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Introduction

This thesis comprises four essays that belong to different strands of the theoretical
economic literature. Both Chapter 1 and Chapter 2 contribute to the study of two-
sided one-to-one matching, or assignment, markets with quasi-linear utility and multi-
dimensional heterogeneity. Chapter 1 investigates the efficiency of two-sided investments
in large (continuum) two-sided economies in which matching and bargaining take place in
an endogenously determined market without frictions after all agents have made costly,
sunk investments. Chapter 2 scrutinizes a novel two-sided matching model with a finite
number of agents and two-sided private information about exogenously given attributes.
Chapter 3 is a note on the optimal size of fixed-prize research tournaments that seeks
to fill two important gaps in an influential paper by Fullerton and McAfee (1999), and
Chapter 4 studies the impact of incomplete information on the problem of maximizing
revenue in a dynamic version of the knapsack problem, which is a classical combinatorial
resource allocation problem with numerous economic applications.

Chapter 2 is based on joint work with Benny Moldovanu, and Chapter 4 is joint work
with Alex Gershkov and Benny Moldovanu that has been published (in a slightly different
version) as a paper in 2011 (Dizdar, Gershkov and Moldovanu, 2011). For this reason, I
use the pronoun “we” in these chapters, whereas I use “I” in Chapter 1 and in Chapter 3.
The analysis of assignment markets with quasi-linear utility has been pioneered by

Shapley and Shubik (1971). The basic setting is as follows: there are several heterogeneous
agents on each side of the market, e.g. workers and firms, or buyers and sellers, who
are characterized by attributes that jointly determine the match value/surplus of each
potential partnership (or trade). Monetary transfers among agents are possible. In their
famous study, Shapley and Shubik characterized the outcomes of transferable utility
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Introduction

assignment games - assignment economies of the kind just described, in which attributes
are exogenously given, and in which matching and bargaining take place under complete
information and without any other frictions.
Many papers have varied or extended special cases of the basic assignment game

framework, e.g. to investigate effects on prices and matching patterns introduced by
private information (in auction or double auction settings, say) or search frictions, or
to analyze investment incentives and the efficiency of market outcomes in situations in
which attributes, rather than being exogenously given, result from costly investments
made by the agents. Much (though not all) of the related literature has built on one
particular version of the Shapley-Shubik model that was popularized by Becker (1973).1

In this kind of model, all agents are completely described by a one-dimensional attribute,
representing for example the skill or education of a worker or the quality of the physical
capital of a firm. Moreover, attributes satisfy a strong form of complementarity. These
restrictive assumptions have strong implications for agents’ preferences that are often not
tenable (in particular, positive assortative matching is implied in the frictionless model).
A common motivation for the research of Chapters 1 and 2 is to add to the under-

standing of the economics of assignment markets in which agents on both sides of the
market are heterogeneous with respect to several relevant characteristics. Therefore, the
present work is based on the general Shapley-Shubik model and on parts of the more
advanced mathematical literature on optimal transport.
Previous research has noted that in many two-sided economies, agents must make

costly investments in physical or human capital before they meet potential partners:
agents compete for partners only “ex-post”, in a market that is endogenously determined
by all agents’ (sunk) investments (Acemoglu, 1996; Cole, Mailath and Postlewaite, 2001a).
Chapter 1 studies the efficiency of two-sided investments and matching in large economies,
when agents are characterized by multi-dimensional cost/ability types and must decide
about investments in multi-dimensional attributes. To this end, I extend the seminal
model of Cole, Mailath and Postlewaite (in particular, I maintain the assumptions of
complete information and of frictionless ex-post markets), who assumed supermodular
match surplus and ordered marginal cost types, to allow for general continuum assignment
games. First, I show that there always is an “ex-post contracting” equilibrium (agents

1In addition, linear versions of the Shapley-Shubik model also play a prominent role in applications to
auctions and double auctions.
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must not have an incentive to deviate from their investment, given correct anticipation
of the post-investment market; see Chapter 1 for the formal definition) that supports
ex-ante efficient investment and matching. Hence, the main efficiency result of Cole,
Mailath and Postlewaite does not hinge on the single-crossing properties entailed by the
Becker framework. The main part of Chapter 1 aims at an in-depth study of the complex
interplay of technology and ex-ante heterogeneity that determines whether inefficient
equilibria exist as well, or whether these are necessarily ruled out by sufficiently rich
attribute markets. I identify a certain form of multiplicity in the technology as the
main source of potential coordination failures. Mismatch of agents due to inefficient
specialization (which is impossible in Becker-type models) may occur even without such
multiplicity, but there are very strong trends towards ex-ante efficiency in these cases. I
also illustrate (in a case with multiplicity) that, in contrast to examples given by Cole,
Mailath and Postlewaite, it is possible that even arbitrarily high ex-ante heterogeneity
does not suffice to rule out inefficiency. The analysis proceeds by means of a combination
of general lemmas and several rather involved examples, one of which uses some advanced
results from optimal transport theory.
If attributes are private information, then match surplus becomes informationally

interdependent. In Chapter 2, we study such situations of two-sided private information:
a finite number of agents with exogenously given, privately known attributes need to
be matched to form productive relationships. We ask whether there are standardized
rules for dividing ex-post realized surplus within matched pairs that are compatible with
information revelation leading, for each realization of attributes in the economy, to an
efficient matching. Maybe surprisingly, we find that for multi-dimensional, complementary
attributes, the only robust rules that are compatible with efficient match formation
in this sense are those that divide the surplus in each match according to the same
fixed proportion, independently of the attributes of the pair’s members. Such fixed-
proportion rules are observed in widely differing circumstances. We interpret our result
as highlighting a desirable feature distinguishing such contracts that has previously gone
unnoticed, and which complements other rationales that have been given in the literature,
based for example on moral hazard or risk-sharing arguments.

Fullerton and McAfee (1999) studied how to design a fixed-prize research tournament
in cases where firms/suppliers are heterogeneous with respect to their research costs and
where the research technology is stochastic. They focused on how cost asymmetries affect
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two major issues for the designer (who wants to procure a high quality innovation at low
cost): how many contestants should be admitted? How should these be selected from the
set of available candidates when costs are private information prior to the tournament?
The note in Chapter 3 analyzes two open problems with regard to the optimal number
of contestants. One problem pertains to the case where costs are common knowledge,
the procurer can select participants by charging non-discriminatory entry fees, and no
artificial restrictions on asymmetries are imposed. My result generally supports arranging
tournaments with the two most efficient firms only, but it also identifies instances of
asymmetry for which admitting more contestants is profitable for the procurer. More
importantly, I provide a rigorous analysis of optimal tournament size for a case where
costs are private information of ex-ante symmetric firms before the tournament. Fullerton
and McAfee showed that an all-pay entry auction should then be used to select the most
efficient firms from the pool of candidates and to raise money to finance parts of the
prize (entry fees, as well as standard discriminatory-price and uniform-price auctions may
fail as selection mechanisms). I discuss the procurer’s problem of stimulating a given
expected aggregate research effort at lowest expected total cost by choosing tournament
size optimally, and I derive a closed form solution for the case where marginal costs
are uniformly distributed on [0, c̄]. The result strongly favors the smallest possible
tournament with only two participants.

Chapter 4 analyzes maximization of revenue in the dynamic and stochastic knapsack
problem where a given capacity needs to be allocated by a given deadline to sequentially
arriving, impatient agents. Each agent is described by a two-dimensional type that reflects
his capacity requirement and his willingness to pay per unit of capacity. Types are private
information and result from i.i.d. draws. We first characterize all implementable policies
that are relevant for the purpose of revenue maximization. A simple characterization
of these policies is available (despite two-dimensional private information) since utility
functions have a special form. Then we solve the revenue maximization problem for
the special case where there is private information about per-unit values, but capacity
needs are observable. After that we derive two sets of additional conditions on the
joint distribution of values and weights under which the revenue maximizing policy for
the case with observable weights is implementable, and thus optimal also for the case
with two-dimensional private information. We also construct a simple policy for which
per-unit prices vary with requested weight but not with time, and we prove that it is

4



asymptotically revenue maximizing when available capacity and time to the deadline
both go to infinity. This highlights the importance of nonlinear as opposed to dynamic
pricing.
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Chapter 1

Investments and matching with
multi-dimensional attributes

This chapter studies the role of multi-dimensional heterogeneity for the efficiency of
two-sided investments in large two-sided economies. Heterogeneous agents characterized
by multi-dimensional cost/ability types first make sunk investments in multi-dimensional
attributes, with which they then compete for partners in a frictionless market with
transferable utility. The Kantorovich duality theorem of optimal transport is used to
extend the seminal model of Cole, Mailath and Postlewaite (2001a) (CMP) from one-
dimensional attributes, supermodular match surplus and ordered marginal cost types (the
“1-d supermodular framework”) to general continuum assignment games. There always is
an ex-post contracting equilibrium that supports ex-ante efficient investment and matching.
Hence, the main efficiency result of (CMP) does not hinge on single-crossing conditions. A
complex interplay of ex-ante heterogeneity and technology determines whether endogenous
attribute markets are necessarily rich enough to rule out inefficient equilibria. Unlike
in the 1-d supermodular framework, mismatch of agents due to inefficient specialization
may occur. This can happen even if the technology does not feature a kind of multiplicity
that is shown to be necessary for inefficient equilibria in the model of (CMP). However,
outside options in the endogenous attribute market strongly tend to rule out inefficient
investments in this case. The geometric characterization of efficient matchings and other
results from the theory of optimal transport are shown to be useful tools for studying
such effects. If the technology features multiplicity, then severe coordination failures
involving mismatch and/or jointly inefficient investments are often possible. Finally, an
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Chapter 1

example with simultaneous under- and over-investment shows that, unlike in the examples
of (CMP), even extreme ex-ante differentiation of types may not suffice to eliminate
inefficient equilibria.

1.1 Introduction

Many investments in physical and human capital must be made before economic agents
compete for complementary partners. For example, individuals make substantial human
capital investments before they try to find a job, and firms acquire physical capital
before they hire workers (Acemoglu, 1996; Cole, Mailath and Postlewaite, 2001a, 2001b).
Similarly, sellers may need to invest in features of their product prior to contracting
with buyers. These may, in turn, invest to prepare for optimal usage of the product. In
both cases, two-sided investments have a strong impact on how productive or profitable
potential future relationships can be. However, buyers and sellers (firms and workers)
can not contract ex-ante and coordinate their choices directly: at the time investments
must be made, the parties have not met each other yet.
What are agents’ incentives to invest in view of the subsequent competition for part-

ners?1 When does future competition trigger efficient two-sided investments, effectively
eliminating hold-up problems and coordination failures? Which relationships are formed
and how are the profits or productive surpluses shared among partners? These and
related questions have been studied both for small, finite and for very large, continuum
two-sided economies. In two seminal papers, Cole, Mailath and Postlewaite (2001a,
2001b) examined the case of frictionless (core) bargaining ex-post. In their continuum
model (Cole, Mailath and Postlewaite, 2001a, henceforth (CMP)), an equilibrium with ef-
ficient investment and matching always exists, but coordination failures may still happen.
Other important contributions analyzed the role of search frictions (Acemoglu, 1996) and
the impact of non-transferable utility (Peters and Siow, 2002).2 In all these papers, het-
erogeneous agents from both sides of a two-sided economy first make costly investments

1In the classical hold-up problem due to incomplete contracts, parties are in a relationship when they
invest, and the degree to which investments are relationship-specific is determined by exogenous
outside options (e.g. Williamson, 1985). Here, like in the more closely related literature that is
discussed below, the specificity of any investment is endogenously determined by the investments
of all other agents, as well as by properties of the market in which agents compete (see e.g. Cole,
Mailath and Postlewaite 2001a, 2001b).

2See below for a brief summary of results and of further related literature.
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1.1 Introduction

in a simultaneous and non-cooperative manner. They thereby acquire attributes with
which they then compete for partners, pair off and share a match surplus that depends
on the attributes of both parties. Equilibrium requires in particular that agents must
not have a profitable deviation at the investment stage. Quasi-linear utility, complete
information and a deterministic technology, which turns investments into attributes and
matched attributes into match surplus, also belong to the common framework.
The present study is motivated by two central observations. First, investments (and

attributes that result from investment) determining match surplus are inherently multi-
dimensional in most interesting applications. This is important since it implies that, in
marked contrast to the situation studied in most of the literature, agents’ preferences
over potential partners are usually not fully aligned, or even ordered by standard single-
crossing conditions. In particular, investing in multi-dimensional attributes may entail
significant specialization: having chosen a particular investment, one may be a suitable
partner for some agents but not for others, even if the investment was “high-level”. The
second observation is that agents are typically very heterogeneous with respect to their
cost of acquiring the multi-dimensional attributes. As a simple example, some agent may
have low costs for investing in communication and social skills while he has high costs
for investing in mathematical skills - but it may be the other way round for another
agent from the same side of the market.

In this chapter, I study the implications that multi-dimensional attributes and multi-
dimensional cost/ability types have for the efficiency of two-sided investments, in a
model that generalizes the one of (CMP). In particular, I do neither assume that gross
match surplus is a strictly supermodular function of buyers’ and sellers’ one-dimensional
investment levels (strategic complementarity), nor that the heterogeneous agents can be
completely ordered in terms of marginal cost of investment.3 In short, I use the general
continuous assignment game framework (Shapley and Shubik, 1971; Gretzky, Ostroy
and Zame, 1992, 1999) and methods from the closely related mathematical theory of
optimal transport (Villani, 2009; Chiappori, McCann and Nesheim, 2010), instead of the
Becker (1973) framework of assortative matching. Consequently, the model allows for
the representation of general preference relations both before and after investment.
Here is a brief preview of the main results. First, there always is an equilibrium in

3Such assumptions à la Becker (1973) have been made by a vast majority of papers that study two-sided
matching with quasi-linear utility, and these assumptions have then been adapted by the related
literature that includes an ex-ante investment stage.
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which all agents invest and match efficiently. Second, unlike in the “1-d supermodular
framework” à la (CMP), equilibria featuring a mismatch of buyers and sellers due to
inefficient specialization may exist. This is possible even if the economy’s net technology
does not feature a certain kind of multiplicity that turns out to be necessary for inefficiency
in the 1-d supermodular framework. Third, however, without technological multiplicity,
outside options in the endogenous attribute market strongly tend to trigger deviations
in any hypothesized inefficient equilibrium, so that investments and matching are often
forced to be ex-ante efficient. In marked contrast, severe coordination failures involving
mismatch and/or jointly inefficient investments in equilibrium partnerships may easily
occur when the technology features multiplicity. A very high degree of heterogeneity
of ex-ante populations is usually needed to rule out such coordination failures, via
sufficiently rich attribute markets. In fact, unlike in the under-/over-investment examples
of (CMP), even arbitrarily high ex-ante differentiation may be insufficient. This is true
also within the 1-d supermodular framework.
The basic two-stage model is as in (CMP): after all agents have non-cooperatively

made their investments, second-stage bargaining leads to a core solution (equivalently,
a competitive equilibrium) of the frictionless continuum transferable utility assignment
game that corresponds to the given gross match surplus function and to the populations
of attributes that result from investment. In equilibrium, every agent correctly anticipates
the investments of all others, the outcome of the second-stage equilibrium matching
market (i.e. allocation and prices/payoffs for existing attributes) and the effect of any
deviation from his own equilibrium investment. Given this, agents must not have an
incentive for a unilateral deviation. (CMP) called this an ex-post contracting equilibrium,
and I will follow their nomenclature.

I employ a fundamental theorem from the theory of optimal transport, adapted from
Villani (2009), to formalize ex-post contracting equilibrium for general assignment games.
Compared to the economic literature on assignment games which has primarily been
concerned with Walrasian prices/core utilities, the optimal transport result sheds a
lot of additional light on the structure of efficient matchings/Walrasian allocations.4

This is important for studying coordination failures in the second part of this chapter.5

Moreover, the approach also serves to resolve some technical issues with the continuum

4See Section 1.2.2.
5For the first part of the chapter, one could also build on Gretzky, Ostroy and Zame (1992, 1999).
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1.1 Introduction

model that have been discussed at considerable length in (CMP).
Virtually any ex-ante stable and feasible bargaining outcome, i.e. pair of efficient

matching and core sharing of net surplus in the hypothetical assignment game in which
agents can match and write complete contracts prior to investment, can be achieved
in ex-post contracting equilibrium.6 Hence, the main result about the existence of
an ex-post contracting equilibrium that is ex-ante efficient (Proposition 3 in (CMP)),
does not hinge on the Spence-Mirrlees single-crossing conditions which are implied by
supermodular match surplus and ordered marginal costs.7 This is remarkable since the
nice explicit proof of (CMP) heavily used single-crossing conditions. Intuitively, with a
continuum of buyers and sellers all agents have “essentially perfect substitutes” (Cole,
Mailath and Postlewaite, 2001b, pg. 1), and no single individual can affect the market
payoffs of others.8 Transferable utility (TU) and frictionless matching eliminate the
remaining potential sources of hold-up, and it turns out that this is sufficient to guarantee
the existence of an efficient ex-post contracting equilibrium, regardless of additional
structural assumptions about the technology or about the ex-ante populations.9

(CMP) gave examples of additional equilibria in which parts of both populations
under-invest (over-invest). However, these coordination failures are very special: due to
supermodular match surplus and ordered marginal costs, matching is always positively
assortative in equilibrium, both ex-post (in investment levels) and ex-ante (in marginal
cost types). Even though some buyers and sellers form matches with investments that
are not jointly efficient, there never is any mismatch from an ex-ante perspective.
To organize the analysis of general ex-post contracting equilibria, I first note that

(because of no hold-up) any agent’s equilibrium investment maximizes net match surplus,
given the investment of his equilibrium partner. In other words, for all equilibrium
matches, investments must form a Nash equilibrium of a hypothetical “full appropriation
game”. Multiplicity of Nash equilibria of these games corresponds to a multiplicity in
the economy’s technology. In this case, (generically) only one of the Nash equilibrium
profiles maximizes net surplus for the pair. In the framework of (CMP), coordination

6This holds true under a very mild technical condition.
7The standard formulation of this well known condition may be found for instance in Milgrom and
Shannon (1994).

8For details, see Cole, Mailath and Postlewaite (2001b), (CMP), Section 1.2.3, and also the discussion
of Makowski (2004) below.

9Often, though not always, there is a (essentially) unique ex-ante stable and feasible bargaining
outcome, see also footnote 28.

11



Chapter 1

failures are possible only if such multiplicity in the technology exists (see Proposition
1.5). In contrast, with multi-dimensional cost types and attributes, coordination failures
involving inefficient specialization and a mismatch of buyers and sellers may happen
even if there is no multiplicity in the technology (see Section 1.5.3.1).
In any case, whether a candidate for an inefficient equilibrium unravels or not is

determined by whether the induced attribute market triggers a deviation by some agent
(who is better off if he changes his investment and proposes a match with an existing
attribute from the other side, given prices for existing attributes). This in turn depends
on the exogenous ex-ante heterogeneity. (CMP) used these insights to show that their
inefficient equilibria unravel when the ex-ante heterogeneity is sufficiently large.

Once one leaves the 1-d supermodular framework, it is not a priori clear any more who
matches with whom in equilibrium. Still, I will argue that in cases without multiplicity in
the technology, outside options strongly discipline equilibrium investment and matching
towards ex-ante efficiency. To illustrate this in a rigorous way, I analyze one particular
truly multi-dimensional model in Section 1.5.3. I derive a set of conditions on ex-ante
heterogeneity which imply that any equilibrium that features a pure, smooth matching
of buyers and sellers is ex-ante optimal. This part of the paper uses the geometric
characterization of efficient matchings that is implied by the fundamental theorem of
optimal transport, along with a more advanced regularity result, applied to the classical
case of bilinear surplus.
If technological multiplicity is an issue, then coordination failures may easily occur

even for highly differentiated ex-ante populations (as in the examples of (CMP)). Multi-
dimensionality adds at least two aggravating factors then: the basic possibility of
mismatch substantially weakens unraveling effects, and whether all inefficient candidate
equilibria are eliminated depends heavily on the full type distributions rather than just on
their supports. Finally, I show that even extreme ex-ante heterogeneity may be insufficient
to guarantee that the attribute market is rich enough to rule out coordination failures.
The example, in which under- and over-investment occur simultaneously, also adds to
the picture of the most interesting inefficiencies in the 1-d supermodular framework.

1.1.1 Related literature

The most closely related paper (CMP) has already been discussed above. In the case
of finitely many buyers and sellers, an efficient ex-post contracting equilibrium that is
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1.1 Introduction

robust with respect to specifications of the off-equilibrium (core) bargaining outcome
exists whenever a, non-generic, “double-overlap” condition is satisfied (Cole, Mailath
and Postlewaite, 2001b). Generically, full ex-ante efficiency may be achieved only if
off-equilibrium outcomes punish deviations, which requires unreasonable sensitivity to
whether the deviating agent is a buyer or a seller. A particular and limited form of
mismatch is sometimes possible due to the allocative externality that a single agent can
exert on others by “taking away a better partner” through an aggressive investment.
This additional form of coordination failure was first identified by Felli and Roberts
(2001).10 Makowski (2004) analyzed a continuum model with general assignment games
in which single agents are - and expect to be - pivotal for aggregate market outcomes
whenever the endogenous attribute economy has a non-singleton core. He showed that
results similar to those of Cole, Mailath and Postlewaite (2001b) hold in this case: in
particular, hold-up and Felli-Roberts type inefficiencies are possible. I prefer to follow
(CMP) and assume that a single agent is not - and does not expect to be - pivotal
for aggregate market outcomes in a very large economy. For example, in contrast to
Makowski’s model, such assumptions are in principle consistent with the introduction of
small amounts of uncertainty, e.g. in the form of a small “probability of death” between
investment and market participation.11 Moreover, the main focus of the present chapter
is on whether outside options in endogenous markets necessarily rule out coordination
failures - a question that Makowski does not study.

For a particular form of non-transferable utility (NTU, fifty-fifty sharing of an additive
match surplus), ordered cost types and continuum populations, Peters and Siow (2002)
showed that there is an equilibrium that is ex-ante efficient. Acemoglu (1996) formalized
the hold-up problem associated with search frictions in the second-stage matching
market. He also demonstrated how such frictions and a resulting “pecuniary externality”
(Acemoglu, 1996, pg. 1) may explain social increasing returns in human (and physical)
capital accumulation, in a model without technological externalities. Mailath, Postlewaite
and Samuelson (2012a, 2012b) introduced another friction, namely that sellers can not
observe buyers’ attributes and may only use uniform pricing. They studied the impact

10They studied the interplay of hold-up and coordination failure when double-overlap does not hold,
and when buyers bid for sellers in a particular non-cooperative game.

11See Gall, Legros, and Newman (2012) and Bhaskar and Hopkins (2011) for models with a noisy
investment technology. Gall, Legros and Newman also obtained a result of “over-investment at the
top, under-investment at the bottom”(compare the result of Section 1.5.5), albeit for very different
reasons, in a model with non-transferable utility.
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that premuneration values have for the efficiency of investments in this case. Except for
Makowski (2004), all of the above papers assume one-dimensional investments and some
kind of single-crossing.

The transferable utility assignment game with exogenously given attributes has received
considerable attention in the economics literature. In their seminal paper on the “housing
market” with finitely many buyers and sellers, Shapley and Shubik (1971) proved that
the core of the assignment game is equivalent to the set of Walrasian equilibria, and to
the solutions of a linear program. More precisely, “solutions to the linear programming
problem [of maximizing aggregate surplus, D. D.] are Walrasian allocations, and solutions
to the dual linear programming problem are core utilities and correspond to Walrasian
prices”, as Gretzky, Ostroy and Zame (1999, pg. 66) succinctly put it. In addition, core
utilities are stable and feasible surplus shares for two-sided matching.

Gretzky, Ostroy and Zame (1992) (henceforth (GOZa)) extended these equivalences to
the continuum model, for which the heterogeneous populations of buyers and sellers are
described by non-negative Borel measures on the spaces of possible attributes. Gretzky,
Ostroy and Zame (1999) (henceforth (GOZb)) identified several equivalent conditions
for perfect competitiveness of an assignment economy with continuous match surplus
(as is the case in this chapter), in the sense that individuals (in the continuum model,
infinitesimal individuals) are unable to manipulate prices in their favor. Among these
equivalent conditions are that the core is a singleton, that all agents fully appropriate
their marginal products, and that the social gains function (i.e. the optimal value of the
linear program) is differentiable with respect to the population measure. (GOZb) showed
that perfect competition is a generic property for continuum assignment economies
with continuous match surplus,12 and that most large finite assignment economies are
“approximately perfectly competitive”.

The linear program associated with the transferable utility assignment game, i.e. the
optimal transport problem, is also the subject of study of an extensive mathematical
literature. An excellent reference is the book by Villani (2009). It surveys a multitude of
results, including the fundamental duality theorem about the existence and structure of
optimal transports that I use in this chapter. More advanced topics include sufficient
conditions for uniqueness of optimal transports/ Walrasian allocations ((GOZb) were

12Intuitively, the existence of a long side and a short side of the market as well as “overlaps” of matched
agent types are generic and pin down core utilities uniquely.
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concerned with uniqueness of prices) and for pure optimal assignments (i.e. each type of
agent is matched to exactly one type of agent from the other side), a delicate regularity
theory,13 and many other things.
Chiappori, McCann and Nesheim (2010) related the optimal transport problem to

hedonic pricing and to stable matching.14 Using advanced techniques, they established
sufficient conditions for uniqueness and purity of an optimal matching (including a
generalized single-crossing condition), as well as a weaker condition that is sufficient for
uniqueness. They also stated a condition that implies that derivatives of core utilities are
unique, thereby complementing the results of (GOZb). Figalli, Kim and McCann (2011)
used advanced techniques from the regularity theory for optimal transport problems to
provide necessary and sufficient conditions for monopolistic screening to be a convex
program. This substantial achievement sheds light on important earlier contributions to
multi-dimensional monopolistic screening, such as Rochet and Choné (1998).
Some less closely related papers analyzed how heterogeneous agents compete for

partners through costly signals in the assortative framework. In Hoppe, Moldovanu and
Sela (2009), investments are wasteful and may be used to signal private information about
characteristics that determine match surplus (which is shared fifty-fifty). They studied
how the heterogeneity of (finite or infinite) agent populations determines the amount of
wasteful signalling. Among other things, they identified conditions such that random
matching is welfare superior to assortative matching based on costly signalling. Hopkins
(2012) studied a model in which investments signal private information about productive
characteristics but also contribute to match surplus (i.e. they are only partially wasteful).
His main results nicely identify comparative statics effects associated with changes in
the populations, both under NTU and under TU.

The plan of the chapter is as follows: Section 1.2 explains the primitives of the model,
the structure of market outcomes, and the two-stage equilibrium concept. Section 1.3
lays out the efficiency benchmark. Section 1.4 contains the result about existence of an
ex-ante efficient equilibrium. Section 1.5 studies the interplay of technology and ex-ante
heterogeneity of types that determines whether coordination failures may happen, and if
so, what they look like. All proofs may be found in Section 1.6.

13I use a classical regularity result in Section 1.5.3.3.
14Their work is partly inspired by two earlier papers by Ekeland (2005, 2010), who used a convex

programming approach.
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1.2 Model

1.2.1 Agent populations, costs, and match surplus

There is a continuum of buyers and sellers. All agents have quasi-linear utility functions
and utility is transferable in the form of monetary payments. At an ex-ante stage t = 0,
all buyers and sellers simultaneously and non-cooperatively choose costly investments.
Agents may be heterogeneous with respect to costs. Formally, a buyer of type b ∈ B who
invests into an attribute x ∈ X incurs a cost c(x, b). Similarly, a seller of type s ∈ S can
invest into an attribute y ∈ Y at cost d(y, s). B, S, X and Y are compact metric spaces
(metrics and induced topologies are suppressed in the notation),15 and c : X ×B → R+

and d : Y × S → R+ are continuous functions.
If a buyer with attribute x and a seller with attribute y match, they generate gross

match surplus v(x, y). The function v : X × Y → R+ is continuous, and unmatched
agents obtain zero surplus.16

The continuum populations of buyers and sellers are described by Borel probability
measures µ on B and ν on S.17 The “generic” case with a long side and a short side of
the market (that is, more buyers than sellers or vice versa) is easily included by adding
(topologically isolated) “dummy” types on the short side. Dummy types b∅ ∈ B and
s∅ ∈ S always choose dummy investments x∅ ∈ X and y∅ ∈ Y at zero cost. x∅ and y∅
are assumed to be prohibitively costly for all b 6= b∅, s 6= s∅, so that no real agent ever
chooses them. The assumption that unmatched agents create no surplus translates into
v(x∅, ·) ≡ 0 and v(·, y∅) ≡ 0.

15The basic theory of optimal transport has been developed for general Polish spaces, and some results
could be obtained in that setting. Such a gain in generality seems to be of very minor economic
importance but would require additional technical assumptions. Thus, I stick to compact metric
type- and attribute spaces.

16This latter assumption is made merely for simplicity. A model in which it may be a socially valuable
option to leave some agents unmatched even though potential partners are still available is ultimately
equivalent.

17I use normalized measures which is common in optimal transport. (GOZa) and (GOZb) use non-
negative Borel measures, which is useful for analyzing the “social gains function” that plays a key
role in their work.
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1.2.2 The transferable utility assignment game

The two-sided market in which agents compete for partners at the ex-post stage
t = 1, given the attributes that result from sunk investments, is modeled as a continuum
transferable utility assignment game. The basic data are two population measures of
attributes, µ̃ on X and ν̃ on Y , along with the gross match surplus function v.18 I focus
on the linear programming formulation of the assignment game. Proposition 1.1 below,
which is adapted from Theorem 5.10 of Villani (2009) suggests a natural definition of a
stable and feasible bargaining outcome for a given assignment game, as a pair of i) an
efficient matching/coupling (a primal solution) and ii) a stable and feasible (pointwise,
for all matches that are formed) sharing of match surplus (a dual solution). Given
the equivalences established by (GOZa) (compare Section 1.1.1), these solutions also
correspond to Walrasian equilibria and to pairs of efficient allocations and core utilities.
The exposition of material in this section is deliberately concise. For additional details,
Chapters 4 and 5 of Villani (2009) and potentially also (GOZa) and (GOZb) should be
consulted.
The feasible allocations (i.e. matchings of attributes) are the so-called couplings of

µ̃ and ν̃, i.e. the measures π̃ on X × Y with marginal measures µ̃ and ν̃.19 I write
Π(µ̃, ν̃) for the set of all these couplings. Thus, the linear program of finding an efficient
matching/ a Walrasian allocation is to find a π̃ ∈ Π(µ̃, ν̃) that attains

sup
π̃′∈Π(µ̃,ν̃)

∫
X×Y

v dπ̃′.

The dual linear program is to minimize aggregate payoffs among all attribute payoff
functions that satisfy a pointwise stability requirement (but no feasibility, there is
no matching in the dual problem): find functions ψ̃ ∈ L1(µ̃) and φ̃ ∈ L1(ν̃) from
the constraint set specified below (the constraint qualification must hold for a pair of
representatives from the L1-equivalence classes) which attain

inf
{(ψ̃′,φ̃′)∈L1(µ̃)×L1(ν̃)| φ̃′(y)+ψ̃′(x)≥v(x,y) for all (x,y)∈Supp(µ̃)×Supp(ν̃)}

(∫
Y
φ̃′ dν̃ +

∫
X
ψ̃′ dµ̃

)
.

18Since v is continuous, the framework is equivalent to that of (GOZb) and of Section 3.5 in (GOZa).
19Note that since match surplus is non-negative and unmatched agents create zero surplus, there is no

need to explicitly consider the possibility that agents remain unmatched. Those agents who match
with a dummy type are of course de facto unmatched.
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Note that the measure supports Supp(µ̃) and Supp(ν̃) describe the sets of existing
attributes, i.e. attributes for which there are agents with that attribute.20 When
searching for optimal stable payoffs, one may restrict attention to functions ψ̃ that are
v-convex as defined below and set φ̃ := ψ̃v, the so-called v-transform of ψ̃.

Definition 1.1. A function ψ̃ : Supp(µ̃)→ R is called v-convex (w.r.t. the sets Supp(µ̃)
and Supp(ν̃)) if there is a function ζ̃: Supp(ν̃)→ R ∪ {+∞} such that

ψ̃(x) = sup
y∈Supp(ν̃)

(
v(x, y)− ζ̃(y)

)
=: ζ̃v(x).

In this case, ψ̃v(y) := supx∈Supp(µ̃)

(
v(x, y)− ψ̃(x)

)
is called the v-transform of ψ̃, and

the v-subdifferential of ψ̃, ∂vψ̃ is defined as

∂vψ̃ :=
{

(x, y) ∈ Supp(µ̃)× Supp(ν̃)| ψ̃v(y) + ψ̃(x) = v(x, y)
}
.

Remark 1.1. i) A function ψ̃ : Supp(µ̃) → R is v-convex if and only if ψ̃ = (ψ̃v)v

(Proposition 5.8 in Villani (2009)).21

ii) ψ̃ and φ̃ = ψ̃v are pinned down for all x ∈ Supp(µ̃) and y ∈ Supp(ν̃), not just
almost surely.
iii) The relation ψ̃(x) = supy∈Supp(ν̃)

(
v(x, y)− φ̃(y)

)
reflects price-taking behavior of

a single buyer. Given payoffs φ̃ for existing seller attributes, a buyer with attribute x
can claim the gross match surplus net of the seller’s payoff in any relationship, and he
may optimize over all y ∈ Supp(ν̃) (an analogous remark applies for sellers).
iv) Since v is continuous and Supp(µ̃) and Supp(ν̃) are compact, any v-convex function

is continuous and so is its v-transform.22 In particular, v-subdifferentials are closed.
v) The v-subdifferential ∂vψ̃ is precisely the set of (x, y) for which the payoffs (ψ̃, φ̃)

are not only stable but also feasible, and hence may truly be interpreted as surplus shares
for the given pair.

Definition 1.2. A set A ⊂ X × Y is called v-cyclically monotone if for all K ∈ N,

20More precisely, for any x ∈ Supp(µ̃), every neighborhood of attributes containing x has strictly
positive mass.

21This is a generalization of the usual Legendre duality for convex functions.
22The proofs of these claims are straightforward. They also follow immediately from the proof of

Theorem 6 in (GOZa) who “v-convexify” a given dual solution to extract a continuous representative
in the same L1-equivalence class.

18
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(x1, y1), ..., (xK , yK) ∈ A and yK+1 = y1, it holds that

K∑
i=1

v(xi, yi) ≥
K∑
i=1

v(xi, yi+1).

It is easy to see that the v-subdifferential ∂vψ̃ of a v-convex ψ̃ is a v-cyclically
monotone set. The following proposition is adapted from the fundamental Theorem 5.10
on Kantorovich duality in Villani (2009). It has two parts. The first part assures the
existence of both primal and dual solutions (note that “sup” has turned into “max” and
“inf” has turned into “min” in the equation below) and the equality of optimal values.
The second part makes a statement about the structure of all optimal primal and dual
solutions: couplings concentrated on v-cyclically monotone sets are optimal, and the
support of any optimal coupling is contained in the v-subdifferential of any optimal
buyer payoff function.

Proposition 1.1. It holds

max
π̃∈Π(µ̃,ν̃)

∫
X×Y

v dπ̃ = min
{ψ̃|ψ̃ is v−convex w.r.t. Supp(µ̃) andSupp(ν̃)}

(∫
Y
ψ̃v dν̃ +

∫
X
ψ̃ dµ̃

)
.

If π̃ ∈ Π(µ̃, ν̃) is concentrated on a v-cyclically monotone set then it is optimal. Moreover,
there is a closed set Γ̃ ⊂ Supp(µ̃)× Supp(ν̃) such that

π̃ is optimal in the primal problem if and only if Supp(π̃) ⊂ Γ̃,

a v-convex ψ̃ is optimal in the dual problem if and only if Γ̃ ⊂ ∂vψ̃.

Thus, the dual solutions (attribute payoffs, prices, core utilities) are defined for all
existing attributes and constitute a stable sharing of surplus that is (pointwise!) feasible
for all matches that are part of an optimal coupling.23 One may therefore define stable
and feasible bargaining outcomes of a given transferable utility assignment game as
follows.

Definition 1.3. A stable and feasible bargaining outcome for the assignment game
(µ̃, ν̃, v) is a pair (π̃, ψ̃), such that π̃ ∈ Π(µ̃, ν̃) is an optimal solution for the primal linear
23(CMP) had to invest some effort to deal with functions that are defined only almost surely and to define

feasibility appropriately, even in the special assortative framework. Proposition 1.1 immediately
resolves such issues.
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program, and the v-convex function ψ̃ is an optimal solution for the dual linear program.

Proposition 1.1 ensures the existence of a stable and feasible bargaining outcome.

Remark 1.2. The fact that the support of any optimal coupling is a v-cyclically monotone
set hints at the fundamental connection between optimal transport and multi-dimensional
monopolistic screening and mechanism design, which underlies the recent work of Figalli,
Kim and McCann (2011).

1.2.3 Ex-post contracting equilibria

Agents’ non-cooperative equilibrium investments at t = 0 will be described by mea-
surable functions β : B × S → X and σ : B × S → Y , along with a “pre-assignment”
π ∈ Π(µ, ν) of buyers and sellers. The push-forwards (i.e. the image measures) β#π and
σ#π then describe the resulting populations of attributes. I allow here for the possibility
that an agent’s investment depends explicitly both on his own type and on the type of
agent from the other side that he plans to match with. This is needed to include cases
in which agents of the same type make different investments, which often happens for
instance when type spaces are discrete and, accordingly, there are continua of agents of
the same type. However, in many cases it is possible to describe equilibrium investments
by measurable functions β : B → X and σ : S → Y .24 Attribute populations are given
by β#µ and σ#ν then,25 and one may effectively drop π from the description.26

I call a tuple (β, σ, π) an investment profile, and I impose an innocuous regularity
condition that corresponds to the “no isolated points” condition of (CMP).

Definition 1.4. An investment profile (β, σ, π) is said to be regular if it holds for all
(b, s) ∈ Supp(π) that β(b, s) ∈ Supp(β#π) and σ(b, s) ∈ Supp(σ#π).

For a regular investment profile, there are no buyers and no sellers whose attributes
get lost in the description (β#π, σ#π, v) of the attribute assignment game. Moreover,
24(CMP) considered a special case of this. In their model, B = S = [0, 1], µ = ν = U [0, 1], X = Y = R+,

and β and σ are “well-behaved”, i.e. strictly increasing with finitely many discontinuities, Lipschitz
on intervals of continuity points, and without isolated values.

25If β̂ : B → X is measurable, then β(b, s) := β̂(b) is product measurable, and β#π = β̂#µ for any
coupling π ∈ Π(µ, ν).

26The literature on optimal transport has found important combinations of generalized single-crossing
conditions for match surplus and mild conditions on type distributions that jointly ensure “pure”
optimal matchings, see e.g. Villani (2009), Chiappori, McCann, and Nesheim (2010).
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there are infinitely many “equivalent” outside options for each agent’s investment.27

I follow (CMP) then and assume that a deviation by a single agent does not affect the
payoff of any agent other than himself: given a stable and feasible bargaining outcome
(π̃, ψ̃) for (β#π, σ#π, v), a buyer who chooses attribute x ∈ X (following a deviation this
may be any attribute in X) can get a gross payoff of

r̃B(x) = sup
y∈Supp(σ#π)

(
v(x, y)− ψ̃v(y)

)
.

Since ψ̃v is continuous, the same is true for r̃B (by the Maximum Theorem), and
r̃B(x) = ψ̃(x) holds for all x ∈ Supp(β#π). Similarly, sellers with attribute y ∈ Y obtain

r̃S(y) = sup
x∈Supp(β#π)

(
v(x, y)− ψ̃(x)

)
,

which coincides with ψ̃v(y) on Supp(σ#π).

Definition 1.5. An ex-post contracting equilibrium is a tuple ((β, σ, π), (π̃, ψ̃)), where
(β, σ, π) is a regular investment profile and (π̃, ψ̃) is a stable and feasible bargaining
outcome for (β#π, σ#π, v), such that it holds for all (b, s) ∈ Supp(π) that

ψ̃(β(b, s))− c(β(b, s), b) = sup
x∈X

(r̃B(x)− c(x, b)) =: rB(b),

and
ψ̃v(σ(b, s))− d(σ(b, s), s) = sup

y∈Y
(r̃S(y)− d(y, s)) =: rS(s).

The equilibrium net payoff functions rB and rS are continuous (by the Maximum
Theorem again).

27In the Appendix, I show that β(Supp(π)) and σ(Supp(π)) are contained and dense in Supp(β#π)
and Supp(σ#π) (Lemma 1.5). As a consequence, the fact that β(Supp(π)) and σ(Supp(π)) are not
necessarily closed or even merely measurable does not cause problems, and one may use the stable
and feasible bargaining outcomes for (β#π, σ#π, v) as defined in Section 1.2.2 to formulate agents’
investment problems. Compare also Lemma 1.6 which formally shows how to complete a “stable
and feasible bargaining outcome with respect to the sets β(Supp(π)) and σ(Supp(π))”.
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1.3 Ex-ante contracting equilibria

Just as in (CMP), the hypothetical case in which agents can match and bargain
without frictions at t = 0 and write binding contracts provides the ex-ante efficiency
benchmark. Define

h(x, y|b, s) := v(x, y)− c(x, b)− d(y, s).

The net match surplus that a buyer of type b and a seller of type s can generate is

w(b, s) := max
x∈X,y∈Y

h(x, y|b, s). (1.1)

Jointly optimal investments (x∗(b, s), y∗(b, s)) maximizing h(·, ·|b, s) exist for all (b, s) ∈
B × S since X and Y are compact, and since v, c and d are continuous. These solutions
need not be unique. By the Maximum Theorem, w is continuous. Applying Proposition
1.1 to (µ, ν, w) thus yields the existence of an ex-ante stable and feasible bargaining
outcome (π∗, ψ∗), along with a closed set Γ ⊂ B × S that contains the support of any
ex-ante optimal coupling, and which is contained in the w-subdifferential of any optimal
w-convex buyer net payoff function.

Definition 1.6. An ex-ante contracting equilibrium for (µ, ν, w) is a tuple
((π∗, ψ∗), (x∗, y∗)), such that (π∗, ψ∗) is a stable and feasible bargaining outcome for
(µ, ν, w), and (x∗(b, s), y∗(b, s)) is a solution to (1.1) for all (b, s) ∈ Supp(π∗).

Let me recall two immediate consequences for future reference. For any ex-ante stable
and feasible bargaining outcome (π∗, ψ∗), it holds

(ψ∗)w(s) + ψ∗(b) = w(b, s) for all (b, s) ∈ Supp(π∗)
(ψ∗)w(s) + ψ∗(b) ≥ w(b, s) for all b ∈ Supp(µ), s ∈ Supp(ν).

(1.2)

1.4 Efficient ex-post contracting equilibria

Theorem 1.1 below shows that any ex-ante stable and feasible bargaining outcome
can be achieved in ex-post contracting equilibrium, provided that a very mild technical
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condition is satisfied.28 Consequently, the main efficiency result of (CMP) does not hinge
on supermodularity of match surplus and cost functions, which imply ordered preferences
and assortative matching. This is particularly remarkable since single-crossing conditions
took center stage in the proof of (CMP).
By the Maximum Theorem, the solution correspondence for the problem (1.1) is

upper-hemicontinuous (and hence a measurable selection always exists). Any ex-ante
stable and feasible bargaining outcome (π∗, ψ∗) that satisfies the following mild condition
can be achieved as an ex-post contracting equilibrium.

Condition 1.1. There is a selection (β∗, σ∗) from the solution correspondence for (1.1)
such that (β∗, σ∗, π∗) is a regular investment profile.

Theorem 1.1. Let (π∗, ψ∗) be an ex-ante stable and feasible bargaining outcome for
(µ, ν, w) that satisfies Condition 1.1, and let (β∗, σ∗) be the corresponding selection. Then
the regular investment profile (β∗, σ∗, π∗) is part of an ex-post contracting equilibrium
((β∗, σ∗, π∗), (π̃∗, ψ̃∗)) with π̃∗ = (β∗, σ∗)#π

∗.29

1.5 Inefficient equilibria

1.5.1 Two kinds of inefficiency: mismatch and inefficiency of
joint investments

A pair of equilibrium investment profile and equilibrium coupling of attributes is
compatible with at least one interpretation as an induced coupling of buyers and sellers.
For example, if investments are given by injective maps from types to attributes, then

28One might ask when ex-ante stable and feasible bargaining outcomes are unique. This (very delicate)
question about uniqueness of primal and dual solutions of the optimal transport problem is not
peculiar to the two-stage model of this chapter which aims at analyzing the equilibrium investments
of agents who subsequently enter a large and frictionless two-sided market. The question has of
course been studied previously. For instance, (GOZb) have shown that for a given continuous match
surplus function w and generic population measures µ and ν, dual solutions are unique. On the
other hand, a substantial amount of research in optimal transport has been devoted to establishing
sufficient conditions for unique, or more often unique and pure, optimal couplings.

29Remember that investments do not depend explicitly on the pre-assignment π∗ whenever this coupling
is pure! Still, π∗ is needed to describe the coupling of attributes (β∗, σ∗)#π

∗ that supports the
ex-ante efficient matching of agents.
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the interpretation is unique.30

It is useful to distinguish two kinds of inefficiency that are conceptually different. First,
agents might prepare for the wrong partners and opt for an inefficient specialization
for that reason. I will say that an ex-post contracting equilibrium exhibits mismatch
inefficiency if it is not compatible with any ex-ante optimal coupling of buyers and
sellers. Secondly, for a given coupling of buyers and sellers that is compatible with the
equilibrium, it might be that some agents match with attributes that are not jointly
optimal (i.e. the attributes do not maximize (1.1)). I will call this inefficiency of joint
investments. In particular, an equilibrium is ex-ante efficient if and only if it has the
following two properties (like the equilibrium constructed in Theorem 1.1): it does not
exhibit mismatch inefficiency, and there is a compatible ex-ante optimal coupling of
buyers and sellers for which there is no inefficiency of joint investments.
To avoid repetition, I would like to refer the reader to Section 1.1 for a preview of

the analysis and results of this section. Sections 1.5.1.1 - 1.5.2 should be viewed as
preparatory, while Sections 1.5.3 - 1.5.5 contain the main examples and results. Let me
stress again though that in (CMP) mismatch is impossible: due to one-dimensional types
and attributes and single-crossing conditions, every equilibrium is compatible with the
positively assortative coupling of buyer types and seller types, and this coupling is ex-
ante optimal. The examples of under-investment (over-investment) are characterized by
inefficiency of joint investments for types with low (high) costs. Moreover, these equilibria
always cease to exist when the ex-ante populations are sufficiently heterogeneous, since
the (endogenous) attribute populations are then necessarily so rich that some agent
wants to deviate.

1.5.1.1 Technological multiplicity and inefficiency of joint investments

As an expression of “no hold-up”, any agent’s equilibrium investment must maximize
net match surplus, conditional on the attribute of his equilibrium partner.

Lemma 1.1. In an ex-post contracting equilibrium ((β, σ, π), (π̃, ψ̃)), any (β(b, s′), y) ∈
Supp(π̃), where (b, s′) ∈ Supp(π), satisfies β(b, s′) ∈ argmaxx∈X (v(x, y)− c(x, b)).
Similarly, for any (b′, s) ∈ Supp(π) and any (x, σ(b′, s)) ∈ Supp(π̃), it holds that

30On the other hand, if buyers of different types choose the same attribute and if this type of attribute is
matched with investments that stem from different seller types, then the interpretation as a coupling
of buyers and sellers is non-unique.
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σ(b′, s) ∈ argmaxy∈Y (v(x, y)− d(y, s)).

In particular, the investments of a buyer b and a seller s who match in equilibrium
must form a Nash equilibrium of a hypothetical complete information game between b
and s with strategy spaces X and Y and payoffs v(x, y)− c(x, b) and v(x, y)− d(y, s). I
will refer to this game as a “full appropriation” (FA) game between b and s.

Corollary 1.1. If (β(b, s′), σ(b′, s)) ∈ Supp(π̃) for some (b, s′), (b′, s) ∈ Supp(π), then
(β(b, s′), σ(b′, s)) is a Nash equilibrium (NE) of the FA game between b and s.

Jointly optimal investments always form a Nash equilibrium of the FA game between
b and s. When FA games have more than one pure strategy NE (in accordance with the
deterministic investment functions β and σ, I consider only pure strategy NE without
further mentioning it), this corresponds to a multiplicity in the economy’s technology.
Such multiplicity is a necessary condition for inefficiency of joint investments:

Corollary 1.2. Assume that for all b ∈ Supp(µ), s ∈ Supp(ν), the FA game between
b and s has a unique NE (which then coincides with the unique pair (x∗(b, s), y∗(b, s))
of jointly optimal investments). Then there is no inefficiency of joint investments in
ex-post contracting equilibrium.

In particular, without technological multiplicity, ex-post contracting equilibria are
ex-ante efficient in the framework of (CMP). In the Appendix, I prove the claims made
so far about that framework under Assumption 1.1 below, which slightly generalizes the
basic model of (CMP) in three respects: no smoothness is assumed, costs need not be
convex in attribute choice, and types need not be uniformly distributed on intervals.

Assumption 1.1. Let X, Y,B, S ⊂ R+, and assume that v is strictly supermodular in
(x, y), c is strictly submodular in (x, b), and d is strictly submodular in (y, s).31

1.5.1.2 The “constrained efficiency” property

(CMP) observed a useful indirect “constrained efficiency” property that quickly follows
from the definition of ex-post contracting equilibrium: if there is a pair of agents that
would ex-ante block the equilibrium outcome, then no attribute they could use for

31See e.g. Milgrom and Roberts (1990) or Topkis (1998) for formal definitions of these very well-known
concepts.
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blocking may exist in the equilibrium attribute market. Lemma 1.2 below rephrases the
result in the current notation. A short proof is included in Section 1.6.

Lemma 1.2 (Lemma 2 of (CMP)). Let ((β, σ, π), (π̃, ψ̃)) be an ex-post contracting
equilibrium. Suppose that there are b ∈ Supp(µ), s ∈ Supp(ν) and (x, y) ∈ X × Y such
that h(x, y|b, s) > rB(b) + rS(s). Then, x /∈ Supp(β#π) and y /∈ Supp(σ#π).

1.5.2 Preparation: the basic module for examples

(CMP) constructed their examples in a piecewise manner from two different supermodu-
lar surplus functions. This approach can fruitfully be pushed further. I will systematically
use a certain one-dimensional basic module that satisfies Assumption 1.1 to construct
examples (which, apart from those in Section 1.5.5, do not satisfy Assumption 1.1). For
the basic module, let 0 < α < 2, γ > 0, f(z) = γzα for z ∈ R+, and set v(x, y) := f(xy)
for x, y ∈ R+. This defines a strictly supermodular gross match surplus. Costs are given
by c(x, b) = x4/b2 and d(y, s) = y4/s2 for b, s ∈ R++. Symmetry is just a trick to keep
the analysis reasonably tractable. None of the effects that I illustrate in the following
sections depends on symmetry assumptions.
For all (b, s), there is a trivial NE of the FA game, namely (x, y) = (0, 0). However,

this stationary point, which is not even a local maximizer of h(x, y|b, s), should be viewed
as the only unpleasant feature of an otherwise very convenient example.
Therefore, throughout Section 1.5, I will focus on non-trivial equilibria, in which agents

who get a (non-dummy) match partner do not make zero investments. Hence, equilibria
that arise only because of the pathological stationary point of the basic module will be
ignored!32

Non-trivial NE attributes in the basic module are unique for all (b, s) and coincide
with the jointly optimal investments:

x
∗(b, s) = (γα4 )

1
4−2α b

4−α
8−4α s

α
8−4α

y∗(b, s) = (γα4 )
1

4−2α s
4−α

8−4α b
α

8−4α .
(1.3)

Net match surplus is
w(b, s) = κ(α, γ)(bs)

α
2−α , (1.4)

32Eliminating the trivial NE explicitly by modifying the functions is possible but this would make the
subsequent analysis a lot messier, which is not worth the effort.
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where
κ(α, γ) = γ

2
2−α

(
α

4

) α
2−α

(
1− α

2

)
. (1.5)

The maximal surplus net of own costs that seller s can attain when he matches with
an investment that buyer b makes for seller s′ is

max
y∈Y

(
γ(x∗(b, s′)y)α − y4

s2

)
= b

α
2−α s

2α
4−α (s′)

α2
(4−α)(2−α)γ

2
2−α

(
α

4

) α
2−α

(
1− α

4

)
. (1.6)

If x∗(b, s′) is an equilibrium investment of buyer b then, the net payoff for seller s from
the above investment and match, after leaving the equilibrium market gross payoff to
buyer b, is

max
y∈Y

(v(x∗(b, s′), y)− d(y, s))− c(x∗(b, s′), b)− rB(b). (1.7)

Symmetric formulae apply for buyers.

1.5.3 A multi-dimensional model without technological
multiplicity

In the model of this section, buyers and sellers have multi-dimensional cost types,
and they can invest in multi-dimensional attributes. The technology does not feature
multiplicity, so that inefficiency of joint investments is impossible: non-trivial NE of FA
games are unique. The goal is to shed light on the extent to which mismatch may occur
in this situation. Is it possible that agents invest for the wrong partners in equilibrium?
Or do the resulting attribute markets necessarily violate Definition 1.5 (or, alternatively,
Lemma 1.2), so that only the ex-ante efficient equilibrium survives? The tentative
lesson from the analysis below is the following: mismatch is possible in principle and
may sometimes occur, but with heterogeneous, differentiated ex-ante populations, the
attribute markets that result from mismatch inefficient situations often necessarily cause
deviations, so that matching and equilibrium are forced to be ex-ante efficient.

Here is the model: the supports of non-dummy buyer types b = (b1, b2) and seller types
s = (s1, s2) are contained in R2

+−{0}, and agents can invest in attributes x = (x1, x2) ∈
R2

+ and y = (y1, y2) ∈ R2
+. Match surplus is bilinear: v(x, y) = x1y1 + x2y2. This form

has been used in many papers on screening and mechanism design, and with regard to
optimal transport, it corresponds to the classical case of quadratic transportation cost.
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Costs are c(x, b) = x4
1
b2

1
+ x4

2
b2

2
and d(y, s) = y4

1
s2

1
+ y4

2
s2

2
. Hence, surplus and costs are additively

separable in the two dimensions, and the specification corresponds to setting γ = α = 1
in the basic module of Section 1.5.2, for both dimensions. The model is constructed
such that net surplus is also bilinear. It holds w(b, s) = 1

8(b1s1 + b2s2), according to (1.4)
and (1.5). From (1.6) it follows that maxy∈Y (v(x∗(b, s′), y)− d(y, s)) = ∑2

i=1
3
16s

2
3
i (s′i)

1
3 bi.

Moreover, c(x∗(b, s), b) = d(y∗(b, s), s) = 1
16(b1s1 + b2s2).

I allow that one type parameter of an agent is equal to zero, meaning that any
strictly positive investment in the corresponding dimension is infinitely costly (and that,
consequently, the agent makes zero investments in that dimension). This assumption
is not fully in line with the general model of Section 1.2.1 but it does not cause any
problems. It merely serves to avoid unnecessary ε-arguments in Sections 1.5.3.1 and
1.5.3.2. The examples of Sections 1.5.3.1 and 1.5.3.2 are still close to the one-dimensional
supermodular framework. The analysis in Section 1.5.3.3 is substantially more involved
and uses Proposition 1.1.

1.5.3.1 An example of mismatch inefficiency

In this example, sellers (workers) are generalists who can invest in both dimensions.
There are only two possible types, high and low, which are completely ordered. Moreover,
sellers are on the long side of the market. Formally, ν = aHδ(sH ,sH)+(1−aH)δ(sL,sL), where
0 < sL < sH and 0 < aH < 1. It is easy to derive the unique ex-ante optimal coupling
then, irrespectively of the distribution of buyer types. Indeed, w((b1, b2), (s1, s1)) =
1
8(b1 + b2)s1, so that s1 and b1 + b2 are sufficient statistics to determine net match surplus.
Since w is strictly supermodular in these sufficient statistics, the unique ex-ante optimal
coupling is positively assortative with respect to them.

There are two types/sectors of specialized buyers (employers): with a slight abuse of
notation (namely, (b1, b2) does not denote a generic buyer type here), let µ = a1δ(b1,0) +
a2δ(0,b2) + (1− a1− a2)δb∅ , where 0 < a1, a2, b1, b2 and a1 + a2 < 1. To make the problem
interesting, sector 1 is more productive ex-ante, i.e. b1 > b2, and not all buyers can get
high type sellers, i.e. aH < a1 + a2. The ex-ante efficient equilibrium constructed in
Theorem 1.1 always exists. What about other, mismatch inefficient equilibria?
Case aH > a2: there is exactly one additional, mismatch inefficient equilibrium if and

28



1.5 Inefficient equilibria

only if
b2

b1
≥ 1− sL

sH
and 3

2
b2

b1
≥

1− sL
sH

1− ( sL
sH

) 2
3
.

Otherwise, only the ex-ante efficient equilibrium exists.
In the mismatch inefficient equilibrium, all (0, b2)-buyers match with (sH , sH)-sellers,

and sector 1 attracts both high and low type sellers. Both conditions put lower bounds
on the ratio b2

b1
. The first one is a participation constraint for (0, b2)-buyers. Given the

payoff they have to leave to (sH , sH)-sellers, it must be weakly profitable for them to
invest and enter the market. The second condition makes sure that low-type sellers do
not want to deviate and match with x∗((0, b2), (sH , sH))-attributes, given the payoff that
must be left to buyers from sector 2. The first condition is the more stringent one for
small values of sL

sH
(in which case (sH , sH)-sellers capture a lot of surplus), while it is the

other way round for sL
sH

close to one.
Case aH < a2: there is exactly one additional, mismatch inefficient equilibrium if and

only if

2
3
b2

b1
≥

(
sH
sL

) 2
3 − 1

sH
sL
− 1 .

Otherwise, only the ex-ante efficient equilibrium exists.
In the mismatch inefficient equilibrium, all (sH , sH)-sellers are “depleted” by (0, b2)-

buyers. The lower bound on b2
b1

makes sure that (sH , sH)-sellers do not wish to deviate
and match with x∗((b1, 0), (sL, sL))-attributes. It is most stringent if sH

sL
is close to 1,

in which case the investments made by the more productive sector of buyers are very
suitable also for (sH , sH)-sellers.

1.5.3.2 The limits of mismatch: a simple example

The example of this section is a variation of the previous one. The population of
generalist sellers is more differentiated now: ν is concentrated on {(s1, s1)|sL ≤ s1 ≤ sH},
where sL < sH . For simplicity, I assume that ν has a bounded density, uniformly bounded
away from zero, with respect to Lebesgue measure on that interval.
Buyers again belong to one of two specialized sectors. Formally, µ is compactly

supported in R++ × {0} ∪ {0} ×R++ ∪ {b∅}. I assume that µ restricted to R++ × {0}
and {0} × R++ also has interval support, with a density as above. In particular, both
sectors are heterogeneous and it need not be the case that one sector is uniformly more
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productive than the other one. It turns out that the only non-trivial ex-post contracting
equilibrium is the ex-ante optimal one. The diversity of seller types and their ability to
deviate to the other sector suffices to rule out any mismatch inefficient situation.

1.5.3.3 The limits of mismatch continued: a fully multi-dimensional case

The ex-ante populations in this example are of a form for which the regularity theory
for optimal transport (for bilinear surplus, recall that w(b, s) = 1

8(b1s1 + b2s2)) makes
sure that the unique ex-ante optimal matching is deterministic and smooth.

Assumption 1.2. Supp(µ), Supp(ν) ⊂ R2
++ are closures of bounded, open and uniformly

convex sets with smooth boundaries. Moreover, both measures are absolutely continuous
with respect to Lebesgue measure, with smooth densities bounded from above and below
on the supports.

Theorem 12.50 and Theorem 10.28 of Villani (2009) yield:

Proposition 1.2. Under the conditions of Assumption 1.2, the ex-ante assignment
game has a, up to an additive constant unique, (w-) convex dual solution ψ∗ which is
smooth. Moreover, the unique ex-ante optimal coupling π∗ is given by a smooth bijection
T ∗ : Supp(µ)→ Supp(ν) satisfying 1

8T
∗(b) = ∇ψ∗(b).

I will show that under very mild additional assumptions on the supports, any smooth
and deterministic matching/coupling of buyers and sellers that is compatible with an
arbitrary ex-post contracting equilibrium is necessarily ex-ante optimal. In this sense,
the differentiated ex-ante populations and the rich endogenous attribute markets leave
no room for mismatch!
The idea of proof is as follows: I first note that whenever a coupling of buyers and

sellers that is induced by an ex-post contracting equilibrium is locally given by a smooth
map T , then T corresponds to the gradient of the equilibrium buyer net payoff function,
∇rB(b) = 1

8T (b). Then, I use a local version of the fact that both buyers and sellers must
not have incentives to change investments and match with other equilibrium attributes
from the other side. This yields bounds both on DT (b) = 8Hess rB(b) (the Hessian) and
on the inverse of this matrix. Taken together, these bounds force Hess rB to be positive
semi-definite under mild assumptions on the type supports. It then follows that rB is
convex, so that the coupling associated with T is concentrated on the subdifferential of
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a convex function. This is a w-cyclically monotone set, and hence T is ex-ante optimal
by Proposition 1.1.

Theorem 1.2. Let Assumption 1.2 hold, and assume that
(
s1
b1
b2
s2

+ s2
b2
b1
s1

)
< 32 for all

b ∈ Supp(µ), s ∈ Supp(ν). Let T : Supp(µ) → Supp(ν) be a smooth one-to-one onto
deterministic coupling of buyers and sellers that is compatible with an ex-post contracting
equilibrium. Then T is ex-ante efficient.

The rest of this section contains the sequence of preliminary results leading to Theorem
1.2. Throughout, η will denote a direction: η ∈ R2 and |η| = 1. Moreover, T always stands
for a deterministic, one-to-one onto, coupling of buyers and sellers that is compatible
with an ex-post contracting equilibrium. Finally, · denotes the standard inner product
on R2.

Lemma 1.3. Let T be smooth in a neighborhood of b ∈ Supp(µ). Then it holds for all
admissible directions η:

1
8T (b) · η = lim

t→0

rB(b+ tη)− rB(b)
t

.

Corollary 1.3. Let T be smooth on an open set U ⊂ Supp(µ). Then rB is smooth on
U and satisfies ∇rB(b) = 1

8T (b) for all b ∈ U .

Proposition 1.3. Let T be smooth on an open set U ⊂ Supp(µ) and b ∈ U . Then, for
T (b) and the symmetric, non-singular linear map DT (b) = 8Hess rB(b) it holds: both

3DT (b) +
 T (b)1

b1
0

0 T (b)2
b2

 and 3DT (b)−1 +
 b1

T (b)1
0

0 b2
T (b)2

 are positive semi-definite.

Proposition 1.4. Let T be smooth on an open set U ⊂ Supp(µ). For b ∈ U , if(
T (b)1
b1

b2
T (b)2

+ T (b)2
b2

b1
T (b)1

)
< 32, then DT (b) = 8Hess rB(b) is positive semi-definite.

1.5.4 Technological multiplicity and severe coordination
failures

The under- and over-investment examples of (CMP) show that severe coordination
failures may be possible when technological multiplicity is an issue for the given popu-
lations. The simple example of this section illustrates how this problem is aggravated
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outside of the one-dimensional supermodular framework. Coordination failures then typ-
ically involve mismatch, which makes it less likely that the endogenous markets contain
attributes that destroy the inefficient equilibrium. In particular, whether coordination
failures are ruled out or not depends in a complex way on the full ex-ante populations
(not just on supports as in (CMP)), and there may well be mismatch inefficient equilibria,
potentially without any inefficiency of joint investments, even for rich, differentiated
populations.

The example combines the one of Section 1.5.3.2 with an under-investment example à
la (CMP). Population measures are as in Section 1.5.3.2, with support {(s1, s1)|sL ≤ s1 ≤
sH} (sL < sH) for ν, {(0, b2)|b2,L ≤ b2 ≤ b2,H} (b2,L < b2,H) for the sector 2 population
of buyers, and {(b1, 0)|b1,L ≤ b1 ≤ b1,H} (b1,L < b1,H) for the sector 1 population of
buyers. Moreover, the technology for sector 1 remains unchanged. In sector 2 however,
match surplus has an additional regime of complementarity for high attributes: v(x, y) =
x1y1 + max(f1, f2)(x2y2), where f1(z) = z and f2(z) = 1

2z
3
2 . Lemma 1.9 in Section 1.6

shows that the match surplus for sector 2 is strictly supermodular.33 If the technology for
sector 2 were globally given by f1, then the unique non-trivial NE of the FA game between
(0, b2) and (s1, s1) would be (x, y) =

((
0, 1

2b
3
4
2 s

1
4
1

)
,
(

0, 1
2b

1
4
2 s

3
4
1

))
, yielding net surplus

1
8b2s1. The corresponding expressions for f2 are (x, y) =

((
0, 3

16b
5
4
2 s

3
4
1

)
,
(

0, 3
16b

3
4
2 s

5
4
1

))
and κ

(
3
2 ,

1
2

)
(b2s1)3 = 33

215 (b2s1)3. Hence, couples with b2s1 <
26

3
3
2

=: τ are better off with
the f1-technology, and couples with b2s1 > τ are better off with the f2-technology. The
true technology for sector 2 is defined via f1 for x2y2 < z12 = 4 and via f2 for x2y2 > 4.
Still, the identified attributes are the jointly efficient choices for all b2 and s1, since
x2y2 = 1

4b2s1 and x2y2 = 32

28 (b2s1)2 evaluated at the indifference couples b2s1 = τ are
equal to 24

3
3
2
< 4 and 24

3 > 4 respectively.
Consider now a situation in which ex-ante efficiency requires that high cost investments

are made in sector 2. This is the case iff (0, b2,H) is matched to a (s∗1, s∗1) satisfying
b2,Hs

∗
1 > τ in the ex-ante efficient equilibrium. As a side remark, note that since there is

no 1-d sufficient statistic in which net surplus is supermodular (in contrast to Section
1.5.3.2), the problem of finding the ex-ante optimal coupling is actually non-local and
difficult, with potentially very complicated solutions.34 However, for the present purposes,

33As (CMP) noted, the piecewise construction matters only for analytical convenience. One could
smooth out kinks without affecting any results.

34I briefly illustrate this difficulty by spelling out the 2-cycle condition in the Appendix.
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it is not necessary to solve the ex-ante assignment problem explicitly.
If all sector 2 couples invest according to the low technology regime (which is inefficient

by assumption), then the analysis of Section 1.5.3.2 implies that (0, b2,H) is matched to
the seller (s1,q, s1,q) who satisfies ν({(s1, s1)|s1 ≥ s1,q}) = q, for q = µ({b|b1 + b2 ≥ b2,H}).
This inefficient situation (in which efficient investment opportunities in sector 2 are
missed, and some high type sellers invest for sector 1 while they should invest for sector 2)
is ruled out if and only if the low regime investments made by (0, b2,H) and (s1,q, s1,q) are
sufficiently high to trigger an upward deviation by at least one of the two parties. This in
turn depends crucially on q, and hence on sector 1 of the buyer population. Note finally
that if the inefficient equilibrium survives, it exhibits inefficiency of joint investments if
b2,Hs1,q > τ , while all agents make jointly efficient investments if b2,Hs1,q ≤ τ .

1.5.5 Simultaneous under- and over-investment: the case of
missing middle sectors

In this section, I show that, in contrast to the examples of (CMP) and to the examples
given so far in this chapter, even extreme ex-ante heterogeneity may be insufficient to
rule out inefficient equilibria. To this end, I return to the 1-d supermodular framework
to construct examples with simultaneous under- and over-investment. Combined with
the results of (CMP), the current section yields a comprehensive picture of the most
interesting coordination failures in the 1-d supermodular framework. In the examples,
“lower middle” types under-invest and bunch with low types who invest efficiently, while
“upper middle” types over-invest and bunch with high types who invest efficiently. In
particular, the attribute economy lacks an efficient middle sector. As in (CMP), there is
no bunching in a literal sense since attributes are fully differentiated. It should rather be
understood as bunching in the same connected component of the attribute economy.
I employ the construction of Lemma 1.9, as well as the notation introduced there.

v has three different regimes of complementarity, i.e. K = 3, z12 < z23 and v(x, y) =
(maxi=1,...,3 fi) (xy). Population measures are absolutely continuous with respect to
Lebesgue measure, have interval support, and - for simplicity - they are symmetric, i.e.
µ = ν. I denote the interval support by I ⊂ R++. By Corollary 1.4 in Section 1.6, b is
matched to s = b in any ex-post contracting equilibrium.

If surplus were globally given by fi(xy) (i ∈ {1, 2, 3}) rather than v, then the non-trivial
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NE of the FA game for (b, b) would be unique and given by

x∗i (b, b) = y∗i (b, b) =
(
γiαi

4

) 1
4−2αi

b
1

2−αi . (1.8)

The net surplus that the couple (b, b) would generate according to fi is wi(b) = κib
2αi

2−αi ,
where κi = κ(αi, γi). For i < j, wj crosses wi exactly once in R++ and this crossing is
from below (like for the functions fi, fj). The type at which this crossing occurs is

bij =
(
κi
κj

) 1
2αj/(2−αj)−2αi/(2−αi)

=
(
κi
κj

) (2−αi)(2−αj)
4(αj−αi)

.

I write xiij for the attributes that the indifference types bij would use under fi, and
xjij for those attributes they would use under fj. These are given by

xiij = z
1
2
ij

(
αi
4

) 1
4−2αi


(
αi
4

) αi
2−αi (2− αi)(

αj
4

) αj
2−αj (2− αj)


2−αj

4(αj−αi)

,

and

xjij = z
1
2
ij

(
αj
4

) 1
4−2αj


(
αi
4

) αi
2−αi (2− αi)(

αj
4

) αj
2−αj (2− αj)


2−αi

4(αj−αi)

.

Thus, xiij and xjij depend on γi, γj only through γi/γj , and moreover, xjij/xiij depends
only on αi and αj. It follows that

xjij
xiij

=
(
αj
4

) 1
4−2αj

(
αi
4

)− 1
4−2αi


(
αi
4

) αi
2−αi (2− αi)(

αj
4

) αj
2−αj (2− αj)


1
4

=
(
αj(2− αi)
αi(2− αj)

) 1
4

.

This ratio is greater than one (since 0 < αi < αj < 2), so that there is an upward
jump in attribute choice where the indifferent types would like to switch from the fi to
the fj surplus function.
If parameters are such that b12 < b23, then f1 would be the best surplus function for

b < b12, f2 would be best for b12 < b < b23, and f3 would be best for b23 < b.
However, the true gross surplus function is v with its three different regimes. The

34



1.6 Appendix for Chapter 1

above comparison of net surplus from optimal choices for globally valid f1, f2 and f3 is
sufficient to find the ex-ante efficient ex-post contracting equilibrium if and only if the
“jump attributes” actually lie in the valid regimes. Formally, this requires

x2
112 < z12 < x2

212 < x2
223 < z23 < x2

323. (1.9)

If b12 < b13 < b23, it is clear from (1.8) that x112 < x113, x212 < x223 and x313 < x323. I
show next that the following two conditions may simultaneously be satisfied:
a) (1.9) holds
b) the jump from x113 to x313 (which is not part of the efficient equilibrium!) is also

between valid regimes, that is x2
113 < z12 and z23 < x2

313.
Indeed, as an example, let α1 = 0.1, α2 = 0.6, α3 = 1.6, γ1 = 1, γ2 = 1.5 and γ3 = 1.

Then z12 = 4/9, z23 = 3/2, b12 ≈ 1.5823, b13 ≈ 1.8908, b23 ≈ 1.9266 and jump attributes
for all three possible jumps lie in the valid regimes: x2

112 ≈ 0.2326, x2
113 ≈ 0.2806,

x2
212 ≈ 0.6637, x2

223 ≈ 0.8793, x2
313 ≈ 2.4459 and x2

323 ≈ 2.6863.
In the Appendix, I show that for the above parameters and any symmetric populations

with interval support I and b13 ∈ I, the inefficient outcome in which types b < b13

make investments β(b) = σ(b) =
(
γ1α1b2

4

) 1
4−2α1 and types b > b13 make investments

β(b) = σ(b) =
(
γ3α3b2

4

) 1
4−2α3 can be sustained as an ex-post contracting equilibrium with

symmetric payoffs ψ̃(x) = φ̃(x) = v(x, x)/2 on cl(β(I)) = cl(σ(I)) (cl(·) denotes the
closure of a set).
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The next lemma shows that the sets of existing buyer and seller types, Supp(µ) and
Supp(ν), may equivalently be described by Supp(π) for any π ∈ Π(µ, ν).

Lemma 1.4. Let PB(b, s) = b and PS(b, s) = s be the coordinate projections. For any
π ∈ Π(µ, ν) it holds Supp(µ) = PB(Supp(π)) and Supp(ν) = PS(Supp(π)).

Proof of Lemma 1.4. I prove the claim for µ only and first show PB(Supp(π)) ⊂ Supp(µ).
So take any (b, s) ∈ Supp(π). Then, for any open neighborhood U of b, π(U × S) > 0
and hence µ(U) > 0. Thus, b ∈ Supp(µ).
I next prove the slightly less trivial inclusion Supp(µ) ⊂ PB(Supp(π)). Assume to

the contrary that there is some b ∈ Supp(µ) that is not contained in PB(Supp(π)). The
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latter assumption implies that for all s ∈ S there are open neighborhoods Us ⊂ B of
b and Vs ⊂ S of s such that π(Us × Vs) = 0. Since S is compact, the open cover
{Vs}s∈S of S contains a finite subcover {Vs1 , ..., Vsk}. Moreover, U := ⋂k

i=1 Usi is an
open neighborhood of b and U × S ⊂ ⋃k

i=1 Usi × Vsi . This leads to the contradiction
0 < µ(U) = π(U × S) ≤ π(⋃ki=1 Usi × Vsi) = 0.

Lemma 1.5. Let (β, σ, π) be a regular investment profile. Then β(Supp(π)) is dense
in Supp(β#π), σ(Supp(π)) is dense in Supp(σ#π), and (β, σ)(Supp(π)) is dense in
Supp((β, σ)#π).

Proof of Lemma 1.5. I prove the claim for β(Supp(π)). Assume to the contrary that there
is a point x ∈ Supp(β#π) and an open neighborhood U of x such that U∩β(Supp(π)) = ∅.
Then β#π(U) > 0 (by definition of the support) and on the other hand β#π(U c) ≥
π(Supp(π)) = 1. Contradiction.

Lemma 1.6. Let (β, σ, π) be a regular investment profile. Let ψ̃ : β(Supp(π))→ R be
v-convex with respect to the (not necessarily closed) sets β(Supp(π)) and σ(Supp(π)),
let ψ̃v be its v-transform, and let π̃ ∈ Π(β#π, σ#π) be such that ψ̃v(y) + ψ̃(x) = v(x, y)
on a dense subset of Supp(π̃). Then there is a unique extension of (ψ̃, ψ̃v) to a v-dual
pair with respect to the compact metric spaces Supp(β#π) and Supp(σ#π), and with
this extension (π̃, ψ̃) becomes a stable and feasible bargaining outcome in the sense of
Definition 1.3.

Proof of Lemma 1.6. First define for all y ∈ Supp(σ#π),

φ̃0(y) := sup
x∈β(Supp(π))

(v(x, y)− ψ̃(x)).

By definition, φ̃0 coincides with ψ̃v on the set σ(Supp(π)) ⊂ Supp(σ#π), which is a
dense subset by Lemma 1.5. Next, set for all x ∈ Supp(β#π),

ψ̃1(x) := sup
y∈Supp(σ#π)

(v(x, y)− φ̃0(y)),

and finally for all y ∈ Supp(σ#π),

φ̃1(y) := sup
x∈Supp(β#π)

(v(x, y)− ψ̃1(x)).
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By definition, ψ̃1 is a v-convex function with respect to the compact metric spaces
Supp(β#π) and Supp(σ#π), and φ̃1 is its v-transform. Observe that ψ̃1 coincides with ψ̃
on β(Supp(π)) and that φ̃1 coincides with ψ̃v on σ(Supp(π)). Indeed, for any x = β(b, s)
with (b, s) ∈ Supp(π), the set of real numbers used to define the supremum ψ̃(x) is
contained in the one used to define ψ̃1(x). Assume then for the sake of deriving a
contradiction that ψ̃1(β(b, s)) > ψ̃(β(b, s)). Then there must be some y ∈ Supp(σ#π),
such that v(β(b, s), y) > ψ̃(β(b, s)) + φ̃0(y) and hence in particular v(β(b, s), y) >

ψ̃(β(b, s))+v(β(b, s), y)−ψ̃(β(b, s)), which yields a contradiction. A completely analogous
argument shows that φ̃1(σ(b, s)) = ψ̃v(σ(b, s)) for all (b, s) ∈ Supp(π). So ψ̃(x) := ψ̃1(x)
and ψ̃v(y) := φ̃1(y) are well-defined (and unique) extensions to a v-dual pair with respect
to Supp(β#π) and Supp(σ#π).

Since, for the extended ψ̃, ∂vψ̃ is closed, it follows that Supp(π̃) ⊂ ∂vψ̃. Hence (π̃, ψ̃)
is a stable and feasible bargaining outcome.

Proof of Theorem 1.1. By assumption, it holds for all b ∈ B, s ∈ S that

v(β∗(b, s), σ∗(b, s))− c(β∗(b, s), b)− d(σ∗(b, s), s) = w(b, s),

and moreover (β∗, σ∗, π∗) is a regular investment profile. The measure π̃∗ := (β∗, σ∗)#π
∗

couples β∗#π∗ and σ∗#π∗, and it is intuitively quite clear that this must be an optimal
coupling. Indeed, from a social planner’s point of view, and modulo technical details,
the problem of finding an ex-ante optimal coupling with corresponding mutually optimal
investments is equivalent to a two-stage optimization problem where he must first decide
on investments for all agents and then match the two resulting populations optimally.
I next construct the v-convex buyer payoff function ψ̃∗ that will be the other part

of the stable and feasible bargaining outcome in the ex-post contracting equilibrium.
Optimality of π̃∗ will be proven along the way.35 For any x for which there is some
(b, s) ∈ Supp(π∗) such that x = β∗(b, s), set

ψ̃∗(x) := ψ∗(b) + c(x, b).

35It should be kept in mind that there may be other stable and feasible bargaining outcomes for
(β∗

#π
∗, σ∗

#π
∗, v). These other outcomes are incompatible with (two-stage) ex-post contracting

equilibrium however.
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This is well-defined. Indeed, take any other (b′, s′) ∈ Supp(π∗) with x = β∗(b′, s′).
Since ψ∗ is a w-convex dual solution, it holds Supp(π∗) ⊂ ∂wψ

∗. Thus v(x, σ∗(b, s))−
c(x, b)− d(σ∗(b, s), s) = w(b, s) = (ψ∗)w(s) + ψ∗(b). Moreover, v(x, σ∗(b, s))− c(x, b′)−
d(σ∗(b, s), s) ≤ w(b′, s) ≤ (ψ∗)w(s) + ψ∗(b′), where the first inequality follows from
the definition of w and the second follows from (1.2). This implies c(x, b) − c(x, b′) ≤
ψ∗(b′)− ψ∗(b), and hence ψ∗(b) + c(x, b) ≤ ψ∗(b′) + c(x, b′). Reversing roles in the above
argument shows that ψ̃∗(x) is well-defined.
Similarly, for any y for which there is some (b, s) ∈ Supp(π∗) such that y = σ∗(b, s),

φ̃∗(y) := (ψ∗)w(s) + d(y, s)

is well-defined. ψ̃∗(x) and φ̃∗(y) are the gross payoffs that agents get in their ex-ante
efficient matches if the net payoffs are ψ∗ and (ψ∗)w respectively.

From the equality in (1.2) and from the definitions of ψ̃∗ and φ̃∗ it follows that for all
(b, s) ∈ Supp(π∗),

v(β∗(b, s), σ∗(b, s)) = w(b, s) + c(β∗(b, s), b) + d(σ∗(b, s), s)

= ψ∗(b) + (ψ∗)w(s) + c(β∗(b, s), b) + d(σ∗(b, s), s)

= ψ̃∗(β∗(b, s)) + φ̃∗(σ∗(b, s)). (1.10)

Moreover, the inequality in (1.2) implies for any x = β∗(b, s) and y = σ∗(b′, s′) with
(b, s), (b′, s′) ∈ Supp(π∗),

ψ̃∗(x) + φ̃∗(y) = ψ∗(b) + c(x, b) + (ψ∗)w(s′) + d(y, s′)

≥ w(b, s′) + c(x, b) + d(y, s′) ≥ v(x, y). (1.11)

(1.10) and (1.11) imply that with respect to the sets β∗(Supp(π∗)) and σ∗(Supp(π∗)),
ψ̃∗ is a v-convex function, and φ̃∗ is its v-transform. Furthermore (by (1.10)), the
set (β∗, σ∗)(Supp(π∗)), which by Lemma 1.5 is dense in Supp(π̃∗), is contained in the
v-subdifferential of ψ̃∗. Completing ψ̃∗ as in Lemma 1.6 yields the stable and feasible
bargaining outcome (π̃∗, ψ̃∗) for (β∗#π∗, σ∗#π∗, v).
It remains to be shown that no agent has an incentive to deviate. So assume that

there is a buyer of type b ∈ Supp(µ) for whom it is profitable to deviate. Then there

38



1.6 Appendix for Chapter 1

must be some x ∈ X such that

sup
y∈Supp(σ∗#π∗)

(
v(x, y)− (ψ̃∗)v(y)

)
− c(x, b) > ψ∗(b),

and hence there is some y ∈ Supp(σ∗#π∗) for which

v(x, y)− (ψ̃∗)v(y)− c(x, b) > ψ∗(b).

Since σ∗(Supp(π∗)) is dense in Supp(σ∗#π∗) and by continuity of v and (ψ̃∗)v, it follows
that there is some (b′, s′) ∈ Supp(π∗) such that

v(x, σ∗(b′, s′))− (ψ∗)w(s′)− d(σ∗(b′, s′), s′)− c(x, b) > ψ∗(b).

Hence in particular w(b, s′) > (ψ∗)w(s′)+ψ∗(b), which contradicts (1.2). The argument
for sellers is analogous.

Proof of Lemma 1.1. Assume to the contrary that there is some x such that v(x, y)−
c(x, b) > v(β(b, s′), y) − c(β(b, s′), b). (β(b, s′), y) ∈ Supp(π̃) implies ψ̃(β(b, s′)) =
v(β(b, s′), y)− ψ̃v(y). Hence

ψ̃(β(b, s′))− c(β(b, s′), b) = v(β(b, s′), y)− ψ̃v(y)− c(β(b, s′), b)

< v(x, y)− ψ̃v(y)− c(x, b) ≤ rB(b),

which contradicts the assumption that β(b, s′) is an equilibrium choice of buyer b. The
proof for sellers is analogous.

Proof of Lemma 1.2. Assume to the contrary that x ∈ Supp(β#π). Then, from the
definition of rS, and by assumption,

rS(s) + ψ̃(x)− c(x, b) ≥ v(x, y)− ψ̃(x)− d(y, s) + ψ̃(x)− c(x, b) > rB(b) + rS(s).

Hence ψ̃(x)− c(x, b) > rB(b), a contradiction (formally, ψ̃(x) = v(x, y′)− ψ̃v(y′) for
some y′ ∈ Supp(σ#π) matched with x under π̃ and this leads to a contradiction to the
definition of rB). The proof for y /∈ Supp(σ#π) is analogous.
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Basic facts about the 1-d supermodular model

As is well known, strict supermodularity of v forces optimal couplings to be positively
assortative for any attribute economy. The Kantorovich duality theorem can be used for
a very short proof.

Lemma 1.7. Let Assumption 1.1 hold. Then, for any attribute economy (µ̃, ν̃, v), the
unique optimal coupling is the positively assortative one.

Proof of Lemma 1.7. By Kantorovich duality, the support of any optimal coupling π̃ is a
v-cyclically monotone set. In particular, for any (x, y), (x′, y′) ∈ Supp(π̃) with x > x′, it
holds v(x, y)+v(x′, y′) ≥ v(x, y′)+v(x′, y) and hence v(x, y)−v(x′, y) ≥ v(x, y′)−v(x′, y′).
Since v has strictly increasing differences, it follows that y ≥ y′.

Lemma 1.8. Let Assumption 1.1 hold. Then, in any ex-post contracting equilibrium,
attribute choices are non-decreasing with respect to agents’ own type.

Proof of Lemma 1.8. From Definition 1.5, β(b, s) ∈ argmaxx∈X(r̃B(x) − c(x, b)). The
objective is strictly supermodular in (x, b). By Theorem 2.8.4 from Topkis (1998), all
selections from the solution correspondence are non-decreasing in b. The argument for
sellers is analogous.

Corollary 1.4. Let Assumption 1.1 hold. Then every ex-post contracting equilibrium
((β, σ, π), (π̃, ψ̃)) is compatible with the positively assortative coupling of buyers and
sellers.

Note that the positively assortative coupling may of course feature matching buyers of
the same type to different seller types, and vice versa, whenever the distributions have
atoms. This does not matter for the result.

Proposition 1.5. Let Assumption 1.1 hold and assume that Corollary 1.2 applies. Then
every ex-post contracting equilibrium is ex-ante efficient.

Proof of Proposition 1.5. By Corollary 1.4, buyer and seller types can ex-post be in-
terpreted to be coupled in the same way (positively assortative) in any equilibrium.
In particular, this is true for the ex-ante efficient equilibrium that was constructed
in Section 1.4 (note that, by (upper hemi-) continuity, Condition 1.1 is automatically
satisfied if (x∗(b, s), y∗(b, s)) is unique for all (b, s)). By Corollary 1.2, all agents make
jointly optimal investments for their equilibrium partnership in every ex-post contracting
equilibrium. This proves the claim.
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Formulae and proofs for the basic module

NE of the FA game for (b, s) necessarily are stationary points of h(x, y|b, s) = γ(xy)α−
x4

b2 − y4

s2 . By behavior of this objective function on the main diagonal x = y for small x,
as well as by the asymptotic behavior as x→∞ or y →∞, there is an interior global
maximum. Necessary first order conditions are

γαx
α−1yα = 4

b2x
3

γαxαyα−1 = 4
s2y

3
⇒

y = ( 4
γαb2 )1/αx(4−α)/α

x = ( 4
γαs2 )1/αy(4−α)/α.

Plugging in yields a unique stationary point apart from (0, 0), given by
x

(4−α)2/α2−1 = (γαs2

4 )1/α(γαb2

4 )(4−α)/α2

y(4−α)2/α2−1 = (γαb2

4 )1/α(γαs2

4 )(4−α)/α2
.
⇒

x = (γα4 )1/(4−2α)b(4−α)/(8−4α)sα/(8−4α)

y = (γα4 )1/(4−2α)s(4−α)/(8−4α)bα/(8−4α).

This proves (1.3). Net match surplus is

w(b, s) = γ(x∗(b, s)y∗(b, s))α − x∗(b, s)4

b2 − y∗(b, s)4

s2

= γ
(
γα

4

) α
2−α

(bs)
α

2−α − 1
b2

(
γα

4

) 2
2−α

b
4−α
2−α s

α
2−α − 1

s2

(
γα

4

) 2
2−α

s
4−α
2−α b

α
2−α

= κ(α, γ)(bs)
α

2−α ,

where

κ(α, γ) = γ
2

2−α

((
α

4

) α
2−α
− 2

(
α

4

) 2
2−α

)
= γ

2
2−α

(
α

4

) α
2−α

(
1− α

2

)
.

This proves (1.4) and (1.5).

Now, let x = x∗(b, s′). To derive (1.6), note that from the first order condition it
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follows that y =
(
γαs2

4

) 1
4−α x

α
4−α . Hence

γ(xy)α − y4

s2 = γx
4α

4−α

(
γα

4

) α
4−α

s
2α

4−α − 1
s2

(
γαs2

4

) 4
4−α

x
4α

4−α

= s
2α

4−α

((
γα

4

) 1
4−2α

b
4−α

8−4α (s′)
α

8−4α

) 4α
4−α

(
γ
(
γα

4

) α
4−α
−
(
γα

4

) 4
4−α

)

= b
α

2−α s
2α

4−α (s′)
α2

(4−α)(2−α)γ
2

2−α

(
α

4

) α
2−α

(
1− α

4

)
.

For s = s′, this coincides with w(b, s) + c(x∗(b, s), b).

Lemma 1.9. Let K ∈ N, 0 < α1 < ... < αK < 2, γ1, ..., γK > 0 and fi(z) = γiz
αi for

i = 1, ..., K. For i < j, there is a unique zij ∈ R++ in which fj crosses fi (from below).
zij is given by

zij =
(
γi
γj

) 1
αj−αi

.

Consider parameter constellations for which z12 < z23 < ... < z(K−1)K. In this case,
(maxi=1,...,K fi) (xy) defines a strictly supermodular function in (x, y) ∈ R2

+.

Proof of Lemma 1.9. Note that f1(xy) is strictly increasing and strictly supermodular
in (x, y), and that (maxi=1,...,K fi) (xy) = g(f1(xy)) for the strictly increasing, convex
function

g(t) =


t for t ≤ γ1z

α1
12

γ
−αi/α1
1 γit

αi/α1 for γ1z
α1
(i−1)i < t ≤ γ1z

α1
i(i+1), i = 2, ..., K − 1

γ
−αK/α1
1 γKt

αK/α1 for t > γ1z
α1
(K−1)K .

The claim thus follows, e.g from an adaptation of Lemma 2.6.4 in Topkis (1998).

Proofs for Section 1.5.3.1

Note first that it is not possible that (sL, sL)-sellers are matched while some (sH , sH)-
sellers remain unmatched. This follows immediately from (1.6) and (1.7) (the net return
from making zero investments and staying unmatched is zero for both types of seller).
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Case aH > a2: some (sH , sH)-sellers must match with (b1, 0)-buyers then. The
equilibrium is not compatible with the ex-ante optimal coupling if and only if some
((0, b2), (sH , sH))-couples and ((b1, 0), (sL, sL))-couples exist as well, in any compatible
coupling. In particular, by uniqueness of non-trivial NE of the FA games, rB(0, b2) +
rS(sH , sH) = 1

8b2sH and rB(b1, 0) + rS(sL, sL) = 1
8b1sL. Thus rB(0, b2) + rS(sL, sL) +

rB(b1, 0) + rS(sH , sH) < 1
8b2sL + 1

8b1sH (by strict supermodularity). If ((0, b2), (sL, sL))-
couples existed as well, then all attributes needed for efficient matches would exist in
the attribute market, and at least one of the couples ((0, b2), (sL, sL)), ((b1, 0), (sH , sH))
would violate Lemma 1.2.

Hence, the only candidate for an inefficient ex-post contracting equilibrium is the one
in which only ((0, b2), (sH , sH))-, ((b1, 0), (sH , sH))- and ((b1, 0), (sL, sL))-couples exist.
As sellers are on the long side, some (sL, sL)-types remain unmatched and make zero
investments, so that rS(sL, sL) = 0. Thus, rB(b1, 0) = 1

8b1sL, rS(sH , sH) = 1
8b1(sH − sL)

and rB(0, b2) = 1
8b2sH − rS(sH , sH). In particular, neither (b1, 0) nor (sH , sH) have

profitable deviations. The remaining equilibrium conditions are that (0, b2)-types do not
want to deviate to zero investments, i.e. rB(0, b2) ≥ 0 (there is only one suitable attribute
to match with for them in the candidate equilibrium, the one chosen by (sH , sH)-types
for sector 2), and that (sL, sL)-types can not get a strictly positive net return from
investing to match with x∗((0, b2), (sH , sH)). According to (1.6) and (1.7), the latter
condition is equivalent to

3
16b2s

2
3
Ls

1
3
H −

1
16b2sH − rB(0, b2) ≤ 0.

Plugging in rB(0, b2) and rearranging terms yields

3
2
b2

b1
≥

1− sL
sH

1− ( sL
sH

) 2
3
.

Finally, rB(0, b2) ≥ 0 may be rewritten as b2
b1
≥ 1− sL

sH
.

Case aH < a2: as before, inefficiency requires the existence of both ((0, b2), (sH , sH))-
and ((b1, 0), (sL, sL))-couples. Some ((0, b2), (sL, sL))-couples necessarily exist as well.
As in the previous case, the existence of ((b1, 0), (sH , sH))-couples would then contra-
dict Lemma 1.2. So, the only possibility is that all (sH , sH)-sellers are depleted by
sector 2. It follows that rS(sL, sL) = 0, rB(0, b2) = 1

8b2sL, rS(sH , sH) = 1
8b2(sH − sL)
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and rB(b1, 0) = 1
8b1sL. Buyers and (sL, sL)-sellers have no profitable deviations. The

remaining equilibrium condition for (sH , sH) is

1
8b2 (sH − sL) ≥ 3

16b1 s
2
3
Hs

1
3
L −

3
16b1 sL,

which may be rewritten as

2
3
b2

b1
≥

(
sH
sL

) 2
3 − 1

sH
sL
− 1 .

Proofs for Section 1.5.3.2

Assume that there is an ex-post contracting equilibrium that is not ex-ante efficient.
So, in any compatible matching of buyers and sellers there exist (s′1, s′1), (s′′1, s′′1) with
s′1 < s′′1 and b′, b′′ with |b′| > |b′′| such that (b′, s′) and (b′′, s′′) match (with their jointly
efficient investments). Equilibrium matching is positively assortative within each sector
(according to Corollary 1.4), so that b′ and b′′ must be from different sectors. W.l.o.g.
b′ = (b′1, 0), b′′ = (0, b′′2). Define open right-neighborhoods Rε(s1) := {t1|s1 < t1 < s1 + ε},
and

ŝ1 := inf{s1 ≥ s′1|for all ε > 0 there are t1 ∈ Rε(s1) with investments y∗((0, ·), (t1, t1))}.

The set used to define the infimum is non-empty since (s′′1, s′′1) makes investment
y∗((0, b′′2), (s′′1, s′′1)), ν is absolutely continuous w.r.t. Lebesgue measure and investment
profiles are regular (Definition 1.4). Hence, ŝ1 exists and satisfies s′1 ≤ ŝ1 ≤ s′′1. If
ŝ1 > s′1, then every left-neighborhood of ŝ1 contains sellers investing for sector 1. If
ŝ1 = s′1, then (ŝ1, ŝ1) invests for sector 1 by assumption. In either case, regularity
(and completion) implies that there are suitable attributes for (ŝ1, ŝ1) in both sec-
tors: there are (b̂1, 0), b̂1 ≥ b′1 and (0, b̂2), b̂2 ≤ b′′2 (in particular b̂2 < b̂1) such that
x∗((0, b̂2), (ŝ1, ŝ1)), x∗((b̂1, 0), (ŝ1, ŝ1)) ∈ Supp(β#π). (ŝ1, ŝ1) must be indifferent between
the two corresponding equilibrium matches. This implies rS(ŝ1, ŝ1) = 1

8 b̂1ŝ1− rB(b̂1, 0) =
1
8 b̂2ŝ1 − rB(0, b̂2). By construction, there are buyers from sector 2 just above b̂2 who
invest for seller types just above ŝ1 and vice versa. I will show now that these seller
types can profitably deviate to match with x∗((b̂1, 0), (ŝ1, ŝ1)). This will be the desired
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contradiction. Indeed, rS must be right-differentiable at ŝ1 with derivative 1
8 b̂2. However,

if s1 > ŝ1 invests for and matches with x∗((b̂1, 0), (ŝ1, ŝ1)), this type can claim

3
16 b̂1s

2
3
1 ŝ

1
3
1 −

1
16 b̂1ŝ1 − rB(b̂1, 0) = 3

16 b̂1s
2
3
1 ŝ

1
3
1 −

3
16 b̂1ŝ1 + rS(ŝ1, ŝ1).

The leading order term in the expansion of the first two terms on the right hand side
(around ŝ1) is 1

8 b̂1(s1 − ŝ1). This contradicts the conclusion about the derivative of rS
obtained from sector 2 (since b̂2 < b̂1).

Proofs for Section 1.5.3.3

Proof of Lemma 1.3. I show lim supt→0,t>0
rB(b+tη)−rB(b)

t
≤ 1

8T (b) · η and
lim inft→0,t>0

rB(b+tη)−rB(b)
t

≥ 1
8T (b) · η. Assume to the contrary that

lim supt→0,t>0
rB(b+tη)−rB(b)

t
> 1

8T (b) · η. Then there is an a > 1
8T (b) · η and a monotone

decreasing sequence (tn) with limn→∞ tn = 0 such that rB(b+tnη) ≥ rB(b)+tna. Consider
the sellers T (b+ tnη) then. Net payoffs must satisfy

rS(T (b+ tnη)) = 1
8(b+ tnη) · T (b+ tnη)− rB(b+ tnη)

≤ 1
8(b+ tnη) · T (b+ tnη)− rB(b)− tna

= rs(T (b)) + tn(1
8b ·DT (b)η + 1

8T (b) · η − a) + o(tn).

On the other hand, when T (b+ tnη) invests optimally to match with x∗(b, T (b)) he
gets:

2∑
i=1

3
16T (b+ tnη)

2
3
i T (b)

1
3
i bi −

1
16b · T (b)− rB(b)

=
2∑
i=1

( 3
16

(
T (b)

2
3
i + 2

3T (b)−
1
3

i tn(DT (b)η)i
)
T (b)

1
3
i bi −

3
16biT (b)i

)
+ rS(T (b)) + o(tn)

= rS(T (b)) + 1
8tnb ·DT (b)η + o(tn).

It follows that for small tn, T (b + tnη) has a profitable deviation. This contradicts
equilibrium. Thus, lim supt→0,t>0

rB(b+tη)−rB(b)
t

≤ 1
8T (b) · η. lim inft→0,t>0

rB(b+tη)−rB(b)
t

≥
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1
8T (b) · η may be shown by an analogous argument, this time using deviations by
buyers.

Proof of Corollary 1.3. At b ∈ U derivatives in all directions η exist and are given by
1
8T (b) · η (Lemma 1.3). These are smooth on U since T is smooth. Hence rB is smooth
on U and satisfies ∇rB = 1

8T .

Proof of Proposition 1.3. Given b ∈ U , an arbitrary direction η and t > 0, consider
buyers b+ tη and b. Ex-post contracting equilibrium requires in particular that b+ tη

does not want to deviate from his match with T (b + tη) and invest (optimally) for
y∗(b, T (b)) instead. Moreover, T (b + tη) must not want to deviate and match with
x∗(b, T (b)). The two resulting conditions are:

2∑
i=1

3
16(bi + tηi)

2
3 b

1
3
i T (b)i ≤ rB(b+ tη) + 1

2rB(b) + 3
2rS(T (b)), (1.12)

and

2∑
i=1

3
16T (b+ tη)

2
3
i T (b)

1
3
i bi ≤ rS(T (b+ tη)) + 1

2rS(T (b)) + 3
2rB(b). (1.13)

I next derive the second order approximations of the left and right hand side of (1.12),
using the following identities:

(bi + tηi)
2
3 = b

2
3
i + 2

3b
− 1

3
i tηi −

1
9b
− 4

3
i t2η2

i + o(t2),

T (b+ tη) = T (b) + tDT (b)η + t2

2 D
2T (b)(η, η) + o(t2).

2∑
i=1

3
16(bi + tηi)

2
3 b

1
3
i T (b)i =

2∑
i=1

3
16

(
b

2
3
i + 2

3b
− 1

3
i tηi −

1
9b
− 4

3
i t2η2

i

)
b

1
3
i T (b)i + o(t2)

= 3
16b · T (b) + t

1
8η · T (b)− t2 1
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2∑
i=1

T (b)i
bi

η2
i + o(t2).
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rB(b+ tη) + 1
2rB(b) + 3

2rS(T (b)) = 3
16b · T (b) + rB(b+ tη)− rB(b)

= 3
16b · T (b) + t

1
8η · T (b) + t2

1
16η ·DT (b)η + o(t2).

Thus, inequality (1.12) turns into

t2η ·

3DT (b) +
 T (b)1

b1
0

0 T (b)2
b2

 η + o(t2) ≥ o(t2).

Letting t→ 0 shows that 3DT (b) +
 T (b)1

b1
0

0 T (b)2
b2

 must be positive semi-definite.

The second claim follows by symmetry (or from explicitly spelling out the second order
approximation of (1.13)).

Proof of Proposition 1.4. Since DT (b) = 8Hess rB(b) is symmetric, there is a basis of
R2 consisting of orthonormal (w.r.t. the standard inner product) eigenvectors. Since
DT (b) is non-singular, all eigenvalues differ from zero. For the purpose of deriving a
contradiction, assume thatDT (b) has an eigenvalue λ < 0, with corresponding eigenvector
η. From the first result in Proposition 1.3 it follows that 3λ+ η2

1
T (b)1
b1

+ (1− η2
1)T (b)2

b2
≥

0, i.e. η2
1
T (b)1
b1

+ (1 − η2
1)T (b)2

b2
≥ 3|λ|. The second result of Proposition 1.3 implies

3λ−1 + η2
1

b1
T (b)1

+ (1− η2
1) b2
T (b)2

≥ 0, i.e. η2
1

b1
T (b)1

+ (1− η2
1) b2
T (b)2

≥ 3
|λ| = 9

3|λ| . It follows

9 ≤
(
η2

1
T (b)1

b1
+ (1− η2

1)T (b)2

b2

)(
η2

1
b1

T (b)1
+ (1− η2

1) b2

T (b)2

)

≤ 1 + η2
1(1− η2

1)
(
T (b)1

b1

b2

T (b)2
+ T (b)2

b2

b1

T (b)1

)
.

Since η2
1(1− η2

1) ≤ 1
4 this requires 32 ≤

(
T (b)1
b1

b2
T (b)2

+ T (b)2
b2

b1
T (b)1

)
. Contradiction.

Proof of Theorem 1.2. Since Supp(µ) is the closure of an open convex set, Proposition
1.4 implies that T is the gradient of a convex function on Supp(µ). This implies that the
coupling πT associated with T is concentrated on a w-cyclically monotone set. Hence,
by Proposition 1.1, it is ex-ante optimal.
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Supplement for Section 1.5.4

For s′1 < s′′1, (b1, 0) and (0, b2) with b2s
′′
1 > τ , the expression that must be analyzed to

verify 2-cycle monotonicity is

w((0, b2), (s′′1, s′′1)) + w((b1, 0), (s′1, s′1))− w((0, b2), (s′1, s′1))− w((b1, 0), (s′′1, s′′1)).

Two cases should be distinguished. If s′1 ≥ τ
b2
, then

w((0, b2), (s′′1, s′′1)) + w((b1, 0), (s′1, s′1))− w((0, b2), (s′1, s′1))− w((b1, 0), (s′′1, s′′1))

=
∫ s′′1

s′1

κ
(3

2 ,
1
2

)
3b3

2t
2 − κ(1, 1)b1 dt >

∫ s′′1

s′1

3κ(1, 1)b2 − κ(1, 1)b1 dt.

The inequality holds since b2t > τ , so that κ
(

3
2 ,

1
2

)
b3

2t
3 > κ(1, 1)b2t. In particular,

matching (0, b2) to the higher seller type is definitely in line with 2-cycle monotonicity if
3b2 ≥ b1. If s′1 < τ

b2
however, an additional term with a potentially opposite sign occurs.

w((0, b2), (s′′1, s′′1)) + w((b1, 0), (s′1, s′1))− w((0, b2), (s′1, s′1))− w((b1, 0), (s′′1, s′′1))

=
∫ s′′1

τ/b2
κ
(3

2 ,
1
2

)
3b3

2t
2 − κ(1, 1)b1 dt+

∫ τ/b2

s′1

κ(1, 1)(b2 − b1)dt.

Proofs for Section 1.5.5

xiij =
(
γiαi

4

) 1
4−2αi

(
κi
κj

) 2−αj
4(αj−αi)

= γ
1

4−2αi
+

2−αj
2(2−αi)(αj−αi)

i γ
− 1

2(αj−αi)
j

(
αi
4

) 1
4−2αi
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(
αi
4

) αi
2−αi (2− αi)(

αj
4

) αj
2−αj (2− αj)


2−αj

4(αj−αi)

=
(
γi
γj

) 1
2(αj−αi)

(
αi
4

) 1
4−2αi


(
αi
4

) αi
2−αi (2− αi)(

αj
4

) αj
2−αj (2− αj)
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2−αj

4(αj−αi)

= z
1
2
ij

(
αi
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) 1
4−2αi


(
αi
4

) αi
2−αi (2− αi)(
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4

) αj
2−αj (2− αj)
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2−αj

4(αj−αi)

.
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A similar computation yields

xjij =
(
γjαj

4

) 1
4−2αj

(
κi
κj

) 2−αi
4(αj−αi)

= γ
1

2(αj−αi)
i γ

1
4−2αj

− 2−αi
2(2−αj)(αj−αi)

j

(
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4

) 1
4−2αj
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(
αi
4

) αi
2−αi (2− αi)(

αj
4

) αj
2−αj (2− αj)
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2−αi

4(αj−αi)

= z
1
2
ij

(
αj
4

) 1
4−2αj


(
αi
4

) αi
2−αi (2− αi)(

αj
4

) αj
2−αj (2− αj)


2−αi

4(αj−αi)

.

It is straightforward to check that ψ̃ is a v-convex function with respect to the sets
cl(β(I)) and cl(σ(I)) = cl(β(I)), that φ̃ is its transform, and that the deterministic
coupling of the symmetric attribute measures given by the identity mapping is supported
in ∂vψ̃. This yields a stable and feasible bargaining outcome for the attribute economy.

Given φ̃, buyer type b13 is indifferent between the option (choose x = x113, match with
y = x113) and the option (choose x = x313, match with y = x313). Indeed, net payoffs
from this are γ1x

2α1
113/2− c(x113, b13) = w1(b13)/2 and γ3x

2α3
313/2− c(x313, b13) = w3(b13)/2

which are equal by definition of b13. I show next that these are indeed the optimal choices
for buyer type b13. Note that for a given y, the conditionally optimal x(y, b13) solves

max
x∈R+

(
v(x, y)− v(y, y)

2 − c(x, b13)
)
,

where

v(x, y) =


γ1(xy)α1 for x ≤ z12/y

γ2(xy)α2 for z12/y ≤ x ≤ z23/y

γ3(xy)α3 for z23/y ≤ x.

Let y ≤ x113. Then, x(y, b13) ≤ x113. Indeed,

∂

∂x

(
γi(xy)αi − x4

b2
13

)
= γiαiy

αixαi−1 − 4x3

b2
13

is strictly positive for x <
(
γiαiy

αib2
13

4

) 1
4−αi and strictly negative for x >

(
γiαiy

αib2
13

4

) 1
4−αi .
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For y ≤ x113, this zero is less than or equal to
(
γiαix

αi
113b

2
13

4

) 1
4−αi , which for i = 1 equals

x113. For i = 2,
(
γ2α2x

α2
113b

2
13

4

) 1
4−α2 = 0.8385 < z12/x113 = 0.8391, so that the derivative

is negative on the entire second part of the domain. Similarly,
(
γ3α3x

α3
113b

2
13

4

) 1
4−α3 =

0.7599 < z23/x113. It follows that maxx∈R+,y≤x113

(
v(x, y)− v(y,y)

2 − c(x, b13)
)
is attained

in the domain of definition of v where it coincides with f1, the first order condition
then yields y = x and thus (maximizing γ1x2α1

2 − c(x, b13)) x = y = x113. A com-
pletely analogous reasoning applies for y ≥ x313 (I omit the details), showing that
maxx∈R+,y≥x313

(
v(x, y)− v(y,y)

2 − c(x, b13)
)
is attained at x = y = x313.

Therefore, buyer type b13 is indifferent between his two optimal choices (choose x113,
match with y = x113) and (choose x313, match with y = x313). Note next that the
buyer objective function v(x, y)− v(y,y)

2 − c(x, b) is supermodular in (x, y) on the lattice
R+ × cl(β(I)) and has increasing differences in ((x, y), b). By Theorem 2.8.1 of Topkis
(1998), the solution correspondence is increasing w.r.t. b in the usual set order (see
Topkis 1998, Chapter 2.4). Hence, for b < b13 there must be an optimum in the domain
where v is defined via f1. First order conditions lead to y = x, thus to maximization
of γ1x

2α1/2 − c(x, b) and hence to x = β(b). The argument for buyer types b > b13 is
analogous. Since the entire argument applies to sellers as well, this concludes the proof.
Q.E.D.
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Surplus division and efficient
matching

We study a two-sided matching model with a finite number of agents who are charac-
terized by privately known, multi-dimensional attributes that jointly determine the match
surplus of each potential partnership. Utility functions are quasi-linear, and monetary
transfers among agents are feasible. We ask the following question: what divisions of
surplus within matched pairs are compatible with information revelation leading to the
formation of an efficient (surplus-maximizing) matching? Our main result shows that the
only robust rules compatible with efficient matching are those that divide realized surplus
in a fixed proportion, independently of the attributes of the pair’s members. In other
words, to enable efficient match formation, it is necessary that each agent expects to
get the same fixed percentage of surplus in every conceivable match. A more permissive
result is obtained for one-dimensional attributes and supermodular value functions.

2.1 Introduction

We study a two-sided one-to-one matching (or assignment) market with a finite number
of privately informed agents that need to be matched to form productive relationships.
For ease of reference, we call the two sides of the market “workers” and “employers”.
Agents are characterized by multi-dimensional attributes which determine the match
value / surplus potentially created by each employer-worker pair. Attributes are private
information, and our model is a incomplete information version of the famous assignment
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game due to Shapley and Shubik (1971). In particular, for each pair, match surplus is
informationally interdependent, a natural feature in the context of matching models.

We consider situations in which the ex-post realized match surplus in every partnership
is divided according to some standardized contract or “sharing rule”. For instance, such
a sharing rule might result from specifying claims to various components of joint surplus
(or fixed shares of these). If partners’ attributes are ex-post verifiable, the rule might
also determine shares directly as a function of these attributes. The implied division
of surplus determines agents’ utilities in every possible matching, net of additional
monetary transfers that are decided upon when workers and employers compete for
partners under incomplete information, i.e. in the match formation phase. We ask
the following question: can we characterize standardized divisions of surplus that are
compatible with information revelation leading, for each realization of attributes in
the economy, to an efficient matching? Our main result shows that in settings with
multi-dimensional, complementary attributes, the only sharing rules that may induce
efficient match formation are those that divide the surplus in each match according to a
fixed proportion, independently of the attributes of the pair’s members. Thus, to enable
efficient matching it is necessary and sufficient that all workers expect to get the same
fixed percentage of surplus in every conceivable match, and the same thing must hold for
employers! More flexibility is possible when attributes are one-dimensional and match
surplus is supermodular. Efficient matching is then compatible with any division that
leaves each partner with a fraction of the surplus that is also supermodular.

The equilibrium notion used here is the ex-post equilibrium. This is a generalization of
equilibrium in dominant strategies appropriate for settings with interdependent values,
and it embodies a notion of no regret: chosen actions must be considered optimal even
after the private information of others is revealed. Ex-post equilibrium is a belief-free
notion, and our results do not depend in any way on the distribution of attributes in the
population.1

An interesting illustration for a fixed-proportion rule is offered by the German law
governing the sharing of profit among a public sector employer and an employee arising
from the employee’s invention activity. The law differentiates between universities and
all other public institutions.2 Outside universities - where, presumably, the probability

1See also Bergemann and Morris (2005) for the tight connections between ex-post equilibria and
“robust design”.

2Practically all German universities are public.
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of an employee making a job-related discovery is either nil or very low - the law allows
any ex-ante negotiated contract governing profit sharing (see §40-1 in Bundesgesetzblatt
III, 422-1 ). In marked contrast, independently of circumstances, any university and any
researcher working there must divide the profit from the researcher’s invention according
to a fixed 30%-70% rule, with the employee getting the 30% share (see §42-4). The
rigidity of this “no-exception” rule is additionally underlined by an explicit mention that
all feasible arrangements under §40-1 are not applicable within universities (see §42-5).

The occurrence of inflexible, fixed-proportion rules for sharing ex-post surplus - shares
do not vary with attributes and are not the object of negotiation - is a recurrent theme
in several interesting literatures that try to explain this somewhat puzzling phenomenon.
For example, Newbery and Stiglitz (1979) and Allen (1985), among many others, noted
that sharecropping contracts in many rural economies involve shares of around one
half for landlord and tenant. This percentage division is observed in widely differing
circumstances and has persisted in many places for a considerable length of time.3

Another example is the commenda, a rudimentary form of company that formed for the
duration of a single shipping mission in medieval Venice (for more details and impact
on Venice’s extraordinary economic expansion see Acemoglu and Robinson, 2012). A
commenda involved two partners, one who stayed at home, and one who accompanied the
cargo. Only two types of contracts were possible: either the sedentary partner provided
100% of the capital and received 75% of the profits, or he provided 67% of the capital
and received 50% of the profits.

Our study is at the intersection of several important strands of the economic literature.
We briefly review below some related papers from each of these strands, emphasizing
both the existing relations to our work and the present novel aspects.
1. Matching: An overwhelming majority of studies within the large body of work

on two-sided markets has assumed either complete information or private values models,
that is, models where agents’ preferences only depend on signals available to them at
the time of the decision, but not on signals privately available to others. This holds
for both the Gale-Shapley (1962) type of models with ordinal preferences, and for the
branch studying variants and applications (to auctions and double auctions, say) of the
assignment model with quasi-linear preferences due to Shapley and Shubik (1971).

3For example, Chao (1983) noted that a fixed 50-50 ratio was prevalent in China for more than 2000
years. The French and Italian words for “sharecropping” literally mean “50-50 split”.
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In the Gale-Shapley model, one-sided serial dictatorship where women, say, sequentially
choose partners according to their preferences leads to a Pareto-optimal matching.
Difficulties occur when the stronger stability requirement is invoked: a standard result
is that no stable matching can be implemented in dominant strategies if both sides
of the market are privately informed (see Roth and Sotomayor, 1990). Chakraborty,
Citanna and Ostrovsky (2010) showed that stability may fail even in a one-sided private
information model if preferences on one side of the market (colleges, say) depend on
information available to agents on the same side of the market.
Becker (1973) has popularized a special case of the complete information Shapley-

Shubik model where agents have one-dimensional attributes, and where the match value
is a supermodular function of these attributes. In particular, agents are completely
ordered according to their marginal productivity, and efficient matching is assortative. If
two-sided incomplete information is introduced in the Becker model one immediately
obtains interdependent values, i.e., agents’ preferences also depend on signals available
to others. But, somewhat surprisingly, there are only very few such models: most of the
literature has assumed either complete information, or one-sided private information
(which yields private values), or a continuum of types (so that aggregate uncertainty
disappears). An exception is Hoppe, Moldovanu and Sela (2009) who analyzed a two-
sided matching model with a finite number of privately informed agents, characterized
by complementary one-dimensional attributes. In their model match surplus is divided
in a fixed proportion, and they showed that efficient, assortative matching can arise as
one of the equilibria of a bilateral signaling game. This finding is consistent with the
results of the present chapter.
Another strand using Becker’s specification and complete information has combined

matching with ex-ante investment: before matching, agents undertake costly investments
that affect their attributes and hence, ultimately, their match values. In two recent studies
in this vein, Mailath, Postlewaite and Samuelson (2012a, 2012b) focused on the role of
what they call “premuneration values”, i.e., the surplus accruing to agents from matching,
net of additional monetary transfers. They detailed how these values are affected by the
specification of property rights.4 Under personalized pricing - that must finely depend
on the attributes of the matched pairs - an equilibrium which entails efficient investment

4They also noted that in certain circumstances it may be difficult to adjust premuneration values due
to legal restrictions, prevailing social norms, or non-contractible components of match value.
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and matching always exists in large (continuum) markets, no matter how surplus is
shared.5 In contrast, when personalized pricing is not feasible, premuneration values
affect both the incentives to invest and final payoffs, and under-investment typically
occurs.
2. Property rights: Our study is also related to the large literature analyzing the

effects of the ex-ante allocation of property rights on bargaining outcomes, following
Coase (1960). Traditionally, this literature has not placed the bargaining agents in
an explicit market context. The interplay between private information and ex-ante
property rights in private value settings was emphasized by Myerson-Satterthwaite (1983)
and Cramton-Gibbons-Klemperer (1987) in a buyer-seller framework and a partnership
dissolution model, respectively. Fieseler, Kittsteiner and Moldovanu (2003) offered a
unified treatment that allows for interdependent values and encompasses both the above
private values models and Akerlof’s (1970) market for lemons. In all these papers, agents
have one-dimensional types and a value maximizing allocation can be implemented via
standard Clarke-Groves-Vickrey schemes. Whenever inefficiencies for certain allocations
of property rights occur, these stem from the inability to design budget-balanced and
individually rational transfers that sustain the value maximizing allocation.6 Brusco,
Lopomo, Robinson and Viswanathan (2007) and Gärtner and Schmutzler (2009) looked
at mergers with interdependent values, a setting which is more related to the present
study.7 They focused on the difficulties that privately known stand-alone values pose for
designing combinations of property rights and budget-balanced and individually rational
transfers that lead to value maximizing mergers.

In marked contrast to all the above papers, our present analysis completely abstracts
from budget-balancedness and individual rationality. In our setting, stand-alone values
are known and forming a match between two agents is always better than leaving them
as singles, but who is matched to whom is crucial for allocative efficiency. The fixed-
proportion sharing rules are dictated here by the mere requirement of value maximization
together with incentive compatibility.

5Thus, as in Cole, Mailath and Postlewaite (2001a), market competition eliminates hold-up problems.
6With several buyers and sellers, the Myerson-Satterthwaite model becomes a one-dimensional, linear
incomplete information version of the Shapley-Shubik assignment game. Only in the limit, when
the market gets very large, one can reconcile, via almost efficient double-auctions, incentives for
information revelation with budget-balancedness and individual rationality.

7However, at most one match is formed in these models, and private information consists of, or can be
reduced to, one-dimensional types.
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3. Multi-dimensional attributes and mechanism design: The prevalent as-
sumption that agents can be described by a single trait such as skill, technology, wealth,
or education is often not tenable. Workers, for example, have very diverse job-relevant
characteristics, which are only partially correlated. Tinbergen (1956) pioneered the
analysis of labor markets where jobs and workers are described by several characteristics.
The study of complete information assignment models with a continuum of traders and
multi-dimensional attributes has been pioneered by Gretsky, Ostroy and Zame (1992,
1999). Chapter 1 of this thesis generalizes the matching cum ex-ante investment model
due to Cole, Mailath and Postlewaite (2001a) along this line.
The present combination of multi-dimensional attributes, private information and

interdependent values is usually detrimental to efficient implementation. In fact, Jehiel,
Meyer-ter-Vehn, Moldovanu and Zame (2006) have shown that, generically, only trivial
social choice functions - where the outcome does not depend on the agents’ private
information - can be ex-post implemented when values are interdependent and types
are multi-dimensional. Jehiel and Moldovanu (2001) have shown that, generically, the
efficient allocation cannot be implemented even if the weaker Bayes-Nash equilibrium
concept is used.
Our present insight can be reconciled with those general negative results by noting

that the two-sided matching model is not generic. In particular, we assume here that
match surplus has the same functional form for all pairs (as a function of the respective
attributes), and that the match surplus of any pair depends neither on how agents
outside that pair match, nor on what their attributes are. These features are natural
for the matching model but are “non-generic”. Moreover, fixed-proportion sharing can
be interpreted as using some limited amount of ex-post information (for each pair, the
surplus realized by that pair) to determine final payoffs, and it is known that such
features may potentially aid implementation (see Mezzetti, 2004 and Remark 2.1 below).
The sufficiency of fixed-proportion sharing for incentive compatibility is related to

the presence of individual utilities that admit a cardinal alignment with social welfare:
aggregate surplus becomes a cardinal potential, as defined by Jehiel, Meyer-ter-Vehn
and Moldovanu (2008).8 By proving necessity of fixed-proportion rules,9 we identify

8They presented several non-generic cases where ex-post implementation is possible. See also Bikhchan-
dani (2006) for other such cases, e.g. certain auction settings.

9There is some minor additional flexibility if the rule is not required to be independent of whether
employers or workers are on the long side of the market, see Theorem 2.1.
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a class of interesting settings for which efficient implementation is possible only if
social welfare is a cardinal potential. Our result is also reminiscent of Roberts’ (1979)
characterization of dominant strategy implementation in private values settings, but
both technical assumptions and proof are very different here. The analysis of the special
case with one-dimensional types and supermodular match surplus is based on an elegant
characterization result due to Bergemann and Välimäki (2002), who generalized previous
insights due to Jehiel and Moldovanu (2001) and Dasgupta and Maskin (2000).
Finally, in a recent contribution, Che, Kim and Kojima (2012) have shown that

efficiency is not compatible with incentive compatibility in a one-sided assignment model
where agents’ values over objects are allowed to depend on information of other agents.
Their signals are one-dimensional but inefficiency occurs there because of the assumed
lack of monetary transfers.

The chapter is organized as follows: in Section 2.2 we present the matching model. In
Section 2.3 we state our results, both for the multi-dimensional case and for the special
case of one-dimensional attributes and supermodular surplus. Section 2.4 concludes. All
proofs are in the Appendix.

2.2 The matching model

There are I employers and J workers. Each employer ei (i ∈ I = {1, ..., I}) privately
knows his type xi ∈ X, and each worker wj (j ∈ J = {1, ..., J}) privately knows his type
yj ∈ Y . The supports of agents’ possible types, X and Y , are open connected subsets of
Euclidean space Rn for some n ∈ N. If an employer of type x and a worker of type y form
a match, they subsequently create a match surplus of v(x, y), where v : X × Y → R+ is
continuously differentiable. Unmatched agents create zero surplus, and all agents have
quasi-linear utilities.

The set of alternativesM consists of all possible one-to-one matchings of employers and
workers. If I ≤ J , these are the injective maps m : I → J . A matching m ∈M will be
called efficient for a type profile (x1, ..., xI , y1, ..., yJ) if and only if it maximizes aggregate
surplus um′(x1, ..., xI , y1, ..., yJ) = ∑I

i=1 v(xi, ym′(i)) among all m′ ∈ M. Analogous
definitions apply for the case J ≤ I. Efficient matchings can be obtained as the solutions
of a finite linear program (Shapley and Shubik, 1971).
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2.2.1 Sharing rules

A sharing rule specifies a standardized division of match surplus. As noted in Section
2.1, such a division might result from defining claims to (fixed shares of) different compo-
nents of joint surplus (whose relative contribution to full match surplus may depend on at-
tributes), or, if partners’ attributes are ex-post verifiable, shares may be defined as a func-
tion of both attributes. We introduce the following notation: if ei and wj are matched in
m ∈M, then employer ei’s share of surplus is veim(x1, ..., xI , y1, ..., yJ) = γ(xi, yj)v(xi, yj),
and worker wj’s share is vwjm (x1, ..., xI , y1, ..., yJ) = (1 − γ(xi, yj))v(xi, yj), where we
assume that γ : X × Y → R is continuously differentiable.10 If ei remains unmatched in
m we have veim(x1, ..., xI , y1, ..., yJ) = 0 (similarly, vwjm (x1, ..., xI , y1, ..., yJ) = 0 if wj stays
unmatched). Note that, for each realization of attributes, the set of value-maximizing
matchings does not depend on γ. It will follow easily that, for efficient matching to
be implementable, it is necessary that γ is [0, 1]-valued (to provide strict incentives for
truth-telling, it is necessary that γ is (0, 1)-valued).

Together with a sharing rule, the previously described matching model gives rise to a
natural social choice setting with interdependent values. Every agent attaches a value
to each possible alternative, i.e. to matchings of employers and workers. This value
depends both on the agent’s own type and on the type of the partner, but not on the
private information of other agents. Moreover, this value does not depend on how other
agents match. Thus, there are no allocative externalities, and there are no informational
externalities across matched pairs.

2.2.2 Mechanisms

By the Revelation Principle, we may restrict attention to direct revelation mechanisms
where truthful reporting by all agents forms an ex-post equilibrium. A direct revelation
mechanism (mechanism hereafter) is given by functions Ψ : XI×Y J →M, tei : XI×Y J

→ R and twj : XI × Y J → R, for all i ∈ I, j ∈ J . Ψ selects a feasible matching as a
function of reports, tei is the monetary transfer to employer ei, and twj is the monetary
transfer to worker wj, as functions of reports.
Truth-telling is an ex-post equilibrium if for all employers ei, for all workers wj, and

10In principle, one might allow that shares depend on the identities of the partners. Given that
match surplus is determined by productive attributes only, this would not be conducive to efficient
implementation. This intuition may easily be formalized using the techniques from the Appendix.
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for all type profiles p = (x1, ..., xI , y1, ..., yJ), p′ = (x1, ..., x
′
i, ..., xI , y1, ..., yJ) and p′′ =

(x1, ..., xI , y1, ..., y
′′
j , ..., yJ) it holds that

veiΨ(p)(p) + tei(p) ≥ veiΨ(p′)(p) + tei(p′)

v
wj
Ψ(p)(p) + twj(p) ≥ v

wj
Ψ(p′′)(p) + twj(p′′).

2.3 The main results

We now turn to our main question: which sharing rules, if any, are compatible
with information revelation leading to an efficient matching? In other words, using
the mechanism design terminology, we ask for which induced utility functions we can
implement the value-maximizing social choice function in ex-post equilibrium.
For our main results we need an assumption known as the twist condition in the

mathematical literature on optimal transport (see Villani, 2009). This is a multi-
dimensional generalization of the well-known Spence-Mirrlees condition. While in optimal
transport - where measures of agents are matched - the condition is invoked in order
to ensure that the optimal transport, corresponding here to the efficient matching, is
unique and deterministic, we use it for quite different, technical reasons (see the lemmas
in Section 2.5).

Condition 2.1. i) For all x ∈ X, the continuous mapping from Y to Rn given by
y 7→ (∇Xv)(x, y) is injective.
ii) For all y ∈ Y , the continuous mapping from X to Rn given by x 7→ (∇Y v)(x, y) is

injective.

Match surplus functions that fulfill Condition 2.1 model many interesting comple-
mentarities between multi-dimensional types of workers and employers. In particular,
v is not additively separable with respect to x and y, so that the precise allocation of
match partners really matters for efficiency.11 As a simple example consider the bilinear
match surplus: v(x, y) = x · y, where · denotes the standard inner product on Rn. Then
(∇Xv)(x, y) = y and (∇Y v)(x, y) = x, and Condition 2.1 is satisfied.
11Note for instance that if v is additively separable and I = J , then all matchings are efficient, and

hence the efficient matching can trivially be implemented, no matter what γ is. This stands in sharp
contrast to the result of Theorem 2.1.
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We can now state the central results concerning the necessity and sufficiency of
fixed-proportion sharing:

Theorem 2.1. Let n ≥ 2, I, J ≥ 2, and assume that Condition 2.1 is satisfied. Then
the following are equivalent:
i) The efficient matching is implementable in ex-post equilibrium.
ii) There is a constant λ0 ∈ [0, 1] and functions g : X → R and h : Y → R such that

for all x ∈ X, y ∈ Y it holds that

(γv)(x, y) = λ0v(x, y) + g(x) + h(y),

and, moreover, h is constant if I < J , and g is constant if I > J .

Corollary 2.1. The only sharing rules that can implement the efficient matching irre-
spective of whether employers or workers are on the short side of the market are of the
form (γv)(x, y) = λ0v(x, y) + c, where λ0 ∈ [0, 1] and c is a constant.

It is easy to show that under the conditions of Theorem 2.1 ii), it is possible to align
all agents’ utilities with aggregate surplus (via appropriate Clark-Groves-Vickrey type
transfers). When the part of the share that is proportional to match surplus is strictly
positive for both sides of the market (i.e. λ0 ∈ (0, 1)), then a strict cardinal alignment is
possible: in this case, aggregate surplus is a cardinal potential for the individual utilities
(Jehiel, Meyer-ter-Vehn and Moldovanu, 2008).

Proving that Theorem 2.1 ii) is necessary for efficient implementation is much more
difficult. The heart of our proof is concerned with situations with two agents on each
side, and it exploits the implications of incentive compatibility on the part of employers
for varying worker type profiles. Condition 2.1 ensures that the subset of types for which
both feasible matchings are efficient is a well-behaved manifold. As mentioned earlier, our
result is reminiscent of Roberts’ (1979) Theorem that shows (under some relatively strong
technical conditions) that any dominant-strategy implementable social choice function
must maximize a weighted sum of individual utilities plus some alternative-specific
constants. Both present assumptions and proof are quite different from Roberts’.12

12Our main technical result is derived by varying a social choice setting with only two alternatives
(Roberts studied a single setting with at least three alternatives), surplus may take here general
functional forms, and type spaces are arbitrary connected open sets (Roberts has linear utilities and
needs an unbounded type space).
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Remark 2.1. Mezzetti (2004) has shown that efficiency is always (that is, in our context,
for any given γ) attainable with two-stage “generalized Groves” mechanisms where a
final allocation is chosen at stage one, and where, subsequently, monetary transfers that
depend on the realized ex-post utilities of all agents at that allocation are executed at
stage two.13 In particular, such mechanisms would require ex-post transfers across all
existing partnerships, contingent on the previously realized surplus in each of these pairs.
We think that using ex-post information (whether reported or verifiable) to this extent is
somewhat unrealistic in the present environment. For example, group manipulations by
partners should be an issue for any mechanism that imposes ex-post transfers across pairs.
Our fixed-proportion sharing also needs ex-post information, but uses it in a much more
limited way to divide surplus within pairs. In particular, there are no contingent payments
between pairs or to/from a potential matchmaker after partnerships have formed.

Our second main result deals with the special case where agents’ attributes are one-
dimensional. If n = 1, then Condition 2.1 implies that y 7→ (∂xv)(x, y) is either strictly
increasing or strictly decreasing. Consequently, v either has strictly increasing differences
or strictly decreasing differences in (x, y).14 That is, v is either strictly supermodular or
strictly submodular. This is the classical one-dimensional assortative/anti-assortative
framework à la Becker (1973). We treat here the supermodular case. The submodular
one is analogous.

In the one-dimensional supermodular case we find that the class of sharing rules that
is compatible with efficient matching is larger, and strictly contains the class of constant
rules obtained above.

Theorem 2.2. Let n = 1, I, J ≥ 2 and assume that v is strictly supermodular. Then,
the efficient matching is implementable in ex-post equilibrium if and only if both γv and
(1− γ)v are supermodular.

We derive Theorem 2.2 by applying a characterization result due to Bergemann and
Välimäki (2002). These authors have provided a necessary as well as a set of sufficient
conditions for efficient ex-post implementation for one-dimensional types. The logic of
our proof is as follows. We first verify that monotonicity in the sense of Definition 4 of
Bergemann and Välimäki is satisfied for strictly supermodular match surplus. This is the
13The generalized Groves mechanism has the problem that it does not provide strict incentives for

truthful reporting of ex-post utilities.
14See also Topkis (1998).
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first part of their set of sufficient conditions (Proposition 3). Then, we show that their
necessary condition (Proposition 1) implies that γv and (1− γ)v must be supermodular.
Finally, we show that the second part of the sufficient conditions is satisfied as well if γv
and (1− γ)v are supermodular.

2.4 Conclusion

We have introduced a novel two-sided matching model with a finite number of agents,
two-sided incomplete information, interdependent values, and multi-dimensional at-
tributes. We have shown that fixed-proportion sharing rules are the only ones conducive
for efficiency in this setting. While our present result is agnostic about the preferred
proportion, augmenting our model with, say, a particular ex-ante investment game
will introduce new, additional forces that can be used to differentiate between various
constant sharing rules.

2.5 Appendix for Chapter 2

We prepare the proof of Theorem 2.1 by a sequence of lemmas. The key step is
Lemma 2.4 below. It will be very useful to introduce a cross-difference (two-cycle) linear
operator F , which acts on functions f : X × Y → R. The operator Ff has arguments
x1 ∈ X1 = X, x2 ∈ X2 = X, y1 ∈ Y 1 = Y and y2 ∈ Y 2 = Y , and it is defined as
follows:15

Ff (x1, x2, y1, y2) := f(x1, y1) + f(x2, y2)− f(x1, y2)− f(x2, y1).

We also define the sets

A := {(x1, x2, y1, y2) ∈ X ×X × Y × Y |Fv(x1, x2, y1, y2) = 0},

and
A0 := {(x1, x2, y1, y2) ∈ A|∇Fv(x1, x2, y1, y2) 6= 0},

15We choose superscripts here because x1 is already reserved for the type of employer e1, and so on.

62



2.5 Appendix for Chapter 2

where

∇Fv(x1, x2, y1, y2) = (∇X1Fv,∇X2Fv,∇Y 1Fv,∇Y 2Fv)(x1, x2, y1, y2).

Whenever x1 6= x2 or y1 6= y2, Condition 2.1 implies that ∇Fv(x1, x2, y1, y2) 6= 0. This
is repeatedly used below.

Lemma 2.1. Let n ∈ N, I = J = 2, and let Condition 2.1 be satisfied. If the
efficient matching is ex-post implementable, then the following implications hold for all
(x1, x2, y1, y2):

Fv(x1, x2, y1, y2) ≥ (≤) 0⇒ Fγv(x1, x2, y1, y2) ≥ (≤) 0, (2.1)

Fv(x1, x2, y1, y2) ≥ (≤) 0⇒ F(1−γ)v(x1, x2, y1, y2) ≥ (≤) 0. (2.2)

Proof of Lemma 2.1. There are only two alternative matchings, m1 = ((e1, w1), (e2, w2))
and m2 = ((e1, w2), (e2, w1)). Since the efficient matching is ex-post implementable,
the taxation principle for ex-post implementation implies that there must be “transfer”
functions te1

m1(x2, y1, y2) and te1
m2(x2, y1, y2) for employer e1 such that

Fv(x1, x2, y1, y2) > (<) 0⇒ (2.3)

(γv)(x1, y1) + te1
m1(x2, y1, y2) ≥ (≤) (γv)(x1, y2) + te1

m2(x2, y1, y2).

For y1 6= y2, we have (∇X1Fv)(x2, x2, y1, y2) = (∇Xv)(x2, y1)− (∇Xv)(x2, y2) 6= 0 by
Condition 2.1. Hence, in every neighborhood of x1 = x2, there are x′1 and x′′1 such that
Fv(x′1, x2, y1, y2) > 0 and Fv(x′′1, x2, y1, y2) < 0. Since γv is continuous, relation (2.3) pins
down the difference of transfers as:

te1
m1(x2, y1, y2)− te1

m2(x2, y1, y2) = (γv)(x2, y2)− (γv)(x2, y1).

Plugging this back into (2.3) yields for all (x1, x2, y1, y2) with y1 6= y2:

Fv(x1, x2, y1, y2) > (<) 0⇒ Fγv(x1, x2, y1, y2) ≥ (≤) 0. (2.4)

As Fv(x1, x2, y, y) = Fγv(x1, x2, y, y) = 0, relation (2.4) holds for all (x1, x2, y1, y2).
However, every neighborhood of any (x1, x2, y1, y2) ∈ A contains both points at which
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Fv is strictly positive and points at which Fv is strictly negative. Whenever x1 6= x2 or
y1 6= y2, this follows immediately from ∇Fv(x1, x2, y1, y2) 6= 0. Otherwise, if x1 = x2 and
y1 = y2, one may perturb x2 by an arbitrarily small amount to some x′2 (staying in A
since y1 = y2) and apply the argument to (x1, x

′
2, y1, y2).

Using continuity of γv, (2.4) may thus be strengthened to (2.1). A completely analogous
argument applies for worker w1 and yields (2.2).

To prove Theorem 2.1, we only need local versions of (2.1) and (2.2) at profiles where
the efficient matching changes. These are available for general I, J ≥ 2:

Lemma 2.2. Let n ∈ N, I, J ≥ 2 and let Condition 2.1 be satisfied. If the effi-
cient matching is ex-post implementable, then for all (x1, x2, y1, y2) ∈ A, there is an
open neighborhood U(x1,x2,y1,y2) ⊂ X × X × Y × Y of (x1, x2, y1, y2) such that for all
(x′1, x′2, y′1, y′2) ∈ U(x1,x2,y1,y2):

Fv(x′1, x′2, y′1, y′2) ≥ (≤) 0⇒ Fγv(x′1, x′2, y′1, y′2) ≥ (≤) 0, (2.5)

Fv(x′1, x′2, y′1, y′2) ≥ (≤) 0⇒ F(1−γ)v(x′1, x′2, y′1, y′2) ≥ (≤) 0. (2.6)

Proof of Lemma 2.2. Given (x1, x2, y1, y2) ∈ A, fix the types of all other employers and
workers (xi for i 6= 1, 2, yj for j 6= 1, 2) such that there is an open neighborhood U(x1,x2,y1,y2)

of (x1, x2, y1, y2) with the following property: for all (x′1, x′2, y′1, y′2) ∈ U(x1,x2,y1,y2), the
efficient matching for the profile (x′1, x′2, x3, ..., xI , y

′
1, y
′
2, y3, ..., yJ) either matches e1 to

w1 and e2 to w2, or e1 to w2 and e2 to w1 (depending on the sign of Fv(x′1, x′2, y′1, y′2)).
From here on, the proof parallels the one of Lemma 2.1.

Lemma 2.2 has the immediate consequence that on A0, the gradients of Fv, Fγv and
F(1−γ)v must all point in the same direction:

Lemma 2.3. Let n ∈ N, I, J ≥ 2 and let Condition 2.1 be satisfied. If the efficient
matching is ex-post implementable, then there is a unique function λ : A0 → [0, 1]
satisfying

∇Fγv(x1, x2, y1, y2) = λ(x1, x2, y1, y2)∇Fv(x1, x2, y1, y2) (2.7)

for all (x1, x2, y1, y2) ∈ A0.
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Proof of Lemma 2.3. Since∇Fv(x1, x2, y1, y2) 6= 0 for all (x1, x2, y1, y2) ∈ A0, (2.5) yields
a unique λ(x1, x2, y1, y2) ≥ 0 with

∇Fγv(x1, x2, y1, y2) = λ(x1, x2, y1, y2)∇Fv(x1, x2, y1, y2).

Moreover, ∇F(1−γ)v(x1, x2, y1, y2) = (1 − λ(x1, x2, y1, y2))∇Fv(x1, x2, y1, y2) and (2.6)
therefore implies λ(x1, x2, y1, y2) ∈ [0, 1].

The crucial step in the proof follows now. It shows that for n ≥ 2 the function λ must
be constant. This constant corresponds then to a particular fixed-proportion sharing
rule.

Lemma 2.4. Let n ≥ 2, I, J ≥ 2 and let Condition 2.1 be satisfied. Then the function
λ from Lemma 2.3 must be constant: there is a λ0 ∈ [0, 1] such that λ ≡ λ0.

Proof of Lemma 2.4. Let us spell out the system of equations (2.7):

(∇Xγv)(x1, y1)− (∇Xγv)(x1, y2) = λ(x1, x2, y1, y2)((∇Xv)(x1, y1)− (∇Xv)(x1, y2))

(∇Xγv)(x2, y2)− (∇Xγv)(x2, y1) = λ(x1, x2, y1, y2)((∇Xv)(x2, y2)− (∇Xv)(x2, y1))

(∇Y γv)(x1, y1)− (∇Y γv)(x2, y1) = λ(x1, x2, y1, y2)((∇Y v)(x1, y1)− (∇Y v)(x2, y1))

(∇Y γv)(x2, y2)− (∇Y γv)(x1, y2) = λ(x1, x2, y1, y2)((∇Y v)(x2, y2)− (∇Y v)(x1, y2)).

(2.8)

Given any (x1, x2, y1, y2) ∈ A0, one obtains the same system of equations at (x2, x1, y1, y2)
∈ A0, albeit for λ(x2, x1, y1, y2). Thus, the function λ is symmetric with respect to x1

and x2. Similarly, it is symmetric with respect to y1 and y2. Next, for given x1 ∈ X and
y1 6= y2, the vectors in the first equation of (2.8) (with (∇Xv)(x1, y1)− (∇Xv)(x1, y2) 6= 0
on the right hand side) do not depend on how (x1, y1, y2) is completed by x2 to yield a
full profile that lies in A0. Consequently, λ(x1, x2, y1, y2) = λ(x1, x1, y1, y2) for all these
possible choices.
We next show that for a given x1, λ does in fact not depend on y1 and y2 as long

as y1 6= y2. To this end, start with any x1 ∈ X and y1 6= y2. We will show that for all
y′2 6= y1 it holds

λ(x1, x1, y1, y2) = λ(x1, x1, y1, y
′
2). (2.9)
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Then, by symmetry of λ, λ(x1, x1, y1, y2) = λ(x1, x1, y
′
2, y1), and repeating the argument

will yield that λ is indeed independent of y1 and y2 as long as y1 6= y2.
So, let us prove (2.9). Using the first equation of (2.8), we have:

λ(x1, x1, y1, y2)((∇Xv)(x1, y1)− (∇Xv)(x1, y2))

= ((∇Xγv)(x1, y1)− (∇Xγv)(x1, y
′
2)) + ((∇Xγv)(x1, y

′
2)− (∇Xγv)(x1, y2))

= λ(x1, x1, y1, y
′
2)((∇Xv)(x1, y1)− (∇Xv)(x1, y

′
2))

+ λ(x1, x1, y
′
2, y2)((∇Xv)(x1, y

′
2)− (∇Xv)(x1, y2)).

It follows that

(λ(x1, x1, y1, y
′
2)− λ(x1, x1, y1, y2)) ((∇Xv)(x1, y1)− (∇Xv)(x1, y

′
2))

+ (λ(x1, x1, y
′
2, y2)− λ(x1, x1, y1, y2)) ((∇Xv)(x1, y

′
2)− (∇Xv)(x1, y2))

= 0. (2.10)

Two cases must now be distinguished.
Case 1: (∇Xv)(x1, y1)− (∇Xv)(x1, y

′
2) and (∇Xv)(x1, y

′
2)− (∇Xv)(x1, y2) are linearly

independent. Then, it follows from (2.10) that λ(x1, x1, y1, y
′
2) = λ(x1, x1, y1, y2).

Case 2: (∇Xv)(x1, y1)− (∇Xv)(x1, y
′
2) and (∇Xv)(x1, y

′
2)− (∇Xv)(x1, y2) are linearly

dependent. In this case, pick some y′′2 ∈ Y such that (∇Xv)(x1, y1)− (∇Xv)(x1, y
′′
2) and

(∇Xv)(x1, y
′′
2) − (∇Xv)(x1, y2) are linearly independent. This is always possible since

(∇Xv)(x1, ·) maps open neighborhoods of y1 one-to-one into Rn, and since for n ≥ 2,
there is no one-to-one continuous mapping from an open set in Rn to the real line R.16

From Case 1, we obtain λ(x1, x1, y1, y
′′
2) = λ(x1, x1, y1, y2). Since (∇Xv)(x1, y1) −

(∇Xv)(x1, y
′
2) and (∇Xv)(x1, y

′
2)− (∇Xv)(x1, y

′′
2) are also linearly independent, we then

get λ(x1, x1, y1, y
′
2) = λ(x1, x1, y1, y

′′
2), and hence (2.9) follows.

The third equation of (2.8) may be now used in an analogous way to show that for a
given y1, λ(x1, x2, y1, y1) does not depend on x1 and x2, as long as x1 6= x2.
The final ingredient is the following observation: for every (x1, x1, y1, y2) ∈ A0, there

is a x2 6= x1 with (x1, x2, y1, y2) ∈ A0. Indeed, (∇X2Fv)(x1, x1, y1, y2) 6= 0, so that the
set of x2 for which (x1, x2, y1, y2) ∈ A0 is given locally (in a neighborhood of x2 = x1) by

16This is a special case of Brouwer’s (1911) classical dimension preservation result: for k < m, there is
no one-to-one, continuous function from a non-empty open set U of Rm into Rk.
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a differentiable manifold of dimension n− 1. Since n ≥ 2, this manifold must contain
points other than x1. A similar argument applies to (x1, x2, y1, y1) ∈ A0.
To conclude the proof, we show that λ is constant on {(x1, x2, y1, y2) ∈ A0|x1 6=

x2 and y1 6= y2}. This set is non-empty by the previous observation (and we have already
seen that λ(x1, x2, y1, y2) = λ(x1, x1, y1, y2) and λ(x1, x2, y1, y2) = λ(x1, x2, y1, y1), so
that λ is constant on all of A0 then). Given any (x1, x2, y1, y2), (x′1, x′2, y′1, y′2) ∈ A0 with
x1 6= x2, y1 6= y2, x′1 6= x′2 and y′1 6= y′2, we have:

λ(x1, x2, y1, y2) = λ(x1, x1, y1, y2) = λ(x1, x1, y
′
1, y
′
2)

= λ(x1, x
′′
2, y
′
1, y
′
2) = λ(x1, x

′′
2, y
′
1, y
′
1)

= λ(x′1, x′2, y′1, y′1) = λ(x′1, x′2, y′1, y′2),

where x′′2 6= x1 is any feasible profile completion for (x1, y
′
1, y
′
2).

We are now finally ready to prove Theorem 2.1.

Proof of Theorem 2.1. ii)⇒ i): Consider the case I ≤ J . As in the proof of Lemma 2.1,
we make use of the “taxation principle” for ex-post implementation. For employer ei,
and matching m ∈ M define teim(x−i, y1, ..., yJ) := λ0

∑
l 6=i v(xl, ym(l)) − h(ym(i)). Then,

(γv)(xi, ym(i)) + teim(x−i, y1, ..., yJ) = λ0
∑I
l=1 v(xl, ym(l)) + g(xi), so that it is optimal for

ei to select a matching that maximizes aggregate welfare. Note that strict incentives for
truth-telling can be provided only if λ0 > 0. For worker wj, define

twjm (x1, ..., xI , y−j) := (1− λ0)
∑

k∈m(I),k 6=j
v(xm−1(k), yk)

+g(xm−1(j))1j∈m(I) − h(yj)1j /∈m(I).

Here, 1j∈m(I) = 1 if j ∈ m(I), and 1j∈m(I) = 0 otherwise. Note that if I = J , then
j ∈ m(I) for all possible matchings m, so that the final (yj-dependent) term always
vanishes. If I < J , then h is constant by assumption, and the transfer does not depend
on yj. It follows that if wj is matched in m, his utility is ((1 − γ)v)(xm−1(j), yj) +
t
wj
m (x1, ..., xI , y−j) = (1− λ0)∑k∈m(I) v(xm−1(k), yk)− h(yj). Otherwise, his utility is just
t
wj
m (x1, ..., xI , y−j) = (1−λ0)∑k∈m(I) v(xm−1(k), yk)−h(yj). Hence, it is optimal for wj to
select a matching that maximizes aggregate welfare, and strict incentives for truth-telling
can be provided only if λ0 < 1. This proves i) for I ≤ J . The proof for the case I ≥ J is
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completely analogous.
i) ⇒ ii): By Lemma 2.4, there is a λ0 ∈ [0, 1] such that for all x ∈ X, y1, y2 ∈ Y with

y1 6= y2 it holds (the profile may be completed to lie in A0, e.g. by x′ = x):

(∇Xγv)(x, y1)− (∇Xγv)(x, y2) = λ0((∇Xv)(x, y1)− (∇Xv)(x, y2)).

Integrating along any path from x2 to x1 (X is open and connected in Rn, hence
path-connected) yields Fγv(x1, x2, y1, y2) = λ0Fv(x1, x2, y1, y2). Hence, by linearity of the
operator F , we obtain that F(γ−λ0)v ≡ 0. A function of two variables has vanishing cross
differences if and only if it is additively separable, so that we can write (γv)(x, y) =
λ0v(x, y) + g(x) + h(y). This concludes the proof for the case where I = J .

It remains to prove that h must be constant if I < J (the proof that g must be constant
when I > J is analogous). Given y1 ∈ Y , Condition 2.1 implies that (∇Y v)(·, y1) vanishes
at most in one point. Pick then any x1 ∈ X with (∇Y v)(x1, y1) 6= 0. Set y2 = y1 and
complete the type profile for (i 6= 1, j 6= 1, 2) such that, for an open neighborhood
U of (y1, y1), the efficient matching changes only with respect to the partner of e1 :
either w1 is matched to e1 and w2 remains unmatched, or w2 is matched to e1 and w1

remains unmatched. For (y′1, y′2) ∈ U , it follows that v(x1, y
′
1)− v(x1, y

′
2) ≥ (≤) 0 implies

((1− γ)v)(x1, y
′
1)− ((1− γ)v)(x1, y

′
2) ≥ (≤) 0. Hence, there is a µ(x1, y1) ≥ 0 such that

(1− λ0)(∇Y v)(x1, y1)− (∇Y h)(y1) = µ(x1, y1)(∇Y v)(x1, y1).

In other words, (∇Y h)(y1) and (∇Y v)(x1, y1) are linearly dependent. Finally, let x1

vary and note that, by Condition 2.1, the image of (∇Y v)(·, y1) cannot be concentrated
on a line (recall footnote 16). Thus, we obtain that (∇Y h)(y1) = 0. Since y1 was arbitrary
and Y is connected, it follows that the function h must constant.

Proof of Theorem 2.2. Let I ≤ J (the proof for I ≥ J is analogous). Consider some i ∈ I
and a given, fixed type profile for all other agents (x−i, y1, ..., yJ). Given any such type
profile, we re-order the workers and employers other than i such that x(1) ≥ ... ≥ x(I−1)

and y(1) ≥ ... ≥ y(J).
We now verify the monotonicity condition identified by Bergemann and Välimäki.17

17We only verify it for type profiles for which all these inequalities are strict. When some types coincide,
it is still straightforward to verify monotonicity but we do not spell out the more cumbersome case
distinctions here.
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This requires that the set of types of agent i for which a particular social alternative is
efficient forms an interval. Let then mk, k = 1, ..., I denote the matching that matches
x(l) to y(l) for l = 1, ..., k − 1, xi to y(k) and x(l) to y(l+1) for l = k, ..., I − 1. Then, for
k = 2, ..., I − 1 it holds that the set

{xi ∈ X|umk(x1, ..., xI , y1, .., yJ) ≥ um(x1, ..., xI , y1, .., yJ) ,∀m ∈M}

is simply [x(k), x(k−1)]. For k = I the set is (inf X, x(I−1)], and for k = 1 it is
[x(1), supX). Monotonicity for workers j is verified in the same way.

Next, the necessary condition of Bergemann and Välimäki, spelled out for our matching
model, requires that at all “switching points” xi = x(k−1) where the efficient allocation
changes, it also holds that

∂

∂xi
((γv)(xi, y(k−1))− (γv)(xi, y(k))) ≥ 0.

Given xi and y′ > y we can always complete these to a full type profile such that
xi is a change point at which the efficient match for xi switches from y to y′. Hence
∂
∂x

((γv)(x, y′) − (γv)(x, y)) ≥ 0 for all x and y′ > y. So, γv must have increasing
differences, i.e. it is supermodular. Since ∂

∂xi
((γv)(xi, y(k−1)) − (γv)(xi, y(k))) ≥ 0 is

satisfied for all xi ∈ X (not just at switching points!), the second part of the sufficient
conditions of Bergemann and Välimäki is satisfied. The argument for workers (yielding
supermodularity of (1− γ)v) is analogous. This completes the proof.
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Chapter 3

On the optimality of small research
tournaments

I study two open problems with regard to the optimal number of participants in the
research tournament model of Fullerton and McAfee (1999), in which firms are asymmet-
ric with respect to their marginal effort cost. I derive a sharp bound for the possible cost
inefficiency associated with a tournament of size 2, if costs are common knowledge and
the procurer can charge non-discriminatory entry fees. The analysis generally supports
arranging a small tournament with the two most efficient firms, but it also identifies
some notable exceptions. If costs are private information of ex-ante symmetric firms
prior to the tournament, Fullerton and McAfee’s contestant selection auction has to be
used to select the most efficient candidates, and to raise money in advance. I discuss
the procurer’s problem of stimulating a given expected aggregate research effort at lowest
expected total cost by choosing the optimal tournament size. A closed form solution is
derived for the case where marginal costs are uniformly distributed on [0, c̄]. The result
strongly favors the smallest possible tournament with two participants.

3.1 Introduction

Research tournaments, or contests, are widely used as mechanisms to procure innova-
tions. They may mitigate many of the problems that plague traditional procurement
contracts in this case, such as non-verifiable quality of the innovation, or difficulties to
monitor and verify the efforts and costs of suppliers. Properly designed contests suc-
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cessfully foster competition between potential suppliers, while requiring relatively little
information on the part of the procurer.1 In an influential paper, Fullerton and McAfee
(1999) (henceforth (FM)) studied how to design a fixed-prize research tournament when
firms/suppliers are heterogenous (or asymmetric) with respect to their cost of exerting
research effort, and when the research technology is stochastic. (FM) focused on how
asymmetries affect the answers to two major design questions for the procurer: how
many participants should be admitted to the tournament? How should contestants be
selected from a pool of n candidates when costs are private information prior to the
tournament? The purpose of this chapter is to address two open questions with regard
to the optimal number of contestants. One problem concerns the complete information
case, while the other, more fundamental one deals with the case of private information.
Both problems arise naturally from the work of (FM), and my analysis builds on their
model and results. I therefore summarize these before explaining the open problems and
the results that I obtain.
(FM) provided a complete characterization of firms’ equilibrium research efforts and

expected profits in a fixed-prize tournament with prize P , when the stochastic research
technology is of the “independent draws” type (leading to a standard Tullock success
function, see also Baye and Hoppe, 2003), and when the heterogeneous effort costs of all
m participants are common knowledge. Having more firms in the tournament increases
aggregate research effort (which determines the distribution of the quality of the best
innovation) but decreases equilibrium profits and hence firms’ valuations for entering
the tournament. Taking this tradeoff into account, the procurer’s optimization problem
involves stimulating given levels of aggregate research effort at the lowest possible total
cost. For the case where the procurer can set non-discriminatory entry fees, (FM) derived
a condition on the structure of heterogeneity which ensures that it is optimal to host a
very small tournament with the two most efficient firms only.2 These are selected by
setting an appropriate entry fee.
Even if one has a clear idea what the optimal number of participants is, another key

issue arises when effort costs are private information before the tournament: how can
one make sure that the most efficient firms enter? (FM) advocated the use of an all-pay

1See for instance Che and Gale (2003) and Fullerton and McAfee (1999) for very readable accounts
of some of the most appealing features of contests and tournaments. These papers also provide a
number of interesting examples.

2The condition is sufficient even if duplication of fixed costs plays no role.
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entry auction with a small interim prize (the “contestant selection auction”), in which
firms bid for participation in the final tournament (with prize P and m participants).
They analyzed a setup of incomplete information with ex-ante symmetric firms whose
actual types, i.e. their marginal costs of conducting research, are drawn from a common
and commonly known distribution. Firms’ types are private information prior to entry.
However, in case a firm is admitted, it learns about the costs of its (small number
of) competitors, so that the research tournament with asymmetric firms and complete
information can be used as a building block for the analysis. (FM) identified conditions
on the distribution of types under which standard discriminatory-price and uniform-price
entry auctions do not possess an efficient symmetric equilibrium, i.e. an equilibrium that
always selects the candidates with the lowest costs. In this sense, these auctions may
fail as selection mechanisms. The authors nicely demonstrated that, in sharp contrast,
the contestant selection auction is much more likely to have an efficient equilibrium. In
particular, this is always the case when types are independent.

I now describe the two open problems. First, while the sufficient condition for optimality
of m = 2 in the complete information model is not implausible, there are also many
interesting cases in which it is violated. In particular, this often happens when firms’
costs are drawn from a common distribution as described above. I therefore drop the
condition entirely. Instead, I derive a sharp bound for the loss that may possibly occur -
compared to the optimal tournament size - if entry is restricted to only two firms. I also
illustrate the meaningfulness of the numerical value of this bound. The analysis confirms
that setting m = 2 is a good idea in many cases. However, it also provides an intuitive
answer as to when admitting more contestants may be particularly beneficial. Roughly
speaking, this is the case if a) there is a substantial but not too extreme cost asymmetry
between the two most efficient firms and b) there are other firms which are (almost) as
efficient as the second best firm.

Second and importantly, it is not clear why picking a tournament size of m = 2 should
be a good idea, or even optimal, when firms’ costs are private information. In this
case, setting optimal entry fees is infeasible: the contestant selection auction has to be
used to select participants efficiently and to collect money before the tournament, in
the form of all-pay bids. Both (FM)’s sufficient condition and the loss analysis carried
out in Section 3.2.2 of this chapter rely on complete information, and in particular on
the procurer’s ability to set optimal non-discriminatory entry fees. Therefore, I further
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investigate the incomplete information model that was used by (FM) to argue in favor
of the contestant selection auction. I discuss the expression that must be analyzed for a
designer’s objective of “procuring” a given expected aggregate effort at lowest expected
total cost and find a closed form solution for the important special case in which marginal
costs are uniformly distributed on [0, c̄] (see Section 3.3 for additional motivation). This
exercise turns out to be fairly involved but still analytically tractable (see the proof of
Theorem 3.3). The results strongly support setting m = 2.

A comprehensive review of the literature on the optimal design of contests would go
well beyond the scope of this chapter. Still, let me mention some related papers. These
also provide further references and point out connections with several important strands
of the economic literature, such as the literature on labor tournaments following Lazear
and Rosen (1981), and the large body of work on all-pay auctions under either complete
or incomplete information. Very closely related to (FM) is a seminal contribution
for the case of symmetric firms by Taylor (1995), who also found that limiting the
number of contestants is beneficial. Fullerton, Linster, McKee, and Slate (2002) and
Schöttner (2008) compared fixed-prize tournaments to first-price auctions (firms bid
a combination of quality and price after having conducted research) in two different
models with stochastic research technology and symmetric firms. Che and Gale (2003)
studied a model with deterministic technology, complete information and (possibly)
asymmetric firms. They showed that inviting the two most efficient firms to participate
in a first-price auction (handicapping the better firm by a maximum allowable price)
is optimal within a much broader class of possible contests. In a model with a given
number of ex-ante symmetric participants, deterministic technology and privately known
cost types, Moldovanu and Sela (2001) demonstrated that it may be better to award
multiple prizes rather than just a single one if the cost function is convex. However, a
single prize is better for concave or linear costs (as is the case here).

The chapter is organized as follows. Section 3.2.1 describes (FM)’s complete information
tournament model with asymmetric firms, introduces notation, and collects the known
results that are needed later on. Section 3.2.2 studies the complete information model
without the sufficient condition of (FM). In particular, the sharp bound mentioned above
is developed. Section 3.3 contains the analysis and results for the incomplete information
model, in which the contestant selection auction is used to determine participants. All
proofs that are not in the main text may be found in Section 3.4.
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3.2 Optimal tournament size under complete
information

3.2.1 The model and some known results

In this section, I present the basic complete information tournament model, as well
as the results from (FM) that will be used.3 I adopt their notation so as to facilitate a
comparative reading.
Risk-neutral firms j = 1, ..., n (n ≥ 2) have costs for making an effort zj ∈ R+ when

they take part in a simultaneous-move research tournament with m participants and
prize P > 0. Costs are given by γ + cjzj (where γ ≥ 0 and cj > 0) if zj > 0, and
by 0 if zj = 0.4 If firm j exerts effort zj, it produces an innovation of random quality
xj ∈ [0, x̄], whose c.d.f. is given as F zj(xj). This simple stochastic research technology
corresponds to a continuous version of modeling independent draws from the distribution
F , which is assumed to be absolutely continuous with respect to Lebesgue measure. Firms’
research activities are independent, so that FZ is the distribution function of the winning
quality, where Z = ∑

j zj is the aggregate effort. In this model, winning probabilities are
determined by a standard Tullock success function. That is, the probability that firm
j produces the highest quality and wins the tournament (and hence the prize P ) is zj

Z
.

Each others’ costs are common knowledge among the m participants.
(FM) showed the following: if M denotes the set of contestants (|M | ≤ m) who choose

strictly positive effort in equilibrium, then for each i ∈M , effort zi and expected profit
πi before substracting γ are given by

zi = P (|M | − 1)∑
j∈M cj

[
1− ci(|M | − 1)∑

j∈M cj

]
,

πi = P

[
1− ci(|M | − 1)∑

j∈M cj

]2

.

If γ > 0, the additional constraint πi ≥ γ must be satisfied for all i ∈M . (FM) showed
that there is a unique set of lowest-cost contestants who choose strictly positive effort
in equilibrium if γ = 0 (which is the case that I consider below). There may be some

3For more details, their paper should be consulted.
4The fixed cost γ ≥ 0 is incurred only if zj > 0.
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ambiguity if γ > 0. However, even in that case one may essentially restrict attention to
the equilibrium in which only (a γ-dependent number of) lowest-cost contestants actively
participate.5 For convenience, and following (FM), I label all n firms such that marginal
costs are ordered: c1 ≤ c2 ≤ ... ≤ cn.

It is intuitive, and confirmed by the model, that high fixed costs are a strong reason for
having a small number of participants. To enhance a clear analysis of the consequences
of asymmetries in marginal costs for the optimal size of the tournament, I eliminate this
effect and set γ = 0. Note that

Z =
∑
i∈M

zi = P (|M | − 1)∑
j∈M cj

, (3.1)

and that it is profitable for firm m to be in a tournament with 1, ...,m− 1 if and only
if

(m− 1)cm∑m
j=1 cj

< 1. (3.2)

This is condition (5) in (FM). It is straightforward to see that the left hand side of
(3.2) is strictly increasing in m as long as it is smaller than 1, and that if 2 ≤ m̄ ≤ n

is the maximal number such that (3.2) is satisfied for all m ≤ m̄, then the condition is
violated for all k with n ≥ k > m̄ (compare (FM)).

For a given P , varying the number of participants from 2 up to m̄ goes along with
increasing total effort. Indeed, let m + 1 ≤ m̄, so that (3.2) implies cm+1 <

∑m+1
j=1 cj

m

which is also equivalent to cm+1 <

∑m

j=1 cj

m−1 . For the comparison of total efforts with m+ 1
and m contestants this yields

Pm∑m+1
j=1 cj

>
Pm

m
m−1

∑m
j=1 cj

= P (m− 1)∑m
j=1 cj

.

On the other hand, firms’ equilibrium profits decrease with more participants, which
diminishes the procurer’s ability to collect money in advance, through entry fees or entry
auctions, that may be used to partly finance the prize.

As (FM) noted, with complete information the procurer can charge a non-discriminatory

5See Lemma 1 in (FM).
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entry fee of (slightly below)

E = P

[
1− cm(m− 1)∑m

j=1 cj

]2

to induce a tournament with exactly m ≤ m̄ low-cost participants. If he wants to
motivate a target effort of Z, by (3.1) he must set P = Z

∑m

j=1 cj

m−1 . Hence, the total cost
of “procuring” effort Z with m ≤ m̄ competitors is given by

TCm = P −mE =
Z
∑m
j=1 cj

m− 1

1−m
[
1− cm(m− 1)∑m

j=1 cj

]2


= Z
m∑
j=1

cj

(
−1 + 2∆m −

m− 1
m

∆2
m

)
, (3.3)

where ∆m = mcm∑m

j=1 cj
. In the symmetric case where all costs are equal to the same

c, all TCm are equal to Zc (just plug in ∆m = 1). So, the interesting questions in
the non-discriminatory complete information framework are the following. How do
asymmetries in marginal costs (which imply that some firms earn net profits) affect the
TCm? Do asymmetries generally favor any particular number of participants, do they at
least tend to do so? A theorem of (FM) partly answers these questions.

Theorem 3.1. (Theorem 3 of (FM)) If ∆m is nondecreasing in m, then the total cost
TCm of stimulating a given aggregate effort level Z is minimized at m = 2.

3.2.2 A sharp bound for general asymmetric cost structures

The sufficient condition of Theorem 3.1 requires that marginal costs are separated
from each other by certain gaps. It has some appeal, but there are also many cases of
interest in which it does not hold. For instance, the condition does not apply whenever
one of the firms is a sufficiently close competitor for another one. Most importantly,
the condition is violated for many realizations when firms’ costs are randomly drawn
from an ex-ante distribution (see Section 3.3). I do not make any assumptions about the
structure of marginal costs (reflected by the ratios ∆m) here. Consequently, m = 2 is not
always optimal. However, it is possible to derive a sharp, worst case, lower bound for
the ratio of the optimal TCm over TC2. This bound is quite close to 1 while, in contrast,
having too many firms in the tournament can be very expensive for some cost structures
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(see Example 3.1 for an illustration). In this sense, hosting a tournament with the two
most efficient firms is generally not a bad idea.6 However, the analysis also yields the
following insights as by-products. First, it is better to have more than two contestants
whenever there exist close competitors for firm 2. Secondly, increasing the number of
participants can be really profitable only for intermediate degrees of asymmetry between
firms 1 and 2, and the effect is maximal for ∆2 =

√
2 (see Remark 3.1).

Theorem 3.2. It holds

inf
n≥2, 0<c1≤...≤cn, 1≤m<m̄

TCm+1

TC2
= inf

∆2∈[1,2)

1

2
[
2
(
1−

√
1
2

)
−
(√

1
2∆2 −

√
1

∆2

)2]
= 1

4
(
1−

√
1
2

) ≈ 0.85. (3.4)

To prove Theorem 3.2, I first rewrite formula (3.3) in a form that is more suitable for
examining the ratios TCm+1

TC2
, m̄ > m ≥ 1.

TCm+1 = Z
m+1∑
j=1

cj

(
−1 + 2∆m+1 −

m

m+ 1 ∆2
m+1

)

= Z
(m+ 1)cm+1

∆m+1

2
(

1−
√

m

m+ 1

)
∆m+1 −

(√
m

m+ 1∆m+1 − 1
)2

= Z(m+ 1)cm+1

2
(

1−
√

m

m+ 1

)
−
(√

m

m+ 1∆m+1 −
√

1
∆m+1

)2 .
This yields for m̄ > m ≥ 1,

TCm+1

TC2
= (m+ 1)cm+1

2c2

[
2
(
1−

√
m
m+1

)
−
(√

m
m+1∆m+1 −

√
1

∆m+1

)2
]

[
2
(
1−

√
1
2

)
−
(√

1
2∆2 −

√
1

∆2

)2]

=
 m∏
j=2

αj

 (m+ 1)
[
2
(
1−

√
m
m+1

)
−
(√

m
m+1∆m+1 −

√
1

∆m+1

)2
]

2
[
2
(
1−

√
1
2

)
−
(√

1
2∆2 −

√
1

∆2

)2] .

(3.5)
6The argument is reinforced by the observations that the bound is developed for the case γ = 0, and
that there may be important additional costs related to conducting the tournament (evaluation, etc.)
that lie beyond the framework of the model.
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Here αj := cj+1
cj

, and an empty product is equal to 1 by convention. By the ordering
of costs, ∆m+1 ≥ 1. On the other hand, m

m+1∆m+1 < 1 is necessary for firm m + 1 to
enter and to exert positive effort (i.e., for m < m̄). The following lemma establishes a
straightforward recursive formula for ∆m, as well as a necessary and sufficient condition
for the implication (m ≤ m̄⇒ m+ 1 ≤ m̄) in terms of the sequence of marginal costs.

Lemma 3.1. i) It holds

∆m+1 = (m+ 1)cm+1

mcm + ∆m cm+1
∆m.

ii) If m−1
m

∆m < 1, then

m

m+ 1 ∆m+1 < 1 ⇔ cm+1 <
(
m− 1
m

∆m

)−1
cm.

Consequently, each structure of marginal costs that may lead to a situation in which
m+ 1 firms participate in equilibrium is characterized by a sequence of αj satisfying

αj ∈

1,
(
j − 1
j

∆j

)−1
 for j = 2, ...,m.

This is all information that is available a priori for studying how small the expression
(3.5) may get for arbitrary sequences of marginal costs (that do not satisfy an additional
monotonicity property like in Theorem 3.1). At first glance, it thus seems rather difficult
to find a sharp lower bound for the ratio (3.5). The next observation drastically simplifies
this task.

Lemma 3.2. Consider any 2 ≤ m ≤ m̄. If it holds in addition that cm+1 = cm, then
TCm+1 ≤ TCm, i.e. it is weakly better to have a tournament with m+ 1 rather than m
participants. The inequality is strict unless ∆m = 1.

Lemma 3.2 enables the following proof of Theorem 3.2.

Proof of Theorem 3.2. Lemma 3.2 shows that for any situation in which a tournament
with m > 2 firms is better than one with 2, one may construct a case in which total costs
are even lower with m + 1 firms (by adding another firm whose marginal cost equals
that of firm m).
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Returning to the expression for the ratio of total costs (3.5), m
m+1∆m+1 ∈

[
m
m+1 , 1

)
and

∆−1
m+1 ∈

(
m
m+1 , 1

]
imply

(√
m

m+ 1∆m+1 −
√

1
∆m+1

)2

= O
( 1
m2

)
.

This follows from
√
x = 1 + 1

2(x− 1) +O((x− 1)2) as x→ 1, which furthermore yields

1−
√

m

m+ 1 = 1
2(m+ 1) +O

( 1
m2

)
.

Hence, asymptotically only the latter term determines the numerator in (3.5). For
a given ∆2 ∈ [1, 2), one may thus reach convergence to the infimum of (3.5) over all
admissible cost structures by setting αj = 1 for all j ≥ 2. The infimum is given by

lim
m→∞

2(m+ 1)
(
1−

√
m
m+1

)
2
[
2
(
1−

√
1
2

)
−
(√

1
2∆2 −

√
1

∆2

)2] = 1

2
[
2
(
1−

√
1
2

)
−
(√

1
2∆2 −

√
1

∆2

)2] .

This expression is minimized at ∆2 =
√

2 with value 1
4
(

1−
√

1
2

) .
Remark 3.1. As indicated above, the proof yields some additional insights: whether it
can be really profitable to allow entry of more than two firms depends crucially on the
the asymmetry between the two strongest firms. In the extremal cases of equal strength
(∆2 = 1) and drastic superiority of firm 1 (∆2 → 2), m = 2 is always optimal. Indeed,
in these cases the denominator of the ratio (3.5) is equal to 1. The closer the asymmetry
is to the geometric mean of these extremes, the more profitable it may be to allow for
more contestants to increase competition, but only if there are other firms which are
(almost) as strong as firm 2.

To conclude this section, I construct an ad hoc example which shows that the cost
inefficiency from having too many firms in the tournament may be significantly higher
than the one associated with the worst case bound of Theorem 3.2.

Example 3.1. Consider ∆j = 1 + j−2
m−1

1
m

for j = 2, ...,m + 1, and for m = 5.7 Then
TC6
TC2
≈ 1.38.

7For a fully rigorous argument, ∆m+1 has to be slightly below m+1
m .
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3.3 Incomplete information, (FM)’s contestant
selection auction, and optimal tournament size

In this section, I study the optimal number of participants for the model of incomplete
information with ex-ante symmetric firms that was used by (FM) to argue in favor of
the contestant selection auction. The crucial observation, which seems to have gone
unnoticed in (FM), is that a separate and more involved analysis is needed for that
purpose. Both Theorem 3.1 and the results of Section 3.2.2 have been obtained assuming
complete information and the use of non-discriminatory entry fees. Therefore, these
results are not applicable (even though they are useful to guide intuition).
The type of each firm, i.e. its marginal cost, is drawn ex-ante from a common and

commonly known distribution H with support [c, c̄] ⊂ R+ and density h. Types are
private information prior to the tournament. However, they become common knowledge
among the selected contestants before effort choices are made, so that efforts and profits
can be computed as in Section 3.2.1. (FM) showed that the contestant selection auction,
an all-pay entry auction with a small interim prize for entry, performs well in selecting
the most efficient contestants under incomplete information. In contrast, entry fees,
uniform-price auctions and discriminatory-price auctions may perform very poorly (see
also Section 3.1). In particular, for independent types the contestant selection auction
always has a symmetric equilibrium with a bidding function that is strictly decreasing in
marginal cost (Theorem 5 of (FM)). Moreover, for every P and m, the expected total
cost of conducting the tournament, which takes the revenue from the pre-tournament
auction into account, is then formally equivalent to the expression that would arise for
an efficient uniform-price auction (Theorem 6 of (FM)). To be precise about the latter
point, let hn−m,n denote the density of the m+ 1st - lowest out of n independent draws
from H. Moreover, let ψ(c, c) denote the conditional expected profit of a firm of type c
which enters the tournament as the weakest one of m contestants, and which happens
to have the same cost as the mth-strongest out of all remaining n− 1 candidates (the
“marginal” firm).8 Lemma 3.3 below follows easily from Theorem 6 of (FM).9

8ψ(c, c) is the usual candidate for equilibrium bidding in a uniform-price auction.
9For completeness, a proof is included in Section 3.4. The reason is that (FM) presented their results
in a slightly different model, in which firms/agents are characterized by an ability parameter w. w
and c are related by w = 1

c .
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Lemma 3.3. With independent types, the expected total cost of conducting a tournament
with prize P , when the m participants are determined by means of (FM)’s contestant
selection auction, is

P −m
∫ c̄

c
ψ(c, c)hn−m,n(c) dc. (3.6)

For the rest of this chapter, it will be convenient to drop the assumption that c1,...,cm−1

are ordered. Spelling out ψ(c, c) explicitly for γ = 0, one finds (compare (FM), where
the “max” was forgotten):

ψ(c, c) =
∫ c

c
...
∫ c

c
P max

(
1− c(m− 1)

c+∑m−1
j=1 cj

, 0
)2 m−1∏

j=1

h(cj)
H(c) dc1...dcm−1. (3.7)

Absent further (and necessarily special) assumptions about the procurer’s utility as a
function of i) the quality of the winning innovation, and ii) monetary costs, the most
natural and interesting optimization problem is the following, which is analogous to the
one in the complete information case: “procure” a given expected effort Z̄ at the lowest
possible expected total cost. Remember from (3.1) that the relationship between prize
P , total equilibrium effort Z = ∑

j∈M zj (where M is the set of firms that make strictly
positive effort) and marginal costs is Z = P (|M |−1)∑

j∈M cj
. Thus, to target an expected effort of

Z̄ with m participants, the procurer must set

P = Z̄

En

[
|M |−1∑
j∈M cj

∣∣∣∣ |M | ≤ m
] .

The conditional expectation in the denominator is the expected total effort made by
the m lowest cost firms (which are selected by the all-pay auction) in a tournament with
prize 1. The subscript n indicates the dependence of this expression on the total number
of firms. Plugging ψ(c, c) and the relationship for P into (3.6), one obtains an expression
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for the expected total cost of procuring Z̄ from m contestants.

ETCZ̄
m,n := Z̄

En

[
|M |−1∑
j∈M cj

∣∣∣∣ |M | ≤ m
] ×

∫ c̄

c

∫
[c,c]m−1

1− mmax
(

1− c(m− 1)
c+∑m−1

j=1 cj
, 0
)2
 m−1∏

j=1

h(cj)
H(c) dc1...dcm−1 hn−m,n(c) dc.

(3.8)

While this looks similar to the first line of (3.3), formula (3.8) is not just an average
of the TCm. Rather, the expectations of the cost of conducting a tournament with prize
P = 1 and of the corresponding total effort are taken separately.

It seems very hard to find general conditions that relate properties of H to the optimal
m, for each given n. In the remainder of this chapter, I solve the important special
case H ∼ U [0, c̄] explicitly (without further loss of generality, c̄ = 1). The results show
that the smallest possible tournament, i.e. m = 2, is by far the most cost efficient one.
Let me give some motivation first. c = 0 is important to make the problem interesting.
Indeed, the assumptions of incomplete information prior to the tournament and complete
information after entry seem reasonable only if n is quite large. On the other hand, if
c > 0, then for given H and large n, there are no significant asymmetries between the
lowest-cost firms. Without fixed costs, it then does not really matter whether e.g. m = 2
or m = 3: if c > 0, it holds that

lim
n→∞

ETCZ̄
m,n = Z̄ mc

m− 1

[
1−m

(
1− m− 1

m

)2]
= Z̄c.

In contrast, c = 0 may induce an interesting problem where asymmetries between the
few best candidates remain important even though the total number of firms is large.
The case H ∼ U [0, 1] has nice additional homogeneity properties. In particular, certain
conditional expectations of expressions that depend on marginal costs relative to each
other only, such as c(m−1)

c+
∑m−1

j=1 cj
, do not depend on n. This is very helpful for computations.

In Theorem 3.3 below, I do the main step towards solving the optimization problem
by deriving a closed form solution for ETCZ̄

m,n.

Theorem 3.3. Let H ∼ U [0, 1]. Then for any n ≥ 2 and 2 ≤ m ≤ n, the expected total
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m κm ln 2 +∑m
j=3

βj
(j−1)!

n
Z̄
ETCZ̄

m,n

2 0.113706 0.693147 1.11461
3 0.012558 0.716395 1.34329
4 0.001373 0.718123 1.38487
5 0.000142 0.718268 1.39125
6 0.000014 0.718281 1.39210

Table 3.1: Expected money raised per contestant for P = 1, normalized aggregate
expected effort for P = 1, and normalized expected total cost, for m = 2, ..., 6.

cost for stimulating expected effort Z̄ in a tournament with m participants is

ETCZ̄
m,n = Z̄

n

1−mκm
ln 2 +∑m

j=3
βj

(j−1)!

,

where κ2 = 3
2 − 2 ln 2, and for m ≥ 3

κm = 1
(m− 2)!

[
(ln(m− 1)− lnm)

(
(m− 2)mm−3 − 2(m− 1)mm−2 +mm

)]

+ 1
(m− 2)!

m−4∑
j=0

(
m− 2

m− 3− j −
2(m− 1)
m− 2− j + m

m− 1− j

)
mj


+ 1

(m− 2)!

[(
2− 3

2m
)
mm−3 +mm−1

]
,

and

βm = (m− 1)
−mm−2(ln(m− 1)− lnm)−

m−3∑
j=0

mj

m− 2− j


+(m− 2)

(m− 1)m−2(ln(m− 2)− ln(m− 1)) +
m−3∑
j=0

(m− 1)j
m− 2− j

 .
Theorem 3.3 settles the question about the optimal number of contestants for the

case H ∼ U [0, 1]. It reveals that two contestants are optimal because the decrease in
expected money raised by the entry auction that goes along with increasing tournament
size strongly dominates the positive effect of increasing aggregate effort. This is shown
in Table 3.1 for m = 2, ..., 6. Note in particular the big jump in expected costs from
m = 2 to m = 3.
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3.4 Appendix for Chapter 3

Proof of Lemma 3.1. To establish i), note that

1
∆m+1

=
∑m+1
j=1 cj

(m+ 1)cm+1
= 1

∆m

mcm
(m+ 1)cm+1

+ 1
m+ 1 = mcm + ∆m cm+1

(m+ 1)cm+1∆m

.

ii) By i), we have

m

m+ 1 ∆m+1 < 1 ⇔ mcm+1∆m < mcm + ∆m cm+1 ⇔ (m− 1)cm+1∆m < mcm

⇔ cm+1 <
m

m− 1∆−1
m cm.

Proof of Lemma 3.2. From the technical appendix of (FM) it follows that

TCm+1 − TCm = Z
m+1∑
j=1

cj

[
(∆m+1 −∆m)

(
2− m

m+ 1∆m+1 −
m− 1
m

∆m

)]

+ Z
m+1∑
j=1

cj

[
∆m+1

m+ 1(∆m − 1)
(

1− m− 1
m

∆m

)]
.

The factor multiplied with Z ∑m+1
j=1 cj has been split into two additive parts merely

due to limitations of space. I examine this factor for the case cm+1 = cm, which by
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Lemma 3.1 implies ∆m+1 = (m+1)∆m

m+∆m
. This yields

(∆m+1 −∆m)
(

2− m

m+ 1∆m+1 −
m− 1
m

∆m

)
+ ∆m+1

m+ 1(∆m − 1)
(

1− m− 1
m

∆m

)
=

(
(m+ 1)∆m

m+ ∆m

−∆m

)(
2− m∆m

m+ ∆m

− m− 1
m

∆m

)

+ ∆m

m+ ∆m

(∆m − 1)
(

1− m− 1
m

∆m

)

= ∆m(1−∆m)
m+ ∆m

2(m+ ∆m)−m∆m − m−1
m

∆m(m+ ∆m)
m+ ∆m

+
(∆m − 1)

(
∆m − m−1

m
∆2
m

)
m+ ∆m

= ∆m − 1
(m+ ∆m)2

[
(m+ ∆m)

(
∆m −

m− 1
m

∆2
m

)
−∆m

(
2m+ (3− 2m)∆m −

m− 1
m

∆2
m

)]
= ∆m − 1

(m+ ∆m)2

[
m∆m + ∆2

m − (m− 1)∆2
m − 2m∆m − (3− 2m)∆2

m

]
= ∆m − 1

(m+ ∆m)2

[
(m− 1)∆2

m −m∆m

]
= ∆m(∆m − 1)

(m+ ∆m)2 [(m− 1)∆m −m]

Note that (m− 1)∆m −m < 0 by assumption. The other factor is ≥ 0, and equality
holds only in the boundary case ∆m = 1. This proves the claim.

Calculations for Example 3.1. Note that ∆2 = 1 and ∆m+1 = m+1
m

. (3.5) implies

TC6

TC2
=
 5∏
j=2

αj

 6
(
1−

√
5
6

) (
1 +

√
5
6

)
2
(
1−

√
1
2

) (
1 +

√
1
2

) =
5∏
j=2

αj.

From Lemma 3.1,

∆j+1 = (j + 1)cj+1

jcj + ∆j cj+1
∆j = ∆j

j
(j+1)αj + ∆j

j+1

,

which yields after a few steps

αj = j∆j+1

∆j(j + 1−∆j+1) .
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For the current example, this implies α2 = 2(1+ 1
20 )

3−(1+ 1
20 ) = 14

13 . Similarly, α3 = 220
203 , α4 =

920
847 , α5 = 25

23 and thus
TC6

TC2
=

5∏
j=2

αj ≈ 1.38.

Proof of Lemma 3.3. In (FM), [w, w̄] (or [w,+∞)) denotes the support of the distribution
of an ability type, with c.d.f. H̃ and density h̃. h̃m+1,n is the density of the m + 1st-
highest draw out of n independent draws from H̃, and ψ̃(w,w) is the analog of ψ(c, c).
According to Theorem 6 of (FM) then, with independent types, the expected total cost of
conducting a tournament with m contestants when these are selected by the contestant
selection auction is

P −m
∫ w̄

w
ψ̃(w,w) h̃m+1,n(w)dw. (3.9)

Set w̄ := 1
c
, w := 1

c̄
, and w = 1

c
in between. Define ψ̃(w,w) via ψ̃(w,w) := ψ( 1

w
, 1
w

).
Since dc = − 1

w2 dw, and since increasing c means decreasing w, it holds that h̃(w) =
−h(c) dc

dw
= 1

w2 h( 1
w

). Moreover, H̃(w) = 1−H
(

1
w

)
.

From the general formula for order statistics, it follows that

h̃m+1,n(w) = n!
(n−m− 1)!m! H̃(w)n−m−1

(
1− H̃(w)

)m
h̃(w)

= n!
m! (n−m− 1)! H

( 1
w

)m (
1−H

( 1
w

))n−m−1 h
(

1
w

)
w2

=
hn−m,n( 1

w
)

w2 .

Hence, expression (3.9) becomes

P −m
∫ w̄

w
ψ
( 1
w
,

1
w

) hn−m,n
(

1
w

)
w2 dw = P −m

∫ c̄

c
ψ(c, c)hn−m,n(c) dc.

Proof of Theorem 3.3. Observe that h(cj)
H(c) = 1

c
. Let volk(A) denote the k-dimensional

Hausdorff measure of set A. Making use of the Coarea formula for the mapping
(c1, ...cm−1) 7→

∑m−1
j=1 cj, I find for the crucial term in the second factor of ETCZ̄

m,n
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in (3.8), for m ≥ 3:

∫
[0,c]m−1

max
(

1− c(m− 1)
c+∑m−1

j=1 cj
, 0
)2 1

cm−1 dc1...dcm−1

= 1
cm−1

∫ (m−1)c

(m−2)c

(
1− (m− 1)c

c+ a

)2

volm−2


m−1∑
j=1

cj = a

 ∩ [0, c]m−1

 √
1

m− 1 da

= 1
cm−1

∫ c

0

(
1− (m− 1)c

mc− a

)2

volm−2


m−1∑
j=1

cj = (m− 1)c− a

 ∩ [0, c]m−1

 √
1

m− 1 da

= 1
cm−1

∫ c

0

(
c− a
mc− a

)2
volm−2


m−1∑
j=1

cj = a

 ∩ [0, c]m−1

 √
1

m− 1 da

= 1
cm−1

∫ c

0

(
c− a
mc− a

)2 √
m− 1

(m− 2)!
√

2m−2
(
√

2a)m−2

√
1

m− 1 da

= 1
cm−1(m− 2)!

∫ c

0

(
c2am−2 − 2cam−1 + am

(mc− a)2

)
da. (3.10)

For the step from line 3 to 4, symmetry with respect to the corners of [0, c]m−1 was
invoked. In the second but last step, I plugged in a well known formula for the volume
of a simplex of unit side length.

Expression (3.10) shows that a formula for integrals of the form
∫ c
0

ak

(b−a)2 da for k ≥ 1
and b > c is needed. Integrating by parts once,

∫ c

0

ak

(b− a)2 da = ck

b− c
− k

∫ c

0

ak−1

b− a
da.

Noting that ak−1 = ak−1 − bk−1 + bk−1 = (a − b)
(∑k−2

j=0 a
k−2−j bj

)
+ bk−1 (with the

convention that sums running from j = 0 to −1 are zero), it is straightforward to
establish

∫ c

0

ak

(b− a)2 da = ck

b− c
+ kbk−1(ln(b− c)− ln b) +

k−2∑
j=0

k bj
ck−1−j

k − 1− j .

After plugging in and collecting terms, which I omit here for the sake of brevity,
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equation (3.10) turns into:

∫
[0,c]m−1

max
(

1− c(m− 1)
c+∑m−1

j=1 cj
, 0
)2 1

cm−1 dc1...dcm−1

= 1
(m− 2)!

[
(ln(m− 1)− lnm)

(
(m− 2)mm−3 − 2(m− 1)mm−2 +mm

)]

+ 1
(m− 2)!

m−4∑
j=0

(
m− 2

m− 3− j −
2(m− 1)
m− 2− j + m

m− 1− j

)
mj


+ 1

(m− 2)!

[(
2− 3

2m
)
mm−3 +mm−1

]
= κm.

This expression does not depend on c or n, so that κm is also the expected money
raised per contestant in the entry auction (for P = 1), irrespectively of n. A separate
calculation is necessary for κ2.

κ2 =
∫ c

0

(
1− c

c+ c1

)2 1
c
dc1 = 1

c

∫ c

0

(
c1

c+ c1

)2
dc1

= 1
c

[
− c2 +

∫ c

0

2c1

c+ c1
dc1

]
= −1

2 + 2
c

[
c ln(2c)−

∫ c

0
ln(c+ c1) dc1

]
= −1

2 + 2
c

[c ln(2c)− 2c ln(2c) + c+ c ln c]

= 3
2 + 2(ln c− ln(2c)) = 3

2 − 2 ln 2.

Concerning the terms γm,n := En

[
|M |−1∑
j∈M cj

∣∣∣∣ |M | ≤ m
]
, a separate calculation is again

needed for m = 2.

γ2,n = En

[
|M | − 1∑
j∈M cj

∣∣∣∣ |M | ≤ 2
]

=
∫ 1

0

∫ c

0

1
c+ c1

1
c
dc1 hn−1,n(c) dc

=
∫ 1

0

∫ c

0

1
c+ c1

dc1 n(n− 1)(1− c)n−2 dc

= (ln 2)n(n− 1)
∫ 1

0
(1− c)n−2 dc = n ln 2.

While it is practically impossible to compute the terms for higher m directly, they
may be computed recursively. Indeed, allowing for an additional contestant has an effect
on aggregate equilibrium effort only in those cases where the cost of the new firm is low
enough in the sense of inequality (3.2). Also, in all these relevant cases, if the new firm
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is not allowed to participate, then all the lower cost firms make positive effort because
of the monotonicity of the right hand side of (3.2) that was mentioned in Section 3.2.1.
I use the equivalent formulation of (3.2) which was also mentioned in Section 3.2.1 to
describe the domain of integration. Consequently, for m ≥ 3,

γm,n − γm−1,n

=
∫ 1

0

hn−m+1,n(c)
cm−1

∫
[0,c]m−1

(
m− 1

c+∑m−1
j=1 cj

− m− 2∑m−1
j=1 cj

)
I{(m−2)c<

∑m−1
j=1 cj}

dc1...dcm−1 dc.

The inner integral may again be computed by using the Coarea formula and the little
symmetry trick:

∫
[0,c]m−1

(
m− 1

c+∑m−1
j=1 cj

− m− 2∑m−1
j=1 cj

)
I{(m−2)c<

∑m−1
j=1 cj}

dc1...dcm−1

=
∫ (m−1)c

(m−2)c

(
m− 1
c+ a

− m− 2
a

)
volm−2


m−1∑
j=1

cj = a

 ∩ [0, c]m−1

 √
1

m− 1 da

=
∫ c

0

(
m− 1
mc− a

− m− 2
(m− 1)c− a

)
volm−2


m−1∑
j=1

cj = a

 ∩ [0, c]m−1

 √
1

m− 1 da

=
∫ c

0

(
m− 1
mc− a

− m− 2
(m− 1)c− a

) √
m− 1

(m− 2)!a
m−2

√
1

m− 1 da

= 1
(m− 2)!

∫ c

0

(
(m− 1) am−2

mc− a
− (m− 2) am−2

(m− 1)c− a

)
da.

Now,

∫ c

0

(
(m− 1) am−2

mc− a
− (m− 2) am−2

(m− 1)c− a

)
da

= (m− 1)
−(mc)m−2(ln(m− 1)− lnm)−

m−3∑
j=0

mj

m− 2− j c
m−2


+ (m− 2)

((m− 1)c)m−2(ln(m− 2)− ln(m− 1)) +
m−3∑
j=0

(m− 1)j
m− 2− j c

m−2


= cm−2βm.
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Hence,

γm,n − γm−1,n =
∫ 1

0

hn−m+1,n(c)
cm−1

1
(m− 2)!c

m−2 βm dc

= βm
1

(m− 2)!

∫ 1

0

n!
(n−m)! (m− 1)!(1− c)

n−m cm−2 dc

= βm
1

(m− 2)!
n!

(n−m)! (m− 1)!
(m− 2)!(n−m)!

(n− 1)!
= n

(m− 1)! βm.

This shows

γm,n = n

ln 2 +
m∑
j=3

βj
(j − 1)!

 .
Q.E.D.
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Revenue maximization in the
dynamic knapsack problem

We analyze maximization of revenue in the dynamic and stochastic knapsack problem
where a given capacity needs to be allocated by a given deadline to sequentially arriving
agents. Each agent is described by a two-dimensional type that reflects his capacity
requirement and his willingness to pay per unit of capacity. Types are private information.
We first characterize implementable policies. Then we solve the revenue maximization
problem for the special case where there is private information about per-unit values, but
capacity needs are observable. After that we derive two sets of additional conditions on
the joint distribution of values and weights under which the revenue maximizing policy
for the case with observable weights is implementable, and thus optimal also for the
case with two-dimensional private information. In particular, we investigate the role of
concave continuation revenues for implementation. We also construct a simple policy for
which per-unit prices vary with requested weight but not with time, and we prove that it
is asymptotically revenue maximizing when available capacity and time to the deadline
both go to infinity. This highlights the importance of nonlinear as opposed to dynamic
pricing.

4.1 Introduction

The knapsack problem is a classical combinatorial optimization problem with numerous
practical applications: several objects with given, known capacity needs (or weights) and
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given, known values must be packed into a “knapsack” of given capacity to maximize the
total value of the included objects. In the dynamic and stochastic version (see Ross and
Tsang, 1989), objects sequentially arrive over time and their weight-value combination
is stochastic but becomes known to the designer at arrival times. Objects cannot be
recalled later, so it must be decided upon arrival whether an object is included or not.
Several applications that come to mind are logistic decisions in the freight transportation
industry, the allocation of fixed capacities in the travel and leisure industries (e.g., airlines,
trains, hotels, rental cars), the allocation of fixed equipment or personnel in a given
period of time, the allocation of fixed budgets to investment opportunities that appear
sequentially, and the allocation of dated advertising space on web portals.
In the present study, we add incomplete information to the dynamic and stochastic

setting. In this way, we obtain a dynamic monopolistic screening problem: there is
a finite number of periods, and at each period a request for capacity arrives from an
agent who is impatient and privately informed about both his valuation per unit of
capacity and the needed capacity.1 Each agent derives positive utility if he gets the
needed capacity (or more), and zero utility otherwise. The designer accepts or rejects
the requests so as to maximize the revenue obtained from the allocation.

The dynamic and stochastic knapsack problem with complete information about values
and requests was analyzed by Papastavrou, Rajagopalan and Kleywegt (1996) and by
Kleywegt and Papastavrou (2001). These authors characterized optimal policies in terms
of weight-dependent value thresholds. Kincaid and Darling (1963) and Gallego and Van
Ryzin (1994) examined a setting that can be reinterpreted as having (one-dimensional)
incomplete information about values, but in their frameworks all requests have the same
known weight.2 In particular, Gallego and Van Ryzin showed that optimal expected
revenue is concave in capacity in the case of equal weights. Kleywegt and Papastavrou
gave examples showing that total value is not necessarily globally concave in capacity
if the weight requests are heterogeneous, and they provided a sufficient condition for
this structural property to hold. Gallego and Van Ryzin also showed that the optimal
policy, which exhibits complicated time dynamics, can often be replaced by a simple
time-independent policy without much loss: the simple policy performs asymptotically
optimal as the number of periods and the units to be sold go to infinity. Finally, Gershkov

1Our results are easily extended to the setting where arrivals are stochastic and/or time is continuous.
2We refer the reader to the book by Talluri and Van Ryzin (2004) for references to the large literature
on revenue (or yield) management that adopts variations on these models.
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and Moldovanu (2009) generalized the Gallego-Van Ryzin model to incorporate objects
with the same weight but with several qualities that are equally ranked by all agents,
independently of their types (which are also one-dimensional).

Problems of multi-dimensional mechanism design are usually complex and difficult to
solve: the main problem is that incentive compatibility - which in the one-dimensional case
often reduces to a monotonicity constraint - imposes, besides a monotonicity requirement,
an integrability constraint that is not easily included in maximization problems (see
e.g. Rochet, 1985; Armstrong, 1996; Jehiel, Moldovanu and Stacchetti, 1999; and the
survey of Rochet and Stole, 2003). Our implementation problem is special though
because utilities have a special form and useful deviations in the weight dimension can
only be one-sided (upward). This feature allows a less cumbersome characterization of
implementable policies that can be embedded in the dynamic analysis under certain
conditions on the joint distribution of values and weights of the arriving agents. Other
multi-dimensional mechanism design problems with restricted deviations in one or more
dimensions were studied for example by Blackorby and Szalay (2007), Che and Gale
(2000), Iyengar and Kumar (2008), Kittsteiner and Moldovanu (2005), and Pai and Vohra
(2009).

4.1.1 Outline and preview of results

We first characterize implementable policies, as explained above. Then, we solve the
revenue maximization problem for the case where there is private information about
per-unit values, but weights are observable. We will sometimes refer to this as the
relaxed problem. Under a standard monotonicity assumption on virtual values, this
is the virtual value analog of the problem solved by Papastavrou, Rajagopalan and
Kleywegt (1996). The resulting optimal policy is Markovian and deterministic, and it
has a threshold property with respect to virtual values. It is important to emphasize
that this policy need not be implementable for the case where both values and weights
are unobservable, unless additional conditions are imposed. Our main results in Section
4.4 are therefore concerned with the implementability of the relaxed optimal solution:
we derive two different sets of additional conditions on the joint distribution of values
and weights under which the revenue maximizing policy for the case with observable
weights is implementable, and thus optimal also for the case with two-dimensional private
information. The first set of conditions - which is satisfied in a variety of intuitive settings
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- features a hazard rate ordering that expresses a form of positive correlation between
weights and values. It ensures that the incentive constraint in the capacity dimension is
never binding. Related conditions can be found in previous work on multi-dimensional
mechanism design with restricted deviations mentioned above, e.g. in the papers of
Pai and Vohra (2009), Iyengar and Kumar (2008), or Blackorby and Szalay (2007).
More interestingly, we also draw a connection between incentive compatibility and the
structural property of concavity of revenue in capacity. Concavity of optimal expected
revenue in the relaxed problem creates a tendency to set higher virtual value thresholds
for higher capacity requests. It is then less attractive for agents to overstate their
capacity needs, which facilitates the implementation of the relaxed solution by relaxing
the incentive constraints. We quantify this relation in our second set of additional
conditions: concavity of revenue combined with a (substantial) weakening of the hazard
rate order imply implementability of the relaxed solution. For completeness, we also
briefly translate to our model the sufficient condition for concavity of revenue due to
Papastavrou, Rajagopalan and Kleywegt so as to obtain a condition on the model’s
primitives.

The last part of this chapter contains another main result. We construct - for general
distributions of weights and values - a time-independent, nonlinear price schedule which
is asymptotically revenue maximizing when the available capacity and the time to the
deadline both go to infinity, and when weights are observable. This extends an asymptotic
result by Gallego and van Ryzin (1994) (for a detailed discussion, see Section 4.5) and
suggests that complicated dynamic pricing may not be that important for revenue
maximization if the distribution of agents’ types is known. Our result emphasizes though
that nonlinear pricing remains asymptotically important in dynamic settings. As a
nice link to the first part of the paper, the constructed price schedule turns out to be
implementable for the case with two-dimensional private information if the weakened
hazard rate condition employed in our discussion of concavity is satisfied. Since prices
are time-independent, the policy is also immune to strategic buyer arrivals (which we do
not model explicitly here). We also point out that a policy that varies with time but
not with requested weight (whose asymptotic optimality in the complete information
case was established by Lin, Lu and Yao, 2008) is usually not optimal under incomplete
information.

The chapter is organized as follows. In Section 4.2 we present the dynamic model and
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the informational assumptions about values and weights. In Section 4.3 we characterize
incentive compatible allocation policies. In Section 4.4 we focus on dynamic revenue
maximization. We first characterize the revenue maximizing policy for the relaxed
problem. We then offer two results that exhibit conditions under which the above policy
is incentive compatible, and thus optimal also for the case where both values and weights
are private information. Section 4.5 contains the asymptotic analysis. All proofs are in
the Appendix.

4.2 The model

The designer has a “knapsack” of given capacity C ∈ R that he wants to allocate in a
revenue-maximizing way to several agents in at most T <∞ periods. In each period,
an impatient agent arrives with a demand for capacity characterized by a weight (or
quantity request) w, and by a per-unit value v.3 While the realization of the random
vector (w, v) is private information to the arriving agent, its distribution is assumed to
be common knowledge and given by the joint cumulative distribution function F (w, v),
with continuously differentiable density f(w, v) > 0, defined on [0,∞)2. w, v and wv all
have finite expected value. Demands are independent across different periods.4

In each period, the designer decides on a capacity to be allocated to the arriving agent
(possibly none) and on a monetary payment. Type (w, v)’s utility is given by wv − p if
at price p he is allocated a capacity w′ ≥ w and by −p if he is assigned an insufficient
capacity w′ < w. Each agent observes the remaining capacity of the designer.5 Finally,
we assume that for all w, the conditional virtual value functions v̂(v, w) := v − 1−F (v|w)

f(v|w)

are unbounded as a function of v and strictly monotone increasing with ∂
∂v
v̂(v, w) > 0

for all (w, v).

3It is an easy extension to assume that the arrival probability per period is given by p < 1.
4As pointed out by a referee, the results of Sections 4.3 and 4.4 apply also, with the obvious modifications,
if types in different periods are independent but not necessarily drawn from identical distributions.

5Alternatively, we can assume that each agent observes the entire history of the previous allocations.
These assumptions are innocuous in the following sense: when we analyze revenue maximization in
Section 4.4, we first solve for the optimal policy in the relaxed problem with observable weight types
w. We then provide conditions for when this relaxed solution is implementable. Since in the case
of observable weight requests, the designer cannot gain by hiding the available capacity, he cannot
increase expected revenue by hiding the remaining capacity in the original problem.
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4.3 Incentive compatible policies

To characterize the revenue maximizing scheme, we may restrict attention, without
loss of generality, to direct mechanisms where every agent, upon arrival, reports a type
(w, v) and the mechanism then specifies an allocation and a payment. In this section,
we characterize incentive compatibility for a class of allocation policies that necessarily
contains the revenue-maximizing one. The schemes we develop also have an obvious
and immediate interpretation as indirect mechanisms, where the designer sets menus of
per-unit prices that depend on time and on the remaining capacity.

An allocation rule is called deterministic and Markovian if, at any period t = 1, ..., T
and for any possible type of agent arriving at t, it uses a non-random allocation rule that
depends only on the arrival time t, on the declared type of the arriving agent, and on
capacity that is still available, denoted by c. The restriction to these policies is innocuous
as shown in Section 4.4.
For the purpose of revenue maximization, we can assume without loss of generality

that a deterministic Markovian allocation rule for time t with remaining capacity c has
the form αct : [0,+∞)2 → {1, 0} where 1 (0) means that the reported capacity demand
w is satisfied (not satisfied). Indeed, it never makes sense to allocate an insufficient
quantity 0 < w′ < w because individually rational agents are not willing to pay for this.
Alternatively, allocating more capacity than the reported demand is useless as well: such
allocations do not further increase agents’ utility while they may decrease continuation
revenues for the designer. Finally, note that all feasible allocation rules αct must satisfy
αct(w, v) = 0 for all w > c. qct : [0,+∞)2 → R will denote a payment rule associated with
such a αct .

Proposition 4.1. A feasible, deterministic, Markovian allocation rule {αct}t,c is imple-
mentable if and only if for every t and every c it satisfies the following two conditions.6

i) For all (w, v), v′ ≥ v : αct(w, v) = 1 ⇒ αct(w, v′) = 1.

ii) The function wpct(w) is non-decreasing in w, where pct(w) = inf{v|αct(w, v) = 1}.7

6Here, we use “implementable” in the standard sense from the mechanism design literature. An
allocation rule is implementable if we can associate to it a payment rule such that any agent finds it
optimal to truthfully reveal her type when faced with the combined allocation-payment scheme.

7We set pc
t(w) =∞ if the set {v|αc

t(w, v) = 1} is empty.
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When the above two conditions are satisfied, the allocation rule {αct}t,c, together with
the payment rule

qct (w, v) =

 wpct(w) if αct(w, v) = 1
0 if αct(w, v) = 0

constitute an incentive compatible policy.

The threshold property embodied in condition i) of Proposition 4.1 is standard and is
a natural feature of welfare maximizing rules under complete information. When there
is incomplete information in the value dimension, this condition imposes limitations on
the payments that can be extracted in equilibrium. Condition ii) is new: it reflects the
limitations imposed in our model by the incomplete information in the weight dimension.
We note that the above simple result is based on a combination of three main factors.
(1) Due to our special utility function and to the pursued goal of revenue maximization,
it is sufficient to consider only policies that allocate either the demanded weight to the
agent or nothing. (2) The monotonicity requirement behind incentive compatibility boils
down to the above simple conditions. (3) The integrability condition is automatically
satisfied by all monotone allocation rules in the considered class. In general, one has to
consider more allocation functions, more implications of monotonicity, and potentially
an integrability constraint.

4.4 Dynamic revenue maximization

We first demonstrate how the dynamic revenue maximization problem can be solved
if w is observable. This is, essentially, the dynamic programming problem analyzed by
Papastavrou, Rajagopalan and Kleywegt (1996), translated from values to virtual values.
Nevertheless, the logic of the derivation is somewhat involved, so we detail it below.

1. Without loss of generality, we can restrict attention to Markovian policies. The
optimality of Markovian, possibly randomized, policies is standard for all models
where, as is the case here, the per-period rewards and transition probabilities are
history-independent.8

8See for example Theorem 11.1.1 in Puterman (2005) which shows that, for any history-dependent
policy, there is a Markovian, possibly randomized, policy with the same payoff.
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2. If there is incomplete information about v, but complete information about the
weight requirement w, then Markovian, deterministic and implementable policies
αct are characterized for each t and c by the threshold property of condition i) in
Proposition 4.1.

3. Naturally, in the given revenue maximization problem with complete information
about w, we need to restrict attention to interim individually rational policies
where no agent ever pays more than the utility obtained from her actual capacity
allocation. It is easy to see that, for any Markov, deterministic and implementable
allocation rule αct , the maximal, individually rational payment function which
supports it is the one given in Proposition 4.1. Otherwise, the designer pays some
positive subsidy to the agent, and this cannot be revenue-maximizing.

4. At each period t, and for each remaining capacity c, the designer’s problem under
complete information about w is equivalent to a simpler, one-dimensional static
problem where a known capacity needs to be allocated to the arriving agent, and
where the seller has a salvage value for each remaining capacity: the salvage values in
the static problem correspond to the continuation revenues in the dynamic version.
Analogous to the analysis of Myerson (1981), each static revenue maximization
problem has a monotone (in the sense of condition i) in Proposition 4.1), non-
randomized solution as long as for any weight w, the agent’s conditional virtual
valuation v − 1−F (v|w)

f(v|w) is increasing in v.9 If thresholds/per-unit prices are set at
pct(w) (pct(w) = +∞ for w > c reflects the fact that such demands are always
rejected) in period t ≤ T (so T + 1− t periods, including the current one, remain
until the deadline) with remaining capacity c and if the optimal Markovian policy
is followed from time t+ 1 onward, then the expected revenue R(c, T + 1− t) can
be written as

R(c, T + 1− t) =
∫ c

0
wpct(w)(1− F (pct(w)|w))f̄w(w) dw

+
∫ ∞

0
[(1− F (pct(w)|w))R∗(c− w, T − t) + F (pct(w)|w)R∗(c, T − t)] f̄w(w) dw,

9Note that the optimal policy continues to be deterministic even if virtual valuations are not monotonic.
This follows by an argument that is similar to the one given by Riley and Zeckhauser (1983). We
nevertheless keep the monotonicity assumption for simplicity, and because we need related conditions
for some of the subsequent results.
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where f̄w denotes the marginal density in w, and where R∗ denotes optimal expected
revenues, with R∗(c, 0) = 0 for all c. The revenue maximizing unit prices will
be called pct(w) from now on. For w ≤ c, they are determined by the first-order
conditions

w

(
pct(w)− 1− F (pct(w)|w)

f(pct(w)|w)

)
= R∗(c, T − t)−R∗(c− w, T − t).10

5. By backward induction, and by the above reasoning, the seller has a Markov,
non-randomized optimal policy in the dynamic problem with complete information
about w. Note also that, by a simple duplication argument, R∗(c, T + 1− t) must
be monotone non-decreasing in c.

If the above solution to the relaxed problem satisfies the incentive compatibility
constraint in the weight dimension, i.e. if wpct(w) happens to be monotone as required
by condition ii) of Proposition 4.1, then the associated allocation where αct(w, v) = 1
if and only if v ≥ pct(w) is also implementable in the original problem with incomplete
information about both v and w. It then constitutes the revenue maximizing scheme
that we are after. The next example illustrates that condition ii) of Proposition 4.1 can
be binding.

Example 4.1. Assume that T = 1. The distribution of the agents’ types is given by
the following stochastic process. First, the weight request w is realized according to
an exponential distribution with parameter λ. Next, the per-unit value of the agent is
sampled from the following distribution

F (v|w) =

 1− e−λv if w > w∗

1− e−λv if w ≤ w∗

where λ > λ and w∗ ∈ (0, c).
In this case, for an observable weight request, the seller charges the take-it-or-leave-it

offer of 1
λ
( 1
λ
) per unit if the weight request is smaller than or equal to (larger than) w∗.

10Note that by our assumption of unbounded conditional virtual values, which is a mild assumption for
distributions with unbounded support, these first-order conditions always admit a solution and must
be satisfied at the optimum.
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This implies that

wpct(w) =


w
λ

if c ≥ w > w∗

w
λ

if w ≤ w∗

and, therefore, wpct(w) is not monotone.

4.4.1 The hazard rate stochastic ordering

A simple sufficient condition that guarantees implementability of the relaxed solution
is a particular stochastic ordering of the conditional distributions of per-unit values: the
conditional distribution given a higher weight should be (weakly) statistically higher in
the hazard rate order than the conditional distribution given a lower weight. This is
similar to conditions found in static frameworks by Pai and Vohra (2009), Iyengar and
Kumar (2008), or Blackorby and Szalay (2007).

Theorem 4.1. For each c, t, and w, let pct(w) denote the solution to the problem of
maximizing expected revenue under complete information about w, determined recursively
by the Bellman equation

w

(
pct(w)− 1− F (pct(w)|w)

f(pct(w)|w)

)
= R∗(c, T − t)−R∗(c− w, T − t). (4.1)

Assume that the following conditions hold.

i) For any w, the conditional hazard rate f(v|w)
1−F (v|w) is non-decreasing in v.11

ii) For any w′ ≥ w, and for any v, f(v|w)
1−F (v|w) ≥

f(v|w′)
1−F (v|w′) .

Then, wpct(w) is non-decreasing in w, and, consequently, the underlying allocation
where αct(w, v) = 1 if and only if v ≥ pct(w) is implementable. In particular, (4.1)
characterizes the revenue maximizing scheme under incomplete information about both
values and weights.

An important special case for which the conditions of Theorem 4.1 hold is where the
distribution of per-unit values is independent of the distribution of weights and has an
increasing hazard rate.

11Note that this condition already implies the needed monotonicity in v of the conditional virtual value
for all w.
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4.4.2 The role of concavity

A major result for the case where capacity comes in discrete units, and where all
weights are equal is that optimal expected revenue is concave in capacity.12 This is a very
intuitive property since it says that additional capacity is more valuable to the designer
when capacity itself is scarce. Due to the more complicated combinatorial nature of
the knapsack problem with heterogeneous weights, concavity need not generally hold
(see Papastavrou, Rajagopalan and Kleywegt, 1996, for examples where concavity of
expected welfare in the framework with complete information fails). When concavity
does hold, the optimal per-unit virtual value thresholds for the relaxed problem increase
with weight, which facilitates implementation for the case of two-dimensional private
information.
Our main result in this subsection identifies a condition on the distribution of types

that, together with concavity of the expected revenue in the remaining capacity, ensures
that for each t and c, wpct(w) is increasing.

Theorem 4.2. Assume the following conditions.

i) The expected revenue R∗(c, T + 1− t) is a concave function of c for all times t.

ii) For any w ≤ w′, v − 1−F (v|w)
f(v|w) ≥

vw
w′
− 1−F ( vw

w′ |w
′)

f( vw
w′ |w

′) .

For each c, t, and w, let pct(w) denote the solution to the problem of maximizing expected
revenue under complete information about w, determined recursively by (4.1). Then
wpct(w) is non-decreasing in w, and hence the underlying allocation where αct(w, v) = 1
if and only if v ≥ pct(w) is implementable. In particular, (4.1) characterizes the revenue
maximizing scheme under incomplete information about both values and weights.

Remark 4.1. The sufficient conditions for implementability used in Theorem 4.1 are,
taken together, stronger than condition ii) in Theorem 4.2. To see this, assume that for
any w, the conditional hazard rate f(v|w)

1−F (v|w) is increasing in v, and that for any w′ ≥ w

and for all v, f(v|w)
1−F (v|w) ≥

f(v|w′)
1−F (v|w′) . This yields:

v − 1− F (v|w)
f(v|w) ≥ vw

w′
−

1− F (vw
w′
|w)

f(vw
w′
|w) ≥ vw

w′
−

1− F (vw
w′
|w′)

f(vw
w′
|w′) ,

12See Gallego and van Ryzin (1994) for a continuous time framework with Poisson arrivals and Bitran
and Mondschein (1997) for a discrete time setting.
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where the first inequality follows by the monotonicity of the hazard rate, and the second
follows by the stochastic order assumption. Note also that condition ii) of Theorem 4.2
will play an important role for implementability of the asymptotically optimal policy that
we construct in Section 4.5.

We next modify a result of Papastavrou, Rajagopalan and Kleywegt (1996) so as to
identify conditions on the joint distribution F (w, v) that imply concavity of expected
revenue with respect to c for all periods, as required by Theorem 4.2.13 It is convenient
to introduce the joint distribution of weight and total valuation u = vw, which we
denote by G(w, u) with density g(w, u). By means of a transformation of variables, the
densities f and g are related by wg(w,wv) = f(w, v). In particular, marginal densities
in w coincide, i.e.

f̄w(w) =
∫ ∞

0
f(w, v) dv =

∫ ∞
0

g(w, u) du = ḡw(w).

Under our assumptions, the virtual total value is increasing in u with strictly positive
derivative for any given w. This follows from the identity

û(u,w) := u− 1−G(u|w)
g(u|w) = wv − 1− F (v|w)

f(v|w)/w = wv̂(v, w).

We write û−1(û, w) for the inverse of û(u,w) with respect to u and define a distribution
Ĝ(û, w) by both Ĝ(û|w) := G(û−1(û, w)|w) for all w and ¯̂gw(w) := ḡw(w). On the level
of v̂, this corresponds to F̂ (v̂|w) = F (v̂−1(v̂, w)|w) and ¯̂

fw(w) = f̄w(w).

Theorem 4.3. Assume that the conditional distribution Ĝ(w|û) is concave in w for all
û, that both ĝ(w|û) and d

dw
ĝ(w|û) are bounded, and that the total virtual value û has a

finite mean. Then, in the revenue maximization problem where the designer has complete
information about w, the expected revenue R∗(c, T + 1− t) is concave as a function of c
for all times t.

Example 4.2. A simple setting where the conditions of Theorem 4.2 are satisfied while
those of Theorem 4.1 are violated is obtained as follows. Assume that G(w, u) is such
13In the Appendix we also provide an elementary proof of the result of Papastavrou, Rajagopalan

and Kleywegt, since a proof is neither contained in the above-mentioned paper nor in the related
one by Kleywegt and Papastavrou (2001). Moreover, we were unable to find a general result from
finite horizon stochastic dynamic programming that ensures concavity of expected value in the state
variable c, which is only a part of the relevant state description.
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that u and w are independent, the hazard rate gu(u)
1−Gu(u) is non-decreasing, and Gw is

concave.14 Then condition i) of Theorem 4.2 is satisfied according to Theorem 4.3
because the Ĝ(w|û) are concave. Consider then w < w′. By independence of u and w, we
have w′v̂(vw

w′
, w′) = û(vw,w′) = û(vw,w) = wv̂(v, w) and hence v̂(v, w) = w′

w
v̂(vw

w′
, w′).

As w′

w
> 1, this implies condition ii) of Theorem 4.2 in the relevant domain where

virtual values are non-negative. However, as we show now, condition ii) of Theorem
4.1, i.e. the hazard rate ordering, is violated. Indeed, the equation we have just derived
implies also that f(v|w)

1−F (v|w) = w
w′

f( vw
w′ |w

′)
1−F ( vw

w′ |w
′) . But the conditional hazard rates of F are non-

decreasing (because Gu has non-decreasing hazard rate) and w
w′
< 1, so that f(v|w)

1−F (v|w) =
w
w′

f( vw
w′ |w

′)
1−F ( vw

w′ |w
′) <

f(v|w′)
1−F (v|w′) , which contradicts the hazard rate ordering of Theorem 4.1.

4.5 Asymptotically optimal and time-independent
pricing

The optimal policy identified above requires price adjustments in every period and for
any quantity request w. These dynamics are arguably too complicated to be applied
in practice. Gallego and van Ryzin (1994) used an asymptotic argument to show
that the theoretical gain from optimal dynamic pricing compared to a suitably chosen,
time-independent policy is usually small in the setting with unit demands. Our main
theorem in this section extends their result to the dynamic knapsack problem with
general distribution of types. We construct a static nonlinear price schedule that uses
the existing correlations between w and v, and we show that it is asymptotically optimal
if both capacity and time horizon go to infinity.
While the basic strategy of the proof follows the suggestion made by Gallego and

van Ryzin, there are several major differences. In fact, in Section 5 of their paper these
authors also considered the case of heterogeneous capacity demands. However, they
assumed that weights and values are independent and, most importantly, their optimality
benchmark does not even allow per-unit prices to depend on weight requests. But, as we
saw above, such weight dependency is a general property of the dynamically optimal
solution, even if w and v are independent. We therefore take our solution of the relaxed
problem as the optimality benchmark, and we also consider general type distributions F .

14We also assume that the other mild technical conditions of Theorem 4.3 are satisfied.
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As above, we start by focusing on the case of observable weights. We then show that
condition ii) of Theorem 4.2 is a sufficient condition for implementability for the case
with two-dimensional private information.

Like Gallego and van Ryzin, we first solve a simpler, suitably chosen deterministic
maximization problem. The revenue obtained in the solution to that problem provides
an upper bound for the optimal expected revenue of the stochastic problem, and the
solution itself suggests the use of per-unit prices that depend on weight requests, but that
are constant in time. We next show that the derived policy is asymptotically optimal
also in the original stochastic problem where both capacity and time go to infinity: the
ratio of expected revenue from following the considered policy over expected revenue
from the optimal Markovian policy converges to one. Moreover, there are various ways
to quantify this ratio for moderately large capacities and time horizons.
Let us first recall some assumptions and introduce further notation. The marginal

density f̄w(w) and the conditional densities f(v|w) pin down the distribution of (inde-
pendent) arriving types (wt, vt)Tt=1. Given w, the demanded per-unit price p and the
probability λw of a request being accepted are related by λw(p) = 1−F (p|w). Let pw(λ)
be the inverse of λ, and note that this is well defined on (0, 1]. Because of monotonicity
of conditional virtual values, the instantaneous (expected) per-unit revenue functions
rw(λ) := λ pw(λ) are strictly concave, and each one attains a unique interior maximum.
Indeed, pw(λ) = F (·|w)−1(1− λ) and hence

d

dλ
rw(λ) = pw(λ)− λ 1

f(pw(λ)|w) = pw(λ)− 1− F (pw(λ)|w)
f(pw(λ)|w) = v̂(pw(λ), w),

d2

dλ2 r
w(λ) = −

(
∂

∂v
v̂

)
(pw(λ), w) 1

f(pw(λ)|w) < 0.

Consequently, rw is strictly concave, strictly increasing up to the λw,∗ that satisfies
v̂(pw(λw,∗), w) = 0, and strictly decreasing from there on.

4.5.1 The deterministic problem

We now formulate an auxiliary deterministic problem that closely resembles the relaxed
stochastic problem. Let Cap : (0,∞)→ (0,∞) , w 7→ Cap(w) be a measurable function.
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Consider the problem:

max
Cap(·)

∫ ∞
0

max
(λwt )t=1,...,T

(
T∑
t=1

rw(λwt )
)
wf̄w(w) dw, (4.2)

subject to

T∑
t=1

λwt wf̄w(w) ≤ Cap(w) a.s. and
∫ ∞

0
Cap(w) dw ≤ C. (4.3)

In words, we analyze a problem where the following statements are true.

1. The capacity C needs to be divided into capacities Cap(w), one for each w.

2. In each w subproblem, a deterministic quantity request of wf̄w(w) arrives in each
period, and λwt determines a share (not a probability!) of this request that is
accepted and sold at per-unit price pw(λwt ).

3. In each subproblem, the allocated capacity over time cannot exceed Cap(w), and
total allocated capacity in all subproblems

∫∞
0 Cap(w) dw cannot exceed C.

4. The designer’s goal is to maximize total revenue. We call the revenue at the
solution Rd(C, T ).

As rw is strictly concave and increasing up to λw,∗, it is straightforward to verify that,
given a choice Cap(w), the solution to the w subproblem

max
(λwt )t=1,...,T

(
T∑
t=1

rw(λwt )
)
wf̄w(w) such that

T∑
t=1

λwt wf̄w(w) ≤ Cap(w)

is given by

λwt ≡ λw,d :=

λ
w,∗ if λw,∗ ≤ Cap(w)

Twf̄w(w)
Cap(w)
Twf̄w(w) else.

(4.4)

Accordingly, the revenue in the w subproblem is rw(λw,d)Twf̄w(w).

Proposition 4.2. The solution to the deterministic problem given by (4.2) and (4.3) is
characterized by
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i) v̂(pw(λw,d), w) = β(C, T ) = const,

ii) λwt = λw,d = Cap(w)
Twf̄w(w) ,

iii)
∫∞
0 Cap(w) dw = min(C, T

∫∞
0 λw,∗wf̄w(w) dw).

To get an intuition for the above result, observe that the marginal increase of the
optimal revenue for the w subproblem from marginally increasing Cap(w) is

(
d

dλ
rw
)(

Cap(w)
Twf̄w(w)

)
= v̂(pw(λw,d), w) if λw,∗ > Cap(w)

Twf̄w(w)
,

and 0 otherwise. Proposition 4.2 says that, optimally, the capacity should be split in
such a way that the marginal revenue from increasing Cap(w) is the same for all w.
Actually solving the problem amounts to the simple static exercise of determining the
constant β(C, T ) in accordance with the integral feasibility constraint.
The above construction is justified by the following two-step argument: on the one

hand, we show in Theorem 4.4 below that the optimal revenue in the deterministic
problem, Rd(C, T ), bounds from above the optimal revenue in the original stochastic case.
On the other hand, as we show in Section 4.5.2, the optimal solution of the deterministic
problem serves to define a simple time-independent policy that in the stochastic problem
captures revenues RTI(C, T ) such that RTI(C,T )

Rd(C,T ) converges to 1 as C and T go to infinity.
Combining these two points yields the kind of asymptotic optimality result we want to
establish.

Since we assume here that weights are observable, a Markovian policy α for the original
stochastic problem is characterized by the acceptance probabilities λwtt [ct] contingent on
current time t, remaining capacity ct, and weight request wt. Expected revenue from
policy α at the beginning of period t (i.e. when there are (T − t+ 1) periods left) with
remaining capacity ct is given by

Rα(ct, T − t+ 1) = Eα

[
T∑
s=t

ws p
ws(λwss [cs]) I{vs≥pws (λwss [cs])}

]

such that
T∑
s=t

ws I{vs≥pws (λwss [cs])} ≤ ct.

Here, the constraint must hold almost surely when following α. As before, we write
R∗(ct, T − t+ 1) for the optimal revenue, i.e. the supremum of expected revenues taken
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over all feasible Markovian policies α.

Theorem 4.4. For any capacity C and deadline T , it holds that R∗(C, T ) ≤ Rd(C, T ).

4.5.2 A simple policy for the stochastic problem

Having established the upper bound of Theorem 4.4, we proceed with the second part
of our two-step argument outlined in the preceding section. We use the optimal solution
of the deterministic problem to define a w-contingent yet time-independent policy αTI
for the stochastic case as follows.

1. Given C and T , solve the deterministic problem to obtain β(C, T ), λw,d and thus
pw,d := pw(λw,d) = v̂−1(β(C, T ), w).

2. In the stochastic problem charge these weight-contingent prices pw,d for the entire
time horizon, provided that the quantity request does not exceed the remaining
capacity. Else, charge a price equal to +∞ (i.e., reject the request).

Note that under condition ii) of Theorem 4.2, the time-independent policy αTI is
also implementable if weights are not observable! Indeed, setting all virtual valuation
thresholds equal to a constant is like setting them optimally for linear and hence concave
salvage values.

We now determine how well the time-independent policy constructed above performs
compared to the optimal Markovian policy. Recall that we do this by comparing its
expected revenue, RTI(C, T ), with the optimal revenue in the deterministic problem,
Rd(C, T ), which, as we know by Theorem 4.4, provides an upper bound for the optimal
revenue in the stochastic problem, R∗(C, T ).

Theorem 4.5. i) For any joint distribution of values and weights

lim
C,T→∞,C

T
=const

RTI(C, T )
Rd(C, T ) = 1.

ii) Assume that w and v are independent. Then

RTI(C, T )
Rd(C, T ) ≥

1 −

√
E[w2]/E[w]

2
√

min(C, λ∗E[w]T )

 .
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In particular, limmin(C,T )→∞
RTI(C,T )
Rd(C,T ) = 1.

We have chosen to focus on these two general limit results, but various other quan-
titative results could be proven by similar techniques at the expense of slightly more
technical effort and possibly some further assumptions on the distribution F . This should
be clear from the proof in the Appendix. Since the policy αTI is stationary, it does not
generate incentives to postpone arrivals even in a more complex model where buyers are
patient and can choose their arrival time.

Remark 4.2. In a complete information knapsack model, Lin, Lu and Yao (2008)
studied policies that start by accepting only high value requests and then switch over to
accepting also lower values as time goes by. They established asymptotic optimality of
such policies (with carefully chosen switch-over times) as available capacity and time
go to infinity. In other words, their prices are time-dependent but do not condition
on the weight request. It is easy to show that, in our incomplete information model,
such policies are in general suboptimal. Consider first a one-period example where the
seller has capacity 2, and where the arriving agent has either a weight request of 1 or
2 (equally likely). If the weight request is 1(2), the agent’s per-unit value distributes
uniformly between 0 and 1 (between 1 and 2). The optimal mechanism in this case is
as follows: if the buyer requests one unit, the seller sells it for a price of 0.5, and if
the buyer requests two units, the seller sells each unit at a price of 1. Note that this
policy is implementable since the requested per-unit price is monotonically increasing in
the weight request. The expected revenue is 9

8 . If, however, the seller is forced to sell
all units at the same per-unit price without conditioning on the weight request, he will
charge the price of 1 for each unit, yielding an expected revenue of 1, and thus loose 1

8

versus the optimal policy. Now replicate this problem so that there are T periods and
capacity C=2T. Then, the expected revenue from the optimal mechanism is 9

8T , while the
expected revenue from the constrained mechanism is only T. Obviously, the constrained
mechanism is not asymptotically optimal.

4.6 Appendix for Chapter 4

Proof of Proposition 4.1. =⇒. So assume that conditions i) and ii) are satisfied and
define for any t, c,
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qct (w, v) =

wp
c
t(w) if αct(w, v) = 1

0 if αct(w, v) = 0.

Consider then an arrival of type (w, v) in period t with remaining capacity c. There are
two cases.
a) αct(w, v) = 1. In particular, v ≥ pct(w). Then, truth-telling yields utility w(v −

pct(w)) ≥ 0. Assume that the agent reports instead (ŵ, v̂). If αct(ŵ, v̂) = 0, then the
agent’s utility is zero and the deviation is not profitable. Assume then that αct(ŵ, v̂) = 1.
By the form of the utility function, a report of ŵ < w is never profitable. But, for
ŵ ≥ w, the agent’s utility is wv − ŵpct(ŵ) ≤ w(v − pct(w)), where we used condition ii).
Therefore, such a deviation is also not profitable.

b) αct(w, v) = 0. In particular, v ≤ pct(w). Truth-telling yields here utility of zero.
Assume that the agent reports instead (ŵ, v̂). If αct(ŵ, v̂) = 0, then the agent’s utility
remains zero, and the deviation is not profitable. Assume then that αct(ŵ, v̂) = 1. By the
form of the utility function, a report of ŵ < w is never profitable. Thus, consider the
case where ŵ ≥ w. In this case, the agent’s utility is wv − ŵpct(ŵ) ≤ w(v − pct(w)) ≤ 0,
where we used condition ii). Therefore, such a deviation is also not profitable.

⇐=. Consider now an implementable, deterministic and Markovian allocation policy
{αct}t,c. Assume first, by contradiction, that condition i) is not satisfied. Then, there exist
(w, v) and (w, v′) such that v′ > v, αct(w, v) = 1 and αct(w, v′) = 0. We obtain the chain
of inequalities wv′ − qct (w, v) > wv − qct (w, v) ≥ −qct (w, v′) where the second inequality
follows by incentive compatibility for type (w, v). This shows that a deviation to a
report (w, v) is profitable for type (w, v′), a contradiction to implementability. Therefore,
condition i) must hold.
In particular, note that for any two types who have the same weight request, (w, v)

and (w, v′), if both are accepted, i.e. αct(w, v) = αct(w, v′) = 1, the payment must be the
same (otherwise the type which needs to make the higher payment would deviate and
report the other type). Denote this payment by rct (w). Note also that any two types
(w, v) and (w′, v′) such that αct(w, v) = αct(w′, v′) = 0 must also make the same payment
(otherwise the type that needs to make the higher payment would deviate and report
the other type) and denote this payment by s.
Assume now, by contradiction, that condition ii) does not hold. Then there exist

w and w′ such that w′ > w but w′pct(w′) < wpct(w). In particular, w′pct(w′) < ∞, and
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therefore pct(w′) <∞.
Assume first that pct(w) < ∞. We have w′pct(w′) − rct (w′) = wpct(w) − rct (w) = −s

because, by incentive compatibility, both types (w, pct(w)) and (w′, pct(w′)) must be
indifferent between getting their request and not getting it. Since by assumption
w′pct(w′) < wpct(w), we obtain that rct (w′) < rct (w). Consider now a type (w, v) for which
v > pct(w). By reporting truthfully, this type gets utility wv−rct (w), while by deviating to
(w′, v) he gets utility wv−rct (w′) > wv−rct (w), a contradiction to incentive compatibility.

Assume now that pct(w) is infinite, and therefore wpct(w) is infinite. Consider a type
(w′, v) where v > pct(w′). The utility of this type is w′v−rct (w′) > w′pct(w′)−rct (w′) = −s.
In particular, rct (w′) must be finite. By reporting truthfully, a type (w, v) gets utility
−s , while by deviating to a report of (w′, v) he gets wv − rct (w′). For v large enough,
we obtain wv − rct (w′) > −s, a contradiction to implementability.

Thus, condition ii) must hold and, in particular, the payment rct (w) is monotonic in
w.

Proof of Theorem 4.1. Let w < w′. We need to show that wpct(w) − w′pct(w′) ≤ 0. If
pct(w) ≤ pct(w′), the result is clear. Assume then that pct(w) > pct(w′). We obtain the
following chain of inequalities:

w

(
1− F (pct(w)|w)
f(pct(w)|w)

)
− w′

(
1− F (pct(w′)|w′)
f(pct(w′)|w′)

)

≤ w′
(

1− F (pct(w)|w)
f(pct(w)|w) − 1− F (pct(w′)|w′)

f(pct(w′)|w′)

)

≤ w′
(

1− F (pct(w′)|w)
f(pct(w′)|w) − 1− F (pct(w′)|w′)

f(pct(w′)|w′)

)
≤ 0,

where the second inequality follows by the monotonicity of the hazard rate and the
third follows by the hazard rate ordering condition.
Since R∗(c− w, T − t) is monotonically decreasing in w, we obtain that

w

(
pct(w)− 1− F (pct(w)|w)

f(pct(w)|w)

)
≤ w′

(
pct(w′)−

1− F (pct(w′)|w′)
f(pct(w′)|w′)

)
⇔

wpct(w)− w′pct(w′) ≤ w

(
1− F (pct(w)|w)
f(pct(w)|w)

)
− w′

(
1− F (pct(w′)|w′)
f(pct(w′)|w′)

)
≤ 0,

where the last inequality follows by the derivation above. Hence wpct(w)− w′pct(w′) ≤ 0
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as desired.

Proof of Theorem 4.2. For any concave function φ, and for any x < y < z in its domain,
the well known “Three Chord Lemma” asserts that

φ(y)− φ(x)
y − x

≥ φ(z)− φ(x)
z − x

≥ φ(z)− φ(y)
z − y

.

Consider then w < w′ and let x = c−w′ < y = c−w < z = c. For the case of a concave
revenue, the lemma then yields

R∗(c− w, T − t)−R∗(c− w′, T − t)
w′ − w

≥ R∗(c, T − t)−R∗(c− w′, T − t)
w′

≥ R∗(c, T − t)−R∗(c− w, T − t)
w

.

We obtain in particular

pct(w′)−
1− F (pct(w′)|w′)
f(pct(w′)|w′)

= R∗(c, T − t)−R∗(c− w′, T − t)
w′

≥ R∗(c, T − t)−R∗(c− w, T − t)
w

= pct(w)− 1− F (pct(w)|w)
f(pct(w)|w) ,

which yields

pct(w′)−
1− F (pct(w′)|w′)
f(pct(w′)|w′)

≥ pct(w)− 1− F (pct(w)|w)
f(pct(w)|w) ≥ w

w′
pct(w)−

1− F ( w
w′
pct(w)|w′)

f( w
w′
pct(w)|w′)

where the last inequality follows by the condition in the statement of the Theorem.
Since virtual values are increasing, this yields pct(w′) ≥ w

w′
pct(w)⇔ w′pct(w′) ≥ wpct(w) as

desired.

For the proof of Theorem 4.3, we first need a lemma on maximization of expected
welfare under complete information. The result appears (without proof) in Papastavrou,
Rajagopalan and Kleywegt (1996).

Lemma 4.1. Assume that the total value u has finite mean, and that both g(w|u) and
d
dw
g(w|u) are bounded and continuous. Consider the allocation policy that maximizes

expected welfare under complete information (i.e., upon arrival the agent’s type is revealed
to the designer). If G(w|u) is concave in w for all u, then the optimal expected welfare,
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denoted U c
t , is twice continuously differentiable and concave in the remaining capacity c

for all periods t ≤ T .

Proof of Lemma 4.1. Note that, for notational convenience throughout this proof, we
index optimal expected welfare by the current time t and not by periods remaining to
deadline. By standard arguments, the optimal policy for this unconstrained dynamic
optimization problem is deterministic and Markovian, and U c

t is non-decreasing in
remaining capacity c by a simple strategy duplication argument. Moreover, the optimal
policy can be characterized by weight thresholds wct (u) ≤ c : If c remains at time t and
a request whose acceptance would generate value u arrives, then it is accepted if and
only if w ≤ wct (u). If U c

t+1 ≥ u, then the weight threshold must satisfy the indifference
condition

u = U c
t+1 − U

c−wct (u)
t+1 . (4.5)

Otherwise, we have wct (u) = c.
We now prove the lemma by backward induction. At time t = T , i.e. in the deadline
period, it holds that

U c
T =

∫ ∞
0

G(c|u)u ḡu(u) du.

This is concave in c because all G(c|u) are concave by assumption, because u ḡu(u)
is positive, and because the distribution of u has a finite mean. Since both g(w|u) and
d
dw
g(w|u) are bounded and continuous, U c

T is also twice continuously differentiable.
Suppose now that the lemma has been proven down to time t+ 1. The optimal expected
welfare at t provided that capacity c remains may be written as

U c
t =

∫ ∞
0

[
uG(wct (u)|u) +

∫ wct (u)

0
U c−w
t+1 g(w|u) dw + (1−G(wct (u)|u))U c

t+1

]
ḡu(u) du.

(4.6)
We proceed to show concavity with respect to c of the term in brackets, for all u.

This in turn implies concavity of U c
t and hence, with a short additional argument for

differentiability, is sufficient to conclude the induction step. We distinguish the cases
u > U c

t+1 for which the indifference condition (4.5) does not hold, and u ≤ U c
t+1 for

which it does. For both cases, we demonstrate that the second derivative (one-sided if
necessary) of the bracket term with respect to c is non-positive, and thus establish global
concavity.
Case 1: u > U c

t+1. The bracket term becomes uG(c|u) +
∫ c
0 U

c−w
t+1 g(w|u) dw + (1 −
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G(c|u))U c
t+1. By continuity of U c

t+1, this representation also holds in a small interval
around c. We find

d

dc

[
uG(c|u) +

∫ c

0
U c−w
t+1 g(w|u) dw + (1−G(c|u))U c

t+1

]
= ug(c|u) +

∫ c

0

d

dc
U c−w
t+1 g(w|u) dw + U0

t+1 g(c|u)

−g(c|u)U c
t+1 + (1−G(c|u)) d

dc
U c
t+1

= (u− U c
t+1)g(c|u) +

∫ c

0

d

dc
U c−w
t+1 g(w|u) dw + (1−G(c|u)) d

dc
U c
t+1

and

d2

dc2

[
uG(c|u) +

∫ c

0
U c−w
t+1 g(w|u) dw + (1−G(c|u))U c

t+1

]
= (u− U c

t+1)g′(c|u)− g(c|u) d
dc
U c
t+1 +

∫ c

0

d2

dc2U
c−w
t+1 g(w|u) dw

+ d

dw
Uw
t+1

∣∣∣
w=0

g(c|u)− g(c|u) d
dc
U c
t+1 + (1−G(c|u)) d

2

dc2U
c
t+1. (4.7)

The last term is non-positive by the concavity of U c
t+1, the first term is non-positive

because u > U c
t+1 and because G(c|u) has a non-increasing density by assumption. In

addition, g(c|u) d
dc
U c
t+1 is non-negative, and hence (4.7) is bounded from above by

∫ c

0

d2

dc2U
c−w
t+1 g(w|u) dw + g(c|u)

(
d

dw
Uw
t+1

∣∣∣
w=0
− d

dc
U c
t+1

)
.

But
∫ c

0
d2

dc2U
c−w
t+1 g(w|u) dw may be bounded from above by g(c|u)

∫ c
0

d2

dc2U
c−w
t+1 dw because

of the decreasing density and because d2

dc2U
c−w
t+1 ≤ 0. Thus,

d2

dc2

[
uG(c|u) +

∫ c

0
U c−w
t+1 g(w|u) dw + (1−G(c|u))U c

t+1

]
≤ g(c|u)

[∫ c

0

d2

dc2U
c−w
t+1 dw + d

dw
Uw
t+1

∣∣∣
w=0
− d

dc
U c
t+1

]

= g(c|u)
[∫ c

0

d2

dw2U
c−w
t+1 dw + d

dw
Uw
t+1

∣∣∣
w=0
− d

dc
U c
t+1

]
= 0. (4.8)

Case 2: u ≤ U c
t+1 . Here u = U c

t+1 − U
c−wct (u)
t+1 . Consequently, the bracket term in

115



Chapter 4

(4.6) becomes

U c
t+1 − U

c−wct (u)
t+1 G(wct (u)|u) +

∫ wct (u)

0
U c−w
t+1 g(w|u) dw. (4.9)

Before computing its first and second derivatives, we differentiate the identity u =
U c
t+1−U

c−wct (u)
t+1 to obtain an expression for d

dc
wct (u) (derivative from the right if u = U c

t+1):

0 = d

dc
U c
t+1 −

d

dw
Uw
t+1

∣∣∣
w=c−wct (u)

(
1− d

dc
wct (u)

)
.

Since indeed d
dw
Uw
t+1 > 0 in our setup with strictly positive densities, this implies

d

dc
wct (u) =

d
dw
Uw
t+1

∣∣∣
w=c−wct (u)

− d
dc
U c
t+1

d
dw
Uw
t+1

∣∣∣
w=c−wct (u)

. (4.10)

By concavity of U c
t+1, its derivative is non-increasing and hence the identity (4.10)

yields in particular d
dc
wct (u) ≥ 0. We now compute the derivatives of (4.9):

d

dc

[
U c
t+1 − U

c−wct (u)
t+1 G(wct (u)|u) +

∫ wct (u)

0
U c−w
t+1 g(w|u) dw

]

= d

dc
U c
t+1 −

d

dw
Uw
t+1

∣∣∣
w=c−wct (u)

(
1− d

dc
wct (u)

)
G(wct (u)|u)

−U c−wct (u)
t+1 g(wct (u)|u) d

dc
wct (u)

+U
c−wct (u)
t+1 g(wct (u)|u) d

dc
wct (u) +

∫ wct (u)

0

d

dc
U c−w
t+1 g(w|u) dw

(4.10)= d

dc
U c
t+1 −

d

dc
U c
t+1G(wct (u)|u) +

∫ wct (u)

0

d

dc
U c−w
t+1 g(w|u) dw

= d

dc
U c
t+1(1−G(wct (u)|u)) +

∫ wct (u)

0

d

dc
U c−w
t+1 g(w|u) dw.
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Thus,

d2

dc2

[
U c
t+1 − U

c−wct (u)
t+1 G(wct (u)|u) +

∫ wct (u)

0
U c−w
t+1 g(w|u) dw

]

= d2

dc2U
c
t+1(1−G(wct (u)|u))− d

dc
U c
t+1 g(wct (u)|u) d

dc
wct (u)

+ d

dw
Uw
t+1

∣∣∣
w=c−wct (u)

g(wct (u)|u) d
dc
wct (u) +

∫ wct (u)

0

d2

dc2U
c−w
t+1 g(w|u) dw

≤ g(wct (u)|u) d
dc
wct (u)

(
d

dw
Uw
t+1

∣∣∣
w=c−wct (u)

− d

dc
U c
t+1

)
+
∫ wct (u)

0

d2

dw2U
c−w
t+1 g(w|u) dw.

For the final inequality we used concavity of U c
t+1, as well as d2

dc2U
c−w
t+1 = d2

dw2U
c−w
t+1 .

Noting that (4.10) implies that d
dc
wct (u) ≤ 1 and once more using concavity of U c

t+1, we
may bound the first term from above. Since g(w|u) is non-increasing in w, we can also
bound the second term to obtain

d2

dc2

[
U c
t+1 − U

c−wct (u)
t+1 G(wct (u)|u) +

∫ wct (u)

0
U c−w
t+1 g(w|u) dw

]
(4.11)

≤ g(wct (u)|u)
(
d

dw
Uw
t+1

∣∣∣
w=c−wct (u)

− d

dc
U c
t+1 +

∫ wct (u)

0

d2

dw2U
c−w
t+1 dw

)
= 0.

Taken together, (4.8) and (4.11) establish concavity of the integrand in (4.6) with
respect to c. This implies that U c

t is concave. Having a second look at the computations
just performed reveals that the integrand in (4.6) has a kink in the second derivative
at u = U c

t+1. However, this event has measure zero for any given c, so that we also get
that U c

t is twice continuously differentiable. This completes the induction step.

Proof of Theorem 4.3. The main idea of the proof is to translate the problem of maxi-
mizing revenue when w is observable into the problem of maximizing welfare with respect
to virtual values (rather than values) and to use Lemma 4.1 then.
To begin with, note that there is a dual way to describe the policy that maximizes

expected welfare under complete information. In the proof of Lemma 4.1, we characterized
it by optimal weight thresholds wct (u). Alternatively, given any requested quantity w ≤ c,
we may set a valuation per unit threshold vct (w). Requests above this valuation are
accepted, those below are not. Such optimal thresholds are characterized by the Bellman-
type condition

wvct (w) = U c
t+1 − U c−w

t+1 .
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Thus, using vct (w) = +∞ for w > c, one way to write optimal expected welfare under
complete information is

U c
t =

∫ c

0
w
∫ ∞
vct (w)

vf(v|w) dv f̄w(w) dw

+
∫ ∞

0

[
(1− F (vct (w)|w))U c−w

t+1 + F (vct (w)|w)U c
t+1

]
f̄w(w) dw. (4.12)

In contrast, the optimal expected revenue with complete information about w but
incomplete information about v satisfies

R∗(c, T + 1− t) =
∫ c

0
w pct(w) (1− F (pct(w)|w)) f̄w(w) dw (4.13)

+
∫ ∞

0
[(1− F (pct(w)|w))R∗(c− w, T − t) + F (pct(w)|w)R∗(c, T − t)] f̄w(w) dw,

where pct(w) are the per-unit prices from (4.1). We rephrase this in terms of F̂ , whose
definition required monotonicity of virtual values. Setting v̂ct (w) := v̂(pct(w), w) we have
on the one hand

F (pct(w)|w) = F̂ (v̂ct (w)|w).

On the other hand,

pct(w) (1− F (pct(w)|w)) =
∫ ∞
pct (w)

[v f(v|w)− (1− F (v|w))] dv

=
∫ ∞
pct (w)

v̂(v, w) f̂(v̂(v, w)|w) d
dv
v̂(v, w) dv

=
∫ ∞
v̂ct (w)

v̂ f̂(v̂|w) dv̂.

Plugging this and the identities for the marginal densities in w into (4.13), we obtain:

R∗(c, T + 1− t) =
∫ c

0
w
∫ ∞
v̂ct (w)

v̂f̂(v̂|w) dv̂ ¯̂
fw(w) dw

+
∫ ∞

0

[
(1− F̂ (v̂ct (w)|w))R∗(c− w, T − t) + F̂ (v̂ct (w)|w)R∗(c, T − t)

] ¯̂
fw(w) dw.

Comparing this with (4.12), it follows that maximizing expected revenue when w is
observable is equivalent to maximizing expected welfare with respect to the distribution
of weight and conditional virtual valuation (note the identical zero boundary values at
T + 1). Invoking Lemma 4.1 applied to Ĝ, we see that R∗(c, T + 1− t) is concave with
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respect to c for all t (note that the fact that the support of virtual valuations contains
also negative numbers does not matter for the argument of Lemma 4.1).

Proof of Proposition 4.2. The proposition is an immediate consequence of the charac-
terization (4.4) of optimal solutions for the w subproblems given Cap(w), and of a
straightforward variational argument ensuring that marginal revenues from marginal
increase of Cap(w) must be constant almost surely in w.

Proof of Theorem 4.4. We need to distinguish two cases.

Case 1: Assume that C > T
∫∞

0 λw,∗wf̄w(w) dw. In this case, β(C, T ) = 0 and
Rd(C, T ) = T

∫∞
0 rw(λw,∗)wf̄w(w) dw. We also know that R∗(C, T ) ≤ R∗(+∞, T ), where

R∗(+∞, T ) denotes the optimal expected revenue from a stochastic problem without any
capacity constraint. But for such a problem, the optimal Markovian policy maximizes at
each period the instantaneous expected revenue upon observing wt, wt rwt(λ). That is,
the optimal policy sets λwtt [+∞] = λw,∗. Thus,

R∗(C, T ) ≤ R∗(+∞, T ) = T
∫ ∞

0
wrw(λw,∗)f̄w(w) dw = Rd(C, T ).

Case 2: Assume now that C ≤ T
∫∞

0 λw,∗wf̄w(w) dw. For µ ≥ 0, consider the
unconstrained maximization problem

max
Cap(·)

[∫ ∞
0

rw
(

Cap(w)
Twf̄w(w)

)
Twf̄w(w) dw + µ

(
C −

∫ ∞
0

Cap(w) dw
)]
.

The Euler-Lagrange equation is
(
d
dλ
rw
) (

Cap(w)
Twf̄w(w)

)
= µ. Hence, if we write Rd(C, T, µ)

for the optimal value of the above problem and if we let µ = β(C, T ), where β(C, T ) is
the constant from Proposition 4.2, then the solution equals the one of the constrained
deterministic problem. In particular

∫∞
0 Cap(w) dw = C, and Rd(C, T, β(C, T )) =

Rd(C, T ) .
Recall that for the stochastic problem and for any Markovian policy α we have

Rα(C, T ) = Eα

[
T∑
t=1

wt p
wt(λwtt [ct]) I{vt≥pwt (λwtt [ct])}

]
,
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and define

Rα(C, T, β(C, T )) = Rα(C, T ) + β(C, T )
(
C − Eα

[
T∑
t=1

wt I{vt≥pwt (λwtt [ct])}

])
.

Since for any policy α that is admissible in the original problem, it holds that

T∑
t=1

wt I{vt≥pwt (λwtt [ct])} ≤ C a.s.,

we have Rα(C, T ) ≤ Rα(C, T, β(C, T )). We show below that, for arbitrary α (which
may or may not satisfy the capacity constraint), it holds that

Rα(C, T, β(C, T )) ≤ Rd(C, T, β(C, T )). (4.14)

This yields, for any α that is admissible in the original problem,

Rα(C, T ) ≤ Rα(C, T, β(C, T )) ≤ Rd(C, T, β(C, T )) = Rd(C, T ).

Taking the supremum over α then concludes the proof for the second case.
It remains to prove (4.14). The argument uses the filtration {Ft}Tt=1 of σ-algebras that

contain information prior to time t (in particular the value of ct) and, in addition, the
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currently observed wt.

Rα(C, T, β(C, T )) = Eα

[
T∑
t=1

wt (pwt(λwtt [ct])− β(C, T )) I{vt≥pwt (λwtt [ct])}

]
+ β(C, T )C

= Eα

[
T∑
t=1

Eα
[
wt (pwt(λwtt [ct])− β(C, T )) I{vt≥pwt (λwtt [ct])}|Ft

]]
+ β(C, T )C

= Eα

[
T∑
t=1

wt (pwt(λwtt [ct])− β(C, T ))Eα
[
I{vt≥pwt (λwtt [ct])}|Ft

]]
+ β(C, T )C

= Eα

[
T∑
t=1

wt (rwt(λwtt [ct])− β(C, T )λwtt [ct])
]

+ β(C, T )C

≤ Eα

[
T∑
t=1

wt
(
rwt(λwt,d)− β(C, T )λwt,d

)]
+ β(C, T )C

= E(wt)Tt=1

[
T∑
t=1

wt
(
rwt(λwt,d)− β(C, T )λwt,d

)]
+ β(C, T )C

= T
∫ ∞

0
(rw(λw,d)− β(C, T )λw,d)wf̄w(w) dw + β(C, T )C = Rd(C, T, β(C, T )).

For the inequality, we have used that λw,d maximizes rw(λ)− β(C, T )λ.

For the proof of Theorem 4.5, we first need a lemma.

Lemma 4.2. Let RTI(C, T ) be the expected revenue obtained form the stationary policy
αTI . Let (w̃t, ṽt)Tt=1 be an independent copy of the process (wt, vt)Tt=1. Then

i)

RTI(C, T ) = E(wt)Tt=1

[
T∑
t=1

rwt(λwt,d)wt
(

1− P
[
t−1∑
s=1

w̃sI{ṽs≥pw̃s,d}
> C − wt

])]
,

ii)

RTI(C, T )
Rd(C, T ) ≥ 1−

∑T
t=1

∫∞
0 rw(λw,d)w

(
min

(
1, (t−1)σ2

d

((T−t+1)µd−w)2

)
I1 + I2

)
f̄w(w) dw

T
∫∞

0 rw(λw,d)wf̄w(w) dw
.

where µd := min(C,T
∫∞

0 λw,∗wf̄w(w) dw)
T

, I1 := I{w≤(T−t+1)µd}, I2 := I{w>(T−t+1)µd}, and
σ2
d := E[w2I{v≥pw,d}]− µ2

d =
∫∞

0 w2λw,df̄w(w) dw − µ2
d.
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Proof of Lemma 4.2. RTI(C, T ) may be written as

RTI(C, T ) = E(wt,vt)Tt=1

 T∑
t=1

pwt,dwt I{vt≥pwt,d} I
{∑t−1

s=1 wsI{vs≥pws,d}
≤C−wt

}
= E(wt)Tt=1

[
T∑
t=1

rwt(λwt,d)wt
]

−E(wt,vt)Tt=1

 T∑
t=1

pwt,dwt I{vt≥pwt,d} I
{∑t−1

s=1 wsI{vs≥pws,d}
>C−wt

} .
To simplify the second term, we use the fact that vt and (ws, vs)t−1

s=1 are independent
conditional on wt.

E(wt,vt)Tt=1

 T∑
t=1

pwt,dwt I{vt≥pwt,d} I
{∑t−1

s=1 ws I{vs≥pws,d}
>C−wt

}
= E(wt,vt)Tt=1

 T∑
t=1

E

pwt,dwt I{vt≥pwt,d} I{∑t−1
s=1 ws I{vs≥pws,d}

>C−wt
} |wt


= E(wt,vt)Tt=1

 T∑
t=1

pwt,dwtE
[
I{vt≥pwt,d}|wt

]
E

I{∑t−1
s=1 ws I{vs≥pws,d}

>C−wt
} |wt


= E(wt,vt)Tt=1

[
T∑
t=1

pwt,dwt λ
wt,d P

[
t−1∑
s=1

w̃s I{ṽs≥pw̃s,d}
> C − wt

]]

= E(wt)Tt=1

[
T∑
t=1

rwt(λwt,d)wt P
[
t−1∑
s=1

w̃s I{ṽs≥pw̃s,d}
> C − wt

]]
.

This establishes i). Recall that Rd(C, T ) = T
∫∞
0 rw(λw,d)wf̄w(w) dw then. Observe

furthermore that λw,d depends on C and T only through the ratio Ceff

T
, where Ceff =

min(C, T
∫∞

0 λw,∗wf̄w(w) dw), via E[wI{v≥pw,d}] =
∫∞

0 wλw,df̄w(w) dw = Ceff

T
= µd.

Observe first that

P

[
t−1∑
s=1

w̃s I{ṽs≥pw̃s,d}
> C − wt

]
≤ P

[
t−1∑
s=1

w̃s I{ṽs≥pw̃s,d}
> Tµd − wt

]

= P

[
t−1∑
s=1

w̃s I{ṽs≥pw̃s,d}
− (t− 1)µd > (T − t+ 1)µd − wt

]
.

We trivially bound the last expression by 1 if (T − t+ 1)µd − wt ≤ 0, and otherwise
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use Chebychev’s inequality to deduce

P

[
t−1∑
s=1

w̃s I{ṽs≥pw̃s,d}
− (t− 1)µd > (T − t+ 1)µd − wt

]

≤ P

(t−1∑
s=1

w̃s I{ṽs≥pw̃s,d}
− (t− 1)µd

)2

> ((T − t+ 1)µd − wt)2



≤
E

[(∑t−1
s=1 w̃s I{ṽs≥pw̃s,d}

− (t− 1)µd
)2
]

((T − t+ 1)µd − wt)2 = (t− 1)σ2
d

((T − t+ 1)µd − wt)2 .

As we are bounding a probability, we can replace this estimate by the trivial bound 1
again whenever this is better, i.e. if wt is smaller than but close to (T − t+ 1)µd. Thus,

E(wt,vt)Tt=1

[
T∑
t=1

pwt,dwt I{vt≥pwt,d} I{
∑t−1

s=1 ws I{vs≥pws,d}
>C−wt}

]

≤
T∑
t=1

∫ ∞
0

rw(λw,d)w
(

min
(

1, (t− 1)σ2
d

((T − t+ 1)µd − w)2

)
I1 + I2

)
f̄w(w) dw.

Finally, dividing by Rd(C, T ) yields ii).

Proof of Theorem 4.5. We first prove i). I1 and I2 are defined as in Lemma 4.2, and the
starting point for the proof is estimate ii) from that lemma.
Note that rw(λw,d)wf̄w(w) is an integrable upper bound for

rw(λw,d)w
(

min
(

1, (t− 1)σ2
d

((T − t+ 1)µd − w)2

)
I1 + I2

)
f̄w(w).

Moreover, for fixed w, for arbitrary η ∈ (0, 1) and for t ≤ ηT we have w < (1− η)Tµd
eventually as T,C →∞, C

T
= const. Moreover,

(t− 1)σ2
d

((T − t+ 1)µd − w)2 ≤
ηTσ2

d

((1− η)Tµd − w)2 → 0, as T →∞.

The Dominated Convergence Theorem implies then that

∫ ∞
0

rw(λw,d)w
(

min
(

1, (t− 1)σ2
d

((T − t+ 1)µd − w)2

)
I1 + I2

)
f̄w(w) dw → 0,
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in the considered limit, for arbitrary η ∈ (0, 1) and for t ≤ ηT . Consequently, also the
term that is subtracted in estimate ii) of Lemma 4.2 converges to zero. This proves i).
We now prove ii). A straightforward application of the proof by Gallego and Van

Ryzin is possible for this last part. For completeness, we spell it out. If w and v are
independent, all the λw,d for different w coincide, as do the λw,∗. Call them λd and λ∗,
respectively. We then have

RTI(C, T ) = p(λd)E
[
min

(
C,

T∑
t=1

wt I{vt≥p(λd)}

)]

= p(λd)E
 T∑
t=1

wt I{vt≥p(λd)} −
(

T∑
t=1

wt I{vt≥p(λd)} − C

)+ .
We use now the following estimate for E[(X − k)+], where X is a random variable

with mean m and variance σ2 and where k is a constant:

E[(X − k)+] ≤

√
σ2 + (k −m)2 − (k −m)

2 .

Note that by independence

E

[
T∑
t=1

wt I{vt≥p(λd)}

]
= E[w]Tλd,

V ar

[
T∑
t=1

wt I{vt≥p(λd)}

]
= T

(
E[(w I{v≥p(λd)})2]− E[w]2(λd)2

)
= T

(
E[w2]λd − E[w]2(λd)2

)
.

If λ∗TE[w] > C and hence if λd = C
TE[w] this yields

RTI(C, T ) ≥ Rd(C, T )− p(λd)

√
TE[w2]λd

2 = Rd(C, T )
1−

√
E[w2]/E[w]

2
√
C

 .
If λ∗TE[w] ≤ C and hence if λd = λ∗, then C ≥ E

[∑T
t=1wt I{vt≥p(λd)}

]
, so that
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E
[(∑T

t=1wt I{vt≥p(λd)} − C
)+
]
≤
√
σ2

2 . Thus,

RTI(C, T ) ≥ Rd(C, T )− p(λ∗)

√
λ∗TE(w2)

2 = Rd(C, T )
1−

√
E[w2]/E[w]

2
√
λ∗E(w)T

 .
Hence, we can conclude that

RTI(C, T )
Rd(C, T ) ≥

1−

√
E[w2]/E[w]

2
√

min(C, Tλ∗E[w]))

 .
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