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Abstract  I 

 

Abstract 

Epilepsy is one of the most common neurological disorders affecting more than 50 million 

people worldwide. Despite extensive efforts in antiepileptic drug (AED) development it is 

estimated that around 30% of all epileptic patients remain resistant to current AED therapy. 

In addition, the majority of conventional AEDs exhibits a large spectrum of side effects and 

a high potential of drug interactions (cytochrome P450), which restrict their applicability. In 

1999, the antiepileptic drug levetiracetam (LEV, (2S)-2-(2-oxopyrrolidin-1-yl)butanamide, 

Keppra®) was launched on the market and soon became one of the most successful AEDs of 

the newer generation. It binds to the synaptic vesicle protein SV2A and thus appears to 

exert its potent antiepileptic effect via a unique mechanism of action that is, however, still 

not well understood. Its analogue brivaracetam (BRV), which possesses a 10- to 20-fold 

higher affinity to the SV2A protein, is currently in late stages of phase III clinical trials. 

In the present study, synthetic pathways were devised for precursor molecules of LEV and 

BRV suitable for generating ³H-labeled forms of both AEDs with high specific activity (94-

98 Ci/mmol). In a reductive amination reaction mucochloric acid and previously prepared 

(S)-2-aminobutanamide were applied in the presence of sodium triacetoxyborohydride and 

acetic acid to synthesize (S)-2-(3,4-dichloro-2,5-dihydro-2-oxo-1H-pyrrol-1-yl)butanamide, 

which served as precursor for the preparation of [³H]LEV. The second precursor molecule 

was prepared via the intermediate 4-allyl-5-hydroxyfuran-2(5H)-one, obtained in a Mannich 

type reaction of glyoxylic acid and pent-4-enal in the presence of morpholine hydro-

chloride, which was subsequently utilized in a reductive amination reaction with (S)-2-

aminobutanamide for the preparation of (S)-2-(4-allyl-2-oxo-2,5-dihydro-1H-pyrrol-1-

yl)butanamide. This precursor molecule allowed the generation of [³H]BRV and its 

diastereomer [³H]isoBRV. In subsequent binding studies the applicability of the new 

radioligands was confirmed. [³H]BRV, exhibiting the highest target affinity, proved to be 

highly useful for the screening of ligands that compete with its binding, as well as for 

examinations of rare clinical brain samples of epileptic patients. Binding studies with 

[³H]BRV at recombinantly expressed SV2A protein variants revealed that the long 

cytoplasmic loop of the SV2A protein could potentially be involved in ligand-binding 

interactions. A previously postulated direct interaction of LEV with AMPA receptors could 

not be confirmed in our binding studies so far. Initial experiments at brain membrane 

preparations of SV2A KO mice were performed to investigate [³H]BRV binding in the 

absence of SV2A with the intention to identify potential low-abundant target sites. Due to 

its high specific activity the new radioligand [³H]BRV represents a most valuable tool for 

the extension of these studies with the goal to identify potential novel, low-abundant targets. 

Keywords: levetiracetam, brivaracetam, SV2A protein, radioligand binding studies, 

epilepsy, AMPA receptor 
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1 Introduction 

1.1 Epilepsy 

Epilepsy (Greek έπιληψία, epilēpsía – “seizure”) is one of the most common 

neurological disorders. It affects an estimated percentage of about 0.5 to 1% of the 

world’s population, currently at least 50 million people worldwide, with an incidence of 

approximately 50-80/100,000/year.1–5 While the onset can occur at any age, it is most 

common among young and elderly (> 65 years) people (see Figure 1).6,7 

 

 

Figure 1: Incidence of epileptic seizures, published by Werhahn8 based on data from Olafsson et al.6 

 

Epilepsy is characterized by the occurrence of epileptic seizures – spontaneous and 

paroxysmal impairments of the physiological brain function. It is estimated that about 

10% of the whole population is affected by an isolated epileptic seizure during the 

course of one’s life.2,4 According to the ILAE (International League Against Epilepsy)9, 

these epileptic seizures, representing “transient occurrences of signs and/or symptoms”, 

have to be distinguished from the term “epilepsy”, which refers to a cerebral disorder 

comprising an “enduring predisposition to generate epileptic seizures” along with 

several physical and mental consequences of this condition. However, according to the 

ILAE, already one epileptic seizure might be sufficient for the diagnosis of epilepsy, if 

corresponding medical results (e.g. MRT or EEG) support an increased receptiveness 

for seizures. 

The proper functioning of the central nervous system (CNS) is depending on a well-

coordinated interaction between inhibitory and excitatory neurotransmitters. This is 

essential for the maintenance of the membrane potential as well as for a specific and 
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efficient transmission of neuronal signals. In epileptic conditions the normal electrical 

activity of the brain is impaired, which results in a lowered seizure threshold due to 

instabilities of the membrane potential. Consequently, neuronal networks of the brain 

become more susceptible to uncontrolled electrical activity and exhibit a higher risk for 

the development of recurrent seizures, which emerge from abnormal, synchronic and 

excessive discharges of cerebral groups of neurons.10,11 

With regard to the etiology, several risk factors are known today that increase the 

chances of developing epilepsy. These encompass neurologic disorders (e.g. strokes and 

neurodegenerative diseases) as well as brain malformations, head injuries, tumors, 

encephalitis and metabolic disorders.4,8 Besides external influence factors it is known 

that several types of epilepsy are caused by genetic disposition, like e.g. defects in genes 

encoding for ion channels.5,12,13 A further group of epilepsies is of unknown etiology, 

which in elderly patients sums up to one-third of all cases.14 

Epileptic conditions and associated manifestations represent a very heterogeneous 

symptom complex. Various efforts have been made for a structured categorization 

(reviewed by Reynolds and Rodin)15 from which the Classifications of Seizures 

determined by the ILAE in 1981 and 1989 has become widely accepted.16,17 In general, 

seizures are primarily distinguished by their local origin, wherein (1) partial seizures 

comprise locally restricted seizures of limited extension in one hemisphere and (2) 

generalized seizures include origins that are distributed over the whole brain area. 

Furthermore, one differentiates between “symptomatic” seizures (as a consequence of a 

primary condition, e.g. a tumor), “idiopathic” seizures (presumably of genetic etiology) 

and “cryptogenic” seizures (of unknown cause, but presumably symptomatic). The 

complexity of this multifaceted disorder is additionally reflected by numerous further 

definitions, which for example refer to the affection of consciousness (simple partial or 

complex partial), seizure propagation (secondary generalized), physical manifestation 

(tonic, clonic, myoclonic, absence) as well as a number of epilepsy syndroms (e.g. 

Lennox-Gastaut syndrome). The precise characterization of the epilepsy in combination 

with the epileptic seizure type is especially important with regard to the choice of the 

medical treatment, which ideally aims at freedom from seizures.4,18 
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1.2 Antiepileptic pharmacotherapy 

Pharmacological therapy plays an important role in the treatment of epilepsy. However, 

despite a continuous effort to develop new AEDs, pharmacotherapy is still mainly 

limited to the suppression of emerging seizures by elevating a lowered seizure 

threshold. Up to now, a curative treatment with currently available AEDs is not 

possible.19 

Initial pharmacological treatment, which is preferably given as a monotherapy, is 

selected based on various factors, e.g. seizure type, age, sex and concomitant conditions 

and medications. It is estimated that around 50% of all epileptic patients experience 

freedom from seizures by this first medication. A further 20% of the patients respond to 

the second medication (another AED or polytherapy), while an approximate percentage 

of 30% remains resistant to available pharmacotherapy.20–22 Due to a significant relapse 

rate about two thirds of the patients have to take antiepileptic medication for the rest of 

their life.4 

Until today, more than 20 drugs have been approved for the treatment of epilepsy (see 

also Table 1). As AEDs of the first generation, compounds such as phenytoin, 

ethosuximide, carbamazepine, valproic acid and phenobarbital have been successfully 

introduced into antiepileptic treatment. Although these drugs still play an important role 

in modern antiepileptic pharmacotherapy, their application is strongly limited by several 

unfavorable characteristics. For most of them a long list of severe side effects has been 

documented, which include teratogenicity, hepatotoxicity, hair loss, weight gain, tremor 

(e.g. valproic acid), fatigue, dizziness, diplopia, blood count changes (e.g. 

carbamazepine) and many more. Moreover, a high interaction potential (metabolism via 

cytochrome systems) and pharmacokinetic drawbacks affect the possibility of a broad 

application. Considering that for the majority of epileptics continuous medication is 

needed for the suppression of seizures, it is obvious that these conventional AEDs do 

not provide a satisfying profile. With a deeper understanding in processes of 

neurotransmission and the pathology of epilepsy, drugs of the second generation, 

including lamotrigine, vigabatrine, felbamate, gabapentin, topiramate, tiagabine, 

oxcarbazepine, levetiracetam, pregabalin, and zonisamide, were developed. In general, 

the newer AEDs are better tolerated. Nevertheless, despite the achieved improvement of 

AED therapy, there are still several drawbacks that ongoing research might overcome 

with AEDs of the next generations. Apart from improved efficacy and tolerability, 
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especially drugs with potent antiepileptogenic and disease-modifying effects 

(prevention or control of epileptogenesis) would represent a milestone in the therapy of 

epilepsy.8,11,18,23–25 

 

1.2.1 Target structures for antiepileptic drugs 

In general, antiepileptic pharmacotherapy aims at elevating the seizure threshold, which 

is lowered in epileptic conditions due to an abnormally high excitability of the neuronal 

network. This can either be achieved by enhancing inhibitory or by inhibiting excitatory 

mechanisms. Based on this principle, common targets of antiepileptic drugs include (1) 

voltage-gated ion channels, (2) the inhibitory GABAergic neurotransmitter system, and 

(3) the excitatory glutamatergic neurotransmitter system.10,11,18 The challenge of 

designing specifically acting AEDs can be derived from the fact that more or less all 

current AEDs seem to convey their effects via multiple mechanisms by acting at 

different target structures. In the following paragraphs the most common targets of 

AEDs will be briefly summarized and selected examples for each target will be given. 

Voltage-gated ion channels26 are essential for the maintenance of the membrane 

potential, for the production and propagation of action potentials as well as for 

neurotransmitter release into the synaptic cleft. Therefore, they play a role in the 

generation of epileptic seizures. Several AEDs are interacting with voltage-gated 

sodium, calcium and potassium channels and thereby either inhibit the influx or 

stimulate the efflux of cations, which, in turn, stabilizes the membrane potential. 

Sodium channels,27 which contribute to the generation of action potentials, represent the 

main target for several AEDs. Among these are phenytoin, lamotrigine, carbamazepine 

and oxcarbazepine, which stabilize the channels in their inactive state.28 Calcium 

channels29 can be subdivided into high-voltage activated (HVA) and low-voltage 

activated (LVA) channels, based on the degree of depolarization at which the channel 

opens. The group of HVA calcium channels comprises L-, P/Q- and N-type channels. 

While L-type channels are mainly expressed postsynaptically, N- and P/Q-type channels 

are located presynaptically and are therefore involved in the regulation of transmitter 

release. Gabapentin and pregabalin most likely exert their antiepileptic effects by a 

blockade of HVA calcium channels; their interaction with the α2δ auxiliary subunit 

proteins could be demonstrated.30,31 LVA calcium channels are T-type channels, which 

are integrally involved in the abnormal conditions during generalized absence 
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seizures.32 They presumably present the molecular target structure for ethosuximide.33 

Potassium channels are also voltage-gated ion channels, which are essential for the 

maintenance of the resting potential and important in cellular excitability; they therefore 

represent potential targets for antiepileptic therapy.34 The novel antiepileptic drug 

retigabine, which has been approved in 2011, appears to be the first AED interacting 

with potassium channels. Being a positive allosteric modulator, which binds to 

KCNQ2/3 potassium channels, the drug is capable of opening the channel, and thus 

initiating an efflux of potassium ions.35,36 

GABA (γ-amino butyric acid), the most important neurotransmitter of the inhibitory 

nervous system, plays another important role in epileptic conditions.37 After release into 

the synaptic cleft, it binds to three different GABA receptors (type A, B and C) from 

which the ionotropic (chloride) GABAA receptor represents a major target in 

antiepileptic pharmacotherapy. Benzodiazepines are positive allosteric modulators of 

the GABAA receptor. They interact with subtypes that contain certain α and γ subunits, 

thereby increasing the sensitivity of the receptor for its endogenous ligand GABA.38 

Besides benzodiazepines, barbiturates are also interacting with GABAA receptors.39 By 

positive allosteric modulation via the β subunit the channel remains in its opened state 

for an extended period of time in the presence of barbiturates. The supply with GABA 

in vivo is regulated by the enzyme glutamate decarboxylase (GAD), which converts the 

amino acid glutamate into GABA (see Figure 2). It has been supposed (although 

controversially discussed) that one of the many mechanisms of valproic acid might be a 

modulation of this enzyme leading to an increased synthesis of GABA.40 The 

concentration of GABA can be further increased by the AED vigabatrin, which 

irreversibly inhibits the enzyme GABA transaminase (GABAT).41,42 Thus, the 

degradation of GABA to succinic semialdehyde along with the simultaneous conversion 

of 2-oxoglutarate to glutamate is inhibited (see Figure 2). Furthermore, GABAergic 

signaling can be enhanced by the drug tiagabine.43 This AED binds with high affinity to 

the GABA transporter GAT-1, inhibits the reuptake of released GABA from the 

synaptic cleft and increases its concentration and duration of action. 

 
Figure 2: Metabolism of GABA; GAD: glutamate decarboxylase; GABAT: GABA transaminase. 
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The amino acid glutamate represents the major excitatory neurotransmitter of the central 

nervous system.44 Its receptors can be subdivided into ionotropic (glutamate-gated 

cation channels) and metabotropic (G protein-coupled) receptors. While the latter ones 

currently do not represent targets for antiepileptic pharmacotherapy, ionotropic 

glutamate receptors are addressed by several AEDs. Three types of ionotropic glutamate 

receptors are known, which have been named after pharmacological agonists that 

selectively bind to and activate the corresponding subtype. NMDA (N-methyl-D-

aspartate) receptors are permeable for sodium, potassium and calcium ions. During the 

resting potential the channel is closed by magnesium and only opens upon glutamate 

stimulus, if the co-agonist glycine is bound to its allosteric binding site.45 The AED 

felbamate might – at least in parts – convey its effect by inhibiting NMDA receptors.46 

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptors,47 another type 

of ionotropic glutamate receptors, will be discussed in more detail in chapter 1.4. They 

are involved in seizure spread and therefore may play an important role in antiepileptic 

pharmacotherapy. Compounds like perampanel, which is currently in late stages of 

clinical trials, are interacting with AMPA receptors as non-competitive, highly selective 

antagonists.48 KA (kainic acid) receptors are the third group of ionotropic glutamate 

receptors, which represent one of the several target sites for the AED topiramate.49 

 
Figure 3: Schematic drawing of the most important target structures of AEDs (from Böhme and 
Lüddens).10 Nav, Cav, Kv: voltage-gated sodium, calcium and potassium channels; GAT-1: GABA 
transporter 1. 
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Table 1: Mechanisms of action and therapeutic plasma concentrations of antiepileptic drugs.23,50–53 
Therapeutic plasma concentrations have been taken from Micromedex® Healthcare Series;54 nd: no data. 

Antiepileptic drug Mechanisms of action Therapeutic plasma 
concentration 

 

GABAA receptor 
(positive allosteric 
modulation) 

10-40 µg/ml 

 

GABAA receptor 
(positive allosteric 
modulation) 

5-12 µg/ml 

 

GABAA receptor 
(positive allosteric 
modulation) 

nd 

 

GABAA receptor 
(positive allosteric 
modulation) 

nd 

 

GABAA receptor 
(positive allosteric 
modulation) 

0.1-0.4 µg/ml 
of active metabolite 
desmethylclobazam 

N

N

Cl

diazepam

O
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Antiepileptic drug Mechanisms of action Therapeutic plasma 
concentration 

 

GABAA receptor 
(positive allosteric 
modulation) 

nd 
(no direct correlation 

between clinical effects 
and plasma 

concentrations) 

 

GABAA receptor 
(positive allosteric 
modulation) 

25-30 ng/ml 

 

Na+-channel blockade 4-12 µg/ml 

 

Na+-channel blockade 
Ca2+-channel blockade 

nd 

 

Na+-channel blockade nd 

 

Na+-channel blockade 10-20 µg/ml 

 

Ca2+-channel blockade 40-100 µg/ml 
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Antiepileptic drug Mechanisms of action Therapeutic plasma 
concentration 

 

Ca2+-channel blockade 10-40 µg/ml 

 

Na+-channel blockade 
Ca2+-channel blockade 
GABA supply ↑ 

50-100 µg/ml 

 

GABA transporter 
(GAT-1) inhibition 

not well established 
(1-234 ng/ml observed) 

 

GABA transaminase 
(GABAT) inhibition, 
irreversible 

nd 

 

Ca2+-channel blockade 
(α2δ subunit) 

≥ 2 µg/ml 

 

Ca2+-channel blockade 
(α2δ subunit) 

nd 

 

Na+-channel blockade 
Ca2+-channel blockade 

1-4 µg/ml 

 

Na+-channel blockade nd 

 

Na+-channel blockade 
Ca2+-channel blockade 

20-30 µg/ml 



10 1 Introduction 
 

Antiepileptic drug Mechanisms of action Therapeutic plasma 
concentration 

 

K+-channel opener nd 

 

SV2A protein interaction 
Ca2+-channel blockade 
GABAA receptor modulation 

7-40 µg/ml 

 

carboanhydrase inhibition nd 

 

NMDA receptor blockade 
Na+-channel blockade 
Ca2+-channel blockade 
GABA modification 

18-83 µg/ml 

 

KA/AMPA receptor 
Na+-channel 
Ca2+- channel 
GABA modification 
carboanhydrase inhibition 

10.5 µg/ml 
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1.2.2 Levetiracetam and analogues 

In the 1960s, there were increased efforts to develop sedatives that were supposed to act 

via the inhibitory effect of the GABAergic system. For this purpose several pyrrolidone 

derivatives were synthesized with the rationale to design cyclic analogues of 

γ-aminobutyric acid. However, in animal studies it was found, that some of these 

compounds possessed cognitive enhancing effects instead of sedative properties. In this 

context piracetam was discovered, which represents the first nootropic drug that was 

applied in clinical therapy.55 In 1992, the potent effect of the pyrrolidone drug 

levetiracetam (LEV) was discovered. By random screening Alma Gower (UCB, 

Belgium) found that this (S)-configurated ethyl derivative ((2S)-α-ethyl-2-oxo-1-

pyrrolidine acetamide) of piracetam possesses pronounced anticonvulsive effects, which 

became evident by tests involving acoustically induced seizures in sound-sensitive 

mice.56 Subsequent investigations suggested a specific profile for LEV distinct from 

that of other AEDs. While LEV showed potent antiepileptic effects in several animal 

models of epilepsy, it was lacking potency in two of the widely used screening tests for 

AEDs: the maximal electroshock (MES) test and the subcutaneous pentylenetetrazol 

(s.c. PTZ) test. All other clinically applied AEDs possess activity in at least one of these 

two screening tests. Furthermore, the examinations brought forward that LEV might 

possess antiepileptogenic effects, and thus could also be effective in inhibiting the 

progression of the disease. In addition, the absence of severe side effects adds to the 

most promising profile, which was determined for the compound.56–58 LEV underwent 

clinical trials and eventually was approved by the FDA under the trade name Keppra® 

in November 1999.59 At that time, not much was known regarding the molecular 

mechanism of action and the target of LEV, for which Noyer et al. supposed a highly 

abundant protein located in synaptic vesicle membranes of the central nervous system.60 

Five years after its approval, in 2004, this site was identified by Lynch et al. as the 

synaptic vesicle protein SV2A, a glycoprotein of nearly ubiquitous distribution in the 

brain (see chapter 1.3).61 Thus, it became evident that LEV most likely exerted its 

antiepileptic effects via a novel mechanism of action and thus might represent the first 

compound of a potential new class of AEDs.62 Today, Keppra® belongs to the most 

successful of the newer AEDs, being widely prescribed for partial as well as generalized 

seizures, as a monotherapy and as an add-on medication.63–68 With the aim to identify a 

drug with even higher potency, about 12000 compounds were screened for their affinity 

to the SV2A protein in radioligand binding studies versus [³H](2S)-2-[4-(3-
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azidophenyl)-2-oxopyrrolidin-1-yl]butanamide, [³H]ucb30889 (see Figure 8) by UCB 

Pharma SA, Belgium. This effort led to the discovery of brivaracetam (BRV), the (4R)-

4-propylpyrrolidinyl analogue of LEV. It possesses a 10- to 20-fold higher affinity for 

the SV2A protein than LEV, and through potential additional antiepileptic mechanisms 

of action might not only be a more potent, but also a more effective AED in comparison 

with LEV. Moreover, it appears to have a side effect profile indistinguishable from 

placebo. Currently, BRV is undergoing late stages of phase III clinical trials.69–74 A 

pivotal role of the SV2A protein in the antiepileptic effects of the pyrrolidone 

derivatives has been postulated. For several LEV derivatives binding affinities to the 

SV2A protein (determined in competition binding experiments versus the radioligand 

[³H]ucb30889) showed a positive correlation with their antiepileptic potency in several 

animal models of epilepsy after i.p. administration of the test compounds.61,75 However, 

it has been criticized that in these studies the cerebrospinal fluid (CSF) levels of the 

investigated AEDs had not been determined; thus, it cannot be excluded that the CSF 

concentrations of the drugs may have differed considerably.76 

Apart from the known interaction with the SV2A protein, LEV appears to evoke 

additional effects, which were observed in several in vitro and in vivo studies. In this 

context a reduction of cation currents has been described including N- and P/Q-type 

calcium currents77,78 as well as certain potassium currents.79 Concerning sodium 

currents no modulation could be observed.80 Furthermore, LEV appears to have an 

influence on intraneuronal calcium stores, where it is capable of inhibiting the 

intracellular calcium release.81 Moreover, a modulation of GABAA receptors could be 

demonstrated: LEV reversed the effect of zinc that can be applied as an allosteric 

modulator to reduce the inhibitory effect of GABA in epileptic brain tissue.82 In 

addition, LEV also appears to have an influence on the glutamatergic system, since a 

reversible inhibition of AMPA currents in the presence of LEV could be shown.83 So 

far, for none of these effects a mechanism of action or a specific target site has been 

identified. Whether these effects are related to the interaction with the SV2A protein or 

whether they are evoked by an SV2A-independent pathway is not clear yet. Also, it 

remains to be elucidated to which extent these effects contribute to the unique 

antiepileptic effects of LEV. 
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1.3 SV2A protein 

The identification of the putative molecular target structure of LEV61 led to increased 

interest in the synaptic vesicle proteins SV2 in epilepsy research. The SV2 proteins are 

membrane proteins, which are present in all synaptic vesicles of neurons and endocrine 

cells of vertebrates.75,84–86 Encoded by different genes three highly homologous 

isoforms exist, termed SV2A, SV2B and SV2C.87–90 The SV2A protein is the most 

abundantly expressed isoform, which is present on all presynaptic terminals of neurons, 

independent of their neurotransmitter type. The distribution pattern of the second most 

abundant isoform SV2B is more restricted and the SV2C isoform is only expressed in 

certain evolutionarily older brain regions.86,90 SV2 proteins are composed of 12 

transmembrane domains (TMDs), which are flanked by cytoplasmic N- and C-termini 

(see Figure 4). In general the loops between the TMDs are relatively short with two 

exceptions: SV2 proteins possess a long cytoplasmic loop between the TMDs 6 and 7, 

and a long luminal loop between TMDs 7 and 8 with N-glycosylation sites in three 

positions.87–89 It has been suggested that the sugar chains might function as a stabilizing 

gel in the intravesicular space.85,91,92 The three isoforms exhibit a high sequence 

homology within the 12 TMDs and to a somewhat lesser extent also within the long 

cytoplasmic loop, whereas the sequences of the N-terminus as well as the long 

intravesicular loop are less well conserved among the isoforms.90 

Apart from the SV2 proteins a more distantly related protein was identified, the SVOP 

(SVtwo-related protein), which beyond vertebrates is conserved in all multicellular 

organisms that have been examined so far.92 It is suggested to be a potential 

evolutionary precursor of the SV2 proteins (SV2 proteins, in contrast, have only been 

found in vertebrates) possessing a similar transmembrane structure, but lacking both 

long loops present in the SV2 proteins. Within their transmembrane structure SVOP as 

well as SV2 proteins exhibit significant homology to mammalian organic cation and 

anion transporters and more distantly also to sugar transporter proteins in eukaryotes 

and bacteria.87,88,92 Being located in the membranes of synaptic vesicles, initially it was 

proposed that SV2 proteins might function as transporters for the uptake of 

neurotransmitters into the vesicles.88 However, due to the ubiquitous presence of the 

SV2 proteins in synapses with different types of neurotransmitters this hypothesis was 

discarded.86 
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Figure 4: Topology model of the rat 
prediction of transmembrane domains based on TMHMM
domains are numbered TMD I to XII, exons are numbered in grey Arabic numbers from 1 to 12 and 
separated by lines, N- and C-termini are labeled with the corresponding letters.
dark blue represent residues that are conserved among all three isoforms (SV2A, SV2B and SV2C), light 
blue colored ones are conserved in one other isoform besides SV2A, and white colored ones are non
conserved and only present in the SV2A isoform. 
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Very recently the structural similarity of SV2 proteins to transporter proteins has been 

taken as a basis for combined modeling and mutagenesis studies to identify amino acids 

that may be involved in the interaction with the pyrrolidone drugs.100 Therefore, point 

mutants of the SV2A protein have been created in positions corresponding to functional 

residues in related transporter proteins. By binding studies with pyrrolidone radio-

ligands, 14 amino acids were identified, which supposedly are involved in the binding 

interaction. Since the investigated transporter proteins (lactose permease LacY, rat and 

human organic anion transporters) do not possess long TMD-connecting loops, the 

identified amino acids are mainly located within the TMDs. So far this study provides 

the only available information concerning the putative SV2A-pyrrolidone interaction 

site and suggests that the ligands may bind in the central cavity of the SV2A protein. 

Whereas a lot of uncertainties remain concerning the transporter function, it is known 

that SV2 proteins represent the neuronal receptor for botulinum toxin A.101,102 This 

peptide is interacting with SV2 proteins by binding to the intravesicular N-glycosylated 

loop between TMDs 7 and 8 during the release of the vesicle content into the synaptic 

cleft. After endocytotic internalization botulinum toxins inhibit further neurotransmitter 

release by cleaving essential fusion-mediating proteins. Moreover, an involvement of 

SV2 proteins in regulated insulin secretion has been suggested, presumably by 

controlling the glucose-evoked insulin granule recruitment to the plasma membrane.97 

To further elucidate potential functions of the SV2 proteins studies with KO mice have 

been performed, which revealed that SV2 proteins are essential for survival and normal 

brain function.96,103 SV2A KO mice (-/-), lacking the primary SV2 isoform, appear 

normal at birth. However, they do not grow, exhibit severe seizures and die within the 

second or third week after birth. SV2B KO mice do not show this phenotype, why it has 

been suggested that the function of the SV2B protein can be taken over by the 

ubiquitously present SV2A isoform. SV2C proteins were not considered in these studies 

due to their limited overall expression.96 Heterozygous SV2A KO mice (+/-) develop 

normally, but exhibit an increased seizure susceptibility.104 Effects on neurotransmitter 

secretion, which are caused by a knockout of the SV2 genes have been described and 

discussed. Most of the studies suggest a decreased secretion of neurotransmitters in 

SV2A KO103,105 as well as in SV2B KO106 mice. In contrast, increased excitatory 

neurotransmission was observed in SV2A KO mice in one study.96 Other studies, 

applying cultured neurons of SV2A KO mice, support the idea that neurotransmission is 
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decreased in the absence of the SV2A protein.107 Furthermore, it was observed that only 

action potential-dependent (and thus Ca2+-dependent), but not action potential-

independent neurotransmission was impaired in SV2A KO mice.103 Thus, a functional 

role of the SV2 protein in Ca2+-regulated exocytosis was suggested. Moreover, a 

binding site for the synaptic vesicle protein synaptotagmin was identified: the amino 

termini of the SV2A and SV2C isoforms are interacting with the synaptotagmin protein, 

which represents a calcium-sensor in neurotransmitter exocytosis.108–110 The process of 

exocytosis in synapses, which is part of the synaptic vesicle cycle, involves several 

steps: initially, vesicles that are filled with neurotransmitters interact with the active 

zone, which lies opposite to the synaptic cleft (docking). Thereupon, vesicles undergo a 

maturation step, which makes them competent for Ca2+-induced fusion with the synaptic 

membrane (priming). Finally, exocytosis occurs upon an action potential-evoked Ca2+-

influx (fusion).111,112 Chang and Südhof suggested that the SV2A protein is regulating 

neurotransmitter release by being involved in a yet unidentified process downstream of 

vesicle priming, but before Ca2+-triggered fusion. In this context enhancement of the 

Ca2+-responsiveness of synaptic vesicles was proposed as a role of the SV2A protein.113 

Despite many efforts, it has not been possible to elucidate the exact role of the SV2 

proteins in neurotransmitter release to date. Since the AED levetiracetam (LEV) is only 

interacting with the SV2A isoform,61 a prominent role for this isoform in 

neurotransmitter release has to be presumed. The ubiquitous expression of the SV2A 

isoform, however, makes it difficult to interpret the effect that is caused by binding of 

LEV to this protein. For instance, Yang et al. suggested that the interaction of LEV with 

the SV2A protein evokes reduced neurotransmitter release.114 However, the broad 

expression of the SV2A protein – in excitatory as well as inhibitory synapses – is only 

hardly compatible with the distinct antiepileptic effects conveyed by LEV. Even though 

several studies indicate that SV2A is the main target and responsible for LEV’s 

pharmacological action,61,72 it cannot be excluded that further targets, which potentially 

are much less abundant, contribute to some extent to LEV’s potent antiepileptic effects. 

In this context it has been postulated that LEV is also binding to AMPA receptors, a 

glutamate receptor subtype (see chapter 1.4).115 Since these receptors are much less 

abundant than the SV2 proteins, it is conceivable that previous investigations may have 

failed in determining interactions with such low abundant targets due to limited 

sensitivity of the employed analytical methods. 
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1.4 AMPA receptors – glutamate receptor subtypes 

1.4.1 Glutamate receptor subtypes 

The amino acid L-glutamate represents the major excitatory neurotransmitter of the 

central nervous system.44 With the arrival of an action potential (transmitted by voltage-

gated sodium and potassium channels) at the presynaptic site of a glutamatergic 

synapse, voltage-gated calcium channels are opened and calcium flows into the cell. 

Upon this stimulus glutamate-filled vesicles are released via exocytosis. After diffusion 

across the synaptic cleft, glutamate is interacting with several glutamate receptors, 

which can be assigned to two main groups: metabotropic (G protein-coupled) and 

ionotropic (ligand-gated ion channel) receptors.116 Metabotropic glutamate receptors 

mediate the slow excitatory neurotransmission and are involved in multiple biochemical 

pathways.117,118 The fast excitatory neurotransmission (on a millisecond time scale)119 is 

mediated by ionotropic glutamate receptors, which are ligand-gated cation channels.120 

Ionotropic glutamate receptors are further subdivided into NMDA receptors and the two 

non-NMDA receptors AMPA receptor and kainate receptor. Their names originate from 

pharmacologic agonists that selectively bind to and activate the corresponding receptor: 

N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionate 

(AMPA) and kainic acid (KA), which are all structurally related to the endogenous 

agonist glutamate (see Figure 5). 

    
Figure 5: Chemical structures of L-glutamate and its analogues NMDA, AMPA and kainate. 
 

1.4.2 AMPA receptors 

Molecular cloning of glutamate receptors has contributed greatly to the understanding 

of the structure and function of AMPA receptors (AMPARs).47,121,122 Further 

information was obtained by several crystal structure studies of AMPAR subtypes, 

which have been published during the last 10 years.123–126 Four subunits have been 

identified (GluR1-GluR4, also named GluA1-GluA4 after AMPA), which are encoded 
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those negative allosteric modulators stabilize the conformation of the receptor by 

hindering the linker domains to transfer the conformational change onto the 

transmembrane domain and thus impair the opening of the channel.132 The 

transmembrane domain comprises three hydrophobic domains that are spanning the 

membrane (M1, M3 and M4) and a fourth domain (M2), which represents an 

intramembraneous re-entrant loop. This re-entrant loop forms the ion channel pore.133 

Within the intracellular carboxy-terminal domain the four subunits exhibit the largest 

sequence differences. This region interacts with many different proteins, and thus, 

among other functions, is responsible for targeting the receptor to synapses.134 

All of the four AMPAR subunits exist in two variants, called flip and flop, which are 

products of alternative splicing.121 This flip/flop region is located on the extracellular 

site in close proximity to the transmembrane domain indicated as M1 in Figure 6. It is 

encoded by neighbored exons of the subunit gene, which comprise 115 bp. Among 

different subunits these segments are quite similar, exhibiting differences in the peptide 

sequence between flip and flop in 9 to 11 amino acids. The flip and flop variants are 

present in different expression levels during the development of the brain and also 

exhibit a distinct, but partly overlapping expression pattern throughout diverse brain 

structures.135 They functionally differ from each other by their kinetic properties: in 

general, the flop variant desensitizes faster than the flip variant in the presence of 

glutamate.121,136,137 

A functional AMPAR that exhibits two agonist binding sites is composed of four 

subunits forming a tetrameric receptor structure, which consists of two dimers of the 

subunits GluR1 to GluR4.47,138,139 While homotetramers represent functional receptors, 

native receptors are almost exclusively heterotetramers (consisting of two different 

subunits each in dimer pairs).140 The assembly of AMPARs varies depending on 

developmental stage and subcellular localization. However, the majority of AMPARs in 

the adult brain appears to consist of GluR1/GluR2 and GluR2/GluR3 subunit 

combinations.141,142 

 

1.4.3 The AMPA receptor subunit GluR2 

Among the four subunits, the GluR2 subunit plays a central role for AMPARs. It is 

widely expressed in the central nervous system, being present within the majority of all 
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AMPARs.47,135,142–144 GluR2 is the only subunit that carries a so-called Q/R-editing site, 

which is located in the re-entrant loop forming the ion channel pore (indicated as M2 in 

Figure 6).145–147 This site has an essential function in the regulation of cation 

permeability of the channel. By posttranscriptional RNA-editing the genetically 

encoded amino acid glutamine (Q) at position 607 is exchanged by the amino acid 

arginine (R) in almost all GluR2 subunits. This is mediated by the enzyme adenosine 

deaminase ADAR2, which is converting adenosine to inosine by hydrolytic 

deamination, thereby changing the codon CAG to CIG.148 This inosine is read by RNA-

dependent RNA-polymerases as guanosine, which changes the codon to CGG. 

Subsequently, arginine (CGG) instead of glutamine (CAG) is integrated into the 

channel forming domain. Due to the positive charge and the steric hindrance by this 

residue, AMPARs possessing the edited GluR2 subunits are impermeable for calcium 

and hence only allow monovalent ions (sodium and potassium) to pass the 

channel.146,149,150 

In genetically modified mouse models lacking the GluR2 subunit it could be shown that 

this subunit has an integral role in development and function of the brain. In the absence 

of GluR2, the mice show several behavioral abnormalities and an overall increased 

mortality.151,152 Furthermore, it was demonstrated that mice, which express the unedited 

GluR2 subunit (heterozygous), exhibit a particular phenotype: due to unhindered 

calcium permeability they develop epileptic seizures and die shortly after birth.153,154 

Similar observations were made with mice (homozygous) lacking the editing-

responsible enzyme ADAR2.148 

AMPARs represent the major mediator of excitatory neurotransmission and thus are 

integrally involved in the generation and spread of epileptic seizures.127 Given the fact 

that the GluR2 subunit is present in the majority of AMPARs together with its dominant 

role in calcium permeability and the effects observed in mice lacking edited GluR2 

subunits, it becomes evident that this subunit crucially contributes to the physiological 

functioning of AMPARs and thus very likely also in their role in seizure propagation. 

Consequently, it might be conceivable that a potential interaction of LEV and its 

analogues with AMPARs in a negative allosteric manner could contribute to their 

antiepileptic effects. Due to a much lower abundance than the highly expressed SV2A 

protein the detection of these receptors might be much more difficult and hence require 

more sensitive techniques than those applied in previous studies. 
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1.5 Objectives 

Levetiracetam (LEV) is one of the most successful of the newer antiepileptic drugs 

(AEDs) exhibiting a novel, unique mechanism of action. In 2004, the synaptic vesicle 

protein SV2A has been postulated to be the molecular target for LEV and related 

pyrrolidone drugs,61 since LEV was shown to specifically bind to SV2A with an affinity 

of around 1 µM. Very recently, several amino acids of the SV2A protein were 

suggested to be involved in ligand binding,100 however, the exact binding site is still 

unknown. So far the exact effects that LEV may evoke upon binding to this protein and 

thus the mechanism of action of LEV are not well understood. Several effects have been 

determined for LEV in vivo as well as in vitro, e.g., on ion currents, which cannot be 

readily explained by an interaction with the SV2A protein. In this context, the question 

remains whether the ubiquitously expressed SV2A protein represents the exclusive 

target for LEV, or whether other targets are involved in its potent antiepileptic effects. 

The present study was aimed at (1) contributing to the identification of the binding site 

of the pyrrolidone drugs at the SV2A protein and (2) searching for potentially new 

binding sites of LEV and BRV besides the broadly and highly expressed SV2A protein. 

Considering that potential, but so far unidentified target structures for LEV besides the 

SV2A protein may exist, it can be assumed that they would probably be present at much 

lower expression levels than the SV2A protein. Therefore sensitive detection methods 

are needed. For this purpose, the first goal of this project was to devise synthetic 

strategies, which would allow the generation of a radioligand labeled with tritium with 

high specific activity. Besides [³H]LEV, its analogue brivaracetam (BRV) was to be 

prepared as a tritiated radioligand as well, since it possesses higher affinity for the target 

structure (SV2A) and therefore would represent an improved investigational tool. 

Subsequently, a valuable and reproducible assay was to be established, in which the 

new radioligands could be characterized. Taking this assay system as a basis, it was 

further planned to investigate binding to different tissue samples including pathological 

tissues from epileptic patients. 

In order to contribute to the identification of the binding site of the pyrrolidone drugs, 

several SV2 variants were to be obtained by molecular cloning and heterologous 

expression, which afterwards should be investigated in binding studies using the new 

radioligands. The effects of certain mutations on the binding behavior of the 

radioligands were to be investigated. 
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Based on the results of published radioligand binding studies it was postulated that LEV 

and its analogues exclusively bind to the SV2A protein, since no binding could be 

detected in membrane preparations from SV2A KO mice.61,72  

 
Figure 7: Binding of [³H]ucb30889 to brain membranes of wild-type (WT) and SV2A/B KO mice in dpm 
from Lynch et al.61 Bars demonstrate total binding (white) and non-specific binding determined in the 
presence of 1 mM levetiracetam (black). 
 

However, these studies were limited by a moderate to low specific activity of the 

applied radioligands. Thus, binding sites with much lower expression levels than that of 

SV2A, which would for example be the expected expression levels of ion channels or 

many membrane receptors, could not have been detected by the applied method.61,72 It 

has been suggested that LEV may interact with AMPA receptors,83,115 but the published 

studies would have failed detecting this interaction due to the low specific activity of 

the applied radioligand and the low expression levels of AMPA receptors in comparison 

to that of the SV2A protein (at least 10-fold difference). It was a further objective of this 

study to investigate, whether direct binding of the new radioligands to recombinantly 

expressed AMPA receptors could be determined. Furthermore, radioligand binding 

studies with membrane preparations of SV2A KO mice were to be performed with 

radioligands of high specific activity in order to have a chance to identify potential low-

abundant binding sites for LEV and BRV. 
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2 Syntheses 

2.1 Introduction 

As mentioned above (see 1.2.2), due to various beneficial properties, levetiracetam 

(LEV) belongs to the most successful newer generation antiepileptic drugs. The newer 

analogue brivaracetam (BRV), which is currently in phase III clinical studies, raises 

even higher expectations. However, the question of the mode of action of these 

pyrrolidone drugs still needs to be clarified. 

A very powerful technique to investigate drug-target interactions is the performance of 

radioligand binding studies.155–158 If a certain drug is available as a radioligand 

(radioactively labeled compound), it represents an extremely valuable tool for 

examination of the drug’s binding behavior in various scientific problems. LEV60 and 

BRV72 have already been published as tritium-labeled radioligands. They, as well as the 

structurally related radioligand [³H]ucb3088961,75,104,159–161 (see Figure 8), have been 

applied for answering various scientific questions including investigations on the 

binding behavior in diverse brain regions and peripheral tissues, binding to tissue 

preparations from different species (rat, mouse, human), competitive binding behavior 

in the presence of inhibitors, binding to recombinantly expressed SV2 proteins, 

autoradiography and binding to brain membranes of SV2A KO mice. 

 

Figure 8: Chemical structure of [³H]ucb30889 (*denotes positions of 3H). 
 

Based on these experiments, a wealth of information has been obtained that contributes 

to the understanding of LEV’s mode of action. However, there is one major drawback 

that has to be brought forward concerning these formerly published radioligands: they 

all possess only moderate ([³H]LEV: 36.6 Ci/mmol)60 to low ([³H]BRV: 8 Ci/mmol)72 

specific activity and thus might not be sufficient for answering all of the posed scientific 
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questions – especially concerning the hypothesis that the SV2A protein might not be the 

only target structure for LEV. Assuming that further target structures with much lower 

abundance exist in concomitance with the SV2A protein, a radioligand with low 

specific activity might not be sufficient for determining a potential interaction. This 

becomes particularly evident in previously published data, in which binding of the 

radioligands to brain membranes of SV2A KO mice has been investigated.61 Within 

these experiments even in controls (wild-type mice) only relatively low signals have 

been detected, raising the question, if the given evaluation range was still big enough 

for the detection of potential low abundant targets. In a recently published repetition of 

this experiment (saturation binding to brain membrane preparations of SV2A KO 

mice),72 the applied radioligand only possessed a specific activity of 8 Ci/mmol. These 

examples emphasize that radioligands with considerably higher specific activity are 

required as powerful tools for definite clarification of this matter, as well as for further 

investigations regarding the interaction sites of LEV and its analogues. 

Concerning the radioactive isotope, there are several arguments, which support the 

choice of tritium (³H) for labeling of the ligands.156,157,162 Labeling with ³H (in contrast 

to e.g. 125I) offers the advantage of providing radioligands that can be considered 

biologically identical to their unlabeled (hydrogen-containing) analogues. With a half 

life of 12.5 years, tritium enables the preparation of storable radioligands. The 

maximum theoretical specific activity, which is obtainable with one ³H atom is 

28.76 Ci/mmol. Thus, it is possible to achieve sufficient specific activity of a 

radioligand by introduction of three or four ³H atoms per molecule. Ideally. tritium-

labeled radioligands should have affinities in the low nanomolar range. Due to the fact 

that LEV in this matter does not fulfill the optimal demand of a radioligand, besides 

LEV it was decided to additionally prepare its more potent analogue BRV as a 

tritium-labeled ligand for binding studies (see Figure 9). 

 

Figure 9: Chemical structures of levetiracetam (1) and brivaracetam (2). 
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The objective of the first part of this study was to devise a synthetic route, which 

allowed for the preparation of tritium-labeled radioligands (of LEV and BRV) with high 

specific activity. An alternative convenient technique of labeling molecules with tritium 

would have been an isotope exchange e.g. by exposure of organic compounds to tritium 

gas (Wilzbach procedure).163 However, this technique was not taken into account, since 

radiolabeled compounds obtained by this method are labeled randomly with often only 

moderate specific activity and furthermore need rigorous purification due to the 

formation of a considerable amount of tritiated by-products.164 Instead, a synthetic 

pathway had to be elaborated by which a reactive group could be introduced into the 

molecule that in the following step enabled the possibility to be transformed with 

tritium gas into the required functionality. In general, potential reactive groups that 

serve for this purpose are e.g. unsaturated hydrocarbons like alkenes and alkynes as well 

as aryl halogenides. By reduction of an unsaturated hydrocarbon to an alkane, or by 

substitution of an aryl halogenide, respectively, the controlled introduction of tritium 

into the molecule is possible. 
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2.2 Synthesis of [³H]LEV 

The synthetic strategy that was used for the synthesis of the radioligand [³H]LEV (3) is 

based on a procedure described by Das Sarma et al.165 The key step of this synthesis is a 

reductive amination reaction using mucochloric acid. As shown in Scheme 1 

(mechanism of reductive amination as proposed by Zhang et al.)166 during the course of 

this reaction mucochloric acid is cleaved into its ring open form catalyzed by acetic 

acid. After nucleophilic attack by the amine a hemiaminal is formed, which is 

transformed into the corresponding iminium ion under elimination of H2O. 

Subsequently, it is reduced to the secondary amine in the presence of NaBH(OAc)3. The 

ring closure is then initiated by an intramolecular nucleophilic attack of the secondary 

amine at the carbonyl carbon atom. Thus, it is possible to introduce the lactam scaffold 

containing an unsaturated double bond twice substituted by chlorine atoms. This motive 

represents an ideal element for the introduction of tritium by catalytic hydrogenation in 

the last step.  

 

Scheme 1: Proposed mechanism of reductive amination with mucochloric acid.166 

 

The synthesis of the radioligand [³H]LEV (3) was performed as depicted in Scheme 2. 

The starting compound (S)-2-aminobutyric acid (4) was reacted with thionyl chloride in 

methanol to yield the methyl ester 5 in analogy to Klieger and Gibian.167 In a 

subsequent microwave reaction using ammonia in methanol the methyl ester was 

transformed into the corresponding primary amide 6. This amino acid amide was 

applied in the above mentioned reductive amination reaction together with mucochloric 

acid (7) in the presence of sodium triacetoxyborohydride and catalytic amounts of acetic 

acid in chloroform to form the desired lactam 8,165 which represents a suitable precursor 
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molecule for the generation of the radioligand 3. Compound 8 (precursor) was custom-

labeled by Quotient Bioresearch (UK) by catalytic hydrogenation with tritium gas in the 

presence of palladium on charcoal as a catalyst. The herein described synthesis of 

[³H]LEV was published in the Journal of Labelled Compounds and 

Radiopharmaceuticals.168 

 

Scheme 2: Synthesis of [³H]LEV; MW: microwave, DIPEA: N,N-diisopropylethylamine (*denotes 
positions of ³H). 
 

 

 

2.3 Synthesis of [³H]BRV 

For the elaboration of a synthetic route for the preparation of [³H]BRV (9), initially a 

synthetic strategy for the unlabeled BRV was developed (see Scheme 3). This synthetic 

pathway provides the opportunity to introduce a non-saturated structure by replacing the 

propyl Grignard reagent 11 by the corresponding alkinyl or alkenyl Grignard reagent. 

Thus, a compound would be obtained that could be labeled by catalytic hydrogenation 

with ³H2 gas. 
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Scheme 3: Synthesis of BRV (21) (diastereomeric mixture); TMSCl: trimethylsilyl chloride, TMSI: 
trimethylsilyl iodide, N-MM: N-methylmorpholine, TMA: trimethylaluminum. 
 

Following the above depicted synthetic pathway, 3-(iodomethyl) hexanoic acid (14) was 

synthesized as previously described by Kenda et al.70 The propyl Grignard reagent 11 

was prepared from n-propyl bromide (10). It was directly used for the synthesis of 

4-n-propylbutyrolactone (13) with furanone (12) in a conjugate addition reaction in the 

presence of copper(I) iodide and trimethylsilyl chloride (TMSCl). Thereby a C-C-bond 

is formed between the alkyl moiety of the organometallic Grignard reagent 11 and the 

electron-deficient ß-carbon of the vinylogous compound 12. The regioselectivity of this 

synthetic step is further improved by the presence of CuI, which is directing almost 

exclusively towards 1,4-addition reactions.169 Furthermore, TMSCl supports 

regioselective 1,4-addition over the non-desired 1,2-addition, presumably by trapping 

the reactive enolate intermediate of the vinylogous keto compound and thus preventing 

reactions with the α-position.170–172 The formation of unwanted side products, like e.g. 

by intermolecular coupling reactions of the Grignard reagents (2 R-MgX � R-R), as 

well as by other reactions, can further be influenced by factors like temperature, excess 

of reagents, and velocity of addition.173 Thus, compound 13 was obtained, which was 

cleaved with trimethylsilyl iodide (TMSI) leading to compound 14 (3-(iodomethyl) 

hexanoic acid). 
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For the preparation of the amino acid ester 18 (S)-2-aminobutyric acid (4) was N-boc-

protected (15) and thereafter esterified with 4-methoxybenzyl chloride (16) using 

Cs2CO3 as a base according to a general esterification procedure described by Dutton et 

al.174 After deprotection of 17 by addition of HCl (4 M) in dioxane the amino acid ester 

18 was reacted with the freshly prepared iodohexanoic acid 14 in an amide coupling 

reaction. Therefore, the carboxylic group of 14 was activated as mixed anhydride using 

isobutyl chloroformate in the presence of N-methylmorpholine based on the conditions 

described by Herrmann et al.175 The obtained amide 19 was cyclized to the lactam 20 

with potassium tert-butoxide as a base inspired by a cyclization procedure described by 

Sánchez et al.176 In the last step the ester of compound 20 was transformed into the 

corresponding amide with an aluminum amide reagent, in situ prepared from 

trimethylaluminum and NH4Cl applying similar conditions as described in former 

publications.177,178 By means of the above described synthetic route it was possible to 

obtain the diastereomeric mixture of BRV in a ratio of 1 : 1 (S,R and S,S, 21). 

Subsequently, it was planned to repeat the whole synthetic route (Scheme 3), replacing 

the propyl Grignard reagent 11 by an unsaturated analogue (propenyl or propinyl 

residue) to obtain a suitable precursor molecule for tritium-labeling in the last step. 

However, even though the C-C coupling reaction was tried in various attempts making 

use of different mechanistic reaction principles, it was not possible to isolate the desired 

product (propenyl or propinyl lactone) in satisfying yields. 

A further approach that was taken into account, was the introduction of the unsaturated 

structure within the amino acid part, namely by synthesizing 2-aminobut-3-enoic acid179 

(see Figure 10), which would be employed instead of the saturated compound (S)-2-

aminobutyric acid (4). 

 
Figure 10: Chemical structure of 2-aminobut-3-enoic acid. 
 
Being aware of the fact that this strategy would lead to a mixture of diastereomers in 

both stereocenters and would only allow the introduction of two ³H atoms, it was 

rejected for the sake of another strategy, which led to the desired result: 

In contrast to the above listed strategies, the following synthetic pathway allows the 

introduction of four ³H atoms. Diastereomeric separation of the radioactively labeled 



30 2 Syntheses 
 

compounds, which emerge during the labeling reaction, is performed after 

radiolabeling. This presents an effective and convenient method for the preparation of a 

precursor molecule, which can be used for production of a radioligand labeled to a high 

specific activity.  

In order to synthesize an adequate precursor molecule for the radioligand [³H]BRV (9), 

initially compound 22 (4-allyl-5-hydroxyfuran-2(5H)-one) was prepared in analogy to 

the procedure described by Bourguignon and Wermuth.180 Glyoxylic acid (23) and pent-

4-enal (24) were used as building blocks to be applied in a Mannich-type reaction in the 

presence of morpholine hydrochloride (25). According to the proposed reaction 

mechanism (see Scheme 4) an intermediate iminium ion was formed by reaction of 

morpholine hydrochloride with glyoxylic acid, which then reacted (nucleophilic attack) 

with the ß-carbon atom of the CH-acidic aldehyde 24. After intramolecular cyclization 

the lactone 26 was obtained. Elimination of morpholine under acidic conditions 

provided the product 22. 

 

Scheme 4: Proposed mechanism of the synthesis of 4-allyl-5-hydroxyfuran-2(5H)-one (22). 
 

Compound 22 together with the amino acid amide 6 were then applied for the synthesis 

of the precursor molecule 27 via a reductive amination reaction (see Scheme 1) as 

described above.165 The hereby obtained precursor molecule 27 was custom-labeled by 

Quotient Bioresearch (UK) by catalytic reduction with tritium gas in the presence of 

palladium on charcoal as a catalyst. 
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Scheme 5: Synthesis of [³H]BRV/[³H]isoBRV (diastereomeric mixture, 28); *denotes positions of ³H. 
 

As mentioned above, during the labeling reaction a diastereomeric mixture of the 

radiolabeled compound evolves (28) comprising the S,R- as well as the 

S,S-diastereomer. Consequently, diastereomeric separation of the mixture by chiral 

HPLC was necessary, leading to the radioligands [³H]BRV (9) and [³H]isoBRV (29) in 

their enantiopure form. 

 
Figure 11: Chromatogram of diastereomeric separation of [³H]isoBRV (retention time: 6.516 min) and 
[³H]BRV (retention time: 8.751 min) by chiral HPLC. Chromatographic separation was performed by 
Quotient Bioresearch (Chiralpak AD-H 5 µm, 250 x 46 mm column, isocratic elution with 
ethanol : hexane (55 : 45) at 25 °C with a flow rate of 1 ml/min, UV detection at 205 nm). 
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2.4 Summary 

Radioligands represent powerful tools for the clarification of scientific problems related 

to pharmacological or biochemical issues. They are applied in a broad field of 

investigational research and are especially helpful to study drug-target interactions. 

Considering that the mechanism of action of LEV (Keppra®), which is successfully 

applied as AED, is still not understood, it seems obvious that suitable radioligands 

represent a valuable tool for further research. Within this study it was one goal to create 

radioligands that are universally applicable: for general binding studies as well as for 

the detection of potential low abundant targets. While the so far applied radioligands in 

this field only possess moderate specific activity and therefore might not be applicable 

for certain scientific problems, as one part of this study, synthetic strategies had to be 

devised, which allowed the preparation of radioligands labeled to a high degree. Apart 

from [³H]LEV (3) a synthetic route likewise had to be devised for the preparation of 

[³H]BRV (9). This pyrrolidone analogue exhibits higher affinity to the target structure 

(SV2A) and thus represents another important investigational tool. 

Synthetic strategies for both pyrrolidone drugs were devised leading to the 

corresponding precursor molecules with functional groups, which allowed the 

preparation of the desired radioligands by catalytic reduction with tritium. 

Radiolabeling of the precursor molecules was performed by Quotient Bioresearch. By 

means of the above described procedures it was possible to obtain the radioligands 

[³H]LEV (3) and [³H]BRV (9) as well as its diastereomer [³H]isoBRV (29) labeled to a 

high degree (94-98 Ci/mmol) with tritium (see Figure 12). 
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3 [³H]LEV, [³H]BRV and [³H]isoBRV binding to native proteins 

3.1 Introduction 

For investigations regarding protein target interactions of LEV and its analogues, 

radioligands were prepared (described in chapter 2) with high specific activity. Besides 

the radioligands [³H]LEV and [³H]BRV, for which binding studies with analogues 

labeled to a much lower degree are already published,60,72 also [³H]isoBRV – the 

S,S-diastereomer – was obtained (see Figure 12). As an initial step it was important to 

establish radioligand binding assays based on formerly published procedures, which 

could be applied for the characterization of the present pyrrolidone radioligands. 

Various experiments were performed to reproduce formerly published results to 

investigate the radioligand binding to diverse membrane preparations and thereby gain 

insight into interactions of these radioligands with proteins in native tissue. 

Furthermore, in the course of these experiments the binding behavior of [³H]LEV and 

its more potent analogue [³H]BRV were to be compared with each other to assess 

similarities or differences in their binding behavior. 

 

Figure 12: Pyrrolidone radioligands [³H]LEV, [³H]BRV and [³H]isoBRV (*denotes position of ³H). 
 

 

3.2 Radioligand binding studies 

3.2.1 Establishment of binding assays for [³H]LEV, [³H]BRV and [³H]isoBRV 

Having the radioligands in hand, it was first necessary to establish a useful and 

reproducible assay system based on formerly published procedures.60,159 Therefore, 

initial experiments were performed to gather information about suitable concentrations 

of the applied radioligand as well as the amount of protein to be used per well. In 
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accordance with the reaction conditions described below (see 8.5.4.1.1 and Table 21), 

after an incubation time of 120 min the following results were obtained: 

A 

 

B 

 
Figure 13: Protein concentration dependent binding of the radioligands [³H]LEV, [³H]isoBRV and 
[³H]BRV to rat cortical membrane preparations: 100, 200 or 300 µg of protein per well was incubated for 
120 min at 4 °C with [³H]LEV 5 nM (light green), [³H]LEV 10 nM (dark green), [³H]isoBRV 1 nM 
(purple), and [³H]BRV 1 nM (blue), respectively. Non-specific binding (open bars) was determined in the 
presence of unlabeled LEV (1 mM). Specific binding (dotted bars) was obtained by subtraction of non-
specific binding from total binding, which was determined in the absence of unlabeled LEV. All data are 
means ± SEM of an experiment performed in triplicate. A:  Specific and non-specific binding in cpm. 
B: Specific binding expressed as a percentage of total binding. 
 

This individual experiment allowed several observations: as assumed, within the 

investigated ranges binding of the radioligands increased proportionally with the 

concentration of the protein. Likewise, linearity could also be concluded for the 

radioligand concentration, as demonstrated by [³H]LEV (5, and 10 nM, respectively), 

shown in Figure 13 A. 

Specific binding of [³H]LEV was determined to be ≥ 75% (for protein concentrations of 

200 µg and 300 µg per well), while [³H]isoBRV demonstrated specific binding ≥ 80% 

and [³H]BRV even ≥ 95% for all protein concentrations tested (see Figure 13 B). In 

general, non-specific binding is aimed to be kept as low as possible. Acceptable values 

for specific binding given in literature are 50% as being considered barely adequate, 

70% as good, while 90% is considered as excellent.156 Based on these data it can be 

concluded that the radioligands under the applied conditions provide good to excellent 

specific binding. 

In order to obtain sufficiently large evaluation ranges it is important to achieve adequate 

signals for the overall binding. Ideally, the signal should not be lower than 100 cpm for 

the lowest signal expected in the assay.155 Confirmed by this preliminary experiment – 

regarding prospective studies – it was decided to apply [³H]LEV in a concentration of 

10 nM and 200 µg of protein (membrane preparations) per well. Since the so far 
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measured specific binding of [³H]isoBRV was still quite low (around 620 cpm and less), 

for future studies it was decided to apply the radioligand in a concentration of 5 nM 

together with 100 µg of protein (membrane preparations) per well. For [³H]BRV a 

concentration of 1 nM along with 100 µg of protein (membrane preparations) per well 

was considered to provide sufficient binding and therewith valuable results within 

future experiments. 

Further assay conditions, like the buffer system, assay volume, determination of non-

specific binding etc. were adopted from Noyer et al.60 In a series of experiments it was 

confirmed that a concentration of 1 mM unlabeled LEV is sufficient for the 

determination of non-specific binding (data not shown). This is also consistent with data 

in the literature, which suggest at least an excess of 100 times the KD concentration.157 

Moreover, it was verified that incubation at 4 °C, as well as keeping the time of the 

washing procedure as short as possible, whilst using cold washing buffer is essential for 

the quality of the results. As shown in Table 2 the allowable separation time shortens 

remarkably with decreasing KD values, since dissociation accelerates with lower ligand 

affinities. 

Table 2: Relationship between equilibrium dissociation constant (KD) and allowable separation time 
(from: Yamamura et al.).157 

KD (M) allowable separation 

time (sec) 

10
-9 

~ 100 

10
-8

 10 

10
-7

 0.10 

10
-6

 0.01 

 

It is self-evident that a low temperature buffer and a rapid washing procedure in this 

context have a remarkable influence. However, concerning the ratio of nonspecific to 

specific binding, it was further proven that three rinses with a smaller volume provide 

better results than two rinses with a bigger volume of buffer. Furthermore, it turned out 

that the use of a double layer of GF/C glass fiber filters for the filtration procedure 

(from which the upper filter was used for the analysis) led to a reduction of deviations 

within an assay. 

Hence, it can be concluded that all of the three pyrrolidone radioligands can be applied 

under the above described, optimized conditions for performing standard assays. 
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3.2.2 Kinetic studies 

To investigate the binding of the three radioligands [³H]LEV, [³H]isoBRV and 

[³H]BRV as a function of time, kinetic experiments were performed using rat cortical 

membrane preparations (see 8.3.1) according to conditions described in 3.2.2. The 

following association binding curves were obtained: 

A 

 

B 

 

C 

 

  

 

  

Figure 14: Specific binding of [³H]LEV 10 nM (A), [³H]isoBRV 5 nM (B) and [³H]BRV 1 nM (C) 
obtained in association binding experiments using rat brain cortical membrane preparations. The 
radioligand was incubated at 4 °C with membrane preparations (A: 200 µg of protein/well; B, C: 100 µg 
of protein/well), which were added at different time points. Non-specific binding was determined in the 
presence of unlabeled LEV (1 mM). Data are representative of 3-4 independent experiments performed in 
duplicate or triplicate; data points represent means ± SEM. 
 

Table 3: Half time of association t1/2 (min) ± SEM of pyrrolidone radioligands obtained in association 
binding experiments. 
 [³H]LEV [³H]isoBRV [³H]BRV 

t1/2 (min) 16 ± 2 29 ± 2 60 ± 1 

 

The given data illustrate the differences in the time interval between the three 

radioligands until equilibrium of binding was reached. The course of association for all 

radioligands showed binding to a single site. As expected, at 4 °C [³H]LEV showed the 

fastest association kinetics (t1/2 = 16 ± 2 min), followed by [³H]isoBRV (t1/2 = 29 ± 

2 min), whereas association proceeded the slowest for [³H]BRV (t1/2 = 60 ± 1 min). In 

the literature, association of [³H]LEV to rat brain membrane preparations is described as 
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binding to two sites, however with a comparable course of association providing the 

same time interval until steady-state is reached.60 Likewise, association of [³H]BRV is 

characterized as binding to two sites in the literature,72 but again the overall course of 

the published association curve is consistent with the one obtained by the here 

performed association experiment. Based on these results the incubation time (time until 

steady-state can be assumed) was determined as 120 min for [³H]LEV, 180 min for 

[³H]isoBRV and 240 min for [³H]BRV. 

Besides association studies also dissociation studies for all of the three radioligands 

have been performed (data not shown). However, the data of the dissociation curves 

showed considerable deviations, values for koff (calculated with Equation 4) were not 

well reproducible and kinetic KD values could therefore not be calculated (according to 

Equation 6). Nonetheless, since the KD value can be calculated from saturation 

experiments with even higher accuracy, the data from the dissociation experiments were 

not needed for further calculations, and consequently were discarded. 

Concluding the results of the kinetic binding studies, valuable information was obtained 

concerning the time interval until equilibrium binding was reached by all of the three 

radioligands. Based on these values, the incubation time for prospective binding studies 

was determined. 
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3.2.3 Saturation studies 

The three radioligands were further characterized by saturation binding experiments 

using rat cortical membrane preparations. By means of these experiments the affinity of 

the radioligands to their binding sites (KD) as well as the maximum number of binding 

sites (Bmax) was determined. 

A 

 

B 

 

C 

 

  

Figure 15: Specific binding of [³H]LEV (A), [³H]isoBRV (B) and [³H]BRV (C) obtained in saturation 
binding experiments using rat brain cortical membrane preparations. Different concentrations of the 
radioligand were incubated with membrane preparations (A: 200 µg of protein/well; B, C: 100 µg of 
protein/well) at 4 °C for 120 min (A), 180 min (B), or 240 min (C), respectively. Non-specific binding 
was determined for each radioligand concentration in the presence of unlabeled LEV (1 mM). Curves are 
representative of two independent experiments each performed in triplicate (A) or duplicate (B, C); data 
points represent means ± SEM. 
 

From the above depicted saturation experiments the following values were obtained 

(means ± SEM of two individual experiments performed in duplicate or triplicate): 

Table 4: KD and Bmax values ± SEM of pyrrolidone radioligands obtained in saturation experiments. 
 [³H]LEV [³H]isoBRV [³H]BRV 

KD (nM) 1115 ± 177 409 ± 23 70.0 ± 8.4 

Bmax (pmol/mg protein) 3.7 ± 0.1 10.4 ± 1.2 8.3 ± 1.5 

 

The saturation experiment of the low affinity ligand [³H]LEV was performed by means 

of isotopic dilution (see 8.5.3.2.1), which allowed to measure up to concentrations at 

which a plateau (saturation) was reached. This was not possible for the radioligands 
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[³H]isoBRV and [³H]BRV, since the corresponding cold ligands were not available. In 

these cases the saturation binding experiments were performed with non-diluted 

radioligand, which limited the highest concentration applied in the assay (ideally it 

should encompass ~0.1 x KD to ~10 x KD).156 Nevertheless, the course of the saturation 

binding curves was sufficient for determination of the relevant parameters. To increase 

the accuracy of the saturation studies, the “actual” concentration of radioligand applied 

in the assay was determined by measuring aliquots of each radioligand dilution. These 

actual concentrations were used to plot the saturation curve and hence, for the 

determination of KD and Bmax values. 

As expected, the obtained data demonstrated increasing affinities of the radioligands to 

their target site following the order [³H]BRV > [³H]isoBRV > [³H]LEV. Based on these 

results [³H]BRV showed about 16 times and [³H]isoBRV about 3 times higher affinity 

than [³H]LEV to their binding site. These determined KD values are in accordance with 

data from the literature: Gillard et al. determined a KD value of 62 ± 8 nM for [³H]BRV 

at rat cortex.72 For [³H]isoBRV no KD value has been published so far, however a Ki 

value (obtained from a heterologous binding experiment vs. [³H]BRV) was determined 

to be around 320 nM.72 The KD value published for [³H]LEV (0.8 ± 0.2 µM), which was 

obtained by saturation binding to rat hippocampal membrane,60 is slightly lower than 

the here determined KD value. Nevertheless, it is still within the same range, especially 

since this low affinity ligand is more prone to error in binding experiments. 

A 

 

B 

 

Figure 16: Rosenthal plots from transformed data obtained in saturation experiments with the 
radioligands [³H]isoBRV (A) and [³H]BRV (B). 
 

All saturation binding curves describe a single-phase process (exemplarily shown by 

Rosenthal plots for [³H]isoBRV and [³H]BRV in Figure 16), and thus demonstrate 

labeling to a single class of binding sites. This was also suggested by published data 

from saturation experiments of the radioligand [³H]LEV and [³H]BRV.60,72 The 
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determined numbers of binding sites (Bmax values) obtained from these saturation 

experiments all lie within the low picomolar range. This is in accordance with the Bmax 

values of the published saturation experiments (9.1 ± 1.2 and 11 ± 2 pmol/mg 

protein),60,72 merely the Bmax value determined by the radioligand [³H]LEV is slightly 

lower. This again in parts might be due to higher deviations caused by lower target 

affinity (leading to a higher dissociative loss) as well as to imprecision in the 

determination of the Bmax value from saturation curves with isotopic dilutions. 

Summing all up, it can be concluded that all three radioligands provide data compatible 

with those published in the literature. Even though the low affinity radioligand [³H]LEV 

is more susceptible for deviations, it provides similar data as formerly suggested. 

 

3.2.4 Competition experiments at rat cortical membrane preparations 

As mentioned above (see chapter 1.2), due to an estimated resistance rate of 

approximately 30%22,181 regarding AED therapy it becomes of great importance to 

target novel structures that are distinct from those of the so far known antiepileptic 

targets. In 2004, Lynch et al. identified the SV2A protein as the molecular target for 

LEV, thereby supporting the hypothesis that this pyrrolidone drug acts via a unique 

mechanism.61 This is further strengthened by the fact that only very few compounds are 

known that actually compete with the binding of LEV and its analogues,60,72 some of 

which were investigated within this study (see Figure 17). 

One of these compounds is ethosuximide, an AED that is predominantly applied in the 

treatment of generalized absences. It interacts with voltage-gated T-type Ca2+-channels, 

reducing the influx of Ca2+ and therewith inhibiting the formation of an excitatory 

postsynaptic potential (EPSP). The oral therapy usually starts with increasing doses 

(250 mg intervals over four to six days) until the typical initial dose (adults: 500 mg per 

day) is reached. This initial dose is further adapted to a daily dose of generally 20 to 

30 mg/kg. The optimum therapeutic index ranges from 40 to 100 µg/ml; concentrations 

of 160 µg/ml are still tolerated without any severe side effects.54,182 

Besides anti-convulsive, also pro-convulsive compounds have been identified that 

compete with LEV and BRV binding. Pentylenetetrazol, a respiratory stimulant, 

presumably acts as a non-competitive antagonist at the GABAA receptor. In high 

concentrations it provokes seizures via a yet unknown mechanism. Due to this effect it 
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is frequently used in epilepsy research to study epileptic seizures in animal models and 

to investigate the efficacy of potential anticonvulsive compounds (PTZ model). In a 

timed intravenous PTZ infusion seizure test (i.v. PTZ test) the rat or mouse is 

continuously given PTZ by infusion into the tail vein to determine the dose (mg/kg 

body weight) at which a certain type of seizure occurs (myoclonic, clonic or tonic). A 

potential anticonvulsive effect of a test compound, which is administered prior to the 

infusion of PTZ, can be identified by a delayed occurrence of the formerly observed 

seizure type. Typical infusion rates are 4-8 mg (rat) or 3 mg (mouse) PTZ per minute. In 

general, first clonic seizures occur between 30 to 40 mg/kg.183 With regard to a body 

weight of 200 g, this corresponds to approximately 43 to 58 µmol per rat. In a further 

animal model PTZ is administered subcutaneously (s.c. PTZ test) in concentrations of 

85 mg/kg body weight and time is measured until clonic seizures occur. Whereas LEV 

only showed efficacy in the i.v. PTZ test, but not in the s.c. PTZ test, its analogue BRV 

proved efficacy in both.69,184 

Bemegride also represents a CNS-active compound with respiratory stimulating effects. 

It is likewise applied in animal models to evoke convulsions. The dose for inducing 

clonic seizures is 30 mg/kg body weight i.p., which corresponds to 39 µmol per rat 

referred to a body weight of 200 g.185 

Not surprisingly, competitive binding behavior has also been found for structurally 

related compounds from the class of pyrrolidone drugs. Piracetam, the first nootropic 

drug developed, has been claimed to possess several potential modes of action, 

including influences on membrane fluidity and neurotransmission as well as 

enhancement of cerebral blood flow. Besides cognitive disorders, it has several further 

indications, like e.g. cortical myoclonus and dyslexia. In general, the required doses for 

therapeutical treatment are very high, such as for treatment of cognitive disorders, 

which requires dosing between 2.4 and 4.8 g per day. Hereby, following an oral dose of 

3.2 g, a plasma level of 84 µg/ml is achieved.186–189 

Aniracetam is another pyrrolidone drug that likewise possesses cognition enhancing 

properties. The mechanism of action is still not known yet. It is discussed that 

aniracetam conveys its effect via positive allosteric modulation of the AMPA receptor, 

therewith slowing down receptor desensitization, which supposedly results in improved 

short- and long-term memory storage.125 
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Figure 17: Chemical structures of compounds tested in the present study for competitive behavior vs. 
[³H]LEV and [³H]BRV. 
 

 

Within this study, the pyrrolidone radioligands [³H]LEV and [³H]BRV were further 

characterized by performing competition binding experiments at rat brain cortical 

membrane preparations, in which initially the unlabeled compound LEV was applied as 

inhibitor. 

A 

 

B 

 

C 

 

  

Figure 18: Specific binding of [³H]LEV 10 nM (A), [³H]isoBRV 5 nM (B) and [³H]BRV 1 nM (C) 
obtained in competition binding experiments with unlabeled LEV using rat brain cortical membrane 
preparations. Increasing concentrations of unlabeled LEV were incubated with membrane preparations 
(A: 200 µg of protein/well; B, C: 100 µg of protein/well) and the radioligand at 4 °C for 120 min (A), 
180 min (B), or 240 min (C), respectively. Non-specific binding was determined in the presence of 
unlabeled LEV (1 mM). All data are means ± SEM of 3-5 individual experiments performed in triplicate. 
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From the homologous binding experiment LEV vs. [³H]LEV, a Ki value of 0.705 ± 

0.294 µM  was obtained, which is slightly differing, but still falling within the same 

order of magnitude as the KD value (1.12 ± 0.18 µM) obtained by saturation 

experiments. Data published in the literature from rat hippocampal membrane 

preparations for both types of binding studies propose values of about 0.8 µM.60 The 

calculated Bmax value from the above described homologous binding experiment was 

2.5 ± 0.9 pmol/mg protein, which is comparable to the Bmax value that was obtained in 

the saturation experiment (3.8 ± 0.1 pmol/mg protein), however lower than the 

published Bmax value of 9.1 ± 1.2 pmol/mg protein.60 This might still be within the 

natural deviation, presumably since [³H]LEV as a low affinity ligand exhibits a fast 

dissociation rate and thus the binding equilibrium is more prone to error during the 

filtration and washing procedure (dissociative loss). The Ki values for LEV received 

from heterologous competition experiments vs. [³H]isoBRV and [³H]BRV were 1.40 ± 

0.07 µM and 1.71 ± 0.23 µM (literature data for LEV vs. [³H]BRV: 1.26 µM)72, 

respectively. 

Apart from LEV several further compounds (described in detail above) were applied in 

heterologous competition binding experiments versus the radioligands [³H]LEV and 

[³H]BRV to investigate competitive behavior. As mentioned earlier, for these 

compounds, which differ in their chemical structure as well as their pharmacological 

properties, a competitive effect has been described before.60,72 

A 

 

B 

 
Figure 19: Specific binding of [³H]LEV 10 nM (A) and [³H]BRV 1 nM (B) obtained in competition 
binding experiments with ethosuximide (blue), pentylenetetrazol (green), bemegride (red), and piracetam 
(orange), respectively, using rat brain cortical membrane preparations. Increasing concentrations of 
competitor were incubated with membrane preparations (A: 200 µg of protein/well; B: 100 µg of 
protein/well) and the radioligand at 4 °C for 120 min (A), or 240 min (B), respectively. Non-specific 
binding was determined in the presence of unlabeled LEV (1 mM). All data are means ± SEM of 3 
individual experiments performed in triplicate. 
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Table 5: K i values (µM) of different compounds obtained in competition binding experiments at rat 
cortical membrane preparations, n/a: not available. Ki values in grey originate from published data. 
 [³H]LEV Noyer et al.

60 
[³H]BRV Gillard et al.

72 

ethosuximide 424 ± 86 316 312 ± 30  

pentylenetetrazol 72.5 ± 18.6 79.4 116 ± 14 126 

bemegride 6.68 ± 0.69 10.0 11.9 ± 2.9 25.1 

piracetam n/a 31.6 63.8 ± 22.2  

aniracetam n/a 1000 > 1000  

 

Several compounds were tested in competition binding experiments versus the 

radioligands [³H]LEV and [³H]BRV providing Ki values in the µM range (see Table 5). 

The data are comparable with values that formerly have been published for the 

compounds.60,72 Determination of the Ki values of piracetam and aniracetam versus 

[³H]LEV was not possible due to the presence of DMSO in the assay, which decreased 

the evaluation range, but was required to solubilize the compounds. 

Considering that the effective drug concentration of ethosuximide (40 to 100 µg/ml)182 

corresponds to a concentration of approximately 280 to 700 µM, the obtained data from 

the competition experiments (see Table 5) illustrate that competitive behavior of 

ethosuximide with LEV and BRV is expectable within applied drug concentrations. 

This is also the case for piracetam, for which a plasma concentration of 84 µg/ml189 

corresponds to roughly 590 µM and therewith reaches a concentration, where 

competitive behavior must be expected. 

The results from the above described competition experiments demonstrate a reliable 

and reproducible assay system that therefore proves to be suitable for the screening of 

compounds. In cases, in which published data from analogous experiments are 

available, the results are in good accordance and therewith also confirm accuracy. 

Comparing the results of the corresponding experiments between [³H]LEV and 

[³H]BRV, it becomes obvious that both radioligands provide quite similar results. With 

regard to the fact that the radioligand [³H]LEV in general is more prone to errors, it can 

be concluded that [³H]BRV (due to higher affinity) can be applied as a replacement for 

LEV in experiments, which are more susceptible for disturbing influences. 
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3.2.5 Binding to membrane preparations from different species 

In further competition experiments binding of LEV using the radioligands [³H]LEV and 

[³H]BRV to brain membrane preparations of different species was examined. Besides 

the already applied preparations from rat cortex (RC), also striatal tissue from rat brain 

(RS) was utilized in these experiments. Brains from Black 6 mice were kindly provided 

by the group of Prof. Dr. V. Gieselmann and were used for the preparation of whole 

brain membrane preparations (M). Furthermore, post-mortem human brain samples 

(thalamus and putamen) were available, which originally were obtained from the 

University Clinic of Bonn (for additional information on the tissue see 8.3.3). 

A 

 

B 

 
Figure 20: Specific binding of [³H]LEV 10 nM (A) and [³H]BRV 1 nM (B) obtained in competition 
binding experiments with unlabeled LEV at membrane preparations of rat cortex (red), rat striatum 
(brown), mouse brain (green), human thalamus (blue), and human putamen (purple), respectively. 
Increasing concentrations of LEV were incubated with membrane preparations (100-200 µg of 
protein/well, see Table 23) and the radioligand at 4 °C for 120 min (A), or 240 min (B), respectively. 
Non-specific binding was determined in the presence of unlabeled LEV (1 mM). All data are means ± 
SEM of 3-5 individual experiments performed in triplicate. 
 

Table 6: IC50 values (µM) of LEV obtained in competition binding experiments versus the radioligands 
[³H]LEV and [³H]BRV at membrane preparations from different species. Data in brackets (grey) are Bmax 
values (pmol/mg protein) determined in homologous binding experiments; n/a: not available. 
 [³H]LEV [³H]BRV 

rat cortex (RC) 0.711 ± 0.297 (2.5 ± 0.9) 1.73 ± 0.23 

rat striatum (RS) 0.542 ± 0.070 (3.0 ± 0.4) 0.693 ± 0.131 

mouse brain (M) n/a 0.948 ± 0.144 

human thalamus (HT) n/a 1.43 ± 0.33 

human putamen (HP) n/a 2.69 ± 0.55 

 

In comparing the IC50 values obtained from the homologous competition experiment of 

LEV vs. [³H]LEV at membrane preparations from rat brain  with each other, quite 

similar values were determined at RC (0.711 ± 0.297 µM) and at RS (0.542 ± 

0.070 µM). This is well comparable with the published IC50 value from a homologous 
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binding experiment (0.8 µM),60 which was determined at rat hippocampal membrane. 

Regarding the heterologous competition experiment of LEV vs. [³H]BRV bigger 

differences between those two rat brain areas were determined. With regard to a 

published Ki value of the same competition experiment at RC (1.26 µM),72 the here 

determined IC50 value at RC (1.73 ± 0.23 µM) is slightly higher, while the IC50 value 

determined at RS (0.693 ± 0.131 µM) rather falls into the range of the IC50 values 

obtained from the homologous competition experiments (LEV vs. [³H]LEV) at RC and 

RS. 

Concerning the IC50 value obtained from the heterologous competition experiment at 

mouse brain membrane preparations no data from an equivalent experiment has been 

published in the literature yet. Nevertheless, the value (0.948 ± 0.144 µM) seems to be 

similar to the IC50 values obtained from binding to rat membrane preparations. 

The heterologous competition experiments of LEV vs. [³H]BRV at human brain 

membrane preparations provided IC50 values of 1.43 ± 0.33 µM at HT and a slightly 

higher IC50 value of 2.69 ± 0.55 µM at HP. With an analogous heterologous competition 

experiment using membrane preparations of human cortex Gillard et al. determined for 

LEV a Ki value of 2.00 µM.72 Hence, it can be concluded that the experimentally 

determined IC50 values from human post-mortem brain are consistent with formerly 

published results. 

Regarding the maximum number of binding sites Bmax values of 2.5-3.0 pmol/mg 

protein were calculated from the data of the homologous competition experiments at RC 

and RS. This is in agreement with the Bmax value obtained from the saturation binding 

experiment of [³H]LEV at RC (see 3.2.3), though lower than an earlier published value 

of 9.1 ± 1.2 pmol/mg protein60 from a saturation experiment of [³H]LEV. As discussed 

above, this is probably due to the low affinity of the radioligand, which more easily 

tends to dissociate from its target during the washing procedure and therewith a lower 

number of binding sites as actually present will be determined. To roughly estimate the 

present number of binding sites within membrane preparations examined by 

heterologous competition experiments with [³H]BRV, Bmax values were calculated 

approximately. Therefore, a presumable IC50 value for BRV had to be used, which was 

chosen based on data from the literature: in the case of the membrane preparations from 

murine brain (RC, RS and M) an IC50 value of 0.09 µM (calculated from homologous 

competition experiment at rat cortex)72 was taken as approximate value. Based on this 
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value according to Equation 17 Bmax values were estimated to be in the range of 13 to 

17 pmol/mg protein. Considering that these numbers are only an estimation, they are 

compatible with a Bmax value published in the literature (11 ± 2 pmol/mg protein),72 

which was obtained in a saturation experiment of [³H]BRV at rat cortex. In the same 

way, the approximate Bmax values for the membrane preparations of the human post-

mortem brain were calculated. Therefore, a presumable IC50 value for BRV had to be 

used, which was chosen based on data from the literature as 0.08 µM (calculated from 

homologous competition experiments at human cortex)72. Based on this value according 

to Equation 17 Bmax values were estimated to be in the range of 2 to 3 pmol/mg protein. 

This is comparable with data from literature (3.5 ± 1.2 pmol/mg protein, determined in a 

saturation experiment of [³H]BRV at human cortex).72 

To statistically analyze differences in affinity of LEV to tissue from different brain 

areas and species, the data of the heterologous competition binding experiments LEV 

versus [³H]BRV (see Table 6, last column) were compared by one-way ANOVA with 

Tukey’s test for multiple comparisons. On the whole, no significant differences were 

obtained among the five examined tissues (p > 0.05), except between HP and RS (**, p 

< 0.01) and between HP and M (*, p < 0.05). Hence, these experiments suggest slight 

differences in the affinity of the pyrrolidone ligands between different brain areas and 

species within an overall range of 0.7 to 2.7 µM. 

Consequently, it can be summarized that the above discussed results – as far as 

comparable experiments have been described in the literature – are in good accordance 

with published data. Therewith, the pyrrolidone radioligands once more prove to 

provide reliable and accurate results. Concerning the obtained data it can be concluded 

that differences in affinity of LEV to (1) different brain areas as well as to (2) tissue 

from different species are moderate to low. This is largely consistent with (1) the 

ubiquitous expression of SV2A within the brain and the previously stated similar 

binding extent of [³H]LEV to different investigated brain regions (hippocampus, 

cerebellum, cortex)60 as well as (2) with the high sequence homology of SV2A from 

different species (compare Table 9). This conclusion will be further proven by analysis 

of membrane preparations from human brain, which was collected in vivo during 

epilepsy surgery (see 3.2.6). 
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3.2.6 Binding to membrane preparations from human epileptic brain 

Epilepsy surgery may be a solution if epileptic seizures prove to be drug-resistant. The 

primary aim is to achieve freedom from seizures either by removing the brain section 

from which the seizures originate or – if not possible – by isolating the affected brain 

area from its surrounding with a series of incisions. Besides pharmacoresistance a 

further prerequisite is that all seizures evolve within a locally restricted area within the 

brain, which can be removed without severe impairments. Within this study several 

brain samples were investigated, which were kindly provided by the Institute of 

Neuropathology, University Clinic of Bonn. The brain tissue was resected during 

epilepsy surgery from people with focal pharmacoresistant epilepsy (for more details 

see 8.3.3). In six of the eight patients (samples 1-4, 6 and 7) selective amygdala-

hippocampectomy190,191 (in sample 7 together with a resection of two thirds of the 

temporal lobe) was performed. In one patient (sample 5) a tailored lesionectomy of a 

cavernoma in the frontal lobe was carried out. Sample 8 was resected from a patient 

suffering from a glioblastoma in the temporomesial region. 

These eight brain tissue samples of pharmacoresistant patients were examined by means 

of competition binding studies of LEV versus [³H]BRV (and versus [³H]LEV). Three of 

the samples could further be assigned to subgroups comprising patients that had been 

treated with Keppra® (levetiracetam) and initially either did respond (“responders”) or 

did not respond (“non-responders”) to this medication. In this context, the classification 

“responder” refers to an initial response of at least six months, while the classification 

“non-responder” describes patients that never exhibited an effect upon Keppra® 

treatment. The other five tissue samples derived from patients for which no information 

existed regarding their response to Keppra®, either due to missing data, or because they 

had not been treated with this drug before. Regarding the different groups of patients it 

was of particular interest to investigate, whether the affinity of LEV or the number of 

binding sites was different among the subgroups of patients. 
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Figure 21: Specific binding of [³H]BRV (1 nM) observed in competition experiments with unlabeled 
LEV at membrane preparations of different human brain samples obtained by surgery from eight epileptic 
patients (each shown by a different color). Increasing concentrations of LEV were incubated with 
membrane preparations (100 µg of protein/well, see Table 23) and the radioligand at 4 °C for 240 min. 
Non-specific binding was determined in the presence of unlabeled LEV (1 mM). All data represent means 
± SEM of 2-3 individual experiments performed in triplicate. 
 

Table 7: IC50 and Bmax values of LEV vs. [³H]BRV obtained in competition binding experiments (n = 
2-3) at membrane preparations from human brain tissue of people with pharmacoresistant epilepsy. The 
samples were received by selective amygdala-hippocampectomy (A) in one sample together with a 
resection of two thirds of the temporal lobe (A/B), by tailored lesionectomy of a cavernoma in the frontal 
lobe (C), and by resection of a glioblastoma in the temporomesial region (D), respectively. *Bmax values 
were calculated assuming an IC50 value for BRV of 0.08 µM (based on competition experiments at 
human cortex);72 **IC 50 value determined by a competition experiment of LEV vs. [³H]LEV; nd: no data. 
Sample 

number 

Internal 

code 

Tissue 

type 

IC50 

(µM) 

Bmax* 

(pmol/mg protein) 

Response to 

Keppra® 

1 (TB6883) A 0.698 ± 0.449 2.5 ± 0.7 not applied 

2 (TB6888) A 1.03 ± 0.07 5.7 ± 0.4 responder 

3 (TB6906) A 0.741 ± 0.102 5.3 ± 0.3 non-responder 

4 (TB6863) A 0.811 ± 0.022 4.3 ± 0.7 not applied 

5 (TB6859) C 1.11 ± 0.06 5.9 ± 1.4 responder 

6 (N454/10) A 1.05 ± 0.09 9.4 ± 1.2 nd 

7 (TB5184) A/B 1.16 ± 0.45 8.8 ± 0.1 nd 

8 (TB5257) D 1.01 ± 0.84 
    (0.903 ± 0.033)** 

6.2 ± 0.2 nd 

 

For all of the eight investigated brain tissue samples highly reproducible competition 

binding curves could be obtained. Thus, binding of LEV to the target protein SV2A can 

also be determined in these brain samples of pharmacoresistant patients. 

The IC50 values from the heterologous binding experiments of LEV versus [³H]BRV 

for all of the eight examined samples ranged from 0.7 to 1.2 µM. These values are 

comparable to a published Ki value for LEV versus [³H]BRV, which was obtained in a 
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heterologous competition experiment at human cortex (2.00 µM).72 Homologous 

competition experiments (LEV versus [³H]LEV) could only be performed for one 

sample (sample 8) due to the limited amount of available tissue. From these 

experiments an IC50 value of 0.903 µM was obtained, which is well in agreement with 

the observed range for IC50 values in the heterologous binding experiments (LEV versus 

[³H]BRV). Moreover, the affinity of LEV for the investigated brain samples all lie 

within the same range. A statistical analysis of the IC50 values obtained from the 

heterologous competition experiments LEV versus [³H]BRV (see Table 7) using a one-

way ANOVA with Tukey’s test for multiple comparisons revealed that the obtained 

values show no significant difference (p > 0.05). Thus, these experiments demonstrated 

no differences in the affinity of LEV among the investigated tissue samples, including 

samples from patients that have been characterized as responder or non-responder to 

initial Keppra® treatment. Nonetheless, the significance of this study is limited by the 

small number of samples (including only three patients with characterized response to 

initial Keppra® therapy) examined so far. 

Additionally, the maximal number of binding sites (Bmax) in these brain samples was 

calculated as explained above (see 3.2.5). The determined Bmax values ranged from 2.5 

to 9.4 pmol/mg protein. This is on average in the same range as the published Bmax 

value obtained in a saturation experiment at human cortex (3.5 ± 1.2 pmol/mg 

protein).72 As observed earlier (compare Bmax values from saturation experiments in 

3.2.3), the Bmax value calculated from the homologous competition experiment with the 

low affinity ligand [³H]LEV was somewhat lower (1.7 ± 0.3 pmol/mg protein), which 

may result from the increased dissociative loss during the washing procedure. Overall, 

these data suggest that differences in the expression level of the target protein (SV2A) 

might exist among the examined samples. However, this assumption needs to be 

confirmed with a much larger number of tissue samples. Worth mentioning is the fact 

that only a marginal difference of Bmax values was determined between the non-

responder (5.3 pmol/mg protein) and the samples of responders (5.7 and 5.9 pmol/mg 

protein). 

It will be required to reproduce and confirm these preliminary data by increasing the 

number of samples investigated. Especially samples from well characterized patients 

concerning their response to Keppra® will have to be included in future experiments. 

Moreover, it should be mentioned that control tissue (in the sense of equivalent brain 



3 [³H]LEV, [³H]BRV and [³H]isoBRV binding to native proteins 51 
 

 

samples from healthy humans) is not available for ethical reasons, which limits the 

control to samples from epileptic patients or tissue as described in 3.2.5. Nevertheless, 

our preliminary data so far suggest, that a lacking response to Keppra® may not be due 

to altered binding of the drug to its target. 

Concerning pharmacoresistance to AEDs two hypotheses have been put forward.192 The 

target hypothesis states that due to a modification of the target structure (intrinsic or 

acquired) a drug loses its affinity and consequently its effectiveness. The transporter 

hypothesis suggests that an (intrinsic or acquired) overexpression of multidrug 

transporters and a resulting increased drug efflux prevents effective concentrations of 

the drug at the target site in the CNS. One example for the target hypothesis has been 

described by Remy et al. who showed that carbamazepine is not a substrate for drug 

transporters, but rather shows drug resistance due to a loss of Na+-channel sensitivity.193 

Regarding LEV-resistant epilepsy no data have been published so far, which would 

support the target hypothesis – and this is in agreement with our (preliminary) 

experimental results. With reference to the transporter hypothesis it has to be mentioned 

that certain published data suggest that LEV (in contrast to several other AEDs) is not a 

substrate for the human P-glycoprotein (Pgp), a membrane efflux pump belonging to the 

ABC transporters, which plays an important role in the blood-brain barrier.194,195 Based 

on this finding Potschka et al. concluded that this might be one reason why LEV shows 

efficacy in patients, who did not satisfactorily respond to treatment with other 

AEDs.194,196 Contradictorily, other data suggest that LEV is a substrate of Pgp as well as 

of MRP (multidrug resistance transporter), which only might not have been recognized 

earlier due to a low substrate affinity.197 Still, this question has not been answered yet 

and, moreover, there are other transporters, which have been identified to potentially 

being involved in drug-resistant epilepsy (e.g. RLIP76, a non-ABC transporter)198. 

Furthermore, besides efflux pumps, transporters have been identified, which are 

responsible for facilitated brain uptake as described for the AED valproate.199 

According to Potschka et al. a transporter-facilitated brain uptake is also conceivable for 

LEV since it possesses high hydrophilicity and therefore does probably not penetrate 

passively into the brain.194 A downregulation of such transporters could be another 

reason for pharmacoresistance. However, as suggested by Remy et al., drug resistance is 

a complex phenomenon, which may be caused by multiple mechanisms.200  
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3.3 Summary 

Radioligand binding assays were established and optimized using the radioligands 

[³H]LEV, [³H]isoBRV and [³H]BRV at rat cortical membrane preparations. In 

preliminary experiments optimal concentrations of protein and radioligand were 

determined. Concerning the assay conditions several factors were identified, which have 

a remarkable influence on the quality of the outcome. Among these was, on the first 

place, the minimization of dissociation during the washing procedure (dissociative loss) 

by using ice-cold washing buffer and by keeping the total time of the washing 

procedure as short as possible. 

In association binding experiments the following rank order was found regarding the 

speed of association: [³H]LEV > [³H]isoBRV > [³H]BRV. Based on these results the 

incubation times for radioligand binding studies were determined as 120 min for 

[³H]LEV, 180 min for [³H]isoBRV and 240 min for [³H]BRV. 

By means of saturation studies it was shown that all of the three pyrrolidone 

radioligands showed saturable binding to a single site. KD values (as a measure of 

affinity) as well as Bmax values (maximum number of binding sites) were calculated to 

be 1.12 ± 0.18 µM and 3.7 ± 0.1 pmol/mg protein ([³H]LEV), 409 ± 23 nM and 10.4 ± 

1.2 pmol/mg protein ([³H]isoBRV), and 70.0 ± 8.4 nM and 8.3 ± 1.5 pmol/mg protein 

([³H]BRV), respectively. 

In competition binding experiments concentration-response curves of LEV versus all of 

the three pyrrolidone radioligands were determined. Moreover, several compounds 

known for their ability to compete with potential SV2A ligands were investigated in 

competition binding experiments versus the radioligands [³H]LEV and [³H]BRV. Data 

were in agreement with published results. Thus, the present radioligands are appropriate 

for providing reliable data in competition binding studies. Moreover, [³H]BRV proved 

to be useful for the screening of compounds that compete with BRV for its binding site. 

Concerning the radioligands [³H]LEV and [³H]BRV, it can be concluded that both 

radioligands provide similar results for competing drugs indicating that they are labeling 

the same binding site. Therefore, [³H]BRV can be considered as a suitable surrogate for 

[³H]LEV with improved properties. 

In further competition experiments the binding of LEV versus the radioligands [³H]LEV 

and [³H]BRV to membrane preparations of different species and brain areas was 
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investigated. From the obtained results it can be concluded that, in general, differences 

in binding affinities between different species and brain areas are moderate to low. 

Human brain samples of pharmacoresistant patients obtained from epilepsy surgery 

were examined by competition binding experiments to determine the affinity of LEV 

versus the radioligand [³H]BRV. Highly reproducible results were obtained 

demonstrating concentration-dependent inhibition of radioligand binding by unlabeled 

LEV. Moreover, preliminary experiments did not show differences between samples 

classified as initial non-responder and those that initially had been responsive to LEV 

therapy. 
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4 [³H]LEV and [³H]BRV binding to recombinant SV2 proteins 

4.1 Introduction 

In 2004, the binding site of LEV was identified.61 The fact that LEV binds to the SV2A 

protein suggested a completely different mechanism of action, which distinguishes this 

class of pyrrolidone drugs from conventional AEDs. As mentioned above (see 1.3) until 

today three isoforms of the synaptic vesicle protein are known (SV2A, SV2B and 

SV2C), which differ by size and sequence as well as their distribution pattern. So far, 

the precise role of all of the three isoforms of SV2 remains to be elucidated, thus, 

making it even more difficult to understand how the interaction of LEV with the SV2A 

protein is translated into an anticonvulsive effect. Additionally, to date there is only 

little information about amino acids that are essential for the interaction with the 

pyrrolidone ligands,100 and a concrete domain of the SV2A protein, which is responsible 

for this interaction could not be identified yet. 

Within this study the radioligands were further characterized by radioligand binding to 

recombinantly expressed SV2A proteins. Apart from the SV2A protein, its isoforms 

SV2B and SV2C were recombinantly expressed and examined in binding experiments 

to verify absence of interaction with the radioligands. Moreover, different mutants 

(deletion variants and variants with point mutations) were recombinantly expressed and 

their interaction with the radioligands was investigated to gather further information 

concerning the potential binding domain of the SV2A protein. 

 

4.2 Molecular cloning and heterologous expression 

4.2.1 Constructs of SV2 wild-type proteins 

For heterologous expression of the human SV2A protein in CHO cells a cDNA clone 

was commercially acquired (pCMV-hSV2A, see 8.1.3.3). In a first step it was planned 

to introduce a green fluorescent protein (GFP) tag at the C-terminus (3’ end). For that 

reason, while amplifying the sequence by PCR (see Table 24; primers: f-hSV2A-ATG-

EcoRI, r-hSV2A-SalI; annealing T: 56 °C; elongation t: 135 s), the restriction sites 

EcoRI (at 5’ end) and SalI (at 3’ end) were inserted at the same time. The PCR product 

was then cloned into a pCMV vector containing the GFP sequence. In a second PCR the 

whole sequence (SV2A with GFP) was amplified (see Table 24; primers: f-hSV2A-

NotI, r-GFP-BsiWI; annealing T: 60 °C; elongation t: 180 s), while flanking the ends 
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with a NotI (5’ end) and BsiWI (3’ end) restriction site. This PCR product was then 

cloned into the retroviral pQCXIH vector. After verification of the correct sequence (see 

8.6.13), the construct was first linearized (see 8.6.11) and subsequently stably 

transfected into CHO cells via lipofection (see 8.7.6.1 d). Due to the presence of a gene 

for hygromycin resistance, it was possible to select clones stably expressing the human 

SV2A protein. 

A plasmid containing the rat SV2A sequence along with the GFP sequence fused to the 

C-terminus (pCMV-rSV2A-GFP) was kindly provided by the group of Prof. Dr. S. 

Schoch. For cloning it into a retroviral vector, the SV2A sequence along with the GFP 

sequence was first amplified by PCR (see Table 25; primers: f-rSV2A-GFP-NotI, 

r-GFP-BsiWI; annealing T: 62 °C; elongation t: 180 s), attaching the restriction sites 

NotI (5’ end) and BsiWI (3’ end) to either end. The corresponding PCR product was 

cloned into the pQCXIH vector, followed by subsequent verification of the correct 

sequence (see 8.6.13). The plasmid was used for retroviral transfection of CHO cells 

(see 8.7.6.2). 

The plasmid containing the sequence for the human SV2B protein was also provided 

by the group of Prof. Dr. S. Schoch (pBluescript-hSV2B, see 8.1.3.3). As an initial step, 

it needed to be fused with GFP at the C-terminus. Therefore, the sequence was 

amplified by PCR (see Table 26; primers: f-hSV2B-ATG-ClaI, r-hSV2B-SalI; 

annealing T: 56 °C; elongation t: 60 s), introducing ClaI (at 5’ end) and SalI (at 3’ end) 

restriction sites at the same time. The PCR product was then cloned into a pCMV vector 

containing the GFP sequence. After verification of the correct sequence (see 8.6.13) this 

plasmid was used for transient transfections (see 8.7.6.1 b). 

In analogy, the rat SV2C sequence that was likewise obtained from the group of Prof. 

Dr. S. Schoch (pCMV-rSV2C) was cloned into the pCMV plasmid containing the GFP 

sequence. The conditions for the PCR, during which the restriction sites ClaI (at 5’ end) 

and SalI (at 3’ end) were attached, were as listed in Table 26 (primers: f-rSV2C-ATG-

ClaI, r-rSV2C-SalI; annealing T: 56 °C; elongation t: 60 s). After verification of the 

correct sequence (see 8.6.13), this plasmid was used for transient transfections (see 

8.7.6.1 b). 
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4.2.2 Constructs of rSV2A with deletions of exons 5 and/or 6 

Furthermore, variants of the rSV2A protein with deletions of exon 5 and/or 6 were 

investigated within this study. The variant containing a deletion of exon 5 (pCMV-

rSV2Ad5-GFP) and the one that contained deletions of both, exon 5 and 6 (pCMV-

rSV2Ad5u6-GFP), were obtained from the group of Prof. Dr. S. Schoch already tagged 

with the GFP protein at the 3’ end (see 8.1.3.3). The variant containing a deletion of 

exon 6 (pCMV-rSV2Ad6-GFP) was constructed as follows: using the plasmid pCMV-

rSV2A-GFP as a template the sequence comprising exons 1 to 5 flanked by the 

restriction sites EcoRI (at 5’ end) and BamHI (at 3’ end) was amplified by PCR (see 

Table 24; primers: f-rSV2A-ATG-EcoRI, r-rSV2A-exon5-BamHI; annealing T: 56 °C; 

elongation t: 160 s). The plasmid pCMV-rSV2Ad5u6-GFP was simultaneously digested 

with both restriction enzymes EcoRI and BamHI (see 8.6.11). Thus, besides the already 

deleted exons 5 and 6, also exons 1 to 4 within the SV2A sequence were removed. 

Subsequently, it was ligated with the obtained PCR product (exon 1 to 5) leading to 

plasmid pCMV-rSV2Ad6-GFP. All of the three rSV2A deletion variants tagged with 

GFP at the C-terminus were subsequently cloned into the retroviral pQCXIH vector (see 

Figure 22). 

A 

 

B 

 
C 

 

D 

 
Figure 22: Vector maps of the constructs pQCXIH-rSV2Awt-GFP (A), pQCXIH-rSV2Ad5u6-GFP (B), 
pQCXIH-rSV2Ad5-GFP (C) and pQCXIH-rSV2Ad6-GFP (D). The regions of the packaging signal (Psi), 
the promoter (pCMV) and the long terminal repeats (5’ LTR, and 3’ LTR, respectively) are marked by 
boxes. Arrows indicate positions of genes encoding for the rSV2A variant, GFP and for antibiotic 
resistance (Hyg: hygromycin B and Amp: ampicillin). Restriction enzymes specified in the maps were 
used for cloning. 
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For this purpose, the coding sequence of each variant was amplified by PCR (see Table 

24; primers: f-rSV2A-GFP-NotI, r-GFP-BsiWI; annealing T: 56 °C; elongation t: 

180 s), introducing the restriction sites NotI (5’ end) and BsiWI (3’ end) to either end. 

The PCR product of each variant was then cloned into the pQCXIH vector. The correct 

sequence was verified (see 8.6.13) and the plasmids were applied for retroviral 

transfection (see 8.7.6.2). 

 

4.2.3 Constructs of rSV2A with point mutations 

In addition, variants of the rSV2A protein with point mutations within exons 5 and 6 

were investigated by radioligand binding studies. The plasmids containing the mutants 

tagged with GFP at the C-terminus (see Table 8 and 8.1.3.3) were constructed and 

kindly provided by the group of Prof. Dr. S. Schoch. 

 

Table 8: Constructs of rSV2A with point mutations. 
 point mutation substitution exon 

pCMV-rSV2A_N364K-GFP Asn364 � Lys polar, uncharged � basic 5 

pCMV-rSV2A_H387Q-GFP His387 � Gln basic � polar, uncharged 5 

pCMV-rSV2A_H387Q_T395I-GFP His387 � Gln 

Thr395 � Ile 

basic � polar, uncharged 

polar, uncharged � non-polar 

5 and 6 

pCMV-rSV2A_T395I –GFP Thr395 � Ile polar, uncharged � non-polar 6 

pCMV-rSV2A_E403D-GFP Glu403 � Asp acidic � acidic 6 

 

Figure 23: Extract of the sequence alignment (modified from Clustal W, see 8.1.1) of rSV2A, rSV2B and 
rSV2C, showing exon 5 and exon 6. Amino acids that differ from the SV2A sequence are highlighted in 
grey. Marked with black boxes are amino acids, which were exchanged by point mutations. Symbols 
below the sequences mark identical amino acids (*), conserved substitutions / same functional groups (:), 
and semi-conserved substitutions / similar shape (.). 
 

exon 5 exon 6

exon 6
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4.2.4 Transfection method: lipofection versus retroviral transduction 

Lipofection 

Lipofection describes the lipid-mediated incorporation of nucleic acids into the cell. The 

first lipid applied was DOTMA (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethyl-

ammonium chloride), a cationic compound that forms unilamellar liposomes. After 

formation of complexes of this lipid with the nucleic acid molecules, the complex is 

taken up by the cell. The efficiency of the transfection could be improved by combining 

the cationic lipid molecule with a neutral helper lipid like e.g. DOPE 

(dioleoylphosphatidylethanolamine), which facilitates the fusion of the liposome with 

the membrane and therewith allows the entrapped nucleic acid molecules to be released 

into the cell. Nowadays, several further lipids are applied for lipofection, also 

nonliposomal compounds that are assumed to form complexes with the nucleic acid. 

Regarding the exact mechanism of nucleic acid uptake, there are still a lot of 

uncertainties. Moreover, many commercially available lipofection reagents are of 

unknown composition (proprietary formulation). However, in general the uptake is 

believed to proceed either by endocytosis or by fusion with the cell membrane via the 

lipid moieties of the liposome.201–204 

 

Retroviral transfection (transduction) 

Strictly spoken transduction does not belong to the transfection methods, because it is a 

virus-based method. Nevertheless, it is a further method by which nucleic acids can be 

introduced into eukaryotic cells and therefore it will be discussed at this point. 

Viruses are non-living particles, which depend on infecting cells and introducing 

genetic material. Thus, transduction in general is an extremely efficient technique. 

Moreover, a lot of viruses integrate their genetic material into the genome of the host 

cell and hence are valuable tools for the stable expression of recombinant proteins. This 

is also the case for the murine leukemia virus (MuLV), a retrovirus that was used within 

this study. 
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A 

B 

Figure 24: Morphologic structure and part of the genetic sequence from murine leukemia virus. 
Cross-section of a virus particle showing the nucleocapsid, which encloses the viral RNA as well as 
several viral proteins. It is surrounded by a lipid bilayer, which forms the viral envelope containing 
transmembrane and surface proteins. 
regions. gag encodes for capsid proteins as well as the protease. pol encodes RT and integrase. env 
encodes the transcription unit for the envelope protein. RT: reverse transcriptase, LTR: long terminal 
repeat, R: direct repeat, U3: 3’
proteinase. 
 

The MuLV is composed of a nucleocapsid, which contains the viral genome 

stranded RNA – as well as viral proteins. It is encompassed by a lipi

originating from the cell membrane of the host cell. The infectivity of a virus particle 

depends on several essential proteins, which are either components of envelope and core 

or responsible for transcription of RNA into DNA as well as 

host genome. These proteins are encoded by the viral genes gag (core proteins), env 

(envelope proteins) and pol (reverse transcriptase and integrase), shown in 

A further essential factor is the packaging signal 

the viral genome. In laboratory 

safety reasons. These are modified 

and therefore they cannot replicate outside of so

GP+envAM-12 cells. 
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Morphologic structure and part of the genetic sequence from murine leukemia virus. 
section of a virus particle showing the nucleocapsid, which encloses the viral RNA as well as 

several viral proteins. It is surrounded by a lipid bilayer, which forms the viral envelope containing 
transmembrane and surface proteins. B: Genomic sequence containing regulatory elements and coding 
regions. gag encodes for capsid proteins as well as the protease. pol encodes RT and integrase. env 
encodes the transcription unit for the envelope protein. RT: reverse transcriptase, LTR: long terminal 

R: direct repeat, U3: 3’-unique sequence, U5: 5’-unique sequence, Ψ: packaging signal, 

The MuLV is composed of a nucleocapsid, which contains the viral genome 

as well as viral proteins. It is encompassed by a lipi

originating from the cell membrane of the host cell. The infectivity of a virus particle 

depends on several essential proteins, which are either components of envelope and core 

or responsible for transcription of RNA into DNA as well as for the 

host genome. These proteins are encoded by the viral genes gag (core proteins), env 

(envelope proteins) and pol (reverse transcriptase and integrase), shown in 

A further essential factor is the packaging signal Ψ (psi), which is also encoded within 

the viral genome. In laboratory practice replication-incompetent viruses are used for 

safety reasons. These are modified viruses lacking the essential genes for replication, 

they cannot replicate outside of so-called packaging cells like e.g. 
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Morphologic structure and part of the genetic sequence from murine leukemia virus. A:  

section of a virus particle showing the nucleocapsid, which encloses the viral RNA as well as 
several viral proteins. It is surrounded by a lipid bilayer, which forms the viral envelope containing 

nce containing regulatory elements and coding 
regions. gag encodes for capsid proteins as well as the protease. pol encodes RT and integrase. env 
encodes the transcription unit for the envelope protein. RT: reverse transcriptase, LTR: long terminal 

Ψ: packaging signal, pro: 

The MuLV is composed of a nucleocapsid, which contains the viral genome – single 

as well as viral proteins. It is encompassed by a lipid bilayer, 

originating from the cell membrane of the host cell. The infectivity of a virus particle 

depends on several essential proteins, which are either components of envelope and core 

for the integration into the 

host genome. These proteins are encoded by the viral genes gag (core proteins), env 

(envelope proteins) and pol (reverse transcriptase and integrase), shown in Figure 24 A. 

, which is also encoded within 

incompetent viruses are used for 

viruses lacking the essential genes for replication, 

called packaging cells like e.g. 
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Figure 25: Production of virus particles with a helper cell and transduction of host cell
possessing plasmids with the env gene (
transfected with a recombinant plasmid containing t
(red). After transcription of the viral RNA (
assembled (4). By budding the nucleocapsid is coated by a lipid bilayer (
the medium (6). This virus-containing supernatant can then be applied for the infection of host cells. After 
entry into the cell (7), the nucleocapsi
by reverse transcription into DNA (
and along with the genome transcribed into mRNA (
product and therewith the recombinant protein is expressed (
 

The helper cell line GP+envAM

fibroblast (NIH 3T3), which has been transfected with two plasmids that separately 

encode the env gene of MuLV on one and gag and pol genes on the other plasmid (see 

Figure 25). To ensure that GP

plasmids during cultivation, both p

env gene also holds a gene that 

hygromycin B, whereas the other plasmid possesses a gpt gene that encodes for 

xanthine-guanine phosphoribosyltransferase. The presence of hygromycin

hypoxanthine, xanthine and mycophenolic acid in the culture medium (see

HXM medium) puts the cells under selection pressure, making the two pl

essential for survival: hygromycin B enforces cells to possess hygromycin resistance. 
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Production of virus particles with a helper cell and transduction of host cell. (
possessing plasmids with the env gene (orange) as well as the genes gag and pol (light and dark green
transfected with a recombinant plasmid containing the gene of interest as well as the packaging signal 

). After transcription of the viral RNA (2) and expression of the viral proteins (3), a nucleocapsid is 
). By budding the nucleocapsid is coated by a lipid bilayer (5) and afterwards 

containing supernatant can then be applied for the infection of host cells. After 
nucleocapsid (8) releases the RNA containing the gene of interest (

into DNA (10, 11). The DNA is stably integrated into the host cell genome (
and along with the genome transcribed into mRNA (13). Subsequently, it is translated into the gene 
product and therewith the recombinant protein is expressed (14). 

envAM-12 is an amphotropic cell line deriving from the murine 

fibroblast (NIH 3T3), which has been transfected with two plasmids that separately 

encode the env gene of MuLV on one and gag and pol genes on the other plasmid (see 

). To ensure that GP+envAM-12 cells do not degrade or lose these two 

plasmids during cultivation, both plasmids possess certain genes: the plasm

a gene that encodes resistance against the aminoglycosid

B, whereas the other plasmid possesses a gpt gene that encodes for 

guanine phosphoribosyltransferase. The presence of hygromycin

xanthine and mycophenolic acid in the culture medium (see

HXM medium) puts the cells under selection pressure, making the two pl

ygromycin B enforces cells to possess hygromycin resistance. 
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RNA containing the gene of interest (9) followed 

). The DNA is stably integrated into the host cell genome (12) 
). Subsequently, it is translated into the gene 

from the murine 

fibroblast (NIH 3T3), which has been transfected with two plasmids that separately 

encode the env gene of MuLV on one and gag and pol genes on the other plasmid (see 

12 cells do not degrade or lose these two 

he plasmid with the 

encodes resistance against the aminoglycoside 

B, whereas the other plasmid possesses a gpt gene that encodes for 

guanine phosphoribosyltransferase. The presence of hygromycin B, 

xanthine and mycophenolic acid in the culture medium (see Table 27, 

HXM medium) puts the cells under selection pressure, making the two plasmids 

ygromycin B enforces cells to possess hygromycin resistance. 
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Mycophenolic acid inhibits the endogenous purine synthesis, whereby only cells that 

can independently synthesize purines via xanthine-guanine phosphoribosyltransferase 

are capable of surviving. Thereby, hypoxanthine and xanthine are needed as substrates. 

Nevertheless, these packaging cells themselves can only produce empty, non-infectious 

virus envelopes, since they do not possess the genetic information for the packaging 

signal Ψ. For this purpose, the packaging signal Ψ is transfected (here: via lipofection) 

along with the gene of interest on the recombinant plasmid, like e.g., pQCXIH or 

pQCXIN, into the packaging cells. The packaging signal Ψ as well as the multiple 

cloning site (MCS) containing the gene of interest are flanked by long terminal repeats 

(LTR). These regions contain promoters and enhancers, as well as the initiation region 

for reverse transcription. Along with the recombinant plasmid the packaging cells are 

cotransfected with a plasmid that encodes for the envelope glycoprotein of the vesicular 

stomatitis virus (VSV-G). By integration of VSV-G proteins into the viral envelope the 

virus is capable of interacting with any phospholipids on the surface of the host cell and 

is not dependent on special receptors for docking (pseudotyping). That way, infectious, 

replication-incompetent virus particles are produced, which are capable of infecting 

target cells and transduction of genetic material that will be stably integrated into the 

host cell genome.205–210 

 

Choice of transfection method 

In general, lipofection belongs to the highly efficient transfection methods allowing 

transient as well as stable transfection of the nucleic acid molecules. Moreover, it is 

possible to transfect large inserts. A drawback is the cytotoxic effect of many 

transfection reagents leading to a decreased viability of the cells. Additionally, 

lipofection reagents are quite cost-intensive. On the contrary, the retroviral transfection 

system described above – once established – is a very cost-effective method. Since the 

applied vectors have the ability to integrate their genome into the host cell genome, a 

stable expression of the transgene is enabled. Furthermore, high transfection efficiencies 

can be achieved in a great number of cell lines. The capacity of the virus particle, 

however, limits the size of the insert to be transfected. 

Within this study the first transfection attempts made use of the already established 

retroviral transfection system with helper cells. However, by control of the transfection 

efficiency as well as in subsequent experiments only poor expression levels were 
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determined (see 4.3.4). Since the capacity of retroviruses is limited to an insert size of 

about 9-12 kb,211 it seems more than likely that the applied retroviral plasmids including 

the gene of interest (see e.g. Figure 22) exceeded the maximum capacity of the used 

MuLV and therefore were not sufficiently incorporated into the virus particle. Thus, in 

subsequent attempts it was decided to perform the transfection step by lipofection. 

While certain transfections were only done for transient expression of the recombinant 

protein, lipofection was also applied for stable expression of recombinant proteins. As 

described by Thomas et al., mammalian cells are capable of integrating exogenous 

DNA into their genome at random sites by non-homologous or illegitimate 

recombination.212 Making use of the resistance gene present in the retroviral vectors 

(here: hygromycin B in pQCXIH) after lipofection with the corresponding construct, it 

was possible to subsequently select clones that stably integrated the transfected genes 

into their genome within an appropriate region. As shown further on by the results of 

the radioligand binding studies, with this method it was possible to obtain cell lines 

expressing the recombinant protein with very high expression levels. 

 

4.3 Radioligand binding studies with [³H]LEV and [³H]BRV 

In radioligand binding studies, applied for the investigation of recombinantly expressed 

SV2 proteins, intact cells were used. Therefore, on the day of the experiment, 

transiently or stably transfected cells were harvested and prepared as described in 8.7.7. 

Preliminary experiments showed that depending on the type of experiment one or two 

confluent dishes (152 cm2) were needed for a 24-well assay. The expression level was 

controlled by fluorescence (flow cytometric analysis or fluorescence microscopy) 

emitted by the green fluorescent protein fused to the C-terminus of each recombinantly 

expressed SV2 variant. 

 

4.3.1 Saturation studies at human SV2A protein 

Binding of the radioligand [³H]BRV was investigated in a saturation binding 

experiment on intact CHO cells transiently expressing hSV2A tagged with GFP at the 

C-terminus. Therefore, CHO cells were transfected with the pCMV-hSV2A-GFP 

construct one day before the experiment (see 8.7.6.1 b). On the day of the experiment 
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for a 24-well assay two confluent dishes were harvested and prepared as described in 

8.7.7. Saturation experiments were performed as described in 8.5.3.2.4. 

A B 

 
Figure 26, A: Specific binding of [³H]BRV obtained in saturation binding experiments using intact CHO 
cells transiently expressing GFP-tagged hSV2A protein. Different concentrations of the radioligand were 
incubated together with the cells at 4 °C for 240 min. Non-specific binding was determined for each 
radioligand concentration in the presence of unlabeled LEV (1 mM). Depicted in the graph is a 
representative curve of two single experiments ± SEM performed in duplicate. B: Rosenthal plot from 
transformed data. 
 

The above described saturation experiments revealed a KD value of 75.1 ± 12.2 nM. 

This is in the range of the data published from similar experiments (saturation 

experiment of [³H]BRV using intact CHO cells recombinantly expressing hSV2A 

protein), disclosing a KD value of 152 ± 40 nM.72 The obtained value is furthermore 

consistent with the KD value (70.0 ± 8.4 nM) that earlier on was determined in 

saturation studies at rat cortical membrane preparations (see 3.2.3). This demonstrates 

that the affinity of the radioligand [³H]BRV to its native protein target lies within the 

same order of magnitude as the affinity to recombinantly expressed hSV2A tagged with 

GFP at its C-terminus. Taken together, it can be concluded that GFP attached to the 

C-terminus of the protein does not hinder binding of the radioligand. Regarding the 

course of the saturation curve, binding to a single site was observed, which is further 

demonstrated by a Rosenthal plot with transformed data of the saturation experiment 

(see Figure 26 B). This is also in agreement with findings according to the above 

mentioned published saturation study. A very high transfection efficiency resulting in a 

high expression level can be deduced from the observed Bmax value that was determined 

to be 496000 ± 74000 binding sites/cell. This is several fold higher than for instance 

the stably transfected (retroviral transfection) CHO cells expressing the human A2A or 

A2B receptors (around 3200 to 3600 binding sites/cell) that are successfully used in our 

group for other studies (data not shown). 
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4.3.2 Competition experiments at rat and human SV2A protein 

To further characterize the radioligand as well as the recombinantly expressed SV2A 

wild-type proteins (rat and human) in CHO cells, competition experiments with 

unlabeled LEV were performed. Binding to transiently expressed rSV2A-GFP and 

hSV2A-GFP as well as stably expressed hSV2A-GFP was investigated. Transient 

transfections were performed as described in 8.7.6.1 b) using pCMV-rSV2A-GFP or 

pCMV-hSV2A-GFP as DNAs. Stable expression of hSV2A-GFP was performed as 

described in 8.7.6.1 d). On the day of the experiment, two confluent dishes of cells were 

harvested for one 24-well experiment and prepared as described in 8.7.7. Competition 

binding experiments were performed as described in 8.5.4.1.1 and Table 22/Table 23. 

A 

 

B 

 
Figure 27: Specific binding of [³H]BRV (1 nM) to recombinantly expressed hSV2A-GFP (A) and 
rSV2A-GFP (B) obtained in competition binding experiments with unlabeled LEV. SV2A proteins were 
transiently (black) or stably (grey) expressed in CHO cells. Increasing concentrations of LEV were 
incubated with intact cells and the radioligand at 4 °C for 240 min. Non-specific binding was determined 
in the presence of unlabeled LEV (1 mM). All data are means ± SEM of 3-4 individual experiments 
performed in triplicate. 
 

The competition experiments provided IC50 values for LEV of 2.64 ± 0.53 µM (hSV2A-

GFP transient), 2.05 ± 0.26 µM  (hSV2A-GFP stable) and 2.98 ± 0.63 µM (rSV2A-GFP 

transient). Based on Equation 15 Ki values can be calculated for transiently expressed 

hSV2A-GFP and rSV2A-GFP (2.61, and 2.95 µM, respectively) in which the KD value 

necessary for calculation was taken from the corresponding saturation experiments. 

Data from a published competition experiment of LEV vs. [³H]BRV at recombinantly 

expressed hSV2A protein suggest a Ki value of 3.16 µM.72 With regard to these 

published data, accuracy of the herein obtained results can be assumed. 

Comparing the experimentally obtained IC50 values with each other it is apparent that 

the affinity of LEV does only marginally differ between the recombinantly expressed 
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SV2A protein from rat and from human. This is in accordance with the high sequence 

homology between those orthologues (see Table 9). It furthermore confirms the results 

that earlier were determined by investigations of native brain membrane preparations 

from different species (see 3.2.5) suggesting only moderate to low differences for the 

affinity of LEV. Hence, these results indicate that data obtained from the rat SV2A 

protein are very likely transferable to the human SV2A protein. 

Table 9: Homology of the amino acid sequence between human and rat SV2 proteins determined with the 
sequence alignment program Needle (see 8.1.1). 
 identity similarity 

SV2A 98.8% 99.6% 

SV2B 94.9% 97.7% 

SV2C 97.0% 99.0% 

 

 

4.3.3 Binding to SV2B and SV2C proteins 

As outlined in chapter 1.3 two further isoforms of the SV2A protein have been 

identified. In contrast to SV2A, which is ubiquitously expressed in the brain, these 

isoforms exhibit more restricted (SV2B) distribution patterns or are found only in very 

few brain regions (SV2C).86,87,90,96 Matching the amino acid sequences of these three 

isoforms with each other (see Figure 4), it becomes evident that a high sequence 

homology exists within TMDs, while non-conserved amino acids are present in main 

parts of the N-terminus and the luminal loop between TMDs 7 and 8, and to a lower 

extent also within the cytoplasmic loop between TMDs 6 and 7. In 2004, when SV2A 

was identified as the binding site for LEV, it was shown that [³H]ucb30889 (used as 

surrogate for LEV due to higher affinity,159 see Figure 8), only binds to the SV2A 

isoform, while no binding to the isoforms SV2B and SV2C could be detected.61 

Therefore, it appears that amino acids that are not conserved between those three 

isoforms must be responsible for the interaction with LEV. 

Within this study the interaction of the radioligands [³H]LEV and [³H]BRV with the 

recombinantly expressed GFP-tagged isoforms SV2B and SV2C was investigated by 

radioligand binding studies and compared to binding to SV2A-GFP. For this purpose 

the three isoforms SV2A, SV2B and SV2C (either human or rat) were recombinantly 

expressed by transient transfection (see 8.7.6.1 d) using pCMV-hSV2A-GFP, pCMV-

hSV2B-GFP and pCMV-rSV2C-GFP as DNA. The efficiency of the transfection was 
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controlled for each cell line by fluorescence microscopy (exemplarily shown for 

hSV2B-GFP in Figure 28). Each SV2 isoform was expressed with the same efficiency 

with expression levels of approximately 60%. 

A 

 

B 

 
Figure 28: Microscope images of CHO cells transiently expressing recombinant GFP-tagged SV2 protein 
(here: hSV2B-GFP). A: transmitted light; B: GFP fluorescence. 
 

On the day of the experiment, the cells were harvested and prepared as described in 

8.7.7, in which one confluent dish was used for 12 wells (2 assays, each 6 wells). 

Binding studies were performed as described in 8.5.4.1.1 and Table 21. 

 
Figure 29: Binding of [³H]BRV to CHO cells transiently transfected with GFP-tagged hSV2A, hSV2B 
and rSV2C. Cells were incubated with [³H]BRV (1 nM) for 240 min at 4 °C. Non-specific binding (open 
bars) was determined in the presence of unlabeled LEV (1 mM). Specific binding (black/grey bars) was 
obtained by subtraction of non-specific binding from total binding, which was determined in the absence 
of unlabeled LEV. Data depicted in the graph show one representative of three individual experiments 
performed in triplicate; shown are means ± SEM.  
 

The obtained data demonstrate very clearly the difference in binding of [³H]BRV to the 

three SV2 isoforms: as shown in Figure 29 specific binding was reduced from 

2550 cpm (SV2A) to about 15 cpm (SV2B and SV2C), which definitely falls below the 

limit of reliable signals. Binding in percentage was determined as hSV2A (92 ± 0%) 

compared to the proteins hSV2B (7 ± 3%) and rSV2C (5 ± 1%). Considering that also 

non-transfected CHO cells, which do not express SV2A proteins provide fluctuating 
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values for specific binding of 0-5% that – due to a very low absolute detected signal (in 

cpm) – must be considered neglectable, the detected specific binding to SV2B and 

SV2C isoforms can be interpreted as irrelevant. In an analogous experiment performed 

with the lower-affinity ligand [³H]LEV (data not shown) comparable results were 

obtained (specific binding of [³H]LEV in percent was 31 ± 2% at hSV2A, 0 ± 0% at 

hSV2B and 0 ± 0% at rSV2C). Thus, these results reveal likewise for [³H]LEV that the 

pyrrolidone drugs do not interact with those isoforms. Due to the remarkably high 

sequence homology between the orthologues of different species (human vs. rat, see 

also Table 9), which is > 95% for each of the three isoforms, it can be assumed that no 

different result would have been obtained for the human SV2C isoform. Consequently, 

these data support the finding that no binding of LEV and its analogues occurs to the 

lower-abundant isoforms SV2B and SV2C. 

 

4.3.4 Binding to rat SV2A variants with deleted exons 5 and/or 6 

As mentioned before, very recently the first study was published, which led to the 

identification of several amino acids of the SV2A protein that appeared to be essential 

for the interaction with pyrrolidone ligands.100 In the study that combined modeling and 

mutagenesis experiments (based on a comparison with the structurally related 

transporter proteins lactose permease LacY, rat organic cation transporter 1, and human 

organic anion transporter 1 and 2) several positions in the SV2A protein, which 

correspond to functional residues in those related transporter proteins, were mutated 

(see Figure 35). Since the related transporter proteins – in contrast to the SV2A protein 

– do not possess long TMD-connecting loops, the examined mutations were mainly 

limited to regions of TMDs. Critically viewed must be the fact that the radioligands 

applied for investigations of the mutants (e.g. [³H]ucb30889, see Figure 8) differ 

structurally from the compounds of interest LEV and BRV: the rather bulky, aromatic 

phenyl-residue may exert different interactions than the AEDs LEV and BRV. 

Furthermore, it is debatable if functional residues of the related transporter proteins 

automatically represent important residues within the SV2A protein, which does not 

function as a transporter anymore. 

In an attempt to further contribute to the identification of the pyrrolidone binding site 

within the SV2A protein, additional mutational approaches were performed in the 

present study. In contrast to the above mentioned approach we focused on the sequence 
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encompassing exons 5 and 6 (see Figure 35). This region mainly constitutes the long 

loop between TMDs 6 and 7, which is protruding into the cytoplasm. Like the N- and 

C-termini, this loop sequence might have a functional role in protein interactions and 

thus could potentially be modulated by interactions with small molecules. To further 

investigate this hypothesis, deletion variants of the rSV2A protein in which either exon 

5 or 6 or both exons were deleted, were recombinantly expressed and investigated. 

Initially, radioligand binding experiments were performed with CHO cells that were 

stably transfected with the deletion variants by retroviral transfection (see 8.7.6.2). 

However, with these cell lines no analyzable results could be obtained, since the 

observed transfection efficiencies and thus expression levels were very low. Therefore, 

CHO cells were transiently transfected (as described in 8.7.6.1 b) with the deletion 

variants as well as with rSV2A wild-type using the plasmids pCMV-rSV2Ad5u6-GFP, 

pCMV-rSV2Ad5-GFP, pCMV-rSV2Ad6-GFP, and pCMV-rSV2A-GFP, respectively. 

As verified by flow cytometric analysis, thereby much higher expression levels were 

achieved (see Figure 30). 

 
Figure 30: Fluorescence intensity (arbitrary units) as detected by flow cytometric analysis of CHO cells 
stably (grey) and transiently (black) transfected with GFP-tagged rSV2A wild-type (wt) and deletion 
variants with deleted exons 5 and 6 (d5u6), exon 5 (d5), and exon 6 (d6). Columns show the fluorescence 
intensities (geometric mean of analyzed sample) of each cell line without the autofluorescence, which was 
determined with non-transfected cells. 
 

On the day of the experiment, transiently transfected cells were harvested and prepared 

for the binding studies as described in 8.7.7. Binding experiments were performed as 

described in 8.5.4.1.1 and Table 21 using cells from one confluent dish for 12 wells (2 

assays, each 6 wells). 
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Figure 31: Binding of [³H]BRV to CHO cells transiently transfected with GFP-tagged rSV2A wild-type 
(wt), variant with deletion of exon 5 and 6 (d5u6), variant with deletion of exon 5 (d5), and variant with 
deletion of exon 6 (d6). Cells were incubated with [³H]BRV (1 nM) for 240 min at 4 °C. Non-specific 
binding (open bars) was determined in the presence of unlabeled LEV (1 mM). Specific binding 
(black/grey bars) was obtained by subtraction of non-specific binding from total binding, which was 
determined in the absence of unlabeled LEV. Data depicted in the graph show one representative of three 
individual experiments performed in triplicate; shown are means ± SEM. 
 

Figure 31 very clearly illustrates the remarkable change in specific binding of [³H]BRV 

to rSV2A variants with deletions of exons 5 and/or 6 compared to the wild-type protein: 

specific binding in cpm decreases from 3500 cpm (wt) to less than 30 cpm (deletion 

variants). The remaining detected binding to the deletion variants, which definitely falls 

below the limit of reliable detection, can be considered as irrelevant. Thus, it can be 

concluded that no binding occurs to the rSV2A variants with deletions in exon 5 and/or 

exon 6. 

As can be deduced from Figure 30 the transfection efficiency for cells transiently 

expressing the rSV2A wild-type variant was determined to be about twice as high as for 

the deletion variants. Nevertheless, also cells that were transfected with the rSV2A 

deletion variants still exhibited relatively high expression levels. Thus, regardless of the 

obtained transfection efficiency if the investigated deletion variants presented a target 

site for [³H]BRV binding, at least specific binding in percentage should not have 

decreased in such a drastic manner. 

Taken these results together, it can be summarized that [³H]BRV loses its affinity to 

recombinantly expressed rSV2A variants if deletions of exons within the cytoplasmic 

loop (between TMDs 6 and 7) are present. Therewith, these results suggest that exon 5 

as well as exon 6 play an essential role for the interaction of BRV with the SV2A 

protein. 

Nonetheless, certainly those results have to be interpreted with caution. By deletion of 

exons 5 and 6 a region of the protein is removed, which encompasses 67 amino acids. 
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Since the tertiary structure of a protein

it cannot be excluded that the

resulting in an altered conformation of the protein. This in turn might lead to a limited 

access of a ligand to its binding site

interaction of a ligand with its target site might be hindered even if a region apart from 

exons 5 and 6 is responsible for the 

to circumvent this potential problem. To examine exons 5 and 6 

potentially is involved in the interaction with

would be to insert point mutations

involved in binding interactions

protein structure can be expected to be less marked

 

Excursus: Subcellular localization of recom

To investigate the localization of the recombinantly expressed SV2 proteins the cells 

were examined by fluorescence microscop

excited by the GFP-tagged SV2 

identical for each of the recombinant

investigated in this study (exemplarily shown for GFP

Figure 32). 

A 

Figure 32: Fluorescence images of 
GFP (B), respectively. 
 

Based on these investigations

SV2 proteins were mainly located 

the cell membrane of the transfected CHO cells.
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Since the tertiary structure of a protein can be severely impaired by such interventions, 

the removal of such a long region causes different folding 

resulting in an altered conformation of the protein. This in turn might lead to a limited 

access of a ligand to its binding site or a significant change of the binding site

of a ligand with its target site might be hindered even if a region apart from 

responsible for the binding. In subsequent investigations it is necessary 

to circumvent this potential problem. To examine exons 5 and 6 as 

entially is involved in the interaction with the pyrrolidone ligands one approach 

would be to insert point mutations in positions of amino acids, which are likely to be 

involved in binding interactions (see 4.3.5). Thereby, occurring changes 

be expected to be less marked. 

Subcellular localization of recombinantly expressed SV2 proteins

alization of the recombinantly expressed SV2 proteins the cells 

were examined by fluorescence microscopy. The observation of the 

SV2 proteins confirmed that the subcellular localization was 

recombinantly expressed SV2 isoforms and SV2A mutants 

this study (exemplarily shown for GFP-tagged rSV2A and hSV2B in 

 

B 

Fluorescence images of CHO cells transiently transfected with rSV2A-GFP (A

Based on these investigations it appears that the recombinantly expressed 

located intracellularly and a smaller number was

the cell membrane of the transfected CHO cells. 
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impaired by such interventions, 

causes different folding 

resulting in an altered conformation of the protein. This in turn might lead to a limited 

or a significant change of the binding site. Thus, the 

of a ligand with its target site might be hindered even if a region apart from 
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as region that 

one approach 

in positions of amino acids, which are likely to be 

changes within the 

binantly expressed SV2 proteins 
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4.3.5 Binding to rat SV2A variants with point mutations in exon 5 and 6 

Keeping the focus on exons 5 and 6 as a region that potentially might be involved in the 

interaction with the pyrrolidone drugs, variants of GFP-tagged rSV2A with point 

mutations within exons 5 and/or 6 were investigated. The choice of positions where 

point mutations were placed was based on non-conserved amino acids that differ 

between the sequence of SV2A and its isoforms (see Figure 23 and Figure 35). Since 

no binding of LEV and its pyrrolidone analogues occurs to the SV2B and SV2C 

isoform (see 4.3.3 and literature61,72), it can be assumed that non-conserved amino acids 

must play a major role for the interaction with the pyrrolidone drugs. 

For radioligand binding studies CHO cells were transiently transfected (see 8.7.6.1 b) 

with mutants of pCMV-rSV2A-GFP (see Table 8). Prior to harvesting of the cells, the 

expression level was controlled for each cell line by fluorescence microscopy, which 

always proved to be about 60%. 

On the day of the experiment, cells were harvested and prepared as described in 8.7.7, 

using two confluent dishes for a 24-well assay. Competition binding studies were 

performed with LEV versus [³H]BRV (see 8.5.4.1.1 and Table 22). 

 

A 

 

B 

 

Figure 33 A: Specific binding of [³H]BRV (1 nM) to transiently expressed rSV2Awt-GFP (grey), 
rSV2A_N364K-GFP (green), rSV2A_H387Q-GFP (yellow), rSV2A_H387Q_T395I-GFP (orange), 
rSV2A_T395I-GFP (red) and rSV2A_E403D-GFP (blue) obtained in competition binding experiments 
with unlabeled LEV. Increasing concentrations of LEV were incubated with intact CHO cells expressing 
the corresponding SV2A mutant and with radioligand at 4 °C for 240 min. Non-specific binding was 
determined in the presence of unlabeled LEV (1 mM). All data are means ± SEM of 3 individual 
experiments performed in triplicate. B: IC50 values of LEV obtained in competition experiments versus 
[³H]BRV on rSV2A-GFP wild-type and point mutations (for color code refer to A). The columns show 
the mean IC50 values ± SEM of 3 independent experiments performed in triplicate. 
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Table 10: IC50 values of LEV vs. [³H]BRV to recombinantly expressed rSV2A wild-type protein and 
variants with point mutations. 
 IC50 (µM) 

pCMV-rSV2A-GFP 2.98 ± 0.63 

pCMV-rSV2A_N364K-GFP 1.58 ± 0.20 

pCMV-rSV2A_H387Q-GFP 2.17 ± 0.17 

pCMV-rSV2A_H387Q_T395I-GFP 1.77 ± 0.12 

pCMV-rSV2A_T395I –GFP 1.86 ± 0.41 

pCMV-rSV2A_E403D-GFP 2.21 ± 0.08 

 

As can be deduced from the competition experiments (see Figure 33), LEV exhibits 

quite similar affinity to all of the observed rSV2A variants, regardless if wild-type or 

mutant. The most aberrant change in affinity compared with the wild-type protein was 

obtained for mutant N364K. In order to assess the extent of these differences, a 

statistical analysis was performed applying a one-way ANOVA with Dunnett’s test for 

multiple comparisons, in which the IC50 value obtained from the wild-type protein was 

used as control data to which the IC50 values of each mutant were compared. For none 

of these comparisons a statistically significant difference was found (p > 0.05). Hence, 

it can be concluded that the observed point mutations do not alter the affinity of LEV to 

its SV2A binding site. To further confirm these results, it was decided to compare the 

mutant with the largest change in affinity (pCMV-rSV2A_N364K-GFP) to the 

wild-type protein by means of saturation binding studies (see 4.3.6). 
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4.3.6 Saturation experiments with rat SV2A wild-type and mutant N364K 

Binding to the rSV2A variant with mutation N364K, which exhibited the largest 

difference in the IC50 value of LEV in competition experiments (see 4.3.5), was 

investigated by means of saturation binding studies using [³H]BRV. Therefore, CHO 

cells were transiently transfected (see 8.7.6.1 b) with pCMV-rSV2A-GFP, and pCMV-

rSV2A_N364K-GFP, respectively. On the day of the experiment, cells were harvested 

and prepared as described in 8.7.7, using one confluent dish for a 24-well assay. 

Saturation experiments were performed as described in 8.5.3.2.4. 

 
Figure 34: Saturation binding curves of [³H]BRV to intact CHO cells transiently transfected with GFP-
tagged rSV2Awt-GFP wild-type (black) and rSV2A_N364K-GFP mutant (grey). Different concentrations 
of the radioligand were incubated together with the cells at 4 °C for 240 min. Non-specific binding was 
determined for each radioligand concentration in the presence of unlabeled LEV (1 mM). Each curve is a 
representative of two independent experiments performed in duplicate. 
 

 KD (nM) Bmax (binding sites/cell) 

rSV2A-GFP 106 ± 11 510000 ± 53000 

rSV2A_N364K-GFP 87 ± 3 497000 ± 74000 

 

The results of the performed saturation binding studies illustrate that basically no 

difference exists between the wild-type and mutated protein concerning the affinity of 

[³H]BRV. Both KD values fall within the same range. Therewith, it can be concluded 

that small differences observed within the competition experiments (see 4.3.5) can truly 

be considered as non-significant. 

Consequently, the pyrrolidone ligands do not show altered binding behavior to the 

rSV2A variants possessing point mutations within exon 5 and/or 6, which have been 

investigated within this study. Hence, these results allow the conclusion that the 

positions of the examined point mutations do not influence a potential binding site and 
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thus are not essential for the interaction of the pyrrolidone ligands with the SV2A 

protein. However, there are several issues that have to be considered. First of all, the 

point mutations have been created with exchange of a defined amino acid randomly 

against another amino acid. Thereby, also functionalities of amino acids have been 

exchanged randomly (compare Table 8). This, after all, makes it impossible to interpret 

if an observed or non-observed effect is due to a change in the functionality of the 

amino acid, since too many variables are changed at the same time. It would be much 

easier to interpret an effect caused by systematic exchange, e.g. always against a neutral 

amino acid like alanine. Moreover, it is also evident that starting with an approach by 

which single amino acids are exchanged in a sequential manner might serve less likely 

for the identification of essential amino acids. In this context, it would rather be 

reasonable to exchange all of the non-constitutive amino acids within exons 5 and 6 

against the corresponding amino acid present in the isoform SV2B or SV2C. Since it is 

known that LEV and its pyrrolidone analogues do not bind to these isoforms, it would 

be very interesting to observe how binding will be changed to such a mutant. Following 

this strategy, the potential of altering the conformation of the investigated protein could 

be reduced in comparison to complete deletion of the region comprising exons 5 and 6. 
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Figure 35: Topology model of the rat SV2A protein.
with prediction of transmembrane domains based on TMHMM software
domains are numbered TMD
separated by lines, N- and C
dark blue represent residues that are conserved among all three isoforms (SV2A, SV2B and SV2C), light 
blue colored ones are conserved in one ot
conserved and only present in the SV2A isoform. Amino acids that were mutated in the study of Shi et 
al.100 are circled in red (no change in ligand binding), and 
Amino acids that are marked with a yellow circle we
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Topology model of the rat SV2A protein. The snakeplot diagram was drawn with TOPO2 
with prediction of transmembrane domains based on TMHMM software93,94 (see 
domains are numbered TMD I to XII, exons are numbered in grey Arabic numbers from 1 t

and C-termini are labeled with the corresponding letters. Amino acids colored in 
dark blue represent residues that are conserved among all three isoforms (SV2A, SV2B and SV2C), light 
blue colored ones are conserved in one other isoform besides SV2A, and white colored ones are non
conserved and only present in the SV2A isoform. Amino acids that were mutated in the study of Shi et 

red (no change in ligand binding), and in green (altered ligand binding), respectively. 
Amino acids that are marked with a yellow circle were mutated and investigated in this study.
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The snakeplot diagram was drawn with TOPO2 

(see 8.1.1). Transmembrane 
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4.4 Summary 

Molecular cloning and heterologous expression 

For the investigation of the SV2 protein by binding studies to the recombinantly 

expressed protein, several different cDNA clones were obtained. SV2 wild-type cDNA 

clones were received of each isoform (A, B and C) representing either the human and/or 

the rat sequence. All of these sequences initially needed to be tagged with a GFP at the 

3’ end and, as fusion proteins, afterwards were cloned into a suitable vector for 

transfection. Moreover, plasmids containing sequences of rSV2A with deletions in exon 

5 and/or 6 and a GFP-tag fused to the 3’ end were acquired or constructed. Likewise, 

constructs with point mutations in exon 5 and/or 6 of rSV2A were provided, which were 

already tagged with GFP at the 3’ end. 

In order to introduce the genetic information into the target cell (transfection), initially it 

was planned to make use of a retroviral transfection. Therefore, the sequences of the 

genes of interest had to be cloned into a retroviral vector (here: pQCXIH). However, 

since the sizes of the constructs most likely exceeded the limit of the virion capacity, the 

target cells were not transfected with high efficiency. Thus, only very low expression 

levels were achieved. This problem was circumvented subsequently by transfecting the 

cells by lipofection. Thereby, cells were either transiently transfected (using the pCMV 

plasmid containing the gene of interest) and used directly for binding studies or stably 

transfected (using the pQCXIH plasmid containing the gene of interest in its linearized 

form) by a subsequent selection phase of stable clones. 

 

Radioligand binding studies with [³H]LEV and [³H]BRV 

By means of saturation binding studies, the affinity of [³H]BRV to recombinantly 

expressed hSV2A-GFP was investigated. The obtained KD value corresponds well to the 

KD value, which was obtained by saturation studies at rat cortical membrane 

preparations and therewith represents the affinity as determined in native tissue. 

Moreover, this value is comparable with a published KD value from a saturation 

experiment at recombinantly expressed hSV2A protein. This allows the conclusion that 

the GFP, which is fused to the C-terminus of the protein, does not impair the binding of 

the pyrrolidone radioligand. In these assays high Bmax values were determined, which 
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demonstrates a successful transfection of the CHO cells, yielding to high expression 

levels. 

Heterologous competition experiments of LEV versus the radioligand [³H]BRV were 

performed to compare the binding behavior of LEV to recombinantly expressed SV2A 

proteins (rat and human). Within these experiments it was shown that no differences 

exist in the affinity of LEV between human and rat SV2A protein. This is consistent 

with the high sequence homology of these orthologues and furthermore suggests that 

results obtained from investigations on the rat protein are most likely transferable on the 

human protein. 

Two further isoforms besides SV2A are known (SV2B and SV2C), which were 

investigated within this study. Using GFP-tagged recombinantly expressed hSV2B and 

rSV2C protein, it could be shown that no binding of the pyrrolidone radioligands occurs 

to either one of that isoforms. 

Furthermore, investigations were made to elucidate potential domains of the SV2A 

protein, which might be involved in the interaction with LEV and its analogues. 

Looking at its domain structure (see Figure 4) the long loop between TMDs 6 and 7 

(containing exons 5 and 6) was chosen to be examined, since it is protruding into the 

cytoplasm and might potentially interact with modulatory proteins. Additionally, it 

contains several non-conserved amino acids and thus differs from the loops of the 

isoforms SV2B and SV2C, which do not represent targets for LEV and its analogues. 

Three deletion variants of rSV2A-GFP were recombinantly expressed in which exons 5 

and/or 6 were deleted. By means of radioligand binding studies it could be shown that 

the radioligand [³H]BRV does not bind to either one of the variants. As a preliminary 

conclusion this allows to assign to exons 5 and 6 an essential role in the interaction with 

the pyrrolidone ligands. However, it should further be considered that a deletion of exon 

5 and/or exon 6 might lead to a major change in the protein’s conformation. Therewith, 

it could also be conceivable that an evoked conformational change simply hinders the 

accessibility or changes the structure of a target site, which after all does not lie within 

exons 5 and 6. 

Further focus was put on mutants of the rSV2A protein, in which non-conserved amino 

acids within exons 5 and 6 were exchanged by point mutations. This mutational 

approach – in contrast to deletion of whole regions – would less likely lead to severe 
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conformational changes of the protein. Five different mutants were provided (N364K, 

H387Q, H387Q/T395I, T395I, E403D) that were investigated within this study. The 

examination of the binding behavior of LEV versus [³H]BRV to these recombinantly 

expressed proteins in competition experiments revealed merely marginal differences. A 

subsequently performed saturation experiment of [³H]BRV, in which the mutant with 

the largest difference was compared to the wild-type variant, revealed affinities in the 

same order of magnitude. Therewith, it can be concluded that the obtained SV2A 

mutants, which were investigated within this study, do not evoke altered binding of the 

pyrrolidone ligands. Thus, the results suggest that the selected positions are not essential 

for the interaction with the pyrrolidone ligands – though, within the constraints 

discussed above. 

As depicted in Figure 23, several further positions (besides the investigated residues) 

exist, in which the amino acid sequence is not conserved. Within these 12 further 

positions SV2B as well as SV2C possess amino acids that are different from those 

present in the SV2A isoform. For definite clarification of this matter it would be 

interesting to further analyze binding to rSV2A mutants in which all non-conserved 

amino acids in this loop are exchanged for those present in the isoforms SV2B or SV2C 

at the same time.  
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5 Binding to AMPA receptors 

5.1 Introduction 

Several years after the discovery of the SV2A protein as the binding site for LEV,61 its 

mode of operation as well as the exact role of SV2A in transmitter release still remains 

to be elucidated. This certainly complicates the understanding of LEV’s mode of action 

as an antiepileptic drug (AED). Concerning SV2A as a potential target for 

anticonvulsive agents, there is one main issue that still raises questions: since the SV2A 

protein, which is ubiquitously present in synaptic vesicles, is involved in excitatory as 

well as inhibitory neurotransmission, it is not apparent how the interaction of LEV can 

be exclusively translated into an anticonvulsive effect. Thus, it cannot be excluded that 

SV2A is not the main and/or not the only target structure of LEV and that further 

protein targets contribute to or are even responsible for its anticonvulsive effect. Bidlack 

and Rasheed supported this hypothesis by stating that LEV also directly interacts with 

AMPA receptors (AMPARs): based on an observed competitive binding behavior of 

different allosteric AMPAR modulators (obtained against [³H]LEV), they postulated 

that LEV binds to an allosteric modulator site on AMPARs.115 Already earlier on an 

interaction of LEV with AMPARs was described in patch-clamp recordings using 

cultured cortical neurons: Carunchio et al. demonstrated that LEV significantly 

decreases AMPA-induced currents and hence, concluded that LEV interacts with certain 

AMPAR subunits.83 On the other hand, Lee et al. suggested that an observed effect of 

LEV on the glutamate system is evoked presynaptically (by modulation of P/Q-type 

voltage-dependent Ca2+-channels) leading to reduced glutamate release.213 So far this 

issue has not been clarified yet. In any case, the structural similarity of LEV to its 

analogues piracetam and aniracetam (see Figure 17) would support the finding of 

Bidlack et al. that LEV could directly interact with AMPARs: piracetam and aniracetam 

bind to AMPARs at different allosteric binding sites, which are located at the dimer 

interface of the receptor complex. Based on crystal structures of piracetam with the 

AMPAR subunits GluR2 and GluR3 Ahmed et al. determined that the amide group as 

well as the carbonyl oxygen atom of the pyrrolidone ring participate in the interactions 

that are essential for the binding.214 Based on these findings, it is conceivable that the 

structurally related compound LEV and its analogues likewise could interact with 

AMPARs. 
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In order to investigate this issue, in the present study potential direct binding of the 

pyrrolidone radioligands to AMPARs was investigated. For this purpose, AMPARs 

were recombinantly expressed in HEK cells, which were applied for radioligand 

binding studies. Since AMPARs can be composed in multiple ways by assembling 

different subunits in homomeric or heteromeric combinations, a representative subunit 

was chosen. For the reasons stated above (see 1.4.3), the GluR2 subunit was selected 

and applied for the expression of homomeric receptors. Regarding the interaction of the 

pyrrolidone compounds aniracetam and piracetam with the AMPAR essential amino 

acids have been identified, which contribute to the binding interaction.214 These amino 

acids in parts are also located within the region encompassing the flip/flop sequence, 

hence, it was chosen to include both isoforms within this study. For all data shown in 

the following chapters that were experimentally determined within the present study, 

the radioligand [³H]AMPA and the non-labeled compound AMPA were both applied as 

racemic mixtures. 

 

5.2 Binding of [³H]AMPA to native proteins in membrane 

preparations 

5.2.1 Establishment of binding assays for [³H]AMPA 

In order to characterize recombinantly expressed AMPARs, the radioligand [³H]AMPA 

(racemic mixture) was purchased. As an initial step, it was necessary to establish valid 

and reproducible binding assays, which are suitable for the evaluation of its binding 

properties. For this purpose, binding to membrane preparations of native brain tissue 

(rat cortex) was investigated, therewith establishing an assay system in analogy to 

formerly published binding studies.215–218 Preliminary experiments revealed that the 

radioligand binding assay using [³H]AMPA is quite sensitive concerning the 

experimental conditions, which subsequently had to be optimized in a series of 

experiments. 

One definite confounder is the presence of glutamate, which might still be present in 

the prepared membrane suspensions (according to 8.3.1 and 8.3.2), deriving from 

endogenous stores. Since binding of the radioligand [³H]AMPA would be significantly 

reduced by glutamate in a competitive manner, it is necessary to additionally wash and 

sonicate membrane preparations applied for studies with [³H]AMPA. 
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Concerning the influence of repeated freezing and thawing cycles of the membrane 

preparations (as well as preparations of cells recombinantly expressing AMPARs) on 

[³H]AMPA binding, contradictory information has been published.215,216,219 Therefore, 

membranes were always treated in the same way: after production of membrane 

preparations as described in 8.3.1 and 8.3.2, aliquots were shock-frozen and stored at 

-80 °C. On the day of the experiment, the required aliquots were thawed, treated as 

described in 8.3.4 and directly used for the experiment without further freezing/thawing 

cycles. For later on performed experiments with recombinantly expressed AMPARs, 

cells were always harvested and prepared as described in 8.7.8 on the day of the 

experiment, thereby avoiding any freezing and thawing. 

A lot of studies are published concerning the influence of different anions in the 

incubation buffer. Especially the chaotropic anion thiocyanate appears to have a large 

effect on [³H]AMPA binding and is suggested to be essential for investigations of 

[³H]AMPA binding to receptors in brain membranes.216,217,220–222 The presence of 

thiocyanate clearly stimulates binding of [³H]AMPA, which is supposed to be caused by 

enhanced receptor desensitization.223 Preliminary binding assays revealed results that 

underline these findings and thus the importance of the presence of KSCN in the 

incubation buffer: as demonstrated in Figure 36 KSCN clearly enhanced the binding of 

[³H]AMPA by a factor of 3 to 4 (A) with an increase of specific binding from ca. 30% 

to ca. 70% (B). 

 

A 

 

B 

 
Figure 36: Specific binding of [³H]AMPA (50 nM) to rat brain cortical membrane preparations in the 
presence of different incubation buffer additives. The radioligand and membrane preparations (300 µg of 
protein/well) were incubated for 30 min at 4 °C in Tris-HCl buffer (50 mM, pH 7.4) in the presence of 
KSCN (100 or 200 mM), KCl (2.5 mM) or without additions of further salts (-). Non-specific binding was 
determined in the presence of L-glutamate (1 mM). Specific binding was calculated by subtraction of 
non-specific binding from total binding, which was determined in the absence of L-glutamate. All data 
are means ± SEM of an experiment performed in triplicate. A: Specific binding in cpm. B: Specific 
binding expressed as a percentage of total binding. 
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Furthermore, within different experiments it was confirmed that the presence of KSCN 

likewise in the washing buffer has great influence on the quality of the results as it 

minimizes the dissociative loss of binding during the filtration procedure  (compare 

Kessler et al.).217 To further keep the binding loss in filtration assays as low as possible 

Kessler et al. additionally suggested using a washing buffer close to freezing 

temperature. As experienced in a number of assays, this seems to be an essential point – 

as well as keeping the duration of the washing procedure to a minimum: following 

filtration, the filters should not be washed more than two quick rinses. 

 

5.2.2 Homologous competition experiments with AMPA 

In compliance with the above described assay conditions, radioligand binding studies 

were performed in the manner of homologous competition experiments as described in 

8.5.4.1.2. Thereby, the affinity of AMPA to its native protein target in different 

membrane preparations was examined. 

 
Figure 37: Specific binding of [³H]AMPA (20 nM) to membrane preparations from rat brain cortex 
(black), rat brain striatum (dark grey) and mouse brain (light grey) obtained in competition binding 
experiments with unlabeled AMPA. Increasing concentrations of AMPA were incubated with membrane 
preparations (300 µg of protein/well) and radioligand at 4 °C for 30 min. Non-specific binding was 
determined in the presence of L-glutamate (1 mM). All data are means ± SEM of 3-4 individual 
experiments performed in triplicate. 
 

Table 11: IC50 and Bmax values for AMPA versus [³H]AMPA obtained in competition experiments at 
brain membrane preparations. 
 IC50 (nM) KD (nM) Bmax (fmol/mg protein) 

rat cortical membrane 86.9 ± 33.8 66.9 ± 33.0 420 ± 174 

rat striatal membrane 50.5 ± 22.7 31.0 ± 20.9 510 ± 269 

mouse brain membrane 64.2 ± 29.2 44.7 ± 27.5 358 ± 187 
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From the above described homologous competition experiments (R,S-AMPA versus 

[³H]R,S-AMPA) IC50 values were obtained between 50 and 90 nM. Based on Equation 

16 this corresponds to KD values in the range of 30 to 70 nM. Analysis of the data 

revealed binding to a single site for all membrane preparations examined. Within these 

homologous binding experiments likewise the maximum number of binding sites was 

determined, which, for all preparations investigated, proved to be between 0.4 and 

0.5 pmol/mg protein. Comparison of the results with data from the literature, however, 

appears to be rather difficult, since various factors are discussed, which are assumed to 

have an influence on the results (e.g. protein treatment like detergents and 

freezing/thawing, buffer additives, centrifugation versus filtration assays etc.).215–

217,219,221,222,224,225 Examples for literature KD values for [³H]AMPA at rat brain 

membranes (obtained in saturation binding experiments) are listed in Table 12. 

Table 12: Exemplary KD (nM) and Bmax (fmol/mg protein) values published in literature216,218,221 as 
obtained from saturation binding experiments with [³H]AMPA at rat brain membrane preparations with 
centrifugation assays. *indicates data obtained in filtration assays. In the last column it is specified if the 
applied radioligand was a racemic mixture (R,S) or applied in enantiopure (S) form. 

 in the absence of KSCN in the presence of KSCN [³H]AMPA 

Olsen et al.216 
KD1 = 28 

KD2 = 500 

Bmax1 = 200 

Bmax2 = 1800 

KD1 = 75 

KD2 ~3000 

Bmax1 = 1000 

Bmax2 ~18000 
R,S 

Murphy et al.221 KD1 = 28 

KD2 = 3960 

Bmax1 = 330 

Bmax2 = 23600 
KD = 71* Bmax = 1100* R,S 

Kessler et al.218   KD1 = 11 

KD2 = 377 

 
S 

 

For the most part in literature, binding of [³H]AMPA is described as binding to a high 

and a low affinity site. However, when performing a filtration assay, instead of a 

centrifugation assay, Murphy et al. only determined binding to a single site.221 With 

regard to the published data, the obtained KD values within this study (30 to 70 nM) 

represent the high affinity binding site. A detection of the low affinity binding site is not 

possible in competition binding studies applying a low concentration (20 nM) of 

[³H]AMPA. This site could only be obtained in saturation binding studies at high 

[³H]AMPA concentrations (as shown in Table 12). Data published by Kessler et al. 

were determined with the pure S-enantiomer of [³H]AMPA, therewith providing higher 

affinities for both binding sites. The maximum number of binding sites determined in 

the present experiments (0.4-0.5 pmol/mg protein) corresponds to the high affinity site. 
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As can be concluded from literature data (see Table 12), Bmax values in the presence of 

KSCN in generally could be expected to be higher. However, as stated by Kessler et al., 

within filtration assays Bmax is very likely to be reduced (up to 50%) due to a 

dissociative loss.217 Finally, it has to be mentioned that published values also vary from 

each other to a certain extent, as can be seen from the exemplary data listed in Table 12. 

Hence, the here obtained data for AMPA binding overall corresponds to formerly 

published results gained by comparable experiments. Consequently, it can be concluded 

that the established binding assay for [³H]AMPA proved to be reliable and thus 

represents a suitable method for further investigations of AMPA binding sites. 

 

5.3 Molecular cloning and heterologous expression 

For several reasons that have been discussed above (see 1.4.3), the GluR2 subunit was 

chosen as a representative subunit for the heterologous expressions of homomeric 

AMPARs. Therefore, the flip as well as the flop isoforms of the human GluR2 subunit 

were purchased (pCMV-hGluR2flip and pCMV-hGluR2flop, see 8.1.3.3). For stable 

transfection both sequences needed to be cloned into suitable plasmids, which encode 

the resistance for a certain antibiotic; hence the plasmids pQCXIN and pQCXIH 

(encoding G418, and hygromycin B resistance, respectively) were chosen. By means of 

PCR, the hGluR2flip and hGluR2flop sequences were amplified (see Table 24; primers: 

f-hGluR2-ATG-NotI, r-hGluR2-TAG-BsiWI; annealing T: 56 °C; elongation t: 160 s), 

thereby flanking the ends with a NotI (5’ end) and a BsiWI (3’ end) restriction site. The 

hGluR2flip sequence was then cloned into the pQCXIN plasmid, while the hGluR2flop 

sequence was cloned into the pQCXIH plasmid. After verification of the correct 

sequence (see 8.6.13), both plasmids were linearized (see 8.6.11) and used for stable 

transfection of HEK cells as described in 8.7.6.1 c). Due to the presence of genes that 

encode for antibiotic resistance (G418 or hygromycin B), it was possible to select 

clones stably expressing the gene of interest. 

Similarly as discussed above for the SV2 proteins (see 4.2.4), initial attempts proved 

that the constructs pQCXIN-hGluR2flip and pQCXIH-hGluR2flop exhibit too large 

sizes for the retroviral transfection method as explained above. Additionally, it has been 

described that recombinant expression of glutamate receptors appears to be toxic for the 

receptor-expressing cells,219 which means a certain challenge for attempting a 

successful stable transfection of AMPARs. Nevertheless, after transfection of HEK cells 
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via lipofection, which already have been reported to represent a suitable cell line in 

several cases,218,225 it was possible to generate cell lines stably expressing the 

homomeric AMPARs GluR2 flip and GluR2 flop. 

 

5.4 Binding to recombinantly expressed AMPA receptors 

Radioligand binding studies at HEK cells recombinantly expressing homomeric 

AMPARs of the GluR2 subunit were performed in agreement with the assay conditions 

established with protein membrane preparations (see 5.2). Cells were permeabilized 

with saponin and washed several times to remove endogenous glutamate (see 8.7.8). 

Upon this treatment, cells were directly used for binding studies without making 

membrane preparations. As determined in preliminary experiments (data not shown) 

cells from one confluent culture flask (175 cm2) were used for one 24-well assay. 

 

5.4.1 Homologous competition experiments with AMPA 

A functional AMPAR consists of four subunits being composed of two dimers each 

comprising two identical subunits. As mentioned earlier on, here the GluR2 subunit was 

chosen for the heterologous expression of AMPARs, therewith providing homomeric 

AMPARs of either the flip or the flop isoform. By means of radioligand binding studies 

with the radioligand [³H]AMPA, the recombinantly expressed AMPARs were 

investigated. Competition experiments were performed as described in 8.5.4.1.2. 

 
Figure 38: Specific binding of [³H]AMPA (20 nM) to HEK cells recombinantly expressing homomeric 
AMPARs comprised of GluR2 flip (black) and GluR2 flop (grey) obtained in competition binding 
experiments with unlabeled AMPA. Increasing concentrations of AMPA were incubated with cells and 
radioligand at 4 °C for 30 min. Non-specific binding was determined in the presence of unlabeled 
L-glutamate (1 mM). All data are means ± SEM of 3 individual experiments performed in triplicate. 
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Table 13: IC50 and Bmax values for AMPA determined in homologous competition experiments at 
recombinantly expressed homomeric AMPARs (GluR2 flip and GluR2 flop) in HEK cells. 
 IC50 (nM) KD (nM) Bmax (binding sites/cell) 

GluR2 flip 98.1 ± 41.6 78.8 ± 42.1 55000 ± 1700 

GluR2 flop 80.5 ± 20.6 61.8 ± 20.0 68000 ± 5000 

 

In case of both isoforms it was determined that binding proceeds to a single site, 

providing IC50 values in a quite similar order of magnitude (80 to 100 nM). According 

to Equation 16 this corresponds to KD values in the range of 60 to 80 nM. The 

expression level gained by this stable transfection was lower than that obtained with 

various transient transfections (compare Bmax values with values from transient 

transfections of SV2A variants, e.g. 4.3.6), however, absolutely sufficient since a 

maximum binding of 1000 to 3000 cpm was determined within these experiments. 

Moreover, it is conceivable that stable transfections cannot yield in much higher 

expression levels at all, since glutamate receptors (ion channels) appear to exert a toxic 

effect on the cells.219 

In order to assess the experimentally obtained results, comparable binding studies from 

literature were taken as a reference. Table 14 summarizes published KD values from 

saturation binding experiments of [³H]AMPA at recombinantly expressed homomeric 

AMPARs of the GluR2 subunit. 

 

Table 14: KD values published in literature218,219,225 as obtained from saturation binding experiments with 
[³H]AMPA at recombinantly expressed homomeric AMPARs of the GluR2 subunit (flip and flop 
isoform). In the last column it is specified if the applied radioligand was a racemic mixture or applied in 
enantiopure (S) form; n/a: no information available. 
 GluR2 flip GluR2 flop [³H]AMPA 

Andersen et al.219 KD1 = 2.9 nM 

KD2 = 40.7 nM 

KD1 = 2.5 nM 

KD2 = 43.9 nM 
n/a 

Hennegriff et al.225 KD1 = 2.3 nM 

KD2 = 109 nM 

KD1 = 4.7 nM 

KD2 = 28 nM 
n/a 

Kessler et al.218 KD1 = 2.2 nM 

KD2 = 34 nM 
KD = 4 nM S 

 

According to the above listed studies, in most cases it is suggested that [³H]AMPA is 

binding to two binding sites. Only Kessler et al. proposed binding to only one site for 
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the flop isoform. While for binding to the high-affinity site quite similar values were 

reported (2.3 to 4.7 nM), KD values for the lower affinity site vary to a greater extent 

(28 to 109 nM). Unfortunately, only Kessler et al. provided information on the nature of 

the radioligand (S-enantiomer), which makes it even more difficult to interpret the other 

results. Moreover, only Andersen et al. defined the species from which the DNA used 

for transfection originated (rat), though, based on a sequence homology of > 99% for 

both isoforms between the human and the rat sequence, in this case identical binding 

behavior might be assumed. As discussed above (see 5.2.2), literature data might only 

be suitable as references to a certain extent, since numerous factors may influence the 

results obtained from [³H]AMPA binding. In general, however, the experimentally 

determined KD values seem to correspond to the low-affinity sites published in the 

literature. This might be traced back to the observation by Hennegriff et al., showing 

that for membrane-embedded (in contrast to solubilized) receptors the low affinity site 

appears to be favored (e.g. low affinity site > 80% in case of GluR2 flip as determined 

in a saturation experiment).225 Thus, it might be possible that a potentially present, but 

much lower abundant high affinity site was not detected at all within the performed 

binding studies. 

Making overall comparisons between the binding affinities of [³H]AMPA to native 

brain receptors published in the literature, it has been concluded that affinities for 

recombinantly expressed homomeric receptors correspond to the high-affinity site of 

native receptors.218 Concerning the high- and the low-affinity site in native AMPARs, it 

has been hypothesized that these two sites may represent receptors in distinct stages of 

trafficking. Supposedly, AMPARs exhibiting high-affinity sites are immature variants 

within the endoplasmatic reticulum, which need to undergo final processing in the Golgi 

apparatus and with insertion into the synaptic membrane undergo conversion into the 

functional low-affinity receptor.218,224,226 Since the affinities determined for [³H]AMPA 

to recombinantly expressed AMPARs in general correspond to the high-affinity site of 

the native receptor, it has been postulated that cells used as expression systems (here: 

HEK cells) might lack a cellular factor, which initiates the maturation of the 

AMPARs.225 Thus, it needs to be kept in mind that the question remains as to what 

extent recombinantly expressed AMPARs in general might reflect binding to their 

native analogues. 
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5.4.2 Investigations concerning potential binding of BRV to AMPAR 

To examine if LEV and its pyrrolidone analogues are binding to AMPARs several 

experimental setups were performed. As mentioned above the subunit GluR2 was 

chosen as a representative for the recombinant expression of homomeric AMPARs. In 

radioligand binding studies the interaction of [³H]BRV with HEK cells recombinantly 

expressing GluR2 was investigated. Therefore, on the day of the experiment HEK cells 

were harvested and prepared as described in 8.7.8. One cell culture flask (175 cm2, 

grown to confluence) was used for a 24-well assay. Binding studies were performed as 

described in 8.5.4.1.1 and Table 21 with the following variations: in different 

experiments as a buffer for incubation Tris-HCl buffer was used, either with addition of 

MgCl2 (2 mM) or with addition of KSCN (200 mM). Binding of the radioligand was 

investigated in different concentrations (1 nM and 2 nM). The time of the washing 

procedure of the glass fiber filter was always kept as short as possible using ice-cold 

Tris-HCl buffer with addition of 50 mM KSCN. The binding experiment was performed 

each time in triplicate. 

Regardless of the examined modifications of buffer additives or radioligand 

concentrations, in neither experiment specific binding could be detected: for binding to 

the flip isoform the total binding (in cpm) was 97 ± 22 cpm with a specific binding of 

18 ± 3 cpm. Binding to the flop isoform provided a total binding of 83 ± 23 cpm and a 

specific binding of 10 ± 8 cpm (data not shown). Considering that for binding of 

[³H]BRV to non-transfected HEK cells a total binding of 86 cpm and a specific binding 

of 12 cpm was determined (experiment in triplicate), it becomes evident that the 

observed marginal binding is irrelevant. Thus, based on these results it can be concluded 

that no binding of [³H]BRV occurs to homomeric AMPARs of the GluR2 subtype. 

Consequently, as shown with the radioligand [³H]BRV as a potent antiepileptic 

pyrrolidone drug, those experimental observations reveal no direct binding to the 

AMPARs and therewith do not support the results described by Bidlack and Rasheed.115 

Surely, it is a question, if the results would have been different, if other subunits than 

the GluR2 subunit had been used for the investigation. However, for the structurally 

related allosteric AMPAR modulators piracetam and aniracetam subunit specificity has 

been determined to be low.214 Bidlack and Rasheed published a brief abstract in which 

they summarized that LEV is binding to an allosteric site of AMPARs since binding of 

[³H]LEV was inhibited by allosteric AMPAR modulators in a concentration-dependent 



5 Binding to AMPA receptors 89 
 

 

manner. Unfortunately, this abstract does not give any details or show concrete results. 

Therefore, it also cannot be excluded that the examined AMPAR modulators competed 

with the [³H]LEV binding in a manner independent from their interaction with the 

allosteric AMPAR binding site. The experimental results that were obtained within this 

study therewith would rather be in agreement with findings by e.g. Lee et al. suggesting 

that an observed AMPAR modulation by LEV is conveyed by a presynaptical 

interaction leading to a decreased glutamate release.213 

 

5.4.3 Potential modulation of [³H]AMPA binding by levetiracetam 

In further binding studies it was planned to investigate if the antiepileptic compound 

LEV is modulating the binding of [³H]AMPA to its receptor. Therefore, rat cortical 

membrane preparations were purified as described in 8.3.4 to ensure the removal of 

endogenous glutamate. The experiment was performed in accordance with conditions 

described in 8.5.4.1.2, representing optimized conditions for the radioligand 

[³H]AMPA. Binding of [³H]AMPA was examined in the presence of LEV in 

concentrations from 100 nM to 1 mM. 

 
Figure 39: Specific binding expressed in % of [³H]AMPA (20 nM) to rat brain cortical membrane 
preparations in the presence of different concentrations of levetiracetam. Increasing concentrations of 
levetiracetam were incubated with the radioligand and membrane preparations (300 µg of protein/well) at 
4 °C for 30 min. Non-specific binding was determined in the presence of L-glutamate (1 mM). All data 
are means ± SEM of 4-5 individual experiments performed in triplicate. 
 

As can be deduced from the above described experiment, no modulatory effect of 

levetiracetam could be observed on the binding of [³H]AMPA under the investigated 

conditions. 
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5.4.4 Potential modulation of [³H]BRV binding by AMPA and L-glutamate 

It was further intended to investigate if the presence of the glutamate receptor agonists 

AMPA and L-glutamate influences the binding of the pyrrolidone compound [³H]BRV. 

For these experiments rat cortical membrane preparations were purified as described in 

8.3.4 to remove endogenous glutamate. Binding studies were performed as described in 

8.5.4.1.1 and Table 22 to ensure optimal conditions for [³H]BRV binding. 

A 

 

B 

 
Figure 40: Specific binding expressed in % of [³H]BRV (1 nM) to rat brain cortical membrane 
preparations in the presence of L-glutamate (A), and AMPA (B), respectively. Different concentrations of 
the test compounds were incubated with the radioligand and membrane preparations (100 µg of 
protein/well) at 4 °C for 240 min. Non-specific binding was determined in the presence of LEV (1 mM). 
All data are means ± SEM of 3 individual experiments with six-fold determination. 
 

As demonstrated above, slight modifications on [³H]BRV binding by L-glutamate or 

AMPA might be recognizable. In order to assess the significance of these effects, a 

statistical analysis was performed applying a one-way ANOVA with Dunnett’s test for 

multiple comparisons: therefore specific binding of [³H]BRV in the absence of test 

compounds was used as control data to which specific binding in the presence of test 

compounds was compared. The analysis revealed that no statistically significant 

difference (p > 0.05) exists between binding of [³H]BRV in the presence or absence of 

L-glutamate or AMPA. 

Consequently, it can be concluded that neither LEV appears to modulate the binding of 

the radioligand [³H]AMPA (see 5.4.3), nor do L-glutamate or AMPA exert any 

significant effect on the binding of [³H]BRV under the observed experimental 

conditions. These results, obtained with native tissue, are in agreement with the above 

mentioned observation (see 5.4.2) that no binding of [³H]BRV could be observed to 

AMPARs (represented by a homomeric receptor of the GluR2 subunit). 
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5.5 Summary 

Since SV2A is a ubiquitously expressed synaptic vesicle protein, which – as far as it is 

known today – contributes to inhibitory as well as excitatory neurotransmission, 

questions have been raised if further potential targets of LEV exist that are involved and 

contribute to its potent anticonvulsive effect. Based on postulated interactions between 

LEV and AMPARs, it was decided to investigate if direct binding of the new 

pyrrolidone radioligands, which show high specific activity, to AMPARs can be 

observed. 

 

Molecular cloning and heterologous expression 

For the recombinant expression of the AMPAR, for which the subunit GluR2 was 

chosen as a representative, the DNA sequences encoding both isoforms (flip and flop) 

were subcloned into retroviral vectors. Since the initially planned retroviral transfection 

turned out to be not suitable for these constructs due to the limited capacity of the virus 

particles, stable transfection was performed via lipofection. Thereby, it was possible to 

generate cell lines stably expressing the recombinant homomeric AMPAR of the 

subunit GluR2 in its flip as well as flop isoform. 

 

Radioligand binding studies 

Initially, a suitable assay system to perform [³H]AMPA binding studies had to be 

established. Therefore, several factors were examined, some of which proved to have a 

large influence on the outcome of the experiments. Using native protein preparations 

(rat cortical membrane preparations), optimal conditions for a reliable assay system 

were determined. 

By means of homologous competition experiments, binding of [³H]AMPA to native 

protein from rat cortical membrane preparations was investigated and compared to data 

in the literature obtained from saturation experiments. Competition binding experiments 

allowed the detection of a single binding site, providing values that are consistent with 

the high affinity binding site reported in the literature. Since in competition binding 

experiments in general only a relatively low concentration of radioligand is applied, the 

detection of the low affinity site described in the literature can only be achieved in 

saturation experiments. Taken together, it can be concluded that the established assay 
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system proves to be reliable and hence represents a valuable system for the investigation 

of the binding of [³H]AMPA to its molecular target structures. 

Furthermore, HEK cells recombinantly expressing homomeric AMPARs of the GluR2 

subunit (flip and flop isoform) were applied in binding studies with [³H]AMPA. 

Thereby, it was confirmed that the transfection was successful, providing cell lines 

stably expressing homomeric AMPARs with sufficient expression levels. As far as 

comparisons were possible, the experimentally obtained data were consonant with data 

published in the literature. Consequently, it can be assumed that the recombinantly 

expressed AMPARs are suitable for investigations of drug-target interactions. 

To examine if AMPARs exhibit a potential binding site for the pyrrolidone drugs, 

binding of [³H]BRV to the recombinantly expressed homomeric AMPAR was 

investigated. Repeated experiments under varying conditions revealed that no binding 

of the radioligand could be detected. As far as GluR2 can be considered to be a 

representative subunit for AMPARs, these results imply that the pyrrolidone drugs do 

not directly interact with AMPARs, neither by binding to an allosteric nor to an 

orthosteric binding site. This is also consistent with results obtained from further studies 

on native membrane preparations: under the observed conditions no modulatory effect 

on [³H]AMPA binding to its protein target could be observed in the presence of LEV. 

Likewise, the presence of L-glutamate and AMPA did not significantly influence the 

binding of [³H]BRV to its protein target. 
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6 Binding to SV2A knockout brain tissue 

With the identification of the SV2A protein as the target structure for levetiracetam 

(LEV) and its analogues61 it was suggested that these pyrrolidone drugs apparently exert 

their antiepileptic effects via a novel mechanism of action. By radioligand binding 

studies involving brain tissue from SV2A KO mice it was demonstrated that the SV2A 

protein appeared to represent the only target of the pyrrolidone drugs since no binding 

could be detected in the absence of SV2A.61,72 However, the validity of these studies 

was limited by the relatively low signal (~900 dpm, which corresponds to ~450 cpm) 

that was observed in control tissue (wild-type mice),61 and the low specific activity of 

the applied radioligand (8 Ci/mmol),72 respectively. Other studies, which showed that 

the affinity of different pyrrolidone drugs to the SV2A protein positively correlated with 

their antiepileptic potency,61,75 have been criticized with regard to the missing 

information on the actual cerebrospinal fluid levels of the investigated compounds.76 As 

discussed in chapter 5.1, so far it cannot be excluded that further targets besides the 

SV2A protein are involved in the antiepileptic effect evoked by LEV and its analogues. 

Considering that the SV2A protein is ubiquitously present in the brain with very high 

expression levels of approximately 9 to 11 pmol/mg protein,60,72 it is likely that 

potentially present low-abundant protein targets (expressed e.g. in femtomolar 

concentrations) may not have been detectable with the applied radioligands under the so 

far applied experimental conditions. 

Having a radioligand in hand with high specific activity, it was intended to reinvestigate 

brain tissue from SV2A KO mice with the new radioligand [³H]BRV. Due to its 

remarkably high specific activity, the radioligand is supposed to be more suitable than 

the previously used ones61,72 to detect potential protein targets with low expression 

levels. For this purpose membrane preparations were made as described in 8.3.2 from 

brains of SV2A wild-type (+/+), heterozygous SV2A KO (+/-) and homozygous SV2A 

KO (-/-) mice, which were provided by the group of Prof. Dr. S. Schoch. Binding 

studies were performed similarly as described in 8.5.4.1.1, Table 21 and Table 23 with 

the following modifications: the radioligand [³H]BRV was applied in concentrations of 

10 and 50 nM; the amount of protein was increased to 200 µg per well. 



94 6 Binding to SV2A knockout brain tissue 
 

 
Figure 41: Binding of [³H]BRV in cpm to brain membrane preparations of SV2A wild-type mice (+/+), 
heterozygous SV2A KO mice (+/-), and homozygous SV2A KO mice (-/-), respectively. The radioligand 
[³H]BRV (10 nM, and 50 nM, respectively) was incubated with membrane preparations (200 µg of 
protein/well) at 4 °C for 240 min. Non-specific binding was determined in the presence of unlabeled LEV 
(1 mM). Depicted is a representative result of two individual experiments performed in triplicate; data 
points represent means ± SEM. 
 

From the above described experiments the following results were obtained: in brain 

membrane preparations of SV2A wild-type mice (+/+) very high specific binding was 

achieved ranging from ~4300 cpm (10 nM radioligand) to ~14300 cpm (50 nM 

radioligand). In preparations of heterozygous SV2A KO mice (+/-) binding was reduced 

to ~2800 cpm (10 nM radioligand), and ~7700 cpm (50 nM radioligand), respectively. 

No specific binding of the radioligand [³H]BRV was detected to brain membrane 

preparations of homozygous SV2A KO mice (-/-), for none of the applied radioligand 

concentrations. Thus, no additional binding sites for [³H]BRV – besides SV2A – could 

be detected in these experiments. 

The experimental conditions for this analysis were chosen in analogy to conditions of 

previous investigations at membrane preparations of SV2A KO mice,61,72 which were 

optimized for binding of the pyrrolidone drugs to the SV2A protein. Hence, it has to be 

considered that this experimental setup might not provide the ideal conditions for the 

detection of potentially present low-abundant target proteins other than the SV2A 

protein. As discussed in chapter 5.2 (for the AMPAR) and the therein cited literature, 

binding of radioligands to proteins can be strongly influenced by a number of factors: 

for instance Olsen et al. determined a Bmax value of 200 fmol/mg protein for the high 

affinity binding site of [³H]AMPA in the absence of KSCN as compared to 

1000 fmol/mg protein in the presence of KSCN with otherwise optimal conditions for 

[³H]AMPA binding (see Table 12).216 Assuming that [³H]BRV was binding with the 

same affinity as it binds to the SV2A protein to a potentially low-abundant target site 
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with similarly low expression levels (e.g. 200 fmol/mg protein, which is ~ 50 times 

lower than the expression level of the SV2A protein), the signal determined in the above 

described experimental setup would still be below 300 cpm. Considering that, in 

addition, the applied conditions might not be ideal for binding to such an unknown 

target, it is conceivable that the signal would be lower than the limit of detection and 

hence, the “unknown” target site may not be measurable by the applied approach. 

Moreover, in antiepileptic therapy, Keppra® (LEV) is administered in very high doses 

of 1-3 g/day (plasma level: 35-100 µM, peak concentrations: 90-250 µM).213,227 Thus, it 

is conceivable that also lower affinity target proteins could be addressed at therapeutic 

doses. 

Due to the limited amount of available brain tissue from SV2A KO mice, it has only 

been possible so far to perform a very limited number of experiments without the 

required variations of experimental conditions. In future studies, it will be interesting to 

investigate binding to the tissue under systematically varied conditions, representing 

optimized conditions for binding to diverse protein targets. As can be concluded from 

the above described experiment, the new radioligand [³H]BRV proves to be suitable for 

the performance of these experiments and hence for the investigation of potentially 

present low-abundant protein targets besides the SV2A protein. 
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7 Summary and outlook 

Since levetiracetam (LEV) was approved in 1999 by the FDA, it has become one of the 

most successful of the newer antiepileptic drugs (AEDs). Nevertheless, its mode of 

action has still not been fully elucidated. In 2004, Lynch et al.61 discovered that the 

pyrrolidone drug is binding to the synaptic vesicle protein SV2A, thereby suggesting a 

completely novel mechanism of antiepileptic action. So far little is known about the 

exact role of this protein in neurotransmitter release and how LEV might affect its 

function. Very recently, the first study was published in which several amino acids were 

identified that supposedly participate in the interaction with pyrrolidone drugs,100 

however, the exact site of ligand binding remains to be elucidated. Furthermore, it is 

under discussion if the SV2A protein represents the main and only target for the 

pyrrolidone drugs: radioligand binding studies at membrane preparations of SV2A KO 

mice argue for the SV2A protein as the only target structure.61,72 However, in these 

studies radioligands of limited sensitivity were applied. Moreover, based on another 

study it has been suggested that LEV is also binding to an allosteric site of AMPARs.115 

To contribute to the clarification of these matters, it was planned to synthesize tritium-

labeled radioligands of the AEDs LEV and its higher-affinity analogue brivaracetam 

(BRV), which should possess high specific activity and thus represent sensitive tools for 

binding studies. Within this study, synthetic routes were developed, which allowed the 

preparation of the radioligands [³H]LEV , [³H]BRV , as well as its stereoisomer 

[³H]isoBRV with very high specific activity of 94-98 Ci/mmol (see Schemes S1 and 

S2). 

 
Scheme S1: Synthesis of [³H]LEV (3); MW: microwave, DIPEA: N,N-diisopropylethylamine (*denotes 
positions of ³H). 
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Scheme S2: Synthesis of [³H]BRV (9) and [³H]isoBRV (29);*denotes positions of ³H. 
 

An assay system, suitable for the application of all these three radioligands in binding 

studies, was established. The radioligands were characterized in kinetic studies and 

saturation binding experiments. It was confirmed that the affinity to the target protein 

(SV2A) increased in the order [³H]LEV < [³H]isoBRV < [³H]BRV based on KD values 

of 1.12 ± 0.18 µM, 409 ± 23 nM, and 70.0 ± 8.4 nM, respectively. 

Subsequently, the new radioligand [³H]BRV was applied in different competition 

binding experiments, in which it proved to be valuable for the screening of 

compounds providing highly reproducible results. Moreover, it was confirmed that 

[³H]BRV can be considered as a suitable surrogate for the low-affinity ligand 

[³H]LEV  with superior properties due to its ~15-fold higher affinity. In competition 

experiments with unlabeled LEV at diverse brain membrane preparations [³H]BRV 

proved to be a reliable tool providing IC50 values of 1.73 ± 0.23 µM (rat cortex), 0.693 

± 0.131 µM (rat striatum), 0.948 ± 0.144 µM (mouse brain), 1.43 ± 0.33 µM (human 

thalamus) and 2.69 ± 0.55 µM (human putamen) for the antiepileptic drug LEV. 

[³H]BRV was further employed to examine brain samples from patients with 

pharmacoresistant epilepsy obtained by surgery. Competition binding experiments 

(unlabeled LEV versus [³H]BRV) provided highly reproducible binding curves, 

demonstrating concentration-dependent binding inhibition with IC50 values between 

0.7 and 1.2 µM. No significant difference in affinity of LEV to its target protein was 

observed among different samples, including initial Keppra®-therapy (LEV) responsive 

as well as non-responsive patients. 
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To investigate the interaction of LEV with the SV2A protein, several different native 

and mutant SV2 proteins were subcloned, expressed in CHO cells and subjected to 

radioligand binding studies. Saturation binding experiments of the radioligand [³H]BRV 

to the recombinantly expressed human wild-type SV2A protein showed binding to a 

single saturable binding site with a KD value of 75.1 ± 12.2 nM, which was comparable 

to literature values as well as to data obtained at native membrane preparations. 

Competition binding experiments of LEV versus [³H]BRV at recombinantly expressed 

human and rat SV2A protein showed that no species differences exist (IC50: 2.64 ± 

0.53 µM, and 2.98 ± 0.63 µM, respectively), which is in accordance with the high 

sequence homology between these orthologues. 

 
Binding of [³H]BRV (1 nM) to GFP-tagged 
SV2A, SV2B, and SV2C proteins expressed in 
CHO cells; h: human, r: rat. 

 

By binding experiments at the different 

recombinantly expressed SV2 protein 

isoforms SV2A, SV2B and SV2C it could be 

confirmed that the pyrrolidone drugs only 

bind to the SV2A, but not to the SV2B or 

SV2C isoforms at radioligand concentrations 

of 1 nM ([³H]BRV) and 10 nM ([³H]LEV). 

 

To contribute to the identification of the ligand binding site at the SV2A protein it was 

investigated if the long cytoplasmic loop comprising exons 5 and 6 (see Figure S1) is 

involved in this interaction. 

 
Binding of [³H]BRV (1 nM) to GFP-tagged rat 
SV2A wild-type protein (wt), and variants with 
deletions of exons 5 and/or 6 (d5u6, d5, d6) 
expressed in CHO cells. 

 

Therefore, studies were performed in which 

binding of [³H]BRV to deletion mutants of 

the rat SV2A protein lacking exons 5 

and/or 6 were investigated. In the absence of 

this region no binding of the pyrrolidone 

radioligands could be detected, which may 

suggest an essential role of this area in the 

ligand-target interaction. 
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Figure S1: Topology model of the rat SV2A protein. 
with prediction of transmembrane domains based on TMHMM software
numbered in grey from 1 to 12 and separated by lines, N
corresponding letters. Amino acids colored in dark blue represent residues that are conserved among all 
three isoforms (SV2A, SV2B and SV2C), light blue colored ones are conserved in one other isoform 
besides SV2A, and white colored ones are non
Residues that were mutated and investigated
in ligand binding), and green (altered ligand binding), respectively. Residues that are marked with a 
yellow circle were mutated and investigated in this study.
 

However, deletion of a longer sequence might potentially evoke a conformational 

change of the resulting protein mutant. Therefore, it is not clear

actually bind to the deleted sequence or whether conformational changes cause these 

effects. Subsequently, several point mutants of the rat SV2A protein were investigated

(see Figure S1): certain amino acids, which are non

isoforms, and therefore might have an essential function in the interaction of the SV2A 

protein with its ligands,

E403D). All of these mutants beh

to be involved in ligand binding. In future studies

create a mutant in which all non

for the corresponding ones 

 

 

Topology model of the rat SV2A protein. The snakeplot diagram was drawn with TOPO2 
with prediction of transmembrane domains based on TMHMM software93,94 (see 
numbered in grey from 1 to 12 and separated by lines, N- and C-termini are indicated with the 

Amino acids colored in dark blue represent residues that are conserved among all 
three isoforms (SV2A, SV2B and SV2C), light blue colored ones are conserved in one other isoform 
besides SV2A, and white colored ones are non-conserved and only present in the SV2A isoform. 

and investigated in the study of Shi et al.100 are marked with red (no change 
ligand binding), and green (altered ligand binding), respectively. Residues that are marked with a 

yellow circle were mutated and investigated in this study. 

However, deletion of a longer sequence might potentially evoke a conformational 
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and therefore might have an essential function in the interaction of the SV2A 

ein with its ligands, were exchanged (N364K, H387Q, H387Q/T395I, T395I, 

E403D). All of these mutants behaved like the wild-type protein and thus do not appear 

to be involved in ligand binding. In future studies, it may be a reasonable approach to 

create a mutant in which all non-conserved amino acids of exons 5 and 6 are exchanged 

for the corresponding ones from the isoforms SV2B or SV2C. 
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Concerning the hypothesis that the pyrrolidone drugs might bind to an allosteric site of 

AMPARs, it was planned to investigate binding of [³H]BRV to recombinantly 

expressed AMPARs. Therefore, initially an assay system for [³H]AMPA using 

membrane preparations of rat and mouse brain was established: in competition binding 

experiments with unlabeled AMPA, IC50 values were obtained that are comparable with 

published data. Recombinant AMPARs were stably expressed in HEK cells (assembled 

from the subunit GluR2 as flip and flop isoform) and were characterized by homologous 

competition experiments with [³H]AMPA. The radioligand [³H]BRV did not show any 

specific binding to HEK cells recombinantly expressing AMPARs. In binding studies at 

native protein preparations (rat cortex) LEV (100 nM to 1 mM) also did not modulate 

the binding of [³H]AMPA, nor did AMPA or L-glutamate modulate the binding of 

[³H]BRV. Thus, the results of the present study do not reveal evidence for direct 

binding of LEV and BRV to AMPA receptors. 

Finally, the radioligand [³H]BRV was applied to investigate binding to membrane 

preparations of brains from SV2A KO mice, and thus to repeat investigations, which so 

far were of limited validity due to the available radioligands.61,72 

 
Binding of [³H]BRV (10 nM, and 50 nM, 
respectively) to brain membrane preparations of 
wild-type mice (+/+), heterozygous SV2A KO 
mice (+/-), and homozygous SV2A KO mice (-/-). 

 

Under identical experimental conditions 

with the new radioligand [³H]BRV high-

affinity specific binding could also not be 

detected in the absence of the SV2A 

protein (-/-), while the same concentrations 

of radioligand (10 nM or 50 nM) provided 

high binding in control tissue from wild-

type mice (+/+) and reduced binding in 

heterozygous KO mice (+/-). 

 

The limited amount of so far available SV2A KO mice brain tissue only allowed a small 

number of experiments (performed only under optimal conditions for binding to SV2A). 

In future studies repetitions of this investigation with systematical variations of 

experimental conditions will help to clarify, if additional targets are addressed by the 

antiepileptic pyrrolidone drugs. As demonstrated within this thesis the new radioligand 

[³H]BRV represents a most valuable tool for that kind of investigations. 
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8 Experimental part 

8.1 General 

8.1.1 Software 

Microsoft Office 2007 (Excel, Word, PowerPoint, Picture Manager)  

ChemBioDraw Ultra 11.0.1, Cambridge Software 

WIN-NMR 6.2.0.0, Bruker Daltonik GmbH 

GraphPad Prism 5.01, GraphPad Software, San Diego, California, USA 

DNAtrans 2.1, http://www.b-und-s-software.de/ 

Clone Manager Basic for Windows, version 9, Scientific & Educational Software 

Plasmid Map Enhancer for Windows, version 3.1, Scientific & Educational Software 

Oligoanalyzer 3.1, http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer/ 

Chromas Lite 2.01, http://www.technelysium.com.au/chromas_lite.html 

ClustalW, EMBL-EBI, http://www.ebi.ac.uk/Tools/msa/clustalw2/ 

Needle, EMBL-EBI, http://www.ebi.ac.uk/Tools/psa/emboss_needle/ 

TOPO2, http://www.sacs.ucsf.edu/cgi-bin/tmhmm.py 

 

8.1.2 Material for synthesis 

8.1.2.1 Chemicals and solvents 

Chemicals for synthesis have been purchased from Acros Organics (Nidderau, 

Germany), Alfa Aesar (Karlsruhe, Germany), Bachem (Weil am Rhein, Germany), 

Fluka (Buchs, Schweiz), Merck (Darmstadt, Germany), Sigma Aldrich (Steinheim) and 

TCI Europe (Eschborn, Germany). If not stated otherwise chemicals were used without 

further purification. 

Solvents were obtained from various commercial sources. If not indicated otherwise, 

they were used without further purification. 
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8.1.2.2 Material and instruments 

Microwave instrument 

Chemical reactions with microwave radiation were performed in a Discover microwave 

instrument (CEM GmbH, Kamp-Lintfort, Germany). 

Hydrogenation apparatus 

Catalytic hydrogenation was performed with a Hogen® GC Hydrogen Generator (Proton 

Energy Systems, Wallingford, USA). 

TLC 

Analytical thin layer chromatography (TLC) was performed on silica-coated aluminum 

plates containing a fluorescent indicator (Merck silica gel 60 F254, Darmstadt, 

Germany). 

Column chromatography 

For column chromatography silica gel 60 (0.063-0.200 mm) from Merck (Darmstadt, 

Germany) was used. 

Preparative HPLC 

For preparative HPLC a Knauer HPLC system (Knauer GmbH, Berlin, Germany) was 

used comprising a Wellchrome K-1800 pump, injection and switching valves, a 

Wellchrome K-2600 spectrophotometer, a Eurospher 100 C18 precolumn (30 mm x 

20 mm, particle size 10 µm) and a Eurospher 100 C18 column (250 mm x 20 mm, 

particle size 10 µm). As mobile phase a mixture of methanol (HPLC grade, Merck, 

Darmstadt, Germany) and deionised water with a flow rate of 20 ml/min was used. 

Lyophilization 

Lyophilization of compounds was performed with Alpha 1-4 LSC (Martin Christ 

Gefriertrocknungsanlagen GmbH, Osterode, Germany). 

Polarimeter 

Optical rotation of chiral compounds was measured with 241 Polarimeter 

(PerkinElmer). 

Melting point apparatus 

For the determination of melting points Büchi Melting Point B-545 was used. 
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NMR 

NMR spectra were recorded on a Bruker Avance 500 spectrometer (1H: 500 MHz, 13C: 

125 MHz) at room temperature. Spectra were recorded at room temperature in CDCl3, 

or CD3OD, respectively, and the remaining protons of the deuterated solvent were used 

as an internal standard (1H: δ (ppm) CDCl3: 7.24; CD3OD: 3.35 and 13C: δ (ppm) 

CDCl3: 77.0; CD3OD: 49.3). Coupling constants are given in Hertz (Hz) and chemical 

shifts in parts per million (ppm). Spin multiplicities are abbreviated with s (singlet), d 

(doublet), t (triplet), m (multiplet), br (broad). 

HPLC-MS 

Low-resolution mass spectra were obtained on an API 2000 mass spectrometer 

(electrospray ionization, Applied Biosystems, Darmstadt, Germany) coupled to an 

HPLC system (Agilent 1100) using the following procedure: compounds were dissolved 

in methanol (0.5 mg/ml). A 10 µl sample of this solution was injected into the HPLC 

system containing a Phenomenex Luna C18 column (50 mm x 2.00 mm, particle size 

3 µm). It was chromatographed using a gradient of water : methanol (containing 2 mM 

ammonium acetate, if not stated otherwise) from 90 : 10 to 0 : 100 in 30 min. The 

gradient was started after 10 min, the flow rate was 250 µl/min. UV absorption was 

detected using a diode array detector (from 190 to 900 nm) and purity was determined 

at 254 nm. 

 

8.1.3 Material for biological work 

8.1.3.1 Chemicals and additives 

Acetic acid Merck, 1.00063.1011 

Agarose Roth, 2267.2 

(R,S)-AMPA Enzo Life Sciences, EA-110 

Ampicillin sodium salt Roth, K029.1 

Aniracetam Sigma, A9950 

ATP disodium salt AppliChem, A1348 

Bemegride TCI Europe, E0284 

Bromophenol blue sodium salt AppliChem, 3640 

BSA/Albumin fraction V Roth, 8076.4 

Calcium chloride, anhydrous AppliChem, A3652 
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Calcium chloride dihydrate Fluka, 21097 

Calf serum Sigma, C8056 

Copper(II) sulfate pentahydrate AppliChem, A1034 

Disodium hydrogen phosphate, anhydrous AppliChem, A1046 

DMSO (binding studies) Roth, 4720.3 

DMSO (cell culture) AppliChem, A3672 

EDTA Roth, 8040.3 

Ethanol p.a. Merck, 1.00983.1000 

Ethosuximide Sigma, E7138 

Fetal Bovine Serum Sigma, F7524 

Folin & Ciocalteau’s phenol reagent Sigma, F 9252 

D-(+)-Glucose Sigma, G-7021 

L-Glutamic acid Sigma, G1251 

Glycerol AppliChem, A1123 

HEPES Roth, 9105.4 

H2O, sterile VWR, AX021376 

Hydrochloric acid 37% Sigma-Aldrich, 30721 

Hypoxanthine AppliChem, A0700 

LB agar Roth, X965.3 

LB medium Roth, X968.2 

Levetiracetam Chemos GmbH, Art No. 134992 

Liquid Scintillation Cocktail LumaSafeTM Plus, Lumac 

Magnesium chloride Sigma, M8266 

Magnesium chloride hexahydrate Fluka, 63068 

Mycophenolic acid AppliChem, A3801 

PEI solution (50% in H2O) Sigma, P-3143 

Penicillin-Streptomycin, liquid Gibco, 15140 

Pentylenetetrazole Sigma, P6500 

Phenobarbital Sigma, P1636 

Phenol red solution Sigma, P0290 

Piracetam Sigma, P5295 

Polybrene (Hexadimethrine bromide) Aldrich, 10,768-9 

Potassium chloride Fluka, 60128 

Potassium phosphate monobasic Sigma, P9791 
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Potassium thiocyanate Sigma-Aldrich, 20779-9 

Saponin Fluka, 84510 

SDS solution 20% AppliChem, A0675 

Sodium butyrate Alfa Aesar, A11079 

Sodium chloride Roth, 9265.1 

Sodium hydroxide Fluka, 71689 

D(+)-Sucrose AppliChem, A4734,5 

Tris(hydroxymethyl)aminomethane Roth, AE15.3 / 5429.3 

Xanthine Sigma, X7375 

 

8.1.3.2 Material and instruments 

Autoclave VX-95, Systec 

3850 ELV, Systec 

Balance, analytical XA205DU Excellence, Mettler Toledo 

Balance, precision SBC 42, SCALTEC 

440-47N, KERN 

Centrifuges Mikro 200, Hettich 

AllegraTM 21 R, Beckman Coulter 

AvantiTM J-201, Beckman 

Rotofix 32, Hettich 

Dismozon® pur 975400, Bode Chemie 

Drying cabinet T6120, Heraeus 

Electrophoresis chamber Schütt Labortechnik 

Electrophoresis power supply Power Pac 300, ELITE 300 Plus, 

Schütt Labortechnik 

Gel documentation system Universal Hood II Geldoc, BioRad 

Glass-fiber filters Whatman®, Schleicher und Schüll (GF/C) 

Glass homogenizer, Potter Sartorius 

Harvester Brandel M24 Gaithersburg, MD, USA 

Brandel M48 Gaithersburg, MD, USA 

Hemocytometer (cell counting chamber) Marienfeld Germany 

Incubator for cells Jouan IG 650, Heraeus, 

INC 246, Memmert 
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Incubator shaker Innova 4200 Incubator shaker, 

New Brunswick Scientific 

Liquid scintillation analyzer Tri-Carb 2810 TR, Perkin-Elmer 

Liquid scintillation cocktail LumaSafe®, Perkin-Elmer 

Microscope Wilovert, Hund Wetzlar 

Axiovert 25, Zeiss 

Microscope for fluorescence images Leica, DM IL LED Fluo 

MilliQ PURELAB flex, ELGA 

pH-meter 691 pH Meter, Metrohm 

Seven Easy, Mettler Toledo 

Pipets Eppendorf 

Photometer DU-530, Beckman 

Rocking shaker ELMI Digital Rocking Shaker DRS-12 

Safety cabinet NUNC® Safe flow 1.2 

NUNC® MICROFLOW 

Steril filter Filtropur 0.22 µm, 831826001, Sarstedt 

Thermal block Thermomixer comfort, Eppendorf 

Thermocycler T Personal, Biometra 

Tip Sonicator Sonoplus HD2070, Bandelin 

Tissue homogenizer RW 16 basic, IKA, 

Ultra-turrax T25 basic, IKA 

Vortex mixer UNIMAG Zx³, UniEquip 

Vortex Genius 3, IKA 

MS2 Minishaker, IKA  

Water bath WNB 14, Memmert 

 

Flow cytometer 

For flow cytometric analysis the flow cytometer FACScalibur (BD Biosciences, USA) 

was used, equipped with an argon laser (excitation at 488 nm). Emission was detected 

between 515-545 nm. Cells were injected suspended in PBS buffer. Autofluorescence, 

which was subtracted from the determined fluorescence intensity of each sample, was 

determined with non-transfected CHO cells. 
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8.1.3.3 Material for molecular biology 

Plasmids 

pCMV-hSV2A (NM_014849.3) 

AMS Biotechnology, UK pCMV-hGluR2_flip (NM_000826.2) 

pCMV-hGluR2_flop (NM_001083619.1) 

  

pCMV-rSV2Awt-GFP (NM_057210.2) 

provided by Prof. Dr. S. Schoch, 

Institut für Neuropathologie, 

Universitätsklinikum Bonn 

pCMV-rSV2Ad5u6-GFP 

pCMV-rSV2Ad5-GFP 

pBluescript-hSV2B (NM_014848.4) 

pCMV-rSV2C (NM_031593.1) 

pCMV-rSV2A_N364K-GFP 

pCMV-rSV2A_H387Q-GFP 

pCMV-rSV2A_H387Q_T395I-GFP 

pCMV-rSV2A_T395I-GFP 

pCMV-rSV2A_E403D-GFP 

 

Enzymes 

BamHI 

New England BioLabs 

BsiWI 

ClaI 

EcoRI 

FspI 

NotI 

SalI 

StuI 

  

PyrobestTM DNA Polymerase TaKaRa 

AccuPrimeTM Pfx DNA Polymerase Invitrogen 

KOD Hot Start DNA Polymerase Novagen 

T4 DNA ligase New England BioLabs 
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Primer for cloning 
name sequence (5’ to 3’) restriction site 
f-rSV2A-GFP-NotI GAGCTAGCGGCCGCACCATGGAAGAAGGCTTTCGAG NotI 

r-GFP-BsiWI CATCATCGTACGTTACTTGTACAGCTCGTCCATGC BsiWI 

f-rSV2A-ATG-EcoRI ATTCAGAATTCACCATGGAAGAAGGCTTTCGAG  EcoRI 

f-rSV2A-Exon5-BamHI ATAGTGGATCCTGAGAAGACTCGCTCAGGATGG  BamHI 

f-hSV2A-ATG-EcoRI ATTCAGAATTCATGGAAGAGGGCTTCCGAG EcoRI 

r-hSV2A-SalI AGTTTGTGTCGACCTGCAGCACCTGCCCCC SalI 

f-hSV2A-NotI GAGCTAGCGGCCGCACCATGGAAGAGGGCTTCCGAGAC NotI 

f-hSV2B-ATG-ClaI ATTCAATCGATATGGATGACTACAAGTATCAG ClaI 

r-hSV2B-SalI AGTTTGTGTCGACCATCAGGACCTGTTCTCGA SalI 

f-rSV2C-ATG-ClaI ATTCAATCGATATGGAAGACTCCTACAAGGATAG ClaI 

r-rSV2C-SalI AGTTTGTGTCGACCATCAGAACCTGGGTTCTTGTG SalI 

f-hGluR2-ATG-NotI TCAATCAGCGGCCGCATGCAAAAGATTATGCATATTTCTG NotI 

r-hGluR2-TAG-BsiWI CATTCACGTACGCTAAATTTTAACACTTTCGATGCC BsiWI 

 

Primer for sequencing 
name sequence (5’ to 3’) 
f-pQCXI-Seq ACGCCATCCACGCTGTTTTGACCT 

r- pQCXI-Seq GGCCTTATTCCAAGCGGCTTCG 

f-pCMV CGCAAATGGGCGGTAGGCGTG 

r-pCMV ACAAGGCTGGTGGGCACTGG 

r-rSV2A-Seq1 GGAACACTTTGGTTCGGGCTG 

f- rSV2A Seq2 GATTGGTGGCGTGTATGCAGC 

f-rSV2A-Seq3 CAGCCCGAACCAAAGTGTTCC 

f-rSV2A-Seq4  TCAGCTTCTTGGGGACACTGG 

f-rSV2A-Seq5 GCTCTGAAGCTGCCTGAGACC 

f-hSV2A-Seq1 (f-hSV2A-ATG-EcoRI) ATTCAGAATTCATGGAAGAGGGCTTCCGAG 

r-hSV2A-Seq2 GGAACACTTTGGTGCGGGATG 

f- hSV2A-Seq3 GATTGGTGGCGTGTACGCAGC 

f-hSV2A-Seq4 CATCCCGCACCAAAGTGTTCC 

f-hSV2A-Seq5 GCCCTGAAGCTGCCTGAGACC 

f-hSV2B-Seq1 (f-hSV2B-ATG-ClaI) ATTCAATCGATATGGATGACTACAAGTATCAG 

f-hSV2B-Seq2 GGAGAACACCTCAGTTGGC 

f-hSV2B-Seq3 CACCAACATGGGAAACTTGTG 

f-hSV2B-Seq4 CCTTCGACTGCCAGAGACT 

f-rSV2C-Seq1 (f-rSV2C-ATG-ClaI) ATTCAATCGATATGGAAGACTCCTACAAGGATAG 

f-rSV2C-Seq2 AGACAAAGTGGGAAGGAAGC 

f-rSV2C-Seq3 ATGGACTGTCCGTTTGGTTC 

f-rSV2C-Seq4 GAACGCACTCTGTAAAGCAG 

f-hGluR2-Seq1  CATTCACGTACGAGAAAGATCCTCAGCACTTTCG 

f-hGluR2-Seq2 TTTCCTTGGGTGCCTTTATG 
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marker, dyes, antibodies, reagents, kits 

Lambda DNA/EcoRI+HindIII marker Fermentas, SM0191 

ΦX174 DNA-HaeIII Digest New England BioLabs, N3026S 

6x Gel Loading Dye, blue New England BioLabs, B7021S 

GelRedTM nucleic acid gel stain New England Biotium, 41003 

LipofectamineTM 2000 Transfection Reagent Invitrogen, 11668019 

ZymocleanTM Gel DNA Recovery Kit Zymo Research, D4001 

DNA clean & concentratorTM -5 Kit Zymo Research, D4003 

ZR Plasmid MiniprepTM - Classic Zymo Research, D4015 

S.N.A.P.TM Midi Prep Kit 

Pure LinkTM HiPure Plasmid Filter Midiprep Kit 

Invitrogen, K1910-01 

Invitrogen, K2100-15 

Zyppi Plasmid Maxiprep Kit 

Pure LinkTM HiPure Plasmid Filter Maxiprep Kit 

Zymo Research, D4028 

Invitrogen, K2100-17 

 

8.1.3.4 Media, supplements and solutions for cell culture 

DMEM Dulbecco’s Modified Eagle Medium, Gibco/Invitrogen 

DMEM/F12 Dulbecco’s Modified Eagle Medium – Nutrient Mixture F-12, 

Gibco/Invitrogen 

Opti-MEM Opti-MEM I Reduced Serum Medium, Gibco/Invitrogen 

FCS Fetal Bovine Serum, Sigma F7524 

PS Penicillin-Streptomycin solution, Gibco 15140 

Hygromycin B Hygromycin B Solution (100 mg/ml), Merck, 400052 

G418 G418 solution (100 mg/ml), InvivoGen, ant-gn-5 

CS Calf Serum, Sigma, C8056 

HXM Hypoxanthine Xanthine Mycophenolic acid solution, see 

8.1.3.5 

Trypsin/EDTA Trypsin (0.05%) / EDTA (0.6 mM) solution, see 8.1.3.5 
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8.1.3.5 Buffer and solutions for membrane preparations and binding studies 

Sucrose solution (0.32 M) 

D(+)-Sucrose Mr = 342.30 0.32 M 110 g 

Water, deionized, autoclaved    1 l 

The solution needs to be prepared freshly prior to use. 

 

HEPES buffer (10 mM, pH 7.4) 

HEPES Mr = 238.30 10 mM 2.38 g 

NaCl Mr = 58.44 80 mM 4.68 g 

KCl Mr = 74.55 3.6 mM 0.27 g 

MgCl2 · 6 H2O Mr = 203.30 0.53 mM 0.11 g 

CaCl2 · 2 H2O Mr = 147.01 1.2 mM 0.18 g 

Water, deionized   1 l 

pH is adjusted to 7.4 at 4 °C with saturated NaOH solution. The buffer is stored at 4 °C. 

 

Tris-HCl buffer (50 mM, pH 7.4) 

Tris Mr = 121.14 50 mM 6.05 g 

Water, deionized   1 l 

pH is adjusted to 7.4 with HCl 37%. The buffer is stored at 4 °C. 
If not indicated otherwise, Tris-HCl buffer used in this study always was 50 mM, pH 7.4 

 

MgCl 2 solution (10 mM) 

MgCl2 Mr = 95.21 10 mM 95 mg 

Tris-HCl buffer (50 mM, pH 7.4)   100 ml 

The solution is stored at 4 °C. 

 

Levetiracetam solution (5 and 50 mM) for non-specific binding 

Levetiracetam Mr = 170.21 5 mM 
50 mM 

8.5 mg 
85 mg 

Tris-HCl buffer (50 mM, pH 7.4)   10 ml 

The solution is stored at 4 °C. 

 

PEI solution (0.1%) 

PEI solution (50% in H2O)   1 ml 

Water, deionized   ad 500 ml 

The solution is stored at 4 °C. 
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KSCN solution (1 M) 

KSCN Mr = 97.18 1 M 9.72 g 

Tris-HCl buffer (50 mM, pH 7.4)   100 ml 

100 µl of this solution in a final volume of 500 µl equal a concentration of 250 mM. The 
solution is stored at 4 °C 

 

L-Glutamic acid solution (5 mM) for non-specific binding 

L-Glutamic acid Mr = 147.13 5 mM 74 mg 

Tris-HCl buffer (50 mM, pH 7.4)   100 ml 

100 µl of this solution in a final volume of 500 µl equal a concentration of 1 mM. The 
solution is stored at 4 °C. 

 

Tris (20 mM) / Sucrose (250 mM) solution 

D(+)-Sucrose Mr = 342.30 250 mM 8.6 g 

Tris-HCl buffer (50 mM, pH 7.4)   40 ml 

Water, deionized   60 ml 

pH is adjusted to 7.4 with HCl 37%. The solution is stored at 4 °C. 

 

Tris (10 mM) / NaCl (150 mM) solution 

NaCl Mr = 58.44 150 mM 877 mg 

Tris-HCl buffer (50 mM, pH 7.4)   20 ml 

Water, deionized   80 ml 

pH is adjusted to 7.4 with HCl 37%. The solution is stored at 4 °C. 

 

Saponin solution (1%) 

Saponin  1% 0.1 g 

Water, deionized   10 ml 

Saponin is dissolved in water. The solution is stored at 4 °C. 

 

Reagent A for Lowry protein determination 

Na2CO3  2% 10 g 

NaOH solution (0.1 N)    ad 500 ml 

The solution is stored at rt. 
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Reagent B for Lowry protein determination 

CuSO4 · 5 H2O  0.5% 0.25 g 

Sodium tartrate  1% 0.5 g 

Water, deionized   ad 50 ml 

Both salts are dissolved in water separately and combined afterwards. The solution is 
stored at 4 °C. 

 

Reagent C for Lowry protein determination 

Reagent A   50 parts 

Reagent B   1 part 

The reagent needs to be prepared freshly prior to use. 

 

Reagent D: Folin & Ciocalteau’s phenol reagent working solution 

Folin reagent   18 ml 

Water, deionized   ad 90 ml 

The solution is stored at rt. 

 

8.1.3.6 Buffer/solutions for molecular biology, cell and bacteria culture 

LB medium 

LB medium   25 g 

Water, deionized    ad 1 l 

LB medium is given into deionized water and the suspension is autoclaved. The solution 
is stored at 4 °C. 

 

LB medium with ampicillin (100 µg/ml) 

LB medium   25 g 

Water, deionized    ad 1 l 

Ampicillin (100 mg/ml)   1 ml 

LB medium is given into deionized water and the suspension is autoclaved. Ampicillin is 
added after the solution has cooled down < 50 °C. The solution is stored at 4 °C. 
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LB agar plates with ampicillin 

LB agar   32 g 

Water, deionized    ad 1 l 

Ampicillin (100 mg/ml)   1 ml 

LB agar is given into deionized water and the suspension is autoclaved. Ampicillin is 
added after the solution has cooled down < 50 °C. Approximately 15-20 ml of this 
solution is poured into each petri dish of 10 mm diameter. After the agar solidified the 
plates are stored face down in a plastic bag at 4 °C. 

 

CaCl2 solution (0.1 M), sterile 

CaCl2 Mr = 110.98 0.1 M 1.1 g 

Water, deionized    ad 100 ml 

CaCl2 is dissolved in deionized water, sterilized via sterile filtration and stored at 4 °C. 

 

TAE buffer 50x (for agarose gel electrophoresis) 

Tris Mr = 121.14 2 M 242 g 

EDTA Mr = 292.24 50 mM 14.6 g 

Acetic acid   57.1 ml 

Water, deionized    ad 1 l 

The buffer is autoclaved and diluted 1:50 prior to use. It is stored at rt. 

 

6x loading dye (for agarose gel electrophoresis) 

Bromophenol blue sodium salt  0.25%  

Glycerol   5 ml 

Water, deionized   5 ml 

The loading dye is stored at 4 °C. 

 

Sodium butyrate solution (500 mM) 

Sodium butyrate Mr = 110.09 500 mM 55 mg 

Water, deionized   1 ml 

After sterile filtration, the solution is stored at -20° C. 

 

Polybrene solution (4 mg/ml) 

Polybrene   20 mg 

Water, deionized   5 ml 

After sterile filtration, the solution is stored at -20° C. 

 



114 8 Experimental part 
 

EDTA stock solution (0.1 M) 

EDTA Mr = 292.24 0.1 M 2.9 g 

Water, deionized   100 ml 

After pH adjustment to 7.6, the solution is stored at rt. 

 

Hypoxanthine Xanthine Mycophenolic acid solution (HXM) 

Hypoxanthine   75 mg 

Xanthine   1250 mg 

Mycophenolic acid   125 mg 

NaOH solution (6 N)   q.s. 

Methanol   5 ml 

Water, deionized   45 ml 

To a suspension of hypoxanthine and xanthine in 40 ml of deionized water NaOH 
solution (6 N) is added dropwise until the solution becomes clear. Deionized water is 
added ad 45 ml. In a separate vial mycophenolic acid is dissolved in methanol and the 
two solutions are mixed. After sterile filtration, aliquots (à 5 ml) of the solution are 
prepared and stored at -20° C, protected from light. 

 

PBS buffer 

NaCl Mr = 58.44 1.5 M 8.8 g 

KCl M r = 74.55 25 mM 0.2 g 

Na2HPO4 Mr = 141.96 75 mM 1.1 g 

KH2PO4 Mr = 136.09 15 mM 0.2 g 

Water, deionized   1 l 

After pH adjustment to 7.4 with HCl 37%, the buffer is autoclaved and stored at rt. 
PBS 10x buffer is prepared in analogy except that amounts of salts are multiplied by 10. 

 

Trypsin (0.05%) / EDTA (0.6 mM) solution 

EDTA stock solution (0.1 M)  0.6 mM 6 ml 

Trypsin (2.5%)  0.05% 20 ml 

Phenol red solution (0.5%)   750 µl 

PBS buffer    ad 1 l 

EDTA stock solution is given into PBS buffer and the solution is autoclaved. After the 
solution has cooled down to rt, trypsin (sterile filtrated) and phenol red solution (sterile 
filtrated) are added under laminar air-flow. The solution is stored at 4 °C. 
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8.1.3.7 Radioligands 

The radioligands [³H]LEV, [³H]isoBRV and [³H]BRV were obtained from Quotient 

Bioresearch (UK) by labeling previously synthesized precursors (see chapter 8.2). 

These radioligands are solved in ethanol (1 mCi/ml). Radioligand [³H]AMPA (racemic 

mixture) was obtained from PerkinElmer (USA) in a solution of ethanol : water (1 : 1) 

in a concentration of 1 mCi/ml. 

 

Table 15: Chemical structures of radioligands applied within this study. 
name [³H]levetiracetam  [³H]brivaracetam [³H] R,S-AMPA 

 

   

 

internal code [³H]LEV [³H]isoBRV [³H]BRV [³H]AMPA 
code (supplier) TRQ40411 TRQ40412 TRQ40419  
specific activity 98 Ci/mmol 98 Ci/mmol 94 Ci/mmol 45.8 Ci/mmol 
radiochem. purity 99.7% 99.3% 99.5% > 97% 

 

8.1.3.8 Tissue 

Sprague-Dawley rat brain 56004-2, Pel Freez®, Rogers, Arkansas, USA 

Black 6 mouse brain provided by Prof. Dr. V. Gieselmann, 

Institut für Biochemie und Molekularbiologie, 

Universität Bonn 

SV2A KO mouse brain provided by Prof. Dr. S. Schoch, 

Institut für Neuropathologie, 

Universitätsklinikum Bonn 

human brain from epilepsy surgery Institut für Neuropathologie, 

Universitätsklinikum Bonn 

human post-mortem brain Institut für Neuropathologie, 

Universitätsklinikum Bonn 

 

N
O

HO

NH2

OH

O

*
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8.2 Syntheses 

8.2.1 Synthesis of [³H]levetiracetam 

(S)-Methyl 2-aminobutanoate hydrochloride (5)167 

 

The ester was prepared in analogy to Klieger and Gibian.167 Freshly distilled thionyl 

chloride (30 mmol, 2.6 ml) was added dropwise to 10 ml of methanol previously cooled 

to -20 °C. (S)-2-aminobutyric acid (10 mmol, 1.0 g) was added and the mixture was 

stirred at room temperature for several hours. The reaction progress was monitored by 

TLC and if needed additional thionyl chloride was added until the reaction was 

completed. At the end of the reaction the solvent was removed by distillation. The 

remaining residue is recrystallized from diethylether giving the product in nearly 

quantitative yield (lit.: 80%).167 

Appearance: white crystalline powder. Solubility:  soluble in chloroform, methanol, 

water. Detection: Ninhydrin reagent. Melting point:  116 °C (lit.: 116-117 °C).167 1H 

NMR (500 MHz, CDCl3) δ ppm 1.08 (t, 3H, J = 7.43, C4H), 2.07-2.13 (m, 2H, C3H), 

3.78 (s, 3H, C1’H), 4.09-4.13 (m, 1H, C2H), 8.73 (s, 3H, NH3
+Cl-). 13C NMR 

(125 MHz, CDCl3) δ ppm 9.63 (CH, C4), 23.78 (CH, C3), 53.04 (CH, C1’), 54.40 (CH, 

C2), 169.77 (Cq, C1). 

 

(S)-2-Aminobutanamide (6)228 

 

(S)-Methyl 2-aminobutanoate hydrochloride (1 mmol, 153 mg) was dissolved in 6 ml of 

ammonia (7 M) in methanol. The solution was stirred under microwave irradiation 

(70 W) at 100 °C for 240 min. The mixture was evaporated to dryness and the residue 

was purified by column chromatography (gradient of dichloromethane : methanol of 

100 : 0 to 70 : 30, containing 2% aqueous ammonia solution). Pure fractions were 
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combined, evaporated to dryness and subsequently dissolved in water and lyophilized 

(yield 77%). 

Appearance: clear liquid. Solubility:  soluble in chloroform, methanol, water. 

Detection: Ninhydrin reagent. 1H NMR  (500 MHz, CDCl3) δ ppm 0.95 (t, 3H, J = 

7.55, C4H), 1.52-1.60 (m, 1H + 2H, C3H + NH2), 1.78-1.87 (m, 1H, C3H), 3.28-3.30 

(m, 1H, C2H), 5.79, 7.03 (2 s, 1H each, CONH2). 
13C NMR (125 MHz, CDCl3) δ ppm 

9.94 (CH, C4), 27.97 (CH, C3), 56.32 (CH, C2), 178.16 (Cq, C1). Obtained data 

corresponded to published data.228 

 

(S)-2-(3,4-Dichloro-2,5-dihydro-2-oxo-1H-pyrrol-1-yl)butanamide (8)165 

 

Mucochloric acid (2 mmol, 338 mg) and (S)-2-aminobutanamide (2 mmol, 204 mg) 

were dissolved in a mixture of 10 ml of chloroform and 0.2 ml of acetic acid. After 

addition of sodium triacetoxyborohydride (3 mmol, 636 mg, 1.5 equiv.) the mixture was 

stirred at room temperature for several hours. The reaction progress was monitored by 

TLC. After approximately 20 h a saturated solution of ammonium chloride (20 ml) was 

added to the reaction mixture. The product was extracted from the aqueous phase with 

chloroform (3 x 20 ml). The organic layers were collected and washed with water 

(20 ml) and subsequently with brine (10 ml). After drying over Na2SO4, the solvent was 

evaporated, and the residue purified by column chromatography eluting with 

cyclohexane : ethyl acetate (1 : 4). Yield 75% (lit.: 62%).165 

Appearance: white crystalline powder. Solubility:  soluble in chloroform, ethanol, 

methanol. TLC:  Rf = 0.38 (cyclohexane : ethyl acetate, 1:4). Detection: UV absorption 

at 254 nm, Ninhydrin reagent. Melting point : > 140 °C (decomp.). 1H NMR  

(500 MHz, CDCl3) δ ppm 0.94 (t, 3H, J = 7.43, C4H), 1.70-1.79, 1.95-2.04 (2 m, 1H 

each, C3H), 4.04, 4.34 (AB-system, 2H, J = 18.9, C4’H), 4.55-4.59 (m, 1H, C2H), 5.42, 

6.17 (2 br, 1H each, NH2). 
13C NMR (125 MHz, CDCl3) δ ppm 10.42 (CH, C4), 22.42 

(CH, C3), 50.98 (CH, C4’), 56.39 (CH, C2), 124.73 (Cq, C2’), 141.37 (Cq, C3’), 165.00 
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(Cq, C1’), 171.40 (Cq, C1). LC-MS  m/z 237 ([M + H]+). [α]20
D: -21.2 (c = 0.33, 

CHCl3). 

 

(2S)-2-(2-Oxopyrrolidin-1-yl)butanamide (1)165 

 

(S)-2-(3,4-Dichloro-2,5-dihydro-2-oxo-1H-pyrrol-1-yl)butanamide (50 mg, 0.2 mmol) 

was dissolved in 2 ml ethanol. Triethylamine (0.07 ml, 0.5 mmol) and dry 10% Pd/C 

(5 mg) were added and the mixture was hydrogenated at 50 psi for 2 hours while 

stirring at room temperature. The mixture was filtrated (elution with dichloromethane) 

through a short column of silica gel, which previously has been washed with hexane to 

remove lipophilic impurities. The filtrate was evaporated to dryness giving the product 

with nearly quantitative yield (lit.: 91%).165 

Appearance: white crystalline powder. Solubility:  soluble in chloroform, ethyl acetate, 

methanol, water. Melting point:  116-119 °C (lit.: 115-117 °C).229 1H NMR  (500 MHz, 

CDCl3) δ ppm 0.89 (t, 3H, J = 7.40, C4H), 1.67, 1.95 (2 m, 1H each, C3H), 2.02 (m, 

2H, C3’H), 2.40 (m, 2H, C2’H), 3.41 (m, 2H, C4’H), 4.43 (dd, 1H, J = 8.85, 6.95, 

C2H), 5.47, 6.28 (2 s, 1H each, CONH2). 
13C NMR (125 MHz, CDCl3) δ ppm 10.5 

(CH, C4), 18.1 (CH, C3’), 20.9 (CH, C3), 31.1 (CH, C2’), 43.9 (CH, C4’), 56. 1 (CH, 

C2), 172.1 (Cq, C1’), 176. 1 (Cq, C1). 

 

(2S)-[3,4-³H]2-(2-Oxopyrrolidin-1-yl)butanamide (3) 

 

The labeling of (2S)-2-(2-oxopyrrolidin-1-yl)butanamide with tritium was performed by 

Quotient Bioresearch, UK using the following procedure: (2S)-2-(2-oxopyrrolidin-1-
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yl)butanamide (3 mg) and 10% palladium on charcoal (20 mg) were stirred in ethanol 

(2 ml) containing N,N-diisopropylethylamine (100 µl) in the presence of tritium gas 

(10 Ci) for 4 hours. Labile tritium was removed by repeated evaporation to dryness 

from ethanol. The crude yield was 850 mCi and the radiochemical purity was 60%. 

Purification of the radioligand was performed by HPLC (detection at 205 nm) leading to 

a radiochemical purity of 99.7%. The specific activity was determined to be 98 Ci/mmol 

(3.6 TBq/mmol). 

 

8.2.2 Synthesis of [³H]brivaracetam 

4-Allyl-5-hydroxyfuran-2(5 H)-one (22) 

 

The synthesis was performed in analogy to the procedure described by Bourguignon 

and Wermuth.180 Glyoxylic acid monohydrate (10 mmol, 0.92 g) and morpholine 

hydrochloride (11 mmol, 1.4 g) were suspended in 8 ml dioxane. Under continuous 

stirring 2.5 ml of water and freshly distilled pent-4-enal (10.5 mmol, 1.0 ml) were added 

dropwise. The mixture was stirred for 1 h at room temperature until it became 

homogenous. It was then heated under reflux for 24 h. For the workup dioxane was 

removed by evaporation under vacuum. The product was extracted from the remaining 

aqueous residue with diethyl ether (3 x 20 ml). The organic phases were combined and 

washed with water. After drying with Mg2SO4 it was evaporated to dryness. Purification 

was performed by column chromatography using dichloromethane : ethyl acetate (9 : 1) 

for elution. Yield 42%. 

Appearance: yellowish liquid. Solubility:  soluble in diethyl ether, chloroform, 

methanol. TLC:  Rf = 0.49 (cyclohexane : ethyl acetate, 1:1). Detection: UV absorption 

at 254 nm, Ninhydrin reagent. 1H NMR (500 MHz, CDCl3) δ ppm 3.02-3.25 (m, 2H, 

C5H), 5.19-5.21, 5.22-5.23 (2 m, 1H each, C7H), 5.80-5.88 (m, 2H, C2H+C6H), 6.01 

(s, 1H, C4H). 13C NMR (125 MHz, CDCl3) δ ppm 31.8 (CH, C5), 98.8 (CH, C4), 

118.1 (CH, C2), 119.4 (CH, C7), 131.3 (CH, C6), 167.8 (Cq, C3), 171.4 (Cq, C1). LC-

MS m/z 138.9 ([M - H]-). 



120 8 Experimental part 
 

(S)-2-(4-Allyl-2-oxo-2,5-dihydro-1H-pyrrol-1-yl)butanamide (27) 

 

The reaction is performed essentially as described in 8.2.1 applying similar conditions 

as described by Das Sarma et al.:165 4-allyl-5-hydroxyfuran-2(5H)-one (3.6 mmol, 

0.50 g) and (S)-2-aminobutanamide (3.6 mmol, 0.37 g) were given into a mixture of 

15 ml of chloroform and 0.4 ml of acetic acid. Sodium triacetoxyborohydride 

(5.4 mmol, 1.1 g, 1.5 equiv.) was added and the mixture was stirred at room temperature 

for several hours, while reaction progress was monitored by TLC. After completion of 

the reaction (approximately 24 h), a saturated solution of ammonium chloride (15 ml) 

was added to the reaction mixture. The product was extracted from the aqueous phase 

with chloroform (3 x 15 ml). The organic layers were combined and after washing with 

water (2 x 20 ml) and subsequently with brine (20 ml), the organic phase was dried over 

Mg2SO4. The solvent was evaporated under vacuum and the remaining residue purified 

by column chromatography eluting with dichloromethane : methanol (9 : 1). Yield 53%. 

The sample used for labeling with tritium was further purified by preparative HPLC: 

Elution was performed with methanol : H2O, 30 : 70 for 10 min, then a gradient to a 

final ratio of 50 : 50 was run over 40 min. The product was eluted at a retention time of 

19.6 min, detection was performed by UV absorption at 254 nm. 

Appearance: yellow waxy solid. Solubility:  soluble in chloroform, methanol. TLC:  Rf 

= 0.51 (dichloromethane : methanol, 9:1). Detection: UV absorption at 254 nm, 

Ninhydrin reagent. Melting point:  72-74 °C. 1H NMR  (500 MHz, CDCl3) δ ppm 0.89 

(t, 3H, J = 7.43, C4H), 1.67-1.76, 1.94-2.03 (2 m, 1H each, C3H), 3.09-3.11 (m, 2H, 

C5’H), 3.84-3.88, 4.01-4.05 (2 m, 1H each, C4’H), 4.48-4.51 (m, 1H, C2H), 5.12-5.16 

(m, 2H, C7’H), 5.54 (br, 1H, NH2), 5.77-5.86 (m, 2H, C6’H+C2’H), 6.44 (br, 1H, NH2). 
13C NMR (125 MHz, CDCl3) δ ppm 10.6 (CH, C4), 22.2 (CH, C3), 34.1 (CH, C4’), 

51.6 (CH, C5’), 55.8 (CH, C2), 118.4 (CH, C7’), 121.9 (CH, C2’), 132.8 (CH, C6’), 

159.2 (Cq, C3’), 172.4, 172.6 (Cq, C1’+C1). LC-MS  m/z 207.1 ([M - H]-). 
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(2S)-2-(2-Oxo-4-propylpyrrolidin-1-yl)butanamide (21) 

(diastereomeric mixture of brivaracetam70) 

 

The precursor molecule 27 (0.18 mmol, 37 mg) was given into a hydrogenation vial 

containing 2 ml of ethanol. A catalytic amount of dry 10% palladium on charcoal 

(40 mg) was added and the suspension was hydrogenated at 50 psi for 1 h while stirring 

at room temperature. The reaction mixture was then filtered through Celite® eluting 

with methanol. The obtained filtrate was evaporated to dryness under vacuum and 

subsequently purified by preparative HPLC: elution was performed with methanol : 

H2O, 30 : 70 for 20 min, continuing with a gradient to a ratio of 50 : 50 within 40 min, 

then a gradient to a final concentration of 100% methanol was run over 10 min. The 

product was eluted at a retention time of 42.5 min, detection was performed by UV 

absorption at 205 nm.  

Appearance: white crystalline solid. Solubility:  soluble in chloroform, ethyl acetate, 

methanol. Melting point:  77 °C. 1H NMR  (500 MHz, CDCl3) δ ppm 0.87-0.91 (m, 

6H, C7’H+C4H), 1.27-1.34 (m, 2H, C6’H), 1.36-1.43 (m, 2H, C5’H), 1.62-1.71, 1.88-

1.97 (2 m, 1H each, C3H), 2.03-2.14 (m, 1H, C2’H), 2.28-2.36 (m, 1H, C3’H), 2.48-

2.59 (m, 1H, C2’H), 2.97-3.00, 3.45-3.53 (2 m, 1H each, C4’H), 4.39-4.44 (m, 1H, 

C2H), 5.39, 6.20 (2 br, 1H each, NH2). 
13C NMR (125 MHz, CDCl3) δ ppm 10.4, 10.5 

(CH, C4)*, 14.0 (CH, C7’), 20.5, 20.6 (CH, C6’)*, 20.8, 20.9 (CH, C3)*, 31.8, 31.9 

(CH, C3’)*, 36.6, 36.8 (CH, C5’)*, 37.6, 37.9 (CH, C2’)*, 49.5, 49.7 (CH, C4’)*, 56.0 

(CH, C2), 171.9, 172.2 (Cq, C1’)*, 175.5, 175.7 (Cq, C1)* [*double signals result from 

diastereomeric mixture]. LC-MS  m/z 213.3 ([M + H]+). 
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(2S)-[³H]2-(2-Oxo-4-propylpyrrolidin-1-yl)butanamide ( 28, mixture of 9 and 29) 

      

Compound (S)-2-(4-allyl-2-oxo-2,5-dihydro-1H-pyrrol-1-yl)butanamide was labeled 

with tritium by Quotient Bioresearch according to the following procedure: 3 mg of (S)-

2-(4-allyl-2-oxo-2,5-dihydro-1H-pyrrol-1-yl)butanamide and 10 mg 10% palladium on 

charcoal were given into 2 ml of ethanol and stirred in the presence of tritium gas 

(10 Ci) for 4 h. The suspension was filtered to remove catalyst and subsequently 

repeatedly evaporated to dryness from ethanol to remove labile tritium. The crude yield 

obtained was 1.5 Ci and radiochemical purity was determined to be greater than 90%. 

Separation of diastereomers was achieved by chiral HPLC (Chiralpak AD-H 5 µm, 

250 x 46 mm column, isocratic elution with ethanol : hexane (55 : 45) at 25 °C with a 

flow rate of 1 ml/min, UV detection at 205 nm). [³H]BRV was eluted after 8.75 min 

with a radiochemical purity of 99.5% and a specific activity of 94 Ci/mmol 

(3.5 TBq/mmol). [³H]isoBRV was obtained with a retention time of 6.52 min with a 

radiochemical purity of 99.3% and a specific activity of 98 Ci/mmol (3.6 TBq/mmol). 

 

8.2.3 Synthesis of brivaracetam 

4-n-Propylbutyrolacton (13)70 (via Grignard reagent) 

 

Reaction conditions for the preparation of the Grignard reagent n-

propylmagnesiumbromide (11) were adopted from a published procedure of a Grignard 

reagent.230 Therefore, magnesium turnings (100 mmol, 2.43 g) were placed in a reaction 

vial, which was flame-dried and flushed with argon afterwards. 12 ml of diethyl ether 

were added to cover the turnings. Under continuous stirring, 1 ml of a solution of 
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n-propylbromide (88 mmol, 8.0 ml) in 28 ml of diethyl ether was added and the reaction 

was started by cautious heating. The n-propylbromide solution was then added dropwise 

in a rate to maintain a gentle reflux. After addition has been completed the mixture was 

gently refluxed for 30 more minutes. The freshly prepared Grignard reagent (assumed 

concentration: 1.76 mmol/ml in diethyl ether) was directly used for the next reaction 

step. 

To prepare the propyl-substituted lactone (13) in accordance to the procedure described 

by Kenda et al.70 copper(I) iodide (8.2 mmol, 1.6 g) was placed in a reaction vessel, 

which was flame-dried and filled with argon afterwards. 3 ml of diethyl ether were 

added to cover the copper(I) iodide. The suspension was cooled down to -20 °C 

(acetone/dry ice) and the Grignard reagent 11 (16.4 mmol, 9.32 ml) was added dropwise 

under stirring. It was then stirred for 30 more minutes at -20 °C, before the mixture was 

cooled down to -40 °C and trimethylsilyl chloride (8.2 mmol, 1.1 ml) was added 

dropwise. Subsequently, a solution of the furanone 12 (8.2 mmol, 0.58 ml) in 5 ml of 

diethyl ether was added dropwise. The cooling system was removed and after stirring at 

room temperature for 30 more minutes saturated ammonium chloride solution (20 ml) 

was added for cleavage of the formed trimethylsilyl ester. The mixture was filtered to 

remove copper salts and then the product was obtained by extraction (3 x 20 ml) with 

ethyl acetate. The organic layers were combined, washed with H2O, dried over Na2SO4 

and evaporated to dryness in vacuum. The lactone was used for the following reaction 

step without further purifications. 

Appearance: clear liquid. Solubility:  soluble in dichloromethane, ethyl acetate. 1H 

NMR  (500 MHz, CDCl3) δ ppm 0.92 (t, 3H, J = 7.25, C7H), 1.25-1.44 (m, 4H, 

C5H+C6H), 2.16 (dd, 1H, J = 17.0, 7.85, C2H), 2.50-2.63 (m, 2H, C2H+C3H), 3.90, 

4.39 (2 dd, 1H each, J = 9.15, 6.95, C4H). 13C NMR (125 MHz, CDCl3) δ ppm 13.9 

(CH, C7), 20.6 (CH, C6), 34.5, 35.2, 35.5 (CH, C5, C2, C3), 73.4 (CH, C4), 177.3 (Cq, 

C1). LC-MS  m/z 126.8 ([M - H]-). 
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3-(Iodomethyl)-hexanoic acid (14)70 

 

The crude lactone 13 (6.5 mmol, 0.83 g) was dissolved in 6 ml dichloromethane and the 

solution was cooled down to 0 °C. Under stirring, trimethylsilyl iodide (7.2 mmol, 

1.0 ml, 1.1 equiv.) was added dropwise. It was stirred for 2 further hours at room 

temperature. Afterwards, 7.2 ml HCl 1 M was added followed by 2.5 ml 10% sodium 

thiosulfate solution. The product was extracted from the aqueous phase with 

dichloromethane (3 x 10 ml). Organic layers were combined, washed with brine, dried 

over Na2SO4 and evaporated to dryness under vacuum. The product was used without 

further purification. 

Appearance: dark yellow liquid. Solubility:  soluble in dichloromethane. 1H NMR  

(500 MHz, CDCl3) δ ppm 0.89-0.93 (m, 3H*, C7H), 1.25-1.36 (m, 4H*, C5H+C6H), 

1.69-1.76 (m, 1H, C3H), 2.36, 2.45 (2 dd, 1H each, J = 16.4, 7.25, C2H), 3.29, 3.38 (2 

dd, 1H each, J = 10.1, 4.10, C4H) [*signals superimposed by impurity from reactant 

(Grignard)]. 13C NMR (125 MHz, CDCl3) δ ppm 13.9 (CH, C7), 14.6 (CH, C4), 19.6 

(CH, C6), 35.3 (CH, C3), 36.5 (CH, C5), 38.9 (CH, C2), 176.3 (Cq, C1). Obtained data 

corresponded to published data.70 

 

(S)-2-(tert-Butoxycarbonylamino)butanoic acid (15)231 

 

For N-protection of the amino acid, (S)-2-aminobutyric acid (50 mmol, 5.2 g) was given 

into a mixture of 25 ml dioxane and 20 ml H2O, which was cooled down to 0 °C. 

Sodium hydroxide (55 mmol, 2.2 g, 1.1 equiv.) was dissolved in 10 ml of H2O and 

given into the reaction mixture. After addition of di-tert-butyl dicarbonate (55 mmol, 

12 g, 1.1 equiv.), the vessel was rinsed with 5 ml dioxane and the reaction mixture 

stirred at room temperature for 24 h. Dioxane was removed under vacuum, some more 
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H2O was added and by addition of 10% sodium hydrogen sulfate solution the mixture 

was acidified to ~ pH 3. The product was extracted with ethyl acetate (3 x 30 ml), 

organic layers were combined and washed with brine. After drying with Mg2SO4, it was 

evaporated to dryness under vacuum. Yield: almost quantitative (lit.: 100%).231 

Appearance: clear high-viscosity oil. Solubility:  soluble in dichloromethane, 

chloroform, ethyl acetate, methanol. TLC:  Rf = 0.28 (hexane : ethyl acetate, 2:1 + 

1 drop acetic acid). Detection: Ninhydrin reagent. 1H NMR  (500 MHz, CDCl3) δ ppm 

0.96 (t, 3H, J = 7.40, C4H), 1.43 (s, 9H, C3’H), 1.67-1.76, 1.85-1.93 (2 m, 1H each, 

C3H), 4.05-4.28 (2 m, 1H, C2H), 5.00, 6.17 (br d + br, 1H, J = 7.5, NH). 13C NMR 

(125 MHz, CDCl3) δ ppm 9.6 (CH, C4), 25.6 (CH, C3), 28.3 (CH, C3’), 54.5 (CH, C2), 

80.2 (Cq, C2’), 155.6 (Cq, C1’), 177.3 (Cq, C1). Obtained data corresponded to 

published data.231 LC-MS  m/z 202.1 ([M - H]-). 

 

(S)-4-Methoxybenzyl 2-(tert-butoxycarbonylamino)butanoate (17) 

 

In analogy to esterification procedures described by Dutton et al.,174 a solution of (S)-2-

(tert-butoxycarbonylamino)butanoic acid (20 mmol, 4.1 g) in 30 ml anhydrous DMF 

was cooled down to 0 °C and cesium carbonate (20 mmol, 6.5 g, 1 equiv.) was added. 

After stirring for 1 h at 0 °C, 4-methoxybenzyl chloride (20 mmol, 2.7 ml, 1 equiv.) was 

given into the suspension and stirred for 30 further minutes at 0 °C. It was then left 

stirring at room temperature over night. For the workup the reaction mixture was poured 

into 100 ml H2O and the product extracted with cyclohexane. The organic layers were 

combined, washed with saturated sodium hydrogen carbonate solution, brine and water, 

dried over Mg2SO4 and evaporated to dryness under vacuum. Absence of reactant 

(amino acid) was confirmed by TLC, before the product was precipitated as 

hydrochloride without further purifications. 

Appearance: white crystalline solid. Solubility:  soluble in cyclohexane, chloroform, 

dioxane, methanol. TLC:  Rf = 0.71 (cyclohexane : ethyl acetate, 1:1). Detection: UV 

absorption at 254 nm, Ninhydrin reagent. Melting point:  61 °C. 1H NMR  (500 MHz, 

4
3

2
1 O

NH

O

1''

O

O

2''

3''

3''

3''

1'

OMe



126 8 Experimental part 
 

CD3OD) δ ppm 0.86 (t, 3H, J = 7.25, C4H), 1.41 (s, 9H, C3’’H), 1.61-1.69, 1.77-1.85 

(2 m, 1H each, C3H), 3.79 (s, 3H, OMe), 4.23-4.28 (m, 1H, C2H), 4.98-5.13 (2 m, 3H, 

NH+C1’H), 6.86, 7.26 (2 d, 2H each, J = 8.80, Ar). 13C NMR (125 MHz, CD3OD) δ 

ppm 9.5 (CH, C4), 25.9 (CH, C3), 28.3 (CH, C3’’), 54.6 (CH, C2), 55.3 (CH, OMe), 

66.8 (CH, C1’), 79.7 (Cq, C2’’), 113.9 (CH, Ar), 127.6 (Cq, Ar), 130.1 (CH, Ar), 155.3 

(Cq, C1’’), 159.7 (Cq, Ar), 172.7 (Cq, C1). LC-MS  m/z 324.4 ([M + H]+). 

 

(S)-4-Methoxybenzyl 2-aminobutanoate (base of 18) 

 

(S)-4-Methoxybenzyl 2-(tert-butoxycarbonylamino)butanoate was dissolved in 10 ml 

HCl/dioxane (4 M) and stirred at room temperature. After approximately 1.5 hours 

20 ml diethyl ether were added dropwise and stirred for 2 additional hours. The formed 

precipitate was filtered, washed with diethyl ether and dried at 30 °C. To remove the 

carboxylic acid, which partially formed by acidic hydrolysis of the ester, the filtrate was 

dissolved in some H2O, alkalized with saturated sodium hydrogen carbonate solution 

and directly extracted from the aqueous phase with dichloromethane. 

Appearance: colorless liquid. Solubility:  soluble in THF, chloroform. Melting point  

(18): > 235 °C (decomp.). Detection: UV absorption at 254 nm, Ninhydrin reagent. 1H 

NMR  (500 MHz, CDCl3) δ ppm 0.90 (t, 3H, J = 7.43, C4H), 1.55-1.64, 1.69-1.78 (2 m, 

1H each, C3H), 3.38-3.40 (m, 1H, C2H), 3.79 (s, 3H, OMe), 5.04-5.09 (m, 2H, C1’H), 

6.87 (d, 2H, J = 8.55, Ar), 7.27 (d, 2H , J = 8.85, Ar). 13C NMR (125 MHz, CDCl3) δ 

ppm 9.8 (CH, C4), 28.0 (CH, C3), 55.3 (CH, OMe), 55.7 (CH, C2), 66.4 (CH, C1’), 

114.0 (CH, Ar), 127.9 (Cq, Ar), 130.1 (CH, Ar), 159.7 (Cq, Ar), 176.0 (Cq, C1). LC-

MS m/z 223.9 ([M + H]+). 
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(2S)-4-Methoxybenzyl 2-(3-(iodomethyl)hexanamido)butanoate (19) 

 

For the amide coupling reaction conditions were applied as formerly described by 

Herrmann et al.175 3-(Iodomethyl)-hexanoic acid (2.2 mmol, 0.56 g) was dissolved in 

10 ml anhydrous THF and N-methylmorpholine (2.2 mmol, 0.22 g, 1 equiv.) was added. 

After the solution has been cooled down to -25 °C (dry ice/isopropanol) isobutyl 

chloroformate (2.2 mmol, 0.30 ml, 1 equiv.) was added under stirring. Approximately 

1 min later a solution of (S)-4-methoxybenzyl 2-aminobutanoate (2.5 mmol, 0.56 g, 

1.1 equiv.) in 10 ml THF, which previously has been cooled on ice, was added and the 

vessel rinsed with THF. The reaction mixture was stirred for 3 more hours, while it was 

allowed to gradually warm to room temperature. For the workup THF was removed 

under vacuum and some H2O (20 ml) was added. The mixture was acidified to pH 1-2 

with 10% sodium hydrogen sulfate solution and extracted with ethyl acetate (3 x 20 ml). 

The organic layers were combined and washed three times each with saturated sodium 

hydrogen carbonate solution and H2O. Subsequently, it was dried over Mg2SO4 and 

evaporated to dryness under vacuum. Due to instability the product was only roughly 

purified by a short chromatographic column eluting with cyclohexane : ethyl acetate 

(2 : 1). Yield: 59%. 

 

Appearance: yellow waxy solid. Solubility:  soluble in THF, chloroform, ethyl acetate. 

TLC:  Rf = 0.53 (cyclohexane : ethyl acetate, 2:1). Detection: UV absorption at 254 nm, 

Ninhydrin reagent. 1H NMR  (500 MHz, CDCl3) δ ppm 0.84-0.93 (m, 6H*, 

C7’’H+C4H), 1.22-1.35 (m, 4H*, C6’’H+C5’’H), 1.60-1.74 (2 m, 1H each, 

C3’’H+C3H), 1.82-1.90 (m, 1H, C3H), 2.13-2.25 (m, 2H, C2’’H), 3.27-3.40 (m, 2H, 

C4’’H), 3.79 (s, 3H, OMe), 4.52-4.60 (m, 1H, C2H), 5.04-5.14 (m, 2H, C1’H), 6.00-

6.04 (m, 1H, NH), 6.86 (d, 2H, J = 8.50, Ar), 7.27 (d, 2H, J = 8.50, Ar) [*signals 

superimposed by impurity from reactant (lactone)]. 13C NMR (125 MHz, CDCl3) δ 

ppm 9.5 (CH, C4), 13.9 (CH, C7’’), 16.4, 16.6 (CH, C4’’)*, 19.6, 19.7 (CH, C6’’)*, 
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25.4, 25.6 (CH, C3)*, 35.2, 35.5 (CH, C3’’)*, 36.5, 36.6 (CH, C5’’)*, 41.8, 41.9 (CH, 

C2’’)*, 53.2, 53.4 (CH, C2)*, 55.3 (CH, OMe), 67.0 (CH, C1’), 114.0 (CH, Ar), 127.4 

(Cq, Ar), 130.2 (CH, Ar), 159.8 (Cq, Ar), 170.9 (Cq, C1), 172.1 (Cq, C1’’) [*double 

signals result from diastereomeric mixture]. 

 

(2S)-4-Methoxybenzyl 2-(2-oxo-4-propylpyrrolidin-1-yl)butanoate (20) 

 

The cyclization reaction was perfomed applying similar conditions as described by 

Sánchez et al.176 (2S)-4-Methoxybenzyl 2-(3-(iodomethyl)hexanamido)butanoate 

(1.2 mmol, 0.55 g) was dissolved in 50 ml THF, anhydrous and cooled down to 0 °C. 

After gradual addition of potassium tert-butoxide (1.3 mmol, 0.15 g) under stirring, the 

mixture was allowed to warm to room temperature and it was stirred for 2 additional 

hours. At the end of the reaction time 30 ml saturated ammonium chloride solution were 

added and the product was extracted with ethyl acetate (3 x 30 ml). The organic layers 

were collected and washed with 10% sodium thiosulfate solution and H2O. Finally, it 

was dried with Mg2SO4 and evaporated to dryness under vacuum. Purification was done 

by column chromatography using cyclohexane : ethyl acetate (1 : 1) as eluant. The 

product was further purified by HPLC: elution was performed using methanol : H2O (25 

: 75) for 20 min, continuing with a gradient to a ratio of 50 : 50 within 20 min, followed 

by a second gradient to 100% methanol within 10 min, which was maintained for 20 

more minutes. The product was eluted after 51.0 min, detection was performed by UV 

absorption at 254 nm. The ratio of the two isomers was 1:1 (determined by NMR). 

Appearance: white crystalline solid. Solubility:  soluble in toluene, diethyl ether, 

chloroform, ethyl acetate. TLC:  Rf = 0.50 (cyclohexane : ethyl acetate, 1:1). Detection: 

UV absorption at 254 nm. Melting point:  44 °C. 1H NMR  (500 MHz, CDCl3) δ ppm 

0.85-0.90 (m, 6H, C7’’H+C4H), 1.25-1.39 (m, 4H, C6’’H+C5’’H), 1.59-1.66, 1.94-2.00 

(2 m, 1H each, C3H), 2.03-2.09 (m, 1H, C2’’H), 2.23-2.34 (m, 1H, C3’’H), 2.47-2.53 
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(m, 1H, C2’’H), 2.88, 3.01, 3.35, 3.51 (4 dd*, 2H, J = 9.45, 9.15, 7.90, 6.65, C4’’H), 

3.78, 3.79 (2 s*, 3H, OMe), 4.66-4.69 (m, 1H, C2H), 5.00-5.04, 5.06-5.09 (2 m, 1H 

each, C1’H), 6.86 (d, 2H, J = 8.50, Ar), 7.25 (d, 2H, J = 8.20, Ar) [*double signals result 

from diastereomeric mixture]. 13C NMR (125 MHz, CDCl3) δ ppm 10.4 (CH, C4), 13.7 

(CH, C7’’), 20.2, 20.3 (CH, C6’’)*, 21.6, 21.9 (CH, C3)*
, 31.5 (CH, C3’’), 36.2, 36.5, 

37.1, 37.2 (CH, C2’’, C5’’)*, 48.7, 49.1 (CH, C4’’), 54.7, 54.9 (CH, C2, OMe), 66.3 

(CH, C1’), 113.6 (CH, Ar), 127.3 (Cq, Ar), 129.7, 129.8 (CH, Ar), 170.7 (Cq, C1), 

175.2 (Cq, C1’’) [*double signals result from diastereomeric mixture]. LC-MS  m/z 

334.3 ([M + H]+). 

 

(2S)-2-(2-Oxo-4-propylpyrrolidin-1-yl)butanamide (21) 

(diastereomeric mixture of brivaracetam70) 

 

The general performance of the following reaction was done according to a procedure 

described by Levin et al.178 For the preparation of the aluminum amide reagent 

(assumed: 0.67 M) ammonium chloride was suspended in 4 ml toluene, anhydrous and 

cooled to 5 °C. 2 ml of a trimethylaluminum solution (2 M in toluene) were added 

dropwise, before the cooling was removed and the mixture stirred for 2 h at room 

temperature. 

(2S)-4-Methoxybenzyl 2-(2-oxo-4-propylpyrrolidin-1-yl)butanoate (0.41 mmol, 0.14 g) 

was dissolved in 4 ml anhydrous toluene and flooded with argon. After addition of 2 ml 

of the previously in situ prepared aluminum amide reagent (1.3 mmol, 3 equiv.) it was 

heated up to 50 °C and stirred over night. The reaction was stopped by cautious addition 

of water. The formed precipitate was removed by filtration followed by washing with 

ethyl acetate and saturated sodium hydrogen carbonate solution. The product was 

extracted from the obtained filtrate with ethyl acetate (3 x 10 ml), the organic layers 

were combined, dried over Mg2SO4 and evaporated to dryness under vacuum. The final 
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product was purified by HPLC: elution was performed with methanol : H2O (30 : 70) 

for 20 min, continuing with a gradient to a ratio of 50 : 50 within 40 min, then a 

gradient to a final concentration of 100% methanol was run over 10 min. The product 

was eluted with a retention time of 42.5 min, detection was performed by UV 

absorption at 210 nm. Yield: 20%. 

For chemical properties see 8.2.2 

 

8.3 Membrane preparation of native tissue 

8.3.1 Rat brain membrane 

For radioligand binding studies rat brain membrane preparations from cortex as well as 

striatum were utilized. During the whole preparation procedure brains were kept on ice. 

After thawing frozen brains (-80 °C) in ice-cold sucrose solution (0.32 M), they were 

put on an ice-cold glass plate for dissection. Brains were carefully cut on the top side 

along the two hemispheres with a scalpel, allowing the removal of the cortex on either 

half. Cortical tissue was collected and stored in ice-cold sucrose solution (0.32 M) until 

further preparation. In the meanwhile, the striatum – a subcortical, striped brain region 

located in the forebrain – was dissected out. Striatal tissue was collected in ice-cold 

Tris-HCl buffer. 

Striatum 

After determination of the wet weight, the collected striatal tissue was placed in ice-cold 

Tris-HCl buffer and disrupted (Ultraturrax, setting 3, 10 s). The obtained suspension 

was centrifuged (37000 g, 4 °C for 15 min) and the supernatant was discarded. The 

remaining pellet was resuspended in ice-cold Tris-HCl buffer and centrifuged again 

(37000 g, 4 °C for 15 min). The pellet was resuspended in ice-cold Tris-HCl buffer 

(100 mg per 1 ml buffer) and homogenized (Ultraturrax, setting 3, 10 s). The obtained 

homogenate was aliquoted, shock-frozen and stored at -80 °C until use. 

Cortex 

The collected cortical tissue in ice-cold sucrose solution (0.32 M) was disrupted with a 

Potter glass homogenizer and afterwards centrifuged at 1000 g, 4 °C for 10 min. 

Whereas the pellet P1 – containing e.g. cell debris and nuclei – was discarded, the 

supernatant was transferred into a new tube and was centrifuged at 37000 g, 4 °C for 
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1 h. The resulting pellet was resuspended and homogenized (Ultraturrax, setting 3, 10 s) 

in ice-cold deionized water. After centrifugation at 37000 g, 4 °C for 1 h, a second wash 

step was performed in which the pellet was resuspended and homogenized (Ultraturrax, 

setting 3, 10 s) in ice-cold Tris-HCl buffer and again centrifuged at 37000 g, 4 °C for 

1 h. After removal of the supernatant, the pellet was resuspended and homogenized 

(Ultraturrax, setting 3, 10 s) in a small amount of ice-cold Tris-HCl buffer. The 

homogenized membrane suspension was aliquoted, shock-frozen and stored at -80 °C 

until use. 

 

8.3.2 Mouse brain membrane 

Like all membrane preparations of native tissue, the whole procedure of mouse brain 

membrane preparation was performed on ice. For whole brain membrane preparations, 

frozen (-80 °C) brains of Black 6 wild-type mice, or brains of SV2A KO mice, 

respectively, were thawed in Tris-HCl buffer stored on ice. After disruption of the 

brains with a Potter glass homogenizer, the suspension was centrifuged (37000 g, 4 °C, 

15 min). The supernatant was discarded and the pellet was resuspended in ice-cold Tris-

HCl buffer and homogenized (Ultraturrax, setting 3, 10 s). The obtained suspension was 

centrifuged (37000 g, 4 °C, 15 min) and the supernatant was discarded. After 

resuspension, it was once more centrifuged and the remaining pellet was resuspended in 

a small amount of ice-cold Tris-HCl buffer and homogenized (Ultraturrax, setting 3, 

10 s). The suspension was aliquoted, shock-frozen and stored at -80 °C until use. 

 

8.3.3 Human brain membrane 

Preparation of human brain tissue was performed under elevated precautionary safety 

measures (under the hood, face mask, double layer of gloves etc.). All waste was 

collected (S2) and autoclaved prior to disposal. Implements and place of work were 

sterilized with Dismozon® afterwards. 

Membrane preparations from human thalamus and human putamen each were prepared 

separately by pooling tissue from three different brain samples. As far as it is known, 

utilized brain samples originated from males as well as females, aged 25-46 years 

without relevant underlying conditions. Indicated causes of death were accident, cardiac 

death/arteriosclerosis and hypothermia. 
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Membrane preparations from tissue obtained by epilepsy surgery from 

pharmacoresistant epileptic patients were prepared for each sample separately. The 

following information were provided along with the tissue: the brain tissue was resected 

during epilepsy surgery from people with focal pharmacoresistant epilepsy after 

standard presurgical assessment including cerebral 3 Tesla magnetic resonance imaging, 

neuropsychological testing and video-EEG telemetry using scalp electrodes. In all 

patients, tissue resection was clinically indicated with the goal to treat epilepsy. In six of 

the eight patients (samples 1-4, 6 and 7) selective amygdala-hippocampectomy (in one 

patient (sample 7) together with a resection of two thirds of the temporal lobe) was 

performed. In one patient (sample 5) a tailored lesionectomy of a cavernoma in the 

frontal lobe was carried out. Sample 8 was resected from a patient suffering from a 

glioblastoma in the temporomesial region. 

Brains were kept on ice during the whole preparation procedure. Initially, brain tissue, 

which was stored at -80 °C, was thawed on ice. After determination of the wet weight, 

ice-cold HEPES buffer was added and the tissue was homogenized (Ultraturrax, 

setting 6, 10 s). The obtained suspension was centrifuged (35000 g, 4° C, 20 min). The 

supernatant was discarded and the pellet resuspended in HEPES buffer and 

homogenized (Ultraturrax, setting 6, 10 s). The washing procedure was repeated until 

the supernatant remained clear. The final pellet was then resuspended in a small volume 

of HEPES buffer and homogenized (Ultraturrax, setting 1, 5 s). The homogenate was 

aliquoted, shock-frozen in liquid nitrogen and stored at -80 °C until use. 

When needed for binding studies, required amounts of aliquots were thawed at room 

temperature, diluted with Tris-HCl buffer and homogenized (vortex mixer). After 

centrifugation (35000 g, 4 °C, 20 min) the supernatant was discarded and the remaining 

pellet was resuspended (vortex mixer) in Tris-HCl buffer to a final concentration of 

5 mg/ml. 

 

8.3.4 Treatment of membrane preparations for studies with [³H]AMPA 

Protein membrane preparations used for binding studies with [³H]AMPA were 

additionally purified by washing and sonication. Therefore, membrane preparations 

(8.3.1 and 8.3.2) were diluted with additional Tris-HCl buffer to a volume of 10 ml and 

were sonicated, while cooling with ice. The suspension was spun down (30000 g, 4 °C, 
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20 min) and after resuspension of the pellet in 10 ml of Tris-HCl buffer the sonification 

and centrifugation procedure was repeated. The resulting pellet was resuspended in a 

defined volume of Tris-HCl buffer and was directly used for binding studies. 

 

8.4 Protein determination (Lowry) 

To determine the protein amount in a prepared membrane suspension a protein 

determination according to Lowry232 was performed. This method is based on a 

colorimetric reaction in which the protein concentration directly correlates with the 

developing intensity of a color. It consists of two partial reactions: under alkaline 

conditions copper(II) cations interact with free electron pairs of the nitrogens in peptide 

bonds. The emerging complex is square planar and blue colored (Biuret reaction). This 

copper protein complex acts as reducing agent, which reduces the likewise added 

yellow Folin-Ciocalteau reagent, containing molybdenum(VI)- and wolfram(VI)-

heteropolyacids (molybdenum blue reaction). The exact mechanism of this reaction is 

not completely understood. It is assumed that complexed copper, which previously has 

been reduced to copper(I), as well as the aromatic amino acid residues of tyrosine and 

tryptophan (independent from complex formation) are involved in the reduction of the 

Folin-Ciocalteau reagent. By determination of the extinction of several samples with 

known protein concentration, a sample with unknown protein concentration can be 

determined according to Lambert-Beer Law, which describes the proportionality 

between extinction and concentration: 

�λ =	�� 	 ∙ �	 ∙ 	� 

Equation 1: Lambert-Beer Law 

 Eλ: extinction at wavelength λ 

ε λ: absorption coefficient 

c: concentration 

l: path length 

One should be aware that several non-proteinogenic compounds like EDTA, ammonium 

sulfate, Tris, sucrose, citrate and phenols falsify the protein determination. If this is the 

case, in protein suspensions where these compounds are present, proteins should be 

precipitated with trichloroacetic acid and resolubilized in water. 
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In this present study BSA was used as standard for generation of a calibration line: the 

actual concentration of a solution with a supposed concentration of 1 mg/ml was 

determined by measuring the extinction at 280 nm, based on the knowledge that a 

1 mg/ml solution of BSA possesses an extinction of 0.66. This standard solution was 

used for the preparation of a series of dilutions ranging from 50 to 500 µg/ml. The series 

of dilutions as well as dilutions from the protein samples with unknown concentration 

(in a total volume of 200 µl) were complexed according to the following protocol: 

To each sample (BSA standard and protein samples), as well as to a blank (no protein), 

1 ml of freshly prepared reagent C (see 8.1.3.5) was added, homogenized and the 

solution incubated for 20 min at room temperature. Thereafter, 100 µl of reagent D (see 

8.1.3.5) was added, immediately homogenized and incubated for 30 more minutes. The 

extinction was then determined at a wavelength of 500 nm. 

 

8.5 Radioligand binding studies 

8.5.1 Introduction 

Radioligand binding studies156–158 are broadly used for the investigation of ligand-

receptor interaction in vitro. The availability of a radioactively labeled ligand allows to 

easily examine and characterize its binding behavior in native tissue as well as to 

recombinantly expressed receptors. In principle, the radioligand simply needs to be 

incubated with a preparation of the protein of interest for a certain amount of time. After 

separation of protein-bound from protein-unbound radioligand, it is possible to draw 

conclusions on the binding behavior by measuring the remaining quantity of 

radioactivity. Ligands labeled with the radioactive isotope tritium can be considered 

biologically identical to the unlabeled compound and thus, provide valuable information 

for understanding ligand-receptor interactions on a molecular level. 

As simple the principle concept, there are several demands that are indispensable for 

reliable and reproducible binding studies, above all on the radioligand itself. Ideally, 

radioligands should possess high affinity (< 5 nM), combined with a high specific 

activity (tritiated ligands: 30 to 100 Ci/mmol) and low non-specific binding (< 10-30%). 

It is furthermore important to optimize the procedure that enables separation of bound 

from free radioligand. The lower the affinity of a radioligand, the bigger the effect 

caused by dissociation during delayed separation times (dissociative loss). 
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The underlying principle of a ligand binding to its receptor is described by Equation 2 

(based on the law of mass action): 

	 + �	 			�
							��							
���������

							���							
���������  

Equation 2: Equilibrium of receptor-ligand binding 

R: receptor 

L: unbound ligand ≙ Free 

RL: receptor-ligand complex ≙ Bound 

k+1: association rate constant 

k-1: dissociation rate constant 

 

General procedure 

If not indicated otherwise, all experiments were performed in polypropylene test tubes 

in a total volume of 0.5 ml. After completion of incubation period (at 4 °C), protein-

bound ligand was recovered by vacuum filtration through glass fiber filters, followed by 

a wash step. For the filtering process with GF/C filters, always a double layer of this 

filter type was used, from which the upper one was continued to be used for analysis. 

Subsequently, the filters were dried (50 °C, 90 min) and filter pieces of each individual 

well were given into a separate vial and filled with scintillation cocktail (LumaSafeTM). 

After incubation for at least 6 hours, radioactivity was determined by liquid scintillation 

counting. Non-specific binding was determined by measuring radioligand binding in the 

presence of a high concentration of a coldligand (non-labeled compound). Specific 

binding was determined by subtracting non-specific binding from total binding for each 

single value. Data were analyzed by GraphPad Prism® 5.01. 

 

8.5.2 Kinetic experiments 

8.5.2.1 Background 

In kinetic experiments binding of a constant concentration of radioligand to a protein 

preparation is measured after different time intervals. Association experiments (see 

Figure 42 A) describe the binding of a radioligand to a receptor starting from time t0 

until steady state has been reached, whereas dissociation experiments (see Figure 42 B) 
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start at binding in steady state, when dissociation of radioligand from the receptor is 

initiated until no more radioligand remains bound to the receptor. 

A 

 

B 

 

Figure 42: Example curves of association binding (A) and dissociation binding (B); t1/2 indicates 
association half-life. 
 

From association experiments the association half life t1/2 can be determined, which 

allows the calculation of the observed kinetic constant kobs (min-1) from Equation 3: 

���� =	
ln 2

��/�
 

Equation 3: Calculation of kobs 

kobs: observed kinetic constant (min-1) 

t1/2: half-life of association (min) 

 

By determination of the dissociation half-life t1/2 from the dissociation experiment, it is 

possible to calculate the dissociation kinetic constant koff (Equation 4): 

��  =	
ln 2

��/�
 

Equation 4: Calculation of koff 

koff: dissociation kinetic constant (min-1) 

t1/2: half-life of dissociation (min) 
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Via Equation 5 

��! =	
���� 	− 	��  

�
 

Equation 5: Calculation of kon 

kon: association kinetic constant (M-1 min-1) 

kobs: observed kinetic constant (min-1) 

koff: dissociation kinetic constant (min-1) 

L: concentration of radioligand (M) 

the association kinetic constant kon is obtained, which allows calculation of the kinetic 

equilibrium dissociation constant KD (Equation 6): 

#$ =	
��  

��!
 

Equation 6: Calculation of kinetic KD 

KD: kinetic equilibrium dissociation constant (M) 

koff: dissociation kinetic constant (min-1) 

kon: association kinetic constant (M-1 min-1) 

 

8.5.2.2 Performance of kinetic experiments 

Kinetic experiments were performed essentially as described by Noyer et al.60 For 

association experiments the radioligand was given into buffer solution. The protein 

preparation (rat cortical membrane preparations, see 8.3.1) was added at different time 

intervals prior to vacuum filtration. Non-specific binding was determined for several 

time intervals by addition of unlabeled levetiracetam (1 mM) and subtracted from each 

measured value (total binding) to obtain the specific binding. For dissociation 

experiments the radioligand was first incubated together with the protein preparation in 

the buffer solution until steady state was reached. Dissociation was then started by 

addition of unlabeled levetiracetam (1 mM) at different time intervals prior to vacuum 

filtration. For determination of specific binding, the value, which asymptotically is 

approximated by the function, was subtracted from each measured value (total binding). 

For filtration GF/C glass fiber filters, pre-soaked for 30 min in 0.1% aqueous PEI 

solution, were used. After filtration the filters were washed three times with Tris-HCl 

buffer. Given results were obtained from three individual experiments performed in 

triplicate ([³H]LEV), three individual experiments performed in duplicate 
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([³H]isoBRV), or four individual experiments performed in duplicate ([³H]BRV), 

respectively. 

 

Table 16: Conditions for kinetic binding studies. 
 [³H]LEV [³H]isoBRV [³H]BRV 

buffer solution Tris-HCl buffer containing MgCl2 (2 mM) 

radioligand concentration 10 nM 5 nM 1 nM 

amount of protein per well 200 µg 100 µg 100 µg 

incubation time until 

dissociation was started 

120 min 180 min 240 min 

 

 

8.5.3 Saturation experiments 

8.5.3.1 Background 

Saturation experiments constitute a further subgroup of receptor binding experiments, 

by which the affinity (KD value) of a radioligand for a receptor as well as the density of 

a receptor (Bmax value) in a certain protein preparation can be determined. 

A 

 

B 

 
Figure 43: Example curve of saturation binding experiment (A) and linear transformation to a Rosenthal 
plot (B); KD indicates the concentration of the equilibrium dissociation constant and Bmax indicates the 
maximum number of binding sites. 
 

Therefore, the radioligand is incubated with the protein preparation in increasing 

concentrations, covering a range of 0.1 x KD to 10 x KD, if possible. The resulting 

function is a hyperbola (see Figure 43 A), described by Equation 7: 
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Equation 7: Mathematical function of saturation binding curve 

R-L: receptor-ligand complex ≙ Bound 

Bmax: maximum number of binding sites (cpm) 

L: unbound ligand ≙ Free 

KD: equilibrium dissociation constant (M) 

 

As indicated in Figure 43 the KD value corresponds to the concentration of radioligand 

at which 50% of the receptors are occupied, whereas Bmax equals the value that is 

asymptotically approximated by the hyperbola. Bmax (cpm) can subsequently be used for 

the calculation of Bmax (pmol/mg protein) (Equation 8 to Equation 10): 

)*	%+,-.	 = 	
%&'(	(�)0)

2	(0�) ∙ 	3445�53-�6	(%) ∙ 2.2 ∙ 9)3�. :��5;5�6	(<5/00+�)
 

Equation 8: Calculation of pM Bound 

Bmax: maximum number of binding sites (cpm) 

V: volume per well (ml) 

efficiency: counter efficiency (cpm/dpm ≙ cpm in %) 

2.2: factor for converting cpm in Bq 

 �for details see Deupree et al.155 

spec. activity: specific activity of radioligand (Ci/mmol) 

 

%&'(	()0+�/=3��) = 	)*	%+,-.	 ∙ 2	(�) 

Equation 9: Calculation of Bmax (pmol/well) 
 

%&'(	()0+�/0>	)?+�35-) 	= 	
%&'(	()0+�/=3��)

)?+�35-	(0>/=3��)
 

Equation 10: Calculation of Bmax (pmol/mg protein) 
 

By plotting the concentration of bound radioligand against the quotient of bound/free 

radioligand (see Figure 43 B) a Rosenthal plot is obtained.233 In case of ligand binding 

to a single site a linear correlation can be observed. Thereby, the slope of the line equals 

-1/KD, while the x-intercept corresponds to the value of Bmax. If the ligand is binding to 
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more than one binding site, the Rosenthal plot will deviate from a linear function and 

express a bent curve. However, it should be mentioned that the Rosenthal plot should 

only be used for visualizing not analyzing data, since the transformation is more prone 

to errors. 

For saturation experiments, in which intact cells instead of membrane preparations are 

used, Bmax (binding sites/cell) can be calculated using the following equations 

(Equation 8, Equation 11 and Equation 12): 

%&'( 	()0+�/�3��) 	= 	
)*	%+,-.	 ∙ 2	(�)

�3��9	)3?	=3��
 

Equation 11: Calculation of Bmax (pmol/cell) 
 

%&'(	(@5-.5->	95�39/�3��) 	= 	%&'(	()0+�/�3��) 	 ∙ 	10
C�� 	 ∙ 	DE 

Equation 12: Calculation of Bmax (binding sites/cell) 

NA: Avogadro constant (6.022 · 1023) 

 

8.5.3.2 Performance of saturation experiments 

All saturation experiments were performed in analogy to the procedure described by 

Noyer et al.60 The protein preparation was incubated for a certain amount of time at 

4 °C in a total volume of 0.5 ml Tris-HCl buffer, containing MgCl2 (2 mM) and the 

radioligand. Non-specific binding was determined for all radioligand concentrations 

separately in the presence of unlabeled levetiracetam (1 mM). Separation of bound from 

unbound radioligand was achieved by filtration through GF/C glass fiber filters 

pre-soaked for 30 min in 0.1% aqueous PEI solution. Subsequently, it was washed three 

times with ice-cold Tris-HCl buffer. 

 

8.5.3.2.1 Saturation studies with [³H]LEV at rat brain cortical membrane 

preparations 

The saturation experiment of [³H]LEV at rat brain cortical membrane preparations (RC) 

was performed with radioligand diluted with a constant percentage of unlabeled 

levetiracetam (isotopic dilution). This is a convenient method to decrease the amount of 

radioligand applied in the assay, if unlabeled ligand for dilution is available. In this case 
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the radioligand [³H]LEV (98 Ci/mmol) was diluted by a factor of 100 according to 

Equation 13: 

?:.5+�5>:-.	(μ<5) = 	
9)3�. :��5;5�6G 	(<5/00+�) 	 ∙ 	�G 	(-*) ∙ 4	 ∙ 	2H	I�I'J 	(0�)

1000
 

Equation 13: Calculation of the amount of radioligand (µCi) 

spec. activityd: desired specific activity after dilution (Ci/mmol) 

Ld: highest desired concentration of radioligand in the assay (nM) 

f: assay dilution factor (here: 5, since 100 µl are given into a total volume of 500 µl) 

VL total: required volume of the highest concentrated radioligand solution 

 

[LM]��2	(μ<5) = 	
0.98	<5/00+�	 ∙ 	30000	-* ∙ 5	 ∙ 	1.1	0�

1000
= 161.7	μ<5 

Since the original radioligand [³H]LEV solution possesses a concentration of 1 mCi/ml 

according to Equation 13 a total amount of 162 µl of [³H]LEV was needed. 

 

The required amount of unlabeled levetiracetam (mg) for dilution can be calculated by 

Equation 14: 

,-�:@3�3.	�5>:-.	(0>) = 	*	 ∙ �	(
1

:G
	−	

1

:�
) 

Equation 14: Calculation of the amount of unlabeled ligand (mg) 

M: molecular weight of unlabeled ligand (mg/mmol) 

L: required amount of radioligand as calculated (mCi) 

ad: desired specific activity after dilution (mCi/mmol) 

ao: specific activity of original radioligand solution (mCi/mmol) 

��2	(0>) = 	170.11	0>/00+�	 ∙ 0.1617	0<5	(
1

980
	−	

1

98000
)	(00+�/0<5) 	

= 28	μ> 

 

Consequently, for the preparation of 1100 µl of the highest concentrated radioligand 

solution 162 µl [³H]LEV and 28 µl of levetiracetam solution (1 mg/ml) were given into 

910 µl Tris-HCl buffer. 
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The series of dilution starting from the highest concentrated radioligand solution was 

prepared according to the following table: 

Table 17: Preparation of dilution series for [³H]LEV solutions (30000-5 nM); f.c.: final concentration in 
the assay, f: dilution factor with regard to previous solution. From the radioligand solution with the 
highest concentration (first row), 300 µl are taken (see last column) to prepare the next dilution (second 
row). Since this requires to dilute the first solution by the factor of 3 (second column), 600 µl of Tris-HCl 
buffer need to be added (third column). This adds up to a volume of 900 µl (fourth column), from which 
130 µl are taken (last column) for the preparation of the next dilution (third row), and so on. 

f.c. 

(nM) 
f 

dilution step 

(previous solution + Tris-HCl) (µl) 

prepared 

V (µl) 

remaining 

V (µl) 

30000   1100 (-300) = 800 

10000 3 300 + 600 900 (-130) = 770 

1000 10 130 + 1170 1300 (-550) = 750 

500 2 550 + 550 1100 (-260) = 840 

100 5 260 + 1040 1300 (-500) = 800 

50 2 500 + 500 1000 (-240) = 760 

10 5 240 + 960 1200 (-400) = 800 

5 2 400 + 400 800  

 

For saturation experiments with [³H]LEV at rat cortical membrane preparations (RC) 

200 µg of protein membrane preparation (see 8.3.1) per well were used. The assay was 

incubated for 120 min. The actual concentration of radioligand in the assay, which was 

determined by measuring aliquots of each radioligand dilution, was used for plotting the 

saturation curve. Obtained KD and Bmax values are means of two individual experiments 

performed in triplicate. 

 

8.5.3.2.2 Saturation studies with [³H]isoBRV at rat brain cortical membrane 

preparations 

Since no unlabeled ligand was available for dilution of the radioligand the saturation 

experiment with [³H]isoBRV was performed without isotopic dilution. In order to 

reduce the amount of applied radioligand, the saturation experiment was not performed 

until a highest concentration of 10 times the expected KD value. Instead, a total amount 

of 1000 µl of the original radioligand solution in ethanol was vaporized to dryness at 

ambient pressure over several days. The residue was dissolved in the determined 

volume of Tris-HCl buffer required for the highest concentration (see Table 18) and the 

series of dilution was prepared as described in the following table: 
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Table 18: Preparation of dilution series for [³H]isoBRV solutions; relative f.c.: final concentration in the 
assay in relation to lowest concentrated solution (second last row), f: dilution factor with regard to 
previous solution. For a detailed explanation see Table 17. 
relative 

f.c. 
f 

dilution step 

(previous solution + Tris-HCl) (µl) 

prepared 

V (µl) 

remaining 

V (µl) 

200   1235 (-785) = 450 

100 2 785 + 785 1570 (-1116) = 454 

80 5/4 1116 + 279 1395 (-945) = 450 

60 4/3 945 + 315 1260 (-810) = 450 

40 3/2 810 + 405 1215 (-765) = 450 

30 4/3 765 + 255 1020 (-570) = 450 

20 3/2 570 + 285 855 (-405) = 450 

10 2 405 + 405 810 (-360) = 450 

5 2 360 + 360 720 (-270) = 450 

2 5/2 270 + 405 675 (-225) = 450 

1 2 225 + 225 450  

0  only Tris-HCl   

 

For saturation experiments with [³H]isoBRV at rat cortical membrane preparations (RC) 

100 µg of protein membrane preparation (see 8.3.1) per well were used. The assay was 

incubated for 180 min. Final concentrations (nM) of the radioligand in the assay were 

determined by measuring an aliquot of each dilution. The results from two individual 

experiments performed in duplicate were plotted against determined actual 

concentrations. 

 

8.5.3.2.3 Saturation studies with [³H]BRV at rat brain cortical membrane 

preparations 

As already described for the saturation experiment with [³H]isoBRV, likewise no 

isotopic dilution was done for the saturation experiment with [³H]BRV, since no 

unlabeled ligand was available. For a required radioligand concentration of 650 nM 

(final concentration in the assay) the amount of original radioligand solution was 

determined according to Equation 13: 

[LM]%	2	(μ<5) = 	
94	<5/00+�	 ∙ 	650	-* ∙ 5	 ∙ 	1.37	0�

1000
= 419	μ<5 
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The corresponding amount (419 µl) of original [³H]BRV solution was given into 951 µl 

Tris-HCl buffer to add up to the determined total volume (1370 µl) for the highest 

concentration (see Table 19), which was diluted as described in the following table: 

 

Table 19: Preparation of dilution series for [³H]BRV solutions (650-1 nM); f.c.: final concentration in the 
assay, f: dilution factor with regard to previous solution. For a detailed explanation see Table 17. 

f.c. 

(nM) 
f 

dilution step 

(previous solution + Tris-HCl) (µl) 

prepared 

V (µl) 

remaining 

V (µl) 

650   1370 (-920) = 450 

400 13/8 920 + 575 1495 (-1035) = 460 

300 4/3 1035 + 345 1380 (-930) = 450 

200 3/2 930 + 465 1395 (-945) = 450 

150 4/3 945 + 315 1260 (-810) = 450 

100 3/2 810 + 405 1215 (-765) = 450 

75 4/3 765 + 255 1020 (-560) = 460 

50 3/2 560 + 280 840 (-370) = 470 

25 2 370 + 370 740 (-288) = 452 

10 5/2 288 + 432 720 (-270) = 450 

5 2 270 + 270 540 (-90) = 450 

1 5 90 + 360 450  

 

For saturation experiments with [³H]BRV at rat cortical membrane preparations (RC), 

100 µg of protein membrane preparation (see 8.3.1) per well were used. The assay was 

incubated for 240 min. The results from two individual experiments performed in 

duplicate were plotted against determined actual concentrations. 

 

8.5.3.2.4 Saturation studies with [³H]BRV on intact cells 

Saturation experiments with [³H]BRV on intact CHO cells recombinantly expressing 

the protein of interest were performed as following: transiently transfected CHO cells 

(see 8.7.6.1 b) were prepared for binding studies as described in 8.7.7. For saturation 

experiments on CHO cells recombinantly expressing hSV2A-GFP cells of two dishes 

(152 cm2) grown to confluence suspended in Tris-HCl buffer were used for a 24-well 

assay, whereas for experiments on CHO cells recombinantly expressing rSV2A-GFP 

and rSV2A_N364K-GFP the amount of cells was reduced to one confluent dish per 
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24-well assay. The incubation time for the assay was 240 min. KD and Bmax values are 

means of two individual experiments performed in duplicate. The radioligand was used 

without isotopic dilution by vaporizing a certain amount (~500 - 750 µl) of original 

radioligand solution at ambient pressure over several days and dissolving the residue in 

a defined volume of Tris-HCl buffer as described in Table 20. Final concentrations 

(nM) of the radioligand in the assay were determined by measuring an aliquot of each 

dilution. 

 

Table 20: Preparation of dilution series for [³H]BRV solutions; relative f.c.: final concentration in the 
assay in relation to lowest concentrated solution (last row), f: dilution factor with regard to previous 
solution. For a detailed explanation see Table 17. 
relative 

f.c. 
f 

dilution step 

(previous solution + Tris-HCl) (µl) 

prepared 

V (µl) 

remaining 

V (µl) 

65   912 (-462) = 450 

30 13/6 462 + 539 1001 (-540) = 461 

20 3/2 540 + 270 810 (-360) = 450 

10 2 360 + 360 720 (-270) = 450 

5 2 270 + 270 540 (-90) = 450 

1 5 90 + 360 450  

 

 

8.5.4 Competition experiments 

8.5.4.1 Background 

Competition experiments enable the determination of the affinity of an unlabeled 

compound (competitor) to a receptor by measuring its ability to displace a radioligand 

from its receptor. Therefore, a constant concentration of radioligand is exposed to 

increasing concentrations of the competitor. If both, radioligand and competitor, 

compete for the same binding site, radioligand binding is decreased with increasing 

amounts of added competitor. 
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Figure 44: Example curve of competition binding experiment; IC50 indicates the concentration of 
competitor at which specific binding of the radioligand is reduced to 50%. 
 

By logarithmic application of the concentration (M) of the competitor against the 

specific binding of the radioligand (cpm or %), a sigmoidal curve is obtained whose 

inflection point marks the concentration, which corresponds to the IC50 value (see 

Figure 44). This value indicates the concentration of the competitor at which specific 

binding of the radioligand is reduced by 50%. Since the IC50 value is dependent of the 

concentration of the radioligand and its KD value and therewith is not comparable with 

IC50 values from other experiments, whenever possible the independent value Ki should 

be indicated. The Ki value (equilibrium inhibition constant of competitor) is obtained 

from the Cheng-Prusoff equation234 (see Equation 15): 

#V =	
W<XY

1 +	
�
#$

 

Equation 15: Cheng-Prusoff equation 

K i: equilibrium inhibition constant (M) 

IC50: half maximal inhibitory concentration (M) 

L: concentration of radioligand (M) 

KD: equilibrium dissociation constant of radioligand (M) 

Besides experiments in which the competitor structurally differs from the radioligand 

(heterologous binding experiment), it is also common to perform homologous 

competition experiments in which the radioligand competes with a coldligand that is 

structurally identical. Basically, homologous binding experiments are comparable with 

saturation experiments and therewith allow the determination of the KD and Bmax value 
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of a compound. Since in a homologous competition experiment Ki is identical to KD 

Equation 15 simplifies to Equation 16: 

#$ =	 W<XY − 	� 

Equation 16: Calculation of KD in homologous competition experiments 

KD: equilibrium dissociation constant (M) 

IC50: half maximal inhibitory constant (M) 

L: concentration of radioligand (M) 

 

As further explained by De Blasi et al.235 the calculation of the maximum number of 

binding site Bmax in homologous competition experiments can be done according to 

Equation 17: 

%&'( =	
%Y 	 ∙ 	 W<XY

�
 

Equation 17: Calculation of Bmax in homologous competition experiments 

Bmax: maximum number of binding sites (cpm) 

B0: specific binding (cpm) 

IC50: half maximal inhibitory constant (M) 

L: concentration of radioligand (M) 

 

For the determination of Bmax in fmol/mg protein, or binding sites per cell, respectively, 

the obtained Bmax in cpm can be substituted into Equation 8. 

 

 

8.5.4.1.1 General performance of competition experiments with radioligands 

[³H]LEV, [³H]BRV and [³H]isoBRV 

In general, all competition experiments with [³H]LEV, [³H]BRV and [³H]isoBRV were 

performed as described by Noyer et al.60 A constant amount of radioligand was given 

into Tris-HCl buffer containing MgCl2 (2 mM) and in case of competition experiments, 

various concentrations of the competitor. After addition of the protein preparation, it 

was incubated for a certain amount of time at 4 °C. Total binding was determined in the 

absence of competitive compounds, whereas non-specific binding was determined in the 
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presence of LEV (1 mM). In general, the stock solutions as well as the dilutions of the 

competitor were prepared in Tris-HCl buffer. In competition experiments, in which the 

competitor was added in DMSO solution, the same amount of DMSO (here 10 µl) was 

also added to wells used for determination of total and non-specific binding. DMSO 

concentration in the assay was always kept ≤ 2%. Separation of bound from unbound 

radioligand was achieved by filtration through GF/C glass fiber filters pre-soaked for 

30 min in aqueous PEI solution (0.1%). Subsequently, it was washed three times with 

ice-cold Tris-HCl buffer. If not indicated otherwise, results were obtained from three 

individual experiments performed in triplicate. 

 

Table 21: General pipetting scheme for sole determination of total and non-specific binding (pyrrolidone 
radioligands). 
 total binding [µl] non-specific binding [µl] 

MgCl2 solution (10 mM) 100 100 

Tris-HCl buffer 200 100 

Levetiracetam solution (5 mM) - 100 

radioligand in Tris-HCl buffer 100 100 

protein in Tris-HCl buffer 100 100 

total volume 500 500 

 

Table 22: General pipetting scheme for competition experiments (pyrrolidone radioligands). 
 total binding 

[µl] 

non-specific binding 

[µl] 

competitive 

binding [µl] 

MgCl2 solution (10 mM) 100 100 100 

Tris-HCl buffer 200 190 190 

Levetiracetam solution (50 mM) - 10 - 

dilution of competitor - - 10 

radioligand in Tris-HCl buffer 100 100 100 

protein in Tris-HCl buffer 100 100 100 

total volume 500 500 500 
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Table 23: Conditions for competitive binding experiments. As protein components membrane 
preparations from rat cortex (RC), rat striatum (RS), mouse brain (M), post-mortem human brain of 
thalamus (HT) and putamen (HP) and human brain from surgery of epileptic patients (HEB) were 
applied. Cells investigated were CHO cells recombinantly expressing the gene of interest. 
 [³H]LEV [³H]isoBRV [³H]BRV 

buffer solution Tris-HCl buffer containing MgCl2 (2 mM) 

radioligand concentration 10 nM 5 nM 1 nM 

amount 

of 

protein 

(per well) 

RC (8.3.1) 200 µg 100 µg 100 µg 

RS (8.3.1) 200 µg  100 µg 

M (8.3.2) 200 µg  100 µg 

HT, HP (8.3.3) 400 µg  200 µg 

HEB (8.3.3) 200 µg  100 µg 

cells (8.7.7)   2 dishes (152 cm
2
) 

grown to conflucence 

per 24-well assay 

incubation time 120 min 180 min 240 min 

 

 

8.5.4.1.2 General performance of competition experiments with [³H]AMPA 

For competition binding experiments with [³H]AMPA (20 nM) the radioligand was 

given into Tris-HCl buffer containing KSCN (200 mM) and the competitor in various 

concentrations. After addition of either 300 µg protein membrane preparations (RC, RS, 

or M, see 8.3.4) or permeabilized cell preparation (see 8.7.8), the assay was incubated at 

4 °C for 30 min. Total binding of the radioligand was determined in the absence of 

competitive compounds, non-specific binding was determined in the presence of 

L-glutamate (1 mM). In experiments in which the competitor was added in DMSO 

solution, the same amount of DMSO was also added to wells for the determination of 

total and non-specific binding. The total amount of DMSO in the assay was always 

≤ 2%. After incubation time was completed, the assay was filtered through GF/C glass 

fiber filters, which afterwards were quickly washed twice with ice-cold (~0 °C) 

Tris-HCl buffer containing KSCN (50 mM). Results were obtained from three to four 

individual experiments performed in triplicate. 
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8.6 Molecular biology 

8.6.1 Production of competent bacteria 

In general, bacterial cell walls are impermeable for nucleic acids. If DNA needs to be 

introduced into bacteria cells, these bacteria first have to be treated in a way that they 

become transformation competent, which facilitates the uptake of DNA under certain 

conditions. 

In this study the E.Coli genotype TOP10 was used, from which 50 µl of a glycerol 

culture were given into 4 ml LB medium (without antibiotics), which was incubated in 

the bacteria shaker at 37 °C, 220 rpm over night. The following day, 500 µl of this 

preculture were transferred into 40 ml LB medium (without antibiotics) and again 

incubated in the bacteria shaker (37 °C, 220 rpm). After approximately 45 min, the 

optical density of this suspension at 550 nm (OD550) was measured against a blank (LB 

medium without bacteria). If necessary the incubation time was extended until an OD550 

of 0.5 was obtained. At this time, it can be assumed that bacterial reproduction is within 

the exponential phase of the bacteria growth curve. The suspension was centrifuged 

(1700 g, 4 °C, 20 min) and the resulting pellet resuspended in 20 ml cold CaCl2 solution 

(0.1 M). After incubation on ice for 30 min, the suspension again was centrifuged 

(1700 g, 4 °C, 20 min). The obtained pellet was resuspended in 2 ml cold CaCl2 solution 

(0.1 M). After addition of 0.5 ml glycerol and quick homogenization, the suspension 

was aliquoted à 100 µl and stored at -80 °C. 

 

8.6.2 Transformation 

Replication of a plasmid of interest can efficiently be achieved by incorporation into 

bacterial cells. With each cell cycle of the transformed bacterium, the plasmid is 

replicated and passed on to the daughter cell. Thus, an emerged bacterial colony, which 

derived from a single transformed bacterial clone, contains multiple copies of the 

plasmid. There are several different chemical and physical methods to enforce a 

bacterium to take up a plasmid (transformation), which will not be discussed here in 

detail. On either way, only a marginal number of bacteria will actually take up the 

DNA, why it is important to make use of antibiotic resistance (here: ampicillin 

resistance, which is encoded on the plasmid) to select clones that successfully 

incorporated the plasmid of interest. 
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For transformation of bacteria cells, in this study the method of heat shock was applied. 

Therefore, 100 µl of a suspension of competent E.Coli TOP10 (see 8.6.1) were thawed 

on ice. The plasmid (10-50 ng) was added and carefully mixed with a pipette tip. After 

incubation on ice for 30 min, the bacteria were exposed to the heat shock: the tube 

containing the bacteria suspension was incubated at 37 °C in a water bath for 2 min, 

followed by two minutes incubation on ice. Subsequently, 200 µl of LB medium 

(without antibiotics) were added and carefully mixed with a pipette tip. The suspension 

was incubated in a thermal block at 300 rpm, 37 °C for 1 h, before it was spread on a 

LB agar plate with ampicillin (100 µg/ml), which was incubated at 37 °C over night. 

Since these agar plates contained ampicillin, only successfully transformed bacteria 

possessing recombinant plasmids with an ampicillin resistance gene survived. 

 

8.6.3 Cultivation of bacteria 

Bacteria (e.g. a selected colony from an agar plate or an aliquot of a glycerol stock) 

were given into 4 ml LB medium with ampicillin (100 µg/ml). The suspension was 

incubated over night in a bacteria shaker (220 rpm, 37 °C). 

 

8.6.4 Plasmid isolation 

One of the most frequently used methods to isolate plasmid DNA from bacteria is based 

on the principle of alkaline lysis.236 Therefore, bacteria containing the plasmid of 

interest are first centrifuged and obtained as a pellet. This pellet is resuspended in a 

specific buffer containing NaOH and SDS, which cause lysis of the cells as well as 

denaturation of the DNA, RNA and proteins due to the high pH level. RNA is degraded 

in the presence of RNAse. In the presence of EDTA divalent cations are complexed and 

thus removed from the environment, whereby bacterial nucleases are hindered in their 

function to degrade plasmid DNA. Subsequently, an acetic acid/acetate buffer is added, 

which neutralizes the pH level. In this milieu, small plasmid DNA renaturates and 

passes into solution, while genomic bacterial DNA only renaturates incompletely and 

remains precipitated as do proteins and other cellular components. By centrifugation 

plasmid DNA can then be separated from the precipitated material. Adsorption of 

plasmid DNA to silica membrane columns allows purification of the DNA with ethanol 

based washing buffers and a final elution with pure H2O. 
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Isolation of plasmid DNA in this study was performed with different kits (see 8.1.3.3) 

according to the manufacturer’s protocol. These kits are all based on the above 

described principle.  

 

8.6.5 Determination of DNA concentration 

A 1:500 dilution (2 µl DNA solution + 998 µl water) of the DNA solution was prepared 

to determine the concentration photometrically. The measurement was made at 260 nm 

using water as a blank. 

 

8.6.6 Preparation of glycerol stocks 

For long-term storage of bacteria, an aliquot of the culture was conserved as glycerol 

stock. Therefore, 800 µl of a bacteria culture were mixed with 200 µl glycerol and 

stored at -20 °C. To recultivate bacteria, a small amount of the glycerol culture was 

given into LB medium with ampicillin (100 µg/ml) and incubated in the bacteria shaker 

(220 rpm, 37 °C) over night. 

 

8.6.7 Primer design 

All primers applied in this study were either designed as primer for PCR or for DNA 

sequencing reactions (see 8.1.3.3). What they all have in common, is the requirement to 

bind as specific as possible to a certain sequence of the DNA. Only that way it can be 

guaranteed that the DNA polymerase, which uses the primer as starter oligonucleotide 

for elongation of the complementary strand, will exclusively amplify the DNA sequence 

of interest. For the performance of a PCR as well as a sequencing reaction, a pair of 

primers had to be designed (forward and reverse), which are complementary to the 

3’ end of the sense and anti-sense strand and therewith flank the DNA sequence of 

interest. Ideally, a primer possesses a GC-content (guanine-cytosine content) in a range 

of 45 to 60%, a melting temperature between 55 and 70 °C and comprises a length of 18 

to 22 nucleotides. Furthermore, it should not form any stable hairpins (intramolecular 

base pairing), nor stable dimers with other primer molecules (intermolecular base 

pairing). Primers designed for this study have been analyzed with the online program 

Oligoanalyzer 3.1, Integrated DNA Technologies (see 8.1.1). 
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8.6.8 Polymerase chain reaction 

The polymerase chain reaction (PCR), which was invented by Kary Mullis in 1983 

(nobel prize 1993), is an efficient and fast method for the amplification of DNA. It is 

based on a heat program, which – depending on the present temperature – causes 

denaturation or renaturation of the DNA template. In the presence of a heat stable DNA 

polymerase, DNA strands are amplified by elongation in 5’- to 3’-direction. Therefore, 

a pair of specific primers (see 8.1.3.3) is needed, which flank the template sequence and 

serve as starter oligonucleotides for the polymerase. As building blocks for the 

emerging strand the polymerase requires nucleotides of the four bases A, T, G and C, 

which are added in form of dNTPs (ATP, TTP, GTP and CTP) into the reaction 

mixture. It is further important to choose an appropriate buffer system with additions 

like e.g. certain cations, providing an optimized working environment for the 

polymerase. 

In a typical PCR, the reaction mixture, which is placed in a thermocycler, is first heated 

up to a temperature that lies above the melting temperature (Tm) of the DNA strand. 

This step (e.g. 94 °C for a couple of seconds) causes the double-stranded DNA to 

denaturate into two single strands. Subsequently, the thermocycler cools down to a 

temperature that is just a few degrees beneath the melting temperature (Tm) of the 

primers. The temperature, which roughly lies between 55 and 65 °C, is dependent on the 

GC-content of the primers. During this second step the primers anneal to the 3’ end of 

the sense or anti-sense strand, respectively. Afterwards, the elongation of the DNA 

strand is achieved by heating up to a temperature (e.g. 72 °C) that represents the 

temperature optimum for the DNA polymerase. The duration of the third step is 

dependent on how quickly the polymerase can work under the given conditions (e.g. 

proceeding speed of 1 kbp/min) and should be modified according to the template’s 

size. This three-step cycle (denaturation, annealing, elongation) is repeated several 

times (typically 30 to 35 cycles), which causes an exponential amplification of the DNA 

template. 

In this study the PCR protocols listed in the following were used. Annealing 

temperatures (Tann.) were chosen based on the Tm of the applied primers. The duration of 

the elongation step was determined by the size of the template and the proceeding speed 

of the polymerase. 
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Table 24: PCR with PyrobestTM DNA polymerase. 
PCR mixture temperature program 

x µl template DNA 20 ng     

2 µl f-primer 10 pmol 

30 x 

98 °C 10 s denaturation 

2 µl r-primer 10 pmol Tann. 30 s annealing 

0.5 µl Pyrobest
TM

 DNA Polymerase   72 °C 1 kbp/min elongation 

5 µl 10x Pyrobest
TM

 Buffer II      

4 µl dNTPs Mixture (2.5 mM)   72 °C 10 min final 

elongation 

ad 50 µl H2O, sterile      

 

Table 25: PCR mit AccuPrimeTM Pfx DNA polymerase. 
PCR mixture temperature program 

    95 °C 2 min initial 

denaturation 

x µl template DNA 20 ng     

2 µl f-primer 10 pmol 

35 x 

95 °C 15 s denaturation 

2 µl r-primer 10 pmol Tann. 30 s annealing 

0.8 µl Accu Prime
TM

 Pfx DNA Polymerase 68 °C 1 kbp/min elongation 

5 µl 10x Accu Prime
TM

 Pfx DNA mix     

ad 50 µl H2O, sterile   68 °C 5 min final 

elongation 

 

Table 26: KOD Hot Start DNA polymerase. 
PCR mixture temperature program 

x µl template DNA 20 ng     

3 µl f-primer 15 pmol  94 °C 2 min initial 

denaturation 

3 µl r-primer 15 pmol     

1 µl KOD Hot Start DNA polymerase 

35 x 

94 °C 20 s denaturation 

5 µl 10x buffer Tann. 15 s annealing 

5 µl dNTPs Mixture (2 mM) 70 °C 3 kbp/min elongation 

4 µl MgSO4 (25 mM)     

5 µl DMSO  70 °C 10 min final 

elongation 

ad 50 µl H2O, sterile      
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In this study, after the PCR has been completed, the reaction mixture was mixed with 

6x loading dye (see 8.1.3.3 and 8.1.3.6, 1 µl per final volume of 6 µl) and loaded onto 

an agarose gel (see 8.6.9) for purification. 

 

8.6.9 Agarose gel electrophoresis 

Agarose gel electrophoresis is a simple method for the separation of nucleic acids using 

a gel, whose pore size can be varied by the concentration of added agarose. For 

separation, the samples are given into small wells on the upper end of the gel placed in 

TAE buffer (pH ~ 8). When subjected to an electrical voltage, the negatively charged 

nucleic acid molecules migrate in the electrical field towards the anode. Short and small 

molecules migrate faster and therewith run further in the gel as do long and bulky 

molecules, which are stronger retained by the gel matrix. By addition of an intercalating 

dye (e.g. ethidium bromide) into the gel, it is possible to visualize the nucleic acids by 

light emission under UV light afterwards. 

Within this study 1% agarose gels were used, for which agarose was given into TAE 

buffer (e.g. 500 mg in 50 ml) and carefully heated in the microwave until agarose had 

completely dissolved. After short cooling-down, the intercalation dye (here GelRed®) 

was added (1:20000 dilution, here 2.5 µl) and homogeneously distributed. The gel was 

poured into a gel chamber and after hardening, was transferred to the electrophoresis 

chamber filled with TAE buffer. 6x loading dye (see 8.1.3.3 and 8.1.3.6) was added to 

the DNA samples as well as to the respective DNA ladder (molecular weight size 

marker, see 8.1.3.3) and each sample was transferred into a well of the gel. The 

electrophoresis was run at 100 to 200 V depending on the size of the electrophoresis 

chamber. Subsequently, the gels were analyzed under UV light. 

 

8.6.10 Gel extraction 

After separation by gel electrophoresis, the band of interest was cut out of the agarose 

gel. From this piece of gel the DNA was regained using the ZymocleanTM Gel DNA 

Recovery kit according to the manufacturer’s protocol. Thereby, the agarose gel is 

solubilized in a high-salt binding buffer liberating the DNA, which afterwards is 

purified on small silica columns. 
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8.6.11 Restriction enzyme digestion 

Restriction endonucleases are enzymes that recognize certain sequences on the DNA 

molecule and thereupon cleave the strands in an enzyme specific manner. In this study 

for restriction endonuclease digestion, enzymes from New England BioLabs (see 

8.1.3.3) were used in combination with supplied buffers and additives according to the 

manufacturer’s protocol. If two enzymes were used that needed different reaction 

conditions the digestion was performed sequentially. In general, the following protocol 

was used: 

DNA (plasmid or PCR product) x µl 

reaction buffer (10x) 1 µl 

restriction enzymes 10 U, each 

(BSA solution 10x, if needed) 1 µl 

H2O, sterile ad 10 µl 

If not indicated otherwise in the manufacturer’s protocol, after incubation at 37 °C for 

1 h, the enzymes were heat inactivated by incubation at 65 °C for 20 min. The digested 

product was either purified by agarose gel electrophoresis (see 8.6.9) or – as was the 

case for digested PCR products – using the DNA clean & concentratorTM-5 kit (see 

8.1.3.3). 

For plasmid DNA that was linearized in order to be applied for stable transfections (see 

8.7.6.1, c and d), 50 µg of the plasmid was cleaved using 50 U of the below mentioned 

restriction enzyme in the presence of 1x BSA at 37 °C for 3 h. 

pQCXIH-hSV2A-GFP: FspI NEbuffer 4 

pQCXIN-hGluR2flip: StuI NEbuffer 4 

pQCXIH-hGluR2flop: FspI NEbuffer 4 

 

8.6.12 Ligation 

For ligation of two nucleic acid sequences (e.g. a digested PCR product with a digested 

plasmid), the ATP-dependent enzyme ligase, was used. This enzyme ligates the 

3’-hydroxy terminus of one fragment with the 5’-phosphate terminus of the other 

fragment under formation of a phosphodiester bond. The reaction mixture was prepared 

according to the following protocol: 
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plasmid, digested 50 ng 

PCR product, digested 150 ng 

10 x ligation buffer 1 µl 

T4 DNA ligase 2 U 

ATP (10 mM) 1 µl 

H2O, steril ad 10 µl 

The ligation mixture was incubated at 16 °C over night and afterwards directly used for 

transformation of competent bacteria (see 8.6.2).  

 

8.6.13 Sequencing 

Analysis of DNA sequences was performed by GATC Biotech AG, Konstanz.  

 

8.7 Cell Culture 

8.7.1 Revitalization of cells 

Cells that have been frozen in FCS/DMSO (see 8.7.4) and stored in liquid nitrogen for 

long-time storage were revitalized according to the following procedure: a cryovial of 

frozen cell suspension was thawed in a water bath at 37 °C. Immediately before the cell 

suspension was thawed completely, the suspension was transferred into a falcon tube 

containing 10 ml of culture medium prewarmed to 37 °C. The suspension was pelleted 

(5 min, 200 g) and the supernatant containing the cell toxic DMSO was discarded. The 

cell pellet was resuspended in new culture medium, which afterwards was transferred 

into a cell culture flask. For cultivation the culture flask was placed into a cell incubator 

(37 °C, 95% humidity, 5-10% CO2). 

 

8.7.2 Cultivation of cells 

Table 27: Cultivation of cells. 
cell type cultivation medium preparation of 

medium* 

incubation and 

passaging ratio 

CHO-K1 basal medium 

DMEM/F12  

~ 10% FCS  

~ 100 U/ml penicillin 

~ 100 µg/ml streptomycin 

 

500 ml DMEM/F12 

50 ml FCS 

5 ml PS 

 

37 °C, 5% CO2, 

95% humidity 

1:30 
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cell type cultivation medium preparation of 

medium* 

incubation and 

passaging ratio 

HEK293 basal medium 

DMEM 

~ 10% FCS  

~ 100 U/ml penicillin 

~ 100 µg/ml streptomycin 

 

500 ml DMEM 

50 ml FCS 

5 ml PS 

 

37 °C, 10% CO2, 

95% humidity  

1:10 

    

GP
+
envAM-12 HXM medium 

DMEM 

~ 10% CS  

~ 100 U/ml penicillin 

~ 100 µg/ml streptomycin 

~ 200 µg/ml hygromycin B 

~ 15 µg/ml hypoxanthine 

~ 250 µg/ml xanthine 

~ 25 µg/ml mycophenolic acid 

 

 

500 ml DMEM 

50 ml CS 

5 ml PS 

 

1 ml Hygromycin B 

5 ml HXM 

 

37 °C, 5% CO2, 

95% humidity  

1:6 

basal medium 

DMEM 

~ 10% CS  

~ 100 U/ml penicillin 

~ 100 µg/ml streptomycin 

 

500 ml DMEM 

50 ml FCS 

5 ml PS 

 

37 °C, 5% CO2, 

95% humidity 

    

CHO_hSV2A-GFP selection medium 

DMEM/F12  

~ 10% FCS  

~ 100 U/ml penicillin 

~ 100 µg/ml streptomycin 

~ 500 µg/ml hygromycin B 

 

500 ml DMEM/F12 

50 ml FCS 

5 ml PS 

 

2.78 ml hygromycin B 

 

37 °C, 5% CO2, 

95% humidity  

1:30 

    

HEK_hGluR2flip selection medium 

DMEM 

~ 10% FCS  

~ 100 U/ml penicillin 

~ 100 µg/ml streptomycin 

~ 400 µg/ml G418 

 

500 ml DMEM 

50 ml FCS 

5 ml PS 

 

2.22 ml G418 

 

37 °C, 10% CO2, 

95% humidity  

1:10 

    

HEK_hGluR2flop selection medium 

DMEM 

~ 10% FCS  

~ 100 U/ml penicillin 

~ 100 µg/ml streptomycin 

~ 300 µg/ml hygromycin B 

 

500 ml DMEM 

50 ml FCS 

5 ml PS 

 

1.67 ml hygromycin B 

 

37 °C, 10% CO2, 

95% humidity  

1:10 

*For information on culture medium and supplements see 8.1.3.4. 
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8.7.3 Passaging of cells 

After removal of old culture medium, cells attached to the flask were washed with PBS 

buffer and afterwards incubated with 1-2 ml trypsin/EDTA solution at 37 °C for a few 

minutes until cells began to detach. New culture medium was added and cell aggregates 

in the suspension were separated by pipetting up and down. A certain amount of cell 

suspension was then transferred into a new cell culture flask containing prewarmed 

culture medium in a total volume of 5-25 ml depending on the flask’s size. For 

cultivation, cells were stored in the incubator (see 8.7.2). 

 

8.7.4 Cryopreservation of cells 

For long-term storage of cells, backup aliquots were prepared according to the 

following procedure: cells grown to confluence (80-90%) in a cell culture flask 

(175 cm2) were washed with PBS buffer and incubated with 2 ml of trypsin/EDTA 

solution at 37 °C for a few minutes. When cells began to detach, the trypsin reaction 

was stopped by addition of new culture medium and cell aggregates in the suspension 

were separated by pipetting up and down for several times. The suspension was pelleted 

by centrifugation (200 g, 5 min) and the supernatant was discarded. The cell pellet was 

resuspended in 4 ml of freezing medium consisting of FCS containing 10% DMSO. 

Being aware that the cryoprotectant DMSO is toxic to the cells, the suspension was 

quickly transferred into cryovials (à 1 ml). For gentle freezing the cryovials were put 

into a freezing box filled with isopropanol, which was stored at -80 °C over night, 

allowing the suspension to cool down at an approximate rate of 1 °C/min. The following 

day, the cryovials were transferred into a liquid nitrogen tank.  

 

8.7.5 Cell counting 

To determine the number of cells in a given solution, a hemocytometer (Neubauer 

chamber) was used. Therefore, the chamber was filled with cell suspension and cells 

within a square of the dimension 1 x 1 mm were counted under the microscope. Since a 

square of these dimensions – due to a depth of 0.1 mm – contains 100 nl, the number of 

cells counted in this square multiplied by 104 corresponds to the number of cells per ml. 

To increase the accuracy of the determination, cells within two or more of these squares 

were counted and the mean was used for calculation of cells per ml. 
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8.7.6 Transfection 

The term transfection refers to the introduction of nucleic acids into eukaryotic cells by 

non-viral methods. If, as a result thereof, the nucleic acid molecule is integrated into the 

host genome (stable transfection), the transfected nucleic acid will be replicated along 

with the host genome with each cell cycle and the gene product will be stably 

expressed. If the nucleic acid molecule is not integrated into the host genome (transient 

transfection), it will only temporarily remain within the cell and will get lost during 

mitosis or will be degraded by time. Several different transfection methods are known at 

present, which make use of various electrical, chemical or physical principles. 

Furthermore, nucleic acids can also be introduced into a host cell by viruses 

(transduction). 

Within this study, liposome transfection (lipofection) and transduction were used as 

methods for the introduction of DNA into eukaryotic cells. 

 

8.7.6.1 Lipofection 

In general, lipofection with LipofectamineTM 2000 was performed according to the 

manufacturer’s protocol, as described in the following: one day before transfection, 

cells were seeded in seeding medium (no antibiotics) and cultivated over night (1). On 

the following day, the culture medium was exchanged against OptiMEM® (2). In a tube 

LipofectamineTM 2000 was added to OptiMEM®, mixed by inverting and incubated for 

5 min (3). In the meanwhile, the DNA solution was prepared by adding the required 

amount of DNA into OptiMEM® in a second tube (4). Subsequently, the 

LipofectamineTM 2000 solution was given into the DNA solution, mixed by inverting 

and the mixture was incubated for 20 min at room temperature. At the end of the 

incubation time, liposome-DNA complexes have formed, which were given drop-by-

drop onto the cells. After incubation for 6 h the medium was exchanged against basic 

culture medium (5). 

 

a) Conditions for transient transfection for production of virus particles 

The performance and the conditions for the transient transfection of GP+envAM12 cells 

are described in detail below (see 8.7.6.2). 
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b) Conditions for transient transfections for radioligand binding studies 

1 number/type of cells 15 x 106 CHO-K1 cells 

seeding medium DMEM/F12 + 10% FCS, 20 ml 

dish/cell culture flask 152 cm2 culture dish 

cultivation conditions 5% CO2, 37 °C, 95% humidity 

2 amount of Opti-MEM® 20 ml 

3 Lipofectamine solution 3.6 ml Opti-MEM® + 150 µl LipofectamineTM 2000 

4 DNA solution 3.75 ml Opti-MEM® + 66 µg DNA 

5 culture medium see Table 27, cultivation medium of CHO-K1 cells, 20 ml 

 

CHO cells transiently transfected for radioligand binding studies were cultivated over 

night. On the next day, they were prepared as described in 8.7.7. 

 

c) Conditions for stable transfection of hGluR2 flip/flop into HEK293 cells 

1 number/type of cells 3.5 x 106 HEK293 cells 

seeding medium DMEM + 10% FCS, 5 ml 

dish/cell culture flask 25 cm2 cell culture flask 

cultivation conditions 10% CO2, 37 °C, 95% humidity 

2 amount of Opti-MEM® 5 ml 

3 Lipofectamine solution 25 µl LipofectamineTM 2000 + 600 µl Opti-MEM® 

4 DNA solution 10 µg DNA (linearized pQCXIH-hGluR2flop, see 8.6.11)  

    + Opti-MEM® ad 625 µl, or 

10 µg DNA (linearized pQCXIN-hGluR2flip, see 8.6.11) 

   + Opti-MEM® ad 625 µl 

5 culture medium see Table 27, cultivation medium of HEK293 cells, 20 ml 

 

Cells transfected with linearized DNA (pQCXIH-hGluR2flop or pQCXIN-hGluR2flip) 

were cultivated over night (37 °C, 95% humidity, 10% CO2). The following day, they 

were detached and transferred into a big cell culture flask (175 cm2) containing 25 ml 

cultivation medium for HEK cells (see Table 27). 24 h later, the medium was 

exchanged against selection medium containing hygromycin B or G418, respectively 
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(selection medium for HEK_hGluR2flip, or HEK_hGluR2flop, see Table 27). The 

medium was replaced every two days by new selection medium until selection was 

finished. For cultivation, stably transfected cells were kept in selection medium and 

passaged twice a week. 

 

d) Conditions for stable transfection of hSV2A-GFP into CHO-K1 cells 

1 number/type of cells 2.5 x 106 CHO-K1 cells 

seeding medium DMEM/F12 + 10% FCS, 5 ml 

dish/cell culture flask 25 cm2 cell culture flask 

cultivation conditions 5% CO2, 37 °C, 95% humidity 

2 amount of Opti-MEM® 5 ml 

3 Lipofectamine solution 25 µl LipofectamineTM 2000 + 600 µl Opti-MEM®  

4 DNA solution 10 µg DNA (linearized pQCXIH-hSV2A-GFP, see 8.6.11) 

    + Opti-MEM® ad 625 µl  

5 culture medium see Table 27, cultivation medium of CHO-K1 cells, 20 ml 

 

CHO cells transfected with linearized pQCXIH-hSV2A-GFP were cultivated over night 

(37 °C, 95% humidity, 5% CO2). The following day, they were detached and transferred 

into a big cell culture flask (175 cm2) containing 25 ml cultivation medium for CHO-K1 

cells (see Table 27). After 6 h of cultivation (37 °C, 95% humidity, 5% CO2), the cells 

had attached onto the flask’s ground (~60% confluent) and the medium was exchanged 

by 25 ml selection medium for CHO_hSV2A-GFP (see Table 27). The medium was 

replaced by new selection medium every two days until selection was finished. Stably 

transfected cells were cultivated in selection medium and passaged twice a week. 

 

8.7.6.2 Retroviral transfection and infection 

For retroviral transfection, it was first necessary to produce virus particles containing 

the gene of interest, which can be used for infection of a cell line. Therefore, on day one 

1.2 x 106 packaging cells (GP+envAM-12 cells) were seeded in a small cell culture flask 

(25 cm2) in a total volume of 5 ml basal medium (see Table 27, basal medium of 

GP+envAM-12 cells). On the morning of day two, the medium was exchanged against 
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6.25 ml medium without antibiotics (DMEM + 10% CS). A few hours later, the 

packaging cells were cotransfected (by lipofection) with 6.25 µg of the recombinant 

plasmid and 3.75 µg of the plasmid containing the gene for the VSV-G protein. 

Therefore, 600 µl DMEM and 25 µl LipofectamineTM 2000 were mixed in a tube by 

inverting and incubated for 5 min at room temperature. In the meanwhile, in a second 

tube the DNA (gene of interest + VSV-G) was mixed with DMEM in a total volume of 

625 µl. Subsequently, the Lipofectamine solution was added into the DNA solution, 

mixed by inverting the tube and was incubated for 20 min at room temperature. The 

whole mixture containing the DNA-Lipofectamine complexes was then given dropwise 

onto the packaging cells and was homogenously distributed by gentle rocking. The cells 

were incubated at 37 °C, 5% CO2 over night. On day three, the medium was replaced by 

3 ml basal medium (see Table 27, basal medium of GP+envAM-12 cells) and 30 µl 

sodium butyrate solution (500 mM) were added and homogenously distributed. For 

production of virus particles, from then on the packaging cells were incubated at 32 °C, 

5% CO2 for 48 h. On day four, the target cell line (3 x 105 CHO-K1 cells) was seeded in 

a small cell culture flask (25 cm2) in 5 ml basal medium (see Table 27) and incubated 

over night at 37 °C, 5% CO2. On day five, the target cells were infected with the virus 

particles (transduction). Therefore, the medium of the target cell line was removed. The 

supernatant of the packaging cells containing the virus particles was sterile filtered and 

transferred onto the target cells. Additionally, 6 µl polybrene solution were added and 

homogenously distributed. After incubation at 32 °C for 2.5 h, the medium was 

removed and displaced by 5 ml basal medium (see Table 27, basal medium of CHO-K1 

cells). Cells were then incubated at 37 °C for 48 to 72 h before selection of successfully 

transfected cells was started: therefore, the transfected cells were detached from the 

flask and transferred into a big cell culture flask (175 cm2) containing selection medium 

(basal medium with addition of hygromycin B). The medium was replaced by new 

selection medium every two days until selection was finished. Stably transfected cells 

were cultivated in selection medium (basal medium with addition of hygromycin B) and 

passaged twice a week. 
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8.7.7 Preparation of cells for binding studies: intact cells 

Cells for radioligand binding studies on intact cells were prepared as described by 

Gillard et al.161 The culture medium of 1-2 cell culture dishes (152 cm2) grown to 

confluence was aspirated and the cells were washed with PBS buffer. 2 ml of 

trypsin/EDTA solution was distributed onto the cells and incubated at 37 °C until cells 

began to detach. New cell culture medium was added to stop the trypsin reaction and 

cells were carefully scraped off with a cell scraper. The cell suspension was given into a 

falcon tube and cell aggregates were separated by pipetting up and down. Subsequently, 

cells were spun down (500 g, 4 °C, 10 min) and the resulting pellet was resuspended in 

PBS buffer. Again, the cell suspension was centrifuged (500 g, 4 °C, 10 min) and the 

cell pellet was resuspended in cold Tris (20 mM) / Sucrose (250 mM) solution (2.8 ml 

per 24-well assay). 

 

8.7.8 Preparation of cells for binding studies: permeabilized cells 

Cells for radioligand binding studies using permeabilized cells were prepared 

essentially as described by Kessler et al.218 The culture medium of a dish (152 cm2) 

grown to confluence was aspirated and cells were washed with PBS buffer. 2 ml of 

trypsin/EDTA solution was given onto the cells, which were then incubated at 37 °C 

until cells began to detach. New cell culture medium was added to stop the trypsin 

reaction and cells were carefully scraped off with a cell scraper. The cell suspension 

was given into a falcon tube and cell aggregates were separated by pipetting up and 

down. Cells were spun down (2000 g, 10 min) and the resulting pellet was resuspended 

in 10 ml Tris (10 mM) / NaCl (150 mM) solution. Again, it was centrifuged (2000 g, 

10 min) and the cell pellet was resuspended in 9 ml Tris (10 mM) / NaCl (150 mM) 

solution and 1 ml saponin solution (1%). After centrifugation (2000 g, 10 min) the 

resulting pellet was twice again resuspended in 10 ml Tris (10 mM) / NaCl (150 mM) 

solution and the suspension spun down in the centrifuge (2000 g, 10 min). After the last 

centrifugation step, the pellet was resuspended in cold Tris-HCl buffer (2.8 ml per 

24 well assay). 
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9 Abbreviations 

ABC ATP binding cassette 

ad up to (Latin) 

ADA adenosine deaminase 

AED antiepileptic drug 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazole propionate 

AMPAR AMPA receptor 

ANOVA analysis of variance 

ATP adenosine-5’-triphosphate 

b base(s) 

Bmax maximum number of binding sites 

bp base pair(s) 

Bq Becquerel 

br broad 

BRV brivaracetam 

BSA bovine serum albumin 

CDCl3 chloroform, deuterated 

cDNA copy DNA 

CHO Chinese hamster ovary 

Ci Curie 

CNS central nervous system 

cpm counts per minute 

CS calf serum 

d doublet 

Da Dalton 

decomp. decomposition 

DIPEA N,N-diisopropylethylamine 

DMEM Dulbecco's Modified Eagle's Medium 

DMF dimethylformamide 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

dNTP deoxyribonucleotide triphosphate 

DOPE dioleoylphosphatidylethanolamine 
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DOTMA N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium 

chloride 

dpm disintegrations per minute 

E.coli Escherichia coli 

EDTA ethylenediaminetetraacetic acid 

EEG electroencephalography 

e.g. exempli gratia (for example) 

EPSP excitatory postsynaptic potential 

et al. et alii (and others) 

EtOH ethanol 

f forward 

f.c. final concentration 

FCS fetal calf serum 

FDA Food and Drug Administration 

g gram 

G418 geneticin 

GABA γ-aminobutyric acid 

GABAT GABA transaminase 

GAD glutamate decarboxylase 

GAT GABA transporter 

GF/C glass fiber filter type C 

GFP green fluorescent protein 

GluR glutamate receptor 

GPCR G protein-coupled receptor 

G protein guanine nucleotide-binding protein 

h hour(s) 

h human 

HEK human embryonic kidney 

HEPES N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) 

HOAc acetic acid 

HP human post-mortem membrane preparation from putamen 

HPLC high performance liquid chromatography 

HT human post-mortem membrane preparation from thalamus 

HVA high-voltage activated 
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HXM hypoxanthine xanthine mycophenolic acid solution 

Hz hertz 

IC50 half maximal inhibitory concentration 

ILAE International League Against Epilepsy 

i.p. intraperitoneal 

i.v. intravenous 

J coupling constant 

KA kainic acid 

KD equilibrium dissociation constant 

K i equilibrium inhibition constant 

KO knockout 

kobs observed kinetic constant 

koff dissociation kinetic constant 

kon association kinetic constant 

l liter 

L ligand 

LB medium lysogeny broth medium 

LC liquid chromatography 

LEV levetiracetam 

lit. literature 

LSC liquid scintillation counter 

LTR long terminal repeat 

LVA low-voltage activated 

m meter 

m multiplet 

M mouse brain membrane preparations 

M Molar 

MCS multiple cloning site 

Me methyl 

MeOH methanol 

MES maximal electroshock 

min minute(s) 

Mr relative molecular mass 

mRNA messenger RNA 
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MRP multidrug resistance protein 

MRT magnetic resonance tomography 

MS mass spectroscopy 

MuLV murine leukemia virus 

MW microwave 

n number of experiments 

N normal 

n/a not available 

nd no data 

NMDA N-methyl-D-aspartate 

N-MM N-methylmorpholine 

NMR nuclear magnetic resonance 

OAc acetate 

OD optical density 

p.a. pro analysi 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PEI polyethyleneimine 

Pgp P-glycoprotein 

PS Penicillin-Streptomycin solution 

PTZ pentylenetetrazol 

q.s. quantum satis (as much as needed) 

r rat 

r reverse 

R receptor 

RC rat cortical membrane preparations 

Rf retention factor 

RNA ribonucleic acid 

rpm rounds per minute 

RS rat striatal membrane preparations 

rt room temperature 

RT reverse transcriptase 

s singlet 

s second(s) 
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s.c. subcutaneous(ly) 

SDS sodium dodecyl sulfate 

SEM standard error of the mean 

SV2 synaptic vesicle protein 2 

SVOP SVtwo-related protein 

t triplet 

Tann. annealing temperature 

TAE Tris Acetate EDTA buffer 

THF tetrahydrofuran 

TLC thin layer chromatography 

Tm melting temperature 

TMA trimethylaluminum 

TMD transmembrane domain 

TMSCl trimethylsilyl chloride 

TMSI trimethylsilyl iodide 

Tris tris(hydroxymethyl)aminomethane 

U units 

UV ultraviolet 

V volume 

Vis visible 

vs. versus 

VSV-G vesicular stomatitis virus 

wt wild-type 
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