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1 Introduction 
 

In modern societies, the appearance of many diseases can be traced back to an 

increased stress exposure. The response to stress is highly dependent on the distinct 

reaction of each individual and ranges from highly stress-sensitive people to those 

who can tolerate intensive stress without any outcome, especially in health (Herman 

and Cullinan 1997). Responses to stress are shaped by a combination of several 

components, which may be vegetative, cognitive, emotional or behavioral in nature. 

In mammals, this response to stress is evolutionarily conserved and facilitates 

appropriate behavioral reactions to anxious or fearful situations. Behavioral 

responses like avoidance, flight or estimation of the potential risk are defensive and 

induced by intermediate anxiety states. In cases where flight is impossible or the 

situation is more fearful, the defensive behavior is replaced by an offensive fight 

response. When very strong threats induce panic or extreme anxiety, a freezing 

response is elicited as a worst-case reaction in order to escape this situation by 

mimicking a dead individual (Blanchard et al. 2003). The main system of the brain, 

which regulates the response to stress, is the limbic system. It is established by the 

interconnections of other brain regions, mainly the hippocampus, the amygdala, the 

hypothalamus and the prefrontal cortex. All these regions fulfill specific functions 

during stress response, like the amygdala, which processes the reaction to 

environmental input (Gordon and Hen 2004, McEwen and Gianaros 2010).  

If an individual is in an anxious situation, which will interrupt the homeostasis, the 

brain will induce corresponding behaviors and elicit changes in the hormone system 

in order to adapt homeostasis to the situation. Behavioral stress responses like fear 

and anxiety also include emotional aspects, which demonstrate a high variability 

among individuals. This seems to be a strategy of survival for the individuals, since 

the variation ensures the survival of the population (Levine and Ursin 1991). Because 

of these circumstances, the response to stress does not harm the individual’s health; 

rather it enhances it. Normally the response occurs only for a short period of time, 

when threatening stimuli are present, and relapses afterwards. If an individual 

experiences stress for a long time, the homeostasis can be changed substantially 

and can adversely affect health (Fuchs and Flügge 2003). 

Anxiety-related behavior is not solely affected by stress, since stress can also 

strongly influence depression. It is known that depression is strongly connected with 
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stressful life events. Stress in early life seems to be a major risk factor for the later 

development of depression disorders. The possibility of developing stress-related 

disorders is determined by the individual’s genetic predisposition and whether they 

had previously suffered stress in early life and for long periods (Charney and Manji 

2004). 

When focusing on psychiatric disorders which are related to stress, anxiety and 

depression disorders are the most common ones. Worldwide, 10-15 % of the human 

population are affected by these disorders (Reul and Holsboer 2002). In Germany, a 

survey revealed in 1998 that over 14 % of the 18 to 65 year old people interviewed 

suffered from clinically relevant anxiety disorders. Female patients are affected twice 

more when compared to male patients. The survey indicats furthermore that 15 % of 

the women and 8.1 % of the men questioned had suffered a depressive phase in the 

last twelve months. There are also twice more women than men affected by 

depression. The study also shows that 40-70 % of suicides can be traced back to 

depression. In 2004, a survey revealed that 11,000 suicides were registered in 

Germany that year (Robert Koch-Institut 2006). This demonstrates the importance of 

stress as well as the stress response to mood constitution and the homeostasis in 

humans. 

 

1.1 Anxiety and depression 
Several emotions exist in animals and humans, anxiety being a fundamental one. 

Fearful situations or other anxious stimuli like novel environments, loud noise, 

sudden movements or odors of enemies can induce such emotions as responses 

(Blanchard and Blanchard 1972, Endler 1986, King 1999).  

Anxiety disorders can be categorized in six different types. The first is panic disorder, 

which is marked by sudden bursts of anxiety. Generalized anxiety disorder (GAD) 

forms the second type, which is expressed by strong anxiety in various situations 

without any distinct stimuli. The third type is social phobia, which is marked by the 

avoidance of social situations. Specific phobias form the fourth type of anxiety 

disorders. Phobias induce strong fear as a response to naturally fearful stimuli like 

spiders or small spaces. The fifth type is the post-traumatic stress disorder, which is 

characterized by traumatic memories eliciting anxiety episodes. Obsessive-

compulsive disorder is the last type, marked by mania and compulsive behaviors, 

which are both induced by anxiety (Gordon and Hen 2004).  
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Besides the different brain regions, there are also different neurotransmitter systems, 

which regulate the stress response and thus anxiety. Such neurotransmitters are the 

serotonergic, the noradrenergic and the GABAergic systems. Furthermore, the 

hormonal systems, especially the hypothalamo-pituitary-adrenocortical (HPA) axis, 

are involved in the regulation of stress response and also influence anxiety as a 

modulatory system (Hohoff 2009, Reul and Holsboer 2002). In the HPA axis, the 

corticotrophin-releasing hormone (CRH) and vasopressin are synthesized and 

secreted from the paraventricular nucleus (PVN) of the hypothalamus. These two 

peptides react on the anterior lobe of the pituitary gland where they stimulate the 

secretion of the adrenocorticotropic hormone (ACTH). The ACTH itself stimulates the 

production and release of glucocorticoid hormones (mainly corticosterone in rodents) 

in the adrenal cortex. The glucocorticoids build a negative feedback on the 

hypothalamus and pituitary gland in order to suppress the CRH and ACTH 

production (Figure 1) (Holsboer and Ising 2008).  

In recent years, many studies have identified the importance of CRH, as well as its 

receptors, in the regulation of anxiety and depression (Arborelius et al. 1999, Hauger 

et al. 2009, Reul and Holsboer 2002). Several clinical studies also revealed 

increased CRH levels in patients with anxiety or depression disorders (Bremner et al. 

1997, Erhardt et al. 2006, Landgraf 2006, Raadsheer et al. 1994). The glucocorticoid 

hormone cortisol, respectively corticosterone, synthesis is increased by high CRH 

levels via risen ACTH levels. The glucocorticoid hormones regulate the expression of 

several other genes in the brain, like tyrosine aminotransferase, 

phosphoenolpyruvate carboxykinase, insulin-like growth factor 1, pro-

opiomelanocortin, prolactin, and the neuronal serotonin receptor (Revollo and 

Cidlowski 2009). Therefore, long-term exposure to this stress hormone can induce 

stable changes in gene expression patterns in the brain, leading to emotional 

changes like depressed mood (Holsboer and Ising 2008). Since the HPA axis plays a 

major role in the regulation of stress response, it is also involved in the outcome of 

stress-dependent disorders like anxiety and major depressive disorder (MDD). 

Naturally, anxiety and depression are two separated disorders, but they often present 

comorbidity. In the United States, a survey revealed that 58 % of the people who 

suffered from a major depressive disorder also came down with an anxiety disorder. 

Equal results could be identified for the reverse, as 67 % of patients with generalized 

anxiety disorder also exhibited a unipolar depressive disorder (Judd et al. 1998, 
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Kessler et al. 2005, Pollack 2005, Simon 2009). The diagnosis of comorbid anxiety 

and depression disorders tends to be difficult, since anxiety disorders normally 

develop in early life and before depressive disorders. Thus, a GAD will be diagnosed 

prior to an MDD in patients with comorbidity. Furthermore, patients present a higher 

possibility for the onset of MDD when they have developed a GAD the year before 

(Kessler et al. 1996). The biological basis of comorbidity in anxiety and depression 

disorders is completely unknown, various possible factors have been identified which 

seem to play a role in this context. The HPA axis is one of these factors, while 

overlapping genetic sources in both diseases and equal environmental factors are 

also probably involved (Simon 2009). 

 

 
Figure 1. Schematic of the HPA axis. Reduction in glucocorticoid levels leads to an increase in 

corticotropin-releasing hormone (CRH) and vasopressin (AVP) production in the hypothalamus. Both 

hormones stimulate the production of adrenocorticotropic hormone (ACTH) in the anterior pituitary 

gland. This hormone enhances the secretion of glucocorticoids from the adrenal cortex in kidney. 

Then, the secreted glucocorticoids inhibit the secretion from the anterior pituitary and the 

hypothalamus by a negative-feedback loop. Additionally, glucocorticoids can bind to nuclear 

corticosteroid receptors in these brain regions in order to regulate gene expression. (According to 

Sandi et al. 2004) 
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1.2 Animal models in anxiety and depression 
Various approaches are applied for studying the pathogenesis of human anxiety and 

depression disorders as well as their underlying complex biological mechanisms. 

Since human anxiety and depression diseases include complex emotions and 

cognition, unique experiences and different genetic backgrounds, simplified 

approaches are utilized to study these diseases. Mice serve as a useful tool for this 

purpose (Blanchard et al. 2001, Gordon and Hen 2004). These approaches should 

meet three criteria before they are validated as adequate animal models. The first 

criterion is construct validity, which implies that the model is comparable with the 

human cause of the disease. The next criterion is face validity, which claims an 

analogy between the phenotype of the animal model and the outcome of the human 

disease. Predictive validity marks the third criterion and requests equal responses of 

the model to treatments, which proved effective in humans. It is mostly verified by the 

application of drugs known to be effective in humans and generates results 

comparable to autonomic and behavioral reactions in humans (Chadman et al. 

2009).  

Besides the brain areas, which are connected to anxiety and depression, the 

neurotransmitters and neuromodulators are also conserved between mice and 

humans (Leonardo and Hen 2006, Urani et al. 2005). For this reason, different 

paradigms were developed in order to measure anxiety- and depression-related 

behaviors in mice (Dalvi and Lucki 1999, Hohoff 2009). The response of humans to 

stressful or threatening stimuli can be simulated in aspects by these paradigms. The 

behavioral paradigms are sorted into five groups for the measure of anxiety-related 

behavior: ethological conflict tests, conditioned fear tests, punishment-induced 

conflict tests, aversive tests and drug discrimination tests (Shekhar et al. 2001).  

All these paradigms can furthermore be grouped into two classes, i.e. the conditioned 

and the unconditioned models. The conditioned models are comparable with human 

fear conditioning, since they are strongly influenced by learning and memory, as well 

as the motivation of mice. The unconditioned models mimic human panic disorder 

(PD) or GAD. These models induce a conflict between the natural exploration 

behavior of the mice and their natural aversion towards novel, high, open or bright 

environments. This conflict leads to avoidance, hiding, freezing or panic behavior in 

the mice (Hohoff 2009).  
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The type of anxiety measured by behavioral paradigms can be separated into ‘state’ 

and 'trait' anxiety. State anxiety is experienced exactly at the moment of the test and 

it is not stable, since there are temporary fluctuations mostly induced by external 

stimuli. In contrast, ‘trait’ anxiety describes the reaction to different situations by 

generally elevated anxiety levels for a longer time. External stimuli do not influence 

this type of anxiety and it is more constant over time compared to state anxiety 

(Andreatini and Bacellar 2000, Belzung and Griebel 2001). The most common tests 

to achieve 'state' anxiety behavior are the zero maze, the elevated plus maze, the 

light dark and the open field test. All these paradigms induce a conflict between the 

mice’s interest in a novel environment and avoidance of an aversive, mainly open 

surrounding. For the measurement of 'trait' anxiety, the acoustic startle response is 

widely used, which measures the intensity of a startle reflex after the presentation of 

a sudden loud noise (Andreatini and Bacellar 2000, Belzung and Griebel 2001, 

Hohoff 2009). 

Depression is a very heterogeneous disorder, as it turned out difficult to copy, even in 

parts, in the laboratory (Cryan and Mombereau 2004). Although several drugs or 

stressful situations can induce anxiety, which can be handled quite easy, the initiation 

of depression in animals or humans is more difficult (Blanchard et al. 2003, Shekhar 

et al. 2001, Sullivan et al. 2003). Most of the depression-related paradigms for mice 

demonstrated only predictive validity, confirmed with clinically effective 

antidepressant drugs. There exist four major models for depression, which are widely 

used in depression research (Dalvi and Lucki 1999), i.e. the forced swim test (FST) 

(Porsolt et al. 1978), the tail suspension test (TST) (Steru et al. 1985), the olfactory 

bulbectomy (OB) (Kelly et al. 1997) and the chronic mild stress (CMS) model (Willner 

et al. 1997). Among these, the FST and TST are the most commonly applied 

paradigms, since they can also be easily conducted in high-throughput testing (Cryan 

and Mombereau 2004). 

The numerous inbred mouse strains presented substantially different behaviors in 

anxiety- as well as depression-related paradigms (Crawley et al. 1997, Lucki et al. 

2001). Thus, the background strain should be selected carefully for use in genome-

wide studies. In order to retrieve enough power for genome-wide studies, there 

should be a robust behavioral difference in anxiety- and depression-related behavior 

between the background strains. 
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1.3 Genetics of anxiety and depression 
There exists a broad individual variability in the risk to develop an anxiety disorder, 

with 30–50 % of the variability depending on genetic factors and interactions between 

genes. The remaining variability is mainly influenced by gene-environment 

interactions (Hettema et al. 2001, Kendler et al. 2001, Roy-Byrne et al. 2002). Similar 

data were identified in human twin studies for depression disorders (Sullivan et al. 

2000). The main focus in the neuroscientific area lies in revealing the numerous 

genetic factors of psychiatric diseases that are responsible for the genetic variability 

of such diseases. Genetic linkage studies have emerged as a powerful tool to identify 

the respective genes. Regarding this aspect, a number of genetic studies focused 

mainly on genetic associations in the past decade. The genetic linkage approach is 

based on tracing chromosomal segments in families, in order to search for specific 

haplotypes that segregate in individuals carrying the disease. In the classical 

analysis, a likelihood-based method is mostly applied, which evaluates the likelihood 

that the disease can be correlated with a particular marker and both segregated 

within the family. The likelihood-based research for linkage is an excellent approach 

to identify rare DNA variants that lead to large effects in individuals. This method was 

intensively applied in genetic studies of psychiatric disorders, since its first successes 

in other medical disorders. However, major results were still missing, and remain so 

even nowadays. The unsuccessful outcome of these linkage studies for psychiatric 

disorders is a result of the large number of genes, which all contribute to the risk of 

these complex disorders and present low influence on the liability of the diseases. 

This changed comprehensively with the rise of genetic association approaches that 

emerged as a new tool for the identification complex traits. Like linkage, the genetic 

association method is based on the assumption that the human population can be 

handled as a large pedigree. In this pedigree, large DNA segments were cropped by 

recombination to very small chromosomal regions, where a genetic variant can be 

detected, which is shared by many unrelated people with the same disorder. During 

the past decade, thousands of genetic studies were carried out with this approach for 

several psychiatric disorders (Hamilton 2009). These studies are mainly based on 

two types of variation. Single nucleotide polymorphisms (SNPs) are the first type of 

variation, which occur in single DNA bases. SNPs are highly common in the genome 

and can be found at 1 out of 1,000 bases on average. The second type of variation is 

based on short repetitive sequences, which consist of two to six nucleotides and can 
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be detected with variable length, mainly around genes. This variation type is also 

known as DNA microsatellites and they are completely independent of diseases in 

contrast to SNPs (Smoller et al. 2009).  

Linkage studies have revealed several suggestive linkages for panic anxiety 

phenotypes on a broad range of chromosomal regions (Table 1). Phobic disorders 

were linked with this method to 3 chromosomes (Table 1), whereby obsessive-

compulsive disorders were linked to 4 loci (Table 1) (Smoller et al. 2009). With 

bipolar depression linkage studies, as many as 10 chromosomes were associated 

with this disorder and 11 loci were mapped (Table 1). For MDD, 7 genetic regions 

were identified (Table 1) (Hamet and Tremblay 2005).  

 
Table 1. Linkage of human genetic regions to psychiatric diseases (Modified according to Hamet and 

Tremblay 2005, Smoller et al. 2009) 

 

Despite the fact that many loci are already linked to psychiatric disorders, there is still 

a relative lack of success for this method. This is mostly due to the large number of 

genes contributing to these complex disorders and furthermore to the limited effect of 

each gene for the whole phenotype (Hamilton 2009). 

Based on new technical developments like high-throughput microsatellite or SNP 

screenings, association studies evolved as a follow-up approach to linkage studies. 

They focused on candidate genes, which were identified in earlier studies or were 

located within the genomic regions indicated in linkage studies so far. The candidate 

genes, which were associated with psychiatric disorders, encode for receptors, 

transporters or they play a role in neurotransmitter systems. Other candidate genes 

encode for neuropeptides, which were identified in earlier animal studies (Smoller et 

al. 2009). The association studies have discovered 76 discrete genes in anxiety 

disorders. However, there are huge differences in the phenotypic assessment in 

these studies, leading to controversial findings. Despite the high number of 

individually assessed candidate genes, only a handful were identified in two or more 

studies as risk genes for anxiety disorders, like the catechol-O-methyltransferase or 
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serotonin transporter (COMT, SLC6A4) (Hamilton 2009, Smoller et al. 2009). A very 

similar situation can be seen for depression. Until now, not only several loci were 

identified in linkage studies but also many genetic variants were detected in 

association studies (Levinson 2006, Schulze 2010). However, the meta-analysis of 

genetic studies on major depressive disorders only revealed six susceptibility genes 

with statistical significance. The major problem of the predominant number of studies 

was the insufficient statistical power due to small sample sets (Lopez-Leon et al. 

2005, Lopez-Leon et al. 2008). 

Besides the linkage and association approaches on a genome-wide range, the 

classical candidate gene identification and evaluation in genetically modified mice is 

still an important source of information. For the functional analysis of genes, 

generation of transgenic mice and gene knockouts by homologous recombination 

were the methods of choice in recent decades. This method, however, reaches its 

limit in the detection of phenotypic variances caused by a gene, which had only minor 

effects on these variances like in the complex traits of anxiety- and depression-

related behaviors (Gordon and Hen 2004, Hamet and Tremblay 2005). 

Collaborations like the International Mouse Knockout Consortium have been working 

to knock out every protein-coding gene until the end of 2012. This enthusiastic goal 

shall be reached using the gene trap technique, a high-throughput knockout strategy 

with random integration of viral vectors in mouse embryonic stem (ES) cells (The 

International Mouse Knockout Consortium 2007). The completion of this project 

raises the possibility of detecting behavioral phenotypes of new gene knockouts and 

identifying many new candidate genes. However, the problem of small effect sizes of 

many genes still remains. It seems that only a combination of genome-wide studies 

with candidate gene analyses and growing bioinformatic analyses will be able to 

reveal significant candidate genes for complex traits. 

 

1.4 Quantitative trait loci analysis 
Anxiety- and depression-related behaviors are complex traits, which means that 

these behaviors are influenced by many genetic loci, each contributing only to a 

limited extent to the phenotypic variance. This variance is described by a quantitative 

trait and the genetic locus, that contributes to this quantitative trait is, determined by 

a quantitative trait locus (QTL). Thus, a QTL analysis associates the genetic variation 

with trait variation and identifies the QTL. 
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Researchers have mapped several thousand QTL for human and mouse traits. The 

genes of mice and humans are arranged syntenically, thus enabling the comparison 

and validation of the according QTL for equal traits (Pennacchio 2003). This concept 

was confirmed, for instance, in atherosclerosis (Wang et al. 2005) or kidney disease 

(Korstanje and DiPetrillo 2004), demonstrating the assignability of QTL studies in 

humans and mice. Using mice for a QTL approach offers a number of advantages 

compared to human studies. The numerous inbred mouse strains differ in their 

physical and behavioral phenotypes, which are passed on and stable among each 

strain. Additionally, the perturbing problem of genetic variability can be excluded, 

since the genomes of animals within the same inbred strain are identical and the 

influence of environmental factors is controlled by the experimental procedures. 

Consequently, the variance in the behavior of mouse strains are a result of the 

genetic differences, which can be detected and analyzed by QTL mapping (Hovatta 

and Barlow 2008). For this purpose, the strains should exhibit strong variance in 

behavioral phenotypes. The level of difference between the two strains in the 

phenotype of choice reflects the level of probability to identify related QTL loci 

(Hovatta and Barlow 2008, Moore and Nagle 2000, Peters et al. 2007). Following the 

selection of appropriate inbred strains, mice are bred in order to receive a second 

(F2) generation, in which the phenotype-causing alleles segregate. There are two 

options to receive this F2 generation, either by intercrossing offspring of the first (F1) 

generation, or by backcrossing the F1 generation with the parental strains. A third 

method of QTL analysis is based on the generation of recombinant inbred (RI) 

strains. For this method, the F2 generation mice are continuously bred for 20 

generations by brother-sister mating in order to get inbred animals that are 

homozygous for recombinant chromosomes. The RI strains are very popular in QTL 

studies, despite the fact that the number of strains in the classical RI strains is 

relatively small and therefore resolution of the QTL analysis is limited (Flint 2003, 

Moore and Nagle 2000, Peters et al. 2007). The most commonly used strategy is to 

produce a second-generation cohort by intercrossing. This strategy is most suitable 

when on the one hand both parental strains exhibit different phenotypes within the 

same behavioral test and on the other hand an intermediate phenotype can be 

detected in the F1 generation (Moore and Nagle 2000).  

For the assessment of genetic variance in a QTL study, microsatellite markers are 

widely used. These markers are short DNA sequences in non-coding genomic 
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regions, which consist of short tandem repeats of one to six nucleotides. The lengths 

of the repeats exhibit a wide variance between human individuals and in different 

inbred mouse strains (Bennett 2000, Schlötterer 2000). Microsatellite markers are 

randomly distributed throughout the genome and their high level of polymorphism 

strongly facilitates their use for the construction of genetic maps. Microsatellites can 

be easily amplified by polymerase chain reaction (PCR) and can be subsequently 

sized for their length in high-throughput capillary sequencers, which make them 

highly versatile markers (Bennett 2000, Dietrich et al. 1994). 

 

 
Figure 2. Illustration of microsatellites. The upper part shows three different alleles of a microsatellite 

marker with a CA di-nucleotide (C: Cytidine; A: Adenosine). The first allele has 15 repeats, the second 

17 repeats and the third 18 repeats. The arrows indicate the flanking primers for the amplification of 

the microsatellite by PCR. In the bottom part, a schematic gel is illustrated with probes of individuals, 

which are either homozygous for each allele or heterozygous for all possible combinations. The 

different lengths of the respective alleles can be clearly identified in the gel. (According to Silver et al. 

1995) 

 

One can conclude that even though thousands of QTL have been identified so far, 

elucidation of their underlying genes is mainly missing and only a handful of genes 

could be verified as candidate genes (Flint et al. 2005). It is therefore an important, 

though challenging issue to narrow a QTL interval in order to get a small number of 

candidate genes that can then be validated by follow-up experiments. A promising 

strategy is the implementation of a comparative genomics approach, if this is 

feasible. Such an approach is based on the structural conservation among the 

mammalian genomes. The comparison of human and mouse genomes revealed 

approximately 340 conserved syntenic segments (Pennacchio 2003). This offers the 
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opportunity to compare human and mouse QTL linked to equal traits to narrow the 

QTL, supposing that the underlying gene lies in the common region (DiPetrillo et al. 

2005). The feasibility of this approach was elegantly demonstrated by the 

identification of 66 candidate genes for kidney disease by comparison of rat and 

human QTL (Vitt et al. 2004). In order to select possible candidate genes, an 

innovative method arose within the last year, which is based on semantic similarity in 

biomedical ontologies. These ontologies grew rapidly in coverage, formality and 

integration in recent years, making them suitable for similarity searches in gene 

ontologies (Pesquita et al. 2009). In this context, Schlicker and Albrecht developed a 

software tool for the comparisons of gene ontologies and the identification of 

prominent candidate genes. Gene ontologies of candidate genes are compared to 

those of a known disease gene The software generates a list of genes, prioritized in 

their functional similarity to the known disease gene (Schlicker and Albrecht 2010). 

This approach will dramatically influence the detection of candidate genes in the 

coming years. 

Moreover, the identification of QTL will be also enhanced in the near future, since the 

mapping of genetic variants is starting to be carried out with high-throughput SNP 

screenings instead of microsatellites. This will improve the detection of QTL with 

small effect sizes, even in crosses of closely related inbred strains (Eisener-Dorman 

et al. 2010). Likewise, the Collaborative Cross will be available soon, which consists 

of about 1,000 recombinant inbred strains derived from eight classical inbred strains. 

Although the Collaborative Cross will not have a resolution on gene basis, it will still 

result in shorter QTL intervals, which subsequently improve the detection of QTL with 

lower effect sizes (Flint and Mott 2008). 

 

1.5 Gene trap knockout 
The gene knockout technique in mice is an invaluable tool to get deeper insights into 

the functions of genes. This technique can be performed by either homologous 

recombination, by random mutagenesis in embryonic stem (ES) cells with mutagens 

like N-ethyl-N-nitrosourea (ENU), or by gene trapping with viral vectors. Even though 

the homologous recombination generates a well-defined knockout, it is a very time-

consuming method.  The ENU mutagenesis is an inexpensive, though completely 

undirected method of generating knockout mice. Moreover, the screening for the 

affected genes is time-intensive (Skarnes 2005). Vectors of retroviruses, on the other 
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hand, show a high affinity to insert in the 5' region of a gene, mainly in the 5' 

untranslated region and the first intron. This enhances the efficiency of the insertion 

and thus results in a higher percentage of null mutations. The use of viral vectors 

further ensures that there occurs only a single integration of the vector in the genome 

(Stanford et al. 2001). Therefore, gene trap vectors based on retroviruses are a 

convincing method for high-throughput mutagenesis projects. 

The gene trap vector contains a gene-trapping cassette, which is made up of a 

promoterless reporter gene combined with a marker gene for selection. A widely 

used reporter gene is ß-galactosidase. The neomycin-resistence gene is commonly 

chosen to select clones with integration. A 3' splice acceptor site is positioned 

upstream of the gene-trapping cassette and a polyadenylation site terminates the 

cassette downstream. Long terminal repeats surround the whole cassette and 

mediate the viral integration in the genome. When the whole gene trap cassette is 

successfully inserted into an intron of a gene, it is expressed under the control of the 

endogenous promoter. Due to the new splice site, a fusion transcript is transcribed 

consisting of exons upstream of the insertion site and the reporter respectively the 

selection genes. The new polyadenylation site leads to the termination of 

transcription. The final fusion transcript results now in a truncated and therefore 

nonfunctional protein (Stanford et al. 2001). 

Using gene trap vectors, it is also feasible to generate a conditional gene knockout 

mouse. Herefore, several recombination sites for Cre- and FLPe recombinases flank 

the gene trap cassette. The gene trap cassette has a classical design composed of a 

splice acceptor, a reporter gene and a polyadenylation site (Figure 3A). Due to this, 

the whole cassette can be inversed with FLPe recombinase in ES cells, leading to 

the gene trap being inactivated. At a later point in time, this process can be reversed 

with Cre-recombinase, i.e. the gene trap is activated (Figure 3B). For this second 

step, mice expressing Cre-recombinase under tissue-specific promoters will be quite 

useful, since tissue and cell-type-specific gene traps are possible (Schnütgen et al. 

2005, Xin et al. 2005). 

Mouse ES cells with gene trap insertions are catalogued and available through the 

International Gene Trap Consortium or the subgroup German Gene Trap 

Consortium, which have generated thousands of gene knockouts in recent years. 

Considering this background, the generation of knockout mice based on existing ES 

cell clones can be regarded as highly promising. 
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Figure 3. Scheme of a conditional gene trap. A: Illustration of the retroviral gene trap cassette. 

Abbreviations: LTR, long terminal repeat; frt (yellow triangles) and F3 (green triangles) are target sites 

for the FLPe recombinase; loxP (red triangles) and lox511 (purple triangles) are target sites for the 

Cre-recombinase; SA, splice acceptor; ßgeo, ß-galactosidase/neomycin phosphotransferase fusion 

gene; pA, polyadenylation signal B: Conditional gene knockout by a retroviral gene trap cassette. The 

integration of the gene trap cassette in an intron of a gene is presented and expressed transcripts 

(gray arrows) are spliced between the splice donor (SD) of exon 1 (E1) and the SA of the gene trap 

cassette. In this case, the expression of the ßgeo gene is activated and the early termination of the 

endogenous transcript leads to a knockout. In step 1, the FLPe recombinase inverts the gene trap 

cassette at the designated frt recombination sites. Additionally, the FLPe recombinase simultaneously 

excises the frt recombination sites (step 2), which locks the cassette for a reinversion. This induces 

normal splicing with the endogenous splice sites and rescuing the knockout. It is reversed in steps 3 

and 4 by Cre-recombinase, which inverts the gene trap cassette back to the active position and leads 

to gene knockout. This stable recombination results in a product, which cannot be reversed. (Modified 

according to Schnütgen et al. 2005) 
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1.6 Aim of the study 
Several studies have identified genetic regions linked to anxiety- or depression-

related behavior in mice or to the respective anxiety and depression disorders in 

humans like GAD or MDD. Despite the enormous amount of data retrieved by all of 

these linkage or association approaches, only a handful of genes that are involved in 

anxiety or depression are identified as having statistical significance. Thus, the 

genetic background of these disorders remains unclear in numerous parts and many 

genes are still unknown due to their limited effect size on complex disorders or 

behaviors. It is an important issue to firstly reveal the genetic basis of anxiety and 

depression before the even more complex gene-environment interaction can be 

examined in detail. 

For this reason, the aim of the present study was the detection of new genetic loci 

and the identification of new candidate genes contributing to anxiety- and 

depression-related behavior. A QTL study was carried out in the F2 generation of an 

intercross between C57BL/6J and C3H/HeJ mice. At first, over 500 animals of the F2 

generation were phenotyped in different behavioral paradigms evaluating their 

anxiety- and depression-like behaviors. In the next phase, all animals were 

genotyped by microsatellite markers. The establishment of a high-throughput 

microsatellite mapping with a dense marker map of 269 microsatellites for the 

parental mouse strains was also an aim of this study. Subsequently, the phenotypic 

and genotypic data were conducted in a QTL analysis in order to reveal the 

respective genetic loci linked to anxiety- or depression-like behavior. Prominent 

candidate genes were selected, after narrowing of some QTL. Moreover, new 

bioinformatic methods were applied in order to reach this goal. The verification of 

selected candidate genes was finally accomplished by an evaluation with 

biomolecular as well as biochemical analyses. 
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2 Material 
 

2.1 Equipment 
Activity-tracking System Actimot, TSE Systems 

Centrifuges    Biofuge fresco, Heraeus Instruments 

    Biofuge stratos, Heraeus Instruments 

Digital gel documentation  Chemi Doc Syst CCIR, Bio-Rad Laboratories 

Electrophoresis chamber  Sub-Cell GT, Bio-Rad Laboratories 

Genetic Analyzer   ABI 3130xl, Applied Biosystems 

Homogenizator  Precellys 24, Bertin Technologies 

HPLC system Autosampler 3900; Pump 1000; Manager 5000; UV 

Detektor 2900; 250 x 2 mm Eurospher 100-3 C18 column: 

all from Knauer 

Light-Dark test chamber In-house workshop 

Liquid handling platform  Multiprobe II, PerkinElmer 

Magnetic stirrer   MR 3001 K, Heidolph, Fisher 

Microplate Reader   MRX TC II Microplate Reader, Dynex Technologies 

PCR cycler    iCycler, Bio-Rad Laboratories 

Pipetts   Research (variable), Eppendorf 

    Research® pro (multichannel), Eppendorf 

    Multipette plus, Eppendorf 

pH meter    inoLab, WTW 

Pump    Chemistry-Hybrid-Pump RC5, Vacuubrand 

Real-time PCR system 7900HT Fast Real-Time PCR System, Applied Biosystems 

Spectral photometer  ND-1000, Thermo Fisher Scientific 

Startle response system  Startle Response System, TSE Systems 

Sterilising oven   Varioklav 25T, H+P Labortechnik 

Vacuum dryer  Speed Vac, Savant Instruments 

Video-tracking system  Videomot, TSE Systems 

Vortexer    Vortex-Genie 2, Scientific Industries 

Zero maze    In-house workshop 
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2.2 Software 
Data collection software  Applied Biosystems, Ver. 3.0 

GeneMapper   Applied Biosystems, Ver. 3.7 

Microsoft Office 2008  Microsoft, Ver. 12.2.3 

NanoDrop 1000  Thermo Fisher Scientific, Ver. 3.7.1 

PASW Statistics 17  SPSS, Ver. 17.0.2.90 

Revelation   Dynex Technologies, Ver. 4.2.2.1 

R software language  R, Ver. 2.8.1 

R/qtl     R/qtl, Ver. 1.11-12 

SDS 2    Applied Biosystems, Ver. 2.2.0.1 

Vector NTI Advance Invitrogen, Ver. 11.0 

WinPrep    PerkinElmer, Ver. 1.0.0.1 

 

2.3 Databases and computer programs 
The ensembl browser (http://www.ensembl.org) and the National Center for Biology 

and Information (NCBI; http://www.ncbi.nlm.nih.gov) were the sources of murine as 

well as human genome sequences. 

 

Ensembl (http://www.ensembl.org): 

Ensembl also offers a human homology search function to identify syntenic genomic 

regions in mice and vice versa. This database was used for homology queries in this 

study. 

 

FunSimMat (http://funsimmat.bioinf.mpi-inf.mpg.de): 

FunSimMat is a comprehensive resource of semantic and functional similarity values 

retrieved from comparisons of candidate genes with a reference gene. It offers the 

possibility of disease gene prioritization and was used to prioritize candidate genes. 

 

Mouse genome informatics (MGI; http://www.informatics.jax.org): 

The MGI database offers information in genetics, proteomics, phenotypes and other 

biological data for the laboratory mouse strains. It was used to access data for 

microsatellite markers, genes, proteins and SNPs, as well as information of the used 

laboratory mouse strains. 
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Online Mendelian Inheritance in Man (OMIM; http://www.ncbi.nlm.nih.gov/Omim): 

The OMIM database provides information about genes associated or linked with 

human disorders. It was utilized to identify the reference gene used for the 

FunSimMat software. 

 

2.4 Chemicals and reagents 
All chemicals and reagents used in this work were purchased from Invitrogen, Carl 

Roth, Merck or Sigma-Aldrich. Otherwise it is indicated in the specific method. 

 

2.5 Enzymes 
The HotStarTaq DNA polymerase from Qiagen and the Taq DNA polymerase from 

New England Biolabs were used for PCR reactions. Restriction enzymes were 

purchased from New England Biolabs. Superscript™ II from Invitrogen was used for 

cDNA synthesis and the Platinum® Taq from Invitrogen for SNP analyses.  

 

2.6 Kits 
The following Kits were used: 

DNeasy Blood & Tissue Kit Qiagen 

DNeasy 96 Blood & Tissue Kit Qiagen 

BCA Protein Assay Kit  Perbio 

peqGOLD Gel Extraction Kit Peqlab 

QIAshredder    Qiagen 

RNeasy Mini Kit   Qiagen 

 

2.7 Oligonucleotides 
The oligonucleotides used in the experiments of this work were purchased by 

Metabion International AG. All unlabeled PCR primers are given in Table 1. The 

primer pairs used to amplify microsatellite loci were ordered as follows: 

A fluorescent dye (FAM, HEX or TET) was attached at the 5’ end of each forward 

primer and all reverse primers were labeled at their 5’ ends with the sequence 

GTGTCTT (5’–3’). This sequence promotes the template unspecific addition of 

nucleotides (+ A) in the PCR reaction. All detailed information about each primer is 

provided in the appendix (Supplement table S1).  
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The TaqMan® gene expression assays were purchased from Applied Biosystems. 

For Enoph1 gene, the Mm01207771_m1 assay was utilized and for the Hsd17b11, 

the Mm00504406_m1 assay was applied, as well as the Mm01203271_m1 assay for 

the Hsd17b13 gene.  The TATA binding protein (TBP) gene was chosen as the 

reference household gene with the assay Mm00446973_m1. 

 
Table 1. Unlabeled PCR primers 

Name  Sequence 5' - 3' Comment 

SRY 2 TCTTAAACTCTGAAGAAGAGAC forward primer for mouse sexing; 404 bp; Y 
chromosome 

SRY 4 GTCTTGCCTGTATGTGATGG reverse primer for mouse sexing; 404 bp; Y 
chromosome 

ZFY 3 AAGATAAGCTTACATAATCACATGGA forward primer for mouse sexing; 617 bp; Y 
chromosome 

ZFY 4 CCTATGAAATCCTTTGCTGCACATGT reverse primer for mouse sexing ;617 bp; Y 
chromosome 

NDS 3 GAGTGCCTCATCTATACTTACAG forward primer for mouse sexing; 244 bp; X 
chromosome 

NDS 4 TCTAGTTCATTGTTGATTAGTTGC reverse primer for mouse sexing; 244 bp; X 
chromosome 

W149 CATCCCACCTGAGCTCACAGAAAG forward primer for mutation of Pde6b gene; 
298 bp 

W150 GCCTACAACAGAGGAGCTTCTAGC reverse primer for mutation of Pde6b gene; 
298 bp 

Enoph RT 
1 F GTGTTGCCCTCCTTAACCAA forward primer for RT PCR of Enoph1 or 

genetrap; 207 or  256 bp 
Enoph RT 

1 R ACACTCCTCCTCCTCCCAGT reverse primer for RT PCR of Enoph1; 207 
bp 

1st Race 
Primer CAGGGTTTTCCCAGTCACGAC reverse primer for RT PCR of genetrap; 256 

bp 
PCR 1 5' 
SPLK R CGACCAGCTGTGCGCATAGTG reverse primer for sequencing of gene trap 

clones E122 & E237 
PCR 1 3' 
SPLK R AGTCATAGACACTAGACAATCGG forward primer for sequencing of gene trap 

clones E122 
PCR 2 5' 
SPLK R TTTGGCAAGCTAGCACAACC reverse primer for sequencing of gene trap 

clones E261 
PCR 2 3' 
SPLK R CAGTCAATCGGAGGACTGGCG forward primer for sequencing of gene trap 

clones E237 & E261 
E122G09 

2 F TGTCCAGACAAAGCCAGACA forward primer for sequencing of gene trap 
clones E122 

E122G09 
2 R AATAAGGCACTCGCCCACTA reverse primer for sequencing of gene trap 

clones E122 
E237D04 

2 F CTAGAAGGCAGGAGCAGGTG forward primer for sequencing of gene trap 
clones E237 

E237D04 
1 R CAGTCCACGCTAACCACAGA reverse primer for sequencing of gene trap 

clones E237 
E261G04 

1 F TGCTGACTAGCAGGGAGATG forward primer for sequencing of gene trap 
clones E261 

E261G04 
1 R CTCAAAGGACATGGGAAAGG reverse primer for sequencing of gene trap 

clones E261 
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2.8 Molecular weight standards 
As length standards in agarose gel- and capillary electrophoresis molecular weight 

standards were utilized. For agarose gel electrophoresis, 100 bp and 1 kb DNA 

ladder from New England Biolabs were used. For capillary electrophoresis, 

GeneScan - 500 ROX Size Standard from Applied Biosystems were used. 

 

2.9 Solutions 
6x loading dye: Glycerol 60 % (v/v) 

   Tris, pH 7.4 150 mM 40 % (v/v) 

   Bromophenol blue 0.0025 % (w/v) 

   Xylene-Cyanol 0.0025 % (w/v) 

1x TAE buffer: EDTA 0.5 mM 

   Tris-Acetat 40 mM 

1x TE buffer:  Tris, pH 7.4 10 mM 

   EDTA 1 mM 

 

2.10 Mouse strains 
For QTL analysis it is essential to have phenotypic differences in the parental strains 

increasing the chance to detect a QTL within this phenotype. Additionally, a high 

degree of DNA sequence variation facilitates the choice of polymorphic markers (Liu 

1997). The C57BL/6J and C3H/HeJ mouse strains fulfilled these requirements, so 

that these mice were used to create a mapping population in the present study. This 

selection was also supported by the positions of the parental strains on the mouse 

family tree.  They are located on distant branches, thus ensuring high genetic 

difference (Witmer et al. 2003). The phenotypic variance for anxiety- and depression-

related behavior of the parental strains was verified in several studies published 

recently (Crawley et al. 1997, Crowley et al. 2005, Griebel et al. 2000, Lucki et al. 

2001, Milner and Crabbe 2008). 

The C3H/HeJ mice comprise a potential disturbing factor for the behavioral analysis, 

since they are all homozygous for a mutation in the rod photoreceptor cGMP 

phosphodiesterase 6 β-subunit (Pde6b) gene, which causes loss of rods by weaning 

age (Hart et al. 2005, Pittler and Baehr 1991, Sidman and Green 1965). An additional 

caveat of C3H/HeJ mice is an inversion on Chromosome 6 (Akeson et al. 2006), 

which covers 20% of the Chromosome, but does not cause a phenotype.  
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2.11 Cell culture media 
ES cell medium:  1x GMEM medium (Sigma) 

   2 mM glutamine (Gibco) 

   1 mM sodium pyruvate (Gibco) 

   1x nonessential amino acids 

   10 % (v/v) fetal bovine serum (Hyclone)    

   1:1000 dilution of beta-mercaptoethanol stock solution 

   1 ml of leukocyte inhibitory factor solution (625 ng/ml) (Sigma) 

1x trypsin solution: 100 mg of EDTA tetrasodium salt (Sigma) 

   500 ml of PBS (Gibco) 

   10 ml of 2.5 % trypsin solution (Gibco) 

   5 ml of chicken serum (Gibco) 

   Stored in 20 ml aliquots at -20 °C 

Geneticin (Gibco): 125 mg/ml stock solution in PBS 

   filter sterilized and stored at -20 °C 

   1:1000 dilutions for work solutions 
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3 Methods 
 

3.1 Methods involving Animals 
All experiments comprising animals like breeding, behavioral analysis and tail 

biopsies were carried out by Dr. Andras Bilkei-Gorzo and Kerstin Michel (Institute of 

Molecular Psychiatry, Bonn, Germany) 

 

3.1.1 Animal housing 
C57BL/6J and C3H/HeJ mice were obtained from Janvier Laboratory, all with an age 

of eight to ten weeks. These animals were crossed to the F1 generation and 

subsequently intercrossed within this generation in order to obtain the F2 generation. 

For the studies, F2 generation mice of both sexes with an age of eight to ten weeks 

were used for the studies. The animals were housed in groups of three to five per 

cage in the animal facility of the university's medical center. They were kept under 

constant temperature (23 ± 1°C) and in a 12 hour reversed light-dark cycle (lights on 

at 19:00 and lights off at 9:00). Each animal had free access to standard food pellets 

and water ad libitum. Animal care and experiments were carried out according to 

national regulations (Tierschutzgesetz) and were approved by legal authorities 

(Landesamt für Natur, Umwelt und Verbraucherschutz NRW). All animals were 

acclimatized to the animal facility for at least two weeks prior to experiments. 

 

3.1.2 Behavioral experiments 
All behavioral experiments were conducted with animals from the F2 generation, as 

well as with parental mice. Each animal was analyzed once in all behavioral tests 

and was left undisturbed for 7 days between two experiments. The behavioral 

examination was achieved in the following order: 1. zero maze, 2. light-dark test, 3. 

startle response test, 4. forced swim test. 

The elevated zero maze was utilized to measure trait anxiety levels of mice. It 

consisted of an elevated annular and white platform (outer diameter 47 cm, 5.6 cm 

width, 40 cm above ground), which was separated into four equal compartments, two 

opposing ones were enclosed by walls (11 cm high).  

The complete apparatus was brightly illuminated (550-600 lux) and each mouse was 

placed on one open part of the platform. The behavior was recorded for 5 min and 
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the time spent as well as motor activity in the open area (Shepherd et al. 1994) was 

evaluated.  

The light-dark test is another behavioral paradigm to assess trait anxiety levels of the 

animals. It consisted of a two-compartment test chamber with a dark box (15 x 45 x 

22 cm) and a bigger box (30 x 45 x 22 cm), which were connected by a 6 x 6 cm 

hole. The test chamber was illuminated with a 20 W white neon lamp fitted 30 cm 

above the box. Each mouse was placed in the center of the lighted area of the big 

box and observed for 5 min. The time spent and horizontal activity in the open area 

was detected with the Actimot system (Costall et al. 1989). 

The state anxiety rates of mice were measured with a startle response apparatus, 

which consisted of an 11 x 5.5 x 6 cm Plexiglas cage with a floor of metal bars. The 

cage was surrounded by two speakers and was mounted on a vibration-sensitive 

platform in a sound-attenuated chamber (35 x 32 x 35 cm). For habituation (5 min) 

and during the whole test a background white noise (65 dB) was given and the startle 

reactivity was measured after an acoustic signal (12 kHz, 110 dB, 40 ms). This 

measurement was repeated seven times (40-80 sec between trials) and the 

amplitude of the startle response was evaluated (Davis 1990).   

The forced swim test was used to detect depression-related behavior. For this 

purpose a Plexiglas cylinder (10 cm diameter, 50 cm high) was filled with 23 ± 2 °C 

water (20 cm height) and the animals were placed directly on the water. The test 

takes 6 min and behavioral measurement started after the second minute. The 

immobility time was assessed, which was the time animals made only movements 

necessary to keep its head above the water (Porsolt et al. 1978). 

 

3.1.3 Tissue preparation 
Tail biopsies (< 1 cm) were obtained from living animals and stored at -20 °C. For 

preparation of brain and liver tissue, mice were sacrificed by cervical dislocation and 

the liver was directly shock-frozen in dry ice-cooled isopentan. Brains were cut in 

coronal sections of one mm thickness, whereby selected brain regions were punched 

out. The punched tissue was also immediately shock-frozen in dry ice-cooled 

isopentan. For biochemical analysis, brains were sagittally sliced into two equally 

sized halves and frozen in dry ice-cooled isopentan. For SNP analysis, whole brains 

were immediately shock-frozen in dry ice-cooled isopentan. All tissues were stored at 

-80 °C. 
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3.2 Methods involving DNA 

 

3.2.1 DNA isolation 

Genomic DNA was isolated from tail biopsies utilizing the DNeasy Blood & Tissue Kit 

in single tubes or 96-well plates. Preparation was performed according to the 

manufacturer's manual. Isolated DNA was stored at 4 °C. Genomic DNA of mice 

from the F2 generation was isolated by Kerstin Michel (Institute of Molecular 

Psychiatry, Bonn, Germany). 

 

3.2.2 Measurement of DNA concentration 
Concentration of DNA was evaluated using the NanoDrop photometer in 2 µl sample 

volume. Concentration was calculated by the NanoDrop Software utilizing the 

absorption values at 260 nm and the Beer-Lambert equation. 

 

3.2.3 Normalization of DNA 
DNA was normalized to a concentration of 5 ng/µl and stored at 4 °C until further use 

in the microsatellite PCR. Normalization was carried out by means of the liquid-

handling platform Multiprobe II in a high-throughput manner. Normalization of DNA 

was conducted in order to ensure equal performance of the PCR and equal signal 

strengths in the fragment length analysis. 

 

3.2.4 Polymerase chain reactions 
The specific amplification of DNA fragments was performed by polymerase chain 

reaction (PCR). The reaction mix and PCR program was adjusted according to the 

thermodynamic properties of primers used and expected product. 

 

Microsatellite PCR 
For the microsatellite PCR, either the HotStar Taq or the NEB Taq DNA polymerase 

was used, depending on the primer pair. The used polymerase for each primer pair is 

listed in the appendix (Supplement table S1). 
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Reaction mix and program using HotStar Taq DNA polymerase (10 µl) 

1 µl  DNA (5 ng/µl) 

6.075 µl Aqua bidest. 

1 µl  10x HotStar Taq buffer 

0.9 µl  25 mM MgCl2 

0.4 µl  forward primer 

0.4 µl  reverse primer 

0.2 µl  dNTP (10 mM each) 

0.025 µl HotStar Taq polymerase 

 
Step Temperature Time  

Activation 95°C 15 min  

Denaturation 94°C 45 sec  

Annealing 60°C 45 sec 35 cycles 

Elongation 72°C 45 sec  

Final elongation 72°C 10 min  

Storage 4°C ∞  

 

For some primer pairs the annealing temperature was changed to 65°C or 50°C in 

order to achieve a proper amplification in the PCR. The affected primer pairs are 

listed in the appendix (Supplement table S1). 

 

Reaction mix and program for NEB Taq DNA polymerase (10 µl) 

1 µl  DNA (5 ng/µl) 

6.975 µl Aqua bidest. 

1 µl  10x Thermo Pol buffer 

0.4 µl  forward primer 

0.4 µl  reverse primer 

0.2 µl  dNTP (10 mM each) 

0.025 µl Taq DNA polymerase 
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Step Temperature Time  

Activation 95°C 3 min  

Denaturation 95°C 45 sec  

Annealing 60°C 45 sec 35 cycles 

Elongation 72°C 45 sec  

Final elongation 72°C 7 min  

Storage 4°C ∞  

 

All microsatellite PCR reactions were diluted with water in a 1:1 ratio. The PCR 

products were separated by capillary electrophoresis and detected due to the specific 

dye of each primer pair. 

 

Mouse sexing PCR 
PCR was used for sexing of mice depending on one X chromosome marker and two 

Y chromosome-specific genes. The genes SRY and ZFY are both Y-chromosome 

specific and the microsatellite marker DXNds3 (NDS) can be found on the X 

chromosome. The PCR products exhibit different lengths: 617 bp for ZFY gene, 404 

bp for the SRY gene and 244 bp for the DXNds3 marker. Primers for all genes (Sry 

2; Sry 4; Zfy 3; Zfy 4; Nds 3; Nds 4) were mixed in a multiplex reaction generating 

three different products for males (244, 404 and 617 bp) and one product (244 bp) for 

females (Greenlee et al. 1998, Kunieda et al. 1992). 

 

Reaction mix and program for HotStar Taq DNA polymerase (20 µl) 

5 µl  DNA (5 ng/µl) 

11.4 µl Aqua bidest. 

2 µl  10x HotStar Taq buffer 

0.5 µl  forward primer 

0.5 µl  reverse primer 

0.5 µl  dNTP (10 mM each) 

0.1 µl  HotStar Taq polymerase 
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Step Temperature Time  

Activation 95°C 15 min  

Denaturation 94°C 15 sec  

Annealing 60°C 15 sec 35 cycles 

Elongation 72°C 30 sec  

Final elongation 72°C 10 min  

Storage 4°C ∞  

 

The amplified PCR products were separated on a 2 % agarose gel. 

 

PCR for screening Pde6b mutations 
The primer W150 and W149 served for the amplification of a DNA fragment (603 bp), 

which harbored a base exchange mutation in the Pde6b gene. This mutation 

introduces a new restriction site for the enzyme Dde I (Kuenzi et al. 2003, Pittler and 

Baehr 1991). 

 

Reaction mix and program for HotStar Taq DNA polymerase (20 µl) 

5 µl  DNA (5 ng/µl) 

7.2 µl  Aqua bidest. 

2 µl  10x HotStar Taq buffer 

1.2 µl  25 mM MgCl2 

0.5 µl  forward primer 

0.5 µl  reverse primer 

0.5 µl  dNTP (10 mM each) 

0.1 µl  HotStar Taq polymerase 

 

Step Temperature Time  

Activation 95°C 15 min  

Denaturation 94°C 60 sec  

Annealing 55°C 60 sec 35 cycles 

Elongation 72°C 90 sec  

Final elongation 72°C 10 min  

Storage 4°C ∞  
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After amplification, the PCR mix was supplemented with 0.5 µl restriction 

endonuclease Dde I and then incubated at 37 °C for 3 hours. The restriction led to a 

603 bp fragment for the wiltype allele or a 511 bp fragment for the mutated allele, 

which were separated on a 2 % agarose gel. 

 

PCR for sequencing ES-cell clones 
PCR was used for amplification of genomic sequences flanking the insertion site of 

the gene trap vectors. Primers were generated on the basis of sequencing data 

provided by the German Gene Trap Consortium. Since the integration was specific 

for every ES-cell clone, specific primers were constructed for every clone (Table 2). 

 
Table 2. Sequencing primers for three ES-cell clones:  

ES-cell 
clone 

Forward Primer Reverse Primer Location Annealing 
Temperature 

E122G09 E122G09 2 F PCR 1 5' SPLK R 5' of gene trap 60°C 
 PCR 1 3' SPLK R E122G09 2 R 3' of gene trap 60°C 

E237D04 E237D04 2 F PCR 1 5' SPLK R 5' of gene trap 55°C 
 PCR 2 3' SPLK R E237D04 1 R 3' of gene trap 55°C 

E261G04 E261G04 1 F PCR 2 5' SPLK R 5' of gene trap 55°C 
 PCR 2 3' SPLK R E261G04 1 R 3' of gene trap 55°C 

 

Reaction mix and program for HotStar Taq DNA polymerase (20 µl) 

2 µl  DNA (25 ng/µl) 

14.4 µl Aqua bidest. 

2 µl  10x HotStar Taq buffer 

0.5 µl  forward primer 

0.5 µl  reverse primer 

0.5 µl  dNTP (10 mM each) 

0.1 µl  HotStar Taq polymerase 

 

Step Temperature Time  

Activation 95°C 15 min  

Denaturation 94°C 30 sec  

Annealing 60°C or 55°C 30 sec 40 cycles 

Elongation 72°C 90 sec  

Final elongation 72°C 10 min  

Storage 4°C ∞  
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After amplification, PCR products were cleaned up with the peqGOLD Gel Extraction 

Kit according to the manufacturer's manual and sequenced by Macrogen Inc. 

 

PCR for detection of gene trap transcripts 
PCR was used for the detection of wildtype and gene trap transcripts in cDNA from 

mouse tail biopsies. Two different primer pairs were designed, the first one (Enoph 

RT 1 F / Enoph RT 1 R) detects the wildtype allele with a boundary of exon one and 

two being hallmarked by a product length of 207 bp. The second primer pair (Enoph 

RT 1 F / 1st Race Primer) amplifies a 256 bp product identifying the allele with gene 

trap insertion. 

 

Reaction mix and program for HotStar Taq DNA polymerase (20 µl) 

2 µl  cDNA (~ 50 ng) 

14.4 µl Aqua bidest. 

2 µl  10x HotStar Taq buffer 

0.5 µl  forward primer 

0.5 µl  reverse primer 

0.5 µl  dNTP (10 mM each) 

0.1 µl  HotStar Taq polymerase 

 

Step Temperature Time  

Activation 95°C 15 min  

Denaturation 94°C 15 sec  

Annealing 60°C - 1°C every cycle 15 sec 5 cycles 

Elongation 72°C 60 sec  

Denaturation 94°C 15 sec  

Annealing 55°C 15 sec 30 cycles 

Elongation 72°C 60 sec  

Final elongation 72°C 10 min  

Storage 4°C ∞  

 

The amplified PCR products were separated on a 2 % agarose gel. 
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3.2.5 Fragment lengths analysis 

Fragment lengths of the microsatellite PCR products were determined on a ABI 

3130xl Genetic Analyzer with the ABI GeneMapper® software. This Genetic Analyzer 

operated with 16 capillaries of 36 cm length. The GeneScan™ 500 ROX™ Size 

Standard was used as the internal DNA size standard for sizing of DNA fragments.  

The PCR products were diluted with Aqua bidest. before mixing with Hi-Di™ 

Formamid and ROX™ Size Standard. Up to four PCR reactions were multiplexed for 

the fragment length analysis. All steps of the fragment length analysis were 

conducted according to the manufacturer's manual. 

 

Reaction setup for the Genetic Analyzer: 
9.75 µl  Hi-Di™ Formamid 

0.25 µl  GeneScan™ 500 ROX™ Size Standard 

1 µl   each PCR product 

 

3.2.6 Electrophoresis in agarose gels 
Separation of DNA fragments was carried out on agarose gels containing 2 % 

agarose. For this purpose, agarose was boiled up in 1x TAE buffer and the gel was 

casted in Bio-Rad casting chambers. Fragments were separated in 1x TAE buffer 

with 10 V/cm and afterwards stained with ethidium bromide. Visualization and 

documentation of stained DNA fragments was conducted with a Bio-Rad Chemi Doc 

System and related software. For the estimation of fragment sizes, appropriate size 

standards were used. 

 

3.2.7 Sequencing 
DNA sequencing was performed by Macrogen Inc. (South Korea) or Medigenomix 

GmbH (Germany). 
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3.3 Methods involving RNA 
 

3.3.1 RNA isolation 

Frozen tissue samples were homogenized in MagNA Lyser tubes with the Precellys 

homogenizator. Each sample (< 50 mg) was homogenized in 800 µl TRIzol reagent 

using program five of the homogenizator (twice). Samples were centrifuged at 10,000 

g for 10 min at 4 °C, the supernatant was transferred in a new tube and incubated for 

5 min at RT. 160 µl chloroform was added and the samples were mixed on a vortex 

machine for 30 sec before they were incubated for 3 min at RT. After a centrifugation 

at 10,000 g for 5 min at 4 °C, the aqueous phase was transferred to a new tube and 

mixed with 400 µl 100 % isopropyl alcohol on a vortex machine. The samples were 

incubated for 10 min at RT and centrifuged at 10,000 g for 10 min at 4 °C until the 

supernatant could be removed. Subsequently the RNA pellet was washed with 1 ml 

75 % ethanol on a vortex machine, centrifuged at 10,000 g for 5 min at 4 °C and the 

supernatant was removed. This washing step was repeated twice, and then the RNA 

was dried for 5 to 10 min at 50 °C. RNA was resolved in 20 µl ultraPURE™ water 

and incubated for 10 min at RT before 15 min incubation at 60 °C. The solved RNA 

was stored at -80 °C. 

 

3.3.2 Measurement of RNA concentration 

Concentration of RNA was evaluated using the NanoDrop photometer in 2 µl sample 

volume. Concentration was calculated by the NanoDrop Software utilizing absorption 

values at 260 nm and the Beer-Lambert equation. 

 

3.3.3 cDNA synthesis 
PCR tubes were filled with 500 ng RNA of each sample and filled up to a volume of 

11 µl with RNase-free water. The samples were supplemented with 1 µl Oligo dT12-

18 (0.5 µg /µl) and 1 µl 10 mM dNTP Mix before an incubation of 5 min at 65 °C 

followed by 2 min at 4 °C. 4 µl 5x First-Strand Buffer and 2 µl 0.1 M DTT was added 

to each sample prior to an incubation of 2 min at 42 °C. After cooling for 2 min at 4 

°C, 1 µl SuperScript ® II RT (200 U / µl) was added and mixed by pipetting up and 

down. The samples were incubated for 50 min at 42 °C, next for 15 min at 70 °C and 

at last for 2 min at 4 °C. The cDNA was filled up to 160 µl with ultraPURE™ water 

and stored at -20 °C. The final concentration was 3.125 ng / µl. 
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3.3.4 Real-time PCR 

For TaqMan® gene expression assays, 25 ng cDNA was used per sample and 

prepared as triplicates for each assay and sample. 20 µl reaction mixture as well as 

PCR program for the 7900HT PCR System was applied according to the 

manufacture's manual. 

 

3.3.5 SNP analysis 
The SNP analysis was performed by Dr. Jeeva Varadarajulu (Max Planck Institute of 

Psychiatry, Munich, Germany) according to the protocol recently published (Ditzen et 

al. 2010). In short: 

Mouse brains were homogenized by grinding in liquid nitrogen and subsequent 

utilization of QIAshredder spin columns. The extraction of RNA was carried out with a 

RNeasy Kit and cDNA was synthesized with the SuperScript™ II One-Step RT-PCR.  

A DNA fragment carrying both SNPs were amplified by PCR and confirmed by DNA 

sequencing.  

 

3.4 Biochemistry 
 

3.4.1 SAM isolation 
Sagittally divided brains were weighed and homogenized in 10x vol. 5% 

trichloroacetic acid by sonication for 90 s at 40 W on ice. 200 µl of 100 µM N6-

methyladenosine was added as an internal standard and homogenates were 

centrifuged at 10,000 g for 30 min at 4 °C. The supernatant was transferred in a new 

tube, washed with 10x vol. water-saturated diethyl ether and centrifuged at 10,000 g 

for 10 min at 4 °C. This step was repeated twice until the pellet was vacuum dried to 

remove diethyl ether residues from the aqueous phase. Finally, the aqueous phase 

was analyzed by HPLC. 

 

3.4.2 HPLC analysis of SAM 
SAM was detected on the Knauer HPLC system equipped with a Knauer 250 x 2 mm 

Eurospher 100-3 C18 column. UV detection was carried out at 254 nm. The mobile 

phase consisted of phase A (40 mM NH4H2PO4, 8 mM 1-heptanesulfonic acid 

sodium salt, pH 4.5, 0.45 µm membrane filtered) and phase B (100 % methanol). The 

following gradient was applied: 0 min. - 5 % phase B / 10 min - 18 % phase B / 20 
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min - 18 % phase B / 25 min  - 5 % phase B, then 10 min 5 % phase B for 

equilibration (Gospe et al. 1995). Flow rate was set to 0.2 ml / min. at RT. Results 

were corrected according to the internal standard N6-methyladenosine. HPLC 

analysis was performed by Dr David Otte (Institute of Molecular Psychiatry, Bonn, 

Germany). 

 

3.4.3 Polyamine isolation 
Sagittally halved brains were weighed and homogenized in 3x vol. 4 % perchloric 

acid by sonication for 90 s at 40 W on ice. The homogenates were incubated over 

night at 4 °C. After centrifugation at 10,000 g for 20 min., 100 µl of the supernatant 

were mixed with 300 µl 2N sodium hydroxide and 3 µl benzoyl chlorid on a vortex 

machine for 30 s. The samples were incubated for 20 min. at RT and the reaction 

was stopped by addition of 500 µl saturated sodium chloride solution. After mixing 

with 500 µl chloroform on a vortex machine and a centrifugation at 10,000 g for 10 

min, the chloroform phase was transferred in a new tube, followed by vacuum drying. 

The sediment was redissolved in 100 µl 55 % methanol and analyzed by HPLC 

(Ditzen at al. 2010). 

 

3.4.4 HPLC analysis of polyamines 
SAM was detected on the Knauer HPLC sytem equipped with a Knauer 250 x 2 mm 

Eurospher 100-3 C18 column. UV detection was carried out at 254 nm. The mobile 

phase consisted of phase A (water) and phase B (100 % methanol) with a gradient of 

55 % - 84 % methanol over 23 minutes followed by isocratic elution at 84 % methanol 

for seven minutes (Ditzen et al. 2010). Flow rate was set to 0.2 ml / min. at RT. HPLC 

analysis was performed by Dr David Otte (Institute of Molecular Psychiatry, Bonn, 

Germany). 
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3.5 Cell biology  
All experiments comprising ES-cell culture like thawing, freezing, culturing and 

passaging were carried out by Anne Zimmer (Institute of Molecular Psychiatry, Bonn, 

Germany) 

 

3.5.1 Thawing of ES-cells 
One vial containing 2 x 106 cells was thawed immediately in a water bath at 37°C and 

supplemented with 4 ml pre-warmed medium. The cells were plated in a well of a 6-

well plate coated with 0.1 % gelatin. After 2 hours incubation at 37 °C in a humidified 

7 % CO2 incubator, the medium was replaced with 5 ml fresh medium. 

 

3.5.2 Freezing and storage of ES-cells 

The medium of a confluent well of a 6-well plate was aspirated off and the cells were 

washed twice with 5 ml pre-warmed PBS. Then cells were covered with 0.5 ml of 1x 

trypsin solution and incubated for 2 min at 37 °C. After addition of 5 ml medium, the 

cells were centrifuged at 1200 g for 3 min. The medium was removed and the cells 

were resuspended in 2 ml fresh freezing medium. 1 ml cell suspension was frozen in 

a cryotube at -80 °C over night and transferred to liquid nitrogen for long-term 

storage. 

 

3.5.3 Culturing of ES-cells 
ES-cells were cultured in ES-cell medium at 37 °C in a humidified incubator with 7 % 

CO2. Due to the rapid growth of the ES-cells, medium was replaced every 24 hours 

and cells were passaged after two days. They were kept under selection with 

Geneticin® the whole time. The cell culture dishes were coated with 0.5 % gelatin 

before cells were plated. 

 

3.5.4 Passaging of ES-cells 

The medium of a confluent well of a 6-well plate was aspirated off and the cells were 

washed twice with 5 ml pre-warmed PBS. Then cells were covered with 0.5 ml of 1x 

trypsin solution and incubated for 2 min at 37 °C. Finally, the cells were resuspended 

gently in 4 ml medium. 1 ml of resuspended cells was plated onto a new well of a 6-

well plate. 
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3.5.5 Microinjection of ES-cells 

Cells were trypsinized as described in 3.5.4 and resuspended in 4 ml medium. Then 

they were injected into blastocysts harvested from super-ovulated 4 - 6 week old 

C57BL/6J mice. Blastocysts were then transferred to pseudo-pregnant foster 

animals. Tanja Tropartz performed the microinjections at the transgene service of the 

University Hospital Aachen. Chimeric male animals were transferred to the animal 

facility of the University Hospital Bonn and first tested for germline transmission by 

backcrossing with C57BL/6J mice. 

 

3.6 Gene knockout in ES-cells 
The gene Enoph1 was knocked out with a gene trap vector integrated in the first 

intron. This vector introduced a new splice acceptor site together with a 

polyadenylation signal resulting in a break of the mRNA after the first exon. Thus, no 

functional protein could be translated. The integration of the gene trap vector was 

carried out by the German Gene Trap Consortium, which uses a high-throughput 

approach to knock out every gene in mouse ES-cells. They used the ES-cell line 

E14TG2a.4, also known as the line 129P2. The consortium offered the ES-cells with 

integrated gene trap vector approved by PCR and sequencing. Altogether, six ES-

cell clones (E261G04, E252B10, E237D04, E148E08, E123F08, and E122G09) were 

received from the German Gene Trap Consortium; all were carrying the gene trap in 

the first intron. 

 

3.7 QTL detection 
The mapping of QTL was carried out with the software R/qtl that was especially 

developed to map QTL in experimental crosses (Broman et al. 2003). It is written in 

the R language, a widely used language and environment for statistical computing 

that is freely available (R Development Core Team 2010). R/qtl calculates the 

probability of linkage between genotype and phenotype on the basis of the interval 

mapping method (Broman et al. 2003). The outputs of R/qtl are the logarithm of the 

odds (LOD) scores, which states the probability of a linkage between a trait and a 

marker. It measures the possibility for the presence of a QTL at a specific location, 

compared to the hypothesis that there is no QTL present. Therefore, larger LOD 

scores represent higher possibility for the presence of a QTL (Broman 2001).  

Besides its mapping functions, R/qtl also offers the option for a quality control of the 



Methods  37 
	  

input data. Additionally, the functions used in this context are also utilized to validate 

the reliability of results. Quality control measures the degree of missing genotypes for 

each individual and each marker. Additionally, it detects the recombination fractions 

(amount of non-parental recombinations) and LOD scores for linkage between all 

possible pairs of markers. Furthermore, the quality control functions estimates a 

marker map based on the observed data and compares it with the marker map based 

on database information. If there is a strong difference between the marker positions 

of the two maps detectable, this suggests a higher probability for genotyping errors. 

With this information, it is possible to assess the reliability of the collected genotype 

information.  

QTL mapping was done by a single-QTL genome scan and the function scanone of 

R/qtl was used for this purpose. This function implements the commonly used 

interval mapping method by comparing the genotypes of each marker individually 

with the phenotypic data. The test for linkage was carried out with the analysis of 

variance. A big challenge in QTL analysis is the handling of missing genotype data 

between two markers as well as not genotyped marker. Therefore, the Haley-Knott 

regression was used (Broman and Sen 2009, Haley & Knott 1992) due to its faster 

calculation and robustness with data containing low error rates. This algorithm 

calculates an approximation of the standard interval mapping method by applying a 

single regression at each position, in this study every 1 cM (Broman and Sen 2009). 

For not normally distributed behavioral data the non-parametrical method was used 

in the scanone function, which was designed for mapping of binary traits (Broman et 

al. 2003). For the detection of significance thresholds, the permutation method was 

used. This algorithm shuffles the phenotypes and leave the genotype data 

unchanged in order obtain genome-scan-adjusted significant thresholds. In each 

replicate generated under the hypothesis of no genetic effect on the trait throughout 

the genome, peaks exceeding a pre-defined LOD threshold are counted. These 

counts – divided by the total number of replicates – determine the genome-wide 

significance level of the corresponding LOD threshold. The significance thresholds 

are based on 10,000 permutations. The function bayesint of R/qtl calculates the 

Bayesian credible intervals (confidence intervals) for a single-QTL and it returns an 

interval, which contains this QTL with a probability of 95%.  
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3.8 Prioritization of candidate genes 
The FunSimMat software was used to identify prominent candidates in a list of 

genes. Therefore, it compares gene ontologies of phenotype-correlated reference 

genes from the database with respective ones from the candidate gene list. The 

results of this comparison are then used to prioritize candidate genes depending on 

their similarity to the reference gene. These comparisons are carried out on all three 

subtypes of gene ontologies, in detail the biological process, the molecular function 

and the cellular compartment; furthermore values are calculated for each subtype 

and comparison representing the amount of similarity based on four different 

algorithms for similarity measures (simRel, Lin, Resnik, and Jiang & Conrath). In 

cooperation with Dr. Andreas Schlicker (Max Planck Institute of Informatics, 

Saarbrücken, Germany), the developer of the software, the biological process 

similarity with simRel measures (BP simRel) and with Lin's measures (BP Lin) as well 

as the calculation of biological process and molecular function scores (rfunSim) were 

chosen as the prominent values for the identification of candidate genes. A value 

above 0.8 represents strong similarity, a value from 0.8 to 0.5 means mild similarity 

and a value under 0.5 implies no or negligible similarity. A gene was assigned as a 

candidate gene when at least two of the three values were above 0.5. As reference 

gene tryptophan hydroxylase 2 (TPH2) was chosen, which is related to the 

"susceptibility to unipolar depression" phenotype in the OMIM database (no. 

607478). This phenotype was chosen due to its similarity to depression-related 

behavioral measurements in the forced swim test, where the strongest QTL was 

detected. UniProt codes were used as input format for the software. 

 

3.9 Statistical methods 
The descriptive statistics were performed on the basis of average values and their 

standard errors of mean (S.E.M.). All raw data were listed and evaluated with the 

spreadsheet program Excel®. Average value comparisons in pairs were examined 

with Students t-test and differences were termed as significant if the probability (p) 

was lower 0.05. 
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4 Results 
 

A QTL approach was chosen to reveal new genetic regions, which contribute to 

anxiety- and depression-like phenotypes in mice. The goal of possible follow up 

studies is the identification and verification of the underlying genes. In order to reach 

this goal, mice of the parental and the F2 generation were tested for their anxiety- 

and depression-related behavior in four different paradigms. Phenotypes of the 

parental strains were evaluated to verify differences in anxiety- and depression-

related behavior between these strains. Afterwards, QTL loci were assessed using 

phenotyping and genotyping data of the F2 mice. Finally, candidate genes were 

selected from QTL regions and validated by analysis of gene expression, SNP 

analysis and biochemical analysis. 

 

4.1 Behavioral analysis of mice 
The C57BL/6J and C3H/HeJ mouse strains exhibit high genetic diversity based on 

their distinct positions on branches of the family tree of laboratory mice (Witmer et al. 

2003). This diversity facilitates the selection of suitable microsatellite markers for 

QTL mapping. Additionally, recent publications reported a substantial difference 

regarding their anxiety- and depression-related behavior (Crawley et al. 1997, 

Crowley et al. 2005, Griebel et al. 2000, Lucki et al. 2001, Milner and Crabbe 2008). 

The anxiety and depression levels were evaluated firstly in parental strains and 

subsequently in the respective F2 generation mice.  

 

4.1.1 Analysis of parental mouse strains 
The C57BL/6J and C3H/HeJ strains showed significant differences in their trait 

anxiety levels evaluated by light-dark and zero maze tests (Figure 4A-D). Mice of the 

C3H/HeJ strain spent significantly more time in the open area of the light-dark test (p 

< 0.001) (Figure 4A) and in the open area of the zero maze, compared with 

C57BL/6J mice (p < 0.001) (Figure 4C).  Additionally, these mice covered 

substantially longer distances in the open areas in the light-dark test (p < 0.05) 

(Figure 4B), as well as in the zero maze (p < 0.01) (Figure 4D). 

In order to investigate the state anxiety levels, both strains were analyzed in the 

startle response test, whereby C3H/HeJ mice exhibited significantly higher startle 

amplitude in contrast to C57BL/6J (p < 0.01) (Figure 4E). 
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Depression-related behavior was measured using the forced swim test. C3H/HeJ 

mice spent significant less time in an immobility phase compared to C57BL/6J mice 

(p < 0.001) (Figure 4F). Dr. Andras Bilkei-Gorzo and Kerstin Michel (Institute of 

Molecular Psychiatry, Bonn, Germany) performed the behavioral analysis of parental 

mice. 

 

 
Figure 4. Anxiety and depression levels of parental mice. Mice of C57BL/6J and C3H/HeJ strains 

showed significant behavioral differences in state anxiety levels assessed by the time spent (A) and 

distance traveled (B) in the open areas in the light-dark test. Moreover, noteworthy differences were 
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observed for the respective values in the zero maze test (C & D). Furthermore, measurements of trait 

anxiety levels within the startle response test (E) revealed considerable differences between the 

strains. C57BL/6J and C3H/HeJ exhibited also largely different immobility times (F) in the forced swim 

test, which assessed depression-related behavior. Values represent mean ± SEM; n = 20; * p < 0.05; 

** p < 0.01; *** p < 0.001. 

 

4.1.2 Analysis of second filial generation 
A total of 543 mice from the F2 generation were examined in the same behavioral 

paradigms as the parental strains. Since a normal distribution of the data is regarded 

as the best source for further experiments, square root transformations were applied 

for distance traveled in the open area measure of the light-dark test (Figure 5B), as 

well as for time spent (Figure 5C) and distance traveled (Figure 5D) in the open part 

values of the zero maze to receive a normal distribution. In order to achieve this 

normal distribution, startle amplitude measurements were logarithmical transformed 

(Figure 5E). A high number of animals spent a prolonged time in the open area in the 

light-dark test (Figure 5A) and additionally the immobility time values of the forced 

swim test (Figure 5F) showed right shift. Due to these distributions, achieving a 

normal distribution by transformation of these data was not possible, thus raw data 

were used for further analysis. The black curve in each histogram represents the 

expected normal distribution for each value (Figure 5A-F). This calculation could not 

be applied for the time measurement of the light-dark test due to its non-parametric 

distribution. All behavioral data of the F2 Generation were assessed by Dr. Andras 

Bilkei-Gorzo and Kerstin Michel (Institute of Molecular Psychiatry, Bonn, Germany). 
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Figure 5. Distribution of animal behavior in F2 mice. The F2 progeny was tested in four paradigms for 

anxiety and depression. The histograms plotted the number of individuals against each value of the 

behavioral experiments; some of them were transformed to receive normal distribution. Raw data of 

time spend (A) and square root transformed distance traveled in the open area (B) in the light-dark 

test are shown. For the zero maze test, the values of time spend and distance traveled in open areas 

were square root transformed (C & D). The startle amplitude measurements were transformed by 

logarithm (E) and raw data of immobility time of the forced swim test were plotted. The curves illustrate 

the expected normal distributions, if they were able to be calculated. 
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4.1.3 Control analysis in second filial generation 

Some animals of the F2 generation were assigned a false sex. Therefore all mice 

were screened with a sex determining PCR. Additionally, the influence of a possible 

homozygous retinal degeneration 1 (rd1) mutation in the gene phosphodiesterase 6 

β-subunit (Pde6b) on the animals’ behavior was elucidated. This mutation is known 

to be responsible for retinal degeneration and loss of rod cells leading to a reduced 

visual ability. 

 

4.1.3.1 Sexing of the second filial generation 

In order to exclude a false sex determination of mice, a multiplex PCR was chosen 

prior to a QTL analysis detecting three different markers within one reaction. As an 

example, figure 6 presents the PCR fragments of three male and three female 

wildetype C57BL/6J mice. The results of the sex determination for all mice from the 

second filial generation are displayed in the appendix (Supplement table S2). 

 

 
Figure 6. Example of sex determining PCR. DNA of three male and three female wildtype C57BL6/J 

mice was examined by multiplex PCR with three primer pairs. The primer pair SRY 2 / SRY 4 

amplified a product of 404 bp and the primer pair ZFY 3/ ZFY 4 a product of 617 bp. Both products are 

Y-chromosome specific. Primer pair NDS 3 / NDS 4 amplified a X-chromosomal product of 244 bp. 

Negative control (neg. control) was carried out with aqua bidest. instead of DNA as template. 
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4.1.3.2 Analysis for the rd1 mutation in Pde6b gene 

In order to investigate the influence of homozygous mutation rd1 in the Pde6b gene 

on the QTL analysis, a subset of 248 randomly chosen animals were screened for 

this mutation by PCR analysis. Afterwards, a restriction fragment length 

polymorphism (RFLP) analysis of the PCR product with the restriction endonuclease 

Dde I was carried out. The wildtype PCR product has a length of 511 bp, whereas 

the mutated allele is cut by Dde I into two fragments of 298 bp and 213 bp. As an 

example, figure 7 displays the results of wildtype C57BL6/J, C3H/HeJ mice, as well 

as of the first filial generation. Results of 248 mice from the second filial generation 

are presented in the appendix (Supplement table S2). 

 

 
Figure 7. Example for analysis of Pde6b mutation. The Dde I restricted PCR products were separated 

in 2 % agarose gel. In C57BL6/J mice the primer pair W149 / W150 amplified a product of 511 bp 

length (1), which contained no mutation and was consequently not restricted by Dde I. The product 

amplified from C3H/HeJ was cut by Dde I resulting in two fragments of 298 bp and 213 bp length (2). 

For the F 1 generation of these strains, both results could be observed (3). Negative control (neg. 

control) contained aqua bidest. instead of DNA. 

 

All animals, which were homozygous for the mutated allele in the Pde6b gene, were 

assigned as blind. The other mice carrying either homozygous wildtype or 

heterozygous alleles were defined as healthy, since these animals were hallmarked 

by normally developed retina. In the subset of 248 mice from the second filial 

generation, 58 animals were identified with the homozygous rd1 mutation in the 

Pde6b gene and 187 animals were assigned as healthy. The behavioral data of 
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these two groups were compared for activity measurement of the light-dark and zero 

maze tests. Activity is presented as the percentage traveled in the open area from 

overall movement. In the light-dark test, blind mice exhibited significant higher activity 

(p < 0.05) compared with wildtype mice (Figure 8). For the zero maze test, no 

difference was detected between both groups (Figure 8). 

 
Figure 8. Behavioral comparison of blind and wildtype (wt) mice. (A) Blind mice travelled a significant 

higher percentage in open area of light-dark test compared to wildtype mice. (B) For the zero maze, 

no significant difference could be observed between blind and wildtype mice for the percentage 

traveled in open area. Bars represent mean with n = 58 for blind and n = 187 normal mice; ± SEM; * p 

< 0.05. 
 

4.2 QTL analysis 
The genomes of F2 generation mice from the C57BL/6J & C3H/HeJ intercross were 

genotyped by a microsatellite screening. QTL intervals were assessed by a linkage 

analysis of phenotypic and genotypic data utilizing parametrical, as well as non-

parametrical approaches. Finally, the most prominent QTL were narrowed by 

comparative genomics in order to reduce the amount of candidate genes. 

 

4.2.1 Data quality control 
The software R/qtl contains several functions to control the quality of input data and 

consequently to ensure a solid QTL mapping. These include a graphical 

representation of marker distribution on the genome, distribution of missing 

genotypes and comparison of estimated genetic maps. In the present study, 264 

microsatellite markers with an average distance of 5.56 cM were used, which can 

graphically represented in a high-density genetic map (Figure 9A). Additionally, 



46  Results 

missing genotypes from the input data were presented by plotting all markers against 

all individuals (Figure 9B). Since a negligible amount of genotypes were missing, the 

data could be analyzed directly. In Figure 9C, a genetic map based on database 

information is compared with a genetic map estimated from the input data. By this 

comparison, small shifts could be observed between the marker positions of these 

maps resulting in extended chromosome lengths. However, these shifts are quite 

short and acceptable, since microsatellite marker positions are influenced by several 

experimental factors as well as differences in database information. The final quality 

control function is based on the estimated recombination fractions, which could 

identify potentially incorrect placement of markers on the genetic map. The estimated 

recombination fractions between markers and the LOD scores are quoted in the 

upper left triangle and the lower right triangle, respectively (Figure 9D). Red indicates 

pairs of markers that appear to be linked, non-linked pairs are highlighted in blue. 

Since no linkage between two independent markers can be seen, the presence of 

incorrectly placed markers can be excluded. These markers were consequently 

chosen for further QTL mapping. 
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Figure 9. Data quality control. (A) Genetic map with marker positions throughout the genome. (B) 

Missing genotyping data in the F2 generation. Black dots indicate missing marker information for each 

individual. (C) Comparison of a genetic map based on MGI database information (left side of bars) 

with a genetic map calculated of the input data (right side of bars). (D) Estimated recombination 

fractions (upper left triangle) and LOD scores for all pairs of markers (lower right triangle). 

 

4.2.2 QTL mapping 
Mapping of QTL was carried out with the scanone function of R/qtl, which maps 

individually acting QTL. This single-QTL genome scan on all 543 F2 generation mice 

revealed one QTL on chromosome 5 at 58 cM for the light-dark test time parameter 

with a LOD score of 5.74 (Figure 10A) and a 95 % confidence interval from 49 to 60 

cM, which accounts for 5.09 % of the phenotypic variance (Table 3). For the distance 
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parameter of the same behavioral test, two QTL could be identified. One is located 

on chromosome 1 at 57 cM with a LOD score of 4.69 (Figure 10B), representing 3.52 

% of the phenotypic variance and with a 95 % confidence interval covering the 46 to 

69 cM region (Table 3). The other one lies at 58 cM on chromosome 5 with a LOD 

score of 4.72 (Figure 10B) and a 95 % confidence interval spanning from 49 to 62 cM 

that covers 3.54 % of the phenotypic variance (Table 3).  

The zero maze test revealed two further QTL, one for the time value on chromosome 

15 at 22.2 cM and one for the distance value on chromosome 5 at 61 cM (Figure 

10C-D). The first QTL for the time value had a LOD score of 4.59, representing 3.82 

% of the phenotypic variance and a 95 % confidence interval from 8.7 to 25.7 cM 

(Table 3). The other detected QTL for the distance value revealed a LOD score of 

4.84 and a 95 % confidence interval covering a region from 49 to 65 cM, which 

describes 4.02 % of the phenotypic variance (Table 3). 

For the startle response test, no QTL could be discovered (Figure 10E). The forced 

swim test unveiled one QTL on chromosome 5 at 53 cM with a LOD score of 14.41 

(Figure 10F), accounting for 12.4 % of the phenotypic variance and with a 95 % 

confidence interval from 41 to 58 cM (Table 3). 
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Figure 10. Genome-wide QTL analysis of the F2 generation. Graphs present LOD plots for (A) time in 

the open area and (B) distance in the open area in the light-dark test, for (C) time in the open area and 

(D) distance in the open area in the zero maze test, for (E) the startle amplitude in the startle response 

test and for (F) the immobility time in the forced swim test. The microsatellite markers are shown on 

the x-axis, sorted by their position in the genome and the LOD-scores are indicated on the y-axis. The 

horizontal line in each plot indicates the significance threshold with p < 0.05, indicating significant 

LOD-scores above this line. 

 

Additional to the QTL mapping on the whole F2 generation, single-QTL analysis was 

also performed with the sample set separated into male and female individuals in 

order to identify sex-specific loci. Four male-specific QTL could be detected, two 

within the time parameter of the light-dark test on chromosome 5 at 57 cM with a 
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LOD score of 3.69 and on chromosome 14 at 55.5 cM with a LOD score of 4.42 

(Table 3). The third QTL was revealed for the distance value of the light-dark test on 

chromosome 1 at 58 cM with a LOD score of 4.79 and the fourth one was observed 

within the forced swim test on chromosome 7 at 3.4 cM with a LOD score of 6.53 

(Table 3). Moreover, QTL for the forced swim test were detected on chromosome 5 

for both the male and female group (Table 3). The QTL for the males lay at 52 cM 

with a LOD score of 6.53 and a 95 % confidence interval from 42 to 59 cM (Table 3). 

The QTL of the female group lay at 40 cM with a LOD score of 9.1 and a 95 % 

confidence interval covering the region from 36 to 60 cM (Table 3). 

 
Table 3. QTL found for the whole F2 generation and separated into sexes. 

Chr.: chromosome number; cM: centimorgan; 95 % CI: the 95 % confidence interval for the QTL (in 

cM) calculated by R/qtl; % var.: % of phenotypic variance the QTL accounts for. p value < 0.05 

represents significant effects.  
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4.2.3 Narrowing of QTL intervals 

Most QTL intervals were found on chromosome 5 for different behavioral 

measurements and all 95 % confidence intervals showed a common core interval. 

Therefore, these intervals were superposed in order to reveal the common core 

region. This core spans from 49 to 58 cM (Table 3) or from 90 Mb to 109 Mb. 

Interestingly, a previous publication linked agoraphobia and panic disorder in humans 

to a region from q21.21 to q22.3 on human chromosome 4 (Kaabi et al. 2006), which 

is syntenic to an interval on chromosome 5 of the mouse spanning from 28 to 67 cM. 

The syntenic region in the mouse also revealed a common core region with the 

previously narrowed QTL on chromosome 5 (Figure 11). For this reason, 

comparative genomic approaches were also implemented in the narrowing of the 

core QTL region on chromosome 5 resulting in a core QTL interval on chromosome 5 

with a length of 15 Mb spanning from 90 to 105 Mb (Figure 11). 
 

 

Figure 11. Narrowing of the QTL interval on chromosome 5. The thick white bar shows the 

magnification of the region on chromosome 5, where most of the QTL intervals were found. The light 

grey bars represent the identified QTL intervals on chromosome 5 with the corresponding trait. The 

dark grey bar indicates a syntenic region (73.9-105 Mb), homologue to a human region linked to 

agoraphobia and panic disorders (human chr. 4 52.7-89 Mb). The intervals were superposed to 

visualize their common intersection representing the narrowed QTL interval (shaded area). 
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4.3 Identification and validation of candidate genes 
All genes lying in the narrowed QTL interval were prioritized, referring to the semantic 

similarities of their gene ontologies as compared to the respective ones of a 

reference gene. The most prominent candidate genes from this prioritization were 

validated by gene expression analysis in brain or liver tissue and by single nucleotide 

polymorphism analysis in the parental C57BL/6J and C3H/HeJ strains. Furthermore, 

biochemical analyses of interesting pathways were carried out within the parental 

mouse strains. 

 

4.3.1 Identification of candidate genes 
The narrowed QTL interval of 15 Mb length altogether contains 171 annotated genes. 

In order to identify prominent candidate genes in this region, a prioritization was 

carried out with the FunSimMat software. As the reference for the gene ontology 

comparison, the "susceptibility to unipolar depression" phenotype (no. 607478) from 

the "online Mendelian inheritance in man" database was used. 113 out of 171 

annotated genes in the narrowed QTL interval possessed UniProt codes and could 

be used for the prioritization. The first eight genes of the prioritized list are presented 

in Table 5 and a complete gene list is presented in the appendix. 

The first three genes, 17 β-hydroxysteroid dehydrogenase 13 (Hsd17b13), enolase-

phosphatase 1 (Enoph1) and 17 β-hydroxysteroid dehydrogenase 11 (Hsd17b11) 

met the selection criteria that at least two of three values (BP simRel, BP Lin, 

rfunSim) were higher than 0.5 (Table 5). These genes were selected as possible 

candidate genes for validation experiments. 
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Table 4. Gene ontologies of the first eight genes on the prioritization list. 

Hsd17b13: hydroxysteroid (17-beta) dehydrogenase 13; Enoph1: enolase-phosphatase 1; Hsd17b11: 

hydroxysteroid (17-beta) dehydrogenase 11; Naa11: N(alpha)-acetyltransferase 11; Mrsp18c: 

mitochondrial ribosomal protein S18C; Agpat9: 1-acylglycerol-3-phosphate O-acyltransferase 9; 

Stbd1: starch binding domain 1; Mrpl1: mitochondrial ribosomal protein L1 

 

Table 5. FunSimMat values of the first eight genes on the prioritization list. 

The dotted line indicates the threshold for the candidate gene selection based on the FunSimMat 

values; SNP: single nucleotide polymorphism; BP simRel: biological process similarity with simRel 

measure; BP Lin: biological process similarity with Lin's measure; rfunSim: calculation of biological 

process and molecular function scores; Hsd17b13: hydroxysteroid (17-beta) dehydrogenase 13; 

Enoph1: enolase-phosphatase 1; Hsd17b11: hydroxysteroid (17-beta) dehydrogenase 11; Naa11: 

N(alpha)-acetyltransferase 11; Mrsp18c: mitochondrial ribosomal protein S18C; Agpat9: 1-

acylglycerol-3-phosphate O-acyltransferase 9; Stbd1: starch binding domain 1; Mrpl1: mitochondrial 

ribosomal protein L1. 
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4.3.2 Expression analysis of candidate genes 

In order to validate the previous identified candidate genes, expression differences in 

brain regions for Enoph1 gene were investigated in the parental C57BL/6J and 

C3H/HeJ strains.  For the genes Hsd17b11 and Hsd17b13, expression differences in 

liver tissues of parental strains were analyzed since these genes showed high 

expression within this tissue (Horiguchi et al. 2008) and moreover due to their role in 

the hydroxysteroid hormone metabolism (Moeller and Adamski 2009). Enoph1 

expression was detected in four different brain regions, the amygdala, cingulate 

cortex, hippocampus and hypothalamus, which play important roles in regulation of 

emotional behavior (Price and Drevets 2010; Shin and Liberzon 2010).  

Quantitative PCR revealed significantly different expression levels of Enoph1 in 

cingulate cortex (p < 0.01), hippocampus (p < 0.01) and hypothalamus (p < 0.05) of 

C3H/HeJ mice compared to C57BL/6J mice (Figure 12). The expression of the 

Enoph1 gene was elevated in these brain regions in C3H/HeJ mice. No significant 

expression differences of Enoph1 were observable in the amygdala between these 

strains (Figure 12).  

 
Figure 12. Expression of Enoph1 in different brain regions. The relative expression levels were 

calculated using the 2-ΔC(t) method with the TATA box binding protein as reference gene. The relative 

expression levels are shown on the y-axis and the different brain regions are presented on the x-axis. 

Bars indicate the mean of ten individuals ± SEM; n = 10;  * p < 0.05; ** p < 0.01; C57 = C57BL/6J; 

C3H = C3H/HeJ. 

 

Expression of Hsd17b11 was significantly higher in C3H/HeJ mice (nearly double) 

compared to C57BL/6J (Figure 13). The transcripts of Hsd17b13 demonstrate the 
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exact opposite, since expression was significantly higher in C57BL/6J mice (twofold 

higher as in C3H/HeJ mice) (Figure 13). 

 
Figure 13. Expression of Hsd17b11 and Hsd17b13 in liver tissue. The relative expression levels were 

calculated using the 2-ΔC(t) method with the TATA box binding protein as reference gene. The relative 

expression levels are shown on the y-axis and the different genes were presented on the x-axis. Bars 

indicate the mean of ten individuals ± SEM; n = 10; *** p < 0.001; C57 = C57BL/6J; C3H = C3H/HeJ. 

 

4.3.3 SNP analysis of Enoph1 

Enoph1 gene was selected as the most interesting gene for further analysis, as not 

only expression differences could be detected, but also two publications correlated 

this gene with anxiety-related behavior in mice (Ditzen et al. 2006; Ditzen et al. 

2010). A SNP analysis was conducted with brain tissue of the two parental strains for 

the Enoph1 gene. This gene contains two non-synonymous SNPs in its coding 

region, whereby the first one is located at the end of exon 2 (rs13460000) and the 

second one at the beginning of exon 3 (rs13460001).  

The co-segregation of these two SNPs within the parental strains is hallmarked by 

specific nucleotide polymorphisms detected in the animals. All C57BL/6J mice 

carried a guanine base in the first and a cytosine base in the second SNP for both 

alleles (Figure 14). The C3H/HeJ strain carried an adenine base in the first and a 

thymine base in the second SNP for both alleles (Figure 14). These SNPs 

consequently result in amino acid exchanges in the final protein. The first SNP leads 

to an amino acid exchange from valine in C57BL/6J mice to isoleucine in C3H/HeJ 

mice at position 56 in the protein. The second SNP induces the change from proline 

in C57/BL/6J strain to leucine in C3H/HeJ strain at position 74 in the Enoph1 protein. 
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The SNP analysis was performed by Dr. Jeeva Varadarajulu (Max Planck Institute of 

Psychiatry, Munich, Germany). 

 

 
Figure 14. Single nucleotide polymorphisms (SNPs) of the Enoph1 gene. A comparison of the 

genomic sequences of C57BL/6J to C3H/HeJ mice is shown. The two SNPs are marked in the coding 

triplets at the end of exon 2 and beginning of exon 3. The resulting non-synonymous amino-acid 

substitutions in the Enoph1 protein are displayed beneath each triplet. SNP rs13460000 results in an 

amino acid change of isoleucine (Ile) to valine (Val) in position 56 of the protein; SNP rs13460001 

causes an amino acid change of leucine (Leu) to proline (Pro) in position 74 of the protein. C57 = 

C57BL/6J; C3H = C3H/HeJ. 

 

4.3.4 Biochemical analysis of methionine salvage pathway 
The Enoph1 protein is part of the methionine salvage pathway, a ubiquitous pathway 

for the reconstitution of methionine. The well-known mood-enhancer S-

adenosylmethionine (SAM) is also involved in this pathway, which is additionally 

connected to polyamines downstream of SAM	   (Pirkov et al. 2008). Recent studies 

revealed that polyamines are regulated in anxiety- and depression-related behavior	  

(Fiori and Turecki 2008, Genedani et al. 2001, Hayashi et al. 2004, Lee et al. 2006). 

Therefore, the methionine salvage pathway could potentially regulate polyamines 

and might play a role in modulation of anxiety- and depression-related behavior. A 

HPLC analysis was conducted for SAM and the polyamines spermine and 

spermidine in brain tissue of the parental C57BL/6J and C3H/HeJ mice.  

No different levels of SAM or spermine were detected in brain tissue of parental mice 

(Figure 15). In contrast to these findings, analyses of spermidine contents exhibited 

significantly different levels in these mice (p < 0.05), with elevated levels in the 

C3H/HeJ strain (Figure 15). The HPLC measurements were performed by Dr. David 

Otte (Institute of Molecular Psychiatry, Bonn, Germany). 
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Figure 15. SAM and polyamine assays of C57BL/6J and C3H/HeJ brain tissues. SAM (A) was 

measured in brain homogenates by high performance liquid chromatography (HPLC) analysis, as well 

as spermidine (B) and spermine (C) levels after derivatization with benzoyl chloride. Measurements 

are presented in arbitrary units per mg tissue. Spermidine levels are significantly higher in C3H/HeJ 

mice compared to C57BL/6J mice. Bars represent mean ± SEM; n = 5; * p < 0.05; C57 = C57BL/6J; 

C3H = C3H/HeJ. 

 

4.4 Generation of Enoph1 knockout mouse 
Different expression levels as well as co-segregating SNPs in the parental strains 

indicate that Enoph1 is the most prominent candidate gene in the narrowed QTL 

interval. In order to gain deeper insights into its function, a knockout mouse was 

regarded as a suitable model. For this purpose, embryonic stem (ES) cells from the 

German Gene Trap Consortium were used, which contain a heterozygous Enoph1 

gene knockout. A confirmation of the knockout by sequencing was performed prior to 

the injection of ES cells into blastocysts. Chimeric mice were screened for germline 

transmission and heterozygous mice are analyzed with RT-PCR. 

 

4.4.1 Validation of ES cell clones 
Six different ES cell clones were ordered from the German Gene Trap Consortium 

(E122G09; E237D04; E261G04; E252B10; E148E08; E123F08), all containing a 

gene trap insertion in the first intron of the Enoph1 gene. Initially, three clones 

(E122G09; E237D04; E261G04) were more closely analyzed for the exact insertion 

of the gene trap vector. For this purpose, the genomic 3' and 5' flanking sequences of 

the gene trap vector were amplified by PCR for each clone (Figure 16). All products 

exhibited the expected lengths and were subsequently sequenced and aligned with 

the respective reference sequence of the mouse in order to achieve the exact 
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position of the gene trap vector in the first intron of each clone. The results of 

sequence alignments are presented in the appendix (Supplement figure S1). 

 

 
Figure 16. Amplification of gene trap flanking sequences. Products after amplification of the 3' and 5' 

gene trap flanking sequences of three different ES-cell clones (E122G09; E237D04; E261G04) were 

visualized in a 1 % agarose gel. The 3'-sequence (1) and the 5'-sequence (2) of clone E122G09 are 

highlighted on the gels. The 3'-sequence (3) and the 5'-sequence (6) of clone E237D04, as well as the 

3'-sequence (4) and the 5'-sequence (5) of clone E261G04 (4). All bands exhibited the expected 

lengths and were subsequently sequenced. The negative controls (neg. control) contained aqua 

bidest. instead of DNA template. 

 

Additionally, the three ES-cell clones were analyzed for the correct function of the 

gene trap insertion, which should result in a shorter transcript of the Enoph1 gene 

consisting of just the first intron. The transcript length was determined by PCR with 

cDNA samples prepared from tail biopsies. 

All three ES-cell clones (lanes 2-4) presented the expected heterozygosis, one 

wildtype allele generating a 207 bp PCR product and the gene trap allele producing a 

256 bp long product, confirming the correct function of the gene trap vector (Figure 

17). As expected, the wildtype ES-cell (lane 1) contained only the wildtype allele, 

which produced the 207 bp PCR product exclusively (Figure 17). This PCR assay will 

also be applied for genotyping of knockout animals in later breeding.  
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Figure 17. RT-PCR for gene trap insertion. The cDNA samples of wt ES-cells (1) or from the gene 

trap ES-cell clones E122G09 (2), E237D04 (3), E261G04 (4) were used as templates for the PCR. 

Negative control (neg.) contained aqua bidest. instead of cDNA. Two different primer pairs (A and B) 

were used. A contains primer pair Enoph RT 1 F / Enoph RT 1 R, which amplifies a wt allele in the 

Enoph1 cDNA with a product size of 207 bp. B contains primer pair Enoph RT 1 F / 1st Race Primer, 

which amplifies the gene trap allele in the Enoph1 cDNA with a product size of 256 bp. 

 

4.4.2 Generation of chimeras and screening for germline transmission 
The clone E261G04 of the three ES cell clones, confirmed by sequencing, was 

injected into blastocysts, which were subsequently transferred into super ovulated 

C57BL/6J female mice. Out of 16 injected and implanted blastocysts, one highly 

chimeric male mouse was obtained with approx. 70 % chimerity (Figure 18). Tanja 

Tropartz carried out the injections at the transgene service of the University Hospital 

Aachen and the chimeric mouse was then transferred to the animal facility in Bonn. 

The chimeric male mouse was mated with wildtype C57BL/6J female mice in order to 

receive heterozygous knockout animals. However, within the time frame of this thesis 

no offspring was born. The uteri of three female mice were analyzed at day 7.5 after 

mating and no embryo was detected. 
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Figure 18. Highly chimaric male mouse. This mouse was obtained after injection of ES-cell clone 

E261G04 into blastocysts and implantation into superovulated C57BL/6J mice. It exhibited approx. 70 

% chimerity. 
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5 Discussion 
 

The identification of specific susceptibility genes in anxiety and depression is a 

challenging approach, since these behaviors have a complex genetic basis. In this 

study, differences in anxiety- and depression-related behavior, in combination with a 

QTL analysis, were used to gain a deeper insight into the complex genetic regulation 

of anxiety and depression in mice. A couple of genetic loci could be identified with a 

strong contribution to anxiety and depression. A few of them confirmed QTL that 

were detected in previous studies and consequently validated the chosen approach 

as being suitable for the aim. In addition, several new QTL could be mapped to 

anxiety- and depression-related behavior within a region on chromosome 5. This 

offered the ability to use a comparative genomics approach to reduce the length of 

the core QTL interval. The selected candidate gene Enoph1 was validated by 

expression, SNP, as well as biochemical analysis. The generation of a knockout 

mouse has recently started and will provide more information about the role of 

Enoph1 in anxiety- and depression-related behavior. 

 

5.1 Behavioral screening of parental and F2 mice 
The foundation of this QTL study was based on the genetic and behavioral 

differences of the parental mouse strains. The genetic difference of the strains was 

guaranteed by their phylogenetic distance on the mouse family tree (Witmer et al. 

2003). Recent studies have published behavioral differences between the C57BL/6J 

and C3H/HeJ strains in anxiety- (Crawley et al. 1997, Griebel et al. 2000, Milner and 

Crabbe 2008) and depression-related behavior (Crowley et al. 2005, Lucki et al. 

2001). These findings were further verified by the behavioral measurements in the 

two parental strains C57BL/6J and C3H/HeJ, presenting significant differences in all 

applied anxiety- and depression-related tests. In conclusion, these parental strains 

were an ideal basis for a QTL analysis due to their genetic and behavioral 

differences. 

Behavioral analyses of the F2 generation mice in the same behavioral tests revealed 

a normal distribution of measured data for the majority of the parameters. For some 

parameters, the distribution was graphically hallmarked by a frequent shift to the left 

or a seldom shift to the right side. These data cannot be handled with standardized 

statistical tests, which mostly require a normal distribution. Deviation from normal 
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distribution resulted from test-specific limits or lay in the principles of the paradigm, 

meaning that it is not possible to retrieve normally distributed measures due to 

specific guidelines for some behavioral tests. Therefore, square root or logarithmic 

normalization was applied to receive a normal distribution, if it was necessary and 

possible. This normally distributed data could then be handled with the Haley-Knott 

algorithm of R/qtl, which is more stringent and robust compared to the algorithm used 

for non-normally distributed data. Most algorithms used for QTL mapping require 

normally distributed phenotypic data (Broman and Sen 2009). The algorithm for non-

normally distributed data allows the input of non-parametric data for the QTL 

mapping – or, more precisely, for the phenotypic data of the time value of the light-

dark test, as well as from the forced swim test.  

However, the parental mouse strains posed a further challenge, because the 

C3H/HeJ are known to suffer from retinal degeneration due to inactivation of the rod 

photoreceptor cGMP phosphodiesterase 6 β-subunit (Pde6b) gene caused by a 

nonsense mutation (Hart et al. 2005, Pittler and Baehr 1991, Sidman and Green 

1965). Mice homozygous for the Pde6b mutation develop pronounced visual 

impairment at weaning age due to the rapid loss of rod photoreceptor cells through 

apoptotic processes. PDE6b is considered to be a protein specifically expressed in 

the retina (Beavo 1995). The homozygous mutation in the Pde6b gene and therefore 

the retinal degeneration could have an influence on the behavior of the mice. Hence, 

identified QTL could be based on this gene due to its influence on the behavior. The 

Pde6b gene is located at the 3’ site of the particular QTL, identified on chromosome 

5, and maybe it could influence the detected QTL. In order to exclude this 

assumption, mice of the F2 generation were genotyped for the Pde6b mutation and 

grouped according to their genotype in wild-type and visually impaired mice. These 

groups were tested for significant differences in their activity in open areas of light-

dark and zero maze tests. These tests were chosen since visual perception plays an 

important role in these paradigms and therefore also in QTL correlated to these traits. 

Concerning the light-dark test, the visually impaired mice exhibited a significantly 

higher activity in the open area compared to wild-type mice. There were not any 

differences detected in the zero maze test. These results lead to the assumption that 

the influence of mutation in the Pde6b gene on behavior could not be excluded 

completely, since differences were detected in one test. However, the other test did 

not revealed any behavioral differences and suggested that the Pde6b mutation may 
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only play a minor role in the behavioral response if there is one. Additionally, it is 

known from the literature that only rods are degraded by Pde6b mutation, whereas 

cones are still functional (Hart et al. 2005). This points to the fact that the examined 

mice were still able to distinguish between light and dark environments. Another 

interesting aspect is the influence of wall guidance on mouse behavior (Horev et al. 

2007), which could have also influenced the behavioral parameters in the test. In the 

zero maze, for example, mice could recognize the closed areas through their tactile 

senses, such as whiskers or body hairs. 

It can be concluded that the findings obtained from the genotyped and phenotyped 

mice of the F2 generation are suitable for the upcoming QTL analysis. The influences 

of the mutation in the Pde6b gene could not be excluded completely for the outcome 

of the behavioral analysis, but if there is one, it seems to be minor. Therefore, its 

influence on the QTL does not appear too strong and should not have an impact on 

the results of the QTL analysis. 

 

5.2 QTL for anxiety and depression 
Mapping of the QTL, which act on the behavioral measurements, was carried out 

with geno- and phenotypic data of the F2 generation mice and the R/qtl software. For 

the distance parameter in the light-dark test, a QTL on chromosome 1 at 57 cM was 

obtained. The association of this QTL to activity is supported by several studies, 

which similarly revealed a QTL for such a trait in this region on chromosome 1 (Gill 

and Boyle 2005, Koyner et al. 2000). It is most likely that this QTL is sex-dependent, 

since the analysis detected this locus only in male mice. Further studies also 

identified activity dependent QTL for the open-field test on chromosome 1 in a more 

distal position (Gershenfeld et al. 1997, Kelly et al. 2003, Singer et al. 2005, Turri et 

al. 2004), which points out that a minimum of two activity QTL are located on 

chromosome 1 (Bolivar et al. 2001, Turri et al. 1999). 

A QTL on chromosome 15 at 22.2 cM was linked to the distance travelled in the zero 

maze with a very large 95 % confidence interval from 8.7 to 25.7 cM. This seems to 

be an anxiety-related QTL, because several studies likewise detected anxiety-related 

QTL in this region on chromosome 15. However, they did not provide any further 

positioning information (Laarakker et al. 2008, Singer et al. 2005, Turri et al. 2001a, 

Turri et al. 2001b, Turri et al. 2004).  
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Turri et al. linked this QTL to anxiety-related behavior measured in the open field, the 

elevated plus maze and the light-dark test, thus giving strong evidence for the 

importance of this QTL in relation to anxiety (Turri et al. 2001a). More detailed 

evidence came from three other studies, which also provided positional information of 

the identified QTL. Another study by Turri et al. mapped three QTL on chromosome 

15, one at 20 cM for activity in the open field, the other at 22 cM for time in an open 

area in the elevated plus maze and the last at 24 cM for time in the enlightened area 

in the light-dark test (Turri et al. 2001b). The study of another group also found QTL 

in different measurements for open-field behaviors around 20 cM on chromosome 

15; however, these are only suggestive ones due to their low P values (Eisener-

Dorman et al. 2010). The most interesting work, which was performed by Henderson 

et al., identified a QTL from 22 to 28 cM on chromosome 15 linked to activity in 

aversive areas (Henderson et al. 2004). This is the only study in the available 

literature that provided information about confidence intervals, even though this QTL 

integrates completely in the interval found in this thesis and it revealed no options for 

narrowing the QTL on this chromosome. Despite the fact that their data suggested a 

relatively short interval, a database research revealed a large physical region of over 

30 Mb. 

In this study, a male-specific QTL for the time value in the light-dark test was 

detected at 55.5 cM on chromosome 14, which disappeared completely in the 

combined analysis for both sexes. Four studies have mapped an anxiety-related QTL 

to chromosome 14. Since this QTL was located in a position more upstream from the 

QTL detected in this study, it is possible that more than one QTL lies on this 

chromosome (Henderson et al. 2004, Turri et al. 2001a, Turri et al. 2001b, Turri et al. 

2004). One recent approach discovered a QTL on chromosome 14 at 63 cM for an 

anxiety-related trait (Gill and Boyle 2005), which supports the finding in this study. 

There is not any information about the size of the interval. For this reason, a direct 

comparison with the QTL of this study consisting of a 20 cM interval was not 

possible. 

All detected QTL are in accordance with the results of former QTL studies, which 

confirm the reliability of the present approach. Most of the intervals are very large 

and contain a high number of genes, which complicates an effective identification of 

possible candidate genes. 



Discussion  65 

A completely new and exclusively male-specific QTL was detected on chromosome 7 

at 3.4 cM for immobility time measured in the forced swim test, which is a 

depression-related paradigm. Recent studies identified non-gender-related QTL on 

this chromosome. These QTL are located in a region more upstream from 40 to 60 

cM and solely for anxiety-related behavior measurements (Eisener-Dorman et al. 

2010, Henderson et al. 2004, Turri et al. 2001a, Turri et al. 2001b, Turri et al. 2004). 

Therefore, it can be concluded that a new QTL for depression-related behavior in 

male mice was mapped. The selection of possible candidate genes turns out to be 

difficult due to the length of the QTL of 7 cM corresponding to a region of 27 Mb on 

the chromosome. 

An outstanding finding of the present study was the identification of seven QTL on 

chromosome 5 in a region between 41 and 62 cM. These QTL were correlated with 

anxiety- as well as depression-related behavior and were mapped for both sexes. It 

was consequently assumed that these QTL and the according possible candidate 

genes contribute in getting further insights into the strong comorbidity of anxiety- and 

depression-related diseases (Simon 2009). This new discovery of a depression-

related QTL position complements former studies, which only detected anxiety-

related QTL more upstream on chromosome 5 (Gill and Boyle 2005, Turri et al. 

2001a, Turri et al. 2001b). For depression-related traits, only one recent publication 

identified a QTL on chromosome 5 (Tomida et al. 2009). This one is located in an 

upstream region in relation to the QTL detected in this thesis. Another study mapped 

a QTL at 59 cM, an equal position on chromosome 5 to the findings shown here 

recently, which was correlated to ethanol-withdrawal-induced anxiety (Drews et al. 

2010). Although it could be argued that anxiety-related behavior is the driving force 

for this QTL. Since the role of ethanol on this result cannot be excluded, this QTL 

was not considered for further comparisons or narrowing approaches. 

All seven QTL on chromosome 5 were selected for an approach to narrow the length 

of the interval due to the fact that all QTL presented a common overlapping region. 

Therefore, the focus was set on the QTL within this common core region, where the 

underlying gene of these QTL should be located. Additionally, there was an 

opportunity to apply a comparative genomics procedure, which compares linked 

regions from other species with the identified QTL in order to reduce the length. 

Comparative genomics is commonly used to narrow QTL intervals (Burgess-Herbert 

et al. 2008, DiPetrillo et al. 2005). This technique also proved to be useful in several 



66  Discussion 

studies (Jann et al. 2009, Rollins et al. 2006, Sheehan et al. 2007, Yamada et al. 

2003). Kaabi and colleagues identified a region on the human chromosome 4, which 

is syntenic to a respective region on the mouse chromosome 5 and linked to anxiety 

disorders (Kaabi et al. 2006). This trait fits very well with the anxiety-related traits in 

mice used in the present thesis. Surprisingly, the syntenic region in mice partially 

overlapped with the narrowed core QTL on chromosome 5. This finding revealed that 

it was possible to reduce the length of the QTL interval even more to the final length 

of 15 Mb. The relevance of this locus is supported by recent studies linking this 

region to bipolar disorders in humans (Cassidy et al. 2007, McAuley et al. 2009). 

These bipolar disorders also present a high comorbidity with anxiety disorders 

(Baldessarini et al. 2010, Simon 2009, Young et al. 2009), suggesting that this locus 

plays an important role in stress-related psychiatric disorders. 

In conclusion, the narrowing of QTL by comparative genomics was a sweeping 

success and the benefit of this method was proven by further identification of 

possible candidate genes. 

 

5.3 Identification of candidate genes 
The narrowed QTL on chromosome 5 contained 171 genes. An evaluation was 

carried out as to reveal which genes would be prominent candidates for the anxiety- 

and depression-related traits. To meet this challenge, the new FunSimMat software 

(Schlicker and Albrecht 2010) was utilized, which compared the gene ontologies of 

the candidate genes with the respective ontology of the reference gene TPH2. From 

the initial 171 genes, a few were excluded due to two major difficulties. Firstly, some 

genes had to be excluded due to missing information about a transcript and 

consequently a missing UniProt ID, which is required as input for the software. The 

second problem resulted from the missing gene ontology information for several 

genes, which leads to low values for genes with little or no information in the 

biological process and molecular function subgroups of the gene ontologies. These 

difficulties can be common when biological databases are used, since there is still a 

lack of content, despite the fact that information in these databases has grown 

immensely in recent years (Mooney et al. 2010). Additionally, biomedical research is 

mostly focused on specific topics and retrieves more information in the research 

fields of strong interest, which leads to more gene ontology annotations as well as 

biased gene ontologies in these topics (Done et al. 2010, Pesquita et al. 2009). 
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However, the information content of biological and especially genomic databases 

demonstrated a rapid growth in the past few years, recently reaching a point where 

their utility value strongly increased. For this reason, this approach was regarded as 

promising and highly beneficial for the candidate gene selection. 

The comparison of the traits linked to the narrowed QTL with data from the Online 

Mendelian Inheritance in Man database suggested the entry 607478 containing the 

tryptophan hydroxylase 2 gene (Tph2) as a reference gene. SNPs in this gene were 

associated with depression disorders (Garriock et al. 2005; Zhang et al. 2005) and 

bipolar disorders in human patients (Cichon et al. 2008). Beaulieu et al. found 

abnormalities in depression- and anxiety-related behavior by expressing a variant of 

the human Tph2 in mice (Beaulieu 2008). Since these combined literature data fit 

quite well with the behavioral traits analyzed in this study, Tph2 was chosen as the 

reference gene for gene ontology comparison. This was the first approach to utilize 

the FunSimMat software for prioritization of candidate genes and no related 

publication data exist, because the software was only introduced in 2009. 

The gene ontology comparison with this software revealed three candidate genes; 

the enolase phosphatase 1 and 17ß-hydroxysteroid dehydrogenases type 11 and 13, 

all confirmed by expression differences in brain or liver tissue in the parental strains. 

Furthermore, non-synonymous SNPs in coding regions – two for Enoph1 and one for 

Hsd17b13 – could be identified in a database research and SNP assay. The focus 

was set on the Enoph1 candidate gene in further experiments, since two prominent 

publications link this gene to anxiety-related behavior in mice (Ditzen et al. 2006, 

Ditzen et al. 2010). As Enoph1 is part of the methionine salvage pathway, it could 

potentially influence S-adenosylmethionine (SAM) levels via this pathway (Pirkov et 

al. 2008). Recent studies indicated that SAM is a mood enhancer (Baldessarini 1987; 

Benelli et al. 1999; Mischoulon and Fava 2002), suggesting that it is an interesting 

target. However, the present study revealed that the protein encoded by Enoph1 did 

not influence the S-adenosylmethionine (SAM) levels. SAM is also essential for the 

polyamine synthesis (Benelli et al. 1999), that synthesize spermidine as well as 

spermine and that is connected also to the methionine salvage pathway (Pirkov et al. 

2008), downstream of SAM. Polyamines consist of small cationic molecules and play 

an important role in cellular proliferation. They can interact with a broad range of 

molecules like DNA, nucleotide triphosphates, proteins, and also RNA (Igarashi and 

Kashiwagi 2010). It is well known that polyamines themselves are regulated in 
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anxiety- and depression-related traits in rodents (Fiori and Turecki 2008, Genedani et 

al. 2001, Hayashi et al. 2004, Lee et al. 2006, Zomkowski et al. 2006) as well as in 

humans (Fiori and Turecki 2008, Sequeira et al. 2007). Differences in spermidine 

levels could be verified in the present study. This finding is consistent with literature 

data where decreased spermidine levels were detected in depression-related traits 

(Genedani et al. 2001). Other groups were not able to confirm these results, since 

they detected no differences in polyamine levels in mice with a restraint stress model 

(Hayashi et al. 2004). or even increased spermidine levels in the same stress model 

for mice (Lee et al. 2006). Furthermore, a human study with suicide victims suffering 

from depression revealed increased spermidine levels (Chen et al. 2010). 

The regulation of polyamines in anxiety- and depression-related traits is not really 

understood and there is a controversial discussion with many unsolved questions. 

Taking this together with a lack of differences in SAM levels in the presented 

experiment, it can be concluded that Enoph1 did not influence SAM levels and also 

had no effect on polyamine levels via SAM. 

This raises the question again of whether Enoph1 or one of the Hsd17b is the 

responsible gene behind the narrowed QTL. On one hand, Hsd17b genes are 

prominent candidates due to their expression differences, while on the other hand 

Enoph1 is also interesting if the focus is transferred to the function of SAM in 

epigenesis. 

 

5.3.1 Enoph1 and epigenesis 
The major function of SAM is the delivery of methyl groups to the de novo 

methyltransferase, and for this reason it plays an important role in DNA methylation 

(Detich et al. 2003, Hitchler and Domann 2007), which is one of the driving forces in 

epigenesis. Epigenesis is a major regulating process in the nervous system (Colvis et 

al. 2005, Feng et al. 2007, Feng and Fan 2009, Hsieh and Eisch 2010, Jiang et al. 

2008) and it plays an important role in mood disorders shown in several recent 

studies (McGowan and Kato 2008, Renthal and Nestler 2009, Tsankova et al. 2006). 

Enoph1 could influence anxiety and depression through epigenetic regulation by 

changing SAM levels in an early postnatal phase, since in this phase the 

development of the central nervous system is in many aspects affected by epigenetic 

processes. It was shown that these processes have a strong influence on behavioral 



Discussion  69 

development for dealing with stress (Branchi 2009, Holmes et al. 2005, Weaver 

2009). 

Studies have shown that the stress sensitivity is transferred from maternal behavior 

to offspring by epigenesis (Weaver et al. 2004; Weaver et al. 2005), demonstrating 

the crucial role of this process in behavioral development. It can be supposed that 

only in the early postnatal phase, Enoph1 has a regulating influence on SAM levels 

and thus on the epigenesis. The different activity of Enoph1 in C57BL/6J and 

C3H/HeJ mice could lead to different SAM levels in these strains only in the early 

postnatal phase, supporting the finding of equal SAM levels in adult animals. 

Differences in SAM levels between the parental mouse strains could then induce 

different genetic imprinting leading to changes in gene expression, which results in 

the different stress sensitivity of the mice. This might be the way that differences in 

Enoph1 activity, which are based on two SNPs, could be the cause of different stress 

sensitivities.  

When the chromosomal imprinting is terminated, other controlling circuits will take 

over the control of SAM and Enoph1 will consequently lose its relevance, reaching 

the state observed in the adult animals. The polyamine system could then be 

regulated by the different genetic imprinting in epigenesis leading to the different 

levels in adult animals. 

However, this hypothesis needs to be validated by further experiments observing 

SAM levels during postnatal development. Furthermore, the imprinting status of 

relevant genes should be mapped in this phase. However, the networks controlling 

DNA methylation and regulating the genetic imprinting remain unclear in many 

aspects. It would be a challenging approach to elucidate the influence of Enoph1 on 

epigenesis in this context. 

 

5.3.2 17ß-hydroxysteroid dehydrogenases in anxiety and depression 
The hydroxysteroid dehydrogenases are likewise prominent candidate genes as 

expression differences were found in liver tissue specimens from the parental strains. 

Hydroxysteroid dehydrogenases play an important role in steroid hormone 

metabolism (Moeller and Adamski 2006), which is involved in many processes like 

growth, differentiation, metabolism and reproduction (He et al. 2010). Steroid 

hormones are able to cross the blood brain barrier (Banks et al. 2009, Joëls 1997) 

and could influence the hypothalamic pituitary axis (Giussani et al. 2000), as well as 
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GABAergic transmission (Henderson 2007). Both are major pathways in the 

regulation of stress and play an important role in anxiety and depression.  

Glucocorticoids are the most intensively studied steroid hormones due to their 

prominent role in the HPA axis and therefore in major stress response pathways 

(Chrousos and Kino 2009). However, other steroid hormones like androgens and 

estrogens are also capable of regulating stress response via the HPA axis (Bao et al. 

2008, Young and Korszun 2010) and recent studies allocated their role in anxiety and 

depression (Amore et al. 2009, ter Horst 2010). 

Androgens and estrogens are regulated by the dehydrogenase encoded by 

Hsd17b11 (Brereton et al. 2001, Li et al. 1998), whereas substrates for the 

dehydrogenase encoded by Hsd17b13 are not known so far. However, due to the 

similarity of 78 % (including 65 % identity in the amino acid sequences) of these two 

types of Hsd17b proteins in humans (Moeller and Adamski 2009), it can be assumed 

that they potentially share the same substrates. Hsd17b13 could be a tissue-specific 

variant of Hsd17b11, since it was exclusively detected in mouse liver, compared to 

the more ubiquitous expression of Hsd17b11 (Horiguchi et al. 2008). The Hsd17b 

proteins could influence the levels of steroid hormones due to their ability to catalyze 

the interconversion between active and inactive forms. Thus, the expression 

differences of the Hsd17b genes observed between the parental mouse strains could 

lead to changes in the levels of active androgens and estrogens, which might be 

responsible for a different regulation of the stress response in the C57BL/6J and 

C3H/HeJ mice. Raven et al. provided additional evidence when Hsd17b proteins 

were identified as biological markers of depression (Raven and Taylor 1998). These 

combined findings are strong evidence for a crucial role of androgens and estrogens 

in the regulation of anxiety and depression. Therefore, it can be assumed that 

Hsd17b11 and Hsd17b13 are likewise prominent candidate genes and it is worth 

investigating their role further in the regulation of steroid hormone levels. The 

influence of different steroid hormone levels on the major regulating pathways in 

anxiety and depression should also be elucidated. 

 

5.4 Generation of Enoph1 knockout mouse 
As the focus of the recent work was set on Enoph1 candidate gene, the intention 

arose to generate a knockout mouse in order to get a clearer view on the role of this 

gene according to anxiety- and depression-related behavior. Out of six different ES-
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cell clones generated by the German Gene Trap Consortium, three of them were 

verified by RT-PCR and sequencing of genomic regions flanking the gene trap. So 

far, one clone has been successfully injected into blastocysts and one highly chimeric 

male mouse was received. However, further investigation points out that this mouse 

was infertile, since no embryo was detectable at day 7.5 after breeding with female 

mice. Since infertility is a well-known problem concerning the generation of knockout 

mice, it was decided to inject new clones to receive more chimeric males in the near 

future. 

The generation of a knockout mouse is likewise interesting for the Hsd17b11 and 

Hsd17b13 genes to further examine their role in steroid hormone metabolism. 

However, a recent study demonstrated the possible difficulty of this approach, 

because the knockout of another Hsd17b gene encoding for type 12 17ß-

hydroxysteroid-dehydrogenase is lethal at embryonic day 9.5 (Rantakari 2010). 

Furthermore, it was observed that this gene is highly expressed in neuronal tissue of 

the embryo. It can be assumed that the knockout of Hsd17b11 or Hsd17b13 could 

result in equal phenotypes. Difficulties due to a high mortality of the respective 

knockout mice could be avoided by using a conditional knockout system, for instance 

with a gene knockout in adult animals. 

The gene trap technique also provides the option of a conditional knockout utilizing 

different recombinases. This would be the method of choice for generating Hsd17b11 

or Hsd17b13 knockout mice. 
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6 Summary 
 

In this QTL mapping study, several genetic regions were linked to anxiety- and 

depression-related behavior in the mouse. Furthermore, some previously identified 

QTL linked to these behavioral traits were verified in the present analysis, 

demonstrating the convergence of this approach and most previous studies. The 

novel QTL identified on chromosome 5 were narrowed to a common core interval of 

9 cM. A subsequently applied comparative genomics approach with a syntenic region 

identified in a study in humans narrowed this core interval even more to a 15 Mb 

region. For the selection of possible candidate genes, a semantic similarity 

comparison of gene ontologies was conducted revealing three very prominent 

candidate genes, encoding for enolase phosphatase 1 (Enoph1) and 17ß-

hydroxysteroid dehydrogenases type 11 and 13 (Hsd17b11 and 13), respectively. 

These impressive results also demonstrated the power of gene ontology comparison 

on candidate gene prioritization. 

All candidate genes revealed different expression levels in brain or liver between the 

parental strains, and for Enoph1, two non-synonymous co-segregating SNPs were 

verified in the parental strains, which is in line with recent publications. Further 

analysis confirmed differences in polyamines, which are regulated in anxiety and 

depression, but S-adenosylmethionine, the possible mediator of this result, revealed 

no variation. This leads to the conclusion that Enoph1 has no influence on S-

adenosylmethionine levels and might have no influence on anxiety as well as 

depression by this mood enhancer. 

Despite these results, Enoph1 still remains interesting as a candidate gene. It is 

possible that Enoph1 influences S-adenosylmethionine levels in the early postnatal 

phase and hence plays a role in epigenesis. The upcoming Enoph1 knockout mouse 

will provide deeper insights into the function of Enoph1. Upcoming research may 

resolve the question of what influence the genes Hsd17b11 and 13 have on steroid 

hormone regulation and anxiety as well as depression, since there are many 

unknown aspects. Taken together, all three candidate genes should be evaluated in 

further studies to identify the gene underlying the QTL. Additionally, future results of 

other QTL approaches with anxiety- and depression-related traits may provide the 

chance to narrow known QTL and simplify the selection of candidate genes. 
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8 Appendix 
 

8.1 Supplemental material 
Supplement table S1. Name, primer sequences, fluorescent labels, expected product lengths, 

annealing temperature and polymerases used for the microsatellite genotyping (Q = Qiagen 

HotStarTaq; NEB = New England Biolabs Taq Polymerase; no annealing temperature = 60°C). 

 

(Continued on the next page) 
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Supplement table S1. 
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Supplement table S1. 
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Supplement table S1. 
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Supplement table S2. Sex of F2 mice and mutation in Pde6b gene screened in a subgroup (m = 

male; f = female; A = wild type allele; B = mutated allele; H = heterozygous). 
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Supplement table S2.  
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Supplement table S2.  
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Supplement table S2.  
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Supplement table S2.  
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Supplement table S2.  
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Supplement figure S1. Genomic positions of verified gene trap clones. (A) Exon-Intron structure of 

the Enoph1 gene. Exons are marked by vertical lines and introns lying between them. Gene trap 

positions of the three verified clones (E122G09; E237D04; E261G04) are marked by dotted lines. (B) 

The genomic sequence flanking 5' and 3' the gene trap insertion is presented for all ES-cell clones. 
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