutions for Garside monoids, using discrete Morse theory only.

In Chapter 2 we survey Visy’s work on factorable groups and Wang’s generalization to
monoids. To the latter we will refer to as weak factorability. Wang proved the following,
cf. Theorem 2.1.23:

Theorem (Wang) Let (X,S, η) be a weakly factorable monoid. Assume that X is
right-cancellative and that S is finite. Then the map κ : (V∗, ∂

V
∗ ) → (E1

∗,0, d
1
∗,0) is

an isomorpism.

Mehner pointed out that the above Theorem does not hold if the assumption of X
being right-cancellative is dropped. To make this precise, we introduce a local-to-global
condition for normal forms X → S∗, called the recognition principle. In Section 2.2
we define factorability via actions of certain monoids Pn and Qn. For groups (and,
more generally, for right-cancellative monoids) the two notions coincide. For arbitrary
monoids we have Theorem 2.2.6:

Theorem Let X be a monoid, S a generating set and η : X → X×X a factorization
map. Then the following are equivalent:

(a) (X,S, η) is a factorable monoid.

(b) (X,S, η) is a weakly factorable monoid and η satisfies the recognition principle.

Indeed, if X is right-cancellative, then every factorization map η : X → X ×X satisfies
the recognition principle.

The remainder of Chapter 2 is devoted to study the monoids Pn and Qn in detail. For
example, we show that every monoid Qn admits an absorbing element. This allows
to explicitly write down a normal form algorithm for factorable monoids, yielding the
following result, which is Corollary 2.3.16.

13



Introduction

Corollary Let (X,S, η) be a factorable monoid. If S is finite then X has Dehn
function of at most cubic growth, and in particular X has solvable word problem.

We conclude Chapter 2 by investigating a connection between the monoids Pn, Qn and
Visy’s map κ: The monoid Qn is a quotient of Pn, and we say that an element in Pn

is small if its fibre under the quotient map Pn ։ Qn consists of exactly one element.
Proposition 2.3.36 then states that κ has a universal description in terms of a sum
indexed by the small elements of Pn.

Chapter 3 is the heart of this thesis. To begin, we show that the normalized bar
resolution and complex of a factorable monoid are highly structured. More precisely, we
have the following, cf. Theorem 3.1.8:

Theorem A factorability structure on a monoid X naturally gives rise to a discrete
Morse function on the normalized bar complex (B∗X, ∂∗).

An analogous result holds for the classifying space BX, and we record the following
immediate consequence, cf. Corollary 3.1.22 and Remark 3.1.23:

Corollary Let (X,S, η) be a factorable monoid. If S is finite then X satisfies the
geometric and homological finiteness properties F∞ and FP∞.

Associated to our Morse function, discrete Morse theory provides two distinct but iso-
morphic chain complexes, which are chain homotopy equivalent to the bar complex.

Namely, these are the discrete Morse complex, denoted by ((B∗X)θ, ∂
θ
∗), and the com-

plex of discrete harmonic forms, for which we write ((B∗X)Θ, ∂∗).

The main result of this thesis is Theorem 3.3.8. It draws a connection between Visy’s
complex (V∗, ∂

V
∗ ), the E1-page of the previously discussed spectral sequence, and the

just-mentioned two complexes from discrete Morse theory. The following is a slightly
weakened version of Theorem 3.3.8.

Theorem For every factorable monoid (X,S, η) we have the following commutative
diagram of chain complexes:

(V∗, ∂
V
∗ )

κ
∼=

// (E1
∗,0, d

1
∗,0)

((B∗X)θ, ∂
θ
∗)

Θ∞

∼=
// ((B∗X)Θ, ∂∗)

As an immediate consequence we obtain Corollary 3.3.9:

Corollary κ is an isomorphism for every factorable monoid.

14



Moreover, κ is not just any isomorphism, but can be identified with the stabilization
isomorphism Θ∞, which occurs naturally in discrete Morse theory, cf. Section 1.1.5.

We conclude Chapter 3 by pointing out that the notion of factorability fits into the
framework of complete rewriting systems. Theorem 3.4.1 is joint work with Ozornova:

Theorem (H, Ozornova) If (X,S, η) is a factorable monoid then X possesses a
complete rewriting system over the alphabet S.

It is well-known that a complete rewriting system on a monoid X gives rise to a discrete
Morse function on the bar complex BX, see e.g. Brown [Bro92] or Subsection 1.2.4.
When proving the above theorem, we furthermore show that the discrete Morse function
induced by this complete rewriting system coincides with our construction of a discrete
Morse function from a factorability structure. The upshot is that a factorability structure
is a special case of a complete rewriting system. The advantage we gain from this extra
structure is that we have an explicit description of the differentials in the associated
Morse complex.

In Chapter 4 we use our previous results to compute homology groups of a 3-parameter
family of monoids tm(p, q). These monoids occur as abstract generalizations of Thomp-
son’s group F , and we find F as the group of fractions of t∞(1, 2). We derive recursion
formulas for the homology of tm(p, q) for all values of m > 0, q > 0 and 0 < p ≤ q, cf.
Corollary 4.5.4. For m =∞, Proposition 4.5.5 provides an explicit computation:

Proposition For 0 < p ≤ q and n > 0 we have Hn(t∞(p, q)) ∼= Z(q−1)n−1·q.

Here we remark that the homology of the monoids tm(p, q) does in fact not depend on
the particular choice of the parameter p.

Denote by T m(p, q) the group of fractions of tm(p, q). Fixing m = ∞ and q = p +
1, we obtain a 1-parameter family of groups T ∞(n−1, n); as mentioned, T ∞(1, 2) is
Thompson’s famous group F . This family also arises from geometric considerations in
Brown [Bro87], and, using this geometric intuition, Stein [Ste92] computes the homology
of each of these groups.

In Subsection 4.3.2 we show that for q = p+1 the monoids t∞(p, q) are cancellative and
satisfy the right Ore condition. It follows that the canonical map i : t∞(p, q)→ T ∞(p, q)
induces an isomorphism on homology, cf. Cartan–Eilenberg [CE99, Proposition 4.1].
Therefore, our above Proposition provides in particular a recomputation of the homology
of each group T ∞(n−1, n).

15



Introduction

To conclude this introduction, let us remark that, rather than groups, it seems that
monoids are the natural setting for factorability. The axioms of a factorable group effec-
tively do not make use of the existence of invertible elements, because the requirement
that the generating set S of a factorable group G is closed under taking inverses is merely
needed to guarantee that the submonoid in G generated by S is the whole group.

The existence of non-trivial invertible elements can sometimes even be obstructive. In
[Bro92, p.157], Brown writes: “When we are interested in a group G, however, we
will often get results about G by studying a suitable submonoid M ⊂ G. (This idea
is suggested by the work of Craig Squier).” Indeed, for every non-trivial group, the
homology model V∗ is infinite dimensional. For monoids, however, it can happen that
V∗ is finite dimensional, and even if it is infinite dimensional, it is still considerably
smaller than the model associated to its group of fractions. Examples are provided by
the large class of generalized Thompson groups and monoids in Chapter 4.
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Preliminaries on monoids

A monoid is a triple (X, ·, e), where X is a set, · : X×X → X is an associative operation,
and e is a neutral element. We will usually suppress the multiplication symbol · and just
write xy instead of x · y.

In fancy language, a monoid is a category with exactly one object. This point of view
allows a comfortable definition of monoid action: Let O be an object in an arbitrary
category C and denote by End(O) = MorC (O,O) the endomorphism monoid of O.
An action of a monoid X on the object O is nothing but a morphism of monoids
X → End(O).

Congruence relations

If S is a set then we write S∗ for the free monoid over S. Elements of S∗ are called words
over S, and S is sometimes referred to as a (formal) alphabet. Words w ∈ S∗ will be
written as sequences w = (sn, . . . , s1) with numbering from right to left. Multiplication
in S∗ is given by concatenation of words, and the empty word ǫ = ( ) is a neutral element.
Equivalently speaking, S∗ is the monoid of finite sequences in S.

Convention. This work is mostly about monoids, and it is for this reason that for us
0 is a natural number. This way, (N,+, 0) becomes a free monoid on one generator.

Recall that a congruence relation on a monoid is an equivalence relation that is com-
patible with the monoid multiplication map. More precisely, an equivalence relation
R ⊆ X×X is a congruence relation if and only if for all elements x, x′, y, z ∈ X we have
that xRx′ implies yxz R yx′z. In other words, an equivalence relation R on a monoid
X is a congruence relation if and only if R is a submonoid of the direct product X ×X.

Given an arbitrary relation R ⊆ X × X, we denote by 〈R〉 the congruence relation
induced by R, that is, 〈R〉 is the smallest submonoid of X ×X containing the reflexive,
symmetric and transitive closure of R.

If R is a congruence relation on X, then multiplication descends to congruence classes,
and thus the quotient X/R inherits the structure of a monoid.

Presentations

Let S be a formal alphabet and R ⊆ S∗ × S∗ a relation. We then abbreviate

〈S | R〉 := S∗/〈R〉,

17



Preliminaries on monoids

and we call 〈S | R〉 a presentation for the monoid X := S∗/〈R〉. The canonical quotient
map ev : S∗ ։ X will sometimes be referred to as evaluation.

Let X = 〈S | R〉. A normal form (with respect to the generating set S) is a section
X → S∗ for the evaluation map S∗ → X. In other words, a normal form is the same as
for every element x ∈ X choosing a preferred way to write x as a product of generators.

Convention. IfX is an “abstract” monoid, i.e. ifX is defined in terms of a presentation,
then we will usually denote its neutral element by ǫX or simply ǫ. (This is motivated by
the fact that the empty word ǫ ∈ S∗ is a representative for the neutral element in X.)

In contrast, we stick to writing 0 for the neutral element of N, and we write 1 for the
mulitplicative neutral element of Z.

Finiteness properties

Let X be a monoid and denote by ZX its monoid ring. A projective resolution of X by
right ZX-modules is a resolution of the form

. . . ∂ // F1
∂ // F0

∂ // Z // 0,

with X acting trivially on Z, and each Fi being a projective right ZX-module.

Definition (Homological finiteness properties). Let X be a monoid.

(a) We say that X is of type right-FP if it possesses a finite projective resolution by
right ZX-modules. (The term “finite” refers to F∗ being finitely generated over
ZX.)

(b) X is of type right-FP∞ if it possesses a projective resolution F∗ → Z by right
ZX-modules which is of finite type, that is, every Fi is finitely generated (as a
ZX-module).

(c) X is of type right-FPn if the above holds for all i ≤ n, i.e. each module F1, . . . , Fn

is finitely generated.

The properties left-FP, left-FP∞ and left-FPn are defined analogously. We say that a
monoid is FP∞ if it is right-FP∞ and left-FP∞.

Remark. Note that if G is a group then every right ZG-module can be made into a left
ZG-module and vice versa. In particular, for groups, the notions of left-FP and right-FP
etc. are equivalent. For monoids we can no longer identify right ZX-modules and left
ZX-modules. Indeed, in Cohen [Coh92] a monoid is presented that is right-FP∞ but not
left-FP1.

Cohen [Coh97, §6] provides lots of examples and counterexamples of monoids satisfy-
ing respectively failing the aforementioned homological finiteness properties. Further
finiteness properties (for groups) may be found in Bestvina–Brady [BB97, §3].
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Definition (Geometric finiteness properties). Let X be a monoid.

(a) We say that X satisfies the geometric finiteness property F, if its classifying space
BX is homotopy equivalent to a finite CW complex.

(b) X is of type F∞ if it admits a classifying space of finite type, meaning that BX
is homotopy equivalent to a CW complex with only finitely many cells in each
dimension.

It is well-known that every group of type F∞ (resp. F) is of type FP∞ (resp. FP), simply
by considering universal covers.
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1 Discrete Morse theory and rewriting
systems

1.1 Discrete Morse theory

Discrete Morse theory comes in two flavours, either topological (see e.g. [Bro92], [For98])
or algebraic (see e.g. [Coh97], [Koz08]). In the former case one studies CW complexes,
in the latter case based chain complexes. The main idea is to simplify a given complex
by projecting onto a homotopy equivalent quotient complex. This chapter covers only
the algebraic version. Yet, to make it more accessible, we first briefly discuss the concept
of simplicial collapse, which is the geometric intuition behind discrete Morse theory.

1.1.1 Simplicial collapse

Let K be a simplicial complex. Choose a maximal cell x and a free codimension 1-face
y of x (that is, y is not the face of any other cell). We can then deformation retract the
interiors of x and y onto the complementary boundary ∂xry. This is referred to as an
elementary collapse (of x from y away). The cell x is called collapsible and y is called
redundant. The idea behind this nomenclature is that we think of y as being redundant
in the sense that we can remove its interior from K without changing the homotopy type
of K.

In Figure 1.1 we start with the simplicial 2-disk and iteratively perform elementary
collapses, ending up with a one-point space. The aforementioned deformation retractions
are indicated by gray shaded arrows.

// // //

Figure 1.1: Collapsing the simplicial 2-disk onto one of its vertices.

The notion of elementary collapse of free faces in simplicial complexes is just a special
case of the concept of simplicial collapse of regular faces in CW complexes:

Definition 1.1.1 Let K be a CW complex. Let x be an n-cell in K and denote by
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1 Discrete Morse theory and rewriting systems

h : Dn → K its characteristic map. Let y be a face of x. We say that y is a regular face
of x if the following conditions hold:

(a) The restriction h|h−1(y) : h
−1(y)→ y is a homeomorphism, and

(b) h−1(y) ∼= Dn−1.

Example 1.1.2 In Figure 1.2.(a), y is a regular face of x. In Figure 1.2.(b) y is not a
regular face of x, because h−1(y) ∼= S1.

xy

(a) y regular

xy

(b) y not regular

Figure 1.2: Regular and irregular faces.

Remark 1.1.3 (a) In a simplicial complex every face is regular.

(b) We warn the reader that in a CW complex a free face need not be regular: In
Example 1.1.2.(b) y is a free face of x, but not a regular one.

Let K be a CW complex, x an n-cell in K and y a regular face of x. We can then
modify K in a way very similar to the elementary collapse of free faces. We denote the
resulting CW complex by K ′. Note that y might have more cofaces than just x. In K ′

these cofaces are glued along y’s complementary boundary ∂xry. Figure 1.3 depicts the
simplicial collapse of x = ABC away from y = AB. Note how in K ′ the cell ADB is
glued along ∂(ABC)rAB = BC ∪ CA.

A B

C

CA BC

AB

ABC

ADB

AD DB

D

//
A B

C

CA BC

ADB

AD DB

D

Figure 1.3: Collapsing ABC from AB away.
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1.1 Discrete Morse theory

If K ′ is obtained from K by a simplicial collapse then K ′ ≃ K. Furthermore, if K was
finite, then K ′ consists of two cells less than K. It is in this sense that we think of K ′

as a “simpler” model of K. The price to pay is that the boundaries in K ′ might be
more complicated. For example, considering the complex K from Figure 1.3, we have
∂(ADB) = AD ∪DB ∪AB, whereas in K ′ we have ∂(ADB) = AD ∪DB ∪BC ∪ CA.

Forman’s discrete Morse theory (for cell complexes) provides an efficient way of encoding
series of simplicial collapses and to describe the resulting quotient complex. Intuitively
speaking, algebraic Morse theory discards geometric aspects and studies the impact of
simplicial collapses on the underlying cellular chain complexes.

1.1.2 Algebraic collapse

In the previous subsection we discussed the geometric origins of discrete Morse theory.
We now try to motivate the algebraic analogon, discrete Morse theory for based chain
complexes, from an algebraic point of view. For the sake of simplicity we will not give
rigorous proofs here and all complexes are assumed to be finite. Sections 1.1.3 to 1.1.6
are then devoted to a more thorough treatment.

Assume we are interested in the homology of the following elementary free chain complex:

C : 0 // Zm ∂ // Zn // 0

Let us fix Z-bases {x1, . . . , xm} for Z
m and {y1, . . . , yn} for Z

n, respectively. We implic-
itly understand Zn to be equipped with the inner product [ : ] : Zn × Zn → Z that
is obtained by regarding {y1, . . . , yn} as an orthonormal basis. We can then associate a
matrix A ∈ Zn×m, A = (aj,i), to ∂ : Zm → Zn as follows,

aj,i = [∂xi : yj].

Let us further assume that some entry of A is invertible, say aj,i. (We consider i and
j to be fixed from now on.) We will refer to aj,i as our pivot element. One says that
xi is collapsible, yj is redundant, and all the other basis elements are called essential.
Geometrically, one should think of yj being a face of xi, and in this context invertibility
of aj,i corresponds to regularity of yj in xi.

Define matrices M ∈ Zm×m and N ∈ Zn×n as follows:

M =

(
xi

∣∣∣∣ x1 −
aj,1
aj,i

xi

∣∣∣∣ . . .
∣∣∣∣ 0̂
∣∣∣∣ . . .

∣∣∣∣ xm −
aj,m
aj,i

xi

)
,

N = (Axi | y1 | . . . | ŷj | . . . | yn) .

Observe that det(M) = (−1)i+1 · det(x1| . . . |xm) and det(N) = [∂xi : yj] · (−1)
j+1 ·

det(y1| . . . |yn), and therefore both matrices are invertible. An easy computation shows
that N−1AM ∈ Zn×m takes the following form,

N−1AM =

(
1 0
0 A′

)
,
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1 Discrete Morse theory and rewriting systems

for some matrix A′ ∈ Z(n−1)×(m−1). In other words, the following diagram commutes

Zm A // Zn

Z⊕ Zm−1

M ∼=

OO

id⊕A′
// Z⊕ Zn−1

N∼=

OO

and thus the homology of the complex C is isomorphic to the homology of the following
smaller complex

C′ : 0 // Zm−1 A′
// Zn−1 // 0.

The complex C′ is freely generated by the essential basis elements of C. It is called the
Morse complex with respect to the matching {(xi, yj)}. Geometrically, one should think
of C′ as being the cellular chain complex of the CW complex obtained from collapsing
xi from yj away.

Algebraically, the way we obtained C′ from C can be thought of as a first step of a
two-sided Gauß elimination. As long as we find pivot elements, we can iterate this
procedure and go over to smaller and smaller complexes with isomorphic homology. For
later reference, we discuss one example explicitly.

Example 1.1.4 We take m = 3 and n = 2 and consider Zm and Zn to be equipped
with the standard basis. Consider the following chain complex

C : 0 // Z3 A // Z2 // 0

with

A =

(
3 2 −1
0 1 4

)
.

As pivot element we take a2,2 = 1. Calculating M and N gives

M = (x2 |x1 |x3 − 4x2) =



0 1 0
1 0 −4
0 0 1


 ,

N = (Ax2 | y1) =

(
2 1
1 0

)
,

and we obtain

N−1AM =

(
1 0 0
0 3 −9

)
.

Therefore the homology of the complex C is isomorphic to the homology of the complex

C′ : 0 // Z2

(

3 −9
)

// Z // 0.
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1.1 Discrete Morse theory

We now investigate the question how the above construction can be expressed in terms
of the associated incidence graphs of C and C′.

Recall that the incidence graph of a based chain complex has one vertex for each basis
element, and there is a labelled edge v → w if dim(v) = dim(w) + 1 and [∂v : w] 6= 0.
In this case, the label of v → w is the incidence number [∂v : w]. For convenience one
might want to compare Example 1.1.4 and Figure 1.4. A precise description is given in
Definition 1.1.14.

Denote by Γ the incidence graph of C and denote by Γ′ the incidence graph of C′. How
does Γ′ arise from Γ?

Clearly, the vertices of Γ′ are the essential vertices of Γ, i.e. all vertices of Γ except for xi
and yj. To elaborate the relation between the edges in Γ and Γ′ we need an intermediate
step. Denote by e the edge in Γ that corresponds to the chosen pivot element aj,i, i.e. e
points from xi to yj, and the label of e is aj,i. We now invert e. By this we mean two
things: Firstly, inverting the direction of the arrow and secondly changing the label to
−a−1j,i . We write Γ̌ for the labelled graph obtained this way. The graph Γ′ is now the

full subgraph of the total flow of Γ̌, that is, the label of an edge v → w in Γ′ is the sum
over all labels of paths from v to w in Γ̌, where the label of a path is the product of the
labels of its edges.

Example 1.1.5 Consider the based chain complex C from Example 1.1.4. Its incidence
graph Γ is depicted in Figure 1.4.

x1

3 !!B
BB

BB
BB

B
x2

2

}}||
||

||
||

x3

−1ttiiiiiiiiiiiiiiiiiiiiii

4}}||
||

||
||

y1 y2

�

!!

1
BBBBBBBB

Figure 1.4: The incidence graph Γ.

Inverting the labelled edge x2 → y2 yields the following graph:

x1

3 !!B
BB

BB
BB

B
x2

2

}}||
||

||
||

x3

−1ttiiiiiiiiiiiiiiiiiiiiii

4}}||
||

||
||

y1 y2

�

−1aaBBBBBBBB

Figure 1.5: The graph Γ̌.

The total flow is now easily read off. Clearly, the total flow between x1 and y1 is just 3
and the total flow from x3 to y1 is −1+4 · (−1) · 2 = −9. We therefore obtain the graph
depicted in Figure 1.6 which is indeed the incidence graph of C′, compare Example 1.1.4.

Note that there is no loss of information when passing from a based chain complex C to
its incidence graph Γ, for we can completely recover C from Γ. We can therefore go back
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1 Discrete Morse theory and rewriting systems

x1

3 !!B
BB

BB
BB

B
x3

−9uujjjjjjjjjjjjjjjjjj

y1

Figure 1.6: The graph Γ′.

and forth between based chain complexes and their incidence graphs. This observation
allows a purely graph-theoretical formulation of the two-sided Gauß elimination discussed
on page 23.

For efficiency reasons it would be nice if we could invert several edges simultaneously,
without determining the total flow of Γ̌ after every single inversion. For this we need
some criterion that tells us whether a given set of edges may or may not be inverted
simultaneously. One condition is that this set of edges constitutes a matching on Γ,
meaning that no two edges of the set share a vertex. Of course, this condition alone is
not sufficient: For example, consider the graph Γ in Figure 1.4. The edges x2 → y2 and
x3 → y1 must not be inverted simultaneously, because then x1 would be the only essential
vertex, and thus the associated chain complex would be given by 0→ Z→ 0→ 0, which
does not compute the right homology. A plausibility argument for this fact is that after
inverting x2 → y2 and x3 → y1 in Γ, the graph Γ̌ contains a cycle, and thus our naive
notion of “total flow” does not make sense here. Conversely, assume that we chose our
matching in such a way that the resulting graph Γ̌ is acyclic. Then our notion of “total
flow” makes sense, and it turns out that this is actually sufficient for our purpose of
simultaneously inverting edges.

The aim of this chapter is to prove the Main Theorem of Morse theory for based chain
complexes (Theorem 1.1.29), which, in the finitely generated case, can be summarized as
follows: Let C be a based chain complex and consider a matching on its incidence graph.
If the associated graph Γ̌ is acyclic, then there is a complex C′, freely generated by the
essential basis elements of C, and a chain homotopy equivalence C → C′. The theorem
also provides formulas for the projection map C→ C′ as well as for the differential of C′.

1.1.3 Labelled graphs and matchings

We now introduce the graph-theoretical vocabulary that we need for discrete Morse
theory. Most of this material has already been addressed in the motivation. The only
new player will be the notion of noetherianity which replaces acyclicity, for the latter is
too weak in case of infinite graphs.

Recall that a directed graph is a pair Γ = (V,E), where V is the set of vertices and
E ⊆ V × V is the set of oriented edges. All graphs in this chapter are directed, and we
will refer to them simply as graphs.

We are only interested in graphs as combinatorial objects, meaning that we do not
care about topological properties that occur when considering (undirected) graphs as
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1.1 Discrete Morse theory

1-dimensional CW complexes.

Throughout, let R be an associative ring with unity 1R, and denote by R× its group of
units, i.e. R× contains all elements that possess a left and right inverse with respect to
the ring multiplication.

Definition 1.1.6 (a) A graph with labels in R, or R-graph, is a pair (V, λ), where V
is the set of vertices and λ : V × V → R is a so-called labelling .

(b) A path in (V, λ) of length n is an (n + 1)-tuple (v0, . . . , vn) ∈ V
n+1 such that for

all i, 1 ≤ i ≤ n, we have λ(vi−1, vi) 6= 0.

(c) Define the height of a vertex v ∈ V as follows,

ht(v) = sup{n : there is a path (v0, . . . , vn) with v0 = v}.

(d) We say that (V, λ) is noetherian if the height of every vertex is finite.1

Remark 1.1.7 The intuition behind labelled graphs is that “there is no edge v → w” if
λ(v,w) = 0 and “there is an edge v → w with label λ(v,w)” else. This way, the concept
of labelled graphs generalizes usual directed graphs; there is an obvious identification
between directed graphs and graphs with labels in Z/2.

Definition 1.1.8 An R-graph (V, λ) is called thin if for all (v,w) ∈ V 2 at least one of
λ(v,w) and λ(w, v) is zero. In particular, λ(v, v) = 0 for all v ∈ V .

Note that every noetherian graph is thin.

Definition 1.1.9 Let Γ = (V, λ) be a thin R-graph. An R-compatible matching, for
short matching , on Γ is an involution µ : V → V satisfying the following property: If
v ∈ V is not a fixed point of µ then one of λ(v, µ(v)), λ(µ(v), v) is invertible in R (and
the other one is necessarily 0).

Let (V, λ) be a thin R-graph and let µ be a matching on it. We define a new graph
Γ̌ = (V̌ , λ̌) by “inverting edges between matched vertices”. More precisely, V̌ = V and
the labelling λ̌ is given as follows:

λ̌(v,w) =





λ(v,w) if µ(v) 6= w

0 if µ(v) = w and λ(w, v) = 0

−λ(w, v)−1 if µ(v) = w and λ(w, v) ∈ R×

It is easily seen that Γ̌ is thin. Furthermore, µ is a matching on Γ̌, and the associated

graph ˇ̌Γ is just Γ.

1Note that there are two reasons why the height of a vertex could be infinite: Firstly, there could be
an infinite path (v0, v1, v2, . . .). Secondly, there could exist a sequence of paths of increasing lengths.
When speaking of noetherianity, one usually only excludes the first. However, in our situation of
incidence graphs of chain complexes both cases are equivalent. This follows from König’s Lemma,
see e.g. Cohen [Coh97, Lemma 1].
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1 Discrete Morse theory and rewriting systems

Definition 1.1.10 A matching µ on a labelled graph Γ is called noetherian if the asso-
ciated graph Γ̌ is noetherian.

Example 1.1.11 In Figure 1.7 we consider twice the same graph Γ with labels in R = Q,
but with different matchings, indicated by the gray shaded boxes. The first matching
is noetherian whereas the second is not. Note that if we considered the labels to live in
R = Z then none of them would be a matching.

• •

•

•

•

5

2 1

Γ

• •

•

5

-1/2 1

Γ̌

(a) A noetherian matching

• •

•

• •
5

2 1

Γ

• •

•

-1/5

2 1

Γ̌

(b) Not notherian

Figure 1.7: Different matchings on a graph.

1.1.4 Based chain complexes and incidence graphs

Definition 1.1.12 A based chain complex of right R-modules, for short based chain
complex, is a non-negatively graded chain complex (C∗, ∂∗), where each Cn is a free right
R-module, together with a choice of basis Ωn for each Cn. The elements of Ωn are called
n-cells. Based chain complexes will be denoted by (C∗,Ω∗, ∂∗).

Remark 1.1.13 The cellular complex of any CW complex naturally carries the struc-
ture of a based chain complex: As basis Ωn one takes all (geometric) n-cells of the CW
complex.

For us, the most important example of based chain complexes are the various kinds of
bar constructions on a monoid X. Any of these admits a canonical basis consisting of
certain tuples x = (xn, . . . , x1) ∈ X

n. It is for this reason that we will usually decorate
elements of Ω∗ with an underbar.

Definition 1.1.14 Let (C∗,Ω∗, ∂∗) be a based chain complex.

(a) Every chain c ∈ C∗ can uniquely by written as a finite sum of the form

c =
∑

x∈Ω∗

x · αx,

and for every x ∈ Ω∗ we define the incidence number of x in c as [c : x] := αx.
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1.1 Discrete Morse theory

(b) The incidence graph associated to (C∗,Ω∗, ∂∗) is the R-graph (V, λ) with vertex
set V = Ω∗ and labelling λ(x, y) = [∂x : y].

We see that if in an incidence graph we have λ(x, y) 6= 0 then dim(y) = dim(x)− 1 (as
elements of the chain complex), implying that incidence graphs are noetherian and in
particular thin.

Definition 1.1.15 (a) Consider a based chain complex (C∗,Ω∗, ∂∗). A noetherian
matching on (C∗,Ω∗, ∂∗) is a noetherian, R-compatible matching µ : Ω∗ → Ω∗ on
the incidence graph Γ = (Ω∗, λ).

(b) Given a noetherian matching, the fixed points of µ : Ω∗ → Ω∗ are called essential .
If x ∈ Ωn is not a fixed point then, geometrically speaking, µ(x) is a face or coface
of x and thus µ(x) ∈ Ωn−1 ∪ Ωn+1. We say that x is collapsible if µ(x) ∈ Ωn−1,
and it is called redundant if µ(x) ∈ Ωn+1.

(c) A chain c ∈ C∗ is called essential, collapsible, redundant, respectively, if every
x ∈ Ω∗ with [c : x] 6= 0 is essential, collapsible, redundant, respectively.

(d) A chain c ∈ C∗ is called essential-collapsible if for every redundant cell x ∈ Ω∗ we
have [c : x] = 0.

Remark 1.1.16 Let (C∗,Ω∗, ∂∗) be a based chain complex with incidence graph Γ.
Consider a noetherian matching µ on (C∗,Ω∗, ∂∗). Let Γ̌ = (Ω∗, λ̌) be defined as above.
In Figure 1.8 we indicate how Γ̌ looks locally around an essential, a collapsible, and a
redundant vertex x ∈ Ω∗.

x

• • •

• • •

(a) essential

x

• • •

• µ(x) •

(b) collapsible

x

• µ(x) •

• • •

(c) redundant

Figure 1.8: How the graph Γ̌ looks locally.

For simplicity we surpressed labels and we drew an arrow v → w if and only if λ̌(v,w) 6= 0.
An arrow is shaded gray if its orientation is reversed when passing from Γ to Γ̌. So,
roughly speaking, gray shaded arrows indicate the matching µ.

We will be very much concerned with the heights of vertices in Γ̌.

Definition 1.1.17 (a) Define the µ-height ȟt(x) of a basis element x ∈ Ω∗ as the
height of x when considered as a vertex in Γ̌, i.e. with respect to the labelling λ̌.
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1 Discrete Morse theory and rewriting systems

(b) For the trivial chain c = 0 we set ȟt(c) := −∞. For a non-trivial chain c ∈ C∗ we
define its µ-height as follows:

ȟt(c) = max{ȟt(x) | x ∈ Ω∗ with [c : x] 6= 0}.

1.1.5 Discrete gradient flow and invariant chains

In what follows we fix some based chain complex (C∗,Ω∗, ∂∗) of right R-modules and a
noetherian matching µ. The associated discrete gradient vector field V∗ : C∗ → C∗+1 is
defined as follows. Let x ∈ Ω∗. If x is essential or collapsible then we set V (x) = 0.
Otherwise, i.e. if x is redundant, then λ(µ(x), x) = [∂µ(x) : x] is invertible in R, and we
set

V (x) := −µ(x) · [∂µ(x) : x]−1. (1.1)

We obtain V : C∗ → C∗+1 by linear extension, i.e.

V



∑

x∈Ω∗

x · αx


 = −

∑

x∈Ω∗
x red.

µ(x) · [∂µ(x) : x]−1 · αx.

Observe that for every chain c ∈ C∗ its image V (c) is a collapsible chain, implying that

V 2 = 0. (1.2)

Vice versa, if x is a collapsible cell then V (µ(x)) = r · x for some unit r ∈ R×. In
particular, every collapsible chain lies in the image of V .

Remark 1.1.18 The definition of V is made such that for a redundant basis element
x ∈ Ω∗ we have [∂V (x) : x] = −1 and thus [x+∂V (x) : x] = 0. Similarly one shows that
for a collapsible cell x ∈ Ω∗ it holds [x+ V ∂(x) : x] = 0.

We define the discrete gradient flow Θ∗ : C∗ → C∗ associated to the discrete gradient
vector field as follows,

Θ := id+ ∂V + V ∂. (1.3)

Observe that, since ∂2 = 0 and V 2 = 0, we have

VΘ = ΘV, (1.4)

∂Θ = Θ∂. (1.5)

Geometrially one could think of Θ as mapping an n-cell x ∈ Ωn to a sum of n-cells
c ∈ Cn with the property that each cell occuring in c has a common face or coface with
x.
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1.1 Discrete Morse theory

Remark 1.1.19 Note that if c ∈ C∗ is essential-collapsible then V (c) = 0 and thus
Θ(c) := c+ V ∂(c) is again essential-collapsible.

Our next aim is to prove a stabilization result for Θ. We will need the following technical
lemma, which tells us that “applying Θ decreases heights”.

Lemma 1.1.20 If x ∈ Ω∗ is collapsible or redundant then ȟt(Θ(x)) ≤ ȟt(x)− 2.

Proof. We prove the Lemma only for collapsible cells. For redundant cells the proof
is very similar. Observe that if in the graph Γ̌ there is an arrow x→ y, i.e. λ(x, y) 6= 0,

then ȟt(x) ≥ ȟt(y) + 1. With Figure 1.8 in mind, the following arguments are quite
obvious.

If x is essential or collapsible then V (x) = 0 and hence ȟt(V (x)) = −∞. If x is redundant
then V (x) = r · µ(x) for some r ∈ R×, and there is an arrow x→ µ(x) in Γ̌. Altogether
we have shown that for every cell x ∈ Ω∗ we have ȟt(V (x)) ≤ ȟt(x)− 1.

If x is essential or redundant then every face of x has smaller height than x. If x is
collapsible then there is face of x having larger height than x, namely its redundant
partner µ(x). All other faces have smaller heights.

We conclude that if x is collapsible and [V ∂(x) : x′] 6= 0 and x′ 6= x then ȟt(x′) ≤
ȟt(x) − 2, cf. Figure 1.9. This clearly remains true when replacing the chain V ∂(x) by

x′ x x′′

• • µ(x) • •

Figure 1.9: Γ̌ around x and [V ∂(x : x′)] 6= 0.

x+V ∂(x). Recall that x+V ∂(x) = Θ(x) (because x is collapsible) and thus, by Remark
1.1.18, [Θ(x) : x] = 0. It follows that if [Θ(x) : x′] 6= 0 then ȟt(x′) ≤ ȟt(x)− 2 and thus
ȟt(Θ(x)) ≤ ȟt(x)− 2. �

Proposition 1.1.21 For every x ∈ Ω∗ the sequence Θ(x),Θ2(x),Θ3(x), . . . stabilizes.

Proof. The proof will be done in three steps, according to whether x is collapsible,
essential or redundant.

• Assume that x is collapsible. Then Θ(x) is a collapsible chain and by Lemma 1.1.20
we have ȟt(Θ(x)) ≤ ȟt(x) − 2. Therefore, for N sufficiently large, ȟt(ΘN (x)) < 0
and hence ΘN(x) = 0.

• Assume that x is essential. Set c := V ∂(x), which is a collapsible chain. Since
∂V (x) = 0 we have Θ(x) = x+ c, yielding Θm(x) = x+ c+Θ(c) + . . .+Θm−1(c).
Now, for N sufficiently large, ΘN (c) = 0 and thus we have ΘN (x) = ΘN+1(x).
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1 Discrete Morse theory and rewriting systems

From what we have shown so far, it directly follows that the sequence Θ(c),Θ2(c), . . .
stabilizes for every essential-collapsible chain c.

• Assume that x is redundant. (Note that Θ(x) will in general not be redundant.)
By Lemma 1.1.20 we have ȟt(Θ(x)) ≤ ȟt(x)−2. Thus, if ȟt(x) ≤ 1 then Θ(x) = 0.

Assume now that for every redundant basis element x ∈ Ω∗ with ȟt(x) < h we
have that the sequence Θ(x),Θ2(x), . . . stabilizes. By our previous discussion this
then holds for every chain c ∈ C∗ satisfying ȟt(c) < h. Now, if x ∈ Ω∗ is redundant
and ȟt(x) = h then ȟt(Θ(x)) ≤ h − 2, and hence the sequence Θ(x),Θ2(x), . . .
stabilizes.

The Proposition if proven. �

As an immediate consequence of Proposition 1.1.21 we obtain that for every chain c ∈ C∗
there is an N such that ΘN+1(c) = ΘN (c), and we set Θ∞(x) := ΘN (c). Denote by CΘ

∗

the submodule of Θ-invariant chains. Clearly, Θ∞ projects onto CΘ
∗ . In what follows we

consider Θ∞ as a map Θ∞ : C∗ → CΘ
∗ . The subsequent proposition partially answers

the question which chains are Θ-invariant.

Lemma 1.1.22 For every chain c ∈ C∗ its image Θ∞(c) is essential-collapsible.

Proof. This can be seen as follows. Define ρ(c) = max{ȟt(x)}, where the maximum is
taken over all redundant x ∈ Ω∗ satisfying [c : x] 6= 0. The proof of Proposition 1.1.21
showed that if ρ(c) ≥ 0 then ρ(Θ(c)) ≤ ρ(c)− 2, and therefore ρ(Θ∞(c)) < 0. �

Recall from (1.5) that ∂Θ = Θ∂. Hence, ∂ restricts and corestricts2 to Θ-invariant
chains, implying that (CΘ

∗ , ∂∗) is a sub-chain complex of (C∗, ∂∗). Moreover, we see that
Θ∞ is a chain map:

. . . ∂ // Cn
∂ //

Θ∞

��

Cn−1
∂ //

Θ∞

��

. . .

. . . ∂ // CΘ
n

∂ // CΘ
n−1

∂ // . . .

The following is Theorem 7.3 in Forman [For98].

Theorem 1.1.23 (Forman) Let (C∗,Ω∗, ∂∗) be a based chain complex over R and let
µ be a noetherian matching on it. Then the map

Θ∞ : (C∗, ∂∗) −→ (CΘ
∗ , ∂∗)

is a chain homotopy equivalence.

2By this we mean that ∂(CΘ
∗ ) ⊆ CΘ

∗ . The map ∂ therefore naturally induces a map CΘ
∗ → CΘ

∗ which
we again denote by ∂.
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Proof. We are going to show that i : CΘ
∗ →֒ C∗ is a homotopy inverse for Θ∞. Clearly,

Θ∞ ◦ i = id : CΘ
∗ → CΘ

∗ . It remains to show that i ◦ Θ∞ ≃ id : C∗ → C∗. For this, we
define a chain homotopy H : C∗ → C∗+1 as follows. Let c ∈ C∗ and let N be sufficiently
large, meaning that Θ∞(c) = ΘN (c). We then set

H(c) := −
N−1∑

i=0

V ◦Θi(c).

Clearly, H is R-linear, and Lemma 1.1.22 guarantees that H is well-defined, because
ΘN (c) = Θ∞(c) is essential-collapsible and hence lies in the kernel of V . Calculating

(∂H +H∂)(c) = −[(V ∂ + ∂V ) ◦ (id+Θ + . . .+ΘN−1)](c)

= [(id−Θ) ◦ (id+Θ+ . . .+ΘN−1)](c)

= c−Θ∞(c)

we see that i ◦Θ∞ ≃ id, as desired. (The first equality holds because Θ and ∂ commute,
cf. (1.5) on page 30.) �

Remark 1.1.24 Theorem 1.1.23 should be regarded as a kind of weak discrete Hodge
Theorem, and we are now going to justify this point of view. Let M be a compact,
orientable smooth Riemannian manifold. The exterior derivative d on M admits an
adjoint operator which we denote by δ. The Laplace operator is defined as ∆ = dδ+ δd,
and a k-form is called harmonic if it lies in the kernel of ∆. Every harmonic form is a
cycle, and hence the harmonic forms constitute a subcomplex (with trivial differential)
of the de Rham complex. The first part of Hodge’s Theorem states that the space of
harmonic k-forms is isomorphic to the k-th de Rham cohomology.

In our setting, a noetherian matching µ on a based chain complex (C∗,Ω∗, ∂∗) induces
a codifferential V∗ : C∗ → C∗+1, cf. (1.1) and (1.2). We define the associated (abstract)
Laplace operator as ∆ := ∂V + V ∂ : C∗ → C∗. Call a chain µ-harmonic if it lies in the
kernel of ∆. Since ∆ = Θ − id, a chain is µ-harmonic if and only if it is Θ-invariant.
Of course, we cannot expect CΘ

k to be isomorphic to the k-th homology group Hk(C∗),
e.g. we have CΘ

∗ = C∗ if µ is the identity on Ω∗. But, by Theorem 1.1.23, the complexes
(CΘ
∗ , ∂∗) and (C∗, ∂∗) have naturally isomorphic homology groups.

1.1.6 Reduced gradient flow and essential chains

We now define a map θ∗ : C∗ → C∗ that should be thought of as a reduced version of
the discrete gradient flow Θ. On basis elements θ is given as follows:

θ(x) =





x if x is essential

0 if x is collapsible

x+ ∂V (x) if x is redundant

We obtain θ : C∗ → C∗ by linear extension.

33
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Remark 1.1.25 The map θ has a nice geometric interpretation. Let x be a redundant
cell. Then, up to a unit, ∂V (x) is the boundary of the collapsible partner µ(x) of x.
Recall from Remark 1.1.18 that [x+ ∂V (x) : x] = 0. So, geometrically speaking, θ(x) is
the complementary boundary part of x (with respect to µ(x)), see Figure 1.10.

µ(x)

θ(x)

x

Figure 1.10: Geometric interpretation of θ.

Note that if x is collapsible then 0 = θ(x) = θ2(x), and if x is essential then x = θ(x).
The same arguments as in the proof of Proposition 1.1.21 yield the following:

Proposition 1.1.26 For every x ∈ Ω∗ the sequence θ(x), θ2(x), θ3(x), . . . stabilizes.

For a chain c ∈ C∗ we set θ∞(c) = θN(c) for N sufficiently large. Denote by Cθ
∗ the

submodule of θ-invariant chains. Clearly, θ∞ projects onto Cθ
∗ , and we consider θ∞ as a

map θ∞ : C∗ → Cθ
∗ . The subsequent Proposition classifies θ-invariant chains.

Lemma 1.1.27 A chain is θ-invariant if and only if it is essential.

Proof. Obviously, every essential chain is θ-invariant. To show that every θ-invariant
chain is essential we apply an argument very similar to the one used in the proof of
Lemma 1.1.22. �

We are now going to make precise the relationship between the maps Θ∞ and θ∞.
Denote by π : C∗ → Cθ

∗ the “orthogonal projection” onto essential chains,

π(c) :=
∑

x∈Ω∗
x ess.

x · [c : x].

Lemma 1.1.28 (a) For every n ≥ 0 and every c ∈ C∗ we have Θn(c)−θn(c) ∈ im(V ).

(b) θ∞ = πΘ∞ : C∗ → Cθ
∗ .

(c) Θ∞πΘ∞ = Θ∞ : C∗ → CΘ
∗ .

Proof. (a) It is easily checked that for every x ∈ Ω∗ we have that Θ(x) − θ(x) is a
collapsible chain, i.e. lies in the image of V . Let n ≥ 2 and assume now that the claim
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holds true for all powers < n. Let c ∈ C∗ and take d such that Θ(c) = θ(c) + V (d).

Θn(c)− θn(c) = Θn−1(θ(c) + V (d)) − θn−1(θ(c))

= (Θn−1 − θn−1)(θ(c)) + Θn−1(V (d)).

Both summands lie in the image of V , the first one by the induction hypothesis and the
second one due to the fact that ΘV = VΘ.

(b) We have im(V ) ⊆ ker(π) and therefore part (a) yields πΘ∞ = πθ∞ = θ∞. (The last
equality follows from the fact that π and θ∞ both project onto Cθ

∗ .)

(c) We first show that for an essential-collapsible chain c we have Θ∞(π(c)) = Θ∞(c).
Indeed, if x is essential then π(x) = x, hence Θ∞(π(x)) = Θ∞(x), and if x is collapsible
then π(x) = 0 and Θ∞(x) = 0, as seen in the first part of the proof of Proposition 1.1.21.
It follows that if c ∈ C∗ is an essential-collapsible chain then Θ∞(π(c)) = Θ∞(c).

If c ∈ C∗ is an arbitrary chain then by Lemma 1.1.22 the chain Θ∞(c) is essential-
collapsible and thus Θ∞(π(Θ∞(c))) = Θ∞(Θ∞(c)) = Θ∞(c). �

We can now state and prove the Main Theorem of Morse theory for based chain com-
plexes, cf. [Bro92, Proposition 1], [Coh97, Theorem 2], [For98, §8].

Theorem 1.1.29 (Brown, Cohen, Forman) Let (C∗,Ω∗, ∂∗) be a based chain com-
plex of right R-modules and let µ be a noetherian matching on it. Then ∂θ := θ∞ ◦ ∂ is
a differential for Cθ

∗ and the map

θ∞ : (C∗, ∂∗) −→ (Cθ
∗ , ∂

θ
∗)

is a chain homotopy equivalence.

Proof. Recall that Θ∞ and ∂ commute. Using Lemma 1.1.28 we obtain

∂θ∂θ = θ∞∂θ∞∂ = πΘ∞∂πΘ∞∂ = π∂Θ∞πΘ∞∂ = π∂Θ∞∂ = πΘ∞∂∂ = 0.

We will now show that π : (CΘ
∗ , ∂∗) → (Cθ

∗ , ∂
θ
∗) is an isomorphism of chain complexes.

The above Theorem then follows from Theorem 1.1.23. Consider the following diagram:

. . . ∂ // CΘ
n

∂ //

π

��

CΘ
n−1

∂ //

π

��

. . .

. . . ∂θ
// Cθ

n
∂θ

//

Θ∞

��

Cθ
n−1

∂θ
//

Θ∞

��

. . .

. . . ∂ // CΘ
n

∂ // CΘ
n−1

∂ // . . .

Part (b) of Lemma 1.1.28 implies π ◦Θ∞ = id : Cθ
∗ → Cθ

∗ , and from part (c) we conclude
that Θ∞ ◦ π = id : CΘ

∗ → CΘ
∗ . Therefore the restrictions π : CΘ

∗ → Cθ
∗ and Θ∞ : Cθ

∗ →
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CΘ
∗ are mutually inverse isomorphisms (of modules, a priori). We conclude that the

above diagram commutes, for ∂θπ = θ∞∂π = πΘ∞∂π = π∂Θ∞π = π∂ : CΘ
∗ → Cθ

∗−1

and Θ∞∂θ = Θ∞θ∞∂ = Θ∞πΘ∞∂ = Θ∞∂ = ∂Θ∞ : Cθ
∗ → CΘ

∗−1. The Theorem is
proven. �

Definition 1.1.30 The complex (Cθ
∗ , ∂

θ
∗) is called the Morse complex of (C∗,Ω∗, ∂∗)

with respect to the matching µ.

Note that (Cθ
∗ ,Ω

θ
∗, ∂

θ
∗) is a based chain complex, where Ωθ

∗ ⊆ Ω∗ is the set of essential
cells. This observation allows to inductively simplify a based chain complex by iterating
the procedure of finding a noetherian matching and going over to its associated Morse
complex.

Remark 1.1.31 There are various topological versions of Theorem 1.1.29, differing in
which kind of cell complexes one considers. In each of these settings one starts with a
certain cell complex K and an “admissible” matching on the cells of K. As before, one
uses this matching to classify the cells of K into essential, collapsible and redundant
ones. The statement is then that K is homotopy equivalent to a CW complex K ′ built
up from the essential cells.

The connection to discrete Morse theory of chain complexes is the following. Write
Ωn for the set of n-cells in K and denote by (C∗(K), ∂∗) the cellular chain complex of
K. The admissible matching from above naturally induces a noetherian, Z-compatible
matching on the based chain complex (C∗(K),Ω∗, ∂∗), and the associated Morse complex
is isomorphic to the cellular chain complex of K ′.

For a precise exposition we refer the reader to Brown [Bro92, Proposition 1, p.140],
which is concerned with realizations of simplicial sets, and to Forman [For98, Corollary
3.5, p.107], where regular CW complexes are studied. Theorem 10.2 in [For98] provides
a version for arbitrary CW complexes.

Example 1.1.32 For convenience we explicitly compute V , θ and ∂θ for our complex
C from Example 1.1.4. The matching function µ is given by µ(x2) = y2, µ(y2) = x2 and
the identity else. We see that y2 is the only redundant cell. The discrete gradient vector
field V is thus given by V (y2) = −µ(y2) · [∂µ(y2) : y2]

−1 = −x2 and zero else. From
this we obtain θ(y2) = y2 + ∂(−x2) = −2y1. The differentials in the associated Morse
complex therefore compute to θ∞∂(x1) = 3y1 and θ∞∂(x3) = −y1 + 4θ∞(y2) = −9y1.

Remark 1.1.33 There is also a more explicit formula for the differential ∂θ∗ : Cθ
∗ →

Cθ
∗−1. For dim(y) = dim(x)− 1 we have that [∂θ(x) : y] is the total flow from x to y in

the graph Γ̌. More precisely,

∂θ(x) =
∑

y

y ·
∑

(x0,...,xn)

λ(xn−1, xn) · . . . · λ(x0, x1). (1.6)

where the first sum is taken over all y with dim(y) = dim(x) − 1, and the second sum
runs over all paths (x0, . . . , xn) of arbitrary length, satisfying x0 = x and xn = y, cf.

36



1.1 Discrete Morse theory

e.g. Kozlov [Koz08, p.202ff] or Sköldberg [Skö06, Lemma 5]. However, for our purposes
it will be more convenient to compute the differential ∂θ by iteratively applying θ.

Remark 1.1.34 It can be quite tedious to check that a certain matching is noetherian.
We now present an equivalent condition which is sometimes more convenient to verify,
because it only takes into account redundant cells. For redundant cells x, x′ ∈ Ω∗ we
define

x ≻− x′ :⇐⇒ [∂µ(x) : x′] 6= 0.

It is easy to see that noetherianity of µ is equivalent to saying that there is no infinite
strictly descending chain x1 ≻− x2 ≻− . . . of redundant cells, where “strict” refers to
xi 6= xi+1 for all i.

1.1.7 Historical Remarks & References

A first hint towards discrete Morse theory appears in Brown–Geoghegan [BG84]. They
prove that the Thompson group T satisfies the homological finiteness condition FP∞.
To do so, they start with a rather huge Eilenberg–MacLane complex K(T , 1) and then
collapse away pairs of cells in adjacent dimensions. This way, they end up with aK(T , 1)
that has only two cells in each positive dimension.

In [Bro92], Brown remarks that “the method seemed ad hoc at the time, but it turns
out to have much wider applicability [...]”. Loc. cit. introduces what today is called
discrete Morse theory for CW complexes: What he calls collapsing scheme corresponds
to a noetherian matching in our setting.

Later on, Forman [For98] independently discovered the concept of simplifying CW com-
plexes by pairwise collapsing cells and how to efficiently encode these collapses in a
so-called discrete Morse function. Forman’s discrete Morse theory is very similar to
Brown’s theory of collapsing schemes. However, today it seems that to most authors
only Forman’s work is known.

The term discrete Morse theory can be justified as follows: Depending on the values
on faces and cofaces, a discrete Morse function provides a partition of the cells into
collapsible, redundant and essential ones. ([For98] uses the term “critical” instead of
“essential”.) Forman proves that the original CW complex is homotopy equivalent to a
CW complex built up from essential cells, and that the attaching maps are completely
determined by the induced discrete gradient flow, compare (1.6).

Discrete Morse theory easily carries over to based chain complexes, and it is then some-
times referred to as algebraic Morse theory, cf. Jöllenbeck–Welker [JW09] and Sköldberg
[Skö06]. Cohen’s survey article [Coh97] offers an algebraic approach to Brown’s theory
of collapsing schemes.

Note that Forman’s machinery requires as input a discrete Morse function. Such a
function naturally induces a noetherian matching on the incidence graph, see e.g. Forman
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[For98, p.102]. Vice versa, Chari [Cha00, p.7] pointed out that every noetherian matching
can be extended to a discrete Morse function. Indeed, the height function ȟt : Ω∗ → N
on the modified incidence graph Γ̌ is a discrete Morse function.

To cut a long story short, the concepts of collapsing scheme, discrete Morse function,
and noetherian matching are very strongly related, and this introductory chapter incor-
porates notions from all three of them, depending on which one seemed most convenient.
For example, the definition of the discrete gradient vector field V and the discrete gra-
dient flow Θ originate from Forman [For98]. In contrast, the definition of the reduced
gradient flow θ is taken from Cohen [Coh97].

Note that we do not claim any originality here. Indeed, large parts of the material in this
section, and especially most proofs, are gathered from Forman’s article [For98], which
we highly recommend as an easily accessible introduction to discrete Morse theory. A
slightly more modern treatment of the topic can be found in Kozlov’s book [Koz08]. We
remark that the aforementioned references work with commutative ground rings, which
simplifies the exposition. Sköldberg [Skö06] provides an introduction to algebraic Morse
theory for arbitrary ground rings.

1.2 Rewriting Systems

1.2.1 Reminder on bar constructions

Let X be a monoid and letM be a left ZX-module. The homology of X with coefficients
in M is defined as

H∗(X;M) := TorZX∗ (Z;M),

where X acts trivially on Z. If M = Z then we will often simply write H∗(X) instead
of H∗(X;Z). To compute these Tor-groups we need a projective resolution of Z over
ZX. In this section we recall the normalized and unnormalized bar construction on
monoids. They are important examples of free (hence projective) resolutions and fit into
the setting of discrete Morse theory.

As a sample application of discrete Morse theory we show how it can be used to ob-
tain some well-known contractibility results of bar constructions. One might find these
alternative proofs intricate at first glance, especially when compared to the usual ones.
We included them for two reasons. Firstly, to give concrete examples of how to apply
discrete Morse theory. Secondly, in the course of this thesis, we will do several similar
but more complicated constructions. We hope that our future constructions become
more accessible when having the examples of the present section in mind.

We remind the reader that we number tuples from right to left.

Let X be a monoid and denote by EnX the right ZX-module freely generated by all
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n-tuples (xn| . . . |x1) with xi ∈ X for all i. For 0 ≤ i ≤ n define

di(xn | . . . |x1) =





(xn | . . . |x2)x1 if i = 0,

(xn | . . . |xi+1xi | . . . |x1) if n > i > 0,

(xn−1 | . . . |x1) if i = n.

(1.7)

We obtain di : EnX → En−1X by linear extension. The unnormalized inhomogeneous bar
resolution of X is the chain complex (E∗X, ∂∗) where ∂n : EnX → En−1X is given by the
alternating sum ∂n =

∑n
i=0(−1)

idi. It is well-known that this chain complex is acyclic.
A contracting homotopy is given by Z-linear extension of the map (xn| . . . |x1)x0 7→
(xn| . . . |x1|x0). Below we give an alternative proof of this fact, using discrete Morse
theory only.

Proposition 1.2.1 The complex (E∗X, ∂∗) is acyclic.

Proof. Acyclicity of a complex does not depend on the ground ring. In this proof we
consider (E∗X, ∂∗) as chain complex over Z. For n ≥ 0 denote by Ωn the set consisting
of all tuples of the form (xn| . . . |x1)x0 with xi ∈ X for all i. Clearly, Ω∗ is a Z-basis for
E∗X. We are now going to construct a noetherian matching µ on (E∗X,Ω∗, ∂∗). This
matching will have exactly one fixed point, namely ( )ǫ ∈ Ω0. (Recall that write ǫ for
the neutral element in X.) Let (xn| . . . |x1)x0 ∈ Ω∗ be a generator different from ( )ǫ.
Let k be maximal subject to xk−1 = . . . = x1 = x0 = ǫ, and define µ((xn| . . . |x1)x0) as
follows,

µ((xn| . . . |x1)x0) =

{
(xn| . . . |x1|x0)ǫ if k is even

(xn| . . . |x2)x1x0 if k is odd.

Note that if k is odd then x0 = ǫ and thus x1x0 = x1. Futhermore, a cell (xn| . . . |x1)x0
is redundant if and only if k is even.

Obviously, µ is an involution. We need to show that µ is Z-compatible and noetherian.
For this, let (xn| . . . |x1)x0 be redundant and consider

[∂µ(xn| . . . |x1)x0 : (xn| . . . |x1)x0]

= [∂(xn| . . . |x1|x0)ǫ : (xn| . . . |x1)x0]

=

n+1∑

i=0

(−1)i · [di(xn| . . . |x0)ǫ : (xn| . . . |x1)x0]. (1.8)

To compute (1.8) we distinguish three cases.

• For k = 0 we have d0(xn| . . . |x0)ǫ = (xn| . . . |x1)x0.

• For k ≥ i ≥ 1 we have di(xn| . . . |x0)ǫ = (xn| . . . |xixi−1| . . . |x0)ǫ. Recall that
xk−1 = . . . = x0 = ǫ. It follows that xi−1 = ǫ and hence (xn| . . . |xixi−1| . . . |x0)ǫ =
(xn| . . . |xi|xi−2| . . . |x0)ǫ = (xn| . . . |x1)x0.

39



1 Discrete Morse theory and rewriting systems

• For i ≥ k + 1 consider (yn| . . . |y1)y0 := di(xn| . . . |x0)ǫ = (xn| . . . |xixi−1| . . . |x0)ǫ.
Since k < i we have yk = xk−1 = ǫ. But xk 6= ǫ and hence (yn| . . . |y1)y0 6=
(xn| . . . |x1)x0.

For proving noetherianity of our matching, the following further observations will
be important. If i ≥ k + 2 then yk+1 = xk 6= ǫ, implying that (yn| . . . |y1)y0 is
collapsible. If i = k + 1 then yk+1 = xk+1xk, and if (yn| . . . |y1)y0 is redundant
then we necessarily have xk+1xk = ǫ. In this case, (yn| . . . |y1)y0 has strictly less
non-trivial entries than (xn| . . . |x1)x0.

Putting everything together, we see that (1.8) computes to
∑k

i=0(−1)
i. Since k is even,

we obtain 1, proving that µ is Z-compatible. The above calculation also shows that if x
and x′ are redundant and x ≻− x′ then either x = x′ or x′ has fewer non-trivial entries
than x. Therefore µ is noetherian.

Theorem 1.1.29 now tells us that the map θ∞ : (E∗X, ∂∗)→ (Eθ
∗X, ∂

θ
∗) is a chain homo-

topy equivalence. The Morse complex (Eθ
∗X, ∂

θ
∗) is freely generated by the element ( )ǫ

sitting in degree 0. This proves that (E∗X, ∂∗) is indeed acyclic. �

Remark 1.2.2 (Scanning) Note that the map µ only takes into consideration the first
k entries of a cell. In other words, for a cell being collapsible or redundant, respectively,
does not, in general, depend on all its entries xi. Here we were just interested in how
many entries were ǫ until the first non-trivial entry appeared. For this, one can think of
successively checking the entries from right to left until we have all the information we
need. The remaing xi’s are then discarded. We will refer to this procedure as scanning .
The idea of scanning tuples will be used at several places in this work.

Denote by D∗ the submodule of E∗X generated by n-tuples (xn| . . . |x1) for which xi = ǫ
for at least one i. It is easily seen that the differential ∂∗ restricts and corestricts to D∗.
The quotient

E∗X := E∗X/D∗

is called the normalized inhomogeneous bar resolution of X. We write [xn| . . . |x1] for
the equivalence class of (xn| . . . |x1). The differential of E∗X will be denoted by ∂∗. The
following is well-known.

Proposition 1.2.3 The projection map

ψ : E∗X −→ E∗X,

(xn| . . . |x1) 7−→ [xn| . . . |x1]

is a chain homotopy equivalence.

Below we give a proof that uses discrete Morse theory only. We warn the reader that the
notion of height appearing in the proof is different from the one introduced in Definition
1.1.6. In the remainder of this work, the height of a vertex in the sense of Definition
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1.1.6 will not again occur explicitly. Henceforth, the term “height” will be reserved for
measuring “to what extent a cell is essential”.

Proof. As a ZX-module, D∗ is a direct summand of E∗X and thus E∗X is canonically
isomorphic to the direct summand freely generated by all tuples (xn| . . . |x1) satisfying
xi 6= ǫ for all i. We will show that the orthogonal projection onto this direct summand
induces a chain homotopy equivalence.

Denote by Ωn the set consisting of all tuples (xn| . . . |x1) with entries in X. Clearly, Ω∗ is
a ZX-basis for E∗X. We say that (xn| . . . |x1) ∈ Ωn is essential if and only if xi 6= ǫ for all
i. The classification of the remaining cells into collapsible and redundant is again done
by scanning: The height of a basis element (xn| . . . |x1) is defined to be the maximum
integer h subject to (xh| . . . |x1) being essential. Clearly, (xn| . . . |x1) is essential if and
only if h = n, and if it is not essential then xh+1 = ǫ. Let k be maximal subject to
xh+k = . . . = xh+2 = xh+1 = ǫ. On non-essential cells the map µ is given as follows:

µ(xn| . . . |x1) =

{
(xn| . . . |x̂h+1| . . . |x1) if k is even

(xn| . . . |xh+1 | ǫ |xh| . . . |x1) if k is odd

In particular, (xn| . . . |x1) is redundant if and only if k is odd.

Obviously, µ is an involution. We need to show that µ is ZX-compatible and noetherian.
For this, let (xn| . . . |x1) be redundant and consider

[∂µ(xn| . . . |x1) : (xn| . . . |x1)]

= [∂(xn| . . . |xh+1|ǫ|xh| . . . |x1) : (xn| . . . |x1)]

=
n+1∑

i=0

(−1)i · [di(xn| . . . |xh+1|ǫ|xh| . . . |x1) : (xn| . . . |x1)]. (1.9)

To conclude that this term takes values in (ZX)× we again distinguish three cases.

• For h − 1 ≥ i ≥ 0 the cell di(xn| . . . |xh+1|ǫ|xh| . . . |x1) is either collapsible or
redundant, the latter being the case if and only if xi+1xi = ǫ. Thus, if i < h and
di(xn| . . . |xh+1|ǫ|xh| . . . |x1) is redundant then its height is strictly smaller than h.

• For h+k+1 ≥ i ≥ h it is easily seen that di(xn| . . . |xh+1|ǫ|xh| . . . |x1) = (xn| . . . |x1).

• For i ≥ h+ k + 2 we have di(xn| . . . |xh+1|ǫ|xh| . . . |x1) 6= (xn| . . . |x1). This can be
seen by comparing the (h+ k+1)-st entries; in the former case we have xh+k = ǫ,
in the latter we have xh+k+1 6= ǫ.

Note that for i ≥ h+k+3 the cell di(xn| . . . |xh+1|ǫ|xh| . . . |x1) is collapsible. If i =
h+k+2 then di(xn| . . . |xh+1|ǫ|xh| . . . |x1) may or may not be redundant. If it is re-
dundant then necessarily xh+k+2xh+k+1 = ǫ, and thus di(xn| . . . |xh+1|ǫ|xh| . . . |x1)
has strictly less non-trivial entries than (xn| . . . |x1). Yet they have the same height.

Altogether, the incidence number in (1.9) computes to
∑h+k+1

i=h (−1)i = (−1)h, which is
invertible. This proves that our matching is ZX-compatible.
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We now prove that the relation ≻− is noetherian. Let x, x′ be redundant and assume
that x ≻− x′. Our above analysis shows that x = x′, or the height of x′ is strictly smaller
than the height of x, or x and x′ have the same height and x′ has strictly less non-trivial
entries than x. Therefore ≻− is noetherian.

So far we have shown that µ is a noetherian matching on (E∗X,Ω∗, ∂∗). Applying
Theorem 1.1.29 we obtain a chain homotopy equivalence θ∞ : (E∗X, ∂∗)→ ((E∗X)θ, ∂θ∗).
We are now going to compute this map. Recall that a chain is θ-invariant if and only if
it is essential. If x is collapsible then θ(x) = 0. Assume now that x is redundant. We
then have θ(x) = x ± ∂µ(x), which, by our above analysis, is a sum of collapsible cells
and redundant cells. It follows that θ∞(x) is a sum of collapsible and redundant cells.
On the other hand, θ∞(x) is essential, and we conclude that θ∞(x) = 0. We therefore
have θ∞ = π : E∗X ։ (E∗X)θ, where π is the orthogonal projection onto essential cells.
Thus ∂θ∗ = π ◦ ∂, as claimed. The Proposition is proven. �

Take M = Z with trivial X-action. The chain complex

(B∗X, ∂∗) := (E∗X ⊗ZX Z, ∂∗ ⊗ id)

is called the normalized inhomogeneous bar complex of X. (For simplicity of notation we
denote the differential of B∗X again by ∂∗.) As a Z-module it is freely generated by all
tuples [xn| . . . |x1] with xi 6= ǫ for all i. The differential is given by ∂n =

∑n
i=0(−1)

idi,
where

di[xn | . . . |x1] =





[xn | . . . |x2] if i = 0,

[xn | . . . |xi+1xi | . . . |x1] if n > i > 0,

[xn−1 | . . . |x1] if i = n.

The normalized inhomogeneous bar complex (B∗X, ∂∗) is a model for H∗(X).

1.2.2 Noetherian matchings on the normalized bar resolution

In general, it is a very hard task to find a noetherian matching on a based chain complex
that has only “few” fixed points. For the case of finite dimensional complexes Mehner
[Meh11] implemented an algorithm that often finds good matchings. This is done by
iterating the steps of first looking for an arbitrary matching and then going over to the
associated Morse complex. His algorithm turns out to work very well in practice.

In this work we are mostly concerned with noetherian matchings on the normalized
bar resolution, which is never finite (unless X is trivial). We therefore need a more
conceptual approach. It is worthwhile mentioning that noetherian matchings on the bar
resolution are of a very special form. Clearly, every matching µ fixes essential cells. If
x is a collapsible n-cell then its partner µ(x) must be a face of x, i.e. µ(x) = di(x) for
some i. Let us assume that i 6= 0 and i 6= n, i.e. µ(x) arises from multiplying the entries
xi+1 and xi. Looking through the eyes of the redundant cell µ(x) = (yn−1, . . . , y1), its

42
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partner x = (xn, . . . , x1) arises from splitting a certain entry yi into a product of two
factors yi = xi+1xi.

Thus, to find a matching with relatively few essential cells it is convenient to have a
general idea of how to split monoid elements in an appropriate way. Such splittings
often arise from some additional structure on the monoid X. A common example is the
following. Assume we have chosen a generating set S for X. Furthermore, assume that
for every element x ∈ X we chose a preferred way to write it as a product of elements in
S. (That is, we chose a normal form X → S∗.) If this normal form behaves sufficiently
nice then we can use it to define a suitable splitting map X → X × X. In this work
we present three types of extra structure on a monoid X, each of which gives rise to
sufficiently nice normal forms and hence yielding a noetherian matching on (E∗X,Ω∗, ∂∗).
These are complete rewriting systems (cf. Section 1.2.3), Garside monoids (cf. Section
1.3) and factorable monoids (cf. Chapters 2 and 3).

1.2.3 Rewriting Systems

In this section we introduce rewriting systems. So-called complete rewriting systems
provide an important example of extra structure on a monoid, naturally giving rise to
a noetherian matching on its normalized bar resolution. This result is due to Brown
[Bro92]. The material in this section is taken from Cohen’s survey article [Coh97].

Informally speaking, a rewriting system for a monoid X can be thought of as a presen-
tation X = 〈S | R〉 in which the relations R can only be applied in one direction. We
now give a detailed definition.

Definition 1.2.4 (Rewriting system) Let S be a formal alphabet and denote by S∗

the free monoid over S. A set of rewriting rules R on S is a set of tuples (l, r) ∈ S∗×S∗.
l is called the left side and r is called the right side of the rewriting rule.

(a) We introduce a relation on S∗ as follows: We say that w rewrites to z, denoted
by w →R z, if there exist u, v ∈ S∗ and some rewriting rule (l, r) ∈ R such that
w = ulv and z = urv.

(b) A word w ∈ S∗ is called reducible (with respect to R) if there is some z such that
w →R z. Otherwise it is called irreducible (with respect to R).

(c) Denote by↔R the reflexive, symmetric, transitive closure of→R. Two words w, z
over S are called equivalent if w ↔R z. Set X = S/〈↔R〉. We then say that (S,R)
is a rewriting system for the monoid X.

Rewriting systems are a very general concept. For our purposes it will be convenient to
study rewriting systems with further properties.

Definition 1.2.5 (Complete rewriting system) Let (S,R) be a rewriting system.

(a) (S,R) is called minimal if the right side r of every rewriting rule (l, r) ∈ R is

43



1 Discrete Morse theory and rewriting systems

irreducible and if the left side l of every rewriting rule (l, r) ∈ R is irreducible with
respect to Rr{(l, r)}.

(b) (S,R) is called strongly minimal if it is minimal and if every element s ∈ S is
irreducible.

(c) (S,R) is called noetherian if there is no infinite sequence w1 →R w2 →R w3 →R . . .
of rewritings. This implies that every sequence of rewritings eventually arrives at
an irreducible word.

(d) (S,R) is called convergent if it is noetherian and if in every equivalence class of
↔R there is only one irreducible element.

(e) A rewriting system is called complete if it is strongly minimal and convergent.

We say that a monoid X possesses a complete rewriting system over the alphabet S if
there exists a set of rules R such that (S,R) is a complete rewriting system for X.

Remark 1.2.6 Instead of convergence (cf. axiom (d)) one sometimes requires conflu-
ence: The rewriting system (S,R) is called confluent if for every u ∈ S∗ and successors
u→R v, u→R w there exists z ∈ S∗ and chains of reductions v = v1 →R . . .→R vn = z
and w = w1 →R . . . →R wm = z. It is well-known that for a noetherian rewriting
system the notions of convergence and confluence are equivalent.

A complete rewriting system (S,R) gives rise to a normal form X → S∗ by mapping an
element x ∈ X to its uniquely determined irreducible representative in S∗. Moreover, it
provides an algorithmic way of computing this normal form: Let x ∈ X and take any
representative w ∈ S∗. If w is irreducible then we are done. Otherwise we can apply a
rewriting rule w →R w′. We take w′ as new representative and restart our procedure.
After finitely many steps we arrive at the unique irreducible representative, and we call
it the normal form of x.

Example 1.2.7 (a) Denote by X = 〈a, b | ab = ba〉 the free abelian monoid of rank
2. It is easily checked that S = {a, b} and R = {(ab, ba)} is a complete rewriting
system for X. A word w ∈ S∗ is a normal form if and only if it is of the form
w = bman for some m,n ≥ 0.

(b) The rewriting system S = {a, b}, R = {(aba, bab)} for the “braid monoid on three
strands” is not complete, because babba R← ababa→R abbab and babba and abbab
are both irreducible. (In other words, this rewriting system is not confluent, cf.
Remark 1.2.6.)

1.2.4 Brown’s proof of the Anick–Groves–Squier Theorem

In this section we indicate Brown’s proof of the Anick–Groves–Squier Theorem, which
states that a monoid that possesses a finite complete rewriting system is of type FP∞,
cf. [Bro92], [Ani86], [Gro90], [Squ87]. This goes in two steps. First, constructing a
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noetherian matching out of a complete rewriting system and secondly concluding that
the new resolution is of finite type. We follow Cohen’s survey article [Coh97]. However,
note that our exposition is “opposite” to his in the sense that we work from right to
left. The reason for this will become clear in Chapter 2 when we introduce factorable
monoids.

Let X be a monoid and let (S,R) be a complete rewriting system for X. As a ZX-
module, the normalized inhomogeneous bar resolution is freely generated by tuples
[xn| . . . |x1] ∈ Xn with xi 6= ǫ for all i. Denote by Ω∗ the set of all such tuples. We
are now going to define a noetherian matching on (E∗X,Ω∗, ∂∗). This will be done in
several steps. First we say what the essential cells should be. Secondly, we define the
notion of height of an arbitrary cell. We then use scanning to define collapsible and
redundant cells. Finally we give the matching function µ : Ω∗ → Ω∗.

We begin by saying which cells are to be essential. Firstly, the 0-cell [ ] is essential. For
n > 0 consider an n-cell [xn| . . . |x1] ∈ X

n and denote by wi ∈ S
∗ the normal form of xi,

i.e. the uniquely determined irreducible representative of xi. We say that [xn| . . . |x1] is
essential if

(a) x1 ∈ S.

(b) For all n > i ≥ 1, the concatenation wi+1wi ∈ S∗ is reducible, i.e. there exist
u, v ∈ S∗ and (l, r) ∈ R such that wi+1wi = ulv.

(c) For all n > i ≥ 1, no proper prefix3 of wi+1wi is reducible, i.e. if wi+1wi = ulv for
some left side l then u = ǫ.

Note that if [xn+1| . . . |x1] is essential then so is [xn| . . . |x1].

For an arbitrary n-cell [xn| . . . |x1] we define its height to be the maximal number h
subject to [xh| . . . |x1] being essential. Clearly, an n-cell is essential if and only if its
height is n. Assume now that [xn| . . . |x1] is not essential, and denote by h its height.

• If [xh+1| . . . |x1] does not satisfy (a), i.e. if x1 /∈ S, then we say that [xn| . . . |x1] is
redundant (necessarily of height 0).

• If [xh+1| . . . |x1] satisfies (a) but fails to satisfy (b) then wh+1wh is irreducible and
the cell [xn| . . . |x1] is called collapsible.

• If [xh+1| . . . |x1] satisfies (a), (b) but fails to satisfy (c) then some proper prefix of
wh+1wh is reducible and [xn| . . . |x1] is called redundant.

We will now define the matching µ : Ω∗ → Ω∗. Clearly, µ will fix essential cells. On
collapsible cells µ is easy to guess: If x is collapsible then µ(x) has to be a face of x and
thus µ(x) = di(x) for some i, and we take µ(x) = dh(x), where h denotes the height of
x. Note that 0 < h < n.

On redundant cells µ is a little more complicated. We already know that µ will have to

3The term “prefix” might be a bit misleading here, because it stands on the right-hand side. However,
recall that we number tuples in the opposite direction, and moreover, in the next chapter, when we
define factorable monoids, prefixes will be split up to the right.
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“split some entry into two non-trivial factors”. We have to distinguish two cases: First,
assume that x = [xn| . . . |x1] is redundant of height 0, i.e. x1 /∈ S. Let (sk, . . . , s1) ∈ S

∗

be the normal form of x1 and define x1 = sk . . . s2 ∈ X and (x1)
′ = s1. We then set

µ(x) = [xn| . . . |x2|x1|(x1)
′]. Assume now that [xn| . . . |x1] is redundant of height h > 0.

Denote by wi ∈ S
∗ the normal form of xi. We know that some proper prefix of wh+1wh

is reducible. Write wh+1 as concatenation

wh+1 = ab (1.10)

with b minimal subject to bwh being reducible. Note that a 6= ǫ (by assumption) and
b 6= ǫ (because wh is irreducible). Denote by α, β ∈ X the respective classes of a, b ∈ S∗.
µ will split the entry xh+1 into α and β.

Altogether, µ takes the following form,

µ([xn| . . . |x1]) =





[xn| . . . |x1] if essential

[xn| . . . |xh+1xh| . . . |x1] if collapsible of height h

[xn| . . . |x2|x1|(x1)
′] if redundant of height 0,

[xn| . . . |xh+2|α|β|xh| . . . |x1] if redundant of height h > 0,

(1.11)

where α, β are as above.

Theorem 1.2.8 (Brown [Bro92]) The map µ : Ω∗ → Ω∗ is a noetherian, ZX-com-
patible matching.

For a proof see e.g. Cohen [Coh97, §7.3]. The proof is not very difficult but quite tedious.
This is due to the fact that the matching distinguishes between two kinds of splittings,
depending on whether or not the height of a redundant cell is zero.

A rewriting system (S,R) is called finite if S and R are finite.

We now use Theorem 1.2.8 to conclude that if a monoid X admits a finite complete
rewriting system, then X satisfies the homological finiteness condition FP∞, i.e. we need
to show that X possesses projective resolutions of left resp. right ZX-modules, both of
finite type. The Morse complex associated to the matching µ is free, and we will show
that in case of a finite complete rewriting system there are only finitely many essential
cells in each dimension.

Let (S,R) be a finite complete rewriting system. Obviously, the essential 1-cells are in
one-to-one correspondance with the non-trivial elements of S, i.e. [x] is an essential 1-cell
if and only if x ∈ S and x 6= ǫ.

Recall that if [xn+1| . . . |x1] is essential then so is [xn| . . . |x1]. We are now going to show
that for every essential n-cell [xn| . . . |x1] there are only finitely many ways to extend it
to an essential (n + 1)-cell [xn+1|xn| . . . |x1]. From this it inductively follows that there
are only finitely many essential cells in each dimension.

Denote by wi the normal form of xi. If [xn+1|xn| . . . |x1] is essential then wn+1wn is
reducible, i.e. wn+1wn = ulv for some u, v ∈ S∗ and some (l, r) ∈ R. Furthermore, no
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proper prefix of wn+1wn is reducible and thus u = ǫ and wn+1wn = lv. In particular,
one of wn+1, l is a subword of the other. Since the wi’s are irreducible, wn+1 must be
a (proper) subword of l. Spelled out, wn+1 must be a proper subword of the left side
of some rewriting rule (l, r) ∈ R. Since R is finite, there are only finitely many words
satisfying this condition.

Using the Main Theorem of discrete Morse theory (cf. Theorem 1.1.29), we conclude that
the Morse complex associated to the matching µ is a free resolution of finite type by
right ZX-modules. Therefore, X is of type right-FP∞. Note that the matching function
µ only takes into account di for 0 < i < n. Considering the left bar resolution (i.e. the
face map dn now produces a coefficient xn and d0 simply kills entries, compare (1.7)),
one analogously shows that X is of type left-FP∞, cf. Cohen [NR93, p.42]. This finishes
Brown’s proof of the the following result, cf. [Ani86], [Gro90], [Squ87].

Theorem 1.2.9 (Anick, Groves, Squier) A monoid admitting a finite complete re-
witing system satisfies the homological finiteness condition FP∞.

Remark 1.2.10 Brown’s original proof in [Bro92] is not purely algebraic but involves
some topology. Indeed, he uses what today is called discrete Morse theory for cell
complexes, compare Remark 1.1.31. This way he proves that a monoid that admits a
finite complete rewriting system satisfies the geometric finiteness condition F∞, i.e. the
classifying space BX has the homotopy type of a CW complex with only finitely many
cells in each dimension. He then points out that very similar methods may be used to
show that X is of type FP∞.

1.3 A new proof of a Theorem by Charney–Meier–Whittlesey

This section reports on joint work with Ozornova. It is mainly a copy of the unpublished
article [HO]. We present a new proof of a finiteness result for Garside monoids by
Charney, Meier, Whittlesey using discrete Morse theory.

Let X be a monoid. For x 6= ǫ denote by ‖x‖ the maximum number of non-trivial factors
x can be expanded into,

‖x‖ = sup{n ≥ 1 | ∃xn, . . . , x1 ∈ Xr{ǫ} : x = xn . . . x1}.

For x = ǫ we set ‖ǫ‖ = 0.

Definition 1.3.1 A monoid X is called atomic if ‖x‖ <∞ for all x ∈ X.

We write x � y (resp. y � x) if y is a right divisor (resp. left divisor) of x, i.e. if
there exists z ∈ X such that x = zy (resp. yz = x). Note that the relations � and �
both are reflexive and transitive, and if X is atomic then they are also antisymmetric
(because there are no non-trivial invertible elements). Recall that z ∈ X is called the
right greatest common divisor of x and y if x � z, y � z, and for all z′ satisfying x � z′,
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y � z′ we have z � z′. The notions of left greatest common divisor and right resp. left
least common multiple are defined analogously.

The following definition is due to Dehornoy [Deh02].

Definition 1.3.2 A monoid X is called Garside monoid if it is atomic, cancellative and
the following conditions hold.

(a) For any two elements x, y in X, their left and right least common multiple, as well
as their left and right greatest common divisor do exist.

(b) There is an element ∆ ∈ X, called Garside element , with the property that its set
of left divisors is finite, generates X, and coincides with the set of right divisors of
∆.

We need to fix some notation. Let X be a Garside monoid with Garside element ∆. For
x, y ∈ X we will write x ∧̃ y for their right greatest common divisor. Denote by S the
set of left divisors of ∆ and set S+ = S \ {ǫ}. By Part (b) of Definition 1.3.2, S+ is a
generating set for X.

For s ∈ S denote by s∗ (resp. ∗s) the element uniquely determined by ss∗ = ∆ (resp.
∗ss = ∆). Observe that (∗s)∗ = s, for (∗s)∗ is the uniquely determined element such
that ∗s(∗s)∗ = ∆ = ∗ss.

The following is Theorem 3.6 in [CMW04].

Theorem 1.3.3 (Charney–Meier–Whittlesey) Let X be a Garside monoid. For
n ≥ 0 define the sets

Υn = { [xn| . . . |x1] | xi ∈ S+ for all i and xn . . . x1 ∈ S+}.

Then

0 // ZX[Υ‖∆‖]
∂ // . . . ∂ // ZX[Υ2]

∂ // ZX[Υ1]
∂ // Z // 0

is a free resolution of Z as a trivial ZX-module. (The differentials are as in the bar
resolution.)

As an immediate consequence of Theorem 1.3.3, Garside monoids satisfy the homological
finiteness property FP, and in particular, every Garside monoid is of type FP∞, cf. the
discussion before Theorem 1.2.9.

We are going to give an alternative proof of Theorem 1.3.3, using discrete Morse theory.

Let X be a Garside monoid and denote by (E∗X, ∂∗) the normalized inhomogeneous bar
resolution of X. E∗X has a canonical ZX-basis Ω∗, consisting of all tuples [xn| . . . |x1]
satisfying xi 6= ǫ for all i. Obviously, Υn ⊆ Ωn and from property (b) of Definition 1.3.2
we conclude that [xn| . . . |x1] ∈ Υn if and only if xn . . . x1 ∈ S+.
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Proposition 1.3.4 There exists a noetherian matching µ : Ω∗ → Ω∗ on (E∗X,Ω∗, ∂∗)
with the property that x ∈ Ωn is a fixed point of µ if and only if x ∈ Υn.

We will need the following easy lemma:

Lemma 1.3.5 For elements x, y, z ∈ X we have

xz ∧̃ yz = (x ∧̃ y) z.

Proof. By definition of the right greatest common divisor we have x � (x ∧̃ y) and y �
(x ∧̃ y), implying that xz � (x ∧̃ y)z and yz � (x ∧̃ y)z. We therefore have (xz ∧̃ yz) �
(x ∧̃ y)z. Let u ∈ X be such that (xz ∧̃ yz) = u(x ∧̃ y)z. We need to show that u = ǫ.
There are s, t ∈ X such that xz = su(x ∧̃ y)z and yz = tu(x ∧̃ y)z. Cancelling z yields
x = su(x ∧̃ y) and y = tu(x ∧̃ y). This proves that u(x ∧̃ y) is a right common divisor of
x and y, whence u = ǫ. �

We now prove Proposition 1.3.4.

Proof. The classification into collapsible and redundant cells is again done by scanning.
First, we define the height of a generator [xn| . . . |x1] ∈ Ω∗ to be the maximal integer
h ≥ 0 subject to [xh| . . . |x1] ∈ Υh. If h = n then µ will fix this element. Otherwise,
xh+1xh . . . x1 /∈ S+. (Note that xh+1 /∈ S+ implies xh+1xh . . . x1 /∈ S+.) Let d =
xh+1 ∧̃

∗(xh . . . x1).

(a) If d = ǫ then we set

µ([xn | . . . |x1 ]) = [xn | . . . |xh+2 |xh+1xh |xh−1 | . . . |x1 ].

(b) If d 6= ǫ then we set

µ([xn | . . . |x1 ]) = [xn | . . . |xh+2 | a | d |xh | . . . |x1 ],

where a is the uniquely determined element satisfying ad = xh+1. Note that a 6= ǫ,
because dxh . . . x1 ∈ S+ but adxh . . . x1 /∈ S+.

Claim 1. µ is an involution.

Let x = [xn| . . . |x1] be redundant of height h. We will first show that the cell µ(x) =
[xn| . . . |xh+2|a|d|xh| . . . |x1] is collapsible of height h + 1. By definition, there exists
c ∈M such that ∗(xh . . . x1) = cd, yielding

∆ = ∗(xh . . . x1) · (xh . . . x1) = cd(xh . . . x1),

and thus dxh . . . x1 ∈ S+. We have adxh . . . x1 = xh+1xh . . . x1 /∈ S+, proving that µ(x)
has height h+ 1. Set b = a ∧̃ ∗(dxh . . . x1). We have to show that b = ǫ.
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From ∆ = ∗(dxh . . . x1)·(dxh . . . x1) =
∗(xh . . . x1)·(xh . . . x1) one concludes

∗(dxh . . . x1)·
d = ∗(xh . . . x1). This gives

d = xh+1 ∧̃
∗(xh . . . x1)

= (ad) ∧̃ (∗(dxh . . . x1)d)

1.3.5
= bd.

So b = ǫ and thus µ(x) is collapsible of height h+ 1. Hence,

µ2(x) = µ([xn| . . . |xh+2|a|d|xh| . . . |x1]) = [xn| . . . |xh+2|ad|xh| . . . |x1] = x.

Now let x = [xn| . . . |x1] be collapsible of height h. We will first show that µ(x) =
[xn| . . . |xh+2|xh+1xh|xh−1| . . . |x1] is redundant of height h − 1. Since x has height h,
we have xh . . . x1 ∈ S+ and thus its right divisor xh−1 . . . x1 also lies in S+. On the
other hand xh+1xh . . . x1 /∈ S+. This proves that µ(x) has height h − 1. Set b =
(xh+1xh) ∧̃

∗(xh−1 . . . x1). We have to show that b = xh.

Observe that ∗(xh−1 . . . x1) =
∗(xh . . . x1)xh, yielding

b = (xh+1xh) ∧̃
∗(xh−1 . . . x1)

= (xh+1xh) ∧̃ (
∗(xh . . . x1)xh)

1.3.5
= (xh+1 ∧̃

∗(xh . . . x1))xh

= xh.

Since xh 6= ǫ, this proves that µ(x) is redundant of height h− 1. Hence,

µ2(x) = µ([xn| . . . |xh+2|xh+1xh|xh−1| . . . |x1]) = x.

Claim 1 is proven.

Claim 2. If x is redundant then [∂µ(x) : x] = ±1.

Let x = [xn| . . . |x1] be redundant of height h. Then its partner µ(x) is collapsible of
height h + 1. Claim 2 follows from the observation that dh+1(µ(x)) = x, and that
di(µ(x)) 6= x for i 6= h+ 1.

Claim 3. The matching is noetherian.

Let x = [xn| . . . |x1] be a redundant cell of height h, and let z 6= x be redundant
with x ≻− z. We will now prove that z has height h + 1. For this, let y = µ(x) =
[xn| . . . |xh+2|a|d|xh| . . . |x1] and consider the boundaries diy for i 6= h + 1. We distin-
guish several cases.

(a) n ≥ i ≥ h+ 3: We have di(y) = [xn| . . . |xixi−1| . . . |xh+2|a|d|xh| . . . |x1], which has
height h + 1 since, as above, dxh . . . x1 ∈ S+ and adxh . . . x1 /∈ S+. As computed
above, a ∧̃ ∗(dxh . . . x1) = ǫ, so di(y) is collapsible.
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(b) h ≥ i ≥ 1: For i ≤ h − 1 we have di(y) = [xn| . . . |xh+2|a|d|xh| . . . |xi+1xi| . . . |x1],
and for i = h we have di(y) = [xn| . . . |xh+2|a|dxh|xh−1| . . . |x1]. In both cases
di(y) has height h, because the product of the first h entries from the right is
dxh . . . x1 ∈ S+, whereas the product of the first h+ 1 entries from the right gives
adxh . . . x1 /∈ S+. Computing a ∧̃ ∗(dxh . . . x1) = ǫ, we see that di(y) is again
collapsible.

(c) i = h + 2: Here, di(y) = [xn| . . . |xh+3|xh+2a|d|xh| . . . |x1]). This cell has height
h + 1, for dxh . . . x1 ∈ S+, but xh+2adxh . . . x1 /∈ S+. The latter follows from the
fact that its right divisor adxh . . . x1 is not in S+. The cell di(y) may or may not
be redundant.

Altogether we have shown that if z 6= x and x ≻− z then z has strictly larger height than
x. Note that the height of a cell is bounded by ‖∆‖, the maximal number of nontrivial
factors ∆ can be expanded into. It follows that every chain x1 ≻− x2 ≻− . . . eventually
stabilizes.

This finishes the proof of the Proposition. �

Applying Theorem 1.1.29 to the matching constructed in the proof of Proposition 1.3.4,
we obtain that

θ∞ : (ZX[Ω∗], ∂∗) −→ (ZX[Υ∗], θ
∞ ◦ ∂∗)

is chain homotopy equivalence.

To conclude Theorem 1.3.3, we only have to show that for x ∈ Υ∗ we have θ∞(∂(x)) =
∂(x). For this, consider [xn| . . . |x1] ∈ Υn. So, in particular, xn . . . x1 ∈ S+. As a
consequence, xn . . . x2 ∈ S+ as well as xk . . . x1 ∈ S+ for all k ≥ 1. It follows that for
all i = 0, . . . , n the face di[xn| . . . |x1] is a multiple of an element in Υn−1. Therefore
∂([xn| . . . |x1]) is θ-invariant. Theorem 1.3.3 is proven. �

Remark 1.3.6 (a) In [Ozo], Ozornova uses similar arguments to extend Theorem
1.3.3 to locally left Gaussian monoids.

(b) Besides Theorem 1.3.3, Charney–Meier–Whittlesey [CMW04, Theorem 3.1] also
provides a geometric finiteness result, namely that every Garside group G is of
type F, i.e. its classifying space BG has the homotopy type of a finite CW complex.

We can use the same strategy as above to give an alternative proof of this geometric
statement: Our matching constructed in the proof of Proposition 1.3.4 carries over
to the topological situation, meaning that we obtain an admissible matching on
the (geometric) cells of the classifying space of X. Discrete Morse theory for
cell complexes (compare Remark 1.1.31) then tells us that BX collapses onto a
finite complex with one n-cell for each element [xn| . . . |x1] in Υ∗. Since X is a
Garside monoid (and hence satisfies the Ore condition), the spaces BX and BG
are homotopy equivalent, cf. Fiedorowicz [Fie84, Proposition 4.4].
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The organization of this chapter is as follows. In Section 2.1 we briefly review Visy’s and
Wang’s work on factorable groups and monoids. In Section 2.2 we introduce our notion
of factorable monoid and compare it with the previous ones. Our notion of factorable
monoid can be expressed via certain actions of monoids Pn and Qn, and Section 2.3
is devoted to investigating these monoids. Finally, we draw a connection between the
monoids Pn and Qn and the so-called Visy complex.

We chose this approach for two reasons. First, we assume the reader to have basic
familiarity with factorable groups as introduced by Visy [Vis11] and the generalization to
categories by Wang [Wan11]. Thus, the first section may be seen as a warm-up. Secondly,
Wang’s definition of factorable monoid has the defect that her Main Theorem does not
hold in full generality, cf. Theorem 2.1.23. We introduce the recognition principle to point
out in detail why this issue occurs. Subsequently, we suggest a definition of factorable
monoid that avoids this problem. Having this motivation in mind, Sections 2.2 and 2.3
should then be much more accessible.

2.1 Prerequisites

2.1.1 Generating sets and filtrations

Let X be a monoid and let S be a generating set for X. This means that every non-
trivial element of X can be represented as a product of positive powers of elements of S.
In particular, if X happens to be a group, we require S to generate X “as a monoid”.
This will later be guaranteed by requiring that generating sets of groups are closed under
taking inverses.

Convention. For technical reasons, it will be convenient to implicitly understand the
neutral element ǫ ∈ X as an element of our generating set S, even if it does not occur
in the explicit description of S. In case we want to exclude ǫ we will write S+.

In this section we introduce two filtrations associated to a the pair (X,S). Denote by
ℓS : X → N the word length in X with respect to S. With the above convention we have
S = {x ∈ X : ℓ(x) ≤ 1} and S+ = {x ∈ X : ℓ(x) = 1}.

Clearly, ℓS will in general not be additive.

Definition 2.1.1 The pair (X,S) is called balanced if ℓS : X → N is a homomorphism
(of monoids). It is called 2-balanced if the composite p ◦ ℓS : X → Z/2Z is a homo-
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morphism, where p : N ։ Z/2Z is the homomorphism that sends 1 ∈ N to the class
[1] ∈ Z/2Z.

X
ℓS //

p◦ℓS ""EE
EE

EE
EE

N

p
����

Z/2Z

Observe that if (X,S) is balanced then there are no non-trivial invertible elements in X.

Remark 2.1.2 In [Vis11], [Wan11] the term “atomic” is used instead of 2-balanced.

Definition 2.1.3 An n-tuple (xn, . . . , x1) ∈ X
n is called geodesic (with respect to S) if

ℓ(xn . . . x1) = ℓ(xn) + . . . + ℓ(x1). If (x2, x1) is a geodesic pair then we write x2‖x1.

A generating set S for X induces a filtration (by sets) on every subset Y ⊆ X:

Y (h) := {y ∈ Y | ℓS(y) ≤ h}

Note that Y (h) = ∅ for h < 0. The associated filtration quotients are given by

Y [h] := Y (h) /Y (h− 1).

Each quotient Y [h] is a pointed set with base point the equivalence class corresponding
to Y (h−1). Since there is no topology involved, another way of describing the filtration
quotients is to say that Y [h] is the stratum Y (h)rY (h−1) with an additional basepoint.

If Si is a generating set for Xi (i = 1, 2) then S12 = (S1 × {ǫX2}) ∪ ({ǫX1} × S2) is a
generating set for the direct product X1 ×X2, and the word length ℓS12 : X1 ×X2 → N
satisfies

ℓS12(x1, x2) = ℓS1(x1) + ℓS2(x2).

Taking X1 = X2 and iterating the above procedure we obtain the following filtration of
Xn by sets,

Xn(h) = {(xn, . . . , x1) ∈ X
n | ℓS(xn) + . . . + ℓS(x1) ≤ h}.

Definition 2.1.4 (a) Let A, B be filtered sets. We say that f : A → B is a graded
map if f(A(h)) ⊆ B(h) for all h ≥ 0. Graded maps descend to the filtration
quotients, i.e. for every h ≥ 0 we obtain an induced map A[h] → B[h] which will
also be denoted by f .

(b) Two graded maps f, g : A → B are called equal in the graded sense, f ≡ g, if for
every h ≥ 0 the induced maps on the filtration quotients f, g : A[h] → B[h] are
equal.
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Remark 2.1.5 Observe that ≡ is compatible with pre- and post-composition by graded
maps.

By a very similar construction we obtain a filtration of the normalized inhomogeneous
bar complex (B∗X, ∂∗). Denote by FhBnX the free Z-module generated by all n-tuples
[xn| . . . |x1] satisfying xi 6= ǫ for all i and ℓS(xn) + . . . + ℓS(x1) ≤ h. The word length
is subadditive, and thus the filtration levels FhB∗X are indeed subcomplexes. The
associated complexes of filtration quotients are given by

GhB∗X := FhB∗X/Fh−1B∗X.

As a Z-module, GhB∗X is freely generated by all tuples [xn| . . . |x1] satisfying xi 6= ǫ for
all i and ℓS(xn) + . . .+ ℓS(x1) = h. In particular, a tuple in GhB∗X has length at most
h, and hence GhB∗X = 0 for ∗ < 0 or ∗ > h.

Remark 2.1.6 Visy [Vis11] writes N∗X[h] instead of GhB∗X and calls it the h-th norm
complex of X (with respect to the generating set S).

Associated to our increasing filtration F•B∗X there is a homology spectral sequence (see
e.g. Weibel [Wei94, §5.4]), the E0-page of which has as entries the filtration quotients

E
0
p,q = GpBp+qX.

We thus find the complexes of filtration quotients GhB∗X as the vertical complexes
E0
h,∗−h. Note that E∗∗,∗ is a fourth quadrant spectral sequence. Indeed, the E0-page is

concentrated in the right upper triangle of the fourth quadrant, cf. Figure 2.1. The
spectral sequence therefore converges to the homology of the monoid X (see e.g. [Wei94,
§5.5]).

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · ∗ ∗ ∗ ∗ ∗

· · · · · · ∗ ∗ ∗

· · · · · · · ∗ ∗

· · · · · · · · ∗

· · · · · · · · ·

Figure 2.1: The E0-page.

2.1.2 Factorable groups

For the sake of readability we henceforth denote the word length by ℓ instead of ℓS .
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Definition 2.1.7 (Visy) A factorization map for the pair (X,S) is a map η : X →
X ×X, x 7→ (x, x′) satisfying the following axioms:

(F1) x x′ = x.

(F2) ℓ(x) + ℓ(x′) = ℓ(x).

(F3) ℓ(x′) = 1 if ℓ(x) ≥ 1.

We call x′ the prefix and x the remainder of x.

Note that we do not require η : X → X ×X to be a morphism of monoids.

Some remarks are in order. (F1) states that η is a section for the monoid multiplication
d : X ×X → X. (F2) states that the factorization η is geodesic, i.e. x‖x′. (F3) should
be seen as “normalization axiom”; as long as x 6= ǫ, the map η splits up a generator.

Remark 2.1.8 In terms of Cayley graphs, η does the following. Given any vertex
g ∈ Gr{eG}, η picks an edge incident to g with the property that this edge can be
extended to a path of minimal length joining g and eG, see Figure 2.2.

eG

gg
g′

Figure 2.2: The factorization map η in terms of Cayley graphs.

A factorization map η : X → X ×X induces maps ηi : X
n → Xn+1 by applying η to

the i-th entry. More precisely, for n ≥ i ≥ 1 we set ηi := idn−i×η× idi−1 : Xn → Xn+1.
Spelled out we have

ηi(xn, . . . , x1) = (xn, . . . , xi+1, xi, (xi)
′, xi−1, . . . , x1).

For n > i ≥ 1 we define maps di : Xn → Xn−1 by multiplying the entries xi+1, xi.
Finally, for n > i ≥ 1 we set fi := ηi ◦ di : X

n → Xn. Spelled out we have

fi(xn, . . . , x1) = (xn, . . . , xi+1xi, (xi+1xi)
′, . . . , x1). (2.1)
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Definition 2.1.9 A pair (x2, x1) is called η-stable (or just stable if η is understood), if
η(x2x1) = (x2, x1). A tuple x = (xn, . . . , x1) is called stable at position i if fi(x) = x.
We say that a tuple is totally stable if it is stable at every position.

Definition 2.1.10 (Visy) Let G be a group and let S be a generating set that is closed
under taking inverses. Let η : G→ G×G be a factorization map. We say that the triple
(G,S, η) is a factorable group if the maps

d2η1d1η2 : G× S −→ G× S,

η1d1 : G× S −→ G× S

are equal in the graded sense, i.e. if the following diagram commutes for every h ≥ 0:

(G× S)[h]
η2 //

d1

��

(G× S × S)[h]

d1
��

(G×G)[h]
η1 // (G×G× S)[h]

d2
��

G[h] η1
// (G× S)[h]

(2.2)

Note that the di’s and ηi’s are graded maps and therefore the above diagram makes
sense. Furthermore, note that (2.2) always commutes for elements of the form (g, ǫ).
Hence, for the definition of factorable group it does not matter whether ǫ ∈ S or not.

We now give a reformulation of (2.2). Set αu = d2η1d1η2 : G × S → G × S and
αl = η1d1 : G × S → G × S. Thus, when passing to filtration quotients, αu is just the
“upper” composition in (2.2), and αl is the “lower” composition. Spelled out, we have

αu(g, t) = (g g′t, (g′t)′)

αl(g, t) = (gt, (gt)′).

For convenience we show pictures for αu and αl in Figure 2.3. We draw a symbol � to
indicate multiplication of two elements and we draw a symbol � to indicate the map η
that factorizes one input variable into its prefix and remainder.

Commutativitiy of (2.2) can now be restated as follows. For any two elements g ∈ G,
t ∈ S we require that ℓ(g g′t) + ℓ((g′t)′) = ℓ(g) + ℓ(t) if and only if ℓ(gt) + ℓ((gt)′) =
ℓ(g) + ℓ(t), and in this case we furthermore require that g g′t = gt and (g′t)′ = (gt)′.

Example 2.1.11 (Trivial factorability structure) Every group G can be endowed
with the so-called trivial factorability structure: As generating set we take the whole
group S = G, and we define η : G→ G×G by η(g) = (ǫ, g), i.e. g′ = g and g = ǫ. Then
(G,S, η) is a factorable group. Axioms (F1) - (F3) are obvious. Furthermore, the map
ηi is just the simplicial degeneracy map si : G

n → Gn+1 in the simplicial model of the
classifying space BG. Commutativity of (2.2) now follows from the simplicial identities
d2s1 = id and d1s2 = s1d1.
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g t

g g′t (g′t)′

(a) αu

g t

gt (gt)′

(b) αl

Figure 2.3: Visualization of the upper and lower composition of (2.2).

Remark 2.1.12 (a) For a factorable group (G,S, η) the maps ηi could vaguely be re-
garded as generalized degeneracies in the following sense. Call a tuple η-degenerate
if it lies in the image of some ηi : Gn → Gn+1. We will later see that, roughly
speaking, the maps ηi give rise to a (complicated) collapsing map from the bar
resolution of G to a certain quotient consisting of η-non-degenerate cells only.

(b) In general, η : G → G × G will not be coassociative. Indeed, the only possible
factorability structure with η coassociative is the trivial one. This can be seen as
follows. η is coassociative if and only if for all g ∈ G we have η1(η1(g)) = η2(η1(g)).
This implies ǫ = g′, cf. Figure 2.4. Axiom (F3) yields g = ǫ and hence, by axiom
(F1), we have g′ = g.

g

g ǫ g′

(a) η1η1(g)

g

g′g′g

(b) η2η1(g)

Figure 2.4: Why η is not coassociative in general.

Example 2.1.13 (The infinite cyclic group) The integers Z are factorable with re-
spect to the generating set S = {±1}. The factorization map is given by z 7→ (z −
sign(z), sign(z)), where sign : Z → {−1, 0,+1} denotes the sign-function. It is easily
checked that (Z, S, η) is a factorable group.

In contrast, Visy [Vis11] showed that for n > 3 the finite cyclic groups Z/nZ are not
factorable with respect to the generating set consisting of the classes [−1] and [+1] only.

Example 2.1.14 (Symmetric groups) Fix some n ≥ 1 and denote by Sn the n-th
symmetric group. As generating set we take all transpositions, S = {(i j) | 1 ≤ i <
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j ≤ n}. We define a factorization map as follows. For the identity we necessarily have
η(id) = (id, id). Now, let σ ∈ Sn be non-trivial. Denote by k the largest non-fixed point
of σ and set η(σ) = (στ, τ), where τ is the transposition (k, σ−1(k)). Visy [Vis11] shows
that this data endows Sn with the structure of a factorable group.

Similarly, the alternating group An ⊂ Sn is factorable with respect to the generating set
consisting of the products of any two transpositions. The factorization map in this case
is roughly given by “applying η twice”, cf. Visy [Vis11, §5.3, pp.46-49].

Example 2.1.15 (Products) Let (G,S, η) and (H,T, ν) be factorable groups.

(a) The free product G ∗H is factorable with respect to the generating set S ⊔ T .

(b) Consider a group homomorphism ϕ : H → Aut(G). If for every h ∈ H the auto-
morphism ϕ(h) : G→ G is a graded map, then the semidirect product G⋊ϕ H is
factorable with respect to the generating set (S×{ǫH})∪({ǫG}×T ). In particular,
the direct product G ×H is factorable with respect to the aforementioned gener-
ating set. Note that the factorability structure on G ⋊ϕ H is non-trivial (unless
one of them is the trivial group). Semidirect products therefore provide a lot of
interesting examples.

Example 2.1.16 (Dihedral groups) Consider Z/nZ and Z/2Z equipped with the
trivial factorability structure. Taking their semidirect product, we obtain a non-trivial
factorability structure on the n-th dihedral group D2n = Z/nZ⋊Z/2Z with n non-trivial
generators. For n ≥ 3 this factorability structure on D2n is not 2-balanced.

We remark that there exists another factorability structure on D2n, found by Roden-
hausen [Rod], which has again n non-trivial generators, but which is 2-balanced. More
precisely, the generating set is given by the reflections in D2n. This factorability structure
has been used by Rodenhausen to recompute H∗(D2n;Z[

1
n ]) for odd n.

Remark 2.1.17 Factorability of a group G with respect to a “small” generating set S
is a rather strong condition. Indeed, Corollary 3.1.22 will later tell us that if S is finite
then G satisfies the homological finiteness property FP∞.

2.1.3 Weakly factorable monoids

Note that the definition of factorable group at no time refers to inverses. We can therefore
directly give a prototypical definition of factorable monoid. Indeed, following this idea,
Wang [Wan11] introduced the notion of factorable category. The definition is made such
that when we take a group and consider it as a category with one object ∗ and morphism
set Mor(∗, ∗) ∼= G then it coincides with Visy’s definition. For a monoid together with
some generating set S this yields the following:

Definition 2.1.18 (Wang) LetX be a monoid, S a generating set, and η : X → X×X
a factorization map. We say that the triple (X,S, η) is a weakly factorable monoid if the
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maps

d2η1d1η2 : X × S −→ X × S,

η1d1 : X × S −→ X × S

are equal in the graded sense, i.e. if for every h ≥ 0 the diagram (2.2) commutes (with
G replaced by X).

Clearly, every factorable group is a weakly factorable monoid.

Remark 2.1.19 We warn the reader that what we call weakly factorable monoid is
called “factorable monoid” in Wang [Wan11]. Subsection 2.2.1 will justify our renaming.

For later use it will be convenient to not only have that d2η1d1η2, η1d1 are equal in the
graded sense when considered as maps X × S → X ×S but as maps X2 → X ×S. (For
simplicity of notation we will write X2 → X2.) The following result tells us that we can
always assume this without loss of generality.

Proposition 2.1.20 Let (X,S, η) be a weakly factorable monoid. Then the maps

d2η1d1η2 : X
2 −→ X2,

η1d1 : X
2 −→ X2

are equal in the graded sense, i.e. the following diagram commutes for all h ≥ 0:

X2[h]

d1

��

η2 // X3[h]

d1
��

X2[h]
η1 // X3[h]

d2
��

X[h] η1
// X2[h]

(2.3)

Proof. Let (x, y) ∈ X × X. The proof is by induction on the word length of (x, y),
and we abbreviate ℓ(x, y) := ℓ(x) + ℓ(y). If ℓ(x, y) = 1 then the claim is obviously true.
Assume that the Proposition holds true for all pairs (x, y) satisfying ℓ(x, y) < N for
some fixed N . Take (x, y) ∈ X ×X with ℓ(x, y) = N and consider the diagram depicted
in Figure 2.5.

In this diagram, all non-marked polygons already commute when η is a factorization
map for the pair (X,S). We now check that the remaining three polygons commute
in the graded sense. The polygon marked with 1© is applied to the triple (x, x′y, y′)
and affects the pair (x′y, y′). It commutes in the graded sense, because y′ ∈ S and by
assumption (X,S, η) is weakly factorable. For the same reason, the polygon marked
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•
d1 // •

η1

��@
@@

@@
@@

•
d3

��@
@@

@@
@@
d2 // •

d2

&&NNNNNNNNNNNNN

•
η2 //
η1

��@
@@

@@
@@

id
//

•
η1 //

id

//

•
d2 //

d1

??~~~~~~~~~~~~~~~~~
•

η2 //

d1

??~~~~~~~~~~~~~~~~~

1©

•
d3 //

f1
??~~~~~~~
•

f1 // •
d2 // •

•

η3
??~~~~~~~ d2 //

d1

''OOOOOOOOOOOOOO

2©

•

η2

77oooooooooooooo d1 //

3©

•

η1

55jjjjjjjjjjjjjjjjjjj

•

d1

77oooooooooooooo

Figure 2.5: The induction step of the proof of Proposition 2.1.20.

with 3© commutes in the graded sense, for it is applied to the pair (xy, y′). The polygon
marked with 2© is applied to the triple (x, y, y′) and affects the pair (x, y). If y = ǫ then

2© always commutes. Otherwise ℓ(x, y) = N − 1 and the induction hypothesis tells us
that 2© commutes in the graded sense.

It follows that the top-most composition d2η1d1η2 : X2 → X2 and the bottom-most
composition η1d1 : X

2 → X2 are equal in the graded sense. �

2.1.4 The Visy complex

We briefly recollect here Visy’s main results about factorable groups and Wang’s gener-
alizations to weakly factorable monoids.

Theorem 2.1.21 (Visy, Wang) If (X,S, η) is a weakly factorable monoid then the
homology of the complexes GhB∗X is concentrated in degree h.

For a proof see e.g. [Vis11, pp.31-35] or [Wan11, pp.16-20]. We provide a sketch of proof
of this result for factorable monoids in Section 3.3.

Equivalently speaking, the E1-page of the associated spectral sequence consists of a single
chain complex 0 ← E1

0,0 ← E1
1,0 ← E1

2,0 ← . . ., cf. Figure 2.6. The spectral sequence

therefore collapses on the E2-page. The E1-page is of particular interest, because it is a
model for the homology of X.

Before we can investigate the complex (E1
∗,0, d

1
∗,0) we need to fix some notation. Recall

the maps fi : X
n → Xn. They induce Z-linear maps fi : Z[X

n]→ Z[Xn] in the obvious
way. Note that, as a Z-module, Z[Xn] is canonically isomorphic to the unnormalized
“bar module” BnX. The maps fi : BnX → BnX obtained this way descend to the
normalized bar modules BnX. For convenience we make this explicit. For every i,
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· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · ∗ ∗ ∗ ∗ ∗

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

Figure 2.6: The E1-page for a factorable group.

n > i ≥ 1, we obtain a Z-linear map fi : BnX → BnX, which, on basis elements, is given
by

fi[xn| . . . |x1] = [xn| . . . |xi+1xi|(xi+1xi)
′| . . . |x1]. (2.4)

Note that fi[xn| . . . |x1] = 0 if ℓ(xi+1xi) ≤ 1.

To describe the chain complex (E1
∗,0, d

1
∗,0), Visy introduced the following complex.

Denote by Vn be free Z-module generated by n-tuples [xn| . . . |x1] satisfying ℓ(xi) = 1
for all i and which are unstable at every position. The differential ∂Vn : Vn → Vn−1 is
given by the following composition

Vn
in // BnX

κn // BnX
∂n // Bn−1X

πn−1 // Vn−1. (2.5)

We now explain the maps showing up in (2.5). in : Vn → BnX is the inclusion of Vn

into the normalized bar complex. The map κn : BnX → BnX is quite complicated. On
generators it is defined as κn = Kn ◦ . . . ◦K1, where

Kq =

q∑

i=1

(−1)q−iΦq
i

and Φq
i = fi ◦ fi+1 ◦ . . . ◦ fq−1. Spelled out, we have K1 = id, K2 = id−f1, K3 =

id−f2+f1f2, and we obtain κ1 = id, κ2 = id−f1, κ3 = id−f1−f2+f1f2+f2f1−f1f2f1,
and so on. Note that the number of summands occuring in κn grows factorially. The
map ∂n : BnX → Bn−1X is just the differential in the normalized bar complex and
πn−1 : Bn−1X → Vn−1 is the “orthogonal” projection onto the direct summand.

The following result is due to Visy.

Theorem 2.1.22 (Visy) Let (G,S, η) be a factorable group. Then the map

κ : (V∗, ∂
V
∗ ) −→ (E1

∗,0, d
1
∗,0) (2.6)

is an embedding of chain complexes.
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This theorem has been generalized as follows.

Theorem 2.1.23 (Wang) Let (X,S, η) be a weakly factorable monoid. Assume that
X is right-cancellative and that S is finite. Then the map κ in (2.6) is an isomorpism,
and thus (V∗, ∂

V
∗ ) is a model for the homology of X.

For a proof of Theorem 2.1.22 see e.g. [Vis11, Proposition 4.3.5]. For a proof of Theorem
2.1.23 see [Wan11, Theorem 1.3.3]. In this thesis we are going to prove a stronger
statement, from which Theorem 2.1.23 immediately follows. In particular, we show that
the assumption of S being finite is not necessary, cf. Corollary 3.3.9 and Remark 3.3.10.

The following subsection provides an example why Theorem 2.1.23 does not hold when
we drop the assumption of X being right-cancellative.

2.1.5 The recognition principle

Let X be a monoid. Let S be a generating set for X and denote by S∗ the free monoid
over S. A factorization map η gives rise to a normal form NF : X → S∗ by sending an
element x ∈ X to

NF(x) := ηℓ(x)−1 . . . η2η1(x) ∈ S
∗,

cf. Bödigheimer, Visy [BV, §5.1].

x

x′x′

Figure 2.7: Visualization of NF : X → S∗.

Definition 2.1.24 A word (sn, . . . , s1) in S∗ is an η-normal form if NF(sn . . . s1) =
(sn, . . . , s1).

Equivalently we can define the following: The empty word ( ) ∈ S∗ is an η-normal
form; and (sn, . . . , s1) ∈ S∗ is an η-normal form if and only if (sn . . . s1)

′ = s1 and
sn . . . s1 = sn . . . s2 and the tail (sn, . . . , s2) is an η-normal form.

Remark 2.1.25 Our definition of η-normal form looks slightly stronger than the defi-
nitions by Bödigheimer, Visy [BV] and Rodenhausen [Rod], which do not require that
sn . . . s1 = sn . . . s2. However, since they work in groups, this condition is automatically
fulfilled.
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Note that being an η-normal form is a “global” condition: If we want to check whether
a given word (sn, . . . , s1) ∈ S

∗ is an η-normal form we in particular have to compute the
product sn . . . s1 ∈ X.

Definition 2.1.26 We say that a factorization map η : X → X × X satisfies the
recognition principle if for all x ∈ X, t ∈ S we have that (x, t) is η-stable if and only if
(x′, t) is η-stable.

Remark 2.1.27 The impact of this definition is as follows. Assume we are given a
word (sn, . . . , s1) ∈ S

∗. This is an η-normal form if and only if the pair (sn . . . si+1, si)
is stable for every i. If η satisfies the recognition principle then the latter is equivalent
to (si+1, si) being stable for every i. In other words, (sn, . . . , s1) is an η-normal form if
and only if it is totally stable. Summarizing, the recognition principle guarantees that
η-normal forms can be detected locally. This is a crucial property that will later allow
us to classify generators [xn| . . . |x1] ∈ BnX into essential, collapsible and redundant by
a scanning algorithm.

The following result has first been discovered by Rodenhausen.

Proposition 2.1.28 Let (X,S, η) be a weakly factorable monoid. If X is right-cancel-
lative then η satisfies the recognition principle.

Proof. Assume that (x, t) is stable, i.e. αl(x, t) = (x, t). In particular, αl is norm-
preserving and hence αu(x, t) = (x x′t, (x′t)′) = (x, t). From this we see (x′t)′ = t,
and the equality x′t = x′ follows from axiom (F1) together with the fact that X is
right-cancellative. Assume now that (x′, t) is stable. Then αu(x, t) = (x, t) and thus
αl(x, t) = (x, t), proving that (x, t) is a stable pair. (Note that this implication holds
without assuming that X is right-cancellative.) �

Example 2.1.29 shows that Proposition 2.1.28 does not hold for all weakly factorable
monoids. Intuitively speaking, the absence of a recognition principle for arbitrary weakly
factorable monoids is the reason why in Theorem 2.1.23 the requirement of X being
right-cancellative cannot be dropped.

Example 2.1.29 This counterexample has been communicated by Mehner. Set S =
{a, b} and define Ξ = 〈a, b | a2 = ab = ba = b2〉. Obviously, Ξ is not right-cancellative.
Ξ can be thought of as the natural numbers N with two different 1’s, see Figure 2.8.

We define a factorization map as follows: η(ǫ) = (ǫ, ǫ), η(a) = (ǫ, a), η(b) = (ǫ, b) and for
k > 1 we set η(ak) = (ak−1, b). It is easily checked that (Ξ, S, η) is a weakly factorable
monoid. However, Ξ does not satisfy the recognition principle: The pair (a2, b) is stable,
whereas the pair ((a2)′, b) = (b, b) is not stable. Indeed, Mehner pointed out that the
homology of the complex (V∗, ∂

V
∗ ) is not isomorphic to the homology of X. We omit the

details.
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b
a,b

��?
??

??
??

?

ǫ

b

@@��������

a
��=

==
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==
= a2

a,b // a3
a,b // a4

a,b // . . .

a
a,b

>>~~~~~~~

Figure 2.8: Cayley graph of the monoid Ξ.

2.2 Factorable monoids

2.2.1 Definition and classification

Definition 2.2.1 (Factorable monoid) Let X be a monoid, S a generating set and
η : X → X × X a factorization map. We say that the triple (X,S, η) is a factorable
monoid if the maps f1f2f1f2, f2f1f2, f2f1f2f1 : X

3 → X3 are equal in the graded sense,

f1f2f1f2 ≡ f2f1f2 ≡ f2f1f2f1 : X
3 → X3. (2.7)

In Figure 2.9 we visualize the three compositions occuring in (2.7).

f1

f1

f2

f2

x3 x2 x1

(a) f1f2f1f2

f1

f2

f2

x3 x2 x1

(b) f2f1f2

f1

f1

f2

f2

x3 x2 x1

(c) f2f1f2f1

Figure 2.9: Visualization of the three compositions occuring in (2.7).

Before continuing, let us briefly motivate the above definition. Let x ∈ X3 and assume
that ℓ(f2f1f2(x)) = ℓ(x). We thus have f1f2f1f2(x) = f2f1f2(x). This can be reformu-
lated by saying that the triple f2f1f2(x) is everywhere stable (because f1 ◦ f2f1f2(x) =
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f2f1f2(x) and f2 ◦ f2f1f2(x) = f2f1f2(x), since the fi’s are idempotent). For ℓ(x) ≤ 3
this implies that f2f1f2(x) is an η-normal form. This observation gives rise to a normal
form algorithm for factorable monoids. We will discuss this in more detail in Section
2.3.2.

Examples of factorable monoids will be given later. Indeed, Theorem 2.2.6 and in par-
ticular Corollary 2.2.7 will at once give a whole bunch of examples.

We now investigate the relation between factorable monoids and weakly factorable
monoids.

Lemma 2.2.2 If (X,S, η) is a factorable monoid then η satisfies the recognition prin-
ciple.

Proof. Let x ∈ X and t ∈ S. We have to show that (x, t) is stable if and only if (x′, t)
is stable. Let us first assume that (x, t) is stable and consider (ǫ, ǫ, xt) ∈ X3. We have

f2f1f2(ǫ, ǫ, xt) = f2f1(ǫ, ǫ, xt) = f2(ǫ, x, t) = (x, x′, t),

and obviously ℓ(ǫ, ǫ, xt) = ℓ(x, x′, t). It follows that f2f1f2(ǫ, ǫ, xt) = f1f2f1f2(ǫ, ǫ, xt)
and thus (x′, t) is a stable pair.

Assume now that (x′, t) is stable and consider (x, t, ǫ) ∈ X3. We have

f2f1f2f1(x, t, ǫ) = (x, x′, t),

and obviously ℓ(x, t, ǫ) = ℓ(x, x′, t). We conclude that

(xt, xt
′
, (xt)′) = f2f1f2(x, t, ǫ) = f2f1f2f1(x, t, ǫ) = (x, x′, t).

From this we see (xt)′ = t and xt = xt xt
′
= xx′ = x, proving that (x, t) is stable. �

Lemma 2.2.3 Every factorable monoid is weakly factorable.

Coincidentally, Rodenhausen [Rod] almost gave a proof for this statement when looking
for equivalent characterizations of factorability structures. We present here his original
proof with some minor changes.

Proof. We have to prove that the diagram (2.2) on page 57 commutes with X replacing
G. More precisely, we are going to show that for x ∈ X and t0 ∈ S we have x‖t if and
only if x′‖t and x‖x′t, and in this case we have (xt, (xt)′) = (x x′t, (x′t)′). Let x ∈ X,
t0 ∈ S and set n = ℓ(x).

Assume that x‖t0. We then have

n+ 1 = ℓ(x) + ℓ(t0) = ℓ(xt0) ≤ ℓ(x) + ℓ(x′t0) ≤ ℓ(x) + ℓ(x′) + ℓ(t0) = n+ 1,

proving that x′‖t0. (Note that this argument only requires η to be a factorization map
for the pair (X,S).) One similarly shows that x‖x′t0.
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Assume now that x′‖t0 and x‖x′t0. Let (xn, . . . , x1) := NF(x) and for 1 ≤ i ≤ n define

(ti, yi) := η(xiti−1).

•

t0

@@
@@

@@
@

•

x1

~~~~~~~

t1 @@
@@

@@
@ •

•

tn−1 @@
@@

@@
@ •

y1

~~~~~~~

•

xn
~~~~~~~

tn @@
@@

@@
@ •

•

yn

~~~~~~~

Claim. NF(xt0) = (tn, yn, . . . , y1).

We first show that for all i, n ≥ i ≥ 1, we have xi‖ti−1. Indeed for i = 1 this has been
shown above, and for i ≥ 2 we use

xx′t0 = xn . . . x2t1 = xn . . . xiti−1yi−1 . . . y2

to conclude that

ℓ(xiti−1) ≥ ℓ(xx′t0)− ℓ(xn . . . xi+1)− ℓ(yi−1 . . . y2) ≥ n− (n− i)− (i− 2) = 2.

It follows that xi‖ti−1. For i ≥ 1 consider the triple (xi+1, xi, ti−1). By Lemma 2.2.2,
η satisfies the recognition principle, and thus, by Remark 2.1.27, the pair (xi+1, xi) is
stable. This yields

f2f1f2(xi+1, xi, ti−1) = f2f1(xi+1, xi, ti−1) = f2(xi+1, ti, yi) = (ti+1, yi+1, yi).

Recall that for all i we have xi‖ti−1. Hence f2f1f2 is norm-preserving for (xi+1, xi, ti−1).
It follows that the triple (ti+1, yi+1, yi) is everywhere stable and thus (tn, yn, . . . , y1) is ev-
erywhere stable. Using Remark 2.1.27, we conclude (tn, yn, . . . , y1) = NF(tnyn . . . y1) =
NF(xn . . . x1t0) = NF(xt0), as claimed. It follows that x‖t0.

So far we have shown that for any pair (x, t) the map αu : X2 → X2 is norm-preserving
if and only if αl : X

2 → X2 is norm-preserving. Assume now that they are both norm-
preserving. We then have

αu(x, t0) = d2η1d1η2(x, t0)

= d2η1d1(xn . . . x2, x1, t0)

= d2(xn . . . x2, t1, y1)

= (tnyn . . . y2, y1),
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and on the other hand

αl(x, t0) = η1d1(xn . . . x1, t0)

= η1(tnyn . . . y1)

= (tnyn . . . y2, y1).

Therefore, diagram (2.2) commutes (with G replaced by X). �

Remark 2.2.4 Note that in the above proof we used (2.7) only for triples (x3, x2, x1)
satisfying ℓ(xi) = 1 for all i.

Lemma 2.2.5 Let (X,S, η) be a weakly factorable monoid. If η satisfies the recognition
principle then (X,S, η) is factorable.

Proof. Let (X,S, η) be weakly factorable. We thus have d2η1d1η2 ≡ η1d1 : X2 → X2.
We first prove f2f1f2f1 ≡ f2f1f2 : X3 → X3. Note that d1d2 = d1d1 : X3 → X and
thus d1d2f1 = d1d1η1d1 = d1d1 = d1d2 : X

3 → X. This way we obtain

f2f1f2f1 = η2d2η1d1η2d2f1 ≡ η2η1d1d2f1 = η2η1d1d2 = η2d2η1d1η2d2 = f2f1f2.

We now show f2f1f2 ≡ f1f2f1f2 : X3 → X3. Consider (x3, x2, x1) ∈ X3. Clearly,
if f2f1f2 drops the norm of (x3, x2, x1) then so does f1f2f1f2. Assume that f2f1f2 =
η2d2η1d1η2d2 is norm preserving for (x3, x2, x1). So, in particular, d2η1d1η2 is norm-
preserving for the pair d2(x3, x2, x1) = (x3x2, x1). This yields

f2f1f2(x3, x2, x1) = η2η1d1d2(x3, x2, x1) = (x3x2x1, x3x2x1
′, (x3x2x1)

′).

If η satisfies the recognition principle then the latter is stable at position 1. �

Tacking together Lemmas 2.2.2, 2.2.3 and 2.2.5, we obtain the following.

Theorem 2.2.6 Let X be a monoid, S a generating set and η : X → X ×X a factor-
ization map. Then the following are equivalent:

(a) (X,S, η) is a factorable monoid.

(b) (X,S, η) is a weakly factorable monoid and η satisfies the recognition principle.

In particular (cf. Proposition 2.1.28), if X is right-cancellative, then the notions of
factorable monoid and weakly factorable monoid coincide.

Corollary 2.2.7 Every factorable group (in the sense of Visy) is a factorable monoid.

Example 2.2.8 (Garside monoids) Let (X,∆) be a Garside monoid and denote by
S the set of all left-divisors of the Garside element ∆. For an element x ∈ X we set
x′ = x ∧̃∆ (cf. the notation introduced after Definition 1.3.2), and we denote by x the
uniquely determined element satisfying xx′ = x. Then the map η : X → X × X,
x 7→ (x, x′) endows (X,S) with the structure of a factorable monoid, cf. Ozornova [Ozo].
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Indeed, loc. cit. defines a factorability structure on the larger class of locally left Gaussian
monoids. In the special case of Garside monoids her factorability structure simplifies to
the one above.

Example 2.2.9 (The natural numbers with funny generating sets) Take X =
N and consider S = {0, . . . ,m} for some fixed number m ≥ 1. We claim that N is
factorable with respect to S. For n ≥ 0 set

η(n) = (n−min{n,m}, min{n,m}),

i.e. n′ = min{n,m}. It is easily seen that η is a factorization map. We need to show that
(X,S, η) is factorable. Since X is right-cancellative, it suffices to show that for every
x ∈ X and t ∈ S we have (x+ t)′ = (x′ + t)′. Indeed,

(x′ + t)′ = min{x′ + t, m}

= min{min{x,m}+ t, m}

= min{x+ t, m+ t, m}

= min{x+ t, m}

= (x+ t)′.

2.2.2 Products

The results of this section will not be used elsewhere in this work. It is for this reason
that we do not give the most rigorous proofs here. Instead, we try to keep the exposition
as simple as possible.

The aim of this section is to show that “factorable monoids are closed under free, direct,
and semidirect products”. The strategy to prove this is as follows. Assume we are given
two factorable monoids X and Y . (For the moment we suppress generating sets.) In
particular, X and Y are weakly factorable. Visy [Vis11, §3.3] proves that free, direct,
and semidirect products of factorable groups are again factorable. His proofs almost
literally carry over to weakly factorable monoids, and we conclude that the product
Z = X × Y is weakly factorable. By Theorem 2.2.6, it now suffices to show that the
factorization map ηZ : Z → Z × Z satisfies the recognition principle. Note that if Z is
weakly factorable and (z′, t) is stable, then (z, t) is stable, cf. the proof of Proposition
2.1.28. Thus, to show factorability of Z, the only thing we have to do is to verify the
other implication of the recognition principle, that is, if (z, t) is a stable pair then so is
(z′, t).

Throughout this subsection let (X,S, ηX ) and (Y, T, ηY ) be factorable monoids.

In order to avoid confusion we agree on the following convention: We write x, x′ and y,
y′ for remainder and prefix in X and Y , respectively. In contrast, when taking remainder
and prefix in the product Z = X ∗ Y or Z = X ⋉ Y , we will write ηZ(z) and η′Z(z)
instead of z and z′.
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Proposition 2.2.10 The free product Z = X ∗ Y is factorable with respect to the gen-
erating set S ⊔ T .

Proof. The factorization map ηZ : Z → Z × Z is defined as follows. Every element
z ∈ Z can be uniquely written as a product xn+1ynxn . . . y1x1y0 with xi ∈ X, yi ∈ Y
and xi, yi 6= ǫ for all 1 ≤ i ≤ n. (Note that y0 = ǫY and xn+1 = ǫX is allowed.) We then
define

ηZ(z) =

{
(xn+1ynxn . . . y1x1 y0, (y0)

′) if y0 6= ǫY ,

(xn+1ynxn . . . y1 x1, (x1)
′) if y0 = ǫY .

(2.8)

The proof of Proposition 3.3.3 in [Vis11] easily carries over to weakly factorable monoids
and thus (Z,S ⊔ T, ηZ) is a weakly factorable monoid. It remains to show that if (z, u)
is an ηZ -stable pair then so is (η′Z(z), u). For u = ǫ this is trivial and in what follows we
assume that u 6= ǫ.

Clearly, z′, u ∈ S ⊔ T . If z′ ∈ S and u ∈ T (or vice versa z′ ∈ T and u ∈ S), then (2.8)
gives ηZ(η

′
Z(z) · u) = (η′Z(z), u) and thus (η′Z(z), u) is stable. Otherwise, z′, u ∈ S or

z′, u ∈ T , and we assume that z′, u ∈ S. (The case z′, u ∈ T is treated analogously.)
As above, z can uniquely be written as z = xn+1ynxn . . . y1x1. (Note that y0 = ǫY for
η′Z(z) ∈ S.) In particular, η′Z(z) = x′1. Since (z, u) is stable, we have ηZ(zu) = z and
η′Z(zu) = u. Furthermore, x1u ∈ X, yielding

ηZ(zu) = ηZ(xn+1ynxn . . . y1x1u) = (xn+1ynxn . . . y1x1u, (x1u)
′) = (z, u).

We thus have z = xn+1ynxn . . . y1x1 = xn+1ynxn . . . y1x1u. We use the uniqueness
property to conclude that x1 = x1u, and we see that (x1, u) is stable. The recognition
principle for (X,S, η) tells us that (x′1, u) = (η′Z(z), u) is stable. Therefore, (Z,S⊔T, ηZ)
is factorable. �

Proposition 2.2.11 Let ϕ : X → End(Y ) be a morphism of monoids with the property
that for every x ∈ X the morphism ϕ(x) : Y → Y is a graded map. Then the semidirect
product Z = X ⋉ϕ Y is factorable with respect to the generating set U = (S × {ǫY }) ∪
({ǫX} × T ).

Recall that multiplication in Z is given by

(x1, y1) · (x2, y2) = (x1x2, (ϕ(x2).(y1))y2).

Proof. The factorization map is defined as follows. Consider z = (x, y) ∈ Z and set

ηZ(z) =

{
((x, y), (ǫX , y

′)) if y 6= ǫY ,

((x, ǫY ), (x
′, ǫY )) if y = ǫY .

(2.9)

It is easily seen that ηZ : Z → Z × Z is indeed a factorization map. The proof of
Proposition 3.3.1 in [Vis11] carries over to weakly factorable monoids and thus (Z,U, ηZ)
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is a weakly factorable monoid.1 It remains to show that if (z, u) is an ηZ-stable pair in
Z then so is (η′Z(z), u). So let z = (x, y) ∈ Z, u ∈ U , and let (z, u) be ηZ -stable. We
may assume that u 6= (ǫX , ǫY ), for in this case ηZ -stability of (z, u) forces z = (ǫX , ǫY )
and ηZ -stability of (η′Z(z), u) is trivial. We distinguish two cases:

• Assume that u = (s, ǫY ) for some s ∈ S. We claim that y = ǫY . We have

(x, y) · (s, ǫY ) = (xs, ϕ(s)(y)).

Since ((x, y), (s, ǫY )) is ηZ-stable, we in particular have η′Z(xs, ϕ(s)(y)) = (s, ǫY ),
implying that ϕ(s)(y) = ǫY , cf. (2.9). This yields

ηZ((xs, ϕ(s)(y))) = ((xs, ǫY ), ((xs)
′, ǫY )).

Now, ηZ -stability of (z, u) implies that z = (xs, ǫY ), and thus y = ǫY , as claimed.
We therefore have z · u = (xs, ǫY ) and η′Z(z) = (xs′, ǫY ). We conclude that
(η′Z(z), u) = ((xs′, ǫY ), (s, ǫY )) is ηZ -stable, because s = (xs)′ and (xs′, (xs)′) is
ηX -stable by the recognition principle.

• Assume that u = (ǫX , t) for some t ∈ T . Then z · u reads as

(x, y) · (ǫX , t) = (x, yt).

Since (z, u) is ηZ -stable, we must have yt 6= ǫY , cf. (2.9). We obtain

ηZ((x, yt)) = ((x, yt), (ǫX , (yt)
′)),

and by ηZ-stability of (z, u) we have (yt)′ = t and yt = y. In particular, the pair
(y, t) is ηY -stable.

Now if y = ǫY then ηZ(z) = ((x, ǫY ), (x
′, ǫY )). In this case we have η′Z(z) · u =

(x′, ǫY ) · (ǫX , t) = (x′, t). Using (2.9), we compute ηZ(x
′, t) = ((x′, ǫY ), (ǫX , t)) =

(η′Z(z), u). Therefore the pair (η′Z(z), u) is ηZ -stable.

If y 6= ǫY then ηZ(z) = ((x, y), (ǫX , y
′)) and η′Z(z) = (ǫX , y

′). This yields η′Z(z)·u =
(ǫX , y

′t). Recall that (y, t) is ηY -stable, and thus by the recognition principle, the
pair (y′, t) is ηY -stable. It follows that ηZ(η

′
Z(z) · u) = ((ǫX , y′t), (ǫX , (y

′t)′)) =
((ǫX , y

′), (ǫX , t)) = (η′Z(z), u).

The Proposition is proven. �

Taking for ϕ the constant map ϕ(x) = id : Y → Y we obtain the following.

Corollary 2.2.12 The direct product X ×Y is factorable with respect to the generating
set U .
1Saying that ϕ(x) : Y → Y is graded is equivalent to saying that ℓ(ϕ(x)(y)) ≤ ℓ(y) for all x ∈ X. Note
that Visy even requires ℓ(ϕ(x)(y)) = ℓ(y) for all x ∈ X, y ∈ Y . However, this stronger condition
is not really used in the proof. It is used implicitly, in the sense that it guarantees that his norm
function N : X ⋉ϕ Y → N is symmetric, meaning that the norm is invariant under taking inverses.
For our purposes this requirement is redundant.
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2 Factorability

Remark 2.2.13 (Graph products) Consider a finite family of factorable monoids
X1, . . . ,Xk. Given an undirected graph Γ with vertices 1, . . . , k, one can define the graph
product of X1, . . . ,Xk. The idea is that we start with the free product X1 ∗ . . . ∗Xk, and
we add a commutativity relation xixj = xjxi, where xi ∈ Xi and xj ∈ Xj, whenever
in Γ there is an edge between i and j. Graph products in particular include free and
direct products. More precisely, the free product X1 ∗ . . . ∗Xk corresponds to the graph
product with respect to the graph containing no edges at all, and the direct product
X1× . . .×Xk corresponds to the graph product with respect to the complete graph on k
vertices. Rodenhausen [Rod] pointed out that the graph product of factorable monoids
is again factorable if the graph Γ is transitive.

2.2.3 Finite sequences and monoid actions

We now interprete factorability in terms of actions of monoids P2 and Q2 on the direct
product X3. As a consequence, we obtain actions of monoids Pn and Qn on the filtered
bar complex F•B∗X. We need to fix some notation first.

Definition 2.2.14 Denote by Fn the free monoid over the formal alphabet {1, . . . , n}.
Elements of Fn will be called finite sequences of height ≤ n and will be written as
(is, . . . , i1). We also introduce F0 = {( )}. Concatenation of finite sequences will be
denoted by a lower dot. The length of a finite sequence I = (is, . . . , i1) is defined as
#I = s.

We prefer to think of the elements of Fn as sequences rather than words. The reason for
this is the notion of subsequence, which, in the language of words, would correspond to
“non-connected subwords”. We write J ⊂ I if J is a subsequence of I. A subsequence
is called connected if it is a subword in the usual sense.

For 1 ≤ a, b ≤ n and 1 ≤ c < n we introduce the following relations in Fn:

(a, b) ∼dist (b, a) for |a− b| ≥ 2 (“distant commutativity”)

(a, a) ∼idem (a) (“idempotence”)

(c+1, c, c+1) ∼left (c).(c+1, c, c+1) (“left absorption”)

(c+1, c, c+1) ∼right (c+1, c, c+1).(c) (“right absorption”)

Definition 2.2.15 We then define the monoids Pn and Qn as follows,

Pn = Fn/〈∼dist,∼idem〉,

Qn = Fn/〈∼dist,∼idem,∼left,∼right〉,

where 〈∼dist,∼idem〉 denotes the congruence relation generated by ∼dist and ∼idem, cf.
Chapter 0 and analogously for the other quotient.

We write pn : Fn ։ Pn, qn : Fn ։ Qn for the respective quotient maps. When no
confusion is possible we will often suppress the index n. Multiplication in Pn and Qn will
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be denoted by a centered dot to distinguish it from multiplication in Fn. Elements of Pn

and Qn are equivalence classes of finite sequences, and we denote the class corresponding
to the element (is, . . . , i1) by [is, . . . , i1]P and [is, . . . , i1]Q, respectively.

For finite sequences I, J ∈ Fn we set I ∼P J (resp. I ∼Q J) if I and J lie in the same
p-fibre (resp. q-fibre), i.e. if and only if p(I) = p(J) (resp. q(I) = q(J)).

Convention. Obviously, T = {[1]Q, . . . , [n]Q} is a generating set for Qn. Conversely,
every generating set for Qn contains T . This can be seen as follows. For 1 ≤ k ≤ n we
have

[k]Q = {(k), (k, k), (k, k, k), . . .},

and thus if for non-empty finite sequences I, J ∈ Fn we have [I.J ]Q = [k]Q then [I]Q =
[J ]Q = [k]Q. Therefore T must contain [k]Q. In particular, T is a minimal generating
set for Qn. When speaking of “word length” of elements of Qn, we will always refer
to the word length with respect to T . For the monoids Pn we stick to the analogous
convention.

We now explain what the monoids Pn and Qn have to do with factorability.

Let X be a monoid and let S be a generating set. Let η : X → X×X be a factorization
map and recall the maps fi : X

n → Xn,

fi(xn, . . . , x1) = (xn, . . . , xi+1xi, (xi+1xi)
′, . . . , x1). (2.10)

We have an action

F2 −→ Map(X3,X3)

by sending a finite sequence (is, . . . , i1) ∈ F2 to the composition fis ◦ . . .◦fi1 : X
3 → X3.

We remark that Map(X3,X3) denotes all maps from X3 to X3 and not only morphisms.
By axiom (F1), we have f2i = fi. This can be expressed by saying that the above action
factors through P2:

F2
f //

p
����

Map(X3,X3)

P2

99rrrrrrrrrrr

It is convenient to denote the action P2 → Map(X3,X3) again by f . Note that the
fi : X

3 → X3 are graded maps. The action hence descends to the filtration quotients,
i.e. for every h ≥ 0 we have an action

f : P2 −→ Map(X3[h],X3[h]).

Assume now that (X,S, η) is a factorable monoid. Then on the filtration quotients we
have f1f2f1f2 = f2f1f2 = f2f1f2f1 : X

3[h]→ X3[h] for every h ≥ 0, cf. Definitions 2.1.4
and 2.2.1. We record the following immediate reformulation of factorability.
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Proposition 2.2.16 Let X be a monoid, S a generating set and η : X → X × X a
factorization map. Then (X,S, η) is factorable monoid if and only if for every h ≥ 0 the
action f : P2 → Map(X3[h],X3[h]) factors through Q2.

We now consider Xn for arbitrary n. From (2.10) it is obvious that fi and fj commute
for |i− j| ≥ 2, and therefore the action f : Fn−1 → Map(Xn,Xn) factors through Pn−1.
Going over to filtration quotients, we obtain actions f : Pn−1 → Map(Xn[h],Xn[h]).
Again, we have f1f2f1f2 = f2f1f2 = f2f1f2f1 : X3[h] → X3[h], and this statement
clearly remains true when we replace the indices 1, 2 by i, i+1 for 1 ≤ i < n. (Because
we required f1f2f1f2 ≡ f2f1f2 ≡ f2f1f2f1 to hold for all triples, and thus in particular
for (x4, x3, x2) and so on.)

What we have shown is that if (X,S, η) is a factorable monoid then for every n ≥ 0
and all h ≥ 0 the action f : Pn−1 → Map(Xn[h],Xn[h]) factors through Qn−1 (and by
Proposition 2.2.16 the converse is also true).

Pn−1
f //

����

Map(Xn[h],Xn[h])

Qn−1
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A very similar statement holds for the filtered normalized bar complex F•B∗X: Here,
the maps fi induce an action Fn−1 → End(BnX). (Recall from (2.4) on page 62 that in
this setting the fi’s are Z-linear.) As before, this action factors through Pn−1. Going
over to filtration quotients we obtain an action f : Pn−1 → End(GhBnX). The following
is immediate.

Proposition 2.2.17 Let X be a monoid, S a generating set and η : X → X × X a
factorization map. If (X,S, η) is a factorable monoid then for every n ≥ 0 and all h ≥ 0
the action f : Pn−1 → End(GhBnX) factors through Qn−1.

Remark 2.2.18 The converse of Proposition 2.2.17 does not hold: Consider Z/3Z with
presentation X = 〈a | a3 = ǫ〉. As generating set we take S = {a}. Define a factorization
map by η(ǫ) = (ǫ, ǫ), η(a) = (ǫ, a) and η(a2) = (a, a). Observe that (X,S, η) is not a
factorable monoid. (The triple (a, a, a) is everywhere stable, but its η-normal form
is ǫ.) However, the action f : Pn−1 → End(GhBnX) factors through Qn−1. This is
because a cell [xn| . . . |x1] ∈ BnX is either stable at position i (in which case we have
(xi+1, xi) = (a, a)) or applying fi strictly decreases the norm. In other words, in Xr{ǫ}
there are no unstable geodesic pairs, and therefore the failure of the recognition principle
is not detected when working in the normalized bar complex.

Propositions 2.2.16 and 2.2.17 offer a rather conceptual approach to factorability via
actions of monoids. Indeed, many results will later follow from abstract properties of
the monoids Pn and Qn, rather than from explicit calculations. In the following sections
we investigate these monoids. For this purpose it will be helpful to have at hand a
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visualization for finite sequences. We draw in a (mirrored) coordinate chart the values
(k, ik) and we draw a line from (k, ik) to (k + 1, ik+1) if |ik − ik+1| ≤ 1, i.e. we draw a
line if the two entries do not commute in the sense of ∼dist. As an example, Figure 2.10
visualizes the sequence (i10, . . . , i1) = (4, 3, 4, 2, 3, 4, 1, 2, 3, 4).

12345678910
1

2

3

4

Figure 2.10: Visualization of (4, 3, 4, 2, 3, 4, 1, 2, 3, 4).

In Figure 2.11 we express the relations ∼left and ∼right in pictures.

∼left ∼right

Figure 2.11: Visualization of ∼left and ∼right.

Remark 2.2.19 (Evaluation Lemma) We state this remark for later reference. Let
(X,S, η) be a factorable monoid. For the empty sequence ( ) we define f( ) := id, and for
a non-empty finite sequence I = (is, . . . , i1) we set fI = fis ◦ . . . ◦ fi1 . Let I, J ∈ Fn be
finite sequences. Our above observations immediately yield the following.

(a) If I ∼P J then fI = fJ : Bn+1X → Bn+1X, and

(b) if I ∼Q J then fI ≡ fJ : Bn+1X → Bn+1X.

We will refer to this fact as Evaluation Lemma.

2.3 The monoids Pn and Qn

2.3.1 The monoids Pn

Throughout this section fix some n ∈ N. We will investigate the monoid Pn and show
that it possesses a strongly minimal convergent rewriting system. We introduce the
notions of being “right-most” and “left-most”, which are opposite to each other in the
sense that a finite sequence (is, . . . , i1) is right-most if and only if its opposite (i1, . . . , is)
is left-most. In particular, for every statement about right-most finite sequences there
is an equivalent formulation for left-most finite sequences. For example, in Lemma
2.3.3.(b), to get the opposite result for left-most finite sequences, one only has to replace
it+1 ≤ it+1 by it+1 ≥ it−1. We leave these minor changes to the reader and concentrate
on right-most finite sequences only.
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Definition 2.3.1 (a) A finite sequence (is, . . . , i1) is called right-most (resp. left-
most), if for every s > t ≥ 1 the following holds: If |it+1 − it| ≥ 2 then it+1 < it
(resp. it+1 > it). In other words, large entries stand right-most (resp. left-most).

(b) A finite sequence (is, . . . , i1) is called reduced if for every t, s > t ≥ 1, we have
it+1 6= it.

Clearly, being right-most (resp. left-most) is a local condition. In Figure 2.12 we give
pictures how right-most sequences look like or do not look like locally. Also observe that
(a)-(c) are left-most, whereas (d) is not left-most.

(a) Not right-most (b) Right-most (c) Right-most (d) Right-most

Figure 2.12: Visualization of right-most.

Example 2.3.2 The finite sequence in Figure 2.10 is reduced and left-most. The first
is obvious and the latter can be seen by checking adjacent entries.

The following lemma offers some immediate characterizations of the property of being
right-most. The proof is very easy and should be regarded as a warm-up for the sections
to come, where we have to do calculations in Qn, which will be more complicated.

Lemma 2.3.3 For a finite sequence I := (is, . . . , i1) the following statements are equiv-
alent:

(a) (is, . . . , i1) is right-most.

(b) For all t, s > t ≥ 1, we have it+1 ≤ it + 1.

(c) For every connected subsequence J of I the following holds: If for a < b we have
(b, a) ⊂ J then we also have (b, . . . , a+ 1, a) ⊂ J .

Proof. (a) ⇒ (b): Assume that (is, . . . , i1) fails to satisfy (b), i.e. there exists t,
s > t ≥ 1, such that it+1 > it+1, hence it+1 ≥ it+2. In particular, we have |it+1−it| ≥ 2
and it+1 > it. Therefore (is, . . . , i1) is not right-most.

(b) ⇒ (c): Assume that I satisfies (b) and let J be a connected subsequence of I. Note
that J also satisfies (b). Consider a < b such that (b, a) ⊂ J . Condition (b) states that
the entries of J “increase by at most 1”. Therefore, to get from a to b we will come
across a+ 1, a+ 2 and so on. Hence (b, . . . , a+ 1, a) ⊂ J .

(c)⇒ (a): Assume that (is, . . . , i1) is not right-most. Hence there exists t, s > t ≥ 1, such
that |it+1− it| ≥ 2 and it+1 ≥ it, i.e. it+1 ≥ it+2. Set J := (it+1, it). This is a connected
subsequence of length 2 of I. Since it+1 ≥ it + 2, the sequence (it+1, . . . , it + 1, it) has
length at least 3, therefore it cannot be a subsequence of J . �
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Proposition 2.3.4 The monoid Pn admits a strongly minimal convergent rewriting sys-
tem over the alphabet {[1]P , . . . , [n]P }.

Proof. Set S = {1, . . . , n}. (For simplicity of notation we write i instead of [i]P .) The
set of rewriting rules R consists of the following rules:

(a) (j, i) → (i, j) for all 1 ≤ i < j ≤ n and j − i ≥ 2,

(b) (i, i)→ (i) for all 1 ≤ i ≤ n.

It is obvious that this is a rewriting system for Pn, i.e. 〈S |R〉 is a presentation of Pn.
An isomorphism is given by the quotient map pn : (is, . . . , i1) 7→ [is, . . . , i1]P . It is also
easily seen that this rewriting system is strongly minimal: Every left side of a rewriting
rule shows up only once. Every right side is irreducible. Every finite sequence of length
1 is irreducible.

We now prove convergence. Observe that there is no infinite chain of reductions: To see
this, we introduce the value of a finite sequence:

value(is, . . . , i1) :=

s∑

k=1

2k · ik.

The value of a finite sequence is a natural number and applying a rewriting rule to a
finite sequence strictly lowers its value. Our rewriting system is therefore noetherian.

It remains to show that there is only one irreducible representative in each equivalence
class. This is most easily seen by showing that 〈S | R〉 is confluent. (Recall from
Remark 1.2.6 that for a noetherian rewriting system the notions of convergence and
confluence are equivalent.) Formally, this would require several case distinctions, which
are all straightforward. We omit the details. Instead, we depict one case in Figure 2.13.
Arrows indicate the application of a rewriting rule. �

(5).(3, 1)

��

(5, 3, 1) (5, 3).(1)

��
(5, 1).(3)

��

(5).(1, 3) (3, 5).(1) (3).(5, 1)

��
(1, 5).(3) (1).(5, 3)

��

(3, 1).(5)

��

(3).(1, 5)

(1).(3, 5) (1, 3, 5) (1, 3).(5)

Figure 2.13: The rewriting system 〈S | R〉 is confluent.

Looking at the rewriting rules in the proof of Proposition 2.3.4, we see that a word over
the generating set S is irreducible if and only if it is right-most and reduced. Thus:
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Corollary 2.3.5 In every ∼P -equivalence class of finite sequences there is exactly one
representative that is right-most and reduced.

For a finite sequence I we will sometimes denote its unique right-most and reduced repre-

sentative within [I]P by
−→
I . Accordingly, its unique left-most and reduced representative

will be denoted by
←−
I .

Remark 2.3.6 (a) The monoid Pn is factorable with respect to the generating set
T = {[1]P , . . . , [n]P }. We define a factorization map as follows. For I ∈ Fn set

η([I]P ) = ([is, . . . , i2]P , [i1]P ), where (is, . . . , i1) =
−→
I . Roughly speaking, η : Pn →

Pn × Pn splits up the largest generator that is a right-divisor of [I]P . (“Large”
refers to the canonical total order on T .) It is now easily checked that (Pn, T, η) is
weakly factorable and that it satisfies the recognition principle.

(b) In contrast, for n ≥ 2, the monoid Qn is not even weakly factorable with respect
to the generating set {[1]Q, . . . , [n]Q}. This can be seen as follows. Assume that
η : Qn → Qn ×Qn is a factorization map. The element [2, 1, 2]Q admits a unique
factorization into three generators, forcing η([2, 1, 2]Q) = ([2, 1]Q, [2]Q). Similarly,
we have η([2, 1]Q) = ([2]Q, [1]Q). Considering the pair ([2, 1, 2]Q, [1]Q) and com-
puting the upper and lower composition in (2.2) on page 57 gives

αu = d2 ◦ η1 ◦ d1 ◦ η2([2, 1, 2]Q, [1]Q) = ([2, 1, 2]Q, [1]Q),

αl = η1 ◦ d1([2, 1, 2]Q, [1]Q) = ([2, 1]Q, [2]Q).

In particular, αu is norm-preserving, but αl is not.

2.3.2 The monoids Qn

Throughout this chapter we will simultaneously work in Fn and its quotient Qn. To
avoid confusion, elements of Qn will usually be denoted by small greek letters. We will
investigate the monoids Qn and show that each of them contains an absorbing element2

∆n, that is, for all α ∈ Qn we have α ·∆n = ∆n = ∆n · α.

For an element α ∈ Qn denote by L (α) (resp. R(α)) its set of left (resp. right) divisors.

Remark 2.3.7 Obviously, every left-divisor of α2 is a left-divisor of α2 · α1. Therefore
L (α2 · α1) ⊇ L (α2). Similarly, R(α2 · α1) ⊇ R(α1). This elementary property will be
used in several proofs.

Example 2.3.8 (a) Let us define some kind of (right) Cayley graph Γ for Qn as
follows. Vertices of Γ are the elements of Qn, and we draw an edge α1→α2 with
label [k]Q if there exists k, 1 ≤ k ≤ n, such that α1 · [k]Q = α2. Figure 2.14 depicts
the (right) Cayley graph of Q2 without reflexive edges and labellings.

2There seems to be no consistent notation for absorbing elements. For the lack of a better symbol,
we choose the letter ∆, because, apart from the finiteness condition, every absorbing element is a
Garside element.
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[ ]Q

[2]Q

[2, 1]Q

[2, 1, 2]Q

[1]Q

[1, 2]Q

[1, 2, 1]Q

Figure 2.14: (Right) Cayley graph of Q2 without reflexive edges and la-
bellings.

From this graph we can easily read off left-divisors: We have α ∈ L (β) if and
only if in the associated right Cayley graph there is a directed path from α to β,
possibly of length 0. For example

L [ ]Q = {[ ]},

L [2]Q = {[ ]Q, [2]Q},

L [2, 1]Q = {[ ]Q, [2]Q, [2, 1]Q},

L [2, 1, 2]Q = Q2.

(b) From Figure 2.14 we immediately see that #Q2 = 7. However, for n ≥ 3, every Qn

is infinite. Indeed, the associated Cayley graph contains directed, cycle-free paths
of infinite length, e.g.

[1]Q → [1, 2]Q → [1, 2, 3]Q → [1, 2, 3, 2]Q → [1, 2, 3, 2, 1]Q → [1, 2, 3, 2, 1, 2]Q → . . .

Let α ∈ Qn. The set L (α) will in general not be closed under multiplication. For
example, we have [2, 1]Q ∈ L [2, 1]Q, but [2, 1]Q · [2, 1]Q = [2, 1, 2]Q /∈ L [2, 1]Q. However,
recall that every element in T = {[1]Q, . . . , [n]Q} is an idempotent, and therefore

[k]Q · α = α

if [k]Q is a left-divisor of α. It follows that the submonoid generated by T ′ := T ∩L (α)
embeds (as a subset) into L (α). We conclude that α is an absorbing element if and only
if T ⊂ L (α). Our next aim is to construct a finite sequence that is a representative for
an absorbing element in Qn. This requires some preparation.

For b ≥ a we introduce the following short hand notation,

Iba := (a, a+ 1, . . . , b− 1, b) ∈ Fb.

For a > b we set Iba := ( ).
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Lemma 2.3.9 For all n we have [In−12 .In−11 ]Q ∈ L [In2 .I
n
1 ]Q.

Proof. For n = 1 the statement reads as [ ]Q ∈ L [1]Q, which is obviously true.
For n ≥ 2 the proof is completely given in terms of Figure 2.15. (The reader should
recall Figure 2.11 on page 75.) It shows that In−12 .In−11 .(n, n−1, n) ∼Q In2 .I

n
1 , and thus

[In−12 .In−11 ]Q is a left-divisor of [In2 .I
n
1 ]Q. �

In2 .I
n
1

push to right

∼P

//

In−1
2 .In−2

1 .(n, n−1, n)

insert∼Q

��

In−1
2 .In−1

1 In−1
2 .In−1

1 .(n, n−1, n)

split off
oo

Figure 2.15: Proof of Lemma 2.3.9.

Corollary 2.3.10 For every n ≥ 1 we have [1]Q ∈ L [In2 .I
n
1 ]Q.

Proof. Iterating Lemma 2.3.9 gives [I12 .I
1
1 ]Q ∈ L [In2 .I

n
1 ]Q. Furthermore, I12 .I

1
1 = (1),

whence the claim. �

Recall that an absorbing element of a monoid X is an element ∆ with the property that
for all α ∈ X one has α ·∆ = ∆ = ∆ · α. In particular, absorbing elements are unique,
if they exist.

Definition 2.3.11 For k ≥ 0 and n ≥ 1 define a map shiftk : Fn → Fn+k,

shiftk(is, . . . , i1) := (is+k, . . . , i1+k).

Note that shiftk : Fn → Fn+k is an injective morphism of monoids. Futhermore, shiftk :
Fn → Fn+k descends to a map Qn → Qn+k which we will also denote by shiftk.

80



2.3 The monoids Pn and Qn

We recursively define two candidates for a representative of an absorbing element:

←−
D1 := (1)

−→
D1 := (1) (2.11)

←−−−
Dn+1 := shift1(

←−
Dn).(1, . . . , n+1),

−−−→
Dn+1 := (n+1, . . . , 1). shift1(

−→
Dn).

Example 2.3.12 For convenience we explicitly list some of the
←−
Dn and

−→
Dn for small n.

Note that the finite sequence illustrated in Figure 2.10 on page 75 is just
←−
D4.

←−
D1 = (1),

−→
D1 = (1),

←−
D2 = (2, 1, 2),

−→
D2 = (2, 1, 2),

←−
D3 = (3, 2, 3, 1, 2, 3),

−→
D3 = (3, 2, 1, 3, 2, 3).

←−
D4 = (4, 3, 4, 2, 3, 4, 1, 2, 3, 4),

−→
D4 = (4, 3, 2, 1, 4, 3, 2, 4, 3, 4).

Lemma 2.3.13 Set (is, . . . , i1) :=
←−
Dn. Then

−→
Dn = (i1, . . . , is). Furthermore,

←−
Dn is

left-most and reduced,
−→
Dn is right-most and reduced, and

←−
Dn ∼P

−→
Dn.

Proof. The first statement is easily seen by closely looking at the definition of
←−
Dn and

−→
Dn. It is also easily seen that

←−
Dn is left-most and reduced, implying that

−→
Dn is right-

most and reduced. It remains to show that
←−
Dn ∼P

−→
Dn. This will be done inductively.

Example 2.3.12 gives
←−
D1 =

−→
D1 and

←−
D2 =

−→
D2. For n ≥ 2 we have

−−−→
Dn+1 = (n+1, . . . , 1). shift1(

−→
Dn)

∼P (n+1, . . . , 1). shift1(
←−
Dn)

by the induction hypothesis. Plugging in the definition of
←−
Dn we obtain

= (n+1, . . . , 1). shift1(shift1(
←−−−
Dn−1).(1, . . . , n))

= (n+1, . . . , 1). shift2(
←−−−
Dn−1).(2, . . . , n+1)

because shift1 : Fn → Fn+1 is a morphism of monoids. Note that every entry of

shift2(
←−−−
Dn−1) is at least 3. We therefore have (1). shift2(

←−−−
Dn−1) ∼P shift2(

←−−−
Dn−1).(1).

This yields

∼P (n+1, . . . , 2). shift2(
←−−−
Dn−1).(1, . . . , n+1)

= shift1((n, . . . , 1). shift1(
←−−−
Dn−1)).(1, . . . , n+1)

∼P shift1((n, . . . , 1). shift1(
−−−→
Dn−1)).(1, . . . , n+1)

= shift1(
−→
Dn).(1, . . . , n+1)

∼P shift1(
←−
Dn).(1, . . . , n+1)

=
←−−−
Dn+1.

The Lemma is proven. �
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Proposition 2.3.14 ∆n := [
←−
Dn]Q is an absorbing element for Qn.

Proof. Recall that to prove the Proposition it suffices to show that every [k]Q (1 ≤ k ≤
n) is a left- and right-divisor of ∆n. This will be done by induction on n. For n = 1 we
have ∆1 = [1]Q, and the statement is trivial. Assume now that for all k, 1 ≤ k ≤ n− 1,
we have [k]Q ∈ L (∆n−1).

Claim 1: [k]Q ∈ L (∆n) for all 1 ≤ k ≤ n.

Claim 1 follows from Claim 1.A and Claim 1.B.

Claim 1.A: [1]Q ∈ L (∆n).

Since ∆1 = [1]Q, the statement is obvious for n = 1. Corollary 2.3.10 for n = 2 gives

[1]Q ∈ L (∆2). Consider n ≥ 3. We have
←−
Dn = shift2(

←−−−
Dn−2).I

n
2 .I

n
1 . By Corollary 2.3.10

we know that [1]Q ∈ L [In2 .I
n
1 ]Q, i.e. there exists a finite sequence J ∈ Fn such that the

concatenation shift2(
←−−−
Dn−2).(1).J is a representative for ∆n. Furthermore, every entry

of shift2(
←−−−
Dn−2) is at least 3. Therefore we can push (1) to the very left, yielding that

(1). shift2(
←−−−
Dn−2).J is a representative for ∆n. Therefore [1]Q ∈ L (∆n) and Claim 1.A

is proven.

Claim 1.B: [k]Q ∈ L (∆n) for all 1 < k ≤ n.

Recall that
←−
Dn = shift1(

←−−−
Dn−1).I

n
1 and hence L (∆n) ⊇ L [shift1(

←−−−
Dn−1)]Q. Claim 1.B

now follows from the induction hypothesis together with the fact that
←−−−
Dn−1 is a repre-

sentative for ∆n−1.

We have shown that every [k]Q is a left divisor of ∆n. Therefore, ∆n is left-absorbing:
There is a finite sequence I such that [k]Q · [I]Q = ∆n, and by idempotency of [k]Q we
obtain [k]Q ·∆n = [k]Q · [k]Q · [I]Q = [k]Q · [I]Q = ∆n.

Claim 2: [k]Q ∈ R(∆n) for all 1 ≤ k ≤ n.

This can be seen as follows: Set (is, . . . , i1) :=
←−
Dn. Then by Lemma 2.3.13 we have

[is, . . . , i1]Q = [i1, . . . , is]Q. We therefore can copy Lemma 2.3.9, Corollary 2.3.10 and
the above proof by “mirroring” our arguments. We omit the details. �

We conclude this section with deducing an efficient way of finding factorability structures
on certain monoid presentations.

Corollary 2.3.15 Let (X,S, η) be a factorable monoid. Let x ∈ X and let (sn, . . . , s1) ∈
S∗ be a representative of x of minimal length, i.e. n = ℓ(x). Then f←−−−

Dn−1
(sn, . . . , s1) is

an η-normal form.

Proof. First of all, note that if (sn, . . . , s1) is a geodesic tuple then for every i, n > i ≥ 1,
we have that fi is norm-preserving for (sn, . . . , s1), and in particular fi(sn, . . . , s1) is
again geodesic.

Now, by assumption, n is minimal, so (sn, . . . , s1) is geodesic, and it follows that f←−−−
Dn−1
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is norm-preserving. We have [
←−−−
Dn−1]Q = ∆n−1 and hence (k).

←−−−
Dn−1 ∼Q

←−−−
Dn−1 for all

1 ≤ k < n. The Evaluation Lemma yields

fk ◦ f←−−−Dn−1
≡ f←−−−

Dn−1
: Xn −→ Xn. (2.12)

Since f←−−−
Dn−1

is norm-preserving, one has equality in (2.12), proving that f←−−−
Dn−1

(sn, . . . , s1)

is everywhere stable, and hence, by the recognition principle, it is an η-normal form. �

Assume that (sn, . . . , s1) is any representative of x, not necessarily of minimal length.
Then applying f←−−−

Dn−1
yields an η-normal form or drops the norm. In particular, applying

f←−−−
Dn−1

n-times and afterwards possibly removing a tail of trivial entries, we end up with

an η-normal form. This algorithm has independently been found by Rodenhausen [Rod].

Observe that #
←−−−
Dn−1 = n · (n + 1)/2, and hence the algorithm described above has

complexity in O(n3). Thus:

Corollary 2.3.16 Let (X,S, η) be a factorable monoid. If S is finite then X has Dehn
function of at most cubic growth, and in particular X has solvable word problem.

Note that our normal form algorithm is “local” in the sense of Remark 2.1.27. The
existence of such a local normal form algorithm implies that for a factorable monoid
(X,S, η) the map η : X → X × X can completely be recovered by its values on X(2).
More precisely, for x ∈ X take any representative (sn, . . . , s1) ∈ S

∗. It follows from the
recognition principle that

η(x) = d2 ◦ . . . ◦ dn−1 ◦ (f←−−−Dn−1
)n(sn, . . . , s1), (2.13)

and to compute the right-hand side of (2.13) we only need to know the values of η
on products of generators. This observation gives rise to the following description of
factorability, which, for factorable groups, is due to Rodenhausen [Rod]. His proof
carries over to weakly factorable monoids. We only give a sketch of proof and point out
that the recognition principle is satisfied.

Proposition 2.3.17 Let S be a formal generating set that contains the empty word ǫ.
Assume we are given a map φ : S × S → S × S satisfying the following conditions:

(a) φ ◦ φ = φ.

(b) φ(s, ǫX) = (ǫX , s) for all s ∈ S.

(c) φ2φ1φ2φ1 ≡ φ2φ1φ2 ≡ φ1φ2φ1φ2 : S3 → S3, where φi is defined in the obvious
way.

Then φ gives rise to a factorability structure on (X,S), where

X = 〈s ∈ S | ab = cd if φ(a, b) = φ(c, d)〉. (2.14)
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Proof. We use (2.13) to extend φ to a well-defined factorization map η : X → X ×X.
(Well-definition follows from the fact that X is the defined as the quotient of the free
monoid S∗ “modulo the relations induced by φ” and the absorbing property of f←−−−

Dn−1
.)

The map η gives rise to maps ηi and fi on tuples, and by construction the restrictions
fi| : S

3 → S3 coincide with the maps φi : S
3 → S3 (for i = 1, 2). In particular, condition

(2.7) on page 65 holds for tuples of norm ≤ 3. Remark 2.2.4 now enables us to use the
proof of Lemma 2.2.3 to show weak factorability of (X,S, η). As a consequence, a pair
(x, t) is stable if (x′, t) is stable.

To conclude the Proposition it only remains to show the “only if”-part. For convenience
we do this in detail. Let (x, t) be a stable pair. Set n := ℓ(x) and (xn, . . . , x1) :=
ηn−1 . . . η1(x). Furthermore we set

(an, . . . , a1, b) := fn ◦ . . . ◦ f1(xn, . . . , x1, t).

Note that (an, . . . , a1, b) is geodesic. We have

(x, t) = η(xt) = d2 . . . dnf←−Dn
(xn, . . . , x1, t)

= d2 . . . dnf−→Dn
(xn, . . . , x1, t)

= d2 . . . dn ◦ fn . . . f1 ◦ fshift1(
−−−→
Dn−1)

(xn, . . . , x1, t).

The tuple (xn, . . . , x1) is the normal form of x and thus everywhere stable. In particular,
f
shift1(

−−−→
Dn−1)

fixes this tuple and we obtain

= d2 . . . dnfn . . . f1(xn, . . . , x1, t)

= d2 . . . dn(an, . . . , a1, b).

Note that (an, . . . , a1, b) = f←−
Dn

(xn, . . . , x1, t) is everywhere stable. (Because (x, t) is

stable, and hence (xn, . . . , x1, t) is geodesic.) From this it follows that t = b = (x1t)
′.

On the other hand, an . . . a1 = x and the tuple (an, . . . , a1) is everywhere stable. This
implies (xn, . . . , x1) = (an, . . . , a1), yielding x1t = a1b = a1 = x1. So (x1, t) = (x′, t) is
indeed stable. �

Remark 2.3.18 The standard situation to apply Proposition 2.3.17 to is the following.
Assume we are given a monoid X in terms of a presentation X = 〈S | R〉. Furthermore,
assume that every relation in R is of the form ab = cd for some a, b, c, d ∈ S. For each
such relation ab = cd specify one side as “stable”, say (a, b), and set φ(c, d) = (a, b). If a
pair of non-trivial entries does not occur in any of the relations then φ will fix this pair.
Proposition 2.3.17 provides an efficient sufficient condition for φ : S ×S → S ×S giving
rise to a factorability structure on X with respect to the generating set S. We will see
several Examples in Chapter 4.

Remark 2.3.19 There is a nice result by Rodenhausen [Rod], which states that every
factorable monoid can be written as in (2.14). More precisely, let X be a monoid and
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S a generating set. Rodenhausen proved that if (X,S, η) is a factorable monoid, then
X admits a presentation X = 〈S | R〉 with the property that every relation w1 = w2 in
R satisfies ℓ(w1), ℓ(w2) ≤ 2. This result can be quite time-saving when looking for new
factorability structures. For example, it tells us that for n ≥ 3 the symmetric groups Sn
are not factorable with respect to the generating set S = {(1 2), (2 3), . . . , (n−1 n)} of
elementary transpositions.

2.3.3 Smallness

In the previous sections we studied the monoids Pn and Qn. Since Qn is a quotient of
Pn, the p-fibre p

−1{p(I)} ⊂ Fn of a finite sequence I is always contained in its q-fibre
q−1{q(I)}. In this section we investigate finite sequences for which these fibres actually
coincide. Finite sequences of this kind play a central role throughout this exposition.
We give several characterizations of this property and derive an upper bound for word
lengths of such sequences.

Definition 2.3.20 We say that a finite sequence I ∈ Fn is small if the fibers p−1{p(I)}
and q−1{q(I)} in Fn coincide.

Remark 2.3.21 (a) Clearly, being small descends to equivalence classes [ ]P and [ ]Q,
yielding a notion of smallness on Pn and Qn.

(b) Observe that a finite sequence (is, . . . , i1) is small if and only if the “opposite”
sequence (i1, . . . , is) is.

Example 2.3.22 (a) The finite sequence (1) is small, for the p-fibre of (1) consists
of the elements (1), (1, 1), (1, 1, 1), and so on. To none of those the relations ∼left

and ∼right are applicable.

(b) The finite sequence (2, 1, 2) is not small. This can be seen as follows: First,
(1, 2, 1, 2) ∼left (2, 1, 2), hence (1, 2, 1, 2) ∼Q (2, 1, 2). Secondly, if (is, . . . , i1) ∼P

(2, 1, 2) then is = 2, which immediately follows from looking at the relations ∼idem

and ∼dist. Therefore, (1, 2, 1, 2) ∈ q
−1{q(2, 1, 2)} r p−1{p(2, 1, 2)}.

The following Proposition shows that Example 2.3.22.(b) is exhaustive in the sense that
if I ∈ Fn is not small, then there exist m, 0 ≤ m ≤ n − 2, and L, R ∈ Fn such that
I ∼Q L. shiftm(2, 1, 2).R. We need to fix some notation first.

For an element α ∈ Qn define the two-sided ideal generated by α as follows:

〈α〉 := {β · α · β′ : β, β′ ∈ Qn}.

Recall that the maps shift0, . . . , shiftn−2 provide monomorphisms Q2 →֒ Qn. This way
we can define the “two-sided ideal in Qn generated by shifted absorbing elements”,

�n := 〈shift0(∆2)〉 ∪ . . . ∪ 〈shiftn−2(∆2)〉.
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Note that �n ⊂ Qn is indeed a two-sided ideal in the sense that for all α, β ∈ Qn we
have α ·�n · β ⊆ �n.

Proposition 2.3.23 A finite sequence (is, . . . , i1) ∈ Fn is small if and only if its class
[is, . . . , i1]Q lies in the complement Qn r�n.

Proof. “⇒”: We have to show that for arbitrary L,R ∈ Fn and 0 ≤ m ≤ n − 2 the
finite sequence L. shiftm(2, 1, 2).R is not small. We have (2, 1, 2) ∼Q (2, 1, 2, 2) (using
∼idem) and (2, 1, 2, 2) ∼Q (2, 1, 2, 1, 2) (using ∼right). It follows that for every k ≥ 0 we
have (2, 1, 2) ∼Q (2, 1, 2).(1, 2)k and therefore

L. shiftm(2, 1, 2).R ∼Q L. shiftm

(
(2, 1, 2).(1, 2)k

)
.R.

It remains to show that L. shiftm(2, 1, 2).R 6∼P L. shiftm(2, 1, 2).(1, 2)k .R for some k.
(Indeed, this holds for all k ≥ 1.) Recall the word length ℓ : Pn → N with respect to the
generating set {[1]P , . . . , [n]P }, and observe that for finite sequences I, J ∈ Fn we have

ℓ([I.J ]P ) ≥ max{ℓ([I]P ), ℓ([J ]P )}.

Since ℓ([(1, 2)k ]P ) = 2k we see that the word length of [L. shiftm(2, 1, 2).(1, 2)k .R]P
gets arbitrary large (as k → ∞). Thus, for k sufficiently large, the [ ]P -classes of
L. shiftm(2, 1, 2).R and L. shiftm(2, 1, 2).(1, 2)k .R have different word length.

“⇐”: Let [is, . . . , i1]Q ∈ Qnr�n. To show that (is, . . . , i1) is small we have to show
that if for some finite sequence J we have J ∼Q (is, . . . , i1) then we already have J ∼P

(is, . . . , i1). Assume this was wrong. Take any chain

J = J0 7→ J1 7→ . . . 7→ Jr−1 7→ Jr = (is, . . . , i1),

where every Jk, 1 ≤ k ≤ r, is obtained from its predecessor Jk−1 by applying one of the
relations ∼idem, ∼dist, ∼left, ∼right to some connected subsequence. Choose k minimal
with the property that J 6∼P Jk. Clearly, J ∼P Jk−1, and furthermore Jk arises from
Jk−1 by applying ∼left or ∼right. This implies that there exist m, 0 ≤ m ≤ n − 2, and
L,R ∈ Fn such that Jk−1 can be factorized as Jk−1 = L. shiftm(2, 1, 2).R. In particular,
we have J ∼P L. shiftm(2, 1, 2).R, and hence q(J) = [is, . . . , i1]Q ∈ �n, contradicting
[is, . . . , i1]Q ∈ Qnr�n. �

Remark 2.3.24 Before drawing some immediate corollaries from Proposition 2.3.23,
we briefly give another justification of the name “smallness”: Clearly, a class [I]P ∈ Pn

is small if and only if its fibre under the canonical quotient map Pn ։ Qn is trivial. If
[I]P is not small then we can iterate the construction in the first part (“⇒”) of the proof
of by Proposition 2.3.23, to show that its fibre contains infinitely many elements.

Corollary 2.3.25 A finite sequence is small if and only if every of its connected subse-
quences is.
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Corollary 2.3.26 Consider a finite sequence (is, . . . , i1) ∈ Fn. If there exist t, s ≥ t ≥
1, and k, 1 ≤ k ≤ n − 1, such that [k]Q, [k + 1]Q ∈ L [it, . . . , i1]Q or [k]Q, [k + 1]Q ∈
R[is, . . . , it]Q then (is, . . . , i1) is not small.

Proof. We prove the Corollary for L only. Assume [k]Q, [k+1]Q ∈ L [it, . . . , i1]Q. By
idempotency of the generators [i]Q in Qn we then have

(is, . . . , i1) ∼Q (is, . . . it+1).(k+1, k, k+1).(it , . . . , i1),

and by Proposition 2.3.23 the latter is not small. Hence, by Remark 2.3.21.(a), the
former is neither. �

Recall that the notion of smallness is invariant under ∼Q. In contrast, the formula-
tion of the second condition of Corollary 2.3.26 depends on the particular choice of the
representative (is, . . . , i1), and it is therefore not surprising that there is no converse to
Corollary 2.3.26 in this generality. Indeed, the finite sequence (3, 1, 2, 1, 3) provides a
counterexample. However, compare Remark 2.3.31.(a).

The following important result gives a necessary and sufficient condition for when a
right-most, reduced sequence is small.

Proposition 2.3.27 A right-most, reduced finite sequence (is, . . . , i1) is small if and
only if the following holds: For all t, s > t ≥ 1, satisfying it+1 < it we have that for all
r, s ≥ r > t, it holds ir < it.

Proof. “⇒”: Let (is, . . . , i1) be right-most, reduced and assume there exist r and t,
s ≥ r > t ≥ 1, such that it+1 < it and ir ≥ it. Since (is, . . . , i1) is right-most we may
assume that ir = it. Furthermore, without loss of generality we may assume that r = s
is minimal subject to r > t and ir = it. (Otherwise we truncate (is, . . . , i1) after the
r-th entry.) These further assumptions imply that for all k, s > k > t, we have ik < it.
Note that by Lemma 2.3.3 there is at least one index k0 such that ik0 = it − 1.

• Case 1: Assume that there is only one such index k0 satisfying ik0 = it − 1. Since
(is, . . . , i1) is right-most, reduced, we necessarily have k0 = s − 1. In particular,
for all k, s > k > t, k 6= k0, we have ik ≤ it − 2. Hence, using the relation ∼dist,
we can push the entry it to the left (towards ik0 = is−1), see Figure 2.16.

s s−1 t

it

< it−1
push to left

∼P

//

it

s s−1

< it−1

Figure 2.16: Pushing the entry it to the left.
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This way we see that (is, . . . , i1) lies in the same [ ]P -class as a sequence containing
(it, it−1, it) as a connected subsequence. Proposition 2.3.23 tells us that (is, . . . , i1)
is not small.

• Case 2: If the entry it − 1 occurs at least two times in (is, . . . , it), then let t′ > t
be the smallest index such that it′ = it − 1 and let s′ be the second-smallest
index. Note that it′+1 < it′ (because otherwise we would have it′+1 = it′ + 1 = ir,
contradicting minimality of r). Since (is, . . . , i1) is right-most and reduced, the
sequence (is′ , . . . , it′) contains at least one entry with value it′−1. We now continue
as above, with t, s replaced by t′ and s′, respectively.

After sufficiently many applications of the construction of a connected subsequence in
Case 2, we will finally end up in Case 1 and see that the original sequence (is, . . . , i1) is
not small.

“⇐”: Assume that (is, . . . , i1) is right-most, reduced and for all t satisfying it+1 < it we
have that ir < it for all r > t. In other words, if for some indices r, t with r > t we have
ir = it then it+1 = it + 1. In particular, (is, . . . , i1) satisfies the following:

(⋆) If for some indices r, t with r > t we have ir = it then either ir = ir−1 = . . . =
it+1 = it or there exists some index k, r > k > t, such that ik = it + 1.

Observe that (⋆) is preserved when inserting or deleting entries in the sense of ∼idem, or
when one commutes entries in the sense of ∼dist. Therefore, every representative of the
class [is, . . . , i1]P satisfies (⋆). In particular, no such representative can possibly contain
(v+1, v, v+1) as a connected subsequence, for any v. Therefore (is, . . . , i1) is small. �

The statement of Proposition 2.3.27 can be memorized by the slogan “once you descend,
you never return”: Whenever one descends, i.e. there is t such that it+1 < it then for all
r > t we have ir < it, i.e. one never again sees an entry of value ≥ it.

Corollary 2.3.28 For every right-most, reduced, small finite sequence (is, . . . , i1) there
is a unique index k such that ik = max{is, . . . , i1}.

Proof. Clearly, such k exists. Now assume there were more than one, say j and k.
W.l.o.g. k > j. Since the sequence is reduced, ij+1 6= ij . Since ij is a global maximum,
ij+1 < ij . But k > j+1 and ik = ij . Therefore, by Proposition 2.3.27, (is, . . . , i1) is not
small. �

Corollary 2.3.29 For every n ∈ N there is a uniform bound on the lengths of right-
most, reduced, small finite sequences in Fn.

Proof. For n ∈ N set

B(n) := sup{s ≥ 0 : ∃(is, . . . , i1) ∈ Fn right-most, reduced, small}.

First, observe that B(1) = 1: Since the finite sequence (1) ∈ F1 is small, we have
B(1) ≥ 1. On the other hand we have B(1) ≤ 1, since every finite sequence in F1 of
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length strictly larger than 1 is not reduced. Corollary 2.3.28 together with Corollary
2.3.25 provides the recursion formula B(n+ 1) ≤ 2B(n) + 1, whence the claim. �

Remark 2.3.30 See Corollary 2.3.34 for an explicit computation of the B(n)’s.

We conclude this section with several remarks concerning Proposition 2.3.27.

Remark 2.3.31 (a) Similar arguments as in the proof of Proposition 2.3.27 give a
partial converse to Corollary 2.3.26: A right-most and reduced finite sequence
(is, . . . , i1) is small if and only if for all t, s ≥ t ≥ 1, and all k, 1 ≤ k ≤ n− 1, the
elements [k]Q, [k+1]Q do not both lie in L [it, . . . , i1]Q.

(b) Let (is, . . . , i1) be a right-most, reduced, small finite sequence and consider j < is.
Then the sequence (j, is, . . . , i1) is obviously right-most and reduced, and we use
Proposition 2.3.27 to see that it is also small.

(c) Assume that (is, . . . , i1) is right-most, reduced but not small. Then there exist
indices t and r, s ≥ r > t ≥ 1, such that it+1 < it and ir ≥ it. Note that,
since (is, . . . , i1) is right-most, we can always assume that ir = it. (This is because
(is, . . . , it+1) contains (ir, it+1) as a subsequence, and thus, by Lemma 2.3.3, it also
contains the subsequence (ir, ir − 1, . . . , it+1+1, it+1), and this latter subsequence
contains the entry it.) This observation will be made us of several times.

(d) Combining Proposition 2.3.27 and Remark 2.3.21.(b) we obtain a characterization
of smallness for left-most, reduced finite sequences: A left-most, reduced finite
sequence (is, . . . , i1) is small if and only if the following holds: For all t, s ≥ t > 1,
satisfying it > it−1 we have that it > max{it−1, . . . , i1}.

(e) Here’s another characterization of smallness for right- or left-most, reduced finite
sequences. Recursively define the property (∧) as follows. The empty sequence ( )
has the property (∧). A finite sequence (is, . . . , i1) has the property (∧) if there
is a unique index k, s ≥ k ≥ 1, with ik = max{is, . . . , i1} and (is, . . . , ik+1) and
(ik−1, . . . , i1) both have the property (∧).

From Proposition 2.3.27 and the aforementioned opposite statement for left-most
sequences we conclude that a right-most (or left-most), reduced finite sequence is
small if and only if it satisfies the property (∧).

2.3.4 A new description of κn

In the preceding subsection we gave several characterizations for when a right-most,
reduced finite sequence is small. We will now relate small sequences to Visy’s map κ.
The original definition of κ in [Vis11] uses left-most sequences, in a sense made precise
in Proposition 2.3.36.

Definition 2.3.32 For n ≥ 0 denote by
←−
Λ n ⊂ Fn the set of left-most, reduced, small

finite sequences. Accordingly, we denote by
−→
Λ n ⊂ Fn the set of right-most, reduced,
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small finite sequences.

We reamrk that
←−
Λ n and

−→
Λ n have the same cardinality. Indeed, reversing (is, . . . , i1) 7→

(i1, . . . , is) defines a self-inverse bijection.

Recall that Iba := (a, a+1, . . . , b−1, b). In particular, Iba = ( ) for a > b. Evaluation yields
fIba = Φb+1

a , cf. page 62.

Lemma 2.3.33 For every n ≥ 1, the set
←−
Λ n splits as follows:

←−
Λ n = {In1 , . . . , I

n
n , I

n
n+1}.

←−
Λ n−1

More precisely, every finite sequence in
←−
Λ n can uniquely be written as concatenation

I.J , where I = Ina for some a, 1 ≤ a ≤ n+ 1, and J ∈
←−
Λ n−1.

Proof. Let (is, . . . , i1) ∈
←−
Λ n. If max{is, . . . , i1} < n then we already have (is, . . . , i1) ∈

←−
Λ n−1 and we take a = n + 1, i.e. I = ( ). Otherwise, by Corollary 2.3.28, there is a

unique index t such that it = n. Clearly, (it−1, . . . , i1) ∈
←−
Λ n−1. It remains to show

that (is, . . . , it) = Ina for some a. For this we have to show that ir+1 = ir − 1 for all
r, s > r ≥ t. Since (is, . . . , i1) is left-most we have ir+1 ≥ ir − 1. The case ir+1 = ir
does not occur, for (is, . . . , i1) is reduced, and ir+1 > ir can be ruled out by Remark
2.3.31.(d), because ir+1 < n = it and r + 1 > t. �

Using Lemma 2.3.33, we can give a sharp upper bound on the length of right- or left-
most, reduced finite sequences:

Corollary 2.3.34 For every n we have B(n) = n+B(n− 1) and thus

B(n) =
1

2
· n · (n+ 1).

The maximum value B(n) is attained for the left-most sequence In1 .I
n−1
1 . . . . .I21 .I

1
1 ∈
←−
Λ n,

cf. Figure 2.17.

Example 2.3.35 From Lemma 2.3.33 we obtain #
←−
Λ n = (n+ 1)!, offering yet another

proof of finiteness of each B(n). Below we list some explicit examples.

(a)
←−
Λ 0 = {( )}

(b)
←−
Λ 1 = {( ), (1)}.

(c)
←−
Λ 2 = {( ), (2), (1, 2), (1), (2, 1), (1, 2, 1)}.

(d) We can define some kind of (left) Cayley graph Γ for Fn as follows. Vertices of Γ
are the elements of Fn, and we draw an edge I1 → I2 with label k if (k).I1 = I2.
Given any subset of Fn we can consider the subgraph of Γ generated by this subset.

Figure 2.17 depicts this subgraph for
←−
Λ 3 without labellings.
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( )

(1)

(2, 1)

(1, 2, 1)

(3, 1, 2, 1)

(2, 3, 1, 2, 1)

(1, 2, 3, 1, 2, 1)

(3, 2, 1)

(2, 3, 2, 1)

(1, 2, 3, 2, 1)

(3, 1)

(2, 3, 1)

(1, 2, 3, 1)

(2)

(1, 2)

(3, 1, 2)

(2, 3, 1, 2)

(1, 2, 3, 1, 2)

(3, 2)

(2, 3, 2)

(1, 2, 3, 2)

(3)

(2, 3)

(1, 2, 3)

Figure 2.17: A kind of Cayley graph for
←−
Λ 3.

Proposition 2.3.36 Let (G,S, η) be a factorable group. Then for every n ≥ 1 the maps
κn : BnG→ BnG introduced on page 62 can be written as follows,

κn =
∑

(is,...,i1)∈
←−
Λn−1

(−1)sfis ◦ . . . ◦ fi1 .

Proof. Recall that κn = Kn ◦ . . . ◦ K1 and Kq =
∑q

i=1(−1)
q−iΦq

i . The proof is by
induction on n. For n = 1 we obtain κ1 = K1 = Φ1

1 = id : B1G → B1G. On the other

hand,
←−
Λ 0 = {( )} and therefore the right-hand side also simplifies to the identity. The

induction step is immediate from Lemma 2.3.33; we have

∑

(is,...,i1)∈
←−
Λn

(−1)sfis ◦ . . . ◦ fi1 =
n+1∑

a=1

∑

J∈
←−
Λn−1

(−1)n−a+1fIna ◦ (−1)
#JfJ

=

n+1∑

a=1

(−1)n+1−aΦn+1
a ◦ κn

= Kn+1 ◦ κn = κn+1.

The Proposition is proven. �

Corollary 2.3.37 For every n ≥ 1 the differential in the Visy complex ∂Vn : Vn → Vn−1

can be written as follows,

∂Vn = πn−1 ◦ ∂n ◦
∑

α∈Qn−1r�n−1

(−1)ℓ(α)fα ◦ in, (2.15)
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where ℓ denotes the word length with respect to the generating set {[1]Q, . . . , [n−1]Q}.

Remark 2.3.38 Note that the right-hand side of (2.15) is indeed well-defined. This
follows from the Evaluation Lemma together with the fact that an element α ∈ Qn−1

lies in the complement of �n−1 if and only if α is small.
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This chapter is the heart of the present thesis. We show that a factorability structure
on a monoid X gives rise to a noetherian matching on the normalized bar resolution of
X. This construction will occupy Section 3.1. The associated Morse complex provides a
“new” free resolution of X which is often considerably smaller than the bar resolution,
allowing us to derive an immediate homological finiteness result for factorable monoids.
In Section 3.2 we investigate an explicit formula for the differential of the associated
Morse complex. Section 3.3 is devoted to relating our work with the results of Visy and
Wang. Most notably, we show that Visy’s map κ (cf. page 62) is always an isomorphism.
Indeed, it is not just any isomorphism but arises quite naturally in our approach. Finally,
in Section 3.4 we show how the notion of factorability fits into the framework of complete
rewriting systems.

3.1 A noetherian matching on E∗X

3.1.1 The matching µ and ZX-compatibility

Throughout this chapter we fix a factorable monoid (X,S, η). We suppress the index S
and write ℓ for the word length with respect to S. Set

Ωn = {[xn| . . . |x1] | xi 6= ǫX for all i}.

Obviously, Ωn is a ZX-basis for EnX. We are going to define a noetherian matching
µ : Ω∗ → Ω∗ on the based chain complex (E∗X,Ω∗, ∂∗).

Definition 3.1.1 (a) The partition type of an n-cell [xn| . . . |x1] ∈ Ωn is defined as
follows,

pt([xn| . . . |x1]) := (ℓ(xn), . . . , ℓ(x1)) ∈ Nn.

(b) An n-cell [xn| . . . |x1] has elementary partition type if pt([xn| . . . |x1]) = (1, . . . , 1),
i.e. if every xi lies in S+ = Sr{ǫX}.

(c) We say that a chain c ∈ E∗X has elementary partition type if every x ∈ Ω∗ with
[c : x] 6= 0 has elementary partition type.

(d) The norm of an n-cell is defined as norm([xn| . . . |x1]) = ℓ(xn) + . . . + ℓ(x1). The
norm of a non-trivial chain is then defined as norm(c) = max{norm(x) | [c : x] 6=
0}. For c = 0 we set norm(c) := −∞.
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Definition 3.1.2 A cell x = [xn| . . . |x1] ∈ Ωn is defined to be essential1 if it has
elementary partition type and if the stabilizer of x under the action Qn−1 y Xn[n] is
trivial, i.e. if for every 1 ≤ i < n the pair (xi+1, xi) is unstable.

Remark 3.1.3 Note that if [xn| . . . |x1] is an essential cell then so are [xn−1| . . . |x1] and
[xn| . . . |x2].

Definition 3.1.4 The height of an n-cell [xn| . . . |x1] is defined as follows,

ht[xn| . . . |x1] := max{h ≤ n | [xh| . . . |x1] is essential}.

In particular, an n-cell [xn| . . . |x1] is essential if and only if its height equals n.

The classification of cells into collapsible and redundant ones is done by a scanning
algorithm very similar to the one on page 45.

Definition 3.1.5 Consider an n-cell x = [xn| . . . |x1] of height h < n.

(a) If x1 /∈ S+, i.e. if ℓ(x1) > 1, then x has height 0 and we call this cell redundant .

(b) If x1 ∈ S+ and (xh+1, xh) is a stable pair then we call x collapsible.

(c) Otherwise, i.e. if x1 ∈ S+ and (xh+1, xh) is unstable (and hence xh+1 /∈ S+), we
call x redundant .

The following characterization of cells is an easy observation:

Remark 3.1.6 Consider an n-cell x = [xn| . . . |x1] ∈ Ωn.

(a) x is essential (necessarily of height n) if and only if

• for all i, n ≥ i ≥ 1, we have ℓ(xi) = 1 and

• for all i, n− 1 ≥ i ≥ 1, the pair (xi+1, xi) is unstable.

(b) x is collapsible of height h < n if and only if

• for all i, h ≥ i ≥ 1, we have ℓ(xi) = 1 and

• for all i, h− 1 ≥ i ≥ 1, the pair (xi+1, xi) is unstable and

• the pair (xh+1, xh) is stable.

(c) x is redundant of height h < n if and only if

• for all i, h ≥ i ≥ 1, we have ℓ(xi) = 1 and

• for all i, h ≥ i ≥ 1, the pair (xi+1, xi) is unstable and

• ℓ(xh+1) > 1.

1Visy [Vis11] calls these cells monotone, because for his master example, the symmetric groups, these
cells are tupls of transpositions (ai bi) with the property that the sequence (max{ai, bi})i=1,...,n is
monotone.
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Remark 3.1.7 (a) The empty tuple [ ] ∈ Ω0 is essential.

(b) Every element of Ω1 is essential or redundant. Indeed, for every x ∈ S+ the 1-cell
[x] is essential, and if x ∈ XrS then [x] is redundant.

(c) For n > 0 every n-cell of height 0 is redundant.

(d) Every redundant cell has at least one entry of word length ≥ 2, and thus every cell
of elementary partition type is either essential or collapsible.

The map µ : Ω∗ → Ω∗ is defined as follows. Let x ∈ Ωn be an n-cell of height h. We
then set

µ(x) =





x if x essential,

dh(x) if x collapsible,

ηh+1(x) if x redundant.

(3.1)

The aim of this section is to prove the following:

Theorem 3.1.8 Let (X,S, η) be a factorable monoid. Then the map µ defined in (3.1)
defines a noetherian, ZX-compatible matching on the (based) normalized bar resolution
(E∗X,Ω∗, ∂∗).

This statement will be proven in several steps. In Lemma 3.1.9 we show that µ is an
involution. In Lemma 3.1.10 we conclude that µ is a ZX-compatible matching. Finally,
in Lemma 3.1.20 we show that µ is noetherian.

Lemma 3.1.9 The map µ : Ω∗ → Ω∗ is an involution.

Proof. We first show that µ maps redundant cells of height h to collapsible cells of
height h+ 1 and vice versa.

Claim 1. µ maps redundant cells of height h to collapsible cells of height h+ 1.

Let x = [xn| . . . |x1] be redundant of height h. We are going to show that ηh+1[xn| . . . |x1]
is collapsible of height h+1. For convenience we examine this case in some detail. Saying
that x is redundant of height h means that

• for all i, h ≥ i ≥ 1, we have ℓ(xi) = 1 and

• for all i, h ≥ i ≥ 1, the pair (xi+1, xi) is unstable and

• ℓ(xh+1) > 1.

We are in the following situation,

[ xn | . . . | xh+2 | xh+1 | xh | . . . | x1 ]
↓ηh+1

[ xn | . . . | xh+2 | xh+1 | (xh+1)
′ | xh | . . . | x1 ]
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and we want to show that the cell ηh+1(x) = [xn| . . . |xh+2|xh+1|(xh+1)
′|xh| . . . |x1] is

collapsible of height h + 1. First of all, observe that none of the entries of ηh+1(x) is
trivial. We want to show that [(xh+1)

′|xh| . . . |x1] is essential and that (xh+1, (xh+1)
′)

is stable. The latter is trivial. For h = 0 the cell [(xh+1)
′|xh| . . . |x1] = [(xh+1)

′] is
obviously essential. Assume now that h > 0. It suffices to show that ℓ((xh+1)

′) = 1
(which is trivial by axiom (F3) for factorization maps, cf. page 56) and that the pair
((xh+1)

′, xh) is unstable. The recognition principle tells us that the latter amounts to
saying that (xh+1, xh) is unstable, which is true because x is redundant of height h.
Therefore ηh+1(x) is collapsible of height h+ 1. Claim 1 is proven.

Claim 2. µ maps collapsible cells of height h to redundant cells of height h− 1.

Assume now that [xn| . . . |x1] is collapsible of height h. Note that h > 0 (see e.g. Remark
3.1.7). We are now going to show that dh[xn| . . . |x1] is redundant of height h − 1. We
are in the following situation:

[ xn | . . . | xh+2 | xh+1 | xh | xh−1 | . . . | x1 ]
↓dh

[ xn | . . . | xh+2 | xh+1xh | xh−1 | . . . | x1 ]

We have to show that [xh−1| . . . |x1] is essential, the pair (xh+1xh, xh−1) is unstable, and
ℓ(xh+1xh) > 1. Essentiality of [xh−1| . . . |x1] is clear. Furthermore, since (xh+1, xh) is
stable, axiom (F2) for factorization maps yields ℓ(xh+1xh) = ℓ(xh+1)+ ℓ(xh) ≥ 2. To see
that (xh+1xh, xh−1) is unstable we use the recognition principle: Since x is collapsible
of height h, the pair (xh+1, xh) is stable, implying that (xh+1xh)

′ = xh. Now, the pair
(xh+1xh, xh−1) is unstable if and only if ((xh+1xh)

′, xh−1) = (xh, xh−1) is unstable, which
is true because x has height h. Claim 2 is proven.

Claim 3. µ is an involution.

For essential cells this is clear. Let x be redundant of height h. Then µ(x) is collapsible
of height h+ 1 and thus

µ2(x) = dh+1ηh+1(x) = x.

Assume now that x is collapsible of height h. In particular, x is stable as position h, i.e.
fh(x) = x. Its partner µ(x) is redundant of height h− 1 and we obtain

µ2(x) = ηhdh(x) = fh(x) = x.

The Lemma is proven. �

Lemma 3.1.10 For a redundant cell x ∈ Ω∗ of height h we have

[∂µ(x) : x] = (−1)h+1.

In particular, the matching function µ is ZX-compatible.
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3.1 A noetherian matching on E∗X

The proof of this statement will use µ-invariance of the norm function. More precisely,
for every x ∈ Ω∗ we have norm(x) = norm(µ(x)). This is true by axiom (F2) for
factorization maps.

Proof. Let [xn| . . . |x1] be a redundant n-cell of height h. Its collapsible partner is then
given by µ(x) = ηh+1(x). Note that dh+1ηh+1(x) = x and thus

[∂µ(x) : x] =

n∑

i=0

(−1)i[diηh+1(x) : x]

= (−1)h+1 +
n∑

i=0
i6=h+1

(−1)i[diηh+1(x) : x]. (3.2)

We are now going to prove that [diηh+1(x) : x] = 0 for i 6= h + 1. Set µ(x) =: y =:
[yn+1| . . . |y1].

• For i = 0 we have norm(d0µ(x)) = norm(d0y) = norm([yn+1| . . . |y2]y1) = ℓ(yn+1)+
. . .+ℓ(y2) < ℓ(yn+1)+ . . .+ℓ(y1) = norm(y) = norm(µ(x)) = norm(x). This shows
that norm(d0µ(x)) < norm(x) and thus [d0µ(x) : x] = 0.

• For i > 0, the face diµ(x) is either 0 (if yi+1yi = ǫ) or an element in Ω∗. We
therefore have [diµ(x) : x] 6= 0 if and only if diµ(x) = x.

We now show that diµ(x) = x implies i = h + 1. Assume that diy = x = dh+1y
and that i 6= h + 1. Set j = min{i, h + 1}. Comparing the j-th entries of di(y)
and dh+1(y) we see that yj+1yj = yj, implying that norm(djy) < norm(y) and
thus norm(dh+1y) < norm(y). On the other hand, µ-invariance of the norm yields
norm(dh+1y) = norm(dh+1µ(x)) = norm(x) = norm(µ(x)) = norm(y). This is a
contradiction. Therefore diy = dh+1y implies i = h+ 1.

Altogether we have shown that (3.2) simplifies to (−1)h+1. The Lemma is proven. �

Remark 3.1.11 The proof of Lemma 3.1.10 even shows that if x is redundant, then
there is a unique index i such that x = diµ(x). This property is crucial in the topological
setting, cf. Remark 3.1.23.

To conclude Theorem 3.1.8, the only thing that remains to be proven is that there
are no infinite descending chains with respect to the relation ≻− . This needs some
further preparation. Let us briefly outline the plan for the remainder of this section.
In Subsection 3.1.2 we introduce the notion of coherence for finite sequences and show
that every coherent sequence is right-most, reduced and small. Recall that in Corollary
2.3.29 we proved a boundedness result for such sequences. In Subsection 3.1.3 we argue
that an infinite descending chain of redundant cells (with respect to ≻− ) would give
rise to a coherent finite sequence of arbitrary length, contradicting the aforementioned
boundedness result.
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3 The Visy resolution

3.1.2 Coherent sequences

Definition 3.1.12 Let x = [xn| . . . |x1] ∈ Ωn. A reduced finite sequence (is, . . . , i1) ∈
Fn−1 is called x-coherent if the following conditions are fulfilled:

(a) fis ◦ . . . ◦ fi1 is norm-preserving for x, that is norm(fis ◦ . . . ◦ fi1(x)) = norm(x),
and

(b) for all t, s ≥ t ≥ 1, the cell dit ◦ fit−1 ◦ . . . ◦ fi1(x) is redundant.

Denote by Fx the set of x-coherent finite sequences.

To avoid future confusion, we explicitly bring to notice that, by definition, every coherent
sequence is reduced.

Remark 3.1.13 Note that if x has elementary partition type then (b) implies (a) in
Definition 3.1.12. To see this, let x = [xn| . . . |x1] have elementary partition type and
set y := di(x). If y is redundant then some entry of y must have word length ≥ 2, cf.
Remark 3.1.7.(d). The only possible candidate is yi = xi+1xi, implying that di, and
hence fi = ηi ◦ di is norm-preserving. Iterating this argument yields the claim.

The following characterization should be regarded as a Patching Lemma for coherent
sequences. The proof is obvious.

Lemma 3.1.14 Let x ∈ Ωn. Consider (is, . . . , i1) ∈ Fn−1. Fix s > t ≥ 1 and set
y := fit ◦ . . . ◦ fi1(x). The following are equivalent.

(a) (is, . . . , i1) is x-coherent.

(b) (it, . . . , i1) is x-coherent, (is, . . . , it+1) is y-coherent, and it+1 6= it.

Our aim is to show that for every essential n-cell x we have Fx ⊆
−→
Λ n−1, i.e. every x-

coherent finite sequence is right-most, reduced and small. In particular, every Fx is finite,

compare Example 2.3.35 (and recall that
−→
Λ n−1

∼=
←−
Λ n−1). We need some preparation.

Lemma 3.1.15 Let x := [xn| . . . |x1] ∈ Ωn. Denote by h the height of x. For every
n > i > 0 we have

ht(dix) ≥ min{i− 1, h}.

Proof. Clearly, [xh| . . . |x1] is essential. We distinguish two cases:

• i− 1 ≥ h: Applying di to x does not affect [xh| . . . |x1] and therefore ht(dix) ≥ h =
min{h, i− 1}.

• i− 1 < h: Clearly, [xi−1| . . . |x1] is essential, and by the same argument as above,
ht(dix) ≥ i− 1 = min{h, i− 1}.

The Lemma is proven. �
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3.1 A noetherian matching on E∗X

Lemma 3.1.16 Let x = [xn| . . . |x1] ∈ Ωn be essential or collapsible cell of height h.
For all i, n > i > 0, the following holds: If dix is redundant then i ≤ h+ 1.

Proof. If x is essential then h = n and the statement is trivially true. Assume now
that x is collapsible and that i > h+ 1. Applying di to x fixes the entries xh+1, . . . , x1,
hence the resulting cell dix is collapsible, and, in particular, not redundant. �

Lemma 3.1.17 Let x ∈ Ωn be essential or collapsible. For all i, n > i > 0, the following
holds: If (i) ∈ Fn−1 is x-coherent then ht(dix) = i− 1.

Proof. Denote by h the height of x. Recall that the sequence (i) ∈ Fn−1 is x-coherent
if fi is norm-preserving for x and di(x) is redundant. The former implies that the i-th
entry of di(x) has norm ≥ 2, and thus ht(di(x)) ≤ i − 1. On the other hand, since
di(x) is redundant, Lemma 3.1.16 gives i − 1 ≤ h. Lemma 3.1.15 yields ht(di(x)) ≥
min{i− 1, h} = i− 1. The Lemma is proven. �

Lemma 3.1.18 Let x ∈ Ωn be essential or collapsible. Let (is, . . . , i1) be x-coherent.
Then for every t, s ≥ t ≥ 1, the cell fit ◦ . . . ◦ fi1(x) is collapsible of height it.

Proof. We first show that for every t, s ≥ t ≥ 0, the cell fit ◦ . . . ◦ fi1(x) is essential
or collapsible. The first statement then follows from the fact that for t ≥ 1 the cell
fit ◦ . . .◦fi1(x) is stable at position it, hence not essential and thus collapsible. For t = 0
we have fit ◦ . . . ◦ fi1(x) = x, which by assumption is essential or collapsible. Now let
s > t ≥ 0 and assume that the claim is true for t, i.e. the cell y = fit ◦ . . . ◦ fi1(x) is
essential or collapsible. Clearly, the finite sequence (it+1) is y-coherent. Lemma 3.1.17
now yields ht(dit+1(y)) = it+1 − 1. Thus

fit+1(y) = ηit+1dit+1(y) = ηht(dit+1
(y))+1dit+1(y) = µ(dit+1(y)), (3.3)

and hence fit+1(y) is collapsible (because its partner dit+1(y) is redundant).

It is now easy to compute the height of each fit ◦ . . . ◦ fi1(x): Recall that µ matches
redundant cells of height h with collapsible cells of height h+1. Using (3.3) we see that

ht(fit+1 ◦ . . . ◦ fi1(x)) = ht(fit+1(y)) = ht(µ(dit+1(y))) = ht(dit+1(y)) + 1 = it+1,

where the last equality follows from Lemma 3.1.17. The Lemma is proven. �

Proposition 3.1.19 We have Fx ⊆
−→
Λ n−1 for every essential or collapsible n-cell x.

Proof. Let x ∈ Ωn be essential or collapsible and let (is, . . . , i1) be x-coherent.

Claim 1. (is, . . . , i1) is right-most and reduced.

Clearly, (is, . . . , i1) is reduced, cf. Definition 3.1.12. Lemma 3.1.18 tells us that for every
t, s ≥ t ≥ 1, we have ht(fit ◦ . . . ◦ fi1(x)) = it. Recall that by assumption dit+1(y) is
redundant. Lemma 3.1.16 now yields

it+1 ≤ ht(y) + 1 = it + 1.
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3 The Visy resolution

By Lemma 2.3.3 this is equivalent to (is, . . . , i1) being right-most.

Claim 2. (is, . . . , i1) is small.

Claim 2 will be proven by contradiction. Assume that there exists a finite sequence
(is, . . . , i1) that is x-coherent but not small. By Claim 1 this sequence is right-most and
reduced. W.l.o.g. we may assume minimality of (is, . . . , i1), i.e. we may assume that the
subsequence (is−1, . . . , i1) is small (and clearly right-most and reduced).

Claim 2.A. (is, . . . , i1) ∼P (is, is−1, is).R for some suitable finite sequence R.

From Remark 2.3.31.(b) we conclude that is > is−1, hence is = is−1 + 1 (because our
sequence is right-most). Furthermore, there is some t, s > t ≥ 1, with the property
that it = is and max{is−1, . . . , it+1} < it. In particular, all entries of the connected
subsequence (is−1, . . . , it+1) are ≤ is−1. Corollary 2.3.25 and Corollary 2.3.28 imply
that max{is−2, . . . , it+1} < is−1, hence ≤ it − 2. Therefore, using the relation ∼dist,
we can push the entry it to the left, cf. Figure 2.16 on page 87. More precisely, set
R = (is−2, . . . , it+1).(it−1, . . . , i1). Then (is, . . . , i1) ∼P (is, is−1, it).R. Since it = is,
this proves Claim 2.A.

Claim 2.B. disfis−1 ◦ . . . ◦ fi1(x) is not redundant.

Claim 2.B gives the desired contradiction, because x-coherence of our sequence in par-
ticular requires disfis−1 ◦ . . . ◦ fi1(x) to be redundant.

We will now prove Claim 2.B. Applying the Evaluation Lemma to Claim 2.A we see that

ηisdisfis−1 . . . fi1(x) = ηisdisfis−1fisfR(x).

Note that the is-th entry of disfis−1 . . . fi1(x) has word length ≥ 2, and therefore disηis
stabilizes this tuple. Hence, post-composing both sides by dis we obtain

disfis−1 . . . fi1(x) = disfis−1fisfR(x). (3.4)

Recall that every factorable monoid is weakly factorable and therefore we have the
following equality in the graded sense: disfis−1fis = disfis−1ηisdis ≡ fis−1dis . The
right-hand side of (3.4) now simplifies to

disfis−1fisfR(x) ≡ ηis−1dis−1disfR(x). (3.5)

By x-coherence of (is, . . . , i1), the left-hand side of (3.5) is norm-preserving, and therefore
(3.5) even holds with ≡ replaced by =. Tacking together (3.4) and (3.5) we obtain

disfis−1 . . . fi1(x) = ηis−1dis−1disfR(x).

This shows that disfis−1 . . . fi1(x) is stable at position is − 1.

On the other hand, Lemma 3.1.15 and Lemma 3.1.18 yield

ht(disfis−1 ◦ . . . ◦ fi1(x)) ≥ min{is−1, is−1} = is − 1, (3.6)
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where the equality follows from the above observation that is = is−1+1. Hence, the cell
disfis−1 ◦ . . . ◦ fi1(x) has height is − 1 and it is stable at position is − 1. From Remark
3.1.6 we conclude that disfis−1 ◦ . . . ◦ fi1(x) is collapsible, contradicting the assumption
of (is, . . . , i1) being x-coherent. �

3.1.3 Noetherianity of µ

Lemma 3.1.20 The matching µ : Ω∗ → Ω∗ is noetherian.

Proof. We need to show that there is no infinite (strictly) descending chain x1 ≻−
x2 ≻− x3 ≻− . . . of redundant cells. (We use the underbar to emphasize that xi does
not denote an entry of some tuple but an element in Ω∗.) Clearly, if such an infinite
descending sequence exists, then all the xk live in the same dimension Ωn. Assume that
the assertion is wrong, i.e. there is an infinite (strictly) descending chain of redundant
cells in dimension n, say x1 ≻− x2 ≻− x3 ≻− . . .. By definition of ≻− , xt+1 is a face of µ(xt).
We therefore obtain the following diagram:

Ωn+1 : µ(x1)
�

di1 ""DD
DD

DD
DD

µ(x2)
�

di2 ""D
DD

DD
DD

D
µ(x3)

�

di3 ""DD
DD

DD
DD

. . .

Ωn : x1
:

µ

<<zzzzzzzz
x2

:
µ

<<zzzzzzzz
x3

:
µ

<<zzzzzzzz
x4

>
µ

??~~~~~~~~~

Note that for all t we have norm(xt+1) ≤ norm(xt): This follows from that fact that µ
is norm-preserving and from the triangle inequality for word lengths. Thus there is an
index T such that norm(xt+1) = norm(xt) for all t ≥ T . We may assume that T = 1.
(Otherwise we replace x1 ≻− x2 ≻− . . . by xT ≻− xT+1 ≻− . . ..) In particular, every dit , t ≥ 1,
preserves the norm. As a consequence, for every t ≥ 1 the finite sequence (it) ∈ Fn−1 is
coherent with respect to the collapsible cell µ(xt).

Lemma 3.1.17 yields ht(xt+1) = it − 1, and we obtain

µ(xt+1) = ηit(xt+1) = ηitdit(µ(xt)) = fit(µ(xt)).

Spelled out, we obtain µ(xt+1) from µ(xt) by applying fit . We can therefore extend the
above diagram as follows:

Ωn+1 : µ(x1)
�

di1 ""DD
DD

DD
DD

� fi1 // µ(x2)
�

di2 ""D
DD

DD
DD

D

� fi2 // µ(x3)
�

di3 ""DD
DD

DD
DD

� fi3 // . . .

Ωn : x1
:

µ

<<zzzzzzzz
x2

:
µ

<<zzzzzzzz
x3

:
µ

<<zzzzzzzz
x4

>
µ

??~~~~~~~~~

Recall that every (it) ∈ Fn−1 is coherent with respect to µ(xt). Using the Patching
Lemma 3.1.14 we see that for every s ≥ 0 the sequence (is, . . . , i1) is coherent with
respect to the collapsible cell µ(x1). (The fact that (is, . . . , i1) is reduced follows from
the fact that x1 ≻− x2 ≻− x3 ≻− . . . descends strictly.) Proposition 3.1.19 now tells us that
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3 The Visy resolution

for each s ≥ 0 the finite sequence (is, . . . , i1) ∈ Fn−1 is right-most, reduced and small.
This contradicts our boundedness result of Corollary 2.3.29. Therefore our assumption
of the existence of an infinite (strictly) descending chain of redundant cells was wrong.
The Lemma is proven. �

This also finishes the proof of Theorem 3.1.8. �

We can now apply Theorem 1.1.29 to our noetherian matching µ on the (based) nor-
malized bar resolution (E∗X,Ω∗, ∂∗). The Morse complex associated to this matching is
our main object of study.

Definition 3.1.21 Let (X,S, η) be a factorable monoid. Let µ be as in (3.1). The Visy
resolution of X (with respect to the chosen factorability structure) is defined to be the
Morse complex associated to the matching µ:

(Ṽ∗, ∂
V
∗ ) := ((E∗X)θ, ∂

θ
∗) (3.7)

For simplicity of notation we suppress X, S, and η in the notation of the Visy resolution.

Recall that, as a ZX-module, Ṽn is freely generated by all n-tuples [xn| . . . |x1] satisfying
xi ∈ S+ for all i and (xi+1, xi) unstable for all n > i ≥ 1. In particular, if S is finite,
then every Ṽn is finitely generated, and hence X is of type right-FP∞.

Note that our matching µ does not take into account the “outer” simplicial face maps d0
and dn, in the sense that if x is a collapsible n-cell then µ(x) = dh(x) and 0 < h < n, cf.
Remark 3.1.7. It follows that the construction of µ also applies to the left bar resolution
of X. (Compare our discussion before Theorem 1.2.9.)

Theorem 3.1.8 therefore implies the following:

Corollary 3.1.22 Let X be a monoid. If X admits a factorability structure (X,S, η)
with finite generating set S then X satisfies the homological finiteness property FP∞.

Remark 3.1.23 One can show that under the assumptions of Corollary 3.1.22, the
monoid X satisfies the geometric finiteness property F∞. Indeed, µ gives a matching on
the cells of the classifying space BX, and this matching is a so-called collapsing scheme
in the sense of Brown [Bro92, p.140], cf. Remark 3.1.11. Proposition 1 in loc. cit. then
tells us that BX collapses onto a CW complex with only finitely many cells in each
dimension.
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3.2 Computing the differential θ∞ ◦ ∂

3.2.1 Θ
∞ and coherent sequences

As a ZX-module, Ṽ∗X is a direct summand of E∗X. Recall from Chapter 1 that the
differential ∂Vn : Ṽn → Ṽn−1 is given by the following composition:

En
∂n // En−1

θ∞

��

Ṽn ∂V
n

//

in

OO

Ṽn−1

Also recall that θ∞ ◦ ∂n = πn−1 ◦ Θ
∞ ◦ ∂n = πn−1 ◦ ∂n ◦ Θ

∞ : EnX → Ṽn−1. In this
section we are going to give an explicit formula for Θ∞(x) for every essential cell x.

Proposition 3.2.1 Let x ∈ Ωn be essential. Denote by F
(k)
x the set of x-coherent se-

quences of length at most k. Then for every k ≥ 0 we have

Θk(x) =
∑

I∈F
(k)
x

(−1)#I · fI(x). (3.8)

Proof. Recall that if x has elementary partition type then a reduced finite sequence
(is, . . . , i1) is x-coherent if and only if for every t the cell ditfit−1 . . . fi1(x) is redundant.
This is because if x has elementary partition type then the latter condition already
implies that fis . . . fi1 is norm-preserving for x. This characterization of x-coherent
sequences will be used at several places in this proof.

We do induction on k. For k = 0 the left-hand side of (3.8) simplifies to Θ0(x) = x.

Furthermore, F
(0)
x = {( )} and hence the right-hand side of (3.8) also computes to x.

For k = 1 we have Θ(x) = x + ∂V (x) + V (∂x) = x + V (∂x). The last equality holds
because x is essential. Note that x = f( )(x). It therefore suffices to show that

V (∂x) = −
∑

i=1,...,n−1
(i)∈Fx

fi(x).

We are going to compute V (∂x). If di(x) is not redundant, then V (di(x)) = 0. Assume
now that di(x) is redundant. Then the finite sequence (i) is x-coherent and Lemma
3.1.17 yields ht(di(x)) = i− 1. Using (1.1) on page 30 and (3.1) on page 95 we compute

V (di(x)) = −µ(di(x)) · [∂µ(di(x)) : di(x)]
−1

= −fi(x) · [∂fi(x) : di(x)]
−1 = (−1)i+1 · fi(x).
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It follows that V (∂x) =
∑

(−1)i · (−1)i+1 · fi(x) = −
∑
fi(x), where the sum runs over

all x-coherent finite sequences of length 1. Thus, the Proposition holds for k = 0 and
k = 1.

Fix k ≥ 2 and assume that (3.8) holds true for all indices ≤ k. By Remark 1.1.19 the
chain Θk(x) is essential-collapsible and thus V (Θk(x)) = 0. This gives

Θk+1(x) = Θk(x) + V ∂(Θk(x)).

We use the induction hypothesis for k to obtain

Θk+1(x) = Θk(x) +
∑

I∈F
(k)
x

n∑

j=0

(−1)#I+j · V (djfI(x)).

If djfI(x) is not redundant then it lies in the kernel of V . Hence,

Θk+1(x) = Θk(x) +
∑

I∈F
(k)
x

n∑

j=0
djfI(x) red.

(−1)#I+j · V (djfI(x)).

Since I is x-coherent, the cell fI(x) has elementary partition type. In particular, fI(x)
is essential or collapsible. Lemma 3.1.17 tells us that if its j-th face y = djfI(x) is
redundant then ht(y) = j − 1. In particular, µ(y) = ηj(y). We use Lemma 3.1.10 to
compute V (y) = −µ(y) · [∂µ(y) : y]−1 = (−1)j+1 · ηj(y). This yields

Θk+1(x) = Θk(x) +
∑

I∈F
(k)
x

n∑

j=0
djfI(x) red.

(−1)#I+1 · fj ◦ fI(x)

︸ ︷︷ ︸
=:S

. (3.9)

To further simplify the expression S, we distinguish whether or not I is the empty
sequence. Set

S0 := −
n∑

j=0
dj(x) red.

fj(x).

Note that dj(x) is redundant if and only if the finite sequence (j) is x-coherent. Using
the induction hypothesis for k = 1, we see that S0 + x = Θ(x), i.e.

S0 = Θ(x)− x. (3.10)

We define S1 := S − S0. Intuitively speaking, S1 arises from S by summing over all

sequences I ∈ F
(k)
x of positive length,

S1 =
k∑

s=1

∑

(is,...,i1)∈Fx

n∑

j=0
djfis . . . fi1

(x) red.

(−1)#I+1 · fj ◦ fis . . . fi1(x). (3.11)
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To simplify S1, we distinguish whether or not in the third sum we have j = is. Set

S′1 :=
k∑

s=1

∑

(is,...,i1)∈Fx

∑

j 6=is
djfis . . . fi1

(x) red.

(−1)#I+1 · fj ◦ fis . . . fi1(x), (3.12)

and S′′1 = S1 − S
′
1. Observe that if in (3.12) the cell djfis . . . fi1(x) is redundant then

(j, is, . . . , i1) is x-coherent (because j 6= is). Indeed, using the Patching Lemma 3.1.14
we see that

S′1 =
∑

I∈F
(k+1)
x rF

(1)
x

(−1)#I · fI(x),

and the induction hypothesis (for k = 1) yields that

S′1 =
∑

I∈F
(k+1)
x

(−1)#I · fI(x) − Θ(x). (3.13)

We now simplify S′′1 = S1−S
′
1. Note that if in (3.11) we have j = is then djfis . . . fi1(x) =

disfis−1 . . . fi1(x) is redundant (because (is, . . . , i1) is x-coherent). By idempotency of
the fi’s we have fjfis = fis . We can therefore write S′′1 as follows,

S′′1 =
k∑

s=1

∑

(is,...,i1)∈Fx

(−1)#I+1 · fis . . . fi1(x).

Clearly, this double sum runs over all x-coherent sequences of lengths 1, . . . , k. Using
the induction hypothesis we see that

S′′1 = −Θk(x) + x. (3.14)

Putting together (3.9), (3.10), (3.13), and (3.14) we obtain

Θk+1(x) = Θk(x) + S

= Θk(x) + S0 + S′1 + S′′1

=
∑

I∈F
(k+1)
x

(−1)#I · fI(x).

The Proposition is proven. �

Corollary 3.2.2 Let x ∈ Ωn be essential. In particular, x ∈ Ṽn and

∂Vn (x) = πn−1 ◦ ∂n ◦
∑

I∈Fx

(−1)#I · fI(x). (3.15)
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3 The Visy resolution

Proof. We have ∂V∗ = θ∞ ◦ ∂∗ = π∗−1 ◦ Θ
∞ ◦ ∂∗ = π∗−1 ◦ ∂∗ ◦ Θ

∞. By Proposition

3.1.19 and Lemma 2.3.33 the set Fx is finite. Therefore, for k sufficiently large, F
(k)
x =

F
(k+1)
x = . . . = Fx. Applying Proposition 3.2.1 we obtain

∑

I∈Fx

(−1)#I · fI(x) = Θk(x) = Θk+1(x) = . . . = Θ∞(x),

whence the Corollary. �

Remark 3.2.3 The reader should compare (3.15) with (2.15) on page 91. Recall that

Fx ⊆
−→
Λ n−1, and that the latter is a set of representatives for Qn−1r�n−1. Ignoring

sources and targets (the formula (3.15) is defined on certain elements in the bar resolution
whereas (2.15) is defined on certain elements of the bar complex), the only difference
between these two formulas is the indexing set. Note that the indexing set in (3.15)
depends on the cell x, for being x-coherent depends on the choice of the cell x. The
following subsection is concerned with getting rid of this dependence. This will be
achieved by letting the sum run over a larger indexing set. We then have to show that
the additional terms cancel out each other. This will occupy the following subsection.

3.2.2 Θ
∞ and right-most, reduced, small sequences

We are going to show that (3.15) still holds true when replacing the indexing set Fx by

the larger set
−→
Λ n−1. We need some preparation first.

Lemma 3.2.4 Consider x ∈ Ωn of elementary partition type and let (is, . . . , i1) ∈
−→
Λ n−1rFx, i.e. (is, . . . , i1) is right-most, reduced and small, but not x-coherent. Then
fit ◦ . . . ◦ fi1(x) = 0 or there exists t, s ≥ t ≥ 1, such that fit ◦ . . . ◦ fi1(x) is stable at
position it − 1.

Proof. Let t be the uniquely determined index such that (it−1, . . . , i1) is x-coherent
and (it, . . . , i1) is not. Set y := fit−1 ◦ . . . ◦ fi1(x). If dit is not norm-preserving for y
then applying ηit would produce a trivial entry and thus fit(y) = 0. In this case we
are finished. So assume that dit is norm-preserving for y. (It follows that dit(y) is not
redundant, because otherwise (it, . . . , i1) would be x-coherent.) We will now show that
fit(y) is stable at position it − 1.

Claim. ht(dit(y)) ≥ it − 1.

By Lemma 3.1.18 we have ht(y) = it−1. Note that it ≤ it−1 + 1, since (is, . . . , i1) is
right-most. Lemma 3.1.15 now yields ht(dit(y)) ≥ min{it−1,ht(y)} = it− 1, whence the
Claim.

The situation is as follows: dit(y) has height ≥ it − 1 and its it-th entry has norm 2. So
ht(dit(y)) = it − 1. Furthermore, dit(y) is not redundant. It follows that dit(y) is stable
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3.2 Computing the differential θ∞ ◦ ∂

at position it − 1. This yields the following:

fitfit−1 . . . fi1(x) = ηitditfit−1 . . . fi1(x)

= ηitfit−1ditfit−1 . . . fi1(x)

= ηitηit−1dit−1ditfit−1 . . . fi1(x)

The recognition principle tells us that the latter is stable at position it − 1. �

The following Lemmas give partial answers to what extend insertion and deletion of
entries respect smallness of finite sequences. Recall from Corollary 2.3.25 that a finite
sequence is small if and only if all of its connected subsequences are. In particular, a
small sequence stays small when deleting its first or last entry. What happens if we
delete an “inner” entry?

Lemma 3.2.5 Let (is, . . . , i1) be a right-most, reduced, small finite sequence. For every
k, s > k > 1, the following holds: If ik < ik−1 then (is, . . . , îk, . . . , i1) is right-most,
reduced and small.

Proof. Assume that ik < ik−1.

Claim 1. (is, . . . , îk, . . . , i1) is right-most and reduced.

We have ik+1 ≤ ik+1 < ik−1+1, i.e. ik+1 ≤ ik−1. So (is . . . , îk, . . . , i1) is right-most. For
“reduced” we have to show that ik+1 6= ik−1. Assume that ik+1 = ik−1. By assumption
we have ik < ik−1 and hence ik+1 > ik. This implies ik+1 = ik + 1 because (is, . . . , i1)
is right-most. This gives (ik+1, ik, ik−1) = (ik +1, ik, ik +1), contradicting smallness
of (is, . . . , i1), cf. Proposition 2.3.23. Therefore, (is, . . . , îk, . . . , i1) is right-most and
reduced. Claim 1 is proven.

Claim 2. (is, . . . , îk, . . . , i1) is small.

We will use Proposition 2.3.27. Since (is, . . . , i1) is small, we only have to check the
case t = k − 1. The successor of ik−1 in (is, . . . , îk, . . . , i1) is ik+1, and we know that
ik+1 < ik−1. We therefore have to show that max{is, . . . , ik+1} < ik−1. This immediately
follows from smallness of the original sequence (is, . . . , i1): By assumption we have
ik < ik−1 and smallness of (is, . . . , i1) yields that for every r, s ≥ r > k − 1, we have
ir < ik−1. Claim 2 is proven. �

Lemma 3.2.6 Let (is, . . . , i1) be right-most, reduced and small. Let j be such that
(is, . . . , ik, j, ik−1, . . . , i1) is right-most and reduced but not small. Then one of the fol-
lowing holds

• j > ik−1 or

• ik < j and there exists some r′ > k such that ir′ = j.

Proof. Assume that j ≤ ik−1, i.e. j ≤ ik−1 − 1 since the sequence is reduced. We are
going to verify the second condition. Set

(js+1, . . . , j1) := (is, . . . , ik).(j).(ik−1, . . . , i1).
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3 The Visy resolution

Note that (js+1, . . . , ĵk, . . . , j1) = (is, . . . , i1) and (jk+1, jk, jk−1) = (ik, j, ik−1), and the
assumption j < ik−1 reads as jk < jk−1.

Claim 1. jk+1 < jk−1.

The assumption j ≤ ik−1 − 1 translates to jk + 1 ≤ jk−1. The connected subsequence
(jk+1, jk, jk−1) = (ik, j, ik−1) is right-most, yielding jk+1 ≤ jk + 1 ≤ jk−1. This implies
jk+1 < jk−1, because (js+1, . . . , ĵk, . . . , j1) is reduced. Claim 1 is proven.

Recall that (js+1, . . . , j1) is right-most and reduced but not small. Proposition 2.3.27
together with Remark 2.3.31.(c) tells us that there exist indices r and t, s+1 ≥ r > t ≥ 1,
such that jt+1 < jt and jr = jt. Since by assumption (js+1, . . . , ĵk, . . . , j1) is small, we
conclude that t = k − 1 or t = k or r = k.

Claim 2. t = k.

The case t = k−1 can be excluded for the following reason. We would have r > t = k−1
and jr = jt = jk−1. On the other hand, by Claim 1, we have jk+1 < jk−1. This
contradicts smallness of (js+1, . . . , ĵk, . . . , j1).

We now exclude r = k. Recall that r > t, jr = jt, jt+1 < jt. Furthermore, we have
jr = jk < jk−1. This situation is depicted in Figure 3.1.

r k−1 t+1 t

. . .

jr jt

Figure 3.1: Situation for the case r = k.

We claim that t < k − 1. Indeed, we have t < r = k and t 6= k − 1 follows from
jt = jr = jk < jk−1. We are in the following situation: jt+1 < jt and k − 1 > t and
jk−1 > jt. Proposition 2.3.27 tells us that (jk−1, . . . , j1) = (ik−1, . . . , i1) is not small,
and hence (is, . . . , i1) is not small. This contradicts our assumptions, and hence r 6= k.
Claim 2 is proven.

So we have t = k and from ik = jk+1 = jt+1 < jt = jk = j we conclude that ik < j.
Furthermore, we have r > k and jr = jt = jk. Altogether we have ir−1 = jr = jk = j
and we set r′ = r − 1. (Note that r′ = r − 1 > k, for r > k and r 6= k + 1, because
jr > jk+1.) The Lemma is proven. �

Proposition 3.2.7 Let x ∈ Ωn be essential. Then
∑

I∈
−→
Λn−1rFx

(−1)#I · fI(x) = 0.

Note that the sum makes sense since Fx ⊆
−→
Λ n−1 and

−→
Λ n−1 is finite.
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Proof. The proof is quite long and we therefore give a rough outline first. The idea is

as follows. We define an action Z/2y(
−→
Λ n−1 \Fx) such that “the sum over each orbit is

zero”. More precisely, we define a map ξ :
−→
Λ n−1 \ Fx →

−→
Λ n−1 \ Fx with the following

properties:

(a) ξ2 = id.

(b) fξ(I)(x) = fI(x).

(c) If I is a fixed point of ξ then fI(x) = 0.

(d) If I is not a fixed point of ξ then |#I −#ξ(I)| = 1, i.e. the lengths of I and ξ(I)
differ by one. Together with (b) this gives (−1)#IfI(x) + (−1)#ξ(I)fξ(I)(x) = 0.

We now construct this map ξ. Consider (is, . . . , i1) ∈
−→
Λ n−1 \ Fx. If fis ◦ . . . ◦ fi1(x) = 0

then ξ will fix this sequence. (This happens if some di multiplies two entries xi+1, xi
that are not geodesic. In this case, post-composition with ηi produces a degenerate
cell.) Otherwise, we choose t minimal subject to the condition that (it, . . . , i1) is not
x-coherent. By Lemma 3.2.4 the cell fit ◦ . . . ◦ fi1(x) is stable at position it − 1. This
observation is central to the construction of ξ. We distinguish three cases.

• Case 1: [it−1]P ∈ R[is, . . . , it+1]P .

The idea is to define ξ(is, . . . , i1) to be the finite sequence that arises from “delet-
ing” this right-divisor: Let k ≥ t + 1 be minimal subject to ik = it − 1 and set

ξ(is, . . . , i1) := (is, . . . , îk, . . . , i1). We now check that ξ(is, . . . , i1) lies in
−→
Λ n−1\Fx.

Since [ik]P is a right-divisor of [is, . . . , it+1]P , there exists a finite sequence L such
that (is, . . . , it+1) ∼P L.(ik). Recall that the monoid Pn−1 arises from Fn−1 by
quotiening out idempotency relations and distant commutativity. Thus we may
choose L = (is, . . . , ik+1).(ik−1, . . . , it+1):

(is, . . . , it+1) ∼P (is, . . . , ik+1).(ik−1, . . . , it+1).(ik). (3.16)

We claim that ik < ik−1. For k = t+1 this is obvious. For k > t+1 we use (3.16)
to conclude that |ir− ik| ≥ 2 for every r, k > r > t. Since (is, . . . , i1) is right-most,
we must have ik < ik−1.

Lemma 3.2.5 tells us that (is, . . . , îk, . . . , i1) is indeed right-most, reduced and
small. It is obviously not x-coherent, because (it, . . . , i1) is not. Condition (c) is
void. Condition (d) is fulfilled because #ξ(I) = #I−1. Condition (b) follows from
the fact that fit ◦ . . . ◦ fi1(x) is stable at position it − 1, the Evaluation Lemma,
and our assumption that [it−1]P ∈ R[is, . . . , it+1]P .

• Case 2: [it−1]P /∈ R[is, . . . , it+1]P and (is, . . . , it+1).(it−1).(it, . . . , i1) is small.

The idea is to define ξ(is, . . . , i1) by “inserting” the entry it − 1 into (is, . . . , i1).
Note that (is, . . . , it+1).(it−1).(it, . . . , i1) need not be right-most. So we define

ξ(is, . . . , i1) :=
−−−−−−−−−−−−−−→
(is, . . . , it+1).(it−1).(it, . . . , i1), (3.17)
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3 The Visy resolution

where the overlining arrow stands for the right-most, reduced representative. It
is easily checked that (3.17) is right-most and reduced. Furthermore, by Remark
2.3.21.(a), ξ(is, . . . , i1) is small. Since (it, . . . , i1) is not x-coherent, ξ(is, . . . , i1) is
neither. Properties (b)-(d) are again obvious.

Before discussing the remaining case let us remark that for all finite sequences I that
are covered by Cases 1 and 2 we have ξ2(I) = I.

• Case 3: [it−1]P /∈ R[is, . . . , it+1]P and (is, . . . , it+1).(it−1).(it, . . . , i1) is not small.

We are going to find an index t′ > t such that fit′ . . . fi1(x) is stable at position
it′ − 1. We then replace t by t′ and restart our case distinction. The existence
of such an entry t′ will follow from Lemma 3.2.6. To have it applicable we need
to find the right-most, reduced representative of (is, . . . , it+1).(it−1).(it, . . . , i1).
Since (is, . . . , i1) is right-most and reduced it follows that there exists some k such
that

−−−−−−−−−−−−−−−−−−−−−−−→
(is, . . . , it+1).(it−1).(it, . . . , i1) = (is, . . . , ik).(it−1).(ik−1, . . . , i1). (3.18)

Note that k ≥ t+1 because (it−1, it, . . . , i1) is right-most and reduced. Intuitively
speaking, we obtain this right-most, reduced representative by successively pushing
the entry (it−1) to the left, and that we do as long as its left neighbour is ≥ it+1.

Claim 1. it − 1 < ik−1.

If k − 1 = t then the Claim reads as it − 1 < it which is obvious. Otherwise it − 1
and ik−1 commute in the sense of ∼dist, i.e. |it − 1− ik−1| ≥ 2. Since our sequence
is right-most, this implies it − 1 < ik−1. Claim 1 is proven.

We are in the following situation: The sequence (is, . . . , i1) is right-most, reduced
and small. The sequence (is, . . . , ik).(it−1).(ik−1, . . . , i1) is right-most and reduced
but not small. Furthermore, it−1 < ik−1. Lemma 3.2.6 guarantees that ik < it−1
and that there exists an entry t′ > k such that it′ = it − 1. Amongst all possible
choices of t′ we choose the smallest one.

Claim 2. [it′−1]Q ∈ L [it′ , . . . , ik, it−1]Q.

The connected subsequence (it′ , . . . , ik) is small and thus by Corollary 2.3.28 there
is a unique index where it attains its maximum, namely t′: This follows from the
facts that (it′ , . . . , ik) is right-most and reduced, it′ > ik and t′ was chosen minimal.
In particular, it′−1 = it′ − 1 and it′−1 = max{it′−1, . . . , ik}. Again by smallness,
this maximum is uniquely attained. It follows that max{it′−2, . . . , ik} ≤ it−3. We
can therefore push the entry (it − 1) to the left:

(it′ , . . . , ik).(it−1) ∼P (it′ , it′−1).(it−1).(it′−2, . . . , ik)

= (it′ , it′−1, it′).(it′−2, . . . , ik).

This implies that [(it′ , . . . , ik, it−1)]Q = [(it′ , it′−1, it′).(it′−2, . . . , ik)]Q from which
[it′−1]Q is a left divisor. Claim 2 is proven.
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Claim 3. fit′ . . . fi1(x) is stable at position it′ − 1.

Recall that fit . . . fi1(x) is stable at position it − 1, yielding

fit′ . . . fi1(x) = fit′ . . . fit+1 ◦ fit−1 ◦ fit . . . fi1(x). (3.19)

We now apply (3.18) with s replaced by t′ to the right-hand side of (3.19). The
Evaluation Lemma then gives

fit′ . . . fi1(x) = fit′ . . . fik ◦ fit−1 ◦ fik−1
. . . fi1(x). (3.20)

Claim 2 together with the Evaluation Lemma tells us that the right-hand side
of (3.20) is stable at position it′ − 1 in the graded sense. Recall that fit′ . . . fi1 is
norm-preserving for x, and thus fit′ . . . fi1(x) is (honestly) stable at position it′−1.
Claim 3 is proven.

We can now jump back in the proof and apply the above case distinction with the
distinguished index t replaced by t′.

Note that the above iteration finally terminates, since the t′ constructed in Case 3 is
strictly larger than the t we started with. �

The following example should shed some light on the algorithm described in the proof
above.

Example 3.2.8 Consider an essential 4-cell x = [x4|x3|x2|x1] ∈ E4X with the property
that the finite sequence (2, 1) is x-coherent and

d3f2f1(x) = [x4x3x2x1|(x3x2x1)
′|(x2x1)

′]

is not redundant. We write Ξ for the set of all finite sequences in F3 that are right-most,
reduced, small and that are of the form L.(3, 2, 1) for some L ∈ F3. Explicitly:

Ξ = {(3, 2, 1), (1, 3, 2, 1), (2, 1, 3, 2, 1), (1, 2, 1, 3, 2, 1), (2, 3, 2, 1), (1, 2, 3, 2, 1)}.

Note that Ξ ⊆
−→
Λ 3 \ Fx.

Let us assume that every element in Ξ is norm-preserving for x, because otherwise it
would be a fixed point of ξ and nothing interesting happens. We will now explicitly
describe the map ξ : Ξ → Ξ. First of all, f3f2f1(x) is clearly stable at position 3, and
the proof of Proposition 3.2.7 tells us that it is also stable at position 2.

• (is, . . . , i1) = (3, 2, 1) = ( ).(3, 2, 1).

We will discuss this case in detail. The data is the following: t = 3, it − 1 = 2
and (is, . . . , it+1) = ( ). Clearly, [it−1]P = [2]P /∈ R[ ]P = R[is, . . . , it+1]P and
(is, . . . , it+1).(it−1).(it, . . . , i1) = (2).(3, 2, 1) is small. Therefore we are in Case 2,

yielding ξ(3, 2, 1) =
−→
(2).(3, 2, 1) = (2, 3, 2, 1).
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• Let us, for convenience, briefly discuss (is, . . . , i1) = (2, 3, 2, 1) = (2).(3, 2, 1).

Clearly, [2]P ∈ R[2]P . So we are in Case 1, yielding ξ(2, 3, 2, 1) = (2̂, 3, 2, 1) =
(3, 2, 1). This shows that we indeed have ξ2(3, 2, 1) = (3, 2, 1).

• (is, . . . , i1) = (1, 3, 2, 1) = (1).(3, 2, 1).

Clearly, [2]P /∈ R[1]P and (1).(2).(3, 2, 1) is small. Therefore we are in Case 2,

yielding ξ(1, 3, 2, 1) =
−−−−→
(1).(2).(3, 2, 1) = (1, 2, 3, 2, 1).

• (is, . . . , i1) = (2, 1, 3, 2, 1) = (2, 1).(3, 2, 1).

We have [2]P /∈ R[2, 1]P but (2, 1).(2).(3, 2, 1) is not small. Therefore we are in
Case 3. Note that (2, 1, 2, 3, 2, 1) is already right-most and reduced, the fattened
2 being the entry it′ . We therefore restart the case distinction with the sequence
(2, 1, 3, 2, 1) and t = 5, it − 1 = 1. We then have [1]P /∈ R[ ]P and (1, 2, 1, 3, 2, 1) is
small. Hence, ξ(2, 1, 3, 2, 1) = (1, 2, 1, 3, 2, 1).

In Figure 3.2 we depict the map ξ : Ξ → Ξ in terms of the (left) Cayley graph of
−→
Λ 3.

Shaded terms that are connected by a dotted curve cancel out each other.

( )

(1)

(2, 1)

(1, 2, 1) (3, 2, 1)

(1, 3, 2, 1)

(2, 1, 3, 2, 1)

(1, 2, 1, 3, 2, 1)

(2, 3, 2, 1)

(1, 2, 3, 2, 1)

(2)

(1, 2) (3, 2)

(1, 3, 2)

(2, 1, 3, 2)

(1, 2, 1, 3, 2)

(2, 3, 2)

(1, 2, 3, 2)

(3)

(1, 3)

(2, 1, 3)

(1, 2, 1, 3)

(2, 3)

(1, 2, 3)

Figure 3.2: Cayley graph of
−→
Λ 3 and the matching induced by ξ.

Recall that
−→
Λ n−1 is a set of representatives for Qn−1r�n−1. Combining Corollary 3.2.2

and Proposition 3.2.7 we obtain the following.

Theorem 3.2.9 Let (X,S, η) be a factorable monoid and denote by (Ṽ∗, ∂
V
∗ ) its Visy
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resolution. The differential ∂V∗ : Ṽ∗X → Ṽ∗−1X can be written as follows,

∂Vn = πn−1 ◦ ∂n ◦
∑

α∈Qn−1r�n−1

(−1)ℓ(α) · fα ◦ in. (3.21)

One aim of the following section is to make precise the similarity between formulas (3.21)
and (2.15) on page 91.

3.3 Z-coefficients

So far we were working with ZX-coefficients. The Visy complex, however, is over Z. To
relate our results to those of Visy and Wang we will now investigate the complex that
arises from tensoring Ṽ∗ with Z.

Convention. As long as not stated otherwise, the action of ZX on Z is always by
augmentation, i.e. X acts trivially on Z.

3.3.1 The E
1-page revisited

Throughout this section we fix a factorable monoid (X,S, η). Recall that the choice
of a generating set S gives rise to a filtration of the normalized bar complex, F•B∗X.
Associated to this filtration there is a fourth quadrant spectral sequence, the E0-page of
which having as entries the filtration quotients

E
0
p,q = GpBp+qX,

where GpBp+qX = FpBp+qX/Fp−1Bp+qX. Since we are working in the normalized bar
complex, every n-cell has norm at least n and thus FhBnX = 0 if h < n. It follows that
E0
p,q = 0 for q > 0 and

E
0
n,0 = FnBnX.

In Figure 2.1 we showed how the E0-page of this spectral sequence looks abstractly.
Figure 3.3 gives a more detailed picture.

In order to keep this chapter self-contained, we will now sketch the proof of Theorem
2.1.21 for factorable monoids.

Theorem 2.1.21’ (Visy, Wang) The homology of each vertical complex GhB∗X is
concentrated in degree h. Equivalently speaking, the E1-page consists of a single chain
complex

0 E1
1,0

oo E1
2,0

d12,0oo E1
3,0

d13,0oo . . .
d14,0oo
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3 The Visy resolution

p = 0 p = 1 p = 2 p = 3 p = 4

q = 0 F0B0X F1B1X F2B2X

d
0

2,0

��

F3B3X

d
0

3,0

��

F4B4X

d
0

4,0

��
q = −1 0 0 G2B1X G3B2X

d
0

3,1

��

G4B3X

d
0

4,1

��
q = −2 0 0 0 G3B1X G4B2X

d
0

4,2

��
q = −3 0 0 0 0 G4B1X

Figure 3.3: Fourth quadrant spectral sequence E0
p,q.

This Theorem is originally due to Visy, who proved it for factorable groups. Wang
generalized his result to weakly factorable monoids. Below we outline an alternative
idea of proof for factorable monoids.

Proof. Denote by Ωn the set of all n-cells [xn| . . . |x1] with xi 6= ǫ for all i. Then Ω∗ is
a Z-basis for B∗X. We define a matching µ : Ω∗ → Ω∗ as in (3.1) on page 95. Clearly, µ
is an involution for any ground ring. We can almost literally copy the proof of Lemma
3.1.10 to show that µ is Z-compatible. The proof of noetherianity also goes through
without any significant changes. Altogether, µ defines a noetherian matching on the
(based) normalized bar complex (B∗X,Ω∗, ∂∗).

We now show that µ descends to a matching on each complex of filtrations quotients
(GhB∗X, ∂

′
∗). Denote by Ωn,h the set of n-cells of norm h. Note that Ωn,h is a Z-basis

for GhBnX. Furthermore recall that if two cells are matched then their norms coincide.
Therefore µ restricts and corestricts to a matching (not necessarily a Z-compatible one)

on the based chain complex (GhB∗X,Ω∗,h, ∂
′
∗). This matching is clearly noetherian, and

for the following reason it is Z-compatible: For every redundant cell x ∈ Ωn,h we can
write ∂µ(x) uniquely as g + g′ ∈ FhBnX, where g ∈ GhBnX and g′ ∈ Fh−1BnX. (This
is possible because the modules FhBnX and GhBnX are freely generated by elements
of Ω∗.) Note that g = ∂

′
∗µ(x) and that [g′ : x] = 0 for norm reasons. Therefore

[∂µ(x) : x] = [g : x] = [∂
′
µ(x) : x], proving Z-compatibility.

The essential cells of µ : Ω∗,h → Ω∗,h are exactly those essential cells of the original
matching µ : Ω∗ → Ω∗ that have norm h. In particular, every essential cell has elemen-
tary partition type and thus lives in GhBhX = E0

h,0. Theorem 1.1.29 implies that the

homology of each complex GhB∗X is concentrated in degree h. �
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3.3 Z-coefficients

Remark 3.3.1 The above constructed matching µ : Ω∗,h → Ω∗,h on GhB∗X is per-

fect , meaning that the associated Morse complex ((GhB∗X)θ, (∂
′
∗)

θ) is isomorphic to the

homology of the original complex H∗(GhB•X, ∂
′
•).

We now investigate the E1-page. Recall that E0
n,1 = 0 and hence im(d0n,1 : E

0
n,1 → E0

n,0) =
0, yielding

E
1
n,0 = ker(d0n,0 : E

0
n,0 → E

0
n,−1).

From this we see that E1
n,0 ⊆ E0

n,0 = FnBnX ⊆ Bn. In other words, E1
∗,0 sits as a graded

Z-module in B∗X.

Lemma 3.3.2 The E1-page (E1
∗,0, d

1
∗,0) is a sub-chain complex of the normalized bar

complex (B∗X, ∂∗).

Proof. It only remains to show compatibility of the differentials. To see this, recall that
d1n,0 : E1

n,0 → E1
n−1,0 is the connecting homomorphism Hn(GnB∗X) → Hn−1(Gn−1B∗X)

in the long exact homology sequence associated to the following short exact sequence of
filtration quotients:

0 // Gn−1B∗X // FnB∗X/Fn−2B∗X // GnB∗X
// 0

An easy diagram chase shows that d1∗,0(c) = ∂∗(c) for every c ∈ E1
∗,0. �

We proceed by characterizing the module E1
n,0 inside BnX.

Lemma 3.3.3 For a chain c ∈ BnX the following are equivalent:

(a) c ∈ E1
n,0.

(b) c has elementary partition type and norm(∂c) < n.

Proof. First of all, observe that a chain c ∈ BnX has elementary partition type if
and only if c ∈ FnBnX = E0

n,0. It therefore remains to show that for c ∈ E0
n,0 we have

c ∈ ker(d0n,0 : E
0
n,0 → E0

n,−1) if and only if norm(∂c) < n.

The differential d0n,0 : E
0
n,0 → E0

n,−1 is given as follows,

E0
n,0

d0n,0

��

FnBnX
∂ //

d0n,0

��

FnBn−1X

pruuuullllllllllllll

E0
n,−1 FnBn−1X/Fn−1Bn−1X

where pr : FnBn−1X → FnBn−1X/Fn−1Bn−1X denotes the canonical projection onto
the quotient.
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3 The Visy resolution

Consider c ∈ E0
n,0. The chain c lies in the kernel of d0n,0 if and only if ∂c lies in the kernel

of the projection map, i.e. if and only if ∂c ∈ Fn−1Bn−1X. The latter is the case if and
only if norm(∂c) < n. The Lemma is proven. �

Lemma 3.3.4 For a chain c ∈ EnX the following are equivalent:

(a) c ∈ (EnX)Θ.

(b) c has elementary partition type and norm(∂c) < n.

Proof. Claim. Θ-invariant chains have elementary partition type.

Recall from Remark 3.1.6 that if x ∈ Ω∗ has elementary partition type then x is essential
or collapsible and hence V (x) = 0. It follows that if c has elementary partition type
then V (c) = 0 and thus Θ(c) = c+ V (∂c). The latter has elementary partition type, for
if c has elementary partition type then so has V (∂c).

Let c ∈ EnX be Θ-invariant. Then by Lemma 1.1.28.(c) we have Θ∞(π(c)) = c, and
π(c) is an essential chain. In particular, π(c) has elementary partition type. By our
above observation c = Θ∞(π(c)) has elementary partition type. The Claim proven.

Due to the Claim it suffices to prove the Lemma for chains of elementary partition type.
So let c ∈ EnX have elementary partition type.

“⇒”: Assume that c is Θ-invariant. Commutativity of Θ and ∂ yields Θ(∂c) = ∂(Θ(c)) =
∂c, i.e. ∂c is Θ-invariant and hence has elementary partition type. On the other hand,
∂c ∈ En−1X. From this we see that norm(∂c) ≤ n− 1. (Note that norm(∂c) < n − 1 if
and only if ∂c = 0.)

“⇐”: Let c ∈ EnX have elementary partition type. We have ∂c ∈ En−1X. Now, if
norm(∂c) < n then ∂c must have elementary partition type. In particular, ∂c is an
essential–collapsible chain and thus V (∂c) = 0. Therefore Θ(c) = c+V (∂c) = c and c is
indeed Θ-invariant. �

Recall from Lemma 3.3.2 that (E1
∗,0, d

1
∗,0) ⊆ (B∗X, ∂∗). Furthermore, by Theorem 1.1.23,

the complex of Θ-invariant chains ((E∗X)Θ, ∂∗) is a retract of the normalized bar reso-
lution (E∗X, ∂∗), and thus the complex ((E∗X)Θ, ∂∗)⊗ZX Z also embeds into (B∗X, ∂∗).
The subsequent Proposition compares those two subcomplexes.

Proposition 3.3.5 The following map is an isomorphism of chain complexes,

(E1
∗,0, d

1
∗,0) −→ ((E∗X)Θ, ∂∗)⊗ZX Z,

c 7−→ c⊗ 1.

Proof. We first show that E1
∗,0 and (E∗X)Θ ⊗ZX Z are isomorphic as graded modules.

Recall from (1.3) on page 30 that the map Θ preserves gradings, i.e. Θ(EnX) ⊆ (EnX).
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3.3 Z-coefficients

This yields the following:

(E∗X)Θ ⊗ZX Z =


⊕

n≥0

[
(EnX)Θ

]

⊗ZX Z

=
⊕

n≥0

[
(EnX)Θ ⊗ZX Z

]
(3.22)

From Lemmas 3.3.3 and 3.3.4 we conclude that for every n ≥ 0 the map c 7→ c ⊗ 1
provides an isomorphism between the modules E1

n,0 and (EnX)Θ ⊗ZX Z. Plugging this

in into (3.22), we obtain (E∗X)Θ ⊗ZX Z ∼= E1
∗,0.

Compatibility of the differentials is clear, because on both complexes, (E1
∗,0, d

1
∗,0) and

((E∗X)Θ, ∂∗) ⊗ZX Z, the differential is the restriction of the bar differential ∂∗ (with
coefficients in Z). �

3.3.2 κ is an isomorphism

Proposition 3.3.6 Let (X,S, η) be a factorable monoid. Denote by (V∗, ∂
V
∗ ) its Visy

complex. The following map is an ismorphism of chain complexes,

(V∗, ∂
V
∗ ) −→ ((E∗X)θ, ∂

θ
∗)⊗ZX Z

c 7−→ c⊗ 1.

Proof. Denote by Ωθ
n the set of essential n-cells, i.e. Ωθ

n consists of all cells [xn| . . . |x1]
with xi ∈ S+ for all i and (xi+1, xi) unstable for all 1 ≤ i < n. Recall from discrete
Morse theory that Ωθ

∗ is a ZX-basis for (E∗X)θ. Furthermore, Ωθ
∗ is a Z-basis for the Visy

complex (V∗, ∂
V
∗ ), cf. page 2.1.4. This proves that c 7→ c ⊗ 1 is an isomorphism on the

underlying graded Z-modules. Compatibility of the differentials follows from comparing
Theorem 3.2.9 and Corollary 2.3.37. �

Remark 3.3.7 (a) The above Proposition gives an affirmative answer to the question
whether the Visy complex “comes from a resolution” and justifies calling (Ṽ∗, ∂

V
∗ ) =

((E∗X)θ, ∂
θ
∗) the Visy resolution of the factorable monoid (X,S, η).

(b) Note that ((E∗X)θ, ∂
θ
∗)⊗ZX Z = C∗(Y ), where C∗(Y ) is the cellular chain complex

of Y , and Y is the quotient of the classifying space BX discussed in Remark 3.1.23.
In particular, C∗(Y ) ∼= (V∗, ∂

V
∗ ). This affirmatively answers the question whether

there exists a CW complex whose cellular chain complex is (isomorphic to) the
Visy complex.

We are now ready to state and prove the main result of this thesis.
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3 The Visy resolution

Theorem 3.3.8 For every factorable monoid (X,S, η) the following diagram of chain
complexes commutes:

((E∗X)θ, ∂
θ
∗)⊗ZX Z

Θ∞⊗ZXZ // ((E∗X)Θ, ∂∗)⊗ZX Z

(V∗, ∂
V) κ

//

∼= ⊗1

OO

(E1
∗,0, d

1
∗,0)

∼= ⊗1

OO

Proof. The vertical arrows are the maps from Propositions 3.3.5 and 3.3.6. Comparing
Theorem 3.2.9 with Proposition 2.3.36 and Corollary 2.3.37, we see that Θ∞⊗ZX Z = κ,
whence the Theorem. �

Very vaguely one could summarize the above Theorem by saying that Visy’s map κ is
nothing but Forman’s discrete gradient flow Θ∞ “in disguise”.

Recall that Θ∞ : ((E∗X)θ, ∂
θ
∗) → ((E∗X)Θ, ∂∗) is an isomorphism of chain complexes.

Thus, by functoriality:

Corollary 3.3.9 For every factorable monoid (X,S, η), Visy’s map

κ : (V∗, ∂
V) −→ (E1

∗,0, d
1
∗,0)

is an isomorphism of chain complexes.

Remark 3.3.10 Wang [Wan11, Theorem 1.3.3] proved a similar result for certain fac-
torable categories. In case of a monoid (i.e. a category with one object), her result
translates to Theorem 2.1.23, namely that κ is an isomorphism if X is right-cancellative
and S is finite. Our approach to factorability via monoid actions allows to establish this
result in full generality.

3.4 Connection to Rewriting Systems

In the previous chapters we saw that both, complete rewriting systems as well as factora-
bility structures, give rise to normal forms and in this way induce noetherian matchings
on the normalized bar resolution. We are now going to show that factorable monoids fit
into the framework of complete rewriting systems. Roughly speaking, we show that in
the following diagram the dotted arrow exists:

complete rewriting system
X = (S,R)

))SSSSSSSSSSSSSS

factorable monoid
(X, S, η)

oo

uukkkkkkkkkkkkkk

noetherian matching on
(E∗X,Ω∗, ∂∗)
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3.4 Connection to Rewriting Systems

More precisely, we prove the following:

Theorem 3.4.1 (H, Ozornova) Let (X,S, η) be a factorable monoid.

(a) Then X possesses a complete rewriting system over the alphabet S, say X = (S,R).
Moreover, if S is finite, then so is (S,R).

(b) Applying Brown’s construction (cf. page 45) to the complete rewriting system as-
sociated to (X,S, η) yields the same noetherian matching on the normalized bar
resolution as our construction described in Theorem 3.1.8.

The proof of Theorem 3.4.1 will occupy the remainder of this section. We first prove
part (a).

Definition 3.4.2 Let (X,S, η) be a factorable monoid. Define the rewriting system
associated to (X,S, η) as (S,R), where the set of rewriting rules R is given as follows:

R = {(s2s1, s2s1(s2s1)
′) | for all η-unstable pairs (s2, s1) ∈ S+ × S+}

The intuition is that we write down a rewriting rule s2s1 → s2s1(s2s1)
′ for every unstable

pair (s2, s1) of non-trivial generators.

Lemma 3.4.3 Let (X,S, η) be a factorable monoid. Then the associated rewriting sys-
tem (S,R) is strongly minimal, and there is at most one irreducible representative in
every equivalence class.

Proof. (S,R) is clearly minimal: Firstly, since the pair (s2s1, (s2s1)
′) is η-stable, the

right-hand side of every rewriting rule is irreducible with respect to R. Secondly, given
an unstable pair of generators (s2, s1), the left-hand side s2s1 ∈ S∗ of the associated
rewriting rule is irreducible with respect to Rr{(s2s1, s2s1(s2s1)

′)}. This is because
every unstable pair contributes only one rewriting rule in R.

To see that (S,R) is even strongly minimal, we only have to show that every generator
s ∈ S is irreducible. But this is clear, for every reducible word must have length at least
2, because otherwise one cannot apply any rewriting rule.

It remains to show that there is at most one irreducible representative in every ↔R-
equivalence class. Assume that (sn, . . . , s1) and (tm, . . . , t1) are irreducible words over
S representing the same element, say x. We claim that (sn, . . . , s1) and (tm, . . . , t1)
are totally η-stable: Since the left-hand side of every rewriting rule has length 2, a
word w ∈ S∗ is reducible if and only if some subword of w of length 2 is reducible.
We know that (sn, . . . , s1) and (tm, . . . , t1) are irreducible, so no subword of the form
si+1si (respectively ti+1ti) is reducible, and thus (sn, . . . , s1) and (tm, . . . , t1) are indeed
totally η-stable. The recognition principle now tells us that (sn · . . . · s2, s1) = η(x) =
(tm · . . . · t2, t1). Iterating this argument, we find (sn, . . . , s1) = (tm, . . . , t1). �

To conclude part (a) of Theorem 3.4.1, we need to check noetherianity of the rewriting
system (S,R). This requires some preparation.
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3 The Visy resolution

Recall the finite sequence In1 = (1, 2, . . . , n−1, n) ∈ Fn and denote by (In1 )
n the n-fold

composition In1 . . . . .I
n
1 . The crucial ingredient for noetherianity is the following result,

which has originally been conjectured by the author. The proof is due to Ozornova, see
[Ozo].

Proposition 3.4.4 (Ozornova) Let I ∈ Fn be a finite sequence and assume that (In1 )
n

is a subsequence of I. We then have the following equality in the graded sense:

fI ≡ f←−Dn
: Xn+1 −→ Xn+1

Let us make some remarks on the proof of Proposition 3.4.4. If we could show that I ∼Q
←−
Dn, then Proposition 3.4.4 would directly follow from the Evaluation Lemma. However,

this is not true in general. For example we have (1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3) 6∼Q
←−
D3, cf.

Example 2.3.8.(b). Ozornova introduces new monoids Q′n which arise from the monoids
Qn by forcing further cancellation rules: For a finite sequence J ∈ Fn and a letter
k = 1, . . . , n she defines (k).J ∼Q′

n
J if there exists a finite sequence I = (is, . . . , i1) that

does not contain k (meaning that it 6= k for all s ≥ t ≥ 1) and (k).I.J ∼Qn I.J . These
new cancellation rules are reasonable in the sense that each Q′n admits an Evaluation
Lemma, that is, I ∼Q′ J implies fI ≡ fJ . To conclude Proposition 3.4.4, Ozornova

then shows that under the above hypothesis one has I ∼Q′

←−
Dn. The proof of the latter

statement is by a tricky inductive argument.

Example 3.4.5 Let us, for convenience, argue why (1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3) ∼Q′

←−
D3.

Set k = 1, J = (2, 3, 2, 1, 2, 3) and I = (3). Then

I.J = (3, 2, 3, 2, 1, 2, 3) ∼Q (3, 2, 3, 1, 2, 3) =
←−
D3,

and hence (k).I.J ∼Q I.J (because
←−
D3 is a representative of the absorbing element ∆3).

Thus, by the definition of Q′, we have (k).J ∼Q′ J , which reads as (1, 2, 3, 2, 1, 2, 3) ∼Q′

(2, 3, 2, 1, 2, 3). Applying this twice gives

(1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3) ∼Q′ (2, 3, 2, 1, 2, 3, 2, 1, 2, 3)

∼Q′ (2, 3, 2, 2, 3, 2, 1, 2, 3)

∼Q (3, 2, 3, 1, 2, 3) =
←−
D3.

Definition 3.4.6 Let x ∈ Xn+1. A finite sequence (is, . . . , i1) ∈ Fn is called x-effective
if for all t with s > t ≥ 1 the following holds:

fit+1fit . . . fi1(x) 6= fit . . . fi1(x).

We say that a finite sequence is effective if it is x-effective for some suitable cell x.

Clearly, every effective sequence is reduced.
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3.4 Connection to Rewriting Systems

Remark 3.4.7 Consider i, j such that |i − j| ≥ 2. Then the finite sequence (i, j) is
x-effective if and only if (j, i) is x-effective. In particular, x-effectiveness in invariant
under the distant commutativity relation ∼dist. It follows that if I is x-effective then so

are its left- and right-most representatives
←−
I resp.

−→
I .

Noetherianity of the rewriting system (S,R) will follow from the fact that in each Fn

there are only finitely many effective sequences. More precisely, we show that for each
n there is an upper bound cn for the lengths of effective sequences in Fn.

Definition 3.4.8 Set c1 := 1 and for n ≥ 2 we inductively define

cn := 2n · (1 + cn−1).

Lemma 3.4.9 Let x ∈ Xn+1 and consider I = (is, . . . , i1) ∈ Fn with the following
properties:

(a) I is left-most.

(b) I is x-effective.

(c) I is norm-preserving for x.

Then #I ≤ cn.

Proof. The proof is by induction on n. For n = 1 the Lemma is clearly true: Recall
that every x-effective sequence is reduced. Furthermore, the only reduced sequences in
F1 are ( ) and (1), which both have length ≤ c1.

Assume now that the Lemma has been proven for all indices < n and let x ∈ Xn+1 and
I ∈ Fn be as above. We partition I into several building blocks as follows:

I = . . . .(1).I3.(n).I2.(1).I1.(n).I0, (3.23)

where Ik ∈ Fn−1 if k is even, and Ik ∈ shift1(Fn−1) if k is odd. In other words, for even
k’s the blocks Ik do not contain the entry n, and for odd k’s the blocks Ik do not contain
the entry 1. Intuitively, we scan I from right to left until the first occurence of the value
n. We then define I0 to be the largest prefix of I that does not contain the entry n. We
then continue and scan for the first occurence of the value 1, and so on.

Note that the right-hand side of (3.23) is uniquely determined.

Since I is effective and norm-preserving with respect to x, I0 is effective and norm-
preserving with respect to x, and I1 is effective and norm-preserving with respect to
fn(fI0(x)), etc. Furthermore, being a connected subsequence of I, every Ik is left-most.
Thus, by the induction hypothesis (possibly applied with a shift), each building block
Ik satisfies #Ik ≤ cn−1.

Assume now that #I > cn = 2n · (1 + cn−1). In particular, I consists of at least 2n + 1
building blocks Ik, and thus the following definition makes sense:

J := (1).I2n−1.(n).I2n−2. . . . .(1).I1.(n).I0.
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3 The Visy resolution

Clearly, J is a prefix of I, and we have J = (it, . . . , i1) for some t < s. Also note that J
is left-most as well as effective and norm-preserving with respect to x. It is easily seen
that (1, n)n is a (not necessarily connected) subsequence of J . Since J is left-most, the
latter implies that (In1 )

n ⊂ J , compare Lemma 2.3.3.

From Proposition 3.4.4 we conclude that fJ(x) is everywhere stable. Hence fit+1◦fJ(x) =
fJ(x), contradicting x-effectiveness of I. Therefore, our assumption #I > cn is wrong.
This finishes the proof of the induction step. The Lemma is proven. �

Lemma 3.4.10 Let (X,S, η) be a factorable monoid. Then the associated rewriting
system (S,R) is noetherian.

Proof. Assume that the Lemma is wrong, i.e. there exists an infinite chain or rewritings
w1 →R w2 →R . . .. By the definition of the rewriting system (S,R), this is equivalent
to saying that there exists an n ≥ 0, such that there is a cell x ∈ Xn+1 with entries in
the generating set S and an infinite sequence (. . . , i2, i1) which is x-effective, meaning
that every prefix (is, . . . , i1) is x-effective.

Recall that applying fi to a cell either preserves its norm or strictly lowers its norm. It
follows that there exists T ≥ 1 such that the sequence (. . . , iT+1, iT ) is norm-preserving
for y := fiT−1

◦ . . . ◦ fi1(x). Define I := (iT+cn , . . . , iT ) and note that I is effective and
norm-preserving for y.

We claim that
←−
I provides a counterexample to Lemma 3.4.9 (and thus our above as-

sumption must be wrong): Clearly,
←−
I is left-most. By definition we have

←−
I ∼P I, and

the Evaluation Lemma gives f←−
I

= fI , so
←−
I is norm-preserving for y. Furthermore,

by Remark 3.4.7,
←−
I is y-effective. To get the desired contradiction, we have to argue

that #
←−
I ≥ #I = cn + 1. For this, it suffices to show that I is a representative of

minimal length of [I]P . Assume this is wrong. Then there exists a chain of relations
I = J1 ∼dist . . . ∼dist Jk with Jk not reduced. On the other hand, by Remark 3.4.7,
effectiveness is invariant under ∼dist, and we know that every effective sequence is re-

duced. So Jk is reduced, contradicting our previous statement. So #
←−
I ≥ #I and we

are done. �

Putting together Lemmas 3.4.3 and 3.4.10, we get that the rewriting system associated
to a factorable monoid is complete. Clearly, if the generating set S is finite, then so is
the set of rewriting rules R and in this case the rewriting system (S,R) is finite. Part
(a) of Theorem 3.4.1 is proven.

We now prove part (b).

Let (X,S, η) be a factorable monoid and denote by (S,R) the associated complete rewrit-
ing system. To avoid confusion, we introduce the following vocabulary.

Definition 3.4.11 Let x be a cell.

• We say that x is η-essential, η-collapsible or η-redundant, respectively, if it is
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3.4 Connection to Rewriting Systems

essential, collapsible or redundant with respect to the matching induced by the
factorability structure on X, cf. Theorem 3.1.8.

• We say that x is R-essential, R-collapsible or R-redundant, respectively, if it is
essential, collapsible or redundant with respect to Brown’s matching constructed
out of the complete rewriting system on X, cf. page 45.

Part (b) will be proven in two steps. First, we are going to show that a cell is η-essential
if and only if it is R-essential, and so on. Using this, we then show that the matching
functions are indeed equal.

Lemma 3.4.12 A cell x is η-essential, η-collapsible or η-redundant if and only if it is
R-essential, R-collapsible or R-redundant, respectively.

Proof. Observe that it suffices to prove only one implication, because every cell is
either essential or collapsible or redundant. We are going to prove the “only if”-part.
Let [xn| . . . |x1] be an n-cell and denote by wi ∈ S∗ the η-normal form of xi. We
distinguish three cases.

• [xn| . . . |x1] is η-essential.

In particular, for every i we have xi ∈ S+ and wi = xi. By η-essentiality, each pair
(wi+1, wi) is unstable, hence contributes a rewriting rule. It follows that the word
wi+1wi ∈ S

∗ is reducible. Furthermore, since wi+1wi has length 2, wi+1wi cannot
have any reducible proper prefix. Therefore, [xn| . . . |x1] is R-essential.

• [xn| . . . |x1] is η-collapsible of height h.

Recall that h > 0 (see e.g. Remark 3.1.7) and that (xh+1, xh) is η-stable. The
truncated cell [xh| . . . |x1] is η-essential, hence R-essential. Note that xh ∈ S.
Denote by (sk, . . . , s1) the normal form of xh+1, i.e. sk . . . s1 = wh+1 ∈ S∗. We
need to show that the word wh+1wh = sk . . . s1xh is irreducible. For this we need
to show that the tuple (sk, . . . , s1, xh) is totally η-stable. Since (sk, . . . , s1) is an
η-normal form, this is clear at every position > 1. So it remains to show that the
pair (s1, xh) is η-stable: We have (xh+1)

′ = s1, and the recognition principle tells
us that ((xh+1)

′, xh) is stable (because (xh+1, xh) is).

• [xn| . . . |x1] is η-redundant of height h.

The truncated cell [xh| . . . |x1] is η-essential, hence R-essential. In particular, xh ∈
S. Furthermore, the pair (xh+1, xh) is unstable and ℓ(xh+1) > 1. Denote by
(sk, . . . , s1) the normal form of xh+1. We need to show that some proper prefix of
wh+1wh = sk . . . s1x1 is reducible. We claim that the word s1xh ∈ S

∗ is reducible.
(Note that s1xh is a proper subword of wh+1wh, since ℓ(xh+1) > 1.) Indeed, we
know that the pair (xh+1, xh) is η-unstable, and the recognition principle states
that the pair ((xh+1)

′, xh) = (s1, xh) is η-unstable, hence reducible.

The Lemma is proven. �
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3 The Visy resolution

To conclude part (b), we need to argue that the matching functions coincide. Recall
that every matching is an involution. It therefore suffices to check that the respective
matching functions coincide for essential and collapsible cells, and this is easily seen by
comparing (1.11) on page 46 and (3.1) on page 95.

Theorem 3.4.1 is proven. �

Remark 3.4.13 Theorem 3.4.1 (together with Theorem 1.2.8) provides an alternative
way of proving Theorem 3.1.8 within the world of rewriting systems. However, we found
it convenient to explicitly describe the construction of the matching function µ out of
a factorability structure: The organization we chose makes this chapter self-contained,
and it allows to regard factorability independently of the theory of rewriting systems.
Furthermore, constructing µ explicitly allowed us to introduce basic methods and tools
for factorability, which were later needed to derive formulas for the differential in the
associated Morse complex. Last but not least, the organization of this chapter reflects
the chronological development of this thesis: We first found the matching for factorable
monoids and only later saw how it fits into the framework of rewriting systems.
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4 Applications to generalized Thompson
groups and monoids

In this chapter we are going to use our previous results to compute the homology of a
certain family of monoids. For some of these monoids our computations carry over to
their respective groups of fractions.

4.1 Homology of groups via homology of monoids

Let X be a monoid. A group of fractions for X is a group G(X) together with a
morphism of monoids i : X → G(X) satisfying the following universal property: For
every group H and every morphism of monoids f : X → H there is a unique morphism
of groups g : G(X)→ H such that f = g ◦ i.

X
i //

f

��

G(X)

∃! g||
H

Evidently, G(X) is unique up to unique isomorphism, and if the map i : X → G(X) is
clear, then we will sometimes just say that G(X) is the group of fractions of X.

It is well-known that every monoid X possesses a group of fractions: Let X = 〈S | R〉
be a presentation of X. Set G = 〈S | R〉Grp, i.e. here we consider 〈S | R〉 as a group
presentation. Then i : X → G is a group of fractions, where i is the canonical map
induced by the identity on S∗.

The map i : X → G(X) will in general not be injective. For example, in Pn (and also in
Qn) every element of the generating set S = {[1]P , . . . , [n]P } is idempotent, and hence
G(Pn) = 0.

An obvious necessary condition for injectivity of i : X → G(X) is that X is cancellative.
However, cancellativity of X is not sufficient. Indeed, in [Mal37, §2], Malcev introduces
the following monoid:

X = 〈a, b, c, d, a′, b′, c′, d′ | ac = a′c′, ad = a′d′, bc = b′c′〉

Loc. cit. shows that X is cancellative and that bd 6= b′d′ (in X), but i(bd) = i(b′d′),
where i : X → G(X) is a group of fractions.
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4 Applications to generalized Thompson groups and monoids

Definition 4.1.1 A monoid X satisfies the right Ore condition, if any two elements
have a common right multiple, i.e. if for all x, x′ ∈ X there exist y, y′ ∈ X such that

xy = x′y′.

The analogous left Ore condition will not play a role in this work, and thus we will often
suppress the adjective “right”.

Clearly, every abelian monoid satisfies the Ore condition.

Theorem 4.1.2 (Ore’s Embedding Theorem) Let X be a monoid and i : X →
G(X) a group of fractions. If X is cancellative and satisfies the right Ore condition,
then i : X → G(X) is injective.

Proof. See e.g. Theorem 1.23 in Clifford–Preston [CP61]. �

The following is Proposition 4.1 in Cartan–Eilenberg [CE99, Chapter X].

Theorem 4.1.3 (Cartan–Eilenberg) Let X be a monoid and i : X → G(X) a group
of fractions. If X is cancellative and satisfies the right Ore condition, then i : X → G(X)
induces isomorphisms on homology and cohomology groups,

H∗(i) : H∗(X)
∼=
−→ H∗(G(X)),

H∗(i) : H∗(G(X))
∼=
−→ H∗(X).

Theorem 4.1.3 allows us, under certain circumstances, to compute the homology of a
group G by computing the homology of a certain submonoid. This has the following
advantage. For “most” factorable groups, the associated Visy complex V∗ grows super-
linearly, meaning that the rank sequence (rk(V1), rk(V2), . . .) does not lie in O(n), cf.
Rodenhausen [Rod], [Rod11].1 If, in contrast, X is a monoid without any non-trivial
invertible elements, then it can happen that the Visy complex is finite.

We illustrate this idea with a very basic example. The reader should not mind the fact
that the homology of the monoid and group occuring in the example can be computed
much easier by writing down explicit resolutions. We will see more interesting examples
in Section 4.3.

Example 4.1.4 Consider X = N with group of fractions G(X) = Z. Clearly, N is
cancellative and commutative, and thus i∗ : H∗(N) → H∗(Z) is an isomorphism. Write
V∗Z for the Visy complex associated to the factorability structure on Z with respect to
S = {±1}, cf. Example 2.1.13. In every positive degree, the Visy complex of Z is freely
generated by the “alternating cells” [. . . | − 1|+ 1| − 1|+ 1] and [. . . |+ 1| − 1|+ 1| − 1],
whence infinite. Equip N with the factorability structure discussed in Example 2.2.9 for
m = 1, i.e. S = {1}. The tuple (1, 1) is stable, and therefore the Visy complex vanishes
in positive degrees. Indeed, the Visy complex V∗N is isomorphic to the homology of N.

1Indeed, it is indicated in [Rod11] that if G has Visy complex of at most linear growth then G is a
so-called horizontal-vertical group, for short hv-group.
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4.2 Braid factorability

One aim of this chapter is to use the idea described above, to recompute the homology
of an infinite family of groups that has been introduced by Brown [Bro87]. One of these
groups is Thompson’s group F . In particular, we provide a purely combinatorial way of
computing the homology of F .

4.2 Braid factorability

In this section we investigate a very special class of factorable monoids for which the
differentials in the associated Visy complex can be described much simpler.

Definition 4.2.1 Let X be a monoid, S a generating set, and η : X → X × X a
factorization map. For 0 < i < n set fi = ηi ◦ di : X

n → Xn, compare (2.1). We say
that (X,S, η) is braid factorable if

f1f2f1 ≡ f2f1f2 : X
3 → X3. (4.1)

Clearly, by idempotence of the fi’s, every braid factorable monoid is factorable.

In Figure 4.1 we visualize the compositions occuring in (4.1).

f1

f1

f2

x3 x2 x1

(a) f1f2f1

f2

f2

f1

x3 x2 x1

(b) f2f1f2

Figure 4.1: Visualization of the compositions occuring in (4.1).

Example 4.2.2 (a) The trivial factorability structure on a monoid is a braid factora-
bility structure.

(b) Rodenhausen [Rod] proves that the free and direct product of braid factorable
monoids is again braid factorable.

In contrast, the semidirect product of two braid factorable monoids will not be
braid factorable in general. The reason for this is that the action X → End(Y )
might not preserve stability, i.e. stable pairs might be sent to unstable ones, cf.
[Rod].
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4 Applications to generalized Thompson groups and monoids

(c) It is easily seen that the map η(n) = (n − min{n, 1},min{n, 1}) from Example
2.2.9 (with m = 1) endows (N, {1}) with a braid factorability structure. Together
with part (b) this shows that the canonical factorability structure on free and free
abelian monoids is indeed a braid factorability structure.

(d) Ozornova [Ozo] proves that the construction described in Example 2.2.8 actually
defines a braid factorability structure on Garside monoids.

(e) Recall from Example 2.1.14 our standard factorability structure on the symmetric
groups Sn. For n ≥ 3 this factorability structure is not a braid factorability
structure, since for example

f1f2f1((23), (13), (12)) = ((12), (12), (13)),

f2f1f2((23), (13), (12)) = (id, id, (13)).

In particular, f1f2f1 is norm-preserving for ((23), (13), (12)), but f2f1f2 is not.
Therefore f1f2f1 6≡ f2f1f2 : X

3 → X3.

Remark 4.2.3 Rodenhausen [Rod] gives the following characterization of braid fac-
torability. Let (X,S, η) be a factorable monoid. Then (X,S, η) is braid factorable if and
only if for every word (sn, . . . , s1) ∈ S

∗ the following holds: (sn, . . . , s1) is an η-normal
form if and only if in the opposite monoid the word (s−11 , . . . , s−1n ) is an η-normal form.

4.2.1 The monoids Zn

As for factorability, we can characterize braid factorability by certain monoid actions.
For n ≥ 0 define the monoid Zn as the quotient2

Zn = Pn / 〈∼braid〉,

where [i, i+1, i]P ∼braid [i+1, i, i+1]P for all i, 1 ≤ i < n, see Figure 4.2.

∼braid

Figure 4.2: Visualization of ∼braid.

Explicitly writing down the presentation Pn / 〈∼braid〉 one finds

Zn
∼= 〈z1, . . . , zn | z

2
i = zi, zizj = zjzi for |i− j| ≥ 2, zi+1zizi+1 = zizi+1zi〉,

and hence Zn is a so-called Coxeter monoid of type An, see e.g. Tsaranov [Tsa90].
Furthermore, observe that Zn is a quotient of Qn. We have the following analogue to
Proposition 2.2.17:

2We use the letter Z, because Zn will detect braid factorability (german Zopffaktorabilität).
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4.2 Braid factorability

Proposition 4.2.4 Let X be a monoid, S a generating set and η : X → X × X a
factorization map. If (X,S, η) is a factorable monoid then for every n ≥ 0 and all h ≥ 0
the action f : Pn−1 → End(GhBnX) factors through Zn−1.

We omit the proof.

Remark 4.2.5 (a) Denote by Γn the undirected left Cayley graph of Zn (with respect
to the canonical generating set {[1]Z , . . . , [n]Z}) without reflexive edges. More
precisely, as vertex set we take all elements of Zn, and we draw an undirected edge
between α and β if α 6= β and if β = [k]Z · α for some k, 1 ≤ k ≤ n. In Figure 4.3
we depict Γ3.

[3, 2, 1][1, 2, 1]

[2, 1]

[2, 3, 2, 1]

[1, 2]

[3, 1, 2, 1]

[1]

[3, 2, 1, 2, 3]

[2]

[2, 3, 1, 2, 1]

[2, 1, 3]

[3, 2, 3, 1, 2, 3]

[]

[1, 3, 2]

[1, 3]

[2, 1, 2, 3]

[3, 2]

[2, 1, 3, 2]

[3]

[2, 3, 1, 2, 3]

[1, 2, 3]

[2, 3]

[3, 1, 2, 3]

[3, 2, 3]

Figure 4.3: Undirected left Cayley graph of Z3 without reflexive edges.

Recall that Zn is a Coxeter monoid of type An. The symmetric group Sn+1 is a Cox-
eter group of type An, and we claim that Γn is isomorphic to the undirected Cayley
graph of the (n+1)-st symmetric group Sn+1 with respect to its Coxeter generating
set, which consists of the elementary transpositions E = {(12), (23), . . . , (n n+1)}.
Define a map Sn+1 → Zn as follows. For σ ∈ Sn+1 choose a representative
(is is+1) ◦ . . . ◦ (i1 i1+1) that is geodesic, i.e. s = ℓE(σ), and set

σ 7−→ [is, . . . , i1]Z .

This is well-defined, and it gives a bijection between the elements of Sn+1 and Zn.
It is now not difficult to check that this map realizes an isomorphism between the
respective Cayley graphs.
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4 Applications to generalized Thompson groups and monoids

(b) By part (a) we have #Zn = (n+ 1)!, and therefore, for a braid factorable monoid
(X,S, η), noetherianity of the associated rewriting system (S,R) is immediate,
compare Lemma 3.4.10.

Our next aim is to give an easy description of the Visy differential for braid factorable
monoids that are 2-balanced. We need some preparation first.

Denote by Ωn the set of all n-tuples [xn| . . . |x1] with non-trivial entries. Recall the

projection onto essential cells πn : Bn → B
θ
n.

Lemma 4.2.6 Let (X,S, η) be a factorable monoid. Let x ∈ Ωn have elementary parti-
tion type and consider I ∈ Fn−1. If X is 2-balanced with respect to S, then for every i,
n > i > 0, we have πn−1(difI(x)) = 0.

Proof. Since X is 2-balanced, we have

norm(x) ≡ norm(fI(x)) mod 2.

Note that for n > i > 0 we obtain the i-th face by multiplying the (i + 1)-st and i-th
entry of fI(x), and thus

norm(fI(x)) ≡ norm(difI(x)) mod 2.

We conclude that norm(difI(x)) 6= norm(x)− 1 = n− 1 and hence πn−1(di(fI(x))) = 0.
The Lemma is proven. �

Lemma 4.2.7 Let (X,S, η) be a factorable monoid. Let x ∈ Ωn have elementary parti-
tion type and consider I ∈ Fn−1. If one of the following holds,

• fI(x) is stable at at least two positions or

• fI(x) is stable at an inner position, i.e. fI(x) is stable at some position i with
n− 1 > i > 1,

then πn−1(d0fI(x)) = 0 and πn−1(dnfI(x)) = 0.

Proof. The proof is immediate, because in any of these cases d0fI(x) resp. dnfI(x) is
stable at at least one position, and hence not essential. �

Recall Φb
a = fa ◦ . . . ◦ fb−2 ◦ fb−1 and define its “opposite” Ψa

b = fb−1 ◦ . . . ◦ fa+1 ◦ fa.
Note that for a ≥ b we have Φb

a = id and Ψa
b = id.

Proposition 4.2.8 Let (X,S, η) be a braid factorable monoid and assume that X is
2-balanced with respect to S. Then the differential in the Visy complex (V∗, ∂

V
∗ ) can be

written as

∂Vn = πn−1 ◦
n∑

i=1

(−1)i ·
(
dnΨ

i
n − d0Φ

i
1

)
◦ in. (4.2)
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4.2 Braid factorability

We are in a similar situation as we were in Proposition 3.2.7. There we showed that
we can actually sum over a larger indexing set, because the additional terms cancelled
out orbitwise. Here the situation is a little simpler, because each additional term will
already be zero.

Proof. First of all, for n = 1, 2 the Proposition is easily seen to hold true: For n = 1
the right-hand side of (4.2) computes to π0 ◦ (d0 − d1) ◦ id ◦i1 = π0 ◦ ∂1 ◦ f( ) ◦ i1, which

is equal to ∂V1 , because the empty sequence ( ) is the only element in
−→
Λ 1, cf. Theorem

3.2.9. For n = 2 the right-hand side of (4.2) computes to π0 ◦ (d0 + d2) ◦ (id−f1) ◦ i2,
which by Lemma 4.2.6 and Theorem 3.2.9 is equal to ∂V2 .

In what follows we assume that n ≥ 3.

We introduce the following vocabulary. A finite sequence (is, . . . , i1) is called ascending
(resp. descending) if it+1 = it + 1 (resp. it+1 = it − 1) for all t, s > t ≥ 1. Observe that
if I is ascending (resp. descending) then fI = Ψa

b (resp. fI = Φb
a) for some b ≥ a.

Let x be an n-cell of elementary partition type.

Claim. If I ∈
−→
Λ n−1 is neither ascending nor descending then

Claim. πn−1((d0 + (−1)ndn) ◦ fI(x)) = 0.

Obviously, every sequence of length < 2 is ascending (and descending). From now on
we only consider sequences I = (is, . . . , i1) with s ≥ 2. W.l.o.g. we may assume that I
is norm-preserving for x, because otherwise fI(x) = 0 in EnX. Furthermore, by Lemma
4.2.7, we may assume that is = 1 or is = n− 1 (because otherwise fI(x) is stable at an
iner position).

Additionally assume that I is neither ascending nor descending. To prove the Claim, it
suffices to show that fI(x) is stable at at least two positions, cf. Lemma 4.2.7.

Denote by k the smallest index such that the connected subsequence (is, . . . , ik) is as-
cending or descending, i.e. we consider the largest “tail” of (in, . . . , i1) which is ascending
or descending. Clearly, s > k > 1. We distinguish three cases. In each of these cases we
will use an Evaluation Lemma for ∼Z , compare Remark 2.2.19. It states that, since I is
norm-preserving for x, we have that if I ∼Z J then fI(x) = fJ(x).

• Case 1: is = n− 1.

Since (is, . . . , i1) is right-most and reduced, it follows that ik < ik−1, see Figure
4.4. We have (is, . . . , ik−1) ∼Q (ik−1−1).(is, . . . , ik−1), and therefore fI(x) is stable
at positions is = n−1 and ik−1−1 < n−1. Thus πn−1((d0+(−1)ndn)◦fI(x)) = 0.

• Case 2: is = 1.

We have ik ≤ ik−1+1, because (is, . . . , i1) is right-most. Since (is, . . . , i1) is reduced
and (is, . . . , ik−1) is neither ascending nor descending, it follows that ik−1 > ik +1
or ik−1 = ik − 1.

– Case 2.1: ik−1 > ik + 1.
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4 Applications to generalized Thompson groups and monoids

s k

∼P

��

OO
∼P

∼Q

//

Figure 4.4: Case 1: is = n− 1.

Obviously, (is, . . . , ik−1) ∼P (ik−1).(is, . . . , ik), see Figure 4.5. Hence, fI(x) is
stable at positions is = 1 and ik−1 > 2, yielding πn−1((d0+(−1)ndn)◦fI(x)) =
0.

s k

∼P

//

Figure 4.5: Case 2.1: is = 1 and ik−1 > ik + 1.

– Case 2.2: ik−1 = ik − 1.

This is the only case where we actually need that (X,S, η) is braid factorable.
We have (is, . . . , ik−1) ∼Z (ik).(is, . . . , ik−1), see Figure 4.6. It follows that
fI(x) is stable at positions is = 1 and ik > 1, and therefore we have πn−1((d0+
(−1)ndn) ◦ fI(x)) = 0.

s k

∼Z

//
∼P

//

Figure 4.6: Case 2.2: is = 1 and ik−1 = ik − 1.

The Claim is proven.
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4.2 Braid factorability

Denote by Mn−1 ⊆ Fn−1 the set of ascending or descending finite sequences (is, . . . , i1)

with either s = 0 or is = n− 1 or is = 1. Note that Mn−1 ⊆
−→
Λ n−1 and recall that

−→
Λ n−1

is a set of representatives for Qn−1r�n−1. Putting together Theorem 3.2.9, Lemma
4.2.6 and the Claim we obtain

∂Vn = πn−1 ◦ (d0 + (−1)ndn) ◦
∑

I∈Mn−1

(−1)#I · fI ◦ in, (4.3)

Using the above description of ascending resp. descending sequences via Ψa
b resp. Φb

a we
can write

∑

I∈Mn−1

(−1)#I · fI = id+

n−1∑

i=1

(−1)n−iΨi
n +

n∑

i=2

(−1)i−1Φi
1. (4.4)

Plugging in (4.4) into (4.3) we obtain

∂Vn = πn−1 ◦ (d0 + (−1)ndn) ◦

[
id+

n−1∑

i=1

(−1)n−iΨi
n +

n∑

i=2

(−1)i−1Φi
1

]
◦ in.

Now, for 1 ≤ i ≤ n− 1 the composition Ψi
n ends with fn−1 and hence Ψi

n(x) is stable at
position n− 1. In particular, d0Ψ

i
n(x) = 0 is not essential and thus πn−1(d0Ψ

i
n(x)) = 0.

Similarly, πn−1(dnΦ
i
1(x)) = 0. We therefore get

∂Vn = πn−1 ◦

[
(d0 + (−1)ndn) ◦ id+(−1)n

n−1∑

i=1

(−1)n−idnΨ
i
n +

n∑

i=2

(−1)i−1d0Φ
i
1

]
◦ in.

Recall that Φ1
1 = id and Ψn

n = id. This yields

∂Vn = πn−1 ◦

[
d0Φ

1
1 + (−1)ndnΨ

n
n +

n−1∑

i=1

(−1)idnΨ
i
n −

n∑

i=2

(−1)id0Φ
i
1

]
◦ in

= πn−1 ◦

[
n∑

i=1

(−1)idnΨ
i
n −

n∑

i=1

(−1)id0Φ
i
1

]
◦ in

= πn−1 ◦
n∑

i=1

(−1)i · (dnΨ
i
n − d0Φ

i
1) ◦ in.

The Proposition is proven. �

4.2.2 A class of braid factorable monoids

In this section we introduce a class of balanced, braid factorable monoids. These monoids
arise from an abstract datum that we call “a good set of arrows”, and which should be
thought of as a nice set of conjugacy relations. The results of this section will later be
used to derive braid factorability of certain monoids.
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4 Applications to generalized Thompson groups and monoids

Definition 4.2.9 Let S be an alphabet, possibly infinite, and let A ⊆ S+ × S+ × S+
be a set of triples. The elements of A are called arrows, and for (a, b, c) ∈ A we refer to
a as its head and to (b, c) as its tail. (So we think of the arrows as pointing from right
to left.) The monoid associated to the pair (S,A) is defined as follows:

X(S,A) := 〈S | ab = bc for every (a, b, c) ∈ A〉.

Note that X(S,A) is balanced with respect to S.

Define the source map σ : S3 → S2 and target map τ : S3 → S2 as follows:

σ(a, b, c) = (b, c),

τ(a, b, c) = (a, b).

To avoid confusion, we remark that the source map assigns to every arrow its tail.
However, note that the target map assigns to an arrow (a, b, c) the tuple (a, b) and not
only its head a.

The idea behind this concept is that we want to define a map φ : S2 → S2 as in
Proposition 2.3.17. If (b, c) lies in the image of the source map, that is, there exists
a ∈ S+ such that (a, b, c) ∈ A, then φ(b, c) = (a, b). Otherwise φ should fix this
element. We now give a set of axioms guaranteeing that this map φ gives rise to a braid
factorability structure on the pair (X,S).

Definition 4.2.10 Let S be an alphabet. We say that A ⊆ S3
+ is a good set of arrows

(for S), if the following axioms hold:

(M1) The restriction of the source map σ|A : A → S × S is injective. Spelled out, if
(a, b, c) ∈ A and (a′, b, c) ∈ A then a = a′. In other words, the head of an arrow is
uniquely determined by its tail.

(M2) The images σ(A) and τ(A) are disjoint. Explicitly, if (a, b, c) ∈ A then there is no
s ∈ S+ such that (s, a, b) ∈ A.

(D) “Dropping Axiom”: If (x, a, b) ∈ A and (y, b, c) ∈ A then there exists some z such
that (z, a, c) ∈ A.

(E) “Extension Axiom”: Consider (c, x, c′) ∈ A and (b, x, b′) ∈ A. There exists a such
that (a, b, c) ∈ A if and only if there exists a′ such that (a′, b′, c′) ∈ A. Furthermore,
in this case, (a, x, a′) ∈ A.

We say that a tuple (a, b) is A-unstable if it is the tail of an arrow, i.e. if there is z such
that (z, a, b) ∈ A, i.e. if and only if (a, b) lies in σ(A). Otherwise we call it A-stable.
(Note that for A-stability we do not require (a, b) to lie in τ(A).)

For convenience we discuss these axioms in more detail. Let us introduce the following
pictorial language. For every (a, b, c) ∈ A we draw a straight arrow of the following form:
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4.2 Braid factorability

a b c

Figure 4.7: The arrow associated to (a, b, c) ∈ A.

Remark 4.2.11 (a) (M1) and (M2) are minimality axioms: “Minimality” of (S,A)
refers to the following. We obtain a rewriting system for X(S,A) by taking S as
generating set and writing down a rule ab← bc for every arrow (a, b, c) ∈ A. Denote
by R the rewriting rules obtained this way. In this setting, the axioms (M1) and
(M2) are equivalent to minimality of the rewriting system (S,R), meaning that for
every tail (b, c) the associated word bc is irreducible with respect to Rr{ab← bc},
and for every target (a, b) the associated word ab is irreducible with respect to R,
cf. Figure 4.8.

b c

a

aa′

(a) Axiom (M1)

s a b c

(b) Axiom (M2)

Figure 4.8: Forbidden constellations.

(b) The dropping axiom can be reformulated as follows. If (a, b, c) is everywhere unsta-
ble, i.e. if (a, b) and (b, c) both are unstable, then the tuple (a, c) is also unstable.
In other words, whenever we have a totally unstable tuple (sn, . . . , s1) ∈ S

n, then
dropping some of the si yields again a totally unstable tuple. Figure 4.9 offers a
visualization of the dropping axiom. It has to be read as follows: Whenever the
two solid arrows exist in A, the dotted arrow also exists.

x z

a

c b y

Figure 4.9: The dropping axiom.

(c) The extension axiom assures the existence of certain arrows. We depict the if- and
only if-part in two seperate pictures in Figure 4.10.

Assume that (c, x, c′), (b, x, b′) ∈ A. The extension axiom in particular states that
if (b′, c′) is unstable, i.e. if there exists a′ ∈ S such that (a′, b′, c′) ∈ A, then there
exists a ∈ S such that (a, b, c), and thus (b, c) is unstable.

(d) Note that the dropping axiom is related to the extension axiom. Namely, after
applying the dropping axiom, we are in a position to apply extension, cf. Figure
4.10.(b). However, we think that formulating the axioms the way we did it in
Definition 4.2.10 is more convenient.
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a b c

x

c b ac′ b′ a′

(a) The only if-part.

a b c

x

c b ac′ b′ a′

(b) The if-part.

Figure 4.10: The extension axiom.

Example 4.2.12 (a) For every alphabet S, the empty set ∅ is a good set of arrows.
The associated monoid X(S,A) is the free monoid over S.

(b) Let S = {s1, s2, . . .} be totally ordered and let A = {(sj , si, sj) | i < j}. Then A is
a good set of arrows for S, and the associated monoid X(S,A) is the free abelian
monoid over S.

Let S be a formal alphabet and A a good set of arrows. Define a map φ : S2 → S2 as
follows. For a ∈ S set φ(a, ǫ) = φ(ǫ, a) = (ǫ, a). For tuples in S+ define

φ(b, c) =

{
(a, b) if (a, b, c) ∈ A

(b, c) if (b, c) /∈ σ(A).

By (M1), a is uniquely determined in the first case. Note that an element of S+× S+ is
φ-stable if and only if it is A-stable. (For convenience we remark that by axiom (M2),
A cannot contain arrows of the form (a, a, a).)

Proposition 4.2.13 Let S be a formal alphabet. If A is a good set of arrows for S then
the monoid X(S,A) is braid factorable with respect to S.

For the proof we will use an analogue of Proposition 2.3.17 for braid factorability. In fact,
we are going to show that φ2φ1φ2 = φ1φ2φ1 : S

3 → S3. It is then easily seen that φ gives
rise to a factorization map, endowing X with the structure of a braid factorable monoid
with respect to the generating set S. In the proof we only show that φ2φ1φ2 and φ1φ2φ1
are equal when considered as maps S3

+ → S3
+. Indeed, if at least one entry of the triple

(s3, s2, s1) is trivial, then we automatically have φ2φ1φ2(s3, s2, s1) = φ1φ2φ1(s3, s2, s1).

Proof. We are going to show that φ2φ1φ2 = φ1φ2φ1 : S3
+ → S3

+. Let (a, b, c) ∈ S3
+.

The following is easily verified:

φ2φ1φ2(a, b, c) =





(a, b, c) if (a, b) stable and (b, c) stable

(a, z, b) if (a, b) stable and (z, b, c) ∈ A and (a, z) stable

(y, a, b) if (a, b) stable and (z, b, c) ∈ A and (y, a, z) ∈ A

(x, a, c) if (x, a, b) ∈ A and (a, c) stable

(x,w, a) if (x, a, b) ∈ A and (w, a, c) ∈ A and (x,w) stable

(v, x, a) if (x, a, b) ∈ A and (w, a, c) ∈ A and (v, x,w) ∈ A
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We now compute φ1φ2φ1(a, b, c). If (a, b) is stable then it is easily seen that

φ1φ2φ1(a, b, c) =





(a, b, c) if (a, b) stable and (b, c) stable

(a, z, b) if (a, b) stable and (z, b, c) ∈ A and (a, z) stable

(y, a, b) if (a, b) stable and (z, b, c) ∈ A and (y, a, z) ∈ A

We do the remaining cases in more detail.

• Assume that (x, a, b) ∈ A and that (a, c) is stable. The dropping axiom tells us
that (b, c) is stable, because otherwise we would have that (a, b) and (b, c) are
unstable, hence (a, c) must be unstable, contradicting the assumption. We obtain

φ1φ2φ1(a, b, c) = φ1φ2(a, b, c) = φ1(x, a, c) = (x, a, c).

• Assume that (x, a, b) ∈ A, (w, a, c) ∈ A and that (x,w) is stable, cf. Figure 4.11.
The extension axiom tells us that (b, c) is stable (because otherwise (x,w) would
not be stable), and we obtain

φ1φ2φ1(a, b, c) = φ1φ2(a, b, c) = φ1(x, a, c) = (x,w, a).

x w

a

c b

Figure 4.11: (x, a, b) ∈ A and (w, a, c) ∈ A.

• Assume that (x, a, b) ∈ A, (w, a, c) ∈ A, (v, x,w) ∈ A. The extension axiom
implies that there exists v′ ∈ S+ such that (v′, b, c) ∈ A and (v, a, v′) ∈ A. This
yields

φ1φ2φ1(a, b, c) = φ1φ2(a, v
′, b) = φ1(v, a, b) = (v, x, a).

The Proposition is proven. �

4.3 Thompson monoids

In this section we introduce a large family of monoids generalizing Thompson’s famous
group F . Thompson’s group was the first known example of a torsion-free FP∞-group
that has infinite homological dimension, cf. Brown–Geoghegan [BG84]. The survey ar-
ticle by Cannon, Floyd, Parry [CFP96] serves as a good introduction to F .
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We are going to define a 3-parameter family of monoids tm(p, q) and their groups of
fractions T m(p, q). For m = ∞, p = 1, q = 2 we will find T ∞(1, 2) ∼= F , and for
m = ∞, p = n − 1, q = n we find the 1-parameter family of generalized Thompson
groups T ∞(n−1, n) ∼= Fn,∞ introduced by Brown [Bro87]. In particular, F ∼= F2,∞. (To
avoid confusing, we remark that the symbols∞ occuring in T ∞(n−1, n) and Fn,∞ have
nothing to do with each other.)

The homology of F has first been computed by Brown–Geoghegan [BG84]. Using similar
methods, Stein [Ste92] computed the homology of the groups Fn,∞.

We are going to compute the homology of the monoids tm(p, q) by purely combinatorial
means for 0 ≤ p ≤ q. Together with Theorem 4.1.3, our results in particular provide a
recomputation of the homology of the groups Fn,∞.

Geometrically, Thompson’s group F can be interpreted as the group of all piecewise
affine homeomorphisms of the unit interval with break-points at dyadic rationals and
slopes which are powers of 2. Using this point of view, F is generated by the functions
ξ1 and ξ2 depicted in Figure 4.12, see e.g. [CFP96, Corollary 2.6]. This geometric model
led to a whole bunch of generalizations of F , most notably by Higman [Hig74] and Stein
[Ste92].

0 1/2 3/4 1
0

1/4

1/2

1

(a) ξ1

0 1/2 3/4 7/8 1
0

1/2

5/8

3/4

1

(b) ξ2

Figure 4.12: A generating set for Thompson’s group F .

Using the result mentioned in Remark 2.3.19, Rodenhausen [Rod] proved that F is not
factorable with respect to the generating set S = {ξ±11 , ξ±12 }.

Introducing further generators ξi = ξ2−i1 ξ2ξ
i−2
1 for i ≥ 3, one finds another well-known

group presentation for F :

F = 〈ξ1, ξ2, ξ3, . . . | ξj−1ξi = ξiξj if j − i ≥ 2〉Grp (4.5)

We use the presentation in (4.5) to define 3-parameter families of monoids and groups
generalizing Thompson’s group F .
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4.3 Thompson monoids

Definition 4.3.1 For m = 0, . . . ,∞ and p, q ≥ 0 define the (generalized) Thompson
monoids tm(p, q) as follows:

tm(p, q) = 〈ξ1, . . . , ξm | ξj−pξi = ξiξj if j − i ≥ q〉 (4.6)

We remark that when writing down a relation ξj−pξi = ξiξj we implicitly understand all
occuring indices to take values in 1, . . . ,m. From now on, the ξi are abstract generators.

Denote by T m(p, q) the group of fractions of tm(p, q), i.e. we obtain T m(p, q) when
considering the right-hand side of (4.6) as group presentation.

Note that T ∞(1, 2) is Thompson’s group F .

Remark 4.3.2 For q = p + 1 the groups T ∞(p, q) have a geometric interpretation in
terms of piecewise affine homeomorphisms. More precisely, for every choice of a positive
integer r, there is an isomorphism between T ∞(n−1, n) and the group of piecewise
affine homeomorphisms of the interval [0, r] with break-points in Z[ 1n ] and slopes with
are powers of n, see Brown [Bro87, Propositions 4.1, 4.4 and 4.8]. These spaces of
piecewise affine homeomorphisms are denoted by F (r,Z[ 1n ], 〈n〉) in Stein [Ste92].

Our next aim is to derive embedding and factorability results for the monoids tm(p, q),
and in order to prove cancellation properties, it will be convenient to have a suitable
normal form tm(p, q) → {ξ1, . . . , ξm}

∗. Such a normal form will automatically come
along with a factorability structure, and we therefore begin our analysis by investigating
factorability of the tm(p, q)’s.

4.3.1 Factorability of tm(p, q)

Throughout, let p, q ≥ 0.

Proposition 4.3.3 Consider m = 0, . . . ,∞. If q > 0 and p ≤ q then tm(p, q) is braid
factorable with respect to the generating set {ξ1, . . . , ξm}.

Proof. We use Proposition 4.2.13. Set S = {ξ1, . . . , ξm}. In A we collect all triples
(ξi, ξj , ξk) for which 1 ≤ i, j, k ≤ m and k− j ≥ q and i = k−p. Since we required p ≤ q,
we have i ≥ j for every arrow (ξi, ξj, ξk). It follows that a pair (ξj , ξk) is the tail of an
arrow if and only if k − j ≥ q. In other words, we do not need to care about whether
1 ≤ i ≤ m, because this will automatically be fulfilled.

Obviously X(S,A) = tm(p, q). To prove the Proposition it suffices to show that A is a
good set of arrows for S.

Axiom (M1) is obvious, because i (and thus ξi) is uniquely determined by the index k.
We now verify (M2). Assume that (ξi, ξj , ξk) ∈ A. We need to show that j − i < q.
Indeed, j − i = j − (k − p) = p− (k − j) ≤ p− q ≤ 0 < q, whence (M2).
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4 Applications to generalized Thompson groups and monoids

We now check the dropping axiom. Assume that (ξy, ξb, ξc) ∈ A and (ξx, ξa, ξb) ∈ A. It
suffices to show that (ξy, ξa, ξc) ∈ A. For this we only need to show that c− a ≥ q and
y = c− p. Indeed, c− a = c− b+ b− a ≥ 2q ≥ q and y = c− p holds because (ξy, ξb, ξc)
is an arrow in A. Axiom (D) is proven.

Finally, we check the extension axiom. Assume that (ξb, ξx, ξb′) ∈ A and (ξc, ξx, ξc′) ∈ A.
There exists a, 1 ≤ a ≤ m, such that (ξa, ξb, ξc) ∈ A if and only if c − b ≥ q. Observe
that b = b′ − p and c = c′ − p. Therefore c − b ≥ q if and only if c′ − b′ ≥ q, and the
latter is equivalent to the existence of some index a′, 1 ≤ a′ ≤ m, with (ξa′ , ξb′ , ξc′) ∈ A.

Assume now that there exists a, a′ with (ξa, ξb, ξc) ∈ A and (ξa′ , ξb′ , ξc′) ∈ A. We need
to show that (ξa, ξx, ξa′) ∈ A. We have a′ = c′− p, yielding a′−x = c′−x− p = c′− b′+
b′−x− p ≥ 2q− p ≥ q and thus (ξx, ξa′) is A-unstable. To prove that (ξa, ξx, ξa′) ∈ A, it
only remains to show that a = a′−p. But this is clear, for a = c−p = c′−p−p = a′−p.
Therefore, (E) is fulfilled. �

Remark 4.3.4 The rewriting system associated to this factorability structure is “op-
posite” to the rewriting system on t∞(1, 2) introduced by Cohen [Coh92], in the sense
that we have a rewriting rule l → r if and only if there is a rule r → l in Cohen’s set of
rewriting rules.

What are the essential cells in Entm(p, q) with respect to this braid factorability struc-
ture? A pair of generators (ξi, ξj) is unstable if and only if j − i ≥ q. Therefore, a cell
[ξin | . . . |ξi1 ] is essential if and only if for every t, n > t ≥ 1, we have it − it+1 ≥ q. This
has two important consequences. First, for a cell being essential or not does not depend
on the parameter p. Secondly, if [ξin | . . . |ξi1 ] is essential, then i1 ≥ (n − 1) · q + in ≥
(n− 1) · q + 1.

The latter implies that for m <∞ and q > 0 there are only finitely many essential cells.
In other words, for m <∞ and q > 0 the associated Visy complex V∗tm(p, q) is finitely
generated. More precisely, from the above estimate i1 ≥ (n− 1) · q+1 it follows that an
essential cell cannot have more than 1 + (m− 1)/q entries. As an immediate Corollary
we obtain the following:

Corollary 4.3.5 For m < ∞, q > 0 and p ≤ q we have the following bound on the
homological dimension of tm(p, q):

hodim tm(p, q) ≤

⌊
m− 1

q

⌋
+ 1

We remark that later Proposition 4.5.1 will give an exact computation of the homological
dimension.

Example 4.3.6 (Euler characteristic) Let m <∞, q > 0 and p ≤ q. Set

rn,m(p, q) := rkHn(tm(p, q)).
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Clearly, rn,m(p, q) = 0 for n < 0. Furthermore, by Corollary 4.3.5, rn,m(p, q) = 0 for
n sufficiently large. We can therefore compute the Euler characteristic χ(tm(p, q)) as
follows,

χ(tm(p, q)) =
+∞∑

n=−∞

(−1)n · rn,m(p, q).

Note that an n-cell [ξin | . . . |ξi1 ] is essential if and only if [ξin | . . . |ξi2 ] is essential and
i1 − i2 ≥ q. Distinguishing whether i1 < m or i1 = m yields the following splitting of
the Visy modules. For m ≥ q and all n ∈ Z we have

Vntm(p, q) ∼= Vntm−1(p, q)⊕ Vn−1tm−q(p, q).

From this we obtain the following recursion formula for the rn,m(p, q)’s:

rn,m(p, q) = rn,m−1(p, q) + rn−1,m−q(p, q).

Taking on both sides the alternating sum over m running from −∞ to +∞, we conclude
that for m ≥ q we have

χ(tm(p, q)) = χ(tm−1(p, q))− χ(tm−q(p, q)). (4.7)

For m ≤ q the monoid tm(p, q) is free on m generators (because the set of relations
in (4.6) is empty), and hence χ(tm(p, q)) = 1 − m. For m > q we can use (4.7). We
can therefore recursively compute the Euler characteristic for every Thompson monoid
tm(p, q) with parameters m < ∞, q > 0 and p ≤ q. Again, note that χ(tm(p, q)) does
not depend on the particular choice of the parameter p = 0, . . . , q.

We list some explicit computations in Figure 4.13. An entry is shaded gray if for this
choice of parameters there are no relations, i.e. if the corresponding monoid tm(p, q) is
free (non-abelian).

χ q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7

m = 1 0 0 0 0 0 0 0
m = 2 0 -1 -1 -1 -1 -1 -1
m = 3 0 -1 -2 -2 -2 -2 -2
m = 4 0 0 -2 -3 -3 -3 -3
m = 5 0 1 -1 -3 -4 -4 -4
m = 6 0 1 1 -2 -4 -5 -5
m = 7 0 0 3 0 -3 -5 -6
m = 8 0 -1 4 3 -1 -4 -6
m = 9 0 -1 3 6 2 -2 -5
m = 10 0 0 0 8 6 1 -3

Figure 4.13: Euler characteristic χ(tm(p, q)) for p ≤ q.
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4.3.2 Embedding tm(p, q) into T m(p, q)

We now derive sufficient conditions for tm(p, q) embedding into its group of fractions.
To this end, we first investigate cancellation properties of the tm(p, q)’s.

Clearly, if m ≤ p or m ≤ q then there are no relations at all. In particular, in this case,
the monoids tm(p, q) are free of rank m, and so are the groups T m(p, q). In contrast,
if m > p ≥ q and p > 0, then the monoids tm(p, q) are not cancellative, because
ξ1ξ1 = ξ1ξp+1, but ξ1 6= ξp+1, because there is no relation that can be employed to ξ1.

For the proof of the subsequent Lemma, the following observation is crucial.

Let (is, . . . , i1) :=
−→
Dn. Define the sequence (i′s, . . . , i

′
1) by vertically mirroring (in, . . . , i1),

meaning that i′k = n + 1 − ik for all k. We claim that (i′n, . . . , i
′
1) is a representative of

the absorbing element in Zn. This follows from two facts. Firstly,
−→
Dn is a representative

of the absorbing element in Qn, and therefore it represents an absorbing element in the
quotient Zn. Secondly, the relations ∼left and ∼right have vertically mirrored analogies in
Zn, for example we have (2, 1, 2, 1) ∼braid (2, 2, 1, 2) ∼idem (2, 1, 2) ∼braid (1, 2, 1). One
can now mimic the proof of Proposition 2.3.14 to show that [i′s, . . . , i

′
1]Z is indeed an

absorbing element for Zn.

Let q > 0 and p ≤ q. Recall the factorability structure on tm(p, q) and observe that a
tuple (ξin , . . . , ξi1) is an η-normal form if and only if it − it+1 < q for all n > t ≥ 1.

Lemma 4.3.7 Assume that (ξin , . . . , ξi1) is an η-normal form and let 1 ≤ j ≤ m. We
then have the following.

(a) There is a unique index k such that (ξin , . . . , ξik+1
, ξj−kp, ξik , . . . , ξi1) is the η-

normal form of the word ξin . . . ξi1 · ξj.

(b) There is a unique index k such that (ξin−p, . . . , ξin−k+1−p, ξj , ξin−k
, . . . , ξi1) is the

η-normal form of the word ξj · ξin . . . ξi1.

Proof. (a) Every monoid tm(p, q) is balanced, and thus applying f−→
Dn

to the tuple

(ξin , . . . , ξi1 , ξj) yields an η-normal form. Furthermore, by the recognition principle,
(ξin , . . . , ξi1) is everywhere stable. Hence

f−→
Dn

(ξin , . . . , ξi1 , ξj) = fn . . . f1 ◦ f−−−→Dn−1
(ξin , . . . , ξi1 , ξj)

= fn . . . f1(ξin , . . . , ξi1 , ξj).

Now, if (ξin , . . . , ξi1 , ξj) is stable at position 1, then it is everywhere stable and we are
done. Otherwise, f1(ξin , . . . , ξi1 , ξj) = (ξin , . . . , ξj−p, ξi1). Iterating this argument, part
(a) follows.

(b) works similarly. Indeed, we use the previous discussion on representatives of the
absorbing element in Zn to conclude that f1 . . . fn(ξj , ξin , . . . , ξi1) is in η-normal form.
We proceed as in (a).

The Lemma is proven. �
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Lemma 4.3.8 Let q > 0 and p ≤ q. We then have the following.

(a) The monoids tm(p, q) are right-cancellative.

(b) For p < q the monoids tm(p, q) are left-cancellative.

Proof. (a) We show that if for elements x, y ∈ tm(p, q) we have x · ξj = y · ξj then
x = y. Since tm(p, q) is balanced, we know that x, y have the same word length. Let
(ξin , . . . , ξi1) and (ξi′n , . . . , ξi′1) be the respective normal forms of x and y.

By our above observation, the normal forms of x · ξj and y · ξj are given by

NF(x · ξj) = (ξin , . . . , ξik+1
, ξj−kp, ξik , . . . , ξi1),

NF(y · ξj) = (ξi′n , . . . , ξi′k′+1
, ξj−k′p, ξi′

k′
, . . . , ξi′1),

for some k, k′. Assume that x ·ξj = y ·ξj. In particular, the above normal forms coincide.
Clearly, if k = k′ then ξit = ξi′t for all t and we are finished. So assume that k 6= k′.
W.l.o.g. we may assume that k < k′. Consider the pairs (ξik+1

, ξj−kp) and (ξi′
k+1

, ξj−kp).

The former is stable, whereas the latter is unstable. Therefore

j − kp− i′k+1 ≥ q. (4.8)

Comparing the (k+1)-st entries of the above normal forms, we see that ξj−kp = ξi′
k+1

, and

thus j − kp = i′k+1. Together with (4.8) this yields 0 ≥ q, contradicting our assumption.

Part (b) is proven similarly: In this case we find

NF(ξj · x) = (ξin−p, . . . , ξin−k+1−p, ξj , ξin−k
, . . . , ξi1),

NF(ξj · y) = (ξi′n−p, . . . , ξi′n−k′+1
−p, ξj, ξi′

n−k′
, . . . , ξi′1).

Assuming k < k′ yields that (ξj , ξin−k
) is stable, whereas (ξj , ξi′

n−k
) is unstable. The

latter is equivalent to i′n−k − j ≥ q, and comparing the (n − k + 1)-st entries yields
j = i′n−k − p, whence p ≥ q, contradicting our assumption. �

We are now going to show that for m = ∞ and p < q the Thompson monoids tm(p, q)
satisfy the right Ore condition.

Definition 4.3.9 Let X be a monoid and S a generating set for X. We say that X
satisfies the specific (right) Ore condition with respect to S if for all s, s′ ∈ S there exist
t, t′ ∈ S such that st = s′t′.

Note that we require t and t′ to lie in S. In particular, for an arbitrary generating set S,
the specific Ore condition does not in general follow from the Ore condition introduced
in Definition 4.1.1. Clearly, taking S = X, both notions coincide.

Remark 4.3.10 An inductive argument shows that if X is cancellative and if X satis-
fies the specific Ore condition for at least one generating set, then X satisfies the Ore
condition, see e.g. Clifford-Preston [CP61, §1.10].
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Lemma 4.3.11 Set S = {ξ1, ξ2, . . .}. Then for q > 0 and q ≤ p+1 the monoids t∞(p, q)
satisfy the specific Ore condition with respect to S.

Proof. Let s = ξi and s
′ = ξj, where 1 ≤ i, j < ∞. If i = j then we take t = t′ = ǫ.

Otherwise, we may assume that j > i. Set t′ = s and t = ξj+p. Note that j + p − i ≥
p+ 1 ≥ q, yielding s′t′ = ξjξi = ξiξj+p = st. �

Lemma 4.3.8 tells us that for q > p the monoids tm(p, q) are cancellative. Thus, by
Remark 4.3.10 and Lemma 4.3.11, for q = p + 1 the monoids t∞(p, q) are cancellative
and satisfy the Ore condition. Applying Theorem 4.1.3, we obtain the following:

Corollary 4.3.12 For q = p + 1 > 0 the map i∗ : H∗(t∞(p, q)) → H∗(T ∞(p, q)) is an
isomorphism.

In particular, for every n > 1, t∞(n− 1, n) and Stein’s groups F (r,Z[ 1n ], 〈n〉) have
isomorphic homology, cf. Remark 4.3.2. Taking n = 2 and r = 1, we see that t∞(1, 2)
has the homology of Thompson’s group F

We conclude this section by briefly mentioning several canonical maps between some of
the tm(p, q)’s and some of the T m(p, q)’s.

Remark 4.3.13 (a) Let p, q > 0. Recall that for m ≤ p or m ≤ q the groups T m(p, q)
are free of rank m. Assume now that m > max{p, q}. Then in T m(p, q) we have
ξm−pξm−q = ξm−qξm, i.e. ξm = ξ−1m−qξm−pξm−q, from which the right-hand side can
be considered as an element in T m−1(p, q). Thus, for m > max{p, q}, we have a
canonical quotient map T m−1(p, q) ։ T m(p, q). Set n = max{p, q}. We have the
following infinite sequence of quotients,

G(n) ∼= T n(p, q) // // T n+1(p, q) // // T n+2(p, q) // // . . . ,

where G(n) denotes the free group of rank n. The colimit of this sequence is
T ∞(p, q).

(b) Consider the map id : S∗ → S∗. For all values of m, p and q this descends to a
surjection tm(p, q) ։ tm(p, q−1), which should be thought of as “adding relations”.
We obtain the analogous result for the respective groups of fractions.

(c) Fix d ≥ 1. Assigning to ξi the generator ξdi gives a well-defined map tm(p, q) →
t dm(dp, dq). Iteratively using the “adding relations”map from part (b), we obtain
canonical maps between monoids with parameters q = p+ 1:

tm(p, p+ 1) // t dm(dp, dp + d) // // t dm(dp, dp + 1)

4.4 Reducing the Visy complexes V∗tm(p, q)

Recall that for q > 0, p ≤ q every tm(p, q) is braid factorable, and if m < ∞ then the
associated Visy complex V∗tm(p, q) is finite. Yet, if m is large, then the Visy complex
becomes too huge to do homology computations straight ahead.
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So we further reduce V∗tm(p, q) by explicitly defining a noetherian matching on it.
We are then going to show that this matching is perfect, which here means that the
differentials in the associated Morse complex do all vanish. In other words, every essential
cell with respect to our matching constitutes a (free) generator of H∗(tm(p, q)).

The constructions and proofs are not very deep. However, one has to be careful to
not be confused by the many indices. For convenience we will accompany our formal
constructions by exemplarily discussing them on the Thompson monoid t 5(1, 2).

4.4.1 Notational conventions

Throughout, let q > 0 and p ≤ q.

Recall the factorability structure on tm(p, q). Every essential cell has elementary par-
tition type, and thus is of the form [ξin | . . . |ξi1 ]. Cells of elementary partition type are
uniquely determined by their sequence of indices (in, . . . , i1). To keep notation simple,
we will henceforth write [in| . . . |i1] for the cell [ξin | . . . |ξi1 ].

Our construction involves two different noetherian matchings. The first one lives on
the normalized bar complex B∗tm(p, q) and is induced by the factorability structure on
tm(p, q). By definition, the associated Morse complex is the Visy complex V∗tm(p, q).
The second matching is defined on the Visy complex V∗tm(p, q), and it will be con-
structed explicitly.

To keep confusion as low as possible we introduce the following notation. Using the
above convention, we can write [in| . . . |i1] for a cell of elementary partition type in the
bar complex B∗tm(p, q). Its essential cells generate the Visy complex V∗tm(p, q), and
its generators will be denoted by double brackets Jin| . . . |i1K. We use this notation to
make clear in which complex we consider the respective elements to live, in order to
emphasize in which sense the terms “essential”, “collapsible” and “redundant” are to be
understood.

Example 4.4.1 We now describe V∗t5(1, 2) as module, using the above conventions.
Recall that a cell of elementary partition type [in| . . . |i1] is essential if and only if it −
it+1 ≥ 2 for every n > t ≥ 1. As a consequence, there are no essential cells in dimensions
> 3, cf. Corollary 4.3.5. Figure 4.14 lists all essential cells of t 5(1, 2).

n = Generators of Vnt5(1,2)

0 J K
1 J5K, J4K, J3K, J2K, J1K
2 J3|5K, J2|5K, J1|5K, J2|4K, J1|4K, J1|3K
3 J1|3|5K

Figure 4.14: Generators of V∗t 5(1, 2).
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4 Applications to generalized Thompson groups and monoids

4.4.2 Describing the differential ∂V
∗

In what follows we fix m = 0, . . . ,∞, q > 0 and p ≤ q.

To define a noetherian matching on the Visy complex, we need a good understanding of
the differentials ∂Vn .

Proposition 4.4.2 Let Jin| . . . |i1K be a generator of the Visy complex V∗tm(p, q), i.e.
it − it+1 ≥ q for all t, n > t ≥ 1. Then for every k, 1 ≤ k ≤ n, the following holds:

dnΨ
k
nJin| . . . |i1K = Jin| . . . |ik+1|ik−1| . . . |i1K,

d0Φ
k
1Jin| . . . |i1K = Jin| . . . |ik+1|ik−1−p | . . . |i1−pK.

Proof. Observe that fkJin| . . . |i1K = [in| . . . |ik+2|ik − p|ik+1|ik−1| . . . |i1] and that
(ik+2, ik − p) and (ik+1, ik−1) are both unstable. The former because of ik − p− ik+2 =
ik − ik+1 + ik+1 − ik+2 − p ≥ 2q − p ≥ q and the latter due to the dropping axiom.
Iteratively applying the fj’s yields

Ψk
nJin| . . . |i1K = [ik − (n− k) · p |in| . . . |ik+1|ik−1| . . . |i1],

Φk
1Jin| . . . |i1K = [in| . . . |ik+1|ik−1 − p | . . . |i1 − p |ik].

Note that the right-hand sides need not to be generators of the Visy complex, for
Ψk

nJin| . . . |i1K is stable at position n − 1 (if k < n) and Φk
1Jin| . . . |i1K is stable at posi-

tion 1 (if k > 1). On all the other positions both these cells are unstable, and hence
dnΨ

k
nJin| . . . |i1K and d0Φ

k
1Jin| . . . |i1K are indeed generators of the Visy complex. The

Proposition is proven. �

Observe that dnΨ
1
n(x) = d0Φ

1
1(x). Altogether, (4.2) simplifies as follows:

Corollary 4.4.3 For every n ≥ 0 the differential in the Visy complex V∗tm(p, q) is
given by

∂Vn =

n∑

k=2

(−1)k(dnΨ
k
n − d0Φ

k
1). (4.9)

Remark 4.4.4 Corollary 4.4.3 states that the Visy complex of tm(p, q) is a cubed com-
plex. More precisely, consider the classifying space of tm(p, q), and denote by Y the
associated quotient complex described in Remark 3.1.23. Recall from Remark 3.3.7.(b)
that the cellular complex of Y is the Visy complex. Looking at (4.9), we see that Y is
built up from cubes (with top face and bottom face glued together). Similar complexes
occur in Stein [Ste92, p.489] for the groups Fn,∞

∼= T ∞(n−1, n).
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Example 4.4.5 Corollary 4.4.3 in particular states that ∂V1 is the zero map. Below we
compute ∂V∗ for higher dimensional cells in V∗t5(1, 2):

∂V[1|3|5] = [1|5] − [1|4] − [3|5] + [2|4]

∂V[3|5] = ∂V[2|5] = ∂V[1|5] = [5]− [4]

∂V[2|4] = ∂V[1|4] = [4]− [3]

∂V[1|3] = [3]− [2]

The Visy complex (V∗t 5(1, 2), ∂
V
∗ ) is therefore isomorphic to the following chain complex,

where the Z on the right-hand side sits in degree 0.

Z
∂V

3















−1
0
1
1
−1
0















// Z6
∂V

2











1 1 1 0 0 0
−1 −1 −1 1 1 0
0 0 0 −1 −1 1
0 0 0 0 0 −1
0 0 0 0 0 0











// Z5
∂V

1

0 // Z

Remark 4.4.6 Note from Proposition 4.4.2 that if p = 0 then dnΨ
k
n = d0Φ

k
1 on essential

cells. Hence, Corollary 4.4.3 tells us that in this case all differentials ∂Vn vanish. In other
words, the matching induced by the factorability structure on tm(0, q) is perfect, and thus
the Visy complex V∗tm(p, q) is isomorphic to the homology H∗(tm(p, q)). Geometrically
speaking, for p = 0, the complex Y mentioned in Remark 4.4.4 is built up from tori.
Indeed, for p = 0 the only relations in (4.6) on page 139 are commutativitiy relations,
and hence tm(0, q) is a graph product (say with respect to Γ) of m-many copies of the
free monoid on one generator, and every full subgraph of Γ constitutes a torus in Y . In
Figure 4.15 we depict the cell structure of Y for m = 4, p = 0, q = 2.

J1|3KJ1K J1K

J3K

J3K

J1|4KJ1K J1K

J4K

J4K

J2|4KJ2K J2K

J4K

J4K

Figure 4.15: Model for the classifying space of t 4(0, 2) (after glueing).

If p > 0 then our matching will in general not be perfect, and one might ask how
to further simplify V∗tm(p, q). This is what we are concerned with in the following
subsection.

4.4.3 A perfect matching on V∗tm(p, q)

From now on we additionally assume that p > 0, i.e. we consider m = 0, . . . ,∞ and
0 < p ≤ q.
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4 Applications to generalized Thompson groups and monoids

We will define a perfect matching on V∗tm(p, q). This is done in the usual way. We first
say what the essential cells are and then use scanning to match the remaining cells into
pairs of one collapsible and one redundant cell.

Consider an arbitrary n-cell Jin| . . . |i1K in the Visy complex and extend it to an (n+1)-
tuple (in+1, in, . . . , i1), where in+1 = 1− q. To this we associate the difference sequence

(in − in+1, . . . , i1 − i2).

Where does this n-tuple live? For n > t ≥ 1 we have it−it+1 ≥ q, because Jin| . . . |i1K is a
generator of the Visy complex (and thus an essential cell with respect to the factorability
structure on tm(p, q).) Furthermore, in − in+1 = in − 1 + q ≥ q, and we see that

(in − in+1, . . . , i1 − i2) ∈ {q, q + 1, . . .}n.

Definition 4.4.7 We define the 0-cell J K to be essential. For n ≥ 1, an n-cell Jin| . . . |i1K
is defined to be essential if for the associated difference sequence we have

(in − in+1, . . . , i1 − i2) ∈ {q + 1, . . . , 2q − 1}n−1 × {q, . . . , 2q − 1}.

Some remarks are in order.

Remark 4.4.8 (a) Essentiality of a cell Jin| . . . |i1K ∈ V∗tm(p, q) does not depend on
the specific choice of the parameter p (provided that 0 < p ≤ q).

(b) Unwinding the conditions posed on the difference sequence, essentiality can be
reformulated as follows. The 0-cell J K is always essential. A 1-cell JiK is essential if
and only if i− (1− q) ∈ {q, . . . , 2q− 1}, i.e. if and only if i ∈ {1, . . . , q}. For n ≥ 2,
an n-cell Jin| . . . |i1K is essential if and only if the following conditions are fulfilled:

• in ∈ {2, . . . , q},

• it − it+1 ∈ {q + 1, . . . , 2q − 1} for all t, n > t > 1, and

• i1 − i2 ∈ {q, . . . , 2q − 1}

(c) Note that if Jin| . . . |i1K is essential then i1 − i2 ∈ {q, . . . , 2q − 1} and Jin| . . . |i2K is
again essential. However, the converse need not be true. For example, in V∗t5(1, 2)
the cell J1K is essential, but J1|3K is not. The first statement is clear, the second
can be seen as follows. To J1|3K we associate the triple (1 − q, 1, 3) = (−1, 1, 3).
This has difference sequence (2, 2), and

(2, 2) /∈ {q + 1, . . . , 2q − 1} × {q, . . . , 2q − 1} = {3} × {2, 3}.

More generally, provided that m ≥ q + 1, the cell J1K is essential, but J1|1 + qK is
not.

It is easily read off this definition that for m ≥ 1 and p = q = 1 there are only two
essential cells in V∗tm(1, 1), namely J K and J1K: There are no further essential 1-cells,
because if JiK is essential then i ∈ {1, . . . , q} = {1}. Similarly, there are no essential cells
in dimensions ≥ 2, since the set {q + 1, . . . , 2q − 1} is empty for q = 1.
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Example 4.4.9 We can also quite easily describe the essential cells in V∗tm(p, q) for
q = 2. There is one 0-cell, namely J K. There are two 1-cells, namely J1K and J2K. For
n ≥ 2, an n-cell Jin| . . . |i1K is essential if and only if in = 2, it − it+1 = 3 for all t,
n > t > 1, and i1 − i2 ∈ {2, 3}. In Figure 4.16 we list the essential cells of Vntm(p, 2)
for small n.

n = Essential cells in the Visy complex Vntm(p, 2)

0 J K
1 J1K J2K
2 J2|4K J2|5K
3 J2|5|7K J2|5|8K
4 J2|5|8|10K J2|5|8|11K
5 J2|5|8|11|13K J2|5|8|11|14K

Figure 4.16: Essential cells in the Visy complex V∗tm(p, 2) for large m.

The table in Figure 4.16 has to be read as follows: The essential cells of V∗tm(p, 2)
are those for which all occuring indices are ≤ m. For example, the essential cells of
V∗t 5(1, 2) are given by J K, J1K, J2K, J2|4K and J2|5K.

Note that none of the indices occuring in Figure 4.16 is divisible by 3. Therefore –
provided that our definition of essential cells extends to a noetherian matching on the
Visy complex – the Morse complexes Vθ

∗t3m−1(p, 2) and Vθ
∗t3m(p, 2) are isomorphic as

Z-modules. In particular, t 3m−1(p, 2) and t 3m(p, 2) have the same Euler characteristic,
compare Figure 4.13 on page 141.

Remark 4.4.10 Consider an n-cell Jin| . . . |i1K in the Visy module Vntm(p, q). Obvi-
ously Jin| . . . |i1K can also be understood as a generator of Vntm+1(p, q), and essentiality
of Jin| . . . |i1K does not depend on the specific parameter m of the monoid tm(p, q) we
consider our cell to live in (provided that m ≥ i1).

Definition 4.4.11 We define the height of an n-cell Jin| . . . |i1K in Vntm(p, q) as

htJin| . . . |i1K = max{h : Jin| . . . |in−h+1K is essential}.

Consider an n-cell Jin| . . . |i1K and its associated difference sequence (in−in+1, . . . , i1−i2).
By the definition of height we have

(in − in+1, . . . , in−h+1 − in−h+2) ∈ {q + 1, . . . , 2q − 1}h−1 × {q, . . . , 2q − 1}.

Assume that h < n (because otherwise the cell is essential). If in−h+1 − in−h+2 = q
then we call Jin| . . . |i1K collapsible. Otherwise in−h+1− in−h+2 ∈ {q+1, . . . , 2q− 1} and
thus, by the definition of height, we must have in−h− in−h+1 ≥ 2q, in which case we call
Jin| . . . |i1K redundant.

Very roughly speaking, this classification does the following. We scan our cell Jin| . . . |i1K
from left to right. As long as the entries are “well-distributed” (in the sense that they
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are ≥ q+1 and ≤ 2q−1 apart) we keep scanning. If two successive entries are too close,
meaning that they are only distance q apart, then we mark this cell as collapsible. Its
partner will arise from removing this entry. Otherwise, if two successive entries are very
far apart, i.e. have distance ≥ 2q, such that we could insert at least one more entry and
still obtain a generator in the Visy complex (not necessarily an essential one!), then we
mark this entry as redundant. The partner is given by inserting this entry at the earliest
possible position, i.e. distance q apart from its left predecessor.

We now make this matching explicit. Define a function µ on the generators of V∗tm(p, q)
as follows. Let Jin| . . . |i1K be an n-cell of height h. Set in+1 = 1− q and define

µ(Jin| . . . |i1K) =





Jin| . . . |i1K if Jin| . . . |i1K is essential

Jin| . . . |in−h+1|in−h+1 + q|in−h| . . . |i1K if Jin| . . . |i1K is redundant

Jin| . . . |in−h+2|in−h| . . . |i1K if Jin| . . . |i1K is collapsible

Note that for collapsible cells we have µ(Jin| . . . |i1K) = dnΨ
n−h+1
n (Jin| . . . |i1K), cf. Propo-

sition 4.4.2.

Remark 4.4.12 Note that the matching µ does not affect the entries in−h, . . . , i1. Fur-
thermore, if Jin| . . . |i1K is not essential, then h < n, i.e. n − h > 0, and therefore the
right-most entry of a redundant cell is equal to the right-most entry of its collapsible part-
ner. Since in < . . . < i1, this shows that the matching on the generators of V∗tm(p, q)
restricts and corestricts to a matching on the generators of V∗tm−1(p, q).

Example 4.4.13 We give a complete classification of the cells in V∗t5(1, 2). We exem-
plarily consider the 3-cell Ji3|i2|i1K = J1|3|5K. Recall from Remark 4.4.8.(c) that J1K is
essential, but J1|3K is not. Therefore J1|3|5K has height h = 1. We have in−h+1−in−h+2 =
i3 − i4 = 1 − (1 − q) = q, hence J1|3|5K is collapsible. Its redundant partner is given by
deleting the entry in−h+1 = i3. So µ(J1|3|5K) = J3|5K.

Figure 4.17 gives a complete classification of the cells of V∗t5(1, 2). The matching
function µ is indicated by solid lines. Shaded elements correspond to unpaired (i.e.
essential) elements, compare Example 4.4.9.

n = 0 J K

n = 1 J5K J4K J3K J2K J1K

n = 2 J3|5K J2|5K J1|5K J2|4K J1|4K J1|3K

n = 3 J1|3|5K

Figure 4.17: Classification of the generators of V∗t 5(1, 2).

150



4.4 Reducing the Visy complexes V∗tm(p, q)

Remark 4.4.14 Intuitively, the philosophy behind µ can be described as follows. Let
Jin| . . . |i1K be a collapsible n-cell of height h. In particular, [in| . . . |i1] is a generator of
the inhomogeneous bar complex B∗tm(p, q). We now think of [in| . . . |i1] as a generator
of the homogeneous bar complex of some abstract, not further specified object. The
redundant partner of Jin| . . . |i1K is Jin| . . . |în−h+1| . . . |i1K, and it can be interpreted as
the (n− h+ 1)-st face of Jin| . . . |i1K in this abstract homogeneous bar complex.

Very speculatively, this observation might help to further simplify Visy complexes of
factorable monoids (X,S, η), if the generating set S is equipped with a reasonable enu-
meration which is “compatible” with the relations in X. However, we’re not able to turn
this into a precise statement.

We proceed by showing that µ defines a noetherian matching on V∗tm(p, q).

Lemma 4.4.15 The map µ is an involution.

Proof. This is done as usual. One first shows that µ maps redundant cells of height h
to collapsible cells of height h + 1 and vice versa. Afterwards, one explicitly computes
µ2 for all redundant and collapsible cells, which is straightforward. �

Lemma 4.4.16 Let p > 0. Then for every redundant cell i of height h we have

[∂Vµ(i) : i] = (−1)n−h+1.

In particular, the matching function µ is Z-compatible.

Proof. Let i = Jin| . . . |i1K be redundant of height h. Then its partner

µ(i) = Jin| . . . |in−h+1|in−h+1 + q|in−h| . . . |i1K

is collapsible of height h+ 1. By Corollary 4.4.3 we have

∂Vn+1(µ(i)) =

n+1∑

k=2

(−1)k · (dn+1Ψ
k
n+1 − d0Φ

k
1)(µ(i)). (4.10)

Observe that dn+1Ψ
n−h+1
n+1 (µ(i)) = i. Now, by Proposition 4.4.2, for k = 2, . . . , n + 1,

k 6= n − h + 1 we have dn+1Ψ
k
n+1(µ(i)) 6= dn+1Ψ

n−h+1
n+1 (compare the total sum of all

occuring indices), and furthermore dn+1Ψ
n−h+1
n+1 (µ(i)) 6= d0Φ

l
1(µ(i)) for l = 2, . . . , n + 1

(compare the right-most entries). It follows that [∂µ(i) : i] = ±1, where the sign is the
sign of the term dn+1Ψ

n−h+1
n+1 occuring in (4.10), which is (−1)n−h+1. The Lemma is

proven. �

It remains to prove noetherianity. We need some preparation.

Lemma 4.4.17 Let p > 0. Let i = Jin| . . . |i1K be collapsible of height h. Let 1 ≤ k ≤ n
and set Jjn−1| . . . |j1K := d0Φ

k
1(i). If k > 1 then j1 < i1.
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Proof. By Proposition 4.4.2 we have Jjn−1| . . . |j1K = Jin| . . . |ik+1|ik−1 − p| . . . |i1 − pK.
Now, if k > 1, then j1 = i1 − p < i1. �

For an n-cell Jin| . . . |i1K define its value as the total sum of (the indices of) its entries,

valueJin| . . . |i1K := in + . . .+ i1.

Lemma 4.4.18 Let i = Jin| . . . |i1K be collapsible of height h. Let 2 ≤ k ≤ n. Then the
following holds:

(a) For k < n− h+ 1, the cell dnΨ
k
n(i) is collapsible.

(b) For k = n− h+ 1, we have dnΨ
k
n(i) = µ(i).

(c) For k > n−h+1, the cell dnΨ
k
n(i) is redundant and value(µ(dnΨ

k
n(i))) < value(i).

Proof. (a) and (b) are clear. Assume that k > n− h+ 1. Then

dnΨ
k
n(i) = Jin| . . . |ik+1|ik−1| . . . |i1K

has height n−k, because Jin| . . . |ik+1K is essential (since k > n−h+1) and ik−1−ik+1 =
(ik−1 − ik) + (ik − ik+1) ≥ 2q. Again from k > n− h+ 1 it follows that ik+1 − ik+2 > q,
and thus dnΨ

k
n(i) is redundant. Its collapsible partner is given by

µ(dnΨ
k
n(i)) = Jin| . . . |ik+1|ik+1 + q|ik−1| . . . |i1K.

We see that value(i)−value(µ(dnΨ
k
n(i))) = ik−(ik+1+q) = (ik−ik+1)−q ≥ q+1−q = 1.

The Lemma is proven. �

Corollary 4.4.19 The matching µ is noetherian.

Proof. Assume that µ is not noetherian, i.e. there is an infinite strictly descending
chain of redundant cells, say i1 → i2 → i3 → . . .. The situation is depicted in the
following diagram:

µ(i1)
�

!!B
BB

BB
BB

B
µ(i2)

�

!!B
BB

BB
BB

B
µ(i3)

�

!!B
BB

BB
BB

B
. . .

i1
<

µ

==||||||||
i2

<
µ

==||||||||
i3

<
µ

==||||||||
i4

@
µ

??���������

By the definition of the relation ≻− we have [∂V(µ(ik)) : ik+1] 6= 0. Lemma 4.4.18.(c) and
Lemma 4.4.17 now tell us that value(ik+1) < value(ik) or the right-most entry of ik+1 is
strictly smaller than the right-most entry of ik. Observe that the right-most entries of ik
and µ(ik) coincide (cf. Remark 4.4.12) and that the right-most entry does not increase
when passing from µ(ik) to ik+1 (cf. Proposition 4.4.2). Hence, for some index t, the cell
it has negative right-most entry or negative value. This is a contradiction, because the
entries of our tuples are natural numbers. The Corollary is proven. �

Altogether we have shown that for m = 0, . . . ,∞ and 0 < p ≤ q the map µ defines a
noetherian matching on the Visy complex (V∗tm(p, q), ∂V∗ ). The following subsection is
concerned with proving that µ is perfect.
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4.4 Reducing the Visy complexes V∗tm(p, q)

4.4.4 Perfectness of µ

We are going to show that the associated Morse complex (V∗tm(p, q))θ has no non-trivial
differential.

Throughout, let m = 0, . . . ,∞ and 0 < p ≤ q.

Lemma 4.4.20 Let i = Jin| . . . |i1K be a redundant cell of height h. Its collapsible partner
is then given by j = µ(i) = Jin| . . . |in−h+1|in−h+1+q|in−h| . . . |i1K. We have the following:

(a) For k > n− h+ 1, the cell dn+1Ψ
k
n+1(j) is redundant of height n+ 1− k.

(b) dn+1Ψ
n−h+1
n+1 (j) = i.

(c) θ(dn+1Ψ
n−h
n+1(j)) = θ(d0Φ

n−h
1 (j)).

(d) For k < n− h, the cell dn+1Ψ
k
n+1(j) is collapsible.

(e) For k < n− h, the cell d0Φ
k
1(j) is collapsible.

Proof. Using Proposition 4.4.2, parts (a) and (b) are easy. (Indeed, part (b) is equiv-
alent to Lemma 4.4.18.(b).) We now prove (c). Assume first that h = n − 1. We then
have n − h = 1, and Proposition 4.4.2 yields dn+1Ψ

1
n+1(j) = d0Φ

1
1(j). Therefore, (c)

holds for h = n− 1. Let now h < n− 1. Observe that

dn+1Ψ
n−h
n+1(j) = Jin| . . . |in−h+1|in−h+1 + q|in−h−1| . . . |i1K,

d0Φ
n−h
1 (j) = Jin| . . . |in−h+1|in−h+1 + q|in−h−1 − p| . . . |i1 − pK.

We see that dn+1Ψ
n−h
n+1(j) and d0Φ

n−h
n+1(j) are collapsible of height h + 1. In particular,

both of them are sent to zero by θ. Part (c) is proven. Parts (d) and (e) are immediate
applications of Proposition 4.4.2. �

Proposition 4.4.21 Let i = Jin| . . . |i1K be redundant of height h. Then

θ∞Jin| . . . |i1K = θ∞Jin| . . . |in−h+1|in−h − p| . . . |i1 − pK.

Proof. We do induction on the height. First, assume that h = 0. We need to show that
θ∞Jin| . . . |i1K = θ∞Jin−p| . . . |i1−pK. The collapsible partner of i is µ(i) = J1|in| . . . |i1K.
We use Lemma 4.4.16 to compute [∂V(µ(i)) : i] = (−1)n+1. We obtain

θ(i) = i+ ∂V(V (i))

= i+ ∂V(−µ(i) · [∂V(µ(i)) : i]−1)

= Jin| . . . |i1K + (−1)n · ∂VJ1|in| . . . |i1K.

Consider now

θ2(i) = θ(Jin| . . . |i1K + (−1)n · ∂VJ1|in| . . . |i1K)

= θJin| . . . |i1K + (−1)n · θ

(
n+1∑

k=2

(−1)k(dn+1Ψ
k
n+1 − d0Φ

k
1)J1|in| . . . |i1K

)
.
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4 Applications to generalized Thompson groups and monoids

Now, for k ≤ n − h = n the difference dn+1Ψ
k
n+1J1|in| . . . |i1K− d0Φ

k
1J1|in| . . . |i1K lies in

the kernel of θ, cf. Lemma 4.4.20.(c),(d),(e). The above therefore simplifies to

θ2(i) = θJin| . . . |i1K− θ(dn+1Ψ
n+1
n+1J1|in| . . . |i1K) + θ(d0Φ

n+1
1 J1|in| . . . |i1K).

Note that by Lemma 4.4.20.(b) the first and second summand cancel out each other.
We use Proposition 4.4.2 to compute d0Φ

n+1
1 J1|in| . . . |i1K = Jin − p| . . . |i1 − pK. Thus,

altogether we have shown that

θ2(i) = θ(Jin − p| . . . |i1 − pK).

Applying θ∞ to both sides, the claim follows for h = 0.

Assume now that i is redundant of height h > 0 and the Proposition has already been
shown for all redundant cells of height < h. Set j = µ(i) = Jin| . . . |in−h+1|in−h+1 +

q|in−h| . . . |i1K. Lemma 4.4.16 gives [∂V(µ(i)) : i] = (−1)n−h+1, and we obtain

θ(i) = i+ (−1)n−h · ∂V(j)

= i+ (−1)n−h ·
n+1∑

k=2

(−1)k · (dn+1Ψ
k
n+1(j)− d0Φ

k
1(j)). (4.11)

We now claim that for k 6= n − h + 1 the difference dn+1Ψ
k
n+1(j) − d0Φ

k
1(j) lies in

the kernel of θ∞. For k ≤ n − h this again follows from Lemma 4.4.20.(c),(d),(e). If
k > n− h+ 1 then, by Proposition 4.4.2,

dn+1Ψ
k
n+1(j) = Jin| . . . |ik|ik−2| . . . |in−h+1|in−h+1 + q|in−h| . . . |i1K

dn+1Φ
k
1(j) = Jin| . . . |ik|ik−2 − p| . . . |in−h+1 − p|in−h+1 + q − p|in−h − p| . . . |i1 − pK.

The former cell is redundant of height n−k+1. Since n−k+1 < n−(n−h+1)+1 = h,
the induction hypothesis applies. The Claim is proven.

Applying θ∞ to both sides of (4.11) the Claim yields the following:

θ∞(i) = θ∞(i)− θ∞(dn+1Ψ
n−h+1
n+1 (j)) + θ∞(d0Φ

n−h+1
1 (j)).

Note that by Lemma 4.4.20.(b) we have dn+1Ψ
n−h+1
n+1 (j) = i. The first and second

summand therefore cancel out each other, yielding

θ∞(i) = θ∞(d0Φ
n−h+1
1 (j)).

Observe that d0Φ
n−h+1
1 (j) = Jin| . . . |in−h+1|in−h− p| . . . |i1− pK, and whence the Propo-

sition. �

Corollary 4.4.22 For m = 0, . . . ,∞ and 0 < p ≤ q, the noetherian matching µ on
V∗tm(p, q) is perfect.
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4.5 Homological results on Thompson monoids

Proof. Let Jin| . . . |i1K be an essential n-cell in V∗tm(p, q). We have to show that
θ∞ ◦ ∂Vn Jin| . . . |i1K = 0. By Corollary 4.4.3 we have

θ∞ ◦ ∂Vn Jin| . . . |i1K =
n∑

k=2

(−1)k · θ∞(dnΨ
k
nJin| . . . |i1K− d0Φ

k
1Jin| . . . |i1K).

Recall from Proposition 4.4.2 that

dnΨ
k
nJin| . . . |i1K = Jin| . . . |ik+1|ik−1| . . . |i1K,

d0Φ
k
1Jin| . . . |i1K = Jin| . . . |ik+1|ik−1−p| . . . |i1−pK.

Observe that Jin| . . . |ik+1|ik−1| . . . |i1K is redundant of height h = n−k. We can therefore
apply Proposition 4.4.21, yielding that θ∞ ◦ ∂Vn Jin| . . . |i1K = 0, as desired. �

Using Corollary 4.4.22 we can completely describe the homology of tm(p, q) for 0 < p ≤ q.
(We remind the reader that for p = 0 we could already do this using the Visy complex,
which in this case only has zero differentials, cf. Remark 4.4.6.)

4.5 Homological results on Thompson monoids

In this section we derive recursion formulas for the homology groups of the Thompson
monoids with parameters m = 0, . . . ,∞ and 0 < p ≤ q. For m = ∞ we can give
explicit results. In particular, this section provides computations of the homology groups
H∗(T ∞(p, q)) of all generalized Thompson groups with parameters q = p + 1 > 1, cf.
Corollary 4.3.12.

Throughout, let m = 0, . . . ,∞ and 0 < p ≤ q.

4.5.1 Homological dimension

Let Jin| . . . |i1K be an essential cell in V∗tm(p, q), i.e. the difference sequence associated
to (1− q, in, . . . , i1) lies in {q + 1, . . . , 2q − 1}n−1 × {q, . . . , 2q − 1} and hence

i1 ≥ 1− q + (n− 1) · (q + 1) + q = n · (q + 1)− q.

It follows that in V∗tm(p, q) there exist essential n-cells only if m ≥ n · (q+1)− q. Thus,
for fixed m, every essential cell in V∗tm(p, q) has at most (m+ q)/(q+1) entries. On the
other hand, if q > 1, then in V∗tm(p, q) there is at least one essential cell of dimension
n = ⌊(m+q)/(q+1)⌋, namely J2|q+3|2q+4| . . . |(n−2) ·q+n|(n−1) ·q+nK. (Indeed, for
n = ⌊(m+q)/(q+1)⌋ we have (n−1)·q+n = ⌊(m+q)/(q+1)⌋·(q+1)−q ≤ m+q−q = m,
and thus this cell lies in V∗tm(p, q). Essentiality is obvious.) We have proven the
following.
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4 Applications to generalized Thompson groups and monoids

Proposition 4.5.1 Let m < ∞, q > 1 and 0 < p ≤ q. Then tm(p, q) has homological
dimension

hodim tm(p, q) =

⌊
m− 1

q + 1

⌋
+ 1.

For q = 1 the set {q +1, . . . , 2q − 1} is empty. It follows that there are no essential cells
in dimensions > 1. Furthermore, since {q, . . . , 2q − 1} = {1}, the only essential cell in
dimension 1 is J1K. This shows that hodim tm(1, 1) = 1 for m > 0.

4.5.2 The homology of Thompson monoids

Explicit computations for small m

We will explicitly compute H∗(tm(p, q)) for m ≤ 2q. Recall that we have a one-
to-one correspondence between essential n-cells in V∗tm(p, q) and free generators of
Hn(tm(p, q)).

If m ≤ q then tm(p, q) is free on m generators, and we know its homology. It is easy
to check that for m = q + 1 there are no other essential cells in V∗t q+1(p, q) than
J K, J1K, . . . , JqK. (By Remark 4.4.8.(b) there are no further 1-cells, and by Proposition
4.5.1 there are no essential cells in dimension ≥ 2.)

For m > q + 1 and m ≤ 2q we can determine all essential cells of V∗tm(p, q) by an easy
combinatorial argument. First of all, Proposition 4.5.1 tells us that there are no essential
cells of dimension ≥ 3. Furthermore, there is exactly one 0-cell, namely J K, and there
are exactly q-many 1-cells, namely J1K, . . . , JqK. How many essential 2-cells are there?

Recall that Ji2|i1K is an essential cell in V∗tm(p, q) if and only if i2 ∈ {2, . . . , q} and
i1− i2 ∈ {q, . . . 2q−1}. For convenience we first discuss the question how many essential
2-cells of the form J2|i1K we have. J2|i1K is essential in V∗tm(p, q) if and only if i1 ≤ m
and i1 − 2 ∈ {q, . . . , 2q − 1}. Note that, since q + 1 < m ≤ 2q, the cell J2|mK is always
essential. We conclude that in V∗tm(p, q) all essential 2-cells with left-most entry being
2 are given by

J2|q + 2K, J2|q + 3K, . . . , J2|mK.

Thus, there’s a total of m− q − 1 such essential 2-cells. Similarly one shows that there
are exactly (m− q − 2)-many essential 2-cells with left-most entry being 3. Continuing
this way, we see that there is exactly one essential 2-cell with left-most entry beingm−q.
(Note that m− q ≤ q.) Altogether we obtain that the total number of essential 2-cells
in V∗tm(p, q) is given by

m−q−1∑

i=1

i =
(m− q) · (m− q − 1)

2
.

We have proven the following.
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4.5 Homological results on Thompson monoids

Proposition 4.5.2 Let m <∞ and 0 < p ≤ q subject to m ≤ 2q. Then

H0(tm(p, q)) ∼= Z,

H1(tm(p, q)) ∼=

{
Zm if m < q,

Zq if q ≤ m ≤ 2q,

H2(tm(p, q)) ∼=

{
0 if m < q,

Z
(m−q)·(m−q−1)

2 if q ≤ m ≤ 2q.

and Hi(tm(p, q)) = 0 for i ≥ 3.

A recursion formula for large m

In the preceding subsection we explicitly computed H∗(tm(p, q)) for m ≤ 2q. We now
derive recursion formulas for H∗(tm(p, q)) for m > 2q. In what follows we assume
m ≥ 2q + 1 to be fixed.

Recall that, as a Z-module, H∗(tm(p, q)) is freely generated by all tuples of the form
Jin| . . . |i1K with associated difference sequence in {q+1, . . . , 2q−1}n−1×{q, . . . , 2q−1}.
For a = q + 1, . . . , 2q − 1 define

ζn,a : Hn(tm−a(p, q)) −→ Hn+1(tm(p, q))

Jin| . . . |i1K 7−→ J1− q + a|in + a| . . . |i1 + aK (4.12)

and extend linearly. Note that this is indeed well-defined, for if Jin| . . . |i1K is an essential
n-cell in V∗tm−a(p, q) then J1 − q + a|in + a| . . . |i1 + aK is an essential (n + 1)-cell in
V∗tm(p, q).

We will study the simultaneous images of these maps:

Hn(tm−(q+1)(p, q)) ⊕ . . .⊕Hn(tm−(2q−1)(p, q))

ζn:=ζn,q+1⊕...⊕ζn,2q−1

��
Hn+1(tm(p, q))

(4.13)

Proposition 4.5.3 Let ζn be defined as above.

(a) For all n ≥ 0, the map ζn is injective.

(b) ζn is an isomorphism for n ≥ 1.

(c) coker(ζ0) ∼= Z.

Proof. (a) Injectivity is clear by closely looking at (4.12): The parameter a is uniquely
determined by the left-most entry of the tuple J1− q+ a|in + a| . . . |i1 + aK, and once we
know a, we can completely recover the preimage Jin| . . . |i1K.
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4 Applications to generalized Thompson groups and monoids

(b) For n ≥ 1 the inverse map is given by sending an (n + 1)-cell Jin+1| . . . |i1K to the
n-cell Jin − a| . . . |i1 − aK ∈ H∗(tm−a(p, q)), where a = in+1 + q − 1.

(c) H1(tm(p, q)) is freely generated by the elements J1K, . . . , JqK. For a = q+1, . . . , 2q−1,
H0(tm−a(p, q)) is cyclic with generator J K, which under ζ0 is mapped to J1−q+aK. Thus,
every generator in H1(tm(p, q)) is hit, except for J1K. �

Corollary 4.5.4 Let m ≥ 2q + 1, 0 < p ≤ q. Then

Hn(tm(p, q)) ∼=





2q−1⊕
a=q+1

Hn−1(tm−a(p, q)) if n ≥ 2,

Zq if n = 1,

Z if n = 0.

Proof. The cases n = 0, 1 are clear, and for n = 2 the statement follows from Proposi-
tion 4.5.3. �

The homology of some generalized Thompson groups

For m =∞ we may consider ζn as a map

Hn(t∞(p, q)) ⊕ . . .⊕Hn(t∞(p, q)) −→ Hn+1(t∞(p, q)),

yielding isomorphisms

Hn+1(t∞(p, q)) ∼= [Hn(t∞(p, q))]q−1

for n ≥ 1. Note that H1(t∞(p, q)) ∼= Zq. An easy inductive argument gives the following.

Proposition 4.5.5 Let 0 < p ≤ q. Then

Hn(t∞(p, q)) ∼=

{
Z if n = 0,

Z(q−1)n−1·q if n > 0.

Recall that for m = ∞ and q = p + 1 the monoids t∞(p, q) are cancellative and satisfy
the Ore condition. Combining Proposition 4.5.5 and Corollary 4.3.12 we obtain:

Corollary 4.5.6 Let q > 1. Then

Hn(T ∞(q − 1, q)) ∼=

{
Z if n = 0,

Z(q−1)n−1·q if n > 0.

Recall from Remark 4.3.2 that T ∞(n − 1, n) ∼= F (r,Z[ 1n ], 〈n〉). The above Corollary
therefore provides a recomputation of the homology of the groups F (r,Z[ 1n ], 〈n〉). The
homology of these groups has first been computed by Stein [Ste92, Theorem 2.6].
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4.5 Homological results on Thompson monoids

For r = 1, p = 1, q = 2, we find that in every positive degree the homology of Thompson’s
group F is free abelian on two generators. In degree 1, these generators are represented
by J1K and J2K, in degrees n > 1 they are represented by the elements J2|5| . . . |3n −
4|3n − 1K and J2|5| . . . |3n − 4|3n − 2K.

A stabilization result

The inclusion of generating sets {ξ1, . . . , ξm} ⊂ {ξ1, . . . , ξm+1} induces a well-defined
map tm(p, q)→ tm+1(p, q), compare Remark 4.3.13.(a). From this we obtain an infinite
sequence of n-th homology groups,

Hn(t 0(p, q))→ Hn(t 1(p, q))→ Hn(t 2(p, q))→ . . .

This sequence stabilizes. More precisely we have the following.

Proposition 4.5.7 Let 0 < p ≤ q. Then for m ≥ n · (2q − 1) + 1 − q the above maps
induce an isomorphism

Hn(tm(p, q)) ∼= Hn(t∞(p, q)).

Proof. It suffices to show that for m ≥ n · (2q − 1) + 1 − q the essential cells in the
respective Visy modules Vntm(p, q) and Vnt∞(p, q) coincide. By Remark 4.4.10, every
essential n-cell in Vntm(p, q) can be considered as an essential n-cell in Vnt∞(p, q). Vice
versa, assume that Jin| . . . |i1K is essential in Vnt∞(p, q). Then i1 ≤ (n−1) ·(2q−1)+q =
n · (2q − 1) + 1 − q ≤ m, and thus we may consider Jin| . . . |i1K as an essential cell in
Vntm(p, q). �

4.5.3 A remark on the monoids tm(1, q), . . . , tm(q, q)

Recall that for fixed m > 0, q > 0 and p = 1, . . . , q the monoids tm(p, q) have the
same homology. We are now going to show that if m is large enough with respect to
q, then the monoids tm(1, q), . . . , tm(q, q) are pairwise not isomorphic. (Of course, we
cannot expect this to hold for all m, since for m ≤ q the monoids tm(p, q) are free on m
generators.)

We need a Lemma about permutations with prescribed bounds. Denote by Sn the n-th
symmetric group.

Lemma 4.5.8 Let d be such that 1 ≤ 2d + 1 ≤ n. If π ∈ Sn satisfies the following
condition,

j − i ≤ d =⇒ π(j) − π(i) ≤ d (4.14)

then π = id.
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4 Applications to generalized Thompson groups and monoids

Before we give the proof, note that the Lemma does not hold for d ≥ n/2. For example,
taking n = 2d, the transposition (d d+1) satisfies condition (4.14), because whenever
π(j) − π(i) > d then we necessarily have π(j) > d + 1 and π(i) < d, yielding π(j) = j,
π(i) = i and thus j − i > d, cf. Figure 4.18.

• . . . • • • • . . . •
1 d− 1 d d+ 1 d+ 2 2d

• . . . • • • • . . . •
1 d− 1 d d+ 1 d+ 2 2d

Figure 4.18: Counterexample to Lemma 4.5.8 for n = 2d.

We now prove Lemma 4.5.8.

Proof. Let π ∈ Sn satisfy (4.14).

Claim 1. For every k, π maps {max{k−d, 1}, . . . , n} into {max{π(k)−d, 1}, . . . , n},
cf. Figure 4.19.

• . . . • . . . • . . . •
1 k − d k n

• . . . • . . . • . . . •
1 π(k)− d π(k) n

Figure 4.19: π maps entries ≥ k − d to entries ≥ π(k)− d.

Let j ∈ {max{k−d, 1}, . . . , n}. In particular, j ≥ 1 and j ≥ k−d. The latter is equivalent
to k − j ≤ d. Thus, by (4.14), we have π(k) − π(j) ≤ d, yielding π(j) ≥ π(k) − d and
hence π(j) ∈ {max{π(k) − d, 1}, . . . , n}. Claim 1 is proven.

Claim 1 has two important consequences.

Claim 2. For k ≥ d+ 1 we have π(k) ≤ k.

Clearly, if k ≥ d + 1 then k − d ≥ 1 and thus π maps {k − d, . . . , n} into {max{π(k) −
d, 1}, . . . , n}. Since π is injective, the latter must contain at least n−(k−d)+1 elements,
forcing π(k) ≤ k. Claim 2 is proven.

Claim 3. For k ≤ d+ 1 we have π(k) ≤ d+ 1.

Clearly, if k ≤ d+1 then k− d ≤ 1 and thus {max{k− d, 1}, . . . , n} = {1, . . . , n}, which
under π is mapped bijectively onto {1, . . . , n}. We therefore must have max{π(k) −
d, 1} ≤ 1 and hence π(k) ≤ d+ 1. Claim 3 is proven.

There are “opposite” statements to Claims 1-3, reading as follows. First, for every k, π
maps {1, . . .min{n, k + d}} into {1, . . . ,min{n, π(k) + d}}. From this we conclude that,
secondly, for k ≤ n−d we have π(k) ≥ k, and thirdly, for k ≥ n−d we have π(k) ≥ n−d.

Putting everything together, we see that every k = d + 1, . . . , n − d is a fixed point of
π. Also note that there is at least one such fixed point, because d + 1 ≤ n − d (since
n ≥ 2d+1). Furthermore, we conclude that π fixes {1, . . . , d} and {n− d+1, . . . , n} (as
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sets). This situation is depicted in Figure 4.20.

• . . . • • . . . • • . . . •
1 d d+ 1 n− dn− d+ 1 n

• . . . • • . . . • • . . . •
1 d d+ 1 n− dn− d+ 1 n

Figure 4.20: Situation in the proof of Lemma 4.5.8.

By a simple counting argument, the restriction π| : {n−d+1, . . . , n} → {n−d+1, . . . , n}
is a bijection. On the other hand, by Claim 2, for every k ∈ {n− d+ 1, . . . , n} we have
π(k) ≤ k. It follows that π is the identity on {n − d + 1, . . . , n}. Using the opposite
statements, one shows that the restriction π| : {1, . . . , d} → {1, . . . , d} is again the
identity.

Altogether, for every k = 1, . . . , n we have π(k) = k. The Lemma is proven. �

Corollary 4.5.9 Let q be such that 1 ≤ 2q − 1 ≤ n. If σ ∈ Sn satisfies the following
condition,

j − i ≥ q =⇒ σ(j) − σ(i) ≥ q (4.15)

then σ = id.

Proof. Assume σ(j)− σ(i) < q and apply Lemma 4.5.8 with π = σ−1, d = q − 1. �

Proposition 4.5.10 Fix m < ∞ and let q be such that 1 ≤ 2q − 1 ≤ m, i.e. q > 0
and q ≤ (m + 1)/2. Then the monoids tm(p, q) are pairwise not isomorphic for every
p = 1, . . . , q.

Proof. Recall that an element of a monoid is said to be an atom if it cannot be factored
into two non-trivial elements. The atoms of tm(p, q) are ξ1, . . . , ξm.

Let 1 ≤ p, p′ ≤ q and let ϕ : tm(p, q)→ tm(p′, q) be an isomorphism of monoids. Clearly,
ϕ must map atoms bijectively onto atoms, and therefore ϕ gives rise to a permutation
σ ∈ Sm as follows. For k = 1, . . . ,m let σ(k) be the element uniquely determined by

ϕ(ξk) = ξσ(k).

Now, for j − i ≥ q we have a relation ξj−pξi = ξiξj in tm(p, q), and thus we must
have a relation ξσ(j−p)ξσ(i) = ξσ(i)ξσ(j) in tm(p′, q). This has two consequences. First,
σ(j − p) = σ(j) − p′. Secondly, if j − i ≥ q then σ(j) − σ(i) ≥ q. So we are in the
situation of Corollary 4.5.9, yielding σ = id, and from σ(j − p) = σ(j) − p′ we conclude
p = p′. �

Remark 4.5.11 Note that for m < ∞ and m > q the monoid tm(0, q) is not isomor-
phic to any of the monoids tm(1, q), . . ., tm(q, q). This can be seen by comparing the
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respective first homology groups: From Remark 4.4.6 it follows that H1(tm(0, q)) ∼= Zm,
because every 1-cell J1K, . . . , JmK is a generator of the Visy complex V∗tm(0, q) and thus
(since p = 0) a free generator in homology. For p = 1, . . . , q our analysis in Subsection
4.5.2 shows that for m ≥ q we have H1(tm(p, q)) ∼= Zq. Thus, for m > q and every
p = 1, . . . , q, the monoids tm(0, q) and tm(p, q) have different homology.
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Index

∂ (reduced bar differential), 40
V (discrete gradient vector field), 30
Θ (discrete gradient flow), 30

CΘ
∗ (harmonic chains), 32

θ (reduced gradient flow), 33
Cθ
∗ (essential chains), 34

2-balanced, 53
R-graph, 27

FP-property, 18
F-property, 19

absorbing element, 80
atomic, 47

balanced, 53

bar complex, 42
bar resolution, 39

based chain complex, 28
braid factorable, 127

cell
collapsible, 94

essential, 94
height of, 94
monotone, 94

redundant, 94
collapsible, 29
collapsing scheme, 37

connected subsequence, 72
Coxeter monoid, 128

discrete gradient flow, 30

discrete gradient vector field, 30
discrete Morse function, 37

essential, 29

Evaluation Lemma, 75

factorable group, 57
factorable monoid, 65
factorization map, 56
finite sequence, 72

ascending, 131
coherent, 98
descending, 131

effective, 120
left-most, 76
length of, 72
norm-preserving, 98
reduced, 76
right-most, 76
small, 85
value of, 77

Garside element, 48

Garside monoid, 48
geodesic (tuple), 54
good set of arrows, 134
graded

equality in the graded sense, 54
graded map, 54

graph
directed, 26

noetherian, 27
thin, 27

graph product (of monoids), 72
graph with labels, 27
group of fractions, 125

height (of a vertex), 27

incidence graph, 29
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Index

incidence number, 28
irreducible word, 43

labelling (of a graph), 27

matching, 27
R-compatible, 27
noetherian (on a based chain com-

plex), 29
noetherian (on a graph), 28
perfect, 115

monoid, 17
monoid action, 17
Morse complex (discrete), 36

norm (of a cell), 93
norm (of a chain), 93
normal form (of an element), 44
normal form (section), 18
normal form (w.r.t. η), 63

Ore condition
right, 126
specific, 143

partition type, 93
Patching Lemma (for coherent sequences),

98
path (in a graph), 27
prefix, 56

recognition principle, 64
reduced gradient flow, 33
reducible word, 43
redundant, 29
remainder, 56
rewriting system, 43

complete, 44
confluent, 44
convergent, 44
finite, 46
minimal, 43
noetherian, 44
strongly minimal, 44

rewriting system associated to a factorable
monoid, 119

scanning (of tuples), 40
stable (pair), 57

Thompson groups (generalized), 139
Thompson monoids (generalized), 139

Visy complex V∗, 62
Visy resolution Ṽ∗, 102

weakly factorable monoid, 59
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